xref: /openbmc/linux/fs/btrfs/inode.c (revision 4bacd796)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 
54 struct btrfs_iget_args {
55 	u64 ino;
56 	struct btrfs_root *root;
57 };
58 
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68 
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
77 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
78 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
79 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
80 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
81 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
82 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
83 };
84 
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 				   struct page *locked_page,
89 				   u64 start, u64 end, int *page_started,
90 				   unsigned long *nr_written, int unlock);
91 
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 				     struct inode *inode,  struct inode *dir)
94 {
95 	int err;
96 
97 	err = btrfs_init_acl(trans, inode, dir);
98 	if (!err)
99 		err = btrfs_xattr_security_init(trans, inode, dir);
100 	return err;
101 }
102 
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 				struct btrfs_root *root, struct inode *inode,
110 				u64 start, size_t size, size_t compressed_size,
111 				struct page **compressed_pages)
112 {
113 	struct btrfs_key key;
114 	struct btrfs_path *path;
115 	struct extent_buffer *leaf;
116 	struct page *page = NULL;
117 	char *kaddr;
118 	unsigned long ptr;
119 	struct btrfs_file_extent_item *ei;
120 	int err = 0;
121 	int ret;
122 	size_t cur_size = size;
123 	size_t datasize;
124 	unsigned long offset;
125 	int use_compress = 0;
126 
127 	if (compressed_size && compressed_pages) {
128 		use_compress = 1;
129 		cur_size = compressed_size;
130 	}
131 
132 	path = btrfs_alloc_path();
133 	if (!path)
134 		return -ENOMEM;
135 
136 	path->leave_spinning = 1;
137 	btrfs_set_trans_block_group(trans, inode);
138 
139 	key.objectid = inode->i_ino;
140 	key.offset = start;
141 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
143 
144 	inode_add_bytes(inode, size);
145 	ret = btrfs_insert_empty_item(trans, root, path, &key,
146 				      datasize);
147 	BUG_ON(ret);
148 	if (ret) {
149 		err = ret;
150 		goto fail;
151 	}
152 	leaf = path->nodes[0];
153 	ei = btrfs_item_ptr(leaf, path->slots[0],
154 			    struct btrfs_file_extent_item);
155 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 	btrfs_set_file_extent_encryption(leaf, ei, 0);
158 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 	ptr = btrfs_file_extent_inline_start(ei);
161 
162 	if (use_compress) {
163 		struct page *cpage;
164 		int i = 0;
165 		while (compressed_size > 0) {
166 			cpage = compressed_pages[i];
167 			cur_size = min_t(unsigned long, compressed_size,
168 				       PAGE_CACHE_SIZE);
169 
170 			kaddr = kmap_atomic(cpage, KM_USER0);
171 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 			kunmap_atomic(kaddr, KM_USER0);
173 
174 			i++;
175 			ptr += cur_size;
176 			compressed_size -= cur_size;
177 		}
178 		btrfs_set_file_extent_compression(leaf, ei,
179 						  BTRFS_COMPRESS_ZLIB);
180 	} else {
181 		page = find_get_page(inode->i_mapping,
182 				     start >> PAGE_CACHE_SHIFT);
183 		btrfs_set_file_extent_compression(leaf, ei, 0);
184 		kaddr = kmap_atomic(page, KM_USER0);
185 		offset = start & (PAGE_CACHE_SIZE - 1);
186 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 		kunmap_atomic(kaddr, KM_USER0);
188 		page_cache_release(page);
189 	}
190 	btrfs_mark_buffer_dirty(leaf);
191 	btrfs_free_path(path);
192 
193 	/*
194 	 * we're an inline extent, so nobody can
195 	 * extend the file past i_size without locking
196 	 * a page we already have locked.
197 	 *
198 	 * We must do any isize and inode updates
199 	 * before we unlock the pages.  Otherwise we
200 	 * could end up racing with unlink.
201 	 */
202 	BTRFS_I(inode)->disk_i_size = inode->i_size;
203 	btrfs_update_inode(trans, root, inode);
204 
205 	return 0;
206 fail:
207 	btrfs_free_path(path);
208 	return err;
209 }
210 
211 
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 				 struct btrfs_root *root,
219 				 struct inode *inode, u64 start, u64 end,
220 				 size_t compressed_size,
221 				 struct page **compressed_pages)
222 {
223 	u64 isize = i_size_read(inode);
224 	u64 actual_end = min(end + 1, isize);
225 	u64 inline_len = actual_end - start;
226 	u64 aligned_end = (end + root->sectorsize - 1) &
227 			~((u64)root->sectorsize - 1);
228 	u64 hint_byte;
229 	u64 data_len = inline_len;
230 	int ret;
231 
232 	if (compressed_size)
233 		data_len = compressed_size;
234 
235 	if (start > 0 ||
236 	    actual_end >= PAGE_CACHE_SIZE ||
237 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 	    (!compressed_size &&
239 	    (actual_end & (root->sectorsize - 1)) == 0) ||
240 	    end + 1 < isize ||
241 	    data_len > root->fs_info->max_inline) {
242 		return 1;
243 	}
244 
245 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 				 &hint_byte, 1);
247 	BUG_ON(ret);
248 
249 	if (isize > actual_end)
250 		inline_len = min_t(u64, isize, actual_end);
251 	ret = insert_inline_extent(trans, root, inode, start,
252 				   inline_len, compressed_size,
253 				   compressed_pages);
254 	BUG_ON(ret);
255 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 	return 0;
258 }
259 
260 struct async_extent {
261 	u64 start;
262 	u64 ram_size;
263 	u64 compressed_size;
264 	struct page **pages;
265 	unsigned long nr_pages;
266 	struct list_head list;
267 };
268 
269 struct async_cow {
270 	struct inode *inode;
271 	struct btrfs_root *root;
272 	struct page *locked_page;
273 	u64 start;
274 	u64 end;
275 	struct list_head extents;
276 	struct btrfs_work work;
277 };
278 
279 static noinline int add_async_extent(struct async_cow *cow,
280 				     u64 start, u64 ram_size,
281 				     u64 compressed_size,
282 				     struct page **pages,
283 				     unsigned long nr_pages)
284 {
285 	struct async_extent *async_extent;
286 
287 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 	async_extent->start = start;
289 	async_extent->ram_size = ram_size;
290 	async_extent->compressed_size = compressed_size;
291 	async_extent->pages = pages;
292 	async_extent->nr_pages = nr_pages;
293 	list_add_tail(&async_extent->list, &cow->extents);
294 	return 0;
295 }
296 
297 /*
298  * we create compressed extents in two phases.  The first
299  * phase compresses a range of pages that have already been
300  * locked (both pages and state bits are locked).
301  *
302  * This is done inside an ordered work queue, and the compression
303  * is spread across many cpus.  The actual IO submission is step
304  * two, and the ordered work queue takes care of making sure that
305  * happens in the same order things were put onto the queue by
306  * writepages and friends.
307  *
308  * If this code finds it can't get good compression, it puts an
309  * entry onto the work queue to write the uncompressed bytes.  This
310  * makes sure that both compressed inodes and uncompressed inodes
311  * are written in the same order that pdflush sent them down.
312  */
313 static noinline int compress_file_range(struct inode *inode,
314 					struct page *locked_page,
315 					u64 start, u64 end,
316 					struct async_cow *async_cow,
317 					int *num_added)
318 {
319 	struct btrfs_root *root = BTRFS_I(inode)->root;
320 	struct btrfs_trans_handle *trans;
321 	u64 num_bytes;
322 	u64 orig_start;
323 	u64 disk_num_bytes;
324 	u64 blocksize = root->sectorsize;
325 	u64 actual_end;
326 	u64 isize = i_size_read(inode);
327 	int ret = 0;
328 	struct page **pages = NULL;
329 	unsigned long nr_pages;
330 	unsigned long nr_pages_ret = 0;
331 	unsigned long total_compressed = 0;
332 	unsigned long total_in = 0;
333 	unsigned long max_compressed = 128 * 1024;
334 	unsigned long max_uncompressed = 128 * 1024;
335 	int i;
336 	int will_compress;
337 
338 	orig_start = start;
339 
340 	actual_end = min_t(u64, isize, end + 1);
341 again:
342 	will_compress = 0;
343 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345 
346 	/*
347 	 * we don't want to send crud past the end of i_size through
348 	 * compression, that's just a waste of CPU time.  So, if the
349 	 * end of the file is before the start of our current
350 	 * requested range of bytes, we bail out to the uncompressed
351 	 * cleanup code that can deal with all of this.
352 	 *
353 	 * It isn't really the fastest way to fix things, but this is a
354 	 * very uncommon corner.
355 	 */
356 	if (actual_end <= start)
357 		goto cleanup_and_bail_uncompressed;
358 
359 	total_compressed = actual_end - start;
360 
361 	/* we want to make sure that amount of ram required to uncompress
362 	 * an extent is reasonable, so we limit the total size in ram
363 	 * of a compressed extent to 128k.  This is a crucial number
364 	 * because it also controls how easily we can spread reads across
365 	 * cpus for decompression.
366 	 *
367 	 * We also want to make sure the amount of IO required to do
368 	 * a random read is reasonably small, so we limit the size of
369 	 * a compressed extent to 128k.
370 	 */
371 	total_compressed = min(total_compressed, max_uncompressed);
372 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 	num_bytes = max(blocksize,  num_bytes);
374 	disk_num_bytes = num_bytes;
375 	total_in = 0;
376 	ret = 0;
377 
378 	/*
379 	 * we do compression for mount -o compress and when the
380 	 * inode has not been flagged as nocompress.  This flag can
381 	 * change at any time if we discover bad compression ratios.
382 	 */
383 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
384 	    (btrfs_test_opt(root, COMPRESS) ||
385 	     (BTRFS_I(inode)->force_compress))) {
386 		WARN_ON(pages);
387 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
388 
389 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
390 						total_compressed, pages,
391 						nr_pages, &nr_pages_ret,
392 						&total_in,
393 						&total_compressed,
394 						max_compressed);
395 
396 		if (!ret) {
397 			unsigned long offset = total_compressed &
398 				(PAGE_CACHE_SIZE - 1);
399 			struct page *page = pages[nr_pages_ret - 1];
400 			char *kaddr;
401 
402 			/* zero the tail end of the last page, we might be
403 			 * sending it down to disk
404 			 */
405 			if (offset) {
406 				kaddr = kmap_atomic(page, KM_USER0);
407 				memset(kaddr + offset, 0,
408 				       PAGE_CACHE_SIZE - offset);
409 				kunmap_atomic(kaddr, KM_USER0);
410 			}
411 			will_compress = 1;
412 		}
413 	}
414 	if (start == 0) {
415 		trans = btrfs_join_transaction(root, 1);
416 		BUG_ON(!trans);
417 		btrfs_set_trans_block_group(trans, inode);
418 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
419 
420 		/* lets try to make an inline extent */
421 		if (ret || total_in < (actual_end - start)) {
422 			/* we didn't compress the entire range, try
423 			 * to make an uncompressed inline extent.
424 			 */
425 			ret = cow_file_range_inline(trans, root, inode,
426 						    start, end, 0, NULL);
427 		} else {
428 			/* try making a compressed inline extent */
429 			ret = cow_file_range_inline(trans, root, inode,
430 						    start, end,
431 						    total_compressed, pages);
432 		}
433 		if (ret == 0) {
434 			/*
435 			 * inline extent creation worked, we don't need
436 			 * to create any more async work items.  Unlock
437 			 * and free up our temp pages.
438 			 */
439 			extent_clear_unlock_delalloc(inode,
440 			     &BTRFS_I(inode)->io_tree,
441 			     start, end, NULL,
442 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
443 			     EXTENT_CLEAR_DELALLOC |
444 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
445 
446 			btrfs_end_transaction(trans, root);
447 			goto free_pages_out;
448 		}
449 		btrfs_end_transaction(trans, root);
450 	}
451 
452 	if (will_compress) {
453 		/*
454 		 * we aren't doing an inline extent round the compressed size
455 		 * up to a block size boundary so the allocator does sane
456 		 * things
457 		 */
458 		total_compressed = (total_compressed + blocksize - 1) &
459 			~(blocksize - 1);
460 
461 		/*
462 		 * one last check to make sure the compression is really a
463 		 * win, compare the page count read with the blocks on disk
464 		 */
465 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
466 			~(PAGE_CACHE_SIZE - 1);
467 		if (total_compressed >= total_in) {
468 			will_compress = 0;
469 		} else {
470 			disk_num_bytes = total_compressed;
471 			num_bytes = total_in;
472 		}
473 	}
474 	if (!will_compress && pages) {
475 		/*
476 		 * the compression code ran but failed to make things smaller,
477 		 * free any pages it allocated and our page pointer array
478 		 */
479 		for (i = 0; i < nr_pages_ret; i++) {
480 			WARN_ON(pages[i]->mapping);
481 			page_cache_release(pages[i]);
482 		}
483 		kfree(pages);
484 		pages = NULL;
485 		total_compressed = 0;
486 		nr_pages_ret = 0;
487 
488 		/* flag the file so we don't compress in the future */
489 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
490 		    !(BTRFS_I(inode)->force_compress)) {
491 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
492 		}
493 	}
494 	if (will_compress) {
495 		*num_added += 1;
496 
497 		/* the async work queues will take care of doing actual
498 		 * allocation on disk for these compressed pages,
499 		 * and will submit them to the elevator.
500 		 */
501 		add_async_extent(async_cow, start, num_bytes,
502 				 total_compressed, pages, nr_pages_ret);
503 
504 		if (start + num_bytes < end && start + num_bytes < actual_end) {
505 			start += num_bytes;
506 			pages = NULL;
507 			cond_resched();
508 			goto again;
509 		}
510 	} else {
511 cleanup_and_bail_uncompressed:
512 		/*
513 		 * No compression, but we still need to write the pages in
514 		 * the file we've been given so far.  redirty the locked
515 		 * page if it corresponds to our extent and set things up
516 		 * for the async work queue to run cow_file_range to do
517 		 * the normal delalloc dance
518 		 */
519 		if (page_offset(locked_page) >= start &&
520 		    page_offset(locked_page) <= end) {
521 			__set_page_dirty_nobuffers(locked_page);
522 			/* unlocked later on in the async handlers */
523 		}
524 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
525 		*num_added += 1;
526 	}
527 
528 out:
529 	return 0;
530 
531 free_pages_out:
532 	for (i = 0; i < nr_pages_ret; i++) {
533 		WARN_ON(pages[i]->mapping);
534 		page_cache_release(pages[i]);
535 	}
536 	kfree(pages);
537 
538 	goto out;
539 }
540 
541 /*
542  * phase two of compressed writeback.  This is the ordered portion
543  * of the code, which only gets called in the order the work was
544  * queued.  We walk all the async extents created by compress_file_range
545  * and send them down to the disk.
546  */
547 static noinline int submit_compressed_extents(struct inode *inode,
548 					      struct async_cow *async_cow)
549 {
550 	struct async_extent *async_extent;
551 	u64 alloc_hint = 0;
552 	struct btrfs_trans_handle *trans;
553 	struct btrfs_key ins;
554 	struct extent_map *em;
555 	struct btrfs_root *root = BTRFS_I(inode)->root;
556 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
557 	struct extent_io_tree *io_tree;
558 	int ret = 0;
559 
560 	if (list_empty(&async_cow->extents))
561 		return 0;
562 
563 
564 	while (!list_empty(&async_cow->extents)) {
565 		async_extent = list_entry(async_cow->extents.next,
566 					  struct async_extent, list);
567 		list_del(&async_extent->list);
568 
569 		io_tree = &BTRFS_I(inode)->io_tree;
570 
571 retry:
572 		/* did the compression code fall back to uncompressed IO? */
573 		if (!async_extent->pages) {
574 			int page_started = 0;
575 			unsigned long nr_written = 0;
576 
577 			lock_extent(io_tree, async_extent->start,
578 					 async_extent->start +
579 					 async_extent->ram_size - 1, GFP_NOFS);
580 
581 			/* allocate blocks */
582 			ret = cow_file_range(inode, async_cow->locked_page,
583 					     async_extent->start,
584 					     async_extent->start +
585 					     async_extent->ram_size - 1,
586 					     &page_started, &nr_written, 0);
587 
588 			/*
589 			 * if page_started, cow_file_range inserted an
590 			 * inline extent and took care of all the unlocking
591 			 * and IO for us.  Otherwise, we need to submit
592 			 * all those pages down to the drive.
593 			 */
594 			if (!page_started && !ret)
595 				extent_write_locked_range(io_tree,
596 						  inode, async_extent->start,
597 						  async_extent->start +
598 						  async_extent->ram_size - 1,
599 						  btrfs_get_extent,
600 						  WB_SYNC_ALL);
601 			kfree(async_extent);
602 			cond_resched();
603 			continue;
604 		}
605 
606 		lock_extent(io_tree, async_extent->start,
607 			    async_extent->start + async_extent->ram_size - 1,
608 			    GFP_NOFS);
609 
610 		trans = btrfs_join_transaction(root, 1);
611 		ret = btrfs_reserve_extent(trans, root,
612 					   async_extent->compressed_size,
613 					   async_extent->compressed_size,
614 					   0, alloc_hint,
615 					   (u64)-1, &ins, 1);
616 		btrfs_end_transaction(trans, root);
617 
618 		if (ret) {
619 			int i;
620 			for (i = 0; i < async_extent->nr_pages; i++) {
621 				WARN_ON(async_extent->pages[i]->mapping);
622 				page_cache_release(async_extent->pages[i]);
623 			}
624 			kfree(async_extent->pages);
625 			async_extent->nr_pages = 0;
626 			async_extent->pages = NULL;
627 			unlock_extent(io_tree, async_extent->start,
628 				      async_extent->start +
629 				      async_extent->ram_size - 1, GFP_NOFS);
630 			goto retry;
631 		}
632 
633 		/*
634 		 * here we're doing allocation and writeback of the
635 		 * compressed pages
636 		 */
637 		btrfs_drop_extent_cache(inode, async_extent->start,
638 					async_extent->start +
639 					async_extent->ram_size - 1, 0);
640 
641 		em = alloc_extent_map(GFP_NOFS);
642 		em->start = async_extent->start;
643 		em->len = async_extent->ram_size;
644 		em->orig_start = em->start;
645 
646 		em->block_start = ins.objectid;
647 		em->block_len = ins.offset;
648 		em->bdev = root->fs_info->fs_devices->latest_bdev;
649 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
650 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
651 
652 		while (1) {
653 			write_lock(&em_tree->lock);
654 			ret = add_extent_mapping(em_tree, em);
655 			write_unlock(&em_tree->lock);
656 			if (ret != -EEXIST) {
657 				free_extent_map(em);
658 				break;
659 			}
660 			btrfs_drop_extent_cache(inode, async_extent->start,
661 						async_extent->start +
662 						async_extent->ram_size - 1, 0);
663 		}
664 
665 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
666 					       ins.objectid,
667 					       async_extent->ram_size,
668 					       ins.offset,
669 					       BTRFS_ORDERED_COMPRESSED);
670 		BUG_ON(ret);
671 
672 		/*
673 		 * clear dirty, set writeback and unlock the pages.
674 		 */
675 		extent_clear_unlock_delalloc(inode,
676 				&BTRFS_I(inode)->io_tree,
677 				async_extent->start,
678 				async_extent->start +
679 				async_extent->ram_size - 1,
680 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
681 				EXTENT_CLEAR_UNLOCK |
682 				EXTENT_CLEAR_DELALLOC |
683 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
684 
685 		ret = btrfs_submit_compressed_write(inode,
686 				    async_extent->start,
687 				    async_extent->ram_size,
688 				    ins.objectid,
689 				    ins.offset, async_extent->pages,
690 				    async_extent->nr_pages);
691 
692 		BUG_ON(ret);
693 		alloc_hint = ins.objectid + ins.offset;
694 		kfree(async_extent);
695 		cond_resched();
696 	}
697 
698 	return 0;
699 }
700 
701 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
702 				      u64 num_bytes)
703 {
704 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
705 	struct extent_map *em;
706 	u64 alloc_hint = 0;
707 
708 	read_lock(&em_tree->lock);
709 	em = search_extent_mapping(em_tree, start, num_bytes);
710 	if (em) {
711 		/*
712 		 * if block start isn't an actual block number then find the
713 		 * first block in this inode and use that as a hint.  If that
714 		 * block is also bogus then just don't worry about it.
715 		 */
716 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
717 			free_extent_map(em);
718 			em = search_extent_mapping(em_tree, 0, 0);
719 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
720 				alloc_hint = em->block_start;
721 			if (em)
722 				free_extent_map(em);
723 		} else {
724 			alloc_hint = em->block_start;
725 			free_extent_map(em);
726 		}
727 	}
728 	read_unlock(&em_tree->lock);
729 
730 	return alloc_hint;
731 }
732 
733 /*
734  * when extent_io.c finds a delayed allocation range in the file,
735  * the call backs end up in this code.  The basic idea is to
736  * allocate extents on disk for the range, and create ordered data structs
737  * in ram to track those extents.
738  *
739  * locked_page is the page that writepage had locked already.  We use
740  * it to make sure we don't do extra locks or unlocks.
741  *
742  * *page_started is set to one if we unlock locked_page and do everything
743  * required to start IO on it.  It may be clean and already done with
744  * IO when we return.
745  */
746 static noinline int cow_file_range(struct inode *inode,
747 				   struct page *locked_page,
748 				   u64 start, u64 end, int *page_started,
749 				   unsigned long *nr_written,
750 				   int unlock)
751 {
752 	struct btrfs_root *root = BTRFS_I(inode)->root;
753 	struct btrfs_trans_handle *trans;
754 	u64 alloc_hint = 0;
755 	u64 num_bytes;
756 	unsigned long ram_size;
757 	u64 disk_num_bytes;
758 	u64 cur_alloc_size;
759 	u64 blocksize = root->sectorsize;
760 	u64 actual_end;
761 	u64 isize = i_size_read(inode);
762 	struct btrfs_key ins;
763 	struct extent_map *em;
764 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 	int ret = 0;
766 
767 	trans = btrfs_join_transaction(root, 1);
768 	BUG_ON(!trans);
769 	btrfs_set_trans_block_group(trans, inode);
770 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771 
772 	actual_end = min_t(u64, isize, end + 1);
773 
774 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
775 	num_bytes = max(blocksize,  num_bytes);
776 	disk_num_bytes = num_bytes;
777 	ret = 0;
778 
779 	if (start == 0) {
780 		/* lets try to make an inline extent */
781 		ret = cow_file_range_inline(trans, root, inode,
782 					    start, end, 0, NULL);
783 		if (ret == 0) {
784 			extent_clear_unlock_delalloc(inode,
785 				     &BTRFS_I(inode)->io_tree,
786 				     start, end, NULL,
787 				     EXTENT_CLEAR_UNLOCK_PAGE |
788 				     EXTENT_CLEAR_UNLOCK |
789 				     EXTENT_CLEAR_DELALLOC |
790 				     EXTENT_CLEAR_DIRTY |
791 				     EXTENT_SET_WRITEBACK |
792 				     EXTENT_END_WRITEBACK);
793 
794 			*nr_written = *nr_written +
795 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
796 			*page_started = 1;
797 			ret = 0;
798 			goto out;
799 		}
800 	}
801 
802 	BUG_ON(disk_num_bytes >
803 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
804 
805 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
806 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
807 
808 	while (disk_num_bytes > 0) {
809 		unsigned long op;
810 
811 		cur_alloc_size = disk_num_bytes;
812 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
813 					   root->sectorsize, 0, alloc_hint,
814 					   (u64)-1, &ins, 1);
815 		BUG_ON(ret);
816 
817 		em = alloc_extent_map(GFP_NOFS);
818 		em->start = start;
819 		em->orig_start = em->start;
820 		ram_size = ins.offset;
821 		em->len = ins.offset;
822 
823 		em->block_start = ins.objectid;
824 		em->block_len = ins.offset;
825 		em->bdev = root->fs_info->fs_devices->latest_bdev;
826 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
827 
828 		while (1) {
829 			write_lock(&em_tree->lock);
830 			ret = add_extent_mapping(em_tree, em);
831 			write_unlock(&em_tree->lock);
832 			if (ret != -EEXIST) {
833 				free_extent_map(em);
834 				break;
835 			}
836 			btrfs_drop_extent_cache(inode, start,
837 						start + ram_size - 1, 0);
838 		}
839 
840 		cur_alloc_size = ins.offset;
841 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
842 					       ram_size, cur_alloc_size, 0);
843 		BUG_ON(ret);
844 
845 		if (root->root_key.objectid ==
846 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
847 			ret = btrfs_reloc_clone_csums(inode, start,
848 						      cur_alloc_size);
849 			BUG_ON(ret);
850 		}
851 
852 		if (disk_num_bytes < cur_alloc_size)
853 			break;
854 
855 		/* we're not doing compressed IO, don't unlock the first
856 		 * page (which the caller expects to stay locked), don't
857 		 * clear any dirty bits and don't set any writeback bits
858 		 *
859 		 * Do set the Private2 bit so we know this page was properly
860 		 * setup for writepage
861 		 */
862 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
863 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
864 			EXTENT_SET_PRIVATE2;
865 
866 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
867 					     start, start + ram_size - 1,
868 					     locked_page, op);
869 		disk_num_bytes -= cur_alloc_size;
870 		num_bytes -= cur_alloc_size;
871 		alloc_hint = ins.objectid + ins.offset;
872 		start += cur_alloc_size;
873 	}
874 out:
875 	ret = 0;
876 	btrfs_end_transaction(trans, root);
877 
878 	return ret;
879 }
880 
881 /*
882  * work queue call back to started compression on a file and pages
883  */
884 static noinline void async_cow_start(struct btrfs_work *work)
885 {
886 	struct async_cow *async_cow;
887 	int num_added = 0;
888 	async_cow = container_of(work, struct async_cow, work);
889 
890 	compress_file_range(async_cow->inode, async_cow->locked_page,
891 			    async_cow->start, async_cow->end, async_cow,
892 			    &num_added);
893 	if (num_added == 0)
894 		async_cow->inode = NULL;
895 }
896 
897 /*
898  * work queue call back to submit previously compressed pages
899  */
900 static noinline void async_cow_submit(struct btrfs_work *work)
901 {
902 	struct async_cow *async_cow;
903 	struct btrfs_root *root;
904 	unsigned long nr_pages;
905 
906 	async_cow = container_of(work, struct async_cow, work);
907 
908 	root = async_cow->root;
909 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
910 		PAGE_CACHE_SHIFT;
911 
912 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
913 
914 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
915 	    5 * 1042 * 1024 &&
916 	    waitqueue_active(&root->fs_info->async_submit_wait))
917 		wake_up(&root->fs_info->async_submit_wait);
918 
919 	if (async_cow->inode)
920 		submit_compressed_extents(async_cow->inode, async_cow);
921 }
922 
923 static noinline void async_cow_free(struct btrfs_work *work)
924 {
925 	struct async_cow *async_cow;
926 	async_cow = container_of(work, struct async_cow, work);
927 	kfree(async_cow);
928 }
929 
930 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
931 				u64 start, u64 end, int *page_started,
932 				unsigned long *nr_written)
933 {
934 	struct async_cow *async_cow;
935 	struct btrfs_root *root = BTRFS_I(inode)->root;
936 	unsigned long nr_pages;
937 	u64 cur_end;
938 	int limit = 10 * 1024 * 1042;
939 
940 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
941 			 1, 0, NULL, GFP_NOFS);
942 	while (start < end) {
943 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
944 		async_cow->inode = inode;
945 		async_cow->root = root;
946 		async_cow->locked_page = locked_page;
947 		async_cow->start = start;
948 
949 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
950 			cur_end = end;
951 		else
952 			cur_end = min(end, start + 512 * 1024 - 1);
953 
954 		async_cow->end = cur_end;
955 		INIT_LIST_HEAD(&async_cow->extents);
956 
957 		async_cow->work.func = async_cow_start;
958 		async_cow->work.ordered_func = async_cow_submit;
959 		async_cow->work.ordered_free = async_cow_free;
960 		async_cow->work.flags = 0;
961 
962 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
963 			PAGE_CACHE_SHIFT;
964 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
965 
966 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
967 				   &async_cow->work);
968 
969 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
970 			wait_event(root->fs_info->async_submit_wait,
971 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
972 			    limit));
973 		}
974 
975 		while (atomic_read(&root->fs_info->async_submit_draining) &&
976 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
977 			wait_event(root->fs_info->async_submit_wait,
978 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
979 			   0));
980 		}
981 
982 		*nr_written += nr_pages;
983 		start = cur_end + 1;
984 	}
985 	*page_started = 1;
986 	return 0;
987 }
988 
989 static noinline int csum_exist_in_range(struct btrfs_root *root,
990 					u64 bytenr, u64 num_bytes)
991 {
992 	int ret;
993 	struct btrfs_ordered_sum *sums;
994 	LIST_HEAD(list);
995 
996 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
997 				       bytenr + num_bytes - 1, &list);
998 	if (ret == 0 && list_empty(&list))
999 		return 0;
1000 
1001 	while (!list_empty(&list)) {
1002 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1003 		list_del(&sums->list);
1004 		kfree(sums);
1005 	}
1006 	return 1;
1007 }
1008 
1009 /*
1010  * when nowcow writeback call back.  This checks for snapshots or COW copies
1011  * of the extents that exist in the file, and COWs the file as required.
