1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "misc.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "ordered-data.h" 40 #include "xattr.h" 41 #include "tree-log.h" 42 #include "volumes.h" 43 #include "compression.h" 44 #include "locking.h" 45 #include "free-space-cache.h" 46 #include "inode-map.h" 47 #include "backref.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 53 struct btrfs_iget_args { 54 struct btrfs_key *location; 55 struct btrfs_root *root; 56 }; 57 58 struct btrfs_dio_data { 59 u64 reserve; 60 u64 unsubmitted_oe_range_start; 61 u64 unsubmitted_oe_range_end; 62 int overwrite; 63 }; 64 65 static const struct inode_operations btrfs_dir_inode_operations; 66 static const struct inode_operations btrfs_symlink_inode_operations; 67 static const struct inode_operations btrfs_dir_ro_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct file_operations btrfs_dir_file_operations; 72 static const struct extent_io_ops btrfs_extent_io_ops; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 88 u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * Cleanup all submitted ordered extents in specified range to handle errors 99 * from the btrfs_run_delalloc_range() callback. 100 * 101 * NOTE: caller must ensure that when an error happens, it can not call 102 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 103 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 104 * to be released, which we want to happen only when finishing the ordered 105 * extent (btrfs_finish_ordered_io()). 106 */ 107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 108 struct page *locked_page, 109 u64 offset, u64 bytes) 110 { 111 unsigned long index = offset >> PAGE_SHIFT; 112 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 113 u64 page_start = page_offset(locked_page); 114 u64 page_end = page_start + PAGE_SIZE - 1; 115 116 struct page *page; 117 118 while (index <= end_index) { 119 page = find_get_page(inode->i_mapping, index); 120 index++; 121 if (!page) 122 continue; 123 ClearPagePrivate2(page); 124 put_page(page); 125 } 126 127 /* 128 * In case this page belongs to the delalloc range being instantiated 129 * then skip it, since the first page of a range is going to be 130 * properly cleaned up by the caller of run_delalloc_range 131 */ 132 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 133 offset += PAGE_SIZE; 134 bytes -= PAGE_SIZE; 135 } 136 137 return __endio_write_update_ordered(inode, offset, bytes, false); 138 } 139 140 static int btrfs_dirty_inode(struct inode *inode); 141 142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 143 void btrfs_test_inode_set_ops(struct inode *inode) 144 { 145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 146 } 147 #endif 148 149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 150 struct inode *inode, struct inode *dir, 151 const struct qstr *qstr) 152 { 153 int err; 154 155 err = btrfs_init_acl(trans, inode, dir); 156 if (!err) 157 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 158 return err; 159 } 160 161 /* 162 * this does all the hard work for inserting an inline extent into 163 * the btree. The caller should have done a btrfs_drop_extents so that 164 * no overlapping inline items exist in the btree 165 */ 166 static int insert_inline_extent(struct btrfs_trans_handle *trans, 167 struct btrfs_path *path, int extent_inserted, 168 struct btrfs_root *root, struct inode *inode, 169 u64 start, size_t size, size_t compressed_size, 170 int compress_type, 171 struct page **compressed_pages) 172 { 173 struct extent_buffer *leaf; 174 struct page *page = NULL; 175 char *kaddr; 176 unsigned long ptr; 177 struct btrfs_file_extent_item *ei; 178 int ret; 179 size_t cur_size = size; 180 unsigned long offset; 181 182 ASSERT((compressed_size > 0 && compressed_pages) || 183 (compressed_size == 0 && !compressed_pages)); 184 185 if (compressed_size && compressed_pages) 186 cur_size = compressed_size; 187 188 inode_add_bytes(inode, size); 189 190 if (!extent_inserted) { 191 struct btrfs_key key; 192 size_t datasize; 193 194 key.objectid = btrfs_ino(BTRFS_I(inode)); 195 key.offset = start; 196 key.type = BTRFS_EXTENT_DATA_KEY; 197 198 datasize = btrfs_file_extent_calc_inline_size(cur_size); 199 path->leave_spinning = 1; 200 ret = btrfs_insert_empty_item(trans, root, path, &key, 201 datasize); 202 if (ret) 203 goto fail; 204 } 205 leaf = path->nodes[0]; 206 ei = btrfs_item_ptr(leaf, path->slots[0], 207 struct btrfs_file_extent_item); 208 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 209 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 210 btrfs_set_file_extent_encryption(leaf, ei, 0); 211 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 212 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 213 ptr = btrfs_file_extent_inline_start(ei); 214 215 if (compress_type != BTRFS_COMPRESS_NONE) { 216 struct page *cpage; 217 int i = 0; 218 while (compressed_size > 0) { 219 cpage = compressed_pages[i]; 220 cur_size = min_t(unsigned long, compressed_size, 221 PAGE_SIZE); 222 223 kaddr = kmap_atomic(cpage); 224 write_extent_buffer(leaf, kaddr, ptr, cur_size); 225 kunmap_atomic(kaddr); 226 227 i++; 228 ptr += cur_size; 229 compressed_size -= cur_size; 230 } 231 btrfs_set_file_extent_compression(leaf, ei, 232 compress_type); 233 } else { 234 page = find_get_page(inode->i_mapping, 235 start >> PAGE_SHIFT); 236 btrfs_set_file_extent_compression(leaf, ei, 0); 237 kaddr = kmap_atomic(page); 238 offset = offset_in_page(start); 239 write_extent_buffer(leaf, kaddr + offset, ptr, size); 240 kunmap_atomic(kaddr); 241 put_page(page); 242 } 243 btrfs_mark_buffer_dirty(leaf); 244 btrfs_release_path(path); 245 246 /* 247 * we're an inline extent, so nobody can 248 * extend the file past i_size without locking 249 * a page we already have locked. 250 * 251 * We must do any isize and inode updates 252 * before we unlock the pages. Otherwise we 253 * could end up racing with unlink. 254 */ 255 BTRFS_I(inode)->disk_i_size = inode->i_size; 256 ret = btrfs_update_inode(trans, root, inode); 257 258 fail: 259 return ret; 260 } 261 262 263 /* 264 * conditionally insert an inline extent into the file. This 265 * does the checks required to make sure the data is small enough 266 * to fit as an inline extent. 267 */ 268 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 269 u64 end, size_t compressed_size, 270 int compress_type, 271 struct page **compressed_pages) 272 { 273 struct btrfs_root *root = BTRFS_I(inode)->root; 274 struct btrfs_fs_info *fs_info = root->fs_info; 275 struct btrfs_trans_handle *trans; 276 u64 isize = i_size_read(inode); 277 u64 actual_end = min(end + 1, isize); 278 u64 inline_len = actual_end - start; 279 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 280 u64 data_len = inline_len; 281 int ret; 282 struct btrfs_path *path; 283 int extent_inserted = 0; 284 u32 extent_item_size; 285 286 if (compressed_size) 287 data_len = compressed_size; 288 289 if (start > 0 || 290 actual_end > fs_info->sectorsize || 291 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 292 (!compressed_size && 293 (actual_end & (fs_info->sectorsize - 1)) == 0) || 294 end + 1 < isize || 295 data_len > fs_info->max_inline) { 296 return 1; 297 } 298 299 path = btrfs_alloc_path(); 300 if (!path) 301 return -ENOMEM; 302 303 trans = btrfs_join_transaction(root); 304 if (IS_ERR(trans)) { 305 btrfs_free_path(path); 306 return PTR_ERR(trans); 307 } 308 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 309 310 if (compressed_size && compressed_pages) 311 extent_item_size = btrfs_file_extent_calc_inline_size( 312 compressed_size); 313 else 314 extent_item_size = btrfs_file_extent_calc_inline_size( 315 inline_len); 316 317 ret = __btrfs_drop_extents(trans, root, inode, path, 318 start, aligned_end, NULL, 319 1, 1, extent_item_size, &extent_inserted); 320 if (ret) { 321 btrfs_abort_transaction(trans, ret); 322 goto out; 323 } 324 325 if (isize > actual_end) 326 inline_len = min_t(u64, isize, actual_end); 327 ret = insert_inline_extent(trans, path, extent_inserted, 328 root, inode, start, 329 inline_len, compressed_size, 330 compress_type, compressed_pages); 331 if (ret && ret != -ENOSPC) { 332 btrfs_abort_transaction(trans, ret); 333 goto out; 334 } else if (ret == -ENOSPC) { 335 ret = 1; 336 goto out; 337 } 338 339 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 341 out: 342 /* 343 * Don't forget to free the reserved space, as for inlined extent 344 * it won't count as data extent, free them directly here. 345 * And at reserve time, it's always aligned to page size, so 346 * just free one page here. 347 */ 348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 349 btrfs_free_path(path); 350 btrfs_end_transaction(trans); 351 return ret; 352 } 353 354 struct async_extent { 355 u64 start; 356 u64 ram_size; 357 u64 compressed_size; 358 struct page **pages; 359 unsigned long nr_pages; 360 int compress_type; 361 struct list_head list; 362 }; 363 364 struct async_chunk { 365 struct inode *inode; 366 struct page *locked_page; 367 u64 start; 368 u64 end; 369 unsigned int write_flags; 370 struct list_head extents; 371 struct cgroup_subsys_state *blkcg_css; 372 struct btrfs_work work; 373 atomic_t *pending; 374 }; 375 376 struct async_cow { 377 /* Number of chunks in flight; must be first in the structure */ 378 atomic_t num_chunks; 379 struct async_chunk chunks[]; 380 }; 381 382 static noinline int add_async_extent(struct async_chunk *cow, 383 u64 start, u64 ram_size, 384 u64 compressed_size, 385 struct page **pages, 386 unsigned long nr_pages, 387 int compress_type) 388 { 389 struct async_extent *async_extent; 390 391 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 392 BUG_ON(!async_extent); /* -ENOMEM */ 393 async_extent->start = start; 394 async_extent->ram_size = ram_size; 395 async_extent->compressed_size = compressed_size; 396 async_extent->pages = pages; 397 async_extent->nr_pages = nr_pages; 398 async_extent->compress_type = compress_type; 399 list_add_tail(&async_extent->list, &cow->extents); 400 return 0; 401 } 402 403 /* 404 * Check if the inode has flags compatible with compression 405 */ 406 static inline bool inode_can_compress(struct inode *inode) 407 { 408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 409 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 410 return false; 411 return true; 412 } 413 414 /* 415 * Check if the inode needs to be submitted to compression, based on mount 416 * options, defragmentation, properties or heuristics. 417 */ 418 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 419 { 420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 421 422 if (!inode_can_compress(inode)) { 423 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 424 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 425 btrfs_ino(BTRFS_I(inode))); 426 return 0; 427 } 428 /* force compress */ 429 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 430 return 1; 431 /* defrag ioctl */ 432 if (BTRFS_I(inode)->defrag_compress) 433 return 1; 434 /* bad compression ratios */ 435 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 436 return 0; 437 if (btrfs_test_opt(fs_info, COMPRESS) || 438 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 439 BTRFS_I(inode)->prop_compress) 440 return btrfs_compress_heuristic(inode, start, end); 441 return 0; 442 } 443 444 static inline void inode_should_defrag(struct btrfs_inode *inode, 445 u64 start, u64 end, u64 num_bytes, u64 small_write) 446 { 447 /* If this is a small write inside eof, kick off a defrag */ 448 if (num_bytes < small_write && 449 (start > 0 || end + 1 < inode->disk_i_size)) 450 btrfs_add_inode_defrag(NULL, inode); 451 } 452 453 /* 454 * we create compressed extents in two phases. The first 455 * phase compresses a range of pages that have already been 456 * locked (both pages and state bits are locked). 457 * 458 * This is done inside an ordered work queue, and the compression 459 * is spread across many cpus. The actual IO submission is step 460 * two, and the ordered work queue takes care of making sure that 461 * happens in the same order things were put onto the queue by 462 * writepages and friends. 463 * 464 * If this code finds it can't get good compression, it puts an 465 * entry onto the work queue to write the uncompressed bytes. This 466 * makes sure that both compressed inodes and uncompressed inodes 467 * are written in the same order that the flusher thread sent them 468 * down. 469 */ 470 static noinline int compress_file_range(struct async_chunk *async_chunk) 471 { 472 struct inode *inode = async_chunk->inode; 473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 474 u64 blocksize = fs_info->sectorsize; 475 u64 start = async_chunk->start; 476 u64 end = async_chunk->end; 477 u64 actual_end; 478 u64 i_size; 479 int ret = 0; 480 struct page **pages = NULL; 481 unsigned long nr_pages; 482 unsigned long total_compressed = 0; 483 unsigned long total_in = 0; 484 int i; 485 int will_compress; 486 int compress_type = fs_info->compress_type; 487 int compressed_extents = 0; 488 int redirty = 0; 489 490 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 491 SZ_16K); 492 493 /* 494 * We need to save i_size before now because it could change in between 495 * us evaluating the size and assigning it. This is because we lock and 496 * unlock the page in truncate and fallocate, and then modify the i_size 497 * later on. 498 * 499 * The barriers are to emulate READ_ONCE, remove that once i_size_read 500 * does that for us. 501 */ 502 barrier(); 503 i_size = i_size_read(inode); 504 barrier(); 505 actual_end = min_t(u64, i_size, end + 1); 506 again: 507 will_compress = 0; 508 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 509 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 510 nr_pages = min_t(unsigned long, nr_pages, 511 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 512 513 /* 514 * we don't want to send crud past the end of i_size through 515 * compression, that's just a waste of CPU time. So, if the 516 * end of the file is before the start of our current 517 * requested range of bytes, we bail out to the uncompressed 518 * cleanup code that can deal with all of this. 519 * 520 * It isn't really the fastest way to fix things, but this is a 521 * very uncommon corner. 522 */ 523 if (actual_end <= start) 524 goto cleanup_and_bail_uncompressed; 525 526 total_compressed = actual_end - start; 527 528 /* 529 * skip compression for a small file range(<=blocksize) that 530 * isn't an inline extent, since it doesn't save disk space at all. 531 */ 532 if (total_compressed <= blocksize && 533 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 534 goto cleanup_and_bail_uncompressed; 535 536 total_compressed = min_t(unsigned long, total_compressed, 537 BTRFS_MAX_UNCOMPRESSED); 538 total_in = 0; 539 ret = 0; 540 541 /* 542 * we do compression for mount -o compress and when the 543 * inode has not been flagged as nocompress. This flag can 544 * change at any time if we discover bad compression ratios. 545 */ 546 if (inode_need_compress(inode, start, end)) { 547 WARN_ON(pages); 548 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 549 if (!pages) { 550 /* just bail out to the uncompressed code */ 551 nr_pages = 0; 552 goto cont; 553 } 554 555 if (BTRFS_I(inode)->defrag_compress) 556 compress_type = BTRFS_I(inode)->defrag_compress; 557 else if (BTRFS_I(inode)->prop_compress) 558 compress_type = BTRFS_I(inode)->prop_compress; 559 560 /* 561 * we need to call clear_page_dirty_for_io on each 562 * page in the range. Otherwise applications with the file 563 * mmap'd can wander in and change the page contents while 564 * we are compressing them. 565 * 566 * If the compression fails for any reason, we set the pages 567 * dirty again later on. 568 * 569 * Note that the remaining part is redirtied, the start pointer 570 * has moved, the end is the original one. 571 */ 572 if (!redirty) { 573 extent_range_clear_dirty_for_io(inode, start, end); 574 redirty = 1; 575 } 576 577 /* Compression level is applied here and only here */ 578 ret = btrfs_compress_pages( 579 compress_type | (fs_info->compress_level << 4), 580 inode->i_mapping, start, 581 pages, 582 &nr_pages, 583 &total_in, 584 &total_compressed); 585 586 if (!ret) { 587 unsigned long offset = offset_in_page(total_compressed); 588 struct page *page = pages[nr_pages - 1]; 589 char *kaddr; 590 591 /* zero the tail end of the last page, we might be 592 * sending it down to disk 593 */ 594 if (offset) { 595 kaddr = kmap_atomic(page); 596 memset(kaddr + offset, 0, 597 PAGE_SIZE - offset); 598 kunmap_atomic(kaddr); 599 } 600 will_compress = 1; 601 } 602 } 603 cont: 604 if (start == 0) { 605 /* lets try to make an inline extent */ 606 if (ret || total_in < actual_end) { 607 /* we didn't compress the entire range, try 608 * to make an uncompressed inline extent. 609 */ 610 ret = cow_file_range_inline(inode, start, end, 0, 611 BTRFS_COMPRESS_NONE, NULL); 612 } else { 613 /* try making a compressed inline extent */ 614 ret = cow_file_range_inline(inode, start, end, 615 total_compressed, 616 compress_type, pages); 617 } 618 if (ret <= 0) { 619 unsigned long clear_flags = EXTENT_DELALLOC | 620 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 621 EXTENT_DO_ACCOUNTING; 622 unsigned long page_error_op; 623 624 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 625 626 /* 627 * inline extent creation worked or returned error, 628 * we don't need to create any more async work items. 629 * Unlock and free up our temp pages. 630 * 631 * We use DO_ACCOUNTING here because we need the 632 * delalloc_release_metadata to be done _after_ we drop 633 * our outstanding extent for clearing delalloc for this 634 * range. 635 */ 636 extent_clear_unlock_delalloc(inode, start, end, NULL, 637 clear_flags, 638 PAGE_UNLOCK | 639 PAGE_CLEAR_DIRTY | 640 PAGE_SET_WRITEBACK | 641 page_error_op | 642 PAGE_END_WRITEBACK); 643 644 for (i = 0; i < nr_pages; i++) { 645 WARN_ON(pages[i]->mapping); 646 put_page(pages[i]); 647 } 648 kfree(pages); 649 650 return 0; 651 } 652 } 653 654 if (will_compress) { 655 /* 656 * we aren't doing an inline extent round the compressed size 657 * up to a block size boundary so the allocator does sane 658 * things 659 */ 660 total_compressed = ALIGN(total_compressed, blocksize); 661 662 /* 663 * one last check to make sure the compression is really a 664 * win, compare the page count read with the blocks on disk, 665 * compression must free at least one sector size 666 */ 667 total_in = ALIGN(total_in, PAGE_SIZE); 668 if (total_compressed + blocksize <= total_in) { 669 compressed_extents++; 670 671 /* 672 * The async work queues will take care of doing actual 673 * allocation on disk for these compressed pages, and 674 * will submit them to the elevator. 675 */ 676 add_async_extent(async_chunk, start, total_in, 677 total_compressed, pages, nr_pages, 678 compress_type); 679 680 if (start + total_in < end) { 681 start += total_in; 682 pages = NULL; 683 cond_resched(); 684 goto again; 685 } 686 return compressed_extents; 687 } 688 } 689 if (pages) { 690 /* 691 * the compression code ran but failed to make things smaller, 692 * free any pages it allocated and our page pointer array 693 */ 694 for (i = 0; i < nr_pages; i++) { 695 WARN_ON(pages[i]->mapping); 696 put_page(pages[i]); 697 } 698 kfree(pages); 699 pages = NULL; 700 total_compressed = 0; 701 nr_pages = 0; 702 703 /* flag the file so we don't compress in the future */ 704 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 705 !(BTRFS_I(inode)->prop_compress)) { 706 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 707 } 708 } 709 cleanup_and_bail_uncompressed: 710 /* 711 * No compression, but we still need to write the pages in the file 712 * we've been given so far. redirty the locked page if it corresponds 713 * to our extent and set things up for the async work queue to run 714 * cow_file_range to do the normal delalloc dance. 715 */ 716 if (async_chunk->locked_page && 717 (page_offset(async_chunk->locked_page) >= start && 718 page_offset(async_chunk->locked_page)) <= end) { 719 __set_page_dirty_nobuffers(async_chunk->locked_page); 720 /* unlocked later on in the async handlers */ 721 } 722 723 if (redirty) 724 extent_range_redirty_for_io(inode, start, end); 725 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 726 BTRFS_COMPRESS_NONE); 727 compressed_extents++; 728 729 return compressed_extents; 730 } 731 732 static void free_async_extent_pages(struct async_extent *async_extent) 733 { 734 int i; 735 736 if (!async_extent->pages) 737 return; 738 739 for (i = 0; i < async_extent->nr_pages; i++) { 740 WARN_ON(async_extent->pages[i]->mapping); 741 put_page(async_extent->pages[i]); 742 } 743 kfree(async_extent->pages); 744 async_extent->nr_pages = 0; 745 async_extent->pages = NULL; 746 } 747 748 /* 749 * phase two of compressed writeback. This is the ordered portion 750 * of the code, which only gets called in the order the work was 751 * queued. We walk all the async extents created by compress_file_range 752 * and send them down to the disk. 753 */ 754 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 755 { 756 struct inode *inode = async_chunk->inode; 757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 758 struct async_extent *async_extent; 759 u64 alloc_hint = 0; 760 struct btrfs_key ins; 761 struct extent_map *em; 762 struct btrfs_root *root = BTRFS_I(inode)->root; 763 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 764 int ret = 0; 765 766 again: 767 while (!list_empty(&async_chunk->extents)) { 768 async_extent = list_entry(async_chunk->extents.next, 769 struct async_extent, list); 770 list_del(&async_extent->list); 771 772 retry: 773 lock_extent(io_tree, async_extent->start, 774 async_extent->start + async_extent->ram_size - 1); 775 /* did the compression code fall back to uncompressed IO? */ 776 if (!async_extent->pages) { 777 int page_started = 0; 778 unsigned long nr_written = 0; 779 780 /* allocate blocks */ 781 ret = cow_file_range(inode, async_chunk->locked_page, 782 async_extent->start, 783 async_extent->start + 784 async_extent->ram_size - 1, 785 &page_started, &nr_written, 0); 786 787 /* JDM XXX */ 788 789 /* 790 * if page_started, cow_file_range inserted an 791 * inline extent and took care of all the unlocking 792 * and IO for us. Otherwise, we need to submit 793 * all those pages down to the drive. 794 */ 795 if (!page_started && !ret) 796 extent_write_locked_range(inode, 797 async_extent->start, 798 async_extent->start + 799 async_extent->ram_size - 1, 800 WB_SYNC_ALL); 801 else if (ret && async_chunk->locked_page) 802 unlock_page(async_chunk->locked_page); 803 kfree(async_extent); 804 cond_resched(); 805 continue; 806 } 807 808 ret = btrfs_reserve_extent(root, async_extent->ram_size, 809 async_extent->compressed_size, 810 async_extent->compressed_size, 811 0, alloc_hint, &ins, 1, 1); 812 if (ret) { 813 free_async_extent_pages(async_extent); 814 815 if (ret == -ENOSPC) { 816 unlock_extent(io_tree, async_extent->start, 817 async_extent->start + 818 async_extent->ram_size - 1); 819 820 /* 821 * we need to redirty the pages if we decide to 822 * fallback to uncompressed IO, otherwise we 823 * will not submit these pages down to lower 824 * layers. 825 */ 826 extent_range_redirty_for_io(inode, 827 async_extent->start, 828 async_extent->start + 829 async_extent->ram_size - 1); 830 831 goto retry; 832 } 833 goto out_free; 834 } 835 /* 836 * here we're doing allocation and writeback of the 837 * compressed pages 838 */ 839 em = create_io_em(inode, async_extent->start, 840 async_extent->ram_size, /* len */ 841 async_extent->start, /* orig_start */ 842 ins.objectid, /* block_start */ 843 ins.offset, /* block_len */ 844 ins.offset, /* orig_block_len */ 845 async_extent->ram_size, /* ram_bytes */ 846 async_extent->compress_type, 847 BTRFS_ORDERED_COMPRESSED); 848 if (IS_ERR(em)) 849 /* ret value is not necessary due to void function */ 850 goto out_free_reserve; 851 free_extent_map(em); 852 853 ret = btrfs_add_ordered_extent_compress(inode, 854 async_extent->start, 855 ins.objectid, 856 async_extent->ram_size, 857 ins.offset, 858 BTRFS_ORDERED_COMPRESSED, 859 async_extent->compress_type); 860 if (ret) { 861 btrfs_drop_extent_cache(BTRFS_I(inode), 862 async_extent->start, 863 async_extent->start + 864 async_extent->ram_size - 1, 0); 865 goto out_free_reserve; 866 } 867 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 868 869 /* 870 * clear dirty, set writeback and unlock the pages. 871 */ 872 extent_clear_unlock_delalloc(inode, async_extent->start, 873 async_extent->start + 874 async_extent->ram_size - 1, 875 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 876 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 877 PAGE_SET_WRITEBACK); 878 if (btrfs_submit_compressed_write(inode, 879 async_extent->start, 880 async_extent->ram_size, 881 ins.objectid, 882 ins.offset, async_extent->pages, 883 async_extent->nr_pages, 884 async_chunk->write_flags, 885 async_chunk->blkcg_css)) { 886 struct page *p = async_extent->pages[0]; 887 const u64 start = async_extent->start; 888 const u64 end = start + async_extent->ram_size - 1; 889 890 p->mapping = inode->i_mapping; 891 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 892 893 p->mapping = NULL; 894 extent_clear_unlock_delalloc(inode, start, end, 895 NULL, 0, 896 PAGE_END_WRITEBACK | 897 PAGE_SET_ERROR); 898 free_async_extent_pages(async_extent); 899 } 900 alloc_hint = ins.objectid + ins.offset; 901 kfree(async_extent); 902 cond_resched(); 903 } 904 return; 905 out_free_reserve: 906 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 907 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 908 out_free: 909 extent_clear_unlock_delalloc(inode, async_extent->start, 910 async_extent->start + 911 async_extent->ram_size - 1, 912 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 913 EXTENT_DELALLOC_NEW | 914 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 915 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 916 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 917 PAGE_SET_ERROR); 918 free_async_extent_pages(async_extent); 919 kfree(async_extent); 920 goto again; 921 } 922 923 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 924 u64 num_bytes) 925 { 926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 927 struct extent_map *em; 928 u64 alloc_hint = 0; 929 930 read_lock(&em_tree->lock); 931 em = search_extent_mapping(em_tree, start, num_bytes); 932 if (em) { 933 /* 934 * if block start isn't an actual block number then find the 935 * first block in this inode and use that as a hint. If that 936 * block is also bogus then just don't worry about it. 937 */ 938 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 939 free_extent_map(em); 940 em = search_extent_mapping(em_tree, 0, 0); 941 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 942 alloc_hint = em->block_start; 943 if (em) 944 free_extent_map(em); 945 } else { 946 alloc_hint = em->block_start; 947 free_extent_map(em); 948 } 949 } 950 read_unlock(&em_tree->lock); 951 952 return alloc_hint; 953 } 954 955 /* 956 * when extent_io.c finds a delayed allocation range in the file, 957 * the call backs end up in this code. The basic idea is to 958 * allocate extents on disk for the range, and create ordered data structs 959 * in ram to track those extents. 960 * 961 * locked_page is the page that writepage had locked already. We use 962 * it to make sure we don't do extra locks or unlocks. 963 * 964 * *page_started is set to one if we unlock locked_page and do everything 965 * required to start IO on it. It may be clean and already done with 966 * IO when we return. 967 */ 968 static noinline int cow_file_range(struct inode *inode, 969 struct page *locked_page, 970 u64 start, u64 end, int *page_started, 971 unsigned long *nr_written, int unlock) 972 { 973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 974 struct btrfs_root *root = BTRFS_I(inode)->root; 975 u64 alloc_hint = 0; 976 u64 num_bytes; 977 unsigned long ram_size; 978 u64 cur_alloc_size = 0; 979 u64 blocksize = fs_info->sectorsize; 980 struct btrfs_key ins; 981 struct extent_map *em; 982 unsigned clear_bits; 983 unsigned long page_ops; 984 bool extent_reserved = false; 985 int ret = 0; 986 987 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 988 WARN_ON_ONCE(1); 989 ret = -EINVAL; 990 goto out_unlock; 991 } 992 993 num_bytes = ALIGN(end - start + 1, blocksize); 994 num_bytes = max(blocksize, num_bytes); 995 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 996 997 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 998 999 if (start == 0) { 1000 /* lets try to make an inline extent */ 1001 ret = cow_file_range_inline(inode, start, end, 0, 1002 BTRFS_COMPRESS_NONE, NULL); 1003 if (ret == 0) { 1004 /* 1005 * We use DO_ACCOUNTING here because we need the 1006 * delalloc_release_metadata to be run _after_ we drop 1007 * our outstanding extent for clearing delalloc for this 1008 * range. 1009 */ 1010 extent_clear_unlock_delalloc(inode, start, end, NULL, 1011 EXTENT_LOCKED | EXTENT_DELALLOC | 1012 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1013 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1014 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1015 PAGE_END_WRITEBACK); 1016 *nr_written = *nr_written + 1017 (end - start + PAGE_SIZE) / PAGE_SIZE; 1018 *page_started = 1; 1019 goto out; 1020 } else if (ret < 0) { 1021 goto out_unlock; 1022 } 1023 } 1024 1025 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1026 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1027 start + num_bytes - 1, 0); 1028 1029 while (num_bytes > 0) { 1030 cur_alloc_size = num_bytes; 1031 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1032 fs_info->sectorsize, 0, alloc_hint, 1033 &ins, 1, 1); 1034 if (ret < 0) 1035 goto out_unlock; 1036 cur_alloc_size = ins.offset; 1037 extent_reserved = true; 1038 1039 ram_size = ins.offset; 1040 em = create_io_em(inode, start, ins.offset, /* len */ 1041 start, /* orig_start */ 1042 ins.objectid, /* block_start */ 1043 ins.offset, /* block_len */ 1044 ins.offset, /* orig_block_len */ 1045 ram_size, /* ram_bytes */ 1046 BTRFS_COMPRESS_NONE, /* compress_type */ 1047 BTRFS_ORDERED_REGULAR /* type */); 1048 if (IS_ERR(em)) { 1049 ret = PTR_ERR(em); 1050 goto out_reserve; 1051 } 1052 free_extent_map(em); 1053 1054 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1055 ram_size, cur_alloc_size, 0); 1056 if (ret) 1057 goto out_drop_extent_cache; 1058 1059 if (root->root_key.objectid == 1060 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1061 ret = btrfs_reloc_clone_csums(inode, start, 1062 cur_alloc_size); 1063 /* 1064 * Only drop cache here, and process as normal. 1065 * 1066 * We must not allow extent_clear_unlock_delalloc() 1067 * at out_unlock label to free meta of this ordered 1068 * extent, as its meta should be freed by 1069 * btrfs_finish_ordered_io(). 1070 * 1071 * So we must continue until @start is increased to 1072 * skip current ordered extent. 1073 */ 1074 if (ret) 1075 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1076 start + ram_size - 1, 0); 1077 } 1078 1079 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1080 1081 /* we're not doing compressed IO, don't unlock the first 1082 * page (which the caller expects to stay locked), don't 1083 * clear any dirty bits and don't set any writeback bits 1084 * 1085 * Do set the Private2 bit so we know this page was properly 1086 * setup for writepage 1087 */ 1088 page_ops = unlock ? PAGE_UNLOCK : 0; 1089 page_ops |= PAGE_SET_PRIVATE2; 1090 1091 extent_clear_unlock_delalloc(inode, start, 1092 start + ram_size - 1, 1093 locked_page, 1094 EXTENT_LOCKED | EXTENT_DELALLOC, 1095 page_ops); 1096 if (num_bytes < cur_alloc_size) 1097 num_bytes = 0; 1098 else 1099 num_bytes -= cur_alloc_size; 1100 alloc_hint = ins.objectid + ins.offset; 1101 start += cur_alloc_size; 1102 extent_reserved = false; 1103 1104 /* 1105 * btrfs_reloc_clone_csums() error, since start is increased 1106 * extent_clear_unlock_delalloc() at out_unlock label won't 1107 * free metadata of current ordered extent, we're OK to exit. 1108 */ 1109 if (ret) 1110 goto out_unlock; 1111 } 1112 out: 1113 return ret; 1114 1115 out_drop_extent_cache: 1116 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1117 out_reserve: 1118 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1119 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1120 out_unlock: 1121 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1122 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1123 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1124 PAGE_END_WRITEBACK; 1125 /* 1126 * If we reserved an extent for our delalloc range (or a subrange) and 1127 * failed to create the respective ordered extent, then it means that 1128 * when we reserved the extent we decremented the extent's size from 1129 * the data space_info's bytes_may_use counter and incremented the 1130 * space_info's bytes_reserved counter by the same amount. We must make 1131 * sure extent_clear_unlock_delalloc() does not try to decrement again 1132 * the data space_info's bytes_may_use counter, therefore we do not pass 1133 * it the flag EXTENT_CLEAR_DATA_RESV. 1134 */ 1135 if (extent_reserved) { 1136 extent_clear_unlock_delalloc(inode, start, 1137 start + cur_alloc_size, 1138 locked_page, 1139 clear_bits, 1140 page_ops); 1141 start += cur_alloc_size; 1142 if (start >= end) 1143 goto out; 1144 } 1145 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1146 clear_bits | EXTENT_CLEAR_DATA_RESV, 1147 page_ops); 1148 goto out; 1149 } 1150 1151 /* 1152 * work queue call back to started compression on a file and pages 1153 */ 1154 static noinline void async_cow_start(struct btrfs_work *work) 1155 { 1156 struct async_chunk *async_chunk; 1157 int compressed_extents; 1158 1159 async_chunk = container_of(work, struct async_chunk, work); 1160 1161 compressed_extents = compress_file_range(async_chunk); 1162 if (compressed_extents == 0) { 1163 btrfs_add_delayed_iput(async_chunk->inode); 1164 async_chunk->inode = NULL; 1165 } 1166 } 1167 1168 /* 1169 * work queue call back to submit previously compressed pages 1170 */ 1171 static noinline void async_cow_submit(struct btrfs_work *work) 1172 { 1173 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1174 work); 1175 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1176 unsigned long nr_pages; 1177 1178 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1179 PAGE_SHIFT; 1180 1181 /* atomic_sub_return implies a barrier */ 1182 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1183 5 * SZ_1M) 1184 cond_wake_up_nomb(&fs_info->async_submit_wait); 1185 1186 /* 1187 * ->inode could be NULL if async_chunk_start has failed to compress, 1188 * in which case we don't have anything to submit, yet we need to 1189 * always adjust ->async_delalloc_pages as its paired with the init 1190 * happening in cow_file_range_async 1191 */ 1192 if (async_chunk->inode) 1193 submit_compressed_extents(async_chunk); 1194 } 1195 1196 static noinline void async_cow_free(struct btrfs_work *work) 1197 { 1198 struct async_chunk *async_chunk; 1199 1200 async_chunk = container_of(work, struct async_chunk, work); 1201 if (async_chunk->inode) 1202 btrfs_add_delayed_iput(async_chunk->inode); 1203 if (async_chunk->blkcg_css) 1204 css_put(async_chunk->blkcg_css); 1205 /* 1206 * Since the pointer to 'pending' is at the beginning of the array of 1207 * async_chunk's, freeing it ensures the whole array has been freed. 1208 */ 1209 if (atomic_dec_and_test(async_chunk->pending)) 1210 kvfree(async_chunk->pending); 1211 } 1212 1213 static int cow_file_range_async(struct inode *inode, 1214 struct writeback_control *wbc, 1215 struct page *locked_page, 1216 u64 start, u64 end, int *page_started, 1217 unsigned long *nr_written) 1218 { 1219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1220 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1221 struct async_cow *ctx; 1222 struct async_chunk *async_chunk; 1223 unsigned long nr_pages; 1224 u64 cur_end; 1225 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1226 int i; 1227 bool should_compress; 1228 unsigned nofs_flag; 1229 const unsigned int write_flags = wbc_to_write_flags(wbc); 1230 1231 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1232 1233 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1234 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1235 num_chunks = 1; 1236 should_compress = false; 1237 } else { 1238 should_compress = true; 1239 } 1240 1241 nofs_flag = memalloc_nofs_save(); 1242 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1243 memalloc_nofs_restore(nofs_flag); 1244 1245 if (!ctx) { 1246 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1247 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1248 EXTENT_DO_ACCOUNTING; 1249 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1250 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1251 PAGE_SET_ERROR; 1252 1253 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1254 clear_bits, page_ops); 1255 return -ENOMEM; 1256 } 1257 1258 async_chunk = ctx->chunks; 1259 atomic_set(&ctx->num_chunks, num_chunks); 1260 1261 for (i = 0; i < num_chunks; i++) { 1262 if (should_compress) 1263 cur_end = min(end, start + SZ_512K - 1); 1264 else 1265 cur_end = end; 1266 1267 /* 1268 * igrab is called higher up in the call chain, take only the 1269 * lightweight reference for the callback lifetime 1270 */ 1271 ihold(inode); 1272 async_chunk[i].pending = &ctx->num_chunks; 1273 async_chunk[i].inode = inode; 1274 async_chunk[i].start = start; 1275 async_chunk[i].end = cur_end; 1276 async_chunk[i].write_flags = write_flags; 1277 INIT_LIST_HEAD(&async_chunk[i].extents); 1278 1279 /* 1280 * The locked_page comes all the way from writepage and its 1281 * the original page we were actually given. As we spread 1282 * this large delalloc region across multiple async_chunk 1283 * structs, only the first struct needs a pointer to locked_page 1284 * 1285 * This way we don't need racey decisions about who is supposed 1286 * to unlock it. 1287 */ 1288 if (locked_page) { 1289 /* 1290 * Depending on the compressibility, the pages might or 1291 * might not go through async. We want all of them to 1292 * be accounted against wbc once. Let's do it here 1293 * before the paths diverge. wbc accounting is used 1294 * only for foreign writeback detection and doesn't 1295 * need full accuracy. Just account the whole thing 1296 * against the first page. 1297 */ 1298 wbc_account_cgroup_owner(wbc, locked_page, 1299 cur_end - start); 1300 async_chunk[i].locked_page = locked_page; 1301 locked_page = NULL; 1302 } else { 1303 async_chunk[i].locked_page = NULL; 1304 } 1305 1306 if (blkcg_css != blkcg_root_css) { 1307 css_get(blkcg_css); 1308 async_chunk[i].blkcg_css = blkcg_css; 1309 } else { 1310 async_chunk[i].blkcg_css = NULL; 1311 } 1312 1313 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1314 async_cow_submit, async_cow_free); 1315 1316 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1317 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1318 1319 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1320 1321 *nr_written += nr_pages; 1322 start = cur_end + 1; 1323 } 1324 *page_started = 1; 1325 return 0; 1326 } 1327 1328 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1329 u64 bytenr, u64 num_bytes) 1330 { 1331 int ret; 1332 struct btrfs_ordered_sum *sums; 1333 LIST_HEAD(list); 1334 1335 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1336 bytenr + num_bytes - 1, &list, 0); 1337 if (ret == 0 && list_empty(&list)) 1338 return 0; 1339 1340 while (!list_empty(&list)) { 1341 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1342 list_del(&sums->list); 1343 kfree(sums); 1344 } 1345 if (ret < 0) 1346 return ret; 1347 return 1; 1348 } 1349 1350 /* 1351 * when nowcow writeback call back. This checks for snapshots or COW copies 1352 * of the extents that exist in the file, and COWs the file as required. 