1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "compression.h" 52 #include "locking.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 static const struct inode_operations btrfs_dir_inode_operations; 60 static const struct inode_operations btrfs_symlink_inode_operations; 61 static const struct inode_operations btrfs_dir_ro_inode_operations; 62 static const struct inode_operations btrfs_special_inode_operations; 63 static const struct inode_operations btrfs_file_inode_operations; 64 static const struct address_space_operations btrfs_aops; 65 static const struct address_space_operations btrfs_symlink_aops; 66 static const struct file_operations btrfs_dir_file_operations; 67 static struct extent_io_ops btrfs_extent_io_ops; 68 69 static struct kmem_cache *btrfs_inode_cachep; 70 struct kmem_cache *btrfs_trans_handle_cachep; 71 struct kmem_cache *btrfs_transaction_cachep; 72 struct kmem_cache *btrfs_path_cachep; 73 74 #define S_SHIFT 12 75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 83 }; 84 85 static void btrfs_truncate(struct inode *inode); 86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 87 static noinline int cow_file_range(struct inode *inode, 88 struct page *locked_page, 89 u64 start, u64 end, int *page_started, 90 unsigned long *nr_written, int unlock); 91 92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 93 struct inode *inode, struct inode *dir) 94 { 95 int err; 96 97 err = btrfs_init_acl(trans, inode, dir); 98 if (!err) 99 err = btrfs_xattr_security_init(trans, inode, dir); 100 return err; 101 } 102 103 /* 104 * this does all the hard work for inserting an inline extent into 105 * the btree. The caller should have done a btrfs_drop_extents so that 106 * no overlapping inline items exist in the btree 107 */ 108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, struct inode *inode, 110 u64 start, size_t size, size_t compressed_size, 111 struct page **compressed_pages) 112 { 113 struct btrfs_key key; 114 struct btrfs_path *path; 115 struct extent_buffer *leaf; 116 struct page *page = NULL; 117 char *kaddr; 118 unsigned long ptr; 119 struct btrfs_file_extent_item *ei; 120 int err = 0; 121 int ret; 122 size_t cur_size = size; 123 size_t datasize; 124 unsigned long offset; 125 int compress_type = BTRFS_COMPRESS_NONE; 126 127 if (compressed_size && compressed_pages) { 128 compress_type = root->fs_info->compress_type; 129 cur_size = compressed_size; 130 } 131 132 path = btrfs_alloc_path(); 133 if (!path) 134 return -ENOMEM; 135 136 path->leave_spinning = 1; 137 btrfs_set_trans_block_group(trans, inode); 138 139 key.objectid = inode->i_ino; 140 key.offset = start; 141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 142 datasize = btrfs_file_extent_calc_inline_size(cur_size); 143 144 inode_add_bytes(inode, size); 145 ret = btrfs_insert_empty_item(trans, root, path, &key, 146 datasize); 147 BUG_ON(ret); 148 if (ret) { 149 err = ret; 150 goto fail; 151 } 152 leaf = path->nodes[0]; 153 ei = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_file_extent_item); 155 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 157 btrfs_set_file_extent_encryption(leaf, ei, 0); 158 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 159 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 160 ptr = btrfs_file_extent_inline_start(ei); 161 162 if (compress_type != BTRFS_COMPRESS_NONE) { 163 struct page *cpage; 164 int i = 0; 165 while (compressed_size > 0) { 166 cpage = compressed_pages[i]; 167 cur_size = min_t(unsigned long, compressed_size, 168 PAGE_CACHE_SIZE); 169 170 kaddr = kmap_atomic(cpage, KM_USER0); 171 write_extent_buffer(leaf, kaddr, ptr, cur_size); 172 kunmap_atomic(kaddr, KM_USER0); 173 174 i++; 175 ptr += cur_size; 176 compressed_size -= cur_size; 177 } 178 btrfs_set_file_extent_compression(leaf, ei, 179 compress_type); 180 } else { 181 page = find_get_page(inode->i_mapping, 182 start >> PAGE_CACHE_SHIFT); 183 btrfs_set_file_extent_compression(leaf, ei, 0); 184 kaddr = kmap_atomic(page, KM_USER0); 185 offset = start & (PAGE_CACHE_SIZE - 1); 186 write_extent_buffer(leaf, kaddr + offset, ptr, size); 187 kunmap_atomic(kaddr, KM_USER0); 188 page_cache_release(page); 189 } 190 btrfs_mark_buffer_dirty(leaf); 191 btrfs_free_path(path); 192 193 /* 194 * we're an inline extent, so nobody can 195 * extend the file past i_size without locking 196 * a page we already have locked. 197 * 198 * We must do any isize and inode updates 199 * before we unlock the pages. Otherwise we 200 * could end up racing with unlink. 201 */ 202 BTRFS_I(inode)->disk_i_size = inode->i_size; 203 btrfs_update_inode(trans, root, inode); 204 205 return 0; 206 fail: 207 btrfs_free_path(path); 208 return err; 209 } 210 211 212 /* 213 * conditionally insert an inline extent into the file. This 214 * does the checks required to make sure the data is small enough 215 * to fit as an inline extent. 216 */ 217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 218 struct btrfs_root *root, 219 struct inode *inode, u64 start, u64 end, 220 size_t compressed_size, 221 struct page **compressed_pages) 222 { 223 u64 isize = i_size_read(inode); 224 u64 actual_end = min(end + 1, isize); 225 u64 inline_len = actual_end - start; 226 u64 aligned_end = (end + root->sectorsize - 1) & 227 ~((u64)root->sectorsize - 1); 228 u64 hint_byte; 229 u64 data_len = inline_len; 230 int ret; 231 232 if (compressed_size) 233 data_len = compressed_size; 234 235 if (start > 0 || 236 actual_end >= PAGE_CACHE_SIZE || 237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 238 (!compressed_size && 239 (actual_end & (root->sectorsize - 1)) == 0) || 240 end + 1 < isize || 241 data_len > root->fs_info->max_inline) { 242 return 1; 243 } 244 245 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 246 &hint_byte, 1); 247 BUG_ON(ret); 248 249 if (isize > actual_end) 250 inline_len = min_t(u64, isize, actual_end); 251 ret = insert_inline_extent(trans, root, inode, start, 252 inline_len, compressed_size, 253 compressed_pages); 254 BUG_ON(ret); 255 btrfs_delalloc_release_metadata(inode, end + 1 - start); 256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 257 return 0; 258 } 259 260 struct async_extent { 261 u64 start; 262 u64 ram_size; 263 u64 compressed_size; 264 struct page **pages; 265 unsigned long nr_pages; 266 int compress_type; 267 struct list_head list; 268 }; 269 270 struct async_cow { 271 struct inode *inode; 272 struct btrfs_root *root; 273 struct page *locked_page; 274 u64 start; 275 u64 end; 276 struct list_head extents; 277 struct btrfs_work work; 278 }; 279 280 static noinline int add_async_extent(struct async_cow *cow, 281 u64 start, u64 ram_size, 282 u64 compressed_size, 283 struct page **pages, 284 unsigned long nr_pages, 285 int compress_type) 286 { 287 struct async_extent *async_extent; 288 289 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 290 async_extent->start = start; 291 async_extent->ram_size = ram_size; 292 async_extent->compressed_size = compressed_size; 293 async_extent->pages = pages; 294 async_extent->nr_pages = nr_pages; 295 async_extent->compress_type = compress_type; 296 list_add_tail(&async_extent->list, &cow->extents); 297 return 0; 298 } 299 300 /* 301 * we create compressed extents in two phases. The first 302 * phase compresses a range of pages that have already been 303 * locked (both pages and state bits are locked). 304 * 305 * This is done inside an ordered work queue, and the compression 306 * is spread across many cpus. The actual IO submission is step 307 * two, and the ordered work queue takes care of making sure that 308 * happens in the same order things were put onto the queue by 309 * writepages and friends. 310 * 311 * If this code finds it can't get good compression, it puts an 312 * entry onto the work queue to write the uncompressed bytes. This 313 * makes sure that both compressed inodes and uncompressed inodes 314 * are written in the same order that pdflush sent them down. 315 */ 316 static noinline int compress_file_range(struct inode *inode, 317 struct page *locked_page, 318 u64 start, u64 end, 319 struct async_cow *async_cow, 320 int *num_added) 321 { 322 struct btrfs_root *root = BTRFS_I(inode)->root; 323 struct btrfs_trans_handle *trans; 324 u64 num_bytes; 325 u64 blocksize = root->sectorsize; 326 u64 actual_end; 327 u64 isize = i_size_read(inode); 328 int ret = 0; 329 struct page **pages = NULL; 330 unsigned long nr_pages; 331 unsigned long nr_pages_ret = 0; 332 unsigned long total_compressed = 0; 333 unsigned long total_in = 0; 334 unsigned long max_compressed = 128 * 1024; 335 unsigned long max_uncompressed = 128 * 1024; 336 int i; 337 int will_compress; 338 int compress_type = root->fs_info->compress_type; 339 340 actual_end = min_t(u64, isize, end + 1); 341 again: 342 will_compress = 0; 343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 345 346 /* 347 * we don't want to send crud past the end of i_size through 348 * compression, that's just a waste of CPU time. So, if the 349 * end of the file is before the start of our current 350 * requested range of bytes, we bail out to the uncompressed 351 * cleanup code that can deal with all of this. 352 * 353 * It isn't really the fastest way to fix things, but this is a 354 * very uncommon corner. 355 */ 356 if (actual_end <= start) 357 goto cleanup_and_bail_uncompressed; 358 359 total_compressed = actual_end - start; 360 361 /* we want to make sure that amount of ram required to uncompress 362 * an extent is reasonable, so we limit the total size in ram 363 * of a compressed extent to 128k. This is a crucial number 364 * because it also controls how easily we can spread reads across 365 * cpus for decompression. 366 * 367 * We also want to make sure the amount of IO required to do 368 * a random read is reasonably small, so we limit the size of 369 * a compressed extent to 128k. 370 */ 371 total_compressed = min(total_compressed, max_uncompressed); 372 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 373 num_bytes = max(blocksize, num_bytes); 374 total_in = 0; 375 ret = 0; 376 377 /* 378 * we do compression for mount -o compress and when the 379 * inode has not been flagged as nocompress. This flag can 380 * change at any time if we discover bad compression ratios. 381 */ 382 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 383 (btrfs_test_opt(root, COMPRESS) || 384 (BTRFS_I(inode)->force_compress))) { 385 WARN_ON(pages); 386 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 387 388 if (BTRFS_I(inode)->force_compress) 389 compress_type = BTRFS_I(inode)->force_compress; 390 391 ret = btrfs_compress_pages(compress_type, 392 inode->i_mapping, start, 393 total_compressed, pages, 394 nr_pages, &nr_pages_ret, 395 &total_in, 396 &total_compressed, 397 max_compressed); 398 399 if (!ret) { 400 unsigned long offset = total_compressed & 401 (PAGE_CACHE_SIZE - 1); 402 struct page *page = pages[nr_pages_ret - 1]; 403 char *kaddr; 404 405 /* zero the tail end of the last page, we might be 406 * sending it down to disk 407 */ 408 if (offset) { 409 kaddr = kmap_atomic(page, KM_USER0); 410 memset(kaddr + offset, 0, 411 PAGE_CACHE_SIZE - offset); 412 kunmap_atomic(kaddr, KM_USER0); 413 } 414 will_compress = 1; 415 } 416 } 417 if (start == 0) { 418 trans = btrfs_join_transaction(root, 1); 419 BUG_ON(IS_ERR(trans)); 420 btrfs_set_trans_block_group(trans, inode); 421 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 422 423 /* lets try to make an inline extent */ 424 if (ret || total_in < (actual_end - start)) { 425 /* we didn't compress the entire range, try 426 * to make an uncompressed inline extent. 427 */ 428 ret = cow_file_range_inline(trans, root, inode, 429 start, end, 0, NULL); 430 } else { 431 /* try making a compressed inline extent */ 432 ret = cow_file_range_inline(trans, root, inode, 433 start, end, 434 total_compressed, pages); 435 } 436 if (ret == 0) { 437 /* 438 * inline extent creation worked, we don't need 439 * to create any more async work items. Unlock 440 * and free up our temp pages. 441 */ 442 extent_clear_unlock_delalloc(inode, 443 &BTRFS_I(inode)->io_tree, 444 start, end, NULL, 445 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 446 EXTENT_CLEAR_DELALLOC | 447 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 448 449 btrfs_end_transaction(trans, root); 450 goto free_pages_out; 451 } 452 btrfs_end_transaction(trans, root); 453 } 454 455 if (will_compress) { 456 /* 457 * we aren't doing an inline extent round the compressed size 458 * up to a block size boundary so the allocator does sane 459 * things 460 */ 461 total_compressed = (total_compressed + blocksize - 1) & 462 ~(blocksize - 1); 463 464 /* 465 * one last check to make sure the compression is really a 466 * win, compare the page count read with the blocks on disk 467 */ 468 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 469 ~(PAGE_CACHE_SIZE - 1); 470 if (total_compressed >= total_in) { 471 will_compress = 0; 472 } else { 473 num_bytes = total_in; 474 } 475 } 476 if (!will_compress && pages) { 477 /* 478 * the compression code ran but failed to make things smaller, 479 * free any pages it allocated and our page pointer array 480 */ 481 for (i = 0; i < nr_pages_ret; i++) { 482 WARN_ON(pages[i]->mapping); 483 page_cache_release(pages[i]); 484 } 485 kfree(pages); 486 pages = NULL; 487 total_compressed = 0; 488 nr_pages_ret = 0; 489 490 /* flag the file so we don't compress in the future */ 491 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 492 !(BTRFS_I(inode)->force_compress)) { 493 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 494 } 495 } 496 if (will_compress) { 497 *num_added += 1; 498 499 /* the async work queues will take care of doing actual 500 * allocation on disk for these compressed pages, 501 * and will submit them to the elevator. 502 */ 503 add_async_extent(async_cow, start, num_bytes, 504 total_compressed, pages, nr_pages_ret, 505 compress_type); 506 507 if (start + num_bytes < end) { 508 start += num_bytes; 509 pages = NULL; 510 cond_resched(); 511 goto again; 512 } 513 } else { 514 cleanup_and_bail_uncompressed: 515 /* 516 * No compression, but we still need to write the pages in 517 * the file we've been given so far. redirty the locked 518 * page if it corresponds to our extent and set things up 519 * for the async work queue to run cow_file_range to do 520 * the normal delalloc dance 521 */ 522 if (page_offset(locked_page) >= start && 523 page_offset(locked_page) <= end) { 524 __set_page_dirty_nobuffers(locked_page); 525 /* unlocked later on in the async handlers */ 526 } 527 add_async_extent(async_cow, start, end - start + 1, 528 0, NULL, 0, BTRFS_COMPRESS_NONE); 529 *num_added += 1; 530 } 531 532 out: 533 return 0; 534 535 free_pages_out: 536 for (i = 0; i < nr_pages_ret; i++) { 537 WARN_ON(pages[i]->mapping); 538 page_cache_release(pages[i]); 539 } 540 kfree(pages); 541 542 goto out; 543 } 544 545 /* 546 * phase two of compressed writeback. This is the ordered portion 547 * of the code, which only gets called in the order the work was 548 * queued. We walk all the async extents created by compress_file_range 549 * and send them down to the disk. 550 */ 551 static noinline int submit_compressed_extents(struct inode *inode, 552 struct async_cow *async_cow) 553 { 554 struct async_extent *async_extent; 555 u64 alloc_hint = 0; 556 struct btrfs_trans_handle *trans; 557 struct btrfs_key ins; 558 struct extent_map *em; 559 struct btrfs_root *root = BTRFS_I(inode)->root; 560 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 561 struct extent_io_tree *io_tree; 562 int ret = 0; 563 564 if (list_empty(&async_cow->extents)) 565 return 0; 566 567 568 while (!list_empty(&async_cow->extents)) { 569 async_extent = list_entry(async_cow->extents.next, 570 struct async_extent, list); 571 list_del(&async_extent->list); 572 573 io_tree = &BTRFS_I(inode)->io_tree; 574 575 retry: 576 /* did the compression code fall back to uncompressed IO? */ 577 if (!async_extent->pages) { 578 int page_started = 0; 579 unsigned long nr_written = 0; 580 581 lock_extent(io_tree, async_extent->start, 582 async_extent->start + 583 async_extent->ram_size - 1, GFP_NOFS); 584 585 /* allocate blocks */ 586 ret = cow_file_range(inode, async_cow->locked_page, 587 async_extent->start, 588 async_extent->start + 589 async_extent->ram_size - 1, 590 &page_started, &nr_written, 0); 591 592 /* 593 * if page_started, cow_file_range inserted an 594 * inline extent and took care of all the unlocking 595 * and IO for us. Otherwise, we need to submit 596 * all those pages down to the drive. 597 */ 598 if (!page_started && !ret) 599 extent_write_locked_range(io_tree, 600 inode, async_extent->start, 601 async_extent->start + 602 async_extent->ram_size - 1, 603 btrfs_get_extent, 604 WB_SYNC_ALL); 605 kfree(async_extent); 606 cond_resched(); 607 continue; 608 } 609 610 lock_extent(io_tree, async_extent->start, 611 async_extent->start + async_extent->ram_size - 1, 612 GFP_NOFS); 613 614 trans = btrfs_join_transaction(root, 1); 615 BUG_ON(IS_ERR(trans)); 616 ret = btrfs_reserve_extent(trans, root, 617 async_extent->compressed_size, 618 async_extent->compressed_size, 619 0, alloc_hint, 620 (u64)-1, &ins, 1); 621 btrfs_end_transaction(trans, root); 622 623 if (ret) { 624 int i; 625 for (i = 0; i < async_extent->nr_pages; i++) { 626 WARN_ON(async_extent->pages[i]->mapping); 627 page_cache_release(async_extent->pages[i]); 628 } 629 kfree(async_extent->pages); 630 async_extent->nr_pages = 0; 631 async_extent->pages = NULL; 632 unlock_extent(io_tree, async_extent->start, 633 async_extent->start + 634 async_extent->ram_size - 1, GFP_NOFS); 635 goto retry; 636 } 637 638 /* 639 * here we're doing allocation and writeback of the 640 * compressed pages 641 */ 642 btrfs_drop_extent_cache(inode, async_extent->start, 643 async_extent->start + 644 async_extent->ram_size - 1, 0); 645 646 em = alloc_extent_map(GFP_NOFS); 647 BUG_ON(!em); 648 em->start = async_extent->start; 649 em->len = async_extent->ram_size; 650 em->orig_start = em->start; 651 652 em->block_start = ins.objectid; 653 em->block_len = ins.offset; 654 em->bdev = root->fs_info->fs_devices->latest_bdev; 655 em->compress_type = async_extent->compress_type; 656 set_bit(EXTENT_FLAG_PINNED, &em->flags); 657 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 658 659 while (1) { 660 write_lock(&em_tree->lock); 661 ret = add_extent_mapping(em_tree, em); 662 write_unlock(&em_tree->lock); 663 if (ret != -EEXIST) { 664 free_extent_map(em); 665 break; 666 } 667 btrfs_drop_extent_cache(inode, async_extent->start, 668 async_extent->start + 669 async_extent->ram_size - 1, 0); 670 } 671 672 ret = btrfs_add_ordered_extent_compress(inode, 673 async_extent->start, 674 ins.objectid, 675 async_extent->ram_size, 676 ins.offset, 677 BTRFS_ORDERED_COMPRESSED, 678 async_extent->compress_type); 679 BUG_ON(ret); 680 681 /* 682 * clear dirty, set writeback and unlock the pages. 683 */ 684 extent_clear_unlock_delalloc(inode, 685 &BTRFS_I(inode)->io_tree, 686 async_extent->start, 687 async_extent->start + 688 async_extent->ram_size - 1, 689 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 690 EXTENT_CLEAR_UNLOCK | 691 EXTENT_CLEAR_DELALLOC | 692 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 693 694 ret = btrfs_submit_compressed_write(inode, 695 async_extent->start, 696 async_extent->ram_size, 697 ins.objectid, 698 ins.offset, async_extent->pages, 699 async_extent->nr_pages); 700 701 BUG_ON(ret); 702 alloc_hint = ins.objectid + ins.offset; 703 kfree(async_extent); 704 cond_resched(); 705 } 706 707 return 0; 708 } 709 710 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 711 u64 num_bytes) 712 { 713 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 714 struct extent_map *em; 715 u64 alloc_hint = 0; 716 717 read_lock(&em_tree->lock); 718 em = search_extent_mapping(em_tree, start, num_bytes); 719 if (em) { 720 /* 721 * if block start isn't an actual block number then find the 722 * first block in this inode and use that as a hint. If that 723 * block is also bogus then just don't worry about it. 724 */ 725 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 726 free_extent_map(em); 727 em = search_extent_mapping(em_tree, 0, 0); 728 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 729 alloc_hint = em->block_start; 730 if (em) 731 free_extent_map(em); 732 } else { 733 alloc_hint = em->block_start; 734 free_extent_map(em); 735 } 736 } 737 read_unlock(&em_tree->lock); 738 739 return alloc_hint; 740 } 741 742 /* 743 * when extent_io.c finds a delayed allocation range in the file, 744 * the call backs end up in this code. The basic idea is to 745 * allocate extents on disk for the range, and create ordered data structs 746 * in ram to track those extents. 747 * 748 * locked_page is the page that writepage had locked already. We use 749 * it to make sure we don't do extra locks or unlocks. 750 * 751 * *page_started is set to one if we unlock locked_page and do everything 752 * required to start IO on it. It may be clean and already done with 753 * IO when we return. 754 */ 755 static noinline int cow_file_range(struct inode *inode, 756 struct page *locked_page, 757 u64 start, u64 end, int *page_started, 758 unsigned long *nr_written, 759 int unlock) 760 { 761 struct btrfs_root *root = BTRFS_I(inode)->root; 762 struct btrfs_trans_handle *trans; 763 u64 alloc_hint = 0; 764 u64 num_bytes; 765 unsigned long ram_size; 766 u64 disk_num_bytes; 767 u64 cur_alloc_size; 768 u64 blocksize = root->sectorsize; 769 struct btrfs_key ins; 770 struct extent_map *em; 771 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 772 int ret = 0; 773 774 BUG_ON(root == root->fs_info->tree_root); 775 trans = btrfs_join_transaction(root, 1); 776 BUG_ON(IS_ERR(trans)); 777 btrfs_set_trans_block_group(trans, inode); 778 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 779 780 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 781 num_bytes = max(blocksize, num_bytes); 782 disk_num_bytes = num_bytes; 783 ret = 0; 784 785 if (start == 0) { 786 /* lets try to make an inline extent */ 787 ret = cow_file_range_inline(trans, root, inode, 788 start, end, 0, NULL); 789 if (ret == 0) { 790 extent_clear_unlock_delalloc(inode, 791 &BTRFS_I(inode)->io_tree, 792 start, end, NULL, 793 EXTENT_CLEAR_UNLOCK_PAGE | 794 EXTENT_CLEAR_UNLOCK | 795 EXTENT_CLEAR_DELALLOC | 796 EXTENT_CLEAR_DIRTY | 797 EXTENT_SET_WRITEBACK | 798 EXTENT_END_WRITEBACK); 799 800 *nr_written = *nr_written + 801 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 802 *page_started = 1; 803 ret = 0; 804 goto out; 805 } 806 } 807 808 BUG_ON(disk_num_bytes > 809 btrfs_super_total_bytes(&root->fs_info->super_copy)); 810 811 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 812 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 813 814 while (disk_num_bytes > 0) { 815 unsigned long op; 816 817 cur_alloc_size = disk_num_bytes; 818 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 819 root->sectorsize, 0, alloc_hint, 820 (u64)-1, &ins, 1); 821 BUG_ON(ret); 822 823 em = alloc_extent_map(GFP_NOFS); 824 BUG_ON(!em); 825 em->start = start; 826 em->orig_start = em->start; 827 ram_size = ins.offset; 828 em->len = ins.offset; 829 830 em->block_start = ins.objectid; 831 em->block_len = ins.offset; 832 em->bdev = root->fs_info->fs_devices->latest_bdev; 833 set_bit(EXTENT_FLAG_PINNED, &em->flags); 834 835 while (1) { 836 write_lock(&em_tree->lock); 837 ret = add_extent_mapping(em_tree, em); 838 write_unlock(&em_tree->lock); 839 if (ret != -EEXIST) { 840 free_extent_map(em); 841 break; 842 } 843 btrfs_drop_extent_cache(inode, start, 844 start + ram_size - 1, 0); 845 } 846 847 cur_alloc_size = ins.offset; 848 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 849 ram_size, cur_alloc_size, 0); 850 BUG_ON(ret); 851 852 if (root->root_key.objectid == 853 BTRFS_DATA_RELOC_TREE_OBJECTID) { 854 ret = btrfs_reloc_clone_csums(inode, start, 855 cur_alloc_size); 856 BUG_ON(ret); 857 } 858 859 if (disk_num_bytes < cur_alloc_size) 860 break; 861 862 /* we're not doing compressed IO, don't unlock the first 863 * page (which the caller expects to stay locked), don't 864 * clear any dirty bits and don't set any writeback bits 865 * 866 * Do set the Private2 bit so we know this page was properly 867 * setup for writepage 868 */ 869 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 870 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 871 EXTENT_SET_PRIVATE2; 872 873 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 874 start, start + ram_size - 1, 875 locked_page, op); 876 disk_num_bytes -= cur_alloc_size; 877 num_bytes -= cur_alloc_size; 878 alloc_hint = ins.objectid + ins.offset; 879 start += cur_alloc_size; 880 } 881 out: 882 ret = 0; 883 btrfs_end_transaction(trans, root); 884 885 return ret; 886 } 887 888 /* 889 * work queue call back to started compression on a file and pages 890 */ 891 static noinline void async_cow_start(struct btrfs_work *work) 892 { 893 struct async_cow *async_cow; 894 int num_added = 0; 895 async_cow = container_of(work, struct async_cow, work); 896 897 compress_file_range(async_cow->inode, async_cow->locked_page, 898 async_cow->start, async_cow->end, async_cow, 899 &num_added); 900 if (num_added == 0) 901 async_cow->inode = NULL; 902 } 903 904 /* 905 * work queue call back to submit previously compressed pages 906 */ 907 static noinline void async_cow_submit(struct btrfs_work *work) 908 { 909 struct async_cow *async_cow; 910 struct btrfs_root *root; 911 unsigned long nr_pages; 912 913 async_cow = container_of(work, struct async_cow, work); 914 915 root = async_cow->root; 916 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 917 PAGE_CACHE_SHIFT; 918 919 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 920 921 if (atomic_read(&root->fs_info->async_delalloc_pages) < 922 5 * 1042 * 1024 && 923 waitqueue_active(&root->fs_info->async_submit_wait)) 924 wake_up(&root->fs_info->async_submit_wait); 925 926 if (async_cow->inode) 927 submit_compressed_extents(async_cow->inode, async_cow); 928 } 929 930 static noinline void async_cow_free(struct btrfs_work *work) 931 { 932 struct async_cow *async_cow; 933 async_cow = container_of(work, struct async_cow, work); 934 kfree(async_cow); 935 } 936 937 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 938 u64 start, u64 end, int *page_started, 939 unsigned long *nr_written) 940 { 941 struct async_cow *async_cow; 942 struct btrfs_root *root = BTRFS_I(inode)->root; 943 unsigned long nr_pages; 944 u64 cur_end; 945 int limit = 10 * 1024 * 1042; 946 947 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 948 1, 0, NULL, GFP_NOFS); 949 while (start < end) { 950 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 951 async_cow->inode = inode; 952 async_cow->root = root; 953 async_cow->locked_page = locked_page; 954 async_cow->start = start; 955 956 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 957 cur_end = end; 958 else 959 cur_end = min(end, start + 512 * 1024 - 1); 960 961 async_cow->end = cur_end; 962 INIT_LIST_HEAD(&async_cow->extents); 963 964 async_cow->work.func = async_cow_start; 965 async_cow->work.ordered_func = async_cow_submit; 966 async_cow->work.ordered_free = async_cow_free; 967 async_cow->work.flags = 0; 968 969 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 970 PAGE_CACHE_SHIFT; 971 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 972 973 btrfs_queue_worker(&root->fs_info->delalloc_workers, 974 &async_cow->work); 975 976 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 977 wait_event(root->fs_info->async_submit_wait, 978 (atomic_read(&root->fs_info->async_delalloc_pages) < 979 limit)); 980 } 981 982 while (atomic_read(&root->fs_info->async_submit_draining) && 983 atomic_read(&root->fs_info->async_delalloc_pages)) { 984 wait_event(root->fs_info->async_submit_wait, 985 (atomic_read(&root->fs_info->async_delalloc_pages) == 986 0)); 987 } 988 989 *nr_written += nr_pages; 990 start = cur_end + 1; 991 } 992 *page_started = 1; 993 return 0; 994 } 995 996 static noinline int csum_exist_in_range(struct btrfs_root *root, 997 u64 bytenr, u64 num_bytes) 998 { 999 int ret; 1000 struct btrfs_ordered_sum *sums; 1001 LIST_HEAD(list); 1002 1003 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1004 bytenr + num_bytes - 1, &list); 1005 if (ret == 0 && list_empty(&list)) 1006 return 0; 1007 1008 while (!list_empty(&list)) { 1009 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1010 list_del(&sums->list); 1011 kfree(sums); 1012 } 1013 return 1; 1014 } 1015 1016 /* 1017 * when nowcow writeback call back. This checks for snapshots or COW copies 1018 * of the extents that exist in the file, and COWs the file as required. 