xref: /openbmc/linux/fs/btrfs/inode.c (revision 48c926cd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
51 #include "xattr.h"
52 #include "tree-log.h"
53 #include "volumes.h"
54 #include "compression.h"
55 #include "locking.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
58 #include "backref.h"
59 #include "hash.h"
60 #include "props.h"
61 #include "qgroup.h"
62 #include "dedupe.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 struct btrfs_dio_data {
70 	u64 outstanding_extents;
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 	int overwrite;
75 };
76 
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86 
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91 
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
95 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
96 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
97 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
98 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
99 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
100 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
101 };
102 
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 				   struct page *locked_page,
108 				   u64 start, u64 end, u64 delalloc_end,
109 				   int *page_started, unsigned long *nr_written,
110 				   int unlock, struct btrfs_dedupe_hash *hash);
111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 				       u64 orig_start, u64 block_start,
113 				       u64 block_len, u64 orig_block_len,
114 				       u64 ram_bytes, int compress_type,
115 				       int type);
116 
117 static void __endio_write_update_ordered(struct inode *inode,
118 					 const u64 offset, const u64 bytes,
119 					 const bool uptodate);
120 
121 /*
122  * Cleanup all submitted ordered extents in specified range to handle errors
123  * from the fill_dellaloc() callback.
124  *
125  * NOTE: caller must ensure that when an error happens, it can not call
126  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128  * to be released, which we want to happen only when finishing the ordered
129  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130  * fill_delalloc() callback already does proper cleanup for the first page of
131  * the range, that is, it invokes the callback writepage_end_io_hook() for the
132  * range of the first page.
133  */
134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 						 const u64 offset,
136 						 const u64 bytes)
137 {
138 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 					    bytes - PAGE_SIZE, false);
140 }
141 
142 static int btrfs_dirty_inode(struct inode *inode);
143 
144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145 void btrfs_test_inode_set_ops(struct inode *inode)
146 {
147 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148 }
149 #endif
150 
151 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
152 				     struct inode *inode,  struct inode *dir,
153 				     const struct qstr *qstr)
154 {
155 	int err;
156 
157 	err = btrfs_init_acl(trans, inode, dir);
158 	if (!err)
159 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
160 	return err;
161 }
162 
163 /*
164  * this does all the hard work for inserting an inline extent into
165  * the btree.  The caller should have done a btrfs_drop_extents so that
166  * no overlapping inline items exist in the btree
167  */
168 static int insert_inline_extent(struct btrfs_trans_handle *trans,
169 				struct btrfs_path *path, int extent_inserted,
170 				struct btrfs_root *root, struct inode *inode,
171 				u64 start, size_t size, size_t compressed_size,
172 				int compress_type,
173 				struct page **compressed_pages)
174 {
175 	struct extent_buffer *leaf;
176 	struct page *page = NULL;
177 	char *kaddr;
178 	unsigned long ptr;
179 	struct btrfs_file_extent_item *ei;
180 	int ret;
181 	size_t cur_size = size;
182 	unsigned long offset;
183 
184 	if (compressed_size && compressed_pages)
185 		cur_size = compressed_size;
186 
187 	inode_add_bytes(inode, size);
188 
189 	if (!extent_inserted) {
190 		struct btrfs_key key;
191 		size_t datasize;
192 
193 		key.objectid = btrfs_ino(BTRFS_I(inode));
194 		key.offset = start;
195 		key.type = BTRFS_EXTENT_DATA_KEY;
196 
197 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 		path->leave_spinning = 1;
199 		ret = btrfs_insert_empty_item(trans, root, path, &key,
200 					      datasize);
201 		if (ret)
202 			goto fail;
203 	}
204 	leaf = path->nodes[0];
205 	ei = btrfs_item_ptr(leaf, path->slots[0],
206 			    struct btrfs_file_extent_item);
207 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 	btrfs_set_file_extent_encryption(leaf, ei, 0);
210 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 	ptr = btrfs_file_extent_inline_start(ei);
213 
214 	if (compress_type != BTRFS_COMPRESS_NONE) {
215 		struct page *cpage;
216 		int i = 0;
217 		while (compressed_size > 0) {
218 			cpage = compressed_pages[i];
219 			cur_size = min_t(unsigned long, compressed_size,
220 				       PAGE_SIZE);
221 
222 			kaddr = kmap_atomic(cpage);
223 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
224 			kunmap_atomic(kaddr);
225 
226 			i++;
227 			ptr += cur_size;
228 			compressed_size -= cur_size;
229 		}
230 		btrfs_set_file_extent_compression(leaf, ei,
231 						  compress_type);
232 	} else {
233 		page = find_get_page(inode->i_mapping,
234 				     start >> PAGE_SHIFT);
235 		btrfs_set_file_extent_compression(leaf, ei, 0);
236 		kaddr = kmap_atomic(page);
237 		offset = start & (PAGE_SIZE - 1);
238 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
239 		kunmap_atomic(kaddr);
240 		put_page(page);
241 	}
242 	btrfs_mark_buffer_dirty(leaf);
243 	btrfs_release_path(path);
244 
245 	/*
246 	 * we're an inline extent, so nobody can
247 	 * extend the file past i_size without locking
248 	 * a page we already have locked.
249 	 *
250 	 * We must do any isize and inode updates
251 	 * before we unlock the pages.  Otherwise we
252 	 * could end up racing with unlink.
253 	 */
254 	BTRFS_I(inode)->disk_i_size = inode->i_size;
255 	ret = btrfs_update_inode(trans, root, inode);
256 
257 fail:
258 	return ret;
259 }
260 
261 
262 /*
263  * conditionally insert an inline extent into the file.  This
264  * does the checks required to make sure the data is small enough
265  * to fit as an inline extent.
266  */
267 static noinline int cow_file_range_inline(struct btrfs_root *root,
268 					  struct inode *inode, u64 start,
269 					  u64 end, size_t compressed_size,
270 					  int compress_type,
271 					  struct page **compressed_pages)
272 {
273 	struct btrfs_fs_info *fs_info = root->fs_info;
274 	struct btrfs_trans_handle *trans;
275 	u64 isize = i_size_read(inode);
276 	u64 actual_end = min(end + 1, isize);
277 	u64 inline_len = actual_end - start;
278 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
279 	u64 data_len = inline_len;
280 	int ret;
281 	struct btrfs_path *path;
282 	int extent_inserted = 0;
283 	u32 extent_item_size;
284 
285 	if (compressed_size)
286 		data_len = compressed_size;
287 
288 	if (start > 0 ||
289 	    actual_end > fs_info->sectorsize ||
290 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
291 	    (!compressed_size &&
292 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
293 	    end + 1 < isize ||
294 	    data_len > fs_info->max_inline) {
295 		return 1;
296 	}
297 
298 	path = btrfs_alloc_path();
299 	if (!path)
300 		return -ENOMEM;
301 
302 	trans = btrfs_join_transaction(root);
303 	if (IS_ERR(trans)) {
304 		btrfs_free_path(path);
305 		return PTR_ERR(trans);
306 	}
307 	trans->block_rsv = &fs_info->delalloc_block_rsv;
308 
309 	if (compressed_size && compressed_pages)
310 		extent_item_size = btrfs_file_extent_calc_inline_size(
311 		   compressed_size);
312 	else
313 		extent_item_size = btrfs_file_extent_calc_inline_size(
314 		    inline_len);
315 
316 	ret = __btrfs_drop_extents(trans, root, inode, path,
317 				   start, aligned_end, NULL,
318 				   1, 1, extent_item_size, &extent_inserted);
319 	if (ret) {
320 		btrfs_abort_transaction(trans, ret);
321 		goto out;
322 	}
323 
324 	if (isize > actual_end)
325 		inline_len = min_t(u64, isize, actual_end);
326 	ret = insert_inline_extent(trans, path, extent_inserted,
327 				   root, inode, start,
328 				   inline_len, compressed_size,
329 				   compress_type, compressed_pages);
330 	if (ret && ret != -ENOSPC) {
331 		btrfs_abort_transaction(trans, ret);
332 		goto out;
333 	} else if (ret == -ENOSPC) {
334 		ret = 1;
335 		goto out;
336 	}
337 
338 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
339 	btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
340 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
341 out:
342 	/*
343 	 * Don't forget to free the reserved space, as for inlined extent
344 	 * it won't count as data extent, free them directly here.
345 	 * And at reserve time, it's always aligned to page size, so
346 	 * just free one page here.
347 	 */
348 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
349 	btrfs_free_path(path);
350 	btrfs_end_transaction(trans);
351 	return ret;
352 }
353 
354 struct async_extent {
355 	u64 start;
356 	u64 ram_size;
357 	u64 compressed_size;
358 	struct page **pages;
359 	unsigned long nr_pages;
360 	int compress_type;
361 	struct list_head list;
362 };
363 
364 struct async_cow {
365 	struct inode *inode;
366 	struct btrfs_root *root;
367 	struct page *locked_page;
368 	u64 start;
369 	u64 end;
370 	struct list_head extents;
371 	struct btrfs_work work;
372 };
373 
374 static noinline int add_async_extent(struct async_cow *cow,
375 				     u64 start, u64 ram_size,
376 				     u64 compressed_size,
377 				     struct page **pages,
378 				     unsigned long nr_pages,
379 				     int compress_type)
380 {
381 	struct async_extent *async_extent;
382 
383 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
384 	BUG_ON(!async_extent); /* -ENOMEM */
385 	async_extent->start = start;
386 	async_extent->ram_size = ram_size;
387 	async_extent->compressed_size = compressed_size;
388 	async_extent->pages = pages;
389 	async_extent->nr_pages = nr_pages;
390 	async_extent->compress_type = compress_type;
391 	list_add_tail(&async_extent->list, &cow->extents);
392 	return 0;
393 }
394 
395 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
396 {
397 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
398 
399 	/* force compress */
400 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
401 		return 1;
402 	/* defrag ioctl */
403 	if (BTRFS_I(inode)->defrag_compress)
404 		return 1;
405 	/* bad compression ratios */
406 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 		return 0;
408 	if (btrfs_test_opt(fs_info, COMPRESS) ||
409 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
410 	    BTRFS_I(inode)->prop_compress)
411 		return btrfs_compress_heuristic(inode, start, end);
412 	return 0;
413 }
414 
415 static inline void inode_should_defrag(struct btrfs_inode *inode,
416 		u64 start, u64 end, u64 num_bytes, u64 small_write)
417 {
418 	/* If this is a small write inside eof, kick off a defrag */
419 	if (num_bytes < small_write &&
420 	    (start > 0 || end + 1 < inode->disk_i_size))
421 		btrfs_add_inode_defrag(NULL, inode);
422 }
423 
424 /*
425  * we create compressed extents in two phases.  The first
426  * phase compresses a range of pages that have already been
427  * locked (both pages and state bits are locked).
428  *
429  * This is done inside an ordered work queue, and the compression
430  * is spread across many cpus.  The actual IO submission is step
431  * two, and the ordered work queue takes care of making sure that
432  * happens in the same order things were put onto the queue by
433  * writepages and friends.
434  *
435  * If this code finds it can't get good compression, it puts an
436  * entry onto the work queue to write the uncompressed bytes.  This
437  * makes sure that both compressed inodes and uncompressed inodes
438  * are written in the same order that the flusher thread sent them
439  * down.
440  */
441 static noinline void compress_file_range(struct inode *inode,
442 					struct page *locked_page,
443 					u64 start, u64 end,
444 					struct async_cow *async_cow,
445 					int *num_added)
446 {
447 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
448 	struct btrfs_root *root = BTRFS_I(inode)->root;
449 	u64 num_bytes;
450 	u64 blocksize = fs_info->sectorsize;
451 	u64 actual_end;
452 	u64 isize = i_size_read(inode);
453 	int ret = 0;
454 	struct page **pages = NULL;
455 	unsigned long nr_pages;
456 	unsigned long total_compressed = 0;
457 	unsigned long total_in = 0;
458 	int i;
459 	int will_compress;
460 	int compress_type = fs_info->compress_type;
461 	int redirty = 0;
462 
463 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
464 			SZ_16K);
465 
466 	actual_end = min_t(u64, isize, end + 1);
467 again:
468 	will_compress = 0;
469 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
470 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
471 	nr_pages = min_t(unsigned long, nr_pages,
472 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
473 
474 	/*
475 	 * we don't want to send crud past the end of i_size through
476 	 * compression, that's just a waste of CPU time.  So, if the
477 	 * end of the file is before the start of our current
478 	 * requested range of bytes, we bail out to the uncompressed
479 	 * cleanup code that can deal with all of this.
480 	 *
481 	 * It isn't really the fastest way to fix things, but this is a
482 	 * very uncommon corner.
483 	 */
484 	if (actual_end <= start)
485 		goto cleanup_and_bail_uncompressed;
486 
487 	total_compressed = actual_end - start;
488 
489 	/*
490 	 * skip compression for a small file range(<=blocksize) that
491 	 * isn't an inline extent, since it doesn't save disk space at all.
492 	 */
493 	if (total_compressed <= blocksize &&
494 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
495 		goto cleanup_and_bail_uncompressed;
496 
497 	total_compressed = min_t(unsigned long, total_compressed,
498 			BTRFS_MAX_UNCOMPRESSED);
499 	num_bytes = ALIGN(end - start + 1, blocksize);
500 	num_bytes = max(blocksize,  num_bytes);
501 	total_in = 0;
502 	ret = 0;
503 
504 	/*
505 	 * we do compression for mount -o compress and when the
506 	 * inode has not been flagged as nocompress.  This flag can
507 	 * change at any time if we discover bad compression ratios.
508 	 */
509 	if (inode_need_compress(inode, start, end)) {
510 		WARN_ON(pages);
511 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
512 		if (!pages) {
513 			/* just bail out to the uncompressed code */
514 			goto cont;
515 		}
516 
517 		if (BTRFS_I(inode)->defrag_compress)
518 			compress_type = BTRFS_I(inode)->defrag_compress;
519 		else if (BTRFS_I(inode)->prop_compress)
520 			compress_type = BTRFS_I(inode)->prop_compress;
521 
522 		/*
523 		 * we need to call clear_page_dirty_for_io on each
524 		 * page in the range.  Otherwise applications with the file
525 		 * mmap'd can wander in and change the page contents while
526 		 * we are compressing them.
527 		 *
528 		 * If the compression fails for any reason, we set the pages
529 		 * dirty again later on.
530 		 */
531 		extent_range_clear_dirty_for_io(inode, start, end);
532 		redirty = 1;
533 		ret = btrfs_compress_pages(compress_type,
534 					   inode->i_mapping, start,
535 					   pages,
536 					   &nr_pages,
537 					   &total_in,
538 					   &total_compressed);
539 
540 		if (!ret) {
541 			unsigned long offset = total_compressed &
542 				(PAGE_SIZE - 1);
543 			struct page *page = pages[nr_pages - 1];
544 			char *kaddr;
545 
546 			/* zero the tail end of the last page, we might be
547 			 * sending it down to disk
548 			 */
549 			if (offset) {
550 				kaddr = kmap_atomic(page);
551 				memset(kaddr + offset, 0,
552 				       PAGE_SIZE - offset);
553 				kunmap_atomic(kaddr);
554 			}
555 			will_compress = 1;
556 		}
557 	}
558 cont:
559 	if (start == 0) {
560 		/* lets try to make an inline extent */
561 		if (ret || total_in < (actual_end - start)) {
562 			/* we didn't compress the entire range, try
563 			 * to make an uncompressed inline extent.
564 			 */
565 			ret = cow_file_range_inline(root, inode, start, end,
566 					    0, BTRFS_COMPRESS_NONE, NULL);
567 		} else {
568 			/* try making a compressed inline extent */
569 			ret = cow_file_range_inline(root, inode, start, end,
570 						    total_compressed,
571 						    compress_type, pages);
572 		}
573 		if (ret <= 0) {
574 			unsigned long clear_flags = EXTENT_DELALLOC |
575 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
576 			unsigned long page_error_op;
577 
578 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
579 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
580 
581 			/*
582 			 * inline extent creation worked or returned error,
583 			 * we don't need to create any more async work items.
584 			 * Unlock and free up our temp pages.
585 			 */
586 			extent_clear_unlock_delalloc(inode, start, end, end,
587 						     NULL, clear_flags,
588 						     PAGE_UNLOCK |
589 						     PAGE_CLEAR_DIRTY |
590 						     PAGE_SET_WRITEBACK |
591 						     page_error_op |
592 						     PAGE_END_WRITEBACK);
593 			if (ret == 0)
594 				btrfs_free_reserved_data_space_noquota(inode,
595 							       start,
596 							       end - start + 1);
597 			goto free_pages_out;
598 		}
599 	}
600 
601 	if (will_compress) {
602 		/*
603 		 * we aren't doing an inline extent round the compressed size
604 		 * up to a block size boundary so the allocator does sane
605 		 * things
606 		 */
607 		total_compressed = ALIGN(total_compressed, blocksize);
608 
609 		/*
610 		 * one last check to make sure the compression is really a
611 		 * win, compare the page count read with the blocks on disk,
612 		 * compression must free at least one sector size
613 		 */
614 		total_in = ALIGN(total_in, PAGE_SIZE);
615 		if (total_compressed + blocksize <= total_in) {
616 			num_bytes = total_in;
617 			*num_added += 1;
618 
619 			/*
620 			 * The async work queues will take care of doing actual
621 			 * allocation on disk for these compressed pages, and
622 			 * will submit them to the elevator.
623 			 */
624 			add_async_extent(async_cow, start, num_bytes,
625 					total_compressed, pages, nr_pages,
626 					compress_type);
627 
628 			if (start + num_bytes < end) {
629 				start += num_bytes;
630 				pages = NULL;
631 				cond_resched();
632 				goto again;
633 			}
634 			return;
635 		}
636 	}
637 	if (pages) {
638 		/*
639 		 * the compression code ran but failed to make things smaller,
640 		 * free any pages it allocated and our page pointer array
641 		 */
642 		for (i = 0; i < nr_pages; i++) {
643 			WARN_ON(pages[i]->mapping);
644 			put_page(pages[i]);
645 		}
646 		kfree(pages);
647 		pages = NULL;
648 		total_compressed = 0;
649 		nr_pages = 0;
650 
651 		/* flag the file so we don't compress in the future */
652 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
653 		    !(BTRFS_I(inode)->prop_compress)) {
654 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
655 		}
656 	}
657 cleanup_and_bail_uncompressed:
658 	/*
659 	 * No compression, but we still need to write the pages in the file
660 	 * we've been given so far.  redirty the locked page if it corresponds
661 	 * to our extent and set things up for the async work queue to run
662 	 * cow_file_range to do the normal delalloc dance.
663 	 */
664 	if (page_offset(locked_page) >= start &&
665 	    page_offset(locked_page) <= end)
666 		__set_page_dirty_nobuffers(locked_page);
667 		/* unlocked later on in the async handlers */
668 
669 	if (redirty)
670 		extent_range_redirty_for_io(inode, start, end);
671 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672 			 BTRFS_COMPRESS_NONE);
673 	*num_added += 1;
674 
675 	return;
676 
677 free_pages_out:
678 	for (i = 0; i < nr_pages; i++) {
679 		WARN_ON(pages[i]->mapping);
680 		put_page(pages[i]);
681 	}
682 	kfree(pages);
683 }
684 
685 static void free_async_extent_pages(struct async_extent *async_extent)
686 {
687 	int i;
688 
689 	if (!async_extent->pages)
690 		return;
691 
692 	for (i = 0; i < async_extent->nr_pages; i++) {
693 		WARN_ON(async_extent->pages[i]->mapping);
694 		put_page(async_extent->pages[i]);
695 	}
696 	kfree(async_extent->pages);
697 	async_extent->nr_pages = 0;
698 	async_extent->pages = NULL;
699 }
700 
701 /*
702  * phase two of compressed writeback.  This is the ordered portion
703  * of the code, which only gets called in the order the work was
704  * queued.  We walk all the async extents created by compress_file_range
705  * and send them down to the disk.
706  */
707 static noinline void submit_compressed_extents(struct inode *inode,
708 					      struct async_cow *async_cow)
709 {
710 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
711 	struct async_extent *async_extent;
712 	u64 alloc_hint = 0;
713 	struct btrfs_key ins;
714 	struct extent_map *em;
715 	struct btrfs_root *root = BTRFS_I(inode)->root;
716 	struct extent_io_tree *io_tree;
717 	int ret = 0;
718 
719 again:
720 	while (!list_empty(&async_cow->extents)) {
721 		async_extent = list_entry(async_cow->extents.next,
722 					  struct async_extent, list);
723 		list_del(&async_extent->list);
724 
725 		io_tree = &BTRFS_I(inode)->io_tree;
726 
727 retry:
728 		/* did the compression code fall back to uncompressed IO? */
729 		if (!async_extent->pages) {
730 			int page_started = 0;
731 			unsigned long nr_written = 0;
732 
733 			lock_extent(io_tree, async_extent->start,
734 					 async_extent->start +
735 					 async_extent->ram_size - 1);
736 
737 			/* allocate blocks */
738 			ret = cow_file_range(inode, async_cow->locked_page,
739 					     async_extent->start,
740 					     async_extent->start +
741 					     async_extent->ram_size - 1,
742 					     async_extent->start +
743 					     async_extent->ram_size - 1,
744 					     &page_started, &nr_written, 0,
745 					     NULL);
746 
747 			/* JDM XXX */
748 
749 			/*
750 			 * if page_started, cow_file_range inserted an
751 			 * inline extent and took care of all the unlocking
752 			 * and IO for us.  Otherwise, we need to submit
753 			 * all those pages down to the drive.
754 			 */
755 			if (!page_started && !ret)
756 				extent_write_locked_range(io_tree,
757 						  inode, async_extent->start,
758 						  async_extent->start +
759 						  async_extent->ram_size - 1,
760 						  btrfs_get_extent,
761 						  WB_SYNC_ALL);
762 			else if (ret)
763 				unlock_page(async_cow->locked_page);
764 			kfree(async_extent);
765 			cond_resched();
766 			continue;
767 		}
768 
769 		lock_extent(io_tree, async_extent->start,
770 			    async_extent->start + async_extent->ram_size - 1);
771 
772 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
773 					   async_extent->compressed_size,
774 					   async_extent->compressed_size,
775 					   0, alloc_hint, &ins, 1, 1);
776 		if (ret) {
777 			free_async_extent_pages(async_extent);
778 
779 			if (ret == -ENOSPC) {
780 				unlock_extent(io_tree, async_extent->start,
781 					      async_extent->start +
782 					      async_extent->ram_size - 1);
783 
784 				/*
785 				 * we need to redirty the pages if we decide to
786 				 * fallback to uncompressed IO, otherwise we
787 				 * will not submit these pages down to lower
788 				 * layers.
789 				 */
790 				extent_range_redirty_for_io(inode,
791 						async_extent->start,
792 						async_extent->start +
793 						async_extent->ram_size - 1);
794 
795 				goto retry;
796 			}
797 			goto out_free;
798 		}
799 		/*
800 		 * here we're doing allocation and writeback of the
801 		 * compressed pages
802 		 */
803 		em = create_io_em(inode, async_extent->start,
804 				  async_extent->ram_size, /* len */
805 				  async_extent->start, /* orig_start */
806 				  ins.objectid, /* block_start */
807 				  ins.offset, /* block_len */
808 				  ins.offset, /* orig_block_len */
809 				  async_extent->ram_size, /* ram_bytes */
810 				  async_extent->compress_type,
811 				  BTRFS_ORDERED_COMPRESSED);
812 		if (IS_ERR(em))
813 			/* ret value is not necessary due to void function */
814 			goto out_free_reserve;
815 		free_extent_map(em);
816 
817 		ret = btrfs_add_ordered_extent_compress(inode,
818 						async_extent->start,
819 						ins.objectid,
820 						async_extent->ram_size,
821 						ins.offset,
822 						BTRFS_ORDERED_COMPRESSED,
823 						async_extent->compress_type);
824 		if (ret) {
825 			btrfs_drop_extent_cache(BTRFS_I(inode),
826 						async_extent->start,
827 						async_extent->start +
828 						async_extent->ram_size - 1, 0);
829 			goto out_free_reserve;
830 		}
831 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
832 
833 		/*
834 		 * clear dirty, set writeback and unlock the pages.
835 		 */
836 		extent_clear_unlock_delalloc(inode, async_extent->start,
837 				async_extent->start +
838 				async_extent->ram_size - 1,
839 				async_extent->start +
840 				async_extent->ram_size - 1,
841 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
842 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
843 				PAGE_SET_WRITEBACK);
844 		if (btrfs_submit_compressed_write(inode,
845 				    async_extent->start,
846 				    async_extent->ram_size,
847 				    ins.objectid,
848 				    ins.offset, async_extent->pages,
849 				    async_extent->nr_pages)) {
850 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 			struct page *p = async_extent->pages[0];
852 			const u64 start = async_extent->start;
853 			const u64 end = start + async_extent->ram_size - 1;
854 
855 			p->mapping = inode->i_mapping;
856 			tree->ops->writepage_end_io_hook(p, start, end,
857 							 NULL, 0);
858 			p->mapping = NULL;
859 			extent_clear_unlock_delalloc(inode, start, end, end,
860 						     NULL, 0,
861 						     PAGE_END_WRITEBACK |
862 						     PAGE_SET_ERROR);
863 			free_async_extent_pages(async_extent);
864 		}
865 		alloc_hint = ins.objectid + ins.offset;
866 		kfree(async_extent);
867 		cond_resched();
868 	}
869 	return;
870 out_free_reserve:
871 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
872 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
873 out_free:
874 	extent_clear_unlock_delalloc(inode, async_extent->start,
875 				     async_extent->start +
876 				     async_extent->ram_size - 1,
877 				     async_extent->start +
878 				     async_extent->ram_size - 1,
879 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
880 				     EXTENT_DELALLOC_NEW |
881 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
884 				     PAGE_SET_ERROR);
885 	free_async_extent_pages(async_extent);
886 	kfree(async_extent);
887 	goto again;
888 }
889 
890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
891 				      u64 num_bytes)
892 {
893 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 	struct extent_map *em;
895 	u64 alloc_hint = 0;
896 
897 	read_lock(&em_tree->lock);
898 	em = search_extent_mapping(em_tree, start, num_bytes);
899 	if (em) {
900 		/*
901 		 * if block start isn't an actual block number then find the
902 		 * first block in this inode and use that as a hint.  If that
903 		 * block is also bogus then just don't worry about it.
904 		 */
905 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
906 			free_extent_map(em);
907 			em = search_extent_mapping(em_tree, 0, 0);
908 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 				alloc_hint = em->block_start;
910 			if (em)
911 				free_extent_map(em);
912 		} else {
913 			alloc_hint = em->block_start;
914 			free_extent_map(em);
915 		}
916 	}
917 	read_unlock(&em_tree->lock);
918 
919 	return alloc_hint;
920 }
921 
922 /*
923  * when extent_io.c finds a delayed allocation range in the file,
924  * the call backs end up in this code.  The basic idea is to
925  * allocate extents on disk for the range, and create ordered data structs
926  * in ram to track those extents.
927  *
928  * locked_page is the page that writepage had locked already.  We use
929  * it to make sure we don't do extra locks or unlocks.
930  *
931  * *page_started is set to one if we unlock locked_page and do everything
932  * required to start IO on it.  It may be clean and already done with
933  * IO when we return.
934  */
935 static noinline int cow_file_range(struct inode *inode,
936 				   struct page *locked_page,
937 				   u64 start, u64 end, u64 delalloc_end,
938 				   int *page_started, unsigned long *nr_written,
939 				   int unlock, struct btrfs_dedupe_hash *hash)
940 {
941 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
942 	struct btrfs_root *root = BTRFS_I(inode)->root;
943 	u64 alloc_hint = 0;
944 	u64 num_bytes;
945 	unsigned long ram_size;
946 	u64 disk_num_bytes;
947 	u64 cur_alloc_size = 0;
948 	u64 blocksize = fs_info->sectorsize;
949 	struct btrfs_key ins;
950 	struct extent_map *em;
951 	unsigned clear_bits;
952 	unsigned long page_ops;
953 	bool extent_reserved = false;
954 	int ret = 0;
955 
956 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
957 		WARN_ON_ONCE(1);
958 		ret = -EINVAL;
959 		goto out_unlock;
960 	}
961 
962 	num_bytes = ALIGN(end - start + 1, blocksize);
963 	num_bytes = max(blocksize,  num_bytes);
964 	disk_num_bytes = num_bytes;
965 
966 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
967 
968 	if (start == 0) {
969 		/* lets try to make an inline extent */
970 		ret = cow_file_range_inline(root, inode, start, end, 0,
971 					BTRFS_COMPRESS_NONE, NULL);
972 		if (ret == 0) {
973 			extent_clear_unlock_delalloc(inode, start, end,
974 				     delalloc_end, NULL,
975 				     EXTENT_LOCKED | EXTENT_DELALLOC |
976 				     EXTENT_DELALLOC_NEW |
977 				     EXTENT_DEFRAG, PAGE_UNLOCK |
978 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
979 				     PAGE_END_WRITEBACK);
980 			btrfs_free_reserved_data_space_noquota(inode, start,
981 						end - start + 1);
982 			*nr_written = *nr_written +
983 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
984 			*page_started = 1;
985 			goto out;
986 		} else if (ret < 0) {
987 			goto out_unlock;
988 		}
989 	}
990 
991 	BUG_ON(disk_num_bytes >
992 	       btrfs_super_total_bytes(fs_info->super_copy));
993 
994 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
995 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 			start + num_bytes - 1, 0);
997 
998 	while (disk_num_bytes > 0) {
999 		cur_alloc_size = disk_num_bytes;
1000 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1001 					   fs_info->sectorsize, 0, alloc_hint,
1002 					   &ins, 1, 1);
1003 		if (ret < 0)
1004 			goto out_unlock;
1005 		cur_alloc_size = ins.offset;
1006 		extent_reserved = true;
1007 
1008 		ram_size = ins.offset;
1009 		em = create_io_em(inode, start, ins.offset, /* len */
1010 				  start, /* orig_start */
1011 				  ins.objectid, /* block_start */
1012 				  ins.offset, /* block_len */
1013 				  ins.offset, /* orig_block_len */
1014 				  ram_size, /* ram_bytes */
1015 				  BTRFS_COMPRESS_NONE, /* compress_type */
1016 				  BTRFS_ORDERED_REGULAR /* type */);
1017 		if (IS_ERR(em))
1018 			goto out_reserve;
1019 		free_extent_map(em);
1020 
1021 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1022 					       ram_size, cur_alloc_size, 0);
1023 		if (ret)
1024 			goto out_drop_extent_cache;
1025 
1026 		if (root->root_key.objectid ==
1027 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1028 			ret = btrfs_reloc_clone_csums(inode, start,
1029 						      cur_alloc_size);
1030 			/*
1031 			 * Only drop cache here, and process as normal.
1032 			 *
1033 			 * We must not allow extent_clear_unlock_delalloc()
1034 			 * at out_unlock label to free meta of this ordered
1035 			 * extent, as its meta should be freed by
1036 			 * btrfs_finish_ordered_io().
1037 			 *
1038 			 * So we must continue until @start is increased to
1039 			 * skip current ordered extent.
1040 			 */
1041 			if (ret)
1042 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1043 						start + ram_size - 1, 0);
1044 		}
1045 
1046 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1047 
1048 		/* we're not doing compressed IO, don't unlock the first
1049 		 * page (which the caller expects to stay locked), don't
1050 		 * clear any dirty bits and don't set any writeback bits
1051 		 *
1052 		 * Do set the Private2 bit so we know this page was properly
1053 		 * setup for writepage
1054 		 */
1055 		page_ops = unlock ? PAGE_UNLOCK : 0;
1056 		page_ops |= PAGE_SET_PRIVATE2;
1057 
1058 		extent_clear_unlock_delalloc(inode, start,
1059 					     start + ram_size - 1,
1060 					     delalloc_end, locked_page,
1061 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1062 					     page_ops);
1063 		if (disk_num_bytes < cur_alloc_size)
1064 			disk_num_bytes = 0;
1065 		else
1066 			disk_num_bytes -= cur_alloc_size;
1067 		num_bytes -= cur_alloc_size;
1068 		alloc_hint = ins.objectid + ins.offset;
1069 		start += cur_alloc_size;
1070 		extent_reserved = false;
1071 
1072 		/*
1073 		 * btrfs_reloc_clone_csums() error, since start is increased
1074 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1075 		 * free metadata of current ordered extent, we're OK to exit.
1076 		 */
1077 		if (ret)
1078 			goto out_unlock;
1079 	}
1080 out:
1081 	return ret;
1082 
1083 out_drop_extent_cache:
1084 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1085 out_reserve:
1086 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1087 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1088 out_unlock:
1089 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1090 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1091 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1092 		PAGE_END_WRITEBACK;
1093 	/*
1094 	 * If we reserved an extent for our delalloc range (or a subrange) and
1095 	 * failed to create the respective ordered extent, then it means that
1096 	 * when we reserved the extent we decremented the extent's size from
1097 	 * the data space_info's bytes_may_use counter and incremented the
1098 	 * space_info's bytes_reserved counter by the same amount. We must make
1099 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1100 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1101 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1102 	 */
1103 	if (extent_reserved) {
1104 		extent_clear_unlock_delalloc(inode, start,
1105 					     start + cur_alloc_size,
1106 					     start + cur_alloc_size,
1107 					     locked_page,
1108 					     clear_bits,
1109 					     page_ops);
1110 		start += cur_alloc_size;
1111 		if (start >= end)
1112 			goto out;
1113 	}
1114 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1115 				     locked_page,
1116 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1117 				     page_ops);
1118 	goto out;
1119 }
1120 
1121 /*
1122  * work queue call back to started compression on a file and pages
1123  */
1124 static noinline void async_cow_start(struct btrfs_work *work)
1125 {
1126 	struct async_cow *async_cow;
1127 	int num_added = 0;
1128 	async_cow = container_of(work, struct async_cow, work);
1129 
1130 	compress_file_range(async_cow->inode, async_cow->locked_page,
1131 			    async_cow->start, async_cow->end, async_cow,
1132 			    &num_added);
1133 	if (num_added == 0) {
1134 		btrfs_add_delayed_iput(async_cow->inode);
1135 		async_cow->inode = NULL;
1136 	}
1137 }
1138 
1139 /*
1140  * work queue call back to submit previously compressed pages
1141  */
1142 static noinline void async_cow_submit(struct btrfs_work *work)
1143 {
1144 	struct btrfs_fs_info *fs_info;
1145 	struct async_cow *async_cow;
1146 	struct btrfs_root *root;
1147 	unsigned long nr_pages;
1148 
1149 	async_cow = container_of(work, struct async_cow, work);
1150 
1151 	root = async_cow->root;
1152 	fs_info = root->fs_info;
1153 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1154 		PAGE_SHIFT;
1155 
1156 	/*
1157 	 * atomic_sub_return implies a barrier for waitqueue_active
1158 	 */
1159 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1160 	    5 * SZ_1M &&
1161 	    waitqueue_active(&fs_info->async_submit_wait))
1162 		wake_up(&fs_info->async_submit_wait);
1163 
1164 	if (async_cow->inode)
1165 		submit_compressed_extents(async_cow->inode, async_cow);
1166 }
1167 
1168 static noinline void async_cow_free(struct btrfs_work *work)
1169 {
1170 	struct async_cow *async_cow;
1171 	async_cow = container_of(work, struct async_cow, work);
1172 	if (async_cow->inode)
1173 		btrfs_add_delayed_iput(async_cow->inode);
1174 	kfree(async_cow);
1175 }
1176 
1177 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1178 				u64 start, u64 end, int *page_started,
1179 				unsigned long *nr_written)
1180 {
1181 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1182 	struct async_cow *async_cow;
1183 	struct btrfs_root *root = BTRFS_I(inode)->root;
1184 	unsigned long nr_pages;
1185 	u64 cur_end;
1186 
1187 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1188 			 1, 0, NULL, GFP_NOFS);
1189 	while (start < end) {
1190 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1191 		BUG_ON(!async_cow); /* -ENOMEM */
1192 		async_cow->inode = igrab(inode);
1193 		async_cow->root = root;
1194 		async_cow->locked_page = locked_page;
1195 		async_cow->start = start;
1196 
1197 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1198 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1199 			cur_end = end;
1200 		else
1201 			cur_end = min(end, start + SZ_512K - 1);
1202 
1203 		async_cow->end = cur_end;
1204 		INIT_LIST_HEAD(&async_cow->extents);
1205 
1206 		btrfs_init_work(&async_cow->work,
1207 				btrfs_delalloc_helper,
1208 				async_cow_start, async_cow_submit,
1209 				async_cow_free);
1210 
1211 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1212 			PAGE_SHIFT;
1213 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1214 
1215 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1216 
1217 		while (atomic_read(&fs_info->async_submit_draining) &&
1218 		       atomic_read(&fs_info->async_delalloc_pages)) {
1219 			wait_event(fs_info->async_submit_wait,
1220 				   (atomic_read(&fs_info->async_delalloc_pages) ==
1221 				    0));
1222 		}
1223 
1224 		*nr_written += nr_pages;
1225 		start = cur_end + 1;
1226 	}
1227 	*page_started = 1;
1228 	return 0;
1229 }
1230 
1231 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1232 					u64 bytenr, u64 num_bytes)
1233 {
1234 	int ret;
1235 	struct btrfs_ordered_sum *sums;
1236 	LIST_HEAD(list);
1237 
1238 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1239 				       bytenr + num_bytes - 1, &list, 0);
1240 	if (ret == 0 && list_empty(&list))
1241 		return 0;
1242 
1243 	while (!list_empty(&list)) {
1244 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1245 		list_del(&sums->list);
1246 		kfree(sums);
1247 	}
1248 	return 1;
1249 }
1250 
1251 /*
1252  * when nowcow writeback call back.  This checks for snapshots or COW copies
1253  * of the extents that exist in the file, and COWs the file as required.
1254  *
1255  * If no cow copies or snapshots exist, we write directly to the existing
1256  * blocks on disk
1257  */
1258 static noinline int run_delalloc_nocow(struct inode *inode,
1259 				       struct page *locked_page,
1260 			      u64 start, u64 end, int *page_started, int force,
1261 			      unsigned long *nr_written)
1262 {
1263 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1264 	struct btrfs_root *root = BTRFS_I(inode)->root;
1265 	struct extent_buffer *leaf;
1266 	struct btrfs_path *path;
1267 	struct btrfs_file_extent_item *fi;
1268 	struct btrfs_key found_key;
1269 	struct extent_map *em;
1270 	u64 cow_start;
1271 	u64 cur_offset;
1272 	u64 extent_end;
1273 	u64 extent_offset;
1274 	u64 disk_bytenr;
1275 	u64 num_bytes;
1276 	u64 disk_num_bytes;
1277 	u64 ram_bytes;
1278 	int extent_type;
1279 	int ret, err;
1280 	int type;
1281 	int nocow;
1282 	int check_prev = 1;
1283 	bool nolock;
1284 	u64 ino = btrfs_ino(BTRFS_I(inode));
1285 
1286 	path = btrfs_alloc_path();
1287 	if (!path) {
1288 		extent_clear_unlock_delalloc(inode, start, end, end,
1289 					     locked_page,
1290 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1291 					     EXTENT_DO_ACCOUNTING |
1292 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1293 					     PAGE_CLEAR_DIRTY |
1294 					     PAGE_SET_WRITEBACK |
1295 					     PAGE_END_WRITEBACK);
1296 		return -ENOMEM;
1297 	}
1298 
1299 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1300 
1301 	cow_start = (u64)-1;
1302 	cur_offset = start;
1303 	while (1) {
1304 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1305 					       cur_offset, 0);
1306 		if (ret < 0)
1307 			goto error;
1308 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1309 			leaf = path->nodes[0];
1310 			btrfs_item_key_to_cpu(leaf, &found_key,
1311 					      path->slots[0] - 1);
1312 			if (found_key.objectid == ino &&
1313 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1314 				path->slots[0]--;
1315 		}
1316 		check_prev = 0;
1317 next_slot:
1318 		leaf = path->nodes[0];
1319 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1320 			ret = btrfs_next_leaf(root, path);
1321 			if (ret < 0)
1322 				goto error;
1323 			if (ret > 0)
1324 				break;
1325 			leaf = path->nodes[0];
1326 		}
1327 
1328 		nocow = 0;
1329 		disk_bytenr = 0;
1330 		num_bytes = 0;
1331 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1332 
1333 		if (found_key.objectid > ino)
1334 			break;
1335 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1336 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1337 			path->slots[0]++;
1338 			goto next_slot;
1339 		}
1340 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1341 		    found_key.offset > end)
1342 			break;
1343 
1344 		if (found_key.offset > cur_offset) {
1345 			extent_end = found_key.offset;
1346 			extent_type = 0;
1347 			goto out_check;
1348 		}
1349 
1350 		fi = btrfs_item_ptr(leaf, path->slots[0],
1351 				    struct btrfs_file_extent_item);
1352 		extent_type = btrfs_file_extent_type(leaf, fi);
1353 
1354 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1355 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1356 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1357 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1358 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1359 			extent_end = found_key.offset +
1360 				btrfs_file_extent_num_bytes(leaf, fi);
1361 			disk_num_bytes =
1362 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1363 			if (extent_end <= start) {
1364 				path->slots[0]++;
1365 				goto next_slot;
1366 			}
1367 			if (disk_bytenr == 0)
1368 				goto out_check;
1369 			if (btrfs_file_extent_compression(leaf, fi) ||
1370 			    btrfs_file_extent_encryption(leaf, fi) ||
1371 			    btrfs_file_extent_other_encoding(leaf, fi))
1372 				goto out_check;
1373 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1374 				goto out_check;
1375 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1376 				goto out_check;
1377 			if (btrfs_cross_ref_exist(root, ino,
1378 						  found_key.offset -
1379 						  extent_offset, disk_bytenr))
1380 				goto out_check;
1381 			disk_bytenr += extent_offset;
1382 			disk_bytenr += cur_offset - found_key.offset;
1383 			num_bytes = min(end + 1, extent_end) - cur_offset;
1384 			/*
1385 			 * if there are pending snapshots for this root,
1386 			 * we fall into common COW way.
1387 			 */
1388 			if (!nolock) {
1389 				err = btrfs_start_write_no_snapshotting(root);
1390 				if (!err)
1391 					goto out_check;
1392 			}
1393 			/*
1394 			 * force cow if csum exists in the range.
1395 			 * this ensure that csum for a given extent are
1396 			 * either valid or do not exist.