1353 * 1354 * If no cow copies or snapshots exist, we write directly to the existing 1355 * blocks on disk 1356 */ 1357 static noinline int run_delalloc_nocow(struct inode *inode, 1358 struct page *locked_page, 1359 const u64 start, const u64 end, 1360 int *page_started, int force, 1361 unsigned long *nr_written) 1362 { 1363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1364 struct btrfs_root *root = BTRFS_I(inode)->root; 1365 struct btrfs_path *path; 1366 u64 cow_start = (u64)-1; 1367 u64 cur_offset = start; 1368 int ret; 1369 bool check_prev = true; 1370 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1371 u64 ino = btrfs_ino(BTRFS_I(inode)); 1372 bool nocow = false; 1373 u64 disk_bytenr = 0; 1374 1375 path = btrfs_alloc_path(); 1376 if (!path) { 1377 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1378 EXTENT_LOCKED | EXTENT_DELALLOC | 1379 EXTENT_DO_ACCOUNTING | 1380 EXTENT_DEFRAG, PAGE_UNLOCK | 1381 PAGE_CLEAR_DIRTY | 1382 PAGE_SET_WRITEBACK | 1383 PAGE_END_WRITEBACK); 1384 return -ENOMEM; 1385 } 1386 1387 while (1) { 1388 struct btrfs_key found_key; 1389 struct btrfs_file_extent_item *fi; 1390 struct extent_buffer *leaf; 1391 u64 extent_end; 1392 u64 extent_offset; 1393 u64 num_bytes = 0; 1394 u64 disk_num_bytes; 1395 u64 ram_bytes; 1396 int extent_type; 1397 1398 nocow = false; 1399 1400 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1401 cur_offset, 0); 1402 if (ret < 0) 1403 goto error; 1404 1405 /* 1406 * If there is no extent for our range when doing the initial 1407 * search, then go back to the previous slot as it will be the 1408 * one containing the search offset 1409 */ 1410 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1411 leaf = path->nodes[0]; 1412 btrfs_item_key_to_cpu(leaf, &found_key, 1413 path->slots[0] - 1); 1414 if (found_key.objectid == ino && 1415 found_key.type == BTRFS_EXTENT_DATA_KEY) 1416 path->slots[0]--; 1417 } 1418 check_prev = false; 1419 next_slot: 1420 /* Go to next leaf if we have exhausted the current one */ 1421 leaf = path->nodes[0]; 1422 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1423 ret = btrfs_next_leaf(root, path); 1424 if (ret < 0) { 1425 if (cow_start != (u64)-1) 1426 cur_offset = cow_start; 1427 goto error; 1428 } 1429 if (ret > 0) 1430 break; 1431 leaf = path->nodes[0]; 1432 } 1433 1434 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1435 1436 /* Didn't find anything for our INO */ 1437 if (found_key.objectid > ino) 1438 break; 1439 /* 1440 * Keep searching until we find an EXTENT_ITEM or there are no 1441 * more extents for this inode 1442 */ 1443 if (WARN_ON_ONCE(found_key.objectid < ino) || 1444 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1445 path->slots[0]++; 1446 goto next_slot; 1447 } 1448 1449 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1450 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1451 found_key.offset > end) 1452 break; 1453 1454 /* 1455 * If the found extent starts after requested offset, then 1456 * adjust extent_end to be right before this extent begins 1457 */ 1458 if (found_key.offset > cur_offset) { 1459 extent_end = found_key.offset; 1460 extent_type = 0; 1461 goto out_check; 1462 } 1463 1464 /* 1465 * Found extent which begins before our range and potentially 1466 * intersect it 1467 */ 1468 fi = btrfs_item_ptr(leaf, path->slots[0], 1469 struct btrfs_file_extent_item); 1470 extent_type = btrfs_file_extent_type(leaf, fi); 1471 1472 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1473 if (extent_type == BTRFS_FILE_EXTENT_REG || 1474 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1475 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1476 extent_offset = btrfs_file_extent_offset(leaf, fi); 1477 extent_end = found_key.offset + 1478 btrfs_file_extent_num_bytes(leaf, fi); 1479 disk_num_bytes = 1480 btrfs_file_extent_disk_num_bytes(leaf, fi); 1481 /* 1482 * If extent we got ends before our range starts, skip 1483 * to next extent 1484 */ 1485 if (extent_end <= start) { 1486 path->slots[0]++; 1487 goto next_slot; 1488 } 1489 /* Skip holes */ 1490 if (disk_bytenr == 0) 1491 goto out_check; 1492 /* Skip compressed/encrypted/encoded extents */ 1493 if (btrfs_file_extent_compression(leaf, fi) || 1494 btrfs_file_extent_encryption(leaf, fi) || 1495 btrfs_file_extent_other_encoding(leaf, fi)) 1496 goto out_check; 1497 /* 1498 * If extent is created before the last volume's snapshot 1499 * this implies the extent is shared, hence we can't do 1500 * nocow. This is the same check as in 1501 * btrfs_cross_ref_exist but without calling 1502 * btrfs_search_slot. 1503 */ 1504 if (!freespace_inode && 1505 btrfs_file_extent_generation(leaf, fi) <= 1506 btrfs_root_last_snapshot(&root->root_item)) 1507 goto out_check; 1508 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1509 goto out_check; 1510 /* If extent is RO, we must COW it */ 1511 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1512 goto out_check; 1513 ret = btrfs_cross_ref_exist(root, ino, 1514 found_key.offset - 1515 extent_offset, disk_bytenr); 1516 if (ret) { 1517 /* 1518 * ret could be -EIO if the above fails to read 1519 * metadata. 1520 */ 1521 if (ret < 0) { 1522 if (cow_start != (u64)-1) 1523 cur_offset = cow_start; 1524 goto error; 1525 } 1526 1527 WARN_ON_ONCE(freespace_inode); 1528 goto out_check; 1529 } 1530 disk_bytenr += extent_offset; 1531 disk_bytenr += cur_offset - found_key.offset; 1532 num_bytes = min(end + 1, extent_end) - cur_offset; 1533 /* 1534 * If there are pending snapshots for this root, we 1535 * fall into common COW way 1536 */ 1537 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1538 goto out_check; 1539 /* 1540 * force cow if csum exists in the range. 1541 * this ensure that csum for a given extent are 1542 * either valid or do not exist. 1543 */ 1544 ret = csum_exist_in_range(fs_info, disk_bytenr, 1545 num_bytes); 1546 if (ret) { 1547 /* 1548 * ret could be -EIO if the above fails to read 1549 * metadata. 1550 */ 1551 if (ret < 0) { 1552 if (cow_start != (u64)-1) 1553 cur_offset = cow_start; 1554 goto error; 1555 } 1556 WARN_ON_ONCE(freespace_inode); 1557 goto out_check; 1558 } 1559 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1560 goto out_check; 1561 nocow = true; 1562 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1563 extent_end = found_key.offset + ram_bytes; 1564 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1565 /* Skip extents outside of our requested range */ 1566 if (extent_end <= start) { 1567 path->slots[0]++; 1568 goto next_slot; 1569 } 1570 } else { 1571 /* If this triggers then we have a memory corruption */ 1572 BUG(); 1573 } 1574 out_check: 1575 /* 1576 * If nocow is false then record the beginning of the range 1577 * that needs to be COWed 1578 */ 1579 if (!nocow) { 1580 if (cow_start == (u64)-1) 1581 cow_start = cur_offset; 1582 cur_offset = extent_end; 1583 if (cur_offset > end) 1584 break; 1585 path->slots[0]++; 1586 goto next_slot; 1587 } 1588 1589 btrfs_release_path(path); 1590 1591 /* 1592 * COW range from cow_start to found_key.offset - 1. As the key 1593 * will contain the beginning of the first extent that can be 1594 * NOCOW, following one which needs to be COW'ed 1595 */ 1596 if (cow_start != (u64)-1) { 1597 ret = cow_file_range(inode, locked_page, 1598 cow_start, found_key.offset - 1, 1599 page_started, nr_written, 1); 1600 if (ret) { 1601 if (nocow) 1602 btrfs_dec_nocow_writers(fs_info, 1603 disk_bytenr); 1604 goto error; 1605 } 1606 cow_start = (u64)-1; 1607 } 1608 1609 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1610 u64 orig_start = found_key.offset - extent_offset; 1611 struct extent_map *em; 1612 1613 em = create_io_em(inode, cur_offset, num_bytes, 1614 orig_start, 1615 disk_bytenr, /* block_start */ 1616 num_bytes, /* block_len */ 1617 disk_num_bytes, /* orig_block_len */ 1618 ram_bytes, BTRFS_COMPRESS_NONE, 1619 BTRFS_ORDERED_PREALLOC); 1620 if (IS_ERR(em)) { 1621 if (nocow) 1622 btrfs_dec_nocow_writers(fs_info, 1623 disk_bytenr); 1624 ret = PTR_ERR(em); 1625 goto error; 1626 } 1627 free_extent_map(em); 1628 ret = btrfs_add_ordered_extent(inode, cur_offset, 1629 disk_bytenr, num_bytes, 1630 num_bytes, 1631 BTRFS_ORDERED_PREALLOC); 1632 if (ret) { 1633 btrfs_drop_extent_cache(BTRFS_I(inode), 1634 cur_offset, 1635 cur_offset + num_bytes - 1, 1636 0); 1637 goto error; 1638 } 1639 } else { 1640 ret = btrfs_add_ordered_extent(inode, cur_offset, 1641 disk_bytenr, num_bytes, 1642 num_bytes, 1643 BTRFS_ORDERED_NOCOW); 1644 if (ret) 1645 goto error; 1646 } 1647 1648 if (nocow) 1649 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1650 nocow = false; 1651 1652 if (root->root_key.objectid == 1653 BTRFS_DATA_RELOC_TREE_OBJECTID) 1654 /* 1655 * Error handled later, as we must prevent 1656 * extent_clear_unlock_delalloc() in error handler 1657 * from freeing metadata of created ordered extent. 1658 */ 1659 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1660 num_bytes); 1661 1662 extent_clear_unlock_delalloc(inode, cur_offset, 1663 cur_offset + num_bytes - 1, 1664 locked_page, EXTENT_LOCKED | 1665 EXTENT_DELALLOC | 1666 EXTENT_CLEAR_DATA_RESV, 1667 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1668 1669 cur_offset = extent_end; 1670 1671 /* 1672 * btrfs_reloc_clone_csums() error, now we're OK to call error 1673 * handler, as metadata for created ordered extent will only 1674 * be freed by btrfs_finish_ordered_io(). 1675 */ 1676 if (ret) 1677 goto error; 1678 if (cur_offset > end) 1679 break; 1680 } 1681 btrfs_release_path(path); 1682 1683 if (cur_offset <= end && cow_start == (u64)-1) 1684 cow_start = cur_offset; 1685 1686 if (cow_start != (u64)-1) { 1687 cur_offset = end; 1688 ret = cow_file_range(inode, locked_page, cow_start, end, 1689 page_started, nr_written, 1); 1690 if (ret) 1691 goto error; 1692 } 1693 1694 error: 1695 if (nocow) 1696 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1697 1698 if (ret && cur_offset < end) 1699 extent_clear_unlock_delalloc(inode, cur_offset, end, 1700 locked_page, EXTENT_LOCKED | 1701 EXTENT_DELALLOC | EXTENT_DEFRAG | 1702 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1703 PAGE_CLEAR_DIRTY | 1704 PAGE_SET_WRITEBACK | 1705 PAGE_END_WRITEBACK); 1706 btrfs_free_path(path); 1707 return ret; 1708 } 1709 1710 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1711 { 1712 1713 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1714 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1715 return 0; 1716 1717 /* 1718 * @defrag_bytes is a hint value, no spinlock held here, 1719 * if is not zero, it means the file is defragging. 1720 * Force cow if given extent needs to be defragged. 1721 */ 1722 if (BTRFS_I(inode)->defrag_bytes && 1723 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1724 EXTENT_DEFRAG, 0, NULL)) 1725 return 1; 1726 1727 return 0; 1728 } 1729 1730 /* 1731 * Function to process delayed allocation (create CoW) for ranges which are 1732 * being touched for the first time. 1733 */ 1734 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1735 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1736 struct writeback_control *wbc) 1737 { 1738 int ret; 1739 int force_cow = need_force_cow(inode, start, end); 1740 1741 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1742 ret = run_delalloc_nocow(inode, locked_page, start, end, 1743 page_started, 1, nr_written); 1744 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1745 ret = run_delalloc_nocow(inode, locked_page, start, end, 1746 page_started, 0, nr_written); 1747 } else if (!inode_can_compress(inode) || 1748 !inode_need_compress(inode, start, end)) { 1749 ret = cow_file_range(inode, locked_page, start, end, 1750 page_started, nr_written, 1); 1751 } else { 1752 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1753 &BTRFS_I(inode)->runtime_flags); 1754 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1755 page_started, nr_written); 1756 } 1757 if (ret) 1758 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1759 end - start + 1); 1760 return ret; 1761 } 1762 1763 void btrfs_split_delalloc_extent(struct inode *inode, 1764 struct extent_state *orig, u64 split) 1765 { 1766 u64 size; 1767 1768 /* not delalloc, ignore it */ 1769 if (!(orig->state & EXTENT_DELALLOC)) 1770 return; 1771 1772 size = orig->end - orig->start + 1; 1773 if (size > BTRFS_MAX_EXTENT_SIZE) { 1774 u32 num_extents; 1775 u64 new_size; 1776 1777 /* 1778 * See the explanation in btrfs_merge_delalloc_extent, the same 1779 * applies here, just in reverse. 1780 */ 1781 new_size = orig->end - split + 1; 1782 num_extents = count_max_extents(new_size); 1783 new_size = split - orig->start; 1784 num_extents += count_max_extents(new_size); 1785 if (count_max_extents(size) >= num_extents) 1786 return; 1787 } 1788 1789 spin_lock(&BTRFS_I(inode)->lock); 1790 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1791 spin_unlock(&BTRFS_I(inode)->lock); 1792 } 1793 1794 /* 1795 * Handle merged delayed allocation extents so we can keep track of new extents 1796 * that are just merged onto old extents, such as when we are doing sequential 1797 * writes, so we can properly account for the metadata space we'll need. 1798 */ 1799 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1800 struct extent_state *other) 1801 { 1802 u64 new_size, old_size; 1803 u32 num_extents; 1804 1805 /* not delalloc, ignore it */ 1806 if (!(other->state & EXTENT_DELALLOC)) 1807 return; 1808 1809 if (new->start > other->start) 1810 new_size = new->end - other->start + 1; 1811 else 1812 new_size = other->end - new->start + 1; 1813 1814 /* we're not bigger than the max, unreserve the space and go */ 1815 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1816 spin_lock(&BTRFS_I(inode)->lock); 1817 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1818 spin_unlock(&BTRFS_I(inode)->lock); 1819 return; 1820 } 1821 1822 /* 1823 * We have to add up either side to figure out how many extents were 1824 * accounted for before we merged into one big extent. If the number of 1825 * extents we accounted for is <= the amount we need for the new range 1826 * then we can return, otherwise drop. Think of it like this 1827 * 1828 * [ 4k][MAX_SIZE] 1829 * 1830 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1831 * need 2 outstanding extents, on one side we have 1 and the other side 1832 * we have 1 so they are == and we can return. But in this case 1833 * 1834 * [MAX_SIZE+4k][MAX_SIZE+4k] 1835 * 1836 * Each range on their own accounts for 2 extents, but merged together 1837 * they are only 3 extents worth of accounting, so we need to drop in 1838 * this case. 1839 */ 1840 old_size = other->end - other->start + 1; 1841 num_extents = count_max_extents(old_size); 1842 old_size = new->end - new->start + 1; 1843 num_extents += count_max_extents(old_size); 1844 if (count_max_extents(new_size) >= num_extents) 1845 return; 1846 1847 spin_lock(&BTRFS_I(inode)->lock); 1848 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1849 spin_unlock(&BTRFS_I(inode)->lock); 1850 } 1851 1852 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1853 struct inode *inode) 1854 { 1855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1856 1857 spin_lock(&root->delalloc_lock); 1858 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1859 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1860 &root->delalloc_inodes); 1861 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1862 &BTRFS_I(inode)->runtime_flags); 1863 root->nr_delalloc_inodes++; 1864 if (root->nr_delalloc_inodes == 1) { 1865 spin_lock(&fs_info->delalloc_root_lock); 1866 BUG_ON(!list_empty(&root->delalloc_root)); 1867 list_add_tail(&root->delalloc_root, 1868 &fs_info->delalloc_roots); 1869 spin_unlock(&fs_info->delalloc_root_lock); 1870 } 1871 } 1872 spin_unlock(&root->delalloc_lock); 1873 } 1874 1875 1876 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1877 struct btrfs_inode *inode) 1878 { 1879 struct btrfs_fs_info *fs_info = root->fs_info; 1880 1881 if (!list_empty(&inode->delalloc_inodes)) { 1882 list_del_init(&inode->delalloc_inodes); 1883 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1884 &inode->runtime_flags); 1885 root->nr_delalloc_inodes--; 1886 if (!root->nr_delalloc_inodes) { 1887 ASSERT(list_empty(&root->delalloc_inodes)); 1888 spin_lock(&fs_info->delalloc_root_lock); 1889 BUG_ON(list_empty(&root->delalloc_root)); 1890 list_del_init(&root->delalloc_root); 1891 spin_unlock(&fs_info->delalloc_root_lock); 1892 } 1893 } 1894 } 1895 1896 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1897 struct btrfs_inode *inode) 1898 { 1899 spin_lock(&root->delalloc_lock); 1900 __btrfs_del_delalloc_inode(root, inode); 1901 spin_unlock(&root->delalloc_lock); 1902 } 1903 1904 /* 1905 * Properly track delayed allocation bytes in the inode and to maintain the 1906 * list of inodes that have pending delalloc work to be done. 1907 */ 1908 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1909 unsigned *bits) 1910 { 1911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1912 1913 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1914 WARN_ON(1); 1915 /* 1916 * set_bit and clear bit hooks normally require _irqsave/restore 1917 * but in this case, we are only testing for the DELALLOC 1918 * bit, which is only set or cleared with irqs on 1919 */ 1920 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1921 struct btrfs_root *root = BTRFS_I(inode)->root; 1922 u64 len = state->end + 1 - state->start; 1923 u32 num_extents = count_max_extents(len); 1924 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1925 1926 spin_lock(&BTRFS_I(inode)->lock); 1927 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1928 spin_unlock(&BTRFS_I(inode)->lock); 1929 1930 /* For sanity tests */ 1931 if (btrfs_is_testing(fs_info)) 1932 return; 1933 1934 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1935 fs_info->delalloc_batch); 1936 spin_lock(&BTRFS_I(inode)->lock); 1937 BTRFS_I(inode)->delalloc_bytes += len; 1938 if (*bits & EXTENT_DEFRAG) 1939 BTRFS_I(inode)->defrag_bytes += len; 1940 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1941 &BTRFS_I(inode)->runtime_flags)) 1942 btrfs_add_delalloc_inodes(root, inode); 1943 spin_unlock(&BTRFS_I(inode)->lock); 1944 } 1945 1946 if (!(state->state & EXTENT_DELALLOC_NEW) && 1947 (*bits & EXTENT_DELALLOC_NEW)) { 1948 spin_lock(&BTRFS_I(inode)->lock); 1949 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1950 state->start; 1951 spin_unlock(&BTRFS_I(inode)->lock); 1952 } 1953 } 1954 1955 /* 1956 * Once a range is no longer delalloc this function ensures that proper 1957 * accounting happens. 1958 */ 1959 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1960 struct extent_state *state, unsigned *bits) 1961 { 1962 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1963 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1964 u64 len = state->end + 1 - state->start; 1965 u32 num_extents = count_max_extents(len); 1966 1967 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1968 spin_lock(&inode->lock); 1969 inode->defrag_bytes -= len; 1970 spin_unlock(&inode->lock); 1971 } 1972 1973 /* 1974 * set_bit and clear bit hooks normally require _irqsave/restore 1975 * but in this case, we are only testing for the DELALLOC 1976 * bit, which is only set or cleared with irqs on 1977 */ 1978 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1979 struct btrfs_root *root = inode->root; 1980 bool do_list = !btrfs_is_free_space_inode(inode); 1981 1982 spin_lock(&inode->lock); 1983 btrfs_mod_outstanding_extents(inode, -num_extents); 1984 spin_unlock(&inode->lock); 1985 1986 /* 1987 * We don't reserve metadata space for space cache inodes so we 1988 * don't need to call delalloc_release_metadata if there is an 1989 * error. 1990 */ 1991 if (*bits & EXTENT_CLEAR_META_RESV && 1992 root != fs_info->tree_root) 1993 btrfs_delalloc_release_metadata(inode, len, false); 1994 1995 /* For sanity tests. */ 1996 if (btrfs_is_testing(fs_info)) 1997 return; 1998 1999 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2000 do_list && !(state->state & EXTENT_NORESERVE) && 2001 (*bits & EXTENT_CLEAR_DATA_RESV)) 2002 btrfs_free_reserved_data_space_noquota( 2003 &inode->vfs_inode, 2004 state->start, len); 2005 2006 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2007 fs_info->delalloc_batch); 2008 spin_lock(&inode->lock); 2009 inode->delalloc_bytes -= len; 2010 if (do_list && inode->delalloc_bytes == 0 && 2011 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2012 &inode->runtime_flags)) 2013 btrfs_del_delalloc_inode(root, inode); 2014 spin_unlock(&inode->lock); 2015 } 2016 2017 if ((state->state & EXTENT_DELALLOC_NEW) && 2018 (*bits & EXTENT_DELALLOC_NEW)) { 2019 spin_lock(&inode->lock); 2020 ASSERT(inode->new_delalloc_bytes >= len); 2021 inode->new_delalloc_bytes -= len; 2022 spin_unlock(&inode->lock); 2023 } 2024 } 2025 2026 /* 2027 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2028 * in a chunk's stripe. This function ensures that bios do not span a 2029 * stripe/chunk 2030 * 2031 * @page - The page we are about to add to the bio 2032 * @size - size we want to add to the bio 2033 * @bio - bio we want to ensure is smaller than a stripe 2034 * @bio_flags - flags of the bio 2035 * 2036 * return 1 if page cannot be added to the bio 2037 * return 0 if page can be added to the bio 2038 * return error otherwise 2039 */ 2040 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2041 unsigned long bio_flags) 2042 { 2043 struct inode *inode = page->mapping->host; 2044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2045 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2046 u64 length = 0; 2047 u64 map_length; 2048 int ret; 2049 struct btrfs_io_geometry geom; 2050 2051 if (bio_flags & EXTENT_BIO_COMPRESSED) 2052 return 0; 2053 2054 length = bio->bi_iter.bi_size; 2055 map_length = length; 2056 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2057 &geom); 2058 if (ret < 0) 2059 return ret; 2060 2061 if (geom.len < length + size) 2062 return 1; 2063 return 0; 2064 } 2065 2066 /* 2067 * in order to insert checksums into the metadata in large chunks, 2068 * we wait until bio submission time. All the pages in the bio are 2069 * checksummed and sums are attached onto the ordered extent record. 2070 * 2071 * At IO completion time the cums attached on the ordered extent record 2072 * are inserted into the btree 2073 */ 2074 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2075 u64 bio_offset) 2076 { 2077 struct inode *inode = private_data; 2078 blk_status_t ret = 0; 2079 2080 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2081 BUG_ON(ret); /* -ENOMEM */ 2082 return 0; 2083 } 2084 2085 /* 2086 * extent_io.c submission hook. This does the right thing for csum calculation 2087 * on write, or reading the csums from the tree before a read. 2088 * 2089 * Rules about async/sync submit, 2090 * a) read: sync submit 2091 * 2092 * b) write without checksum: sync submit 2093 * 2094 * c) write with checksum: 2095 * c-1) if bio is issued by fsync: sync submit 2096 * (sync_writers != 0) 2097 * 2098 * c-2) if root is reloc root: sync submit 2099 * (only in case of buffered IO) 2100 * 2101 * c-3) otherwise: async submit 2102 */ 2103 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2104 int mirror_num, 2105 unsigned long bio_flags) 2106 2107 { 2108 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2109 struct btrfs_root *root = BTRFS_I(inode)->root; 2110 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2111 blk_status_t ret = 0; 2112 int skip_sum; 2113 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2114 2115 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2116 2117 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2118 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2119 2120 if (bio_op(bio) != REQ_OP_WRITE) { 2121 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2122 if (ret) 2123 goto out; 2124 2125 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2126 ret = btrfs_submit_compressed_read(inode, bio, 2127 mirror_num, 2128 bio_flags); 2129 goto out; 2130 } else if (!skip_sum) { 2131 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2132 if (ret) 2133 goto out; 2134 } 2135 goto mapit; 2136 } else if (async && !skip_sum) { 2137 /* csum items have already been cloned */ 2138 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2139 goto mapit; 2140 /* we're doing a write, do the async checksumming */ 2141 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2142 0, inode, btrfs_submit_bio_start); 2143 goto out; 2144 } else if (!skip_sum) { 2145 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2146 if (ret) 2147 goto out; 2148 } 2149 2150 mapit: 2151 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2152 2153 out: 2154 if (ret) { 2155 bio->bi_status = ret; 2156 bio_endio(bio); 2157 } 2158 return ret; 2159 } 2160 2161 /* 2162 * given a list of ordered sums record them in the inode. This happens 2163 * at IO completion time based on sums calculated at bio submission time. 2164 */ 2165 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2166 struct inode *inode, struct list_head *list) 2167 { 2168 struct btrfs_ordered_sum *sum; 2169 int ret; 2170 2171 list_for_each_entry(sum, list, list) { 2172 trans->adding_csums = true; 2173 ret = btrfs_csum_file_blocks(trans, 2174 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2175 trans->adding_csums = false; 2176 if (ret) 2177 return ret; 2178 } 2179 return 0; 2180 } 2181 2182 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2183 unsigned int extra_bits, 2184 struct extent_state **cached_state) 2185 { 2186 WARN_ON(PAGE_ALIGNED(end)); 2187 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2188 extra_bits, cached_state); 2189 } 2190 2191 /* see btrfs_writepage_start_hook for details on why this is required */ 2192 struct btrfs_writepage_fixup { 2193 struct page *page; 2194 struct btrfs_work work; 2195 }; 2196 2197 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2198 { 2199 struct btrfs_writepage_fixup *fixup; 2200 struct btrfs_ordered_extent *ordered; 2201 struct extent_state *cached_state = NULL; 2202 struct extent_changeset *data_reserved = NULL; 2203 struct page *page; 2204 struct inode *inode; 2205 u64 page_start; 2206 u64 page_end; 2207 int ret; 2208 2209 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2210 page = fixup->page; 2211 again: 2212 lock_page(page); 2213 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2214 ClearPageChecked(page); 2215 goto out_page; 2216 } 2217 2218 inode = page->mapping->host; 2219 page_start = page_offset(page); 2220 page_end = page_offset(page) + PAGE_SIZE - 1; 2221 2222 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2223 &cached_state); 2224 2225 /* already ordered? We're done */ 2226 if (PagePrivate2(page)) 2227 goto out; 2228 2229 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2230 PAGE_SIZE); 2231 if (ordered) { 2232 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2233 page_end, &cached_state); 2234 unlock_page(page); 2235 btrfs_start_ordered_extent(inode, ordered, 1); 2236 btrfs_put_ordered_extent(ordered); 2237 goto again; 2238 } 2239 2240 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2241 PAGE_SIZE); 2242 if (ret) { 2243 mapping_set_error(page->mapping, ret); 2244 end_extent_writepage(page, ret, page_start, page_end); 2245 ClearPageChecked(page); 2246 goto out; 2247 } 2248 2249 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2250 &cached_state); 2251 if (ret) { 2252 mapping_set_error(page->mapping, ret); 2253 end_extent_writepage(page, ret, page_start, page_end); 2254 ClearPageChecked(page); 2255 goto out_reserved; 2256 } 2257 2258 ClearPageChecked(page); 2259 set_page_dirty(page); 2260 out_reserved: 2261 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2262 if (ret) 2263 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2264 PAGE_SIZE, true); 2265 out: 2266 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2267 &cached_state); 2268 out_page: 2269 unlock_page(page); 2270 put_page(page); 2271 kfree(fixup); 2272 extent_changeset_free(data_reserved); 2273 } 2274 2275 /* 2276 * There are a few paths in the higher layers of the kernel that directly 2277 * set the page dirty bit without asking the filesystem if it is a 2278 * good idea. This causes problems because we want to make sure COW 2279 * properly happens and the data=ordered rules are followed. 2280 * 2281 * In our case any range that doesn't have the ORDERED bit set 2282 * hasn't been properly setup for IO. We kick off an async process 2283 * to fix it up. The async helper will wait for ordered extents, set 2284 * the delalloc bit and make it safe to write the page. 2285 */ 2286 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2287 { 2288 struct inode *inode = page->mapping->host; 2289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2290 struct btrfs_writepage_fixup *fixup; 2291 2292 /* this page is properly in the ordered list */ 2293 if (TestClearPagePrivate2(page)) 2294 return 0; 2295 2296 if (PageChecked(page)) 2297 return -EAGAIN; 2298 2299 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2300 if (!fixup) 2301 return -EAGAIN; 2302 2303 SetPageChecked(page); 2304 get_page(page); 2305 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2306 fixup->page = page; 2307 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2308 return -EBUSY; 2309 } 2310 2311 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2312 struct inode *inode, u64 file_pos, 2313 u64 disk_bytenr, u64 disk_num_bytes, 2314 u64 num_bytes, u64 ram_bytes, 2315 u8 compression, u8 encryption, 2316 u16 other_encoding, int extent_type) 2317 { 2318 struct btrfs_root *root = BTRFS_I(inode)->root; 2319 struct btrfs_file_extent_item *fi; 2320 struct btrfs_path *path; 2321 struct extent_buffer *leaf; 2322 struct btrfs_key ins; 2323 u64 qg_released; 2324 int extent_inserted = 0; 2325 int ret; 2326 2327 path = btrfs_alloc_path(); 2328 if (!path) 2329 return -ENOMEM; 2330 2331 /* 2332 * we may be replacing one extent in the tree with another. 2333 * The new extent is pinned in the extent map, and we don't want 2334 * to drop it from the cache until it is completely in the btree. 2335 * 2336 * So, tell btrfs_drop_extents to leave this extent in the cache. 2337 * the caller is expected to unpin it and allow it to be merged 2338 * with the others. 2339 */ 2340 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2341 file_pos + num_bytes, NULL, 0, 2342 1, sizeof(*fi), &extent_inserted); 2343 if (ret) 2344 goto out; 2345 2346 if (!extent_inserted) { 2347 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2348 ins.offset = file_pos; 2349 ins.type = BTRFS_EXTENT_DATA_KEY; 2350 2351 path->leave_spinning = 1; 2352 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2353 sizeof(*fi)); 2354 if (ret) 2355 goto out; 2356 } 2357 leaf = path->nodes[0]; 2358 fi = btrfs_item_ptr(leaf, path->slots[0], 2359 struct btrfs_file_extent_item); 2360 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2361 btrfs_set_file_extent_type(leaf, fi, extent_type); 2362 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2363 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2364 btrfs_set_file_extent_offset(leaf, fi, 0); 2365 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2366 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2367 btrfs_set_file_extent_compression(leaf, fi, compression); 2368 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2369 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2370 2371 btrfs_mark_buffer_dirty(leaf); 2372 btrfs_release_path(path); 2373 2374 inode_add_bytes(inode, num_bytes); 2375 2376 ins.objectid = disk_bytenr; 2377 ins.offset = disk_num_bytes; 2378 ins.type = BTRFS_EXTENT_ITEM_KEY; 2379 2380 /* 2381 * Release the reserved range from inode dirty range map, as it is 2382 * already moved into delayed_ref_head 2383 */ 2384 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2385 if (ret < 0) 2386 goto out; 2387 qg_released = ret; 2388 ret = btrfs_alloc_reserved_file_extent(trans, root, 2389 btrfs_ino(BTRFS_I(inode)), 2390 file_pos, qg_released, &ins); 2391 out: 2392 btrfs_free_path(path); 2393 2394 return ret; 2395 } 2396 2397 /* snapshot-aware defrag */ 2398 struct sa_defrag_extent_backref { 2399 struct rb_node node; 2400 struct old_sa_defrag_extent *old; 2401 u64 root_id; 2402 u64 inum; 2403 u64 file_pos; 2404 u64 extent_offset; 2405 u64 num_bytes; 2406 u64 generation; 2407 }; 2408 2409 struct old_sa_defrag_extent { 2410 struct list_head list; 2411 struct new_sa_defrag_extent *new; 2412 2413 u64 extent_offset; 2414 u64 bytenr; 2415 u64 offset; 2416 u64 len; 2417 int count; 2418 }; 2419 2420 struct new_sa_defrag_extent { 2421 struct rb_root root; 2422 struct list_head head; 2423 struct btrfs_path *path; 2424 struct inode *inode; 2425 u64 file_pos; 2426 u64 len; 2427 u64 bytenr; 2428 u64 disk_len; 2429 u8 compress_type; 2430 }; 2431 2432 static int backref_comp(struct sa_defrag_extent_backref *b1, 2433 struct sa_defrag_extent_backref *b2) 2434 { 2435 if (b1->root_id < b2->root_id) 2436 return -1; 2437 else if (b1->root_id > b2->root_id) 2438 return 1; 2439 2440 if (b1->inum < b2->inum) 2441 return -1; 2442 else if (b1->inum > b2->inum) 2443 return 1; 2444 2445 if (b1->file_pos < b2->file_pos) 2446 return -1; 2447 else if (b1->file_pos > b2->file_pos) 2448 return 1; 2449 2450 /* 2451 * [------------------------------] ===> (a range of space) 2452 * |<--->| |<---->| =============> (fs/file tree A) 2453 * |<---------------------------->| ===> (fs/file tree B) 2454 * 2455 * A range of space can refer to two file extents in one tree while 2456 * refer to only one file extent in another tree. 2457 * 2458 * So we may process a disk offset more than one time(two extents in A) 2459 * and locate at the same extent(one extent in B), then insert two same 2460 * backrefs(both refer to the extent in B). 2461 */ 2462 return 0; 2463 } 2464 2465 static void backref_insert(struct rb_root *root, 2466 struct sa_defrag_extent_backref *backref) 2467 { 2468 struct rb_node **p = &root->rb_node; 2469 struct rb_node *parent = NULL; 2470 struct sa_defrag_extent_backref *entry; 2471 int ret; 2472 2473 while (*p) { 2474 parent = *p; 2475 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2476 2477 ret = backref_comp(backref, entry); 2478 if (ret < 0) 2479 p = &(*p)->rb_left; 2480 else 2481 p = &(*p)->rb_right; 2482 } 2483 2484 rb_link_node(&backref->node, parent, p); 2485 rb_insert_color(&backref->node, root); 2486 } 2487 2488 /* 2489 * Note the backref might has changed, and in this case we just return 0. 2490 */ 2491 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2492 void *ctx) 2493 { 2494 struct btrfs_file_extent_item *extent; 2495 struct old_sa_defrag_extent *old = ctx; 2496 struct new_sa_defrag_extent *new = old->new; 2497 struct btrfs_path *path = new->path; 2498 struct btrfs_key key; 2499 struct btrfs_root *root; 2500 struct sa_defrag_extent_backref *backref; 2501 struct extent_buffer *leaf; 2502 struct inode *inode = new->inode; 2503 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2504 int slot; 2505 int ret; 2506 u64 extent_offset; 2507 u64 num_bytes; 2508 2509 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2510 inum == btrfs_ino(BTRFS_I(inode))) 2511 return 0; 2512 2513 key.objectid = root_id; 2514 key.type = BTRFS_ROOT_ITEM_KEY; 2515 key.offset = (u64)-1; 2516 2517 root = btrfs_read_fs_root_no_name(fs_info, &key); 2518 if (IS_ERR(root)) { 2519 if (PTR_ERR(root) == -ENOENT) 2520 return 0; 2521 WARN_ON(1); 2522 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2523 inum, offset, root_id); 2524 return PTR_ERR(root); 2525 } 2526 2527 key.objectid = inum; 2528 key.type = BTRFS_EXTENT_DATA_KEY; 2529 if (offset > (u64)-1 << 32) 2530 key.offset = 0; 2531 else 2532 key.offset = offset; 2533 2534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2535 if (WARN_ON(ret < 0)) 2536 return ret; 2537 ret = 0; 2538 2539 while (1) { 2540 cond_resched(); 2541 2542 leaf = path->nodes[0]; 2543 slot = path->slots[0]; 2544 2545 if (slot >= btrfs_header_nritems(leaf)) { 2546 ret = btrfs_next_leaf(root, path); 2547 if (ret < 0) { 2548 goto out; 2549 } else if (ret > 0) { 2550 ret = 0; 2551 goto out; 2552 } 2553 continue; 2554 } 2555 2556 path->slots[0]++; 2557 2558 btrfs_item_key_to_cpu(leaf, &key, slot); 2559 2560 if (key.objectid > inum) 2561 goto out; 2562 2563 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2564 continue; 2565 2566 extent = btrfs_item_ptr(leaf, slot, 2567 struct btrfs_file_extent_item); 2568 2569 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2570 continue; 2571 2572 /* 2573 * 'offset' refers to the exact key.offset, 2574 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2575 * (key.offset - extent_offset). 2576 */ 2577 if (key.offset != offset) 2578 continue; 2579 2580 extent_offset = btrfs_file_extent_offset(leaf, extent); 2581 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2582 2583 if (extent_offset >= old->extent_offset + old->offset + 2584 old->len || extent_offset + num_bytes <= 2585 old->extent_offset + old->offset) 2586 continue; 2587 break; 2588 } 2589 2590 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2591 if (!backref) { 2592 ret = -ENOENT; 2593 goto out; 2594 } 2595 2596 backref->root_id = root_id; 2597 backref->inum = inum; 2598 backref->file_pos = offset; 2599 backref->num_bytes = num_bytes; 2600 backref->extent_offset = extent_offset; 2601 backref->generation = btrfs_file_extent_generation(leaf, extent); 2602 backref->old = old; 2603 backref_insert(&new->root, backref); 2604 old->count++; 2605 out: 2606 btrfs_release_path(path); 2607 WARN_ON(ret); 2608 return ret; 2609 } 2610 2611 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2612 struct new_sa_defrag_extent *new) 2613 { 2614 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2615 struct old_sa_defrag_extent *old, *tmp; 2616 int ret; 2617 2618 new->path = path; 2619 2620 list_for_each_entry_safe(old, tmp, &new->head, list) { 2621 ret = iterate_inodes_from_logical(old->bytenr + 2622 old->extent_offset, fs_info, 2623 path, record_one_backref, 2624 old, false); 2625 if (ret < 0 && ret != -ENOENT) 2626 return false; 2627 2628 /* no backref to be processed for this extent */ 2629 if (!old->count) { 2630 list_del(&old->list); 2631 kfree(old); 2632 } 2633 } 2634 2635 if (list_empty(&new->head)) 2636 return false; 2637 2638 return true; 2639 } 2640 2641 static int relink_is_mergable(struct extent_buffer *leaf, 2642 struct btrfs_file_extent_item *fi, 2643 struct new_sa_defrag_extent *new) 2644 { 2645 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2646 return 0; 2647 2648 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2649 return 0; 2650 2651 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2652 return 0; 2653 2654 if (btrfs_file_extent_encryption(leaf, fi) || 2655 btrfs_file_extent_other_encoding(leaf, fi)) 2656 return 0; 2657 2658 return 1; 2659 } 2660 2661 /* 2662 * Note the backref might has changed, and in this case we just return 0. 