xref: /openbmc/linux/fs/btrfs/inode.c (revision 4c1ca831)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "inode-map.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 struct btrfs_dio_data {
61 	u64 reserve;
62 	loff_t length;
63 	ssize_t submitted;
64 	struct extent_changeset *data_reserved;
65 	bool sync;
66 };
67 
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_special_inode_operations;
71 static const struct inode_operations btrfs_file_inode_operations;
72 static const struct address_space_operations btrfs_aops;
73 static const struct file_operations btrfs_dir_file_operations;
74 
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80 
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct btrfs_inode *inode,
85 				   struct page *locked_page,
86 				   u64 start, u64 end, int *page_started,
87 				   unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 				       u64 len, u64 orig_start, u64 block_start,
90 				       u64 block_len, u64 orig_block_len,
91 				       u64 ram_bytes, int compress_type,
92 				       int type);
93 
94 static void __endio_write_update_ordered(struct btrfs_inode *inode,
95 					 const u64 offset, const u64 bytes,
96 					 const bool uptodate);
97 
98 /*
99  * Cleanup all submitted ordered extents in specified range to handle errors
100  * from the btrfs_run_delalloc_range() callback.
101  *
102  * NOTE: caller must ensure that when an error happens, it can not call
103  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105  * to be released, which we want to happen only when finishing the ordered
106  * extent (btrfs_finish_ordered_io()).
107  */
108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
109 						 struct page *locked_page,
110 						 u64 offset, u64 bytes)
111 {
112 	unsigned long index = offset >> PAGE_SHIFT;
113 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 	u64 page_start = page_offset(locked_page);
115 	u64 page_end = page_start + PAGE_SIZE - 1;
116 
117 	struct page *page;
118 
119 	while (index <= end_index) {
120 		page = find_get_page(inode->vfs_inode.i_mapping, index);
121 		index++;
122 		if (!page)
123 			continue;
124 		ClearPagePrivate2(page);
125 		put_page(page);
126 	}
127 
128 	/*
129 	 * In case this page belongs to the delalloc range being instantiated
130 	 * then skip it, since the first page of a range is going to be
131 	 * properly cleaned up by the caller of run_delalloc_range
132 	 */
133 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 		offset += PAGE_SIZE;
135 		bytes -= PAGE_SIZE;
136 	}
137 
138 	return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140 
141 static int btrfs_dirty_inode(struct inode *inode);
142 
143 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
144 				     struct inode *inode,  struct inode *dir,
145 				     const struct qstr *qstr)
146 {
147 	int err;
148 
149 	err = btrfs_init_acl(trans, inode, dir);
150 	if (!err)
151 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
152 	return err;
153 }
154 
155 /*
156  * this does all the hard work for inserting an inline extent into
157  * the btree.  The caller should have done a btrfs_drop_extents so that
158  * no overlapping inline items exist in the btree
159  */
160 static int insert_inline_extent(struct btrfs_trans_handle *trans,
161 				struct btrfs_path *path, int extent_inserted,
162 				struct btrfs_root *root, struct inode *inode,
163 				u64 start, size_t size, size_t compressed_size,
164 				int compress_type,
165 				struct page **compressed_pages)
166 {
167 	struct extent_buffer *leaf;
168 	struct page *page = NULL;
169 	char *kaddr;
170 	unsigned long ptr;
171 	struct btrfs_file_extent_item *ei;
172 	int ret;
173 	size_t cur_size = size;
174 	unsigned long offset;
175 
176 	ASSERT((compressed_size > 0 && compressed_pages) ||
177 	       (compressed_size == 0 && !compressed_pages));
178 
179 	if (compressed_size && compressed_pages)
180 		cur_size = compressed_size;
181 
182 	inode_add_bytes(inode, size);
183 
184 	if (!extent_inserted) {
185 		struct btrfs_key key;
186 		size_t datasize;
187 
188 		key.objectid = btrfs_ino(BTRFS_I(inode));
189 		key.offset = start;
190 		key.type = BTRFS_EXTENT_DATA_KEY;
191 
192 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 		path->leave_spinning = 1;
194 		ret = btrfs_insert_empty_item(trans, root, path, &key,
195 					      datasize);
196 		if (ret)
197 			goto fail;
198 	}
199 	leaf = path->nodes[0];
200 	ei = btrfs_item_ptr(leaf, path->slots[0],
201 			    struct btrfs_file_extent_item);
202 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 	btrfs_set_file_extent_encryption(leaf, ei, 0);
205 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 	ptr = btrfs_file_extent_inline_start(ei);
208 
209 	if (compress_type != BTRFS_COMPRESS_NONE) {
210 		struct page *cpage;
211 		int i = 0;
212 		while (compressed_size > 0) {
213 			cpage = compressed_pages[i];
214 			cur_size = min_t(unsigned long, compressed_size,
215 				       PAGE_SIZE);
216 
217 			kaddr = kmap_atomic(cpage);
218 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
219 			kunmap_atomic(kaddr);
220 
221 			i++;
222 			ptr += cur_size;
223 			compressed_size -= cur_size;
224 		}
225 		btrfs_set_file_extent_compression(leaf, ei,
226 						  compress_type);
227 	} else {
228 		page = find_get_page(inode->i_mapping,
229 				     start >> PAGE_SHIFT);
230 		btrfs_set_file_extent_compression(leaf, ei, 0);
231 		kaddr = kmap_atomic(page);
232 		offset = offset_in_page(start);
233 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
234 		kunmap_atomic(kaddr);
235 		put_page(page);
236 	}
237 	btrfs_mark_buffer_dirty(leaf);
238 	btrfs_release_path(path);
239 
240 	/*
241 	 * We align size to sectorsize for inline extents just for simplicity
242 	 * sake.
243 	 */
244 	size = ALIGN(size, root->fs_info->sectorsize);
245 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
246 	if (ret)
247 		goto fail;
248 
249 	/*
250 	 * we're an inline extent, so nobody can
251 	 * extend the file past i_size without locking
252 	 * a page we already have locked.
253 	 *
254 	 * We must do any isize and inode updates
255 	 * before we unlock the pages.  Otherwise we
256 	 * could end up racing with unlink.
257 	 */
258 	BTRFS_I(inode)->disk_i_size = inode->i_size;
259 	ret = btrfs_update_inode(trans, root, inode);
260 
261 fail:
262 	return ret;
263 }
264 
265 
266 /*
267  * conditionally insert an inline extent into the file.  This
268  * does the checks required to make sure the data is small enough
269  * to fit as an inline extent.
270  */
271 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
272 					  u64 end, size_t compressed_size,
273 					  int compress_type,
274 					  struct page **compressed_pages)
275 {
276 	struct btrfs_root *root = inode->root;
277 	struct btrfs_fs_info *fs_info = root->fs_info;
278 	struct btrfs_trans_handle *trans;
279 	u64 isize = i_size_read(&inode->vfs_inode);
280 	u64 actual_end = min(end + 1, isize);
281 	u64 inline_len = actual_end - start;
282 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
283 	u64 data_len = inline_len;
284 	int ret;
285 	struct btrfs_path *path;
286 	int extent_inserted = 0;
287 	u32 extent_item_size;
288 
289 	if (compressed_size)
290 		data_len = compressed_size;
291 
292 	if (start > 0 ||
293 	    actual_end > fs_info->sectorsize ||
294 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
295 	    (!compressed_size &&
296 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
297 	    end + 1 < isize ||
298 	    data_len > fs_info->max_inline) {
299 		return 1;
300 	}
301 
302 	path = btrfs_alloc_path();
303 	if (!path)
304 		return -ENOMEM;
305 
306 	trans = btrfs_join_transaction(root);
307 	if (IS_ERR(trans)) {
308 		btrfs_free_path(path);
309 		return PTR_ERR(trans);
310 	}
311 	trans->block_rsv = &inode->block_rsv;
312 
313 	if (compressed_size && compressed_pages)
314 		extent_item_size = btrfs_file_extent_calc_inline_size(
315 		   compressed_size);
316 	else
317 		extent_item_size = btrfs_file_extent_calc_inline_size(
318 		    inline_len);
319 
320 	ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
321 				   NULL, 1, 1, extent_item_size,
322 				   &extent_inserted);
323 	if (ret) {
324 		btrfs_abort_transaction(trans, ret);
325 		goto out;
326 	}
327 
328 	if (isize > actual_end)
329 		inline_len = min_t(u64, isize, actual_end);
330 	ret = insert_inline_extent(trans, path, extent_inserted,
331 				   root, &inode->vfs_inode, start,
332 				   inline_len, compressed_size,
333 				   compress_type, compressed_pages);
334 	if (ret && ret != -ENOSPC) {
335 		btrfs_abort_transaction(trans, ret);
336 		goto out;
337 	} else if (ret == -ENOSPC) {
338 		ret = 1;
339 		goto out;
340 	}
341 
342 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
343 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
344 out:
345 	/*
346 	 * Don't forget to free the reserved space, as for inlined extent
347 	 * it won't count as data extent, free them directly here.
348 	 * And at reserve time, it's always aligned to page size, so
349 	 * just free one page here.
350 	 */
351 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
352 	btrfs_free_path(path);
353 	btrfs_end_transaction(trans);
354 	return ret;
355 }
356 
357 struct async_extent {
358 	u64 start;
359 	u64 ram_size;
360 	u64 compressed_size;
361 	struct page **pages;
362 	unsigned long nr_pages;
363 	int compress_type;
364 	struct list_head list;
365 };
366 
367 struct async_chunk {
368 	struct inode *inode;
369 	struct page *locked_page;
370 	u64 start;
371 	u64 end;
372 	unsigned int write_flags;
373 	struct list_head extents;
374 	struct cgroup_subsys_state *blkcg_css;
375 	struct btrfs_work work;
376 	atomic_t *pending;
377 };
378 
379 struct async_cow {
380 	/* Number of chunks in flight; must be first in the structure */
381 	atomic_t num_chunks;
382 	struct async_chunk chunks[];
383 };
384 
385 static noinline int add_async_extent(struct async_chunk *cow,
386 				     u64 start, u64 ram_size,
387 				     u64 compressed_size,
388 				     struct page **pages,
389 				     unsigned long nr_pages,
390 				     int compress_type)
391 {
392 	struct async_extent *async_extent;
393 
394 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
395 	BUG_ON(!async_extent); /* -ENOMEM */
396 	async_extent->start = start;
397 	async_extent->ram_size = ram_size;
398 	async_extent->compressed_size = compressed_size;
399 	async_extent->pages = pages;
400 	async_extent->nr_pages = nr_pages;
401 	async_extent->compress_type = compress_type;
402 	list_add_tail(&async_extent->list, &cow->extents);
403 	return 0;
404 }
405 
406 /*
407  * Check if the inode has flags compatible with compression
408  */
409 static inline bool inode_can_compress(struct btrfs_inode *inode)
410 {
411 	if (inode->flags & BTRFS_INODE_NODATACOW ||
412 	    inode->flags & BTRFS_INODE_NODATASUM)
413 		return false;
414 	return true;
415 }
416 
417 /*
418  * Check if the inode needs to be submitted to compression, based on mount
419  * options, defragmentation, properties or heuristics.
420  */
421 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
422 				      u64 end)
423 {
424 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
425 
426 	if (!inode_can_compress(inode)) {
427 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
428 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
429 			btrfs_ino(inode));
430 		return 0;
431 	}
432 	/* force compress */
433 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
434 		return 1;
435 	/* defrag ioctl */
436 	if (inode->defrag_compress)
437 		return 1;
438 	/* bad compression ratios */
439 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
440 		return 0;
441 	if (btrfs_test_opt(fs_info, COMPRESS) ||
442 	    inode->flags & BTRFS_INODE_COMPRESS ||
443 	    inode->prop_compress)
444 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
445 	return 0;
446 }
447 
448 static inline void inode_should_defrag(struct btrfs_inode *inode,
449 		u64 start, u64 end, u64 num_bytes, u64 small_write)
450 {
451 	/* If this is a small write inside eof, kick off a defrag */
452 	if (num_bytes < small_write &&
453 	    (start > 0 || end + 1 < inode->disk_i_size))
454 		btrfs_add_inode_defrag(NULL, inode);
455 }
456 
457 /*
458  * we create compressed extents in two phases.  The first
459  * phase compresses a range of pages that have already been
460  * locked (both pages and state bits are locked).
461  *
462  * This is done inside an ordered work queue, and the compression
463  * is spread across many cpus.  The actual IO submission is step
464  * two, and the ordered work queue takes care of making sure that
465  * happens in the same order things were put onto the queue by
466  * writepages and friends.
467  *
468  * If this code finds it can't get good compression, it puts an
469  * entry onto the work queue to write the uncompressed bytes.  This
470  * makes sure that both compressed inodes and uncompressed inodes
471  * are written in the same order that the flusher thread sent them
472  * down.
473  */
474 static noinline int compress_file_range(struct async_chunk *async_chunk)
475 {
476 	struct inode *inode = async_chunk->inode;
477 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
478 	u64 blocksize = fs_info->sectorsize;
479 	u64 start = async_chunk->start;
480 	u64 end = async_chunk->end;
481 	u64 actual_end;
482 	u64 i_size;
483 	int ret = 0;
484 	struct page **pages = NULL;
485 	unsigned long nr_pages;
486 	unsigned long total_compressed = 0;
487 	unsigned long total_in = 0;
488 	int i;
489 	int will_compress;
490 	int compress_type = fs_info->compress_type;
491 	int compressed_extents = 0;
492 	int redirty = 0;
493 
494 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
495 			SZ_16K);
496 
497 	/*
498 	 * We need to save i_size before now because it could change in between
499 	 * us evaluating the size and assigning it.  This is because we lock and
500 	 * unlock the page in truncate and fallocate, and then modify the i_size
501 	 * later on.
502 	 *
503 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
504 	 * does that for us.
505 	 */
506 	barrier();
507 	i_size = i_size_read(inode);
508 	barrier();
509 	actual_end = min_t(u64, i_size, end + 1);
510 again:
511 	will_compress = 0;
512 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
513 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
514 	nr_pages = min_t(unsigned long, nr_pages,
515 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
516 
517 	/*
518 	 * we don't want to send crud past the end of i_size through
519 	 * compression, that's just a waste of CPU time.  So, if the
520 	 * end of the file is before the start of our current
521 	 * requested range of bytes, we bail out to the uncompressed
522 	 * cleanup code that can deal with all of this.
523 	 *
524 	 * It isn't really the fastest way to fix things, but this is a
525 	 * very uncommon corner.
526 	 */
527 	if (actual_end <= start)
528 		goto cleanup_and_bail_uncompressed;
529 
530 	total_compressed = actual_end - start;
531 
532 	/*
533 	 * skip compression for a small file range(<=blocksize) that
534 	 * isn't an inline extent, since it doesn't save disk space at all.
535 	 */
536 	if (total_compressed <= blocksize &&
537 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
538 		goto cleanup_and_bail_uncompressed;
539 
540 	total_compressed = min_t(unsigned long, total_compressed,
541 			BTRFS_MAX_UNCOMPRESSED);
542 	total_in = 0;
543 	ret = 0;
544 
545 	/*
546 	 * we do compression for mount -o compress and when the
547 	 * inode has not been flagged as nocompress.  This flag can
548 	 * change at any time if we discover bad compression ratios.
549 	 */
550 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
551 		WARN_ON(pages);
552 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
553 		if (!pages) {
554 			/* just bail out to the uncompressed code */
555 			nr_pages = 0;
556 			goto cont;
557 		}
558 
559 		if (BTRFS_I(inode)->defrag_compress)
560 			compress_type = BTRFS_I(inode)->defrag_compress;
561 		else if (BTRFS_I(inode)->prop_compress)
562 			compress_type = BTRFS_I(inode)->prop_compress;
563 
564 		/*
565 		 * we need to call clear_page_dirty_for_io on each
566 		 * page in the range.  Otherwise applications with the file
567 		 * mmap'd can wander in and change the page contents while
568 		 * we are compressing them.
569 		 *
570 		 * If the compression fails for any reason, we set the pages
571 		 * dirty again later on.
572 		 *
573 		 * Note that the remaining part is redirtied, the start pointer
574 		 * has moved, the end is the original one.
575 		 */
576 		if (!redirty) {
577 			extent_range_clear_dirty_for_io(inode, start, end);
578 			redirty = 1;
579 		}
580 
581 		/* Compression level is applied here and only here */
582 		ret = btrfs_compress_pages(
583 			compress_type | (fs_info->compress_level << 4),
584 					   inode->i_mapping, start,
585 					   pages,
586 					   &nr_pages,
587 					   &total_in,
588 					   &total_compressed);
589 
590 		if (!ret) {
591 			unsigned long offset = offset_in_page(total_compressed);
592 			struct page *page = pages[nr_pages - 1];
593 			char *kaddr;
594 
595 			/* zero the tail end of the last page, we might be
596 			 * sending it down to disk
597 			 */
598 			if (offset) {
599 				kaddr = kmap_atomic(page);
600 				memset(kaddr + offset, 0,
601 				       PAGE_SIZE - offset);
602 				kunmap_atomic(kaddr);
603 			}
604 			will_compress = 1;
605 		}
606 	}
607 cont:
608 	if (start == 0) {
609 		/* lets try to make an inline extent */
610 		if (ret || total_in < actual_end) {
611 			/* we didn't compress the entire range, try
612 			 * to make an uncompressed inline extent.
613 			 */
614 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
615 						    0, BTRFS_COMPRESS_NONE,
616 						    NULL);
617 		} else {
618 			/* try making a compressed inline extent */
619 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
620 						    total_compressed,
621 						    compress_type, pages);
622 		}
623 		if (ret <= 0) {
624 			unsigned long clear_flags = EXTENT_DELALLOC |
625 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
626 				EXTENT_DO_ACCOUNTING;
627 			unsigned long page_error_op;
628 
629 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
630 
631 			/*
632 			 * inline extent creation worked or returned error,
633 			 * we don't need to create any more async work items.
634 			 * Unlock and free up our temp pages.
635 			 *
636 			 * We use DO_ACCOUNTING here because we need the
637 			 * delalloc_release_metadata to be done _after_ we drop
638 			 * our outstanding extent for clearing delalloc for this
639 			 * range.
640 			 */
641 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
642 						     NULL,
643 						     clear_flags,
644 						     PAGE_UNLOCK |
645 						     PAGE_CLEAR_DIRTY |
646 						     PAGE_SET_WRITEBACK |
647 						     page_error_op |
648 						     PAGE_END_WRITEBACK);
649 
650 			/*
651 			 * Ensure we only free the compressed pages if we have
652 			 * them allocated, as we can still reach here with
653 			 * inode_need_compress() == false.
654 			 */
655 			if (pages) {
656 				for (i = 0; i < nr_pages; i++) {
657 					WARN_ON(pages[i]->mapping);
658 					put_page(pages[i]);
659 				}
660 				kfree(pages);
661 			}
662 			return 0;
663 		}
664 	}
665 
666 	if (will_compress) {
667 		/*
668 		 * we aren't doing an inline extent round the compressed size
669 		 * up to a block size boundary so the allocator does sane
670 		 * things
671 		 */
672 		total_compressed = ALIGN(total_compressed, blocksize);
673 
674 		/*
675 		 * one last check to make sure the compression is really a
676 		 * win, compare the page count read with the blocks on disk,
677 		 * compression must free at least one sector size
678 		 */
679 		total_in = ALIGN(total_in, PAGE_SIZE);
680 		if (total_compressed + blocksize <= total_in) {
681 			compressed_extents++;
682 
683 			/*
684 			 * The async work queues will take care of doing actual
685 			 * allocation on disk for these compressed pages, and
686 			 * will submit them to the elevator.
687 			 */
688 			add_async_extent(async_chunk, start, total_in,
689 					total_compressed, pages, nr_pages,
690 					compress_type);
691 
692 			if (start + total_in < end) {
693 				start += total_in;
694 				pages = NULL;
695 				cond_resched();
696 				goto again;
697 			}
698 			return compressed_extents;
699 		}
700 	}
701 	if (pages) {
702 		/*
703 		 * the compression code ran but failed to make things smaller,
704 		 * free any pages it allocated and our page pointer array
705 		 */
706 		for (i = 0; i < nr_pages; i++) {
707 			WARN_ON(pages[i]->mapping);
708 			put_page(pages[i]);
709 		}
710 		kfree(pages);
711 		pages = NULL;
712 		total_compressed = 0;
713 		nr_pages = 0;
714 
715 		/* flag the file so we don't compress in the future */
716 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
717 		    !(BTRFS_I(inode)->prop_compress)) {
718 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
719 		}
720 	}
721 cleanup_and_bail_uncompressed:
722 	/*
723 	 * No compression, but we still need to write the pages in the file
724 	 * we've been given so far.  redirty the locked page if it corresponds
725 	 * to our extent and set things up for the async work queue to run
726 	 * cow_file_range to do the normal delalloc dance.
727 	 */
728 	if (async_chunk->locked_page &&
729 	    (page_offset(async_chunk->locked_page) >= start &&
730 	     page_offset(async_chunk->locked_page)) <= end) {
731 		__set_page_dirty_nobuffers(async_chunk->locked_page);
732 		/* unlocked later on in the async handlers */
733 	}
734 
735 	if (redirty)
736 		extent_range_redirty_for_io(inode, start, end);
737 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
738 			 BTRFS_COMPRESS_NONE);
739 	compressed_extents++;
740 
741 	return compressed_extents;
742 }
743 
744 static void free_async_extent_pages(struct async_extent *async_extent)
745 {
746 	int i;
747 
748 	if (!async_extent->pages)
749 		return;
750 
751 	for (i = 0; i < async_extent->nr_pages; i++) {
752 		WARN_ON(async_extent->pages[i]->mapping);
753 		put_page(async_extent->pages[i]);
754 	}
755 	kfree(async_extent->pages);
756 	async_extent->nr_pages = 0;
757 	async_extent->pages = NULL;
758 }
759 
760 /*
761  * phase two of compressed writeback.  This is the ordered portion
762  * of the code, which only gets called in the order the work was
763  * queued.  We walk all the async extents created by compress_file_range
764  * and send them down to the disk.
765  */
766 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
767 {
768 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
769 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
770 	struct async_extent *async_extent;
771 	u64 alloc_hint = 0;
772 	struct btrfs_key ins;
773 	struct extent_map *em;
774 	struct btrfs_root *root = inode->root;
775 	struct extent_io_tree *io_tree = &inode->io_tree;
776 	int ret = 0;
777 
778 again:
779 	while (!list_empty(&async_chunk->extents)) {
780 		async_extent = list_entry(async_chunk->extents.next,
781 					  struct async_extent, list);
782 		list_del(&async_extent->list);
783 
784 retry:
785 		lock_extent(io_tree, async_extent->start,
786 			    async_extent->start + async_extent->ram_size - 1);
787 		/* did the compression code fall back to uncompressed IO? */
788 		if (!async_extent->pages) {
789 			int page_started = 0;
790 			unsigned long nr_written = 0;
791 
792 			/* allocate blocks */
793 			ret = cow_file_range(inode, async_chunk->locked_page,
794 					     async_extent->start,
795 					     async_extent->start +
796 					     async_extent->ram_size - 1,
797 					     &page_started, &nr_written, 0);
798 
799 			/* JDM XXX */
800 
801 			/*
802 			 * if page_started, cow_file_range inserted an
803 			 * inline extent and took care of all the unlocking
804 			 * and IO for us.  Otherwise, we need to submit
805 			 * all those pages down to the drive.
806 			 */
807 			if (!page_started && !ret)
808 				extent_write_locked_range(&inode->vfs_inode,
809 						  async_extent->start,
810 						  async_extent->start +
811 						  async_extent->ram_size - 1,
812 						  WB_SYNC_ALL);
813 			else if (ret && async_chunk->locked_page)
814 				unlock_page(async_chunk->locked_page);
815 			kfree(async_extent);
816 			cond_resched();
817 			continue;
818 		}
819 
820 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
821 					   async_extent->compressed_size,
822 					   async_extent->compressed_size,
823 					   0, alloc_hint, &ins, 1, 1);
824 		if (ret) {
825 			free_async_extent_pages(async_extent);
826 
827 			if (ret == -ENOSPC) {
828 				unlock_extent(io_tree, async_extent->start,
829 					      async_extent->start +
830 					      async_extent->ram_size - 1);
831 
832 				/*
833 				 * we need to redirty the pages if we decide to
834 				 * fallback to uncompressed IO, otherwise we
835 				 * will not submit these pages down to lower
836 				 * layers.
837 				 */
838 				extent_range_redirty_for_io(&inode->vfs_inode,
839 						async_extent->start,
840 						async_extent->start +
841 						async_extent->ram_size - 1);
842 
843 				goto retry;
844 			}
845 			goto out_free;
846 		}
847 		/*
848 		 * here we're doing allocation and writeback of the
849 		 * compressed pages
850 		 */
851 		em = create_io_em(inode, async_extent->start,
852 				  async_extent->ram_size, /* len */
853 				  async_extent->start, /* orig_start */
854 				  ins.objectid, /* block_start */
855 				  ins.offset, /* block_len */
856 				  ins.offset, /* orig_block_len */
857 				  async_extent->ram_size, /* ram_bytes */
858 				  async_extent->compress_type,
859 				  BTRFS_ORDERED_COMPRESSED);
860 		if (IS_ERR(em))
861 			/* ret value is not necessary due to void function */
862 			goto out_free_reserve;
863 		free_extent_map(em);
864 
865 		ret = btrfs_add_ordered_extent_compress(inode,
866 						async_extent->start,
867 						ins.objectid,
868 						async_extent->ram_size,
869 						ins.offset,
870 						BTRFS_ORDERED_COMPRESSED,
871 						async_extent->compress_type);
872 		if (ret) {
873 			btrfs_drop_extent_cache(inode, async_extent->start,
874 						async_extent->start +
875 						async_extent->ram_size - 1, 0);
876 			goto out_free_reserve;
877 		}
878 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
879 
880 		/*
881 		 * clear dirty, set writeback and unlock the pages.
882 		 */
883 		extent_clear_unlock_delalloc(inode, async_extent->start,
884 				async_extent->start +
885 				async_extent->ram_size - 1,
886 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
887 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
888 				PAGE_SET_WRITEBACK);
889 		if (btrfs_submit_compressed_write(inode, async_extent->start,
890 				    async_extent->ram_size,
891 				    ins.objectid,
892 				    ins.offset, async_extent->pages,
893 				    async_extent->nr_pages,
894 				    async_chunk->write_flags,
895 				    async_chunk->blkcg_css)) {
896 			struct page *p = async_extent->pages[0];
897 			const u64 start = async_extent->start;
898 			const u64 end = start + async_extent->ram_size - 1;
899 
900 			p->mapping = inode->vfs_inode.i_mapping;
901 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
902 
903 			p->mapping = NULL;
904 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
905 						     PAGE_END_WRITEBACK |
906 						     PAGE_SET_ERROR);
907 			free_async_extent_pages(async_extent);
908 		}
909 		alloc_hint = ins.objectid + ins.offset;
910 		kfree(async_extent);
911 		cond_resched();
912 	}
913 	return;
914 out_free_reserve:
915 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
916 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
917 out_free:
918 	extent_clear_unlock_delalloc(inode, async_extent->start,
919 				     async_extent->start +
920 				     async_extent->ram_size - 1,
921 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
922 				     EXTENT_DELALLOC_NEW |
923 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
925 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926 				     PAGE_SET_ERROR);
927 	free_async_extent_pages(async_extent);
928 	kfree(async_extent);
929 	goto again;
930 }
931 
932 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
933 				      u64 num_bytes)
934 {
935 	struct extent_map_tree *em_tree = &inode->extent_tree;
936 	struct extent_map *em;
937 	u64 alloc_hint = 0;
938 
939 	read_lock(&em_tree->lock);
940 	em = search_extent_mapping(em_tree, start, num_bytes);
941 	if (em) {
942 		/*
943 		 * if block start isn't an actual block number then find the
944 		 * first block in this inode and use that as a hint.  If that
945 		 * block is also bogus then just don't worry about it.
946 		 */
947 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948 			free_extent_map(em);
949 			em = search_extent_mapping(em_tree, 0, 0);
950 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951 				alloc_hint = em->block_start;
952 			if (em)
953 				free_extent_map(em);
954 		} else {
955 			alloc_hint = em->block_start;
956 			free_extent_map(em);
957 		}
958 	}
959 	read_unlock(&em_tree->lock);
960 
961 	return alloc_hint;
962 }
963 
964 /*
965  * when extent_io.c finds a delayed allocation range in the file,
966  * the call backs end up in this code.  The basic idea is to
967  * allocate extents on disk for the range, and create ordered data structs
968  * in ram to track those extents.
969  *
970  * locked_page is the page that writepage had locked already.  We use
971  * it to make sure we don't do extra locks or unlocks.
972  *
973  * *page_started is set to one if we unlock locked_page and do everything
974  * required to start IO on it.  It may be clean and already done with
975  * IO when we return.
976  */
977 static noinline int cow_file_range(struct btrfs_inode *inode,
978 				   struct page *locked_page,
979 				   u64 start, u64 end, int *page_started,
980 				   unsigned long *nr_written, int unlock)
981 {
982 	struct btrfs_root *root = inode->root;
983 	struct btrfs_fs_info *fs_info = root->fs_info;
984 	u64 alloc_hint = 0;
985 	u64 num_bytes;
986 	unsigned long ram_size;
987 	u64 cur_alloc_size = 0;
988 	u64 min_alloc_size;
989 	u64 blocksize = fs_info->sectorsize;
990 	struct btrfs_key ins;
991 	struct extent_map *em;
992 	unsigned clear_bits;
993 	unsigned long page_ops;
994 	bool extent_reserved = false;
995 	int ret = 0;
996 
997 	if (btrfs_is_free_space_inode(inode)) {
998 		WARN_ON_ONCE(1);
999 		ret = -EINVAL;
1000 		goto out_unlock;
1001 	}
1002 
1003 	num_bytes = ALIGN(end - start + 1, blocksize);
1004 	num_bytes = max(blocksize,  num_bytes);
1005 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1006 
1007 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1008 
1009 	if (start == 0) {
1010 		/* lets try to make an inline extent */
1011 		ret = cow_file_range_inline(inode, start, end, 0,
1012 					    BTRFS_COMPRESS_NONE, NULL);
1013 		if (ret == 0) {
1014 			/*
1015 			 * We use DO_ACCOUNTING here because we need the
1016 			 * delalloc_release_metadata to be run _after_ we drop
1017 			 * our outstanding extent for clearing delalloc for this
1018 			 * range.
1019 			 */
1020 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1021 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1022 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1024 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025 				     PAGE_END_WRITEBACK);
1026 			*nr_written = *nr_written +
1027 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1028 			*page_started = 1;
1029 			goto out;
1030 		} else if (ret < 0) {
1031 			goto out_unlock;
1032 		}
1033 	}
1034 
1035 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1037 
1038 	/*
1039 	 * Relocation relies on the relocated extents to have exactly the same
1040 	 * size as the original extents. Normally writeback for relocation data
1041 	 * extents follows a NOCOW path because relocation preallocates the
1042 	 * extents. However, due to an operation such as scrub turning a block
1043 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1044 	 * an extent allocated during COW has exactly the requested size and can
1045 	 * not be split into smaller extents, otherwise relocation breaks and
1046 	 * fails during the stage where it updates the bytenr of file extent
1047 	 * items.
1048 	 */
1049 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1050 		min_alloc_size = num_bytes;
1051 	else
1052 		min_alloc_size = fs_info->sectorsize;
1053 
1054 	while (num_bytes > 0) {
1055 		cur_alloc_size = num_bytes;
1056 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1057 					   min_alloc_size, 0, alloc_hint,
1058 					   &ins, 1, 1);
1059 		if (ret < 0)
1060 			goto out_unlock;
1061 		cur_alloc_size = ins.offset;
1062 		extent_reserved = true;
1063 
1064 		ram_size = ins.offset;
1065 		em = create_io_em(inode, start, ins.offset, /* len */
1066 				  start, /* orig_start */
1067 				  ins.objectid, /* block_start */
1068 				  ins.offset, /* block_len */
1069 				  ins.offset, /* orig_block_len */
1070 				  ram_size, /* ram_bytes */
1071 				  BTRFS_COMPRESS_NONE, /* compress_type */
1072 				  BTRFS_ORDERED_REGULAR /* type */);
1073 		if (IS_ERR(em)) {
1074 			ret = PTR_ERR(em);
1075 			goto out_reserve;
1076 		}
1077 		free_extent_map(em);
1078 
1079 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1080 					       ram_size, cur_alloc_size, 0);
1081 		if (ret)
1082 			goto out_drop_extent_cache;
1083 
1084 		if (root->root_key.objectid ==
1085 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1086 			ret = btrfs_reloc_clone_csums(inode, start,
1087 						      cur_alloc_size);
1088 			/*
1089 			 * Only drop cache here, and process as normal.
1090 			 *
1091 			 * We must not allow extent_clear_unlock_delalloc()
1092 			 * at out_unlock label to free meta of this ordered
1093 			 * extent, as its meta should be freed by
1094 			 * btrfs_finish_ordered_io().
1095 			 *
1096 			 * So we must continue until @start is increased to
1097 			 * skip current ordered extent.
1098 			 */
1099 			if (ret)
1100 				btrfs_drop_extent_cache(inode, start,
1101 						start + ram_size - 1, 0);
1102 		}
1103 
1104 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1105 
1106 		/* we're not doing compressed IO, don't unlock the first
1107 		 * page (which the caller expects to stay locked), don't
1108 		 * clear any dirty bits and don't set any writeback bits
1109 		 *
1110 		 * Do set the Private2 bit so we know this page was properly
1111 		 * setup for writepage
1112 		 */
1113 		page_ops = unlock ? PAGE_UNLOCK : 0;
1114 		page_ops |= PAGE_SET_PRIVATE2;
1115 
1116 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1117 					     locked_page,
1118 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1119 					     page_ops);
1120 		if (num_bytes < cur_alloc_size)
1121 			num_bytes = 0;
1122 		else
1123 			num_bytes -= cur_alloc_size;
1124 		alloc_hint = ins.objectid + ins.offset;
1125 		start += cur_alloc_size;
1126 		extent_reserved = false;
1127 
1128 		/*
1129 		 * btrfs_reloc_clone_csums() error, since start is increased
1130 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1131 		 * free metadata of current ordered extent, we're OK to exit.
1132 		 */
1133 		if (ret)
1134 			goto out_unlock;
1135 	}
1136 out:
1137 	return ret;
1138 
1139 out_drop_extent_cache:
1140 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1141 out_reserve:
1142 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1143 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1144 out_unlock:
1145 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1146 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1147 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1148 		PAGE_END_WRITEBACK;
1149 	/*
1150 	 * If we reserved an extent for our delalloc range (or a subrange) and
1151 	 * failed to create the respective ordered extent, then it means that
1152 	 * when we reserved the extent we decremented the extent's size from
1153 	 * the data space_info's bytes_may_use counter and incremented the
1154 	 * space_info's bytes_reserved counter by the same amount. We must make
1155 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1156 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1157 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1158 	 */
1159 	if (extent_reserved) {
1160 		extent_clear_unlock_delalloc(inode, start,
1161 					     start + cur_alloc_size - 1,
1162 					     locked_page,
1163 					     clear_bits,
1164 					     page_ops);
1165 		start += cur_alloc_size;
1166 		if (start >= end)
1167 			goto out;
1168 	}
1169 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1170 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1171 				     page_ops);
1172 	goto out;
1173 }
1174 
1175 /*
1176  * work queue call back to started compression on a file and pages
1177  */
1178 static noinline void async_cow_start(struct btrfs_work *work)
1179 {
1180 	struct async_chunk *async_chunk;
1181 	int compressed_extents;
1182 
1183 	async_chunk = container_of(work, struct async_chunk, work);
1184 
1185 	compressed_extents = compress_file_range(async_chunk);
1186 	if (compressed_extents == 0) {
1187 		btrfs_add_delayed_iput(async_chunk->inode);
1188 		async_chunk->inode = NULL;
1189 	}
1190 }
1191 
1192 /*
1193  * work queue call back to submit previously compressed pages
1194  */
1195 static noinline void async_cow_submit(struct btrfs_work *work)
1196 {
1197 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1198 						     work);
1199 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1200 	unsigned long nr_pages;
1201 
1202 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1203 		PAGE_SHIFT;
1204 
1205 	/* atomic_sub_return implies a barrier */
1206 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1207 	    5 * SZ_1M)
1208 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1209 
1210 	/*
1211 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1212 	 * in which case we don't have anything to submit, yet we need to
1213 	 * always adjust ->async_delalloc_pages as its paired with the init
1214 	 * happening in cow_file_range_async
1215 	 */
1216 	if (async_chunk->inode)
1217 		submit_compressed_extents(async_chunk);
1218 }
1219 
1220 static noinline void async_cow_free(struct btrfs_work *work)
1221 {
1222 	struct async_chunk *async_chunk;
1223 
1224 	async_chunk = container_of(work, struct async_chunk, work);
1225 	if (async_chunk->inode)
1226 		btrfs_add_delayed_iput(async_chunk->inode);
1227 	if (async_chunk->blkcg_css)
1228 		css_put(async_chunk->blkcg_css);
1229 	/*
1230 	 * Since the pointer to 'pending' is at the beginning of the array of
1231 	 * async_chunk's, freeing it ensures the whole array has been freed.
1232 	 */
1233 	if (atomic_dec_and_test(async_chunk->pending))
1234 		kvfree(async_chunk->pending);
1235 }
1236 
1237 static int cow_file_range_async(struct btrfs_inode *inode,
1238 				struct writeback_control *wbc,
1239 				struct page *locked_page,
1240 				u64 start, u64 end, int *page_started,
1241 				unsigned long *nr_written)
1242 {
1243 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1244 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1245 	struct async_cow *ctx;
1246 	struct async_chunk *async_chunk;
1247 	unsigned long nr_pages;
1248 	u64 cur_end;
1249 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1250 	int i;
1251 	bool should_compress;
1252 	unsigned nofs_flag;
1253 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1254 
1255 	unlock_extent(&inode->io_tree, start, end);
1256 
1257 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1258 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1259 		num_chunks = 1;
1260 		should_compress = false;
1261 	} else {
1262 		should_compress = true;
1263 	}
1264 
1265 	nofs_flag = memalloc_nofs_save();
1266 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1267 	memalloc_nofs_restore(nofs_flag);
1268 
1269 	if (!ctx) {
1270 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1271 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1272 			EXTENT_DO_ACCOUNTING;
1273 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1274 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1275 			PAGE_SET_ERROR;
1276 
1277 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1278 					     clear_bits, page_ops);
1279 		return -ENOMEM;
1280 	}
1281 
1282 	async_chunk = ctx->chunks;
1283 	atomic_set(&ctx->num_chunks, num_chunks);
1284 
1285 	for (i = 0; i < num_chunks; i++) {
1286 		if (should_compress)
1287 			cur_end = min(end, start + SZ_512K - 1);
1288 		else
1289 			cur_end = end;
1290 
1291 		/*
1292 		 * igrab is called higher up in the call chain, take only the
1293 		 * lightweight reference for the callback lifetime
1294 		 */
1295 		ihold(&inode->vfs_inode);
1296 		async_chunk[i].pending = &ctx->num_chunks;
1297 		async_chunk[i].inode = &inode->vfs_inode;
1298 		async_chunk[i].start = start;
1299 		async_chunk[i].end = cur_end;
1300 		async_chunk[i].write_flags = write_flags;
1301 		INIT_LIST_HEAD(&async_chunk[i].extents);
1302 
1303 		/*
1304 		 * The locked_page comes all the way from writepage and its
1305 		 * the original page we were actually given.  As we spread
1306 		 * this large delalloc region across multiple async_chunk
1307 		 * structs, only the first struct needs a pointer to locked_page
1308 		 *
1309 		 * This way we don't need racey decisions about who is supposed
1310 		 * to unlock it.
1311 		 */
1312 		if (locked_page) {
1313 			/*
1314 			 * Depending on the compressibility, the pages might or
1315 			 * might not go through async.  We want all of them to
1316 			 * be accounted against wbc once.  Let's do it here
1317 			 * before the paths diverge.  wbc accounting is used
1318 			 * only for foreign writeback detection and doesn't
1319 			 * need full accuracy.  Just account the whole thing
1320 			 * against the first page.