1012  *
1013  * If no cow copies or snapshots exist, we write directly to the existing
1014  * blocks on disk
1015  */
1016 static noinline int run_delalloc_nocow(struct inode *inode,
1017 				       struct page *locked_page,
1018 			      u64 start, u64 end, int *page_started, int force,
1019 			      unsigned long *nr_written)
1020 {
1021 	struct btrfs_root *root = BTRFS_I(inode)->root;
1022 	struct btrfs_trans_handle *trans;
1023 	struct extent_buffer *leaf;
1024 	struct btrfs_path *path;
1025 	struct btrfs_file_extent_item *fi;
1026 	struct btrfs_key found_key;
1027 	u64 cow_start;
1028 	u64 cur_offset;
1029 	u64 extent_end;
1030 	u64 extent_offset;
1031 	u64 disk_bytenr;
1032 	u64 num_bytes;
1033 	int extent_type;
1034 	int ret;
1035 	int type;
1036 	int nocow;
1037 	int check_prev = 1;
1038 
1039 	path = btrfs_alloc_path();
1040 	BUG_ON(!path);
1041 	trans = btrfs_join_transaction(root, 1);
1042 	BUG_ON(!trans);
1043 
1044 	cow_start = (u64)-1;
1045 	cur_offset = start;
1046 	while (1) {
1047 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1048 					       cur_offset, 0);
1049 		BUG_ON(ret < 0);
1050 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1051 			leaf = path->nodes[0];
1052 			btrfs_item_key_to_cpu(leaf, &found_key,
1053 					      path->slots[0] - 1);
1054 			if (found_key.objectid == inode->i_ino &&
1055 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1056 				path->slots[0]--;
1057 		}
1058 		check_prev = 0;
1059 next_slot:
1060 		leaf = path->nodes[0];
1061 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1062 			ret = btrfs_next_leaf(root, path);
1063 			if (ret < 0)
1064 				BUG_ON(1);
1065 			if (ret > 0)
1066 				break;
1067 			leaf = path->nodes[0];
1068 		}
1069 
1070 		nocow = 0;
1071 		disk_bytenr = 0;
1072 		num_bytes = 0;
1073 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1074 
1075 		if (found_key.objectid > inode->i_ino ||
1076 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1077 		    found_key.offset > end)
1078 			break;
1079 
1080 		if (found_key.offset > cur_offset) {
1081 			extent_end = found_key.offset;
1082 			extent_type = 0;
1083 			goto out_check;
1084 		}
1085 
1086 		fi = btrfs_item_ptr(leaf, path->slots[0],
1087 				    struct btrfs_file_extent_item);
1088 		extent_type = btrfs_file_extent_type(leaf, fi);
1089 
1090 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1091 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1092 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1093 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1094 			extent_end = found_key.offset +
1095 				btrfs_file_extent_num_bytes(leaf, fi);
1096 			if (extent_end <= start) {
1097 				path->slots[0]++;
1098 				goto next_slot;
1099 			}
1100 			if (disk_bytenr == 0)
1101 				goto out_check;
1102 			if (btrfs_file_extent_compression(leaf, fi) ||
1103 			    btrfs_file_extent_encryption(leaf, fi) ||
1104 			    btrfs_file_extent_other_encoding(leaf, fi))
1105 				goto out_check;
1106 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1107 				goto out_check;
1108 			if (btrfs_extent_readonly(root, disk_bytenr))
1109 				goto out_check;
1110 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1111 						  found_key.offset -
1112 						  extent_offset, disk_bytenr))
1113 				goto out_check;
1114 			disk_bytenr += extent_offset;
1115 			disk_bytenr += cur_offset - found_key.offset;
1116 			num_bytes = min(end + 1, extent_end) - cur_offset;
1117 			/*
1118 			 * force cow if csum exists in the range.
1119 			 * this ensure that csum for a given extent are
1120 			 * either valid or do not exist.
1121 			 */
1122 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1123 				goto out_check;
1124 			nocow = 1;
1125 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1126 			extent_end = found_key.offset +
1127 				btrfs_file_extent_inline_len(leaf, fi);
1128 			extent_end = ALIGN(extent_end, root->sectorsize);
1129 		} else {
1130 			BUG_ON(1);
1131 		}
1132 out_check:
1133 		if (extent_end <= start) {
1134 			path->slots[0]++;
1135 			goto next_slot;
1136 		}
1137 		if (!nocow) {
1138 			if (cow_start == (u64)-1)
1139 				cow_start = cur_offset;
1140 			cur_offset = extent_end;
1141 			if (cur_offset > end)
1142 				break;
1143 			path->slots[0]++;
1144 			goto next_slot;
1145 		}
1146 
1147 		btrfs_release_path(root, path);
1148 		if (cow_start != (u64)-1) {
1149 			ret = cow_file_range(inode, locked_page, cow_start,
1150 					found_key.offset - 1, page_started,
1151 					nr_written, 1);
1152 			BUG_ON(ret);
1153 			cow_start = (u64)-1;
1154 		}
1155 
1156 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1157 			struct extent_map *em;
1158 			struct extent_map_tree *em_tree;
1159 			em_tree = &BTRFS_I(inode)->extent_tree;
1160 			em = alloc_extent_map(GFP_NOFS);
1161 			em->start = cur_offset;
1162 			em->orig_start = em->start;
1163 			em->len = num_bytes;
1164 			em->block_len = num_bytes;
1165 			em->block_start = disk_bytenr;
1166 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1167 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1168 			while (1) {
1169 				write_lock(&em_tree->lock);
1170 				ret = add_extent_mapping(em_tree, em);
1171 				write_unlock(&em_tree->lock);
1172 				if (ret != -EEXIST) {
1173 					free_extent_map(em);
1174 					break;
1175 				}
1176 				btrfs_drop_extent_cache(inode, em->start,
1177 						em->start + em->len - 1, 0);
1178 			}
1179 			type = BTRFS_ORDERED_PREALLOC;
1180 		} else {
1181 			type = BTRFS_ORDERED_NOCOW;
1182 		}
1183 
1184 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1185 					       num_bytes, num_bytes, type);
1186 		BUG_ON(ret);
1187 
1188 		if (root->root_key.objectid ==
1189 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1190 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1191 						      num_bytes);
1192 			BUG_ON(ret);
1193 		}
1194 
1195 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1196 				cur_offset, cur_offset + num_bytes - 1,
1197 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1198 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1199 				EXTENT_SET_PRIVATE2);
1200 		cur_offset = extent_end;
1201 		if (cur_offset > end)
1202 			break;
1203 	}
1204 	btrfs_release_path(root, path);
1205 
1206 	if (cur_offset <= end && cow_start == (u64)-1)
1207 		cow_start = cur_offset;
1208 	if (cow_start != (u64)-1) {
1209 		ret = cow_file_range(inode, locked_page, cow_start, end,
1210 				     page_started, nr_written, 1);
1211 		BUG_ON(ret);
1212 	}
1213 
1214 	ret = btrfs_end_transaction(trans, root);
1215 	BUG_ON(ret);
1216 	btrfs_free_path(path);
1217 	return 0;
1218 }
1219 
1220 /*
1221  * extent_io.c call back to do delayed allocation processing
1222  */
1223 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1224 			      u64 start, u64 end, int *page_started,
1225 			      unsigned long *nr_written)
1226 {
1227 	int ret;
1228 	struct btrfs_root *root = BTRFS_I(inode)->root;
1229 
1230 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1231 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1232 					 page_started, 1, nr_written);
1233 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1234 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1235 					 page_started, 0, nr_written);
1236 	else if (!btrfs_test_opt(root, COMPRESS) &&
1237 		 !(BTRFS_I(inode)->force_compress))
1238 		ret = cow_file_range(inode, locked_page, start, end,
1239 				      page_started, nr_written, 1);
1240 	else
1241 		ret = cow_file_range_async(inode, locked_page, start, end,
1242 					   page_started, nr_written);
1243 	return ret;
1244 }
1245 
1246 static int btrfs_split_extent_hook(struct inode *inode,
1247 				   struct extent_state *orig, u64 split)
1248 {
1249 	/* not delalloc, ignore it */
1250 	if (!(orig->state & EXTENT_DELALLOC))
1251 		return 0;
1252 
1253 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1254 	return 0;
1255 }
1256 
1257 /*
1258  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259  * extents so we can keep track of new extents that are just merged onto old
1260  * extents, such as when we are doing sequential writes, so we can properly
1261  * account for the metadata space we'll need.
1262  */
1263 static int btrfs_merge_extent_hook(struct inode *inode,
1264 				   struct extent_state *new,
1265 				   struct extent_state *other)
1266 {
1267 	/* not delalloc, ignore it */
1268 	if (!(other->state & EXTENT_DELALLOC))
1269 		return 0;
1270 
1271 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1272 	return 0;
1273 }
1274 
1275 /*
1276  * extent_io.c set_bit_hook, used to track delayed allocation
1277  * bytes in this file, and to maintain the list of inodes that
1278  * have pending delalloc work to be done.
1279  */
1280 static int btrfs_set_bit_hook(struct inode *inode,
1281 			      struct extent_state *state, int *bits)
1282 {
1283 
1284 	/*
1285 	 * set_bit and clear bit hooks normally require _irqsave/restore
1286 	 * but in this case, we are only testeing for the DELALLOC
1287 	 * bit, which is only set or cleared with irqs on
1288 	 */
1289 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1290 		struct btrfs_root *root = BTRFS_I(inode)->root;
1291 		u64 len = state->end + 1 - state->start;
1292 
1293 		if (*bits & EXTENT_FIRST_DELALLOC)
1294 			*bits &= ~EXTENT_FIRST_DELALLOC;
1295 		else
1296 			atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1297 
1298 		spin_lock(&root->fs_info->delalloc_lock);
1299 		BTRFS_I(inode)->delalloc_bytes += len;
1300 		root->fs_info->delalloc_bytes += len;
1301 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1302 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1303 				      &root->fs_info->delalloc_inodes);
1304 		}
1305 		spin_unlock(&root->fs_info->delalloc_lock);
1306 	}
1307 	return 0;
1308 }
1309 
1310 /*
1311  * extent_io.c clear_bit_hook, see set_bit_hook for why
1312  */
1313 static int btrfs_clear_bit_hook(struct inode *inode,
1314 				struct extent_state *state, int *bits)
1315 {
1316 	/*
1317 	 * set_bit and clear bit hooks normally require _irqsave/restore
1318 	 * but in this case, we are only testeing for the DELALLOC
1319 	 * bit, which is only set or cleared with irqs on
1320 	 */
1321 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1322 		struct btrfs_root *root = BTRFS_I(inode)->root;
1323 		u64 len = state->end + 1 - state->start;
1324 
1325 		if (*bits & EXTENT_FIRST_DELALLOC)
1326 			*bits &= ~EXTENT_FIRST_DELALLOC;
1327 		else if (!(*bits & EXTENT_DO_ACCOUNTING))
1328 			atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1329 
1330 		if (*bits & EXTENT_DO_ACCOUNTING)
1331 			btrfs_delalloc_release_metadata(inode, len);
1332 
1333 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1334 			btrfs_free_reserved_data_space(inode, len);
1335 
1336 		spin_lock(&root->fs_info->delalloc_lock);
1337 		root->fs_info->delalloc_bytes -= len;
1338 		BTRFS_I(inode)->delalloc_bytes -= len;
1339 
1340 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1341 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1342 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1343 		}
1344 		spin_unlock(&root->fs_info->delalloc_lock);
1345 	}
1346 	return 0;
1347 }
1348 
1349 /*
1350  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1351  * we don't create bios that span stripes or chunks
1352  */
1353 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1354 			 size_t size, struct bio *bio,
1355 			 unsigned long bio_flags)
1356 {
1357 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1358 	struct btrfs_mapping_tree *map_tree;
1359 	u64 logical = (u64)bio->bi_sector << 9;
1360 	u64 length = 0;
1361 	u64 map_length;
1362 	int ret;
1363 
1364 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1365 		return 0;
1366 
1367 	length = bio->bi_size;
1368 	map_tree = &root->fs_info->mapping_tree;
1369 	map_length = length;
1370 	ret = btrfs_map_block(map_tree, READ, logical,
1371 			      &map_length, NULL, 0);
1372 
1373 	if (map_length < length + size)
1374 		return 1;
1375 	return 0;
1376 }
1377 
1378 /*
1379  * in order to insert checksums into the metadata in large chunks,
1380  * we wait until bio submission time.   All the pages in the bio are
1381  * checksummed and sums are attached onto the ordered extent record.
1382  *
1383  * At IO completion time the cums attached on the ordered extent record
1384  * are inserted into the btree
1385  */
1386 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1387 				    struct bio *bio, int mirror_num,
1388 				    unsigned long bio_flags,
1389 				    u64 bio_offset)
1390 {
1391 	struct btrfs_root *root = BTRFS_I(inode)->root;
1392 	int ret = 0;
1393 
1394 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1395 	BUG_ON(ret);
1396 	return 0;
1397 }
1398 
1399 /*
1400  * in order to insert checksums into the metadata in large chunks,
1401  * we wait until bio submission time.   All the pages in the bio are
1402  * checksummed and sums are attached onto the ordered extent record.
1403  *
1404  * At IO completion time the cums attached on the ordered extent record
1405  * are inserted into the btree
1406  */
1407 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1408 			  int mirror_num, unsigned long bio_flags,
1409 			  u64 bio_offset)
1410 {
1411 	struct btrfs_root *root = BTRFS_I(inode)->root;
1412 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1413 }
1414 
1415 /*
1416  * extent_io.c submission hook. This does the right thing for csum calculation
1417  * on write, or reading the csums from the tree before a read
1418  */
1419 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1420 			  int mirror_num, unsigned long bio_flags,
1421 			  u64 bio_offset)
1422 {
1423 	struct btrfs_root *root = BTRFS_I(inode)->root;
1424 	int ret = 0;
1425 	int skip_sum;
1426 
1427 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1428 
1429 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1430 	BUG_ON(ret);
1431 
1432 	if (!(rw & REQ_WRITE)) {
1433 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1434 			return btrfs_submit_compressed_read(inode, bio,
1435 						    mirror_num, bio_flags);
1436 		} else if (!skip_sum)
1437 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1438 		goto mapit;
1439 	} else if (!skip_sum) {
1440 		/* csum items have already been cloned */
1441 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1442 			goto mapit;
1443 		/* we're doing a write, do the async checksumming */
1444 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1445 				   inode, rw, bio, mirror_num,
1446 				   bio_flags, bio_offset,
1447 				   __btrfs_submit_bio_start,
1448 				   __btrfs_submit_bio_done);
1449 	}
1450 
1451 mapit:
1452 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1453 }
1454 
1455 /*
1456  * given a list of ordered sums record them in the inode.  This happens
1457  * at IO completion time based on sums calculated at bio submission time.
1458  */
1459 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1460 			     struct inode *inode, u64 file_offset,
1461 			     struct list_head *list)
1462 {
1463 	struct btrfs_ordered_sum *sum;
1464 
1465 	btrfs_set_trans_block_group(trans, inode);
1466 
1467 	list_for_each_entry(sum, list, list) {
1468 		btrfs_csum_file_blocks(trans,
1469 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1470 	}
1471 	return 0;
1472 }
1473 
1474 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1475 			      struct extent_state **cached_state)
1476 {
1477 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1478 		WARN_ON(1);
1479 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1480 				   cached_state, GFP_NOFS);
1481 }
1482 
1483 /* see btrfs_writepage_start_hook for details on why this is required */
1484 struct btrfs_writepage_fixup {
1485 	struct page *page;
1486 	struct btrfs_work work;
1487 };
1488 
1489 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1490 {
1491 	struct btrfs_writepage_fixup *fixup;
1492 	struct btrfs_ordered_extent *ordered;
1493 	struct extent_state *cached_state = NULL;
1494 	struct page *page;
1495 	struct inode *inode;
1496 	u64 page_start;
1497 	u64 page_end;
1498 
1499 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1500 	page = fixup->page;
1501 again:
1502 	lock_page(page);
1503 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1504 		ClearPageChecked(page);
1505 		goto out_page;
1506 	}
1507 
1508 	inode = page->mapping->host;
1509 	page_start = page_offset(page);
1510 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1511 
1512 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1513 			 &cached_state, GFP_NOFS);
1514 
1515 	/* already ordered? We're done */
1516 	if (PagePrivate2(page))
1517 		goto out;
1518 
1519 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1520 	if (ordered) {
1521 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1522 				     page_end, &cached_state, GFP_NOFS);
1523 		unlock_page(page);
1524 		btrfs_start_ordered_extent(inode, ordered, 1);
1525 		goto again;
1526 	}
1527 
1528 	BUG();
1529 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1530 	ClearPageChecked(page);
1531 out:
1532 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1533 			     &cached_state, GFP_NOFS);
1534 out_page:
1535 	unlock_page(page);
1536 	page_cache_release(page);
1537 }
1538 
1539 /*
1540  * There are a few paths in the higher layers of the kernel that directly
1541  * set the page dirty bit without asking the filesystem if it is a
1542  * good idea.  This causes problems because we want to make sure COW
1543  * properly happens and the data=ordered rules are followed.
1544  *
1545  * In our case any range that doesn't have the ORDERED bit set
1546  * hasn't been properly setup for IO.  We kick off an async process
1547  * to fix it up.  The async helper will wait for ordered extents, set
1548  * the delalloc bit and make it safe to write the page.
1549  */
1550 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1551 {
1552 	struct inode *inode = page->mapping->host;
1553 	struct btrfs_writepage_fixup *fixup;
1554 	struct btrfs_root *root = BTRFS_I(inode)->root;
1555 
1556 	/* this page is properly in the ordered list */
1557 	if (TestClearPagePrivate2(page))
1558 		return 0;
1559 
1560 	if (PageChecked(page))
1561 		return -EAGAIN;
1562 
1563 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1564 	if (!fixup)
1565 		return -EAGAIN;
1566 
1567 	SetPageChecked(page);
1568 	page_cache_get(page);
1569 	fixup->work.func = btrfs_writepage_fixup_worker;
1570 	fixup->page = page;
1571 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1572 	return -EAGAIN;
1573 }
1574 
1575 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1576 				       struct inode *inode, u64 file_pos,
1577 				       u64 disk_bytenr, u64 disk_num_bytes,
1578 				       u64 num_bytes, u64 ram_bytes,
1579 				       u8 compression, u8 encryption,
1580 				       u16 other_encoding, int extent_type)
1581 {
1582 	struct btrfs_root *root = BTRFS_I(inode)->root;
1583 	struct btrfs_file_extent_item *fi;
1584 	struct btrfs_path *path;
1585 	struct extent_buffer *leaf;
1586 	struct btrfs_key ins;
1587 	u64 hint;
1588 	int ret;
1589 
1590 	path = btrfs_alloc_path();
1591 	BUG_ON(!path);
1592 
1593 	path->leave_spinning = 1;
1594 
1595 	/*
1596 	 * we may be replacing one extent in the tree with another.
1597 	 * The new extent is pinned in the extent map, and we don't want
1598 	 * to drop it from the cache until it is completely in the btree.
1599 	 *
1600 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1601 	 * the caller is expected to unpin it and allow it to be merged
1602 	 * with the others.
1603 	 */
1604 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1605 				 &hint, 0);
1606 	BUG_ON(ret);
1607 
1608 	ins.objectid = inode->i_ino;
1609 	ins.offset = file_pos;
1610 	ins.type = BTRFS_EXTENT_DATA_KEY;
1611 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1612 	BUG_ON(ret);
1613 	leaf = path->nodes[0];
1614 	fi = btrfs_item_ptr(leaf, path->slots[0],
1615 			    struct btrfs_file_extent_item);
1616 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1617 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1618 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1619 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1620 	btrfs_set_file_extent_offset(leaf, fi, 0);
1621 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1622 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1623 	btrfs_set_file_extent_compression(leaf, fi, compression);
1624 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1625 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1626 
1627 	btrfs_unlock_up_safe(path, 1);
1628 	btrfs_set_lock_blocking(leaf);
1629 
1630 	btrfs_mark_buffer_dirty(leaf);
1631 
1632 	inode_add_bytes(inode, num_bytes);
1633 
1634 	ins.objectid = disk_bytenr;
1635 	ins.offset = disk_num_bytes;
1636 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1637 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1638 					root->root_key.objectid,
1639 					inode->i_ino, file_pos, &ins);
1640 	BUG_ON(ret);
1641 	btrfs_free_path(path);
1642 
1643 	return 0;
1644 }
1645 
1646 /*
1647  * helper function for btrfs_finish_ordered_io, this
1648  * just reads in some of the csum leaves to prime them into ram
1649  * before we start the transaction.  It limits the amount of btree
1650  * reads required while inside the transaction.
1651  */
1652 /* as ordered data IO finishes, this gets called so we can finish
1653  * an ordered extent if the range of bytes in the file it covers are
1654  * fully written.
1655  */
1656 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1657 {
1658 	struct btrfs_root *root = BTRFS_I(inode)->root;
1659 	struct btrfs_trans_handle *trans = NULL;
1660 	struct btrfs_ordered_extent *ordered_extent = NULL;
1661 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1662 	struct extent_state *cached_state = NULL;
1663 	int compressed = 0;
1664 	int ret;
1665 
1666 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1667 					     end - start + 1);
1668 	if (!ret)
1669 		return 0;
1670 	BUG_ON(!ordered_extent);
1671 
1672 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1673 		BUG_ON(!list_empty(&ordered_extent->list));
1674 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1675 		if (!ret) {
1676 			trans = btrfs_join_transaction(root, 1);
1677 			btrfs_set_trans_block_group(trans, inode);
1678 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1679 			ret = btrfs_update_inode(trans, root, inode);
1680 			BUG_ON(ret);
1681 		}
1682 		goto out;
1683 	}
1684 
1685 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1686 			 ordered_extent->file_offset + ordered_extent->len - 1,
1687 			 0, &cached_state, GFP_NOFS);
1688 
1689 	trans = btrfs_join_transaction(root, 1);
1690 	btrfs_set_trans_block_group(trans, inode);
1691 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1692 
1693 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1694 		compressed = 1;
1695 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1696 		BUG_ON(compressed);
1697 		ret = btrfs_mark_extent_written(trans, inode,
1698 						ordered_extent->file_offset,
1699 						ordered_extent->file_offset +
1700 						ordered_extent->len);
1701 		BUG_ON(ret);
1702 	} else {
1703 		ret = insert_reserved_file_extent(trans, inode,
1704 						ordered_extent->file_offset,
1705 						ordered_extent->start,
1706 						ordered_extent->disk_len,
1707 						ordered_extent->len,
1708 						ordered_extent->len,
1709 						compressed, 0, 0,
1710 						BTRFS_FILE_EXTENT_REG);
1711 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1712 				   ordered_extent->file_offset,
1713 				   ordered_extent->len);
1714 		BUG_ON(ret);
1715 	}
1716 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1717 			     ordered_extent->file_offset +
1718 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1719 
1720 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1721 			  &ordered_extent->list);
1722 
1723 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1724 	ret = btrfs_update_inode(trans, root, inode);
1725 	BUG_ON(ret);
1726 out:
1727 	btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1728 	if (trans)
1729 		btrfs_end_transaction(trans, root);
1730 	/* once for us */
1731 	btrfs_put_ordered_extent(ordered_extent);
1732 	/* once for the tree */
1733 	btrfs_put_ordered_extent(ordered_extent);
1734 
1735 	return 0;
1736 }
1737 
1738 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1739 				struct extent_state *state, int uptodate)
1740 {
1741 	ClearPagePrivate2(page);
1742 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1743 }
1744 
1745 /*
1746  * When IO fails, either with EIO or csum verification fails, we
1747  * try other mirrors that might have a good copy of the data.  This
1748  * io_failure_record is used to record state as we go through all the
1749  * mirrors.  If another mirror has good data, the page is set up to date
1750  * and things continue.  If a good mirror can't be found, the original
1751  * bio end_io callback is called to indicate things have failed.
