1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 static const struct inode_operations btrfs_dir_inode_operations; 70 static const struct inode_operations btrfs_symlink_inode_operations; 71 static const struct inode_operations btrfs_dir_ro_inode_operations; 72 static const struct inode_operations btrfs_special_inode_operations; 73 static const struct inode_operations btrfs_file_inode_operations; 74 static const struct address_space_operations btrfs_aops; 75 static const struct address_space_operations btrfs_symlink_aops; 76 static const struct file_operations btrfs_dir_file_operations; 77 static struct extent_io_ops btrfs_extent_io_ops; 78 79 static struct kmem_cache *btrfs_inode_cachep; 80 static struct kmem_cache *btrfs_delalloc_work_cachep; 81 struct kmem_cache *btrfs_trans_handle_cachep; 82 struct kmem_cache *btrfs_transaction_cachep; 83 struct kmem_cache *btrfs_path_cachep; 84 struct kmem_cache *btrfs_free_space_cachep; 85 86 #define S_SHIFT 12 87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 95 }; 96 97 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 98 static int btrfs_truncate(struct inode *inode); 99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 100 static noinline int cow_file_range(struct inode *inode, 101 struct page *locked_page, 102 u64 start, u64 end, int *page_started, 103 unsigned long *nr_written, int unlock); 104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 105 u64 len, u64 orig_start, 106 u64 block_start, u64 block_len, 107 u64 orig_block_len, u64 ram_bytes, 108 int type); 109 110 static int btrfs_dirty_inode(struct inode *inode); 111 112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 113 void btrfs_test_inode_set_ops(struct inode *inode) 114 { 115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 116 } 117 #endif 118 119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 120 struct inode *inode, struct inode *dir, 121 const struct qstr *qstr) 122 { 123 int err; 124 125 err = btrfs_init_acl(trans, inode, dir); 126 if (!err) 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 128 return err; 129 } 130 131 /* 132 * this does all the hard work for inserting an inline extent into 133 * the btree. The caller should have done a btrfs_drop_extents so that 134 * no overlapping inline items exist in the btree 135 */ 136 static int insert_inline_extent(struct btrfs_trans_handle *trans, 137 struct btrfs_path *path, int extent_inserted, 138 struct btrfs_root *root, struct inode *inode, 139 u64 start, size_t size, size_t compressed_size, 140 int compress_type, 141 struct page **compressed_pages) 142 { 143 struct extent_buffer *leaf; 144 struct page *page = NULL; 145 char *kaddr; 146 unsigned long ptr; 147 struct btrfs_file_extent_item *ei; 148 int err = 0; 149 int ret; 150 size_t cur_size = size; 151 unsigned long offset; 152 153 if (compressed_size && compressed_pages) 154 cur_size = compressed_size; 155 156 inode_add_bytes(inode, size); 157 158 if (!extent_inserted) { 159 struct btrfs_key key; 160 size_t datasize; 161 162 key.objectid = btrfs_ino(inode); 163 key.offset = start; 164 key.type = BTRFS_EXTENT_DATA_KEY; 165 166 datasize = btrfs_file_extent_calc_inline_size(cur_size); 167 path->leave_spinning = 1; 168 ret = btrfs_insert_empty_item(trans, root, path, &key, 169 datasize); 170 if (ret) { 171 err = ret; 172 goto fail; 173 } 174 } 175 leaf = path->nodes[0]; 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_file_extent_item); 178 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 180 btrfs_set_file_extent_encryption(leaf, ei, 0); 181 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 182 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 183 ptr = btrfs_file_extent_inline_start(ei); 184 185 if (compress_type != BTRFS_COMPRESS_NONE) { 186 struct page *cpage; 187 int i = 0; 188 while (compressed_size > 0) { 189 cpage = compressed_pages[i]; 190 cur_size = min_t(unsigned long, compressed_size, 191 PAGE_CACHE_SIZE); 192 193 kaddr = kmap_atomic(cpage); 194 write_extent_buffer(leaf, kaddr, ptr, cur_size); 195 kunmap_atomic(kaddr); 196 197 i++; 198 ptr += cur_size; 199 compressed_size -= cur_size; 200 } 201 btrfs_set_file_extent_compression(leaf, ei, 202 compress_type); 203 } else { 204 page = find_get_page(inode->i_mapping, 205 start >> PAGE_CACHE_SHIFT); 206 btrfs_set_file_extent_compression(leaf, ei, 0); 207 kaddr = kmap_atomic(page); 208 offset = start & (PAGE_CACHE_SIZE - 1); 209 write_extent_buffer(leaf, kaddr + offset, ptr, size); 210 kunmap_atomic(kaddr); 211 page_cache_release(page); 212 } 213 btrfs_mark_buffer_dirty(leaf); 214 btrfs_release_path(path); 215 216 /* 217 * we're an inline extent, so nobody can 218 * extend the file past i_size without locking 219 * a page we already have locked. 220 * 221 * We must do any isize and inode updates 222 * before we unlock the pages. Otherwise we 223 * could end up racing with unlink. 224 */ 225 BTRFS_I(inode)->disk_i_size = inode->i_size; 226 ret = btrfs_update_inode(trans, root, inode); 227 228 return ret; 229 fail: 230 return err; 231 } 232 233 234 /* 235 * conditionally insert an inline extent into the file. This 236 * does the checks required to make sure the data is small enough 237 * to fit as an inline extent. 238 */ 239 static noinline int cow_file_range_inline(struct btrfs_root *root, 240 struct inode *inode, u64 start, 241 u64 end, size_t compressed_size, 242 int compress_type, 243 struct page **compressed_pages) 244 { 245 struct btrfs_trans_handle *trans; 246 u64 isize = i_size_read(inode); 247 u64 actual_end = min(end + 1, isize); 248 u64 inline_len = actual_end - start; 249 u64 aligned_end = ALIGN(end, root->sectorsize); 250 u64 data_len = inline_len; 251 int ret; 252 struct btrfs_path *path; 253 int extent_inserted = 0; 254 u32 extent_item_size; 255 256 if (compressed_size) 257 data_len = compressed_size; 258 259 if (start > 0 || 260 actual_end > PAGE_CACHE_SIZE || 261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 262 (!compressed_size && 263 (actual_end & (root->sectorsize - 1)) == 0) || 264 end + 1 < isize || 265 data_len > root->fs_info->max_inline) { 266 return 1; 267 } 268 269 path = btrfs_alloc_path(); 270 if (!path) 271 return -ENOMEM; 272 273 trans = btrfs_join_transaction(root); 274 if (IS_ERR(trans)) { 275 btrfs_free_path(path); 276 return PTR_ERR(trans); 277 } 278 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 279 280 if (compressed_size && compressed_pages) 281 extent_item_size = btrfs_file_extent_calc_inline_size( 282 compressed_size); 283 else 284 extent_item_size = btrfs_file_extent_calc_inline_size( 285 inline_len); 286 287 ret = __btrfs_drop_extents(trans, root, inode, path, 288 start, aligned_end, NULL, 289 1, 1, extent_item_size, &extent_inserted); 290 if (ret) { 291 btrfs_abort_transaction(trans, root, ret); 292 goto out; 293 } 294 295 if (isize > actual_end) 296 inline_len = min_t(u64, isize, actual_end); 297 ret = insert_inline_extent(trans, path, extent_inserted, 298 root, inode, start, 299 inline_len, compressed_size, 300 compress_type, compressed_pages); 301 if (ret && ret != -ENOSPC) { 302 btrfs_abort_transaction(trans, root, ret); 303 goto out; 304 } else if (ret == -ENOSPC) { 305 ret = 1; 306 goto out; 307 } 308 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 310 btrfs_delalloc_release_metadata(inode, end + 1 - start); 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 312 out: 313 btrfs_free_path(path); 314 btrfs_end_transaction(trans, root); 315 return ret; 316 } 317 318 struct async_extent { 319 u64 start; 320 u64 ram_size; 321 u64 compressed_size; 322 struct page **pages; 323 unsigned long nr_pages; 324 int compress_type; 325 struct list_head list; 326 }; 327 328 struct async_cow { 329 struct inode *inode; 330 struct btrfs_root *root; 331 struct page *locked_page; 332 u64 start; 333 u64 end; 334 struct list_head extents; 335 struct btrfs_work work; 336 }; 337 338 static noinline int add_async_extent(struct async_cow *cow, 339 u64 start, u64 ram_size, 340 u64 compressed_size, 341 struct page **pages, 342 unsigned long nr_pages, 343 int compress_type) 344 { 345 struct async_extent *async_extent; 346 347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 348 BUG_ON(!async_extent); /* -ENOMEM */ 349 async_extent->start = start; 350 async_extent->ram_size = ram_size; 351 async_extent->compressed_size = compressed_size; 352 async_extent->pages = pages; 353 async_extent->nr_pages = nr_pages; 354 async_extent->compress_type = compress_type; 355 list_add_tail(&async_extent->list, &cow->extents); 356 return 0; 357 } 358 359 static inline int inode_need_compress(struct inode *inode) 360 { 361 struct btrfs_root *root = BTRFS_I(inode)->root; 362 363 /* force compress */ 364 if (btrfs_test_opt(root, FORCE_COMPRESS)) 365 return 1; 366 /* bad compression ratios */ 367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 368 return 0; 369 if (btrfs_test_opt(root, COMPRESS) || 370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 371 BTRFS_I(inode)->force_compress) 372 return 1; 373 return 0; 374 } 375 376 /* 377 * we create compressed extents in two phases. The first 378 * phase compresses a range of pages that have already been 379 * locked (both pages and state bits are locked). 380 * 381 * This is done inside an ordered work queue, and the compression 382 * is spread across many cpus. The actual IO submission is step 383 * two, and the ordered work queue takes care of making sure that 384 * happens in the same order things were put onto the queue by 385 * writepages and friends. 386 * 387 * If this code finds it can't get good compression, it puts an 388 * entry onto the work queue to write the uncompressed bytes. This 389 * makes sure that both compressed inodes and uncompressed inodes 390 * are written in the same order that the flusher thread sent them 391 * down. 392 */ 393 static noinline void compress_file_range(struct inode *inode, 394 struct page *locked_page, 395 u64 start, u64 end, 396 struct async_cow *async_cow, 397 int *num_added) 398 { 399 struct btrfs_root *root = BTRFS_I(inode)->root; 400 u64 num_bytes; 401 u64 blocksize = root->sectorsize; 402 u64 actual_end; 403 u64 isize = i_size_read(inode); 404 int ret = 0; 405 struct page **pages = NULL; 406 unsigned long nr_pages; 407 unsigned long nr_pages_ret = 0; 408 unsigned long total_compressed = 0; 409 unsigned long total_in = 0; 410 unsigned long max_compressed = 128 * 1024; 411 unsigned long max_uncompressed = 128 * 1024; 412 int i; 413 int will_compress; 414 int compress_type = root->fs_info->compress_type; 415 int redirty = 0; 416 417 /* if this is a small write inside eof, kick off a defrag */ 418 if ((end - start + 1) < 16 * 1024 && 419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 420 btrfs_add_inode_defrag(NULL, inode); 421 422 actual_end = min_t(u64, isize, end + 1); 423 again: 424 will_compress = 0; 425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 427 428 /* 429 * we don't want to send crud past the end of i_size through 430 * compression, that's just a waste of CPU time. So, if the 431 * end of the file is before the start of our current 432 * requested range of bytes, we bail out to the uncompressed 433 * cleanup code that can deal with all of this. 434 * 435 * It isn't really the fastest way to fix things, but this is a 436 * very uncommon corner. 437 */ 438 if (actual_end <= start) 439 goto cleanup_and_bail_uncompressed; 440 441 total_compressed = actual_end - start; 442 443 /* 444 * skip compression for a small file range(<=blocksize) that 445 * isn't an inline extent, since it dosen't save disk space at all. 446 */ 447 if (total_compressed <= blocksize && 448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 449 goto cleanup_and_bail_uncompressed; 450 451 /* we want to make sure that amount of ram required to uncompress 452 * an extent is reasonable, so we limit the total size in ram 453 * of a compressed extent to 128k. This is a crucial number 454 * because it also controls how easily we can spread reads across 455 * cpus for decompression. 456 * 457 * We also want to make sure the amount of IO required to do 458 * a random read is reasonably small, so we limit the size of 459 * a compressed extent to 128k. 460 */ 461 total_compressed = min(total_compressed, max_uncompressed); 462 num_bytes = ALIGN(end - start + 1, blocksize); 463 num_bytes = max(blocksize, num_bytes); 464 total_in = 0; 465 ret = 0; 466 467 /* 468 * we do compression for mount -o compress and when the 469 * inode has not been flagged as nocompress. This flag can 470 * change at any time if we discover bad compression ratios. 471 */ 472 if (inode_need_compress(inode)) { 473 WARN_ON(pages); 474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 475 if (!pages) { 476 /* just bail out to the uncompressed code */ 477 goto cont; 478 } 479 480 if (BTRFS_I(inode)->force_compress) 481 compress_type = BTRFS_I(inode)->force_compress; 482 483 /* 484 * we need to call clear_page_dirty_for_io on each 485 * page in the range. Otherwise applications with the file 486 * mmap'd can wander in and change the page contents while 487 * we are compressing them. 488 * 489 * If the compression fails for any reason, we set the pages 490 * dirty again later on. 491 */ 492 extent_range_clear_dirty_for_io(inode, start, end); 493 redirty = 1; 494 ret = btrfs_compress_pages(compress_type, 495 inode->i_mapping, start, 496 total_compressed, pages, 497 nr_pages, &nr_pages_ret, 498 &total_in, 499 &total_compressed, 500 max_compressed); 501 502 if (!ret) { 503 unsigned long offset = total_compressed & 504 (PAGE_CACHE_SIZE - 1); 505 struct page *page = pages[nr_pages_ret - 1]; 506 char *kaddr; 507 508 /* zero the tail end of the last page, we might be 509 * sending it down to disk 510 */ 511 if (offset) { 512 kaddr = kmap_atomic(page); 513 memset(kaddr + offset, 0, 514 PAGE_CACHE_SIZE - offset); 515 kunmap_atomic(kaddr); 516 } 517 will_compress = 1; 518 } 519 } 520 cont: 521 if (start == 0) { 522 /* lets try to make an inline extent */ 523 if (ret || total_in < (actual_end - start)) { 524 /* we didn't compress the entire range, try 525 * to make an uncompressed inline extent. 526 */ 527 ret = cow_file_range_inline(root, inode, start, end, 528 0, 0, NULL); 529 } else { 530 /* try making a compressed inline extent */ 531 ret = cow_file_range_inline(root, inode, start, end, 532 total_compressed, 533 compress_type, pages); 534 } 535 if (ret <= 0) { 536 unsigned long clear_flags = EXTENT_DELALLOC | 537 EXTENT_DEFRAG; 538 unsigned long page_error_op; 539 540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 542 543 /* 544 * inline extent creation worked or returned error, 545 * we don't need to create any more async work items. 546 * Unlock and free up our temp pages. 547 */ 548 extent_clear_unlock_delalloc(inode, start, end, NULL, 549 clear_flags, PAGE_UNLOCK | 550 PAGE_CLEAR_DIRTY | 551 PAGE_SET_WRITEBACK | 552 page_error_op | 553 PAGE_END_WRITEBACK); 554 goto free_pages_out; 555 } 556 } 557 558 if (will_compress) { 559 /* 560 * we aren't doing an inline extent round the compressed size 561 * up to a block size boundary so the allocator does sane 562 * things 563 */ 564 total_compressed = ALIGN(total_compressed, blocksize); 565 566 /* 567 * one last check to make sure the compression is really a 568 * win, compare the page count read with the blocks on disk 569 */ 570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 571 if (total_compressed >= total_in) { 572 will_compress = 0; 573 } else { 574 num_bytes = total_in; 575 } 576 } 577 if (!will_compress && pages) { 578 /* 579 * the compression code ran but failed to make things smaller, 580 * free any pages it allocated and our page pointer array 581 */ 582 for (i = 0; i < nr_pages_ret; i++) { 583 WARN_ON(pages[i]->mapping); 584 page_cache_release(pages[i]); 585 } 586 kfree(pages); 587 pages = NULL; 588 total_compressed = 0; 589 nr_pages_ret = 0; 590 591 /* flag the file so we don't compress in the future */ 592 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 593 !(BTRFS_I(inode)->force_compress)) { 594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 595 } 596 } 597 if (will_compress) { 598 *num_added += 1; 599 600 /* the async work queues will take care of doing actual 601 * allocation on disk for these compressed pages, 602 * and will submit them to the elevator. 603 */ 604 add_async_extent(async_cow, start, num_bytes, 605 total_compressed, pages, nr_pages_ret, 606 compress_type); 607 608 if (start + num_bytes < end) { 609 start += num_bytes; 610 pages = NULL; 611 cond_resched(); 612 goto again; 613 } 614 } else { 615 cleanup_and_bail_uncompressed: 616 /* 617 * No compression, but we still need to write the pages in 618 * the file we've been given so far. redirty the locked 619 * page if it corresponds to our extent and set things up 620 * for the async work queue to run cow_file_range to do 621 * the normal delalloc dance 622 */ 623 if (page_offset(locked_page) >= start && 624 page_offset(locked_page) <= end) { 625 __set_page_dirty_nobuffers(locked_page); 626 /* unlocked later on in the async handlers */ 627 } 628 if (redirty) 629 extent_range_redirty_for_io(inode, start, end); 630 add_async_extent(async_cow, start, end - start + 1, 631 0, NULL, 0, BTRFS_COMPRESS_NONE); 632 *num_added += 1; 633 } 634 635 return; 636 637 free_pages_out: 638 for (i = 0; i < nr_pages_ret; i++) { 639 WARN_ON(pages[i]->mapping); 640 page_cache_release(pages[i]); 641 } 642 kfree(pages); 643 } 644 645 static void free_async_extent_pages(struct async_extent *async_extent) 646 { 647 int i; 648 649 if (!async_extent->pages) 650 return; 651 652 for (i = 0; i < async_extent->nr_pages; i++) { 653 WARN_ON(async_extent->pages[i]->mapping); 654 page_cache_release(async_extent->pages[i]); 655 } 656 kfree(async_extent->pages); 657 async_extent->nr_pages = 0; 658 async_extent->pages = NULL; 659 } 660 661 /* 662 * phase two of compressed writeback. This is the ordered portion 663 * of the code, which only gets called in the order the work was 664 * queued. We walk all the async extents created by compress_file_range 665 * and send them down to the disk. 666 */ 667 static noinline void submit_compressed_extents(struct inode *inode, 668 struct async_cow *async_cow) 669 { 670 struct async_extent *async_extent; 671 u64 alloc_hint = 0; 672 struct btrfs_key ins; 673 struct extent_map *em; 674 struct btrfs_root *root = BTRFS_I(inode)->root; 675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 676 struct extent_io_tree *io_tree; 677 int ret = 0; 678 679 again: 680 while (!list_empty(&async_cow->extents)) { 681 async_extent = list_entry(async_cow->extents.next, 682 struct async_extent, list); 683 list_del(&async_extent->list); 684 685 io_tree = &BTRFS_I(inode)->io_tree; 686 687 retry: 688 /* did the compression code fall back to uncompressed IO? */ 689 if (!async_extent->pages) { 690 int page_started = 0; 691 unsigned long nr_written = 0; 692 693 lock_extent(io_tree, async_extent->start, 694 async_extent->start + 695 async_extent->ram_size - 1); 696 697 /* allocate blocks */ 698 ret = cow_file_range(inode, async_cow->locked_page, 699 async_extent->start, 700 async_extent->start + 701 async_extent->ram_size - 1, 702 &page_started, &nr_written, 0); 703 704 /* JDM XXX */ 705 706 /* 707 * if page_started, cow_file_range inserted an 708 * inline extent and took care of all the unlocking 709 * and IO for us. Otherwise, we need to submit 710 * all those pages down to the drive. 711 */ 712 if (!page_started && !ret) 713 extent_write_locked_range(io_tree, 714 inode, async_extent->start, 715 async_extent->start + 716 async_extent->ram_size - 1, 717 btrfs_get_extent, 718 WB_SYNC_ALL); 719 else if (ret) 720 unlock_page(async_cow->locked_page); 721 kfree(async_extent); 722 cond_resched(); 723 continue; 724 } 725 726 lock_extent(io_tree, async_extent->start, 727 async_extent->start + async_extent->ram_size - 1); 728 729 ret = btrfs_reserve_extent(root, 730 async_extent->compressed_size, 731 async_extent->compressed_size, 732 0, alloc_hint, &ins, 1, 1); 733 if (ret) { 734 free_async_extent_pages(async_extent); 735 736 if (ret == -ENOSPC) { 737 unlock_extent(io_tree, async_extent->start, 738 async_extent->start + 739 async_extent->ram_size - 1); 740 741 /* 742 * we need to redirty the pages if we decide to 743 * fallback to uncompressed IO, otherwise we 744 * will not submit these pages down to lower 745 * layers. 746 */ 747 extent_range_redirty_for_io(inode, 748 async_extent->start, 749 async_extent->start + 750 async_extent->ram_size - 1); 751 752 goto retry; 753 } 754 goto out_free; 755 } 756 /* 757 * here we're doing allocation and writeback of the 758 * compressed pages 759 */ 760 btrfs_drop_extent_cache(inode, async_extent->start, 761 async_extent->start + 762 async_extent->ram_size - 1, 0); 763 764 em = alloc_extent_map(); 765 if (!em) { 766 ret = -ENOMEM; 767 goto out_free_reserve; 768 } 769 em->start = async_extent->start; 770 em->len = async_extent->ram_size; 771 em->orig_start = em->start; 772 em->mod_start = em->start; 773 em->mod_len = em->len; 774 775 em->block_start = ins.objectid; 776 em->block_len = ins.offset; 777 em->orig_block_len = ins.offset; 778 em->ram_bytes = async_extent->ram_size; 779 em->bdev = root->fs_info->fs_devices->latest_bdev; 780 em->compress_type = async_extent->compress_type; 781 set_bit(EXTENT_FLAG_PINNED, &em->flags); 782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 783 em->generation = -1; 784 785 while (1) { 786 write_lock(&em_tree->lock); 787 ret = add_extent_mapping(em_tree, em, 1); 788 write_unlock(&em_tree->lock); 789 if (ret != -EEXIST) { 790 free_extent_map(em); 791 break; 792 } 793 btrfs_drop_extent_cache(inode, async_extent->start, 794 async_extent->start + 795 async_extent->ram_size - 1, 0); 796 } 797 798 if (ret) 799 goto out_free_reserve; 800 801 ret = btrfs_add_ordered_extent_compress(inode, 802 async_extent->start, 803 ins.objectid, 804 async_extent->ram_size, 805 ins.offset, 806 BTRFS_ORDERED_COMPRESSED, 807 async_extent->compress_type); 808 if (ret) { 809 btrfs_drop_extent_cache(inode, async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 0); 812 goto out_free_reserve; 813 } 814 815 /* 816 * clear dirty, set writeback and unlock the pages. 817 */ 818 extent_clear_unlock_delalloc(inode, async_extent->start, 819 async_extent->start + 820 async_extent->ram_size - 1, 821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 823 PAGE_SET_WRITEBACK); 824 ret = btrfs_submit_compressed_write(inode, 825 async_extent->start, 826 async_extent->ram_size, 827 ins.objectid, 828 ins.offset, async_extent->pages, 829 async_extent->nr_pages); 830 if (ret) { 831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 832 struct page *p = async_extent->pages[0]; 833 const u64 start = async_extent->start; 834 const u64 end = start + async_extent->ram_size - 1; 835 836 p->mapping = inode->i_mapping; 837 tree->ops->writepage_end_io_hook(p, start, end, 838 NULL, 0); 839 p->mapping = NULL; 840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 841 PAGE_END_WRITEBACK | 842 PAGE_SET_ERROR); 843 free_async_extent_pages(async_extent); 844 } 845 alloc_hint = ins.objectid + ins.offset; 846 kfree(async_extent); 847 cond_resched(); 848 } 849 return; 850 out_free_reserve: 851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 852 out_free: 853 extent_clear_unlock_delalloc(inode, async_extent->start, 854 async_extent->start + 855 async_extent->ram_size - 1, 856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 860 PAGE_SET_ERROR); 861 free_async_extent_pages(async_extent); 862 kfree(async_extent); 863 goto again; 864 } 865 866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 867 u64 num_bytes) 868 { 869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 870 struct extent_map *em; 871 u64 alloc_hint = 0; 872 873 read_lock(&em_tree->lock); 874 em = search_extent_mapping(em_tree, start, num_bytes); 875 if (em) { 876 /* 877 * if block start isn't an actual block number then find the 878 * first block in this inode and use that as a hint. If that 879 * block is also bogus then just don't worry about it. 880 */ 881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 882 free_extent_map(em); 883 em = search_extent_mapping(em_tree, 0, 0); 884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 885 alloc_hint = em->block_start; 886 if (em) 887 free_extent_map(em); 888 } else { 889 alloc_hint = em->block_start; 890 free_extent_map(em); 891 } 892 } 893 read_unlock(&em_tree->lock); 894 895 return alloc_hint; 896 } 897 898 /* 899 * when extent_io.c finds a delayed allocation range in the file, 900 * the call backs end up in this code. The basic idea is to 901 * allocate extents on disk for the range, and create ordered data structs 902 * in ram to track those extents. 903 * 904 * locked_page is the page that writepage had locked already. We use 905 * it to make sure we don't do extra locks or unlocks. 906 * 907 * *page_started is set to one if we unlock locked_page and do everything 908 * required to start IO on it. It may be clean and already done with 909 * IO when we return. 910 */ 911 static noinline int cow_file_range(struct inode *inode, 912 struct page *locked_page, 913 u64 start, u64 end, int *page_started, 914 unsigned long *nr_written, 915 int unlock) 916 { 917 struct btrfs_root *root = BTRFS_I(inode)->root; 918 u64 alloc_hint = 0; 919 u64 num_bytes; 920 unsigned long ram_size; 921 u64 disk_num_bytes; 922 u64 cur_alloc_size; 923 u64 blocksize = root->sectorsize; 924 struct btrfs_key ins; 925 struct extent_map *em; 926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 927 int ret = 0; 928 929 if (btrfs_is_free_space_inode(inode)) { 930 WARN_ON_ONCE(1); 931 ret = -EINVAL; 932 goto out_unlock; 933 } 934 935 num_bytes = ALIGN(end - start + 1, blocksize); 936 num_bytes = max(blocksize, num_bytes); 937 disk_num_bytes = num_bytes; 938 939 /* if this is a small write inside eof, kick off defrag */ 940 if (num_bytes < 64 * 1024 && 941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 942 btrfs_add_inode_defrag(NULL, inode); 943 944 if (start == 0) { 945 /* lets try to make an inline extent */ 946 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 947 NULL); 948 if (ret == 0) { 949 extent_clear_unlock_delalloc(inode, start, end, NULL, 950 EXTENT_LOCKED | EXTENT_DELALLOC | 951 EXTENT_DEFRAG, PAGE_UNLOCK | 952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 953 PAGE_END_WRITEBACK); 954 955 *nr_written = *nr_written + 956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 957 *page_started = 1; 958 goto out; 959 } else if (ret < 0) { 960 goto out_unlock; 961 } 962 } 963 964 BUG_ON(disk_num_bytes > 965 btrfs_super_total_bytes(root->fs_info->super_copy)); 966 967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 969 970 while (disk_num_bytes > 0) { 971 unsigned long op; 972 973 cur_alloc_size = disk_num_bytes; 974 ret = btrfs_reserve_extent(root, cur_alloc_size, 975 root->sectorsize, 0, alloc_hint, 976 &ins, 1, 1); 977 if (ret < 0) 978 goto out_unlock; 979 980 em = alloc_extent_map(); 981 if (!em) { 982 ret = -ENOMEM; 983 goto out_reserve; 984 } 985 em->start = start; 986 em->orig_start = em->start; 987 ram_size = ins.offset; 988 em->len = ins.offset; 989 em->mod_start = em->start; 990 em->mod_len = em->len; 991 992 em->block_start = ins.objectid; 993 em->block_len = ins.offset; 994 em->orig_block_len = ins.offset; 995 em->ram_bytes = ram_size; 996 em->bdev = root->fs_info->fs_devices->latest_bdev; 997 set_bit(EXTENT_FLAG_PINNED, &em->flags); 998 em->generation = -1; 999 1000 while (1) { 1001 write_lock(&em_tree->lock); 1002 ret = add_extent_mapping(em_tree, em, 1); 1003 write_unlock(&em_tree->lock); 1004 if (ret != -EEXIST) { 1005 free_extent_map(em); 1006 break; 1007 } 1008 btrfs_drop_extent_cache(inode, start, 1009 start + ram_size - 1, 0); 1010 } 1011 if (ret) 1012 goto out_reserve; 1013 1014 cur_alloc_size = ins.offset; 1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1016 ram_size, cur_alloc_size, 0); 1017 if (ret) 1018 goto out_drop_extent_cache; 1019 1020 if (root->root_key.objectid == 1021 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1022 ret = btrfs_reloc_clone_csums(inode, start, 1023 cur_alloc_size); 1024 if (ret) 1025 goto out_drop_extent_cache; 1026 } 1027 1028 if (disk_num_bytes < cur_alloc_size) 1029 break; 1030 1031 /* we're not doing compressed IO, don't unlock the first 1032 * page (which the caller expects to stay locked), don't 1033 * clear any dirty bits and don't set any writeback bits 1034 * 1035 * Do set the Private2 bit so we know this page was properly 1036 * setup for writepage 1037 */ 1038 op = unlock ? PAGE_UNLOCK : 0; 1039 op |= PAGE_SET_PRIVATE2; 1040 1041 extent_clear_unlock_delalloc(inode, start, 1042 start + ram_size - 1, locked_page, 1043 EXTENT_LOCKED | EXTENT_DELALLOC, 1044 op); 1045 disk_num_bytes -= cur_alloc_size; 1046 num_bytes -= cur_alloc_size; 1047 alloc_hint = ins.objectid + ins.offset; 1048 start += cur_alloc_size; 1049 } 1050 out: 1051 return ret; 1052 1053 out_drop_extent_cache: 1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1055 out_reserve: 1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1057 out_unlock: 1058 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1060 EXTENT_DELALLOC | EXTENT_DEFRAG, 1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1063 goto out; 1064 } 1065 1066 /* 1067 * work queue call back to started compression on a file and pages 1068 */ 1069 static noinline void async_cow_start(struct btrfs_work *work) 1070 { 1071 struct async_cow *async_cow; 1072 int num_added = 0; 1073 async_cow = container_of(work, struct async_cow, work); 1074 1075 compress_file_range(async_cow->inode, async_cow->locked_page, 1076 async_cow->start, async_cow->end, async_cow, 1077 &num_added); 1078 if (num_added == 0) { 1079 btrfs_add_delayed_iput(async_cow->inode); 1080 async_cow->inode = NULL; 1081 } 1082 } 1083 1084 /* 1085 * work queue call back to submit previously compressed pages 1086 */ 1087 static noinline void async_cow_submit(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 struct btrfs_root *root; 1091 unsigned long nr_pages; 1092 1093 async_cow = container_of(work, struct async_cow, work); 1094 1095 root = async_cow->root; 1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1097 PAGE_CACHE_SHIFT; 1098 1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1100 5 * 1024 * 1024 && 1101 waitqueue_active(&root->fs_info->async_submit_wait)) 1102 wake_up(&root->fs_info->async_submit_wait); 1103 1104 if (async_cow->inode) 1105 submit_compressed_extents(async_cow->inode, async_cow); 1106 } 1107 1108 static noinline void async_cow_free(struct btrfs_work *work) 1109 { 1110 struct async_cow *async_cow; 1111 async_cow = container_of(work, struct async_cow, work); 1112 if (async_cow->inode) 1113 btrfs_add_delayed_iput(async_cow->inode); 1114 kfree(async_cow); 1115 } 1116 1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1118 u64 start, u64 end, int *page_started, 1119 unsigned long *nr_written) 1120 { 1121 struct async_cow *async_cow; 1122 struct btrfs_root *root = BTRFS_I(inode)->root; 1123 unsigned long nr_pages; 1124 u64 cur_end; 1125 int limit = 10 * 1024 * 1024; 1126 1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1128 1, 0, NULL, GFP_NOFS); 1129 while (start < end) { 1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1131 BUG_ON(!async_cow); /* -ENOMEM */ 1132 async_cow->inode = igrab(inode); 1133 async_cow->root = root; 1134 async_cow->locked_page = locked_page; 1135 async_cow->start = start; 1136 1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1138 !btrfs_test_opt(root, FORCE_COMPRESS)) 1139 cur_end = end; 1140 else 1141 cur_end = min(end, start + 512 * 1024 - 1); 1142 1143 async_cow->end = cur_end; 1144 INIT_LIST_HEAD(&async_cow->extents); 1145 1146 btrfs_init_work(&async_cow->work, 1147 btrfs_delalloc_helper, 1148 async_cow_start, async_cow_submit, 1149 async_cow_free); 1150 1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1152 PAGE_CACHE_SHIFT; 1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1154 1155 btrfs_queue_work(root->fs_info->delalloc_workers, 1156 &async_cow->work); 1157 1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1159 wait_event(root->fs_info->async_submit_wait, 1160 (atomic_read(&root->fs_info->async_delalloc_pages) < 1161 limit)); 1162 } 1163 1164 while (atomic_read(&root->fs_info->async_submit_draining) && 1165 atomic_read(&root->fs_info->async_delalloc_pages)) { 1166 wait_event(root->fs_info->async_submit_wait, 1167 (atomic_read(&root->fs_info->async_delalloc_pages) == 1168 0)); 1169 } 1170 1171 *nr_written += nr_pages; 1172 start = cur_end + 1; 1173 } 1174 *page_started = 1; 1175 return 0; 1176 } 1177 1178 static noinline int csum_exist_in_range(struct btrfs_root *root, 1179 u64 bytenr, u64 num_bytes) 1180 { 1181 int ret; 1182 struct btrfs_ordered_sum *sums; 1183 LIST_HEAD(list); 1184 1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1186 bytenr + num_bytes - 1, &list, 0); 1187 if (ret == 0 && list_empty(&list)) 1188 return 0; 1189 1190 while (!list_empty(&list)) { 1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1192 list_del(&sums->list); 1193 kfree(sums); 1194 } 1195 return 1; 1196 } 1197 1198 /* 1199 * when nowcow writeback call back. This checks for snapshots or COW copies 1200 * of the extents that exist in the file, and COWs the file as required. 1201 * 1202 * If no cow copies or snapshots exist, we write directly to the existing 1203 * blocks on disk 1204 */ 1205 static noinline int run_delalloc_nocow(struct inode *inode, 1206 struct page *locked_page, 1207 u64 start, u64 end, int *page_started, int force, 1208 unsigned long *nr_written) 1209 { 1210 struct btrfs_root *root = BTRFS_I(inode)->root; 1211 struct btrfs_trans_handle *trans; 1212 struct extent_buffer *leaf; 1213 struct btrfs_path *path; 1214 struct btrfs_file_extent_item *fi; 1215 struct btrfs_key found_key; 1216 u64 cow_start; 1217 u64 cur_offset; 1218 u64 extent_end; 1219 u64 extent_offset; 1220 u64 disk_bytenr; 1221 u64 num_bytes; 1222 u64 disk_num_bytes; 1223 u64 ram_bytes; 1224 int extent_type; 1225 int ret, err; 1226 int type; 1227 int nocow; 1228 int check_prev = 1; 1229 bool nolock; 1230 u64 ino = btrfs_ino(inode); 1231 1232 path = btrfs_alloc_path(); 1233 if (!path) { 1234 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1235 EXTENT_LOCKED | EXTENT_DELALLOC | 1236 EXTENT_DO_ACCOUNTING | 1237 EXTENT_DEFRAG, PAGE_UNLOCK | 1238 PAGE_CLEAR_DIRTY | 1239 PAGE_SET_WRITEBACK | 1240 PAGE_END_WRITEBACK); 1241 return -ENOMEM; 1242 } 1243 1244 nolock = btrfs_is_free_space_inode(inode); 1245 1246 if (nolock) 1247 trans = btrfs_join_transaction_nolock(root); 1248 else 1249 trans = btrfs_join_transaction(root); 1250 1251 if (IS_ERR(trans)) { 1252 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1253 EXTENT_LOCKED | EXTENT_DELALLOC | 1254 EXTENT_DO_ACCOUNTING | 1255 EXTENT_DEFRAG, PAGE_UNLOCK | 1256 PAGE_CLEAR_DIRTY | 1257 PAGE_SET_WRITEBACK | 1258 PAGE_END_WRITEBACK); 1259 btrfs_free_path(path); 1260 return PTR_ERR(trans); 1261 } 1262 1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1264 1265 cow_start = (u64)-1; 1266 cur_offset = start; 1267 while (1) { 1268 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1269 cur_offset, 0); 1270 if (ret < 0) 1271 goto error; 1272 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &found_key, 1275 path->slots[0] - 1); 1276 if (found_key.objectid == ino && 1277 found_key.type == BTRFS_EXTENT_DATA_KEY) 1278 path->slots[0]--; 1279 } 1280 check_prev = 0; 1281 next_slot: 1282 leaf = path->nodes[0]; 1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1284 ret = btrfs_next_leaf(root, path); 1285 if (ret < 0) 1286 goto error; 1287 if (ret > 0) 1288 break; 1289 leaf = path->nodes[0]; 1290 } 1291 1292 nocow = 0; 1293 disk_bytenr = 0; 1294 num_bytes = 0; 1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1296 1297 if (found_key.objectid > ino || 1298 found_key.type > BTRFS_EXTENT_DATA_KEY || 1299 found_key.offset > end) 1300 break; 1301 1302 if (found_key.offset > cur_offset) { 1303 extent_end = found_key.offset; 1304 extent_type = 0; 1305 goto out_check; 1306 } 1307 1308 fi = btrfs_item_ptr(leaf, path->slots[0], 1309 struct btrfs_file_extent_item); 1310 extent_type = btrfs_file_extent_type(leaf, fi); 1311 1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1313 if (extent_type == BTRFS_FILE_EXTENT_REG || 1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1316 extent_offset = btrfs_file_extent_offset(leaf, fi); 1317 extent_end = found_key.offset + 1318 btrfs_file_extent_num_bytes(leaf, fi); 1319 disk_num_bytes = 1320 btrfs_file_extent_disk_num_bytes(leaf, fi); 1321 if (extent_end <= start) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (disk_bytenr == 0) 1326 goto out_check; 1327 if (btrfs_file_extent_compression(leaf, fi) || 1328 btrfs_file_extent_encryption(leaf, fi) || 1329 btrfs_file_extent_other_encoding(leaf, fi)) 1330 goto out_check; 1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1332 goto out_check; 1333 if (btrfs_extent_readonly(root, disk_bytenr)) 1334 goto out_check; 1335 if (btrfs_cross_ref_exist(trans, root, ino, 1336 found_key.offset - 1337 extent_offset, disk_bytenr)) 1338 goto out_check; 1339 disk_bytenr += extent_offset; 1340 disk_bytenr += cur_offset - found_key.offset; 1341 num_bytes = min(end + 1, extent_end) - cur_offset; 1342 /* 1343 * if there are pending snapshots for this root, 1344 * we fall into common COW way. 1345 */ 1346 if (!nolock) { 1347 err = btrfs_start_write_no_snapshoting(root); 1348 if (!err) 1349 goto out_check; 1350 } 1351 /* 1352 * force cow if csum exists in the range. 