1321 			 */
1322 			wbc_account_cgroup_owner(wbc, locked_page,
1323 						 cur_end - start);
1324 			async_chunk[i].locked_page = locked_page;
1325 			locked_page = NULL;
1326 		} else {
1327 			async_chunk[i].locked_page = NULL;
1328 		}
1329 
1330 		if (blkcg_css != blkcg_root_css) {
1331 			css_get(blkcg_css);
1332 			async_chunk[i].blkcg_css = blkcg_css;
1333 		} else {
1334 			async_chunk[i].blkcg_css = NULL;
1335 		}
1336 
1337 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1338 				async_cow_submit, async_cow_free);
1339 
1340 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1341 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1342 
1343 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1344 
1345 		*nr_written += nr_pages;
1346 		start = cur_end + 1;
1347 	}
1348 	*page_started = 1;
1349 	return 0;
1350 }
1351 
1352 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1353 					u64 bytenr, u64 num_bytes)
1354 {
1355 	int ret;
1356 	struct btrfs_ordered_sum *sums;
1357 	LIST_HEAD(list);
1358 
1359 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1360 				       bytenr + num_bytes - 1, &list, 0);
1361 	if (ret == 0 && list_empty(&list))
1362 		return 0;
1363 
1364 	while (!list_empty(&list)) {
1365 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1366 		list_del(&sums->list);
1367 		kfree(sums);
1368 	}
1369 	if (ret < 0)
1370 		return ret;
1371 	return 1;
1372 }
1373 
1374 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1375 			   const u64 start, const u64 end,
1376 			   int *page_started, unsigned long *nr_written)
1377 {
1378 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1379 	const bool is_reloc_ino = (inode->root->root_key.objectid ==
1380 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1381 	const u64 range_bytes = end + 1 - start;
1382 	struct extent_io_tree *io_tree = &inode->io_tree;
1383 	u64 range_start = start;
1384 	u64 count;
1385 
1386 	/*
1387 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1388 	 * made we had not enough available data space and therefore we did not
1389 	 * reserve data space for it, since we though we could do NOCOW for the
1390 	 * respective file range (either there is prealloc extent or the inode
1391 	 * has the NOCOW bit set).
1392 	 *
1393 	 * However when we need to fallback to COW mode (because for example the
1394 	 * block group for the corresponding extent was turned to RO mode by a
1395 	 * scrub or relocation) we need to do the following:
1396 	 *
1397 	 * 1) We increment the bytes_may_use counter of the data space info.
1398 	 *    If COW succeeds, it allocates a new data extent and after doing
1399 	 *    that it decrements the space info's bytes_may_use counter and
1400 	 *    increments its bytes_reserved counter by the same amount (we do
1401 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1402 	 *    bytes_may_use counter to compensate (when space is reserved at
1403 	 *    buffered write time, the bytes_may_use counter is incremented);
1404 	 *
1405 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1406 	 *    that if the COW path fails for any reason, it decrements (through
1407 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1408 	 *    data space info, which we incremented in the step above.
1409 	 *
1410 	 * If we need to fallback to cow and the inode corresponds to a free
1411 	 * space cache inode or an inode of the data relocation tree, we must
1412 	 * also increment bytes_may_use of the data space_info for the same
1413 	 * reason. Space caches and relocated data extents always get a prealloc
1414 	 * extent for them, however scrub or balance may have set the block
1415 	 * group that contains that extent to RO mode and therefore force COW
1416 	 * when starting writeback.
1417 	 */
1418 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1419 				 EXTENT_NORESERVE, 0);
1420 	if (count > 0 || is_space_ino || is_reloc_ino) {
1421 		u64 bytes = count;
1422 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1423 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1424 
1425 		if (is_space_ino || is_reloc_ino)
1426 			bytes = range_bytes;
1427 
1428 		spin_lock(&sinfo->lock);
1429 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1430 		spin_unlock(&sinfo->lock);
1431 
1432 		if (count > 0)
1433 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1434 					 0, 0, NULL);
1435 	}
1436 
1437 	return cow_file_range(inode, locked_page, start, end, page_started,
1438 			      nr_written, 1);
1439 }
1440 
1441 /*
1442  * when nowcow writeback call back.  This checks for snapshots or COW copies
1443  * of the extents that exist in the file, and COWs the file as required.
1444  *
1445  * If no cow copies or snapshots exist, we write directly to the existing
1446  * blocks on disk
1447  */
1448 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1449 				       struct page *locked_page,
1450 				       const u64 start, const u64 end,
1451 				       int *page_started, int force,
1452 				       unsigned long *nr_written)
1453 {
1454 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1455 	struct btrfs_root *root = inode->root;
1456 	struct btrfs_path *path;
1457 	u64 cow_start = (u64)-1;
1458 	u64 cur_offset = start;
1459 	int ret;
1460 	bool check_prev = true;
1461 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1462 	u64 ino = btrfs_ino(inode);
1463 	bool nocow = false;
1464 	u64 disk_bytenr = 0;
1465 
1466 	path = btrfs_alloc_path();
1467 	if (!path) {
1468 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1469 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1470 					     EXTENT_DO_ACCOUNTING |
1471 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1472 					     PAGE_CLEAR_DIRTY |
1473 					     PAGE_SET_WRITEBACK |
1474 					     PAGE_END_WRITEBACK);
1475 		return -ENOMEM;
1476 	}
1477 
1478 	while (1) {
1479 		struct btrfs_key found_key;
1480 		struct btrfs_file_extent_item *fi;
1481 		struct extent_buffer *leaf;
1482 		u64 extent_end;
1483 		u64 extent_offset;
1484 		u64 num_bytes = 0;
1485 		u64 disk_num_bytes;
1486 		u64 ram_bytes;
1487 		int extent_type;
1488 
1489 		nocow = false;
1490 
1491 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1492 					       cur_offset, 0);
1493 		if (ret < 0)
1494 			goto error;
1495 
1496 		/*
1497 		 * If there is no extent for our range when doing the initial
1498 		 * search, then go back to the previous slot as it will be the
1499 		 * one containing the search offset
1500 		 */
1501 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1502 			leaf = path->nodes[0];
1503 			btrfs_item_key_to_cpu(leaf, &found_key,
1504 					      path->slots[0] - 1);
1505 			if (found_key.objectid == ino &&
1506 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1507 				path->slots[0]--;
1508 		}
1509 		check_prev = false;
1510 next_slot:
1511 		/* Go to next leaf if we have exhausted the current one */
1512 		leaf = path->nodes[0];
1513 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1514 			ret = btrfs_next_leaf(root, path);
1515 			if (ret < 0) {
1516 				if (cow_start != (u64)-1)
1517 					cur_offset = cow_start;
1518 				goto error;
1519 			}
1520 			if (ret > 0)
1521 				break;
1522 			leaf = path->nodes[0];
1523 		}
1524 
1525 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1526 
1527 		/* Didn't find anything for our INO */
1528 		if (found_key.objectid > ino)
1529 			break;
1530 		/*
1531 		 * Keep searching until we find an EXTENT_ITEM or there are no
1532 		 * more extents for this inode
1533 		 */
1534 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1535 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1536 			path->slots[0]++;
1537 			goto next_slot;
1538 		}
1539 
1540 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1541 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1542 		    found_key.offset > end)
1543 			break;
1544 
1545 		/*
1546 		 * If the found extent starts after requested offset, then
1547 		 * adjust extent_end to be right before this extent begins
1548 		 */
1549 		if (found_key.offset > cur_offset) {
1550 			extent_end = found_key.offset;
1551 			extent_type = 0;
1552 			goto out_check;
1553 		}
1554 
1555 		/*
1556 		 * Found extent which begins before our range and potentially
1557 		 * intersect it
1558 		 */
1559 		fi = btrfs_item_ptr(leaf, path->slots[0],
1560 				    struct btrfs_file_extent_item);
1561 		extent_type = btrfs_file_extent_type(leaf, fi);
1562 
1563 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1564 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1565 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1566 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1567 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1568 			extent_end = found_key.offset +
1569 				btrfs_file_extent_num_bytes(leaf, fi);
1570 			disk_num_bytes =
1571 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1572 			/*
1573 			 * If the extent we got ends before our current offset,
1574 			 * skip to the next extent.
1575 			 */
1576 			if (extent_end <= cur_offset) {
1577 				path->slots[0]++;
1578 				goto next_slot;
1579 			}
1580 			/* Skip holes */
1581 			if (disk_bytenr == 0)
1582 				goto out_check;
1583 			/* Skip compressed/encrypted/encoded extents */
1584 			if (btrfs_file_extent_compression(leaf, fi) ||
1585 			    btrfs_file_extent_encryption(leaf, fi) ||
1586 			    btrfs_file_extent_other_encoding(leaf, fi))
1587 				goto out_check;
1588 			/*
1589 			 * If extent is created before the last volume's snapshot
1590 			 * this implies the extent is shared, hence we can't do
1591 			 * nocow. This is the same check as in
1592 			 * btrfs_cross_ref_exist but without calling
1593 			 * btrfs_search_slot.
1594 			 */
1595 			if (!freespace_inode &&
1596 			    btrfs_file_extent_generation(leaf, fi) <=
1597 			    btrfs_root_last_snapshot(&root->root_item))
1598 				goto out_check;
1599 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1600 				goto out_check;
1601 			/* If extent is RO, we must COW it */
1602 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1603 				goto out_check;
1604 			ret = btrfs_cross_ref_exist(root, ino,
1605 						    found_key.offset -
1606 						    extent_offset, disk_bytenr, false);
1607 			if (ret) {
1608 				/*
1609 				 * ret could be -EIO if the above fails to read
1610 				 * metadata.
1611 				 */
1612 				if (ret < 0) {
1613 					if (cow_start != (u64)-1)
1614 						cur_offset = cow_start;
1615 					goto error;
1616 				}
1617 
1618 				WARN_ON_ONCE(freespace_inode);
1619 				goto out_check;
1620 			}
1621 			disk_bytenr += extent_offset;
1622 			disk_bytenr += cur_offset - found_key.offset;
1623 			num_bytes = min(end + 1, extent_end) - cur_offset;
1624 			/*
1625 			 * If there are pending snapshots for this root, we
1626 			 * fall into common COW way
1627 			 */
1628 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1629 				goto out_check;
1630 			/*
1631 			 * force cow if csum exists in the range.
1632 			 * this ensure that csum for a given extent are
1633 			 * either valid or do not exist.
1634 			 */
1635 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1636 						  num_bytes);
1637 			if (ret) {
1638 				/*
1639 				 * ret could be -EIO if the above fails to read
1640 				 * metadata.
1641 				 */
1642 				if (ret < 0) {
1643 					if (cow_start != (u64)-1)
1644 						cur_offset = cow_start;
1645 					goto error;
1646 				}
1647 				WARN_ON_ONCE(freespace_inode);
1648 				goto out_check;
1649 			}
1650 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1651 				goto out_check;
1652 			nocow = true;
1653 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1654 			extent_end = found_key.offset + ram_bytes;
1655 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1656 			/* Skip extents outside of our requested range */
1657 			if (extent_end <= start) {
1658 				path->slots[0]++;
1659 				goto next_slot;
1660 			}
1661 		} else {
1662 			/* If this triggers then we have a memory corruption */
1663 			BUG();
1664 		}
1665 out_check:
1666 		/*
1667 		 * If nocow is false then record the beginning of the range
1668 		 * that needs to be COWed
1669 		 */
1670 		if (!nocow) {
1671 			if (cow_start == (u64)-1)
1672 				cow_start = cur_offset;
1673 			cur_offset = extent_end;
1674 			if (cur_offset > end)
1675 				break;
1676 			path->slots[0]++;
1677 			goto next_slot;
1678 		}
1679 
1680 		btrfs_release_path(path);
1681 
1682 		/*
1683 		 * COW range from cow_start to found_key.offset - 1. As the key
1684 		 * will contain the beginning of the first extent that can be
1685 		 * NOCOW, following one which needs to be COW'ed
1686 		 */
1687 		if (cow_start != (u64)-1) {
1688 			ret = fallback_to_cow(inode, locked_page,
1689 					      cow_start, found_key.offset - 1,
1690 					      page_started, nr_written);
1691 			if (ret)
1692 				goto error;
1693 			cow_start = (u64)-1;
1694 		}
1695 
1696 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1697 			u64 orig_start = found_key.offset - extent_offset;
1698 			struct extent_map *em;
1699 
1700 			em = create_io_em(inode, cur_offset, num_bytes,
1701 					  orig_start,
1702 					  disk_bytenr, /* block_start */
1703 					  num_bytes, /* block_len */
1704 					  disk_num_bytes, /* orig_block_len */
1705 					  ram_bytes, BTRFS_COMPRESS_NONE,
1706 					  BTRFS_ORDERED_PREALLOC);
1707 			if (IS_ERR(em)) {
1708 				ret = PTR_ERR(em);
1709 				goto error;
1710 			}
1711 			free_extent_map(em);
1712 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1713 						       disk_bytenr, num_bytes,
1714 						       num_bytes,
1715 						       BTRFS_ORDERED_PREALLOC);
1716 			if (ret) {
1717 				btrfs_drop_extent_cache(inode, cur_offset,
1718 							cur_offset + num_bytes - 1,
1719 							0);
1720 				goto error;
1721 			}
1722 		} else {
1723 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1724 						       disk_bytenr, num_bytes,
1725 						       num_bytes,
1726 						       BTRFS_ORDERED_NOCOW);
1727 			if (ret)
1728 				goto error;
1729 		}
1730 
1731 		if (nocow)
1732 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1733 		nocow = false;
1734 
1735 		if (root->root_key.objectid ==
1736 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1737 			/*
1738 			 * Error handled later, as we must prevent
1739 			 * extent_clear_unlock_delalloc() in error handler
1740 			 * from freeing metadata of created ordered extent.
1741 			 */
1742 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1743 						      num_bytes);
1744 
1745 		extent_clear_unlock_delalloc(inode, cur_offset,
1746 					     cur_offset + num_bytes - 1,
1747 					     locked_page, EXTENT_LOCKED |
1748 					     EXTENT_DELALLOC |
1749 					     EXTENT_CLEAR_DATA_RESV,
1750 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1751 
1752 		cur_offset = extent_end;
1753 
1754 		/*
1755 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1756 		 * handler, as metadata for created ordered extent will only
1757 		 * be freed by btrfs_finish_ordered_io().
1758 		 */
1759 		if (ret)
1760 			goto error;
1761 		if (cur_offset > end)
1762 			break;
1763 	}
1764 	btrfs_release_path(path);
1765 
1766 	if (cur_offset <= end && cow_start == (u64)-1)
1767 		cow_start = cur_offset;
1768 
1769 	if (cow_start != (u64)-1) {
1770 		cur_offset = end;
1771 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1772 				      page_started, nr_written);
1773 		if (ret)
1774 			goto error;
1775 	}
1776 
1777 error:
1778 	if (nocow)
1779 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1780 
1781 	if (ret && cur_offset < end)
1782 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1783 					     locked_page, EXTENT_LOCKED |
1784 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1785 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1786 					     PAGE_CLEAR_DIRTY |
1787 					     PAGE_SET_WRITEBACK |
1788 					     PAGE_END_WRITEBACK);
1789 	btrfs_free_path(path);
1790 	return ret;
1791 }
1792 
1793 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1794 {
1795 
1796 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1797 	    !(inode->flags & BTRFS_INODE_PREALLOC))
1798 		return 0;
1799 
1800 	/*
1801 	 * @defrag_bytes is a hint value, no spinlock held here,
1802 	 * if is not zero, it means the file is defragging.
1803 	 * Force cow if given extent needs to be defragged.
1804 	 */
1805 	if (inode->defrag_bytes &&
1806 	    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1807 		return 1;
1808 
1809 	return 0;
1810 }
1811 
1812 /*
1813  * Function to process delayed allocation (create CoW) for ranges which are
1814  * being touched for the first time.
1815  */
1816 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1817 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1818 		struct writeback_control *wbc)
1819 {
1820 	int ret;
1821 	int force_cow = need_force_cow(inode, start, end);
1822 
1823 	if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1824 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1825 					 page_started, 1, nr_written);
1826 	} else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1827 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1828 					 page_started, 0, nr_written);
1829 	} else if (!inode_can_compress(inode) ||
1830 		   !inode_need_compress(inode, start, end)) {
1831 		ret = cow_file_range(inode, locked_page, start, end,
1832 				     page_started, nr_written, 1);
1833 	} else {
1834 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1835 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1836 					   page_started, nr_written);
1837 	}
1838 	if (ret)
1839 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1840 					      end - start + 1);
1841 	return ret;
1842 }
1843 
1844 void btrfs_split_delalloc_extent(struct inode *inode,
1845 				 struct extent_state *orig, u64 split)
1846 {
1847 	u64 size;
1848 
1849 	/* not delalloc, ignore it */
1850 	if (!(orig->state & EXTENT_DELALLOC))
1851 		return;
1852 
1853 	size = orig->end - orig->start + 1;
1854 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1855 		u32 num_extents;
1856 		u64 new_size;
1857 
1858 		/*
1859 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1860 		 * applies here, just in reverse.
1861 		 */
1862 		new_size = orig->end - split + 1;
1863 		num_extents = count_max_extents(new_size);
1864 		new_size = split - orig->start;
1865 		num_extents += count_max_extents(new_size);
1866 		if (count_max_extents(size) >= num_extents)
1867 			return;
1868 	}
1869 
1870 	spin_lock(&BTRFS_I(inode)->lock);
1871 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1872 	spin_unlock(&BTRFS_I(inode)->lock);
1873 }
1874 
1875 /*
1876  * Handle merged delayed allocation extents so we can keep track of new extents
1877  * that are just merged onto old extents, such as when we are doing sequential
1878  * writes, so we can properly account for the metadata space we'll need.
1879  */
1880 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1881 				 struct extent_state *other)
1882 {
1883 	u64 new_size, old_size;
1884 	u32 num_extents;
1885 
1886 	/* not delalloc, ignore it */
1887 	if (!(other->state & EXTENT_DELALLOC))
1888 		return;
1889 
1890 	if (new->start > other->start)
1891 		new_size = new->end - other->start + 1;
1892 	else
1893 		new_size = other->end - new->start + 1;
1894 
1895 	/* we're not bigger than the max, unreserve the space and go */
1896 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1897 		spin_lock(&BTRFS_I(inode)->lock);
1898 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1899 		spin_unlock(&BTRFS_I(inode)->lock);
1900 		return;
1901 	}
1902 
1903 	/*
1904 	 * We have to add up either side to figure out how many extents were
1905 	 * accounted for before we merged into one big extent.  If the number of
1906 	 * extents we accounted for is <= the amount we need for the new range
1907 	 * then we can return, otherwise drop.  Think of it like this
1908 	 *
1909 	 * [ 4k][MAX_SIZE]
1910 	 *
1911 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1912 	 * need 2 outstanding extents, on one side we have 1 and the other side
1913 	 * we have 1 so they are == and we can return.  But in this case
1914 	 *
1915 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1916 	 *
1917 	 * Each range on their own accounts for 2 extents, but merged together
1918 	 * they are only 3 extents worth of accounting, so we need to drop in
1919 	 * this case.
1920 	 */
1921 	old_size = other->end - other->start + 1;
1922 	num_extents = count_max_extents(old_size);
1923 	old_size = new->end - new->start + 1;
1924 	num_extents += count_max_extents(old_size);
1925 	if (count_max_extents(new_size) >= num_extents)
1926 		return;
1927 
1928 	spin_lock(&BTRFS_I(inode)->lock);
1929 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1930 	spin_unlock(&BTRFS_I(inode)->lock);
1931 }
1932 
1933 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1934 				      struct inode *inode)
1935 {
1936 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1937 
1938 	spin_lock(&root->delalloc_lock);
1939 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1940 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1941 			      &root->delalloc_inodes);
1942 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1943 			&BTRFS_I(inode)->runtime_flags);
1944 		root->nr_delalloc_inodes++;
1945 		if (root->nr_delalloc_inodes == 1) {
1946 			spin_lock(&fs_info->delalloc_root_lock);
1947 			BUG_ON(!list_empty(&root->delalloc_root));
1948 			list_add_tail(&root->delalloc_root,
1949 				      &fs_info->delalloc_roots);
1950 			spin_unlock(&fs_info->delalloc_root_lock);
1951 		}
1952 	}
1953 	spin_unlock(&root->delalloc_lock);
1954 }
1955 
1956 
1957 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1958 				struct btrfs_inode *inode)
1959 {
1960 	struct btrfs_fs_info *fs_info = root->fs_info;
1961 
1962 	if (!list_empty(&inode->delalloc_inodes)) {
1963 		list_del_init(&inode->delalloc_inodes);
1964 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1965 			  &inode->runtime_flags);
1966 		root->nr_delalloc_inodes--;
1967 		if (!root->nr_delalloc_inodes) {
1968 			ASSERT(list_empty(&root->delalloc_inodes));
1969 			spin_lock(&fs_info->delalloc_root_lock);
1970 			BUG_ON(list_empty(&root->delalloc_root));
1971 			list_del_init(&root->delalloc_root);
1972 			spin_unlock(&fs_info->delalloc_root_lock);
1973 		}
1974 	}
1975 }
1976 
1977 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1978 				     struct btrfs_inode *inode)
1979 {
1980 	spin_lock(&root->delalloc_lock);
1981 	__btrfs_del_delalloc_inode(root, inode);
1982 	spin_unlock(&root->delalloc_lock);
1983 }
1984 
1985 /*
1986  * Properly track delayed allocation bytes in the inode and to maintain the
1987  * list of inodes that have pending delalloc work to be done.
1988  */
1989 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1990 			       unsigned *bits)
1991 {
1992 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1993 
1994 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1995 		WARN_ON(1);
1996 	/*
1997 	 * set_bit and clear bit hooks normally require _irqsave/restore
1998 	 * but in this case, we are only testing for the DELALLOC
1999 	 * bit, which is only set or cleared with irqs on
2000 	 */
2001 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2002 		struct btrfs_root *root = BTRFS_I(inode)->root;
2003 		u64 len = state->end + 1 - state->start;
2004 		u32 num_extents = count_max_extents(len);
2005 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2006 
2007 		spin_lock(&BTRFS_I(inode)->lock);
2008 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2009 		spin_unlock(&BTRFS_I(inode)->lock);
2010 
2011 		/* For sanity tests */
2012 		if (btrfs_is_testing(fs_info))
2013 			return;
2014 
2015 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2016 					 fs_info->delalloc_batch);
2017 		spin_lock(&BTRFS_I(inode)->lock);
2018 		BTRFS_I(inode)->delalloc_bytes += len;
2019 		if (*bits & EXTENT_DEFRAG)
2020 			BTRFS_I(inode)->defrag_bytes += len;
2021 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2022 					 &BTRFS_I(inode)->runtime_flags))
2023 			btrfs_add_delalloc_inodes(root, inode);
2024 		spin_unlock(&BTRFS_I(inode)->lock);
2025 	}
2026 
2027 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2028 	    (*bits & EXTENT_DELALLOC_NEW)) {
2029 		spin_lock(&BTRFS_I(inode)->lock);
2030 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2031 			state->start;
2032 		spin_unlock(&BTRFS_I(inode)->lock);
2033 	}
2034 }
2035 
2036 /*
2037  * Once a range is no longer delalloc this function ensures that proper
2038  * accounting happens.
2039  */
2040 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2041 				 struct extent_state *state, unsigned *bits)
2042 {
2043 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2044 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2045 	u64 len = state->end + 1 - state->start;
2046 	u32 num_extents = count_max_extents(len);
2047 
2048 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2049 		spin_lock(&inode->lock);
2050 		inode->defrag_bytes -= len;
2051 		spin_unlock(&inode->lock);
2052 	}
2053 
2054 	/*
2055 	 * set_bit and clear bit hooks normally require _irqsave/restore
2056 	 * but in this case, we are only testing for the DELALLOC
2057 	 * bit, which is only set or cleared with irqs on
2058 	 */
2059 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2060 		struct btrfs_root *root = inode->root;
2061 		bool do_list = !btrfs_is_free_space_inode(inode);
2062 
2063 		spin_lock(&inode->lock);
2064 		btrfs_mod_outstanding_extents(inode, -num_extents);
2065 		spin_unlock(&inode->lock);
2066 
2067 		/*
2068 		 * We don't reserve metadata space for space cache inodes so we
2069 		 * don't need to call delalloc_release_metadata if there is an
2070 		 * error.
2071 		 */
2072 		if (*bits & EXTENT_CLEAR_META_RESV &&
2073 		    root != fs_info->tree_root)
2074 			btrfs_delalloc_release_metadata(inode, len, false);
2075 
2076 		/* For sanity tests. */
2077 		if (btrfs_is_testing(fs_info))
2078 			return;
2079 
2080 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2081 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2082 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2083 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2084 
2085 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2086 					 fs_info->delalloc_batch);
2087 		spin_lock(&inode->lock);
2088 		inode->delalloc_bytes -= len;
2089 		if (do_list && inode->delalloc_bytes == 0 &&
2090 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2091 					&inode->runtime_flags))
2092 			btrfs_del_delalloc_inode(root, inode);
2093 		spin_unlock(&inode->lock);
2094 	}
2095 
2096 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2097 	    (*bits & EXTENT_DELALLOC_NEW)) {
2098 		spin_lock(&inode->lock);
2099 		ASSERT(inode->new_delalloc_bytes >= len);
2100 		inode->new_delalloc_bytes -= len;
2101 		spin_unlock(&inode->lock);
2102 	}
2103 }
2104 
2105 /*
2106  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2107  * in a chunk's stripe. This function ensures that bios do not span a
2108  * stripe/chunk
2109  *
2110  * @page - The page we are about to add to the bio
2111  * @size - size we want to add to the bio
2112  * @bio - bio we want to ensure is smaller than a stripe
2113  * @bio_flags - flags of the bio
2114  *
2115  * return 1 if page cannot be added to the bio
2116  * return 0 if page can be added to the bio
2117  * return error otherwise
2118  */
2119 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2120 			     unsigned long bio_flags)
2121 {
2122 	struct inode *inode = page->mapping->host;
2123 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2124 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2125 	u64 length = 0;
2126 	u64 map_length;
2127 	int ret;
2128 	struct btrfs_io_geometry geom;
2129 
2130 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2131 		return 0;
2132 
2133 	length = bio->bi_iter.bi_size;
2134 	map_length = length;
2135 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2136 				    &geom);
2137 	if (ret < 0)
2138 		return ret;
2139 
2140 	if (geom.len < length + size)
2141 		return 1;
2142 	return 0;
2143 }
2144 
2145 /*
2146  * in order to insert checksums into the metadata in large chunks,
2147  * we wait until bio submission time.   All the pages in the bio are
2148  * checksummed and sums are attached onto the ordered extent record.
2149  *
2150  * At IO completion time the cums attached on the ordered extent record
2151  * are inserted into the btree
2152  */
2153 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2154 				    u64 bio_offset)
2155 {
2156 	struct inode *inode = private_data;
2157 
2158 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2159 }
2160 
2161 /*
2162  * extent_io.c submission hook. This does the right thing for csum calculation
2163  * on write, or reading the csums from the tree before a read.
2164  *
2165  * Rules about async/sync submit,
2166  * a) read:				sync submit
2167  *
2168  * b) write without checksum:		sync submit
2169  *
2170  * c) write with checksum:
2171  *    c-1) if bio is issued by fsync:	sync submit
2172  *         (sync_writers != 0)
2173  *
2174  *    c-2) if root is reloc root:	sync submit
2175  *         (only in case of buffered IO)
2176  *
2177  *    c-3) otherwise:			async submit
2178  */
2179 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2180 				   int mirror_num, unsigned long bio_flags)
2181 
2182 {
2183 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2184 	struct btrfs_root *root = BTRFS_I(inode)->root;
2185 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2186 	blk_status_t ret = 0;
2187 	int skip_sum;
2188 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2189 
2190 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2191 
2192 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2193 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2194 
2195 	if (bio_op(bio) != REQ_OP_WRITE) {
2196 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2197 		if (ret)
2198 			goto out;
2199 
2200 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2201 			ret = btrfs_submit_compressed_read(inode, bio,
2202 							   mirror_num,
2203 							   bio_flags);
2204 			goto out;
2205 		} else if (!skip_sum) {
2206 			ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2207 			if (ret)
2208 				goto out;
2209 		}
2210 		goto mapit;
2211 	} else if (async && !skip_sum) {
2212 		/* csum items have already been cloned */
2213 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2214 			goto mapit;
2215 		/* we're doing a write, do the async checksumming */
2216 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2217 					  0, inode, btrfs_submit_bio_start);
2218 		goto out;
2219 	} else if (!skip_sum) {
2220 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2221 		if (ret)
2222 			goto out;
2223 	}
2224 
2225 mapit:
2226 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2227 
2228 out:
2229 	if (ret) {
2230 		bio->bi_status = ret;
2231 		bio_endio(bio);
2232 	}
2233 	return ret;
2234 }
2235 
2236 /*
2237  * given a list of ordered sums record them in the inode.  This happens
2238  * at IO completion time based on sums calculated at bio submission time.
2239  */
2240 static int add_pending_csums(struct btrfs_trans_handle *trans,
2241 			     struct list_head *list)
2242 {
2243 	struct btrfs_ordered_sum *sum;
2244 	int ret;
2245 
2246 	list_for_each_entry(sum, list, list) {
2247 		trans->adding_csums = true;
2248 		ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2249 		trans->adding_csums = false;
2250 		if (ret)
2251 			return ret;
2252 	}
2253 	return 0;
2254 }
2255 
2256 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2257 			      unsigned int extra_bits,
2258 			      struct extent_state **cached_state)
2259 {
2260 	WARN_ON(PAGE_ALIGNED(end));
2261 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2262 				   cached_state);
2263 }
2264 
2265 /* see btrfs_writepage_start_hook for details on why this is required */
2266 struct btrfs_writepage_fixup {
2267 	struct page *page;
2268 	struct inode *inode;
2269 	struct btrfs_work work;
2270 };
2271 
2272 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2273 {
2274 	struct btrfs_writepage_fixup *fixup;
2275 	struct btrfs_ordered_extent *ordered;
2276 	struct extent_state *cached_state = NULL;
2277 	struct extent_changeset *data_reserved = NULL;
2278 	struct page *page;
2279 	struct btrfs_inode *inode;
2280 	u64 page_start;
2281 	u64 page_end;
2282 	int ret = 0;
2283 	bool free_delalloc_space = true;
2284 
2285 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2286 	page = fixup->page;
2287 	inode = BTRFS_I(fixup->inode);
2288 	page_start = page_offset(page);
2289 	page_end = page_offset(page) + PAGE_SIZE - 1;
2290 
2291 	/*
2292 	 * This is similar to page_mkwrite, we need to reserve the space before
2293 	 * we take the page lock.
2294 	 */
2295 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2296 					   PAGE_SIZE);
2297 again:
2298 	lock_page(page);
2299 
2300 	/*
2301 	 * Before we queued this fixup, we took a reference on the page.
2302 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2303 	 * address space.
2304 	 */
2305 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2306 		/*
2307 		 * Unfortunately this is a little tricky, either
2308 		 *
2309 		 * 1) We got here and our page had already been dealt with and
2310 		 *    we reserved our space, thus ret == 0, so we need to just
2311 		 *    drop our space reservation and bail.  This can happen the
2312 		 *    first time we come into the fixup worker, or could happen
2313 		 *    while waiting for the ordered extent.
2314 		 * 2) Our page was already dealt with, but we happened to get an
2315 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2316 		 *    this case we obviously don't have anything to release, but
2317 		 *    because the page was already dealt with we don't want to
2318 		 *    mark the page with an error, so make sure we're resetting
2319 		 *    ret to 0.  This is why we have this check _before_ the ret
2320 		 *    check, because we do not want to have a surprise ENOSPC
2321 		 *    when the page was already properly dealt with.
2322 		 */
2323 		if (!ret) {
2324 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2325 			btrfs_delalloc_release_space(inode, data_reserved,
2326 						     page_start, PAGE_SIZE,
2327 						     true);
2328 		}
2329 		ret = 0;
2330 		goto out_page;
2331 	}
2332 
2333 	/*
2334 	 * We can't mess with the page state unless it is locked, so now that
2335 	 * it is locked bail if we failed to make our space reservation.
2336 	 */
2337 	if (ret)
2338 		goto out_page;
2339 
2340 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2341 
2342 	/* already ordered? We're done */
2343 	if (PagePrivate2(page))
2344 		goto out_reserved;
2345 
2346 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2347 	if (ordered) {
2348 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2349 				     &cached_state);
2350 		unlock_page(page);
2351 		btrfs_start_ordered_extent(ordered, 1);
2352 		btrfs_put_ordered_extent(ordered);
2353 		goto again;
2354 	}
2355 
2356 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2357 					&cached_state);
2358 	if (ret)
2359 		goto out_reserved;
2360 
2361 	/*
2362 	 * Everything went as planned, we're now the owner of a dirty page with
2363 	 * delayed allocation bits set and space reserved for our COW
2364 	 * destination.
2365 	 *
2366 	 * The page was dirty when we started, nothing should have cleaned it.
2367 	 */
2368 	BUG_ON(!PageDirty(page));
2369 	free_delalloc_space = false;
2370 out_reserved:
2371 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2372 	if (free_delalloc_space)
2373 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2374 					     PAGE_SIZE, true);
2375 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2376 			     &cached_state);
2377 out_page:
2378 	if (ret) {
2379 		/*
2380 		 * We hit ENOSPC or other errors.  Update the mapping and page
2381 		 * to reflect the errors and clean the page.
2382 		 */
2383 		mapping_set_error(page->mapping, ret);
2384 		end_extent_writepage(page, ret, page_start, page_end);
2385 		clear_page_dirty_for_io(page);
2386 		SetPageError(page);
2387 	}
2388 	ClearPageChecked(page);
2389 	unlock_page(page);
2390 	put_page(page);
2391 	kfree(fixup);
2392 	extent_changeset_free(data_reserved);
2393 	/*
2394 	 * As a precaution, do a delayed iput in case it would be the last iput
2395 	 * that could need flushing space. Recursing back to fixup worker would
2396 	 * deadlock.
2397 	 */
2398 	btrfs_add_delayed_iput(&inode->vfs_inode);
2399 }
2400 
2401 /*
2402  * There are a few paths in the higher layers of the kernel that directly
2403  * set the page dirty bit without asking the filesystem if it is a
2404  * good idea.  This causes problems because we want to make sure COW
2405  * properly happens and the data=ordered rules are followed.
2406  *
2407  * In our case any range that doesn't have the ORDERED bit set
2408  * hasn't been properly setup for IO.  We kick off an async process
2409  * to fix it up.  The async helper will wait for ordered extents, set
2410  * the delalloc bit and make it safe to write the page.
2411  */
2412 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2413 {
2414 	struct inode *inode = page->mapping->host;
2415 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2416 	struct btrfs_writepage_fixup *fixup;
2417 
2418 	/* this page is properly in the ordered list */
2419 	if (TestClearPagePrivate2(page))
2420 		return 0;
2421 
2422 	/*
2423 	 * PageChecked is set below when we create a fixup worker for this page,
2424 	 * don't try to create another one if we're already PageChecked()
2425 	 *
2426 	 * The extent_io writepage code will redirty the page if we send back
2427 	 * EAGAIN.
2428 	 */
2429 	if (PageChecked(page))
2430 		return -EAGAIN;
2431 
2432 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2433 	if (!fixup)
2434 		return -EAGAIN;
2435 
2436 	/*
2437 	 * We are already holding a reference to this inode from
2438 	 * write_cache_pages.  We need to hold it because the space reservation
2439 	 * takes place outside of the page lock, and we can't trust
2440 	 * page->mapping outside of the page lock.
2441 	 */
2442 	ihold(inode);
2443 	SetPageChecked(page);
2444 	get_page(page);
2445 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2446 	fixup->page = page;
2447 	fixup->inode = inode;
2448 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2449 
2450 	return -EAGAIN;
2451 }
2452 
2453 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2454 				       struct btrfs_inode *inode, u64 file_pos,
2455 				       struct btrfs_file_extent_item *stack_fi,
2456 				       u64 qgroup_reserved)
2457 {
2458 	struct btrfs_root *root = inode->root;
2459 	struct btrfs_path *path;
2460 	struct extent_buffer *leaf;
2461 	struct btrfs_key ins;
2462 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2463 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2464 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2465 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2466 	int extent_inserted = 0;
2467 	int ret;
2468 
2469 	path = btrfs_alloc_path();
2470 	if (!path)
2471 		return -ENOMEM;
2472 
2473 	/*
2474 	 * we may be replacing one extent in the tree with another.
2475 	 * The new extent is pinned in the extent map, and we don't want
2476 	 * to drop it from the cache until it is completely in the btree.
2477 	 *
2478 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2479 	 * the caller is expected to unpin it and allow it to be merged
2480 	 * with the others.
2481 	 */
2482 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2483 				   file_pos + num_bytes, NULL, 0,
2484 				   1, sizeof(*stack_fi), &extent_inserted);
2485 	if (ret)
2486 		goto out;
2487 
2488 	if (!extent_inserted) {
2489 		ins.objectid = btrfs_ino(inode);
2490 		ins.offset = file_pos;
2491 		ins.type = BTRFS_EXTENT_DATA_KEY;
2492 
2493 		path->leave_spinning = 1;
2494 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2495 					      sizeof(*stack_fi));
2496 		if (ret)
2497 			goto out;
2498 	}
2499 	leaf = path->nodes[0];
2500 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2501 	write_extent_buffer(leaf, stack_fi,
2502 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2503 			sizeof(struct btrfs_file_extent_item));
2504 
2505 	btrfs_mark_buffer_dirty(leaf);
2506 	btrfs_release_path(path);
2507 
2508 	inode_add_bytes(&inode->vfs_inode, num_bytes);
2509 
2510 	ins.objectid = disk_bytenr;
2511 	ins.offset = disk_num_bytes;
2512 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2513 
2514 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2515 	if (ret)
2516 		goto out;
2517 
2518 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2519 					       file_pos, qgroup_reserved, &ins);
2520 out:
2521 	btrfs_free_path(path);
2522 
2523 	return ret;
2524 }
2525 
2526 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2527 					 u64 start, u64 len)
2528 {
2529 	struct btrfs_block_group *cache;
2530 
2531 	cache = btrfs_lookup_block_group(fs_info, start);
2532 	ASSERT(cache);
2533 
2534 	spin_lock(&cache->lock);
2535 	cache->delalloc_bytes -= len;
2536 	spin_unlock(&cache->lock);
2537 
2538 	btrfs_put_block_group(cache);
2539 }
2540 
2541 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2542 					     struct btrfs_ordered_extent *oe)
2543 {
2544 	struct btrfs_file_extent_item stack_fi;
2545 	u64 logical_len;
2546 
2547 	memset(&stack_fi, 0, sizeof(stack_fi));
2548 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2549 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2550 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2551 						   oe->disk_num_bytes);
2552 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2553 		logical_len = oe->truncated_len;
2554 	else
2555 		logical_len = oe->num_bytes;
2556 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2557 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2558 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2559 	/* Encryption and other encoding is reserved and all 0 */
2560 
2561 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2562 					   oe->file_offset, &stack_fi,
2563 					   oe->qgroup_rsv);
2564 }
2565 
2566 /*
2567  * As ordered data IO finishes, this gets called so we can finish
2568  * an ordered extent if the range of bytes in the file it covers are
2569  * fully written.