1752  */
1753 struct io_failure_record {
1754 	struct page *page;
1755 	u64 start;
1756 	u64 len;
1757 	u64 logical;
1758 	unsigned long bio_flags;
1759 	int last_mirror;
1760 };
1761 
1762 static int btrfs_io_failed_hook(struct bio *failed_bio,
1763 			 struct page *page, u64 start, u64 end,
1764 			 struct extent_state *state)
1765 {
1766 	struct io_failure_record *failrec = NULL;
1767 	u64 private;
1768 	struct extent_map *em;
1769 	struct inode *inode = page->mapping->host;
1770 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1771 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1772 	struct bio *bio;
1773 	int num_copies;
1774 	int ret;
1775 	int rw;
1776 	u64 logical;
1777 
1778 	ret = get_state_private(failure_tree, start, &private);
1779 	if (ret) {
1780 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1781 		if (!failrec)
1782 			return -ENOMEM;
1783 		failrec->start = start;
1784 		failrec->len = end - start + 1;
1785 		failrec->last_mirror = 0;
1786 		failrec->bio_flags = 0;
1787 
1788 		read_lock(&em_tree->lock);
1789 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1790 		if (em->start > start || em->start + em->len < start) {
1791 			free_extent_map(em);
1792 			em = NULL;
1793 		}
1794 		read_unlock(&em_tree->lock);
1795 
1796 		if (!em || IS_ERR(em)) {
1797 			kfree(failrec);
1798 			return -EIO;
1799 		}
1800 		logical = start - em->start;
1801 		logical = em->block_start + logical;
1802 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1803 			logical = em->block_start;
1804 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1805 		}
1806 		failrec->logical = logical;
1807 		free_extent_map(em);
1808 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1809 				EXTENT_DIRTY, GFP_NOFS);
1810 		set_state_private(failure_tree, start,
1811 				 (u64)(unsigned long)failrec);
1812 	} else {
1813 		failrec = (struct io_failure_record *)(unsigned long)private;
1814 	}
1815 	num_copies = btrfs_num_copies(
1816 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1817 			      failrec->logical, failrec->len);
1818 	failrec->last_mirror++;
1819 	if (!state) {
1820 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1821 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1822 						    failrec->start,
1823 						    EXTENT_LOCKED);
1824 		if (state && state->start != failrec->start)
1825 			state = NULL;
1826 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1827 	}
1828 	if (!state || failrec->last_mirror > num_copies) {
1829 		set_state_private(failure_tree, failrec->start, 0);
1830 		clear_extent_bits(failure_tree, failrec->start,
1831 				  failrec->start + failrec->len - 1,
1832 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1833 		kfree(failrec);
1834 		return -EIO;
1835 	}
1836 	bio = bio_alloc(GFP_NOFS, 1);
1837 	bio->bi_private = state;
1838 	bio->bi_end_io = failed_bio->bi_end_io;
1839 	bio->bi_sector = failrec->logical >> 9;
1840 	bio->bi_bdev = failed_bio->bi_bdev;
1841 	bio->bi_size = 0;
1842 
1843 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1844 	if (failed_bio->bi_rw & REQ_WRITE)
1845 		rw = WRITE;
1846 	else
1847 		rw = READ;
1848 
1849 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1850 						      failrec->last_mirror,
1851 						      failrec->bio_flags, 0);
1852 	return 0;
1853 }
1854 
1855 /*
1856  * each time an IO finishes, we do a fast check in the IO failure tree
1857  * to see if we need to process or clean up an io_failure_record
1858  */
1859 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1860 {
1861 	u64 private;
1862 	u64 private_failure;
1863 	struct io_failure_record *failure;
1864 	int ret;
1865 
1866 	private = 0;
1867 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1868 			     (u64)-1, 1, EXTENT_DIRTY)) {
1869 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1870 					start, &private_failure);
1871 		if (ret == 0) {
1872 			failure = (struct io_failure_record *)(unsigned long)
1873 				   private_failure;
1874 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1875 					  failure->start, 0);
1876 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1877 					  failure->start,
1878 					  failure->start + failure->len - 1,
1879 					  EXTENT_DIRTY | EXTENT_LOCKED,
1880 					  GFP_NOFS);
1881 			kfree(failure);
1882 		}
1883 	}
1884 	return 0;
1885 }
1886 
1887 /*
1888  * when reads are done, we need to check csums to verify the data is correct
1889  * if there's a match, we allow the bio to finish.  If not, we go through
1890  * the io_failure_record routines to find good copies
1891  */
1892 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1893 			       struct extent_state *state)
1894 {
1895 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1896 	struct inode *inode = page->mapping->host;
1897 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1898 	char *kaddr;
1899 	u64 private = ~(u32)0;
1900 	int ret;
1901 	struct btrfs_root *root = BTRFS_I(inode)->root;
1902 	u32 csum = ~(u32)0;
1903 
1904 	if (PageChecked(page)) {
1905 		ClearPageChecked(page);
1906 		goto good;
1907 	}
1908 
1909 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1910 		return 0;
1911 
1912 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1913 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1914 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1915 				  GFP_NOFS);
1916 		return 0;
1917 	}
1918 
1919 	if (state && state->start == start) {
1920 		private = state->private;
1921 		ret = 0;
1922 	} else {
1923 		ret = get_state_private(io_tree, start, &private);
1924 	}
1925 	kaddr = kmap_atomic(page, KM_USER0);
1926 	if (ret)
1927 		goto zeroit;
1928 
1929 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1930 	btrfs_csum_final(csum, (char *)&csum);
1931 	if (csum != private)
1932 		goto zeroit;
1933 
1934 	kunmap_atomic(kaddr, KM_USER0);
1935 good:
1936 	/* if the io failure tree for this inode is non-empty,
1937 	 * check to see if we've recovered from a failed IO
1938 	 */
1939 	btrfs_clean_io_failures(inode, start);
1940 	return 0;
1941 
1942 zeroit:
1943 	if (printk_ratelimit()) {
1944 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1945 		       "private %llu\n", page->mapping->host->i_ino,
1946 		       (unsigned long long)start, csum,
1947 		       (unsigned long long)private);
1948 	}
1949 	memset(kaddr + offset, 1, end - start + 1);
1950 	flush_dcache_page(page);
1951 	kunmap_atomic(kaddr, KM_USER0);
1952 	if (private == 0)
1953 		return 0;
1954 	return -EIO;
1955 }
1956 
1957 struct delayed_iput {
1958 	struct list_head list;
1959 	struct inode *inode;
1960 };
1961 
1962 void btrfs_add_delayed_iput(struct inode *inode)
1963 {
1964 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1965 	struct delayed_iput *delayed;
1966 
1967 	if (atomic_add_unless(&inode->i_count, -1, 1))
1968 		return;
1969 
1970 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1971 	delayed->inode = inode;
1972 
1973 	spin_lock(&fs_info->delayed_iput_lock);
1974 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1975 	spin_unlock(&fs_info->delayed_iput_lock);
1976 }
1977 
1978 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1979 {
1980 	LIST_HEAD(list);
1981 	struct btrfs_fs_info *fs_info = root->fs_info;
1982 	struct delayed_iput *delayed;
1983 	int empty;
1984 
1985 	spin_lock(&fs_info->delayed_iput_lock);
1986 	empty = list_empty(&fs_info->delayed_iputs);
1987 	spin_unlock(&fs_info->delayed_iput_lock);
1988 	if (empty)
1989 		return;
1990 
1991 	down_read(&root->fs_info->cleanup_work_sem);
1992 	spin_lock(&fs_info->delayed_iput_lock);
1993 	list_splice_init(&fs_info->delayed_iputs, &list);
1994 	spin_unlock(&fs_info->delayed_iput_lock);
1995 
1996 	while (!list_empty(&list)) {
1997 		delayed = list_entry(list.next, struct delayed_iput, list);
1998 		list_del(&delayed->list);
1999 		iput(delayed->inode);
2000 		kfree(delayed);
2001 	}
2002 	up_read(&root->fs_info->cleanup_work_sem);
2003 }
2004 
2005 /*
2006  * calculate extra metadata reservation when snapshotting a subvolume
2007  * contains orphan files.
2008  */
2009 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2010 				struct btrfs_pending_snapshot *pending,
2011 				u64 *bytes_to_reserve)
2012 {
2013 	struct btrfs_root *root;
2014 	struct btrfs_block_rsv *block_rsv;
2015 	u64 num_bytes;
2016 	int index;
2017 
2018 	root = pending->root;
2019 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2020 		return;
2021 
2022 	block_rsv = root->orphan_block_rsv;
2023 
2024 	/* orphan block reservation for the snapshot */
2025 	num_bytes = block_rsv->size;
2026 
2027 	/*
2028 	 * after the snapshot is created, COWing tree blocks may use more
2029 	 * space than it frees. So we should make sure there is enough
2030 	 * reserved space.
2031 	 */
2032 	index = trans->transid & 0x1;
2033 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2034 		num_bytes += block_rsv->size -
2035 			     (block_rsv->reserved + block_rsv->freed[index]);
2036 	}
2037 
2038 	*bytes_to_reserve += num_bytes;
2039 }
2040 
2041 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2042 				struct btrfs_pending_snapshot *pending)
2043 {
2044 	struct btrfs_root *root = pending->root;
2045 	struct btrfs_root *snap = pending->snap;
2046 	struct btrfs_block_rsv *block_rsv;
2047 	u64 num_bytes;
2048 	int index;
2049 	int ret;
2050 
2051 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2052 		return;
2053 
2054 	/* refill source subvolume's orphan block reservation */
2055 	block_rsv = root->orphan_block_rsv;
2056 	index = trans->transid & 0x1;
2057 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2058 		num_bytes = block_rsv->size -
2059 			    (block_rsv->reserved + block_rsv->freed[index]);
2060 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2061 					      root->orphan_block_rsv,
2062 					      num_bytes);
2063 		BUG_ON(ret);
2064 	}
2065 
2066 	/* setup orphan block reservation for the snapshot */
2067 	block_rsv = btrfs_alloc_block_rsv(snap);
2068 	BUG_ON(!block_rsv);
2069 
2070 	btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2071 	snap->orphan_block_rsv = block_rsv;
2072 
2073 	num_bytes = root->orphan_block_rsv->size;
2074 	ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2075 				      block_rsv, num_bytes);
2076 	BUG_ON(ret);
2077 
2078 #if 0
2079 	/* insert orphan item for the snapshot */
2080 	WARN_ON(!root->orphan_item_inserted);
2081 	ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2082 				       snap->root_key.objectid);
2083 	BUG_ON(ret);
2084 	snap->orphan_item_inserted = 1;
2085 #endif
2086 }
2087 
2088 enum btrfs_orphan_cleanup_state {
2089 	ORPHAN_CLEANUP_STARTED	= 1,
2090 	ORPHAN_CLEANUP_DONE	= 2,
2091 };
2092 
2093 /*
2094  * This is called in transaction commmit time. If there are no orphan
2095  * files in the subvolume, it removes orphan item and frees block_rsv
2096  * structure.
2097  */
2098 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2099 			      struct btrfs_root *root)
2100 {
2101 	int ret;
2102 
2103 	if (!list_empty(&root->orphan_list) ||
2104 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2105 		return;
2106 
2107 	if (root->orphan_item_inserted &&
2108 	    btrfs_root_refs(&root->root_item) > 0) {
2109 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2110 					    root->root_key.objectid);
2111 		BUG_ON(ret);
2112 		root->orphan_item_inserted = 0;
2113 	}
2114 
2115 	if (root->orphan_block_rsv) {
2116 		WARN_ON(root->orphan_block_rsv->size > 0);
2117 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
2118 		root->orphan_block_rsv = NULL;
2119 	}
2120 }
2121 
2122 /*
2123  * This creates an orphan entry for the given inode in case something goes
2124  * wrong in the middle of an unlink/truncate.
2125  *
2126  * NOTE: caller of this function should reserve 5 units of metadata for
2127  *	 this function.
2128  */
2129 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2130 {
2131 	struct btrfs_root *root = BTRFS_I(inode)->root;
2132 	struct btrfs_block_rsv *block_rsv = NULL;
2133 	int reserve = 0;
2134 	int insert = 0;
2135 	int ret;
2136 
2137 	if (!root->orphan_block_rsv) {
2138 		block_rsv = btrfs_alloc_block_rsv(root);
2139 		BUG_ON(!block_rsv);
2140 	}
2141 
2142 	spin_lock(&root->orphan_lock);
2143 	if (!root->orphan_block_rsv) {
2144 		root->orphan_block_rsv = block_rsv;
2145 	} else if (block_rsv) {
2146 		btrfs_free_block_rsv(root, block_rsv);
2147 		block_rsv = NULL;
2148 	}
2149 
2150 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2151 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2152 #if 0
2153 		/*
2154 		 * For proper ENOSPC handling, we should do orphan
2155 		 * cleanup when mounting. But this introduces backward
2156 		 * compatibility issue.
2157 		 */
2158 		if (!xchg(&root->orphan_item_inserted, 1))
2159 			insert = 2;
2160 		else
2161 			insert = 1;
2162 #endif
2163 		insert = 1;
2164 	} else {
2165 		WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2166 	}
2167 
2168 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2169 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2170 		reserve = 1;
2171 	}
2172 	spin_unlock(&root->orphan_lock);
2173 
2174 	if (block_rsv)
2175 		btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2176 
2177 	/* grab metadata reservation from transaction handle */
2178 	if (reserve) {
2179 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2180 		BUG_ON(ret);
2181 	}
2182 
2183 	/* insert an orphan item to track this unlinked/truncated file */
2184 	if (insert >= 1) {
2185 		ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2186 		BUG_ON(ret);
2187 	}
2188 
2189 	/* insert an orphan item to track subvolume contains orphan files */
2190 	if (insert >= 2) {
2191 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2192 					       root->root_key.objectid);
2193 		BUG_ON(ret);
2194 	}
2195 	return 0;
2196 }
2197 
2198 /*
2199  * We have done the truncate/delete so we can go ahead and remove the orphan
2200  * item for this particular inode.
2201  */
2202 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2203 {
2204 	struct btrfs_root *root = BTRFS_I(inode)->root;
2205 	int delete_item = 0;
2206 	int release_rsv = 0;
2207 	int ret = 0;
2208 
2209 	spin_lock(&root->orphan_lock);
2210 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2211 		list_del_init(&BTRFS_I(inode)->i_orphan);
2212 		delete_item = 1;
2213 	}
2214 
2215 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2216 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2217 		release_rsv = 1;
2218 	}
2219 	spin_unlock(&root->orphan_lock);
2220 
2221 	if (trans && delete_item) {
2222 		ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2223 		BUG_ON(ret);
2224 	}
2225 
2226 	if (release_rsv)
2227 		btrfs_orphan_release_metadata(inode);
2228 
2229 	return 0;
2230 }
2231 
2232 /*
2233  * this cleans up any orphans that may be left on the list from the last use
2234  * of this root.
2235  */
2236 void btrfs_orphan_cleanup(struct btrfs_root *root)
2237 {
2238 	struct btrfs_path *path;
2239 	struct extent_buffer *leaf;
2240 	struct btrfs_item *item;
2241 	struct btrfs_key key, found_key;
2242 	struct btrfs_trans_handle *trans;
2243 	struct inode *inode;
2244 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2245 
2246 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2247 		return;
2248 
2249 	path = btrfs_alloc_path();
2250 	BUG_ON(!path);
2251 	path->reada = -1;
2252 
2253 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2254 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2255 	key.offset = (u64)-1;
2256 
2257 	while (1) {
2258 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2259 		if (ret < 0) {
2260 			printk(KERN_ERR "Error searching slot for orphan: %d"
2261 			       "\n", ret);
2262 			break;
2263 		}
2264 
2265 		/*
2266 		 * if ret == 0 means we found what we were searching for, which
2267 		 * is weird, but possible, so only screw with path if we didnt
2268 		 * find the key and see if we have stuff that matches
2269 		 */
2270 		if (ret > 0) {
2271 			if (path->slots[0] == 0)
2272 				break;
2273 			path->slots[0]--;
2274 		}
2275 
2276 		/* pull out the item */
2277 		leaf = path->nodes[0];
2278 		item = btrfs_item_nr(leaf, path->slots[0]);
2279 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2280 
2281 		/* make sure the item matches what we want */
2282 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2283 			break;
2284 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2285 			break;
2286 
2287 		/* release the path since we're done with it */
2288 		btrfs_release_path(root, path);
2289 
2290 		/*
2291 		 * this is where we are basically btrfs_lookup, without the
2292 		 * crossing root thing.  we store the inode number in the
2293 		 * offset of the orphan item.
2294 		 */
2295 		found_key.objectid = found_key.offset;
2296 		found_key.type = BTRFS_INODE_ITEM_KEY;
2297 		found_key.offset = 0;
2298 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2299 		BUG_ON(IS_ERR(inode));
2300 
2301 		/*
2302 		 * add this inode to the orphan list so btrfs_orphan_del does
2303 		 * the proper thing when we hit it
2304 		 */
2305 		spin_lock(&root->orphan_lock);
2306 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2307 		spin_unlock(&root->orphan_lock);
2308 
2309 		/*
2310 		 * if this is a bad inode, means we actually succeeded in
2311 		 * removing the inode, but not the orphan record, which means
2312 		 * we need to manually delete the orphan since iput will just
2313 		 * do a destroy_inode
2314 		 */
2315 		if (is_bad_inode(inode)) {
2316 			trans = btrfs_start_transaction(root, 0);
2317 			btrfs_orphan_del(trans, inode);
2318 			btrfs_end_transaction(trans, root);
2319 			iput(inode);
2320 			continue;
2321 		}
2322 
2323 		/* if we have links, this was a truncate, lets do that */
2324 		if (inode->i_nlink) {
2325 			nr_truncate++;
2326 			btrfs_truncate(inode);
2327 		} else {
2328 			nr_unlink++;
2329 		}
2330 
2331 		/* this will do delete_inode and everything for us */
2332 		iput(inode);
2333 	}
2334 	btrfs_free_path(path);
2335 
2336 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2337 
2338 	if (root->orphan_block_rsv)
2339 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2340 					(u64)-1);
2341 
2342 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2343 		trans = btrfs_join_transaction(root, 1);
2344 		btrfs_end_transaction(trans, root);
2345 	}
2346 
2347 	if (nr_unlink)
2348 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2349 	if (nr_truncate)
2350 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2351 }
2352 
2353 /*
2354  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2355  * don't find any xattrs, we know there can't be any acls.
2356  *
2357  * slot is the slot the inode is in, objectid is the objectid of the inode
2358  */
2359 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2360 					  int slot, u64 objectid)
2361 {
2362 	u32 nritems = btrfs_header_nritems(leaf);
2363 	struct btrfs_key found_key;
2364 	int scanned = 0;
2365 
2366 	slot++;
2367 	while (slot < nritems) {
2368 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2369 
2370 		/* we found a different objectid, there must not be acls */
2371 		if (found_key.objectid != objectid)
2372 			return 0;
2373 
2374 		/* we found an xattr, assume we've got an acl */
2375 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2376 			return 1;
2377 
2378 		/*
2379 		 * we found a key greater than an xattr key, there can't
2380 		 * be any acls later on
2381 		 */
2382 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2383 			return 0;
2384 
2385 		slot++;
2386 		scanned++;
2387 
2388 		/*
2389 		 * it goes inode, inode backrefs, xattrs, extents,
2390 		 * so if there are a ton of hard links to an inode there can
2391 		 * be a lot of backrefs.  Don't waste time searching too hard,
2392 		 * this is just an optimization
2393 		 */
2394 		if (scanned >= 8)
2395 			break;
2396 	}
2397 	/* we hit the end of the leaf before we found an xattr or
2398 	 * something larger than an xattr.  We have to assume the inode
2399 	 * has acls
2400 	 */
2401 	return 1;
2402 }
2403 
2404 /*
2405  * read an inode from the btree into the in-memory inode
2406  */
2407 static void btrfs_read_locked_inode(struct inode *inode)
2408 {
2409 	struct btrfs_path *path;
2410 	struct extent_buffer *leaf;
2411 	struct btrfs_inode_item *inode_item;
2412 	struct btrfs_timespec *tspec;
2413 	struct btrfs_root *root = BTRFS_I(inode)->root;
2414 	struct btrfs_key location;
2415 	int maybe_acls;
2416 	u64 alloc_group_block;
2417 	u32 rdev;
2418 	int ret;
2419 
2420 	path = btrfs_alloc_path();
2421 	BUG_ON(!path);
2422 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2423 
2424 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2425 	if (ret)
2426 		goto make_bad;
2427 
2428 	leaf = path->nodes[0];
2429 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2430 				    struct btrfs_inode_item);
2431 
2432 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2433 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2434 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2435 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2436 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2437 
2438 	tspec = btrfs_inode_atime(inode_item);
2439 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2440 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2441 
2442 	tspec = btrfs_inode_mtime(inode_item);
2443 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2444 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2445 
2446 	tspec = btrfs_inode_ctime(inode_item);
2447 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2448 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2449 
2450 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2451 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2452 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2453 	inode->i_generation = BTRFS_I(inode)->generation;
2454 	inode->i_rdev = 0;
2455 	rdev = btrfs_inode_rdev(leaf, inode_item);
2456 
2457 	BTRFS_I(inode)->index_cnt = (u64)-1;
2458 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2459 
2460 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2461 
2462 	/*
2463 	 * try to precache a NULL acl entry for files that don't have
2464 	 * any xattrs or acls
2465 	 */
2466 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2467 	if (!maybe_acls)
2468 		cache_no_acl(inode);
2469 
2470 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2471 						alloc_group_block, 0);
2472 	btrfs_free_path(path);
2473 	inode_item = NULL;
2474 
2475 	switch (inode->i_mode & S_IFMT) {
2476 	case S_IFREG:
2477 		inode->i_mapping->a_ops = &btrfs_aops;
2478 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2479 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2480 		inode->i_fop = &btrfs_file_operations;
2481 		inode->i_op = &btrfs_file_inode_operations;
2482 		break;
2483 	case S_IFDIR:
2484 		inode->i_fop = &btrfs_dir_file_operations;
2485 		if (root == root->fs_info->tree_root)
2486 			inode->i_op = &btrfs_dir_ro_inode_operations;
2487 		else
2488 			inode->i_op = &btrfs_dir_inode_operations;
2489 		break;
2490 	case S_IFLNK:
2491 		inode->i_op = &btrfs_symlink_inode_operations;
2492 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2493 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2494 		break;
2495 	default:
2496 		inode->i_op = &btrfs_special_inode_operations;
2497 		init_special_inode(inode, inode->i_mode, rdev);
2498 		break;
2499 	}
2500 
2501 	btrfs_update_iflags(inode);
2502 	return;
2503 
2504 make_bad:
2505 	btrfs_free_path(path);
2506 	make_bad_inode(inode);
2507 }
2508 
2509 /*
2510  * given a leaf and an inode, copy the inode fields into the leaf
2511  */
2512 static void fill_inode_item(struct btrfs_trans_handle *trans,
2513 			    struct extent_buffer *leaf,
2514 			    struct btrfs_inode_item *item,
2515 			    struct inode *inode)
2516 {
2517 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2518 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2519 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2520 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2521 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2522 
2523 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2524 			       inode->i_atime.tv_sec);
2525 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2526 				inode->i_atime.tv_nsec);
2527 
2528 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2529 			       inode->i_mtime.tv_sec);
2530 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2531 				inode->i_mtime.tv_nsec);
2532 
2533 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2534 			       inode->i_ctime.tv_sec);
2535 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2536 				inode->i_ctime.tv_nsec);
2537 
2538 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2539 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2540 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2541 	btrfs_set_inode_transid(leaf, item, trans->transid);
2542 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2543 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2544 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2545 }
2546 
2547 /*
2548  * copy everything in the in-memory inode into the btree.
2549  */
2550 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2551 				struct btrfs_root *root, struct inode *inode)
2552 {
2553 	struct btrfs_inode_item *inode_item;
2554 	struct btrfs_path *path;
2555 	struct extent_buffer *leaf;
2556 	int ret;
2557 
2558 	path = btrfs_alloc_path();
2559 	BUG_ON(!path);
2560 	path->leave_spinning = 1;
2561 	ret = btrfs_lookup_inode(trans, root, path,
2562 				 &BTRFS_I(inode)->location, 1);
2563 	if (ret) {
2564 		if (ret > 0)
2565 			ret = -ENOENT;
2566 		goto failed;
2567 	}
2568 
2569 	btrfs_unlock_up_safe(path, 1);
2570 	leaf = path->nodes[0];
2571 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2572 				  struct btrfs_inode_item);
2573 
2574 	fill_inode_item(trans, leaf, inode_item, inode);
2575 	btrfs_mark_buffer_dirty(leaf);
2576 	btrfs_set_inode_last_trans(trans, inode);
2577 	ret = 0;
2578 failed:
2579 	btrfs_free_path(path);
2580 	return ret;
2581 }
2582 
2583 
2584 /*
2585  * unlink helper that gets used here in inode.c and in the tree logging
2586  * recovery code.  It remove a link in a directory with a given name, and
2587  * also drops the back refs in the inode to the directory
2588  */
2589 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2590 		       struct btrfs_root *root,
2591 		       struct inode *dir, struct inode *inode,
2592 		       const char *name, int name_len)
2593 {
2594 	struct btrfs_path *path;
2595 	int ret = 0;
2596 	struct extent_buffer *leaf;
2597 	struct btrfs_dir_item *di;
2598 	struct btrfs_key key;
2599 	u64 index;
2600 
2601 	path = btrfs_alloc_path();
2602 	if (!path) {
2603 		ret = -ENOMEM;
2604 		goto err;
2605 	}
2606 
2607 	path->leave_spinning = 1;
2608 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2609 				    name, name_len, -1);
2610 	if (IS_ERR(di)) {
2611 		ret = PTR_ERR(di);
2612 		goto err;
2613 	}
2614 	if (!di) {
2615 		ret = -ENOENT;
2616 		goto err;
2617 	}
2618 	leaf = path->nodes[0];
2619 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2620 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2621 	if (ret)
2622 		goto err;
2623 	btrfs_release_path(root, path);
2624 
2625 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2626 				  inode->i_ino,
2627 				  dir->i_ino, &index);
2628 	if (ret) {
2629 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2630 		       "inode %lu parent %lu\n", name_len, name,
2631 		       inode->i_ino, dir->i_ino);
2632 		goto err;
2633 	}
2634 
2635 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2636 					 index, name, name_len, -1);
2637 	if (IS_ERR(di)) {
2638 		ret = PTR_ERR(di);
2639 		goto err;
2640 	}
2641 	if (!di) {
2642 		ret = -ENOENT;
2643 		goto err;
2644 	}
2645 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2646 	btrfs_release_path(root, path);
2647 
2648 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2649 					 inode, dir->i_ino);
2650 	BUG_ON(ret != 0 && ret != -ENOENT);
2651 
2652 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2653 					   dir, index);
2654 	BUG_ON(ret);
2655 err:
2656 	btrfs_free_path(path);
2657 	if (ret)
2658 		goto out;
2659 
2660 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2661 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2662 	btrfs_update_inode(trans, root, dir);
2663 	btrfs_drop_nlink(inode);
2664 	ret = btrfs_update_inode(trans, root, inode);
2665 out:
2666 	return ret;
2667 }
2668 
2669 /* helper to check if there is any shared block in the path */
2670 static int check_path_shared(struct btrfs_root *root,
2671 			     struct btrfs_path *path)
2672 {
2673 	struct extent_buffer *eb;
2674 	int level;
2675 	int ret;
2676 	u64 refs = 1;
2677 
2678 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2679 		if (!path->nodes[level])
2680 			break;
2681 		eb = path->nodes[level];
2682 		if (!btrfs_block_can_be_shared(root, eb))
2683 			continue;
2684 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2685 					       &refs, NULL);
2686 		if (refs > 1)
2687 			return 1;
2688 	}
2689 	return 0;
2690 }
2691 
2692 /*
2693  * helper to start transaction for unlink and rmdir.
2694  *
2695  * unlink and rmdir are special in btrfs, they do not always free space.
2696  * so in enospc case, we should make sure they will free space before
2697  * allowing them to use the global metadata reservation.
