1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "print-tree.h" 50 #include "ordered-data.h" 51 #include "xattr.h" 52 #include "tree-log.h" 53 #include "volumes.h" 54 #include "compression.h" 55 #include "locking.h" 56 #include "free-space-cache.h" 57 #include "inode-map.h" 58 #include "backref.h" 59 #include "hash.h" 60 #include "props.h" 61 #include "qgroup.h" 62 #include "dedupe.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 struct btrfs_dio_data { 70 u64 outstanding_extents; 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 int overwrite; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, u64 delalloc_end, 109 int *page_started, unsigned long *nr_written, 110 int unlock, struct btrfs_dedupe_hash *hash); 111 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 112 u64 orig_start, u64 block_start, 113 u64 block_len, u64 orig_block_len, 114 u64 ram_bytes, int compress_type, 115 int type); 116 117 static void __endio_write_update_ordered(struct inode *inode, 118 const u64 offset, const u64 bytes, 119 const bool uptodate); 120 121 /* 122 * Cleanup all submitted ordered extents in specified range to handle errors 123 * from the fill_dellaloc() callback. 124 * 125 * NOTE: caller must ensure that when an error happens, it can not call 126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 128 * to be released, which we want to happen only when finishing the ordered 129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 130 * fill_delalloc() callback already does proper cleanup for the first page of 131 * the range, that is, it invokes the callback writepage_end_io_hook() for the 132 * range of the first page. 133 */ 134 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 135 const u64 offset, 136 const u64 bytes) 137 { 138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 139 bytes - PAGE_SIZE, false); 140 } 141 142 static int btrfs_dirty_inode(struct inode *inode); 143 144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 145 void btrfs_test_inode_set_ops(struct inode *inode) 146 { 147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 148 } 149 #endif 150 151 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 152 struct inode *inode, struct inode *dir, 153 const struct qstr *qstr) 154 { 155 int err; 156 157 err = btrfs_init_acl(trans, inode, dir); 158 if (!err) 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 160 return err; 161 } 162 163 /* 164 * this does all the hard work for inserting an inline extent into 165 * the btree. The caller should have done a btrfs_drop_extents so that 166 * no overlapping inline items exist in the btree 167 */ 168 static int insert_inline_extent(struct btrfs_trans_handle *trans, 169 struct btrfs_path *path, int extent_inserted, 170 struct btrfs_root *root, struct inode *inode, 171 u64 start, size_t size, size_t compressed_size, 172 int compress_type, 173 struct page **compressed_pages) 174 { 175 struct extent_buffer *leaf; 176 struct page *page = NULL; 177 char *kaddr; 178 unsigned long ptr; 179 struct btrfs_file_extent_item *ei; 180 int ret; 181 size_t cur_size = size; 182 unsigned long offset; 183 184 if (compressed_size && compressed_pages) 185 cur_size = compressed_size; 186 187 inode_add_bytes(inode, size); 188 189 if (!extent_inserted) { 190 struct btrfs_key key; 191 size_t datasize; 192 193 key.objectid = btrfs_ino(BTRFS_I(inode)); 194 key.offset = start; 195 key.type = BTRFS_EXTENT_DATA_KEY; 196 197 datasize = btrfs_file_extent_calc_inline_size(cur_size); 198 path->leave_spinning = 1; 199 ret = btrfs_insert_empty_item(trans, root, path, &key, 200 datasize); 201 if (ret) 202 goto fail; 203 } 204 leaf = path->nodes[0]; 205 ei = btrfs_item_ptr(leaf, path->slots[0], 206 struct btrfs_file_extent_item); 207 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 209 btrfs_set_file_extent_encryption(leaf, ei, 0); 210 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 211 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 212 ptr = btrfs_file_extent_inline_start(ei); 213 214 if (compress_type != BTRFS_COMPRESS_NONE) { 215 struct page *cpage; 216 int i = 0; 217 while (compressed_size > 0) { 218 cpage = compressed_pages[i]; 219 cur_size = min_t(unsigned long, compressed_size, 220 PAGE_SIZE); 221 222 kaddr = kmap_atomic(cpage); 223 write_extent_buffer(leaf, kaddr, ptr, cur_size); 224 kunmap_atomic(kaddr); 225 226 i++; 227 ptr += cur_size; 228 compressed_size -= cur_size; 229 } 230 btrfs_set_file_extent_compression(leaf, ei, 231 compress_type); 232 } else { 233 page = find_get_page(inode->i_mapping, 234 start >> PAGE_SHIFT); 235 btrfs_set_file_extent_compression(leaf, ei, 0); 236 kaddr = kmap_atomic(page); 237 offset = start & (PAGE_SIZE - 1); 238 write_extent_buffer(leaf, kaddr + offset, ptr, size); 239 kunmap_atomic(kaddr); 240 put_page(page); 241 } 242 btrfs_mark_buffer_dirty(leaf); 243 btrfs_release_path(path); 244 245 /* 246 * we're an inline extent, so nobody can 247 * extend the file past i_size without locking 248 * a page we already have locked. 249 * 250 * We must do any isize and inode updates 251 * before we unlock the pages. Otherwise we 252 * could end up racing with unlink. 253 */ 254 BTRFS_I(inode)->disk_i_size = inode->i_size; 255 ret = btrfs_update_inode(trans, root, inode); 256 257 fail: 258 return ret; 259 } 260 261 262 /* 263 * conditionally insert an inline extent into the file. This 264 * does the checks required to make sure the data is small enough 265 * to fit as an inline extent. 266 */ 267 static noinline int cow_file_range_inline(struct btrfs_root *root, 268 struct inode *inode, u64 start, 269 u64 end, size_t compressed_size, 270 int compress_type, 271 struct page **compressed_pages) 272 { 273 struct btrfs_fs_info *fs_info = root->fs_info; 274 struct btrfs_trans_handle *trans; 275 u64 isize = i_size_read(inode); 276 u64 actual_end = min(end + 1, isize); 277 u64 inline_len = actual_end - start; 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 279 u64 data_len = inline_len; 280 int ret; 281 struct btrfs_path *path; 282 int extent_inserted = 0; 283 u32 extent_item_size; 284 285 if (compressed_size) 286 data_len = compressed_size; 287 288 if (start > 0 || 289 actual_end > fs_info->sectorsize || 290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 291 (!compressed_size && 292 (actual_end & (fs_info->sectorsize - 1)) == 0) || 293 end + 1 < isize || 294 data_len > fs_info->max_inline) { 295 return 1; 296 } 297 298 path = btrfs_alloc_path(); 299 if (!path) 300 return -ENOMEM; 301 302 trans = btrfs_join_transaction(root); 303 if (IS_ERR(trans)) { 304 btrfs_free_path(path); 305 return PTR_ERR(trans); 306 } 307 trans->block_rsv = &fs_info->delalloc_block_rsv; 308 309 if (compressed_size && compressed_pages) 310 extent_item_size = btrfs_file_extent_calc_inline_size( 311 compressed_size); 312 else 313 extent_item_size = btrfs_file_extent_calc_inline_size( 314 inline_len); 315 316 ret = __btrfs_drop_extents(trans, root, inode, path, 317 start, aligned_end, NULL, 318 1, 1, extent_item_size, &extent_inserted); 319 if (ret) { 320 btrfs_abort_transaction(trans, ret); 321 goto out; 322 } 323 324 if (isize > actual_end) 325 inline_len = min_t(u64, isize, actual_end); 326 ret = insert_inline_extent(trans, path, extent_inserted, 327 root, inode, start, 328 inline_len, compressed_size, 329 compress_type, compressed_pages); 330 if (ret && ret != -ENOSPC) { 331 btrfs_abort_transaction(trans, ret); 332 goto out; 333 } else if (ret == -ENOSPC) { 334 ret = 1; 335 goto out; 336 } 337 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 339 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start); 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 341 out: 342 /* 343 * Don't forget to free the reserved space, as for inlined extent 344 * it won't count as data extent, free them directly here. 345 * And at reserve time, it's always aligned to page size, so 346 * just free one page here. 347 */ 348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 349 btrfs_free_path(path); 350 btrfs_end_transaction(trans); 351 return ret; 352 } 353 354 struct async_extent { 355 u64 start; 356 u64 ram_size; 357 u64 compressed_size; 358 struct page **pages; 359 unsigned long nr_pages; 360 int compress_type; 361 struct list_head list; 362 }; 363 364 struct async_cow { 365 struct inode *inode; 366 struct btrfs_root *root; 367 struct page *locked_page; 368 u64 start; 369 u64 end; 370 struct list_head extents; 371 struct btrfs_work work; 372 }; 373 374 static noinline int add_async_extent(struct async_cow *cow, 375 u64 start, u64 ram_size, 376 u64 compressed_size, 377 struct page **pages, 378 unsigned long nr_pages, 379 int compress_type) 380 { 381 struct async_extent *async_extent; 382 383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 384 BUG_ON(!async_extent); /* -ENOMEM */ 385 async_extent->start = start; 386 async_extent->ram_size = ram_size; 387 async_extent->compressed_size = compressed_size; 388 async_extent->pages = pages; 389 async_extent->nr_pages = nr_pages; 390 async_extent->compress_type = compress_type; 391 list_add_tail(&async_extent->list, &cow->extents); 392 return 0; 393 } 394 395 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 396 { 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 398 399 /* force compress */ 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 401 return 1; 402 /* defrag ioctl */ 403 if (BTRFS_I(inode)->defrag_compress) 404 return 1; 405 /* bad compression ratios */ 406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 407 return 0; 408 if (btrfs_test_opt(fs_info, COMPRESS) || 409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 410 BTRFS_I(inode)->prop_compress) 411 return btrfs_compress_heuristic(inode, start, end); 412 return 0; 413 } 414 415 static inline void inode_should_defrag(struct btrfs_inode *inode, 416 u64 start, u64 end, u64 num_bytes, u64 small_write) 417 { 418 /* If this is a small write inside eof, kick off a defrag */ 419 if (num_bytes < small_write && 420 (start > 0 || end + 1 < inode->disk_i_size)) 421 btrfs_add_inode_defrag(NULL, inode); 422 } 423 424 /* 425 * we create compressed extents in two phases. The first 426 * phase compresses a range of pages that have already been 427 * locked (both pages and state bits are locked). 428 * 429 * This is done inside an ordered work queue, and the compression 430 * is spread across many cpus. The actual IO submission is step 431 * two, and the ordered work queue takes care of making sure that 432 * happens in the same order things were put onto the queue by 433 * writepages and friends. 434 * 435 * If this code finds it can't get good compression, it puts an 436 * entry onto the work queue to write the uncompressed bytes. This 437 * makes sure that both compressed inodes and uncompressed inodes 438 * are written in the same order that the flusher thread sent them 439 * down. 440 */ 441 static noinline void compress_file_range(struct inode *inode, 442 struct page *locked_page, 443 u64 start, u64 end, 444 struct async_cow *async_cow, 445 int *num_added) 446 { 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 448 struct btrfs_root *root = BTRFS_I(inode)->root; 449 u64 num_bytes; 450 u64 blocksize = fs_info->sectorsize; 451 u64 actual_end; 452 u64 isize = i_size_read(inode); 453 int ret = 0; 454 struct page **pages = NULL; 455 unsigned long nr_pages; 456 unsigned long total_compressed = 0; 457 unsigned long total_in = 0; 458 int i; 459 int will_compress; 460 int compress_type = fs_info->compress_type; 461 int redirty = 0; 462 463 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 464 SZ_16K); 465 466 actual_end = min_t(u64, isize, end + 1); 467 again: 468 will_compress = 0; 469 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 470 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 471 nr_pages = min_t(unsigned long, nr_pages, 472 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 473 474 /* 475 * we don't want to send crud past the end of i_size through 476 * compression, that's just a waste of CPU time. So, if the 477 * end of the file is before the start of our current 478 * requested range of bytes, we bail out to the uncompressed 479 * cleanup code that can deal with all of this. 480 * 481 * It isn't really the fastest way to fix things, but this is a 482 * very uncommon corner. 483 */ 484 if (actual_end <= start) 485 goto cleanup_and_bail_uncompressed; 486 487 total_compressed = actual_end - start; 488 489 /* 490 * skip compression for a small file range(<=blocksize) that 491 * isn't an inline extent, since it doesn't save disk space at all. 492 */ 493 if (total_compressed <= blocksize && 494 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 495 goto cleanup_and_bail_uncompressed; 496 497 total_compressed = min_t(unsigned long, total_compressed, 498 BTRFS_MAX_UNCOMPRESSED); 499 num_bytes = ALIGN(end - start + 1, blocksize); 500 num_bytes = max(blocksize, num_bytes); 501 total_in = 0; 502 ret = 0; 503 504 /* 505 * we do compression for mount -o compress and when the 506 * inode has not been flagged as nocompress. This flag can 507 * change at any time if we discover bad compression ratios. 508 */ 509 if (inode_need_compress(inode, start, end)) { 510 WARN_ON(pages); 511 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 512 if (!pages) { 513 /* just bail out to the uncompressed code */ 514 goto cont; 515 } 516 517 if (BTRFS_I(inode)->defrag_compress) 518 compress_type = BTRFS_I(inode)->defrag_compress; 519 else if (BTRFS_I(inode)->prop_compress) 520 compress_type = BTRFS_I(inode)->prop_compress; 521 522 /* 523 * we need to call clear_page_dirty_for_io on each 524 * page in the range. Otherwise applications with the file 525 * mmap'd can wander in and change the page contents while 526 * we are compressing them. 527 * 528 * If the compression fails for any reason, we set the pages 529 * dirty again later on. 530 */ 531 extent_range_clear_dirty_for_io(inode, start, end); 532 redirty = 1; 533 ret = btrfs_compress_pages(compress_type, 534 inode->i_mapping, start, 535 pages, 536 &nr_pages, 537 &total_in, 538 &total_compressed); 539 540 if (!ret) { 541 unsigned long offset = total_compressed & 542 (PAGE_SIZE - 1); 543 struct page *page = pages[nr_pages - 1]; 544 char *kaddr; 545 546 /* zero the tail end of the last page, we might be 547 * sending it down to disk 548 */ 549 if (offset) { 550 kaddr = kmap_atomic(page); 551 memset(kaddr + offset, 0, 552 PAGE_SIZE - offset); 553 kunmap_atomic(kaddr); 554 } 555 will_compress = 1; 556 } 557 } 558 cont: 559 if (start == 0) { 560 /* lets try to make an inline extent */ 561 if (ret || total_in < (actual_end - start)) { 562 /* we didn't compress the entire range, try 563 * to make an uncompressed inline extent. 564 */ 565 ret = cow_file_range_inline(root, inode, start, end, 566 0, BTRFS_COMPRESS_NONE, NULL); 567 } else { 568 /* try making a compressed inline extent */ 569 ret = cow_file_range_inline(root, inode, start, end, 570 total_compressed, 571 compress_type, pages); 572 } 573 if (ret <= 0) { 574 unsigned long clear_flags = EXTENT_DELALLOC | 575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG; 576 unsigned long page_error_op; 577 578 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 580 581 /* 582 * inline extent creation worked or returned error, 583 * we don't need to create any more async work items. 584 * Unlock and free up our temp pages. 585 */ 586 extent_clear_unlock_delalloc(inode, start, end, end, 587 NULL, clear_flags, 588 PAGE_UNLOCK | 589 PAGE_CLEAR_DIRTY | 590 PAGE_SET_WRITEBACK | 591 page_error_op | 592 PAGE_END_WRITEBACK); 593 if (ret == 0) 594 btrfs_free_reserved_data_space_noquota(inode, 595 start, 596 end - start + 1); 597 goto free_pages_out; 598 } 599 } 600 601 if (will_compress) { 602 /* 603 * we aren't doing an inline extent round the compressed size 604 * up to a block size boundary so the allocator does sane 605 * things 606 */ 607 total_compressed = ALIGN(total_compressed, blocksize); 608 609 /* 610 * one last check to make sure the compression is really a 611 * win, compare the page count read with the blocks on disk, 612 * compression must free at least one sector size 613 */ 614 total_in = ALIGN(total_in, PAGE_SIZE); 615 if (total_compressed + blocksize <= total_in) { 616 num_bytes = total_in; 617 *num_added += 1; 618 619 /* 620 * The async work queues will take care of doing actual 621 * allocation on disk for these compressed pages, and 622 * will submit them to the elevator. 623 */ 624 add_async_extent(async_cow, start, num_bytes, 625 total_compressed, pages, nr_pages, 626 compress_type); 627 628 if (start + num_bytes < end) { 629 start += num_bytes; 630 pages = NULL; 631 cond_resched(); 632 goto again; 633 } 634 return; 635 } 636 } 637 if (pages) { 638 /* 639 * the compression code ran but failed to make things smaller, 640 * free any pages it allocated and our page pointer array 641 */ 642 for (i = 0; i < nr_pages; i++) { 643 WARN_ON(pages[i]->mapping); 644 put_page(pages[i]); 645 } 646 kfree(pages); 647 pages = NULL; 648 total_compressed = 0; 649 nr_pages = 0; 650 651 /* flag the file so we don't compress in the future */ 652 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 653 !(BTRFS_I(inode)->prop_compress)) { 654 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 655 } 656 } 657 cleanup_and_bail_uncompressed: 658 /* 659 * No compression, but we still need to write the pages in the file 660 * we've been given so far. redirty the locked page if it corresponds 661 * to our extent and set things up for the async work queue to run 662 * cow_file_range to do the normal delalloc dance. 663 */ 664 if (page_offset(locked_page) >= start && 665 page_offset(locked_page) <= end) 666 __set_page_dirty_nobuffers(locked_page); 667 /* unlocked later on in the async handlers */ 668 669 if (redirty) 670 extent_range_redirty_for_io(inode, start, end); 671 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 672 BTRFS_COMPRESS_NONE); 673 *num_added += 1; 674 675 return; 676 677 free_pages_out: 678 for (i = 0; i < nr_pages; i++) { 679 WARN_ON(pages[i]->mapping); 680 put_page(pages[i]); 681 } 682 kfree(pages); 683 } 684 685 static void free_async_extent_pages(struct async_extent *async_extent) 686 { 687 int i; 688 689 if (!async_extent->pages) 690 return; 691 692 for (i = 0; i < async_extent->nr_pages; i++) { 693 WARN_ON(async_extent->pages[i]->mapping); 694 put_page(async_extent->pages[i]); 695 } 696 kfree(async_extent->pages); 697 async_extent->nr_pages = 0; 698 async_extent->pages = NULL; 699 } 700 701 /* 702 * phase two of compressed writeback. This is the ordered portion 703 * of the code, which only gets called in the order the work was 704 * queued. We walk all the async extents created by compress_file_range 705 * and send them down to the disk. 706 */ 707 static noinline void submit_compressed_extents(struct inode *inode, 708 struct async_cow *async_cow) 709 { 710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 711 struct async_extent *async_extent; 712 u64 alloc_hint = 0; 713 struct btrfs_key ins; 714 struct extent_map *em; 715 struct btrfs_root *root = BTRFS_I(inode)->root; 716 struct extent_io_tree *io_tree; 717 int ret = 0; 718 719 again: 720 while (!list_empty(&async_cow->extents)) { 721 async_extent = list_entry(async_cow->extents.next, 722 struct async_extent, list); 723 list_del(&async_extent->list); 724 725 io_tree = &BTRFS_I(inode)->io_tree; 726 727 retry: 728 /* did the compression code fall back to uncompressed IO? */ 729 if (!async_extent->pages) { 730 int page_started = 0; 731 unsigned long nr_written = 0; 732 733 lock_extent(io_tree, async_extent->start, 734 async_extent->start + 735 async_extent->ram_size - 1); 736 737 /* allocate blocks */ 738 ret = cow_file_range(inode, async_cow->locked_page, 739 async_extent->start, 740 async_extent->start + 741 async_extent->ram_size - 1, 742 async_extent->start + 743 async_extent->ram_size - 1, 744 &page_started, &nr_written, 0, 745 NULL); 746 747 /* JDM XXX */ 748 749 /* 750 * if page_started, cow_file_range inserted an 751 * inline extent and took care of all the unlocking 752 * and IO for us. Otherwise, we need to submit 753 * all those pages down to the drive. 754 */ 755 if (!page_started && !ret) 756 extent_write_locked_range(io_tree, 757 inode, async_extent->start, 758 async_extent->start + 759 async_extent->ram_size - 1, 760 btrfs_get_extent, 761 WB_SYNC_ALL); 762 else if (ret) 763 unlock_page(async_cow->locked_page); 764 kfree(async_extent); 765 cond_resched(); 766 continue; 767 } 768 769 lock_extent(io_tree, async_extent->start, 770 async_extent->start + async_extent->ram_size - 1); 771 772 ret = btrfs_reserve_extent(root, async_extent->ram_size, 773 async_extent->compressed_size, 774 async_extent->compressed_size, 775 0, alloc_hint, &ins, 1, 1); 776 if (ret) { 777 free_async_extent_pages(async_extent); 778 779 if (ret == -ENOSPC) { 780 unlock_extent(io_tree, async_extent->start, 781 async_extent->start + 782 async_extent->ram_size - 1); 783 784 /* 785 * we need to redirty the pages if we decide to 786 * fallback to uncompressed IO, otherwise we 787 * will not submit these pages down to lower 788 * layers. 789 */ 790 extent_range_redirty_for_io(inode, 791 async_extent->start, 792 async_extent->start + 793 async_extent->ram_size - 1); 794 795 goto retry; 796 } 797 goto out_free; 798 } 799 /* 800 * here we're doing allocation and writeback of the 801 * compressed pages 802 */ 803 em = create_io_em(inode, async_extent->start, 804 async_extent->ram_size, /* len */ 805 async_extent->start, /* orig_start */ 806 ins.objectid, /* block_start */ 807 ins.offset, /* block_len */ 808 ins.offset, /* orig_block_len */ 809 async_extent->ram_size, /* ram_bytes */ 810 async_extent->compress_type, 811 BTRFS_ORDERED_COMPRESSED); 812 if (IS_ERR(em)) 813 /* ret value is not necessary due to void function */ 814 goto out_free_reserve; 815 free_extent_map(em); 816 817 ret = btrfs_add_ordered_extent_compress(inode, 818 async_extent->start, 819 ins.objectid, 820 async_extent->ram_size, 821 ins.offset, 822 BTRFS_ORDERED_COMPRESSED, 823 async_extent->compress_type); 824 if (ret) { 825 btrfs_drop_extent_cache(BTRFS_I(inode), 826 async_extent->start, 827 async_extent->start + 828 async_extent->ram_size - 1, 0); 829 goto out_free_reserve; 830 } 831 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 832 833 /* 834 * clear dirty, set writeback and unlock the pages. 835 */ 836 extent_clear_unlock_delalloc(inode, async_extent->start, 837 async_extent->start + 838 async_extent->ram_size - 1, 839 async_extent->start + 840 async_extent->ram_size - 1, 841 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 842 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 843 PAGE_SET_WRITEBACK); 844 if (btrfs_submit_compressed_write(inode, 845 async_extent->start, 846 async_extent->ram_size, 847 ins.objectid, 848 ins.offset, async_extent->pages, 849 async_extent->nr_pages)) { 850 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 851 struct page *p = async_extent->pages[0]; 852 const u64 start = async_extent->start; 853 const u64 end = start + async_extent->ram_size - 1; 854 855 p->mapping = inode->i_mapping; 856 tree->ops->writepage_end_io_hook(p, start, end, 857 NULL, 0); 858 p->mapping = NULL; 859 extent_clear_unlock_delalloc(inode, start, end, end, 860 NULL, 0, 861 PAGE_END_WRITEBACK | 862 PAGE_SET_ERROR); 863 free_async_extent_pages(async_extent); 864 } 865 alloc_hint = ins.objectid + ins.offset; 866 kfree(async_extent); 867 cond_resched(); 868 } 869 return; 870 out_free_reserve: 871 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 872 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 873 out_free: 874 extent_clear_unlock_delalloc(inode, async_extent->start, 875 async_extent->start + 876 async_extent->ram_size - 1, 877 async_extent->start + 878 async_extent->ram_size - 1, 879 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 880 EXTENT_DELALLOC_NEW | 881 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 883 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 884 PAGE_SET_ERROR); 885 free_async_extent_pages(async_extent); 886 kfree(async_extent); 887 goto again; 888 } 889 890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 891 u64 num_bytes) 892 { 893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 894 struct extent_map *em; 895 u64 alloc_hint = 0; 896 897 read_lock(&em_tree->lock); 898 em = search_extent_mapping(em_tree, start, num_bytes); 899 if (em) { 900 /* 901 * if block start isn't an actual block number then find the 902 * first block in this inode and use that as a hint. If that 903 * block is also bogus then just don't worry about it. 904 */ 905 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 906 free_extent_map(em); 907 em = search_extent_mapping(em_tree, 0, 0); 908 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 909 alloc_hint = em->block_start; 910 if (em) 911 free_extent_map(em); 912 } else { 913 alloc_hint = em->block_start; 914 free_extent_map(em); 915 } 916 } 917 read_unlock(&em_tree->lock); 918 919 return alloc_hint; 920 } 921 922 /* 923 * when extent_io.c finds a delayed allocation range in the file, 924 * the call backs end up in this code. The basic idea is to 925 * allocate extents on disk for the range, and create ordered data structs 926 * in ram to track those extents. 927 * 928 * locked_page is the page that writepage had locked already. We use 929 * it to make sure we don't do extra locks or unlocks. 930 * 931 * *page_started is set to one if we unlock locked_page and do everything 932 * required to start IO on it. It may be clean and already done with 933 * IO when we return. 934 */ 935 static noinline int cow_file_range(struct inode *inode, 936 struct page *locked_page, 937 u64 start, u64 end, u64 delalloc_end, 938 int *page_started, unsigned long *nr_written, 939 int unlock, struct btrfs_dedupe_hash *hash) 940 { 941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 942 struct btrfs_root *root = BTRFS_I(inode)->root; 943 u64 alloc_hint = 0; 944 u64 num_bytes; 945 unsigned long ram_size; 946 u64 disk_num_bytes; 947 u64 cur_alloc_size = 0; 948 u64 blocksize = fs_info->sectorsize; 949 struct btrfs_key ins; 950 struct extent_map *em; 951 unsigned clear_bits; 952 unsigned long page_ops; 953 bool extent_reserved = false; 954 int ret = 0; 955 956 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 957 WARN_ON_ONCE(1); 958 ret = -EINVAL; 959 goto out_unlock; 960 } 961 962 num_bytes = ALIGN(end - start + 1, blocksize); 963 num_bytes = max(blocksize, num_bytes); 964 disk_num_bytes = num_bytes; 965 966 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 967 968 if (start == 0) { 969 /* lets try to make an inline extent */ 970 ret = cow_file_range_inline(root, inode, start, end, 0, 971 BTRFS_COMPRESS_NONE, NULL); 972 if (ret == 0) { 973 extent_clear_unlock_delalloc(inode, start, end, 974 delalloc_end, NULL, 975 EXTENT_LOCKED | EXTENT_DELALLOC | 976 EXTENT_DELALLOC_NEW | 977 EXTENT_DEFRAG, PAGE_UNLOCK | 978 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 979 PAGE_END_WRITEBACK); 980 btrfs_free_reserved_data_space_noquota(inode, start, 981 end - start + 1); 982 *nr_written = *nr_written + 983 (end - start + PAGE_SIZE) / PAGE_SIZE; 984 *page_started = 1; 985 goto out; 986 } else if (ret < 0) { 987 goto out_unlock; 988 } 989 } 990 991 BUG_ON(disk_num_bytes > 992 btrfs_super_total_bytes(fs_info->super_copy)); 993 994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 995 btrfs_drop_extent_cache(BTRFS_I(inode), start, 996 start + num_bytes - 1, 0); 997 998 while (disk_num_bytes > 0) { 999 cur_alloc_size = disk_num_bytes; 1000 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1001 fs_info->sectorsize, 0, alloc_hint, 1002 &ins, 1, 1); 1003 if (ret < 0) 1004 goto out_unlock; 1005 cur_alloc_size = ins.offset; 1006 extent_reserved = true; 1007 1008 ram_size = ins.offset; 1009 em = create_io_em(inode, start, ins.offset, /* len */ 1010 start, /* orig_start */ 1011 ins.objectid, /* block_start */ 1012 ins.offset, /* block_len */ 1013 ins.offset, /* orig_block_len */ 1014 ram_size, /* ram_bytes */ 1015 BTRFS_COMPRESS_NONE, /* compress_type */ 1016 BTRFS_ORDERED_REGULAR /* type */); 1017 if (IS_ERR(em)) 1018 goto out_reserve; 1019 free_extent_map(em); 1020 1021 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1022 ram_size, cur_alloc_size, 0); 1023 if (ret) 1024 goto out_drop_extent_cache; 1025 1026 if (root->root_key.objectid == 1027 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1028 ret = btrfs_reloc_clone_csums(inode, start, 1029 cur_alloc_size); 1030 /* 1031 * Only drop cache here, and process as normal. 1032 * 1033 * We must not allow extent_clear_unlock_delalloc() 1034 * at out_unlock label to free meta of this ordered 1035 * extent, as its meta should be freed by 1036 * btrfs_finish_ordered_io(). 1037 * 1038 * So we must continue until @start is increased to 1039 * skip current ordered extent. 1040 */ 1041 if (ret) 1042 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1043 start + ram_size - 1, 0); 1044 } 1045 1046 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1047 1048 /* we're not doing compressed IO, don't unlock the first 1049 * page (which the caller expects to stay locked), don't 1050 * clear any dirty bits and don't set any writeback bits 1051 * 1052 * Do set the Private2 bit so we know this page was properly 1053 * setup for writepage 1054 */ 1055 page_ops = unlock ? PAGE_UNLOCK : 0; 1056 page_ops |= PAGE_SET_PRIVATE2; 1057 1058 extent_clear_unlock_delalloc(inode, start, 1059 start + ram_size - 1, 1060 delalloc_end, locked_page, 1061 EXTENT_LOCKED | EXTENT_DELALLOC, 1062 page_ops); 1063 if (disk_num_bytes < cur_alloc_size) 1064 disk_num_bytes = 0; 1065 else 1066 disk_num_bytes -= cur_alloc_size; 1067 num_bytes -= cur_alloc_size; 1068 alloc_hint = ins.objectid + ins.offset; 1069 start += cur_alloc_size; 1070 extent_reserved = false; 1071 1072 /* 1073 * btrfs_reloc_clone_csums() error, since start is increased 1074 * extent_clear_unlock_delalloc() at out_unlock label won't 1075 * free metadata of current ordered extent, we're OK to exit. 1076 */ 1077 if (ret) 1078 goto out_unlock; 1079 } 1080 out: 1081 return ret; 1082 1083 out_drop_extent_cache: 1084 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1085 out_reserve: 1086 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1087 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1088 out_unlock: 1089 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1090 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1091 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1092 PAGE_END_WRITEBACK; 1093 /* 1094 * If we reserved an extent for our delalloc range (or a subrange) and 1095 * failed to create the respective ordered extent, then it means that 1096 * when we reserved the extent we decremented the extent's size from 1097 * the data space_info's bytes_may_use counter and incremented the 1098 * space_info's bytes_reserved counter by the same amount. We must make 1099 * sure extent_clear_unlock_delalloc() does not try to decrement again 1100 * the data space_info's bytes_may_use counter, therefore we do not pass 1101 * it the flag EXTENT_CLEAR_DATA_RESV. 1102 */ 1103 if (extent_reserved) { 1104 extent_clear_unlock_delalloc(inode, start, 1105 start + cur_alloc_size, 1106 start + cur_alloc_size, 1107 locked_page, 1108 clear_bits, 1109 page_ops); 1110 start += cur_alloc_size; 1111 if (start >= end) 1112 goto out; 1113 } 1114 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1115 locked_page, 1116 clear_bits | EXTENT_CLEAR_DATA_RESV, 1117 page_ops); 1118 goto out; 1119 } 1120 1121 /* 1122 * work queue call back to started compression on a file and pages 1123 */ 1124 static noinline void async_cow_start(struct btrfs_work *work) 1125 { 1126 struct async_cow *async_cow; 1127 int num_added = 0; 1128 async_cow = container_of(work, struct async_cow, work); 1129 1130 compress_file_range(async_cow->inode, async_cow->locked_page, 1131 async_cow->start, async_cow->end, async_cow, 1132 &num_added); 1133 if (num_added == 0) { 1134 btrfs_add_delayed_iput(async_cow->inode); 1135 async_cow->inode = NULL; 1136 } 1137 } 1138 1139 /* 1140 * work queue call back to submit previously compressed pages 1141 */ 1142 static noinline void async_cow_submit(struct btrfs_work *work) 1143 { 1144 struct btrfs_fs_info *fs_info; 1145 struct async_cow *async_cow; 1146 struct btrfs_root *root; 1147 unsigned long nr_pages; 1148 1149 async_cow = container_of(work, struct async_cow, work); 1150 1151 root = async_cow->root; 1152 fs_info = root->fs_info; 1153 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1154 PAGE_SHIFT; 1155 1156 /* 1157 * atomic_sub_return implies a barrier for waitqueue_active 1158 */ 1159 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1160 5 * SZ_1M && 1161 waitqueue_active(&fs_info->async_submit_wait)) 1162 wake_up(&fs_info->async_submit_wait); 1163 1164 if (async_cow->inode) 1165 submit_compressed_extents(async_cow->inode, async_cow); 1166 } 1167 1168 static noinline void async_cow_free(struct btrfs_work *work) 1169 { 1170 struct async_cow *async_cow; 1171 async_cow = container_of(work, struct async_cow, work); 1172 if (async_cow->inode) 1173 btrfs_add_delayed_iput(async_cow->inode); 1174 kfree(async_cow); 1175 } 1176 1177 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1178 u64 start, u64 end, int *page_started, 1179 unsigned long *nr_written) 1180 { 1181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1182 struct async_cow *async_cow; 1183 struct btrfs_root *root = BTRFS_I(inode)->root; 1184 unsigned long nr_pages; 1185 u64 cur_end; 1186 1187 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1188 1, 0, NULL, GFP_NOFS); 1189 while (start < end) { 1190 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1191 BUG_ON(!async_cow); /* -ENOMEM */ 1192 async_cow->inode = igrab(inode); 1193 async_cow->root = root; 1194 async_cow->locked_page = locked_page; 1195 async_cow->start = start; 1196 1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1199 cur_end = end; 1200 else 1201 cur_end = min(end, start + SZ_512K - 1); 1202 1203 async_cow->end = cur_end; 1204 INIT_LIST_HEAD(&async_cow->extents); 1205 1206 btrfs_init_work(&async_cow->work, 1207 btrfs_delalloc_helper, 1208 async_cow_start, async_cow_submit, 1209 async_cow_free); 1210 1211 nr_pages = (cur_end - start + PAGE_SIZE) >> 1212 PAGE_SHIFT; 1213 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1214 1215 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1216 1217 while (atomic_read(&fs_info->async_submit_draining) && 1218 atomic_read(&fs_info->async_delalloc_pages)) { 1219 wait_event(fs_info->async_submit_wait, 1220 (atomic_read(&fs_info->async_delalloc_pages) == 1221 0)); 1222 } 1223 1224 *nr_written += nr_pages; 1225 start = cur_end + 1; 1226 } 1227 *page_started = 1; 1228 return 0; 1229 } 1230 1231 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1232 u64 bytenr, u64 num_bytes) 1233 { 1234 int ret; 1235 struct btrfs_ordered_sum *sums; 1236 LIST_HEAD(list); 1237 1238 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1239 bytenr + num_bytes - 1, &list, 0); 1240 if (ret == 0 && list_empty(&list)) 1241 return 0; 1242 1243 while (!list_empty(&list)) { 1244 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1245 list_del(&sums->list); 1246 kfree(sums); 1247 } 1248 return 1; 1249 } 1250 1251 /* 1252 * when nowcow writeback call back. This checks for snapshots or COW copies 1253 * of the extents that exist in the file, and COWs the file as required. 1254 * 1255 * If no cow copies or snapshots exist, we write directly to the existing 1256 * blocks on disk 1257 */ 1258 static noinline int run_delalloc_nocow(struct inode *inode, 1259 struct page *locked_page, 1260 u64 start, u64 end, int *page_started, int force, 1261 unsigned long *nr_written) 1262 { 1263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1264 struct btrfs_root *root = BTRFS_I(inode)->root; 1265 struct extent_buffer *leaf; 1266 struct btrfs_path *path; 1267 struct btrfs_file_extent_item *fi; 1268 struct btrfs_key found_key; 1269 struct extent_map *em; 1270 u64 cow_start; 1271 u64 cur_offset; 1272 u64 extent_end; 1273 u64 extent_offset; 1274 u64 disk_bytenr; 1275 u64 num_bytes; 1276 u64 disk_num_bytes; 1277 u64 ram_bytes; 1278 int extent_type; 1279 int ret, err; 1280 int type; 1281 int nocow; 1282 int check_prev = 1; 1283 bool nolock; 1284 u64 ino = btrfs_ino(BTRFS_I(inode)); 1285 1286 path = btrfs_alloc_path(); 1287 if (!path) { 1288 extent_clear_unlock_delalloc(inode, start, end, end, 1289 locked_page, 1290 EXTENT_LOCKED | EXTENT_DELALLOC | 1291 EXTENT_DO_ACCOUNTING | 1292 EXTENT_DEFRAG, PAGE_UNLOCK | 1293 PAGE_CLEAR_DIRTY | 1294 PAGE_SET_WRITEBACK | 1295 PAGE_END_WRITEBACK); 1296 return -ENOMEM; 1297 } 1298 1299 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1300 1301 cow_start = (u64)-1; 1302 cur_offset = start; 1303 while (1) { 1304 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1305 cur_offset, 0); 1306 if (ret < 0) 1307 goto error; 1308 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1309 leaf = path->nodes[0]; 1310 btrfs_item_key_to_cpu(leaf, &found_key, 1311 path->slots[0] - 1); 1312 if (found_key.objectid == ino && 1313 found_key.type == BTRFS_EXTENT_DATA_KEY) 1314 path->slots[0]--; 1315 } 1316 check_prev = 0; 1317 next_slot: 1318 leaf = path->nodes[0]; 1319 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1320 ret = btrfs_next_leaf(root, path); 1321 if (ret < 0) 1322 goto error; 1323 if (ret > 0) 1324 break; 1325 leaf = path->nodes[0]; 1326 } 1327 1328 nocow = 0; 1329 disk_bytenr = 0; 1330 num_bytes = 0; 1331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1332 1333 if (found_key.objectid > ino) 1334 break; 1335 if (WARN_ON_ONCE(found_key.objectid < ino) || 1336 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1337 path->slots[0]++; 1338 goto next_slot; 1339 } 1340 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1341 found_key.offset > end) 1342 break; 1343 1344 if (found_key.offset > cur_offset) { 1345 extent_end = found_key.offset; 1346 extent_type = 0; 1347 goto out_check; 1348 } 1349 1350 fi = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_file_extent_item); 1352 extent_type = btrfs_file_extent_type(leaf, fi); 1353 1354 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1355 if (extent_type == BTRFS_FILE_EXTENT_REG || 1356 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1357 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1358 extent_offset = btrfs_file_extent_offset(leaf, fi); 1359 extent_end = found_key.offset + 1360 btrfs_file_extent_num_bytes(leaf, fi); 1361 disk_num_bytes = 1362 btrfs_file_extent_disk_num_bytes(leaf, fi); 1363 if (extent_end <= start) { 1364 path->slots[0]++; 1365 goto next_slot; 1366 } 1367 if (disk_bytenr == 0) 1368 goto out_check; 1369 if (btrfs_file_extent_compression(leaf, fi) || 1370 btrfs_file_extent_encryption(leaf, fi) || 1371 btrfs_file_extent_other_encoding(leaf, fi)) 1372 goto out_check; 1373 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1374 goto out_check; 1375 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1376 goto out_check; 1377 if (btrfs_cross_ref_exist(root, ino, 1378 found_key.offset - 1379 extent_offset, disk_bytenr)) 1380 goto out_check; 1381 disk_bytenr += extent_offset; 1382 disk_bytenr += cur_offset - found_key.offset; 1383 num_bytes = min(end + 1, extent_end) - cur_offset; 1384 /* 1385 * if there are pending snapshots for this root, 1386 * we fall into common COW way. 1387 */ 1388 if (!nolock) { 1389 err = btrfs_start_write_no_snapshotting(root); 1390 if (!err) 1391 goto out_check; 1392 } 1393 /* 1394 * force cow if csum exists in the range. 1395 * this ensure that csum for a given extent are 1396 * either valid or do not exist. 