2570  */
2571 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2572 {
2573 	struct inode *inode = ordered_extent->inode;
2574 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2575 	struct btrfs_root *root = BTRFS_I(inode)->root;
2576 	struct btrfs_trans_handle *trans = NULL;
2577 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2578 	struct extent_state *cached_state = NULL;
2579 	u64 start, end;
2580 	int compress_type = 0;
2581 	int ret = 0;
2582 	u64 logical_len = ordered_extent->num_bytes;
2583 	bool freespace_inode;
2584 	bool truncated = false;
2585 	bool range_locked = false;
2586 	bool clear_new_delalloc_bytes = false;
2587 	bool clear_reserved_extent = true;
2588 	unsigned int clear_bits;
2589 
2590 	start = ordered_extent->file_offset;
2591 	end = start + ordered_extent->num_bytes - 1;
2592 
2593 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2594 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2595 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2596 		clear_new_delalloc_bytes = true;
2597 
2598 	freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2599 
2600 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2601 		ret = -EIO;
2602 		goto out;
2603 	}
2604 
2605 	btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2606 
2607 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2608 		truncated = true;
2609 		logical_len = ordered_extent->truncated_len;
2610 		/* Truncated the entire extent, don't bother adding */
2611 		if (!logical_len)
2612 			goto out;
2613 	}
2614 
2615 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2616 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2617 
2618 		btrfs_inode_safe_disk_i_size_write(inode, 0);
2619 		if (freespace_inode)
2620 			trans = btrfs_join_transaction_spacecache(root);
2621 		else
2622 			trans = btrfs_join_transaction(root);
2623 		if (IS_ERR(trans)) {
2624 			ret = PTR_ERR(trans);
2625 			trans = NULL;
2626 			goto out;
2627 		}
2628 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2629 		ret = btrfs_update_inode_fallback(trans, root, inode);
2630 		if (ret) /* -ENOMEM or corruption */
2631 			btrfs_abort_transaction(trans, ret);
2632 		goto out;
2633 	}
2634 
2635 	range_locked = true;
2636 	lock_extent_bits(io_tree, start, end, &cached_state);
2637 
2638 	if (freespace_inode)
2639 		trans = btrfs_join_transaction_spacecache(root);
2640 	else
2641 		trans = btrfs_join_transaction(root);
2642 	if (IS_ERR(trans)) {
2643 		ret = PTR_ERR(trans);
2644 		trans = NULL;
2645 		goto out;
2646 	}
2647 
2648 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2649 
2650 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2651 		compress_type = ordered_extent->compress_type;
2652 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2653 		BUG_ON(compress_type);
2654 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2655 						ordered_extent->file_offset,
2656 						ordered_extent->file_offset +
2657 						logical_len);
2658 	} else {
2659 		BUG_ON(root == fs_info->tree_root);
2660 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2661 		if (!ret) {
2662 			clear_reserved_extent = false;
2663 			btrfs_release_delalloc_bytes(fs_info,
2664 						ordered_extent->disk_bytenr,
2665 						ordered_extent->disk_num_bytes);
2666 		}
2667 	}
2668 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2669 			   ordered_extent->file_offset,
2670 			   ordered_extent->num_bytes, trans->transid);
2671 	if (ret < 0) {
2672 		btrfs_abort_transaction(trans, ret);
2673 		goto out;
2674 	}
2675 
2676 	ret = add_pending_csums(trans, &ordered_extent->list);
2677 	if (ret) {
2678 		btrfs_abort_transaction(trans, ret);
2679 		goto out;
2680 	}
2681 
2682 	btrfs_inode_safe_disk_i_size_write(inode, 0);
2683 	ret = btrfs_update_inode_fallback(trans, root, inode);
2684 	if (ret) { /* -ENOMEM or corruption */
2685 		btrfs_abort_transaction(trans, ret);
2686 		goto out;
2687 	}
2688 	ret = 0;
2689 out:
2690 	clear_bits = EXTENT_DEFRAG;
2691 	if (range_locked)
2692 		clear_bits |= EXTENT_LOCKED;
2693 	if (clear_new_delalloc_bytes)
2694 		clear_bits |= EXTENT_DELALLOC_NEW;
2695 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2696 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2697 			 &cached_state);
2698 
2699 	if (trans)
2700 		btrfs_end_transaction(trans);
2701 
2702 	if (ret || truncated) {
2703 		u64 unwritten_start = start;
2704 
2705 		if (truncated)
2706 			unwritten_start += logical_len;
2707 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2708 
2709 		/* Drop the cache for the part of the extent we didn't write. */
2710 		btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2711 
2712 		/*
2713 		 * If the ordered extent had an IOERR or something else went
2714 		 * wrong we need to return the space for this ordered extent
2715 		 * back to the allocator.  We only free the extent in the
2716 		 * truncated case if we didn't write out the extent at all.
2717 		 *
2718 		 * If we made it past insert_reserved_file_extent before we
2719 		 * errored out then we don't need to do this as the accounting
2720 		 * has already been done.
2721 		 */
2722 		if ((ret || !logical_len) &&
2723 		    clear_reserved_extent &&
2724 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2725 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2726 			/*
2727 			 * Discard the range before returning it back to the
2728 			 * free space pool
2729 			 */
2730 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2731 				btrfs_discard_extent(fs_info,
2732 						ordered_extent->disk_bytenr,
2733 						ordered_extent->disk_num_bytes,
2734 						NULL);
2735 			btrfs_free_reserved_extent(fs_info,
2736 					ordered_extent->disk_bytenr,
2737 					ordered_extent->disk_num_bytes, 1);
2738 		}
2739 	}
2740 
2741 	/*
2742 	 * This needs to be done to make sure anybody waiting knows we are done
2743 	 * updating everything for this ordered extent.
2744 	 */
2745 	btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent);
2746 
2747 	/* once for us */
2748 	btrfs_put_ordered_extent(ordered_extent);
2749 	/* once for the tree */
2750 	btrfs_put_ordered_extent(ordered_extent);
2751 
2752 	return ret;
2753 }
2754 
2755 static void finish_ordered_fn(struct btrfs_work *work)
2756 {
2757 	struct btrfs_ordered_extent *ordered_extent;
2758 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2759 	btrfs_finish_ordered_io(ordered_extent);
2760 }
2761 
2762 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2763 					  u64 end, int uptodate)
2764 {
2765 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2766 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2767 	struct btrfs_ordered_extent *ordered_extent = NULL;
2768 	struct btrfs_workqueue *wq;
2769 
2770 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2771 
2772 	ClearPagePrivate2(page);
2773 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2774 					    end - start + 1, uptodate))
2775 		return;
2776 
2777 	if (btrfs_is_free_space_inode(inode))
2778 		wq = fs_info->endio_freespace_worker;
2779 	else
2780 		wq = fs_info->endio_write_workers;
2781 
2782 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2783 	btrfs_queue_work(wq, &ordered_extent->work);
2784 }
2785 
2786 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2787 			   int icsum, struct page *page, int pgoff, u64 start,
2788 			   size_t len)
2789 {
2790 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2791 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2792 	char *kaddr;
2793 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2794 	u8 *csum_expected;
2795 	u8 csum[BTRFS_CSUM_SIZE];
2796 
2797 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2798 
2799 	kaddr = kmap_atomic(page);
2800 	shash->tfm = fs_info->csum_shash;
2801 
2802 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2803 
2804 	if (memcmp(csum, csum_expected, csum_size))
2805 		goto zeroit;
2806 
2807 	kunmap_atomic(kaddr);
2808 	return 0;
2809 zeroit:
2810 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2811 				    io_bio->mirror_num);
2812 	if (io_bio->device)
2813 		btrfs_dev_stat_inc_and_print(io_bio->device,
2814 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
2815 	memset(kaddr + pgoff, 1, len);
2816 	flush_dcache_page(page);
2817 	kunmap_atomic(kaddr);
2818 	return -EIO;
2819 }
2820 
2821 /*
2822  * when reads are done, we need to check csums to verify the data is correct
2823  * if there's a match, we allow the bio to finish.  If not, the code in
2824  * extent_io.c will try to find good copies for us.
2825  */
2826 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset,
2827 			   struct page *page, u64 start, u64 end, int mirror)
2828 {
2829 	size_t offset = start - page_offset(page);
2830 	struct inode *inode = page->mapping->host;
2831 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2832 	struct btrfs_root *root = BTRFS_I(inode)->root;
2833 
2834 	if (PageChecked(page)) {
2835 		ClearPageChecked(page);
2836 		return 0;
2837 	}
2838 
2839 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2840 		return 0;
2841 
2842 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2843 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2844 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2845 		return 0;
2846 	}
2847 
2848 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2849 	return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2850 			       (size_t)(end - start + 1));
2851 }
2852 
2853 /*
2854  * btrfs_add_delayed_iput - perform a delayed iput on @inode
2855  *
2856  * @inode: The inode we want to perform iput on
2857  *
2858  * This function uses the generic vfs_inode::i_count to track whether we should
2859  * just decrement it (in case it's > 1) or if this is the last iput then link
2860  * the inode to the delayed iput machinery. Delayed iputs are processed at
2861  * transaction commit time/superblock commit/cleaner kthread.
2862  */
2863 void btrfs_add_delayed_iput(struct inode *inode)
2864 {
2865 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2866 	struct btrfs_inode *binode = BTRFS_I(inode);
2867 
2868 	if (atomic_add_unless(&inode->i_count, -1, 1))
2869 		return;
2870 
2871 	atomic_inc(&fs_info->nr_delayed_iputs);
2872 	spin_lock(&fs_info->delayed_iput_lock);
2873 	ASSERT(list_empty(&binode->delayed_iput));
2874 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2875 	spin_unlock(&fs_info->delayed_iput_lock);
2876 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2877 		wake_up_process(fs_info->cleaner_kthread);
2878 }
2879 
2880 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2881 				    struct btrfs_inode *inode)
2882 {
2883 	list_del_init(&inode->delayed_iput);
2884 	spin_unlock(&fs_info->delayed_iput_lock);
2885 	iput(&inode->vfs_inode);
2886 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2887 		wake_up(&fs_info->delayed_iputs_wait);
2888 	spin_lock(&fs_info->delayed_iput_lock);
2889 }
2890 
2891 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2892 				   struct btrfs_inode *inode)
2893 {
2894 	if (!list_empty(&inode->delayed_iput)) {
2895 		spin_lock(&fs_info->delayed_iput_lock);
2896 		if (!list_empty(&inode->delayed_iput))
2897 			run_delayed_iput_locked(fs_info, inode);
2898 		spin_unlock(&fs_info->delayed_iput_lock);
2899 	}
2900 }
2901 
2902 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2903 {
2904 
2905 	spin_lock(&fs_info->delayed_iput_lock);
2906 	while (!list_empty(&fs_info->delayed_iputs)) {
2907 		struct btrfs_inode *inode;
2908 
2909 		inode = list_first_entry(&fs_info->delayed_iputs,
2910 				struct btrfs_inode, delayed_iput);
2911 		run_delayed_iput_locked(fs_info, inode);
2912 	}
2913 	spin_unlock(&fs_info->delayed_iput_lock);
2914 }
2915 
2916 /**
2917  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2918  * @fs_info - the fs_info for this fs
2919  * @return - EINTR if we were killed, 0 if nothing's pending
2920  *
2921  * This will wait on any delayed iputs that are currently running with KILLABLE
2922  * set.  Once they are all done running we will return, unless we are killed in
2923  * which case we return EINTR. This helps in user operations like fallocate etc
2924  * that might get blocked on the iputs.
2925  */
2926 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2927 {
2928 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2929 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
2930 	if (ret)
2931 		return -EINTR;
2932 	return 0;
2933 }
2934 
2935 /*
2936  * This creates an orphan entry for the given inode in case something goes wrong
2937  * in the middle of an unlink.
2938  */
2939 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
2940 		     struct btrfs_inode *inode)
2941 {
2942 	int ret;
2943 
2944 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2945 	if (ret && ret != -EEXIST) {
2946 		btrfs_abort_transaction(trans, ret);
2947 		return ret;
2948 	}
2949 
2950 	return 0;
2951 }
2952 
2953 /*
2954  * We have done the delete so we can go ahead and remove the orphan item for
2955  * this particular inode.
2956  */
2957 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2958 			    struct btrfs_inode *inode)
2959 {
2960 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
2961 }
2962 
2963 /*
2964  * this cleans up any orphans that may be left on the list from the last use
2965  * of this root.
2966  */
2967 int btrfs_orphan_cleanup(struct btrfs_root *root)
2968 {
2969 	struct btrfs_fs_info *fs_info = root->fs_info;
2970 	struct btrfs_path *path;
2971 	struct extent_buffer *leaf;
2972 	struct btrfs_key key, found_key;
2973 	struct btrfs_trans_handle *trans;
2974 	struct inode *inode;
2975 	u64 last_objectid = 0;
2976 	int ret = 0, nr_unlink = 0;
2977 
2978 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2979 		return 0;
2980 
2981 	path = btrfs_alloc_path();
2982 	if (!path) {
2983 		ret = -ENOMEM;
2984 		goto out;
2985 	}
2986 	path->reada = READA_BACK;
2987 
2988 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2989 	key.type = BTRFS_ORPHAN_ITEM_KEY;
2990 	key.offset = (u64)-1;
2991 
2992 	while (1) {
2993 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2994 		if (ret < 0)
2995 			goto out;
2996 
2997 		/*
2998 		 * if ret == 0 means we found what we were searching for, which
2999 		 * is weird, but possible, so only screw with path if we didn't
3000 		 * find the key and see if we have stuff that matches
3001 		 */
3002 		if (ret > 0) {
3003 			ret = 0;
3004 			if (path->slots[0] == 0)
3005 				break;
3006 			path->slots[0]--;
3007 		}
3008 
3009 		/* pull out the item */
3010 		leaf = path->nodes[0];
3011 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3012 
3013 		/* make sure the item matches what we want */
3014 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3015 			break;
3016 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3017 			break;
3018 
3019 		/* release the path since we're done with it */
3020 		btrfs_release_path(path);
3021 
3022 		/*
3023 		 * this is where we are basically btrfs_lookup, without the
3024 		 * crossing root thing.  we store the inode number in the
3025 		 * offset of the orphan item.
3026 		 */
3027 
3028 		if (found_key.offset == last_objectid) {
3029 			btrfs_err(fs_info,
3030 				  "Error removing orphan entry, stopping orphan cleanup");
3031 			ret = -EINVAL;
3032 			goto out;
3033 		}
3034 
3035 		last_objectid = found_key.offset;
3036 
3037 		found_key.objectid = found_key.offset;
3038 		found_key.type = BTRFS_INODE_ITEM_KEY;
3039 		found_key.offset = 0;
3040 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3041 		ret = PTR_ERR_OR_ZERO(inode);
3042 		if (ret && ret != -ENOENT)
3043 			goto out;
3044 
3045 		if (ret == -ENOENT && root == fs_info->tree_root) {
3046 			struct btrfs_root *dead_root;
3047 			int is_dead_root = 0;
3048 
3049 			/*
3050 			 * this is an orphan in the tree root. Currently these
3051 			 * could come from 2 sources:
3052 			 *  a) a snapshot deletion in progress
3053 			 *  b) a free space cache inode
3054 			 * We need to distinguish those two, as the snapshot
3055 			 * orphan must not get deleted.
3056 			 * find_dead_roots already ran before us, so if this
3057 			 * is a snapshot deletion, we should find the root
3058 			 * in the fs_roots radix tree.
3059 			 */
3060 
3061 			spin_lock(&fs_info->fs_roots_radix_lock);
3062 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3063 							 (unsigned long)found_key.objectid);
3064 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3065 				is_dead_root = 1;
3066 			spin_unlock(&fs_info->fs_roots_radix_lock);
3067 
3068 			if (is_dead_root) {
3069 				/* prevent this orphan from being found again */
3070 				key.offset = found_key.objectid - 1;
3071 				continue;
3072 			}
3073 
3074 		}
3075 
3076 		/*
3077 		 * If we have an inode with links, there are a couple of
3078 		 * possibilities. Old kernels (before v3.12) used to create an
3079 		 * orphan item for truncate indicating that there were possibly
3080 		 * extent items past i_size that needed to be deleted. In v3.12,
3081 		 * truncate was changed to update i_size in sync with the extent
3082 		 * items, but the (useless) orphan item was still created. Since
3083 		 * v4.18, we don't create the orphan item for truncate at all.
3084 		 *
3085 		 * So, this item could mean that we need to do a truncate, but
3086 		 * only if this filesystem was last used on a pre-v3.12 kernel
3087 		 * and was not cleanly unmounted. The odds of that are quite
3088 		 * slim, and it's a pain to do the truncate now, so just delete
3089 		 * the orphan item.
3090 		 *
3091 		 * It's also possible that this orphan item was supposed to be
3092 		 * deleted but wasn't. The inode number may have been reused,
3093 		 * but either way, we can delete the orphan item.
3094 		 */
3095 		if (ret == -ENOENT || inode->i_nlink) {
3096 			if (!ret)
3097 				iput(inode);
3098 			trans = btrfs_start_transaction(root, 1);
3099 			if (IS_ERR(trans)) {
3100 				ret = PTR_ERR(trans);
3101 				goto out;
3102 			}
3103 			btrfs_debug(fs_info, "auto deleting %Lu",
3104 				    found_key.objectid);
3105 			ret = btrfs_del_orphan_item(trans, root,
3106 						    found_key.objectid);
3107 			btrfs_end_transaction(trans);
3108 			if (ret)
3109 				goto out;
3110 			continue;
3111 		}
3112 
3113 		nr_unlink++;
3114 
3115 		/* this will do delete_inode and everything for us */
3116 		iput(inode);
3117 	}
3118 	/* release the path since we're done with it */
3119 	btrfs_release_path(path);
3120 
3121 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3122 
3123 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3124 		trans = btrfs_join_transaction(root);
3125 		if (!IS_ERR(trans))
3126 			btrfs_end_transaction(trans);
3127 	}
3128 
3129 	if (nr_unlink)
3130 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3131 
3132 out:
3133 	if (ret)
3134 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3135 	btrfs_free_path(path);
3136 	return ret;
3137 }
3138 
3139 /*
3140  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3141  * don't find any xattrs, we know there can't be any acls.
3142  *
3143  * slot is the slot the inode is in, objectid is the objectid of the inode
3144  */
3145 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3146 					  int slot, u64 objectid,
3147 					  int *first_xattr_slot)
3148 {
3149 	u32 nritems = btrfs_header_nritems(leaf);
3150 	struct btrfs_key found_key;
3151 	static u64 xattr_access = 0;
3152 	static u64 xattr_default = 0;
3153 	int scanned = 0;
3154 
3155 	if (!xattr_access) {
3156 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3157 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3158 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3159 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3160 	}
3161 
3162 	slot++;
3163 	*first_xattr_slot = -1;
3164 	while (slot < nritems) {
3165 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3166 
3167 		/* we found a different objectid, there must not be acls */
3168 		if (found_key.objectid != objectid)
3169 			return 0;
3170 
3171 		/* we found an xattr, assume we've got an acl */
3172 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3173 			if (*first_xattr_slot == -1)
3174 				*first_xattr_slot = slot;
3175 			if (found_key.offset == xattr_access ||
3176 			    found_key.offset == xattr_default)
3177 				return 1;
3178 		}
3179 
3180 		/*
3181 		 * we found a key greater than an xattr key, there can't
3182 		 * be any acls later on
3183 		 */
3184 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3185 			return 0;
3186 
3187 		slot++;
3188 		scanned++;
3189 
3190 		/*
3191 		 * it goes inode, inode backrefs, xattrs, extents,
3192 		 * so if there are a ton of hard links to an inode there can
3193 		 * be a lot of backrefs.  Don't waste time searching too hard,
3194 		 * this is just an optimization
3195 		 */
3196 		if (scanned >= 8)
3197 			break;
3198 	}
3199 	/* we hit the end of the leaf before we found an xattr or
3200 	 * something larger than an xattr.  We have to assume the inode
3201 	 * has acls
3202 	 */
3203 	if (*first_xattr_slot == -1)
3204 		*first_xattr_slot = slot;
3205 	return 1;
3206 }
3207 
3208 /*
3209  * read an inode from the btree into the in-memory inode
3210  */
3211 static int btrfs_read_locked_inode(struct inode *inode,
3212 				   struct btrfs_path *in_path)
3213 {
3214 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3215 	struct btrfs_path *path = in_path;
3216 	struct extent_buffer *leaf;
3217 	struct btrfs_inode_item *inode_item;
3218 	struct btrfs_root *root = BTRFS_I(inode)->root;
3219 	struct btrfs_key location;
3220 	unsigned long ptr;
3221 	int maybe_acls;
3222 	u32 rdev;
3223 	int ret;
3224 	bool filled = false;
3225 	int first_xattr_slot;
3226 
3227 	ret = btrfs_fill_inode(inode, &rdev);
3228 	if (!ret)
3229 		filled = true;
3230 
3231 	if (!path) {
3232 		path = btrfs_alloc_path();
3233 		if (!path)
3234 			return -ENOMEM;
3235 	}
3236 
3237 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3238 
3239 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3240 	if (ret) {
3241 		if (path != in_path)
3242 			btrfs_free_path(path);
3243 		return ret;
3244 	}
3245 
3246 	leaf = path->nodes[0];
3247 
3248 	if (filled)
3249 		goto cache_index;
3250 
3251 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3252 				    struct btrfs_inode_item);
3253 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3254 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3255 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3256 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3257 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3258 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3259 			round_up(i_size_read(inode), fs_info->sectorsize));
3260 
3261 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3262 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3263 
3264 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3265 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3266 
3267 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3268 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3269 
3270 	BTRFS_I(inode)->i_otime.tv_sec =
3271 		btrfs_timespec_sec(leaf, &inode_item->otime);
3272 	BTRFS_I(inode)->i_otime.tv_nsec =
3273 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3274 
3275 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3276 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3277 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3278 
3279 	inode_set_iversion_queried(inode,
3280 				   btrfs_inode_sequence(leaf, inode_item));
3281 	inode->i_generation = BTRFS_I(inode)->generation;
3282 	inode->i_rdev = 0;
3283 	rdev = btrfs_inode_rdev(leaf, inode_item);
3284 
3285 	BTRFS_I(inode)->index_cnt = (u64)-1;
3286 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3287 
3288 cache_index:
3289 	/*
3290 	 * If we were modified in the current generation and evicted from memory
3291 	 * and then re-read we need to do a full sync since we don't have any
3292 	 * idea about which extents were modified before we were evicted from
3293 	 * cache.
3294 	 *
3295 	 * This is required for both inode re-read from disk and delayed inode
3296 	 * in delayed_nodes_tree.
3297 	 */
3298 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3299 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3300 			&BTRFS_I(inode)->runtime_flags);
3301 
3302 	/*
3303 	 * We don't persist the id of the transaction where an unlink operation
3304 	 * against the inode was last made. So here we assume the inode might
3305 	 * have been evicted, and therefore the exact value of last_unlink_trans
3306 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3307 	 * between the inode and its parent if the inode is fsync'ed and the log
3308 	 * replayed. For example, in the scenario:
3309 	 *
3310 	 * touch mydir/foo
3311 	 * ln mydir/foo mydir/bar
3312 	 * sync
3313 	 * unlink mydir/bar
3314 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3315 	 * xfs_io -c fsync mydir/foo
3316 	 * <power failure>
3317 	 * mount fs, triggers fsync log replay
3318 	 *
3319 	 * We must make sure that when we fsync our inode foo we also log its
3320 	 * parent inode, otherwise after log replay the parent still has the
3321 	 * dentry with the "bar" name but our inode foo has a link count of 1
3322 	 * and doesn't have an inode ref with the name "bar" anymore.
3323 	 *
3324 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3325 	 * but it guarantees correctness at the expense of occasional full
3326 	 * transaction commits on fsync if our inode is a directory, or if our
3327 	 * inode is not a directory, logging its parent unnecessarily.
3328 	 */
3329 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3330 
3331 	/*
3332 	 * Same logic as for last_unlink_trans. We don't persist the generation
3333 	 * of the last transaction where this inode was used for a reflink
3334 	 * operation, so after eviction and reloading the inode we must be
3335 	 * pessimistic and assume the last transaction that modified the inode.
3336 	 */
3337 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3338 
3339 	path->slots[0]++;
3340 	if (inode->i_nlink != 1 ||
3341 	    path->slots[0] >= btrfs_header_nritems(leaf))
3342 		goto cache_acl;
3343 
3344 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3345 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3346 		goto cache_acl;
3347 
3348 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3349 	if (location.type == BTRFS_INODE_REF_KEY) {
3350 		struct btrfs_inode_ref *ref;
3351 
3352 		ref = (struct btrfs_inode_ref *)ptr;
3353 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3354 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3355 		struct btrfs_inode_extref *extref;
3356 
3357 		extref = (struct btrfs_inode_extref *)ptr;
3358 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3359 								     extref);
3360 	}
3361 cache_acl:
3362 	/*
3363 	 * try to precache a NULL acl entry for files that don't have
3364 	 * any xattrs or acls
3365 	 */
3366 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3367 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3368 	if (first_xattr_slot != -1) {
3369 		path->slots[0] = first_xattr_slot;
3370 		ret = btrfs_load_inode_props(inode, path);
3371 		if (ret)
3372 			btrfs_err(fs_info,
3373 				  "error loading props for ino %llu (root %llu): %d",
3374 				  btrfs_ino(BTRFS_I(inode)),
3375 				  root->root_key.objectid, ret);
3376 	}
3377 	if (path != in_path)
3378 		btrfs_free_path(path);
3379 
3380 	if (!maybe_acls)
3381 		cache_no_acl(inode);
3382 
3383 	switch (inode->i_mode & S_IFMT) {
3384 	case S_IFREG:
3385 		inode->i_mapping->a_ops = &btrfs_aops;
3386 		inode->i_fop = &btrfs_file_operations;
3387 		inode->i_op = &btrfs_file_inode_operations;
3388 		break;
3389 	case S_IFDIR:
3390 		inode->i_fop = &btrfs_dir_file_operations;
3391 		inode->i_op = &btrfs_dir_inode_operations;
3392 		break;
3393 	case S_IFLNK:
3394 		inode->i_op = &btrfs_symlink_inode_operations;
3395 		inode_nohighmem(inode);
3396 		inode->i_mapping->a_ops = &btrfs_aops;
3397 		break;
3398 	default:
3399 		inode->i_op = &btrfs_special_inode_operations;
3400 		init_special_inode(inode, inode->i_mode, rdev);
3401 		break;
3402 	}
3403 
3404 	btrfs_sync_inode_flags_to_i_flags(inode);
3405 	return 0;
3406 }
3407 
3408 /*
3409  * given a leaf and an inode, copy the inode fields into the leaf
3410  */
3411 static void fill_inode_item(struct btrfs_trans_handle *trans,
3412 			    struct extent_buffer *leaf,
3413 			    struct btrfs_inode_item *item,
3414 			    struct inode *inode)
3415 {
3416 	struct btrfs_map_token token;
3417 
3418 	btrfs_init_map_token(&token, leaf);
3419 
3420 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3421 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3422 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3423 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3424 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3425 
3426 	btrfs_set_token_timespec_sec(&token, &item->atime,
3427 				     inode->i_atime.tv_sec);
3428 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3429 				      inode->i_atime.tv_nsec);
3430 
3431 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3432 				     inode->i_mtime.tv_sec);
3433 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3434 				      inode->i_mtime.tv_nsec);
3435 
3436 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3437 				     inode->i_ctime.tv_sec);
3438 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3439 				      inode->i_ctime.tv_nsec);
3440 
3441 	btrfs_set_token_timespec_sec(&token, &item->otime,
3442 				     BTRFS_I(inode)->i_otime.tv_sec);
3443 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3444 				      BTRFS_I(inode)->i_otime.tv_nsec);
3445 
3446 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3447 	btrfs_set_token_inode_generation(&token, item,
3448 					 BTRFS_I(inode)->generation);
3449 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3450 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3451 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3452 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3453 	btrfs_set_token_inode_block_group(&token, item, 0);
3454 }
3455 
3456 /*
3457  * copy everything in the in-memory inode into the btree.
3458  */
3459 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3460 				struct btrfs_root *root, struct inode *inode)
3461 {
3462 	struct btrfs_inode_item *inode_item;
3463 	struct btrfs_path *path;
3464 	struct extent_buffer *leaf;
3465 	int ret;
3466 
3467 	path = btrfs_alloc_path();
3468 	if (!path)
3469 		return -ENOMEM;
3470 
3471 	path->leave_spinning = 1;
3472 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3473 				 1);
3474 	if (ret) {
3475 		if (ret > 0)
3476 			ret = -ENOENT;
3477 		goto failed;
3478 	}
3479 
3480 	leaf = path->nodes[0];
3481 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3482 				    struct btrfs_inode_item);
3483 
3484 	fill_inode_item(trans, leaf, inode_item, inode);
3485 	btrfs_mark_buffer_dirty(leaf);
3486 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3487 	ret = 0;
3488 failed:
3489 	btrfs_free_path(path);
3490 	return ret;
3491 }
3492 
3493 /*
3494  * copy everything in the in-memory inode into the btree.
3495  */
3496 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3497 				struct btrfs_root *root, struct inode *inode)
3498 {
3499 	struct btrfs_fs_info *fs_info = root->fs_info;
3500 	int ret;
3501 
3502 	/*
3503 	 * If the inode is a free space inode, we can deadlock during commit
3504 	 * if we put it into the delayed code.
3505 	 *
3506 	 * The data relocation inode should also be directly updated
3507 	 * without delay
3508 	 */
3509 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3510 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3511 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3512 		btrfs_update_root_times(trans, root);
3513 
3514 		ret = btrfs_delayed_update_inode(trans, root, inode);
3515 		if (!ret)
3516 			btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3517 		return ret;
3518 	}
3519 
3520 	return btrfs_update_inode_item(trans, root, inode);
3521 }
3522 
3523 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3524 					 struct btrfs_root *root,
3525 					 struct inode *inode)
3526 {
3527 	int ret;
3528 
3529 	ret = btrfs_update_inode(trans, root, inode);
3530 	if (ret == -ENOSPC)
3531 		return btrfs_update_inode_item(trans, root, inode);
3532 	return ret;
3533 }
3534 
3535 /*
3536  * unlink helper that gets used here in inode.c and in the tree logging
3537  * recovery code.  It remove a link in a directory with a given name, and
3538  * also drops the back refs in the inode to the directory
3539  */
3540 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3541 				struct btrfs_root *root,
3542 				struct btrfs_inode *dir,
3543 				struct btrfs_inode *inode,
3544 				const char *name, int name_len)
3545 {
3546 	struct btrfs_fs_info *fs_info = root->fs_info;
3547 	struct btrfs_path *path;
3548 	int ret = 0;
3549 	struct btrfs_dir_item *di;
3550 	u64 index;
3551 	u64 ino = btrfs_ino(inode);
3552 	u64 dir_ino = btrfs_ino(dir);
3553 
3554 	path = btrfs_alloc_path();
3555 	if (!path) {
3556 		ret = -ENOMEM;
3557 		goto out;
3558 	}
3559 
3560 	path->leave_spinning = 1;
3561 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3562 				    name, name_len, -1);
3563 	if (IS_ERR_OR_NULL(di)) {
3564 		ret = di ? PTR_ERR(di) : -ENOENT;
3565 		goto err;
3566 	}
3567 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3568 	if (ret)
3569 		goto err;
3570 	btrfs_release_path(path);
3571 
3572 	/*
3573 	 * If we don't have dir index, we have to get it by looking up
3574 	 * the inode ref, since we get the inode ref, remove it directly,
3575 	 * it is unnecessary to do delayed deletion.
3576 	 *
3577 	 * But if we have dir index, needn't search inode ref to get it.
3578 	 * Since the inode ref is close to the inode item, it is better
3579 	 * that we delay to delete it, and just do this deletion when
3580 	 * we update the inode item.
3581 	 */
3582 	if (inode->dir_index) {
3583 		ret = btrfs_delayed_delete_inode_ref(inode);
3584 		if (!ret) {
3585 			index = inode->dir_index;
3586 			goto skip_backref;
3587 		}
3588 	}
3589 
3590 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3591 				  dir_ino, &index);
3592 	if (ret) {
3593 		btrfs_info(fs_info,
3594 			"failed to delete reference to %.*s, inode %llu parent %llu",
3595 			name_len, name, ino, dir_ino);
3596 		btrfs_abort_transaction(trans, ret);
3597 		goto err;
3598 	}
3599 skip_backref:
3600 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3601 	if (ret) {
3602 		btrfs_abort_transaction(trans, ret);
3603 		goto err;
3604 	}
3605 
3606 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3607 			dir_ino);
3608 	if (ret != 0 && ret != -ENOENT) {
3609 		btrfs_abort_transaction(trans, ret);
3610 		goto err;
3611 	}
3612 
3613 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3614 			index);
3615 	if (ret == -ENOENT)
3616 		ret = 0;
3617 	else if (ret)
3618 		btrfs_abort_transaction(trans, ret);
3619 
3620 	/*
3621 	 * If we have a pending delayed iput we could end up with the final iput
3622 	 * being run in btrfs-cleaner context.  If we have enough of these built
3623 	 * up we can end up burning a lot of time in btrfs-cleaner without any
3624 	 * way to throttle the unlinks.  Since we're currently holding a ref on
3625 	 * the inode we can run the delayed iput here without any issues as the
3626 	 * final iput won't be done until after we drop the ref we're currently
3627 	 * holding.
3628 	 */
3629 	btrfs_run_delayed_iput(fs_info, inode);
3630 err:
3631 	btrfs_free_path(path);
3632 	if (ret)
3633 		goto out;
3634 
3635 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3636 	inode_inc_iversion(&inode->vfs_inode);
3637 	inode_inc_iversion(&dir->vfs_inode);
3638 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3639 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3640 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3641 out:
3642 	return ret;
3643 }
3644 
3645 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3646 		       struct btrfs_root *root,
3647 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3648 		       const char *name, int name_len)
3649 {
3650 	int ret;
3651 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3652 	if (!ret) {
3653 		drop_nlink(&inode->vfs_inode);
3654 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3655 	}
3656 	return ret;
3657 }
3658 
3659 /*
3660  * helper to start transaction for unlink and rmdir.
3661  *
3662  * unlink and rmdir are special in btrfs, they do not always free space, so
3663  * if we cannot make our reservations the normal way try and see if there is
3664  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3665  * allow the unlink to occur.
3666  */
3667 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3668 {
3669 	struct btrfs_root *root = BTRFS_I(dir)->root;
3670 
3671 	/*
3672 	 * 1 for the possible orphan item
3673 	 * 1 for the dir item
3674 	 * 1 for the dir index
3675 	 * 1 for the inode ref
3676 	 * 1 for the inode
3677 	 */
3678 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
3679 }
3680 
3681 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3682 {
3683 	struct btrfs_root *root = BTRFS_I(dir)->root;
3684 	struct btrfs_trans_handle *trans;
3685 	struct inode *inode = d_inode(dentry);
3686 	int ret;
3687 
3688 	trans = __unlink_start_trans(dir);
3689 	if (IS_ERR(trans))
3690 		return PTR_ERR(trans);
3691 
3692 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3693 			0);
3694 
3695 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3696 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3697 			dentry->d_name.len);
3698 	if (ret)
3699 		goto out;
3700 
3701 	if (inode->i_nlink == 0) {
3702 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3703 		if (ret)
3704 			goto out;
3705 	}
3706 
3707 out:
3708 	btrfs_end_transaction(trans);
3709 	btrfs_btree_balance_dirty(root->fs_info);
3710 	return ret;
3711 }
3712 
3713 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3714 			       struct inode *dir, struct dentry *dentry)
3715 {
3716 	struct btrfs_root *root = BTRFS_I(dir)->root;
3717 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3718 	struct btrfs_path *path;
3719 	struct extent_buffer *leaf;
3720 	struct btrfs_dir_item *di;
3721 	struct btrfs_key key;
3722 	const char *name = dentry->d_name.name;
3723 	int name_len = dentry->d_name.len;
3724 	u64 index;
3725 	int ret;
3726 	u64 objectid;
3727 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3728 
3729 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3730 		objectid = inode->root->root_key.objectid;
3731 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3732 		objectid = inode->location.objectid;
3733 	} else {
3734 		WARN_ON(1);
3735 		return -EINVAL;
3736 	}
3737 
3738 	path = btrfs_alloc_path();
3739 	if (!path)
3740 		return -ENOMEM;
3741 
3742 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3743 				   name, name_len, -1);
3744 	if (IS_ERR_OR_NULL(di)) {
3745 		ret = di ? PTR_ERR(di) : -ENOENT;
3746 		goto out;
3747 	}
3748 
3749 	leaf = path->nodes[0];
3750 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3751 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3752 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3753 	if (ret) {
3754 		btrfs_abort_transaction(trans, ret);
3755 		goto out;
3756 	}
3757 	btrfs_release_path(path);
3758 
3759 	/*
3760 	 * This is a placeholder inode for a subvolume we didn't have a
3761 	 * reference to at the time of the snapshot creation.  In the meantime
3762 	 * we could have renamed the real subvol link into our snapshot, so
3763 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3764 	 * Instead simply lookup the dir_index_item for this entry so we can
3765 	 * remove it.  Otherwise we know we have a ref to the root and we can
3766 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3767 	 */
3768 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3769 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3770 						 name, name_len);
3771 		if (IS_ERR_OR_NULL(di)) {
3772 			if (!di)
3773 				ret = -ENOENT;
3774 			else
3775 				ret = PTR_ERR(di);
3776 			btrfs_abort_transaction(trans, ret);
3777 			goto out;
3778 		}
3779 
3780 		leaf = path->nodes[0];
3781 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3782 		index = key.offset;
3783 		btrfs_release_path(path);
3784 	} else {
3785 		ret = btrfs_del_root_ref(trans, objectid,
3786 					 root->root_key.objectid, dir_ino,
3787 					 &index, name, name_len);
3788 		if (ret) {
3789 			btrfs_abort_transaction(trans, ret);
3790 			goto out;
3791 		}
3792 	}
3793 
3794 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3795 	if (ret) {
3796 		btrfs_abort_transaction(trans, ret);
3797 		goto out;
3798 	}
3799 
3800 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3801 	inode_inc_iversion(dir);
3802 	dir->i_mtime = dir->i_ctime = current_time(dir);
3803 	ret = btrfs_update_inode_fallback(trans, root, dir);
3804 	if (ret)
3805 		btrfs_abort_transaction(trans, ret);
3806 out:
3807 	btrfs_free_path(path);
3808 	return ret;
3809 }
3810 
3811 /*
3812  * Helper to check if the subvolume references other subvolumes or if it's
3813  * default.
3814  */
3815 static noinline int may_destroy_subvol(struct btrfs_root *root)
3816 {
3817 	struct btrfs_fs_info *fs_info = root->fs_info;
3818 	struct btrfs_path *path;
3819 	struct btrfs_dir_item *di;
3820 	struct btrfs_key key;
3821 	u64 dir_id;
3822 	int ret;
3823 
3824 	path = btrfs_alloc_path();
3825 	if (!path)
3826 		return -ENOMEM;
3827 
3828 	/* Make sure this root isn't set as the default subvol */
3829 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3830 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3831 				   dir_id, "default", 7, 0);
3832 	if (di && !IS_ERR(di)) {
3833 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3834 		if (key.objectid == root->root_key.objectid) {
3835 			ret = -EPERM;
3836 			btrfs_err(fs_info,
3837 				  "deleting default subvolume %llu is not allowed",
3838 				  key.objectid);
3839 			goto out;
3840 		}
3841 		btrfs_release_path(path);
3842 	}
3843 
3844 	key.objectid = root->root_key.objectid;
3845 	key.type = BTRFS_ROOT_REF_KEY;
3846 	key.offset = (u64)-1;
3847 
3848 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3849 	if (ret < 0)
3850 		goto out;
3851 	BUG_ON(ret == 0);
3852 
3853 	ret = 0;
3854 	if (path->slots[0] > 0) {
3855 		path->slots[0]--;
3856 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3857 		if (key.objectid == root->root_key.objectid &&
3858 		    key.type == BTRFS_ROOT_REF_KEY)
3859 			ret = -ENOTEMPTY;
3860 	}
3861 out:
3862 	btrfs_free_path(path);
3863 	return ret;
3864 }
3865 
3866 /* Delete all dentries for inodes belonging to the root */
3867 static void btrfs_prune_dentries(struct btrfs_root *root)
3868 {
3869 	struct btrfs_fs_info *fs_info = root->fs_info;
3870 	struct rb_node *node;
3871 	struct rb_node *prev;
3872 	struct btrfs_inode *entry;
3873 	struct inode *inode;
3874 	u64 objectid = 0;
3875 
3876 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3877 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3878 
3879 	spin_lock(&root->inode_lock);
3880 again:
3881 	node = root->inode_tree.rb_node;
3882 	prev = NULL;
3883 	while (node) {
3884 		prev = node;
3885 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3886 
3887 		if (objectid < btrfs_ino(entry))
3888 			node = node->rb_left;
3889 		else if (objectid > btrfs_ino(entry))
3890 			node = node->rb_right;
3891 		else
3892 			break;
3893 	}
3894 	if (!node) {
3895 		while (prev) {
3896 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3897 			if (objectid <= btrfs_ino(entry)) {
3898 				node = prev;
3899 				break;
3900 			}
3901 			prev = rb_next(prev);
3902 		}
3903 	}
3904 	while (node) {
3905 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3906 		objectid = btrfs_ino(entry) + 1;
3907 		inode = igrab(&entry->vfs_inode);
3908 		if (inode) {
3909 			spin_unlock(&root->inode_lock);
3910 			if (atomic_read(&inode->i_count) > 1)
3911 				d_prune_aliases(inode);
3912 			/*
3913 			 * btrfs_drop_inode will have it removed from the inode
3914 			 * cache when its usage count hits zero.