2663 */ 2664 static noinline int relink_extent_backref(struct btrfs_path *path, 2665 struct sa_defrag_extent_backref *prev, 2666 struct sa_defrag_extent_backref *backref) 2667 { 2668 struct btrfs_file_extent_item *extent; 2669 struct btrfs_file_extent_item *item; 2670 struct btrfs_ordered_extent *ordered; 2671 struct btrfs_trans_handle *trans; 2672 struct btrfs_ref ref = { 0 }; 2673 struct btrfs_root *root; 2674 struct btrfs_key key; 2675 struct extent_buffer *leaf; 2676 struct old_sa_defrag_extent *old = backref->old; 2677 struct new_sa_defrag_extent *new = old->new; 2678 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2679 struct inode *inode; 2680 struct extent_state *cached = NULL; 2681 int ret = 0; 2682 u64 start; 2683 u64 len; 2684 u64 lock_start; 2685 u64 lock_end; 2686 bool merge = false; 2687 int index; 2688 2689 if (prev && prev->root_id == backref->root_id && 2690 prev->inum == backref->inum && 2691 prev->file_pos + prev->num_bytes == backref->file_pos) 2692 merge = true; 2693 2694 /* step 1: get root */ 2695 key.objectid = backref->root_id; 2696 key.type = BTRFS_ROOT_ITEM_KEY; 2697 key.offset = (u64)-1; 2698 2699 index = srcu_read_lock(&fs_info->subvol_srcu); 2700 2701 root = btrfs_read_fs_root_no_name(fs_info, &key); 2702 if (IS_ERR(root)) { 2703 srcu_read_unlock(&fs_info->subvol_srcu, index); 2704 if (PTR_ERR(root) == -ENOENT) 2705 return 0; 2706 return PTR_ERR(root); 2707 } 2708 2709 if (btrfs_root_readonly(root)) { 2710 srcu_read_unlock(&fs_info->subvol_srcu, index); 2711 return 0; 2712 } 2713 2714 /* step 2: get inode */ 2715 key.objectid = backref->inum; 2716 key.type = BTRFS_INODE_ITEM_KEY; 2717 key.offset = 0; 2718 2719 inode = btrfs_iget(fs_info->sb, &key, root); 2720 if (IS_ERR(inode)) { 2721 srcu_read_unlock(&fs_info->subvol_srcu, index); 2722 return 0; 2723 } 2724 2725 srcu_read_unlock(&fs_info->subvol_srcu, index); 2726 2727 /* step 3: relink backref */ 2728 lock_start = backref->file_pos; 2729 lock_end = backref->file_pos + backref->num_bytes - 1; 2730 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2731 &cached); 2732 2733 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2734 if (ordered) { 2735 btrfs_put_ordered_extent(ordered); 2736 goto out_unlock; 2737 } 2738 2739 trans = btrfs_join_transaction(root); 2740 if (IS_ERR(trans)) { 2741 ret = PTR_ERR(trans); 2742 goto out_unlock; 2743 } 2744 2745 key.objectid = backref->inum; 2746 key.type = BTRFS_EXTENT_DATA_KEY; 2747 key.offset = backref->file_pos; 2748 2749 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2750 if (ret < 0) { 2751 goto out_free_path; 2752 } else if (ret > 0) { 2753 ret = 0; 2754 goto out_free_path; 2755 } 2756 2757 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2758 struct btrfs_file_extent_item); 2759 2760 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2761 backref->generation) 2762 goto out_free_path; 2763 2764 btrfs_release_path(path); 2765 2766 start = backref->file_pos; 2767 if (backref->extent_offset < old->extent_offset + old->offset) 2768 start += old->extent_offset + old->offset - 2769 backref->extent_offset; 2770 2771 len = min(backref->extent_offset + backref->num_bytes, 2772 old->extent_offset + old->offset + old->len); 2773 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2774 2775 ret = btrfs_drop_extents(trans, root, inode, start, 2776 start + len, 1); 2777 if (ret) 2778 goto out_free_path; 2779 again: 2780 key.objectid = btrfs_ino(BTRFS_I(inode)); 2781 key.type = BTRFS_EXTENT_DATA_KEY; 2782 key.offset = start; 2783 2784 path->leave_spinning = 1; 2785 if (merge) { 2786 struct btrfs_file_extent_item *fi; 2787 u64 extent_len; 2788 struct btrfs_key found_key; 2789 2790 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2791 if (ret < 0) 2792 goto out_free_path; 2793 2794 path->slots[0]--; 2795 leaf = path->nodes[0]; 2796 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2797 2798 fi = btrfs_item_ptr(leaf, path->slots[0], 2799 struct btrfs_file_extent_item); 2800 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2801 2802 if (extent_len + found_key.offset == start && 2803 relink_is_mergable(leaf, fi, new)) { 2804 btrfs_set_file_extent_num_bytes(leaf, fi, 2805 extent_len + len); 2806 btrfs_mark_buffer_dirty(leaf); 2807 inode_add_bytes(inode, len); 2808 2809 ret = 1; 2810 goto out_free_path; 2811 } else { 2812 merge = false; 2813 btrfs_release_path(path); 2814 goto again; 2815 } 2816 } 2817 2818 ret = btrfs_insert_empty_item(trans, root, path, &key, 2819 sizeof(*extent)); 2820 if (ret) { 2821 btrfs_abort_transaction(trans, ret); 2822 goto out_free_path; 2823 } 2824 2825 leaf = path->nodes[0]; 2826 item = btrfs_item_ptr(leaf, path->slots[0], 2827 struct btrfs_file_extent_item); 2828 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2829 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2830 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2831 btrfs_set_file_extent_num_bytes(leaf, item, len); 2832 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2833 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2834 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2835 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2836 btrfs_set_file_extent_encryption(leaf, item, 0); 2837 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2838 2839 btrfs_mark_buffer_dirty(leaf); 2840 inode_add_bytes(inode, len); 2841 btrfs_release_path(path); 2842 2843 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr, 2844 new->disk_len, 0); 2845 btrfs_init_data_ref(&ref, backref->root_id, backref->inum, 2846 new->file_pos); /* start - extent_offset */ 2847 ret = btrfs_inc_extent_ref(trans, &ref); 2848 if (ret) { 2849 btrfs_abort_transaction(trans, ret); 2850 goto out_free_path; 2851 } 2852 2853 ret = 1; 2854 out_free_path: 2855 btrfs_release_path(path); 2856 path->leave_spinning = 0; 2857 btrfs_end_transaction(trans); 2858 out_unlock: 2859 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2860 &cached); 2861 iput(inode); 2862 return ret; 2863 } 2864 2865 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2866 { 2867 struct old_sa_defrag_extent *old, *tmp; 2868 2869 if (!new) 2870 return; 2871 2872 list_for_each_entry_safe(old, tmp, &new->head, list) { 2873 kfree(old); 2874 } 2875 kfree(new); 2876 } 2877 2878 static void relink_file_extents(struct new_sa_defrag_extent *new) 2879 { 2880 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2881 struct btrfs_path *path; 2882 struct sa_defrag_extent_backref *backref; 2883 struct sa_defrag_extent_backref *prev = NULL; 2884 struct rb_node *node; 2885 int ret; 2886 2887 path = btrfs_alloc_path(); 2888 if (!path) 2889 return; 2890 2891 if (!record_extent_backrefs(path, new)) { 2892 btrfs_free_path(path); 2893 goto out; 2894 } 2895 btrfs_release_path(path); 2896 2897 while (1) { 2898 node = rb_first(&new->root); 2899 if (!node) 2900 break; 2901 rb_erase(node, &new->root); 2902 2903 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2904 2905 ret = relink_extent_backref(path, prev, backref); 2906 WARN_ON(ret < 0); 2907 2908 kfree(prev); 2909 2910 if (ret == 1) 2911 prev = backref; 2912 else 2913 prev = NULL; 2914 cond_resched(); 2915 } 2916 kfree(prev); 2917 2918 btrfs_free_path(path); 2919 out: 2920 free_sa_defrag_extent(new); 2921 2922 atomic_dec(&fs_info->defrag_running); 2923 wake_up(&fs_info->transaction_wait); 2924 } 2925 2926 static struct new_sa_defrag_extent * 2927 record_old_file_extents(struct inode *inode, 2928 struct btrfs_ordered_extent *ordered) 2929 { 2930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2931 struct btrfs_root *root = BTRFS_I(inode)->root; 2932 struct btrfs_path *path; 2933 struct btrfs_key key; 2934 struct old_sa_defrag_extent *old; 2935 struct new_sa_defrag_extent *new; 2936 int ret; 2937 2938 new = kmalloc(sizeof(*new), GFP_NOFS); 2939 if (!new) 2940 return NULL; 2941 2942 new->inode = inode; 2943 new->file_pos = ordered->file_offset; 2944 new->len = ordered->len; 2945 new->bytenr = ordered->start; 2946 new->disk_len = ordered->disk_len; 2947 new->compress_type = ordered->compress_type; 2948 new->root = RB_ROOT; 2949 INIT_LIST_HEAD(&new->head); 2950 2951 path = btrfs_alloc_path(); 2952 if (!path) 2953 goto out_kfree; 2954 2955 key.objectid = btrfs_ino(BTRFS_I(inode)); 2956 key.type = BTRFS_EXTENT_DATA_KEY; 2957 key.offset = new->file_pos; 2958 2959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2960 if (ret < 0) 2961 goto out_free_path; 2962 if (ret > 0 && path->slots[0] > 0) 2963 path->slots[0]--; 2964 2965 /* find out all the old extents for the file range */ 2966 while (1) { 2967 struct btrfs_file_extent_item *extent; 2968 struct extent_buffer *l; 2969 int slot; 2970 u64 num_bytes; 2971 u64 offset; 2972 u64 end; 2973 u64 disk_bytenr; 2974 u64 extent_offset; 2975 2976 l = path->nodes[0]; 2977 slot = path->slots[0]; 2978 2979 if (slot >= btrfs_header_nritems(l)) { 2980 ret = btrfs_next_leaf(root, path); 2981 if (ret < 0) 2982 goto out_free_path; 2983 else if (ret > 0) 2984 break; 2985 continue; 2986 } 2987 2988 btrfs_item_key_to_cpu(l, &key, slot); 2989 2990 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2991 break; 2992 if (key.type != BTRFS_EXTENT_DATA_KEY) 2993 break; 2994 if (key.offset >= new->file_pos + new->len) 2995 break; 2996 2997 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2998 2999 num_bytes = btrfs_file_extent_num_bytes(l, extent); 3000 if (key.offset + num_bytes < new->file_pos) 3001 goto next; 3002 3003 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 3004 if (!disk_bytenr) 3005 goto next; 3006 3007 extent_offset = btrfs_file_extent_offset(l, extent); 3008 3009 old = kmalloc(sizeof(*old), GFP_NOFS); 3010 if (!old) 3011 goto out_free_path; 3012 3013 offset = max(new->file_pos, key.offset); 3014 end = min(new->file_pos + new->len, key.offset + num_bytes); 3015 3016 old->bytenr = disk_bytenr; 3017 old->extent_offset = extent_offset; 3018 old->offset = offset - key.offset; 3019 old->len = end - offset; 3020 old->new = new; 3021 old->count = 0; 3022 list_add_tail(&old->list, &new->head); 3023 next: 3024 path->slots[0]++; 3025 cond_resched(); 3026 } 3027 3028 btrfs_free_path(path); 3029 atomic_inc(&fs_info->defrag_running); 3030 3031 return new; 3032 3033 out_free_path: 3034 btrfs_free_path(path); 3035 out_kfree: 3036 free_sa_defrag_extent(new); 3037 return NULL; 3038 } 3039 3040 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3041 u64 start, u64 len) 3042 { 3043 struct btrfs_block_group *cache; 3044 3045 cache = btrfs_lookup_block_group(fs_info, start); 3046 ASSERT(cache); 3047 3048 spin_lock(&cache->lock); 3049 cache->delalloc_bytes -= len; 3050 spin_unlock(&cache->lock); 3051 3052 btrfs_put_block_group(cache); 3053 } 3054 3055 /* as ordered data IO finishes, this gets called so we can finish 3056 * an ordered extent if the range of bytes in the file it covers are 3057 * fully written. 3058 */ 3059 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3060 { 3061 struct inode *inode = ordered_extent->inode; 3062 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3063 struct btrfs_root *root = BTRFS_I(inode)->root; 3064 struct btrfs_trans_handle *trans = NULL; 3065 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3066 struct extent_state *cached_state = NULL; 3067 struct new_sa_defrag_extent *new = NULL; 3068 int compress_type = 0; 3069 int ret = 0; 3070 u64 logical_len = ordered_extent->len; 3071 bool freespace_inode; 3072 bool truncated = false; 3073 bool range_locked = false; 3074 bool clear_new_delalloc_bytes = false; 3075 bool clear_reserved_extent = true; 3076 3077 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3078 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3079 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 3080 clear_new_delalloc_bytes = true; 3081 3082 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 3083 3084 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3085 ret = -EIO; 3086 goto out; 3087 } 3088 3089 btrfs_free_io_failure_record(BTRFS_I(inode), 3090 ordered_extent->file_offset, 3091 ordered_extent->file_offset + 3092 ordered_extent->len - 1); 3093 3094 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3095 truncated = true; 3096 logical_len = ordered_extent->truncated_len; 3097 /* Truncated the entire extent, don't bother adding */ 3098 if (!logical_len) 3099 goto out; 3100 } 3101 3102 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3103 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3104 3105 /* 3106 * For mwrite(mmap + memset to write) case, we still reserve 3107 * space for NOCOW range. 3108 * As NOCOW won't cause a new delayed ref, just free the space 3109 */ 3110 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3111 ordered_extent->len); 3112 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3113 if (freespace_inode) 3114 trans = btrfs_join_transaction_spacecache(root); 3115 else 3116 trans = btrfs_join_transaction(root); 3117 if (IS_ERR(trans)) { 3118 ret = PTR_ERR(trans); 3119 trans = NULL; 3120 goto out; 3121 } 3122 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3123 ret = btrfs_update_inode_fallback(trans, root, inode); 3124 if (ret) /* -ENOMEM or corruption */ 3125 btrfs_abort_transaction(trans, ret); 3126 goto out; 3127 } 3128 3129 range_locked = true; 3130 lock_extent_bits(io_tree, ordered_extent->file_offset, 3131 ordered_extent->file_offset + ordered_extent->len - 1, 3132 &cached_state); 3133 3134 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3135 ordered_extent->file_offset + ordered_extent->len - 1, 3136 EXTENT_DEFRAG, 0, cached_state); 3137 if (ret) { 3138 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3139 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3140 /* the inode is shared */ 3141 new = record_old_file_extents(inode, ordered_extent); 3142 3143 clear_extent_bit(io_tree, ordered_extent->file_offset, 3144 ordered_extent->file_offset + ordered_extent->len - 1, 3145 EXTENT_DEFRAG, 0, 0, &cached_state); 3146 } 3147 3148 if (freespace_inode) 3149 trans = btrfs_join_transaction_spacecache(root); 3150 else 3151 trans = btrfs_join_transaction(root); 3152 if (IS_ERR(trans)) { 3153 ret = PTR_ERR(trans); 3154 trans = NULL; 3155 goto out; 3156 } 3157 3158 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3159 3160 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3161 compress_type = ordered_extent->compress_type; 3162 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3163 BUG_ON(compress_type); 3164 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3165 ordered_extent->len); 3166 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3167 ordered_extent->file_offset, 3168 ordered_extent->file_offset + 3169 logical_len); 3170 } else { 3171 BUG_ON(root == fs_info->tree_root); 3172 ret = insert_reserved_file_extent(trans, inode, 3173 ordered_extent->file_offset, 3174 ordered_extent->start, 3175 ordered_extent->disk_len, 3176 logical_len, logical_len, 3177 compress_type, 0, 0, 3178 BTRFS_FILE_EXTENT_REG); 3179 if (!ret) { 3180 clear_reserved_extent = false; 3181 btrfs_release_delalloc_bytes(fs_info, 3182 ordered_extent->start, 3183 ordered_extent->disk_len); 3184 } 3185 } 3186 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3187 ordered_extent->file_offset, ordered_extent->len, 3188 trans->transid); 3189 if (ret < 0) { 3190 btrfs_abort_transaction(trans, ret); 3191 goto out; 3192 } 3193 3194 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3195 if (ret) { 3196 btrfs_abort_transaction(trans, ret); 3197 goto out; 3198 } 3199 3200 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3201 ret = btrfs_update_inode_fallback(trans, root, inode); 3202 if (ret) { /* -ENOMEM or corruption */ 3203 btrfs_abort_transaction(trans, ret); 3204 goto out; 3205 } 3206 ret = 0; 3207 out: 3208 if (range_locked || clear_new_delalloc_bytes) { 3209 unsigned int clear_bits = 0; 3210 3211 if (range_locked) 3212 clear_bits |= EXTENT_LOCKED; 3213 if (clear_new_delalloc_bytes) 3214 clear_bits |= EXTENT_DELALLOC_NEW; 3215 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3216 ordered_extent->file_offset, 3217 ordered_extent->file_offset + 3218 ordered_extent->len - 1, 3219 clear_bits, 3220 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3221 0, &cached_state); 3222 } 3223 3224 if (trans) 3225 btrfs_end_transaction(trans); 3226 3227 if (ret || truncated) { 3228 u64 start, end; 3229 3230 if (truncated) 3231 start = ordered_extent->file_offset + logical_len; 3232 else 3233 start = ordered_extent->file_offset; 3234 end = ordered_extent->file_offset + ordered_extent->len - 1; 3235 clear_extent_uptodate(io_tree, start, end, NULL); 3236 3237 /* Drop the cache for the part of the extent we didn't write. */ 3238 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3239 3240 /* 3241 * If the ordered extent had an IOERR or something else went 3242 * wrong we need to return the space for this ordered extent 3243 * back to the allocator. We only free the extent in the 3244 * truncated case if we didn't write out the extent at all. 3245 * 3246 * If we made it past insert_reserved_file_extent before we 3247 * errored out then we don't need to do this as the accounting 3248 * has already been done. 3249 */ 3250 if ((ret || !logical_len) && 3251 clear_reserved_extent && 3252 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3253 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3254 btrfs_free_reserved_extent(fs_info, 3255 ordered_extent->start, 3256 ordered_extent->disk_len, 1); 3257 } 3258 3259 3260 /* 3261 * This needs to be done to make sure anybody waiting knows we are done 3262 * updating everything for this ordered extent. 3263 */ 3264 btrfs_remove_ordered_extent(inode, ordered_extent); 3265 3266 /* for snapshot-aware defrag */ 3267 if (new) { 3268 if (ret) { 3269 free_sa_defrag_extent(new); 3270 atomic_dec(&fs_info->defrag_running); 3271 } else { 3272 relink_file_extents(new); 3273 } 3274 } 3275 3276 /* once for us */ 3277 btrfs_put_ordered_extent(ordered_extent); 3278 /* once for the tree */ 3279 btrfs_put_ordered_extent(ordered_extent); 3280 3281 return ret; 3282 } 3283 3284 static void finish_ordered_fn(struct btrfs_work *work) 3285 { 3286 struct btrfs_ordered_extent *ordered_extent; 3287 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3288 btrfs_finish_ordered_io(ordered_extent); 3289 } 3290 3291 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3292 u64 end, int uptodate) 3293 { 3294 struct inode *inode = page->mapping->host; 3295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3296 struct btrfs_ordered_extent *ordered_extent = NULL; 3297 struct btrfs_workqueue *wq; 3298 3299 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3300 3301 ClearPagePrivate2(page); 3302 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3303 end - start + 1, uptodate)) 3304 return; 3305 3306 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 3307 wq = fs_info->endio_freespace_worker; 3308 else 3309 wq = fs_info->endio_write_workers; 3310 3311 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 3312 btrfs_queue_work(wq, &ordered_extent->work); 3313 } 3314 3315 static int __readpage_endio_check(struct inode *inode, 3316 struct btrfs_io_bio *io_bio, 3317 int icsum, struct page *page, 3318 int pgoff, u64 start, size_t len) 3319 { 3320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3321 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3322 char *kaddr; 3323 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 3324 u8 *csum_expected; 3325 u8 csum[BTRFS_CSUM_SIZE]; 3326 3327 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 3328 3329 kaddr = kmap_atomic(page); 3330 shash->tfm = fs_info->csum_shash; 3331 3332 crypto_shash_init(shash); 3333 crypto_shash_update(shash, kaddr + pgoff, len); 3334 crypto_shash_final(shash, csum); 3335 3336 if (memcmp(csum, csum_expected, csum_size)) 3337 goto zeroit; 3338 3339 kunmap_atomic(kaddr); 3340 return 0; 3341 zeroit: 3342 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3343 io_bio->mirror_num); 3344 memset(kaddr + pgoff, 1, len); 3345 flush_dcache_page(page); 3346 kunmap_atomic(kaddr); 3347 return -EIO; 3348 } 3349 3350 /* 3351 * when reads are done, we need to check csums to verify the data is correct 3352 * if there's a match, we allow the bio to finish. If not, the code in 3353 * extent_io.c will try to find good copies for us. 3354 */ 3355 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3356 u64 phy_offset, struct page *page, 3357 u64 start, u64 end, int mirror) 3358 { 3359 size_t offset = start - page_offset(page); 3360 struct inode *inode = page->mapping->host; 3361 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3362 struct btrfs_root *root = BTRFS_I(inode)->root; 3363 3364 if (PageChecked(page)) { 3365 ClearPageChecked(page); 3366 return 0; 3367 } 3368 3369 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3370 return 0; 3371 3372 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3373 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3374 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3375 return 0; 3376 } 3377 3378 phy_offset >>= inode->i_sb->s_blocksize_bits; 3379 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3380 start, (size_t)(end - start + 1)); 3381 } 3382 3383 /* 3384 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3385 * 3386 * @inode: The inode we want to perform iput on 3387 * 3388 * This function uses the generic vfs_inode::i_count to track whether we should 3389 * just decrement it (in case it's > 1) or if this is the last iput then link 3390 * the inode to the delayed iput machinery. Delayed iputs are processed at 3391 * transaction commit time/superblock commit/cleaner kthread. 3392 */ 3393 void btrfs_add_delayed_iput(struct inode *inode) 3394 { 3395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3396 struct btrfs_inode *binode = BTRFS_I(inode); 3397 3398 if (atomic_add_unless(&inode->i_count, -1, 1)) 3399 return; 3400 3401 atomic_inc(&fs_info->nr_delayed_iputs); 3402 spin_lock(&fs_info->delayed_iput_lock); 3403 ASSERT(list_empty(&binode->delayed_iput)); 3404 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3405 spin_unlock(&fs_info->delayed_iput_lock); 3406 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3407 wake_up_process(fs_info->cleaner_kthread); 3408 } 3409 3410 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3411 struct btrfs_inode *inode) 3412 { 3413 list_del_init(&inode->delayed_iput); 3414 spin_unlock(&fs_info->delayed_iput_lock); 3415 iput(&inode->vfs_inode); 3416 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3417 wake_up(&fs_info->delayed_iputs_wait); 3418 spin_lock(&fs_info->delayed_iput_lock); 3419 } 3420 3421 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3422 struct btrfs_inode *inode) 3423 { 3424 if (!list_empty(&inode->delayed_iput)) { 3425 spin_lock(&fs_info->delayed_iput_lock); 3426 if (!list_empty(&inode->delayed_iput)) 3427 run_delayed_iput_locked(fs_info, inode); 3428 spin_unlock(&fs_info->delayed_iput_lock); 3429 } 3430 } 3431 3432 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3433 { 3434 3435 spin_lock(&fs_info->delayed_iput_lock); 3436 while (!list_empty(&fs_info->delayed_iputs)) { 3437 struct btrfs_inode *inode; 3438 3439 inode = list_first_entry(&fs_info->delayed_iputs, 3440 struct btrfs_inode, delayed_iput); 3441 run_delayed_iput_locked(fs_info, inode); 3442 } 3443 spin_unlock(&fs_info->delayed_iput_lock); 3444 } 3445 3446 /** 3447 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 3448 * @fs_info - the fs_info for this fs 3449 * @return - EINTR if we were killed, 0 if nothing's pending 3450 * 3451 * This will wait on any delayed iputs that are currently running with KILLABLE 3452 * set. Once they are all done running we will return, unless we are killed in 3453 * which case we return EINTR. This helps in user operations like fallocate etc 3454 * that might get blocked on the iputs. 3455 */ 3456 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3457 { 3458 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3459 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3460 if (ret) 3461 return -EINTR; 3462 return 0; 3463 } 3464 3465 /* 3466 * This creates an orphan entry for the given inode in case something goes wrong 3467 * in the middle of an unlink. 3468 */ 3469 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3470 struct btrfs_inode *inode) 3471 { 3472 int ret; 3473 3474 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3475 if (ret && ret != -EEXIST) { 3476 btrfs_abort_transaction(trans, ret); 3477 return ret; 3478 } 3479 3480 return 0; 3481 } 3482 3483 /* 3484 * We have done the delete so we can go ahead and remove the orphan item for 3485 * this particular inode. 3486 */ 3487 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3488 struct btrfs_inode *inode) 3489 { 3490 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3491 } 3492 3493 /* 3494 * this cleans up any orphans that may be left on the list from the last use 3495 * of this root. 3496 */ 3497 int btrfs_orphan_cleanup(struct btrfs_root *root) 3498 { 3499 struct btrfs_fs_info *fs_info = root->fs_info; 3500 struct btrfs_path *path; 3501 struct extent_buffer *leaf; 3502 struct btrfs_key key, found_key; 3503 struct btrfs_trans_handle *trans; 3504 struct inode *inode; 3505 u64 last_objectid = 0; 3506 int ret = 0, nr_unlink = 0; 3507 3508 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3509 return 0; 3510 3511 path = btrfs_alloc_path(); 3512 if (!path) { 3513 ret = -ENOMEM; 3514 goto out; 3515 } 3516 path->reada = READA_BACK; 3517 3518 key.objectid = BTRFS_ORPHAN_OBJECTID; 3519 key.type = BTRFS_ORPHAN_ITEM_KEY; 3520 key.offset = (u64)-1; 3521 3522 while (1) { 3523 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3524 if (ret < 0) 3525 goto out; 3526 3527 /* 3528 * if ret == 0 means we found what we were searching for, which 3529 * is weird, but possible, so only screw with path if we didn't 3530 * find the key and see if we have stuff that matches 3531 */ 3532 if (ret > 0) { 3533 ret = 0; 3534 if (path->slots[0] == 0) 3535 break; 3536 path->slots[0]--; 3537 } 3538 3539 /* pull out the item */ 3540 leaf = path->nodes[0]; 3541 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3542 3543 /* make sure the item matches what we want */ 3544 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3545 break; 3546 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3547 break; 3548 3549 /* release the path since we're done with it */ 3550 btrfs_release_path(path); 3551 3552 /* 3553 * this is where we are basically btrfs_lookup, without the 3554 * crossing root thing. we store the inode number in the 3555 * offset of the orphan item. 3556 */ 3557 3558 if (found_key.offset == last_objectid) { 3559 btrfs_err(fs_info, 3560 "Error removing orphan entry, stopping orphan cleanup"); 3561 ret = -EINVAL; 3562 goto out; 3563 } 3564 3565 last_objectid = found_key.offset; 3566 3567 found_key.objectid = found_key.offset; 3568 found_key.type = BTRFS_INODE_ITEM_KEY; 3569 found_key.offset = 0; 3570 inode = btrfs_iget(fs_info->sb, &found_key, root); 3571 ret = PTR_ERR_OR_ZERO(inode); 3572 if (ret && ret != -ENOENT) 3573 goto out; 3574 3575 if (ret == -ENOENT && root == fs_info->tree_root) { 3576 struct btrfs_root *dead_root; 3577 struct btrfs_fs_info *fs_info = root->fs_info; 3578 int is_dead_root = 0; 3579 3580 /* 3581 * this is an orphan in the tree root. Currently these 3582 * could come from 2 sources: 3583 * a) a snapshot deletion in progress 3584 * b) a free space cache inode 3585 * We need to distinguish those two, as the snapshot 3586 * orphan must not get deleted. 3587 * find_dead_roots already ran before us, so if this 3588 * is a snapshot deletion, we should find the root 3589 * in the dead_roots list 3590 */ 3591 spin_lock(&fs_info->trans_lock); 3592 list_for_each_entry(dead_root, &fs_info->dead_roots, 3593 root_list) { 3594 if (dead_root->root_key.objectid == 3595 found_key.objectid) { 3596 is_dead_root = 1; 3597 break; 3598 } 3599 } 3600 spin_unlock(&fs_info->trans_lock); 3601 if (is_dead_root) { 3602 /* prevent this orphan from being found again */ 3603 key.offset = found_key.objectid - 1; 3604 continue; 3605 } 3606 3607 } 3608 3609 /* 3610 * If we have an inode with links, there are a couple of 3611 * possibilities. Old kernels (before v3.12) used to create an 3612 * orphan item for truncate indicating that there were possibly 3613 * extent items past i_size that needed to be deleted. In v3.12, 3614 * truncate was changed to update i_size in sync with the extent 3615 * items, but the (useless) orphan item was still created. Since 3616 * v4.18, we don't create the orphan item for truncate at all. 3617 * 3618 * So, this item could mean that we need to do a truncate, but 3619 * only if this filesystem was last used on a pre-v3.12 kernel 3620 * and was not cleanly unmounted. The odds of that are quite 3621 * slim, and it's a pain to do the truncate now, so just delete 3622 * the orphan item. 3623 * 3624 * It's also possible that this orphan item was supposed to be 3625 * deleted but wasn't. The inode number may have been reused, 3626 * but either way, we can delete the orphan item. 3627 */ 3628 if (ret == -ENOENT || inode->i_nlink) { 3629 if (!ret) 3630 iput(inode); 3631 trans = btrfs_start_transaction(root, 1); 3632 if (IS_ERR(trans)) { 3633 ret = PTR_ERR(trans); 3634 goto out; 3635 } 3636 btrfs_debug(fs_info, "auto deleting %Lu", 3637 found_key.objectid); 3638 ret = btrfs_del_orphan_item(trans, root, 3639 found_key.objectid); 3640 btrfs_end_transaction(trans); 3641 if (ret) 3642 goto out; 3643 continue; 3644 } 3645 3646 nr_unlink++; 3647 3648 /* this will do delete_inode and everything for us */ 3649 iput(inode); 3650 } 3651 /* release the path since we're done with it */ 3652 btrfs_release_path(path); 3653 3654 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3655 3656 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3657 trans = btrfs_join_transaction(root); 3658 if (!IS_ERR(trans)) 3659 btrfs_end_transaction(trans); 3660 } 3661 3662 if (nr_unlink) 3663 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3664 3665 out: 3666 if (ret) 3667 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3668 btrfs_free_path(path); 3669 return ret; 3670 } 3671 3672 /* 3673 * very simple check to peek ahead in the leaf looking for xattrs. If we 3674 * don't find any xattrs, we know there can't be any acls. 3675 * 3676 * slot is the slot the inode is in, objectid is the objectid of the inode 3677 */ 3678 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3679 int slot, u64 objectid, 3680 int *first_xattr_slot) 3681 { 3682 u32 nritems = btrfs_header_nritems(leaf); 3683 struct btrfs_key found_key; 3684 static u64 xattr_access = 0; 3685 static u64 xattr_default = 0; 3686 int scanned = 0; 3687 3688 if (!xattr_access) { 3689 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3690 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3691 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3692 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3693 } 3694 3695 slot++; 3696 *first_xattr_slot = -1; 3697 while (slot < nritems) { 3698 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3699 3700 /* we found a different objectid, there must not be acls */ 3701 if (found_key.objectid != objectid) 3702 return 0; 3703 3704 /* we found an xattr, assume we've got an acl */ 3705 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3706 if (*first_xattr_slot == -1) 3707 *first_xattr_slot = slot; 3708 if (found_key.offset == xattr_access || 3709 found_key.offset == xattr_default) 3710 return 1; 3711 } 3712 3713 /* 3714 * we found a key greater than an xattr key, there can't 3715 * be any acls later on 3716 */ 3717 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3718 return 0; 3719 3720 slot++; 3721 scanned++; 3722 3723 /* 3724 * it goes inode, inode backrefs, xattrs, extents, 3725 * so if there are a ton of hard links to an inode there can 3726 * be a lot of backrefs. Don't waste time searching too hard, 3727 * this is just an optimization 3728 */ 3729 if (scanned >= 8) 3730 break; 3731 } 3732 /* we hit the end of the leaf before we found an xattr or 3733 * something larger than an xattr. We have to assume the inode 3734 * has acls 3735 */ 3736 if (*first_xattr_slot == -1) 3737 *first_xattr_slot = slot; 3738 return 1; 3739 } 3740 3741 /* 3742 * read an inode from the btree into the in-memory inode 3743 */ 3744 static int btrfs_read_locked_inode(struct inode *inode, 3745 struct btrfs_path *in_path) 3746 { 3747 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3748 struct btrfs_path *path = in_path; 3749 struct extent_buffer *leaf; 3750 struct btrfs_inode_item *inode_item; 3751 struct btrfs_root *root = BTRFS_I(inode)->root; 3752 struct btrfs_key location; 3753 unsigned long ptr; 3754 int maybe_acls; 3755 u32 rdev; 3756 int ret; 3757 bool filled = false; 3758 int first_xattr_slot; 3759 3760 ret = btrfs_fill_inode(inode, &rdev); 3761 if (!ret) 3762 filled = true; 3763 3764 if (!path) { 3765 path = btrfs_alloc_path(); 3766 if (!path) 3767 return -ENOMEM; 3768 } 3769 3770 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3771 3772 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3773 if (ret) { 3774 if (path != in_path) 3775 btrfs_free_path(path); 3776 return ret; 3777 } 3778 3779 leaf = path->nodes[0]; 3780 3781 if (filled) 3782 goto cache_index; 3783 3784 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3785 struct btrfs_inode_item); 3786 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3787 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3788 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3789 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3790 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3791 3792 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3793 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3794 3795 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3796 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3797 3798 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3799 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3800 3801 BTRFS_I(inode)->i_otime.tv_sec = 3802 btrfs_timespec_sec(leaf, &inode_item->otime); 3803 BTRFS_I(inode)->i_otime.tv_nsec = 3804 btrfs_timespec_nsec(leaf, &inode_item->otime); 3805 3806 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3807 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3808 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3809 3810 inode_set_iversion_queried(inode, 3811 btrfs_inode_sequence(leaf, inode_item)); 3812 inode->i_generation = BTRFS_I(inode)->generation; 3813 inode->i_rdev = 0; 3814 rdev = btrfs_inode_rdev(leaf, inode_item); 3815 3816 BTRFS_I(inode)->index_cnt = (u64)-1; 3817 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3818 3819 cache_index: 3820 /* 3821 * If we were modified in the current generation and evicted from memory 3822 * and then re-read we need to do a full sync since we don't have any 3823 * idea about which extents were modified before we were evicted from 3824 * cache. 3825 * 3826 * This is required for both inode re-read from disk and delayed inode 3827 * in delayed_nodes_tree. 3828 */ 3829 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3830 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3831 &BTRFS_I(inode)->runtime_flags); 3832 3833 /* 3834 * We don't persist the id of the transaction where an unlink operation 3835 * against the inode was last made. So here we assume the inode might 3836 * have been evicted, and therefore the exact value of last_unlink_trans 3837 * lost, and set it to last_trans to avoid metadata inconsistencies 3838 * between the inode and its parent if the inode is fsync'ed and the log 3839 * replayed. For example, in the scenario: 3840 * 3841 * touch mydir/foo 3842 * ln mydir/foo mydir/bar 3843 * sync 3844 * unlink mydir/bar 3845 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3846 * xfs_io -c fsync mydir/foo 3847 * <power failure> 3848 * mount fs, triggers fsync log replay 3849 * 3850 * We must make sure that when we fsync our inode foo we also log its 3851 * parent inode, otherwise after log replay the parent still has the 3852 * dentry with the "bar" name but our inode foo has a link count of 1 3853 * and doesn't have an inode ref with the name "bar" anymore. 3854 * 3855 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3856 * but it guarantees correctness at the expense of occasional full 3857 * transaction commits on fsync if our inode is a directory, or if our 3858 * inode is not a directory, logging its parent unnecessarily. 3859 */ 3860 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3861 3862 path->slots[0]++; 3863 if (inode->i_nlink != 1 || 3864 path->slots[0] >= btrfs_header_nritems(leaf)) 3865 goto cache_acl; 3866 3867 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3868 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3869 goto cache_acl; 3870 3871 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3872 if (location.type == BTRFS_INODE_REF_KEY) { 3873 struct btrfs_inode_ref *ref; 3874 3875 ref = (struct btrfs_inode_ref *)ptr; 3876 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3877 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3878 struct btrfs_inode_extref *extref; 3879 3880 extref = (struct btrfs_inode_extref *)ptr; 3881 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3882 extref); 3883 } 3884 cache_acl: 3885 /* 3886 * try to precache a NULL acl entry for files that don't have 3887 * any xattrs or acls 3888 */ 3889 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3890 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3891 if (first_xattr_slot != -1) { 3892 path->slots[0] = first_xattr_slot; 3893 ret = btrfs_load_inode_props(inode, path); 3894 if (ret) 3895 btrfs_err(fs_info, 3896 "error loading props for ino %llu (root %llu): %d", 3897 btrfs_ino(BTRFS_I(inode)), 3898 root->root_key.objectid, ret); 3899 } 3900 if (path != in_path) 3901 btrfs_free_path(path); 3902 3903 if (!maybe_acls) 3904 cache_no_acl(inode); 3905 3906 switch (inode->i_mode & S_IFMT) { 3907 case S_IFREG: 3908 inode->i_mapping->a_ops = &btrfs_aops; 3909 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3910 inode->i_fop = &btrfs_file_operations; 3911 inode->i_op = &btrfs_file_inode_operations; 3912 break; 3913 case S_IFDIR: 3914 inode->i_fop = &btrfs_dir_file_operations; 3915 inode->i_op = &btrfs_dir_inode_operations; 3916 break; 3917 case S_IFLNK: 3918 inode->i_op = &btrfs_symlink_inode_operations; 3919 inode_nohighmem(inode); 3920 inode->i_mapping->a_ops = &btrfs_aops; 3921 break; 3922 default: 3923 inode->i_op = &btrfs_special_inode_operations; 3924 init_special_inode(inode, inode->i_mode, rdev); 3925 break; 3926 } 3927 3928 btrfs_sync_inode_flags_to_i_flags(inode); 3929 return 0; 3930 } 3931 3932 /* 3933 * given a leaf and an inode, copy the inode fields into the leaf 3934 */ 3935 static void fill_inode_item(struct btrfs_trans_handle *trans, 3936 struct extent_buffer *leaf, 3937 struct btrfs_inode_item *item, 3938 struct inode *inode) 3939 { 3940 struct btrfs_map_token token; 3941 3942 btrfs_init_map_token(&token, leaf); 3943 3944 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3945 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3946 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3947 &token); 3948 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3949 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3950 3951 btrfs_set_token_timespec_sec(leaf, &item->atime, 3952 inode->i_atime.tv_sec, &token); 3953 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3954 inode->i_atime.tv_nsec, &token); 3955 3956 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3957 inode->i_mtime.tv_sec, &token); 3958 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3959 inode->i_mtime.tv_nsec, &token); 3960 3961 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3962 inode->i_ctime.tv_sec, &token); 3963 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3964 inode->i_ctime.tv_nsec, &token); 3965 3966 btrfs_set_token_timespec_sec(leaf, &item->otime, 3967 BTRFS_I(inode)->i_otime.tv_sec, &token); 3968 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3969 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3970 3971 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3972 &token); 3973 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3974 &token); 3975 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3976 &token); 3977 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3978 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3979 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3980 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3981 } 3982 3983 /* 3984 * copy everything in the in-memory inode into the btree. 3985 */ 3986 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3987 struct btrfs_root *root, struct inode *inode) 3988 { 3989 struct btrfs_inode_item *inode_item; 3990 struct btrfs_path *path; 3991 struct extent_buffer *leaf; 3992 int ret; 3993 3994 path = btrfs_alloc_path(); 3995 if (!path) 3996 return -ENOMEM; 3997 3998 path->leave_spinning = 1; 3999 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 4000 1); 4001 if (ret) { 4002 if (ret > 0) 4003 ret = -ENOENT; 4004 goto failed; 4005 } 4006 4007 leaf = path->nodes[0]; 4008 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4009 struct btrfs_inode_item); 4010 4011 fill_inode_item(trans, leaf, inode_item, inode); 4012 btrfs_mark_buffer_dirty(leaf); 4013 btrfs_set_inode_last_trans(trans, inode); 4014 ret = 0; 4015 failed: 4016 btrfs_free_path(path); 4017 return ret; 4018 } 4019 4020 /* 4021 * copy everything in the in-memory inode into the btree. 4022 */ 4023 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4024 struct btrfs_root *root, struct inode *inode) 4025 { 4026 struct btrfs_fs_info *fs_info = root->fs_info; 4027 int ret; 4028 4029 /* 4030 * If the inode is a free space inode, we can deadlock during commit 4031 * if we put it into the delayed code. 4032 * 4033 * The data relocation inode should also be directly updated 4034 * without delay 4035 */ 4036 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 4037 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4038 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4039 btrfs_update_root_times(trans, root); 4040 4041 ret = btrfs_delayed_update_inode(trans, root, inode); 4042 if (!ret) 4043 btrfs_set_inode_last_trans(trans, inode); 4044 return ret; 4045 } 4046 4047 return btrfs_update_inode_item(trans, root, inode); 4048 } 4049 4050 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4051 struct btrfs_root *root, 4052 struct inode *inode) 4053 { 4054 int ret; 4055 4056 ret = btrfs_update_inode(trans, root, inode); 4057 if (ret == -ENOSPC) 4058 return btrfs_update_inode_item(trans, root, inode); 4059 return ret; 4060 } 4061 4062 /* 4063 * unlink helper that gets used here in inode.c and in the tree logging 4064 * recovery code. It remove a link in a directory with a given name, and 4065 * also drops the back refs in the inode to the directory 4066 */ 4067 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4068 struct btrfs_root *root, 4069 struct btrfs_inode *dir, 4070 struct btrfs_inode *inode, 4071 const char *name, int name_len) 4072 { 4073 struct btrfs_fs_info *fs_info = root->fs_info; 4074 struct btrfs_path *path; 4075 int ret = 0; 4076 struct btrfs_dir_item *di; 4077 u64 index; 4078 u64 ino = btrfs_ino(inode); 4079 u64 dir_ino = btrfs_ino(dir); 4080 4081 path = btrfs_alloc_path(); 4082 if (!path) { 4083 ret = -ENOMEM; 4084 goto out; 4085 } 4086 4087 path->leave_spinning = 1; 4088 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4089 name, name_len, -1); 4090 if (IS_ERR_OR_NULL(di)) { 4091 ret = di ? PTR_ERR(di) : -ENOENT; 4092 goto err; 4093 } 4094 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4095 if (ret) 4096 goto err; 4097 btrfs_release_path(path); 4098 4099 /* 4100 * If we don't have dir index, we have to get it by looking up 4101 * the inode ref, since we get the inode ref, remove it directly, 4102 * it is unnecessary to do delayed deletion. 4103 * 4104 * But if we have dir index, needn't search inode ref to get it. 4105 * Since the inode ref is close to the inode item, it is better 4106 * that we delay to delete it, and just do this deletion when 4107 * we update the inode item. 4108 */ 4109 if (inode->dir_index) { 4110 ret = btrfs_delayed_delete_inode_ref(inode); 4111 if (!ret) { 4112 index = inode->dir_index; 4113 goto skip_backref; 4114 } 4115 } 4116 4117 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4118 dir_ino, &index); 4119 if (ret) { 4120 btrfs_info(fs_info, 4121 "failed to delete reference to %.*s, inode %llu parent %llu", 4122 name_len, name, ino, dir_ino); 4123 btrfs_abort_transaction(trans, ret); 4124 goto err; 4125 } 4126 skip_backref: 4127 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4128 if (ret) { 4129 btrfs_abort_transaction(trans, ret); 4130 goto err; 4131 } 4132 4133 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4134 dir_ino); 4135 if (ret != 0 && ret != -ENOENT) { 4136 btrfs_abort_transaction(trans, ret); 4137 goto err; 4138 } 4139 4140 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4141 index); 4142 if (ret == -ENOENT) 4143 ret = 0; 4144 else if (ret) 4145 btrfs_abort_transaction(trans, ret); 4146 4147 /* 4148 * If we have a pending delayed iput we could end up with the final iput 4149 * being run in btrfs-cleaner context. If we have enough of these built 4150 * up we can end up burning a lot of time in btrfs-cleaner without any 4151 * way to throttle the unlinks. Since we're currently holding a ref on 4152 * the inode we can run the delayed iput here without any issues as the 4153 * final iput won't be done until after we drop the ref we're currently 4154 * holding. 