2698  */
2699 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2700 						       struct dentry *dentry)
2701 {
2702 	struct btrfs_trans_handle *trans;
2703 	struct btrfs_root *root = BTRFS_I(dir)->root;
2704 	struct btrfs_path *path;
2705 	struct btrfs_inode_ref *ref;
2706 	struct btrfs_dir_item *di;
2707 	struct inode *inode = dentry->d_inode;
2708 	u64 index;
2709 	int check_link = 1;
2710 	int err = -ENOSPC;
2711 	int ret;
2712 
2713 	trans = btrfs_start_transaction(root, 10);
2714 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2715 		return trans;
2716 
2717 	if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2718 		return ERR_PTR(-ENOSPC);
2719 
2720 	/* check if there is someone else holds reference */
2721 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2722 		return ERR_PTR(-ENOSPC);
2723 
2724 	if (atomic_read(&inode->i_count) > 2)
2725 		return ERR_PTR(-ENOSPC);
2726 
2727 	if (xchg(&root->fs_info->enospc_unlink, 1))
2728 		return ERR_PTR(-ENOSPC);
2729 
2730 	path = btrfs_alloc_path();
2731 	if (!path) {
2732 		root->fs_info->enospc_unlink = 0;
2733 		return ERR_PTR(-ENOMEM);
2734 	}
2735 
2736 	trans = btrfs_start_transaction(root, 0);
2737 	if (IS_ERR(trans)) {
2738 		btrfs_free_path(path);
2739 		root->fs_info->enospc_unlink = 0;
2740 		return trans;
2741 	}
2742 
2743 	path->skip_locking = 1;
2744 	path->search_commit_root = 1;
2745 
2746 	ret = btrfs_lookup_inode(trans, root, path,
2747 				&BTRFS_I(dir)->location, 0);
2748 	if (ret < 0) {
2749 		err = ret;
2750 		goto out;
2751 	}
2752 	if (ret == 0) {
2753 		if (check_path_shared(root, path))
2754 			goto out;
2755 	} else {
2756 		check_link = 0;
2757 	}
2758 	btrfs_release_path(root, path);
2759 
2760 	ret = btrfs_lookup_inode(trans, root, path,
2761 				&BTRFS_I(inode)->location, 0);
2762 	if (ret < 0) {
2763 		err = ret;
2764 		goto out;
2765 	}
2766 	if (ret == 0) {
2767 		if (check_path_shared(root, path))
2768 			goto out;
2769 	} else {
2770 		check_link = 0;
2771 	}
2772 	btrfs_release_path(root, path);
2773 
2774 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2775 		ret = btrfs_lookup_file_extent(trans, root, path,
2776 					       inode->i_ino, (u64)-1, 0);
2777 		if (ret < 0) {
2778 			err = ret;
2779 			goto out;
2780 		}
2781 		BUG_ON(ret == 0);
2782 		if (check_path_shared(root, path))
2783 			goto out;
2784 		btrfs_release_path(root, path);
2785 	}
2786 
2787 	if (!check_link) {
2788 		err = 0;
2789 		goto out;
2790 	}
2791 
2792 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2793 				dentry->d_name.name, dentry->d_name.len, 0);
2794 	if (IS_ERR(di)) {
2795 		err = PTR_ERR(di);
2796 		goto out;
2797 	}
2798 	if (di) {
2799 		if (check_path_shared(root, path))
2800 			goto out;
2801 	} else {
2802 		err = 0;
2803 		goto out;
2804 	}
2805 	btrfs_release_path(root, path);
2806 
2807 	ref = btrfs_lookup_inode_ref(trans, root, path,
2808 				dentry->d_name.name, dentry->d_name.len,
2809 				inode->i_ino, dir->i_ino, 0);
2810 	if (IS_ERR(ref)) {
2811 		err = PTR_ERR(ref);
2812 		goto out;
2813 	}
2814 	BUG_ON(!ref);
2815 	if (check_path_shared(root, path))
2816 		goto out;
2817 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2818 	btrfs_release_path(root, path);
2819 
2820 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2821 				dentry->d_name.name, dentry->d_name.len, 0);
2822 	if (IS_ERR(di)) {
2823 		err = PTR_ERR(di);
2824 		goto out;
2825 	}
2826 	BUG_ON(ret == -ENOENT);
2827 	if (check_path_shared(root, path))
2828 		goto out;
2829 
2830 	err = 0;
2831 out:
2832 	btrfs_free_path(path);
2833 	if (err) {
2834 		btrfs_end_transaction(trans, root);
2835 		root->fs_info->enospc_unlink = 0;
2836 		return ERR_PTR(err);
2837 	}
2838 
2839 	trans->block_rsv = &root->fs_info->global_block_rsv;
2840 	return trans;
2841 }
2842 
2843 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2844 			       struct btrfs_root *root)
2845 {
2846 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2847 		BUG_ON(!root->fs_info->enospc_unlink);
2848 		root->fs_info->enospc_unlink = 0;
2849 	}
2850 	btrfs_end_transaction_throttle(trans, root);
2851 }
2852 
2853 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2854 {
2855 	struct btrfs_root *root = BTRFS_I(dir)->root;
2856 	struct btrfs_trans_handle *trans;
2857 	struct inode *inode = dentry->d_inode;
2858 	int ret;
2859 	unsigned long nr = 0;
2860 
2861 	trans = __unlink_start_trans(dir, dentry);
2862 	if (IS_ERR(trans))
2863 		return PTR_ERR(trans);
2864 
2865 	btrfs_set_trans_block_group(trans, dir);
2866 
2867 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2868 
2869 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2870 				 dentry->d_name.name, dentry->d_name.len);
2871 	BUG_ON(ret);
2872 
2873 	if (inode->i_nlink == 0) {
2874 		ret = btrfs_orphan_add(trans, inode);
2875 		BUG_ON(ret);
2876 	}
2877 
2878 	nr = trans->blocks_used;
2879 	__unlink_end_trans(trans, root);
2880 	btrfs_btree_balance_dirty(root, nr);
2881 	return ret;
2882 }
2883 
2884 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2885 			struct btrfs_root *root,
2886 			struct inode *dir, u64 objectid,
2887 			const char *name, int name_len)
2888 {
2889 	struct btrfs_path *path;
2890 	struct extent_buffer *leaf;
2891 	struct btrfs_dir_item *di;
2892 	struct btrfs_key key;
2893 	u64 index;
2894 	int ret;
2895 
2896 	path = btrfs_alloc_path();
2897 	if (!path)
2898 		return -ENOMEM;
2899 
2900 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2901 				   name, name_len, -1);
2902 	BUG_ON(!di || IS_ERR(di));
2903 
2904 	leaf = path->nodes[0];
2905 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2906 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2907 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2908 	BUG_ON(ret);
2909 	btrfs_release_path(root, path);
2910 
2911 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2912 				 objectid, root->root_key.objectid,
2913 				 dir->i_ino, &index, name, name_len);
2914 	if (ret < 0) {
2915 		BUG_ON(ret != -ENOENT);
2916 		di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2917 						 name, name_len);
2918 		BUG_ON(!di || IS_ERR(di));
2919 
2920 		leaf = path->nodes[0];
2921 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2922 		btrfs_release_path(root, path);
2923 		index = key.offset;
2924 	}
2925 
2926 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2927 					 index, name, name_len, -1);
2928 	BUG_ON(!di || IS_ERR(di));
2929 
2930 	leaf = path->nodes[0];
2931 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2932 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2933 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2934 	BUG_ON(ret);
2935 	btrfs_release_path(root, path);
2936 
2937 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2938 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2939 	ret = btrfs_update_inode(trans, root, dir);
2940 	BUG_ON(ret);
2941 
2942 	btrfs_free_path(path);
2943 	return 0;
2944 }
2945 
2946 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2947 {
2948 	struct inode *inode = dentry->d_inode;
2949 	int err = 0;
2950 	struct btrfs_root *root = BTRFS_I(dir)->root;
2951 	struct btrfs_trans_handle *trans;
2952 	unsigned long nr = 0;
2953 
2954 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2955 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2956 		return -ENOTEMPTY;
2957 
2958 	trans = __unlink_start_trans(dir, dentry);
2959 	if (IS_ERR(trans))
2960 		return PTR_ERR(trans);
2961 
2962 	btrfs_set_trans_block_group(trans, dir);
2963 
2964 	if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2965 		err = btrfs_unlink_subvol(trans, root, dir,
2966 					  BTRFS_I(inode)->location.objectid,
2967 					  dentry->d_name.name,
2968 					  dentry->d_name.len);
2969 		goto out;
2970 	}
2971 
2972 	err = btrfs_orphan_add(trans, inode);
2973 	if (err)
2974 		goto out;
2975 
2976 	/* now the directory is empty */
2977 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2978 				 dentry->d_name.name, dentry->d_name.len);
2979 	if (!err)
2980 		btrfs_i_size_write(inode, 0);
2981 out:
2982 	nr = trans->blocks_used;
2983 	__unlink_end_trans(trans, root);
2984 	btrfs_btree_balance_dirty(root, nr);
2985 
2986 	return err;
2987 }
2988 
2989 #if 0
2990 /*
2991  * when truncating bytes in a file, it is possible to avoid reading
2992  * the leaves that contain only checksum items.  This can be the
2993  * majority of the IO required to delete a large file, but it must
2994  * be done carefully.
2995  *
2996  * The keys in the level just above the leaves are checked to make sure
2997  * the lowest key in a given leaf is a csum key, and starts at an offset
2998  * after the new  size.
2999  *
3000  * Then the key for the next leaf is checked to make sure it also has
3001  * a checksum item for the same file.  If it does, we know our target leaf
3002  * contains only checksum items, and it can be safely freed without reading
3003  * it.
3004  *
3005  * This is just an optimization targeted at large files.  It may do
3006  * nothing.  It will return 0 unless things went badly.
3007  */
3008 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3009 				     struct btrfs_root *root,
3010 				     struct btrfs_path *path,
3011 				     struct inode *inode, u64 new_size)
3012 {
3013 	struct btrfs_key key;
3014 	int ret;
3015 	int nritems;
3016 	struct btrfs_key found_key;
3017 	struct btrfs_key other_key;
3018 	struct btrfs_leaf_ref *ref;
3019 	u64 leaf_gen;
3020 	u64 leaf_start;
3021 
3022 	path->lowest_level = 1;
3023 	key.objectid = inode->i_ino;
3024 	key.type = BTRFS_CSUM_ITEM_KEY;
3025 	key.offset = new_size;
3026 again:
3027 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3028 	if (ret < 0)
3029 		goto out;
3030 
3031 	if (path->nodes[1] == NULL) {
3032 		ret = 0;
3033 		goto out;
3034 	}
3035 	ret = 0;
3036 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3037 	nritems = btrfs_header_nritems(path->nodes[1]);
3038 
3039 	if (!nritems)
3040 		goto out;
3041 
3042 	if (path->slots[1] >= nritems)
3043 		goto next_node;
3044 
3045 	/* did we find a key greater than anything we want to delete? */
3046 	if (found_key.objectid > inode->i_ino ||
3047 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
3048 		goto out;
3049 
3050 	/* we check the next key in the node to make sure the leave contains
3051 	 * only checksum items.  This comparison doesn't work if our
3052 	 * leaf is the last one in the node
3053 	 */
3054 	if (path->slots[1] + 1 >= nritems) {
3055 next_node:
3056 		/* search forward from the last key in the node, this
3057 		 * will bring us into the next node in the tree
3058 		 */
3059 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3060 
3061 		/* unlikely, but we inc below, so check to be safe */
3062 		if (found_key.offset == (u64)-1)
3063 			goto out;
3064 
3065 		/* search_forward needs a path with locks held, do the
3066 		 * search again for the original key.  It is possible
3067 		 * this will race with a balance and return a path that
3068 		 * we could modify, but this drop is just an optimization
3069 		 * and is allowed to miss some leaves.
3070 		 */
3071 		btrfs_release_path(root, path);
3072 		found_key.offset++;
3073 
3074 		/* setup a max key for search_forward */
3075 		other_key.offset = (u64)-1;
3076 		other_key.type = key.type;
3077 		other_key.objectid = key.objectid;
3078 
3079 		path->keep_locks = 1;
3080 		ret = btrfs_search_forward(root, &found_key, &other_key,
3081 					   path, 0, 0);
3082 		path->keep_locks = 0;
3083 		if (ret || found_key.objectid != key.objectid ||
3084 		    found_key.type != key.type) {
3085 			ret = 0;
3086 			goto out;
3087 		}
3088 
3089 		key.offset = found_key.offset;
3090 		btrfs_release_path(root, path);
3091 		cond_resched();
3092 		goto again;
3093 	}
3094 
3095 	/* we know there's one more slot after us in the tree,
3096 	 * read that key so we can verify it is also a checksum item
3097 	 */
3098 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3099 
3100 	if (found_key.objectid < inode->i_ino)
3101 		goto next_key;
3102 
3103 	if (found_key.type != key.type || found_key.offset < new_size)
3104 		goto next_key;
3105 
3106 	/*
3107 	 * if the key for the next leaf isn't a csum key from this objectid,
3108 	 * we can't be sure there aren't good items inside this leaf.
3109 	 * Bail out
3110 	 */
3111 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3112 		goto out;
3113 
3114 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3115 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3116 	/*
3117 	 * it is safe to delete this leaf, it contains only
3118 	 * csum items from this inode at an offset >= new_size
3119 	 */
3120 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
3121 	BUG_ON(ret);
3122 
3123 	if (root->ref_cows && leaf_gen < trans->transid) {
3124 		ref = btrfs_alloc_leaf_ref(root, 0);
3125 		if (ref) {
3126 			ref->root_gen = root->root_key.offset;
3127 			ref->bytenr = leaf_start;
3128 			ref->owner = 0;
3129 			ref->generation = leaf_gen;
3130 			ref->nritems = 0;
3131 
3132 			btrfs_sort_leaf_ref(ref);
3133 
3134 			ret = btrfs_add_leaf_ref(root, ref, 0);
3135 			WARN_ON(ret);
3136 			btrfs_free_leaf_ref(root, ref);
3137 		} else {
3138 			WARN_ON(1);
3139 		}
3140 	}
3141 next_key:
3142 	btrfs_release_path(root, path);
3143 
3144 	if (other_key.objectid == inode->i_ino &&
3145 	    other_key.type == key.type && other_key.offset > key.offset) {
3146 		key.offset = other_key.offset;
3147 		cond_resched();
3148 		goto again;
3149 	}
3150 	ret = 0;
3151 out:
3152 	/* fixup any changes we've made to the path */
3153 	path->lowest_level = 0;
3154 	path->keep_locks = 0;
3155 	btrfs_release_path(root, path);
3156 	return ret;
3157 }
3158 
3159 #endif
3160 
3161 /*
3162  * this can truncate away extent items, csum items and directory items.
3163  * It starts at a high offset and removes keys until it can't find
3164  * any higher than new_size
3165  *
3166  * csum items that cross the new i_size are truncated to the new size
3167  * as well.
3168  *
3169  * min_type is the minimum key type to truncate down to.  If set to 0, this
3170  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3171  */
3172 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3173 			       struct btrfs_root *root,
3174 			       struct inode *inode,
3175 			       u64 new_size, u32 min_type)
3176 {
3177 	struct btrfs_path *path;
3178 	struct extent_buffer *leaf;
3179 	struct btrfs_file_extent_item *fi;
3180 	struct btrfs_key key;
3181 	struct btrfs_key found_key;
3182 	u64 extent_start = 0;
3183 	u64 extent_num_bytes = 0;
3184 	u64 extent_offset = 0;
3185 	u64 item_end = 0;
3186 	u64 mask = root->sectorsize - 1;
3187 	u32 found_type = (u8)-1;
3188 	int found_extent;
3189 	int del_item;
3190 	int pending_del_nr = 0;
3191 	int pending_del_slot = 0;
3192 	int extent_type = -1;
3193 	int encoding;
3194 	int ret;
3195 	int err = 0;
3196 
3197 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3198 
3199 	if (root->ref_cows)
3200 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3201 
3202 	path = btrfs_alloc_path();
3203 	BUG_ON(!path);
3204 	path->reada = -1;
3205 
3206 	key.objectid = inode->i_ino;
3207 	key.offset = (u64)-1;
3208 	key.type = (u8)-1;
3209 
3210 search_again:
3211 	path->leave_spinning = 1;
3212 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3213 	if (ret < 0) {
3214 		err = ret;
3215 		goto out;
3216 	}
3217 
3218 	if (ret > 0) {
3219 		/* there are no items in the tree for us to truncate, we're
3220 		 * done
3221 		 */
3222 		if (path->slots[0] == 0)
3223 			goto out;
3224 		path->slots[0]--;
3225 	}
3226 
3227 	while (1) {
3228 		fi = NULL;
3229 		leaf = path->nodes[0];
3230 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3231 		found_type = btrfs_key_type(&found_key);
3232 		encoding = 0;
3233 
3234 		if (found_key.objectid != inode->i_ino)
3235 			break;
3236 
3237 		if (found_type < min_type)
3238 			break;
3239 
3240 		item_end = found_key.offset;
3241 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3242 			fi = btrfs_item_ptr(leaf, path->slots[0],
3243 					    struct btrfs_file_extent_item);
3244 			extent_type = btrfs_file_extent_type(leaf, fi);
3245 			encoding = btrfs_file_extent_compression(leaf, fi);
3246 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3247 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3248 
3249 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3250 				item_end +=
3251 				    btrfs_file_extent_num_bytes(leaf, fi);
3252 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3253 				item_end += btrfs_file_extent_inline_len(leaf,
3254 									 fi);
3255 			}
3256 			item_end--;
3257 		}
3258 		if (found_type > min_type) {
3259 			del_item = 1;
3260 		} else {
3261 			if (item_end < new_size)
3262 				break;
3263 			if (found_key.offset >= new_size)
3264 				del_item = 1;
3265 			else
3266 				del_item = 0;
3267 		}
3268 		found_extent = 0;
3269 		/* FIXME, shrink the extent if the ref count is only 1 */
3270 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3271 			goto delete;
3272 
3273 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3274 			u64 num_dec;
3275 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3276 			if (!del_item && !encoding) {
3277 				u64 orig_num_bytes =
3278 					btrfs_file_extent_num_bytes(leaf, fi);
3279 				extent_num_bytes = new_size -
3280 					found_key.offset + root->sectorsize - 1;
3281 				extent_num_bytes = extent_num_bytes &
3282 					~((u64)root->sectorsize - 1);
3283 				btrfs_set_file_extent_num_bytes(leaf, fi,
3284 							 extent_num_bytes);
3285 				num_dec = (orig_num_bytes -
3286 					   extent_num_bytes);
3287 				if (root->ref_cows && extent_start != 0)
3288 					inode_sub_bytes(inode, num_dec);
3289 				btrfs_mark_buffer_dirty(leaf);
3290 			} else {
3291 				extent_num_bytes =
3292 					btrfs_file_extent_disk_num_bytes(leaf,
3293 									 fi);
3294 				extent_offset = found_key.offset -
3295 					btrfs_file_extent_offset(leaf, fi);
3296 
3297 				/* FIXME blocksize != 4096 */
3298 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3299 				if (extent_start != 0) {
3300 					found_extent = 1;
3301 					if (root->ref_cows)
3302 						inode_sub_bytes(inode, num_dec);
3303 				}
3304 			}
3305 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3306 			/*
3307 			 * we can't truncate inline items that have had
3308 			 * special encodings
3309 			 */
3310 			if (!del_item &&
3311 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3312 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3313 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3314 				u32 size = new_size - found_key.offset;
3315 
3316 				if (root->ref_cows) {
3317 					inode_sub_bytes(inode, item_end + 1 -
3318 							new_size);
3319 				}
3320 				size =
3321 				    btrfs_file_extent_calc_inline_size(size);
3322 				ret = btrfs_truncate_item(trans, root, path,
3323 							  size, 1);
3324 				BUG_ON(ret);
3325 			} else if (root->ref_cows) {
3326 				inode_sub_bytes(inode, item_end + 1 -
3327 						found_key.offset);
3328 			}
3329 		}
3330 delete:
3331 		if (del_item) {
3332 			if (!pending_del_nr) {
3333 				/* no pending yet, add ourselves */
3334 				pending_del_slot = path->slots[0];
3335 				pending_del_nr = 1;
3336 			} else if (pending_del_nr &&
3337 				   path->slots[0] + 1 == pending_del_slot) {
3338 				/* hop on the pending chunk */
3339 				pending_del_nr++;
3340 				pending_del_slot = path->slots[0];
3341 			} else {
3342 				BUG();
3343 			}
3344 		} else {
3345 			break;
3346 		}
3347 		if (found_extent && root->ref_cows) {
3348 			btrfs_set_path_blocking(path);
3349 			ret = btrfs_free_extent(trans, root, extent_start,
3350 						extent_num_bytes, 0,
3351 						btrfs_header_owner(leaf),
3352 						inode->i_ino, extent_offset);
3353 			BUG_ON(ret);
3354 		}
3355 
3356 		if (found_type == BTRFS_INODE_ITEM_KEY)
3357 			break;
3358 
3359 		if (path->slots[0] == 0 ||
3360 		    path->slots[0] != pending_del_slot) {
3361 			if (root->ref_cows) {
3362 				err = -EAGAIN;
3363 				goto out;
3364 			}
3365 			if (pending_del_nr) {
3366 				ret = btrfs_del_items(trans, root, path,
3367 						pending_del_slot,
3368 						pending_del_nr);
3369 				BUG_ON(ret);
3370 				pending_del_nr = 0;
3371 			}
3372 			btrfs_release_path(root, path);
3373 			goto search_again;
3374 		} else {
3375 			path->slots[0]--;
3376 		}
3377 	}
3378 out:
3379 	if (pending_del_nr) {
3380 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3381 				      pending_del_nr);
3382 		BUG_ON(ret);
3383 	}
3384 	btrfs_free_path(path);
3385 	return err;
3386 }
3387 
3388 /*
3389  * taken from block_truncate_page, but does cow as it zeros out
3390  * any bytes left in the last page in the file.
3391  */
3392 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3393 {
3394 	struct inode *inode = mapping->host;
3395 	struct btrfs_root *root = BTRFS_I(inode)->root;
3396 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3397 	struct btrfs_ordered_extent *ordered;
3398 	struct extent_state *cached_state = NULL;
3399 	char *kaddr;
3400 	u32 blocksize = root->sectorsize;
3401 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3402 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3403 	struct page *page;
3404 	int ret = 0;
3405 	u64 page_start;
3406 	u64 page_end;
3407 
3408 	if ((offset & (blocksize - 1)) == 0)
3409 		goto out;
3410 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3411 	if (ret)
3412 		goto out;
3413 
3414 	ret = -ENOMEM;
3415 again:
3416 	page = grab_cache_page(mapping, index);
3417 	if (!page) {
3418 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3419 		goto out;
3420 	}
3421 
3422 	page_start = page_offset(page);
3423 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3424 
3425 	if (!PageUptodate(page)) {
3426 		ret = btrfs_readpage(NULL, page);
3427 		lock_page(page);
3428 		if (page->mapping != mapping) {
3429 			unlock_page(page);
3430 			page_cache_release(page);
3431 			goto again;
3432 		}
3433 		if (!PageUptodate(page)) {
3434 			ret = -EIO;
3435 			goto out_unlock;
3436 		}
3437 	}
3438 	wait_on_page_writeback(page);
3439 
3440 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3441 			 GFP_NOFS);
3442 	set_page_extent_mapped(page);
3443 
3444 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3445 	if (ordered) {
3446 		unlock_extent_cached(io_tree, page_start, page_end,
3447 				     &cached_state, GFP_NOFS);
3448 		unlock_page(page);
3449 		page_cache_release(page);
3450 		btrfs_start_ordered_extent(inode, ordered, 1);
3451 		btrfs_put_ordered_extent(ordered);
3452 		goto again;
3453 	}
3454 
3455 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3456 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3457 			  0, 0, &cached_state, GFP_NOFS);
3458 
3459 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3460 					&cached_state);
3461 	if (ret) {
3462 		unlock_extent_cached(io_tree, page_start, page_end,
3463 				     &cached_state, GFP_NOFS);
3464 		goto out_unlock;
3465 	}
3466 
3467 	ret = 0;
3468 	if (offset != PAGE_CACHE_SIZE) {
3469 		kaddr = kmap(page);
3470 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3471 		flush_dcache_page(page);
3472 		kunmap(page);
3473 	}
3474 	ClearPageChecked(page);
3475 	set_page_dirty(page);
3476 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3477 			     GFP_NOFS);
3478 
3479 out_unlock:
3480 	if (ret)
3481 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3482 	unlock_page(page);
3483 	page_cache_release(page);
3484 out:
3485 	return ret;
3486 }
3487 
3488 int btrfs_cont_expand(struct inode *inode, loff_t size)
3489 {
3490 	struct btrfs_trans_handle *trans;
3491 	struct btrfs_root *root = BTRFS_I(inode)->root;
3492 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3493 	struct extent_map *em = NULL;
3494 	struct extent_state *cached_state = NULL;
3495 	u64 mask = root->sectorsize - 1;
3496 	u64 hole_start = (inode->i_size + mask) & ~mask;
3497 	u64 block_end = (size + mask) & ~mask;
3498 	u64 last_byte;
3499 	u64 cur_offset;
3500 	u64 hole_size;
3501 	int err = 0;
3502 
3503 	if (size <= hole_start)
3504 		return 0;
3505 
3506 	while (1) {
3507 		struct btrfs_ordered_extent *ordered;
3508 		btrfs_wait_ordered_range(inode, hole_start,
3509 					 block_end - hole_start);
3510 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3511 				 &cached_state, GFP_NOFS);
3512 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3513 		if (!ordered)
3514 			break;
3515 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3516 				     &cached_state, GFP_NOFS);
3517 		btrfs_put_ordered_extent(ordered);
3518 	}
3519 
3520 	cur_offset = hole_start;
3521 	while (1) {
3522 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3523 				block_end - cur_offset, 0);
3524 		BUG_ON(IS_ERR(em) || !em);
3525 		last_byte = min(extent_map_end(em), block_end);
3526 		last_byte = (last_byte + mask) & ~mask;
3527 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3528 			u64 hint_byte = 0;
3529 			hole_size = last_byte - cur_offset;
3530 
3531 			trans = btrfs_start_transaction(root, 2);
3532 			if (IS_ERR(trans)) {
3533 				err = PTR_ERR(trans);
3534 				break;
3535 			}
3536 			btrfs_set_trans_block_group(trans, inode);
3537 
3538 			err = btrfs_drop_extents(trans, inode, cur_offset,
3539 						 cur_offset + hole_size,
3540 						 &hint_byte, 1);
3541 			BUG_ON(err);
3542 
3543 			err = btrfs_insert_file_extent(trans, root,
3544 					inode->i_ino, cur_offset, 0,
3545 					0, hole_size, 0, hole_size,
3546 					0, 0, 0);
3547 			BUG_ON(err);
3548 
3549 			btrfs_drop_extent_cache(inode, hole_start,
3550 					last_byte - 1, 0);
3551 
3552 			btrfs_end_transaction(trans, root);
3553 		}
3554 		free_extent_map(em);
3555 		em = NULL;
3556 		cur_offset = last_byte;
3557 		if (cur_offset >= block_end)
3558 			break;
3559 	}
3560 
3561 	free_extent_map(em);
3562 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3563 			     GFP_NOFS);
3564 	return err;
3565 }
3566 
3567 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3568 {
3569 	struct btrfs_root *root = BTRFS_I(inode)->root;
3570 	struct btrfs_trans_handle *trans;
3571 	unsigned long nr;
3572 	int ret;
3573 
3574 	if (attr->ia_size == inode->i_size)
3575 		return 0;
3576 
3577 	if (attr->ia_size > inode->i_size) {
3578 		unsigned long limit;
3579 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3580 		if (attr->ia_size > inode->i_sb->s_maxbytes)
3581 			return -EFBIG;
3582 		if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3583 			send_sig(SIGXFSZ, current, 0);
3584 			return -EFBIG;
3585 		}
3586 	}
3587 
3588 	trans = btrfs_start_transaction(root, 5);
3589 	if (IS_ERR(trans))
3590 		return PTR_ERR(trans);
3591 
3592 	btrfs_set_trans_block_group(trans, inode);
3593 
3594 	ret = btrfs_orphan_add(trans, inode);
3595 	BUG_ON(ret);
3596 
3597 	nr = trans->blocks_used;
3598 	btrfs_end_transaction(trans, root);
3599 	btrfs_btree_balance_dirty(root, nr);
3600 
3601 	if (attr->ia_size > inode->i_size) {
3602 		ret = btrfs_cont_expand(inode, attr->ia_size);
3603 		if (ret) {
3604 			btrfs_truncate(inode);
3605 			return ret;
3606 		}
3607 
3608 		i_size_write(inode, attr->ia_size);
3609 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3610 
3611 		trans = btrfs_start_transaction(root, 0);
3612 		BUG_ON(IS_ERR(trans));
3613 		btrfs_set_trans_block_group(trans, inode);
3614 		trans->block_rsv = root->orphan_block_rsv;
3615 		BUG_ON(!trans->block_rsv);
3616 
3617 		ret = btrfs_update_inode(trans, root, inode);
3618 		BUG_ON(ret);
3619 		if (inode->i_nlink > 0) {
3620 			ret = btrfs_orphan_del(trans, inode);
3621 			BUG_ON(ret);
3622 		}
3623 		nr = trans->blocks_used;
3624 		btrfs_end_transaction(trans, root);
3625 		btrfs_btree_balance_dirty(root, nr);
3626 		return 0;
3627 	}
3628 
3629 	/*
3630 	 * We're truncating a file that used to have good data down to
3631 	 * zero. Make sure it gets into the ordered flush list so that
3632 	 * any new writes get down to disk quickly.
