xref: /openbmc/linux/fs/btrfs/inode.c (revision 4800cd83)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 
54 struct btrfs_iget_args {
55 	u64 ino;
56 	struct btrfs_root *root;
57 };
58 
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68 
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
77 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
78 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
79 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
80 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
81 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
82 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
83 };
84 
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 				   struct page *locked_page,
89 				   u64 start, u64 end, int *page_started,
90 				   unsigned long *nr_written, int unlock);
91 
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 				     struct inode *inode,  struct inode *dir)
94 {
95 	int err;
96 
97 	err = btrfs_init_acl(trans, inode, dir);
98 	if (!err)
99 		err = btrfs_xattr_security_init(trans, inode, dir);
100 	return err;
101 }
102 
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 				struct btrfs_root *root, struct inode *inode,
110 				u64 start, size_t size, size_t compressed_size,
111 				struct page **compressed_pages)
112 {
113 	struct btrfs_key key;
114 	struct btrfs_path *path;
115 	struct extent_buffer *leaf;
116 	struct page *page = NULL;
117 	char *kaddr;
118 	unsigned long ptr;
119 	struct btrfs_file_extent_item *ei;
120 	int err = 0;
121 	int ret;
122 	size_t cur_size = size;
123 	size_t datasize;
124 	unsigned long offset;
125 	int compress_type = BTRFS_COMPRESS_NONE;
126 
127 	if (compressed_size && compressed_pages) {
128 		compress_type = root->fs_info->compress_type;
129 		cur_size = compressed_size;
130 	}
131 
132 	path = btrfs_alloc_path();
133 	if (!path)
134 		return -ENOMEM;
135 
136 	path->leave_spinning = 1;
137 	btrfs_set_trans_block_group(trans, inode);
138 
139 	key.objectid = inode->i_ino;
140 	key.offset = start;
141 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
143 
144 	inode_add_bytes(inode, size);
145 	ret = btrfs_insert_empty_item(trans, root, path, &key,
146 				      datasize);
147 	BUG_ON(ret);
148 	if (ret) {
149 		err = ret;
150 		goto fail;
151 	}
152 	leaf = path->nodes[0];
153 	ei = btrfs_item_ptr(leaf, path->slots[0],
154 			    struct btrfs_file_extent_item);
155 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 	btrfs_set_file_extent_encryption(leaf, ei, 0);
158 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 	ptr = btrfs_file_extent_inline_start(ei);
161 
162 	if (compress_type != BTRFS_COMPRESS_NONE) {
163 		struct page *cpage;
164 		int i = 0;
165 		while (compressed_size > 0) {
166 			cpage = compressed_pages[i];
167 			cur_size = min_t(unsigned long, compressed_size,
168 				       PAGE_CACHE_SIZE);
169 
170 			kaddr = kmap_atomic(cpage, KM_USER0);
171 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 			kunmap_atomic(kaddr, KM_USER0);
173 
174 			i++;
175 			ptr += cur_size;
176 			compressed_size -= cur_size;
177 		}
178 		btrfs_set_file_extent_compression(leaf, ei,
179 						  compress_type);
180 	} else {
181 		page = find_get_page(inode->i_mapping,
182 				     start >> PAGE_CACHE_SHIFT);
183 		btrfs_set_file_extent_compression(leaf, ei, 0);
184 		kaddr = kmap_atomic(page, KM_USER0);
185 		offset = start & (PAGE_CACHE_SIZE - 1);
186 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 		kunmap_atomic(kaddr, KM_USER0);
188 		page_cache_release(page);
189 	}
190 	btrfs_mark_buffer_dirty(leaf);
191 	btrfs_free_path(path);
192 
193 	/*
194 	 * we're an inline extent, so nobody can
195 	 * extend the file past i_size without locking
196 	 * a page we already have locked.
197 	 *
198 	 * We must do any isize and inode updates
199 	 * before we unlock the pages.  Otherwise we
200 	 * could end up racing with unlink.
201 	 */
202 	BTRFS_I(inode)->disk_i_size = inode->i_size;
203 	btrfs_update_inode(trans, root, inode);
204 
205 	return 0;
206 fail:
207 	btrfs_free_path(path);
208 	return err;
209 }
210 
211 
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 				 struct btrfs_root *root,
219 				 struct inode *inode, u64 start, u64 end,
220 				 size_t compressed_size,
221 				 struct page **compressed_pages)
222 {
223 	u64 isize = i_size_read(inode);
224 	u64 actual_end = min(end + 1, isize);
225 	u64 inline_len = actual_end - start;
226 	u64 aligned_end = (end + root->sectorsize - 1) &
227 			~((u64)root->sectorsize - 1);
228 	u64 hint_byte;
229 	u64 data_len = inline_len;
230 	int ret;
231 
232 	if (compressed_size)
233 		data_len = compressed_size;
234 
235 	if (start > 0 ||
236 	    actual_end >= PAGE_CACHE_SIZE ||
237 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 	    (!compressed_size &&
239 	    (actual_end & (root->sectorsize - 1)) == 0) ||
240 	    end + 1 < isize ||
241 	    data_len > root->fs_info->max_inline) {
242 		return 1;
243 	}
244 
245 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 				 &hint_byte, 1);
247 	BUG_ON(ret);
248 
249 	if (isize > actual_end)
250 		inline_len = min_t(u64, isize, actual_end);
251 	ret = insert_inline_extent(trans, root, inode, start,
252 				   inline_len, compressed_size,
253 				   compressed_pages);
254 	BUG_ON(ret);
255 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 	return 0;
258 }
259 
260 struct async_extent {
261 	u64 start;
262 	u64 ram_size;
263 	u64 compressed_size;
264 	struct page **pages;
265 	unsigned long nr_pages;
266 	int compress_type;
267 	struct list_head list;
268 };
269 
270 struct async_cow {
271 	struct inode *inode;
272 	struct btrfs_root *root;
273 	struct page *locked_page;
274 	u64 start;
275 	u64 end;
276 	struct list_head extents;
277 	struct btrfs_work work;
278 };
279 
280 static noinline int add_async_extent(struct async_cow *cow,
281 				     u64 start, u64 ram_size,
282 				     u64 compressed_size,
283 				     struct page **pages,
284 				     unsigned long nr_pages,
285 				     int compress_type)
286 {
287 	struct async_extent *async_extent;
288 
289 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290 	async_extent->start = start;
291 	async_extent->ram_size = ram_size;
292 	async_extent->compressed_size = compressed_size;
293 	async_extent->pages = pages;
294 	async_extent->nr_pages = nr_pages;
295 	async_extent->compress_type = compress_type;
296 	list_add_tail(&async_extent->list, &cow->extents);
297 	return 0;
298 }
299 
300 /*
301  * we create compressed extents in two phases.  The first
302  * phase compresses a range of pages that have already been
303  * locked (both pages and state bits are locked).
304  *
305  * This is done inside an ordered work queue, and the compression
306  * is spread across many cpus.  The actual IO submission is step
307  * two, and the ordered work queue takes care of making sure that
308  * happens in the same order things were put onto the queue by
309  * writepages and friends.
310  *
311  * If this code finds it can't get good compression, it puts an
312  * entry onto the work queue to write the uncompressed bytes.  This
313  * makes sure that both compressed inodes and uncompressed inodes
314  * are written in the same order that pdflush sent them down.
315  */
316 static noinline int compress_file_range(struct inode *inode,
317 					struct page *locked_page,
318 					u64 start, u64 end,
319 					struct async_cow *async_cow,
320 					int *num_added)
321 {
322 	struct btrfs_root *root = BTRFS_I(inode)->root;
323 	struct btrfs_trans_handle *trans;
324 	u64 num_bytes;
325 	u64 blocksize = root->sectorsize;
326 	u64 actual_end;
327 	u64 isize = i_size_read(inode);
328 	int ret = 0;
329 	struct page **pages = NULL;
330 	unsigned long nr_pages;
331 	unsigned long nr_pages_ret = 0;
332 	unsigned long total_compressed = 0;
333 	unsigned long total_in = 0;
334 	unsigned long max_compressed = 128 * 1024;
335 	unsigned long max_uncompressed = 128 * 1024;
336 	int i;
337 	int will_compress;
338 	int compress_type = root->fs_info->compress_type;
339 
340 	actual_end = min_t(u64, isize, end + 1);
341 again:
342 	will_compress = 0;
343 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345 
346 	/*
347 	 * we don't want to send crud past the end of i_size through
348 	 * compression, that's just a waste of CPU time.  So, if the
349 	 * end of the file is before the start of our current
350 	 * requested range of bytes, we bail out to the uncompressed
351 	 * cleanup code that can deal with all of this.
352 	 *
353 	 * It isn't really the fastest way to fix things, but this is a
354 	 * very uncommon corner.
355 	 */
356 	if (actual_end <= start)
357 		goto cleanup_and_bail_uncompressed;
358 
359 	total_compressed = actual_end - start;
360 
361 	/* we want to make sure that amount of ram required to uncompress
362 	 * an extent is reasonable, so we limit the total size in ram
363 	 * of a compressed extent to 128k.  This is a crucial number
364 	 * because it also controls how easily we can spread reads across
365 	 * cpus for decompression.
366 	 *
367 	 * We also want to make sure the amount of IO required to do
368 	 * a random read is reasonably small, so we limit the size of
369 	 * a compressed extent to 128k.
370 	 */
371 	total_compressed = min(total_compressed, max_uncompressed);
372 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 	num_bytes = max(blocksize,  num_bytes);
374 	total_in = 0;
375 	ret = 0;
376 
377 	/*
378 	 * we do compression for mount -o compress and when the
379 	 * inode has not been flagged as nocompress.  This flag can
380 	 * change at any time if we discover bad compression ratios.
381 	 */
382 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383 	    (btrfs_test_opt(root, COMPRESS) ||
384 	     (BTRFS_I(inode)->force_compress))) {
385 		WARN_ON(pages);
386 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387 
388 		if (BTRFS_I(inode)->force_compress)
389 			compress_type = BTRFS_I(inode)->force_compress;
390 
391 		ret = btrfs_compress_pages(compress_type,
392 					   inode->i_mapping, start,
393 					   total_compressed, pages,
394 					   nr_pages, &nr_pages_ret,
395 					   &total_in,
396 					   &total_compressed,
397 					   max_compressed);
398 
399 		if (!ret) {
400 			unsigned long offset = total_compressed &
401 				(PAGE_CACHE_SIZE - 1);
402 			struct page *page = pages[nr_pages_ret - 1];
403 			char *kaddr;
404 
405 			/* zero the tail end of the last page, we might be
406 			 * sending it down to disk
407 			 */
408 			if (offset) {
409 				kaddr = kmap_atomic(page, KM_USER0);
410 				memset(kaddr + offset, 0,
411 				       PAGE_CACHE_SIZE - offset);
412 				kunmap_atomic(kaddr, KM_USER0);
413 			}
414 			will_compress = 1;
415 		}
416 	}
417 	if (start == 0) {
418 		trans = btrfs_join_transaction(root, 1);
419 		BUG_ON(IS_ERR(trans));
420 		btrfs_set_trans_block_group(trans, inode);
421 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
422 
423 		/* lets try to make an inline extent */
424 		if (ret || total_in < (actual_end - start)) {
425 			/* we didn't compress the entire range, try
426 			 * to make an uncompressed inline extent.
427 			 */
428 			ret = cow_file_range_inline(trans, root, inode,
429 						    start, end, 0, NULL);
430 		} else {
431 			/* try making a compressed inline extent */
432 			ret = cow_file_range_inline(trans, root, inode,
433 						    start, end,
434 						    total_compressed, pages);
435 		}
436 		if (ret == 0) {
437 			/*
438 			 * inline extent creation worked, we don't need
439 			 * to create any more async work items.  Unlock
440 			 * and free up our temp pages.
441 			 */
442 			extent_clear_unlock_delalloc(inode,
443 			     &BTRFS_I(inode)->io_tree,
444 			     start, end, NULL,
445 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446 			     EXTENT_CLEAR_DELALLOC |
447 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
448 
449 			btrfs_end_transaction(trans, root);
450 			goto free_pages_out;
451 		}
452 		btrfs_end_transaction(trans, root);
453 	}
454 
455 	if (will_compress) {
456 		/*
457 		 * we aren't doing an inline extent round the compressed size
458 		 * up to a block size boundary so the allocator does sane
459 		 * things
460 		 */
461 		total_compressed = (total_compressed + blocksize - 1) &
462 			~(blocksize - 1);
463 
464 		/*
465 		 * one last check to make sure the compression is really a
466 		 * win, compare the page count read with the blocks on disk
467 		 */
468 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469 			~(PAGE_CACHE_SIZE - 1);
470 		if (total_compressed >= total_in) {
471 			will_compress = 0;
472 		} else {
473 			num_bytes = total_in;
474 		}
475 	}
476 	if (!will_compress && pages) {
477 		/*
478 		 * the compression code ran but failed to make things smaller,
479 		 * free any pages it allocated and our page pointer array
480 		 */
481 		for (i = 0; i < nr_pages_ret; i++) {
482 			WARN_ON(pages[i]->mapping);
483 			page_cache_release(pages[i]);
484 		}
485 		kfree(pages);
486 		pages = NULL;
487 		total_compressed = 0;
488 		nr_pages_ret = 0;
489 
490 		/* flag the file so we don't compress in the future */
491 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492 		    !(BTRFS_I(inode)->force_compress)) {
493 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
494 		}
495 	}
496 	if (will_compress) {
497 		*num_added += 1;
498 
499 		/* the async work queues will take care of doing actual
500 		 * allocation on disk for these compressed pages,
501 		 * and will submit them to the elevator.
502 		 */
503 		add_async_extent(async_cow, start, num_bytes,
504 				 total_compressed, pages, nr_pages_ret,
505 				 compress_type);
506 
507 		if (start + num_bytes < end) {
508 			start += num_bytes;
509 			pages = NULL;
510 			cond_resched();
511 			goto again;
512 		}
513 	} else {
514 cleanup_and_bail_uncompressed:
515 		/*
516 		 * No compression, but we still need to write the pages in
517 		 * the file we've been given so far.  redirty the locked
518 		 * page if it corresponds to our extent and set things up
519 		 * for the async work queue to run cow_file_range to do
520 		 * the normal delalloc dance
521 		 */
522 		if (page_offset(locked_page) >= start &&
523 		    page_offset(locked_page) <= end) {
524 			__set_page_dirty_nobuffers(locked_page);
525 			/* unlocked later on in the async handlers */
526 		}
527 		add_async_extent(async_cow, start, end - start + 1,
528 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
529 		*num_added += 1;
530 	}
531 
532 out:
533 	return 0;
534 
535 free_pages_out:
536 	for (i = 0; i < nr_pages_ret; i++) {
537 		WARN_ON(pages[i]->mapping);
538 		page_cache_release(pages[i]);
539 	}
540 	kfree(pages);
541 
542 	goto out;
543 }
544 
545 /*
546  * phase two of compressed writeback.  This is the ordered portion
547  * of the code, which only gets called in the order the work was
548  * queued.  We walk all the async extents created by compress_file_range
549  * and send them down to the disk.
550  */
551 static noinline int submit_compressed_extents(struct inode *inode,
552 					      struct async_cow *async_cow)
553 {
554 	struct async_extent *async_extent;
555 	u64 alloc_hint = 0;
556 	struct btrfs_trans_handle *trans;
557 	struct btrfs_key ins;
558 	struct extent_map *em;
559 	struct btrfs_root *root = BTRFS_I(inode)->root;
560 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561 	struct extent_io_tree *io_tree;
562 	int ret = 0;
563 
564 	if (list_empty(&async_cow->extents))
565 		return 0;
566 
567 
568 	while (!list_empty(&async_cow->extents)) {
569 		async_extent = list_entry(async_cow->extents.next,
570 					  struct async_extent, list);
571 		list_del(&async_extent->list);
572 
573 		io_tree = &BTRFS_I(inode)->io_tree;
574 
575 retry:
576 		/* did the compression code fall back to uncompressed IO? */
577 		if (!async_extent->pages) {
578 			int page_started = 0;
579 			unsigned long nr_written = 0;
580 
581 			lock_extent(io_tree, async_extent->start,
582 					 async_extent->start +
583 					 async_extent->ram_size - 1, GFP_NOFS);
584 
585 			/* allocate blocks */
586 			ret = cow_file_range(inode, async_cow->locked_page,
587 					     async_extent->start,
588 					     async_extent->start +
589 					     async_extent->ram_size - 1,
590 					     &page_started, &nr_written, 0);
591 
592 			/*
593 			 * if page_started, cow_file_range inserted an
594 			 * inline extent and took care of all the unlocking
595 			 * and IO for us.  Otherwise, we need to submit
596 			 * all those pages down to the drive.
597 			 */
598 			if (!page_started && !ret)
599 				extent_write_locked_range(io_tree,
600 						  inode, async_extent->start,
601 						  async_extent->start +
602 						  async_extent->ram_size - 1,
603 						  btrfs_get_extent,
604 						  WB_SYNC_ALL);
605 			kfree(async_extent);
606 			cond_resched();
607 			continue;
608 		}
609 
610 		lock_extent(io_tree, async_extent->start,
611 			    async_extent->start + async_extent->ram_size - 1,
612 			    GFP_NOFS);
613 
614 		trans = btrfs_join_transaction(root, 1);
615 		BUG_ON(IS_ERR(trans));
616 		ret = btrfs_reserve_extent(trans, root,
617 					   async_extent->compressed_size,
618 					   async_extent->compressed_size,
619 					   0, alloc_hint,
620 					   (u64)-1, &ins, 1);
621 		btrfs_end_transaction(trans, root);
622 
623 		if (ret) {
624 			int i;
625 			for (i = 0; i < async_extent->nr_pages; i++) {
626 				WARN_ON(async_extent->pages[i]->mapping);
627 				page_cache_release(async_extent->pages[i]);
628 			}
629 			kfree(async_extent->pages);
630 			async_extent->nr_pages = 0;
631 			async_extent->pages = NULL;
632 			unlock_extent(io_tree, async_extent->start,
633 				      async_extent->start +
634 				      async_extent->ram_size - 1, GFP_NOFS);
635 			goto retry;
636 		}
637 
638 		/*
639 		 * here we're doing allocation and writeback of the
640 		 * compressed pages
641 		 */
642 		btrfs_drop_extent_cache(inode, async_extent->start,
643 					async_extent->start +
644 					async_extent->ram_size - 1, 0);
645 
646 		em = alloc_extent_map(GFP_NOFS);
647 		BUG_ON(!em);
648 		em->start = async_extent->start;
649 		em->len = async_extent->ram_size;
650 		em->orig_start = em->start;
651 
652 		em->block_start = ins.objectid;
653 		em->block_len = ins.offset;
654 		em->bdev = root->fs_info->fs_devices->latest_bdev;
655 		em->compress_type = async_extent->compress_type;
656 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
657 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
658 
659 		while (1) {
660 			write_lock(&em_tree->lock);
661 			ret = add_extent_mapping(em_tree, em);
662 			write_unlock(&em_tree->lock);
663 			if (ret != -EEXIST) {
664 				free_extent_map(em);
665 				break;
666 			}
667 			btrfs_drop_extent_cache(inode, async_extent->start,
668 						async_extent->start +
669 						async_extent->ram_size - 1, 0);
670 		}
671 
672 		ret = btrfs_add_ordered_extent_compress(inode,
673 						async_extent->start,
674 						ins.objectid,
675 						async_extent->ram_size,
676 						ins.offset,
677 						BTRFS_ORDERED_COMPRESSED,
678 						async_extent->compress_type);
679 		BUG_ON(ret);
680 
681 		/*
682 		 * clear dirty, set writeback and unlock the pages.
683 		 */
684 		extent_clear_unlock_delalloc(inode,
685 				&BTRFS_I(inode)->io_tree,
686 				async_extent->start,
687 				async_extent->start +
688 				async_extent->ram_size - 1,
689 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
690 				EXTENT_CLEAR_UNLOCK |
691 				EXTENT_CLEAR_DELALLOC |
692 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
693 
694 		ret = btrfs_submit_compressed_write(inode,
695 				    async_extent->start,
696 				    async_extent->ram_size,
697 				    ins.objectid,
698 				    ins.offset, async_extent->pages,
699 				    async_extent->nr_pages);
700 
701 		BUG_ON(ret);
702 		alloc_hint = ins.objectid + ins.offset;
703 		kfree(async_extent);
704 		cond_resched();
705 	}
706 
707 	return 0;
708 }
709 
710 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
711 				      u64 num_bytes)
712 {
713 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
714 	struct extent_map *em;
715 	u64 alloc_hint = 0;
716 
717 	read_lock(&em_tree->lock);
718 	em = search_extent_mapping(em_tree, start, num_bytes);
719 	if (em) {
720 		/*
721 		 * if block start isn't an actual block number then find the
722 		 * first block in this inode and use that as a hint.  If that
723 		 * block is also bogus then just don't worry about it.
724 		 */
725 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
726 			free_extent_map(em);
727 			em = search_extent_mapping(em_tree, 0, 0);
728 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
729 				alloc_hint = em->block_start;
730 			if (em)
731 				free_extent_map(em);
732 		} else {
733 			alloc_hint = em->block_start;
734 			free_extent_map(em);
735 		}
736 	}
737 	read_unlock(&em_tree->lock);
738 
739 	return alloc_hint;
740 }
741 
742 /*
743  * when extent_io.c finds a delayed allocation range in the file,
744  * the call backs end up in this code.  The basic idea is to
745  * allocate extents on disk for the range, and create ordered data structs
746  * in ram to track those extents.
747  *
748  * locked_page is the page that writepage had locked already.  We use
749  * it to make sure we don't do extra locks or unlocks.
750  *
751  * *page_started is set to one if we unlock locked_page and do everything
752  * required to start IO on it.  It may be clean and already done with
753  * IO when we return.
754  */
755 static noinline int cow_file_range(struct inode *inode,
756 				   struct page *locked_page,
757 				   u64 start, u64 end, int *page_started,
758 				   unsigned long *nr_written,
759 				   int unlock)
760 {
761 	struct btrfs_root *root = BTRFS_I(inode)->root;
762 	struct btrfs_trans_handle *trans;
763 	u64 alloc_hint = 0;
764 	u64 num_bytes;
765 	unsigned long ram_size;
766 	u64 disk_num_bytes;
767 	u64 cur_alloc_size;
768 	u64 blocksize = root->sectorsize;
769 	struct btrfs_key ins;
770 	struct extent_map *em;
771 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
772 	int ret = 0;
773 
774 	BUG_ON(root == root->fs_info->tree_root);
775 	trans = btrfs_join_transaction(root, 1);
776 	BUG_ON(IS_ERR(trans));
777 	btrfs_set_trans_block_group(trans, inode);
778 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
779 
780 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
781 	num_bytes = max(blocksize,  num_bytes);
782 	disk_num_bytes = num_bytes;
783 	ret = 0;
784 
785 	if (start == 0) {
786 		/* lets try to make an inline extent */
787 		ret = cow_file_range_inline(trans, root, inode,
788 					    start, end, 0, NULL);
789 		if (ret == 0) {
790 			extent_clear_unlock_delalloc(inode,
791 				     &BTRFS_I(inode)->io_tree,
792 				     start, end, NULL,
793 				     EXTENT_CLEAR_UNLOCK_PAGE |
794 				     EXTENT_CLEAR_UNLOCK |
795 				     EXTENT_CLEAR_DELALLOC |
796 				     EXTENT_CLEAR_DIRTY |
797 				     EXTENT_SET_WRITEBACK |
798 				     EXTENT_END_WRITEBACK);
799 
800 			*nr_written = *nr_written +
801 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
802 			*page_started = 1;
803 			ret = 0;
804 			goto out;
805 		}
806 	}
807 
808 	BUG_ON(disk_num_bytes >
809 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
810 
811 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
812 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
813 
814 	while (disk_num_bytes > 0) {
815 		unsigned long op;
816 
817 		cur_alloc_size = disk_num_bytes;
818 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
819 					   root->sectorsize, 0, alloc_hint,
820 					   (u64)-1, &ins, 1);
821 		BUG_ON(ret);
822 
823 		em = alloc_extent_map(GFP_NOFS);
824 		BUG_ON(!em);
825 		em->start = start;
826 		em->orig_start = em->start;
827 		ram_size = ins.offset;
828 		em->len = ins.offset;
829 
830 		em->block_start = ins.objectid;
831 		em->block_len = ins.offset;
832 		em->bdev = root->fs_info->fs_devices->latest_bdev;
833 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
834 
835 		while (1) {
836 			write_lock(&em_tree->lock);
837 			ret = add_extent_mapping(em_tree, em);
838 			write_unlock(&em_tree->lock);
839 			if (ret != -EEXIST) {
840 				free_extent_map(em);
841 				break;
842 			}
843 			btrfs_drop_extent_cache(inode, start,
844 						start + ram_size - 1, 0);
845 		}
846 
847 		cur_alloc_size = ins.offset;
848 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
849 					       ram_size, cur_alloc_size, 0);
850 		BUG_ON(ret);
851 
852 		if (root->root_key.objectid ==
853 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
854 			ret = btrfs_reloc_clone_csums(inode, start,
855 						      cur_alloc_size);
856 			BUG_ON(ret);
857 		}
858 
859 		if (disk_num_bytes < cur_alloc_size)
860 			break;
861 
862 		/* we're not doing compressed IO, don't unlock the first
863 		 * page (which the caller expects to stay locked), don't
864 		 * clear any dirty bits and don't set any writeback bits
865 		 *
866 		 * Do set the Private2 bit so we know this page was properly
867 		 * setup for writepage
868 		 */
869 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
870 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
871 			EXTENT_SET_PRIVATE2;
872 
873 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
874 					     start, start + ram_size - 1,
875 					     locked_page, op);
876 		disk_num_bytes -= cur_alloc_size;
877 		num_bytes -= cur_alloc_size;
878 		alloc_hint = ins.objectid + ins.offset;
879 		start += cur_alloc_size;
880 	}
881 out:
882 	ret = 0;
883 	btrfs_end_transaction(trans, root);
884 
885 	return ret;
886 }
887 
888 /*
889  * work queue call back to started compression on a file and pages
890  */
891 static noinline void async_cow_start(struct btrfs_work *work)
892 {
893 	struct async_cow *async_cow;
894 	int num_added = 0;
895 	async_cow = container_of(work, struct async_cow, work);
896 
897 	compress_file_range(async_cow->inode, async_cow->locked_page,
898 			    async_cow->start, async_cow->end, async_cow,
899 			    &num_added);
900 	if (num_added == 0)
901 		async_cow->inode = NULL;
902 }
903 
904 /*
905  * work queue call back to submit previously compressed pages
906  */
907 static noinline void async_cow_submit(struct btrfs_work *work)
908 {
909 	struct async_cow *async_cow;
910 	struct btrfs_root *root;
911 	unsigned long nr_pages;
912 
913 	async_cow = container_of(work, struct async_cow, work);
914 
915 	root = async_cow->root;
916 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
917 		PAGE_CACHE_SHIFT;
918 
919 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
920 
921 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
922 	    5 * 1042 * 1024 &&
923 	    waitqueue_active(&root->fs_info->async_submit_wait))
924 		wake_up(&root->fs_info->async_submit_wait);
925 
926 	if (async_cow->inode)
927 		submit_compressed_extents(async_cow->inode, async_cow);
928 }
929 
930 static noinline void async_cow_free(struct btrfs_work *work)
931 {
932 	struct async_cow *async_cow;
933 	async_cow = container_of(work, struct async_cow, work);
934 	kfree(async_cow);
935 }
936 
937 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
938 				u64 start, u64 end, int *page_started,
939 				unsigned long *nr_written)
940 {
941 	struct async_cow *async_cow;
942 	struct btrfs_root *root = BTRFS_I(inode)->root;
943 	unsigned long nr_pages;
944 	u64 cur_end;
945 	int limit = 10 * 1024 * 1042;
946 
947 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
948 			 1, 0, NULL, GFP_NOFS);
949 	while (start < end) {
950 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
951 		async_cow->inode = inode;
952 		async_cow->root = root;
953 		async_cow->locked_page = locked_page;
954 		async_cow->start = start;
955 
956 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
957 			cur_end = end;
958 		else
959 			cur_end = min(end, start + 512 * 1024 - 1);
960 
961 		async_cow->end = cur_end;
962 		INIT_LIST_HEAD(&async_cow->extents);
963 
964 		async_cow->work.func = async_cow_start;
965 		async_cow->work.ordered_func = async_cow_submit;
966 		async_cow->work.ordered_free = async_cow_free;
967 		async_cow->work.flags = 0;
968 
969 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
970 			PAGE_CACHE_SHIFT;
971 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
972 
973 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
974 				   &async_cow->work);
975 
976 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
977 			wait_event(root->fs_info->async_submit_wait,
978 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
979 			    limit));
980 		}
981 
982 		while (atomic_read(&root->fs_info->async_submit_draining) &&
983 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
984 			wait_event(root->fs_info->async_submit_wait,
985 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
986 			   0));
987 		}
988 
989 		*nr_written += nr_pages;
990 		start = cur_end + 1;
991 	}
992 	*page_started = 1;
993 	return 0;
994 }
995 
996 static noinline int csum_exist_in_range(struct btrfs_root *root,
997 					u64 bytenr, u64 num_bytes)
998 {
999 	int ret;
1000 	struct btrfs_ordered_sum *sums;
1001 	LIST_HEAD(list);
1002 
1003 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1004 				       bytenr + num_bytes - 1, &list);
1005 	if (ret == 0 && list_empty(&list))
1006 		return 0;
1007 
1008 	while (!list_empty(&list)) {
1009 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1010 		list_del(&sums->list);
1011 		kfree(sums);
1012 	}
1013 	return 1;
1014 }
1015 
1016 /*
1017  * when nowcow writeback call back.  This checks for snapshots or COW copies
1018  * of the extents that exist in the file, and COWs the file as required.