1397 			 */
1398 			if (csum_exist_in_range(fs_info, disk_bytenr,
1399 						num_bytes)) {
1400 				if (!nolock)
1401 					btrfs_end_write_no_snapshotting(root);
1402 				goto out_check;
1403 			}
1404 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1405 				if (!nolock)
1406 					btrfs_end_write_no_snapshotting(root);
1407 				goto out_check;
1408 			}
1409 			nocow = 1;
1410 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1411 			extent_end = found_key.offset +
1412 				btrfs_file_extent_inline_len(leaf,
1413 						     path->slots[0], fi);
1414 			extent_end = ALIGN(extent_end,
1415 					   fs_info->sectorsize);
1416 		} else {
1417 			BUG_ON(1);
1418 		}
1419 out_check:
1420 		if (extent_end <= start) {
1421 			path->slots[0]++;
1422 			if (!nolock && nocow)
1423 				btrfs_end_write_no_snapshotting(root);
1424 			if (nocow)
1425 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1426 			goto next_slot;
1427 		}
1428 		if (!nocow) {
1429 			if (cow_start == (u64)-1)
1430 				cow_start = cur_offset;
1431 			cur_offset = extent_end;
1432 			if (cur_offset > end)
1433 				break;
1434 			path->slots[0]++;
1435 			goto next_slot;
1436 		}
1437 
1438 		btrfs_release_path(path);
1439 		if (cow_start != (u64)-1) {
1440 			ret = cow_file_range(inode, locked_page,
1441 					     cow_start, found_key.offset - 1,
1442 					     end, page_started, nr_written, 1,
1443 					     NULL);
1444 			if (ret) {
1445 				if (!nolock && nocow)
1446 					btrfs_end_write_no_snapshotting(root);
1447 				if (nocow)
1448 					btrfs_dec_nocow_writers(fs_info,
1449 								disk_bytenr);
1450 				goto error;
1451 			}
1452 			cow_start = (u64)-1;
1453 		}
1454 
1455 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1456 			u64 orig_start = found_key.offset - extent_offset;
1457 
1458 			em = create_io_em(inode, cur_offset, num_bytes,
1459 					  orig_start,
1460 					  disk_bytenr, /* block_start */
1461 					  num_bytes, /* block_len */
1462 					  disk_num_bytes, /* orig_block_len */
1463 					  ram_bytes, BTRFS_COMPRESS_NONE,
1464 					  BTRFS_ORDERED_PREALLOC);
1465 			if (IS_ERR(em)) {
1466 				if (!nolock && nocow)
1467 					btrfs_end_write_no_snapshotting(root);
1468 				if (nocow)
1469 					btrfs_dec_nocow_writers(fs_info,
1470 								disk_bytenr);
1471 				ret = PTR_ERR(em);
1472 				goto error;
1473 			}
1474 			free_extent_map(em);
1475 		}
1476 
1477 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1478 			type = BTRFS_ORDERED_PREALLOC;
1479 		} else {
1480 			type = BTRFS_ORDERED_NOCOW;
1481 		}
1482 
1483 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1484 					       num_bytes, num_bytes, type);
1485 		if (nocow)
1486 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1487 		BUG_ON(ret); /* -ENOMEM */
1488 
1489 		if (root->root_key.objectid ==
1490 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1491 			/*
1492 			 * Error handled later, as we must prevent
1493 			 * extent_clear_unlock_delalloc() in error handler
1494 			 * from freeing metadata of created ordered extent.
1495 			 */
1496 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1497 						      num_bytes);
1498 
1499 		extent_clear_unlock_delalloc(inode, cur_offset,
1500 					     cur_offset + num_bytes - 1, end,
1501 					     locked_page, EXTENT_LOCKED |
1502 					     EXTENT_DELALLOC |
1503 					     EXTENT_CLEAR_DATA_RESV,
1504 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1505 
1506 		if (!nolock && nocow)
1507 			btrfs_end_write_no_snapshotting(root);
1508 		cur_offset = extent_end;
1509 
1510 		/*
1511 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1512 		 * handler, as metadata for created ordered extent will only
1513 		 * be freed by btrfs_finish_ordered_io().
1514 		 */
1515 		if (ret)
1516 			goto error;
1517 		if (cur_offset > end)
1518 			break;
1519 	}
1520 	btrfs_release_path(path);
1521 
1522 	if (cur_offset <= end && cow_start == (u64)-1) {
1523 		cow_start = cur_offset;
1524 		cur_offset = end;
1525 	}
1526 
1527 	if (cow_start != (u64)-1) {
1528 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1529 				     page_started, nr_written, 1, NULL);
1530 		if (ret)
1531 			goto error;
1532 	}
1533 
1534 error:
1535 	if (ret && cur_offset < end)
1536 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1537 					     locked_page, EXTENT_LOCKED |
1538 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1539 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1540 					     PAGE_CLEAR_DIRTY |
1541 					     PAGE_SET_WRITEBACK |
1542 					     PAGE_END_WRITEBACK);
1543 	btrfs_free_path(path);
1544 	return ret;
1545 }
1546 
1547 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1548 {
1549 
1550 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1551 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1552 		return 0;
1553 
1554 	/*
1555 	 * @defrag_bytes is a hint value, no spinlock held here,
1556 	 * if is not zero, it means the file is defragging.
1557 	 * Force cow if given extent needs to be defragged.
1558 	 */
1559 	if (BTRFS_I(inode)->defrag_bytes &&
1560 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1561 			   EXTENT_DEFRAG, 0, NULL))
1562 		return 1;
1563 
1564 	return 0;
1565 }
1566 
1567 /*
1568  * extent_io.c call back to do delayed allocation processing
1569  */
1570 static int run_delalloc_range(void *private_data, struct page *locked_page,
1571 			      u64 start, u64 end, int *page_started,
1572 			      unsigned long *nr_written)
1573 {
1574 	struct inode *inode = private_data;
1575 	int ret;
1576 	int force_cow = need_force_cow(inode, start, end);
1577 
1578 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1579 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1580 					 page_started, 1, nr_written);
1581 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1582 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1583 					 page_started, 0, nr_written);
1584 	} else if (!inode_need_compress(inode, start, end)) {
1585 		ret = cow_file_range(inode, locked_page, start, end, end,
1586 				      page_started, nr_written, 1, NULL);
1587 	} else {
1588 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1589 			&BTRFS_I(inode)->runtime_flags);
1590 		ret = cow_file_range_async(inode, locked_page, start, end,
1591 					   page_started, nr_written);
1592 	}
1593 	if (ret)
1594 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1595 	return ret;
1596 }
1597 
1598 static void btrfs_split_extent_hook(void *private_data,
1599 				    struct extent_state *orig, u64 split)
1600 {
1601 	struct inode *inode = private_data;
1602 	u64 size;
1603 
1604 	/* not delalloc, ignore it */
1605 	if (!(orig->state & EXTENT_DELALLOC))
1606 		return;
1607 
1608 	size = orig->end - orig->start + 1;
1609 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1610 		u32 num_extents;
1611 		u64 new_size;
1612 
1613 		/*
1614 		 * See the explanation in btrfs_merge_extent_hook, the same
1615 		 * applies here, just in reverse.
1616 		 */
1617 		new_size = orig->end - split + 1;
1618 		num_extents = count_max_extents(new_size);
1619 		new_size = split - orig->start;
1620 		num_extents += count_max_extents(new_size);
1621 		if (count_max_extents(size) >= num_extents)
1622 			return;
1623 	}
1624 
1625 	spin_lock(&BTRFS_I(inode)->lock);
1626 	BTRFS_I(inode)->outstanding_extents++;
1627 	spin_unlock(&BTRFS_I(inode)->lock);
1628 }
1629 
1630 /*
1631  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1632  * extents so we can keep track of new extents that are just merged onto old
1633  * extents, such as when we are doing sequential writes, so we can properly
1634  * account for the metadata space we'll need.
1635  */
1636 static void btrfs_merge_extent_hook(void *private_data,
1637 				    struct extent_state *new,
1638 				    struct extent_state *other)
1639 {
1640 	struct inode *inode = private_data;
1641 	u64 new_size, old_size;
1642 	u32 num_extents;
1643 
1644 	/* not delalloc, ignore it */
1645 	if (!(other->state & EXTENT_DELALLOC))
1646 		return;
1647 
1648 	if (new->start > other->start)
1649 		new_size = new->end - other->start + 1;
1650 	else
1651 		new_size = other->end - new->start + 1;
1652 
1653 	/* we're not bigger than the max, unreserve the space and go */
1654 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1655 		spin_lock(&BTRFS_I(inode)->lock);
1656 		BTRFS_I(inode)->outstanding_extents--;
1657 		spin_unlock(&BTRFS_I(inode)->lock);
1658 		return;
1659 	}
1660 
1661 	/*
1662 	 * We have to add up either side to figure out how many extents were
1663 	 * accounted for before we merged into one big extent.  If the number of
1664 	 * extents we accounted for is <= the amount we need for the new range
1665 	 * then we can return, otherwise drop.  Think of it like this
1666 	 *
1667 	 * [ 4k][MAX_SIZE]
1668 	 *
1669 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1670 	 * need 2 outstanding extents, on one side we have 1 and the other side
1671 	 * we have 1 so they are == and we can return.  But in this case
1672 	 *
1673 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1674 	 *
1675 	 * Each range on their own accounts for 2 extents, but merged together
1676 	 * they are only 3 extents worth of accounting, so we need to drop in
1677 	 * this case.
1678 	 */
1679 	old_size = other->end - other->start + 1;
1680 	num_extents = count_max_extents(old_size);
1681 	old_size = new->end - new->start + 1;
1682 	num_extents += count_max_extents(old_size);
1683 	if (count_max_extents(new_size) >= num_extents)
1684 		return;
1685 
1686 	spin_lock(&BTRFS_I(inode)->lock);
1687 	BTRFS_I(inode)->outstanding_extents--;
1688 	spin_unlock(&BTRFS_I(inode)->lock);
1689 }
1690 
1691 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1692 				      struct inode *inode)
1693 {
1694 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1695 
1696 	spin_lock(&root->delalloc_lock);
1697 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1698 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1699 			      &root->delalloc_inodes);
1700 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 			&BTRFS_I(inode)->runtime_flags);
1702 		root->nr_delalloc_inodes++;
1703 		if (root->nr_delalloc_inodes == 1) {
1704 			spin_lock(&fs_info->delalloc_root_lock);
1705 			BUG_ON(!list_empty(&root->delalloc_root));
1706 			list_add_tail(&root->delalloc_root,
1707 				      &fs_info->delalloc_roots);
1708 			spin_unlock(&fs_info->delalloc_root_lock);
1709 		}
1710 	}
1711 	spin_unlock(&root->delalloc_lock);
1712 }
1713 
1714 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1715 				     struct btrfs_inode *inode)
1716 {
1717 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1718 
1719 	spin_lock(&root->delalloc_lock);
1720 	if (!list_empty(&inode->delalloc_inodes)) {
1721 		list_del_init(&inode->delalloc_inodes);
1722 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1723 			  &inode->runtime_flags);
1724 		root->nr_delalloc_inodes--;
1725 		if (!root->nr_delalloc_inodes) {
1726 			spin_lock(&fs_info->delalloc_root_lock);
1727 			BUG_ON(list_empty(&root->delalloc_root));
1728 			list_del_init(&root->delalloc_root);
1729 			spin_unlock(&fs_info->delalloc_root_lock);
1730 		}
1731 	}
1732 	spin_unlock(&root->delalloc_lock);
1733 }
1734 
1735 /*
1736  * extent_io.c set_bit_hook, used to track delayed allocation
1737  * bytes in this file, and to maintain the list of inodes that
1738  * have pending delalloc work to be done.
1739  */
1740 static void btrfs_set_bit_hook(void *private_data,
1741 			       struct extent_state *state, unsigned *bits)
1742 {
1743 	struct inode *inode = private_data;
1744 
1745 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1746 
1747 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1748 		WARN_ON(1);
1749 	/*
1750 	 * set_bit and clear bit hooks normally require _irqsave/restore
1751 	 * but in this case, we are only testing for the DELALLOC
1752 	 * bit, which is only set or cleared with irqs on
1753 	 */
1754 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1755 		struct btrfs_root *root = BTRFS_I(inode)->root;
1756 		u64 len = state->end + 1 - state->start;
1757 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1758 
1759 		if (*bits & EXTENT_FIRST_DELALLOC) {
1760 			*bits &= ~EXTENT_FIRST_DELALLOC;
1761 		} else {
1762 			spin_lock(&BTRFS_I(inode)->lock);
1763 			BTRFS_I(inode)->outstanding_extents++;
1764 			spin_unlock(&BTRFS_I(inode)->lock);
1765 		}
1766 
1767 		/* For sanity tests */
1768 		if (btrfs_is_testing(fs_info))
1769 			return;
1770 
1771 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1772 					 fs_info->delalloc_batch);
1773 		spin_lock(&BTRFS_I(inode)->lock);
1774 		BTRFS_I(inode)->delalloc_bytes += len;
1775 		if (*bits & EXTENT_DEFRAG)
1776 			BTRFS_I(inode)->defrag_bytes += len;
1777 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1778 					 &BTRFS_I(inode)->runtime_flags))
1779 			btrfs_add_delalloc_inodes(root, inode);
1780 		spin_unlock(&BTRFS_I(inode)->lock);
1781 	}
1782 
1783 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1784 	    (*bits & EXTENT_DELALLOC_NEW)) {
1785 		spin_lock(&BTRFS_I(inode)->lock);
1786 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1787 			state->start;
1788 		spin_unlock(&BTRFS_I(inode)->lock);
1789 	}
1790 }
1791 
1792 /*
1793  * extent_io.c clear_bit_hook, see set_bit_hook for why
1794  */
1795 static void btrfs_clear_bit_hook(void *private_data,
1796 				 struct extent_state *state,
1797 				 unsigned *bits)
1798 {
1799 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1800 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1801 	u64 len = state->end + 1 - state->start;
1802 	u32 num_extents = count_max_extents(len);
1803 
1804 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1805 		spin_lock(&inode->lock);
1806 		inode->defrag_bytes -= len;
1807 		spin_unlock(&inode->lock);
1808 	}
1809 
1810 	/*
1811 	 * set_bit and clear bit hooks normally require _irqsave/restore
1812 	 * but in this case, we are only testing for the DELALLOC
1813 	 * bit, which is only set or cleared with irqs on
1814 	 */
1815 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1816 		struct btrfs_root *root = inode->root;
1817 		bool do_list = !btrfs_is_free_space_inode(inode);
1818 
1819 		if (*bits & EXTENT_FIRST_DELALLOC) {
1820 			*bits &= ~EXTENT_FIRST_DELALLOC;
1821 		} else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1822 			spin_lock(&inode->lock);
1823 			inode->outstanding_extents -= num_extents;
1824 			spin_unlock(&inode->lock);
1825 		}
1826 
1827 		/*
1828 		 * We don't reserve metadata space for space cache inodes so we
1829 		 * don't need to call dellalloc_release_metadata if there is an
1830 		 * error.
1831 		 */
1832 		if (*bits & EXTENT_CLEAR_META_RESV &&
1833 		    root != fs_info->tree_root)
1834 			btrfs_delalloc_release_metadata(inode, len);
1835 
1836 		/* For sanity tests. */
1837 		if (btrfs_is_testing(fs_info))
1838 			return;
1839 
1840 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1841 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1842 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1843 			btrfs_free_reserved_data_space_noquota(
1844 					&inode->vfs_inode,
1845 					state->start, len);
1846 
1847 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1848 					 fs_info->delalloc_batch);
1849 		spin_lock(&inode->lock);
1850 		inode->delalloc_bytes -= len;
1851 		if (do_list && inode->delalloc_bytes == 0 &&
1852 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1853 					&inode->runtime_flags))
1854 			btrfs_del_delalloc_inode(root, inode);
1855 		spin_unlock(&inode->lock);
1856 	}
1857 
1858 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1859 	    (*bits & EXTENT_DELALLOC_NEW)) {
1860 		spin_lock(&inode->lock);
1861 		ASSERT(inode->new_delalloc_bytes >= len);
1862 		inode->new_delalloc_bytes -= len;
1863 		spin_unlock(&inode->lock);
1864 	}
1865 }
1866 
1867 /*
1868  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1869  * we don't create bios that span stripes or chunks
1870  *
1871  * return 1 if page cannot be merged to bio
1872  * return 0 if page can be merged to bio
1873  * return error otherwise
1874  */
1875 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1876 			 size_t size, struct bio *bio,
1877 			 unsigned long bio_flags)
1878 {
1879 	struct inode *inode = page->mapping->host;
1880 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1881 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1882 	u64 length = 0;
1883 	u64 map_length;
1884 	int ret;
1885 
1886 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1887 		return 0;
1888 
1889 	length = bio->bi_iter.bi_size;
1890 	map_length = length;
1891 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1892 			      NULL, 0);
1893 	if (ret < 0)
1894 		return ret;
1895 	if (map_length < length + size)
1896 		return 1;
1897 	return 0;
1898 }
1899 
1900 /*
1901  * in order to insert checksums into the metadata in large chunks,
1902  * we wait until bio submission time.   All the pages in the bio are
1903  * checksummed and sums are attached onto the ordered extent record.
1904  *
1905  * At IO completion time the cums attached on the ordered extent record
1906  * are inserted into the btree
1907  */
1908 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
1909 				    int mirror_num, unsigned long bio_flags,
1910 				    u64 bio_offset)
1911 {
1912 	struct inode *inode = private_data;
1913 	blk_status_t ret = 0;
1914 
1915 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1916 	BUG_ON(ret); /* -ENOMEM */
1917 	return 0;
1918 }
1919 
1920 /*
1921  * in order to insert checksums into the metadata in large chunks,
1922  * we wait until bio submission time.   All the pages in the bio are
1923  * checksummed and sums are attached onto the ordered extent record.
1924  *
1925  * At IO completion time the cums attached on the ordered extent record
1926  * are inserted into the btree
1927  */
1928 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
1929 			  int mirror_num, unsigned long bio_flags,
1930 			  u64 bio_offset)
1931 {
1932 	struct inode *inode = private_data;
1933 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1934 	blk_status_t ret;
1935 
1936 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1937 	if (ret) {
1938 		bio->bi_status = ret;
1939 		bio_endio(bio);
1940 	}
1941 	return ret;
1942 }
1943 
1944 /*
1945  * extent_io.c submission hook. This does the right thing for csum calculation
1946  * on write, or reading the csums from the tree before a read
1947  */
1948 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1949 				 int mirror_num, unsigned long bio_flags,
1950 				 u64 bio_offset)
1951 {
1952 	struct inode *inode = private_data;
1953 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1954 	struct btrfs_root *root = BTRFS_I(inode)->root;
1955 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1956 	blk_status_t ret = 0;
1957 	int skip_sum;
1958 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1959 
1960 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1961 
1962 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1963 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1964 
1965 	if (bio_op(bio) != REQ_OP_WRITE) {
1966 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1967 		if (ret)
1968 			goto out;
1969 
1970 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1971 			ret = btrfs_submit_compressed_read(inode, bio,
1972 							   mirror_num,
1973 							   bio_flags);
1974 			goto out;
1975 		} else if (!skip_sum) {
1976 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1977 			if (ret)
1978 				goto out;
1979 		}
1980 		goto mapit;
1981 	} else if (async && !skip_sum) {
1982 		/* csum items have already been cloned */
1983 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1984 			goto mapit;
1985 		/* we're doing a write, do the async checksumming */
1986 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1987 					  bio_offset, inode,
1988 					  __btrfs_submit_bio_start,
1989 					  __btrfs_submit_bio_done);
1990 		goto out;
1991 	} else if (!skip_sum) {
1992 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1993 		if (ret)
1994 			goto out;
1995 	}
1996 
1997 mapit:
1998 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1999 
2000 out:
2001 	if (ret) {
2002 		bio->bi_status = ret;
2003 		bio_endio(bio);
2004 	}
2005 	return ret;
2006 }
2007 
2008 /*
2009  * given a list of ordered sums record them in the inode.  This happens
2010  * at IO completion time based on sums calculated at bio submission time.
2011  */
2012 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2013 			     struct inode *inode, struct list_head *list)
2014 {
2015 	struct btrfs_ordered_sum *sum;
2016 
2017 	list_for_each_entry(sum, list, list) {
2018 		trans->adding_csums = 1;
2019 		btrfs_csum_file_blocks(trans,
2020 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2021 		trans->adding_csums = 0;
2022 	}
2023 	return 0;
2024 }
2025 
2026 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2027 			      struct extent_state **cached_state, int dedupe)
2028 {
2029 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2030 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2031 				   cached_state);
2032 }
2033 
2034 /* see btrfs_writepage_start_hook for details on why this is required */
2035 struct btrfs_writepage_fixup {
2036 	struct page *page;
2037 	struct btrfs_work work;
2038 };
2039 
2040 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2041 {
2042 	struct btrfs_writepage_fixup *fixup;
2043 	struct btrfs_ordered_extent *ordered;
2044 	struct extent_state *cached_state = NULL;
2045 	struct extent_changeset *data_reserved = NULL;
2046 	struct page *page;
2047 	struct inode *inode;
2048 	u64 page_start;
2049 	u64 page_end;
2050 	int ret;
2051 
2052 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2053 	page = fixup->page;
2054 again:
2055 	lock_page(page);
2056 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2057 		ClearPageChecked(page);
2058 		goto out_page;
2059 	}
2060 
2061 	inode = page->mapping->host;
2062 	page_start = page_offset(page);
2063 	page_end = page_offset(page) + PAGE_SIZE - 1;
2064 
2065 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2066 			 &cached_state);
2067 
2068 	/* already ordered? We're done */
2069 	if (PagePrivate2(page))
2070 		goto out;
2071 
2072 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2073 					PAGE_SIZE);
2074 	if (ordered) {
2075 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2076 				     page_end, &cached_state, GFP_NOFS);
2077 		unlock_page(page);
2078 		btrfs_start_ordered_extent(inode, ordered, 1);
2079 		btrfs_put_ordered_extent(ordered);
2080 		goto again;
2081 	}
2082 
2083 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2084 					   PAGE_SIZE);
2085 	if (ret) {
2086 		mapping_set_error(page->mapping, ret);
2087 		end_extent_writepage(page, ret, page_start, page_end);
2088 		ClearPageChecked(page);
2089 		goto out;
2090 	 }
2091 
2092 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2093 				  0);
2094 	ClearPageChecked(page);
2095 	set_page_dirty(page);
2096 out:
2097 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2098 			     &cached_state, GFP_NOFS);
2099 out_page:
2100 	unlock_page(page);
2101 	put_page(page);
2102 	kfree(fixup);
2103 	extent_changeset_free(data_reserved);
2104 }
2105 
2106 /*
2107  * There are a few paths in the higher layers of the kernel that directly
2108  * set the page dirty bit without asking the filesystem if it is a
2109  * good idea.  This causes problems because we want to make sure COW
2110  * properly happens and the data=ordered rules are followed.
2111  *
2112  * In our case any range that doesn't have the ORDERED bit set
2113  * hasn't been properly setup for IO.  We kick off an async process
2114  * to fix it up.  The async helper will wait for ordered extents, set
2115  * the delalloc bit and make it safe to write the page.
2116  */
2117 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2118 {
2119 	struct inode *inode = page->mapping->host;
2120 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2121 	struct btrfs_writepage_fixup *fixup;
2122 
2123 	/* this page is properly in the ordered list */
2124 	if (TestClearPagePrivate2(page))
2125 		return 0;
2126 
2127 	if (PageChecked(page))
2128 		return -EAGAIN;
2129 
2130 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2131 	if (!fixup)
2132 		return -EAGAIN;
2133 
2134 	SetPageChecked(page);
2135 	get_page(page);
2136 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2137 			btrfs_writepage_fixup_worker, NULL, NULL);
2138 	fixup->page = page;
2139 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2140 	return -EBUSY;
2141 }
2142 
2143 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2144 				       struct inode *inode, u64 file_pos,
2145 				       u64 disk_bytenr, u64 disk_num_bytes,
2146 				       u64 num_bytes, u64 ram_bytes,
2147 				       u8 compression, u8 encryption,
2148 				       u16 other_encoding, int extent_type)
2149 {
2150 	struct btrfs_root *root = BTRFS_I(inode)->root;
2151 	struct btrfs_file_extent_item *fi;
2152 	struct btrfs_path *path;
2153 	struct extent_buffer *leaf;
2154 	struct btrfs_key ins;
2155 	u64 qg_released;
2156 	int extent_inserted = 0;
2157 	int ret;
2158 
2159 	path = btrfs_alloc_path();
2160 	if (!path)
2161 		return -ENOMEM;
2162 
2163 	/*
2164 	 * we may be replacing one extent in the tree with another.
2165 	 * The new extent is pinned in the extent map, and we don't want
2166 	 * to drop it from the cache until it is completely in the btree.
2167 	 *
2168 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2169 	 * the caller is expected to unpin it and allow it to be merged
2170 	 * with the others.
2171 	 */
2172 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2173 				   file_pos + num_bytes, NULL, 0,
2174 				   1, sizeof(*fi), &extent_inserted);
2175 	if (ret)
2176 		goto out;
2177 
2178 	if (!extent_inserted) {
2179 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2180 		ins.offset = file_pos;
2181 		ins.type = BTRFS_EXTENT_DATA_KEY;
2182 
2183 		path->leave_spinning = 1;
2184 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2185 					      sizeof(*fi));
2186 		if (ret)
2187 			goto out;
2188 	}
2189 	leaf = path->nodes[0];
2190 	fi = btrfs_item_ptr(leaf, path->slots[0],
2191 			    struct btrfs_file_extent_item);
2192 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2193 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2194 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2195 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2196 	btrfs_set_file_extent_offset(leaf, fi, 0);
2197 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2198 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2199 	btrfs_set_file_extent_compression(leaf, fi, compression);
2200 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2201 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2202 
2203 	btrfs_mark_buffer_dirty(leaf);
2204 	btrfs_release_path(path);
2205 
2206 	inode_add_bytes(inode, num_bytes);
2207 
2208 	ins.objectid = disk_bytenr;
2209 	ins.offset = disk_num_bytes;
2210 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2211 
2212 	/*
2213 	 * Release the reserved range from inode dirty range map, as it is
2214 	 * already moved into delayed_ref_head
2215 	 */
2216 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2217 	if (ret < 0)
2218 		goto out;
2219 	qg_released = ret;
2220 	ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2221 			btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins);
2222 out:
2223 	btrfs_free_path(path);
2224 
2225 	return ret;
2226 }
2227 
2228 /* snapshot-aware defrag */
2229 struct sa_defrag_extent_backref {
2230 	struct rb_node node;
2231 	struct old_sa_defrag_extent *old;
2232 	u64 root_id;
2233 	u64 inum;
2234 	u64 file_pos;
2235 	u64 extent_offset;
2236 	u64 num_bytes;
2237 	u64 generation;
2238 };
2239 
2240 struct old_sa_defrag_extent {
2241 	struct list_head list;
2242 	struct new_sa_defrag_extent *new;
2243 
2244 	u64 extent_offset;
2245 	u64 bytenr;
2246 	u64 offset;
2247 	u64 len;
2248 	int count;
2249 };
2250 
2251 struct new_sa_defrag_extent {
2252 	struct rb_root root;
2253 	struct list_head head;
2254 	struct btrfs_path *path;
2255 	struct inode *inode;
2256 	u64 file_pos;
2257 	u64 len;
2258 	u64 bytenr;
2259 	u64 disk_len;
2260 	u8 compress_type;
2261 };
2262 
2263 static int backref_comp(struct sa_defrag_extent_backref *b1,
2264 			struct sa_defrag_extent_backref *b2)
2265 {
2266 	if (b1->root_id < b2->root_id)
2267 		return -1;
2268 	else if (b1->root_id > b2->root_id)
2269 		return 1;
2270 
2271 	if (b1->inum < b2->inum)
2272 		return -1;
2273 	else if (b1->inum > b2->inum)
2274 		return 1;
2275 
2276 	if (b1->file_pos < b2->file_pos)
2277 		return -1;
2278 	else if (b1->file_pos > b2->file_pos)
2279 		return 1;
2280 
2281 	/*
2282 	 * [------------------------------] ===> (a range of space)
2283 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2284 	 * |<---------------------------->| ===> (fs/file tree B)
2285 	 *
2286 	 * A range of space can refer to two file extents in one tree while
2287 	 * refer to only one file extent in another tree.
2288 	 *
2289 	 * So we may process a disk offset more than one time(two extents in A)
2290 	 * and locate at the same extent(one extent in B), then insert two same
2291 	 * backrefs(both refer to the extent in B).
2292 	 */
2293 	return 0;
2294 }
2295 
2296 static void backref_insert(struct rb_root *root,
2297 			   struct sa_defrag_extent_backref *backref)
2298 {
2299 	struct rb_node **p = &root->rb_node;
2300 	struct rb_node *parent = NULL;
2301 	struct sa_defrag_extent_backref *entry;
2302 	int ret;
2303 
2304 	while (*p) {
2305 		parent = *p;
2306 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2307 
2308 		ret = backref_comp(backref, entry);
2309 		if (ret < 0)
2310 			p = &(*p)->rb_left;
2311 		else
2312 			p = &(*p)->rb_right;
2313 	}
2314 
2315 	rb_link_node(&backref->node, parent, p);
2316 	rb_insert_color(&backref->node, root);
2317 }
2318 
2319 /*
2320  * Note the backref might has changed, and in this case we just return 0.
2321  */
2322 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2323 				       void *ctx)
2324 {
2325 	struct btrfs_file_extent_item *extent;
2326 	struct old_sa_defrag_extent *old = ctx;
2327 	struct new_sa_defrag_extent *new = old->new;
2328 	struct btrfs_path *path = new->path;
2329 	struct btrfs_key key;
2330 	struct btrfs_root *root;
2331 	struct sa_defrag_extent_backref *backref;
2332 	struct extent_buffer *leaf;
2333 	struct inode *inode = new->inode;
2334 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2335 	int slot;
2336 	int ret;
2337 	u64 extent_offset;
2338 	u64 num_bytes;
2339 
2340 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2341 	    inum == btrfs_ino(BTRFS_I(inode)))
2342 		return 0;
2343 
2344 	key.objectid = root_id;
2345 	key.type = BTRFS_ROOT_ITEM_KEY;
2346 	key.offset = (u64)-1;
2347 
2348 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2349 	if (IS_ERR(root)) {
2350 		if (PTR_ERR(root) == -ENOENT)
2351 			return 0;
2352 		WARN_ON(1);
2353 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2354 			 inum, offset, root_id);
2355 		return PTR_ERR(root);
2356 	}
2357 
2358 	key.objectid = inum;
2359 	key.type = BTRFS_EXTENT_DATA_KEY;
2360 	if (offset > (u64)-1 << 32)
2361 		key.offset = 0;
2362 	else
2363 		key.offset = offset;
2364 
2365 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2366 	if (WARN_ON(ret < 0))
2367 		return ret;
2368 	ret = 0;
2369 
2370 	while (1) {
2371 		cond_resched();
2372 
2373 		leaf = path->nodes[0];
2374 		slot = path->slots[0];
2375 
2376 		if (slot >= btrfs_header_nritems(leaf)) {
2377 			ret = btrfs_next_leaf(root, path);
2378 			if (ret < 0) {
2379 				goto out;
2380 			} else if (ret > 0) {
2381 				ret = 0;
2382 				goto out;
2383 			}
2384 			continue;
2385 		}
2386 
2387 		path->slots[0]++;
2388 
2389 		btrfs_item_key_to_cpu(leaf, &key, slot);
2390 
2391 		if (key.objectid > inum)
2392 			goto out;
2393 
2394 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2395 			continue;
2396 
2397 		extent = btrfs_item_ptr(leaf, slot,
2398 					struct btrfs_file_extent_item);
2399 
2400 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2401 			continue;
2402 
2403 		/*
2404 		 * 'offset' refers to the exact key.offset,
2405 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2406 		 * (key.offset - extent_offset).
2407 		 */
2408 		if (key.offset != offset)
2409 			continue;
2410 
2411 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2412 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2413 
2414 		if (extent_offset >= old->extent_offset + old->offset +
2415 		    old->len || extent_offset + num_bytes <=
2416 		    old->extent_offset + old->offset)
2417 			continue;
2418 		break;
2419 	}
2420 
2421 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2422 	if (!backref) {
2423 		ret = -ENOENT;
2424 		goto out;
2425 	}
2426 
2427 	backref->root_id = root_id;
2428 	backref->inum = inum;
2429 	backref->file_pos = offset;
2430 	backref->num_bytes = num_bytes;
2431 	backref->extent_offset = extent_offset;
2432 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2433 	backref->old = old;
2434 	backref_insert(&new->root, backref);
2435 	old->count++;
2436 out:
2437 	btrfs_release_path(path);
2438 	WARN_ON(ret);
2439 	return ret;
2440 }
2441 
2442 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2443 				   struct new_sa_defrag_extent *new)
2444 {
2445 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2446 	struct old_sa_defrag_extent *old, *tmp;
2447 	int ret;
2448 
2449 	new->path = path;
2450 
2451 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2452 		ret = iterate_inodes_from_logical(old->bytenr +
2453 						  old->extent_offset, fs_info,
2454 						  path, record_one_backref,
2455 						  old);
2456 		if (ret < 0 && ret != -ENOENT)
2457 			return false;
2458 
2459 		/* no backref to be processed for this extent */
2460 		if (!old->count) {
2461 			list_del(&old->list);
2462 			kfree(old);
2463 		}
2464 	}
2465 
2466 	if (list_empty(&new->head))
2467 		return false;
2468 
2469 	return true;
2470 }
2471 
2472 static int relink_is_mergable(struct extent_buffer *leaf,
2473 			      struct btrfs_file_extent_item *fi,
2474 			      struct new_sa_defrag_extent *new)
2475 {
2476 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2477 		return 0;
2478 
2479 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2480 		return 0;
2481 
2482 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2483 		return 0;
2484 
2485 	if (btrfs_file_extent_encryption(leaf, fi) ||
2486 	    btrfs_file_extent_other_encoding(leaf, fi))
2487 		return 0;
2488 
2489 	return 1;
2490 }
2491 
2492 /*
2493  * Note the backref might has changed, and in this case we just return 0.
2494  */
2495 static noinline int relink_extent_backref(struct btrfs_path *path,
2496 				 struct sa_defrag_extent_backref *prev,
2497 				 struct sa_defrag_extent_backref *backref)
2498 {
2499 	struct btrfs_file_extent_item *extent;
2500 	struct btrfs_file_extent_item *item;
2501 	struct btrfs_ordered_extent *ordered;
2502 	struct btrfs_trans_handle *trans;
2503 	struct btrfs_root *root;
2504 	struct btrfs_key key;
2505 	struct extent_buffer *leaf;
2506 	struct old_sa_defrag_extent *old = backref->old;
2507 	struct new_sa_defrag_extent *new = old->new;
2508 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2509 	struct inode *inode;
2510 	struct extent_state *cached = NULL;
2511 	int ret = 0;
2512 	u64 start;
2513 	u64 len;
2514 	u64 lock_start;
2515 	u64 lock_end;
2516 	bool merge = false;
2517 	int index;
2518 
2519 	if (prev && prev->root_id == backref->root_id &&
2520 	    prev->inum == backref->inum &&
2521 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2522 		merge = true;
2523 
2524 	/* step 1: get root */
2525 	key.objectid = backref->root_id;
2526 	key.type = BTRFS_ROOT_ITEM_KEY;
2527 	key.offset = (u64)-1;
2528 
2529 	index = srcu_read_lock(&fs_info->subvol_srcu);
2530 
2531 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2532 	if (IS_ERR(root)) {
2533 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2534 		if (PTR_ERR(root) == -ENOENT)
2535 			return 0;
2536 		return PTR_ERR(root);
2537 	}
2538 
2539 	if (btrfs_root_readonly(root)) {
2540 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2541 		return 0;
2542 	}
2543 
2544 	/* step 2: get inode */
2545 	key.objectid = backref->inum;
2546 	key.type = BTRFS_INODE_ITEM_KEY;
2547 	key.offset = 0;
2548 
2549 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2550 	if (IS_ERR(inode)) {
2551 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2552 		return 0;
2553 	}
2554 
2555 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2556 
2557 	/* step 3: relink backref */
2558 	lock_start = backref->file_pos;
2559 	lock_end = backref->file_pos + backref->num_bytes - 1;
2560 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2561 			 &cached);
2562 
2563 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2564 	if (ordered) {
2565 		btrfs_put_ordered_extent(ordered);
2566 		goto out_unlock;
2567 	}
2568 
2569 	trans = btrfs_join_transaction(root);
2570 	if (IS_ERR(trans)) {
2571 		ret = PTR_ERR(trans);
2572 		goto out_unlock;
2573 	}
2574 
2575 	key.objectid = backref->inum;
2576 	key.type = BTRFS_EXTENT_DATA_KEY;
2577 	key.offset = backref->file_pos;
2578 
2579 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2580 	if (ret < 0) {
2581 		goto out_free_path;
2582 	} else if (ret > 0) {
2583 		ret = 0;
2584 		goto out_free_path;
2585 	}
2586 
2587 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2588 				struct btrfs_file_extent_item);
2589 
2590 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2591 	    backref->generation)
2592 		goto out_free_path;
2593 
2594 	btrfs_release_path(path);
2595 
2596 	start = backref->file_pos;
2597 	if (backref->extent_offset < old->extent_offset + old->offset)
2598 		start += old->extent_offset + old->offset -
2599 			 backref->extent_offset;
2600 
2601 	len = min(backref->extent_offset + backref->num_bytes,
2602 		  old->extent_offset + old->offset + old->len);
2603 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2604 
2605 	ret = btrfs_drop_extents(trans, root, inode, start,
2606 				 start + len, 1);
2607 	if (ret)
2608 		goto out_free_path;
2609 again:
2610 	key.objectid = btrfs_ino(BTRFS_I(inode));
2611 	key.type = BTRFS_EXTENT_DATA_KEY;
2612 	key.offset = start;
2613 
2614 	path->leave_spinning = 1;
2615 	if (merge) {
2616 		struct btrfs_file_extent_item *fi;
2617 		u64 extent_len;
2618 		struct btrfs_key found_key;
2619 
2620 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2621 		if (ret < 0)
2622 			goto out_free_path;
2623 
2624 		path->slots[0]--;
2625 		leaf = path->nodes[0];
2626 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2627 
2628 		fi = btrfs_item_ptr(leaf, path->slots[0],
2629 				    struct btrfs_file_extent_item);
2630 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2631 
2632 		if (extent_len + found_key.offset == start &&
2633 		    relink_is_mergable(leaf, fi, new)) {
2634 			btrfs_set_file_extent_num_bytes(leaf, fi,
2635 							extent_len + len);
2636 			btrfs_mark_buffer_dirty(leaf);
2637 			inode_add_bytes(inode, len);
2638 
2639 			ret = 1;
2640 			goto out_free_path;
2641 		} else {
2642 			merge = false;
2643 			btrfs_release_path(path);
2644 			goto again;
2645 		}
2646 	}
2647 
2648 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2649 					sizeof(*extent));
2650 	if (ret) {
2651 		btrfs_abort_transaction(trans, ret);
2652 		goto out_free_path;
2653 	}
2654 
2655 	leaf = path->nodes[0];
2656 	item = btrfs_item_ptr(leaf, path->slots[0],
2657 				struct btrfs_file_extent_item);
2658 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2659 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2660 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2661 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2662 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2663 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2664 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2665 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2666 	btrfs_set_file_extent_encryption(leaf, item, 0);
2667 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2668 
2669 	btrfs_mark_buffer_dirty(leaf);
2670 	inode_add_bytes(inode, len);
2671 	btrfs_release_path(path);
2672 
2673 	ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2674 			new->disk_len, 0,
2675 			backref->root_id, backref->inum,
2676 			new->file_pos);	/* start - extent_offset */
2677 	if (ret) {
2678 		btrfs_abort_transaction(trans, ret);
2679 		goto out_free_path;
2680 	}
2681 
2682 	ret = 1;
2683 out_free_path:
2684 	btrfs_release_path(path);
2685 	path->leave_spinning = 0;
2686 	btrfs_end_transaction(trans);
2687 out_unlock:
2688 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2689 			     &cached, GFP_NOFS);
2690 	iput(inode);
2691 	return ret;
2692 }
2693 
2694 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2695 {
2696 	struct old_sa_defrag_extent *old, *tmp;
2697 
2698 	if (!new)
2699 		return;
2700 
2701 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2702 		kfree(old);
2703 	}
2704 	kfree(new);
2705 }
2706 
2707 static void relink_file_extents(struct new_sa_defrag_extent *new)
2708 {
2709 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2710 	struct btrfs_path *path;
2711 	struct sa_defrag_extent_backref *backref;
2712 	struct sa_defrag_extent_backref *prev = NULL;
2713 	struct inode *inode;
2714 	struct btrfs_root *root;
2715 	struct rb_node *node;
2716 	int ret;
2717 
2718 	inode = new->inode;
2719 	root = BTRFS_I(inode)->root;
2720 
2721 	path = btrfs_alloc_path();
2722 	if (!path)
2723 		return;
2724 
2725 	if (!record_extent_backrefs(path, new)) {
2726 		btrfs_free_path(path);
2727 		goto out;
2728 	}
2729 	btrfs_release_path(path);
2730 
2731 	while (1) {
2732 		node = rb_first(&new->root);
2733 		if (!node)
2734 			break;
2735 		rb_erase(node, &new->root);
2736 
2737 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2738 
2739 		ret = relink_extent_backref(path, prev, backref);
2740 		WARN_ON(ret < 0);
2741 
2742 		kfree(prev);
2743 
2744 		if (ret == 1)
2745 			prev = backref;
2746 		else
2747 			prev = NULL;
2748 		cond_resched();
2749 	}
2750 	kfree(prev);
2751 
2752 	btrfs_free_path(path);
2753 out:
2754 	free_sa_defrag_extent(new);
2755 
2756 	atomic_dec(&fs_info->defrag_running);
2757 	wake_up(&fs_info->transaction_wait);
2758 }
2759 
2760 static struct new_sa_defrag_extent *
2761 record_old_file_extents(struct inode *inode,
2762 			struct btrfs_ordered_extent *ordered)
2763 {
2764 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2765 	struct btrfs_root *root = BTRFS_I(inode)->root;
2766 	struct btrfs_path *path;
2767 	struct btrfs_key key;
2768 	struct old_sa_defrag_extent *old;
2769 	struct new_sa_defrag_extent *new;
2770 	int ret;
2771 
2772 	new = kmalloc(sizeof(*new), GFP_NOFS);
2773 	if (!new)
2774 		return NULL;
2775 
2776 	new->inode = inode;
2777 	new->file_pos = ordered->file_offset;
2778 	new->len = ordered->len;
2779 	new->bytenr = ordered->start;
2780 	new->disk_len = ordered->disk_len;
2781 	new->compress_type = ordered->compress_type;
2782 	new->root = RB_ROOT;
2783 	INIT_LIST_HEAD(&new->head);
2784 
2785 	path = btrfs_alloc_path();
2786 	if (!path)
2787 		goto out_kfree;
2788 
2789 	key.objectid = btrfs_ino(BTRFS_I(inode));
2790 	key.type = BTRFS_EXTENT_DATA_KEY;
2791 	key.offset = new->file_pos;
2792 
2793 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2794 	if (ret < 0)
2795 		goto out_free_path;
2796 	if (ret > 0 && path->slots[0] > 0)
2797 		path->slots[0]--;
2798 
2799 	/* find out all the old extents for the file range */
2800 	while (1) {
2801 		struct btrfs_file_extent_item *extent;
2802 		struct extent_buffer *l;
2803 		int slot;
2804 		u64 num_bytes;
2805 		u64 offset;
2806 		u64 end;
2807 		u64 disk_bytenr;
2808 		u64 extent_offset;
2809 
2810 		l = path->nodes[0];
2811 		slot = path->slots[0];
2812 
2813 		if (slot >= btrfs_header_nritems(l)) {
2814 			ret = btrfs_next_leaf(root, path);
2815 			if (ret < 0)
2816 				goto out_free_path;
2817 			else if (ret > 0)
2818 				break;
2819 			continue;
2820 		}
2821 
2822 		btrfs_item_key_to_cpu(l, &key, slot);
2823 
2824 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2825 			break;
2826 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2827 			break;
2828 		if (key.offset >= new->file_pos + new->len)
2829 			break;
2830 
2831 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2832 
2833 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2834 		if (key.offset + num_bytes < new->file_pos)
2835 			goto next;
2836 
2837 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2838 		if (!disk_bytenr)
2839 			goto next;
2840 
2841 		extent_offset = btrfs_file_extent_offset(l, extent);
2842 
2843 		old = kmalloc(sizeof(*old), GFP_NOFS);
2844 		if (!old)
2845 			goto out_free_path;
2846 
2847 		offset = max(new->file_pos, key.offset);
2848 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2849 
2850 		old->bytenr = disk_bytenr;
2851 		old->extent_offset = extent_offset;
2852 		old->offset = offset - key.offset;
2853 		old->len = end - offset;
2854 		old->new = new;
2855 		old->count = 0;
2856 		list_add_tail(&old->list, &new->head);
2857 next:
2858 		path->slots[0]++;
2859 		cond_resched();
2860 	}
2861 
2862 	btrfs_free_path(path);
2863 	atomic_inc(&fs_info->defrag_running);
2864 
2865 	return new;
2866 
2867 out_free_path:
2868 	btrfs_free_path(path);
2869 out_kfree:
2870 	free_sa_defrag_extent(new);
2871 	return NULL;
2872 }
2873 
2874 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2875 					 u64 start, u64 len)
2876 {
2877 	struct btrfs_block_group_cache *cache;
2878 
2879 	cache = btrfs_lookup_block_group(fs_info, start);
2880 	ASSERT(cache);
2881 
2882 	spin_lock(&cache->lock);
2883 	cache->delalloc_bytes -= len;
2884 	spin_unlock(&cache->lock);
2885 
2886 	btrfs_put_block_group(cache);
2887 }
2888 
2889 /* as ordered data IO finishes, this gets called so we can finish
2890  * an ordered extent if the range of bytes in the file it covers are
2891  * fully written.