3915 			 */
3916 			iput(inode);
3917 			cond_resched();
3918 			spin_lock(&root->inode_lock);
3919 			goto again;
3920 		}
3921 
3922 		if (cond_resched_lock(&root->inode_lock))
3923 			goto again;
3924 
3925 		node = rb_next(node);
3926 	}
3927 	spin_unlock(&root->inode_lock);
3928 }
3929 
3930 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3931 {
3932 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3933 	struct btrfs_root *root = BTRFS_I(dir)->root;
3934 	struct inode *inode = d_inode(dentry);
3935 	struct btrfs_root *dest = BTRFS_I(inode)->root;
3936 	struct btrfs_trans_handle *trans;
3937 	struct btrfs_block_rsv block_rsv;
3938 	u64 root_flags;
3939 	int ret;
3940 	int err;
3941 
3942 	/*
3943 	 * Don't allow to delete a subvolume with send in progress. This is
3944 	 * inside the inode lock so the error handling that has to drop the bit
3945 	 * again is not run concurrently.
3946 	 */
3947 	spin_lock(&dest->root_item_lock);
3948 	if (dest->send_in_progress) {
3949 		spin_unlock(&dest->root_item_lock);
3950 		btrfs_warn(fs_info,
3951 			   "attempt to delete subvolume %llu during send",
3952 			   dest->root_key.objectid);
3953 		return -EPERM;
3954 	}
3955 	root_flags = btrfs_root_flags(&dest->root_item);
3956 	btrfs_set_root_flags(&dest->root_item,
3957 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3958 	spin_unlock(&dest->root_item_lock);
3959 
3960 	down_write(&fs_info->subvol_sem);
3961 
3962 	err = may_destroy_subvol(dest);
3963 	if (err)
3964 		goto out_up_write;
3965 
3966 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3967 	/*
3968 	 * One for dir inode,
3969 	 * two for dir entries,
3970 	 * two for root ref/backref.
3971 	 */
3972 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
3973 	if (err)
3974 		goto out_up_write;
3975 
3976 	trans = btrfs_start_transaction(root, 0);
3977 	if (IS_ERR(trans)) {
3978 		err = PTR_ERR(trans);
3979 		goto out_release;
3980 	}
3981 	trans->block_rsv = &block_rsv;
3982 	trans->bytes_reserved = block_rsv.size;
3983 
3984 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3985 
3986 	ret = btrfs_unlink_subvol(trans, dir, dentry);
3987 	if (ret) {
3988 		err = ret;
3989 		btrfs_abort_transaction(trans, ret);
3990 		goto out_end_trans;
3991 	}
3992 
3993 	btrfs_record_root_in_trans(trans, dest);
3994 
3995 	memset(&dest->root_item.drop_progress, 0,
3996 		sizeof(dest->root_item.drop_progress));
3997 	dest->root_item.drop_level = 0;
3998 	btrfs_set_root_refs(&dest->root_item, 0);
3999 
4000 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4001 		ret = btrfs_insert_orphan_item(trans,
4002 					fs_info->tree_root,
4003 					dest->root_key.objectid);
4004 		if (ret) {
4005 			btrfs_abort_transaction(trans, ret);
4006 			err = ret;
4007 			goto out_end_trans;
4008 		}
4009 	}
4010 
4011 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4012 				  BTRFS_UUID_KEY_SUBVOL,
4013 				  dest->root_key.objectid);
4014 	if (ret && ret != -ENOENT) {
4015 		btrfs_abort_transaction(trans, ret);
4016 		err = ret;
4017 		goto out_end_trans;
4018 	}
4019 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4020 		ret = btrfs_uuid_tree_remove(trans,
4021 					  dest->root_item.received_uuid,
4022 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4023 					  dest->root_key.objectid);
4024 		if (ret && ret != -ENOENT) {
4025 			btrfs_abort_transaction(trans, ret);
4026 			err = ret;
4027 			goto out_end_trans;
4028 		}
4029 	}
4030 
4031 	free_anon_bdev(dest->anon_dev);
4032 	dest->anon_dev = 0;
4033 out_end_trans:
4034 	trans->block_rsv = NULL;
4035 	trans->bytes_reserved = 0;
4036 	ret = btrfs_end_transaction(trans);
4037 	if (ret && !err)
4038 		err = ret;
4039 	inode->i_flags |= S_DEAD;
4040 out_release:
4041 	btrfs_subvolume_release_metadata(root, &block_rsv);
4042 out_up_write:
4043 	up_write(&fs_info->subvol_sem);
4044 	if (err) {
4045 		spin_lock(&dest->root_item_lock);
4046 		root_flags = btrfs_root_flags(&dest->root_item);
4047 		btrfs_set_root_flags(&dest->root_item,
4048 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4049 		spin_unlock(&dest->root_item_lock);
4050 	} else {
4051 		d_invalidate(dentry);
4052 		btrfs_prune_dentries(dest);
4053 		ASSERT(dest->send_in_progress == 0);
4054 
4055 		/* the last ref */
4056 		if (dest->ino_cache_inode) {
4057 			iput(dest->ino_cache_inode);
4058 			dest->ino_cache_inode = NULL;
4059 		}
4060 	}
4061 
4062 	return err;
4063 }
4064 
4065 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4066 {
4067 	struct inode *inode = d_inode(dentry);
4068 	int err = 0;
4069 	struct btrfs_root *root = BTRFS_I(dir)->root;
4070 	struct btrfs_trans_handle *trans;
4071 	u64 last_unlink_trans;
4072 
4073 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4074 		return -ENOTEMPTY;
4075 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4076 		return btrfs_delete_subvolume(dir, dentry);
4077 
4078 	trans = __unlink_start_trans(dir);
4079 	if (IS_ERR(trans))
4080 		return PTR_ERR(trans);
4081 
4082 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4083 		err = btrfs_unlink_subvol(trans, dir, dentry);
4084 		goto out;
4085 	}
4086 
4087 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4088 	if (err)
4089 		goto out;
4090 
4091 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4092 
4093 	/* now the directory is empty */
4094 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4095 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4096 			dentry->d_name.len);
4097 	if (!err) {
4098 		btrfs_i_size_write(BTRFS_I(inode), 0);
4099 		/*
4100 		 * Propagate the last_unlink_trans value of the deleted dir to
4101 		 * its parent directory. This is to prevent an unrecoverable
4102 		 * log tree in the case we do something like this:
4103 		 * 1) create dir foo
4104 		 * 2) create snapshot under dir foo
4105 		 * 3) delete the snapshot
4106 		 * 4) rmdir foo
4107 		 * 5) mkdir foo
4108 		 * 6) fsync foo or some file inside foo
4109 		 */
4110 		if (last_unlink_trans >= trans->transid)
4111 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4112 	}
4113 out:
4114 	btrfs_end_transaction(trans);
4115 	btrfs_btree_balance_dirty(root->fs_info);
4116 
4117 	return err;
4118 }
4119 
4120 /*
4121  * Return this if we need to call truncate_block for the last bit of the
4122  * truncate.
4123  */
4124 #define NEED_TRUNCATE_BLOCK 1
4125 
4126 /*
4127  * this can truncate away extent items, csum items and directory items.
4128  * It starts at a high offset and removes keys until it can't find
4129  * any higher than new_size
4130  *
4131  * csum items that cross the new i_size are truncated to the new size
4132  * as well.
4133  *
4134  * min_type is the minimum key type to truncate down to.  If set to 0, this
4135  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4136  */
4137 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4138 			       struct btrfs_root *root,
4139 			       struct inode *inode,
4140 			       u64 new_size, u32 min_type)
4141 {
4142 	struct btrfs_fs_info *fs_info = root->fs_info;
4143 	struct btrfs_path *path;
4144 	struct extent_buffer *leaf;
4145 	struct btrfs_file_extent_item *fi;
4146 	struct btrfs_key key;
4147 	struct btrfs_key found_key;
4148 	u64 extent_start = 0;
4149 	u64 extent_num_bytes = 0;
4150 	u64 extent_offset = 0;
4151 	u64 item_end = 0;
4152 	u64 last_size = new_size;
4153 	u32 found_type = (u8)-1;
4154 	int found_extent;
4155 	int del_item;
4156 	int pending_del_nr = 0;
4157 	int pending_del_slot = 0;
4158 	int extent_type = -1;
4159 	int ret;
4160 	u64 ino = btrfs_ino(BTRFS_I(inode));
4161 	u64 bytes_deleted = 0;
4162 	bool be_nice = false;
4163 	bool should_throttle = false;
4164 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4165 	struct extent_state *cached_state = NULL;
4166 
4167 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4168 
4169 	/*
4170 	 * For non-free space inodes and non-shareable roots, we want to back
4171 	 * off from time to time.  This means all inodes in subvolume roots,
4172 	 * reloc roots, and data reloc roots.
4173 	 */
4174 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4175 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4176 		be_nice = true;
4177 
4178 	path = btrfs_alloc_path();
4179 	if (!path)
4180 		return -ENOMEM;
4181 	path->reada = READA_BACK;
4182 
4183 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4184 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4185 				 &cached_state);
4186 
4187 		/*
4188 		 * We want to drop from the next block forward in case this
4189 		 * new size is not block aligned since we will be keeping the
4190 		 * last block of the extent just the way it is.
4191 		 */
4192 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4193 					fs_info->sectorsize),
4194 					(u64)-1, 0);
4195 	}
4196 
4197 	/*
4198 	 * This function is also used to drop the items in the log tree before
4199 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4200 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4201 	 * items.
4202 	 */
4203 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4204 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4205 
4206 	key.objectid = ino;
4207 	key.offset = (u64)-1;
4208 	key.type = (u8)-1;
4209 
4210 search_again:
4211 	/*
4212 	 * with a 16K leaf size and 128MB extents, you can actually queue
4213 	 * up a huge file in a single leaf.  Most of the time that
4214 	 * bytes_deleted is > 0, it will be huge by the time we get here
4215 	 */
4216 	if (be_nice && bytes_deleted > SZ_32M &&
4217 	    btrfs_should_end_transaction(trans)) {
4218 		ret = -EAGAIN;
4219 		goto out;
4220 	}
4221 
4222 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4223 	if (ret < 0)
4224 		goto out;
4225 
4226 	if (ret > 0) {
4227 		ret = 0;
4228 		/* there are no items in the tree for us to truncate, we're
4229 		 * done
4230 		 */
4231 		if (path->slots[0] == 0)
4232 			goto out;
4233 		path->slots[0]--;
4234 	}
4235 
4236 	while (1) {
4237 		u64 clear_start = 0, clear_len = 0;
4238 
4239 		fi = NULL;
4240 		leaf = path->nodes[0];
4241 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4242 		found_type = found_key.type;
4243 
4244 		if (found_key.objectid != ino)
4245 			break;
4246 
4247 		if (found_type < min_type)
4248 			break;
4249 
4250 		item_end = found_key.offset;
4251 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4252 			fi = btrfs_item_ptr(leaf, path->slots[0],
4253 					    struct btrfs_file_extent_item);
4254 			extent_type = btrfs_file_extent_type(leaf, fi);
4255 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4256 				item_end +=
4257 				    btrfs_file_extent_num_bytes(leaf, fi);
4258 
4259 				trace_btrfs_truncate_show_fi_regular(
4260 					BTRFS_I(inode), leaf, fi,
4261 					found_key.offset);
4262 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4263 				item_end += btrfs_file_extent_ram_bytes(leaf,
4264 									fi);
4265 
4266 				trace_btrfs_truncate_show_fi_inline(
4267 					BTRFS_I(inode), leaf, fi, path->slots[0],
4268 					found_key.offset);
4269 			}
4270 			item_end--;
4271 		}
4272 		if (found_type > min_type) {
4273 			del_item = 1;
4274 		} else {
4275 			if (item_end < new_size)
4276 				break;
4277 			if (found_key.offset >= new_size)
4278 				del_item = 1;
4279 			else
4280 				del_item = 0;
4281 		}
4282 		found_extent = 0;
4283 		/* FIXME, shrink the extent if the ref count is only 1 */
4284 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4285 			goto delete;
4286 
4287 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4288 			u64 num_dec;
4289 
4290 			clear_start = found_key.offset;
4291 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4292 			if (!del_item) {
4293 				u64 orig_num_bytes =
4294 					btrfs_file_extent_num_bytes(leaf, fi);
4295 				extent_num_bytes = ALIGN(new_size -
4296 						found_key.offset,
4297 						fs_info->sectorsize);
4298 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4299 				btrfs_set_file_extent_num_bytes(leaf, fi,
4300 							 extent_num_bytes);
4301 				num_dec = (orig_num_bytes -
4302 					   extent_num_bytes);
4303 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4304 					     &root->state) &&
4305 				    extent_start != 0)
4306 					inode_sub_bytes(inode, num_dec);
4307 				btrfs_mark_buffer_dirty(leaf);
4308 			} else {
4309 				extent_num_bytes =
4310 					btrfs_file_extent_disk_num_bytes(leaf,
4311 									 fi);
4312 				extent_offset = found_key.offset -
4313 					btrfs_file_extent_offset(leaf, fi);
4314 
4315 				/* FIXME blocksize != 4096 */
4316 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4317 				if (extent_start != 0) {
4318 					found_extent = 1;
4319 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4320 						     &root->state))
4321 						inode_sub_bytes(inode, num_dec);
4322 				}
4323 			}
4324 			clear_len = num_dec;
4325 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4326 			/*
4327 			 * we can't truncate inline items that have had
4328 			 * special encodings
4329 			 */
4330 			if (!del_item &&
4331 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4332 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4333 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4334 				u32 size = (u32)(new_size - found_key.offset);
4335 
4336 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4337 				size = btrfs_file_extent_calc_inline_size(size);
4338 				btrfs_truncate_item(path, size, 1);
4339 			} else if (!del_item) {
4340 				/*
4341 				 * We have to bail so the last_size is set to
4342 				 * just before this extent.
4343 				 */
4344 				ret = NEED_TRUNCATE_BLOCK;
4345 				break;
4346 			} else {
4347 				/*
4348 				 * Inline extents are special, we just treat
4349 				 * them as a full sector worth in the file
4350 				 * extent tree just for simplicity sake.
4351 				 */
4352 				clear_len = fs_info->sectorsize;
4353 			}
4354 
4355 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4356 				inode_sub_bytes(inode, item_end + 1 - new_size);
4357 		}
4358 delete:
4359 		/*
4360 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4361 		 * multiple fsyncs, and in this case we don't want to clear the
4362 		 * file extent range because it's just the log.
4363 		 */
4364 		if (root == BTRFS_I(inode)->root) {
4365 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4366 						  clear_start, clear_len);
4367 			if (ret) {
4368 				btrfs_abort_transaction(trans, ret);
4369 				break;
4370 			}
4371 		}
4372 
4373 		if (del_item)
4374 			last_size = found_key.offset;
4375 		else
4376 			last_size = new_size;
4377 		if (del_item) {
4378 			if (!pending_del_nr) {
4379 				/* no pending yet, add ourselves */
4380 				pending_del_slot = path->slots[0];
4381 				pending_del_nr = 1;
4382 			} else if (pending_del_nr &&
4383 				   path->slots[0] + 1 == pending_del_slot) {
4384 				/* hop on the pending chunk */
4385 				pending_del_nr++;
4386 				pending_del_slot = path->slots[0];
4387 			} else {
4388 				BUG();
4389 			}
4390 		} else {
4391 			break;
4392 		}
4393 		should_throttle = false;
4394 
4395 		if (found_extent &&
4396 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4397 			struct btrfs_ref ref = { 0 };
4398 
4399 			bytes_deleted += extent_num_bytes;
4400 
4401 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4402 					extent_start, extent_num_bytes, 0);
4403 			ref.real_root = root->root_key.objectid;
4404 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4405 					ino, extent_offset);
4406 			ret = btrfs_free_extent(trans, &ref);
4407 			if (ret) {
4408 				btrfs_abort_transaction(trans, ret);
4409 				break;
4410 			}
4411 			if (be_nice) {
4412 				if (btrfs_should_throttle_delayed_refs(trans))
4413 					should_throttle = true;
4414 			}
4415 		}
4416 
4417 		if (found_type == BTRFS_INODE_ITEM_KEY)
4418 			break;
4419 
4420 		if (path->slots[0] == 0 ||
4421 		    path->slots[0] != pending_del_slot ||
4422 		    should_throttle) {
4423 			if (pending_del_nr) {
4424 				ret = btrfs_del_items(trans, root, path,
4425 						pending_del_slot,
4426 						pending_del_nr);
4427 				if (ret) {
4428 					btrfs_abort_transaction(trans, ret);
4429 					break;
4430 				}
4431 				pending_del_nr = 0;
4432 			}
4433 			btrfs_release_path(path);
4434 
4435 			/*
4436 			 * We can generate a lot of delayed refs, so we need to
4437 			 * throttle every once and a while and make sure we're
4438 			 * adding enough space to keep up with the work we are
4439 			 * generating.  Since we hold a transaction here we
4440 			 * can't flush, and we don't want to FLUSH_LIMIT because
4441 			 * we could have generated too many delayed refs to
4442 			 * actually allocate, so just bail if we're short and
4443 			 * let the normal reservation dance happen higher up.
4444 			 */
4445 			if (should_throttle) {
4446 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4447 							BTRFS_RESERVE_NO_FLUSH);
4448 				if (ret) {
4449 					ret = -EAGAIN;
4450 					break;
4451 				}
4452 			}
4453 			goto search_again;
4454 		} else {
4455 			path->slots[0]--;
4456 		}
4457 	}
4458 out:
4459 	if (ret >= 0 && pending_del_nr) {
4460 		int err;
4461 
4462 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4463 				      pending_del_nr);
4464 		if (err) {
4465 			btrfs_abort_transaction(trans, err);
4466 			ret = err;
4467 		}
4468 	}
4469 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4470 		ASSERT(last_size >= new_size);
4471 		if (!ret && last_size > new_size)
4472 			last_size = new_size;
4473 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4474 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4475 				     (u64)-1, &cached_state);
4476 	}
4477 
4478 	btrfs_free_path(path);
4479 	return ret;
4480 }
4481 
4482 /*
4483  * btrfs_truncate_block - read, zero a chunk and write a block
4484  * @inode - inode that we're zeroing
4485  * @from - the offset to start zeroing
4486  * @len - the length to zero, 0 to zero the entire range respective to the
4487  *	offset
4488  * @front - zero up to the offset instead of from the offset on
4489  *
4490  * This will find the block for the "from" offset and cow the block and zero the
4491  * part we want to zero.  This is used with truncate and hole punching.
4492  */
4493 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4494 			int front)
4495 {
4496 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4497 	struct address_space *mapping = inode->i_mapping;
4498 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4499 	struct btrfs_ordered_extent *ordered;
4500 	struct extent_state *cached_state = NULL;
4501 	struct extent_changeset *data_reserved = NULL;
4502 	char *kaddr;
4503 	bool only_release_metadata = false;
4504 	u32 blocksize = fs_info->sectorsize;
4505 	pgoff_t index = from >> PAGE_SHIFT;
4506 	unsigned offset = from & (blocksize - 1);
4507 	struct page *page;
4508 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4509 	size_t write_bytes = blocksize;
4510 	int ret = 0;
4511 	u64 block_start;
4512 	u64 block_end;
4513 
4514 	if (IS_ALIGNED(offset, blocksize) &&
4515 	    (!len || IS_ALIGNED(len, blocksize)))
4516 		goto out;
4517 
4518 	block_start = round_down(from, blocksize);
4519 	block_end = block_start + blocksize - 1;
4520 
4521 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4522 					  block_start, blocksize);
4523 	if (ret < 0) {
4524 		if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4525 					   &write_bytes) > 0) {
4526 			/* For nocow case, no need to reserve data space */
4527 			only_release_metadata = true;
4528 		} else {
4529 			goto out;
4530 		}
4531 	}
4532 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4533 	if (ret < 0) {
4534 		if (!only_release_metadata)
4535 			btrfs_free_reserved_data_space(BTRFS_I(inode),
4536 					data_reserved, block_start, blocksize);
4537 		goto out;
4538 	}
4539 again:
4540 	page = find_or_create_page(mapping, index, mask);
4541 	if (!page) {
4542 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4543 					     block_start, blocksize, true);
4544 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4545 		ret = -ENOMEM;
4546 		goto out;
4547 	}
4548 
4549 	if (!PageUptodate(page)) {
4550 		ret = btrfs_readpage(NULL, page);
4551 		lock_page(page);
4552 		if (page->mapping != mapping) {
4553 			unlock_page(page);
4554 			put_page(page);
4555 			goto again;
4556 		}
4557 		if (!PageUptodate(page)) {
4558 			ret = -EIO;
4559 			goto out_unlock;
4560 		}
4561 	}
4562 	wait_on_page_writeback(page);
4563 
4564 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4565 	set_page_extent_mapped(page);
4566 
4567 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4568 	if (ordered) {
4569 		unlock_extent_cached(io_tree, block_start, block_end,
4570 				     &cached_state);
4571 		unlock_page(page);
4572 		put_page(page);
4573 		btrfs_start_ordered_extent(ordered, 1);
4574 		btrfs_put_ordered_extent(ordered);
4575 		goto again;
4576 	}
4577 
4578 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4579 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4580 			 0, 0, &cached_state);
4581 
4582 	ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4583 					&cached_state);
4584 	if (ret) {
4585 		unlock_extent_cached(io_tree, block_start, block_end,
4586 				     &cached_state);
4587 		goto out_unlock;
4588 	}
4589 
4590 	if (offset != blocksize) {
4591 		if (!len)
4592 			len = blocksize - offset;
4593 		kaddr = kmap(page);
4594 		if (front)
4595 			memset(kaddr + (block_start - page_offset(page)),
4596 				0, offset);
4597 		else
4598 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4599 				0, len);
4600 		flush_dcache_page(page);
4601 		kunmap(page);
4602 	}
4603 	ClearPageChecked(page);
4604 	set_page_dirty(page);
4605 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4606 
4607 	if (only_release_metadata)
4608 		set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4609 				block_end, EXTENT_NORESERVE, NULL, NULL,
4610 				GFP_NOFS);
4611 
4612 out_unlock:
4613 	if (ret) {
4614 		if (only_release_metadata)
4615 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
4616 					blocksize, true);
4617 		else
4618 			btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4619 					block_start, blocksize, true);
4620 	}
4621 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4622 	unlock_page(page);
4623 	put_page(page);
4624 out:
4625 	if (only_release_metadata)
4626 		btrfs_check_nocow_unlock(BTRFS_I(inode));
4627 	extent_changeset_free(data_reserved);
4628 	return ret;
4629 }
4630 
4631 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4632 			     u64 offset, u64 len)
4633 {
4634 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4635 	struct btrfs_trans_handle *trans;
4636 	int ret;
4637 
4638 	/*
4639 	 * Still need to make sure the inode looks like it's been updated so
4640 	 * that any holes get logged if we fsync.
4641 	 */
4642 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4643 		BTRFS_I(inode)->last_trans = fs_info->generation;
4644 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4645 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4646 		return 0;
4647 	}
4648 
4649 	/*
4650 	 * 1 - for the one we're dropping
4651 	 * 1 - for the one we're adding
4652 	 * 1 - for updating the inode.
4653 	 */
4654 	trans = btrfs_start_transaction(root, 3);
4655 	if (IS_ERR(trans))
4656 		return PTR_ERR(trans);
4657 
4658 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4659 	if (ret) {
4660 		btrfs_abort_transaction(trans, ret);
4661 		btrfs_end_transaction(trans);
4662 		return ret;
4663 	}
4664 
4665 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4666 			offset, 0, 0, len, 0, len, 0, 0, 0);
4667 	if (ret)
4668 		btrfs_abort_transaction(trans, ret);
4669 	else
4670 		btrfs_update_inode(trans, root, inode);
4671 	btrfs_end_transaction(trans);
4672 	return ret;
4673 }
4674 
4675 /*
4676  * This function puts in dummy file extents for the area we're creating a hole
4677  * for.  So if we are truncating this file to a larger size we need to insert
4678  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4679  * the range between oldsize and size
4680  */
4681 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4682 {
4683 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4684 	struct btrfs_root *root = BTRFS_I(inode)->root;
4685 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4686 	struct extent_map *em = NULL;
4687 	struct extent_state *cached_state = NULL;
4688 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4689 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4690 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4691 	u64 last_byte;
4692 	u64 cur_offset;
4693 	u64 hole_size;
4694 	int err = 0;
4695 
4696 	/*
4697 	 * If our size started in the middle of a block we need to zero out the
4698 	 * rest of the block before we expand the i_size, otherwise we could
4699 	 * expose stale data.
4700 	 */
4701 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4702 	if (err)
4703 		return err;
4704 
4705 	if (size <= hole_start)
4706 		return 0;
4707 
4708 	btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4709 					   block_end - 1, &cached_state);
4710 	cur_offset = hole_start;
4711 	while (1) {
4712 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4713 				      block_end - cur_offset);
4714 		if (IS_ERR(em)) {
4715 			err = PTR_ERR(em);
4716 			em = NULL;
4717 			break;
4718 		}
4719 		last_byte = min(extent_map_end(em), block_end);
4720 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4721 		hole_size = last_byte - cur_offset;
4722 
4723 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4724 			struct extent_map *hole_em;
4725 
4726 			err = maybe_insert_hole(root, inode, cur_offset,
4727 						hole_size);
4728 			if (err)
4729 				break;
4730 
4731 			err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4732 							cur_offset, hole_size);
4733 			if (err)
4734 				break;
4735 
4736 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4737 						cur_offset + hole_size - 1, 0);
4738 			hole_em = alloc_extent_map();
4739 			if (!hole_em) {
4740 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4741 					&BTRFS_I(inode)->runtime_flags);
4742 				goto next;
4743 			}
4744 			hole_em->start = cur_offset;
4745 			hole_em->len = hole_size;
4746 			hole_em->orig_start = cur_offset;
4747 
4748 			hole_em->block_start = EXTENT_MAP_HOLE;
4749 			hole_em->block_len = 0;
4750 			hole_em->orig_block_len = 0;
4751 			hole_em->ram_bytes = hole_size;
4752 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4753 			hole_em->generation = fs_info->generation;
4754 
4755 			while (1) {
4756 				write_lock(&em_tree->lock);
4757 				err = add_extent_mapping(em_tree, hole_em, 1);
4758 				write_unlock(&em_tree->lock);
4759 				if (err != -EEXIST)
4760 					break;
4761 				btrfs_drop_extent_cache(BTRFS_I(inode),
4762 							cur_offset,
4763 							cur_offset +
4764 							hole_size - 1, 0);
4765 			}
4766 			free_extent_map(hole_em);
4767 		} else {
4768 			err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4769 							cur_offset, hole_size);
4770 			if (err)
4771 				break;
4772 		}
4773 next:
4774 		free_extent_map(em);
4775 		em = NULL;
4776 		cur_offset = last_byte;
4777 		if (cur_offset >= block_end)
4778 			break;
4779 	}
4780 	free_extent_map(em);
4781 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4782 	return err;
4783 }
4784 
4785 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4786 {
4787 	struct btrfs_root *root = BTRFS_I(inode)->root;
4788 	struct btrfs_trans_handle *trans;
4789 	loff_t oldsize = i_size_read(inode);
4790 	loff_t newsize = attr->ia_size;
4791 	int mask = attr->ia_valid;
4792 	int ret;
4793 
4794 	/*
4795 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4796 	 * special case where we need to update the times despite not having
4797 	 * these flags set.  For all other operations the VFS set these flags
4798 	 * explicitly if it wants a timestamp update.
4799 	 */
4800 	if (newsize != oldsize) {
4801 		inode_inc_iversion(inode);
4802 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4803 			inode->i_ctime = inode->i_mtime =
4804 				current_time(inode);
4805 	}
4806 
4807 	if (newsize > oldsize) {
4808 		/*
4809 		 * Don't do an expanding truncate while snapshotting is ongoing.
4810 		 * This is to ensure the snapshot captures a fully consistent
4811 		 * state of this file - if the snapshot captures this expanding
4812 		 * truncation, it must capture all writes that happened before
4813 		 * this truncation.
4814 		 */
4815 		btrfs_drew_write_lock(&root->snapshot_lock);
4816 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4817 		if (ret) {
4818 			btrfs_drew_write_unlock(&root->snapshot_lock);
4819 			return ret;
4820 		}
4821 
4822 		trans = btrfs_start_transaction(root, 1);
4823 		if (IS_ERR(trans)) {
4824 			btrfs_drew_write_unlock(&root->snapshot_lock);
4825 			return PTR_ERR(trans);
4826 		}
4827 
4828 		i_size_write(inode, newsize);
4829 		btrfs_inode_safe_disk_i_size_write(inode, 0);
4830 		pagecache_isize_extended(inode, oldsize, newsize);
4831 		ret = btrfs_update_inode(trans, root, inode);
4832 		btrfs_drew_write_unlock(&root->snapshot_lock);
4833 		btrfs_end_transaction(trans);
4834 	} else {
4835 
4836 		/*
4837 		 * We're truncating a file that used to have good data down to
4838 		 * zero. Make sure any new writes to the file get on disk
4839 		 * on close.
4840 		 */
4841 		if (newsize == 0)
4842 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
4843 				&BTRFS_I(inode)->runtime_flags);
4844 
4845 		truncate_setsize(inode, newsize);
4846 
4847 		inode_dio_wait(inode);
4848 
4849 		ret = btrfs_truncate(inode, newsize == oldsize);
4850 		if (ret && inode->i_nlink) {
4851 			int err;
4852 
4853 			/*
4854 			 * Truncate failed, so fix up the in-memory size. We
4855 			 * adjusted disk_i_size down as we removed extents, so
4856 			 * wait for disk_i_size to be stable and then update the
4857 			 * in-memory size to match.
4858 			 */
4859 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4860 			if (err)
4861 				return err;
4862 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4863 		}
4864 	}
4865 
4866 	return ret;
4867 }
4868 
4869 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4870 {
4871 	struct inode *inode = d_inode(dentry);
4872 	struct btrfs_root *root = BTRFS_I(inode)->root;
4873 	int err;
4874 
4875 	if (btrfs_root_readonly(root))
4876 		return -EROFS;
4877 
4878 	err = setattr_prepare(dentry, attr);
4879 	if (err)
4880 		return err;
4881 
4882 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4883 		err = btrfs_setsize(inode, attr);
4884 		if (err)
4885 			return err;
4886 	}
4887 
4888 	if (attr->ia_valid) {
4889 		setattr_copy(inode, attr);
4890 		inode_inc_iversion(inode);
4891 		err = btrfs_dirty_inode(inode);
4892 
4893 		if (!err && attr->ia_valid & ATTR_MODE)
4894 			err = posix_acl_chmod(inode, inode->i_mode);
4895 	}
4896 
4897 	return err;
4898 }
4899 
4900 /*
4901  * While truncating the inode pages during eviction, we get the VFS calling
4902  * btrfs_invalidatepage() against each page of the inode. This is slow because
4903  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4904  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4905  * extent_state structures over and over, wasting lots of time.
4906  *
4907  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4908  * those expensive operations on a per page basis and do only the ordered io
4909  * finishing, while we release here the extent_map and extent_state structures,
4910  * without the excessive merging and splitting.
4911  */
4912 static void evict_inode_truncate_pages(struct inode *inode)
4913 {
4914 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4915 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4916 	struct rb_node *node;
4917 
4918 	ASSERT(inode->i_state & I_FREEING);
4919 	truncate_inode_pages_final(&inode->i_data);
4920 
4921 	write_lock(&map_tree->lock);
4922 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4923 		struct extent_map *em;
4924 
4925 		node = rb_first_cached(&map_tree->map);
4926 		em = rb_entry(node, struct extent_map, rb_node);
4927 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4928 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4929 		remove_extent_mapping(map_tree, em);
4930 		free_extent_map(em);
4931 		if (need_resched()) {
4932 			write_unlock(&map_tree->lock);
4933 			cond_resched();
4934 			write_lock(&map_tree->lock);
4935 		}
4936 	}
4937 	write_unlock(&map_tree->lock);
4938 
4939 	/*
4940 	 * Keep looping until we have no more ranges in the io tree.
4941 	 * We can have ongoing bios started by readahead that have
4942 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
4943 	 * still in progress (unlocked the pages in the bio but did not yet
4944 	 * unlocked the ranges in the io tree). Therefore this means some
4945 	 * ranges can still be locked and eviction started because before
4946 	 * submitting those bios, which are executed by a separate task (work
4947 	 * queue kthread), inode references (inode->i_count) were not taken
4948 	 * (which would be dropped in the end io callback of each bio).
4949 	 * Therefore here we effectively end up waiting for those bios and
4950 	 * anyone else holding locked ranges without having bumped the inode's
4951 	 * reference count - if we don't do it, when they access the inode's
4952 	 * io_tree to unlock a range it may be too late, leading to an
4953 	 * use-after-free issue.
4954 	 */
4955 	spin_lock(&io_tree->lock);
4956 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
4957 		struct extent_state *state;
4958 		struct extent_state *cached_state = NULL;
4959 		u64 start;
4960 		u64 end;
4961 		unsigned state_flags;
4962 
4963 		node = rb_first(&io_tree->state);
4964 		state = rb_entry(node, struct extent_state, rb_node);
4965 		start = state->start;
4966 		end = state->end;
4967 		state_flags = state->state;
4968 		spin_unlock(&io_tree->lock);
4969 
4970 		lock_extent_bits(io_tree, start, end, &cached_state);
4971 
4972 		/*
4973 		 * If still has DELALLOC flag, the extent didn't reach disk,
4974 		 * and its reserved space won't be freed by delayed_ref.
4975 		 * So we need to free its reserved space here.
4976 		 * (Refer to comment in btrfs_invalidatepage, case 2)
4977 		 *
4978 		 * Note, end is the bytenr of last byte, so we need + 1 here.
4979 		 */
4980 		if (state_flags & EXTENT_DELALLOC)
4981 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4982 					       end - start + 1);
4983 
4984 		clear_extent_bit(io_tree, start, end,
4985 				 EXTENT_LOCKED | EXTENT_DELALLOC |
4986 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
4987 				 &cached_state);
4988 
4989 		cond_resched();
4990 		spin_lock(&io_tree->lock);
4991 	}
4992 	spin_unlock(&io_tree->lock);
4993 }
4994 
4995 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
4996 							struct btrfs_block_rsv *rsv)
4997 {
4998 	struct btrfs_fs_info *fs_info = root->fs_info;
4999 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5000 	struct btrfs_trans_handle *trans;
5001 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5002 	int ret;
5003 
5004 	/*
5005 	 * Eviction should be taking place at some place safe because of our
5006 	 * delayed iputs.  However the normal flushing code will run delayed
5007 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5008 	 *
5009 	 * We reserve the delayed_refs_extra here again because we can't use
5010 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5011 	 * above.  We reserve our extra bit here because we generate a ton of
5012 	 * delayed refs activity by truncating.
5013 	 *
5014 	 * If we cannot make our reservation we'll attempt to steal from the
5015 	 * global reserve, because we really want to be able to free up space.
5016 	 */
5017 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5018 				     BTRFS_RESERVE_FLUSH_EVICT);
5019 	if (ret) {
5020 		/*
5021 		 * Try to steal from the global reserve if there is space for
5022 		 * it.
5023 		 */
5024 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5025 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5026 			btrfs_warn(fs_info,
5027 				   "could not allocate space for delete; will truncate on mount");
5028 			return ERR_PTR(-ENOSPC);
5029 		}
5030 		delayed_refs_extra = 0;
5031 	}
5032 
5033 	trans = btrfs_join_transaction(root);
5034 	if (IS_ERR(trans))
5035 		return trans;
5036 
5037 	if (delayed_refs_extra) {
5038 		trans->block_rsv = &fs_info->trans_block_rsv;
5039 		trans->bytes_reserved = delayed_refs_extra;
5040 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5041 					delayed_refs_extra, 1);
5042 	}
5043 	return trans;
5044 }
5045 
5046 void btrfs_evict_inode(struct inode *inode)
5047 {
5048 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5049 	struct btrfs_trans_handle *trans;
5050 	struct btrfs_root *root = BTRFS_I(inode)->root;
5051 	struct btrfs_block_rsv *rsv;
5052 	int ret;
5053 
5054 	trace_btrfs_inode_evict(inode);
5055 
5056 	if (!root) {
5057 		clear_inode(inode);
5058 		return;
5059 	}
5060 
5061 	evict_inode_truncate_pages(inode);
5062 
5063 	if (inode->i_nlink &&
5064 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5065 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5066 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5067 		goto no_delete;
5068 
5069 	if (is_bad_inode(inode))
5070 		goto no_delete;
5071 
5072 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5073 
5074 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5075 		goto no_delete;
5076 
5077 	if (inode->i_nlink > 0) {
5078 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5079 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5080 		goto no_delete;
5081 	}
5082 
5083 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5084 	if (ret)
5085 		goto no_delete;
5086 
5087 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5088 	if (!rsv)
5089 		goto no_delete;
5090 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5091 	rsv->failfast = 1;
5092 
5093 	btrfs_i_size_write(BTRFS_I(inode), 0);
5094 
5095 	while (1) {
5096 		trans = evict_refill_and_join(root, rsv);
5097 		if (IS_ERR(trans))
5098 			goto free_rsv;
5099 
5100 		trans->block_rsv = rsv;
5101 
5102 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5103 		trans->block_rsv = &fs_info->trans_block_rsv;
5104 		btrfs_end_transaction(trans);
5105 		btrfs_btree_balance_dirty(fs_info);
5106 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5107 			goto free_rsv;
5108 		else if (!ret)
5109 			break;
5110 	}
5111 
5112 	/*
5113 	 * Errors here aren't a big deal, it just means we leave orphan items in
5114 	 * the tree. They will be cleaned up on the next mount. If the inode
5115 	 * number gets reused, cleanup deletes the orphan item without doing
5116 	 * anything, and unlink reuses the existing orphan item.
5117 	 *
5118 	 * If it turns out that we are dropping too many of these, we might want
5119 	 * to add a mechanism for retrying these after a commit.
5120 	 */
5121 	trans = evict_refill_and_join(root, rsv);
5122 	if (!IS_ERR(trans)) {
5123 		trans->block_rsv = rsv;
5124 		btrfs_orphan_del(trans, BTRFS_I(inode));
5125 		trans->block_rsv = &fs_info->trans_block_rsv;
5126 		btrfs_end_transaction(trans);
5127 	}
5128 
5129 	if (!(root == fs_info->tree_root ||
5130 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5131 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5132 
5133 free_rsv:
5134 	btrfs_free_block_rsv(fs_info, rsv);
5135 no_delete:
5136 	/*
5137 	 * If we didn't successfully delete, the orphan item will still be in
5138 	 * the tree and we'll retry on the next mount. Again, we might also want
5139 	 * to retry these periodically in the future.
5140 	 */
5141 	btrfs_remove_delayed_node(BTRFS_I(inode));
5142 	clear_inode(inode);
5143 }
5144 
5145 /*
5146  * Return the key found in the dir entry in the location pointer, fill @type
5147  * with BTRFS_FT_*, and return 0.
5148  *
5149  * If no dir entries were found, returns -ENOENT.
5150  * If found a corrupted location in dir entry, returns -EUCLEAN.
5151  */
5152 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5153 			       struct btrfs_key *location, u8 *type)
5154 {
5155 	const char *name = dentry->d_name.name;
5156 	int namelen = dentry->d_name.len;
5157 	struct btrfs_dir_item *di;
5158 	struct btrfs_path *path;
5159 	struct btrfs_root *root = BTRFS_I(dir)->root;
5160 	int ret = 0;
5161 
5162 	path = btrfs_alloc_path();
5163 	if (!path)
5164 		return -ENOMEM;
5165 
5166 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5167 			name, namelen, 0);
5168 	if (IS_ERR_OR_NULL(di)) {
5169 		ret = di ? PTR_ERR(di) : -ENOENT;
5170 		goto out;
5171 	}
5172 
5173 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5174 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5175 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5176 		ret = -EUCLEAN;
5177 		btrfs_warn(root->fs_info,
5178 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5179 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5180 			   location->objectid, location->type, location->offset);
5181 	}
5182 	if (!ret)
5183 		*type = btrfs_dir_type(path->nodes[0], di);
5184 out:
5185 	btrfs_free_path(path);
5186 	return ret;
5187 }
5188 
5189 /*
5190  * when we hit a tree root in a directory, the btrfs part of the inode
5191  * needs to be changed to reflect the root directory of the tree root.  This
5192  * is kind of like crossing a mount point.