1019  *
1020  * If no cow copies or snapshots exist, we write directly to the existing
1021  * blocks on disk
1022  */
1023 static noinline int run_delalloc_nocow(struct inode *inode,
1024 				       struct page *locked_page,
1025 			      u64 start, u64 end, int *page_started, int force,
1026 			      unsigned long *nr_written)
1027 {
1028 	struct btrfs_root *root = BTRFS_I(inode)->root;
1029 	struct btrfs_trans_handle *trans;
1030 	struct extent_buffer *leaf;
1031 	struct btrfs_path *path;
1032 	struct btrfs_file_extent_item *fi;
1033 	struct btrfs_key found_key;
1034 	u64 cow_start;
1035 	u64 cur_offset;
1036 	u64 extent_end;
1037 	u64 extent_offset;
1038 	u64 disk_bytenr;
1039 	u64 num_bytes;
1040 	int extent_type;
1041 	int ret;
1042 	int type;
1043 	int nocow;
1044 	int check_prev = 1;
1045 	bool nolock = false;
1046 
1047 	path = btrfs_alloc_path();
1048 	BUG_ON(!path);
1049 	if (root == root->fs_info->tree_root) {
1050 		nolock = true;
1051 		trans = btrfs_join_transaction_nolock(root, 1);
1052 	} else {
1053 		trans = btrfs_join_transaction(root, 1);
1054 	}
1055 	BUG_ON(IS_ERR(trans));
1056 
1057 	cow_start = (u64)-1;
1058 	cur_offset = start;
1059 	while (1) {
1060 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1061 					       cur_offset, 0);
1062 		BUG_ON(ret < 0);
1063 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1064 			leaf = path->nodes[0];
1065 			btrfs_item_key_to_cpu(leaf, &found_key,
1066 					      path->slots[0] - 1);
1067 			if (found_key.objectid == inode->i_ino &&
1068 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1069 				path->slots[0]--;
1070 		}
1071 		check_prev = 0;
1072 next_slot:
1073 		leaf = path->nodes[0];
1074 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1075 			ret = btrfs_next_leaf(root, path);
1076 			if (ret < 0)
1077 				BUG_ON(1);
1078 			if (ret > 0)
1079 				break;
1080 			leaf = path->nodes[0];
1081 		}
1082 
1083 		nocow = 0;
1084 		disk_bytenr = 0;
1085 		num_bytes = 0;
1086 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1087 
1088 		if (found_key.objectid > inode->i_ino ||
1089 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1090 		    found_key.offset > end)
1091 			break;
1092 
1093 		if (found_key.offset > cur_offset) {
1094 			extent_end = found_key.offset;
1095 			extent_type = 0;
1096 			goto out_check;
1097 		}
1098 
1099 		fi = btrfs_item_ptr(leaf, path->slots[0],
1100 				    struct btrfs_file_extent_item);
1101 		extent_type = btrfs_file_extent_type(leaf, fi);
1102 
1103 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1104 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1105 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1107 			extent_end = found_key.offset +
1108 				btrfs_file_extent_num_bytes(leaf, fi);
1109 			if (extent_end <= start) {
1110 				path->slots[0]++;
1111 				goto next_slot;
1112 			}
1113 			if (disk_bytenr == 0)
1114 				goto out_check;
1115 			if (btrfs_file_extent_compression(leaf, fi) ||
1116 			    btrfs_file_extent_encryption(leaf, fi) ||
1117 			    btrfs_file_extent_other_encoding(leaf, fi))
1118 				goto out_check;
1119 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1120 				goto out_check;
1121 			if (btrfs_extent_readonly(root, disk_bytenr))
1122 				goto out_check;
1123 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1124 						  found_key.offset -
1125 						  extent_offset, disk_bytenr))
1126 				goto out_check;
1127 			disk_bytenr += extent_offset;
1128 			disk_bytenr += cur_offset - found_key.offset;
1129 			num_bytes = min(end + 1, extent_end) - cur_offset;
1130 			/*
1131 			 * force cow if csum exists in the range.
1132 			 * this ensure that csum for a given extent are
1133 			 * either valid or do not exist.
1134 			 */
1135 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1136 				goto out_check;
1137 			nocow = 1;
1138 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1139 			extent_end = found_key.offset +
1140 				btrfs_file_extent_inline_len(leaf, fi);
1141 			extent_end = ALIGN(extent_end, root->sectorsize);
1142 		} else {
1143 			BUG_ON(1);
1144 		}
1145 out_check:
1146 		if (extent_end <= start) {
1147 			path->slots[0]++;
1148 			goto next_slot;
1149 		}
1150 		if (!nocow) {
1151 			if (cow_start == (u64)-1)
1152 				cow_start = cur_offset;
1153 			cur_offset = extent_end;
1154 			if (cur_offset > end)
1155 				break;
1156 			path->slots[0]++;
1157 			goto next_slot;
1158 		}
1159 
1160 		btrfs_release_path(root, path);
1161 		if (cow_start != (u64)-1) {
1162 			ret = cow_file_range(inode, locked_page, cow_start,
1163 					found_key.offset - 1, page_started,
1164 					nr_written, 1);
1165 			BUG_ON(ret);
1166 			cow_start = (u64)-1;
1167 		}
1168 
1169 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1170 			struct extent_map *em;
1171 			struct extent_map_tree *em_tree;
1172 			em_tree = &BTRFS_I(inode)->extent_tree;
1173 			em = alloc_extent_map(GFP_NOFS);
1174 			BUG_ON(!em);
1175 			em->start = cur_offset;
1176 			em->orig_start = em->start;
1177 			em->len = num_bytes;
1178 			em->block_len = num_bytes;
1179 			em->block_start = disk_bytenr;
1180 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1181 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1182 			while (1) {
1183 				write_lock(&em_tree->lock);
1184 				ret = add_extent_mapping(em_tree, em);
1185 				write_unlock(&em_tree->lock);
1186 				if (ret != -EEXIST) {
1187 					free_extent_map(em);
1188 					break;
1189 				}
1190 				btrfs_drop_extent_cache(inode, em->start,
1191 						em->start + em->len - 1, 0);
1192 			}
1193 			type = BTRFS_ORDERED_PREALLOC;
1194 		} else {
1195 			type = BTRFS_ORDERED_NOCOW;
1196 		}
1197 
1198 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1199 					       num_bytes, num_bytes, type);
1200 		BUG_ON(ret);
1201 
1202 		if (root->root_key.objectid ==
1203 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1204 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1205 						      num_bytes);
1206 			BUG_ON(ret);
1207 		}
1208 
1209 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1210 				cur_offset, cur_offset + num_bytes - 1,
1211 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1212 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1213 				EXTENT_SET_PRIVATE2);
1214 		cur_offset = extent_end;
1215 		if (cur_offset > end)
1216 			break;
1217 	}
1218 	btrfs_release_path(root, path);
1219 
1220 	if (cur_offset <= end && cow_start == (u64)-1)
1221 		cow_start = cur_offset;
1222 	if (cow_start != (u64)-1) {
1223 		ret = cow_file_range(inode, locked_page, cow_start, end,
1224 				     page_started, nr_written, 1);
1225 		BUG_ON(ret);
1226 	}
1227 
1228 	if (nolock) {
1229 		ret = btrfs_end_transaction_nolock(trans, root);
1230 		BUG_ON(ret);
1231 	} else {
1232 		ret = btrfs_end_transaction(trans, root);
1233 		BUG_ON(ret);
1234 	}
1235 	btrfs_free_path(path);
1236 	return 0;
1237 }
1238 
1239 /*
1240  * extent_io.c call back to do delayed allocation processing
1241  */
1242 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1243 			      u64 start, u64 end, int *page_started,
1244 			      unsigned long *nr_written)
1245 {
1246 	int ret;
1247 	struct btrfs_root *root = BTRFS_I(inode)->root;
1248 
1249 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1250 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1251 					 page_started, 1, nr_written);
1252 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1253 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1254 					 page_started, 0, nr_written);
1255 	else if (!btrfs_test_opt(root, COMPRESS) &&
1256 		 !(BTRFS_I(inode)->force_compress))
1257 		ret = cow_file_range(inode, locked_page, start, end,
1258 				      page_started, nr_written, 1);
1259 	else
1260 		ret = cow_file_range_async(inode, locked_page, start, end,
1261 					   page_started, nr_written);
1262 	return ret;
1263 }
1264 
1265 static int btrfs_split_extent_hook(struct inode *inode,
1266 				   struct extent_state *orig, u64 split)
1267 {
1268 	/* not delalloc, ignore it */
1269 	if (!(orig->state & EXTENT_DELALLOC))
1270 		return 0;
1271 
1272 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1273 	return 0;
1274 }
1275 
1276 /*
1277  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1278  * extents so we can keep track of new extents that are just merged onto old
1279  * extents, such as when we are doing sequential writes, so we can properly
1280  * account for the metadata space we'll need.
1281  */
1282 static int btrfs_merge_extent_hook(struct inode *inode,
1283 				   struct extent_state *new,
1284 				   struct extent_state *other)
1285 {
1286 	/* not delalloc, ignore it */
1287 	if (!(other->state & EXTENT_DELALLOC))
1288 		return 0;
1289 
1290 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1291 	return 0;
1292 }
1293 
1294 /*
1295  * extent_io.c set_bit_hook, used to track delayed allocation
1296  * bytes in this file, and to maintain the list of inodes that
1297  * have pending delalloc work to be done.
1298  */
1299 static int btrfs_set_bit_hook(struct inode *inode,
1300 			      struct extent_state *state, int *bits)
1301 {
1302 
1303 	/*
1304 	 * set_bit and clear bit hooks normally require _irqsave/restore
1305 	 * but in this case, we are only testeing for the DELALLOC
1306 	 * bit, which is only set or cleared with irqs on
1307 	 */
1308 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1309 		struct btrfs_root *root = BTRFS_I(inode)->root;
1310 		u64 len = state->end + 1 - state->start;
1311 		int do_list = (root->root_key.objectid !=
1312 			       BTRFS_ROOT_TREE_OBJECTID);
1313 
1314 		if (*bits & EXTENT_FIRST_DELALLOC)
1315 			*bits &= ~EXTENT_FIRST_DELALLOC;
1316 		else
1317 			atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1318 
1319 		spin_lock(&root->fs_info->delalloc_lock);
1320 		BTRFS_I(inode)->delalloc_bytes += len;
1321 		root->fs_info->delalloc_bytes += len;
1322 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1323 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1324 				      &root->fs_info->delalloc_inodes);
1325 		}
1326 		spin_unlock(&root->fs_info->delalloc_lock);
1327 	}
1328 	return 0;
1329 }
1330 
1331 /*
1332  * extent_io.c clear_bit_hook, see set_bit_hook for why
1333  */
1334 static int btrfs_clear_bit_hook(struct inode *inode,
1335 				struct extent_state *state, int *bits)
1336 {
1337 	/*
1338 	 * set_bit and clear bit hooks normally require _irqsave/restore
1339 	 * but in this case, we are only testeing for the DELALLOC
1340 	 * bit, which is only set or cleared with irqs on
1341 	 */
1342 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1343 		struct btrfs_root *root = BTRFS_I(inode)->root;
1344 		u64 len = state->end + 1 - state->start;
1345 		int do_list = (root->root_key.objectid !=
1346 			       BTRFS_ROOT_TREE_OBJECTID);
1347 
1348 		if (*bits & EXTENT_FIRST_DELALLOC)
1349 			*bits &= ~EXTENT_FIRST_DELALLOC;
1350 		else if (!(*bits & EXTENT_DO_ACCOUNTING))
1351 			atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1352 
1353 		if (*bits & EXTENT_DO_ACCOUNTING)
1354 			btrfs_delalloc_release_metadata(inode, len);
1355 
1356 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1357 		    && do_list)
1358 			btrfs_free_reserved_data_space(inode, len);
1359 
1360 		spin_lock(&root->fs_info->delalloc_lock);
1361 		root->fs_info->delalloc_bytes -= len;
1362 		BTRFS_I(inode)->delalloc_bytes -= len;
1363 
1364 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1365 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1366 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1367 		}
1368 		spin_unlock(&root->fs_info->delalloc_lock);
1369 	}
1370 	return 0;
1371 }
1372 
1373 /*
1374  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1375  * we don't create bios that span stripes or chunks
1376  */
1377 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1378 			 size_t size, struct bio *bio,
1379 			 unsigned long bio_flags)
1380 {
1381 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1382 	struct btrfs_mapping_tree *map_tree;
1383 	u64 logical = (u64)bio->bi_sector << 9;
1384 	u64 length = 0;
1385 	u64 map_length;
1386 	int ret;
1387 
1388 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1389 		return 0;
1390 
1391 	length = bio->bi_size;
1392 	map_tree = &root->fs_info->mapping_tree;
1393 	map_length = length;
1394 	ret = btrfs_map_block(map_tree, READ, logical,
1395 			      &map_length, NULL, 0);
1396 
1397 	if (map_length < length + size)
1398 		return 1;
1399 	return ret;
1400 }
1401 
1402 /*
1403  * in order to insert checksums into the metadata in large chunks,
1404  * we wait until bio submission time.   All the pages in the bio are
1405  * checksummed and sums are attached onto the ordered extent record.
1406  *
1407  * At IO completion time the cums attached on the ordered extent record
1408  * are inserted into the btree
1409  */
1410 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1411 				    struct bio *bio, int mirror_num,
1412 				    unsigned long bio_flags,
1413 				    u64 bio_offset)
1414 {
1415 	struct btrfs_root *root = BTRFS_I(inode)->root;
1416 	int ret = 0;
1417 
1418 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1419 	BUG_ON(ret);
1420 	return 0;
1421 }
1422 
1423 /*
1424  * in order to insert checksums into the metadata in large chunks,
1425  * we wait until bio submission time.   All the pages in the bio are
1426  * checksummed and sums are attached onto the ordered extent record.
1427  *
1428  * At IO completion time the cums attached on the ordered extent record
1429  * are inserted into the btree
1430  */
1431 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1432 			  int mirror_num, unsigned long bio_flags,
1433 			  u64 bio_offset)
1434 {
1435 	struct btrfs_root *root = BTRFS_I(inode)->root;
1436 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1437 }
1438 
1439 /*
1440  * extent_io.c submission hook. This does the right thing for csum calculation
1441  * on write, or reading the csums from the tree before a read
1442  */
1443 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1444 			  int mirror_num, unsigned long bio_flags,
1445 			  u64 bio_offset)
1446 {
1447 	struct btrfs_root *root = BTRFS_I(inode)->root;
1448 	int ret = 0;
1449 	int skip_sum;
1450 
1451 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1452 
1453 	if (root == root->fs_info->tree_root)
1454 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1455 	else
1456 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1457 	BUG_ON(ret);
1458 
1459 	if (!(rw & REQ_WRITE)) {
1460 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1461 			return btrfs_submit_compressed_read(inode, bio,
1462 						    mirror_num, bio_flags);
1463 		} else if (!skip_sum)
1464 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1465 		goto mapit;
1466 	} else if (!skip_sum) {
1467 		/* csum items have already been cloned */
1468 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1469 			goto mapit;
1470 		/* we're doing a write, do the async checksumming */
1471 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1472 				   inode, rw, bio, mirror_num,
1473 				   bio_flags, bio_offset,
1474 				   __btrfs_submit_bio_start,
1475 				   __btrfs_submit_bio_done);
1476 	}
1477 
1478 mapit:
1479 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1480 }
1481 
1482 /*
1483  * given a list of ordered sums record them in the inode.  This happens
1484  * at IO completion time based on sums calculated at bio submission time.
1485  */
1486 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1487 			     struct inode *inode, u64 file_offset,
1488 			     struct list_head *list)
1489 {
1490 	struct btrfs_ordered_sum *sum;
1491 
1492 	btrfs_set_trans_block_group(trans, inode);
1493 
1494 	list_for_each_entry(sum, list, list) {
1495 		btrfs_csum_file_blocks(trans,
1496 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1497 	}
1498 	return 0;
1499 }
1500 
1501 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1502 			      struct extent_state **cached_state)
1503 {
1504 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1505 		WARN_ON(1);
1506 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1507 				   cached_state, GFP_NOFS);
1508 }
1509 
1510 /* see btrfs_writepage_start_hook for details on why this is required */
1511 struct btrfs_writepage_fixup {
1512 	struct page *page;
1513 	struct btrfs_work work;
1514 };
1515 
1516 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1517 {
1518 	struct btrfs_writepage_fixup *fixup;
1519 	struct btrfs_ordered_extent *ordered;
1520 	struct extent_state *cached_state = NULL;
1521 	struct page *page;
1522 	struct inode *inode;
1523 	u64 page_start;
1524 	u64 page_end;
1525 
1526 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1527 	page = fixup->page;
1528 again:
1529 	lock_page(page);
1530 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1531 		ClearPageChecked(page);
1532 		goto out_page;
1533 	}
1534 
1535 	inode = page->mapping->host;
1536 	page_start = page_offset(page);
1537 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1538 
1539 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1540 			 &cached_state, GFP_NOFS);
1541 
1542 	/* already ordered? We're done */
1543 	if (PagePrivate2(page))
1544 		goto out;
1545 
1546 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1547 	if (ordered) {
1548 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1549 				     page_end, &cached_state, GFP_NOFS);
1550 		unlock_page(page);
1551 		btrfs_start_ordered_extent(inode, ordered, 1);
1552 		goto again;
1553 	}
1554 
1555 	BUG();
1556 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1557 	ClearPageChecked(page);
1558 out:
1559 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1560 			     &cached_state, GFP_NOFS);
1561 out_page:
1562 	unlock_page(page);
1563 	page_cache_release(page);
1564 	kfree(fixup);
1565 }
1566 
1567 /*
1568  * There are a few paths in the higher layers of the kernel that directly
1569  * set the page dirty bit without asking the filesystem if it is a
1570  * good idea.  This causes problems because we want to make sure COW
1571  * properly happens and the data=ordered rules are followed.
1572  *
1573  * In our case any range that doesn't have the ORDERED bit set
1574  * hasn't been properly setup for IO.  We kick off an async process
1575  * to fix it up.  The async helper will wait for ordered extents, set
1576  * the delalloc bit and make it safe to write the page.
1577  */
1578 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1579 {
1580 	struct inode *inode = page->mapping->host;
1581 	struct btrfs_writepage_fixup *fixup;
1582 	struct btrfs_root *root = BTRFS_I(inode)->root;
1583 
1584 	/* this page is properly in the ordered list */
1585 	if (TestClearPagePrivate2(page))
1586 		return 0;
1587 
1588 	if (PageChecked(page))
1589 		return -EAGAIN;
1590 
1591 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1592 	if (!fixup)
1593 		return -EAGAIN;
1594 
1595 	SetPageChecked(page);
1596 	page_cache_get(page);
1597 	fixup->work.func = btrfs_writepage_fixup_worker;
1598 	fixup->page = page;
1599 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1600 	return -EAGAIN;
1601 }
1602 
1603 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1604 				       struct inode *inode, u64 file_pos,
1605 				       u64 disk_bytenr, u64 disk_num_bytes,
1606 				       u64 num_bytes, u64 ram_bytes,
1607 				       u8 compression, u8 encryption,
1608 				       u16 other_encoding, int extent_type)
1609 {
1610 	struct btrfs_root *root = BTRFS_I(inode)->root;
1611 	struct btrfs_file_extent_item *fi;
1612 	struct btrfs_path *path;
1613 	struct extent_buffer *leaf;
1614 	struct btrfs_key ins;
1615 	u64 hint;
1616 	int ret;
1617 
1618 	path = btrfs_alloc_path();
1619 	BUG_ON(!path);
1620 
1621 	path->leave_spinning = 1;
1622 
1623 	/*
1624 	 * we may be replacing one extent in the tree with another.
1625 	 * The new extent is pinned in the extent map, and we don't want
1626 	 * to drop it from the cache until it is completely in the btree.
1627 	 *
1628 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1629 	 * the caller is expected to unpin it and allow it to be merged
1630 	 * with the others.
1631 	 */
1632 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1633 				 &hint, 0);
1634 	BUG_ON(ret);
1635 
1636 	ins.objectid = inode->i_ino;
1637 	ins.offset = file_pos;
1638 	ins.type = BTRFS_EXTENT_DATA_KEY;
1639 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1640 	BUG_ON(ret);
1641 	leaf = path->nodes[0];
1642 	fi = btrfs_item_ptr(leaf, path->slots[0],
1643 			    struct btrfs_file_extent_item);
1644 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1645 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1646 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1647 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1648 	btrfs_set_file_extent_offset(leaf, fi, 0);
1649 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1650 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1651 	btrfs_set_file_extent_compression(leaf, fi, compression);
1652 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1653 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1654 
1655 	btrfs_unlock_up_safe(path, 1);
1656 	btrfs_set_lock_blocking(leaf);
1657 
1658 	btrfs_mark_buffer_dirty(leaf);
1659 
1660 	inode_add_bytes(inode, num_bytes);
1661 
1662 	ins.objectid = disk_bytenr;
1663 	ins.offset = disk_num_bytes;
1664 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1665 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1666 					root->root_key.objectid,
1667 					inode->i_ino, file_pos, &ins);
1668 	BUG_ON(ret);
1669 	btrfs_free_path(path);
1670 
1671 	return 0;
1672 }
1673 
1674 /*
1675  * helper function for btrfs_finish_ordered_io, this
1676  * just reads in some of the csum leaves to prime them into ram
1677  * before we start the transaction.  It limits the amount of btree
1678  * reads required while inside the transaction.
1679  */
1680 /* as ordered data IO finishes, this gets called so we can finish
1681  * an ordered extent if the range of bytes in the file it covers are
1682  * fully written.
1683  */
1684 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1685 {
1686 	struct btrfs_root *root = BTRFS_I(inode)->root;
1687 	struct btrfs_trans_handle *trans = NULL;
1688 	struct btrfs_ordered_extent *ordered_extent = NULL;
1689 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1690 	struct extent_state *cached_state = NULL;
1691 	int compress_type = 0;
1692 	int ret;
1693 	bool nolock = false;
1694 
1695 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1696 					     end - start + 1);
1697 	if (!ret)
1698 		return 0;
1699 	BUG_ON(!ordered_extent);
1700 
1701 	nolock = (root == root->fs_info->tree_root);
1702 
1703 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1704 		BUG_ON(!list_empty(&ordered_extent->list));
1705 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1706 		if (!ret) {
1707 			if (nolock)
1708 				trans = btrfs_join_transaction_nolock(root, 1);
1709 			else
1710 				trans = btrfs_join_transaction(root, 1);
1711 			BUG_ON(IS_ERR(trans));
1712 			btrfs_set_trans_block_group(trans, inode);
1713 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1714 			ret = btrfs_update_inode(trans, root, inode);
1715 			BUG_ON(ret);
1716 		}
1717 		goto out;
1718 	}
1719 
1720 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1721 			 ordered_extent->file_offset + ordered_extent->len - 1,
1722 			 0, &cached_state, GFP_NOFS);
1723 
1724 	if (nolock)
1725 		trans = btrfs_join_transaction_nolock(root, 1);
1726 	else
1727 		trans = btrfs_join_transaction(root, 1);
1728 	BUG_ON(IS_ERR(trans));
1729 	btrfs_set_trans_block_group(trans, inode);
1730 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1731 
1732 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1733 		compress_type = ordered_extent->compress_type;
1734 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1735 		BUG_ON(compress_type);
1736 		ret = btrfs_mark_extent_written(trans, inode,
1737 						ordered_extent->file_offset,
1738 						ordered_extent->file_offset +
1739 						ordered_extent->len);
1740 		BUG_ON(ret);
1741 	} else {
1742 		BUG_ON(root == root->fs_info->tree_root);
1743 		ret = insert_reserved_file_extent(trans, inode,
1744 						ordered_extent->file_offset,
1745 						ordered_extent->start,
1746 						ordered_extent->disk_len,
1747 						ordered_extent->len,
1748 						ordered_extent->len,
1749 						compress_type, 0, 0,
1750 						BTRFS_FILE_EXTENT_REG);
1751 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1752 				   ordered_extent->file_offset,
1753 				   ordered_extent->len);
1754 		BUG_ON(ret);
1755 	}
1756 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1757 			     ordered_extent->file_offset +
1758 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1759 
1760 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1761 			  &ordered_extent->list);
1762 
1763 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1764 	ret = btrfs_update_inode(trans, root, inode);
1765 	BUG_ON(ret);
1766 out:
1767 	if (nolock) {
1768 		if (trans)
1769 			btrfs_end_transaction_nolock(trans, root);
1770 	} else {
1771 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1772 		if (trans)
1773 			btrfs_end_transaction(trans, root);
1774 	}
1775 
1776 	/* once for us */
1777 	btrfs_put_ordered_extent(ordered_extent);
1778 	/* once for the tree */
1779 	btrfs_put_ordered_extent(ordered_extent);
1780 
1781 	return 0;
1782 }
1783 
1784 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1785 				struct extent_state *state, int uptodate)
1786 {
1787 	ClearPagePrivate2(page);
1788 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1789 }
1790 
1791 /*
1792  * When IO fails, either with EIO or csum verification fails, we
1793  * try other mirrors that might have a good copy of the data.  This
1794  * io_failure_record is used to record state as we go through all the
1795  * mirrors.  If another mirror has good data, the page is set up to date
1796  * and things continue.  If a good mirror can't be found, the original
1797  * bio end_io callback is called to indicate things have failed.