1397 */ 1398 if (csum_exist_in_range(fs_info, disk_bytenr, 1399 num_bytes)) { 1400 if (!nolock) 1401 btrfs_end_write_no_snapshotting(root); 1402 goto out_check; 1403 } 1404 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1405 if (!nolock) 1406 btrfs_end_write_no_snapshotting(root); 1407 goto out_check; 1408 } 1409 nocow = 1; 1410 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1411 extent_end = found_key.offset + 1412 btrfs_file_extent_inline_len(leaf, 1413 path->slots[0], fi); 1414 extent_end = ALIGN(extent_end, 1415 fs_info->sectorsize); 1416 } else { 1417 BUG_ON(1); 1418 } 1419 out_check: 1420 if (extent_end <= start) { 1421 path->slots[0]++; 1422 if (!nolock && nocow) 1423 btrfs_end_write_no_snapshotting(root); 1424 if (nocow) 1425 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1426 goto next_slot; 1427 } 1428 if (!nocow) { 1429 if (cow_start == (u64)-1) 1430 cow_start = cur_offset; 1431 cur_offset = extent_end; 1432 if (cur_offset > end) 1433 break; 1434 path->slots[0]++; 1435 goto next_slot; 1436 } 1437 1438 btrfs_release_path(path); 1439 if (cow_start != (u64)-1) { 1440 ret = cow_file_range(inode, locked_page, 1441 cow_start, found_key.offset - 1, 1442 end, page_started, nr_written, 1, 1443 NULL); 1444 if (ret) { 1445 if (!nolock && nocow) 1446 btrfs_end_write_no_snapshotting(root); 1447 if (nocow) 1448 btrfs_dec_nocow_writers(fs_info, 1449 disk_bytenr); 1450 goto error; 1451 } 1452 cow_start = (u64)-1; 1453 } 1454 1455 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1456 u64 orig_start = found_key.offset - extent_offset; 1457 1458 em = create_io_em(inode, cur_offset, num_bytes, 1459 orig_start, 1460 disk_bytenr, /* block_start */ 1461 num_bytes, /* block_len */ 1462 disk_num_bytes, /* orig_block_len */ 1463 ram_bytes, BTRFS_COMPRESS_NONE, 1464 BTRFS_ORDERED_PREALLOC); 1465 if (IS_ERR(em)) { 1466 if (!nolock && nocow) 1467 btrfs_end_write_no_snapshotting(root); 1468 if (nocow) 1469 btrfs_dec_nocow_writers(fs_info, 1470 disk_bytenr); 1471 ret = PTR_ERR(em); 1472 goto error; 1473 } 1474 free_extent_map(em); 1475 } 1476 1477 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1478 type = BTRFS_ORDERED_PREALLOC; 1479 } else { 1480 type = BTRFS_ORDERED_NOCOW; 1481 } 1482 1483 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1484 num_bytes, num_bytes, type); 1485 if (nocow) 1486 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1487 BUG_ON(ret); /* -ENOMEM */ 1488 1489 if (root->root_key.objectid == 1490 BTRFS_DATA_RELOC_TREE_OBJECTID) 1491 /* 1492 * Error handled later, as we must prevent 1493 * extent_clear_unlock_delalloc() in error handler 1494 * from freeing metadata of created ordered extent. 1495 */ 1496 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1497 num_bytes); 1498 1499 extent_clear_unlock_delalloc(inode, cur_offset, 1500 cur_offset + num_bytes - 1, end, 1501 locked_page, EXTENT_LOCKED | 1502 EXTENT_DELALLOC | 1503 EXTENT_CLEAR_DATA_RESV, 1504 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1505 1506 if (!nolock && nocow) 1507 btrfs_end_write_no_snapshotting(root); 1508 cur_offset = extent_end; 1509 1510 /* 1511 * btrfs_reloc_clone_csums() error, now we're OK to call error 1512 * handler, as metadata for created ordered extent will only 1513 * be freed by btrfs_finish_ordered_io(). 1514 */ 1515 if (ret) 1516 goto error; 1517 if (cur_offset > end) 1518 break; 1519 } 1520 btrfs_release_path(path); 1521 1522 if (cur_offset <= end && cow_start == (u64)-1) { 1523 cow_start = cur_offset; 1524 cur_offset = end; 1525 } 1526 1527 if (cow_start != (u64)-1) { 1528 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1529 page_started, nr_written, 1, NULL); 1530 if (ret) 1531 goto error; 1532 } 1533 1534 error: 1535 if (ret && cur_offset < end) 1536 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1537 locked_page, EXTENT_LOCKED | 1538 EXTENT_DELALLOC | EXTENT_DEFRAG | 1539 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1540 PAGE_CLEAR_DIRTY | 1541 PAGE_SET_WRITEBACK | 1542 PAGE_END_WRITEBACK); 1543 btrfs_free_path(path); 1544 return ret; 1545 } 1546 1547 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1548 { 1549 1550 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1551 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1552 return 0; 1553 1554 /* 1555 * @defrag_bytes is a hint value, no spinlock held here, 1556 * if is not zero, it means the file is defragging. 1557 * Force cow if given extent needs to be defragged. 1558 */ 1559 if (BTRFS_I(inode)->defrag_bytes && 1560 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1561 EXTENT_DEFRAG, 0, NULL)) 1562 return 1; 1563 1564 return 0; 1565 } 1566 1567 /* 1568 * extent_io.c call back to do delayed allocation processing 1569 */ 1570 static int run_delalloc_range(void *private_data, struct page *locked_page, 1571 u64 start, u64 end, int *page_started, 1572 unsigned long *nr_written) 1573 { 1574 struct inode *inode = private_data; 1575 int ret; 1576 int force_cow = need_force_cow(inode, start, end); 1577 1578 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1579 ret = run_delalloc_nocow(inode, locked_page, start, end, 1580 page_started, 1, nr_written); 1581 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1582 ret = run_delalloc_nocow(inode, locked_page, start, end, 1583 page_started, 0, nr_written); 1584 } else if (!inode_need_compress(inode, start, end)) { 1585 ret = cow_file_range(inode, locked_page, start, end, end, 1586 page_started, nr_written, 1, NULL); 1587 } else { 1588 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1589 &BTRFS_I(inode)->runtime_flags); 1590 ret = cow_file_range_async(inode, locked_page, start, end, 1591 page_started, nr_written); 1592 } 1593 if (ret) 1594 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1595 return ret; 1596 } 1597 1598 static void btrfs_split_extent_hook(void *private_data, 1599 struct extent_state *orig, u64 split) 1600 { 1601 struct inode *inode = private_data; 1602 u64 size; 1603 1604 /* not delalloc, ignore it */ 1605 if (!(orig->state & EXTENT_DELALLOC)) 1606 return; 1607 1608 size = orig->end - orig->start + 1; 1609 if (size > BTRFS_MAX_EXTENT_SIZE) { 1610 u32 num_extents; 1611 u64 new_size; 1612 1613 /* 1614 * See the explanation in btrfs_merge_extent_hook, the same 1615 * applies here, just in reverse. 1616 */ 1617 new_size = orig->end - split + 1; 1618 num_extents = count_max_extents(new_size); 1619 new_size = split - orig->start; 1620 num_extents += count_max_extents(new_size); 1621 if (count_max_extents(size) >= num_extents) 1622 return; 1623 } 1624 1625 spin_lock(&BTRFS_I(inode)->lock); 1626 BTRFS_I(inode)->outstanding_extents++; 1627 spin_unlock(&BTRFS_I(inode)->lock); 1628 } 1629 1630 /* 1631 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1632 * extents so we can keep track of new extents that are just merged onto old 1633 * extents, such as when we are doing sequential writes, so we can properly 1634 * account for the metadata space we'll need. 1635 */ 1636 static void btrfs_merge_extent_hook(void *private_data, 1637 struct extent_state *new, 1638 struct extent_state *other) 1639 { 1640 struct inode *inode = private_data; 1641 u64 new_size, old_size; 1642 u32 num_extents; 1643 1644 /* not delalloc, ignore it */ 1645 if (!(other->state & EXTENT_DELALLOC)) 1646 return; 1647 1648 if (new->start > other->start) 1649 new_size = new->end - other->start + 1; 1650 else 1651 new_size = other->end - new->start + 1; 1652 1653 /* we're not bigger than the max, unreserve the space and go */ 1654 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1655 spin_lock(&BTRFS_I(inode)->lock); 1656 BTRFS_I(inode)->outstanding_extents--; 1657 spin_unlock(&BTRFS_I(inode)->lock); 1658 return; 1659 } 1660 1661 /* 1662 * We have to add up either side to figure out how many extents were 1663 * accounted for before we merged into one big extent. If the number of 1664 * extents we accounted for is <= the amount we need for the new range 1665 * then we can return, otherwise drop. Think of it like this 1666 * 1667 * [ 4k][MAX_SIZE] 1668 * 1669 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1670 * need 2 outstanding extents, on one side we have 1 and the other side 1671 * we have 1 so they are == and we can return. But in this case 1672 * 1673 * [MAX_SIZE+4k][MAX_SIZE+4k] 1674 * 1675 * Each range on their own accounts for 2 extents, but merged together 1676 * they are only 3 extents worth of accounting, so we need to drop in 1677 * this case. 1678 */ 1679 old_size = other->end - other->start + 1; 1680 num_extents = count_max_extents(old_size); 1681 old_size = new->end - new->start + 1; 1682 num_extents += count_max_extents(old_size); 1683 if (count_max_extents(new_size) >= num_extents) 1684 return; 1685 1686 spin_lock(&BTRFS_I(inode)->lock); 1687 BTRFS_I(inode)->outstanding_extents--; 1688 spin_unlock(&BTRFS_I(inode)->lock); 1689 } 1690 1691 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1692 struct inode *inode) 1693 { 1694 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1695 1696 spin_lock(&root->delalloc_lock); 1697 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1698 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1699 &root->delalloc_inodes); 1700 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1701 &BTRFS_I(inode)->runtime_flags); 1702 root->nr_delalloc_inodes++; 1703 if (root->nr_delalloc_inodes == 1) { 1704 spin_lock(&fs_info->delalloc_root_lock); 1705 BUG_ON(!list_empty(&root->delalloc_root)); 1706 list_add_tail(&root->delalloc_root, 1707 &fs_info->delalloc_roots); 1708 spin_unlock(&fs_info->delalloc_root_lock); 1709 } 1710 } 1711 spin_unlock(&root->delalloc_lock); 1712 } 1713 1714 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1715 struct btrfs_inode *inode) 1716 { 1717 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1718 1719 spin_lock(&root->delalloc_lock); 1720 if (!list_empty(&inode->delalloc_inodes)) { 1721 list_del_init(&inode->delalloc_inodes); 1722 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1723 &inode->runtime_flags); 1724 root->nr_delalloc_inodes--; 1725 if (!root->nr_delalloc_inodes) { 1726 spin_lock(&fs_info->delalloc_root_lock); 1727 BUG_ON(list_empty(&root->delalloc_root)); 1728 list_del_init(&root->delalloc_root); 1729 spin_unlock(&fs_info->delalloc_root_lock); 1730 } 1731 } 1732 spin_unlock(&root->delalloc_lock); 1733 } 1734 1735 /* 1736 * extent_io.c set_bit_hook, used to track delayed allocation 1737 * bytes in this file, and to maintain the list of inodes that 1738 * have pending delalloc work to be done. 1739 */ 1740 static void btrfs_set_bit_hook(void *private_data, 1741 struct extent_state *state, unsigned *bits) 1742 { 1743 struct inode *inode = private_data; 1744 1745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1746 1747 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1748 WARN_ON(1); 1749 /* 1750 * set_bit and clear bit hooks normally require _irqsave/restore 1751 * but in this case, we are only testing for the DELALLOC 1752 * bit, which is only set or cleared with irqs on 1753 */ 1754 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1755 struct btrfs_root *root = BTRFS_I(inode)->root; 1756 u64 len = state->end + 1 - state->start; 1757 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1758 1759 if (*bits & EXTENT_FIRST_DELALLOC) { 1760 *bits &= ~EXTENT_FIRST_DELALLOC; 1761 } else { 1762 spin_lock(&BTRFS_I(inode)->lock); 1763 BTRFS_I(inode)->outstanding_extents++; 1764 spin_unlock(&BTRFS_I(inode)->lock); 1765 } 1766 1767 /* For sanity tests */ 1768 if (btrfs_is_testing(fs_info)) 1769 return; 1770 1771 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1772 fs_info->delalloc_batch); 1773 spin_lock(&BTRFS_I(inode)->lock); 1774 BTRFS_I(inode)->delalloc_bytes += len; 1775 if (*bits & EXTENT_DEFRAG) 1776 BTRFS_I(inode)->defrag_bytes += len; 1777 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1778 &BTRFS_I(inode)->runtime_flags)) 1779 btrfs_add_delalloc_inodes(root, inode); 1780 spin_unlock(&BTRFS_I(inode)->lock); 1781 } 1782 1783 if (!(state->state & EXTENT_DELALLOC_NEW) && 1784 (*bits & EXTENT_DELALLOC_NEW)) { 1785 spin_lock(&BTRFS_I(inode)->lock); 1786 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1787 state->start; 1788 spin_unlock(&BTRFS_I(inode)->lock); 1789 } 1790 } 1791 1792 /* 1793 * extent_io.c clear_bit_hook, see set_bit_hook for why 1794 */ 1795 static void btrfs_clear_bit_hook(void *private_data, 1796 struct extent_state *state, 1797 unsigned *bits) 1798 { 1799 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1801 u64 len = state->end + 1 - state->start; 1802 u32 num_extents = count_max_extents(len); 1803 1804 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1805 spin_lock(&inode->lock); 1806 inode->defrag_bytes -= len; 1807 spin_unlock(&inode->lock); 1808 } 1809 1810 /* 1811 * set_bit and clear bit hooks normally require _irqsave/restore 1812 * but in this case, we are only testing for the DELALLOC 1813 * bit, which is only set or cleared with irqs on 1814 */ 1815 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1816 struct btrfs_root *root = inode->root; 1817 bool do_list = !btrfs_is_free_space_inode(inode); 1818 1819 if (*bits & EXTENT_FIRST_DELALLOC) { 1820 *bits &= ~EXTENT_FIRST_DELALLOC; 1821 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) { 1822 spin_lock(&inode->lock); 1823 inode->outstanding_extents -= num_extents; 1824 spin_unlock(&inode->lock); 1825 } 1826 1827 /* 1828 * We don't reserve metadata space for space cache inodes so we 1829 * don't need to call dellalloc_release_metadata if there is an 1830 * error. 1831 */ 1832 if (*bits & EXTENT_CLEAR_META_RESV && 1833 root != fs_info->tree_root) 1834 btrfs_delalloc_release_metadata(inode, len); 1835 1836 /* For sanity tests. */ 1837 if (btrfs_is_testing(fs_info)) 1838 return; 1839 1840 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1841 do_list && !(state->state & EXTENT_NORESERVE) && 1842 (*bits & EXTENT_CLEAR_DATA_RESV)) 1843 btrfs_free_reserved_data_space_noquota( 1844 &inode->vfs_inode, 1845 state->start, len); 1846 1847 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1848 fs_info->delalloc_batch); 1849 spin_lock(&inode->lock); 1850 inode->delalloc_bytes -= len; 1851 if (do_list && inode->delalloc_bytes == 0 && 1852 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1853 &inode->runtime_flags)) 1854 btrfs_del_delalloc_inode(root, inode); 1855 spin_unlock(&inode->lock); 1856 } 1857 1858 if ((state->state & EXTENT_DELALLOC_NEW) && 1859 (*bits & EXTENT_DELALLOC_NEW)) { 1860 spin_lock(&inode->lock); 1861 ASSERT(inode->new_delalloc_bytes >= len); 1862 inode->new_delalloc_bytes -= len; 1863 spin_unlock(&inode->lock); 1864 } 1865 } 1866 1867 /* 1868 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1869 * we don't create bios that span stripes or chunks 1870 * 1871 * return 1 if page cannot be merged to bio 1872 * return 0 if page can be merged to bio 1873 * return error otherwise 1874 */ 1875 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1876 size_t size, struct bio *bio, 1877 unsigned long bio_flags) 1878 { 1879 struct inode *inode = page->mapping->host; 1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1881 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1882 u64 length = 0; 1883 u64 map_length; 1884 int ret; 1885 1886 if (bio_flags & EXTENT_BIO_COMPRESSED) 1887 return 0; 1888 1889 length = bio->bi_iter.bi_size; 1890 map_length = length; 1891 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1892 NULL, 0); 1893 if (ret < 0) 1894 return ret; 1895 if (map_length < length + size) 1896 return 1; 1897 return 0; 1898 } 1899 1900 /* 1901 * in order to insert checksums into the metadata in large chunks, 1902 * we wait until bio submission time. All the pages in the bio are 1903 * checksummed and sums are attached onto the ordered extent record. 1904 * 1905 * At IO completion time the cums attached on the ordered extent record 1906 * are inserted into the btree 1907 */ 1908 static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio, 1909 int mirror_num, unsigned long bio_flags, 1910 u64 bio_offset) 1911 { 1912 struct inode *inode = private_data; 1913 blk_status_t ret = 0; 1914 1915 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1916 BUG_ON(ret); /* -ENOMEM */ 1917 return 0; 1918 } 1919 1920 /* 1921 * in order to insert checksums into the metadata in large chunks, 1922 * we wait until bio submission time. All the pages in the bio are 1923 * checksummed and sums are attached onto the ordered extent record. 1924 * 1925 * At IO completion time the cums attached on the ordered extent record 1926 * are inserted into the btree 1927 */ 1928 static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio, 1929 int mirror_num, unsigned long bio_flags, 1930 u64 bio_offset) 1931 { 1932 struct inode *inode = private_data; 1933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1934 blk_status_t ret; 1935 1936 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1937 if (ret) { 1938 bio->bi_status = ret; 1939 bio_endio(bio); 1940 } 1941 return ret; 1942 } 1943 1944 /* 1945 * extent_io.c submission hook. This does the right thing for csum calculation 1946 * on write, or reading the csums from the tree before a read 1947 */ 1948 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1949 int mirror_num, unsigned long bio_flags, 1950 u64 bio_offset) 1951 { 1952 struct inode *inode = private_data; 1953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1954 struct btrfs_root *root = BTRFS_I(inode)->root; 1955 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1956 blk_status_t ret = 0; 1957 int skip_sum; 1958 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1959 1960 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1961 1962 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1963 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1964 1965 if (bio_op(bio) != REQ_OP_WRITE) { 1966 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1967 if (ret) 1968 goto out; 1969 1970 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1971 ret = btrfs_submit_compressed_read(inode, bio, 1972 mirror_num, 1973 bio_flags); 1974 goto out; 1975 } else if (!skip_sum) { 1976 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1977 if (ret) 1978 goto out; 1979 } 1980 goto mapit; 1981 } else if (async && !skip_sum) { 1982 /* csum items have already been cloned */ 1983 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1984 goto mapit; 1985 /* we're doing a write, do the async checksumming */ 1986 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 1987 bio_offset, inode, 1988 __btrfs_submit_bio_start, 1989 __btrfs_submit_bio_done); 1990 goto out; 1991 } else if (!skip_sum) { 1992 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1993 if (ret) 1994 goto out; 1995 } 1996 1997 mapit: 1998 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1999 2000 out: 2001 if (ret) { 2002 bio->bi_status = ret; 2003 bio_endio(bio); 2004 } 2005 return ret; 2006 } 2007 2008 /* 2009 * given a list of ordered sums record them in the inode. This happens 2010 * at IO completion time based on sums calculated at bio submission time. 2011 */ 2012 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2013 struct inode *inode, struct list_head *list) 2014 { 2015 struct btrfs_ordered_sum *sum; 2016 2017 list_for_each_entry(sum, list, list) { 2018 trans->adding_csums = 1; 2019 btrfs_csum_file_blocks(trans, 2020 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2021 trans->adding_csums = 0; 2022 } 2023 return 0; 2024 } 2025 2026 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2027 struct extent_state **cached_state, int dedupe) 2028 { 2029 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2030 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2031 cached_state); 2032 } 2033 2034 /* see btrfs_writepage_start_hook for details on why this is required */ 2035 struct btrfs_writepage_fixup { 2036 struct page *page; 2037 struct btrfs_work work; 2038 }; 2039 2040 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2041 { 2042 struct btrfs_writepage_fixup *fixup; 2043 struct btrfs_ordered_extent *ordered; 2044 struct extent_state *cached_state = NULL; 2045 struct extent_changeset *data_reserved = NULL; 2046 struct page *page; 2047 struct inode *inode; 2048 u64 page_start; 2049 u64 page_end; 2050 int ret; 2051 2052 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2053 page = fixup->page; 2054 again: 2055 lock_page(page); 2056 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2057 ClearPageChecked(page); 2058 goto out_page; 2059 } 2060 2061 inode = page->mapping->host; 2062 page_start = page_offset(page); 2063 page_end = page_offset(page) + PAGE_SIZE - 1; 2064 2065 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2066 &cached_state); 2067 2068 /* already ordered? We're done */ 2069 if (PagePrivate2(page)) 2070 goto out; 2071 2072 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2073 PAGE_SIZE); 2074 if (ordered) { 2075 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2076 page_end, &cached_state, GFP_NOFS); 2077 unlock_page(page); 2078 btrfs_start_ordered_extent(inode, ordered, 1); 2079 btrfs_put_ordered_extent(ordered); 2080 goto again; 2081 } 2082 2083 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2084 PAGE_SIZE); 2085 if (ret) { 2086 mapping_set_error(page->mapping, ret); 2087 end_extent_writepage(page, ret, page_start, page_end); 2088 ClearPageChecked(page); 2089 goto out; 2090 } 2091 2092 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state, 2093 0); 2094 ClearPageChecked(page); 2095 set_page_dirty(page); 2096 out: 2097 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2098 &cached_state, GFP_NOFS); 2099 out_page: 2100 unlock_page(page); 2101 put_page(page); 2102 kfree(fixup); 2103 extent_changeset_free(data_reserved); 2104 } 2105 2106 /* 2107 * There are a few paths in the higher layers of the kernel that directly 2108 * set the page dirty bit without asking the filesystem if it is a 2109 * good idea. This causes problems because we want to make sure COW 2110 * properly happens and the data=ordered rules are followed. 2111 * 2112 * In our case any range that doesn't have the ORDERED bit set 2113 * hasn't been properly setup for IO. We kick off an async process 2114 * to fix it up. The async helper will wait for ordered extents, set 2115 * the delalloc bit and make it safe to write the page. 2116 */ 2117 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2118 { 2119 struct inode *inode = page->mapping->host; 2120 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2121 struct btrfs_writepage_fixup *fixup; 2122 2123 /* this page is properly in the ordered list */ 2124 if (TestClearPagePrivate2(page)) 2125 return 0; 2126 2127 if (PageChecked(page)) 2128 return -EAGAIN; 2129 2130 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2131 if (!fixup) 2132 return -EAGAIN; 2133 2134 SetPageChecked(page); 2135 get_page(page); 2136 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2137 btrfs_writepage_fixup_worker, NULL, NULL); 2138 fixup->page = page; 2139 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2140 return -EBUSY; 2141 } 2142 2143 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2144 struct inode *inode, u64 file_pos, 2145 u64 disk_bytenr, u64 disk_num_bytes, 2146 u64 num_bytes, u64 ram_bytes, 2147 u8 compression, u8 encryption, 2148 u16 other_encoding, int extent_type) 2149 { 2150 struct btrfs_root *root = BTRFS_I(inode)->root; 2151 struct btrfs_file_extent_item *fi; 2152 struct btrfs_path *path; 2153 struct extent_buffer *leaf; 2154 struct btrfs_key ins; 2155 u64 qg_released; 2156 int extent_inserted = 0; 2157 int ret; 2158 2159 path = btrfs_alloc_path(); 2160 if (!path) 2161 return -ENOMEM; 2162 2163 /* 2164 * we may be replacing one extent in the tree with another. 2165 * The new extent is pinned in the extent map, and we don't want 2166 * to drop it from the cache until it is completely in the btree. 2167 * 2168 * So, tell btrfs_drop_extents to leave this extent in the cache. 2169 * the caller is expected to unpin it and allow it to be merged 2170 * with the others. 2171 */ 2172 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2173 file_pos + num_bytes, NULL, 0, 2174 1, sizeof(*fi), &extent_inserted); 2175 if (ret) 2176 goto out; 2177 2178 if (!extent_inserted) { 2179 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2180 ins.offset = file_pos; 2181 ins.type = BTRFS_EXTENT_DATA_KEY; 2182 2183 path->leave_spinning = 1; 2184 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2185 sizeof(*fi)); 2186 if (ret) 2187 goto out; 2188 } 2189 leaf = path->nodes[0]; 2190 fi = btrfs_item_ptr(leaf, path->slots[0], 2191 struct btrfs_file_extent_item); 2192 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2193 btrfs_set_file_extent_type(leaf, fi, extent_type); 2194 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2195 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2196 btrfs_set_file_extent_offset(leaf, fi, 0); 2197 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2198 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2199 btrfs_set_file_extent_compression(leaf, fi, compression); 2200 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2201 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2202 2203 btrfs_mark_buffer_dirty(leaf); 2204 btrfs_release_path(path); 2205 2206 inode_add_bytes(inode, num_bytes); 2207 2208 ins.objectid = disk_bytenr; 2209 ins.offset = disk_num_bytes; 2210 ins.type = BTRFS_EXTENT_ITEM_KEY; 2211 2212 /* 2213 * Release the reserved range from inode dirty range map, as it is 2214 * already moved into delayed_ref_head 2215 */ 2216 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2217 if (ret < 0) 2218 goto out; 2219 qg_released = ret; 2220 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid, 2221 btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins); 2222 out: 2223 btrfs_free_path(path); 2224 2225 return ret; 2226 } 2227 2228 /* snapshot-aware defrag */ 2229 struct sa_defrag_extent_backref { 2230 struct rb_node node; 2231 struct old_sa_defrag_extent *old; 2232 u64 root_id; 2233 u64 inum; 2234 u64 file_pos; 2235 u64 extent_offset; 2236 u64 num_bytes; 2237 u64 generation; 2238 }; 2239 2240 struct old_sa_defrag_extent { 2241 struct list_head list; 2242 struct new_sa_defrag_extent *new; 2243 2244 u64 extent_offset; 2245 u64 bytenr; 2246 u64 offset; 2247 u64 len; 2248 int count; 2249 }; 2250 2251 struct new_sa_defrag_extent { 2252 struct rb_root root; 2253 struct list_head head; 2254 struct btrfs_path *path; 2255 struct inode *inode; 2256 u64 file_pos; 2257 u64 len; 2258 u64 bytenr; 2259 u64 disk_len; 2260 u8 compress_type; 2261 }; 2262 2263 static int backref_comp(struct sa_defrag_extent_backref *b1, 2264 struct sa_defrag_extent_backref *b2) 2265 { 2266 if (b1->root_id < b2->root_id) 2267 return -1; 2268 else if (b1->root_id > b2->root_id) 2269 return 1; 2270 2271 if (b1->inum < b2->inum) 2272 return -1; 2273 else if (b1->inum > b2->inum) 2274 return 1; 2275 2276 if (b1->file_pos < b2->file_pos) 2277 return -1; 2278 else if (b1->file_pos > b2->file_pos) 2279 return 1; 2280 2281 /* 2282 * [------------------------------] ===> (a range of space) 2283 * |<--->| |<---->| =============> (fs/file tree A) 2284 * |<---------------------------->| ===> (fs/file tree B) 2285 * 2286 * A range of space can refer to two file extents in one tree while 2287 * refer to only one file extent in another tree. 2288 * 2289 * So we may process a disk offset more than one time(two extents in A) 2290 * and locate at the same extent(one extent in B), then insert two same 2291 * backrefs(both refer to the extent in B). 2292 */ 2293 return 0; 2294 } 2295 2296 static void backref_insert(struct rb_root *root, 2297 struct sa_defrag_extent_backref *backref) 2298 { 2299 struct rb_node **p = &root->rb_node; 2300 struct rb_node *parent = NULL; 2301 struct sa_defrag_extent_backref *entry; 2302 int ret; 2303 2304 while (*p) { 2305 parent = *p; 2306 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2307 2308 ret = backref_comp(backref, entry); 2309 if (ret < 0) 2310 p = &(*p)->rb_left; 2311 else 2312 p = &(*p)->rb_right; 2313 } 2314 2315 rb_link_node(&backref->node, parent, p); 2316 rb_insert_color(&backref->node, root); 2317 } 2318 2319 /* 2320 * Note the backref might has changed, and in this case we just return 0. 2321 */ 2322 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2323 void *ctx) 2324 { 2325 struct btrfs_file_extent_item *extent; 2326 struct old_sa_defrag_extent *old = ctx; 2327 struct new_sa_defrag_extent *new = old->new; 2328 struct btrfs_path *path = new->path; 2329 struct btrfs_key key; 2330 struct btrfs_root *root; 2331 struct sa_defrag_extent_backref *backref; 2332 struct extent_buffer *leaf; 2333 struct inode *inode = new->inode; 2334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2335 int slot; 2336 int ret; 2337 u64 extent_offset; 2338 u64 num_bytes; 2339 2340 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2341 inum == btrfs_ino(BTRFS_I(inode))) 2342 return 0; 2343 2344 key.objectid = root_id; 2345 key.type = BTRFS_ROOT_ITEM_KEY; 2346 key.offset = (u64)-1; 2347 2348 root = btrfs_read_fs_root_no_name(fs_info, &key); 2349 if (IS_ERR(root)) { 2350 if (PTR_ERR(root) == -ENOENT) 2351 return 0; 2352 WARN_ON(1); 2353 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2354 inum, offset, root_id); 2355 return PTR_ERR(root); 2356 } 2357 2358 key.objectid = inum; 2359 key.type = BTRFS_EXTENT_DATA_KEY; 2360 if (offset > (u64)-1 << 32) 2361 key.offset = 0; 2362 else 2363 key.offset = offset; 2364 2365 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2366 if (WARN_ON(ret < 0)) 2367 return ret; 2368 ret = 0; 2369 2370 while (1) { 2371 cond_resched(); 2372 2373 leaf = path->nodes[0]; 2374 slot = path->slots[0]; 2375 2376 if (slot >= btrfs_header_nritems(leaf)) { 2377 ret = btrfs_next_leaf(root, path); 2378 if (ret < 0) { 2379 goto out; 2380 } else if (ret > 0) { 2381 ret = 0; 2382 goto out; 2383 } 2384 continue; 2385 } 2386 2387 path->slots[0]++; 2388 2389 btrfs_item_key_to_cpu(leaf, &key, slot); 2390 2391 if (key.objectid > inum) 2392 goto out; 2393 2394 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2395 continue; 2396 2397 extent = btrfs_item_ptr(leaf, slot, 2398 struct btrfs_file_extent_item); 2399 2400 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2401 continue; 2402 2403 /* 2404 * 'offset' refers to the exact key.offset, 2405 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2406 * (key.offset - extent_offset). 2407 */ 2408 if (key.offset != offset) 2409 continue; 2410 2411 extent_offset = btrfs_file_extent_offset(leaf, extent); 2412 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2413 2414 if (extent_offset >= old->extent_offset + old->offset + 2415 old->len || extent_offset + num_bytes <= 2416 old->extent_offset + old->offset) 2417 continue; 2418 break; 2419 } 2420 2421 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2422 if (!backref) { 2423 ret = -ENOENT; 2424 goto out; 2425 } 2426 2427 backref->root_id = root_id; 2428 backref->inum = inum; 2429 backref->file_pos = offset; 2430 backref->num_bytes = num_bytes; 2431 backref->extent_offset = extent_offset; 2432 backref->generation = btrfs_file_extent_generation(leaf, extent); 2433 backref->old = old; 2434 backref_insert(&new->root, backref); 2435 old->count++; 2436 out: 2437 btrfs_release_path(path); 2438 WARN_ON(ret); 2439 return ret; 2440 } 2441 2442 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2443 struct new_sa_defrag_extent *new) 2444 { 2445 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2446 struct old_sa_defrag_extent *old, *tmp; 2447 int ret; 2448 2449 new->path = path; 2450 2451 list_for_each_entry_safe(old, tmp, &new->head, list) { 2452 ret = iterate_inodes_from_logical(old->bytenr + 2453 old->extent_offset, fs_info, 2454 path, record_one_backref, 2455 old); 2456 if (ret < 0 && ret != -ENOENT) 2457 return false; 2458 2459 /* no backref to be processed for this extent */ 2460 if (!old->count) { 2461 list_del(&old->list); 2462 kfree(old); 2463 } 2464 } 2465 2466 if (list_empty(&new->head)) 2467 return false; 2468 2469 return true; 2470 } 2471 2472 static int relink_is_mergable(struct extent_buffer *leaf, 2473 struct btrfs_file_extent_item *fi, 2474 struct new_sa_defrag_extent *new) 2475 { 2476 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2477 return 0; 2478 2479 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2480 return 0; 2481 2482 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2483 return 0; 2484 2485 if (btrfs_file_extent_encryption(leaf, fi) || 2486 btrfs_file_extent_other_encoding(leaf, fi)) 2487 return 0; 2488 2489 return 1; 2490 } 2491 2492 /* 2493 * Note the backref might has changed, and in this case we just return 0. 2494 */ 2495 static noinline int relink_extent_backref(struct btrfs_path *path, 2496 struct sa_defrag_extent_backref *prev, 2497 struct sa_defrag_extent_backref *backref) 2498 { 2499 struct btrfs_file_extent_item *extent; 2500 struct btrfs_file_extent_item *item; 2501 struct btrfs_ordered_extent *ordered; 2502 struct btrfs_trans_handle *trans; 2503 struct btrfs_root *root; 2504 struct btrfs_key key; 2505 struct extent_buffer *leaf; 2506 struct old_sa_defrag_extent *old = backref->old; 2507 struct new_sa_defrag_extent *new = old->new; 2508 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2509 struct inode *inode; 2510 struct extent_state *cached = NULL; 2511 int ret = 0; 2512 u64 start; 2513 u64 len; 2514 u64 lock_start; 2515 u64 lock_end; 2516 bool merge = false; 2517 int index; 2518 2519 if (prev && prev->root_id == backref->root_id && 2520 prev->inum == backref->inum && 2521 prev->file_pos + prev->num_bytes == backref->file_pos) 2522 merge = true; 2523 2524 /* step 1: get root */ 2525 key.objectid = backref->root_id; 2526 key.type = BTRFS_ROOT_ITEM_KEY; 2527 key.offset = (u64)-1; 2528 2529 index = srcu_read_lock(&fs_info->subvol_srcu); 2530 2531 root = btrfs_read_fs_root_no_name(fs_info, &key); 2532 if (IS_ERR(root)) { 2533 srcu_read_unlock(&fs_info->subvol_srcu, index); 2534 if (PTR_ERR(root) == -ENOENT) 2535 return 0; 2536 return PTR_ERR(root); 2537 } 2538 2539 if (btrfs_root_readonly(root)) { 2540 srcu_read_unlock(&fs_info->subvol_srcu, index); 2541 return 0; 2542 } 2543 2544 /* step 2: get inode */ 2545 key.objectid = backref->inum; 2546 key.type = BTRFS_INODE_ITEM_KEY; 2547 key.offset = 0; 2548 2549 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2550 if (IS_ERR(inode)) { 2551 srcu_read_unlock(&fs_info->subvol_srcu, index); 2552 return 0; 2553 } 2554 2555 srcu_read_unlock(&fs_info->subvol_srcu, index); 2556 2557 /* step 3: relink backref */ 2558 lock_start = backref->file_pos; 2559 lock_end = backref->file_pos + backref->num_bytes - 1; 2560 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2561 &cached); 2562 2563 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2564 if (ordered) { 2565 btrfs_put_ordered_extent(ordered); 2566 goto out_unlock; 2567 } 2568 2569 trans = btrfs_join_transaction(root); 2570 if (IS_ERR(trans)) { 2571 ret = PTR_ERR(trans); 2572 goto out_unlock; 2573 } 2574 2575 key.objectid = backref->inum; 2576 key.type = BTRFS_EXTENT_DATA_KEY; 2577 key.offset = backref->file_pos; 2578 2579 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2580 if (ret < 0) { 2581 goto out_free_path; 2582 } else if (ret > 0) { 2583 ret = 0; 2584 goto out_free_path; 2585 } 2586 2587 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2588 struct btrfs_file_extent_item); 2589 2590 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2591 backref->generation) 2592 goto out_free_path; 2593 2594 btrfs_release_path(path); 2595 2596 start = backref->file_pos; 2597 if (backref->extent_offset < old->extent_offset + old->offset) 2598 start += old->extent_offset + old->offset - 2599 backref->extent_offset; 2600 2601 len = min(backref->extent_offset + backref->num_bytes, 2602 old->extent_offset + old->offset + old->len); 2603 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2604 2605 ret = btrfs_drop_extents(trans, root, inode, start, 2606 start + len, 1); 2607 if (ret) 2608 goto out_free_path; 2609 again: 2610 key.objectid = btrfs_ino(BTRFS_I(inode)); 2611 key.type = BTRFS_EXTENT_DATA_KEY; 2612 key.offset = start; 2613 2614 path->leave_spinning = 1; 2615 if (merge) { 2616 struct btrfs_file_extent_item *fi; 2617 u64 extent_len; 2618 struct btrfs_key found_key; 2619 2620 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2621 if (ret < 0) 2622 goto out_free_path; 2623 2624 path->slots[0]--; 2625 leaf = path->nodes[0]; 2626 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2627 2628 fi = btrfs_item_ptr(leaf, path->slots[0], 2629 struct btrfs_file_extent_item); 2630 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2631 2632 if (extent_len + found_key.offset == start && 2633 relink_is_mergable(leaf, fi, new)) { 2634 btrfs_set_file_extent_num_bytes(leaf, fi, 2635 extent_len + len); 2636 btrfs_mark_buffer_dirty(leaf); 2637 inode_add_bytes(inode, len); 2638 2639 ret = 1; 2640 goto out_free_path; 2641 } else { 2642 merge = false; 2643 btrfs_release_path(path); 2644 goto again; 2645 } 2646 } 2647 2648 ret = btrfs_insert_empty_item(trans, root, path, &key, 2649 sizeof(*extent)); 2650 if (ret) { 2651 btrfs_abort_transaction(trans, ret); 2652 goto out_free_path; 2653 } 2654 2655 leaf = path->nodes[0]; 2656 item = btrfs_item_ptr(leaf, path->slots[0], 2657 struct btrfs_file_extent_item); 2658 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2659 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2660 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2661 btrfs_set_file_extent_num_bytes(leaf, item, len); 2662 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2663 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2664 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2665 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2666 btrfs_set_file_extent_encryption(leaf, item, 0); 2667 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2668 2669 btrfs_mark_buffer_dirty(leaf); 2670 inode_add_bytes(inode, len); 2671 btrfs_release_path(path); 2672 2673 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr, 2674 new->disk_len, 0, 2675 backref->root_id, backref->inum, 2676 new->file_pos); /* start - extent_offset */ 2677 if (ret) { 2678 btrfs_abort_transaction(trans, ret); 2679 goto out_free_path; 2680 } 2681 2682 ret = 1; 2683 out_free_path: 2684 btrfs_release_path(path); 2685 path->leave_spinning = 0; 2686 btrfs_end_transaction(trans); 2687 out_unlock: 2688 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2689 &cached, GFP_NOFS); 2690 iput(inode); 2691 return ret; 2692 } 2693 2694 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2695 { 2696 struct old_sa_defrag_extent *old, *tmp; 2697 2698 if (!new) 2699 return; 2700 2701 list_for_each_entry_safe(old, tmp, &new->head, list) { 2702 kfree(old); 2703 } 2704 kfree(new); 2705 } 2706 2707 static void relink_file_extents(struct new_sa_defrag_extent *new) 2708 { 2709 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2710 struct btrfs_path *path; 2711 struct sa_defrag_extent_backref *backref; 2712 struct sa_defrag_extent_backref *prev = NULL; 2713 struct inode *inode; 2714 struct btrfs_root *root; 2715 struct rb_node *node; 2716 int ret; 2717 2718 inode = new->inode; 2719 root = BTRFS_I(inode)->root; 2720 2721 path = btrfs_alloc_path(); 2722 if (!path) 2723 return; 2724 2725 if (!record_extent_backrefs(path, new)) { 2726 btrfs_free_path(path); 2727 goto out; 2728 } 2729 btrfs_release_path(path); 2730 2731 while (1) { 2732 node = rb_first(&new->root); 2733 if (!node) 2734 break; 2735 rb_erase(node, &new->root); 2736 2737 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2738 2739 ret = relink_extent_backref(path, prev, backref); 2740 WARN_ON(ret < 0); 2741 2742 kfree(prev); 2743 2744 if (ret == 1) 2745 prev = backref; 2746 else 2747 prev = NULL; 2748 cond_resched(); 2749 } 2750 kfree(prev); 2751 2752 btrfs_free_path(path); 2753 out: 2754 free_sa_defrag_extent(new); 2755 2756 atomic_dec(&fs_info->defrag_running); 2757 wake_up(&fs_info->transaction_wait); 2758 } 2759 2760 static struct new_sa_defrag_extent * 2761 record_old_file_extents(struct inode *inode, 2762 struct btrfs_ordered_extent *ordered) 2763 { 2764 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2765 struct btrfs_root *root = BTRFS_I(inode)->root; 2766 struct btrfs_path *path; 2767 struct btrfs_key key; 2768 struct old_sa_defrag_extent *old; 2769 struct new_sa_defrag_extent *new; 2770 int ret; 2771 2772 new = kmalloc(sizeof(*new), GFP_NOFS); 2773 if (!new) 2774 return NULL; 2775 2776 new->inode = inode; 2777 new->file_pos = ordered->file_offset; 2778 new->len = ordered->len; 2779 new->bytenr = ordered->start; 2780 new->disk_len = ordered->disk_len; 2781 new->compress_type = ordered->compress_type; 2782 new->root = RB_ROOT; 2783 INIT_LIST_HEAD(&new->head); 2784 2785 path = btrfs_alloc_path(); 2786 if (!path) 2787 goto out_kfree; 2788 2789 key.objectid = btrfs_ino(BTRFS_I(inode)); 2790 key.type = BTRFS_EXTENT_DATA_KEY; 2791 key.offset = new->file_pos; 2792 2793 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2794 if (ret < 0) 2795 goto out_free_path; 2796 if (ret > 0 && path->slots[0] > 0) 2797 path->slots[0]--; 2798 2799 /* find out all the old extents for the file range */ 2800 while (1) { 2801 struct btrfs_file_extent_item *extent; 2802 struct extent_buffer *l; 2803 int slot; 2804 u64 num_bytes; 2805 u64 offset; 2806 u64 end; 2807 u64 disk_bytenr; 2808 u64 extent_offset; 2809 2810 l = path->nodes[0]; 2811 slot = path->slots[0]; 2812 2813 if (slot >= btrfs_header_nritems(l)) { 2814 ret = btrfs_next_leaf(root, path); 2815 if (ret < 0) 2816 goto out_free_path; 2817 else if (ret > 0) 2818 break; 2819 continue; 2820 } 2821 2822 btrfs_item_key_to_cpu(l, &key, slot); 2823 2824 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2825 break; 2826 if (key.type != BTRFS_EXTENT_DATA_KEY) 2827 break; 2828 if (key.offset >= new->file_pos + new->len) 2829 break; 2830 2831 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2832 2833 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2834 if (key.offset + num_bytes < new->file_pos) 2835 goto next; 2836 2837 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2838 if (!disk_bytenr) 2839 goto next; 2840 2841 extent_offset = btrfs_file_extent_offset(l, extent); 2842 2843 old = kmalloc(sizeof(*old), GFP_NOFS); 2844 if (!old) 2845 goto out_free_path; 2846 2847 offset = max(new->file_pos, key.offset); 2848 end = min(new->file_pos + new->len, key.offset + num_bytes); 2849 2850 old->bytenr = disk_bytenr; 2851 old->extent_offset = extent_offset; 2852 old->offset = offset - key.offset; 2853 old->len = end - offset; 2854 old->new = new; 2855 old->count = 0; 2856 list_add_tail(&old->list, &new->head); 2857 next: 2858 path->slots[0]++; 2859 cond_resched(); 2860 } 2861 2862 btrfs_free_path(path); 2863 atomic_inc(&fs_info->defrag_running); 2864 2865 return new; 2866 2867 out_free_path: 2868 btrfs_free_path(path); 2869 out_kfree: 2870 free_sa_defrag_extent(new); 2871 return NULL; 2872 } 2873 2874 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2875 u64 start, u64 len) 2876 { 2877 struct btrfs_block_group_cache *cache; 2878 2879 cache = btrfs_lookup_block_group(fs_info, start); 2880 ASSERT(cache); 2881 2882 spin_lock(&cache->lock); 2883 cache->delalloc_bytes -= len; 2884 spin_unlock(&cache->lock); 2885 2886 btrfs_put_block_group(cache); 2887 } 2888 2889 /* as ordered data IO finishes, this gets called so we can finish 2890 * an ordered extent if the range of bytes in the file it covers are 2891 * fully written. 