1019 * 1020 * If no cow copies or snapshots exist, we write directly to the existing 1021 * blocks on disk 1022 */ 1023 static noinline int run_delalloc_nocow(struct inode *inode, 1024 struct page *locked_page, 1025 u64 start, u64 end, int *page_started, int force, 1026 unsigned long *nr_written) 1027 { 1028 struct btrfs_root *root = BTRFS_I(inode)->root; 1029 struct btrfs_trans_handle *trans; 1030 struct extent_buffer *leaf; 1031 struct btrfs_path *path; 1032 struct btrfs_file_extent_item *fi; 1033 struct btrfs_key found_key; 1034 u64 cow_start; 1035 u64 cur_offset; 1036 u64 extent_end; 1037 u64 extent_offset; 1038 u64 disk_bytenr; 1039 u64 num_bytes; 1040 int extent_type; 1041 int ret; 1042 int type; 1043 int nocow; 1044 int check_prev = 1; 1045 bool nolock = false; 1046 1047 path = btrfs_alloc_path(); 1048 BUG_ON(!path); 1049 if (root == root->fs_info->tree_root) { 1050 nolock = true; 1051 trans = btrfs_join_transaction_nolock(root, 1); 1052 } else { 1053 trans = btrfs_join_transaction(root, 1); 1054 } 1055 BUG_ON(IS_ERR(trans)); 1056 1057 cow_start = (u64)-1; 1058 cur_offset = start; 1059 while (1) { 1060 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 1061 cur_offset, 0); 1062 BUG_ON(ret < 0); 1063 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1064 leaf = path->nodes[0]; 1065 btrfs_item_key_to_cpu(leaf, &found_key, 1066 path->slots[0] - 1); 1067 if (found_key.objectid == inode->i_ino && 1068 found_key.type == BTRFS_EXTENT_DATA_KEY) 1069 path->slots[0]--; 1070 } 1071 check_prev = 0; 1072 next_slot: 1073 leaf = path->nodes[0]; 1074 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1075 ret = btrfs_next_leaf(root, path); 1076 if (ret < 0) 1077 BUG_ON(1); 1078 if (ret > 0) 1079 break; 1080 leaf = path->nodes[0]; 1081 } 1082 1083 nocow = 0; 1084 disk_bytenr = 0; 1085 num_bytes = 0; 1086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1087 1088 if (found_key.objectid > inode->i_ino || 1089 found_key.type > BTRFS_EXTENT_DATA_KEY || 1090 found_key.offset > end) 1091 break; 1092 1093 if (found_key.offset > cur_offset) { 1094 extent_end = found_key.offset; 1095 extent_type = 0; 1096 goto out_check; 1097 } 1098 1099 fi = btrfs_item_ptr(leaf, path->slots[0], 1100 struct btrfs_file_extent_item); 1101 extent_type = btrfs_file_extent_type(leaf, fi); 1102 1103 if (extent_type == BTRFS_FILE_EXTENT_REG || 1104 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1105 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1106 extent_offset = btrfs_file_extent_offset(leaf, fi); 1107 extent_end = found_key.offset + 1108 btrfs_file_extent_num_bytes(leaf, fi); 1109 if (extent_end <= start) { 1110 path->slots[0]++; 1111 goto next_slot; 1112 } 1113 if (disk_bytenr == 0) 1114 goto out_check; 1115 if (btrfs_file_extent_compression(leaf, fi) || 1116 btrfs_file_extent_encryption(leaf, fi) || 1117 btrfs_file_extent_other_encoding(leaf, fi)) 1118 goto out_check; 1119 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1120 goto out_check; 1121 if (btrfs_extent_readonly(root, disk_bytenr)) 1122 goto out_check; 1123 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1124 found_key.offset - 1125 extent_offset, disk_bytenr)) 1126 goto out_check; 1127 disk_bytenr += extent_offset; 1128 disk_bytenr += cur_offset - found_key.offset; 1129 num_bytes = min(end + 1, extent_end) - cur_offset; 1130 /* 1131 * force cow if csum exists in the range. 1132 * this ensure that csum for a given extent are 1133 * either valid or do not exist. 1134 */ 1135 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1136 goto out_check; 1137 nocow = 1; 1138 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1139 extent_end = found_key.offset + 1140 btrfs_file_extent_inline_len(leaf, fi); 1141 extent_end = ALIGN(extent_end, root->sectorsize); 1142 } else { 1143 BUG_ON(1); 1144 } 1145 out_check: 1146 if (extent_end <= start) { 1147 path->slots[0]++; 1148 goto next_slot; 1149 } 1150 if (!nocow) { 1151 if (cow_start == (u64)-1) 1152 cow_start = cur_offset; 1153 cur_offset = extent_end; 1154 if (cur_offset > end) 1155 break; 1156 path->slots[0]++; 1157 goto next_slot; 1158 } 1159 1160 btrfs_release_path(root, path); 1161 if (cow_start != (u64)-1) { 1162 ret = cow_file_range(inode, locked_page, cow_start, 1163 found_key.offset - 1, page_started, 1164 nr_written, 1); 1165 BUG_ON(ret); 1166 cow_start = (u64)-1; 1167 } 1168 1169 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1170 struct extent_map *em; 1171 struct extent_map_tree *em_tree; 1172 em_tree = &BTRFS_I(inode)->extent_tree; 1173 em = alloc_extent_map(GFP_NOFS); 1174 BUG_ON(!em); 1175 em->start = cur_offset; 1176 em->orig_start = em->start; 1177 em->len = num_bytes; 1178 em->block_len = num_bytes; 1179 em->block_start = disk_bytenr; 1180 em->bdev = root->fs_info->fs_devices->latest_bdev; 1181 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1182 while (1) { 1183 write_lock(&em_tree->lock); 1184 ret = add_extent_mapping(em_tree, em); 1185 write_unlock(&em_tree->lock); 1186 if (ret != -EEXIST) { 1187 free_extent_map(em); 1188 break; 1189 } 1190 btrfs_drop_extent_cache(inode, em->start, 1191 em->start + em->len - 1, 0); 1192 } 1193 type = BTRFS_ORDERED_PREALLOC; 1194 } else { 1195 type = BTRFS_ORDERED_NOCOW; 1196 } 1197 1198 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1199 num_bytes, num_bytes, type); 1200 BUG_ON(ret); 1201 1202 if (root->root_key.objectid == 1203 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1204 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1205 num_bytes); 1206 BUG_ON(ret); 1207 } 1208 1209 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1210 cur_offset, cur_offset + num_bytes - 1, 1211 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1212 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1213 EXTENT_SET_PRIVATE2); 1214 cur_offset = extent_end; 1215 if (cur_offset > end) 1216 break; 1217 } 1218 btrfs_release_path(root, path); 1219 1220 if (cur_offset <= end && cow_start == (u64)-1) 1221 cow_start = cur_offset; 1222 if (cow_start != (u64)-1) { 1223 ret = cow_file_range(inode, locked_page, cow_start, end, 1224 page_started, nr_written, 1); 1225 BUG_ON(ret); 1226 } 1227 1228 if (nolock) { 1229 ret = btrfs_end_transaction_nolock(trans, root); 1230 BUG_ON(ret); 1231 } else { 1232 ret = btrfs_end_transaction(trans, root); 1233 BUG_ON(ret); 1234 } 1235 btrfs_free_path(path); 1236 return 0; 1237 } 1238 1239 /* 1240 * extent_io.c call back to do delayed allocation processing 1241 */ 1242 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1243 u64 start, u64 end, int *page_started, 1244 unsigned long *nr_written) 1245 { 1246 int ret; 1247 struct btrfs_root *root = BTRFS_I(inode)->root; 1248 1249 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1250 ret = run_delalloc_nocow(inode, locked_page, start, end, 1251 page_started, 1, nr_written); 1252 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1253 ret = run_delalloc_nocow(inode, locked_page, start, end, 1254 page_started, 0, nr_written); 1255 else if (!btrfs_test_opt(root, COMPRESS) && 1256 !(BTRFS_I(inode)->force_compress)) 1257 ret = cow_file_range(inode, locked_page, start, end, 1258 page_started, nr_written, 1); 1259 else 1260 ret = cow_file_range_async(inode, locked_page, start, end, 1261 page_started, nr_written); 1262 return ret; 1263 } 1264 1265 static int btrfs_split_extent_hook(struct inode *inode, 1266 struct extent_state *orig, u64 split) 1267 { 1268 /* not delalloc, ignore it */ 1269 if (!(orig->state & EXTENT_DELALLOC)) 1270 return 0; 1271 1272 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1273 return 0; 1274 } 1275 1276 /* 1277 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1278 * extents so we can keep track of new extents that are just merged onto old 1279 * extents, such as when we are doing sequential writes, so we can properly 1280 * account for the metadata space we'll need. 1281 */ 1282 static int btrfs_merge_extent_hook(struct inode *inode, 1283 struct extent_state *new, 1284 struct extent_state *other) 1285 { 1286 /* not delalloc, ignore it */ 1287 if (!(other->state & EXTENT_DELALLOC)) 1288 return 0; 1289 1290 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1291 return 0; 1292 } 1293 1294 /* 1295 * extent_io.c set_bit_hook, used to track delayed allocation 1296 * bytes in this file, and to maintain the list of inodes that 1297 * have pending delalloc work to be done. 1298 */ 1299 static int btrfs_set_bit_hook(struct inode *inode, 1300 struct extent_state *state, int *bits) 1301 { 1302 1303 /* 1304 * set_bit and clear bit hooks normally require _irqsave/restore 1305 * but in this case, we are only testeing for the DELALLOC 1306 * bit, which is only set or cleared with irqs on 1307 */ 1308 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1309 struct btrfs_root *root = BTRFS_I(inode)->root; 1310 u64 len = state->end + 1 - state->start; 1311 int do_list = (root->root_key.objectid != 1312 BTRFS_ROOT_TREE_OBJECTID); 1313 1314 if (*bits & EXTENT_FIRST_DELALLOC) 1315 *bits &= ~EXTENT_FIRST_DELALLOC; 1316 else 1317 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1318 1319 spin_lock(&root->fs_info->delalloc_lock); 1320 BTRFS_I(inode)->delalloc_bytes += len; 1321 root->fs_info->delalloc_bytes += len; 1322 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1323 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1324 &root->fs_info->delalloc_inodes); 1325 } 1326 spin_unlock(&root->fs_info->delalloc_lock); 1327 } 1328 return 0; 1329 } 1330 1331 /* 1332 * extent_io.c clear_bit_hook, see set_bit_hook for why 1333 */ 1334 static int btrfs_clear_bit_hook(struct inode *inode, 1335 struct extent_state *state, int *bits) 1336 { 1337 /* 1338 * set_bit and clear bit hooks normally require _irqsave/restore 1339 * but in this case, we are only testeing for the DELALLOC 1340 * bit, which is only set or cleared with irqs on 1341 */ 1342 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1343 struct btrfs_root *root = BTRFS_I(inode)->root; 1344 u64 len = state->end + 1 - state->start; 1345 int do_list = (root->root_key.objectid != 1346 BTRFS_ROOT_TREE_OBJECTID); 1347 1348 if (*bits & EXTENT_FIRST_DELALLOC) 1349 *bits &= ~EXTENT_FIRST_DELALLOC; 1350 else if (!(*bits & EXTENT_DO_ACCOUNTING)) 1351 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1352 1353 if (*bits & EXTENT_DO_ACCOUNTING) 1354 btrfs_delalloc_release_metadata(inode, len); 1355 1356 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1357 && do_list) 1358 btrfs_free_reserved_data_space(inode, len); 1359 1360 spin_lock(&root->fs_info->delalloc_lock); 1361 root->fs_info->delalloc_bytes -= len; 1362 BTRFS_I(inode)->delalloc_bytes -= len; 1363 1364 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1365 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1366 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1367 } 1368 spin_unlock(&root->fs_info->delalloc_lock); 1369 } 1370 return 0; 1371 } 1372 1373 /* 1374 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1375 * we don't create bios that span stripes or chunks 1376 */ 1377 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1378 size_t size, struct bio *bio, 1379 unsigned long bio_flags) 1380 { 1381 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1382 struct btrfs_mapping_tree *map_tree; 1383 u64 logical = (u64)bio->bi_sector << 9; 1384 u64 length = 0; 1385 u64 map_length; 1386 int ret; 1387 1388 if (bio_flags & EXTENT_BIO_COMPRESSED) 1389 return 0; 1390 1391 length = bio->bi_size; 1392 map_tree = &root->fs_info->mapping_tree; 1393 map_length = length; 1394 ret = btrfs_map_block(map_tree, READ, logical, 1395 &map_length, NULL, 0); 1396 1397 if (map_length < length + size) 1398 return 1; 1399 return ret; 1400 } 1401 1402 /* 1403 * in order to insert checksums into the metadata in large chunks, 1404 * we wait until bio submission time. All the pages in the bio are 1405 * checksummed and sums are attached onto the ordered extent record. 1406 * 1407 * At IO completion time the cums attached on the ordered extent record 1408 * are inserted into the btree 1409 */ 1410 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1411 struct bio *bio, int mirror_num, 1412 unsigned long bio_flags, 1413 u64 bio_offset) 1414 { 1415 struct btrfs_root *root = BTRFS_I(inode)->root; 1416 int ret = 0; 1417 1418 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1419 BUG_ON(ret); 1420 return 0; 1421 } 1422 1423 /* 1424 * in order to insert checksums into the metadata in large chunks, 1425 * we wait until bio submission time. All the pages in the bio are 1426 * checksummed and sums are attached onto the ordered extent record. 1427 * 1428 * At IO completion time the cums attached on the ordered extent record 1429 * are inserted into the btree 1430 */ 1431 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1432 int mirror_num, unsigned long bio_flags, 1433 u64 bio_offset) 1434 { 1435 struct btrfs_root *root = BTRFS_I(inode)->root; 1436 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1437 } 1438 1439 /* 1440 * extent_io.c submission hook. This does the right thing for csum calculation 1441 * on write, or reading the csums from the tree before a read 1442 */ 1443 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1444 int mirror_num, unsigned long bio_flags, 1445 u64 bio_offset) 1446 { 1447 struct btrfs_root *root = BTRFS_I(inode)->root; 1448 int ret = 0; 1449 int skip_sum; 1450 1451 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1452 1453 if (root == root->fs_info->tree_root) 1454 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1455 else 1456 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1457 BUG_ON(ret); 1458 1459 if (!(rw & REQ_WRITE)) { 1460 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1461 return btrfs_submit_compressed_read(inode, bio, 1462 mirror_num, bio_flags); 1463 } else if (!skip_sum) 1464 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1465 goto mapit; 1466 } else if (!skip_sum) { 1467 /* csum items have already been cloned */ 1468 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1469 goto mapit; 1470 /* we're doing a write, do the async checksumming */ 1471 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1472 inode, rw, bio, mirror_num, 1473 bio_flags, bio_offset, 1474 __btrfs_submit_bio_start, 1475 __btrfs_submit_bio_done); 1476 } 1477 1478 mapit: 1479 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1480 } 1481 1482 /* 1483 * given a list of ordered sums record them in the inode. This happens 1484 * at IO completion time based on sums calculated at bio submission time. 1485 */ 1486 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1487 struct inode *inode, u64 file_offset, 1488 struct list_head *list) 1489 { 1490 struct btrfs_ordered_sum *sum; 1491 1492 btrfs_set_trans_block_group(trans, inode); 1493 1494 list_for_each_entry(sum, list, list) { 1495 btrfs_csum_file_blocks(trans, 1496 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1497 } 1498 return 0; 1499 } 1500 1501 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1502 struct extent_state **cached_state) 1503 { 1504 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1505 WARN_ON(1); 1506 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1507 cached_state, GFP_NOFS); 1508 } 1509 1510 /* see btrfs_writepage_start_hook for details on why this is required */ 1511 struct btrfs_writepage_fixup { 1512 struct page *page; 1513 struct btrfs_work work; 1514 }; 1515 1516 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1517 { 1518 struct btrfs_writepage_fixup *fixup; 1519 struct btrfs_ordered_extent *ordered; 1520 struct extent_state *cached_state = NULL; 1521 struct page *page; 1522 struct inode *inode; 1523 u64 page_start; 1524 u64 page_end; 1525 1526 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1527 page = fixup->page; 1528 again: 1529 lock_page(page); 1530 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1531 ClearPageChecked(page); 1532 goto out_page; 1533 } 1534 1535 inode = page->mapping->host; 1536 page_start = page_offset(page); 1537 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1538 1539 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1540 &cached_state, GFP_NOFS); 1541 1542 /* already ordered? We're done */ 1543 if (PagePrivate2(page)) 1544 goto out; 1545 1546 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1547 if (ordered) { 1548 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1549 page_end, &cached_state, GFP_NOFS); 1550 unlock_page(page); 1551 btrfs_start_ordered_extent(inode, ordered, 1); 1552 goto again; 1553 } 1554 1555 BUG(); 1556 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1557 ClearPageChecked(page); 1558 out: 1559 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1560 &cached_state, GFP_NOFS); 1561 out_page: 1562 unlock_page(page); 1563 page_cache_release(page); 1564 kfree(fixup); 1565 } 1566 1567 /* 1568 * There are a few paths in the higher layers of the kernel that directly 1569 * set the page dirty bit without asking the filesystem if it is a 1570 * good idea. This causes problems because we want to make sure COW 1571 * properly happens and the data=ordered rules are followed. 1572 * 1573 * In our case any range that doesn't have the ORDERED bit set 1574 * hasn't been properly setup for IO. We kick off an async process 1575 * to fix it up. The async helper will wait for ordered extents, set 1576 * the delalloc bit and make it safe to write the page. 1577 */ 1578 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1579 { 1580 struct inode *inode = page->mapping->host; 1581 struct btrfs_writepage_fixup *fixup; 1582 struct btrfs_root *root = BTRFS_I(inode)->root; 1583 1584 /* this page is properly in the ordered list */ 1585 if (TestClearPagePrivate2(page)) 1586 return 0; 1587 1588 if (PageChecked(page)) 1589 return -EAGAIN; 1590 1591 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1592 if (!fixup) 1593 return -EAGAIN; 1594 1595 SetPageChecked(page); 1596 page_cache_get(page); 1597 fixup->work.func = btrfs_writepage_fixup_worker; 1598 fixup->page = page; 1599 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1600 return -EAGAIN; 1601 } 1602 1603 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1604 struct inode *inode, u64 file_pos, 1605 u64 disk_bytenr, u64 disk_num_bytes, 1606 u64 num_bytes, u64 ram_bytes, 1607 u8 compression, u8 encryption, 1608 u16 other_encoding, int extent_type) 1609 { 1610 struct btrfs_root *root = BTRFS_I(inode)->root; 1611 struct btrfs_file_extent_item *fi; 1612 struct btrfs_path *path; 1613 struct extent_buffer *leaf; 1614 struct btrfs_key ins; 1615 u64 hint; 1616 int ret; 1617 1618 path = btrfs_alloc_path(); 1619 BUG_ON(!path); 1620 1621 path->leave_spinning = 1; 1622 1623 /* 1624 * we may be replacing one extent in the tree with another. 1625 * The new extent is pinned in the extent map, and we don't want 1626 * to drop it from the cache until it is completely in the btree. 1627 * 1628 * So, tell btrfs_drop_extents to leave this extent in the cache. 1629 * the caller is expected to unpin it and allow it to be merged 1630 * with the others. 1631 */ 1632 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1633 &hint, 0); 1634 BUG_ON(ret); 1635 1636 ins.objectid = inode->i_ino; 1637 ins.offset = file_pos; 1638 ins.type = BTRFS_EXTENT_DATA_KEY; 1639 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1640 BUG_ON(ret); 1641 leaf = path->nodes[0]; 1642 fi = btrfs_item_ptr(leaf, path->slots[0], 1643 struct btrfs_file_extent_item); 1644 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1645 btrfs_set_file_extent_type(leaf, fi, extent_type); 1646 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1647 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1648 btrfs_set_file_extent_offset(leaf, fi, 0); 1649 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1650 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1651 btrfs_set_file_extent_compression(leaf, fi, compression); 1652 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1653 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1654 1655 btrfs_unlock_up_safe(path, 1); 1656 btrfs_set_lock_blocking(leaf); 1657 1658 btrfs_mark_buffer_dirty(leaf); 1659 1660 inode_add_bytes(inode, num_bytes); 1661 1662 ins.objectid = disk_bytenr; 1663 ins.offset = disk_num_bytes; 1664 ins.type = BTRFS_EXTENT_ITEM_KEY; 1665 ret = btrfs_alloc_reserved_file_extent(trans, root, 1666 root->root_key.objectid, 1667 inode->i_ino, file_pos, &ins); 1668 BUG_ON(ret); 1669 btrfs_free_path(path); 1670 1671 return 0; 1672 } 1673 1674 /* 1675 * helper function for btrfs_finish_ordered_io, this 1676 * just reads in some of the csum leaves to prime them into ram 1677 * before we start the transaction. It limits the amount of btree 1678 * reads required while inside the transaction. 1679 */ 1680 /* as ordered data IO finishes, this gets called so we can finish 1681 * an ordered extent if the range of bytes in the file it covers are 1682 * fully written. 