1353 * this ensure that csum for a given extent are 1354 * either valid or do not exist. 1355 */ 1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1357 goto out_check; 1358 nocow = 1; 1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1360 extent_end = found_key.offset + 1361 btrfs_file_extent_inline_len(leaf, 1362 path->slots[0], fi); 1363 extent_end = ALIGN(extent_end, root->sectorsize); 1364 } else { 1365 BUG_ON(1); 1366 } 1367 out_check: 1368 if (extent_end <= start) { 1369 path->slots[0]++; 1370 if (!nolock && nocow) 1371 btrfs_end_write_no_snapshoting(root); 1372 goto next_slot; 1373 } 1374 if (!nocow) { 1375 if (cow_start == (u64)-1) 1376 cow_start = cur_offset; 1377 cur_offset = extent_end; 1378 if (cur_offset > end) 1379 break; 1380 path->slots[0]++; 1381 goto next_slot; 1382 } 1383 1384 btrfs_release_path(path); 1385 if (cow_start != (u64)-1) { 1386 ret = cow_file_range(inode, locked_page, 1387 cow_start, found_key.offset - 1, 1388 page_started, nr_written, 1); 1389 if (ret) { 1390 if (!nolock && nocow) 1391 btrfs_end_write_no_snapshoting(root); 1392 goto error; 1393 } 1394 cow_start = (u64)-1; 1395 } 1396 1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1398 struct extent_map *em; 1399 struct extent_map_tree *em_tree; 1400 em_tree = &BTRFS_I(inode)->extent_tree; 1401 em = alloc_extent_map(); 1402 BUG_ON(!em); /* -ENOMEM */ 1403 em->start = cur_offset; 1404 em->orig_start = found_key.offset - extent_offset; 1405 em->len = num_bytes; 1406 em->block_len = num_bytes; 1407 em->block_start = disk_bytenr; 1408 em->orig_block_len = disk_num_bytes; 1409 em->ram_bytes = ram_bytes; 1410 em->bdev = root->fs_info->fs_devices->latest_bdev; 1411 em->mod_start = em->start; 1412 em->mod_len = em->len; 1413 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1414 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1415 em->generation = -1; 1416 while (1) { 1417 write_lock(&em_tree->lock); 1418 ret = add_extent_mapping(em_tree, em, 1); 1419 write_unlock(&em_tree->lock); 1420 if (ret != -EEXIST) { 1421 free_extent_map(em); 1422 break; 1423 } 1424 btrfs_drop_extent_cache(inode, em->start, 1425 em->start + em->len - 1, 0); 1426 } 1427 type = BTRFS_ORDERED_PREALLOC; 1428 } else { 1429 type = BTRFS_ORDERED_NOCOW; 1430 } 1431 1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1433 num_bytes, num_bytes, type); 1434 BUG_ON(ret); /* -ENOMEM */ 1435 1436 if (root->root_key.objectid == 1437 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1438 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1439 num_bytes); 1440 if (ret) { 1441 if (!nolock && nocow) 1442 btrfs_end_write_no_snapshoting(root); 1443 goto error; 1444 } 1445 } 1446 1447 extent_clear_unlock_delalloc(inode, cur_offset, 1448 cur_offset + num_bytes - 1, 1449 locked_page, EXTENT_LOCKED | 1450 EXTENT_DELALLOC, PAGE_UNLOCK | 1451 PAGE_SET_PRIVATE2); 1452 if (!nolock && nocow) 1453 btrfs_end_write_no_snapshoting(root); 1454 cur_offset = extent_end; 1455 if (cur_offset > end) 1456 break; 1457 } 1458 btrfs_release_path(path); 1459 1460 if (cur_offset <= end && cow_start == (u64)-1) { 1461 cow_start = cur_offset; 1462 cur_offset = end; 1463 } 1464 1465 if (cow_start != (u64)-1) { 1466 ret = cow_file_range(inode, locked_page, cow_start, end, 1467 page_started, nr_written, 1); 1468 if (ret) 1469 goto error; 1470 } 1471 1472 error: 1473 err = btrfs_end_transaction(trans, root); 1474 if (!ret) 1475 ret = err; 1476 1477 if (ret && cur_offset < end) 1478 extent_clear_unlock_delalloc(inode, cur_offset, end, 1479 locked_page, EXTENT_LOCKED | 1480 EXTENT_DELALLOC | EXTENT_DEFRAG | 1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1482 PAGE_CLEAR_DIRTY | 1483 PAGE_SET_WRITEBACK | 1484 PAGE_END_WRITEBACK); 1485 btrfs_free_path(path); 1486 return ret; 1487 } 1488 1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1490 { 1491 1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1494 return 0; 1495 1496 /* 1497 * @defrag_bytes is a hint value, no spinlock held here, 1498 * if is not zero, it means the file is defragging. 1499 * Force cow if given extent needs to be defragged. 1500 */ 1501 if (BTRFS_I(inode)->defrag_bytes && 1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1503 EXTENT_DEFRAG, 0, NULL)) 1504 return 1; 1505 1506 return 0; 1507 } 1508 1509 /* 1510 * extent_io.c call back to do delayed allocation processing 1511 */ 1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1513 u64 start, u64 end, int *page_started, 1514 unsigned long *nr_written) 1515 { 1516 int ret; 1517 int force_cow = need_force_cow(inode, start, end); 1518 1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1520 ret = run_delalloc_nocow(inode, locked_page, start, end, 1521 page_started, 1, nr_written); 1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1523 ret = run_delalloc_nocow(inode, locked_page, start, end, 1524 page_started, 0, nr_written); 1525 } else if (!inode_need_compress(inode)) { 1526 ret = cow_file_range(inode, locked_page, start, end, 1527 page_started, nr_written, 1); 1528 } else { 1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1530 &BTRFS_I(inode)->runtime_flags); 1531 ret = cow_file_range_async(inode, locked_page, start, end, 1532 page_started, nr_written); 1533 } 1534 return ret; 1535 } 1536 1537 static void btrfs_split_extent_hook(struct inode *inode, 1538 struct extent_state *orig, u64 split) 1539 { 1540 u64 size; 1541 1542 /* not delalloc, ignore it */ 1543 if (!(orig->state & EXTENT_DELALLOC)) 1544 return; 1545 1546 size = orig->end - orig->start + 1; 1547 if (size > BTRFS_MAX_EXTENT_SIZE) { 1548 u64 num_extents; 1549 u64 new_size; 1550 1551 /* 1552 * See the explanation in btrfs_merge_extent_hook, the same 1553 * applies here, just in reverse. 1554 */ 1555 new_size = orig->end - split + 1; 1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1557 BTRFS_MAX_EXTENT_SIZE); 1558 new_size = split - orig->start; 1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1560 BTRFS_MAX_EXTENT_SIZE); 1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1563 return; 1564 } 1565 1566 spin_lock(&BTRFS_I(inode)->lock); 1567 BTRFS_I(inode)->outstanding_extents++; 1568 spin_unlock(&BTRFS_I(inode)->lock); 1569 } 1570 1571 /* 1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1573 * extents so we can keep track of new extents that are just merged onto old 1574 * extents, such as when we are doing sequential writes, so we can properly 1575 * account for the metadata space we'll need. 1576 */ 1577 static void btrfs_merge_extent_hook(struct inode *inode, 1578 struct extent_state *new, 1579 struct extent_state *other) 1580 { 1581 u64 new_size, old_size; 1582 u64 num_extents; 1583 1584 /* not delalloc, ignore it */ 1585 if (!(other->state & EXTENT_DELALLOC)) 1586 return; 1587 1588 if (new->start > other->start) 1589 new_size = new->end - other->start + 1; 1590 else 1591 new_size = other->end - new->start + 1; 1592 1593 /* we're not bigger than the max, unreserve the space and go */ 1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1595 spin_lock(&BTRFS_I(inode)->lock); 1596 BTRFS_I(inode)->outstanding_extents--; 1597 spin_unlock(&BTRFS_I(inode)->lock); 1598 return; 1599 } 1600 1601 /* 1602 * We have to add up either side to figure out how many extents were 1603 * accounted for before we merged into one big extent. If the number of 1604 * extents we accounted for is <= the amount we need for the new range 1605 * then we can return, otherwise drop. Think of it like this 1606 * 1607 * [ 4k][MAX_SIZE] 1608 * 1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1610 * need 2 outstanding extents, on one side we have 1 and the other side 1611 * we have 1 so they are == and we can return. But in this case 1612 * 1613 * [MAX_SIZE+4k][MAX_SIZE+4k] 1614 * 1615 * Each range on their own accounts for 2 extents, but merged together 1616 * they are only 3 extents worth of accounting, so we need to drop in 1617 * this case. 1618 */ 1619 old_size = other->end - other->start + 1; 1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1621 BTRFS_MAX_EXTENT_SIZE); 1622 old_size = new->end - new->start + 1; 1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1624 BTRFS_MAX_EXTENT_SIZE); 1625 1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1628 return; 1629 1630 spin_lock(&BTRFS_I(inode)->lock); 1631 BTRFS_I(inode)->outstanding_extents--; 1632 spin_unlock(&BTRFS_I(inode)->lock); 1633 } 1634 1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1636 struct inode *inode) 1637 { 1638 spin_lock(&root->delalloc_lock); 1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1641 &root->delalloc_inodes); 1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1643 &BTRFS_I(inode)->runtime_flags); 1644 root->nr_delalloc_inodes++; 1645 if (root->nr_delalloc_inodes == 1) { 1646 spin_lock(&root->fs_info->delalloc_root_lock); 1647 BUG_ON(!list_empty(&root->delalloc_root)); 1648 list_add_tail(&root->delalloc_root, 1649 &root->fs_info->delalloc_roots); 1650 spin_unlock(&root->fs_info->delalloc_root_lock); 1651 } 1652 } 1653 spin_unlock(&root->delalloc_lock); 1654 } 1655 1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1657 struct inode *inode) 1658 { 1659 spin_lock(&root->delalloc_lock); 1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1663 &BTRFS_I(inode)->runtime_flags); 1664 root->nr_delalloc_inodes--; 1665 if (!root->nr_delalloc_inodes) { 1666 spin_lock(&root->fs_info->delalloc_root_lock); 1667 BUG_ON(list_empty(&root->delalloc_root)); 1668 list_del_init(&root->delalloc_root); 1669 spin_unlock(&root->fs_info->delalloc_root_lock); 1670 } 1671 } 1672 spin_unlock(&root->delalloc_lock); 1673 } 1674 1675 /* 1676 * extent_io.c set_bit_hook, used to track delayed allocation 1677 * bytes in this file, and to maintain the list of inodes that 1678 * have pending delalloc work to be done. 1679 */ 1680 static void btrfs_set_bit_hook(struct inode *inode, 1681 struct extent_state *state, unsigned *bits) 1682 { 1683 1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1685 WARN_ON(1); 1686 /* 1687 * set_bit and clear bit hooks normally require _irqsave/restore 1688 * but in this case, we are only testing for the DELALLOC 1689 * bit, which is only set or cleared with irqs on 1690 */ 1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1692 struct btrfs_root *root = BTRFS_I(inode)->root; 1693 u64 len = state->end + 1 - state->start; 1694 bool do_list = !btrfs_is_free_space_inode(inode); 1695 1696 if (*bits & EXTENT_FIRST_DELALLOC) { 1697 *bits &= ~EXTENT_FIRST_DELALLOC; 1698 } else { 1699 spin_lock(&BTRFS_I(inode)->lock); 1700 BTRFS_I(inode)->outstanding_extents++; 1701 spin_unlock(&BTRFS_I(inode)->lock); 1702 } 1703 1704 /* For sanity tests */ 1705 if (btrfs_test_is_dummy_root(root)) 1706 return; 1707 1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1709 root->fs_info->delalloc_batch); 1710 spin_lock(&BTRFS_I(inode)->lock); 1711 BTRFS_I(inode)->delalloc_bytes += len; 1712 if (*bits & EXTENT_DEFRAG) 1713 BTRFS_I(inode)->defrag_bytes += len; 1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1715 &BTRFS_I(inode)->runtime_flags)) 1716 btrfs_add_delalloc_inodes(root, inode); 1717 spin_unlock(&BTRFS_I(inode)->lock); 1718 } 1719 } 1720 1721 /* 1722 * extent_io.c clear_bit_hook, see set_bit_hook for why 1723 */ 1724 static void btrfs_clear_bit_hook(struct inode *inode, 1725 struct extent_state *state, 1726 unsigned *bits) 1727 { 1728 u64 len = state->end + 1 - state->start; 1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1730 BTRFS_MAX_EXTENT_SIZE); 1731 1732 spin_lock(&BTRFS_I(inode)->lock); 1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1734 BTRFS_I(inode)->defrag_bytes -= len; 1735 spin_unlock(&BTRFS_I(inode)->lock); 1736 1737 /* 1738 * set_bit and clear bit hooks normally require _irqsave/restore 1739 * but in this case, we are only testing for the DELALLOC 1740 * bit, which is only set or cleared with irqs on 1741 */ 1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1743 struct btrfs_root *root = BTRFS_I(inode)->root; 1744 bool do_list = !btrfs_is_free_space_inode(inode); 1745 1746 if (*bits & EXTENT_FIRST_DELALLOC) { 1747 *bits &= ~EXTENT_FIRST_DELALLOC; 1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1749 spin_lock(&BTRFS_I(inode)->lock); 1750 BTRFS_I(inode)->outstanding_extents -= num_extents; 1751 spin_unlock(&BTRFS_I(inode)->lock); 1752 } 1753 1754 /* 1755 * We don't reserve metadata space for space cache inodes so we 1756 * don't need to call dellalloc_release_metadata if there is an 1757 * error. 1758 */ 1759 if (*bits & EXTENT_DO_ACCOUNTING && 1760 root != root->fs_info->tree_root) 1761 btrfs_delalloc_release_metadata(inode, len); 1762 1763 /* For sanity tests. */ 1764 if (btrfs_test_is_dummy_root(root)) 1765 return; 1766 1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1768 && do_list && !(state->state & EXTENT_NORESERVE)) 1769 btrfs_free_reserved_data_space(inode, len); 1770 1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1772 root->fs_info->delalloc_batch); 1773 spin_lock(&BTRFS_I(inode)->lock); 1774 BTRFS_I(inode)->delalloc_bytes -= len; 1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1777 &BTRFS_I(inode)->runtime_flags)) 1778 btrfs_del_delalloc_inode(root, inode); 1779 spin_unlock(&BTRFS_I(inode)->lock); 1780 } 1781 } 1782 1783 /* 1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1785 * we don't create bios that span stripes or chunks 1786 */ 1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1788 size_t size, struct bio *bio, 1789 unsigned long bio_flags) 1790 { 1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1793 u64 length = 0; 1794 u64 map_length; 1795 int ret; 1796 1797 if (bio_flags & EXTENT_BIO_COMPRESSED) 1798 return 0; 1799 1800 length = bio->bi_iter.bi_size; 1801 map_length = length; 1802 ret = btrfs_map_block(root->fs_info, rw, logical, 1803 &map_length, NULL, 0); 1804 /* Will always return 0 with map_multi == NULL */ 1805 BUG_ON(ret < 0); 1806 if (map_length < length + size) 1807 return 1; 1808 return 0; 1809 } 1810 1811 /* 1812 * in order to insert checksums into the metadata in large chunks, 1813 * we wait until bio submission time. All the pages in the bio are 1814 * checksummed and sums are attached onto the ordered extent record. 1815 * 1816 * At IO completion time the cums attached on the ordered extent record 1817 * are inserted into the btree 1818 */ 1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1820 struct bio *bio, int mirror_num, 1821 unsigned long bio_flags, 1822 u64 bio_offset) 1823 { 1824 struct btrfs_root *root = BTRFS_I(inode)->root; 1825 int ret = 0; 1826 1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1828 BUG_ON(ret); /* -ENOMEM */ 1829 return 0; 1830 } 1831 1832 /* 1833 * in order to insert checksums into the metadata in large chunks, 1834 * we wait until bio submission time. All the pages in the bio are 1835 * checksummed and sums are attached onto the ordered extent record. 1836 * 1837 * At IO completion time the cums attached on the ordered extent record 1838 * are inserted into the btree 1839 */ 1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1841 int mirror_num, unsigned long bio_flags, 1842 u64 bio_offset) 1843 { 1844 struct btrfs_root *root = BTRFS_I(inode)->root; 1845 int ret; 1846 1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1848 if (ret) 1849 bio_endio(bio, ret); 1850 return ret; 1851 } 1852 1853 /* 1854 * extent_io.c submission hook. This does the right thing for csum calculation 1855 * on write, or reading the csums from the tree before a read 1856 */ 1857 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1858 int mirror_num, unsigned long bio_flags, 1859 u64 bio_offset) 1860 { 1861 struct btrfs_root *root = BTRFS_I(inode)->root; 1862 int ret = 0; 1863 int skip_sum; 1864 int metadata = 0; 1865 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1866 1867 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1868 1869 if (btrfs_is_free_space_inode(inode)) 1870 metadata = 2; 1871 1872 if (!(rw & REQ_WRITE)) { 1873 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1874 if (ret) 1875 goto out; 1876 1877 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1878 ret = btrfs_submit_compressed_read(inode, bio, 1879 mirror_num, 1880 bio_flags); 1881 goto out; 1882 } else if (!skip_sum) { 1883 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1884 if (ret) 1885 goto out; 1886 } 1887 goto mapit; 1888 } else if (async && !skip_sum) { 1889 /* csum items have already been cloned */ 1890 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1891 goto mapit; 1892 /* we're doing a write, do the async checksumming */ 1893 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1894 inode, rw, bio, mirror_num, 1895 bio_flags, bio_offset, 1896 __btrfs_submit_bio_start, 1897 __btrfs_submit_bio_done); 1898 goto out; 1899 } else if (!skip_sum) { 1900 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1901 if (ret) 1902 goto out; 1903 } 1904 1905 mapit: 1906 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1907 1908 out: 1909 if (ret < 0) 1910 bio_endio(bio, ret); 1911 return ret; 1912 } 1913 1914 /* 1915 * given a list of ordered sums record them in the inode. This happens 1916 * at IO completion time based on sums calculated at bio submission time. 1917 */ 1918 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1919 struct inode *inode, u64 file_offset, 1920 struct list_head *list) 1921 { 1922 struct btrfs_ordered_sum *sum; 1923 1924 list_for_each_entry(sum, list, list) { 1925 trans->adding_csums = 1; 1926 btrfs_csum_file_blocks(trans, 1927 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1928 trans->adding_csums = 0; 1929 } 1930 return 0; 1931 } 1932 1933 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1934 struct extent_state **cached_state) 1935 { 1936 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1937 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1938 cached_state, GFP_NOFS); 1939 } 1940 1941 /* see btrfs_writepage_start_hook for details on why this is required */ 1942 struct btrfs_writepage_fixup { 1943 struct page *page; 1944 struct btrfs_work work; 1945 }; 1946 1947 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1948 { 1949 struct btrfs_writepage_fixup *fixup; 1950 struct btrfs_ordered_extent *ordered; 1951 struct extent_state *cached_state = NULL; 1952 struct page *page; 1953 struct inode *inode; 1954 u64 page_start; 1955 u64 page_end; 1956 int ret; 1957 1958 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1959 page = fixup->page; 1960 again: 1961 lock_page(page); 1962 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1963 ClearPageChecked(page); 1964 goto out_page; 1965 } 1966 1967 inode = page->mapping->host; 1968 page_start = page_offset(page); 1969 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1970 1971 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1972 &cached_state); 1973 1974 /* already ordered? We're done */ 1975 if (PagePrivate2(page)) 1976 goto out; 1977 1978 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1979 if (ordered) { 1980 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1981 page_end, &cached_state, GFP_NOFS); 1982 unlock_page(page); 1983 btrfs_start_ordered_extent(inode, ordered, 1); 1984 btrfs_put_ordered_extent(ordered); 1985 goto again; 1986 } 1987 1988 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1989 if (ret) { 1990 mapping_set_error(page->mapping, ret); 1991 end_extent_writepage(page, ret, page_start, page_end); 1992 ClearPageChecked(page); 1993 goto out; 1994 } 1995 1996 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1997 ClearPageChecked(page); 1998 set_page_dirty(page); 1999 out: 2000 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2001 &cached_state, GFP_NOFS); 2002 out_page: 2003 unlock_page(page); 2004 page_cache_release(page); 2005 kfree(fixup); 2006 } 2007 2008 /* 2009 * There are a few paths in the higher layers of the kernel that directly 2010 * set the page dirty bit without asking the filesystem if it is a 2011 * good idea. This causes problems because we want to make sure COW 2012 * properly happens and the data=ordered rules are followed. 2013 * 2014 * In our case any range that doesn't have the ORDERED bit set 2015 * hasn't been properly setup for IO. We kick off an async process 2016 * to fix it up. The async helper will wait for ordered extents, set 2017 * the delalloc bit and make it safe to write the page. 2018 */ 2019 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2020 { 2021 struct inode *inode = page->mapping->host; 2022 struct btrfs_writepage_fixup *fixup; 2023 struct btrfs_root *root = BTRFS_I(inode)->root; 2024 2025 /* this page is properly in the ordered list */ 2026 if (TestClearPagePrivate2(page)) 2027 return 0; 2028 2029 if (PageChecked(page)) 2030 return -EAGAIN; 2031 2032 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2033 if (!fixup) 2034 return -EAGAIN; 2035 2036 SetPageChecked(page); 2037 page_cache_get(page); 2038 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2039 btrfs_writepage_fixup_worker, NULL, NULL); 2040 fixup->page = page; 2041 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2042 return -EBUSY; 2043 } 2044 2045 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2046 struct inode *inode, u64 file_pos, 2047 u64 disk_bytenr, u64 disk_num_bytes, 2048 u64 num_bytes, u64 ram_bytes, 2049 u8 compression, u8 encryption, 2050 u16 other_encoding, int extent_type) 2051 { 2052 struct btrfs_root *root = BTRFS_I(inode)->root; 2053 struct btrfs_file_extent_item *fi; 2054 struct btrfs_path *path; 2055 struct extent_buffer *leaf; 2056 struct btrfs_key ins; 2057 int extent_inserted = 0; 2058 int ret; 2059 2060 path = btrfs_alloc_path(); 2061 if (!path) 2062 return -ENOMEM; 2063 2064 /* 2065 * we may be replacing one extent in the tree with another. 2066 * The new extent is pinned in the extent map, and we don't want 2067 * to drop it from the cache until it is completely in the btree. 2068 * 2069 * So, tell btrfs_drop_extents to leave this extent in the cache. 2070 * the caller is expected to unpin it and allow it to be merged 2071 * with the others. 2072 */ 2073 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2074 file_pos + num_bytes, NULL, 0, 2075 1, sizeof(*fi), &extent_inserted); 2076 if (ret) 2077 goto out; 2078 2079 if (!extent_inserted) { 2080 ins.objectid = btrfs_ino(inode); 2081 ins.offset = file_pos; 2082 ins.type = BTRFS_EXTENT_DATA_KEY; 2083 2084 path->leave_spinning = 1; 2085 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2086 sizeof(*fi)); 2087 if (ret) 2088 goto out; 2089 } 2090 leaf = path->nodes[0]; 2091 fi = btrfs_item_ptr(leaf, path->slots[0], 2092 struct btrfs_file_extent_item); 2093 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2094 btrfs_set_file_extent_type(leaf, fi, extent_type); 2095 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2096 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2097 btrfs_set_file_extent_offset(leaf, fi, 0); 2098 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2099 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2100 btrfs_set_file_extent_compression(leaf, fi, compression); 2101 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2102 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2103 2104 btrfs_mark_buffer_dirty(leaf); 2105 btrfs_release_path(path); 2106 2107 inode_add_bytes(inode, num_bytes); 2108 2109 ins.objectid = disk_bytenr; 2110 ins.offset = disk_num_bytes; 2111 ins.type = BTRFS_EXTENT_ITEM_KEY; 2112 ret = btrfs_alloc_reserved_file_extent(trans, root, 2113 root->root_key.objectid, 2114 btrfs_ino(inode), file_pos, &ins); 2115 out: 2116 btrfs_free_path(path); 2117 2118 return ret; 2119 } 2120 2121 /* snapshot-aware defrag */ 2122 struct sa_defrag_extent_backref { 2123 struct rb_node node; 2124 struct old_sa_defrag_extent *old; 2125 u64 root_id; 2126 u64 inum; 2127 u64 file_pos; 2128 u64 extent_offset; 2129 u64 num_bytes; 2130 u64 generation; 2131 }; 2132 2133 struct old_sa_defrag_extent { 2134 struct list_head list; 2135 struct new_sa_defrag_extent *new; 2136 2137 u64 extent_offset; 2138 u64 bytenr; 2139 u64 offset; 2140 u64 len; 2141 int count; 2142 }; 2143 2144 struct new_sa_defrag_extent { 2145 struct rb_root root; 2146 struct list_head head; 2147 struct btrfs_path *path; 2148 struct inode *inode; 2149 u64 file_pos; 2150 u64 len; 2151 u64 bytenr; 2152 u64 disk_len; 2153 u8 compress_type; 2154 }; 2155 2156 static int backref_comp(struct sa_defrag_extent_backref *b1, 2157 struct sa_defrag_extent_backref *b2) 2158 { 2159 if (b1->root_id < b2->root_id) 2160 return -1; 2161 else if (b1->root_id > b2->root_id) 2162 return 1; 2163 2164 if (b1->inum < b2->inum) 2165 return -1; 2166 else if (b1->inum > b2->inum) 2167 return 1; 2168 2169 if (b1->file_pos < b2->file_pos) 2170 return -1; 2171 else if (b1->file_pos > b2->file_pos) 2172 return 1; 2173 2174 /* 2175 * [------------------------------] ===> (a range of space) 2176 * |<--->| |<---->| =============> (fs/file tree A) 2177 * |<---------------------------->| ===> (fs/file tree B) 2178 * 2179 * A range of space can refer to two file extents in one tree while 2180 * refer to only one file extent in another tree. 2181 * 2182 * So we may process a disk offset more than one time(two extents in A) 2183 * and locate at the same extent(one extent in B), then insert two same 2184 * backrefs(both refer to the extent in B). 2185 */ 2186 return 0; 2187 } 2188 2189 static void backref_insert(struct rb_root *root, 2190 struct sa_defrag_extent_backref *backref) 2191 { 2192 struct rb_node **p = &root->rb_node; 2193 struct rb_node *parent = NULL; 2194 struct sa_defrag_extent_backref *entry; 2195 int ret; 2196 2197 while (*p) { 2198 parent = *p; 2199 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2200 2201 ret = backref_comp(backref, entry); 2202 if (ret < 0) 2203 p = &(*p)->rb_left; 2204 else 2205 p = &(*p)->rb_right; 2206 } 2207 2208 rb_link_node(&backref->node, parent, p); 2209 rb_insert_color(&backref->node, root); 2210 } 2211 2212 /* 2213 * Note the backref might has changed, and in this case we just return 0. 2214 */ 2215 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2216 void *ctx) 2217 { 2218 struct btrfs_file_extent_item *extent; 2219 struct btrfs_fs_info *fs_info; 2220 struct old_sa_defrag_extent *old = ctx; 2221 struct new_sa_defrag_extent *new = old->new; 2222 struct btrfs_path *path = new->path; 2223 struct btrfs_key key; 2224 struct btrfs_root *root; 2225 struct sa_defrag_extent_backref *backref; 2226 struct extent_buffer *leaf; 2227 struct inode *inode = new->inode; 2228 int slot; 2229 int ret; 2230 u64 extent_offset; 2231 u64 num_bytes; 2232 2233 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2234 inum == btrfs_ino(inode)) 2235 return 0; 2236 2237 key.objectid = root_id; 2238 key.type = BTRFS_ROOT_ITEM_KEY; 2239 key.offset = (u64)-1; 2240 2241 fs_info = BTRFS_I(inode)->root->fs_info; 2242 root = btrfs_read_fs_root_no_name(fs_info, &key); 2243 if (IS_ERR(root)) { 2244 if (PTR_ERR(root) == -ENOENT) 2245 return 0; 2246 WARN_ON(1); 2247 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2248 inum, offset, root_id); 2249 return PTR_ERR(root); 2250 } 2251 2252 key.objectid = inum; 2253 key.type = BTRFS_EXTENT_DATA_KEY; 2254 if (offset > (u64)-1 << 32) 2255 key.offset = 0; 2256 else 2257 key.offset = offset; 2258 2259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2260 if (WARN_ON(ret < 0)) 2261 return ret; 2262 ret = 0; 2263 2264 while (1) { 2265 cond_resched(); 2266 2267 leaf = path->nodes[0]; 2268 slot = path->slots[0]; 2269 2270 if (slot >= btrfs_header_nritems(leaf)) { 2271 ret = btrfs_next_leaf(root, path); 2272 if (ret < 0) { 2273 goto out; 2274 } else if (ret > 0) { 2275 ret = 0; 2276 goto out; 2277 } 2278 continue; 2279 } 2280 2281 path->slots[0]++; 2282 2283 btrfs_item_key_to_cpu(leaf, &key, slot); 2284 2285 if (key.objectid > inum) 2286 goto out; 2287 2288 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2289 continue; 2290 2291 extent = btrfs_item_ptr(leaf, slot, 2292 struct btrfs_file_extent_item); 2293 2294 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2295 continue; 2296 2297 /* 2298 * 'offset' refers to the exact key.offset, 2299 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2300 * (key.offset - extent_offset). 2301 */ 2302 if (key.offset != offset) 2303 continue; 2304 2305 extent_offset = btrfs_file_extent_offset(leaf, extent); 2306 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2307 2308 if (extent_offset >= old->extent_offset + old->offset + 2309 old->len || extent_offset + num_bytes <= 2310 old->extent_offset + old->offset) 2311 continue; 2312 break; 2313 } 2314 2315 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2316 if (!backref) { 2317 ret = -ENOENT; 2318 goto out; 2319 } 2320 2321 backref->root_id = root_id; 2322 backref->inum = inum; 2323 backref->file_pos = offset; 2324 backref->num_bytes = num_bytes; 2325 backref->extent_offset = extent_offset; 2326 backref->generation = btrfs_file_extent_generation(leaf, extent); 2327 backref->old = old; 2328 backref_insert(&new->root, backref); 2329 old->count++; 2330 out: 2331 btrfs_release_path(path); 2332 WARN_ON(ret); 2333 return ret; 2334 } 2335 2336 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2337 struct new_sa_defrag_extent *new) 2338 { 2339 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2340 struct old_sa_defrag_extent *old, *tmp; 2341 int ret; 2342 2343 new->path = path; 2344 2345 list_for_each_entry_safe(old, tmp, &new->head, list) { 2346 ret = iterate_inodes_from_logical(old->bytenr + 2347 old->extent_offset, fs_info, 2348 path, record_one_backref, 2349 old); 2350 if (ret < 0 && ret != -ENOENT) 2351 return false; 2352 2353 /* no backref to be processed for this extent */ 2354 if (!old->count) { 2355 list_del(&old->list); 2356 kfree(old); 2357 } 2358 } 2359 2360 if (list_empty(&new->head)) 2361 return false; 2362 2363 return true; 2364 } 2365 2366 static int relink_is_mergable(struct extent_buffer *leaf, 2367 struct btrfs_file_extent_item *fi, 2368 struct new_sa_defrag_extent *new) 2369 { 2370 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2371 return 0; 2372 2373 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2374 return 0; 2375 2376 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2377 return 0; 2378 2379 if (btrfs_file_extent_encryption(leaf, fi) || 2380 btrfs_file_extent_other_encoding(leaf, fi)) 2381 return 0; 2382 2383 return 1; 2384 } 2385 2386 /* 2387 * Note the backref might has changed, and in this case we just return 0. 