2892 */ 2893 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2894 { 2895 struct inode *inode = ordered_extent->inode; 2896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2897 struct btrfs_root *root = BTRFS_I(inode)->root; 2898 struct btrfs_trans_handle *trans = NULL; 2899 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2900 struct extent_state *cached_state = NULL; 2901 struct new_sa_defrag_extent *new = NULL; 2902 int compress_type = 0; 2903 int ret = 0; 2904 u64 logical_len = ordered_extent->len; 2905 bool nolock; 2906 bool truncated = false; 2907 bool range_locked = false; 2908 bool clear_new_delalloc_bytes = false; 2909 2910 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2911 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2912 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2913 clear_new_delalloc_bytes = true; 2914 2915 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2916 2917 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2918 ret = -EIO; 2919 goto out; 2920 } 2921 2922 btrfs_free_io_failure_record(BTRFS_I(inode), 2923 ordered_extent->file_offset, 2924 ordered_extent->file_offset + 2925 ordered_extent->len - 1); 2926 2927 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2928 truncated = true; 2929 logical_len = ordered_extent->truncated_len; 2930 /* Truncated the entire extent, don't bother adding */ 2931 if (!logical_len) 2932 goto out; 2933 } 2934 2935 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2936 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2937 2938 /* 2939 * For mwrite(mmap + memset to write) case, we still reserve 2940 * space for NOCOW range. 2941 * As NOCOW won't cause a new delayed ref, just free the space 2942 */ 2943 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2944 ordered_extent->len); 2945 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2946 if (nolock) 2947 trans = btrfs_join_transaction_nolock(root); 2948 else 2949 trans = btrfs_join_transaction(root); 2950 if (IS_ERR(trans)) { 2951 ret = PTR_ERR(trans); 2952 trans = NULL; 2953 goto out; 2954 } 2955 trans->block_rsv = &fs_info->delalloc_block_rsv; 2956 ret = btrfs_update_inode_fallback(trans, root, inode); 2957 if (ret) /* -ENOMEM or corruption */ 2958 btrfs_abort_transaction(trans, ret); 2959 goto out; 2960 } 2961 2962 range_locked = true; 2963 lock_extent_bits(io_tree, ordered_extent->file_offset, 2964 ordered_extent->file_offset + ordered_extent->len - 1, 2965 &cached_state); 2966 2967 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2968 ordered_extent->file_offset + ordered_extent->len - 1, 2969 EXTENT_DEFRAG, 0, cached_state); 2970 if (ret) { 2971 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2972 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2973 /* the inode is shared */ 2974 new = record_old_file_extents(inode, ordered_extent); 2975 2976 clear_extent_bit(io_tree, ordered_extent->file_offset, 2977 ordered_extent->file_offset + ordered_extent->len - 1, 2978 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2979 } 2980 2981 if (nolock) 2982 trans = btrfs_join_transaction_nolock(root); 2983 else 2984 trans = btrfs_join_transaction(root); 2985 if (IS_ERR(trans)) { 2986 ret = PTR_ERR(trans); 2987 trans = NULL; 2988 goto out; 2989 } 2990 2991 trans->block_rsv = &fs_info->delalloc_block_rsv; 2992 2993 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2994 compress_type = ordered_extent->compress_type; 2995 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2996 BUG_ON(compress_type); 2997 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2998 ordered_extent->file_offset, 2999 ordered_extent->file_offset + 3000 logical_len); 3001 } else { 3002 BUG_ON(root == fs_info->tree_root); 3003 ret = insert_reserved_file_extent(trans, inode, 3004 ordered_extent->file_offset, 3005 ordered_extent->start, 3006 ordered_extent->disk_len, 3007 logical_len, logical_len, 3008 compress_type, 0, 0, 3009 BTRFS_FILE_EXTENT_REG); 3010 if (!ret) 3011 btrfs_release_delalloc_bytes(fs_info, 3012 ordered_extent->start, 3013 ordered_extent->disk_len); 3014 } 3015 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3016 ordered_extent->file_offset, ordered_extent->len, 3017 trans->transid); 3018 if (ret < 0) { 3019 btrfs_abort_transaction(trans, ret); 3020 goto out; 3021 } 3022 3023 add_pending_csums(trans, inode, &ordered_extent->list); 3024 3025 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3026 ret = btrfs_update_inode_fallback(trans, root, inode); 3027 if (ret) { /* -ENOMEM or corruption */ 3028 btrfs_abort_transaction(trans, ret); 3029 goto out; 3030 } 3031 ret = 0; 3032 out: 3033 if (range_locked || clear_new_delalloc_bytes) { 3034 unsigned int clear_bits = 0; 3035 3036 if (range_locked) 3037 clear_bits |= EXTENT_LOCKED; 3038 if (clear_new_delalloc_bytes) 3039 clear_bits |= EXTENT_DELALLOC_NEW; 3040 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3041 ordered_extent->file_offset, 3042 ordered_extent->file_offset + 3043 ordered_extent->len - 1, 3044 clear_bits, 3045 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3046 0, &cached_state, GFP_NOFS); 3047 } 3048 3049 if (root != fs_info->tree_root) 3050 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3051 ordered_extent->len); 3052 if (trans) 3053 btrfs_end_transaction(trans); 3054 3055 if (ret || truncated) { 3056 u64 start, end; 3057 3058 if (truncated) 3059 start = ordered_extent->file_offset + logical_len; 3060 else 3061 start = ordered_extent->file_offset; 3062 end = ordered_extent->file_offset + ordered_extent->len - 1; 3063 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 3064 3065 /* Drop the cache for the part of the extent we didn't write. */ 3066 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3067 3068 /* 3069 * If the ordered extent had an IOERR or something else went 3070 * wrong we need to return the space for this ordered extent 3071 * back to the allocator. We only free the extent in the 3072 * truncated case if we didn't write out the extent at all. 3073 */ 3074 if ((ret || !logical_len) && 3075 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3076 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3077 btrfs_free_reserved_extent(fs_info, 3078 ordered_extent->start, 3079 ordered_extent->disk_len, 1); 3080 } 3081 3082 3083 /* 3084 * This needs to be done to make sure anybody waiting knows we are done 3085 * updating everything for this ordered extent. 3086 */ 3087 btrfs_remove_ordered_extent(inode, ordered_extent); 3088 3089 /* for snapshot-aware defrag */ 3090 if (new) { 3091 if (ret) { 3092 free_sa_defrag_extent(new); 3093 atomic_dec(&fs_info->defrag_running); 3094 } else { 3095 relink_file_extents(new); 3096 } 3097 } 3098 3099 /* once for us */ 3100 btrfs_put_ordered_extent(ordered_extent); 3101 /* once for the tree */ 3102 btrfs_put_ordered_extent(ordered_extent); 3103 3104 return ret; 3105 } 3106 3107 static void finish_ordered_fn(struct btrfs_work *work) 3108 { 3109 struct btrfs_ordered_extent *ordered_extent; 3110 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3111 btrfs_finish_ordered_io(ordered_extent); 3112 } 3113 3114 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3115 struct extent_state *state, int uptodate) 3116 { 3117 struct inode *inode = page->mapping->host; 3118 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3119 struct btrfs_ordered_extent *ordered_extent = NULL; 3120 struct btrfs_workqueue *wq; 3121 btrfs_work_func_t func; 3122 3123 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3124 3125 ClearPagePrivate2(page); 3126 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3127 end - start + 1, uptodate)) 3128 return; 3129 3130 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3131 wq = fs_info->endio_freespace_worker; 3132 func = btrfs_freespace_write_helper; 3133 } else { 3134 wq = fs_info->endio_write_workers; 3135 func = btrfs_endio_write_helper; 3136 } 3137 3138 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3139 NULL); 3140 btrfs_queue_work(wq, &ordered_extent->work); 3141 } 3142 3143 static int __readpage_endio_check(struct inode *inode, 3144 struct btrfs_io_bio *io_bio, 3145 int icsum, struct page *page, 3146 int pgoff, u64 start, size_t len) 3147 { 3148 char *kaddr; 3149 u32 csum_expected; 3150 u32 csum = ~(u32)0; 3151 3152 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3153 3154 kaddr = kmap_atomic(page); 3155 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3156 btrfs_csum_final(csum, (u8 *)&csum); 3157 if (csum != csum_expected) 3158 goto zeroit; 3159 3160 kunmap_atomic(kaddr); 3161 return 0; 3162 zeroit: 3163 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3164 io_bio->mirror_num); 3165 memset(kaddr + pgoff, 1, len); 3166 flush_dcache_page(page); 3167 kunmap_atomic(kaddr); 3168 return -EIO; 3169 } 3170 3171 /* 3172 * when reads are done, we need to check csums to verify the data is correct 3173 * if there's a match, we allow the bio to finish. If not, the code in 3174 * extent_io.c will try to find good copies for us. 3175 */ 3176 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3177 u64 phy_offset, struct page *page, 3178 u64 start, u64 end, int mirror) 3179 { 3180 size_t offset = start - page_offset(page); 3181 struct inode *inode = page->mapping->host; 3182 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3183 struct btrfs_root *root = BTRFS_I(inode)->root; 3184 3185 if (PageChecked(page)) { 3186 ClearPageChecked(page); 3187 return 0; 3188 } 3189 3190 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3191 return 0; 3192 3193 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3194 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3195 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3196 return 0; 3197 } 3198 3199 phy_offset >>= inode->i_sb->s_blocksize_bits; 3200 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3201 start, (size_t)(end - start + 1)); 3202 } 3203 3204 void btrfs_add_delayed_iput(struct inode *inode) 3205 { 3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3207 struct btrfs_inode *binode = BTRFS_I(inode); 3208 3209 if (atomic_add_unless(&inode->i_count, -1, 1)) 3210 return; 3211 3212 spin_lock(&fs_info->delayed_iput_lock); 3213 if (binode->delayed_iput_count == 0) { 3214 ASSERT(list_empty(&binode->delayed_iput)); 3215 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3216 } else { 3217 binode->delayed_iput_count++; 3218 } 3219 spin_unlock(&fs_info->delayed_iput_lock); 3220 } 3221 3222 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3223 { 3224 3225 spin_lock(&fs_info->delayed_iput_lock); 3226 while (!list_empty(&fs_info->delayed_iputs)) { 3227 struct btrfs_inode *inode; 3228 3229 inode = list_first_entry(&fs_info->delayed_iputs, 3230 struct btrfs_inode, delayed_iput); 3231 if (inode->delayed_iput_count) { 3232 inode->delayed_iput_count--; 3233 list_move_tail(&inode->delayed_iput, 3234 &fs_info->delayed_iputs); 3235 } else { 3236 list_del_init(&inode->delayed_iput); 3237 } 3238 spin_unlock(&fs_info->delayed_iput_lock); 3239 iput(&inode->vfs_inode); 3240 spin_lock(&fs_info->delayed_iput_lock); 3241 } 3242 spin_unlock(&fs_info->delayed_iput_lock); 3243 } 3244 3245 /* 3246 * This is called in transaction commit time. If there are no orphan 3247 * files in the subvolume, it removes orphan item and frees block_rsv 3248 * structure. 3249 */ 3250 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3251 struct btrfs_root *root) 3252 { 3253 struct btrfs_fs_info *fs_info = root->fs_info; 3254 struct btrfs_block_rsv *block_rsv; 3255 int ret; 3256 3257 if (atomic_read(&root->orphan_inodes) || 3258 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3259 return; 3260 3261 spin_lock(&root->orphan_lock); 3262 if (atomic_read(&root->orphan_inodes)) { 3263 spin_unlock(&root->orphan_lock); 3264 return; 3265 } 3266 3267 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3268 spin_unlock(&root->orphan_lock); 3269 return; 3270 } 3271 3272 block_rsv = root->orphan_block_rsv; 3273 root->orphan_block_rsv = NULL; 3274 spin_unlock(&root->orphan_lock); 3275 3276 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3277 btrfs_root_refs(&root->root_item) > 0) { 3278 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3279 root->root_key.objectid); 3280 if (ret) 3281 btrfs_abort_transaction(trans, ret); 3282 else 3283 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3284 &root->state); 3285 } 3286 3287 if (block_rsv) { 3288 WARN_ON(block_rsv->size > 0); 3289 btrfs_free_block_rsv(fs_info, block_rsv); 3290 } 3291 } 3292 3293 /* 3294 * This creates an orphan entry for the given inode in case something goes 3295 * wrong in the middle of an unlink/truncate. 3296 * 3297 * NOTE: caller of this function should reserve 5 units of metadata for 3298 * this function. 3299 */ 3300 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3301 struct btrfs_inode *inode) 3302 { 3303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3304 struct btrfs_root *root = inode->root; 3305 struct btrfs_block_rsv *block_rsv = NULL; 3306 int reserve = 0; 3307 int insert = 0; 3308 int ret; 3309 3310 if (!root->orphan_block_rsv) { 3311 block_rsv = btrfs_alloc_block_rsv(fs_info, 3312 BTRFS_BLOCK_RSV_TEMP); 3313 if (!block_rsv) 3314 return -ENOMEM; 3315 } 3316 3317 spin_lock(&root->orphan_lock); 3318 if (!root->orphan_block_rsv) { 3319 root->orphan_block_rsv = block_rsv; 3320 } else if (block_rsv) { 3321 btrfs_free_block_rsv(fs_info, block_rsv); 3322 block_rsv = NULL; 3323 } 3324 3325 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3326 &inode->runtime_flags)) { 3327 #if 0 3328 /* 3329 * For proper ENOSPC handling, we should do orphan 3330 * cleanup when mounting. But this introduces backward 3331 * compatibility issue. 3332 */ 3333 if (!xchg(&root->orphan_item_inserted, 1)) 3334 insert = 2; 3335 else 3336 insert = 1; 3337 #endif 3338 insert = 1; 3339 atomic_inc(&root->orphan_inodes); 3340 } 3341 3342 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3343 &inode->runtime_flags)) 3344 reserve = 1; 3345 spin_unlock(&root->orphan_lock); 3346 3347 /* grab metadata reservation from transaction handle */ 3348 if (reserve) { 3349 ret = btrfs_orphan_reserve_metadata(trans, inode); 3350 ASSERT(!ret); 3351 if (ret) { 3352 atomic_dec(&root->orphan_inodes); 3353 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3354 &inode->runtime_flags); 3355 if (insert) 3356 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3357 &inode->runtime_flags); 3358 return ret; 3359 } 3360 } 3361 3362 /* insert an orphan item to track this unlinked/truncated file */ 3363 if (insert >= 1) { 3364 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3365 if (ret) { 3366 atomic_dec(&root->orphan_inodes); 3367 if (reserve) { 3368 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3369 &inode->runtime_flags); 3370 btrfs_orphan_release_metadata(inode); 3371 } 3372 if (ret != -EEXIST) { 3373 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3374 &inode->runtime_flags); 3375 btrfs_abort_transaction(trans, ret); 3376 return ret; 3377 } 3378 } 3379 ret = 0; 3380 } 3381 3382 /* insert an orphan item to track subvolume contains orphan files */ 3383 if (insert >= 2) { 3384 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3385 root->root_key.objectid); 3386 if (ret && ret != -EEXIST) { 3387 btrfs_abort_transaction(trans, ret); 3388 return ret; 3389 } 3390 } 3391 return 0; 3392 } 3393 3394 /* 3395 * We have done the truncate/delete so we can go ahead and remove the orphan 3396 * item for this particular inode. 3397 */ 3398 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3399 struct btrfs_inode *inode) 3400 { 3401 struct btrfs_root *root = inode->root; 3402 int delete_item = 0; 3403 int release_rsv = 0; 3404 int ret = 0; 3405 3406 spin_lock(&root->orphan_lock); 3407 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3408 &inode->runtime_flags)) 3409 delete_item = 1; 3410 3411 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3412 &inode->runtime_flags)) 3413 release_rsv = 1; 3414 spin_unlock(&root->orphan_lock); 3415 3416 if (delete_item) { 3417 atomic_dec(&root->orphan_inodes); 3418 if (trans) 3419 ret = btrfs_del_orphan_item(trans, root, 3420 btrfs_ino(inode)); 3421 } 3422 3423 if (release_rsv) 3424 btrfs_orphan_release_metadata(inode); 3425 3426 return ret; 3427 } 3428 3429 /* 3430 * this cleans up any orphans that may be left on the list from the last use 3431 * of this root. 3432 */ 3433 int btrfs_orphan_cleanup(struct btrfs_root *root) 3434 { 3435 struct btrfs_fs_info *fs_info = root->fs_info; 3436 struct btrfs_path *path; 3437 struct extent_buffer *leaf; 3438 struct btrfs_key key, found_key; 3439 struct btrfs_trans_handle *trans; 3440 struct inode *inode; 3441 u64 last_objectid = 0; 3442 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3443 3444 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3445 return 0; 3446 3447 path = btrfs_alloc_path(); 3448 if (!path) { 3449 ret = -ENOMEM; 3450 goto out; 3451 } 3452 path->reada = READA_BACK; 3453 3454 key.objectid = BTRFS_ORPHAN_OBJECTID; 3455 key.type = BTRFS_ORPHAN_ITEM_KEY; 3456 key.offset = (u64)-1; 3457 3458 while (1) { 3459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3460 if (ret < 0) 3461 goto out; 3462 3463 /* 3464 * if ret == 0 means we found what we were searching for, which 3465 * is weird, but possible, so only screw with path if we didn't 3466 * find the key and see if we have stuff that matches 3467 */ 3468 if (ret > 0) { 3469 ret = 0; 3470 if (path->slots[0] == 0) 3471 break; 3472 path->slots[0]--; 3473 } 3474 3475 /* pull out the item */ 3476 leaf = path->nodes[0]; 3477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3478 3479 /* make sure the item matches what we want */ 3480 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3481 break; 3482 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3483 break; 3484 3485 /* release the path since we're done with it */ 3486 btrfs_release_path(path); 3487 3488 /* 3489 * this is where we are basically btrfs_lookup, without the 3490 * crossing root thing. we store the inode number in the 3491 * offset of the orphan item. 3492 */ 3493 3494 if (found_key.offset == last_objectid) { 3495 btrfs_err(fs_info, 3496 "Error removing orphan entry, stopping orphan cleanup"); 3497 ret = -EINVAL; 3498 goto out; 3499 } 3500 3501 last_objectid = found_key.offset; 3502 3503 found_key.objectid = found_key.offset; 3504 found_key.type = BTRFS_INODE_ITEM_KEY; 3505 found_key.offset = 0; 3506 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3507 ret = PTR_ERR_OR_ZERO(inode); 3508 if (ret && ret != -ENOENT) 3509 goto out; 3510 3511 if (ret == -ENOENT && root == fs_info->tree_root) { 3512 struct btrfs_root *dead_root; 3513 struct btrfs_fs_info *fs_info = root->fs_info; 3514 int is_dead_root = 0; 3515 3516 /* 3517 * this is an orphan in the tree root. Currently these 3518 * could come from 2 sources: 3519 * a) a snapshot deletion in progress 3520 * b) a free space cache inode 3521 * We need to distinguish those two, as the snapshot 3522 * orphan must not get deleted. 3523 * find_dead_roots already ran before us, so if this 3524 * is a snapshot deletion, we should find the root 3525 * in the dead_roots list 3526 */ 3527 spin_lock(&fs_info->trans_lock); 3528 list_for_each_entry(dead_root, &fs_info->dead_roots, 3529 root_list) { 3530 if (dead_root->root_key.objectid == 3531 found_key.objectid) { 3532 is_dead_root = 1; 3533 break; 3534 } 3535 } 3536 spin_unlock(&fs_info->trans_lock); 3537 if (is_dead_root) { 3538 /* prevent this orphan from being found again */ 3539 key.offset = found_key.objectid - 1; 3540 continue; 3541 } 3542 } 3543 /* 3544 * Inode is already gone but the orphan item is still there, 3545 * kill the orphan item. 3546 */ 3547 if (ret == -ENOENT) { 3548 trans = btrfs_start_transaction(root, 1); 3549 if (IS_ERR(trans)) { 3550 ret = PTR_ERR(trans); 3551 goto out; 3552 } 3553 btrfs_debug(fs_info, "auto deleting %Lu", 3554 found_key.objectid); 3555 ret = btrfs_del_orphan_item(trans, root, 3556 found_key.objectid); 3557 btrfs_end_transaction(trans); 3558 if (ret) 3559 goto out; 3560 continue; 3561 } 3562 3563 /* 3564 * add this inode to the orphan list so btrfs_orphan_del does 3565 * the proper thing when we hit it 3566 */ 3567 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3568 &BTRFS_I(inode)->runtime_flags); 3569 atomic_inc(&root->orphan_inodes); 3570 3571 /* if we have links, this was a truncate, lets do that */ 3572 if (inode->i_nlink) { 3573 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3574 iput(inode); 3575 continue; 3576 } 3577 nr_truncate++; 3578 3579 /* 1 for the orphan item deletion. */ 3580 trans = btrfs_start_transaction(root, 1); 3581 if (IS_ERR(trans)) { 3582 iput(inode); 3583 ret = PTR_ERR(trans); 3584 goto out; 3585 } 3586 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3587 btrfs_end_transaction(trans); 3588 if (ret) { 3589 iput(inode); 3590 goto out; 3591 } 3592 3593 ret = btrfs_truncate(inode); 3594 if (ret) 3595 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3596 } else { 3597 nr_unlink++; 3598 } 3599 3600 /* this will do delete_inode and everything for us */ 3601 iput(inode); 3602 if (ret) 3603 goto out; 3604 } 3605 /* release the path since we're done with it */ 3606 btrfs_release_path(path); 3607 3608 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3609 3610 if (root->orphan_block_rsv) 3611 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3612 (u64)-1); 3613 3614 if (root->orphan_block_rsv || 3615 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3616 trans = btrfs_join_transaction(root); 3617 if (!IS_ERR(trans)) 3618 btrfs_end_transaction(trans); 3619 } 3620 3621 if (nr_unlink) 3622 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3623 if (nr_truncate) 3624 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3625 3626 out: 3627 if (ret) 3628 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3629 btrfs_free_path(path); 3630 return ret; 3631 } 3632 3633 /* 3634 * very simple check to peek ahead in the leaf looking for xattrs. If we 3635 * don't find any xattrs, we know there can't be any acls. 3636 * 3637 * slot is the slot the inode is in, objectid is the objectid of the inode 3638 */ 3639 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3640 int slot, u64 objectid, 3641 int *first_xattr_slot) 3642 { 3643 u32 nritems = btrfs_header_nritems(leaf); 3644 struct btrfs_key found_key; 3645 static u64 xattr_access = 0; 3646 static u64 xattr_default = 0; 3647 int scanned = 0; 3648 3649 if (!xattr_access) { 3650 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3651 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3652 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3653 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3654 } 3655 3656 slot++; 3657 *first_xattr_slot = -1; 3658 while (slot < nritems) { 3659 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3660 3661 /* we found a different objectid, there must not be acls */ 3662 if (found_key.objectid != objectid) 3663 return 0; 3664 3665 /* we found an xattr, assume we've got an acl */ 3666 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3667 if (*first_xattr_slot == -1) 3668 *first_xattr_slot = slot; 3669 if (found_key.offset == xattr_access || 3670 found_key.offset == xattr_default) 3671 return 1; 3672 } 3673 3674 /* 3675 * we found a key greater than an xattr key, there can't 3676 * be any acls later on 3677 */ 3678 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3679 return 0; 3680 3681 slot++; 3682 scanned++; 3683 3684 /* 3685 * it goes inode, inode backrefs, xattrs, extents, 3686 * so if there are a ton of hard links to an inode there can 3687 * be a lot of backrefs. Don't waste time searching too hard, 3688 * this is just an optimization 3689 */ 3690 if (scanned >= 8) 3691 break; 3692 } 3693 /* we hit the end of the leaf before we found an xattr or 3694 * something larger than an xattr. We have to assume the inode 3695 * has acls 3696 */ 3697 if (*first_xattr_slot == -1) 3698 *first_xattr_slot = slot; 3699 return 1; 3700 } 3701 3702 /* 3703 * read an inode from the btree into the in-memory inode 3704 */ 3705 static int btrfs_read_locked_inode(struct inode *inode) 3706 { 3707 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3708 struct btrfs_path *path; 3709 struct extent_buffer *leaf; 3710 struct btrfs_inode_item *inode_item; 3711 struct btrfs_root *root = BTRFS_I(inode)->root; 3712 struct btrfs_key location; 3713 unsigned long ptr; 3714 int maybe_acls; 3715 u32 rdev; 3716 int ret; 3717 bool filled = false; 3718 int first_xattr_slot; 3719 3720 ret = btrfs_fill_inode(inode, &rdev); 3721 if (!ret) 3722 filled = true; 3723 3724 path = btrfs_alloc_path(); 3725 if (!path) { 3726 ret = -ENOMEM; 3727 goto make_bad; 3728 } 3729 3730 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3731 3732 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3733 if (ret) { 3734 if (ret > 0) 3735 ret = -ENOENT; 3736 goto make_bad; 3737 } 3738 3739 leaf = path->nodes[0]; 3740 3741 if (filled) 3742 goto cache_index; 3743 3744 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3745 struct btrfs_inode_item); 3746 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3747 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3748 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3749 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3750 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3751 3752 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3753 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3754 3755 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3756 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3757 3758 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3759 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3760 3761 BTRFS_I(inode)->i_otime.tv_sec = 3762 btrfs_timespec_sec(leaf, &inode_item->otime); 3763 BTRFS_I(inode)->i_otime.tv_nsec = 3764 btrfs_timespec_nsec(leaf, &inode_item->otime); 3765 3766 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3767 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3768 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3769 3770 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3771 inode->i_generation = BTRFS_I(inode)->generation; 3772 inode->i_rdev = 0; 3773 rdev = btrfs_inode_rdev(leaf, inode_item); 3774 3775 BTRFS_I(inode)->index_cnt = (u64)-1; 3776 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3777 3778 cache_index: 3779 /* 3780 * If we were modified in the current generation and evicted from memory 3781 * and then re-read we need to do a full sync since we don't have any 3782 * idea about which extents were modified before we were evicted from 3783 * cache. 3784 * 3785 * This is required for both inode re-read from disk and delayed inode 3786 * in delayed_nodes_tree. 3787 */ 3788 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3789 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3790 &BTRFS_I(inode)->runtime_flags); 3791 3792 /* 3793 * We don't persist the id of the transaction where an unlink operation 3794 * against the inode was last made. So here we assume the inode might 3795 * have been evicted, and therefore the exact value of last_unlink_trans 3796 * lost, and set it to last_trans to avoid metadata inconsistencies 3797 * between the inode and its parent if the inode is fsync'ed and the log 3798 * replayed. For example, in the scenario: 3799 * 3800 * touch mydir/foo 3801 * ln mydir/foo mydir/bar 3802 * sync 3803 * unlink mydir/bar 3804 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3805 * xfs_io -c fsync mydir/foo 3806 * <power failure> 3807 * mount fs, triggers fsync log replay 3808 * 3809 * We must make sure that when we fsync our inode foo we also log its 3810 * parent inode, otherwise after log replay the parent still has the 3811 * dentry with the "bar" name but our inode foo has a link count of 1 3812 * and doesn't have an inode ref with the name "bar" anymore. 3813 * 3814 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3815 * but it guarantees correctness at the expense of occasional full 3816 * transaction commits on fsync if our inode is a directory, or if our 3817 * inode is not a directory, logging its parent unnecessarily. 3818 */ 3819 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3820 3821 path->slots[0]++; 3822 if (inode->i_nlink != 1 || 3823 path->slots[0] >= btrfs_header_nritems(leaf)) 3824 goto cache_acl; 3825 3826 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3827 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3828 goto cache_acl; 3829 3830 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3831 if (location.type == BTRFS_INODE_REF_KEY) { 3832 struct btrfs_inode_ref *ref; 3833 3834 ref = (struct btrfs_inode_ref *)ptr; 3835 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3836 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3837 struct btrfs_inode_extref *extref; 3838 3839 extref = (struct btrfs_inode_extref *)ptr; 3840 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3841 extref); 3842 } 3843 cache_acl: 3844 /* 3845 * try to precache a NULL acl entry for files that don't have 3846 * any xattrs or acls 3847 */ 3848 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3849 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3850 if (first_xattr_slot != -1) { 3851 path->slots[0] = first_xattr_slot; 3852 ret = btrfs_load_inode_props(inode, path); 3853 if (ret) 3854 btrfs_err(fs_info, 3855 "error loading props for ino %llu (root %llu): %d", 3856 btrfs_ino(BTRFS_I(inode)), 3857 root->root_key.objectid, ret); 3858 } 3859 btrfs_free_path(path); 3860 3861 if (!maybe_acls) 3862 cache_no_acl(inode); 3863 3864 switch (inode->i_mode & S_IFMT) { 3865 case S_IFREG: 3866 inode->i_mapping->a_ops = &btrfs_aops; 3867 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3868 inode->i_fop = &btrfs_file_operations; 3869 inode->i_op = &btrfs_file_inode_operations; 3870 break; 3871 case S_IFDIR: 3872 inode->i_fop = &btrfs_dir_file_operations; 3873 inode->i_op = &btrfs_dir_inode_operations; 3874 break; 3875 case S_IFLNK: 3876 inode->i_op = &btrfs_symlink_inode_operations; 3877 inode_nohighmem(inode); 3878 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3879 break; 3880 default: 3881 inode->i_op = &btrfs_special_inode_operations; 3882 init_special_inode(inode, inode->i_mode, rdev); 3883 break; 3884 } 3885 3886 btrfs_update_iflags(inode); 3887 return 0; 3888 3889 make_bad: 3890 btrfs_free_path(path); 3891 make_bad_inode(inode); 3892 return ret; 3893 } 3894 3895 /* 3896 * given a leaf and an inode, copy the inode fields into the leaf 3897 */ 3898 static void fill_inode_item(struct btrfs_trans_handle *trans, 3899 struct extent_buffer *leaf, 3900 struct btrfs_inode_item *item, 3901 struct inode *inode) 3902 { 3903 struct btrfs_map_token token; 3904 3905 btrfs_init_map_token(&token); 3906 3907 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3908 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3909 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3910 &token); 3911 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3912 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3913 3914 btrfs_set_token_timespec_sec(leaf, &item->atime, 3915 inode->i_atime.tv_sec, &token); 3916 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3917 inode->i_atime.tv_nsec, &token); 3918 3919 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3920 inode->i_mtime.tv_sec, &token); 3921 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3922 inode->i_mtime.tv_nsec, &token); 3923 3924 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3925 inode->i_ctime.tv_sec, &token); 3926 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3927 inode->i_ctime.tv_nsec, &token); 3928 3929 btrfs_set_token_timespec_sec(leaf, &item->otime, 3930 BTRFS_I(inode)->i_otime.tv_sec, &token); 3931 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3932 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3933 3934 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3935 &token); 3936 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3937 &token); 3938 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3939 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3940 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3941 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3942 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3943 } 3944 3945 /* 3946 * copy everything in the in-memory inode into the btree. 3947 */ 3948 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3949 struct btrfs_root *root, struct inode *inode) 3950 { 3951 struct btrfs_inode_item *inode_item; 3952 struct btrfs_path *path; 3953 struct extent_buffer *leaf; 3954 int ret; 3955 3956 path = btrfs_alloc_path(); 3957 if (!path) 3958 return -ENOMEM; 3959 3960 path->leave_spinning = 1; 3961 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3962 1); 3963 if (ret) { 3964 if (ret > 0) 3965 ret = -ENOENT; 3966 goto failed; 3967 } 3968 3969 leaf = path->nodes[0]; 3970 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3971 struct btrfs_inode_item); 3972 3973 fill_inode_item(trans, leaf, inode_item, inode); 3974 btrfs_mark_buffer_dirty(leaf); 3975 btrfs_set_inode_last_trans(trans, inode); 3976 ret = 0; 3977 failed: 3978 btrfs_free_path(path); 3979 return ret; 3980 } 3981 3982 /* 3983 * copy everything in the in-memory inode into the btree. 3984 */ 3985 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3986 struct btrfs_root *root, struct inode *inode) 3987 { 3988 struct btrfs_fs_info *fs_info = root->fs_info; 3989 int ret; 3990 3991 /* 3992 * If the inode is a free space inode, we can deadlock during commit 3993 * if we put it into the delayed code. 3994 * 3995 * The data relocation inode should also be directly updated 3996 * without delay 3997 */ 3998 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3999 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4000 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4001 btrfs_update_root_times(trans, root); 4002 4003 ret = btrfs_delayed_update_inode(trans, root, inode); 4004 if (!ret) 4005 btrfs_set_inode_last_trans(trans, inode); 4006 return ret; 4007 } 4008 4009 return btrfs_update_inode_item(trans, root, inode); 4010 } 4011 4012 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4013 struct btrfs_root *root, 4014 struct inode *inode) 4015 { 4016 int ret; 4017 4018 ret = btrfs_update_inode(trans, root, inode); 4019 if (ret == -ENOSPC) 4020 return btrfs_update_inode_item(trans, root, inode); 4021 return ret; 4022 } 4023 4024 /* 4025 * unlink helper that gets used here in inode.c and in the tree logging 4026 * recovery code. It remove a link in a directory with a given name, and 4027 * also drops the back refs in the inode to the directory 4028 */ 4029 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4030 struct btrfs_root *root, 4031 struct btrfs_inode *dir, 4032 struct btrfs_inode *inode, 4033 const char *name, int name_len) 4034 { 4035 struct btrfs_fs_info *fs_info = root->fs_info; 4036 struct btrfs_path *path; 4037 int ret = 0; 4038 struct extent_buffer *leaf; 4039 struct btrfs_dir_item *di; 4040 struct btrfs_key key; 4041 u64 index; 4042 u64 ino = btrfs_ino(inode); 4043 u64 dir_ino = btrfs_ino(dir); 4044 4045 path = btrfs_alloc_path(); 4046 if (!path) { 4047 ret = -ENOMEM; 4048 goto out; 4049 } 4050 4051 path->leave_spinning = 1; 4052 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4053 name, name_len, -1); 4054 if (IS_ERR(di)) { 4055 ret = PTR_ERR(di); 4056 goto err; 4057 } 4058 if (!di) { 4059 ret = -ENOENT; 4060 goto err; 4061 } 4062 leaf = path->nodes[0]; 4063 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4064 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4065 if (ret) 4066 goto err; 4067 btrfs_release_path(path); 4068 4069 /* 4070 * If we don't have dir index, we have to get it by looking up 4071 * the inode ref, since we get the inode ref, remove it directly, 4072 * it is unnecessary to do delayed deletion. 4073 * 4074 * But if we have dir index, needn't search inode ref to get it. 4075 * Since the inode ref is close to the inode item, it is better 4076 * that we delay to delete it, and just do this deletion when 4077 * we update the inode item. 4078 */ 4079 if (inode->dir_index) { 4080 ret = btrfs_delayed_delete_inode_ref(inode); 4081 if (!ret) { 4082 index = inode->dir_index; 4083 goto skip_backref; 4084 } 4085 } 4086 4087 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4088 dir_ino, &index); 4089 if (ret) { 4090 btrfs_info(fs_info, 4091 "failed to delete reference to %.*s, inode %llu parent %llu", 4092 name_len, name, ino, dir_ino); 4093 btrfs_abort_transaction(trans, ret); 4094 goto err; 4095 } 4096 skip_backref: 4097 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4098 if (ret) { 4099 btrfs_abort_transaction(trans, ret); 4100 goto err; 4101 } 4102 4103 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4104 dir_ino); 4105 if (ret != 0 && ret != -ENOENT) { 4106 btrfs_abort_transaction(trans, ret); 4107 goto err; 4108 } 4109 4110 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4111 index); 4112 if (ret == -ENOENT) 4113 ret = 0; 4114 else if (ret) 4115 btrfs_abort_transaction(trans, ret); 4116 err: 4117 btrfs_free_path(path); 4118 if (ret) 4119 goto out; 4120 4121 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4122 inode_inc_iversion(&inode->vfs_inode); 4123 inode_inc_iversion(&dir->vfs_inode); 4124 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4125 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4126 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4127 out: 4128 return ret; 4129 } 4130 4131 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4132 struct btrfs_root *root, 4133 struct btrfs_inode *dir, struct btrfs_inode *inode, 4134 const char *name, int name_len) 4135 { 4136 int ret; 4137 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4138 if (!ret) { 4139 drop_nlink(&inode->vfs_inode); 4140 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4141 } 4142 return ret; 4143 } 4144 4145 /* 4146 * helper to start transaction for unlink and rmdir. 