1683 */ 1684 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1685 { 1686 struct btrfs_root *root = BTRFS_I(inode)->root; 1687 struct btrfs_trans_handle *trans = NULL; 1688 struct btrfs_ordered_extent *ordered_extent = NULL; 1689 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1690 struct extent_state *cached_state = NULL; 1691 int compress_type = 0; 1692 int ret; 1693 bool nolock = false; 1694 1695 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1696 end - start + 1); 1697 if (!ret) 1698 return 0; 1699 BUG_ON(!ordered_extent); 1700 1701 nolock = (root == root->fs_info->tree_root); 1702 1703 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1704 BUG_ON(!list_empty(&ordered_extent->list)); 1705 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1706 if (!ret) { 1707 if (nolock) 1708 trans = btrfs_join_transaction_nolock(root, 1); 1709 else 1710 trans = btrfs_join_transaction(root, 1); 1711 BUG_ON(IS_ERR(trans)); 1712 btrfs_set_trans_block_group(trans, inode); 1713 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1714 ret = btrfs_update_inode(trans, root, inode); 1715 BUG_ON(ret); 1716 } 1717 goto out; 1718 } 1719 1720 lock_extent_bits(io_tree, ordered_extent->file_offset, 1721 ordered_extent->file_offset + ordered_extent->len - 1, 1722 0, &cached_state, GFP_NOFS); 1723 1724 if (nolock) 1725 trans = btrfs_join_transaction_nolock(root, 1); 1726 else 1727 trans = btrfs_join_transaction(root, 1); 1728 BUG_ON(IS_ERR(trans)); 1729 btrfs_set_trans_block_group(trans, inode); 1730 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1731 1732 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1733 compress_type = ordered_extent->compress_type; 1734 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1735 BUG_ON(compress_type); 1736 ret = btrfs_mark_extent_written(trans, inode, 1737 ordered_extent->file_offset, 1738 ordered_extent->file_offset + 1739 ordered_extent->len); 1740 BUG_ON(ret); 1741 } else { 1742 BUG_ON(root == root->fs_info->tree_root); 1743 ret = insert_reserved_file_extent(trans, inode, 1744 ordered_extent->file_offset, 1745 ordered_extent->start, 1746 ordered_extent->disk_len, 1747 ordered_extent->len, 1748 ordered_extent->len, 1749 compress_type, 0, 0, 1750 BTRFS_FILE_EXTENT_REG); 1751 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1752 ordered_extent->file_offset, 1753 ordered_extent->len); 1754 BUG_ON(ret); 1755 } 1756 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1757 ordered_extent->file_offset + 1758 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1759 1760 add_pending_csums(trans, inode, ordered_extent->file_offset, 1761 &ordered_extent->list); 1762 1763 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1764 ret = btrfs_update_inode(trans, root, inode); 1765 BUG_ON(ret); 1766 out: 1767 if (nolock) { 1768 if (trans) 1769 btrfs_end_transaction_nolock(trans, root); 1770 } else { 1771 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1772 if (trans) 1773 btrfs_end_transaction(trans, root); 1774 } 1775 1776 /* once for us */ 1777 btrfs_put_ordered_extent(ordered_extent); 1778 /* once for the tree */ 1779 btrfs_put_ordered_extent(ordered_extent); 1780 1781 return 0; 1782 } 1783 1784 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1785 struct extent_state *state, int uptodate) 1786 { 1787 ClearPagePrivate2(page); 1788 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1789 } 1790 1791 /* 1792 * When IO fails, either with EIO or csum verification fails, we 1793 * try other mirrors that might have a good copy of the data. This 1794 * io_failure_record is used to record state as we go through all the 1795 * mirrors. If another mirror has good data, the page is set up to date 1796 * and things continue. If a good mirror can't be found, the original 1797 * bio end_io callback is called to indicate things have failed. 1798 */ 1799 struct io_failure_record { 1800 struct page *page; 1801 u64 start; 1802 u64 len; 1803 u64 logical; 1804 unsigned long bio_flags; 1805 int last_mirror; 1806 }; 1807 1808 static int btrfs_io_failed_hook(struct bio *failed_bio, 1809 struct page *page, u64 start, u64 end, 1810 struct extent_state *state) 1811 { 1812 struct io_failure_record *failrec = NULL; 1813 u64 private; 1814 struct extent_map *em; 1815 struct inode *inode = page->mapping->host; 1816 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1817 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1818 struct bio *bio; 1819 int num_copies; 1820 int ret; 1821 int rw; 1822 u64 logical; 1823 1824 ret = get_state_private(failure_tree, start, &private); 1825 if (ret) { 1826 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1827 if (!failrec) 1828 return -ENOMEM; 1829 failrec->start = start; 1830 failrec->len = end - start + 1; 1831 failrec->last_mirror = 0; 1832 failrec->bio_flags = 0; 1833 1834 read_lock(&em_tree->lock); 1835 em = lookup_extent_mapping(em_tree, start, failrec->len); 1836 if (em->start > start || em->start + em->len < start) { 1837 free_extent_map(em); 1838 em = NULL; 1839 } 1840 read_unlock(&em_tree->lock); 1841 1842 if (!em || IS_ERR(em)) { 1843 kfree(failrec); 1844 return -EIO; 1845 } 1846 logical = start - em->start; 1847 logical = em->block_start + logical; 1848 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1849 logical = em->block_start; 1850 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1851 extent_set_compress_type(&failrec->bio_flags, 1852 em->compress_type); 1853 } 1854 failrec->logical = logical; 1855 free_extent_map(em); 1856 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1857 EXTENT_DIRTY, GFP_NOFS); 1858 set_state_private(failure_tree, start, 1859 (u64)(unsigned long)failrec); 1860 } else { 1861 failrec = (struct io_failure_record *)(unsigned long)private; 1862 } 1863 num_copies = btrfs_num_copies( 1864 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1865 failrec->logical, failrec->len); 1866 failrec->last_mirror++; 1867 if (!state) { 1868 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1869 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1870 failrec->start, 1871 EXTENT_LOCKED); 1872 if (state && state->start != failrec->start) 1873 state = NULL; 1874 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1875 } 1876 if (!state || failrec->last_mirror > num_copies) { 1877 set_state_private(failure_tree, failrec->start, 0); 1878 clear_extent_bits(failure_tree, failrec->start, 1879 failrec->start + failrec->len - 1, 1880 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1881 kfree(failrec); 1882 return -EIO; 1883 } 1884 bio = bio_alloc(GFP_NOFS, 1); 1885 bio->bi_private = state; 1886 bio->bi_end_io = failed_bio->bi_end_io; 1887 bio->bi_sector = failrec->logical >> 9; 1888 bio->bi_bdev = failed_bio->bi_bdev; 1889 bio->bi_size = 0; 1890 1891 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1892 if (failed_bio->bi_rw & REQ_WRITE) 1893 rw = WRITE; 1894 else 1895 rw = READ; 1896 1897 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1898 failrec->last_mirror, 1899 failrec->bio_flags, 0); 1900 return 0; 1901 } 1902 1903 /* 1904 * each time an IO finishes, we do a fast check in the IO failure tree 1905 * to see if we need to process or clean up an io_failure_record 1906 */ 1907 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1908 { 1909 u64 private; 1910 u64 private_failure; 1911 struct io_failure_record *failure; 1912 int ret; 1913 1914 private = 0; 1915 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1916 (u64)-1, 1, EXTENT_DIRTY, 0)) { 1917 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1918 start, &private_failure); 1919 if (ret == 0) { 1920 failure = (struct io_failure_record *)(unsigned long) 1921 private_failure; 1922 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1923 failure->start, 0); 1924 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1925 failure->start, 1926 failure->start + failure->len - 1, 1927 EXTENT_DIRTY | EXTENT_LOCKED, 1928 GFP_NOFS); 1929 kfree(failure); 1930 } 1931 } 1932 return 0; 1933 } 1934 1935 /* 1936 * when reads are done, we need to check csums to verify the data is correct 1937 * if there's a match, we allow the bio to finish. If not, we go through 1938 * the io_failure_record routines to find good copies 1939 */ 1940 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1941 struct extent_state *state) 1942 { 1943 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1944 struct inode *inode = page->mapping->host; 1945 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1946 char *kaddr; 1947 u64 private = ~(u32)0; 1948 int ret; 1949 struct btrfs_root *root = BTRFS_I(inode)->root; 1950 u32 csum = ~(u32)0; 1951 1952 if (PageChecked(page)) { 1953 ClearPageChecked(page); 1954 goto good; 1955 } 1956 1957 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1958 return 0; 1959 1960 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1961 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1962 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1963 GFP_NOFS); 1964 return 0; 1965 } 1966 1967 if (state && state->start == start) { 1968 private = state->private; 1969 ret = 0; 1970 } else { 1971 ret = get_state_private(io_tree, start, &private); 1972 } 1973 kaddr = kmap_atomic(page, KM_USER0); 1974 if (ret) 1975 goto zeroit; 1976 1977 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1978 btrfs_csum_final(csum, (char *)&csum); 1979 if (csum != private) 1980 goto zeroit; 1981 1982 kunmap_atomic(kaddr, KM_USER0); 1983 good: 1984 /* if the io failure tree for this inode is non-empty, 1985 * check to see if we've recovered from a failed IO 1986 */ 1987 btrfs_clean_io_failures(inode, start); 1988 return 0; 1989 1990 zeroit: 1991 if (printk_ratelimit()) { 1992 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1993 "private %llu\n", page->mapping->host->i_ino, 1994 (unsigned long long)start, csum, 1995 (unsigned long long)private); 1996 } 1997 memset(kaddr + offset, 1, end - start + 1); 1998 flush_dcache_page(page); 1999 kunmap_atomic(kaddr, KM_USER0); 2000 if (private == 0) 2001 return 0; 2002 return -EIO; 2003 } 2004 2005 struct delayed_iput { 2006 struct list_head list; 2007 struct inode *inode; 2008 }; 2009 2010 void btrfs_add_delayed_iput(struct inode *inode) 2011 { 2012 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2013 struct delayed_iput *delayed; 2014 2015 if (atomic_add_unless(&inode->i_count, -1, 1)) 2016 return; 2017 2018 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2019 delayed->inode = inode; 2020 2021 spin_lock(&fs_info->delayed_iput_lock); 2022 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2023 spin_unlock(&fs_info->delayed_iput_lock); 2024 } 2025 2026 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2027 { 2028 LIST_HEAD(list); 2029 struct btrfs_fs_info *fs_info = root->fs_info; 2030 struct delayed_iput *delayed; 2031 int empty; 2032 2033 spin_lock(&fs_info->delayed_iput_lock); 2034 empty = list_empty(&fs_info->delayed_iputs); 2035 spin_unlock(&fs_info->delayed_iput_lock); 2036 if (empty) 2037 return; 2038 2039 down_read(&root->fs_info->cleanup_work_sem); 2040 spin_lock(&fs_info->delayed_iput_lock); 2041 list_splice_init(&fs_info->delayed_iputs, &list); 2042 spin_unlock(&fs_info->delayed_iput_lock); 2043 2044 while (!list_empty(&list)) { 2045 delayed = list_entry(list.next, struct delayed_iput, list); 2046 list_del(&delayed->list); 2047 iput(delayed->inode); 2048 kfree(delayed); 2049 } 2050 up_read(&root->fs_info->cleanup_work_sem); 2051 } 2052 2053 /* 2054 * calculate extra metadata reservation when snapshotting a subvolume 2055 * contains orphan files. 2056 */ 2057 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2058 struct btrfs_pending_snapshot *pending, 2059 u64 *bytes_to_reserve) 2060 { 2061 struct btrfs_root *root; 2062 struct btrfs_block_rsv *block_rsv; 2063 u64 num_bytes; 2064 int index; 2065 2066 root = pending->root; 2067 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2068 return; 2069 2070 block_rsv = root->orphan_block_rsv; 2071 2072 /* orphan block reservation for the snapshot */ 2073 num_bytes = block_rsv->size; 2074 2075 /* 2076 * after the snapshot is created, COWing tree blocks may use more 2077 * space than it frees. So we should make sure there is enough 2078 * reserved space. 2079 */ 2080 index = trans->transid & 0x1; 2081 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2082 num_bytes += block_rsv->size - 2083 (block_rsv->reserved + block_rsv->freed[index]); 2084 } 2085 2086 *bytes_to_reserve += num_bytes; 2087 } 2088 2089 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2090 struct btrfs_pending_snapshot *pending) 2091 { 2092 struct btrfs_root *root = pending->root; 2093 struct btrfs_root *snap = pending->snap; 2094 struct btrfs_block_rsv *block_rsv; 2095 u64 num_bytes; 2096 int index; 2097 int ret; 2098 2099 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2100 return; 2101 2102 /* refill source subvolume's orphan block reservation */ 2103 block_rsv = root->orphan_block_rsv; 2104 index = trans->transid & 0x1; 2105 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2106 num_bytes = block_rsv->size - 2107 (block_rsv->reserved + block_rsv->freed[index]); 2108 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2109 root->orphan_block_rsv, 2110 num_bytes); 2111 BUG_ON(ret); 2112 } 2113 2114 /* setup orphan block reservation for the snapshot */ 2115 block_rsv = btrfs_alloc_block_rsv(snap); 2116 BUG_ON(!block_rsv); 2117 2118 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2119 snap->orphan_block_rsv = block_rsv; 2120 2121 num_bytes = root->orphan_block_rsv->size; 2122 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2123 block_rsv, num_bytes); 2124 BUG_ON(ret); 2125 2126 #if 0 2127 /* insert orphan item for the snapshot */ 2128 WARN_ON(!root->orphan_item_inserted); 2129 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2130 snap->root_key.objectid); 2131 BUG_ON(ret); 2132 snap->orphan_item_inserted = 1; 2133 #endif 2134 } 2135 2136 enum btrfs_orphan_cleanup_state { 2137 ORPHAN_CLEANUP_STARTED = 1, 2138 ORPHAN_CLEANUP_DONE = 2, 2139 }; 2140 2141 /* 2142 * This is called in transaction commmit time. If there are no orphan 2143 * files in the subvolume, it removes orphan item and frees block_rsv 2144 * structure. 2145 */ 2146 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2147 struct btrfs_root *root) 2148 { 2149 int ret; 2150 2151 if (!list_empty(&root->orphan_list) || 2152 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2153 return; 2154 2155 if (root->orphan_item_inserted && 2156 btrfs_root_refs(&root->root_item) > 0) { 2157 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2158 root->root_key.objectid); 2159 BUG_ON(ret); 2160 root->orphan_item_inserted = 0; 2161 } 2162 2163 if (root->orphan_block_rsv) { 2164 WARN_ON(root->orphan_block_rsv->size > 0); 2165 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2166 root->orphan_block_rsv = NULL; 2167 } 2168 } 2169 2170 /* 2171 * This creates an orphan entry for the given inode in case something goes 2172 * wrong in the middle of an unlink/truncate. 2173 * 2174 * NOTE: caller of this function should reserve 5 units of metadata for 2175 * this function. 2176 */ 2177 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2178 { 2179 struct btrfs_root *root = BTRFS_I(inode)->root; 2180 struct btrfs_block_rsv *block_rsv = NULL; 2181 int reserve = 0; 2182 int insert = 0; 2183 int ret; 2184 2185 if (!root->orphan_block_rsv) { 2186 block_rsv = btrfs_alloc_block_rsv(root); 2187 BUG_ON(!block_rsv); 2188 } 2189 2190 spin_lock(&root->orphan_lock); 2191 if (!root->orphan_block_rsv) { 2192 root->orphan_block_rsv = block_rsv; 2193 } else if (block_rsv) { 2194 btrfs_free_block_rsv(root, block_rsv); 2195 block_rsv = NULL; 2196 } 2197 2198 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2199 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2200 #if 0 2201 /* 2202 * For proper ENOSPC handling, we should do orphan 2203 * cleanup when mounting. But this introduces backward 2204 * compatibility issue. 2205 */ 2206 if (!xchg(&root->orphan_item_inserted, 1)) 2207 insert = 2; 2208 else 2209 insert = 1; 2210 #endif 2211 insert = 1; 2212 } else { 2213 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved); 2214 } 2215 2216 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2217 BTRFS_I(inode)->orphan_meta_reserved = 1; 2218 reserve = 1; 2219 } 2220 spin_unlock(&root->orphan_lock); 2221 2222 if (block_rsv) 2223 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2224 2225 /* grab metadata reservation from transaction handle */ 2226 if (reserve) { 2227 ret = btrfs_orphan_reserve_metadata(trans, inode); 2228 BUG_ON(ret); 2229 } 2230 2231 /* insert an orphan item to track this unlinked/truncated file */ 2232 if (insert >= 1) { 2233 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 2234 BUG_ON(ret); 2235 } 2236 2237 /* insert an orphan item to track subvolume contains orphan files */ 2238 if (insert >= 2) { 2239 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2240 root->root_key.objectid); 2241 BUG_ON(ret); 2242 } 2243 return 0; 2244 } 2245 2246 /* 2247 * We have done the truncate/delete so we can go ahead and remove the orphan 2248 * item for this particular inode. 2249 */ 2250 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2251 { 2252 struct btrfs_root *root = BTRFS_I(inode)->root; 2253 int delete_item = 0; 2254 int release_rsv = 0; 2255 int ret = 0; 2256 2257 spin_lock(&root->orphan_lock); 2258 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2259 list_del_init(&BTRFS_I(inode)->i_orphan); 2260 delete_item = 1; 2261 } 2262 2263 if (BTRFS_I(inode)->orphan_meta_reserved) { 2264 BTRFS_I(inode)->orphan_meta_reserved = 0; 2265 release_rsv = 1; 2266 } 2267 spin_unlock(&root->orphan_lock); 2268 2269 if (trans && delete_item) { 2270 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 2271 BUG_ON(ret); 2272 } 2273 2274 if (release_rsv) 2275 btrfs_orphan_release_metadata(inode); 2276 2277 return 0; 2278 } 2279 2280 /* 2281 * this cleans up any orphans that may be left on the list from the last use 2282 * of this root. 2283 */ 2284 void btrfs_orphan_cleanup(struct btrfs_root *root) 2285 { 2286 struct btrfs_path *path; 2287 struct extent_buffer *leaf; 2288 struct btrfs_key key, found_key; 2289 struct btrfs_trans_handle *trans; 2290 struct inode *inode; 2291 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2292 2293 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2294 return; 2295 2296 path = btrfs_alloc_path(); 2297 BUG_ON(!path); 2298 path->reada = -1; 2299 2300 key.objectid = BTRFS_ORPHAN_OBJECTID; 2301 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2302 key.offset = (u64)-1; 2303 2304 while (1) { 2305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2306 if (ret < 0) { 2307 printk(KERN_ERR "Error searching slot for orphan: %d" 2308 "\n", ret); 2309 break; 2310 } 2311 2312 /* 2313 * if ret == 0 means we found what we were searching for, which 2314 * is weird, but possible, so only screw with path if we didnt 2315 * find the key and see if we have stuff that matches 2316 */ 2317 if (ret > 0) { 2318 if (path->slots[0] == 0) 2319 break; 2320 path->slots[0]--; 2321 } 2322 2323 /* pull out the item */ 2324 leaf = path->nodes[0]; 2325 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2326 2327 /* make sure the item matches what we want */ 2328 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2329 break; 2330 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2331 break; 2332 2333 /* release the path since we're done with it */ 2334 btrfs_release_path(root, path); 2335 2336 /* 2337 * this is where we are basically btrfs_lookup, without the 2338 * crossing root thing. we store the inode number in the 2339 * offset of the orphan item. 2340 */ 2341 found_key.objectid = found_key.offset; 2342 found_key.type = BTRFS_INODE_ITEM_KEY; 2343 found_key.offset = 0; 2344 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2345 BUG_ON(IS_ERR(inode)); 2346 2347 /* 2348 * add this inode to the orphan list so btrfs_orphan_del does 2349 * the proper thing when we hit it 2350 */ 2351 spin_lock(&root->orphan_lock); 2352 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2353 spin_unlock(&root->orphan_lock); 2354 2355 /* 2356 * if this is a bad inode, means we actually succeeded in 2357 * removing the inode, but not the orphan record, which means 2358 * we need to manually delete the orphan since iput will just 2359 * do a destroy_inode 2360 */ 2361 if (is_bad_inode(inode)) { 2362 trans = btrfs_start_transaction(root, 0); 2363 BUG_ON(IS_ERR(trans)); 2364 btrfs_orphan_del(trans, inode); 2365 btrfs_end_transaction(trans, root); 2366 iput(inode); 2367 continue; 2368 } 2369 2370 /* if we have links, this was a truncate, lets do that */ 2371 if (inode->i_nlink) { 2372 nr_truncate++; 2373 btrfs_truncate(inode); 2374 } else { 2375 nr_unlink++; 2376 } 2377 2378 /* this will do delete_inode and everything for us */ 2379 iput(inode); 2380 } 2381 btrfs_free_path(path); 2382 2383 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2384 2385 if (root->orphan_block_rsv) 2386 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2387 (u64)-1); 2388 2389 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2390 trans = btrfs_join_transaction(root, 1); 2391 BUG_ON(IS_ERR(trans)); 2392 btrfs_end_transaction(trans, root); 2393 } 2394 2395 if (nr_unlink) 2396 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2397 if (nr_truncate) 2398 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2399 } 2400 2401 /* 2402 * very simple check to peek ahead in the leaf looking for xattrs. If we 2403 * don't find any xattrs, we know there can't be any acls. 2404 * 2405 * slot is the slot the inode is in, objectid is the objectid of the inode 2406 */ 2407 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2408 int slot, u64 objectid) 2409 { 2410 u32 nritems = btrfs_header_nritems(leaf); 2411 struct btrfs_key found_key; 2412 int scanned = 0; 2413 2414 slot++; 2415 while (slot < nritems) { 2416 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2417 2418 /* we found a different objectid, there must not be acls */ 2419 if (found_key.objectid != objectid) 2420 return 0; 2421 2422 /* we found an xattr, assume we've got an acl */ 2423 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2424 return 1; 2425 2426 /* 2427 * we found a key greater than an xattr key, there can't 2428 * be any acls later on 2429 */ 2430 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2431 return 0; 2432 2433 slot++; 2434 scanned++; 2435 2436 /* 2437 * it goes inode, inode backrefs, xattrs, extents, 2438 * so if there are a ton of hard links to an inode there can 2439 * be a lot of backrefs. Don't waste time searching too hard, 2440 * this is just an optimization 2441 */ 2442 if (scanned >= 8) 2443 break; 2444 } 2445 /* we hit the end of the leaf before we found an xattr or 2446 * something larger than an xattr. We have to assume the inode 2447 * has acls 2448 */ 2449 return 1; 2450 } 2451 2452 /* 2453 * read an inode from the btree into the in-memory inode 2454 */ 2455 static void btrfs_read_locked_inode(struct inode *inode) 2456 { 2457 struct btrfs_path *path; 2458 struct extent_buffer *leaf; 2459 struct btrfs_inode_item *inode_item; 2460 struct btrfs_timespec *tspec; 2461 struct btrfs_root *root = BTRFS_I(inode)->root; 2462 struct btrfs_key location; 2463 int maybe_acls; 2464 u64 alloc_group_block; 2465 u32 rdev; 2466 int ret; 2467 2468 path = btrfs_alloc_path(); 2469 BUG_ON(!path); 2470 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2471 2472 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2473 if (ret) 2474 goto make_bad; 2475 2476 leaf = path->nodes[0]; 2477 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2478 struct btrfs_inode_item); 2479 2480 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2481 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2482 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2483 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2484 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2485 2486 tspec = btrfs_inode_atime(inode_item); 2487 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2488 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2489 2490 tspec = btrfs_inode_mtime(inode_item); 2491 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2492 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2493 2494 tspec = btrfs_inode_ctime(inode_item); 2495 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2496 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2497 2498 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2499 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2500 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2501 inode->i_generation = BTRFS_I(inode)->generation; 2502 inode->i_rdev = 0; 2503 rdev = btrfs_inode_rdev(leaf, inode_item); 2504 2505 BTRFS_I(inode)->index_cnt = (u64)-1; 2506 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2507 2508 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2509 2510 /* 2511 * try to precache a NULL acl entry for files that don't have 2512 * any xattrs or acls 2513 */ 2514 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2515 if (!maybe_acls) 2516 cache_no_acl(inode); 2517 2518 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2519 alloc_group_block, 0); 2520 btrfs_free_path(path); 2521 inode_item = NULL; 2522 2523 switch (inode->i_mode & S_IFMT) { 2524 case S_IFREG: 2525 inode->i_mapping->a_ops = &btrfs_aops; 2526 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2527 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2528 inode->i_fop = &btrfs_file_operations; 2529 inode->i_op = &btrfs_file_inode_operations; 2530 break; 2531 case S_IFDIR: 2532 inode->i_fop = &btrfs_dir_file_operations; 2533 if (root == root->fs_info->tree_root) 2534 inode->i_op = &btrfs_dir_ro_inode_operations; 2535 else 2536 inode->i_op = &btrfs_dir_inode_operations; 2537 break; 2538 case S_IFLNK: 2539 inode->i_op = &btrfs_symlink_inode_operations; 2540 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2541 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2542 break; 2543 default: 2544 inode->i_op = &btrfs_special_inode_operations; 2545 init_special_inode(inode, inode->i_mode, rdev); 2546 break; 2547 } 2548 2549 btrfs_update_iflags(inode); 2550 return; 2551 2552 make_bad: 2553 btrfs_free_path(path); 2554 make_bad_inode(inode); 2555 } 2556 2557 /* 2558 * given a leaf and an inode, copy the inode fields into the leaf 2559 */ 2560 static void fill_inode_item(struct btrfs_trans_handle *trans, 2561 struct extent_buffer *leaf, 2562 struct btrfs_inode_item *item, 2563 struct inode *inode) 2564 { 2565 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2566 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2567 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2568 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2569 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2570 2571 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2572 inode->i_atime.tv_sec); 2573 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2574 inode->i_atime.tv_nsec); 2575 2576 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2577 inode->i_mtime.tv_sec); 2578 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2579 inode->i_mtime.tv_nsec); 2580 2581 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2582 inode->i_ctime.tv_sec); 2583 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2584 inode->i_ctime.tv_nsec); 2585 2586 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2587 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2588 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2589 btrfs_set_inode_transid(leaf, item, trans->transid); 2590 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2591 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2592 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2593 } 2594 2595 /* 2596 * copy everything in the in-memory inode into the btree. 