3633 	 */
3634 	if (attr->ia_size == 0)
3635 		BTRFS_I(inode)->ordered_data_close = 1;
3636 
3637 	/* we don't support swapfiles, so vmtruncate shouldn't fail */
3638 	ret = vmtruncate(inode, attr->ia_size);
3639 	BUG_ON(ret);
3640 
3641 	return 0;
3642 }
3643 
3644 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3645 {
3646 	struct inode *inode = dentry->d_inode;
3647 	int err;
3648 
3649 	err = inode_change_ok(inode, attr);
3650 	if (err)
3651 		return err;
3652 
3653 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3654 		err = btrfs_setattr_size(inode, attr);
3655 		if (err)
3656 			return err;
3657 	}
3658 
3659 	if (attr->ia_valid) {
3660 		setattr_copy(inode, attr);
3661 		mark_inode_dirty(inode);
3662 
3663 		if (attr->ia_valid & ATTR_MODE)
3664 			err = btrfs_acl_chmod(inode);
3665 	}
3666 
3667 	return err;
3668 }
3669 
3670 void btrfs_evict_inode(struct inode *inode)
3671 {
3672 	struct btrfs_trans_handle *trans;
3673 	struct btrfs_root *root = BTRFS_I(inode)->root;
3674 	unsigned long nr;
3675 	int ret;
3676 
3677 	truncate_inode_pages(&inode->i_data, 0);
3678 	if (inode->i_nlink && btrfs_root_refs(&root->root_item) != 0)
3679 		goto no_delete;
3680 
3681 	if (is_bad_inode(inode)) {
3682 		btrfs_orphan_del(NULL, inode);
3683 		goto no_delete;
3684 	}
3685 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3686 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3687 
3688 	if (root->fs_info->log_root_recovering) {
3689 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3690 		goto no_delete;
3691 	}
3692 
3693 	if (inode->i_nlink > 0) {
3694 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3695 		goto no_delete;
3696 	}
3697 
3698 	btrfs_i_size_write(inode, 0);
3699 
3700 	while (1) {
3701 		trans = btrfs_start_transaction(root, 0);
3702 		BUG_ON(IS_ERR(trans));
3703 		btrfs_set_trans_block_group(trans, inode);
3704 		trans->block_rsv = root->orphan_block_rsv;
3705 
3706 		ret = btrfs_block_rsv_check(trans, root,
3707 					    root->orphan_block_rsv, 0, 5);
3708 		if (ret) {
3709 			BUG_ON(ret != -EAGAIN);
3710 			ret = btrfs_commit_transaction(trans, root);
3711 			BUG_ON(ret);
3712 			continue;
3713 		}
3714 
3715 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3716 		if (ret != -EAGAIN)
3717 			break;
3718 
3719 		nr = trans->blocks_used;
3720 		btrfs_end_transaction(trans, root);
3721 		trans = NULL;
3722 		btrfs_btree_balance_dirty(root, nr);
3723 
3724 	}
3725 
3726 	if (ret == 0) {
3727 		ret = btrfs_orphan_del(trans, inode);
3728 		BUG_ON(ret);
3729 	}
3730 
3731 	nr = trans->blocks_used;
3732 	btrfs_end_transaction(trans, root);
3733 	btrfs_btree_balance_dirty(root, nr);
3734 no_delete:
3735 	end_writeback(inode);
3736 	return;
3737 }
3738 
3739 /*
3740  * this returns the key found in the dir entry in the location pointer.
3741  * If no dir entries were found, location->objectid is 0.
3742  */
3743 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3744 			       struct btrfs_key *location)
3745 {
3746 	const char *name = dentry->d_name.name;
3747 	int namelen = dentry->d_name.len;
3748 	struct btrfs_dir_item *di;
3749 	struct btrfs_path *path;
3750 	struct btrfs_root *root = BTRFS_I(dir)->root;
3751 	int ret = 0;
3752 
3753 	path = btrfs_alloc_path();
3754 	BUG_ON(!path);
3755 
3756 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3757 				    namelen, 0);
3758 	if (IS_ERR(di))
3759 		ret = PTR_ERR(di);
3760 
3761 	if (!di || IS_ERR(di))
3762 		goto out_err;
3763 
3764 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3765 out:
3766 	btrfs_free_path(path);
3767 	return ret;
3768 out_err:
3769 	location->objectid = 0;
3770 	goto out;
3771 }
3772 
3773 /*
3774  * when we hit a tree root in a directory, the btrfs part of the inode
3775  * needs to be changed to reflect the root directory of the tree root.  This
3776  * is kind of like crossing a mount point.
3777  */
3778 static int fixup_tree_root_location(struct btrfs_root *root,
3779 				    struct inode *dir,
3780 				    struct dentry *dentry,
3781 				    struct btrfs_key *location,
3782 				    struct btrfs_root **sub_root)
3783 {
3784 	struct btrfs_path *path;
3785 	struct btrfs_root *new_root;
3786 	struct btrfs_root_ref *ref;
3787 	struct extent_buffer *leaf;
3788 	int ret;
3789 	int err = 0;
3790 
3791 	path = btrfs_alloc_path();
3792 	if (!path) {
3793 		err = -ENOMEM;
3794 		goto out;
3795 	}
3796 
3797 	err = -ENOENT;
3798 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3799 				  BTRFS_I(dir)->root->root_key.objectid,
3800 				  location->objectid);
3801 	if (ret) {
3802 		if (ret < 0)
3803 			err = ret;
3804 		goto out;
3805 	}
3806 
3807 	leaf = path->nodes[0];
3808 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3809 	if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3810 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3811 		goto out;
3812 
3813 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3814 				   (unsigned long)(ref + 1),
3815 				   dentry->d_name.len);
3816 	if (ret)
3817 		goto out;
3818 
3819 	btrfs_release_path(root->fs_info->tree_root, path);
3820 
3821 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3822 	if (IS_ERR(new_root)) {
3823 		err = PTR_ERR(new_root);
3824 		goto out;
3825 	}
3826 
3827 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3828 		err = -ENOENT;
3829 		goto out;
3830 	}
3831 
3832 	*sub_root = new_root;
3833 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3834 	location->type = BTRFS_INODE_ITEM_KEY;
3835 	location->offset = 0;
3836 	err = 0;
3837 out:
3838 	btrfs_free_path(path);
3839 	return err;
3840 }
3841 
3842 static void inode_tree_add(struct inode *inode)
3843 {
3844 	struct btrfs_root *root = BTRFS_I(inode)->root;
3845 	struct btrfs_inode *entry;
3846 	struct rb_node **p;
3847 	struct rb_node *parent;
3848 again:
3849 	p = &root->inode_tree.rb_node;
3850 	parent = NULL;
3851 
3852 	if (hlist_unhashed(&inode->i_hash))
3853 		return;
3854 
3855 	spin_lock(&root->inode_lock);
3856 	while (*p) {
3857 		parent = *p;
3858 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3859 
3860 		if (inode->i_ino < entry->vfs_inode.i_ino)
3861 			p = &parent->rb_left;
3862 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3863 			p = &parent->rb_right;
3864 		else {
3865 			WARN_ON(!(entry->vfs_inode.i_state &
3866 				  (I_WILL_FREE | I_FREEING)));
3867 			rb_erase(parent, &root->inode_tree);
3868 			RB_CLEAR_NODE(parent);
3869 			spin_unlock(&root->inode_lock);
3870 			goto again;
3871 		}
3872 	}
3873 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3874 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3875 	spin_unlock(&root->inode_lock);
3876 }
3877 
3878 static void inode_tree_del(struct inode *inode)
3879 {
3880 	struct btrfs_root *root = BTRFS_I(inode)->root;
3881 	int empty = 0;
3882 
3883 	spin_lock(&root->inode_lock);
3884 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3885 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3886 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3887 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3888 	}
3889 	spin_unlock(&root->inode_lock);
3890 
3891 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
3892 		synchronize_srcu(&root->fs_info->subvol_srcu);
3893 		spin_lock(&root->inode_lock);
3894 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3895 		spin_unlock(&root->inode_lock);
3896 		if (empty)
3897 			btrfs_add_dead_root(root);
3898 	}
3899 }
3900 
3901 int btrfs_invalidate_inodes(struct btrfs_root *root)
3902 {
3903 	struct rb_node *node;
3904 	struct rb_node *prev;
3905 	struct btrfs_inode *entry;
3906 	struct inode *inode;
3907 	u64 objectid = 0;
3908 
3909 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3910 
3911 	spin_lock(&root->inode_lock);
3912 again:
3913 	node = root->inode_tree.rb_node;
3914 	prev = NULL;
3915 	while (node) {
3916 		prev = node;
3917 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3918 
3919 		if (objectid < entry->vfs_inode.i_ino)
3920 			node = node->rb_left;
3921 		else if (objectid > entry->vfs_inode.i_ino)
3922 			node = node->rb_right;
3923 		else
3924 			break;
3925 	}
3926 	if (!node) {
3927 		while (prev) {
3928 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3929 			if (objectid <= entry->vfs_inode.i_ino) {
3930 				node = prev;
3931 				break;
3932 			}
3933 			prev = rb_next(prev);
3934 		}
3935 	}
3936 	while (node) {
3937 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3938 		objectid = entry->vfs_inode.i_ino + 1;
3939 		inode = igrab(&entry->vfs_inode);
3940 		if (inode) {
3941 			spin_unlock(&root->inode_lock);
3942 			if (atomic_read(&inode->i_count) > 1)
3943 				d_prune_aliases(inode);
3944 			/*
3945 			 * btrfs_drop_inode will have it removed from
3946 			 * the inode cache when its usage count
3947 			 * hits zero.
3948 			 */
3949 			iput(inode);
3950 			cond_resched();
3951 			spin_lock(&root->inode_lock);
3952 			goto again;
3953 		}
3954 
3955 		if (cond_resched_lock(&root->inode_lock))
3956 			goto again;
3957 
3958 		node = rb_next(node);
3959 	}
3960 	spin_unlock(&root->inode_lock);
3961 	return 0;
3962 }
3963 
3964 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3965 {
3966 	struct btrfs_iget_args *args = p;
3967 	inode->i_ino = args->ino;
3968 	BTRFS_I(inode)->root = args->root;
3969 	btrfs_set_inode_space_info(args->root, inode);
3970 	return 0;
3971 }
3972 
3973 static int btrfs_find_actor(struct inode *inode, void *opaque)
3974 {
3975 	struct btrfs_iget_args *args = opaque;
3976 	return args->ino == inode->i_ino &&
3977 		args->root == BTRFS_I(inode)->root;
3978 }
3979 
3980 static struct inode *btrfs_iget_locked(struct super_block *s,
3981 				       u64 objectid,
3982 				       struct btrfs_root *root)
3983 {
3984 	struct inode *inode;
3985 	struct btrfs_iget_args args;
3986 	args.ino = objectid;
3987 	args.root = root;
3988 
3989 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3990 			     btrfs_init_locked_inode,
3991 			     (void *)&args);
3992 	return inode;
3993 }
3994 
3995 /* Get an inode object given its location and corresponding root.
3996  * Returns in *is_new if the inode was read from disk
3997  */
3998 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3999 			 struct btrfs_root *root, int *new)
4000 {
4001 	struct inode *inode;
4002 
4003 	inode = btrfs_iget_locked(s, location->objectid, root);
4004 	if (!inode)
4005 		return ERR_PTR(-ENOMEM);
4006 
4007 	if (inode->i_state & I_NEW) {
4008 		BTRFS_I(inode)->root = root;
4009 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4010 		btrfs_read_locked_inode(inode);
4011 
4012 		inode_tree_add(inode);
4013 		unlock_new_inode(inode);
4014 		if (new)
4015 			*new = 1;
4016 	}
4017 
4018 	return inode;
4019 }
4020 
4021 static struct inode *new_simple_dir(struct super_block *s,
4022 				    struct btrfs_key *key,
4023 				    struct btrfs_root *root)
4024 {
4025 	struct inode *inode = new_inode(s);
4026 
4027 	if (!inode)
4028 		return ERR_PTR(-ENOMEM);
4029 
4030 	BTRFS_I(inode)->root = root;
4031 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4032 	BTRFS_I(inode)->dummy_inode = 1;
4033 
4034 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4035 	inode->i_op = &simple_dir_inode_operations;
4036 	inode->i_fop = &simple_dir_operations;
4037 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4038 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4039 
4040 	return inode;
4041 }
4042 
4043 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4044 {
4045 	struct inode *inode;
4046 	struct btrfs_root *root = BTRFS_I(dir)->root;
4047 	struct btrfs_root *sub_root = root;
4048 	struct btrfs_key location;
4049 	int index;
4050 	int ret;
4051 
4052 	dentry->d_op = &btrfs_dentry_operations;
4053 
4054 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4055 		return ERR_PTR(-ENAMETOOLONG);
4056 
4057 	ret = btrfs_inode_by_name(dir, dentry, &location);
4058 
4059 	if (ret < 0)
4060 		return ERR_PTR(ret);
4061 
4062 	if (location.objectid == 0)
4063 		return NULL;
4064 
4065 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4066 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4067 		return inode;
4068 	}
4069 
4070 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4071 
4072 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4073 	ret = fixup_tree_root_location(root, dir, dentry,
4074 				       &location, &sub_root);
4075 	if (ret < 0) {
4076 		if (ret != -ENOENT)
4077 			inode = ERR_PTR(ret);
4078 		else
4079 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4080 	} else {
4081 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4082 	}
4083 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4084 
4085 	if (root != sub_root) {
4086 		down_read(&root->fs_info->cleanup_work_sem);
4087 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4088 			btrfs_orphan_cleanup(sub_root);
4089 		up_read(&root->fs_info->cleanup_work_sem);
4090 	}
4091 
4092 	return inode;
4093 }
4094 
4095 static int btrfs_dentry_delete(struct dentry *dentry)
4096 {
4097 	struct btrfs_root *root;
4098 
4099 	if (!dentry->d_inode && !IS_ROOT(dentry))
4100 		dentry = dentry->d_parent;
4101 
4102 	if (dentry->d_inode) {
4103 		root = BTRFS_I(dentry->d_inode)->root;
4104 		if (btrfs_root_refs(&root->root_item) == 0)
4105 			return 1;
4106 	}
4107 	return 0;
4108 }
4109 
4110 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4111 				   struct nameidata *nd)
4112 {
4113 	struct inode *inode;
4114 
4115 	inode = btrfs_lookup_dentry(dir, dentry);
4116 	if (IS_ERR(inode))
4117 		return ERR_CAST(inode);
4118 
4119 	return d_splice_alias(inode, dentry);
4120 }
4121 
4122 static unsigned char btrfs_filetype_table[] = {
4123 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4124 };
4125 
4126 static int btrfs_real_readdir(struct file *filp, void *dirent,
4127 			      filldir_t filldir)
4128 {
4129 	struct inode *inode = filp->f_dentry->d_inode;
4130 	struct btrfs_root *root = BTRFS_I(inode)->root;
4131 	struct btrfs_item *item;
4132 	struct btrfs_dir_item *di;
4133 	struct btrfs_key key;
4134 	struct btrfs_key found_key;
4135 	struct btrfs_path *path;
4136 	int ret;
4137 	u32 nritems;
4138 	struct extent_buffer *leaf;
4139 	int slot;
4140 	int advance;
4141 	unsigned char d_type;
4142 	int over = 0;
4143 	u32 di_cur;
4144 	u32 di_total;
4145 	u32 di_len;
4146 	int key_type = BTRFS_DIR_INDEX_KEY;
4147 	char tmp_name[32];
4148 	char *name_ptr;
4149 	int name_len;
4150 
4151 	/* FIXME, use a real flag for deciding about the key type */
4152 	if (root->fs_info->tree_root == root)
4153 		key_type = BTRFS_DIR_ITEM_KEY;
4154 
4155 	/* special case for "." */
4156 	if (filp->f_pos == 0) {
4157 		over = filldir(dirent, ".", 1,
4158 			       1, inode->i_ino,
4159 			       DT_DIR);
4160 		if (over)
4161 			return 0;
4162 		filp->f_pos = 1;
4163 	}
4164 	/* special case for .., just use the back ref */
4165 	if (filp->f_pos == 1) {
4166 		u64 pino = parent_ino(filp->f_path.dentry);
4167 		over = filldir(dirent, "..", 2,
4168 			       2, pino, DT_DIR);
4169 		if (over)
4170 			return 0;
4171 		filp->f_pos = 2;
4172 	}
4173 	path = btrfs_alloc_path();
4174 	path->reada = 2;
4175 
4176 	btrfs_set_key_type(&key, key_type);
4177 	key.offset = filp->f_pos;
4178 	key.objectid = inode->i_ino;
4179 
4180 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4181 	if (ret < 0)
4182 		goto err;
4183 	advance = 0;
4184 
4185 	while (1) {
4186 		leaf = path->nodes[0];
4187 		nritems = btrfs_header_nritems(leaf);
4188 		slot = path->slots[0];
4189 		if (advance || slot >= nritems) {
4190 			if (slot >= nritems - 1) {
4191 				ret = btrfs_next_leaf(root, path);
4192 				if (ret)
4193 					break;
4194 				leaf = path->nodes[0];
4195 				nritems = btrfs_header_nritems(leaf);
4196 				slot = path->slots[0];
4197 			} else {
4198 				slot++;
4199 				path->slots[0]++;
4200 			}
4201 		}
4202 
4203 		advance = 1;
4204 		item = btrfs_item_nr(leaf, slot);
4205 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4206 
4207 		if (found_key.objectid != key.objectid)
4208 			break;
4209 		if (btrfs_key_type(&found_key) != key_type)
4210 			break;
4211 		if (found_key.offset < filp->f_pos)
4212 			continue;
4213 
4214 		filp->f_pos = found_key.offset;
4215 
4216 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4217 		di_cur = 0;
4218 		di_total = btrfs_item_size(leaf, item);
4219 
4220 		while (di_cur < di_total) {
4221 			struct btrfs_key location;
4222 
4223 			name_len = btrfs_dir_name_len(leaf, di);
4224 			if (name_len <= sizeof(tmp_name)) {
4225 				name_ptr = tmp_name;
4226 			} else {
4227 				name_ptr = kmalloc(name_len, GFP_NOFS);
4228 				if (!name_ptr) {
4229 					ret = -ENOMEM;
4230 					goto err;
4231 				}
4232 			}
4233 			read_extent_buffer(leaf, name_ptr,
4234 					   (unsigned long)(di + 1), name_len);
4235 
4236 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4237 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4238 
4239 			/* is this a reference to our own snapshot? If so
4240 			 * skip it
4241 			 */
4242 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4243 			    location.objectid == root->root_key.objectid) {
4244 				over = 0;
4245 				goto skip;
4246 			}
4247 			over = filldir(dirent, name_ptr, name_len,
4248 				       found_key.offset, location.objectid,
4249 				       d_type);
4250 
4251 skip:
4252 			if (name_ptr != tmp_name)
4253 				kfree(name_ptr);
4254 
4255 			if (over)
4256 				goto nopos;
4257 			di_len = btrfs_dir_name_len(leaf, di) +
4258 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4259 			di_cur += di_len;
4260 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4261 		}
4262 	}
4263 
4264 	/* Reached end of directory/root. Bump pos past the last item. */
4265 	if (key_type == BTRFS_DIR_INDEX_KEY)
4266 		/*
4267 		 * 32-bit glibc will use getdents64, but then strtol -
4268 		 * so the last number we can serve is this.
4269 		 */
4270 		filp->f_pos = 0x7fffffff;
4271 	else
4272 		filp->f_pos++;
4273 nopos:
4274 	ret = 0;
4275 err:
4276 	btrfs_free_path(path);
4277 	return ret;
4278 }
4279 
4280 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4281 {
4282 	struct btrfs_root *root = BTRFS_I(inode)->root;
4283 	struct btrfs_trans_handle *trans;
4284 	int ret = 0;
4285 
4286 	if (BTRFS_I(inode)->dummy_inode)
4287 		return 0;
4288 
4289 	if (wbc->sync_mode == WB_SYNC_ALL) {
4290 		trans = btrfs_join_transaction(root, 1);
4291 		btrfs_set_trans_block_group(trans, inode);
4292 		ret = btrfs_commit_transaction(trans, root);
4293 	}
4294 	return ret;
4295 }
4296 
4297 /*
4298  * This is somewhat expensive, updating the tree every time the
4299  * inode changes.  But, it is most likely to find the inode in cache.
4300  * FIXME, needs more benchmarking...there are no reasons other than performance
4301  * to keep or drop this code.
4302  */
4303 void btrfs_dirty_inode(struct inode *inode)
4304 {
4305 	struct btrfs_root *root = BTRFS_I(inode)->root;
4306 	struct btrfs_trans_handle *trans;
4307 	int ret;
4308 
4309 	if (BTRFS_I(inode)->dummy_inode)
4310 		return;
4311 
4312 	trans = btrfs_join_transaction(root, 1);
4313 	btrfs_set_trans_block_group(trans, inode);
4314 
4315 	ret = btrfs_update_inode(trans, root, inode);
4316 	if (ret && ret == -ENOSPC) {
4317 		/* whoops, lets try again with the full transaction */
4318 		btrfs_end_transaction(trans, root);
4319 		trans = btrfs_start_transaction(root, 1);
4320 		if (IS_ERR(trans)) {
4321 			if (printk_ratelimit()) {
4322 				printk(KERN_ERR "btrfs: fail to "
4323 				       "dirty  inode %lu error %ld\n",
4324 				       inode->i_ino, PTR_ERR(trans));
4325 			}
4326 			return;
4327 		}
4328 		btrfs_set_trans_block_group(trans, inode);
4329 
4330 		ret = btrfs_update_inode(trans, root, inode);
4331 		if (ret) {
4332 			if (printk_ratelimit()) {
4333 				printk(KERN_ERR "btrfs: fail to "
4334 				       "dirty  inode %lu error %d\n",
4335 				       inode->i_ino, ret);
4336 			}
4337 		}
4338 	}
4339 	btrfs_end_transaction(trans, root);
4340 }
4341 
4342 /*
4343  * find the highest existing sequence number in a directory
4344  * and then set the in-memory index_cnt variable to reflect
4345  * free sequence numbers
4346  */
4347 static int btrfs_set_inode_index_count(struct inode *inode)
4348 {
4349 	struct btrfs_root *root = BTRFS_I(inode)->root;
4350 	struct btrfs_key key, found_key;
4351 	struct btrfs_path *path;
4352 	struct extent_buffer *leaf;
4353 	int ret;
4354 
4355 	key.objectid = inode->i_ino;
4356 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4357 	key.offset = (u64)-1;
4358 
4359 	path = btrfs_alloc_path();
4360 	if (!path)
4361 		return -ENOMEM;
4362 
4363 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4364 	if (ret < 0)
4365 		goto out;
4366 	/* FIXME: we should be able to handle this */
4367 	if (ret == 0)
4368 		goto out;
4369 	ret = 0;
4370 
4371 	/*
4372 	 * MAGIC NUMBER EXPLANATION:
4373 	 * since we search a directory based on f_pos we have to start at 2
4374 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4375 	 * else has to start at 2
4376 	 */
4377 	if (path->slots[0] == 0) {
4378 		BTRFS_I(inode)->index_cnt = 2;
4379 		goto out;
4380 	}
4381 
4382 	path->slots[0]--;
4383 
4384 	leaf = path->nodes[0];
4385 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4386 
4387 	if (found_key.objectid != inode->i_ino ||
4388 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4389 		BTRFS_I(inode)->index_cnt = 2;
4390 		goto out;
4391 	}
4392 
4393 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4394 out:
4395 	btrfs_free_path(path);
4396 	return ret;
4397 }
4398 
4399 /*
4400  * helper to find a free sequence number in a given directory.  This current
4401  * code is very simple, later versions will do smarter things in the btree
4402  */
4403 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4404 {
4405 	int ret = 0;
4406 
4407 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4408 		ret = btrfs_set_inode_index_count(dir);
4409 		if (ret)
4410 			return ret;
4411 	}
4412 
4413 	*index = BTRFS_I(dir)->index_cnt;
4414 	BTRFS_I(dir)->index_cnt++;
4415 
4416 	return ret;
4417 }
4418 
4419 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4420 				     struct btrfs_root *root,
4421 				     struct inode *dir,
4422 				     const char *name, int name_len,
4423 				     u64 ref_objectid, u64 objectid,
4424 				     u64 alloc_hint, int mode, u64 *index)
4425 {
4426 	struct inode *inode;
4427 	struct btrfs_inode_item *inode_item;
4428 	struct btrfs_key *location;
4429 	struct btrfs_path *path;
4430 	struct btrfs_inode_ref *ref;
4431 	struct btrfs_key key[2];
4432 	u32 sizes[2];
4433 	unsigned long ptr;
4434 	int ret;
4435 	int owner;
4436 
4437 	path = btrfs_alloc_path();
4438 	BUG_ON(!path);
4439 
4440 	inode = new_inode(root->fs_info->sb);
4441 	if (!inode)
4442 		return ERR_PTR(-ENOMEM);
4443 
4444 	if (dir) {
4445 		ret = btrfs_set_inode_index(dir, index);
4446 		if (ret) {
4447 			iput(inode);
4448 			return ERR_PTR(ret);
4449 		}
4450 	}
4451 	/*
4452 	 * index_cnt is ignored for everything but a dir,
4453 	 * btrfs_get_inode_index_count has an explanation for the magic
4454 	 * number
4455 	 */
4456 	BTRFS_I(inode)->index_cnt = 2;
4457 	BTRFS_I(inode)->root = root;
4458 	BTRFS_I(inode)->generation = trans->transid;
4459 	btrfs_set_inode_space_info(root, inode);
4460 
4461 	if (mode & S_IFDIR)
4462 		owner = 0;
4463 	else
4464 		owner = 1;
4465 	BTRFS_I(inode)->block_group =
4466 			btrfs_find_block_group(root, 0, alloc_hint, owner);
4467 
4468 	key[0].objectid = objectid;
4469 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4470 	key[0].offset = 0;
4471 
4472 	key[1].objectid = objectid;
4473 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4474 	key[1].offset = ref_objectid;
4475 
4476 	sizes[0] = sizeof(struct btrfs_inode_item);
4477 	sizes[1] = name_len + sizeof(*ref);
4478 
4479 	path->leave_spinning = 1;
4480 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4481 	if (ret != 0)
4482 		goto fail;
4483 
4484 	inode_init_owner(inode, dir, mode);
4485 	inode->i_ino = objectid;
4486 	inode_set_bytes(inode, 0);
4487 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4488 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4489 				  struct btrfs_inode_item);
4490 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4491 
4492 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4493 			     struct btrfs_inode_ref);
4494 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4495 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4496 	ptr = (unsigned long)(ref + 1);
4497 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4498 
4499 	btrfs_mark_buffer_dirty(path->nodes[0]);
4500 	btrfs_free_path(path);
4501 
4502 	location = &BTRFS_I(inode)->location;
4503 	location->objectid = objectid;
4504 	location->offset = 0;
4505 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4506 
4507 	btrfs_inherit_iflags(inode, dir);
4508 
4509 	if ((mode & S_IFREG)) {
4510 		if (btrfs_test_opt(root, NODATASUM))
4511 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4512 		if (btrfs_test_opt(root, NODATACOW))
4513 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4514 	}
4515 
4516 	insert_inode_hash(inode);
4517 	inode_tree_add(inode);
4518 	return inode;
4519 fail:
4520 	if (dir)
4521 		BTRFS_I(dir)->index_cnt--;
4522 	btrfs_free_path(path);
4523 	iput(inode);
4524 	return ERR_PTR(ret);
4525 }
4526 
4527 static inline u8 btrfs_inode_type(struct inode *inode)
4528 {
4529 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4530 }
4531 
4532 /*
4533  * utility function to add 'inode' into 'parent_inode' with
4534  * a give name and a given sequence number.