4155 */ 4156 btrfs_run_delayed_iput(fs_info, inode); 4157 err: 4158 btrfs_free_path(path); 4159 if (ret) 4160 goto out; 4161 4162 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4163 inode_inc_iversion(&inode->vfs_inode); 4164 inode_inc_iversion(&dir->vfs_inode); 4165 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4166 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4167 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4168 out: 4169 return ret; 4170 } 4171 4172 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4173 struct btrfs_root *root, 4174 struct btrfs_inode *dir, struct btrfs_inode *inode, 4175 const char *name, int name_len) 4176 { 4177 int ret; 4178 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4179 if (!ret) { 4180 drop_nlink(&inode->vfs_inode); 4181 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4182 } 4183 return ret; 4184 } 4185 4186 /* 4187 * helper to start transaction for unlink and rmdir. 4188 * 4189 * unlink and rmdir are special in btrfs, they do not always free space, so 4190 * if we cannot make our reservations the normal way try and see if there is 4191 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4192 * allow the unlink to occur. 4193 */ 4194 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4195 { 4196 struct btrfs_root *root = BTRFS_I(dir)->root; 4197 4198 /* 4199 * 1 for the possible orphan item 4200 * 1 for the dir item 4201 * 1 for the dir index 4202 * 1 for the inode ref 4203 * 1 for the inode 4204 */ 4205 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4206 } 4207 4208 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4209 { 4210 struct btrfs_root *root = BTRFS_I(dir)->root; 4211 struct btrfs_trans_handle *trans; 4212 struct inode *inode = d_inode(dentry); 4213 int ret; 4214 4215 trans = __unlink_start_trans(dir); 4216 if (IS_ERR(trans)) 4217 return PTR_ERR(trans); 4218 4219 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4220 0); 4221 4222 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4223 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4224 dentry->d_name.len); 4225 if (ret) 4226 goto out; 4227 4228 if (inode->i_nlink == 0) { 4229 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4230 if (ret) 4231 goto out; 4232 } 4233 4234 out: 4235 btrfs_end_transaction(trans); 4236 btrfs_btree_balance_dirty(root->fs_info); 4237 return ret; 4238 } 4239 4240 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4241 struct inode *dir, u64 objectid, 4242 const char *name, int name_len) 4243 { 4244 struct btrfs_root *root = BTRFS_I(dir)->root; 4245 struct btrfs_path *path; 4246 struct extent_buffer *leaf; 4247 struct btrfs_dir_item *di; 4248 struct btrfs_key key; 4249 u64 index; 4250 int ret; 4251 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4252 4253 path = btrfs_alloc_path(); 4254 if (!path) 4255 return -ENOMEM; 4256 4257 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4258 name, name_len, -1); 4259 if (IS_ERR_OR_NULL(di)) { 4260 ret = di ? PTR_ERR(di) : -ENOENT; 4261 goto out; 4262 } 4263 4264 leaf = path->nodes[0]; 4265 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4266 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4267 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4268 if (ret) { 4269 btrfs_abort_transaction(trans, ret); 4270 goto out; 4271 } 4272 btrfs_release_path(path); 4273 4274 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4275 dir_ino, &index, name, name_len); 4276 if (ret < 0) { 4277 if (ret != -ENOENT) { 4278 btrfs_abort_transaction(trans, ret); 4279 goto out; 4280 } 4281 di = btrfs_search_dir_index_item(root, path, dir_ino, 4282 name, name_len); 4283 if (IS_ERR_OR_NULL(di)) { 4284 if (!di) 4285 ret = -ENOENT; 4286 else 4287 ret = PTR_ERR(di); 4288 btrfs_abort_transaction(trans, ret); 4289 goto out; 4290 } 4291 4292 leaf = path->nodes[0]; 4293 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4294 index = key.offset; 4295 } 4296 btrfs_release_path(path); 4297 4298 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4299 if (ret) { 4300 btrfs_abort_transaction(trans, ret); 4301 goto out; 4302 } 4303 4304 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4305 inode_inc_iversion(dir); 4306 dir->i_mtime = dir->i_ctime = current_time(dir); 4307 ret = btrfs_update_inode_fallback(trans, root, dir); 4308 if (ret) 4309 btrfs_abort_transaction(trans, ret); 4310 out: 4311 btrfs_free_path(path); 4312 return ret; 4313 } 4314 4315 /* 4316 * Helper to check if the subvolume references other subvolumes or if it's 4317 * default. 4318 */ 4319 static noinline int may_destroy_subvol(struct btrfs_root *root) 4320 { 4321 struct btrfs_fs_info *fs_info = root->fs_info; 4322 struct btrfs_path *path; 4323 struct btrfs_dir_item *di; 4324 struct btrfs_key key; 4325 u64 dir_id; 4326 int ret; 4327 4328 path = btrfs_alloc_path(); 4329 if (!path) 4330 return -ENOMEM; 4331 4332 /* Make sure this root isn't set as the default subvol */ 4333 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4334 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4335 dir_id, "default", 7, 0); 4336 if (di && !IS_ERR(di)) { 4337 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4338 if (key.objectid == root->root_key.objectid) { 4339 ret = -EPERM; 4340 btrfs_err(fs_info, 4341 "deleting default subvolume %llu is not allowed", 4342 key.objectid); 4343 goto out; 4344 } 4345 btrfs_release_path(path); 4346 } 4347 4348 key.objectid = root->root_key.objectid; 4349 key.type = BTRFS_ROOT_REF_KEY; 4350 key.offset = (u64)-1; 4351 4352 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4353 if (ret < 0) 4354 goto out; 4355 BUG_ON(ret == 0); 4356 4357 ret = 0; 4358 if (path->slots[0] > 0) { 4359 path->slots[0]--; 4360 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4361 if (key.objectid == root->root_key.objectid && 4362 key.type == BTRFS_ROOT_REF_KEY) 4363 ret = -ENOTEMPTY; 4364 } 4365 out: 4366 btrfs_free_path(path); 4367 return ret; 4368 } 4369 4370 /* Delete all dentries for inodes belonging to the root */ 4371 static void btrfs_prune_dentries(struct btrfs_root *root) 4372 { 4373 struct btrfs_fs_info *fs_info = root->fs_info; 4374 struct rb_node *node; 4375 struct rb_node *prev; 4376 struct btrfs_inode *entry; 4377 struct inode *inode; 4378 u64 objectid = 0; 4379 4380 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4381 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4382 4383 spin_lock(&root->inode_lock); 4384 again: 4385 node = root->inode_tree.rb_node; 4386 prev = NULL; 4387 while (node) { 4388 prev = node; 4389 entry = rb_entry(node, struct btrfs_inode, rb_node); 4390 4391 if (objectid < btrfs_ino(entry)) 4392 node = node->rb_left; 4393 else if (objectid > btrfs_ino(entry)) 4394 node = node->rb_right; 4395 else 4396 break; 4397 } 4398 if (!node) { 4399 while (prev) { 4400 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4401 if (objectid <= btrfs_ino(entry)) { 4402 node = prev; 4403 break; 4404 } 4405 prev = rb_next(prev); 4406 } 4407 } 4408 while (node) { 4409 entry = rb_entry(node, struct btrfs_inode, rb_node); 4410 objectid = btrfs_ino(entry) + 1; 4411 inode = igrab(&entry->vfs_inode); 4412 if (inode) { 4413 spin_unlock(&root->inode_lock); 4414 if (atomic_read(&inode->i_count) > 1) 4415 d_prune_aliases(inode); 4416 /* 4417 * btrfs_drop_inode will have it removed from the inode 4418 * cache when its usage count hits zero. 4419 */ 4420 iput(inode); 4421 cond_resched(); 4422 spin_lock(&root->inode_lock); 4423 goto again; 4424 } 4425 4426 if (cond_resched_lock(&root->inode_lock)) 4427 goto again; 4428 4429 node = rb_next(node); 4430 } 4431 spin_unlock(&root->inode_lock); 4432 } 4433 4434 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4435 { 4436 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4437 struct btrfs_root *root = BTRFS_I(dir)->root; 4438 struct inode *inode = d_inode(dentry); 4439 struct btrfs_root *dest = BTRFS_I(inode)->root; 4440 struct btrfs_trans_handle *trans; 4441 struct btrfs_block_rsv block_rsv; 4442 u64 root_flags; 4443 int ret; 4444 int err; 4445 4446 /* 4447 * Don't allow to delete a subvolume with send in progress. This is 4448 * inside the inode lock so the error handling that has to drop the bit 4449 * again is not run concurrently. 4450 */ 4451 spin_lock(&dest->root_item_lock); 4452 if (dest->send_in_progress) { 4453 spin_unlock(&dest->root_item_lock); 4454 btrfs_warn(fs_info, 4455 "attempt to delete subvolume %llu during send", 4456 dest->root_key.objectid); 4457 return -EPERM; 4458 } 4459 root_flags = btrfs_root_flags(&dest->root_item); 4460 btrfs_set_root_flags(&dest->root_item, 4461 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4462 spin_unlock(&dest->root_item_lock); 4463 4464 down_write(&fs_info->subvol_sem); 4465 4466 err = may_destroy_subvol(dest); 4467 if (err) 4468 goto out_up_write; 4469 4470 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4471 /* 4472 * One for dir inode, 4473 * two for dir entries, 4474 * two for root ref/backref. 4475 */ 4476 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4477 if (err) 4478 goto out_up_write; 4479 4480 trans = btrfs_start_transaction(root, 0); 4481 if (IS_ERR(trans)) { 4482 err = PTR_ERR(trans); 4483 goto out_release; 4484 } 4485 trans->block_rsv = &block_rsv; 4486 trans->bytes_reserved = block_rsv.size; 4487 4488 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4489 4490 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4491 dentry->d_name.name, dentry->d_name.len); 4492 if (ret) { 4493 err = ret; 4494 btrfs_abort_transaction(trans, ret); 4495 goto out_end_trans; 4496 } 4497 4498 btrfs_record_root_in_trans(trans, dest); 4499 4500 memset(&dest->root_item.drop_progress, 0, 4501 sizeof(dest->root_item.drop_progress)); 4502 dest->root_item.drop_level = 0; 4503 btrfs_set_root_refs(&dest->root_item, 0); 4504 4505 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4506 ret = btrfs_insert_orphan_item(trans, 4507 fs_info->tree_root, 4508 dest->root_key.objectid); 4509 if (ret) { 4510 btrfs_abort_transaction(trans, ret); 4511 err = ret; 4512 goto out_end_trans; 4513 } 4514 } 4515 4516 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4517 BTRFS_UUID_KEY_SUBVOL, 4518 dest->root_key.objectid); 4519 if (ret && ret != -ENOENT) { 4520 btrfs_abort_transaction(trans, ret); 4521 err = ret; 4522 goto out_end_trans; 4523 } 4524 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4525 ret = btrfs_uuid_tree_remove(trans, 4526 dest->root_item.received_uuid, 4527 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4528 dest->root_key.objectid); 4529 if (ret && ret != -ENOENT) { 4530 btrfs_abort_transaction(trans, ret); 4531 err = ret; 4532 goto out_end_trans; 4533 } 4534 } 4535 4536 out_end_trans: 4537 trans->block_rsv = NULL; 4538 trans->bytes_reserved = 0; 4539 ret = btrfs_end_transaction(trans); 4540 if (ret && !err) 4541 err = ret; 4542 inode->i_flags |= S_DEAD; 4543 out_release: 4544 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4545 out_up_write: 4546 up_write(&fs_info->subvol_sem); 4547 if (err) { 4548 spin_lock(&dest->root_item_lock); 4549 root_flags = btrfs_root_flags(&dest->root_item); 4550 btrfs_set_root_flags(&dest->root_item, 4551 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4552 spin_unlock(&dest->root_item_lock); 4553 } else { 4554 d_invalidate(dentry); 4555 btrfs_prune_dentries(dest); 4556 ASSERT(dest->send_in_progress == 0); 4557 4558 /* the last ref */ 4559 if (dest->ino_cache_inode) { 4560 iput(dest->ino_cache_inode); 4561 dest->ino_cache_inode = NULL; 4562 } 4563 } 4564 4565 return err; 4566 } 4567 4568 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4569 { 4570 struct inode *inode = d_inode(dentry); 4571 int err = 0; 4572 struct btrfs_root *root = BTRFS_I(dir)->root; 4573 struct btrfs_trans_handle *trans; 4574 u64 last_unlink_trans; 4575 4576 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4577 return -ENOTEMPTY; 4578 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4579 return btrfs_delete_subvolume(dir, dentry); 4580 4581 trans = __unlink_start_trans(dir); 4582 if (IS_ERR(trans)) 4583 return PTR_ERR(trans); 4584 4585 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4586 err = btrfs_unlink_subvol(trans, dir, 4587 BTRFS_I(inode)->location.objectid, 4588 dentry->d_name.name, 4589 dentry->d_name.len); 4590 goto out; 4591 } 4592 4593 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4594 if (err) 4595 goto out; 4596 4597 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4598 4599 /* now the directory is empty */ 4600 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4601 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4602 dentry->d_name.len); 4603 if (!err) { 4604 btrfs_i_size_write(BTRFS_I(inode), 0); 4605 /* 4606 * Propagate the last_unlink_trans value of the deleted dir to 4607 * its parent directory. This is to prevent an unrecoverable 4608 * log tree in the case we do something like this: 4609 * 1) create dir foo 4610 * 2) create snapshot under dir foo 4611 * 3) delete the snapshot 4612 * 4) rmdir foo 4613 * 5) mkdir foo 4614 * 6) fsync foo or some file inside foo 4615 */ 4616 if (last_unlink_trans >= trans->transid) 4617 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4618 } 4619 out: 4620 btrfs_end_transaction(trans); 4621 btrfs_btree_balance_dirty(root->fs_info); 4622 4623 return err; 4624 } 4625 4626 /* 4627 * Return this if we need to call truncate_block for the last bit of the 4628 * truncate. 4629 */ 4630 #define NEED_TRUNCATE_BLOCK 1 4631 4632 /* 4633 * this can truncate away extent items, csum items and directory items. 4634 * It starts at a high offset and removes keys until it can't find 4635 * any higher than new_size 4636 * 4637 * csum items that cross the new i_size are truncated to the new size 4638 * as well. 4639 * 4640 * min_type is the minimum key type to truncate down to. If set to 0, this 4641 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4642 */ 4643 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4644 struct btrfs_root *root, 4645 struct inode *inode, 4646 u64 new_size, u32 min_type) 4647 { 4648 struct btrfs_fs_info *fs_info = root->fs_info; 4649 struct btrfs_path *path; 4650 struct extent_buffer *leaf; 4651 struct btrfs_file_extent_item *fi; 4652 struct btrfs_key key; 4653 struct btrfs_key found_key; 4654 u64 extent_start = 0; 4655 u64 extent_num_bytes = 0; 4656 u64 extent_offset = 0; 4657 u64 item_end = 0; 4658 u64 last_size = new_size; 4659 u32 found_type = (u8)-1; 4660 int found_extent; 4661 int del_item; 4662 int pending_del_nr = 0; 4663 int pending_del_slot = 0; 4664 int extent_type = -1; 4665 int ret; 4666 u64 ino = btrfs_ino(BTRFS_I(inode)); 4667 u64 bytes_deleted = 0; 4668 bool be_nice = false; 4669 bool should_throttle = false; 4670 4671 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4672 4673 /* 4674 * for non-free space inodes and ref cows, we want to back off from 4675 * time to time 4676 */ 4677 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4678 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4679 be_nice = true; 4680 4681 path = btrfs_alloc_path(); 4682 if (!path) 4683 return -ENOMEM; 4684 path->reada = READA_BACK; 4685 4686 /* 4687 * We want to drop from the next block forward in case this new size is 4688 * not block aligned since we will be keeping the last block of the 4689 * extent just the way it is. 4690 */ 4691 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4692 root == fs_info->tree_root) 4693 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4694 fs_info->sectorsize), 4695 (u64)-1, 0); 4696 4697 /* 4698 * This function is also used to drop the items in the log tree before 4699 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4700 * it is used to drop the logged items. So we shouldn't kill the delayed 4701 * items. 4702 */ 4703 if (min_type == 0 && root == BTRFS_I(inode)->root) 4704 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4705 4706 key.objectid = ino; 4707 key.offset = (u64)-1; 4708 key.type = (u8)-1; 4709 4710 search_again: 4711 /* 4712 * with a 16K leaf size and 128MB extents, you can actually queue 4713 * up a huge file in a single leaf. Most of the time that 4714 * bytes_deleted is > 0, it will be huge by the time we get here 4715 */ 4716 if (be_nice && bytes_deleted > SZ_32M && 4717 btrfs_should_end_transaction(trans)) { 4718 ret = -EAGAIN; 4719 goto out; 4720 } 4721 4722 path->leave_spinning = 1; 4723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4724 if (ret < 0) 4725 goto out; 4726 4727 if (ret > 0) { 4728 ret = 0; 4729 /* there are no items in the tree for us to truncate, we're 4730 * done 4731 */ 4732 if (path->slots[0] == 0) 4733 goto out; 4734 path->slots[0]--; 4735 } 4736 4737 while (1) { 4738 fi = NULL; 4739 leaf = path->nodes[0]; 4740 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4741 found_type = found_key.type; 4742 4743 if (found_key.objectid != ino) 4744 break; 4745 4746 if (found_type < min_type) 4747 break; 4748 4749 item_end = found_key.offset; 4750 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4751 fi = btrfs_item_ptr(leaf, path->slots[0], 4752 struct btrfs_file_extent_item); 4753 extent_type = btrfs_file_extent_type(leaf, fi); 4754 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4755 item_end += 4756 btrfs_file_extent_num_bytes(leaf, fi); 4757 4758 trace_btrfs_truncate_show_fi_regular( 4759 BTRFS_I(inode), leaf, fi, 4760 found_key.offset); 4761 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4762 item_end += btrfs_file_extent_ram_bytes(leaf, 4763 fi); 4764 4765 trace_btrfs_truncate_show_fi_inline( 4766 BTRFS_I(inode), leaf, fi, path->slots[0], 4767 found_key.offset); 4768 } 4769 item_end--; 4770 } 4771 if (found_type > min_type) { 4772 del_item = 1; 4773 } else { 4774 if (item_end < new_size) 4775 break; 4776 if (found_key.offset >= new_size) 4777 del_item = 1; 4778 else 4779 del_item = 0; 4780 } 4781 found_extent = 0; 4782 /* FIXME, shrink the extent if the ref count is only 1 */ 4783 if (found_type != BTRFS_EXTENT_DATA_KEY) 4784 goto delete; 4785 4786 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4787 u64 num_dec; 4788 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4789 if (!del_item) { 4790 u64 orig_num_bytes = 4791 btrfs_file_extent_num_bytes(leaf, fi); 4792 extent_num_bytes = ALIGN(new_size - 4793 found_key.offset, 4794 fs_info->sectorsize); 4795 btrfs_set_file_extent_num_bytes(leaf, fi, 4796 extent_num_bytes); 4797 num_dec = (orig_num_bytes - 4798 extent_num_bytes); 4799 if (test_bit(BTRFS_ROOT_REF_COWS, 4800 &root->state) && 4801 extent_start != 0) 4802 inode_sub_bytes(inode, num_dec); 4803 btrfs_mark_buffer_dirty(leaf); 4804 } else { 4805 extent_num_bytes = 4806 btrfs_file_extent_disk_num_bytes(leaf, 4807 fi); 4808 extent_offset = found_key.offset - 4809 btrfs_file_extent_offset(leaf, fi); 4810 4811 /* FIXME blocksize != 4096 */ 4812 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4813 if (extent_start != 0) { 4814 found_extent = 1; 4815 if (test_bit(BTRFS_ROOT_REF_COWS, 4816 &root->state)) 4817 inode_sub_bytes(inode, num_dec); 4818 } 4819 } 4820 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4821 /* 4822 * we can't truncate inline items that have had 4823 * special encodings 4824 */ 4825 if (!del_item && 4826 btrfs_file_extent_encryption(leaf, fi) == 0 && 4827 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4828 btrfs_file_extent_compression(leaf, fi) == 0) { 4829 u32 size = (u32)(new_size - found_key.offset); 4830 4831 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4832 size = btrfs_file_extent_calc_inline_size(size); 4833 btrfs_truncate_item(path, size, 1); 4834 } else if (!del_item) { 4835 /* 4836 * We have to bail so the last_size is set to 4837 * just before this extent. 4838 */ 4839 ret = NEED_TRUNCATE_BLOCK; 4840 break; 4841 } 4842 4843 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4844 inode_sub_bytes(inode, item_end + 1 - new_size); 4845 } 4846 delete: 4847 if (del_item) 4848 last_size = found_key.offset; 4849 else 4850 last_size = new_size; 4851 if (del_item) { 4852 if (!pending_del_nr) { 4853 /* no pending yet, add ourselves */ 4854 pending_del_slot = path->slots[0]; 4855 pending_del_nr = 1; 4856 } else if (pending_del_nr && 4857 path->slots[0] + 1 == pending_del_slot) { 4858 /* hop on the pending chunk */ 4859 pending_del_nr++; 4860 pending_del_slot = path->slots[0]; 4861 } else { 4862 BUG(); 4863 } 4864 } else { 4865 break; 4866 } 4867 should_throttle = false; 4868 4869 if (found_extent && 4870 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4871 root == fs_info->tree_root)) { 4872 struct btrfs_ref ref = { 0 }; 4873 4874 btrfs_set_path_blocking(path); 4875 bytes_deleted += extent_num_bytes; 4876 4877 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4878 extent_start, extent_num_bytes, 0); 4879 ref.real_root = root->root_key.objectid; 4880 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4881 ino, extent_offset); 4882 ret = btrfs_free_extent(trans, &ref); 4883 if (ret) { 4884 btrfs_abort_transaction(trans, ret); 4885 break; 4886 } 4887 if (be_nice) { 4888 if (btrfs_should_throttle_delayed_refs(trans)) 4889 should_throttle = true; 4890 } 4891 } 4892 4893 if (found_type == BTRFS_INODE_ITEM_KEY) 4894 break; 4895 4896 if (path->slots[0] == 0 || 4897 path->slots[0] != pending_del_slot || 4898 should_throttle) { 4899 if (pending_del_nr) { 4900 ret = btrfs_del_items(trans, root, path, 4901 pending_del_slot, 4902 pending_del_nr); 4903 if (ret) { 4904 btrfs_abort_transaction(trans, ret); 4905 break; 4906 } 4907 pending_del_nr = 0; 4908 } 4909 btrfs_release_path(path); 4910 4911 /* 4912 * We can generate a lot of delayed refs, so we need to 4913 * throttle every once and a while and make sure we're 4914 * adding enough space to keep up with the work we are 4915 * generating. Since we hold a transaction here we 4916 * can't flush, and we don't want to FLUSH_LIMIT because 4917 * we could have generated too many delayed refs to 4918 * actually allocate, so just bail if we're short and 4919 * let the normal reservation dance happen higher up. 4920 */ 4921 if (should_throttle) { 4922 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4923 BTRFS_RESERVE_NO_FLUSH); 4924 if (ret) { 4925 ret = -EAGAIN; 4926 break; 4927 } 4928 } 4929 goto search_again; 4930 } else { 4931 path->slots[0]--; 4932 } 4933 } 4934 out: 4935 if (ret >= 0 && pending_del_nr) { 4936 int err; 4937 4938 err = btrfs_del_items(trans, root, path, pending_del_slot, 4939 pending_del_nr); 4940 if (err) { 4941 btrfs_abort_transaction(trans, err); 4942 ret = err; 4943 } 4944 } 4945 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4946 ASSERT(last_size >= new_size); 4947 if (!ret && last_size > new_size) 4948 last_size = new_size; 4949 btrfs_ordered_update_i_size(inode, last_size, NULL); 4950 } 4951 4952 btrfs_free_path(path); 4953 return ret; 4954 } 4955 4956 /* 4957 * btrfs_truncate_block - read, zero a chunk and write a block 4958 * @inode - inode that we're zeroing 4959 * @from - the offset to start zeroing 4960 * @len - the length to zero, 0 to zero the entire range respective to the 4961 * offset 4962 * @front - zero up to the offset instead of from the offset on 4963 * 4964 * This will find the block for the "from" offset and cow the block and zero the 4965 * part we want to zero. This is used with truncate and hole punching. 4966 */ 4967 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4968 int front) 4969 { 4970 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4971 struct address_space *mapping = inode->i_mapping; 4972 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4973 struct btrfs_ordered_extent *ordered; 4974 struct extent_state *cached_state = NULL; 4975 struct extent_changeset *data_reserved = NULL; 4976 char *kaddr; 4977 u32 blocksize = fs_info->sectorsize; 4978 pgoff_t index = from >> PAGE_SHIFT; 4979 unsigned offset = from & (blocksize - 1); 4980 struct page *page; 4981 gfp_t mask = btrfs_alloc_write_mask(mapping); 4982 int ret = 0; 4983 u64 block_start; 4984 u64 block_end; 4985 4986 if (IS_ALIGNED(offset, blocksize) && 4987 (!len || IS_ALIGNED(len, blocksize))) 4988 goto out; 4989 4990 block_start = round_down(from, blocksize); 4991 block_end = block_start + blocksize - 1; 4992 4993 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4994 block_start, blocksize); 4995 if (ret) 4996 goto out; 4997 4998 again: 4999 page = find_or_create_page(mapping, index, mask); 5000 if (!page) { 5001 btrfs_delalloc_release_space(inode, data_reserved, 5002 block_start, blocksize, true); 5003 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 5004 ret = -ENOMEM; 5005 goto out; 5006 } 5007 5008 if (!PageUptodate(page)) { 5009 ret = btrfs_readpage(NULL, page); 5010 lock_page(page); 5011 if (page->mapping != mapping) { 5012 unlock_page(page); 5013 put_page(page); 5014 goto again; 5015 } 5016 if (!PageUptodate(page)) { 5017 ret = -EIO; 5018 goto out_unlock; 5019 } 5020 } 5021 wait_on_page_writeback(page); 5022 5023 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 5024 set_page_extent_mapped(page); 5025 5026 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5027 if (ordered) { 5028 unlock_extent_cached(io_tree, block_start, block_end, 5029 &cached_state); 5030 unlock_page(page); 5031 put_page(page); 5032 btrfs_start_ordered_extent(inode, ordered, 1); 5033 btrfs_put_ordered_extent(ordered); 5034 goto again; 5035 } 5036 5037 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 5038 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5039 0, 0, &cached_state); 5040 5041 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5042 &cached_state); 5043 if (ret) { 5044 unlock_extent_cached(io_tree, block_start, block_end, 5045 &cached_state); 5046 goto out_unlock; 5047 } 5048 5049 if (offset != blocksize) { 5050 if (!len) 5051 len = blocksize - offset; 5052 kaddr = kmap(page); 5053 if (front) 5054 memset(kaddr + (block_start - page_offset(page)), 5055 0, offset); 5056 else 5057 memset(kaddr + (block_start - page_offset(page)) + offset, 5058 0, len); 5059 flush_dcache_page(page); 5060 kunmap(page); 5061 } 5062 ClearPageChecked(page); 5063 set_page_dirty(page); 5064 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 5065 5066 out_unlock: 5067 if (ret) 5068 btrfs_delalloc_release_space(inode, data_reserved, block_start, 5069 blocksize, true); 5070 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 5071 unlock_page(page); 5072 put_page(page); 5073 out: 5074 extent_changeset_free(data_reserved); 5075 return ret; 5076 } 5077 5078 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 5079 u64 offset, u64 len) 5080 { 5081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5082 struct btrfs_trans_handle *trans; 5083 int ret; 5084 5085 /* 5086 * Still need to make sure the inode looks like it's been updated so 5087 * that any holes get logged if we fsync. 5088 */ 5089 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 5090 BTRFS_I(inode)->last_trans = fs_info->generation; 5091 BTRFS_I(inode)->last_sub_trans = root->log_transid; 5092 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 5093 return 0; 5094 } 5095 5096 /* 5097 * 1 - for the one we're dropping 5098 * 1 - for the one we're adding 5099 * 1 - for updating the inode. 5100 */ 5101 trans = btrfs_start_transaction(root, 3); 5102 if (IS_ERR(trans)) 5103 return PTR_ERR(trans); 5104 5105 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 5106 if (ret) { 5107 btrfs_abort_transaction(trans, ret); 5108 btrfs_end_transaction(trans); 5109 return ret; 5110 } 5111 5112 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 5113 offset, 0, 0, len, 0, len, 0, 0, 0); 5114 if (ret) 5115 btrfs_abort_transaction(trans, ret); 5116 else 5117 btrfs_update_inode(trans, root, inode); 5118 btrfs_end_transaction(trans); 5119 return ret; 5120 } 5121 5122 /* 5123 * This function puts in dummy file extents for the area we're creating a hole 5124 * for. So if we are truncating this file to a larger size we need to insert 5125 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5126 * the range between oldsize and size 5127 */ 5128 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 5129 { 5130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5131 struct btrfs_root *root = BTRFS_I(inode)->root; 5132 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5133 struct extent_map *em = NULL; 5134 struct extent_state *cached_state = NULL; 5135 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5136 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5137 u64 block_end = ALIGN(size, fs_info->sectorsize); 5138 u64 last_byte; 5139 u64 cur_offset; 5140 u64 hole_size; 5141 int err = 0; 5142 5143 /* 5144 * If our size started in the middle of a block we need to zero out the 5145 * rest of the block before we expand the i_size, otherwise we could 5146 * expose stale data. 5147 */ 5148 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5149 if (err) 5150 return err; 5151 5152 if (size <= hole_start) 5153 return 0; 5154 5155 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start, 5156 block_end - 1, &cached_state); 5157 cur_offset = hole_start; 5158 while (1) { 5159 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5160 block_end - cur_offset, 0); 5161 if (IS_ERR(em)) { 5162 err = PTR_ERR(em); 5163 em = NULL; 5164 break; 5165 } 5166 last_byte = min(extent_map_end(em), block_end); 5167 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5168 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5169 struct extent_map *hole_em; 5170 hole_size = last_byte - cur_offset; 5171 5172 err = maybe_insert_hole(root, inode, cur_offset, 5173 hole_size); 5174 if (err) 5175 break; 5176 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5177 cur_offset + hole_size - 1, 0); 5178 hole_em = alloc_extent_map(); 5179 if (!hole_em) { 5180 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5181 &BTRFS_I(inode)->runtime_flags); 5182 goto next; 5183 } 5184 hole_em->start = cur_offset; 5185 hole_em->len = hole_size; 5186 hole_em->orig_start = cur_offset; 5187 5188 hole_em->block_start = EXTENT_MAP_HOLE; 5189 hole_em->block_len = 0; 5190 hole_em->orig_block_len = 0; 5191 hole_em->ram_bytes = hole_size; 5192 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5193 hole_em->generation = fs_info->generation; 5194 5195 while (1) { 5196 write_lock(&em_tree->lock); 5197 err = add_extent_mapping(em_tree, hole_em, 1); 5198 write_unlock(&em_tree->lock); 5199 if (err != -EEXIST) 5200 break; 5201 btrfs_drop_extent_cache(BTRFS_I(inode), 5202 cur_offset, 5203 cur_offset + 5204 hole_size - 1, 0); 5205 } 5206 free_extent_map(hole_em); 5207 } 5208 next: 5209 free_extent_map(em); 5210 em = NULL; 5211 cur_offset = last_byte; 5212 if (cur_offset >= block_end) 5213 break; 5214 } 5215 free_extent_map(em); 5216 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5217 return err; 5218 } 5219 5220 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5221 { 5222 struct btrfs_root *root = BTRFS_I(inode)->root; 5223 struct btrfs_trans_handle *trans; 5224 loff_t oldsize = i_size_read(inode); 5225 loff_t newsize = attr->ia_size; 5226 int mask = attr->ia_valid; 5227 int ret; 5228 5229 /* 5230 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5231 * special case where we need to update the times despite not having 5232 * these flags set. For all other operations the VFS set these flags 5233 * explicitly if it wants a timestamp update. 5234 */ 5235 if (newsize != oldsize) { 5236 inode_inc_iversion(inode); 5237 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5238 inode->i_ctime = inode->i_mtime = 5239 current_time(inode); 5240 } 5241 5242 if (newsize > oldsize) { 5243 /* 5244 * Don't do an expanding truncate while snapshotting is ongoing. 5245 * This is to ensure the snapshot captures a fully consistent 5246 * state of this file - if the snapshot captures this expanding 5247 * truncation, it must capture all writes that happened before 5248 * this truncation. 5249 */ 5250 btrfs_wait_for_snapshot_creation(root); 5251 ret = btrfs_cont_expand(inode, oldsize, newsize); 5252 if (ret) { 5253 btrfs_end_write_no_snapshotting(root); 5254 return ret; 5255 } 5256 5257 trans = btrfs_start_transaction(root, 1); 5258 if (IS_ERR(trans)) { 5259 btrfs_end_write_no_snapshotting(root); 5260 return PTR_ERR(trans); 5261 } 5262 5263 i_size_write(inode, newsize); 5264 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5265 pagecache_isize_extended(inode, oldsize, newsize); 5266 ret = btrfs_update_inode(trans, root, inode); 5267 btrfs_end_write_no_snapshotting(root); 5268 btrfs_end_transaction(trans); 5269 } else { 5270 5271 /* 5272 * We're truncating a file that used to have good data down to 5273 * zero. Make sure it gets into the ordered flush list so that 5274 * any new writes get down to disk quickly. 5275 */ 5276 if (newsize == 0) 5277 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5278 &BTRFS_I(inode)->runtime_flags); 5279 5280 truncate_setsize(inode, newsize); 5281 5282 /* Disable nonlocked read DIO to avoid the endless truncate */ 5283 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5284 inode_dio_wait(inode); 5285 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5286 5287 ret = btrfs_truncate(inode, newsize == oldsize); 5288 if (ret && inode->i_nlink) { 5289 int err; 5290 5291 /* 5292 * Truncate failed, so fix up the in-memory size. We 5293 * adjusted disk_i_size down as we removed extents, so 5294 * wait for disk_i_size to be stable and then update the 5295 * in-memory size to match. 5296 */ 5297 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5298 if (err) 5299 return err; 5300 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5301 } 5302 } 5303 5304 return ret; 5305 } 5306 5307 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5308 { 5309 struct inode *inode = d_inode(dentry); 5310 struct btrfs_root *root = BTRFS_I(inode)->root; 5311 int err; 5312 5313 if (btrfs_root_readonly(root)) 5314 return -EROFS; 5315 5316 err = setattr_prepare(dentry, attr); 5317 if (err) 5318 return err; 5319 5320 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5321 err = btrfs_setsize(inode, attr); 5322 if (err) 5323 return err; 5324 } 5325 5326 if (attr->ia_valid) { 5327 setattr_copy(inode, attr); 5328 inode_inc_iversion(inode); 5329 err = btrfs_dirty_inode(inode); 5330 5331 if (!err && attr->ia_valid & ATTR_MODE) 5332 err = posix_acl_chmod(inode, inode->i_mode); 5333 } 5334 5335 return err; 5336 } 5337 5338 /* 5339 * While truncating the inode pages during eviction, we get the VFS calling 5340 * btrfs_invalidatepage() against each page of the inode. This is slow because 5341 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5342 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5343 * extent_state structures over and over, wasting lots of time. 5344 * 5345 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5346 * those expensive operations on a per page basis and do only the ordered io 5347 * finishing, while we release here the extent_map and extent_state structures, 5348 * without the excessive merging and splitting. 5349 */ 5350 static void evict_inode_truncate_pages(struct inode *inode) 5351 { 5352 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5353 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5354 struct rb_node *node; 5355 5356 ASSERT(inode->i_state & I_FREEING); 5357 truncate_inode_pages_final(&inode->i_data); 5358 5359 write_lock(&map_tree->lock); 5360 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5361 struct extent_map *em; 5362 5363 node = rb_first_cached(&map_tree->map); 5364 em = rb_entry(node, struct extent_map, rb_node); 5365 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5366 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5367 remove_extent_mapping(map_tree, em); 5368 free_extent_map(em); 5369 if (need_resched()) { 5370 write_unlock(&map_tree->lock); 5371 cond_resched(); 5372 write_lock(&map_tree->lock); 5373 } 5374 } 5375 write_unlock(&map_tree->lock); 5376 5377 /* 5378 * Keep looping until we have no more ranges in the io tree. 5379 * We can have ongoing bios started by readpages (called from readahead) 5380 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5381 * still in progress (unlocked the pages in the bio but did not yet 5382 * unlocked the ranges in the io tree). Therefore this means some 5383 * ranges can still be locked and eviction started because before 5384 * submitting those bios, which are executed by a separate task (work 5385 * queue kthread), inode references (inode->i_count) were not taken 5386 * (which would be dropped in the end io callback of each bio). 5387 * Therefore here we effectively end up waiting for those bios and 5388 * anyone else holding locked ranges without having bumped the inode's 5389 * reference count - if we don't do it, when they access the inode's 5390 * io_tree to unlock a range it may be too late, leading to an 5391 * use-after-free issue. 5392 */ 5393 spin_lock(&io_tree->lock); 5394 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5395 struct extent_state *state; 5396 struct extent_state *cached_state = NULL; 5397 u64 start; 5398 u64 end; 5399 unsigned state_flags; 5400 5401 node = rb_first(&io_tree->state); 5402 state = rb_entry(node, struct extent_state, rb_node); 5403 start = state->start; 5404 end = state->end; 5405 state_flags = state->state; 5406 spin_unlock(&io_tree->lock); 5407 5408 lock_extent_bits(io_tree, start, end, &cached_state); 5409 5410 /* 5411 * If still has DELALLOC flag, the extent didn't reach disk, 5412 * and its reserved space won't be freed by delayed_ref. 5413 * So we need to free its reserved space here. 5414 * (Refer to comment in btrfs_invalidatepage, case 2) 5415 * 5416 * Note, end is the bytenr of last byte, so we need + 1 here. 5417 */ 5418 if (state_flags & EXTENT_DELALLOC) 5419 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5420 5421 clear_extent_bit(io_tree, start, end, 5422 EXTENT_LOCKED | EXTENT_DELALLOC | 5423 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5424 &cached_state); 5425 5426 cond_resched(); 5427 spin_lock(&io_tree->lock); 5428 } 5429 spin_unlock(&io_tree->lock); 5430 } 5431 5432 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5433 struct btrfs_block_rsv *rsv) 5434 { 5435 struct btrfs_fs_info *fs_info = root->fs_info; 5436 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5437 struct btrfs_trans_handle *trans; 5438 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5439 int ret; 5440 5441 /* 5442 * Eviction should be taking place at some place safe because of our 5443 * delayed iputs. However the normal flushing code will run delayed 5444 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5445 * 5446 * We reserve the delayed_refs_extra here again because we can't use 5447 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5448 * above. We reserve our extra bit here because we generate a ton of 5449 * delayed refs activity by truncating. 5450 * 5451 * If we cannot make our reservation we'll attempt to steal from the 5452 * global reserve, because we really want to be able to free up space. 5453 */ 5454 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5455 BTRFS_RESERVE_FLUSH_EVICT); 5456 if (ret) { 5457 /* 5458 * Try to steal from the global reserve if there is space for 5459 * it. 5460 */ 5461 if (btrfs_check_space_for_delayed_refs(fs_info) || 5462 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5463 btrfs_warn(fs_info, 5464 "could not allocate space for delete; will truncate on mount"); 5465 return ERR_PTR(-ENOSPC); 5466 } 5467 delayed_refs_extra = 0; 5468 } 5469 5470 trans = btrfs_join_transaction(root); 5471 if (IS_ERR(trans)) 5472 return trans; 5473 5474 if (delayed_refs_extra) { 5475 trans->block_rsv = &fs_info->trans_block_rsv; 5476 trans->bytes_reserved = delayed_refs_extra; 5477 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5478 delayed_refs_extra, 1); 5479 } 5480 return trans; 5481 } 5482 5483 void btrfs_evict_inode(struct inode *inode) 5484 { 5485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5486 struct btrfs_trans_handle *trans; 5487 struct btrfs_root *root = BTRFS_I(inode)->root; 5488 struct btrfs_block_rsv *rsv; 5489 int ret; 5490 5491 trace_btrfs_inode_evict(inode); 5492 5493 if (!root) { 5494 clear_inode(inode); 5495 return; 5496 } 5497 5498 evict_inode_truncate_pages(inode); 5499 5500 if (inode->i_nlink && 5501 ((btrfs_root_refs(&root->root_item) != 0 && 5502 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5503 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5504 goto no_delete; 5505 5506 if (is_bad_inode(inode)) 5507 goto no_delete; 5508 5509 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5510 5511 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5512 goto no_delete; 5513 5514 if (inode->i_nlink > 0) { 5515 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5516 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5517 goto no_delete; 5518 } 5519 5520 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5521 if (ret) 5522 goto no_delete; 5523 5524 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5525 if (!rsv) 5526 goto no_delete; 5527 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5528 rsv->failfast = 1; 5529 5530 btrfs_i_size_write(BTRFS_I(inode), 0); 5531 5532 while (1) { 5533 trans = evict_refill_and_join(root, rsv); 5534 if (IS_ERR(trans)) 5535 goto free_rsv; 5536 5537 trans->block_rsv = rsv; 5538 5539 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5540 trans->block_rsv = &fs_info->trans_block_rsv; 5541 btrfs_end_transaction(trans); 5542 btrfs_btree_balance_dirty(fs_info); 5543 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5544 goto free_rsv; 5545 else if (!ret) 5546 break; 5547 } 5548 5549 /* 5550 * Errors here aren't a big deal, it just means we leave orphan items in 5551 * the tree. They will be cleaned up on the next mount. If the inode 5552 * number gets reused, cleanup deletes the orphan item without doing 5553 * anything, and unlink reuses the existing orphan item. 5554 * 5555 * If it turns out that we are dropping too many of these, we might want 5556 * to add a mechanism for retrying these after a commit. 