2892  */
2893 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2894 {
2895 	struct inode *inode = ordered_extent->inode;
2896 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2897 	struct btrfs_root *root = BTRFS_I(inode)->root;
2898 	struct btrfs_trans_handle *trans = NULL;
2899 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2900 	struct extent_state *cached_state = NULL;
2901 	struct new_sa_defrag_extent *new = NULL;
2902 	int compress_type = 0;
2903 	int ret = 0;
2904 	u64 logical_len = ordered_extent->len;
2905 	bool nolock;
2906 	bool truncated = false;
2907 	bool range_locked = false;
2908 	bool clear_new_delalloc_bytes = false;
2909 
2910 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2911 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2912 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2913 		clear_new_delalloc_bytes = true;
2914 
2915 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2916 
2917 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2918 		ret = -EIO;
2919 		goto out;
2920 	}
2921 
2922 	btrfs_free_io_failure_record(BTRFS_I(inode),
2923 			ordered_extent->file_offset,
2924 			ordered_extent->file_offset +
2925 			ordered_extent->len - 1);
2926 
2927 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2928 		truncated = true;
2929 		logical_len = ordered_extent->truncated_len;
2930 		/* Truncated the entire extent, don't bother adding */
2931 		if (!logical_len)
2932 			goto out;
2933 	}
2934 
2935 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2936 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2937 
2938 		/*
2939 		 * For mwrite(mmap + memset to write) case, we still reserve
2940 		 * space for NOCOW range.
2941 		 * As NOCOW won't cause a new delayed ref, just free the space
2942 		 */
2943 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2944 				       ordered_extent->len);
2945 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2946 		if (nolock)
2947 			trans = btrfs_join_transaction_nolock(root);
2948 		else
2949 			trans = btrfs_join_transaction(root);
2950 		if (IS_ERR(trans)) {
2951 			ret = PTR_ERR(trans);
2952 			trans = NULL;
2953 			goto out;
2954 		}
2955 		trans->block_rsv = &fs_info->delalloc_block_rsv;
2956 		ret = btrfs_update_inode_fallback(trans, root, inode);
2957 		if (ret) /* -ENOMEM or corruption */
2958 			btrfs_abort_transaction(trans, ret);
2959 		goto out;
2960 	}
2961 
2962 	range_locked = true;
2963 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2964 			 ordered_extent->file_offset + ordered_extent->len - 1,
2965 			 &cached_state);
2966 
2967 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2968 			ordered_extent->file_offset + ordered_extent->len - 1,
2969 			EXTENT_DEFRAG, 0, cached_state);
2970 	if (ret) {
2971 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2972 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2973 			/* the inode is shared */
2974 			new = record_old_file_extents(inode, ordered_extent);
2975 
2976 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2977 			ordered_extent->file_offset + ordered_extent->len - 1,
2978 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2979 	}
2980 
2981 	if (nolock)
2982 		trans = btrfs_join_transaction_nolock(root);
2983 	else
2984 		trans = btrfs_join_transaction(root);
2985 	if (IS_ERR(trans)) {
2986 		ret = PTR_ERR(trans);
2987 		trans = NULL;
2988 		goto out;
2989 	}
2990 
2991 	trans->block_rsv = &fs_info->delalloc_block_rsv;
2992 
2993 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2994 		compress_type = ordered_extent->compress_type;
2995 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2996 		BUG_ON(compress_type);
2997 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2998 						ordered_extent->file_offset,
2999 						ordered_extent->file_offset +
3000 						logical_len);
3001 	} else {
3002 		BUG_ON(root == fs_info->tree_root);
3003 		ret = insert_reserved_file_extent(trans, inode,
3004 						ordered_extent->file_offset,
3005 						ordered_extent->start,
3006 						ordered_extent->disk_len,
3007 						logical_len, logical_len,
3008 						compress_type, 0, 0,
3009 						BTRFS_FILE_EXTENT_REG);
3010 		if (!ret)
3011 			btrfs_release_delalloc_bytes(fs_info,
3012 						     ordered_extent->start,
3013 						     ordered_extent->disk_len);
3014 	}
3015 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3016 			   ordered_extent->file_offset, ordered_extent->len,
3017 			   trans->transid);
3018 	if (ret < 0) {
3019 		btrfs_abort_transaction(trans, ret);
3020 		goto out;
3021 	}
3022 
3023 	add_pending_csums(trans, inode, &ordered_extent->list);
3024 
3025 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3026 	ret = btrfs_update_inode_fallback(trans, root, inode);
3027 	if (ret) { /* -ENOMEM or corruption */
3028 		btrfs_abort_transaction(trans, ret);
3029 		goto out;
3030 	}
3031 	ret = 0;
3032 out:
3033 	if (range_locked || clear_new_delalloc_bytes) {
3034 		unsigned int clear_bits = 0;
3035 
3036 		if (range_locked)
3037 			clear_bits |= EXTENT_LOCKED;
3038 		if (clear_new_delalloc_bytes)
3039 			clear_bits |= EXTENT_DELALLOC_NEW;
3040 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3041 				 ordered_extent->file_offset,
3042 				 ordered_extent->file_offset +
3043 				 ordered_extent->len - 1,
3044 				 clear_bits,
3045 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3046 				 0, &cached_state, GFP_NOFS);
3047 	}
3048 
3049 	if (root != fs_info->tree_root)
3050 		btrfs_delalloc_release_metadata(BTRFS_I(inode),
3051 				ordered_extent->len);
3052 	if (trans)
3053 		btrfs_end_transaction(trans);
3054 
3055 	if (ret || truncated) {
3056 		u64 start, end;
3057 
3058 		if (truncated)
3059 			start = ordered_extent->file_offset + logical_len;
3060 		else
3061 			start = ordered_extent->file_offset;
3062 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3063 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3064 
3065 		/* Drop the cache for the part of the extent we didn't write. */
3066 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3067 
3068 		/*
3069 		 * If the ordered extent had an IOERR or something else went
3070 		 * wrong we need to return the space for this ordered extent
3071 		 * back to the allocator.  We only free the extent in the
3072 		 * truncated case if we didn't write out the extent at all.
3073 		 */
3074 		if ((ret || !logical_len) &&
3075 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3076 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3077 			btrfs_free_reserved_extent(fs_info,
3078 						   ordered_extent->start,
3079 						   ordered_extent->disk_len, 1);
3080 	}
3081 
3082 
3083 	/*
3084 	 * This needs to be done to make sure anybody waiting knows we are done
3085 	 * updating everything for this ordered extent.
3086 	 */
3087 	btrfs_remove_ordered_extent(inode, ordered_extent);
3088 
3089 	/* for snapshot-aware defrag */
3090 	if (new) {
3091 		if (ret) {
3092 			free_sa_defrag_extent(new);
3093 			atomic_dec(&fs_info->defrag_running);
3094 		} else {
3095 			relink_file_extents(new);
3096 		}
3097 	}
3098 
3099 	/* once for us */
3100 	btrfs_put_ordered_extent(ordered_extent);
3101 	/* once for the tree */
3102 	btrfs_put_ordered_extent(ordered_extent);
3103 
3104 	return ret;
3105 }
3106 
3107 static void finish_ordered_fn(struct btrfs_work *work)
3108 {
3109 	struct btrfs_ordered_extent *ordered_extent;
3110 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3111 	btrfs_finish_ordered_io(ordered_extent);
3112 }
3113 
3114 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3115 				struct extent_state *state, int uptodate)
3116 {
3117 	struct inode *inode = page->mapping->host;
3118 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3119 	struct btrfs_ordered_extent *ordered_extent = NULL;
3120 	struct btrfs_workqueue *wq;
3121 	btrfs_work_func_t func;
3122 
3123 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3124 
3125 	ClearPagePrivate2(page);
3126 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3127 					    end - start + 1, uptodate))
3128 		return;
3129 
3130 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3131 		wq = fs_info->endio_freespace_worker;
3132 		func = btrfs_freespace_write_helper;
3133 	} else {
3134 		wq = fs_info->endio_write_workers;
3135 		func = btrfs_endio_write_helper;
3136 	}
3137 
3138 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3139 			NULL);
3140 	btrfs_queue_work(wq, &ordered_extent->work);
3141 }
3142 
3143 static int __readpage_endio_check(struct inode *inode,
3144 				  struct btrfs_io_bio *io_bio,
3145 				  int icsum, struct page *page,
3146 				  int pgoff, u64 start, size_t len)
3147 {
3148 	char *kaddr;
3149 	u32 csum_expected;
3150 	u32 csum = ~(u32)0;
3151 
3152 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3153 
3154 	kaddr = kmap_atomic(page);
3155 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3156 	btrfs_csum_final(csum, (u8 *)&csum);
3157 	if (csum != csum_expected)
3158 		goto zeroit;
3159 
3160 	kunmap_atomic(kaddr);
3161 	return 0;
3162 zeroit:
3163 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3164 				    io_bio->mirror_num);
3165 	memset(kaddr + pgoff, 1, len);
3166 	flush_dcache_page(page);
3167 	kunmap_atomic(kaddr);
3168 	return -EIO;
3169 }
3170 
3171 /*
3172  * when reads are done, we need to check csums to verify the data is correct
3173  * if there's a match, we allow the bio to finish.  If not, the code in
3174  * extent_io.c will try to find good copies for us.
3175  */
3176 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3177 				      u64 phy_offset, struct page *page,
3178 				      u64 start, u64 end, int mirror)
3179 {
3180 	size_t offset = start - page_offset(page);
3181 	struct inode *inode = page->mapping->host;
3182 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3183 	struct btrfs_root *root = BTRFS_I(inode)->root;
3184 
3185 	if (PageChecked(page)) {
3186 		ClearPageChecked(page);
3187 		return 0;
3188 	}
3189 
3190 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3191 		return 0;
3192 
3193 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3194 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3195 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3196 		return 0;
3197 	}
3198 
3199 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3200 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3201 				      start, (size_t)(end - start + 1));
3202 }
3203 
3204 void btrfs_add_delayed_iput(struct inode *inode)
3205 {
3206 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207 	struct btrfs_inode *binode = BTRFS_I(inode);
3208 
3209 	if (atomic_add_unless(&inode->i_count, -1, 1))
3210 		return;
3211 
3212 	spin_lock(&fs_info->delayed_iput_lock);
3213 	if (binode->delayed_iput_count == 0) {
3214 		ASSERT(list_empty(&binode->delayed_iput));
3215 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3216 	} else {
3217 		binode->delayed_iput_count++;
3218 	}
3219 	spin_unlock(&fs_info->delayed_iput_lock);
3220 }
3221 
3222 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3223 {
3224 
3225 	spin_lock(&fs_info->delayed_iput_lock);
3226 	while (!list_empty(&fs_info->delayed_iputs)) {
3227 		struct btrfs_inode *inode;
3228 
3229 		inode = list_first_entry(&fs_info->delayed_iputs,
3230 				struct btrfs_inode, delayed_iput);
3231 		if (inode->delayed_iput_count) {
3232 			inode->delayed_iput_count--;
3233 			list_move_tail(&inode->delayed_iput,
3234 					&fs_info->delayed_iputs);
3235 		} else {
3236 			list_del_init(&inode->delayed_iput);
3237 		}
3238 		spin_unlock(&fs_info->delayed_iput_lock);
3239 		iput(&inode->vfs_inode);
3240 		spin_lock(&fs_info->delayed_iput_lock);
3241 	}
3242 	spin_unlock(&fs_info->delayed_iput_lock);
3243 }
3244 
3245 /*
3246  * This is called in transaction commit time. If there are no orphan
3247  * files in the subvolume, it removes orphan item and frees block_rsv
3248  * structure.
3249  */
3250 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3251 			      struct btrfs_root *root)
3252 {
3253 	struct btrfs_fs_info *fs_info = root->fs_info;
3254 	struct btrfs_block_rsv *block_rsv;
3255 	int ret;
3256 
3257 	if (atomic_read(&root->orphan_inodes) ||
3258 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3259 		return;
3260 
3261 	spin_lock(&root->orphan_lock);
3262 	if (atomic_read(&root->orphan_inodes)) {
3263 		spin_unlock(&root->orphan_lock);
3264 		return;
3265 	}
3266 
3267 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3268 		spin_unlock(&root->orphan_lock);
3269 		return;
3270 	}
3271 
3272 	block_rsv = root->orphan_block_rsv;
3273 	root->orphan_block_rsv = NULL;
3274 	spin_unlock(&root->orphan_lock);
3275 
3276 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3277 	    btrfs_root_refs(&root->root_item) > 0) {
3278 		ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3279 					    root->root_key.objectid);
3280 		if (ret)
3281 			btrfs_abort_transaction(trans, ret);
3282 		else
3283 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3284 				  &root->state);
3285 	}
3286 
3287 	if (block_rsv) {
3288 		WARN_ON(block_rsv->size > 0);
3289 		btrfs_free_block_rsv(fs_info, block_rsv);
3290 	}
3291 }
3292 
3293 /*
3294  * This creates an orphan entry for the given inode in case something goes
3295  * wrong in the middle of an unlink/truncate.
3296  *
3297  * NOTE: caller of this function should reserve 5 units of metadata for
3298  *	 this function.
3299  */
3300 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3301 		struct btrfs_inode *inode)
3302 {
3303 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3304 	struct btrfs_root *root = inode->root;
3305 	struct btrfs_block_rsv *block_rsv = NULL;
3306 	int reserve = 0;
3307 	int insert = 0;
3308 	int ret;
3309 
3310 	if (!root->orphan_block_rsv) {
3311 		block_rsv = btrfs_alloc_block_rsv(fs_info,
3312 						  BTRFS_BLOCK_RSV_TEMP);
3313 		if (!block_rsv)
3314 			return -ENOMEM;
3315 	}
3316 
3317 	spin_lock(&root->orphan_lock);
3318 	if (!root->orphan_block_rsv) {
3319 		root->orphan_block_rsv = block_rsv;
3320 	} else if (block_rsv) {
3321 		btrfs_free_block_rsv(fs_info, block_rsv);
3322 		block_rsv = NULL;
3323 	}
3324 
3325 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3326 			      &inode->runtime_flags)) {
3327 #if 0
3328 		/*
3329 		 * For proper ENOSPC handling, we should do orphan
3330 		 * cleanup when mounting. But this introduces backward
3331 		 * compatibility issue.
3332 		 */
3333 		if (!xchg(&root->orphan_item_inserted, 1))
3334 			insert = 2;
3335 		else
3336 			insert = 1;
3337 #endif
3338 		insert = 1;
3339 		atomic_inc(&root->orphan_inodes);
3340 	}
3341 
3342 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3343 			      &inode->runtime_flags))
3344 		reserve = 1;
3345 	spin_unlock(&root->orphan_lock);
3346 
3347 	/* grab metadata reservation from transaction handle */
3348 	if (reserve) {
3349 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3350 		ASSERT(!ret);
3351 		if (ret) {
3352 			atomic_dec(&root->orphan_inodes);
3353 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3354 				  &inode->runtime_flags);
3355 			if (insert)
3356 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3357 					  &inode->runtime_flags);
3358 			return ret;
3359 		}
3360 	}
3361 
3362 	/* insert an orphan item to track this unlinked/truncated file */
3363 	if (insert >= 1) {
3364 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3365 		if (ret) {
3366 			atomic_dec(&root->orphan_inodes);
3367 			if (reserve) {
3368 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3369 					  &inode->runtime_flags);
3370 				btrfs_orphan_release_metadata(inode);
3371 			}
3372 			if (ret != -EEXIST) {
3373 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3374 					  &inode->runtime_flags);
3375 				btrfs_abort_transaction(trans, ret);
3376 				return ret;
3377 			}
3378 		}
3379 		ret = 0;
3380 	}
3381 
3382 	/* insert an orphan item to track subvolume contains orphan files */
3383 	if (insert >= 2) {
3384 		ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3385 					       root->root_key.objectid);
3386 		if (ret && ret != -EEXIST) {
3387 			btrfs_abort_transaction(trans, ret);
3388 			return ret;
3389 		}
3390 	}
3391 	return 0;
3392 }
3393 
3394 /*
3395  * We have done the truncate/delete so we can go ahead and remove the orphan
3396  * item for this particular inode.
3397  */
3398 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3399 			    struct btrfs_inode *inode)
3400 {
3401 	struct btrfs_root *root = inode->root;
3402 	int delete_item = 0;
3403 	int release_rsv = 0;
3404 	int ret = 0;
3405 
3406 	spin_lock(&root->orphan_lock);
3407 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3408 			       &inode->runtime_flags))
3409 		delete_item = 1;
3410 
3411 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3412 			       &inode->runtime_flags))
3413 		release_rsv = 1;
3414 	spin_unlock(&root->orphan_lock);
3415 
3416 	if (delete_item) {
3417 		atomic_dec(&root->orphan_inodes);
3418 		if (trans)
3419 			ret = btrfs_del_orphan_item(trans, root,
3420 						    btrfs_ino(inode));
3421 	}
3422 
3423 	if (release_rsv)
3424 		btrfs_orphan_release_metadata(inode);
3425 
3426 	return ret;
3427 }
3428 
3429 /*
3430  * this cleans up any orphans that may be left on the list from the last use
3431  * of this root.
3432  */
3433 int btrfs_orphan_cleanup(struct btrfs_root *root)
3434 {
3435 	struct btrfs_fs_info *fs_info = root->fs_info;
3436 	struct btrfs_path *path;
3437 	struct extent_buffer *leaf;
3438 	struct btrfs_key key, found_key;
3439 	struct btrfs_trans_handle *trans;
3440 	struct inode *inode;
3441 	u64 last_objectid = 0;
3442 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3443 
3444 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3445 		return 0;
3446 
3447 	path = btrfs_alloc_path();
3448 	if (!path) {
3449 		ret = -ENOMEM;
3450 		goto out;
3451 	}
3452 	path->reada = READA_BACK;
3453 
3454 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3455 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3456 	key.offset = (u64)-1;
3457 
3458 	while (1) {
3459 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3460 		if (ret < 0)
3461 			goto out;
3462 
3463 		/*
3464 		 * if ret == 0 means we found what we were searching for, which
3465 		 * is weird, but possible, so only screw with path if we didn't
3466 		 * find the key and see if we have stuff that matches
3467 		 */
3468 		if (ret > 0) {
3469 			ret = 0;
3470 			if (path->slots[0] == 0)
3471 				break;
3472 			path->slots[0]--;
3473 		}
3474 
3475 		/* pull out the item */
3476 		leaf = path->nodes[0];
3477 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3478 
3479 		/* make sure the item matches what we want */
3480 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3481 			break;
3482 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3483 			break;
3484 
3485 		/* release the path since we're done with it */
3486 		btrfs_release_path(path);
3487 
3488 		/*
3489 		 * this is where we are basically btrfs_lookup, without the
3490 		 * crossing root thing.  we store the inode number in the
3491 		 * offset of the orphan item.
3492 		 */
3493 
3494 		if (found_key.offset == last_objectid) {
3495 			btrfs_err(fs_info,
3496 				  "Error removing orphan entry, stopping orphan cleanup");
3497 			ret = -EINVAL;
3498 			goto out;
3499 		}
3500 
3501 		last_objectid = found_key.offset;
3502 
3503 		found_key.objectid = found_key.offset;
3504 		found_key.type = BTRFS_INODE_ITEM_KEY;
3505 		found_key.offset = 0;
3506 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3507 		ret = PTR_ERR_OR_ZERO(inode);
3508 		if (ret && ret != -ENOENT)
3509 			goto out;
3510 
3511 		if (ret == -ENOENT && root == fs_info->tree_root) {
3512 			struct btrfs_root *dead_root;
3513 			struct btrfs_fs_info *fs_info = root->fs_info;
3514 			int is_dead_root = 0;
3515 
3516 			/*
3517 			 * this is an orphan in the tree root. Currently these
3518 			 * could come from 2 sources:
3519 			 *  a) a snapshot deletion in progress
3520 			 *  b) a free space cache inode
3521 			 * We need to distinguish those two, as the snapshot
3522 			 * orphan must not get deleted.
3523 			 * find_dead_roots already ran before us, so if this
3524 			 * is a snapshot deletion, we should find the root
3525 			 * in the dead_roots list
3526 			 */
3527 			spin_lock(&fs_info->trans_lock);
3528 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3529 					    root_list) {
3530 				if (dead_root->root_key.objectid ==
3531 				    found_key.objectid) {
3532 					is_dead_root = 1;
3533 					break;
3534 				}
3535 			}
3536 			spin_unlock(&fs_info->trans_lock);
3537 			if (is_dead_root) {
3538 				/* prevent this orphan from being found again */
3539 				key.offset = found_key.objectid - 1;
3540 				continue;
3541 			}
3542 		}
3543 		/*
3544 		 * Inode is already gone but the orphan item is still there,
3545 		 * kill the orphan item.
3546 		 */
3547 		if (ret == -ENOENT) {
3548 			trans = btrfs_start_transaction(root, 1);
3549 			if (IS_ERR(trans)) {
3550 				ret = PTR_ERR(trans);
3551 				goto out;
3552 			}
3553 			btrfs_debug(fs_info, "auto deleting %Lu",
3554 				    found_key.objectid);
3555 			ret = btrfs_del_orphan_item(trans, root,
3556 						    found_key.objectid);
3557 			btrfs_end_transaction(trans);
3558 			if (ret)
3559 				goto out;
3560 			continue;
3561 		}
3562 
3563 		/*
3564 		 * add this inode to the orphan list so btrfs_orphan_del does
3565 		 * the proper thing when we hit it
3566 		 */
3567 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3568 			&BTRFS_I(inode)->runtime_flags);
3569 		atomic_inc(&root->orphan_inodes);
3570 
3571 		/* if we have links, this was a truncate, lets do that */
3572 		if (inode->i_nlink) {
3573 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3574 				iput(inode);
3575 				continue;
3576 			}
3577 			nr_truncate++;
3578 
3579 			/* 1 for the orphan item deletion. */
3580 			trans = btrfs_start_transaction(root, 1);
3581 			if (IS_ERR(trans)) {
3582 				iput(inode);
3583 				ret = PTR_ERR(trans);
3584 				goto out;
3585 			}
3586 			ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3587 			btrfs_end_transaction(trans);
3588 			if (ret) {
3589 				iput(inode);
3590 				goto out;
3591 			}
3592 
3593 			ret = btrfs_truncate(inode);
3594 			if (ret)
3595 				btrfs_orphan_del(NULL, BTRFS_I(inode));
3596 		} else {
3597 			nr_unlink++;
3598 		}
3599 
3600 		/* this will do delete_inode and everything for us */
3601 		iput(inode);
3602 		if (ret)
3603 			goto out;
3604 	}
3605 	/* release the path since we're done with it */
3606 	btrfs_release_path(path);
3607 
3608 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3609 
3610 	if (root->orphan_block_rsv)
3611 		btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3612 					(u64)-1);
3613 
3614 	if (root->orphan_block_rsv ||
3615 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3616 		trans = btrfs_join_transaction(root);
3617 		if (!IS_ERR(trans))
3618 			btrfs_end_transaction(trans);
3619 	}
3620 
3621 	if (nr_unlink)
3622 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3623 	if (nr_truncate)
3624 		btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3625 
3626 out:
3627 	if (ret)
3628 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3629 	btrfs_free_path(path);
3630 	return ret;
3631 }
3632 
3633 /*
3634  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3635  * don't find any xattrs, we know there can't be any acls.
3636  *
3637  * slot is the slot the inode is in, objectid is the objectid of the inode
3638  */
3639 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3640 					  int slot, u64 objectid,
3641 					  int *first_xattr_slot)
3642 {
3643 	u32 nritems = btrfs_header_nritems(leaf);
3644 	struct btrfs_key found_key;
3645 	static u64 xattr_access = 0;
3646 	static u64 xattr_default = 0;
3647 	int scanned = 0;
3648 
3649 	if (!xattr_access) {
3650 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3651 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3652 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3653 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3654 	}
3655 
3656 	slot++;
3657 	*first_xattr_slot = -1;
3658 	while (slot < nritems) {
3659 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3660 
3661 		/* we found a different objectid, there must not be acls */
3662 		if (found_key.objectid != objectid)
3663 			return 0;
3664 
3665 		/* we found an xattr, assume we've got an acl */
3666 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3667 			if (*first_xattr_slot == -1)
3668 				*first_xattr_slot = slot;
3669 			if (found_key.offset == xattr_access ||
3670 			    found_key.offset == xattr_default)
3671 				return 1;
3672 		}
3673 
3674 		/*
3675 		 * we found a key greater than an xattr key, there can't
3676 		 * be any acls later on
3677 		 */
3678 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3679 			return 0;
3680 
3681 		slot++;
3682 		scanned++;
3683 
3684 		/*
3685 		 * it goes inode, inode backrefs, xattrs, extents,
3686 		 * so if there are a ton of hard links to an inode there can
3687 		 * be a lot of backrefs.  Don't waste time searching too hard,
3688 		 * this is just an optimization
3689 		 */
3690 		if (scanned >= 8)
3691 			break;
3692 	}
3693 	/* we hit the end of the leaf before we found an xattr or
3694 	 * something larger than an xattr.  We have to assume the inode
3695 	 * has acls
3696 	 */
3697 	if (*first_xattr_slot == -1)
3698 		*first_xattr_slot = slot;
3699 	return 1;
3700 }
3701 
3702 /*
3703  * read an inode from the btree into the in-memory inode
3704  */
3705 static int btrfs_read_locked_inode(struct inode *inode)
3706 {
3707 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3708 	struct btrfs_path *path;
3709 	struct extent_buffer *leaf;
3710 	struct btrfs_inode_item *inode_item;
3711 	struct btrfs_root *root = BTRFS_I(inode)->root;
3712 	struct btrfs_key location;
3713 	unsigned long ptr;
3714 	int maybe_acls;
3715 	u32 rdev;
3716 	int ret;
3717 	bool filled = false;
3718 	int first_xattr_slot;
3719 
3720 	ret = btrfs_fill_inode(inode, &rdev);
3721 	if (!ret)
3722 		filled = true;
3723 
3724 	path = btrfs_alloc_path();
3725 	if (!path) {
3726 		ret = -ENOMEM;
3727 		goto make_bad;
3728 	}
3729 
3730 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3731 
3732 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3733 	if (ret) {
3734 		if (ret > 0)
3735 			ret = -ENOENT;
3736 		goto make_bad;
3737 	}
3738 
3739 	leaf = path->nodes[0];
3740 
3741 	if (filled)
3742 		goto cache_index;
3743 
3744 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3745 				    struct btrfs_inode_item);
3746 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3747 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3748 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3749 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3750 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3751 
3752 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3753 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3754 
3755 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3756 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3757 
3758 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3759 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3760 
3761 	BTRFS_I(inode)->i_otime.tv_sec =
3762 		btrfs_timespec_sec(leaf, &inode_item->otime);
3763 	BTRFS_I(inode)->i_otime.tv_nsec =
3764 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3765 
3766 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3767 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3768 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3769 
3770 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3771 	inode->i_generation = BTRFS_I(inode)->generation;
3772 	inode->i_rdev = 0;
3773 	rdev = btrfs_inode_rdev(leaf, inode_item);
3774 
3775 	BTRFS_I(inode)->index_cnt = (u64)-1;
3776 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3777 
3778 cache_index:
3779 	/*
3780 	 * If we were modified in the current generation and evicted from memory
3781 	 * and then re-read we need to do a full sync since we don't have any
3782 	 * idea about which extents were modified before we were evicted from
3783 	 * cache.
3784 	 *
3785 	 * This is required for both inode re-read from disk and delayed inode
3786 	 * in delayed_nodes_tree.
3787 	 */
3788 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3789 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3790 			&BTRFS_I(inode)->runtime_flags);
3791 
3792 	/*
3793 	 * We don't persist the id of the transaction where an unlink operation
3794 	 * against the inode was last made. So here we assume the inode might
3795 	 * have been evicted, and therefore the exact value of last_unlink_trans
3796 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3797 	 * between the inode and its parent if the inode is fsync'ed and the log
3798 	 * replayed. For example, in the scenario:
3799 	 *
3800 	 * touch mydir/foo
3801 	 * ln mydir/foo mydir/bar
3802 	 * sync
3803 	 * unlink mydir/bar
3804 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3805 	 * xfs_io -c fsync mydir/foo
3806 	 * <power failure>
3807 	 * mount fs, triggers fsync log replay
3808 	 *
3809 	 * We must make sure that when we fsync our inode foo we also log its
3810 	 * parent inode, otherwise after log replay the parent still has the
3811 	 * dentry with the "bar" name but our inode foo has a link count of 1
3812 	 * and doesn't have an inode ref with the name "bar" anymore.
3813 	 *
3814 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3815 	 * but it guarantees correctness at the expense of occasional full
3816 	 * transaction commits on fsync if our inode is a directory, or if our
3817 	 * inode is not a directory, logging its parent unnecessarily.
3818 	 */
3819 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3820 
3821 	path->slots[0]++;
3822 	if (inode->i_nlink != 1 ||
3823 	    path->slots[0] >= btrfs_header_nritems(leaf))
3824 		goto cache_acl;
3825 
3826 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3827 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3828 		goto cache_acl;
3829 
3830 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3831 	if (location.type == BTRFS_INODE_REF_KEY) {
3832 		struct btrfs_inode_ref *ref;
3833 
3834 		ref = (struct btrfs_inode_ref *)ptr;
3835 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3836 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3837 		struct btrfs_inode_extref *extref;
3838 
3839 		extref = (struct btrfs_inode_extref *)ptr;
3840 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3841 								     extref);
3842 	}
3843 cache_acl:
3844 	/*
3845 	 * try to precache a NULL acl entry for files that don't have
3846 	 * any xattrs or acls
3847 	 */
3848 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3849 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3850 	if (first_xattr_slot != -1) {
3851 		path->slots[0] = first_xattr_slot;
3852 		ret = btrfs_load_inode_props(inode, path);
3853 		if (ret)
3854 			btrfs_err(fs_info,
3855 				  "error loading props for ino %llu (root %llu): %d",
3856 				  btrfs_ino(BTRFS_I(inode)),
3857 				  root->root_key.objectid, ret);
3858 	}
3859 	btrfs_free_path(path);
3860 
3861 	if (!maybe_acls)
3862 		cache_no_acl(inode);
3863 
3864 	switch (inode->i_mode & S_IFMT) {
3865 	case S_IFREG:
3866 		inode->i_mapping->a_ops = &btrfs_aops;
3867 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3868 		inode->i_fop = &btrfs_file_operations;
3869 		inode->i_op = &btrfs_file_inode_operations;
3870 		break;
3871 	case S_IFDIR:
3872 		inode->i_fop = &btrfs_dir_file_operations;
3873 		inode->i_op = &btrfs_dir_inode_operations;
3874 		break;
3875 	case S_IFLNK:
3876 		inode->i_op = &btrfs_symlink_inode_operations;
3877 		inode_nohighmem(inode);
3878 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3879 		break;
3880 	default:
3881 		inode->i_op = &btrfs_special_inode_operations;
3882 		init_special_inode(inode, inode->i_mode, rdev);
3883 		break;
3884 	}
3885 
3886 	btrfs_update_iflags(inode);
3887 	return 0;
3888 
3889 make_bad:
3890 	btrfs_free_path(path);
3891 	make_bad_inode(inode);
3892 	return ret;
3893 }
3894 
3895 /*
3896  * given a leaf and an inode, copy the inode fields into the leaf
3897  */
3898 static void fill_inode_item(struct btrfs_trans_handle *trans,
3899 			    struct extent_buffer *leaf,
3900 			    struct btrfs_inode_item *item,
3901 			    struct inode *inode)
3902 {
3903 	struct btrfs_map_token token;
3904 
3905 	btrfs_init_map_token(&token);
3906 
3907 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3908 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3909 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3910 				   &token);
3911 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3912 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3913 
3914 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3915 				     inode->i_atime.tv_sec, &token);
3916 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3917 				      inode->i_atime.tv_nsec, &token);
3918 
3919 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3920 				     inode->i_mtime.tv_sec, &token);
3921 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3922 				      inode->i_mtime.tv_nsec, &token);
3923 
3924 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3925 				     inode->i_ctime.tv_sec, &token);
3926 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3927 				      inode->i_ctime.tv_nsec, &token);
3928 
3929 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3930 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3931 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3932 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3933 
3934 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3935 				     &token);
3936 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3937 					 &token);
3938 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3939 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3940 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3941 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3942 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3943 }
3944 
3945 /*
3946  * copy everything in the in-memory inode into the btree.
3947  */
3948 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3949 				struct btrfs_root *root, struct inode *inode)
3950 {
3951 	struct btrfs_inode_item *inode_item;
3952 	struct btrfs_path *path;
3953 	struct extent_buffer *leaf;
3954 	int ret;
3955 
3956 	path = btrfs_alloc_path();
3957 	if (!path)
3958 		return -ENOMEM;
3959 
3960 	path->leave_spinning = 1;
3961 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3962 				 1);
3963 	if (ret) {
3964 		if (ret > 0)
3965 			ret = -ENOENT;
3966 		goto failed;
3967 	}
3968 
3969 	leaf = path->nodes[0];
3970 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3971 				    struct btrfs_inode_item);
3972 
3973 	fill_inode_item(trans, leaf, inode_item, inode);
3974 	btrfs_mark_buffer_dirty(leaf);
3975 	btrfs_set_inode_last_trans(trans, inode);
3976 	ret = 0;
3977 failed:
3978 	btrfs_free_path(path);
3979 	return ret;
3980 }
3981 
3982 /*
3983  * copy everything in the in-memory inode into the btree.
3984  */
3985 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3986 				struct btrfs_root *root, struct inode *inode)
3987 {
3988 	struct btrfs_fs_info *fs_info = root->fs_info;
3989 	int ret;
3990 
3991 	/*
3992 	 * If the inode is a free space inode, we can deadlock during commit
3993 	 * if we put it into the delayed code.
3994 	 *
3995 	 * The data relocation inode should also be directly updated
3996 	 * without delay
3997 	 */
3998 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3999 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4000 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4001 		btrfs_update_root_times(trans, root);
4002 
4003 		ret = btrfs_delayed_update_inode(trans, root, inode);
4004 		if (!ret)
4005 			btrfs_set_inode_last_trans(trans, inode);
4006 		return ret;
4007 	}
4008 
4009 	return btrfs_update_inode_item(trans, root, inode);
4010 }
4011 
4012 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4013 					 struct btrfs_root *root,
4014 					 struct inode *inode)
4015 {
4016 	int ret;
4017 
4018 	ret = btrfs_update_inode(trans, root, inode);
4019 	if (ret == -ENOSPC)
4020 		return btrfs_update_inode_item(trans, root, inode);
4021 	return ret;
4022 }
4023 
4024 /*
4025  * unlink helper that gets used here in inode.c and in the tree logging
4026  * recovery code.  It remove a link in a directory with a given name, and
4027  * also drops the back refs in the inode to the directory
4028  */
4029 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4030 				struct btrfs_root *root,
4031 				struct btrfs_inode *dir,
4032 				struct btrfs_inode *inode,
4033 				const char *name, int name_len)
4034 {
4035 	struct btrfs_fs_info *fs_info = root->fs_info;
4036 	struct btrfs_path *path;
4037 	int ret = 0;
4038 	struct extent_buffer *leaf;
4039 	struct btrfs_dir_item *di;
4040 	struct btrfs_key key;
4041 	u64 index;
4042 	u64 ino = btrfs_ino(inode);
4043 	u64 dir_ino = btrfs_ino(dir);
4044 
4045 	path = btrfs_alloc_path();
4046 	if (!path) {
4047 		ret = -ENOMEM;
4048 		goto out;
4049 	}
4050 
4051 	path->leave_spinning = 1;
4052 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4053 				    name, name_len, -1);
4054 	if (IS_ERR(di)) {
4055 		ret = PTR_ERR(di);
4056 		goto err;
4057 	}
4058 	if (!di) {
4059 		ret = -ENOENT;
4060 		goto err;
4061 	}
4062 	leaf = path->nodes[0];
4063 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4064 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4065 	if (ret)
4066 		goto err;
4067 	btrfs_release_path(path);
4068 
4069 	/*
4070 	 * If we don't have dir index, we have to get it by looking up
4071 	 * the inode ref, since we get the inode ref, remove it directly,
4072 	 * it is unnecessary to do delayed deletion.
4073 	 *
4074 	 * But if we have dir index, needn't search inode ref to get it.
4075 	 * Since the inode ref is close to the inode item, it is better
4076 	 * that we delay to delete it, and just do this deletion when
4077 	 * we update the inode item.
4078 	 */
4079 	if (inode->dir_index) {
4080 		ret = btrfs_delayed_delete_inode_ref(inode);
4081 		if (!ret) {
4082 			index = inode->dir_index;
4083 			goto skip_backref;
4084 		}
4085 	}
4086 
4087 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4088 				  dir_ino, &index);
4089 	if (ret) {
4090 		btrfs_info(fs_info,
4091 			"failed to delete reference to %.*s, inode %llu parent %llu",
4092 			name_len, name, ino, dir_ino);
4093 		btrfs_abort_transaction(trans, ret);
4094 		goto err;
4095 	}
4096 skip_backref:
4097 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4098 	if (ret) {
4099 		btrfs_abort_transaction(trans, ret);
4100 		goto err;
4101 	}
4102 
4103 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4104 			dir_ino);
4105 	if (ret != 0 && ret != -ENOENT) {
4106 		btrfs_abort_transaction(trans, ret);
4107 		goto err;
4108 	}
4109 
4110 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4111 			index);
4112 	if (ret == -ENOENT)
4113 		ret = 0;
4114 	else if (ret)
4115 		btrfs_abort_transaction(trans, ret);
4116 err:
4117 	btrfs_free_path(path);
4118 	if (ret)
4119 		goto out;
4120 
4121 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4122 	inode_inc_iversion(&inode->vfs_inode);
4123 	inode_inc_iversion(&dir->vfs_inode);
4124 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4125 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4126 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4127 out:
4128 	return ret;
4129 }
4130 
4131 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4132 		       struct btrfs_root *root,
4133 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4134 		       const char *name, int name_len)
4135 {
4136 	int ret;
4137 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4138 	if (!ret) {
4139 		drop_nlink(&inode->vfs_inode);
4140 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4141 	}
4142 	return ret;
4143 }
4144 
4145 /*
4146  * helper to start transaction for unlink and rmdir.
4147  *
4148  * unlink and rmdir are special in btrfs, they do not always free space, so
4149  * if we cannot make our reservations the normal way try and see if there is
4150  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4151  * allow the unlink to occur.