2388 */ 2389 static noinline int relink_extent_backref(struct btrfs_path *path, 2390 struct sa_defrag_extent_backref *prev, 2391 struct sa_defrag_extent_backref *backref) 2392 { 2393 struct btrfs_file_extent_item *extent; 2394 struct btrfs_file_extent_item *item; 2395 struct btrfs_ordered_extent *ordered; 2396 struct btrfs_trans_handle *trans; 2397 struct btrfs_fs_info *fs_info; 2398 struct btrfs_root *root; 2399 struct btrfs_key key; 2400 struct extent_buffer *leaf; 2401 struct old_sa_defrag_extent *old = backref->old; 2402 struct new_sa_defrag_extent *new = old->new; 2403 struct inode *src_inode = new->inode; 2404 struct inode *inode; 2405 struct extent_state *cached = NULL; 2406 int ret = 0; 2407 u64 start; 2408 u64 len; 2409 u64 lock_start; 2410 u64 lock_end; 2411 bool merge = false; 2412 int index; 2413 2414 if (prev && prev->root_id == backref->root_id && 2415 prev->inum == backref->inum && 2416 prev->file_pos + prev->num_bytes == backref->file_pos) 2417 merge = true; 2418 2419 /* step 1: get root */ 2420 key.objectid = backref->root_id; 2421 key.type = BTRFS_ROOT_ITEM_KEY; 2422 key.offset = (u64)-1; 2423 2424 fs_info = BTRFS_I(src_inode)->root->fs_info; 2425 index = srcu_read_lock(&fs_info->subvol_srcu); 2426 2427 root = btrfs_read_fs_root_no_name(fs_info, &key); 2428 if (IS_ERR(root)) { 2429 srcu_read_unlock(&fs_info->subvol_srcu, index); 2430 if (PTR_ERR(root) == -ENOENT) 2431 return 0; 2432 return PTR_ERR(root); 2433 } 2434 2435 if (btrfs_root_readonly(root)) { 2436 srcu_read_unlock(&fs_info->subvol_srcu, index); 2437 return 0; 2438 } 2439 2440 /* step 2: get inode */ 2441 key.objectid = backref->inum; 2442 key.type = BTRFS_INODE_ITEM_KEY; 2443 key.offset = 0; 2444 2445 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2446 if (IS_ERR(inode)) { 2447 srcu_read_unlock(&fs_info->subvol_srcu, index); 2448 return 0; 2449 } 2450 2451 srcu_read_unlock(&fs_info->subvol_srcu, index); 2452 2453 /* step 3: relink backref */ 2454 lock_start = backref->file_pos; 2455 lock_end = backref->file_pos + backref->num_bytes - 1; 2456 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2457 0, &cached); 2458 2459 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2460 if (ordered) { 2461 btrfs_put_ordered_extent(ordered); 2462 goto out_unlock; 2463 } 2464 2465 trans = btrfs_join_transaction(root); 2466 if (IS_ERR(trans)) { 2467 ret = PTR_ERR(trans); 2468 goto out_unlock; 2469 } 2470 2471 key.objectid = backref->inum; 2472 key.type = BTRFS_EXTENT_DATA_KEY; 2473 key.offset = backref->file_pos; 2474 2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2476 if (ret < 0) { 2477 goto out_free_path; 2478 } else if (ret > 0) { 2479 ret = 0; 2480 goto out_free_path; 2481 } 2482 2483 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2484 struct btrfs_file_extent_item); 2485 2486 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2487 backref->generation) 2488 goto out_free_path; 2489 2490 btrfs_release_path(path); 2491 2492 start = backref->file_pos; 2493 if (backref->extent_offset < old->extent_offset + old->offset) 2494 start += old->extent_offset + old->offset - 2495 backref->extent_offset; 2496 2497 len = min(backref->extent_offset + backref->num_bytes, 2498 old->extent_offset + old->offset + old->len); 2499 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2500 2501 ret = btrfs_drop_extents(trans, root, inode, start, 2502 start + len, 1); 2503 if (ret) 2504 goto out_free_path; 2505 again: 2506 key.objectid = btrfs_ino(inode); 2507 key.type = BTRFS_EXTENT_DATA_KEY; 2508 key.offset = start; 2509 2510 path->leave_spinning = 1; 2511 if (merge) { 2512 struct btrfs_file_extent_item *fi; 2513 u64 extent_len; 2514 struct btrfs_key found_key; 2515 2516 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2517 if (ret < 0) 2518 goto out_free_path; 2519 2520 path->slots[0]--; 2521 leaf = path->nodes[0]; 2522 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2523 2524 fi = btrfs_item_ptr(leaf, path->slots[0], 2525 struct btrfs_file_extent_item); 2526 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2527 2528 if (extent_len + found_key.offset == start && 2529 relink_is_mergable(leaf, fi, new)) { 2530 btrfs_set_file_extent_num_bytes(leaf, fi, 2531 extent_len + len); 2532 btrfs_mark_buffer_dirty(leaf); 2533 inode_add_bytes(inode, len); 2534 2535 ret = 1; 2536 goto out_free_path; 2537 } else { 2538 merge = false; 2539 btrfs_release_path(path); 2540 goto again; 2541 } 2542 } 2543 2544 ret = btrfs_insert_empty_item(trans, root, path, &key, 2545 sizeof(*extent)); 2546 if (ret) { 2547 btrfs_abort_transaction(trans, root, ret); 2548 goto out_free_path; 2549 } 2550 2551 leaf = path->nodes[0]; 2552 item = btrfs_item_ptr(leaf, path->slots[0], 2553 struct btrfs_file_extent_item); 2554 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2555 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2556 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2557 btrfs_set_file_extent_num_bytes(leaf, item, len); 2558 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2559 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2560 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2561 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2562 btrfs_set_file_extent_encryption(leaf, item, 0); 2563 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2564 2565 btrfs_mark_buffer_dirty(leaf); 2566 inode_add_bytes(inode, len); 2567 btrfs_release_path(path); 2568 2569 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2570 new->disk_len, 0, 2571 backref->root_id, backref->inum, 2572 new->file_pos, 0); /* start - extent_offset */ 2573 if (ret) { 2574 btrfs_abort_transaction(trans, root, ret); 2575 goto out_free_path; 2576 } 2577 2578 ret = 1; 2579 out_free_path: 2580 btrfs_release_path(path); 2581 path->leave_spinning = 0; 2582 btrfs_end_transaction(trans, root); 2583 out_unlock: 2584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2585 &cached, GFP_NOFS); 2586 iput(inode); 2587 return ret; 2588 } 2589 2590 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2591 { 2592 struct old_sa_defrag_extent *old, *tmp; 2593 2594 if (!new) 2595 return; 2596 2597 list_for_each_entry_safe(old, tmp, &new->head, list) { 2598 list_del(&old->list); 2599 kfree(old); 2600 } 2601 kfree(new); 2602 } 2603 2604 static void relink_file_extents(struct new_sa_defrag_extent *new) 2605 { 2606 struct btrfs_path *path; 2607 struct sa_defrag_extent_backref *backref; 2608 struct sa_defrag_extent_backref *prev = NULL; 2609 struct inode *inode; 2610 struct btrfs_root *root; 2611 struct rb_node *node; 2612 int ret; 2613 2614 inode = new->inode; 2615 root = BTRFS_I(inode)->root; 2616 2617 path = btrfs_alloc_path(); 2618 if (!path) 2619 return; 2620 2621 if (!record_extent_backrefs(path, new)) { 2622 btrfs_free_path(path); 2623 goto out; 2624 } 2625 btrfs_release_path(path); 2626 2627 while (1) { 2628 node = rb_first(&new->root); 2629 if (!node) 2630 break; 2631 rb_erase(node, &new->root); 2632 2633 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2634 2635 ret = relink_extent_backref(path, prev, backref); 2636 WARN_ON(ret < 0); 2637 2638 kfree(prev); 2639 2640 if (ret == 1) 2641 prev = backref; 2642 else 2643 prev = NULL; 2644 cond_resched(); 2645 } 2646 kfree(prev); 2647 2648 btrfs_free_path(path); 2649 out: 2650 free_sa_defrag_extent(new); 2651 2652 atomic_dec(&root->fs_info->defrag_running); 2653 wake_up(&root->fs_info->transaction_wait); 2654 } 2655 2656 static struct new_sa_defrag_extent * 2657 record_old_file_extents(struct inode *inode, 2658 struct btrfs_ordered_extent *ordered) 2659 { 2660 struct btrfs_root *root = BTRFS_I(inode)->root; 2661 struct btrfs_path *path; 2662 struct btrfs_key key; 2663 struct old_sa_defrag_extent *old; 2664 struct new_sa_defrag_extent *new; 2665 int ret; 2666 2667 new = kmalloc(sizeof(*new), GFP_NOFS); 2668 if (!new) 2669 return NULL; 2670 2671 new->inode = inode; 2672 new->file_pos = ordered->file_offset; 2673 new->len = ordered->len; 2674 new->bytenr = ordered->start; 2675 new->disk_len = ordered->disk_len; 2676 new->compress_type = ordered->compress_type; 2677 new->root = RB_ROOT; 2678 INIT_LIST_HEAD(&new->head); 2679 2680 path = btrfs_alloc_path(); 2681 if (!path) 2682 goto out_kfree; 2683 2684 key.objectid = btrfs_ino(inode); 2685 key.type = BTRFS_EXTENT_DATA_KEY; 2686 key.offset = new->file_pos; 2687 2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2689 if (ret < 0) 2690 goto out_free_path; 2691 if (ret > 0 && path->slots[0] > 0) 2692 path->slots[0]--; 2693 2694 /* find out all the old extents for the file range */ 2695 while (1) { 2696 struct btrfs_file_extent_item *extent; 2697 struct extent_buffer *l; 2698 int slot; 2699 u64 num_bytes; 2700 u64 offset; 2701 u64 end; 2702 u64 disk_bytenr; 2703 u64 extent_offset; 2704 2705 l = path->nodes[0]; 2706 slot = path->slots[0]; 2707 2708 if (slot >= btrfs_header_nritems(l)) { 2709 ret = btrfs_next_leaf(root, path); 2710 if (ret < 0) 2711 goto out_free_path; 2712 else if (ret > 0) 2713 break; 2714 continue; 2715 } 2716 2717 btrfs_item_key_to_cpu(l, &key, slot); 2718 2719 if (key.objectid != btrfs_ino(inode)) 2720 break; 2721 if (key.type != BTRFS_EXTENT_DATA_KEY) 2722 break; 2723 if (key.offset >= new->file_pos + new->len) 2724 break; 2725 2726 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2727 2728 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2729 if (key.offset + num_bytes < new->file_pos) 2730 goto next; 2731 2732 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2733 if (!disk_bytenr) 2734 goto next; 2735 2736 extent_offset = btrfs_file_extent_offset(l, extent); 2737 2738 old = kmalloc(sizeof(*old), GFP_NOFS); 2739 if (!old) 2740 goto out_free_path; 2741 2742 offset = max(new->file_pos, key.offset); 2743 end = min(new->file_pos + new->len, key.offset + num_bytes); 2744 2745 old->bytenr = disk_bytenr; 2746 old->extent_offset = extent_offset; 2747 old->offset = offset - key.offset; 2748 old->len = end - offset; 2749 old->new = new; 2750 old->count = 0; 2751 list_add_tail(&old->list, &new->head); 2752 next: 2753 path->slots[0]++; 2754 cond_resched(); 2755 } 2756 2757 btrfs_free_path(path); 2758 atomic_inc(&root->fs_info->defrag_running); 2759 2760 return new; 2761 2762 out_free_path: 2763 btrfs_free_path(path); 2764 out_kfree: 2765 free_sa_defrag_extent(new); 2766 return NULL; 2767 } 2768 2769 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2770 u64 start, u64 len) 2771 { 2772 struct btrfs_block_group_cache *cache; 2773 2774 cache = btrfs_lookup_block_group(root->fs_info, start); 2775 ASSERT(cache); 2776 2777 spin_lock(&cache->lock); 2778 cache->delalloc_bytes -= len; 2779 spin_unlock(&cache->lock); 2780 2781 btrfs_put_block_group(cache); 2782 } 2783 2784 /* as ordered data IO finishes, this gets called so we can finish 2785 * an ordered extent if the range of bytes in the file it covers are 2786 * fully written. 2787 */ 2788 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2789 { 2790 struct inode *inode = ordered_extent->inode; 2791 struct btrfs_root *root = BTRFS_I(inode)->root; 2792 struct btrfs_trans_handle *trans = NULL; 2793 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2794 struct extent_state *cached_state = NULL; 2795 struct new_sa_defrag_extent *new = NULL; 2796 int compress_type = 0; 2797 int ret = 0; 2798 u64 logical_len = ordered_extent->len; 2799 bool nolock; 2800 bool truncated = false; 2801 2802 nolock = btrfs_is_free_space_inode(inode); 2803 2804 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2805 ret = -EIO; 2806 goto out; 2807 } 2808 2809 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2810 ordered_extent->file_offset + 2811 ordered_extent->len - 1); 2812 2813 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2814 truncated = true; 2815 logical_len = ordered_extent->truncated_len; 2816 /* Truncated the entire extent, don't bother adding */ 2817 if (!logical_len) 2818 goto out; 2819 } 2820 2821 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2822 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2823 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2824 if (nolock) 2825 trans = btrfs_join_transaction_nolock(root); 2826 else 2827 trans = btrfs_join_transaction(root); 2828 if (IS_ERR(trans)) { 2829 ret = PTR_ERR(trans); 2830 trans = NULL; 2831 goto out; 2832 } 2833 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2834 ret = btrfs_update_inode_fallback(trans, root, inode); 2835 if (ret) /* -ENOMEM or corruption */ 2836 btrfs_abort_transaction(trans, root, ret); 2837 goto out; 2838 } 2839 2840 lock_extent_bits(io_tree, ordered_extent->file_offset, 2841 ordered_extent->file_offset + ordered_extent->len - 1, 2842 0, &cached_state); 2843 2844 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2845 ordered_extent->file_offset + ordered_extent->len - 1, 2846 EXTENT_DEFRAG, 1, cached_state); 2847 if (ret) { 2848 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2849 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2850 /* the inode is shared */ 2851 new = record_old_file_extents(inode, ordered_extent); 2852 2853 clear_extent_bit(io_tree, ordered_extent->file_offset, 2854 ordered_extent->file_offset + ordered_extent->len - 1, 2855 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2856 } 2857 2858 if (nolock) 2859 trans = btrfs_join_transaction_nolock(root); 2860 else 2861 trans = btrfs_join_transaction(root); 2862 if (IS_ERR(trans)) { 2863 ret = PTR_ERR(trans); 2864 trans = NULL; 2865 goto out_unlock; 2866 } 2867 2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2869 2870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2871 compress_type = ordered_extent->compress_type; 2872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2873 BUG_ON(compress_type); 2874 ret = btrfs_mark_extent_written(trans, inode, 2875 ordered_extent->file_offset, 2876 ordered_extent->file_offset + 2877 logical_len); 2878 } else { 2879 BUG_ON(root == root->fs_info->tree_root); 2880 ret = insert_reserved_file_extent(trans, inode, 2881 ordered_extent->file_offset, 2882 ordered_extent->start, 2883 ordered_extent->disk_len, 2884 logical_len, logical_len, 2885 compress_type, 0, 0, 2886 BTRFS_FILE_EXTENT_REG); 2887 if (!ret) 2888 btrfs_release_delalloc_bytes(root, 2889 ordered_extent->start, 2890 ordered_extent->disk_len); 2891 } 2892 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2893 ordered_extent->file_offset, ordered_extent->len, 2894 trans->transid); 2895 if (ret < 0) { 2896 btrfs_abort_transaction(trans, root, ret); 2897 goto out_unlock; 2898 } 2899 2900 add_pending_csums(trans, inode, ordered_extent->file_offset, 2901 &ordered_extent->list); 2902 2903 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2904 ret = btrfs_update_inode_fallback(trans, root, inode); 2905 if (ret) { /* -ENOMEM or corruption */ 2906 btrfs_abort_transaction(trans, root, ret); 2907 goto out_unlock; 2908 } 2909 ret = 0; 2910 out_unlock: 2911 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2912 ordered_extent->file_offset + 2913 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2914 out: 2915 if (root != root->fs_info->tree_root) 2916 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2917 if (trans) 2918 btrfs_end_transaction(trans, root); 2919 2920 if (ret || truncated) { 2921 u64 start, end; 2922 2923 if (truncated) 2924 start = ordered_extent->file_offset + logical_len; 2925 else 2926 start = ordered_extent->file_offset; 2927 end = ordered_extent->file_offset + ordered_extent->len - 1; 2928 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2929 2930 /* Drop the cache for the part of the extent we didn't write. */ 2931 btrfs_drop_extent_cache(inode, start, end, 0); 2932 2933 /* 2934 * If the ordered extent had an IOERR or something else went 2935 * wrong we need to return the space for this ordered extent 2936 * back to the allocator. We only free the extent in the 2937 * truncated case if we didn't write out the extent at all. 2938 */ 2939 if ((ret || !logical_len) && 2940 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2941 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2942 btrfs_free_reserved_extent(root, ordered_extent->start, 2943 ordered_extent->disk_len, 1); 2944 } 2945 2946 2947 /* 2948 * This needs to be done to make sure anybody waiting knows we are done 2949 * updating everything for this ordered extent. 2950 */ 2951 btrfs_remove_ordered_extent(inode, ordered_extent); 2952 2953 /* for snapshot-aware defrag */ 2954 if (new) { 2955 if (ret) { 2956 free_sa_defrag_extent(new); 2957 atomic_dec(&root->fs_info->defrag_running); 2958 } else { 2959 relink_file_extents(new); 2960 } 2961 } 2962 2963 /* once for us */ 2964 btrfs_put_ordered_extent(ordered_extent); 2965 /* once for the tree */ 2966 btrfs_put_ordered_extent(ordered_extent); 2967 2968 return ret; 2969 } 2970 2971 static void finish_ordered_fn(struct btrfs_work *work) 2972 { 2973 struct btrfs_ordered_extent *ordered_extent; 2974 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2975 btrfs_finish_ordered_io(ordered_extent); 2976 } 2977 2978 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2979 struct extent_state *state, int uptodate) 2980 { 2981 struct inode *inode = page->mapping->host; 2982 struct btrfs_root *root = BTRFS_I(inode)->root; 2983 struct btrfs_ordered_extent *ordered_extent = NULL; 2984 struct btrfs_workqueue *wq; 2985 btrfs_work_func_t func; 2986 2987 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2988 2989 ClearPagePrivate2(page); 2990 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2991 end - start + 1, uptodate)) 2992 return 0; 2993 2994 if (btrfs_is_free_space_inode(inode)) { 2995 wq = root->fs_info->endio_freespace_worker; 2996 func = btrfs_freespace_write_helper; 2997 } else { 2998 wq = root->fs_info->endio_write_workers; 2999 func = btrfs_endio_write_helper; 3000 } 3001 3002 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3003 NULL); 3004 btrfs_queue_work(wq, &ordered_extent->work); 3005 3006 return 0; 3007 } 3008 3009 static int __readpage_endio_check(struct inode *inode, 3010 struct btrfs_io_bio *io_bio, 3011 int icsum, struct page *page, 3012 int pgoff, u64 start, size_t len) 3013 { 3014 char *kaddr; 3015 u32 csum_expected; 3016 u32 csum = ~(u32)0; 3017 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 3018 DEFAULT_RATELIMIT_BURST); 3019 3020 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3021 3022 kaddr = kmap_atomic(page); 3023 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3024 btrfs_csum_final(csum, (char *)&csum); 3025 if (csum != csum_expected) 3026 goto zeroit; 3027 3028 kunmap_atomic(kaddr); 3029 return 0; 3030 zeroit: 3031 if (__ratelimit(&_rs)) 3032 btrfs_warn(BTRFS_I(inode)->root->fs_info, 3033 "csum failed ino %llu off %llu csum %u expected csum %u", 3034 btrfs_ino(inode), start, csum, csum_expected); 3035 memset(kaddr + pgoff, 1, len); 3036 flush_dcache_page(page); 3037 kunmap_atomic(kaddr); 3038 if (csum_expected == 0) 3039 return 0; 3040 return -EIO; 3041 } 3042 3043 /* 3044 * when reads are done, we need to check csums to verify the data is correct 3045 * if there's a match, we allow the bio to finish. If not, the code in 3046 * extent_io.c will try to find good copies for us. 3047 */ 3048 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3049 u64 phy_offset, struct page *page, 3050 u64 start, u64 end, int mirror) 3051 { 3052 size_t offset = start - page_offset(page); 3053 struct inode *inode = page->mapping->host; 3054 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3055 struct btrfs_root *root = BTRFS_I(inode)->root; 3056 3057 if (PageChecked(page)) { 3058 ClearPageChecked(page); 3059 return 0; 3060 } 3061 3062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3063 return 0; 3064 3065 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3066 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3067 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3068 GFP_NOFS); 3069 return 0; 3070 } 3071 3072 phy_offset >>= inode->i_sb->s_blocksize_bits; 3073 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3074 start, (size_t)(end - start + 1)); 3075 } 3076 3077 struct delayed_iput { 3078 struct list_head list; 3079 struct inode *inode; 3080 }; 3081 3082 /* JDM: If this is fs-wide, why can't we add a pointer to 3083 * btrfs_inode instead and avoid the allocation? */ 3084 void btrfs_add_delayed_iput(struct inode *inode) 3085 { 3086 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3087 struct delayed_iput *delayed; 3088 3089 if (atomic_add_unless(&inode->i_count, -1, 1)) 3090 return; 3091 3092 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 3093 delayed->inode = inode; 3094 3095 spin_lock(&fs_info->delayed_iput_lock); 3096 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 3097 spin_unlock(&fs_info->delayed_iput_lock); 3098 } 3099 3100 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3101 { 3102 LIST_HEAD(list); 3103 struct btrfs_fs_info *fs_info = root->fs_info; 3104 struct delayed_iput *delayed; 3105 int empty; 3106 3107 spin_lock(&fs_info->delayed_iput_lock); 3108 empty = list_empty(&fs_info->delayed_iputs); 3109 spin_unlock(&fs_info->delayed_iput_lock); 3110 if (empty) 3111 return; 3112 3113 down_read(&fs_info->delayed_iput_sem); 3114 3115 spin_lock(&fs_info->delayed_iput_lock); 3116 list_splice_init(&fs_info->delayed_iputs, &list); 3117 spin_unlock(&fs_info->delayed_iput_lock); 3118 3119 while (!list_empty(&list)) { 3120 delayed = list_entry(list.next, struct delayed_iput, list); 3121 list_del(&delayed->list); 3122 iput(delayed->inode); 3123 kfree(delayed); 3124 } 3125 3126 up_read(&root->fs_info->delayed_iput_sem); 3127 } 3128 3129 /* 3130 * This is called in transaction commit time. If there are no orphan 3131 * files in the subvolume, it removes orphan item and frees block_rsv 3132 * structure. 3133 */ 3134 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3135 struct btrfs_root *root) 3136 { 3137 struct btrfs_block_rsv *block_rsv; 3138 int ret; 3139 3140 if (atomic_read(&root->orphan_inodes) || 3141 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3142 return; 3143 3144 spin_lock(&root->orphan_lock); 3145 if (atomic_read(&root->orphan_inodes)) { 3146 spin_unlock(&root->orphan_lock); 3147 return; 3148 } 3149 3150 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3151 spin_unlock(&root->orphan_lock); 3152 return; 3153 } 3154 3155 block_rsv = root->orphan_block_rsv; 3156 root->orphan_block_rsv = NULL; 3157 spin_unlock(&root->orphan_lock); 3158 3159 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3160 btrfs_root_refs(&root->root_item) > 0) { 3161 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3162 root->root_key.objectid); 3163 if (ret) 3164 btrfs_abort_transaction(trans, root, ret); 3165 else 3166 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3167 &root->state); 3168 } 3169 3170 if (block_rsv) { 3171 WARN_ON(block_rsv->size > 0); 3172 btrfs_free_block_rsv(root, block_rsv); 3173 } 3174 } 3175 3176 /* 3177 * This creates an orphan entry for the given inode in case something goes 3178 * wrong in the middle of an unlink/truncate. 3179 * 3180 * NOTE: caller of this function should reserve 5 units of metadata for 3181 * this function. 3182 */ 3183 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3184 { 3185 struct btrfs_root *root = BTRFS_I(inode)->root; 3186 struct btrfs_block_rsv *block_rsv = NULL; 3187 int reserve = 0; 3188 int insert = 0; 3189 int ret; 3190 3191 if (!root->orphan_block_rsv) { 3192 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3193 if (!block_rsv) 3194 return -ENOMEM; 3195 } 3196 3197 spin_lock(&root->orphan_lock); 3198 if (!root->orphan_block_rsv) { 3199 root->orphan_block_rsv = block_rsv; 3200 } else if (block_rsv) { 3201 btrfs_free_block_rsv(root, block_rsv); 3202 block_rsv = NULL; 3203 } 3204 3205 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3206 &BTRFS_I(inode)->runtime_flags)) { 3207 #if 0 3208 /* 3209 * For proper ENOSPC handling, we should do orphan 3210 * cleanup when mounting. But this introduces backward 3211 * compatibility issue. 3212 */ 3213 if (!xchg(&root->orphan_item_inserted, 1)) 3214 insert = 2; 3215 else 3216 insert = 1; 3217 #endif 3218 insert = 1; 3219 atomic_inc(&root->orphan_inodes); 3220 } 3221 3222 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3223 &BTRFS_I(inode)->runtime_flags)) 3224 reserve = 1; 3225 spin_unlock(&root->orphan_lock); 3226 3227 /* grab metadata reservation from transaction handle */ 3228 if (reserve) { 3229 ret = btrfs_orphan_reserve_metadata(trans, inode); 3230 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3231 } 3232 3233 /* insert an orphan item to track this unlinked/truncated file */ 3234 if (insert >= 1) { 3235 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3236 if (ret) { 3237 atomic_dec(&root->orphan_inodes); 3238 if (reserve) { 3239 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3240 &BTRFS_I(inode)->runtime_flags); 3241 btrfs_orphan_release_metadata(inode); 3242 } 3243 if (ret != -EEXIST) { 3244 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3245 &BTRFS_I(inode)->runtime_flags); 3246 btrfs_abort_transaction(trans, root, ret); 3247 return ret; 3248 } 3249 } 3250 ret = 0; 3251 } 3252 3253 /* insert an orphan item to track subvolume contains orphan files */ 3254 if (insert >= 2) { 3255 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3256 root->root_key.objectid); 3257 if (ret && ret != -EEXIST) { 3258 btrfs_abort_transaction(trans, root, ret); 3259 return ret; 3260 } 3261 } 3262 return 0; 3263 } 3264 3265 /* 3266 * We have done the truncate/delete so we can go ahead and remove the orphan 3267 * item for this particular inode. 3268 */ 3269 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3270 struct inode *inode) 3271 { 3272 struct btrfs_root *root = BTRFS_I(inode)->root; 3273 int delete_item = 0; 3274 int release_rsv = 0; 3275 int ret = 0; 3276 3277 spin_lock(&root->orphan_lock); 3278 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3279 &BTRFS_I(inode)->runtime_flags)) 3280 delete_item = 1; 3281 3282 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3283 &BTRFS_I(inode)->runtime_flags)) 3284 release_rsv = 1; 3285 spin_unlock(&root->orphan_lock); 3286 3287 if (delete_item) { 3288 atomic_dec(&root->orphan_inodes); 3289 if (trans) 3290 ret = btrfs_del_orphan_item(trans, root, 3291 btrfs_ino(inode)); 3292 } 3293 3294 if (release_rsv) 3295 btrfs_orphan_release_metadata(inode); 3296 3297 return ret; 3298 } 3299 3300 /* 3301 * this cleans up any orphans that may be left on the list from the last use 3302 * of this root. 3303 */ 3304 int btrfs_orphan_cleanup(struct btrfs_root *root) 3305 { 3306 struct btrfs_path *path; 3307 struct extent_buffer *leaf; 3308 struct btrfs_key key, found_key; 3309 struct btrfs_trans_handle *trans; 3310 struct inode *inode; 3311 u64 last_objectid = 0; 3312 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3313 3314 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3315 return 0; 3316 3317 path = btrfs_alloc_path(); 3318 if (!path) { 3319 ret = -ENOMEM; 3320 goto out; 3321 } 3322 path->reada = -1; 3323 3324 key.objectid = BTRFS_ORPHAN_OBJECTID; 3325 key.type = BTRFS_ORPHAN_ITEM_KEY; 3326 key.offset = (u64)-1; 3327 3328 while (1) { 3329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3330 if (ret < 0) 3331 goto out; 3332 3333 /* 3334 * if ret == 0 means we found what we were searching for, which 3335 * is weird, but possible, so only screw with path if we didn't 3336 * find the key and see if we have stuff that matches 3337 */ 3338 if (ret > 0) { 3339 ret = 0; 3340 if (path->slots[0] == 0) 3341 break; 3342 path->slots[0]--; 3343 } 3344 3345 /* pull out the item */ 3346 leaf = path->nodes[0]; 3347 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3348 3349 /* make sure the item matches what we want */ 3350 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3351 break; 3352 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3353 break; 3354 3355 /* release the path since we're done with it */ 3356 btrfs_release_path(path); 3357 3358 /* 3359 * this is where we are basically btrfs_lookup, without the 3360 * crossing root thing. we store the inode number in the 3361 * offset of the orphan item. 3362 */ 3363 3364 if (found_key.offset == last_objectid) { 3365 btrfs_err(root->fs_info, 3366 "Error removing orphan entry, stopping orphan cleanup"); 3367 ret = -EINVAL; 3368 goto out; 3369 } 3370 3371 last_objectid = found_key.offset; 3372 3373 found_key.objectid = found_key.offset; 3374 found_key.type = BTRFS_INODE_ITEM_KEY; 3375 found_key.offset = 0; 3376 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3377 ret = PTR_ERR_OR_ZERO(inode); 3378 if (ret && ret != -ESTALE) 3379 goto out; 3380 3381 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3382 struct btrfs_root *dead_root; 3383 struct btrfs_fs_info *fs_info = root->fs_info; 3384 int is_dead_root = 0; 3385 3386 /* 3387 * this is an orphan in the tree root. Currently these 3388 * could come from 2 sources: 3389 * a) a snapshot deletion in progress 3390 * b) a free space cache inode 3391 * We need to distinguish those two, as the snapshot 3392 * orphan must not get deleted. 3393 * find_dead_roots already ran before us, so if this 3394 * is a snapshot deletion, we should find the root 3395 * in the dead_roots list 3396 */ 3397 spin_lock(&fs_info->trans_lock); 3398 list_for_each_entry(dead_root, &fs_info->dead_roots, 3399 root_list) { 3400 if (dead_root->root_key.objectid == 3401 found_key.objectid) { 3402 is_dead_root = 1; 3403 break; 3404 } 3405 } 3406 spin_unlock(&fs_info->trans_lock); 3407 if (is_dead_root) { 3408 /* prevent this orphan from being found again */ 3409 key.offset = found_key.objectid - 1; 3410 continue; 3411 } 3412 } 3413 /* 3414 * Inode is already gone but the orphan item is still there, 3415 * kill the orphan item. 3416 */ 3417 if (ret == -ESTALE) { 3418 trans = btrfs_start_transaction(root, 1); 3419 if (IS_ERR(trans)) { 3420 ret = PTR_ERR(trans); 3421 goto out; 3422 } 3423 btrfs_debug(root->fs_info, "auto deleting %Lu", 3424 found_key.objectid); 3425 ret = btrfs_del_orphan_item(trans, root, 3426 found_key.objectid); 3427 btrfs_end_transaction(trans, root); 3428 if (ret) 3429 goto out; 3430 continue; 3431 } 3432 3433 /* 3434 * add this inode to the orphan list so btrfs_orphan_del does 3435 * the proper thing when we hit it 3436 */ 3437 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3438 &BTRFS_I(inode)->runtime_flags); 3439 atomic_inc(&root->orphan_inodes); 3440 3441 /* if we have links, this was a truncate, lets do that */ 3442 if (inode->i_nlink) { 3443 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3444 iput(inode); 3445 continue; 3446 } 3447 nr_truncate++; 3448 3449 /* 1 for the orphan item deletion. */ 3450 trans = btrfs_start_transaction(root, 1); 3451 if (IS_ERR(trans)) { 3452 iput(inode); 3453 ret = PTR_ERR(trans); 3454 goto out; 3455 } 3456 ret = btrfs_orphan_add(trans, inode); 3457 btrfs_end_transaction(trans, root); 3458 if (ret) { 3459 iput(inode); 3460 goto out; 3461 } 3462 3463 ret = btrfs_truncate(inode); 3464 if (ret) 3465 btrfs_orphan_del(NULL, inode); 3466 } else { 3467 nr_unlink++; 3468 } 3469 3470 /* this will do delete_inode and everything for us */ 3471 iput(inode); 3472 if (ret) 3473 goto out; 3474 } 3475 /* release the path since we're done with it */ 3476 btrfs_release_path(path); 3477 3478 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3479 3480 if (root->orphan_block_rsv) 3481 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3482 (u64)-1); 3483 3484 if (root->orphan_block_rsv || 3485 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3486 trans = btrfs_join_transaction(root); 3487 if (!IS_ERR(trans)) 3488 btrfs_end_transaction(trans, root); 3489 } 3490 3491 if (nr_unlink) 3492 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3493 if (nr_truncate) 3494 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3495 3496 out: 3497 if (ret) 3498 btrfs_err(root->fs_info, 3499 "could not do orphan cleanup %d", ret); 3500 btrfs_free_path(path); 3501 return ret; 3502 } 3503 3504 /* 3505 * very simple check to peek ahead in the leaf looking for xattrs. If we 3506 * don't find any xattrs, we know there can't be any acls. 3507 * 3508 * slot is the slot the inode is in, objectid is the objectid of the inode 3509 */ 3510 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3511 int slot, u64 objectid, 3512 int *first_xattr_slot) 3513 { 3514 u32 nritems = btrfs_header_nritems(leaf); 3515 struct btrfs_key found_key; 3516 static u64 xattr_access = 0; 3517 static u64 xattr_default = 0; 3518 int scanned = 0; 3519 3520 if (!xattr_access) { 3521 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3522 strlen(POSIX_ACL_XATTR_ACCESS)); 3523 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3524 strlen(POSIX_ACL_XATTR_DEFAULT)); 3525 } 3526 3527 slot++; 3528 *first_xattr_slot = -1; 3529 while (slot < nritems) { 3530 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3531 3532 /* we found a different objectid, there must not be acls */ 3533 if (found_key.objectid != objectid) 3534 return 0; 3535 3536 /* we found an xattr, assume we've got an acl */ 3537 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3538 if (*first_xattr_slot == -1) 3539 *first_xattr_slot = slot; 3540 if (found_key.offset == xattr_access || 3541 found_key.offset == xattr_default) 3542 return 1; 3543 } 3544 3545 /* 3546 * we found a key greater than an xattr key, there can't 3547 * be any acls later on 3548 */ 3549 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3550 return 0; 3551 3552 slot++; 3553 scanned++; 3554 3555 /* 3556 * it goes inode, inode backrefs, xattrs, extents, 3557 * so if there are a ton of hard links to an inode there can 3558 * be a lot of backrefs. Don't waste time searching too hard, 3559 * this is just an optimization 3560 */ 3561 if (scanned >= 8) 3562 break; 3563 } 3564 /* we hit the end of the leaf before we found an xattr or 3565 * something larger than an xattr. We have to assume the inode 3566 * has acls 3567 */ 3568 if (*first_xattr_slot == -1) 3569 *first_xattr_slot = slot; 3570 return 1; 3571 } 3572 3573 /* 3574 * read an inode from the btree into the in-memory inode 3575 */ 3576 static void btrfs_read_locked_inode(struct inode *inode) 3577 { 3578 struct btrfs_path *path; 3579 struct extent_buffer *leaf; 3580 struct btrfs_inode_item *inode_item; 3581 struct btrfs_root *root = BTRFS_I(inode)->root; 3582 struct btrfs_key location; 3583 unsigned long ptr; 3584 int maybe_acls; 3585 u32 rdev; 3586 int ret; 3587 bool filled = false; 3588 int first_xattr_slot; 3589 3590 ret = btrfs_fill_inode(inode, &rdev); 3591 if (!ret) 3592 filled = true; 3593 3594 path = btrfs_alloc_path(); 3595 if (!path) 3596 goto make_bad; 3597 3598 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3599 3600 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3601 if (ret) 3602 goto make_bad; 3603 3604 leaf = path->nodes[0]; 3605 3606 if (filled) 3607 goto cache_index; 3608 3609 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3610 struct btrfs_inode_item); 3611 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3612 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3613 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3614 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3615 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3616 3617 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3618 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3619 3620 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3621 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3622 3623 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3624 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3625 3626 BTRFS_I(inode)->i_otime.tv_sec = 3627 btrfs_timespec_sec(leaf, &inode_item->otime); 3628 BTRFS_I(inode)->i_otime.tv_nsec = 3629 btrfs_timespec_nsec(leaf, &inode_item->otime); 3630 3631 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3632 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3633 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3634 3635 /* 3636 * If we were modified in the current generation and evicted from memory 3637 * and then re-read we need to do a full sync since we don't have any 3638 * idea about which extents were modified before we were evicted from 3639 * cache. 3640 */ 3641 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3642 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3643 &BTRFS_I(inode)->runtime_flags); 3644 3645 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3646 inode->i_generation = BTRFS_I(inode)->generation; 3647 inode->i_rdev = 0; 3648 rdev = btrfs_inode_rdev(leaf, inode_item); 3649 3650 BTRFS_I(inode)->index_cnt = (u64)-1; 3651 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3652 3653 cache_index: 3654 path->slots[0]++; 3655 if (inode->i_nlink != 1 || 3656 path->slots[0] >= btrfs_header_nritems(leaf)) 3657 goto cache_acl; 3658 3659 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3660 if (location.objectid != btrfs_ino(inode)) 3661 goto cache_acl; 3662 3663 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3664 if (location.type == BTRFS_INODE_REF_KEY) { 3665 struct btrfs_inode_ref *ref; 3666 3667 ref = (struct btrfs_inode_ref *)ptr; 3668 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3669 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3670 struct btrfs_inode_extref *extref; 3671 3672 extref = (struct btrfs_inode_extref *)ptr; 3673 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3674 extref); 3675 } 3676 cache_acl: 3677 /* 3678 * try to precache a NULL acl entry for files that don't have 3679 * any xattrs or acls 3680 */ 3681 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3682 btrfs_ino(inode), &first_xattr_slot); 3683 if (first_xattr_slot != -1) { 3684 path->slots[0] = first_xattr_slot; 3685 ret = btrfs_load_inode_props(inode, path); 3686 if (ret) 3687 btrfs_err(root->fs_info, 3688 "error loading props for ino %llu (root %llu): %d", 3689 btrfs_ino(inode), 3690 root->root_key.objectid, ret); 3691 } 3692 btrfs_free_path(path); 3693 3694 if (!maybe_acls) 3695 cache_no_acl(inode); 3696 3697 switch (inode->i_mode & S_IFMT) { 3698 case S_IFREG: 3699 inode->i_mapping->a_ops = &btrfs_aops; 3700 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3701 inode->i_fop = &btrfs_file_operations; 3702 inode->i_op = &btrfs_file_inode_operations; 3703 break; 3704 case S_IFDIR: 3705 inode->i_fop = &btrfs_dir_file_operations; 3706 if (root == root->fs_info->tree_root) 3707 inode->i_op = &btrfs_dir_ro_inode_operations; 3708 else 3709 inode->i_op = &btrfs_dir_inode_operations; 3710 break; 3711 case S_IFLNK: 3712 inode->i_op = &btrfs_symlink_inode_operations; 3713 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3714 break; 3715 default: 3716 inode->i_op = &btrfs_special_inode_operations; 3717 init_special_inode(inode, inode->i_mode, rdev); 3718 break; 3719 } 3720 3721 btrfs_update_iflags(inode); 3722 return; 3723 3724 make_bad: 3725 btrfs_free_path(path); 3726 make_bad_inode(inode); 3727 } 3728 3729 /* 3730 * given a leaf and an inode, copy the inode fields into the leaf 3731 */ 3732 static void fill_inode_item(struct btrfs_trans_handle *trans, 3733 struct extent_buffer *leaf, 3734 struct btrfs_inode_item *item, 3735 struct inode *inode) 3736 { 3737 struct btrfs_map_token token; 3738 3739 btrfs_init_map_token(&token); 3740 3741 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3742 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3743 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3744 &token); 3745 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3746 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3747 3748 btrfs_set_token_timespec_sec(leaf, &item->atime, 3749 inode->i_atime.tv_sec, &token); 3750 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3751 inode->i_atime.tv_nsec, &token); 3752 3753 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3754 inode->i_mtime.tv_sec, &token); 3755 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3756 inode->i_mtime.tv_nsec, &token); 3757 3758 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3759 inode->i_ctime.tv_sec, &token); 3760 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3761 inode->i_ctime.tv_nsec, &token); 3762 3763 btrfs_set_token_timespec_sec(leaf, &item->otime, 3764 BTRFS_I(inode)->i_otime.tv_sec, &token); 3765 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3766 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3767 3768 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3769 &token); 3770 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3771 &token); 3772 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3773 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3774 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3775 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3776 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3777 } 3778 3779 /* 3780 * copy everything in the in-memory inode into the btree. 