2597 */ 2598 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2599 struct btrfs_root *root, struct inode *inode) 2600 { 2601 struct btrfs_inode_item *inode_item; 2602 struct btrfs_path *path; 2603 struct extent_buffer *leaf; 2604 int ret; 2605 2606 path = btrfs_alloc_path(); 2607 BUG_ON(!path); 2608 path->leave_spinning = 1; 2609 ret = btrfs_lookup_inode(trans, root, path, 2610 &BTRFS_I(inode)->location, 1); 2611 if (ret) { 2612 if (ret > 0) 2613 ret = -ENOENT; 2614 goto failed; 2615 } 2616 2617 btrfs_unlock_up_safe(path, 1); 2618 leaf = path->nodes[0]; 2619 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2620 struct btrfs_inode_item); 2621 2622 fill_inode_item(trans, leaf, inode_item, inode); 2623 btrfs_mark_buffer_dirty(leaf); 2624 btrfs_set_inode_last_trans(trans, inode); 2625 ret = 0; 2626 failed: 2627 btrfs_free_path(path); 2628 return ret; 2629 } 2630 2631 2632 /* 2633 * unlink helper that gets used here in inode.c and in the tree logging 2634 * recovery code. It remove a link in a directory with a given name, and 2635 * also drops the back refs in the inode to the directory 2636 */ 2637 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2638 struct btrfs_root *root, 2639 struct inode *dir, struct inode *inode, 2640 const char *name, int name_len) 2641 { 2642 struct btrfs_path *path; 2643 int ret = 0; 2644 struct extent_buffer *leaf; 2645 struct btrfs_dir_item *di; 2646 struct btrfs_key key; 2647 u64 index; 2648 2649 path = btrfs_alloc_path(); 2650 if (!path) { 2651 ret = -ENOMEM; 2652 goto out; 2653 } 2654 2655 path->leave_spinning = 1; 2656 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2657 name, name_len, -1); 2658 if (IS_ERR(di)) { 2659 ret = PTR_ERR(di); 2660 goto err; 2661 } 2662 if (!di) { 2663 ret = -ENOENT; 2664 goto err; 2665 } 2666 leaf = path->nodes[0]; 2667 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2668 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2669 if (ret) 2670 goto err; 2671 btrfs_release_path(root, path); 2672 2673 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2674 inode->i_ino, 2675 dir->i_ino, &index); 2676 if (ret) { 2677 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2678 "inode %lu parent %lu\n", name_len, name, 2679 inode->i_ino, dir->i_ino); 2680 goto err; 2681 } 2682 2683 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2684 index, name, name_len, -1); 2685 if (IS_ERR(di)) { 2686 ret = PTR_ERR(di); 2687 goto err; 2688 } 2689 if (!di) { 2690 ret = -ENOENT; 2691 goto err; 2692 } 2693 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2694 btrfs_release_path(root, path); 2695 2696 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2697 inode, dir->i_ino); 2698 BUG_ON(ret != 0 && ret != -ENOENT); 2699 2700 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2701 dir, index); 2702 if (ret == -ENOENT) 2703 ret = 0; 2704 err: 2705 btrfs_free_path(path); 2706 if (ret) 2707 goto out; 2708 2709 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2710 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2711 btrfs_update_inode(trans, root, dir); 2712 btrfs_drop_nlink(inode); 2713 ret = btrfs_update_inode(trans, root, inode); 2714 out: 2715 return ret; 2716 } 2717 2718 /* helper to check if there is any shared block in the path */ 2719 static int check_path_shared(struct btrfs_root *root, 2720 struct btrfs_path *path) 2721 { 2722 struct extent_buffer *eb; 2723 int level; 2724 u64 refs = 1; 2725 2726 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2727 int ret; 2728 2729 if (!path->nodes[level]) 2730 break; 2731 eb = path->nodes[level]; 2732 if (!btrfs_block_can_be_shared(root, eb)) 2733 continue; 2734 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2735 &refs, NULL); 2736 if (refs > 1) 2737 return 1; 2738 } 2739 return 0; 2740 } 2741 2742 /* 2743 * helper to start transaction for unlink and rmdir. 2744 * 2745 * unlink and rmdir are special in btrfs, they do not always free space. 2746 * so in enospc case, we should make sure they will free space before 2747 * allowing them to use the global metadata reservation. 2748 */ 2749 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2750 struct dentry *dentry) 2751 { 2752 struct btrfs_trans_handle *trans; 2753 struct btrfs_root *root = BTRFS_I(dir)->root; 2754 struct btrfs_path *path; 2755 struct btrfs_inode_ref *ref; 2756 struct btrfs_dir_item *di; 2757 struct inode *inode = dentry->d_inode; 2758 u64 index; 2759 int check_link = 1; 2760 int err = -ENOSPC; 2761 int ret; 2762 2763 trans = btrfs_start_transaction(root, 10); 2764 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2765 return trans; 2766 2767 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2768 return ERR_PTR(-ENOSPC); 2769 2770 /* check if there is someone else holds reference */ 2771 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2772 return ERR_PTR(-ENOSPC); 2773 2774 if (atomic_read(&inode->i_count) > 2) 2775 return ERR_PTR(-ENOSPC); 2776 2777 if (xchg(&root->fs_info->enospc_unlink, 1)) 2778 return ERR_PTR(-ENOSPC); 2779 2780 path = btrfs_alloc_path(); 2781 if (!path) { 2782 root->fs_info->enospc_unlink = 0; 2783 return ERR_PTR(-ENOMEM); 2784 } 2785 2786 trans = btrfs_start_transaction(root, 0); 2787 if (IS_ERR(trans)) { 2788 btrfs_free_path(path); 2789 root->fs_info->enospc_unlink = 0; 2790 return trans; 2791 } 2792 2793 path->skip_locking = 1; 2794 path->search_commit_root = 1; 2795 2796 ret = btrfs_lookup_inode(trans, root, path, 2797 &BTRFS_I(dir)->location, 0); 2798 if (ret < 0) { 2799 err = ret; 2800 goto out; 2801 } 2802 if (ret == 0) { 2803 if (check_path_shared(root, path)) 2804 goto out; 2805 } else { 2806 check_link = 0; 2807 } 2808 btrfs_release_path(root, path); 2809 2810 ret = btrfs_lookup_inode(trans, root, path, 2811 &BTRFS_I(inode)->location, 0); 2812 if (ret < 0) { 2813 err = ret; 2814 goto out; 2815 } 2816 if (ret == 0) { 2817 if (check_path_shared(root, path)) 2818 goto out; 2819 } else { 2820 check_link = 0; 2821 } 2822 btrfs_release_path(root, path); 2823 2824 if (ret == 0 && S_ISREG(inode->i_mode)) { 2825 ret = btrfs_lookup_file_extent(trans, root, path, 2826 inode->i_ino, (u64)-1, 0); 2827 if (ret < 0) { 2828 err = ret; 2829 goto out; 2830 } 2831 BUG_ON(ret == 0); 2832 if (check_path_shared(root, path)) 2833 goto out; 2834 btrfs_release_path(root, path); 2835 } 2836 2837 if (!check_link) { 2838 err = 0; 2839 goto out; 2840 } 2841 2842 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2843 dentry->d_name.name, dentry->d_name.len, 0); 2844 if (IS_ERR(di)) { 2845 err = PTR_ERR(di); 2846 goto out; 2847 } 2848 if (di) { 2849 if (check_path_shared(root, path)) 2850 goto out; 2851 } else { 2852 err = 0; 2853 goto out; 2854 } 2855 btrfs_release_path(root, path); 2856 2857 ref = btrfs_lookup_inode_ref(trans, root, path, 2858 dentry->d_name.name, dentry->d_name.len, 2859 inode->i_ino, dir->i_ino, 0); 2860 if (IS_ERR(ref)) { 2861 err = PTR_ERR(ref); 2862 goto out; 2863 } 2864 BUG_ON(!ref); 2865 if (check_path_shared(root, path)) 2866 goto out; 2867 index = btrfs_inode_ref_index(path->nodes[0], ref); 2868 btrfs_release_path(root, path); 2869 2870 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index, 2871 dentry->d_name.name, dentry->d_name.len, 0); 2872 if (IS_ERR(di)) { 2873 err = PTR_ERR(di); 2874 goto out; 2875 } 2876 BUG_ON(ret == -ENOENT); 2877 if (check_path_shared(root, path)) 2878 goto out; 2879 2880 err = 0; 2881 out: 2882 btrfs_free_path(path); 2883 if (err) { 2884 btrfs_end_transaction(trans, root); 2885 root->fs_info->enospc_unlink = 0; 2886 return ERR_PTR(err); 2887 } 2888 2889 trans->block_rsv = &root->fs_info->global_block_rsv; 2890 return trans; 2891 } 2892 2893 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2894 struct btrfs_root *root) 2895 { 2896 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2897 BUG_ON(!root->fs_info->enospc_unlink); 2898 root->fs_info->enospc_unlink = 0; 2899 } 2900 btrfs_end_transaction_throttle(trans, root); 2901 } 2902 2903 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2904 { 2905 struct btrfs_root *root = BTRFS_I(dir)->root; 2906 struct btrfs_trans_handle *trans; 2907 struct inode *inode = dentry->d_inode; 2908 int ret; 2909 unsigned long nr = 0; 2910 2911 trans = __unlink_start_trans(dir, dentry); 2912 if (IS_ERR(trans)) 2913 return PTR_ERR(trans); 2914 2915 btrfs_set_trans_block_group(trans, dir); 2916 2917 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2918 2919 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2920 dentry->d_name.name, dentry->d_name.len); 2921 BUG_ON(ret); 2922 2923 if (inode->i_nlink == 0) { 2924 ret = btrfs_orphan_add(trans, inode); 2925 BUG_ON(ret); 2926 } 2927 2928 nr = trans->blocks_used; 2929 __unlink_end_trans(trans, root); 2930 btrfs_btree_balance_dirty(root, nr); 2931 return ret; 2932 } 2933 2934 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2935 struct btrfs_root *root, 2936 struct inode *dir, u64 objectid, 2937 const char *name, int name_len) 2938 { 2939 struct btrfs_path *path; 2940 struct extent_buffer *leaf; 2941 struct btrfs_dir_item *di; 2942 struct btrfs_key key; 2943 u64 index; 2944 int ret; 2945 2946 path = btrfs_alloc_path(); 2947 if (!path) 2948 return -ENOMEM; 2949 2950 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2951 name, name_len, -1); 2952 BUG_ON(!di || IS_ERR(di)); 2953 2954 leaf = path->nodes[0]; 2955 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2956 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2957 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2958 BUG_ON(ret); 2959 btrfs_release_path(root, path); 2960 2961 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2962 objectid, root->root_key.objectid, 2963 dir->i_ino, &index, name, name_len); 2964 if (ret < 0) { 2965 BUG_ON(ret != -ENOENT); 2966 di = btrfs_search_dir_index_item(root, path, dir->i_ino, 2967 name, name_len); 2968 BUG_ON(!di || IS_ERR(di)); 2969 2970 leaf = path->nodes[0]; 2971 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2972 btrfs_release_path(root, path); 2973 index = key.offset; 2974 } 2975 2976 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2977 index, name, name_len, -1); 2978 BUG_ON(!di || IS_ERR(di)); 2979 2980 leaf = path->nodes[0]; 2981 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2982 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2983 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2984 BUG_ON(ret); 2985 btrfs_release_path(root, path); 2986 2987 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2988 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2989 ret = btrfs_update_inode(trans, root, dir); 2990 BUG_ON(ret); 2991 2992 btrfs_free_path(path); 2993 return 0; 2994 } 2995 2996 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2997 { 2998 struct inode *inode = dentry->d_inode; 2999 int err = 0; 3000 struct btrfs_root *root = BTRFS_I(dir)->root; 3001 struct btrfs_trans_handle *trans; 3002 unsigned long nr = 0; 3003 3004 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 3005 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 3006 return -ENOTEMPTY; 3007 3008 trans = __unlink_start_trans(dir, dentry); 3009 if (IS_ERR(trans)) 3010 return PTR_ERR(trans); 3011 3012 btrfs_set_trans_block_group(trans, dir); 3013 3014 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3015 err = btrfs_unlink_subvol(trans, root, dir, 3016 BTRFS_I(inode)->location.objectid, 3017 dentry->d_name.name, 3018 dentry->d_name.len); 3019 goto out; 3020 } 3021 3022 err = btrfs_orphan_add(trans, inode); 3023 if (err) 3024 goto out; 3025 3026 /* now the directory is empty */ 3027 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3028 dentry->d_name.name, dentry->d_name.len); 3029 if (!err) 3030 btrfs_i_size_write(inode, 0); 3031 out: 3032 nr = trans->blocks_used; 3033 __unlink_end_trans(trans, root); 3034 btrfs_btree_balance_dirty(root, nr); 3035 3036 return err; 3037 } 3038 3039 #if 0 3040 /* 3041 * when truncating bytes in a file, it is possible to avoid reading 3042 * the leaves that contain only checksum items. This can be the 3043 * majority of the IO required to delete a large file, but it must 3044 * be done carefully. 3045 * 3046 * The keys in the level just above the leaves are checked to make sure 3047 * the lowest key in a given leaf is a csum key, and starts at an offset 3048 * after the new size. 3049 * 3050 * Then the key for the next leaf is checked to make sure it also has 3051 * a checksum item for the same file. If it does, we know our target leaf 3052 * contains only checksum items, and it can be safely freed without reading 3053 * it. 3054 * 3055 * This is just an optimization targeted at large files. It may do 3056 * nothing. It will return 0 unless things went badly. 3057 */ 3058 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 3059 struct btrfs_root *root, 3060 struct btrfs_path *path, 3061 struct inode *inode, u64 new_size) 3062 { 3063 struct btrfs_key key; 3064 int ret; 3065 int nritems; 3066 struct btrfs_key found_key; 3067 struct btrfs_key other_key; 3068 struct btrfs_leaf_ref *ref; 3069 u64 leaf_gen; 3070 u64 leaf_start; 3071 3072 path->lowest_level = 1; 3073 key.objectid = inode->i_ino; 3074 key.type = BTRFS_CSUM_ITEM_KEY; 3075 key.offset = new_size; 3076 again: 3077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3078 if (ret < 0) 3079 goto out; 3080 3081 if (path->nodes[1] == NULL) { 3082 ret = 0; 3083 goto out; 3084 } 3085 ret = 0; 3086 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 3087 nritems = btrfs_header_nritems(path->nodes[1]); 3088 3089 if (!nritems) 3090 goto out; 3091 3092 if (path->slots[1] >= nritems) 3093 goto next_node; 3094 3095 /* did we find a key greater than anything we want to delete? */ 3096 if (found_key.objectid > inode->i_ino || 3097 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 3098 goto out; 3099 3100 /* we check the next key in the node to make sure the leave contains 3101 * only checksum items. This comparison doesn't work if our 3102 * leaf is the last one in the node 3103 */ 3104 if (path->slots[1] + 1 >= nritems) { 3105 next_node: 3106 /* search forward from the last key in the node, this 3107 * will bring us into the next node in the tree 3108 */ 3109 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 3110 3111 /* unlikely, but we inc below, so check to be safe */ 3112 if (found_key.offset == (u64)-1) 3113 goto out; 3114 3115 /* search_forward needs a path with locks held, do the 3116 * search again for the original key. It is possible 3117 * this will race with a balance and return a path that 3118 * we could modify, but this drop is just an optimization 3119 * and is allowed to miss some leaves. 3120 */ 3121 btrfs_release_path(root, path); 3122 found_key.offset++; 3123 3124 /* setup a max key for search_forward */ 3125 other_key.offset = (u64)-1; 3126 other_key.type = key.type; 3127 other_key.objectid = key.objectid; 3128 3129 path->keep_locks = 1; 3130 ret = btrfs_search_forward(root, &found_key, &other_key, 3131 path, 0, 0); 3132 path->keep_locks = 0; 3133 if (ret || found_key.objectid != key.objectid || 3134 found_key.type != key.type) { 3135 ret = 0; 3136 goto out; 3137 } 3138 3139 key.offset = found_key.offset; 3140 btrfs_release_path(root, path); 3141 cond_resched(); 3142 goto again; 3143 } 3144 3145 /* we know there's one more slot after us in the tree, 3146 * read that key so we can verify it is also a checksum item 3147 */ 3148 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 3149 3150 if (found_key.objectid < inode->i_ino) 3151 goto next_key; 3152 3153 if (found_key.type != key.type || found_key.offset < new_size) 3154 goto next_key; 3155 3156 /* 3157 * if the key for the next leaf isn't a csum key from this objectid, 3158 * we can't be sure there aren't good items inside this leaf. 3159 * Bail out 3160 */ 3161 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 3162 goto out; 3163 3164 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 3165 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 3166 /* 3167 * it is safe to delete this leaf, it contains only 3168 * csum items from this inode at an offset >= new_size 3169 */ 3170 ret = btrfs_del_leaf(trans, root, path, leaf_start); 3171 BUG_ON(ret); 3172 3173 if (root->ref_cows && leaf_gen < trans->transid) { 3174 ref = btrfs_alloc_leaf_ref(root, 0); 3175 if (ref) { 3176 ref->root_gen = root->root_key.offset; 3177 ref->bytenr = leaf_start; 3178 ref->owner = 0; 3179 ref->generation = leaf_gen; 3180 ref->nritems = 0; 3181 3182 btrfs_sort_leaf_ref(ref); 3183 3184 ret = btrfs_add_leaf_ref(root, ref, 0); 3185 WARN_ON(ret); 3186 btrfs_free_leaf_ref(root, ref); 3187 } else { 3188 WARN_ON(1); 3189 } 3190 } 3191 next_key: 3192 btrfs_release_path(root, path); 3193 3194 if (other_key.objectid == inode->i_ino && 3195 other_key.type == key.type && other_key.offset > key.offset) { 3196 key.offset = other_key.offset; 3197 cond_resched(); 3198 goto again; 3199 } 3200 ret = 0; 3201 out: 3202 /* fixup any changes we've made to the path */ 3203 path->lowest_level = 0; 3204 path->keep_locks = 0; 3205 btrfs_release_path(root, path); 3206 return ret; 3207 } 3208 3209 #endif 3210 3211 /* 3212 * this can truncate away extent items, csum items and directory items. 3213 * It starts at a high offset and removes keys until it can't find 3214 * any higher than new_size 3215 * 3216 * csum items that cross the new i_size are truncated to the new size 3217 * as well. 3218 * 3219 * min_type is the minimum key type to truncate down to. If set to 0, this 3220 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3221 */ 3222 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3223 struct btrfs_root *root, 3224 struct inode *inode, 3225 u64 new_size, u32 min_type) 3226 { 3227 struct btrfs_path *path; 3228 struct extent_buffer *leaf; 3229 struct btrfs_file_extent_item *fi; 3230 struct btrfs_key key; 3231 struct btrfs_key found_key; 3232 u64 extent_start = 0; 3233 u64 extent_num_bytes = 0; 3234 u64 extent_offset = 0; 3235 u64 item_end = 0; 3236 u64 mask = root->sectorsize - 1; 3237 u32 found_type = (u8)-1; 3238 int found_extent; 3239 int del_item; 3240 int pending_del_nr = 0; 3241 int pending_del_slot = 0; 3242 int extent_type = -1; 3243 int encoding; 3244 int ret; 3245 int err = 0; 3246 3247 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3248 3249 if (root->ref_cows || root == root->fs_info->tree_root) 3250 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3251 3252 path = btrfs_alloc_path(); 3253 BUG_ON(!path); 3254 path->reada = -1; 3255 3256 key.objectid = inode->i_ino; 3257 key.offset = (u64)-1; 3258 key.type = (u8)-1; 3259 3260 search_again: 3261 path->leave_spinning = 1; 3262 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3263 if (ret < 0) { 3264 err = ret; 3265 goto out; 3266 } 3267 3268 if (ret > 0) { 3269 /* there are no items in the tree for us to truncate, we're 3270 * done 3271 */ 3272 if (path->slots[0] == 0) 3273 goto out; 3274 path->slots[0]--; 3275 } 3276 3277 while (1) { 3278 fi = NULL; 3279 leaf = path->nodes[0]; 3280 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3281 found_type = btrfs_key_type(&found_key); 3282 encoding = 0; 3283 3284 if (found_key.objectid != inode->i_ino) 3285 break; 3286 3287 if (found_type < min_type) 3288 break; 3289 3290 item_end = found_key.offset; 3291 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3292 fi = btrfs_item_ptr(leaf, path->slots[0], 3293 struct btrfs_file_extent_item); 3294 extent_type = btrfs_file_extent_type(leaf, fi); 3295 encoding = btrfs_file_extent_compression(leaf, fi); 3296 encoding |= btrfs_file_extent_encryption(leaf, fi); 3297 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3298 3299 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3300 item_end += 3301 btrfs_file_extent_num_bytes(leaf, fi); 3302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3303 item_end += btrfs_file_extent_inline_len(leaf, 3304 fi); 3305 } 3306 item_end--; 3307 } 3308 if (found_type > min_type) { 3309 del_item = 1; 3310 } else { 3311 if (item_end < new_size) 3312 break; 3313 if (found_key.offset >= new_size) 3314 del_item = 1; 3315 else 3316 del_item = 0; 3317 } 3318 found_extent = 0; 3319 /* FIXME, shrink the extent if the ref count is only 1 */ 3320 if (found_type != BTRFS_EXTENT_DATA_KEY) 3321 goto delete; 3322 3323 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3324 u64 num_dec; 3325 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3326 if (!del_item && !encoding) { 3327 u64 orig_num_bytes = 3328 btrfs_file_extent_num_bytes(leaf, fi); 3329 extent_num_bytes = new_size - 3330 found_key.offset + root->sectorsize - 1; 3331 extent_num_bytes = extent_num_bytes & 3332 ~((u64)root->sectorsize - 1); 3333 btrfs_set_file_extent_num_bytes(leaf, fi, 3334 extent_num_bytes); 3335 num_dec = (orig_num_bytes - 3336 extent_num_bytes); 3337 if (root->ref_cows && extent_start != 0) 3338 inode_sub_bytes(inode, num_dec); 3339 btrfs_mark_buffer_dirty(leaf); 3340 } else { 3341 extent_num_bytes = 3342 btrfs_file_extent_disk_num_bytes(leaf, 3343 fi); 3344 extent_offset = found_key.offset - 3345 btrfs_file_extent_offset(leaf, fi); 3346 3347 /* FIXME blocksize != 4096 */ 3348 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3349 if (extent_start != 0) { 3350 found_extent = 1; 3351 if (root->ref_cows) 3352 inode_sub_bytes(inode, num_dec); 3353 } 3354 } 3355 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3356 /* 3357 * we can't truncate inline items that have had 3358 * special encodings 3359 */ 3360 if (!del_item && 3361 btrfs_file_extent_compression(leaf, fi) == 0 && 3362 btrfs_file_extent_encryption(leaf, fi) == 0 && 3363 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3364 u32 size = new_size - found_key.offset; 3365 3366 if (root->ref_cows) { 3367 inode_sub_bytes(inode, item_end + 1 - 3368 new_size); 3369 } 3370 size = 3371 btrfs_file_extent_calc_inline_size(size); 3372 ret = btrfs_truncate_item(trans, root, path, 3373 size, 1); 3374 BUG_ON(ret); 3375 } else if (root->ref_cows) { 3376 inode_sub_bytes(inode, item_end + 1 - 3377 found_key.offset); 3378 } 3379 } 3380 delete: 3381 if (del_item) { 3382 if (!pending_del_nr) { 3383 /* no pending yet, add ourselves */ 3384 pending_del_slot = path->slots[0]; 3385 pending_del_nr = 1; 3386 } else if (pending_del_nr && 3387 path->slots[0] + 1 == pending_del_slot) { 3388 /* hop on the pending chunk */ 3389 pending_del_nr++; 3390 pending_del_slot = path->slots[0]; 3391 } else { 3392 BUG(); 3393 } 3394 } else { 3395 break; 3396 } 3397 if (found_extent && (root->ref_cows || 3398 root == root->fs_info->tree_root)) { 3399 btrfs_set_path_blocking(path); 3400 ret = btrfs_free_extent(trans, root, extent_start, 3401 extent_num_bytes, 0, 3402 btrfs_header_owner(leaf), 3403 