4152  */
4153 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4154 {
4155 	struct btrfs_root *root = BTRFS_I(dir)->root;
4156 
4157 	/*
4158 	 * 1 for the possible orphan item
4159 	 * 1 for the dir item
4160 	 * 1 for the dir index
4161 	 * 1 for the inode ref
4162 	 * 1 for the inode
4163 	 */
4164 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4165 }
4166 
4167 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4168 {
4169 	struct btrfs_root *root = BTRFS_I(dir)->root;
4170 	struct btrfs_trans_handle *trans;
4171 	struct inode *inode = d_inode(dentry);
4172 	int ret;
4173 
4174 	trans = __unlink_start_trans(dir);
4175 	if (IS_ERR(trans))
4176 		return PTR_ERR(trans);
4177 
4178 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4179 			0);
4180 
4181 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4182 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4183 			dentry->d_name.len);
4184 	if (ret)
4185 		goto out;
4186 
4187 	if (inode->i_nlink == 0) {
4188 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4189 		if (ret)
4190 			goto out;
4191 	}
4192 
4193 out:
4194 	btrfs_end_transaction(trans);
4195 	btrfs_btree_balance_dirty(root->fs_info);
4196 	return ret;
4197 }
4198 
4199 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4200 			struct btrfs_root *root,
4201 			struct inode *dir, u64 objectid,
4202 			const char *name, int name_len)
4203 {
4204 	struct btrfs_fs_info *fs_info = root->fs_info;
4205 	struct btrfs_path *path;
4206 	struct extent_buffer *leaf;
4207 	struct btrfs_dir_item *di;
4208 	struct btrfs_key key;
4209 	u64 index;
4210 	int ret;
4211 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4212 
4213 	path = btrfs_alloc_path();
4214 	if (!path)
4215 		return -ENOMEM;
4216 
4217 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4218 				   name, name_len, -1);
4219 	if (IS_ERR_OR_NULL(di)) {
4220 		if (!di)
4221 			ret = -ENOENT;
4222 		else
4223 			ret = PTR_ERR(di);
4224 		goto out;
4225 	}
4226 
4227 	leaf = path->nodes[0];
4228 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4229 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4230 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4231 	if (ret) {
4232 		btrfs_abort_transaction(trans, ret);
4233 		goto out;
4234 	}
4235 	btrfs_release_path(path);
4236 
4237 	ret = btrfs_del_root_ref(trans, fs_info, objectid,
4238 				 root->root_key.objectid, dir_ino,
4239 				 &index, name, name_len);
4240 	if (ret < 0) {
4241 		if (ret != -ENOENT) {
4242 			btrfs_abort_transaction(trans, ret);
4243 			goto out;
4244 		}
4245 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4246 						 name, name_len);
4247 		if (IS_ERR_OR_NULL(di)) {
4248 			if (!di)
4249 				ret = -ENOENT;
4250 			else
4251 				ret = PTR_ERR(di);
4252 			btrfs_abort_transaction(trans, ret);
4253 			goto out;
4254 		}
4255 
4256 		leaf = path->nodes[0];
4257 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4258 		btrfs_release_path(path);
4259 		index = key.offset;
4260 	}
4261 	btrfs_release_path(path);
4262 
4263 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4264 	if (ret) {
4265 		btrfs_abort_transaction(trans, ret);
4266 		goto out;
4267 	}
4268 
4269 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4270 	inode_inc_iversion(dir);
4271 	dir->i_mtime = dir->i_ctime = current_time(dir);
4272 	ret = btrfs_update_inode_fallback(trans, root, dir);
4273 	if (ret)
4274 		btrfs_abort_transaction(trans, ret);
4275 out:
4276 	btrfs_free_path(path);
4277 	return ret;
4278 }
4279 
4280 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4281 {
4282 	struct inode *inode = d_inode(dentry);
4283 	int err = 0;
4284 	struct btrfs_root *root = BTRFS_I(dir)->root;
4285 	struct btrfs_trans_handle *trans;
4286 	u64 last_unlink_trans;
4287 
4288 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4289 		return -ENOTEMPTY;
4290 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4291 		return -EPERM;
4292 
4293 	trans = __unlink_start_trans(dir);
4294 	if (IS_ERR(trans))
4295 		return PTR_ERR(trans);
4296 
4297 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4298 		err = btrfs_unlink_subvol(trans, root, dir,
4299 					  BTRFS_I(inode)->location.objectid,
4300 					  dentry->d_name.name,
4301 					  dentry->d_name.len);
4302 		goto out;
4303 	}
4304 
4305 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4306 	if (err)
4307 		goto out;
4308 
4309 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4310 
4311 	/* now the directory is empty */
4312 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4313 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4314 			dentry->d_name.len);
4315 	if (!err) {
4316 		btrfs_i_size_write(BTRFS_I(inode), 0);
4317 		/*
4318 		 * Propagate the last_unlink_trans value of the deleted dir to
4319 		 * its parent directory. This is to prevent an unrecoverable
4320 		 * log tree in the case we do something like this:
4321 		 * 1) create dir foo
4322 		 * 2) create snapshot under dir foo
4323 		 * 3) delete the snapshot
4324 		 * 4) rmdir foo
4325 		 * 5) mkdir foo
4326 		 * 6) fsync foo or some file inside foo
4327 		 */
4328 		if (last_unlink_trans >= trans->transid)
4329 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4330 	}
4331 out:
4332 	btrfs_end_transaction(trans);
4333 	btrfs_btree_balance_dirty(root->fs_info);
4334 
4335 	return err;
4336 }
4337 
4338 static int truncate_space_check(struct btrfs_trans_handle *trans,
4339 				struct btrfs_root *root,
4340 				u64 bytes_deleted)
4341 {
4342 	struct btrfs_fs_info *fs_info = root->fs_info;
4343 	int ret;
4344 
4345 	/*
4346 	 * This is only used to apply pressure to the enospc system, we don't
4347 	 * intend to use this reservation at all.
4348 	 */
4349 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4350 	bytes_deleted *= fs_info->nodesize;
4351 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4352 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4353 	if (!ret) {
4354 		trace_btrfs_space_reservation(fs_info, "transaction",
4355 					      trans->transid,
4356 					      bytes_deleted, 1);
4357 		trans->bytes_reserved += bytes_deleted;
4358 	}
4359 	return ret;
4360 
4361 }
4362 
4363 static int truncate_inline_extent(struct inode *inode,
4364 				  struct btrfs_path *path,
4365 				  struct btrfs_key *found_key,
4366 				  const u64 item_end,
4367 				  const u64 new_size)
4368 {
4369 	struct extent_buffer *leaf = path->nodes[0];
4370 	int slot = path->slots[0];
4371 	struct btrfs_file_extent_item *fi;
4372 	u32 size = (u32)(new_size - found_key->offset);
4373 	struct btrfs_root *root = BTRFS_I(inode)->root;
4374 
4375 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4376 
4377 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4378 		loff_t offset = new_size;
4379 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4380 
4381 		/*
4382 		 * Zero out the remaining of the last page of our inline extent,
4383 		 * instead of directly truncating our inline extent here - that
4384 		 * would be much more complex (decompressing all the data, then
4385 		 * compressing the truncated data, which might be bigger than
4386 		 * the size of the inline extent, resize the extent, etc).
4387 		 * We release the path because to get the page we might need to
4388 		 * read the extent item from disk (data not in the page cache).
4389 		 */
4390 		btrfs_release_path(path);
4391 		return btrfs_truncate_block(inode, offset, page_end - offset,
4392 					0);
4393 	}
4394 
4395 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4396 	size = btrfs_file_extent_calc_inline_size(size);
4397 	btrfs_truncate_item(root->fs_info, path, size, 1);
4398 
4399 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4400 		inode_sub_bytes(inode, item_end + 1 - new_size);
4401 
4402 	return 0;
4403 }
4404 
4405 /*
4406  * this can truncate away extent items, csum items and directory items.
4407  * It starts at a high offset and removes keys until it can't find
4408  * any higher than new_size
4409  *
4410  * csum items that cross the new i_size are truncated to the new size
4411  * as well.
4412  *
4413  * min_type is the minimum key type to truncate down to.  If set to 0, this
4414  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4415  */
4416 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4417 			       struct btrfs_root *root,
4418 			       struct inode *inode,
4419 			       u64 new_size, u32 min_type)
4420 {
4421 	struct btrfs_fs_info *fs_info = root->fs_info;
4422 	struct btrfs_path *path;
4423 	struct extent_buffer *leaf;
4424 	struct btrfs_file_extent_item *fi;
4425 	struct btrfs_key key;
4426 	struct btrfs_key found_key;
4427 	u64 extent_start = 0;
4428 	u64 extent_num_bytes = 0;
4429 	u64 extent_offset = 0;
4430 	u64 item_end = 0;
4431 	u64 last_size = new_size;
4432 	u32 found_type = (u8)-1;
4433 	int found_extent;
4434 	int del_item;
4435 	int pending_del_nr = 0;
4436 	int pending_del_slot = 0;
4437 	int extent_type = -1;
4438 	int ret;
4439 	int err = 0;
4440 	u64 ino = btrfs_ino(BTRFS_I(inode));
4441 	u64 bytes_deleted = 0;
4442 	bool be_nice = 0;
4443 	bool should_throttle = 0;
4444 	bool should_end = 0;
4445 
4446 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4447 
4448 	/*
4449 	 * for non-free space inodes and ref cows, we want to back off from
4450 	 * time to time
4451 	 */
4452 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4453 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4454 		be_nice = 1;
4455 
4456 	path = btrfs_alloc_path();
4457 	if (!path)
4458 		return -ENOMEM;
4459 	path->reada = READA_BACK;
4460 
4461 	/*
4462 	 * We want to drop from the next block forward in case this new size is
4463 	 * not block aligned since we will be keeping the last block of the
4464 	 * extent just the way it is.
4465 	 */
4466 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4467 	    root == fs_info->tree_root)
4468 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4469 					fs_info->sectorsize),
4470 					(u64)-1, 0);
4471 
4472 	/*
4473 	 * This function is also used to drop the items in the log tree before
4474 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4475 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4476 	 * items.
4477 	 */
4478 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4479 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4480 
4481 	key.objectid = ino;
4482 	key.offset = (u64)-1;
4483 	key.type = (u8)-1;
4484 
4485 search_again:
4486 	/*
4487 	 * with a 16K leaf size and 128MB extents, you can actually queue
4488 	 * up a huge file in a single leaf.  Most of the time that
4489 	 * bytes_deleted is > 0, it will be huge by the time we get here
4490 	 */
4491 	if (be_nice && bytes_deleted > SZ_32M) {
4492 		if (btrfs_should_end_transaction(trans)) {
4493 			err = -EAGAIN;
4494 			goto error;
4495 		}
4496 	}
4497 
4498 
4499 	path->leave_spinning = 1;
4500 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4501 	if (ret < 0) {
4502 		err = ret;
4503 		goto out;
4504 	}
4505 
4506 	if (ret > 0) {
4507 		/* there are no items in the tree for us to truncate, we're
4508 		 * done
4509 		 */
4510 		if (path->slots[0] == 0)
4511 			goto out;
4512 		path->slots[0]--;
4513 	}
4514 
4515 	while (1) {
4516 		fi = NULL;
4517 		leaf = path->nodes[0];
4518 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4519 		found_type = found_key.type;
4520 
4521 		if (found_key.objectid != ino)
4522 			break;
4523 
4524 		if (found_type < min_type)
4525 			break;
4526 
4527 		item_end = found_key.offset;
4528 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4529 			fi = btrfs_item_ptr(leaf, path->slots[0],
4530 					    struct btrfs_file_extent_item);
4531 			extent_type = btrfs_file_extent_type(leaf, fi);
4532 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4533 				item_end +=
4534 				    btrfs_file_extent_num_bytes(leaf, fi);
4535 
4536 				trace_btrfs_truncate_show_fi_regular(
4537 					BTRFS_I(inode), leaf, fi,
4538 					found_key.offset);
4539 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4540 				item_end += btrfs_file_extent_inline_len(leaf,
4541 							 path->slots[0], fi);
4542 
4543 				trace_btrfs_truncate_show_fi_inline(
4544 					BTRFS_I(inode), leaf, fi, path->slots[0],
4545 					found_key.offset);
4546 			}
4547 			item_end--;
4548 		}
4549 		if (found_type > min_type) {
4550 			del_item = 1;
4551 		} else {
4552 			if (item_end < new_size)
4553 				break;
4554 			if (found_key.offset >= new_size)
4555 				del_item = 1;
4556 			else
4557 				del_item = 0;
4558 		}
4559 		found_extent = 0;
4560 		/* FIXME, shrink the extent if the ref count is only 1 */
4561 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4562 			goto delete;
4563 
4564 		if (del_item)
4565 			last_size = found_key.offset;
4566 		else
4567 			last_size = new_size;
4568 
4569 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4570 			u64 num_dec;
4571 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4572 			if (!del_item) {
4573 				u64 orig_num_bytes =
4574 					btrfs_file_extent_num_bytes(leaf, fi);
4575 				extent_num_bytes = ALIGN(new_size -
4576 						found_key.offset,
4577 						fs_info->sectorsize);
4578 				btrfs_set_file_extent_num_bytes(leaf, fi,
4579 							 extent_num_bytes);
4580 				num_dec = (orig_num_bytes -
4581 					   extent_num_bytes);
4582 				if (test_bit(BTRFS_ROOT_REF_COWS,
4583 					     &root->state) &&
4584 				    extent_start != 0)
4585 					inode_sub_bytes(inode, num_dec);
4586 				btrfs_mark_buffer_dirty(leaf);
4587 			} else {
4588 				extent_num_bytes =
4589 					btrfs_file_extent_disk_num_bytes(leaf,
4590 									 fi);
4591 				extent_offset = found_key.offset -
4592 					btrfs_file_extent_offset(leaf, fi);
4593 
4594 				/* FIXME blocksize != 4096 */
4595 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4596 				if (extent_start != 0) {
4597 					found_extent = 1;
4598 					if (test_bit(BTRFS_ROOT_REF_COWS,
4599 						     &root->state))
4600 						inode_sub_bytes(inode, num_dec);
4601 				}
4602 			}
4603 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4604 			/*
4605 			 * we can't truncate inline items that have had
4606 			 * special encodings
4607 			 */
4608 			if (!del_item &&
4609 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4610 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4611 
4612 				/*
4613 				 * Need to release path in order to truncate a
4614 				 * compressed extent. So delete any accumulated
4615 				 * extent items so far.
4616 				 */
4617 				if (btrfs_file_extent_compression(leaf, fi) !=
4618 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4619 					err = btrfs_del_items(trans, root, path,
4620 							      pending_del_slot,
4621 							      pending_del_nr);
4622 					if (err) {
4623 						btrfs_abort_transaction(trans,
4624 									err);
4625 						goto error;
4626 					}
4627 					pending_del_nr = 0;
4628 				}
4629 
4630 				err = truncate_inline_extent(inode, path,
4631 							     &found_key,
4632 							     item_end,
4633 							     new_size);
4634 				if (err) {
4635 					btrfs_abort_transaction(trans, err);
4636 					goto error;
4637 				}
4638 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4639 					    &root->state)) {
4640 				inode_sub_bytes(inode, item_end + 1 - new_size);
4641 			}
4642 		}
4643 delete:
4644 		if (del_item) {
4645 			if (!pending_del_nr) {
4646 				/* no pending yet, add ourselves */
4647 				pending_del_slot = path->slots[0];
4648 				pending_del_nr = 1;
4649 			} else if (pending_del_nr &&
4650 				   path->slots[0] + 1 == pending_del_slot) {
4651 				/* hop on the pending chunk */
4652 				pending_del_nr++;
4653 				pending_del_slot = path->slots[0];
4654 			} else {
4655 				BUG();
4656 			}
4657 		} else {
4658 			break;
4659 		}
4660 		should_throttle = 0;
4661 
4662 		if (found_extent &&
4663 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4664 		     root == fs_info->tree_root)) {
4665 			btrfs_set_path_blocking(path);
4666 			bytes_deleted += extent_num_bytes;
4667 			ret = btrfs_free_extent(trans, fs_info, extent_start,
4668 						extent_num_bytes, 0,
4669 						btrfs_header_owner(leaf),
4670 						ino, extent_offset);
4671 			BUG_ON(ret);
4672 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4673 				btrfs_async_run_delayed_refs(fs_info,
4674 					trans->delayed_ref_updates * 2,
4675 					trans->transid, 0);
4676 			if (be_nice) {
4677 				if (truncate_space_check(trans, root,
4678 							 extent_num_bytes)) {
4679 					should_end = 1;
4680 				}
4681 				if (btrfs_should_throttle_delayed_refs(trans,
4682 								       fs_info))
4683 					should_throttle = 1;
4684 			}
4685 		}
4686 
4687 		if (found_type == BTRFS_INODE_ITEM_KEY)
4688 			break;
4689 
4690 		if (path->slots[0] == 0 ||
4691 		    path->slots[0] != pending_del_slot ||
4692 		    should_throttle || should_end) {
4693 			if (pending_del_nr) {
4694 				ret = btrfs_del_items(trans, root, path,
4695 						pending_del_slot,
4696 						pending_del_nr);
4697 				if (ret) {
4698 					btrfs_abort_transaction(trans, ret);
4699 					goto error;
4700 				}
4701 				pending_del_nr = 0;
4702 			}
4703 			btrfs_release_path(path);
4704 			if (should_throttle) {
4705 				unsigned long updates = trans->delayed_ref_updates;
4706 				if (updates) {
4707 					trans->delayed_ref_updates = 0;
4708 					ret = btrfs_run_delayed_refs(trans,
4709 								   fs_info,
4710 								   updates * 2);
4711 					if (ret && !err)
4712 						err = ret;
4713 				}
4714 			}
4715 			/*
4716 			 * if we failed to refill our space rsv, bail out
4717 			 * and let the transaction restart
4718 			 */
4719 			if (should_end) {
4720 				err = -EAGAIN;
4721 				goto error;
4722 			}
4723 			goto search_again;
4724 		} else {
4725 			path->slots[0]--;
4726 		}
4727 	}
4728 out:
4729 	if (pending_del_nr) {
4730 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4731 				      pending_del_nr);
4732 		if (ret)
4733 			btrfs_abort_transaction(trans, ret);
4734 	}
4735 error:
4736 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4737 		ASSERT(last_size >= new_size);
4738 		if (!err && last_size > new_size)
4739 			last_size = new_size;
4740 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4741 	}
4742 
4743 	btrfs_free_path(path);
4744 
4745 	if (be_nice && bytes_deleted > SZ_32M) {
4746 		unsigned long updates = trans->delayed_ref_updates;
4747 		if (updates) {
4748 			trans->delayed_ref_updates = 0;
4749 			ret = btrfs_run_delayed_refs(trans, fs_info,
4750 						     updates * 2);
4751 			if (ret && !err)
4752 				err = ret;
4753 		}
4754 	}
4755 	return err;
4756 }
4757 
4758 /*
4759  * btrfs_truncate_block - read, zero a chunk and write a block
4760  * @inode - inode that we're zeroing
4761  * @from - the offset to start zeroing
4762  * @len - the length to zero, 0 to zero the entire range respective to the
4763  *	offset
4764  * @front - zero up to the offset instead of from the offset on
4765  *
4766  * This will find the block for the "from" offset and cow the block and zero the
4767  * part we want to zero.  This is used with truncate and hole punching.
4768  */
4769 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4770 			int front)
4771 {
4772 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4773 	struct address_space *mapping = inode->i_mapping;
4774 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4775 	struct btrfs_ordered_extent *ordered;
4776 	struct extent_state *cached_state = NULL;
4777 	struct extent_changeset *data_reserved = NULL;
4778 	char *kaddr;
4779 	u32 blocksize = fs_info->sectorsize;
4780 	pgoff_t index = from >> PAGE_SHIFT;
4781 	unsigned offset = from & (blocksize - 1);
4782 	struct page *page;
4783 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4784 	int ret = 0;
4785 	u64 block_start;
4786 	u64 block_end;
4787 
4788 	if ((offset & (blocksize - 1)) == 0 &&
4789 	    (!len || ((len & (blocksize - 1)) == 0)))
4790 		goto out;
4791 
4792 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4793 			round_down(from, blocksize), blocksize);
4794 	if (ret)
4795 		goto out;
4796 
4797 again:
4798 	page = find_or_create_page(mapping, index, mask);
4799 	if (!page) {
4800 		btrfs_delalloc_release_space(inode, data_reserved,
4801 				round_down(from, blocksize),
4802 				blocksize);
4803 		ret = -ENOMEM;
4804 		goto out;
4805 	}
4806 
4807 	block_start = round_down(from, blocksize);
4808 	block_end = block_start + blocksize - 1;
4809 
4810 	if (!PageUptodate(page)) {
4811 		ret = btrfs_readpage(NULL, page);
4812 		lock_page(page);
4813 		if (page->mapping != mapping) {
4814 			unlock_page(page);
4815 			put_page(page);
4816 			goto again;
4817 		}
4818 		if (!PageUptodate(page)) {
4819 			ret = -EIO;
4820 			goto out_unlock;
4821 		}
4822 	}
4823 	wait_on_page_writeback(page);
4824 
4825 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4826 	set_page_extent_mapped(page);
4827 
4828 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4829 	if (ordered) {
4830 		unlock_extent_cached(io_tree, block_start, block_end,
4831 				     &cached_state, GFP_NOFS);
4832 		unlock_page(page);
4833 		put_page(page);
4834 		btrfs_start_ordered_extent(inode, ordered, 1);
4835 		btrfs_put_ordered_extent(ordered);
4836 		goto again;
4837 	}
4838 
4839 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4840 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4841 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4842 			  0, 0, &cached_state, GFP_NOFS);
4843 
4844 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4845 					&cached_state, 0);
4846 	if (ret) {
4847 		unlock_extent_cached(io_tree, block_start, block_end,
4848 				     &cached_state, GFP_NOFS);
4849 		goto out_unlock;
4850 	}
4851 
4852 	if (offset != blocksize) {
4853 		if (!len)
4854 			len = blocksize - offset;
4855 		kaddr = kmap(page);
4856 		if (front)
4857 			memset(kaddr + (block_start - page_offset(page)),
4858 				0, offset);
4859 		else
4860 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4861 				0, len);
4862 		flush_dcache_page(page);
4863 		kunmap(page);
4864 	}
4865 	ClearPageChecked(page);
4866 	set_page_dirty(page);
4867 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4868 			     GFP_NOFS);
4869 
4870 out_unlock:
4871 	if (ret)
4872 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4873 					     blocksize);
4874 	unlock_page(page);
4875 	put_page(page);
4876 out:
4877 	extent_changeset_free(data_reserved);
4878 	return ret;
4879 }
4880 
4881 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4882 			     u64 offset, u64 len)
4883 {
4884 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4885 	struct btrfs_trans_handle *trans;
4886 	int ret;
4887 
4888 	/*
4889 	 * Still need to make sure the inode looks like it's been updated so
4890 	 * that any holes get logged if we fsync.
4891 	 */
4892 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4893 		BTRFS_I(inode)->last_trans = fs_info->generation;
4894 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4895 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4896 		return 0;
4897 	}
4898 
4899 	/*
4900 	 * 1 - for the one we're dropping
4901 	 * 1 - for the one we're adding
4902 	 * 1 - for updating the inode.
4903 	 */
4904 	trans = btrfs_start_transaction(root, 3);
4905 	if (IS_ERR(trans))
4906 		return PTR_ERR(trans);
4907 
4908 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4909 	if (ret) {
4910 		btrfs_abort_transaction(trans, ret);
4911 		btrfs_end_transaction(trans);
4912 		return ret;
4913 	}
4914 
4915 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4916 			offset, 0, 0, len, 0, len, 0, 0, 0);
4917 	if (ret)
4918 		btrfs_abort_transaction(trans, ret);
4919 	else
4920 		btrfs_update_inode(trans, root, inode);
4921 	btrfs_end_transaction(trans);
4922 	return ret;
4923 }
4924 
4925 /*
4926  * This function puts in dummy file extents for the area we're creating a hole
4927  * for.  So if we are truncating this file to a larger size we need to insert
4928  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4929  * the range between oldsize and size
4930  */
4931 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4932 {
4933 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4934 	struct btrfs_root *root = BTRFS_I(inode)->root;
4935 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4936 	struct extent_map *em = NULL;
4937 	struct extent_state *cached_state = NULL;
4938 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4939 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4940 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4941 	u64 last_byte;
4942 	u64 cur_offset;
4943 	u64 hole_size;
4944 	int err = 0;
4945 
4946 	/*
4947 	 * If our size started in the middle of a block we need to zero out the
4948 	 * rest of the block before we expand the i_size, otherwise we could
4949 	 * expose stale data.
4950 	 */
4951 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4952 	if (err)
4953 		return err;
4954 
4955 	if (size <= hole_start)
4956 		return 0;
4957 
4958 	while (1) {
4959 		struct btrfs_ordered_extent *ordered;
4960 
4961 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4962 				 &cached_state);
4963 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4964 						     block_end - hole_start);
4965 		if (!ordered)
4966 			break;
4967 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4968 				     &cached_state, GFP_NOFS);
4969 		btrfs_start_ordered_extent(inode, ordered, 1);
4970 		btrfs_put_ordered_extent(ordered);
4971 	}
4972 
4973 	cur_offset = hole_start;
4974 	while (1) {
4975 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4976 				block_end - cur_offset, 0);
4977 		if (IS_ERR(em)) {
4978 			err = PTR_ERR(em);
4979 			em = NULL;
4980 			break;
4981 		}
4982 		last_byte = min(extent_map_end(em), block_end);
4983 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4984 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4985 			struct extent_map *hole_em;
4986 			hole_size = last_byte - cur_offset;
4987 
4988 			err = maybe_insert_hole(root, inode, cur_offset,
4989 						hole_size);
4990 			if (err)
4991 				break;
4992 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4993 						cur_offset + hole_size - 1, 0);
4994 			hole_em = alloc_extent_map();
4995 			if (!hole_em) {
4996 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4997 					&BTRFS_I(inode)->runtime_flags);
4998 				goto next;
4999 			}
5000 			hole_em->start = cur_offset;
5001 			hole_em->len = hole_size;
5002 			hole_em->orig_start = cur_offset;
5003 
5004 			hole_em->block_start = EXTENT_MAP_HOLE;
5005 			hole_em->block_len = 0;
5006 			hole_em->orig_block_len = 0;
5007 			hole_em->ram_bytes = hole_size;
5008 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5009 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5010 			hole_em->generation = fs_info->generation;
5011 
5012 			while (1) {
5013 				write_lock(&em_tree->lock);
5014 				err = add_extent_mapping(em_tree, hole_em, 1);
5015 				write_unlock(&em_tree->lock);
5016 				if (err != -EEXIST)
5017 					break;
5018 				btrfs_drop_extent_cache(BTRFS_I(inode),
5019 							cur_offset,
5020 							cur_offset +
5021 							hole_size - 1, 0);
5022 			}
5023 			free_extent_map(hole_em);
5024 		}
5025 next:
5026 		free_extent_map(em);
5027 		em = NULL;
5028 		cur_offset = last_byte;
5029 		if (cur_offset >= block_end)
5030 			break;
5031 	}
5032 	free_extent_map(em);
5033 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5034 			     GFP_NOFS);
5035 	return err;
5036 }
5037 
5038 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5039 {
5040 	struct btrfs_root *root = BTRFS_I(inode)->root;
5041 	struct btrfs_trans_handle *trans;
5042 	loff_t oldsize = i_size_read(inode);
5043 	loff_t newsize = attr->ia_size;
5044 	int mask = attr->ia_valid;
5045 	int ret;
5046 
5047 	/*
5048 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5049 	 * special case where we need to update the times despite not having
5050 	 * these flags set.  For all other operations the VFS set these flags
5051 	 * explicitly if it wants a timestamp update.
5052 	 */
5053 	if (newsize != oldsize) {
5054 		inode_inc_iversion(inode);
5055 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5056 			inode->i_ctime = inode->i_mtime =
5057 				current_time(inode);
5058 	}
5059 
5060 	if (newsize > oldsize) {
5061 		/*
5062 		 * Don't do an expanding truncate while snapshotting is ongoing.
5063 		 * This is to ensure the snapshot captures a fully consistent
5064 		 * state of this file - if the snapshot captures this expanding
5065 		 * truncation, it must capture all writes that happened before
5066 		 * this truncation.
5067 		 */
5068 		btrfs_wait_for_snapshot_creation(root);
5069 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5070 		if (ret) {
5071 			btrfs_end_write_no_snapshotting(root);
5072 			return ret;
5073 		}
5074 
5075 		trans = btrfs_start_transaction(root, 1);
5076 		if (IS_ERR(trans)) {
5077 			btrfs_end_write_no_snapshotting(root);
5078 			return PTR_ERR(trans);
5079 		}
5080 
5081 		i_size_write(inode, newsize);
5082 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5083 		pagecache_isize_extended(inode, oldsize, newsize);
5084 		ret = btrfs_update_inode(trans, root, inode);
5085 		btrfs_end_write_no_snapshotting(root);
5086 		btrfs_end_transaction(trans);
5087 	} else {
5088 
5089 		/*
5090 		 * We're truncating a file that used to have good data down to
5091 		 * zero. Make sure it gets into the ordered flush list so that
5092 		 * any new writes get down to disk quickly.
5093 		 */
5094 		if (newsize == 0)
5095 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5096 				&BTRFS_I(inode)->runtime_flags);
5097 
5098 		/*
5099 		 * 1 for the orphan item we're going to add
5100 		 * 1 for the orphan item deletion.
5101 		 */
5102 		trans = btrfs_start_transaction(root, 2);
5103 		if (IS_ERR(trans))
5104 			return PTR_ERR(trans);
5105 
5106 		/*
5107 		 * We need to do this in case we fail at _any_ point during the
5108 		 * actual truncate.  Once we do the truncate_setsize we could
5109 		 * invalidate pages which forces any outstanding ordered io to
5110 		 * be instantly completed which will give us extents that need
5111 		 * to be truncated.  If we fail to get an orphan inode down we
5112 		 * could have left over extents that were never meant to live,
5113 		 * so we need to guarantee from this point on that everything
5114 		 * will be consistent.
5115 		 */
5116 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5117 		btrfs_end_transaction(trans);
5118 		if (ret)
5119 			return ret;
5120 
5121 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5122 		truncate_setsize(inode, newsize);
5123 
5124 		/* Disable nonlocked read DIO to avoid the end less truncate */
5125 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5126 		inode_dio_wait(inode);
5127 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5128 
5129 		ret = btrfs_truncate(inode);
5130 		if (ret && inode->i_nlink) {
5131 			int err;
5132 
5133 			/* To get a stable disk_i_size */
5134 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5135 			if (err) {
5136 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5137 				return err;
5138 			}
5139 
5140 			/*
5141 			 * failed to truncate, disk_i_size is only adjusted down
5142 			 * as we remove extents, so it should represent the true
5143 			 * size of the inode, so reset the in memory size and
5144 			 * delete our orphan entry.
5145 			 */
5146 			trans = btrfs_join_transaction(root);
5147 			if (IS_ERR(trans)) {
5148 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5149 				return ret;
5150 			}
5151 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5152 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
5153 			if (err)
5154 				btrfs_abort_transaction(trans, err);
5155 			btrfs_end_transaction(trans);
5156 		}
5157 	}
5158 
5159 	return ret;
5160 }
5161 
5162 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5163 {
5164 	struct inode *inode = d_inode(dentry);
5165 	struct btrfs_root *root = BTRFS_I(inode)->root;
5166 	int err;
5167 
5168 	if (btrfs_root_readonly(root))
5169 		return -EROFS;
5170 
5171 	err = setattr_prepare(dentry, attr);
5172 	if (err)
5173 		return err;
5174 
5175 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5176 		err = btrfs_setsize(inode, attr);
5177 		if (err)
5178 			return err;
5179 	}
5180 
5181 	if (attr->ia_valid) {
5182 		setattr_copy(inode, attr);
5183 		inode_inc_iversion(inode);
5184 		err = btrfs_dirty_inode(inode);
5185 
5186 		if (!err && attr->ia_valid & ATTR_MODE)
5187 			err = posix_acl_chmod(inode, inode->i_mode);
5188 	}
5189 
5190 	return err;
5191 }
5192 
5193 /*
5194  * While truncating the inode pages during eviction, we get the VFS calling
5195  * btrfs_invalidatepage() against each page of the inode. This is slow because
5196  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5197  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5198  * extent_state structures over and over, wasting lots of time.
5199  *
5200  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5201  * those expensive operations on a per page basis and do only the ordered io
5202  * finishing, while we release here the extent_map and extent_state structures,
5203  * without the excessive merging and splitting.
5204  */
5205 static void evict_inode_truncate_pages(struct inode *inode)
5206 {
5207 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5208 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5209 	struct rb_node *node;
5210 
5211 	ASSERT(inode->i_state & I_FREEING);
5212 	truncate_inode_pages_final(&inode->i_data);
5213 
5214 	write_lock(&map_tree->lock);
5215 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5216 		struct extent_map *em;
5217 
5218 		node = rb_first(&map_tree->map);
5219 		em = rb_entry(node, struct extent_map, rb_node);
5220 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5221 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5222 		remove_extent_mapping(map_tree, em);
5223 		free_extent_map(em);
5224 		if (need_resched()) {
5225 			write_unlock(&map_tree->lock);
5226 			cond_resched();
5227 			write_lock(&map_tree->lock);
5228 		}
5229 	}
5230 	write_unlock(&map_tree->lock);
5231 
5232 	/*
5233 	 * Keep looping until we have no more ranges in the io tree.
5234 	 * We can have ongoing bios started by readpages (called from readahead)
5235 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5236 	 * still in progress (unlocked the pages in the bio but did not yet
5237 	 * unlocked the ranges in the io tree). Therefore this means some
5238 	 * ranges can still be locked and eviction started because before
5239 	 * submitting those bios, which are executed by a separate task (work
5240 	 * queue kthread), inode references (inode->i_count) were not taken
5241 	 * (which would be dropped in the end io callback of each bio).
5242 	 * Therefore here we effectively end up waiting for those bios and
5243 	 * anyone else holding locked ranges without having bumped the inode's
5244 	 * reference count - if we don't do it, when they access the inode's
5245 	 * io_tree to unlock a range it may be too late, leading to an
5246 	 * use-after-free issue.
5247 	 */
5248 	spin_lock(&io_tree->lock);
5249 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5250 		struct extent_state *state;
5251 		struct extent_state *cached_state = NULL;
5252 		u64 start;
5253 		u64 end;
5254 
5255 		node = rb_first(&io_tree->state);
5256 		state = rb_entry(node, struct extent_state, rb_node);
5257 		start = state->start;
5258 		end = state->end;
5259 		spin_unlock(&io_tree->lock);
5260 
5261 		lock_extent_bits(io_tree, start, end, &cached_state);
5262 
5263 		/*
5264 		 * If still has DELALLOC flag, the extent didn't reach disk,
5265 		 * and its reserved space won't be freed by delayed_ref.
5266 		 * So we need to free its reserved space here.
5267 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5268 		 *
5269 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5270 		 */
5271 		if (state->state & EXTENT_DELALLOC)
5272 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5273 
5274 		clear_extent_bit(io_tree, start, end,
5275 				 EXTENT_LOCKED | EXTENT_DIRTY |
5276 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5277 				 EXTENT_DEFRAG, 1, 1,
5278 				 &cached_state, GFP_NOFS);
5279 
5280 		cond_resched();
5281 		spin_lock(&io_tree->lock);
5282 	}
5283 	spin_unlock(&io_tree->lock);
5284 }
5285 
5286 void btrfs_evict_inode(struct inode *inode)
5287 {
5288 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5289 	struct btrfs_trans_handle *trans;
5290 	struct btrfs_root *root = BTRFS_I(inode)->root;
5291 	struct btrfs_block_rsv *rsv, *global_rsv;
5292 	int steal_from_global = 0;
5293 	u64 min_size;
5294 	int ret;
5295 
5296 	trace_btrfs_inode_evict(inode);
5297 
5298 	if (!root) {
5299 		kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5300 		return;
5301 	}
5302 
5303 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5304 
5305 	evict_inode_truncate_pages(inode);
5306 
5307 	if (inode->i_nlink &&
5308 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5309 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5310 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5311 		goto no_delete;
5312 
5313 	if (is_bad_inode(inode)) {
5314 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5315 		goto no_delete;
5316 	}
5317 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5318 	if (!special_file(inode->i_mode))
5319 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5320 
5321 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5322 
5323 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5324 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5325 				 &BTRFS_I(inode)->runtime_flags));
5326 		goto no_delete;
5327 	}
5328 
5329 	if (inode->i_nlink > 0) {
5330 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5331 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5332 		goto no_delete;
5333 	}
5334 
5335 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5336 	if (ret) {
5337 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5338 		goto no_delete;
5339 	}
5340 
5341 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5342 	if (!rsv) {
5343 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5344 		goto no_delete;
5345 	}
5346 	rsv->size = min_size;
5347 	rsv->failfast = 1;
5348 	global_rsv = &fs_info->global_block_rsv;
5349 
5350 	btrfs_i_size_write(BTRFS_I(inode), 0);
5351 
5352 	/*
5353 	 * This is a bit simpler than btrfs_truncate since we've already
5354 	 * reserved our space for our orphan item in the unlink, so we just
5355 	 * need to reserve some slack space in case we add bytes and update
5356 	 * inode item when doing the truncate.
5357 	 */
5358 	while (1) {
5359 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5360 					     BTRFS_RESERVE_FLUSH_LIMIT);
5361 
5362 		/*
5363 		 * Try and steal from the global reserve since we will
5364 		 * likely not use this space anyway, we want to try as
5365 		 * hard as possible to get this to work.
5366 		 */
5367 		if (ret)
5368 			steal_from_global++;
5369 		else
5370 			steal_from_global = 0;
5371 		ret = 0;
5372 
5373 		/*
5374 		 * steal_from_global == 0: we reserved stuff, hooray!
5375 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5376 		 * steal_from_global == 2: we've committed, still not a lot of
5377 		 * room but maybe we'll have room in the global reserve this
5378 		 * time.
5379 		 * steal_from_global == 3: abandon all hope!
5380 		 */
5381 		if (steal_from_global > 2) {
5382 			btrfs_warn(fs_info,
5383 				   "Could not get space for a delete, will truncate on mount %d",
5384 				   ret);
5385 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5386 			btrfs_free_block_rsv(fs_info, rsv);
5387 			goto no_delete;
5388 		}
5389 
5390 		trans = btrfs_join_transaction(root);
5391 		if (IS_ERR(trans)) {
5392 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5393 			btrfs_free_block_rsv(fs_info, rsv);
5394 			goto no_delete;
5395 		}
5396 
5397 		/*
5398 		 * We can't just steal from the global reserve, we need to make
5399 		 * sure there is room to do it, if not we need to commit and try
5400 		 * again.
5401 		 */
5402 		if (steal_from_global) {
5403 			if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5404 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5405 							      min_size, 0);
5406 			else
5407 				ret = -ENOSPC;
5408 		}
5409 
5410 		/*
5411 		 * Couldn't steal from the global reserve, we have too much
5412 		 * pending stuff built up, commit the transaction and try it
5413 		 * again.
5414 		 */
5415 		if (ret) {
5416 			ret = btrfs_commit_transaction(trans);
5417 			if (ret) {
5418 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5419 				btrfs_free_block_rsv(fs_info, rsv);
5420 				goto no_delete;
5421 			}
5422 			continue;
5423 		} else {
5424 			steal_from_global = 0;
5425 		}
5426 
5427 		trans->block_rsv = rsv;
5428 
5429 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5430 		if (ret != -ENOSPC && ret != -EAGAIN)
5431 			break;
5432 
5433 		trans->block_rsv = &fs_info->trans_block_rsv;
5434 		btrfs_end_transaction(trans);
5435 		trans = NULL;
5436 		btrfs_btree_balance_dirty(fs_info);
5437 	}
5438 
5439 	btrfs_free_block_rsv(fs_info, rsv);
5440 
5441 	/*
5442 	 * Errors here aren't a big deal, it just means we leave orphan items
5443 	 * in the tree.  They will be cleaned up on the next mount.
5444 	 */
5445 	if (ret == 0) {
5446 		trans->block_rsv = root->orphan_block_rsv;
5447 		btrfs_orphan_del(trans, BTRFS_I(inode));
5448 	} else {
5449 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5450 	}
5451 
5452 	trans->block_rsv = &fs_info->trans_block_rsv;
5453 	if (!(root == fs_info->tree_root ||
5454 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5455 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5456 
5457 	btrfs_end_transaction(trans);
5458 	btrfs_btree_balance_dirty(fs_info);
5459 no_delete:
5460 	btrfs_remove_delayed_node(BTRFS_I(inode));
5461 	clear_inode(inode);
5462 }
5463 
5464 /*
5465  * this returns the key found in the dir entry in the location pointer.
5466  * If no dir entries were found, location->objectid is 0.
5467  */
5468 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5469 			       struct btrfs_key *location)
5470 {
5471 	const char *name = dentry->d_name.name;
5472 	int namelen = dentry->d_name.len;
5473 	struct btrfs_dir_item *di;
5474 	struct btrfs_path *path;
5475 	struct btrfs_root *root = BTRFS_I(dir)->root;
5476 	int ret = 0;
5477 
5478 	path = btrfs_alloc_path();
5479 	if (!path)
5480 		return -ENOMEM;
5481 
5482 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5483 			name, namelen, 0);
5484 	if (IS_ERR(di))
5485 		ret = PTR_ERR(di);
5486 
5487 	if (IS_ERR_OR_NULL(di))
5488 		goto out_err;
5489 
5490 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5491 out:
5492 	btrfs_free_path(path);
5493 	return ret;
5494 out_err:
5495 	location->objectid = 0;
5496 	goto out;
5497 }
5498 
5499 /*
5500  * when we hit a tree root in a directory, the btrfs part of the inode
5501  * needs to be changed to reflect the root directory of the tree root.  This
5502  * is kind of like crossing a mount point.