4535  * if 'add_backref' is true, also insert a backref from the
4536  * inode to the parent directory.
4537  */
4538 int btrfs_add_link(struct btrfs_trans_handle *trans,
4539 		   struct inode *parent_inode, struct inode *inode,
4540 		   const char *name, int name_len, int add_backref, u64 index)
4541 {
4542 	int ret = 0;
4543 	struct btrfs_key key;
4544 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4545 
4546 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4547 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4548 	} else {
4549 		key.objectid = inode->i_ino;
4550 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4551 		key.offset = 0;
4552 	}
4553 
4554 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4555 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4556 					 key.objectid, root->root_key.objectid,
4557 					 parent_inode->i_ino,
4558 					 index, name, name_len);
4559 	} else if (add_backref) {
4560 		ret = btrfs_insert_inode_ref(trans, root,
4561 					     name, name_len, inode->i_ino,
4562 					     parent_inode->i_ino, index);
4563 	}
4564 
4565 	if (ret == 0) {
4566 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4567 					    parent_inode->i_ino, &key,
4568 					    btrfs_inode_type(inode), index);
4569 		BUG_ON(ret);
4570 
4571 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4572 				   name_len * 2);
4573 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4574 		ret = btrfs_update_inode(trans, root, parent_inode);
4575 	}
4576 	return ret;
4577 }
4578 
4579 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4580 			    struct dentry *dentry, struct inode *inode,
4581 			    int backref, u64 index)
4582 {
4583 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4584 				 inode, dentry->d_name.name,
4585 				 dentry->d_name.len, backref, index);
4586 	if (!err) {
4587 		d_instantiate(dentry, inode);
4588 		return 0;
4589 	}
4590 	if (err > 0)
4591 		err = -EEXIST;
4592 	return err;
4593 }
4594 
4595 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4596 			int mode, dev_t rdev)
4597 {
4598 	struct btrfs_trans_handle *trans;
4599 	struct btrfs_root *root = BTRFS_I(dir)->root;
4600 	struct inode *inode = NULL;
4601 	int err;
4602 	int drop_inode = 0;
4603 	u64 objectid;
4604 	unsigned long nr = 0;
4605 	u64 index = 0;
4606 
4607 	if (!new_valid_dev(rdev))
4608 		return -EINVAL;
4609 
4610 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4611 	if (err)
4612 		return err;
4613 
4614 	/*
4615 	 * 2 for inode item and ref
4616 	 * 2 for dir items
4617 	 * 1 for xattr if selinux is on
4618 	 */
4619 	trans = btrfs_start_transaction(root, 5);
4620 	if (IS_ERR(trans))
4621 		return PTR_ERR(trans);
4622 
4623 	btrfs_set_trans_block_group(trans, dir);
4624 
4625 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4626 				dentry->d_name.len,
4627 				dentry->d_parent->d_inode->i_ino, objectid,
4628 				BTRFS_I(dir)->block_group, mode, &index);
4629 	err = PTR_ERR(inode);
4630 	if (IS_ERR(inode))
4631 		goto out_unlock;
4632 
4633 	err = btrfs_init_inode_security(trans, inode, dir);
4634 	if (err) {
4635 		drop_inode = 1;
4636 		goto out_unlock;
4637 	}
4638 
4639 	btrfs_set_trans_block_group(trans, inode);
4640 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4641 	if (err)
4642 		drop_inode = 1;
4643 	else {
4644 		inode->i_op = &btrfs_special_inode_operations;
4645 		init_special_inode(inode, inode->i_mode, rdev);
4646 		btrfs_update_inode(trans, root, inode);
4647 	}
4648 	btrfs_update_inode_block_group(trans, inode);
4649 	btrfs_update_inode_block_group(trans, dir);
4650 out_unlock:
4651 	nr = trans->blocks_used;
4652 	btrfs_end_transaction_throttle(trans, root);
4653 	btrfs_btree_balance_dirty(root, nr);
4654 	if (drop_inode) {
4655 		inode_dec_link_count(inode);
4656 		iput(inode);
4657 	}
4658 	return err;
4659 }
4660 
4661 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4662 			int mode, struct nameidata *nd)
4663 {
4664 	struct btrfs_trans_handle *trans;
4665 	struct btrfs_root *root = BTRFS_I(dir)->root;
4666 	struct inode *inode = NULL;
4667 	int drop_inode = 0;
4668 	int err;
4669 	unsigned long nr = 0;
4670 	u64 objectid;
4671 	u64 index = 0;
4672 
4673 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4674 	if (err)
4675 		return err;
4676 	/*
4677 	 * 2 for inode item and ref
4678 	 * 2 for dir items
4679 	 * 1 for xattr if selinux is on
4680 	 */
4681 	trans = btrfs_start_transaction(root, 5);
4682 	if (IS_ERR(trans))
4683 		return PTR_ERR(trans);
4684 
4685 	btrfs_set_trans_block_group(trans, dir);
4686 
4687 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4688 				dentry->d_name.len,
4689 				dentry->d_parent->d_inode->i_ino,
4690 				objectid, BTRFS_I(dir)->block_group, mode,
4691 				&index);
4692 	err = PTR_ERR(inode);
4693 	if (IS_ERR(inode))
4694 		goto out_unlock;
4695 
4696 	err = btrfs_init_inode_security(trans, inode, dir);
4697 	if (err) {
4698 		drop_inode = 1;
4699 		goto out_unlock;
4700 	}
4701 
4702 	btrfs_set_trans_block_group(trans, inode);
4703 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4704 	if (err)
4705 		drop_inode = 1;
4706 	else {
4707 		inode->i_mapping->a_ops = &btrfs_aops;
4708 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4709 		inode->i_fop = &btrfs_file_operations;
4710 		inode->i_op = &btrfs_file_inode_operations;
4711 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4712 	}
4713 	btrfs_update_inode_block_group(trans, inode);
4714 	btrfs_update_inode_block_group(trans, dir);
4715 out_unlock:
4716 	nr = trans->blocks_used;
4717 	btrfs_end_transaction_throttle(trans, root);
4718 	if (drop_inode) {
4719 		inode_dec_link_count(inode);
4720 		iput(inode);
4721 	}
4722 	btrfs_btree_balance_dirty(root, nr);
4723 	return err;
4724 }
4725 
4726 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4727 		      struct dentry *dentry)
4728 {
4729 	struct btrfs_trans_handle *trans;
4730 	struct btrfs_root *root = BTRFS_I(dir)->root;
4731 	struct inode *inode = old_dentry->d_inode;
4732 	u64 index;
4733 	unsigned long nr = 0;
4734 	int err;
4735 	int drop_inode = 0;
4736 
4737 	if (inode->i_nlink == 0)
4738 		return -ENOENT;
4739 
4740 	/* do not allow sys_link's with other subvols of the same device */
4741 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4742 		return -EPERM;
4743 
4744 	btrfs_inc_nlink(inode);
4745 
4746 	err = btrfs_set_inode_index(dir, &index);
4747 	if (err)
4748 		goto fail;
4749 
4750 	/*
4751 	 * 1 item for inode ref
4752 	 * 2 items for dir items
4753 	 */
4754 	trans = btrfs_start_transaction(root, 3);
4755 	if (IS_ERR(trans)) {
4756 		err = PTR_ERR(trans);
4757 		goto fail;
4758 	}
4759 
4760 	btrfs_set_trans_block_group(trans, dir);
4761 	atomic_inc(&inode->i_count);
4762 
4763 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4764 
4765 	if (err) {
4766 		drop_inode = 1;
4767 	} else {
4768 		btrfs_update_inode_block_group(trans, dir);
4769 		err = btrfs_update_inode(trans, root, inode);
4770 		BUG_ON(err);
4771 		btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4772 	}
4773 
4774 	nr = trans->blocks_used;
4775 	btrfs_end_transaction_throttle(trans, root);
4776 fail:
4777 	if (drop_inode) {
4778 		inode_dec_link_count(inode);
4779 		iput(inode);
4780 	}
4781 	btrfs_btree_balance_dirty(root, nr);
4782 	return err;
4783 }
4784 
4785 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4786 {
4787 	struct inode *inode = NULL;
4788 	struct btrfs_trans_handle *trans;
4789 	struct btrfs_root *root = BTRFS_I(dir)->root;
4790 	int err = 0;
4791 	int drop_on_err = 0;
4792 	u64 objectid = 0;
4793 	u64 index = 0;
4794 	unsigned long nr = 1;
4795 
4796 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4797 	if (err)
4798 		return err;
4799 
4800 	/*
4801 	 * 2 items for inode and ref
4802 	 * 2 items for dir items
4803 	 * 1 for xattr if selinux is on
4804 	 */
4805 	trans = btrfs_start_transaction(root, 5);
4806 	if (IS_ERR(trans))
4807 		return PTR_ERR(trans);
4808 	btrfs_set_trans_block_group(trans, dir);
4809 
4810 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4811 				dentry->d_name.len,
4812 				dentry->d_parent->d_inode->i_ino, objectid,
4813 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4814 				&index);
4815 	if (IS_ERR(inode)) {
4816 		err = PTR_ERR(inode);
4817 		goto out_fail;
4818 	}
4819 
4820 	drop_on_err = 1;
4821 
4822 	err = btrfs_init_inode_security(trans, inode, dir);
4823 	if (err)
4824 		goto out_fail;
4825 
4826 	inode->i_op = &btrfs_dir_inode_operations;
4827 	inode->i_fop = &btrfs_dir_file_operations;
4828 	btrfs_set_trans_block_group(trans, inode);
4829 
4830 	btrfs_i_size_write(inode, 0);
4831 	err = btrfs_update_inode(trans, root, inode);
4832 	if (err)
4833 		goto out_fail;
4834 
4835 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4836 				 inode, dentry->d_name.name,
4837 				 dentry->d_name.len, 0, index);
4838 	if (err)
4839 		goto out_fail;
4840 
4841 	d_instantiate(dentry, inode);
4842 	drop_on_err = 0;
4843 	btrfs_update_inode_block_group(trans, inode);
4844 	btrfs_update_inode_block_group(trans, dir);
4845 
4846 out_fail:
4847 	nr = trans->blocks_used;
4848 	btrfs_end_transaction_throttle(trans, root);
4849 	if (drop_on_err)
4850 		iput(inode);
4851 	btrfs_btree_balance_dirty(root, nr);
4852 	return err;
4853 }
4854 
4855 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4856  * and an extent that you want to insert, deal with overlap and insert
4857  * the new extent into the tree.
4858  */
4859 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4860 				struct extent_map *existing,
4861 				struct extent_map *em,
4862 				u64 map_start, u64 map_len)
4863 {
4864 	u64 start_diff;
4865 
4866 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4867 	start_diff = map_start - em->start;
4868 	em->start = map_start;
4869 	em->len = map_len;
4870 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4871 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4872 		em->block_start += start_diff;
4873 		em->block_len -= start_diff;
4874 	}
4875 	return add_extent_mapping(em_tree, em);
4876 }
4877 
4878 static noinline int uncompress_inline(struct btrfs_path *path,
4879 				      struct inode *inode, struct page *page,
4880 				      size_t pg_offset, u64 extent_offset,
4881 				      struct btrfs_file_extent_item *item)
4882 {
4883 	int ret;
4884 	struct extent_buffer *leaf = path->nodes[0];
4885 	char *tmp;
4886 	size_t max_size;
4887 	unsigned long inline_size;
4888 	unsigned long ptr;
4889 
4890 	WARN_ON(pg_offset != 0);
4891 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4892 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4893 					btrfs_item_nr(leaf, path->slots[0]));
4894 	tmp = kmalloc(inline_size, GFP_NOFS);
4895 	ptr = btrfs_file_extent_inline_start(item);
4896 
4897 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4898 
4899 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4900 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4901 				    inline_size, max_size);
4902 	if (ret) {
4903 		char *kaddr = kmap_atomic(page, KM_USER0);
4904 		unsigned long copy_size = min_t(u64,
4905 				  PAGE_CACHE_SIZE - pg_offset,
4906 				  max_size - extent_offset);
4907 		memset(kaddr + pg_offset, 0, copy_size);
4908 		kunmap_atomic(kaddr, KM_USER0);
4909 	}
4910 	kfree(tmp);
4911 	return 0;
4912 }
4913 
4914 /*
4915  * a bit scary, this does extent mapping from logical file offset to the disk.
4916  * the ugly parts come from merging extents from the disk with the in-ram
4917  * representation.  This gets more complex because of the data=ordered code,
4918  * where the in-ram extents might be locked pending data=ordered completion.
4919  *
4920  * This also copies inline extents directly into the page.
4921  */
4922 
4923 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4924 				    size_t pg_offset, u64 start, u64 len,
4925 				    int create)
4926 {
4927 	int ret;
4928 	int err = 0;
4929 	u64 bytenr;
4930 	u64 extent_start = 0;
4931 	u64 extent_end = 0;
4932 	u64 objectid = inode->i_ino;
4933 	u32 found_type;
4934 	struct btrfs_path *path = NULL;
4935 	struct btrfs_root *root = BTRFS_I(inode)->root;
4936 	struct btrfs_file_extent_item *item;
4937 	struct extent_buffer *leaf;
4938 	struct btrfs_key found_key;
4939 	struct extent_map *em = NULL;
4940 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4941 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4942 	struct btrfs_trans_handle *trans = NULL;
4943 	int compressed;
4944 
4945 again:
4946 	read_lock(&em_tree->lock);
4947 	em = lookup_extent_mapping(em_tree, start, len);
4948 	if (em)
4949 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4950 	read_unlock(&em_tree->lock);
4951 
4952 	if (em) {
4953 		if (em->start > start || em->start + em->len <= start)
4954 			free_extent_map(em);
4955 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4956 			free_extent_map(em);
4957 		else
4958 			goto out;
4959 	}
4960 	em = alloc_extent_map(GFP_NOFS);
4961 	if (!em) {
4962 		err = -ENOMEM;
4963 		goto out;
4964 	}
4965 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4966 	em->start = EXTENT_MAP_HOLE;
4967 	em->orig_start = EXTENT_MAP_HOLE;
4968 	em->len = (u64)-1;
4969 	em->block_len = (u64)-1;
4970 
4971 	if (!path) {
4972 		path = btrfs_alloc_path();
4973 		BUG_ON(!path);
4974 	}
4975 
4976 	ret = btrfs_lookup_file_extent(trans, root, path,
4977 				       objectid, start, trans != NULL);
4978 	if (ret < 0) {
4979 		err = ret;
4980 		goto out;
4981 	}
4982 
4983 	if (ret != 0) {
4984 		if (path->slots[0] == 0)
4985 			goto not_found;
4986 		path->slots[0]--;
4987 	}
4988 
4989 	leaf = path->nodes[0];
4990 	item = btrfs_item_ptr(leaf, path->slots[0],
4991 			      struct btrfs_file_extent_item);
4992 	/* are we inside the extent that was found? */
4993 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4994 	found_type = btrfs_key_type(&found_key);
4995 	if (found_key.objectid != objectid ||
4996 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4997 		goto not_found;
4998 	}
4999 
5000 	found_type = btrfs_file_extent_type(leaf, item);
5001 	extent_start = found_key.offset;
5002 	compressed = btrfs_file_extent_compression(leaf, item);
5003 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5004 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5005 		extent_end = extent_start +
5006 		       btrfs_file_extent_num_bytes(leaf, item);
5007 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5008 		size_t size;
5009 		size = btrfs_file_extent_inline_len(leaf, item);
5010 		extent_end = (extent_start + size + root->sectorsize - 1) &
5011 			~((u64)root->sectorsize - 1);
5012 	}
5013 
5014 	if (start >= extent_end) {
5015 		path->slots[0]++;
5016 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5017 			ret = btrfs_next_leaf(root, path);
5018 			if (ret < 0) {
5019 				err = ret;
5020 				goto out;
5021 			}
5022 			if (ret > 0)
5023 				goto not_found;
5024 			leaf = path->nodes[0];
5025 		}
5026 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5027 		if (found_key.objectid != objectid ||
5028 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5029 			goto not_found;
5030 		if (start + len <= found_key.offset)
5031 			goto not_found;
5032 		em->start = start;
5033 		em->len = found_key.offset - start;
5034 		goto not_found_em;
5035 	}
5036 
5037 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5038 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5039 		em->start = extent_start;
5040 		em->len = extent_end - extent_start;
5041 		em->orig_start = extent_start -
5042 				 btrfs_file_extent_offset(leaf, item);
5043 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5044 		if (bytenr == 0) {
5045 			em->block_start = EXTENT_MAP_HOLE;
5046 			goto insert;
5047 		}
5048 		if (compressed) {
5049 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5050 			em->block_start = bytenr;
5051 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5052 									 item);
5053 		} else {
5054 			bytenr += btrfs_file_extent_offset(leaf, item);
5055 			em->block_start = bytenr;
5056 			em->block_len = em->len;
5057 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5058 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5059 		}
5060 		goto insert;
5061 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5062 		unsigned long ptr;
5063 		char *map;
5064 		size_t size;
5065 		size_t extent_offset;
5066 		size_t copy_size;
5067 
5068 		em->block_start = EXTENT_MAP_INLINE;
5069 		if (!page || create) {
5070 			em->start = extent_start;
5071 			em->len = extent_end - extent_start;
5072 			goto out;
5073 		}
5074 
5075 		size = btrfs_file_extent_inline_len(leaf, item);
5076 		extent_offset = page_offset(page) + pg_offset - extent_start;
5077 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5078 				size - extent_offset);
5079 		em->start = extent_start + extent_offset;
5080 		em->len = (copy_size + root->sectorsize - 1) &
5081 			~((u64)root->sectorsize - 1);
5082 		em->orig_start = EXTENT_MAP_INLINE;
5083 		if (compressed)
5084 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5085 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5086 		if (create == 0 && !PageUptodate(page)) {
5087 			if (btrfs_file_extent_compression(leaf, item) ==
5088 			    BTRFS_COMPRESS_ZLIB) {
5089 				ret = uncompress_inline(path, inode, page,
5090 							pg_offset,
5091 							extent_offset, item);
5092 				BUG_ON(ret);
5093 			} else {
5094 				map = kmap(page);
5095 				read_extent_buffer(leaf, map + pg_offset, ptr,
5096 						   copy_size);
5097 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5098 					memset(map + pg_offset + copy_size, 0,
5099 					       PAGE_CACHE_SIZE - pg_offset -
5100 					       copy_size);
5101 				}
5102 				kunmap(page);
5103 			}
5104 			flush_dcache_page(page);
5105 		} else if (create && PageUptodate(page)) {
5106 			WARN_ON(1);
5107 			if (!trans) {
5108 				kunmap(page);
5109 				free_extent_map(em);
5110 				em = NULL;
5111 				btrfs_release_path(root, path);
5112 				trans = btrfs_join_transaction(root, 1);
5113 				goto again;
5114 			}
5115 			map = kmap(page);
5116 			write_extent_buffer(leaf, map + pg_offset, ptr,
5117 					    copy_size);
5118 			kunmap(page);
5119 			btrfs_mark_buffer_dirty(leaf);
5120 		}
5121 		set_extent_uptodate(io_tree, em->start,
5122 				    extent_map_end(em) - 1, GFP_NOFS);
5123 		goto insert;
5124 	} else {
5125 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5126 		WARN_ON(1);
5127 	}
5128 not_found:
5129 	em->start = start;
5130 	em->len = len;
5131 not_found_em:
5132 	em->block_start = EXTENT_MAP_HOLE;
5133 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5134 insert:
5135 	btrfs_release_path(root, path);
5136 	if (em->start > start || extent_map_end(em) <= start) {
5137 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5138 		       "[%llu %llu]\n", (unsigned long long)em->start,
5139 		       (unsigned long long)em->len,
5140 		       (unsigned long long)start,
5141 		       (unsigned long long)len);
5142 		err = -EIO;
5143 		goto out;
5144 	}
5145 
5146 	err = 0;
5147 	write_lock(&em_tree->lock);
5148 	ret = add_extent_mapping(em_tree, em);
5149 	/* it is possible that someone inserted the extent into the tree
5150 	 * while we had the lock dropped.  It is also possible that
5151 	 * an overlapping map exists in the tree
5152 	 */
5153 	if (ret == -EEXIST) {
5154 		struct extent_map *existing;
5155 
5156 		ret = 0;
5157 
5158 		existing = lookup_extent_mapping(em_tree, start, len);
5159 		if (existing && (existing->start > start ||
5160 		    existing->start + existing->len <= start)) {
5161 			free_extent_map(existing);
5162 			existing = NULL;
5163 		}
5164 		if (!existing) {
5165 			existing = lookup_extent_mapping(em_tree, em->start,
5166 							 em->len);
5167 			if (existing) {
5168 				err = merge_extent_mapping(em_tree, existing,
5169 							   em, start,
5170 							   root->sectorsize);
5171 				free_extent_map(existing);
5172 				if (err) {
5173 					free_extent_map(em);
5174 					em = NULL;
5175 				}
5176 			} else {
5177 				err = -EIO;
5178 				free_extent_map(em);
5179 				em = NULL;
5180 			}
5181 		} else {
5182 			free_extent_map(em);
5183 			em = existing;
5184 			err = 0;
5185 		}
5186 	}
5187 	write_unlock(&em_tree->lock);
5188 out:
5189 	if (path)
5190 		btrfs_free_path(path);
5191 	if (trans) {
5192 		ret = btrfs_end_transaction(trans, root);
5193 		if (!err)
5194 			err = ret;
5195 	}
5196 	if (err) {
5197 		free_extent_map(em);
5198 		return ERR_PTR(err);
5199 	}
5200 	return em;
5201 }
5202 
5203 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5204 						  u64 start, u64 len)
5205 {
5206 	struct btrfs_root *root = BTRFS_I(inode)->root;
5207 	struct btrfs_trans_handle *trans;
5208 	struct extent_map *em;
5209 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5210 	struct btrfs_key ins;
5211 	u64 alloc_hint;
5212 	int ret;
5213 
5214 	btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5215 
5216 	trans = btrfs_join_transaction(root, 0);
5217 	if (!trans)
5218 		return ERR_PTR(-ENOMEM);
5219 
5220 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5221 
5222 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5223 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5224 				   alloc_hint, (u64)-1, &ins, 1);
5225 	if (ret) {
5226 		em = ERR_PTR(ret);
5227 		goto out;
5228 	}
5229 
5230 	em = alloc_extent_map(GFP_NOFS);
5231 	if (!em) {
5232 		em = ERR_PTR(-ENOMEM);
5233 		goto out;
5234 	}
5235 
5236 	em->start = start;
5237 	em->orig_start = em->start;
5238 	em->len = ins.offset;
5239 
5240 	em->block_start = ins.objectid;
5241 	em->block_len = ins.offset;
5242 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5243 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5244 
5245 	while (1) {
5246 		write_lock(&em_tree->lock);
5247 		ret = add_extent_mapping(em_tree, em);
5248 		write_unlock(&em_tree->lock);
5249 		if (ret != -EEXIST)
5250 			break;
5251 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5252 	}
5253 
5254 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5255 					   ins.offset, ins.offset, 0);
5256 	if (ret) {
5257 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5258 		em = ERR_PTR(ret);
5259 	}
5260 out:
5261 	btrfs_end_transaction(trans, root);
5262 	return em;
5263 }
5264 
5265 /*
5266  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5267  * block must be cow'd
5268  */
5269 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5270 				      struct inode *inode, u64 offset, u64 len)
5271 {
5272 	struct btrfs_path *path;
5273 	int ret;
5274 	struct extent_buffer *leaf;
5275 	struct btrfs_root *root = BTRFS_I(inode)->root;
5276 	struct btrfs_file_extent_item *fi;
5277 	struct btrfs_key key;
5278 	u64 disk_bytenr;
5279 	u64 backref_offset;
5280 	u64 extent_end;
5281 	u64 num_bytes;
5282 	int slot;
5283 	int found_type;
5284 
5285 	path = btrfs_alloc_path();
5286 	if (!path)
5287 		return -ENOMEM;
5288 
5289 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5290 				       offset, 0);
5291 	if (ret < 0)
5292 		goto out;
5293 
5294 	slot = path->slots[0];
5295 	if (ret == 1) {
5296 		if (slot == 0) {
5297 			/* can't find the item, must cow */
5298 			ret = 0;
5299 			goto out;
5300 		}
5301 		slot--;
5302 	}
5303 	ret = 0;
5304 	leaf = path->nodes[0];
5305 	btrfs_item_key_to_cpu(leaf, &key, slot);
5306 	if (key.objectid != inode->i_ino ||
5307 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5308 		/* not our file or wrong item type, must cow */
5309 		goto out;
5310 	}
5311 
5312 	if (key.offset > offset) {
5313 		/* Wrong offset, must cow */
5314 		goto out;
5315 	}
5316 
5317 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5318 	found_type = btrfs_file_extent_type(leaf, fi);
5319 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5320 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5321 		/* not a regular extent, must cow */
5322 		goto out;
5323 	}
5324 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5325 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5326 
5327 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5328 	if (extent_end < offset + len) {
5329 		/* extent doesn't include our full range, must cow */
5330 		goto out;
5331 	}
5332 
5333 	if (btrfs_extent_readonly(root, disk_bytenr))
5334 		goto out;
5335 
5336 	/*
5337 	 * look for other files referencing this extent, if we
5338 	 * find any we must cow
5339 	 */
5340 	if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5341 				  key.offset - backref_offset, disk_bytenr))
5342 		goto out;
5343 
5344 	/*
5345 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5346 	 * in this extent we are about to write.  If there
5347 	 * are any csums in that range we have to cow in order
5348 	 * to keep the csums correct
5349 	 */
5350 	disk_bytenr += backref_offset;
5351 	disk_bytenr += offset - key.offset;
5352 	num_bytes = min(offset + len, extent_end) - offset;
5353 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5354 				goto out;
5355 	/*
5356 	 * all of the above have passed, it is safe to overwrite this extent
5357 	 * without cow
5358 	 */
5359 	ret = 1;
5360 out:
5361 	btrfs_free_path(path);
5362 	return ret;
5363 }
5364 
5365 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5366 				   struct buffer_head *bh_result, int create)
5367 {
5368 	struct extent_map *em;
5369 	struct btrfs_root *root = BTRFS_I(inode)->root;
5370 	u64 start = iblock << inode->i_blkbits;
5371 	u64 len = bh_result->b_size;
5372 	struct btrfs_trans_handle *trans;
5373 
5374 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5375 	if (IS_ERR(em))
5376 		return PTR_ERR(em);
5377 
5378 	/*
5379 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5380 	 * io.  INLINE is special, and we could probably kludge it in here, but
5381 	 * it's still buffered so for safety lets just fall back to the generic
5382 	 * buffered path.
5383 	 *
5384 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5385 	 * decompress it, so there will be buffering required no matter what we
5386 	 * do, so go ahead and fallback to buffered.
5387 	 *
5388 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5389 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5390 	 * the generic code.
5391 	 */
5392 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5393 	    em->block_start == EXTENT_MAP_INLINE) {
5394 		free_extent_map(em);
5395 		return -ENOTBLK;
5396 	}
5397 
5398 	/* Just a good old fashioned hole, return */
5399 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5400 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5401 		free_extent_map(em);
5402 		/* DIO will do one hole at a time, so just unlock a sector */
5403 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5404 			      start + root->sectorsize - 1, GFP_NOFS);
5405 		return 0;
5406 	}
5407 
5408 	/*
5409 	 * We don't allocate a new extent in the following cases
5410 	 *
5411 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5412 	 * existing extent.
5413 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5414 	 * just use the extent.