5557 */ 5558 trans = evict_refill_and_join(root, rsv); 5559 if (!IS_ERR(trans)) { 5560 trans->block_rsv = rsv; 5561 btrfs_orphan_del(trans, BTRFS_I(inode)); 5562 trans->block_rsv = &fs_info->trans_block_rsv; 5563 btrfs_end_transaction(trans); 5564 } 5565 5566 if (!(root == fs_info->tree_root || 5567 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5568 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5569 5570 free_rsv: 5571 btrfs_free_block_rsv(fs_info, rsv); 5572 no_delete: 5573 /* 5574 * If we didn't successfully delete, the orphan item will still be in 5575 * the tree and we'll retry on the next mount. Again, we might also want 5576 * to retry these periodically in the future. 5577 */ 5578 btrfs_remove_delayed_node(BTRFS_I(inode)); 5579 clear_inode(inode); 5580 } 5581 5582 /* 5583 * Return the key found in the dir entry in the location pointer, fill @type 5584 * with BTRFS_FT_*, and return 0. 5585 * 5586 * If no dir entries were found, returns -ENOENT. 5587 * If found a corrupted location in dir entry, returns -EUCLEAN. 5588 */ 5589 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5590 struct btrfs_key *location, u8 *type) 5591 { 5592 const char *name = dentry->d_name.name; 5593 int namelen = dentry->d_name.len; 5594 struct btrfs_dir_item *di; 5595 struct btrfs_path *path; 5596 struct btrfs_root *root = BTRFS_I(dir)->root; 5597 int ret = 0; 5598 5599 path = btrfs_alloc_path(); 5600 if (!path) 5601 return -ENOMEM; 5602 5603 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5604 name, namelen, 0); 5605 if (IS_ERR_OR_NULL(di)) { 5606 ret = di ? PTR_ERR(di) : -ENOENT; 5607 goto out; 5608 } 5609 5610 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5611 if (location->type != BTRFS_INODE_ITEM_KEY && 5612 location->type != BTRFS_ROOT_ITEM_KEY) { 5613 ret = -EUCLEAN; 5614 btrfs_warn(root->fs_info, 5615 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5616 __func__, name, btrfs_ino(BTRFS_I(dir)), 5617 location->objectid, location->type, location->offset); 5618 } 5619 if (!ret) 5620 *type = btrfs_dir_type(path->nodes[0], di); 5621 out: 5622 btrfs_free_path(path); 5623 return ret; 5624 } 5625 5626 /* 5627 * when we hit a tree root in a directory, the btrfs part of the inode 5628 * needs to be changed to reflect the root directory of the tree root. This 5629 * is kind of like crossing a mount point. 5630 */ 5631 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5632 struct inode *dir, 5633 struct dentry *dentry, 5634 struct btrfs_key *location, 5635 struct btrfs_root **sub_root) 5636 { 5637 struct btrfs_path *path; 5638 struct btrfs_root *new_root; 5639 struct btrfs_root_ref *ref; 5640 struct extent_buffer *leaf; 5641 struct btrfs_key key; 5642 int ret; 5643 int err = 0; 5644 5645 path = btrfs_alloc_path(); 5646 if (!path) { 5647 err = -ENOMEM; 5648 goto out; 5649 } 5650 5651 err = -ENOENT; 5652 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5653 key.type = BTRFS_ROOT_REF_KEY; 5654 key.offset = location->objectid; 5655 5656 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5657 if (ret) { 5658 if (ret < 0) 5659 err = ret; 5660 goto out; 5661 } 5662 5663 leaf = path->nodes[0]; 5664 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5665 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5666 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5667 goto out; 5668 5669 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5670 (unsigned long)(ref + 1), 5671 dentry->d_name.len); 5672 if (ret) 5673 goto out; 5674 5675 btrfs_release_path(path); 5676 5677 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5678 if (IS_ERR(new_root)) { 5679 err = PTR_ERR(new_root); 5680 goto out; 5681 } 5682 5683 *sub_root = new_root; 5684 location->objectid = btrfs_root_dirid(&new_root->root_item); 5685 location->type = BTRFS_INODE_ITEM_KEY; 5686 location->offset = 0; 5687 err = 0; 5688 out: 5689 btrfs_free_path(path); 5690 return err; 5691 } 5692 5693 static void inode_tree_add(struct inode *inode) 5694 { 5695 struct btrfs_root *root = BTRFS_I(inode)->root; 5696 struct btrfs_inode *entry; 5697 struct rb_node **p; 5698 struct rb_node *parent; 5699 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5700 u64 ino = btrfs_ino(BTRFS_I(inode)); 5701 5702 if (inode_unhashed(inode)) 5703 return; 5704 parent = NULL; 5705 spin_lock(&root->inode_lock); 5706 p = &root->inode_tree.rb_node; 5707 while (*p) { 5708 parent = *p; 5709 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5710 5711 if (ino < btrfs_ino(entry)) 5712 p = &parent->rb_left; 5713 else if (ino > btrfs_ino(entry)) 5714 p = &parent->rb_right; 5715 else { 5716 WARN_ON(!(entry->vfs_inode.i_state & 5717 (I_WILL_FREE | I_FREEING))); 5718 rb_replace_node(parent, new, &root->inode_tree); 5719 RB_CLEAR_NODE(parent); 5720 spin_unlock(&root->inode_lock); 5721 return; 5722 } 5723 } 5724 rb_link_node(new, parent, p); 5725 rb_insert_color(new, &root->inode_tree); 5726 spin_unlock(&root->inode_lock); 5727 } 5728 5729 static void inode_tree_del(struct inode *inode) 5730 { 5731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5732 struct btrfs_root *root = BTRFS_I(inode)->root; 5733 int empty = 0; 5734 5735 spin_lock(&root->inode_lock); 5736 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5737 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5738 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5739 empty = RB_EMPTY_ROOT(&root->inode_tree); 5740 } 5741 spin_unlock(&root->inode_lock); 5742 5743 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5744 synchronize_srcu(&fs_info->subvol_srcu); 5745 spin_lock(&root->inode_lock); 5746 empty = RB_EMPTY_ROOT(&root->inode_tree); 5747 spin_unlock(&root->inode_lock); 5748 if (empty) 5749 btrfs_add_dead_root(root); 5750 } 5751 } 5752 5753 5754 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5755 { 5756 struct btrfs_iget_args *args = p; 5757 inode->i_ino = args->location->objectid; 5758 memcpy(&BTRFS_I(inode)->location, args->location, 5759 sizeof(*args->location)); 5760 BTRFS_I(inode)->root = args->root; 5761 return 0; 5762 } 5763 5764 static int btrfs_find_actor(struct inode *inode, void *opaque) 5765 { 5766 struct btrfs_iget_args *args = opaque; 5767 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5768 args->root == BTRFS_I(inode)->root; 5769 } 5770 5771 static struct inode *btrfs_iget_locked(struct super_block *s, 5772 struct btrfs_key *location, 5773 struct btrfs_root *root) 5774 { 5775 struct inode *inode; 5776 struct btrfs_iget_args args; 5777 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5778 5779 args.location = location; 5780 args.root = root; 5781 5782 inode = iget5_locked(s, hashval, btrfs_find_actor, 5783 btrfs_init_locked_inode, 5784 (void *)&args); 5785 return inode; 5786 } 5787 5788 /* 5789 * Get an inode object given its location and corresponding root. 5790 * Path can be preallocated to prevent recursing back to iget through 5791 * allocator. NULL is also valid but may require an additional allocation 5792 * later. 5793 */ 5794 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5795 struct btrfs_root *root, struct btrfs_path *path) 5796 { 5797 struct inode *inode; 5798 5799 inode = btrfs_iget_locked(s, location, root); 5800 if (!inode) 5801 return ERR_PTR(-ENOMEM); 5802 5803 if (inode->i_state & I_NEW) { 5804 int ret; 5805 5806 ret = btrfs_read_locked_inode(inode, path); 5807 if (!ret) { 5808 inode_tree_add(inode); 5809 unlock_new_inode(inode); 5810 } else { 5811 iget_failed(inode); 5812 /* 5813 * ret > 0 can come from btrfs_search_slot called by 5814 * btrfs_read_locked_inode, this means the inode item 5815 * was not found. 5816 */ 5817 if (ret > 0) 5818 ret = -ENOENT; 5819 inode = ERR_PTR(ret); 5820 } 5821 } 5822 5823 return inode; 5824 } 5825 5826 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5827 struct btrfs_root *root) 5828 { 5829 return btrfs_iget_path(s, location, root, NULL); 5830 } 5831 5832 static struct inode *new_simple_dir(struct super_block *s, 5833 struct btrfs_key *key, 5834 struct btrfs_root *root) 5835 { 5836 struct inode *inode = new_inode(s); 5837 5838 if (!inode) 5839 return ERR_PTR(-ENOMEM); 5840 5841 BTRFS_I(inode)->root = root; 5842 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5843 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5844 5845 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5846 inode->i_op = &btrfs_dir_ro_inode_operations; 5847 inode->i_opflags &= ~IOP_XATTR; 5848 inode->i_fop = &simple_dir_operations; 5849 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5850 inode->i_mtime = current_time(inode); 5851 inode->i_atime = inode->i_mtime; 5852 inode->i_ctime = inode->i_mtime; 5853 BTRFS_I(inode)->i_otime = inode->i_mtime; 5854 5855 return inode; 5856 } 5857 5858 static inline u8 btrfs_inode_type(struct inode *inode) 5859 { 5860 /* 5861 * Compile-time asserts that generic FT_* types still match 5862 * BTRFS_FT_* types 5863 */ 5864 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5865 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5866 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5867 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5868 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5869 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5870 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5871 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5872 5873 return fs_umode_to_ftype(inode->i_mode); 5874 } 5875 5876 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5877 { 5878 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5879 struct inode *inode; 5880 struct btrfs_root *root = BTRFS_I(dir)->root; 5881 struct btrfs_root *sub_root = root; 5882 struct btrfs_key location; 5883 u8 di_type = 0; 5884 int index; 5885 int ret = 0; 5886 5887 if (dentry->d_name.len > BTRFS_NAME_LEN) 5888 return ERR_PTR(-ENAMETOOLONG); 5889 5890 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5891 if (ret < 0) 5892 return ERR_PTR(ret); 5893 5894 if (location.type == BTRFS_INODE_ITEM_KEY) { 5895 inode = btrfs_iget(dir->i_sb, &location, root); 5896 if (IS_ERR(inode)) 5897 return inode; 5898 5899 /* Do extra check against inode mode with di_type */ 5900 if (btrfs_inode_type(inode) != di_type) { 5901 btrfs_crit(fs_info, 5902 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5903 inode->i_mode, btrfs_inode_type(inode), 5904 di_type); 5905 iput(inode); 5906 return ERR_PTR(-EUCLEAN); 5907 } 5908 return inode; 5909 } 5910 5911 index = srcu_read_lock(&fs_info->subvol_srcu); 5912 ret = fixup_tree_root_location(fs_info, dir, dentry, 5913 &location, &sub_root); 5914 if (ret < 0) { 5915 if (ret != -ENOENT) 5916 inode = ERR_PTR(ret); 5917 else 5918 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5919 } else { 5920 inode = btrfs_iget(dir->i_sb, &location, sub_root); 5921 } 5922 srcu_read_unlock(&fs_info->subvol_srcu, index); 5923 5924 if (!IS_ERR(inode) && root != sub_root) { 5925 down_read(&fs_info->cleanup_work_sem); 5926 if (!sb_rdonly(inode->i_sb)) 5927 ret = btrfs_orphan_cleanup(sub_root); 5928 up_read(&fs_info->cleanup_work_sem); 5929 if (ret) { 5930 iput(inode); 5931 inode = ERR_PTR(ret); 5932 } 5933 } 5934 5935 return inode; 5936 } 5937 5938 static int btrfs_dentry_delete(const struct dentry *dentry) 5939 { 5940 struct btrfs_root *root; 5941 struct inode *inode = d_inode(dentry); 5942 5943 if (!inode && !IS_ROOT(dentry)) 5944 inode = d_inode(dentry->d_parent); 5945 5946 if (inode) { 5947 root = BTRFS_I(inode)->root; 5948 if (btrfs_root_refs(&root->root_item) == 0) 5949 return 1; 5950 5951 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5952 return 1; 5953 } 5954 return 0; 5955 } 5956 5957 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5958 unsigned int flags) 5959 { 5960 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5961 5962 if (inode == ERR_PTR(-ENOENT)) 5963 inode = NULL; 5964 return d_splice_alias(inode, dentry); 5965 } 5966 5967 /* 5968 * All this infrastructure exists because dir_emit can fault, and we are holding 5969 * the tree lock when doing readdir. For now just allocate a buffer and copy 5970 * our information into that, and then dir_emit from the buffer. This is 5971 * similar to what NFS does, only we don't keep the buffer around in pagecache 5972 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5973 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5974 * tree lock. 5975 */ 5976 static int btrfs_opendir(struct inode *inode, struct file *file) 5977 { 5978 struct btrfs_file_private *private; 5979 5980 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5981 if (!private) 5982 return -ENOMEM; 5983 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5984 if (!private->filldir_buf) { 5985 kfree(private); 5986 return -ENOMEM; 5987 } 5988 file->private_data = private; 5989 return 0; 5990 } 5991 5992 struct dir_entry { 5993 u64 ino; 5994 u64 offset; 5995 unsigned type; 5996 int name_len; 5997 }; 5998 5999 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6000 { 6001 while (entries--) { 6002 struct dir_entry *entry = addr; 6003 char *name = (char *)(entry + 1); 6004 6005 ctx->pos = get_unaligned(&entry->offset); 6006 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6007 get_unaligned(&entry->ino), 6008 get_unaligned(&entry->type))) 6009 return 1; 6010 addr += sizeof(struct dir_entry) + 6011 get_unaligned(&entry->name_len); 6012 ctx->pos++; 6013 } 6014 return 0; 6015 } 6016 6017 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6018 { 6019 struct inode *inode = file_inode(file); 6020 struct btrfs_root *root = BTRFS_I(inode)->root; 6021 struct btrfs_file_private *private = file->private_data; 6022 struct btrfs_dir_item *di; 6023 struct btrfs_key key; 6024 struct btrfs_key found_key; 6025 struct btrfs_path *path; 6026 void *addr; 6027 struct list_head ins_list; 6028 struct list_head del_list; 6029 int ret; 6030 struct extent_buffer *leaf; 6031 int slot; 6032 char *name_ptr; 6033 int name_len; 6034 int entries = 0; 6035 int total_len = 0; 6036 bool put = false; 6037 struct btrfs_key location; 6038 6039 if (!dir_emit_dots(file, ctx)) 6040 return 0; 6041 6042 path = btrfs_alloc_path(); 6043 if (!path) 6044 return -ENOMEM; 6045 6046 addr = private->filldir_buf; 6047 path->reada = READA_FORWARD; 6048 6049 INIT_LIST_HEAD(&ins_list); 6050 INIT_LIST_HEAD(&del_list); 6051 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 6052 6053 again: 6054 key.type = BTRFS_DIR_INDEX_KEY; 6055 key.offset = ctx->pos; 6056 key.objectid = btrfs_ino(BTRFS_I(inode)); 6057 6058 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6059 if (ret < 0) 6060 goto err; 6061 6062 while (1) { 6063 struct dir_entry *entry; 6064 6065 leaf = path->nodes[0]; 6066 slot = path->slots[0]; 6067 if (slot >= btrfs_header_nritems(leaf)) { 6068 ret = btrfs_next_leaf(root, path); 6069 if (ret < 0) 6070 goto err; 6071 else if (ret > 0) 6072 break; 6073 continue; 6074 } 6075 6076 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6077 6078 if (found_key.objectid != key.objectid) 6079 break; 6080 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6081 break; 6082 if (found_key.offset < ctx->pos) 6083 goto next; 6084 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6085 goto next; 6086 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6087 name_len = btrfs_dir_name_len(leaf, di); 6088 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6089 PAGE_SIZE) { 6090 btrfs_release_path(path); 6091 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6092 if (ret) 6093 goto nopos; 6094 addr = private->filldir_buf; 6095 entries = 0; 6096 total_len = 0; 6097 goto again; 6098 } 6099 6100 entry = addr; 6101 put_unaligned(name_len, &entry->name_len); 6102 name_ptr = (char *)(entry + 1); 6103 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6104 name_len); 6105 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6106 &entry->type); 6107 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6108 put_unaligned(location.objectid, &entry->ino); 6109 put_unaligned(found_key.offset, &entry->offset); 6110 entries++; 6111 addr += sizeof(struct dir_entry) + name_len; 6112 total_len += sizeof(struct dir_entry) + name_len; 6113 next: 6114 path->slots[0]++; 6115 } 6116 btrfs_release_path(path); 6117 6118 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6119 if (ret) 6120 goto nopos; 6121 6122 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6123 if (ret) 6124 goto nopos; 6125 6126 /* 6127 * Stop new entries from being returned after we return the last 6128 * entry. 6129 * 6130 * New directory entries are assigned a strictly increasing 6131 * offset. This means that new entries created during readdir 6132 * are *guaranteed* to be seen in the future by that readdir. 6133 * This has broken buggy programs which operate on names as 6134 * they're returned by readdir. Until we re-use freed offsets 6135 * we have this hack to stop new entries from being returned 6136 * under the assumption that they'll never reach this huge 6137 * offset. 6138 * 6139 * This is being careful not to overflow 32bit loff_t unless the 6140 * last entry requires it because doing so has broken 32bit apps 6141 * in the past. 6142 */ 6143 if (ctx->pos >= INT_MAX) 6144 ctx->pos = LLONG_MAX; 6145 else 6146 ctx->pos = INT_MAX; 6147 nopos: 6148 ret = 0; 6149 err: 6150 if (put) 6151 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6152 btrfs_free_path(path); 6153 return ret; 6154 } 6155 6156 /* 6157 * This is somewhat expensive, updating the tree every time the 6158 * inode changes. But, it is most likely to find the inode in cache. 6159 * FIXME, needs more benchmarking...there are no reasons other than performance 6160 * to keep or drop this code. 6161 */ 6162 static int btrfs_dirty_inode(struct inode *inode) 6163 { 6164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6165 struct btrfs_root *root = BTRFS_I(inode)->root; 6166 struct btrfs_trans_handle *trans; 6167 int ret; 6168 6169 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6170 return 0; 6171 6172 trans = btrfs_join_transaction(root); 6173 if (IS_ERR(trans)) 6174 return PTR_ERR(trans); 6175 6176 ret = btrfs_update_inode(trans, root, inode); 6177 if (ret && ret == -ENOSPC) { 6178 /* whoops, lets try again with the full transaction */ 6179 btrfs_end_transaction(trans); 6180 trans = btrfs_start_transaction(root, 1); 6181 if (IS_ERR(trans)) 6182 return PTR_ERR(trans); 6183 6184 ret = btrfs_update_inode(trans, root, inode); 6185 } 6186 btrfs_end_transaction(trans); 6187 if (BTRFS_I(inode)->delayed_node) 6188 btrfs_balance_delayed_items(fs_info); 6189 6190 return ret; 6191 } 6192 6193 /* 6194 * This is a copy of file_update_time. We need this so we can return error on 6195 * ENOSPC for updating the inode in the case of file write and mmap writes. 6196 */ 6197 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6198 int flags) 6199 { 6200 struct btrfs_root *root = BTRFS_I(inode)->root; 6201 bool dirty = flags & ~S_VERSION; 6202 6203 if (btrfs_root_readonly(root)) 6204 return -EROFS; 6205 6206 if (flags & S_VERSION) 6207 dirty |= inode_maybe_inc_iversion(inode, dirty); 6208 if (flags & S_CTIME) 6209 inode->i_ctime = *now; 6210 if (flags & S_MTIME) 6211 inode->i_mtime = *now; 6212 if (flags & S_ATIME) 6213 inode->i_atime = *now; 6214 return dirty ? btrfs_dirty_inode(inode) : 0; 6215 } 6216 6217 /* 6218 * find the highest existing sequence number in a directory 6219 * and then set the in-memory index_cnt variable to reflect 6220 * free sequence numbers 6221 */ 6222 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6223 { 6224 struct btrfs_root *root = inode->root; 6225 struct btrfs_key key, found_key; 6226 struct btrfs_path *path; 6227 struct extent_buffer *leaf; 6228 int ret; 6229 6230 key.objectid = btrfs_ino(inode); 6231 key.type = BTRFS_DIR_INDEX_KEY; 6232 key.offset = (u64)-1; 6233 6234 path = btrfs_alloc_path(); 6235 if (!path) 6236 return -ENOMEM; 6237 6238 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6239 if (ret < 0) 6240 goto out; 6241 /* FIXME: we should be able to handle this */ 6242 if (ret == 0) 6243 goto out; 6244 ret = 0; 6245 6246 /* 6247 * MAGIC NUMBER EXPLANATION: 6248 * since we search a directory based on f_pos we have to start at 2 6249 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6250 * else has to start at 2 6251 */ 6252 if (path->slots[0] == 0) { 6253 inode->index_cnt = 2; 6254 goto out; 6255 } 6256 6257 path->slots[0]--; 6258 6259 leaf = path->nodes[0]; 6260 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6261 6262 if (found_key.objectid != btrfs_ino(inode) || 6263 found_key.type != BTRFS_DIR_INDEX_KEY) { 6264 inode->index_cnt = 2; 6265 goto out; 6266 } 6267 6268 inode->index_cnt = found_key.offset + 1; 6269 out: 6270 btrfs_free_path(path); 6271 return ret; 6272 } 6273 6274 /* 6275 * helper to find a free sequence number in a given directory. This current 6276 * code is very simple, later versions will do smarter things in the btree 6277 */ 6278 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6279 { 6280 int ret = 0; 6281 6282 if (dir->index_cnt == (u64)-1) { 6283 ret = btrfs_inode_delayed_dir_index_count(dir); 6284 if (ret) { 6285 ret = btrfs_set_inode_index_count(dir); 6286 if (ret) 6287 return ret; 6288 } 6289 } 6290 6291 *index = dir->index_cnt; 6292 dir->index_cnt++; 6293 6294 return ret; 6295 } 6296 6297 static int btrfs_insert_inode_locked(struct inode *inode) 6298 { 6299 struct btrfs_iget_args args; 6300 args.location = &BTRFS_I(inode)->location; 6301 args.root = BTRFS_I(inode)->root; 6302 6303 return insert_inode_locked4(inode, 6304 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6305 btrfs_find_actor, &args); 6306 } 6307 6308 /* 6309 * Inherit flags from the parent inode. 6310 * 6311 * Currently only the compression flags and the cow flags are inherited. 6312 */ 6313 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6314 { 6315 unsigned int flags; 6316 6317 if (!dir) 6318 return; 6319 6320 flags = BTRFS_I(dir)->flags; 6321 6322 if (flags & BTRFS_INODE_NOCOMPRESS) { 6323 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6324 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6325 } else if (flags & BTRFS_INODE_COMPRESS) { 6326 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6327 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6328 } 6329 6330 if (flags & BTRFS_INODE_NODATACOW) { 6331 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6332 if (S_ISREG(inode->i_mode)) 6333 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6334 } 6335 6336 btrfs_sync_inode_flags_to_i_flags(inode); 6337 } 6338 6339 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6340 struct btrfs_root *root, 6341 struct inode *dir, 6342 const char *name, int name_len, 6343 u64 ref_objectid, u64 objectid, 6344 umode_t mode, u64 *index) 6345 { 6346 struct btrfs_fs_info *fs_info = root->fs_info; 6347 struct inode *inode; 6348 struct btrfs_inode_item *inode_item; 6349 struct btrfs_key *location; 6350 struct btrfs_path *path; 6351 struct btrfs_inode_ref *ref; 6352 struct btrfs_key key[2]; 6353 u32 sizes[2]; 6354 int nitems = name ? 2 : 1; 6355 unsigned long ptr; 6356 unsigned int nofs_flag; 6357 int ret; 6358 6359 path = btrfs_alloc_path(); 6360 if (!path) 6361 return ERR_PTR(-ENOMEM); 6362 6363 nofs_flag = memalloc_nofs_save(); 6364 inode = new_inode(fs_info->sb); 6365 memalloc_nofs_restore(nofs_flag); 6366 if (!inode) { 6367 btrfs_free_path(path); 6368 return ERR_PTR(-ENOMEM); 6369 } 6370 6371 /* 6372 * O_TMPFILE, set link count to 0, so that after this point, 6373 * we fill in an inode item with the correct link count. 6374 */ 6375 if (!name) 6376 set_nlink(inode, 0); 6377 6378 /* 6379 * we have to initialize this early, so we can reclaim the inode 6380 * number if we fail afterwards in this function. 6381 */ 6382 inode->i_ino = objectid; 6383 6384 if (dir && name) { 6385 trace_btrfs_inode_request(dir); 6386 6387 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6388 if (ret) { 6389 btrfs_free_path(path); 6390 iput(inode); 6391 return ERR_PTR(ret); 6392 } 6393 } else if (dir) { 6394 *index = 0; 6395 } 6396 /* 6397 * index_cnt is ignored for everything but a dir, 6398 * btrfs_set_inode_index_count has an explanation for the magic 6399 * number 6400 */ 6401 BTRFS_I(inode)->index_cnt = 2; 6402 BTRFS_I(inode)->dir_index = *index; 6403 BTRFS_I(inode)->root = root; 6404 BTRFS_I(inode)->generation = trans->transid; 6405 inode->i_generation = BTRFS_I(inode)->generation; 6406 6407 /* 6408 * We could have gotten an inode number from somebody who was fsynced 6409 * and then removed in this same transaction, so let's just set full 6410 * sync since it will be a full sync anyway and this will blow away the 6411 * old info in the log. 6412 */ 6413 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6414 6415 key[0].objectid = objectid; 6416 key[0].type = BTRFS_INODE_ITEM_KEY; 6417 key[0].offset = 0; 6418 6419 sizes[0] = sizeof(struct btrfs_inode_item); 6420 6421 if (name) { 6422 /* 6423 * Start new inodes with an inode_ref. This is slightly more 6424 * efficient for small numbers of hard links since they will 6425 * be packed into one item. Extended refs will kick in if we 6426 * add more hard links than can fit in the ref item. 6427 */ 6428 key[1].objectid = objectid; 6429 key[1].type = BTRFS_INODE_REF_KEY; 6430 key[1].offset = ref_objectid; 6431 6432 sizes[1] = name_len + sizeof(*ref); 6433 } 6434 6435 location = &BTRFS_I(inode)->location; 6436 location->objectid = objectid; 6437 location->offset = 0; 6438 location->type = BTRFS_INODE_ITEM_KEY; 6439 6440 ret = btrfs_insert_inode_locked(inode); 6441 if (ret < 0) { 6442 iput(inode); 6443 goto fail; 6444 } 6445 6446 path->leave_spinning = 1; 6447 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6448 if (ret != 0) 6449 goto fail_unlock; 6450 6451 inode_init_owner(inode, dir, mode); 6452 inode_set_bytes(inode, 0); 6453 6454 inode->i_mtime = current_time(inode); 6455 inode->i_atime = inode->i_mtime; 6456 inode->i_ctime = inode->i_mtime; 6457 BTRFS_I(inode)->i_otime = inode->i_mtime; 6458 6459 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6460 struct btrfs_inode_item); 6461 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6462 sizeof(*inode_item)); 6463 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6464 6465 if (name) { 6466 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6467 struct btrfs_inode_ref); 6468 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6469 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6470 ptr = (unsigned long)(ref + 1); 6471 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6472 } 6473 6474 btrfs_mark_buffer_dirty(path->nodes[0]); 6475 btrfs_free_path(path); 6476 6477 btrfs_inherit_iflags(inode, dir); 6478 6479 if (S_ISREG(mode)) { 6480 if (btrfs_test_opt(fs_info, NODATASUM)) 6481 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6482 if (btrfs_test_opt(fs_info, NODATACOW)) 6483 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6484 BTRFS_INODE_NODATASUM; 6485 } 6486 6487 inode_tree_add(inode); 6488 6489 trace_btrfs_inode_new(inode); 6490 btrfs_set_inode_last_trans(trans, inode); 6491 6492 btrfs_update_root_times(trans, root); 6493 6494 ret = btrfs_inode_inherit_props(trans, inode, dir); 6495 if (ret) 6496 btrfs_err(fs_info, 6497 "error inheriting props for ino %llu (root %llu): %d", 6498 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6499 6500 return inode; 6501 6502 fail_unlock: 6503 discard_new_inode(inode); 6504 fail: 6505 if (dir && name) 6506 BTRFS_I(dir)->index_cnt--; 6507 btrfs_free_path(path); 6508 return ERR_PTR(ret); 6509 } 6510 6511 /* 6512 * utility function to add 'inode' into 'parent_inode' with 6513 * a give name and a given sequence number. 6514 * if 'add_backref' is true, also insert a backref from the 6515 * inode to the parent directory. 6516 */ 6517 int btrfs_add_link(struct btrfs_trans_handle *trans, 6518 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6519 const char *name, int name_len, int add_backref, u64 index) 6520 { 6521 int ret = 0; 6522 struct btrfs_key key; 6523 struct btrfs_root *root = parent_inode->root; 6524 u64 ino = btrfs_ino(inode); 6525 u64 parent_ino = btrfs_ino(parent_inode); 6526 6527 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6528 memcpy(&key, &inode->root->root_key, sizeof(key)); 6529 } else { 6530 key.objectid = ino; 6531 key.type = BTRFS_INODE_ITEM_KEY; 6532 key.offset = 0; 6533 } 6534 6535 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6536 ret = btrfs_add_root_ref(trans, key.objectid, 6537 root->root_key.objectid, parent_ino, 6538 index, name, name_len); 6539 } else if (add_backref) { 6540 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6541 parent_ino, index); 6542 } 6543 6544 /* Nothing to clean up yet */ 6545 if (ret) 6546 return ret; 6547 6548 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6549 btrfs_inode_type(&inode->vfs_inode), index); 6550 if (ret == -EEXIST || ret == -EOVERFLOW) 6551 goto fail_dir_item; 6552 else if (ret) { 6553 btrfs_abort_transaction(trans, ret); 6554 return ret; 6555 } 6556 6557 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6558 name_len * 2); 6559 inode_inc_iversion(&parent_inode->vfs_inode); 6560 /* 6561 * If we are replaying a log tree, we do not want to update the mtime 6562 * and ctime of the parent directory with the current time, since the 6563 * log replay procedure is responsible for setting them to their correct 6564 * values (the ones it had when the fsync was done). 6565 */ 6566 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6567 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6568 6569 parent_inode->vfs_inode.i_mtime = now; 6570 parent_inode->vfs_inode.i_ctime = now; 6571 } 6572 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6573 if (ret) 6574 btrfs_abort_transaction(trans, ret); 6575 return ret; 6576 6577 fail_dir_item: 6578 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6579 u64 local_index; 6580 int err; 6581 err = btrfs_del_root_ref(trans, key.objectid, 6582 root->root_key.objectid, parent_ino, 6583 &local_index, name, name_len); 6584 if (err) 6585 btrfs_abort_transaction(trans, err); 6586 } else if (add_backref) { 6587 u64 local_index; 6588 int err; 6589 6590 err = btrfs_del_inode_ref(trans, root, name, name_len, 6591 ino, parent_ino, &local_index); 6592 if (err) 6593 btrfs_abort_transaction(trans, err); 6594 } 6595 6596 /* Return the original error code */ 6597 return ret; 6598 } 6599 6600 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6601 struct btrfs_inode *dir, struct dentry *dentry, 6602 struct btrfs_inode *inode, int backref, u64 index) 6603 { 6604 int err = btrfs_add_link(trans, dir, inode, 6605 dentry->d_name.name, dentry->d_name.len, 6606 backref, index); 6607 if (err > 0) 6608 err = -EEXIST; 6609 return err; 6610 } 6611 6612 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6613 umode_t mode, dev_t rdev) 6614 { 6615 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6616 struct btrfs_trans_handle *trans; 6617 struct btrfs_root *root = BTRFS_I(dir)->root; 6618 struct inode *inode = NULL; 6619 int err; 6620 u64 objectid; 6621 u64 index = 0; 6622 6623 /* 6624 * 2 for inode item and ref 6625 * 2 for dir items 6626 * 1 for xattr if selinux is on 6627 */ 6628 trans = btrfs_start_transaction(root, 5); 6629 if (IS_ERR(trans)) 6630 return PTR_ERR(trans); 6631 6632 err = btrfs_find_free_ino(root, &objectid); 6633 if (err) 6634 goto out_unlock; 6635 6636 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6637 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6638 mode, &index); 6639 if (IS_ERR(inode)) { 6640 err = PTR_ERR(inode); 6641 inode = NULL; 6642 goto out_unlock; 6643 } 6644 6645 /* 6646 * If the active LSM wants to access the inode during 6647 * d_instantiate it needs these. Smack checks to see 6648 * if the filesystem supports xattrs by looking at the 6649 * ops vector. 6650 */ 6651 inode->i_op = &btrfs_special_inode_operations; 6652 init_special_inode(inode, inode->i_mode, rdev); 6653 6654 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6655 if (err) 6656 goto out_unlock; 6657 6658 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6659 0, index); 6660 if (err) 6661 goto out_unlock; 6662 6663 btrfs_update_inode(trans, root, inode); 6664 d_instantiate_new(dentry, inode); 6665 6666 out_unlock: 6667 btrfs_end_transaction(trans); 6668 btrfs_btree_balance_dirty(fs_info); 6669 if (err && inode) { 6670 inode_dec_link_count(inode); 6671 discard_new_inode(inode); 6672 } 6673 return err; 6674 } 6675 6676 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6677 umode_t mode, bool excl) 6678 { 6679 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6680 struct btrfs_trans_handle *trans; 6681 struct btrfs_root *root = BTRFS_I(dir)->root; 6682 struct inode *inode = NULL; 6683 int err; 6684 u64 objectid; 6685 u64 index = 0; 6686 6687 /* 6688 * 2 for inode item and ref 6689 * 2 for dir items 6690 * 1 for xattr if selinux is on 6691 */ 6692 trans = btrfs_start_transaction(root, 5); 6693 if (IS_ERR(trans)) 6694 return PTR_ERR(trans); 6695 6696 err = btrfs_find_free_ino(root, &objectid); 6697 if (err) 6698 goto out_unlock; 6699 6700 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6701 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6702 mode, &index); 6703 if (IS_ERR(inode)) { 6704 err = PTR_ERR(inode); 6705 inode = NULL; 6706 goto out_unlock; 6707 } 6708 /* 6709 * If the active LSM wants to access the inode during 6710 * d_instantiate it needs these. Smack checks to see 6711 * if the filesystem supports xattrs by looking at the 6712 * ops vector. 6713 */ 6714 inode->i_fop = &btrfs_file_operations; 6715 inode->i_op = &btrfs_file_inode_operations; 6716 inode->i_mapping->a_ops = &btrfs_aops; 6717 6718 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6719 if (err) 6720 goto out_unlock; 6721 6722 err = btrfs_update_inode(trans, root, inode); 6723 if (err) 6724 goto out_unlock; 6725 6726 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6727 0, index); 6728 if (err) 6729 goto out_unlock; 6730 6731 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6732 d_instantiate_new(dentry, inode); 6733 6734 out_unlock: 6735 btrfs_end_transaction(trans); 6736 if (err && inode) { 6737 inode_dec_link_count(inode); 6738 discard_new_inode(inode); 6739 } 6740 btrfs_btree_balance_dirty(fs_info); 6741 return err; 6742 } 6743 6744 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6745 struct dentry *dentry) 6746 { 6747 struct btrfs_trans_handle *trans = NULL; 6748 struct btrfs_root *root = BTRFS_I(dir)->root; 6749 struct inode *inode = d_inode(old_dentry); 6750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6751 u64 index; 6752 int err; 6753 int drop_inode = 0; 6754 6755 /* do not allow sys_link's with other subvols of the same device */ 6756 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6757 return -EXDEV; 6758 6759 if (inode->i_nlink >= BTRFS_LINK_MAX) 6760 return -EMLINK; 6761 6762 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6763 if (err) 6764 goto fail; 6765 6766 /* 6767 * 2 items for inode and inode ref 6768 * 2 items for dir items 6769 * 1 item for parent inode 6770 * 1 item for orphan item deletion if O_TMPFILE 6771 */ 6772 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6773 if (IS_ERR(trans)) { 6774 err = PTR_ERR(trans); 6775 trans = NULL; 6776 goto fail; 6777 } 6778 6779 /* There are several dir indexes for this inode, clear the cache. */ 6780 BTRFS_I(inode)->dir_index = 0ULL; 6781 inc_nlink(inode); 6782 inode_inc_iversion(inode); 6783 inode->i_ctime = current_time(inode); 6784 ihold(inode); 6785 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6786 6787 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6788 1, index); 6789 6790 if (err) { 6791 drop_inode = 1; 6792 } else { 6793 struct dentry *parent = dentry->d_parent; 6794 int ret; 6795 6796 err = btrfs_update_inode(trans, root, inode); 6797 if (err) 6798 goto fail; 6799 if (inode->i_nlink == 1) { 6800 /* 6801 * If new hard link count is 1, it's a file created 6802 * with open(2) O_TMPFILE flag. 6803 */ 6804 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6805 if (err) 6806 goto fail; 6807 } 6808 d_instantiate(dentry, inode); 6809 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6810 true, NULL); 6811 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6812 err = btrfs_commit_transaction(trans); 6813 trans = NULL; 6814 } 6815 } 6816 6817 fail: 6818 if (trans) 6819 btrfs_end_transaction(trans); 6820 if (drop_inode) { 6821 inode_dec_link_count(inode); 6822 iput(inode); 6823 } 6824 btrfs_btree_balance_dirty(fs_info); 6825 return err; 6826 } 6827 6828 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6829 { 6830 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6831 struct inode *inode = NULL; 6832 struct btrfs_trans_handle *trans; 6833 struct btrfs_root *root = BTRFS_I(dir)->root; 6834 int err = 0; 6835 u64 objectid = 0; 6836 u64 index = 0; 6837 6838 /* 6839 * 2 items for inode and ref 6840 * 2 items for dir items 6841 * 1 for xattr if selinux is on 6842 */ 6843 trans = btrfs_start_transaction(root, 5); 6844 if (IS_ERR(trans)) 6845 return PTR_ERR(trans); 6846 6847 err = btrfs_find_free_ino(root, &objectid); 6848 if (err) 6849 goto out_fail; 6850 6851 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6852 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6853 S_IFDIR | mode, &index); 6854 if (IS_ERR(inode)) { 6855 err = PTR_ERR(inode); 6856 inode = NULL; 6857 goto out_fail; 6858 } 6859 6860 /* these must be set before we unlock the inode */ 6861 inode->i_op = &btrfs_dir_inode_operations; 6862 inode->i_fop = &btrfs_dir_file_operations; 6863 6864 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6865 if (err) 6866 goto out_fail; 6867 6868 btrfs_i_size_write(BTRFS_I(inode), 0); 6869 err = btrfs_update_inode(trans, root, inode); 6870 if (err) 6871 goto out_fail; 6872 6873 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6874 dentry->d_name.name, 6875 dentry->d_name.len, 0, index); 6876 if (err) 6877 goto out_fail; 6878 6879 d_instantiate_new(dentry, inode); 6880 6881 out_fail: 6882 btrfs_end_transaction(trans); 6883 if (err && inode) { 6884 inode_dec_link_count(inode); 6885 discard_new_inode(inode); 6886 } 6887 btrfs_btree_balance_dirty(fs_info); 6888 return err; 6889 } 6890 6891 static noinline int uncompress_inline(struct btrfs_path *path, 6892 struct page *page, 6893 size_t pg_offset, u64 extent_offset, 6894 struct btrfs_file_extent_item *item) 6895 { 6896 int ret; 6897 struct extent_buffer *leaf = path->nodes[0]; 6898 char *tmp; 6899 size_t max_size; 6900 unsigned long inline_size; 6901 unsigned long ptr; 6902 int compress_type; 6903 6904 WARN_ON(pg_offset != 0); 6905 compress_type = btrfs_file_extent_compression(leaf, item); 6906 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6907 inline_size = btrfs_file_extent_inline_item_len(leaf, 6908 btrfs_item_nr(path->slots[0])); 6909 tmp = kmalloc(inline_size, GFP_NOFS); 6910 if (!tmp) 6911 return -ENOMEM; 6912 ptr = btrfs_file_extent_inline_start(item); 6913 6914 read_extent_buffer(leaf, tmp, ptr, inline_size); 6915 6916 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6917 ret = btrfs_decompress(compress_type, tmp, page, 6918 extent_offset, inline_size, max_size); 6919 6920 /* 6921 * decompression code contains a memset to fill in any space between the end 6922 * of the uncompressed data and the end of max_size in case the decompressed 6923 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6924 * the end of an inline extent and the beginning of the next block, so we 6925 * cover that region here. 6926 */ 6927 6928 if (max_size + pg_offset < PAGE_SIZE) { 6929 char *map = kmap(page); 6930 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6931 kunmap(page); 6932 } 6933 kfree(tmp); 6934 return ret; 6935 } 6936 6937 /* 6938 * a bit scary, this does extent mapping from logical file offset to the disk. 6939 * the ugly parts come from merging extents from the disk with the in-ram 6940 * representation. This gets more complex because of the data=ordered code, 6941 * where the in-ram extents might be locked pending data=ordered completion. 