4147 * 4148 * unlink and rmdir are special in btrfs, they do not always free space, so 4149 * if we cannot make our reservations the normal way try and see if there is 4150 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4151 * allow the unlink to occur. 4152 */ 4153 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4154 { 4155 struct btrfs_root *root = BTRFS_I(dir)->root; 4156 4157 /* 4158 * 1 for the possible orphan item 4159 * 1 for the dir item 4160 * 1 for the dir index 4161 * 1 for the inode ref 4162 * 1 for the inode 4163 */ 4164 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4165 } 4166 4167 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4168 { 4169 struct btrfs_root *root = BTRFS_I(dir)->root; 4170 struct btrfs_trans_handle *trans; 4171 struct inode *inode = d_inode(dentry); 4172 int ret; 4173 4174 trans = __unlink_start_trans(dir); 4175 if (IS_ERR(trans)) 4176 return PTR_ERR(trans); 4177 4178 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4179 0); 4180 4181 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4182 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4183 dentry->d_name.len); 4184 if (ret) 4185 goto out; 4186 4187 if (inode->i_nlink == 0) { 4188 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4189 if (ret) 4190 goto out; 4191 } 4192 4193 out: 4194 btrfs_end_transaction(trans); 4195 btrfs_btree_balance_dirty(root->fs_info); 4196 return ret; 4197 } 4198 4199 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4200 struct btrfs_root *root, 4201 struct inode *dir, u64 objectid, 4202 const char *name, int name_len) 4203 { 4204 struct btrfs_fs_info *fs_info = root->fs_info; 4205 struct btrfs_path *path; 4206 struct extent_buffer *leaf; 4207 struct btrfs_dir_item *di; 4208 struct btrfs_key key; 4209 u64 index; 4210 int ret; 4211 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4212 4213 path = btrfs_alloc_path(); 4214 if (!path) 4215 return -ENOMEM; 4216 4217 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4218 name, name_len, -1); 4219 if (IS_ERR_OR_NULL(di)) { 4220 if (!di) 4221 ret = -ENOENT; 4222 else 4223 ret = PTR_ERR(di); 4224 goto out; 4225 } 4226 4227 leaf = path->nodes[0]; 4228 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4229 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4230 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4231 if (ret) { 4232 btrfs_abort_transaction(trans, ret); 4233 goto out; 4234 } 4235 btrfs_release_path(path); 4236 4237 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4238 root->root_key.objectid, dir_ino, 4239 &index, name, name_len); 4240 if (ret < 0) { 4241 if (ret != -ENOENT) { 4242 btrfs_abort_transaction(trans, ret); 4243 goto out; 4244 } 4245 di = btrfs_search_dir_index_item(root, path, dir_ino, 4246 name, name_len); 4247 if (IS_ERR_OR_NULL(di)) { 4248 if (!di) 4249 ret = -ENOENT; 4250 else 4251 ret = PTR_ERR(di); 4252 btrfs_abort_transaction(trans, ret); 4253 goto out; 4254 } 4255 4256 leaf = path->nodes[0]; 4257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4258 btrfs_release_path(path); 4259 index = key.offset; 4260 } 4261 btrfs_release_path(path); 4262 4263 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4264 if (ret) { 4265 btrfs_abort_transaction(trans, ret); 4266 goto out; 4267 } 4268 4269 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4270 inode_inc_iversion(dir); 4271 dir->i_mtime = dir->i_ctime = current_time(dir); 4272 ret = btrfs_update_inode_fallback(trans, root, dir); 4273 if (ret) 4274 btrfs_abort_transaction(trans, ret); 4275 out: 4276 btrfs_free_path(path); 4277 return ret; 4278 } 4279 4280 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4281 { 4282 struct inode *inode = d_inode(dentry); 4283 int err = 0; 4284 struct btrfs_root *root = BTRFS_I(dir)->root; 4285 struct btrfs_trans_handle *trans; 4286 u64 last_unlink_trans; 4287 4288 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4289 return -ENOTEMPTY; 4290 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4291 return -EPERM; 4292 4293 trans = __unlink_start_trans(dir); 4294 if (IS_ERR(trans)) 4295 return PTR_ERR(trans); 4296 4297 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4298 err = btrfs_unlink_subvol(trans, root, dir, 4299 BTRFS_I(inode)->location.objectid, 4300 dentry->d_name.name, 4301 dentry->d_name.len); 4302 goto out; 4303 } 4304 4305 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4306 if (err) 4307 goto out; 4308 4309 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4310 4311 /* now the directory is empty */ 4312 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4313 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4314 dentry->d_name.len); 4315 if (!err) { 4316 btrfs_i_size_write(BTRFS_I(inode), 0); 4317 /* 4318 * Propagate the last_unlink_trans value of the deleted dir to 4319 * its parent directory. This is to prevent an unrecoverable 4320 * log tree in the case we do something like this: 4321 * 1) create dir foo 4322 * 2) create snapshot under dir foo 4323 * 3) delete the snapshot 4324 * 4) rmdir foo 4325 * 5) mkdir foo 4326 * 6) fsync foo or some file inside foo 4327 */ 4328 if (last_unlink_trans >= trans->transid) 4329 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4330 } 4331 out: 4332 btrfs_end_transaction(trans); 4333 btrfs_btree_balance_dirty(root->fs_info); 4334 4335 return err; 4336 } 4337 4338 static int truncate_space_check(struct btrfs_trans_handle *trans, 4339 struct btrfs_root *root, 4340 u64 bytes_deleted) 4341 { 4342 struct btrfs_fs_info *fs_info = root->fs_info; 4343 int ret; 4344 4345 /* 4346 * This is only used to apply pressure to the enospc system, we don't 4347 * intend to use this reservation at all. 4348 */ 4349 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4350 bytes_deleted *= fs_info->nodesize; 4351 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4352 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4353 if (!ret) { 4354 trace_btrfs_space_reservation(fs_info, "transaction", 4355 trans->transid, 4356 bytes_deleted, 1); 4357 trans->bytes_reserved += bytes_deleted; 4358 } 4359 return ret; 4360 4361 } 4362 4363 static int truncate_inline_extent(struct inode *inode, 4364 struct btrfs_path *path, 4365 struct btrfs_key *found_key, 4366 const u64 item_end, 4367 const u64 new_size) 4368 { 4369 struct extent_buffer *leaf = path->nodes[0]; 4370 int slot = path->slots[0]; 4371 struct btrfs_file_extent_item *fi; 4372 u32 size = (u32)(new_size - found_key->offset); 4373 struct btrfs_root *root = BTRFS_I(inode)->root; 4374 4375 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4376 4377 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4378 loff_t offset = new_size; 4379 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4380 4381 /* 4382 * Zero out the remaining of the last page of our inline extent, 4383 * instead of directly truncating our inline extent here - that 4384 * would be much more complex (decompressing all the data, then 4385 * compressing the truncated data, which might be bigger than 4386 * the size of the inline extent, resize the extent, etc). 4387 * We release the path because to get the page we might need to 4388 * read the extent item from disk (data not in the page cache). 4389 */ 4390 btrfs_release_path(path); 4391 return btrfs_truncate_block(inode, offset, page_end - offset, 4392 0); 4393 } 4394 4395 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4396 size = btrfs_file_extent_calc_inline_size(size); 4397 btrfs_truncate_item(root->fs_info, path, size, 1); 4398 4399 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4400 inode_sub_bytes(inode, item_end + 1 - new_size); 4401 4402 return 0; 4403 } 4404 4405 /* 4406 * this can truncate away extent items, csum items and directory items. 4407 * It starts at a high offset and removes keys until it can't find 4408 * any higher than new_size 4409 * 4410 * csum items that cross the new i_size are truncated to the new size 4411 * as well. 4412 * 4413 * min_type is the minimum key type to truncate down to. If set to 0, this 4414 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4415 */ 4416 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4417 struct btrfs_root *root, 4418 struct inode *inode, 4419 u64 new_size, u32 min_type) 4420 { 4421 struct btrfs_fs_info *fs_info = root->fs_info; 4422 struct btrfs_path *path; 4423 struct extent_buffer *leaf; 4424 struct btrfs_file_extent_item *fi; 4425 struct btrfs_key key; 4426 struct btrfs_key found_key; 4427 u64 extent_start = 0; 4428 u64 extent_num_bytes = 0; 4429 u64 extent_offset = 0; 4430 u64 item_end = 0; 4431 u64 last_size = new_size; 4432 u32 found_type = (u8)-1; 4433 int found_extent; 4434 int del_item; 4435 int pending_del_nr = 0; 4436 int pending_del_slot = 0; 4437 int extent_type = -1; 4438 int ret; 4439 int err = 0; 4440 u64 ino = btrfs_ino(BTRFS_I(inode)); 4441 u64 bytes_deleted = 0; 4442 bool be_nice = 0; 4443 bool should_throttle = 0; 4444 bool should_end = 0; 4445 4446 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4447 4448 /* 4449 * for non-free space inodes and ref cows, we want to back off from 4450 * time to time 4451 */ 4452 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4453 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4454 be_nice = 1; 4455 4456 path = btrfs_alloc_path(); 4457 if (!path) 4458 return -ENOMEM; 4459 path->reada = READA_BACK; 4460 4461 /* 4462 * We want to drop from the next block forward in case this new size is 4463 * not block aligned since we will be keeping the last block of the 4464 * extent just the way it is. 4465 */ 4466 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4467 root == fs_info->tree_root) 4468 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4469 fs_info->sectorsize), 4470 (u64)-1, 0); 4471 4472 /* 4473 * This function is also used to drop the items in the log tree before 4474 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4475 * it is used to drop the loged items. So we shouldn't kill the delayed 4476 * items. 4477 */ 4478 if (min_type == 0 && root == BTRFS_I(inode)->root) 4479 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4480 4481 key.objectid = ino; 4482 key.offset = (u64)-1; 4483 key.type = (u8)-1; 4484 4485 search_again: 4486 /* 4487 * with a 16K leaf size and 128MB extents, you can actually queue 4488 * up a huge file in a single leaf. Most of the time that 4489 * bytes_deleted is > 0, it will be huge by the time we get here 4490 */ 4491 if (be_nice && bytes_deleted > SZ_32M) { 4492 if (btrfs_should_end_transaction(trans)) { 4493 err = -EAGAIN; 4494 goto error; 4495 } 4496 } 4497 4498 4499 path->leave_spinning = 1; 4500 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4501 if (ret < 0) { 4502 err = ret; 4503 goto out; 4504 } 4505 4506 if (ret > 0) { 4507 /* there are no items in the tree for us to truncate, we're 4508 * done 4509 */ 4510 if (path->slots[0] == 0) 4511 goto out; 4512 path->slots[0]--; 4513 } 4514 4515 while (1) { 4516 fi = NULL; 4517 leaf = path->nodes[0]; 4518 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4519 found_type = found_key.type; 4520 4521 if (found_key.objectid != ino) 4522 break; 4523 4524 if (found_type < min_type) 4525 break; 4526 4527 item_end = found_key.offset; 4528 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4529 fi = btrfs_item_ptr(leaf, path->slots[0], 4530 struct btrfs_file_extent_item); 4531 extent_type = btrfs_file_extent_type(leaf, fi); 4532 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4533 item_end += 4534 btrfs_file_extent_num_bytes(leaf, fi); 4535 4536 trace_btrfs_truncate_show_fi_regular( 4537 BTRFS_I(inode), leaf, fi, 4538 found_key.offset); 4539 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4540 item_end += btrfs_file_extent_inline_len(leaf, 4541 path->slots[0], fi); 4542 4543 trace_btrfs_truncate_show_fi_inline( 4544 BTRFS_I(inode), leaf, fi, path->slots[0], 4545 found_key.offset); 4546 } 4547 item_end--; 4548 } 4549 if (found_type > min_type) { 4550 del_item = 1; 4551 } else { 4552 if (item_end < new_size) 4553 break; 4554 if (found_key.offset >= new_size) 4555 del_item = 1; 4556 else 4557 del_item = 0; 4558 } 4559 found_extent = 0; 4560 /* FIXME, shrink the extent if the ref count is only 1 */ 4561 if (found_type != BTRFS_EXTENT_DATA_KEY) 4562 goto delete; 4563 4564 if (del_item) 4565 last_size = found_key.offset; 4566 else 4567 last_size = new_size; 4568 4569 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4570 u64 num_dec; 4571 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4572 if (!del_item) { 4573 u64 orig_num_bytes = 4574 btrfs_file_extent_num_bytes(leaf, fi); 4575 extent_num_bytes = ALIGN(new_size - 4576 found_key.offset, 4577 fs_info->sectorsize); 4578 btrfs_set_file_extent_num_bytes(leaf, fi, 4579 extent_num_bytes); 4580 num_dec = (orig_num_bytes - 4581 extent_num_bytes); 4582 if (test_bit(BTRFS_ROOT_REF_COWS, 4583 &root->state) && 4584 extent_start != 0) 4585 inode_sub_bytes(inode, num_dec); 4586 btrfs_mark_buffer_dirty(leaf); 4587 } else { 4588 extent_num_bytes = 4589 btrfs_file_extent_disk_num_bytes(leaf, 4590 fi); 4591 extent_offset = found_key.offset - 4592 btrfs_file_extent_offset(leaf, fi); 4593 4594 /* FIXME blocksize != 4096 */ 4595 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4596 if (extent_start != 0) { 4597 found_extent = 1; 4598 if (test_bit(BTRFS_ROOT_REF_COWS, 4599 &root->state)) 4600 inode_sub_bytes(inode, num_dec); 4601 } 4602 } 4603 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4604 /* 4605 * we can't truncate inline items that have had 4606 * special encodings 4607 */ 4608 if (!del_item && 4609 btrfs_file_extent_encryption(leaf, fi) == 0 && 4610 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4611 4612 /* 4613 * Need to release path in order to truncate a 4614 * compressed extent. So delete any accumulated 4615 * extent items so far. 4616 */ 4617 if (btrfs_file_extent_compression(leaf, fi) != 4618 BTRFS_COMPRESS_NONE && pending_del_nr) { 4619 err = btrfs_del_items(trans, root, path, 4620 pending_del_slot, 4621 pending_del_nr); 4622 if (err) { 4623 btrfs_abort_transaction(trans, 4624 err); 4625 goto error; 4626 } 4627 pending_del_nr = 0; 4628 } 4629 4630 err = truncate_inline_extent(inode, path, 4631 &found_key, 4632 item_end, 4633 new_size); 4634 if (err) { 4635 btrfs_abort_transaction(trans, err); 4636 goto error; 4637 } 4638 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4639 &root->state)) { 4640 inode_sub_bytes(inode, item_end + 1 - new_size); 4641 } 4642 } 4643 delete: 4644 if (del_item) { 4645 if (!pending_del_nr) { 4646 /* no pending yet, add ourselves */ 4647 pending_del_slot = path->slots[0]; 4648 pending_del_nr = 1; 4649 } else if (pending_del_nr && 4650 path->slots[0] + 1 == pending_del_slot) { 4651 /* hop on the pending chunk */ 4652 pending_del_nr++; 4653 pending_del_slot = path->slots[0]; 4654 } else { 4655 BUG(); 4656 } 4657 } else { 4658 break; 4659 } 4660 should_throttle = 0; 4661 4662 if (found_extent && 4663 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4664 root == fs_info->tree_root)) { 4665 btrfs_set_path_blocking(path); 4666 bytes_deleted += extent_num_bytes; 4667 ret = btrfs_free_extent(trans, fs_info, extent_start, 4668 extent_num_bytes, 0, 4669 btrfs_header_owner(leaf), 4670 ino, extent_offset); 4671 BUG_ON(ret); 4672 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4673 btrfs_async_run_delayed_refs(fs_info, 4674 trans->delayed_ref_updates * 2, 4675 trans->transid, 0); 4676 if (be_nice) { 4677 if (truncate_space_check(trans, root, 4678 extent_num_bytes)) { 4679 should_end = 1; 4680 } 4681 if (btrfs_should_throttle_delayed_refs(trans, 4682 fs_info)) 4683 should_throttle = 1; 4684 } 4685 } 4686 4687 if (found_type == BTRFS_INODE_ITEM_KEY) 4688 break; 4689 4690 if (path->slots[0] == 0 || 4691 path->slots[0] != pending_del_slot || 4692 should_throttle || should_end) { 4693 if (pending_del_nr) { 4694 ret = btrfs_del_items(trans, root, path, 4695 pending_del_slot, 4696 pending_del_nr); 4697 if (ret) { 4698 btrfs_abort_transaction(trans, ret); 4699 goto error; 4700 } 4701 pending_del_nr = 0; 4702 } 4703 btrfs_release_path(path); 4704 if (should_throttle) { 4705 unsigned long updates = trans->delayed_ref_updates; 4706 if (updates) { 4707 trans->delayed_ref_updates = 0; 4708 ret = btrfs_run_delayed_refs(trans, 4709 fs_info, 4710 updates * 2); 4711 if (ret && !err) 4712 err = ret; 4713 } 4714 } 4715 /* 4716 * if we failed to refill our space rsv, bail out 4717 * and let the transaction restart 4718 */ 4719 if (should_end) { 4720 err = -EAGAIN; 4721 goto error; 4722 } 4723 goto search_again; 4724 } else { 4725 path->slots[0]--; 4726 } 4727 } 4728 out: 4729 if (pending_del_nr) { 4730 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4731 pending_del_nr); 4732 if (ret) 4733 btrfs_abort_transaction(trans, ret); 4734 } 4735 error: 4736 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4737 ASSERT(last_size >= new_size); 4738 if (!err && last_size > new_size) 4739 last_size = new_size; 4740 btrfs_ordered_update_i_size(inode, last_size, NULL); 4741 } 4742 4743 btrfs_free_path(path); 4744 4745 if (be_nice && bytes_deleted > SZ_32M) { 4746 unsigned long updates = trans->delayed_ref_updates; 4747 if (updates) { 4748 trans->delayed_ref_updates = 0; 4749 ret = btrfs_run_delayed_refs(trans, fs_info, 4750 updates * 2); 4751 if (ret && !err) 4752 err = ret; 4753 } 4754 } 4755 return err; 4756 } 4757 4758 /* 4759 * btrfs_truncate_block - read, zero a chunk and write a block 4760 * @inode - inode that we're zeroing 4761 * @from - the offset to start zeroing 4762 * @len - the length to zero, 0 to zero the entire range respective to the 4763 * offset 4764 * @front - zero up to the offset instead of from the offset on 4765 * 4766 * This will find the block for the "from" offset and cow the block and zero the 4767 * part we want to zero. This is used with truncate and hole punching. 4768 */ 4769 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4770 int front) 4771 { 4772 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4773 struct address_space *mapping = inode->i_mapping; 4774 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4775 struct btrfs_ordered_extent *ordered; 4776 struct extent_state *cached_state = NULL; 4777 struct extent_changeset *data_reserved = NULL; 4778 char *kaddr; 4779 u32 blocksize = fs_info->sectorsize; 4780 pgoff_t index = from >> PAGE_SHIFT; 4781 unsigned offset = from & (blocksize - 1); 4782 struct page *page; 4783 gfp_t mask = btrfs_alloc_write_mask(mapping); 4784 int ret = 0; 4785 u64 block_start; 4786 u64 block_end; 4787 4788 if ((offset & (blocksize - 1)) == 0 && 4789 (!len || ((len & (blocksize - 1)) == 0))) 4790 goto out; 4791 4792 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4793 round_down(from, blocksize), blocksize); 4794 if (ret) 4795 goto out; 4796 4797 again: 4798 page = find_or_create_page(mapping, index, mask); 4799 if (!page) { 4800 btrfs_delalloc_release_space(inode, data_reserved, 4801 round_down(from, blocksize), 4802 blocksize); 4803 ret = -ENOMEM; 4804 goto out; 4805 } 4806 4807 block_start = round_down(from, blocksize); 4808 block_end = block_start + blocksize - 1; 4809 4810 if (!PageUptodate(page)) { 4811 ret = btrfs_readpage(NULL, page); 4812 lock_page(page); 4813 if (page->mapping != mapping) { 4814 unlock_page(page); 4815 put_page(page); 4816 goto again; 4817 } 4818 if (!PageUptodate(page)) { 4819 ret = -EIO; 4820 goto out_unlock; 4821 } 4822 } 4823 wait_on_page_writeback(page); 4824 4825 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4826 set_page_extent_mapped(page); 4827 4828 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4829 if (ordered) { 4830 unlock_extent_cached(io_tree, block_start, block_end, 4831 &cached_state, GFP_NOFS); 4832 unlock_page(page); 4833 put_page(page); 4834 btrfs_start_ordered_extent(inode, ordered, 1); 4835 btrfs_put_ordered_extent(ordered); 4836 goto again; 4837 } 4838 4839 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4840 EXTENT_DIRTY | EXTENT_DELALLOC | 4841 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4842 0, 0, &cached_state, GFP_NOFS); 4843 4844 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4845 &cached_state, 0); 4846 if (ret) { 4847 unlock_extent_cached(io_tree, block_start, block_end, 4848 &cached_state, GFP_NOFS); 4849 goto out_unlock; 4850 } 4851 4852 if (offset != blocksize) { 4853 if (!len) 4854 len = blocksize - offset; 4855 kaddr = kmap(page); 4856 if (front) 4857 memset(kaddr + (block_start - page_offset(page)), 4858 0, offset); 4859 else 4860 memset(kaddr + (block_start - page_offset(page)) + offset, 4861 0, len); 4862 flush_dcache_page(page); 4863 kunmap(page); 4864 } 4865 ClearPageChecked(page); 4866 set_page_dirty(page); 4867 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4868 GFP_NOFS); 4869 4870 out_unlock: 4871 if (ret) 4872 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4873 blocksize); 4874 unlock_page(page); 4875 put_page(page); 4876 out: 4877 extent_changeset_free(data_reserved); 4878 return ret; 4879 } 4880 4881 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4882 u64 offset, u64 len) 4883 { 4884 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4885 struct btrfs_trans_handle *trans; 4886 int ret; 4887 4888 /* 4889 * Still need to make sure the inode looks like it's been updated so 4890 * that any holes get logged if we fsync. 4891 */ 4892 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4893 BTRFS_I(inode)->last_trans = fs_info->generation; 4894 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4895 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4896 return 0; 4897 } 4898 4899 /* 4900 * 1 - for the one we're dropping 4901 * 1 - for the one we're adding 4902 * 1 - for updating the inode. 4903 */ 4904 trans = btrfs_start_transaction(root, 3); 4905 if (IS_ERR(trans)) 4906 return PTR_ERR(trans); 4907 4908 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4909 if (ret) { 4910 btrfs_abort_transaction(trans, ret); 4911 btrfs_end_transaction(trans); 4912 return ret; 4913 } 4914 4915 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4916 offset, 0, 0, len, 0, len, 0, 0, 0); 4917 if (ret) 4918 btrfs_abort_transaction(trans, ret); 4919 else 4920 btrfs_update_inode(trans, root, inode); 4921 btrfs_end_transaction(trans); 4922 return ret; 4923 } 4924 4925 /* 4926 * This function puts in dummy file extents for the area we're creating a hole 4927 * for. So if we are truncating this file to a larger size we need to insert 4928 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4929 * the range between oldsize and size 4930 */ 4931 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4932 { 4933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4934 struct btrfs_root *root = BTRFS_I(inode)->root; 4935 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4936 struct extent_map *em = NULL; 4937 struct extent_state *cached_state = NULL; 4938 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4939 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4940 u64 block_end = ALIGN(size, fs_info->sectorsize); 4941 u64 last_byte; 4942 u64 cur_offset; 4943 u64 hole_size; 4944 int err = 0; 4945 4946 /* 4947 * If our size started in the middle of a block we need to zero out the 4948 * rest of the block before we expand the i_size, otherwise we could 4949 * expose stale data. 4950 */ 4951 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4952 if (err) 4953 return err; 4954 4955 if (size <= hole_start) 4956 return 0; 4957 4958 while (1) { 4959 struct btrfs_ordered_extent *ordered; 4960 4961 lock_extent_bits(io_tree, hole_start, block_end - 1, 4962 &cached_state); 4963 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4964 block_end - hole_start); 4965 if (!ordered) 4966 break; 4967 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4968 &cached_state, GFP_NOFS); 4969 btrfs_start_ordered_extent(inode, ordered, 1); 4970 btrfs_put_ordered_extent(ordered); 4971 } 4972 4973 cur_offset = hole_start; 4974 while (1) { 4975 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4976 block_end - cur_offset, 0); 4977 if (IS_ERR(em)) { 4978 err = PTR_ERR(em); 4979 em = NULL; 4980 break; 4981 } 4982 last_byte = min(extent_map_end(em), block_end); 4983 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4984 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4985 struct extent_map *hole_em; 4986 hole_size = last_byte - cur_offset; 4987 4988 err = maybe_insert_hole(root, inode, cur_offset, 4989 hole_size); 4990 if (err) 4991 break; 4992 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4993 cur_offset + hole_size - 1, 0); 4994 hole_em = alloc_extent_map(); 4995 if (!hole_em) { 4996 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4997 &BTRFS_I(inode)->runtime_flags); 4998 goto next; 4999 } 5000 hole_em->start = cur_offset; 5001 hole_em->len = hole_size; 5002 hole_em->orig_start = cur_offset; 5003 5004 hole_em->block_start = EXTENT_MAP_HOLE; 5005 hole_em->block_len = 0; 5006 hole_em->orig_block_len = 0; 5007 hole_em->ram_bytes = hole_size; 5008 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5009 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5010 hole_em->generation = fs_info->generation; 5011 5012 while (1) { 5013 write_lock(&em_tree->lock); 5014 err = add_extent_mapping(em_tree, hole_em, 1); 5015 write_unlock(&em_tree->lock); 5016 if (err != -EEXIST) 5017 break; 5018 btrfs_drop_extent_cache(BTRFS_I(inode), 5019 cur_offset, 5020 cur_offset + 5021 hole_size - 1, 0); 5022 } 5023 free_extent_map(hole_em); 5024 } 5025 next: 5026 free_extent_map(em); 5027 em = NULL; 5028 cur_offset = last_byte; 5029 if (cur_offset >= block_end) 5030 break; 5031 } 5032 free_extent_map(em); 5033 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 5034 GFP_NOFS); 5035 return err; 5036 } 5037 5038 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5039 { 5040 struct btrfs_root *root = BTRFS_I(inode)->root; 5041 struct btrfs_trans_handle *trans; 5042 loff_t oldsize = i_size_read(inode); 5043 loff_t newsize = attr->ia_size; 5044 int mask = attr->ia_valid; 5045 int ret; 5046 5047 /* 5048 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5049 * special case where we need to update the times despite not having 5050 * these flags set. For all other operations the VFS set these flags 5051 * explicitly if it wants a timestamp update. 5052 */ 5053 if (newsize != oldsize) { 5054 inode_inc_iversion(inode); 5055 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5056 inode->i_ctime = inode->i_mtime = 5057 current_time(inode); 5058 } 5059 5060 if (newsize > oldsize) { 5061 /* 5062 * Don't do an expanding truncate while snapshotting is ongoing. 5063 * This is to ensure the snapshot captures a fully consistent 5064 * state of this file - if the snapshot captures this expanding 5065 * truncation, it must capture all writes that happened before 5066 * this truncation. 5067 */ 5068 btrfs_wait_for_snapshot_creation(root); 5069 ret = btrfs_cont_expand(inode, oldsize, newsize); 5070 if (ret) { 5071 btrfs_end_write_no_snapshotting(root); 5072 return ret; 5073 } 5074 5075 trans = btrfs_start_transaction(root, 1); 5076 if (IS_ERR(trans)) { 5077 btrfs_end_write_no_snapshotting(root); 5078 return PTR_ERR(trans); 5079 } 5080 5081 i_size_write(inode, newsize); 5082 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5083 pagecache_isize_extended(inode, oldsize, newsize); 5084 ret = btrfs_update_inode(trans, root, inode); 5085 btrfs_end_write_no_snapshotting(root); 5086 btrfs_end_transaction(trans); 5087 } else { 5088 5089 /* 5090 * We're truncating a file that used to have good data down to 5091 * zero. Make sure it gets into the ordered flush list so that 5092 * any new writes get down to disk quickly. 5093 */ 5094 if (newsize == 0) 5095 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5096 &BTRFS_I(inode)->runtime_flags); 5097 5098 /* 5099 * 1 for the orphan item we're going to add 5100 * 1 for the orphan item deletion. 5101 */ 5102 trans = btrfs_start_transaction(root, 2); 5103 if (IS_ERR(trans)) 5104 return PTR_ERR(trans); 5105 5106 /* 5107 * We need to do this in case we fail at _any_ point during the 5108 * actual truncate. Once we do the truncate_setsize we could 5109 * invalidate pages which forces any outstanding ordered io to 5110 * be instantly completed which will give us extents that need 5111 * to be truncated. If we fail to get an orphan inode down we 5112 * could have left over extents that were never meant to live, 5113 * so we need to guarantee from this point on that everything 5114 * will be consistent. 5115 */ 5116 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5117 btrfs_end_transaction(trans); 5118 if (ret) 5119 return ret; 5120 5121 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5122 truncate_setsize(inode, newsize); 5123 5124 /* Disable nonlocked read DIO to avoid the end less truncate */ 5125 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5126 inode_dio_wait(inode); 5127 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5128 5129 ret = btrfs_truncate(inode); 5130 if (ret && inode->i_nlink) { 5131 int err; 5132 5133 /* To get a stable disk_i_size */ 5134 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5135 if (err) { 5136 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5137 return err; 5138 } 5139 5140 /* 5141 * failed to truncate, disk_i_size is only adjusted down 5142 * as we remove extents, so it should represent the true 5143 * size of the inode, so reset the in memory size and 5144 * delete our orphan entry. 5145 */ 5146 trans = btrfs_join_transaction(root); 5147 if (IS_ERR(trans)) { 5148 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5149 return ret; 5150 } 5151 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5152 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5153 if (err) 5154 btrfs_abort_transaction(trans, err); 5155 btrfs_end_transaction(trans); 5156 } 5157 } 5158 5159 return ret; 5160 } 5161 5162 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5163 { 5164 struct inode *inode = d_inode(dentry); 5165 struct btrfs_root *root = BTRFS_I(inode)->root; 5166 int err; 5167 5168 if (btrfs_root_readonly(root)) 5169 return -EROFS; 5170 5171 err = setattr_prepare(dentry, attr); 5172 if (err) 5173 return err; 5174 5175 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5176 err = btrfs_setsize(inode, attr); 5177 if (err) 5178 return err; 5179 } 5180 5181 if (attr->ia_valid) { 5182 setattr_copy(inode, attr); 5183 inode_inc_iversion(inode); 5184 err = btrfs_dirty_inode(inode); 5185 5186 if (!err && attr->ia_valid & ATTR_MODE) 5187 err = posix_acl_chmod(inode, inode->i_mode); 5188 } 5189 5190 return err; 5191 } 5192 5193 /* 5194 * While truncating the inode pages during eviction, we get the VFS calling 5195 * btrfs_invalidatepage() against each page of the inode. This is slow because 5196 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5197 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5198 * extent_state structures over and over, wasting lots of time. 5199 * 5200 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5201 * those expensive operations on a per page basis and do only the ordered io 5202 * finishing, while we release here the extent_map and extent_state structures, 5203 * without the excessive merging and splitting. 5204 */ 5205 static void evict_inode_truncate_pages(struct inode *inode) 5206 { 5207 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5208 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5209 struct rb_node *node; 5210 5211 ASSERT(inode->i_state & I_FREEING); 5212 truncate_inode_pages_final(&inode->i_data); 5213 5214 write_lock(&map_tree->lock); 5215 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5216 struct extent_map *em; 5217 5218 node = rb_first(&map_tree->map); 5219 em = rb_entry(node, struct extent_map, rb_node); 5220 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5221 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5222 remove_extent_mapping(map_tree, em); 5223 free_extent_map(em); 5224 if (need_resched()) { 5225 write_unlock(&map_tree->lock); 5226 cond_resched(); 5227 write_lock(&map_tree->lock); 5228 } 5229 } 5230 write_unlock(&map_tree->lock); 5231 5232 /* 5233 * Keep looping until we have no more ranges in the io tree. 5234 * We can have ongoing bios started by readpages (called from readahead) 5235 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5236 * still in progress (unlocked the pages in the bio but did not yet 5237 * unlocked the ranges in the io tree). Therefore this means some 5238 * ranges can still be locked and eviction started because before 5239 * submitting those bios, which are executed by a separate task (work 5240 * queue kthread), inode references (inode->i_count) were not taken 5241 * (which would be dropped in the end io callback of each bio). 5242 * Therefore here we effectively end up waiting for those bios and 5243 * anyone else holding locked ranges without having bumped the inode's 5244 * reference count - if we don't do it, when they access the inode's 5245 * io_tree to unlock a range it may be too late, leading to an 5246 * use-after-free issue. 5247 */ 5248 spin_lock(&io_tree->lock); 5249 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5250 struct extent_state *state; 5251 struct extent_state *cached_state = NULL; 5252 u64 start; 5253 u64 end; 5254 5255 node = rb_first(&io_tree->state); 5256 state = rb_entry(node, struct extent_state, rb_node); 5257 start = state->start; 5258 end = state->end; 5259 spin_unlock(&io_tree->lock); 5260 5261 lock_extent_bits(io_tree, start, end, &cached_state); 5262 5263 /* 5264 * If still has DELALLOC flag, the extent didn't reach disk, 5265 * and its reserved space won't be freed by delayed_ref. 5266 * So we need to free its reserved space here. 5267 * (Refer to comment in btrfs_invalidatepage, case 2) 5268 * 5269 * Note, end is the bytenr of last byte, so we need + 1 here. 5270 */ 5271 if (state->state & EXTENT_DELALLOC) 5272 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5273 5274 clear_extent_bit(io_tree, start, end, 5275 EXTENT_LOCKED | EXTENT_DIRTY | 5276 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5277 EXTENT_DEFRAG, 1, 1, 5278 &cached_state, GFP_NOFS); 5279 5280 cond_resched(); 5281 spin_lock(&io_tree->lock); 5282 } 5283 spin_unlock(&io_tree->lock); 5284 } 5285 5286 void btrfs_evict_inode(struct inode *inode) 5287 { 5288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5289 struct btrfs_trans_handle *trans; 5290 struct btrfs_root *root = BTRFS_I(inode)->root; 5291 struct btrfs_block_rsv *rsv, *global_rsv; 5292 int steal_from_global = 0; 5293 u64 min_size; 5294 int ret; 5295 5296 trace_btrfs_inode_evict(inode); 5297 5298 if (!root) { 5299 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5300 return; 5301 } 5302 5303 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5304 5305 evict_inode_truncate_pages(inode); 5306 5307 if (inode->i_nlink && 5308 ((btrfs_root_refs(&root->root_item) != 0 && 5309 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5310 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5311 goto no_delete; 5312 5313 if (is_bad_inode(inode)) { 5314 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5315 goto no_delete; 5316 } 5317 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5318 if (!special_file(inode->i_mode)) 5319 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5320 5321 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5322 5323 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5324 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5325 &BTRFS_I(inode)->runtime_flags)); 5326 goto no_delete; 5327 } 5328 5329 if (inode->i_nlink > 0) { 5330 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5331 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5332 goto no_delete; 5333 } 5334 5335 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5336 if (ret) { 5337 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5338 goto no_delete; 5339 } 5340 5341 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5342 if (!rsv) { 5343 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5344 goto no_delete; 5345 } 5346 rsv->size = min_size; 5347 rsv->failfast = 1; 5348 global_rsv = &fs_info->global_block_rsv; 5349 5350 btrfs_i_size_write(BTRFS_I(inode), 0); 5351 5352 /* 5353 * This is a bit simpler than btrfs_truncate since we've already 5354 * reserved our space for our orphan item in the unlink, so we just 5355 * need to reserve some slack space in case we add bytes and update 5356 * inode item when doing the truncate. 5357 */ 5358 while (1) { 5359 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5360 BTRFS_RESERVE_FLUSH_LIMIT); 5361 5362 /* 5363 * Try and steal from the global reserve since we will 5364 * likely not use this space anyway, we want to try as 5365 * hard as possible to get this to work. 5366 */ 5367 if (ret) 5368 steal_from_global++; 5369 else 5370 steal_from_global = 0; 5371 ret = 0; 5372 5373 /* 5374 * steal_from_global == 0: we reserved stuff, hooray! 5375 * steal_from_global == 1: we didn't reserve stuff, boo! 5376 * steal_from_global == 2: we've committed, still not a lot of 5377 * room but maybe we'll have room in the global reserve this 5378 * time. 5379 * steal_from_global == 3: abandon all hope! 5380 */ 5381 if (steal_from_global > 2) { 5382 btrfs_warn(fs_info, 5383 "Could not get space for a delete, will truncate on mount %d", 5384 ret); 5385 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5386 btrfs_free_block_rsv(fs_info, rsv); 5387 goto no_delete; 5388 } 5389 5390 trans = btrfs_join_transaction(root); 5391 if (IS_ERR(trans)) { 5392 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5393 btrfs_free_block_rsv(fs_info, rsv); 5394 goto no_delete; 5395 } 5396 5397 /* 5398 * We can't just steal from the global reserve, we need to make 5399 * sure there is room to do it, if not we need to commit and try 5400 * again. 5401 */ 5402 if (steal_from_global) { 5403 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5404 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5405 min_size, 0); 5406 else 5407 ret = -ENOSPC; 5408 } 5409 5410 /* 5411 * Couldn't steal from the global reserve, we have too much 5412 * pending stuff built up, commit the transaction and try it 5413 * again. 5414 */ 5415 if (ret) { 5416 ret = btrfs_commit_transaction(trans); 5417 if (ret) { 5418 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5419 btrfs_free_block_rsv(fs_info, rsv); 5420 goto no_delete; 5421 } 5422 continue; 5423 } else { 5424 steal_from_global = 0; 5425 } 5426 5427 trans->block_rsv = rsv; 5428 5429 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5430 if (ret != -ENOSPC && ret != -EAGAIN) 5431 break; 5432 5433 trans->block_rsv = &fs_info->trans_block_rsv; 5434 btrfs_end_transaction(trans); 5435 trans = NULL; 5436 btrfs_btree_balance_dirty(fs_info); 5437 } 5438 5439 btrfs_free_block_rsv(fs_info, rsv); 5440 5441 /* 5442 * Errors here aren't a big deal, it just means we leave orphan items 5443 * in the tree. They will be cleaned up on the next mount. 5444 */ 5445 if (ret == 0) { 5446 trans->block_rsv = root->orphan_block_rsv; 5447 btrfs_orphan_del(trans, BTRFS_I(inode)); 5448 } else { 5449 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5450 } 5451 5452 trans->block_rsv = &fs_info->trans_block_rsv; 5453 if (!(root == fs_info->tree_root || 5454 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5455 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5456 5457 btrfs_end_transaction(trans); 5458 btrfs_btree_balance_dirty(fs_info); 5459 no_delete: 5460 btrfs_remove_delayed_node(BTRFS_I(inode)); 5461 clear_inode(inode); 5462 } 5463 5464 /* 5465 * this returns the key found in the dir entry in the location pointer. 5466 * If no dir entries were found, location->objectid is 0. 