inode->i_ino, extent_offset); 3404 BUG_ON(ret); 3405 } 3406 3407 if (found_type == BTRFS_INODE_ITEM_KEY) 3408 break; 3409 3410 if (path->slots[0] == 0 || 3411 path->slots[0] != pending_del_slot) { 3412 if (root->ref_cows) { 3413 err = -EAGAIN; 3414 goto out; 3415 } 3416 if (pending_del_nr) { 3417 ret = btrfs_del_items(trans, root, path, 3418 pending_del_slot, 3419 pending_del_nr); 3420 BUG_ON(ret); 3421 pending_del_nr = 0; 3422 } 3423 btrfs_release_path(root, path); 3424 goto search_again; 3425 } else { 3426 path->slots[0]--; 3427 } 3428 } 3429 out: 3430 if (pending_del_nr) { 3431 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3432 pending_del_nr); 3433 BUG_ON(ret); 3434 } 3435 btrfs_free_path(path); 3436 return err; 3437 } 3438 3439 /* 3440 * taken from block_truncate_page, but does cow as it zeros out 3441 * any bytes left in the last page in the file. 3442 */ 3443 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3444 { 3445 struct inode *inode = mapping->host; 3446 struct btrfs_root *root = BTRFS_I(inode)->root; 3447 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3448 struct btrfs_ordered_extent *ordered; 3449 struct extent_state *cached_state = NULL; 3450 char *kaddr; 3451 u32 blocksize = root->sectorsize; 3452 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3453 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3454 struct page *page; 3455 int ret = 0; 3456 u64 page_start; 3457 u64 page_end; 3458 3459 if ((offset & (blocksize - 1)) == 0) 3460 goto out; 3461 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3462 if (ret) 3463 goto out; 3464 3465 ret = -ENOMEM; 3466 again: 3467 page = grab_cache_page(mapping, index); 3468 if (!page) { 3469 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3470 goto out; 3471 } 3472 3473 page_start = page_offset(page); 3474 page_end = page_start + PAGE_CACHE_SIZE - 1; 3475 3476 if (!PageUptodate(page)) { 3477 ret = btrfs_readpage(NULL, page); 3478 lock_page(page); 3479 if (page->mapping != mapping) { 3480 unlock_page(page); 3481 page_cache_release(page); 3482 goto again; 3483 } 3484 if (!PageUptodate(page)) { 3485 ret = -EIO; 3486 goto out_unlock; 3487 } 3488 } 3489 wait_on_page_writeback(page); 3490 3491 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3492 GFP_NOFS); 3493 set_page_extent_mapped(page); 3494 3495 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3496 if (ordered) { 3497 unlock_extent_cached(io_tree, page_start, page_end, 3498 &cached_state, GFP_NOFS); 3499 unlock_page(page); 3500 page_cache_release(page); 3501 btrfs_start_ordered_extent(inode, ordered, 1); 3502 btrfs_put_ordered_extent(ordered); 3503 goto again; 3504 } 3505 3506 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3507 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3508 0, 0, &cached_state, GFP_NOFS); 3509 3510 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3511 &cached_state); 3512 if (ret) { 3513 unlock_extent_cached(io_tree, page_start, page_end, 3514 &cached_state, GFP_NOFS); 3515 goto out_unlock; 3516 } 3517 3518 ret = 0; 3519 if (offset != PAGE_CACHE_SIZE) { 3520 kaddr = kmap(page); 3521 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3522 flush_dcache_page(page); 3523 kunmap(page); 3524 } 3525 ClearPageChecked(page); 3526 set_page_dirty(page); 3527 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3528 GFP_NOFS); 3529 3530 out_unlock: 3531 if (ret) 3532 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3533 unlock_page(page); 3534 page_cache_release(page); 3535 out: 3536 return ret; 3537 } 3538 3539 int btrfs_cont_expand(struct inode *inode, loff_t size) 3540 { 3541 struct btrfs_trans_handle *trans; 3542 struct btrfs_root *root = BTRFS_I(inode)->root; 3543 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3544 struct extent_map *em = NULL; 3545 struct extent_state *cached_state = NULL; 3546 u64 mask = root->sectorsize - 1; 3547 u64 hole_start = (inode->i_size + mask) & ~mask; 3548 u64 block_end = (size + mask) & ~mask; 3549 u64 last_byte; 3550 u64 cur_offset; 3551 u64 hole_size; 3552 int err = 0; 3553 3554 if (size <= hole_start) 3555 return 0; 3556 3557 while (1) { 3558 struct btrfs_ordered_extent *ordered; 3559 btrfs_wait_ordered_range(inode, hole_start, 3560 block_end - hole_start); 3561 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3562 &cached_state, GFP_NOFS); 3563 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3564 if (!ordered) 3565 break; 3566 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3567 &cached_state, GFP_NOFS); 3568 btrfs_put_ordered_extent(ordered); 3569 } 3570 3571 cur_offset = hole_start; 3572 while (1) { 3573 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3574 block_end - cur_offset, 0); 3575 BUG_ON(IS_ERR(em) || !em); 3576 last_byte = min(extent_map_end(em), block_end); 3577 last_byte = (last_byte + mask) & ~mask; 3578 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3579 u64 hint_byte = 0; 3580 hole_size = last_byte - cur_offset; 3581 3582 trans = btrfs_start_transaction(root, 2); 3583 if (IS_ERR(trans)) { 3584 err = PTR_ERR(trans); 3585 break; 3586 } 3587 btrfs_set_trans_block_group(trans, inode); 3588 3589 err = btrfs_drop_extents(trans, inode, cur_offset, 3590 cur_offset + hole_size, 3591 &hint_byte, 1); 3592 BUG_ON(err); 3593 3594 err = btrfs_insert_file_extent(trans, root, 3595 inode->i_ino, cur_offset, 0, 3596 0, hole_size, 0, hole_size, 3597 0, 0, 0); 3598 BUG_ON(err); 3599 3600 btrfs_drop_extent_cache(inode, hole_start, 3601 last_byte - 1, 0); 3602 3603 btrfs_end_transaction(trans, root); 3604 } 3605 free_extent_map(em); 3606 em = NULL; 3607 cur_offset = last_byte; 3608 if (cur_offset >= block_end) 3609 break; 3610 } 3611 3612 free_extent_map(em); 3613 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3614 GFP_NOFS); 3615 return err; 3616 } 3617 3618 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr) 3619 { 3620 struct btrfs_root *root = BTRFS_I(inode)->root; 3621 struct btrfs_trans_handle *trans; 3622 unsigned long nr; 3623 int ret; 3624 3625 if (attr->ia_size == inode->i_size) 3626 return 0; 3627 3628 if (attr->ia_size > inode->i_size) { 3629 unsigned long limit; 3630 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 3631 if (attr->ia_size > inode->i_sb->s_maxbytes) 3632 return -EFBIG; 3633 if (limit != RLIM_INFINITY && attr->ia_size > limit) { 3634 send_sig(SIGXFSZ, current, 0); 3635 return -EFBIG; 3636 } 3637 } 3638 3639 trans = btrfs_start_transaction(root, 5); 3640 if (IS_ERR(trans)) 3641 return PTR_ERR(trans); 3642 3643 btrfs_set_trans_block_group(trans, inode); 3644 3645 ret = btrfs_orphan_add(trans, inode); 3646 BUG_ON(ret); 3647 3648 nr = trans->blocks_used; 3649 btrfs_end_transaction(trans, root); 3650 btrfs_btree_balance_dirty(root, nr); 3651 3652 if (attr->ia_size > inode->i_size) { 3653 ret = btrfs_cont_expand(inode, attr->ia_size); 3654 if (ret) { 3655 btrfs_truncate(inode); 3656 return ret; 3657 } 3658 3659 i_size_write(inode, attr->ia_size); 3660 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 3661 3662 trans = btrfs_start_transaction(root, 0); 3663 BUG_ON(IS_ERR(trans)); 3664 btrfs_set_trans_block_group(trans, inode); 3665 trans->block_rsv = root->orphan_block_rsv; 3666 BUG_ON(!trans->block_rsv); 3667 3668 ret = btrfs_update_inode(trans, root, inode); 3669 BUG_ON(ret); 3670 if (inode->i_nlink > 0) { 3671 ret = btrfs_orphan_del(trans, inode); 3672 BUG_ON(ret); 3673 } 3674 nr = trans->blocks_used; 3675 btrfs_end_transaction(trans, root); 3676 btrfs_btree_balance_dirty(root, nr); 3677 return 0; 3678 } 3679 3680 /* 3681 * We're truncating a file that used to have good data down to 3682 * zero. Make sure it gets into the ordered flush list so that 3683 * any new writes get down to disk quickly. 3684 */ 3685 if (attr->ia_size == 0) 3686 BTRFS_I(inode)->ordered_data_close = 1; 3687 3688 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3689 ret = vmtruncate(inode, attr->ia_size); 3690 BUG_ON(ret); 3691 3692 return 0; 3693 } 3694 3695 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3696 { 3697 struct inode *inode = dentry->d_inode; 3698 struct btrfs_root *root = BTRFS_I(inode)->root; 3699 int err; 3700 3701 if (btrfs_root_readonly(root)) 3702 return -EROFS; 3703 3704 err = inode_change_ok(inode, attr); 3705 if (err) 3706 return err; 3707 3708 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3709 err = btrfs_setattr_size(inode, attr); 3710 if (err) 3711 return err; 3712 } 3713 3714 if (attr->ia_valid) { 3715 setattr_copy(inode, attr); 3716 mark_inode_dirty(inode); 3717 3718 if (attr->ia_valid & ATTR_MODE) 3719 err = btrfs_acl_chmod(inode); 3720 } 3721 3722 return err; 3723 } 3724 3725 void btrfs_evict_inode(struct inode *inode) 3726 { 3727 struct btrfs_trans_handle *trans; 3728 struct btrfs_root *root = BTRFS_I(inode)->root; 3729 unsigned long nr; 3730 int ret; 3731 3732 truncate_inode_pages(&inode->i_data, 0); 3733 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3734 root == root->fs_info->tree_root)) 3735 goto no_delete; 3736 3737 if (is_bad_inode(inode)) { 3738 btrfs_orphan_del(NULL, inode); 3739 goto no_delete; 3740 } 3741 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3742 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3743 3744 if (root->fs_info->log_root_recovering) { 3745 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3746 goto no_delete; 3747 } 3748 3749 if (inode->i_nlink > 0) { 3750 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3751 goto no_delete; 3752 } 3753 3754 btrfs_i_size_write(inode, 0); 3755 3756 while (1) { 3757 trans = btrfs_start_transaction(root, 0); 3758 BUG_ON(IS_ERR(trans)); 3759 btrfs_set_trans_block_group(trans, inode); 3760 trans->block_rsv = root->orphan_block_rsv; 3761 3762 ret = btrfs_block_rsv_check(trans, root, 3763 root->orphan_block_rsv, 0, 5); 3764 if (ret) { 3765 BUG_ON(ret != -EAGAIN); 3766 ret = btrfs_commit_transaction(trans, root); 3767 BUG_ON(ret); 3768 continue; 3769 } 3770 3771 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3772 if (ret != -EAGAIN) 3773 break; 3774 3775 nr = trans->blocks_used; 3776 btrfs_end_transaction(trans, root); 3777 trans = NULL; 3778 btrfs_btree_balance_dirty(root, nr); 3779 3780 } 3781 3782 if (ret == 0) { 3783 ret = btrfs_orphan_del(trans, inode); 3784 BUG_ON(ret); 3785 } 3786 3787 nr = trans->blocks_used; 3788 btrfs_end_transaction(trans, root); 3789 btrfs_btree_balance_dirty(root, nr); 3790 no_delete: 3791 end_writeback(inode); 3792 return; 3793 } 3794 3795 /* 3796 * this returns the key found in the dir entry in the location pointer. 3797 * If no dir entries were found, location->objectid is 0. 3798 */ 3799 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3800 struct btrfs_key *location) 3801 { 3802 const char *name = dentry->d_name.name; 3803 int namelen = dentry->d_name.len; 3804 struct btrfs_dir_item *di; 3805 struct btrfs_path *path; 3806 struct btrfs_root *root = BTRFS_I(dir)->root; 3807 int ret = 0; 3808 3809 path = btrfs_alloc_path(); 3810 BUG_ON(!path); 3811 3812 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3813 namelen, 0); 3814 if (IS_ERR(di)) 3815 ret = PTR_ERR(di); 3816 3817 if (!di || IS_ERR(di)) 3818 goto out_err; 3819 3820 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3821 out: 3822 btrfs_free_path(path); 3823 return ret; 3824 out_err: 3825 location->objectid = 0; 3826 goto out; 3827 } 3828 3829 /* 3830 * when we hit a tree root in a directory, the btrfs part of the inode 3831 * needs to be changed to reflect the root directory of the tree root. This 3832 * is kind of like crossing a mount point. 3833 */ 3834 static int fixup_tree_root_location(struct btrfs_root *root, 3835 struct inode *dir, 3836 struct dentry *dentry, 3837 struct btrfs_key *location, 3838 struct btrfs_root **sub_root) 3839 { 3840 struct btrfs_path *path; 3841 struct btrfs_root *new_root; 3842 struct btrfs_root_ref *ref; 3843 struct extent_buffer *leaf; 3844 int ret; 3845 int err = 0; 3846 3847 path = btrfs_alloc_path(); 3848 if (!path) { 3849 err = -ENOMEM; 3850 goto out; 3851 } 3852 3853 err = -ENOENT; 3854 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3855 BTRFS_I(dir)->root->root_key.objectid, 3856 location->objectid); 3857 if (ret) { 3858 if (ret < 0) 3859 err = ret; 3860 goto out; 3861 } 3862 3863 leaf = path->nodes[0]; 3864 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3865 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino || 3866 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3867 goto out; 3868 3869 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3870 (unsigned long)(ref + 1), 3871 dentry->d_name.len); 3872 if (ret) 3873 goto out; 3874 3875 btrfs_release_path(root->fs_info->tree_root, path); 3876 3877 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3878 if (IS_ERR(new_root)) { 3879 err = PTR_ERR(new_root); 3880 goto out; 3881 } 3882 3883 if (btrfs_root_refs(&new_root->root_item) == 0) { 3884 err = -ENOENT; 3885 goto out; 3886 } 3887 3888 *sub_root = new_root; 3889 location->objectid = btrfs_root_dirid(&new_root->root_item); 3890 location->type = BTRFS_INODE_ITEM_KEY; 3891 location->offset = 0; 3892 err = 0; 3893 out: 3894 btrfs_free_path(path); 3895 return err; 3896 } 3897 3898 static void inode_tree_add(struct inode *inode) 3899 { 3900 struct btrfs_root *root = BTRFS_I(inode)->root; 3901 struct btrfs_inode *entry; 3902 struct rb_node **p; 3903 struct rb_node *parent; 3904 again: 3905 p = &root->inode_tree.rb_node; 3906 parent = NULL; 3907 3908 if (inode_unhashed(inode)) 3909 return; 3910 3911 spin_lock(&root->inode_lock); 3912 while (*p) { 3913 parent = *p; 3914 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3915 3916 if (inode->i_ino < entry->vfs_inode.i_ino) 3917 p = &parent->rb_left; 3918 else if (inode->i_ino > entry->vfs_inode.i_ino) 3919 p = &parent->rb_right; 3920 else { 3921 WARN_ON(!(entry->vfs_inode.i_state & 3922 (I_WILL_FREE | I_FREEING))); 3923 rb_erase(parent, &root->inode_tree); 3924 RB_CLEAR_NODE(parent); 3925 spin_unlock(&root->inode_lock); 3926 goto again; 3927 } 3928 } 3929 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3930 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3931 spin_unlock(&root->inode_lock); 3932 } 3933 3934 static void inode_tree_del(struct inode *inode) 3935 { 3936 struct btrfs_root *root = BTRFS_I(inode)->root; 3937 int empty = 0; 3938 3939 spin_lock(&root->inode_lock); 3940 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3941 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3942 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3943 empty = RB_EMPTY_ROOT(&root->inode_tree); 3944 } 3945 spin_unlock(&root->inode_lock); 3946 3947 /* 3948 * Free space cache has inodes in the tree root, but the tree root has a 3949 * root_refs of 0, so this could end up dropping the tree root as a 3950 * snapshot, so we need the extra !root->fs_info->tree_root check to 3951 * make sure we don't drop it. 3952 */ 3953 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3954 root != root->fs_info->tree_root) { 3955 synchronize_srcu(&root->fs_info->subvol_srcu); 3956 spin_lock(&root->inode_lock); 3957 empty = RB_EMPTY_ROOT(&root->inode_tree); 3958 spin_unlock(&root->inode_lock); 3959 if (empty) 3960 btrfs_add_dead_root(root); 3961 } 3962 } 3963 3964 int btrfs_invalidate_inodes(struct btrfs_root *root) 3965 { 3966 struct rb_node *node; 3967 struct rb_node *prev; 3968 struct btrfs_inode *entry; 3969 struct inode *inode; 3970 u64 objectid = 0; 3971 3972 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3973 3974 spin_lock(&root->inode_lock); 3975 again: 3976 node = root->inode_tree.rb_node; 3977 prev = NULL; 3978 while (node) { 3979 prev = node; 3980 entry = rb_entry(node, struct btrfs_inode, rb_node); 3981 3982 if (objectid < entry->vfs_inode.i_ino) 3983 node = node->rb_left; 3984 else if (objectid > entry->vfs_inode.i_ino) 3985 node = node->rb_right; 3986 else 3987 break; 3988 } 3989 if (!node) { 3990 while (prev) { 3991 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3992 if (objectid <= entry->vfs_inode.i_ino) { 3993 node = prev; 3994 break; 3995 } 3996 prev = rb_next(prev); 3997 } 3998 } 3999 while (node) { 4000 entry = rb_entry(node, struct btrfs_inode, rb_node); 4001 objectid = entry->vfs_inode.i_ino + 1; 4002 inode = igrab(&entry->vfs_inode); 4003 if (inode) { 4004 spin_unlock(&root->inode_lock); 4005 if (atomic_read(&inode->i_count) > 1) 4006 d_prune_aliases(inode); 4007 /* 4008 * btrfs_drop_inode will have it removed from 4009 * the inode cache when its usage count 4010 * hits zero. 4011 */ 4012 iput(inode); 4013 cond_resched(); 4014 spin_lock(&root->inode_lock); 4015 goto again; 4016 } 4017 4018 if (cond_resched_lock(&root->inode_lock)) 4019 goto again; 4020 4021 node = rb_next(node); 4022 } 4023 spin_unlock(&root->inode_lock); 4024 return 0; 4025 } 4026 4027 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4028 { 4029 struct btrfs_iget_args *args = p; 4030 inode->i_ino = args->ino; 4031 BTRFS_I(inode)->root = args->root; 4032 btrfs_set_inode_space_info(args->root, inode); 4033 return 0; 4034 } 4035 4036 static int btrfs_find_actor(struct inode *inode, void *opaque) 4037 { 4038 struct btrfs_iget_args *args = opaque; 4039 return args->ino == inode->i_ino && 4040 args->root == BTRFS_I(inode)->root; 4041 } 4042 4043 static struct inode *btrfs_iget_locked(struct super_block *s, 4044 u64 objectid, 4045 struct btrfs_root *root) 4046 { 4047 struct inode *inode; 4048 struct btrfs_iget_args args; 4049 args.ino = objectid; 4050 args.root = root; 4051 4052 inode = iget5_locked(s, objectid, btrfs_find_actor, 4053 btrfs_init_locked_inode, 4054 (void *)&args); 4055 return inode; 4056 } 4057 4058 /* Get an inode object given its location and corresponding root. 4059 * Returns in *is_new if the inode was read from disk 4060 */ 4061 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4062 struct btrfs_root *root, int *new) 4063 { 4064 struct inode *inode; 4065 4066 inode = btrfs_iget_locked(s, location->objectid, root); 4067 if (!inode) 4068 return ERR_PTR(-ENOMEM); 4069 4070 if (inode->i_state & I_NEW) { 4071 BTRFS_I(inode)->root = root; 4072 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4073 btrfs_read_locked_inode(inode); 4074 4075 inode_tree_add(inode); 4076 unlock_new_inode(inode); 4077 if (new) 4078 *new = 1; 4079 } 4080 4081 return inode; 4082 } 4083 4084 static struct inode *new_simple_dir(struct super_block *s, 4085 struct btrfs_key *key, 4086 struct btrfs_root *root) 4087 { 4088 struct inode *inode = new_inode(s); 4089 4090 if (!inode) 4091 return ERR_PTR(-ENOMEM); 4092 4093 BTRFS_I(inode)->root = root; 4094 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4095 BTRFS_I(inode)->dummy_inode = 1; 4096 4097 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4098 inode->i_op = &simple_dir_inode_operations; 4099 inode->i_fop = &simple_dir_operations; 4100 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4101 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4102 4103 return inode; 4104 } 4105 4106 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4107 { 4108 struct inode *inode; 4109 struct btrfs_root *root = BTRFS_I(dir)->root; 4110 struct btrfs_root *sub_root = root; 4111 struct btrfs_key location; 4112 int index; 4113 int ret; 4114 4115 if (dentry->d_name.len > BTRFS_NAME_LEN) 4116 return ERR_PTR(-ENAMETOOLONG); 4117 4118 ret = btrfs_inode_by_name(dir, dentry, &location); 4119 4120 if (ret < 0) 4121 return ERR_PTR(ret); 4122 4123 if (location.objectid == 0) 4124 return NULL; 4125 4126 if (location.type == BTRFS_INODE_ITEM_KEY) { 4127 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4128 return inode; 4129 } 4130 4131 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4132 4133 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4134 ret = fixup_tree_root_location(root, dir, dentry, 4135 &location, &sub_root); 4136 if (ret < 0) { 4137 if (ret != -ENOENT) 4138 inode = ERR_PTR(ret); 4139 else 4140 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4141 } else { 4142 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4143 } 4144 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4145 4146 if (!IS_ERR(inode) && root != sub_root) { 4147 down_read(&root->fs_info->cleanup_work_sem); 4148 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4149 btrfs_orphan_cleanup(sub_root); 4150 up_read(&root->fs_info->cleanup_work_sem); 4151 } 4152 4153 return inode; 4154 } 4155 4156 static int btrfs_dentry_delete(const struct dentry *dentry) 4157 { 4158 struct btrfs_root *root; 4159 4160 if (!dentry->d_inode && !IS_ROOT(dentry)) 4161 dentry = dentry->d_parent; 4162 4163 if (dentry->d_inode) { 4164 root = BTRFS_I(dentry->d_inode)->root; 4165 if (btrfs_root_refs(&root->root_item) == 0) 4166 return 1; 4167 } 4168 return 0; 4169 } 4170 4171 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4172 struct nameidata *nd) 4173 { 4174 struct inode *inode; 4175 4176 inode = btrfs_lookup_dentry(dir, dentry); 4177 if (IS_ERR(inode)) 4178 return ERR_CAST(inode); 4179 4180 return d_splice_alias(inode, dentry); 4181 } 4182 4183 static unsigned char btrfs_filetype_table[] = { 4184 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4185 }; 4186 4187 static int btrfs_real_readdir(struct file *filp, void *dirent, 4188 filldir_t filldir) 4189 { 4190 struct inode *inode = filp->f_dentry->d_inode; 4191 struct btrfs_root *root = BTRFS_I(inode)->root; 4192 struct btrfs_item *item; 4193 struct btrfs_dir_item *di; 4194 struct btrfs_key key; 4195 struct btrfs_key found_key; 4196 struct btrfs_path *path; 4197 int ret; 4198 u32 nritems; 4199 struct extent_buffer *leaf; 4200 int slot; 4201 int advance; 4202 unsigned char d_type; 4203 int over = 0; 4204 u32 di_cur; 4205 u32 di_total; 4206 u32 di_len; 4207 int key_type = BTRFS_DIR_INDEX_KEY; 4208 char tmp_name[32]; 4209 char *name_ptr; 4210 int name_len; 4211 4212 /* FIXME, use a real flag for deciding about the key type */ 4213 if (root->fs_info->tree_root == root) 4214 key_type = BTRFS_DIR_ITEM_KEY; 4215 4216 /* special case for "." */ 4217 if (filp->f_pos == 0) { 4218 over = filldir(dirent, ".", 1, 4219 1, inode->i_ino, 4220 DT_DIR); 4221 if (over) 4222 return 0; 4223 filp->f_pos = 1; 4224 } 4225 /* special case for .., just use the back ref */ 4226 if (filp->f_pos == 1) { 4227 u64 pino = parent_ino(filp->f_path.dentry); 4228 over = filldir(dirent, "..", 2, 4229 2, pino, DT_DIR); 4230 if (over) 4231 return 0; 4232 filp->f_pos = 2; 4233 } 4234 path = btrfs_alloc_path(); 4235 path->reada = 2; 4236 4237 btrfs_set_key_type(&key, key_type); 4238 key.offset = filp->f_pos; 4239 key.objectid = inode->i_ino; 4240 4241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4242 if (ret < 0) 4243 goto err; 4244 advance = 0; 4245 4246 while (1) { 4247 leaf = path->nodes[0]; 4248 nritems = btrfs_header_nritems(leaf); 4249 slot = path->slots[0]; 4250 if (advance || slot >= nritems) { 4251 if (slot >= nritems - 1) { 4252 ret = btrfs_next_leaf(root, path); 4253 if (ret) 4254 break; 4255 leaf = path->nodes[0]; 4256 nritems = btrfs_header_nritems(leaf); 4257 slot = path->slots[0]; 4258 } else { 4259 slot++; 4260 path->slots[0]++; 4261 } 4262 } 4263 4264 advance = 1; 4265 item = btrfs_item_nr(leaf, slot); 4266 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4267 4268 if (found_key.objectid != key.objectid) 4269 break; 4270 if (btrfs_key_type(&found_key) != key_type) 4271 break; 4272 if (found_key.offset < filp->f_pos) 4273 continue; 4274 4275 filp->f_pos = found_key.offset; 4276 4277 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4278 di_cur = 0; 4279 di_total = btrfs_item_size(leaf, item); 4280 4281 while (di_cur < di_total) { 4282 struct btrfs_key location; 4283 4284 name_len = btrfs_dir_name_len(leaf, di); 4285 if (name_len <= sizeof(tmp_name)) { 4286 name_ptr = tmp_name; 4287 } else { 4288 name_ptr = kmalloc(name_len, GFP_NOFS); 4289 if (!name_ptr) { 4290 ret = -ENOMEM; 4291 goto err; 4292 } 4293 } 4294 read_extent_buffer(leaf, name_ptr, 4295 (unsigned long)(di + 1), name_len); 4296 4297 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4298 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4299 4300 /* is this a reference to our own snapshot? If so 4301 * skip it 4302 */ 4303 if (location.type == BTRFS_ROOT_ITEM_KEY && 4304 location.objectid == root->root_key.objectid) { 4305 over = 0; 4306 goto skip; 4307 } 4308 over = filldir(dirent, name_ptr, name_len, 4309 found_key.offset, location.objectid, 4310 d_type); 4311 4312 skip: 4313 if (name_ptr != tmp_name) 4314 kfree(name_ptr); 4315 4316 if (over) 4317 goto nopos; 4318 di_len = btrfs_dir_name_len(leaf, di) + 4319 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4320 di_cur += di_len; 4321 di = (struct btrfs_dir_item *)((char *)di + di_len); 4322 } 4323 } 4324 4325 /* Reached end of directory/root. Bump pos past the last item. */ 4326 if (key_type == BTRFS_DIR_INDEX_KEY) 4327 /* 4328 * 32-bit glibc will use getdents64, but then strtol - 4329 * so the last number we can serve is this. 4330 */ 4331 filp->f_pos = 0x7fffffff; 4332 else 4333 filp->f_pos++; 4334 nopos: 4335 ret = 0; 4336 err: 4337 btrfs_free_path(path); 4338 return ret; 4339 } 4340 4341 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4342 { 4343 struct btrfs_root *root = BTRFS_I(inode)->root; 4344 struct btrfs_trans_handle *trans; 4345 int ret = 0; 4346 bool nolock = false; 4347 4348 if (BTRFS_I(inode)->dummy_inode) 4349 return 0; 4350 4351 smp_mb(); 4352 nolock = (root->fs_info->closing && root == root->fs_info->tree_root); 4353 4354 if (wbc->sync_mode == WB_SYNC_ALL) { 4355 if (nolock) 4356 trans = btrfs_join_transaction_nolock(root, 1); 4357 else 4358 trans = btrfs_join_transaction(root, 1); 4359 if (IS_ERR(trans)) 4360 return PTR_ERR(trans); 4361 btrfs_set_trans_block_group(trans, inode); 4362 if (nolock) 4363 ret = btrfs_end_transaction_nolock(trans, root); 4364 else 4365 ret = btrfs_commit_transaction(trans, root); 4366 } 4367 return ret; 4368 } 4369 4370 /* 4371 * This is somewhat expensive, updating the tree every time the 4372 * inode changes. But, it is most likely to find the inode in cache. 