1798  */
1799 struct io_failure_record {
1800 	struct page *page;
1801 	u64 start;
1802 	u64 len;
1803 	u64 logical;
1804 	unsigned long bio_flags;
1805 	int last_mirror;
1806 };
1807 
1808 static int btrfs_io_failed_hook(struct bio *failed_bio,
1809 			 struct page *page, u64 start, u64 end,
1810 			 struct extent_state *state)
1811 {
1812 	struct io_failure_record *failrec = NULL;
1813 	u64 private;
1814 	struct extent_map *em;
1815 	struct inode *inode = page->mapping->host;
1816 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1817 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1818 	struct bio *bio;
1819 	int num_copies;
1820 	int ret;
1821 	int rw;
1822 	u64 logical;
1823 
1824 	ret = get_state_private(failure_tree, start, &private);
1825 	if (ret) {
1826 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1827 		if (!failrec)
1828 			return -ENOMEM;
1829 		failrec->start = start;
1830 		failrec->len = end - start + 1;
1831 		failrec->last_mirror = 0;
1832 		failrec->bio_flags = 0;
1833 
1834 		read_lock(&em_tree->lock);
1835 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1836 		if (em->start > start || em->start + em->len < start) {
1837 			free_extent_map(em);
1838 			em = NULL;
1839 		}
1840 		read_unlock(&em_tree->lock);
1841 
1842 		if (!em || IS_ERR(em)) {
1843 			kfree(failrec);
1844 			return -EIO;
1845 		}
1846 		logical = start - em->start;
1847 		logical = em->block_start + logical;
1848 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1849 			logical = em->block_start;
1850 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1851 			extent_set_compress_type(&failrec->bio_flags,
1852 						 em->compress_type);
1853 		}
1854 		failrec->logical = logical;
1855 		free_extent_map(em);
1856 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1857 				EXTENT_DIRTY, GFP_NOFS);
1858 		set_state_private(failure_tree, start,
1859 				 (u64)(unsigned long)failrec);
1860 	} else {
1861 		failrec = (struct io_failure_record *)(unsigned long)private;
1862 	}
1863 	num_copies = btrfs_num_copies(
1864 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1865 			      failrec->logical, failrec->len);
1866 	failrec->last_mirror++;
1867 	if (!state) {
1868 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1869 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1870 						    failrec->start,
1871 						    EXTENT_LOCKED);
1872 		if (state && state->start != failrec->start)
1873 			state = NULL;
1874 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1875 	}
1876 	if (!state || failrec->last_mirror > num_copies) {
1877 		set_state_private(failure_tree, failrec->start, 0);
1878 		clear_extent_bits(failure_tree, failrec->start,
1879 				  failrec->start + failrec->len - 1,
1880 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1881 		kfree(failrec);
1882 		return -EIO;
1883 	}
1884 	bio = bio_alloc(GFP_NOFS, 1);
1885 	bio->bi_private = state;
1886 	bio->bi_end_io = failed_bio->bi_end_io;
1887 	bio->bi_sector = failrec->logical >> 9;
1888 	bio->bi_bdev = failed_bio->bi_bdev;
1889 	bio->bi_size = 0;
1890 
1891 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1892 	if (failed_bio->bi_rw & REQ_WRITE)
1893 		rw = WRITE;
1894 	else
1895 		rw = READ;
1896 
1897 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1898 						      failrec->last_mirror,
1899 						      failrec->bio_flags, 0);
1900 	return 0;
1901 }
1902 
1903 /*
1904  * each time an IO finishes, we do a fast check in the IO failure tree
1905  * to see if we need to process or clean up an io_failure_record
1906  */
1907 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1908 {
1909 	u64 private;
1910 	u64 private_failure;
1911 	struct io_failure_record *failure;
1912 	int ret;
1913 
1914 	private = 0;
1915 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1916 			     (u64)-1, 1, EXTENT_DIRTY, 0)) {
1917 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1918 					start, &private_failure);
1919 		if (ret == 0) {
1920 			failure = (struct io_failure_record *)(unsigned long)
1921 				   private_failure;
1922 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1923 					  failure->start, 0);
1924 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1925 					  failure->start,
1926 					  failure->start + failure->len - 1,
1927 					  EXTENT_DIRTY | EXTENT_LOCKED,
1928 					  GFP_NOFS);
1929 			kfree(failure);
1930 		}
1931 	}
1932 	return 0;
1933 }
1934 
1935 /*
1936  * when reads are done, we need to check csums to verify the data is correct
1937  * if there's a match, we allow the bio to finish.  If not, we go through
1938  * the io_failure_record routines to find good copies
1939  */
1940 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1941 			       struct extent_state *state)
1942 {
1943 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1944 	struct inode *inode = page->mapping->host;
1945 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1946 	char *kaddr;
1947 	u64 private = ~(u32)0;
1948 	int ret;
1949 	struct btrfs_root *root = BTRFS_I(inode)->root;
1950 	u32 csum = ~(u32)0;
1951 
1952 	if (PageChecked(page)) {
1953 		ClearPageChecked(page);
1954 		goto good;
1955 	}
1956 
1957 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1958 		return 0;
1959 
1960 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1961 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1962 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1963 				  GFP_NOFS);
1964 		return 0;
1965 	}
1966 
1967 	if (state && state->start == start) {
1968 		private = state->private;
1969 		ret = 0;
1970 	} else {
1971 		ret = get_state_private(io_tree, start, &private);
1972 	}
1973 	kaddr = kmap_atomic(page, KM_USER0);
1974 	if (ret)
1975 		goto zeroit;
1976 
1977 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1978 	btrfs_csum_final(csum, (char *)&csum);
1979 	if (csum != private)
1980 		goto zeroit;
1981 
1982 	kunmap_atomic(kaddr, KM_USER0);
1983 good:
1984 	/* if the io failure tree for this inode is non-empty,
1985 	 * check to see if we've recovered from a failed IO
1986 	 */
1987 	btrfs_clean_io_failures(inode, start);
1988 	return 0;
1989 
1990 zeroit:
1991 	if (printk_ratelimit()) {
1992 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1993 		       "private %llu\n", page->mapping->host->i_ino,
1994 		       (unsigned long long)start, csum,
1995 		       (unsigned long long)private);
1996 	}
1997 	memset(kaddr + offset, 1, end - start + 1);
1998 	flush_dcache_page(page);
1999 	kunmap_atomic(kaddr, KM_USER0);
2000 	if (private == 0)
2001 		return 0;
2002 	return -EIO;
2003 }
2004 
2005 struct delayed_iput {
2006 	struct list_head list;
2007 	struct inode *inode;
2008 };
2009 
2010 void btrfs_add_delayed_iput(struct inode *inode)
2011 {
2012 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2013 	struct delayed_iput *delayed;
2014 
2015 	if (atomic_add_unless(&inode->i_count, -1, 1))
2016 		return;
2017 
2018 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2019 	delayed->inode = inode;
2020 
2021 	spin_lock(&fs_info->delayed_iput_lock);
2022 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2023 	spin_unlock(&fs_info->delayed_iput_lock);
2024 }
2025 
2026 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2027 {
2028 	LIST_HEAD(list);
2029 	struct btrfs_fs_info *fs_info = root->fs_info;
2030 	struct delayed_iput *delayed;
2031 	int empty;
2032 
2033 	spin_lock(&fs_info->delayed_iput_lock);
2034 	empty = list_empty(&fs_info->delayed_iputs);
2035 	spin_unlock(&fs_info->delayed_iput_lock);
2036 	if (empty)
2037 		return;
2038 
2039 	down_read(&root->fs_info->cleanup_work_sem);
2040 	spin_lock(&fs_info->delayed_iput_lock);
2041 	list_splice_init(&fs_info->delayed_iputs, &list);
2042 	spin_unlock(&fs_info->delayed_iput_lock);
2043 
2044 	while (!list_empty(&list)) {
2045 		delayed = list_entry(list.next, struct delayed_iput, list);
2046 		list_del(&delayed->list);
2047 		iput(delayed->inode);
2048 		kfree(delayed);
2049 	}
2050 	up_read(&root->fs_info->cleanup_work_sem);
2051 }
2052 
2053 /*
2054  * calculate extra metadata reservation when snapshotting a subvolume
2055  * contains orphan files.
2056  */
2057 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2058 				struct btrfs_pending_snapshot *pending,
2059 				u64 *bytes_to_reserve)
2060 {
2061 	struct btrfs_root *root;
2062 	struct btrfs_block_rsv *block_rsv;
2063 	u64 num_bytes;
2064 	int index;
2065 
2066 	root = pending->root;
2067 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2068 		return;
2069 
2070 	block_rsv = root->orphan_block_rsv;
2071 
2072 	/* orphan block reservation for the snapshot */
2073 	num_bytes = block_rsv->size;
2074 
2075 	/*
2076 	 * after the snapshot is created, COWing tree blocks may use more
2077 	 * space than it frees. So we should make sure there is enough
2078 	 * reserved space.
2079 	 */
2080 	index = trans->transid & 0x1;
2081 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2082 		num_bytes += block_rsv->size -
2083 			     (block_rsv->reserved + block_rsv->freed[index]);
2084 	}
2085 
2086 	*bytes_to_reserve += num_bytes;
2087 }
2088 
2089 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2090 				struct btrfs_pending_snapshot *pending)
2091 {
2092 	struct btrfs_root *root = pending->root;
2093 	struct btrfs_root *snap = pending->snap;
2094 	struct btrfs_block_rsv *block_rsv;
2095 	u64 num_bytes;
2096 	int index;
2097 	int ret;
2098 
2099 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2100 		return;
2101 
2102 	/* refill source subvolume's orphan block reservation */
2103 	block_rsv = root->orphan_block_rsv;
2104 	index = trans->transid & 0x1;
2105 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2106 		num_bytes = block_rsv->size -
2107 			    (block_rsv->reserved + block_rsv->freed[index]);
2108 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2109 					      root->orphan_block_rsv,
2110 					      num_bytes);
2111 		BUG_ON(ret);
2112 	}
2113 
2114 	/* setup orphan block reservation for the snapshot */
2115 	block_rsv = btrfs_alloc_block_rsv(snap);
2116 	BUG_ON(!block_rsv);
2117 
2118 	btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2119 	snap->orphan_block_rsv = block_rsv;
2120 
2121 	num_bytes = root->orphan_block_rsv->size;
2122 	ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2123 				      block_rsv, num_bytes);
2124 	BUG_ON(ret);
2125 
2126 #if 0
2127 	/* insert orphan item for the snapshot */
2128 	WARN_ON(!root->orphan_item_inserted);
2129 	ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2130 				       snap->root_key.objectid);
2131 	BUG_ON(ret);
2132 	snap->orphan_item_inserted = 1;
2133 #endif
2134 }
2135 
2136 enum btrfs_orphan_cleanup_state {
2137 	ORPHAN_CLEANUP_STARTED	= 1,
2138 	ORPHAN_CLEANUP_DONE	= 2,
2139 };
2140 
2141 /*
2142  * This is called in transaction commmit time. If there are no orphan
2143  * files in the subvolume, it removes orphan item and frees block_rsv
2144  * structure.
2145  */
2146 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2147 			      struct btrfs_root *root)
2148 {
2149 	int ret;
2150 
2151 	if (!list_empty(&root->orphan_list) ||
2152 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2153 		return;
2154 
2155 	if (root->orphan_item_inserted &&
2156 	    btrfs_root_refs(&root->root_item) > 0) {
2157 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2158 					    root->root_key.objectid);
2159 		BUG_ON(ret);
2160 		root->orphan_item_inserted = 0;
2161 	}
2162 
2163 	if (root->orphan_block_rsv) {
2164 		WARN_ON(root->orphan_block_rsv->size > 0);
2165 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
2166 		root->orphan_block_rsv = NULL;
2167 	}
2168 }
2169 
2170 /*
2171  * This creates an orphan entry for the given inode in case something goes
2172  * wrong in the middle of an unlink/truncate.
2173  *
2174  * NOTE: caller of this function should reserve 5 units of metadata for
2175  *	 this function.
2176  */
2177 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2178 {
2179 	struct btrfs_root *root = BTRFS_I(inode)->root;
2180 	struct btrfs_block_rsv *block_rsv = NULL;
2181 	int reserve = 0;
2182 	int insert = 0;
2183 	int ret;
2184 
2185 	if (!root->orphan_block_rsv) {
2186 		block_rsv = btrfs_alloc_block_rsv(root);
2187 		BUG_ON(!block_rsv);
2188 	}
2189 
2190 	spin_lock(&root->orphan_lock);
2191 	if (!root->orphan_block_rsv) {
2192 		root->orphan_block_rsv = block_rsv;
2193 	} else if (block_rsv) {
2194 		btrfs_free_block_rsv(root, block_rsv);
2195 		block_rsv = NULL;
2196 	}
2197 
2198 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2199 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2200 #if 0
2201 		/*
2202 		 * For proper ENOSPC handling, we should do orphan
2203 		 * cleanup when mounting. But this introduces backward
2204 		 * compatibility issue.
2205 		 */
2206 		if (!xchg(&root->orphan_item_inserted, 1))
2207 			insert = 2;
2208 		else
2209 			insert = 1;
2210 #endif
2211 		insert = 1;
2212 	} else {
2213 		WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2214 	}
2215 
2216 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2217 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2218 		reserve = 1;
2219 	}
2220 	spin_unlock(&root->orphan_lock);
2221 
2222 	if (block_rsv)
2223 		btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2224 
2225 	/* grab metadata reservation from transaction handle */
2226 	if (reserve) {
2227 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2228 		BUG_ON(ret);
2229 	}
2230 
2231 	/* insert an orphan item to track this unlinked/truncated file */
2232 	if (insert >= 1) {
2233 		ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2234 		BUG_ON(ret);
2235 	}
2236 
2237 	/* insert an orphan item to track subvolume contains orphan files */
2238 	if (insert >= 2) {
2239 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2240 					       root->root_key.objectid);
2241 		BUG_ON(ret);
2242 	}
2243 	return 0;
2244 }
2245 
2246 /*
2247  * We have done the truncate/delete so we can go ahead and remove the orphan
2248  * item for this particular inode.
2249  */
2250 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2251 {
2252 	struct btrfs_root *root = BTRFS_I(inode)->root;
2253 	int delete_item = 0;
2254 	int release_rsv = 0;
2255 	int ret = 0;
2256 
2257 	spin_lock(&root->orphan_lock);
2258 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2259 		list_del_init(&BTRFS_I(inode)->i_orphan);
2260 		delete_item = 1;
2261 	}
2262 
2263 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2264 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2265 		release_rsv = 1;
2266 	}
2267 	spin_unlock(&root->orphan_lock);
2268 
2269 	if (trans && delete_item) {
2270 		ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2271 		BUG_ON(ret);
2272 	}
2273 
2274 	if (release_rsv)
2275 		btrfs_orphan_release_metadata(inode);
2276 
2277 	return 0;
2278 }
2279 
2280 /*
2281  * this cleans up any orphans that may be left on the list from the last use
2282  * of this root.
2283  */
2284 void btrfs_orphan_cleanup(struct btrfs_root *root)
2285 {
2286 	struct btrfs_path *path;
2287 	struct extent_buffer *leaf;
2288 	struct btrfs_key key, found_key;
2289 	struct btrfs_trans_handle *trans;
2290 	struct inode *inode;
2291 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2292 
2293 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2294 		return;
2295 
2296 	path = btrfs_alloc_path();
2297 	BUG_ON(!path);
2298 	path->reada = -1;
2299 
2300 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2301 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2302 	key.offset = (u64)-1;
2303 
2304 	while (1) {
2305 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2306 		if (ret < 0) {
2307 			printk(KERN_ERR "Error searching slot for orphan: %d"
2308 			       "\n", ret);
2309 			break;
2310 		}
2311 
2312 		/*
2313 		 * if ret == 0 means we found what we were searching for, which
2314 		 * is weird, but possible, so only screw with path if we didnt
2315 		 * find the key and see if we have stuff that matches
2316 		 */
2317 		if (ret > 0) {
2318 			if (path->slots[0] == 0)
2319 				break;
2320 			path->slots[0]--;
2321 		}
2322 
2323 		/* pull out the item */
2324 		leaf = path->nodes[0];
2325 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2326 
2327 		/* make sure the item matches what we want */
2328 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2329 			break;
2330 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2331 			break;
2332 
2333 		/* release the path since we're done with it */
2334 		btrfs_release_path(root, path);
2335 
2336 		/*
2337 		 * this is where we are basically btrfs_lookup, without the
2338 		 * crossing root thing.  we store the inode number in the
2339 		 * offset of the orphan item.
2340 		 */
2341 		found_key.objectid = found_key.offset;
2342 		found_key.type = BTRFS_INODE_ITEM_KEY;
2343 		found_key.offset = 0;
2344 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2345 		BUG_ON(IS_ERR(inode));
2346 
2347 		/*
2348 		 * add this inode to the orphan list so btrfs_orphan_del does
2349 		 * the proper thing when we hit it
2350 		 */
2351 		spin_lock(&root->orphan_lock);
2352 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2353 		spin_unlock(&root->orphan_lock);
2354 
2355 		/*
2356 		 * if this is a bad inode, means we actually succeeded in
2357 		 * removing the inode, but not the orphan record, which means
2358 		 * we need to manually delete the orphan since iput will just
2359 		 * do a destroy_inode
2360 		 */
2361 		if (is_bad_inode(inode)) {
2362 			trans = btrfs_start_transaction(root, 0);
2363 			BUG_ON(IS_ERR(trans));
2364 			btrfs_orphan_del(trans, inode);
2365 			btrfs_end_transaction(trans, root);
2366 			iput(inode);
2367 			continue;
2368 		}
2369 
2370 		/* if we have links, this was a truncate, lets do that */
2371 		if (inode->i_nlink) {
2372 			nr_truncate++;
2373 			btrfs_truncate(inode);
2374 		} else {
2375 			nr_unlink++;
2376 		}
2377 
2378 		/* this will do delete_inode and everything for us */
2379 		iput(inode);
2380 	}
2381 	btrfs_free_path(path);
2382 
2383 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2384 
2385 	if (root->orphan_block_rsv)
2386 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2387 					(u64)-1);
2388 
2389 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2390 		trans = btrfs_join_transaction(root, 1);
2391 		BUG_ON(IS_ERR(trans));
2392 		btrfs_end_transaction(trans, root);
2393 	}
2394 
2395 	if (nr_unlink)
2396 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2397 	if (nr_truncate)
2398 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2399 }
2400 
2401 /*
2402  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2403  * don't find any xattrs, we know there can't be any acls.
2404  *
2405  * slot is the slot the inode is in, objectid is the objectid of the inode
2406  */
2407 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2408 					  int slot, u64 objectid)
2409 {
2410 	u32 nritems = btrfs_header_nritems(leaf);
2411 	struct btrfs_key found_key;
2412 	int scanned = 0;
2413 
2414 	slot++;
2415 	while (slot < nritems) {
2416 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2417 
2418 		/* we found a different objectid, there must not be acls */
2419 		if (found_key.objectid != objectid)
2420 			return 0;
2421 
2422 		/* we found an xattr, assume we've got an acl */
2423 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2424 			return 1;
2425 
2426 		/*
2427 		 * we found a key greater than an xattr key, there can't
2428 		 * be any acls later on
2429 		 */
2430 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2431 			return 0;
2432 
2433 		slot++;
2434 		scanned++;
2435 
2436 		/*
2437 		 * it goes inode, inode backrefs, xattrs, extents,
2438 		 * so if there are a ton of hard links to an inode there can
2439 		 * be a lot of backrefs.  Don't waste time searching too hard,
2440 		 * this is just an optimization
2441 		 */
2442 		if (scanned >= 8)
2443 			break;
2444 	}
2445 	/* we hit the end of the leaf before we found an xattr or
2446 	 * something larger than an xattr.  We have to assume the inode
2447 	 * has acls
2448 	 */
2449 	return 1;
2450 }
2451 
2452 /*
2453  * read an inode from the btree into the in-memory inode
2454  */
2455 static void btrfs_read_locked_inode(struct inode *inode)
2456 {
2457 	struct btrfs_path *path;
2458 	struct extent_buffer *leaf;
2459 	struct btrfs_inode_item *inode_item;
2460 	struct btrfs_timespec *tspec;
2461 	struct btrfs_root *root = BTRFS_I(inode)->root;
2462 	struct btrfs_key location;
2463 	int maybe_acls;
2464 	u64 alloc_group_block;
2465 	u32 rdev;
2466 	int ret;
2467 
2468 	path = btrfs_alloc_path();
2469 	BUG_ON(!path);
2470 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2471 
2472 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2473 	if (ret)
2474 		goto make_bad;
2475 
2476 	leaf = path->nodes[0];
2477 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2478 				    struct btrfs_inode_item);
2479 
2480 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2481 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2482 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2483 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2484 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2485 
2486 	tspec = btrfs_inode_atime(inode_item);
2487 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2488 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2489 
2490 	tspec = btrfs_inode_mtime(inode_item);
2491 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2492 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2493 
2494 	tspec = btrfs_inode_ctime(inode_item);
2495 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2496 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2497 
2498 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2499 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2500 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2501 	inode->i_generation = BTRFS_I(inode)->generation;
2502 	inode->i_rdev = 0;
2503 	rdev = btrfs_inode_rdev(leaf, inode_item);
2504 
2505 	BTRFS_I(inode)->index_cnt = (u64)-1;
2506 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2507 
2508 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2509 
2510 	/*
2511 	 * try to precache a NULL acl entry for files that don't have
2512 	 * any xattrs or acls
2513 	 */
2514 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2515 	if (!maybe_acls)
2516 		cache_no_acl(inode);
2517 
2518 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2519 						alloc_group_block, 0);
2520 	btrfs_free_path(path);
2521 	inode_item = NULL;
2522 
2523 	switch (inode->i_mode & S_IFMT) {
2524 	case S_IFREG:
2525 		inode->i_mapping->a_ops = &btrfs_aops;
2526 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2527 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2528 		inode->i_fop = &btrfs_file_operations;
2529 		inode->i_op = &btrfs_file_inode_operations;
2530 		break;
2531 	case S_IFDIR:
2532 		inode->i_fop = &btrfs_dir_file_operations;
2533 		if (root == root->fs_info->tree_root)
2534 			inode->i_op = &btrfs_dir_ro_inode_operations;
2535 		else
2536 			inode->i_op = &btrfs_dir_inode_operations;
2537 		break;
2538 	case S_IFLNK:
2539 		inode->i_op = &btrfs_symlink_inode_operations;
2540 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2541 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2542 		break;
2543 	default:
2544 		inode->i_op = &btrfs_special_inode_operations;
2545 		init_special_inode(inode, inode->i_mode, rdev);
2546 		break;
2547 	}
2548 
2549 	btrfs_update_iflags(inode);
2550 	return;
2551 
2552 make_bad:
2553 	btrfs_free_path(path);
2554 	make_bad_inode(inode);
2555 }
2556 
2557 /*
2558  * given a leaf and an inode, copy the inode fields into the leaf
2559  */
2560 static void fill_inode_item(struct btrfs_trans_handle *trans,
2561 			    struct extent_buffer *leaf,
2562 			    struct btrfs_inode_item *item,
2563 			    struct inode *inode)
2564 {
2565 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2566 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2567 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2568 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2569 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2570 
2571 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2572 			       inode->i_atime.tv_sec);
2573 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2574 				inode->i_atime.tv_nsec);
2575 
2576 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2577 			       inode->i_mtime.tv_sec);
2578 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2579 				inode->i_mtime.tv_nsec);
2580 
2581 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2582 			       inode->i_ctime.tv_sec);
2583 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2584 				inode->i_ctime.tv_nsec);
2585 
2586 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2587 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2588 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2589 	btrfs_set_inode_transid(leaf, item, trans->transid);
2590 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2591 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2592 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2593 }
2594 
2595 /*
2596  * copy everything in the in-memory inode into the btree.
2597  */
2598 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2599 				struct btrfs_root *root, struct inode *inode)
2600 {
2601 	struct btrfs_inode_item *inode_item;
2602 	struct btrfs_path *path;
2603 	struct extent_buffer *leaf;
2604 	int ret;
2605 
2606 	path = btrfs_alloc_path();
2607 	BUG_ON(!path);
2608 	path->leave_spinning = 1;
2609 	ret = btrfs_lookup_inode(trans, root, path,
2610 				 &BTRFS_I(inode)->location, 1);
2611 	if (ret) {
2612 		if (ret > 0)
2613 			ret = -ENOENT;
2614 		goto failed;
2615 	}
2616 
2617 	btrfs_unlock_up_safe(path, 1);
2618 	leaf = path->nodes[0];
2619 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2620 				  struct btrfs_inode_item);
2621 
2622 	fill_inode_item(trans, leaf, inode_item, inode);
2623 	btrfs_mark_buffer_dirty(leaf);
2624 	btrfs_set_inode_last_trans(trans, inode);
2625 	ret = 0;
2626 failed:
2627 	btrfs_free_path(path);
2628 	return ret;
2629 }
2630 
2631 
2632 /*
2633  * unlink helper that gets used here in inode.c and in the tree logging
2634  * recovery code.  It remove a link in a directory with a given name, and
2635  * also drops the back refs in the inode to the directory
2636  */
2637 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2638 		       struct btrfs_root *root,
2639 		       struct inode *dir, struct inode *inode,
2640 		       const char *name, int name_len)
2641 {
2642 	struct btrfs_path *path;
2643 	int ret = 0;
2644 	struct extent_buffer *leaf;
2645 	struct btrfs_dir_item *di;
2646 	struct btrfs_key key;
2647 	u64 index;
2648 
2649 	path = btrfs_alloc_path();
2650 	if (!path) {
2651 		ret = -ENOMEM;
2652 		goto out;
2653 	}
2654 
2655 	path->leave_spinning = 1;
2656 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2657 				    name, name_len, -1);
2658 	if (IS_ERR(di)) {
2659 		ret = PTR_ERR(di);
2660 		goto err;
2661 	}
2662 	if (!di) {
2663 		ret = -ENOENT;
2664 		goto err;
2665 	}
2666 	leaf = path->nodes[0];
2667 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2668 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2669 	if (ret)
2670 		goto err;
2671 	btrfs_release_path(root, path);
2672 
2673 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2674 				  inode->i_ino,
2675 				  dir->i_ino, &index);
2676 	if (ret) {
2677 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2678 		       "inode %lu parent %lu\n", name_len, name,
2679 		       inode->i_ino, dir->i_ino);
2680 		goto err;
2681 	}
2682 
2683 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2684 					 index, name, name_len, -1);
2685 	if (IS_ERR(di)) {
2686 		ret = PTR_ERR(di);
2687 		goto err;
2688 	}
2689 	if (!di) {
2690 		ret = -ENOENT;
2691 		goto err;
2692 	}
2693 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2694 	btrfs_release_path(root, path);
2695 
2696 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2697 					 inode, dir->i_ino);
2698 	BUG_ON(ret != 0 && ret != -ENOENT);
2699 
2700 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2701 					   dir, index);
2702 	if (ret == -ENOENT)
2703 		ret = 0;
2704 err:
2705 	btrfs_free_path(path);
2706 	if (ret)
2707 		goto out;
2708 
2709 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2710 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2711 	btrfs_update_inode(trans, root, dir);
2712 	btrfs_drop_nlink(inode);
2713 	ret = btrfs_update_inode(trans, root, inode);
2714 out:
2715 	return ret;
2716 }
2717 
2718 /* helper to check if there is any shared block in the path */
2719 static int check_path_shared(struct btrfs_root *root,
2720 			     struct btrfs_path *path)
2721 {
2722 	struct extent_buffer *eb;
2723 	int level;
2724 	u64 refs = 1;
2725 
2726 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2727 		int ret;
2728 
2729 		if (!path->nodes[level])
2730 			break;
2731 		eb = path->nodes[level];
2732 		if (!btrfs_block_can_be_shared(root, eb))
2733 			continue;
2734 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2735 					       &refs, NULL);
2736 		if (refs > 1)
2737 			return 1;
2738 	}
2739 	return 0;
2740 }
2741 
2742 /*
2743  * helper to start transaction for unlink and rmdir.
2744  *
2745  * unlink and rmdir are special in btrfs, they do not always free space.
2746  * so in enospc case, we should make sure they will free space before
2747  * allowing them to use the global metadata reservation.