5503  */
5504 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5505 				    struct inode *dir,
5506 				    struct dentry *dentry,
5507 				    struct btrfs_key *location,
5508 				    struct btrfs_root **sub_root)
5509 {
5510 	struct btrfs_path *path;
5511 	struct btrfs_root *new_root;
5512 	struct btrfs_root_ref *ref;
5513 	struct extent_buffer *leaf;
5514 	struct btrfs_key key;
5515 	int ret;
5516 	int err = 0;
5517 
5518 	path = btrfs_alloc_path();
5519 	if (!path) {
5520 		err = -ENOMEM;
5521 		goto out;
5522 	}
5523 
5524 	err = -ENOENT;
5525 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5526 	key.type = BTRFS_ROOT_REF_KEY;
5527 	key.offset = location->objectid;
5528 
5529 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5530 	if (ret) {
5531 		if (ret < 0)
5532 			err = ret;
5533 		goto out;
5534 	}
5535 
5536 	leaf = path->nodes[0];
5537 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5538 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5539 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5540 		goto out;
5541 
5542 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5543 				   (unsigned long)(ref + 1),
5544 				   dentry->d_name.len);
5545 	if (ret)
5546 		goto out;
5547 
5548 	btrfs_release_path(path);
5549 
5550 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5551 	if (IS_ERR(new_root)) {
5552 		err = PTR_ERR(new_root);
5553 		goto out;
5554 	}
5555 
5556 	*sub_root = new_root;
5557 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5558 	location->type = BTRFS_INODE_ITEM_KEY;
5559 	location->offset = 0;
5560 	err = 0;
5561 out:
5562 	btrfs_free_path(path);
5563 	return err;
5564 }
5565 
5566 static void inode_tree_add(struct inode *inode)
5567 {
5568 	struct btrfs_root *root = BTRFS_I(inode)->root;
5569 	struct btrfs_inode *entry;
5570 	struct rb_node **p;
5571 	struct rb_node *parent;
5572 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5573 	u64 ino = btrfs_ino(BTRFS_I(inode));
5574 
5575 	if (inode_unhashed(inode))
5576 		return;
5577 	parent = NULL;
5578 	spin_lock(&root->inode_lock);
5579 	p = &root->inode_tree.rb_node;
5580 	while (*p) {
5581 		parent = *p;
5582 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5583 
5584 		if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5585 			p = &parent->rb_left;
5586 		else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5587 			p = &parent->rb_right;
5588 		else {
5589 			WARN_ON(!(entry->vfs_inode.i_state &
5590 				  (I_WILL_FREE | I_FREEING)));
5591 			rb_replace_node(parent, new, &root->inode_tree);
5592 			RB_CLEAR_NODE(parent);
5593 			spin_unlock(&root->inode_lock);
5594 			return;
5595 		}
5596 	}
5597 	rb_link_node(new, parent, p);
5598 	rb_insert_color(new, &root->inode_tree);
5599 	spin_unlock(&root->inode_lock);
5600 }
5601 
5602 static void inode_tree_del(struct inode *inode)
5603 {
5604 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5605 	struct btrfs_root *root = BTRFS_I(inode)->root;
5606 	int empty = 0;
5607 
5608 	spin_lock(&root->inode_lock);
5609 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5610 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5611 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5612 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5613 	}
5614 	spin_unlock(&root->inode_lock);
5615 
5616 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5617 		synchronize_srcu(&fs_info->subvol_srcu);
5618 		spin_lock(&root->inode_lock);
5619 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5620 		spin_unlock(&root->inode_lock);
5621 		if (empty)
5622 			btrfs_add_dead_root(root);
5623 	}
5624 }
5625 
5626 void btrfs_invalidate_inodes(struct btrfs_root *root)
5627 {
5628 	struct btrfs_fs_info *fs_info = root->fs_info;
5629 	struct rb_node *node;
5630 	struct rb_node *prev;
5631 	struct btrfs_inode *entry;
5632 	struct inode *inode;
5633 	u64 objectid = 0;
5634 
5635 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5636 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5637 
5638 	spin_lock(&root->inode_lock);
5639 again:
5640 	node = root->inode_tree.rb_node;
5641 	prev = NULL;
5642 	while (node) {
5643 		prev = node;
5644 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5645 
5646 		if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5647 			node = node->rb_left;
5648 		else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5649 			node = node->rb_right;
5650 		else
5651 			break;
5652 	}
5653 	if (!node) {
5654 		while (prev) {
5655 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5656 			if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5657 				node = prev;
5658 				break;
5659 			}
5660 			prev = rb_next(prev);
5661 		}
5662 	}
5663 	while (node) {
5664 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5665 		objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5666 		inode = igrab(&entry->vfs_inode);
5667 		if (inode) {
5668 			spin_unlock(&root->inode_lock);
5669 			if (atomic_read(&inode->i_count) > 1)
5670 				d_prune_aliases(inode);
5671 			/*
5672 			 * btrfs_drop_inode will have it removed from
5673 			 * the inode cache when its usage count
5674 			 * hits zero.
5675 			 */
5676 			iput(inode);
5677 			cond_resched();
5678 			spin_lock(&root->inode_lock);
5679 			goto again;
5680 		}
5681 
5682 		if (cond_resched_lock(&root->inode_lock))
5683 			goto again;
5684 
5685 		node = rb_next(node);
5686 	}
5687 	spin_unlock(&root->inode_lock);
5688 }
5689 
5690 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5691 {
5692 	struct btrfs_iget_args *args = p;
5693 	inode->i_ino = args->location->objectid;
5694 	memcpy(&BTRFS_I(inode)->location, args->location,
5695 	       sizeof(*args->location));
5696 	BTRFS_I(inode)->root = args->root;
5697 	return 0;
5698 }
5699 
5700 static int btrfs_find_actor(struct inode *inode, void *opaque)
5701 {
5702 	struct btrfs_iget_args *args = opaque;
5703 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5704 		args->root == BTRFS_I(inode)->root;
5705 }
5706 
5707 static struct inode *btrfs_iget_locked(struct super_block *s,
5708 				       struct btrfs_key *location,
5709 				       struct btrfs_root *root)
5710 {
5711 	struct inode *inode;
5712 	struct btrfs_iget_args args;
5713 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5714 
5715 	args.location = location;
5716 	args.root = root;
5717 
5718 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5719 			     btrfs_init_locked_inode,
5720 			     (void *)&args);
5721 	return inode;
5722 }
5723 
5724 /* Get an inode object given its location and corresponding root.
5725  * Returns in *is_new if the inode was read from disk
5726  */
5727 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5728 			 struct btrfs_root *root, int *new)
5729 {
5730 	struct inode *inode;
5731 
5732 	inode = btrfs_iget_locked(s, location, root);
5733 	if (!inode)
5734 		return ERR_PTR(-ENOMEM);
5735 
5736 	if (inode->i_state & I_NEW) {
5737 		int ret;
5738 
5739 		ret = btrfs_read_locked_inode(inode);
5740 		if (!is_bad_inode(inode)) {
5741 			inode_tree_add(inode);
5742 			unlock_new_inode(inode);
5743 			if (new)
5744 				*new = 1;
5745 		} else {
5746 			unlock_new_inode(inode);
5747 			iput(inode);
5748 			ASSERT(ret < 0);
5749 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5750 		}
5751 	}
5752 
5753 	return inode;
5754 }
5755 
5756 static struct inode *new_simple_dir(struct super_block *s,
5757 				    struct btrfs_key *key,
5758 				    struct btrfs_root *root)
5759 {
5760 	struct inode *inode = new_inode(s);
5761 
5762 	if (!inode)
5763 		return ERR_PTR(-ENOMEM);
5764 
5765 	BTRFS_I(inode)->root = root;
5766 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5767 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5768 
5769 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5770 	inode->i_op = &btrfs_dir_ro_inode_operations;
5771 	inode->i_opflags &= ~IOP_XATTR;
5772 	inode->i_fop = &simple_dir_operations;
5773 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5774 	inode->i_mtime = current_time(inode);
5775 	inode->i_atime = inode->i_mtime;
5776 	inode->i_ctime = inode->i_mtime;
5777 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5778 
5779 	return inode;
5780 }
5781 
5782 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5783 {
5784 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5785 	struct inode *inode;
5786 	struct btrfs_root *root = BTRFS_I(dir)->root;
5787 	struct btrfs_root *sub_root = root;
5788 	struct btrfs_key location;
5789 	int index;
5790 	int ret = 0;
5791 
5792 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5793 		return ERR_PTR(-ENAMETOOLONG);
5794 
5795 	ret = btrfs_inode_by_name(dir, dentry, &location);
5796 	if (ret < 0)
5797 		return ERR_PTR(ret);
5798 
5799 	if (location.objectid == 0)
5800 		return ERR_PTR(-ENOENT);
5801 
5802 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5803 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5804 		return inode;
5805 	}
5806 
5807 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5808 
5809 	index = srcu_read_lock(&fs_info->subvol_srcu);
5810 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5811 				       &location, &sub_root);
5812 	if (ret < 0) {
5813 		if (ret != -ENOENT)
5814 			inode = ERR_PTR(ret);
5815 		else
5816 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5817 	} else {
5818 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5819 	}
5820 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5821 
5822 	if (!IS_ERR(inode) && root != sub_root) {
5823 		down_read(&fs_info->cleanup_work_sem);
5824 		if (!sb_rdonly(inode->i_sb))
5825 			ret = btrfs_orphan_cleanup(sub_root);
5826 		up_read(&fs_info->cleanup_work_sem);
5827 		if (ret) {
5828 			iput(inode);
5829 			inode = ERR_PTR(ret);
5830 		}
5831 	}
5832 
5833 	return inode;
5834 }
5835 
5836 static int btrfs_dentry_delete(const struct dentry *dentry)
5837 {
5838 	struct btrfs_root *root;
5839 	struct inode *inode = d_inode(dentry);
5840 
5841 	if (!inode && !IS_ROOT(dentry))
5842 		inode = d_inode(dentry->d_parent);
5843 
5844 	if (inode) {
5845 		root = BTRFS_I(inode)->root;
5846 		if (btrfs_root_refs(&root->root_item) == 0)
5847 			return 1;
5848 
5849 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5850 			return 1;
5851 	}
5852 	return 0;
5853 }
5854 
5855 static void btrfs_dentry_release(struct dentry *dentry)
5856 {
5857 	kfree(dentry->d_fsdata);
5858 }
5859 
5860 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5861 				   unsigned int flags)
5862 {
5863 	struct inode *inode;
5864 
5865 	inode = btrfs_lookup_dentry(dir, dentry);
5866 	if (IS_ERR(inode)) {
5867 		if (PTR_ERR(inode) == -ENOENT)
5868 			inode = NULL;
5869 		else
5870 			return ERR_CAST(inode);
5871 	}
5872 
5873 	return d_splice_alias(inode, dentry);
5874 }
5875 
5876 unsigned char btrfs_filetype_table[] = {
5877 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5878 };
5879 
5880 /*
5881  * All this infrastructure exists because dir_emit can fault, and we are holding
5882  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5883  * our information into that, and then dir_emit from the buffer.  This is
5884  * similar to what NFS does, only we don't keep the buffer around in pagecache
5885  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5886  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5887  * tree lock.
5888  */
5889 static int btrfs_opendir(struct inode *inode, struct file *file)
5890 {
5891 	struct btrfs_file_private *private;
5892 
5893 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5894 	if (!private)
5895 		return -ENOMEM;
5896 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5897 	if (!private->filldir_buf) {
5898 		kfree(private);
5899 		return -ENOMEM;
5900 	}
5901 	file->private_data = private;
5902 	return 0;
5903 }
5904 
5905 struct dir_entry {
5906 	u64 ino;
5907 	u64 offset;
5908 	unsigned type;
5909 	int name_len;
5910 };
5911 
5912 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5913 {
5914 	while (entries--) {
5915 		struct dir_entry *entry = addr;
5916 		char *name = (char *)(entry + 1);
5917 
5918 		ctx->pos = entry->offset;
5919 		if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5920 			      entry->type))
5921 			return 1;
5922 		addr += sizeof(struct dir_entry) + entry->name_len;
5923 		ctx->pos++;
5924 	}
5925 	return 0;
5926 }
5927 
5928 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5929 {
5930 	struct inode *inode = file_inode(file);
5931 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5932 	struct btrfs_root *root = BTRFS_I(inode)->root;
5933 	struct btrfs_file_private *private = file->private_data;
5934 	struct btrfs_dir_item *di;
5935 	struct btrfs_key key;
5936 	struct btrfs_key found_key;
5937 	struct btrfs_path *path;
5938 	void *addr;
5939 	struct list_head ins_list;
5940 	struct list_head del_list;
5941 	int ret;
5942 	struct extent_buffer *leaf;
5943 	int slot;
5944 	char *name_ptr;
5945 	int name_len;
5946 	int entries = 0;
5947 	int total_len = 0;
5948 	bool put = false;
5949 	struct btrfs_key location;
5950 
5951 	if (!dir_emit_dots(file, ctx))
5952 		return 0;
5953 
5954 	path = btrfs_alloc_path();
5955 	if (!path)
5956 		return -ENOMEM;
5957 
5958 	addr = private->filldir_buf;
5959 	path->reada = READA_FORWARD;
5960 
5961 	INIT_LIST_HEAD(&ins_list);
5962 	INIT_LIST_HEAD(&del_list);
5963 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5964 
5965 again:
5966 	key.type = BTRFS_DIR_INDEX_KEY;
5967 	key.offset = ctx->pos;
5968 	key.objectid = btrfs_ino(BTRFS_I(inode));
5969 
5970 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5971 	if (ret < 0)
5972 		goto err;
5973 
5974 	while (1) {
5975 		struct dir_entry *entry;
5976 
5977 		leaf = path->nodes[0];
5978 		slot = path->slots[0];
5979 		if (slot >= btrfs_header_nritems(leaf)) {
5980 			ret = btrfs_next_leaf(root, path);
5981 			if (ret < 0)
5982 				goto err;
5983 			else if (ret > 0)
5984 				break;
5985 			continue;
5986 		}
5987 
5988 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5989 
5990 		if (found_key.objectid != key.objectid)
5991 			break;
5992 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5993 			break;
5994 		if (found_key.offset < ctx->pos)
5995 			goto next;
5996 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5997 			goto next;
5998 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5999 		if (verify_dir_item(fs_info, leaf, slot, di))
6000 			goto next;
6001 
6002 		name_len = btrfs_dir_name_len(leaf, di);
6003 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6004 		    PAGE_SIZE) {
6005 			btrfs_release_path(path);
6006 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6007 			if (ret)
6008 				goto nopos;
6009 			addr = private->filldir_buf;
6010 			entries = 0;
6011 			total_len = 0;
6012 			goto again;
6013 		}
6014 
6015 		entry = addr;
6016 		entry->name_len = name_len;
6017 		name_ptr = (char *)(entry + 1);
6018 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6019 				   name_len);
6020 		entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
6021 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6022 		entry->ino = location.objectid;
6023 		entry->offset = found_key.offset;
6024 		entries++;
6025 		addr += sizeof(struct dir_entry) + name_len;
6026 		total_len += sizeof(struct dir_entry) + name_len;
6027 next:
6028 		path->slots[0]++;
6029 	}
6030 	btrfs_release_path(path);
6031 
6032 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6033 	if (ret)
6034 		goto nopos;
6035 
6036 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6037 	if (ret)
6038 		goto nopos;
6039 
6040 	/*
6041 	 * Stop new entries from being returned after we return the last
6042 	 * entry.
6043 	 *
6044 	 * New directory entries are assigned a strictly increasing
6045 	 * offset.  This means that new entries created during readdir
6046 	 * are *guaranteed* to be seen in the future by that readdir.
6047 	 * This has broken buggy programs which operate on names as
6048 	 * they're returned by readdir.  Until we re-use freed offsets
6049 	 * we have this hack to stop new entries from being returned
6050 	 * under the assumption that they'll never reach this huge
6051 	 * offset.
6052 	 *
6053 	 * This is being careful not to overflow 32bit loff_t unless the
6054 	 * last entry requires it because doing so has broken 32bit apps
6055 	 * in the past.
6056 	 */
6057 	if (ctx->pos >= INT_MAX)
6058 		ctx->pos = LLONG_MAX;
6059 	else
6060 		ctx->pos = INT_MAX;
6061 nopos:
6062 	ret = 0;
6063 err:
6064 	if (put)
6065 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6066 	btrfs_free_path(path);
6067 	return ret;
6068 }
6069 
6070 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6071 {
6072 	struct btrfs_root *root = BTRFS_I(inode)->root;
6073 	struct btrfs_trans_handle *trans;
6074 	int ret = 0;
6075 	bool nolock = false;
6076 
6077 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6078 		return 0;
6079 
6080 	if (btrfs_fs_closing(root->fs_info) &&
6081 			btrfs_is_free_space_inode(BTRFS_I(inode)))
6082 		nolock = true;
6083 
6084 	if (wbc->sync_mode == WB_SYNC_ALL) {
6085 		if (nolock)
6086 			trans = btrfs_join_transaction_nolock(root);
6087 		else
6088 			trans = btrfs_join_transaction(root);
6089 		if (IS_ERR(trans))
6090 			return PTR_ERR(trans);
6091 		ret = btrfs_commit_transaction(trans);
6092 	}
6093 	return ret;
6094 }
6095 
6096 /*
6097  * This is somewhat expensive, updating the tree every time the
6098  * inode changes.  But, it is most likely to find the inode in cache.
6099  * FIXME, needs more benchmarking...there are no reasons other than performance
6100  * to keep or drop this code.
6101  */
6102 static int btrfs_dirty_inode(struct inode *inode)
6103 {
6104 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6105 	struct btrfs_root *root = BTRFS_I(inode)->root;
6106 	struct btrfs_trans_handle *trans;
6107 	int ret;
6108 
6109 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6110 		return 0;
6111 
6112 	trans = btrfs_join_transaction(root);
6113 	if (IS_ERR(trans))
6114 		return PTR_ERR(trans);
6115 
6116 	ret = btrfs_update_inode(trans, root, inode);
6117 	if (ret && ret == -ENOSPC) {
6118 		/* whoops, lets try again with the full transaction */
6119 		btrfs_end_transaction(trans);
6120 		trans = btrfs_start_transaction(root, 1);
6121 		if (IS_ERR(trans))
6122 			return PTR_ERR(trans);
6123 
6124 		ret = btrfs_update_inode(trans, root, inode);
6125 	}
6126 	btrfs_end_transaction(trans);
6127 	if (BTRFS_I(inode)->delayed_node)
6128 		btrfs_balance_delayed_items(fs_info);
6129 
6130 	return ret;
6131 }
6132 
6133 /*
6134  * This is a copy of file_update_time.  We need this so we can return error on
6135  * ENOSPC for updating the inode in the case of file write and mmap writes.
6136  */
6137 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6138 			     int flags)
6139 {
6140 	struct btrfs_root *root = BTRFS_I(inode)->root;
6141 
6142 	if (btrfs_root_readonly(root))
6143 		return -EROFS;
6144 
6145 	if (flags & S_VERSION)
6146 		inode_inc_iversion(inode);
6147 	if (flags & S_CTIME)
6148 		inode->i_ctime = *now;
6149 	if (flags & S_MTIME)
6150 		inode->i_mtime = *now;
6151 	if (flags & S_ATIME)
6152 		inode->i_atime = *now;
6153 	return btrfs_dirty_inode(inode);
6154 }
6155 
6156 /*
6157  * find the highest existing sequence number in a directory
6158  * and then set the in-memory index_cnt variable to reflect
6159  * free sequence numbers
6160  */
6161 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6162 {
6163 	struct btrfs_root *root = inode->root;
6164 	struct btrfs_key key, found_key;
6165 	struct btrfs_path *path;
6166 	struct extent_buffer *leaf;
6167 	int ret;
6168 
6169 	key.objectid = btrfs_ino(inode);
6170 	key.type = BTRFS_DIR_INDEX_KEY;
6171 	key.offset = (u64)-1;
6172 
6173 	path = btrfs_alloc_path();
6174 	if (!path)
6175 		return -ENOMEM;
6176 
6177 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6178 	if (ret < 0)
6179 		goto out;
6180 	/* FIXME: we should be able to handle this */
6181 	if (ret == 0)
6182 		goto out;
6183 	ret = 0;
6184 
6185 	/*
6186 	 * MAGIC NUMBER EXPLANATION:
6187 	 * since we search a directory based on f_pos we have to start at 2
6188 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6189 	 * else has to start at 2
6190 	 */
6191 	if (path->slots[0] == 0) {
6192 		inode->index_cnt = 2;
6193 		goto out;
6194 	}
6195 
6196 	path->slots[0]--;
6197 
6198 	leaf = path->nodes[0];
6199 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6200 
6201 	if (found_key.objectid != btrfs_ino(inode) ||
6202 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6203 		inode->index_cnt = 2;
6204 		goto out;
6205 	}
6206 
6207 	inode->index_cnt = found_key.offset + 1;
6208 out:
6209 	btrfs_free_path(path);
6210 	return ret;
6211 }
6212 
6213 /*
6214  * helper to find a free sequence number in a given directory.  This current
6215  * code is very simple, later versions will do smarter things in the btree
6216  */
6217 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6218 {
6219 	int ret = 0;
6220 
6221 	if (dir->index_cnt == (u64)-1) {
6222 		ret = btrfs_inode_delayed_dir_index_count(dir);
6223 		if (ret) {
6224 			ret = btrfs_set_inode_index_count(dir);
6225 			if (ret)
6226 				return ret;
6227 		}
6228 	}
6229 
6230 	*index = dir->index_cnt;
6231 	dir->index_cnt++;
6232 
6233 	return ret;
6234 }
6235 
6236 static int btrfs_insert_inode_locked(struct inode *inode)
6237 {
6238 	struct btrfs_iget_args args;
6239 	args.location = &BTRFS_I(inode)->location;
6240 	args.root = BTRFS_I(inode)->root;
6241 
6242 	return insert_inode_locked4(inode,
6243 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6244 		   btrfs_find_actor, &args);
6245 }
6246 
6247 /*
6248  * Inherit flags from the parent inode.
6249  *
6250  * Currently only the compression flags and the cow flags are inherited.
6251  */
6252 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6253 {
6254 	unsigned int flags;
6255 
6256 	if (!dir)
6257 		return;
6258 
6259 	flags = BTRFS_I(dir)->flags;
6260 
6261 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6262 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6263 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6264 	} else if (flags & BTRFS_INODE_COMPRESS) {
6265 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6266 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6267 	}
6268 
6269 	if (flags & BTRFS_INODE_NODATACOW) {
6270 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6271 		if (S_ISREG(inode->i_mode))
6272 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6273 	}
6274 
6275 	btrfs_update_iflags(inode);
6276 }
6277 
6278 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6279 				     struct btrfs_root *root,
6280 				     struct inode *dir,
6281 				     const char *name, int name_len,
6282 				     u64 ref_objectid, u64 objectid,
6283 				     umode_t mode, u64 *index)
6284 {
6285 	struct btrfs_fs_info *fs_info = root->fs_info;
6286 	struct inode *inode;
6287 	struct btrfs_inode_item *inode_item;
6288 	struct btrfs_key *location;
6289 	struct btrfs_path *path;
6290 	struct btrfs_inode_ref *ref;
6291 	struct btrfs_key key[2];
6292 	u32 sizes[2];
6293 	int nitems = name ? 2 : 1;
6294 	unsigned long ptr;
6295 	int ret;
6296 
6297 	path = btrfs_alloc_path();
6298 	if (!path)
6299 		return ERR_PTR(-ENOMEM);
6300 
6301 	inode = new_inode(fs_info->sb);
6302 	if (!inode) {
6303 		btrfs_free_path(path);
6304 		return ERR_PTR(-ENOMEM);
6305 	}
6306 
6307 	/*
6308 	 * O_TMPFILE, set link count to 0, so that after this point,
6309 	 * we fill in an inode item with the correct link count.
6310 	 */
6311 	if (!name)
6312 		set_nlink(inode, 0);
6313 
6314 	/*
6315 	 * we have to initialize this early, so we can reclaim the inode
6316 	 * number if we fail afterwards in this function.
6317 	 */
6318 	inode->i_ino = objectid;
6319 
6320 	if (dir && name) {
6321 		trace_btrfs_inode_request(dir);
6322 
6323 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6324 		if (ret) {
6325 			btrfs_free_path(path);
6326 			iput(inode);
6327 			return ERR_PTR(ret);
6328 		}
6329 	} else if (dir) {
6330 		*index = 0;
6331 	}
6332 	/*
6333 	 * index_cnt is ignored for everything but a dir,
6334 	 * btrfs_get_inode_index_count has an explanation for the magic
6335 	 * number
6336 	 */
6337 	BTRFS_I(inode)->index_cnt = 2;
6338 	BTRFS_I(inode)->dir_index = *index;
6339 	BTRFS_I(inode)->root = root;
6340 	BTRFS_I(inode)->generation = trans->transid;
6341 	inode->i_generation = BTRFS_I(inode)->generation;
6342 
6343 	/*
6344 	 * We could have gotten an inode number from somebody who was fsynced
6345 	 * and then removed in this same transaction, so let's just set full
6346 	 * sync since it will be a full sync anyway and this will blow away the
6347 	 * old info in the log.
6348 	 */
6349 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6350 
6351 	key[0].objectid = objectid;
6352 	key[0].type = BTRFS_INODE_ITEM_KEY;
6353 	key[0].offset = 0;
6354 
6355 	sizes[0] = sizeof(struct btrfs_inode_item);
6356 
6357 	if (name) {
6358 		/*
6359 		 * Start new inodes with an inode_ref. This is slightly more
6360 		 * efficient for small numbers of hard links since they will
6361 		 * be packed into one item. Extended refs will kick in if we
6362 		 * add more hard links than can fit in the ref item.
6363 		 */
6364 		key[1].objectid = objectid;
6365 		key[1].type = BTRFS_INODE_REF_KEY;
6366 		key[1].offset = ref_objectid;
6367 
6368 		sizes[1] = name_len + sizeof(*ref);
6369 	}
6370 
6371 	location = &BTRFS_I(inode)->location;
6372 	location->objectid = objectid;
6373 	location->offset = 0;
6374 	location->type = BTRFS_INODE_ITEM_KEY;
6375 
6376 	ret = btrfs_insert_inode_locked(inode);
6377 	if (ret < 0)
6378 		goto fail;
6379 
6380 	path->leave_spinning = 1;
6381 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6382 	if (ret != 0)
6383 		goto fail_unlock;
6384 
6385 	inode_init_owner(inode, dir, mode);
6386 	inode_set_bytes(inode, 0);
6387 
6388 	inode->i_mtime = current_time(inode);
6389 	inode->i_atime = inode->i_mtime;
6390 	inode->i_ctime = inode->i_mtime;
6391 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6392 
6393 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6394 				  struct btrfs_inode_item);
6395 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6396 			     sizeof(*inode_item));
6397 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6398 
6399 	if (name) {
6400 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6401 				     struct btrfs_inode_ref);
6402 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6403 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6404 		ptr = (unsigned long)(ref + 1);
6405 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6406 	}
6407 
6408 	btrfs_mark_buffer_dirty(path->nodes[0]);
6409 	btrfs_free_path(path);
6410 
6411 	btrfs_inherit_iflags(inode, dir);
6412 
6413 	if (S_ISREG(mode)) {
6414 		if (btrfs_test_opt(fs_info, NODATASUM))
6415 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6416 		if (btrfs_test_opt(fs_info, NODATACOW))
6417 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6418 				BTRFS_INODE_NODATASUM;
6419 	}
6420 
6421 	inode_tree_add(inode);
6422 
6423 	trace_btrfs_inode_new(inode);
6424 	btrfs_set_inode_last_trans(trans, inode);
6425 
6426 	btrfs_update_root_times(trans, root);
6427 
6428 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6429 	if (ret)
6430 		btrfs_err(fs_info,
6431 			  "error inheriting props for ino %llu (root %llu): %d",
6432 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6433 
6434 	return inode;
6435 
6436 fail_unlock:
6437 	unlock_new_inode(inode);
6438 fail:
6439 	if (dir && name)
6440 		BTRFS_I(dir)->index_cnt--;
6441 	btrfs_free_path(path);
6442 	iput(inode);
6443 	return ERR_PTR(ret);
6444 }
6445 
6446 static inline u8 btrfs_inode_type(struct inode *inode)
6447 {
6448 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6449 }
6450 
6451 /*
6452  * utility function to add 'inode' into 'parent_inode' with
6453  * a give name and a given sequence number.
6454  * if 'add_backref' is true, also insert a backref from the
6455  * inode to the parent directory.
6456  */
6457 int btrfs_add_link(struct btrfs_trans_handle *trans,
6458 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6459 		   const char *name, int name_len, int add_backref, u64 index)
6460 {
6461 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6462 	int ret = 0;
6463 	struct btrfs_key key;
6464 	struct btrfs_root *root = parent_inode->root;
6465 	u64 ino = btrfs_ino(inode);
6466 	u64 parent_ino = btrfs_ino(parent_inode);
6467 
6468 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6469 		memcpy(&key, &inode->root->root_key, sizeof(key));
6470 	} else {
6471 		key.objectid = ino;
6472 		key.type = BTRFS_INODE_ITEM_KEY;
6473 		key.offset = 0;
6474 	}
6475 
6476 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6477 		ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6478 					 root->root_key.objectid, parent_ino,
6479 					 index, name, name_len);
6480 	} else if (add_backref) {
6481 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6482 					     parent_ino, index);
6483 	}
6484 
6485 	/* Nothing to clean up yet */
6486 	if (ret)
6487 		return ret;
6488 
6489 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6490 				    parent_inode, &key,
6491 				    btrfs_inode_type(&inode->vfs_inode), index);
6492 	if (ret == -EEXIST || ret == -EOVERFLOW)
6493 		goto fail_dir_item;
6494 	else if (ret) {
6495 		btrfs_abort_transaction(trans, ret);
6496 		return ret;
6497 	}
6498 
6499 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6500 			   name_len * 2);
6501 	inode_inc_iversion(&parent_inode->vfs_inode);
6502 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6503 		current_time(&parent_inode->vfs_inode);
6504 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6505 	if (ret)
6506 		btrfs_abort_transaction(trans, ret);
6507 	return ret;
6508 
6509 fail_dir_item:
6510 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6511 		u64 local_index;
6512 		int err;
6513 		err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6514 					 root->root_key.objectid, parent_ino,
6515 					 &local_index, name, name_len);
6516 
6517 	} else if (add_backref) {
6518 		u64 local_index;
6519 		int err;
6520 
6521 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6522 					  ino, parent_ino, &local_index);
6523 	}
6524 	return ret;
6525 }
6526 
6527 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6528 			    struct btrfs_inode *dir, struct dentry *dentry,
6529 			    struct btrfs_inode *inode, int backref, u64 index)
6530 {
6531 	int err = btrfs_add_link(trans, dir, inode,
6532 				 dentry->d_name.name, dentry->d_name.len,
6533 				 backref, index);
6534 	if (err > 0)
6535 		err = -EEXIST;
6536 	return err;
6537 }
6538 
6539 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6540 			umode_t mode, dev_t rdev)
6541 {
6542 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6543 	struct btrfs_trans_handle *trans;
6544 	struct btrfs_root *root = BTRFS_I(dir)->root;
6545 	struct inode *inode = NULL;
6546 	int err;
6547 	int drop_inode = 0;
6548 	u64 objectid;
6549 	u64 index = 0;
6550 
6551 	/*
6552 	 * 2 for inode item and ref
6553 	 * 2 for dir items
6554 	 * 1 for xattr if selinux is on
6555 	 */
6556 	trans = btrfs_start_transaction(root, 5);
6557 	if (IS_ERR(trans))
6558 		return PTR_ERR(trans);
6559 
6560 	err = btrfs_find_free_ino(root, &objectid);
6561 	if (err)
6562 		goto out_unlock;
6563 
6564 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6565 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6566 			mode, &index);
6567 	if (IS_ERR(inode)) {
6568 		err = PTR_ERR(inode);
6569 		goto out_unlock;
6570 	}
6571 
6572 	/*
6573 	* If the active LSM wants to access the inode during
6574 	* d_instantiate it needs these. Smack checks to see
6575 	* if the filesystem supports xattrs by looking at the
6576 	* ops vector.
6577 	*/
6578 	inode->i_op = &btrfs_special_inode_operations;
6579 	init_special_inode(inode, inode->i_mode, rdev);
6580 
6581 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6582 	if (err)
6583 		goto out_unlock_inode;
6584 
6585 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6586 			0, index);
6587 	if (err) {
6588 		goto out_unlock_inode;
6589 	} else {
6590 		btrfs_update_inode(trans, root, inode);
6591 		unlock_new_inode(inode);
6592 		d_instantiate(dentry, inode);
6593 	}
6594 
6595 out_unlock:
6596 	btrfs_end_transaction(trans);
6597 	btrfs_balance_delayed_items(fs_info);
6598 	btrfs_btree_balance_dirty(fs_info);
6599 	if (drop_inode) {
6600 		inode_dec_link_count(inode);
6601 		iput(inode);
6602 	}
6603 	return err;
6604 
6605 out_unlock_inode:
6606 	drop_inode = 1;
6607 	unlock_new_inode(inode);
6608 	goto out_unlock;
6609 
6610 }
6611 
6612 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6613 			umode_t mode, bool excl)
6614 {
6615 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6616 	struct btrfs_trans_handle *trans;
6617 	struct btrfs_root *root = BTRFS_I(dir)->root;
6618 	struct inode *inode = NULL;
6619 	int drop_inode_on_err = 0;
6620 	int err;
6621 	u64 objectid;
6622 	u64 index = 0;
6623 
6624 	/*
6625 	 * 2 for inode item and ref
6626 	 * 2 for dir items
6627 	 * 1 for xattr if selinux is on
6628 	 */
6629 	trans = btrfs_start_transaction(root, 5);
6630 	if (IS_ERR(trans))
6631 		return PTR_ERR(trans);
6632 
6633 	err = btrfs_find_free_ino(root, &objectid);
6634 	if (err)
6635 		goto out_unlock;
6636 
6637 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6638 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6639 			mode, &index);
6640 	if (IS_ERR(inode)) {
6641 		err = PTR_ERR(inode);
6642 		goto out_unlock;
6643 	}
6644 	drop_inode_on_err = 1;
6645 	/*
6646 	* If the active LSM wants to access the inode during
6647 	* d_instantiate it needs these. Smack checks to see
6648 	* if the filesystem supports xattrs by looking at the
6649 	* ops vector.
6650 	*/
6651 	inode->i_fop = &btrfs_file_operations;
6652 	inode->i_op = &btrfs_file_inode_operations;
6653 	inode->i_mapping->a_ops = &btrfs_aops;
6654 
6655 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6656 	if (err)
6657 		goto out_unlock_inode;
6658 
6659 	err = btrfs_update_inode(trans, root, inode);
6660 	if (err)
6661 		goto out_unlock_inode;
6662 
6663 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6664 			0, index);
6665 	if (err)
6666 		goto out_unlock_inode;
6667 
6668 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6669 	unlock_new_inode(inode);
6670 	d_instantiate(dentry, inode);
6671 
6672 out_unlock:
6673 	btrfs_end_transaction(trans);
6674 	if (err && drop_inode_on_err) {
6675 		inode_dec_link_count(inode);
6676 		iput(inode);
6677 	}
6678 	btrfs_balance_delayed_items(fs_info);
6679 	btrfs_btree_balance_dirty(fs_info);
6680 	return err;
6681 
6682 out_unlock_inode:
6683 	unlock_new_inode(inode);
6684 	goto out_unlock;
6685 
6686 }
6687 
6688 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6689 		      struct dentry *dentry)
6690 {
6691 	struct btrfs_trans_handle *trans = NULL;
6692 	struct btrfs_root *root = BTRFS_I(dir)->root;
6693 	struct inode *inode = d_inode(old_dentry);
6694 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6695 	u64 index;
6696 	int err;
6697 	int drop_inode = 0;
6698 
6699 	/* do not allow sys_link's with other subvols of the same device */
6700 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6701 		return -EXDEV;
6702 
6703 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6704 		return -EMLINK;
6705 
6706 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6707 	if (err)
6708 		goto fail;
6709 
6710 	/*
6711 	 * 2 items for inode and inode ref
6712 	 * 2 items for dir items
6713 	 * 1 item for parent inode
6714 	 */
6715 	trans = btrfs_start_transaction(root, 5);
6716 	if (IS_ERR(trans)) {
6717 		err = PTR_ERR(trans);
6718 		trans = NULL;
6719 		goto fail;
6720 	}
6721 
6722 	/* There are several dir indexes for this inode, clear the cache. */
6723 	BTRFS_I(inode)->dir_index = 0ULL;
6724 	inc_nlink(inode);
6725 	inode_inc_iversion(inode);
6726 	inode->i_ctime = current_time(inode);
6727 	ihold(inode);
6728 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6729 
6730 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6731 			1, index);
6732 
6733 	if (err) {
6734 		drop_inode = 1;
6735 	} else {
6736 		struct dentry *parent = dentry->d_parent;
6737 		err = btrfs_update_inode(trans, root, inode);
6738 		if (err)
6739 			goto fail;
6740 		if (inode->i_nlink == 1) {
6741 			/*
6742 			 * If new hard link count is 1, it's a file created
6743 			 * with open(2) O_TMPFILE flag.
6744 			 */
6745 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6746 			if (err)
6747 				goto fail;
6748 		}
6749 		d_instantiate(dentry, inode);
6750 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6751 	}
6752 
6753 	btrfs_balance_delayed_items(fs_info);
6754 fail:
6755 	if (trans)
6756 		btrfs_end_transaction(trans);
6757 	if (drop_inode) {
6758 		inode_dec_link_count(inode);
6759 		iput(inode);
6760 	}
6761 	btrfs_btree_balance_dirty(fs_info);
6762 	return err;
6763 }
6764 
6765 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6766 {
6767 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6768 	struct inode *inode = NULL;
6769 	struct btrfs_trans_handle *trans;
6770 	struct btrfs_root *root = BTRFS_I(dir)->root;
6771 	int err = 0;
6772 	int drop_on_err = 0;
6773 	u64 objectid = 0;
6774 	u64 index = 0;
6775 
6776 	/*
6777 	 * 2 items for inode and ref
6778 	 * 2 items for dir items
6779 	 * 1 for xattr if selinux is on
6780 	 */
6781 	trans = btrfs_start_transaction(root, 5);
6782 	if (IS_ERR(trans))
6783 		return PTR_ERR(trans);
6784 
6785 	err = btrfs_find_free_ino(root, &objectid);
6786 	if (err)
6787 		goto out_fail;
6788 
6789 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6790 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6791 			S_IFDIR | mode, &index);
6792 	if (IS_ERR(inode)) {
6793 		err = PTR_ERR(inode);
6794 		goto out_fail;
6795 	}
6796 
6797 	drop_on_err = 1;
6798 	/* these must be set before we unlock the inode */
6799 	inode->i_op = &btrfs_dir_inode_operations;
6800 	inode->i_fop = &btrfs_dir_file_operations;
6801 
6802 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6803 	if (err)
6804 		goto out_fail_inode;
6805 
6806 	btrfs_i_size_write(BTRFS_I(inode), 0);
6807 	err = btrfs_update_inode(trans, root, inode);
6808 	if (err)
6809 		goto out_fail_inode;
6810 
6811 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6812 			dentry->d_name.name,
6813 			dentry->d_name.len, 0, index);
6814 	if (err)
6815 		goto out_fail_inode;
6816 
6817 	d_instantiate(dentry, inode);
6818 	/*
6819 	 * mkdir is special.  We're unlocking after we call d_instantiate
6820 	 * to avoid a race with nfsd calling d_instantiate.
6821 	 */
6822 	unlock_new_inode(inode);
6823 	drop_on_err = 0;
6824 
6825 out_fail:
6826 	btrfs_end_transaction(trans);
6827 	if (drop_on_err) {
6828 		inode_dec_link_count(inode);
6829 		iput(inode);
6830 	}
6831 	btrfs_balance_delayed_items(fs_info);
6832 	btrfs_btree_balance_dirty(fs_info);
6833 	return err;
6834 
6835 out_fail_inode:
6836 	unlock_new_inode(inode);
6837 	goto out_fail;
6838 }
6839 
6840 /* Find next extent map of a given extent map, caller needs to ensure locks */
6841 static struct extent_map *next_extent_map(struct extent_map *em)
6842 {
6843 	struct rb_node *next;
6844 
6845 	next = rb_next(&em->rb_node);
6846 	if (!next)
6847 		return NULL;
6848 	return container_of(next, struct extent_map, rb_node);
6849 }
6850 
6851 static struct extent_map *prev_extent_map(struct extent_map *em)
6852 {
6853 	struct rb_node *prev;
6854 
6855 	prev = rb_prev(&em->rb_node);
6856 	if (!prev)
6857 		return NULL;
6858 	return container_of(prev, struct extent_map, rb_node);
6859 }
6860 
6861 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6862  * the existing extent is the nearest extent to map_start,
6863  * and an extent that you want to insert, deal with overlap and insert
6864  * the best fitted new extent into the tree.
6865  */
6866 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6867 				struct extent_map *existing,
6868 				struct extent_map *em,
6869 				u64 map_start)
6870 {
6871 	struct extent_map *prev;
6872 	struct extent_map *next;
6873 	u64 start;
6874 	u64 end;
6875 	u64 start_diff;
6876 
6877 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6878 
6879 	if (existing->start > map_start) {
6880 		next = existing;
6881 		prev = prev_extent_map(next);
6882 	} else {
6883 		prev = existing;
6884 		next = next_extent_map(prev);
6885 	}
6886 
6887 	start = prev ? extent_map_end(prev) : em->start;
6888 	start = max_t(u64, start, em->start);
6889 	end = next ? next->start : extent_map_end(em);
6890 	end = min_t(u64, end, extent_map_end(em));
6891 	start_diff = start - em->start;
6892 	em->start = start;
6893 	em->len = end - start;
6894 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6895 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6896 		em->block_start += start_diff;
6897 		em->block_len -= start_diff;
6898 	}
6899 	return add_extent_mapping(em_tree, em, 0);
6900 }
6901 
6902 static noinline int uncompress_inline(struct btrfs_path *path,
6903 				      struct page *page,
6904 				      size_t pg_offset, u64 extent_offset,
6905 				      struct btrfs_file_extent_item *item)
6906 {
6907 	int ret;
6908 	struct extent_buffer *leaf = path->nodes[0];
6909 	char *tmp;
6910 	size_t max_size;
6911 	unsigned long inline_size;
6912 	unsigned long ptr;
6913 	int compress_type;
6914 
6915 	WARN_ON(pg_offset != 0);
6916 	compress_type = btrfs_file_extent_compression(leaf, item);
6917 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6918 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6919 					btrfs_item_nr(path->slots[0]));
6920 	tmp = kmalloc(inline_size, GFP_NOFS);
6921 	if (!tmp)
6922 		return -ENOMEM;
6923 	ptr = btrfs_file_extent_inline_start(item);
6924 
6925 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6926 
6927 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6928 	ret = btrfs_decompress(compress_type, tmp, page,
6929 			       extent_offset, inline_size, max_size);
6930 
6931 	/*
6932 	 * decompression code contains a memset to fill in any space between the end
6933 	 * of the uncompressed data and the end of max_size in case the decompressed
6934 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6935 	 * the end of an inline extent and the beginning of the next block, so we
6936 	 * cover that region here.
6937 	 */
6938 
6939 	if (max_size + pg_offset < PAGE_SIZE) {
6940 		char *map = kmap(page);
6941 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6942 		kunmap(page);
6943 	}
6944 	kfree(tmp);
6945 	return ret;
6946 }
6947 
6948 /*
6949  * a bit scary, this does extent mapping from logical file offset to the disk.
6950  * the ugly parts come from merging extents from the disk with the in-ram
6951  * representation.  This gets more complex because of the data=ordered code,
6952  * where the in-ram extents might be locked pending data=ordered completion.