6942 * 6943 * This also copies inline extents directly into the page. 6944 */ 6945 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6946 struct page *page, 6947 size_t pg_offset, u64 start, u64 len, 6948 int create) 6949 { 6950 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6951 int ret; 6952 int err = 0; 6953 u64 extent_start = 0; 6954 u64 extent_end = 0; 6955 u64 objectid = btrfs_ino(inode); 6956 int extent_type = -1; 6957 struct btrfs_path *path = NULL; 6958 struct btrfs_root *root = inode->root; 6959 struct btrfs_file_extent_item *item; 6960 struct extent_buffer *leaf; 6961 struct btrfs_key found_key; 6962 struct extent_map *em = NULL; 6963 struct extent_map_tree *em_tree = &inode->extent_tree; 6964 struct extent_io_tree *io_tree = &inode->io_tree; 6965 const bool new_inline = !page || create; 6966 6967 read_lock(&em_tree->lock); 6968 em = lookup_extent_mapping(em_tree, start, len); 6969 read_unlock(&em_tree->lock); 6970 6971 if (em) { 6972 if (em->start > start || em->start + em->len <= start) 6973 free_extent_map(em); 6974 else if (em->block_start == EXTENT_MAP_INLINE && page) 6975 free_extent_map(em); 6976 else 6977 goto out; 6978 } 6979 em = alloc_extent_map(); 6980 if (!em) { 6981 err = -ENOMEM; 6982 goto out; 6983 } 6984 em->start = EXTENT_MAP_HOLE; 6985 em->orig_start = EXTENT_MAP_HOLE; 6986 em->len = (u64)-1; 6987 em->block_len = (u64)-1; 6988 6989 path = btrfs_alloc_path(); 6990 if (!path) { 6991 err = -ENOMEM; 6992 goto out; 6993 } 6994 6995 /* Chances are we'll be called again, so go ahead and do readahead */ 6996 path->reada = READA_FORWARD; 6997 6998 /* 6999 * Unless we're going to uncompress the inline extent, no sleep would 7000 * happen. 7001 */ 7002 path->leave_spinning = 1; 7003 7004 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7005 if (ret < 0) { 7006 err = ret; 7007 goto out; 7008 } else if (ret > 0) { 7009 if (path->slots[0] == 0) 7010 goto not_found; 7011 path->slots[0]--; 7012 } 7013 7014 leaf = path->nodes[0]; 7015 item = btrfs_item_ptr(leaf, path->slots[0], 7016 struct btrfs_file_extent_item); 7017 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7018 if (found_key.objectid != objectid || 7019 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7020 /* 7021 * If we backup past the first extent we want to move forward 7022 * and see if there is an extent in front of us, otherwise we'll 7023 * say there is a hole for our whole search range which can 7024 * cause problems. 7025 */ 7026 extent_end = start; 7027 goto next; 7028 } 7029 7030 extent_type = btrfs_file_extent_type(leaf, item); 7031 extent_start = found_key.offset; 7032 if (extent_type == BTRFS_FILE_EXTENT_REG || 7033 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7034 /* Only regular file could have regular/prealloc extent */ 7035 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7036 ret = -EUCLEAN; 7037 btrfs_crit(fs_info, 7038 "regular/prealloc extent found for non-regular inode %llu", 7039 btrfs_ino(inode)); 7040 goto out; 7041 } 7042 extent_end = extent_start + 7043 btrfs_file_extent_num_bytes(leaf, item); 7044 7045 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7046 extent_start); 7047 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7048 size_t size; 7049 7050 size = btrfs_file_extent_ram_bytes(leaf, item); 7051 extent_end = ALIGN(extent_start + size, 7052 fs_info->sectorsize); 7053 7054 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7055 path->slots[0], 7056 extent_start); 7057 } 7058 next: 7059 if (start >= extent_end) { 7060 path->slots[0]++; 7061 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7062 ret = btrfs_next_leaf(root, path); 7063 if (ret < 0) { 7064 err = ret; 7065 goto out; 7066 } else if (ret > 0) { 7067 goto not_found; 7068 } 7069 leaf = path->nodes[0]; 7070 } 7071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7072 if (found_key.objectid != objectid || 7073 found_key.type != BTRFS_EXTENT_DATA_KEY) 7074 goto not_found; 7075 if (start + len <= found_key.offset) 7076 goto not_found; 7077 if (start > found_key.offset) 7078 goto next; 7079 7080 /* New extent overlaps with existing one */ 7081 em->start = start; 7082 em->orig_start = start; 7083 em->len = found_key.offset - start; 7084 em->block_start = EXTENT_MAP_HOLE; 7085 goto insert; 7086 } 7087 7088 btrfs_extent_item_to_extent_map(inode, path, item, 7089 new_inline, em); 7090 7091 if (extent_type == BTRFS_FILE_EXTENT_REG || 7092 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7093 goto insert; 7094 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7095 unsigned long ptr; 7096 char *map; 7097 size_t size; 7098 size_t extent_offset; 7099 size_t copy_size; 7100 7101 if (new_inline) 7102 goto out; 7103 7104 size = btrfs_file_extent_ram_bytes(leaf, item); 7105 extent_offset = page_offset(page) + pg_offset - extent_start; 7106 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7107 size - extent_offset); 7108 em->start = extent_start + extent_offset; 7109 em->len = ALIGN(copy_size, fs_info->sectorsize); 7110 em->orig_block_len = em->len; 7111 em->orig_start = em->start; 7112 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7113 7114 btrfs_set_path_blocking(path); 7115 if (!PageUptodate(page)) { 7116 if (btrfs_file_extent_compression(leaf, item) != 7117 BTRFS_COMPRESS_NONE) { 7118 ret = uncompress_inline(path, page, pg_offset, 7119 extent_offset, item); 7120 if (ret) { 7121 err = ret; 7122 goto out; 7123 } 7124 } else { 7125 map = kmap(page); 7126 read_extent_buffer(leaf, map + pg_offset, ptr, 7127 copy_size); 7128 if (pg_offset + copy_size < PAGE_SIZE) { 7129 memset(map + pg_offset + copy_size, 0, 7130 PAGE_SIZE - pg_offset - 7131 copy_size); 7132 } 7133 kunmap(page); 7134 } 7135 flush_dcache_page(page); 7136 } 7137 set_extent_uptodate(io_tree, em->start, 7138 extent_map_end(em) - 1, NULL, GFP_NOFS); 7139 goto insert; 7140 } 7141 not_found: 7142 em->start = start; 7143 em->orig_start = start; 7144 em->len = len; 7145 em->block_start = EXTENT_MAP_HOLE; 7146 insert: 7147 btrfs_release_path(path); 7148 if (em->start > start || extent_map_end(em) <= start) { 7149 btrfs_err(fs_info, 7150 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7151 em->start, em->len, start, len); 7152 err = -EIO; 7153 goto out; 7154 } 7155 7156 err = 0; 7157 write_lock(&em_tree->lock); 7158 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7159 write_unlock(&em_tree->lock); 7160 out: 7161 btrfs_free_path(path); 7162 7163 trace_btrfs_get_extent(root, inode, em); 7164 7165 if (err) { 7166 free_extent_map(em); 7167 return ERR_PTR(err); 7168 } 7169 BUG_ON(!em); /* Error is always set */ 7170 return em; 7171 } 7172 7173 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7174 u64 start, u64 len) 7175 { 7176 struct extent_map *em; 7177 struct extent_map *hole_em = NULL; 7178 u64 delalloc_start = start; 7179 u64 end; 7180 u64 delalloc_len; 7181 u64 delalloc_end; 7182 int err = 0; 7183 7184 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7185 if (IS_ERR(em)) 7186 return em; 7187 /* 7188 * If our em maps to: 7189 * - a hole or 7190 * - a pre-alloc extent, 7191 * there might actually be delalloc bytes behind it. 7192 */ 7193 if (em->block_start != EXTENT_MAP_HOLE && 7194 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7195 return em; 7196 else 7197 hole_em = em; 7198 7199 /* check to see if we've wrapped (len == -1 or similar) */ 7200 end = start + len; 7201 if (end < start) 7202 end = (u64)-1; 7203 else 7204 end -= 1; 7205 7206 em = NULL; 7207 7208 /* ok, we didn't find anything, lets look for delalloc */ 7209 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7210 end, len, EXTENT_DELALLOC, 1); 7211 delalloc_end = delalloc_start + delalloc_len; 7212 if (delalloc_end < delalloc_start) 7213 delalloc_end = (u64)-1; 7214 7215 /* 7216 * We didn't find anything useful, return the original results from 7217 * get_extent() 7218 */ 7219 if (delalloc_start > end || delalloc_end <= start) { 7220 em = hole_em; 7221 hole_em = NULL; 7222 goto out; 7223 } 7224 7225 /* 7226 * Adjust the delalloc_start to make sure it doesn't go backwards from 7227 * the start they passed in 7228 */ 7229 delalloc_start = max(start, delalloc_start); 7230 delalloc_len = delalloc_end - delalloc_start; 7231 7232 if (delalloc_len > 0) { 7233 u64 hole_start; 7234 u64 hole_len; 7235 const u64 hole_end = extent_map_end(hole_em); 7236 7237 em = alloc_extent_map(); 7238 if (!em) { 7239 err = -ENOMEM; 7240 goto out; 7241 } 7242 7243 ASSERT(hole_em); 7244 /* 7245 * When btrfs_get_extent can't find anything it returns one 7246 * huge hole 7247 * 7248 * Make sure what it found really fits our range, and adjust to 7249 * make sure it is based on the start from the caller 7250 */ 7251 if (hole_end <= start || hole_em->start > end) { 7252 free_extent_map(hole_em); 7253 hole_em = NULL; 7254 } else { 7255 hole_start = max(hole_em->start, start); 7256 hole_len = hole_end - hole_start; 7257 } 7258 7259 if (hole_em && delalloc_start > hole_start) { 7260 /* 7261 * Our hole starts before our delalloc, so we have to 7262 * return just the parts of the hole that go until the 7263 * delalloc starts 7264 */ 7265 em->len = min(hole_len, delalloc_start - hole_start); 7266 em->start = hole_start; 7267 em->orig_start = hole_start; 7268 /* 7269 * Don't adjust block start at all, it is fixed at 7270 * EXTENT_MAP_HOLE 7271 */ 7272 em->block_start = hole_em->block_start; 7273 em->block_len = hole_len; 7274 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7275 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7276 } else { 7277 /* 7278 * Hole is out of passed range or it starts after 7279 * delalloc range 7280 */ 7281 em->start = delalloc_start; 7282 em->len = delalloc_len; 7283 em->orig_start = delalloc_start; 7284 em->block_start = EXTENT_MAP_DELALLOC; 7285 em->block_len = delalloc_len; 7286 } 7287 } else { 7288 return hole_em; 7289 } 7290 out: 7291 7292 free_extent_map(hole_em); 7293 if (err) { 7294 free_extent_map(em); 7295 return ERR_PTR(err); 7296 } 7297 return em; 7298 } 7299 7300 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7301 const u64 start, 7302 const u64 len, 7303 const u64 orig_start, 7304 const u64 block_start, 7305 const u64 block_len, 7306 const u64 orig_block_len, 7307 const u64 ram_bytes, 7308 const int type) 7309 { 7310 struct extent_map *em = NULL; 7311 int ret; 7312 7313 if (type != BTRFS_ORDERED_NOCOW) { 7314 em = create_io_em(inode, start, len, orig_start, 7315 block_start, block_len, orig_block_len, 7316 ram_bytes, 7317 BTRFS_COMPRESS_NONE, /* compress_type */ 7318 type); 7319 if (IS_ERR(em)) 7320 goto out; 7321 } 7322 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7323 len, block_len, type); 7324 if (ret) { 7325 if (em) { 7326 free_extent_map(em); 7327 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7328 start + len - 1, 0); 7329 } 7330 em = ERR_PTR(ret); 7331 } 7332 out: 7333 7334 return em; 7335 } 7336 7337 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7338 u64 start, u64 len) 7339 { 7340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7341 struct btrfs_root *root = BTRFS_I(inode)->root; 7342 struct extent_map *em; 7343 struct btrfs_key ins; 7344 u64 alloc_hint; 7345 int ret; 7346 7347 alloc_hint = get_extent_allocation_hint(inode, start, len); 7348 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7349 0, alloc_hint, &ins, 1, 1); 7350 if (ret) 7351 return ERR_PTR(ret); 7352 7353 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7354 ins.objectid, ins.offset, ins.offset, 7355 ins.offset, BTRFS_ORDERED_REGULAR); 7356 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7357 if (IS_ERR(em)) 7358 btrfs_free_reserved_extent(fs_info, ins.objectid, 7359 ins.offset, 1); 7360 7361 return em; 7362 } 7363 7364 /* 7365 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7366 * block must be cow'd 7367 */ 7368 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7369 u64 *orig_start, u64 *orig_block_len, 7370 u64 *ram_bytes) 7371 { 7372 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7373 struct btrfs_path *path; 7374 int ret; 7375 struct extent_buffer *leaf; 7376 struct btrfs_root *root = BTRFS_I(inode)->root; 7377 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7378 struct btrfs_file_extent_item *fi; 7379 struct btrfs_key key; 7380 u64 disk_bytenr; 7381 u64 backref_offset; 7382 u64 extent_end; 7383 u64 num_bytes; 7384 int slot; 7385 int found_type; 7386 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7387 7388 path = btrfs_alloc_path(); 7389 if (!path) 7390 return -ENOMEM; 7391 7392 ret = btrfs_lookup_file_extent(NULL, root, path, 7393 btrfs_ino(BTRFS_I(inode)), offset, 0); 7394 if (ret < 0) 7395 goto out; 7396 7397 slot = path->slots[0]; 7398 if (ret == 1) { 7399 if (slot == 0) { 7400 /* can't find the item, must cow */ 7401 ret = 0; 7402 goto out; 7403 } 7404 slot--; 7405 } 7406 ret = 0; 7407 leaf = path->nodes[0]; 7408 btrfs_item_key_to_cpu(leaf, &key, slot); 7409 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7410 key.type != BTRFS_EXTENT_DATA_KEY) { 7411 /* not our file or wrong item type, must cow */ 7412 goto out; 7413 } 7414 7415 if (key.offset > offset) { 7416 /* Wrong offset, must cow */ 7417 goto out; 7418 } 7419 7420 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7421 found_type = btrfs_file_extent_type(leaf, fi); 7422 if (found_type != BTRFS_FILE_EXTENT_REG && 7423 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7424 /* not a regular extent, must cow */ 7425 goto out; 7426 } 7427 7428 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7429 goto out; 7430 7431 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7432 if (extent_end <= offset) 7433 goto out; 7434 7435 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7436 if (disk_bytenr == 0) 7437 goto out; 7438 7439 if (btrfs_file_extent_compression(leaf, fi) || 7440 btrfs_file_extent_encryption(leaf, fi) || 7441 btrfs_file_extent_other_encoding(leaf, fi)) 7442 goto out; 7443 7444 /* 7445 * Do the same check as in btrfs_cross_ref_exist but without the 7446 * unnecessary search. 7447 */ 7448 if (btrfs_file_extent_generation(leaf, fi) <= 7449 btrfs_root_last_snapshot(&root->root_item)) 7450 goto out; 7451 7452 backref_offset = btrfs_file_extent_offset(leaf, fi); 7453 7454 if (orig_start) { 7455 *orig_start = key.offset - backref_offset; 7456 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7457 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7458 } 7459 7460 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7461 goto out; 7462 7463 num_bytes = min(offset + *len, extent_end) - offset; 7464 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7465 u64 range_end; 7466 7467 range_end = round_up(offset + num_bytes, 7468 root->fs_info->sectorsize) - 1; 7469 ret = test_range_bit(io_tree, offset, range_end, 7470 EXTENT_DELALLOC, 0, NULL); 7471 if (ret) { 7472 ret = -EAGAIN; 7473 goto out; 7474 } 7475 } 7476 7477 btrfs_release_path(path); 7478 7479 /* 7480 * look for other files referencing this extent, if we 7481 * find any we must cow 7482 */ 7483 7484 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7485 key.offset - backref_offset, disk_bytenr); 7486 if (ret) { 7487 ret = 0; 7488 goto out; 7489 } 7490 7491 /* 7492 * adjust disk_bytenr and num_bytes to cover just the bytes 7493 * in this extent we are about to write. If there 7494 * are any csums in that range we have to cow in order 7495 * to keep the csums correct 7496 */ 7497 disk_bytenr += backref_offset; 7498 disk_bytenr += offset - key.offset; 7499 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7500 goto out; 7501 /* 7502 * all of the above have passed, it is safe to overwrite this extent 7503 * without cow 7504 */ 7505 *len = num_bytes; 7506 ret = 1; 7507 out: 7508 btrfs_free_path(path); 7509 return ret; 7510 } 7511 7512 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7513 struct extent_state **cached_state, int writing) 7514 { 7515 struct btrfs_ordered_extent *ordered; 7516 int ret = 0; 7517 7518 while (1) { 7519 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7520 cached_state); 7521 /* 7522 * We're concerned with the entire range that we're going to be 7523 * doing DIO to, so we need to make sure there's no ordered 7524 * extents in this range. 7525 */ 7526 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7527 lockend - lockstart + 1); 7528 7529 /* 7530 * We need to make sure there are no buffered pages in this 7531 * range either, we could have raced between the invalidate in 7532 * generic_file_direct_write and locking the extent. The 7533 * invalidate needs to happen so that reads after a write do not 7534 * get stale data. 7535 */ 7536 if (!ordered && 7537 (!writing || !filemap_range_has_page(inode->i_mapping, 7538 lockstart, lockend))) 7539 break; 7540 7541 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7542 cached_state); 7543 7544 if (ordered) { 7545 /* 7546 * If we are doing a DIO read and the ordered extent we 7547 * found is for a buffered write, we can not wait for it 7548 * to complete and retry, because if we do so we can 7549 * deadlock with concurrent buffered writes on page 7550 * locks. This happens only if our DIO read covers more 7551 * than one extent map, if at this point has already 7552 * created an ordered extent for a previous extent map 7553 * and locked its range in the inode's io tree, and a 7554 * concurrent write against that previous extent map's 7555 * range and this range started (we unlock the ranges 7556 * in the io tree only when the bios complete and 7557 * buffered writes always lock pages before attempting 7558 * to lock range in the io tree). 7559 */ 7560 if (writing || 7561 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7562 btrfs_start_ordered_extent(inode, ordered, 1); 7563 else 7564 ret = -ENOTBLK; 7565 btrfs_put_ordered_extent(ordered); 7566 } else { 7567 /* 7568 * We could trigger writeback for this range (and wait 7569 * for it to complete) and then invalidate the pages for 7570 * this range (through invalidate_inode_pages2_range()), 7571 * but that can lead us to a deadlock with a concurrent 7572 * call to readpages() (a buffered read or a defrag call 7573 * triggered a readahead) on a page lock due to an 7574 * ordered dio extent we created before but did not have 7575 * yet a corresponding bio submitted (whence it can not 7576 * complete), which makes readpages() wait for that 7577 * ordered extent to complete while holding a lock on 7578 * that page. 7579 */ 7580 ret = -ENOTBLK; 7581 } 7582 7583 if (ret) 7584 break; 7585 7586 cond_resched(); 7587 } 7588 7589 return ret; 7590 } 7591 7592 /* The callers of this must take lock_extent() */ 7593 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7594 u64 orig_start, u64 block_start, 7595 u64 block_len, u64 orig_block_len, 7596 u64 ram_bytes, int compress_type, 7597 int type) 7598 { 7599 struct extent_map_tree *em_tree; 7600 struct extent_map *em; 7601 int ret; 7602 7603 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7604 type == BTRFS_ORDERED_COMPRESSED || 7605 type == BTRFS_ORDERED_NOCOW || 7606 type == BTRFS_ORDERED_REGULAR); 7607 7608 em_tree = &BTRFS_I(inode)->extent_tree; 7609 em = alloc_extent_map(); 7610 if (!em) 7611 return ERR_PTR(-ENOMEM); 7612 7613 em->start = start; 7614 em->orig_start = orig_start; 7615 em->len = len; 7616 em->block_len = block_len; 7617 em->block_start = block_start; 7618 em->orig_block_len = orig_block_len; 7619 em->ram_bytes = ram_bytes; 7620 em->generation = -1; 7621 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7622 if (type == BTRFS_ORDERED_PREALLOC) { 7623 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7624 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7625 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7626 em->compress_type = compress_type; 7627 } 7628 7629 do { 7630 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7631 em->start + em->len - 1, 0); 7632 write_lock(&em_tree->lock); 7633 ret = add_extent_mapping(em_tree, em, 1); 7634 write_unlock(&em_tree->lock); 7635 /* 7636 * The caller has taken lock_extent(), who could race with us 7637 * to add em? 7638 */ 7639 } while (ret == -EEXIST); 7640 7641 if (ret) { 7642 free_extent_map(em); 7643 return ERR_PTR(ret); 7644 } 7645 7646 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7647 return em; 7648 } 7649 7650 7651 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7652 struct buffer_head *bh_result, 7653 struct inode *inode, 7654 u64 start, u64 len) 7655 { 7656 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7657 7658 if (em->block_start == EXTENT_MAP_HOLE || 7659 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7660 return -ENOENT; 7661 7662 len = min(len, em->len - (start - em->start)); 7663 7664 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7665 inode->i_blkbits; 7666 bh_result->b_size = len; 7667 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7668 set_buffer_mapped(bh_result); 7669 7670 return 0; 7671 } 7672 7673 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7674 struct buffer_head *bh_result, 7675 struct inode *inode, 7676 struct btrfs_dio_data *dio_data, 7677 u64 start, u64 len) 7678 { 7679 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7680 struct extent_map *em = *map; 7681 int ret = 0; 7682 7683 /* 7684 * We don't allocate a new extent in the following cases 7685 * 7686 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7687 * existing extent. 7688 * 2) The extent is marked as PREALLOC. We're good to go here and can 7689 * just use the extent. 7690 * 7691 */ 7692 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7693 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7694 em->block_start != EXTENT_MAP_HOLE)) { 7695 int type; 7696 u64 block_start, orig_start, orig_block_len, ram_bytes; 7697 7698 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7699 type = BTRFS_ORDERED_PREALLOC; 7700 else 7701 type = BTRFS_ORDERED_NOCOW; 7702 len = min(len, em->len - (start - em->start)); 7703 block_start = em->block_start + (start - em->start); 7704 7705 if (can_nocow_extent(inode, start, &len, &orig_start, 7706 &orig_block_len, &ram_bytes) == 1 && 7707 btrfs_inc_nocow_writers(fs_info, block_start)) { 7708 struct extent_map *em2; 7709 7710 em2 = btrfs_create_dio_extent(inode, start, len, 7711 orig_start, block_start, 7712 len, orig_block_len, 7713 ram_bytes, type); 7714 btrfs_dec_nocow_writers(fs_info, block_start); 7715 if (type == BTRFS_ORDERED_PREALLOC) { 7716 free_extent_map(em); 7717 *map = em = em2; 7718 } 7719 7720 if (em2 && IS_ERR(em2)) { 7721 ret = PTR_ERR(em2); 7722 goto out; 7723 } 7724 /* 7725 * For inode marked NODATACOW or extent marked PREALLOC, 7726 * use the existing or preallocated extent, so does not 7727 * need to adjust btrfs_space_info's bytes_may_use. 7728 */ 7729 btrfs_free_reserved_data_space_noquota(inode, start, 7730 len); 7731 goto skip_cow; 7732 } 7733 } 7734 7735 /* this will cow the extent */ 7736 len = bh_result->b_size; 7737 free_extent_map(em); 7738 *map = em = btrfs_new_extent_direct(inode, start, len); 7739 if (IS_ERR(em)) { 7740 ret = PTR_ERR(em); 7741 goto out; 7742 } 7743 7744 len = min(len, em->len - (start - em->start)); 7745 7746 skip_cow: 7747 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7748 inode->i_blkbits; 7749 bh_result->b_size = len; 7750 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7751 set_buffer_mapped(bh_result); 7752 7753 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7754 set_buffer_new(bh_result); 7755 7756 /* 7757 * Need to update the i_size under the extent lock so buffered 7758 * readers will get the updated i_size when we unlock. 7759 */ 7760 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7761 i_size_write(inode, start + len); 7762 7763 WARN_ON(dio_data->reserve < len); 7764 dio_data->reserve -= len; 7765 dio_data->unsubmitted_oe_range_end = start + len; 7766 current->journal_info = dio_data; 7767 out: 7768 return ret; 7769 } 7770 7771 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7772 struct buffer_head *bh_result, int create) 7773 { 7774 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7775 struct extent_map *em; 7776 struct extent_state *cached_state = NULL; 7777 struct btrfs_dio_data *dio_data = NULL; 7778 u64 start = iblock << inode->i_blkbits; 7779 u64 lockstart, lockend; 7780 u64 len = bh_result->b_size; 7781 int ret = 0; 7782 7783 if (!create) 7784 len = min_t(u64, len, fs_info->sectorsize); 7785 7786 lockstart = start; 7787 lockend = start + len - 1; 7788 7789 if (current->journal_info) { 7790 /* 7791 * Need to pull our outstanding extents and set journal_info to NULL so 7792 * that anything that needs to check if there's a transaction doesn't get 7793 * confused. 7794 */ 7795 dio_data = current->journal_info; 7796 current->journal_info = NULL; 7797 } 7798 7799 /* 7800 * If this errors out it's because we couldn't invalidate pagecache for 7801 * this range and we need to fallback to buffered. 7802 */ 7803 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7804 create)) { 7805 ret = -ENOTBLK; 7806 goto err; 7807 } 7808 7809 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7810 if (IS_ERR(em)) { 7811 ret = PTR_ERR(em); 7812 goto unlock_err; 7813 } 7814 7815 /* 7816 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7817 * io. INLINE is special, and we could probably kludge it in here, but 7818 * it's still buffered so for safety lets just fall back to the generic 7819 * buffered path. 7820 * 7821 * For COMPRESSED we _have_ to read the entire extent in so we can 7822 * decompress it, so there will be buffering required no matter what we 7823 * do, so go ahead and fallback to buffered. 7824 * 7825 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7826 * to buffered IO. Don't blame me, this is the price we pay for using 7827 * the generic code. 7828 */ 7829 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7830 em->block_start == EXTENT_MAP_INLINE) { 7831 free_extent_map(em); 7832 ret = -ENOTBLK; 7833 goto unlock_err; 7834 } 7835 7836 if (create) { 7837 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7838 dio_data, start, len); 7839 if (ret < 0) 7840 goto unlock_err; 7841 7842 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7843 lockend, &cached_state); 7844 } else { 7845 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7846 start, len); 7847 /* Can be negative only if we read from a hole */ 7848 if (ret < 0) { 7849 ret = 0; 7850 free_extent_map(em); 7851 goto unlock_err; 7852 } 7853 /* 7854 * We need to unlock only the end area that we aren't using. 7855 * The rest is going to be unlocked by the endio routine. 7856 */ 7857 lockstart = start + bh_result->b_size; 7858 if (lockstart < lockend) { 7859 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7860 lockstart, lockend, &cached_state); 7861 } else { 7862 free_extent_state(cached_state); 7863 } 7864 } 7865 7866 free_extent_map(em); 7867 7868 return 0; 7869 7870 unlock_err: 7871 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7872 &cached_state); 7873 err: 7874 if (dio_data) 7875 current->journal_info = dio_data; 7876 return ret; 7877 } 7878 7879 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7880 struct bio *bio, 7881 int mirror_num) 7882 { 7883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7884 blk_status_t ret; 7885 7886 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7887 7888 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7889 if (ret) 7890 return ret; 7891 7892 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7893 7894 return ret; 7895 } 7896 7897 static int btrfs_check_dio_repairable(struct inode *inode, 7898 struct bio *failed_bio, 7899 struct io_failure_record *failrec, 7900 int failed_mirror) 7901 { 7902 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7903 int num_copies; 7904 7905 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7906 if (num_copies == 1) { 7907 /* 7908 * we only have a single copy of the data, so don't bother with 7909 * all the retry and error correction code that follows. no 7910 * matter what the error is, it is very likely to persist. 7911 */ 7912 btrfs_debug(fs_info, 7913 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7914 num_copies, failrec->this_mirror, failed_mirror); 7915 return 0; 7916 } 7917 7918 failrec->failed_mirror = failed_mirror; 7919 failrec->this_mirror++; 7920 if (failrec->this_mirror == failed_mirror) 7921 failrec->this_mirror++; 7922 7923 if (failrec->this_mirror > num_copies) { 7924 btrfs_debug(fs_info, 7925 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7926 num_copies, failrec->this_mirror, failed_mirror); 7927 return 0; 7928 } 7929 7930 return 1; 7931 } 7932 7933 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7934 struct page *page, unsigned int pgoff, 7935 u64 start, u64 end, int failed_mirror, 7936 bio_end_io_t *repair_endio, void *repair_arg) 7937 { 7938 struct io_failure_record *failrec; 7939 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7940 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7941 struct bio *bio; 7942 int isector; 7943 unsigned int read_mode = 0; 7944 int segs; 7945 int ret; 7946 blk_status_t status; 7947 struct bio_vec bvec; 7948 7949 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7950 7951 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7952 if (ret) 7953 return errno_to_blk_status(ret); 7954 7955 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7956 failed_mirror); 7957 if (!ret) { 7958 free_io_failure(failure_tree, io_tree, failrec); 7959 return BLK_STS_IOERR; 7960 } 7961 7962 segs = bio_segments(failed_bio); 7963 bio_get_first_bvec(failed_bio, &bvec); 7964 if (segs > 1 || 7965 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7966 read_mode |= REQ_FAILFAST_DEV; 7967 7968 isector = start - btrfs_io_bio(failed_bio)->logical; 7969 isector >>= inode->i_sb->s_blocksize_bits; 7970 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7971 pgoff, isector, repair_endio, repair_arg); 7972 bio->bi_opf = REQ_OP_READ | read_mode; 7973 7974 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7975 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7976 read_mode, failrec->this_mirror, failrec->in_validation); 7977 7978 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7979 if (status) { 7980 free_io_failure(failure_tree, io_tree, failrec); 7981 bio_put(bio); 7982 } 7983 7984 return status; 7985 } 7986 7987 struct btrfs_retry_complete { 7988 struct completion done; 7989 struct inode *inode; 7990 u64 start; 7991 int uptodate; 7992 }; 7993 7994 static void btrfs_retry_endio_nocsum(struct bio *bio) 7995 { 7996 struct btrfs_retry_complete *done = bio->bi_private; 7997 struct inode *inode = done->inode; 7998 struct bio_vec *bvec; 7999 struct extent_io_tree *io_tree, *failure_tree; 8000 struct bvec_iter_all iter_all; 8001 8002 if (bio->bi_status) 8003 goto end; 8004 8005 ASSERT(bio->bi_vcnt == 1); 8006 io_tree = &BTRFS_I(inode)->io_tree; 8007 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8008 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 8009 8010 done->uptodate = 1; 8011 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8012 bio_for_each_segment_all(bvec, bio, iter_all) 8013 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 8014 io_tree, done->start, bvec->bv_page, 8015 btrfs_ino(BTRFS_I(inode)), 0); 8016 end: 8017 complete(&done->done); 8018 bio_put(bio); 8019 } 8020 8021 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 8022 struct btrfs_io_bio *io_bio) 8023 { 8024 struct btrfs_fs_info *fs_info; 8025 struct bio_vec bvec; 8026 struct bvec_iter iter; 8027 struct btrfs_retry_complete done; 8028 u64 start; 8029 unsigned int pgoff; 8030 u32 sectorsize; 8031 int nr_sectors; 8032 blk_status_t ret; 8033 blk_status_t err = BLK_STS_OK; 8034 8035 fs_info = BTRFS_I(inode)->root->fs_info; 8036 sectorsize = fs_info->sectorsize; 8037 8038 start = io_bio->logical; 8039 done.inode = inode; 8040 io_bio->bio.bi_iter = io_bio->iter; 8041 8042 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8043 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8044 pgoff = bvec.bv_offset; 8045 8046 next_block_or_try_again: 8047 done.uptodate = 0; 8048 done.start = start; 8049 init_completion(&done.done); 8050 8051 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8052 pgoff, start, start + sectorsize - 1, 8053 io_bio->mirror_num, 8054 btrfs_retry_endio_nocsum, &done); 8055 if (ret) { 8056 err = ret; 8057 goto next; 8058 } 8059 8060 wait_for_completion_io(&done.done); 8061 8062 if (!done.uptodate) { 8063 /* We might have another mirror, so try again */ 8064 goto next_block_or_try_again; 8065 } 8066 8067 next: 8068 start += sectorsize; 8069 8070 nr_sectors--; 8071 if (nr_sectors) { 8072 pgoff += sectorsize; 8073 ASSERT(pgoff < PAGE_SIZE); 8074 goto next_block_or_try_again; 8075 } 8076 } 8077 8078 return err; 8079 } 8080 8081 static void btrfs_retry_endio(struct bio *bio) 8082 { 8083 struct btrfs_retry_complete *done = bio->bi_private; 8084 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8085 struct extent_io_tree *io_tree, *failure_tree; 8086 struct inode *inode = done->inode; 8087 struct bio_vec *bvec; 8088 int uptodate; 8089 int ret; 8090 int i = 0; 8091 struct bvec_iter_all iter_all; 8092 8093 if (bio->bi_status) 8094 goto end; 8095 8096 uptodate = 1; 8097 8098 ASSERT(bio->bi_vcnt == 1); 8099 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 8100 8101 io_tree = &BTRFS_I(inode)->io_tree; 8102 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8103 8104 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8105 bio_for_each_segment_all(bvec, bio, iter_all) { 8106 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8107 bvec->bv_offset, done->start, 8108 bvec->bv_len); 8109 if (!ret) 8110 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8111 failure_tree, io_tree, done->start, 8112 bvec->bv_page, 8113 btrfs_ino(BTRFS_I(inode)), 8114 bvec->bv_offset); 8115 else 8116 uptodate = 0; 8117 i++; 8118 } 8119 8120 done->uptodate = uptodate; 8121 end: 8122 complete(&done->done); 8123 bio_put(bio); 8124 } 8125 8126 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8127 struct btrfs_io_bio *io_bio, blk_status_t err) 8128 { 8129 struct btrfs_fs_info *fs_info; 8130 struct bio_vec bvec; 8131 struct bvec_iter iter; 8132 struct btrfs_retry_complete done; 8133 u64 start; 8134 u64 offset = 0; 8135 u32 sectorsize; 8136 int nr_sectors; 8137 unsigned int pgoff; 8138 int csum_pos; 8139 bool uptodate = (err == 0); 8140 int ret; 8141 blk_status_t status; 8142 8143 fs_info = BTRFS_I(inode)->root->fs_info; 8144 sectorsize = fs_info->sectorsize; 8145 8146 err = BLK_STS_OK; 8147 start = io_bio->logical; 8148 done.inode = inode; 8149 io_bio->bio.bi_iter = io_bio->iter; 8150 8151 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8152 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8153 8154 pgoff = bvec.bv_offset; 8155 next_block: 8156 if (uptodate) { 8157 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8158 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8159 bvec.bv_page, pgoff, start, sectorsize); 8160 if (likely(!ret)) 8161 goto next; 8162 } 8163 try_again: 8164 done.uptodate = 0; 8165 done.start = start; 8166 init_completion(&done.done); 8167 8168 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8169 pgoff, start, start + sectorsize - 1, 8170 io_bio->mirror_num, btrfs_retry_endio, 8171 &done); 8172 if (status) { 8173 err = status; 8174 goto next; 8175 } 8176 8177 wait_for_completion_io(&done.done); 8178 8179 if (!done.uptodate) { 8180 /* We might have another mirror, so try again */ 8181 goto try_again; 8182 } 8183 next: 8184 offset += sectorsize; 8185 start += sectorsize; 8186 8187 ASSERT(nr_sectors); 8188 8189 nr_sectors--; 8190 if (nr_sectors) { 8191 pgoff += sectorsize; 8192 ASSERT(pgoff < PAGE_SIZE); 8193 goto next_block; 8194 } 8195 } 8196 8197 return err; 8198 } 8199 8200 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8201 struct btrfs_io_bio *io_bio, blk_status_t err) 8202 { 8203 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8204 8205 if (skip_csum) { 8206 if (unlikely(err)) 8207 return __btrfs_correct_data_nocsum(inode, io_bio); 8208 else 8209 return BLK_STS_OK; 8210 } else { 8211 return __btrfs_subio_endio_read(inode, io_bio, err); 8212 } 8213 } 8214 8215 static void btrfs_endio_direct_read(struct bio *bio) 8216 { 8217 struct btrfs_dio_private *dip = bio->bi_private; 8218 struct inode *inode = dip->inode; 8219 struct bio *dio_bio; 8220 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8221 blk_status_t err = bio->bi_status; 8222 8223 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8224 err = btrfs_subio_endio_read(inode, io_bio, err); 8225 8226 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8227 dip->logical_offset + dip->bytes - 1); 8228 dio_bio = dip->dio_bio; 8229 8230 kfree(dip); 8231 8232 dio_bio->bi_status = err; 8233 dio_end_io(dio_bio); 8234 btrfs_io_bio_free_csum(io_bio); 8235 bio_put(bio); 8236 } 8237 8238 static void __endio_write_update_ordered(struct inode *inode, 8239 const u64 offset, const u64 bytes, 8240 const bool uptodate) 8241 { 8242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8243 struct btrfs_ordered_extent *ordered = NULL; 8244 struct btrfs_workqueue *wq; 8245 u64 ordered_offset = offset; 8246 u64 ordered_bytes = bytes; 8247 u64 last_offset; 8248 8249 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 8250 wq = fs_info->endio_freespace_worker; 8251 else 8252 wq = fs_info->endio_write_workers; 8253 8254 while (ordered_offset < offset + bytes) { 8255 last_offset = ordered_offset; 8256 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8257 &ordered_offset, 8258 ordered_bytes, 8259 uptodate)) { 8260 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 8261 NULL); 8262 btrfs_queue_work(wq, &ordered->work); 8263 } 8264 /* 8265 * If btrfs_dec_test_ordered_pending does not find any ordered 8266 * extent in the range, we can exit. 8267 */ 8268 if (ordered_offset == last_offset) 8269 return; 8270 /* 8271 * Our bio might span multiple ordered extents. In this case 8272 * we keep going until we have accounted the whole dio. 8273 */ 8274 if (ordered_offset < offset + bytes) { 8275 ordered_bytes = offset + bytes - ordered_offset; 8276 ordered = NULL; 8277 } 8278 } 8279 } 8280 8281 static void btrfs_endio_direct_write(struct bio *bio) 8282 { 8283 struct btrfs_dio_private *dip = bio->bi_private; 8284 struct bio *dio_bio = dip->dio_bio; 8285 8286 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8287 dip->bytes, !bio->bi_status); 8288 8289 kfree(dip); 8290 8291 dio_bio->bi_status = bio->bi_status; 8292 dio_end_io(dio_bio); 8293 bio_put(bio); 8294 } 8295 8296 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8297 struct bio *bio, u64 offset) 8298 { 8299 struct inode *inode = private_data; 8300 blk_status_t ret; 8301 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8302 BUG_ON(ret); /* -ENOMEM */ 8303 return 0; 8304 } 8305 8306 static void btrfs_end_dio_bio(struct bio *bio) 8307 { 8308 struct btrfs_dio_private *dip = bio->bi_private; 8309 blk_status_t err = bio->bi_status; 8310 8311 if (err) 8312 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8313 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8314 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8315 bio->bi_opf, 8316 (unsigned long long)bio->bi_iter.bi_sector, 8317 bio->bi_iter.bi_size, err); 8318 8319 if (dip->subio_endio) 8320 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8321 8322 if (err) { 8323 /* 8324 * We want to perceive the errors flag being set before 8325 * decrementing the reference count. We don't need a barrier 8326 * since atomic operations with a return value are fully 8327 * ordered as per atomic_t.txt 8328 */ 8329 dip->errors = 1; 8330 } 8331 8332 /* if there are more bios still pending for this dio, just exit */ 8333 if (!atomic_dec_and_test(&dip->pending_bios)) 8334 goto out; 8335 8336 if (dip->errors) { 8337 bio_io_error(dip->orig_bio); 8338 } else { 8339 dip->dio_bio->bi_status = BLK_STS_OK; 8340 bio_endio(dip->orig_bio); 8341 } 8342 out: 8343 bio_put(bio); 8344 } 8345 8346 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8347 struct btrfs_dio_private *dip, 8348 struct bio *bio, 8349 u64 file_offset) 8350 { 8351 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8352 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8353 blk_status_t ret; 8354 8355 /* 8356 * We load all the csum data we need when we submit 8357 * the first bio to reduce the csum tree search and 8358 * contention. 8359 */ 8360 if (dip->logical_offset == file_offset) { 8361 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8362 file_offset); 8363 if (ret) 8364 return ret; 8365 } 8366 8367 if (bio == dip->orig_bio) 8368 return 0; 8369 8370 file_offset -= dip->logical_offset; 8371 file_offset >>= inode->i_sb->s_blocksize_bits; 8372 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8373 8374 return 0; 8375 } 8376 8377 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8378 struct inode *inode, u64 file_offset, int async_submit) 8379 { 8380 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8381 struct btrfs_dio_private *dip = bio->bi_private; 8382 bool write = bio_op(bio) == REQ_OP_WRITE; 8383 blk_status_t ret; 8384 8385 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8386 if (async_submit) 8387 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8388 8389 if (!write) { 8390 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8391 if (ret) 8392 goto err; 8393 } 8394 8395 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8396 goto map; 8397 8398 if (write && async_submit) { 8399 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8400 file_offset, inode, 8401 btrfs_submit_bio_start_direct_io); 8402 goto err; 8403 } else if (write) { 8404 /* 8405 * If we aren't doing async submit, calculate the csum of the 8406 * bio now. 8407 */ 8408 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8409 if (ret) 8410 goto err; 8411 } else { 8412 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8413 file_offset); 8414 if (ret) 8415 goto err; 8416 } 8417 map: 8418 ret = btrfs_map_bio(fs_info, bio, 0); 8419 err: 8420 return ret; 8421 } 8422 8423 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8424 { 8425 struct inode *inode = dip->inode; 8426 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8427 struct bio *bio; 8428 struct bio *orig_bio = dip->orig_bio; 8429 u64 start_sector = orig_bio->bi_iter.bi_sector; 8430 u64 file_offset = dip->logical_offset; 8431 int async_submit = 0; 8432 u64 submit_len; 8433 int clone_offset = 0; 8434 int clone_len; 8435 int ret; 8436 blk_status_t status; 8437 struct btrfs_io_geometry geom; 8438 8439 submit_len = orig_bio->bi_iter.bi_size; 8440 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8441 start_sector << 9, submit_len, &geom); 8442 if (ret) 8443 return -EIO; 8444 8445 if (geom.len >= submit_len) { 8446 bio = orig_bio; 8447 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8448 goto submit; 8449 } 8450 8451 /* async crcs make it difficult to collect full stripe writes. */ 8452 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8453 async_submit = 0; 8454 else 8455 async_submit = 1; 8456 8457 /* bio split */ 8458 ASSERT(geom.len <= INT_MAX); 8459 atomic_inc(&dip->pending_bios); 8460 do { 8461 clone_len = min_t(int, submit_len, geom.len); 8462 8463 /* 8464 * This will never fail as it's passing GPF_NOFS and 8465 * the allocation is backed by btrfs_bioset. 