2748  */
2749 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2750 						       struct dentry *dentry)
2751 {
2752 	struct btrfs_trans_handle *trans;
2753 	struct btrfs_root *root = BTRFS_I(dir)->root;
2754 	struct btrfs_path *path;
2755 	struct btrfs_inode_ref *ref;
2756 	struct btrfs_dir_item *di;
2757 	struct inode *inode = dentry->d_inode;
2758 	u64 index;
2759 	int check_link = 1;
2760 	int err = -ENOSPC;
2761 	int ret;
2762 
2763 	trans = btrfs_start_transaction(root, 10);
2764 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2765 		return trans;
2766 
2767 	if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2768 		return ERR_PTR(-ENOSPC);
2769 
2770 	/* check if there is someone else holds reference */
2771 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2772 		return ERR_PTR(-ENOSPC);
2773 
2774 	if (atomic_read(&inode->i_count) > 2)
2775 		return ERR_PTR(-ENOSPC);
2776 
2777 	if (xchg(&root->fs_info->enospc_unlink, 1))
2778 		return ERR_PTR(-ENOSPC);
2779 
2780 	path = btrfs_alloc_path();
2781 	if (!path) {
2782 		root->fs_info->enospc_unlink = 0;
2783 		return ERR_PTR(-ENOMEM);
2784 	}
2785 
2786 	trans = btrfs_start_transaction(root, 0);
2787 	if (IS_ERR(trans)) {
2788 		btrfs_free_path(path);
2789 		root->fs_info->enospc_unlink = 0;
2790 		return trans;
2791 	}
2792 
2793 	path->skip_locking = 1;
2794 	path->search_commit_root = 1;
2795 
2796 	ret = btrfs_lookup_inode(trans, root, path,
2797 				&BTRFS_I(dir)->location, 0);
2798 	if (ret < 0) {
2799 		err = ret;
2800 		goto out;
2801 	}
2802 	if (ret == 0) {
2803 		if (check_path_shared(root, path))
2804 			goto out;
2805 	} else {
2806 		check_link = 0;
2807 	}
2808 	btrfs_release_path(root, path);
2809 
2810 	ret = btrfs_lookup_inode(trans, root, path,
2811 				&BTRFS_I(inode)->location, 0);
2812 	if (ret < 0) {
2813 		err = ret;
2814 		goto out;
2815 	}
2816 	if (ret == 0) {
2817 		if (check_path_shared(root, path))
2818 			goto out;
2819 	} else {
2820 		check_link = 0;
2821 	}
2822 	btrfs_release_path(root, path);
2823 
2824 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2825 		ret = btrfs_lookup_file_extent(trans, root, path,
2826 					       inode->i_ino, (u64)-1, 0);
2827 		if (ret < 0) {
2828 			err = ret;
2829 			goto out;
2830 		}
2831 		BUG_ON(ret == 0);
2832 		if (check_path_shared(root, path))
2833 			goto out;
2834 		btrfs_release_path(root, path);
2835 	}
2836 
2837 	if (!check_link) {
2838 		err = 0;
2839 		goto out;
2840 	}
2841 
2842 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2843 				dentry->d_name.name, dentry->d_name.len, 0);
2844 	if (IS_ERR(di)) {
2845 		err = PTR_ERR(di);
2846 		goto out;
2847 	}
2848 	if (di) {
2849 		if (check_path_shared(root, path))
2850 			goto out;
2851 	} else {
2852 		err = 0;
2853 		goto out;
2854 	}
2855 	btrfs_release_path(root, path);
2856 
2857 	ref = btrfs_lookup_inode_ref(trans, root, path,
2858 				dentry->d_name.name, dentry->d_name.len,
2859 				inode->i_ino, dir->i_ino, 0);
2860 	if (IS_ERR(ref)) {
2861 		err = PTR_ERR(ref);
2862 		goto out;
2863 	}
2864 	BUG_ON(!ref);
2865 	if (check_path_shared(root, path))
2866 		goto out;
2867 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2868 	btrfs_release_path(root, path);
2869 
2870 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2871 				dentry->d_name.name, dentry->d_name.len, 0);
2872 	if (IS_ERR(di)) {
2873 		err = PTR_ERR(di);
2874 		goto out;
2875 	}
2876 	BUG_ON(ret == -ENOENT);
2877 	if (check_path_shared(root, path))
2878 		goto out;
2879 
2880 	err = 0;
2881 out:
2882 	btrfs_free_path(path);
2883 	if (err) {
2884 		btrfs_end_transaction(trans, root);
2885 		root->fs_info->enospc_unlink = 0;
2886 		return ERR_PTR(err);
2887 	}
2888 
2889 	trans->block_rsv = &root->fs_info->global_block_rsv;
2890 	return trans;
2891 }
2892 
2893 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2894 			       struct btrfs_root *root)
2895 {
2896 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2897 		BUG_ON(!root->fs_info->enospc_unlink);
2898 		root->fs_info->enospc_unlink = 0;
2899 	}
2900 	btrfs_end_transaction_throttle(trans, root);
2901 }
2902 
2903 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2904 {
2905 	struct btrfs_root *root = BTRFS_I(dir)->root;
2906 	struct btrfs_trans_handle *trans;
2907 	struct inode *inode = dentry->d_inode;
2908 	int ret;
2909 	unsigned long nr = 0;
2910 
2911 	trans = __unlink_start_trans(dir, dentry);
2912 	if (IS_ERR(trans))
2913 		return PTR_ERR(trans);
2914 
2915 	btrfs_set_trans_block_group(trans, dir);
2916 
2917 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2918 
2919 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2920 				 dentry->d_name.name, dentry->d_name.len);
2921 	BUG_ON(ret);
2922 
2923 	if (inode->i_nlink == 0) {
2924 		ret = btrfs_orphan_add(trans, inode);
2925 		BUG_ON(ret);
2926 	}
2927 
2928 	nr = trans->blocks_used;
2929 	__unlink_end_trans(trans, root);
2930 	btrfs_btree_balance_dirty(root, nr);
2931 	return ret;
2932 }
2933 
2934 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2935 			struct btrfs_root *root,
2936 			struct inode *dir, u64 objectid,
2937 			const char *name, int name_len)
2938 {
2939 	struct btrfs_path *path;
2940 	struct extent_buffer *leaf;
2941 	struct btrfs_dir_item *di;
2942 	struct btrfs_key key;
2943 	u64 index;
2944 	int ret;
2945 
2946 	path = btrfs_alloc_path();
2947 	if (!path)
2948 		return -ENOMEM;
2949 
2950 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2951 				   name, name_len, -1);
2952 	BUG_ON(!di || IS_ERR(di));
2953 
2954 	leaf = path->nodes[0];
2955 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2956 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2957 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2958 	BUG_ON(ret);
2959 	btrfs_release_path(root, path);
2960 
2961 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2962 				 objectid, root->root_key.objectid,
2963 				 dir->i_ino, &index, name, name_len);
2964 	if (ret < 0) {
2965 		BUG_ON(ret != -ENOENT);
2966 		di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2967 						 name, name_len);
2968 		BUG_ON(!di || IS_ERR(di));
2969 
2970 		leaf = path->nodes[0];
2971 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2972 		btrfs_release_path(root, path);
2973 		index = key.offset;
2974 	}
2975 
2976 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2977 					 index, name, name_len, -1);
2978 	BUG_ON(!di || IS_ERR(di));
2979 
2980 	leaf = path->nodes[0];
2981 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2982 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2983 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2984 	BUG_ON(ret);
2985 	btrfs_release_path(root, path);
2986 
2987 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2988 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2989 	ret = btrfs_update_inode(trans, root, dir);
2990 	BUG_ON(ret);
2991 
2992 	btrfs_free_path(path);
2993 	return 0;
2994 }
2995 
2996 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2997 {
2998 	struct inode *inode = dentry->d_inode;
2999 	int err = 0;
3000 	struct btrfs_root *root = BTRFS_I(dir)->root;
3001 	struct btrfs_trans_handle *trans;
3002 	unsigned long nr = 0;
3003 
3004 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3005 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3006 		return -ENOTEMPTY;
3007 
3008 	trans = __unlink_start_trans(dir, dentry);
3009 	if (IS_ERR(trans))
3010 		return PTR_ERR(trans);
3011 
3012 	btrfs_set_trans_block_group(trans, dir);
3013 
3014 	if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3015 		err = btrfs_unlink_subvol(trans, root, dir,
3016 					  BTRFS_I(inode)->location.objectid,
3017 					  dentry->d_name.name,
3018 					  dentry->d_name.len);
3019 		goto out;
3020 	}
3021 
3022 	err = btrfs_orphan_add(trans, inode);
3023 	if (err)
3024 		goto out;
3025 
3026 	/* now the directory is empty */
3027 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3028 				 dentry->d_name.name, dentry->d_name.len);
3029 	if (!err)
3030 		btrfs_i_size_write(inode, 0);
3031 out:
3032 	nr = trans->blocks_used;
3033 	__unlink_end_trans(trans, root);
3034 	btrfs_btree_balance_dirty(root, nr);
3035 
3036 	return err;
3037 }
3038 
3039 #if 0
3040 /*
3041  * when truncating bytes in a file, it is possible to avoid reading
3042  * the leaves that contain only checksum items.  This can be the
3043  * majority of the IO required to delete a large file, but it must
3044  * be done carefully.
3045  *
3046  * The keys in the level just above the leaves are checked to make sure
3047  * the lowest key in a given leaf is a csum key, and starts at an offset
3048  * after the new  size.
3049  *
3050  * Then the key for the next leaf is checked to make sure it also has
3051  * a checksum item for the same file.  If it does, we know our target leaf
3052  * contains only checksum items, and it can be safely freed without reading
3053  * it.
3054  *
3055  * This is just an optimization targeted at large files.  It may do
3056  * nothing.  It will return 0 unless things went badly.
3057  */
3058 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3059 				     struct btrfs_root *root,
3060 				     struct btrfs_path *path,
3061 				     struct inode *inode, u64 new_size)
3062 {
3063 	struct btrfs_key key;
3064 	int ret;
3065 	int nritems;
3066 	struct btrfs_key found_key;
3067 	struct btrfs_key other_key;
3068 	struct btrfs_leaf_ref *ref;
3069 	u64 leaf_gen;
3070 	u64 leaf_start;
3071 
3072 	path->lowest_level = 1;
3073 	key.objectid = inode->i_ino;
3074 	key.type = BTRFS_CSUM_ITEM_KEY;
3075 	key.offset = new_size;
3076 again:
3077 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3078 	if (ret < 0)
3079 		goto out;
3080 
3081 	if (path->nodes[1] == NULL) {
3082 		ret = 0;
3083 		goto out;
3084 	}
3085 	ret = 0;
3086 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3087 	nritems = btrfs_header_nritems(path->nodes[1]);
3088 
3089 	if (!nritems)
3090 		goto out;
3091 
3092 	if (path->slots[1] >= nritems)
3093 		goto next_node;
3094 
3095 	/* did we find a key greater than anything we want to delete? */
3096 	if (found_key.objectid > inode->i_ino ||
3097 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
3098 		goto out;
3099 
3100 	/* we check the next key in the node to make sure the leave contains
3101 	 * only checksum items.  This comparison doesn't work if our
3102 	 * leaf is the last one in the node
3103 	 */
3104 	if (path->slots[1] + 1 >= nritems) {
3105 next_node:
3106 		/* search forward from the last key in the node, this
3107 		 * will bring us into the next node in the tree
3108 		 */
3109 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3110 
3111 		/* unlikely, but we inc below, so check to be safe */
3112 		if (found_key.offset == (u64)-1)
3113 			goto out;
3114 
3115 		/* search_forward needs a path with locks held, do the
3116 		 * search again for the original key.  It is possible
3117 		 * this will race with a balance and return a path that
3118 		 * we could modify, but this drop is just an optimization
3119 		 * and is allowed to miss some leaves.
3120 		 */
3121 		btrfs_release_path(root, path);
3122 		found_key.offset++;
3123 
3124 		/* setup a max key for search_forward */
3125 		other_key.offset = (u64)-1;
3126 		other_key.type = key.type;
3127 		other_key.objectid = key.objectid;
3128 
3129 		path->keep_locks = 1;
3130 		ret = btrfs_search_forward(root, &found_key, &other_key,
3131 					   path, 0, 0);
3132 		path->keep_locks = 0;
3133 		if (ret || found_key.objectid != key.objectid ||
3134 		    found_key.type != key.type) {
3135 			ret = 0;
3136 			goto out;
3137 		}
3138 
3139 		key.offset = found_key.offset;
3140 		btrfs_release_path(root, path);
3141 		cond_resched();
3142 		goto again;
3143 	}
3144 
3145 	/* we know there's one more slot after us in the tree,
3146 	 * read that key so we can verify it is also a checksum item
3147 	 */
3148 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3149 
3150 	if (found_key.objectid < inode->i_ino)
3151 		goto next_key;
3152 
3153 	if (found_key.type != key.type || found_key.offset < new_size)
3154 		goto next_key;
3155 
3156 	/*
3157 	 * if the key for the next leaf isn't a csum key from this objectid,
3158 	 * we can't be sure there aren't good items inside this leaf.
3159 	 * Bail out
3160 	 */
3161 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3162 		goto out;
3163 
3164 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3165 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3166 	/*
3167 	 * it is safe to delete this leaf, it contains only
3168 	 * csum items from this inode at an offset >= new_size
3169 	 */
3170 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
3171 	BUG_ON(ret);
3172 
3173 	if (root->ref_cows && leaf_gen < trans->transid) {
3174 		ref = btrfs_alloc_leaf_ref(root, 0);
3175 		if (ref) {
3176 			ref->root_gen = root->root_key.offset;
3177 			ref->bytenr = leaf_start;
3178 			ref->owner = 0;
3179 			ref->generation = leaf_gen;
3180 			ref->nritems = 0;
3181 
3182 			btrfs_sort_leaf_ref(ref);
3183 
3184 			ret = btrfs_add_leaf_ref(root, ref, 0);
3185 			WARN_ON(ret);
3186 			btrfs_free_leaf_ref(root, ref);
3187 		} else {
3188 			WARN_ON(1);
3189 		}
3190 	}
3191 next_key:
3192 	btrfs_release_path(root, path);
3193 
3194 	if (other_key.objectid == inode->i_ino &&
3195 	    other_key.type == key.type && other_key.offset > key.offset) {
3196 		key.offset = other_key.offset;
3197 		cond_resched();
3198 		goto again;
3199 	}
3200 	ret = 0;
3201 out:
3202 	/* fixup any changes we've made to the path */
3203 	path->lowest_level = 0;
3204 	path->keep_locks = 0;
3205 	btrfs_release_path(root, path);
3206 	return ret;
3207 }
3208 
3209 #endif
3210 
3211 /*
3212  * this can truncate away extent items, csum items and directory items.
3213  * It starts at a high offset and removes keys until it can't find
3214  * any higher than new_size
3215  *
3216  * csum items that cross the new i_size are truncated to the new size
3217  * as well.
3218  *
3219  * min_type is the minimum key type to truncate down to.  If set to 0, this
3220  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3221  */
3222 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3223 			       struct btrfs_root *root,
3224 			       struct inode *inode,
3225 			       u64 new_size, u32 min_type)
3226 {
3227 	struct btrfs_path *path;
3228 	struct extent_buffer *leaf;
3229 	struct btrfs_file_extent_item *fi;
3230 	struct btrfs_key key;
3231 	struct btrfs_key found_key;
3232 	u64 extent_start = 0;
3233 	u64 extent_num_bytes = 0;
3234 	u64 extent_offset = 0;
3235 	u64 item_end = 0;
3236 	u64 mask = root->sectorsize - 1;
3237 	u32 found_type = (u8)-1;
3238 	int found_extent;
3239 	int del_item;
3240 	int pending_del_nr = 0;
3241 	int pending_del_slot = 0;
3242 	int extent_type = -1;
3243 	int encoding;
3244 	int ret;
3245 	int err = 0;
3246 
3247 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3248 
3249 	if (root->ref_cows || root == root->fs_info->tree_root)
3250 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3251 
3252 	path = btrfs_alloc_path();
3253 	BUG_ON(!path);
3254 	path->reada = -1;
3255 
3256 	key.objectid = inode->i_ino;
3257 	key.offset = (u64)-1;
3258 	key.type = (u8)-1;
3259 
3260 search_again:
3261 	path->leave_spinning = 1;
3262 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3263 	if (ret < 0) {
3264 		err = ret;
3265 		goto out;
3266 	}
3267 
3268 	if (ret > 0) {
3269 		/* there are no items in the tree for us to truncate, we're
3270 		 * done
3271 		 */
3272 		if (path->slots[0] == 0)
3273 			goto out;
3274 		path->slots[0]--;
3275 	}
3276 
3277 	while (1) {
3278 		fi = NULL;
3279 		leaf = path->nodes[0];
3280 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3281 		found_type = btrfs_key_type(&found_key);
3282 		encoding = 0;
3283 
3284 		if (found_key.objectid != inode->i_ino)
3285 			break;
3286 
3287 		if (found_type < min_type)
3288 			break;
3289 
3290 		item_end = found_key.offset;
3291 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3292 			fi = btrfs_item_ptr(leaf, path->slots[0],
3293 					    struct btrfs_file_extent_item);
3294 			extent_type = btrfs_file_extent_type(leaf, fi);
3295 			encoding = btrfs_file_extent_compression(leaf, fi);
3296 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3297 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3298 
3299 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3300 				item_end +=
3301 				    btrfs_file_extent_num_bytes(leaf, fi);
3302 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3303 				item_end += btrfs_file_extent_inline_len(leaf,
3304 									 fi);
3305 			}
3306 			item_end--;
3307 		}
3308 		if (found_type > min_type) {
3309 			del_item = 1;
3310 		} else {
3311 			if (item_end < new_size)
3312 				break;
3313 			if (found_key.offset >= new_size)
3314 				del_item = 1;
3315 			else
3316 				del_item = 0;
3317 		}
3318 		found_extent = 0;
3319 		/* FIXME, shrink the extent if the ref count is only 1 */
3320 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3321 			goto delete;
3322 
3323 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3324 			u64 num_dec;
3325 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3326 			if (!del_item && !encoding) {
3327 				u64 orig_num_bytes =
3328 					btrfs_file_extent_num_bytes(leaf, fi);
3329 				extent_num_bytes = new_size -
3330 					found_key.offset + root->sectorsize - 1;
3331 				extent_num_bytes = extent_num_bytes &
3332 					~((u64)root->sectorsize - 1);
3333 				btrfs_set_file_extent_num_bytes(leaf, fi,
3334 							 extent_num_bytes);
3335 				num_dec = (orig_num_bytes -
3336 					   extent_num_bytes);
3337 				if (root->ref_cows && extent_start != 0)
3338 					inode_sub_bytes(inode, num_dec);
3339 				btrfs_mark_buffer_dirty(leaf);
3340 			} else {
3341 				extent_num_bytes =
3342 					btrfs_file_extent_disk_num_bytes(leaf,
3343 									 fi);
3344 				extent_offset = found_key.offset -
3345 					btrfs_file_extent_offset(leaf, fi);
3346 
3347 				/* FIXME blocksize != 4096 */
3348 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3349 				if (extent_start != 0) {
3350 					found_extent = 1;
3351 					if (root->ref_cows)
3352 						inode_sub_bytes(inode, num_dec);
3353 				}
3354 			}
3355 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3356 			/*
3357 			 * we can't truncate inline items that have had
3358 			 * special encodings
3359 			 */
3360 			if (!del_item &&
3361 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3362 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3363 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3364 				u32 size = new_size - found_key.offset;
3365 
3366 				if (root->ref_cows) {
3367 					inode_sub_bytes(inode, item_end + 1 -
3368 							new_size);
3369 				}
3370 				size =
3371 				    btrfs_file_extent_calc_inline_size(size);
3372 				ret = btrfs_truncate_item(trans, root, path,
3373 							  size, 1);
3374 				BUG_ON(ret);
3375 			} else if (root->ref_cows) {
3376 				inode_sub_bytes(inode, item_end + 1 -
3377 						found_key.offset);
3378 			}
3379 		}
3380 delete:
3381 		if (del_item) {
3382 			if (!pending_del_nr) {
3383 				/* no pending yet, add ourselves */
3384 				pending_del_slot = path->slots[0];
3385 				pending_del_nr = 1;
3386 			} else if (pending_del_nr &&
3387 				   path->slots[0] + 1 == pending_del_slot) {
3388 				/* hop on the pending chunk */
3389 				pending_del_nr++;
3390 				pending_del_slot = path->slots[0];
3391 			} else {
3392 				BUG();
3393 			}
3394 		} else {
3395 			break;
3396 		}
3397 		if (found_extent && (root->ref_cows ||
3398 				     root == root->fs_info->tree_root)) {
3399 			btrfs_set_path_blocking(path);
3400 			ret = btrfs_free_extent(trans, root, extent_start,
3401 						extent_num_bytes, 0,
3402 						btrfs_header_owner(leaf),
3403 						inode->i_ino, extent_offset);
3404 			BUG_ON(ret);
3405 		}
3406 
3407 		if (found_type == BTRFS_INODE_ITEM_KEY)
3408 			break;
3409 
3410 		if (path->slots[0] == 0 ||
3411 		    path->slots[0] != pending_del_slot) {
3412 			if (root->ref_cows) {
3413 				err = -EAGAIN;
3414 				goto out;
3415 			}
3416 			if (pending_del_nr) {
3417 				ret = btrfs_del_items(trans, root, path,
3418 						pending_del_slot,
3419 						pending_del_nr);
3420 				BUG_ON(ret);
3421 				pending_del_nr = 0;
3422 			}
3423 			btrfs_release_path(root, path);
3424 			goto search_again;
3425 		} else {
3426 			path->slots[0]--;
3427 		}
3428 	}
3429 out:
3430 	if (pending_del_nr) {
3431 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3432 				      pending_del_nr);
3433 		BUG_ON(ret);
3434 	}
3435 	btrfs_free_path(path);
3436 	return err;
3437 }
3438 
3439 /*
3440  * taken from block_truncate_page, but does cow as it zeros out
3441  * any bytes left in the last page in the file.
3442  */
3443 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3444 {
3445 	struct inode *inode = mapping->host;
3446 	struct btrfs_root *root = BTRFS_I(inode)->root;
3447 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3448 	struct btrfs_ordered_extent *ordered;
3449 	struct extent_state *cached_state = NULL;
3450 	char *kaddr;
3451 	u32 blocksize = root->sectorsize;
3452 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3453 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3454 	struct page *page;
3455 	int ret = 0;
3456 	u64 page_start;
3457 	u64 page_end;
3458 
3459 	if ((offset & (blocksize - 1)) == 0)
3460 		goto out;
3461 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3462 	if (ret)
3463 		goto out;
3464 
3465 	ret = -ENOMEM;
3466 again:
3467 	page = grab_cache_page(mapping, index);
3468 	if (!page) {
3469 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3470 		goto out;
3471 	}
3472 
3473 	page_start = page_offset(page);
3474 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3475 
3476 	if (!PageUptodate(page)) {
3477 		ret = btrfs_readpage(NULL, page);
3478 		lock_page(page);
3479 		if (page->mapping != mapping) {
3480 			unlock_page(page);
3481 			page_cache_release(page);
3482 			goto again;
3483 		}
3484 		if (!PageUptodate(page)) {
3485 			ret = -EIO;
3486 			goto out_unlock;
3487 		}
3488 	}
3489 	wait_on_page_writeback(page);
3490 
3491 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3492 			 GFP_NOFS);
3493 	set_page_extent_mapped(page);
3494 
3495 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3496 	if (ordered) {
3497 		unlock_extent_cached(io_tree, page_start, page_end,
3498 				     &cached_state, GFP_NOFS);
3499 		unlock_page(page);
3500 		page_cache_release(page);
3501 		btrfs_start_ordered_extent(inode, ordered, 1);
3502 		btrfs_put_ordered_extent(ordered);
3503 		goto again;
3504 	}
3505 
3506 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3507 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3508 			  0, 0, &cached_state, GFP_NOFS);
3509 
3510 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3511 					&cached_state);
3512 	if (ret) {
3513 		unlock_extent_cached(io_tree, page_start, page_end,
3514 				     &cached_state, GFP_NOFS);
3515 		goto out_unlock;
3516 	}
3517 
3518 	ret = 0;
3519 	if (offset != PAGE_CACHE_SIZE) {
3520 		kaddr = kmap(page);
3521 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3522 		flush_dcache_page(page);
3523 		kunmap(page);
3524 	}
3525 	ClearPageChecked(page);
3526 	set_page_dirty(page);
3527 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3528 			     GFP_NOFS);
3529 
3530 out_unlock:
3531 	if (ret)
3532 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3533 	unlock_page(page);
3534 	page_cache_release(page);
3535 out:
3536 	return ret;
3537 }
3538 
3539 int btrfs_cont_expand(struct inode *inode, loff_t size)
3540 {
3541 	struct btrfs_trans_handle *trans;
3542 	struct btrfs_root *root = BTRFS_I(inode)->root;
3543 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3544 	struct extent_map *em = NULL;
3545 	struct extent_state *cached_state = NULL;
3546 	u64 mask = root->sectorsize - 1;
3547 	u64 hole_start = (inode->i_size + mask) & ~mask;
3548 	u64 block_end = (size + mask) & ~mask;
3549 	u64 last_byte;
3550 	u64 cur_offset;
3551 	u64 hole_size;
3552 	int err = 0;
3553 
3554 	if (size <= hole_start)
3555 		return 0;
3556 
3557 	while (1) {
3558 		struct btrfs_ordered_extent *ordered;
3559 		btrfs_wait_ordered_range(inode, hole_start,
3560 					 block_end - hole_start);
3561 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3562 				 &cached_state, GFP_NOFS);
3563 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3564 		if (!ordered)
3565 			break;
3566 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3567 				     &cached_state, GFP_NOFS);
3568 		btrfs_put_ordered_extent(ordered);
3569 	}
3570 
3571 	cur_offset = hole_start;
3572 	while (1) {
3573 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3574 				block_end - cur_offset, 0);
3575 		BUG_ON(IS_ERR(em) || !em);
3576 		last_byte = min(extent_map_end(em), block_end);
3577 		last_byte = (last_byte + mask) & ~mask;
3578 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3579 			u64 hint_byte = 0;
3580 			hole_size = last_byte - cur_offset;
3581 
3582 			trans = btrfs_start_transaction(root, 2);
3583 			if (IS_ERR(trans)) {
3584 				err = PTR_ERR(trans);
3585 				break;
3586 			}
3587 			btrfs_set_trans_block_group(trans, inode);
3588 
3589 			err = btrfs_drop_extents(trans, inode, cur_offset,
3590 						 cur_offset + hole_size,
3591 						 &hint_byte, 1);
3592 			BUG_ON(err);
3593 
3594 			err = btrfs_insert_file_extent(trans, root,
3595 					inode->i_ino, cur_offset, 0,
3596 					0, hole_size, 0, hole_size,
3597 					0, 0, 0);
3598 			BUG_ON(err);
3599 
3600 			btrfs_drop_extent_cache(inode, hole_start,
3601 					last_byte - 1, 0);
3602 
3603 			btrfs_end_transaction(trans, root);
3604 		}
3605 		free_extent_map(em);
3606 		em = NULL;
3607 		cur_offset = last_byte;
3608 		if (cur_offset >= block_end)
3609 			break;
3610 	}
3611 
3612 	free_extent_map(em);
3613 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3614 			     GFP_NOFS);
3615 	return err;
3616 }
3617 
3618 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3619 {
3620 	struct btrfs_root *root = BTRFS_I(inode)->root;
3621 	struct btrfs_trans_handle *trans;
3622 	unsigned long nr;
3623 	int ret;
3624 
3625 	if (attr->ia_size == inode->i_size)
3626 		return 0;
3627 
3628 	if (attr->ia_size > inode->i_size) {
3629 		unsigned long limit;
3630 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3631 		if (attr->ia_size > inode->i_sb->s_maxbytes)
3632 			return -EFBIG;
3633 		if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3634 			send_sig(SIGXFSZ, current, 0);
3635 			return -EFBIG;
3636 		}
3637 	}
3638 
3639 	trans = btrfs_start_transaction(root, 5);
3640 	if (IS_ERR(trans))
3641 		return PTR_ERR(trans);
3642 
3643 	btrfs_set_trans_block_group(trans, inode);
3644 
3645 	ret = btrfs_orphan_add(trans, inode);
3646 	BUG_ON(ret);
3647 
3648 	nr = trans->blocks_used;
3649 	btrfs_end_transaction(trans, root);
3650 	btrfs_btree_balance_dirty(root, nr);
3651 
3652 	if (attr->ia_size > inode->i_size) {
3653 		ret = btrfs_cont_expand(inode, attr->ia_size);
3654 		if (ret) {
3655 			btrfs_truncate(inode);
3656 			return ret;
3657 		}
3658 
3659 		i_size_write(inode, attr->ia_size);
3660 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3661 
3662 		trans = btrfs_start_transaction(root, 0);
3663 		BUG_ON(IS_ERR(trans));
3664 		btrfs_set_trans_block_group(trans, inode);
3665 		trans->block_rsv = root->orphan_block_rsv;
3666 		BUG_ON(!trans->block_rsv);
3667 
3668 		ret = btrfs_update_inode(trans, root, inode);
3669 		BUG_ON(ret);
3670 		if (inode->i_nlink > 0) {
3671 			ret = btrfs_orphan_del(trans, inode);
3672 			BUG_ON(ret);
3673 		}
3674 		nr = trans->blocks_used;
3675 		btrfs_end_transaction(trans, root);
3676 		btrfs_btree_balance_dirty(root, nr);
3677 		return 0;
3678 	}
3679 
3680 	/*
3681 	 * We're truncating a file that used to have good data down to
3682 	 * zero. Make sure it gets into the ordered flush list so that
3683 	 * any new writes get down to disk quickly.
3684 	 */
3685 	if (attr->ia_size == 0)
3686 		BTRFS_I(inode)->ordered_data_close = 1;
3687 
3688 	/* we don't support swapfiles, so vmtruncate shouldn't fail */
3689 	ret = vmtruncate(inode, attr->ia_size);
3690 	BUG_ON(ret);
3691 
3692 	return 0;
3693 }
3694 
3695 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3696 {
3697 	struct inode *inode = dentry->d_inode;
3698 	struct btrfs_root *root = BTRFS_I(inode)->root;
3699 	int err;
3700 
3701 	if (btrfs_root_readonly(root))
3702 		return -EROFS;
3703 
3704 	err = inode_change_ok(inode, attr);
3705 	if (err)
3706 		return err;
3707 
3708 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3709 		err = btrfs_setattr_size(inode, attr);
3710 		if (err)
3711 			return err;
3712 	}
3713 
3714 	if (attr->ia_valid) {
3715 		setattr_copy(inode, attr);
3716 		mark_inode_dirty(inode);
3717 
3718 		if (attr->ia_valid & ATTR_MODE)
3719 			err = btrfs_acl_chmod(inode);
3720 	}
3721 
3722 	return err;
3723 }
3724 
3725 void btrfs_evict_inode(struct inode *inode)
3726 {
3727 	struct btrfs_trans_handle *trans;
3728 	struct btrfs_root *root = BTRFS_I(inode)->root;
3729 	unsigned long nr;
3730 	int ret;
3731 
3732 	truncate_inode_pages(&inode->i_data, 0);
3733 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3734 			       root == root->fs_info->tree_root))
3735 		goto no_delete;
3736 
3737 	if (is_bad_inode(inode)) {
3738 		btrfs_orphan_del(NULL, inode);
3739 		goto no_delete;
3740 	}
3741 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3742 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3743 
3744 	if (root->fs_info->log_root_recovering) {
3745 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3746 		goto no_delete;
3747 	}
3748 
3749 	if (inode->i_nlink > 0) {
3750 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3751 		goto no_delete;
3752 	}
3753 
3754 	btrfs_i_size_write(inode, 0);
3755 
3756 	while (1) {
3757 		trans = btrfs_start_transaction(root, 0);
3758 		BUG_ON(IS_ERR(trans));
3759 		btrfs_set_trans_block_group(trans, inode);
3760 		trans->block_rsv = root->orphan_block_rsv;
3761 
3762 		ret = btrfs_block_rsv_check(trans, root,
3763 					    root->orphan_block_rsv, 0, 5);
3764 		if (ret) {
3765 			BUG_ON(ret != -EAGAIN);
3766 			ret = btrfs_commit_transaction(trans, root);
3767 			BUG_ON(ret);
3768 			continue;
3769 		}
3770 
3771 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3772 		if (ret != -EAGAIN)
3773 			break;
3774 
3775 		nr = trans->blocks_used;
3776 		btrfs_end_transaction(trans, root);
3777 		trans = NULL;
3778 		btrfs_btree_balance_dirty(root, nr);
3779 
3780 	}
3781 
3782 	if (ret == 0) {
3783 		ret = btrfs_orphan_del(trans, inode);
3784 		BUG_ON(ret);
3785 	}
3786 
3787 	nr = trans->blocks_used;
3788 	btrfs_end_transaction(trans, root);
3789 	btrfs_btree_balance_dirty(root, nr);
3790 no_delete:
3791 	end_writeback(inode);
3792 	return;
3793 }
3794 
3795 /*
3796  * this returns the key found in the dir entry in the location pointer.