3781 */ 3782 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3783 struct btrfs_root *root, struct inode *inode) 3784 { 3785 struct btrfs_inode_item *inode_item; 3786 struct btrfs_path *path; 3787 struct extent_buffer *leaf; 3788 int ret; 3789 3790 path = btrfs_alloc_path(); 3791 if (!path) 3792 return -ENOMEM; 3793 3794 path->leave_spinning = 1; 3795 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3796 1); 3797 if (ret) { 3798 if (ret > 0) 3799 ret = -ENOENT; 3800 goto failed; 3801 } 3802 3803 leaf = path->nodes[0]; 3804 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3805 struct btrfs_inode_item); 3806 3807 fill_inode_item(trans, leaf, inode_item, inode); 3808 btrfs_mark_buffer_dirty(leaf); 3809 btrfs_set_inode_last_trans(trans, inode); 3810 ret = 0; 3811 failed: 3812 btrfs_free_path(path); 3813 return ret; 3814 } 3815 3816 /* 3817 * copy everything in the in-memory inode into the btree. 3818 */ 3819 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3820 struct btrfs_root *root, struct inode *inode) 3821 { 3822 int ret; 3823 3824 /* 3825 * If the inode is a free space inode, we can deadlock during commit 3826 * if we put it into the delayed code. 3827 * 3828 * The data relocation inode should also be directly updated 3829 * without delay 3830 */ 3831 if (!btrfs_is_free_space_inode(inode) 3832 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3833 && !root->fs_info->log_root_recovering) { 3834 btrfs_update_root_times(trans, root); 3835 3836 ret = btrfs_delayed_update_inode(trans, root, inode); 3837 if (!ret) 3838 btrfs_set_inode_last_trans(trans, inode); 3839 return ret; 3840 } 3841 3842 return btrfs_update_inode_item(trans, root, inode); 3843 } 3844 3845 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3846 struct btrfs_root *root, 3847 struct inode *inode) 3848 { 3849 int ret; 3850 3851 ret = btrfs_update_inode(trans, root, inode); 3852 if (ret == -ENOSPC) 3853 return btrfs_update_inode_item(trans, root, inode); 3854 return ret; 3855 } 3856 3857 /* 3858 * unlink helper that gets used here in inode.c and in the tree logging 3859 * recovery code. It remove a link in a directory with a given name, and 3860 * also drops the back refs in the inode to the directory 3861 */ 3862 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3863 struct btrfs_root *root, 3864 struct inode *dir, struct inode *inode, 3865 const char *name, int name_len) 3866 { 3867 struct btrfs_path *path; 3868 int ret = 0; 3869 struct extent_buffer *leaf; 3870 struct btrfs_dir_item *di; 3871 struct btrfs_key key; 3872 u64 index; 3873 u64 ino = btrfs_ino(inode); 3874 u64 dir_ino = btrfs_ino(dir); 3875 3876 path = btrfs_alloc_path(); 3877 if (!path) { 3878 ret = -ENOMEM; 3879 goto out; 3880 } 3881 3882 path->leave_spinning = 1; 3883 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3884 name, name_len, -1); 3885 if (IS_ERR(di)) { 3886 ret = PTR_ERR(di); 3887 goto err; 3888 } 3889 if (!di) { 3890 ret = -ENOENT; 3891 goto err; 3892 } 3893 leaf = path->nodes[0]; 3894 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3895 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3896 if (ret) 3897 goto err; 3898 btrfs_release_path(path); 3899 3900 /* 3901 * If we don't have dir index, we have to get it by looking up 3902 * the inode ref, since we get the inode ref, remove it directly, 3903 * it is unnecessary to do delayed deletion. 3904 * 3905 * But if we have dir index, needn't search inode ref to get it. 3906 * Since the inode ref is close to the inode item, it is better 3907 * that we delay to delete it, and just do this deletion when 3908 * we update the inode item. 3909 */ 3910 if (BTRFS_I(inode)->dir_index) { 3911 ret = btrfs_delayed_delete_inode_ref(inode); 3912 if (!ret) { 3913 index = BTRFS_I(inode)->dir_index; 3914 goto skip_backref; 3915 } 3916 } 3917 3918 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3919 dir_ino, &index); 3920 if (ret) { 3921 btrfs_info(root->fs_info, 3922 "failed to delete reference to %.*s, inode %llu parent %llu", 3923 name_len, name, ino, dir_ino); 3924 btrfs_abort_transaction(trans, root, ret); 3925 goto err; 3926 } 3927 skip_backref: 3928 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3929 if (ret) { 3930 btrfs_abort_transaction(trans, root, ret); 3931 goto err; 3932 } 3933 3934 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3935 inode, dir_ino); 3936 if (ret != 0 && ret != -ENOENT) { 3937 btrfs_abort_transaction(trans, root, ret); 3938 goto err; 3939 } 3940 3941 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3942 dir, index); 3943 if (ret == -ENOENT) 3944 ret = 0; 3945 else if (ret) 3946 btrfs_abort_transaction(trans, root, ret); 3947 err: 3948 btrfs_free_path(path); 3949 if (ret) 3950 goto out; 3951 3952 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3953 inode_inc_iversion(inode); 3954 inode_inc_iversion(dir); 3955 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3956 ret = btrfs_update_inode(trans, root, dir); 3957 out: 3958 return ret; 3959 } 3960 3961 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3962 struct btrfs_root *root, 3963 struct inode *dir, struct inode *inode, 3964 const char *name, int name_len) 3965 { 3966 int ret; 3967 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3968 if (!ret) { 3969 drop_nlink(inode); 3970 ret = btrfs_update_inode(trans, root, inode); 3971 } 3972 return ret; 3973 } 3974 3975 /* 3976 * helper to start transaction for unlink and rmdir. 3977 * 3978 * unlink and rmdir are special in btrfs, they do not always free space, so 3979 * if we cannot make our reservations the normal way try and see if there is 3980 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3981 * allow the unlink to occur. 3982 */ 3983 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3984 { 3985 struct btrfs_trans_handle *trans; 3986 struct btrfs_root *root = BTRFS_I(dir)->root; 3987 int ret; 3988 3989 /* 3990 * 1 for the possible orphan item 3991 * 1 for the dir item 3992 * 1 for the dir index 3993 * 1 for the inode ref 3994 * 1 for the inode 3995 */ 3996 trans = btrfs_start_transaction(root, 5); 3997 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3998 return trans; 3999 4000 if (PTR_ERR(trans) == -ENOSPC) { 4001 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4002 4003 trans = btrfs_start_transaction(root, 0); 4004 if (IS_ERR(trans)) 4005 return trans; 4006 ret = btrfs_cond_migrate_bytes(root->fs_info, 4007 &root->fs_info->trans_block_rsv, 4008 num_bytes, 5); 4009 if (ret) { 4010 btrfs_end_transaction(trans, root); 4011 return ERR_PTR(ret); 4012 } 4013 trans->block_rsv = &root->fs_info->trans_block_rsv; 4014 trans->bytes_reserved = num_bytes; 4015 } 4016 return trans; 4017 } 4018 4019 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4020 { 4021 struct btrfs_root *root = BTRFS_I(dir)->root; 4022 struct btrfs_trans_handle *trans; 4023 struct inode *inode = d_inode(dentry); 4024 int ret; 4025 4026 trans = __unlink_start_trans(dir); 4027 if (IS_ERR(trans)) 4028 return PTR_ERR(trans); 4029 4030 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4031 4032 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4033 dentry->d_name.name, dentry->d_name.len); 4034 if (ret) 4035 goto out; 4036 4037 if (inode->i_nlink == 0) { 4038 ret = btrfs_orphan_add(trans, inode); 4039 if (ret) 4040 goto out; 4041 } 4042 4043 out: 4044 btrfs_end_transaction(trans, root); 4045 btrfs_btree_balance_dirty(root); 4046 return ret; 4047 } 4048 4049 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4050 struct btrfs_root *root, 4051 struct inode *dir, u64 objectid, 4052 const char *name, int name_len) 4053 { 4054 struct btrfs_path *path; 4055 struct extent_buffer *leaf; 4056 struct btrfs_dir_item *di; 4057 struct btrfs_key key; 4058 u64 index; 4059 int ret; 4060 u64 dir_ino = btrfs_ino(dir); 4061 4062 path = btrfs_alloc_path(); 4063 if (!path) 4064 return -ENOMEM; 4065 4066 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4067 name, name_len, -1); 4068 if (IS_ERR_OR_NULL(di)) { 4069 if (!di) 4070 ret = -ENOENT; 4071 else 4072 ret = PTR_ERR(di); 4073 goto out; 4074 } 4075 4076 leaf = path->nodes[0]; 4077 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4078 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4079 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4080 if (ret) { 4081 btrfs_abort_transaction(trans, root, ret); 4082 goto out; 4083 } 4084 btrfs_release_path(path); 4085 4086 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4087 objectid, root->root_key.objectid, 4088 dir_ino, &index, name, name_len); 4089 if (ret < 0) { 4090 if (ret != -ENOENT) { 4091 btrfs_abort_transaction(trans, root, ret); 4092 goto out; 4093 } 4094 di = btrfs_search_dir_index_item(root, path, dir_ino, 4095 name, name_len); 4096 if (IS_ERR_OR_NULL(di)) { 4097 if (!di) 4098 ret = -ENOENT; 4099 else 4100 ret = PTR_ERR(di); 4101 btrfs_abort_transaction(trans, root, ret); 4102 goto out; 4103 } 4104 4105 leaf = path->nodes[0]; 4106 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4107 btrfs_release_path(path); 4108 index = key.offset; 4109 } 4110 btrfs_release_path(path); 4111 4112 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4113 if (ret) { 4114 btrfs_abort_transaction(trans, root, ret); 4115 goto out; 4116 } 4117 4118 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4119 inode_inc_iversion(dir); 4120 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 4121 ret = btrfs_update_inode_fallback(trans, root, dir); 4122 if (ret) 4123 btrfs_abort_transaction(trans, root, ret); 4124 out: 4125 btrfs_free_path(path); 4126 return ret; 4127 } 4128 4129 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4130 { 4131 struct inode *inode = d_inode(dentry); 4132 int err = 0; 4133 struct btrfs_root *root = BTRFS_I(dir)->root; 4134 struct btrfs_trans_handle *trans; 4135 4136 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4137 return -ENOTEMPTY; 4138 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4139 return -EPERM; 4140 4141 trans = __unlink_start_trans(dir); 4142 if (IS_ERR(trans)) 4143 return PTR_ERR(trans); 4144 4145 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4146 err = btrfs_unlink_subvol(trans, root, dir, 4147 BTRFS_I(inode)->location.objectid, 4148 dentry->d_name.name, 4149 dentry->d_name.len); 4150 goto out; 4151 } 4152 4153 err = btrfs_orphan_add(trans, inode); 4154 if (err) 4155 goto out; 4156 4157 /* now the directory is empty */ 4158 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4159 dentry->d_name.name, dentry->d_name.len); 4160 if (!err) 4161 btrfs_i_size_write(inode, 0); 4162 out: 4163 btrfs_end_transaction(trans, root); 4164 btrfs_btree_balance_dirty(root); 4165 4166 return err; 4167 } 4168 4169 static int truncate_space_check(struct btrfs_trans_handle *trans, 4170 struct btrfs_root *root, 4171 u64 bytes_deleted) 4172 { 4173 int ret; 4174 4175 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4176 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4177 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4178 if (!ret) 4179 trans->bytes_reserved += bytes_deleted; 4180 return ret; 4181 4182 } 4183 4184 /* 4185 * this can truncate away extent items, csum items and directory items. 4186 * It starts at a high offset and removes keys until it can't find 4187 * any higher than new_size 4188 * 4189 * csum items that cross the new i_size are truncated to the new size 4190 * as well. 4191 * 4192 * min_type is the minimum key type to truncate down to. If set to 0, this 4193 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4194 */ 4195 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4196 struct btrfs_root *root, 4197 struct inode *inode, 4198 u64 new_size, u32 min_type) 4199 { 4200 struct btrfs_path *path; 4201 struct extent_buffer *leaf; 4202 struct btrfs_file_extent_item *fi; 4203 struct btrfs_key key; 4204 struct btrfs_key found_key; 4205 u64 extent_start = 0; 4206 u64 extent_num_bytes = 0; 4207 u64 extent_offset = 0; 4208 u64 item_end = 0; 4209 u64 last_size = (u64)-1; 4210 u32 found_type = (u8)-1; 4211 int found_extent; 4212 int del_item; 4213 int pending_del_nr = 0; 4214 int pending_del_slot = 0; 4215 int extent_type = -1; 4216 int ret; 4217 int err = 0; 4218 u64 ino = btrfs_ino(inode); 4219 u64 bytes_deleted = 0; 4220 bool be_nice = 0; 4221 bool should_throttle = 0; 4222 bool should_end = 0; 4223 4224 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4225 4226 /* 4227 * for non-free space inodes and ref cows, we want to back off from 4228 * time to time 4229 */ 4230 if (!btrfs_is_free_space_inode(inode) && 4231 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4232 be_nice = 1; 4233 4234 path = btrfs_alloc_path(); 4235 if (!path) 4236 return -ENOMEM; 4237 path->reada = -1; 4238 4239 /* 4240 * We want to drop from the next block forward in case this new size is 4241 * not block aligned since we will be keeping the last block of the 4242 * extent just the way it is. 4243 */ 4244 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4245 root == root->fs_info->tree_root) 4246 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4247 root->sectorsize), (u64)-1, 0); 4248 4249 /* 4250 * This function is also used to drop the items in the log tree before 4251 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4252 * it is used to drop the loged items. So we shouldn't kill the delayed 4253 * items. 4254 */ 4255 if (min_type == 0 && root == BTRFS_I(inode)->root) 4256 btrfs_kill_delayed_inode_items(inode); 4257 4258 key.objectid = ino; 4259 key.offset = (u64)-1; 4260 key.type = (u8)-1; 4261 4262 search_again: 4263 /* 4264 * with a 16K leaf size and 128MB extents, you can actually queue 4265 * up a huge file in a single leaf. Most of the time that 4266 * bytes_deleted is > 0, it will be huge by the time we get here 4267 */ 4268 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4269 if (btrfs_should_end_transaction(trans, root)) { 4270 err = -EAGAIN; 4271 goto error; 4272 } 4273 } 4274 4275 4276 path->leave_spinning = 1; 4277 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4278 if (ret < 0) { 4279 err = ret; 4280 goto out; 4281 } 4282 4283 if (ret > 0) { 4284 /* there are no items in the tree for us to truncate, we're 4285 * done 4286 */ 4287 if (path->slots[0] == 0) 4288 goto out; 4289 path->slots[0]--; 4290 } 4291 4292 while (1) { 4293 fi = NULL; 4294 leaf = path->nodes[0]; 4295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4296 found_type = found_key.type; 4297 4298 if (found_key.objectid != ino) 4299 break; 4300 4301 if (found_type < min_type) 4302 break; 4303 4304 item_end = found_key.offset; 4305 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4306 fi = btrfs_item_ptr(leaf, path->slots[0], 4307 struct btrfs_file_extent_item); 4308 extent_type = btrfs_file_extent_type(leaf, fi); 4309 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4310 item_end += 4311 btrfs_file_extent_num_bytes(leaf, fi); 4312 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4313 item_end += btrfs_file_extent_inline_len(leaf, 4314 path->slots[0], fi); 4315 } 4316 item_end--; 4317 } 4318 if (found_type > min_type) { 4319 del_item = 1; 4320 } else { 4321 if (item_end < new_size) 4322 break; 4323 if (found_key.offset >= new_size) 4324 del_item = 1; 4325 else 4326 del_item = 0; 4327 } 4328 found_extent = 0; 4329 /* FIXME, shrink the extent if the ref count is only 1 */ 4330 if (found_type != BTRFS_EXTENT_DATA_KEY) 4331 goto delete; 4332 4333 if (del_item) 4334 last_size = found_key.offset; 4335 else 4336 last_size = new_size; 4337 4338 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4339 u64 num_dec; 4340 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4341 if (!del_item) { 4342 u64 orig_num_bytes = 4343 btrfs_file_extent_num_bytes(leaf, fi); 4344 extent_num_bytes = ALIGN(new_size - 4345 found_key.offset, 4346 root->sectorsize); 4347 btrfs_set_file_extent_num_bytes(leaf, fi, 4348 extent_num_bytes); 4349 num_dec = (orig_num_bytes - 4350 extent_num_bytes); 4351 if (test_bit(BTRFS_ROOT_REF_COWS, 4352 &root->state) && 4353 extent_start != 0) 4354 inode_sub_bytes(inode, num_dec); 4355 btrfs_mark_buffer_dirty(leaf); 4356 } else { 4357 extent_num_bytes = 4358 btrfs_file_extent_disk_num_bytes(leaf, 4359 fi); 4360 extent_offset = found_key.offset - 4361 btrfs_file_extent_offset(leaf, fi); 4362 4363 /* FIXME blocksize != 4096 */ 4364 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4365 if (extent_start != 0) { 4366 found_extent = 1; 4367 if (test_bit(BTRFS_ROOT_REF_COWS, 4368 &root->state)) 4369 inode_sub_bytes(inode, num_dec); 4370 } 4371 } 4372 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4373 /* 4374 * we can't truncate inline items that have had 4375 * special encodings 4376 */ 4377 if (!del_item && 4378 btrfs_file_extent_compression(leaf, fi) == 0 && 4379 btrfs_file_extent_encryption(leaf, fi) == 0 && 4380 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4381 u32 size = new_size - found_key.offset; 4382 4383 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4384 inode_sub_bytes(inode, item_end + 1 - 4385 new_size); 4386 4387 /* 4388 * update the ram bytes to properly reflect 4389 * the new size of our item 4390 */ 4391 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4392 size = 4393 btrfs_file_extent_calc_inline_size(size); 4394 btrfs_truncate_item(root, path, size, 1); 4395 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4396 &root->state)) { 4397 inode_sub_bytes(inode, item_end + 1 - 4398 found_key.offset); 4399 } 4400 } 4401 delete: 4402 if (del_item) { 4403 if (!pending_del_nr) { 4404 /* no pending yet, add ourselves */ 4405 pending_del_slot = path->slots[0]; 4406 pending_del_nr = 1; 4407 } else if (pending_del_nr && 4408 path->slots[0] + 1 == pending_del_slot) { 4409 /* hop on the pending chunk */ 4410 pending_del_nr++; 4411 pending_del_slot = path->slots[0]; 4412 } else { 4413 BUG(); 4414 } 4415 } else { 4416 break; 4417 } 4418 should_throttle = 0; 4419 4420 if (found_extent && 4421 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4422 root == root->fs_info->tree_root)) { 4423 btrfs_set_path_blocking(path); 4424 bytes_deleted += extent_num_bytes; 4425 ret = btrfs_free_extent(trans, root, extent_start, 4426 extent_num_bytes, 0, 4427 btrfs_header_owner(leaf), 4428 ino, extent_offset, 0); 4429 BUG_ON(ret); 4430 if (btrfs_should_throttle_delayed_refs(trans, root)) 4431 btrfs_async_run_delayed_refs(root, 4432 trans->delayed_ref_updates * 2, 0); 4433 if (be_nice) { 4434 if (truncate_space_check(trans, root, 4435 extent_num_bytes)) { 4436 should_end = 1; 4437 } 4438 if (btrfs_should_throttle_delayed_refs(trans, 4439 root)) { 4440 should_throttle = 1; 4441 } 4442 } 4443 } 4444 4445 if (found_type == BTRFS_INODE_ITEM_KEY) 4446 break; 4447 4448 if (path->slots[0] == 0 || 4449 path->slots[0] != pending_del_slot || 4450 should_throttle || should_end) { 4451 if (pending_del_nr) { 4452 ret = btrfs_del_items(trans, root, path, 4453 pending_del_slot, 4454 pending_del_nr); 4455 if (ret) { 4456 btrfs_abort_transaction(trans, 4457 root, ret); 4458 goto error; 4459 } 4460 pending_del_nr = 0; 4461 } 4462 btrfs_release_path(path); 4463 if (should_throttle) { 4464 unsigned long updates = trans->delayed_ref_updates; 4465 if (updates) { 4466 trans->delayed_ref_updates = 0; 4467 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4468 if (ret && !err) 4469 err = ret; 4470 } 4471 } 4472 /* 4473 * if we failed to refill our space rsv, bail out 4474 * and let the transaction restart 4475 */ 4476 if (should_end) { 4477 err = -EAGAIN; 4478 goto error; 4479 } 4480 goto search_again; 4481 } else { 4482 path->slots[0]--; 4483 } 4484 } 4485 out: 4486 if (pending_del_nr) { 4487 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4488 pending_del_nr); 4489 if (ret) 4490 btrfs_abort_transaction(trans, root, ret); 4491 } 4492 error: 4493 if (last_size != (u64)-1 && 4494 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4495 btrfs_ordered_update_i_size(inode, last_size, NULL); 4496 4497 btrfs_free_path(path); 4498 4499 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4500 unsigned long updates = trans->delayed_ref_updates; 4501 if (updates) { 4502 trans->delayed_ref_updates = 0; 4503 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4504 if (ret && !err) 4505 err = ret; 4506 } 4507 } 4508 return err; 4509 } 4510 4511 /* 4512 * btrfs_truncate_page - read, zero a chunk and write a page 4513 * @inode - inode that we're zeroing 4514 * @from - the offset to start zeroing 4515 * @len - the length to zero, 0 to zero the entire range respective to the 4516 * offset 4517 * @front - zero up to the offset instead of from the offset on 4518 * 4519 * This will find the page for the "from" offset and cow the page and zero the 4520 * part we want to zero. This is used with truncate and hole punching. 4521 */ 4522 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4523 int front) 4524 { 4525 struct address_space *mapping = inode->i_mapping; 4526 struct btrfs_root *root = BTRFS_I(inode)->root; 4527 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4528 struct btrfs_ordered_extent *ordered; 4529 struct extent_state *cached_state = NULL; 4530 char *kaddr; 4531 u32 blocksize = root->sectorsize; 4532 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4533 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4534 struct page *page; 4535 gfp_t mask = btrfs_alloc_write_mask(mapping); 4536 int ret = 0; 4537 u64 page_start; 4538 u64 page_end; 4539 4540 if ((offset & (blocksize - 1)) == 0 && 4541 (!len || ((len & (blocksize - 1)) == 0))) 4542 goto out; 4543 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4544 if (ret) 4545 goto out; 4546 4547 again: 4548 page = find_or_create_page(mapping, index, mask); 4549 if (!page) { 4550 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4551 ret = -ENOMEM; 4552 goto out; 4553 } 4554 4555 page_start = page_offset(page); 4556 page_end = page_start + PAGE_CACHE_SIZE - 1; 4557 4558 if (!PageUptodate(page)) { 4559 ret = btrfs_readpage(NULL, page); 4560 lock_page(page); 4561 if (page->mapping != mapping) { 4562 unlock_page(page); 4563 page_cache_release(page); 4564 goto again; 4565 } 4566 if (!PageUptodate(page)) { 4567 ret = -EIO; 4568 goto out_unlock; 4569 } 4570 } 4571 wait_on_page_writeback(page); 4572 4573 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4574 set_page_extent_mapped(page); 4575 4576 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4577 if (ordered) { 4578 unlock_extent_cached(io_tree, page_start, page_end, 4579 &cached_state, GFP_NOFS); 4580 unlock_page(page); 4581 page_cache_release(page); 4582 btrfs_start_ordered_extent(inode, ordered, 1); 4583 btrfs_put_ordered_extent(ordered); 4584 goto again; 4585 } 4586 4587 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4588 EXTENT_DIRTY | EXTENT_DELALLOC | 4589 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4590 0, 0, &cached_state, GFP_NOFS); 4591 4592 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4593 &cached_state); 4594 if (ret) { 4595 unlock_extent_cached(io_tree, page_start, page_end, 4596 &cached_state, GFP_NOFS); 4597 goto out_unlock; 4598 } 4599 4600 if (offset != PAGE_CACHE_SIZE) { 4601 if (!len) 4602 len = PAGE_CACHE_SIZE - offset; 4603 kaddr = kmap(page); 4604 if (front) 4605 memset(kaddr, 0, offset); 4606 else 4607 memset(kaddr + offset, 0, len); 4608 flush_dcache_page(page); 4609 kunmap(page); 4610 } 4611 ClearPageChecked(page); 4612 set_page_dirty(page); 4613 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4614 GFP_NOFS); 4615 4616 out_unlock: 4617 if (ret) 4618 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4619 unlock_page(page); 4620 page_cache_release(page); 4621 out: 4622 return ret; 4623 } 4624 4625 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4626 u64 offset, u64 len) 4627 { 4628 struct btrfs_trans_handle *trans; 4629 int ret; 4630 4631 /* 4632 * Still need to make sure the inode looks like it's been updated so 4633 * that any holes get logged if we fsync. 4634 */ 4635 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4636 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4637 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4638 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4639 return 0; 4640 } 4641 4642 /* 4643 * 1 - for the one we're dropping 4644 * 1 - for the one we're adding 4645 * 1 - for updating the inode. 4646 */ 4647 trans = btrfs_start_transaction(root, 3); 4648 if (IS_ERR(trans)) 4649 return PTR_ERR(trans); 4650 4651 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4652 if (ret) { 4653 btrfs_abort_transaction(trans, root, ret); 4654 btrfs_end_transaction(trans, root); 4655 return ret; 4656 } 4657 4658 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4659 0, 0, len, 0, len, 0, 0, 0); 4660 if (ret) 4661 btrfs_abort_transaction(trans, root, ret); 4662 else 4663 btrfs_update_inode(trans, root, inode); 4664 btrfs_end_transaction(trans, root); 4665 return ret; 4666 } 4667 4668 /* 4669 * This function puts in dummy file extents for the area we're creating a hole 4670 * for. So if we are truncating this file to a larger size we need to insert 4671 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4672 * the range between oldsize and size 4673 */ 4674 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4675 { 4676 struct btrfs_root *root = BTRFS_I(inode)->root; 4677 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4678 struct extent_map *em = NULL; 4679 struct extent_state *cached_state = NULL; 4680 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4681 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4682 u64 block_end = ALIGN(size, root->sectorsize); 4683 u64 last_byte; 4684 u64 cur_offset; 4685 u64 hole_size; 4686 int err = 0; 4687 4688 /* 4689 * If our size started in the middle of a page we need to zero out the 4690 * rest of the page before we expand the i_size, otherwise we could 4691 * expose stale data. 4692 */ 4693 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4694 if (err) 4695 return err; 4696 4697 if (size <= hole_start) 4698 return 0; 4699 4700 while (1) { 4701 struct btrfs_ordered_extent *ordered; 4702 4703 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4704 &cached_state); 4705 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4706 block_end - hole_start); 4707 if (!ordered) 4708 break; 4709 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4710 &cached_state, GFP_NOFS); 4711 btrfs_start_ordered_extent(inode, ordered, 1); 4712 btrfs_put_ordered_extent(ordered); 4713 } 4714 4715 cur_offset = hole_start; 4716 while (1) { 4717 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4718 block_end - cur_offset, 0); 4719 if (IS_ERR(em)) { 4720 err = PTR_ERR(em); 4721 em = NULL; 4722 break; 4723 } 4724 last_byte = min(extent_map_end(em), block_end); 4725 last_byte = ALIGN(last_byte , root->sectorsize); 4726 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4727 struct extent_map *hole_em; 4728 hole_size = last_byte - cur_offset; 4729 4730 err = maybe_insert_hole(root, inode, cur_offset, 4731 hole_size); 4732 if (err) 4733 break; 4734 btrfs_drop_extent_cache(inode, cur_offset, 4735 cur_offset + hole_size - 1, 0); 4736 hole_em = alloc_extent_map(); 4737 if (!hole_em) { 4738 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4739 &BTRFS_I(inode)->runtime_flags); 4740 goto next; 4741 } 4742 hole_em->start = cur_offset; 4743 hole_em->len = hole_size; 4744 hole_em->orig_start = cur_offset; 4745 4746 hole_em->block_start = EXTENT_MAP_HOLE; 4747 hole_em->block_len = 0; 4748 hole_em->orig_block_len = 0; 4749 hole_em->ram_bytes = hole_size; 4750 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4751 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4752 hole_em->generation = root->fs_info->generation; 4753 4754 while (1) { 4755 write_lock(&em_tree->lock); 4756 err = add_extent_mapping(em_tree, hole_em, 1); 4757 write_unlock(&em_tree->lock); 4758 if (err != -EEXIST) 4759 break; 4760 btrfs_drop_extent_cache(inode, cur_offset, 4761 cur_offset + 4762 hole_size - 1, 0); 4763 } 4764 free_extent_map(hole_em); 4765 } 4766 next: 4767 free_extent_map(em); 4768 em = NULL; 4769 cur_offset = last_byte; 4770 if (cur_offset >= block_end) 4771 break; 4772 } 4773 free_extent_map(em); 4774 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4775 GFP_NOFS); 4776 return err; 4777 } 4778 4779 static int wait_snapshoting_atomic_t(atomic_t *a) 4780 { 4781 schedule(); 4782 return 0; 4783 } 4784 4785 static void wait_for_snapshot_creation(struct btrfs_root *root) 4786 { 4787 while (true) { 4788 int ret; 4789 4790 ret = btrfs_start_write_no_snapshoting(root); 4791 if (ret) 4792 break; 4793 wait_on_atomic_t(&root->will_be_snapshoted, 4794 wait_snapshoting_atomic_t, 4795 TASK_UNINTERRUPTIBLE); 4796 } 4797 } 4798 4799 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4800 { 4801 struct btrfs_root *root = BTRFS_I(inode)->root; 4802 struct btrfs_trans_handle *trans; 4803 loff_t oldsize = i_size_read(inode); 4804 loff_t newsize = attr->ia_size; 4805 int mask = attr->ia_valid; 4806 int ret; 4807 4808 /* 4809 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4810 * special case where we need to update the times despite not having 4811 * these flags set. For all other operations the VFS set these flags 4812 * explicitly if it wants a timestamp update. 4813 */ 4814 if (newsize != oldsize) { 4815 inode_inc_iversion(inode); 4816 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4817 inode->i_ctime = inode->i_mtime = 4818 current_fs_time(inode->i_sb); 4819 } 4820 4821 if (newsize > oldsize) { 4822 truncate_pagecache(inode, newsize); 4823 /* 4824 * Don't do an expanding truncate while snapshoting is ongoing. 4825 * This is to ensure the snapshot captures a fully consistent 4826 * state of this file - if the snapshot captures this expanding 4827 * truncation, it must capture all writes that happened before 4828 * this truncation. 4829 */ 4830 wait_for_snapshot_creation(root); 4831 ret = btrfs_cont_expand(inode, oldsize, newsize); 4832 if (ret) { 4833 btrfs_end_write_no_snapshoting(root); 4834 return ret; 4835 } 4836 4837 trans = btrfs_start_transaction(root, 1); 4838 if (IS_ERR(trans)) { 4839 btrfs_end_write_no_snapshoting(root); 4840 return PTR_ERR(trans); 4841 } 4842 4843 i_size_write(inode, newsize); 4844 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4845 ret = btrfs_update_inode(trans, root, inode); 4846 btrfs_end_write_no_snapshoting(root); 4847 btrfs_end_transaction(trans, root); 4848 } else { 4849 4850 /* 4851 * We're truncating a file that used to have good data down to 4852 * zero. Make sure it gets into the ordered flush list so that 4853 * any new writes get down to disk quickly. 4854 */ 4855 if (newsize == 0) 4856 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4857 &BTRFS_I(inode)->runtime_flags); 4858 4859 /* 4860 * 1 for the orphan item we're going to add 4861 * 1 for the orphan item deletion. 4862 */ 4863 trans = btrfs_start_transaction(root, 2); 4864 if (IS_ERR(trans)) 4865 return PTR_ERR(trans); 4866 4867 /* 4868 * We need to do this in case we fail at _any_ point during the 4869 * actual truncate. Once we do the truncate_setsize we could 4870 * invalidate pages which forces any outstanding ordered io to 4871 * be instantly completed which will give us extents that need 4872 * to be truncated. If we fail to get an orphan inode down we 4873 * could have left over extents that were never meant to live, 4874 * so we need to garuntee from this point on that everything 4875 * will be consistent. 4876 */ 4877 ret = btrfs_orphan_add(trans, inode); 4878 btrfs_end_transaction(trans, root); 4879 if (ret) 4880 return ret; 4881 4882 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4883 truncate_setsize(inode, newsize); 4884 4885 /* Disable nonlocked read DIO to avoid the end less truncate */ 4886 btrfs_inode_block_unlocked_dio(inode); 4887 inode_dio_wait(inode); 4888 btrfs_inode_resume_unlocked_dio(inode); 4889 4890 ret = btrfs_truncate(inode); 4891 if (ret && inode->i_nlink) { 4892 int err; 4893 4894 /* 4895 * failed to truncate, disk_i_size is only adjusted down 4896 * as we remove extents, so it should represent the true 4897 * size of the inode, so reset the in memory size and 4898 * delete our orphan entry. 4899 */ 4900 trans = btrfs_join_transaction(root); 4901 if (IS_ERR(trans)) { 4902 btrfs_orphan_del(NULL, inode); 4903 return ret; 4904 } 4905 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4906 err = btrfs_orphan_del(trans, inode); 4907 if (err) 4908 btrfs_abort_transaction(trans, root, err); 4909 btrfs_end_transaction(trans, root); 4910 } 4911 } 4912 4913 return ret; 4914 } 4915 4916 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4917 { 4918 struct inode *inode = d_inode(dentry); 4919 struct btrfs_root *root = BTRFS_I(inode)->root; 4920 int err; 4921 4922 if (btrfs_root_readonly(root)) 4923 return -EROFS; 4924 4925 err = inode_change_ok(inode, attr); 4926 if (err) 4927 return err; 4928 4929 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4930 err = btrfs_setsize(inode, attr); 4931 if (err) 4932 return err; 4933 } 4934 4935 if (attr->ia_valid) { 4936 setattr_copy(inode, attr); 4937 inode_inc_iversion(inode); 4938 err = btrfs_dirty_inode(inode); 4939 4940 if (!err && attr->ia_valid & ATTR_MODE) 4941 err = posix_acl_chmod(inode, inode->i_mode); 4942 } 4943 4944 return err; 4945 } 4946 4947 /* 4948 * While truncating the inode pages during eviction, we get the VFS calling 4949 * btrfs_invalidatepage() against each page of the inode. This is slow because 4950 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4951 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4952 * extent_state structures over and over, wasting lots of time. 4953 * 4954 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4955 * those expensive operations on a per page basis and do only the ordered io 4956 * finishing, while we release here the extent_map and extent_state structures, 4957 * without the excessive merging and splitting. 