4373 * FIXME, needs more benchmarking...there are no reasons other than performance 4374 * to keep or drop this code. 4375 */ 4376 void btrfs_dirty_inode(struct inode *inode) 4377 { 4378 struct btrfs_root *root = BTRFS_I(inode)->root; 4379 struct btrfs_trans_handle *trans; 4380 int ret; 4381 4382 if (BTRFS_I(inode)->dummy_inode) 4383 return; 4384 4385 trans = btrfs_join_transaction(root, 1); 4386 BUG_ON(IS_ERR(trans)); 4387 btrfs_set_trans_block_group(trans, inode); 4388 4389 ret = btrfs_update_inode(trans, root, inode); 4390 if (ret && ret == -ENOSPC) { 4391 /* whoops, lets try again with the full transaction */ 4392 btrfs_end_transaction(trans, root); 4393 trans = btrfs_start_transaction(root, 1); 4394 if (IS_ERR(trans)) { 4395 if (printk_ratelimit()) { 4396 printk(KERN_ERR "btrfs: fail to " 4397 "dirty inode %lu error %ld\n", 4398 inode->i_ino, PTR_ERR(trans)); 4399 } 4400 return; 4401 } 4402 btrfs_set_trans_block_group(trans, inode); 4403 4404 ret = btrfs_update_inode(trans, root, inode); 4405 if (ret) { 4406 if (printk_ratelimit()) { 4407 printk(KERN_ERR "btrfs: fail to " 4408 "dirty inode %lu error %d\n", 4409 inode->i_ino, ret); 4410 } 4411 } 4412 } 4413 btrfs_end_transaction(trans, root); 4414 } 4415 4416 /* 4417 * find the highest existing sequence number in a directory 4418 * and then set the in-memory index_cnt variable to reflect 4419 * free sequence numbers 4420 */ 4421 static int btrfs_set_inode_index_count(struct inode *inode) 4422 { 4423 struct btrfs_root *root = BTRFS_I(inode)->root; 4424 struct btrfs_key key, found_key; 4425 struct btrfs_path *path; 4426 struct extent_buffer *leaf; 4427 int ret; 4428 4429 key.objectid = inode->i_ino; 4430 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4431 key.offset = (u64)-1; 4432 4433 path = btrfs_alloc_path(); 4434 if (!path) 4435 return -ENOMEM; 4436 4437 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4438 if (ret < 0) 4439 goto out; 4440 /* FIXME: we should be able to handle this */ 4441 if (ret == 0) 4442 goto out; 4443 ret = 0; 4444 4445 /* 4446 * MAGIC NUMBER EXPLANATION: 4447 * since we search a directory based on f_pos we have to start at 2 4448 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4449 * else has to start at 2 4450 */ 4451 if (path->slots[0] == 0) { 4452 BTRFS_I(inode)->index_cnt = 2; 4453 goto out; 4454 } 4455 4456 path->slots[0]--; 4457 4458 leaf = path->nodes[0]; 4459 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4460 4461 if (found_key.objectid != inode->i_ino || 4462 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4463 BTRFS_I(inode)->index_cnt = 2; 4464 goto out; 4465 } 4466 4467 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4468 out: 4469 btrfs_free_path(path); 4470 return ret; 4471 } 4472 4473 /* 4474 * helper to find a free sequence number in a given directory. This current 4475 * code is very simple, later versions will do smarter things in the btree 4476 */ 4477 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4478 { 4479 int ret = 0; 4480 4481 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4482 ret = btrfs_set_inode_index_count(dir); 4483 if (ret) 4484 return ret; 4485 } 4486 4487 *index = BTRFS_I(dir)->index_cnt; 4488 BTRFS_I(dir)->index_cnt++; 4489 4490 return ret; 4491 } 4492 4493 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4494 struct btrfs_root *root, 4495 struct inode *dir, 4496 const char *name, int name_len, 4497 u64 ref_objectid, u64 objectid, 4498 u64 alloc_hint, int mode, u64 *index) 4499 { 4500 struct inode *inode; 4501 struct btrfs_inode_item *inode_item; 4502 struct btrfs_key *location; 4503 struct btrfs_path *path; 4504 struct btrfs_inode_ref *ref; 4505 struct btrfs_key key[2]; 4506 u32 sizes[2]; 4507 unsigned long ptr; 4508 int ret; 4509 int owner; 4510 4511 path = btrfs_alloc_path(); 4512 BUG_ON(!path); 4513 4514 inode = new_inode(root->fs_info->sb); 4515 if (!inode) 4516 return ERR_PTR(-ENOMEM); 4517 4518 if (dir) { 4519 ret = btrfs_set_inode_index(dir, index); 4520 if (ret) { 4521 iput(inode); 4522 return ERR_PTR(ret); 4523 } 4524 } 4525 /* 4526 * index_cnt is ignored for everything but a dir, 4527 * btrfs_get_inode_index_count has an explanation for the magic 4528 * number 4529 */ 4530 BTRFS_I(inode)->index_cnt = 2; 4531 BTRFS_I(inode)->root = root; 4532 BTRFS_I(inode)->generation = trans->transid; 4533 inode->i_generation = BTRFS_I(inode)->generation; 4534 btrfs_set_inode_space_info(root, inode); 4535 4536 if (mode & S_IFDIR) 4537 owner = 0; 4538 else 4539 owner = 1; 4540 BTRFS_I(inode)->block_group = 4541 btrfs_find_block_group(root, 0, alloc_hint, owner); 4542 4543 key[0].objectid = objectid; 4544 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4545 key[0].offset = 0; 4546 4547 key[1].objectid = objectid; 4548 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4549 key[1].offset = ref_objectid; 4550 4551 sizes[0] = sizeof(struct btrfs_inode_item); 4552 sizes[1] = name_len + sizeof(*ref); 4553 4554 path->leave_spinning = 1; 4555 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4556 if (ret != 0) 4557 goto fail; 4558 4559 inode_init_owner(inode, dir, mode); 4560 inode->i_ino = objectid; 4561 inode_set_bytes(inode, 0); 4562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4563 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4564 struct btrfs_inode_item); 4565 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4566 4567 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4568 struct btrfs_inode_ref); 4569 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4570 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4571 ptr = (unsigned long)(ref + 1); 4572 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4573 4574 btrfs_mark_buffer_dirty(path->nodes[0]); 4575 btrfs_free_path(path); 4576 4577 location = &BTRFS_I(inode)->location; 4578 location->objectid = objectid; 4579 location->offset = 0; 4580 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4581 4582 btrfs_inherit_iflags(inode, dir); 4583 4584 if ((mode & S_IFREG)) { 4585 if (btrfs_test_opt(root, NODATASUM)) 4586 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4587 if (btrfs_test_opt(root, NODATACOW)) 4588 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4589 } 4590 4591 insert_inode_hash(inode); 4592 inode_tree_add(inode); 4593 return inode; 4594 fail: 4595 if (dir) 4596 BTRFS_I(dir)->index_cnt--; 4597 btrfs_free_path(path); 4598 iput(inode); 4599 return ERR_PTR(ret); 4600 } 4601 4602 static inline u8 btrfs_inode_type(struct inode *inode) 4603 { 4604 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4605 } 4606 4607 /* 4608 * utility function to add 'inode' into 'parent_inode' with 4609 * a give name and a given sequence number. 4610 * if 'add_backref' is true, also insert a backref from the 4611 * inode to the parent directory. 4612 */ 4613 int btrfs_add_link(struct btrfs_trans_handle *trans, 4614 struct inode *parent_inode, struct inode *inode, 4615 const char *name, int name_len, int add_backref, u64 index) 4616 { 4617 int ret = 0; 4618 struct btrfs_key key; 4619 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4620 4621 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4622 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4623 } else { 4624 key.objectid = inode->i_ino; 4625 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4626 key.offset = 0; 4627 } 4628 4629 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4630 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4631 key.objectid, root->root_key.objectid, 4632 parent_inode->i_ino, 4633 index, name, name_len); 4634 } else if (add_backref) { 4635 ret = btrfs_insert_inode_ref(trans, root, 4636 name, name_len, inode->i_ino, 4637 parent_inode->i_ino, index); 4638 } 4639 4640 if (ret == 0) { 4641 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4642 parent_inode->i_ino, &key, 4643 btrfs_inode_type(inode), index); 4644 BUG_ON(ret); 4645 4646 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4647 name_len * 2); 4648 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4649 ret = btrfs_update_inode(trans, root, parent_inode); 4650 } 4651 return ret; 4652 } 4653 4654 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4655 struct inode *dir, struct dentry *dentry, 4656 struct inode *inode, int backref, u64 index) 4657 { 4658 int err = btrfs_add_link(trans, dir, inode, 4659 dentry->d_name.name, dentry->d_name.len, 4660 backref, index); 4661 if (!err) { 4662 d_instantiate(dentry, inode); 4663 return 0; 4664 } 4665 if (err > 0) 4666 err = -EEXIST; 4667 return err; 4668 } 4669 4670 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4671 int mode, dev_t rdev) 4672 { 4673 struct btrfs_trans_handle *trans; 4674 struct btrfs_root *root = BTRFS_I(dir)->root; 4675 struct inode *inode = NULL; 4676 int err; 4677 int drop_inode = 0; 4678 u64 objectid; 4679 unsigned long nr = 0; 4680 u64 index = 0; 4681 4682 if (!new_valid_dev(rdev)) 4683 return -EINVAL; 4684 4685 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4686 if (err) 4687 return err; 4688 4689 /* 4690 * 2 for inode item and ref 4691 * 2 for dir items 4692 * 1 for xattr if selinux is on 4693 */ 4694 trans = btrfs_start_transaction(root, 5); 4695 if (IS_ERR(trans)) 4696 return PTR_ERR(trans); 4697 4698 btrfs_set_trans_block_group(trans, dir); 4699 4700 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4701 dentry->d_name.len, dir->i_ino, objectid, 4702 BTRFS_I(dir)->block_group, mode, &index); 4703 err = PTR_ERR(inode); 4704 if (IS_ERR(inode)) 4705 goto out_unlock; 4706 4707 err = btrfs_init_inode_security(trans, inode, dir); 4708 if (err) { 4709 drop_inode = 1; 4710 goto out_unlock; 4711 } 4712 4713 btrfs_set_trans_block_group(trans, inode); 4714 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4715 if (err) 4716 drop_inode = 1; 4717 else { 4718 inode->i_op = &btrfs_special_inode_operations; 4719 init_special_inode(inode, inode->i_mode, rdev); 4720 btrfs_update_inode(trans, root, inode); 4721 } 4722 btrfs_update_inode_block_group(trans, inode); 4723 btrfs_update_inode_block_group(trans, dir); 4724 out_unlock: 4725 nr = trans->blocks_used; 4726 btrfs_end_transaction_throttle(trans, root); 4727 btrfs_btree_balance_dirty(root, nr); 4728 if (drop_inode) { 4729 inode_dec_link_count(inode); 4730 iput(inode); 4731 } 4732 return err; 4733 } 4734 4735 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4736 int mode, struct nameidata *nd) 4737 { 4738 struct btrfs_trans_handle *trans; 4739 struct btrfs_root *root = BTRFS_I(dir)->root; 4740 struct inode *inode = NULL; 4741 int drop_inode = 0; 4742 int err; 4743 unsigned long nr = 0; 4744 u64 objectid; 4745 u64 index = 0; 4746 4747 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4748 if (err) 4749 return err; 4750 /* 4751 * 2 for inode item and ref 4752 * 2 for dir items 4753 * 1 for xattr if selinux is on 4754 */ 4755 trans = btrfs_start_transaction(root, 5); 4756 if (IS_ERR(trans)) 4757 return PTR_ERR(trans); 4758 4759 btrfs_set_trans_block_group(trans, dir); 4760 4761 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4762 dentry->d_name.len, dir->i_ino, objectid, 4763 BTRFS_I(dir)->block_group, mode, &index); 4764 err = PTR_ERR(inode); 4765 if (IS_ERR(inode)) 4766 goto out_unlock; 4767 4768 err = btrfs_init_inode_security(trans, inode, dir); 4769 if (err) { 4770 drop_inode = 1; 4771 goto out_unlock; 4772 } 4773 4774 btrfs_set_trans_block_group(trans, inode); 4775 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4776 if (err) 4777 drop_inode = 1; 4778 else { 4779 inode->i_mapping->a_ops = &btrfs_aops; 4780 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4781 inode->i_fop = &btrfs_file_operations; 4782 inode->i_op = &btrfs_file_inode_operations; 4783 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4784 } 4785 btrfs_update_inode_block_group(trans, inode); 4786 btrfs_update_inode_block_group(trans, dir); 4787 out_unlock: 4788 nr = trans->blocks_used; 4789 btrfs_end_transaction_throttle(trans, root); 4790 if (drop_inode) { 4791 inode_dec_link_count(inode); 4792 iput(inode); 4793 } 4794 btrfs_btree_balance_dirty(root, nr); 4795 return err; 4796 } 4797 4798 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4799 struct dentry *dentry) 4800 { 4801 struct btrfs_trans_handle *trans; 4802 struct btrfs_root *root = BTRFS_I(dir)->root; 4803 struct inode *inode = old_dentry->d_inode; 4804 u64 index; 4805 unsigned long nr = 0; 4806 int err; 4807 int drop_inode = 0; 4808 4809 if (inode->i_nlink == 0) 4810 return -ENOENT; 4811 4812 /* do not allow sys_link's with other subvols of the same device */ 4813 if (root->objectid != BTRFS_I(inode)->root->objectid) 4814 return -EPERM; 4815 4816 btrfs_inc_nlink(inode); 4817 inode->i_ctime = CURRENT_TIME; 4818 4819 err = btrfs_set_inode_index(dir, &index); 4820 if (err) 4821 goto fail; 4822 4823 /* 4824 * 2 items for inode and inode ref 4825 * 2 items for dir items 4826 * 1 item for parent inode 4827 */ 4828 trans = btrfs_start_transaction(root, 5); 4829 if (IS_ERR(trans)) { 4830 err = PTR_ERR(trans); 4831 goto fail; 4832 } 4833 4834 btrfs_set_trans_block_group(trans, dir); 4835 ihold(inode); 4836 4837 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4838 4839 if (err) { 4840 drop_inode = 1; 4841 } else { 4842 struct dentry *parent = dget_parent(dentry); 4843 btrfs_update_inode_block_group(trans, dir); 4844 err = btrfs_update_inode(trans, root, inode); 4845 BUG_ON(err); 4846 btrfs_log_new_name(trans, inode, NULL, parent); 4847 dput(parent); 4848 } 4849 4850 nr = trans->blocks_used; 4851 btrfs_end_transaction_throttle(trans, root); 4852 fail: 4853 if (drop_inode) { 4854 inode_dec_link_count(inode); 4855 iput(inode); 4856 } 4857 btrfs_btree_balance_dirty(root, nr); 4858 return err; 4859 } 4860 4861 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4862 { 4863 struct inode *inode = NULL; 4864 struct btrfs_trans_handle *trans; 4865 struct btrfs_root *root = BTRFS_I(dir)->root; 4866 int err = 0; 4867 int drop_on_err = 0; 4868 u64 objectid = 0; 4869 u64 index = 0; 4870 unsigned long nr = 1; 4871 4872 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4873 if (err) 4874 return err; 4875 4876 /* 4877 * 2 items for inode and ref 4878 * 2 items for dir items 4879 * 1 for xattr if selinux is on 4880 */ 4881 trans = btrfs_start_transaction(root, 5); 4882 if (IS_ERR(trans)) 4883 return PTR_ERR(trans); 4884 btrfs_set_trans_block_group(trans, dir); 4885 4886 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4887 dentry->d_name.len, dir->i_ino, objectid, 4888 BTRFS_I(dir)->block_group, S_IFDIR | mode, 4889 &index); 4890 if (IS_ERR(inode)) { 4891 err = PTR_ERR(inode); 4892 goto out_fail; 4893 } 4894 4895 drop_on_err = 1; 4896 4897 err = btrfs_init_inode_security(trans, inode, dir); 4898 if (err) 4899 goto out_fail; 4900 4901 inode->i_op = &btrfs_dir_inode_operations; 4902 inode->i_fop = &btrfs_dir_file_operations; 4903 btrfs_set_trans_block_group(trans, inode); 4904 4905 btrfs_i_size_write(inode, 0); 4906 err = btrfs_update_inode(trans, root, inode); 4907 if (err) 4908 goto out_fail; 4909 4910 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4911 dentry->d_name.len, 0, index); 4912 if (err) 4913 goto out_fail; 4914 4915 d_instantiate(dentry, inode); 4916 drop_on_err = 0; 4917 btrfs_update_inode_block_group(trans, inode); 4918 btrfs_update_inode_block_group(trans, dir); 4919 4920 out_fail: 4921 nr = trans->blocks_used; 4922 btrfs_end_transaction_throttle(trans, root); 4923 if (drop_on_err) 4924 iput(inode); 4925 btrfs_btree_balance_dirty(root, nr); 4926 return err; 4927 } 4928 4929 /* helper for btfs_get_extent. Given an existing extent in the tree, 4930 * and an extent that you want to insert, deal with overlap and insert 4931 * the new extent into the tree. 4932 */ 4933 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4934 struct extent_map *existing, 4935 struct extent_map *em, 4936 u64 map_start, u64 map_len) 4937 { 4938 u64 start_diff; 4939 4940 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4941 start_diff = map_start - em->start; 4942 em->start = map_start; 4943 em->len = map_len; 4944 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4945 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4946 em->block_start += start_diff; 4947 em->block_len -= start_diff; 4948 } 4949 return add_extent_mapping(em_tree, em); 4950 } 4951 4952 static noinline int uncompress_inline(struct btrfs_path *path, 4953 struct inode *inode, struct page *page, 4954 size_t pg_offset, u64 extent_offset, 4955 struct btrfs_file_extent_item *item) 4956 { 4957 int ret; 4958 struct extent_buffer *leaf = path->nodes[0]; 4959 char *tmp; 4960 size_t max_size; 4961 unsigned long inline_size; 4962 unsigned long ptr; 4963 int compress_type; 4964 4965 WARN_ON(pg_offset != 0); 4966 compress_type = btrfs_file_extent_compression(leaf, item); 4967 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4968 inline_size = btrfs_file_extent_inline_item_len(leaf, 4969 btrfs_item_nr(leaf, path->slots[0])); 4970 tmp = kmalloc(inline_size, GFP_NOFS); 4971 ptr = btrfs_file_extent_inline_start(item); 4972 4973 read_extent_buffer(leaf, tmp, ptr, inline_size); 4974 4975 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4976 ret = btrfs_decompress(compress_type, tmp, page, 4977 extent_offset, inline_size, max_size); 4978 if (ret) { 4979 char *kaddr = kmap_atomic(page, KM_USER0); 4980 unsigned long copy_size = min_t(u64, 4981 PAGE_CACHE_SIZE - pg_offset, 4982 max_size - extent_offset); 4983 memset(kaddr + pg_offset, 0, copy_size); 4984 kunmap_atomic(kaddr, KM_USER0); 4985 } 4986 kfree(tmp); 4987 return 0; 4988 } 4989 4990 /* 4991 * a bit scary, this does extent mapping from logical file offset to the disk. 4992 * the ugly parts come from merging extents from the disk with the in-ram 4993 * representation. This gets more complex because of the data=ordered code, 4994 * where the in-ram extents might be locked pending data=ordered completion. 4995 * 4996 * This also copies inline extents directly into the page. 4997 */ 4998 4999 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 5000 size_t pg_offset, u64 start, u64 len, 5001 int create) 5002 { 5003 int ret; 5004 int err = 0; 5005 u64 bytenr; 5006 u64 extent_start = 0; 5007 u64 extent_end = 0; 5008 u64 objectid = inode->i_ino; 5009 u32 found_type; 5010 struct btrfs_path *path = NULL; 5011 struct btrfs_root *root = BTRFS_I(inode)->root; 5012 struct btrfs_file_extent_item *item; 5013 struct extent_buffer *leaf; 5014 struct btrfs_key found_key; 5015 struct extent_map *em = NULL; 5016 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5017 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5018 struct btrfs_trans_handle *trans = NULL; 5019 int compress_type; 5020 5021 again: 5022 read_lock(&em_tree->lock); 5023 em = lookup_extent_mapping(em_tree, start, len); 5024 if (em) 5025 em->bdev = root->fs_info->fs_devices->latest_bdev; 5026 read_unlock(&em_tree->lock); 5027 5028 if (em) { 5029 if (em->start > start || em->start + em->len <= start) 5030 free_extent_map(em); 5031 else if (em->block_start == EXTENT_MAP_INLINE && page) 5032 free_extent_map(em); 5033 else 5034 goto out; 5035 } 5036 em = alloc_extent_map(GFP_NOFS); 5037 if (!em) { 5038 err = -ENOMEM; 5039 goto out; 5040 } 5041 em->bdev = root->fs_info->fs_devices->latest_bdev; 5042 em->start = EXTENT_MAP_HOLE; 5043 em->orig_start = EXTENT_MAP_HOLE; 5044 em->len = (u64)-1; 5045 em->block_len = (u64)-1; 5046 5047 if (!path) { 5048 path = btrfs_alloc_path(); 5049 BUG_ON(!path); 5050 } 5051 5052 ret = btrfs_lookup_file_extent(trans, root, path, 5053 objectid, start, trans != NULL); 5054 if (ret < 0) { 5055 err = ret; 5056 goto out; 5057 } 5058 5059 if (ret != 0) { 5060 if (path->slots[0] == 0) 5061 goto not_found; 5062 path->slots[0]--; 5063 } 5064 5065 leaf = path->nodes[0]; 5066 item = btrfs_item_ptr(leaf, path->slots[0], 5067 struct btrfs_file_extent_item); 5068 /* are we inside the extent that was found? */ 5069 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5070 found_type = btrfs_key_type(&found_key); 5071 if (found_key.objectid != objectid || 5072 found_type != BTRFS_EXTENT_DATA_KEY) { 5073 goto not_found; 5074 } 5075 5076 found_type = btrfs_file_extent_type(leaf, item); 5077 extent_start = found_key.offset; 5078 compress_type = btrfs_file_extent_compression(leaf, item); 5079 if (found_type == BTRFS_FILE_EXTENT_REG || 5080 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5081 extent_end = extent_start + 5082 btrfs_file_extent_num_bytes(leaf, item); 5083 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5084 size_t size; 5085 size = btrfs_file_extent_inline_len(leaf, item); 5086 extent_end = (extent_start + size + root->sectorsize - 1) & 5087 ~((u64)root->sectorsize - 1); 5088 } 5089 5090 if (start >= extent_end) { 5091 path->slots[0]++; 5092 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5093 ret = btrfs_next_leaf(root, path); 5094 if (ret < 0) { 5095 err = ret; 5096 goto out; 5097 } 5098 if (ret > 0) 5099 goto not_found; 5100 leaf = path->nodes[0]; 5101 } 5102 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5103 if (found_key.objectid != objectid || 5104 found_key.type != BTRFS_EXTENT_DATA_KEY) 5105 goto not_found; 5106 if (start + len <= found_key.offset) 5107 goto not_found; 5108 em->start = start; 5109 em->len = found_key.offset - start; 5110 goto not_found_em; 5111 } 5112 5113 if (found_type == BTRFS_FILE_EXTENT_REG || 5114 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5115 em->start = extent_start; 5116 em->len = extent_end - extent_start; 5117 em->orig_start = extent_start - 5118 btrfs_file_extent_offset(leaf, item); 5119 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5120 if (bytenr == 0) { 5121 em->block_start = EXTENT_MAP_HOLE; 5122 goto insert; 5123 } 5124 if (compress_type != BTRFS_COMPRESS_NONE) { 5125 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5126 em->compress_type = compress_type; 5127 em->block_start = bytenr; 5128 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5129 item); 5130 } else { 5131 bytenr += btrfs_file_extent_offset(leaf, item); 5132 em->block_start = bytenr; 5133 em->block_len = em->len; 5134 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5135 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5136 } 5137 goto insert; 5138 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5139 unsigned long ptr; 5140 char *map; 5141 size_t size; 5142 size_t extent_offset; 5143 size_t copy_size; 5144 5145 em->block_start = EXTENT_MAP_INLINE; 5146 if (!page || create) { 5147 em->start = extent_start; 5148 em->len = extent_end - extent_start; 5149 goto out; 5150 } 5151 5152 size = btrfs_file_extent_inline_len(leaf, item); 5153 extent_offset = page_offset(page) + pg_offset - extent_start; 5154 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5155 size - extent_offset); 5156 em->start = extent_start + extent_offset; 5157 em->len = (copy_size + root->sectorsize - 1) & 5158 ~((u64)root->sectorsize - 1); 5159 em->orig_start = EXTENT_MAP_INLINE; 5160 if (compress_type) { 5161 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5162 em->compress_type = compress_type; 5163 } 5164 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5165 if (create == 0 && !PageUptodate(page)) { 5166 if (btrfs_file_extent_compression(leaf, item) != 5167 BTRFS_COMPRESS_NONE) { 5168 ret = uncompress_inline(path, inode, page, 5169 pg_offset, 5170 extent_offset, item); 5171 BUG_ON(ret); 5172 } else { 5173 map = kmap(page); 5174 read_extent_buffer(leaf, map + pg_offset, ptr, 5175 copy_size); 5176 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5177 memset(map + pg_offset + copy_size, 0, 5178 PAGE_CACHE_SIZE - pg_offset - 5179 copy_size); 5180 } 5181 kunmap(page); 5182 } 5183 flush_dcache_page(page); 5184 } else if (create && PageUptodate(page)) { 5185 WARN_ON(1); 5186 if (!trans) { 5187 kunmap(page); 5188 free_extent_map(em); 5189 em = NULL; 5190 btrfs_release_path(root, path); 5191 trans = btrfs_join_transaction(root, 1); 5192 if (IS_ERR(trans)) 5193 return ERR_CAST(trans); 5194 goto again; 5195 } 5196 map = kmap(page); 5197 write_extent_buffer(leaf, map + pg_offset, ptr, 5198 copy_size); 5199 kunmap(page); 