6953  *
6954  * This also copies inline extents directly into the page.
6955  */
6956 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6957 		struct page *page,
6958 	    size_t pg_offset, u64 start, u64 len,
6959 		int create)
6960 {
6961 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6962 	int ret;
6963 	int err = 0;
6964 	u64 extent_start = 0;
6965 	u64 extent_end = 0;
6966 	u64 objectid = btrfs_ino(inode);
6967 	u32 found_type;
6968 	struct btrfs_path *path = NULL;
6969 	struct btrfs_root *root = inode->root;
6970 	struct btrfs_file_extent_item *item;
6971 	struct extent_buffer *leaf;
6972 	struct btrfs_key found_key;
6973 	struct extent_map *em = NULL;
6974 	struct extent_map_tree *em_tree = &inode->extent_tree;
6975 	struct extent_io_tree *io_tree = &inode->io_tree;
6976 	struct btrfs_trans_handle *trans = NULL;
6977 	const bool new_inline = !page || create;
6978 
6979 again:
6980 	read_lock(&em_tree->lock);
6981 	em = lookup_extent_mapping(em_tree, start, len);
6982 	if (em)
6983 		em->bdev = fs_info->fs_devices->latest_bdev;
6984 	read_unlock(&em_tree->lock);
6985 
6986 	if (em) {
6987 		if (em->start > start || em->start + em->len <= start)
6988 			free_extent_map(em);
6989 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6990 			free_extent_map(em);
6991 		else
6992 			goto out;
6993 	}
6994 	em = alloc_extent_map();
6995 	if (!em) {
6996 		err = -ENOMEM;
6997 		goto out;
6998 	}
6999 	em->bdev = fs_info->fs_devices->latest_bdev;
7000 	em->start = EXTENT_MAP_HOLE;
7001 	em->orig_start = EXTENT_MAP_HOLE;
7002 	em->len = (u64)-1;
7003 	em->block_len = (u64)-1;
7004 
7005 	if (!path) {
7006 		path = btrfs_alloc_path();
7007 		if (!path) {
7008 			err = -ENOMEM;
7009 			goto out;
7010 		}
7011 		/*
7012 		 * Chances are we'll be called again, so go ahead and do
7013 		 * readahead
7014 		 */
7015 		path->reada = READA_FORWARD;
7016 	}
7017 
7018 	ret = btrfs_lookup_file_extent(trans, root, path,
7019 				       objectid, start, trans != NULL);
7020 	if (ret < 0) {
7021 		err = ret;
7022 		goto out;
7023 	}
7024 
7025 	if (ret != 0) {
7026 		if (path->slots[0] == 0)
7027 			goto not_found;
7028 		path->slots[0]--;
7029 	}
7030 
7031 	leaf = path->nodes[0];
7032 	item = btrfs_item_ptr(leaf, path->slots[0],
7033 			      struct btrfs_file_extent_item);
7034 	/* are we inside the extent that was found? */
7035 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7036 	found_type = found_key.type;
7037 	if (found_key.objectid != objectid ||
7038 	    found_type != BTRFS_EXTENT_DATA_KEY) {
7039 		/*
7040 		 * If we backup past the first extent we want to move forward
7041 		 * and see if there is an extent in front of us, otherwise we'll
7042 		 * say there is a hole for our whole search range which can
7043 		 * cause problems.
7044 		 */
7045 		extent_end = start;
7046 		goto next;
7047 	}
7048 
7049 	found_type = btrfs_file_extent_type(leaf, item);
7050 	extent_start = found_key.offset;
7051 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7052 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7053 		extent_end = extent_start +
7054 		       btrfs_file_extent_num_bytes(leaf, item);
7055 
7056 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7057 						       extent_start);
7058 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7059 		size_t size;
7060 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7061 		extent_end = ALIGN(extent_start + size,
7062 				   fs_info->sectorsize);
7063 
7064 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7065 						      path->slots[0],
7066 						      extent_start);
7067 	}
7068 next:
7069 	if (start >= extent_end) {
7070 		path->slots[0]++;
7071 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7072 			ret = btrfs_next_leaf(root, path);
7073 			if (ret < 0) {
7074 				err = ret;
7075 				goto out;
7076 			}
7077 			if (ret > 0)
7078 				goto not_found;
7079 			leaf = path->nodes[0];
7080 		}
7081 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7082 		if (found_key.objectid != objectid ||
7083 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7084 			goto not_found;
7085 		if (start + len <= found_key.offset)
7086 			goto not_found;
7087 		if (start > found_key.offset)
7088 			goto next;
7089 		em->start = start;
7090 		em->orig_start = start;
7091 		em->len = found_key.offset - start;
7092 		goto not_found_em;
7093 	}
7094 
7095 	btrfs_extent_item_to_extent_map(inode, path, item,
7096 			new_inline, em);
7097 
7098 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7099 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7100 		goto insert;
7101 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7102 		unsigned long ptr;
7103 		char *map;
7104 		size_t size;
7105 		size_t extent_offset;
7106 		size_t copy_size;
7107 
7108 		if (new_inline)
7109 			goto out;
7110 
7111 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7112 		extent_offset = page_offset(page) + pg_offset - extent_start;
7113 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7114 				  size - extent_offset);
7115 		em->start = extent_start + extent_offset;
7116 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7117 		em->orig_block_len = em->len;
7118 		em->orig_start = em->start;
7119 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7120 		if (create == 0 && !PageUptodate(page)) {
7121 			if (btrfs_file_extent_compression(leaf, item) !=
7122 			    BTRFS_COMPRESS_NONE) {
7123 				ret = uncompress_inline(path, page, pg_offset,
7124 							extent_offset, item);
7125 				if (ret) {
7126 					err = ret;
7127 					goto out;
7128 				}
7129 			} else {
7130 				map = kmap(page);
7131 				read_extent_buffer(leaf, map + pg_offset, ptr,
7132 						   copy_size);
7133 				if (pg_offset + copy_size < PAGE_SIZE) {
7134 					memset(map + pg_offset + copy_size, 0,
7135 					       PAGE_SIZE - pg_offset -
7136 					       copy_size);
7137 				}
7138 				kunmap(page);
7139 			}
7140 			flush_dcache_page(page);
7141 		} else if (create && PageUptodate(page)) {
7142 			BUG();
7143 			if (!trans) {
7144 				kunmap(page);
7145 				free_extent_map(em);
7146 				em = NULL;
7147 
7148 				btrfs_release_path(path);
7149 				trans = btrfs_join_transaction(root);
7150 
7151 				if (IS_ERR(trans))
7152 					return ERR_CAST(trans);
7153 				goto again;
7154 			}
7155 			map = kmap(page);
7156 			write_extent_buffer(leaf, map + pg_offset, ptr,
7157 					    copy_size);
7158 			kunmap(page);
7159 			btrfs_mark_buffer_dirty(leaf);
7160 		}
7161 		set_extent_uptodate(io_tree, em->start,
7162 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7163 		goto insert;
7164 	}
7165 not_found:
7166 	em->start = start;
7167 	em->orig_start = start;
7168 	em->len = len;
7169 not_found_em:
7170 	em->block_start = EXTENT_MAP_HOLE;
7171 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7172 insert:
7173 	btrfs_release_path(path);
7174 	if (em->start > start || extent_map_end(em) <= start) {
7175 		btrfs_err(fs_info,
7176 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7177 			  em->start, em->len, start, len);
7178 		err = -EIO;
7179 		goto out;
7180 	}
7181 
7182 	err = 0;
7183 	write_lock(&em_tree->lock);
7184 	ret = add_extent_mapping(em_tree, em, 0);
7185 	/* it is possible that someone inserted the extent into the tree
7186 	 * while we had the lock dropped.  It is also possible that
7187 	 * an overlapping map exists in the tree
7188 	 */
7189 	if (ret == -EEXIST) {
7190 		struct extent_map *existing;
7191 
7192 		ret = 0;
7193 
7194 		existing = search_extent_mapping(em_tree, start, len);
7195 		/*
7196 		 * existing will always be non-NULL, since there must be
7197 		 * extent causing the -EEXIST.
7198 		 */
7199 		if (existing->start == em->start &&
7200 		    extent_map_end(existing) >= extent_map_end(em) &&
7201 		    em->block_start == existing->block_start) {
7202 			/*
7203 			 * The existing extent map already encompasses the
7204 			 * entire extent map we tried to add.
7205 			 */
7206 			free_extent_map(em);
7207 			em = existing;
7208 			err = 0;
7209 
7210 		} else if (start >= extent_map_end(existing) ||
7211 		    start <= existing->start) {
7212 			/*
7213 			 * The existing extent map is the one nearest to
7214 			 * the [start, start + len) range which overlaps
7215 			 */
7216 			err = merge_extent_mapping(em_tree, existing,
7217 						   em, start);
7218 			free_extent_map(existing);
7219 			if (err) {
7220 				free_extent_map(em);
7221 				em = NULL;
7222 			}
7223 		} else {
7224 			free_extent_map(em);
7225 			em = existing;
7226 			err = 0;
7227 		}
7228 	}
7229 	write_unlock(&em_tree->lock);
7230 out:
7231 
7232 	trace_btrfs_get_extent(root, inode, em);
7233 
7234 	btrfs_free_path(path);
7235 	if (trans) {
7236 		ret = btrfs_end_transaction(trans);
7237 		if (!err)
7238 			err = ret;
7239 	}
7240 	if (err) {
7241 		free_extent_map(em);
7242 		return ERR_PTR(err);
7243 	}
7244 	BUG_ON(!em); /* Error is always set */
7245 	return em;
7246 }
7247 
7248 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7249 		struct page *page,
7250 		size_t pg_offset, u64 start, u64 len,
7251 		int create)
7252 {
7253 	struct extent_map *em;
7254 	struct extent_map *hole_em = NULL;
7255 	u64 range_start = start;
7256 	u64 end;
7257 	u64 found;
7258 	u64 found_end;
7259 	int err = 0;
7260 
7261 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7262 	if (IS_ERR(em))
7263 		return em;
7264 	/*
7265 	 * If our em maps to:
7266 	 * - a hole or
7267 	 * - a pre-alloc extent,
7268 	 * there might actually be delalloc bytes behind it.
7269 	 */
7270 	if (em->block_start != EXTENT_MAP_HOLE &&
7271 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7272 		return em;
7273 	else
7274 		hole_em = em;
7275 
7276 	/* check to see if we've wrapped (len == -1 or similar) */
7277 	end = start + len;
7278 	if (end < start)
7279 		end = (u64)-1;
7280 	else
7281 		end -= 1;
7282 
7283 	em = NULL;
7284 
7285 	/* ok, we didn't find anything, lets look for delalloc */
7286 	found = count_range_bits(&inode->io_tree, &range_start,
7287 				 end, len, EXTENT_DELALLOC, 1);
7288 	found_end = range_start + found;
7289 	if (found_end < range_start)
7290 		found_end = (u64)-1;
7291 
7292 	/*
7293 	 * we didn't find anything useful, return
7294 	 * the original results from get_extent()
7295 	 */
7296 	if (range_start > end || found_end <= start) {
7297 		em = hole_em;
7298 		hole_em = NULL;
7299 		goto out;
7300 	}
7301 
7302 	/* adjust the range_start to make sure it doesn't
7303 	 * go backwards from the start they passed in
7304 	 */
7305 	range_start = max(start, range_start);
7306 	found = found_end - range_start;
7307 
7308 	if (found > 0) {
7309 		u64 hole_start = start;
7310 		u64 hole_len = len;
7311 
7312 		em = alloc_extent_map();
7313 		if (!em) {
7314 			err = -ENOMEM;
7315 			goto out;
7316 		}
7317 		/*
7318 		 * when btrfs_get_extent can't find anything it
7319 		 * returns one huge hole
7320 		 *
7321 		 * make sure what it found really fits our range, and
7322 		 * adjust to make sure it is based on the start from
7323 		 * the caller
7324 		 */
7325 		if (hole_em) {
7326 			u64 calc_end = extent_map_end(hole_em);
7327 
7328 			if (calc_end <= start || (hole_em->start > end)) {
7329 				free_extent_map(hole_em);
7330 				hole_em = NULL;
7331 			} else {
7332 				hole_start = max(hole_em->start, start);
7333 				hole_len = calc_end - hole_start;
7334 			}
7335 		}
7336 		em->bdev = NULL;
7337 		if (hole_em && range_start > hole_start) {
7338 			/* our hole starts before our delalloc, so we
7339 			 * have to return just the parts of the hole
7340 			 * that go until  the delalloc starts
7341 			 */
7342 			em->len = min(hole_len,
7343 				      range_start - hole_start);
7344 			em->start = hole_start;
7345 			em->orig_start = hole_start;
7346 			/*
7347 			 * don't adjust block start at all,
7348 			 * it is fixed at EXTENT_MAP_HOLE
7349 			 */
7350 			em->block_start = hole_em->block_start;
7351 			em->block_len = hole_len;
7352 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7353 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7354 		} else {
7355 			em->start = range_start;
7356 			em->len = found;
7357 			em->orig_start = range_start;
7358 			em->block_start = EXTENT_MAP_DELALLOC;
7359 			em->block_len = found;
7360 		}
7361 	} else if (hole_em) {
7362 		return hole_em;
7363 	}
7364 out:
7365 
7366 	free_extent_map(hole_em);
7367 	if (err) {
7368 		free_extent_map(em);
7369 		return ERR_PTR(err);
7370 	}
7371 	return em;
7372 }
7373 
7374 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7375 						  const u64 start,
7376 						  const u64 len,
7377 						  const u64 orig_start,
7378 						  const u64 block_start,
7379 						  const u64 block_len,
7380 						  const u64 orig_block_len,
7381 						  const u64 ram_bytes,
7382 						  const int type)
7383 {
7384 	struct extent_map *em = NULL;
7385 	int ret;
7386 
7387 	if (type != BTRFS_ORDERED_NOCOW) {
7388 		em = create_io_em(inode, start, len, orig_start,
7389 				  block_start, block_len, orig_block_len,
7390 				  ram_bytes,
7391 				  BTRFS_COMPRESS_NONE, /* compress_type */
7392 				  type);
7393 		if (IS_ERR(em))
7394 			goto out;
7395 	}
7396 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7397 					   len, block_len, type);
7398 	if (ret) {
7399 		if (em) {
7400 			free_extent_map(em);
7401 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7402 						start + len - 1, 0);
7403 		}
7404 		em = ERR_PTR(ret);
7405 	}
7406  out:
7407 
7408 	return em;
7409 }
7410 
7411 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7412 						  u64 start, u64 len)
7413 {
7414 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7415 	struct btrfs_root *root = BTRFS_I(inode)->root;
7416 	struct extent_map *em;
7417 	struct btrfs_key ins;
7418 	u64 alloc_hint;
7419 	int ret;
7420 
7421 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7422 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7423 				   0, alloc_hint, &ins, 1, 1);
7424 	if (ret)
7425 		return ERR_PTR(ret);
7426 
7427 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7428 				     ins.objectid, ins.offset, ins.offset,
7429 				     ins.offset, BTRFS_ORDERED_REGULAR);
7430 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7431 	if (IS_ERR(em))
7432 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7433 					   ins.offset, 1);
7434 
7435 	return em;
7436 }
7437 
7438 /*
7439  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7440  * block must be cow'd
7441  */
7442 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7443 			      u64 *orig_start, u64 *orig_block_len,
7444 			      u64 *ram_bytes)
7445 {
7446 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7447 	struct btrfs_path *path;
7448 	int ret;
7449 	struct extent_buffer *leaf;
7450 	struct btrfs_root *root = BTRFS_I(inode)->root;
7451 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7452 	struct btrfs_file_extent_item *fi;
7453 	struct btrfs_key key;
7454 	u64 disk_bytenr;
7455 	u64 backref_offset;
7456 	u64 extent_end;
7457 	u64 num_bytes;
7458 	int slot;
7459 	int found_type;
7460 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7461 
7462 	path = btrfs_alloc_path();
7463 	if (!path)
7464 		return -ENOMEM;
7465 
7466 	ret = btrfs_lookup_file_extent(NULL, root, path,
7467 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7468 	if (ret < 0)
7469 		goto out;
7470 
7471 	slot = path->slots[0];
7472 	if (ret == 1) {
7473 		if (slot == 0) {
7474 			/* can't find the item, must cow */
7475 			ret = 0;
7476 			goto out;
7477 		}
7478 		slot--;
7479 	}
7480 	ret = 0;
7481 	leaf = path->nodes[0];
7482 	btrfs_item_key_to_cpu(leaf, &key, slot);
7483 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7484 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7485 		/* not our file or wrong item type, must cow */
7486 		goto out;
7487 	}
7488 
7489 	if (key.offset > offset) {
7490 		/* Wrong offset, must cow */
7491 		goto out;
7492 	}
7493 
7494 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7495 	found_type = btrfs_file_extent_type(leaf, fi);
7496 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7497 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7498 		/* not a regular extent, must cow */
7499 		goto out;
7500 	}
7501 
7502 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7503 		goto out;
7504 
7505 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7506 	if (extent_end <= offset)
7507 		goto out;
7508 
7509 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7510 	if (disk_bytenr == 0)
7511 		goto out;
7512 
7513 	if (btrfs_file_extent_compression(leaf, fi) ||
7514 	    btrfs_file_extent_encryption(leaf, fi) ||
7515 	    btrfs_file_extent_other_encoding(leaf, fi))
7516 		goto out;
7517 
7518 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7519 
7520 	if (orig_start) {
7521 		*orig_start = key.offset - backref_offset;
7522 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7523 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7524 	}
7525 
7526 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7527 		goto out;
7528 
7529 	num_bytes = min(offset + *len, extent_end) - offset;
7530 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7531 		u64 range_end;
7532 
7533 		range_end = round_up(offset + num_bytes,
7534 				     root->fs_info->sectorsize) - 1;
7535 		ret = test_range_bit(io_tree, offset, range_end,
7536 				     EXTENT_DELALLOC, 0, NULL);
7537 		if (ret) {
7538 			ret = -EAGAIN;
7539 			goto out;
7540 		}
7541 	}
7542 
7543 	btrfs_release_path(path);
7544 
7545 	/*
7546 	 * look for other files referencing this extent, if we
7547 	 * find any we must cow
7548 	 */
7549 
7550 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7551 				    key.offset - backref_offset, disk_bytenr);
7552 	if (ret) {
7553 		ret = 0;
7554 		goto out;
7555 	}
7556 
7557 	/*
7558 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7559 	 * in this extent we are about to write.  If there
7560 	 * are any csums in that range we have to cow in order
7561 	 * to keep the csums correct
7562 	 */
7563 	disk_bytenr += backref_offset;
7564 	disk_bytenr += offset - key.offset;
7565 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7566 		goto out;
7567 	/*
7568 	 * all of the above have passed, it is safe to overwrite this extent
7569 	 * without cow
7570 	 */
7571 	*len = num_bytes;
7572 	ret = 1;
7573 out:
7574 	btrfs_free_path(path);
7575 	return ret;
7576 }
7577 
7578 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7579 {
7580 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7581 	bool found = false;
7582 	void **pagep = NULL;
7583 	struct page *page = NULL;
7584 	unsigned long start_idx;
7585 	unsigned long end_idx;
7586 
7587 	start_idx = start >> PAGE_SHIFT;
7588 
7589 	/*
7590 	 * end is the last byte in the last page.  end == start is legal
7591 	 */
7592 	end_idx = end >> PAGE_SHIFT;
7593 
7594 	rcu_read_lock();
7595 
7596 	/* Most of the code in this while loop is lifted from
7597 	 * find_get_page.  It's been modified to begin searching from a
7598 	 * page and return just the first page found in that range.  If the
7599 	 * found idx is less than or equal to the end idx then we know that
7600 	 * a page exists.  If no pages are found or if those pages are
7601 	 * outside of the range then we're fine (yay!) */
7602 	while (page == NULL &&
7603 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7604 		page = radix_tree_deref_slot(pagep);
7605 		if (unlikely(!page))
7606 			break;
7607 
7608 		if (radix_tree_exception(page)) {
7609 			if (radix_tree_deref_retry(page)) {
7610 				page = NULL;
7611 				continue;
7612 			}
7613 			/*
7614 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7615 			 * here as an exceptional entry: so return it without
7616 			 * attempting to raise page count.
7617 			 */
7618 			page = NULL;
7619 			break; /* TODO: Is this relevant for this use case? */
7620 		}
7621 
7622 		if (!page_cache_get_speculative(page)) {
7623 			page = NULL;
7624 			continue;
7625 		}
7626 
7627 		/*
7628 		 * Has the page moved?
7629 		 * This is part of the lockless pagecache protocol. See
7630 		 * include/linux/pagemap.h for details.
7631 		 */
7632 		if (unlikely(page != *pagep)) {
7633 			put_page(page);
7634 			page = NULL;
7635 		}
7636 	}
7637 
7638 	if (page) {
7639 		if (page->index <= end_idx)
7640 			found = true;
7641 		put_page(page);
7642 	}
7643 
7644 	rcu_read_unlock();
7645 	return found;
7646 }
7647 
7648 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7649 			      struct extent_state **cached_state, int writing)
7650 {
7651 	struct btrfs_ordered_extent *ordered;
7652 	int ret = 0;
7653 
7654 	while (1) {
7655 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7656 				 cached_state);
7657 		/*
7658 		 * We're concerned with the entire range that we're going to be
7659 		 * doing DIO to, so we need to make sure there's no ordered
7660 		 * extents in this range.
7661 		 */
7662 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7663 						     lockend - lockstart + 1);
7664 
7665 		/*
7666 		 * We need to make sure there are no buffered pages in this
7667 		 * range either, we could have raced between the invalidate in
7668 		 * generic_file_direct_write and locking the extent.  The
7669 		 * invalidate needs to happen so that reads after a write do not
7670 		 * get stale data.
7671 		 */
7672 		if (!ordered &&
7673 		    (!writing ||
7674 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7675 			break;
7676 
7677 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7678 				     cached_state, GFP_NOFS);
7679 
7680 		if (ordered) {
7681 			/*
7682 			 * If we are doing a DIO read and the ordered extent we
7683 			 * found is for a buffered write, we can not wait for it
7684 			 * to complete and retry, because if we do so we can
7685 			 * deadlock with concurrent buffered writes on page
7686 			 * locks. This happens only if our DIO read covers more
7687 			 * than one extent map, if at this point has already
7688 			 * created an ordered extent for a previous extent map
7689 			 * and locked its range in the inode's io tree, and a
7690 			 * concurrent write against that previous extent map's
7691 			 * range and this range started (we unlock the ranges
7692 			 * in the io tree only when the bios complete and
7693 			 * buffered writes always lock pages before attempting
7694 			 * to lock range in the io tree).
7695 			 */
7696 			if (writing ||
7697 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7698 				btrfs_start_ordered_extent(inode, ordered, 1);
7699 			else
7700 				ret = -ENOTBLK;
7701 			btrfs_put_ordered_extent(ordered);
7702 		} else {
7703 			/*
7704 			 * We could trigger writeback for this range (and wait
7705 			 * for it to complete) and then invalidate the pages for
7706 			 * this range (through invalidate_inode_pages2_range()),
7707 			 * but that can lead us to a deadlock with a concurrent
7708 			 * call to readpages() (a buffered read or a defrag call
7709 			 * triggered a readahead) on a page lock due to an
7710 			 * ordered dio extent we created before but did not have
7711 			 * yet a corresponding bio submitted (whence it can not
7712 			 * complete), which makes readpages() wait for that
7713 			 * ordered extent to complete while holding a lock on
7714 			 * that page.
7715 			 */
7716 			ret = -ENOTBLK;
7717 		}
7718 
7719 		if (ret)
7720 			break;
7721 
7722 		cond_resched();
7723 	}
7724 
7725 	return ret;
7726 }
7727 
7728 /* The callers of this must take lock_extent() */
7729 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7730 				       u64 orig_start, u64 block_start,
7731 				       u64 block_len, u64 orig_block_len,
7732 				       u64 ram_bytes, int compress_type,
7733 				       int type)
7734 {
7735 	struct extent_map_tree *em_tree;
7736 	struct extent_map *em;
7737 	struct btrfs_root *root = BTRFS_I(inode)->root;
7738 	int ret;
7739 
7740 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7741 	       type == BTRFS_ORDERED_COMPRESSED ||
7742 	       type == BTRFS_ORDERED_NOCOW ||
7743 	       type == BTRFS_ORDERED_REGULAR);
7744 
7745 	em_tree = &BTRFS_I(inode)->extent_tree;
7746 	em = alloc_extent_map();
7747 	if (!em)
7748 		return ERR_PTR(-ENOMEM);
7749 
7750 	em->start = start;
7751 	em->orig_start = orig_start;
7752 	em->len = len;
7753 	em->block_len = block_len;
7754 	em->block_start = block_start;
7755 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7756 	em->orig_block_len = orig_block_len;
7757 	em->ram_bytes = ram_bytes;
7758 	em->generation = -1;
7759 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7760 	if (type == BTRFS_ORDERED_PREALLOC) {
7761 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7762 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7763 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7764 		em->compress_type = compress_type;
7765 	}
7766 
7767 	do {
7768 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7769 				em->start + em->len - 1, 0);
7770 		write_lock(&em_tree->lock);
7771 		ret = add_extent_mapping(em_tree, em, 1);
7772 		write_unlock(&em_tree->lock);
7773 		/*
7774 		 * The caller has taken lock_extent(), who could race with us
7775 		 * to add em?
7776 		 */
7777 	} while (ret == -EEXIST);
7778 
7779 	if (ret) {
7780 		free_extent_map(em);
7781 		return ERR_PTR(ret);
7782 	}
7783 
7784 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7785 	return em;
7786 }
7787 
7788 static void adjust_dio_outstanding_extents(struct inode *inode,
7789 					   struct btrfs_dio_data *dio_data,
7790 					   const u64 len)
7791 {
7792 	unsigned num_extents = count_max_extents(len);
7793 
7794 	/*
7795 	 * If we have an outstanding_extents count still set then we're
7796 	 * within our reservation, otherwise we need to adjust our inode
7797 	 * counter appropriately.
7798 	 */
7799 	if (dio_data->outstanding_extents >= num_extents) {
7800 		dio_data->outstanding_extents -= num_extents;
7801 	} else {
7802 		/*
7803 		 * If dio write length has been split due to no large enough
7804 		 * contiguous space, we need to compensate our inode counter
7805 		 * appropriately.
7806 		 */
7807 		u64 num_needed = num_extents - dio_data->outstanding_extents;
7808 
7809 		spin_lock(&BTRFS_I(inode)->lock);
7810 		BTRFS_I(inode)->outstanding_extents += num_needed;
7811 		spin_unlock(&BTRFS_I(inode)->lock);
7812 	}
7813 }
7814 
7815 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7816 				   struct buffer_head *bh_result, int create)
7817 {
7818 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7819 	struct extent_map *em;
7820 	struct extent_state *cached_state = NULL;
7821 	struct btrfs_dio_data *dio_data = NULL;
7822 	u64 start = iblock << inode->i_blkbits;
7823 	u64 lockstart, lockend;
7824 	u64 len = bh_result->b_size;
7825 	int unlock_bits = EXTENT_LOCKED;
7826 	int ret = 0;
7827 
7828 	if (create)
7829 		unlock_bits |= EXTENT_DIRTY;
7830 	else
7831 		len = min_t(u64, len, fs_info->sectorsize);
7832 
7833 	lockstart = start;
7834 	lockend = start + len - 1;
7835 
7836 	if (current->journal_info) {
7837 		/*
7838 		 * Need to pull our outstanding extents and set journal_info to NULL so
7839 		 * that anything that needs to check if there's a transaction doesn't get
7840 		 * confused.
7841 		 */
7842 		dio_data = current->journal_info;
7843 		current->journal_info = NULL;
7844 	}
7845 
7846 	/*
7847 	 * If this errors out it's because we couldn't invalidate pagecache for
7848 	 * this range and we need to fallback to buffered.
7849 	 */
7850 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7851 			       create)) {
7852 		ret = -ENOTBLK;
7853 		goto err;
7854 	}
7855 
7856 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7857 	if (IS_ERR(em)) {
7858 		ret = PTR_ERR(em);
7859 		goto unlock_err;
7860 	}
7861 
7862 	/*
7863 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7864 	 * io.  INLINE is special, and we could probably kludge it in here, but
7865 	 * it's still buffered so for safety lets just fall back to the generic
7866 	 * buffered path.
7867 	 *
7868 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7869 	 * decompress it, so there will be buffering required no matter what we
7870 	 * do, so go ahead and fallback to buffered.
7871 	 *
7872 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7873 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7874 	 * the generic code.
7875 	 */
7876 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7877 	    em->block_start == EXTENT_MAP_INLINE) {
7878 		free_extent_map(em);
7879 		ret = -ENOTBLK;
7880 		goto unlock_err;
7881 	}
7882 
7883 	/* Just a good old fashioned hole, return */
7884 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7885 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7886 		free_extent_map(em);
7887 		goto unlock_err;
7888 	}
7889 
7890 	/*
7891 	 * We don't allocate a new extent in the following cases
7892 	 *
7893 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7894 	 * existing extent.
7895 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7896 	 * just use the extent.
7897 	 *
7898 	 */
7899 	if (!create) {
7900 		len = min(len, em->len - (start - em->start));
7901 		lockstart = start + len;
7902 		goto unlock;
7903 	}
7904 
7905 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7906 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7907 	     em->block_start != EXTENT_MAP_HOLE)) {
7908 		int type;
7909 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7910 
7911 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7912 			type = BTRFS_ORDERED_PREALLOC;
7913 		else
7914 			type = BTRFS_ORDERED_NOCOW;
7915 		len = min(len, em->len - (start - em->start));
7916 		block_start = em->block_start + (start - em->start);
7917 
7918 		if (can_nocow_extent(inode, start, &len, &orig_start,
7919 				     &orig_block_len, &ram_bytes) == 1 &&
7920 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7921 			struct extent_map *em2;
7922 
7923 			em2 = btrfs_create_dio_extent(inode, start, len,
7924 						      orig_start, block_start,
7925 						      len, orig_block_len,
7926 						      ram_bytes, type);
7927 			btrfs_dec_nocow_writers(fs_info, block_start);
7928 			if (type == BTRFS_ORDERED_PREALLOC) {
7929 				free_extent_map(em);
7930 				em = em2;
7931 			}
7932 			if (em2 && IS_ERR(em2)) {
7933 				ret = PTR_ERR(em2);
7934 				goto unlock_err;
7935 			}
7936 			/*
7937 			 * For inode marked NODATACOW or extent marked PREALLOC,
7938 			 * use the existing or preallocated extent, so does not
7939 			 * need to adjust btrfs_space_info's bytes_may_use.
7940 			 */
7941 			btrfs_free_reserved_data_space_noquota(inode,
7942 					start, len);
7943 			goto unlock;
7944 		}
7945 	}
7946 
7947 	/*
7948 	 * this will cow the extent, reset the len in case we changed
7949 	 * it above
7950 	 */
7951 	len = bh_result->b_size;
7952 	free_extent_map(em);
7953 	em = btrfs_new_extent_direct(inode, start, len);
7954 	if (IS_ERR(em)) {
7955 		ret = PTR_ERR(em);
7956 		goto unlock_err;
7957 	}
7958 	len = min(len, em->len - (start - em->start));
7959 unlock:
7960 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7961 		inode->i_blkbits;
7962 	bh_result->b_size = len;
7963 	bh_result->b_bdev = em->bdev;
7964 	set_buffer_mapped(bh_result);
7965 	if (create) {
7966 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7967 			set_buffer_new(bh_result);
7968 
7969 		/*
7970 		 * Need to update the i_size under the extent lock so buffered
7971 		 * readers will get the updated i_size when we unlock.
7972 		 */
7973 		if (!dio_data->overwrite && start + len > i_size_read(inode))
7974 			i_size_write(inode, start + len);
7975 
7976 		adjust_dio_outstanding_extents(inode, dio_data, len);
7977 		WARN_ON(dio_data->reserve < len);
7978 		dio_data->reserve -= len;
7979 		dio_data->unsubmitted_oe_range_end = start + len;
7980 		current->journal_info = dio_data;
7981 	}
7982 
7983 	/*
7984 	 * In the case of write we need to clear and unlock the entire range,
7985 	 * in the case of read we need to unlock only the end area that we
7986 	 * aren't using if there is any left over space.
7987 	 */
7988 	if (lockstart < lockend) {
7989 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7990 				 lockend, unlock_bits, 1, 0,
7991 				 &cached_state, GFP_NOFS);
7992 	} else {
7993 		free_extent_state(cached_state);
7994 	}
7995 
7996 	free_extent_map(em);
7997 
7998 	return 0;
7999 
8000 unlock_err:
8001 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
8002 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
8003 err:
8004 	if (dio_data)
8005 		current->journal_info = dio_data;
8006 	/*
8007 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
8008 	 * write less data then expected, so that we don't underflow our inode's
8009 	 * outstanding extents counter.
8010 	 */
8011 	if (create && dio_data)
8012 		adjust_dio_outstanding_extents(inode, dio_data, len);
8013 
8014 	return ret;
8015 }
8016 
8017 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
8018 						 struct bio *bio,
8019 						 int mirror_num)
8020 {
8021 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8022 	blk_status_t ret;
8023 
8024 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8025 
8026 	bio_get(bio);
8027 
8028 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8029 	if (ret)
8030 		goto err;
8031 
8032 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8033 err:
8034 	bio_put(bio);
8035 	return ret;
8036 }
8037 
8038 static int btrfs_check_dio_repairable(struct inode *inode,
8039 				      struct bio *failed_bio,
8040 				      struct io_failure_record *failrec,
8041 				      int failed_mirror)
8042 {
8043 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8044 	int num_copies;
8045 
8046 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8047 	if (num_copies == 1) {
8048 		/*
8049 		 * we only have a single copy of the data, so don't bother with
8050 		 * all the retry and error correction code that follows. no
8051 		 * matter what the error is, it is very likely to persist.
8052 		 */
8053 		btrfs_debug(fs_info,
8054 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
8055 			num_copies, failrec->this_mirror, failed_mirror);
8056 		return 0;
8057 	}
8058 
8059 	failrec->failed_mirror = failed_mirror;
8060 	failrec->this_mirror++;
8061 	if (failrec->this_mirror == failed_mirror)
8062 		failrec->this_mirror++;
8063 
8064 	if (failrec->this_mirror > num_copies) {
8065 		btrfs_debug(fs_info,
8066 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
8067 			num_copies, failrec->this_mirror, failed_mirror);
8068 		return 0;
8069 	}
8070 
8071 	return 1;
8072 }
8073 
8074 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8075 				   struct page *page, unsigned int pgoff,
8076 				   u64 start, u64 end, int failed_mirror,
8077 				   bio_end_io_t *repair_endio, void *repair_arg)
8078 {
8079 	struct io_failure_record *failrec;
8080 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8081 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8082 	struct bio *bio;
8083 	int isector;
8084 	unsigned int read_mode = 0;
8085 	int segs;
8086 	int ret;
8087 	blk_status_t status;
8088 
8089 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8090 
8091 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8092 	if (ret)
8093 		return errno_to_blk_status(ret);
8094 
8095 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8096 					 failed_mirror);
8097 	if (!ret) {
8098 		free_io_failure(failure_tree, io_tree, failrec);
8099 		return BLK_STS_IOERR;
8100 	}
8101 
8102 	segs = bio_segments(failed_bio);
8103 	if (segs > 1 ||
8104 	    (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
8105 		read_mode |= REQ_FAILFAST_DEV;
8106 
8107 	isector = start - btrfs_io_bio(failed_bio)->logical;
8108 	isector >>= inode->i_sb->s_blocksize_bits;
8109 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8110 				pgoff, isector, repair_endio, repair_arg);
8111 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8112 
8113 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
8114 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8115 		    read_mode, failrec->this_mirror, failrec->in_validation);
8116 
8117 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8118 	if (status) {
8119 		free_io_failure(failure_tree, io_tree, failrec);
8120 		bio_put(bio);
8121 	}
8122 
8123 	return status;
8124 }
8125 
8126 struct btrfs_retry_complete {
8127 	struct completion done;
8128 	struct inode *inode;
8129 	u64 start;
8130 	int uptodate;
8131 };
8132 
8133 static void btrfs_retry_endio_nocsum(struct bio *bio)
8134 {
8135 	struct btrfs_retry_complete *done = bio->bi_private;
8136 	struct inode *inode = done->inode;
8137 	struct bio_vec *bvec;
8138 	struct extent_io_tree *io_tree, *failure_tree;
8139 	int i;
8140 
8141 	if (bio->bi_status)
8142 		goto end;
8143 
8144 	ASSERT(bio->bi_vcnt == 1);
8145 	io_tree = &BTRFS_I(inode)->io_tree;
8146 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8147 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
8148 
8149 	done->uptodate = 1;
8150 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8151 	bio_for_each_segment_all(bvec, bio, i)
8152 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8153 				 io_tree, done->start, bvec->bv_page,
8154 				 btrfs_ino(BTRFS_I(inode)), 0);
8155 end:
8156 	complete(&done->done);
8157 	bio_put(bio);
8158 }
8159 
8160 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8161 						struct btrfs_io_bio *io_bio)
8162 {
8163 	struct btrfs_fs_info *fs_info;
8164 	struct bio_vec bvec;
8165 	struct bvec_iter iter;
8166 	struct btrfs_retry_complete done;
8167 	u64 start;
8168 	unsigned int pgoff;
8169 	u32 sectorsize;
8170 	int nr_sectors;
8171 	blk_status_t ret;
8172 	blk_status_t err = BLK_STS_OK;
8173 
8174 	fs_info = BTRFS_I(inode)->root->fs_info;
8175 	sectorsize = fs_info->sectorsize;
8176 
8177 	start = io_bio->logical;
8178 	done.inode = inode;
8179 	io_bio->bio.bi_iter = io_bio->iter;
8180 
8181 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8182 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8183 		pgoff = bvec.bv_offset;
8184 
8185 next_block_or_try_again:
8186 		done.uptodate = 0;
8187 		done.start = start;
8188 		init_completion(&done.done);
8189 
8190 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8191 				pgoff, start, start + sectorsize - 1,
8192 				io_bio->mirror_num,
8193 				btrfs_retry_endio_nocsum, &done);
8194 		if (ret) {
8195 			err = ret;
8196 			goto next;
8197 		}
8198 
8199 		wait_for_completion_io(&done.done);
8200 
8201 		if (!done.uptodate) {
8202 			/* We might have another mirror, so try again */
8203 			goto next_block_or_try_again;
8204 		}
8205 
8206 next:
8207 		start += sectorsize;
8208 
8209 		nr_sectors--;
8210 		if (nr_sectors) {
8211 			pgoff += sectorsize;
8212 			ASSERT(pgoff < PAGE_SIZE);
8213 			goto next_block_or_try_again;
8214 		}
8215 	}
8216 
8217 	return err;
8218 }
8219 
8220 static void btrfs_retry_endio(struct bio *bio)
8221 {
8222 	struct btrfs_retry_complete *done = bio->bi_private;
8223 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8224 	struct extent_io_tree *io_tree, *failure_tree;
8225 	struct inode *inode = done->inode;
8226 	struct bio_vec *bvec;
8227 	int uptodate;
8228 	int ret;
8229 	int i;
8230 
8231 	if (bio->bi_status)
8232 		goto end;
8233 
8234 	uptodate = 1;
8235 
8236 	ASSERT(bio->bi_vcnt == 1);
8237 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8238 
8239 	io_tree = &BTRFS_I(inode)->io_tree;
8240 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8241 
8242 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8243 	bio_for_each_segment_all(bvec, bio, i) {
8244 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8245 					     bvec->bv_offset, done->start,
8246 					     bvec->bv_len);
8247 		if (!ret)
8248 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8249 					 failure_tree, io_tree, done->start,
8250 					 bvec->bv_page,
8251 					 btrfs_ino(BTRFS_I(inode)),
8252 					 bvec->bv_offset);
8253 		else
8254 			uptodate = 0;
8255 	}
8256 
8257 	done->uptodate = uptodate;
8258 end:
8259 	complete(&done->done);
8260 	bio_put(bio);
8261 }
8262 
8263 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8264 		struct btrfs_io_bio *io_bio, blk_status_t err)
8265 {
8266 	struct btrfs_fs_info *fs_info;
8267 	struct bio_vec bvec;
8268 	struct bvec_iter iter;
8269 	struct btrfs_retry_complete done;
8270 	u64 start;
8271 	u64 offset = 0;
8272 	u32 sectorsize;
8273 	int nr_sectors;
8274 	unsigned int pgoff;
8275 	int csum_pos;
8276 	bool uptodate = (err == 0);
8277 	int ret;
8278 	blk_status_t status;
8279 
8280 	fs_info = BTRFS_I(inode)->root->fs_info;
8281 	sectorsize = fs_info->sectorsize;
8282 
8283 	err = BLK_STS_OK;
8284 	start = io_bio->logical;
8285 	done.inode = inode;
8286 	io_bio->bio.bi_iter = io_bio->iter;
8287 
8288 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8289 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8290 
8291 		pgoff = bvec.bv_offset;
8292 next_block:
8293 		if (uptodate) {
8294 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8295 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8296 					bvec.bv_page, pgoff, start, sectorsize);
8297 			if (likely(!ret))
8298 				goto next;
8299 		}
8300 try_again:
8301 		done.uptodate = 0;
8302 		done.start = start;
8303 		init_completion(&done.done);
8304 
8305 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8306 					pgoff, start, start + sectorsize - 1,
8307 					io_bio->mirror_num, btrfs_retry_endio,
8308 					&done);
8309 		if (status) {
8310 			err = status;
8311 			goto next;
8312 		}
8313 
8314 		wait_for_completion_io(&done.done);
8315 
8316 		if (!done.uptodate) {
8317 			/* We might have another mirror, so try again */
8318 			goto try_again;
8319 		}
8320 next:
8321 		offset += sectorsize;
8322 		start += sectorsize;
8323 
8324 		ASSERT(nr_sectors);
8325 
8326 		nr_sectors--;
8327 		if (nr_sectors) {
8328 			pgoff += sectorsize;
8329 			ASSERT(pgoff < PAGE_SIZE);
8330 			goto next_block;
8331 		}
8332 	}
8333 
8334 	return err;
8335 }
8336 
8337 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8338 		struct btrfs_io_bio *io_bio, blk_status_t err)
8339 {
8340 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8341 
8342 	if (skip_csum) {
8343 		if (unlikely(err))
8344 			return __btrfs_correct_data_nocsum(inode, io_bio);
8345 		else
8346 			return BLK_STS_OK;
8347 	} else {
8348 		return __btrfs_subio_endio_read(inode, io_bio, err);
8349 	}
8350 }
8351 
8352 static void btrfs_endio_direct_read(struct bio *bio)
8353 {
8354 	struct btrfs_dio_private *dip = bio->bi_private;
8355 	struct inode *inode = dip->inode;
8356 	struct bio *dio_bio;
8357 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8358 	blk_status_t err = bio->bi_status;
8359 
8360 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) {
8361 		err = btrfs_subio_endio_read(inode, io_bio, err);
8362 		if (!err)
8363 			bio->bi_status = 0;
8364 	}
8365 
8366 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8367 		      dip->logical_offset + dip->bytes - 1);
8368 	dio_bio = dip->dio_bio;
8369 
8370 	kfree(dip);
8371 
8372 	dio_bio->bi_status = bio->bi_status;
8373 	dio_end_io(dio_bio);
8374 
8375 	if (io_bio->end_io)
8376 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8377 	bio_put(bio);
8378 }
8379 
8380 static void __endio_write_update_ordered(struct inode *inode,
8381 					 const u64 offset, const u64 bytes,
8382 					 const bool uptodate)
8383 {
8384 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8385 	struct btrfs_ordered_extent *ordered = NULL;
8386 	struct btrfs_workqueue *wq;
8387 	btrfs_work_func_t func;
8388 	u64 ordered_offset = offset;
8389 	u64 ordered_bytes = bytes;
8390 	int ret;
8391 
8392 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8393 		wq = fs_info->endio_freespace_worker;
8394 		func = btrfs_freespace_write_helper;
8395 	} else {
8396 		wq = fs_info->endio_write_workers;
8397 		func = btrfs_endio_write_helper;
8398 	}
8399 
8400 again:
8401 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8402 						   &ordered_offset,
8403 						   ordered_bytes,
8404 						   uptodate);
8405 	if (!ret)
8406 		goto out_test;
8407 
8408 	btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8409 	btrfs_queue_work(wq, &ordered->work);
8410 out_test:
8411 	/*
8412 	 * our bio might span multiple ordered extents.  If we haven't
8413 	 * completed the accounting for the whole dio, go back and try again
8414 	 */
8415 	if (ordered_offset < offset + bytes) {
8416 		ordered_bytes = offset + bytes - ordered_offset;
8417 		ordered = NULL;
8418 		goto again;
8419 	}
8420 }
8421 
8422 static void btrfs_endio_direct_write(struct bio *bio)
8423 {
8424 	struct btrfs_dio_private *dip = bio->bi_private;
8425 	struct bio *dio_bio = dip->dio_bio;
8426 
8427 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8428 				     dip->bytes, !bio->bi_status);
8429 
8430 	kfree(dip);
8431 
8432 	dio_bio->bi_status = bio->bi_status;
8433 	dio_end_io(dio_bio);
8434 	bio_put(bio);
8435 }
8436 
8437 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
8438 				    struct bio *bio, int mirror_num,
8439 				    unsigned long bio_flags, u64 offset)
8440 {
8441 	struct inode *inode = private_data;
8442 	blk_status_t ret;
8443 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8444 	BUG_ON(ret); /* -ENOMEM */
8445 	return 0;
8446 }
8447 
8448 static void btrfs_end_dio_bio(struct bio *bio)
8449 {
8450 	struct btrfs_dio_private *dip = bio->bi_private;
8451 	blk_status_t err = bio->bi_status;
8452 
8453 	if (err)
8454 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8455 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8456 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8457 			   bio->bi_opf,
8458 			   (unsigned long long)bio->bi_iter.bi_sector,
8459 			   bio->bi_iter.bi_size, err);
8460 
8461 	if (dip->subio_endio)
8462 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8463 
8464 	if (err) {
8465 		dip->errors = 1;
8466 
8467 		/*
8468 		 * before atomic variable goto zero, we must make sure
8469 		 * dip->errors is perceived to be set.