4958 */ 4959 static void evict_inode_truncate_pages(struct inode *inode) 4960 { 4961 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4962 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4963 struct rb_node *node; 4964 4965 ASSERT(inode->i_state & I_FREEING); 4966 truncate_inode_pages_final(&inode->i_data); 4967 4968 write_lock(&map_tree->lock); 4969 while (!RB_EMPTY_ROOT(&map_tree->map)) { 4970 struct extent_map *em; 4971 4972 node = rb_first(&map_tree->map); 4973 em = rb_entry(node, struct extent_map, rb_node); 4974 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4975 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4976 remove_extent_mapping(map_tree, em); 4977 free_extent_map(em); 4978 if (need_resched()) { 4979 write_unlock(&map_tree->lock); 4980 cond_resched(); 4981 write_lock(&map_tree->lock); 4982 } 4983 } 4984 write_unlock(&map_tree->lock); 4985 4986 spin_lock(&io_tree->lock); 4987 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4988 struct extent_state *state; 4989 struct extent_state *cached_state = NULL; 4990 4991 node = rb_first(&io_tree->state); 4992 state = rb_entry(node, struct extent_state, rb_node); 4993 atomic_inc(&state->refs); 4994 spin_unlock(&io_tree->lock); 4995 4996 lock_extent_bits(io_tree, state->start, state->end, 4997 0, &cached_state); 4998 clear_extent_bit(io_tree, state->start, state->end, 4999 EXTENT_LOCKED | EXTENT_DIRTY | 5000 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5001 EXTENT_DEFRAG, 1, 1, 5002 &cached_state, GFP_NOFS); 5003 free_extent_state(state); 5004 5005 cond_resched(); 5006 spin_lock(&io_tree->lock); 5007 } 5008 spin_unlock(&io_tree->lock); 5009 } 5010 5011 void btrfs_evict_inode(struct inode *inode) 5012 { 5013 struct btrfs_trans_handle *trans; 5014 struct btrfs_root *root = BTRFS_I(inode)->root; 5015 struct btrfs_block_rsv *rsv, *global_rsv; 5016 int steal_from_global = 0; 5017 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5018 int ret; 5019 5020 trace_btrfs_inode_evict(inode); 5021 5022 evict_inode_truncate_pages(inode); 5023 5024 if (inode->i_nlink && 5025 ((btrfs_root_refs(&root->root_item) != 0 && 5026 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5027 btrfs_is_free_space_inode(inode))) 5028 goto no_delete; 5029 5030 if (is_bad_inode(inode)) { 5031 btrfs_orphan_del(NULL, inode); 5032 goto no_delete; 5033 } 5034 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5035 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5036 5037 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5038 5039 if (root->fs_info->log_root_recovering) { 5040 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5041 &BTRFS_I(inode)->runtime_flags)); 5042 goto no_delete; 5043 } 5044 5045 if (inode->i_nlink > 0) { 5046 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5047 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5048 goto no_delete; 5049 } 5050 5051 ret = btrfs_commit_inode_delayed_inode(inode); 5052 if (ret) { 5053 btrfs_orphan_del(NULL, inode); 5054 goto no_delete; 5055 } 5056 5057 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5058 if (!rsv) { 5059 btrfs_orphan_del(NULL, inode); 5060 goto no_delete; 5061 } 5062 rsv->size = min_size; 5063 rsv->failfast = 1; 5064 global_rsv = &root->fs_info->global_block_rsv; 5065 5066 btrfs_i_size_write(inode, 0); 5067 5068 /* 5069 * This is a bit simpler than btrfs_truncate since we've already 5070 * reserved our space for our orphan item in the unlink, so we just 5071 * need to reserve some slack space in case we add bytes and update 5072 * inode item when doing the truncate. 5073 */ 5074 while (1) { 5075 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5076 BTRFS_RESERVE_FLUSH_LIMIT); 5077 5078 /* 5079 * Try and steal from the global reserve since we will 5080 * likely not use this space anyway, we want to try as 5081 * hard as possible to get this to work. 5082 */ 5083 if (ret) 5084 steal_from_global++; 5085 else 5086 steal_from_global = 0; 5087 ret = 0; 5088 5089 /* 5090 * steal_from_global == 0: we reserved stuff, hooray! 5091 * steal_from_global == 1: we didn't reserve stuff, boo! 5092 * steal_from_global == 2: we've committed, still not a lot of 5093 * room but maybe we'll have room in the global reserve this 5094 * time. 5095 * steal_from_global == 3: abandon all hope! 5096 */ 5097 if (steal_from_global > 2) { 5098 btrfs_warn(root->fs_info, 5099 "Could not get space for a delete, will truncate on mount %d", 5100 ret); 5101 btrfs_orphan_del(NULL, inode); 5102 btrfs_free_block_rsv(root, rsv); 5103 goto no_delete; 5104 } 5105 5106 trans = btrfs_join_transaction(root); 5107 if (IS_ERR(trans)) { 5108 btrfs_orphan_del(NULL, inode); 5109 btrfs_free_block_rsv(root, rsv); 5110 goto no_delete; 5111 } 5112 5113 /* 5114 * We can't just steal from the global reserve, we need tomake 5115 * sure there is room to do it, if not we need to commit and try 5116 * again. 5117 */ 5118 if (steal_from_global) { 5119 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5120 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5121 min_size); 5122 else 5123 ret = -ENOSPC; 5124 } 5125 5126 /* 5127 * Couldn't steal from the global reserve, we have too much 5128 * pending stuff built up, commit the transaction and try it 5129 * again. 5130 */ 5131 if (ret) { 5132 ret = btrfs_commit_transaction(trans, root); 5133 if (ret) { 5134 btrfs_orphan_del(NULL, inode); 5135 btrfs_free_block_rsv(root, rsv); 5136 goto no_delete; 5137 } 5138 continue; 5139 } else { 5140 steal_from_global = 0; 5141 } 5142 5143 trans->block_rsv = rsv; 5144 5145 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5146 if (ret != -ENOSPC && ret != -EAGAIN) 5147 break; 5148 5149 trans->block_rsv = &root->fs_info->trans_block_rsv; 5150 btrfs_end_transaction(trans, root); 5151 trans = NULL; 5152 btrfs_btree_balance_dirty(root); 5153 } 5154 5155 btrfs_free_block_rsv(root, rsv); 5156 5157 /* 5158 * Errors here aren't a big deal, it just means we leave orphan items 5159 * in the tree. They will be cleaned up on the next mount. 5160 */ 5161 if (ret == 0) { 5162 trans->block_rsv = root->orphan_block_rsv; 5163 btrfs_orphan_del(trans, inode); 5164 } else { 5165 btrfs_orphan_del(NULL, inode); 5166 } 5167 5168 trans->block_rsv = &root->fs_info->trans_block_rsv; 5169 if (!(root == root->fs_info->tree_root || 5170 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5171 btrfs_return_ino(root, btrfs_ino(inode)); 5172 5173 btrfs_end_transaction(trans, root); 5174 btrfs_btree_balance_dirty(root); 5175 no_delete: 5176 btrfs_remove_delayed_node(inode); 5177 clear_inode(inode); 5178 return; 5179 } 5180 5181 /* 5182 * this returns the key found in the dir entry in the location pointer. 5183 * If no dir entries were found, location->objectid is 0. 5184 */ 5185 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5186 struct btrfs_key *location) 5187 { 5188 const char *name = dentry->d_name.name; 5189 int namelen = dentry->d_name.len; 5190 struct btrfs_dir_item *di; 5191 struct btrfs_path *path; 5192 struct btrfs_root *root = BTRFS_I(dir)->root; 5193 int ret = 0; 5194 5195 path = btrfs_alloc_path(); 5196 if (!path) 5197 return -ENOMEM; 5198 5199 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5200 namelen, 0); 5201 if (IS_ERR(di)) 5202 ret = PTR_ERR(di); 5203 5204 if (IS_ERR_OR_NULL(di)) 5205 goto out_err; 5206 5207 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5208 out: 5209 btrfs_free_path(path); 5210 return ret; 5211 out_err: 5212 location->objectid = 0; 5213 goto out; 5214 } 5215 5216 /* 5217 * when we hit a tree root in a directory, the btrfs part of the inode 5218 * needs to be changed to reflect the root directory of the tree root. This 5219 * is kind of like crossing a mount point. 5220 */ 5221 static int fixup_tree_root_location(struct btrfs_root *root, 5222 struct inode *dir, 5223 struct dentry *dentry, 5224 struct btrfs_key *location, 5225 struct btrfs_root **sub_root) 5226 { 5227 struct btrfs_path *path; 5228 struct btrfs_root *new_root; 5229 struct btrfs_root_ref *ref; 5230 struct extent_buffer *leaf; 5231 struct btrfs_key key; 5232 int ret; 5233 int err = 0; 5234 5235 path = btrfs_alloc_path(); 5236 if (!path) { 5237 err = -ENOMEM; 5238 goto out; 5239 } 5240 5241 err = -ENOENT; 5242 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5243 key.type = BTRFS_ROOT_REF_KEY; 5244 key.offset = location->objectid; 5245 5246 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5247 0, 0); 5248 if (ret) { 5249 if (ret < 0) 5250 err = ret; 5251 goto out; 5252 } 5253 5254 leaf = path->nodes[0]; 5255 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5256 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5257 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5258 goto out; 5259 5260 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5261 (unsigned long)(ref + 1), 5262 dentry->d_name.len); 5263 if (ret) 5264 goto out; 5265 5266 btrfs_release_path(path); 5267 5268 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5269 if (IS_ERR(new_root)) { 5270 err = PTR_ERR(new_root); 5271 goto out; 5272 } 5273 5274 *sub_root = new_root; 5275 location->objectid = btrfs_root_dirid(&new_root->root_item); 5276 location->type = BTRFS_INODE_ITEM_KEY; 5277 location->offset = 0; 5278 err = 0; 5279 out: 5280 btrfs_free_path(path); 5281 return err; 5282 } 5283 5284 static void inode_tree_add(struct inode *inode) 5285 { 5286 struct btrfs_root *root = BTRFS_I(inode)->root; 5287 struct btrfs_inode *entry; 5288 struct rb_node **p; 5289 struct rb_node *parent; 5290 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5291 u64 ino = btrfs_ino(inode); 5292 5293 if (inode_unhashed(inode)) 5294 return; 5295 parent = NULL; 5296 spin_lock(&root->inode_lock); 5297 p = &root->inode_tree.rb_node; 5298 while (*p) { 5299 parent = *p; 5300 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5301 5302 if (ino < btrfs_ino(&entry->vfs_inode)) 5303 p = &parent->rb_left; 5304 else if (ino > btrfs_ino(&entry->vfs_inode)) 5305 p = &parent->rb_right; 5306 else { 5307 WARN_ON(!(entry->vfs_inode.i_state & 5308 (I_WILL_FREE | I_FREEING))); 5309 rb_replace_node(parent, new, &root->inode_tree); 5310 RB_CLEAR_NODE(parent); 5311 spin_unlock(&root->inode_lock); 5312 return; 5313 } 5314 } 5315 rb_link_node(new, parent, p); 5316 rb_insert_color(new, &root->inode_tree); 5317 spin_unlock(&root->inode_lock); 5318 } 5319 5320 static void inode_tree_del(struct inode *inode) 5321 { 5322 struct btrfs_root *root = BTRFS_I(inode)->root; 5323 int empty = 0; 5324 5325 spin_lock(&root->inode_lock); 5326 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5327 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5328 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5329 empty = RB_EMPTY_ROOT(&root->inode_tree); 5330 } 5331 spin_unlock(&root->inode_lock); 5332 5333 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5334 synchronize_srcu(&root->fs_info->subvol_srcu); 5335 spin_lock(&root->inode_lock); 5336 empty = RB_EMPTY_ROOT(&root->inode_tree); 5337 spin_unlock(&root->inode_lock); 5338 if (empty) 5339 btrfs_add_dead_root(root); 5340 } 5341 } 5342 5343 void btrfs_invalidate_inodes(struct btrfs_root *root) 5344 { 5345 struct rb_node *node; 5346 struct rb_node *prev; 5347 struct btrfs_inode *entry; 5348 struct inode *inode; 5349 u64 objectid = 0; 5350 5351 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5352 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5353 5354 spin_lock(&root->inode_lock); 5355 again: 5356 node = root->inode_tree.rb_node; 5357 prev = NULL; 5358 while (node) { 5359 prev = node; 5360 entry = rb_entry(node, struct btrfs_inode, rb_node); 5361 5362 if (objectid < btrfs_ino(&entry->vfs_inode)) 5363 node = node->rb_left; 5364 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5365 node = node->rb_right; 5366 else 5367 break; 5368 } 5369 if (!node) { 5370 while (prev) { 5371 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5372 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5373 node = prev; 5374 break; 5375 } 5376 prev = rb_next(prev); 5377 } 5378 } 5379 while (node) { 5380 entry = rb_entry(node, struct btrfs_inode, rb_node); 5381 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5382 inode = igrab(&entry->vfs_inode); 5383 if (inode) { 5384 spin_unlock(&root->inode_lock); 5385 if (atomic_read(&inode->i_count) > 1) 5386 d_prune_aliases(inode); 5387 /* 5388 * btrfs_drop_inode will have it removed from 5389 * the inode cache when its usage count 5390 * hits zero. 5391 */ 5392 iput(inode); 5393 cond_resched(); 5394 spin_lock(&root->inode_lock); 5395 goto again; 5396 } 5397 5398 if (cond_resched_lock(&root->inode_lock)) 5399 goto again; 5400 5401 node = rb_next(node); 5402 } 5403 spin_unlock(&root->inode_lock); 5404 } 5405 5406 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5407 { 5408 struct btrfs_iget_args *args = p; 5409 inode->i_ino = args->location->objectid; 5410 memcpy(&BTRFS_I(inode)->location, args->location, 5411 sizeof(*args->location)); 5412 BTRFS_I(inode)->root = args->root; 5413 return 0; 5414 } 5415 5416 static int btrfs_find_actor(struct inode *inode, void *opaque) 5417 { 5418 struct btrfs_iget_args *args = opaque; 5419 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5420 args->root == BTRFS_I(inode)->root; 5421 } 5422 5423 static struct inode *btrfs_iget_locked(struct super_block *s, 5424 struct btrfs_key *location, 5425 struct btrfs_root *root) 5426 { 5427 struct inode *inode; 5428 struct btrfs_iget_args args; 5429 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5430 5431 args.location = location; 5432 args.root = root; 5433 5434 inode = iget5_locked(s, hashval, btrfs_find_actor, 5435 btrfs_init_locked_inode, 5436 (void *)&args); 5437 return inode; 5438 } 5439 5440 /* Get an inode object given its location and corresponding root. 5441 * Returns in *is_new if the inode was read from disk 5442 */ 5443 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5444 struct btrfs_root *root, int *new) 5445 { 5446 struct inode *inode; 5447 5448 inode = btrfs_iget_locked(s, location, root); 5449 if (!inode) 5450 return ERR_PTR(-ENOMEM); 5451 5452 if (inode->i_state & I_NEW) { 5453 btrfs_read_locked_inode(inode); 5454 if (!is_bad_inode(inode)) { 5455 inode_tree_add(inode); 5456 unlock_new_inode(inode); 5457 if (new) 5458 *new = 1; 5459 } else { 5460 unlock_new_inode(inode); 5461 iput(inode); 5462 inode = ERR_PTR(-ESTALE); 5463 } 5464 } 5465 5466 return inode; 5467 } 5468 5469 static struct inode *new_simple_dir(struct super_block *s, 5470 struct btrfs_key *key, 5471 struct btrfs_root *root) 5472 { 5473 struct inode *inode = new_inode(s); 5474 5475 if (!inode) 5476 return ERR_PTR(-ENOMEM); 5477 5478 BTRFS_I(inode)->root = root; 5479 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5480 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5481 5482 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5483 inode->i_op = &btrfs_dir_ro_inode_operations; 5484 inode->i_fop = &simple_dir_operations; 5485 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5486 inode->i_mtime = CURRENT_TIME; 5487 inode->i_atime = inode->i_mtime; 5488 inode->i_ctime = inode->i_mtime; 5489 BTRFS_I(inode)->i_otime = inode->i_mtime; 5490 5491 return inode; 5492 } 5493 5494 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5495 { 5496 struct inode *inode; 5497 struct btrfs_root *root = BTRFS_I(dir)->root; 5498 struct btrfs_root *sub_root = root; 5499 struct btrfs_key location; 5500 int index; 5501 int ret = 0; 5502 5503 if (dentry->d_name.len > BTRFS_NAME_LEN) 5504 return ERR_PTR(-ENAMETOOLONG); 5505 5506 ret = btrfs_inode_by_name(dir, dentry, &location); 5507 if (ret < 0) 5508 return ERR_PTR(ret); 5509 5510 if (location.objectid == 0) 5511 return ERR_PTR(-ENOENT); 5512 5513 if (location.type == BTRFS_INODE_ITEM_KEY) { 5514 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5515 return inode; 5516 } 5517 5518 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5519 5520 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5521 ret = fixup_tree_root_location(root, dir, dentry, 5522 &location, &sub_root); 5523 if (ret < 0) { 5524 if (ret != -ENOENT) 5525 inode = ERR_PTR(ret); 5526 else 5527 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5528 } else { 5529 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5530 } 5531 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5532 5533 if (!IS_ERR(inode) && root != sub_root) { 5534 down_read(&root->fs_info->cleanup_work_sem); 5535 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5536 ret = btrfs_orphan_cleanup(sub_root); 5537 up_read(&root->fs_info->cleanup_work_sem); 5538 if (ret) { 5539 iput(inode); 5540 inode = ERR_PTR(ret); 5541 } 5542 } 5543 5544 return inode; 5545 } 5546 5547 static int btrfs_dentry_delete(const struct dentry *dentry) 5548 { 5549 struct btrfs_root *root; 5550 struct inode *inode = d_inode(dentry); 5551 5552 if (!inode && !IS_ROOT(dentry)) 5553 inode = d_inode(dentry->d_parent); 5554 5555 if (inode) { 5556 root = BTRFS_I(inode)->root; 5557 if (btrfs_root_refs(&root->root_item) == 0) 5558 return 1; 5559 5560 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5561 return 1; 5562 } 5563 return 0; 5564 } 5565 5566 static void btrfs_dentry_release(struct dentry *dentry) 5567 { 5568 kfree(dentry->d_fsdata); 5569 } 5570 5571 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5572 unsigned int flags) 5573 { 5574 struct inode *inode; 5575 5576 inode = btrfs_lookup_dentry(dir, dentry); 5577 if (IS_ERR(inode)) { 5578 if (PTR_ERR(inode) == -ENOENT) 5579 inode = NULL; 5580 else 5581 return ERR_CAST(inode); 5582 } 5583 5584 return d_splice_alias(inode, dentry); 5585 } 5586 5587 unsigned char btrfs_filetype_table[] = { 5588 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5589 }; 5590 5591 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5592 { 5593 struct inode *inode = file_inode(file); 5594 struct btrfs_root *root = BTRFS_I(inode)->root; 5595 struct btrfs_item *item; 5596 struct btrfs_dir_item *di; 5597 struct btrfs_key key; 5598 struct btrfs_key found_key; 5599 struct btrfs_path *path; 5600 struct list_head ins_list; 5601 struct list_head del_list; 5602 int ret; 5603 struct extent_buffer *leaf; 5604 int slot; 5605 unsigned char d_type; 5606 int over = 0; 5607 u32 di_cur; 5608 u32 di_total; 5609 u32 di_len; 5610 int key_type = BTRFS_DIR_INDEX_KEY; 5611 char tmp_name[32]; 5612 char *name_ptr; 5613 int name_len; 5614 int is_curr = 0; /* ctx->pos points to the current index? */ 5615 5616 /* FIXME, use a real flag for deciding about the key type */ 5617 if (root->fs_info->tree_root == root) 5618 key_type = BTRFS_DIR_ITEM_KEY; 5619 5620 if (!dir_emit_dots(file, ctx)) 5621 return 0; 5622 5623 path = btrfs_alloc_path(); 5624 if (!path) 5625 return -ENOMEM; 5626 5627 path->reada = 1; 5628 5629 if (key_type == BTRFS_DIR_INDEX_KEY) { 5630 INIT_LIST_HEAD(&ins_list); 5631 INIT_LIST_HEAD(&del_list); 5632 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5633 } 5634 5635 key.type = key_type; 5636 key.offset = ctx->pos; 5637 key.objectid = btrfs_ino(inode); 5638 5639 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5640 if (ret < 0) 5641 goto err; 5642 5643 while (1) { 5644 leaf = path->nodes[0]; 5645 slot = path->slots[0]; 5646 if (slot >= btrfs_header_nritems(leaf)) { 5647 ret = btrfs_next_leaf(root, path); 5648 if (ret < 0) 5649 goto err; 5650 else if (ret > 0) 5651 break; 5652 continue; 5653 } 5654 5655 item = btrfs_item_nr(slot); 5656 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5657 5658 if (found_key.objectid != key.objectid) 5659 break; 5660 if (found_key.type != key_type) 5661 break; 5662 if (found_key.offset < ctx->pos) 5663 goto next; 5664 if (key_type == BTRFS_DIR_INDEX_KEY && 5665 btrfs_should_delete_dir_index(&del_list, 5666 found_key.offset)) 5667 goto next; 5668 5669 ctx->pos = found_key.offset; 5670 is_curr = 1; 5671 5672 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5673 di_cur = 0; 5674 di_total = btrfs_item_size(leaf, item); 5675 5676 while (di_cur < di_total) { 5677 struct btrfs_key location; 5678 5679 if (verify_dir_item(root, leaf, di)) 5680 break; 5681 5682 name_len = btrfs_dir_name_len(leaf, di); 5683 if (name_len <= sizeof(tmp_name)) { 5684 name_ptr = tmp_name; 5685 } else { 5686 name_ptr = kmalloc(name_len, GFP_NOFS); 5687 if (!name_ptr) { 5688 ret = -ENOMEM; 5689 goto err; 5690 } 5691 } 5692 read_extent_buffer(leaf, name_ptr, 5693 (unsigned long)(di + 1), name_len); 5694 5695 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5696 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5697 5698 5699 /* is this a reference to our own snapshot? If so 5700 * skip it. 5701 * 5702 * In contrast to old kernels, we insert the snapshot's 5703 * dir item and dir index after it has been created, so 5704 * we won't find a reference to our own snapshot. We 5705 * still keep the following code for backward 5706 * compatibility. 5707 */ 5708 if (location.type == BTRFS_ROOT_ITEM_KEY && 5709 location.objectid == root->root_key.objectid) { 5710 over = 0; 5711 goto skip; 5712 } 5713 over = !dir_emit(ctx, name_ptr, name_len, 5714 location.objectid, d_type); 5715 5716 skip: 5717 if (name_ptr != tmp_name) 5718 kfree(name_ptr); 5719 5720 if (over) 5721 goto nopos; 5722 di_len = btrfs_dir_name_len(leaf, di) + 5723 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5724 di_cur += di_len; 5725 di = (struct btrfs_dir_item *)((char *)di + di_len); 5726 } 5727 next: 5728 path->slots[0]++; 5729 } 5730 5731 if (key_type == BTRFS_DIR_INDEX_KEY) { 5732 if (is_curr) 5733 ctx->pos++; 5734 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5735 if (ret) 5736 goto nopos; 5737 } 5738 5739 /* Reached end of directory/root. Bump pos past the last item. */ 5740 ctx->pos++; 5741 5742 /* 5743 * Stop new entries from being returned after we return the last 5744 * entry. 5745 * 5746 * New directory entries are assigned a strictly increasing 5747 * offset. This means that new entries created during readdir 5748 * are *guaranteed* to be seen in the future by that readdir. 5749 * This has broken buggy programs which operate on names as 5750 * they're returned by readdir. Until we re-use freed offsets 5751 * we have this hack to stop new entries from being returned 5752 * under the assumption that they'll never reach this huge 5753 * offset. 5754 * 5755 * This is being careful not to overflow 32bit loff_t unless the 5756 * last entry requires it because doing so has broken 32bit apps 5757 * in the past. 5758 */ 5759 if (key_type == BTRFS_DIR_INDEX_KEY) { 5760 if (ctx->pos >= INT_MAX) 5761 ctx->pos = LLONG_MAX; 5762 else 5763 ctx->pos = INT_MAX; 5764 } 5765 nopos: 5766 ret = 0; 5767 err: 5768 if (key_type == BTRFS_DIR_INDEX_KEY) 5769 btrfs_put_delayed_items(&ins_list, &del_list); 5770 btrfs_free_path(path); 5771 return ret; 5772 } 5773 5774 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5775 { 5776 struct btrfs_root *root = BTRFS_I(inode)->root; 5777 struct btrfs_trans_handle *trans; 5778 int ret = 0; 5779 bool nolock = false; 5780 5781 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5782 return 0; 5783 5784 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5785 nolock = true; 5786 5787 if (wbc->sync_mode == WB_SYNC_ALL) { 5788 if (nolock) 5789 trans = btrfs_join_transaction_nolock(root); 5790 else 5791 trans = btrfs_join_transaction(root); 5792 if (IS_ERR(trans)) 5793 return PTR_ERR(trans); 5794 ret = btrfs_commit_transaction(trans, root); 5795 } 5796 return ret; 5797 } 5798 5799 /* 5800 * This is somewhat expensive, updating the tree every time the 5801 * inode changes. But, it is most likely to find the inode in cache. 5802 * FIXME, needs more benchmarking...there are no reasons other than performance 5803 * to keep or drop this code. 5804 */ 5805 static int btrfs_dirty_inode(struct inode *inode) 5806 { 5807 struct btrfs_root *root = BTRFS_I(inode)->root; 5808 struct btrfs_trans_handle *trans; 5809 int ret; 5810 5811 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5812 return 0; 5813 5814 trans = btrfs_join_transaction(root); 5815 if (IS_ERR(trans)) 5816 return PTR_ERR(trans); 5817 5818 ret = btrfs_update_inode(trans, root, inode); 5819 if (ret && ret == -ENOSPC) { 5820 /* whoops, lets try again with the full transaction */ 5821 btrfs_end_transaction(trans, root); 5822 trans = btrfs_start_transaction(root, 1); 5823 if (IS_ERR(trans)) 5824 return PTR_ERR(trans); 5825 5826 ret = btrfs_update_inode(trans, root, inode); 5827 } 5828 btrfs_end_transaction(trans, root); 5829 if (BTRFS_I(inode)->delayed_node) 5830 btrfs_balance_delayed_items(root); 5831 5832 return ret; 5833 } 5834 5835 /* 5836 * This is a copy of file_update_time. We need this so we can return error on 5837 * ENOSPC for updating the inode in the case of file write and mmap writes. 5838 */ 5839 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5840 int flags) 5841 { 5842 struct btrfs_root *root = BTRFS_I(inode)->root; 5843 5844 if (btrfs_root_readonly(root)) 5845 return -EROFS; 5846 5847 if (flags & S_VERSION) 5848 inode_inc_iversion(inode); 5849 if (flags & S_CTIME) 5850 inode->i_ctime = *now; 5851 if (flags & S_MTIME) 5852 inode->i_mtime = *now; 5853 if (flags & S_ATIME) 5854 inode->i_atime = *now; 5855 return btrfs_dirty_inode(inode); 5856 } 5857 5858 /* 5859 * find the highest existing sequence number in a directory 5860 * and then set the in-memory index_cnt variable to reflect 5861 * free sequence numbers 5862 */ 5863 static int btrfs_set_inode_index_count(struct inode *inode) 5864 { 5865 struct btrfs_root *root = BTRFS_I(inode)->root; 5866 struct btrfs_key key, found_key; 5867 struct btrfs_path *path; 5868 struct extent_buffer *leaf; 5869 int ret; 5870 5871 key.objectid = btrfs_ino(inode); 5872 key.type = BTRFS_DIR_INDEX_KEY; 5873 key.offset = (u64)-1; 5874 5875 path = btrfs_alloc_path(); 5876 if (!path) 5877 return -ENOMEM; 5878 5879 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5880 if (ret < 0) 5881 goto out; 5882 /* FIXME: we should be able to handle this */ 5883 if (ret == 0) 5884 goto out; 5885 ret = 0; 5886 5887 /* 5888 * MAGIC NUMBER EXPLANATION: 5889 * since we search a directory based on f_pos we have to start at 2 5890 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5891 * else has to start at 2 5892 */ 5893 if (path->slots[0] == 0) { 5894 BTRFS_I(inode)->index_cnt = 2; 5895 goto out; 5896 } 5897 5898 path->slots[0]--; 5899 5900 leaf = path->nodes[0]; 5901 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5902 5903 if (found_key.objectid != btrfs_ino(inode) || 5904 found_key.type != BTRFS_DIR_INDEX_KEY) { 5905 BTRFS_I(inode)->index_cnt = 2; 5906 goto out; 5907 } 5908 5909 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5910 out: 5911 btrfs_free_path(path); 5912 return ret; 5913 } 5914 5915 /* 5916 * helper to find a free sequence number in a given directory. This current 5917 * code is very simple, later versions will do smarter things in the btree 5918 */ 5919 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5920 { 5921 int ret = 0; 5922 5923 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5924 ret = btrfs_inode_delayed_dir_index_count(dir); 5925 if (ret) { 5926 ret = btrfs_set_inode_index_count(dir); 5927 if (ret) 5928 return ret; 5929 } 5930 } 5931 5932 *index = BTRFS_I(dir)->index_cnt; 5933 BTRFS_I(dir)->index_cnt++; 5934 5935 return ret; 5936 } 5937 5938 static int btrfs_insert_inode_locked(struct inode *inode) 5939 { 5940 struct btrfs_iget_args args; 5941 args.location = &BTRFS_I(inode)->location; 5942 args.root = BTRFS_I(inode)->root; 5943 5944 return insert_inode_locked4(inode, 5945 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5946 btrfs_find_actor, &args); 5947 } 5948 5949 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5950 struct btrfs_root *root, 5951 struct inode *dir, 5952 const char *name, int name_len, 5953 u64 ref_objectid, u64 objectid, 5954 umode_t mode, u64 *index) 5955 { 5956 struct inode *inode; 5957 struct btrfs_inode_item *inode_item; 5958 struct btrfs_key *location; 5959 struct btrfs_path *path; 5960 struct btrfs_inode_ref *ref; 5961 struct btrfs_key key[2]; 5962 u32 sizes[2]; 5963 int nitems = name ? 2 : 1; 5964 unsigned long ptr; 5965 int ret; 5966 5967 path = btrfs_alloc_path(); 5968 if (!path) 5969 return ERR_PTR(-ENOMEM); 5970 5971 inode = new_inode(root->fs_info->sb); 5972 if (!inode) { 5973 btrfs_free_path(path); 5974 return ERR_PTR(-ENOMEM); 5975 } 5976 5977 /* 5978 * O_TMPFILE, set link count to 0, so that after this point, 5979 * we fill in an inode item with the correct link count. 5980 */ 5981 if (!name) 5982 set_nlink(inode, 0); 5983 5984 /* 5985 * we have to initialize this early, so we can reclaim the inode 5986 * number if we fail afterwards in this function. 5987 */ 5988 inode->i_ino = objectid; 5989 5990 if (dir && name) { 5991 trace_btrfs_inode_request(dir); 5992 5993 ret = btrfs_set_inode_index(dir, index); 5994 if (ret) { 5995 btrfs_free_path(path); 5996 iput(inode); 5997 return ERR_PTR(ret); 5998 } 5999 } else if (dir) { 6000 *index = 0; 6001 } 6002 /* 6003 * index_cnt is ignored for everything but a dir, 6004 * btrfs_get_inode_index_count has an explanation for the magic 6005 * number 6006 */ 6007 BTRFS_I(inode)->index_cnt = 2; 6008 BTRFS_I(inode)->dir_index = *index; 6009 BTRFS_I(inode)->root = root; 6010 BTRFS_I(inode)->generation = trans->transid; 6011 inode->i_generation = BTRFS_I(inode)->generation; 6012 6013 /* 6014 * We could have gotten an inode number from somebody who was fsynced 6015 * and then removed in this same transaction, so let's just set full 6016 * sync since it will be a full sync anyway and this will blow away the 6017 * old info in the log. 6018 */ 6019 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6020 6021 key[0].objectid = objectid; 6022 key[0].type = BTRFS_INODE_ITEM_KEY; 6023 key[0].offset = 0; 6024 6025 sizes[0] = sizeof(struct btrfs_inode_item); 6026 6027 if (name) { 6028 /* 6029 * Start new inodes with an inode_ref. This is slightly more 6030 * efficient for small numbers of hard links since they will 6031 * be packed into one item. Extended refs will kick in if we 6032 * add more hard links than can fit in the ref item. 6033 */ 6034 key[1].objectid = objectid; 6035 key[1].type = BTRFS_INODE_REF_KEY; 6036 key[1].offset = ref_objectid; 6037 6038 sizes[1] = name_len + sizeof(*ref); 6039 } 6040 6041 location = &BTRFS_I(inode)->location; 6042 location->objectid = objectid; 6043 location->offset = 0; 6044 location->type = BTRFS_INODE_ITEM_KEY; 6045 6046 ret = btrfs_insert_inode_locked(inode); 6047 if (ret < 0) 6048 goto fail; 6049 6050 path->leave_spinning = 1; 6051 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6052 if (ret != 0) 6053 goto fail_unlock; 6054 6055 inode_init_owner(inode, dir, mode); 6056 inode_set_bytes(inode, 0); 6057 6058 inode->i_mtime = CURRENT_TIME; 6059 inode->i_atime = inode->i_mtime; 6060 inode->i_ctime = inode->i_mtime; 6061 BTRFS_I(inode)->i_otime = inode->i_mtime; 6062 6063 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6064 struct btrfs_inode_item); 6065 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6066 sizeof(*inode_item)); 6067 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6068 6069 if (name) { 6070 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6071 struct btrfs_inode_ref); 6072 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6073 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6074 ptr = (unsigned long)(ref + 1); 6075 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6076 } 6077 6078 btrfs_mark_buffer_dirty(path->nodes[0]); 6079 btrfs_free_path(path); 6080 6081 btrfs_inherit_iflags(inode, dir); 6082 6083 if (S_ISREG(mode)) { 6084 if (btrfs_test_opt(root, NODATASUM)) 6085 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6086 if (btrfs_test_opt(root, NODATACOW)) 6087 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6088 BTRFS_INODE_NODATASUM; 6089 } 6090 6091 inode_tree_add(inode); 6092 6093 trace_btrfs_inode_new(inode); 6094 btrfs_set_inode_last_trans(trans, inode); 6095 6096 btrfs_update_root_times(trans, root); 6097 6098 ret = btrfs_inode_inherit_props(trans, inode, dir); 6099 if (ret) 6100 btrfs_err(root->fs_info, 6101 "error inheriting props for ino %llu (root %llu): %d", 6102 btrfs_ino(inode), root->root_key.objectid, ret); 6103 6104 return inode; 6105 6106 fail_unlock: 6107 unlock_new_inode(inode); 6108 fail: 6109 if (dir && name) 6110 BTRFS_I(dir)->index_cnt--; 6111 btrfs_free_path(path); 6112 iput(inode); 6113 return ERR_PTR(ret); 6114 } 6115 6116 static inline u8 btrfs_inode_type(struct inode *inode) 6117 { 6118 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6119 } 6120 6121 /* 6122 * utility function to add 'inode' into 'parent_inode' with 6123 * a give name and a given sequence number. 6124 * if 'add_backref' is true, also insert a backref from the 6125 * inode to the parent directory. 6126 */ 6127 int btrfs_add_link(struct btrfs_trans_handle *trans, 6128 struct inode *parent_inode, struct inode *inode, 6129 const char *name, int name_len, int add_backref, u64 index) 6130 { 6131 int ret = 0; 6132 struct btrfs_key key; 6133 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6134 u64 ino = btrfs_ino(inode); 6135 u64 parent_ino = btrfs_ino(parent_inode); 6136 6137 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6138 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6139 } else { 6140 key.objectid = ino; 6141 key.type = BTRFS_INODE_ITEM_KEY; 6142 key.offset = 0; 6143 } 6144 6145 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6146 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6147 key.objectid, root->root_key.objectid, 6148 parent_ino, index, name, name_len); 6149 } else if (add_backref) { 6150 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6151 parent_ino, index); 6152 } 6153 6154 /* Nothing to clean up yet */ 6155 if (ret) 6156 return ret; 6157 6158 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6159 parent_inode, &key, 6160 btrfs_inode_type(inode), index); 6161 if (ret == -EEXIST || ret == -EOVERFLOW) 6162 goto fail_dir_item; 6163 else if (ret) { 6164 btrfs_abort_transaction(trans, root, ret); 6165 return ret; 6166 } 6167 6168 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6169 name_len * 2); 6170 inode_inc_iversion(parent_inode); 6171 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 6172 ret = btrfs_update_inode(trans, root, parent_inode); 6173 if (ret) 6174 btrfs_abort_transaction(trans, root, ret); 6175 return ret; 6176 6177 fail_dir_item: 6178 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6179 u64 local_index; 6180 int err; 6181 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6182 key.objectid, root->root_key.objectid, 6183 parent_ino, &local_index, name, name_len); 6184 6185 } else if (add_backref) { 6186 u64 local_index; 6187 int err; 6188 6189 err = btrfs_del_inode_ref(trans, root, name, name_len, 6190 ino, parent_ino, &local_index); 6191 } 6192 return ret; 6193 } 6194 6195 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6196 struct inode *dir, struct dentry *dentry, 6197 struct inode *inode, int backref, u64 index) 6198 { 6199 int err = btrfs_add_link(trans, dir, inode, 6200 dentry->d_name.name, dentry->d_name.len, 6201 backref, index); 6202 if (err > 0) 6203 err = -EEXIST; 6204 return err; 6205 } 6206 6207 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6208 umode_t mode, dev_t rdev) 6209 { 6210 struct btrfs_trans_handle *trans; 6211 struct btrfs_root *root = BTRFS_I(dir)->root; 6212 struct inode *inode = NULL; 6213 int err; 6214 int drop_inode = 0; 6215 u64 objectid; 6216 u64 index = 0; 6217 6218 if (!new_valid_dev(rdev)) 6219 return -EINVAL; 6220 6221 /* 6222 * 2 for inode item and ref 6223 * 2 for dir items 6224 * 1 for xattr if selinux is on 6225 */ 6226 trans = btrfs_start_transaction(root, 5); 6227 if (IS_ERR(trans)) 6228 return PTR_ERR(trans); 6229 6230 err = btrfs_find_free_ino(root, &objectid); 6231 if (err) 6232 goto out_unlock; 6233 6234 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6235 dentry->d_name.len, btrfs_ino(dir), objectid, 6236 mode, &index); 6237 if (IS_ERR(inode)) { 6238 err = PTR_ERR(inode); 6239 goto out_unlock; 6240 } 6241 6242 /* 6243 * If the active LSM wants to access the inode during 6244 * d_instantiate it needs these. Smack checks to see 6245 * if the filesystem supports xattrs by looking at the 6246 * ops vector. 