5415 	 *
5416 	 */
5417 	if (!create) {
5418 		len = em->len - (start - em->start);
5419 		goto map;
5420 	}
5421 
5422 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5423 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5424 	     em->block_start != EXTENT_MAP_HOLE)) {
5425 		int type;
5426 		int ret;
5427 		u64 block_start;
5428 
5429 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5430 			type = BTRFS_ORDERED_PREALLOC;
5431 		else
5432 			type = BTRFS_ORDERED_NOCOW;
5433 		len = min(len, em->len - (start - em->start));
5434 		block_start = em->block_start + (start - em->start);
5435 
5436 		/*
5437 		 * we're not going to log anything, but we do need
5438 		 * to make sure the current transaction stays open
5439 		 * while we look for nocow cross refs
5440 		 */
5441 		trans = btrfs_join_transaction(root, 0);
5442 		if (!trans)
5443 			goto must_cow;
5444 
5445 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5446 			ret = btrfs_add_ordered_extent_dio(inode, start,
5447 					   block_start, len, len, type);
5448 			btrfs_end_transaction(trans, root);
5449 			if (ret) {
5450 				free_extent_map(em);
5451 				return ret;
5452 			}
5453 			goto unlock;
5454 		}
5455 		btrfs_end_transaction(trans, root);
5456 	}
5457 must_cow:
5458 	/*
5459 	 * this will cow the extent, reset the len in case we changed
5460 	 * it above
5461 	 */
5462 	len = bh_result->b_size;
5463 	free_extent_map(em);
5464 	em = btrfs_new_extent_direct(inode, start, len);
5465 	if (IS_ERR(em))
5466 		return PTR_ERR(em);
5467 	len = min(len, em->len - (start - em->start));
5468 unlock:
5469 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5470 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5471 			  0, NULL, GFP_NOFS);
5472 map:
5473 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5474 		inode->i_blkbits;
5475 	bh_result->b_size = len;
5476 	bh_result->b_bdev = em->bdev;
5477 	set_buffer_mapped(bh_result);
5478 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5479 		set_buffer_new(bh_result);
5480 
5481 	free_extent_map(em);
5482 
5483 	return 0;
5484 }
5485 
5486 struct btrfs_dio_private {
5487 	struct inode *inode;
5488 	u64 logical_offset;
5489 	u64 disk_bytenr;
5490 	u64 bytes;
5491 	u32 *csums;
5492 	void *private;
5493 };
5494 
5495 static void btrfs_endio_direct_read(struct bio *bio, int err)
5496 {
5497 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5498 	struct bio_vec *bvec = bio->bi_io_vec;
5499 	struct btrfs_dio_private *dip = bio->bi_private;
5500 	struct inode *inode = dip->inode;
5501 	struct btrfs_root *root = BTRFS_I(inode)->root;
5502 	u64 start;
5503 	u32 *private = dip->csums;
5504 
5505 	start = dip->logical_offset;
5506 	do {
5507 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5508 			struct page *page = bvec->bv_page;
5509 			char *kaddr;
5510 			u32 csum = ~(u32)0;
5511 			unsigned long flags;
5512 
5513 			local_irq_save(flags);
5514 			kaddr = kmap_atomic(page, KM_IRQ0);
5515 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5516 					       csum, bvec->bv_len);
5517 			btrfs_csum_final(csum, (char *)&csum);
5518 			kunmap_atomic(kaddr, KM_IRQ0);
5519 			local_irq_restore(flags);
5520 
5521 			flush_dcache_page(bvec->bv_page);
5522 			if (csum != *private) {
5523 				printk(KERN_ERR "btrfs csum failed ino %lu off"
5524 				      " %llu csum %u private %u\n",
5525 				      inode->i_ino, (unsigned long long)start,
5526 				      csum, *private);
5527 				err = -EIO;
5528 			}
5529 		}
5530 
5531 		start += bvec->bv_len;
5532 		private++;
5533 		bvec++;
5534 	} while (bvec <= bvec_end);
5535 
5536 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5537 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5538 	bio->bi_private = dip->private;
5539 
5540 	kfree(dip->csums);
5541 	kfree(dip);
5542 	dio_end_io(bio, err);
5543 }
5544 
5545 static void btrfs_endio_direct_write(struct bio *bio, int err)
5546 {
5547 	struct btrfs_dio_private *dip = bio->bi_private;
5548 	struct inode *inode = dip->inode;
5549 	struct btrfs_root *root = BTRFS_I(inode)->root;
5550 	struct btrfs_trans_handle *trans;
5551 	struct btrfs_ordered_extent *ordered = NULL;
5552 	struct extent_state *cached_state = NULL;
5553 	int ret;
5554 
5555 	if (err)
5556 		goto out_done;
5557 
5558 	ret = btrfs_dec_test_ordered_pending(inode, &ordered,
5559 					     dip->logical_offset, dip->bytes);
5560 	if (!ret)
5561 		goto out_done;
5562 
5563 	BUG_ON(!ordered);
5564 
5565 	trans = btrfs_join_transaction(root, 1);
5566 	if (!trans) {
5567 		err = -ENOMEM;
5568 		goto out;
5569 	}
5570 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5571 
5572 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5573 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5574 		if (!ret)
5575 			ret = btrfs_update_inode(trans, root, inode);
5576 		err = ret;
5577 		goto out;
5578 	}
5579 
5580 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5581 			 ordered->file_offset + ordered->len - 1, 0,
5582 			 &cached_state, GFP_NOFS);
5583 
5584 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5585 		ret = btrfs_mark_extent_written(trans, inode,
5586 						ordered->file_offset,
5587 						ordered->file_offset +
5588 						ordered->len);
5589 		if (ret) {
5590 			err = ret;
5591 			goto out_unlock;
5592 		}
5593 	} else {
5594 		ret = insert_reserved_file_extent(trans, inode,
5595 						  ordered->file_offset,
5596 						  ordered->start,
5597 						  ordered->disk_len,
5598 						  ordered->len,
5599 						  ordered->len,
5600 						  0, 0, 0,
5601 						  BTRFS_FILE_EXTENT_REG);
5602 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5603 				   ordered->file_offset, ordered->len);
5604 		if (ret) {
5605 			err = ret;
5606 			WARN_ON(1);
5607 			goto out_unlock;
5608 		}
5609 	}
5610 
5611 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5612 	btrfs_ordered_update_i_size(inode, 0, ordered);
5613 	btrfs_update_inode(trans, root, inode);
5614 out_unlock:
5615 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5616 			     ordered->file_offset + ordered->len - 1,
5617 			     &cached_state, GFP_NOFS);
5618 out:
5619 	btrfs_delalloc_release_metadata(inode, ordered->len);
5620 	btrfs_end_transaction(trans, root);
5621 	btrfs_put_ordered_extent(ordered);
5622 	btrfs_put_ordered_extent(ordered);
5623 out_done:
5624 	bio->bi_private = dip->private;
5625 
5626 	kfree(dip->csums);
5627 	kfree(dip);
5628 	dio_end_io(bio, err);
5629 }
5630 
5631 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5632 				    struct bio *bio, int mirror_num,
5633 				    unsigned long bio_flags, u64 offset)
5634 {
5635 	int ret;
5636 	struct btrfs_root *root = BTRFS_I(inode)->root;
5637 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5638 	BUG_ON(ret);
5639 	return 0;
5640 }
5641 
5642 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5643 				loff_t file_offset)
5644 {
5645 	struct btrfs_root *root = BTRFS_I(inode)->root;
5646 	struct btrfs_dio_private *dip;
5647 	struct bio_vec *bvec = bio->bi_io_vec;
5648 	u64 start;
5649 	int skip_sum;
5650 	int write = rw & REQ_WRITE;
5651 	int ret = 0;
5652 
5653 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5654 
5655 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
5656 	if (!dip) {
5657 		ret = -ENOMEM;
5658 		goto free_ordered;
5659 	}
5660 	dip->csums = NULL;
5661 
5662 	if (!skip_sum) {
5663 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5664 		if (!dip->csums) {
5665 			ret = -ENOMEM;
5666 			goto free_ordered;
5667 		}
5668 	}
5669 
5670 	dip->private = bio->bi_private;
5671 	dip->inode = inode;
5672 	dip->logical_offset = file_offset;
5673 
5674 	start = dip->logical_offset;
5675 	dip->bytes = 0;
5676 	do {
5677 		dip->bytes += bvec->bv_len;
5678 		bvec++;
5679 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5680 
5681 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
5682 	bio->bi_private = dip;
5683 
5684 	if (write)
5685 		bio->bi_end_io = btrfs_endio_direct_write;
5686 	else
5687 		bio->bi_end_io = btrfs_endio_direct_read;
5688 
5689 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5690 	if (ret)
5691 		goto out_err;
5692 
5693 	if (write && !skip_sum) {
5694 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
5695 				   inode, rw, bio, 0, 0,
5696 				   dip->logical_offset,
5697 				   __btrfs_submit_bio_start_direct_io,
5698 				   __btrfs_submit_bio_done);
5699 		if (ret)
5700 			goto out_err;
5701 		return;
5702 	} else if (!skip_sum)
5703 		btrfs_lookup_bio_sums_dio(root, inode, bio,
5704 					  dip->logical_offset, dip->csums);
5705 
5706 	ret = btrfs_map_bio(root, rw, bio, 0, 1);
5707 	if (ret)
5708 		goto out_err;
5709 	return;
5710 out_err:
5711 	kfree(dip->csums);
5712 	kfree(dip);
5713 free_ordered:
5714 	/*
5715 	 * If this is a write, we need to clean up the reserved space and kill
5716 	 * the ordered extent.
5717 	 */
5718 	if (write) {
5719 		struct btrfs_ordered_extent *ordered;
5720 		ordered = btrfs_lookup_ordered_extent(inode,
5721 						      dip->logical_offset);
5722 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5723 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5724 			btrfs_free_reserved_extent(root, ordered->start,
5725 						   ordered->disk_len);
5726 		btrfs_put_ordered_extent(ordered);
5727 		btrfs_put_ordered_extent(ordered);
5728 	}
5729 	bio_endio(bio, ret);
5730 }
5731 
5732 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5733 			const struct iovec *iov, loff_t offset,
5734 			unsigned long nr_segs)
5735 {
5736 	int seg;
5737 	size_t size;
5738 	unsigned long addr;
5739 	unsigned blocksize_mask = root->sectorsize - 1;
5740 	ssize_t retval = -EINVAL;
5741 	loff_t end = offset;
5742 
5743 	if (offset & blocksize_mask)
5744 		goto out;
5745 
5746 	/* Check the memory alignment.  Blocks cannot straddle pages */
5747 	for (seg = 0; seg < nr_segs; seg++) {
5748 		addr = (unsigned long)iov[seg].iov_base;
5749 		size = iov[seg].iov_len;
5750 		end += size;
5751 		if ((addr & blocksize_mask) || (size & blocksize_mask))
5752 			goto out;
5753 	}
5754 	retval = 0;
5755 out:
5756 	return retval;
5757 }
5758 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5759 			const struct iovec *iov, loff_t offset,
5760 			unsigned long nr_segs)
5761 {
5762 	struct file *file = iocb->ki_filp;
5763 	struct inode *inode = file->f_mapping->host;
5764 	struct btrfs_ordered_extent *ordered;
5765 	struct extent_state *cached_state = NULL;
5766 	u64 lockstart, lockend;
5767 	ssize_t ret;
5768 	int writing = rw & WRITE;
5769 	int write_bits = 0;
5770 	size_t count = iov_length(iov, nr_segs);
5771 
5772 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
5773 			    offset, nr_segs)) {
5774 		return 0;
5775 	}
5776 
5777 	lockstart = offset;
5778 	lockend = offset + count - 1;
5779 
5780 	if (writing) {
5781 		ret = btrfs_delalloc_reserve_space(inode, count);
5782 		if (ret)
5783 			goto out;
5784 	}
5785 
5786 	while (1) {
5787 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5788 				 0, &cached_state, GFP_NOFS);
5789 		/*
5790 		 * We're concerned with the entire range that we're going to be
5791 		 * doing DIO to, so we need to make sure theres no ordered
5792 		 * extents in this range.
5793 		 */
5794 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
5795 						     lockend - lockstart + 1);
5796 		if (!ordered)
5797 			break;
5798 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5799 				     &cached_state, GFP_NOFS);
5800 		btrfs_start_ordered_extent(inode, ordered, 1);
5801 		btrfs_put_ordered_extent(ordered);
5802 		cond_resched();
5803 	}
5804 
5805 	/*
5806 	 * we don't use btrfs_set_extent_delalloc because we don't want
5807 	 * the dirty or uptodate bits
5808 	 */
5809 	if (writing) {
5810 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
5811 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5812 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
5813 				     GFP_NOFS);
5814 		if (ret) {
5815 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5816 					 lockend, EXTENT_LOCKED | write_bits,
5817 					 1, 0, &cached_state, GFP_NOFS);
5818 			goto out;
5819 		}
5820 	}
5821 
5822 	free_extent_state(cached_state);
5823 	cached_state = NULL;
5824 
5825 	ret = __blockdev_direct_IO(rw, iocb, inode,
5826 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
5827 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
5828 		   btrfs_submit_direct, 0);
5829 
5830 	if (ret < 0 && ret != -EIOCBQUEUED) {
5831 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
5832 			      offset + iov_length(iov, nr_segs) - 1,
5833 			      EXTENT_LOCKED | write_bits, 1, 0,
5834 			      &cached_state, GFP_NOFS);
5835 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
5836 		/*
5837 		 * We're falling back to buffered, unlock the section we didn't
5838 		 * do IO on.
5839 		 */
5840 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
5841 			      offset + iov_length(iov, nr_segs) - 1,
5842 			      EXTENT_LOCKED | write_bits, 1, 0,
5843 			      &cached_state, GFP_NOFS);
5844 	}
5845 out:
5846 	free_extent_state(cached_state);
5847 	return ret;
5848 }
5849 
5850 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5851 		__u64 start, __u64 len)
5852 {
5853 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
5854 }
5855 
5856 int btrfs_readpage(struct file *file, struct page *page)
5857 {
5858 	struct extent_io_tree *tree;
5859 	tree = &BTRFS_I(page->mapping->host)->io_tree;
5860 	return extent_read_full_page(tree, page, btrfs_get_extent);
5861 }
5862 
5863 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
5864 {
5865 	struct extent_io_tree *tree;
5866 
5867 
5868 	if (current->flags & PF_MEMALLOC) {
5869 		redirty_page_for_writepage(wbc, page);
5870 		unlock_page(page);
5871 		return 0;
5872 	}
5873 	tree = &BTRFS_I(page->mapping->host)->io_tree;
5874 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
5875 }
5876 
5877 int btrfs_writepages(struct address_space *mapping,
5878 		     struct writeback_control *wbc)
5879 {
5880 	struct extent_io_tree *tree;
5881 
5882 	tree = &BTRFS_I(mapping->host)->io_tree;
5883 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
5884 }
5885 
5886 static int
5887 btrfs_readpages(struct file *file, struct address_space *mapping,
5888 		struct list_head *pages, unsigned nr_pages)
5889 {
5890 	struct extent_io_tree *tree;
5891 	tree = &BTRFS_I(mapping->host)->io_tree;
5892 	return extent_readpages(tree, mapping, pages, nr_pages,
5893 				btrfs_get_extent);
5894 }
5895 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5896 {
5897 	struct extent_io_tree *tree;
5898 	struct extent_map_tree *map;
5899 	int ret;
5900 
5901 	tree = &BTRFS_I(page->mapping->host)->io_tree;
5902 	map = &BTRFS_I(page->mapping->host)->extent_tree;
5903 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5904 	if (ret == 1) {
5905 		ClearPagePrivate(page);
5906 		set_page_private(page, 0);
5907 		page_cache_release(page);
5908 	}
5909 	return ret;
5910 }
5911 
5912 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5913 {
5914 	if (PageWriteback(page) || PageDirty(page))
5915 		return 0;
5916 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5917 }
5918 
5919 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5920 {
5921 	struct extent_io_tree *tree;
5922 	struct btrfs_ordered_extent *ordered;
5923 	struct extent_state *cached_state = NULL;
5924 	u64 page_start = page_offset(page);
5925 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5926 
5927 
5928 	/*
5929 	 * we have the page locked, so new writeback can't start,
5930 	 * and the dirty bit won't be cleared while we are here.
5931 	 *
5932 	 * Wait for IO on this page so that we can safely clear
5933 	 * the PagePrivate2 bit and do ordered accounting
5934 	 */
5935 	wait_on_page_writeback(page);
5936 
5937 	tree = &BTRFS_I(page->mapping->host)->io_tree;
5938 	if (offset) {
5939 		btrfs_releasepage(page, GFP_NOFS);
5940 		return;
5941 	}
5942 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5943 			 GFP_NOFS);
5944 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5945 					   page_offset(page));
5946 	if (ordered) {
5947 		/*
5948 		 * IO on this page will never be started, so we need
5949 		 * to account for any ordered extents now
5950 		 */
5951 		clear_extent_bit(tree, page_start, page_end,
5952 				 EXTENT_DIRTY | EXTENT_DELALLOC |
5953 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5954 				 &cached_state, GFP_NOFS);
5955 		/*
5956 		 * whoever cleared the private bit is responsible
5957 		 * for the finish_ordered_io
5958 		 */
5959 		if (TestClearPagePrivate2(page)) {
5960 			btrfs_finish_ordered_io(page->mapping->host,
5961 						page_start, page_end);
5962 		}
5963 		btrfs_put_ordered_extent(ordered);
5964 		cached_state = NULL;
5965 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5966 				 GFP_NOFS);
5967 	}
5968 	clear_extent_bit(tree, page_start, page_end,
5969 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5970 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
5971 	__btrfs_releasepage(page, GFP_NOFS);
5972 
5973 	ClearPageChecked(page);
5974 	if (PagePrivate(page)) {
5975 		ClearPagePrivate(page);
5976 		set_page_private(page, 0);
5977 		page_cache_release(page);
5978 	}
5979 }
5980 
5981 /*
5982  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5983  * called from a page fault handler when a page is first dirtied. Hence we must
5984  * be careful to check for EOF conditions here. We set the page up correctly
5985  * for a written page which means we get ENOSPC checking when writing into
5986  * holes and correct delalloc and unwritten extent mapping on filesystems that
5987  * support these features.
5988  *
5989  * We are not allowed to take the i_mutex here so we have to play games to
5990  * protect against truncate races as the page could now be beyond EOF.  Because
5991  * vmtruncate() writes the inode size before removing pages, once we have the
5992  * page lock we can determine safely if the page is beyond EOF. If it is not
5993  * beyond EOF, then the page is guaranteed safe against truncation until we
5994  * unlock the page.
5995  */
5996 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5997 {
5998 	struct page *page = vmf->page;
5999 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6000 	struct btrfs_root *root = BTRFS_I(inode)->root;
6001 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6002 	struct btrfs_ordered_extent *ordered;
6003 	struct extent_state *cached_state = NULL;
6004 	char *kaddr;
6005 	unsigned long zero_start;
6006 	loff_t size;
6007 	int ret;
6008 	u64 page_start;
6009 	u64 page_end;
6010 
6011 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6012 	if (ret) {
6013 		if (ret == -ENOMEM)
6014 			ret = VM_FAULT_OOM;
6015 		else /* -ENOSPC, -EIO, etc */
6016 			ret = VM_FAULT_SIGBUS;
6017 		goto out;
6018 	}
6019 
6020 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6021 again:
6022 	lock_page(page);
6023 	size = i_size_read(inode);
6024 	page_start = page_offset(page);
6025 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6026 
6027 	if ((page->mapping != inode->i_mapping) ||
6028 	    (page_start >= size)) {
6029 		/* page got truncated out from underneath us */
6030 		goto out_unlock;
6031 	}
6032 	wait_on_page_writeback(page);
6033 
6034 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6035 			 GFP_NOFS);
6036 	set_page_extent_mapped(page);
6037 
6038 	/*
6039 	 * we can't set the delalloc bits if there are pending ordered
6040 	 * extents.  Drop our locks and wait for them to finish
6041 	 */
6042 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6043 	if (ordered) {
6044 		unlock_extent_cached(io_tree, page_start, page_end,
6045 				     &cached_state, GFP_NOFS);
6046 		unlock_page(page);
6047 		btrfs_start_ordered_extent(inode, ordered, 1);
6048 		btrfs_put_ordered_extent(ordered);
6049 		goto again;
6050 	}
6051 
6052 	/*
6053 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6054 	 * if it was already dirty, so for space accounting reasons we need to
6055 	 * clear any delalloc bits for the range we are fixing to save.  There
6056 	 * is probably a better way to do this, but for now keep consistent with
6057 	 * prepare_pages in the normal write path.
6058 	 */
6059 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6060 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6061 			  0, 0, &cached_state, GFP_NOFS);
6062 
6063 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6064 					&cached_state);
6065 	if (ret) {
6066 		unlock_extent_cached(io_tree, page_start, page_end,
6067 				     &cached_state, GFP_NOFS);
6068 		ret = VM_FAULT_SIGBUS;
6069 		goto out_unlock;
6070 	}
6071 	ret = 0;
6072 
6073 	/* page is wholly or partially inside EOF */
6074 	if (page_start + PAGE_CACHE_SIZE > size)
6075 		zero_start = size & ~PAGE_CACHE_MASK;
6076 	else
6077 		zero_start = PAGE_CACHE_SIZE;
6078 
6079 	if (zero_start != PAGE_CACHE_SIZE) {
6080 		kaddr = kmap(page);
6081 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6082 		flush_dcache_page(page);
6083 		kunmap(page);
6084 	}
6085 	ClearPageChecked(page);
6086 	set_page_dirty(page);
6087 	SetPageUptodate(page);
6088 
6089 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6090 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6091 
6092 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6093 
6094 out_unlock:
6095 	if (!ret)
6096 		return VM_FAULT_LOCKED;
6097 	unlock_page(page);
6098 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6099 out:
6100 	return ret;
6101 }
6102 
6103 static void btrfs_truncate(struct inode *inode)
6104 {
6105 	struct btrfs_root *root = BTRFS_I(inode)->root;
6106 	int ret;
6107 	struct btrfs_trans_handle *trans;
6108 	unsigned long nr;
6109 	u64 mask = root->sectorsize - 1;
6110 
6111 	if (!S_ISREG(inode->i_mode)) {
6112 		WARN_ON(1);
6113 		return;
6114 	}
6115 
6116 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6117 	if (ret)
6118 		return;
6119 
6120 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6121 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6122 
6123 	trans = btrfs_start_transaction(root, 0);
6124 	BUG_ON(IS_ERR(trans));
6125 	btrfs_set_trans_block_group(trans, inode);
6126 	trans->block_rsv = root->orphan_block_rsv;
6127 
6128 	/*
6129 	 * setattr is responsible for setting the ordered_data_close flag,
6130 	 * but that is only tested during the last file release.  That
6131 	 * could happen well after the next commit, leaving a great big
6132 	 * window where new writes may get lost if someone chooses to write
6133 	 * to this file after truncating to zero
6134 	 *
6135 	 * The inode doesn't have any dirty data here, and so if we commit
6136 	 * this is a noop.  If someone immediately starts writing to the inode
6137 	 * it is very likely we'll catch some of their writes in this
6138 	 * transaction, and the commit will find this file on the ordered
6139 	 * data list with good things to send down.
6140 	 *
6141 	 * This is a best effort solution, there is still a window where
6142 	 * using truncate to replace the contents of the file will
6143 	 * end up with a zero length file after a crash.
6144 	 */
6145 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6146 		btrfs_add_ordered_operation(trans, root, inode);
6147 
6148 	while (1) {
6149 		if (!trans) {
6150 			trans = btrfs_start_transaction(root, 0);
6151 			BUG_ON(IS_ERR(trans));
6152 			btrfs_set_trans_block_group(trans, inode);
6153 			trans->block_rsv = root->orphan_block_rsv;
6154 		}
6155 
6156 		ret = btrfs_block_rsv_check(trans, root,
6157 					    root->orphan_block_rsv, 0, 5);
6158 		if (ret) {
6159 			BUG_ON(ret != -EAGAIN);
6160 			ret = btrfs_commit_transaction(trans, root);
6161 			BUG_ON(ret);
6162 			trans = NULL;
6163 			continue;
6164 		}
6165 
6166 		ret = btrfs_truncate_inode_items(trans, root, inode,
6167 						 inode->i_size,
6168 						 BTRFS_EXTENT_DATA_KEY);
6169 		if (ret != -EAGAIN)
6170 			break;
6171 
6172 		ret = btrfs_update_inode(trans, root, inode);
6173 		BUG_ON(ret);
6174 
6175 		nr = trans->blocks_used;
6176 		btrfs_end_transaction(trans, root);
6177 		trans = NULL;
6178 		btrfs_btree_balance_dirty(root, nr);
6179 	}
6180 
6181 	if (ret == 0 && inode->i_nlink > 0) {
6182 		ret = btrfs_orphan_del(trans, inode);
6183 		BUG_ON(ret);
6184 	}
6185 
6186 	ret = btrfs_update_inode(trans, root, inode);
6187 	BUG_ON(ret);
6188 
6189 	nr = trans->blocks_used;
6190 	ret = btrfs_end_transaction_throttle(trans, root);
6191 	BUG_ON(ret);
6192 	btrfs_btree_balance_dirty(root, nr);
6193 }
6194 
6195 /*
6196  * create a new subvolume directory/inode (helper for the ioctl).
6197  */
6198 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6199 			     struct btrfs_root *new_root,
6200 			     u64 new_dirid, u64 alloc_hint)
6201 {
6202 	struct inode *inode;
6203 	int err;
6204 	u64 index = 0;
6205 
6206 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6207 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6208 	if (IS_ERR(inode))
6209 		return PTR_ERR(inode);
6210 	inode->i_op = &btrfs_dir_inode_operations;
6211 	inode->i_fop = &btrfs_dir_file_operations;
6212 
6213 	inode->i_nlink = 1;
6214 	btrfs_i_size_write(inode, 0);
6215 
6216 	err = btrfs_update_inode(trans, new_root, inode);
6217 	BUG_ON(err);
6218 
6219 	iput(inode);
6220 	return 0;
6221 }
6222 
6223 /* helper function for file defrag and space balancing.  This
6224  * forces readahead on a given range of bytes in an inode
6225  */
6226 unsigned long btrfs_force_ra(struct address_space *mapping,
6227 			      struct file_ra_state *ra, struct file *file,
6228 			      pgoff_t offset, pgoff_t last_index)
6229 {
6230 	pgoff_t req_size = last_index - offset + 1;
6231 
6232 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6233 	return offset + req_size;
6234 }
6235 
6236 struct inode *btrfs_alloc_inode(struct super_block *sb)
6237 {
6238 	struct btrfs_inode *ei;
6239 	struct inode *inode;
6240 
6241 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6242 	if (!ei)
6243 		return NULL;
6244 
6245 	ei->root = NULL;
6246 	ei->space_info = NULL;
6247 	ei->generation = 0;
6248 	ei->sequence = 0;
6249 	ei->last_trans = 0;
6250 	ei->last_sub_trans = 0;
6251 	ei->logged_trans = 0;
6252 	ei->delalloc_bytes = 0;
6253 	ei->reserved_bytes = 0;
6254 	ei->disk_i_size = 0;
6255 	ei->flags = 0;
6256 	ei->index_cnt = (u64)-1;
6257 	ei->last_unlink_trans = 0;
6258 
6259 	spin_lock_init(&ei->accounting_lock);
6260 	atomic_set(&ei->outstanding_extents, 0);
6261 	ei->reserved_extents = 0;
6262 
6263 	ei->ordered_data_close = 0;
6264 	ei->orphan_meta_reserved = 0;
6265 	ei->dummy_inode = 0;
6266 	ei->force_compress = 0;
6267 
6268 	inode = &ei->vfs_inode;
6269 	extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6270 	extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6271 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6272 	mutex_init(&ei->log_mutex);
6273 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6274 	INIT_LIST_HEAD(&ei->i_orphan);
6275 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6276 	INIT_LIST_HEAD(&ei->ordered_operations);
6277 	RB_CLEAR_NODE(&ei->rb_node);
6278 
6279 	return inode;
6280 }
6281 
6282 void btrfs_destroy_inode(struct inode *inode)
6283 {
6284 	struct btrfs_ordered_extent *ordered;
6285 	struct btrfs_root *root = BTRFS_I(inode)->root;
6286 
6287 	WARN_ON(!list_empty(&inode->i_dentry));
6288 	WARN_ON(inode->i_data.nrpages);
6289 	WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6290 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6291 
6292 	/*
6293 	 * This can happen where we create an inode, but somebody else also
6294 	 * created the same inode and we need to destroy the one we already
6295 	 * created.