8470 		 */
8471 		smp_mb__before_atomic();
8472 	}
8473 
8474 	/* if there are more bios still pending for this dio, just exit */
8475 	if (!atomic_dec_and_test(&dip->pending_bios))
8476 		goto out;
8477 
8478 	if (dip->errors) {
8479 		bio_io_error(dip->orig_bio);
8480 	} else {
8481 		dip->dio_bio->bi_status = 0;
8482 		bio_endio(dip->orig_bio);
8483 	}
8484 out:
8485 	bio_put(bio);
8486 }
8487 
8488 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8489 						 struct btrfs_dio_private *dip,
8490 						 struct bio *bio,
8491 						 u64 file_offset)
8492 {
8493 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8494 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8495 	blk_status_t ret;
8496 
8497 	/*
8498 	 * We load all the csum data we need when we submit
8499 	 * the first bio to reduce the csum tree search and
8500 	 * contention.
8501 	 */
8502 	if (dip->logical_offset == file_offset) {
8503 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8504 						file_offset);
8505 		if (ret)
8506 			return ret;
8507 	}
8508 
8509 	if (bio == dip->orig_bio)
8510 		return 0;
8511 
8512 	file_offset -= dip->logical_offset;
8513 	file_offset >>= inode->i_sb->s_blocksize_bits;
8514 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8515 
8516 	return 0;
8517 }
8518 
8519 static inline blk_status_t
8520 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
8521 		       int async_submit)
8522 {
8523 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8524 	struct btrfs_dio_private *dip = bio->bi_private;
8525 	bool write = bio_op(bio) == REQ_OP_WRITE;
8526 	blk_status_t ret;
8527 
8528 	if (async_submit)
8529 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8530 
8531 	bio_get(bio);
8532 
8533 	if (!write) {
8534 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8535 		if (ret)
8536 			goto err;
8537 	}
8538 
8539 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8540 		goto map;
8541 
8542 	if (write && async_submit) {
8543 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8544 					  file_offset, inode,
8545 					  __btrfs_submit_bio_start_direct_io,
8546 					  __btrfs_submit_bio_done);
8547 		goto err;
8548 	} else if (write) {
8549 		/*
8550 		 * If we aren't doing async submit, calculate the csum of the
8551 		 * bio now.
8552 		 */
8553 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8554 		if (ret)
8555 			goto err;
8556 	} else {
8557 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8558 						     file_offset);
8559 		if (ret)
8560 			goto err;
8561 	}
8562 map:
8563 	ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8564 err:
8565 	bio_put(bio);
8566 	return ret;
8567 }
8568 
8569 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8570 {
8571 	struct inode *inode = dip->inode;
8572 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8573 	struct bio *bio;
8574 	struct bio *orig_bio = dip->orig_bio;
8575 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8576 	u64 file_offset = dip->logical_offset;
8577 	u64 map_length;
8578 	int async_submit = 0;
8579 	u64 submit_len;
8580 	int clone_offset = 0;
8581 	int clone_len;
8582 	int ret;
8583 	blk_status_t status;
8584 
8585 	map_length = orig_bio->bi_iter.bi_size;
8586 	submit_len = map_length;
8587 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8588 			      &map_length, NULL, 0);
8589 	if (ret)
8590 		return -EIO;
8591 
8592 	if (map_length >= submit_len) {
8593 		bio = orig_bio;
8594 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8595 		goto submit;
8596 	}
8597 
8598 	/* async crcs make it difficult to collect full stripe writes. */
8599 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8600 		async_submit = 0;
8601 	else
8602 		async_submit = 1;
8603 
8604 	/* bio split */
8605 	ASSERT(map_length <= INT_MAX);
8606 	atomic_inc(&dip->pending_bios);
8607 	do {
8608 		clone_len = min_t(int, submit_len, map_length);
8609 
8610 		/*
8611 		 * This will never fail as it's passing GPF_NOFS and
8612 		 * the allocation is backed by btrfs_bioset.
8613 		 */
8614 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8615 					      clone_len);
8616 		bio->bi_private = dip;
8617 		bio->bi_end_io = btrfs_end_dio_bio;
8618 		btrfs_io_bio(bio)->logical = file_offset;
8619 
8620 		ASSERT(submit_len >= clone_len);
8621 		submit_len -= clone_len;
8622 		if (submit_len == 0)
8623 			break;
8624 
8625 		/*
8626 		 * Increase the count before we submit the bio so we know
8627 		 * the end IO handler won't happen before we increase the
8628 		 * count. Otherwise, the dip might get freed before we're
8629 		 * done setting it up.
8630 		 */
8631 		atomic_inc(&dip->pending_bios);
8632 
8633 		status = __btrfs_submit_dio_bio(bio, inode, file_offset,
8634 						async_submit);
8635 		if (status) {
8636 			bio_put(bio);
8637 			atomic_dec(&dip->pending_bios);
8638 			goto out_err;
8639 		}
8640 
8641 		clone_offset += clone_len;
8642 		start_sector += clone_len >> 9;
8643 		file_offset += clone_len;
8644 
8645 		map_length = submit_len;
8646 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8647 				      start_sector << 9, &map_length, NULL, 0);
8648 		if (ret)
8649 			goto out_err;
8650 	} while (submit_len > 0);
8651 
8652 submit:
8653 	status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8654 	if (!status)
8655 		return 0;
8656 
8657 	bio_put(bio);
8658 out_err:
8659 	dip->errors = 1;
8660 	/*
8661 	 * before atomic variable goto zero, we must
8662 	 * make sure dip->errors is perceived to be set.
8663 	 */
8664 	smp_mb__before_atomic();
8665 	if (atomic_dec_and_test(&dip->pending_bios))
8666 		bio_io_error(dip->orig_bio);
8667 
8668 	/* bio_end_io() will handle error, so we needn't return it */
8669 	return 0;
8670 }
8671 
8672 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8673 				loff_t file_offset)
8674 {
8675 	struct btrfs_dio_private *dip = NULL;
8676 	struct bio *bio = NULL;
8677 	struct btrfs_io_bio *io_bio;
8678 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8679 	int ret = 0;
8680 
8681 	bio = btrfs_bio_clone(dio_bio);
8682 
8683 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8684 	if (!dip) {
8685 		ret = -ENOMEM;
8686 		goto free_ordered;
8687 	}
8688 
8689 	dip->private = dio_bio->bi_private;
8690 	dip->inode = inode;
8691 	dip->logical_offset = file_offset;
8692 	dip->bytes = dio_bio->bi_iter.bi_size;
8693 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8694 	bio->bi_private = dip;
8695 	dip->orig_bio = bio;
8696 	dip->dio_bio = dio_bio;
8697 	atomic_set(&dip->pending_bios, 0);
8698 	io_bio = btrfs_io_bio(bio);
8699 	io_bio->logical = file_offset;
8700 
8701 	if (write) {
8702 		bio->bi_end_io = btrfs_endio_direct_write;
8703 	} else {
8704 		bio->bi_end_io = btrfs_endio_direct_read;
8705 		dip->subio_endio = btrfs_subio_endio_read;
8706 	}
8707 
8708 	/*
8709 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8710 	 * even if we fail to submit a bio, because in such case we do the
8711 	 * corresponding error handling below and it must not be done a second
8712 	 * time by btrfs_direct_IO().
8713 	 */
8714 	if (write) {
8715 		struct btrfs_dio_data *dio_data = current->journal_info;
8716 
8717 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8718 			dip->bytes;
8719 		dio_data->unsubmitted_oe_range_start =
8720 			dio_data->unsubmitted_oe_range_end;
8721 	}
8722 
8723 	ret = btrfs_submit_direct_hook(dip);
8724 	if (!ret)
8725 		return;
8726 
8727 	if (io_bio->end_io)
8728 		io_bio->end_io(io_bio, ret);
8729 
8730 free_ordered:
8731 	/*
8732 	 * If we arrived here it means either we failed to submit the dip
8733 	 * or we either failed to clone the dio_bio or failed to allocate the
8734 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8735 	 * call bio_endio against our io_bio so that we get proper resource
8736 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8737 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8738 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8739 	 */
8740 	if (bio && dip) {
8741 		bio_io_error(bio);
8742 		/*
8743 		 * The end io callbacks free our dip, do the final put on bio
8744 		 * and all the cleanup and final put for dio_bio (through
8745 		 * dio_end_io()).
8746 		 */
8747 		dip = NULL;
8748 		bio = NULL;
8749 	} else {
8750 		if (write)
8751 			__endio_write_update_ordered(inode,
8752 						file_offset,
8753 						dio_bio->bi_iter.bi_size,
8754 						false);
8755 		else
8756 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8757 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8758 
8759 		dio_bio->bi_status = BLK_STS_IOERR;
8760 		/*
8761 		 * Releases and cleans up our dio_bio, no need to bio_put()
8762 		 * nor bio_endio()/bio_io_error() against dio_bio.
8763 		 */
8764 		dio_end_io(dio_bio);
8765 	}
8766 	if (bio)
8767 		bio_put(bio);
8768 	kfree(dip);
8769 }
8770 
8771 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8772 			       struct kiocb *iocb,
8773 			       const struct iov_iter *iter, loff_t offset)
8774 {
8775 	int seg;
8776 	int i;
8777 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8778 	ssize_t retval = -EINVAL;
8779 
8780 	if (offset & blocksize_mask)
8781 		goto out;
8782 
8783 	if (iov_iter_alignment(iter) & blocksize_mask)
8784 		goto out;
8785 
8786 	/* If this is a write we don't need to check anymore */
8787 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8788 		return 0;
8789 	/*
8790 	 * Check to make sure we don't have duplicate iov_base's in this
8791 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8792 	 * when reading back.
8793 	 */
8794 	for (seg = 0; seg < iter->nr_segs; seg++) {
8795 		for (i = seg + 1; i < iter->nr_segs; i++) {
8796 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8797 				goto out;
8798 		}
8799 	}
8800 	retval = 0;
8801 out:
8802 	return retval;
8803 }
8804 
8805 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8806 {
8807 	struct file *file = iocb->ki_filp;
8808 	struct inode *inode = file->f_mapping->host;
8809 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8810 	struct btrfs_dio_data dio_data = { 0 };
8811 	struct extent_changeset *data_reserved = NULL;
8812 	loff_t offset = iocb->ki_pos;
8813 	size_t count = 0;
8814 	int flags = 0;
8815 	bool wakeup = true;
8816 	bool relock = false;
8817 	ssize_t ret;
8818 
8819 	if (check_direct_IO(fs_info, iocb, iter, offset))
8820 		return 0;
8821 
8822 	inode_dio_begin(inode);
8823 
8824 	/*
8825 	 * The generic stuff only does filemap_write_and_wait_range, which
8826 	 * isn't enough if we've written compressed pages to this area, so
8827 	 * we need to flush the dirty pages again to make absolutely sure
8828 	 * that any outstanding dirty pages are on disk.
8829 	 */
8830 	count = iov_iter_count(iter);
8831 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8832 		     &BTRFS_I(inode)->runtime_flags))
8833 		filemap_fdatawrite_range(inode->i_mapping, offset,
8834 					 offset + count - 1);
8835 
8836 	if (iov_iter_rw(iter) == WRITE) {
8837 		/*
8838 		 * If the write DIO is beyond the EOF, we need update
8839 		 * the isize, but it is protected by i_mutex. So we can
8840 		 * not unlock the i_mutex at this case.
8841 		 */
8842 		if (offset + count <= inode->i_size) {
8843 			dio_data.overwrite = 1;
8844 			inode_unlock(inode);
8845 			relock = true;
8846 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8847 			ret = -EAGAIN;
8848 			goto out;
8849 		}
8850 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8851 						   offset, count);
8852 		if (ret)
8853 			goto out;
8854 		dio_data.outstanding_extents = count_max_extents(count);
8855 
8856 		/*
8857 		 * We need to know how many extents we reserved so that we can
8858 		 * do the accounting properly if we go over the number we
8859 		 * originally calculated.  Abuse current->journal_info for this.
8860 		 */
8861 		dio_data.reserve = round_up(count,
8862 					    fs_info->sectorsize);
8863 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8864 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8865 		current->journal_info = &dio_data;
8866 		down_read(&BTRFS_I(inode)->dio_sem);
8867 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8868 				     &BTRFS_I(inode)->runtime_flags)) {
8869 		inode_dio_end(inode);
8870 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8871 		wakeup = false;
8872 	}
8873 
8874 	ret = __blockdev_direct_IO(iocb, inode,
8875 				   fs_info->fs_devices->latest_bdev,
8876 				   iter, btrfs_get_blocks_direct, NULL,
8877 				   btrfs_submit_direct, flags);
8878 	if (iov_iter_rw(iter) == WRITE) {
8879 		up_read(&BTRFS_I(inode)->dio_sem);
8880 		current->journal_info = NULL;
8881 		if (ret < 0 && ret != -EIOCBQUEUED) {
8882 			if (dio_data.reserve)
8883 				btrfs_delalloc_release_space(inode, data_reserved,
8884 					offset, dio_data.reserve);
8885 			/*
8886 			 * On error we might have left some ordered extents
8887 			 * without submitting corresponding bios for them, so
8888 			 * cleanup them up to avoid other tasks getting them
8889 			 * and waiting for them to complete forever.
8890 			 */
8891 			if (dio_data.unsubmitted_oe_range_start <
8892 			    dio_data.unsubmitted_oe_range_end)
8893 				__endio_write_update_ordered(inode,
8894 					dio_data.unsubmitted_oe_range_start,
8895 					dio_data.unsubmitted_oe_range_end -
8896 					dio_data.unsubmitted_oe_range_start,
8897 					false);
8898 		} else if (ret >= 0 && (size_t)ret < count)
8899 			btrfs_delalloc_release_space(inode, data_reserved,
8900 					offset, count - (size_t)ret);
8901 	}
8902 out:
8903 	if (wakeup)
8904 		inode_dio_end(inode);
8905 	if (relock)
8906 		inode_lock(inode);
8907 
8908 	extent_changeset_free(data_reserved);
8909 	return ret;
8910 }
8911 
8912 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8913 
8914 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8915 		__u64 start, __u64 len)
8916 {
8917 	int	ret;
8918 
8919 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8920 	if (ret)
8921 		return ret;
8922 
8923 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8924 }
8925 
8926 int btrfs_readpage(struct file *file, struct page *page)
8927 {
8928 	struct extent_io_tree *tree;
8929 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8930 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8931 }
8932 
8933 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8934 {
8935 	struct extent_io_tree *tree;
8936 	struct inode *inode = page->mapping->host;
8937 	int ret;
8938 
8939 	if (current->flags & PF_MEMALLOC) {
8940 		redirty_page_for_writepage(wbc, page);
8941 		unlock_page(page);
8942 		return 0;
8943 	}
8944 
8945 	/*
8946 	 * If we are under memory pressure we will call this directly from the
8947 	 * VM, we need to make sure we have the inode referenced for the ordered
8948 	 * extent.  If not just return like we didn't do anything.
8949 	 */
8950 	if (!igrab(inode)) {
8951 		redirty_page_for_writepage(wbc, page);
8952 		return AOP_WRITEPAGE_ACTIVATE;
8953 	}
8954 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8955 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8956 	btrfs_add_delayed_iput(inode);
8957 	return ret;
8958 }
8959 
8960 static int btrfs_writepages(struct address_space *mapping,
8961 			    struct writeback_control *wbc)
8962 {
8963 	struct extent_io_tree *tree;
8964 
8965 	tree = &BTRFS_I(mapping->host)->io_tree;
8966 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8967 }
8968 
8969 static int
8970 btrfs_readpages(struct file *file, struct address_space *mapping,
8971 		struct list_head *pages, unsigned nr_pages)
8972 {
8973 	struct extent_io_tree *tree;
8974 	tree = &BTRFS_I(mapping->host)->io_tree;
8975 	return extent_readpages(tree, mapping, pages, nr_pages,
8976 				btrfs_get_extent);
8977 }
8978 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8979 {
8980 	struct extent_io_tree *tree;
8981 	struct extent_map_tree *map;
8982 	int ret;
8983 
8984 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8985 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8986 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8987 	if (ret == 1) {
8988 		ClearPagePrivate(page);
8989 		set_page_private(page, 0);
8990 		put_page(page);
8991 	}
8992 	return ret;
8993 }
8994 
8995 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8996 {
8997 	if (PageWriteback(page) || PageDirty(page))
8998 		return 0;
8999 	return __btrfs_releasepage(page, gfp_flags);
9000 }
9001 
9002 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
9003 				 unsigned int length)
9004 {
9005 	struct inode *inode = page->mapping->host;
9006 	struct extent_io_tree *tree;
9007 	struct btrfs_ordered_extent *ordered;
9008 	struct extent_state *cached_state = NULL;
9009 	u64 page_start = page_offset(page);
9010 	u64 page_end = page_start + PAGE_SIZE - 1;
9011 	u64 start;
9012 	u64 end;
9013 	int inode_evicting = inode->i_state & I_FREEING;
9014 
9015 	/*
9016 	 * we have the page locked, so new writeback can't start,
9017 	 * and the dirty bit won't be cleared while we are here.
9018 	 *
9019 	 * Wait for IO on this page so that we can safely clear
9020 	 * the PagePrivate2 bit and do ordered accounting
9021 	 */
9022 	wait_on_page_writeback(page);
9023 
9024 	tree = &BTRFS_I(inode)->io_tree;
9025 	if (offset) {
9026 		btrfs_releasepage(page, GFP_NOFS);
9027 		return;
9028 	}
9029 
9030 	if (!inode_evicting)
9031 		lock_extent_bits(tree, page_start, page_end, &cached_state);
9032 again:
9033 	start = page_start;
9034 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9035 					page_end - start + 1);
9036 	if (ordered) {
9037 		end = min(page_end, ordered->file_offset + ordered->len - 1);
9038 		/*
9039 		 * IO on this page will never be started, so we need
9040 		 * to account for any ordered extents now
9041 		 */
9042 		if (!inode_evicting)
9043 			clear_extent_bit(tree, start, end,
9044 					 EXTENT_DIRTY | EXTENT_DELALLOC |
9045 					 EXTENT_DELALLOC_NEW |
9046 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
9047 					 EXTENT_DEFRAG, 1, 0, &cached_state,
9048 					 GFP_NOFS);
9049 		/*
9050 		 * whoever cleared the private bit is responsible
9051 		 * for the finish_ordered_io
9052 		 */
9053 		if (TestClearPagePrivate2(page)) {
9054 			struct btrfs_ordered_inode_tree *tree;
9055 			u64 new_len;
9056 
9057 			tree = &BTRFS_I(inode)->ordered_tree;
9058 
9059 			spin_lock_irq(&tree->lock);
9060 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
9061 			new_len = start - ordered->file_offset;
9062 			if (new_len < ordered->truncated_len)
9063 				ordered->truncated_len = new_len;
9064 			spin_unlock_irq(&tree->lock);
9065 
9066 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
9067 							   start,
9068 							   end - start + 1, 1))
9069 				btrfs_finish_ordered_io(ordered);
9070 		}
9071 		btrfs_put_ordered_extent(ordered);
9072 		if (!inode_evicting) {
9073 			cached_state = NULL;
9074 			lock_extent_bits(tree, start, end,
9075 					 &cached_state);
9076 		}
9077 
9078 		start = end + 1;
9079 		if (start < page_end)
9080 			goto again;
9081 	}
9082 
9083 	/*
9084 	 * Qgroup reserved space handler
9085 	 * Page here will be either
9086 	 * 1) Already written to disk
9087 	 *    In this case, its reserved space is released from data rsv map
9088 	 *    and will be freed by delayed_ref handler finally.
9089 	 *    So even we call qgroup_free_data(), it won't decrease reserved
9090 	 *    space.
9091 	 * 2) Not written to disk
9092 	 *    This means the reserved space should be freed here. However,
9093 	 *    if a truncate invalidates the page (by clearing PageDirty)
9094 	 *    and the page is accounted for while allocating extent
9095 	 *    in btrfs_check_data_free_space() we let delayed_ref to
9096 	 *    free the entire extent.
9097 	 */
9098 	if (PageDirty(page))
9099 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
9100 	if (!inode_evicting) {
9101 		clear_extent_bit(tree, page_start, page_end,
9102 				 EXTENT_LOCKED | EXTENT_DIRTY |
9103 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9104 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9105 				 &cached_state, GFP_NOFS);
9106 
9107 		__btrfs_releasepage(page, GFP_NOFS);
9108 	}
9109 
9110 	ClearPageChecked(page);
9111 	if (PagePrivate(page)) {
9112 		ClearPagePrivate(page);
9113 		set_page_private(page, 0);
9114 		put_page(page);
9115 	}
9116 }
9117 
9118 /*
9119  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9120  * called from a page fault handler when a page is first dirtied. Hence we must
9121  * be careful to check for EOF conditions here. We set the page up correctly
9122  * for a written page which means we get ENOSPC checking when writing into
9123  * holes and correct delalloc and unwritten extent mapping on filesystems that
9124  * support these features.
9125  *
9126  * We are not allowed to take the i_mutex here so we have to play games to
9127  * protect against truncate races as the page could now be beyond EOF.  Because
9128  * vmtruncate() writes the inode size before removing pages, once we have the
9129  * page lock we can determine safely if the page is beyond EOF. If it is not
9130  * beyond EOF, then the page is guaranteed safe against truncation until we
9131  * unlock the page.
9132  */
9133 int btrfs_page_mkwrite(struct vm_fault *vmf)
9134 {
9135 	struct page *page = vmf->page;
9136 	struct inode *inode = file_inode(vmf->vma->vm_file);
9137 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9138 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9139 	struct btrfs_ordered_extent *ordered;
9140 	struct extent_state *cached_state = NULL;
9141 	struct extent_changeset *data_reserved = NULL;
9142 	char *kaddr;
9143 	unsigned long zero_start;
9144 	loff_t size;
9145 	int ret;
9146 	int reserved = 0;
9147 	u64 reserved_space;
9148 	u64 page_start;
9149 	u64 page_end;
9150 	u64 end;
9151 
9152 	reserved_space = PAGE_SIZE;
9153 
9154 	sb_start_pagefault(inode->i_sb);
9155 	page_start = page_offset(page);
9156 	page_end = page_start + PAGE_SIZE - 1;
9157 	end = page_end;
9158 
9159 	/*
9160 	 * Reserving delalloc space after obtaining the page lock can lead to
9161 	 * deadlock. For example, if a dirty page is locked by this function
9162 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9163 	 * dirty page write out, then the btrfs_writepage() function could
9164 	 * end up waiting indefinitely to get a lock on the page currently
9165 	 * being processed by btrfs_page_mkwrite() function.
9166 	 */
9167 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9168 					   reserved_space);
9169 	if (!ret) {
9170 		ret = file_update_time(vmf->vma->vm_file);
9171 		reserved = 1;
9172 	}
9173 	if (ret) {
9174 		if (ret == -ENOMEM)
9175 			ret = VM_FAULT_OOM;
9176 		else /* -ENOSPC, -EIO, etc */
9177 			ret = VM_FAULT_SIGBUS;
9178 		if (reserved)
9179 			goto out;
9180 		goto out_noreserve;
9181 	}
9182 
9183 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9184 again:
9185 	lock_page(page);
9186 	size = i_size_read(inode);
9187 
9188 	if ((page->mapping != inode->i_mapping) ||
9189 	    (page_start >= size)) {
9190 		/* page got truncated out from underneath us */
9191 		goto out_unlock;
9192 	}
9193 	wait_on_page_writeback(page);
9194 
9195 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9196 	set_page_extent_mapped(page);
9197 
9198 	/*
9199 	 * we can't set the delalloc bits if there are pending ordered
9200 	 * extents.  Drop our locks and wait for them to finish
9201 	 */
9202 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9203 			PAGE_SIZE);
9204 	if (ordered) {
9205 		unlock_extent_cached(io_tree, page_start, page_end,
9206 				     &cached_state, GFP_NOFS);
9207 		unlock_page(page);
9208 		btrfs_start_ordered_extent(inode, ordered, 1);
9209 		btrfs_put_ordered_extent(ordered);
9210 		goto again;
9211 	}
9212 
9213 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9214 		reserved_space = round_up(size - page_start,
9215 					  fs_info->sectorsize);
9216 		if (reserved_space < PAGE_SIZE) {
9217 			end = page_start + reserved_space - 1;
9218 			spin_lock(&BTRFS_I(inode)->lock);
9219 			BTRFS_I(inode)->outstanding_extents++;
9220 			spin_unlock(&BTRFS_I(inode)->lock);
9221 			btrfs_delalloc_release_space(inode, data_reserved,
9222 					page_start, PAGE_SIZE - reserved_space);
9223 		}
9224 	}
9225 
9226 	/*
9227 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9228 	 * faulted in, but write(2) could also dirty a page and set delalloc
9229 	 * bits, thus in this case for space account reason, we still need to
9230 	 * clear any delalloc bits within this page range since we have to
9231 	 * reserve data&meta space before lock_page() (see above comments).
9232 	 */
9233 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9234 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9235 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9236 			  0, 0, &cached_state, GFP_NOFS);
9237 
9238 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9239 					&cached_state, 0);
9240 	if (ret) {
9241 		unlock_extent_cached(io_tree, page_start, page_end,
9242 				     &cached_state, GFP_NOFS);
9243 		ret = VM_FAULT_SIGBUS;
9244 		goto out_unlock;
9245 	}
9246 	ret = 0;
9247 
9248 	/* page is wholly or partially inside EOF */
9249 	if (page_start + PAGE_SIZE > size)
9250 		zero_start = size & ~PAGE_MASK;
9251 	else
9252 		zero_start = PAGE_SIZE;
9253 
9254 	if (zero_start != PAGE_SIZE) {
9255 		kaddr = kmap(page);
9256 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9257 		flush_dcache_page(page);
9258 		kunmap(page);
9259 	}
9260 	ClearPageChecked(page);
9261 	set_page_dirty(page);
9262 	SetPageUptodate(page);
9263 
9264 	BTRFS_I(inode)->last_trans = fs_info->generation;
9265 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9266 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9267 
9268 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9269 
9270 out_unlock:
9271 	if (!ret) {
9272 		sb_end_pagefault(inode->i_sb);
9273 		extent_changeset_free(data_reserved);
9274 		return VM_FAULT_LOCKED;
9275 	}
9276 	unlock_page(page);
9277 out:
9278 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9279 				     reserved_space);
9280 out_noreserve:
9281 	sb_end_pagefault(inode->i_sb);
9282 	extent_changeset_free(data_reserved);
9283 	return ret;
9284 }
9285 
9286 static int btrfs_truncate(struct inode *inode)
9287 {
9288 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9289 	struct btrfs_root *root = BTRFS_I(inode)->root;
9290 	struct btrfs_block_rsv *rsv;
9291 	int ret = 0;
9292 	int err = 0;
9293 	struct btrfs_trans_handle *trans;
9294 	u64 mask = fs_info->sectorsize - 1;
9295 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9296 
9297 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9298 				       (u64)-1);
9299 	if (ret)
9300 		return ret;
9301 
9302 	/*
9303 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9304 	 * 3 things going on here
9305 	 *
9306 	 * 1) We need to reserve space for our orphan item and the space to
9307 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9308 	 * orphan item because we didn't reserve space to remove it.
9309 	 *
9310 	 * 2) We need to reserve space to update our inode.
9311 	 *
9312 	 * 3) We need to have something to cache all the space that is going to
9313 	 * be free'd up by the truncate operation, but also have some slack
9314 	 * space reserved in case it uses space during the truncate (thank you
9315 	 * very much snapshotting).
9316 	 *
9317 	 * And we need these to all be separate.  The fact is we can use a lot of
9318 	 * space doing the truncate, and we have no earthly idea how much space
9319 	 * we will use, so we need the truncate reservation to be separate so it
9320 	 * doesn't end up using space reserved for updating the inode or
9321 	 * removing the orphan item.  We also need to be able to stop the
9322 	 * transaction and start a new one, which means we need to be able to
9323 	 * update the inode several times, and we have no idea of knowing how
9324 	 * many times that will be, so we can't just reserve 1 item for the
9325 	 * entirety of the operation, so that has to be done separately as well.
9326 	 * Then there is the orphan item, which does indeed need to be held on
9327 	 * to for the whole operation, and we need nobody to touch this reserved
9328 	 * space except the orphan code.
9329 	 *
9330 	 * So that leaves us with
9331 	 *
9332 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9333 	 * 2) rsv - for the truncate reservation, which we will steal from the
9334 	 * transaction reservation.
9335 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9336 	 * updating the inode.
9337 	 */
9338 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9339 	if (!rsv)
9340 		return -ENOMEM;
9341 	rsv->size = min_size;
9342 	rsv->failfast = 1;
9343 
9344 	/*
9345 	 * 1 for the truncate slack space
9346 	 * 1 for updating the inode.
9347 	 */
9348 	trans = btrfs_start_transaction(root, 2);
9349 	if (IS_ERR(trans)) {
9350 		err = PTR_ERR(trans);
9351 		goto out;
9352 	}
9353 
9354 	/* Migrate the slack space for the truncate to our reserve */
9355 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9356 				      min_size, 0);
9357 	BUG_ON(ret);
9358 
9359 	/*
9360 	 * So if we truncate and then write and fsync we normally would just
9361 	 * write the extents that changed, which is a problem if we need to
9362 	 * first truncate that entire inode.  So set this flag so we write out
9363 	 * all of the extents in the inode to the sync log so we're completely
9364 	 * safe.
9365 	 */
9366 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9367 	trans->block_rsv = rsv;
9368 
9369 	while (1) {
9370 		ret = btrfs_truncate_inode_items(trans, root, inode,
9371 						 inode->i_size,
9372 						 BTRFS_EXTENT_DATA_KEY);
9373 		if (ret != -ENOSPC && ret != -EAGAIN) {
9374 			err = ret;
9375 			break;
9376 		}
9377 
9378 		trans->block_rsv = &fs_info->trans_block_rsv;
9379 		ret = btrfs_update_inode(trans, root, inode);
9380 		if (ret) {
9381 			err = ret;
9382 			break;
9383 		}
9384 
9385 		btrfs_end_transaction(trans);
9386 		btrfs_btree_balance_dirty(fs_info);
9387 
9388 		trans = btrfs_start_transaction(root, 2);
9389 		if (IS_ERR(trans)) {
9390 			ret = err = PTR_ERR(trans);
9391 			trans = NULL;
9392 			break;
9393 		}
9394 
9395 		btrfs_block_rsv_release(fs_info, rsv, -1);
9396 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9397 					      rsv, min_size, 0);
9398 		BUG_ON(ret);	/* shouldn't happen */
9399 		trans->block_rsv = rsv;
9400 	}
9401 
9402 	if (ret == 0 && inode->i_nlink > 0) {
9403 		trans->block_rsv = root->orphan_block_rsv;
9404 		ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9405 		if (ret)
9406 			err = ret;
9407 	}
9408 
9409 	if (trans) {
9410 		trans->block_rsv = &fs_info->trans_block_rsv;
9411 		ret = btrfs_update_inode(trans, root, inode);
9412 		if (ret && !err)
9413 			err = ret;
9414 
9415 		ret = btrfs_end_transaction(trans);
9416 		btrfs_btree_balance_dirty(fs_info);
9417 	}
9418 out:
9419 	btrfs_free_block_rsv(fs_info, rsv);
9420 
9421 	if (ret && !err)
9422 		err = ret;
9423 
9424 	return err;
9425 }
9426 
9427 /*
9428  * create a new subvolume directory/inode (helper for the ioctl).
9429  */
9430 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9431 			     struct btrfs_root *new_root,
9432 			     struct btrfs_root *parent_root,
9433 			     u64 new_dirid)
9434 {
9435 	struct inode *inode;
9436 	int err;
9437 	u64 index = 0;
9438 
9439 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9440 				new_dirid, new_dirid,
9441 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9442 				&index);
9443 	if (IS_ERR(inode))
9444 		return PTR_ERR(inode);
9445 	inode->i_op = &btrfs_dir_inode_operations;
9446 	inode->i_fop = &btrfs_dir_file_operations;
9447 
9448 	set_nlink(inode, 1);
9449 	btrfs_i_size_write(BTRFS_I(inode), 0);
9450 	unlock_new_inode(inode);
9451 
9452 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9453 	if (err)
9454 		btrfs_err(new_root->fs_info,
9455 			  "error inheriting subvolume %llu properties: %d",
9456 			  new_root->root_key.objectid, err);
9457 
9458 	err = btrfs_update_inode(trans, new_root, inode);
9459 
9460 	iput(inode);
9461 	return err;
9462 }
9463 
9464 struct inode *btrfs_alloc_inode(struct super_block *sb)
9465 {
9466 	struct btrfs_inode *ei;
9467 	struct inode *inode;
9468 
9469 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9470 	if (!ei)
9471 		return NULL;
9472 
9473 	ei->root = NULL;
9474 	ei->generation = 0;
9475 	ei->last_trans = 0;
9476 	ei->last_sub_trans = 0;
9477 	ei->logged_trans = 0;
9478 	ei->delalloc_bytes = 0;
9479 	ei->new_delalloc_bytes = 0;
9480 	ei->defrag_bytes = 0;
9481 	ei->disk_i_size = 0;
9482 	ei->flags = 0;
9483 	ei->csum_bytes = 0;
9484 	ei->index_cnt = (u64)-1;
9485 	ei->dir_index = 0;
9486 	ei->last_unlink_trans = 0;
9487 	ei->last_log_commit = 0;
9488 	ei->delayed_iput_count = 0;
9489 
9490 	spin_lock_init(&ei->lock);
9491 	ei->outstanding_extents = 0;
9492 	ei->reserved_extents = 0;
9493 
9494 	ei->runtime_flags = 0;
9495 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9496 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9497 
9498 	ei->delayed_node = NULL;
9499 
9500 	ei->i_otime.tv_sec = 0;
9501 	ei->i_otime.tv_nsec = 0;
9502 
9503 	inode = &ei->vfs_inode;
9504 	extent_map_tree_init(&ei->extent_tree);
9505 	extent_io_tree_init(&ei->io_tree, inode);
9506 	extent_io_tree_init(&ei->io_failure_tree, inode);
9507 	ei->io_tree.track_uptodate = 1;
9508 	ei->io_failure_tree.track_uptodate = 1;
9509 	atomic_set(&ei->sync_writers, 0);
9510 	mutex_init(&ei->log_mutex);
9511 	mutex_init(&ei->delalloc_mutex);
9512 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9513 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9514 	INIT_LIST_HEAD(&ei->delayed_iput);
9515 	RB_CLEAR_NODE(&ei->rb_node);
9516 	init_rwsem(&ei->dio_sem);
9517 
9518 	return inode;
9519 }
9520 
9521 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9522 void btrfs_test_destroy_inode(struct inode *inode)
9523 {
9524 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9525 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9526 }
9527 #endif
9528 
9529 static void btrfs_i_callback(struct rcu_head *head)
9530 {
9531 	struct inode *inode = container_of(head, struct inode, i_rcu);
9532 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9533 }
9534 
9535 void btrfs_destroy_inode(struct inode *inode)
9536 {
9537 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9538 	struct btrfs_ordered_extent *ordered;
9539 	struct btrfs_root *root = BTRFS_I(inode)->root;
9540 
9541 	WARN_ON(!hlist_empty(&inode->i_dentry));
9542 	WARN_ON(inode->i_data.nrpages);
9543 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9544 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9545 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9546 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9547 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9548 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9549 
9550 	/*
9551 	 * This can happen where we create an inode, but somebody else also
9552 	 * created the same inode and we need to destroy the one we already
9553 	 * created.
9554 	 */
9555 	if (!root)
9556 		goto free;
9557 
9558 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9559 		     &BTRFS_I(inode)->runtime_flags)) {
9560 		btrfs_info(fs_info, "inode %llu still on the orphan list",
9561 			   btrfs_ino(BTRFS_I(inode)));
9562 		atomic_dec(&root->orphan_inodes);
9563 	}
9564 
9565 	while (1) {
9566 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9567 		if (!ordered)
9568 			break;
9569 		else {
9570 			btrfs_err(fs_info,
9571 				  "found ordered extent %llu %llu on inode cleanup",
9572 				  ordered->file_offset, ordered->len);
9573 			btrfs_remove_ordered_extent(inode, ordered);
9574 			btrfs_put_ordered_extent(ordered);
9575 			btrfs_put_ordered_extent(ordered);
9576 		}
9577 	}
9578 	btrfs_qgroup_check_reserved_leak(inode);
9579 	inode_tree_del(inode);
9580 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9581 free:
9582 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9583 }
9584 
9585 int btrfs_drop_inode(struct inode *inode)
9586 {
9587 	struct btrfs_root *root = BTRFS_I(inode)->root;
9588 
9589 	if (root == NULL)
9590 		return 1;
9591 
9592 	/* the snap/subvol tree is on deleting */
9593 	if (btrfs_root_refs(&root->root_item) == 0)
9594 		return 1;
9595 	else
9596 		return generic_drop_inode(inode);
9597 }
9598 
9599 static void init_once(void *foo)
9600 {
9601 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9602 
9603 	inode_init_once(&ei->vfs_inode);
9604 }
9605 
9606 void btrfs_destroy_cachep(void)
9607 {
9608 	/*
9609 	 * Make sure all delayed rcu free inodes are flushed before we
9610 	 * destroy cache.