5467 */ 5468 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5469 struct btrfs_key *location) 5470 { 5471 const char *name = dentry->d_name.name; 5472 int namelen = dentry->d_name.len; 5473 struct btrfs_dir_item *di; 5474 struct btrfs_path *path; 5475 struct btrfs_root *root = BTRFS_I(dir)->root; 5476 int ret = 0; 5477 5478 path = btrfs_alloc_path(); 5479 if (!path) 5480 return -ENOMEM; 5481 5482 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5483 name, namelen, 0); 5484 if (IS_ERR(di)) 5485 ret = PTR_ERR(di); 5486 5487 if (IS_ERR_OR_NULL(di)) 5488 goto out_err; 5489 5490 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5491 out: 5492 btrfs_free_path(path); 5493 return ret; 5494 out_err: 5495 location->objectid = 0; 5496 goto out; 5497 } 5498 5499 /* 5500 * when we hit a tree root in a directory, the btrfs part of the inode 5501 * needs to be changed to reflect the root directory of the tree root. This 5502 * is kind of like crossing a mount point. 5503 */ 5504 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5505 struct inode *dir, 5506 struct dentry *dentry, 5507 struct btrfs_key *location, 5508 struct btrfs_root **sub_root) 5509 { 5510 struct btrfs_path *path; 5511 struct btrfs_root *new_root; 5512 struct btrfs_root_ref *ref; 5513 struct extent_buffer *leaf; 5514 struct btrfs_key key; 5515 int ret; 5516 int err = 0; 5517 5518 path = btrfs_alloc_path(); 5519 if (!path) { 5520 err = -ENOMEM; 5521 goto out; 5522 } 5523 5524 err = -ENOENT; 5525 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5526 key.type = BTRFS_ROOT_REF_KEY; 5527 key.offset = location->objectid; 5528 5529 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5530 if (ret) { 5531 if (ret < 0) 5532 err = ret; 5533 goto out; 5534 } 5535 5536 leaf = path->nodes[0]; 5537 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5538 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5539 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5540 goto out; 5541 5542 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5543 (unsigned long)(ref + 1), 5544 dentry->d_name.len); 5545 if (ret) 5546 goto out; 5547 5548 btrfs_release_path(path); 5549 5550 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5551 if (IS_ERR(new_root)) { 5552 err = PTR_ERR(new_root); 5553 goto out; 5554 } 5555 5556 *sub_root = new_root; 5557 location->objectid = btrfs_root_dirid(&new_root->root_item); 5558 location->type = BTRFS_INODE_ITEM_KEY; 5559 location->offset = 0; 5560 err = 0; 5561 out: 5562 btrfs_free_path(path); 5563 return err; 5564 } 5565 5566 static void inode_tree_add(struct inode *inode) 5567 { 5568 struct btrfs_root *root = BTRFS_I(inode)->root; 5569 struct btrfs_inode *entry; 5570 struct rb_node **p; 5571 struct rb_node *parent; 5572 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5573 u64 ino = btrfs_ino(BTRFS_I(inode)); 5574 5575 if (inode_unhashed(inode)) 5576 return; 5577 parent = NULL; 5578 spin_lock(&root->inode_lock); 5579 p = &root->inode_tree.rb_node; 5580 while (*p) { 5581 parent = *p; 5582 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5583 5584 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5585 p = &parent->rb_left; 5586 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5587 p = &parent->rb_right; 5588 else { 5589 WARN_ON(!(entry->vfs_inode.i_state & 5590 (I_WILL_FREE | I_FREEING))); 5591 rb_replace_node(parent, new, &root->inode_tree); 5592 RB_CLEAR_NODE(parent); 5593 spin_unlock(&root->inode_lock); 5594 return; 5595 } 5596 } 5597 rb_link_node(new, parent, p); 5598 rb_insert_color(new, &root->inode_tree); 5599 spin_unlock(&root->inode_lock); 5600 } 5601 5602 static void inode_tree_del(struct inode *inode) 5603 { 5604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5605 struct btrfs_root *root = BTRFS_I(inode)->root; 5606 int empty = 0; 5607 5608 spin_lock(&root->inode_lock); 5609 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5610 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5611 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5612 empty = RB_EMPTY_ROOT(&root->inode_tree); 5613 } 5614 spin_unlock(&root->inode_lock); 5615 5616 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5617 synchronize_srcu(&fs_info->subvol_srcu); 5618 spin_lock(&root->inode_lock); 5619 empty = RB_EMPTY_ROOT(&root->inode_tree); 5620 spin_unlock(&root->inode_lock); 5621 if (empty) 5622 btrfs_add_dead_root(root); 5623 } 5624 } 5625 5626 void btrfs_invalidate_inodes(struct btrfs_root *root) 5627 { 5628 struct btrfs_fs_info *fs_info = root->fs_info; 5629 struct rb_node *node; 5630 struct rb_node *prev; 5631 struct btrfs_inode *entry; 5632 struct inode *inode; 5633 u64 objectid = 0; 5634 5635 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5636 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5637 5638 spin_lock(&root->inode_lock); 5639 again: 5640 node = root->inode_tree.rb_node; 5641 prev = NULL; 5642 while (node) { 5643 prev = node; 5644 entry = rb_entry(node, struct btrfs_inode, rb_node); 5645 5646 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5647 node = node->rb_left; 5648 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5649 node = node->rb_right; 5650 else 5651 break; 5652 } 5653 if (!node) { 5654 while (prev) { 5655 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5656 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5657 node = prev; 5658 break; 5659 } 5660 prev = rb_next(prev); 5661 } 5662 } 5663 while (node) { 5664 entry = rb_entry(node, struct btrfs_inode, rb_node); 5665 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5666 inode = igrab(&entry->vfs_inode); 5667 if (inode) { 5668 spin_unlock(&root->inode_lock); 5669 if (atomic_read(&inode->i_count) > 1) 5670 d_prune_aliases(inode); 5671 /* 5672 * btrfs_drop_inode will have it removed from 5673 * the inode cache when its usage count 5674 * hits zero. 5675 */ 5676 iput(inode); 5677 cond_resched(); 5678 spin_lock(&root->inode_lock); 5679 goto again; 5680 } 5681 5682 if (cond_resched_lock(&root->inode_lock)) 5683 goto again; 5684 5685 node = rb_next(node); 5686 } 5687 spin_unlock(&root->inode_lock); 5688 } 5689 5690 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5691 { 5692 struct btrfs_iget_args *args = p; 5693 inode->i_ino = args->location->objectid; 5694 memcpy(&BTRFS_I(inode)->location, args->location, 5695 sizeof(*args->location)); 5696 BTRFS_I(inode)->root = args->root; 5697 return 0; 5698 } 5699 5700 static int btrfs_find_actor(struct inode *inode, void *opaque) 5701 { 5702 struct btrfs_iget_args *args = opaque; 5703 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5704 args->root == BTRFS_I(inode)->root; 5705 } 5706 5707 static struct inode *btrfs_iget_locked(struct super_block *s, 5708 struct btrfs_key *location, 5709 struct btrfs_root *root) 5710 { 5711 struct inode *inode; 5712 struct btrfs_iget_args args; 5713 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5714 5715 args.location = location; 5716 args.root = root; 5717 5718 inode = iget5_locked(s, hashval, btrfs_find_actor, 5719 btrfs_init_locked_inode, 5720 (void *)&args); 5721 return inode; 5722 } 5723 5724 /* Get an inode object given its location and corresponding root. 5725 * Returns in *is_new if the inode was read from disk 5726 */ 5727 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5728 struct btrfs_root *root, int *new) 5729 { 5730 struct inode *inode; 5731 5732 inode = btrfs_iget_locked(s, location, root); 5733 if (!inode) 5734 return ERR_PTR(-ENOMEM); 5735 5736 if (inode->i_state & I_NEW) { 5737 int ret; 5738 5739 ret = btrfs_read_locked_inode(inode); 5740 if (!is_bad_inode(inode)) { 5741 inode_tree_add(inode); 5742 unlock_new_inode(inode); 5743 if (new) 5744 *new = 1; 5745 } else { 5746 unlock_new_inode(inode); 5747 iput(inode); 5748 ASSERT(ret < 0); 5749 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5750 } 5751 } 5752 5753 return inode; 5754 } 5755 5756 static struct inode *new_simple_dir(struct super_block *s, 5757 struct btrfs_key *key, 5758 struct btrfs_root *root) 5759 { 5760 struct inode *inode = new_inode(s); 5761 5762 if (!inode) 5763 return ERR_PTR(-ENOMEM); 5764 5765 BTRFS_I(inode)->root = root; 5766 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5767 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5768 5769 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5770 inode->i_op = &btrfs_dir_ro_inode_operations; 5771 inode->i_opflags &= ~IOP_XATTR; 5772 inode->i_fop = &simple_dir_operations; 5773 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5774 inode->i_mtime = current_time(inode); 5775 inode->i_atime = inode->i_mtime; 5776 inode->i_ctime = inode->i_mtime; 5777 BTRFS_I(inode)->i_otime = inode->i_mtime; 5778 5779 return inode; 5780 } 5781 5782 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5783 { 5784 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5785 struct inode *inode; 5786 struct btrfs_root *root = BTRFS_I(dir)->root; 5787 struct btrfs_root *sub_root = root; 5788 struct btrfs_key location; 5789 int index; 5790 int ret = 0; 5791 5792 if (dentry->d_name.len > BTRFS_NAME_LEN) 5793 return ERR_PTR(-ENAMETOOLONG); 5794 5795 ret = btrfs_inode_by_name(dir, dentry, &location); 5796 if (ret < 0) 5797 return ERR_PTR(ret); 5798 5799 if (location.objectid == 0) 5800 return ERR_PTR(-ENOENT); 5801 5802 if (location.type == BTRFS_INODE_ITEM_KEY) { 5803 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5804 return inode; 5805 } 5806 5807 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5808 5809 index = srcu_read_lock(&fs_info->subvol_srcu); 5810 ret = fixup_tree_root_location(fs_info, dir, dentry, 5811 &location, &sub_root); 5812 if (ret < 0) { 5813 if (ret != -ENOENT) 5814 inode = ERR_PTR(ret); 5815 else 5816 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5817 } else { 5818 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5819 } 5820 srcu_read_unlock(&fs_info->subvol_srcu, index); 5821 5822 if (!IS_ERR(inode) && root != sub_root) { 5823 down_read(&fs_info->cleanup_work_sem); 5824 if (!sb_rdonly(inode->i_sb)) 5825 ret = btrfs_orphan_cleanup(sub_root); 5826 up_read(&fs_info->cleanup_work_sem); 5827 if (ret) { 5828 iput(inode); 5829 inode = ERR_PTR(ret); 5830 } 5831 } 5832 5833 return inode; 5834 } 5835 5836 static int btrfs_dentry_delete(const struct dentry *dentry) 5837 { 5838 struct btrfs_root *root; 5839 struct inode *inode = d_inode(dentry); 5840 5841 if (!inode && !IS_ROOT(dentry)) 5842 inode = d_inode(dentry->d_parent); 5843 5844 if (inode) { 5845 root = BTRFS_I(inode)->root; 5846 if (btrfs_root_refs(&root->root_item) == 0) 5847 return 1; 5848 5849 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5850 return 1; 5851 } 5852 return 0; 5853 } 5854 5855 static void btrfs_dentry_release(struct dentry *dentry) 5856 { 5857 kfree(dentry->d_fsdata); 5858 } 5859 5860 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5861 unsigned int flags) 5862 { 5863 struct inode *inode; 5864 5865 inode = btrfs_lookup_dentry(dir, dentry); 5866 if (IS_ERR(inode)) { 5867 if (PTR_ERR(inode) == -ENOENT) 5868 inode = NULL; 5869 else 5870 return ERR_CAST(inode); 5871 } 5872 5873 return d_splice_alias(inode, dentry); 5874 } 5875 5876 unsigned char btrfs_filetype_table[] = { 5877 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5878 }; 5879 5880 /* 5881 * All this infrastructure exists because dir_emit can fault, and we are holding 5882 * the tree lock when doing readdir. For now just allocate a buffer and copy 5883 * our information into that, and then dir_emit from the buffer. This is 5884 * similar to what NFS does, only we don't keep the buffer around in pagecache 5885 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5886 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5887 * tree lock. 5888 */ 5889 static int btrfs_opendir(struct inode *inode, struct file *file) 5890 { 5891 struct btrfs_file_private *private; 5892 5893 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5894 if (!private) 5895 return -ENOMEM; 5896 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5897 if (!private->filldir_buf) { 5898 kfree(private); 5899 return -ENOMEM; 5900 } 5901 file->private_data = private; 5902 return 0; 5903 } 5904 5905 struct dir_entry { 5906 u64 ino; 5907 u64 offset; 5908 unsigned type; 5909 int name_len; 5910 }; 5911 5912 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5913 { 5914 while (entries--) { 5915 struct dir_entry *entry = addr; 5916 char *name = (char *)(entry + 1); 5917 5918 ctx->pos = entry->offset; 5919 if (!dir_emit(ctx, name, entry->name_len, entry->ino, 5920 entry->type)) 5921 return 1; 5922 addr += sizeof(struct dir_entry) + entry->name_len; 5923 ctx->pos++; 5924 } 5925 return 0; 5926 } 5927 5928 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5929 { 5930 struct inode *inode = file_inode(file); 5931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5932 struct btrfs_root *root = BTRFS_I(inode)->root; 5933 struct btrfs_file_private *private = file->private_data; 5934 struct btrfs_dir_item *di; 5935 struct btrfs_key key; 5936 struct btrfs_key found_key; 5937 struct btrfs_path *path; 5938 void *addr; 5939 struct list_head ins_list; 5940 struct list_head del_list; 5941 int ret; 5942 struct extent_buffer *leaf; 5943 int slot; 5944 char *name_ptr; 5945 int name_len; 5946 int entries = 0; 5947 int total_len = 0; 5948 bool put = false; 5949 struct btrfs_key location; 5950 5951 if (!dir_emit_dots(file, ctx)) 5952 return 0; 5953 5954 path = btrfs_alloc_path(); 5955 if (!path) 5956 return -ENOMEM; 5957 5958 addr = private->filldir_buf; 5959 path->reada = READA_FORWARD; 5960 5961 INIT_LIST_HEAD(&ins_list); 5962 INIT_LIST_HEAD(&del_list); 5963 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5964 5965 again: 5966 key.type = BTRFS_DIR_INDEX_KEY; 5967 key.offset = ctx->pos; 5968 key.objectid = btrfs_ino(BTRFS_I(inode)); 5969 5970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5971 if (ret < 0) 5972 goto err; 5973 5974 while (1) { 5975 struct dir_entry *entry; 5976 5977 leaf = path->nodes[0]; 5978 slot = path->slots[0]; 5979 if (slot >= btrfs_header_nritems(leaf)) { 5980 ret = btrfs_next_leaf(root, path); 5981 if (ret < 0) 5982 goto err; 5983 else if (ret > 0) 5984 break; 5985 continue; 5986 } 5987 5988 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5989 5990 if (found_key.objectid != key.objectid) 5991 break; 5992 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5993 break; 5994 if (found_key.offset < ctx->pos) 5995 goto next; 5996 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5997 goto next; 5998 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5999 if (verify_dir_item(fs_info, leaf, slot, di)) 6000 goto next; 6001 6002 name_len = btrfs_dir_name_len(leaf, di); 6003 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6004 PAGE_SIZE) { 6005 btrfs_release_path(path); 6006 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6007 if (ret) 6008 goto nopos; 6009 addr = private->filldir_buf; 6010 entries = 0; 6011 total_len = 0; 6012 goto again; 6013 } 6014 6015 entry = addr; 6016 entry->name_len = name_len; 6017 name_ptr = (char *)(entry + 1); 6018 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6019 name_len); 6020 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 6021 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6022 entry->ino = location.objectid; 6023 entry->offset = found_key.offset; 6024 entries++; 6025 addr += sizeof(struct dir_entry) + name_len; 6026 total_len += sizeof(struct dir_entry) + name_len; 6027 next: 6028 path->slots[0]++; 6029 } 6030 btrfs_release_path(path); 6031 6032 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6033 if (ret) 6034 goto nopos; 6035 6036 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6037 if (ret) 6038 goto nopos; 6039 6040 /* 6041 * Stop new entries from being returned after we return the last 6042 * entry. 6043 * 6044 * New directory entries are assigned a strictly increasing 6045 * offset. This means that new entries created during readdir 6046 * are *guaranteed* to be seen in the future by that readdir. 6047 * This has broken buggy programs which operate on names as 6048 * they're returned by readdir. Until we re-use freed offsets 6049 * we have this hack to stop new entries from being returned 6050 * under the assumption that they'll never reach this huge 6051 * offset. 6052 * 6053 * This is being careful not to overflow 32bit loff_t unless the 6054 * last entry requires it because doing so has broken 32bit apps 6055 * in the past. 6056 */ 6057 if (ctx->pos >= INT_MAX) 6058 ctx->pos = LLONG_MAX; 6059 else 6060 ctx->pos = INT_MAX; 6061 nopos: 6062 ret = 0; 6063 err: 6064 if (put) 6065 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6066 btrfs_free_path(path); 6067 return ret; 6068 } 6069 6070 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6071 { 6072 struct btrfs_root *root = BTRFS_I(inode)->root; 6073 struct btrfs_trans_handle *trans; 6074 int ret = 0; 6075 bool nolock = false; 6076 6077 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6078 return 0; 6079 6080 if (btrfs_fs_closing(root->fs_info) && 6081 btrfs_is_free_space_inode(BTRFS_I(inode))) 6082 nolock = true; 6083 6084 if (wbc->sync_mode == WB_SYNC_ALL) { 6085 if (nolock) 6086 trans = btrfs_join_transaction_nolock(root); 6087 else 6088 trans = btrfs_join_transaction(root); 6089 if (IS_ERR(trans)) 6090 return PTR_ERR(trans); 6091 ret = btrfs_commit_transaction(trans); 6092 } 6093 return ret; 6094 } 6095 6096 /* 6097 * This is somewhat expensive, updating the tree every time the 6098 * inode changes. But, it is most likely to find the inode in cache. 6099 * FIXME, needs more benchmarking...there are no reasons other than performance 6100 * to keep or drop this code. 6101 */ 6102 static int btrfs_dirty_inode(struct inode *inode) 6103 { 6104 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6105 struct btrfs_root *root = BTRFS_I(inode)->root; 6106 struct btrfs_trans_handle *trans; 6107 int ret; 6108 6109 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6110 return 0; 6111 6112 trans = btrfs_join_transaction(root); 6113 if (IS_ERR(trans)) 6114 return PTR_ERR(trans); 6115 6116 ret = btrfs_update_inode(trans, root, inode); 6117 if (ret && ret == -ENOSPC) { 6118 /* whoops, lets try again with the full transaction */ 6119 btrfs_end_transaction(trans); 6120 trans = btrfs_start_transaction(root, 1); 6121 if (IS_ERR(trans)) 6122 return PTR_ERR(trans); 6123 6124 ret = btrfs_update_inode(trans, root, inode); 6125 } 6126 btrfs_end_transaction(trans); 6127 if (BTRFS_I(inode)->delayed_node) 6128 btrfs_balance_delayed_items(fs_info); 6129 6130 return ret; 6131 } 6132 6133 /* 6134 * This is a copy of file_update_time. We need this so we can return error on 6135 * ENOSPC for updating the inode in the case of file write and mmap writes. 6136 */ 6137 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6138 int flags) 6139 { 6140 struct btrfs_root *root = BTRFS_I(inode)->root; 6141 6142 if (btrfs_root_readonly(root)) 6143 return -EROFS; 6144 6145 if (flags & S_VERSION) 6146 inode_inc_iversion(inode); 6147 if (flags & S_CTIME) 6148 inode->i_ctime = *now; 6149 if (flags & S_MTIME) 6150 inode->i_mtime = *now; 6151 if (flags & S_ATIME) 6152 inode->i_atime = *now; 6153 return btrfs_dirty_inode(inode); 6154 } 6155 6156 /* 6157 * find the highest existing sequence number in a directory 6158 * and then set the in-memory index_cnt variable to reflect 6159 * free sequence numbers 6160 */ 6161 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6162 { 6163 struct btrfs_root *root = inode->root; 6164 struct btrfs_key key, found_key; 6165 struct btrfs_path *path; 6166 struct extent_buffer *leaf; 6167 int ret; 6168 6169 key.objectid = btrfs_ino(inode); 6170 key.type = BTRFS_DIR_INDEX_KEY; 6171 key.offset = (u64)-1; 6172 6173 path = btrfs_alloc_path(); 6174 if (!path) 6175 return -ENOMEM; 6176 6177 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6178 if (ret < 0) 6179 goto out; 6180 /* FIXME: we should be able to handle this */ 6181 if (ret == 0) 6182 goto out; 6183 ret = 0; 6184 6185 /* 6186 * MAGIC NUMBER EXPLANATION: 6187 * since we search a directory based on f_pos we have to start at 2 6188 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6189 * else has to start at 2 6190 */ 6191 if (path->slots[0] == 0) { 6192 inode->index_cnt = 2; 6193 goto out; 6194 } 6195 6196 path->slots[0]--; 6197 6198 leaf = path->nodes[0]; 6199 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6200 6201 if (found_key.objectid != btrfs_ino(inode) || 6202 found_key.type != BTRFS_DIR_INDEX_KEY) { 6203 inode->index_cnt = 2; 6204 goto out; 6205 } 6206 6207 inode->index_cnt = found_key.offset + 1; 6208 out: 6209 btrfs_free_path(path); 6210 return ret; 6211 } 6212 6213 /* 6214 * helper to find a free sequence number in a given directory. This current 6215 * code is very simple, later versions will do smarter things in the btree 6216 */ 6217 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6218 { 6219 int ret = 0; 6220 6221 if (dir->index_cnt == (u64)-1) { 6222 ret = btrfs_inode_delayed_dir_index_count(dir); 6223 if (ret) { 6224 ret = btrfs_set_inode_index_count(dir); 6225 if (ret) 6226 return ret; 6227 } 6228 } 6229 6230 *index = dir->index_cnt; 6231 dir->index_cnt++; 6232 6233 return ret; 6234 } 6235 6236 static int btrfs_insert_inode_locked(struct inode *inode) 6237 { 6238 struct btrfs_iget_args args; 6239 args.location = &BTRFS_I(inode)->location; 6240 args.root = BTRFS_I(inode)->root; 6241 6242 return insert_inode_locked4(inode, 6243 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6244 btrfs_find_actor, &args); 6245 } 6246 6247 /* 6248 * Inherit flags from the parent inode. 6249 * 6250 * Currently only the compression flags and the cow flags are inherited. 6251 */ 6252 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6253 { 6254 unsigned int flags; 6255 6256 if (!dir) 6257 return; 6258 6259 flags = BTRFS_I(dir)->flags; 6260 6261 if (flags & BTRFS_INODE_NOCOMPRESS) { 6262 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6263 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6264 } else if (flags & BTRFS_INODE_COMPRESS) { 6265 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6266 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6267 } 6268 6269 if (flags & BTRFS_INODE_NODATACOW) { 6270 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6271 if (S_ISREG(inode->i_mode)) 6272 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6273 } 6274 6275 btrfs_update_iflags(inode); 6276 } 6277 6278 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6279 struct btrfs_root *root, 6280 struct inode *dir, 6281 const char *name, int name_len, 6282 u64 ref_objectid, u64 objectid, 6283 umode_t mode, u64 *index) 6284 { 6285 struct btrfs_fs_info *fs_info = root->fs_info; 6286 struct inode *inode; 6287 struct btrfs_inode_item *inode_item; 6288 struct btrfs_key *location; 6289 struct btrfs_path *path; 6290 struct btrfs_inode_ref *ref; 6291 struct btrfs_key key[2]; 6292 u32 sizes[2]; 6293 int nitems = name ? 2 : 1; 6294 unsigned long ptr; 6295 int ret; 6296 6297 path = btrfs_alloc_path(); 6298 if (!path) 6299 return ERR_PTR(-ENOMEM); 6300 6301 inode = new_inode(fs_info->sb); 6302 if (!inode) { 6303 btrfs_free_path(path); 6304 return ERR_PTR(-ENOMEM); 6305 } 6306 6307 /* 6308 * O_TMPFILE, set link count to 0, so that after this point, 6309 * we fill in an inode item with the correct link count. 6310 */ 6311 if (!name) 6312 set_nlink(inode, 0); 6313 6314 /* 6315 * we have to initialize this early, so we can reclaim the inode 6316 * number if we fail afterwards in this function. 6317 */ 6318 inode->i_ino = objectid; 6319 6320 if (dir && name) { 6321 trace_btrfs_inode_request(dir); 6322 6323 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6324 if (ret) { 6325 btrfs_free_path(path); 6326 iput(inode); 6327 return ERR_PTR(ret); 6328 } 6329 } else if (dir) { 6330 *index = 0; 6331 } 6332 /* 6333 * index_cnt is ignored for everything but a dir, 6334 * btrfs_get_inode_index_count has an explanation for the magic 6335 * number 6336 */ 6337 BTRFS_I(inode)->index_cnt = 2; 6338 BTRFS_I(inode)->dir_index = *index; 6339 BTRFS_I(inode)->root = root; 6340 BTRFS_I(inode)->generation = trans->transid; 6341 inode->i_generation = BTRFS_I(inode)->generation; 6342 6343 /* 6344 * We could have gotten an inode number from somebody who was fsynced 6345 * and then removed in this same transaction, so let's just set full 6346 * sync since it will be a full sync anyway and this will blow away the 6347 * old info in the log. 6348 */ 6349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6350 6351 key[0].objectid = objectid; 6352 key[0].type = BTRFS_INODE_ITEM_KEY; 6353 key[0].offset = 0; 6354 6355 sizes[0] = sizeof(struct btrfs_inode_item); 6356 6357 if (name) { 6358 /* 6359 * Start new inodes with an inode_ref. This is slightly more 6360 * efficient for small numbers of hard links since they will 6361 * be packed into one item. Extended refs will kick in if we 6362 * add more hard links than can fit in the ref item. 6363 */ 6364 key[1].objectid = objectid; 6365 key[1].type = BTRFS_INODE_REF_KEY; 6366 key[1].offset = ref_objectid; 6367 6368 sizes[1] = name_len + sizeof(*ref); 6369 } 6370 6371 location = &BTRFS_I(inode)->location; 6372 location->objectid = objectid; 6373 location->offset = 0; 6374 location->type = BTRFS_INODE_ITEM_KEY; 6375 6376 ret = btrfs_insert_inode_locked(inode); 6377 if (ret < 0) 6378 goto fail; 6379 6380 path->leave_spinning = 1; 6381 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6382 if (ret != 0) 6383 goto fail_unlock; 6384 6385 inode_init_owner(inode, dir, mode); 6386 inode_set_bytes(inode, 0); 6387 6388 inode->i_mtime = current_time(inode); 6389 inode->i_atime = inode->i_mtime; 6390 inode->i_ctime = inode->i_mtime; 6391 BTRFS_I(inode)->i_otime = inode->i_mtime; 6392 6393 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6394 struct btrfs_inode_item); 6395 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6396 sizeof(*inode_item)); 6397 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6398 6399 if (name) { 6400 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6401 struct btrfs_inode_ref); 6402 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6403 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6404 ptr = (unsigned long)(ref + 1); 6405 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6406 } 6407 6408 btrfs_mark_buffer_dirty(path->nodes[0]); 6409 btrfs_free_path(path); 6410 6411 btrfs_inherit_iflags(inode, dir); 6412 6413 if (S_ISREG(mode)) { 6414 if (btrfs_test_opt(fs_info, NODATASUM)) 6415 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6416 if (btrfs_test_opt(fs_info, NODATACOW)) 6417 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6418 BTRFS_INODE_NODATASUM; 6419 } 6420 6421 inode_tree_add(inode); 6422 6423 trace_btrfs_inode_new(inode); 6424 btrfs_set_inode_last_trans(trans, inode); 6425 6426 btrfs_update_root_times(trans, root); 6427 6428 ret = btrfs_inode_inherit_props(trans, inode, dir); 6429 if (ret) 6430 btrfs_err(fs_info, 6431 "error inheriting props for ino %llu (root %llu): %d", 6432 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6433 6434 return inode; 6435 6436 fail_unlock: 6437 unlock_new_inode(inode); 6438 fail: 6439 if (dir && name) 6440 BTRFS_I(dir)->index_cnt--; 6441 btrfs_free_path(path); 6442 iput(inode); 6443 return ERR_PTR(ret); 6444 } 6445 6446 static inline u8 btrfs_inode_type(struct inode *inode) 6447 { 6448 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6449 } 6450 6451 /* 6452 * utility function to add 'inode' into 'parent_inode' with 6453 * a give name and a given sequence number. 6454 * if 'add_backref' is true, also insert a backref from the 6455 * inode to the parent directory. 6456 */ 6457 int btrfs_add_link(struct btrfs_trans_handle *trans, 6458 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6459 const char *name, int name_len, int add_backref, u64 index) 6460 { 6461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6462 int ret = 0; 6463 struct btrfs_key key; 6464 struct btrfs_root *root = parent_inode->root; 6465 u64 ino = btrfs_ino(inode); 6466 u64 parent_ino = btrfs_ino(parent_inode); 6467 6468 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6469 memcpy(&key, &inode->root->root_key, sizeof(key)); 6470 } else { 6471 key.objectid = ino; 6472 key.type = BTRFS_INODE_ITEM_KEY; 6473 key.offset = 0; 6474 } 6475 6476 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6477 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6478 root->root_key.objectid, parent_ino, 6479 index, name, name_len); 6480 } else if (add_backref) { 6481 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6482 parent_ino, index); 6483 } 6484 6485 /* Nothing to clean up yet */ 6486 if (ret) 6487 return ret; 6488 6489 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6490 parent_inode, &key, 6491 btrfs_inode_type(&inode->vfs_inode), index); 6492 if (ret == -EEXIST || ret == -EOVERFLOW) 6493 goto fail_dir_item; 6494 else if (ret) { 6495 btrfs_abort_transaction(trans, ret); 6496 return ret; 6497 } 6498 6499 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6500 name_len * 2); 6501 inode_inc_iversion(&parent_inode->vfs_inode); 6502 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6503 current_time(&parent_inode->vfs_inode); 6504 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6505 if (ret) 6506 btrfs_abort_transaction(trans, ret); 6507 return ret; 6508 6509 fail_dir_item: 6510 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6511 u64 local_index; 6512 int err; 6513 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6514 root->root_key.objectid, parent_ino, 6515 &local_index, name, name_len); 6516 6517 } else if (add_backref) { 6518 u64 local_index; 6519 int err; 6520 6521 err = btrfs_del_inode_ref(trans, root, name, name_len, 6522 ino, parent_ino, &local_index); 6523 } 6524 return ret; 6525 } 6526 6527 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6528 struct btrfs_inode *dir, struct dentry *dentry, 6529 struct btrfs_inode *inode, int backref, u64 index) 6530 { 6531 int err = btrfs_add_link(trans, dir, inode, 6532 dentry->d_name.name, dentry->d_name.len, 6533 backref, index); 6534 if (err > 0) 6535 err = -EEXIST; 6536 return err; 6537 } 6538 6539 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6540 umode_t mode, dev_t rdev) 6541 { 6542 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6543 struct btrfs_trans_handle *trans; 6544 struct btrfs_root *root = BTRFS_I(dir)->root; 6545 struct inode *inode = NULL; 6546 int err; 6547 int drop_inode = 0; 6548 u64 objectid; 6549 u64 index = 0; 6550 6551 /* 6552 * 2 for inode item and ref 6553 * 2 for dir items 6554 * 1 for xattr if selinux is on 6555 */ 6556 trans = btrfs_start_transaction(root, 5); 6557 if (IS_ERR(trans)) 6558 return PTR_ERR(trans); 6559 6560 err = btrfs_find_free_ino(root, &objectid); 6561 if (err) 6562 goto out_unlock; 6563 6564 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6565 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6566 mode, &index); 6567 if (IS_ERR(inode)) { 6568 err = PTR_ERR(inode); 6569 goto out_unlock; 6570 } 6571 6572 /* 6573 * If the active LSM wants to access the inode during 6574 * d_instantiate it needs these. Smack checks to see 6575 * if the filesystem supports xattrs by looking at the 6576 * ops vector. 6577 */ 6578 inode->i_op = &btrfs_special_inode_operations; 6579 init_special_inode(inode, inode->i_mode, rdev); 6580 6581 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6582 if (err) 6583 goto out_unlock_inode; 6584 6585 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6586 0, index); 6587 if (err) { 6588 goto out_unlock_inode; 6589 } else { 6590 btrfs_update_inode(trans, root, inode); 6591 unlock_new_inode(inode); 6592 d_instantiate(dentry, inode); 6593 } 6594 6595 out_unlock: 6596 btrfs_end_transaction(trans); 6597 btrfs_balance_delayed_items(fs_info); 6598 btrfs_btree_balance_dirty(fs_info); 6599 if (drop_inode) { 6600 inode_dec_link_count(inode); 6601 iput(inode); 6602 } 6603 return err; 6604 6605 out_unlock_inode: 6606 drop_inode = 1; 6607 unlock_new_inode(inode); 6608 goto out_unlock; 6609 6610 } 6611 6612 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6613 umode_t mode, bool excl) 6614 { 6615 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6616 struct btrfs_trans_handle *trans; 6617 struct btrfs_root *root = BTRFS_I(dir)->root; 6618 struct inode *inode = NULL; 6619 int drop_inode_on_err = 0; 6620 int err; 6621 u64 objectid; 6622 u64 index = 0; 6623 6624 /* 6625 * 2 for inode item and ref 6626 * 2 for dir items 6627 * 1 for xattr if selinux is on 6628 */ 6629 trans = btrfs_start_transaction(root, 5); 6630 if (IS_ERR(trans)) 6631 return PTR_ERR(trans); 6632 6633 err = btrfs_find_free_ino(root, &objectid); 6634 if (err) 6635 goto out_unlock; 6636 6637 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6638 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6639 mode, &index); 6640 if (IS_ERR(inode)) { 6641 err = PTR_ERR(inode); 6642 goto out_unlock; 6643 } 6644 drop_inode_on_err = 1; 6645 /* 6646 * If the active LSM wants to access the inode during 6647 * d_instantiate it needs these. Smack checks to see 6648 * if the filesystem supports xattrs by looking at the 6649 * ops vector. 6650 */ 6651 inode->i_fop = &btrfs_file_operations; 6652 inode->i_op = &btrfs_file_inode_operations; 6653 inode->i_mapping->a_ops = &btrfs_aops; 6654 6655 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6656 if (err) 6657 goto out_unlock_inode; 6658 6659 err = btrfs_update_inode(trans, root, inode); 6660 if (err) 6661 goto out_unlock_inode; 6662 6663 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6664 0, index); 6665 if (err) 6666 goto out_unlock_inode; 6667 6668 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6669 unlock_new_inode(inode); 6670 d_instantiate(dentry, inode); 6671 6672 out_unlock: 6673 btrfs_end_transaction(trans); 6674 if (err && drop_inode_on_err) { 6675 inode_dec_link_count(inode); 6676 iput(inode); 6677 } 6678 btrfs_balance_delayed_items(fs_info); 6679 btrfs_btree_balance_dirty(fs_info); 6680 return err; 6681 6682 out_unlock_inode: 6683 unlock_new_inode(inode); 6684 goto out_unlock; 6685 6686 } 6687 6688 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6689 struct dentry *dentry) 6690 { 6691 struct btrfs_trans_handle *trans = NULL; 6692 struct btrfs_root *root = BTRFS_I(dir)->root; 6693 struct inode *inode = d_inode(old_dentry); 6694 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6695 u64 index; 6696 int err; 6697 int drop_inode = 0; 6698 6699 /* do not allow sys_link's with other subvols of the same device */ 6700 if (root->objectid != BTRFS_I(inode)->root->objectid) 6701 return -EXDEV; 6702 6703 if (inode->i_nlink >= BTRFS_LINK_MAX) 6704 return -EMLINK; 6705 6706 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6707 if (err) 6708 goto fail; 6709 6710 /* 6711 * 2 items for inode and inode ref 6712 * 2 items for dir items 6713 * 1 item for parent inode 6714 */ 6715 trans = btrfs_start_transaction(root, 5); 6716 if (IS_ERR(trans)) { 6717 err = PTR_ERR(trans); 6718 trans = NULL; 6719 goto fail; 6720 } 6721 6722 /* There are several dir indexes for this inode, clear the cache. */ 6723 BTRFS_I(inode)->dir_index = 0ULL; 6724 inc_nlink(inode); 6725 inode_inc_iversion(inode); 6726 inode->i_ctime = current_time(inode); 6727 ihold(inode); 6728 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6729 6730 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6731 1, index); 6732 6733 if (err) { 6734 drop_inode = 1; 6735 } else { 6736 struct dentry *parent = dentry->d_parent; 6737 err = btrfs_update_inode(trans, root, inode); 6738 if (err) 6739 goto fail; 6740 if (inode->i_nlink == 1) { 6741 /* 6742 * If new hard link count is 1, it's a file created 6743 * with open(2) O_TMPFILE flag. 6744 */ 6745 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6746 if (err) 6747 goto fail; 6748 } 6749 d_instantiate(dentry, inode); 6750 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6751 } 6752 6753 btrfs_balance_delayed_items(fs_info); 6754 fail: 6755 if (trans) 6756 btrfs_end_transaction(trans); 6757 if (drop_inode) { 6758 inode_dec_link_count(inode); 6759 iput(inode); 6760 } 6761 btrfs_btree_balance_dirty(fs_info); 6762 return err; 6763 } 6764 6765 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6766 { 6767 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6768 struct inode *inode = NULL; 6769 struct btrfs_trans_handle *trans; 6770 struct btrfs_root *root = BTRFS_I(dir)->root; 6771 int err = 0; 6772 int drop_on_err = 0; 6773 u64 objectid = 0; 6774 u64 index = 0; 6775 6776 /* 6777 * 2 items for inode and ref 6778 * 2 items for dir items 6779 * 1 for xattr if selinux is on 6780 */ 6781 trans = btrfs_start_transaction(root, 5); 6782 if (IS_ERR(trans)) 6783 return PTR_ERR(trans); 6784 6785 err = btrfs_find_free_ino(root, &objectid); 6786 if (err) 6787 goto out_fail; 6788 6789 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6790 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6791 S_IFDIR | mode, &index); 6792 if (IS_ERR(inode)) { 6793 err = PTR_ERR(inode); 6794 goto out_fail; 6795 } 6796 6797 drop_on_err = 1; 6798 /* these must be set before we unlock the inode */ 6799 inode->i_op = &btrfs_dir_inode_operations; 6800 inode->i_fop = &btrfs_dir_file_operations; 6801 6802 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6803 if (err) 6804 goto out_fail_inode; 6805 6806 btrfs_i_size_write(BTRFS_I(inode), 0); 6807 err = btrfs_update_inode(trans, root, inode); 6808 if (err) 6809 goto out_fail_inode; 6810 6811 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6812 dentry->d_name.name, 6813 dentry->d_name.len, 0, index); 6814 if (err) 6815 goto out_fail_inode; 6816 6817 d_instantiate(dentry, inode); 6818 /* 6819 * mkdir is special. We're unlocking after we call d_instantiate 6820 * to avoid a race with nfsd calling d_instantiate. 6821 */ 6822 unlock_new_inode(inode); 6823 drop_on_err = 0; 6824 6825 out_fail: 6826 btrfs_end_transaction(trans); 6827 if (drop_on_err) { 6828 inode_dec_link_count(inode); 6829 iput(inode); 6830 } 6831 btrfs_balance_delayed_items(fs_info); 6832 btrfs_btree_balance_dirty(fs_info); 6833 return err; 6834 6835 out_fail_inode: 6836 unlock_new_inode(inode); 6837 goto out_fail; 6838 } 6839 6840 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6841 static struct extent_map *next_extent_map(struct extent_map *em) 6842 { 6843 struct rb_node *next; 6844 6845 next = rb_next(&em->rb_node); 6846 if (!next) 6847 return NULL; 6848 return container_of(next, struct extent_map, rb_node); 6849 } 6850 6851 static struct extent_map *prev_extent_map(struct extent_map *em) 6852 { 6853 struct rb_node *prev; 6854 6855 prev = rb_prev(&em->rb_node); 6856 if (!prev) 6857 return NULL; 6858 return container_of(prev, struct extent_map, rb_node); 6859 } 6860 6861 /* helper for btfs_get_extent. Given an existing extent in the tree, 6862 * the existing extent is the nearest extent to map_start, 6863 * and an extent that you want to insert, deal with overlap and insert 6864 * the best fitted new extent into the tree. 6865 */ 6866 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6867 struct extent_map *existing, 6868 struct extent_map *em, 6869 u64 map_start) 6870 { 6871 struct extent_map *prev; 6872 struct extent_map *next; 6873 u64 start; 6874 u64 end; 6875 u64 start_diff; 6876 6877 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6878 6879 if (existing->start > map_start) { 6880 next = existing; 6881 prev = prev_extent_map(next); 6882 } else { 6883 prev = existing; 6884 next = next_extent_map(prev); 6885 } 6886 6887 start = prev ? extent_map_end(prev) : em->start; 6888 start = max_t(u64, start, em->start); 6889 end = next ? next->start : extent_map_end(em); 6890 end = min_t(u64, end, extent_map_end(em)); 6891 start_diff = start - em->start; 6892 em->start = start; 6893 em->len = end - start; 6894 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6895 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6896 em->block_start += start_diff; 6897 em->block_len -= start_diff; 6898 } 6899 return add_extent_mapping(em_tree, em, 0); 6900 } 6901 6902 static noinline int uncompress_inline(struct btrfs_path *path, 6903 struct page *page, 6904 size_t pg_offset, u64 extent_offset, 6905 struct btrfs_file_extent_item *item) 6906 { 6907 int ret; 6908 struct extent_buffer *leaf = path->nodes[0]; 6909 char *tmp; 6910 size_t max_size; 6911 unsigned long inline_size; 6912 unsigned long ptr; 6913 int compress_type; 6914 6915 WARN_ON(pg_offset != 0); 6916 compress_type = btrfs_file_extent_compression(leaf, item); 6917 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6918 inline_size = btrfs_file_extent_inline_item_len(leaf, 6919 btrfs_item_nr(path->slots[0])); 6920 tmp = kmalloc(inline_size, GFP_NOFS); 6921 if (!tmp) 6922 return -ENOMEM; 6923 ptr = btrfs_file_extent_inline_start(item); 6924 6925 read_extent_buffer(leaf, tmp, ptr, inline_size); 6926 6927 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6928 ret = btrfs_decompress(compress_type, tmp, page, 6929 extent_offset, inline_size, max_size); 6930 6931 /* 6932 * decompression code contains a memset to fill in any space between the end 6933 * of the uncompressed data and the end of max_size in case the decompressed 6934 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6935 * the end of an inline extent and the beginning of the next block, so we 6936 * cover that region here. 6937 */ 6938 6939 if (max_size + pg_offset < PAGE_SIZE) { 6940 char *map = kmap(page); 6941 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6942 kunmap(page); 6943 } 6944 kfree(tmp); 6945 return ret; 6946 } 6947 6948 /* 6949 * a bit scary, this does extent mapping from logical file offset to the disk. 6950 * the ugly parts come from merging extents from the disk with the in-ram 6951 * representation. This gets more complex because of the data=ordered code, 6952 * where the in-ram extents might be locked pending data=ordered completion. 