6296 	 */
6297 	if (!root)
6298 		goto free;
6299 
6300 	/*
6301 	 * Make sure we're properly removed from the ordered operation
6302 	 * lists.
6303 	 */
6304 	smp_mb();
6305 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6306 		spin_lock(&root->fs_info->ordered_extent_lock);
6307 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6308 		spin_unlock(&root->fs_info->ordered_extent_lock);
6309 	}
6310 
6311 	spin_lock(&root->orphan_lock);
6312 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6313 		printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6314 		       inode->i_ino);
6315 		list_del_init(&BTRFS_I(inode)->i_orphan);
6316 	}
6317 	spin_unlock(&root->orphan_lock);
6318 
6319 	while (1) {
6320 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6321 		if (!ordered)
6322 			break;
6323 		else {
6324 			printk(KERN_ERR "btrfs found ordered "
6325 			       "extent %llu %llu on inode cleanup\n",
6326 			       (unsigned long long)ordered->file_offset,
6327 			       (unsigned long long)ordered->len);
6328 			btrfs_remove_ordered_extent(inode, ordered);
6329 			btrfs_put_ordered_extent(ordered);
6330 			btrfs_put_ordered_extent(ordered);
6331 		}
6332 	}
6333 	inode_tree_del(inode);
6334 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6335 free:
6336 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6337 }
6338 
6339 int btrfs_drop_inode(struct inode *inode)
6340 {
6341 	struct btrfs_root *root = BTRFS_I(inode)->root;
6342 
6343 	if (btrfs_root_refs(&root->root_item) == 0)
6344 		return 1;
6345 	else
6346 		return generic_drop_inode(inode);
6347 }
6348 
6349 static void init_once(void *foo)
6350 {
6351 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6352 
6353 	inode_init_once(&ei->vfs_inode);
6354 }
6355 
6356 void btrfs_destroy_cachep(void)
6357 {
6358 	if (btrfs_inode_cachep)
6359 		kmem_cache_destroy(btrfs_inode_cachep);
6360 	if (btrfs_trans_handle_cachep)
6361 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6362 	if (btrfs_transaction_cachep)
6363 		kmem_cache_destroy(btrfs_transaction_cachep);
6364 	if (btrfs_path_cachep)
6365 		kmem_cache_destroy(btrfs_path_cachep);
6366 }
6367 
6368 int btrfs_init_cachep(void)
6369 {
6370 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6371 			sizeof(struct btrfs_inode), 0,
6372 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6373 	if (!btrfs_inode_cachep)
6374 		goto fail;
6375 
6376 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6377 			sizeof(struct btrfs_trans_handle), 0,
6378 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6379 	if (!btrfs_trans_handle_cachep)
6380 		goto fail;
6381 
6382 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6383 			sizeof(struct btrfs_transaction), 0,
6384 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6385 	if (!btrfs_transaction_cachep)
6386 		goto fail;
6387 
6388 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6389 			sizeof(struct btrfs_path), 0,
6390 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6391 	if (!btrfs_path_cachep)
6392 		goto fail;
6393 
6394 	return 0;
6395 fail:
6396 	btrfs_destroy_cachep();
6397 	return -ENOMEM;
6398 }
6399 
6400 static int btrfs_getattr(struct vfsmount *mnt,
6401 			 struct dentry *dentry, struct kstat *stat)
6402 {
6403 	struct inode *inode = dentry->d_inode;
6404 	generic_fillattr(inode, stat);
6405 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6406 	stat->blksize = PAGE_CACHE_SIZE;
6407 	stat->blocks = (inode_get_bytes(inode) +
6408 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6409 	return 0;
6410 }
6411 
6412 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6413 			   struct inode *new_dir, struct dentry *new_dentry)
6414 {
6415 	struct btrfs_trans_handle *trans;
6416 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6417 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6418 	struct inode *new_inode = new_dentry->d_inode;
6419 	struct inode *old_inode = old_dentry->d_inode;
6420 	struct timespec ctime = CURRENT_TIME;
6421 	u64 index = 0;
6422 	u64 root_objectid;
6423 	int ret;
6424 
6425 	if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6426 		return -EPERM;
6427 
6428 	/* we only allow rename subvolume link between subvolumes */
6429 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6430 		return -EXDEV;
6431 
6432 	if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6433 	    (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6434 		return -ENOTEMPTY;
6435 
6436 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6437 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6438 		return -ENOTEMPTY;
6439 	/*
6440 	 * we're using rename to replace one file with another.
6441 	 * and the replacement file is large.  Start IO on it now so
6442 	 * we don't add too much work to the end of the transaction
6443 	 */
6444 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6445 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6446 		filemap_flush(old_inode->i_mapping);
6447 
6448 	/* close the racy window with snapshot create/destroy ioctl */
6449 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6450 		down_read(&root->fs_info->subvol_sem);
6451 	/*
6452 	 * We want to reserve the absolute worst case amount of items.  So if
6453 	 * both inodes are subvols and we need to unlink them then that would
6454 	 * require 4 item modifications, but if they are both normal inodes it
6455 	 * would require 5 item modifications, so we'll assume their normal
6456 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6457 	 * should cover the worst case number of items we'll modify.
6458 	 */
6459 	trans = btrfs_start_transaction(root, 20);
6460 	if (IS_ERR(trans))
6461 		return PTR_ERR(trans);
6462 
6463 	btrfs_set_trans_block_group(trans, new_dir);
6464 
6465 	if (dest != root)
6466 		btrfs_record_root_in_trans(trans, dest);
6467 
6468 	ret = btrfs_set_inode_index(new_dir, &index);
6469 	if (ret)
6470 		goto out_fail;
6471 
6472 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6473 		/* force full log commit if subvolume involved. */
6474 		root->fs_info->last_trans_log_full_commit = trans->transid;
6475 	} else {
6476 		ret = btrfs_insert_inode_ref(trans, dest,
6477 					     new_dentry->d_name.name,
6478 					     new_dentry->d_name.len,
6479 					     old_inode->i_ino,
6480 					     new_dir->i_ino, index);
6481 		if (ret)
6482 			goto out_fail;
6483 		/*
6484 		 * this is an ugly little race, but the rename is required
6485 		 * to make sure that if we crash, the inode is either at the
6486 		 * old name or the new one.  pinning the log transaction lets
6487 		 * us make sure we don't allow a log commit to come in after
6488 		 * we unlink the name but before we add the new name back in.
6489 		 */
6490 		btrfs_pin_log_trans(root);
6491 	}
6492 	/*
6493 	 * make sure the inode gets flushed if it is replacing
6494 	 * something.
6495 	 */
6496 	if (new_inode && new_inode->i_size &&
6497 	    old_inode && S_ISREG(old_inode->i_mode)) {
6498 		btrfs_add_ordered_operation(trans, root, old_inode);
6499 	}
6500 
6501 	old_dir->i_ctime = old_dir->i_mtime = ctime;
6502 	new_dir->i_ctime = new_dir->i_mtime = ctime;
6503 	old_inode->i_ctime = ctime;
6504 
6505 	if (old_dentry->d_parent != new_dentry->d_parent)
6506 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6507 
6508 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6509 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6510 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6511 					old_dentry->d_name.name,
6512 					old_dentry->d_name.len);
6513 	} else {
6514 		btrfs_inc_nlink(old_dentry->d_inode);
6515 		ret = btrfs_unlink_inode(trans, root, old_dir,
6516 					 old_dentry->d_inode,
6517 					 old_dentry->d_name.name,
6518 					 old_dentry->d_name.len);
6519 	}
6520 	BUG_ON(ret);
6521 
6522 	if (new_inode) {
6523 		new_inode->i_ctime = CURRENT_TIME;
6524 		if (unlikely(new_inode->i_ino ==
6525 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6526 			root_objectid = BTRFS_I(new_inode)->location.objectid;
6527 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
6528 						root_objectid,
6529 						new_dentry->d_name.name,
6530 						new_dentry->d_name.len);
6531 			BUG_ON(new_inode->i_nlink == 0);
6532 		} else {
6533 			ret = btrfs_unlink_inode(trans, dest, new_dir,
6534 						 new_dentry->d_inode,
6535 						 new_dentry->d_name.name,
6536 						 new_dentry->d_name.len);
6537 		}
6538 		BUG_ON(ret);
6539 		if (new_inode->i_nlink == 0) {
6540 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6541 			BUG_ON(ret);
6542 		}
6543 	}
6544 
6545 	ret = btrfs_add_link(trans, new_dir, old_inode,
6546 			     new_dentry->d_name.name,
6547 			     new_dentry->d_name.len, 0, index);
6548 	BUG_ON(ret);
6549 
6550 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6551 		btrfs_log_new_name(trans, old_inode, old_dir,
6552 				   new_dentry->d_parent);
6553 		btrfs_end_log_trans(root);
6554 	}
6555 out_fail:
6556 	btrfs_end_transaction_throttle(trans, root);
6557 
6558 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6559 		up_read(&root->fs_info->subvol_sem);
6560 
6561 	return ret;
6562 }
6563 
6564 /*
6565  * some fairly slow code that needs optimization. This walks the list
6566  * of all the inodes with pending delalloc and forces them to disk.
6567  */
6568 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6569 {
6570 	struct list_head *head = &root->fs_info->delalloc_inodes;
6571 	struct btrfs_inode *binode;
6572 	struct inode *inode;
6573 
6574 	if (root->fs_info->sb->s_flags & MS_RDONLY)
6575 		return -EROFS;
6576 
6577 	spin_lock(&root->fs_info->delalloc_lock);
6578 	while (!list_empty(head)) {
6579 		binode = list_entry(head->next, struct btrfs_inode,
6580 				    delalloc_inodes);
6581 		inode = igrab(&binode->vfs_inode);
6582 		if (!inode)
6583 			list_del_init(&binode->delalloc_inodes);
6584 		spin_unlock(&root->fs_info->delalloc_lock);
6585 		if (inode) {
6586 			filemap_flush(inode->i_mapping);
6587 			if (delay_iput)
6588 				btrfs_add_delayed_iput(inode);
6589 			else
6590 				iput(inode);
6591 		}
6592 		cond_resched();
6593 		spin_lock(&root->fs_info->delalloc_lock);
6594 	}
6595 	spin_unlock(&root->fs_info->delalloc_lock);
6596 
6597 	/* the filemap_flush will queue IO into the worker threads, but
6598 	 * we have to make sure the IO is actually started and that
6599 	 * ordered extents get created before we return
6600 	 */
6601 	atomic_inc(&root->fs_info->async_submit_draining);
6602 	while (atomic_read(&root->fs_info->nr_async_submits) ||
6603 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
6604 		wait_event(root->fs_info->async_submit_wait,
6605 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6606 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6607 	}
6608 	atomic_dec(&root->fs_info->async_submit_draining);
6609 	return 0;
6610 }
6611 
6612 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput)
6613 {
6614 	struct btrfs_inode *binode;
6615 	struct inode *inode = NULL;
6616 
6617 	spin_lock(&root->fs_info->delalloc_lock);
6618 	while (!list_empty(&root->fs_info->delalloc_inodes)) {
6619 		binode = list_entry(root->fs_info->delalloc_inodes.next,
6620 				    struct btrfs_inode, delalloc_inodes);
6621 		inode = igrab(&binode->vfs_inode);
6622 		if (inode) {
6623 			list_move_tail(&binode->delalloc_inodes,
6624 				       &root->fs_info->delalloc_inodes);
6625 			break;
6626 		}
6627 
6628 		list_del_init(&binode->delalloc_inodes);
6629 		cond_resched_lock(&root->fs_info->delalloc_lock);
6630 	}
6631 	spin_unlock(&root->fs_info->delalloc_lock);
6632 
6633 	if (inode) {
6634 		write_inode_now(inode, 0);
6635 		if (delay_iput)
6636 			btrfs_add_delayed_iput(inode);
6637 		else
6638 			iput(inode);
6639 		return 1;
6640 	}
6641 	return 0;
6642 }
6643 
6644 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6645 			 const char *symname)
6646 {
6647 	struct btrfs_trans_handle *trans;
6648 	struct btrfs_root *root = BTRFS_I(dir)->root;
6649 	struct btrfs_path *path;
6650 	struct btrfs_key key;
6651 	struct inode *inode = NULL;
6652 	int err;
6653 	int drop_inode = 0;
6654 	u64 objectid;
6655 	u64 index = 0 ;
6656 	int name_len;
6657 	int datasize;
6658 	unsigned long ptr;
6659 	struct btrfs_file_extent_item *ei;
6660 	struct extent_buffer *leaf;
6661 	unsigned long nr = 0;
6662 
6663 	name_len = strlen(symname) + 1;
6664 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6665 		return -ENAMETOOLONG;
6666 
6667 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6668 	if (err)
6669 		return err;
6670 	/*
6671 	 * 2 items for inode item and ref
6672 	 * 2 items for dir items
6673 	 * 1 item for xattr if selinux is on
6674 	 */
6675 	trans = btrfs_start_transaction(root, 5);
6676 	if (IS_ERR(trans))
6677 		return PTR_ERR(trans);
6678 
6679 	btrfs_set_trans_block_group(trans, dir);
6680 
6681 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6682 				dentry->d_name.len,
6683 				dentry->d_parent->d_inode->i_ino, objectid,
6684 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6685 				&index);
6686 	err = PTR_ERR(inode);
6687 	if (IS_ERR(inode))
6688 		goto out_unlock;
6689 
6690 	err = btrfs_init_inode_security(trans, inode, dir);
6691 	if (err) {
6692 		drop_inode = 1;
6693 		goto out_unlock;
6694 	}
6695 
6696 	btrfs_set_trans_block_group(trans, inode);
6697 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
6698 	if (err)
6699 		drop_inode = 1;
6700 	else {
6701 		inode->i_mapping->a_ops = &btrfs_aops;
6702 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6703 		inode->i_fop = &btrfs_file_operations;
6704 		inode->i_op = &btrfs_file_inode_operations;
6705 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6706 	}
6707 	btrfs_update_inode_block_group(trans, inode);
6708 	btrfs_update_inode_block_group(trans, dir);
6709 	if (drop_inode)
6710 		goto out_unlock;
6711 
6712 	path = btrfs_alloc_path();
6713 	BUG_ON(!path);
6714 	key.objectid = inode->i_ino;
6715 	key.offset = 0;
6716 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6717 	datasize = btrfs_file_extent_calc_inline_size(name_len);
6718 	err = btrfs_insert_empty_item(trans, root, path, &key,
6719 				      datasize);
6720 	if (err) {
6721 		drop_inode = 1;
6722 		goto out_unlock;
6723 	}
6724 	leaf = path->nodes[0];
6725 	ei = btrfs_item_ptr(leaf, path->slots[0],
6726 			    struct btrfs_file_extent_item);
6727 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6728 	btrfs_set_file_extent_type(leaf, ei,
6729 				   BTRFS_FILE_EXTENT_INLINE);
6730 	btrfs_set_file_extent_encryption(leaf, ei, 0);
6731 	btrfs_set_file_extent_compression(leaf, ei, 0);
6732 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6733 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6734 
6735 	ptr = btrfs_file_extent_inline_start(ei);
6736 	write_extent_buffer(leaf, symname, ptr, name_len);
6737 	btrfs_mark_buffer_dirty(leaf);
6738 	btrfs_free_path(path);
6739 
6740 	inode->i_op = &btrfs_symlink_inode_operations;
6741 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
6742 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6743 	inode_set_bytes(inode, name_len);
6744 	btrfs_i_size_write(inode, name_len - 1);
6745 	err = btrfs_update_inode(trans, root, inode);
6746 	if (err)
6747 		drop_inode = 1;
6748 
6749 out_unlock:
6750 	nr = trans->blocks_used;
6751 	btrfs_end_transaction_throttle(trans, root);
6752 	if (drop_inode) {
6753 		inode_dec_link_count(inode);
6754 		iput(inode);
6755 	}
6756 	btrfs_btree_balance_dirty(root, nr);
6757 	return err;
6758 }
6759 
6760 int btrfs_prealloc_file_range(struct inode *inode, int mode,
6761 			      u64 start, u64 num_bytes, u64 min_size,
6762 			      loff_t actual_len, u64 *alloc_hint)
6763 {
6764 	struct btrfs_trans_handle *trans;
6765 	struct btrfs_root *root = BTRFS_I(inode)->root;
6766 	struct btrfs_key ins;
6767 	u64 cur_offset = start;
6768 	int ret = 0;
6769 
6770 	while (num_bytes > 0) {
6771 		trans = btrfs_start_transaction(root, 3);
6772 		if (IS_ERR(trans)) {
6773 			ret = PTR_ERR(trans);
6774 			break;
6775 		}
6776 
6777 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
6778 					   0, *alloc_hint, (u64)-1, &ins, 1);
6779 		if (ret) {
6780 			btrfs_end_transaction(trans, root);
6781 			break;
6782 		}
6783 
6784 		ret = insert_reserved_file_extent(trans, inode,
6785 						  cur_offset, ins.objectid,
6786 						  ins.offset, ins.offset,
6787 						  ins.offset, 0, 0, 0,
6788 						  BTRFS_FILE_EXTENT_PREALLOC);
6789 		BUG_ON(ret);
6790 		btrfs_drop_extent_cache(inode, cur_offset,
6791 					cur_offset + ins.offset -1, 0);
6792 
6793 		num_bytes -= ins.offset;
6794 		cur_offset += ins.offset;
6795 		*alloc_hint = ins.objectid + ins.offset;
6796 
6797 		inode->i_ctime = CURRENT_TIME;
6798 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
6799 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
6800 		    (actual_len > inode->i_size) &&
6801 		    (cur_offset > inode->i_size)) {
6802 			if (cur_offset > actual_len)
6803 				i_size_write(inode, actual_len);
6804 			else
6805 				i_size_write(inode, cur_offset);
6806 			i_size_write(inode, cur_offset);
6807 			btrfs_ordered_update_i_size(inode, cur_offset, NULL);
6808 		}
6809 
6810 		ret = btrfs_update_inode(trans, root, inode);
6811 		BUG_ON(ret);
6812 
6813 		btrfs_end_transaction(trans, root);
6814 	}
6815 	return ret;
6816 }
6817 
6818 static long btrfs_fallocate(struct inode *inode, int mode,
6819 			    loff_t offset, loff_t len)
6820 {
6821 	struct extent_state *cached_state = NULL;
6822 	u64 cur_offset;
6823 	u64 last_byte;
6824 	u64 alloc_start;
6825 	u64 alloc_end;
6826 	u64 alloc_hint = 0;
6827 	u64 locked_end;
6828 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
6829 	struct extent_map *em;
6830 	int ret;
6831 
6832 	alloc_start = offset & ~mask;
6833 	alloc_end =  (offset + len + mask) & ~mask;
6834 
6835 	/*
6836 	 * wait for ordered IO before we have any locks.  We'll loop again
6837 	 * below with the locks held.
6838 	 */
6839 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
6840 
6841 	mutex_lock(&inode->i_mutex);
6842 	if (alloc_start > inode->i_size) {
6843 		ret = btrfs_cont_expand(inode, alloc_start);
6844 		if (ret)
6845 			goto out;
6846 	}
6847 
6848 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
6849 	if (ret)
6850 		goto out;
6851 
6852 	locked_end = alloc_end - 1;
6853 	while (1) {
6854 		struct btrfs_ordered_extent *ordered;
6855 
6856 		/* the extent lock is ordered inside the running
6857 		 * transaction
6858 		 */
6859 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
6860 				 locked_end, 0, &cached_state, GFP_NOFS);
6861 		ordered = btrfs_lookup_first_ordered_extent(inode,
6862 							    alloc_end - 1);
6863 		if (ordered &&
6864 		    ordered->file_offset + ordered->len > alloc_start &&
6865 		    ordered->file_offset < alloc_end) {
6866 			btrfs_put_ordered_extent(ordered);
6867 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
6868 					     alloc_start, locked_end,
6869 					     &cached_state, GFP_NOFS);
6870 			/*
6871 			 * we can't wait on the range with the transaction
6872 			 * running or with the extent lock held
6873 			 */
6874 			btrfs_wait_ordered_range(inode, alloc_start,
6875 						 alloc_end - alloc_start);
6876 		} else {
6877 			if (ordered)
6878 				btrfs_put_ordered_extent(ordered);
6879 			break;
6880 		}
6881 	}
6882 
6883 	cur_offset = alloc_start;
6884 	while (1) {
6885 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
6886 				      alloc_end - cur_offset, 0);
6887 		BUG_ON(IS_ERR(em) || !em);
6888 		last_byte = min(extent_map_end(em), alloc_end);
6889 		last_byte = (last_byte + mask) & ~mask;
6890 		if (em->block_start == EXTENT_MAP_HOLE ||
6891 		    (cur_offset >= inode->i_size &&
6892 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6893 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
6894 							last_byte - cur_offset,
6895 							1 << inode->i_blkbits,
6896 							offset + len,
6897 							&alloc_hint);
6898 			if (ret < 0) {
6899 				free_extent_map(em);
6900 				break;
6901 			}
6902 		}
6903 		free_extent_map(em);
6904 
6905 		cur_offset = last_byte;
6906 		if (cur_offset >= alloc_end) {
6907 			ret = 0;
6908 			break;
6909 		}
6910 	}
6911 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
6912 			     &cached_state, GFP_NOFS);
6913 
6914 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
6915 out:
6916 	mutex_unlock(&inode->i_mutex);
6917 	return ret;
6918 }
6919 
6920 static int btrfs_set_page_dirty(struct page *page)
6921 {
6922 	return __set_page_dirty_nobuffers(page);
6923 }
6924 
6925 static int btrfs_permission(struct inode *inode, int mask)
6926 {
6927 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
6928 		return -EACCES;
6929 	return generic_permission(inode, mask, btrfs_check_acl);
6930 }
6931 
6932 static const struct inode_operations btrfs_dir_inode_operations = {
6933 	.getattr	= btrfs_getattr,
6934 	.lookup		= btrfs_lookup,
6935 	.create		= btrfs_create,
6936 	.unlink		= btrfs_unlink,
6937 	.link		= btrfs_link,
6938 	.mkdir		= btrfs_mkdir,
6939 	.rmdir		= btrfs_rmdir,
6940 	.rename		= btrfs_rename,
6941 	.symlink	= btrfs_symlink,
6942 	.setattr	= btrfs_setattr,
6943 	.mknod		= btrfs_mknod,
6944 	.setxattr	= btrfs_setxattr,
6945 	.getxattr	= btrfs_getxattr,
6946 	.listxattr	= btrfs_listxattr,
6947 	.removexattr	= btrfs_removexattr,
6948 	.permission	= btrfs_permission,
6949 };
6950 static const struct inode_operations btrfs_dir_ro_inode_operations = {
6951 	.lookup		= btrfs_lookup,
6952 	.permission	= btrfs_permission,
6953 };
6954 
6955 static const struct file_operations btrfs_dir_file_operations = {
6956 	.llseek		= generic_file_llseek,
6957 	.read		= generic_read_dir,
6958 	.readdir	= btrfs_real_readdir,
6959 	.unlocked_ioctl	= btrfs_ioctl,
6960 #ifdef CONFIG_COMPAT
6961 	.compat_ioctl	= btrfs_ioctl,
6962 #endif
6963 	.release        = btrfs_release_file,
6964 	.fsync		= btrfs_sync_file,
6965 };
6966 
6967 static struct extent_io_ops btrfs_extent_io_ops = {
6968 	.fill_delalloc = run_delalloc_range,
6969 	.submit_bio_hook = btrfs_submit_bio_hook,
6970 	.merge_bio_hook = btrfs_merge_bio_hook,
6971 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
6972 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
6973 	.writepage_start_hook = btrfs_writepage_start_hook,
6974 	.readpage_io_failed_hook = btrfs_io_failed_hook,
6975 	.set_bit_hook = btrfs_set_bit_hook,
6976 	.clear_bit_hook = btrfs_clear_bit_hook,
6977 	.merge_extent_hook = btrfs_merge_extent_hook,
6978 	.split_extent_hook = btrfs_split_extent_hook,
6979 };
6980 
6981 /*
6982  * btrfs doesn't support the bmap operation because swapfiles
6983  * use bmap to make a mapping of extents in the file.  They assume
6984  * these extents won't change over the life of the file and they
6985  * use the bmap result to do IO directly to the drive.
6986  *
6987  * the btrfs bmap call would return logical addresses that aren't
6988  * suitable for IO and they also will change frequently as COW
6989  * operations happen.  So, swapfile + btrfs == corruption.
6990  *
6991  * For now we're avoiding this by dropping bmap.
6992  */
6993 static const struct address_space_operations btrfs_aops = {
6994 	.readpage	= btrfs_readpage,
6995 	.writepage	= btrfs_writepage,
6996 	.writepages	= btrfs_writepages,
6997 	.readpages	= btrfs_readpages,
6998 	.sync_page	= block_sync_page,
6999 	.direct_IO	= btrfs_direct_IO,
7000 	.invalidatepage = btrfs_invalidatepage,
7001 	.releasepage	= btrfs_releasepage,
7002 	.set_page_dirty	= btrfs_set_page_dirty,
7003 	.error_remove_page = generic_error_remove_page,
7004 };
7005 
7006 static const struct address_space_operations btrfs_symlink_aops = {
7007 	.readpage	= btrfs_readpage,
7008 	.writepage	= btrfs_writepage,
7009 	.invalidatepage = btrfs_invalidatepage,
7010 	.releasepage	= btrfs_releasepage,
7011 };
7012 
7013 static const struct inode_operations btrfs_file_inode_operations = {
7014 	.truncate	= btrfs_truncate,
7015 	.getattr	= btrfs_getattr,
7016 	.setattr	= btrfs_setattr,
7017 	.setxattr	= btrfs_setxattr,
7018 	.getxattr	= btrfs_getxattr,
7019 	.listxattr      = btrfs_listxattr,
7020 	.removexattr	= btrfs_removexattr,
7021 	.permission	= btrfs_permission,
7022 	.fallocate	= btrfs_fallocate,
7023 	.fiemap		= btrfs_fiemap,
7024 };
7025 static const struct inode_operations btrfs_special_inode_operations = {
7026 	.getattr	= btrfs_getattr,
7027 	.setattr	= btrfs_setattr,
7028 	.permission	= btrfs_permission,
7029 	.setxattr	= btrfs_setxattr,
7030 	.getxattr	= btrfs_getxattr,
7031 	.listxattr	= btrfs_listxattr,
7032 	.removexattr	= btrfs_removexattr,
7033 };
7034 static const struct inode_operations btrfs_symlink_inode_operations = {
7035 	.readlink	= generic_readlink,
7036 	.follow_link	= page_follow_link_light,
7037 	.put_link	= page_put_link,
7038 	.permission	= btrfs_permission,
7039 	.setxattr	= btrfs_setxattr,
7040 	.getxattr	= btrfs_getxattr,
7041 	.listxattr	= btrfs_listxattr,
7042 	.removexattr	= btrfs_removexattr,
7043 };
7044 
7045 const struct dentry_operations btrfs_dentry_operations = {
7046 	.d_delete	= btrfs_dentry_delete,
7047 };
7048