5193  */
5194 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5195 				    struct inode *dir,
5196 				    struct dentry *dentry,
5197 				    struct btrfs_key *location,
5198 				    struct btrfs_root **sub_root)
5199 {
5200 	struct btrfs_path *path;
5201 	struct btrfs_root *new_root;
5202 	struct btrfs_root_ref *ref;
5203 	struct extent_buffer *leaf;
5204 	struct btrfs_key key;
5205 	int ret;
5206 	int err = 0;
5207 
5208 	path = btrfs_alloc_path();
5209 	if (!path) {
5210 		err = -ENOMEM;
5211 		goto out;
5212 	}
5213 
5214 	err = -ENOENT;
5215 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5216 	key.type = BTRFS_ROOT_REF_KEY;
5217 	key.offset = location->objectid;
5218 
5219 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5220 	if (ret) {
5221 		if (ret < 0)
5222 			err = ret;
5223 		goto out;
5224 	}
5225 
5226 	leaf = path->nodes[0];
5227 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5228 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5229 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5230 		goto out;
5231 
5232 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5233 				   (unsigned long)(ref + 1),
5234 				   dentry->d_name.len);
5235 	if (ret)
5236 		goto out;
5237 
5238 	btrfs_release_path(path);
5239 
5240 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5241 	if (IS_ERR(new_root)) {
5242 		err = PTR_ERR(new_root);
5243 		goto out;
5244 	}
5245 
5246 	*sub_root = new_root;
5247 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5248 	location->type = BTRFS_INODE_ITEM_KEY;
5249 	location->offset = 0;
5250 	err = 0;
5251 out:
5252 	btrfs_free_path(path);
5253 	return err;
5254 }
5255 
5256 static void inode_tree_add(struct inode *inode)
5257 {
5258 	struct btrfs_root *root = BTRFS_I(inode)->root;
5259 	struct btrfs_inode *entry;
5260 	struct rb_node **p;
5261 	struct rb_node *parent;
5262 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5263 	u64 ino = btrfs_ino(BTRFS_I(inode));
5264 
5265 	if (inode_unhashed(inode))
5266 		return;
5267 	parent = NULL;
5268 	spin_lock(&root->inode_lock);
5269 	p = &root->inode_tree.rb_node;
5270 	while (*p) {
5271 		parent = *p;
5272 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5273 
5274 		if (ino < btrfs_ino(entry))
5275 			p = &parent->rb_left;
5276 		else if (ino > btrfs_ino(entry))
5277 			p = &parent->rb_right;
5278 		else {
5279 			WARN_ON(!(entry->vfs_inode.i_state &
5280 				  (I_WILL_FREE | I_FREEING)));
5281 			rb_replace_node(parent, new, &root->inode_tree);
5282 			RB_CLEAR_NODE(parent);
5283 			spin_unlock(&root->inode_lock);
5284 			return;
5285 		}
5286 	}
5287 	rb_link_node(new, parent, p);
5288 	rb_insert_color(new, &root->inode_tree);
5289 	spin_unlock(&root->inode_lock);
5290 }
5291 
5292 static void inode_tree_del(struct btrfs_inode *inode)
5293 {
5294 	struct btrfs_root *root = inode->root;
5295 	int empty = 0;
5296 
5297 	spin_lock(&root->inode_lock);
5298 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5299 		rb_erase(&inode->rb_node, &root->inode_tree);
5300 		RB_CLEAR_NODE(&inode->rb_node);
5301 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5302 	}
5303 	spin_unlock(&root->inode_lock);
5304 
5305 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5306 		spin_lock(&root->inode_lock);
5307 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5308 		spin_unlock(&root->inode_lock);
5309 		if (empty)
5310 			btrfs_add_dead_root(root);
5311 	}
5312 }
5313 
5314 
5315 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5316 {
5317 	struct btrfs_iget_args *args = p;
5318 
5319 	inode->i_ino = args->ino;
5320 	BTRFS_I(inode)->location.objectid = args->ino;
5321 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5322 	BTRFS_I(inode)->location.offset = 0;
5323 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5324 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5325 	return 0;
5326 }
5327 
5328 static int btrfs_find_actor(struct inode *inode, void *opaque)
5329 {
5330 	struct btrfs_iget_args *args = opaque;
5331 
5332 	return args->ino == BTRFS_I(inode)->location.objectid &&
5333 		args->root == BTRFS_I(inode)->root;
5334 }
5335 
5336 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5337 				       struct btrfs_root *root)
5338 {
5339 	struct inode *inode;
5340 	struct btrfs_iget_args args;
5341 	unsigned long hashval = btrfs_inode_hash(ino, root);
5342 
5343 	args.ino = ino;
5344 	args.root = root;
5345 
5346 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5347 			     btrfs_init_locked_inode,
5348 			     (void *)&args);
5349 	return inode;
5350 }
5351 
5352 /*
5353  * Get an inode object given its inode number and corresponding root.
5354  * Path can be preallocated to prevent recursing back to iget through
5355  * allocator. NULL is also valid but may require an additional allocation
5356  * later.
5357  */
5358 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5359 			      struct btrfs_root *root, struct btrfs_path *path)
5360 {
5361 	struct inode *inode;
5362 
5363 	inode = btrfs_iget_locked(s, ino, root);
5364 	if (!inode)
5365 		return ERR_PTR(-ENOMEM);
5366 
5367 	if (inode->i_state & I_NEW) {
5368 		int ret;
5369 
5370 		ret = btrfs_read_locked_inode(inode, path);
5371 		if (!ret) {
5372 			inode_tree_add(inode);
5373 			unlock_new_inode(inode);
5374 		} else {
5375 			iget_failed(inode);
5376 			/*
5377 			 * ret > 0 can come from btrfs_search_slot called by
5378 			 * btrfs_read_locked_inode, this means the inode item
5379 			 * was not found.
5380 			 */
5381 			if (ret > 0)
5382 				ret = -ENOENT;
5383 			inode = ERR_PTR(ret);
5384 		}
5385 	}
5386 
5387 	return inode;
5388 }
5389 
5390 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5391 {
5392 	return btrfs_iget_path(s, ino, root, NULL);
5393 }
5394 
5395 static struct inode *new_simple_dir(struct super_block *s,
5396 				    struct btrfs_key *key,
5397 				    struct btrfs_root *root)
5398 {
5399 	struct inode *inode = new_inode(s);
5400 
5401 	if (!inode)
5402 		return ERR_PTR(-ENOMEM);
5403 
5404 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5405 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5406 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5407 
5408 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5409 	/*
5410 	 * We only need lookup, the rest is read-only and there's no inode
5411 	 * associated with the dentry
5412 	 */
5413 	inode->i_op = &simple_dir_inode_operations;
5414 	inode->i_opflags &= ~IOP_XATTR;
5415 	inode->i_fop = &simple_dir_operations;
5416 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5417 	inode->i_mtime = current_time(inode);
5418 	inode->i_atime = inode->i_mtime;
5419 	inode->i_ctime = inode->i_mtime;
5420 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5421 
5422 	return inode;
5423 }
5424 
5425 static inline u8 btrfs_inode_type(struct inode *inode)
5426 {
5427 	/*
5428 	 * Compile-time asserts that generic FT_* types still match
5429 	 * BTRFS_FT_* types
5430 	 */
5431 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5432 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5433 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5434 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5435 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5436 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5437 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5438 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5439 
5440 	return fs_umode_to_ftype(inode->i_mode);
5441 }
5442 
5443 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5444 {
5445 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5446 	struct inode *inode;
5447 	struct btrfs_root *root = BTRFS_I(dir)->root;
5448 	struct btrfs_root *sub_root = root;
5449 	struct btrfs_key location;
5450 	u8 di_type = 0;
5451 	int ret = 0;
5452 
5453 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5454 		return ERR_PTR(-ENAMETOOLONG);
5455 
5456 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5457 	if (ret < 0)
5458 		return ERR_PTR(ret);
5459 
5460 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5461 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5462 		if (IS_ERR(inode))
5463 			return inode;
5464 
5465 		/* Do extra check against inode mode with di_type */
5466 		if (btrfs_inode_type(inode) != di_type) {
5467 			btrfs_crit(fs_info,
5468 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5469 				  inode->i_mode, btrfs_inode_type(inode),
5470 				  di_type);
5471 			iput(inode);
5472 			return ERR_PTR(-EUCLEAN);
5473 		}
5474 		return inode;
5475 	}
5476 
5477 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5478 				       &location, &sub_root);
5479 	if (ret < 0) {
5480 		if (ret != -ENOENT)
5481 			inode = ERR_PTR(ret);
5482 		else
5483 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5484 	} else {
5485 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5486 	}
5487 	if (root != sub_root)
5488 		btrfs_put_root(sub_root);
5489 
5490 	if (!IS_ERR(inode) && root != sub_root) {
5491 		down_read(&fs_info->cleanup_work_sem);
5492 		if (!sb_rdonly(inode->i_sb))
5493 			ret = btrfs_orphan_cleanup(sub_root);
5494 		up_read(&fs_info->cleanup_work_sem);
5495 		if (ret) {
5496 			iput(inode);
5497 			inode = ERR_PTR(ret);
5498 		}
5499 	}
5500 
5501 	return inode;
5502 }
5503 
5504 static int btrfs_dentry_delete(const struct dentry *dentry)
5505 {
5506 	struct btrfs_root *root;
5507 	struct inode *inode = d_inode(dentry);
5508 
5509 	if (!inode && !IS_ROOT(dentry))
5510 		inode = d_inode(dentry->d_parent);
5511 
5512 	if (inode) {
5513 		root = BTRFS_I(inode)->root;
5514 		if (btrfs_root_refs(&root->root_item) == 0)
5515 			return 1;
5516 
5517 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5518 			return 1;
5519 	}
5520 	return 0;
5521 }
5522 
5523 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5524 				   unsigned int flags)
5525 {
5526 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5527 
5528 	if (inode == ERR_PTR(-ENOENT))
5529 		inode = NULL;
5530 	return d_splice_alias(inode, dentry);
5531 }
5532 
5533 /*
5534  * All this infrastructure exists because dir_emit can fault, and we are holding
5535  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5536  * our information into that, and then dir_emit from the buffer.  This is
5537  * similar to what NFS does, only we don't keep the buffer around in pagecache
5538  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5539  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5540  * tree lock.
5541  */
5542 static int btrfs_opendir(struct inode *inode, struct file *file)
5543 {
5544 	struct btrfs_file_private *private;
5545 
5546 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5547 	if (!private)
5548 		return -ENOMEM;
5549 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5550 	if (!private->filldir_buf) {
5551 		kfree(private);
5552 		return -ENOMEM;
5553 	}
5554 	file->private_data = private;
5555 	return 0;
5556 }
5557 
5558 struct dir_entry {
5559 	u64 ino;
5560 	u64 offset;
5561 	unsigned type;
5562 	int name_len;
5563 };
5564 
5565 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5566 {
5567 	while (entries--) {
5568 		struct dir_entry *entry = addr;
5569 		char *name = (char *)(entry + 1);
5570 
5571 		ctx->pos = get_unaligned(&entry->offset);
5572 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5573 					 get_unaligned(&entry->ino),
5574 					 get_unaligned(&entry->type)))
5575 			return 1;
5576 		addr += sizeof(struct dir_entry) +
5577 			get_unaligned(&entry->name_len);
5578 		ctx->pos++;
5579 	}
5580 	return 0;
5581 }
5582 
5583 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5584 {
5585 	struct inode *inode = file_inode(file);
5586 	struct btrfs_root *root = BTRFS_I(inode)->root;
5587 	struct btrfs_file_private *private = file->private_data;
5588 	struct btrfs_dir_item *di;
5589 	struct btrfs_key key;
5590 	struct btrfs_key found_key;
5591 	struct btrfs_path *path;
5592 	void *addr;
5593 	struct list_head ins_list;
5594 	struct list_head del_list;
5595 	int ret;
5596 	struct extent_buffer *leaf;
5597 	int slot;
5598 	char *name_ptr;
5599 	int name_len;
5600 	int entries = 0;
5601 	int total_len = 0;
5602 	bool put = false;
5603 	struct btrfs_key location;
5604 
5605 	if (!dir_emit_dots(file, ctx))
5606 		return 0;
5607 
5608 	path = btrfs_alloc_path();
5609 	if (!path)
5610 		return -ENOMEM;
5611 
5612 	addr = private->filldir_buf;
5613 	path->reada = READA_FORWARD;
5614 
5615 	INIT_LIST_HEAD(&ins_list);
5616 	INIT_LIST_HEAD(&del_list);
5617 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5618 
5619 again:
5620 	key.type = BTRFS_DIR_INDEX_KEY;
5621 	key.offset = ctx->pos;
5622 	key.objectid = btrfs_ino(BTRFS_I(inode));
5623 
5624 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5625 	if (ret < 0)
5626 		goto err;
5627 
5628 	while (1) {
5629 		struct dir_entry *entry;
5630 
5631 		leaf = path->nodes[0];
5632 		slot = path->slots[0];
5633 		if (slot >= btrfs_header_nritems(leaf)) {
5634 			ret = btrfs_next_leaf(root, path);
5635 			if (ret < 0)
5636 				goto err;
5637 			else if (ret > 0)
5638 				break;
5639 			continue;
5640 		}
5641 
5642 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5643 
5644 		if (found_key.objectid != key.objectid)
5645 			break;
5646 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5647 			break;
5648 		if (found_key.offset < ctx->pos)
5649 			goto next;
5650 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5651 			goto next;
5652 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5653 		name_len = btrfs_dir_name_len(leaf, di);
5654 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5655 		    PAGE_SIZE) {
5656 			btrfs_release_path(path);
5657 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5658 			if (ret)
5659 				goto nopos;
5660 			addr = private->filldir_buf;
5661 			entries = 0;
5662 			total_len = 0;
5663 			goto again;
5664 		}
5665 
5666 		entry = addr;
5667 		put_unaligned(name_len, &entry->name_len);
5668 		name_ptr = (char *)(entry + 1);
5669 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5670 				   name_len);
5671 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5672 				&entry->type);
5673 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5674 		put_unaligned(location.objectid, &entry->ino);
5675 		put_unaligned(found_key.offset, &entry->offset);
5676 		entries++;
5677 		addr += sizeof(struct dir_entry) + name_len;
5678 		total_len += sizeof(struct dir_entry) + name_len;
5679 next:
5680 		path->slots[0]++;
5681 	}
5682 	btrfs_release_path(path);
5683 
5684 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5685 	if (ret)
5686 		goto nopos;
5687 
5688 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5689 	if (ret)
5690 		goto nopos;
5691 
5692 	/*
5693 	 * Stop new entries from being returned after we return the last
5694 	 * entry.
5695 	 *
5696 	 * New directory entries are assigned a strictly increasing
5697 	 * offset.  This means that new entries created during readdir
5698 	 * are *guaranteed* to be seen in the future by that readdir.
5699 	 * This has broken buggy programs which operate on names as
5700 	 * they're returned by readdir.  Until we re-use freed offsets
5701 	 * we have this hack to stop new entries from being returned
5702 	 * under the assumption that they'll never reach this huge
5703 	 * offset.
5704 	 *
5705 	 * This is being careful not to overflow 32bit loff_t unless the
5706 	 * last entry requires it because doing so has broken 32bit apps
5707 	 * in the past.
5708 	 */
5709 	if (ctx->pos >= INT_MAX)
5710 		ctx->pos = LLONG_MAX;
5711 	else
5712 		ctx->pos = INT_MAX;
5713 nopos:
5714 	ret = 0;
5715 err:
5716 	if (put)
5717 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5718 	btrfs_free_path(path);
5719 	return ret;
5720 }
5721 
5722 /*
5723  * This is somewhat expensive, updating the tree every time the
5724  * inode changes.  But, it is most likely to find the inode in cache.
5725  * FIXME, needs more benchmarking...there are no reasons other than performance
5726  * to keep or drop this code.
5727  */
5728 static int btrfs_dirty_inode(struct inode *inode)
5729 {
5730 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5731 	struct btrfs_root *root = BTRFS_I(inode)->root;
5732 	struct btrfs_trans_handle *trans;
5733 	int ret;
5734 
5735 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5736 		return 0;
5737 
5738 	trans = btrfs_join_transaction(root);
5739 	if (IS_ERR(trans))
5740 		return PTR_ERR(trans);
5741 
5742 	ret = btrfs_update_inode(trans, root, inode);
5743 	if (ret && ret == -ENOSPC) {
5744 		/* whoops, lets try again with the full transaction */
5745 		btrfs_end_transaction(trans);
5746 		trans = btrfs_start_transaction(root, 1);
5747 		if (IS_ERR(trans))
5748 			return PTR_ERR(trans);
5749 
5750 		ret = btrfs_update_inode(trans, root, inode);
5751 	}
5752 	btrfs_end_transaction(trans);
5753 	if (BTRFS_I(inode)->delayed_node)
5754 		btrfs_balance_delayed_items(fs_info);
5755 
5756 	return ret;
5757 }
5758 
5759 /*
5760  * This is a copy of file_update_time.  We need this so we can return error on
5761  * ENOSPC for updating the inode in the case of file write and mmap writes.
5762  */
5763 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5764 			     int flags)
5765 {
5766 	struct btrfs_root *root = BTRFS_I(inode)->root;
5767 	bool dirty = flags & ~S_VERSION;
5768 
5769 	if (btrfs_root_readonly(root))
5770 		return -EROFS;
5771 
5772 	if (flags & S_VERSION)
5773 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5774 	if (flags & S_CTIME)
5775 		inode->i_ctime = *now;
5776 	if (flags & S_MTIME)
5777 		inode->i_mtime = *now;
5778 	if (flags & S_ATIME)
5779 		inode->i_atime = *now;
5780 	return dirty ? btrfs_dirty_inode(inode) : 0;
5781 }
5782 
5783 /*
5784  * find the highest existing sequence number in a directory
5785  * and then set the in-memory index_cnt variable to reflect
5786  * free sequence numbers
5787  */
5788 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5789 {
5790 	struct btrfs_root *root = inode->root;
5791 	struct btrfs_key key, found_key;
5792 	struct btrfs_path *path;
5793 	struct extent_buffer *leaf;
5794 	int ret;
5795 
5796 	key.objectid = btrfs_ino(inode);
5797 	key.type = BTRFS_DIR_INDEX_KEY;
5798 	key.offset = (u64)-1;
5799 
5800 	path = btrfs_alloc_path();
5801 	if (!path)
5802 		return -ENOMEM;
5803 
5804 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5805 	if (ret < 0)
5806 		goto out;
5807 	/* FIXME: we should be able to handle this */
5808 	if (ret == 0)
5809 		goto out;
5810 	ret = 0;
5811 
5812 	/*
5813 	 * MAGIC NUMBER EXPLANATION:
5814 	 * since we search a directory based on f_pos we have to start at 2
5815 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5816 	 * else has to start at 2
5817 	 */
5818 	if (path->slots[0] == 0) {
5819 		inode->index_cnt = 2;
5820 		goto out;
5821 	}
5822 
5823 	path->slots[0]--;
5824 
5825 	leaf = path->nodes[0];
5826 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5827 
5828 	if (found_key.objectid != btrfs_ino(inode) ||
5829 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5830 		inode->index_cnt = 2;
5831 		goto out;
5832 	}
5833 
5834 	inode->index_cnt = found_key.offset + 1;
5835 out:
5836 	btrfs_free_path(path);
5837 	return ret;
5838 }
5839 
5840 /*
5841  * helper to find a free sequence number in a given directory.  This current
5842  * code is very simple, later versions will do smarter things in the btree
5843  */
5844 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5845 {
5846 	int ret = 0;
5847 
5848 	if (dir->index_cnt == (u64)-1) {
5849 		ret = btrfs_inode_delayed_dir_index_count(dir);
5850 		if (ret) {
5851 			ret = btrfs_set_inode_index_count(dir);
5852 			if (ret)
5853 				return ret;
5854 		}
5855 	}
5856 
5857 	*index = dir->index_cnt;
5858 	dir->index_cnt++;
5859 
5860 	return ret;
5861 }
5862 
5863 static int btrfs_insert_inode_locked(struct inode *inode)
5864 {
5865 	struct btrfs_iget_args args;
5866 
5867 	args.ino = BTRFS_I(inode)->location.objectid;
5868 	args.root = BTRFS_I(inode)->root;
5869 
5870 	return insert_inode_locked4(inode,
5871 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5872 		   btrfs_find_actor, &args);
5873 }
5874 
5875 /*
5876  * Inherit flags from the parent inode.
5877  *
5878  * Currently only the compression flags and the cow flags are inherited.
5879  */
5880 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5881 {
5882 	unsigned int flags;
5883 
5884 	if (!dir)
5885 		return;
5886 
5887 	flags = BTRFS_I(dir)->flags;
5888 
5889 	if (flags & BTRFS_INODE_NOCOMPRESS) {
5890 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5891 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5892 	} else if (flags & BTRFS_INODE_COMPRESS) {
5893 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5894 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5895 	}
5896 
5897 	if (flags & BTRFS_INODE_NODATACOW) {
5898 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5899 		if (S_ISREG(inode->i_mode))
5900 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5901 	}
5902 
5903 	btrfs_sync_inode_flags_to_i_flags(inode);
5904 }
5905 
5906 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5907 				     struct btrfs_root *root,
5908 				     struct inode *dir,
5909 				     const char *name, int name_len,
5910 				     u64 ref_objectid, u64 objectid,
5911 				     umode_t mode, u64 *index)
5912 {
5913 	struct btrfs_fs_info *fs_info = root->fs_info;
5914 	struct inode *inode;
5915 	struct btrfs_inode_item *inode_item;
5916 	struct btrfs_key *location;
5917 	struct btrfs_path *path;
5918 	struct btrfs_inode_ref *ref;
5919 	struct btrfs_key key[2];
5920 	u32 sizes[2];
5921 	int nitems = name ? 2 : 1;
5922 	unsigned long ptr;
5923 	unsigned int nofs_flag;
5924 	int ret;
5925 
5926 	path = btrfs_alloc_path();
5927 	if (!path)
5928 		return ERR_PTR(-ENOMEM);
5929 
5930 	nofs_flag = memalloc_nofs_save();
5931 	inode = new_inode(fs_info->sb);
5932 	memalloc_nofs_restore(nofs_flag);
5933 	if (!inode) {
5934 		btrfs_free_path(path);
5935 		return ERR_PTR(-ENOMEM);
5936 	}
5937 
5938 	/*
5939 	 * O_TMPFILE, set link count to 0, so that after this point,
5940 	 * we fill in an inode item with the correct link count.
5941 	 */
5942 	if (!name)
5943 		set_nlink(inode, 0);
5944 
5945 	/*
5946 	 * we have to initialize this early, so we can reclaim the inode
5947 	 * number if we fail afterwards in this function.
5948 	 */
5949 	inode->i_ino = objectid;
5950 
5951 	if (dir && name) {
5952 		trace_btrfs_inode_request(dir);
5953 
5954 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
5955 		if (ret) {
5956 			btrfs_free_path(path);
5957 			iput(inode);
5958 			return ERR_PTR(ret);
5959 		}
5960 	} else if (dir) {
5961 		*index = 0;
5962 	}
5963 	/*
5964 	 * index_cnt is ignored for everything but a dir,
5965 	 * btrfs_set_inode_index_count has an explanation for the magic
5966 	 * number
5967 	 */
5968 	BTRFS_I(inode)->index_cnt = 2;
5969 	BTRFS_I(inode)->dir_index = *index;
5970 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5971 	BTRFS_I(inode)->generation = trans->transid;
5972 	inode->i_generation = BTRFS_I(inode)->generation;
5973 
5974 	/*
5975 	 * We could have gotten an inode number from somebody who was fsynced
5976 	 * and then removed in this same transaction, so let's just set full
5977 	 * sync since it will be a full sync anyway and this will blow away the
5978 	 * old info in the log.
5979 	 */
5980 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5981 
5982 	key[0].objectid = objectid;
5983 	key[0].type = BTRFS_INODE_ITEM_KEY;
5984 	key[0].offset = 0;
5985 
5986 	sizes[0] = sizeof(struct btrfs_inode_item);
5987 
5988 	if (name) {
5989 		/*
5990 		 * Start new inodes with an inode_ref. This is slightly more
5991 		 * efficient for small numbers of hard links since they will
5992 		 * be packed into one item. Extended refs will kick in if we
5993 		 * add more hard links than can fit in the ref item.
5994 		 */
5995 		key[1].objectid = objectid;
5996 		key[1].type = BTRFS_INODE_REF_KEY;
5997 		key[1].offset = ref_objectid;
5998 
5999 		sizes[1] = name_len + sizeof(*ref);
6000 	}
6001 
6002 	location = &BTRFS_I(inode)->location;
6003 	location->objectid = objectid;
6004 	location->offset = 0;
6005 	location->type = BTRFS_INODE_ITEM_KEY;
6006 
6007 	ret = btrfs_insert_inode_locked(inode);
6008 	if (ret < 0) {
6009 		iput(inode);
6010 		goto fail;
6011 	}
6012 
6013 	path->leave_spinning = 1;
6014 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6015 	if (ret != 0)
6016 		goto fail_unlock;
6017 
6018 	inode_init_owner(inode, dir, mode);
6019 	inode_set_bytes(inode, 0);
6020 
6021 	inode->i_mtime = current_time(inode);
6022 	inode->i_atime = inode->i_mtime;
6023 	inode->i_ctime = inode->i_mtime;
6024 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6025 
6026 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6027 				  struct btrfs_inode_item);
6028 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6029 			     sizeof(*inode_item));
6030 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6031 
6032 	if (name) {
6033 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6034 				     struct btrfs_inode_ref);
6035 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6036 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6037 		ptr = (unsigned long)(ref + 1);
6038 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6039 	}
6040 
6041 	btrfs_mark_buffer_dirty(path->nodes[0]);
6042 	btrfs_free_path(path);
6043 
6044 	btrfs_inherit_iflags(inode, dir);
6045 
6046 	if (S_ISREG(mode)) {
6047 		if (btrfs_test_opt(fs_info, NODATASUM))
6048 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6049 		if (btrfs_test_opt(fs_info, NODATACOW))
6050 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6051 				BTRFS_INODE_NODATASUM;
6052 	}
6053 
6054 	inode_tree_add(inode);
6055 
6056 	trace_btrfs_inode_new(inode);
6057 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6058 
6059 	btrfs_update_root_times(trans, root);
6060 
6061 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6062 	if (ret)
6063 		btrfs_err(fs_info,
6064 			  "error inheriting props for ino %llu (root %llu): %d",
6065 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6066 
6067 	return inode;
6068 
6069 fail_unlock:
6070 	discard_new_inode(inode);
6071 fail:
6072 	if (dir && name)
6073 		BTRFS_I(dir)->index_cnt--;
6074 	btrfs_free_path(path);
6075 	return ERR_PTR(ret);
6076 }
6077 
6078 /*
6079  * utility function to add 'inode' into 'parent_inode' with
6080  * a give name and a given sequence number.
6081  * if 'add_backref' is true, also insert a backref from the
6082  * inode to the parent directory.
6083  */
6084 int btrfs_add_link(struct btrfs_trans_handle *trans,
6085 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6086 		   const char *name, int name_len, int add_backref, u64 index)
6087 {
6088 	int ret = 0;
6089 	struct btrfs_key key;
6090 	struct btrfs_root *root = parent_inode->root;
6091 	u64 ino = btrfs_ino(inode);
6092 	u64 parent_ino = btrfs_ino(parent_inode);
6093 
6094 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6095 		memcpy(&key, &inode->root->root_key, sizeof(key));
6096 	} else {
6097 		key.objectid = ino;
6098 		key.type = BTRFS_INODE_ITEM_KEY;
6099 		key.offset = 0;
6100 	}
6101 
6102 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6103 		ret = btrfs_add_root_ref(trans, key.objectid,
6104 					 root->root_key.objectid, parent_ino,
6105 					 index, name, name_len);
6106 	} else if (add_backref) {
6107 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6108 					     parent_ino, index);
6109 	}
6110 
6111 	/* Nothing to clean up yet */
6112 	if (ret)
6113 		return ret;
6114 
6115 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6116 				    btrfs_inode_type(&inode->vfs_inode), index);
6117 	if (ret == -EEXIST || ret == -EOVERFLOW)
6118 		goto fail_dir_item;
6119 	else if (ret) {
6120 		btrfs_abort_transaction(trans, ret);
6121 		return ret;
6122 	}
6123 
6124 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6125 			   name_len * 2);
6126 	inode_inc_iversion(&parent_inode->vfs_inode);
6127 	/*
6128 	 * If we are replaying a log tree, we do not want to update the mtime
6129 	 * and ctime of the parent directory with the current time, since the
6130 	 * log replay procedure is responsible for setting them to their correct
6131 	 * values (the ones it had when the fsync was done).
6132 	 */
6133 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6134 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6135 
6136 		parent_inode->vfs_inode.i_mtime = now;
6137 		parent_inode->vfs_inode.i_ctime = now;
6138 	}
6139 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6140 	if (ret)
6141 		btrfs_abort_transaction(trans, ret);
6142 	return ret;
6143 
6144 fail_dir_item:
6145 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6146 		u64 local_index;
6147 		int err;
6148 		err = btrfs_del_root_ref(trans, key.objectid,
6149 					 root->root_key.objectid, parent_ino,
6150 					 &local_index, name, name_len);
6151 		if (err)
6152 			btrfs_abort_transaction(trans, err);
6153 	} else if (add_backref) {
6154 		u64 local_index;
6155 		int err;
6156 
6157 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6158 					  ino, parent_ino, &local_index);
6159 		if (err)
6160 			btrfs_abort_transaction(trans, err);
6161 	}
6162 
6163 	/* Return the original error code */
6164 	return ret;
6165 }
6166 
6167 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6168 			    struct btrfs_inode *dir, struct dentry *dentry,
6169 			    struct btrfs_inode *inode, int backref, u64 index)
6170 {
6171 	int err = btrfs_add_link(trans, dir, inode,
6172 				 dentry->d_name.name, dentry->d_name.len,
6173 				 backref, index);
6174 	if (err > 0)
6175 		err = -EEXIST;
6176 	return err;
6177 }
6178 
6179 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6180 			umode_t mode, dev_t rdev)
6181 {
6182 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6183 	struct btrfs_trans_handle *trans;
6184 	struct btrfs_root *root = BTRFS_I(dir)->root;
6185 	struct inode *inode = NULL;
6186 	int err;
6187 	u64 objectid;
6188 	u64 index = 0;
6189 
6190 	/*
6191 	 * 2 for inode item and ref
6192 	 * 2 for dir items
6193 	 * 1 for xattr if selinux is on
6194 	 */
6195 	trans = btrfs_start_transaction(root, 5);
6196 	if (IS_ERR(trans))
6197 		return PTR_ERR(trans);
6198 
6199 	err = btrfs_find_free_ino(root, &objectid);
6200 	if (err)
6201 		goto out_unlock;
6202 
6203 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6204 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6205 			mode, &index);
6206 	if (IS_ERR(inode)) {
6207 		err = PTR_ERR(inode);
6208 		inode = NULL;
6209 		goto out_unlock;
6210 	}
6211 
6212 	/*
6213 	* If the active LSM wants to access the inode during
6214 	* d_instantiate it needs these. Smack checks to see
6215 	* if the filesystem supports xattrs by looking at the
6216 	* ops vector.
6217 	*/
6218 	inode->i_op = &btrfs_special_inode_operations;
6219 	init_special_inode(inode, inode->i_mode, rdev);
6220 
6221 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6222 	if (err)
6223 		goto out_unlock;
6224 
6225 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6226 			0, index);
6227 	if (err)
6228 		goto out_unlock;
6229 
6230 	btrfs_update_inode(trans, root, inode);
6231 	d_instantiate_new(dentry, inode);
6232 
6233 out_unlock:
6234 	btrfs_end_transaction(trans);
6235 	btrfs_btree_balance_dirty(fs_info);
6236 	if (err && inode) {
6237 		inode_dec_link_count(inode);
6238 		discard_new_inode(inode);
6239 	}
6240 	return err;
6241 }
6242 
6243 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6244 			umode_t mode, bool excl)
6245 {
6246 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6247 	struct btrfs_trans_handle *trans;
6248 	struct btrfs_root *root = BTRFS_I(dir)->root;
6249 	struct inode *inode = NULL;
6250 	int err;
6251 	u64 objectid;
6252 	u64 index = 0;
6253 
6254 	/*
6255 	 * 2 for inode item and ref
6256 	 * 2 for dir items
6257 	 * 1 for xattr if selinux is on
6258 	 */
6259 	trans = btrfs_start_transaction(root, 5);
6260 	if (IS_ERR(trans))
6261 		return PTR_ERR(trans);
6262 
6263 	err = btrfs_find_free_ino(root, &objectid);
6264 	if (err)
6265 		goto out_unlock;
6266 
6267 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6268 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6269 			mode, &index);
6270 	if (IS_ERR(inode)) {
6271 		err = PTR_ERR(inode);
6272 		inode = NULL;
6273 		goto out_unlock;
6274 	}
6275 	/*
6276 	* If the active LSM wants to access the inode during
6277 	* d_instantiate it needs these. Smack checks to see
6278 	* if the filesystem supports xattrs by looking at the
6279 	* ops vector.
6280 	*/
6281 	inode->i_fop = &btrfs_file_operations;
6282 	inode->i_op = &btrfs_file_inode_operations;
6283 	inode->i_mapping->a_ops = &btrfs_aops;
6284 
6285 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6286 	if (err)
6287 		goto out_unlock;
6288 
6289 	err = btrfs_update_inode(trans, root, inode);
6290 	if (err)
6291 		goto out_unlock;
6292 
6293 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6294 			0, index);
6295 	if (err)
6296 		goto out_unlock;
6297 
6298 	d_instantiate_new(dentry, inode);
6299 
6300 out_unlock:
6301 	btrfs_end_transaction(trans);
6302 	if (err && inode) {
6303 		inode_dec_link_count(inode);
6304 		discard_new_inode(inode);
6305 	}
6306 	btrfs_btree_balance_dirty(fs_info);
6307 	return err;
6308 }
6309 
6310 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6311 		      struct dentry *dentry)
6312 {
6313 	struct btrfs_trans_handle *trans = NULL;
6314 	struct btrfs_root *root = BTRFS_I(dir)->root;
6315 	struct inode *inode = d_inode(old_dentry);
6316 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6317 	u64 index;
6318 	int err;
6319 	int drop_inode = 0;
6320 
6321 	/* do not allow sys_link's with other subvols of the same device */
6322 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6323 		return -EXDEV;
6324 
6325 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6326 		return -EMLINK;
6327 
6328 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6329 	if (err)
6330 		goto fail;
6331 
6332 	/*
6333 	 * 2 items for inode and inode ref
6334 	 * 2 items for dir items
6335 	 * 1 item for parent inode
6336 	 * 1 item for orphan item deletion if O_TMPFILE
6337 	 */
6338 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6339 	if (IS_ERR(trans)) {
6340 		err = PTR_ERR(trans);
6341 		trans = NULL;
6342 		goto fail;
6343 	}
6344 
6345 	/* There are several dir indexes for this inode, clear the cache. */
6346 	BTRFS_I(inode)->dir_index = 0ULL;
6347 	inc_nlink(inode);
6348 	inode_inc_iversion(inode);
6349 	inode->i_ctime = current_time(inode);
6350 	ihold(inode);
6351 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6352 
6353 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6354 			1, index);
6355 
6356 	if (err) {
6357 		drop_inode = 1;
6358 	} else {
6359 		struct dentry *parent = dentry->d_parent;
6360 
6361 		err = btrfs_update_inode(trans, root, inode);
6362 		if (err)
6363 			goto fail;
6364 		if (inode->i_nlink == 1) {
6365 			/*
6366 			 * If new hard link count is 1, it's a file created
6367 			 * with open(2) O_TMPFILE flag.
6368 			 */
6369 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6370 			if (err)
6371 				goto fail;
6372 		}
6373 		d_instantiate(dentry, inode);
6374 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6375 	}
6376 
6377 fail:
6378 	if (trans)
6379 		btrfs_end_transaction(trans);
6380 	if (drop_inode) {
6381 		inode_dec_link_count(inode);
6382 		iput(inode);
6383 	}
6384 	btrfs_btree_balance_dirty(fs_info);
6385 	return err;
6386 }
6387 
6388 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6389 {
6390 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6391 	struct inode *inode = NULL;
6392 	struct btrfs_trans_handle *trans;
6393 	struct btrfs_root *root = BTRFS_I(dir)->root;
6394 	int err = 0;
6395 	u64 objectid = 0;
6396 	u64 index = 0;
6397 
6398 	/*
6399 	 * 2 items for inode and ref
6400 	 * 2 items for dir items
6401 	 * 1 for xattr if selinux is on
6402 	 */
6403 	trans = btrfs_start_transaction(root, 5);
6404 	if (IS_ERR(trans))
6405 		return PTR_ERR(trans);
6406 
6407 	err = btrfs_find_free_ino(root, &objectid);
6408 	if (err)
6409 		goto out_fail;
6410 
6411 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6412 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6413 			S_IFDIR | mode, &index);
6414 	if (IS_ERR(inode)) {
6415 		err = PTR_ERR(inode);
6416 		inode = NULL;
6417 		goto out_fail;
6418 	}
6419 
6420 	/* these must be set before we unlock the inode */
6421 	inode->i_op = &btrfs_dir_inode_operations;
6422 	inode->i_fop = &btrfs_dir_file_operations;
6423 
6424 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6425 	if (err)
6426 		goto out_fail;
6427 
6428 	btrfs_i_size_write(BTRFS_I(inode), 0);
6429 	err = btrfs_update_inode(trans, root, inode);
6430 	if (err)
6431 		goto out_fail;
6432 
6433 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6434 			dentry->d_name.name,
6435 			dentry->d_name.len, 0, index);
6436 	if (err)
6437 		goto out_fail;
6438 
6439 	d_instantiate_new(dentry, inode);
6440 
6441 out_fail:
6442 	btrfs_end_transaction(trans);
6443 	if (err && inode) {
6444 		inode_dec_link_count(inode);
6445 		discard_new_inode(inode);
6446 	}
6447 	btrfs_btree_balance_dirty(fs_info);
6448 	return err;
6449 }
6450 
6451 static noinline int uncompress_inline(struct btrfs_path *path,
6452 				      struct page *page,
6453 				      size_t pg_offset, u64 extent_offset,
6454 				      struct btrfs_file_extent_item *item)
6455 {
6456 	int ret;
6457 	struct extent_buffer *leaf = path->nodes[0];
6458 	char *tmp;
6459 	size_t max_size;
6460 	unsigned long inline_size;
6461 	unsigned long ptr;
6462 	int compress_type;
6463 
6464 	WARN_ON(pg_offset != 0);
6465 	compress_type = btrfs_file_extent_compression(leaf, item);
6466 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6467 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6468 					btrfs_item_nr(path->slots[0]));
6469 	tmp = kmalloc(inline_size, GFP_NOFS);
6470 	if (!tmp)
6471 		return -ENOMEM;
6472 	ptr = btrfs_file_extent_inline_start(item);
6473 
6474 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6475 
6476 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6477 	ret = btrfs_decompress(compress_type, tmp, page,
6478 			       extent_offset, inline_size, max_size);
6479 
6480 	/*
6481 	 * decompression code contains a memset to fill in any space between the end
6482 	 * of the uncompressed data and the end of max_size in case the decompressed
6483 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6484 	 * the end of an inline extent and the beginning of the next block, so we
6485 	 * cover that region here.
6486 	 */
6487 
6488 	if (max_size + pg_offset < PAGE_SIZE) {
6489 		char *map = kmap(page);
6490 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6491 		kunmap(page);
6492 	}
6493 	kfree(tmp);
6494 	return ret;
6495 }
6496 
6497 /**
6498  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6499  * @inode:	file to search in
6500  * @page:	page to read extent data into if the extent is inline
6501  * @pg_offset:	offset into @page to copy to
6502  * @start:	file offset
6503  * @len:	length of range starting at @start
6504  *
6505  * This returns the first &struct extent_map which overlaps with the given
6506  * range, reading it from the B-tree and caching it if necessary. Note that
6507  * there may be more extents which overlap the given range after the returned
6508  * extent_map.
6509  *
6510  * If @page is not NULL and the extent is inline, this also reads the extent
6511  * data directly into the page and marks the extent up to date in the io_tree.
6512  *
6513  * Return: ERR_PTR on error, non-NULL extent_map on success.