5200 btrfs_mark_buffer_dirty(leaf); 5201 } 5202 set_extent_uptodate(io_tree, em->start, 5203 extent_map_end(em) - 1, GFP_NOFS); 5204 goto insert; 5205 } else { 5206 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5207 WARN_ON(1); 5208 } 5209 not_found: 5210 em->start = start; 5211 em->len = len; 5212 not_found_em: 5213 em->block_start = EXTENT_MAP_HOLE; 5214 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5215 insert: 5216 btrfs_release_path(root, path); 5217 if (em->start > start || extent_map_end(em) <= start) { 5218 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5219 "[%llu %llu]\n", (unsigned long long)em->start, 5220 (unsigned long long)em->len, 5221 (unsigned long long)start, 5222 (unsigned long long)len); 5223 err = -EIO; 5224 goto out; 5225 } 5226 5227 err = 0; 5228 write_lock(&em_tree->lock); 5229 ret = add_extent_mapping(em_tree, em); 5230 /* it is possible that someone inserted the extent into the tree 5231 * while we had the lock dropped. It is also possible that 5232 * an overlapping map exists in the tree 5233 */ 5234 if (ret == -EEXIST) { 5235 struct extent_map *existing; 5236 5237 ret = 0; 5238 5239 existing = lookup_extent_mapping(em_tree, start, len); 5240 if (existing && (existing->start > start || 5241 existing->start + existing->len <= start)) { 5242 free_extent_map(existing); 5243 existing = NULL; 5244 } 5245 if (!existing) { 5246 existing = lookup_extent_mapping(em_tree, em->start, 5247 em->len); 5248 if (existing) { 5249 err = merge_extent_mapping(em_tree, existing, 5250 em, start, 5251 root->sectorsize); 5252 free_extent_map(existing); 5253 if (err) { 5254 free_extent_map(em); 5255 em = NULL; 5256 } 5257 } else { 5258 err = -EIO; 5259 free_extent_map(em); 5260 em = NULL; 5261 } 5262 } else { 5263 free_extent_map(em); 5264 em = existing; 5265 err = 0; 5266 } 5267 } 5268 write_unlock(&em_tree->lock); 5269 out: 5270 if (path) 5271 btrfs_free_path(path); 5272 if (trans) { 5273 ret = btrfs_end_transaction(trans, root); 5274 if (!err) 5275 err = ret; 5276 } 5277 if (err) { 5278 free_extent_map(em); 5279 return ERR_PTR(err); 5280 } 5281 return em; 5282 } 5283 5284 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5285 size_t pg_offset, u64 start, u64 len, 5286 int create) 5287 { 5288 struct extent_map *em; 5289 struct extent_map *hole_em = NULL; 5290 u64 range_start = start; 5291 u64 end; 5292 u64 found; 5293 u64 found_end; 5294 int err = 0; 5295 5296 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5297 if (IS_ERR(em)) 5298 return em; 5299 if (em) { 5300 /* 5301 * if our em maps to a hole, there might 5302 * actually be delalloc bytes behind it 5303 */ 5304 if (em->block_start != EXTENT_MAP_HOLE) 5305 return em; 5306 else 5307 hole_em = em; 5308 } 5309 5310 /* check to see if we've wrapped (len == -1 or similar) */ 5311 end = start + len; 5312 if (end < start) 5313 end = (u64)-1; 5314 else 5315 end -= 1; 5316 5317 em = NULL; 5318 5319 /* ok, we didn't find anything, lets look for delalloc */ 5320 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5321 end, len, EXTENT_DELALLOC, 1); 5322 found_end = range_start + found; 5323 if (found_end < range_start) 5324 found_end = (u64)-1; 5325 5326 /* 5327 * we didn't find anything useful, return 5328 * the original results from get_extent() 5329 */ 5330 if (range_start > end || found_end <= start) { 5331 em = hole_em; 5332 hole_em = NULL; 5333 goto out; 5334 } 5335 5336 /* adjust the range_start to make sure it doesn't 5337 * go backwards from the start they passed in 5338 */ 5339 range_start = max(start,range_start); 5340 found = found_end - range_start; 5341 5342 if (found > 0) { 5343 u64 hole_start = start; 5344 u64 hole_len = len; 5345 5346 em = alloc_extent_map(GFP_NOFS); 5347 if (!em) { 5348 err = -ENOMEM; 5349 goto out; 5350 } 5351 /* 5352 * when btrfs_get_extent can't find anything it 5353 * returns one huge hole 5354 * 5355 * make sure what it found really fits our range, and 5356 * adjust to make sure it is based on the start from 5357 * the caller 5358 */ 5359 if (hole_em) { 5360 u64 calc_end = extent_map_end(hole_em); 5361 5362 if (calc_end <= start || (hole_em->start > end)) { 5363 free_extent_map(hole_em); 5364 hole_em = NULL; 5365 } else { 5366 hole_start = max(hole_em->start, start); 5367 hole_len = calc_end - hole_start; 5368 } 5369 } 5370 em->bdev = NULL; 5371 if (hole_em && range_start > hole_start) { 5372 /* our hole starts before our delalloc, so we 5373 * have to return just the parts of the hole 5374 * that go until the delalloc starts 5375 */ 5376 em->len = min(hole_len, 5377 range_start - hole_start); 5378 em->start = hole_start; 5379 em->orig_start = hole_start; 5380 /* 5381 * don't adjust block start at all, 5382 * it is fixed at EXTENT_MAP_HOLE 5383 */ 5384 em->block_start = hole_em->block_start; 5385 em->block_len = hole_len; 5386 } else { 5387 em->start = range_start; 5388 em->len = found; 5389 em->orig_start = range_start; 5390 em->block_start = EXTENT_MAP_DELALLOC; 5391 em->block_len = found; 5392 } 5393 } else if (hole_em) { 5394 return hole_em; 5395 } 5396 out: 5397 5398 free_extent_map(hole_em); 5399 if (err) { 5400 free_extent_map(em); 5401 return ERR_PTR(err); 5402 } 5403 return em; 5404 } 5405 5406 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5407 u64 start, u64 len) 5408 { 5409 struct btrfs_root *root = BTRFS_I(inode)->root; 5410 struct btrfs_trans_handle *trans; 5411 struct extent_map *em; 5412 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5413 struct btrfs_key ins; 5414 u64 alloc_hint; 5415 int ret; 5416 5417 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5418 5419 trans = btrfs_join_transaction(root, 0); 5420 if (IS_ERR(trans)) 5421 return ERR_CAST(trans); 5422 5423 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5424 5425 alloc_hint = get_extent_allocation_hint(inode, start, len); 5426 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5427 alloc_hint, (u64)-1, &ins, 1); 5428 if (ret) { 5429 em = ERR_PTR(ret); 5430 goto out; 5431 } 5432 5433 em = alloc_extent_map(GFP_NOFS); 5434 if (!em) { 5435 em = ERR_PTR(-ENOMEM); 5436 goto out; 5437 } 5438 5439 em->start = start; 5440 em->orig_start = em->start; 5441 em->len = ins.offset; 5442 5443 em->block_start = ins.objectid; 5444 em->block_len = ins.offset; 5445 em->bdev = root->fs_info->fs_devices->latest_bdev; 5446 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5447 5448 while (1) { 5449 write_lock(&em_tree->lock); 5450 ret = add_extent_mapping(em_tree, em); 5451 write_unlock(&em_tree->lock); 5452 if (ret != -EEXIST) 5453 break; 5454 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5455 } 5456 5457 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5458 ins.offset, ins.offset, 0); 5459 if (ret) { 5460 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5461 em = ERR_PTR(ret); 5462 } 5463 out: 5464 btrfs_end_transaction(trans, root); 5465 return em; 5466 } 5467 5468 /* 5469 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5470 * block must be cow'd 5471 */ 5472 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5473 struct inode *inode, u64 offset, u64 len) 5474 { 5475 struct btrfs_path *path; 5476 int ret; 5477 struct extent_buffer *leaf; 5478 struct btrfs_root *root = BTRFS_I(inode)->root; 5479 struct btrfs_file_extent_item *fi; 5480 struct btrfs_key key; 5481 u64 disk_bytenr; 5482 u64 backref_offset; 5483 u64 extent_end; 5484 u64 num_bytes; 5485 int slot; 5486 int found_type; 5487 5488 path = btrfs_alloc_path(); 5489 if (!path) 5490 return -ENOMEM; 5491 5492 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 5493 offset, 0); 5494 if (ret < 0) 5495 goto out; 5496 5497 slot = path->slots[0]; 5498 if (ret == 1) { 5499 if (slot == 0) { 5500 /* can't find the item, must cow */ 5501 ret = 0; 5502 goto out; 5503 } 5504 slot--; 5505 } 5506 ret = 0; 5507 leaf = path->nodes[0]; 5508 btrfs_item_key_to_cpu(leaf, &key, slot); 5509 if (key.objectid != inode->i_ino || 5510 key.type != BTRFS_EXTENT_DATA_KEY) { 5511 /* not our file or wrong item type, must cow */ 5512 goto out; 5513 } 5514 5515 if (key.offset > offset) { 5516 /* Wrong offset, must cow */ 5517 goto out; 5518 } 5519 5520 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5521 found_type = btrfs_file_extent_type(leaf, fi); 5522 if (found_type != BTRFS_FILE_EXTENT_REG && 5523 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5524 /* not a regular extent, must cow */ 5525 goto out; 5526 } 5527 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5528 backref_offset = btrfs_file_extent_offset(leaf, fi); 5529 5530 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5531 if (extent_end < offset + len) { 5532 /* extent doesn't include our full range, must cow */ 5533 goto out; 5534 } 5535 5536 if (btrfs_extent_readonly(root, disk_bytenr)) 5537 goto out; 5538 5539 /* 5540 * look for other files referencing this extent, if we 5541 * find any we must cow 5542 */ 5543 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 5544 key.offset - backref_offset, disk_bytenr)) 5545 goto out; 5546 5547 /* 5548 * adjust disk_bytenr and num_bytes to cover just the bytes 5549 * in this extent we are about to write. If there 5550 * are any csums in that range we have to cow in order 5551 * to keep the csums correct 5552 */ 5553 disk_bytenr += backref_offset; 5554 disk_bytenr += offset - key.offset; 5555 num_bytes = min(offset + len, extent_end) - offset; 5556 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5557 goto out; 5558 /* 5559 * all of the above have passed, it is safe to overwrite this extent 5560 * without cow 5561 */ 5562 ret = 1; 5563 out: 5564 btrfs_free_path(path); 5565 return ret; 5566 } 5567 5568 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5569 struct buffer_head *bh_result, int create) 5570 { 5571 struct extent_map *em; 5572 struct btrfs_root *root = BTRFS_I(inode)->root; 5573 u64 start = iblock << inode->i_blkbits; 5574 u64 len = bh_result->b_size; 5575 struct btrfs_trans_handle *trans; 5576 5577 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5578 if (IS_ERR(em)) 5579 return PTR_ERR(em); 5580 5581 /* 5582 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5583 * io. INLINE is special, and we could probably kludge it in here, but 5584 * it's still buffered so for safety lets just fall back to the generic 5585 * buffered path. 5586 * 5587 * For COMPRESSED we _have_ to read the entire extent in so we can 5588 * decompress it, so there will be buffering required no matter what we 5589 * do, so go ahead and fallback to buffered. 5590 * 5591 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5592 * to buffered IO. Don't blame me, this is the price we pay for using 5593 * the generic code. 5594 */ 5595 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5596 em->block_start == EXTENT_MAP_INLINE) { 5597 free_extent_map(em); 5598 return -ENOTBLK; 5599 } 5600 5601 /* Just a good old fashioned hole, return */ 5602 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5603 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5604 free_extent_map(em); 5605 /* DIO will do one hole at a time, so just unlock a sector */ 5606 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5607 start + root->sectorsize - 1, GFP_NOFS); 5608 return 0; 5609 } 5610 5611 /* 5612 * We don't allocate a new extent in the following cases 5613 * 5614 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5615 * existing extent. 5616 * 2) The extent is marked as PREALLOC. We're good to go here and can 5617 * just use the extent. 5618 * 5619 */ 5620 if (!create) { 5621 len = em->len - (start - em->start); 5622 goto map; 5623 } 5624 5625 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5626 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5627 em->block_start != EXTENT_MAP_HOLE)) { 5628 int type; 5629 int ret; 5630 u64 block_start; 5631 5632 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5633 type = BTRFS_ORDERED_PREALLOC; 5634 else 5635 type = BTRFS_ORDERED_NOCOW; 5636 len = min(len, em->len - (start - em->start)); 5637 block_start = em->block_start + (start - em->start); 5638 5639 /* 5640 * we're not going to log anything, but we do need 5641 * to make sure the current transaction stays open 5642 * while we look for nocow cross refs 5643 */ 5644 trans = btrfs_join_transaction(root, 0); 5645 if (IS_ERR(trans)) 5646 goto must_cow; 5647 5648 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5649 ret = btrfs_add_ordered_extent_dio(inode, start, 5650 block_start, len, len, type); 5651 btrfs_end_transaction(trans, root); 5652 if (ret) { 5653 free_extent_map(em); 5654 return ret; 5655 } 5656 goto unlock; 5657 } 5658 btrfs_end_transaction(trans, root); 5659 } 5660 must_cow: 5661 /* 5662 * this will cow the extent, reset the len in case we changed 5663 * it above 5664 */ 5665 len = bh_result->b_size; 5666 free_extent_map(em); 5667 em = btrfs_new_extent_direct(inode, start, len); 5668 if (IS_ERR(em)) 5669 return PTR_ERR(em); 5670 len = min(len, em->len - (start - em->start)); 5671 unlock: 5672 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5673 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5674 0, NULL, GFP_NOFS); 5675 map: 5676 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5677 inode->i_blkbits; 5678 bh_result->b_size = len; 5679 bh_result->b_bdev = em->bdev; 5680 set_buffer_mapped(bh_result); 5681 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5682 set_buffer_new(bh_result); 5683 5684 free_extent_map(em); 5685 5686 return 0; 5687 } 5688 5689 struct btrfs_dio_private { 5690 struct inode *inode; 5691 u64 logical_offset; 5692 u64 disk_bytenr; 5693 u64 bytes; 5694 u32 *csums; 5695 void *private; 5696 5697 /* number of bios pending for this dio */ 5698 atomic_t pending_bios; 5699 5700 /* IO errors */ 5701 int errors; 5702 5703 struct bio *orig_bio; 5704 }; 5705 5706 static void btrfs_endio_direct_read(struct bio *bio, int err) 5707 { 5708 struct btrfs_dio_private *dip = bio->bi_private; 5709 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5710 struct bio_vec *bvec = bio->bi_io_vec; 5711 struct inode *inode = dip->inode; 5712 struct btrfs_root *root = BTRFS_I(inode)->root; 5713 u64 start; 5714 u32 *private = dip->csums; 5715 5716 start = dip->logical_offset; 5717 do { 5718 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5719 struct page *page = bvec->bv_page; 5720 char *kaddr; 5721 u32 csum = ~(u32)0; 5722 unsigned long flags; 5723 5724 local_irq_save(flags); 5725 kaddr = kmap_atomic(page, KM_IRQ0); 5726 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5727 csum, bvec->bv_len); 5728 btrfs_csum_final(csum, (char *)&csum); 5729 kunmap_atomic(kaddr, KM_IRQ0); 5730 local_irq_restore(flags); 5731 5732 flush_dcache_page(bvec->bv_page); 5733 if (csum != *private) { 5734 printk(KERN_ERR "btrfs csum failed ino %lu off" 5735 " %llu csum %u private %u\n", 5736 inode->i_ino, (unsigned long long)start, 5737 csum, *private); 5738 err = -EIO; 5739 } 5740 } 5741 5742 start += bvec->bv_len; 5743 private++; 5744 bvec++; 5745 } while (bvec <= bvec_end); 5746 5747 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5748 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5749 bio->bi_private = dip->private; 5750 5751 kfree(dip->csums); 5752 kfree(dip); 5753 dio_end_io(bio, err); 5754 } 5755 5756 static void btrfs_endio_direct_write(struct bio *bio, int err) 5757 { 5758 struct btrfs_dio_private *dip = bio->bi_private; 5759 struct inode *inode = dip->inode; 5760 struct btrfs_root *root = BTRFS_I(inode)->root; 5761 struct btrfs_trans_handle *trans; 5762 struct btrfs_ordered_extent *ordered = NULL; 5763 struct extent_state *cached_state = NULL; 5764 u64 ordered_offset = dip->logical_offset; 5765 u64 ordered_bytes = dip->bytes; 5766 int ret; 5767 5768 if (err) 5769 goto out_done; 5770 again: 5771 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5772 &ordered_offset, 5773 ordered_bytes); 5774 if (!ret) 5775 goto out_test; 5776 5777 BUG_ON(!ordered); 5778 5779 trans = btrfs_join_transaction(root, 1); 5780 if (IS_ERR(trans)) { 5781 err = -ENOMEM; 5782 goto out; 5783 } 5784 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5785 5786 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5787 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5788 if (!ret) 5789 ret = btrfs_update_inode(trans, root, inode); 5790 err = ret; 5791 goto out; 5792 } 5793 5794 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5795 ordered->file_offset + ordered->len - 1, 0, 5796 &cached_state, GFP_NOFS); 5797 5798 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5799 ret = btrfs_mark_extent_written(trans, inode, 5800 ordered->file_offset, 5801 ordered->file_offset + 5802 ordered->len); 5803 if (ret) { 5804 err = ret; 5805 goto out_unlock; 5806 } 5807 } else { 5808 ret = insert_reserved_file_extent(trans, inode, 5809 ordered->file_offset, 5810 ordered->start, 5811 ordered->disk_len, 5812 ordered->len, 5813 ordered->len, 5814 0, 0, 0, 5815 BTRFS_FILE_EXTENT_REG); 5816 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5817 ordered->file_offset, ordered->len); 5818 if (ret) { 5819 err = ret; 5820 WARN_ON(1); 5821 goto out_unlock; 5822 } 5823 } 5824 5825 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5826 btrfs_ordered_update_i_size(inode, 0, ordered); 5827 btrfs_update_inode(trans, root, inode); 5828 out_unlock: 5829 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5830 ordered->file_offset + ordered->len - 1, 5831 &cached_state, GFP_NOFS); 5832 out: 5833 btrfs_delalloc_release_metadata(inode, ordered->len); 5834 btrfs_end_transaction(trans, root); 5835 ordered_offset = ordered->file_offset + ordered->len; 5836 btrfs_put_ordered_extent(ordered); 5837 btrfs_put_ordered_extent(ordered); 5838 5839 out_test: 5840 /* 5841 * our bio might span multiple ordered extents. If we haven't 5842 * completed the accounting for the whole dio, go back and try again 5843 */ 5844 if (ordered_offset < dip->logical_offset + dip->bytes) { 5845 ordered_bytes = dip->logical_offset + dip->bytes - 5846 ordered_offset; 5847 goto again; 5848 } 5849 out_done: 5850 bio->bi_private = dip->private; 5851 5852 kfree(dip->csums); 5853 kfree(dip); 5854 dio_end_io(bio, err); 5855 } 5856 5857 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5858 struct bio *bio, int mirror_num, 5859 unsigned long bio_flags, u64 offset) 5860 { 5861 int ret; 5862 struct btrfs_root *root = BTRFS_I(inode)->root; 5863 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5864 BUG_ON(ret); 5865 return 0; 5866 } 5867 5868 static void btrfs_end_dio_bio(struct bio *bio, int err) 5869 { 5870 struct btrfs_dio_private *dip = bio->bi_private; 5871 5872 if (err) { 5873 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu " 5874 "sector %#Lx len %u err no %d\n", 5875 dip->inode->i_ino, bio->bi_rw, 5876 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5877 dip->errors = 1; 5878 5879 /* 5880 * before atomic variable goto zero, we must make sure 5881 * dip->errors is perceived to be set. 5882 */ 5883 smp_mb__before_atomic_dec(); 5884 } 5885 5886 /* if there are more bios still pending for this dio, just exit */ 5887 if (!atomic_dec_and_test(&dip->pending_bios)) 5888 goto out; 5889 5890 if (dip->errors) 5891 bio_io_error(dip->orig_bio); 5892 else { 5893 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5894 bio_endio(dip->orig_bio, 0); 5895 } 5896 out: 5897 bio_put(bio); 5898 } 5899 5900 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5901 u64 first_sector, gfp_t gfp_flags) 5902 { 5903 int nr_vecs = bio_get_nr_vecs(bdev); 5904 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5905 } 5906 5907 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5908 int rw, u64 file_offset, int skip_sum, 5909 u32 *csums) 5910 { 5911 int write = rw & REQ_WRITE; 5912 struct btrfs_root *root = BTRFS_I(inode)->root; 5913 int ret; 5914 5915 bio_get(bio); 5916 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5917 if (ret) 5918 goto err; 5919 5920 if (write && !skip_sum) { 5921 ret = btrfs_wq_submit_bio(root->fs_info, 5922 inode, rw, bio, 0, 0, 5923 file_offset, 5924 __btrfs_submit_bio_start_direct_io, 5925 __btrfs_submit_bio_done); 5926 goto err; 5927 } else if (!skip_sum) 5928 btrfs_lookup_bio_sums_dio(root, inode, bio, 5929 file_offset, csums); 5930 5931 ret = btrfs_map_bio(root, rw, bio, 0, 1); 5932 err: 5933 bio_put(bio); 5934 return ret; 5935 } 5936 5937 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5938 int skip_sum) 5939 { 5940 struct inode *inode = dip->inode; 5941 struct btrfs_root *root = BTRFS_I(inode)->root; 5942 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5943 struct bio *bio; 5944 struct bio *orig_bio = dip->orig_bio; 5945 struct bio_vec *bvec = orig_bio->bi_io_vec; 5946 u64 start_sector = orig_bio->bi_sector; 5947 u64 file_offset = dip->logical_offset; 5948 u64 submit_len = 0; 5949 u64 map_length; 5950 int nr_pages = 0; 5951 u32 *csums = dip->csums; 5952 int ret = 0; 5953 5954 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5955 if (!bio) 5956 return -ENOMEM; 5957 bio->bi_private = dip; 5958 bio->bi_end_io = btrfs_end_dio_bio; 5959 atomic_inc(&dip->pending_bios); 5960 5961 map_length = orig_bio->bi_size; 5962 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5963 &map_length, NULL, 0); 5964 if (ret) { 5965 bio_put(bio); 5966 return -EIO; 5967 } 5968 5969 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5970 if (unlikely(map_length < submit_len + bvec->bv_len || 5971 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5972 bvec->bv_offset) < bvec->bv_len)) { 5973 /* 5974 * inc the count before we submit the bio so 5975 * we know the end IO handler won't happen before 5976 * we inc the count. Otherwise, the dip might get freed 5977 * before we're done setting it up 5978 */ 5979 atomic_inc(&dip->pending_bios); 5980 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5981 file_offset, skip_sum, 5982 csums); 5983 if (ret) { 5984 bio_put(bio); 5985 atomic_dec(&dip->pending_bios); 5986 goto out_err; 5987 } 5988 5989 if (!skip_sum) 5990 csums = csums + nr_pages; 5991 start_sector += submit_len >> 9; 5992 file_offset += submit_len; 5993 5994 submit_len = 0; 5995 nr_pages = 0; 5996 5997 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 5998 start_sector, GFP_NOFS); 5999 if (!bio) 6000 goto out_err; 6001 bio->bi_private = dip; 6002 bio->bi_end_io = btrfs_end_dio_bio; 6003 6004 map_length = orig_bio->bi_size; 6005 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6006 &map_length, NULL, 0); 6007 if (ret) { 6008 bio_put(bio); 6009 goto out_err; 6010 } 6011 } else { 6012 submit_len += bvec->bv_len; 6013 nr_pages ++; 6014 bvec++; 6015 } 6016 } 6017 6018 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6019 csums); 6020 if (!ret) 6021 return 0; 6022 6023 bio_put(bio); 6024 out_err: 6025 dip->errors = 1; 6026 /* 6027 * before atomic variable goto zero, we must 6028 * make sure dip->errors is perceived to be set. 6029 */ 6030 smp_mb__before_atomic_dec(); 6031 if (atomic_dec_and_test(&dip->pending_bios)) 6032 bio_io_error(dip->orig_bio); 6033 6034 /* bio_end_io() will handle error, so we needn't return it */ 6035 return 0; 6036 } 6037 6038 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6039 loff_t file_offset) 6040 { 6041 struct btrfs_root *root = BTRFS_I(inode)->root; 6042 struct btrfs_dio_private *dip; 6043 struct bio_vec *bvec = bio->bi_io_vec; 6044 int skip_sum; 6045 int write = rw & REQ_WRITE; 6046 int ret = 0; 6047 6048 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6049 6050 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6051 if (!dip) { 6052 ret = -ENOMEM; 6053 goto free_ordered; 6054 } 6055 dip->csums = NULL; 6056 6057 if (!skip_sum) { 6058 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6059 if (!dip->csums) { 6060 kfree(dip); 6061 ret = -ENOMEM; 6062 goto free_ordered; 6063 } 6064 } 6065 6066 dip->private = bio->bi_private; 6067 dip->inode = inode; 6068 dip->logical_offset = file_offset; 6069 6070 dip->bytes = 0; 6071 do { 6072 dip->bytes += bvec->bv_len; 6073 bvec++; 6074 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6075 6076 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6077 bio->bi_private = dip; 6078 dip->errors = 0; 6079 dip->orig_bio = bio; 6080 atomic_set(&dip->pending_bios, 0); 6081 6082 if (write) 6083 bio->bi_end_io = btrfs_endio_direct_write; 6084 else 6085 bio->bi_end_io = btrfs_endio_direct_read; 6086 6087 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6088 if (!ret) 6089 return; 6090 free_ordered: 6091 /* 6092 * If this is a write, we need to clean up the reserved space and kill 6093 * the ordered extent. 