8466 */ 8467 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8468 clone_len); 8469 bio->bi_private = dip; 8470 bio->bi_end_io = btrfs_end_dio_bio; 8471 btrfs_io_bio(bio)->logical = file_offset; 8472 8473 ASSERT(submit_len >= clone_len); 8474 submit_len -= clone_len; 8475 if (submit_len == 0) 8476 break; 8477 8478 /* 8479 * Increase the count before we submit the bio so we know 8480 * the end IO handler won't happen before we increase the 8481 * count. Otherwise, the dip might get freed before we're 8482 * done setting it up. 8483 */ 8484 atomic_inc(&dip->pending_bios); 8485 8486 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8487 async_submit); 8488 if (status) { 8489 bio_put(bio); 8490 atomic_dec(&dip->pending_bios); 8491 goto out_err; 8492 } 8493 8494 clone_offset += clone_len; 8495 start_sector += clone_len >> 9; 8496 file_offset += clone_len; 8497 8498 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8499 start_sector << 9, submit_len, &geom); 8500 if (ret) 8501 goto out_err; 8502 } while (submit_len > 0); 8503 8504 submit: 8505 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8506 if (!status) 8507 return 0; 8508 8509 bio_put(bio); 8510 out_err: 8511 dip->errors = 1; 8512 /* 8513 * Before atomic variable goto zero, we must make sure dip->errors is 8514 * perceived to be set. This ordering is ensured by the fact that an 8515 * atomic operations with a return value are fully ordered as per 8516 * atomic_t.txt 8517 */ 8518 if (atomic_dec_and_test(&dip->pending_bios)) 8519 bio_io_error(dip->orig_bio); 8520 8521 /* bio_end_io() will handle error, so we needn't return it */ 8522 return 0; 8523 } 8524 8525 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8526 loff_t file_offset) 8527 { 8528 struct btrfs_dio_private *dip = NULL; 8529 struct bio *bio = NULL; 8530 struct btrfs_io_bio *io_bio; 8531 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8532 int ret = 0; 8533 8534 bio = btrfs_bio_clone(dio_bio); 8535 8536 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8537 if (!dip) { 8538 ret = -ENOMEM; 8539 goto free_ordered; 8540 } 8541 8542 dip->private = dio_bio->bi_private; 8543 dip->inode = inode; 8544 dip->logical_offset = file_offset; 8545 dip->bytes = dio_bio->bi_iter.bi_size; 8546 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8547 bio->bi_private = dip; 8548 dip->orig_bio = bio; 8549 dip->dio_bio = dio_bio; 8550 atomic_set(&dip->pending_bios, 0); 8551 io_bio = btrfs_io_bio(bio); 8552 io_bio->logical = file_offset; 8553 8554 if (write) { 8555 bio->bi_end_io = btrfs_endio_direct_write; 8556 } else { 8557 bio->bi_end_io = btrfs_endio_direct_read; 8558 dip->subio_endio = btrfs_subio_endio_read; 8559 } 8560 8561 /* 8562 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8563 * even if we fail to submit a bio, because in such case we do the 8564 * corresponding error handling below and it must not be done a second 8565 * time by btrfs_direct_IO(). 8566 */ 8567 if (write) { 8568 struct btrfs_dio_data *dio_data = current->journal_info; 8569 8570 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8571 dip->bytes; 8572 dio_data->unsubmitted_oe_range_start = 8573 dio_data->unsubmitted_oe_range_end; 8574 } 8575 8576 ret = btrfs_submit_direct_hook(dip); 8577 if (!ret) 8578 return; 8579 8580 btrfs_io_bio_free_csum(io_bio); 8581 8582 free_ordered: 8583 /* 8584 * If we arrived here it means either we failed to submit the dip 8585 * or we either failed to clone the dio_bio or failed to allocate the 8586 * dip. If we cloned the dio_bio and allocated the dip, we can just 8587 * call bio_endio against our io_bio so that we get proper resource 8588 * cleanup if we fail to submit the dip, otherwise, we must do the 8589 * same as btrfs_endio_direct_[write|read] because we can't call these 8590 * callbacks - they require an allocated dip and a clone of dio_bio. 8591 */ 8592 if (bio && dip) { 8593 bio_io_error(bio); 8594 /* 8595 * The end io callbacks free our dip, do the final put on bio 8596 * and all the cleanup and final put for dio_bio (through 8597 * dio_end_io()). 8598 */ 8599 dip = NULL; 8600 bio = NULL; 8601 } else { 8602 if (write) 8603 __endio_write_update_ordered(inode, 8604 file_offset, 8605 dio_bio->bi_iter.bi_size, 8606 false); 8607 else 8608 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8609 file_offset + dio_bio->bi_iter.bi_size - 1); 8610 8611 dio_bio->bi_status = BLK_STS_IOERR; 8612 /* 8613 * Releases and cleans up our dio_bio, no need to bio_put() 8614 * nor bio_endio()/bio_io_error() against dio_bio. 8615 */ 8616 dio_end_io(dio_bio); 8617 } 8618 if (bio) 8619 bio_put(bio); 8620 kfree(dip); 8621 } 8622 8623 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8624 const struct iov_iter *iter, loff_t offset) 8625 { 8626 int seg; 8627 int i; 8628 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8629 ssize_t retval = -EINVAL; 8630 8631 if (offset & blocksize_mask) 8632 goto out; 8633 8634 if (iov_iter_alignment(iter) & blocksize_mask) 8635 goto out; 8636 8637 /* If this is a write we don't need to check anymore */ 8638 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8639 return 0; 8640 /* 8641 * Check to make sure we don't have duplicate iov_base's in this 8642 * iovec, if so return EINVAL, otherwise we'll get csum errors 8643 * when reading back. 8644 */ 8645 for (seg = 0; seg < iter->nr_segs; seg++) { 8646 for (i = seg + 1; i < iter->nr_segs; i++) { 8647 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8648 goto out; 8649 } 8650 } 8651 retval = 0; 8652 out: 8653 return retval; 8654 } 8655 8656 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8657 { 8658 struct file *file = iocb->ki_filp; 8659 struct inode *inode = file->f_mapping->host; 8660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8661 struct btrfs_dio_data dio_data = { 0 }; 8662 struct extent_changeset *data_reserved = NULL; 8663 loff_t offset = iocb->ki_pos; 8664 size_t count = 0; 8665 int flags = 0; 8666 bool wakeup = true; 8667 bool relock = false; 8668 ssize_t ret; 8669 8670 if (check_direct_IO(fs_info, iter, offset)) 8671 return 0; 8672 8673 inode_dio_begin(inode); 8674 8675 /* 8676 * The generic stuff only does filemap_write_and_wait_range, which 8677 * isn't enough if we've written compressed pages to this area, so 8678 * we need to flush the dirty pages again to make absolutely sure 8679 * that any outstanding dirty pages are on disk. 8680 */ 8681 count = iov_iter_count(iter); 8682 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8683 &BTRFS_I(inode)->runtime_flags)) 8684 filemap_fdatawrite_range(inode->i_mapping, offset, 8685 offset + count - 1); 8686 8687 if (iov_iter_rw(iter) == WRITE) { 8688 /* 8689 * If the write DIO is beyond the EOF, we need update 8690 * the isize, but it is protected by i_mutex. So we can 8691 * not unlock the i_mutex at this case. 8692 */ 8693 if (offset + count <= inode->i_size) { 8694 dio_data.overwrite = 1; 8695 inode_unlock(inode); 8696 relock = true; 8697 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8698 ret = -EAGAIN; 8699 goto out; 8700 } 8701 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8702 offset, count); 8703 if (ret) 8704 goto out; 8705 8706 /* 8707 * We need to know how many extents we reserved so that we can 8708 * do the accounting properly if we go over the number we 8709 * originally calculated. Abuse current->journal_info for this. 8710 */ 8711 dio_data.reserve = round_up(count, 8712 fs_info->sectorsize); 8713 dio_data.unsubmitted_oe_range_start = (u64)offset; 8714 dio_data.unsubmitted_oe_range_end = (u64)offset; 8715 current->journal_info = &dio_data; 8716 down_read(&BTRFS_I(inode)->dio_sem); 8717 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8718 &BTRFS_I(inode)->runtime_flags)) { 8719 inode_dio_end(inode); 8720 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8721 wakeup = false; 8722 } 8723 8724 ret = __blockdev_direct_IO(iocb, inode, 8725 fs_info->fs_devices->latest_bdev, 8726 iter, btrfs_get_blocks_direct, NULL, 8727 btrfs_submit_direct, flags); 8728 if (iov_iter_rw(iter) == WRITE) { 8729 up_read(&BTRFS_I(inode)->dio_sem); 8730 current->journal_info = NULL; 8731 if (ret < 0 && ret != -EIOCBQUEUED) { 8732 if (dio_data.reserve) 8733 btrfs_delalloc_release_space(inode, data_reserved, 8734 offset, dio_data.reserve, true); 8735 /* 8736 * On error we might have left some ordered extents 8737 * without submitting corresponding bios for them, so 8738 * cleanup them up to avoid other tasks getting them 8739 * and waiting for them to complete forever. 8740 */ 8741 if (dio_data.unsubmitted_oe_range_start < 8742 dio_data.unsubmitted_oe_range_end) 8743 __endio_write_update_ordered(inode, 8744 dio_data.unsubmitted_oe_range_start, 8745 dio_data.unsubmitted_oe_range_end - 8746 dio_data.unsubmitted_oe_range_start, 8747 false); 8748 } else if (ret >= 0 && (size_t)ret < count) 8749 btrfs_delalloc_release_space(inode, data_reserved, 8750 offset, count - (size_t)ret, true); 8751 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8752 } 8753 out: 8754 if (wakeup) 8755 inode_dio_end(inode); 8756 if (relock) 8757 inode_lock(inode); 8758 8759 extent_changeset_free(data_reserved); 8760 return ret; 8761 } 8762 8763 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8764 8765 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8766 __u64 start, __u64 len) 8767 { 8768 int ret; 8769 8770 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8771 if (ret) 8772 return ret; 8773 8774 return extent_fiemap(inode, fieinfo, start, len); 8775 } 8776 8777 int btrfs_readpage(struct file *file, struct page *page) 8778 { 8779 struct extent_io_tree *tree; 8780 tree = &BTRFS_I(page->mapping->host)->io_tree; 8781 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8782 } 8783 8784 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8785 { 8786 struct inode *inode = page->mapping->host; 8787 int ret; 8788 8789 if (current->flags & PF_MEMALLOC) { 8790 redirty_page_for_writepage(wbc, page); 8791 unlock_page(page); 8792 return 0; 8793 } 8794 8795 /* 8796 * If we are under memory pressure we will call this directly from the 8797 * VM, we need to make sure we have the inode referenced for the ordered 8798 * extent. If not just return like we didn't do anything. 8799 */ 8800 if (!igrab(inode)) { 8801 redirty_page_for_writepage(wbc, page); 8802 return AOP_WRITEPAGE_ACTIVATE; 8803 } 8804 ret = extent_write_full_page(page, wbc); 8805 btrfs_add_delayed_iput(inode); 8806 return ret; 8807 } 8808 8809 static int btrfs_writepages(struct address_space *mapping, 8810 struct writeback_control *wbc) 8811 { 8812 return extent_writepages(mapping, wbc); 8813 } 8814 8815 static int 8816 btrfs_readpages(struct file *file, struct address_space *mapping, 8817 struct list_head *pages, unsigned nr_pages) 8818 { 8819 return extent_readpages(mapping, pages, nr_pages); 8820 } 8821 8822 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8823 { 8824 int ret = try_release_extent_mapping(page, gfp_flags); 8825 if (ret == 1) { 8826 ClearPagePrivate(page); 8827 set_page_private(page, 0); 8828 put_page(page); 8829 } 8830 return ret; 8831 } 8832 8833 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8834 { 8835 if (PageWriteback(page) || PageDirty(page)) 8836 return 0; 8837 return __btrfs_releasepage(page, gfp_flags); 8838 } 8839 8840 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8841 unsigned int length) 8842 { 8843 struct inode *inode = page->mapping->host; 8844 struct extent_io_tree *tree; 8845 struct btrfs_ordered_extent *ordered; 8846 struct extent_state *cached_state = NULL; 8847 u64 page_start = page_offset(page); 8848 u64 page_end = page_start + PAGE_SIZE - 1; 8849 u64 start; 8850 u64 end; 8851 int inode_evicting = inode->i_state & I_FREEING; 8852 8853 /* 8854 * we have the page locked, so new writeback can't start, 8855 * and the dirty bit won't be cleared while we are here. 8856 * 8857 * Wait for IO on this page so that we can safely clear 8858 * the PagePrivate2 bit and do ordered accounting 8859 */ 8860 wait_on_page_writeback(page); 8861 8862 tree = &BTRFS_I(inode)->io_tree; 8863 if (offset) { 8864 btrfs_releasepage(page, GFP_NOFS); 8865 return; 8866 } 8867 8868 if (!inode_evicting) 8869 lock_extent_bits(tree, page_start, page_end, &cached_state); 8870 again: 8871 start = page_start; 8872 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8873 page_end - start + 1); 8874 if (ordered) { 8875 end = min(page_end, ordered->file_offset + ordered->len - 1); 8876 /* 8877 * IO on this page will never be started, so we need 8878 * to account for any ordered extents now 8879 */ 8880 if (!inode_evicting) 8881 clear_extent_bit(tree, start, end, 8882 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8883 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8884 EXTENT_DEFRAG, 1, 0, &cached_state); 8885 /* 8886 * whoever cleared the private bit is responsible 8887 * for the finish_ordered_io 8888 */ 8889 if (TestClearPagePrivate2(page)) { 8890 struct btrfs_ordered_inode_tree *tree; 8891 u64 new_len; 8892 8893 tree = &BTRFS_I(inode)->ordered_tree; 8894 8895 spin_lock_irq(&tree->lock); 8896 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8897 new_len = start - ordered->file_offset; 8898 if (new_len < ordered->truncated_len) 8899 ordered->truncated_len = new_len; 8900 spin_unlock_irq(&tree->lock); 8901 8902 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8903 start, 8904 end - start + 1, 1)) 8905 btrfs_finish_ordered_io(ordered); 8906 } 8907 btrfs_put_ordered_extent(ordered); 8908 if (!inode_evicting) { 8909 cached_state = NULL; 8910 lock_extent_bits(tree, start, end, 8911 &cached_state); 8912 } 8913 8914 start = end + 1; 8915 if (start < page_end) 8916 goto again; 8917 } 8918 8919 /* 8920 * Qgroup reserved space handler 8921 * Page here will be either 8922 * 1) Already written to disk 8923 * In this case, its reserved space is released from data rsv map 8924 * and will be freed by delayed_ref handler finally. 8925 * So even we call qgroup_free_data(), it won't decrease reserved 8926 * space. 8927 * 2) Not written to disk 8928 * This means the reserved space should be freed here. However, 8929 * if a truncate invalidates the page (by clearing PageDirty) 8930 * and the page is accounted for while allocating extent 8931 * in btrfs_check_data_free_space() we let delayed_ref to 8932 * free the entire extent. 8933 */ 8934 if (PageDirty(page)) 8935 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8936 if (!inode_evicting) { 8937 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8938 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8939 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8940 &cached_state); 8941 8942 __btrfs_releasepage(page, GFP_NOFS); 8943 } 8944 8945 ClearPageChecked(page); 8946 if (PagePrivate(page)) { 8947 ClearPagePrivate(page); 8948 set_page_private(page, 0); 8949 put_page(page); 8950 } 8951 } 8952 8953 /* 8954 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8955 * called from a page fault handler when a page is first dirtied. Hence we must 8956 * be careful to check for EOF conditions here. We set the page up correctly 8957 * for a written page which means we get ENOSPC checking when writing into 8958 * holes and correct delalloc and unwritten extent mapping on filesystems that 8959 * support these features. 8960 * 8961 * We are not allowed to take the i_mutex here so we have to play games to 8962 * protect against truncate races as the page could now be beyond EOF. Because 8963 * truncate_setsize() writes the inode size before removing pages, once we have 8964 * the page lock we can determine safely if the page is beyond EOF. If it is not 8965 * beyond EOF, then the page is guaranteed safe against truncation until we 8966 * unlock the page. 8967 */ 8968 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8969 { 8970 struct page *page = vmf->page; 8971 struct inode *inode = file_inode(vmf->vma->vm_file); 8972 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8973 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8974 struct btrfs_ordered_extent *ordered; 8975 struct extent_state *cached_state = NULL; 8976 struct extent_changeset *data_reserved = NULL; 8977 char *kaddr; 8978 unsigned long zero_start; 8979 loff_t size; 8980 vm_fault_t ret; 8981 int ret2; 8982 int reserved = 0; 8983 u64 reserved_space; 8984 u64 page_start; 8985 u64 page_end; 8986 u64 end; 8987 8988 reserved_space = PAGE_SIZE; 8989 8990 sb_start_pagefault(inode->i_sb); 8991 page_start = page_offset(page); 8992 page_end = page_start + PAGE_SIZE - 1; 8993 end = page_end; 8994 8995 /* 8996 * Reserving delalloc space after obtaining the page lock can lead to 8997 * deadlock. For example, if a dirty page is locked by this function 8998 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8999 * dirty page write out, then the btrfs_writepage() function could 9000 * end up waiting indefinitely to get a lock on the page currently 9001 * being processed by btrfs_page_mkwrite() function. 9002 */ 9003 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 9004 reserved_space); 9005 if (!ret2) { 9006 ret2 = file_update_time(vmf->vma->vm_file); 9007 reserved = 1; 9008 } 9009 if (ret2) { 9010 ret = vmf_error(ret2); 9011 if (reserved) 9012 goto out; 9013 goto out_noreserve; 9014 } 9015 9016 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9017 again: 9018 lock_page(page); 9019 size = i_size_read(inode); 9020 9021 if ((page->mapping != inode->i_mapping) || 9022 (page_start >= size)) { 9023 /* page got truncated out from underneath us */ 9024 goto out_unlock; 9025 } 9026 wait_on_page_writeback(page); 9027 9028 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9029 set_page_extent_mapped(page); 9030 9031 /* 9032 * we can't set the delalloc bits if there are pending ordered 9033 * extents. Drop our locks and wait for them to finish 9034 */ 9035 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9036 PAGE_SIZE); 9037 if (ordered) { 9038 unlock_extent_cached(io_tree, page_start, page_end, 9039 &cached_state); 9040 unlock_page(page); 9041 btrfs_start_ordered_extent(inode, ordered, 1); 9042 btrfs_put_ordered_extent(ordered); 9043 goto again; 9044 } 9045 9046 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9047 reserved_space = round_up(size - page_start, 9048 fs_info->sectorsize); 9049 if (reserved_space < PAGE_SIZE) { 9050 end = page_start + reserved_space - 1; 9051 btrfs_delalloc_release_space(inode, data_reserved, 9052 page_start, PAGE_SIZE - reserved_space, 9053 true); 9054 } 9055 } 9056 9057 /* 9058 * page_mkwrite gets called when the page is firstly dirtied after it's 9059 * faulted in, but write(2) could also dirty a page and set delalloc 9060 * bits, thus in this case for space account reason, we still need to 9061 * clear any delalloc bits within this page range since we have to 9062 * reserve data&meta space before lock_page() (see above comments). 9063 */ 9064 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9065 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 9066 EXTENT_DEFRAG, 0, 0, &cached_state); 9067 9068 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 9069 &cached_state); 9070 if (ret2) { 9071 unlock_extent_cached(io_tree, page_start, page_end, 9072 &cached_state); 9073 ret = VM_FAULT_SIGBUS; 9074 goto out_unlock; 9075 } 9076 ret2 = 0; 9077 9078 /* page is wholly or partially inside EOF */ 9079 if (page_start + PAGE_SIZE > size) 9080 zero_start = offset_in_page(size); 9081 else 9082 zero_start = PAGE_SIZE; 9083 9084 if (zero_start != PAGE_SIZE) { 9085 kaddr = kmap(page); 9086 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9087 flush_dcache_page(page); 9088 kunmap(page); 9089 } 9090 ClearPageChecked(page); 9091 set_page_dirty(page); 9092 SetPageUptodate(page); 9093 9094 BTRFS_I(inode)->last_trans = fs_info->generation; 9095 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9096 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9097 9098 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9099 9100 if (!ret2) { 9101 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9102 sb_end_pagefault(inode->i_sb); 9103 extent_changeset_free(data_reserved); 9104 return VM_FAULT_LOCKED; 9105 } 9106 9107 out_unlock: 9108 unlock_page(page); 9109 out: 9110 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 9111 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9112 reserved_space, (ret != 0)); 9113 out_noreserve: 9114 sb_end_pagefault(inode->i_sb); 9115 extent_changeset_free(data_reserved); 9116 return ret; 9117 } 9118 9119 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 9120 { 9121 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9122 struct btrfs_root *root = BTRFS_I(inode)->root; 9123 struct btrfs_block_rsv *rsv; 9124 int ret; 9125 struct btrfs_trans_handle *trans; 9126 u64 mask = fs_info->sectorsize - 1; 9127 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 9128 9129 if (!skip_writeback) { 9130 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9131 (u64)-1); 9132 if (ret) 9133 return ret; 9134 } 9135 9136 /* 9137 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 9138 * things going on here: 9139 * 9140 * 1) We need to reserve space to update our inode. 9141 * 9142 * 2) We need to have something to cache all the space that is going to 9143 * be free'd up by the truncate operation, but also have some slack 9144 * space reserved in case it uses space during the truncate (thank you 9145 * very much snapshotting). 9146 * 9147 * And we need these to be separate. The fact is we can use a lot of 9148 * space doing the truncate, and we have no earthly idea how much space 9149 * we will use, so we need the truncate reservation to be separate so it 9150 * doesn't end up using space reserved for updating the inode. We also 9151 * need to be able to stop the transaction and start a new one, which 9152 * means we need to be able to update the inode several times, and we 9153 * have no idea of knowing how many times that will be, so we can't just 9154 * reserve 1 item for the entirety of the operation, so that has to be 9155 * done separately as well. 9156 * 9157 * So that leaves us with 9158 * 9159 * 1) rsv - for the truncate reservation, which we will steal from the 9160 * transaction reservation. 9161 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 9162 * updating the inode. 9163 */ 9164 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9165 if (!rsv) 9166 return -ENOMEM; 9167 rsv->size = min_size; 9168 rsv->failfast = 1; 9169 9170 /* 9171 * 1 for the truncate slack space 9172 * 1 for updating the inode. 9173 */ 9174 trans = btrfs_start_transaction(root, 2); 9175 if (IS_ERR(trans)) { 9176 ret = PTR_ERR(trans); 9177 goto out; 9178 } 9179 9180 /* Migrate the slack space for the truncate to our reserve */ 9181 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9182 min_size, false); 9183 BUG_ON(ret); 9184 9185 /* 9186 * So if we truncate and then write and fsync we normally would just 9187 * write the extents that changed, which is a problem if we need to 9188 * first truncate that entire inode. So set this flag so we write out 9189 * all of the extents in the inode to the sync log so we're completely 9190 * safe. 9191 */ 9192 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9193 trans->block_rsv = rsv; 9194 9195 while (1) { 9196 ret = btrfs_truncate_inode_items(trans, root, inode, 9197 inode->i_size, 9198 BTRFS_EXTENT_DATA_KEY); 9199 trans->block_rsv = &fs_info->trans_block_rsv; 9200 if (ret != -ENOSPC && ret != -EAGAIN) 9201 break; 9202 9203 ret = btrfs_update_inode(trans, root, inode); 9204 if (ret) 9205 break; 9206 9207 btrfs_end_transaction(trans); 9208 btrfs_btree_balance_dirty(fs_info); 9209 9210 trans = btrfs_start_transaction(root, 2); 9211 if (IS_ERR(trans)) { 9212 ret = PTR_ERR(trans); 9213 trans = NULL; 9214 break; 9215 } 9216 9217 btrfs_block_rsv_release(fs_info, rsv, -1); 9218 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9219 rsv, min_size, false); 9220 BUG_ON(ret); /* shouldn't happen */ 9221 trans->block_rsv = rsv; 9222 } 9223 9224 /* 9225 * We can't call btrfs_truncate_block inside a trans handle as we could 9226 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9227 * we've truncated everything except the last little bit, and can do 9228 * btrfs_truncate_block and then update the disk_i_size. 9229 */ 9230 if (ret == NEED_TRUNCATE_BLOCK) { 9231 btrfs_end_transaction(trans); 9232 btrfs_btree_balance_dirty(fs_info); 9233 9234 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9235 if (ret) 9236 goto out; 9237 trans = btrfs_start_transaction(root, 1); 9238 if (IS_ERR(trans)) { 9239 ret = PTR_ERR(trans); 9240 goto out; 9241 } 9242 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9243 } 9244 9245 if (trans) { 9246 int ret2; 9247 9248 trans->block_rsv = &fs_info->trans_block_rsv; 9249 ret2 = btrfs_update_inode(trans, root, inode); 9250 if (ret2 && !ret) 9251 ret = ret2; 9252 9253 ret2 = btrfs_end_transaction(trans); 9254 if (ret2 && !ret) 9255 ret = ret2; 9256 btrfs_btree_balance_dirty(fs_info); 9257 } 9258 out: 9259 btrfs_free_block_rsv(fs_info, rsv); 9260 9261 return ret; 9262 } 9263 9264 /* 9265 * create a new subvolume directory/inode (helper for the ioctl). 9266 */ 9267 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9268 struct btrfs_root *new_root, 9269 struct btrfs_root *parent_root, 9270 u64 new_dirid) 9271 { 9272 struct inode *inode; 9273 int err; 9274 u64 index = 0; 9275 9276 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9277 new_dirid, new_dirid, 9278 S_IFDIR | (~current_umask() & S_IRWXUGO), 9279 &index); 9280 if (IS_ERR(inode)) 9281 return PTR_ERR(inode); 9282 inode->i_op = &btrfs_dir_inode_operations; 9283 inode->i_fop = &btrfs_dir_file_operations; 9284 9285 set_nlink(inode, 1); 9286 btrfs_i_size_write(BTRFS_I(inode), 0); 9287 unlock_new_inode(inode); 9288 9289 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9290 if (err) 9291 btrfs_err(new_root->fs_info, 9292 "error inheriting subvolume %llu properties: %d", 9293 new_root->root_key.objectid, err); 9294 9295 err = btrfs_update_inode(trans, new_root, inode); 9296 9297 iput(inode); 9298 return err; 9299 } 9300 9301 struct inode *btrfs_alloc_inode(struct super_block *sb) 9302 { 9303 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9304 struct btrfs_inode *ei; 9305 struct inode *inode; 9306 9307 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9308 if (!ei) 9309 return NULL; 9310 9311 ei->root = NULL; 9312 ei->generation = 0; 9313 ei->last_trans = 0; 9314 ei->last_sub_trans = 0; 9315 ei->logged_trans = 0; 9316 ei->delalloc_bytes = 0; 9317 ei->new_delalloc_bytes = 0; 9318 ei->defrag_bytes = 0; 9319 ei->disk_i_size = 0; 9320 ei->flags = 0; 9321 ei->csum_bytes = 0; 9322 ei->index_cnt = (u64)-1; 9323 ei->dir_index = 0; 9324 ei->last_unlink_trans = 0; 9325 ei->last_log_commit = 0; 9326 9327 spin_lock_init(&ei->lock); 9328 ei->outstanding_extents = 0; 9329 if (sb->s_magic != BTRFS_TEST_MAGIC) 9330 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9331 BTRFS_BLOCK_RSV_DELALLOC); 9332 ei->runtime_flags = 0; 9333 ei->prop_compress = BTRFS_COMPRESS_NONE; 9334 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9335 9336 ei->delayed_node = NULL; 9337 9338 ei->i_otime.tv_sec = 0; 9339 ei->i_otime.tv_nsec = 0; 9340 9341 inode = &ei->vfs_inode; 9342 extent_map_tree_init(&ei->extent_tree); 9343 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 9344 extent_io_tree_init(fs_info, &ei->io_failure_tree, 9345 IO_TREE_INODE_IO_FAILURE, inode); 9346 ei->io_tree.track_uptodate = true; 9347 ei->io_failure_tree.track_uptodate = true; 9348 atomic_set(&ei->sync_writers, 0); 9349 mutex_init(&ei->log_mutex); 9350 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9351 INIT_LIST_HEAD(&ei->delalloc_inodes); 9352 INIT_LIST_HEAD(&ei->delayed_iput); 9353 RB_CLEAR_NODE(&ei->rb_node); 9354 init_rwsem(&ei->dio_sem); 9355 9356 return inode; 9357 } 9358 9359 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9360 void btrfs_test_destroy_inode(struct inode *inode) 9361 { 9362 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9363 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9364 } 9365 #endif 9366 9367 void btrfs_free_inode(struct inode *inode) 9368 { 9369 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9370 } 9371 9372 void btrfs_destroy_inode(struct inode *inode) 9373 { 9374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9375 struct btrfs_ordered_extent *ordered; 9376 struct btrfs_root *root = BTRFS_I(inode)->root; 9377 9378 WARN_ON(!hlist_empty(&inode->i_dentry)); 9379 WARN_ON(inode->i_data.nrpages); 9380 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9381 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9382 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9383 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9384 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9385 WARN_ON(BTRFS_I(inode)->csum_bytes); 9386 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9387 9388 /* 9389 * This can happen where we create an inode, but somebody else also 9390 * created the same inode and we need to destroy the one we already 9391 * created. 9392 */ 9393 if (!root) 9394 return; 9395 9396 while (1) { 9397 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9398 if (!ordered) 9399 break; 9400 else { 9401 btrfs_err(fs_info, 9402 "found ordered extent %llu %llu on inode cleanup", 9403 ordered->file_offset, ordered->len); 9404 btrfs_remove_ordered_extent(inode, ordered); 9405 btrfs_put_ordered_extent(ordered); 9406 btrfs_put_ordered_extent(ordered); 9407 } 9408 } 9409 btrfs_qgroup_check_reserved_leak(inode); 9410 inode_tree_del(inode); 9411 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9412 } 9413 9414 int btrfs_drop_inode(struct inode *inode) 9415 { 9416 struct btrfs_root *root = BTRFS_I(inode)->root; 9417 9418 if (root == NULL) 9419 return 1; 9420 9421 /* the snap/subvol tree is on deleting */ 9422 if (btrfs_root_refs(&root->root_item) == 0) 9423 return 1; 9424 else 9425 return generic_drop_inode(inode); 9426 } 9427 9428 static void init_once(void *foo) 9429 { 9430 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9431 9432 inode_init_once(&ei->vfs_inode); 9433 } 9434 9435 void __cold btrfs_destroy_cachep(void) 9436 { 9437 /* 9438 * Make sure all delayed rcu free inodes are flushed before we 9439 * destroy cache. 9440 */ 9441 rcu_barrier(); 9442 kmem_cache_destroy(btrfs_inode_cachep); 9443 kmem_cache_destroy(btrfs_trans_handle_cachep); 9444 kmem_cache_destroy(btrfs_path_cachep); 9445 kmem_cache_destroy(btrfs_free_space_cachep); 9446 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 9447 } 9448 9449 int __init btrfs_init_cachep(void) 9450 { 9451 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9452 sizeof(struct btrfs_inode), 0, 9453 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9454 init_once); 9455 if (!btrfs_inode_cachep) 9456 goto fail; 9457 9458 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9459 sizeof(struct btrfs_trans_handle), 0, 9460 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9461 if (!btrfs_trans_handle_cachep) 9462 goto fail; 9463 9464 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9465 sizeof(struct btrfs_path), 0, 9466 SLAB_MEM_SPREAD, NULL); 9467 if (!btrfs_path_cachep) 9468 goto fail; 9469 9470 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9471 sizeof(struct btrfs_free_space), 0, 9472 SLAB_MEM_SPREAD, NULL); 9473 if (!btrfs_free_space_cachep) 9474 goto fail; 9475 9476 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9477 PAGE_SIZE, PAGE_SIZE, 9478 SLAB_RED_ZONE, NULL); 9479 if (!btrfs_free_space_bitmap_cachep) 9480 goto fail; 9481 9482 return 0; 9483 fail: 9484 btrfs_destroy_cachep(); 9485 return -ENOMEM; 9486 } 9487 9488 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9489 u32 request_mask, unsigned int flags) 9490 { 9491 u64 delalloc_bytes; 9492 struct inode *inode = d_inode(path->dentry); 9493 u32 blocksize = inode->i_sb->s_blocksize; 9494 u32 bi_flags = BTRFS_I(inode)->flags; 9495 9496 stat->result_mask |= STATX_BTIME; 9497 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9498 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9499 if (bi_flags & BTRFS_INODE_APPEND) 9500 stat->attributes |= STATX_ATTR_APPEND; 9501 if (bi_flags & BTRFS_INODE_COMPRESS) 9502 stat->attributes |= STATX_ATTR_COMPRESSED; 9503 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9504 stat->attributes |= STATX_ATTR_IMMUTABLE; 9505 if (bi_flags & BTRFS_INODE_NODUMP) 9506 stat->attributes |= STATX_ATTR_NODUMP; 9507 9508 stat->attributes_mask |= (STATX_ATTR_APPEND | 9509 STATX_ATTR_COMPRESSED | 9510 STATX_ATTR_IMMUTABLE | 9511 STATX_ATTR_NODUMP); 9512 9513 generic_fillattr(inode, stat); 9514 stat->dev = BTRFS_I(inode)->root->anon_dev; 9515 9516 spin_lock(&BTRFS_I(inode)->lock); 9517 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9518 spin_unlock(&BTRFS_I(inode)->lock); 9519 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9520 ALIGN(delalloc_bytes, blocksize)) >> 9; 9521 return 0; 9522 } 9523 9524 static int btrfs_rename_exchange(struct inode *old_dir, 9525 struct dentry *old_dentry, 9526 struct inode *new_dir, 9527 struct dentry *new_dentry) 9528 { 9529 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9530 struct btrfs_trans_handle *trans; 9531 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9532 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9533 struct inode *new_inode = new_dentry->d_inode; 9534 struct inode *old_inode = old_dentry->d_inode; 9535 struct timespec64 ctime = current_time(old_inode); 9536 struct dentry *parent; 9537 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9538 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9539 u64 old_idx = 0; 9540 u64 new_idx = 0; 9541 u64 root_objectid; 9542 int ret; 9543 bool root_log_pinned = false; 9544 bool dest_log_pinned = false; 9545 struct btrfs_log_ctx ctx_root; 9546 struct btrfs_log_ctx ctx_dest; 9547 bool sync_log_root = false; 9548 bool sync_log_dest = false; 9549 bool commit_transaction = false; 9550 9551 /* we only allow rename subvolume link between subvolumes */ 9552 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9553 return -EXDEV; 9554 9555 btrfs_init_log_ctx(&ctx_root, old_inode); 9556 btrfs_init_log_ctx(&ctx_dest, new_inode); 9557 9558 /* close the race window with snapshot create/destroy ioctl */ 9559 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9560 down_read(&fs_info->subvol_sem); 9561 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9562 down_read(&fs_info->subvol_sem); 9563 9564 /* 9565 * We want to reserve the absolute worst case amount of items. So if 9566 * both inodes are subvols and we need to unlink them then that would 9567 * require 4 item modifications, but if they are both normal inodes it 9568 * would require 5 item modifications, so we'll assume their normal 9569 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9570 * should cover the worst case number of items we'll modify. 9571 */ 9572 trans = btrfs_start_transaction(root, 12); 9573 if (IS_ERR(trans)) { 9574 ret = PTR_ERR(trans); 9575 goto out_notrans; 9576 } 9577 9578 if (dest != root) 9579 btrfs_record_root_in_trans(trans, dest); 9580 9581 /* 9582 * We need to find a free sequence number both in the source and 9583 * in the destination directory for the exchange. 9584 */ 9585 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9586 if (ret) 9587 goto out_fail; 9588 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9589 if (ret) 9590 goto out_fail; 9591 9592 BTRFS_I(old_inode)->dir_index = 0ULL; 9593 BTRFS_I(new_inode)->dir_index = 0ULL; 9594 9595 /* Reference for the source. */ 9596 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9597 /* force full log commit if subvolume involved. */ 9598 btrfs_set_log_full_commit(trans); 9599 } else { 9600 btrfs_pin_log_trans(root); 9601 root_log_pinned = true; 9602 ret = btrfs_insert_inode_ref(trans, dest, 9603 new_dentry->d_name.name, 9604 new_dentry->d_name.len, 9605 old_ino, 9606 btrfs_ino(BTRFS_I(new_dir)), 9607 old_idx); 9608 if (ret) 9609 goto out_fail; 9610 } 9611 9612 /* And now for the dest. */ 9613 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9614 /* force full log commit if subvolume involved. */ 9615 btrfs_set_log_full_commit(trans); 9616 } else { 9617 btrfs_pin_log_trans(dest); 9618 dest_log_pinned = true; 9619 ret = btrfs_insert_inode_ref(trans, root, 9620 old_dentry->d_name.name, 9621 old_dentry->d_name.len, 9622 new_ino, 9623 btrfs_ino(BTRFS_I(old_dir)), 9624 new_idx); 9625 if (ret) 9626 goto out_fail; 9627 } 9628 9629 /* Update inode version and ctime/mtime. */ 9630 inode_inc_iversion(old_dir); 9631 inode_inc_iversion(new_dir); 9632 inode_inc_iversion(old_inode); 9633 inode_inc_iversion(new_inode); 9634 old_dir->i_ctime = old_dir->i_mtime = ctime; 9635 new_dir->i_ctime = new_dir->i_mtime = ctime; 9636 old_inode->i_ctime = ctime; 9637 new_inode->i_ctime = ctime; 9638 9639 if (old_dentry->d_parent != new_dentry->d_parent) { 9640 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9641 BTRFS_I(old_inode), 1); 9642 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9643 BTRFS_I(new_inode), 1); 9644 } 9645 9646 /* src is a subvolume */ 9647 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9648 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9649 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9650 old_dentry->d_name.name, 9651 old_dentry->d_name.len); 9652 } else { /* src is an inode */ 9653 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9654 BTRFS_I(old_dentry->d_inode), 9655 old_dentry->d_name.name, 9656 old_dentry->d_name.len); 9657 if (!ret) 9658 ret = btrfs_update_inode(trans, root, old_inode); 9659 } 9660 if (ret) { 9661 btrfs_abort_transaction(trans, ret); 9662 goto out_fail; 9663 } 9664 9665 /* dest is a subvolume */ 9666 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9667 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9668 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9669 new_dentry->d_name.name, 9670 new_dentry->d_name.len); 9671 } else { /* dest is an inode */ 9672 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9673 BTRFS_I(new_dentry->d_inode), 9674 new_dentry->d_name.name, 9675 new_dentry->d_name.len); 9676 if (!ret) 9677 ret = btrfs_update_inode(trans, dest, new_inode); 9678 } 9679 if (ret) { 9680 btrfs_abort_transaction(trans, ret); 9681 goto out_fail; 9682 } 9683 9684 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9685 new_dentry->d_name.name, 9686 new_dentry->d_name.len, 0, old_idx); 9687 if (ret) { 9688 btrfs_abort_transaction(trans, ret); 9689 goto out_fail; 9690 } 9691 9692 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9693 old_dentry->d_name.name, 9694 old_dentry->d_name.len, 0, new_idx); 9695 if (ret) { 9696 btrfs_abort_transaction(trans, ret); 9697 goto out_fail; 9698 } 9699 9700 if (old_inode->i_nlink == 1) 9701 BTRFS_I(old_inode)->dir_index = old_idx; 9702 if (new_inode->i_nlink == 1) 9703 BTRFS_I(new_inode)->dir_index = new_idx; 9704 9705 if (root_log_pinned) { 9706 parent = new_dentry->d_parent; 9707 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9708 BTRFS_I(old_dir), parent, 9709 false, &ctx_root); 9710 if (ret == BTRFS_NEED_LOG_SYNC) 9711 sync_log_root = true; 9712 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9713 commit_transaction = true; 9714 ret = 0; 9715 btrfs_end_log_trans(root); 9716 root_log_pinned = false; 9717 } 9718 if (dest_log_pinned) { 9719 if (!commit_transaction) { 9720 parent = old_dentry->d_parent; 9721 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9722 BTRFS_I(new_dir), parent, 9723 false, &ctx_dest); 9724 if (ret == BTRFS_NEED_LOG_SYNC) 9725 sync_log_dest = true; 9726 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9727 commit_transaction = true; 9728 ret = 0; 9729 } 9730 btrfs_end_log_trans(dest); 9731 dest_log_pinned = false; 9732 } 9733 out_fail: 9734 /* 9735 * If we have pinned a log and an error happened, we unpin tasks 9736 * trying to sync the log and force them to fallback to a transaction 9737 * commit if the log currently contains any of the inodes involved in 9738 * this rename operation (to ensure we do not persist a log with an 9739 * inconsistent state for any of these inodes or leading to any 9740 * inconsistencies when replayed). If the transaction was aborted, the 9741 * abortion reason is propagated to userspace when attempting to commit 9742 * the transaction. If the log does not contain any of these inodes, we 9743 * allow the tasks to sync it. 9744 */ 9745 if (ret && (root_log_pinned || dest_log_pinned)) { 9746 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9747 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9748 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9749 (new_inode && 9750 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9751 btrfs_set_log_full_commit(trans); 9752 9753 if (root_log_pinned) { 9754 btrfs_end_log_trans(root); 9755 root_log_pinned = false; 9756 } 9757 if (dest_log_pinned) { 9758 btrfs_end_log_trans(dest); 9759 dest_log_pinned = false; 9760 } 9761 } 9762 if (!ret && sync_log_root && !commit_transaction) { 9763 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9764 &ctx_root); 9765 if (ret) 9766 commit_transaction = true; 9767 } 9768 if (!ret && sync_log_dest && !commit_transaction) { 9769 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9770 &ctx_dest); 9771 if (ret) 9772 commit_transaction = true; 9773 } 9774 if (commit_transaction) { 9775 /* 9776 * We may have set commit_transaction when logging the new name 9777 * in the destination root, in which case we left the source 9778 * root context in the list of log contextes. So make sure we 9779 * remove it to avoid invalid memory accesses, since the context 9780 * was allocated in our stack frame. 