6953 * 6954 * This also copies inline extents directly into the page. 6955 */ 6956 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6957 struct page *page, 6958 size_t pg_offset, u64 start, u64 len, 6959 int create) 6960 { 6961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6962 int ret; 6963 int err = 0; 6964 u64 extent_start = 0; 6965 u64 extent_end = 0; 6966 u64 objectid = btrfs_ino(inode); 6967 u32 found_type; 6968 struct btrfs_path *path = NULL; 6969 struct btrfs_root *root = inode->root; 6970 struct btrfs_file_extent_item *item; 6971 struct extent_buffer *leaf; 6972 struct btrfs_key found_key; 6973 struct extent_map *em = NULL; 6974 struct extent_map_tree *em_tree = &inode->extent_tree; 6975 struct extent_io_tree *io_tree = &inode->io_tree; 6976 struct btrfs_trans_handle *trans = NULL; 6977 const bool new_inline = !page || create; 6978 6979 again: 6980 read_lock(&em_tree->lock); 6981 em = lookup_extent_mapping(em_tree, start, len); 6982 if (em) 6983 em->bdev = fs_info->fs_devices->latest_bdev; 6984 read_unlock(&em_tree->lock); 6985 6986 if (em) { 6987 if (em->start > start || em->start + em->len <= start) 6988 free_extent_map(em); 6989 else if (em->block_start == EXTENT_MAP_INLINE && page) 6990 free_extent_map(em); 6991 else 6992 goto out; 6993 } 6994 em = alloc_extent_map(); 6995 if (!em) { 6996 err = -ENOMEM; 6997 goto out; 6998 } 6999 em->bdev = fs_info->fs_devices->latest_bdev; 7000 em->start = EXTENT_MAP_HOLE; 7001 em->orig_start = EXTENT_MAP_HOLE; 7002 em->len = (u64)-1; 7003 em->block_len = (u64)-1; 7004 7005 if (!path) { 7006 path = btrfs_alloc_path(); 7007 if (!path) { 7008 err = -ENOMEM; 7009 goto out; 7010 } 7011 /* 7012 * Chances are we'll be called again, so go ahead and do 7013 * readahead 7014 */ 7015 path->reada = READA_FORWARD; 7016 } 7017 7018 ret = btrfs_lookup_file_extent(trans, root, path, 7019 objectid, start, trans != NULL); 7020 if (ret < 0) { 7021 err = ret; 7022 goto out; 7023 } 7024 7025 if (ret != 0) { 7026 if (path->slots[0] == 0) 7027 goto not_found; 7028 path->slots[0]--; 7029 } 7030 7031 leaf = path->nodes[0]; 7032 item = btrfs_item_ptr(leaf, path->slots[0], 7033 struct btrfs_file_extent_item); 7034 /* are we inside the extent that was found? */ 7035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7036 found_type = found_key.type; 7037 if (found_key.objectid != objectid || 7038 found_type != BTRFS_EXTENT_DATA_KEY) { 7039 /* 7040 * If we backup past the first extent we want to move forward 7041 * and see if there is an extent in front of us, otherwise we'll 7042 * say there is a hole for our whole search range which can 7043 * cause problems. 7044 */ 7045 extent_end = start; 7046 goto next; 7047 } 7048 7049 found_type = btrfs_file_extent_type(leaf, item); 7050 extent_start = found_key.offset; 7051 if (found_type == BTRFS_FILE_EXTENT_REG || 7052 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7053 extent_end = extent_start + 7054 btrfs_file_extent_num_bytes(leaf, item); 7055 7056 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7057 extent_start); 7058 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7059 size_t size; 7060 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7061 extent_end = ALIGN(extent_start + size, 7062 fs_info->sectorsize); 7063 7064 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7065 path->slots[0], 7066 extent_start); 7067 } 7068 next: 7069 if (start >= extent_end) { 7070 path->slots[0]++; 7071 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7072 ret = btrfs_next_leaf(root, path); 7073 if (ret < 0) { 7074 err = ret; 7075 goto out; 7076 } 7077 if (ret > 0) 7078 goto not_found; 7079 leaf = path->nodes[0]; 7080 } 7081 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7082 if (found_key.objectid != objectid || 7083 found_key.type != BTRFS_EXTENT_DATA_KEY) 7084 goto not_found; 7085 if (start + len <= found_key.offset) 7086 goto not_found; 7087 if (start > found_key.offset) 7088 goto next; 7089 em->start = start; 7090 em->orig_start = start; 7091 em->len = found_key.offset - start; 7092 goto not_found_em; 7093 } 7094 7095 btrfs_extent_item_to_extent_map(inode, path, item, 7096 new_inline, em); 7097 7098 if (found_type == BTRFS_FILE_EXTENT_REG || 7099 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7100 goto insert; 7101 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7102 unsigned long ptr; 7103 char *map; 7104 size_t size; 7105 size_t extent_offset; 7106 size_t copy_size; 7107 7108 if (new_inline) 7109 goto out; 7110 7111 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7112 extent_offset = page_offset(page) + pg_offset - extent_start; 7113 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7114 size - extent_offset); 7115 em->start = extent_start + extent_offset; 7116 em->len = ALIGN(copy_size, fs_info->sectorsize); 7117 em->orig_block_len = em->len; 7118 em->orig_start = em->start; 7119 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7120 if (create == 0 && !PageUptodate(page)) { 7121 if (btrfs_file_extent_compression(leaf, item) != 7122 BTRFS_COMPRESS_NONE) { 7123 ret = uncompress_inline(path, page, pg_offset, 7124 extent_offset, item); 7125 if (ret) { 7126 err = ret; 7127 goto out; 7128 } 7129 } else { 7130 map = kmap(page); 7131 read_extent_buffer(leaf, map + pg_offset, ptr, 7132 copy_size); 7133 if (pg_offset + copy_size < PAGE_SIZE) { 7134 memset(map + pg_offset + copy_size, 0, 7135 PAGE_SIZE - pg_offset - 7136 copy_size); 7137 } 7138 kunmap(page); 7139 } 7140 flush_dcache_page(page); 7141 } else if (create && PageUptodate(page)) { 7142 BUG(); 7143 if (!trans) { 7144 kunmap(page); 7145 free_extent_map(em); 7146 em = NULL; 7147 7148 btrfs_release_path(path); 7149 trans = btrfs_join_transaction(root); 7150 7151 if (IS_ERR(trans)) 7152 return ERR_CAST(trans); 7153 goto again; 7154 } 7155 map = kmap(page); 7156 write_extent_buffer(leaf, map + pg_offset, ptr, 7157 copy_size); 7158 kunmap(page); 7159 btrfs_mark_buffer_dirty(leaf); 7160 } 7161 set_extent_uptodate(io_tree, em->start, 7162 extent_map_end(em) - 1, NULL, GFP_NOFS); 7163 goto insert; 7164 } 7165 not_found: 7166 em->start = start; 7167 em->orig_start = start; 7168 em->len = len; 7169 not_found_em: 7170 em->block_start = EXTENT_MAP_HOLE; 7171 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7172 insert: 7173 btrfs_release_path(path); 7174 if (em->start > start || extent_map_end(em) <= start) { 7175 btrfs_err(fs_info, 7176 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7177 em->start, em->len, start, len); 7178 err = -EIO; 7179 goto out; 7180 } 7181 7182 err = 0; 7183 write_lock(&em_tree->lock); 7184 ret = add_extent_mapping(em_tree, em, 0); 7185 /* it is possible that someone inserted the extent into the tree 7186 * while we had the lock dropped. It is also possible that 7187 * an overlapping map exists in the tree 7188 */ 7189 if (ret == -EEXIST) { 7190 struct extent_map *existing; 7191 7192 ret = 0; 7193 7194 existing = search_extent_mapping(em_tree, start, len); 7195 /* 7196 * existing will always be non-NULL, since there must be 7197 * extent causing the -EEXIST. 7198 */ 7199 if (existing->start == em->start && 7200 extent_map_end(existing) >= extent_map_end(em) && 7201 em->block_start == existing->block_start) { 7202 /* 7203 * The existing extent map already encompasses the 7204 * entire extent map we tried to add. 7205 */ 7206 free_extent_map(em); 7207 em = existing; 7208 err = 0; 7209 7210 } else if (start >= extent_map_end(existing) || 7211 start <= existing->start) { 7212 /* 7213 * The existing extent map is the one nearest to 7214 * the [start, start + len) range which overlaps 7215 */ 7216 err = merge_extent_mapping(em_tree, existing, 7217 em, start); 7218 free_extent_map(existing); 7219 if (err) { 7220 free_extent_map(em); 7221 em = NULL; 7222 } 7223 } else { 7224 free_extent_map(em); 7225 em = existing; 7226 err = 0; 7227 } 7228 } 7229 write_unlock(&em_tree->lock); 7230 out: 7231 7232 trace_btrfs_get_extent(root, inode, em); 7233 7234 btrfs_free_path(path); 7235 if (trans) { 7236 ret = btrfs_end_transaction(trans); 7237 if (!err) 7238 err = ret; 7239 } 7240 if (err) { 7241 free_extent_map(em); 7242 return ERR_PTR(err); 7243 } 7244 BUG_ON(!em); /* Error is always set */ 7245 return em; 7246 } 7247 7248 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7249 struct page *page, 7250 size_t pg_offset, u64 start, u64 len, 7251 int create) 7252 { 7253 struct extent_map *em; 7254 struct extent_map *hole_em = NULL; 7255 u64 range_start = start; 7256 u64 end; 7257 u64 found; 7258 u64 found_end; 7259 int err = 0; 7260 7261 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7262 if (IS_ERR(em)) 7263 return em; 7264 /* 7265 * If our em maps to: 7266 * - a hole or 7267 * - a pre-alloc extent, 7268 * there might actually be delalloc bytes behind it. 7269 */ 7270 if (em->block_start != EXTENT_MAP_HOLE && 7271 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7272 return em; 7273 else 7274 hole_em = em; 7275 7276 /* check to see if we've wrapped (len == -1 or similar) */ 7277 end = start + len; 7278 if (end < start) 7279 end = (u64)-1; 7280 else 7281 end -= 1; 7282 7283 em = NULL; 7284 7285 /* ok, we didn't find anything, lets look for delalloc */ 7286 found = count_range_bits(&inode->io_tree, &range_start, 7287 end, len, EXTENT_DELALLOC, 1); 7288 found_end = range_start + found; 7289 if (found_end < range_start) 7290 found_end = (u64)-1; 7291 7292 /* 7293 * we didn't find anything useful, return 7294 * the original results from get_extent() 7295 */ 7296 if (range_start > end || found_end <= start) { 7297 em = hole_em; 7298 hole_em = NULL; 7299 goto out; 7300 } 7301 7302 /* adjust the range_start to make sure it doesn't 7303 * go backwards from the start they passed in 7304 */ 7305 range_start = max(start, range_start); 7306 found = found_end - range_start; 7307 7308 if (found > 0) { 7309 u64 hole_start = start; 7310 u64 hole_len = len; 7311 7312 em = alloc_extent_map(); 7313 if (!em) { 7314 err = -ENOMEM; 7315 goto out; 7316 } 7317 /* 7318 * when btrfs_get_extent can't find anything it 7319 * returns one huge hole 7320 * 7321 * make sure what it found really fits our range, and 7322 * adjust to make sure it is based on the start from 7323 * the caller 7324 */ 7325 if (hole_em) { 7326 u64 calc_end = extent_map_end(hole_em); 7327 7328 if (calc_end <= start || (hole_em->start > end)) { 7329 free_extent_map(hole_em); 7330 hole_em = NULL; 7331 } else { 7332 hole_start = max(hole_em->start, start); 7333 hole_len = calc_end - hole_start; 7334 } 7335 } 7336 em->bdev = NULL; 7337 if (hole_em && range_start > hole_start) { 7338 /* our hole starts before our delalloc, so we 7339 * have to return just the parts of the hole 7340 * that go until the delalloc starts 7341 */ 7342 em->len = min(hole_len, 7343 range_start - hole_start); 7344 em->start = hole_start; 7345 em->orig_start = hole_start; 7346 /* 7347 * don't adjust block start at all, 7348 * it is fixed at EXTENT_MAP_HOLE 7349 */ 7350 em->block_start = hole_em->block_start; 7351 em->block_len = hole_len; 7352 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7353 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7354 } else { 7355 em->start = range_start; 7356 em->len = found; 7357 em->orig_start = range_start; 7358 em->block_start = EXTENT_MAP_DELALLOC; 7359 em->block_len = found; 7360 } 7361 } else if (hole_em) { 7362 return hole_em; 7363 } 7364 out: 7365 7366 free_extent_map(hole_em); 7367 if (err) { 7368 free_extent_map(em); 7369 return ERR_PTR(err); 7370 } 7371 return em; 7372 } 7373 7374 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7375 const u64 start, 7376 const u64 len, 7377 const u64 orig_start, 7378 const u64 block_start, 7379 const u64 block_len, 7380 const u64 orig_block_len, 7381 const u64 ram_bytes, 7382 const int type) 7383 { 7384 struct extent_map *em = NULL; 7385 int ret; 7386 7387 if (type != BTRFS_ORDERED_NOCOW) { 7388 em = create_io_em(inode, start, len, orig_start, 7389 block_start, block_len, orig_block_len, 7390 ram_bytes, 7391 BTRFS_COMPRESS_NONE, /* compress_type */ 7392 type); 7393 if (IS_ERR(em)) 7394 goto out; 7395 } 7396 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7397 len, block_len, type); 7398 if (ret) { 7399 if (em) { 7400 free_extent_map(em); 7401 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7402 start + len - 1, 0); 7403 } 7404 em = ERR_PTR(ret); 7405 } 7406 out: 7407 7408 return em; 7409 } 7410 7411 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7412 u64 start, u64 len) 7413 { 7414 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7415 struct btrfs_root *root = BTRFS_I(inode)->root; 7416 struct extent_map *em; 7417 struct btrfs_key ins; 7418 u64 alloc_hint; 7419 int ret; 7420 7421 alloc_hint = get_extent_allocation_hint(inode, start, len); 7422 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7423 0, alloc_hint, &ins, 1, 1); 7424 if (ret) 7425 return ERR_PTR(ret); 7426 7427 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7428 ins.objectid, ins.offset, ins.offset, 7429 ins.offset, BTRFS_ORDERED_REGULAR); 7430 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7431 if (IS_ERR(em)) 7432 btrfs_free_reserved_extent(fs_info, ins.objectid, 7433 ins.offset, 1); 7434 7435 return em; 7436 } 7437 7438 /* 7439 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7440 * block must be cow'd 7441 */ 7442 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7443 u64 *orig_start, u64 *orig_block_len, 7444 u64 *ram_bytes) 7445 { 7446 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7447 struct btrfs_path *path; 7448 int ret; 7449 struct extent_buffer *leaf; 7450 struct btrfs_root *root = BTRFS_I(inode)->root; 7451 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7452 struct btrfs_file_extent_item *fi; 7453 struct btrfs_key key; 7454 u64 disk_bytenr; 7455 u64 backref_offset; 7456 u64 extent_end; 7457 u64 num_bytes; 7458 int slot; 7459 int found_type; 7460 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7461 7462 path = btrfs_alloc_path(); 7463 if (!path) 7464 return -ENOMEM; 7465 7466 ret = btrfs_lookup_file_extent(NULL, root, path, 7467 btrfs_ino(BTRFS_I(inode)), offset, 0); 7468 if (ret < 0) 7469 goto out; 7470 7471 slot = path->slots[0]; 7472 if (ret == 1) { 7473 if (slot == 0) { 7474 /* can't find the item, must cow */ 7475 ret = 0; 7476 goto out; 7477 } 7478 slot--; 7479 } 7480 ret = 0; 7481 leaf = path->nodes[0]; 7482 btrfs_item_key_to_cpu(leaf, &key, slot); 7483 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7484 key.type != BTRFS_EXTENT_DATA_KEY) { 7485 /* not our file or wrong item type, must cow */ 7486 goto out; 7487 } 7488 7489 if (key.offset > offset) { 7490 /* Wrong offset, must cow */ 7491 goto out; 7492 } 7493 7494 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7495 found_type = btrfs_file_extent_type(leaf, fi); 7496 if (found_type != BTRFS_FILE_EXTENT_REG && 7497 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7498 /* not a regular extent, must cow */ 7499 goto out; 7500 } 7501 7502 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7503 goto out; 7504 7505 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7506 if (extent_end <= offset) 7507 goto out; 7508 7509 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7510 if (disk_bytenr == 0) 7511 goto out; 7512 7513 if (btrfs_file_extent_compression(leaf, fi) || 7514 btrfs_file_extent_encryption(leaf, fi) || 7515 btrfs_file_extent_other_encoding(leaf, fi)) 7516 goto out; 7517 7518 backref_offset = btrfs_file_extent_offset(leaf, fi); 7519 7520 if (orig_start) { 7521 *orig_start = key.offset - backref_offset; 7522 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7523 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7524 } 7525 7526 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7527 goto out; 7528 7529 num_bytes = min(offset + *len, extent_end) - offset; 7530 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7531 u64 range_end; 7532 7533 range_end = round_up(offset + num_bytes, 7534 root->fs_info->sectorsize) - 1; 7535 ret = test_range_bit(io_tree, offset, range_end, 7536 EXTENT_DELALLOC, 0, NULL); 7537 if (ret) { 7538 ret = -EAGAIN; 7539 goto out; 7540 } 7541 } 7542 7543 btrfs_release_path(path); 7544 7545 /* 7546 * look for other files referencing this extent, if we 7547 * find any we must cow 7548 */ 7549 7550 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7551 key.offset - backref_offset, disk_bytenr); 7552 if (ret) { 7553 ret = 0; 7554 goto out; 7555 } 7556 7557 /* 7558 * adjust disk_bytenr and num_bytes to cover just the bytes 7559 * in this extent we are about to write. If there 7560 * are any csums in that range we have to cow in order 7561 * to keep the csums correct 7562 */ 7563 disk_bytenr += backref_offset; 7564 disk_bytenr += offset - key.offset; 7565 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7566 goto out; 7567 /* 7568 * all of the above have passed, it is safe to overwrite this extent 7569 * without cow 7570 */ 7571 *len = num_bytes; 7572 ret = 1; 7573 out: 7574 btrfs_free_path(path); 7575 return ret; 7576 } 7577 7578 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7579 { 7580 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7581 bool found = false; 7582 void **pagep = NULL; 7583 struct page *page = NULL; 7584 unsigned long start_idx; 7585 unsigned long end_idx; 7586 7587 start_idx = start >> PAGE_SHIFT; 7588 7589 /* 7590 * end is the last byte in the last page. end == start is legal 7591 */ 7592 end_idx = end >> PAGE_SHIFT; 7593 7594 rcu_read_lock(); 7595 7596 /* Most of the code in this while loop is lifted from 7597 * find_get_page. It's been modified to begin searching from a 7598 * page and return just the first page found in that range. If the 7599 * found idx is less than or equal to the end idx then we know that 7600 * a page exists. If no pages are found or if those pages are 7601 * outside of the range then we're fine (yay!) */ 7602 while (page == NULL && 7603 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7604 page = radix_tree_deref_slot(pagep); 7605 if (unlikely(!page)) 7606 break; 7607 7608 if (radix_tree_exception(page)) { 7609 if (radix_tree_deref_retry(page)) { 7610 page = NULL; 7611 continue; 7612 } 7613 /* 7614 * Otherwise, shmem/tmpfs must be storing a swap entry 7615 * here as an exceptional entry: so return it without 7616 * attempting to raise page count. 7617 */ 7618 page = NULL; 7619 break; /* TODO: Is this relevant for this use case? */ 7620 } 7621 7622 if (!page_cache_get_speculative(page)) { 7623 page = NULL; 7624 continue; 7625 } 7626 7627 /* 7628 * Has the page moved? 7629 * This is part of the lockless pagecache protocol. See 7630 * include/linux/pagemap.h for details. 7631 */ 7632 if (unlikely(page != *pagep)) { 7633 put_page(page); 7634 page = NULL; 7635 } 7636 } 7637 7638 if (page) { 7639 if (page->index <= end_idx) 7640 found = true; 7641 put_page(page); 7642 } 7643 7644 rcu_read_unlock(); 7645 return found; 7646 } 7647 7648 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7649 struct extent_state **cached_state, int writing) 7650 { 7651 struct btrfs_ordered_extent *ordered; 7652 int ret = 0; 7653 7654 while (1) { 7655 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7656 cached_state); 7657 /* 7658 * We're concerned with the entire range that we're going to be 7659 * doing DIO to, so we need to make sure there's no ordered 7660 * extents in this range. 7661 */ 7662 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7663 lockend - lockstart + 1); 7664 7665 /* 7666 * We need to make sure there are no buffered pages in this 7667 * range either, we could have raced between the invalidate in 7668 * generic_file_direct_write and locking the extent. The 7669 * invalidate needs to happen so that reads after a write do not 7670 * get stale data. 7671 */ 7672 if (!ordered && 7673 (!writing || 7674 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7675 break; 7676 7677 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7678 cached_state, GFP_NOFS); 7679 7680 if (ordered) { 7681 /* 7682 * If we are doing a DIO read and the ordered extent we 7683 * found is for a buffered write, we can not wait for it 7684 * to complete and retry, because if we do so we can 7685 * deadlock with concurrent buffered writes on page 7686 * locks. This happens only if our DIO read covers more 7687 * than one extent map, if at this point has already 7688 * created an ordered extent for a previous extent map 7689 * and locked its range in the inode's io tree, and a 7690 * concurrent write against that previous extent map's 7691 * range and this range started (we unlock the ranges 7692 * in the io tree only when the bios complete and 7693 * buffered writes always lock pages before attempting 7694 * to lock range in the io tree). 7695 */ 7696 if (writing || 7697 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7698 btrfs_start_ordered_extent(inode, ordered, 1); 7699 else 7700 ret = -ENOTBLK; 7701 btrfs_put_ordered_extent(ordered); 7702 } else { 7703 /* 7704 * We could trigger writeback for this range (and wait 7705 * for it to complete) and then invalidate the pages for 7706 * this range (through invalidate_inode_pages2_range()), 7707 * but that can lead us to a deadlock with a concurrent 7708 * call to readpages() (a buffered read or a defrag call 7709 * triggered a readahead) on a page lock due to an 7710 * ordered dio extent we created before but did not have 7711 * yet a corresponding bio submitted (whence it can not 7712 * complete), which makes readpages() wait for that 7713 * ordered extent to complete while holding a lock on 7714 * that page. 7715 */ 7716 ret = -ENOTBLK; 7717 } 7718 7719 if (ret) 7720 break; 7721 7722 cond_resched(); 7723 } 7724 7725 return ret; 7726 } 7727 7728 /* The callers of this must take lock_extent() */ 7729 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7730 u64 orig_start, u64 block_start, 7731 u64 block_len, u64 orig_block_len, 7732 u64 ram_bytes, int compress_type, 7733 int type) 7734 { 7735 struct extent_map_tree *em_tree; 7736 struct extent_map *em; 7737 struct btrfs_root *root = BTRFS_I(inode)->root; 7738 int ret; 7739 7740 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7741 type == BTRFS_ORDERED_COMPRESSED || 7742 type == BTRFS_ORDERED_NOCOW || 7743 type == BTRFS_ORDERED_REGULAR); 7744 7745 em_tree = &BTRFS_I(inode)->extent_tree; 7746 em = alloc_extent_map(); 7747 if (!em) 7748 return ERR_PTR(-ENOMEM); 7749 7750 em->start = start; 7751 em->orig_start = orig_start; 7752 em->len = len; 7753 em->block_len = block_len; 7754 em->block_start = block_start; 7755 em->bdev = root->fs_info->fs_devices->latest_bdev; 7756 em->orig_block_len = orig_block_len; 7757 em->ram_bytes = ram_bytes; 7758 em->generation = -1; 7759 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7760 if (type == BTRFS_ORDERED_PREALLOC) { 7761 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7762 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7763 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7764 em->compress_type = compress_type; 7765 } 7766 7767 do { 7768 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7769 em->start + em->len - 1, 0); 7770 write_lock(&em_tree->lock); 7771 ret = add_extent_mapping(em_tree, em, 1); 7772 write_unlock(&em_tree->lock); 7773 /* 7774 * The caller has taken lock_extent(), who could race with us 7775 * to add em? 7776 */ 7777 } while (ret == -EEXIST); 7778 7779 if (ret) { 7780 free_extent_map(em); 7781 return ERR_PTR(ret); 7782 } 7783 7784 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7785 return em; 7786 } 7787 7788 static void adjust_dio_outstanding_extents(struct inode *inode, 7789 struct btrfs_dio_data *dio_data, 7790 const u64 len) 7791 { 7792 unsigned num_extents = count_max_extents(len); 7793 7794 /* 7795 * If we have an outstanding_extents count still set then we're 7796 * within our reservation, otherwise we need to adjust our inode 7797 * counter appropriately. 7798 */ 7799 if (dio_data->outstanding_extents >= num_extents) { 7800 dio_data->outstanding_extents -= num_extents; 7801 } else { 7802 /* 7803 * If dio write length has been split due to no large enough 7804 * contiguous space, we need to compensate our inode counter 7805 * appropriately. 7806 */ 7807 u64 num_needed = num_extents - dio_data->outstanding_extents; 7808 7809 spin_lock(&BTRFS_I(inode)->lock); 7810 BTRFS_I(inode)->outstanding_extents += num_needed; 7811 spin_unlock(&BTRFS_I(inode)->lock); 7812 } 7813 } 7814 7815 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7816 struct buffer_head *bh_result, int create) 7817 { 7818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7819 struct extent_map *em; 7820 struct extent_state *cached_state = NULL; 7821 struct btrfs_dio_data *dio_data = NULL; 7822 u64 start = iblock << inode->i_blkbits; 7823 u64 lockstart, lockend; 7824 u64 len = bh_result->b_size; 7825 int unlock_bits = EXTENT_LOCKED; 7826 int ret = 0; 7827 7828 if (create) 7829 unlock_bits |= EXTENT_DIRTY; 7830 else 7831 len = min_t(u64, len, fs_info->sectorsize); 7832 7833 lockstart = start; 7834 lockend = start + len - 1; 7835 7836 if (current->journal_info) { 7837 /* 7838 * Need to pull our outstanding extents and set journal_info to NULL so 7839 * that anything that needs to check if there's a transaction doesn't get 7840 * confused. 7841 */ 7842 dio_data = current->journal_info; 7843 current->journal_info = NULL; 7844 } 7845 7846 /* 7847 * If this errors out it's because we couldn't invalidate pagecache for 7848 * this range and we need to fallback to buffered. 7849 */ 7850 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7851 create)) { 7852 ret = -ENOTBLK; 7853 goto err; 7854 } 7855 7856 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7857 if (IS_ERR(em)) { 7858 ret = PTR_ERR(em); 7859 goto unlock_err; 7860 } 7861 7862 /* 7863 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7864 * io. INLINE is special, and we could probably kludge it in here, but 7865 * it's still buffered so for safety lets just fall back to the generic 7866 * buffered path. 7867 * 7868 * For COMPRESSED we _have_ to read the entire extent in so we can 7869 * decompress it, so there will be buffering required no matter what we 7870 * do, so go ahead and fallback to buffered. 7871 * 7872 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7873 * to buffered IO. Don't blame me, this is the price we pay for using 7874 * the generic code. 7875 */ 7876 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7877 em->block_start == EXTENT_MAP_INLINE) { 7878 free_extent_map(em); 7879 ret = -ENOTBLK; 7880 goto unlock_err; 7881 } 7882 7883 /* Just a good old fashioned hole, return */ 7884 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7885 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7886 free_extent_map(em); 7887 goto unlock_err; 7888 } 7889 7890 /* 7891 * We don't allocate a new extent in the following cases 7892 * 7893 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7894 * existing extent. 7895 * 2) The extent is marked as PREALLOC. We're good to go here and can 7896 * just use the extent. 7897 * 7898 */ 7899 if (!create) { 7900 len = min(len, em->len - (start - em->start)); 7901 lockstart = start + len; 7902 goto unlock; 7903 } 7904 7905 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7906 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7907 em->block_start != EXTENT_MAP_HOLE)) { 7908 int type; 7909 u64 block_start, orig_start, orig_block_len, ram_bytes; 7910 7911 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7912 type = BTRFS_ORDERED_PREALLOC; 7913 else 7914 type = BTRFS_ORDERED_NOCOW; 7915 len = min(len, em->len - (start - em->start)); 7916 block_start = em->block_start + (start - em->start); 7917 7918 if (can_nocow_extent(inode, start, &len, &orig_start, 7919 &orig_block_len, &ram_bytes) == 1 && 7920 btrfs_inc_nocow_writers(fs_info, block_start)) { 7921 struct extent_map *em2; 7922 7923 em2 = btrfs_create_dio_extent(inode, start, len, 7924 orig_start, block_start, 7925 len, orig_block_len, 7926 ram_bytes, type); 7927 btrfs_dec_nocow_writers(fs_info, block_start); 7928 if (type == BTRFS_ORDERED_PREALLOC) { 7929 free_extent_map(em); 7930 em = em2; 7931 } 7932 if (em2 && IS_ERR(em2)) { 7933 ret = PTR_ERR(em2); 7934 goto unlock_err; 7935 } 7936 /* 7937 * For inode marked NODATACOW or extent marked PREALLOC, 7938 * use the existing or preallocated extent, so does not 7939 * need to adjust btrfs_space_info's bytes_may_use. 7940 */ 7941 btrfs_free_reserved_data_space_noquota(inode, 7942 start, len); 7943 goto unlock; 7944 } 7945 } 7946 7947 /* 7948 * this will cow the extent, reset the len in case we changed 7949 * it above 7950 */ 7951 len = bh_result->b_size; 7952 free_extent_map(em); 7953 em = btrfs_new_extent_direct(inode, start, len); 7954 if (IS_ERR(em)) { 7955 ret = PTR_ERR(em); 7956 goto unlock_err; 7957 } 7958 len = min(len, em->len - (start - em->start)); 7959 unlock: 7960 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7961 inode->i_blkbits; 7962 bh_result->b_size = len; 7963 bh_result->b_bdev = em->bdev; 7964 set_buffer_mapped(bh_result); 7965 if (create) { 7966 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7967 set_buffer_new(bh_result); 7968 7969 /* 7970 * Need to update the i_size under the extent lock so buffered 7971 * readers will get the updated i_size when we unlock. 7972 */ 7973 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7974 i_size_write(inode, start + len); 7975 7976 adjust_dio_outstanding_extents(inode, dio_data, len); 7977 WARN_ON(dio_data->reserve < len); 7978 dio_data->reserve -= len; 7979 dio_data->unsubmitted_oe_range_end = start + len; 7980 current->journal_info = dio_data; 7981 } 7982 7983 /* 7984 * In the case of write we need to clear and unlock the entire range, 7985 * in the case of read we need to unlock only the end area that we 7986 * aren't using if there is any left over space. 7987 */ 7988 if (lockstart < lockend) { 7989 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7990 lockend, unlock_bits, 1, 0, 7991 &cached_state, GFP_NOFS); 7992 } else { 7993 free_extent_state(cached_state); 7994 } 7995 7996 free_extent_map(em); 7997 7998 return 0; 7999 8000 unlock_err: 8001 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 8002 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 8003 err: 8004 if (dio_data) 8005 current->journal_info = dio_data; 8006 /* 8007 * Compensate the delalloc release we do in btrfs_direct_IO() when we 8008 * write less data then expected, so that we don't underflow our inode's 8009 * outstanding extents counter. 8010 */ 8011 if (create && dio_data) 8012 adjust_dio_outstanding_extents(inode, dio_data, len); 8013 8014 return ret; 8015 } 8016 8017 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 8018 struct bio *bio, 8019 int mirror_num) 8020 { 8021 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8022 blk_status_t ret; 8023 8024 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 8025 8026 bio_get(bio); 8027 8028 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 8029 if (ret) 8030 goto err; 8031 8032 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 8033 err: 8034 bio_put(bio); 8035 return ret; 8036 } 8037 8038 static int btrfs_check_dio_repairable(struct inode *inode, 8039 struct bio *failed_bio, 8040 struct io_failure_record *failrec, 8041 int failed_mirror) 8042 { 8043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8044 int num_copies; 8045 8046 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 8047 if (num_copies == 1) { 8048 /* 8049 * we only have a single copy of the data, so don't bother with 8050 * all the retry and error correction code that follows. no 8051 * matter what the error is, it is very likely to persist. 8052 */ 8053 btrfs_debug(fs_info, 8054 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 8055 num_copies, failrec->this_mirror, failed_mirror); 8056 return 0; 8057 } 8058 8059 failrec->failed_mirror = failed_mirror; 8060 failrec->this_mirror++; 8061 if (failrec->this_mirror == failed_mirror) 8062 failrec->this_mirror++; 8063 8064 if (failrec->this_mirror > num_copies) { 8065 btrfs_debug(fs_info, 8066 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 8067 num_copies, failrec->this_mirror, failed_mirror); 8068 return 0; 8069 } 8070 8071 return 1; 8072 } 8073 8074 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 8075 struct page *page, unsigned int pgoff, 8076 u64 start, u64 end, int failed_mirror, 8077 bio_end_io_t *repair_endio, void *repair_arg) 8078 { 8079 struct io_failure_record *failrec; 8080 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8081 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 8082 struct bio *bio; 8083 int isector; 8084 unsigned int read_mode = 0; 8085 int segs; 8086 int ret; 8087 blk_status_t status; 8088 8089 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 8090 8091 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 8092 if (ret) 8093 return errno_to_blk_status(ret); 8094 8095 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 8096 failed_mirror); 8097 if (!ret) { 8098 free_io_failure(failure_tree, io_tree, failrec); 8099 return BLK_STS_IOERR; 8100 } 8101 8102 segs = bio_segments(failed_bio); 8103 if (segs > 1 || 8104 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode))) 8105 read_mode |= REQ_FAILFAST_DEV; 8106 8107 isector = start - btrfs_io_bio(failed_bio)->logical; 8108 isector >>= inode->i_sb->s_blocksize_bits; 8109 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 8110 pgoff, isector, repair_endio, repair_arg); 8111 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 8112 8113 btrfs_debug(BTRFS_I(inode)->root->fs_info, 8114 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 8115 read_mode, failrec->this_mirror, failrec->in_validation); 8116 8117 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 8118 if (status) { 8119 free_io_failure(failure_tree, io_tree, failrec); 8120 bio_put(bio); 8121 } 8122 8123 return status; 8124 } 8125 8126 struct btrfs_retry_complete { 8127 struct completion done; 8128 struct inode *inode; 8129 u64 start; 8130 int uptodate; 8131 }; 8132 8133 static void btrfs_retry_endio_nocsum(struct bio *bio) 8134 { 8135 struct btrfs_retry_complete *done = bio->bi_private; 8136 struct inode *inode = done->inode; 8137 struct bio_vec *bvec; 8138 struct extent_io_tree *io_tree, *failure_tree; 8139 int i; 8140 8141 if (bio->bi_status) 8142 goto end; 8143 8144 ASSERT(bio->bi_vcnt == 1); 8145 io_tree = &BTRFS_I(inode)->io_tree; 8146 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8147 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode)); 8148 8149 done->uptodate = 1; 8150 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8151 bio_for_each_segment_all(bvec, bio, i) 8152 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 8153 io_tree, done->start, bvec->bv_page, 8154 btrfs_ino(BTRFS_I(inode)), 0); 8155 end: 8156 complete(&done->done); 8157 bio_put(bio); 8158 } 8159 8160 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 8161 struct btrfs_io_bio *io_bio) 8162 { 8163 struct btrfs_fs_info *fs_info; 8164 struct bio_vec bvec; 8165 struct bvec_iter iter; 8166 struct btrfs_retry_complete done; 8167 u64 start; 8168 unsigned int pgoff; 8169 u32 sectorsize; 8170 int nr_sectors; 8171 blk_status_t ret; 8172 blk_status_t err = BLK_STS_OK; 8173 8174 fs_info = BTRFS_I(inode)->root->fs_info; 8175 sectorsize = fs_info->sectorsize; 8176 8177 start = io_bio->logical; 8178 done.inode = inode; 8179 io_bio->bio.bi_iter = io_bio->iter; 8180 8181 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8182 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8183 pgoff = bvec.bv_offset; 8184 8185 next_block_or_try_again: 8186 done.uptodate = 0; 8187 done.start = start; 8188 init_completion(&done.done); 8189 8190 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8191 pgoff, start, start + sectorsize - 1, 8192 io_bio->mirror_num, 8193 btrfs_retry_endio_nocsum, &done); 8194 if (ret) { 8195 err = ret; 8196 goto next; 8197 } 8198 8199 wait_for_completion_io(&done.done); 8200 8201 if (!done.uptodate) { 8202 /* We might have another mirror, so try again */ 8203 goto next_block_or_try_again; 8204 } 8205 8206 next: 8207 start += sectorsize; 8208 8209 nr_sectors--; 8210 if (nr_sectors) { 8211 pgoff += sectorsize; 8212 ASSERT(pgoff < PAGE_SIZE); 8213 goto next_block_or_try_again; 8214 } 8215 } 8216 8217 return err; 8218 } 8219 8220 static void btrfs_retry_endio(struct bio *bio) 8221 { 8222 struct btrfs_retry_complete *done = bio->bi_private; 8223 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8224 struct extent_io_tree *io_tree, *failure_tree; 8225 struct inode *inode = done->inode; 8226 struct bio_vec *bvec; 8227 int uptodate; 8228 int ret; 8229 int i; 8230 8231 if (bio->bi_status) 8232 goto end; 8233 8234 uptodate = 1; 8235 8236 ASSERT(bio->bi_vcnt == 1); 8237 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode)); 8238 8239 io_tree = &BTRFS_I(inode)->io_tree; 8240 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8241 8242 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8243 bio_for_each_segment_all(bvec, bio, i) { 8244 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8245 bvec->bv_offset, done->start, 8246 bvec->bv_len); 8247 if (!ret) 8248 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8249 failure_tree, io_tree, done->start, 8250 bvec->bv_page, 8251 btrfs_ino(BTRFS_I(inode)), 8252 bvec->bv_offset); 8253 else 8254 uptodate = 0; 8255 } 8256 8257 done->uptodate = uptodate; 8258 end: 8259 complete(&done->done); 8260 bio_put(bio); 8261 } 8262 8263 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8264 struct btrfs_io_bio *io_bio, blk_status_t err) 8265 { 8266 struct btrfs_fs_info *fs_info; 8267 struct bio_vec bvec; 8268 struct bvec_iter iter; 8269 struct btrfs_retry_complete done; 8270 u64 start; 8271 u64 offset = 0; 8272 u32 sectorsize; 8273 int nr_sectors; 8274 unsigned int pgoff; 8275 int csum_pos; 8276 bool uptodate = (err == 0); 8277 int ret; 8278 blk_status_t status; 8279 8280 fs_info = BTRFS_I(inode)->root->fs_info; 8281 sectorsize = fs_info->sectorsize; 8282 8283 err = BLK_STS_OK; 8284 start = io_bio->logical; 8285 done.inode = inode; 8286 io_bio->bio.bi_iter = io_bio->iter; 8287 8288 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8289 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8290 8291 pgoff = bvec.bv_offset; 8292 next_block: 8293 if (uptodate) { 8294 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8295 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8296 bvec.bv_page, pgoff, start, sectorsize); 8297 if (likely(!ret)) 8298 goto next; 8299 } 8300 try_again: 8301 done.uptodate = 0; 8302 done.start = start; 8303 init_completion(&done.done); 8304 8305 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8306 pgoff, start, start + sectorsize - 1, 8307 io_bio->mirror_num, btrfs_retry_endio, 8308 &done); 8309 if (status) { 8310 err = status; 8311 goto next; 8312 } 8313 8314 wait_for_completion_io(&done.done); 8315 8316 if (!done.uptodate) { 8317 /* We might have another mirror, so try again */ 8318 goto try_again; 8319 } 8320 next: 8321 offset += sectorsize; 8322 start += sectorsize; 8323 8324 ASSERT(nr_sectors); 8325 8326 nr_sectors--; 8327 if (nr_sectors) { 8328 pgoff += sectorsize; 8329 ASSERT(pgoff < PAGE_SIZE); 8330 goto next_block; 8331 } 8332 } 8333 8334 return err; 8335 } 8336 8337 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8338 struct btrfs_io_bio *io_bio, blk_status_t err) 8339 { 8340 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8341 8342 if (skip_csum) { 8343 if (unlikely(err)) 8344 return __btrfs_correct_data_nocsum(inode, io_bio); 8345 else 8346 return BLK_STS_OK; 8347 } else { 8348 return __btrfs_subio_endio_read(inode, io_bio, err); 8349 } 8350 } 8351 8352 static void btrfs_endio_direct_read(struct bio *bio) 8353 { 8354 struct btrfs_dio_private *dip = bio->bi_private; 8355 struct inode *inode = dip->inode; 8356 struct bio *dio_bio; 8357 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8358 blk_status_t err = bio->bi_status; 8359 8360 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) { 8361 err = btrfs_subio_endio_read(inode, io_bio, err); 8362 if (!err) 8363 bio->bi_status = 0; 8364 } 8365 8366 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8367 dip->logical_offset + dip->bytes - 1); 8368 dio_bio = dip->dio_bio; 8369 8370 kfree(dip); 8371 8372 dio_bio->bi_status = bio->bi_status; 8373 dio_end_io(dio_bio); 8374 8375 if (io_bio->end_io) 8376 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8377 bio_put(bio); 8378 } 8379 8380 static void __endio_write_update_ordered(struct inode *inode, 8381 const u64 offset, const u64 bytes, 8382 const bool uptodate) 8383 { 8384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8385 struct btrfs_ordered_extent *ordered = NULL; 8386 struct btrfs_workqueue *wq; 8387 btrfs_work_func_t func; 8388 u64 ordered_offset = offset; 8389 u64 ordered_bytes = bytes; 8390 int ret; 8391 8392 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8393 wq = fs_info->endio_freespace_worker; 8394 func = btrfs_freespace_write_helper; 8395 } else { 8396 wq = fs_info->endio_write_workers; 8397 func = btrfs_endio_write_helper; 8398 } 8399 8400 again: 8401 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8402 &ordered_offset, 8403 ordered_bytes, 8404 uptodate); 8405 if (!ret) 8406 goto out_test; 8407 8408 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8409 btrfs_queue_work(wq, &ordered->work); 8410 out_test: 8411 /* 8412 * our bio might span multiple ordered extents. If we haven't 8413 * completed the accounting for the whole dio, go back and try again 8414 */ 8415 if (ordered_offset < offset + bytes) { 8416 ordered_bytes = offset + bytes - ordered_offset; 8417 ordered = NULL; 8418 goto again; 8419 } 8420 } 8421 8422 static void btrfs_endio_direct_write(struct bio *bio) 8423 { 8424 struct btrfs_dio_private *dip = bio->bi_private; 8425 struct bio *dio_bio = dip->dio_bio; 8426 8427 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8428 dip->bytes, !bio->bi_status); 8429 8430 kfree(dip); 8431 8432 dio_bio->bi_status = bio->bi_status; 8433 dio_end_io(dio_bio); 8434 bio_put(bio); 8435 } 8436 8437 static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data, 8438 struct bio *bio, int mirror_num, 8439 unsigned long bio_flags, u64 offset) 8440 { 8441 struct inode *inode = private_data; 8442 blk_status_t ret; 8443 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8444 BUG_ON(ret); /* -ENOMEM */ 8445 return 0; 8446 } 8447 8448 static void btrfs_end_dio_bio(struct bio *bio) 8449 { 8450 struct btrfs_dio_private *dip = bio->bi_private; 8451 blk_status_t err = bio->bi_status; 8452 8453 if (err) 8454 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8455 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8456 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8457 bio->bi_opf, 8458 (unsigned long long)bio->bi_iter.bi_sector, 8459 bio->bi_iter.bi_size, err); 8460 8461 if (dip->subio_endio) 8462 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8463 8464 if (err) { 8465 dip->errors = 1; 8466 8467 /* 8468 * before atomic variable goto zero, we must make sure 8469 * dip->errors is perceived to be set. 8470 */ 8471 smp_mb__before_atomic(); 8472 } 8473 8474 /* if there are more bios still pending for this dio, just exit */ 8475 if (!atomic_dec_and_test(&dip->pending_bios)) 8476 goto out; 8477 8478 if (dip->errors) { 8479 bio_io_error(dip->orig_bio); 8480 } else { 8481 dip->dio_bio->bi_status = 0; 8482 bio_endio(dip->orig_bio); 8483 } 8484 out: 8485 bio_put(bio); 8486 } 8487 8488 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8489 struct btrfs_dio_private *dip, 8490 struct bio *bio, 8491 u64 file_offset) 8492 { 8493 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8494 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8495 blk_status_t ret; 8496 8497 /* 8498 * We load all the csum data we need when we submit 8499 * the first bio to reduce the csum tree search and 8500 * contention. 