6514  */
6515 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6516 				    struct page *page, size_t pg_offset,
6517 				    u64 start, u64 len)
6518 {
6519 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6520 	int ret = 0;
6521 	u64 extent_start = 0;
6522 	u64 extent_end = 0;
6523 	u64 objectid = btrfs_ino(inode);
6524 	int extent_type = -1;
6525 	struct btrfs_path *path = NULL;
6526 	struct btrfs_root *root = inode->root;
6527 	struct btrfs_file_extent_item *item;
6528 	struct extent_buffer *leaf;
6529 	struct btrfs_key found_key;
6530 	struct extent_map *em = NULL;
6531 	struct extent_map_tree *em_tree = &inode->extent_tree;
6532 	struct extent_io_tree *io_tree = &inode->io_tree;
6533 
6534 	read_lock(&em_tree->lock);
6535 	em = lookup_extent_mapping(em_tree, start, len);
6536 	read_unlock(&em_tree->lock);
6537 
6538 	if (em) {
6539 		if (em->start > start || em->start + em->len <= start)
6540 			free_extent_map(em);
6541 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6542 			free_extent_map(em);
6543 		else
6544 			goto out;
6545 	}
6546 	em = alloc_extent_map();
6547 	if (!em) {
6548 		ret = -ENOMEM;
6549 		goto out;
6550 	}
6551 	em->start = EXTENT_MAP_HOLE;
6552 	em->orig_start = EXTENT_MAP_HOLE;
6553 	em->len = (u64)-1;
6554 	em->block_len = (u64)-1;
6555 
6556 	path = btrfs_alloc_path();
6557 	if (!path) {
6558 		ret = -ENOMEM;
6559 		goto out;
6560 	}
6561 
6562 	/* Chances are we'll be called again, so go ahead and do readahead */
6563 	path->reada = READA_FORWARD;
6564 
6565 	/*
6566 	 * Unless we're going to uncompress the inline extent, no sleep would
6567 	 * happen.
6568 	 */
6569 	path->leave_spinning = 1;
6570 
6571 	path->recurse = btrfs_is_free_space_inode(inode);
6572 
6573 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6574 	if (ret < 0) {
6575 		goto out;
6576 	} else if (ret > 0) {
6577 		if (path->slots[0] == 0)
6578 			goto not_found;
6579 		path->slots[0]--;
6580 		ret = 0;
6581 	}
6582 
6583 	leaf = path->nodes[0];
6584 	item = btrfs_item_ptr(leaf, path->slots[0],
6585 			      struct btrfs_file_extent_item);
6586 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6587 	if (found_key.objectid != objectid ||
6588 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6589 		/*
6590 		 * If we backup past the first extent we want to move forward
6591 		 * and see if there is an extent in front of us, otherwise we'll
6592 		 * say there is a hole for our whole search range which can
6593 		 * cause problems.
6594 		 */
6595 		extent_end = start;
6596 		goto next;
6597 	}
6598 
6599 	extent_type = btrfs_file_extent_type(leaf, item);
6600 	extent_start = found_key.offset;
6601 	extent_end = btrfs_file_extent_end(path);
6602 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6603 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6604 		/* Only regular file could have regular/prealloc extent */
6605 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6606 			ret = -EUCLEAN;
6607 			btrfs_crit(fs_info,
6608 		"regular/prealloc extent found for non-regular inode %llu",
6609 				   btrfs_ino(inode));
6610 			goto out;
6611 		}
6612 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6613 						       extent_start);
6614 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6615 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6616 						      path->slots[0],
6617 						      extent_start);
6618 	}
6619 next:
6620 	if (start >= extent_end) {
6621 		path->slots[0]++;
6622 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6623 			ret = btrfs_next_leaf(root, path);
6624 			if (ret < 0)
6625 				goto out;
6626 			else if (ret > 0)
6627 				goto not_found;
6628 
6629 			leaf = path->nodes[0];
6630 		}
6631 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6632 		if (found_key.objectid != objectid ||
6633 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6634 			goto not_found;
6635 		if (start + len <= found_key.offset)
6636 			goto not_found;
6637 		if (start > found_key.offset)
6638 			goto next;
6639 
6640 		/* New extent overlaps with existing one */
6641 		em->start = start;
6642 		em->orig_start = start;
6643 		em->len = found_key.offset - start;
6644 		em->block_start = EXTENT_MAP_HOLE;
6645 		goto insert;
6646 	}
6647 
6648 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6649 
6650 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6651 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6652 		goto insert;
6653 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6654 		unsigned long ptr;
6655 		char *map;
6656 		size_t size;
6657 		size_t extent_offset;
6658 		size_t copy_size;
6659 
6660 		if (!page)
6661 			goto out;
6662 
6663 		size = btrfs_file_extent_ram_bytes(leaf, item);
6664 		extent_offset = page_offset(page) + pg_offset - extent_start;
6665 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6666 				  size - extent_offset);
6667 		em->start = extent_start + extent_offset;
6668 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6669 		em->orig_block_len = em->len;
6670 		em->orig_start = em->start;
6671 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6672 
6673 		btrfs_set_path_blocking(path);
6674 		if (!PageUptodate(page)) {
6675 			if (btrfs_file_extent_compression(leaf, item) !=
6676 			    BTRFS_COMPRESS_NONE) {
6677 				ret = uncompress_inline(path, page, pg_offset,
6678 							extent_offset, item);
6679 				if (ret)
6680 					goto out;
6681 			} else {
6682 				map = kmap(page);
6683 				read_extent_buffer(leaf, map + pg_offset, ptr,
6684 						   copy_size);
6685 				if (pg_offset + copy_size < PAGE_SIZE) {
6686 					memset(map + pg_offset + copy_size, 0,
6687 					       PAGE_SIZE - pg_offset -
6688 					       copy_size);
6689 				}
6690 				kunmap(page);
6691 			}
6692 			flush_dcache_page(page);
6693 		}
6694 		set_extent_uptodate(io_tree, em->start,
6695 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6696 		goto insert;
6697 	}
6698 not_found:
6699 	em->start = start;
6700 	em->orig_start = start;
6701 	em->len = len;
6702 	em->block_start = EXTENT_MAP_HOLE;
6703 insert:
6704 	ret = 0;
6705 	btrfs_release_path(path);
6706 	if (em->start > start || extent_map_end(em) <= start) {
6707 		btrfs_err(fs_info,
6708 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6709 			  em->start, em->len, start, len);
6710 		ret = -EIO;
6711 		goto out;
6712 	}
6713 
6714 	write_lock(&em_tree->lock);
6715 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6716 	write_unlock(&em_tree->lock);
6717 out:
6718 	btrfs_free_path(path);
6719 
6720 	trace_btrfs_get_extent(root, inode, em);
6721 
6722 	if (ret) {
6723 		free_extent_map(em);
6724 		return ERR_PTR(ret);
6725 	}
6726 	return em;
6727 }
6728 
6729 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6730 					   u64 start, u64 len)
6731 {
6732 	struct extent_map *em;
6733 	struct extent_map *hole_em = NULL;
6734 	u64 delalloc_start = start;
6735 	u64 end;
6736 	u64 delalloc_len;
6737 	u64 delalloc_end;
6738 	int err = 0;
6739 
6740 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6741 	if (IS_ERR(em))
6742 		return em;
6743 	/*
6744 	 * If our em maps to:
6745 	 * - a hole or
6746 	 * - a pre-alloc extent,
6747 	 * there might actually be delalloc bytes behind it.
6748 	 */
6749 	if (em->block_start != EXTENT_MAP_HOLE &&
6750 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6751 		return em;
6752 	else
6753 		hole_em = em;
6754 
6755 	/* check to see if we've wrapped (len == -1 or similar) */
6756 	end = start + len;
6757 	if (end < start)
6758 		end = (u64)-1;
6759 	else
6760 		end -= 1;
6761 
6762 	em = NULL;
6763 
6764 	/* ok, we didn't find anything, lets look for delalloc */
6765 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6766 				 end, len, EXTENT_DELALLOC, 1);
6767 	delalloc_end = delalloc_start + delalloc_len;
6768 	if (delalloc_end < delalloc_start)
6769 		delalloc_end = (u64)-1;
6770 
6771 	/*
6772 	 * We didn't find anything useful, return the original results from
6773 	 * get_extent()
6774 	 */
6775 	if (delalloc_start > end || delalloc_end <= start) {
6776 		em = hole_em;
6777 		hole_em = NULL;
6778 		goto out;
6779 	}
6780 
6781 	/*
6782 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
6783 	 * the start they passed in
6784 	 */
6785 	delalloc_start = max(start, delalloc_start);
6786 	delalloc_len = delalloc_end - delalloc_start;
6787 
6788 	if (delalloc_len > 0) {
6789 		u64 hole_start;
6790 		u64 hole_len;
6791 		const u64 hole_end = extent_map_end(hole_em);
6792 
6793 		em = alloc_extent_map();
6794 		if (!em) {
6795 			err = -ENOMEM;
6796 			goto out;
6797 		}
6798 
6799 		ASSERT(hole_em);
6800 		/*
6801 		 * When btrfs_get_extent can't find anything it returns one
6802 		 * huge hole
6803 		 *
6804 		 * Make sure what it found really fits our range, and adjust to
6805 		 * make sure it is based on the start from the caller
6806 		 */
6807 		if (hole_end <= start || hole_em->start > end) {
6808 		       free_extent_map(hole_em);
6809 		       hole_em = NULL;
6810 		} else {
6811 		       hole_start = max(hole_em->start, start);
6812 		       hole_len = hole_end - hole_start;
6813 		}
6814 
6815 		if (hole_em && delalloc_start > hole_start) {
6816 			/*
6817 			 * Our hole starts before our delalloc, so we have to
6818 			 * return just the parts of the hole that go until the
6819 			 * delalloc starts
6820 			 */
6821 			em->len = min(hole_len, delalloc_start - hole_start);
6822 			em->start = hole_start;
6823 			em->orig_start = hole_start;
6824 			/*
6825 			 * Don't adjust block start at all, it is fixed at
6826 			 * EXTENT_MAP_HOLE
6827 			 */
6828 			em->block_start = hole_em->block_start;
6829 			em->block_len = hole_len;
6830 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6831 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6832 		} else {
6833 			/*
6834 			 * Hole is out of passed range or it starts after
6835 			 * delalloc range
6836 			 */
6837 			em->start = delalloc_start;
6838 			em->len = delalloc_len;
6839 			em->orig_start = delalloc_start;
6840 			em->block_start = EXTENT_MAP_DELALLOC;
6841 			em->block_len = delalloc_len;
6842 		}
6843 	} else {
6844 		return hole_em;
6845 	}
6846 out:
6847 
6848 	free_extent_map(hole_em);
6849 	if (err) {
6850 		free_extent_map(em);
6851 		return ERR_PTR(err);
6852 	}
6853 	return em;
6854 }
6855 
6856 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6857 						  const u64 start,
6858 						  const u64 len,
6859 						  const u64 orig_start,
6860 						  const u64 block_start,
6861 						  const u64 block_len,
6862 						  const u64 orig_block_len,
6863 						  const u64 ram_bytes,
6864 						  const int type)
6865 {
6866 	struct extent_map *em = NULL;
6867 	int ret;
6868 
6869 	if (type != BTRFS_ORDERED_NOCOW) {
6870 		em = create_io_em(inode, start, len, orig_start, block_start,
6871 				  block_len, orig_block_len, ram_bytes,
6872 				  BTRFS_COMPRESS_NONE, /* compress_type */
6873 				  type);
6874 		if (IS_ERR(em))
6875 			goto out;
6876 	}
6877 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6878 					   block_len, type);
6879 	if (ret) {
6880 		if (em) {
6881 			free_extent_map(em);
6882 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6883 		}
6884 		em = ERR_PTR(ret);
6885 	}
6886  out:
6887 
6888 	return em;
6889 }
6890 
6891 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6892 						  u64 start, u64 len)
6893 {
6894 	struct btrfs_root *root = inode->root;
6895 	struct btrfs_fs_info *fs_info = root->fs_info;
6896 	struct extent_map *em;
6897 	struct btrfs_key ins;
6898 	u64 alloc_hint;
6899 	int ret;
6900 
6901 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6902 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6903 				   0, alloc_hint, &ins, 1, 1);
6904 	if (ret)
6905 		return ERR_PTR(ret);
6906 
6907 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6908 				     ins.objectid, ins.offset, ins.offset,
6909 				     ins.offset, BTRFS_ORDERED_REGULAR);
6910 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6911 	if (IS_ERR(em))
6912 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6913 					   1);
6914 
6915 	return em;
6916 }
6917 
6918 /*
6919  * Check if we can do nocow write into the range [@offset, @offset + @len)
6920  *
6921  * @offset:	File offset
6922  * @len:	The length to write, will be updated to the nocow writeable
6923  *		range
6924  * @orig_start:	(optional) Return the original file offset of the file extent
6925  * @orig_len:	(optional) Return the original on-disk length of the file extent
6926  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
6927  * @strict:	if true, omit optimizations that might force us into unnecessary
6928  *		cow. e.g., don't trust generation number.
6929  *
6930  * This function will flush ordered extents in the range to ensure proper
6931  * nocow checks for (nowait == false) case.
6932  *
6933  * Return:
6934  * >0	and update @len if we can do nocow write
6935  *  0	if we can't do nocow write
6936  * <0	if error happened
6937  *
6938  * NOTE: This only checks the file extents, caller is responsible to wait for
6939  *	 any ordered extents.
6940  */
6941 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6942 			      u64 *orig_start, u64 *orig_block_len,
6943 			      u64 *ram_bytes, bool strict)
6944 {
6945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6946 	struct btrfs_path *path;
6947 	int ret;
6948 	struct extent_buffer *leaf;
6949 	struct btrfs_root *root = BTRFS_I(inode)->root;
6950 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6951 	struct btrfs_file_extent_item *fi;
6952 	struct btrfs_key key;
6953 	u64 disk_bytenr;
6954 	u64 backref_offset;
6955 	u64 extent_end;
6956 	u64 num_bytes;
6957 	int slot;
6958 	int found_type;
6959 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6960 
6961 	path = btrfs_alloc_path();
6962 	if (!path)
6963 		return -ENOMEM;
6964 
6965 	ret = btrfs_lookup_file_extent(NULL, root, path,
6966 			btrfs_ino(BTRFS_I(inode)), offset, 0);
6967 	if (ret < 0)
6968 		goto out;
6969 
6970 	slot = path->slots[0];
6971 	if (ret == 1) {
6972 		if (slot == 0) {
6973 			/* can't find the item, must cow */
6974 			ret = 0;
6975 			goto out;
6976 		}
6977 		slot--;
6978 	}
6979 	ret = 0;
6980 	leaf = path->nodes[0];
6981 	btrfs_item_key_to_cpu(leaf, &key, slot);
6982 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
6983 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6984 		/* not our file or wrong item type, must cow */
6985 		goto out;
6986 	}
6987 
6988 	if (key.offset > offset) {
6989 		/* Wrong offset, must cow */
6990 		goto out;
6991 	}
6992 
6993 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6994 	found_type = btrfs_file_extent_type(leaf, fi);
6995 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6996 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6997 		/* not a regular extent, must cow */
6998 		goto out;
6999 	}
7000 
7001 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7002 		goto out;
7003 
7004 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7005 	if (extent_end <= offset)
7006 		goto out;
7007 
7008 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7009 	if (disk_bytenr == 0)
7010 		goto out;
7011 
7012 	if (btrfs_file_extent_compression(leaf, fi) ||
7013 	    btrfs_file_extent_encryption(leaf, fi) ||
7014 	    btrfs_file_extent_other_encoding(leaf, fi))
7015 		goto out;
7016 
7017 	/*
7018 	 * Do the same check as in btrfs_cross_ref_exist but without the
7019 	 * unnecessary search.
7020 	 */
7021 	if (!strict &&
7022 	    (btrfs_file_extent_generation(leaf, fi) <=
7023 	     btrfs_root_last_snapshot(&root->root_item)))
7024 		goto out;
7025 
7026 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7027 
7028 	if (orig_start) {
7029 		*orig_start = key.offset - backref_offset;
7030 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7031 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7032 	}
7033 
7034 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7035 		goto out;
7036 
7037 	num_bytes = min(offset + *len, extent_end) - offset;
7038 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7039 		u64 range_end;
7040 
7041 		range_end = round_up(offset + num_bytes,
7042 				     root->fs_info->sectorsize) - 1;
7043 		ret = test_range_bit(io_tree, offset, range_end,
7044 				     EXTENT_DELALLOC, 0, NULL);
7045 		if (ret) {
7046 			ret = -EAGAIN;
7047 			goto out;
7048 		}
7049 	}
7050 
7051 	btrfs_release_path(path);
7052 
7053 	/*
7054 	 * look for other files referencing this extent, if we
7055 	 * find any we must cow
7056 	 */
7057 
7058 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7059 				    key.offset - backref_offset, disk_bytenr,
7060 				    strict);
7061 	if (ret) {
7062 		ret = 0;
7063 		goto out;
7064 	}
7065 
7066 	/*
7067 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7068 	 * in this extent we are about to write.  If there
7069 	 * are any csums in that range we have to cow in order
7070 	 * to keep the csums correct
7071 	 */
7072 	disk_bytenr += backref_offset;
7073 	disk_bytenr += offset - key.offset;
7074 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7075 		goto out;
7076 	/*
7077 	 * all of the above have passed, it is safe to overwrite this extent
7078 	 * without cow
7079 	 */
7080 	*len = num_bytes;
7081 	ret = 1;
7082 out:
7083 	btrfs_free_path(path);
7084 	return ret;
7085 }
7086 
7087 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7088 			      struct extent_state **cached_state, bool writing)
7089 {
7090 	struct btrfs_ordered_extent *ordered;
7091 	int ret = 0;
7092 
7093 	while (1) {
7094 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7095 				 cached_state);
7096 		/*
7097 		 * We're concerned with the entire range that we're going to be
7098 		 * doing DIO to, so we need to make sure there's no ordered
7099 		 * extents in this range.
7100 		 */
7101 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7102 						     lockend - lockstart + 1);
7103 
7104 		/*
7105 		 * We need to make sure there are no buffered pages in this
7106 		 * range either, we could have raced between the invalidate in
7107 		 * generic_file_direct_write and locking the extent.  The
7108 		 * invalidate needs to happen so that reads after a write do not
7109 		 * get stale data.
7110 		 */
7111 		if (!ordered &&
7112 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7113 							 lockstart, lockend)))
7114 			break;
7115 
7116 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7117 				     cached_state);
7118 
7119 		if (ordered) {
7120 			/*
7121 			 * If we are doing a DIO read and the ordered extent we
7122 			 * found is for a buffered write, we can not wait for it
7123 			 * to complete and retry, because if we do so we can
7124 			 * deadlock with concurrent buffered writes on page
7125 			 * locks. This happens only if our DIO read covers more
7126 			 * than one extent map, if at this point has already
7127 			 * created an ordered extent for a previous extent map
7128 			 * and locked its range in the inode's io tree, and a
7129 			 * concurrent write against that previous extent map's
7130 			 * range and this range started (we unlock the ranges
7131 			 * in the io tree only when the bios complete and
7132 			 * buffered writes always lock pages before attempting
7133 			 * to lock range in the io tree).
7134 			 */
7135 			if (writing ||
7136 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7137 				btrfs_start_ordered_extent(ordered, 1);
7138 			else
7139 				ret = -ENOTBLK;
7140 			btrfs_put_ordered_extent(ordered);
7141 		} else {
7142 			/*
7143 			 * We could trigger writeback for this range (and wait
7144 			 * for it to complete) and then invalidate the pages for
7145 			 * this range (through invalidate_inode_pages2_range()),
7146 			 * but that can lead us to a deadlock with a concurrent
7147 			 * call to readahead (a buffered read or a defrag call
7148 			 * triggered a readahead) on a page lock due to an
7149 			 * ordered dio extent we created before but did not have
7150 			 * yet a corresponding bio submitted (whence it can not
7151 			 * complete), which makes readahead wait for that
7152 			 * ordered extent to complete while holding a lock on
7153 			 * that page.
7154 			 */
7155 			ret = -ENOTBLK;
7156 		}
7157 
7158 		if (ret)
7159 			break;
7160 
7161 		cond_resched();
7162 	}
7163 
7164 	return ret;
7165 }
7166 
7167 /* The callers of this must take lock_extent() */
7168 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7169 				       u64 len, u64 orig_start, u64 block_start,
7170 				       u64 block_len, u64 orig_block_len,
7171 				       u64 ram_bytes, int compress_type,
7172 				       int type)
7173 {
7174 	struct extent_map_tree *em_tree;
7175 	struct extent_map *em;
7176 	int ret;
7177 
7178 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7179 	       type == BTRFS_ORDERED_COMPRESSED ||
7180 	       type == BTRFS_ORDERED_NOCOW ||
7181 	       type == BTRFS_ORDERED_REGULAR);
7182 
7183 	em_tree = &inode->extent_tree;
7184 	em = alloc_extent_map();
7185 	if (!em)
7186 		return ERR_PTR(-ENOMEM);
7187 
7188 	em->start = start;
7189 	em->orig_start = orig_start;
7190 	em->len = len;
7191 	em->block_len = block_len;
7192 	em->block_start = block_start;
7193 	em->orig_block_len = orig_block_len;
7194 	em->ram_bytes = ram_bytes;
7195 	em->generation = -1;
7196 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7197 	if (type == BTRFS_ORDERED_PREALLOC) {
7198 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7199 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7200 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7201 		em->compress_type = compress_type;
7202 	}
7203 
7204 	do {
7205 		btrfs_drop_extent_cache(inode, em->start,
7206 					em->start + em->len - 1, 0);
7207 		write_lock(&em_tree->lock);
7208 		ret = add_extent_mapping(em_tree, em, 1);
7209 		write_unlock(&em_tree->lock);
7210 		/*
7211 		 * The caller has taken lock_extent(), who could race with us
7212 		 * to add em?
7213 		 */
7214 	} while (ret == -EEXIST);
7215 
7216 	if (ret) {
7217 		free_extent_map(em);
7218 		return ERR_PTR(ret);
7219 	}
7220 
7221 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7222 	return em;
7223 }
7224 
7225 
7226 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7227 					 struct inode *inode,
7228 					 struct btrfs_dio_data *dio_data,
7229 					 u64 start, u64 len)
7230 {
7231 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7232 	struct extent_map *em = *map;
7233 	int ret = 0;
7234 
7235 	/*
7236 	 * We don't allocate a new extent in the following cases
7237 	 *
7238 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7239 	 * existing extent.
7240 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7241 	 * just use the extent.
7242 	 *
7243 	 */
7244 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7245 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7246 	     em->block_start != EXTENT_MAP_HOLE)) {
7247 		int type;
7248 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7249 
7250 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7251 			type = BTRFS_ORDERED_PREALLOC;
7252 		else
7253 			type = BTRFS_ORDERED_NOCOW;
7254 		len = min(len, em->len - (start - em->start));
7255 		block_start = em->block_start + (start - em->start);
7256 
7257 		if (can_nocow_extent(inode, start, &len, &orig_start,
7258 				     &orig_block_len, &ram_bytes, false) == 1 &&
7259 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7260 			struct extent_map *em2;
7261 
7262 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7263 						      orig_start, block_start,
7264 						      len, orig_block_len,
7265 						      ram_bytes, type);
7266 			btrfs_dec_nocow_writers(fs_info, block_start);
7267 			if (type == BTRFS_ORDERED_PREALLOC) {
7268 				free_extent_map(em);
7269 				*map = em = em2;
7270 			}
7271 
7272 			if (em2 && IS_ERR(em2)) {
7273 				ret = PTR_ERR(em2);
7274 				goto out;
7275 			}
7276 			/*
7277 			 * For inode marked NODATACOW or extent marked PREALLOC,
7278 			 * use the existing or preallocated extent, so does not
7279 			 * need to adjust btrfs_space_info's bytes_may_use.
7280 			 */
7281 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7282 			goto skip_cow;
7283 		}
7284 	}
7285 
7286 	/* this will cow the extent */
7287 	free_extent_map(em);
7288 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7289 	if (IS_ERR(em)) {
7290 		ret = PTR_ERR(em);
7291 		goto out;
7292 	}
7293 
7294 	len = min(len, em->len - (start - em->start));
7295 
7296 skip_cow:
7297 	/*
7298 	 * Need to update the i_size under the extent lock so buffered
7299 	 * readers will get the updated i_size when we unlock.
7300 	 */
7301 	if (start + len > i_size_read(inode))
7302 		i_size_write(inode, start + len);
7303 
7304 	dio_data->reserve -= len;
7305 out:
7306 	return ret;
7307 }
7308 
7309 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7310 		loff_t length, unsigned int flags, struct iomap *iomap,
7311 		struct iomap *srcmap)
7312 {
7313 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7314 	struct extent_map *em;
7315 	struct extent_state *cached_state = NULL;
7316 	struct btrfs_dio_data *dio_data = NULL;
7317 	u64 lockstart, lockend;
7318 	const bool write = !!(flags & IOMAP_WRITE);
7319 	int ret = 0;
7320 	u64 len = length;
7321 	bool unlock_extents = false;
7322 	bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB);
7323 
7324 	/*
7325 	 * We used current->journal_info here to see if we were sync, but
7326 	 * there's a lot of tests in the enospc machinery to not do flushing if
7327 	 * we have a journal_info set, so we need to clear this out and re-set
7328 	 * it in iomap_end.
7329 	 */
7330 	ASSERT(current->journal_info == NULL ||
7331 	       current->journal_info == BTRFS_DIO_SYNC_STUB);
7332 	current->journal_info = NULL;
7333 
7334 	if (!write)
7335 		len = min_t(u64, len, fs_info->sectorsize);
7336 
7337 	lockstart = start;
7338 	lockend = start + len - 1;
7339 
7340 	/*
7341 	 * The generic stuff only does filemap_write_and_wait_range, which
7342 	 * isn't enough if we've written compressed pages to this area, so we
7343 	 * need to flush the dirty pages again to make absolutely sure that any
7344 	 * outstanding dirty pages are on disk.
7345 	 */
7346 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7347 		     &BTRFS_I(inode)->runtime_flags)) {
7348 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7349 					       start + length - 1);
7350 		if (ret)
7351 			return ret;
7352 	}
7353 
7354 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7355 	if (!dio_data)
7356 		return -ENOMEM;
7357 
7358 	dio_data->sync = sync;
7359 	dio_data->length = length;
7360 	if (write) {
7361 		dio_data->reserve = round_up(length, fs_info->sectorsize);
7362 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7363 				&dio_data->data_reserved,
7364 				start, dio_data->reserve);
7365 		if (ret) {
7366 			extent_changeset_free(dio_data->data_reserved);
7367 			kfree(dio_data);
7368 			return ret;
7369 		}
7370 	}
7371 	iomap->private = dio_data;
7372 
7373 
7374 	/*
7375 	 * If this errors out it's because we couldn't invalidate pagecache for
7376 	 * this range and we need to fallback to buffered.
7377 	 */
7378 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7379 		ret = -ENOTBLK;
7380 		goto err;
7381 	}
7382 
7383 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7384 	if (IS_ERR(em)) {
7385 		ret = PTR_ERR(em);
7386 		goto unlock_err;
7387 	}
7388 
7389 	/*
7390 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7391 	 * io.  INLINE is special, and we could probably kludge it in here, but
7392 	 * it's still buffered so for safety lets just fall back to the generic
7393 	 * buffered path.
7394 	 *
7395 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7396 	 * decompress it, so there will be buffering required no matter what we
7397 	 * do, so go ahead and fallback to buffered.
7398 	 *
7399 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7400 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7401 	 * the generic code.
7402 	 */
7403 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7404 	    em->block_start == EXTENT_MAP_INLINE) {
7405 		free_extent_map(em);
7406 		ret = -ENOTBLK;
7407 		goto unlock_err;
7408 	}
7409 
7410 	len = min(len, em->len - (start - em->start));
7411 	if (write) {
7412 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7413 						    start, len);
7414 		if (ret < 0)
7415 			goto unlock_err;
7416 		unlock_extents = true;
7417 		/* Recalc len in case the new em is smaller than requested */
7418 		len = min(len, em->len - (start - em->start));
7419 	} else {
7420 		/*
7421 		 * We need to unlock only the end area that we aren't using.
7422 		 * The rest is going to be unlocked by the endio routine.
7423 		 */
7424 		lockstart = start + len;
7425 		if (lockstart < lockend)
7426 			unlock_extents = true;
7427 	}
7428 
7429 	if (unlock_extents)
7430 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7431 				     lockstart, lockend, &cached_state);
7432 	else
7433 		free_extent_state(cached_state);
7434 
7435 	/*
7436 	 * Translate extent map information to iomap.
7437 	 * We trim the extents (and move the addr) even though iomap code does
7438 	 * that, since we have locked only the parts we are performing I/O in.
7439 	 */
7440 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7441 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7442 		iomap->addr = IOMAP_NULL_ADDR;
7443 		iomap->type = IOMAP_HOLE;
7444 	} else {
7445 		iomap->addr = em->block_start + (start - em->start);
7446 		iomap->type = IOMAP_MAPPED;
7447 	}
7448 	iomap->offset = start;
7449 	iomap->bdev = fs_info->fs_devices->latest_bdev;
7450 	iomap->length = len;
7451 
7452 	free_extent_map(em);
7453 
7454 	return 0;
7455 
7456 unlock_err:
7457 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7458 			     &cached_state);
7459 err:
7460 	if (dio_data) {
7461 		btrfs_delalloc_release_space(BTRFS_I(inode),
7462 				dio_data->data_reserved, start,
7463 				dio_data->reserve, true);
7464 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7465 		extent_changeset_free(dio_data->data_reserved);
7466 		kfree(dio_data);
7467 	}
7468 	return ret;
7469 }
7470 
7471 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7472 		ssize_t written, unsigned int flags, struct iomap *iomap)
7473 {
7474 	int ret = 0;
7475 	struct btrfs_dio_data *dio_data = iomap->private;
7476 	size_t submitted = dio_data->submitted;
7477 	const bool write = !!(flags & IOMAP_WRITE);
7478 
7479 	if (!write && (iomap->type == IOMAP_HOLE)) {
7480 		/* If reading from a hole, unlock and return */
7481 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7482 		goto out;
7483 	}
7484 
7485 	if (submitted < length) {
7486 		pos += submitted;
7487 		length -= submitted;
7488 		if (write)
7489 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7490 					length, false);
7491 		else
7492 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7493 				      pos + length - 1);
7494 		ret = -ENOTBLK;
7495 	}
7496 
7497 	if (write) {
7498 		if (dio_data->reserve)
7499 			btrfs_delalloc_release_space(BTRFS_I(inode),
7500 					dio_data->data_reserved, pos,
7501 					dio_data->reserve, true);
7502 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7503 		extent_changeset_free(dio_data->data_reserved);
7504 	}
7505 out:
7506 	/*
7507 	 * We're all done, we can re-set the current->journal_info now safely
7508 	 * for our endio.
7509 	 */
7510 	if (dio_data->sync) {
7511 		ASSERT(current->journal_info == NULL);
7512 		current->journal_info = BTRFS_DIO_SYNC_STUB;
7513 	}
7514 	kfree(dio_data);
7515 	iomap->private = NULL;
7516 
7517 	return ret;
7518 }
7519 
7520 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7521 {
7522 	/*
7523 	 * This implies a barrier so that stores to dio_bio->bi_status before
7524 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7525 	 */
7526 	if (!refcount_dec_and_test(&dip->refs))
7527 		return;
7528 
7529 	if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7530 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7531 					     dip->logical_offset,
7532 					     dip->bytes,
7533 					     !dip->dio_bio->bi_status);
7534 	} else {
7535 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7536 			      dip->logical_offset,
7537 			      dip->logical_offset + dip->bytes - 1);
7538 	}
7539 
7540 	bio_endio(dip->dio_bio);
7541 	kfree(dip);
7542 }
7543 
7544 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7545 					  int mirror_num,
7546 					  unsigned long bio_flags)
7547 {
7548 	struct btrfs_dio_private *dip = bio->bi_private;
7549 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7550 	blk_status_t ret;
7551 
7552 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7553 
7554 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7555 	if (ret)
7556 		return ret;
7557 
7558 	refcount_inc(&dip->refs);
7559 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7560 	if (ret)
7561 		refcount_dec(&dip->refs);
7562 	return ret;
7563 }
7564 
7565 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7566 					     struct btrfs_io_bio *io_bio,
7567 					     const bool uptodate)
7568 {
7569 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7570 	const u32 sectorsize = fs_info->sectorsize;
7571 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7572 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7573 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7574 	struct bio_vec bvec;
7575 	struct bvec_iter iter;
7576 	u64 start = io_bio->logical;
7577 	int icsum = 0;
7578 	blk_status_t err = BLK_STS_OK;
7579 
7580 	__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7581 		unsigned int i, nr_sectors, pgoff;
7582 
7583 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7584 		pgoff = bvec.bv_offset;
7585 		for (i = 0; i < nr_sectors; i++) {
7586 			ASSERT(pgoff < PAGE_SIZE);
7587 			if (uptodate &&
7588 			    (!csum || !check_data_csum(inode, io_bio, icsum,
7589 						       bvec.bv_page, pgoff,
7590 						       start, sectorsize))) {
7591 				clean_io_failure(fs_info, failure_tree, io_tree,
7592 						 start, bvec.bv_page,
7593 						 btrfs_ino(BTRFS_I(inode)),
7594 						 pgoff);
7595 			} else {
7596 				blk_status_t status;
7597 
7598 				status = btrfs_submit_read_repair(inode,
7599 							&io_bio->bio,
7600 							start - io_bio->logical,
7601 							bvec.bv_page, pgoff,
7602 							start,
7603 							start + sectorsize - 1,
7604 							io_bio->mirror_num,
7605 							submit_dio_repair_bio);
7606 				if (status)
7607 					err = status;
7608 			}
7609 			start += sectorsize;
7610 			icsum++;
7611 			pgoff += sectorsize;
7612 		}
7613 	}
7614 	return err;
7615 }
7616 
7617 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7618 					 const u64 offset, const u64 bytes,
7619 					 const bool uptodate)
7620 {
7621 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7622 	struct btrfs_ordered_extent *ordered = NULL;
7623 	struct btrfs_workqueue *wq;
7624 	u64 ordered_offset = offset;
7625 	u64 ordered_bytes = bytes;
7626 	u64 last_offset;
7627 
7628 	if (btrfs_is_free_space_inode(inode))
7629 		wq = fs_info->endio_freespace_worker;
7630 	else
7631 		wq = fs_info->endio_write_workers;
7632 
7633 	while (ordered_offset < offset + bytes) {
7634 		last_offset = ordered_offset;
7635 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7636 							 &ordered_offset,
7637 							 ordered_bytes,
7638 							 uptodate)) {
7639 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7640 					NULL);
7641 			btrfs_queue_work(wq, &ordered->work);
7642 		}
7643 		/*
7644 		 * If btrfs_dec_test_ordered_pending does not find any ordered
7645 		 * extent in the range, we can exit.
7646 		 */
7647 		if (ordered_offset == last_offset)
7648 			return;
7649 		/*
7650 		 * Our bio might span multiple ordered extents. In this case
7651 		 * we keep going until we have accounted the whole dio.
7652 		 */
7653 		if (ordered_offset < offset + bytes) {
7654 			ordered_bytes = offset + bytes - ordered_offset;
7655 			ordered = NULL;
7656 		}
7657 	}
7658 }
7659 
7660 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7661 				    struct bio *bio, u64 offset)
7662 {
7663 	struct inode *inode = private_data;
7664 
7665 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7666 }
7667 
7668 static void btrfs_end_dio_bio(struct bio *bio)
7669 {
7670 	struct btrfs_dio_private *dip = bio->bi_private;
7671 	blk_status_t err = bio->bi_status;
7672 
7673 	if (err)
7674 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7675 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7676 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7677 			   bio->bi_opf,
7678 			   (unsigned long long)bio->bi_iter.bi_sector,
7679 			   bio->bi_iter.bi_size, err);
7680 
7681 	if (bio_op(bio) == REQ_OP_READ) {
7682 		err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7683 					       !err);
7684 	}
7685 
7686 	if (err)
7687 		dip->dio_bio->bi_status = err;
7688 
7689 	bio_put(bio);
7690 	btrfs_dio_private_put(dip);
7691 }
7692 
7693 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7694 		struct inode *inode, u64 file_offset, int async_submit)
7695 {
7696 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7697 	struct btrfs_dio_private *dip = bio->bi_private;
7698 	bool write = bio_op(bio) == REQ_OP_WRITE;
7699 	blk_status_t ret;
7700 
7701 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7702 	if (async_submit)
7703 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7704 
7705 	if (!write) {
7706 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7707 		if (ret)
7708 			goto err;
7709 	}
7710 
7711 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7712 		goto map;
7713 
7714 	if (write && async_submit) {
7715 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7716 					  file_offset, inode,
7717 					  btrfs_submit_bio_start_direct_io);
7718 		goto err;
7719 	} else if (write) {
7720 		/*
7721 		 * If we aren't doing async submit, calculate the csum of the
7722 		 * bio now.
7723 		 */
7724 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7725 		if (ret)
7726 			goto err;
7727 	} else {
7728 		u64 csum_offset;
7729 
7730 		csum_offset = file_offset - dip->logical_offset;
7731 		csum_offset >>= inode->i_sb->s_blocksize_bits;
7732 		csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7733 		btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7734 	}
7735 map:
7736 	ret = btrfs_map_bio(fs_info, bio, 0);
7737 err:
7738 	return ret;
7739 }
7740 
7741 /*
7742  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7743  * or ordered extents whether or not we submit any bios.
7744  */
7745 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7746 							  struct inode *inode,
7747 							  loff_t file_offset)
7748 {
7749 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7750 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7751 	size_t dip_size;
7752 	struct btrfs_dio_private *dip;
7753 
7754 	dip_size = sizeof(*dip);
7755 	if (!write && csum) {
7756 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7757 		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7758 		size_t nblocks;
7759 
7760 		nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7761 		dip_size += csum_size * nblocks;
7762 	}
7763 
7764 	dip = kzalloc(dip_size, GFP_NOFS);
7765 	if (!dip)
7766 		return NULL;
7767 
7768 	dip->inode = inode;
7769 	dip->logical_offset = file_offset;
7770 	dip->bytes = dio_bio->bi_iter.bi_size;
7771 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7772 	dip->dio_bio = dio_bio;
7773 	refcount_set(&dip->refs, 1);
7774 	return dip;
7775 }
7776 
7777 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
7778 		struct bio *dio_bio, loff_t file_offset)
7779 {
7780 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7781 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7782 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7783 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7784 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
7785 	struct btrfs_dio_private *dip;
7786 	struct bio *bio;
7787 	u64 start_sector;
7788 	int async_submit = 0;
7789 	u64 submit_len;
7790 	int clone_offset = 0;
7791 	int clone_len;
7792 	int ret;
7793 	blk_status_t status;
7794 	struct btrfs_io_geometry geom;
7795 	struct btrfs_dio_data *dio_data = iomap->private;
7796 
7797 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7798 	if (!dip) {
7799 		if (!write) {
7800 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7801 				file_offset + dio_bio->bi_iter.bi_size - 1);
7802 		}
7803 		dio_bio->bi_status = BLK_STS_RESOURCE;
7804 		bio_endio(dio_bio);
7805 		return BLK_QC_T_NONE;
7806 	}
7807 
7808 	if (!write && csum) {
7809 		/*
7810 		 * Load the csums up front to reduce csum tree searches and
7811 		 * contention when submitting bios.
7812 		 */
7813 		status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7814 					       dip->csums);
7815 		if (status != BLK_STS_OK)
7816 			goto out_err;
7817 	}
7818 
7819 	start_sector = dio_bio->bi_iter.bi_sector;
7820 	submit_len = dio_bio->bi_iter.bi_size;
7821 
7822 	do {
7823 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7824 					    start_sector << 9, submit_len,
7825 					    &geom);
7826 		if (ret) {
7827 			status = errno_to_blk_status(ret);
7828 			goto out_err;
7829 		}
7830 		ASSERT(geom.len <= INT_MAX);
7831 
7832 		clone_len = min_t(int, submit_len, geom.len);
7833 
7834 		/*
7835 		 * This will never fail as it's passing GPF_NOFS and
7836 		 * the allocation is backed by btrfs_bioset.