3797  * If no dir entries were found, location->objectid is 0.
3798  */
3799 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3800 			       struct btrfs_key *location)
3801 {
3802 	const char *name = dentry->d_name.name;
3803 	int namelen = dentry->d_name.len;
3804 	struct btrfs_dir_item *di;
3805 	struct btrfs_path *path;
3806 	struct btrfs_root *root = BTRFS_I(dir)->root;
3807 	int ret = 0;
3808 
3809 	path = btrfs_alloc_path();
3810 	BUG_ON(!path);
3811 
3812 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3813 				    namelen, 0);
3814 	if (IS_ERR(di))
3815 		ret = PTR_ERR(di);
3816 
3817 	if (!di || IS_ERR(di))
3818 		goto out_err;
3819 
3820 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3821 out:
3822 	btrfs_free_path(path);
3823 	return ret;
3824 out_err:
3825 	location->objectid = 0;
3826 	goto out;
3827 }
3828 
3829 /*
3830  * when we hit a tree root in a directory, the btrfs part of the inode
3831  * needs to be changed to reflect the root directory of the tree root.  This
3832  * is kind of like crossing a mount point.
3833  */
3834 static int fixup_tree_root_location(struct btrfs_root *root,
3835 				    struct inode *dir,
3836 				    struct dentry *dentry,
3837 				    struct btrfs_key *location,
3838 				    struct btrfs_root **sub_root)
3839 {
3840 	struct btrfs_path *path;
3841 	struct btrfs_root *new_root;
3842 	struct btrfs_root_ref *ref;
3843 	struct extent_buffer *leaf;
3844 	int ret;
3845 	int err = 0;
3846 
3847 	path = btrfs_alloc_path();
3848 	if (!path) {
3849 		err = -ENOMEM;
3850 		goto out;
3851 	}
3852 
3853 	err = -ENOENT;
3854 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3855 				  BTRFS_I(dir)->root->root_key.objectid,
3856 				  location->objectid);
3857 	if (ret) {
3858 		if (ret < 0)
3859 			err = ret;
3860 		goto out;
3861 	}
3862 
3863 	leaf = path->nodes[0];
3864 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3865 	if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3866 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3867 		goto out;
3868 
3869 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3870 				   (unsigned long)(ref + 1),
3871 				   dentry->d_name.len);
3872 	if (ret)
3873 		goto out;
3874 
3875 	btrfs_release_path(root->fs_info->tree_root, path);
3876 
3877 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3878 	if (IS_ERR(new_root)) {
3879 		err = PTR_ERR(new_root);
3880 		goto out;
3881 	}
3882 
3883 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3884 		err = -ENOENT;
3885 		goto out;
3886 	}
3887 
3888 	*sub_root = new_root;
3889 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3890 	location->type = BTRFS_INODE_ITEM_KEY;
3891 	location->offset = 0;
3892 	err = 0;
3893 out:
3894 	btrfs_free_path(path);
3895 	return err;
3896 }
3897 
3898 static void inode_tree_add(struct inode *inode)
3899 {
3900 	struct btrfs_root *root = BTRFS_I(inode)->root;
3901 	struct btrfs_inode *entry;
3902 	struct rb_node **p;
3903 	struct rb_node *parent;
3904 again:
3905 	p = &root->inode_tree.rb_node;
3906 	parent = NULL;
3907 
3908 	if (inode_unhashed(inode))
3909 		return;
3910 
3911 	spin_lock(&root->inode_lock);
3912 	while (*p) {
3913 		parent = *p;
3914 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3915 
3916 		if (inode->i_ino < entry->vfs_inode.i_ino)
3917 			p = &parent->rb_left;
3918 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3919 			p = &parent->rb_right;
3920 		else {
3921 			WARN_ON(!(entry->vfs_inode.i_state &
3922 				  (I_WILL_FREE | I_FREEING)));
3923 			rb_erase(parent, &root->inode_tree);
3924 			RB_CLEAR_NODE(parent);
3925 			spin_unlock(&root->inode_lock);
3926 			goto again;
3927 		}
3928 	}
3929 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3930 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3931 	spin_unlock(&root->inode_lock);
3932 }
3933 
3934 static void inode_tree_del(struct inode *inode)
3935 {
3936 	struct btrfs_root *root = BTRFS_I(inode)->root;
3937 	int empty = 0;
3938 
3939 	spin_lock(&root->inode_lock);
3940 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3941 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3942 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3943 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3944 	}
3945 	spin_unlock(&root->inode_lock);
3946 
3947 	/*
3948 	 * Free space cache has inodes in the tree root, but the tree root has a
3949 	 * root_refs of 0, so this could end up dropping the tree root as a
3950 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3951 	 * make sure we don't drop it.
3952 	 */
3953 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3954 	    root != root->fs_info->tree_root) {
3955 		synchronize_srcu(&root->fs_info->subvol_srcu);
3956 		spin_lock(&root->inode_lock);
3957 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3958 		spin_unlock(&root->inode_lock);
3959 		if (empty)
3960 			btrfs_add_dead_root(root);
3961 	}
3962 }
3963 
3964 int btrfs_invalidate_inodes(struct btrfs_root *root)
3965 {
3966 	struct rb_node *node;
3967 	struct rb_node *prev;
3968 	struct btrfs_inode *entry;
3969 	struct inode *inode;
3970 	u64 objectid = 0;
3971 
3972 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3973 
3974 	spin_lock(&root->inode_lock);
3975 again:
3976 	node = root->inode_tree.rb_node;
3977 	prev = NULL;
3978 	while (node) {
3979 		prev = node;
3980 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3981 
3982 		if (objectid < entry->vfs_inode.i_ino)
3983 			node = node->rb_left;
3984 		else if (objectid > entry->vfs_inode.i_ino)
3985 			node = node->rb_right;
3986 		else
3987 			break;
3988 	}
3989 	if (!node) {
3990 		while (prev) {
3991 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3992 			if (objectid <= entry->vfs_inode.i_ino) {
3993 				node = prev;
3994 				break;
3995 			}
3996 			prev = rb_next(prev);
3997 		}
3998 	}
3999 	while (node) {
4000 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4001 		objectid = entry->vfs_inode.i_ino + 1;
4002 		inode = igrab(&entry->vfs_inode);
4003 		if (inode) {
4004 			spin_unlock(&root->inode_lock);
4005 			if (atomic_read(&inode->i_count) > 1)
4006 				d_prune_aliases(inode);
4007 			/*
4008 			 * btrfs_drop_inode will have it removed from
4009 			 * the inode cache when its usage count
4010 			 * hits zero.
4011 			 */
4012 			iput(inode);
4013 			cond_resched();
4014 			spin_lock(&root->inode_lock);
4015 			goto again;
4016 		}
4017 
4018 		if (cond_resched_lock(&root->inode_lock))
4019 			goto again;
4020 
4021 		node = rb_next(node);
4022 	}
4023 	spin_unlock(&root->inode_lock);
4024 	return 0;
4025 }
4026 
4027 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4028 {
4029 	struct btrfs_iget_args *args = p;
4030 	inode->i_ino = args->ino;
4031 	BTRFS_I(inode)->root = args->root;
4032 	btrfs_set_inode_space_info(args->root, inode);
4033 	return 0;
4034 }
4035 
4036 static int btrfs_find_actor(struct inode *inode, void *opaque)
4037 {
4038 	struct btrfs_iget_args *args = opaque;
4039 	return args->ino == inode->i_ino &&
4040 		args->root == BTRFS_I(inode)->root;
4041 }
4042 
4043 static struct inode *btrfs_iget_locked(struct super_block *s,
4044 				       u64 objectid,
4045 				       struct btrfs_root *root)
4046 {
4047 	struct inode *inode;
4048 	struct btrfs_iget_args args;
4049 	args.ino = objectid;
4050 	args.root = root;
4051 
4052 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4053 			     btrfs_init_locked_inode,
4054 			     (void *)&args);
4055 	return inode;
4056 }
4057 
4058 /* Get an inode object given its location and corresponding root.
4059  * Returns in *is_new if the inode was read from disk
4060  */
4061 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4062 			 struct btrfs_root *root, int *new)
4063 {
4064 	struct inode *inode;
4065 
4066 	inode = btrfs_iget_locked(s, location->objectid, root);
4067 	if (!inode)
4068 		return ERR_PTR(-ENOMEM);
4069 
4070 	if (inode->i_state & I_NEW) {
4071 		BTRFS_I(inode)->root = root;
4072 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4073 		btrfs_read_locked_inode(inode);
4074 
4075 		inode_tree_add(inode);
4076 		unlock_new_inode(inode);
4077 		if (new)
4078 			*new = 1;
4079 	}
4080 
4081 	return inode;
4082 }
4083 
4084 static struct inode *new_simple_dir(struct super_block *s,
4085 				    struct btrfs_key *key,
4086 				    struct btrfs_root *root)
4087 {
4088 	struct inode *inode = new_inode(s);
4089 
4090 	if (!inode)
4091 		return ERR_PTR(-ENOMEM);
4092 
4093 	BTRFS_I(inode)->root = root;
4094 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4095 	BTRFS_I(inode)->dummy_inode = 1;
4096 
4097 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4098 	inode->i_op = &simple_dir_inode_operations;
4099 	inode->i_fop = &simple_dir_operations;
4100 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4101 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4102 
4103 	return inode;
4104 }
4105 
4106 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4107 {
4108 	struct inode *inode;
4109 	struct btrfs_root *root = BTRFS_I(dir)->root;
4110 	struct btrfs_root *sub_root = root;
4111 	struct btrfs_key location;
4112 	int index;
4113 	int ret;
4114 
4115 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4116 		return ERR_PTR(-ENAMETOOLONG);
4117 
4118 	ret = btrfs_inode_by_name(dir, dentry, &location);
4119 
4120 	if (ret < 0)
4121 		return ERR_PTR(ret);
4122 
4123 	if (location.objectid == 0)
4124 		return NULL;
4125 
4126 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4127 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4128 		return inode;
4129 	}
4130 
4131 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4132 
4133 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4134 	ret = fixup_tree_root_location(root, dir, dentry,
4135 				       &location, &sub_root);
4136 	if (ret < 0) {
4137 		if (ret != -ENOENT)
4138 			inode = ERR_PTR(ret);
4139 		else
4140 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4141 	} else {
4142 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4143 	}
4144 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4145 
4146 	if (!IS_ERR(inode) && root != sub_root) {
4147 		down_read(&root->fs_info->cleanup_work_sem);
4148 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4149 			btrfs_orphan_cleanup(sub_root);
4150 		up_read(&root->fs_info->cleanup_work_sem);
4151 	}
4152 
4153 	return inode;
4154 }
4155 
4156 static int btrfs_dentry_delete(const struct dentry *dentry)
4157 {
4158 	struct btrfs_root *root;
4159 
4160 	if (!dentry->d_inode && !IS_ROOT(dentry))
4161 		dentry = dentry->d_parent;
4162 
4163 	if (dentry->d_inode) {
4164 		root = BTRFS_I(dentry->d_inode)->root;
4165 		if (btrfs_root_refs(&root->root_item) == 0)
4166 			return 1;
4167 	}
4168 	return 0;
4169 }
4170 
4171 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4172 				   struct nameidata *nd)
4173 {
4174 	struct inode *inode;
4175 
4176 	inode = btrfs_lookup_dentry(dir, dentry);
4177 	if (IS_ERR(inode))
4178 		return ERR_CAST(inode);
4179 
4180 	return d_splice_alias(inode, dentry);
4181 }
4182 
4183 static unsigned char btrfs_filetype_table[] = {
4184 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4185 };
4186 
4187 static int btrfs_real_readdir(struct file *filp, void *dirent,
4188 			      filldir_t filldir)
4189 {
4190 	struct inode *inode = filp->f_dentry->d_inode;
4191 	struct btrfs_root *root = BTRFS_I(inode)->root;
4192 	struct btrfs_item *item;
4193 	struct btrfs_dir_item *di;
4194 	struct btrfs_key key;
4195 	struct btrfs_key found_key;
4196 	struct btrfs_path *path;
4197 	int ret;
4198 	u32 nritems;
4199 	struct extent_buffer *leaf;
4200 	int slot;
4201 	int advance;
4202 	unsigned char d_type;
4203 	int over = 0;
4204 	u32 di_cur;
4205 	u32 di_total;
4206 	u32 di_len;
4207 	int key_type = BTRFS_DIR_INDEX_KEY;
4208 	char tmp_name[32];
4209 	char *name_ptr;
4210 	int name_len;
4211 
4212 	/* FIXME, use a real flag for deciding about the key type */
4213 	if (root->fs_info->tree_root == root)
4214 		key_type = BTRFS_DIR_ITEM_KEY;
4215 
4216 	/* special case for "." */
4217 	if (filp->f_pos == 0) {
4218 		over = filldir(dirent, ".", 1,
4219 			       1, inode->i_ino,
4220 			       DT_DIR);
4221 		if (over)
4222 			return 0;
4223 		filp->f_pos = 1;
4224 	}
4225 	/* special case for .., just use the back ref */
4226 	if (filp->f_pos == 1) {
4227 		u64 pino = parent_ino(filp->f_path.dentry);
4228 		over = filldir(dirent, "..", 2,
4229 			       2, pino, DT_DIR);
4230 		if (over)
4231 			return 0;
4232 		filp->f_pos = 2;
4233 	}
4234 	path = btrfs_alloc_path();
4235 	path->reada = 2;
4236 
4237 	btrfs_set_key_type(&key, key_type);
4238 	key.offset = filp->f_pos;
4239 	key.objectid = inode->i_ino;
4240 
4241 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4242 	if (ret < 0)
4243 		goto err;
4244 	advance = 0;
4245 
4246 	while (1) {
4247 		leaf = path->nodes[0];
4248 		nritems = btrfs_header_nritems(leaf);
4249 		slot = path->slots[0];
4250 		if (advance || slot >= nritems) {
4251 			if (slot >= nritems - 1) {
4252 				ret = btrfs_next_leaf(root, path);
4253 				if (ret)
4254 					break;
4255 				leaf = path->nodes[0];
4256 				nritems = btrfs_header_nritems(leaf);
4257 				slot = path->slots[0];
4258 			} else {
4259 				slot++;
4260 				path->slots[0]++;
4261 			}
4262 		}
4263 
4264 		advance = 1;
4265 		item = btrfs_item_nr(leaf, slot);
4266 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4267 
4268 		if (found_key.objectid != key.objectid)
4269 			break;
4270 		if (btrfs_key_type(&found_key) != key_type)
4271 			break;
4272 		if (found_key.offset < filp->f_pos)
4273 			continue;
4274 
4275 		filp->f_pos = found_key.offset;
4276 
4277 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4278 		di_cur = 0;
4279 		di_total = btrfs_item_size(leaf, item);
4280 
4281 		while (di_cur < di_total) {
4282 			struct btrfs_key location;
4283 
4284 			name_len = btrfs_dir_name_len(leaf, di);
4285 			if (name_len <= sizeof(tmp_name)) {
4286 				name_ptr = tmp_name;
4287 			} else {
4288 				name_ptr = kmalloc(name_len, GFP_NOFS);
4289 				if (!name_ptr) {
4290 					ret = -ENOMEM;
4291 					goto err;
4292 				}
4293 			}
4294 			read_extent_buffer(leaf, name_ptr,
4295 					   (unsigned long)(di + 1), name_len);
4296 
4297 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4298 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4299 
4300 			/* is this a reference to our own snapshot? If so
4301 			 * skip it
4302 			 */
4303 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4304 			    location.objectid == root->root_key.objectid) {
4305 				over = 0;
4306 				goto skip;
4307 			}
4308 			over = filldir(dirent, name_ptr, name_len,
4309 				       found_key.offset, location.objectid,
4310 				       d_type);
4311 
4312 skip:
4313 			if (name_ptr != tmp_name)
4314 				kfree(name_ptr);
4315 
4316 			if (over)
4317 				goto nopos;
4318 			di_len = btrfs_dir_name_len(leaf, di) +
4319 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4320 			di_cur += di_len;
4321 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4322 		}
4323 	}
4324 
4325 	/* Reached end of directory/root. Bump pos past the last item. */
4326 	if (key_type == BTRFS_DIR_INDEX_KEY)
4327 		/*
4328 		 * 32-bit glibc will use getdents64, but then strtol -
4329 		 * so the last number we can serve is this.
4330 		 */
4331 		filp->f_pos = 0x7fffffff;
4332 	else
4333 		filp->f_pos++;
4334 nopos:
4335 	ret = 0;
4336 err:
4337 	btrfs_free_path(path);
4338 	return ret;
4339 }
4340 
4341 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4342 {
4343 	struct btrfs_root *root = BTRFS_I(inode)->root;
4344 	struct btrfs_trans_handle *trans;
4345 	int ret = 0;
4346 	bool nolock = false;
4347 
4348 	if (BTRFS_I(inode)->dummy_inode)
4349 		return 0;
4350 
4351 	smp_mb();
4352 	nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4353 
4354 	if (wbc->sync_mode == WB_SYNC_ALL) {
4355 		if (nolock)
4356 			trans = btrfs_join_transaction_nolock(root, 1);
4357 		else
4358 			trans = btrfs_join_transaction(root, 1);
4359 		if (IS_ERR(trans))
4360 			return PTR_ERR(trans);
4361 		btrfs_set_trans_block_group(trans, inode);
4362 		if (nolock)
4363 			ret = btrfs_end_transaction_nolock(trans, root);
4364 		else
4365 			ret = btrfs_commit_transaction(trans, root);
4366 	}
4367 	return ret;
4368 }
4369 
4370 /*
4371  * This is somewhat expensive, updating the tree every time the
4372  * inode changes.  But, it is most likely to find the inode in cache.
4373  * FIXME, needs more benchmarking...there are no reasons other than performance
4374  * to keep or drop this code.
4375  */
4376 void btrfs_dirty_inode(struct inode *inode)
4377 {
4378 	struct btrfs_root *root = BTRFS_I(inode)->root;
4379 	struct btrfs_trans_handle *trans;
4380 	int ret;
4381 
4382 	if (BTRFS_I(inode)->dummy_inode)
4383 		return;
4384 
4385 	trans = btrfs_join_transaction(root, 1);
4386 	BUG_ON(IS_ERR(trans));
4387 	btrfs_set_trans_block_group(trans, inode);
4388 
4389 	ret = btrfs_update_inode(trans, root, inode);
4390 	if (ret && ret == -ENOSPC) {
4391 		/* whoops, lets try again with the full transaction */
4392 		btrfs_end_transaction(trans, root);
4393 		trans = btrfs_start_transaction(root, 1);
4394 		if (IS_ERR(trans)) {
4395 			if (printk_ratelimit()) {
4396 				printk(KERN_ERR "btrfs: fail to "
4397 				       "dirty  inode %lu error %ld\n",
4398 				       inode->i_ino, PTR_ERR(trans));
4399 			}
4400 			return;
4401 		}
4402 		btrfs_set_trans_block_group(trans, inode);
4403 
4404 		ret = btrfs_update_inode(trans, root, inode);
4405 		if (ret) {
4406 			if (printk_ratelimit()) {
4407 				printk(KERN_ERR "btrfs: fail to "
4408 				       "dirty  inode %lu error %d\n",
4409 				       inode->i_ino, ret);
4410 			}
4411 		}
4412 	}
4413 	btrfs_end_transaction(trans, root);
4414 }
4415 
4416 /*
4417  * find the highest existing sequence number in a directory
4418  * and then set the in-memory index_cnt variable to reflect
4419  * free sequence numbers
4420  */
4421 static int btrfs_set_inode_index_count(struct inode *inode)
4422 {
4423 	struct btrfs_root *root = BTRFS_I(inode)->root;
4424 	struct btrfs_key key, found_key;
4425 	struct btrfs_path *path;
4426 	struct extent_buffer *leaf;
4427 	int ret;
4428 
4429 	key.objectid = inode->i_ino;
4430 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4431 	key.offset = (u64)-1;
4432 
4433 	path = btrfs_alloc_path();
4434 	if (!path)
4435 		return -ENOMEM;
4436 
4437 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4438 	if (ret < 0)
4439 		goto out;
4440 	/* FIXME: we should be able to handle this */
4441 	if (ret == 0)
4442 		goto out;
4443 	ret = 0;
4444 
4445 	/*
4446 	 * MAGIC NUMBER EXPLANATION:
4447 	 * since we search a directory based on f_pos we have to start at 2
4448 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4449 	 * else has to start at 2
4450 	 */
4451 	if (path->slots[0] == 0) {
4452 		BTRFS_I(inode)->index_cnt = 2;
4453 		goto out;
4454 	}
4455 
4456 	path->slots[0]--;
4457 
4458 	leaf = path->nodes[0];
4459 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4460 
4461 	if (found_key.objectid != inode->i_ino ||
4462 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4463 		BTRFS_I(inode)->index_cnt = 2;
4464 		goto out;
4465 	}
4466 
4467 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4468 out:
4469 	btrfs_free_path(path);
4470 	return ret;
4471 }
4472 
4473 /*
4474  * helper to find a free sequence number in a given directory.  This current
4475  * code is very simple, later versions will do smarter things in the btree
4476  */
4477 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4478 {
4479 	int ret = 0;
4480 
4481 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4482 		ret = btrfs_set_inode_index_count(dir);
4483 		if (ret)
4484 			return ret;
4485 	}
4486 
4487 	*index = BTRFS_I(dir)->index_cnt;
4488 	BTRFS_I(dir)->index_cnt++;
4489 
4490 	return ret;
4491 }
4492 
4493 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4494 				     struct btrfs_root *root,
4495 				     struct inode *dir,
4496 				     const char *name, int name_len,
4497 				     u64 ref_objectid, u64 objectid,
4498 				     u64 alloc_hint, int mode, u64 *index)
4499 {
4500 	struct inode *inode;
4501 	struct btrfs_inode_item *inode_item;
4502 	struct btrfs_key *location;
4503 	struct btrfs_path *path;
4504 	struct btrfs_inode_ref *ref;
4505 	struct btrfs_key key[2];
4506 	u32 sizes[2];
4507 	unsigned long ptr;
4508 	int ret;
4509 	int owner;
4510 
4511 	path = btrfs_alloc_path();
4512 	BUG_ON(!path);
4513 
4514 	inode = new_inode(root->fs_info->sb);
4515 	if (!inode)
4516 		return ERR_PTR(-ENOMEM);
4517 
4518 	if (dir) {
4519 		ret = btrfs_set_inode_index(dir, index);
4520 		if (ret) {
4521 			iput(inode);
4522 			return ERR_PTR(ret);
4523 		}
4524 	}
4525 	/*
4526 	 * index_cnt is ignored for everything but a dir,
4527 	 * btrfs_get_inode_index_count has an explanation for the magic
4528 	 * number
4529 	 */
4530 	BTRFS_I(inode)->index_cnt = 2;
4531 	BTRFS_I(inode)->root = root;
4532 	BTRFS_I(inode)->generation = trans->transid;
4533 	inode->i_generation = BTRFS_I(inode)->generation;
4534 	btrfs_set_inode_space_info(root, inode);
4535 
4536 	if (mode & S_IFDIR)
4537 		owner = 0;
4538 	else
4539 		owner = 1;
4540 	BTRFS_I(inode)->block_group =
4541 			btrfs_find_block_group(root, 0, alloc_hint, owner);
4542 
4543 	key[0].objectid = objectid;
4544 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4545 	key[0].offset = 0;
4546 
4547 	key[1].objectid = objectid;
4548 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4549 	key[1].offset = ref_objectid;
4550 
4551 	sizes[0] = sizeof(struct btrfs_inode_item);
4552 	sizes[1] = name_len + sizeof(*ref);
4553 
4554 	path->leave_spinning = 1;
4555 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4556 	if (ret != 0)
4557 		goto fail;
4558 
4559 	inode_init_owner(inode, dir, mode);
4560 	inode->i_ino = objectid;
4561 	inode_set_bytes(inode, 0);
4562 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4563 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4564 				  struct btrfs_inode_item);
4565 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4566 
4567 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4568 			     struct btrfs_inode_ref);
4569 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4570 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4571 	ptr = (unsigned long)(ref + 1);
4572 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4573 
4574 	btrfs_mark_buffer_dirty(path->nodes[0]);
4575 	btrfs_free_path(path);
4576 
4577 	location = &BTRFS_I(inode)->location;
4578 	location->objectid = objectid;
4579 	location->offset = 0;
4580 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4581 
4582 	btrfs_inherit_iflags(inode, dir);
4583 
4584 	if ((mode & S_IFREG)) {
4585 		if (btrfs_test_opt(root, NODATASUM))
4586 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4587 		if (btrfs_test_opt(root, NODATACOW))
4588 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4589 	}
4590 
4591 	insert_inode_hash(inode);
4592 	inode_tree_add(inode);
4593 	return inode;
4594 fail:
4595 	if (dir)
4596 		BTRFS_I(dir)->index_cnt--;
4597 	btrfs_free_path(path);
4598 	iput(inode);
4599 	return ERR_PTR(ret);
4600 }
4601 
4602 static inline u8 btrfs_inode_type(struct inode *inode)
4603 {
4604 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4605 }
4606 
4607 /*
4608  * utility function to add 'inode' into 'parent_inode' with
4609  * a give name and a given sequence number.
4610  * if 'add_backref' is true, also insert a backref from the
4611  * inode to the parent directory.