9611 	 */
9612 	rcu_barrier();
9613 	kmem_cache_destroy(btrfs_inode_cachep);
9614 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9615 	kmem_cache_destroy(btrfs_path_cachep);
9616 	kmem_cache_destroy(btrfs_free_space_cachep);
9617 }
9618 
9619 int btrfs_init_cachep(void)
9620 {
9621 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9622 			sizeof(struct btrfs_inode), 0,
9623 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9624 			init_once);
9625 	if (!btrfs_inode_cachep)
9626 		goto fail;
9627 
9628 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9629 			sizeof(struct btrfs_trans_handle), 0,
9630 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9631 	if (!btrfs_trans_handle_cachep)
9632 		goto fail;
9633 
9634 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9635 			sizeof(struct btrfs_path), 0,
9636 			SLAB_MEM_SPREAD, NULL);
9637 	if (!btrfs_path_cachep)
9638 		goto fail;
9639 
9640 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9641 			sizeof(struct btrfs_free_space), 0,
9642 			SLAB_MEM_SPREAD, NULL);
9643 	if (!btrfs_free_space_cachep)
9644 		goto fail;
9645 
9646 	return 0;
9647 fail:
9648 	btrfs_destroy_cachep();
9649 	return -ENOMEM;
9650 }
9651 
9652 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9653 			 u32 request_mask, unsigned int flags)
9654 {
9655 	u64 delalloc_bytes;
9656 	struct inode *inode = d_inode(path->dentry);
9657 	u32 blocksize = inode->i_sb->s_blocksize;
9658 	u32 bi_flags = BTRFS_I(inode)->flags;
9659 
9660 	stat->result_mask |= STATX_BTIME;
9661 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9662 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9663 	if (bi_flags & BTRFS_INODE_APPEND)
9664 		stat->attributes |= STATX_ATTR_APPEND;
9665 	if (bi_flags & BTRFS_INODE_COMPRESS)
9666 		stat->attributes |= STATX_ATTR_COMPRESSED;
9667 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9668 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9669 	if (bi_flags & BTRFS_INODE_NODUMP)
9670 		stat->attributes |= STATX_ATTR_NODUMP;
9671 
9672 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9673 				  STATX_ATTR_COMPRESSED |
9674 				  STATX_ATTR_IMMUTABLE |
9675 				  STATX_ATTR_NODUMP);
9676 
9677 	generic_fillattr(inode, stat);
9678 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9679 
9680 	spin_lock(&BTRFS_I(inode)->lock);
9681 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9682 	spin_unlock(&BTRFS_I(inode)->lock);
9683 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9684 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9685 	return 0;
9686 }
9687 
9688 static int btrfs_rename_exchange(struct inode *old_dir,
9689 			      struct dentry *old_dentry,
9690 			      struct inode *new_dir,
9691 			      struct dentry *new_dentry)
9692 {
9693 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9694 	struct btrfs_trans_handle *trans;
9695 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9696 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9697 	struct inode *new_inode = new_dentry->d_inode;
9698 	struct inode *old_inode = old_dentry->d_inode;
9699 	struct timespec ctime = current_time(old_inode);
9700 	struct dentry *parent;
9701 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9702 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9703 	u64 old_idx = 0;
9704 	u64 new_idx = 0;
9705 	u64 root_objectid;
9706 	int ret;
9707 	bool root_log_pinned = false;
9708 	bool dest_log_pinned = false;
9709 
9710 	/* we only allow rename subvolume link between subvolumes */
9711 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9712 		return -EXDEV;
9713 
9714 	/* close the race window with snapshot create/destroy ioctl */
9715 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9716 		down_read(&fs_info->subvol_sem);
9717 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9718 		down_read(&fs_info->subvol_sem);
9719 
9720 	/*
9721 	 * We want to reserve the absolute worst case amount of items.  So if
9722 	 * both inodes are subvols and we need to unlink them then that would
9723 	 * require 4 item modifications, but if they are both normal inodes it
9724 	 * would require 5 item modifications, so we'll assume their normal
9725 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9726 	 * should cover the worst case number of items we'll modify.
9727 	 */
9728 	trans = btrfs_start_transaction(root, 12);
9729 	if (IS_ERR(trans)) {
9730 		ret = PTR_ERR(trans);
9731 		goto out_notrans;
9732 	}
9733 
9734 	/*
9735 	 * We need to find a free sequence number both in the source and
9736 	 * in the destination directory for the exchange.
9737 	 */
9738 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9739 	if (ret)
9740 		goto out_fail;
9741 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9742 	if (ret)
9743 		goto out_fail;
9744 
9745 	BTRFS_I(old_inode)->dir_index = 0ULL;
9746 	BTRFS_I(new_inode)->dir_index = 0ULL;
9747 
9748 	/* Reference for the source. */
9749 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9750 		/* force full log commit if subvolume involved. */
9751 		btrfs_set_log_full_commit(fs_info, trans);
9752 	} else {
9753 		btrfs_pin_log_trans(root);
9754 		root_log_pinned = true;
9755 		ret = btrfs_insert_inode_ref(trans, dest,
9756 					     new_dentry->d_name.name,
9757 					     new_dentry->d_name.len,
9758 					     old_ino,
9759 					     btrfs_ino(BTRFS_I(new_dir)),
9760 					     old_idx);
9761 		if (ret)
9762 			goto out_fail;
9763 	}
9764 
9765 	/* And now for the dest. */
9766 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9767 		/* force full log commit if subvolume involved. */
9768 		btrfs_set_log_full_commit(fs_info, trans);
9769 	} else {
9770 		btrfs_pin_log_trans(dest);
9771 		dest_log_pinned = true;
9772 		ret = btrfs_insert_inode_ref(trans, root,
9773 					     old_dentry->d_name.name,
9774 					     old_dentry->d_name.len,
9775 					     new_ino,
9776 					     btrfs_ino(BTRFS_I(old_dir)),
9777 					     new_idx);
9778 		if (ret)
9779 			goto out_fail;
9780 	}
9781 
9782 	/* Update inode version and ctime/mtime. */
9783 	inode_inc_iversion(old_dir);
9784 	inode_inc_iversion(new_dir);
9785 	inode_inc_iversion(old_inode);
9786 	inode_inc_iversion(new_inode);
9787 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9788 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9789 	old_inode->i_ctime = ctime;
9790 	new_inode->i_ctime = ctime;
9791 
9792 	if (old_dentry->d_parent != new_dentry->d_parent) {
9793 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9794 				BTRFS_I(old_inode), 1);
9795 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9796 				BTRFS_I(new_inode), 1);
9797 	}
9798 
9799 	/* src is a subvolume */
9800 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9801 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9802 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9803 					  root_objectid,
9804 					  old_dentry->d_name.name,
9805 					  old_dentry->d_name.len);
9806 	} else { /* src is an inode */
9807 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9808 					   BTRFS_I(old_dentry->d_inode),
9809 					   old_dentry->d_name.name,
9810 					   old_dentry->d_name.len);
9811 		if (!ret)
9812 			ret = btrfs_update_inode(trans, root, old_inode);
9813 	}
9814 	if (ret) {
9815 		btrfs_abort_transaction(trans, ret);
9816 		goto out_fail;
9817 	}
9818 
9819 	/* dest is a subvolume */
9820 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9821 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9822 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9823 					  root_objectid,
9824 					  new_dentry->d_name.name,
9825 					  new_dentry->d_name.len);
9826 	} else { /* dest is an inode */
9827 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9828 					   BTRFS_I(new_dentry->d_inode),
9829 					   new_dentry->d_name.name,
9830 					   new_dentry->d_name.len);
9831 		if (!ret)
9832 			ret = btrfs_update_inode(trans, dest, new_inode);
9833 	}
9834 	if (ret) {
9835 		btrfs_abort_transaction(trans, ret);
9836 		goto out_fail;
9837 	}
9838 
9839 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9840 			     new_dentry->d_name.name,
9841 			     new_dentry->d_name.len, 0, old_idx);
9842 	if (ret) {
9843 		btrfs_abort_transaction(trans, ret);
9844 		goto out_fail;
9845 	}
9846 
9847 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9848 			     old_dentry->d_name.name,
9849 			     old_dentry->d_name.len, 0, new_idx);
9850 	if (ret) {
9851 		btrfs_abort_transaction(trans, ret);
9852 		goto out_fail;
9853 	}
9854 
9855 	if (old_inode->i_nlink == 1)
9856 		BTRFS_I(old_inode)->dir_index = old_idx;
9857 	if (new_inode->i_nlink == 1)
9858 		BTRFS_I(new_inode)->dir_index = new_idx;
9859 
9860 	if (root_log_pinned) {
9861 		parent = new_dentry->d_parent;
9862 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9863 				parent);
9864 		btrfs_end_log_trans(root);
9865 		root_log_pinned = false;
9866 	}
9867 	if (dest_log_pinned) {
9868 		parent = old_dentry->d_parent;
9869 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9870 				parent);
9871 		btrfs_end_log_trans(dest);
9872 		dest_log_pinned = false;
9873 	}
9874 out_fail:
9875 	/*
9876 	 * If we have pinned a log and an error happened, we unpin tasks
9877 	 * trying to sync the log and force them to fallback to a transaction
9878 	 * commit if the log currently contains any of the inodes involved in
9879 	 * this rename operation (to ensure we do not persist a log with an
9880 	 * inconsistent state for any of these inodes or leading to any
9881 	 * inconsistencies when replayed). If the transaction was aborted, the
9882 	 * abortion reason is propagated to userspace when attempting to commit
9883 	 * the transaction. If the log does not contain any of these inodes, we
9884 	 * allow the tasks to sync it.
9885 	 */
9886 	if (ret && (root_log_pinned || dest_log_pinned)) {
9887 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9888 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9889 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9890 		    (new_inode &&
9891 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9892 			btrfs_set_log_full_commit(fs_info, trans);
9893 
9894 		if (root_log_pinned) {
9895 			btrfs_end_log_trans(root);
9896 			root_log_pinned = false;
9897 		}
9898 		if (dest_log_pinned) {
9899 			btrfs_end_log_trans(dest);
9900 			dest_log_pinned = false;
9901 		}
9902 	}
9903 	ret = btrfs_end_transaction(trans);
9904 out_notrans:
9905 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9906 		up_read(&fs_info->subvol_sem);
9907 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9908 		up_read(&fs_info->subvol_sem);
9909 
9910 	return ret;
9911 }
9912 
9913 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9914 				     struct btrfs_root *root,
9915 				     struct inode *dir,
9916 				     struct dentry *dentry)
9917 {
9918 	int ret;
9919 	struct inode *inode;
9920 	u64 objectid;
9921 	u64 index;
9922 
9923 	ret = btrfs_find_free_ino(root, &objectid);
9924 	if (ret)
9925 		return ret;
9926 
9927 	inode = btrfs_new_inode(trans, root, dir,
9928 				dentry->d_name.name,
9929 				dentry->d_name.len,
9930 				btrfs_ino(BTRFS_I(dir)),
9931 				objectid,
9932 				S_IFCHR | WHITEOUT_MODE,
9933 				&index);
9934 
9935 	if (IS_ERR(inode)) {
9936 		ret = PTR_ERR(inode);
9937 		return ret;
9938 	}
9939 
9940 	inode->i_op = &btrfs_special_inode_operations;
9941 	init_special_inode(inode, inode->i_mode,
9942 		WHITEOUT_DEV);
9943 
9944 	ret = btrfs_init_inode_security(trans, inode, dir,
9945 				&dentry->d_name);
9946 	if (ret)
9947 		goto out;
9948 
9949 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9950 				BTRFS_I(inode), 0, index);
9951 	if (ret)
9952 		goto out;
9953 
9954 	ret = btrfs_update_inode(trans, root, inode);
9955 out:
9956 	unlock_new_inode(inode);
9957 	if (ret)
9958 		inode_dec_link_count(inode);
9959 	iput(inode);
9960 
9961 	return ret;
9962 }
9963 
9964 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9965 			   struct inode *new_dir, struct dentry *new_dentry,
9966 			   unsigned int flags)
9967 {
9968 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9969 	struct btrfs_trans_handle *trans;
9970 	unsigned int trans_num_items;
9971 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9972 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9973 	struct inode *new_inode = d_inode(new_dentry);
9974 	struct inode *old_inode = d_inode(old_dentry);
9975 	u64 index = 0;
9976 	u64 root_objectid;
9977 	int ret;
9978 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9979 	bool log_pinned = false;
9980 
9981 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9982 		return -EPERM;
9983 
9984 	/* we only allow rename subvolume link between subvolumes */
9985 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9986 		return -EXDEV;
9987 
9988 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9989 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9990 		return -ENOTEMPTY;
9991 
9992 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9993 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9994 		return -ENOTEMPTY;
9995 
9996 
9997 	/* check for collisions, even if the  name isn't there */
9998 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9999 			     new_dentry->d_name.name,
10000 			     new_dentry->d_name.len);
10001 
10002 	if (ret) {
10003 		if (ret == -EEXIST) {
10004 			/* we shouldn't get
10005 			 * eexist without a new_inode */
10006 			if (WARN_ON(!new_inode)) {
10007 				return ret;
10008 			}
10009 		} else {
10010 			/* maybe -EOVERFLOW */
10011 			return ret;
10012 		}
10013 	}
10014 	ret = 0;
10015 
10016 	/*
10017 	 * we're using rename to replace one file with another.  Start IO on it
10018 	 * now so  we don't add too much work to the end of the transaction
10019 	 */
10020 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
10021 		filemap_flush(old_inode->i_mapping);
10022 
10023 	/* close the racy window with snapshot create/destroy ioctl */
10024 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10025 		down_read(&fs_info->subvol_sem);
10026 	/*
10027 	 * We want to reserve the absolute worst case amount of items.  So if
10028 	 * both inodes are subvols and we need to unlink them then that would
10029 	 * require 4 item modifications, but if they are both normal inodes it
10030 	 * would require 5 item modifications, so we'll assume they are normal
10031 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
10032 	 * should cover the worst case number of items we'll modify.
10033 	 * If our rename has the whiteout flag, we need more 5 units for the
10034 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
10035 	 * when selinux is enabled).
10036 	 */
10037 	trans_num_items = 11;
10038 	if (flags & RENAME_WHITEOUT)
10039 		trans_num_items += 5;
10040 	trans = btrfs_start_transaction(root, trans_num_items);
10041 	if (IS_ERR(trans)) {
10042 		ret = PTR_ERR(trans);
10043 		goto out_notrans;
10044 	}
10045 
10046 	if (dest != root)
10047 		btrfs_record_root_in_trans(trans, dest);
10048 
10049 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
10050 	if (ret)
10051 		goto out_fail;
10052 
10053 	BTRFS_I(old_inode)->dir_index = 0ULL;
10054 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10055 		/* force full log commit if subvolume involved. */
10056 		btrfs_set_log_full_commit(fs_info, trans);
10057 	} else {
10058 		btrfs_pin_log_trans(root);
10059 		log_pinned = true;
10060 		ret = btrfs_insert_inode_ref(trans, dest,
10061 					     new_dentry->d_name.name,
10062 					     new_dentry->d_name.len,
10063 					     old_ino,
10064 					     btrfs_ino(BTRFS_I(new_dir)), index);
10065 		if (ret)
10066 			goto out_fail;
10067 	}
10068 
10069 	inode_inc_iversion(old_dir);
10070 	inode_inc_iversion(new_dir);
10071 	inode_inc_iversion(old_inode);
10072 	old_dir->i_ctime = old_dir->i_mtime =
10073 	new_dir->i_ctime = new_dir->i_mtime =
10074 	old_inode->i_ctime = current_time(old_dir);
10075 
10076 	if (old_dentry->d_parent != new_dentry->d_parent)
10077 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10078 				BTRFS_I(old_inode), 1);
10079 
10080 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10081 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10082 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10083 					old_dentry->d_name.name,
10084 					old_dentry->d_name.len);
10085 	} else {
10086 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10087 					BTRFS_I(d_inode(old_dentry)),
10088 					old_dentry->d_name.name,
10089 					old_dentry->d_name.len);
10090 		if (!ret)
10091 			ret = btrfs_update_inode(trans, root, old_inode);
10092 	}
10093 	if (ret) {
10094 		btrfs_abort_transaction(trans, ret);
10095 		goto out_fail;
10096 	}
10097 
10098 	if (new_inode) {
10099 		inode_inc_iversion(new_inode);
10100 		new_inode->i_ctime = current_time(new_inode);
10101 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10102 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10103 			root_objectid = BTRFS_I(new_inode)->location.objectid;
10104 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
10105 						root_objectid,
10106 						new_dentry->d_name.name,
10107 						new_dentry->d_name.len);
10108 			BUG_ON(new_inode->i_nlink == 0);
10109 		} else {
10110 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10111 						 BTRFS_I(d_inode(new_dentry)),
10112 						 new_dentry->d_name.name,
10113 						 new_dentry->d_name.len);
10114 		}
10115 		if (!ret && new_inode->i_nlink == 0)
10116 			ret = btrfs_orphan_add(trans,
10117 					BTRFS_I(d_inode(new_dentry)));
10118 		if (ret) {
10119 			btrfs_abort_transaction(trans, ret);
10120 			goto out_fail;
10121 		}
10122 	}
10123 
10124 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10125 			     new_dentry->d_name.name,
10126 			     new_dentry->d_name.len, 0, index);
10127 	if (ret) {
10128 		btrfs_abort_transaction(trans, ret);
10129 		goto out_fail;
10130 	}
10131 
10132 	if (old_inode->i_nlink == 1)
10133 		BTRFS_I(old_inode)->dir_index = index;
10134 
10135 	if (log_pinned) {
10136 		struct dentry *parent = new_dentry->d_parent;
10137 
10138 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10139 				parent);
10140 		btrfs_end_log_trans(root);
10141 		log_pinned = false;
10142 	}
10143 
10144 	if (flags & RENAME_WHITEOUT) {
10145 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10146 						old_dentry);
10147 
10148 		if (ret) {
10149 			btrfs_abort_transaction(trans, ret);
10150 			goto out_fail;
10151 		}
10152 	}
10153 out_fail:
10154 	/*
10155 	 * If we have pinned the log and an error happened, we unpin tasks
10156 	 * trying to sync the log and force them to fallback to a transaction
10157 	 * commit if the log currently contains any of the inodes involved in
10158 	 * this rename operation (to ensure we do not persist a log with an
10159 	 * inconsistent state for any of these inodes or leading to any
10160 	 * inconsistencies when replayed). If the transaction was aborted, the
10161 	 * abortion reason is propagated to userspace when attempting to commit
10162 	 * the transaction. If the log does not contain any of these inodes, we
10163 	 * allow the tasks to sync it.
10164 	 */
10165 	if (ret && log_pinned) {
10166 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10167 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10168 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10169 		    (new_inode &&
10170 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10171 			btrfs_set_log_full_commit(fs_info, trans);
10172 
10173 		btrfs_end_log_trans(root);
10174 		log_pinned = false;
10175 	}
10176 	btrfs_end_transaction(trans);
10177 out_notrans:
10178 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10179 		up_read(&fs_info->subvol_sem);
10180 
10181 	return ret;
10182 }
10183 
10184 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10185 			 struct inode *new_dir, struct dentry *new_dentry,
10186 			 unsigned int flags)
10187 {
10188 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10189 		return -EINVAL;
10190 
10191 	if (flags & RENAME_EXCHANGE)
10192 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10193 					  new_dentry);
10194 
10195 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10196 }
10197 
10198 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10199 {
10200 	struct btrfs_delalloc_work *delalloc_work;
10201 	struct inode *inode;
10202 
10203 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10204 				     work);
10205 	inode = delalloc_work->inode;
10206 	filemap_flush(inode->i_mapping);
10207 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10208 				&BTRFS_I(inode)->runtime_flags))
10209 		filemap_flush(inode->i_mapping);
10210 
10211 	if (delalloc_work->delay_iput)
10212 		btrfs_add_delayed_iput(inode);
10213 	else
10214 		iput(inode);
10215 	complete(&delalloc_work->completion);
10216 }
10217 
10218 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10219 						    int delay_iput)
10220 {
10221 	struct btrfs_delalloc_work *work;
10222 
10223 	work = kmalloc(sizeof(*work), GFP_NOFS);
10224 	if (!work)
10225 		return NULL;
10226 
10227 	init_completion(&work->completion);
10228 	INIT_LIST_HEAD(&work->list);
10229 	work->inode = inode;
10230 	work->delay_iput = delay_iput;
10231 	WARN_ON_ONCE(!inode);
10232 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10233 			btrfs_run_delalloc_work, NULL, NULL);
10234 
10235 	return work;
10236 }
10237 
10238 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10239 {
10240 	wait_for_completion(&work->completion);
10241 	kfree(work);
10242 }
10243 
10244 /*
10245  * some fairly slow code that needs optimization. This walks the list
10246  * of all the inodes with pending delalloc and forces them to disk.
10247  */
10248 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10249 				   int nr)
10250 {
10251 	struct btrfs_inode *binode;
10252 	struct inode *inode;
10253 	struct btrfs_delalloc_work *work, *next;
10254 	struct list_head works;
10255 	struct list_head splice;
10256 	int ret = 0;
10257 
10258 	INIT_LIST_HEAD(&works);
10259 	INIT_LIST_HEAD(&splice);
10260 
10261 	mutex_lock(&root->delalloc_mutex);
10262 	spin_lock(&root->delalloc_lock);
10263 	list_splice_init(&root->delalloc_inodes, &splice);
10264 	while (!list_empty(&splice)) {
10265 		binode = list_entry(splice.next, struct btrfs_inode,
10266 				    delalloc_inodes);
10267 
10268 		list_move_tail(&binode->delalloc_inodes,
10269 			       &root->delalloc_inodes);
10270 		inode = igrab(&binode->vfs_inode);
10271 		if (!inode) {
10272 			cond_resched_lock(&root->delalloc_lock);
10273 			continue;
10274 		}
10275 		spin_unlock(&root->delalloc_lock);
10276 
10277 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10278 		if (!work) {
10279 			if (delay_iput)
10280 				btrfs_add_delayed_iput(inode);
10281 			else
10282 				iput(inode);
10283 			ret = -ENOMEM;
10284 			goto out;
10285 		}
10286 		list_add_tail(&work->list, &works);
10287 		btrfs_queue_work(root->fs_info->flush_workers,
10288 				 &work->work);
10289 		ret++;
10290 		if (nr != -1 && ret >= nr)
10291 			goto out;
10292 		cond_resched();
10293 		spin_lock(&root->delalloc_lock);
10294 	}
10295 	spin_unlock(&root->delalloc_lock);
10296 
10297 out:
10298 	list_for_each_entry_safe(work, next, &works, list) {
10299 		list_del_init(&work->list);
10300 		btrfs_wait_and_free_delalloc_work(work);
10301 	}
10302 
10303 	if (!list_empty_careful(&splice)) {
10304 		spin_lock(&root->delalloc_lock);
10305 		list_splice_tail(&splice, &root->delalloc_inodes);
10306 		spin_unlock(&root->delalloc_lock);
10307 	}
10308 	mutex_unlock(&root->delalloc_mutex);
10309 	return ret;
10310 }
10311 
10312 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10313 {
10314 	struct btrfs_fs_info *fs_info = root->fs_info;
10315 	int ret;
10316 
10317 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10318 		return -EROFS;
10319 
10320 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10321 	if (ret > 0)
10322 		ret = 0;
10323 	/*
10324 	 * the filemap_flush will queue IO into the worker threads, but
10325 	 * we have to make sure the IO is actually started and that
10326 	 * ordered extents get created before we return
10327 	 */
10328 	atomic_inc(&fs_info->async_submit_draining);
10329 	while (atomic_read(&fs_info->nr_async_submits) ||
10330 	       atomic_read(&fs_info->async_delalloc_pages)) {
10331 		wait_event(fs_info->async_submit_wait,
10332 			   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10333 			    atomic_read(&fs_info->async_delalloc_pages) == 0));
10334 	}
10335 	atomic_dec(&fs_info->async_submit_draining);
10336 	return ret;
10337 }
10338 
10339 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10340 			       int nr)
10341 {
10342 	struct btrfs_root *root;
10343 	struct list_head splice;
10344 	int ret;
10345 
10346 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10347 		return -EROFS;
10348 
10349 	INIT_LIST_HEAD(&splice);
10350 
10351 	mutex_lock(&fs_info->delalloc_root_mutex);
10352 	spin_lock(&fs_info->delalloc_root_lock);
10353 	list_splice_init(&fs_info->delalloc_roots, &splice);
10354 	while (!list_empty(&splice) && nr) {
10355 		root = list_first_entry(&splice, struct btrfs_root,
10356 					delalloc_root);
10357 		root = btrfs_grab_fs_root(root);
10358 		BUG_ON(!root);
10359 		list_move_tail(&root->delalloc_root,
10360 			       &fs_info->delalloc_roots);
10361 		spin_unlock(&fs_info->delalloc_root_lock);
10362 
10363 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10364 		btrfs_put_fs_root(root);
10365 		if (ret < 0)
10366 			goto out;
10367 
10368 		if (nr != -1) {
10369 			nr -= ret;
10370 			WARN_ON(nr < 0);
10371 		}
10372 		spin_lock(&fs_info->delalloc_root_lock);
10373 	}
10374 	spin_unlock(&fs_info->delalloc_root_lock);
10375 
10376 	ret = 0;
10377 	atomic_inc(&fs_info->async_submit_draining);
10378 	while (atomic_read(&fs_info->nr_async_submits) ||
10379 	      atomic_read(&fs_info->async_delalloc_pages)) {
10380 		wait_event(fs_info->async_submit_wait,
10381 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10382 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10383 	}
10384 	atomic_dec(&fs_info->async_submit_draining);
10385 out:
10386 	if (!list_empty_careful(&splice)) {
10387 		spin_lock(&fs_info->delalloc_root_lock);
10388 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10389 		spin_unlock(&fs_info->delalloc_root_lock);
10390 	}
10391 	mutex_unlock(&fs_info->delalloc_root_mutex);
10392 	return ret;
10393 }
10394 
10395 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10396 			 const char *symname)
10397 {
10398 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10399 	struct btrfs_trans_handle *trans;
10400 	struct btrfs_root *root = BTRFS_I(dir)->root;
10401 	struct btrfs_path *path;
10402 	struct btrfs_key key;
10403 	struct inode *inode = NULL;
10404 	int err;
10405 	int drop_inode = 0;
10406 	u64 objectid;
10407 	u64 index = 0;
10408 	int name_len;
10409 	int datasize;
10410 	unsigned long ptr;
10411 	struct btrfs_file_extent_item *ei;
10412 	struct extent_buffer *leaf;
10413 
10414 	name_len = strlen(symname);
10415 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10416 		return -ENAMETOOLONG;
10417 
10418 	/*
10419 	 * 2 items for inode item and ref
10420 	 * 2 items for dir items
10421 	 * 1 item for updating parent inode item
10422 	 * 1 item for the inline extent item
10423 	 * 1 item for xattr if selinux is on
10424 	 */
10425 	trans = btrfs_start_transaction(root, 7);
10426 	if (IS_ERR(trans))
10427 		return PTR_ERR(trans);
10428 
10429 	err = btrfs_find_free_ino(root, &objectid);
10430 	if (err)
10431 		goto out_unlock;
10432 
10433 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10434 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10435 				objectid, S_IFLNK|S_IRWXUGO, &index);
10436 	if (IS_ERR(inode)) {
10437 		err = PTR_ERR(inode);
10438 		goto out_unlock;
10439 	}
10440 
10441 	/*
10442 	* If the active LSM wants to access the inode during
10443 	* d_instantiate it needs these. Smack checks to see
10444 	* if the filesystem supports xattrs by looking at the
10445 	* ops vector.
10446 	*/
10447 	inode->i_fop = &btrfs_file_operations;
10448 	inode->i_op = &btrfs_file_inode_operations;
10449 	inode->i_mapping->a_ops = &btrfs_aops;
10450 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10451 
10452 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10453 	if (err)
10454 		goto out_unlock_inode;
10455 
10456 	path = btrfs_alloc_path();
10457 	if (!path) {
10458 		err = -ENOMEM;
10459 		goto out_unlock_inode;
10460 	}
10461 	key.objectid = btrfs_ino(BTRFS_I(inode));
10462 	key.offset = 0;
10463 	key.type = BTRFS_EXTENT_DATA_KEY;
10464 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10465 	err = btrfs_insert_empty_item(trans, root, path, &key,
10466 				      datasize);
10467 	if (err) {
10468 		btrfs_free_path(path);
10469 		goto out_unlock_inode;
10470 	}
10471 	leaf = path->nodes[0];
10472 	ei = btrfs_item_ptr(leaf, path->slots[0],
10473 			    struct btrfs_file_extent_item);
10474 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10475 	btrfs_set_file_extent_type(leaf, ei,
10476 				   BTRFS_FILE_EXTENT_INLINE);
10477 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10478 	btrfs_set_file_extent_compression(leaf, ei, 0);
10479 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10480 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10481 
10482 	ptr = btrfs_file_extent_inline_start(ei);
10483 	write_extent_buffer(leaf, symname, ptr, name_len);
10484 	btrfs_mark_buffer_dirty(leaf);
10485 	btrfs_free_path(path);
10486 
10487 	inode->i_op = &btrfs_symlink_inode_operations;
10488 	inode_nohighmem(inode);
10489 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10490 	inode_set_bytes(inode, name_len);
10491 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10492 	err = btrfs_update_inode(trans, root, inode);
10493 	/*
10494 	 * Last step, add directory indexes for our symlink inode. This is the
10495 	 * last step to avoid extra cleanup of these indexes if an error happens
10496 	 * elsewhere above.
10497 	 */
10498 	if (!err)
10499 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10500 				BTRFS_I(inode), 0, index);
10501 	if (err) {
10502 		drop_inode = 1;
10503 		goto out_unlock_inode;
10504 	}
10505 
10506 	unlock_new_inode(inode);
10507 	d_instantiate(dentry, inode);
10508 
10509 out_unlock:
10510 	btrfs_end_transaction(trans);
10511 	if (drop_inode) {
10512 		inode_dec_link_count(inode);
10513 		iput(inode);
10514 	}
10515 	btrfs_btree_balance_dirty(fs_info);
10516 	return err;
10517 
10518 out_unlock_inode:
10519 	drop_inode = 1;
10520 	unlock_new_inode(inode);
10521 	goto out_unlock;
10522 }
10523 
10524 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10525 				       u64 start, u64 num_bytes, u64 min_size,
10526 				       loff_t actual_len, u64 *alloc_hint,
10527 				       struct btrfs_trans_handle *trans)
10528 {
10529 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10530 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10531 	struct extent_map *em;
10532 	struct btrfs_root *root = BTRFS_I(inode)->root;
10533 	struct btrfs_key ins;
10534 	u64 cur_offset = start;
10535 	u64 i_size;
10536 	u64 cur_bytes;
10537 	u64 last_alloc = (u64)-1;
10538 	int ret = 0;
10539 	bool own_trans = true;
10540 	u64 end = start + num_bytes - 1;
10541 
10542 	if (trans)
10543 		own_trans = false;
10544 	while (num_bytes > 0) {
10545 		if (own_trans) {
10546 			trans = btrfs_start_transaction(root, 3);
10547 			if (IS_ERR(trans)) {
10548 				ret = PTR_ERR(trans);
10549 				break;
10550 			}
10551 		}
10552 
10553 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10554 		cur_bytes = max(cur_bytes, min_size);
10555 		/*
10556 		 * If we are severely fragmented we could end up with really
10557 		 * small allocations, so if the allocator is returning small
10558 		 * chunks lets make its job easier by only searching for those
10559 		 * sized chunks.
10560 		 */
10561 		cur_bytes = min(cur_bytes, last_alloc);
10562 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10563 				min_size, 0, *alloc_hint, &ins, 1, 0);
10564 		if (ret) {
10565 			if (own_trans)
10566 				btrfs_end_transaction(trans);
10567 			break;
10568 		}
10569 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10570 
10571 		last_alloc = ins.offset;
10572 		ret = insert_reserved_file_extent(trans, inode,
10573 						  cur_offset, ins.objectid,
10574 						  ins.offset, ins.offset,
10575 						  ins.offset, 0, 0, 0,
10576 						  BTRFS_FILE_EXTENT_PREALLOC);
10577 		if (ret) {
10578 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10579 						   ins.offset, 0);
10580 			btrfs_abort_transaction(trans, ret);
10581 			if (own_trans)
10582 				btrfs_end_transaction(trans);
10583 			break;
10584 		}
10585 
10586 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10587 					cur_offset + ins.offset -1, 0);
10588 
10589 		em = alloc_extent_map();
10590 		if (!em) {
10591 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10592 				&BTRFS_I(inode)->runtime_flags);
10593 			goto next;
10594 		}
10595 
10596 		em->start = cur_offset;
10597 		em->orig_start = cur_offset;
10598 		em->len = ins.offset;
10599 		em->block_start = ins.objectid;
10600 		em->block_len = ins.offset;
10601 		em->orig_block_len = ins.offset;
10602 		em->ram_bytes = ins.offset;
10603 		em->bdev = fs_info->fs_devices->latest_bdev;
10604 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10605 		em->generation = trans->transid;
10606 
10607 		while (1) {
10608 			write_lock(&em_tree->lock);
10609 			ret = add_extent_mapping(em_tree, em, 1);
10610 			write_unlock(&em_tree->lock);
10611 			if (ret != -EEXIST)
10612 				break;
10613 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10614 						cur_offset + ins.offset - 1,
10615 						0);
10616 		}
10617 		free_extent_map(em);
10618 next:
10619 		num_bytes -= ins.offset;
10620 		cur_offset += ins.offset;
10621 		*alloc_hint = ins.objectid + ins.offset;
10622 
10623 		inode_inc_iversion(inode);
10624 		inode->i_ctime = current_time(inode);
10625 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10626 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10627 		    (actual_len > inode->i_size) &&
10628 		    (cur_offset > inode->i_size)) {
10629 			if (cur_offset > actual_len)
10630 				i_size = actual_len;
10631 			else
10632 				i_size = cur_offset;
10633 			i_size_write(inode, i_size);
10634 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10635 		}
10636 
10637 		ret = btrfs_update_inode(trans, root, inode);
10638 
10639 		if (ret) {
10640 			btrfs_abort_transaction(trans, ret);
10641 			if (own_trans)
10642 				btrfs_end_transaction(trans);
10643 			break;
10644 		}
10645 
10646 		if (own_trans)
10647 			btrfs_end_transaction(trans);
10648 	}
10649 	if (cur_offset < end)
10650 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10651 			end - cur_offset + 1);
10652 	return ret;
10653 }
10654 
10655 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10656 			      u64 start, u64 num_bytes, u64 min_size,
10657 			      loff_t actual_len, u64 *alloc_hint)
10658 {
10659 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10660 					   min_size, actual_len, alloc_hint,
10661 					   NULL);
10662 }
10663 
10664 int btrfs_prealloc_file_range_trans(struct inode *inode,
10665 				    struct btrfs_trans_handle *trans, int mode,
10666 				    u64 start, u64 num_bytes, u64 min_size,
10667 				    loff_t actual_len, u64 *alloc_hint)
10668 {
10669 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10670 					   min_size, actual_len, alloc_hint, trans);
10671 }
10672 
10673 static int btrfs_set_page_dirty(struct page *page)
10674 {
10675 	return __set_page_dirty_nobuffers(page);
10676 }
10677 
10678 static int btrfs_permission(struct inode *inode, int mask)
10679 {
10680 	struct btrfs_root *root = BTRFS_I(inode)->root;
10681 	umode_t mode = inode->i_mode;
10682 
10683 	if (mask & MAY_WRITE &&
10684 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10685 		if (btrfs_root_readonly(root))
10686 			return -EROFS;
10687 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10688 			return -EACCES;
10689 	}
10690 	return generic_permission(inode, mask);
10691 }
10692 
10693 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10694 {
10695 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10696 	struct btrfs_trans_handle *trans;
10697 	struct btrfs_root *root = BTRFS_I(dir)->root;
10698 	struct inode *inode = NULL;
10699 	u64 objectid;
10700 	u64 index;
10701 	int ret = 0;
10702 
10703 	/*
10704 	 * 5 units required for adding orphan entry
10705 	 */
10706 	trans = btrfs_start_transaction(root, 5);
10707 	if (IS_ERR(trans))
10708 		return PTR_ERR(trans);
10709 
10710 	ret = btrfs_find_free_ino(root, &objectid);
10711 	if (ret)
10712 		goto out;
10713 
10714 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10715 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10716 	if (IS_ERR(inode)) {
10717 		ret = PTR_ERR(inode);
10718 		inode = NULL;
10719 		goto out;
10720 	}
10721 
10722 	inode->i_fop = &btrfs_file_operations;
10723 	inode->i_op = &btrfs_file_inode_operations;
10724 
10725 	inode->i_mapping->a_ops = &btrfs_aops;
10726 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10727 
10728 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10729 	if (ret)
10730 		goto out_inode;
10731 
10732 	ret = btrfs_update_inode(trans, root, inode);
10733 	if (ret)
10734 		goto out_inode;
10735 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10736 	if (ret)
10737 		goto out_inode;
10738 
10739 	/*
10740 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10741 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10742 	 * through:
10743 	 *
10744 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10745 	 */
10746 	set_nlink(inode, 1);
10747 	unlock_new_inode(inode);
10748 	d_tmpfile(dentry, inode);
10749 	mark_inode_dirty(inode);
10750 
10751 out:
10752 	btrfs_end_transaction(trans);
10753 	if (ret)
10754 		iput(inode);
10755 	btrfs_balance_delayed_items(fs_info);
10756 	btrfs_btree_balance_dirty(fs_info);
10757 	return ret;
10758 
10759 out_inode:
10760 	unlock_new_inode(inode);
10761 	goto out;
10762 
10763 }
10764 
10765 __attribute__((const))
10766 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10767 {
10768 	return -EAGAIN;
10769 }
10770 
10771 static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10772 {
10773 	struct inode *inode = private_data;
10774 	return btrfs_sb(inode->i_sb);
10775 }
10776 
10777 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10778 					u64 start, u64 end)
10779 {
10780 	struct inode *inode = private_data;
10781 	u64 isize;
10782 
10783 	isize = i_size_read(inode);
10784 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10785 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10786 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10787 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10788 	}
10789 }
10790 
10791 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10792 {
10793 	struct inode *inode = private_data;
10794 	unsigned long index = start >> PAGE_SHIFT;
10795 	unsigned long end_index = end >> PAGE_SHIFT;
10796 	struct page *page;
10797 
10798 	while (index <= end_index) {
10799 		page = find_get_page(inode->i_mapping, index);
10800 		ASSERT(page); /* Pages should be in the extent_io_tree */
10801 		set_page_writeback(page);
10802 		put_page(page);
10803 		index++;
10804 	}
10805 }
10806 
10807 static const struct inode_operations btrfs_dir_inode_operations = {
10808 	.getattr	= btrfs_getattr,
10809 	.lookup		= btrfs_lookup,
10810 	.create		= btrfs_create,
10811 	.unlink		= btrfs_unlink,
10812 	.link		= btrfs_link,
10813 	.mkdir		= btrfs_mkdir,
10814 	.rmdir		= btrfs_rmdir,
10815 	.rename		= btrfs_rename2,
10816 	.symlink	= btrfs_symlink,
10817 	.setattr	= btrfs_setattr,
10818 	.mknod		= btrfs_mknod,
10819 	.listxattr	= btrfs_listxattr,
10820 	.permission	= btrfs_permission,
10821 	.get_acl	= btrfs_get_acl,
10822 	.set_acl	= btrfs_set_acl,
10823 	.update_time	= btrfs_update_time,
10824 	.tmpfile        = btrfs_tmpfile,
10825 };
10826 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10827 	.lookup		= btrfs_lookup,
10828 	.permission	= btrfs_permission,
10829 	.update_time	= btrfs_update_time,
10830 };
10831 
10832 static const struct file_operations btrfs_dir_file_operations = {
10833 	.llseek		= generic_file_llseek,
10834 	.read		= generic_read_dir,
10835 	.iterate_shared	= btrfs_real_readdir,
10836 	.open		= btrfs_opendir,
10837 	.unlocked_ioctl	= btrfs_ioctl,
10838 #ifdef CONFIG_COMPAT
10839 	.compat_ioctl	= btrfs_compat_ioctl,
10840 #endif
10841 	.release        = btrfs_release_file,
10842 	.fsync		= btrfs_sync_file,
10843 };
10844 
10845 static const struct extent_io_ops btrfs_extent_io_ops = {
10846 	/* mandatory callbacks */
10847 	.submit_bio_hook = btrfs_submit_bio_hook,
10848 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10849 	.merge_bio_hook = btrfs_merge_bio_hook,
10850 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10851 	.tree_fs_info = iotree_fs_info,
10852 	.set_range_writeback = btrfs_set_range_writeback,
10853 
10854 	/* optional callbacks */
10855 	.fill_delalloc = run_delalloc_range,
10856 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10857 	.writepage_start_hook = btrfs_writepage_start_hook,
10858 	.set_bit_hook = btrfs_set_bit_hook,
10859 	.clear_bit_hook = btrfs_clear_bit_hook,
10860 	.merge_extent_hook = btrfs_merge_extent_hook,
10861 	.split_extent_hook = btrfs_split_extent_hook,
10862 	.check_extent_io_range = btrfs_check_extent_io_range,
10863 };
10864 
10865 /*
10866  * btrfs doesn't support the bmap operation because swapfiles
10867  * use bmap to make a mapping of extents in the file.  They assume
10868  * these extents won't change over the life of the file and they
10869  * use the bmap result to do IO directly to the drive.
10870  *
10871  * the btrfs bmap call would return logical addresses that aren't
10872  * suitable for IO and they also will change frequently as COW
10873  * operations happen.  So, swapfile + btrfs == corruption.
10874  *
10875  * For now we're avoiding this by dropping bmap.
10876  */
10877 static const struct address_space_operations btrfs_aops = {
10878 	.readpage	= btrfs_readpage,
10879 	.writepage	= btrfs_writepage,
10880 	.writepages	= btrfs_writepages,
10881 	.readpages	= btrfs_readpages,
10882 	.direct_IO	= btrfs_direct_IO,
10883 	.invalidatepage = btrfs_invalidatepage,
10884 	.releasepage	= btrfs_releasepage,
10885 	.set_page_dirty	= btrfs_set_page_dirty,
10886 	.error_remove_page = generic_error_remove_page,
10887 };
10888 
10889 static const struct address_space_operations btrfs_symlink_aops = {
10890 	.readpage	= btrfs_readpage,
10891 	.writepage	= btrfs_writepage,
10892 	.invalidatepage = btrfs_invalidatepage,
10893 	.releasepage	= btrfs_releasepage,
10894 };
10895 
10896 static const struct inode_operations btrfs_file_inode_operations = {
10897 	.getattr	= btrfs_getattr,
10898 	.setattr	= btrfs_setattr,
10899 	.listxattr      = btrfs_listxattr,
10900 	.permission	= btrfs_permission,
10901 	.fiemap		= btrfs_fiemap,
10902 	.get_acl	= btrfs_get_acl,
10903 	.set_acl	= btrfs_set_acl,
10904 	.update_time	= btrfs_update_time,
10905 };
10906 static const struct inode_operations btrfs_special_inode_operations = {
10907 	.getattr	= btrfs_getattr,
10908 	.setattr	= btrfs_setattr,
10909 	.permission	= btrfs_permission,
10910 	.listxattr	= btrfs_listxattr,
10911 	.get_acl	= btrfs_get_acl,
10912 	.set_acl	= btrfs_set_acl,
10913 	.update_time	= btrfs_update_time,
10914 };
10915 static const struct inode_operations btrfs_symlink_inode_operations = {
10916 	.get_link	= page_get_link,
10917 	.getattr	= btrfs_getattr,
10918 	.setattr	= btrfs_setattr,
10919 	.permission	= btrfs_permission,
10920 	.listxattr	= btrfs_listxattr,
10921 	.update_time	= btrfs_update_time,
10922 };
10923 
10924 const struct dentry_operations btrfs_dentry_operations = {
10925 	.d_delete	= btrfs_dentry_delete,
10926 	.d_release	= btrfs_dentry_release,
10927 };
10928