8501 */ 8502 if (dip->logical_offset == file_offset) { 8503 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8504 file_offset); 8505 if (ret) 8506 return ret; 8507 } 8508 8509 if (bio == dip->orig_bio) 8510 return 0; 8511 8512 file_offset -= dip->logical_offset; 8513 file_offset >>= inode->i_sb->s_blocksize_bits; 8514 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8515 8516 return 0; 8517 } 8518 8519 static inline blk_status_t 8520 __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset, 8521 int async_submit) 8522 { 8523 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8524 struct btrfs_dio_private *dip = bio->bi_private; 8525 bool write = bio_op(bio) == REQ_OP_WRITE; 8526 blk_status_t ret; 8527 8528 if (async_submit) 8529 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8530 8531 bio_get(bio); 8532 8533 if (!write) { 8534 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8535 if (ret) 8536 goto err; 8537 } 8538 8539 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8540 goto map; 8541 8542 if (write && async_submit) { 8543 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8544 file_offset, inode, 8545 __btrfs_submit_bio_start_direct_io, 8546 __btrfs_submit_bio_done); 8547 goto err; 8548 } else if (write) { 8549 /* 8550 * If we aren't doing async submit, calculate the csum of the 8551 * bio now. 8552 */ 8553 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8554 if (ret) 8555 goto err; 8556 } else { 8557 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8558 file_offset); 8559 if (ret) 8560 goto err; 8561 } 8562 map: 8563 ret = btrfs_map_bio(fs_info, bio, 0, async_submit); 8564 err: 8565 bio_put(bio); 8566 return ret; 8567 } 8568 8569 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8570 { 8571 struct inode *inode = dip->inode; 8572 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8573 struct bio *bio; 8574 struct bio *orig_bio = dip->orig_bio; 8575 u64 start_sector = orig_bio->bi_iter.bi_sector; 8576 u64 file_offset = dip->logical_offset; 8577 u64 map_length; 8578 int async_submit = 0; 8579 u64 submit_len; 8580 int clone_offset = 0; 8581 int clone_len; 8582 int ret; 8583 blk_status_t status; 8584 8585 map_length = orig_bio->bi_iter.bi_size; 8586 submit_len = map_length; 8587 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8588 &map_length, NULL, 0); 8589 if (ret) 8590 return -EIO; 8591 8592 if (map_length >= submit_len) { 8593 bio = orig_bio; 8594 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8595 goto submit; 8596 } 8597 8598 /* async crcs make it difficult to collect full stripe writes. */ 8599 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8600 async_submit = 0; 8601 else 8602 async_submit = 1; 8603 8604 /* bio split */ 8605 ASSERT(map_length <= INT_MAX); 8606 atomic_inc(&dip->pending_bios); 8607 do { 8608 clone_len = min_t(int, submit_len, map_length); 8609 8610 /* 8611 * This will never fail as it's passing GPF_NOFS and 8612 * the allocation is backed by btrfs_bioset. 8613 */ 8614 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8615 clone_len); 8616 bio->bi_private = dip; 8617 bio->bi_end_io = btrfs_end_dio_bio; 8618 btrfs_io_bio(bio)->logical = file_offset; 8619 8620 ASSERT(submit_len >= clone_len); 8621 submit_len -= clone_len; 8622 if (submit_len == 0) 8623 break; 8624 8625 /* 8626 * Increase the count before we submit the bio so we know 8627 * the end IO handler won't happen before we increase the 8628 * count. Otherwise, the dip might get freed before we're 8629 * done setting it up. 8630 */ 8631 atomic_inc(&dip->pending_bios); 8632 8633 status = __btrfs_submit_dio_bio(bio, inode, file_offset, 8634 async_submit); 8635 if (status) { 8636 bio_put(bio); 8637 atomic_dec(&dip->pending_bios); 8638 goto out_err; 8639 } 8640 8641 clone_offset += clone_len; 8642 start_sector += clone_len >> 9; 8643 file_offset += clone_len; 8644 8645 map_length = submit_len; 8646 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8647 start_sector << 9, &map_length, NULL, 0); 8648 if (ret) 8649 goto out_err; 8650 } while (submit_len > 0); 8651 8652 submit: 8653 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8654 if (!status) 8655 return 0; 8656 8657 bio_put(bio); 8658 out_err: 8659 dip->errors = 1; 8660 /* 8661 * before atomic variable goto zero, we must 8662 * make sure dip->errors is perceived to be set. 8663 */ 8664 smp_mb__before_atomic(); 8665 if (atomic_dec_and_test(&dip->pending_bios)) 8666 bio_io_error(dip->orig_bio); 8667 8668 /* bio_end_io() will handle error, so we needn't return it */ 8669 return 0; 8670 } 8671 8672 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8673 loff_t file_offset) 8674 { 8675 struct btrfs_dio_private *dip = NULL; 8676 struct bio *bio = NULL; 8677 struct btrfs_io_bio *io_bio; 8678 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8679 int ret = 0; 8680 8681 bio = btrfs_bio_clone(dio_bio); 8682 8683 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8684 if (!dip) { 8685 ret = -ENOMEM; 8686 goto free_ordered; 8687 } 8688 8689 dip->private = dio_bio->bi_private; 8690 dip->inode = inode; 8691 dip->logical_offset = file_offset; 8692 dip->bytes = dio_bio->bi_iter.bi_size; 8693 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8694 bio->bi_private = dip; 8695 dip->orig_bio = bio; 8696 dip->dio_bio = dio_bio; 8697 atomic_set(&dip->pending_bios, 0); 8698 io_bio = btrfs_io_bio(bio); 8699 io_bio->logical = file_offset; 8700 8701 if (write) { 8702 bio->bi_end_io = btrfs_endio_direct_write; 8703 } else { 8704 bio->bi_end_io = btrfs_endio_direct_read; 8705 dip->subio_endio = btrfs_subio_endio_read; 8706 } 8707 8708 /* 8709 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8710 * even if we fail to submit a bio, because in such case we do the 8711 * corresponding error handling below and it must not be done a second 8712 * time by btrfs_direct_IO(). 8713 */ 8714 if (write) { 8715 struct btrfs_dio_data *dio_data = current->journal_info; 8716 8717 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8718 dip->bytes; 8719 dio_data->unsubmitted_oe_range_start = 8720 dio_data->unsubmitted_oe_range_end; 8721 } 8722 8723 ret = btrfs_submit_direct_hook(dip); 8724 if (!ret) 8725 return; 8726 8727 if (io_bio->end_io) 8728 io_bio->end_io(io_bio, ret); 8729 8730 free_ordered: 8731 /* 8732 * If we arrived here it means either we failed to submit the dip 8733 * or we either failed to clone the dio_bio or failed to allocate the 8734 * dip. If we cloned the dio_bio and allocated the dip, we can just 8735 * call bio_endio against our io_bio so that we get proper resource 8736 * cleanup if we fail to submit the dip, otherwise, we must do the 8737 * same as btrfs_endio_direct_[write|read] because we can't call these 8738 * callbacks - they require an allocated dip and a clone of dio_bio. 8739 */ 8740 if (bio && dip) { 8741 bio_io_error(bio); 8742 /* 8743 * The end io callbacks free our dip, do the final put on bio 8744 * and all the cleanup and final put for dio_bio (through 8745 * dio_end_io()). 8746 */ 8747 dip = NULL; 8748 bio = NULL; 8749 } else { 8750 if (write) 8751 __endio_write_update_ordered(inode, 8752 file_offset, 8753 dio_bio->bi_iter.bi_size, 8754 false); 8755 else 8756 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8757 file_offset + dio_bio->bi_iter.bi_size - 1); 8758 8759 dio_bio->bi_status = BLK_STS_IOERR; 8760 /* 8761 * Releases and cleans up our dio_bio, no need to bio_put() 8762 * nor bio_endio()/bio_io_error() against dio_bio. 8763 */ 8764 dio_end_io(dio_bio); 8765 } 8766 if (bio) 8767 bio_put(bio); 8768 kfree(dip); 8769 } 8770 8771 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8772 struct kiocb *iocb, 8773 const struct iov_iter *iter, loff_t offset) 8774 { 8775 int seg; 8776 int i; 8777 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8778 ssize_t retval = -EINVAL; 8779 8780 if (offset & blocksize_mask) 8781 goto out; 8782 8783 if (iov_iter_alignment(iter) & blocksize_mask) 8784 goto out; 8785 8786 /* If this is a write we don't need to check anymore */ 8787 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8788 return 0; 8789 /* 8790 * Check to make sure we don't have duplicate iov_base's in this 8791 * iovec, if so return EINVAL, otherwise we'll get csum errors 8792 * when reading back. 8793 */ 8794 for (seg = 0; seg < iter->nr_segs; seg++) { 8795 for (i = seg + 1; i < iter->nr_segs; i++) { 8796 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8797 goto out; 8798 } 8799 } 8800 retval = 0; 8801 out: 8802 return retval; 8803 } 8804 8805 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8806 { 8807 struct file *file = iocb->ki_filp; 8808 struct inode *inode = file->f_mapping->host; 8809 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8810 struct btrfs_dio_data dio_data = { 0 }; 8811 struct extent_changeset *data_reserved = NULL; 8812 loff_t offset = iocb->ki_pos; 8813 size_t count = 0; 8814 int flags = 0; 8815 bool wakeup = true; 8816 bool relock = false; 8817 ssize_t ret; 8818 8819 if (check_direct_IO(fs_info, iocb, iter, offset)) 8820 return 0; 8821 8822 inode_dio_begin(inode); 8823 8824 /* 8825 * The generic stuff only does filemap_write_and_wait_range, which 8826 * isn't enough if we've written compressed pages to this area, so 8827 * we need to flush the dirty pages again to make absolutely sure 8828 * that any outstanding dirty pages are on disk. 8829 */ 8830 count = iov_iter_count(iter); 8831 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8832 &BTRFS_I(inode)->runtime_flags)) 8833 filemap_fdatawrite_range(inode->i_mapping, offset, 8834 offset + count - 1); 8835 8836 if (iov_iter_rw(iter) == WRITE) { 8837 /* 8838 * If the write DIO is beyond the EOF, we need update 8839 * the isize, but it is protected by i_mutex. So we can 8840 * not unlock the i_mutex at this case. 8841 */ 8842 if (offset + count <= inode->i_size) { 8843 dio_data.overwrite = 1; 8844 inode_unlock(inode); 8845 relock = true; 8846 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8847 ret = -EAGAIN; 8848 goto out; 8849 } 8850 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8851 offset, count); 8852 if (ret) 8853 goto out; 8854 dio_data.outstanding_extents = count_max_extents(count); 8855 8856 /* 8857 * We need to know how many extents we reserved so that we can 8858 * do the accounting properly if we go over the number we 8859 * originally calculated. Abuse current->journal_info for this. 8860 */ 8861 dio_data.reserve = round_up(count, 8862 fs_info->sectorsize); 8863 dio_data.unsubmitted_oe_range_start = (u64)offset; 8864 dio_data.unsubmitted_oe_range_end = (u64)offset; 8865 current->journal_info = &dio_data; 8866 down_read(&BTRFS_I(inode)->dio_sem); 8867 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8868 &BTRFS_I(inode)->runtime_flags)) { 8869 inode_dio_end(inode); 8870 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8871 wakeup = false; 8872 } 8873 8874 ret = __blockdev_direct_IO(iocb, inode, 8875 fs_info->fs_devices->latest_bdev, 8876 iter, btrfs_get_blocks_direct, NULL, 8877 btrfs_submit_direct, flags); 8878 if (iov_iter_rw(iter) == WRITE) { 8879 up_read(&BTRFS_I(inode)->dio_sem); 8880 current->journal_info = NULL; 8881 if (ret < 0 && ret != -EIOCBQUEUED) { 8882 if (dio_data.reserve) 8883 btrfs_delalloc_release_space(inode, data_reserved, 8884 offset, dio_data.reserve); 8885 /* 8886 * On error we might have left some ordered extents 8887 * without submitting corresponding bios for them, so 8888 * cleanup them up to avoid other tasks getting them 8889 * and waiting for them to complete forever. 8890 */ 8891 if (dio_data.unsubmitted_oe_range_start < 8892 dio_data.unsubmitted_oe_range_end) 8893 __endio_write_update_ordered(inode, 8894 dio_data.unsubmitted_oe_range_start, 8895 dio_data.unsubmitted_oe_range_end - 8896 dio_data.unsubmitted_oe_range_start, 8897 false); 8898 } else if (ret >= 0 && (size_t)ret < count) 8899 btrfs_delalloc_release_space(inode, data_reserved, 8900 offset, count - (size_t)ret); 8901 } 8902 out: 8903 if (wakeup) 8904 inode_dio_end(inode); 8905 if (relock) 8906 inode_lock(inode); 8907 8908 extent_changeset_free(data_reserved); 8909 return ret; 8910 } 8911 8912 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8913 8914 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8915 __u64 start, __u64 len) 8916 { 8917 int ret; 8918 8919 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8920 if (ret) 8921 return ret; 8922 8923 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8924 } 8925 8926 int btrfs_readpage(struct file *file, struct page *page) 8927 { 8928 struct extent_io_tree *tree; 8929 tree = &BTRFS_I(page->mapping->host)->io_tree; 8930 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8931 } 8932 8933 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8934 { 8935 struct extent_io_tree *tree; 8936 struct inode *inode = page->mapping->host; 8937 int ret; 8938 8939 if (current->flags & PF_MEMALLOC) { 8940 redirty_page_for_writepage(wbc, page); 8941 unlock_page(page); 8942 return 0; 8943 } 8944 8945 /* 8946 * If we are under memory pressure we will call this directly from the 8947 * VM, we need to make sure we have the inode referenced for the ordered 8948 * extent. If not just return like we didn't do anything. 8949 */ 8950 if (!igrab(inode)) { 8951 redirty_page_for_writepage(wbc, page); 8952 return AOP_WRITEPAGE_ACTIVATE; 8953 } 8954 tree = &BTRFS_I(page->mapping->host)->io_tree; 8955 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8956 btrfs_add_delayed_iput(inode); 8957 return ret; 8958 } 8959 8960 static int btrfs_writepages(struct address_space *mapping, 8961 struct writeback_control *wbc) 8962 { 8963 struct extent_io_tree *tree; 8964 8965 tree = &BTRFS_I(mapping->host)->io_tree; 8966 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8967 } 8968 8969 static int 8970 btrfs_readpages(struct file *file, struct address_space *mapping, 8971 struct list_head *pages, unsigned nr_pages) 8972 { 8973 struct extent_io_tree *tree; 8974 tree = &BTRFS_I(mapping->host)->io_tree; 8975 return extent_readpages(tree, mapping, pages, nr_pages, 8976 btrfs_get_extent); 8977 } 8978 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8979 { 8980 struct extent_io_tree *tree; 8981 struct extent_map_tree *map; 8982 int ret; 8983 8984 tree = &BTRFS_I(page->mapping->host)->io_tree; 8985 map = &BTRFS_I(page->mapping->host)->extent_tree; 8986 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8987 if (ret == 1) { 8988 ClearPagePrivate(page); 8989 set_page_private(page, 0); 8990 put_page(page); 8991 } 8992 return ret; 8993 } 8994 8995 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8996 { 8997 if (PageWriteback(page) || PageDirty(page)) 8998 return 0; 8999 return __btrfs_releasepage(page, gfp_flags); 9000 } 9001 9002 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 9003 unsigned int length) 9004 { 9005 struct inode *inode = page->mapping->host; 9006 struct extent_io_tree *tree; 9007 struct btrfs_ordered_extent *ordered; 9008 struct extent_state *cached_state = NULL; 9009 u64 page_start = page_offset(page); 9010 u64 page_end = page_start + PAGE_SIZE - 1; 9011 u64 start; 9012 u64 end; 9013 int inode_evicting = inode->i_state & I_FREEING; 9014 9015 /* 9016 * we have the page locked, so new writeback can't start, 9017 * and the dirty bit won't be cleared while we are here. 9018 * 9019 * Wait for IO on this page so that we can safely clear 9020 * the PagePrivate2 bit and do ordered accounting 9021 */ 9022 wait_on_page_writeback(page); 9023 9024 tree = &BTRFS_I(inode)->io_tree; 9025 if (offset) { 9026 btrfs_releasepage(page, GFP_NOFS); 9027 return; 9028 } 9029 9030 if (!inode_evicting) 9031 lock_extent_bits(tree, page_start, page_end, &cached_state); 9032 again: 9033 start = page_start; 9034 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 9035 page_end - start + 1); 9036 if (ordered) { 9037 end = min(page_end, ordered->file_offset + ordered->len - 1); 9038 /* 9039 * IO on this page will never be started, so we need 9040 * to account for any ordered extents now 9041 */ 9042 if (!inode_evicting) 9043 clear_extent_bit(tree, start, end, 9044 EXTENT_DIRTY | EXTENT_DELALLOC | 9045 EXTENT_DELALLOC_NEW | 9046 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 9047 EXTENT_DEFRAG, 1, 0, &cached_state, 9048 GFP_NOFS); 9049 /* 9050 * whoever cleared the private bit is responsible 9051 * for the finish_ordered_io 9052 */ 9053 if (TestClearPagePrivate2(page)) { 9054 struct btrfs_ordered_inode_tree *tree; 9055 u64 new_len; 9056 9057 tree = &BTRFS_I(inode)->ordered_tree; 9058 9059 spin_lock_irq(&tree->lock); 9060 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 9061 new_len = start - ordered->file_offset; 9062 if (new_len < ordered->truncated_len) 9063 ordered->truncated_len = new_len; 9064 spin_unlock_irq(&tree->lock); 9065 9066 if (btrfs_dec_test_ordered_pending(inode, &ordered, 9067 start, 9068 end - start + 1, 1)) 9069 btrfs_finish_ordered_io(ordered); 9070 } 9071 btrfs_put_ordered_extent(ordered); 9072 if (!inode_evicting) { 9073 cached_state = NULL; 9074 lock_extent_bits(tree, start, end, 9075 &cached_state); 9076 } 9077 9078 start = end + 1; 9079 if (start < page_end) 9080 goto again; 9081 } 9082 9083 /* 9084 * Qgroup reserved space handler 9085 * Page here will be either 9086 * 1) Already written to disk 9087 * In this case, its reserved space is released from data rsv map 9088 * and will be freed by delayed_ref handler finally. 9089 * So even we call qgroup_free_data(), it won't decrease reserved 9090 * space. 9091 * 2) Not written to disk 9092 * This means the reserved space should be freed here. However, 9093 * if a truncate invalidates the page (by clearing PageDirty) 9094 * and the page is accounted for while allocating extent 9095 * in btrfs_check_data_free_space() we let delayed_ref to 9096 * free the entire extent. 9097 */ 9098 if (PageDirty(page)) 9099 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 9100 if (!inode_evicting) { 9101 clear_extent_bit(tree, page_start, page_end, 9102 EXTENT_LOCKED | EXTENT_DIRTY | 9103 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 9104 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 9105 &cached_state, GFP_NOFS); 9106 9107 __btrfs_releasepage(page, GFP_NOFS); 9108 } 9109 9110 ClearPageChecked(page); 9111 if (PagePrivate(page)) { 9112 ClearPagePrivate(page); 9113 set_page_private(page, 0); 9114 put_page(page); 9115 } 9116 } 9117 9118 /* 9119 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 9120 * called from a page fault handler when a page is first dirtied. Hence we must 9121 * be careful to check for EOF conditions here. We set the page up correctly 9122 * for a written page which means we get ENOSPC checking when writing into 9123 * holes and correct delalloc and unwritten extent mapping on filesystems that 9124 * support these features. 9125 * 9126 * We are not allowed to take the i_mutex here so we have to play games to 9127 * protect against truncate races as the page could now be beyond EOF. Because 9128 * vmtruncate() writes the inode size before removing pages, once we have the 9129 * page lock we can determine safely if the page is beyond EOF. If it is not 9130 * beyond EOF, then the page is guaranteed safe against truncation until we 9131 * unlock the page. 9132 */ 9133 int btrfs_page_mkwrite(struct vm_fault *vmf) 9134 { 9135 struct page *page = vmf->page; 9136 struct inode *inode = file_inode(vmf->vma->vm_file); 9137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9138 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9139 struct btrfs_ordered_extent *ordered; 9140 struct extent_state *cached_state = NULL; 9141 struct extent_changeset *data_reserved = NULL; 9142 char *kaddr; 9143 unsigned long zero_start; 9144 loff_t size; 9145 int ret; 9146 int reserved = 0; 9147 u64 reserved_space; 9148 u64 page_start; 9149 u64 page_end; 9150 u64 end; 9151 9152 reserved_space = PAGE_SIZE; 9153 9154 sb_start_pagefault(inode->i_sb); 9155 page_start = page_offset(page); 9156 page_end = page_start + PAGE_SIZE - 1; 9157 end = page_end; 9158 9159 /* 9160 * Reserving delalloc space after obtaining the page lock can lead to 9161 * deadlock. For example, if a dirty page is locked by this function 9162 * and the call to btrfs_delalloc_reserve_space() ends up triggering 9163 * dirty page write out, then the btrfs_writepage() function could 9164 * end up waiting indefinitely to get a lock on the page currently 9165 * being processed by btrfs_page_mkwrite() function. 9166 */ 9167 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 9168 reserved_space); 9169 if (!ret) { 9170 ret = file_update_time(vmf->vma->vm_file); 9171 reserved = 1; 9172 } 9173 if (ret) { 9174 if (ret == -ENOMEM) 9175 ret = VM_FAULT_OOM; 9176 else /* -ENOSPC, -EIO, etc */ 9177 ret = VM_FAULT_SIGBUS; 9178 if (reserved) 9179 goto out; 9180 goto out_noreserve; 9181 } 9182 9183 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9184 again: 9185 lock_page(page); 9186 size = i_size_read(inode); 9187 9188 if ((page->mapping != inode->i_mapping) || 9189 (page_start >= size)) { 9190 /* page got truncated out from underneath us */ 9191 goto out_unlock; 9192 } 9193 wait_on_page_writeback(page); 9194 9195 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9196 set_page_extent_mapped(page); 9197 9198 /* 9199 * we can't set the delalloc bits if there are pending ordered 9200 * extents. Drop our locks and wait for them to finish 9201 */ 9202 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9203 PAGE_SIZE); 9204 if (ordered) { 9205 unlock_extent_cached(io_tree, page_start, page_end, 9206 &cached_state, GFP_NOFS); 9207 unlock_page(page); 9208 btrfs_start_ordered_extent(inode, ordered, 1); 9209 btrfs_put_ordered_extent(ordered); 9210 goto again; 9211 } 9212 9213 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9214 reserved_space = round_up(size - page_start, 9215 fs_info->sectorsize); 9216 if (reserved_space < PAGE_SIZE) { 9217 end = page_start + reserved_space - 1; 9218 spin_lock(&BTRFS_I(inode)->lock); 9219 BTRFS_I(inode)->outstanding_extents++; 9220 spin_unlock(&BTRFS_I(inode)->lock); 9221 btrfs_delalloc_release_space(inode, data_reserved, 9222 page_start, PAGE_SIZE - reserved_space); 9223 } 9224 } 9225 9226 /* 9227 * page_mkwrite gets called when the page is firstly dirtied after it's 9228 * faulted in, but write(2) could also dirty a page and set delalloc 9229 * bits, thus in this case for space account reason, we still need to 9230 * clear any delalloc bits within this page range since we have to 9231 * reserve data&meta space before lock_page() (see above comments). 9232 */ 9233 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9234 EXTENT_DIRTY | EXTENT_DELALLOC | 9235 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9236 0, 0, &cached_state, GFP_NOFS); 9237 9238 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9239 &cached_state, 0); 9240 if (ret) { 9241 unlock_extent_cached(io_tree, page_start, page_end, 9242 &cached_state, GFP_NOFS); 9243 ret = VM_FAULT_SIGBUS; 9244 goto out_unlock; 9245 } 9246 ret = 0; 9247 9248 /* page is wholly or partially inside EOF */ 9249 if (page_start + PAGE_SIZE > size) 9250 zero_start = size & ~PAGE_MASK; 9251 else 9252 zero_start = PAGE_SIZE; 9253 9254 if (zero_start != PAGE_SIZE) { 9255 kaddr = kmap(page); 9256 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9257 flush_dcache_page(page); 9258 kunmap(page); 9259 } 9260 ClearPageChecked(page); 9261 set_page_dirty(page); 9262 SetPageUptodate(page); 9263 9264 BTRFS_I(inode)->last_trans = fs_info->generation; 9265 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9266 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9267 9268 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9269 9270 out_unlock: 9271 if (!ret) { 9272 sb_end_pagefault(inode->i_sb); 9273 extent_changeset_free(data_reserved); 9274 return VM_FAULT_LOCKED; 9275 } 9276 unlock_page(page); 9277 out: 9278 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9279 reserved_space); 9280 out_noreserve: 9281 sb_end_pagefault(inode->i_sb); 9282 extent_changeset_free(data_reserved); 9283 return ret; 9284 } 9285 9286 static int btrfs_truncate(struct inode *inode) 9287 { 9288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9289 struct btrfs_root *root = BTRFS_I(inode)->root; 9290 struct btrfs_block_rsv *rsv; 9291 int ret = 0; 9292 int err = 0; 9293 struct btrfs_trans_handle *trans; 9294 u64 mask = fs_info->sectorsize - 1; 9295 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9296 9297 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9298 (u64)-1); 9299 if (ret) 9300 return ret; 9301 9302 /* 9303 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9304 * 3 things going on here 9305 * 9306 * 1) We need to reserve space for our orphan item and the space to 9307 * delete our orphan item. Lord knows we don't want to have a dangling 9308 * orphan item because we didn't reserve space to remove it. 9309 * 9310 * 2) We need to reserve space to update our inode. 9311 * 9312 * 3) We need to have something to cache all the space that is going to 9313 * be free'd up by the truncate operation, but also have some slack 9314 * space reserved in case it uses space during the truncate (thank you 9315 * very much snapshotting). 9316 * 9317 * And we need these to all be separate. The fact is we can use a lot of 9318 * space doing the truncate, and we have no earthly idea how much space 9319 * we will use, so we need the truncate reservation to be separate so it 9320 * doesn't end up using space reserved for updating the inode or 9321 * removing the orphan item. We also need to be able to stop the 9322 * transaction and start a new one, which means we need to be able to 9323 * update the inode several times, and we have no idea of knowing how 9324 * many times that will be, so we can't just reserve 1 item for the 9325 * entirety of the operation, so that has to be done separately as well. 9326 * Then there is the orphan item, which does indeed need to be held on 9327 * to for the whole operation, and we need nobody to touch this reserved 9328 * space except the orphan code. 9329 * 9330 * So that leaves us with 9331 * 9332 * 1) root->orphan_block_rsv - for the orphan deletion. 9333 * 2) rsv - for the truncate reservation, which we will steal from the 9334 * transaction reservation. 9335 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9336 * updating the inode. 9337 */ 9338 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9339 if (!rsv) 9340 return -ENOMEM; 9341 rsv->size = min_size; 9342 rsv->failfast = 1; 9343 9344 /* 9345 * 1 for the truncate slack space 9346 * 1 for updating the inode. 9347 */ 9348 trans = btrfs_start_transaction(root, 2); 9349 if (IS_ERR(trans)) { 9350 err = PTR_ERR(trans); 9351 goto out; 9352 } 9353 9354 /* Migrate the slack space for the truncate to our reserve */ 9355 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9356 min_size, 0); 9357 BUG_ON(ret); 9358 9359 /* 9360 * So if we truncate and then write and fsync we normally would just 9361 * write the extents that changed, which is a problem if we need to 9362 * first truncate that entire inode. So set this flag so we write out 9363 * all of the extents in the inode to the sync log so we're completely 9364 * safe. 9365 */ 9366 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9367 trans->block_rsv = rsv; 9368 9369 while (1) { 9370 ret = btrfs_truncate_inode_items(trans, root, inode, 9371 inode->i_size, 9372 BTRFS_EXTENT_DATA_KEY); 9373 if (ret != -ENOSPC && ret != -EAGAIN) { 9374 err = ret; 9375 break; 9376 } 9377 9378 trans->block_rsv = &fs_info->trans_block_rsv; 9379 ret = btrfs_update_inode(trans, root, inode); 9380 if (ret) { 9381 err = ret; 9382 break; 9383 } 9384 9385 btrfs_end_transaction(trans); 9386 btrfs_btree_balance_dirty(fs_info); 9387 9388 trans = btrfs_start_transaction(root, 2); 9389 if (IS_ERR(trans)) { 9390 ret = err = PTR_ERR(trans); 9391 trans = NULL; 9392 break; 9393 } 9394 9395 btrfs_block_rsv_release(fs_info, rsv, -1); 9396 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9397 rsv, min_size, 0); 9398 BUG_ON(ret); /* shouldn't happen */ 9399 trans->block_rsv = rsv; 9400 } 9401 9402 if (ret == 0 && inode->i_nlink > 0) { 9403 trans->block_rsv = root->orphan_block_rsv; 9404 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9405 if (ret) 9406 err = ret; 9407 } 9408 9409 if (trans) { 9410 trans->block_rsv = &fs_info->trans_block_rsv; 9411 ret = btrfs_update_inode(trans, root, inode); 9412 if (ret && !err) 9413 err = ret; 9414 9415 ret = btrfs_end_transaction(trans); 9416 btrfs_btree_balance_dirty(fs_info); 9417 } 9418 out: 9419 btrfs_free_block_rsv(fs_info, rsv); 9420 9421 if (ret && !err) 9422 err = ret; 9423 9424 return err; 9425 } 9426 9427 /* 9428 * create a new subvolume directory/inode (helper for the ioctl). 9429 */ 9430 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9431 struct btrfs_root *new_root, 9432 struct btrfs_root *parent_root, 9433 u64 new_dirid) 9434 { 9435 struct inode *inode; 9436 int err; 9437 u64 index = 0; 9438 9439 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9440 new_dirid, new_dirid, 9441 S_IFDIR | (~current_umask() & S_IRWXUGO), 9442 &index); 9443 if (IS_ERR(inode)) 9444 return PTR_ERR(inode); 9445 inode->i_op = &btrfs_dir_inode_operations; 9446 inode->i_fop = &btrfs_dir_file_operations; 9447 9448 set_nlink(inode, 1); 9449 btrfs_i_size_write(BTRFS_I(inode), 0); 9450 unlock_new_inode(inode); 9451 9452 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9453 if (err) 9454 btrfs_err(new_root->fs_info, 9455 "error inheriting subvolume %llu properties: %d", 9456 new_root->root_key.objectid, err); 9457 9458 err = btrfs_update_inode(trans, new_root, inode); 9459 9460 iput(inode); 9461 return err; 9462 } 9463 9464 struct inode *btrfs_alloc_inode(struct super_block *sb) 9465 { 9466 struct btrfs_inode *ei; 9467 struct inode *inode; 9468 9469 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9470 if (!ei) 9471 return NULL; 9472 9473 ei->root = NULL; 9474 ei->generation = 0; 9475 ei->last_trans = 0; 9476 ei->last_sub_trans = 0; 9477 ei->logged_trans = 0; 9478 ei->delalloc_bytes = 0; 9479 ei->new_delalloc_bytes = 0; 9480 ei->defrag_bytes = 0; 9481 ei->disk_i_size = 0; 9482 ei->flags = 0; 9483 ei->csum_bytes = 0; 9484 ei->index_cnt = (u64)-1; 9485 ei->dir_index = 0; 9486 ei->last_unlink_trans = 0; 9487 ei->last_log_commit = 0; 9488 ei->delayed_iput_count = 0; 9489 9490 spin_lock_init(&ei->lock); 9491 ei->outstanding_extents = 0; 9492 ei->reserved_extents = 0; 9493 9494 ei->runtime_flags = 0; 9495 ei->prop_compress = BTRFS_COMPRESS_NONE; 9496 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9497 9498 ei->delayed_node = NULL; 9499 9500 ei->i_otime.tv_sec = 0; 9501 ei->i_otime.tv_nsec = 0; 9502 9503 inode = &ei->vfs_inode; 9504 extent_map_tree_init(&ei->extent_tree); 9505 extent_io_tree_init(&ei->io_tree, inode); 9506 extent_io_tree_init(&ei->io_failure_tree, inode); 9507 ei->io_tree.track_uptodate = 1; 9508 ei->io_failure_tree.track_uptodate = 1; 9509 atomic_set(&ei->sync_writers, 0); 9510 mutex_init(&ei->log_mutex); 9511 mutex_init(&ei->delalloc_mutex); 9512 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9513 INIT_LIST_HEAD(&ei->delalloc_inodes); 9514 INIT_LIST_HEAD(&ei->delayed_iput); 9515 RB_CLEAR_NODE(&ei->rb_node); 9516 init_rwsem(&ei->dio_sem); 9517 9518 return inode; 9519 } 9520 9521 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9522 void btrfs_test_destroy_inode(struct inode *inode) 9523 { 9524 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9525 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9526 } 9527 #endif 9528 9529 static void btrfs_i_callback(struct rcu_head *head) 9530 { 9531 struct inode *inode = container_of(head, struct inode, i_rcu); 9532 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9533 } 9534 9535 void btrfs_destroy_inode(struct inode *inode) 9536 { 9537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9538 struct btrfs_ordered_extent *ordered; 9539 struct btrfs_root *root = BTRFS_I(inode)->root; 9540 9541 WARN_ON(!hlist_empty(&inode->i_dentry)); 9542 WARN_ON(inode->i_data.nrpages); 9543 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9544 WARN_ON(BTRFS_I(inode)->reserved_extents); 9545 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9546 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9547 WARN_ON(BTRFS_I(inode)->csum_bytes); 9548 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9549 9550 /* 9551 * This can happen where we create an inode, but somebody else also 9552 * created the same inode and we need to destroy the one we already 9553 * created. 9554 */ 9555 if (!root) 9556 goto free; 9557 9558 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9559 &BTRFS_I(inode)->runtime_flags)) { 9560 btrfs_info(fs_info, "inode %llu still on the orphan list", 9561 btrfs_ino(BTRFS_I(inode))); 9562 atomic_dec(&root->orphan_inodes); 9563 } 9564 9565 while (1) { 9566 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9567 if (!ordered) 9568 break; 9569 else { 9570 btrfs_err(fs_info, 9571 "found ordered extent %llu %llu on inode cleanup", 9572 ordered->file_offset, ordered->len); 9573 btrfs_remove_ordered_extent(inode, ordered); 9574 btrfs_put_ordered_extent(ordered); 9575 btrfs_put_ordered_extent(ordered); 9576 } 9577 } 9578 btrfs_qgroup_check_reserved_leak(inode); 9579 inode_tree_del(inode); 9580 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9581 free: 9582 call_rcu(&inode->i_rcu, btrfs_i_callback); 9583 } 9584 9585 int btrfs_drop_inode(struct inode *inode) 9586 { 9587 struct btrfs_root *root = BTRFS_I(inode)->root; 9588 9589 if (root == NULL) 9590 return 1; 9591 9592 /* the snap/subvol tree is on deleting */ 9593 if (btrfs_root_refs(&root->root_item) == 0) 9594 return 1; 9595 else 9596 return generic_drop_inode(inode); 9597 } 9598 9599 static void init_once(void *foo) 9600 { 9601 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9602 9603 inode_init_once(&ei->vfs_inode); 9604 } 9605 9606 void btrfs_destroy_cachep(void) 9607 { 9608 /* 9609 * Make sure all delayed rcu free inodes are flushed before we 9610 * destroy cache. 