4612  */
4613 int btrfs_add_link(struct btrfs_trans_handle *trans,
4614 		   struct inode *parent_inode, struct inode *inode,
4615 		   const char *name, int name_len, int add_backref, u64 index)
4616 {
4617 	int ret = 0;
4618 	struct btrfs_key key;
4619 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4620 
4621 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4622 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4623 	} else {
4624 		key.objectid = inode->i_ino;
4625 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4626 		key.offset = 0;
4627 	}
4628 
4629 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4630 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4631 					 key.objectid, root->root_key.objectid,
4632 					 parent_inode->i_ino,
4633 					 index, name, name_len);
4634 	} else if (add_backref) {
4635 		ret = btrfs_insert_inode_ref(trans, root,
4636 					     name, name_len, inode->i_ino,
4637 					     parent_inode->i_ino, index);
4638 	}
4639 
4640 	if (ret == 0) {
4641 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4642 					    parent_inode->i_ino, &key,
4643 					    btrfs_inode_type(inode), index);
4644 		BUG_ON(ret);
4645 
4646 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4647 				   name_len * 2);
4648 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4649 		ret = btrfs_update_inode(trans, root, parent_inode);
4650 	}
4651 	return ret;
4652 }
4653 
4654 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4655 			    struct inode *dir, struct dentry *dentry,
4656 			    struct inode *inode, int backref, u64 index)
4657 {
4658 	int err = btrfs_add_link(trans, dir, inode,
4659 				 dentry->d_name.name, dentry->d_name.len,
4660 				 backref, index);
4661 	if (!err) {
4662 		d_instantiate(dentry, inode);
4663 		return 0;
4664 	}
4665 	if (err > 0)
4666 		err = -EEXIST;
4667 	return err;
4668 }
4669 
4670 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4671 			int mode, dev_t rdev)
4672 {
4673 	struct btrfs_trans_handle *trans;
4674 	struct btrfs_root *root = BTRFS_I(dir)->root;
4675 	struct inode *inode = NULL;
4676 	int err;
4677 	int drop_inode = 0;
4678 	u64 objectid;
4679 	unsigned long nr = 0;
4680 	u64 index = 0;
4681 
4682 	if (!new_valid_dev(rdev))
4683 		return -EINVAL;
4684 
4685 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4686 	if (err)
4687 		return err;
4688 
4689 	/*
4690 	 * 2 for inode item and ref
4691 	 * 2 for dir items
4692 	 * 1 for xattr if selinux is on
4693 	 */
4694 	trans = btrfs_start_transaction(root, 5);
4695 	if (IS_ERR(trans))
4696 		return PTR_ERR(trans);
4697 
4698 	btrfs_set_trans_block_group(trans, dir);
4699 
4700 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4701 				dentry->d_name.len, dir->i_ino, objectid,
4702 				BTRFS_I(dir)->block_group, mode, &index);
4703 	err = PTR_ERR(inode);
4704 	if (IS_ERR(inode))
4705 		goto out_unlock;
4706 
4707 	err = btrfs_init_inode_security(trans, inode, dir);
4708 	if (err) {
4709 		drop_inode = 1;
4710 		goto out_unlock;
4711 	}
4712 
4713 	btrfs_set_trans_block_group(trans, inode);
4714 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4715 	if (err)
4716 		drop_inode = 1;
4717 	else {
4718 		inode->i_op = &btrfs_special_inode_operations;
4719 		init_special_inode(inode, inode->i_mode, rdev);
4720 		btrfs_update_inode(trans, root, inode);
4721 	}
4722 	btrfs_update_inode_block_group(trans, inode);
4723 	btrfs_update_inode_block_group(trans, dir);
4724 out_unlock:
4725 	nr = trans->blocks_used;
4726 	btrfs_end_transaction_throttle(trans, root);
4727 	btrfs_btree_balance_dirty(root, nr);
4728 	if (drop_inode) {
4729 		inode_dec_link_count(inode);
4730 		iput(inode);
4731 	}
4732 	return err;
4733 }
4734 
4735 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4736 			int mode, struct nameidata *nd)
4737 {
4738 	struct btrfs_trans_handle *trans;
4739 	struct btrfs_root *root = BTRFS_I(dir)->root;
4740 	struct inode *inode = NULL;
4741 	int drop_inode = 0;
4742 	int err;
4743 	unsigned long nr = 0;
4744 	u64 objectid;
4745 	u64 index = 0;
4746 
4747 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4748 	if (err)
4749 		return err;
4750 	/*
4751 	 * 2 for inode item and ref
4752 	 * 2 for dir items
4753 	 * 1 for xattr if selinux is on
4754 	 */
4755 	trans = btrfs_start_transaction(root, 5);
4756 	if (IS_ERR(trans))
4757 		return PTR_ERR(trans);
4758 
4759 	btrfs_set_trans_block_group(trans, dir);
4760 
4761 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4762 				dentry->d_name.len, dir->i_ino, objectid,
4763 				BTRFS_I(dir)->block_group, mode, &index);
4764 	err = PTR_ERR(inode);
4765 	if (IS_ERR(inode))
4766 		goto out_unlock;
4767 
4768 	err = btrfs_init_inode_security(trans, inode, dir);
4769 	if (err) {
4770 		drop_inode = 1;
4771 		goto out_unlock;
4772 	}
4773 
4774 	btrfs_set_trans_block_group(trans, inode);
4775 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4776 	if (err)
4777 		drop_inode = 1;
4778 	else {
4779 		inode->i_mapping->a_ops = &btrfs_aops;
4780 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4781 		inode->i_fop = &btrfs_file_operations;
4782 		inode->i_op = &btrfs_file_inode_operations;
4783 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4784 	}
4785 	btrfs_update_inode_block_group(trans, inode);
4786 	btrfs_update_inode_block_group(trans, dir);
4787 out_unlock:
4788 	nr = trans->blocks_used;
4789 	btrfs_end_transaction_throttle(trans, root);
4790 	if (drop_inode) {
4791 		inode_dec_link_count(inode);
4792 		iput(inode);
4793 	}
4794 	btrfs_btree_balance_dirty(root, nr);
4795 	return err;
4796 }
4797 
4798 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4799 		      struct dentry *dentry)
4800 {
4801 	struct btrfs_trans_handle *trans;
4802 	struct btrfs_root *root = BTRFS_I(dir)->root;
4803 	struct inode *inode = old_dentry->d_inode;
4804 	u64 index;
4805 	unsigned long nr = 0;
4806 	int err;
4807 	int drop_inode = 0;
4808 
4809 	if (inode->i_nlink == 0)
4810 		return -ENOENT;
4811 
4812 	/* do not allow sys_link's with other subvols of the same device */
4813 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4814 		return -EPERM;
4815 
4816 	btrfs_inc_nlink(inode);
4817 	inode->i_ctime = CURRENT_TIME;
4818 
4819 	err = btrfs_set_inode_index(dir, &index);
4820 	if (err)
4821 		goto fail;
4822 
4823 	/*
4824 	 * 2 items for inode and inode ref
4825 	 * 2 items for dir items
4826 	 * 1 item for parent inode
4827 	 */
4828 	trans = btrfs_start_transaction(root, 5);
4829 	if (IS_ERR(trans)) {
4830 		err = PTR_ERR(trans);
4831 		goto fail;
4832 	}
4833 
4834 	btrfs_set_trans_block_group(trans, dir);
4835 	ihold(inode);
4836 
4837 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4838 
4839 	if (err) {
4840 		drop_inode = 1;
4841 	} else {
4842 		struct dentry *parent = dget_parent(dentry);
4843 		btrfs_update_inode_block_group(trans, dir);
4844 		err = btrfs_update_inode(trans, root, inode);
4845 		BUG_ON(err);
4846 		btrfs_log_new_name(trans, inode, NULL, parent);
4847 		dput(parent);
4848 	}
4849 
4850 	nr = trans->blocks_used;
4851 	btrfs_end_transaction_throttle(trans, root);
4852 fail:
4853 	if (drop_inode) {
4854 		inode_dec_link_count(inode);
4855 		iput(inode);
4856 	}
4857 	btrfs_btree_balance_dirty(root, nr);
4858 	return err;
4859 }
4860 
4861 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4862 {
4863 	struct inode *inode = NULL;
4864 	struct btrfs_trans_handle *trans;
4865 	struct btrfs_root *root = BTRFS_I(dir)->root;
4866 	int err = 0;
4867 	int drop_on_err = 0;
4868 	u64 objectid = 0;
4869 	u64 index = 0;
4870 	unsigned long nr = 1;
4871 
4872 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4873 	if (err)
4874 		return err;
4875 
4876 	/*
4877 	 * 2 items for inode and ref
4878 	 * 2 items for dir items
4879 	 * 1 for xattr if selinux is on
4880 	 */
4881 	trans = btrfs_start_transaction(root, 5);
4882 	if (IS_ERR(trans))
4883 		return PTR_ERR(trans);
4884 	btrfs_set_trans_block_group(trans, dir);
4885 
4886 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4887 				dentry->d_name.len, dir->i_ino, objectid,
4888 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4889 				&index);
4890 	if (IS_ERR(inode)) {
4891 		err = PTR_ERR(inode);
4892 		goto out_fail;
4893 	}
4894 
4895 	drop_on_err = 1;
4896 
4897 	err = btrfs_init_inode_security(trans, inode, dir);
4898 	if (err)
4899 		goto out_fail;
4900 
4901 	inode->i_op = &btrfs_dir_inode_operations;
4902 	inode->i_fop = &btrfs_dir_file_operations;
4903 	btrfs_set_trans_block_group(trans, inode);
4904 
4905 	btrfs_i_size_write(inode, 0);
4906 	err = btrfs_update_inode(trans, root, inode);
4907 	if (err)
4908 		goto out_fail;
4909 
4910 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4911 			     dentry->d_name.len, 0, index);
4912 	if (err)
4913 		goto out_fail;
4914 
4915 	d_instantiate(dentry, inode);
4916 	drop_on_err = 0;
4917 	btrfs_update_inode_block_group(trans, inode);
4918 	btrfs_update_inode_block_group(trans, dir);
4919 
4920 out_fail:
4921 	nr = trans->blocks_used;
4922 	btrfs_end_transaction_throttle(trans, root);
4923 	if (drop_on_err)
4924 		iput(inode);
4925 	btrfs_btree_balance_dirty(root, nr);
4926 	return err;
4927 }
4928 
4929 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4930  * and an extent that you want to insert, deal with overlap and insert
4931  * the new extent into the tree.
4932  */
4933 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4934 				struct extent_map *existing,
4935 				struct extent_map *em,
4936 				u64 map_start, u64 map_len)
4937 {
4938 	u64 start_diff;
4939 
4940 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4941 	start_diff = map_start - em->start;
4942 	em->start = map_start;
4943 	em->len = map_len;
4944 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4945 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4946 		em->block_start += start_diff;
4947 		em->block_len -= start_diff;
4948 	}
4949 	return add_extent_mapping(em_tree, em);
4950 }
4951 
4952 static noinline int uncompress_inline(struct btrfs_path *path,
4953 				      struct inode *inode, struct page *page,
4954 				      size_t pg_offset, u64 extent_offset,
4955 				      struct btrfs_file_extent_item *item)
4956 {
4957 	int ret;
4958 	struct extent_buffer *leaf = path->nodes[0];
4959 	char *tmp;
4960 	size_t max_size;
4961 	unsigned long inline_size;
4962 	unsigned long ptr;
4963 	int compress_type;
4964 
4965 	WARN_ON(pg_offset != 0);
4966 	compress_type = btrfs_file_extent_compression(leaf, item);
4967 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4968 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4969 					btrfs_item_nr(leaf, path->slots[0]));
4970 	tmp = kmalloc(inline_size, GFP_NOFS);
4971 	ptr = btrfs_file_extent_inline_start(item);
4972 
4973 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4974 
4975 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4976 	ret = btrfs_decompress(compress_type, tmp, page,
4977 			       extent_offset, inline_size, max_size);
4978 	if (ret) {
4979 		char *kaddr = kmap_atomic(page, KM_USER0);
4980 		unsigned long copy_size = min_t(u64,
4981 				  PAGE_CACHE_SIZE - pg_offset,
4982 				  max_size - extent_offset);
4983 		memset(kaddr + pg_offset, 0, copy_size);
4984 		kunmap_atomic(kaddr, KM_USER0);
4985 	}
4986 	kfree(tmp);
4987 	return 0;
4988 }
4989 
4990 /*
4991  * a bit scary, this does extent mapping from logical file offset to the disk.
4992  * the ugly parts come from merging extents from the disk with the in-ram
4993  * representation.  This gets more complex because of the data=ordered code,
4994  * where the in-ram extents might be locked pending data=ordered completion.
4995  *
4996  * This also copies inline extents directly into the page.
4997  */
4998 
4999 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5000 				    size_t pg_offset, u64 start, u64 len,
5001 				    int create)
5002 {
5003 	int ret;
5004 	int err = 0;
5005 	u64 bytenr;
5006 	u64 extent_start = 0;
5007 	u64 extent_end = 0;
5008 	u64 objectid = inode->i_ino;
5009 	u32 found_type;
5010 	struct btrfs_path *path = NULL;
5011 	struct btrfs_root *root = BTRFS_I(inode)->root;
5012 	struct btrfs_file_extent_item *item;
5013 	struct extent_buffer *leaf;
5014 	struct btrfs_key found_key;
5015 	struct extent_map *em = NULL;
5016 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5017 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5018 	struct btrfs_trans_handle *trans = NULL;
5019 	int compress_type;
5020 
5021 again:
5022 	read_lock(&em_tree->lock);
5023 	em = lookup_extent_mapping(em_tree, start, len);
5024 	if (em)
5025 		em->bdev = root->fs_info->fs_devices->latest_bdev;
5026 	read_unlock(&em_tree->lock);
5027 
5028 	if (em) {
5029 		if (em->start > start || em->start + em->len <= start)
5030 			free_extent_map(em);
5031 		else if (em->block_start == EXTENT_MAP_INLINE && page)
5032 			free_extent_map(em);
5033 		else
5034 			goto out;
5035 	}
5036 	em = alloc_extent_map(GFP_NOFS);
5037 	if (!em) {
5038 		err = -ENOMEM;
5039 		goto out;
5040 	}
5041 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5042 	em->start = EXTENT_MAP_HOLE;
5043 	em->orig_start = EXTENT_MAP_HOLE;
5044 	em->len = (u64)-1;
5045 	em->block_len = (u64)-1;
5046 
5047 	if (!path) {
5048 		path = btrfs_alloc_path();
5049 		BUG_ON(!path);
5050 	}
5051 
5052 	ret = btrfs_lookup_file_extent(trans, root, path,
5053 				       objectid, start, trans != NULL);
5054 	if (ret < 0) {
5055 		err = ret;
5056 		goto out;
5057 	}
5058 
5059 	if (ret != 0) {
5060 		if (path->slots[0] == 0)
5061 			goto not_found;
5062 		path->slots[0]--;
5063 	}
5064 
5065 	leaf = path->nodes[0];
5066 	item = btrfs_item_ptr(leaf, path->slots[0],
5067 			      struct btrfs_file_extent_item);
5068 	/* are we inside the extent that was found? */
5069 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5070 	found_type = btrfs_key_type(&found_key);
5071 	if (found_key.objectid != objectid ||
5072 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5073 		goto not_found;
5074 	}
5075 
5076 	found_type = btrfs_file_extent_type(leaf, item);
5077 	extent_start = found_key.offset;
5078 	compress_type = btrfs_file_extent_compression(leaf, item);
5079 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5080 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5081 		extent_end = extent_start +
5082 		       btrfs_file_extent_num_bytes(leaf, item);
5083 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5084 		size_t size;
5085 		size = btrfs_file_extent_inline_len(leaf, item);
5086 		extent_end = (extent_start + size + root->sectorsize - 1) &
5087 			~((u64)root->sectorsize - 1);
5088 	}
5089 
5090 	if (start >= extent_end) {
5091 		path->slots[0]++;
5092 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5093 			ret = btrfs_next_leaf(root, path);
5094 			if (ret < 0) {
5095 				err = ret;
5096 				goto out;
5097 			}
5098 			if (ret > 0)
5099 				goto not_found;
5100 			leaf = path->nodes[0];
5101 		}
5102 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5103 		if (found_key.objectid != objectid ||
5104 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5105 			goto not_found;
5106 		if (start + len <= found_key.offset)
5107 			goto not_found;
5108 		em->start = start;
5109 		em->len = found_key.offset - start;
5110 		goto not_found_em;
5111 	}
5112 
5113 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5114 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5115 		em->start = extent_start;
5116 		em->len = extent_end - extent_start;
5117 		em->orig_start = extent_start -
5118 				 btrfs_file_extent_offset(leaf, item);
5119 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5120 		if (bytenr == 0) {
5121 			em->block_start = EXTENT_MAP_HOLE;
5122 			goto insert;
5123 		}
5124 		if (compress_type != BTRFS_COMPRESS_NONE) {
5125 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5126 			em->compress_type = compress_type;
5127 			em->block_start = bytenr;
5128 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5129 									 item);
5130 		} else {
5131 			bytenr += btrfs_file_extent_offset(leaf, item);
5132 			em->block_start = bytenr;
5133 			em->block_len = em->len;
5134 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5135 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5136 		}
5137 		goto insert;
5138 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5139 		unsigned long ptr;
5140 		char *map;
5141 		size_t size;
5142 		size_t extent_offset;
5143 		size_t copy_size;
5144 
5145 		em->block_start = EXTENT_MAP_INLINE;
5146 		if (!page || create) {
5147 			em->start = extent_start;
5148 			em->len = extent_end - extent_start;
5149 			goto out;
5150 		}
5151 
5152 		size = btrfs_file_extent_inline_len(leaf, item);
5153 		extent_offset = page_offset(page) + pg_offset - extent_start;
5154 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5155 				size - extent_offset);
5156 		em->start = extent_start + extent_offset;
5157 		em->len = (copy_size + root->sectorsize - 1) &
5158 			~((u64)root->sectorsize - 1);
5159 		em->orig_start = EXTENT_MAP_INLINE;
5160 		if (compress_type) {
5161 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5162 			em->compress_type = compress_type;
5163 		}
5164 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5165 		if (create == 0 && !PageUptodate(page)) {
5166 			if (btrfs_file_extent_compression(leaf, item) !=
5167 			    BTRFS_COMPRESS_NONE) {
5168 				ret = uncompress_inline(path, inode, page,
5169 							pg_offset,
5170 							extent_offset, item);
5171 				BUG_ON(ret);
5172 			} else {
5173 				map = kmap(page);
5174 				read_extent_buffer(leaf, map + pg_offset, ptr,
5175 						   copy_size);
5176 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5177 					memset(map + pg_offset + copy_size, 0,
5178 					       PAGE_CACHE_SIZE - pg_offset -
5179 					       copy_size);
5180 				}
5181 				kunmap(page);
5182 			}
5183 			flush_dcache_page(page);
5184 		} else if (create && PageUptodate(page)) {
5185 			WARN_ON(1);
5186 			if (!trans) {
5187 				kunmap(page);
5188 				free_extent_map(em);
5189 				em = NULL;
5190 				btrfs_release_path(root, path);
5191 				trans = btrfs_join_transaction(root, 1);
5192 				if (IS_ERR(trans))
5193 					return ERR_CAST(trans);
5194 				goto again;
5195 			}
5196 			map = kmap(page);
5197 			write_extent_buffer(leaf, map + pg_offset, ptr,
5198 					    copy_size);
5199 			kunmap(page);
5200 			btrfs_mark_buffer_dirty(leaf);
5201 		}
5202 		set_extent_uptodate(io_tree, em->start,
5203 				    extent_map_end(em) - 1, GFP_NOFS);
5204 		goto insert;
5205 	} else {
5206 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5207 		WARN_ON(1);
5208 	}
5209 not_found:
5210 	em->start = start;
5211 	em->len = len;
5212 not_found_em:
5213 	em->block_start = EXTENT_MAP_HOLE;
5214 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5215 insert:
5216 	btrfs_release_path(root, path);
5217 	if (em->start > start || extent_map_end(em) <= start) {
5218 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5219 		       "[%llu %llu]\n", (unsigned long long)em->start,
5220 		       (unsigned long long)em->len,
5221 		       (unsigned long long)start,
5222 		       (unsigned long long)len);
5223 		err = -EIO;
5224 		goto out;
5225 	}
5226 
5227 	err = 0;
5228 	write_lock(&em_tree->lock);
5229 	ret = add_extent_mapping(em_tree, em);
5230 	/* it is possible that someone inserted the extent into the tree
5231 	 * while we had the lock dropped.  It is also possible that
5232 	 * an overlapping map exists in the tree
5233 	 */
5234 	if (ret == -EEXIST) {
5235 		struct extent_map *existing;
5236 
5237 		ret = 0;
5238 
5239 		existing = lookup_extent_mapping(em_tree, start, len);
5240 		if (existing && (existing->start > start ||
5241 		    existing->start + existing->len <= start)) {
5242 			free_extent_map(existing);
5243 			existing = NULL;
5244 		}
5245 		if (!existing) {
5246 			existing = lookup_extent_mapping(em_tree, em->start,
5247 							 em->len);
5248 			if (existing) {
5249 				err = merge_extent_mapping(em_tree, existing,
5250 							   em, start,
5251 							   root->sectorsize);
5252 				free_extent_map(existing);
5253 				if (err) {
5254 					free_extent_map(em);
5255 					em = NULL;
5256 				}
5257 			} else {
5258 				err = -EIO;
5259 				free_extent_map(em);
5260 				em = NULL;
5261 			}
5262 		} else {
5263 			free_extent_map(em);
5264 			em = existing;
5265 			err = 0;
5266 		}
5267 	}
5268 	write_unlock(&em_tree->lock);
5269 out:
5270 	if (path)
5271 		btrfs_free_path(path);
5272 	if (trans) {
5273 		ret = btrfs_end_transaction(trans, root);
5274 		if (!err)
5275 			err = ret;
5276 	}
5277 	if (err) {
5278 		free_extent_map(em);
5279 		return ERR_PTR(err);
5280 	}
5281 	return em;
5282 }
5283 
5284 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5285 					   size_t pg_offset, u64 start, u64 len,
5286 					   int create)
5287 {
5288 	struct extent_map *em;
5289 	struct extent_map *hole_em = NULL;
5290 	u64 range_start = start;
5291 	u64 end;
5292 	u64 found;
5293 	u64 found_end;
5294 	int err = 0;
5295 
5296 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5297 	if (IS_ERR(em))
5298 		return em;
5299 	if (em) {
5300 		/*
5301 		 * if our em maps to a hole, there might
5302 		 * actually be delalloc bytes behind it
5303 		 */
5304 		if (em->block_start != EXTENT_MAP_HOLE)
5305 			return em;
5306 		else
5307 			hole_em = em;
5308 	}
5309 
5310 	/* check to see if we've wrapped (len == -1 or similar) */
5311 	end = start + len;
5312 	if (end < start)
5313 		end = (u64)-1;
5314 	else
5315 		end -= 1;
5316 
5317 	em = NULL;
5318 
5319 	/* ok, we didn't find anything, lets look for delalloc */
5320 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5321 				 end, len, EXTENT_DELALLOC, 1);
5322 	found_end = range_start + found;
5323 	if (found_end < range_start)
5324 		found_end = (u64)-1;
5325 
5326 	/*
5327 	 * we didn't find anything useful, return
5328 	 * the original results from get_extent()
5329 	 */
5330 	if (range_start > end || found_end <= start) {
5331 		em = hole_em;
5332 		hole_em = NULL;
5333 		goto out;
5334 	}
5335 
5336 	/* adjust the range_start to make sure it doesn't
5337 	 * go backwards from the start they passed in
5338 	 */
5339 	range_start = max(start,range_start);
5340 	found = found_end - range_start;
5341 
5342 	if (found > 0) {
5343 		u64 hole_start = start;
5344 		u64 hole_len = len;
5345 
5346 		em = alloc_extent_map(GFP_NOFS);
5347 		if (!em) {
5348 			err = -ENOMEM;
5349 			goto out;
5350 		}
5351 		/*
5352 		 * when btrfs_get_extent can't find anything it
5353 		 * returns one huge hole
5354 		 *
5355 		 * make sure what it found really fits our range, and
5356 		 * adjust to make sure it is based on the start from
5357 		 * the caller
5358 		 */
5359 		if (hole_em) {
5360 			u64 calc_end = extent_map_end(hole_em);
5361 
5362 			if (calc_end <= start || (hole_em->start > end)) {
5363 				free_extent_map(hole_em);
5364 				hole_em = NULL;
5365 			} else {
5366 				hole_start = max(hole_em->start, start);
5367 				hole_len = calc_end - hole_start;
5368 			}
5369 		}
5370 		em->bdev = NULL;
5371 		if (hole_em && range_start > hole_start) {
5372 			/* our hole starts before our delalloc, so we
5373 			 * have to return just the parts of the hole
5374 			 * that go until  the delalloc starts
5375 			 */
5376 			em->len = min(hole_len,
5377 				      range_start - hole_start);
5378 			em->start = hole_start;
5379 			em->orig_start = hole_start;
5380 			/*
5381 			 * don't adjust block start at all,
5382 			 * it is fixed at EXTENT_MAP_HOLE
5383 			 */
5384 			em->block_start = hole_em->block_start;
5385 			em->block_len = hole_len;
5386 		} else {
5387 			em->start = range_start;
5388 			em->len = found;
5389 			em->orig_start = range_start;
5390 			em->block_start = EXTENT_MAP_DELALLOC;
5391 			em->block_len = found;
5392 		}
5393 	} else if (hole_em) {
5394 		return hole_em;
5395 	}
5396 out:
5397 
5398 	free_extent_map(hole_em);
5399 	if (err) {
5400 		free_extent_map(em);
5401 		return ERR_PTR(err);
5402 	}
5403 	return em;
5404 }
5405 
5406 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5407 						  u64 start, u64 len)
5408 {
5409 	struct btrfs_root *root = BTRFS_I(inode)->root;
5410 	struct btrfs_trans_handle *trans;
5411 	struct extent_map *em;
5412 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5413 	struct btrfs_key ins;
5414 	u64 alloc_hint;
5415 	int ret;
5416 
5417 	btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5418 
5419 	trans = btrfs_join_transaction(root, 0);
5420 	if (IS_ERR(trans))
5421 		return ERR_CAST(trans);
5422 
5423 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5424 
5425 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5426 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5427 				   alloc_hint, (u64)-1, &ins, 1);
5428 	if (ret) {
5429 		em = ERR_PTR(ret);
5430 		goto out;
5431 	}
5432 
5433 	em = alloc_extent_map(GFP_NOFS);
5434 	if (!em) {
5435 		em = ERR_PTR(-ENOMEM);
5436 		goto out;
5437 	}
5438 
5439 	em->start = start;
5440 	em->orig_start = em->start;
5441 	em->len = ins.offset;
5442 
5443 	em->block_start = ins.objectid;
5444 	em->block_len = ins.offset;
5445 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5446 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5447 
5448 	while (1) {
5449 		write_lock(&em_tree->lock);
5450 		ret = add_extent_mapping(em_tree, em);
5451 		write_unlock(&em_tree->lock);
5452 		if (ret != -EEXIST)
5453 			break;
5454 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5455 	}
5456 
5457 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5458 					   ins.offset, ins.offset, 0);
5459 	if (ret) {
5460 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5461 		em = ERR_PTR(ret);
5462 	}
5463 out:
5464 	btrfs_end_transaction(trans, root);
5465 	return em;
5466 }
5467 
5468 /*
5469  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5470  * block must be cow'd
5471  */
5472 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5473 				      struct inode *inode, u64 offset, u64 len)
5474 {
5475 	struct btrfs_path *path;
5476 	int ret;
5477 	struct extent_buffer *leaf;
5478 	struct btrfs_root *root = BTRFS_I(inode)->root;
5479 	struct btrfs_file_extent_item *fi;
5480 	struct btrfs_key key;
5481 	u64 disk_bytenr;
5482 	u64 backref_offset;
5483 	u64 extent_end;
5484 	u64 num_bytes;
5485 	int slot;
5486 	int found_type;
5487 
5488 	path = btrfs_alloc_path();
5489 	if (!path)
5490 		return -ENOMEM;
5491 
5492 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5493 				       offset, 0);
5494 	if (ret < 0)
5495 		goto out;
5496 
5497 	slot = path->slots[0];
5498 	if (ret == 1) {
5499 		if (slot == 0) {
5500 			/* can't find the item, must cow */
5501 			ret = 0;
5502 			goto out;
5503 		}
5504 		slot--;
5505 	}
5506 	ret = 0;
5507 	leaf = path->nodes[0];
5508 	btrfs_item_key_to_cpu(leaf, &key, slot);
5509 	if (key.objectid != inode->i_ino ||
5510 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5511 		/* not our file or wrong item type, must cow */
5512 		goto out;
5513 	}
5514 
5515 	if (key.offset > offset) {
5516 		/* Wrong offset, must cow */
5517 		goto out;
5518 	}
5519 
5520 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5521 	found_type = btrfs_file_extent_type(leaf, fi);
5522 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5523 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5524 		/* not a regular extent, must cow */
5525 		goto out;
5526 	}
5527 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5528 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5529 
5530 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5531 	if (extent_end < offset + len) {
5532 		/* extent doesn't include our full range, must cow */
5533 		goto out;
5534 	}
5535 
5536 	if (btrfs_extent_readonly(root, disk_bytenr))
5537 		goto out;
5538 
5539 	/*
5540 	 * look for other files referencing this extent, if we
5541 	 * find any we must cow
5542 	 */
5543 	if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5544 				  key.offset - backref_offset, disk_bytenr))
5545 		goto out;
5546 
5547 	/*
5548 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5549 	 * in this extent we are about to write.  If there
5550 	 * are any csums in that range we have to cow in order
5551 	 * to keep the csums correct
5552 	 */
5553 	disk_bytenr += backref_offset;
5554 	disk_bytenr += offset - key.offset;
5555 	num_bytes = min(offset + len, extent_end) - offset;
5556 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5557 				goto out;
5558 	/*
5559 	 * all of the above have passed, it is safe to overwrite this extent
5560 	 * without cow
5561 	 */
5562 	ret = 1;
5563 out:
5564 	btrfs_free_path(path);
5565 	return ret;
5566 }
5567 
5568 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5569 				   struct buffer_head *bh_result, int create)
5570 {
5571 	struct extent_map *em;
5572 	struct btrfs_root *root = BTRFS_I(inode)->root;
5573 	u64 start = iblock << inode->i_blkbits;
5574 	u64 len = bh_result->b_size;
5575 	struct btrfs_trans_handle *trans;
5576 
5577 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5578 	if (IS_ERR(em))
5579 		return PTR_ERR(em);
5580 
5581 	/*
5582 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5583 	 * io.  INLINE is special, and we could probably kludge it in here, but
5584 	 * it's still buffered so for safety lets just fall back to the generic
5585 	 * buffered path.
5586 	 *
5587 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5588 	 * decompress it, so there will be buffering required no matter what we
5589 	 * do, so go ahead and fallback to buffered.
5590 	 *
5591 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5592 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5593 	 * the generic code.
5594 	 */
5595 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5596 	    em->block_start == EXTENT_MAP_INLINE) {
5597 		free_extent_map(em);
5598 		return -ENOTBLK;
5599 	}
5600 
5601 	/* Just a good old fashioned hole, return */
5602 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5603 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5604 		free_extent_map(em);
5605 		/* DIO will do one hole at a time, so just unlock a sector */
5606 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5607 			      start + root->sectorsize - 1, GFP_NOFS);
5608 		return 0;
5609 	}
5610 
5611 	/*
5612 	 * We don't allocate a new extent in the following cases
5613 	 *
5614 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5615 	 * existing extent.
5616 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5617 	 * just use the extent.