6247 */ 6248 inode->i_op = &btrfs_special_inode_operations; 6249 init_special_inode(inode, inode->i_mode, rdev); 6250 6251 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6252 if (err) 6253 goto out_unlock_inode; 6254 6255 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6256 if (err) { 6257 goto out_unlock_inode; 6258 } else { 6259 btrfs_update_inode(trans, root, inode); 6260 unlock_new_inode(inode); 6261 d_instantiate(dentry, inode); 6262 } 6263 6264 out_unlock: 6265 btrfs_end_transaction(trans, root); 6266 btrfs_balance_delayed_items(root); 6267 btrfs_btree_balance_dirty(root); 6268 if (drop_inode) { 6269 inode_dec_link_count(inode); 6270 iput(inode); 6271 } 6272 return err; 6273 6274 out_unlock_inode: 6275 drop_inode = 1; 6276 unlock_new_inode(inode); 6277 goto out_unlock; 6278 6279 } 6280 6281 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6282 umode_t mode, bool excl) 6283 { 6284 struct btrfs_trans_handle *trans; 6285 struct btrfs_root *root = BTRFS_I(dir)->root; 6286 struct inode *inode = NULL; 6287 int drop_inode_on_err = 0; 6288 int err; 6289 u64 objectid; 6290 u64 index = 0; 6291 6292 /* 6293 * 2 for inode item and ref 6294 * 2 for dir items 6295 * 1 for xattr if selinux is on 6296 */ 6297 trans = btrfs_start_transaction(root, 5); 6298 if (IS_ERR(trans)) 6299 return PTR_ERR(trans); 6300 6301 err = btrfs_find_free_ino(root, &objectid); 6302 if (err) 6303 goto out_unlock; 6304 6305 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6306 dentry->d_name.len, btrfs_ino(dir), objectid, 6307 mode, &index); 6308 if (IS_ERR(inode)) { 6309 err = PTR_ERR(inode); 6310 goto out_unlock; 6311 } 6312 drop_inode_on_err = 1; 6313 /* 6314 * If the active LSM wants to access the inode during 6315 * d_instantiate it needs these. Smack checks to see 6316 * if the filesystem supports xattrs by looking at the 6317 * ops vector. 6318 */ 6319 inode->i_fop = &btrfs_file_operations; 6320 inode->i_op = &btrfs_file_inode_operations; 6321 inode->i_mapping->a_ops = &btrfs_aops; 6322 6323 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6324 if (err) 6325 goto out_unlock_inode; 6326 6327 err = btrfs_update_inode(trans, root, inode); 6328 if (err) 6329 goto out_unlock_inode; 6330 6331 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6332 if (err) 6333 goto out_unlock_inode; 6334 6335 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6336 unlock_new_inode(inode); 6337 d_instantiate(dentry, inode); 6338 6339 out_unlock: 6340 btrfs_end_transaction(trans, root); 6341 if (err && drop_inode_on_err) { 6342 inode_dec_link_count(inode); 6343 iput(inode); 6344 } 6345 btrfs_balance_delayed_items(root); 6346 btrfs_btree_balance_dirty(root); 6347 return err; 6348 6349 out_unlock_inode: 6350 unlock_new_inode(inode); 6351 goto out_unlock; 6352 6353 } 6354 6355 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6356 struct dentry *dentry) 6357 { 6358 struct btrfs_trans_handle *trans; 6359 struct btrfs_root *root = BTRFS_I(dir)->root; 6360 struct inode *inode = d_inode(old_dentry); 6361 u64 index; 6362 int err; 6363 int drop_inode = 0; 6364 6365 /* do not allow sys_link's with other subvols of the same device */ 6366 if (root->objectid != BTRFS_I(inode)->root->objectid) 6367 return -EXDEV; 6368 6369 if (inode->i_nlink >= BTRFS_LINK_MAX) 6370 return -EMLINK; 6371 6372 err = btrfs_set_inode_index(dir, &index); 6373 if (err) 6374 goto fail; 6375 6376 /* 6377 * 2 items for inode and inode ref 6378 * 2 items for dir items 6379 * 1 item for parent inode 6380 */ 6381 trans = btrfs_start_transaction(root, 5); 6382 if (IS_ERR(trans)) { 6383 err = PTR_ERR(trans); 6384 goto fail; 6385 } 6386 6387 /* There are several dir indexes for this inode, clear the cache. */ 6388 BTRFS_I(inode)->dir_index = 0ULL; 6389 inc_nlink(inode); 6390 inode_inc_iversion(inode); 6391 inode->i_ctime = CURRENT_TIME; 6392 ihold(inode); 6393 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6394 6395 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6396 6397 if (err) { 6398 drop_inode = 1; 6399 } else { 6400 struct dentry *parent = dentry->d_parent; 6401 err = btrfs_update_inode(trans, root, inode); 6402 if (err) 6403 goto fail; 6404 if (inode->i_nlink == 1) { 6405 /* 6406 * If new hard link count is 1, it's a file created 6407 * with open(2) O_TMPFILE flag. 6408 */ 6409 err = btrfs_orphan_del(trans, inode); 6410 if (err) 6411 goto fail; 6412 } 6413 d_instantiate(dentry, inode); 6414 btrfs_log_new_name(trans, inode, NULL, parent); 6415 } 6416 6417 btrfs_end_transaction(trans, root); 6418 btrfs_balance_delayed_items(root); 6419 fail: 6420 if (drop_inode) { 6421 inode_dec_link_count(inode); 6422 iput(inode); 6423 } 6424 btrfs_btree_balance_dirty(root); 6425 return err; 6426 } 6427 6428 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6429 { 6430 struct inode *inode = NULL; 6431 struct btrfs_trans_handle *trans; 6432 struct btrfs_root *root = BTRFS_I(dir)->root; 6433 int err = 0; 6434 int drop_on_err = 0; 6435 u64 objectid = 0; 6436 u64 index = 0; 6437 6438 /* 6439 * 2 items for inode and ref 6440 * 2 items for dir items 6441 * 1 for xattr if selinux is on 6442 */ 6443 trans = btrfs_start_transaction(root, 5); 6444 if (IS_ERR(trans)) 6445 return PTR_ERR(trans); 6446 6447 err = btrfs_find_free_ino(root, &objectid); 6448 if (err) 6449 goto out_fail; 6450 6451 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6452 dentry->d_name.len, btrfs_ino(dir), objectid, 6453 S_IFDIR | mode, &index); 6454 if (IS_ERR(inode)) { 6455 err = PTR_ERR(inode); 6456 goto out_fail; 6457 } 6458 6459 drop_on_err = 1; 6460 /* these must be set before we unlock the inode */ 6461 inode->i_op = &btrfs_dir_inode_operations; 6462 inode->i_fop = &btrfs_dir_file_operations; 6463 6464 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6465 if (err) 6466 goto out_fail_inode; 6467 6468 btrfs_i_size_write(inode, 0); 6469 err = btrfs_update_inode(trans, root, inode); 6470 if (err) 6471 goto out_fail_inode; 6472 6473 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6474 dentry->d_name.len, 0, index); 6475 if (err) 6476 goto out_fail_inode; 6477 6478 d_instantiate(dentry, inode); 6479 /* 6480 * mkdir is special. We're unlocking after we call d_instantiate 6481 * to avoid a race with nfsd calling d_instantiate. 6482 */ 6483 unlock_new_inode(inode); 6484 drop_on_err = 0; 6485 6486 out_fail: 6487 btrfs_end_transaction(trans, root); 6488 if (drop_on_err) { 6489 inode_dec_link_count(inode); 6490 iput(inode); 6491 } 6492 btrfs_balance_delayed_items(root); 6493 btrfs_btree_balance_dirty(root); 6494 return err; 6495 6496 out_fail_inode: 6497 unlock_new_inode(inode); 6498 goto out_fail; 6499 } 6500 6501 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6502 static struct extent_map *next_extent_map(struct extent_map *em) 6503 { 6504 struct rb_node *next; 6505 6506 next = rb_next(&em->rb_node); 6507 if (!next) 6508 return NULL; 6509 return container_of(next, struct extent_map, rb_node); 6510 } 6511 6512 static struct extent_map *prev_extent_map(struct extent_map *em) 6513 { 6514 struct rb_node *prev; 6515 6516 prev = rb_prev(&em->rb_node); 6517 if (!prev) 6518 return NULL; 6519 return container_of(prev, struct extent_map, rb_node); 6520 } 6521 6522 /* helper for btfs_get_extent. Given an existing extent in the tree, 6523 * the existing extent is the nearest extent to map_start, 6524 * and an extent that you want to insert, deal with overlap and insert 6525 * the best fitted new extent into the tree. 6526 */ 6527 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6528 struct extent_map *existing, 6529 struct extent_map *em, 6530 u64 map_start) 6531 { 6532 struct extent_map *prev; 6533 struct extent_map *next; 6534 u64 start; 6535 u64 end; 6536 u64 start_diff; 6537 6538 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6539 6540 if (existing->start > map_start) { 6541 next = existing; 6542 prev = prev_extent_map(next); 6543 } else { 6544 prev = existing; 6545 next = next_extent_map(prev); 6546 } 6547 6548 start = prev ? extent_map_end(prev) : em->start; 6549 start = max_t(u64, start, em->start); 6550 end = next ? next->start : extent_map_end(em); 6551 end = min_t(u64, end, extent_map_end(em)); 6552 start_diff = start - em->start; 6553 em->start = start; 6554 em->len = end - start; 6555 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6556 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6557 em->block_start += start_diff; 6558 em->block_len -= start_diff; 6559 } 6560 return add_extent_mapping(em_tree, em, 0); 6561 } 6562 6563 static noinline int uncompress_inline(struct btrfs_path *path, 6564 struct inode *inode, struct page *page, 6565 size_t pg_offset, u64 extent_offset, 6566 struct btrfs_file_extent_item *item) 6567 { 6568 int ret; 6569 struct extent_buffer *leaf = path->nodes[0]; 6570 char *tmp; 6571 size_t max_size; 6572 unsigned long inline_size; 6573 unsigned long ptr; 6574 int compress_type; 6575 6576 WARN_ON(pg_offset != 0); 6577 compress_type = btrfs_file_extent_compression(leaf, item); 6578 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6579 inline_size = btrfs_file_extent_inline_item_len(leaf, 6580 btrfs_item_nr(path->slots[0])); 6581 tmp = kmalloc(inline_size, GFP_NOFS); 6582 if (!tmp) 6583 return -ENOMEM; 6584 ptr = btrfs_file_extent_inline_start(item); 6585 6586 read_extent_buffer(leaf, tmp, ptr, inline_size); 6587 6588 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6589 ret = btrfs_decompress(compress_type, tmp, page, 6590 extent_offset, inline_size, max_size); 6591 kfree(tmp); 6592 return ret; 6593 } 6594 6595 /* 6596 * a bit scary, this does extent mapping from logical file offset to the disk. 6597 * the ugly parts come from merging extents from the disk with the in-ram 6598 * representation. This gets more complex because of the data=ordered code, 6599 * where the in-ram extents might be locked pending data=ordered completion. 6600 * 6601 * This also copies inline extents directly into the page. 6602 */ 6603 6604 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6605 size_t pg_offset, u64 start, u64 len, 6606 int create) 6607 { 6608 int ret; 6609 int err = 0; 6610 u64 extent_start = 0; 6611 u64 extent_end = 0; 6612 u64 objectid = btrfs_ino(inode); 6613 u32 found_type; 6614 struct btrfs_path *path = NULL; 6615 struct btrfs_root *root = BTRFS_I(inode)->root; 6616 struct btrfs_file_extent_item *item; 6617 struct extent_buffer *leaf; 6618 struct btrfs_key found_key; 6619 struct extent_map *em = NULL; 6620 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6621 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6622 struct btrfs_trans_handle *trans = NULL; 6623 const bool new_inline = !page || create; 6624 6625 again: 6626 read_lock(&em_tree->lock); 6627 em = lookup_extent_mapping(em_tree, start, len); 6628 if (em) 6629 em->bdev = root->fs_info->fs_devices->latest_bdev; 6630 read_unlock(&em_tree->lock); 6631 6632 if (em) { 6633 if (em->start > start || em->start + em->len <= start) 6634 free_extent_map(em); 6635 else if (em->block_start == EXTENT_MAP_INLINE && page) 6636 free_extent_map(em); 6637 else 6638 goto out; 6639 } 6640 em = alloc_extent_map(); 6641 if (!em) { 6642 err = -ENOMEM; 6643 goto out; 6644 } 6645 em->bdev = root->fs_info->fs_devices->latest_bdev; 6646 em->start = EXTENT_MAP_HOLE; 6647 em->orig_start = EXTENT_MAP_HOLE; 6648 em->len = (u64)-1; 6649 em->block_len = (u64)-1; 6650 6651 if (!path) { 6652 path = btrfs_alloc_path(); 6653 if (!path) { 6654 err = -ENOMEM; 6655 goto out; 6656 } 6657 /* 6658 * Chances are we'll be called again, so go ahead and do 6659 * readahead 6660 */ 6661 path->reada = 1; 6662 } 6663 6664 ret = btrfs_lookup_file_extent(trans, root, path, 6665 objectid, start, trans != NULL); 6666 if (ret < 0) { 6667 err = ret; 6668 goto out; 6669 } 6670 6671 if (ret != 0) { 6672 if (path->slots[0] == 0) 6673 goto not_found; 6674 path->slots[0]--; 6675 } 6676 6677 leaf = path->nodes[0]; 6678 item = btrfs_item_ptr(leaf, path->slots[0], 6679 struct btrfs_file_extent_item); 6680 /* are we inside the extent that was found? */ 6681 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6682 found_type = found_key.type; 6683 if (found_key.objectid != objectid || 6684 found_type != BTRFS_EXTENT_DATA_KEY) { 6685 /* 6686 * If we backup past the first extent we want to move forward 6687 * and see if there is an extent in front of us, otherwise we'll 6688 * say there is a hole for our whole search range which can 6689 * cause problems. 6690 */ 6691 extent_end = start; 6692 goto next; 6693 } 6694 6695 found_type = btrfs_file_extent_type(leaf, item); 6696 extent_start = found_key.offset; 6697 if (found_type == BTRFS_FILE_EXTENT_REG || 6698 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6699 extent_end = extent_start + 6700 btrfs_file_extent_num_bytes(leaf, item); 6701 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6702 size_t size; 6703 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6704 extent_end = ALIGN(extent_start + size, root->sectorsize); 6705 } 6706 next: 6707 if (start >= extent_end) { 6708 path->slots[0]++; 6709 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6710 ret = btrfs_next_leaf(root, path); 6711 if (ret < 0) { 6712 err = ret; 6713 goto out; 6714 } 6715 if (ret > 0) 6716 goto not_found; 6717 leaf = path->nodes[0]; 6718 } 6719 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6720 if (found_key.objectid != objectid || 6721 found_key.type != BTRFS_EXTENT_DATA_KEY) 6722 goto not_found; 6723 if (start + len <= found_key.offset) 6724 goto not_found; 6725 if (start > found_key.offset) 6726 goto next; 6727 em->start = start; 6728 em->orig_start = start; 6729 em->len = found_key.offset - start; 6730 goto not_found_em; 6731 } 6732 6733 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6734 6735 if (found_type == BTRFS_FILE_EXTENT_REG || 6736 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6737 goto insert; 6738 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6739 unsigned long ptr; 6740 char *map; 6741 size_t size; 6742 size_t extent_offset; 6743 size_t copy_size; 6744 6745 if (new_inline) 6746 goto out; 6747 6748 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6749 extent_offset = page_offset(page) + pg_offset - extent_start; 6750 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6751 size - extent_offset); 6752 em->start = extent_start + extent_offset; 6753 em->len = ALIGN(copy_size, root->sectorsize); 6754 em->orig_block_len = em->len; 6755 em->orig_start = em->start; 6756 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6757 if (create == 0 && !PageUptodate(page)) { 6758 if (btrfs_file_extent_compression(leaf, item) != 6759 BTRFS_COMPRESS_NONE) { 6760 ret = uncompress_inline(path, inode, page, 6761 pg_offset, 6762 extent_offset, item); 6763 if (ret) { 6764 err = ret; 6765 goto out; 6766 } 6767 } else { 6768 map = kmap(page); 6769 read_extent_buffer(leaf, map + pg_offset, ptr, 6770 copy_size); 6771 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6772 memset(map + pg_offset + copy_size, 0, 6773 PAGE_CACHE_SIZE - pg_offset - 6774 copy_size); 6775 } 6776 kunmap(page); 6777 } 6778 flush_dcache_page(page); 6779 } else if (create && PageUptodate(page)) { 6780 BUG(); 6781 if (!trans) { 6782 kunmap(page); 6783 free_extent_map(em); 6784 em = NULL; 6785 6786 btrfs_release_path(path); 6787 trans = btrfs_join_transaction(root); 6788 6789 if (IS_ERR(trans)) 6790 return ERR_CAST(trans); 6791 goto again; 6792 } 6793 map = kmap(page); 6794 write_extent_buffer(leaf, map + pg_offset, ptr, 6795 copy_size); 6796 kunmap(page); 6797 btrfs_mark_buffer_dirty(leaf); 6798 } 6799 set_extent_uptodate(io_tree, em->start, 6800 extent_map_end(em) - 1, NULL, GFP_NOFS); 6801 goto insert; 6802 } 6803 not_found: 6804 em->start = start; 6805 em->orig_start = start; 6806 em->len = len; 6807 not_found_em: 6808 em->block_start = EXTENT_MAP_HOLE; 6809 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6810 insert: 6811 btrfs_release_path(path); 6812 if (em->start > start || extent_map_end(em) <= start) { 6813 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6814 em->start, em->len, start, len); 6815 err = -EIO; 6816 goto out; 6817 } 6818 6819 err = 0; 6820 write_lock(&em_tree->lock); 6821 ret = add_extent_mapping(em_tree, em, 0); 6822 /* it is possible that someone inserted the extent into the tree 6823 * while we had the lock dropped. It is also possible that 6824 * an overlapping map exists in the tree 6825 */ 6826 if (ret == -EEXIST) { 6827 struct extent_map *existing; 6828 6829 ret = 0; 6830 6831 existing = search_extent_mapping(em_tree, start, len); 6832 /* 6833 * existing will always be non-NULL, since there must be 6834 * extent causing the -EEXIST. 6835 */ 6836 if (start >= extent_map_end(existing) || 6837 start <= existing->start) { 6838 /* 6839 * The existing extent map is the one nearest to 6840 * the [start, start + len) range which overlaps 6841 */ 6842 err = merge_extent_mapping(em_tree, existing, 6843 em, start); 6844 free_extent_map(existing); 6845 if (err) { 6846 free_extent_map(em); 6847 em = NULL; 6848 } 6849 } else { 6850 free_extent_map(em); 6851 em = existing; 6852 err = 0; 6853 } 6854 } 6855 write_unlock(&em_tree->lock); 6856 out: 6857 6858 trace_btrfs_get_extent(root, em); 6859 6860 if (path) 6861 btrfs_free_path(path); 6862 if (trans) { 6863 ret = btrfs_end_transaction(trans, root); 6864 if (!err) 6865 err = ret; 6866 } 6867 if (err) { 6868 free_extent_map(em); 6869 return ERR_PTR(err); 6870 } 6871 BUG_ON(!em); /* Error is always set */ 6872 return em; 6873 } 6874 6875 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6876 size_t pg_offset, u64 start, u64 len, 6877 int create) 6878 { 6879 struct extent_map *em; 6880 struct extent_map *hole_em = NULL; 6881 u64 range_start = start; 6882 u64 end; 6883 u64 found; 6884 u64 found_end; 6885 int err = 0; 6886 6887 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6888 if (IS_ERR(em)) 6889 return em; 6890 if (em) { 6891 /* 6892 * if our em maps to 6893 * - a hole or 6894 * - a pre-alloc extent, 6895 * there might actually be delalloc bytes behind it. 6896 */ 6897 if (em->block_start != EXTENT_MAP_HOLE && 6898 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6899 return em; 6900 else 6901 hole_em = em; 6902 } 6903 6904 /* check to see if we've wrapped (len == -1 or similar) */ 6905 end = start + len; 6906 if (end < start) 6907 end = (u64)-1; 6908 else 6909 end -= 1; 6910 6911 em = NULL; 6912 6913 /* ok, we didn't find anything, lets look for delalloc */ 6914 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6915 end, len, EXTENT_DELALLOC, 1); 6916 found_end = range_start + found; 6917 if (found_end < range_start) 6918 found_end = (u64)-1; 6919 6920 /* 6921 * we didn't find anything useful, return 6922 * the original results from get_extent() 6923 */ 6924 if (range_start > end || found_end <= start) { 6925 em = hole_em; 6926 hole_em = NULL; 6927 goto out; 6928 } 6929 6930 /* adjust the range_start to make sure it doesn't 6931 * go backwards from the start they passed in 6932 */ 6933 range_start = max(start, range_start); 6934 found = found_end - range_start; 6935 6936 if (found > 0) { 6937 u64 hole_start = start; 6938 u64 hole_len = len; 6939 6940 em = alloc_extent_map(); 6941 if (!em) { 6942 err = -ENOMEM; 6943 goto out; 6944 } 6945 /* 6946 * when btrfs_get_extent can't find anything it 6947 * returns one huge hole 6948 * 6949 * make sure what it found really fits our range, and 6950 * adjust to make sure it is based on the start from 6951 * the caller 6952 */ 6953 if (hole_em) { 6954 u64 calc_end = extent_map_end(hole_em); 6955 6956 if (calc_end <= start || (hole_em->start > end)) { 6957 free_extent_map(hole_em); 6958 hole_em = NULL; 6959 } else { 6960 hole_start = max(hole_em->start, start); 6961 hole_len = calc_end - hole_start; 6962 } 6963 } 6964 em->bdev = NULL; 6965 if (hole_em && range_start > hole_start) { 6966 /* our hole starts before our delalloc, so we 6967 * have to return just the parts of the hole 6968 * that go until the delalloc starts 6969 */ 6970 em->len = min(hole_len, 6971 range_start - hole_start); 6972 em->start = hole_start; 6973 em->orig_start = hole_start; 6974 /* 6975 * don't adjust block start at all, 6976 * it is fixed at EXTENT_MAP_HOLE 6977 */ 6978 em->block_start = hole_em->block_start; 6979 em->block_len = hole_len; 6980 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6981 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6982 } else { 6983 em->start = range_start; 6984 em->len = found; 6985 em->orig_start = range_start; 6986 em->block_start = EXTENT_MAP_DELALLOC; 6987 em->block_len = found; 6988 } 6989 } else if (hole_em) { 6990 return hole_em; 6991 } 6992 out: 6993 6994 free_extent_map(hole_em); 6995 if (err) { 6996 free_extent_map(em); 6997 return ERR_PTR(err); 6998 } 6999 return em; 7000 } 7001 7002 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7003 u64 start, u64 len) 7004 { 7005 struct btrfs_root *root = BTRFS_I(inode)->root; 7006 struct extent_map *em; 7007 struct btrfs_key ins; 7008 u64 alloc_hint; 7009 int ret; 7010 7011 alloc_hint = get_extent_allocation_hint(inode, start, len); 7012 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7013 alloc_hint, &ins, 1, 1); 7014 if (ret) 7015 return ERR_PTR(ret); 7016 7017 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 7018 ins.offset, ins.offset, ins.offset, 0); 7019 if (IS_ERR(em)) { 7020 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7021 return em; 7022 } 7023 7024 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 7025 ins.offset, ins.offset, 0); 7026 if (ret) { 7027 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7028 free_extent_map(em); 7029 return ERR_PTR(ret); 7030 } 7031 7032 return em; 7033 } 7034 7035 /* 7036 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7037 * block must be cow'd 7038 */ 7039 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7040 u64 *orig_start, u64 *orig_block_len, 7041 u64 *ram_bytes) 7042 { 7043 struct btrfs_trans_handle *trans; 7044 struct btrfs_path *path; 7045 int ret; 7046 struct extent_buffer *leaf; 7047 struct btrfs_root *root = BTRFS_I(inode)->root; 7048 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7049 struct btrfs_file_extent_item *fi; 7050 struct btrfs_key key; 7051 u64 disk_bytenr; 7052 u64 backref_offset; 7053 u64 extent_end; 7054 u64 num_bytes; 7055 int slot; 7056 int found_type; 7057 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7058 7059 path = btrfs_alloc_path(); 7060 if (!path) 7061 return -ENOMEM; 7062 7063 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7064 offset, 0); 7065 if (ret < 0) 7066 goto out; 7067 7068 slot = path->slots[0]; 7069 if (ret == 1) { 7070 if (slot == 0) { 7071 /* can't find the item, must cow */ 7072 ret = 0; 7073 goto out; 7074 } 7075 slot--; 7076 } 7077 ret = 0; 7078 leaf = path->nodes[0]; 7079 btrfs_item_key_to_cpu(leaf, &key, slot); 7080 if (key.objectid != btrfs_ino(inode) || 7081 key.type != BTRFS_EXTENT_DATA_KEY) { 7082 /* not our file or wrong item type, must cow */ 7083 goto out; 7084 } 7085 7086 if (key.offset > offset) { 7087 /* Wrong offset, must cow */ 7088 goto out; 7089 } 7090 7091 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7092 found_type = btrfs_file_extent_type(leaf, fi); 7093 if (found_type != BTRFS_FILE_EXTENT_REG && 7094 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7095 /* not a regular extent, must cow */ 7096 goto out; 7097 } 7098 7099 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7100 goto out; 7101 7102 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7103 if (extent_end <= offset) 7104 goto out; 7105 7106 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7107 if (disk_bytenr == 0) 7108 goto out; 7109 7110 if (btrfs_file_extent_compression(leaf, fi) || 7111 btrfs_file_extent_encryption(leaf, fi) || 7112 btrfs_file_extent_other_encoding(leaf, fi)) 7113 goto out; 7114 7115 backref_offset = btrfs_file_extent_offset(leaf, fi); 7116 7117 if (orig_start) { 7118 *orig_start = key.offset - backref_offset; 7119 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7120 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7121 } 7122 7123 if (btrfs_extent_readonly(root, disk_bytenr)) 7124 goto out; 7125 7126 num_bytes = min(offset + *len, extent_end) - offset; 7127 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7128 u64 range_end; 7129 7130 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7131 ret = test_range_bit(io_tree, offset, range_end, 7132 EXTENT_DELALLOC, 0, NULL); 7133 if (ret) { 7134 ret = -EAGAIN; 7135 goto out; 7136 } 7137 } 7138 7139 btrfs_release_path(path); 7140 7141 /* 7142 * look for other files referencing this extent, if we 7143 * find any we must cow 7144 */ 7145 trans = btrfs_join_transaction(root); 7146 if (IS_ERR(trans)) { 7147 ret = 0; 7148 goto out; 7149 } 7150 7151 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7152 key.offset - backref_offset, disk_bytenr); 7153 btrfs_end_transaction(trans, root); 7154 if (ret) { 7155 ret = 0; 7156 goto out; 7157 } 7158 7159 /* 7160 * adjust disk_bytenr and num_bytes to cover just the bytes 7161 * in this extent we are about to write. If there 7162 * are any csums in that range we have to cow in order 7163 * to keep the csums correct 7164 */ 7165 disk_bytenr += backref_offset; 7166 disk_bytenr += offset - key.offset; 7167 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7168 goto out; 7169 /* 7170 * all of the above have passed, it is safe to overwrite this extent 7171 * without cow 7172 */ 7173 *len = num_bytes; 7174 ret = 1; 7175 out: 7176 btrfs_free_path(path); 7177 return ret; 7178 } 7179 7180 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7181 { 7182 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7183 int found = false; 7184 void **pagep = NULL; 7185 struct page *page = NULL; 7186 int start_idx; 7187 int end_idx; 7188 7189 start_idx = start >> PAGE_CACHE_SHIFT; 7190 7191 /* 7192 * end is the last byte in the last page. end == start is legal 7193 */ 7194 end_idx = end >> PAGE_CACHE_SHIFT; 7195 7196 rcu_read_lock(); 7197 7198 /* Most of the code in this while loop is lifted from 7199 * find_get_page. It's been modified to begin searching from a 7200 * page and return just the first page found in that range. If the 7201 * found idx is less than or equal to the end idx then we know that 7202 * a page exists. If no pages are found or if those pages are 7203 * outside of the range then we're fine (yay!) */ 7204 while (page == NULL && 7205 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7206 page = radix_tree_deref_slot(pagep); 7207 if (unlikely(!page)) 7208 break; 7209 7210 if (radix_tree_exception(page)) { 7211 if (radix_tree_deref_retry(page)) { 7212 page = NULL; 7213 continue; 7214 } 7215 /* 7216 * Otherwise, shmem/tmpfs must be storing a swap entry 7217 * here as an exceptional entry: so return it without 7218 * attempting to raise page count. 7219 */ 7220 page = NULL; 7221 break; /* TODO: Is this relevant for this use case? */ 7222 } 7223 7224 if (!page_cache_get_speculative(page)) { 7225 page = NULL; 7226 continue; 7227 } 7228 7229 /* 7230 * Has the page moved? 7231 * This is part of the lockless pagecache protocol. See 7232 * include/linux/pagemap.h for details. 7233 */ 7234 if (unlikely(page != *pagep)) { 7235 page_cache_release(page); 7236 page = NULL; 7237 } 7238 } 7239 7240 if (page) { 7241 if (page->index <= end_idx) 7242 found = true; 7243 page_cache_release(page); 7244 } 7245 7246 rcu_read_unlock(); 7247 return found; 7248 } 7249 7250 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7251 struct extent_state **cached_state, int writing) 7252 { 7253 struct btrfs_ordered_extent *ordered; 7254 int ret = 0; 7255 7256 while (1) { 7257 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7258 0, cached_state); 7259 /* 7260 * We're concerned with the entire range that we're going to be 7261 * doing DIO to, so we need to make sure theres no ordered 7262 * extents in this range. 7263 */ 7264 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7265 lockend - lockstart + 1); 7266 7267 /* 7268 * We need to make sure there are no buffered pages in this 7269 * range either, we could have raced between the invalidate in 7270 * generic_file_direct_write and locking the extent. The 7271 * invalidate needs to happen so that reads after a write do not 7272 * get stale data. 7273 */ 7274 if (!ordered && 7275 (!writing || 7276 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7277 break; 7278 7279 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7280 cached_state, GFP_NOFS); 7281 7282 if (ordered) { 7283 btrfs_start_ordered_extent(inode, ordered, 1); 7284 btrfs_put_ordered_extent(ordered); 7285 } else { 7286 /* Screw you mmap */ 7287 ret = btrfs_fdatawrite_range(inode, lockstart, lockend); 7288 if (ret) 7289 break; 7290 ret = filemap_fdatawait_range(inode->i_mapping, 7291 lockstart, 7292 lockend); 7293 if (ret) 7294 break; 7295 7296 /* 7297 * If we found a page that couldn't be invalidated just 7298 * fall back to buffered. 7299 */ 7300 ret = invalidate_inode_pages2_range(inode->i_mapping, 7301 lockstart >> PAGE_CACHE_SHIFT, 7302 lockend >> PAGE_CACHE_SHIFT); 7303 if (ret) 7304 break; 7305 } 7306 7307 cond_resched(); 7308 } 7309 7310 return ret; 7311 } 7312 7313 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7314 u64 len, u64 orig_start, 7315 u64 block_start, u64 block_len, 7316 u64 orig_block_len, u64 ram_bytes, 7317 int type) 7318 { 7319 struct extent_map_tree *em_tree; 7320 struct extent_map *em; 7321 struct btrfs_root *root = BTRFS_I(inode)->root; 7322 int ret; 7323 7324 em_tree = &BTRFS_I(inode)->extent_tree; 7325 em = alloc_extent_map(); 7326 if (!em) 7327 return ERR_PTR(-ENOMEM); 7328 7329 em->start = start; 7330 em->orig_start = orig_start; 7331 em->mod_start = start; 7332 em->mod_len = len; 7333 em->len = len; 7334 em->block_len = block_len; 7335 em->block_start = block_start; 7336 em->bdev = root->fs_info->fs_devices->latest_bdev; 7337 em->orig_block_len = orig_block_len; 7338 em->ram_bytes = ram_bytes; 7339 em->generation = -1; 7340 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7341 if (type == BTRFS_ORDERED_PREALLOC) 7342 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7343 7344 do { 7345 btrfs_drop_extent_cache(inode, em->start, 7346 em->start + em->len - 1, 0); 7347 write_lock(&em_tree->lock); 7348 ret = add_extent_mapping(em_tree, em, 1); 7349 write_unlock(&em_tree->lock); 7350 } while (ret == -EEXIST); 7351 7352 if (ret) { 7353 free_extent_map(em); 7354 return ERR_PTR(ret); 7355 } 7356 7357 return em; 7358 } 7359 7360 7361 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7362 struct buffer_head *bh_result, int create) 7363 { 7364 struct extent_map *em; 7365 struct btrfs_root *root = BTRFS_I(inode)->root; 7366 struct extent_state *cached_state = NULL; 7367 u64 start = iblock << inode->i_blkbits; 7368 u64 lockstart, lockend; 7369 u64 len = bh_result->b_size; 7370 u64 *outstanding_extents = NULL; 7371 int unlock_bits = EXTENT_LOCKED; 7372 int ret = 0; 7373 7374 if (create) 7375 unlock_bits |= EXTENT_DIRTY; 7376 else 7377 len = min_t(u64, len, root->sectorsize); 7378 7379 lockstart = start; 7380 lockend = start + len - 1; 7381 7382 if (current->journal_info) { 7383 /* 7384 * Need to pull our outstanding extents and set journal_info to NULL so 7385 * that anything that needs to check if there's a transction doesn't get 7386 * confused. 7387 */ 7388 outstanding_extents = current->journal_info; 7389 current->journal_info = NULL; 7390 } 7391 7392 /* 7393 * If this errors out it's because we couldn't invalidate pagecache for 7394 * this range and we need to fallback to buffered. 7395 */ 7396 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 7397 return -ENOTBLK; 7398 7399 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7400 if (IS_ERR(em)) { 7401 ret = PTR_ERR(em); 7402 goto unlock_err; 7403 } 7404 7405 /* 7406 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7407 * io. INLINE is special, and we could probably kludge it in here, but 7408 * it's still buffered so for safety lets just fall back to the generic 7409 * buffered path. 7410 * 7411 * For COMPRESSED we _have_ to read the entire extent in so we can 7412 * decompress it, so there will be buffering required no matter what we 7413 * do, so go ahead and fallback to buffered. 7414 * 7415 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7416 * to buffered IO. Don't blame me, this is the price we pay for using 7417 * the generic code. 7418 */ 7419 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7420 em->block_start == EXTENT_MAP_INLINE) { 7421 free_extent_map(em); 7422 ret = -ENOTBLK; 7423 goto unlock_err; 7424 } 7425 7426 /* Just a good old fashioned hole, return */ 7427 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7428 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7429 free_extent_map(em); 7430 goto unlock_err; 7431 } 7432 7433 /* 7434 * We don't allocate a new extent in the following cases 7435 * 7436 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7437 * existing extent. 7438 * 2) The extent is marked as PREALLOC. We're good to go here and can 7439 * just use the extent. 7440 * 7441 */ 7442 if (!create) { 7443 len = min(len, em->len - (start - em->start)); 7444 lockstart = start + len; 7445 goto unlock; 7446 } 7447 7448 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7449 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7450 em->block_start != EXTENT_MAP_HOLE)) { 7451 int type; 7452 u64 block_start, orig_start, orig_block_len, ram_bytes; 7453 7454 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7455 type = BTRFS_ORDERED_PREALLOC; 7456 else 7457 type = BTRFS_ORDERED_NOCOW; 7458 len = min(len, em->len - (start - em->start)); 7459 block_start = em->block_start + (start - em->start); 7460 7461 if (can_nocow_extent(inode, start, &len, &orig_start, 7462 &orig_block_len, &ram_bytes) == 1) { 7463 if (type == BTRFS_ORDERED_PREALLOC) { 7464 free_extent_map(em); 7465 em = create_pinned_em(inode, start, len, 7466 orig_start, 7467 block_start, len, 7468 orig_block_len, 7469 ram_bytes, type); 7470 if (IS_ERR(em)) { 7471 ret = PTR_ERR(em); 7472 goto unlock_err; 7473 } 7474 } 7475 7476 ret = btrfs_add_ordered_extent_dio(inode, start, 7477 block_start, len, len, type); 7478 if (ret) { 7479 free_extent_map(em); 7480 goto unlock_err; 7481 } 7482 goto unlock; 7483 } 7484 } 7485 7486 /* 7487 * this will cow the extent, reset the len in case we changed 7488 * it above 7489 */ 7490 len = bh_result->b_size; 7491 free_extent_map(em); 7492 em = btrfs_new_extent_direct(inode, start, len); 7493 if (IS_ERR(em)) { 7494 ret = PTR_ERR(em); 7495 goto unlock_err; 7496 } 7497 len = min(len, em->len - (start - em->start)); 7498 unlock: 7499 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7500 inode->i_blkbits; 7501 bh_result->b_size = len; 7502 bh_result->b_bdev = em->bdev; 7503 set_buffer_mapped(bh_result); 7504 if (create) { 7505 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7506 set_buffer_new(bh_result); 7507 7508 /* 7509 * Need to update the i_size under the extent lock so buffered 7510 * readers will get the updated i_size when we unlock. 