7837 		 */
7838 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7839 		bio->bi_private = dip;
7840 		bio->bi_end_io = btrfs_end_dio_bio;
7841 		btrfs_io_bio(bio)->logical = file_offset;
7842 
7843 		ASSERT(submit_len >= clone_len);
7844 		submit_len -= clone_len;
7845 
7846 		/*
7847 		 * Increase the count before we submit the bio so we know
7848 		 * the end IO handler won't happen before we increase the
7849 		 * count. Otherwise, the dip might get freed before we're
7850 		 * done setting it up.
7851 		 *
7852 		 * We transfer the initial reference to the last bio, so we
7853 		 * don't need to increment the reference count for the last one.
7854 		 */
7855 		if (submit_len > 0) {
7856 			refcount_inc(&dip->refs);
7857 			/*
7858 			 * If we are submitting more than one bio, submit them
7859 			 * all asynchronously. The exception is RAID 5 or 6, as
7860 			 * asynchronous checksums make it difficult to collect
7861 			 * full stripe writes.
7862 			 */
7863 			if (!raid56)
7864 				async_submit = 1;
7865 		}
7866 
7867 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
7868 						async_submit);
7869 		if (status) {
7870 			bio_put(bio);
7871 			if (submit_len > 0)
7872 				refcount_dec(&dip->refs);
7873 			goto out_err;
7874 		}
7875 
7876 		dio_data->submitted += clone_len;
7877 		clone_offset += clone_len;
7878 		start_sector += clone_len >> 9;
7879 		file_offset += clone_len;
7880 	} while (submit_len > 0);
7881 	return BLK_QC_T_NONE;
7882 
7883 out_err:
7884 	dip->dio_bio->bi_status = status;
7885 	btrfs_dio_private_put(dip);
7886 	return BLK_QC_T_NONE;
7887 }
7888 
7889 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7890 			       const struct iov_iter *iter, loff_t offset)
7891 {
7892 	int seg;
7893 	int i;
7894 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
7895 	ssize_t retval = -EINVAL;
7896 
7897 	if (offset & blocksize_mask)
7898 		goto out;
7899 
7900 	if (iov_iter_alignment(iter) & blocksize_mask)
7901 		goto out;
7902 
7903 	/* If this is a write we don't need to check anymore */
7904 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7905 		return 0;
7906 	/*
7907 	 * Check to make sure we don't have duplicate iov_base's in this
7908 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
7909 	 * when reading back.
7910 	 */
7911 	for (seg = 0; seg < iter->nr_segs; seg++) {
7912 		for (i = seg + 1; i < iter->nr_segs; i++) {
7913 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7914 				goto out;
7915 		}
7916 	}
7917 	retval = 0;
7918 out:
7919 	return retval;
7920 }
7921 
7922 static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size,
7923 					   int error, unsigned flags)
7924 {
7925 	/*
7926 	 * Now if we're still in the context of our submitter we know we can't
7927 	 * safely run generic_write_sync(), so clear our flag here so that the
7928 	 * caller knows to follow up with a sync.
7929 	 */
7930 	if (current->journal_info == BTRFS_DIO_SYNC_STUB) {
7931 		current->journal_info = NULL;
7932 		return error;
7933 	}
7934 
7935 	if (error)
7936 		return error;
7937 
7938 	if (size) {
7939 		iocb->ki_flags |= IOCB_DSYNC;
7940 		return generic_write_sync(iocb, size);
7941 	}
7942 
7943 	return 0;
7944 }
7945 
7946 static const struct iomap_ops btrfs_dio_iomap_ops = {
7947 	.iomap_begin            = btrfs_dio_iomap_begin,
7948 	.iomap_end              = btrfs_dio_iomap_end,
7949 };
7950 
7951 static const struct iomap_dio_ops btrfs_dio_ops = {
7952 	.submit_io		= btrfs_submit_direct,
7953 };
7954 
7955 static const struct iomap_dio_ops btrfs_sync_dops = {
7956 	.submit_io		= btrfs_submit_direct,
7957 	.end_io			= btrfs_maybe_fsync_end_io,
7958 };
7959 
7960 ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
7961 {
7962 	struct file *file = iocb->ki_filp;
7963 	struct inode *inode = file->f_mapping->host;
7964 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7965 	struct extent_changeset *data_reserved = NULL;
7966 	loff_t offset = iocb->ki_pos;
7967 	size_t count = 0;
7968 	bool relock = false;
7969 	ssize_t ret;
7970 
7971 	if (check_direct_IO(fs_info, iter, offset))
7972 		return 0;
7973 
7974 	count = iov_iter_count(iter);
7975 	if (iov_iter_rw(iter) == WRITE) {
7976 		/*
7977 		 * If the write DIO is beyond the EOF, we need update
7978 		 * the isize, but it is protected by i_mutex. So we can
7979 		 * not unlock the i_mutex at this case.
7980 		 */
7981 		if (offset + count <= inode->i_size) {
7982 			inode_unlock(inode);
7983 			relock = true;
7984 		}
7985 		down_read(&BTRFS_I(inode)->dio_sem);
7986 	}
7987 
7988 	/*
7989 	 * We have are actually a sync iocb, so we need our fancy endio to know
7990 	 * if we need to sync.
7991 	 */
7992 	if (current->journal_info)
7993 		ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
7994 				   &btrfs_sync_dops, is_sync_kiocb(iocb));
7995 	else
7996 		ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops,
7997 				   &btrfs_dio_ops, is_sync_kiocb(iocb));
7998 
7999 	if (ret == -ENOTBLK)
8000 		ret = 0;
8001 
8002 	if (iov_iter_rw(iter) == WRITE)
8003 		up_read(&BTRFS_I(inode)->dio_sem);
8004 
8005 	if (relock)
8006 		inode_lock(inode);
8007 
8008 	extent_changeset_free(data_reserved);
8009 	return ret;
8010 }
8011 
8012 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8013 			u64 start, u64 len)
8014 {
8015 	int	ret;
8016 
8017 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8018 	if (ret)
8019 		return ret;
8020 
8021 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8022 }
8023 
8024 int btrfs_readpage(struct file *file, struct page *page)
8025 {
8026 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8027 	u64 start = page_offset(page);
8028 	u64 end = start + PAGE_SIZE - 1;
8029 	unsigned long bio_flags = 0;
8030 	struct bio *bio = NULL;
8031 	int ret;
8032 
8033 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8034 
8035 	ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8036 	if (bio)
8037 		ret = submit_one_bio(bio, 0, bio_flags);
8038 	return ret;
8039 }
8040 
8041 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8042 {
8043 	struct inode *inode = page->mapping->host;
8044 	int ret;
8045 
8046 	if (current->flags & PF_MEMALLOC) {
8047 		redirty_page_for_writepage(wbc, page);
8048 		unlock_page(page);
8049 		return 0;
8050 	}
8051 
8052 	/*
8053 	 * If we are under memory pressure we will call this directly from the
8054 	 * VM, we need to make sure we have the inode referenced for the ordered
8055 	 * extent.  If not just return like we didn't do anything.
8056 	 */
8057 	if (!igrab(inode)) {
8058 		redirty_page_for_writepage(wbc, page);
8059 		return AOP_WRITEPAGE_ACTIVATE;
8060 	}
8061 	ret = extent_write_full_page(page, wbc);
8062 	btrfs_add_delayed_iput(inode);
8063 	return ret;
8064 }
8065 
8066 static int btrfs_writepages(struct address_space *mapping,
8067 			    struct writeback_control *wbc)
8068 {
8069 	return extent_writepages(mapping, wbc);
8070 }
8071 
8072 static void btrfs_readahead(struct readahead_control *rac)
8073 {
8074 	extent_readahead(rac);
8075 }
8076 
8077 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8078 {
8079 	int ret = try_release_extent_mapping(page, gfp_flags);
8080 	if (ret == 1)
8081 		detach_page_private(page);
8082 	return ret;
8083 }
8084 
8085 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8086 {
8087 	if (PageWriteback(page) || PageDirty(page))
8088 		return 0;
8089 	return __btrfs_releasepage(page, gfp_flags);
8090 }
8091 
8092 #ifdef CONFIG_MIGRATION
8093 static int btrfs_migratepage(struct address_space *mapping,
8094 			     struct page *newpage, struct page *page,
8095 			     enum migrate_mode mode)
8096 {
8097 	int ret;
8098 
8099 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8100 	if (ret != MIGRATEPAGE_SUCCESS)
8101 		return ret;
8102 
8103 	if (page_has_private(page))
8104 		attach_page_private(newpage, detach_page_private(page));
8105 
8106 	if (PagePrivate2(page)) {
8107 		ClearPagePrivate2(page);
8108 		SetPagePrivate2(newpage);
8109 	}
8110 
8111 	if (mode != MIGRATE_SYNC_NO_COPY)
8112 		migrate_page_copy(newpage, page);
8113 	else
8114 		migrate_page_states(newpage, page);
8115 	return MIGRATEPAGE_SUCCESS;
8116 }
8117 #endif
8118 
8119 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8120 				 unsigned int length)
8121 {
8122 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8123 	struct extent_io_tree *tree = &inode->io_tree;
8124 	struct btrfs_ordered_extent *ordered;
8125 	struct extent_state *cached_state = NULL;
8126 	u64 page_start = page_offset(page);
8127 	u64 page_end = page_start + PAGE_SIZE - 1;
8128 	u64 start;
8129 	u64 end;
8130 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8131 
8132 	/*
8133 	 * we have the page locked, so new writeback can't start,
8134 	 * and the dirty bit won't be cleared while we are here.
8135 	 *
8136 	 * Wait for IO on this page so that we can safely clear
8137 	 * the PagePrivate2 bit and do ordered accounting
8138 	 */
8139 	wait_on_page_writeback(page);
8140 
8141 	if (offset) {
8142 		btrfs_releasepage(page, GFP_NOFS);
8143 		return;
8144 	}
8145 
8146 	if (!inode_evicting)
8147 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8148 again:
8149 	start = page_start;
8150 	ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8151 	if (ordered) {
8152 		end = min(page_end,
8153 			  ordered->file_offset + ordered->num_bytes - 1);
8154 		/*
8155 		 * IO on this page will never be started, so we need
8156 		 * to account for any ordered extents now
8157 		 */
8158 		if (!inode_evicting)
8159 			clear_extent_bit(tree, start, end,
8160 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8161 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8162 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8163 		/*
8164 		 * whoever cleared the private bit is responsible
8165 		 * for the finish_ordered_io
8166 		 */
8167 		if (TestClearPagePrivate2(page)) {
8168 			struct btrfs_ordered_inode_tree *tree;
8169 			u64 new_len;
8170 
8171 			tree = &inode->ordered_tree;
8172 
8173 			spin_lock_irq(&tree->lock);
8174 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8175 			new_len = start - ordered->file_offset;
8176 			if (new_len < ordered->truncated_len)
8177 				ordered->truncated_len = new_len;
8178 			spin_unlock_irq(&tree->lock);
8179 
8180 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8181 							   start,
8182 							   end - start + 1, 1))
8183 				btrfs_finish_ordered_io(ordered);
8184 		}
8185 		btrfs_put_ordered_extent(ordered);
8186 		if (!inode_evicting) {
8187 			cached_state = NULL;
8188 			lock_extent_bits(tree, start, end,
8189 					 &cached_state);
8190 		}
8191 
8192 		start = end + 1;
8193 		if (start < page_end)
8194 			goto again;
8195 	}
8196 
8197 	/*
8198 	 * Qgroup reserved space handler
8199 	 * Page here will be either
8200 	 * 1) Already written to disk or ordered extent already submitted
8201 	 *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8202 	 *    Qgroup will be handled by its qgroup_record then.
8203 	 *    btrfs_qgroup_free_data() call will do nothing here.
8204 	 *
8205 	 * 2) Not written to disk yet
8206 	 *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8207 	 *    bit of its io_tree, and free the qgroup reserved data space.
8208 	 *    Since the IO will never happen for this page.
8209 	 */
8210 	btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8211 	if (!inode_evicting) {
8212 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8213 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8214 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8215 				 &cached_state);
8216 
8217 		__btrfs_releasepage(page, GFP_NOFS);
8218 	}
8219 
8220 	ClearPageChecked(page);
8221 	detach_page_private(page);
8222 }
8223 
8224 /*
8225  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8226  * called from a page fault handler when a page is first dirtied. Hence we must
8227  * be careful to check for EOF conditions here. We set the page up correctly
8228  * for a written page which means we get ENOSPC checking when writing into
8229  * holes and correct delalloc and unwritten extent mapping on filesystems that
8230  * support these features.
8231  *
8232  * We are not allowed to take the i_mutex here so we have to play games to
8233  * protect against truncate races as the page could now be beyond EOF.  Because
8234  * truncate_setsize() writes the inode size before removing pages, once we have
8235  * the page lock we can determine safely if the page is beyond EOF. If it is not
8236  * beyond EOF, then the page is guaranteed safe against truncation until we
8237  * unlock the page.
8238  */
8239 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8240 {
8241 	struct page *page = vmf->page;
8242 	struct inode *inode = file_inode(vmf->vma->vm_file);
8243 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8244 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8245 	struct btrfs_ordered_extent *ordered;
8246 	struct extent_state *cached_state = NULL;
8247 	struct extent_changeset *data_reserved = NULL;
8248 	char *kaddr;
8249 	unsigned long zero_start;
8250 	loff_t size;
8251 	vm_fault_t ret;
8252 	int ret2;
8253 	int reserved = 0;
8254 	u64 reserved_space;
8255 	u64 page_start;
8256 	u64 page_end;
8257 	u64 end;
8258 
8259 	reserved_space = PAGE_SIZE;
8260 
8261 	sb_start_pagefault(inode->i_sb);
8262 	page_start = page_offset(page);
8263 	page_end = page_start + PAGE_SIZE - 1;
8264 	end = page_end;
8265 
8266 	/*
8267 	 * Reserving delalloc space after obtaining the page lock can lead to
8268 	 * deadlock. For example, if a dirty page is locked by this function
8269 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8270 	 * dirty page write out, then the btrfs_writepage() function could
8271 	 * end up waiting indefinitely to get a lock on the page currently
8272 	 * being processed by btrfs_page_mkwrite() function.
8273 	 */
8274 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8275 					    page_start, reserved_space);
8276 	if (!ret2) {
8277 		ret2 = file_update_time(vmf->vma->vm_file);
8278 		reserved = 1;
8279 	}
8280 	if (ret2) {
8281 		ret = vmf_error(ret2);
8282 		if (reserved)
8283 			goto out;
8284 		goto out_noreserve;
8285 	}
8286 
8287 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8288 again:
8289 	lock_page(page);
8290 	size = i_size_read(inode);
8291 
8292 	if ((page->mapping != inode->i_mapping) ||
8293 	    (page_start >= size)) {
8294 		/* page got truncated out from underneath us */
8295 		goto out_unlock;
8296 	}
8297 	wait_on_page_writeback(page);
8298 
8299 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8300 	set_page_extent_mapped(page);
8301 
8302 	/*
8303 	 * we can't set the delalloc bits if there are pending ordered
8304 	 * extents.  Drop our locks and wait for them to finish
8305 	 */
8306 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8307 			PAGE_SIZE);
8308 	if (ordered) {
8309 		unlock_extent_cached(io_tree, page_start, page_end,
8310 				     &cached_state);
8311 		unlock_page(page);
8312 		btrfs_start_ordered_extent(ordered, 1);
8313 		btrfs_put_ordered_extent(ordered);
8314 		goto again;
8315 	}
8316 
8317 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8318 		reserved_space = round_up(size - page_start,
8319 					  fs_info->sectorsize);
8320 		if (reserved_space < PAGE_SIZE) {
8321 			end = page_start + reserved_space - 1;
8322 			btrfs_delalloc_release_space(BTRFS_I(inode),
8323 					data_reserved, page_start,
8324 					PAGE_SIZE - reserved_space, true);
8325 		}
8326 	}
8327 
8328 	/*
8329 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8330 	 * faulted in, but write(2) could also dirty a page and set delalloc
8331 	 * bits, thus in this case for space account reason, we still need to
8332 	 * clear any delalloc bits within this page range since we have to
8333 	 * reserve data&meta space before lock_page() (see above comments).
8334 	 */
8335 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8336 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8337 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8338 
8339 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8340 					&cached_state);
8341 	if (ret2) {
8342 		unlock_extent_cached(io_tree, page_start, page_end,
8343 				     &cached_state);
8344 		ret = VM_FAULT_SIGBUS;
8345 		goto out_unlock;
8346 	}
8347 
8348 	/* page is wholly or partially inside EOF */
8349 	if (page_start + PAGE_SIZE > size)
8350 		zero_start = offset_in_page(size);
8351 	else
8352 		zero_start = PAGE_SIZE;
8353 
8354 	if (zero_start != PAGE_SIZE) {
8355 		kaddr = kmap(page);
8356 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8357 		flush_dcache_page(page);
8358 		kunmap(page);
8359 	}
8360 	ClearPageChecked(page);
8361 	set_page_dirty(page);
8362 	SetPageUptodate(page);
8363 
8364 	BTRFS_I(inode)->last_trans = fs_info->generation;
8365 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8366 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8367 
8368 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8369 
8370 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8371 	sb_end_pagefault(inode->i_sb);
8372 	extent_changeset_free(data_reserved);
8373 	return VM_FAULT_LOCKED;
8374 
8375 out_unlock:
8376 	unlock_page(page);
8377 out:
8378 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8379 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8380 				     reserved_space, (ret != 0));
8381 out_noreserve:
8382 	sb_end_pagefault(inode->i_sb);
8383 	extent_changeset_free(data_reserved);
8384 	return ret;
8385 }
8386 
8387 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8388 {
8389 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8390 	struct btrfs_root *root = BTRFS_I(inode)->root;
8391 	struct btrfs_block_rsv *rsv;
8392 	int ret;
8393 	struct btrfs_trans_handle *trans;
8394 	u64 mask = fs_info->sectorsize - 1;
8395 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8396 
8397 	if (!skip_writeback) {
8398 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8399 					       (u64)-1);
8400 		if (ret)
8401 			return ret;
8402 	}
8403 
8404 	/*
8405 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8406 	 * things going on here:
8407 	 *
8408 	 * 1) We need to reserve space to update our inode.
8409 	 *
8410 	 * 2) We need to have something to cache all the space that is going to
8411 	 * be free'd up by the truncate operation, but also have some slack
8412 	 * space reserved in case it uses space during the truncate (thank you
8413 	 * very much snapshotting).
8414 	 *
8415 	 * And we need these to be separate.  The fact is we can use a lot of
8416 	 * space doing the truncate, and we have no earthly idea how much space
8417 	 * we will use, so we need the truncate reservation to be separate so it
8418 	 * doesn't end up using space reserved for updating the inode.  We also
8419 	 * need to be able to stop the transaction and start a new one, which
8420 	 * means we need to be able to update the inode several times, and we
8421 	 * have no idea of knowing how many times that will be, so we can't just
8422 	 * reserve 1 item for the entirety of the operation, so that has to be
8423 	 * done separately as well.
8424 	 *
8425 	 * So that leaves us with
8426 	 *
8427 	 * 1) rsv - for the truncate reservation, which we will steal from the
8428 	 * transaction reservation.
8429 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8430 	 * updating the inode.
8431 	 */
8432 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8433 	if (!rsv)
8434 		return -ENOMEM;
8435 	rsv->size = min_size;
8436 	rsv->failfast = 1;
8437 
8438 	/*
8439 	 * 1 for the truncate slack space
8440 	 * 1 for updating the inode.
8441 	 */
8442 	trans = btrfs_start_transaction(root, 2);
8443 	if (IS_ERR(trans)) {
8444 		ret = PTR_ERR(trans);
8445 		goto out;
8446 	}
8447 
8448 	/* Migrate the slack space for the truncate to our reserve */
8449 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8450 				      min_size, false);
8451 	BUG_ON(ret);
8452 
8453 	/*
8454 	 * So if we truncate and then write and fsync we normally would just
8455 	 * write the extents that changed, which is a problem if we need to
8456 	 * first truncate that entire inode.  So set this flag so we write out
8457 	 * all of the extents in the inode to the sync log so we're completely
8458 	 * safe.
8459 	 */
8460 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8461 	trans->block_rsv = rsv;
8462 
8463 	while (1) {
8464 		ret = btrfs_truncate_inode_items(trans, root, inode,
8465 						 inode->i_size,
8466 						 BTRFS_EXTENT_DATA_KEY);
8467 		trans->block_rsv = &fs_info->trans_block_rsv;
8468 		if (ret != -ENOSPC && ret != -EAGAIN)
8469 			break;
8470 
8471 		ret = btrfs_update_inode(trans, root, inode);
8472 		if (ret)
8473 			break;
8474 
8475 		btrfs_end_transaction(trans);
8476 		btrfs_btree_balance_dirty(fs_info);
8477 
8478 		trans = btrfs_start_transaction(root, 2);
8479 		if (IS_ERR(trans)) {
8480 			ret = PTR_ERR(trans);
8481 			trans = NULL;
8482 			break;
8483 		}
8484 
8485 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8486 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8487 					      rsv, min_size, false);
8488 		BUG_ON(ret);	/* shouldn't happen */
8489 		trans->block_rsv = rsv;
8490 	}
8491 
8492 	/*
8493 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8494 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8495 	 * we've truncated everything except the last little bit, and can do
8496 	 * btrfs_truncate_block and then update the disk_i_size.
8497 	 */
8498 	if (ret == NEED_TRUNCATE_BLOCK) {
8499 		btrfs_end_transaction(trans);
8500 		btrfs_btree_balance_dirty(fs_info);
8501 
8502 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8503 		if (ret)
8504 			goto out;
8505 		trans = btrfs_start_transaction(root, 1);
8506 		if (IS_ERR(trans)) {
8507 			ret = PTR_ERR(trans);
8508 			goto out;
8509 		}
8510 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8511 	}
8512 
8513 	if (trans) {
8514 		int ret2;
8515 
8516 		trans->block_rsv = &fs_info->trans_block_rsv;
8517 		ret2 = btrfs_update_inode(trans, root, inode);
8518 		if (ret2 && !ret)
8519 			ret = ret2;
8520 
8521 		ret2 = btrfs_end_transaction(trans);
8522 		if (ret2 && !ret)
8523 			ret = ret2;
8524 		btrfs_btree_balance_dirty(fs_info);
8525 	}
8526 out:
8527 	btrfs_free_block_rsv(fs_info, rsv);
8528 
8529 	return ret;
8530 }
8531 
8532 /*
8533  * create a new subvolume directory/inode (helper for the ioctl).
8534  */
8535 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8536 			     struct btrfs_root *new_root,
8537 			     struct btrfs_root *parent_root,
8538 			     u64 new_dirid)
8539 {
8540 	struct inode *inode;
8541 	int err;
8542 	u64 index = 0;
8543 
8544 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8545 				new_dirid, new_dirid,
8546 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8547 				&index);
8548 	if (IS_ERR(inode))
8549 		return PTR_ERR(inode);
8550 	inode->i_op = &btrfs_dir_inode_operations;
8551 	inode->i_fop = &btrfs_dir_file_operations;
8552 
8553 	set_nlink(inode, 1);
8554 	btrfs_i_size_write(BTRFS_I(inode), 0);
8555 	unlock_new_inode(inode);
8556 
8557 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8558 	if (err)
8559 		btrfs_err(new_root->fs_info,
8560 			  "error inheriting subvolume %llu properties: %d",
8561 			  new_root->root_key.objectid, err);
8562 
8563 	err = btrfs_update_inode(trans, new_root, inode);
8564 
8565 	iput(inode);
8566 	return err;
8567 }
8568 
8569 struct inode *btrfs_alloc_inode(struct super_block *sb)
8570 {
8571 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8572 	struct btrfs_inode *ei;
8573 	struct inode *inode;
8574 
8575 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8576 	if (!ei)
8577 		return NULL;
8578 
8579 	ei->root = NULL;
8580 	ei->generation = 0;
8581 	ei->last_trans = 0;
8582 	ei->last_sub_trans = 0;
8583 	ei->logged_trans = 0;
8584 	ei->delalloc_bytes = 0;
8585 	ei->new_delalloc_bytes = 0;
8586 	ei->defrag_bytes = 0;
8587 	ei->disk_i_size = 0;
8588 	ei->flags = 0;
8589 	ei->csum_bytes = 0;
8590 	ei->index_cnt = (u64)-1;
8591 	ei->dir_index = 0;
8592 	ei->last_unlink_trans = 0;
8593 	ei->last_reflink_trans = 0;
8594 	ei->last_log_commit = 0;
8595 
8596 	spin_lock_init(&ei->lock);
8597 	ei->outstanding_extents = 0;
8598 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8599 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8600 					      BTRFS_BLOCK_RSV_DELALLOC);
8601 	ei->runtime_flags = 0;
8602 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8603 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8604 
8605 	ei->delayed_node = NULL;
8606 
8607 	ei->i_otime.tv_sec = 0;
8608 	ei->i_otime.tv_nsec = 0;
8609 
8610 	inode = &ei->vfs_inode;
8611 	extent_map_tree_init(&ei->extent_tree);
8612 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8613 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8614 			    IO_TREE_INODE_IO_FAILURE, inode);
8615 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8616 			    IO_TREE_INODE_FILE_EXTENT, inode);
8617 	ei->io_tree.track_uptodate = true;
8618 	ei->io_failure_tree.track_uptodate = true;
8619 	atomic_set(&ei->sync_writers, 0);
8620 	mutex_init(&ei->log_mutex);
8621 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8622 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8623 	INIT_LIST_HEAD(&ei->delayed_iput);
8624 	RB_CLEAR_NODE(&ei->rb_node);
8625 	init_rwsem(&ei->dio_sem);
8626 
8627 	return inode;
8628 }
8629 
8630 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8631 void btrfs_test_destroy_inode(struct inode *inode)
8632 {
8633 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8634 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8635 }
8636 #endif
8637 
8638 void btrfs_free_inode(struct inode *inode)
8639 {
8640 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8641 }
8642 
8643 void btrfs_destroy_inode(struct inode *vfs_inode)
8644 {
8645 	struct btrfs_ordered_extent *ordered;
8646 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8647 	struct btrfs_root *root = inode->root;
8648 
8649 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8650 	WARN_ON(vfs_inode->i_data.nrpages);
8651 	WARN_ON(inode->block_rsv.reserved);
8652 	WARN_ON(inode->block_rsv.size);
8653 	WARN_ON(inode->outstanding_extents);
8654 	WARN_ON(inode->delalloc_bytes);
8655 	WARN_ON(inode->new_delalloc_bytes);
8656 	WARN_ON(inode->csum_bytes);
8657 	WARN_ON(inode->defrag_bytes);
8658 
8659 	/*
8660 	 * This can happen where we create an inode, but somebody else also
8661 	 * created the same inode and we need to destroy the one we already
8662 	 * created.
8663 	 */
8664 	if (!root)
8665 		return;
8666 
8667 	while (1) {
8668 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8669 		if (!ordered)
8670 			break;
8671 		else {
8672 			btrfs_err(root->fs_info,
8673 				  "found ordered extent %llu %llu on inode cleanup",
8674 				  ordered->file_offset, ordered->num_bytes);
8675 			btrfs_remove_ordered_extent(inode, ordered);
8676 			btrfs_put_ordered_extent(ordered);
8677 			btrfs_put_ordered_extent(ordered);
8678 		}
8679 	}
8680 	btrfs_qgroup_check_reserved_leak(inode);
8681 	inode_tree_del(inode);
8682 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8683 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8684 	btrfs_put_root(inode->root);
8685 }
8686 
8687 int btrfs_drop_inode(struct inode *inode)
8688 {
8689 	struct btrfs_root *root = BTRFS_I(inode)->root;
8690 
8691 	if (root == NULL)
8692 		return 1;
8693 
8694 	/* the snap/subvol tree is on deleting */
8695 	if (btrfs_root_refs(&root->root_item) == 0)
8696 		return 1;
8697 	else
8698 		return generic_drop_inode(inode);
8699 }
8700 
8701 static void init_once(void *foo)
8702 {
8703 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8704 
8705 	inode_init_once(&ei->vfs_inode);
8706 }
8707 
8708 void __cold btrfs_destroy_cachep(void)
8709 {
8710 	/*
8711 	 * Make sure all delayed rcu free inodes are flushed before we
8712 	 * destroy cache.
8713 	 */
8714 	rcu_barrier();
8715 	kmem_cache_destroy(btrfs_inode_cachep);
8716 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8717 	kmem_cache_destroy(btrfs_path_cachep);
8718 	kmem_cache_destroy(btrfs_free_space_cachep);
8719 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8720 }
8721 
8722 int __init btrfs_init_cachep(void)
8723 {
8724 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8725 			sizeof(struct btrfs_inode), 0,
8726 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8727 			init_once);
8728 	if (!btrfs_inode_cachep)
8729 		goto fail;
8730 
8731 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8732 			sizeof(struct btrfs_trans_handle), 0,
8733 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8734 	if (!btrfs_trans_handle_cachep)
8735 		goto fail;
8736 
8737 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8738 			sizeof(struct btrfs_path), 0,
8739 			SLAB_MEM_SPREAD, NULL);
8740 	if (!btrfs_path_cachep)
8741 		goto fail;
8742 
8743 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8744 			sizeof(struct btrfs_free_space), 0,
8745 			SLAB_MEM_SPREAD, NULL);
8746 	if (!btrfs_free_space_cachep)
8747 		goto fail;
8748 
8749 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8750 							PAGE_SIZE, PAGE_SIZE,
8751 							SLAB_RED_ZONE, NULL);
8752 	if (!btrfs_free_space_bitmap_cachep)
8753 		goto fail;
8754 
8755 	return 0;
8756 fail:
8757 	btrfs_destroy_cachep();
8758 	return -ENOMEM;
8759 }
8760 
8761 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8762 			 u32 request_mask, unsigned int flags)
8763 {
8764 	u64 delalloc_bytes;
8765 	struct inode *inode = d_inode(path->dentry);
8766 	u32 blocksize = inode->i_sb->s_blocksize;
8767 	u32 bi_flags = BTRFS_I(inode)->flags;
8768 
8769 	stat->result_mask |= STATX_BTIME;
8770 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8771 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8772 	if (bi_flags & BTRFS_INODE_APPEND)
8773 		stat->attributes |= STATX_ATTR_APPEND;
8774 	if (bi_flags & BTRFS_INODE_COMPRESS)
8775 		stat->attributes |= STATX_ATTR_COMPRESSED;
8776 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8777 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8778 	if (bi_flags & BTRFS_INODE_NODUMP)
8779 		stat->attributes |= STATX_ATTR_NODUMP;
8780 
8781 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8782 				  STATX_ATTR_COMPRESSED |
8783 				  STATX_ATTR_IMMUTABLE |
8784 				  STATX_ATTR_NODUMP);
8785 
8786 	generic_fillattr(inode, stat);
8787 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8788 
8789 	spin_lock(&BTRFS_I(inode)->lock);
8790 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8791 	spin_unlock(&BTRFS_I(inode)->lock);
8792 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8793 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8794 	return 0;
8795 }
8796 
8797 static int btrfs_rename_exchange(struct inode *old_dir,
8798 			      struct dentry *old_dentry,
8799 			      struct inode *new_dir,
8800 			      struct dentry *new_dentry)
8801 {
8802 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8803 	struct btrfs_trans_handle *trans;
8804 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8805 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8806 	struct inode *new_inode = new_dentry->d_inode;
8807 	struct inode *old_inode = old_dentry->d_inode;
8808 	struct timespec64 ctime = current_time(old_inode);
8809 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8810 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8811 	u64 old_idx = 0;
8812 	u64 new_idx = 0;
8813 	int ret;
8814 	int ret2;
8815 	bool root_log_pinned = false;
8816 	bool dest_log_pinned = false;
8817 
8818 	/* we only allow rename subvolume link between subvolumes */
8819 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8820 		return -EXDEV;
8821 
8822 	/* close the race window with snapshot create/destroy ioctl */
8823 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8824 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8825 		down_read(&fs_info->subvol_sem);
8826 
8827 	/*
8828 	 * We want to reserve the absolute worst case amount of items.  So if
8829 	 * both inodes are subvols and we need to unlink them then that would
8830 	 * require 4 item modifications, but if they are both normal inodes it
8831 	 * would require 5 item modifications, so we'll assume their normal
8832 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8833 	 * should cover the worst case number of items we'll modify.
8834 	 */
8835 	trans = btrfs_start_transaction(root, 12);
8836 	if (IS_ERR(trans)) {
8837 		ret = PTR_ERR(trans);
8838 		goto out_notrans;
8839 	}
8840 
8841 	if (dest != root)
8842 		btrfs_record_root_in_trans(trans, dest);
8843 
8844 	/*
8845 	 * We need to find a free sequence number both in the source and
8846 	 * in the destination directory for the exchange.
8847 	 */
8848 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8849 	if (ret)
8850 		goto out_fail;
8851 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8852 	if (ret)
8853 		goto out_fail;
8854 
8855 	BTRFS_I(old_inode)->dir_index = 0ULL;
8856 	BTRFS_I(new_inode)->dir_index = 0ULL;
8857 
8858 	/* Reference for the source. */
8859 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8860 		/* force full log commit if subvolume involved. */
8861 		btrfs_set_log_full_commit(trans);
8862 	} else {
8863 		btrfs_pin_log_trans(root);
8864 		root_log_pinned = true;
8865 		ret = btrfs_insert_inode_ref(trans, dest,
8866 					     new_dentry->d_name.name,
8867 					     new_dentry->d_name.len,
8868 					     old_ino,
8869 					     btrfs_ino(BTRFS_I(new_dir)),
8870 					     old_idx);
8871 		if (ret)
8872 			goto out_fail;
8873 	}
8874 
8875 	/* And now for the dest. */
8876 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8877 		/* force full log commit if subvolume involved. */
8878 		btrfs_set_log_full_commit(trans);
8879 	} else {
8880 		btrfs_pin_log_trans(dest);
8881 		dest_log_pinned = true;
8882 		ret = btrfs_insert_inode_ref(trans, root,
8883 					     old_dentry->d_name.name,
8884 					     old_dentry->d_name.len,
8885 					     new_ino,
8886 					     btrfs_ino(BTRFS_I(old_dir)),
8887 					     new_idx);
8888 		if (ret)
8889 			goto out_fail;
8890 	}
8891 
8892 	/* Update inode version and ctime/mtime. */
8893 	inode_inc_iversion(old_dir);
8894 	inode_inc_iversion(new_dir);
8895 	inode_inc_iversion(old_inode);
8896 	inode_inc_iversion(new_inode);
8897 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8898 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8899 	old_inode->i_ctime = ctime;
8900 	new_inode->i_ctime = ctime;
8901 
8902 	if (old_dentry->d_parent != new_dentry->d_parent) {
8903 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8904 				BTRFS_I(old_inode), 1);
8905 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8906 				BTRFS_I(new_inode), 1);
8907 	}
8908 
8909 	/* src is a subvolume */
8910 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8911 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
8912 	} else { /* src is an inode */
8913 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8914 					   BTRFS_I(old_dentry->d_inode),
8915 					   old_dentry->d_name.name,
8916 					   old_dentry->d_name.len);
8917 		if (!ret)
8918 			ret = btrfs_update_inode(trans, root, old_inode);
8919 	}
8920 	if (ret) {
8921 		btrfs_abort_transaction(trans, ret);
8922 		goto out_fail;
8923 	}
8924 
8925 	/* dest is a subvolume */
8926 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8927 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
8928 	} else { /* dest is an inode */
8929 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8930 					   BTRFS_I(new_dentry->d_inode),
8931 					   new_dentry->d_name.name,
8932 					   new_dentry->d_name.len);
8933 		if (!ret)
8934 			ret = btrfs_update_inode(trans, dest, new_inode);
8935 	}
8936 	if (ret) {
8937 		btrfs_abort_transaction(trans, ret);
8938 		goto out_fail;
8939 	}
8940 
8941 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8942 			     new_dentry->d_name.name,
8943 			     new_dentry->d_name.len, 0, old_idx);
8944 	if (ret) {
8945 		btrfs_abort_transaction(trans, ret);
8946 		goto out_fail;
8947 	}
8948 
8949 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8950 			     old_dentry->d_name.name,
8951 			     old_dentry->d_name.len, 0, new_idx);
8952 	if (ret) {
8953 		btrfs_abort_transaction(trans, ret);
8954 		goto out_fail;
8955 	}
8956 
8957 	if (old_inode->i_nlink == 1)
8958 		BTRFS_I(old_inode)->dir_index = old_idx;
8959 	if (new_inode->i_nlink == 1)
8960 		BTRFS_I(new_inode)->dir_index = new_idx;
8961 
8962 	if (root_log_pinned) {
8963 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
8964 				   new_dentry->d_parent);
8965 		btrfs_end_log_trans(root);
8966 		root_log_pinned = false;
8967 	}
8968 	if (dest_log_pinned) {
8969 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
8970 				   old_dentry->d_parent);
8971 		btrfs_end_log_trans(dest);
8972 		dest_log_pinned = false;
8973 	}
8974 out_fail:
8975 	/*
8976 	 * If we have pinned a log and an error happened, we unpin tasks
8977 	 * trying to sync the log and force them to fallback to a transaction
8978 	 * commit if the log currently contains any of the inodes involved in
8979 	 * this rename operation (to ensure we do not persist a log with an
8980 	 * inconsistent state for any of these inodes or leading to any
8981 	 * inconsistencies when replayed). If the transaction was aborted, the
8982 	 * abortion reason is propagated to userspace when attempting to commit
8983 	 * the transaction. If the log does not contain any of these inodes, we
8984 	 * allow the tasks to sync it.
8985 	 */
8986 	if (ret && (root_log_pinned || dest_log_pinned)) {
8987 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8988 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8989 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
8990 		    (new_inode &&
8991 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
8992 			btrfs_set_log_full_commit(trans);
8993 
8994 		if (root_log_pinned) {
8995 			btrfs_end_log_trans(root);
8996 			root_log_pinned = false;
8997 		}
8998 		if (dest_log_pinned) {
8999 			btrfs_end_log_trans(dest);
9000 			dest_log_pinned = false;
9001 		}
9002 	}
9003 	ret2 = btrfs_end_transaction(trans);
9004 	ret = ret ? ret : ret2;
9005 out_notrans:
9006 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9007 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9008 		up_read(&fs_info->subvol_sem);
9009 
9010 	return ret;
9011 }
9012 
9013 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9014 				     struct btrfs_root *root,
9015 				     struct inode *dir,
9016 				     struct dentry *dentry)
9017 {
9018 	int ret;
9019 	struct inode *inode;
9020 	u64 objectid;
9021 	u64 index;
9022 
9023 	ret = btrfs_find_free_ino(root, &objectid);
9024 	if (ret)
9025 		return ret;
9026 
9027 	inode = btrfs_new_inode(trans, root, dir,
9028 				dentry->d_name.name,
9029 				dentry->d_name.len,
9030 				btrfs_ino(BTRFS_I(dir)),
9031 				objectid,
9032 				S_IFCHR | WHITEOUT_MODE,
9033 				&index);
9034 
9035 	if (IS_ERR(inode)) {
9036 		ret = PTR_ERR(inode);
9037 		return ret;
9038 	}
9039 
9040 	inode->i_op = &btrfs_special_inode_operations;
9041 	init_special_inode(inode, inode->i_mode,
9042 		WHITEOUT_DEV);
9043 
9044 	ret = btrfs_init_inode_security(trans, inode, dir,
9045 				&dentry->d_name);
9046 	if (ret)
9047 		goto out;
9048 
9049 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9050 				BTRFS_I(inode), 0, index);
9051 	if (ret)
9052 		goto out;
9053 
9054 	ret = btrfs_update_inode(trans, root, inode);
9055 out:
9056 	unlock_new_inode(inode);
9057 	if (ret)
9058 		inode_dec_link_count(inode);
9059 	iput(inode);
9060 
9061 	return ret;
9062 }
9063 
9064 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9065 			   struct inode *new_dir, struct dentry *new_dentry,
9066 			   unsigned int flags)
9067 {
9068 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9069 	struct btrfs_trans_handle *trans;
9070 	unsigned int trans_num_items;
9071 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9072 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9073 	struct inode *new_inode = d_inode(new_dentry);
9074 	struct inode *old_inode = d_inode(old_dentry);
9075 	u64 index = 0;
9076 	int ret;
9077 	int ret2;
9078 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9079 	bool log_pinned = false;
9080 
9081 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9082 		return -EPERM;
9083 
9084 	/* we only allow rename subvolume link between subvolumes */
9085 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9086 		return -EXDEV;
9087 
9088 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9089 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9090 		return -ENOTEMPTY;
9091 
9092 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9093 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9094 		return -ENOTEMPTY;
9095 
9096 
9097 	/* check for collisions, even if the  name isn't there */
9098 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9099 			     new_dentry->d_name.name,
9100 			     new_dentry->d_name.len);
9101 
9102 	if (ret) {
9103 		if (ret == -EEXIST) {
9104 			/* we shouldn't get
9105 			 * eexist without a new_inode */
9106 			if (WARN_ON(!new_inode)) {
9107 				return ret;
9108 			}
9109 		} else {
9110 			/* maybe -EOVERFLOW */
9111 			return ret;
9112 		}
9113 	}
9114 	ret = 0;
9115 
9116 	/*
9117 	 * we're using rename to replace one file with another.  Start IO on it
9118 	 * now so  we don't add too much work to the end of the transaction
9119 	 */
9120 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9121 		filemap_flush(old_inode->i_mapping);
9122 
9123 	/* close the racy window with snapshot create/destroy ioctl */
9124 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9125 		down_read(&fs_info->subvol_sem);
9126 	/*
9127 	 * We want to reserve the absolute worst case amount of items.  So if
9128 	 * both inodes are subvols and we need to unlink them then that would
9129 	 * require 4 item modifications, but if they are both normal inodes it
9130 	 * would require 5 item modifications, so we'll assume they are normal
9131 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9132 	 * should cover the worst case number of items we'll modify.