9611 */ 9612 rcu_barrier(); 9613 kmem_cache_destroy(btrfs_inode_cachep); 9614 kmem_cache_destroy(btrfs_trans_handle_cachep); 9615 kmem_cache_destroy(btrfs_path_cachep); 9616 kmem_cache_destroy(btrfs_free_space_cachep); 9617 } 9618 9619 int btrfs_init_cachep(void) 9620 { 9621 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9622 sizeof(struct btrfs_inode), 0, 9623 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9624 init_once); 9625 if (!btrfs_inode_cachep) 9626 goto fail; 9627 9628 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9629 sizeof(struct btrfs_trans_handle), 0, 9630 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9631 if (!btrfs_trans_handle_cachep) 9632 goto fail; 9633 9634 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9635 sizeof(struct btrfs_path), 0, 9636 SLAB_MEM_SPREAD, NULL); 9637 if (!btrfs_path_cachep) 9638 goto fail; 9639 9640 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9641 sizeof(struct btrfs_free_space), 0, 9642 SLAB_MEM_SPREAD, NULL); 9643 if (!btrfs_free_space_cachep) 9644 goto fail; 9645 9646 return 0; 9647 fail: 9648 btrfs_destroy_cachep(); 9649 return -ENOMEM; 9650 } 9651 9652 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9653 u32 request_mask, unsigned int flags) 9654 { 9655 u64 delalloc_bytes; 9656 struct inode *inode = d_inode(path->dentry); 9657 u32 blocksize = inode->i_sb->s_blocksize; 9658 u32 bi_flags = BTRFS_I(inode)->flags; 9659 9660 stat->result_mask |= STATX_BTIME; 9661 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9662 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9663 if (bi_flags & BTRFS_INODE_APPEND) 9664 stat->attributes |= STATX_ATTR_APPEND; 9665 if (bi_flags & BTRFS_INODE_COMPRESS) 9666 stat->attributes |= STATX_ATTR_COMPRESSED; 9667 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9668 stat->attributes |= STATX_ATTR_IMMUTABLE; 9669 if (bi_flags & BTRFS_INODE_NODUMP) 9670 stat->attributes |= STATX_ATTR_NODUMP; 9671 9672 stat->attributes_mask |= (STATX_ATTR_APPEND | 9673 STATX_ATTR_COMPRESSED | 9674 STATX_ATTR_IMMUTABLE | 9675 STATX_ATTR_NODUMP); 9676 9677 generic_fillattr(inode, stat); 9678 stat->dev = BTRFS_I(inode)->root->anon_dev; 9679 9680 spin_lock(&BTRFS_I(inode)->lock); 9681 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9682 spin_unlock(&BTRFS_I(inode)->lock); 9683 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9684 ALIGN(delalloc_bytes, blocksize)) >> 9; 9685 return 0; 9686 } 9687 9688 static int btrfs_rename_exchange(struct inode *old_dir, 9689 struct dentry *old_dentry, 9690 struct inode *new_dir, 9691 struct dentry *new_dentry) 9692 { 9693 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9694 struct btrfs_trans_handle *trans; 9695 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9696 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9697 struct inode *new_inode = new_dentry->d_inode; 9698 struct inode *old_inode = old_dentry->d_inode; 9699 struct timespec ctime = current_time(old_inode); 9700 struct dentry *parent; 9701 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9702 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9703 u64 old_idx = 0; 9704 u64 new_idx = 0; 9705 u64 root_objectid; 9706 int ret; 9707 bool root_log_pinned = false; 9708 bool dest_log_pinned = false; 9709 9710 /* we only allow rename subvolume link between subvolumes */ 9711 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9712 return -EXDEV; 9713 9714 /* close the race window with snapshot create/destroy ioctl */ 9715 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9716 down_read(&fs_info->subvol_sem); 9717 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9718 down_read(&fs_info->subvol_sem); 9719 9720 /* 9721 * We want to reserve the absolute worst case amount of items. So if 9722 * both inodes are subvols and we need to unlink them then that would 9723 * require 4 item modifications, but if they are both normal inodes it 9724 * would require 5 item modifications, so we'll assume their normal 9725 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9726 * should cover the worst case number of items we'll modify. 9727 */ 9728 trans = btrfs_start_transaction(root, 12); 9729 if (IS_ERR(trans)) { 9730 ret = PTR_ERR(trans); 9731 goto out_notrans; 9732 } 9733 9734 /* 9735 * We need to find a free sequence number both in the source and 9736 * in the destination directory for the exchange. 9737 */ 9738 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9739 if (ret) 9740 goto out_fail; 9741 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9742 if (ret) 9743 goto out_fail; 9744 9745 BTRFS_I(old_inode)->dir_index = 0ULL; 9746 BTRFS_I(new_inode)->dir_index = 0ULL; 9747 9748 /* Reference for the source. */ 9749 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9750 /* force full log commit if subvolume involved. */ 9751 btrfs_set_log_full_commit(fs_info, trans); 9752 } else { 9753 btrfs_pin_log_trans(root); 9754 root_log_pinned = true; 9755 ret = btrfs_insert_inode_ref(trans, dest, 9756 new_dentry->d_name.name, 9757 new_dentry->d_name.len, 9758 old_ino, 9759 btrfs_ino(BTRFS_I(new_dir)), 9760 old_idx); 9761 if (ret) 9762 goto out_fail; 9763 } 9764 9765 /* And now for the dest. */ 9766 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9767 /* force full log commit if subvolume involved. */ 9768 btrfs_set_log_full_commit(fs_info, trans); 9769 } else { 9770 btrfs_pin_log_trans(dest); 9771 dest_log_pinned = true; 9772 ret = btrfs_insert_inode_ref(trans, root, 9773 old_dentry->d_name.name, 9774 old_dentry->d_name.len, 9775 new_ino, 9776 btrfs_ino(BTRFS_I(old_dir)), 9777 new_idx); 9778 if (ret) 9779 goto out_fail; 9780 } 9781 9782 /* Update inode version and ctime/mtime. */ 9783 inode_inc_iversion(old_dir); 9784 inode_inc_iversion(new_dir); 9785 inode_inc_iversion(old_inode); 9786 inode_inc_iversion(new_inode); 9787 old_dir->i_ctime = old_dir->i_mtime = ctime; 9788 new_dir->i_ctime = new_dir->i_mtime = ctime; 9789 old_inode->i_ctime = ctime; 9790 new_inode->i_ctime = ctime; 9791 9792 if (old_dentry->d_parent != new_dentry->d_parent) { 9793 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9794 BTRFS_I(old_inode), 1); 9795 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9796 BTRFS_I(new_inode), 1); 9797 } 9798 9799 /* src is a subvolume */ 9800 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9801 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9802 ret = btrfs_unlink_subvol(trans, root, old_dir, 9803 root_objectid, 9804 old_dentry->d_name.name, 9805 old_dentry->d_name.len); 9806 } else { /* src is an inode */ 9807 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9808 BTRFS_I(old_dentry->d_inode), 9809 old_dentry->d_name.name, 9810 old_dentry->d_name.len); 9811 if (!ret) 9812 ret = btrfs_update_inode(trans, root, old_inode); 9813 } 9814 if (ret) { 9815 btrfs_abort_transaction(trans, ret); 9816 goto out_fail; 9817 } 9818 9819 /* dest is a subvolume */ 9820 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9821 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9822 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9823 root_objectid, 9824 new_dentry->d_name.name, 9825 new_dentry->d_name.len); 9826 } else { /* dest is an inode */ 9827 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9828 BTRFS_I(new_dentry->d_inode), 9829 new_dentry->d_name.name, 9830 new_dentry->d_name.len); 9831 if (!ret) 9832 ret = btrfs_update_inode(trans, dest, new_inode); 9833 } 9834 if (ret) { 9835 btrfs_abort_transaction(trans, ret); 9836 goto out_fail; 9837 } 9838 9839 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9840 new_dentry->d_name.name, 9841 new_dentry->d_name.len, 0, old_idx); 9842 if (ret) { 9843 btrfs_abort_transaction(trans, ret); 9844 goto out_fail; 9845 } 9846 9847 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9848 old_dentry->d_name.name, 9849 old_dentry->d_name.len, 0, new_idx); 9850 if (ret) { 9851 btrfs_abort_transaction(trans, ret); 9852 goto out_fail; 9853 } 9854 9855 if (old_inode->i_nlink == 1) 9856 BTRFS_I(old_inode)->dir_index = old_idx; 9857 if (new_inode->i_nlink == 1) 9858 BTRFS_I(new_inode)->dir_index = new_idx; 9859 9860 if (root_log_pinned) { 9861 parent = new_dentry->d_parent; 9862 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9863 parent); 9864 btrfs_end_log_trans(root); 9865 root_log_pinned = false; 9866 } 9867 if (dest_log_pinned) { 9868 parent = old_dentry->d_parent; 9869 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9870 parent); 9871 btrfs_end_log_trans(dest); 9872 dest_log_pinned = false; 9873 } 9874 out_fail: 9875 /* 9876 * If we have pinned a log and an error happened, we unpin tasks 9877 * trying to sync the log and force them to fallback to a transaction 9878 * commit if the log currently contains any of the inodes involved in 9879 * this rename operation (to ensure we do not persist a log with an 9880 * inconsistent state for any of these inodes or leading to any 9881 * inconsistencies when replayed). If the transaction was aborted, the 9882 * abortion reason is propagated to userspace when attempting to commit 9883 * the transaction. If the log does not contain any of these inodes, we 9884 * allow the tasks to sync it. 9885 */ 9886 if (ret && (root_log_pinned || dest_log_pinned)) { 9887 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9888 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9889 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9890 (new_inode && 9891 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9892 btrfs_set_log_full_commit(fs_info, trans); 9893 9894 if (root_log_pinned) { 9895 btrfs_end_log_trans(root); 9896 root_log_pinned = false; 9897 } 9898 if (dest_log_pinned) { 9899 btrfs_end_log_trans(dest); 9900 dest_log_pinned = false; 9901 } 9902 } 9903 ret = btrfs_end_transaction(trans); 9904 out_notrans: 9905 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9906 up_read(&fs_info->subvol_sem); 9907 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9908 up_read(&fs_info->subvol_sem); 9909 9910 return ret; 9911 } 9912 9913 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9914 struct btrfs_root *root, 9915 struct inode *dir, 9916 struct dentry *dentry) 9917 { 9918 int ret; 9919 struct inode *inode; 9920 u64 objectid; 9921 u64 index; 9922 9923 ret = btrfs_find_free_ino(root, &objectid); 9924 if (ret) 9925 return ret; 9926 9927 inode = btrfs_new_inode(trans, root, dir, 9928 dentry->d_name.name, 9929 dentry->d_name.len, 9930 btrfs_ino(BTRFS_I(dir)), 9931 objectid, 9932 S_IFCHR | WHITEOUT_MODE, 9933 &index); 9934 9935 if (IS_ERR(inode)) { 9936 ret = PTR_ERR(inode); 9937 return ret; 9938 } 9939 9940 inode->i_op = &btrfs_special_inode_operations; 9941 init_special_inode(inode, inode->i_mode, 9942 WHITEOUT_DEV); 9943 9944 ret = btrfs_init_inode_security(trans, inode, dir, 9945 &dentry->d_name); 9946 if (ret) 9947 goto out; 9948 9949 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9950 BTRFS_I(inode), 0, index); 9951 if (ret) 9952 goto out; 9953 9954 ret = btrfs_update_inode(trans, root, inode); 9955 out: 9956 unlock_new_inode(inode); 9957 if (ret) 9958 inode_dec_link_count(inode); 9959 iput(inode); 9960 9961 return ret; 9962 } 9963 9964 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9965 struct inode *new_dir, struct dentry *new_dentry, 9966 unsigned int flags) 9967 { 9968 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9969 struct btrfs_trans_handle *trans; 9970 unsigned int trans_num_items; 9971 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9972 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9973 struct inode *new_inode = d_inode(new_dentry); 9974 struct inode *old_inode = d_inode(old_dentry); 9975 u64 index = 0; 9976 u64 root_objectid; 9977 int ret; 9978 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9979 bool log_pinned = false; 9980 9981 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9982 return -EPERM; 9983 9984 /* we only allow rename subvolume link between subvolumes */ 9985 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9986 return -EXDEV; 9987 9988 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9989 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9990 return -ENOTEMPTY; 9991 9992 if (S_ISDIR(old_inode->i_mode) && new_inode && 9993 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9994 return -ENOTEMPTY; 9995 9996 9997 /* check for collisions, even if the name isn't there */ 9998 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9999 new_dentry->d_name.name, 10000 new_dentry->d_name.len); 10001 10002 if (ret) { 10003 if (ret == -EEXIST) { 10004 /* we shouldn't get 10005 * eexist without a new_inode */ 10006 if (WARN_ON(!new_inode)) { 10007 return ret; 10008 } 10009 } else { 10010 /* maybe -EOVERFLOW */ 10011 return ret; 10012 } 10013 } 10014 ret = 0; 10015 10016 /* 10017 * we're using rename to replace one file with another. Start IO on it 10018 * now so we don't add too much work to the end of the transaction 10019 */ 10020 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 10021 filemap_flush(old_inode->i_mapping); 10022 10023 /* close the racy window with snapshot create/destroy ioctl */ 10024 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10025 down_read(&fs_info->subvol_sem); 10026 /* 10027 * We want to reserve the absolute worst case amount of items. So if 10028 * both inodes are subvols and we need to unlink them then that would 10029 * require 4 item modifications, but if they are both normal inodes it 10030 * would require 5 item modifications, so we'll assume they are normal 10031 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 10032 * should cover the worst case number of items we'll modify. 10033 * If our rename has the whiteout flag, we need more 5 units for the 10034 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 10035 * when selinux is enabled). 10036 */ 10037 trans_num_items = 11; 10038 if (flags & RENAME_WHITEOUT) 10039 trans_num_items += 5; 10040 trans = btrfs_start_transaction(root, trans_num_items); 10041 if (IS_ERR(trans)) { 10042 ret = PTR_ERR(trans); 10043 goto out_notrans; 10044 } 10045 10046 if (dest != root) 10047 btrfs_record_root_in_trans(trans, dest); 10048 10049 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 10050 if (ret) 10051 goto out_fail; 10052 10053 BTRFS_I(old_inode)->dir_index = 0ULL; 10054 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 10055 /* force full log commit if subvolume involved. */ 10056 btrfs_set_log_full_commit(fs_info, trans); 10057 } else { 10058 btrfs_pin_log_trans(root); 10059 log_pinned = true; 10060 ret = btrfs_insert_inode_ref(trans, dest, 10061 new_dentry->d_name.name, 10062 new_dentry->d_name.len, 10063 old_ino, 10064 btrfs_ino(BTRFS_I(new_dir)), index); 10065 if (ret) 10066 goto out_fail; 10067 } 10068 10069 inode_inc_iversion(old_dir); 10070 inode_inc_iversion(new_dir); 10071 inode_inc_iversion(old_inode); 10072 old_dir->i_ctime = old_dir->i_mtime = 10073 new_dir->i_ctime = new_dir->i_mtime = 10074 old_inode->i_ctime = current_time(old_dir); 10075 10076 if (old_dentry->d_parent != new_dentry->d_parent) 10077 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 10078 BTRFS_I(old_inode), 1); 10079 10080 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 10081 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 10082 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 10083 old_dentry->d_name.name, 10084 old_dentry->d_name.len); 10085 } else { 10086 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 10087 BTRFS_I(d_inode(old_dentry)), 10088 old_dentry->d_name.name, 10089 old_dentry->d_name.len); 10090 if (!ret) 10091 ret = btrfs_update_inode(trans, root, old_inode); 10092 } 10093 if (ret) { 10094 btrfs_abort_transaction(trans, ret); 10095 goto out_fail; 10096 } 10097 10098 if (new_inode) { 10099 inode_inc_iversion(new_inode); 10100 new_inode->i_ctime = current_time(new_inode); 10101 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 10102 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 10103 root_objectid = BTRFS_I(new_inode)->location.objectid; 10104 ret = btrfs_unlink_subvol(trans, dest, new_dir, 10105 root_objectid, 10106 new_dentry->d_name.name, 10107 new_dentry->d_name.len); 10108 BUG_ON(new_inode->i_nlink == 0); 10109 } else { 10110 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 10111 BTRFS_I(d_inode(new_dentry)), 10112 new_dentry->d_name.name, 10113 new_dentry->d_name.len); 10114 } 10115 if (!ret && new_inode->i_nlink == 0) 10116 ret = btrfs_orphan_add(trans, 10117 BTRFS_I(d_inode(new_dentry))); 10118 if (ret) { 10119 btrfs_abort_transaction(trans, ret); 10120 goto out_fail; 10121 } 10122 } 10123 10124 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 10125 new_dentry->d_name.name, 10126 new_dentry->d_name.len, 0, index); 10127 if (ret) { 10128 btrfs_abort_transaction(trans, ret); 10129 goto out_fail; 10130 } 10131 10132 if (old_inode->i_nlink == 1) 10133 BTRFS_I(old_inode)->dir_index = index; 10134 10135 if (log_pinned) { 10136 struct dentry *parent = new_dentry->d_parent; 10137 10138 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 10139 parent); 10140 btrfs_end_log_trans(root); 10141 log_pinned = false; 10142 } 10143 10144 if (flags & RENAME_WHITEOUT) { 10145 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10146 old_dentry); 10147 10148 if (ret) { 10149 btrfs_abort_transaction(trans, ret); 10150 goto out_fail; 10151 } 10152 } 10153 out_fail: 10154 /* 10155 * If we have pinned the log and an error happened, we unpin tasks 10156 * trying to sync the log and force them to fallback to a transaction 10157 * commit if the log currently contains any of the inodes involved in 10158 * this rename operation (to ensure we do not persist a log with an 10159 * inconsistent state for any of these inodes or leading to any 10160 * inconsistencies when replayed). If the transaction was aborted, the 10161 * abortion reason is propagated to userspace when attempting to commit 10162 * the transaction. If the log does not contain any of these inodes, we 10163 * allow the tasks to sync it. 10164 */ 10165 if (ret && log_pinned) { 10166 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10167 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10168 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10169 (new_inode && 10170 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10171 btrfs_set_log_full_commit(fs_info, trans); 10172 10173 btrfs_end_log_trans(root); 10174 log_pinned = false; 10175 } 10176 btrfs_end_transaction(trans); 10177 out_notrans: 10178 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10179 up_read(&fs_info->subvol_sem); 10180 10181 return ret; 10182 } 10183 10184 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10185 struct inode *new_dir, struct dentry *new_dentry, 10186 unsigned int flags) 10187 { 10188 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10189 return -EINVAL; 10190 10191 if (flags & RENAME_EXCHANGE) 10192 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10193 new_dentry); 10194 10195 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10196 } 10197 10198 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10199 { 10200 struct btrfs_delalloc_work *delalloc_work; 10201 struct inode *inode; 10202 10203 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10204 work); 10205 inode = delalloc_work->inode; 10206 filemap_flush(inode->i_mapping); 10207 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10208 &BTRFS_I(inode)->runtime_flags)) 10209 filemap_flush(inode->i_mapping); 10210 10211 if (delalloc_work->delay_iput) 10212 btrfs_add_delayed_iput(inode); 10213 else 10214 iput(inode); 10215 complete(&delalloc_work->completion); 10216 } 10217 10218 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10219 int delay_iput) 10220 { 10221 struct btrfs_delalloc_work *work; 10222 10223 work = kmalloc(sizeof(*work), GFP_NOFS); 10224 if (!work) 10225 return NULL; 10226 10227 init_completion(&work->completion); 10228 INIT_LIST_HEAD(&work->list); 10229 work->inode = inode; 10230 work->delay_iput = delay_iput; 10231 WARN_ON_ONCE(!inode); 10232 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10233 btrfs_run_delalloc_work, NULL, NULL); 10234 10235 return work; 10236 } 10237 10238 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10239 { 10240 wait_for_completion(&work->completion); 10241 kfree(work); 10242 } 10243 10244 /* 10245 * some fairly slow code that needs optimization. This walks the list 10246 * of all the inodes with pending delalloc and forces them to disk. 10247 */ 10248 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10249 int nr) 10250 { 10251 struct btrfs_inode *binode; 10252 struct inode *inode; 10253 struct btrfs_delalloc_work *work, *next; 10254 struct list_head works; 10255 struct list_head splice; 10256 int ret = 0; 10257 10258 INIT_LIST_HEAD(&works); 10259 INIT_LIST_HEAD(&splice); 10260 10261 mutex_lock(&root->delalloc_mutex); 10262 spin_lock(&root->delalloc_lock); 10263 list_splice_init(&root->delalloc_inodes, &splice); 10264 while (!list_empty(&splice)) { 10265 binode = list_entry(splice.next, struct btrfs_inode, 10266 delalloc_inodes); 10267 10268 list_move_tail(&binode->delalloc_inodes, 10269 &root->delalloc_inodes); 10270 inode = igrab(&binode->vfs_inode); 10271 if (!inode) { 10272 cond_resched_lock(&root->delalloc_lock); 10273 continue; 10274 } 10275 spin_unlock(&root->delalloc_lock); 10276 10277 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10278 if (!work) { 10279 if (delay_iput) 10280 btrfs_add_delayed_iput(inode); 10281 else 10282 iput(inode); 10283 ret = -ENOMEM; 10284 goto out; 10285 } 10286 list_add_tail(&work->list, &works); 10287 btrfs_queue_work(root->fs_info->flush_workers, 10288 &work->work); 10289 ret++; 10290 if (nr != -1 && ret >= nr) 10291 goto out; 10292 cond_resched(); 10293 spin_lock(&root->delalloc_lock); 10294 } 10295 spin_unlock(&root->delalloc_lock); 10296 10297 out: 10298 list_for_each_entry_safe(work, next, &works, list) { 10299 list_del_init(&work->list); 10300 btrfs_wait_and_free_delalloc_work(work); 10301 } 10302 10303 if (!list_empty_careful(&splice)) { 10304 spin_lock(&root->delalloc_lock); 10305 list_splice_tail(&splice, &root->delalloc_inodes); 10306 spin_unlock(&root->delalloc_lock); 10307 } 10308 mutex_unlock(&root->delalloc_mutex); 10309 return ret; 10310 } 10311 10312 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10313 { 10314 struct btrfs_fs_info *fs_info = root->fs_info; 10315 int ret; 10316 10317 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10318 return -EROFS; 10319 10320 ret = __start_delalloc_inodes(root, delay_iput, -1); 10321 if (ret > 0) 10322 ret = 0; 10323 /* 10324 * the filemap_flush will queue IO into the worker threads, but 10325 * we have to make sure the IO is actually started and that 10326 * ordered extents get created before we return 10327 */ 10328 atomic_inc(&fs_info->async_submit_draining); 10329 while (atomic_read(&fs_info->nr_async_submits) || 10330 atomic_read(&fs_info->async_delalloc_pages)) { 10331 wait_event(fs_info->async_submit_wait, 10332 (atomic_read(&fs_info->nr_async_submits) == 0 && 10333 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10334 } 10335 atomic_dec(&fs_info->async_submit_draining); 10336 return ret; 10337 } 10338 10339 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10340 int nr) 10341 { 10342 struct btrfs_root *root; 10343 struct list_head splice; 10344 int ret; 10345 10346 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10347 return -EROFS; 10348 10349 INIT_LIST_HEAD(&splice); 10350 10351 mutex_lock(&fs_info->delalloc_root_mutex); 10352 spin_lock(&fs_info->delalloc_root_lock); 10353 list_splice_init(&fs_info->delalloc_roots, &splice); 10354 while (!list_empty(&splice) && nr) { 10355 root = list_first_entry(&splice, struct btrfs_root, 10356 delalloc_root); 10357 root = btrfs_grab_fs_root(root); 10358 BUG_ON(!root); 10359 list_move_tail(&root->delalloc_root, 10360 &fs_info->delalloc_roots); 10361 spin_unlock(&fs_info->delalloc_root_lock); 10362 10363 ret = __start_delalloc_inodes(root, delay_iput, nr); 10364 btrfs_put_fs_root(root); 10365 if (ret < 0) 10366 goto out; 10367 10368 if (nr != -1) { 10369 nr -= ret; 10370 WARN_ON(nr < 0); 10371 } 10372 spin_lock(&fs_info->delalloc_root_lock); 10373 } 10374 spin_unlock(&fs_info->delalloc_root_lock); 10375 10376 ret = 0; 10377 atomic_inc(&fs_info->async_submit_draining); 10378 while (atomic_read(&fs_info->nr_async_submits) || 10379 atomic_read(&fs_info->async_delalloc_pages)) { 10380 wait_event(fs_info->async_submit_wait, 10381 (atomic_read(&fs_info->nr_async_submits) == 0 && 10382 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10383 } 10384 atomic_dec(&fs_info->async_submit_draining); 10385 out: 10386 if (!list_empty_careful(&splice)) { 10387 spin_lock(&fs_info->delalloc_root_lock); 10388 list_splice_tail(&splice, &fs_info->delalloc_roots); 10389 spin_unlock(&fs_info->delalloc_root_lock); 10390 } 10391 mutex_unlock(&fs_info->delalloc_root_mutex); 10392 return ret; 10393 } 10394 10395 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10396 const char *symname) 10397 { 10398 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10399 struct btrfs_trans_handle *trans; 10400 struct btrfs_root *root = BTRFS_I(dir)->root; 10401 struct btrfs_path *path; 10402 struct btrfs_key key; 10403 struct inode *inode = NULL; 10404 int err; 10405 int drop_inode = 0; 10406 u64 objectid; 10407 u64 index = 0; 10408 int name_len; 10409 int datasize; 10410 unsigned long ptr; 10411 struct btrfs_file_extent_item *ei; 10412 struct extent_buffer *leaf; 10413 10414 name_len = strlen(symname); 10415 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10416 return -ENAMETOOLONG; 10417 10418 /* 10419 * 2 items for inode item and ref 10420 * 2 items for dir items 10421 * 1 item for updating parent inode item 10422 * 1 item for the inline extent item 10423 * 1 item for xattr if selinux is on 10424 */ 10425 trans = btrfs_start_transaction(root, 7); 10426 if (IS_ERR(trans)) 10427 return PTR_ERR(trans); 10428 10429 err = btrfs_find_free_ino(root, &objectid); 10430 if (err) 10431 goto out_unlock; 10432 10433 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10434 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10435 objectid, S_IFLNK|S_IRWXUGO, &index); 10436 if (IS_ERR(inode)) { 10437 err = PTR_ERR(inode); 10438 goto out_unlock; 10439 } 10440 10441 /* 10442 * If the active LSM wants to access the inode during 10443 * d_instantiate it needs these. Smack checks to see 10444 * if the filesystem supports xattrs by looking at the 10445 * ops vector. 10446 */ 10447 inode->i_fop = &btrfs_file_operations; 10448 inode->i_op = &btrfs_file_inode_operations; 10449 inode->i_mapping->a_ops = &btrfs_aops; 10450 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10451 10452 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10453 if (err) 10454 goto out_unlock_inode; 10455 10456 path = btrfs_alloc_path(); 10457 if (!path) { 10458 err = -ENOMEM; 10459 goto out_unlock_inode; 10460 } 10461 key.objectid = btrfs_ino(BTRFS_I(inode)); 10462 key.offset = 0; 10463 key.type = BTRFS_EXTENT_DATA_KEY; 10464 datasize = btrfs_file_extent_calc_inline_size(name_len); 10465 err = btrfs_insert_empty_item(trans, root, path, &key, 10466 datasize); 10467 if (err) { 10468 btrfs_free_path(path); 10469 goto out_unlock_inode; 10470 } 10471 leaf = path->nodes[0]; 10472 ei = btrfs_item_ptr(leaf, path->slots[0], 10473 struct btrfs_file_extent_item); 10474 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10475 btrfs_set_file_extent_type(leaf, ei, 10476 BTRFS_FILE_EXTENT_INLINE); 10477 btrfs_set_file_extent_encryption(leaf, ei, 0); 10478 btrfs_set_file_extent_compression(leaf, ei, 0); 10479 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10480 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10481 10482 ptr = btrfs_file_extent_inline_start(ei); 10483 write_extent_buffer(leaf, symname, ptr, name_len); 10484 btrfs_mark_buffer_dirty(leaf); 10485 btrfs_free_path(path); 10486 10487 inode->i_op = &btrfs_symlink_inode_operations; 10488 inode_nohighmem(inode); 10489 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10490 inode_set_bytes(inode, name_len); 10491 btrfs_i_size_write(BTRFS_I(inode), name_len); 10492 err = btrfs_update_inode(trans, root, inode); 10493 /* 10494 * Last step, add directory indexes for our symlink inode. This is the 10495 * last step to avoid extra cleanup of these indexes if an error happens 10496 * elsewhere above. 10497 */ 10498 if (!err) 10499 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10500 BTRFS_I(inode), 0, index); 10501 if (err) { 10502 drop_inode = 1; 10503 goto out_unlock_inode; 10504 } 10505 10506 unlock_new_inode(inode); 10507 d_instantiate(dentry, inode); 10508 10509 out_unlock: 10510 btrfs_end_transaction(trans); 10511 if (drop_inode) { 10512 inode_dec_link_count(inode); 10513 iput(inode); 10514 } 10515 btrfs_btree_balance_dirty(fs_info); 10516 return err; 10517 10518 out_unlock_inode: 10519 drop_inode = 1; 10520 unlock_new_inode(inode); 10521 goto out_unlock; 10522 } 10523 10524 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10525 u64 start, u64 num_bytes, u64 min_size, 10526 loff_t actual_len, u64 *alloc_hint, 10527 struct btrfs_trans_handle *trans) 10528 { 10529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10530 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10531 struct extent_map *em; 10532 struct btrfs_root *root = BTRFS_I(inode)->root; 10533 struct btrfs_key ins; 10534 u64 cur_offset = start; 10535 u64 i_size; 10536 u64 cur_bytes; 10537 u64 last_alloc = (u64)-1; 10538 int ret = 0; 10539 bool own_trans = true; 10540 u64 end = start + num_bytes - 1; 10541 10542 if (trans) 10543 own_trans = false; 10544 while (num_bytes > 0) { 10545 if (own_trans) { 10546 trans = btrfs_start_transaction(root, 3); 10547 if (IS_ERR(trans)) { 10548 ret = PTR_ERR(trans); 10549 break; 10550 } 10551 } 10552 10553 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10554 cur_bytes = max(cur_bytes, min_size); 10555 /* 10556 * If we are severely fragmented we could end up with really 10557 * small allocations, so if the allocator is returning small 10558 * chunks lets make its job easier by only searching for those 10559 * sized chunks. 10560 */ 10561 cur_bytes = min(cur_bytes, last_alloc); 10562 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10563 min_size, 0, *alloc_hint, &ins, 1, 0); 10564 if (ret) { 10565 if (own_trans) 10566 btrfs_end_transaction(trans); 10567 break; 10568 } 10569 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10570 10571 last_alloc = ins.offset; 10572 ret = insert_reserved_file_extent(trans, inode, 10573 cur_offset, ins.objectid, 10574 ins.offset, ins.offset, 10575 ins.offset, 0, 0, 0, 10576 BTRFS_FILE_EXTENT_PREALLOC); 10577 if (ret) { 10578 btrfs_free_reserved_extent(fs_info, ins.objectid, 10579 ins.offset, 0); 10580 btrfs_abort_transaction(trans, ret); 10581 if (own_trans) 10582 btrfs_end_transaction(trans); 10583 break; 10584 } 10585 10586 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10587 cur_offset + ins.offset -1, 0); 10588 10589 em = alloc_extent_map(); 10590 if (!em) { 10591 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10592 &BTRFS_I(inode)->runtime_flags); 10593 goto next; 10594 } 10595 10596 em->start = cur_offset; 10597 em->orig_start = cur_offset; 10598 em->len = ins.offset; 10599 em->block_start = ins.objectid; 10600 em->block_len = ins.offset; 10601 em->orig_block_len = ins.offset; 10602 em->ram_bytes = ins.offset; 10603 em->bdev = fs_info->fs_devices->latest_bdev; 10604 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10605 em->generation = trans->transid; 10606 10607 while (1) { 10608 write_lock(&em_tree->lock); 10609 ret = add_extent_mapping(em_tree, em, 1); 10610 write_unlock(&em_tree->lock); 10611 if (ret != -EEXIST) 10612 break; 10613 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10614 cur_offset + ins.offset - 1, 10615 0); 10616 } 10617 free_extent_map(em); 10618 next: 10619 num_bytes -= ins.offset; 10620 cur_offset += ins.offset; 10621 *alloc_hint = ins.objectid + ins.offset; 10622 10623 inode_inc_iversion(inode); 10624 inode->i_ctime = current_time(inode); 10625 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10626 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10627 (actual_len > inode->i_size) && 10628 (cur_offset > inode->i_size)) { 10629 if (cur_offset > actual_len) 10630 i_size = actual_len; 10631 else 10632 i_size = cur_offset; 10633 i_size_write(inode, i_size); 10634 btrfs_ordered_update_i_size(inode, i_size, NULL); 10635 } 10636 10637 ret = btrfs_update_inode(trans, root, inode); 10638 10639 if (ret) { 10640 btrfs_abort_transaction(trans, ret); 10641 if (own_trans) 10642 btrfs_end_transaction(trans); 10643 break; 10644 } 10645 10646 if (own_trans) 10647 btrfs_end_transaction(trans); 10648 } 10649 if (cur_offset < end) 10650 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10651 end - cur_offset + 1); 10652 return ret; 10653 } 10654 10655 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10656 u64 start, u64 num_bytes, u64 min_size, 10657 loff_t actual_len, u64 *alloc_hint) 10658 { 10659 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10660 min_size, actual_len, alloc_hint, 10661 NULL); 10662 } 10663 10664 int btrfs_prealloc_file_range_trans(struct inode *inode, 10665 struct btrfs_trans_handle *trans, int mode, 10666 u64 start, u64 num_bytes, u64 min_size, 10667 loff_t actual_len, u64 *alloc_hint) 10668 { 10669 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10670 min_size, actual_len, alloc_hint, trans); 10671 } 10672 10673 static int btrfs_set_page_dirty(struct page *page) 10674 { 10675 return __set_page_dirty_nobuffers(page); 10676 } 10677 10678 static int btrfs_permission(struct inode *inode, int mask) 10679 { 10680 struct btrfs_root *root = BTRFS_I(inode)->root; 10681 umode_t mode = inode->i_mode; 10682 10683 if (mask & MAY_WRITE && 10684 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10685 if (btrfs_root_readonly(root)) 10686 return -EROFS; 10687 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10688 return -EACCES; 10689 } 10690 return generic_permission(inode, mask); 10691 } 10692 10693 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10694 { 10695 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10696 struct btrfs_trans_handle *trans; 10697 struct btrfs_root *root = BTRFS_I(dir)->root; 10698 struct inode *inode = NULL; 10699 u64 objectid; 10700 u64 index; 10701 int ret = 0; 10702 10703 /* 10704 * 5 units required for adding orphan entry 10705 */ 10706 trans = btrfs_start_transaction(root, 5); 10707 if (IS_ERR(trans)) 10708 return PTR_ERR(trans); 10709 10710 ret = btrfs_find_free_ino(root, &objectid); 10711 if (ret) 10712 goto out; 10713 10714 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10715 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10716 if (IS_ERR(inode)) { 10717 ret = PTR_ERR(inode); 10718 inode = NULL; 10719 goto out; 10720 } 10721 10722 inode->i_fop = &btrfs_file_operations; 10723 inode->i_op = &btrfs_file_inode_operations; 10724 10725 inode->i_mapping->a_ops = &btrfs_aops; 10726 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10727 10728 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10729 if (ret) 10730 goto out_inode; 10731 10732 ret = btrfs_update_inode(trans, root, inode); 10733 if (ret) 10734 goto out_inode; 10735 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10736 if (ret) 10737 goto out_inode; 10738 10739 /* 10740 * We set number of links to 0 in btrfs_new_inode(), and here we set 10741 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10742 * through: 10743 * 10744 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10745 */ 10746 set_nlink(inode, 1); 10747 unlock_new_inode(inode); 10748 d_tmpfile(dentry, inode); 10749 mark_inode_dirty(inode); 10750 10751 out: 10752 btrfs_end_transaction(trans); 10753 if (ret) 10754 iput(inode); 10755 btrfs_balance_delayed_items(fs_info); 10756 btrfs_btree_balance_dirty(fs_info); 10757 return ret; 10758 10759 out_inode: 10760 unlock_new_inode(inode); 10761 goto out; 10762 10763 } 10764 10765 __attribute__((const)) 10766 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10767 { 10768 return -EAGAIN; 10769 } 10770 10771 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10772 { 10773 struct inode *inode = private_data; 10774 return btrfs_sb(inode->i_sb); 10775 } 10776 10777 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10778 u64 start, u64 end) 10779 { 10780 struct inode *inode = private_data; 10781 u64 isize; 10782 10783 isize = i_size_read(inode); 10784 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10785 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10786 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10787 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10788 } 10789 } 10790 10791 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10792 { 10793 struct inode *inode = private_data; 10794 unsigned long index = start >> PAGE_SHIFT; 10795 unsigned long end_index = end >> PAGE_SHIFT; 10796 struct page *page; 10797 10798 while (index <= end_index) { 10799 page = find_get_page(inode->i_mapping, index); 10800 ASSERT(page); /* Pages should be in the extent_io_tree */ 10801 set_page_writeback(page); 10802 put_page(page); 10803 index++; 10804 } 10805 } 10806 10807 static const struct inode_operations btrfs_dir_inode_operations = { 10808 .getattr = btrfs_getattr, 10809 .lookup = btrfs_lookup, 10810 .create = btrfs_create, 10811 .unlink = btrfs_unlink, 10812 .link = btrfs_link, 10813 .mkdir = btrfs_mkdir, 10814 .rmdir = btrfs_rmdir, 10815 .rename = btrfs_rename2, 10816 .symlink = btrfs_symlink, 10817 .setattr = btrfs_setattr, 10818 .mknod = btrfs_mknod, 10819 .listxattr = btrfs_listxattr, 10820 .permission = btrfs_permission, 10821 .get_acl = btrfs_get_acl, 10822 .set_acl = btrfs_set_acl, 10823 .update_time = btrfs_update_time, 10824 .tmpfile = btrfs_tmpfile, 10825 }; 10826 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10827 .lookup = btrfs_lookup, 10828 .permission = btrfs_permission, 10829 .update_time = btrfs_update_time, 10830 }; 10831 10832 static const struct file_operations btrfs_dir_file_operations = { 10833 .llseek = generic_file_llseek, 10834 .read = generic_read_dir, 10835 .iterate_shared = btrfs_real_readdir, 10836 .open = btrfs_opendir, 10837 .unlocked_ioctl = btrfs_ioctl, 10838 #ifdef CONFIG_COMPAT 10839 .compat_ioctl = btrfs_compat_ioctl, 10840 #endif 10841 .release = btrfs_release_file, 10842 .fsync = btrfs_sync_file, 10843 }; 10844 10845 static const struct extent_io_ops btrfs_extent_io_ops = { 10846 /* mandatory callbacks */ 10847 .submit_bio_hook = btrfs_submit_bio_hook, 10848 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10849 .merge_bio_hook = btrfs_merge_bio_hook, 10850 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10851 .tree_fs_info = iotree_fs_info, 10852 .set_range_writeback = btrfs_set_range_writeback, 10853 10854 /* optional callbacks */ 10855 .fill_delalloc = run_delalloc_range, 10856 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10857 .writepage_start_hook = btrfs_writepage_start_hook, 10858 .set_bit_hook = btrfs_set_bit_hook, 10859 .clear_bit_hook = btrfs_clear_bit_hook, 10860 .merge_extent_hook = btrfs_merge_extent_hook, 10861 .split_extent_hook = btrfs_split_extent_hook, 10862 .check_extent_io_range = btrfs_check_extent_io_range, 10863 }; 10864 10865 /* 10866 * btrfs doesn't support the bmap operation because swapfiles 10867 * use bmap to make a mapping of extents in the file. They assume 10868 * these extents won't change over the life of the file and they 10869 * use the bmap result to do IO directly to the drive. 10870 * 10871 * the btrfs bmap call would return logical addresses that aren't 10872 * suitable for IO and they also will change frequently as COW 10873 * operations happen. So, swapfile + btrfs == corruption. 10874 * 10875 * For now we're avoiding this by dropping bmap. 10876 */ 10877 static const struct address_space_operations btrfs_aops = { 10878 .readpage = btrfs_readpage, 10879 .writepage = btrfs_writepage, 10880 .writepages = btrfs_writepages, 10881 .readpages = btrfs_readpages, 10882 .direct_IO = btrfs_direct_IO, 10883 .invalidatepage = btrfs_invalidatepage, 10884 .releasepage = btrfs_releasepage, 10885 .set_page_dirty = btrfs_set_page_dirty, 10886 .error_remove_page = generic_error_remove_page, 10887 }; 10888 10889 static const struct address_space_operations btrfs_symlink_aops = { 10890 .readpage = btrfs_readpage, 10891 .writepage = btrfs_writepage, 10892 .invalidatepage = btrfs_invalidatepage, 10893 .releasepage = btrfs_releasepage, 10894 }; 10895 10896 static const struct inode_operations btrfs_file_inode_operations = { 10897 .getattr = btrfs_getattr, 10898 .setattr = btrfs_setattr, 10899 .listxattr = btrfs_listxattr, 10900 .permission = btrfs_permission, 10901 .fiemap = btrfs_fiemap, 10902 .get_acl = btrfs_get_acl, 10903 .set_acl = btrfs_set_acl, 10904 .update_time = btrfs_update_time, 10905 }; 10906 static const struct inode_operations btrfs_special_inode_operations = { 10907 .getattr = btrfs_getattr, 10908 .setattr = btrfs_setattr, 10909 .permission = btrfs_permission, 10910 .listxattr = btrfs_listxattr, 10911 .get_acl = btrfs_get_acl, 10912 .set_acl = btrfs_set_acl, 10913 .update_time = btrfs_update_time, 10914 }; 10915 static const struct inode_operations btrfs_symlink_inode_operations = { 10916 .get_link = page_get_link, 10917 .getattr = btrfs_getattr, 10918 .setattr = btrfs_setattr, 10919 .permission = btrfs_permission, 10920 .listxattr = btrfs_listxattr, 10921 .update_time = btrfs_update_time, 10922 }; 10923 10924 const struct dentry_operations btrfs_dentry_operations = { 10925 .d_delete = btrfs_dentry_delete, 10926 .d_release = btrfs_dentry_release, 10927 }; 10928