5618 	 *
5619 	 */
5620 	if (!create) {
5621 		len = em->len - (start - em->start);
5622 		goto map;
5623 	}
5624 
5625 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5626 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5627 	     em->block_start != EXTENT_MAP_HOLE)) {
5628 		int type;
5629 		int ret;
5630 		u64 block_start;
5631 
5632 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5633 			type = BTRFS_ORDERED_PREALLOC;
5634 		else
5635 			type = BTRFS_ORDERED_NOCOW;
5636 		len = min(len, em->len - (start - em->start));
5637 		block_start = em->block_start + (start - em->start);
5638 
5639 		/*
5640 		 * we're not going to log anything, but we do need
5641 		 * to make sure the current transaction stays open
5642 		 * while we look for nocow cross refs
5643 		 */
5644 		trans = btrfs_join_transaction(root, 0);
5645 		if (IS_ERR(trans))
5646 			goto must_cow;
5647 
5648 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5649 			ret = btrfs_add_ordered_extent_dio(inode, start,
5650 					   block_start, len, len, type);
5651 			btrfs_end_transaction(trans, root);
5652 			if (ret) {
5653 				free_extent_map(em);
5654 				return ret;
5655 			}
5656 			goto unlock;
5657 		}
5658 		btrfs_end_transaction(trans, root);
5659 	}
5660 must_cow:
5661 	/*
5662 	 * this will cow the extent, reset the len in case we changed
5663 	 * it above
5664 	 */
5665 	len = bh_result->b_size;
5666 	free_extent_map(em);
5667 	em = btrfs_new_extent_direct(inode, start, len);
5668 	if (IS_ERR(em))
5669 		return PTR_ERR(em);
5670 	len = min(len, em->len - (start - em->start));
5671 unlock:
5672 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5673 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5674 			  0, NULL, GFP_NOFS);
5675 map:
5676 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5677 		inode->i_blkbits;
5678 	bh_result->b_size = len;
5679 	bh_result->b_bdev = em->bdev;
5680 	set_buffer_mapped(bh_result);
5681 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5682 		set_buffer_new(bh_result);
5683 
5684 	free_extent_map(em);
5685 
5686 	return 0;
5687 }
5688 
5689 struct btrfs_dio_private {
5690 	struct inode *inode;
5691 	u64 logical_offset;
5692 	u64 disk_bytenr;
5693 	u64 bytes;
5694 	u32 *csums;
5695 	void *private;
5696 
5697 	/* number of bios pending for this dio */
5698 	atomic_t pending_bios;
5699 
5700 	/* IO errors */
5701 	int errors;
5702 
5703 	struct bio *orig_bio;
5704 };
5705 
5706 static void btrfs_endio_direct_read(struct bio *bio, int err)
5707 {
5708 	struct btrfs_dio_private *dip = bio->bi_private;
5709 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5710 	struct bio_vec *bvec = bio->bi_io_vec;
5711 	struct inode *inode = dip->inode;
5712 	struct btrfs_root *root = BTRFS_I(inode)->root;
5713 	u64 start;
5714 	u32 *private = dip->csums;
5715 
5716 	start = dip->logical_offset;
5717 	do {
5718 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5719 			struct page *page = bvec->bv_page;
5720 			char *kaddr;
5721 			u32 csum = ~(u32)0;
5722 			unsigned long flags;
5723 
5724 			local_irq_save(flags);
5725 			kaddr = kmap_atomic(page, KM_IRQ0);
5726 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5727 					       csum, bvec->bv_len);
5728 			btrfs_csum_final(csum, (char *)&csum);
5729 			kunmap_atomic(kaddr, KM_IRQ0);
5730 			local_irq_restore(flags);
5731 
5732 			flush_dcache_page(bvec->bv_page);
5733 			if (csum != *private) {
5734 				printk(KERN_ERR "btrfs csum failed ino %lu off"
5735 				      " %llu csum %u private %u\n",
5736 				      inode->i_ino, (unsigned long long)start,
5737 				      csum, *private);
5738 				err = -EIO;
5739 			}
5740 		}
5741 
5742 		start += bvec->bv_len;
5743 		private++;
5744 		bvec++;
5745 	} while (bvec <= bvec_end);
5746 
5747 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5748 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5749 	bio->bi_private = dip->private;
5750 
5751 	kfree(dip->csums);
5752 	kfree(dip);
5753 	dio_end_io(bio, err);
5754 }
5755 
5756 static void btrfs_endio_direct_write(struct bio *bio, int err)
5757 {
5758 	struct btrfs_dio_private *dip = bio->bi_private;
5759 	struct inode *inode = dip->inode;
5760 	struct btrfs_root *root = BTRFS_I(inode)->root;
5761 	struct btrfs_trans_handle *trans;
5762 	struct btrfs_ordered_extent *ordered = NULL;
5763 	struct extent_state *cached_state = NULL;
5764 	u64 ordered_offset = dip->logical_offset;
5765 	u64 ordered_bytes = dip->bytes;
5766 	int ret;
5767 
5768 	if (err)
5769 		goto out_done;
5770 again:
5771 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5772 						   &ordered_offset,
5773 						   ordered_bytes);
5774 	if (!ret)
5775 		goto out_test;
5776 
5777 	BUG_ON(!ordered);
5778 
5779 	trans = btrfs_join_transaction(root, 1);
5780 	if (IS_ERR(trans)) {
5781 		err = -ENOMEM;
5782 		goto out;
5783 	}
5784 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5785 
5786 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5787 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5788 		if (!ret)
5789 			ret = btrfs_update_inode(trans, root, inode);
5790 		err = ret;
5791 		goto out;
5792 	}
5793 
5794 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5795 			 ordered->file_offset + ordered->len - 1, 0,
5796 			 &cached_state, GFP_NOFS);
5797 
5798 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5799 		ret = btrfs_mark_extent_written(trans, inode,
5800 						ordered->file_offset,
5801 						ordered->file_offset +
5802 						ordered->len);
5803 		if (ret) {
5804 			err = ret;
5805 			goto out_unlock;
5806 		}
5807 	} else {
5808 		ret = insert_reserved_file_extent(trans, inode,
5809 						  ordered->file_offset,
5810 						  ordered->start,
5811 						  ordered->disk_len,
5812 						  ordered->len,
5813 						  ordered->len,
5814 						  0, 0, 0,
5815 						  BTRFS_FILE_EXTENT_REG);
5816 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5817 				   ordered->file_offset, ordered->len);
5818 		if (ret) {
5819 			err = ret;
5820 			WARN_ON(1);
5821 			goto out_unlock;
5822 		}
5823 	}
5824 
5825 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5826 	btrfs_ordered_update_i_size(inode, 0, ordered);
5827 	btrfs_update_inode(trans, root, inode);
5828 out_unlock:
5829 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5830 			     ordered->file_offset + ordered->len - 1,
5831 			     &cached_state, GFP_NOFS);
5832 out:
5833 	btrfs_delalloc_release_metadata(inode, ordered->len);
5834 	btrfs_end_transaction(trans, root);
5835 	ordered_offset = ordered->file_offset + ordered->len;
5836 	btrfs_put_ordered_extent(ordered);
5837 	btrfs_put_ordered_extent(ordered);
5838 
5839 out_test:
5840 	/*
5841 	 * our bio might span multiple ordered extents.  If we haven't
5842 	 * completed the accounting for the whole dio, go back and try again
5843 	 */
5844 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5845 		ordered_bytes = dip->logical_offset + dip->bytes -
5846 			ordered_offset;
5847 		goto again;
5848 	}
5849 out_done:
5850 	bio->bi_private = dip->private;
5851 
5852 	kfree(dip->csums);
5853 	kfree(dip);
5854 	dio_end_io(bio, err);
5855 }
5856 
5857 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5858 				    struct bio *bio, int mirror_num,
5859 				    unsigned long bio_flags, u64 offset)
5860 {
5861 	int ret;
5862 	struct btrfs_root *root = BTRFS_I(inode)->root;
5863 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5864 	BUG_ON(ret);
5865 	return 0;
5866 }
5867 
5868 static void btrfs_end_dio_bio(struct bio *bio, int err)
5869 {
5870 	struct btrfs_dio_private *dip = bio->bi_private;
5871 
5872 	if (err) {
5873 		printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5874 		      "sector %#Lx len %u err no %d\n",
5875 		      dip->inode->i_ino, bio->bi_rw,
5876 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5877 		dip->errors = 1;
5878 
5879 		/*
5880 		 * before atomic variable goto zero, we must make sure
5881 		 * dip->errors is perceived to be set.
5882 		 */
5883 		smp_mb__before_atomic_dec();
5884 	}
5885 
5886 	/* if there are more bios still pending for this dio, just exit */
5887 	if (!atomic_dec_and_test(&dip->pending_bios))
5888 		goto out;
5889 
5890 	if (dip->errors)
5891 		bio_io_error(dip->orig_bio);
5892 	else {
5893 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5894 		bio_endio(dip->orig_bio, 0);
5895 	}
5896 out:
5897 	bio_put(bio);
5898 }
5899 
5900 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5901 				       u64 first_sector, gfp_t gfp_flags)
5902 {
5903 	int nr_vecs = bio_get_nr_vecs(bdev);
5904 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5905 }
5906 
5907 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5908 					 int rw, u64 file_offset, int skip_sum,
5909 					 u32 *csums)
5910 {
5911 	int write = rw & REQ_WRITE;
5912 	struct btrfs_root *root = BTRFS_I(inode)->root;
5913 	int ret;
5914 
5915 	bio_get(bio);
5916 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5917 	if (ret)
5918 		goto err;
5919 
5920 	if (write && !skip_sum) {
5921 		ret = btrfs_wq_submit_bio(root->fs_info,
5922 				   inode, rw, bio, 0, 0,
5923 				   file_offset,
5924 				   __btrfs_submit_bio_start_direct_io,
5925 				   __btrfs_submit_bio_done);
5926 		goto err;
5927 	} else if (!skip_sum)
5928 		btrfs_lookup_bio_sums_dio(root, inode, bio,
5929 					  file_offset, csums);
5930 
5931 	ret = btrfs_map_bio(root, rw, bio, 0, 1);
5932 err:
5933 	bio_put(bio);
5934 	return ret;
5935 }
5936 
5937 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5938 				    int skip_sum)
5939 {
5940 	struct inode *inode = dip->inode;
5941 	struct btrfs_root *root = BTRFS_I(inode)->root;
5942 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5943 	struct bio *bio;
5944 	struct bio *orig_bio = dip->orig_bio;
5945 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5946 	u64 start_sector = orig_bio->bi_sector;
5947 	u64 file_offset = dip->logical_offset;
5948 	u64 submit_len = 0;
5949 	u64 map_length;
5950 	int nr_pages = 0;
5951 	u32 *csums = dip->csums;
5952 	int ret = 0;
5953 
5954 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5955 	if (!bio)
5956 		return -ENOMEM;
5957 	bio->bi_private = dip;
5958 	bio->bi_end_io = btrfs_end_dio_bio;
5959 	atomic_inc(&dip->pending_bios);
5960 
5961 	map_length = orig_bio->bi_size;
5962 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5963 			      &map_length, NULL, 0);
5964 	if (ret) {
5965 		bio_put(bio);
5966 		return -EIO;
5967 	}
5968 
5969 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5970 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5971 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5972 				 bvec->bv_offset) < bvec->bv_len)) {
5973 			/*
5974 			 * inc the count before we submit the bio so
5975 			 * we know the end IO handler won't happen before
5976 			 * we inc the count. Otherwise, the dip might get freed
5977 			 * before we're done setting it up
5978 			 */
5979 			atomic_inc(&dip->pending_bios);
5980 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5981 						     file_offset, skip_sum,
5982 						     csums);
5983 			if (ret) {
5984 				bio_put(bio);
5985 				atomic_dec(&dip->pending_bios);
5986 				goto out_err;
5987 			}
5988 
5989 			if (!skip_sum)
5990 				csums = csums + nr_pages;
5991 			start_sector += submit_len >> 9;
5992 			file_offset += submit_len;
5993 
5994 			submit_len = 0;
5995 			nr_pages = 0;
5996 
5997 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5998 						  start_sector, GFP_NOFS);
5999 			if (!bio)
6000 				goto out_err;
6001 			bio->bi_private = dip;
6002 			bio->bi_end_io = btrfs_end_dio_bio;
6003 
6004 			map_length = orig_bio->bi_size;
6005 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6006 					      &map_length, NULL, 0);
6007 			if (ret) {
6008 				bio_put(bio);
6009 				goto out_err;
6010 			}
6011 		} else {
6012 			submit_len += bvec->bv_len;
6013 			nr_pages ++;
6014 			bvec++;
6015 		}
6016 	}
6017 
6018 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6019 				     csums);
6020 	if (!ret)
6021 		return 0;
6022 
6023 	bio_put(bio);
6024 out_err:
6025 	dip->errors = 1;
6026 	/*
6027 	 * before atomic variable goto zero, we must
6028 	 * make sure dip->errors is perceived to be set.
6029 	 */
6030 	smp_mb__before_atomic_dec();
6031 	if (atomic_dec_and_test(&dip->pending_bios))
6032 		bio_io_error(dip->orig_bio);
6033 
6034 	/* bio_end_io() will handle error, so we needn't return it */
6035 	return 0;
6036 }
6037 
6038 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6039 				loff_t file_offset)
6040 {
6041 	struct btrfs_root *root = BTRFS_I(inode)->root;
6042 	struct btrfs_dio_private *dip;
6043 	struct bio_vec *bvec = bio->bi_io_vec;
6044 	int skip_sum;
6045 	int write = rw & REQ_WRITE;
6046 	int ret = 0;
6047 
6048 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6049 
6050 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6051 	if (!dip) {
6052 		ret = -ENOMEM;
6053 		goto free_ordered;
6054 	}
6055 	dip->csums = NULL;
6056 
6057 	if (!skip_sum) {
6058 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6059 		if (!dip->csums) {
6060 			kfree(dip);
6061 			ret = -ENOMEM;
6062 			goto free_ordered;
6063 		}
6064 	}
6065 
6066 	dip->private = bio->bi_private;
6067 	dip->inode = inode;
6068 	dip->logical_offset = file_offset;
6069 
6070 	dip->bytes = 0;
6071 	do {
6072 		dip->bytes += bvec->bv_len;
6073 		bvec++;
6074 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6075 
6076 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6077 	bio->bi_private = dip;
6078 	dip->errors = 0;
6079 	dip->orig_bio = bio;
6080 	atomic_set(&dip->pending_bios, 0);
6081 
6082 	if (write)
6083 		bio->bi_end_io = btrfs_endio_direct_write;
6084 	else
6085 		bio->bi_end_io = btrfs_endio_direct_read;
6086 
6087 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6088 	if (!ret)
6089 		return;
6090 free_ordered:
6091 	/*
6092 	 * If this is a write, we need to clean up the reserved space and kill
6093 	 * the ordered extent.
6094 	 */
6095 	if (write) {
6096 		struct btrfs_ordered_extent *ordered;
6097 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6098 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6099 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6100 			btrfs_free_reserved_extent(root, ordered->start,
6101 						   ordered->disk_len);
6102 		btrfs_put_ordered_extent(ordered);
6103 		btrfs_put_ordered_extent(ordered);
6104 	}
6105 	bio_endio(bio, ret);
6106 }
6107 
6108 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6109 			const struct iovec *iov, loff_t offset,
6110 			unsigned long nr_segs)
6111 {
6112 	int seg;
6113 	size_t size;
6114 	unsigned long addr;
6115 	unsigned blocksize_mask = root->sectorsize - 1;
6116 	ssize_t retval = -EINVAL;
6117 	loff_t end = offset;
6118 
6119 	if (offset & blocksize_mask)
6120 		goto out;
6121 
6122 	/* Check the memory alignment.  Blocks cannot straddle pages */
6123 	for (seg = 0; seg < nr_segs; seg++) {
6124 		addr = (unsigned long)iov[seg].iov_base;
6125 		size = iov[seg].iov_len;
6126 		end += size;
6127 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6128 			goto out;
6129 	}
6130 	retval = 0;
6131 out:
6132 	return retval;
6133 }
6134 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6135 			const struct iovec *iov, loff_t offset,
6136 			unsigned long nr_segs)
6137 {
6138 	struct file *file = iocb->ki_filp;
6139 	struct inode *inode = file->f_mapping->host;
6140 	struct btrfs_ordered_extent *ordered;
6141 	struct extent_state *cached_state = NULL;
6142 	u64 lockstart, lockend;
6143 	ssize_t ret;
6144 	int writing = rw & WRITE;
6145 	int write_bits = 0;
6146 	size_t count = iov_length(iov, nr_segs);
6147 
6148 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6149 			    offset, nr_segs)) {
6150 		return 0;
6151 	}
6152 
6153 	lockstart = offset;
6154 	lockend = offset + count - 1;
6155 
6156 	if (writing) {
6157 		ret = btrfs_delalloc_reserve_space(inode, count);
6158 		if (ret)
6159 			goto out;
6160 	}
6161 
6162 	while (1) {
6163 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6164 				 0, &cached_state, GFP_NOFS);
6165 		/*
6166 		 * We're concerned with the entire range that we're going to be
6167 		 * doing DIO to, so we need to make sure theres no ordered
6168 		 * extents in this range.
6169 		 */
6170 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6171 						     lockend - lockstart + 1);
6172 		if (!ordered)
6173 			break;
6174 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6175 				     &cached_state, GFP_NOFS);
6176 		btrfs_start_ordered_extent(inode, ordered, 1);
6177 		btrfs_put_ordered_extent(ordered);
6178 		cond_resched();
6179 	}
6180 
6181 	/*
6182 	 * we don't use btrfs_set_extent_delalloc because we don't want
6183 	 * the dirty or uptodate bits
6184 	 */
6185 	if (writing) {
6186 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6187 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6188 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6189 				     GFP_NOFS);
6190 		if (ret) {
6191 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6192 					 lockend, EXTENT_LOCKED | write_bits,
6193 					 1, 0, &cached_state, GFP_NOFS);
6194 			goto out;
6195 		}
6196 	}
6197 
6198 	free_extent_state(cached_state);
6199 	cached_state = NULL;
6200 
6201 	ret = __blockdev_direct_IO(rw, iocb, inode,
6202 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6203 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6204 		   btrfs_submit_direct, 0);
6205 
6206 	if (ret < 0 && ret != -EIOCBQUEUED) {
6207 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6208 			      offset + iov_length(iov, nr_segs) - 1,
6209 			      EXTENT_LOCKED | write_bits, 1, 0,
6210 			      &cached_state, GFP_NOFS);
6211 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6212 		/*
6213 		 * We're falling back to buffered, unlock the section we didn't
6214 		 * do IO on.
6215 		 */
6216 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6217 			      offset + iov_length(iov, nr_segs) - 1,
6218 			      EXTENT_LOCKED | write_bits, 1, 0,
6219 			      &cached_state, GFP_NOFS);
6220 	}
6221 out:
6222 	free_extent_state(cached_state);
6223 	return ret;
6224 }
6225 
6226 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6227 		__u64 start, __u64 len)
6228 {
6229 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6230 }
6231 
6232 int btrfs_readpage(struct file *file, struct page *page)
6233 {
6234 	struct extent_io_tree *tree;
6235 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6236 	return extent_read_full_page(tree, page, btrfs_get_extent);
6237 }
6238 
6239 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6240 {
6241 	struct extent_io_tree *tree;
6242 
6243 
6244 	if (current->flags & PF_MEMALLOC) {
6245 		redirty_page_for_writepage(wbc, page);
6246 		unlock_page(page);
6247 		return 0;
6248 	}
6249 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6250 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6251 }
6252 
6253 int btrfs_writepages(struct address_space *mapping,
6254 		     struct writeback_control *wbc)
6255 {
6256 	struct extent_io_tree *tree;
6257 
6258 	tree = &BTRFS_I(mapping->host)->io_tree;
6259 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6260 }
6261 
6262 static int
6263 btrfs_readpages(struct file *file, struct address_space *mapping,
6264 		struct list_head *pages, unsigned nr_pages)
6265 {
6266 	struct extent_io_tree *tree;
6267 	tree = &BTRFS_I(mapping->host)->io_tree;
6268 	return extent_readpages(tree, mapping, pages, nr_pages,
6269 				btrfs_get_extent);
6270 }
6271 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6272 {
6273 	struct extent_io_tree *tree;
6274 	struct extent_map_tree *map;
6275 	int ret;
6276 
6277 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6278 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6279 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6280 	if (ret == 1) {
6281 		ClearPagePrivate(page);
6282 		set_page_private(page, 0);
6283 		page_cache_release(page);
6284 	}
6285 	return ret;
6286 }
6287 
6288 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6289 {
6290 	if (PageWriteback(page) || PageDirty(page))
6291 		return 0;
6292 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6293 }
6294 
6295 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6296 {
6297 	struct extent_io_tree *tree;
6298 	struct btrfs_ordered_extent *ordered;
6299 	struct extent_state *cached_state = NULL;
6300 	u64 page_start = page_offset(page);
6301 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6302 
6303 
6304 	/*
6305 	 * we have the page locked, so new writeback can't start,
6306 	 * and the dirty bit won't be cleared while we are here.
6307 	 *
6308 	 * Wait for IO on this page so that we can safely clear
6309 	 * the PagePrivate2 bit and do ordered accounting
6310 	 */
6311 	wait_on_page_writeback(page);
6312 
6313 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6314 	if (offset) {
6315 		btrfs_releasepage(page, GFP_NOFS);
6316 		return;
6317 	}
6318 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6319 			 GFP_NOFS);
6320 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6321 					   page_offset(page));
6322 	if (ordered) {
6323 		/*
6324 		 * IO on this page will never be started, so we need
6325 		 * to account for any ordered extents now
6326 		 */
6327 		clear_extent_bit(tree, page_start, page_end,
6328 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6329 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6330 				 &cached_state, GFP_NOFS);
6331 		/*
6332 		 * whoever cleared the private bit is responsible
6333 		 * for the finish_ordered_io
6334 		 */
6335 		if (TestClearPagePrivate2(page)) {
6336 			btrfs_finish_ordered_io(page->mapping->host,
6337 						page_start, page_end);
6338 		}
6339 		btrfs_put_ordered_extent(ordered);
6340 		cached_state = NULL;
6341 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6342 				 GFP_NOFS);
6343 	}
6344 	clear_extent_bit(tree, page_start, page_end,
6345 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6346 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6347 	__btrfs_releasepage(page, GFP_NOFS);
6348 
6349 	ClearPageChecked(page);
6350 	if (PagePrivate(page)) {
6351 		ClearPagePrivate(page);
6352 		set_page_private(page, 0);
6353 		page_cache_release(page);
6354 	}
6355 }
6356 
6357 /*
6358  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6359  * called from a page fault handler when a page is first dirtied. Hence we must
6360  * be careful to check for EOF conditions here. We set the page up correctly
6361  * for a written page which means we get ENOSPC checking when writing into
6362  * holes and correct delalloc and unwritten extent mapping on filesystems that
6363  * support these features.
6364  *
6365  * We are not allowed to take the i_mutex here so we have to play games to
6366  * protect against truncate races as the page could now be beyond EOF.  Because
6367  * vmtruncate() writes the inode size before removing pages, once we have the
6368  * page lock we can determine safely if the page is beyond EOF. If it is not
6369  * beyond EOF, then the page is guaranteed safe against truncation until we
6370  * unlock the page.
6371  */
6372 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6373 {
6374 	struct page *page = vmf->page;
6375 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6376 	struct btrfs_root *root = BTRFS_I(inode)->root;
6377 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6378 	struct btrfs_ordered_extent *ordered;
6379 	struct extent_state *cached_state = NULL;
6380 	char *kaddr;
6381 	unsigned long zero_start;
6382 	loff_t size;
6383 	int ret;
6384 	u64 page_start;
6385 	u64 page_end;
6386 
6387 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6388 	if (ret) {
6389 		if (ret == -ENOMEM)
6390 			ret = VM_FAULT_OOM;
6391 		else /* -ENOSPC, -EIO, etc */
6392 			ret = VM_FAULT_SIGBUS;
6393 		goto out;
6394 	}
6395 
6396 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6397 again:
6398 	lock_page(page);
6399 	size = i_size_read(inode);
6400 	page_start = page_offset(page);
6401 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6402 
6403 	if ((page->mapping != inode->i_mapping) ||
6404 	    (page_start >= size)) {
6405 		/* page got truncated out from underneath us */
6406 		goto out_unlock;
6407 	}
6408 	wait_on_page_writeback(page);
6409 
6410 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6411 			 GFP_NOFS);
6412 	set_page_extent_mapped(page);
6413 
6414 	/*
6415 	 * we can't set the delalloc bits if there are pending ordered
6416 	 * extents.  Drop our locks and wait for them to finish
6417 	 */
6418 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6419 	if (ordered) {
6420 		unlock_extent_cached(io_tree, page_start, page_end,
6421 				     &cached_state, GFP_NOFS);
6422 		unlock_page(page);
6423 		btrfs_start_ordered_extent(inode, ordered, 1);
6424 		btrfs_put_ordered_extent(ordered);
6425 		goto again;
6426 	}
6427 
6428 	/*
6429 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6430 	 * if it was already dirty, so for space accounting reasons we need to
6431 	 * clear any delalloc bits for the range we are fixing to save.  There
6432 	 * is probably a better way to do this, but for now keep consistent with
6433 	 * prepare_pages in the normal write path.
6434 	 */
6435 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6436 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6437 			  0, 0, &cached_state, GFP_NOFS);
6438 
6439 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6440 					&cached_state);
6441 	if (ret) {
6442 		unlock_extent_cached(io_tree, page_start, page_end,
6443 				     &cached_state, GFP_NOFS);
6444 		ret = VM_FAULT_SIGBUS;
6445 		goto out_unlock;
6446 	}
6447 	ret = 0;
6448 
6449 	/* page is wholly or partially inside EOF */
6450 	if (page_start + PAGE_CACHE_SIZE > size)
6451 		zero_start = size & ~PAGE_CACHE_MASK;
6452 	else
6453 		zero_start = PAGE_CACHE_SIZE;
6454 
6455 	if (zero_start != PAGE_CACHE_SIZE) {
6456 		kaddr = kmap(page);
6457 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6458 		flush_dcache_page(page);
6459 		kunmap(page);
6460 	}
6461 	ClearPageChecked(page);
6462 	set_page_dirty(page);
6463 	SetPageUptodate(page);
6464 
6465 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6466 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6467 
6468 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6469 
6470 out_unlock:
6471 	if (!ret)
6472 		return VM_FAULT_LOCKED;
6473 	unlock_page(page);
6474 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6475 out:
6476 	return ret;
6477 }
6478 
6479 static void btrfs_truncate(struct inode *inode)
6480 {
6481 	struct btrfs_root *root = BTRFS_I(inode)->root;
6482 	int ret;
6483 	struct btrfs_trans_handle *trans;
6484 	unsigned long nr;
6485 	u64 mask = root->sectorsize - 1;
6486 
6487 	if (!S_ISREG(inode->i_mode)) {
6488 		WARN_ON(1);
6489 		return;
6490 	}
6491 
6492 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6493 	if (ret)
6494 		return;
6495 
6496 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6497 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6498 
6499 	trans = btrfs_start_transaction(root, 0);
6500 	BUG_ON(IS_ERR(trans));
6501 	btrfs_set_trans_block_group(trans, inode);
6502 	trans->block_rsv = root->orphan_block_rsv;
6503 
6504 	/*
6505 	 * setattr is responsible for setting the ordered_data_close flag,
6506 	 * but that is only tested during the last file release.  That
6507 	 * could happen well after the next commit, leaving a great big
6508 	 * window where new writes may get lost if someone chooses to write
6509 	 * to this file after truncating to zero
6510 	 *
6511 	 * The inode doesn't have any dirty data here, and so if we commit
6512 	 * this is a noop.  If someone immediately starts writing to the inode
6513 	 * it is very likely we'll catch some of their writes in this
6514 	 * transaction, and the commit will find this file on the ordered
6515 	 * data list with good things to send down.
6516 	 *
6517 	 * This is a best effort solution, there is still a window where
6518 	 * using truncate to replace the contents of the file will
6519 	 * end up with a zero length file after a crash.
6520 	 */
6521 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6522 		btrfs_add_ordered_operation(trans, root, inode);
6523 
6524 	while (1) {
6525 		if (!trans) {
6526 			trans = btrfs_start_transaction(root, 0);
6527 			BUG_ON(IS_ERR(trans));
6528 			btrfs_set_trans_block_group(trans, inode);
6529 			trans->block_rsv = root->orphan_block_rsv;
6530 		}
6531 
6532 		ret = btrfs_block_rsv_check(trans, root,
6533 					    root->orphan_block_rsv, 0, 5);
6534 		if (ret) {
6535 			BUG_ON(ret != -EAGAIN);
6536 			ret = btrfs_commit_transaction(trans, root);
6537 			BUG_ON(ret);
6538 			trans = NULL;
6539 			continue;
6540 		}
6541 
6542 		ret = btrfs_truncate_inode_items(trans, root, inode,
6543 						 inode->i_size,
6544 						 BTRFS_EXTENT_DATA_KEY);
6545 		if (ret != -EAGAIN)
6546 			break;
6547 
6548 		ret = btrfs_update_inode(trans, root, inode);
6549 		BUG_ON(ret);
6550 
6551 		nr = trans->blocks_used;
6552 		btrfs_end_transaction(trans, root);
6553 		trans = NULL;
6554 		btrfs_btree_balance_dirty(root, nr);
6555 	}
6556 
6557 	if (ret == 0 && inode->i_nlink > 0) {
6558 		ret = btrfs_orphan_del(trans, inode);
6559 		BUG_ON(ret);
6560 	}
6561 
6562 	ret = btrfs_update_inode(trans, root, inode);
6563 	BUG_ON(ret);
6564 
6565 	nr = trans->blocks_used;
6566 	ret = btrfs_end_transaction_throttle(trans, root);
6567 	BUG_ON(ret);
6568 	btrfs_btree_balance_dirty(root, nr);
6569 }
6570 
6571 /*
6572  * create a new subvolume directory/inode (helper for the ioctl).