9133 	 * If our rename has the whiteout flag, we need more 5 units for the
9134 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9135 	 * when selinux is enabled).
9136 	 */
9137 	trans_num_items = 11;
9138 	if (flags & RENAME_WHITEOUT)
9139 		trans_num_items += 5;
9140 	trans = btrfs_start_transaction(root, trans_num_items);
9141 	if (IS_ERR(trans)) {
9142 		ret = PTR_ERR(trans);
9143 		goto out_notrans;
9144 	}
9145 
9146 	if (dest != root)
9147 		btrfs_record_root_in_trans(trans, dest);
9148 
9149 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9150 	if (ret)
9151 		goto out_fail;
9152 
9153 	BTRFS_I(old_inode)->dir_index = 0ULL;
9154 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9155 		/* force full log commit if subvolume involved. */
9156 		btrfs_set_log_full_commit(trans);
9157 	} else {
9158 		btrfs_pin_log_trans(root);
9159 		log_pinned = true;
9160 		ret = btrfs_insert_inode_ref(trans, dest,
9161 					     new_dentry->d_name.name,
9162 					     new_dentry->d_name.len,
9163 					     old_ino,
9164 					     btrfs_ino(BTRFS_I(new_dir)), index);
9165 		if (ret)
9166 			goto out_fail;
9167 	}
9168 
9169 	inode_inc_iversion(old_dir);
9170 	inode_inc_iversion(new_dir);
9171 	inode_inc_iversion(old_inode);
9172 	old_dir->i_ctime = old_dir->i_mtime =
9173 	new_dir->i_ctime = new_dir->i_mtime =
9174 	old_inode->i_ctime = current_time(old_dir);
9175 
9176 	if (old_dentry->d_parent != new_dentry->d_parent)
9177 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9178 				BTRFS_I(old_inode), 1);
9179 
9180 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9181 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9182 	} else {
9183 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9184 					BTRFS_I(d_inode(old_dentry)),
9185 					old_dentry->d_name.name,
9186 					old_dentry->d_name.len);
9187 		if (!ret)
9188 			ret = btrfs_update_inode(trans, root, old_inode);
9189 	}
9190 	if (ret) {
9191 		btrfs_abort_transaction(trans, ret);
9192 		goto out_fail;
9193 	}
9194 
9195 	if (new_inode) {
9196 		inode_inc_iversion(new_inode);
9197 		new_inode->i_ctime = current_time(new_inode);
9198 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9199 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9200 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9201 			BUG_ON(new_inode->i_nlink == 0);
9202 		} else {
9203 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9204 						 BTRFS_I(d_inode(new_dentry)),
9205 						 new_dentry->d_name.name,
9206 						 new_dentry->d_name.len);
9207 		}
9208 		if (!ret && new_inode->i_nlink == 0)
9209 			ret = btrfs_orphan_add(trans,
9210 					BTRFS_I(d_inode(new_dentry)));
9211 		if (ret) {
9212 			btrfs_abort_transaction(trans, ret);
9213 			goto out_fail;
9214 		}
9215 	}
9216 
9217 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9218 			     new_dentry->d_name.name,
9219 			     new_dentry->d_name.len, 0, index);
9220 	if (ret) {
9221 		btrfs_abort_transaction(trans, ret);
9222 		goto out_fail;
9223 	}
9224 
9225 	if (old_inode->i_nlink == 1)
9226 		BTRFS_I(old_inode)->dir_index = index;
9227 
9228 	if (log_pinned) {
9229 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9230 				   new_dentry->d_parent);
9231 		btrfs_end_log_trans(root);
9232 		log_pinned = false;
9233 	}
9234 
9235 	if (flags & RENAME_WHITEOUT) {
9236 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9237 						old_dentry);
9238 
9239 		if (ret) {
9240 			btrfs_abort_transaction(trans, ret);
9241 			goto out_fail;
9242 		}
9243 	}
9244 out_fail:
9245 	/*
9246 	 * If we have pinned the log and an error happened, we unpin tasks
9247 	 * trying to sync the log and force them to fallback to a transaction
9248 	 * commit if the log currently contains any of the inodes involved in
9249 	 * this rename operation (to ensure we do not persist a log with an
9250 	 * inconsistent state for any of these inodes or leading to any
9251 	 * inconsistencies when replayed). If the transaction was aborted, the
9252 	 * abortion reason is propagated to userspace when attempting to commit
9253 	 * the transaction. If the log does not contain any of these inodes, we
9254 	 * allow the tasks to sync it.
9255 	 */
9256 	if (ret && log_pinned) {
9257 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9258 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9259 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9260 		    (new_inode &&
9261 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9262 			btrfs_set_log_full_commit(trans);
9263 
9264 		btrfs_end_log_trans(root);
9265 		log_pinned = false;
9266 	}
9267 	ret2 = btrfs_end_transaction(trans);
9268 	ret = ret ? ret : ret2;
9269 out_notrans:
9270 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9271 		up_read(&fs_info->subvol_sem);
9272 
9273 	return ret;
9274 }
9275 
9276 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9277 			 struct inode *new_dir, struct dentry *new_dentry,
9278 			 unsigned int flags)
9279 {
9280 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9281 		return -EINVAL;
9282 
9283 	if (flags & RENAME_EXCHANGE)
9284 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9285 					  new_dentry);
9286 
9287 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9288 }
9289 
9290 struct btrfs_delalloc_work {
9291 	struct inode *inode;
9292 	struct completion completion;
9293 	struct list_head list;
9294 	struct btrfs_work work;
9295 };
9296 
9297 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9298 {
9299 	struct btrfs_delalloc_work *delalloc_work;
9300 	struct inode *inode;
9301 
9302 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9303 				     work);
9304 	inode = delalloc_work->inode;
9305 	filemap_flush(inode->i_mapping);
9306 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9307 				&BTRFS_I(inode)->runtime_flags))
9308 		filemap_flush(inode->i_mapping);
9309 
9310 	iput(inode);
9311 	complete(&delalloc_work->completion);
9312 }
9313 
9314 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9315 {
9316 	struct btrfs_delalloc_work *work;
9317 
9318 	work = kmalloc(sizeof(*work), GFP_NOFS);
9319 	if (!work)
9320 		return NULL;
9321 
9322 	init_completion(&work->completion);
9323 	INIT_LIST_HEAD(&work->list);
9324 	work->inode = inode;
9325 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9326 
9327 	return work;
9328 }
9329 
9330 /*
9331  * some fairly slow code that needs optimization. This walks the list
9332  * of all the inodes with pending delalloc and forces them to disk.
9333  */
9334 static int start_delalloc_inodes(struct btrfs_root *root, u64 *nr, bool snapshot)
9335 {
9336 	struct btrfs_inode *binode;
9337 	struct inode *inode;
9338 	struct btrfs_delalloc_work *work, *next;
9339 	struct list_head works;
9340 	struct list_head splice;
9341 	int ret = 0;
9342 
9343 	INIT_LIST_HEAD(&works);
9344 	INIT_LIST_HEAD(&splice);
9345 
9346 	mutex_lock(&root->delalloc_mutex);
9347 	spin_lock(&root->delalloc_lock);
9348 	list_splice_init(&root->delalloc_inodes, &splice);
9349 	while (!list_empty(&splice)) {
9350 		binode = list_entry(splice.next, struct btrfs_inode,
9351 				    delalloc_inodes);
9352 
9353 		list_move_tail(&binode->delalloc_inodes,
9354 			       &root->delalloc_inodes);
9355 		inode = igrab(&binode->vfs_inode);
9356 		if (!inode) {
9357 			cond_resched_lock(&root->delalloc_lock);
9358 			continue;
9359 		}
9360 		spin_unlock(&root->delalloc_lock);
9361 
9362 		if (snapshot)
9363 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9364 				&binode->runtime_flags);
9365 		work = btrfs_alloc_delalloc_work(inode);
9366 		if (!work) {
9367 			iput(inode);
9368 			ret = -ENOMEM;
9369 			goto out;
9370 		}
9371 		list_add_tail(&work->list, &works);
9372 		btrfs_queue_work(root->fs_info->flush_workers,
9373 				 &work->work);
9374 		if (*nr != U64_MAX) {
9375 			(*nr)--;
9376 			if (*nr == 0)
9377 				goto out;
9378 		}
9379 		cond_resched();
9380 		spin_lock(&root->delalloc_lock);
9381 	}
9382 	spin_unlock(&root->delalloc_lock);
9383 
9384 out:
9385 	list_for_each_entry_safe(work, next, &works, list) {
9386 		list_del_init(&work->list);
9387 		wait_for_completion(&work->completion);
9388 		kfree(work);
9389 	}
9390 
9391 	if (!list_empty(&splice)) {
9392 		spin_lock(&root->delalloc_lock);
9393 		list_splice_tail(&splice, &root->delalloc_inodes);
9394 		spin_unlock(&root->delalloc_lock);
9395 	}
9396 	mutex_unlock(&root->delalloc_mutex);
9397 	return ret;
9398 }
9399 
9400 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9401 {
9402 	struct btrfs_fs_info *fs_info = root->fs_info;
9403 	u64 nr = U64_MAX;
9404 
9405 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9406 		return -EROFS;
9407 
9408 	return start_delalloc_inodes(root, &nr, true);
9409 }
9410 
9411 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr)
9412 {
9413 	struct btrfs_root *root;
9414 	struct list_head splice;
9415 	int ret;
9416 
9417 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9418 		return -EROFS;
9419 
9420 	INIT_LIST_HEAD(&splice);
9421 
9422 	mutex_lock(&fs_info->delalloc_root_mutex);
9423 	spin_lock(&fs_info->delalloc_root_lock);
9424 	list_splice_init(&fs_info->delalloc_roots, &splice);
9425 	while (!list_empty(&splice) && nr) {
9426 		root = list_first_entry(&splice, struct btrfs_root,
9427 					delalloc_root);
9428 		root = btrfs_grab_root(root);
9429 		BUG_ON(!root);
9430 		list_move_tail(&root->delalloc_root,
9431 			       &fs_info->delalloc_roots);
9432 		spin_unlock(&fs_info->delalloc_root_lock);
9433 
9434 		ret = start_delalloc_inodes(root, &nr, false);
9435 		btrfs_put_root(root);
9436 		if (ret < 0)
9437 			goto out;
9438 		spin_lock(&fs_info->delalloc_root_lock);
9439 	}
9440 	spin_unlock(&fs_info->delalloc_root_lock);
9441 
9442 	ret = 0;
9443 out:
9444 	if (!list_empty(&splice)) {
9445 		spin_lock(&fs_info->delalloc_root_lock);
9446 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9447 		spin_unlock(&fs_info->delalloc_root_lock);
9448 	}
9449 	mutex_unlock(&fs_info->delalloc_root_mutex);
9450 	return ret;
9451 }
9452 
9453 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9454 			 const char *symname)
9455 {
9456 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9457 	struct btrfs_trans_handle *trans;
9458 	struct btrfs_root *root = BTRFS_I(dir)->root;
9459 	struct btrfs_path *path;
9460 	struct btrfs_key key;
9461 	struct inode *inode = NULL;
9462 	int err;
9463 	u64 objectid;
9464 	u64 index = 0;
9465 	int name_len;
9466 	int datasize;
9467 	unsigned long ptr;
9468 	struct btrfs_file_extent_item *ei;
9469 	struct extent_buffer *leaf;
9470 
9471 	name_len = strlen(symname);
9472 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9473 		return -ENAMETOOLONG;
9474 
9475 	/*
9476 	 * 2 items for inode item and ref
9477 	 * 2 items for dir items
9478 	 * 1 item for updating parent inode item
9479 	 * 1 item for the inline extent item
9480 	 * 1 item for xattr if selinux is on
9481 	 */
9482 	trans = btrfs_start_transaction(root, 7);
9483 	if (IS_ERR(trans))
9484 		return PTR_ERR(trans);
9485 
9486 	err = btrfs_find_free_ino(root, &objectid);
9487 	if (err)
9488 		goto out_unlock;
9489 
9490 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9491 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9492 				objectid, S_IFLNK|S_IRWXUGO, &index);
9493 	if (IS_ERR(inode)) {
9494 		err = PTR_ERR(inode);
9495 		inode = NULL;
9496 		goto out_unlock;
9497 	}
9498 
9499 	/*
9500 	* If the active LSM wants to access the inode during
9501 	* d_instantiate it needs these. Smack checks to see
9502 	* if the filesystem supports xattrs by looking at the
9503 	* ops vector.
9504 	*/
9505 	inode->i_fop = &btrfs_file_operations;
9506 	inode->i_op = &btrfs_file_inode_operations;
9507 	inode->i_mapping->a_ops = &btrfs_aops;
9508 
9509 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9510 	if (err)
9511 		goto out_unlock;
9512 
9513 	path = btrfs_alloc_path();
9514 	if (!path) {
9515 		err = -ENOMEM;
9516 		goto out_unlock;
9517 	}
9518 	key.objectid = btrfs_ino(BTRFS_I(inode));
9519 	key.offset = 0;
9520 	key.type = BTRFS_EXTENT_DATA_KEY;
9521 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9522 	err = btrfs_insert_empty_item(trans, root, path, &key,
9523 				      datasize);
9524 	if (err) {
9525 		btrfs_free_path(path);
9526 		goto out_unlock;
9527 	}
9528 	leaf = path->nodes[0];
9529 	ei = btrfs_item_ptr(leaf, path->slots[0],
9530 			    struct btrfs_file_extent_item);
9531 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9532 	btrfs_set_file_extent_type(leaf, ei,
9533 				   BTRFS_FILE_EXTENT_INLINE);
9534 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9535 	btrfs_set_file_extent_compression(leaf, ei, 0);
9536 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9537 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9538 
9539 	ptr = btrfs_file_extent_inline_start(ei);
9540 	write_extent_buffer(leaf, symname, ptr, name_len);
9541 	btrfs_mark_buffer_dirty(leaf);
9542 	btrfs_free_path(path);
9543 
9544 	inode->i_op = &btrfs_symlink_inode_operations;
9545 	inode_nohighmem(inode);
9546 	inode_set_bytes(inode, name_len);
9547 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9548 	err = btrfs_update_inode(trans, root, inode);
9549 	/*
9550 	 * Last step, add directory indexes for our symlink inode. This is the
9551 	 * last step to avoid extra cleanup of these indexes if an error happens
9552 	 * elsewhere above.
9553 	 */
9554 	if (!err)
9555 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9556 				BTRFS_I(inode), 0, index);
9557 	if (err)
9558 		goto out_unlock;
9559 
9560 	d_instantiate_new(dentry, inode);
9561 
9562 out_unlock:
9563 	btrfs_end_transaction(trans);
9564 	if (err && inode) {
9565 		inode_dec_link_count(inode);
9566 		discard_new_inode(inode);
9567 	}
9568 	btrfs_btree_balance_dirty(fs_info);
9569 	return err;
9570 }
9571 
9572 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9573 				       struct btrfs_trans_handle *trans_in,
9574 				       struct inode *inode, struct btrfs_key *ins,
9575 				       u64 file_offset)
9576 {
9577 	struct btrfs_file_extent_item stack_fi;
9578 	struct btrfs_replace_extent_info extent_info;
9579 	struct btrfs_trans_handle *trans = trans_in;
9580 	struct btrfs_path *path;
9581 	u64 start = ins->objectid;
9582 	u64 len = ins->offset;
9583 	int ret;
9584 
9585 	memset(&stack_fi, 0, sizeof(stack_fi));
9586 
9587 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9588 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9589 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9590 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9591 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9592 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9593 	/* Encryption and other encoding is reserved and all 0 */
9594 
9595 	ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9596 	if (ret < 0)
9597 		return ERR_PTR(ret);
9598 
9599 	if (trans) {
9600 		ret = insert_reserved_file_extent(trans, BTRFS_I(inode),
9601 						  file_offset, &stack_fi, ret);
9602 		if (ret)
9603 			return ERR_PTR(ret);
9604 		return trans;
9605 	}
9606 
9607 	extent_info.disk_offset = start;
9608 	extent_info.disk_len = len;
9609 	extent_info.data_offset = 0;
9610 	extent_info.data_len = len;
9611 	extent_info.file_offset = file_offset;
9612 	extent_info.extent_buf = (char *)&stack_fi;
9613 	extent_info.is_new_extent = true;
9614 	extent_info.qgroup_reserved = ret;
9615 	extent_info.insertions = 0;
9616 
9617 	path = btrfs_alloc_path();
9618 	if (!path)
9619 		return ERR_PTR(-ENOMEM);
9620 
9621 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9622 				     file_offset + len - 1, &extent_info,
9623 				     &trans);
9624 	btrfs_free_path(path);
9625 	if (ret)
9626 		return ERR_PTR(ret);
9627 
9628 	return trans;
9629 }
9630 
9631 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9632 				       u64 start, u64 num_bytes, u64 min_size,
9633 				       loff_t actual_len, u64 *alloc_hint,
9634 				       struct btrfs_trans_handle *trans)
9635 {
9636 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9637 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9638 	struct extent_map *em;
9639 	struct btrfs_root *root = BTRFS_I(inode)->root;
9640 	struct btrfs_key ins;
9641 	u64 cur_offset = start;
9642 	u64 clear_offset = start;
9643 	u64 i_size;
9644 	u64 cur_bytes;
9645 	u64 last_alloc = (u64)-1;
9646 	int ret = 0;
9647 	bool own_trans = true;
9648 	u64 end = start + num_bytes - 1;
9649 
9650 	if (trans)
9651 		own_trans = false;
9652 	while (num_bytes > 0) {
9653 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9654 		cur_bytes = max(cur_bytes, min_size);
9655 		/*
9656 		 * If we are severely fragmented we could end up with really
9657 		 * small allocations, so if the allocator is returning small
9658 		 * chunks lets make its job easier by only searching for those
9659 		 * sized chunks.
9660 		 */
9661 		cur_bytes = min(cur_bytes, last_alloc);
9662 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9663 				min_size, 0, *alloc_hint, &ins, 1, 0);
9664 		if (ret)
9665 			break;
9666 
9667 		/*
9668 		 * We've reserved this space, and thus converted it from
9669 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9670 		 * from here on out we will only need to clear our reservation
9671 		 * for the remaining unreserved area, so advance our
9672 		 * clear_offset by our extent size.
9673 		 */
9674 		clear_offset += ins.offset;
9675 
9676 		last_alloc = ins.offset;
9677 		trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9678 		/*
9679 		 * Now that we inserted the prealloc extent we can finally
9680 		 * decrement the number of reservations in the block group.
9681 		 * If we did it before, we could race with relocation and have
9682 		 * relocation miss the reserved extent, making it fail later.
9683 		 */
9684 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9685 		if (IS_ERR(trans)) {
9686 			ret = PTR_ERR(trans);
9687 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9688 						   ins.offset, 0);
9689 			break;
9690 		}
9691 
9692 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9693 					cur_offset + ins.offset -1, 0);
9694 
9695 		em = alloc_extent_map();
9696 		if (!em) {
9697 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9698 				&BTRFS_I(inode)->runtime_flags);
9699 			goto next;
9700 		}
9701 
9702 		em->start = cur_offset;
9703 		em->orig_start = cur_offset;
9704 		em->len = ins.offset;
9705 		em->block_start = ins.objectid;
9706 		em->block_len = ins.offset;
9707 		em->orig_block_len = ins.offset;
9708 		em->ram_bytes = ins.offset;
9709 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9710 		em->generation = trans->transid;
9711 
9712 		while (1) {
9713 			write_lock(&em_tree->lock);
9714 			ret = add_extent_mapping(em_tree, em, 1);
9715 			write_unlock(&em_tree->lock);
9716 			if (ret != -EEXIST)
9717 				break;
9718 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9719 						cur_offset + ins.offset - 1,
9720 						0);
9721 		}
9722 		free_extent_map(em);
9723 next:
9724 		num_bytes -= ins.offset;
9725 		cur_offset += ins.offset;
9726 		*alloc_hint = ins.objectid + ins.offset;
9727 
9728 		inode_inc_iversion(inode);
9729 		inode->i_ctime = current_time(inode);
9730 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9731 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9732 		    (actual_len > inode->i_size) &&
9733 		    (cur_offset > inode->i_size)) {
9734 			if (cur_offset > actual_len)
9735 				i_size = actual_len;
9736 			else
9737 				i_size = cur_offset;
9738 			i_size_write(inode, i_size);
9739 			btrfs_inode_safe_disk_i_size_write(inode, 0);
9740 		}
9741 
9742 		ret = btrfs_update_inode(trans, root, inode);
9743 
9744 		if (ret) {
9745 			btrfs_abort_transaction(trans, ret);
9746 			if (own_trans)
9747 				btrfs_end_transaction(trans);
9748 			break;
9749 		}
9750 
9751 		if (own_trans) {
9752 			btrfs_end_transaction(trans);
9753 			trans = NULL;
9754 		}
9755 	}
9756 	if (clear_offset < end)
9757 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9758 			end - clear_offset + 1);
9759 	return ret;
9760 }
9761 
9762 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9763 			      u64 start, u64 num_bytes, u64 min_size,
9764 			      loff_t actual_len, u64 *alloc_hint)
9765 {
9766 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9767 					   min_size, actual_len, alloc_hint,
9768 					   NULL);
9769 }
9770 
9771 int btrfs_prealloc_file_range_trans(struct inode *inode,
9772 				    struct btrfs_trans_handle *trans, int mode,
9773 				    u64 start, u64 num_bytes, u64 min_size,
9774 				    loff_t actual_len, u64 *alloc_hint)
9775 {
9776 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9777 					   min_size, actual_len, alloc_hint, trans);
9778 }
9779 
9780 static int btrfs_set_page_dirty(struct page *page)
9781 {
9782 	return __set_page_dirty_nobuffers(page);
9783 }
9784 
9785 static int btrfs_permission(struct inode *inode, int mask)
9786 {
9787 	struct btrfs_root *root = BTRFS_I(inode)->root;
9788 	umode_t mode = inode->i_mode;
9789 
9790 	if (mask & MAY_WRITE &&
9791 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9792 		if (btrfs_root_readonly(root))
9793 			return -EROFS;
9794 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9795 			return -EACCES;
9796 	}
9797 	return generic_permission(inode, mask);
9798 }
9799 
9800 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9801 {
9802 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9803 	struct btrfs_trans_handle *trans;
9804 	struct btrfs_root *root = BTRFS_I(dir)->root;
9805 	struct inode *inode = NULL;
9806 	u64 objectid;
9807 	u64 index;
9808 	int ret = 0;
9809 
9810 	/*
9811 	 * 5 units required for adding orphan entry
9812 	 */
9813 	trans = btrfs_start_transaction(root, 5);
9814 	if (IS_ERR(trans))
9815 		return PTR_ERR(trans);
9816 
9817 	ret = btrfs_find_free_ino(root, &objectid);
9818 	if (ret)
9819 		goto out;
9820 
9821 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9822 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9823 	if (IS_ERR(inode)) {
9824 		ret = PTR_ERR(inode);
9825 		inode = NULL;
9826 		goto out;
9827 	}
9828 
9829 	inode->i_fop = &btrfs_file_operations;
9830 	inode->i_op = &btrfs_file_inode_operations;
9831 
9832 	inode->i_mapping->a_ops = &btrfs_aops;
9833 
9834 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9835 	if (ret)
9836 		goto out;
9837 
9838 	ret = btrfs_update_inode(trans, root, inode);
9839 	if (ret)
9840 		goto out;
9841 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9842 	if (ret)
9843 		goto out;
9844 
9845 	/*
9846 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9847 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9848 	 * through:
9849 	 *
9850 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9851 	 */
9852 	set_nlink(inode, 1);
9853 	d_tmpfile(dentry, inode);
9854 	unlock_new_inode(inode);
9855 	mark_inode_dirty(inode);
9856 out:
9857 	btrfs_end_transaction(trans);
9858 	if (ret && inode)
9859 		discard_new_inode(inode);
9860 	btrfs_btree_balance_dirty(fs_info);
9861 	return ret;
9862 }
9863 
9864 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
9865 {
9866 	struct inode *inode = tree->private_data;
9867 	unsigned long index = start >> PAGE_SHIFT;
9868 	unsigned long end_index = end >> PAGE_SHIFT;
9869 	struct page *page;
9870 
9871 	while (index <= end_index) {
9872 		page = find_get_page(inode->i_mapping, index);
9873 		ASSERT(page); /* Pages should be in the extent_io_tree */
9874 		set_page_writeback(page);
9875 		put_page(page);
9876 		index++;
9877 	}
9878 }
9879 
9880 #ifdef CONFIG_SWAP
9881 /*
9882  * Add an entry indicating a block group or device which is pinned by a
9883  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9884  * negative errno on failure.
9885  */
9886 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9887 				  bool is_block_group)
9888 {
9889 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9890 	struct btrfs_swapfile_pin *sp, *entry;
9891 	struct rb_node **p;
9892 	struct rb_node *parent = NULL;
9893 
9894 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9895 	if (!sp)
9896 		return -ENOMEM;
9897 	sp->ptr = ptr;
9898 	sp->inode = inode;
9899 	sp->is_block_group = is_block_group;
9900 
9901 	spin_lock(&fs_info->swapfile_pins_lock);
9902 	p = &fs_info->swapfile_pins.rb_node;
9903 	while (*p) {
9904 		parent = *p;
9905 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9906 		if (sp->ptr < entry->ptr ||
9907 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9908 			p = &(*p)->rb_left;
9909 		} else if (sp->ptr > entry->ptr ||
9910 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9911 			p = &(*p)->rb_right;
9912 		} else {
9913 			spin_unlock(&fs_info->swapfile_pins_lock);
9914 			kfree(sp);
9915 			return 1;
9916 		}
9917 	}
9918 	rb_link_node(&sp->node, parent, p);
9919 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9920 	spin_unlock(&fs_info->swapfile_pins_lock);
9921 	return 0;
9922 }
9923 
9924 /* Free all of the entries pinned by this swapfile. */
9925 static void btrfs_free_swapfile_pins(struct inode *inode)
9926 {
9927 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9928 	struct btrfs_swapfile_pin *sp;
9929 	struct rb_node *node, *next;
9930 
9931 	spin_lock(&fs_info->swapfile_pins_lock);
9932 	node = rb_first(&fs_info->swapfile_pins);
9933 	while (node) {
9934 		next = rb_next(node);
9935 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9936 		if (sp->inode == inode) {
9937 			rb_erase(&sp->node, &fs_info->swapfile_pins);
9938 			if (sp->is_block_group)
9939 				btrfs_put_block_group(sp->ptr);
9940 			kfree(sp);
9941 		}
9942 		node = next;
9943 	}
9944 	spin_unlock(&fs_info->swapfile_pins_lock);
9945 }
9946 
9947 struct btrfs_swap_info {
9948 	u64 start;
9949 	u64 block_start;
9950 	u64 block_len;
9951 	u64 lowest_ppage;
9952 	u64 highest_ppage;
9953 	unsigned long nr_pages;
9954 	int nr_extents;
9955 };
9956 
9957 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9958 				 struct btrfs_swap_info *bsi)
9959 {
9960 	unsigned long nr_pages;
9961 	u64 first_ppage, first_ppage_reported, next_ppage;
9962 	int ret;
9963 
9964 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9965 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9966 				PAGE_SIZE) >> PAGE_SHIFT;
9967 
9968 	if (first_ppage >= next_ppage)
9969 		return 0;
9970 	nr_pages = next_ppage - first_ppage;
9971 
9972 	first_ppage_reported = first_ppage;
9973 	if (bsi->start == 0)
9974 		first_ppage_reported++;
9975 	if (bsi->lowest_ppage > first_ppage_reported)
9976 		bsi->lowest_ppage = first_ppage_reported;
9977 	if (bsi->highest_ppage < (next_ppage - 1))
9978 		bsi->highest_ppage = next_ppage - 1;
9979 
9980 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9981 	if (ret < 0)
9982 		return ret;
9983 	bsi->nr_extents += ret;
9984 	bsi->nr_pages += nr_pages;
9985 	return 0;
9986 }
9987 
9988 static void btrfs_swap_deactivate(struct file *file)
9989 {
9990 	struct inode *inode = file_inode(file);
9991 
9992 	btrfs_free_swapfile_pins(inode);
9993 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9994 }
9995 
9996 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9997 			       sector_t *span)
9998 {
9999 	struct inode *inode = file_inode(file);
10000 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10001 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10002 	struct extent_state *cached_state = NULL;
10003 	struct extent_map *em = NULL;
10004 	struct btrfs_device *device = NULL;
10005 	struct btrfs_swap_info bsi = {
10006 		.lowest_ppage = (sector_t)-1ULL,
10007 	};
10008 	int ret = 0;
10009 	u64 isize;
10010 	u64 start;
10011 
10012 	/*
10013 	 * If the swap file was just created, make sure delalloc is done. If the
10014 	 * file changes again after this, the user is doing something stupid and
10015 	 * we don't really care.
10016 	 */
10017 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10018 	if (ret)
10019 		return ret;
10020 
10021 	/*
10022 	 * The inode is locked, so these flags won't change after we check them.
10023 	 */
10024 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10025 		btrfs_warn(fs_info, "swapfile must not be compressed");
10026 		return -EINVAL;
10027 	}
10028 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10029 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10030 		return -EINVAL;
10031 	}
10032 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10033 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10034 		return -EINVAL;
10035 	}
10036 
10037 	/*
10038 	 * Balance or device remove/replace/resize can move stuff around from
10039 	 * under us. The exclop protection makes sure they aren't running/won't
10040 	 * run concurrently while we are mapping the swap extents, and
10041 	 * fs_info->swapfile_pins prevents them from running while the swap
10042 	 * file is active and moving the extents. Note that this also prevents
10043 	 * a concurrent device add which isn't actually necessary, but it's not
10044 	 * really worth the trouble to allow it.
10045 	 */
10046 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10047 		btrfs_warn(fs_info,
10048 	   "cannot activate swapfile while exclusive operation is running");
10049 		return -EBUSY;
10050 	}
10051 	/*
10052 	 * Snapshots can create extents which require COW even if NODATACOW is
10053 	 * set. We use this counter to prevent snapshots. We must increment it
10054 	 * before walking the extents because we don't want a concurrent
10055 	 * snapshot to run after we've already checked the extents.
10056 	 */
10057 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10058 
10059 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10060 
10061 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10062 	start = 0;
10063 	while (start < isize) {
10064 		u64 logical_block_start, physical_block_start;
10065 		struct btrfs_block_group *bg;
10066 		u64 len = isize - start;
10067 
10068 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10069 		if (IS_ERR(em)) {
10070 			ret = PTR_ERR(em);
10071 			goto out;
10072 		}
10073 
10074 		if (em->block_start == EXTENT_MAP_HOLE) {
10075 			btrfs_warn(fs_info, "swapfile must not have holes");
10076 			ret = -EINVAL;
10077 			goto out;
10078 		}
10079 		if (em->block_start == EXTENT_MAP_INLINE) {
10080 			/*
10081 			 * It's unlikely we'll ever actually find ourselves
10082 			 * here, as a file small enough to fit inline won't be
10083 			 * big enough to store more than the swap header, but in
10084 			 * case something changes in the future, let's catch it
10085 			 * here rather than later.
10086 			 */
10087 			btrfs_warn(fs_info, "swapfile must not be inline");
10088 			ret = -EINVAL;
10089 			goto out;
10090 		}
10091 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10092 			btrfs_warn(fs_info, "swapfile must not be compressed");
10093 			ret = -EINVAL;
10094 			goto out;
10095 		}
10096 
10097 		logical_block_start = em->block_start + (start - em->start);
10098 		len = min(len, em->len - (start - em->start));
10099 		free_extent_map(em);
10100 		em = NULL;
10101 
10102 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10103 		if (ret < 0) {
10104 			goto out;
10105 		} else if (ret) {
10106 			ret = 0;
10107 		} else {
10108 			btrfs_warn(fs_info,
10109 				   "swapfile must not be copy-on-write");
10110 			ret = -EINVAL;
10111 			goto out;
10112 		}
10113 
10114 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10115 		if (IS_ERR(em)) {
10116 			ret = PTR_ERR(em);
10117 			goto out;
10118 		}
10119 
10120 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10121 			btrfs_warn(fs_info,
10122 				   "swapfile must have single data profile");
10123 			ret = -EINVAL;
10124 			goto out;
10125 		}
10126 
10127 		if (device == NULL) {
10128 			device = em->map_lookup->stripes[0].dev;
10129 			ret = btrfs_add_swapfile_pin(inode, device, false);
10130 			if (ret == 1)
10131 				ret = 0;
10132 			else if (ret)
10133 				goto out;
10134 		} else if (device != em->map_lookup->stripes[0].dev) {
10135 			btrfs_warn(fs_info, "swapfile must be on one device");
10136 			ret = -EINVAL;
10137 			goto out;
10138 		}
10139 
10140 		physical_block_start = (em->map_lookup->stripes[0].physical +
10141 					(logical_block_start - em->start));
10142 		len = min(len, em->len - (logical_block_start - em->start));
10143 		free_extent_map(em);
10144 		em = NULL;
10145 
10146 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10147 		if (!bg) {
10148 			btrfs_warn(fs_info,
10149 			   "could not find block group containing swapfile");
10150 			ret = -EINVAL;
10151 			goto out;
10152 		}
10153 
10154 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10155 		if (ret) {
10156 			btrfs_put_block_group(bg);
10157 			if (ret == 1)
10158 				ret = 0;
10159 			else
10160 				goto out;
10161 		}
10162 
10163 		if (bsi.block_len &&
10164 		    bsi.block_start + bsi.block_len == physical_block_start) {
10165 			bsi.block_len += len;
10166 		} else {
10167 			if (bsi.block_len) {
10168 				ret = btrfs_add_swap_extent(sis, &bsi);
10169 				if (ret)
10170 					goto out;
10171 			}
10172 			bsi.start = start;
10173 			bsi.block_start = physical_block_start;
10174 			bsi.block_len = len;
10175 		}
10176 
10177 		start += len;
10178 	}
10179 
10180 	if (bsi.block_len)
10181 		ret = btrfs_add_swap_extent(sis, &bsi);
10182 
10183 out:
10184 	if (!IS_ERR_OR_NULL(em))
10185 		free_extent_map(em);
10186 
10187 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10188 
10189 	if (ret)
10190 		btrfs_swap_deactivate(file);
10191 
10192 	btrfs_exclop_finish(fs_info);
10193 
10194 	if (ret)
10195 		return ret;
10196 
10197 	if (device)
10198 		sis->bdev = device->bdev;
10199 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10200 	sis->max = bsi.nr_pages;
10201 	sis->pages = bsi.nr_pages - 1;
10202 	sis->highest_bit = bsi.nr_pages - 1;
10203 	return bsi.nr_extents;
10204 }
10205 #else
10206 static void btrfs_swap_deactivate(struct file *file)
10207 {
10208 }
10209 
10210 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10211 			       sector_t *span)
10212 {
10213 	return -EOPNOTSUPP;
10214 }
10215 #endif
10216 
10217 static const struct inode_operations btrfs_dir_inode_operations = {
10218 	.getattr	= btrfs_getattr,
10219 	.lookup		= btrfs_lookup,
10220 	.create		= btrfs_create,
10221 	.unlink		= btrfs_unlink,
10222 	.link		= btrfs_link,
10223 	.mkdir		= btrfs_mkdir,
10224 	.rmdir		= btrfs_rmdir,
10225 	.rename		= btrfs_rename2,
10226 	.symlink	= btrfs_symlink,
10227 	.setattr	= btrfs_setattr,
10228 	.mknod		= btrfs_mknod,
10229 	.listxattr	= btrfs_listxattr,
10230 	.permission	= btrfs_permission,
10231 	.get_acl	= btrfs_get_acl,
10232 	.set_acl	= btrfs_set_acl,
10233 	.update_time	= btrfs_update_time,
10234 	.tmpfile        = btrfs_tmpfile,
10235 };
10236 
10237 static const struct file_operations btrfs_dir_file_operations = {
10238 	.llseek		= generic_file_llseek,
10239 	.read		= generic_read_dir,
10240 	.iterate_shared	= btrfs_real_readdir,
10241 	.open		= btrfs_opendir,
10242 	.unlocked_ioctl	= btrfs_ioctl,
10243 #ifdef CONFIG_COMPAT
10244 	.compat_ioctl	= btrfs_compat_ioctl,
10245 #endif
10246 	.release        = btrfs_release_file,
10247 	.fsync		= btrfs_sync_file,
10248 };
10249 
10250 /*
10251  * btrfs doesn't support the bmap operation because swapfiles
10252  * use bmap to make a mapping of extents in the file.  They assume
10253  * these extents won't change over the life of the file and they
10254  * use the bmap result to do IO directly to the drive.
10255  *
10256  * the btrfs bmap call would return logical addresses that aren't
10257  * suitable for IO and they also will change frequently as COW
10258  * operations happen.  So, swapfile + btrfs == corruption.
10259  *
10260  * For now we're avoiding this by dropping bmap.
10261  */
10262 static const struct address_space_operations btrfs_aops = {
10263 	.readpage	= btrfs_readpage,
10264 	.writepage	= btrfs_writepage,
10265 	.writepages	= btrfs_writepages,
10266 	.readahead	= btrfs_readahead,
10267 	.direct_IO	= noop_direct_IO,
10268 	.invalidatepage = btrfs_invalidatepage,
10269 	.releasepage	= btrfs_releasepage,
10270 #ifdef CONFIG_MIGRATION
10271 	.migratepage	= btrfs_migratepage,
10272 #endif
10273 	.set_page_dirty	= btrfs_set_page_dirty,
10274 	.error_remove_page = generic_error_remove_page,
10275 	.swap_activate	= btrfs_swap_activate,
10276 	.swap_deactivate = btrfs_swap_deactivate,
10277 };
10278 
10279 static const struct inode_operations btrfs_file_inode_operations = {
10280 	.getattr	= btrfs_getattr,
10281 	.setattr	= btrfs_setattr,
10282 	.listxattr      = btrfs_listxattr,
10283 	.permission	= btrfs_permission,
10284 	.fiemap		= btrfs_fiemap,
10285 	.get_acl	= btrfs_get_acl,
10286 	.set_acl	= btrfs_set_acl,
10287 	.update_time	= btrfs_update_time,
10288 };
10289 static const struct inode_operations btrfs_special_inode_operations = {
10290 	.getattr	= btrfs_getattr,
10291 	.setattr	= btrfs_setattr,
10292 	.permission	= btrfs_permission,
10293 	.listxattr	= btrfs_listxattr,
10294 	.get_acl	= btrfs_get_acl,
10295 	.set_acl	= btrfs_set_acl,
10296 	.update_time	= btrfs_update_time,
10297 };
10298 static const struct inode_operations btrfs_symlink_inode_operations = {
10299 	.get_link	= page_get_link,
10300 	.getattr	= btrfs_getattr,
10301 	.setattr	= btrfs_setattr,
10302 	.permission	= btrfs_permission,
10303 	.listxattr	= btrfs_listxattr,
10304 	.update_time	= btrfs_update_time,
10305 };
10306 
10307 const struct dentry_operations btrfs_dentry_operations = {
10308 	.d_delete	= btrfs_dentry_delete,
10309 };
10310