7511 */ 7512 if (start + len > i_size_read(inode)) 7513 i_size_write(inode, start + len); 7514 7515 /* 7516 * If we have an outstanding_extents count still set then we're 7517 * within our reservation, otherwise we need to adjust our inode 7518 * counter appropriately. 7519 */ 7520 if (*outstanding_extents) { 7521 (*outstanding_extents)--; 7522 } else { 7523 spin_lock(&BTRFS_I(inode)->lock); 7524 BTRFS_I(inode)->outstanding_extents++; 7525 spin_unlock(&BTRFS_I(inode)->lock); 7526 } 7527 7528 current->journal_info = outstanding_extents; 7529 btrfs_free_reserved_data_space(inode, len); 7530 } 7531 7532 /* 7533 * In the case of write we need to clear and unlock the entire range, 7534 * in the case of read we need to unlock only the end area that we 7535 * aren't using if there is any left over space. 7536 */ 7537 if (lockstart < lockend) { 7538 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7539 lockend, unlock_bits, 1, 0, 7540 &cached_state, GFP_NOFS); 7541 } else { 7542 free_extent_state(cached_state); 7543 } 7544 7545 free_extent_map(em); 7546 7547 return 0; 7548 7549 unlock_err: 7550 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7551 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7552 if (outstanding_extents) 7553 current->journal_info = outstanding_extents; 7554 return ret; 7555 } 7556 7557 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7558 int rw, int mirror_num) 7559 { 7560 struct btrfs_root *root = BTRFS_I(inode)->root; 7561 int ret; 7562 7563 BUG_ON(rw & REQ_WRITE); 7564 7565 bio_get(bio); 7566 7567 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7568 BTRFS_WQ_ENDIO_DIO_REPAIR); 7569 if (ret) 7570 goto err; 7571 7572 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7573 err: 7574 bio_put(bio); 7575 return ret; 7576 } 7577 7578 static int btrfs_check_dio_repairable(struct inode *inode, 7579 struct bio *failed_bio, 7580 struct io_failure_record *failrec, 7581 int failed_mirror) 7582 { 7583 int num_copies; 7584 7585 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7586 failrec->logical, failrec->len); 7587 if (num_copies == 1) { 7588 /* 7589 * we only have a single copy of the data, so don't bother with 7590 * all the retry and error correction code that follows. no 7591 * matter what the error is, it is very likely to persist. 7592 */ 7593 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7594 num_copies, failrec->this_mirror, failed_mirror); 7595 return 0; 7596 } 7597 7598 failrec->failed_mirror = failed_mirror; 7599 failrec->this_mirror++; 7600 if (failrec->this_mirror == failed_mirror) 7601 failrec->this_mirror++; 7602 7603 if (failrec->this_mirror > num_copies) { 7604 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7605 num_copies, failrec->this_mirror, failed_mirror); 7606 return 0; 7607 } 7608 7609 return 1; 7610 } 7611 7612 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7613 struct page *page, u64 start, u64 end, 7614 int failed_mirror, bio_end_io_t *repair_endio, 7615 void *repair_arg) 7616 { 7617 struct io_failure_record *failrec; 7618 struct bio *bio; 7619 int isector; 7620 int read_mode; 7621 int ret; 7622 7623 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7624 7625 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7626 if (ret) 7627 return ret; 7628 7629 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7630 failed_mirror); 7631 if (!ret) { 7632 free_io_failure(inode, failrec); 7633 return -EIO; 7634 } 7635 7636 if (failed_bio->bi_vcnt > 1) 7637 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7638 else 7639 read_mode = READ_SYNC; 7640 7641 isector = start - btrfs_io_bio(failed_bio)->logical; 7642 isector >>= inode->i_sb->s_blocksize_bits; 7643 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7644 0, isector, repair_endio, repair_arg); 7645 if (!bio) { 7646 free_io_failure(inode, failrec); 7647 return -EIO; 7648 } 7649 7650 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7651 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7652 read_mode, failrec->this_mirror, failrec->in_validation); 7653 7654 ret = submit_dio_repair_bio(inode, bio, read_mode, 7655 failrec->this_mirror); 7656 if (ret) { 7657 free_io_failure(inode, failrec); 7658 bio_put(bio); 7659 } 7660 7661 return ret; 7662 } 7663 7664 struct btrfs_retry_complete { 7665 struct completion done; 7666 struct inode *inode; 7667 u64 start; 7668 int uptodate; 7669 }; 7670 7671 static void btrfs_retry_endio_nocsum(struct bio *bio, int err) 7672 { 7673 struct btrfs_retry_complete *done = bio->bi_private; 7674 struct bio_vec *bvec; 7675 int i; 7676 7677 if (err) 7678 goto end; 7679 7680 done->uptodate = 1; 7681 bio_for_each_segment_all(bvec, bio, i) 7682 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7683 end: 7684 complete(&done->done); 7685 bio_put(bio); 7686 } 7687 7688 static int __btrfs_correct_data_nocsum(struct inode *inode, 7689 struct btrfs_io_bio *io_bio) 7690 { 7691 struct bio_vec *bvec; 7692 struct btrfs_retry_complete done; 7693 u64 start; 7694 int i; 7695 int ret; 7696 7697 start = io_bio->logical; 7698 done.inode = inode; 7699 7700 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7701 try_again: 7702 done.uptodate = 0; 7703 done.start = start; 7704 init_completion(&done.done); 7705 7706 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7707 start + bvec->bv_len - 1, 7708 io_bio->mirror_num, 7709 btrfs_retry_endio_nocsum, &done); 7710 if (ret) 7711 return ret; 7712 7713 wait_for_completion(&done.done); 7714 7715 if (!done.uptodate) { 7716 /* We might have another mirror, so try again */ 7717 goto try_again; 7718 } 7719 7720 start += bvec->bv_len; 7721 } 7722 7723 return 0; 7724 } 7725 7726 static void btrfs_retry_endio(struct bio *bio, int err) 7727 { 7728 struct btrfs_retry_complete *done = bio->bi_private; 7729 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7730 struct bio_vec *bvec; 7731 int uptodate; 7732 int ret; 7733 int i; 7734 7735 if (err) 7736 goto end; 7737 7738 uptodate = 1; 7739 bio_for_each_segment_all(bvec, bio, i) { 7740 ret = __readpage_endio_check(done->inode, io_bio, i, 7741 bvec->bv_page, 0, 7742 done->start, bvec->bv_len); 7743 if (!ret) 7744 clean_io_failure(done->inode, done->start, 7745 bvec->bv_page, 0); 7746 else 7747 uptodate = 0; 7748 } 7749 7750 done->uptodate = uptodate; 7751 end: 7752 complete(&done->done); 7753 bio_put(bio); 7754 } 7755 7756 static int __btrfs_subio_endio_read(struct inode *inode, 7757 struct btrfs_io_bio *io_bio, int err) 7758 { 7759 struct bio_vec *bvec; 7760 struct btrfs_retry_complete done; 7761 u64 start; 7762 u64 offset = 0; 7763 int i; 7764 int ret; 7765 7766 err = 0; 7767 start = io_bio->logical; 7768 done.inode = inode; 7769 7770 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7771 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7772 0, start, bvec->bv_len); 7773 if (likely(!ret)) 7774 goto next; 7775 try_again: 7776 done.uptodate = 0; 7777 done.start = start; 7778 init_completion(&done.done); 7779 7780 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7781 start + bvec->bv_len - 1, 7782 io_bio->mirror_num, 7783 btrfs_retry_endio, &done); 7784 if (ret) { 7785 err = ret; 7786 goto next; 7787 } 7788 7789 wait_for_completion(&done.done); 7790 7791 if (!done.uptodate) { 7792 /* We might have another mirror, so try again */ 7793 goto try_again; 7794 } 7795 next: 7796 offset += bvec->bv_len; 7797 start += bvec->bv_len; 7798 } 7799 7800 return err; 7801 } 7802 7803 static int btrfs_subio_endio_read(struct inode *inode, 7804 struct btrfs_io_bio *io_bio, int err) 7805 { 7806 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7807 7808 if (skip_csum) { 7809 if (unlikely(err)) 7810 return __btrfs_correct_data_nocsum(inode, io_bio); 7811 else 7812 return 0; 7813 } else { 7814 return __btrfs_subio_endio_read(inode, io_bio, err); 7815 } 7816 } 7817 7818 static void btrfs_endio_direct_read(struct bio *bio, int err) 7819 { 7820 struct btrfs_dio_private *dip = bio->bi_private; 7821 struct inode *inode = dip->inode; 7822 struct bio *dio_bio; 7823 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7824 7825 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7826 err = btrfs_subio_endio_read(inode, io_bio, err); 7827 7828 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7829 dip->logical_offset + dip->bytes - 1); 7830 dio_bio = dip->dio_bio; 7831 7832 kfree(dip); 7833 7834 /* If we had a csum failure make sure to clear the uptodate flag */ 7835 if (err) 7836 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7837 dio_end_io(dio_bio, err); 7838 7839 if (io_bio->end_io) 7840 io_bio->end_io(io_bio, err); 7841 bio_put(bio); 7842 } 7843 7844 static void btrfs_endio_direct_write(struct bio *bio, int err) 7845 { 7846 struct btrfs_dio_private *dip = bio->bi_private; 7847 struct inode *inode = dip->inode; 7848 struct btrfs_root *root = BTRFS_I(inode)->root; 7849 struct btrfs_ordered_extent *ordered = NULL; 7850 u64 ordered_offset = dip->logical_offset; 7851 u64 ordered_bytes = dip->bytes; 7852 struct bio *dio_bio; 7853 int ret; 7854 7855 if (err) 7856 goto out_done; 7857 again: 7858 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7859 &ordered_offset, 7860 ordered_bytes, !err); 7861 if (!ret) 7862 goto out_test; 7863 7864 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 7865 finish_ordered_fn, NULL, NULL); 7866 btrfs_queue_work(root->fs_info->endio_write_workers, 7867 &ordered->work); 7868 out_test: 7869 /* 7870 * our bio might span multiple ordered extents. If we haven't 7871 * completed the accounting for the whole dio, go back and try again 7872 */ 7873 if (ordered_offset < dip->logical_offset + dip->bytes) { 7874 ordered_bytes = dip->logical_offset + dip->bytes - 7875 ordered_offset; 7876 ordered = NULL; 7877 goto again; 7878 } 7879 out_done: 7880 dio_bio = dip->dio_bio; 7881 7882 kfree(dip); 7883 7884 /* If we had an error make sure to clear the uptodate flag */ 7885 if (err) 7886 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7887 dio_end_io(dio_bio, err); 7888 bio_put(bio); 7889 } 7890 7891 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7892 struct bio *bio, int mirror_num, 7893 unsigned long bio_flags, u64 offset) 7894 { 7895 int ret; 7896 struct btrfs_root *root = BTRFS_I(inode)->root; 7897 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7898 BUG_ON(ret); /* -ENOMEM */ 7899 return 0; 7900 } 7901 7902 static void btrfs_end_dio_bio(struct bio *bio, int err) 7903 { 7904 struct btrfs_dio_private *dip = bio->bi_private; 7905 7906 if (err) 7907 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7908 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7909 btrfs_ino(dip->inode), bio->bi_rw, 7910 (unsigned long long)bio->bi_iter.bi_sector, 7911 bio->bi_iter.bi_size, err); 7912 7913 if (dip->subio_endio) 7914 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7915 7916 if (err) { 7917 dip->errors = 1; 7918 7919 /* 7920 * before atomic variable goto zero, we must make sure 7921 * dip->errors is perceived to be set. 7922 */ 7923 smp_mb__before_atomic(); 7924 } 7925 7926 /* if there are more bios still pending for this dio, just exit */ 7927 if (!atomic_dec_and_test(&dip->pending_bios)) 7928 goto out; 7929 7930 if (dip->errors) { 7931 bio_io_error(dip->orig_bio); 7932 } else { 7933 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7934 bio_endio(dip->orig_bio, 0); 7935 } 7936 out: 7937 bio_put(bio); 7938 } 7939 7940 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7941 u64 first_sector, gfp_t gfp_flags) 7942 { 7943 int nr_vecs = bio_get_nr_vecs(bdev); 7944 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7945 } 7946 7947 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 7948 struct inode *inode, 7949 struct btrfs_dio_private *dip, 7950 struct bio *bio, 7951 u64 file_offset) 7952 { 7953 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7954 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7955 int ret; 7956 7957 /* 7958 * We load all the csum data we need when we submit 7959 * the first bio to reduce the csum tree search and 7960 * contention. 7961 */ 7962 if (dip->logical_offset == file_offset) { 7963 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 7964 file_offset); 7965 if (ret) 7966 return ret; 7967 } 7968 7969 if (bio == dip->orig_bio) 7970 return 0; 7971 7972 file_offset -= dip->logical_offset; 7973 file_offset >>= inode->i_sb->s_blocksize_bits; 7974 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 7975 7976 return 0; 7977 } 7978 7979 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7980 int rw, u64 file_offset, int skip_sum, 7981 int async_submit) 7982 { 7983 struct btrfs_dio_private *dip = bio->bi_private; 7984 int write = rw & REQ_WRITE; 7985 struct btrfs_root *root = BTRFS_I(inode)->root; 7986 int ret; 7987 7988 if (async_submit) 7989 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7990 7991 bio_get(bio); 7992 7993 if (!write) { 7994 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7995 BTRFS_WQ_ENDIO_DATA); 7996 if (ret) 7997 goto err; 7998 } 7999 8000 if (skip_sum) 8001 goto map; 8002 8003 if (write && async_submit) { 8004 ret = btrfs_wq_submit_bio(root->fs_info, 8005 inode, rw, bio, 0, 0, 8006 file_offset, 8007 __btrfs_submit_bio_start_direct_io, 8008 __btrfs_submit_bio_done); 8009 goto err; 8010 } else if (write) { 8011 /* 8012 * If we aren't doing async submit, calculate the csum of the 8013 * bio now. 8014 */ 8015 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8016 if (ret) 8017 goto err; 8018 } else { 8019 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8020 file_offset); 8021 if (ret) 8022 goto err; 8023 } 8024 map: 8025 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8026 err: 8027 bio_put(bio); 8028 return ret; 8029 } 8030 8031 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8032 int skip_sum) 8033 { 8034 struct inode *inode = dip->inode; 8035 struct btrfs_root *root = BTRFS_I(inode)->root; 8036 struct bio *bio; 8037 struct bio *orig_bio = dip->orig_bio; 8038 struct bio_vec *bvec = orig_bio->bi_io_vec; 8039 u64 start_sector = orig_bio->bi_iter.bi_sector; 8040 u64 file_offset = dip->logical_offset; 8041 u64 submit_len = 0; 8042 u64 map_length; 8043 int nr_pages = 0; 8044 int ret; 8045 int async_submit = 0; 8046 8047 map_length = orig_bio->bi_iter.bi_size; 8048 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8049 &map_length, NULL, 0); 8050 if (ret) 8051 return -EIO; 8052 8053 if (map_length >= orig_bio->bi_iter.bi_size) { 8054 bio = orig_bio; 8055 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8056 goto submit; 8057 } 8058 8059 /* async crcs make it difficult to collect full stripe writes. */ 8060 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8061 async_submit = 0; 8062 else 8063 async_submit = 1; 8064 8065 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8066 if (!bio) 8067 return -ENOMEM; 8068 8069 bio->bi_private = dip; 8070 bio->bi_end_io = btrfs_end_dio_bio; 8071 btrfs_io_bio(bio)->logical = file_offset; 8072 atomic_inc(&dip->pending_bios); 8073 8074 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8075 if (map_length < submit_len + bvec->bv_len || 8076 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 8077 bvec->bv_offset) < bvec->bv_len) { 8078 /* 8079 * inc the count before we submit the bio so 8080 * we know the end IO handler won't happen before 8081 * we inc the count. Otherwise, the dip might get freed 8082 * before we're done setting it up 8083 */ 8084 atomic_inc(&dip->pending_bios); 8085 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8086 file_offset, skip_sum, 8087 async_submit); 8088 if (ret) { 8089 bio_put(bio); 8090 atomic_dec(&dip->pending_bios); 8091 goto out_err; 8092 } 8093 8094 start_sector += submit_len >> 9; 8095 file_offset += submit_len; 8096 8097 submit_len = 0; 8098 nr_pages = 0; 8099 8100 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8101 start_sector, GFP_NOFS); 8102 if (!bio) 8103 goto out_err; 8104 bio->bi_private = dip; 8105 bio->bi_end_io = btrfs_end_dio_bio; 8106 btrfs_io_bio(bio)->logical = file_offset; 8107 8108 map_length = orig_bio->bi_iter.bi_size; 8109 ret = btrfs_map_block(root->fs_info, rw, 8110 start_sector << 9, 8111 &map_length, NULL, 0); 8112 if (ret) { 8113 bio_put(bio); 8114 goto out_err; 8115 } 8116 } else { 8117 submit_len += bvec->bv_len; 8118 nr_pages++; 8119 bvec++; 8120 } 8121 } 8122 8123 submit: 8124 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8125 async_submit); 8126 if (!ret) 8127 return 0; 8128 8129 bio_put(bio); 8130 out_err: 8131 dip->errors = 1; 8132 /* 8133 * before atomic variable goto zero, we must 8134 * make sure dip->errors is perceived to be set. 8135 */ 8136 smp_mb__before_atomic(); 8137 if (atomic_dec_and_test(&dip->pending_bios)) 8138 bio_io_error(dip->orig_bio); 8139 8140 /* bio_end_io() will handle error, so we needn't return it */ 8141 return 0; 8142 } 8143 8144 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8145 struct inode *inode, loff_t file_offset) 8146 { 8147 struct btrfs_root *root = BTRFS_I(inode)->root; 8148 struct btrfs_dio_private *dip; 8149 struct bio *io_bio; 8150 struct btrfs_io_bio *btrfs_bio; 8151 int skip_sum; 8152 int write = rw & REQ_WRITE; 8153 int ret = 0; 8154 8155 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8156 8157 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8158 if (!io_bio) { 8159 ret = -ENOMEM; 8160 goto free_ordered; 8161 } 8162 8163 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8164 if (!dip) { 8165 ret = -ENOMEM; 8166 goto free_io_bio; 8167 } 8168 8169 dip->private = dio_bio->bi_private; 8170 dip->inode = inode; 8171 dip->logical_offset = file_offset; 8172 dip->bytes = dio_bio->bi_iter.bi_size; 8173 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8174 io_bio->bi_private = dip; 8175 dip->orig_bio = io_bio; 8176 dip->dio_bio = dio_bio; 8177 atomic_set(&dip->pending_bios, 0); 8178 btrfs_bio = btrfs_io_bio(io_bio); 8179 btrfs_bio->logical = file_offset; 8180 8181 if (write) { 8182 io_bio->bi_end_io = btrfs_endio_direct_write; 8183 } else { 8184 io_bio->bi_end_io = btrfs_endio_direct_read; 8185 dip->subio_endio = btrfs_subio_endio_read; 8186 } 8187 8188 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8189 if (!ret) 8190 return; 8191 8192 if (btrfs_bio->end_io) 8193 btrfs_bio->end_io(btrfs_bio, ret); 8194 free_io_bio: 8195 bio_put(io_bio); 8196 8197 free_ordered: 8198 /* 8199 * If this is a write, we need to clean up the reserved space and kill 8200 * the ordered extent. 8201 */ 8202 if (write) { 8203 struct btrfs_ordered_extent *ordered; 8204 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 8205 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 8206 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 8207 btrfs_free_reserved_extent(root, ordered->start, 8208 ordered->disk_len, 1); 8209 btrfs_put_ordered_extent(ordered); 8210 btrfs_put_ordered_extent(ordered); 8211 } 8212 bio_endio(dio_bio, ret); 8213 } 8214 8215 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8216 const struct iov_iter *iter, loff_t offset) 8217 { 8218 int seg; 8219 int i; 8220 unsigned blocksize_mask = root->sectorsize - 1; 8221 ssize_t retval = -EINVAL; 8222 8223 if (offset & blocksize_mask) 8224 goto out; 8225 8226 if (iov_iter_alignment(iter) & blocksize_mask) 8227 goto out; 8228 8229 /* If this is a write we don't need to check anymore */ 8230 if (iov_iter_rw(iter) == WRITE) 8231 return 0; 8232 /* 8233 * Check to make sure we don't have duplicate iov_base's in this 8234 * iovec, if so return EINVAL, otherwise we'll get csum errors 8235 * when reading back. 8236 */ 8237 for (seg = 0; seg < iter->nr_segs; seg++) { 8238 for (i = seg + 1; i < iter->nr_segs; i++) { 8239 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8240 goto out; 8241 } 8242 } 8243 retval = 0; 8244 out: 8245 return retval; 8246 } 8247 8248 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 8249 loff_t offset) 8250 { 8251 struct file *file = iocb->ki_filp; 8252 struct inode *inode = file->f_mapping->host; 8253 u64 outstanding_extents = 0; 8254 size_t count = 0; 8255 int flags = 0; 8256 bool wakeup = true; 8257 bool relock = false; 8258 ssize_t ret; 8259 8260 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8261 return 0; 8262 8263 inode_dio_begin(inode); 8264 smp_mb__after_atomic(); 8265 8266 /* 8267 * The generic stuff only does filemap_write_and_wait_range, which 8268 * isn't enough if we've written compressed pages to this area, so 8269 * we need to flush the dirty pages again to make absolutely sure 8270 * that any outstanding dirty pages are on disk. 8271 */ 8272 count = iov_iter_count(iter); 8273 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8274 &BTRFS_I(inode)->runtime_flags)) 8275 filemap_fdatawrite_range(inode->i_mapping, offset, 8276 offset + count - 1); 8277 8278 if (iov_iter_rw(iter) == WRITE) { 8279 /* 8280 * If the write DIO is beyond the EOF, we need update 8281 * the isize, but it is protected by i_mutex. So we can 8282 * not unlock the i_mutex at this case. 8283 */ 8284 if (offset + count <= inode->i_size) { 8285 mutex_unlock(&inode->i_mutex); 8286 relock = true; 8287 } 8288 ret = btrfs_delalloc_reserve_space(inode, count); 8289 if (ret) 8290 goto out; 8291 outstanding_extents = div64_u64(count + 8292 BTRFS_MAX_EXTENT_SIZE - 1, 8293 BTRFS_MAX_EXTENT_SIZE); 8294 8295 /* 8296 * We need to know how many extents we reserved so that we can 8297 * do the accounting properly if we go over the number we 8298 * originally calculated. Abuse current->journal_info for this. 8299 */ 8300 current->journal_info = &outstanding_extents; 8301 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8302 &BTRFS_I(inode)->runtime_flags)) { 8303 inode_dio_end(inode); 8304 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8305 wakeup = false; 8306 } 8307 8308 ret = __blockdev_direct_IO(iocb, inode, 8309 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8310 iter, offset, btrfs_get_blocks_direct, NULL, 8311 btrfs_submit_direct, flags); 8312 if (iov_iter_rw(iter) == WRITE) { 8313 current->journal_info = NULL; 8314 if (ret < 0 && ret != -EIOCBQUEUED) 8315 btrfs_delalloc_release_space(inode, count); 8316 else if (ret >= 0 && (size_t)ret < count) 8317 btrfs_delalloc_release_space(inode, 8318 count - (size_t)ret); 8319 } 8320 out: 8321 if (wakeup) 8322 inode_dio_end(inode); 8323 if (relock) 8324 mutex_lock(&inode->i_mutex); 8325 8326 return ret; 8327 } 8328 8329 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8330 8331 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8332 __u64 start, __u64 len) 8333 { 8334 int ret; 8335 8336 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8337 if (ret) 8338 return ret; 8339 8340 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8341 } 8342 8343 int btrfs_readpage(struct file *file, struct page *page) 8344 { 8345 struct extent_io_tree *tree; 8346 tree = &BTRFS_I(page->mapping->host)->io_tree; 8347 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8348 } 8349 8350 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8351 { 8352 struct extent_io_tree *tree; 8353 8354 8355 if (current->flags & PF_MEMALLOC) { 8356 redirty_page_for_writepage(wbc, page); 8357 unlock_page(page); 8358 return 0; 8359 } 8360 tree = &BTRFS_I(page->mapping->host)->io_tree; 8361 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8362 } 8363 8364 static int btrfs_writepages(struct address_space *mapping, 8365 struct writeback_control *wbc) 8366 { 8367 struct extent_io_tree *tree; 8368 8369 tree = &BTRFS_I(mapping->host)->io_tree; 8370 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8371 } 8372 8373 static int 8374 btrfs_readpages(struct file *file, struct address_space *mapping, 8375 struct list_head *pages, unsigned nr_pages) 8376 { 8377 struct extent_io_tree *tree; 8378 tree = &BTRFS_I(mapping->host)->io_tree; 8379 return extent_readpages(tree, mapping, pages, nr_pages, 8380 btrfs_get_extent); 8381 } 8382 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8383 { 8384 struct extent_io_tree *tree; 8385 struct extent_map_tree *map; 8386 int ret; 8387 8388 tree = &BTRFS_I(page->mapping->host)->io_tree; 8389 map = &BTRFS_I(page->mapping->host)->extent_tree; 8390 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8391 if (ret == 1) { 8392 ClearPagePrivate(page); 8393 set_page_private(page, 0); 8394 page_cache_release(page); 8395 } 8396 return ret; 8397 } 8398 8399 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8400 { 8401 if (PageWriteback(page) || PageDirty(page)) 8402 return 0; 8403 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8404 } 8405 8406 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8407 unsigned int length) 8408 { 8409 struct inode *inode = page->mapping->host; 8410 struct extent_io_tree *tree; 8411 struct btrfs_ordered_extent *ordered; 8412 struct extent_state *cached_state = NULL; 8413 u64 page_start = page_offset(page); 8414 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 8415 int inode_evicting = inode->i_state & I_FREEING; 8416 8417 /* 8418 * we have the page locked, so new writeback can't start, 8419 * and the dirty bit won't be cleared while we are here. 8420 * 8421 * Wait for IO on this page so that we can safely clear 8422 * the PagePrivate2 bit and do ordered accounting 8423 */ 8424 wait_on_page_writeback(page); 8425 8426 tree = &BTRFS_I(inode)->io_tree; 8427 if (offset) { 8428 btrfs_releasepage(page, GFP_NOFS); 8429 return; 8430 } 8431 8432 if (!inode_evicting) 8433 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 8434 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8435 if (ordered) { 8436 /* 8437 * IO on this page will never be started, so we need 8438 * to account for any ordered extents now 8439 */ 8440 if (!inode_evicting) 8441 clear_extent_bit(tree, page_start, page_end, 8442 EXTENT_DIRTY | EXTENT_DELALLOC | 8443 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8444 EXTENT_DEFRAG, 1, 0, &cached_state, 8445 GFP_NOFS); 8446 /* 8447 * whoever cleared the private bit is responsible 8448 * for the finish_ordered_io 8449 */ 8450 if (TestClearPagePrivate2(page)) { 8451 struct btrfs_ordered_inode_tree *tree; 8452 u64 new_len; 8453 8454 tree = &BTRFS_I(inode)->ordered_tree; 8455 8456 spin_lock_irq(&tree->lock); 8457 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8458 new_len = page_start - ordered->file_offset; 8459 if (new_len < ordered->truncated_len) 8460 ordered->truncated_len = new_len; 8461 spin_unlock_irq(&tree->lock); 8462 8463 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8464 page_start, 8465 PAGE_CACHE_SIZE, 1)) 8466 btrfs_finish_ordered_io(ordered); 8467 } 8468 btrfs_put_ordered_extent(ordered); 8469 if (!inode_evicting) { 8470 cached_state = NULL; 8471 lock_extent_bits(tree, page_start, page_end, 0, 8472 &cached_state); 8473 } 8474 } 8475 8476 if (!inode_evicting) { 8477 clear_extent_bit(tree, page_start, page_end, 8478 EXTENT_LOCKED | EXTENT_DIRTY | 8479 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8480 EXTENT_DEFRAG, 1, 1, 8481 &cached_state, GFP_NOFS); 8482 8483 __btrfs_releasepage(page, GFP_NOFS); 8484 } 8485 8486 ClearPageChecked(page); 8487 if (PagePrivate(page)) { 8488 ClearPagePrivate(page); 8489 set_page_private(page, 0); 8490 page_cache_release(page); 8491 } 8492 } 8493 8494 /* 8495 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8496 * called from a page fault handler when a page is first dirtied. Hence we must 8497 * be careful to check for EOF conditions here. We set the page up correctly 8498 * for a written page which means we get ENOSPC checking when writing into 8499 * holes and correct delalloc and unwritten extent mapping on filesystems that 8500 * support these features. 8501 * 8502 * We are not allowed to take the i_mutex here so we have to play games to 8503 * protect against truncate races as the page could now be beyond EOF. Because 8504 * vmtruncate() writes the inode size before removing pages, once we have the 8505 * page lock we can determine safely if the page is beyond EOF. If it is not 8506 * beyond EOF, then the page is guaranteed safe against truncation until we 8507 * unlock the page. 8508 */ 8509 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8510 { 8511 struct page *page = vmf->page; 8512 struct inode *inode = file_inode(vma->vm_file); 8513 struct btrfs_root *root = BTRFS_I(inode)->root; 8514 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8515 struct btrfs_ordered_extent *ordered; 8516 struct extent_state *cached_state = NULL; 8517 char *kaddr; 8518 unsigned long zero_start; 8519 loff_t size; 8520 int ret; 8521 int reserved = 0; 8522 u64 page_start; 8523 u64 page_end; 8524 8525 sb_start_pagefault(inode->i_sb); 8526 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 8527 if (!ret) { 8528 ret = file_update_time(vma->vm_file); 8529 reserved = 1; 8530 } 8531 if (ret) { 8532 if (ret == -ENOMEM) 8533 ret = VM_FAULT_OOM; 8534 else /* -ENOSPC, -EIO, etc */ 8535 ret = VM_FAULT_SIGBUS; 8536 if (reserved) 8537 goto out; 8538 goto out_noreserve; 8539 } 8540 8541 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8542 again: 8543 lock_page(page); 8544 size = i_size_read(inode); 8545 page_start = page_offset(page); 8546 page_end = page_start + PAGE_CACHE_SIZE - 1; 8547 8548 if ((page->mapping != inode->i_mapping) || 8549 (page_start >= size)) { 8550 /* page got truncated out from underneath us */ 8551 goto out_unlock; 8552 } 8553 wait_on_page_writeback(page); 8554 8555 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 8556 set_page_extent_mapped(page); 8557 8558 /* 8559 * we can't set the delalloc bits if there are pending ordered 8560 * extents. Drop our locks and wait for them to finish 8561 */ 8562 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8563 if (ordered) { 8564 unlock_extent_cached(io_tree, page_start, page_end, 8565 &cached_state, GFP_NOFS); 8566 unlock_page(page); 8567 btrfs_start_ordered_extent(inode, ordered, 1); 8568 btrfs_put_ordered_extent(ordered); 8569 goto again; 8570 } 8571 8572 /* 8573 * XXX - page_mkwrite gets called every time the page is dirtied, even 8574 * if it was already dirty, so for space accounting reasons we need to 8575 * clear any delalloc bits for the range we are fixing to save. There 8576 * is probably a better way to do this, but for now keep consistent with 8577 * prepare_pages in the normal write path. 8578 */ 8579 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 8580 EXTENT_DIRTY | EXTENT_DELALLOC | 8581 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8582 0, 0, &cached_state, GFP_NOFS); 8583 8584 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 8585 &cached_state); 8586 if (ret) { 8587 unlock_extent_cached(io_tree, page_start, page_end, 8588 &cached_state, GFP_NOFS); 8589 ret = VM_FAULT_SIGBUS; 8590 goto out_unlock; 8591 } 8592 ret = 0; 8593 8594 /* page is wholly or partially inside EOF */ 8595 if (page_start + PAGE_CACHE_SIZE > size) 8596 zero_start = size & ~PAGE_CACHE_MASK; 8597 else 8598 zero_start = PAGE_CACHE_SIZE; 8599 8600 if (zero_start != PAGE_CACHE_SIZE) { 8601 kaddr = kmap(page); 8602 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 8603 flush_dcache_page(page); 8604 kunmap(page); 8605 } 8606 ClearPageChecked(page); 8607 set_page_dirty(page); 8608 SetPageUptodate(page); 8609 8610 BTRFS_I(inode)->last_trans = root->fs_info->generation; 8611 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8612 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8613 8614 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 8615 8616 out_unlock: 8617 if (!ret) { 8618 sb_end_pagefault(inode->i_sb); 8619 return VM_FAULT_LOCKED; 8620 } 8621 unlock_page(page); 8622 out: 8623 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 8624 out_noreserve: 8625 sb_end_pagefault(inode->i_sb); 8626 return ret; 8627 } 8628 8629 static int btrfs_truncate(struct inode *inode) 8630 { 8631 struct btrfs_root *root = BTRFS_I(inode)->root; 8632 struct btrfs_block_rsv *rsv; 8633 int ret = 0; 8634 int err = 0; 8635 struct btrfs_trans_handle *trans; 8636 u64 mask = root->sectorsize - 1; 8637 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 8638 8639 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8640 (u64)-1); 8641 if (ret) 8642 return ret; 8643 8644 /* 8645 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 8646 * 3 things going on here 8647 * 8648 * 1) We need to reserve space for our orphan item and the space to 8649 * delete our orphan item. Lord knows we don't want to have a dangling 8650 * orphan item because we didn't reserve space to remove it. 8651 * 8652 * 2) We need to reserve space to update our inode. 8653 * 8654 * 3) We need to have something to cache all the space that is going to 8655 * be free'd up by the truncate operation, but also have some slack 8656 * space reserved in case it uses space during the truncate (thank you 8657 * very much snapshotting). 8658 * 8659 * And we need these to all be seperate. The fact is we can use alot of 8660 * space doing the truncate, and we have no earthly idea how much space 8661 * we will use, so we need the truncate reservation to be seperate so it 8662 * doesn't end up using space reserved for updating the inode or 8663 * removing the orphan item. We also need to be able to stop the 8664 * transaction and start a new one, which means we need to be able to 8665 * update the inode several times, and we have no idea of knowing how 8666 * many times that will be, so we can't just reserve 1 item for the 8667 * entirety of the opration, so that has to be done seperately as well. 8668 * Then there is the orphan item, which does indeed need to be held on 8669 * to for the whole operation, and we need nobody to touch this reserved 8670 * space except the orphan code. 8671 * 8672 * So that leaves us with 8673 * 8674 * 1) root->orphan_block_rsv - for the orphan deletion. 8675 * 2) rsv - for the truncate reservation, which we will steal from the 8676 * transaction reservation. 8677 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 8678 * updating the inode. 8679 */ 8680 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 8681 if (!rsv) 8682 return -ENOMEM; 8683 rsv->size = min_size; 8684 rsv->failfast = 1; 8685 8686 /* 8687 * 1 for the truncate slack space 8688 * 1 for updating the inode. 