6573  */
6574 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6575 			     struct btrfs_root *new_root,
6576 			     u64 new_dirid, u64 alloc_hint)
6577 {
6578 	struct inode *inode;
6579 	int err;
6580 	u64 index = 0;
6581 
6582 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6583 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6584 	if (IS_ERR(inode))
6585 		return PTR_ERR(inode);
6586 	inode->i_op = &btrfs_dir_inode_operations;
6587 	inode->i_fop = &btrfs_dir_file_operations;
6588 
6589 	inode->i_nlink = 1;
6590 	btrfs_i_size_write(inode, 0);
6591 
6592 	err = btrfs_update_inode(trans, new_root, inode);
6593 	BUG_ON(err);
6594 
6595 	iput(inode);
6596 	return 0;
6597 }
6598 
6599 /* helper function for file defrag and space balancing.  This
6600  * forces readahead on a given range of bytes in an inode
6601  */
6602 unsigned long btrfs_force_ra(struct address_space *mapping,
6603 			      struct file_ra_state *ra, struct file *file,
6604 			      pgoff_t offset, pgoff_t last_index)
6605 {
6606 	pgoff_t req_size = last_index - offset + 1;
6607 
6608 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6609 	return offset + req_size;
6610 }
6611 
6612 struct inode *btrfs_alloc_inode(struct super_block *sb)
6613 {
6614 	struct btrfs_inode *ei;
6615 	struct inode *inode;
6616 
6617 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6618 	if (!ei)
6619 		return NULL;
6620 
6621 	ei->root = NULL;
6622 	ei->space_info = NULL;
6623 	ei->generation = 0;
6624 	ei->sequence = 0;
6625 	ei->last_trans = 0;
6626 	ei->last_sub_trans = 0;
6627 	ei->logged_trans = 0;
6628 	ei->delalloc_bytes = 0;
6629 	ei->reserved_bytes = 0;
6630 	ei->disk_i_size = 0;
6631 	ei->flags = 0;
6632 	ei->index_cnt = (u64)-1;
6633 	ei->last_unlink_trans = 0;
6634 
6635 	spin_lock_init(&ei->accounting_lock);
6636 	atomic_set(&ei->outstanding_extents, 0);
6637 	ei->reserved_extents = 0;
6638 
6639 	ei->ordered_data_close = 0;
6640 	ei->orphan_meta_reserved = 0;
6641 	ei->dummy_inode = 0;
6642 	ei->force_compress = BTRFS_COMPRESS_NONE;
6643 
6644 	inode = &ei->vfs_inode;
6645 	extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6646 	extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6647 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6648 	mutex_init(&ei->log_mutex);
6649 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6650 	INIT_LIST_HEAD(&ei->i_orphan);
6651 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6652 	INIT_LIST_HEAD(&ei->ordered_operations);
6653 	RB_CLEAR_NODE(&ei->rb_node);
6654 
6655 	return inode;
6656 }
6657 
6658 static void btrfs_i_callback(struct rcu_head *head)
6659 {
6660 	struct inode *inode = container_of(head, struct inode, i_rcu);
6661 	INIT_LIST_HEAD(&inode->i_dentry);
6662 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6663 }
6664 
6665 void btrfs_destroy_inode(struct inode *inode)
6666 {
6667 	struct btrfs_ordered_extent *ordered;
6668 	struct btrfs_root *root = BTRFS_I(inode)->root;
6669 
6670 	WARN_ON(!list_empty(&inode->i_dentry));
6671 	WARN_ON(inode->i_data.nrpages);
6672 	WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6673 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6674 
6675 	/*
6676 	 * This can happen where we create an inode, but somebody else also
6677 	 * created the same inode and we need to destroy the one we already
6678 	 * created.
6679 	 */
6680 	if (!root)
6681 		goto free;
6682 
6683 	/*
6684 	 * Make sure we're properly removed from the ordered operation
6685 	 * lists.
6686 	 */
6687 	smp_mb();
6688 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6689 		spin_lock(&root->fs_info->ordered_extent_lock);
6690 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6691 		spin_unlock(&root->fs_info->ordered_extent_lock);
6692 	}
6693 
6694 	if (root == root->fs_info->tree_root) {
6695 		struct btrfs_block_group_cache *block_group;
6696 
6697 		block_group = btrfs_lookup_block_group(root->fs_info,
6698 						BTRFS_I(inode)->block_group);
6699 		if (block_group && block_group->inode == inode) {
6700 			spin_lock(&block_group->lock);
6701 			block_group->inode = NULL;
6702 			spin_unlock(&block_group->lock);
6703 			btrfs_put_block_group(block_group);
6704 		} else if (block_group) {
6705 			btrfs_put_block_group(block_group);
6706 		}
6707 	}
6708 
6709 	spin_lock(&root->orphan_lock);
6710 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6711 		printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6712 		       inode->i_ino);
6713 		list_del_init(&BTRFS_I(inode)->i_orphan);
6714 	}
6715 	spin_unlock(&root->orphan_lock);
6716 
6717 	while (1) {
6718 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6719 		if (!ordered)
6720 			break;
6721 		else {
6722 			printk(KERN_ERR "btrfs found ordered "
6723 			       "extent %llu %llu on inode cleanup\n",
6724 			       (unsigned long long)ordered->file_offset,
6725 			       (unsigned long long)ordered->len);
6726 			btrfs_remove_ordered_extent(inode, ordered);
6727 			btrfs_put_ordered_extent(ordered);
6728 			btrfs_put_ordered_extent(ordered);
6729 		}
6730 	}
6731 	inode_tree_del(inode);
6732 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6733 free:
6734 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6735 }
6736 
6737 int btrfs_drop_inode(struct inode *inode)
6738 {
6739 	struct btrfs_root *root = BTRFS_I(inode)->root;
6740 
6741 	if (btrfs_root_refs(&root->root_item) == 0 &&
6742 	    root != root->fs_info->tree_root)
6743 		return 1;
6744 	else
6745 		return generic_drop_inode(inode);
6746 }
6747 
6748 static void init_once(void *foo)
6749 {
6750 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6751 
6752 	inode_init_once(&ei->vfs_inode);
6753 }
6754 
6755 void btrfs_destroy_cachep(void)
6756 {
6757 	if (btrfs_inode_cachep)
6758 		kmem_cache_destroy(btrfs_inode_cachep);
6759 	if (btrfs_trans_handle_cachep)
6760 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6761 	if (btrfs_transaction_cachep)
6762 		kmem_cache_destroy(btrfs_transaction_cachep);
6763 	if (btrfs_path_cachep)
6764 		kmem_cache_destroy(btrfs_path_cachep);
6765 }
6766 
6767 int btrfs_init_cachep(void)
6768 {
6769 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6770 			sizeof(struct btrfs_inode), 0,
6771 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6772 	if (!btrfs_inode_cachep)
6773 		goto fail;
6774 
6775 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6776 			sizeof(struct btrfs_trans_handle), 0,
6777 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6778 	if (!btrfs_trans_handle_cachep)
6779 		goto fail;
6780 
6781 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6782 			sizeof(struct btrfs_transaction), 0,
6783 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6784 	if (!btrfs_transaction_cachep)
6785 		goto fail;
6786 
6787 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6788 			sizeof(struct btrfs_path), 0,
6789 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6790 	if (!btrfs_path_cachep)
6791 		goto fail;
6792 
6793 	return 0;
6794 fail:
6795 	btrfs_destroy_cachep();
6796 	return -ENOMEM;
6797 }
6798 
6799 static int btrfs_getattr(struct vfsmount *mnt,
6800 			 struct dentry *dentry, struct kstat *stat)
6801 {
6802 	struct inode *inode = dentry->d_inode;
6803 	generic_fillattr(inode, stat);
6804 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6805 	stat->blksize = PAGE_CACHE_SIZE;
6806 	stat->blocks = (inode_get_bytes(inode) +
6807 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6808 	return 0;
6809 }
6810 
6811 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6812 			   struct inode *new_dir, struct dentry *new_dentry)
6813 {
6814 	struct btrfs_trans_handle *trans;
6815 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6816 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6817 	struct inode *new_inode = new_dentry->d_inode;
6818 	struct inode *old_inode = old_dentry->d_inode;
6819 	struct timespec ctime = CURRENT_TIME;
6820 	u64 index = 0;
6821 	u64 root_objectid;
6822 	int ret;
6823 
6824 	if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6825 		return -EPERM;
6826 
6827 	/* we only allow rename subvolume link between subvolumes */
6828 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6829 		return -EXDEV;
6830 
6831 	if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6832 	    (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6833 		return -ENOTEMPTY;
6834 
6835 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6836 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6837 		return -ENOTEMPTY;
6838 	/*
6839 	 * we're using rename to replace one file with another.
6840 	 * and the replacement file is large.  Start IO on it now so
6841 	 * we don't add too much work to the end of the transaction
6842 	 */
6843 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6844 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6845 		filemap_flush(old_inode->i_mapping);
6846 
6847 	/* close the racy window with snapshot create/destroy ioctl */
6848 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6849 		down_read(&root->fs_info->subvol_sem);
6850 	/*
6851 	 * We want to reserve the absolute worst case amount of items.  So if
6852 	 * both inodes are subvols and we need to unlink them then that would
6853 	 * require 4 item modifications, but if they are both normal inodes it
6854 	 * would require 5 item modifications, so we'll assume their normal
6855 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6856 	 * should cover the worst case number of items we'll modify.
6857 	 */
6858 	trans = btrfs_start_transaction(root, 20);
6859 	if (IS_ERR(trans))
6860 		return PTR_ERR(trans);
6861 
6862 	btrfs_set_trans_block_group(trans, new_dir);
6863 
6864 	if (dest != root)
6865 		btrfs_record_root_in_trans(trans, dest);
6866 
6867 	ret = btrfs_set_inode_index(new_dir, &index);
6868 	if (ret)
6869 		goto out_fail;
6870 
6871 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6872 		/* force full log commit if subvolume involved. */
6873 		root->fs_info->last_trans_log_full_commit = trans->transid;
6874 	} else {
6875 		ret = btrfs_insert_inode_ref(trans, dest,
6876 					     new_dentry->d_name.name,
6877 					     new_dentry->d_name.len,
6878 					     old_inode->i_ino,
6879 					     new_dir->i_ino, index);
6880 		if (ret)
6881 			goto out_fail;
6882 		/*
6883 		 * this is an ugly little race, but the rename is required
6884 		 * to make sure that if we crash, the inode is either at the
6885 		 * old name or the new one.  pinning the log transaction lets
6886 		 * us make sure we don't allow a log commit to come in after
6887 		 * we unlink the name but before we add the new name back in.
6888 		 */
6889 		btrfs_pin_log_trans(root);
6890 	}
6891 	/*
6892 	 * make sure the inode gets flushed if it is replacing
6893 	 * something.
6894 	 */
6895 	if (new_inode && new_inode->i_size &&
6896 	    old_inode && S_ISREG(old_inode->i_mode)) {
6897 		btrfs_add_ordered_operation(trans, root, old_inode);
6898 	}
6899 
6900 	old_dir->i_ctime = old_dir->i_mtime = ctime;
6901 	new_dir->i_ctime = new_dir->i_mtime = ctime;
6902 	old_inode->i_ctime = ctime;
6903 
6904 	if (old_dentry->d_parent != new_dentry->d_parent)
6905 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6906 
6907 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6908 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6909 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6910 					old_dentry->d_name.name,
6911 					old_dentry->d_name.len);
6912 	} else {
6913 		btrfs_inc_nlink(old_dentry->d_inode);
6914 		ret = btrfs_unlink_inode(trans, root, old_dir,
6915 					 old_dentry->d_inode,
6916 					 old_dentry->d_name.name,
6917 					 old_dentry->d_name.len);
6918 	}
6919 	BUG_ON(ret);
6920 
6921 	if (new_inode) {
6922 		new_inode->i_ctime = CURRENT_TIME;
6923 		if (unlikely(new_inode->i_ino ==
6924 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6925 			root_objectid = BTRFS_I(new_inode)->location.objectid;
6926 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
6927 						root_objectid,
6928 						new_dentry->d_name.name,
6929 						new_dentry->d_name.len);
6930 			BUG_ON(new_inode->i_nlink == 0);
6931 		} else {
6932 			ret = btrfs_unlink_inode(trans, dest, new_dir,
6933 						 new_dentry->d_inode,
6934 						 new_dentry->d_name.name,
6935 						 new_dentry->d_name.len);
6936 		}
6937 		BUG_ON(ret);
6938 		if (new_inode->i_nlink == 0) {
6939 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6940 			BUG_ON(ret);
6941 		}
6942 	}
6943 
6944 	ret = btrfs_add_link(trans, new_dir, old_inode,
6945 			     new_dentry->d_name.name,
6946 			     new_dentry->d_name.len, 0, index);
6947 	BUG_ON(ret);
6948 
6949 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6950 		struct dentry *parent = dget_parent(new_dentry);
6951 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
6952 		dput(parent);
6953 		btrfs_end_log_trans(root);
6954 	}
6955 out_fail:
6956 	btrfs_end_transaction_throttle(trans, root);
6957 
6958 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6959 		up_read(&root->fs_info->subvol_sem);
6960 
6961 	return ret;
6962 }
6963 
6964 /*
6965  * some fairly slow code that needs optimization. This walks the list
6966  * of all the inodes with pending delalloc and forces them to disk.
6967  */
6968 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6969 {
6970 	struct list_head *head = &root->fs_info->delalloc_inodes;
6971 	struct btrfs_inode *binode;
6972 	struct inode *inode;
6973 
6974 	if (root->fs_info->sb->s_flags & MS_RDONLY)
6975 		return -EROFS;
6976 
6977 	spin_lock(&root->fs_info->delalloc_lock);
6978 	while (!list_empty(head)) {
6979 		binode = list_entry(head->next, struct btrfs_inode,
6980 				    delalloc_inodes);
6981 		inode = igrab(&binode->vfs_inode);
6982 		if (!inode)
6983 			list_del_init(&binode->delalloc_inodes);
6984 		spin_unlock(&root->fs_info->delalloc_lock);
6985 		if (inode) {
6986 			filemap_flush(inode->i_mapping);
6987 			if (delay_iput)
6988 				btrfs_add_delayed_iput(inode);
6989 			else
6990 				iput(inode);
6991 		}
6992 		cond_resched();
6993 		spin_lock(&root->fs_info->delalloc_lock);
6994 	}
6995 	spin_unlock(&root->fs_info->delalloc_lock);
6996 
6997 	/* the filemap_flush will queue IO into the worker threads, but
6998 	 * we have to make sure the IO is actually started and that
6999 	 * ordered extents get created before we return
7000 	 */
7001 	atomic_inc(&root->fs_info->async_submit_draining);
7002 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7003 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7004 		wait_event(root->fs_info->async_submit_wait,
7005 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7006 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7007 	}
7008 	atomic_dec(&root->fs_info->async_submit_draining);
7009 	return 0;
7010 }
7011 
7012 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7013 				   int sync)
7014 {
7015 	struct btrfs_inode *binode;
7016 	struct inode *inode = NULL;
7017 
7018 	spin_lock(&root->fs_info->delalloc_lock);
7019 	while (!list_empty(&root->fs_info->delalloc_inodes)) {
7020 		binode = list_entry(root->fs_info->delalloc_inodes.next,
7021 				    struct btrfs_inode, delalloc_inodes);
7022 		inode = igrab(&binode->vfs_inode);
7023 		if (inode) {
7024 			list_move_tail(&binode->delalloc_inodes,
7025 				       &root->fs_info->delalloc_inodes);
7026 			break;
7027 		}
7028 
7029 		list_del_init(&binode->delalloc_inodes);
7030 		cond_resched_lock(&root->fs_info->delalloc_lock);
7031 	}
7032 	spin_unlock(&root->fs_info->delalloc_lock);
7033 
7034 	if (inode) {
7035 		if (sync) {
7036 			filemap_write_and_wait(inode->i_mapping);
7037 			/*
7038 			 * We have to do this because compression doesn't
7039 			 * actually set PG_writeback until it submits the pages
7040 			 * for IO, which happens in an async thread, so we could
7041 			 * race and not actually wait for any writeback pages
7042 			 * because they've not been submitted yet.  Technically
7043 			 * this could still be the case for the ordered stuff
7044 			 * since the async thread may not have started to do its
7045 			 * work yet.  If this becomes the case then we need to
7046 			 * figure out a way to make sure that in writepage we
7047 			 * wait for any async pages to be submitted before
7048 			 * returning so that fdatawait does what its supposed to
7049 			 * do.
7050 			 */
7051 			btrfs_wait_ordered_range(inode, 0, (u64)-1);
7052 		} else {
7053 			filemap_flush(inode->i_mapping);
7054 		}
7055 		if (delay_iput)
7056 			btrfs_add_delayed_iput(inode);
7057 		else
7058 			iput(inode);
7059 		return 1;
7060 	}
7061 	return 0;
7062 }
7063 
7064 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7065 			 const char *symname)
7066 {
7067 	struct btrfs_trans_handle *trans;
7068 	struct btrfs_root *root = BTRFS_I(dir)->root;
7069 	struct btrfs_path *path;
7070 	struct btrfs_key key;
7071 	struct inode *inode = NULL;
7072 	int err;
7073 	int drop_inode = 0;
7074 	u64 objectid;
7075 	u64 index = 0 ;
7076 	int name_len;
7077 	int datasize;
7078 	unsigned long ptr;
7079 	struct btrfs_file_extent_item *ei;
7080 	struct extent_buffer *leaf;
7081 	unsigned long nr = 0;
7082 
7083 	name_len = strlen(symname) + 1;
7084 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7085 		return -ENAMETOOLONG;
7086 
7087 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7088 	if (err)
7089 		return err;
7090 	/*
7091 	 * 2 items for inode item and ref
7092 	 * 2 items for dir items
7093 	 * 1 item for xattr if selinux is on
7094 	 */
7095 	trans = btrfs_start_transaction(root, 5);
7096 	if (IS_ERR(trans))
7097 		return PTR_ERR(trans);
7098 
7099 	btrfs_set_trans_block_group(trans, dir);
7100 
7101 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7102 				dentry->d_name.len, dir->i_ino, objectid,
7103 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7104 				&index);
7105 	err = PTR_ERR(inode);
7106 	if (IS_ERR(inode))
7107 		goto out_unlock;
7108 
7109 	err = btrfs_init_inode_security(trans, inode, dir);
7110 	if (err) {
7111 		drop_inode = 1;
7112 		goto out_unlock;
7113 	}
7114 
7115 	btrfs_set_trans_block_group(trans, inode);
7116 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7117 	if (err)
7118 		drop_inode = 1;
7119 	else {
7120 		inode->i_mapping->a_ops = &btrfs_aops;
7121 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7122 		inode->i_fop = &btrfs_file_operations;
7123 		inode->i_op = &btrfs_file_inode_operations;
7124 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7125 	}
7126 	btrfs_update_inode_block_group(trans, inode);
7127 	btrfs_update_inode_block_group(trans, dir);
7128 	if (drop_inode)
7129 		goto out_unlock;
7130 
7131 	path = btrfs_alloc_path();
7132 	BUG_ON(!path);
7133 	key.objectid = inode->i_ino;
7134 	key.offset = 0;
7135 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7136 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7137 	err = btrfs_insert_empty_item(trans, root, path, &key,
7138 				      datasize);
7139 	if (err) {
7140 		drop_inode = 1;
7141 		goto out_unlock;
7142 	}
7143 	leaf = path->nodes[0];
7144 	ei = btrfs_item_ptr(leaf, path->slots[0],
7145 			    struct btrfs_file_extent_item);
7146 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7147 	btrfs_set_file_extent_type(leaf, ei,
7148 				   BTRFS_FILE_EXTENT_INLINE);
7149 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7150 	btrfs_set_file_extent_compression(leaf, ei, 0);
7151 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7152 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7153 
7154 	ptr = btrfs_file_extent_inline_start(ei);
7155 	write_extent_buffer(leaf, symname, ptr, name_len);
7156 	btrfs_mark_buffer_dirty(leaf);
7157 	btrfs_free_path(path);
7158 
7159 	inode->i_op = &btrfs_symlink_inode_operations;
7160 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7161 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7162 	inode_set_bytes(inode, name_len);
7163 	btrfs_i_size_write(inode, name_len - 1);
7164 	err = btrfs_update_inode(trans, root, inode);
7165 	if (err)
7166 		drop_inode = 1;
7167 
7168 out_unlock:
7169 	nr = trans->blocks_used;
7170 	btrfs_end_transaction_throttle(trans, root);
7171 	if (drop_inode) {
7172 		inode_dec_link_count(inode);
7173 		iput(inode);
7174 	}
7175 	btrfs_btree_balance_dirty(root, nr);
7176 	return err;
7177 }
7178 
7179 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7180 				       u64 start, u64 num_bytes, u64 min_size,
7181 				       loff_t actual_len, u64 *alloc_hint,
7182 				       struct btrfs_trans_handle *trans)
7183 {
7184 	struct btrfs_root *root = BTRFS_I(inode)->root;
7185 	struct btrfs_key ins;
7186 	u64 cur_offset = start;
7187 	u64 i_size;
7188 	int ret = 0;
7189 	bool own_trans = true;
7190 
7191 	if (trans)
7192 		own_trans = false;
7193 	while (num_bytes > 0) {
7194 		if (own_trans) {
7195 			trans = btrfs_start_transaction(root, 3);
7196 			if (IS_ERR(trans)) {
7197 				ret = PTR_ERR(trans);
7198 				break;
7199 			}
7200 		}
7201 
7202 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7203 					   0, *alloc_hint, (u64)-1, &ins, 1);
7204 		if (ret) {
7205 			if (own_trans)
7206 				btrfs_end_transaction(trans, root);
7207 			break;
7208 		}
7209 
7210 		ret = insert_reserved_file_extent(trans, inode,
7211 						  cur_offset, ins.objectid,
7212 						  ins.offset, ins.offset,
7213 						  ins.offset, 0, 0, 0,
7214 						  BTRFS_FILE_EXTENT_PREALLOC);
7215 		BUG_ON(ret);
7216 		btrfs_drop_extent_cache(inode, cur_offset,
7217 					cur_offset + ins.offset -1, 0);
7218 
7219 		num_bytes -= ins.offset;
7220 		cur_offset += ins.offset;
7221 		*alloc_hint = ins.objectid + ins.offset;
7222 
7223 		inode->i_ctime = CURRENT_TIME;
7224 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7225 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7226 		    (actual_len > inode->i_size) &&
7227 		    (cur_offset > inode->i_size)) {
7228 			if (cur_offset > actual_len)
7229 				i_size = actual_len;
7230 			else
7231 				i_size = cur_offset;
7232 			i_size_write(inode, i_size);
7233 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7234 		}
7235 
7236 		ret = btrfs_update_inode(trans, root, inode);
7237 		BUG_ON(ret);
7238 
7239 		if (own_trans)
7240 			btrfs_end_transaction(trans, root);
7241 	}
7242 	return ret;
7243 }
7244 
7245 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7246 			      u64 start, u64 num_bytes, u64 min_size,
7247 			      loff_t actual_len, u64 *alloc_hint)
7248 {
7249 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7250 					   min_size, actual_len, alloc_hint,
7251 					   NULL);
7252 }
7253 
7254 int btrfs_prealloc_file_range_trans(struct inode *inode,
7255 				    struct btrfs_trans_handle *trans, int mode,
7256 				    u64 start, u64 num_bytes, u64 min_size,
7257 				    loff_t actual_len, u64 *alloc_hint)
7258 {
7259 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7260 					   min_size, actual_len, alloc_hint, trans);
7261 }
7262 
7263 static int btrfs_set_page_dirty(struct page *page)
7264 {
7265 	return __set_page_dirty_nobuffers(page);
7266 }
7267 
7268 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7269 {
7270 	struct btrfs_root *root = BTRFS_I(inode)->root;
7271 
7272 	if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7273 		return -EROFS;
7274 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7275 		return -EACCES;
7276 	return generic_permission(inode, mask, flags, btrfs_check_acl);
7277 }
7278 
7279 static const struct inode_operations btrfs_dir_inode_operations = {
7280 	.getattr	= btrfs_getattr,
7281 	.lookup		= btrfs_lookup,
7282 	.create		= btrfs_create,
7283 	.unlink		= btrfs_unlink,
7284 	.link		= btrfs_link,
7285 	.mkdir		= btrfs_mkdir,
7286 	.rmdir		= btrfs_rmdir,
7287 	.rename		= btrfs_rename,
7288 	.symlink	= btrfs_symlink,
7289 	.setattr	= btrfs_setattr,
7290 	.mknod		= btrfs_mknod,
7291 	.setxattr	= btrfs_setxattr,
7292 	.getxattr	= btrfs_getxattr,
7293 	.listxattr	= btrfs_listxattr,
7294 	.removexattr	= btrfs_removexattr,
7295 	.permission	= btrfs_permission,
7296 };
7297 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7298 	.lookup		= btrfs_lookup,
7299 	.permission	= btrfs_permission,
7300 };
7301 
7302 static const struct file_operations btrfs_dir_file_operations = {
7303 	.llseek		= generic_file_llseek,
7304 	.read		= generic_read_dir,
7305 	.readdir	= btrfs_real_readdir,
7306 	.unlocked_ioctl	= btrfs_ioctl,
7307 #ifdef CONFIG_COMPAT
7308 	.compat_ioctl	= btrfs_ioctl,
7309 #endif
7310 	.release        = btrfs_release_file,
7311 	.fsync		= btrfs_sync_file,
7312 };
7313 
7314 static struct extent_io_ops btrfs_extent_io_ops = {
7315 	.fill_delalloc = run_delalloc_range,
7316 	.submit_bio_hook = btrfs_submit_bio_hook,
7317 	.merge_bio_hook = btrfs_merge_bio_hook,
7318 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7319 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7320 	.writepage_start_hook = btrfs_writepage_start_hook,
7321 	.readpage_io_failed_hook = btrfs_io_failed_hook,
7322 	.set_bit_hook = btrfs_set_bit_hook,
7323 	.clear_bit_hook = btrfs_clear_bit_hook,
7324 	.merge_extent_hook = btrfs_merge_extent_hook,
7325 	.split_extent_hook = btrfs_split_extent_hook,
7326 };
7327 
7328 /*
7329  * btrfs doesn't support the bmap operation because swapfiles
7330  * use bmap to make a mapping of extents in the file.  They assume
7331  * these extents won't change over the life of the file and they
7332  * use the bmap result to do IO directly to the drive.
7333  *
7334  * the btrfs bmap call would return logical addresses that aren't
7335  * suitable for IO and they also will change frequently as COW
7336  * operations happen.  So, swapfile + btrfs == corruption.
7337  *
7338  * For now we're avoiding this by dropping bmap.
7339  */
7340 static const struct address_space_operations btrfs_aops = {
7341 	.readpage	= btrfs_readpage,
7342 	.writepage	= btrfs_writepage,
7343 	.writepages	= btrfs_writepages,
7344 	.readpages	= btrfs_readpages,
7345 	.sync_page	= block_sync_page,
7346 	.direct_IO	= btrfs_direct_IO,
7347 	.invalidatepage = btrfs_invalidatepage,
7348 	.releasepage	= btrfs_releasepage,
7349 	.set_page_dirty	= btrfs_set_page_dirty,
7350 	.error_remove_page = generic_error_remove_page,
7351 };
7352 
7353 static const struct address_space_operations btrfs_symlink_aops = {
7354 	.readpage	= btrfs_readpage,
7355 	.writepage	= btrfs_writepage,
7356 	.invalidatepage = btrfs_invalidatepage,
7357 	.releasepage	= btrfs_releasepage,
7358 };
7359 
7360 static const struct inode_operations btrfs_file_inode_operations = {
7361 	.truncate	= btrfs_truncate,
7362 	.getattr	= btrfs_getattr,
7363 	.setattr	= btrfs_setattr,
7364 	.setxattr	= btrfs_setxattr,
7365 	.getxattr	= btrfs_getxattr,
7366 	.listxattr      = btrfs_listxattr,
7367 	.removexattr	= btrfs_removexattr,
7368 	.permission	= btrfs_permission,
7369 	.fiemap		= btrfs_fiemap,
7370 };
7371 static const struct inode_operations btrfs_special_inode_operations = {
7372 	.getattr	= btrfs_getattr,
7373 	.setattr	= btrfs_setattr,
7374 	.permission	= btrfs_permission,
7375 	.setxattr	= btrfs_setxattr,
7376 	.getxattr	= btrfs_getxattr,
7377 	.listxattr	= btrfs_listxattr,
7378 	.removexattr	= btrfs_removexattr,
7379 };
7380 static const struct inode_operations btrfs_symlink_inode_operations = {
7381 	.readlink	= generic_readlink,
7382 	.follow_link	= page_follow_link_light,
7383 	.put_link	= page_put_link,
7384 	.getattr	= btrfs_getattr,
7385 	.permission	= btrfs_permission,
7386 	.setxattr	= btrfs_setxattr,
7387 	.getxattr	= btrfs_getxattr,
7388 	.listxattr	= btrfs_listxattr,
7389 	.removexattr	= btrfs_removexattr,
7390 };
7391 
7392 const struct dentry_operations btrfs_dentry_operations = {
7393 	.d_delete	= btrfs_dentry_delete,
7394 };
7395