9781 */ 9782 if (sync_log_root) { 9783 mutex_lock(&root->log_mutex); 9784 list_del_init(&ctx_root.list); 9785 mutex_unlock(&root->log_mutex); 9786 } 9787 ret = btrfs_commit_transaction(trans); 9788 } else { 9789 int ret2; 9790 9791 ret2 = btrfs_end_transaction(trans); 9792 ret = ret ? ret : ret2; 9793 } 9794 out_notrans: 9795 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9796 up_read(&fs_info->subvol_sem); 9797 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9798 up_read(&fs_info->subvol_sem); 9799 9800 ASSERT(list_empty(&ctx_root.list)); 9801 ASSERT(list_empty(&ctx_dest.list)); 9802 9803 return ret; 9804 } 9805 9806 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9807 struct btrfs_root *root, 9808 struct inode *dir, 9809 struct dentry *dentry) 9810 { 9811 int ret; 9812 struct inode *inode; 9813 u64 objectid; 9814 u64 index; 9815 9816 ret = btrfs_find_free_ino(root, &objectid); 9817 if (ret) 9818 return ret; 9819 9820 inode = btrfs_new_inode(trans, root, dir, 9821 dentry->d_name.name, 9822 dentry->d_name.len, 9823 btrfs_ino(BTRFS_I(dir)), 9824 objectid, 9825 S_IFCHR | WHITEOUT_MODE, 9826 &index); 9827 9828 if (IS_ERR(inode)) { 9829 ret = PTR_ERR(inode); 9830 return ret; 9831 } 9832 9833 inode->i_op = &btrfs_special_inode_operations; 9834 init_special_inode(inode, inode->i_mode, 9835 WHITEOUT_DEV); 9836 9837 ret = btrfs_init_inode_security(trans, inode, dir, 9838 &dentry->d_name); 9839 if (ret) 9840 goto out; 9841 9842 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9843 BTRFS_I(inode), 0, index); 9844 if (ret) 9845 goto out; 9846 9847 ret = btrfs_update_inode(trans, root, inode); 9848 out: 9849 unlock_new_inode(inode); 9850 if (ret) 9851 inode_dec_link_count(inode); 9852 iput(inode); 9853 9854 return ret; 9855 } 9856 9857 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9858 struct inode *new_dir, struct dentry *new_dentry, 9859 unsigned int flags) 9860 { 9861 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9862 struct btrfs_trans_handle *trans; 9863 unsigned int trans_num_items; 9864 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9865 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9866 struct inode *new_inode = d_inode(new_dentry); 9867 struct inode *old_inode = d_inode(old_dentry); 9868 u64 index = 0; 9869 u64 root_objectid; 9870 int ret; 9871 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9872 bool log_pinned = false; 9873 struct btrfs_log_ctx ctx; 9874 bool sync_log = false; 9875 bool commit_transaction = false; 9876 9877 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9878 return -EPERM; 9879 9880 /* we only allow rename subvolume link between subvolumes */ 9881 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9882 return -EXDEV; 9883 9884 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9885 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9886 return -ENOTEMPTY; 9887 9888 if (S_ISDIR(old_inode->i_mode) && new_inode && 9889 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9890 return -ENOTEMPTY; 9891 9892 9893 /* check for collisions, even if the name isn't there */ 9894 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9895 new_dentry->d_name.name, 9896 new_dentry->d_name.len); 9897 9898 if (ret) { 9899 if (ret == -EEXIST) { 9900 /* we shouldn't get 9901 * eexist without a new_inode */ 9902 if (WARN_ON(!new_inode)) { 9903 return ret; 9904 } 9905 } else { 9906 /* maybe -EOVERFLOW */ 9907 return ret; 9908 } 9909 } 9910 ret = 0; 9911 9912 /* 9913 * we're using rename to replace one file with another. Start IO on it 9914 * now so we don't add too much work to the end of the transaction 9915 */ 9916 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9917 filemap_flush(old_inode->i_mapping); 9918 9919 /* close the racy window with snapshot create/destroy ioctl */ 9920 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9921 down_read(&fs_info->subvol_sem); 9922 /* 9923 * We want to reserve the absolute worst case amount of items. So if 9924 * both inodes are subvols and we need to unlink them then that would 9925 * require 4 item modifications, but if they are both normal inodes it 9926 * would require 5 item modifications, so we'll assume they are normal 9927 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9928 * should cover the worst case number of items we'll modify. 9929 * If our rename has the whiteout flag, we need more 5 units for the 9930 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9931 * when selinux is enabled). 9932 */ 9933 trans_num_items = 11; 9934 if (flags & RENAME_WHITEOUT) 9935 trans_num_items += 5; 9936 trans = btrfs_start_transaction(root, trans_num_items); 9937 if (IS_ERR(trans)) { 9938 ret = PTR_ERR(trans); 9939 goto out_notrans; 9940 } 9941 9942 if (dest != root) 9943 btrfs_record_root_in_trans(trans, dest); 9944 9945 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9946 if (ret) 9947 goto out_fail; 9948 9949 BTRFS_I(old_inode)->dir_index = 0ULL; 9950 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9951 /* force full log commit if subvolume involved. */ 9952 btrfs_set_log_full_commit(trans); 9953 } else { 9954 btrfs_pin_log_trans(root); 9955 log_pinned = true; 9956 ret = btrfs_insert_inode_ref(trans, dest, 9957 new_dentry->d_name.name, 9958 new_dentry->d_name.len, 9959 old_ino, 9960 btrfs_ino(BTRFS_I(new_dir)), index); 9961 if (ret) 9962 goto out_fail; 9963 } 9964 9965 inode_inc_iversion(old_dir); 9966 inode_inc_iversion(new_dir); 9967 inode_inc_iversion(old_inode); 9968 old_dir->i_ctime = old_dir->i_mtime = 9969 new_dir->i_ctime = new_dir->i_mtime = 9970 old_inode->i_ctime = current_time(old_dir); 9971 9972 if (old_dentry->d_parent != new_dentry->d_parent) 9973 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9974 BTRFS_I(old_inode), 1); 9975 9976 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9977 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9978 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9979 old_dentry->d_name.name, 9980 old_dentry->d_name.len); 9981 } else { 9982 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9983 BTRFS_I(d_inode(old_dentry)), 9984 old_dentry->d_name.name, 9985 old_dentry->d_name.len); 9986 if (!ret) 9987 ret = btrfs_update_inode(trans, root, old_inode); 9988 } 9989 if (ret) { 9990 btrfs_abort_transaction(trans, ret); 9991 goto out_fail; 9992 } 9993 9994 if (new_inode) { 9995 inode_inc_iversion(new_inode); 9996 new_inode->i_ctime = current_time(new_inode); 9997 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9998 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9999 root_objectid = BTRFS_I(new_inode)->location.objectid; 10000 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 10001 new_dentry->d_name.name, 10002 new_dentry->d_name.len); 10003 BUG_ON(new_inode->i_nlink == 0); 10004 } else { 10005 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 10006 BTRFS_I(d_inode(new_dentry)), 10007 new_dentry->d_name.name, 10008 new_dentry->d_name.len); 10009 } 10010 if (!ret && new_inode->i_nlink == 0) 10011 ret = btrfs_orphan_add(trans, 10012 BTRFS_I(d_inode(new_dentry))); 10013 if (ret) { 10014 btrfs_abort_transaction(trans, ret); 10015 goto out_fail; 10016 } 10017 } 10018 10019 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 10020 new_dentry->d_name.name, 10021 new_dentry->d_name.len, 0, index); 10022 if (ret) { 10023 btrfs_abort_transaction(trans, ret); 10024 goto out_fail; 10025 } 10026 10027 if (old_inode->i_nlink == 1) 10028 BTRFS_I(old_inode)->dir_index = index; 10029 10030 if (log_pinned) { 10031 struct dentry *parent = new_dentry->d_parent; 10032 10033 btrfs_init_log_ctx(&ctx, old_inode); 10034 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 10035 BTRFS_I(old_dir), parent, 10036 false, &ctx); 10037 if (ret == BTRFS_NEED_LOG_SYNC) 10038 sync_log = true; 10039 else if (ret == BTRFS_NEED_TRANS_COMMIT) 10040 commit_transaction = true; 10041 ret = 0; 10042 btrfs_end_log_trans(root); 10043 log_pinned = false; 10044 } 10045 10046 if (flags & RENAME_WHITEOUT) { 10047 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10048 old_dentry); 10049 10050 if (ret) { 10051 btrfs_abort_transaction(trans, ret); 10052 goto out_fail; 10053 } 10054 } 10055 out_fail: 10056 /* 10057 * If we have pinned the log and an error happened, we unpin tasks 10058 * trying to sync the log and force them to fallback to a transaction 10059 * commit if the log currently contains any of the inodes involved in 10060 * this rename operation (to ensure we do not persist a log with an 10061 * inconsistent state for any of these inodes or leading to any 10062 * inconsistencies when replayed). If the transaction was aborted, the 10063 * abortion reason is propagated to userspace when attempting to commit 10064 * the transaction. If the log does not contain any of these inodes, we 10065 * allow the tasks to sync it. 10066 */ 10067 if (ret && log_pinned) { 10068 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10069 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10070 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10071 (new_inode && 10072 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10073 btrfs_set_log_full_commit(trans); 10074 10075 btrfs_end_log_trans(root); 10076 log_pinned = false; 10077 } 10078 if (!ret && sync_log) { 10079 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 10080 if (ret) 10081 commit_transaction = true; 10082 } 10083 if (commit_transaction) { 10084 ret = btrfs_commit_transaction(trans); 10085 } else { 10086 int ret2; 10087 10088 ret2 = btrfs_end_transaction(trans); 10089 ret = ret ? ret : ret2; 10090 } 10091 out_notrans: 10092 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10093 up_read(&fs_info->subvol_sem); 10094 10095 return ret; 10096 } 10097 10098 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10099 struct inode *new_dir, struct dentry *new_dentry, 10100 unsigned int flags) 10101 { 10102 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10103 return -EINVAL; 10104 10105 if (flags & RENAME_EXCHANGE) 10106 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10107 new_dentry); 10108 10109 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10110 } 10111 10112 struct btrfs_delalloc_work { 10113 struct inode *inode; 10114 struct completion completion; 10115 struct list_head list; 10116 struct btrfs_work work; 10117 }; 10118 10119 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10120 { 10121 struct btrfs_delalloc_work *delalloc_work; 10122 struct inode *inode; 10123 10124 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10125 work); 10126 inode = delalloc_work->inode; 10127 filemap_flush(inode->i_mapping); 10128 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10129 &BTRFS_I(inode)->runtime_flags)) 10130 filemap_flush(inode->i_mapping); 10131 10132 iput(inode); 10133 complete(&delalloc_work->completion); 10134 } 10135 10136 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 10137 { 10138 struct btrfs_delalloc_work *work; 10139 10140 work = kmalloc(sizeof(*work), GFP_NOFS); 10141 if (!work) 10142 return NULL; 10143 10144 init_completion(&work->completion); 10145 INIT_LIST_HEAD(&work->list); 10146 work->inode = inode; 10147 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 10148 10149 return work; 10150 } 10151 10152 /* 10153 * some fairly slow code that needs optimization. This walks the list 10154 * of all the inodes with pending delalloc and forces them to disk. 10155 */ 10156 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 10157 { 10158 struct btrfs_inode *binode; 10159 struct inode *inode; 10160 struct btrfs_delalloc_work *work, *next; 10161 struct list_head works; 10162 struct list_head splice; 10163 int ret = 0; 10164 10165 INIT_LIST_HEAD(&works); 10166 INIT_LIST_HEAD(&splice); 10167 10168 mutex_lock(&root->delalloc_mutex); 10169 spin_lock(&root->delalloc_lock); 10170 list_splice_init(&root->delalloc_inodes, &splice); 10171 while (!list_empty(&splice)) { 10172 binode = list_entry(splice.next, struct btrfs_inode, 10173 delalloc_inodes); 10174 10175 list_move_tail(&binode->delalloc_inodes, 10176 &root->delalloc_inodes); 10177 inode = igrab(&binode->vfs_inode); 10178 if (!inode) { 10179 cond_resched_lock(&root->delalloc_lock); 10180 continue; 10181 } 10182 spin_unlock(&root->delalloc_lock); 10183 10184 if (snapshot) 10185 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 10186 &binode->runtime_flags); 10187 work = btrfs_alloc_delalloc_work(inode); 10188 if (!work) { 10189 iput(inode); 10190 ret = -ENOMEM; 10191 goto out; 10192 } 10193 list_add_tail(&work->list, &works); 10194 btrfs_queue_work(root->fs_info->flush_workers, 10195 &work->work); 10196 ret++; 10197 if (nr != -1 && ret >= nr) 10198 goto out; 10199 cond_resched(); 10200 spin_lock(&root->delalloc_lock); 10201 } 10202 spin_unlock(&root->delalloc_lock); 10203 10204 out: 10205 list_for_each_entry_safe(work, next, &works, list) { 10206 list_del_init(&work->list); 10207 wait_for_completion(&work->completion); 10208 kfree(work); 10209 } 10210 10211 if (!list_empty(&splice)) { 10212 spin_lock(&root->delalloc_lock); 10213 list_splice_tail(&splice, &root->delalloc_inodes); 10214 spin_unlock(&root->delalloc_lock); 10215 } 10216 mutex_unlock(&root->delalloc_mutex); 10217 return ret; 10218 } 10219 10220 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 10221 { 10222 struct btrfs_fs_info *fs_info = root->fs_info; 10223 int ret; 10224 10225 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10226 return -EROFS; 10227 10228 ret = start_delalloc_inodes(root, -1, true); 10229 if (ret > 0) 10230 ret = 0; 10231 return ret; 10232 } 10233 10234 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10235 { 10236 struct btrfs_root *root; 10237 struct list_head splice; 10238 int ret; 10239 10240 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10241 return -EROFS; 10242 10243 INIT_LIST_HEAD(&splice); 10244 10245 mutex_lock(&fs_info->delalloc_root_mutex); 10246 spin_lock(&fs_info->delalloc_root_lock); 10247 list_splice_init(&fs_info->delalloc_roots, &splice); 10248 while (!list_empty(&splice) && nr) { 10249 root = list_first_entry(&splice, struct btrfs_root, 10250 delalloc_root); 10251 root = btrfs_grab_fs_root(root); 10252 BUG_ON(!root); 10253 list_move_tail(&root->delalloc_root, 10254 &fs_info->delalloc_roots); 10255 spin_unlock(&fs_info->delalloc_root_lock); 10256 10257 ret = start_delalloc_inodes(root, nr, false); 10258 btrfs_put_fs_root(root); 10259 if (ret < 0) 10260 goto out; 10261 10262 if (nr != -1) { 10263 nr -= ret; 10264 WARN_ON(nr < 0); 10265 } 10266 spin_lock(&fs_info->delalloc_root_lock); 10267 } 10268 spin_unlock(&fs_info->delalloc_root_lock); 10269 10270 ret = 0; 10271 out: 10272 if (!list_empty(&splice)) { 10273 spin_lock(&fs_info->delalloc_root_lock); 10274 list_splice_tail(&splice, &fs_info->delalloc_roots); 10275 spin_unlock(&fs_info->delalloc_root_lock); 10276 } 10277 mutex_unlock(&fs_info->delalloc_root_mutex); 10278 return ret; 10279 } 10280 10281 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10282 const char *symname) 10283 { 10284 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10285 struct btrfs_trans_handle *trans; 10286 struct btrfs_root *root = BTRFS_I(dir)->root; 10287 struct btrfs_path *path; 10288 struct btrfs_key key; 10289 struct inode *inode = NULL; 10290 int err; 10291 u64 objectid; 10292 u64 index = 0; 10293 int name_len; 10294 int datasize; 10295 unsigned long ptr; 10296 struct btrfs_file_extent_item *ei; 10297 struct extent_buffer *leaf; 10298 10299 name_len = strlen(symname); 10300 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10301 return -ENAMETOOLONG; 10302 10303 /* 10304 * 2 items for inode item and ref 10305 * 2 items for dir items 10306 * 1 item for updating parent inode item 10307 * 1 item for the inline extent item 10308 * 1 item for xattr if selinux is on 10309 */ 10310 trans = btrfs_start_transaction(root, 7); 10311 if (IS_ERR(trans)) 10312 return PTR_ERR(trans); 10313 10314 err = btrfs_find_free_ino(root, &objectid); 10315 if (err) 10316 goto out_unlock; 10317 10318 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10319 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10320 objectid, S_IFLNK|S_IRWXUGO, &index); 10321 if (IS_ERR(inode)) { 10322 err = PTR_ERR(inode); 10323 inode = NULL; 10324 goto out_unlock; 10325 } 10326 10327 /* 10328 * If the active LSM wants to access the inode during 10329 * d_instantiate it needs these. Smack checks to see 10330 * if the filesystem supports xattrs by looking at the 10331 * ops vector. 10332 */ 10333 inode->i_fop = &btrfs_file_operations; 10334 inode->i_op = &btrfs_file_inode_operations; 10335 inode->i_mapping->a_ops = &btrfs_aops; 10336 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10337 10338 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10339 if (err) 10340 goto out_unlock; 10341 10342 path = btrfs_alloc_path(); 10343 if (!path) { 10344 err = -ENOMEM; 10345 goto out_unlock; 10346 } 10347 key.objectid = btrfs_ino(BTRFS_I(inode)); 10348 key.offset = 0; 10349 key.type = BTRFS_EXTENT_DATA_KEY; 10350 datasize = btrfs_file_extent_calc_inline_size(name_len); 10351 err = btrfs_insert_empty_item(trans, root, path, &key, 10352 datasize); 10353 if (err) { 10354 btrfs_free_path(path); 10355 goto out_unlock; 10356 } 10357 leaf = path->nodes[0]; 10358 ei = btrfs_item_ptr(leaf, path->slots[0], 10359 struct btrfs_file_extent_item); 10360 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10361 btrfs_set_file_extent_type(leaf, ei, 10362 BTRFS_FILE_EXTENT_INLINE); 10363 btrfs_set_file_extent_encryption(leaf, ei, 0); 10364 btrfs_set_file_extent_compression(leaf, ei, 0); 10365 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10366 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10367 10368 ptr = btrfs_file_extent_inline_start(ei); 10369 write_extent_buffer(leaf, symname, ptr, name_len); 10370 btrfs_mark_buffer_dirty(leaf); 10371 btrfs_free_path(path); 10372 10373 inode->i_op = &btrfs_symlink_inode_operations; 10374 inode_nohighmem(inode); 10375 inode_set_bytes(inode, name_len); 10376 btrfs_i_size_write(BTRFS_I(inode), name_len); 10377 err = btrfs_update_inode(trans, root, inode); 10378 /* 10379 * Last step, add directory indexes for our symlink inode. This is the 10380 * last step to avoid extra cleanup of these indexes if an error happens 10381 * elsewhere above. 10382 */ 10383 if (!err) 10384 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10385 BTRFS_I(inode), 0, index); 10386 if (err) 10387 goto out_unlock; 10388 10389 d_instantiate_new(dentry, inode); 10390 10391 out_unlock: 10392 btrfs_end_transaction(trans); 10393 if (err && inode) { 10394 inode_dec_link_count(inode); 10395 discard_new_inode(inode); 10396 } 10397 btrfs_btree_balance_dirty(fs_info); 10398 return err; 10399 } 10400 10401 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10402 u64 start, u64 num_bytes, u64 min_size, 10403 loff_t actual_len, u64 *alloc_hint, 10404 struct btrfs_trans_handle *trans) 10405 { 10406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10407 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10408 struct extent_map *em; 10409 struct btrfs_root *root = BTRFS_I(inode)->root; 10410 struct btrfs_key ins; 10411 u64 cur_offset = start; 10412 u64 i_size; 10413 u64 cur_bytes; 10414 u64 last_alloc = (u64)-1; 10415 int ret = 0; 10416 bool own_trans = true; 10417 u64 end = start + num_bytes - 1; 10418 10419 if (trans) 10420 own_trans = false; 10421 while (num_bytes > 0) { 10422 if (own_trans) { 10423 trans = btrfs_start_transaction(root, 3); 10424 if (IS_ERR(trans)) { 10425 ret = PTR_ERR(trans); 10426 break; 10427 } 10428 } 10429 10430 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10431 cur_bytes = max(cur_bytes, min_size); 10432 /* 10433 * If we are severely fragmented we could end up with really 10434 * small allocations, so if the allocator is returning small 10435 * chunks lets make its job easier by only searching for those 10436 * sized chunks. 10437 */ 10438 cur_bytes = min(cur_bytes, last_alloc); 10439 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10440 min_size, 0, *alloc_hint, &ins, 1, 0); 10441 if (ret) { 10442 if (own_trans) 10443 btrfs_end_transaction(trans); 10444 break; 10445 } 10446 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10447 10448 last_alloc = ins.offset; 10449 ret = insert_reserved_file_extent(trans, inode, 10450 cur_offset, ins.objectid, 10451 ins.offset, ins.offset, 10452 ins.offset, 0, 0, 0, 10453 BTRFS_FILE_EXTENT_PREALLOC); 10454 if (ret) { 10455 btrfs_free_reserved_extent(fs_info, ins.objectid, 10456 ins.offset, 0); 10457 btrfs_abort_transaction(trans, ret); 10458 if (own_trans) 10459 btrfs_end_transaction(trans); 10460 break; 10461 } 10462 10463 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10464 cur_offset + ins.offset -1, 0); 10465 10466 em = alloc_extent_map(); 10467 if (!em) { 10468 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10469 &BTRFS_I(inode)->runtime_flags); 10470 goto next; 10471 } 10472 10473 em->start = cur_offset; 10474 em->orig_start = cur_offset; 10475 em->len = ins.offset; 10476 em->block_start = ins.objectid; 10477 em->block_len = ins.offset; 10478 em->orig_block_len = ins.offset; 10479 em->ram_bytes = ins.offset; 10480 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10481 em->generation = trans->transid; 10482 10483 while (1) { 10484 write_lock(&em_tree->lock); 10485 ret = add_extent_mapping(em_tree, em, 1); 10486 write_unlock(&em_tree->lock); 10487 if (ret != -EEXIST) 10488 break; 10489 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10490 cur_offset + ins.offset - 1, 10491 0); 10492 } 10493 free_extent_map(em); 10494 next: 10495 num_bytes -= ins.offset; 10496 cur_offset += ins.offset; 10497 *alloc_hint = ins.objectid + ins.offset; 10498 10499 inode_inc_iversion(inode); 10500 inode->i_ctime = current_time(inode); 10501 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10502 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10503 (actual_len > inode->i_size) && 10504 (cur_offset > inode->i_size)) { 10505 if (cur_offset > actual_len) 10506 i_size = actual_len; 10507 else 10508 i_size = cur_offset; 10509 i_size_write(inode, i_size); 10510 btrfs_ordered_update_i_size(inode, i_size, NULL); 10511 } 10512 10513 ret = btrfs_update_inode(trans, root, inode); 10514 10515 if (ret) { 10516 btrfs_abort_transaction(trans, ret); 10517 if (own_trans) 10518 btrfs_end_transaction(trans); 10519 break; 10520 } 10521 10522 if (own_trans) 10523 btrfs_end_transaction(trans); 10524 } 10525 if (cur_offset < end) 10526 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10527 end - cur_offset + 1); 10528 return ret; 10529 } 10530 10531 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10532 u64 start, u64 num_bytes, u64 min_size, 10533 loff_t actual_len, u64 *alloc_hint) 10534 { 10535 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10536 min_size, actual_len, alloc_hint, 10537 NULL); 10538 } 10539 10540 int btrfs_prealloc_file_range_trans(struct inode *inode, 10541 struct btrfs_trans_handle *trans, int mode, 10542 u64 start, u64 num_bytes, u64 min_size, 10543 loff_t actual_len, u64 *alloc_hint) 10544 { 10545 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10546 min_size, actual_len, alloc_hint, trans); 10547 } 10548 10549 static int btrfs_set_page_dirty(struct page *page) 10550 { 10551 return __set_page_dirty_nobuffers(page); 10552 } 10553 10554 static int btrfs_permission(struct inode *inode, int mask) 10555 { 10556 struct btrfs_root *root = BTRFS_I(inode)->root; 10557 umode_t mode = inode->i_mode; 10558 10559 if (mask & MAY_WRITE && 10560 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10561 if (btrfs_root_readonly(root)) 10562 return -EROFS; 10563 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10564 return -EACCES; 10565 } 10566 return generic_permission(inode, mask); 10567 } 10568 10569 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10570 { 10571 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10572 struct btrfs_trans_handle *trans; 10573 struct btrfs_root *root = BTRFS_I(dir)->root; 10574 struct inode *inode = NULL; 10575 u64 objectid; 10576 u64 index; 10577 int ret = 0; 10578 10579 /* 10580 * 5 units required for adding orphan entry 10581 */ 10582 trans = btrfs_start_transaction(root, 5); 10583 if (IS_ERR(trans)) 10584 return PTR_ERR(trans); 10585 10586 ret = btrfs_find_free_ino(root, &objectid); 10587 if (ret) 10588 goto out; 10589 10590 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10591 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10592 if (IS_ERR(inode)) { 10593 ret = PTR_ERR(inode); 10594 inode = NULL; 10595 goto out; 10596 } 10597 10598 inode->i_fop = &btrfs_file_operations; 10599 inode->i_op = &btrfs_file_inode_operations; 10600 10601 inode->i_mapping->a_ops = &btrfs_aops; 10602 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10603 10604 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10605 if (ret) 10606 goto out; 10607 10608 ret = btrfs_update_inode(trans, root, inode); 10609 if (ret) 10610 goto out; 10611 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10612 if (ret) 10613 goto out; 10614 10615 /* 10616 * We set number of links to 0 in btrfs_new_inode(), and here we set 10617 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10618 * through: 10619 * 10620 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10621 */ 10622 set_nlink(inode, 1); 10623 d_tmpfile(dentry, inode); 10624 unlock_new_inode(inode); 10625 mark_inode_dirty(inode); 10626 out: 10627 btrfs_end_transaction(trans); 10628 if (ret && inode) 10629 discard_new_inode(inode); 10630 btrfs_btree_balance_dirty(fs_info); 10631 return ret; 10632 } 10633 10634 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10635 { 10636 struct inode *inode = tree->private_data; 10637 unsigned long index = start >> PAGE_SHIFT; 10638 unsigned long end_index = end >> PAGE_SHIFT; 10639 struct page *page; 10640 10641 while (index <= end_index) { 10642 page = find_get_page(inode->i_mapping, index); 10643 ASSERT(page); /* Pages should be in the extent_io_tree */ 10644 set_page_writeback(page); 10645 put_page(page); 10646 index++; 10647 } 10648 } 10649 10650 #ifdef CONFIG_SWAP 10651 /* 10652 * Add an entry indicating a block group or device which is pinned by a 10653 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10654 * negative errno on failure. 10655 */ 10656 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10657 bool is_block_group) 10658 { 10659 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10660 struct btrfs_swapfile_pin *sp, *entry; 10661 struct rb_node **p; 10662 struct rb_node *parent = NULL; 10663 10664 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10665 if (!sp) 10666 return -ENOMEM; 10667 sp->ptr = ptr; 10668 sp->inode = inode; 10669 sp->is_block_group = is_block_group; 10670 10671 spin_lock(&fs_info->swapfile_pins_lock); 10672 p = &fs_info->swapfile_pins.rb_node; 10673 while (*p) { 10674 parent = *p; 10675 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10676 if (sp->ptr < entry->ptr || 10677 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10678 p = &(*p)->rb_left; 10679 } else if (sp->ptr > entry->ptr || 10680 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10681 p = &(*p)->rb_right; 10682 } else { 10683 spin_unlock(&fs_info->swapfile_pins_lock); 10684 kfree(sp); 10685 return 1; 10686 } 10687 } 10688 rb_link_node(&sp->node, parent, p); 10689 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10690 spin_unlock(&fs_info->swapfile_pins_lock); 10691 return 0; 10692 } 10693 10694 /* Free all of the entries pinned by this swapfile. */ 10695 static void btrfs_free_swapfile_pins(struct inode *inode) 10696 { 10697 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10698 struct btrfs_swapfile_pin *sp; 10699 struct rb_node *node, *next; 10700 10701 spin_lock(&fs_info->swapfile_pins_lock); 10702 node = rb_first(&fs_info->swapfile_pins); 10703 while (node) { 10704 next = rb_next(node); 10705 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10706 if (sp->inode == inode) { 10707 rb_erase(&sp->node, &fs_info->swapfile_pins); 10708 if (sp->is_block_group) 10709 btrfs_put_block_group(sp->ptr); 10710 kfree(sp); 10711 } 10712 node = next; 10713 } 10714 spin_unlock(&fs_info->swapfile_pins_lock); 10715 } 10716 10717 struct btrfs_swap_info { 10718 u64 start; 10719 u64 block_start; 10720 u64 block_len; 10721 u64 lowest_ppage; 10722 u64 highest_ppage; 10723 unsigned long nr_pages; 10724 int nr_extents; 10725 }; 10726 10727 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10728 struct btrfs_swap_info *bsi) 10729 { 10730 unsigned long nr_pages; 10731 u64 first_ppage, first_ppage_reported, next_ppage; 10732 int ret; 10733 10734 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10735 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10736 PAGE_SIZE) >> PAGE_SHIFT; 10737 10738 if (first_ppage >= next_ppage) 10739 return 0; 10740 nr_pages = next_ppage - first_ppage; 10741 10742 first_ppage_reported = first_ppage; 10743 if (bsi->start == 0) 10744 first_ppage_reported++; 10745 if (bsi->lowest_ppage > first_ppage_reported) 10746 bsi->lowest_ppage = first_ppage_reported; 10747 if (bsi->highest_ppage < (next_ppage - 1)) 10748 bsi->highest_ppage = next_ppage - 1; 10749 10750 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10751 if (ret < 0) 10752 return ret; 10753 bsi->nr_extents += ret; 10754 bsi->nr_pages += nr_pages; 10755 return 0; 10756 } 10757 10758 static void btrfs_swap_deactivate(struct file *file) 10759 { 10760 struct inode *inode = file_inode(file); 10761 10762 btrfs_free_swapfile_pins(inode); 10763 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10764 } 10765 10766 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10767 sector_t *span) 10768 { 10769 struct inode *inode = file_inode(file); 10770 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10771 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10772 struct extent_state *cached_state = NULL; 10773 struct extent_map *em = NULL; 10774 struct btrfs_device *device = NULL; 10775 struct btrfs_swap_info bsi = { 10776 .lowest_ppage = (sector_t)-1ULL, 10777 }; 10778 int ret = 0; 10779 u64 isize; 10780 u64 start; 10781 10782 /* 10783 * If the swap file was just created, make sure delalloc is done. If the 10784 * file changes again after this, the user is doing something stupid and 10785 * we don't really care. 10786 */ 10787 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10788 if (ret) 10789 return ret; 10790 10791 /* 10792 * The inode is locked, so these flags won't change after we check them. 10793 */ 10794 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10795 btrfs_warn(fs_info, "swapfile must not be compressed"); 10796 return -EINVAL; 10797 } 10798 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10799 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10800 return -EINVAL; 10801 } 10802 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10803 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10804 return -EINVAL; 10805 } 10806 10807 /* 10808 * Balance or device remove/replace/resize can move stuff around from 10809 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10810 * concurrently while we are mapping the swap extents, and 10811 * fs_info->swapfile_pins prevents them from running while the swap file 10812 * is active and moving the extents. Note that this also prevents a 10813 * concurrent device add which isn't actually necessary, but it's not 10814 * really worth the trouble to allow it. 10815 */ 10816 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10817 btrfs_warn(fs_info, 10818 "cannot activate swapfile while exclusive operation is running"); 10819 return -EBUSY; 10820 } 10821 /* 10822 * Snapshots can create extents which require COW even if NODATACOW is 10823 * set. We use this counter to prevent snapshots. We must increment it 10824 * before walking the extents because we don't want a concurrent 10825 * snapshot to run after we've already checked the extents. 10826 */ 10827 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10828 10829 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10830 10831 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10832 start = 0; 10833 while (start < isize) { 10834 u64 logical_block_start, physical_block_start; 10835 struct btrfs_block_group *bg; 10836 u64 len = isize - start; 10837 10838 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 10839 if (IS_ERR(em)) { 10840 ret = PTR_ERR(em); 10841 goto out; 10842 } 10843 10844 if (em->block_start == EXTENT_MAP_HOLE) { 10845 btrfs_warn(fs_info, "swapfile must not have holes"); 10846 ret = -EINVAL; 10847 goto out; 10848 } 10849 if (em->block_start == EXTENT_MAP_INLINE) { 10850 /* 10851 * It's unlikely we'll ever actually find ourselves 10852 * here, as a file small enough to fit inline won't be 10853 * big enough to store more than the swap header, but in 10854 * case something changes in the future, let's catch it 10855 * here rather than later. 10856 */ 10857 btrfs_warn(fs_info, "swapfile must not be inline"); 10858 ret = -EINVAL; 10859 goto out; 10860 } 10861 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10862 btrfs_warn(fs_info, "swapfile must not be compressed"); 10863 ret = -EINVAL; 10864 goto out; 10865 } 10866 10867 logical_block_start = em->block_start + (start - em->start); 10868 len = min(len, em->len - (start - em->start)); 10869 free_extent_map(em); 10870 em = NULL; 10871 10872 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10873 if (ret < 0) { 10874 goto out; 10875 } else if (ret) { 10876 ret = 0; 10877 } else { 10878 btrfs_warn(fs_info, 10879 "swapfile must not be copy-on-write"); 10880 ret = -EINVAL; 10881 goto out; 10882 } 10883 10884 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10885 if (IS_ERR(em)) { 10886 ret = PTR_ERR(em); 10887 goto out; 10888 } 10889 10890 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10891 btrfs_warn(fs_info, 10892 "swapfile must have single data profile"); 10893 ret = -EINVAL; 10894 goto out; 10895 } 10896 10897 if (device == NULL) { 10898 device = em->map_lookup->stripes[0].dev; 10899 ret = btrfs_add_swapfile_pin(inode, device, false); 10900 if (ret == 1) 10901 ret = 0; 10902 else if (ret) 10903 goto out; 10904 } else if (device != em->map_lookup->stripes[0].dev) { 10905 btrfs_warn(fs_info, "swapfile must be on one device"); 10906 ret = -EINVAL; 10907 goto out; 10908 } 10909 10910 physical_block_start = (em->map_lookup->stripes[0].physical + 10911 (logical_block_start - em->start)); 10912 len = min(len, em->len - (logical_block_start - em->start)); 10913 free_extent_map(em); 10914 em = NULL; 10915 10916 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10917 if (!bg) { 10918 btrfs_warn(fs_info, 10919 "could not find block group containing swapfile"); 10920 ret = -EINVAL; 10921 goto out; 10922 } 10923 10924 ret = btrfs_add_swapfile_pin(inode, bg, true); 10925 if (ret) { 10926 btrfs_put_block_group(bg); 10927 if (ret == 1) 10928 ret = 0; 10929 else 10930 goto out; 10931 } 10932 10933 if (bsi.block_len && 10934 bsi.block_start + bsi.block_len == physical_block_start) { 10935 bsi.block_len += len; 10936 } else { 10937 if (bsi.block_len) { 10938 ret = btrfs_add_swap_extent(sis, &bsi); 10939 if (ret) 10940 goto out; 10941 } 10942 bsi.start = start; 10943 bsi.block_start = physical_block_start; 10944 bsi.block_len = len; 10945 } 10946 10947 start += len; 10948 } 10949 10950 if (bsi.block_len) 10951 ret = btrfs_add_swap_extent(sis, &bsi); 10952 10953 out: 10954 if (!IS_ERR_OR_NULL(em)) 10955 free_extent_map(em); 10956 10957 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10958 10959 if (ret) 10960 btrfs_swap_deactivate(file); 10961 10962 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10963 10964 if (ret) 10965 return ret; 10966 10967 if (device) 10968 sis->bdev = device->bdev; 10969 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10970 sis->max = bsi.nr_pages; 10971 sis->pages = bsi.nr_pages - 1; 10972 sis->highest_bit = bsi.nr_pages - 1; 10973 return bsi.nr_extents; 10974 } 10975 #else 10976 static void btrfs_swap_deactivate(struct file *file) 10977 { 10978 } 10979 10980 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10981 sector_t *span) 10982 { 10983 return -EOPNOTSUPP; 10984 } 10985 #endif 10986 10987 static const struct inode_operations btrfs_dir_inode_operations = { 10988 .getattr = btrfs_getattr, 10989 .lookup = btrfs_lookup, 10990 .create = btrfs_create, 10991 .unlink = btrfs_unlink, 10992 .link = btrfs_link, 10993 .mkdir = btrfs_mkdir, 10994 .rmdir = btrfs_rmdir, 10995 .rename = btrfs_rename2, 10996 .symlink = btrfs_symlink, 10997 .setattr = btrfs_setattr, 10998 .mknod = btrfs_mknod, 10999 .listxattr = btrfs_listxattr, 11000 .permission = btrfs_permission, 11001 .get_acl = btrfs_get_acl, 11002 .set_acl = btrfs_set_acl, 11003 .update_time = btrfs_update_time, 11004 .tmpfile = btrfs_tmpfile, 11005 }; 11006 static const struct inode_operations btrfs_dir_ro_inode_operations = { 11007 .lookup = btrfs_lookup, 11008 .permission = btrfs_permission, 11009 .update_time = btrfs_update_time, 11010 }; 11011 11012 static const struct file_operations btrfs_dir_file_operations = { 11013 .llseek = generic_file_llseek, 11014 .read = generic_read_dir, 11015 .iterate_shared = btrfs_real_readdir, 11016 .open = btrfs_opendir, 11017 .unlocked_ioctl = btrfs_ioctl, 11018 #ifdef CONFIG_COMPAT 11019 .compat_ioctl = btrfs_compat_ioctl, 11020 #endif 11021 .release = btrfs_release_file, 11022 .fsync = btrfs_sync_file, 11023 }; 11024 11025 static const struct extent_io_ops btrfs_extent_io_ops = { 11026 /* mandatory callbacks */ 11027 .submit_bio_hook = btrfs_submit_bio_hook, 11028 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 11029 }; 11030 11031 /* 11032 * btrfs doesn't support the bmap operation because swapfiles 11033 * use bmap to make a mapping of extents in the file. They assume 11034 * these extents won't change over the life of the file and they 11035 * use the bmap result to do IO directly to the drive. 11036 * 11037 * the btrfs bmap call would return logical addresses that aren't 11038 * suitable for IO and they also will change frequently as COW 11039 * operations happen. So, swapfile + btrfs == corruption. 11040 * 11041 * For now we're avoiding this by dropping bmap. 11042 */ 11043 static const struct address_space_operations btrfs_aops = { 11044 .readpage = btrfs_readpage, 11045 .writepage = btrfs_writepage, 11046 .writepages = btrfs_writepages, 11047 .readpages = btrfs_readpages, 11048 .direct_IO = btrfs_direct_IO, 11049 .invalidatepage = btrfs_invalidatepage, 11050 .releasepage = btrfs_releasepage, 11051 .set_page_dirty = btrfs_set_page_dirty, 11052 .error_remove_page = generic_error_remove_page, 11053 .swap_activate = btrfs_swap_activate, 11054 .swap_deactivate = btrfs_swap_deactivate, 11055 }; 11056 11057 static const struct inode_operations btrfs_file_inode_operations = { 11058 .getattr = btrfs_getattr, 11059 .setattr = btrfs_setattr, 11060 .listxattr = btrfs_listxattr, 11061 .permission = btrfs_permission, 11062 .fiemap = btrfs_fiemap, 11063 .get_acl = btrfs_get_acl, 11064 .set_acl = btrfs_set_acl, 11065 .update_time = btrfs_update_time, 11066 }; 11067 static const struct inode_operations btrfs_special_inode_operations = { 11068 .getattr = btrfs_getattr, 11069 .setattr = btrfs_setattr, 11070 .permission = btrfs_permission, 11071 .listxattr = btrfs_listxattr, 11072 .get_acl = btrfs_get_acl, 11073 .set_acl = btrfs_set_acl, 11074 .update_time = btrfs_update_time, 11075 }; 11076 static const struct inode_operations btrfs_symlink_inode_operations = { 11077 .get_link = page_get_link, 11078 .getattr = btrfs_getattr, 11079 .setattr = btrfs_setattr, 11080 .permission = btrfs_permission, 11081 .listxattr = btrfs_listxattr, 11082 .update_time = btrfs_update_time, 11083 }; 11084 11085 const struct dentry_operations btrfs_dentry_operations = { 11086 .d_delete = btrfs_dentry_delete, 11087 }; 11088