8689 */ 8690 trans = btrfs_start_transaction(root, 2); 8691 if (IS_ERR(trans)) { 8692 err = PTR_ERR(trans); 8693 goto out; 8694 } 8695 8696 /* Migrate the slack space for the truncate to our reserve */ 8697 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 8698 min_size); 8699 BUG_ON(ret); 8700 8701 /* 8702 * So if we truncate and then write and fsync we normally would just 8703 * write the extents that changed, which is a problem if we need to 8704 * first truncate that entire inode. So set this flag so we write out 8705 * all of the extents in the inode to the sync log so we're completely 8706 * safe. 8707 */ 8708 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8709 trans->block_rsv = rsv; 8710 8711 while (1) { 8712 ret = btrfs_truncate_inode_items(trans, root, inode, 8713 inode->i_size, 8714 BTRFS_EXTENT_DATA_KEY); 8715 if (ret != -ENOSPC && ret != -EAGAIN) { 8716 err = ret; 8717 break; 8718 } 8719 8720 trans->block_rsv = &root->fs_info->trans_block_rsv; 8721 ret = btrfs_update_inode(trans, root, inode); 8722 if (ret) { 8723 err = ret; 8724 break; 8725 } 8726 8727 btrfs_end_transaction(trans, root); 8728 btrfs_btree_balance_dirty(root); 8729 8730 trans = btrfs_start_transaction(root, 2); 8731 if (IS_ERR(trans)) { 8732 ret = err = PTR_ERR(trans); 8733 trans = NULL; 8734 break; 8735 } 8736 8737 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 8738 rsv, min_size); 8739 BUG_ON(ret); /* shouldn't happen */ 8740 trans->block_rsv = rsv; 8741 } 8742 8743 if (ret == 0 && inode->i_nlink > 0) { 8744 trans->block_rsv = root->orphan_block_rsv; 8745 ret = btrfs_orphan_del(trans, inode); 8746 if (ret) 8747 err = ret; 8748 } 8749 8750 if (trans) { 8751 trans->block_rsv = &root->fs_info->trans_block_rsv; 8752 ret = btrfs_update_inode(trans, root, inode); 8753 if (ret && !err) 8754 err = ret; 8755 8756 ret = btrfs_end_transaction(trans, root); 8757 btrfs_btree_balance_dirty(root); 8758 } 8759 8760 out: 8761 btrfs_free_block_rsv(root, rsv); 8762 8763 if (ret && !err) 8764 err = ret; 8765 8766 return err; 8767 } 8768 8769 /* 8770 * create a new subvolume directory/inode (helper for the ioctl). 8771 */ 8772 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8773 struct btrfs_root *new_root, 8774 struct btrfs_root *parent_root, 8775 u64 new_dirid) 8776 { 8777 struct inode *inode; 8778 int err; 8779 u64 index = 0; 8780 8781 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8782 new_dirid, new_dirid, 8783 S_IFDIR | (~current_umask() & S_IRWXUGO), 8784 &index); 8785 if (IS_ERR(inode)) 8786 return PTR_ERR(inode); 8787 inode->i_op = &btrfs_dir_inode_operations; 8788 inode->i_fop = &btrfs_dir_file_operations; 8789 8790 set_nlink(inode, 1); 8791 btrfs_i_size_write(inode, 0); 8792 unlock_new_inode(inode); 8793 8794 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8795 if (err) 8796 btrfs_err(new_root->fs_info, 8797 "error inheriting subvolume %llu properties: %d", 8798 new_root->root_key.objectid, err); 8799 8800 err = btrfs_update_inode(trans, new_root, inode); 8801 8802 iput(inode); 8803 return err; 8804 } 8805 8806 struct inode *btrfs_alloc_inode(struct super_block *sb) 8807 { 8808 struct btrfs_inode *ei; 8809 struct inode *inode; 8810 8811 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8812 if (!ei) 8813 return NULL; 8814 8815 ei->root = NULL; 8816 ei->generation = 0; 8817 ei->last_trans = 0; 8818 ei->last_sub_trans = 0; 8819 ei->logged_trans = 0; 8820 ei->delalloc_bytes = 0; 8821 ei->defrag_bytes = 0; 8822 ei->disk_i_size = 0; 8823 ei->flags = 0; 8824 ei->csum_bytes = 0; 8825 ei->index_cnt = (u64)-1; 8826 ei->dir_index = 0; 8827 ei->last_unlink_trans = 0; 8828 ei->last_log_commit = 0; 8829 8830 spin_lock_init(&ei->lock); 8831 ei->outstanding_extents = 0; 8832 ei->reserved_extents = 0; 8833 8834 ei->runtime_flags = 0; 8835 ei->force_compress = BTRFS_COMPRESS_NONE; 8836 8837 ei->delayed_node = NULL; 8838 8839 ei->i_otime.tv_sec = 0; 8840 ei->i_otime.tv_nsec = 0; 8841 8842 inode = &ei->vfs_inode; 8843 extent_map_tree_init(&ei->extent_tree); 8844 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8845 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8846 ei->io_tree.track_uptodate = 1; 8847 ei->io_failure_tree.track_uptodate = 1; 8848 atomic_set(&ei->sync_writers, 0); 8849 mutex_init(&ei->log_mutex); 8850 mutex_init(&ei->delalloc_mutex); 8851 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8852 INIT_LIST_HEAD(&ei->delalloc_inodes); 8853 RB_CLEAR_NODE(&ei->rb_node); 8854 8855 return inode; 8856 } 8857 8858 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8859 void btrfs_test_destroy_inode(struct inode *inode) 8860 { 8861 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8862 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8863 } 8864 #endif 8865 8866 static void btrfs_i_callback(struct rcu_head *head) 8867 { 8868 struct inode *inode = container_of(head, struct inode, i_rcu); 8869 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8870 } 8871 8872 void btrfs_destroy_inode(struct inode *inode) 8873 { 8874 struct btrfs_ordered_extent *ordered; 8875 struct btrfs_root *root = BTRFS_I(inode)->root; 8876 8877 WARN_ON(!hlist_empty(&inode->i_dentry)); 8878 WARN_ON(inode->i_data.nrpages); 8879 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8880 WARN_ON(BTRFS_I(inode)->reserved_extents); 8881 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8882 WARN_ON(BTRFS_I(inode)->csum_bytes); 8883 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8884 8885 /* 8886 * This can happen where we create an inode, but somebody else also 8887 * created the same inode and we need to destroy the one we already 8888 * created. 8889 */ 8890 if (!root) 8891 goto free; 8892 8893 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8894 &BTRFS_I(inode)->runtime_flags)) { 8895 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8896 btrfs_ino(inode)); 8897 atomic_dec(&root->orphan_inodes); 8898 } 8899 8900 while (1) { 8901 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8902 if (!ordered) 8903 break; 8904 else { 8905 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8906 ordered->file_offset, ordered->len); 8907 btrfs_remove_ordered_extent(inode, ordered); 8908 btrfs_put_ordered_extent(ordered); 8909 btrfs_put_ordered_extent(ordered); 8910 } 8911 } 8912 inode_tree_del(inode); 8913 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8914 free: 8915 call_rcu(&inode->i_rcu, btrfs_i_callback); 8916 } 8917 8918 int btrfs_drop_inode(struct inode *inode) 8919 { 8920 struct btrfs_root *root = BTRFS_I(inode)->root; 8921 8922 if (root == NULL) 8923 return 1; 8924 8925 /* the snap/subvol tree is on deleting */ 8926 if (btrfs_root_refs(&root->root_item) == 0) 8927 return 1; 8928 else 8929 return generic_drop_inode(inode); 8930 } 8931 8932 static void init_once(void *foo) 8933 { 8934 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8935 8936 inode_init_once(&ei->vfs_inode); 8937 } 8938 8939 void btrfs_destroy_cachep(void) 8940 { 8941 /* 8942 * Make sure all delayed rcu free inodes are flushed before we 8943 * destroy cache. 8944 */ 8945 rcu_barrier(); 8946 if (btrfs_inode_cachep) 8947 kmem_cache_destroy(btrfs_inode_cachep); 8948 if (btrfs_trans_handle_cachep) 8949 kmem_cache_destroy(btrfs_trans_handle_cachep); 8950 if (btrfs_transaction_cachep) 8951 kmem_cache_destroy(btrfs_transaction_cachep); 8952 if (btrfs_path_cachep) 8953 kmem_cache_destroy(btrfs_path_cachep); 8954 if (btrfs_free_space_cachep) 8955 kmem_cache_destroy(btrfs_free_space_cachep); 8956 if (btrfs_delalloc_work_cachep) 8957 kmem_cache_destroy(btrfs_delalloc_work_cachep); 8958 } 8959 8960 int btrfs_init_cachep(void) 8961 { 8962 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8963 sizeof(struct btrfs_inode), 0, 8964 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 8965 if (!btrfs_inode_cachep) 8966 goto fail; 8967 8968 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8969 sizeof(struct btrfs_trans_handle), 0, 8970 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8971 if (!btrfs_trans_handle_cachep) 8972 goto fail; 8973 8974 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8975 sizeof(struct btrfs_transaction), 0, 8976 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8977 if (!btrfs_transaction_cachep) 8978 goto fail; 8979 8980 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8981 sizeof(struct btrfs_path), 0, 8982 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8983 if (!btrfs_path_cachep) 8984 goto fail; 8985 8986 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8987 sizeof(struct btrfs_free_space), 0, 8988 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8989 if (!btrfs_free_space_cachep) 8990 goto fail; 8991 8992 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8993 sizeof(struct btrfs_delalloc_work), 0, 8994 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8995 NULL); 8996 if (!btrfs_delalloc_work_cachep) 8997 goto fail; 8998 8999 return 0; 9000 fail: 9001 btrfs_destroy_cachep(); 9002 return -ENOMEM; 9003 } 9004 9005 static int btrfs_getattr(struct vfsmount *mnt, 9006 struct dentry *dentry, struct kstat *stat) 9007 { 9008 u64 delalloc_bytes; 9009 struct inode *inode = d_inode(dentry); 9010 u32 blocksize = inode->i_sb->s_blocksize; 9011 9012 generic_fillattr(inode, stat); 9013 stat->dev = BTRFS_I(inode)->root->anon_dev; 9014 stat->blksize = PAGE_CACHE_SIZE; 9015 9016 spin_lock(&BTRFS_I(inode)->lock); 9017 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9018 spin_unlock(&BTRFS_I(inode)->lock); 9019 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9020 ALIGN(delalloc_bytes, blocksize)) >> 9; 9021 return 0; 9022 } 9023 9024 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9025 struct inode *new_dir, struct dentry *new_dentry) 9026 { 9027 struct btrfs_trans_handle *trans; 9028 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9029 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9030 struct inode *new_inode = d_inode(new_dentry); 9031 struct inode *old_inode = d_inode(old_dentry); 9032 struct timespec ctime = CURRENT_TIME; 9033 u64 index = 0; 9034 u64 root_objectid; 9035 int ret; 9036 u64 old_ino = btrfs_ino(old_inode); 9037 9038 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9039 return -EPERM; 9040 9041 /* we only allow rename subvolume link between subvolumes */ 9042 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9043 return -EXDEV; 9044 9045 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9046 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9047 return -ENOTEMPTY; 9048 9049 if (S_ISDIR(old_inode->i_mode) && new_inode && 9050 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9051 return -ENOTEMPTY; 9052 9053 9054 /* check for collisions, even if the name isn't there */ 9055 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9056 new_dentry->d_name.name, 9057 new_dentry->d_name.len); 9058 9059 if (ret) { 9060 if (ret == -EEXIST) { 9061 /* we shouldn't get 9062 * eexist without a new_inode */ 9063 if (WARN_ON(!new_inode)) { 9064 return ret; 9065 } 9066 } else { 9067 /* maybe -EOVERFLOW */ 9068 return ret; 9069 } 9070 } 9071 ret = 0; 9072 9073 /* 9074 * we're using rename to replace one file with another. Start IO on it 9075 * now so we don't add too much work to the end of the transaction 9076 */ 9077 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9078 filemap_flush(old_inode->i_mapping); 9079 9080 /* close the racy window with snapshot create/destroy ioctl */ 9081 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9082 down_read(&root->fs_info->subvol_sem); 9083 /* 9084 * We want to reserve the absolute worst case amount of items. So if 9085 * both inodes are subvols and we need to unlink them then that would 9086 * require 4 item modifications, but if they are both normal inodes it 9087 * would require 5 item modifications, so we'll assume their normal 9088 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9089 * should cover the worst case number of items we'll modify. 9090 */ 9091 trans = btrfs_start_transaction(root, 11); 9092 if (IS_ERR(trans)) { 9093 ret = PTR_ERR(trans); 9094 goto out_notrans; 9095 } 9096 9097 if (dest != root) 9098 btrfs_record_root_in_trans(trans, dest); 9099 9100 ret = btrfs_set_inode_index(new_dir, &index); 9101 if (ret) 9102 goto out_fail; 9103 9104 BTRFS_I(old_inode)->dir_index = 0ULL; 9105 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9106 /* force full log commit if subvolume involved. */ 9107 btrfs_set_log_full_commit(root->fs_info, trans); 9108 } else { 9109 ret = btrfs_insert_inode_ref(trans, dest, 9110 new_dentry->d_name.name, 9111 new_dentry->d_name.len, 9112 old_ino, 9113 btrfs_ino(new_dir), index); 9114 if (ret) 9115 goto out_fail; 9116 /* 9117 * this is an ugly little race, but the rename is required 9118 * to make sure that if we crash, the inode is either at the 9119 * old name or the new one. pinning the log transaction lets 9120 * us make sure we don't allow a log commit to come in after 9121 * we unlink the name but before we add the new name back in. 9122 */ 9123 btrfs_pin_log_trans(root); 9124 } 9125 9126 inode_inc_iversion(old_dir); 9127 inode_inc_iversion(new_dir); 9128 inode_inc_iversion(old_inode); 9129 old_dir->i_ctime = old_dir->i_mtime = ctime; 9130 new_dir->i_ctime = new_dir->i_mtime = ctime; 9131 old_inode->i_ctime = ctime; 9132 9133 if (old_dentry->d_parent != new_dentry->d_parent) 9134 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9135 9136 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9137 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9138 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9139 old_dentry->d_name.name, 9140 old_dentry->d_name.len); 9141 } else { 9142 ret = __btrfs_unlink_inode(trans, root, old_dir, 9143 d_inode(old_dentry), 9144 old_dentry->d_name.name, 9145 old_dentry->d_name.len); 9146 if (!ret) 9147 ret = btrfs_update_inode(trans, root, old_inode); 9148 } 9149 if (ret) { 9150 btrfs_abort_transaction(trans, root, ret); 9151 goto out_fail; 9152 } 9153 9154 if (new_inode) { 9155 inode_inc_iversion(new_inode); 9156 new_inode->i_ctime = CURRENT_TIME; 9157 if (unlikely(btrfs_ino(new_inode) == 9158 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9159 root_objectid = BTRFS_I(new_inode)->location.objectid; 9160 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9161 root_objectid, 9162 new_dentry->d_name.name, 9163 new_dentry->d_name.len); 9164 BUG_ON(new_inode->i_nlink == 0); 9165 } else { 9166 ret = btrfs_unlink_inode(trans, dest, new_dir, 9167 d_inode(new_dentry), 9168 new_dentry->d_name.name, 9169 new_dentry->d_name.len); 9170 } 9171 if (!ret && new_inode->i_nlink == 0) 9172 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9173 if (ret) { 9174 btrfs_abort_transaction(trans, root, ret); 9175 goto out_fail; 9176 } 9177 } 9178 9179 ret = btrfs_add_link(trans, new_dir, old_inode, 9180 new_dentry->d_name.name, 9181 new_dentry->d_name.len, 0, index); 9182 if (ret) { 9183 btrfs_abort_transaction(trans, root, ret); 9184 goto out_fail; 9185 } 9186 9187 if (old_inode->i_nlink == 1) 9188 BTRFS_I(old_inode)->dir_index = index; 9189 9190 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9191 struct dentry *parent = new_dentry->d_parent; 9192 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9193 btrfs_end_log_trans(root); 9194 } 9195 out_fail: 9196 btrfs_end_transaction(trans, root); 9197 out_notrans: 9198 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9199 up_read(&root->fs_info->subvol_sem); 9200 9201 return ret; 9202 } 9203 9204 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9205 struct inode *new_dir, struct dentry *new_dentry, 9206 unsigned int flags) 9207 { 9208 if (flags & ~RENAME_NOREPLACE) 9209 return -EINVAL; 9210 9211 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry); 9212 } 9213 9214 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9215 { 9216 struct btrfs_delalloc_work *delalloc_work; 9217 struct inode *inode; 9218 9219 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9220 work); 9221 inode = delalloc_work->inode; 9222 if (delalloc_work->wait) { 9223 btrfs_wait_ordered_range(inode, 0, (u64)-1); 9224 } else { 9225 filemap_flush(inode->i_mapping); 9226 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9227 &BTRFS_I(inode)->runtime_flags)) 9228 filemap_flush(inode->i_mapping); 9229 } 9230 9231 if (delalloc_work->delay_iput) 9232 btrfs_add_delayed_iput(inode); 9233 else 9234 iput(inode); 9235 complete(&delalloc_work->completion); 9236 } 9237 9238 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9239 int wait, int delay_iput) 9240 { 9241 struct btrfs_delalloc_work *work; 9242 9243 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 9244 if (!work) 9245 return NULL; 9246 9247 init_completion(&work->completion); 9248 INIT_LIST_HEAD(&work->list); 9249 work->inode = inode; 9250 work->wait = wait; 9251 work->delay_iput = delay_iput; 9252 WARN_ON_ONCE(!inode); 9253 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9254 btrfs_run_delalloc_work, NULL, NULL); 9255 9256 return work; 9257 } 9258 9259 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9260 { 9261 wait_for_completion(&work->completion); 9262 kmem_cache_free(btrfs_delalloc_work_cachep, work); 9263 } 9264 9265 /* 9266 * some fairly slow code that needs optimization. This walks the list 9267 * of all the inodes with pending delalloc and forces them to disk. 9268 */ 9269 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9270 int nr) 9271 { 9272 struct btrfs_inode *binode; 9273 struct inode *inode; 9274 struct btrfs_delalloc_work *work, *next; 9275 struct list_head works; 9276 struct list_head splice; 9277 int ret = 0; 9278 9279 INIT_LIST_HEAD(&works); 9280 INIT_LIST_HEAD(&splice); 9281 9282 mutex_lock(&root->delalloc_mutex); 9283 spin_lock(&root->delalloc_lock); 9284 list_splice_init(&root->delalloc_inodes, &splice); 9285 while (!list_empty(&splice)) { 9286 binode = list_entry(splice.next, struct btrfs_inode, 9287 delalloc_inodes); 9288 9289 list_move_tail(&binode->delalloc_inodes, 9290 &root->delalloc_inodes); 9291 inode = igrab(&binode->vfs_inode); 9292 if (!inode) { 9293 cond_resched_lock(&root->delalloc_lock); 9294 continue; 9295 } 9296 spin_unlock(&root->delalloc_lock); 9297 9298 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 9299 if (!work) { 9300 if (delay_iput) 9301 btrfs_add_delayed_iput(inode); 9302 else 9303 iput(inode); 9304 ret = -ENOMEM; 9305 goto out; 9306 } 9307 list_add_tail(&work->list, &works); 9308 btrfs_queue_work(root->fs_info->flush_workers, 9309 &work->work); 9310 ret++; 9311 if (nr != -1 && ret >= nr) 9312 goto out; 9313 cond_resched(); 9314 spin_lock(&root->delalloc_lock); 9315 } 9316 spin_unlock(&root->delalloc_lock); 9317 9318 out: 9319 list_for_each_entry_safe(work, next, &works, list) { 9320 list_del_init(&work->list); 9321 btrfs_wait_and_free_delalloc_work(work); 9322 } 9323 9324 if (!list_empty_careful(&splice)) { 9325 spin_lock(&root->delalloc_lock); 9326 list_splice_tail(&splice, &root->delalloc_inodes); 9327 spin_unlock(&root->delalloc_lock); 9328 } 9329 mutex_unlock(&root->delalloc_mutex); 9330 return ret; 9331 } 9332 9333 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 9334 { 9335 int ret; 9336 9337 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 9338 return -EROFS; 9339 9340 ret = __start_delalloc_inodes(root, delay_iput, -1); 9341 if (ret > 0) 9342 ret = 0; 9343 /* 9344 * the filemap_flush will queue IO into the worker threads, but 9345 * we have to make sure the IO is actually started and that 9346 * ordered extents get created before we return 9347 */ 9348 atomic_inc(&root->fs_info->async_submit_draining); 9349 while (atomic_read(&root->fs_info->nr_async_submits) || 9350 atomic_read(&root->fs_info->async_delalloc_pages)) { 9351 wait_event(root->fs_info->async_submit_wait, 9352 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 9353 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 9354 } 9355 atomic_dec(&root->fs_info->async_submit_draining); 9356 return ret; 9357 } 9358 9359 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 9360 int nr) 9361 { 9362 struct btrfs_root *root; 9363 struct list_head splice; 9364 int ret; 9365 9366 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9367 return -EROFS; 9368 9369 INIT_LIST_HEAD(&splice); 9370 9371 mutex_lock(&fs_info->delalloc_root_mutex); 9372 spin_lock(&fs_info->delalloc_root_lock); 9373 list_splice_init(&fs_info->delalloc_roots, &splice); 9374 while (!list_empty(&splice) && nr) { 9375 root = list_first_entry(&splice, struct btrfs_root, 9376 delalloc_root); 9377 root = btrfs_grab_fs_root(root); 9378 BUG_ON(!root); 9379 list_move_tail(&root->delalloc_root, 9380 &fs_info->delalloc_roots); 9381 spin_unlock(&fs_info->delalloc_root_lock); 9382 9383 ret = __start_delalloc_inodes(root, delay_iput, nr); 9384 btrfs_put_fs_root(root); 9385 if (ret < 0) 9386 goto out; 9387 9388 if (nr != -1) { 9389 nr -= ret; 9390 WARN_ON(nr < 0); 9391 } 9392 spin_lock(&fs_info->delalloc_root_lock); 9393 } 9394 spin_unlock(&fs_info->delalloc_root_lock); 9395 9396 ret = 0; 9397 atomic_inc(&fs_info->async_submit_draining); 9398 while (atomic_read(&fs_info->nr_async_submits) || 9399 atomic_read(&fs_info->async_delalloc_pages)) { 9400 wait_event(fs_info->async_submit_wait, 9401 (atomic_read(&fs_info->nr_async_submits) == 0 && 9402 atomic_read(&fs_info->async_delalloc_pages) == 0)); 9403 } 9404 atomic_dec(&fs_info->async_submit_draining); 9405 out: 9406 if (!list_empty_careful(&splice)) { 9407 spin_lock(&fs_info->delalloc_root_lock); 9408 list_splice_tail(&splice, &fs_info->delalloc_roots); 9409 spin_unlock(&fs_info->delalloc_root_lock); 9410 } 9411 mutex_unlock(&fs_info->delalloc_root_mutex); 9412 return ret; 9413 } 9414 9415 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9416 const char *symname) 9417 { 9418 struct btrfs_trans_handle *trans; 9419 struct btrfs_root *root = BTRFS_I(dir)->root; 9420 struct btrfs_path *path; 9421 struct btrfs_key key; 9422 struct inode *inode = NULL; 9423 int err; 9424 int drop_inode = 0; 9425 u64 objectid; 9426 u64 index = 0; 9427 int name_len; 9428 int datasize; 9429 unsigned long ptr; 9430 struct btrfs_file_extent_item *ei; 9431 struct extent_buffer *leaf; 9432 9433 name_len = strlen(symname); 9434 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 9435 return -ENAMETOOLONG; 9436 9437 /* 9438 * 2 items for inode item and ref 9439 * 2 items for dir items 9440 * 1 item for xattr if selinux is on 9441 */ 9442 trans = btrfs_start_transaction(root, 5); 9443 if (IS_ERR(trans)) 9444 return PTR_ERR(trans); 9445 9446 err = btrfs_find_free_ino(root, &objectid); 9447 if (err) 9448 goto out_unlock; 9449 9450 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9451 dentry->d_name.len, btrfs_ino(dir), objectid, 9452 S_IFLNK|S_IRWXUGO, &index); 9453 if (IS_ERR(inode)) { 9454 err = PTR_ERR(inode); 9455 goto out_unlock; 9456 } 9457 9458 /* 9459 * If the active LSM wants to access the inode during 9460 * d_instantiate it needs these. Smack checks to see 9461 * if the filesystem supports xattrs by looking at the 9462 * ops vector. 9463 */ 9464 inode->i_fop = &btrfs_file_operations; 9465 inode->i_op = &btrfs_file_inode_operations; 9466 inode->i_mapping->a_ops = &btrfs_aops; 9467 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9468 9469 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9470 if (err) 9471 goto out_unlock_inode; 9472 9473 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 9474 if (err) 9475 goto out_unlock_inode; 9476 9477 path = btrfs_alloc_path(); 9478 if (!path) { 9479 err = -ENOMEM; 9480 goto out_unlock_inode; 9481 } 9482 key.objectid = btrfs_ino(inode); 9483 key.offset = 0; 9484 key.type = BTRFS_EXTENT_DATA_KEY; 9485 datasize = btrfs_file_extent_calc_inline_size(name_len); 9486 err = btrfs_insert_empty_item(trans, root, path, &key, 9487 datasize); 9488 if (err) { 9489 btrfs_free_path(path); 9490 goto out_unlock_inode; 9491 } 9492 leaf = path->nodes[0]; 9493 ei = btrfs_item_ptr(leaf, path->slots[0], 9494 struct btrfs_file_extent_item); 9495 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9496 btrfs_set_file_extent_type(leaf, ei, 9497 BTRFS_FILE_EXTENT_INLINE); 9498 btrfs_set_file_extent_encryption(leaf, ei, 0); 9499 btrfs_set_file_extent_compression(leaf, ei, 0); 9500 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9501 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9502 9503 ptr = btrfs_file_extent_inline_start(ei); 9504 write_extent_buffer(leaf, symname, ptr, name_len); 9505 btrfs_mark_buffer_dirty(leaf); 9506 btrfs_free_path(path); 9507 9508 inode->i_op = &btrfs_symlink_inode_operations; 9509 inode->i_mapping->a_ops = &btrfs_symlink_aops; 9510 inode_set_bytes(inode, name_len); 9511 btrfs_i_size_write(inode, name_len); 9512 err = btrfs_update_inode(trans, root, inode); 9513 if (err) { 9514 drop_inode = 1; 9515 goto out_unlock_inode; 9516 } 9517 9518 unlock_new_inode(inode); 9519 d_instantiate(dentry, inode); 9520 9521 out_unlock: 9522 btrfs_end_transaction(trans, root); 9523 if (drop_inode) { 9524 inode_dec_link_count(inode); 9525 iput(inode); 9526 } 9527 btrfs_btree_balance_dirty(root); 9528 return err; 9529 9530 out_unlock_inode: 9531 drop_inode = 1; 9532 unlock_new_inode(inode); 9533 goto out_unlock; 9534 } 9535 9536 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9537 u64 start, u64 num_bytes, u64 min_size, 9538 loff_t actual_len, u64 *alloc_hint, 9539 struct btrfs_trans_handle *trans) 9540 { 9541 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9542 struct extent_map *em; 9543 struct btrfs_root *root = BTRFS_I(inode)->root; 9544 struct btrfs_key ins; 9545 u64 cur_offset = start; 9546 u64 i_size; 9547 u64 cur_bytes; 9548 int ret = 0; 9549 bool own_trans = true; 9550 9551 if (trans) 9552 own_trans = false; 9553 while (num_bytes > 0) { 9554 if (own_trans) { 9555 trans = btrfs_start_transaction(root, 3); 9556 if (IS_ERR(trans)) { 9557 ret = PTR_ERR(trans); 9558 break; 9559 } 9560 } 9561 9562 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 9563 cur_bytes = max(cur_bytes, min_size); 9564 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 9565 *alloc_hint, &ins, 1, 0); 9566 if (ret) { 9567 if (own_trans) 9568 btrfs_end_transaction(trans, root); 9569 break; 9570 } 9571 9572 ret = insert_reserved_file_extent(trans, inode, 9573 cur_offset, ins.objectid, 9574 ins.offset, ins.offset, 9575 ins.offset, 0, 0, 0, 9576 BTRFS_FILE_EXTENT_PREALLOC); 9577 if (ret) { 9578 btrfs_free_reserved_extent(root, ins.objectid, 9579 ins.offset, 0); 9580 btrfs_abort_transaction(trans, root, ret); 9581 if (own_trans) 9582 btrfs_end_transaction(trans, root); 9583 break; 9584 } 9585 9586 btrfs_drop_extent_cache(inode, cur_offset, 9587 cur_offset + ins.offset -1, 0); 9588 9589 em = alloc_extent_map(); 9590 if (!em) { 9591 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9592 &BTRFS_I(inode)->runtime_flags); 9593 goto next; 9594 } 9595 9596 em->start = cur_offset; 9597 em->orig_start = cur_offset; 9598 em->len = ins.offset; 9599 em->block_start = ins.objectid; 9600 em->block_len = ins.offset; 9601 em->orig_block_len = ins.offset; 9602 em->ram_bytes = ins.offset; 9603 em->bdev = root->fs_info->fs_devices->latest_bdev; 9604 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9605 em->generation = trans->transid; 9606 9607 while (1) { 9608 write_lock(&em_tree->lock); 9609 ret = add_extent_mapping(em_tree, em, 1); 9610 write_unlock(&em_tree->lock); 9611 if (ret != -EEXIST) 9612 break; 9613 btrfs_drop_extent_cache(inode, cur_offset, 9614 cur_offset + ins.offset - 1, 9615 0); 9616 } 9617 free_extent_map(em); 9618 next: 9619 num_bytes -= ins.offset; 9620 cur_offset += ins.offset; 9621 *alloc_hint = ins.objectid + ins.offset; 9622 9623 inode_inc_iversion(inode); 9624 inode->i_ctime = CURRENT_TIME; 9625 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9626 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9627 (actual_len > inode->i_size) && 9628 (cur_offset > inode->i_size)) { 9629 if (cur_offset > actual_len) 9630 i_size = actual_len; 9631 else 9632 i_size = cur_offset; 9633 i_size_write(inode, i_size); 9634 btrfs_ordered_update_i_size(inode, i_size, NULL); 9635 } 9636 9637 ret = btrfs_update_inode(trans, root, inode); 9638 9639 if (ret) { 9640 btrfs_abort_transaction(trans, root, ret); 9641 if (own_trans) 9642 btrfs_end_transaction(trans, root); 9643 break; 9644 } 9645 9646 if (own_trans) 9647 btrfs_end_transaction(trans, root); 9648 } 9649 return ret; 9650 } 9651 9652 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9653 u64 start, u64 num_bytes, u64 min_size, 9654 loff_t actual_len, u64 *alloc_hint) 9655 { 9656 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9657 min_size, actual_len, alloc_hint, 9658 NULL); 9659 } 9660 9661 int btrfs_prealloc_file_range_trans(struct inode *inode, 9662 struct btrfs_trans_handle *trans, int mode, 9663 u64 start, u64 num_bytes, u64 min_size, 9664 loff_t actual_len, u64 *alloc_hint) 9665 { 9666 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9667 min_size, actual_len, alloc_hint, trans); 9668 } 9669 9670 static int btrfs_set_page_dirty(struct page *page) 9671 { 9672 return __set_page_dirty_nobuffers(page); 9673 } 9674 9675 static int btrfs_permission(struct inode *inode, int mask) 9676 { 9677 struct btrfs_root *root = BTRFS_I(inode)->root; 9678 umode_t mode = inode->i_mode; 9679 9680 if (mask & MAY_WRITE && 9681 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9682 if (btrfs_root_readonly(root)) 9683 return -EROFS; 9684 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9685 return -EACCES; 9686 } 9687 return generic_permission(inode, mask); 9688 } 9689 9690 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9691 { 9692 struct btrfs_trans_handle *trans; 9693 struct btrfs_root *root = BTRFS_I(dir)->root; 9694 struct inode *inode = NULL; 9695 u64 objectid; 9696 u64 index; 9697 int ret = 0; 9698 9699 /* 9700 * 5 units required for adding orphan entry 9701 */ 9702 trans = btrfs_start_transaction(root, 5); 9703 if (IS_ERR(trans)) 9704 return PTR_ERR(trans); 9705 9706 ret = btrfs_find_free_ino(root, &objectid); 9707 if (ret) 9708 goto out; 9709 9710 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9711 btrfs_ino(dir), objectid, mode, &index); 9712 if (IS_ERR(inode)) { 9713 ret = PTR_ERR(inode); 9714 inode = NULL; 9715 goto out; 9716 } 9717 9718 inode->i_fop = &btrfs_file_operations; 9719 inode->i_op = &btrfs_file_inode_operations; 9720 9721 inode->i_mapping->a_ops = &btrfs_aops; 9722 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9723 9724 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9725 if (ret) 9726 goto out_inode; 9727 9728 ret = btrfs_update_inode(trans, root, inode); 9729 if (ret) 9730 goto out_inode; 9731 ret = btrfs_orphan_add(trans, inode); 9732 if (ret) 9733 goto out_inode; 9734 9735 /* 9736 * We set number of links to 0 in btrfs_new_inode(), and here we set 9737 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9738 * through: 9739 * 9740 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9741 */ 9742 set_nlink(inode, 1); 9743 unlock_new_inode(inode); 9744 d_tmpfile(dentry, inode); 9745 mark_inode_dirty(inode); 9746 9747 out: 9748 btrfs_end_transaction(trans, root); 9749 if (ret) 9750 iput(inode); 9751 btrfs_balance_delayed_items(root); 9752 btrfs_btree_balance_dirty(root); 9753 return ret; 9754 9755 out_inode: 9756 unlock_new_inode(inode); 9757 goto out; 9758 9759 } 9760 9761 /* Inspired by filemap_check_errors() */ 9762 int btrfs_inode_check_errors(struct inode *inode) 9763 { 9764 int ret = 0; 9765 9766 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 9767 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 9768 ret = -ENOSPC; 9769 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 9770 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 9771 ret = -EIO; 9772 9773 return ret; 9774 } 9775 9776 static const struct inode_operations btrfs_dir_inode_operations = { 9777 .getattr = btrfs_getattr, 9778 .lookup = btrfs_lookup, 9779 .create = btrfs_create, 9780 .unlink = btrfs_unlink, 9781 .link = btrfs_link, 9782 .mkdir = btrfs_mkdir, 9783 .rmdir = btrfs_rmdir, 9784 .rename2 = btrfs_rename2, 9785 .symlink = btrfs_symlink, 9786 .setattr = btrfs_setattr, 9787 .mknod = btrfs_mknod, 9788 .setxattr = btrfs_setxattr, 9789 .getxattr = btrfs_getxattr, 9790 .listxattr = btrfs_listxattr, 9791 .removexattr = btrfs_removexattr, 9792 .permission = btrfs_permission, 9793 .get_acl = btrfs_get_acl, 9794 .set_acl = btrfs_set_acl, 9795 .update_time = btrfs_update_time, 9796 .tmpfile = btrfs_tmpfile, 9797 }; 9798 static const struct inode_operations btrfs_dir_ro_inode_operations = { 9799 .lookup = btrfs_lookup, 9800 .permission = btrfs_permission, 9801 .get_acl = btrfs_get_acl, 9802 .set_acl = btrfs_set_acl, 9803 .update_time = btrfs_update_time, 9804 }; 9805 9806 static const struct file_operations btrfs_dir_file_operations = { 9807 .llseek = generic_file_llseek, 9808 .read = generic_read_dir, 9809 .iterate = btrfs_real_readdir, 9810 .unlocked_ioctl = btrfs_ioctl, 9811 #ifdef CONFIG_COMPAT 9812 .compat_ioctl = btrfs_ioctl, 9813 #endif 9814 .release = btrfs_release_file, 9815 .fsync = btrfs_sync_file, 9816 }; 9817 9818 static struct extent_io_ops btrfs_extent_io_ops = { 9819 .fill_delalloc = run_delalloc_range, 9820 .submit_bio_hook = btrfs_submit_bio_hook, 9821 .merge_bio_hook = btrfs_merge_bio_hook, 9822 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 9823 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 9824 .writepage_start_hook = btrfs_writepage_start_hook, 9825 .set_bit_hook = btrfs_set_bit_hook, 9826 .clear_bit_hook = btrfs_clear_bit_hook, 9827 .merge_extent_hook = btrfs_merge_extent_hook, 9828 .split_extent_hook = btrfs_split_extent_hook, 9829 }; 9830 9831 /* 9832 * btrfs doesn't support the bmap operation because swapfiles 9833 * use bmap to make a mapping of extents in the file. They assume 9834 * these extents won't change over the life of the file and they 9835 * use the bmap result to do IO directly to the drive. 9836 * 9837 * the btrfs bmap call would return logical addresses that aren't 9838 * suitable for IO and they also will change frequently as COW 9839 * operations happen. So, swapfile + btrfs == corruption. 9840 * 9841 * For now we're avoiding this by dropping bmap. 9842 */ 9843 static const struct address_space_operations btrfs_aops = { 9844 .readpage = btrfs_readpage, 9845 .writepage = btrfs_writepage, 9846 .writepages = btrfs_writepages, 9847 .readpages = btrfs_readpages, 9848 .direct_IO = btrfs_direct_IO, 9849 .invalidatepage = btrfs_invalidatepage, 9850 .releasepage = btrfs_releasepage, 9851 .set_page_dirty = btrfs_set_page_dirty, 9852 .error_remove_page = generic_error_remove_page, 9853 }; 9854 9855 static const struct address_space_operations btrfs_symlink_aops = { 9856 .readpage = btrfs_readpage, 9857 .writepage = btrfs_writepage, 9858 .invalidatepage = btrfs_invalidatepage, 9859 .releasepage = btrfs_releasepage, 9860 }; 9861 9862 static const struct inode_operations btrfs_file_inode_operations = { 9863 .getattr = btrfs_getattr, 9864 .setattr = btrfs_setattr, 9865 .setxattr = btrfs_setxattr, 9866 .getxattr = btrfs_getxattr, 9867 .listxattr = btrfs_listxattr, 9868 .removexattr = btrfs_removexattr, 9869 .permission = btrfs_permission, 9870 .fiemap = btrfs_fiemap, 9871 .get_acl = btrfs_get_acl, 9872 .set_acl = btrfs_set_acl, 9873 .update_time = btrfs_update_time, 9874 }; 9875 static const struct inode_operations btrfs_special_inode_operations = { 9876 .getattr = btrfs_getattr, 9877 .setattr = btrfs_setattr, 9878 .permission = btrfs_permission, 9879 .setxattr = btrfs_setxattr, 9880 .getxattr = btrfs_getxattr, 9881 .listxattr = btrfs_listxattr, 9882 .removexattr = btrfs_removexattr, 9883 .get_acl = btrfs_get_acl, 9884 .set_acl = btrfs_set_acl, 9885 .update_time = btrfs_update_time, 9886 }; 9887 static const struct inode_operations btrfs_symlink_inode_operations = { 9888 .readlink = generic_readlink, 9889 .follow_link = page_follow_link_light, 9890 .put_link = page_put_link, 9891 .getattr = btrfs_getattr, 9892 .setattr = btrfs_setattr, 9893 .permission = btrfs_permission, 9894 .setxattr = btrfs_setxattr, 9895 .getxattr = btrfs_getxattr, 9896 .listxattr = btrfs_listxattr, 9897 .removexattr = btrfs_removexattr, 9898 .update_time = btrfs_update_time, 9899 }; 9900 9901 const struct dentry_operations btrfs_dentry_operations = { 9902 .d_delete = btrfs_dentry_delete, 9903 .d_release = btrfs_dentry_release, 9904 }; 9905