6094 */ 6095 if (write) { 6096 struct btrfs_ordered_extent *ordered; 6097 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6098 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6099 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6100 btrfs_free_reserved_extent(root, ordered->start, 6101 ordered->disk_len); 6102 btrfs_put_ordered_extent(ordered); 6103 btrfs_put_ordered_extent(ordered); 6104 } 6105 bio_endio(bio, ret); 6106 } 6107 6108 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6109 const struct iovec *iov, loff_t offset, 6110 unsigned long nr_segs) 6111 { 6112 int seg; 6113 size_t size; 6114 unsigned long addr; 6115 unsigned blocksize_mask = root->sectorsize - 1; 6116 ssize_t retval = -EINVAL; 6117 loff_t end = offset; 6118 6119 if (offset & blocksize_mask) 6120 goto out; 6121 6122 /* Check the memory alignment. Blocks cannot straddle pages */ 6123 for (seg = 0; seg < nr_segs; seg++) { 6124 addr = (unsigned long)iov[seg].iov_base; 6125 size = iov[seg].iov_len; 6126 end += size; 6127 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6128 goto out; 6129 } 6130 retval = 0; 6131 out: 6132 return retval; 6133 } 6134 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6135 const struct iovec *iov, loff_t offset, 6136 unsigned long nr_segs) 6137 { 6138 struct file *file = iocb->ki_filp; 6139 struct inode *inode = file->f_mapping->host; 6140 struct btrfs_ordered_extent *ordered; 6141 struct extent_state *cached_state = NULL; 6142 u64 lockstart, lockend; 6143 ssize_t ret; 6144 int writing = rw & WRITE; 6145 int write_bits = 0; 6146 size_t count = iov_length(iov, nr_segs); 6147 6148 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6149 offset, nr_segs)) { 6150 return 0; 6151 } 6152 6153 lockstart = offset; 6154 lockend = offset + count - 1; 6155 6156 if (writing) { 6157 ret = btrfs_delalloc_reserve_space(inode, count); 6158 if (ret) 6159 goto out; 6160 } 6161 6162 while (1) { 6163 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6164 0, &cached_state, GFP_NOFS); 6165 /* 6166 * We're concerned with the entire range that we're going to be 6167 * doing DIO to, so we need to make sure theres no ordered 6168 * extents in this range. 6169 */ 6170 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6171 lockend - lockstart + 1); 6172 if (!ordered) 6173 break; 6174 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6175 &cached_state, GFP_NOFS); 6176 btrfs_start_ordered_extent(inode, ordered, 1); 6177 btrfs_put_ordered_extent(ordered); 6178 cond_resched(); 6179 } 6180 6181 /* 6182 * we don't use btrfs_set_extent_delalloc because we don't want 6183 * the dirty or uptodate bits 6184 */ 6185 if (writing) { 6186 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6187 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6188 EXTENT_DELALLOC, 0, NULL, &cached_state, 6189 GFP_NOFS); 6190 if (ret) { 6191 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6192 lockend, EXTENT_LOCKED | write_bits, 6193 1, 0, &cached_state, GFP_NOFS); 6194 goto out; 6195 } 6196 } 6197 6198 free_extent_state(cached_state); 6199 cached_state = NULL; 6200 6201 ret = __blockdev_direct_IO(rw, iocb, inode, 6202 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6203 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6204 btrfs_submit_direct, 0); 6205 6206 if (ret < 0 && ret != -EIOCBQUEUED) { 6207 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6208 offset + iov_length(iov, nr_segs) - 1, 6209 EXTENT_LOCKED | write_bits, 1, 0, 6210 &cached_state, GFP_NOFS); 6211 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6212 /* 6213 * We're falling back to buffered, unlock the section we didn't 6214 * do IO on. 6215 */ 6216 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6217 offset + iov_length(iov, nr_segs) - 1, 6218 EXTENT_LOCKED | write_bits, 1, 0, 6219 &cached_state, GFP_NOFS); 6220 } 6221 out: 6222 free_extent_state(cached_state); 6223 return ret; 6224 } 6225 6226 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6227 __u64 start, __u64 len) 6228 { 6229 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6230 } 6231 6232 int btrfs_readpage(struct file *file, struct page *page) 6233 { 6234 struct extent_io_tree *tree; 6235 tree = &BTRFS_I(page->mapping->host)->io_tree; 6236 return extent_read_full_page(tree, page, btrfs_get_extent); 6237 } 6238 6239 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6240 { 6241 struct extent_io_tree *tree; 6242 6243 6244 if (current->flags & PF_MEMALLOC) { 6245 redirty_page_for_writepage(wbc, page); 6246 unlock_page(page); 6247 return 0; 6248 } 6249 tree = &BTRFS_I(page->mapping->host)->io_tree; 6250 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6251 } 6252 6253 int btrfs_writepages(struct address_space *mapping, 6254 struct writeback_control *wbc) 6255 { 6256 struct extent_io_tree *tree; 6257 6258 tree = &BTRFS_I(mapping->host)->io_tree; 6259 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6260 } 6261 6262 static int 6263 btrfs_readpages(struct file *file, struct address_space *mapping, 6264 struct list_head *pages, unsigned nr_pages) 6265 { 6266 struct extent_io_tree *tree; 6267 tree = &BTRFS_I(mapping->host)->io_tree; 6268 return extent_readpages(tree, mapping, pages, nr_pages, 6269 btrfs_get_extent); 6270 } 6271 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6272 { 6273 struct extent_io_tree *tree; 6274 struct extent_map_tree *map; 6275 int ret; 6276 6277 tree = &BTRFS_I(page->mapping->host)->io_tree; 6278 map = &BTRFS_I(page->mapping->host)->extent_tree; 6279 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6280 if (ret == 1) { 6281 ClearPagePrivate(page); 6282 set_page_private(page, 0); 6283 page_cache_release(page); 6284 } 6285 return ret; 6286 } 6287 6288 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6289 { 6290 if (PageWriteback(page) || PageDirty(page)) 6291 return 0; 6292 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6293 } 6294 6295 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6296 { 6297 struct extent_io_tree *tree; 6298 struct btrfs_ordered_extent *ordered; 6299 struct extent_state *cached_state = NULL; 6300 u64 page_start = page_offset(page); 6301 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6302 6303 6304 /* 6305 * we have the page locked, so new writeback can't start, 6306 * and the dirty bit won't be cleared while we are here. 6307 * 6308 * Wait for IO on this page so that we can safely clear 6309 * the PagePrivate2 bit and do ordered accounting 6310 */ 6311 wait_on_page_writeback(page); 6312 6313 tree = &BTRFS_I(page->mapping->host)->io_tree; 6314 if (offset) { 6315 btrfs_releasepage(page, GFP_NOFS); 6316 return; 6317 } 6318 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6319 GFP_NOFS); 6320 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6321 page_offset(page)); 6322 if (ordered) { 6323 /* 6324 * IO on this page will never be started, so we need 6325 * to account for any ordered extents now 6326 */ 6327 clear_extent_bit(tree, page_start, page_end, 6328 EXTENT_DIRTY | EXTENT_DELALLOC | 6329 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6330 &cached_state, GFP_NOFS); 6331 /* 6332 * whoever cleared the private bit is responsible 6333 * for the finish_ordered_io 6334 */ 6335 if (TestClearPagePrivate2(page)) { 6336 btrfs_finish_ordered_io(page->mapping->host, 6337 page_start, page_end); 6338 } 6339 btrfs_put_ordered_extent(ordered); 6340 cached_state = NULL; 6341 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6342 GFP_NOFS); 6343 } 6344 clear_extent_bit(tree, page_start, page_end, 6345 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6346 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6347 __btrfs_releasepage(page, GFP_NOFS); 6348 6349 ClearPageChecked(page); 6350 if (PagePrivate(page)) { 6351 ClearPagePrivate(page); 6352 set_page_private(page, 0); 6353 page_cache_release(page); 6354 } 6355 } 6356 6357 /* 6358 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6359 * called from a page fault handler when a page is first dirtied. Hence we must 6360 * be careful to check for EOF conditions here. We set the page up correctly 6361 * for a written page which means we get ENOSPC checking when writing into 6362 * holes and correct delalloc and unwritten extent mapping on filesystems that 6363 * support these features. 6364 * 6365 * We are not allowed to take the i_mutex here so we have to play games to 6366 * protect against truncate races as the page could now be beyond EOF. Because 6367 * vmtruncate() writes the inode size before removing pages, once we have the 6368 * page lock we can determine safely if the page is beyond EOF. If it is not 6369 * beyond EOF, then the page is guaranteed safe against truncation until we 6370 * unlock the page. 6371 */ 6372 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6373 { 6374 struct page *page = vmf->page; 6375 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6376 struct btrfs_root *root = BTRFS_I(inode)->root; 6377 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6378 struct btrfs_ordered_extent *ordered; 6379 struct extent_state *cached_state = NULL; 6380 char *kaddr; 6381 unsigned long zero_start; 6382 loff_t size; 6383 int ret; 6384 u64 page_start; 6385 u64 page_end; 6386 6387 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6388 if (ret) { 6389 if (ret == -ENOMEM) 6390 ret = VM_FAULT_OOM; 6391 else /* -ENOSPC, -EIO, etc */ 6392 ret = VM_FAULT_SIGBUS; 6393 goto out; 6394 } 6395 6396 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6397 again: 6398 lock_page(page); 6399 size = i_size_read(inode); 6400 page_start = page_offset(page); 6401 page_end = page_start + PAGE_CACHE_SIZE - 1; 6402 6403 if ((page->mapping != inode->i_mapping) || 6404 (page_start >= size)) { 6405 /* page got truncated out from underneath us */ 6406 goto out_unlock; 6407 } 6408 wait_on_page_writeback(page); 6409 6410 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6411 GFP_NOFS); 6412 set_page_extent_mapped(page); 6413 6414 /* 6415 * we can't set the delalloc bits if there are pending ordered 6416 * extents. Drop our locks and wait for them to finish 6417 */ 6418 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6419 if (ordered) { 6420 unlock_extent_cached(io_tree, page_start, page_end, 6421 &cached_state, GFP_NOFS); 6422 unlock_page(page); 6423 btrfs_start_ordered_extent(inode, ordered, 1); 6424 btrfs_put_ordered_extent(ordered); 6425 goto again; 6426 } 6427 6428 /* 6429 * XXX - page_mkwrite gets called every time the page is dirtied, even 6430 * if it was already dirty, so for space accounting reasons we need to 6431 * clear any delalloc bits for the range we are fixing to save. There 6432 * is probably a better way to do this, but for now keep consistent with 6433 * prepare_pages in the normal write path. 6434 */ 6435 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6436 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6437 0, 0, &cached_state, GFP_NOFS); 6438 6439 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6440 &cached_state); 6441 if (ret) { 6442 unlock_extent_cached(io_tree, page_start, page_end, 6443 &cached_state, GFP_NOFS); 6444 ret = VM_FAULT_SIGBUS; 6445 goto out_unlock; 6446 } 6447 ret = 0; 6448 6449 /* page is wholly or partially inside EOF */ 6450 if (page_start + PAGE_CACHE_SIZE > size) 6451 zero_start = size & ~PAGE_CACHE_MASK; 6452 else 6453 zero_start = PAGE_CACHE_SIZE; 6454 6455 if (zero_start != PAGE_CACHE_SIZE) { 6456 kaddr = kmap(page); 6457 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6458 flush_dcache_page(page); 6459 kunmap(page); 6460 } 6461 ClearPageChecked(page); 6462 set_page_dirty(page); 6463 SetPageUptodate(page); 6464 6465 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6466 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6467 6468 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6469 6470 out_unlock: 6471 if (!ret) 6472 return VM_FAULT_LOCKED; 6473 unlock_page(page); 6474 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6475 out: 6476 return ret; 6477 } 6478 6479 static void btrfs_truncate(struct inode *inode) 6480 { 6481 struct btrfs_root *root = BTRFS_I(inode)->root; 6482 int ret; 6483 struct btrfs_trans_handle *trans; 6484 unsigned long nr; 6485 u64 mask = root->sectorsize - 1; 6486 6487 if (!S_ISREG(inode->i_mode)) { 6488 WARN_ON(1); 6489 return; 6490 } 6491 6492 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6493 if (ret) 6494 return; 6495 6496 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6497 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6498 6499 trans = btrfs_start_transaction(root, 0); 6500 BUG_ON(IS_ERR(trans)); 6501 btrfs_set_trans_block_group(trans, inode); 6502 trans->block_rsv = root->orphan_block_rsv; 6503 6504 /* 6505 * setattr is responsible for setting the ordered_data_close flag, 6506 * but that is only tested during the last file release. That 6507 * could happen well after the next commit, leaving a great big 6508 * window where new writes may get lost if someone chooses to write 6509 * to this file after truncating to zero 6510 * 6511 * The inode doesn't have any dirty data here, and so if we commit 6512 * this is a noop. If someone immediately starts writing to the inode 6513 * it is very likely we'll catch some of their writes in this 6514 * transaction, and the commit will find this file on the ordered 6515 * data list with good things to send down. 6516 * 6517 * This is a best effort solution, there is still a window where 6518 * using truncate to replace the contents of the file will 6519 * end up with a zero length file after a crash. 6520 */ 6521 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6522 btrfs_add_ordered_operation(trans, root, inode); 6523 6524 while (1) { 6525 if (!trans) { 6526 trans = btrfs_start_transaction(root, 0); 6527 BUG_ON(IS_ERR(trans)); 6528 btrfs_set_trans_block_group(trans, inode); 6529 trans->block_rsv = root->orphan_block_rsv; 6530 } 6531 6532 ret = btrfs_block_rsv_check(trans, root, 6533 root->orphan_block_rsv, 0, 5); 6534 if (ret) { 6535 BUG_ON(ret != -EAGAIN); 6536 ret = btrfs_commit_transaction(trans, root); 6537 BUG_ON(ret); 6538 trans = NULL; 6539 continue; 6540 } 6541 6542 ret = btrfs_truncate_inode_items(trans, root, inode, 6543 inode->i_size, 6544 BTRFS_EXTENT_DATA_KEY); 6545 if (ret != -EAGAIN) 6546 break; 6547 6548 ret = btrfs_update_inode(trans, root, inode); 6549 BUG_ON(ret); 6550 6551 nr = trans->blocks_used; 6552 btrfs_end_transaction(trans, root); 6553 trans = NULL; 6554 btrfs_btree_balance_dirty(root, nr); 6555 } 6556 6557 if (ret == 0 && inode->i_nlink > 0) { 6558 ret = btrfs_orphan_del(trans, inode); 6559 BUG_ON(ret); 6560 } 6561 6562 ret = btrfs_update_inode(trans, root, inode); 6563 BUG_ON(ret); 6564 6565 nr = trans->blocks_used; 6566 ret = btrfs_end_transaction_throttle(trans, root); 6567 BUG_ON(ret); 6568 btrfs_btree_balance_dirty(root, nr); 6569 } 6570 6571 /* 6572 * create a new subvolume directory/inode (helper for the ioctl). 6573 */ 6574 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6575 struct btrfs_root *new_root, 6576 u64 new_dirid, u64 alloc_hint) 6577 { 6578 struct inode *inode; 6579 int err; 6580 u64 index = 0; 6581 6582 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6583 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 6584 if (IS_ERR(inode)) 6585 return PTR_ERR(inode); 6586 inode->i_op = &btrfs_dir_inode_operations; 6587 inode->i_fop = &btrfs_dir_file_operations; 6588 6589 inode->i_nlink = 1; 6590 btrfs_i_size_write(inode, 0); 6591 6592 err = btrfs_update_inode(trans, new_root, inode); 6593 BUG_ON(err); 6594 6595 iput(inode); 6596 return 0; 6597 } 6598 6599 /* helper function for file defrag and space balancing. This 6600 * forces readahead on a given range of bytes in an inode 6601 */ 6602 unsigned long btrfs_force_ra(struct address_space *mapping, 6603 struct file_ra_state *ra, struct file *file, 6604 pgoff_t offset, pgoff_t last_index) 6605 { 6606 pgoff_t req_size = last_index - offset + 1; 6607 6608 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 6609 return offset + req_size; 6610 } 6611 6612 struct inode *btrfs_alloc_inode(struct super_block *sb) 6613 { 6614 struct btrfs_inode *ei; 6615 struct inode *inode; 6616 6617 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6618 if (!ei) 6619 return NULL; 6620 6621 ei->root = NULL; 6622 ei->space_info = NULL; 6623 ei->generation = 0; 6624 ei->sequence = 0; 6625 ei->last_trans = 0; 6626 ei->last_sub_trans = 0; 6627 ei->logged_trans = 0; 6628 ei->delalloc_bytes = 0; 6629 ei->reserved_bytes = 0; 6630 ei->disk_i_size = 0; 6631 ei->flags = 0; 6632 ei->index_cnt = (u64)-1; 6633 ei->last_unlink_trans = 0; 6634 6635 spin_lock_init(&ei->accounting_lock); 6636 atomic_set(&ei->outstanding_extents, 0); 6637 ei->reserved_extents = 0; 6638 6639 ei->ordered_data_close = 0; 6640 ei->orphan_meta_reserved = 0; 6641 ei->dummy_inode = 0; 6642 ei->force_compress = BTRFS_COMPRESS_NONE; 6643 6644 inode = &ei->vfs_inode; 6645 extent_map_tree_init(&ei->extent_tree, GFP_NOFS); 6646 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS); 6647 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS); 6648 mutex_init(&ei->log_mutex); 6649 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6650 INIT_LIST_HEAD(&ei->i_orphan); 6651 INIT_LIST_HEAD(&ei->delalloc_inodes); 6652 INIT_LIST_HEAD(&ei->ordered_operations); 6653 RB_CLEAR_NODE(&ei->rb_node); 6654 6655 return inode; 6656 } 6657 6658 static void btrfs_i_callback(struct rcu_head *head) 6659 { 6660 struct inode *inode = container_of(head, struct inode, i_rcu); 6661 INIT_LIST_HEAD(&inode->i_dentry); 6662 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6663 } 6664 6665 void btrfs_destroy_inode(struct inode *inode) 6666 { 6667 struct btrfs_ordered_extent *ordered; 6668 struct btrfs_root *root = BTRFS_I(inode)->root; 6669 6670 WARN_ON(!list_empty(&inode->i_dentry)); 6671 WARN_ON(inode->i_data.nrpages); 6672 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents)); 6673 WARN_ON(BTRFS_I(inode)->reserved_extents); 6674 6675 /* 6676 * This can happen where we create an inode, but somebody else also 6677 * created the same inode and we need to destroy the one we already 6678 * created. 6679 */ 6680 if (!root) 6681 goto free; 6682 6683 /* 6684 * Make sure we're properly removed from the ordered operation 6685 * lists. 6686 */ 6687 smp_mb(); 6688 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6689 spin_lock(&root->fs_info->ordered_extent_lock); 6690 list_del_init(&BTRFS_I(inode)->ordered_operations); 6691 spin_unlock(&root->fs_info->ordered_extent_lock); 6692 } 6693 6694 if (root == root->fs_info->tree_root) { 6695 struct btrfs_block_group_cache *block_group; 6696 6697 block_group = btrfs_lookup_block_group(root->fs_info, 6698 BTRFS_I(inode)->block_group); 6699 if (block_group && block_group->inode == inode) { 6700 spin_lock(&block_group->lock); 6701 block_group->inode = NULL; 6702 spin_unlock(&block_group->lock); 6703 btrfs_put_block_group(block_group); 6704 } else if (block_group) { 6705 btrfs_put_block_group(block_group); 6706 } 6707 } 6708 6709 spin_lock(&root->orphan_lock); 6710 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6711 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n", 6712 inode->i_ino); 6713 list_del_init(&BTRFS_I(inode)->i_orphan); 6714 } 6715 spin_unlock(&root->orphan_lock); 6716 6717 while (1) { 6718 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6719 if (!ordered) 6720 break; 6721 else { 6722 printk(KERN_ERR "btrfs found ordered " 6723 "extent %llu %llu on inode cleanup\n", 6724 (unsigned long long)ordered->file_offset, 6725 (unsigned long long)ordered->len); 6726 btrfs_remove_ordered_extent(inode, ordered); 6727 btrfs_put_ordered_extent(ordered); 6728 btrfs_put_ordered_extent(ordered); 6729 } 6730 } 6731 inode_tree_del(inode); 6732 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6733 free: 6734 call_rcu(&inode->i_rcu, btrfs_i_callback); 6735 } 6736 6737 int btrfs_drop_inode(struct inode *inode) 6738 { 6739 struct btrfs_root *root = BTRFS_I(inode)->root; 6740 6741 if (btrfs_root_refs(&root->root_item) == 0 && 6742 root != root->fs_info->tree_root) 6743 return 1; 6744 else 6745 return generic_drop_inode(inode); 6746 } 6747 6748 static void init_once(void *foo) 6749 { 6750 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6751 6752 inode_init_once(&ei->vfs_inode); 6753 } 6754 6755 void btrfs_destroy_cachep(void) 6756 { 6757 if (btrfs_inode_cachep) 6758 kmem_cache_destroy(btrfs_inode_cachep); 6759 if (btrfs_trans_handle_cachep) 6760 kmem_cache_destroy(btrfs_trans_handle_cachep); 6761 if (btrfs_transaction_cachep) 6762 kmem_cache_destroy(btrfs_transaction_cachep); 6763 if (btrfs_path_cachep) 6764 kmem_cache_destroy(btrfs_path_cachep); 6765 } 6766 6767 int btrfs_init_cachep(void) 6768 { 6769 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6770 sizeof(struct btrfs_inode), 0, 6771 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6772 if (!btrfs_inode_cachep) 6773 goto fail; 6774 6775 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6776 sizeof(struct btrfs_trans_handle), 0, 6777 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6778 if (!btrfs_trans_handle_cachep) 6779 goto fail; 6780 6781 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6782 sizeof(struct btrfs_transaction), 0, 6783 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6784 if (!btrfs_transaction_cachep) 6785 goto fail; 6786 6787 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6788 sizeof(struct btrfs_path), 0, 6789 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6790 if (!btrfs_path_cachep) 6791 goto fail; 6792 6793 return 0; 6794 fail: 6795 btrfs_destroy_cachep(); 6796 return -ENOMEM; 6797 } 6798 6799 static int btrfs_getattr(struct vfsmount *mnt, 6800 struct dentry *dentry, struct kstat *stat) 6801 { 6802 struct inode *inode = dentry->d_inode; 6803 generic_fillattr(inode, stat); 6804 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 6805 stat->blksize = PAGE_CACHE_SIZE; 6806 stat->blocks = (inode_get_bytes(inode) + 6807 BTRFS_I(inode)->delalloc_bytes) >> 9; 6808 return 0; 6809 } 6810 6811 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6812 struct inode *new_dir, struct dentry *new_dentry) 6813 { 6814 struct btrfs_trans_handle *trans; 6815 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6816 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6817 struct inode *new_inode = new_dentry->d_inode; 6818 struct inode *old_inode = old_dentry->d_inode; 6819 struct timespec ctime = CURRENT_TIME; 6820 u64 index = 0; 6821 u64 root_objectid; 6822 int ret; 6823 6824 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6825 return -EPERM; 6826 6827 /* we only allow rename subvolume link between subvolumes */ 6828 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6829 return -EXDEV; 6830 6831 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6832 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) 6833 return -ENOTEMPTY; 6834 6835 if (S_ISDIR(old_inode->i_mode) && new_inode && 6836 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6837 return -ENOTEMPTY; 6838 /* 6839 * we're using rename to replace one file with another. 6840 * and the replacement file is large. Start IO on it now so 6841 * we don't add too much work to the end of the transaction 6842 */ 6843 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6844 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6845 filemap_flush(old_inode->i_mapping); 6846 6847 /* close the racy window with snapshot create/destroy ioctl */ 6848 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6849 down_read(&root->fs_info->subvol_sem); 6850 /* 6851 * We want to reserve the absolute worst case amount of items. So if 6852 * both inodes are subvols and we need to unlink them then that would 6853 * require 4 item modifications, but if they are both normal inodes it 6854 * would require 5 item modifications, so we'll assume their normal 6855 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6856 * should cover the worst case number of items we'll modify. 6857 */ 6858 trans = btrfs_start_transaction(root, 20); 6859 if (IS_ERR(trans)) 6860 return PTR_ERR(trans); 6861 6862 btrfs_set_trans_block_group(trans, new_dir); 6863 6864 if (dest != root) 6865 btrfs_record_root_in_trans(trans, dest); 6866 6867 ret = btrfs_set_inode_index(new_dir, &index); 6868 if (ret) 6869 goto out_fail; 6870 6871 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6872 /* force full log commit if subvolume involved. */ 6873 root->fs_info->last_trans_log_full_commit = trans->transid; 6874 } else { 6875 ret = btrfs_insert_inode_ref(trans, dest, 6876 new_dentry->d_name.name, 6877 new_dentry->d_name.len, 6878 old_inode->i_ino, 6879 new_dir->i_ino, index); 6880 if (ret) 6881 goto out_fail; 6882 /* 6883 * this is an ugly little race, but the rename is required 6884 * to make sure that if we crash, the inode is either at the 6885 * old name or the new one. pinning the log transaction lets 6886 * us make sure we don't allow a log commit to come in after 6887 * we unlink the name but before we add the new name back in. 6888 */ 6889 btrfs_pin_log_trans(root); 6890 } 6891 /* 6892 * make sure the inode gets flushed if it is replacing 6893 * something. 6894 */ 6895 if (new_inode && new_inode->i_size && 6896 old_inode && S_ISREG(old_inode->i_mode)) { 6897 btrfs_add_ordered_operation(trans, root, old_inode); 6898 } 6899 6900 old_dir->i_ctime = old_dir->i_mtime = ctime; 6901 new_dir->i_ctime = new_dir->i_mtime = ctime; 6902 old_inode->i_ctime = ctime; 6903 6904 if (old_dentry->d_parent != new_dentry->d_parent) 6905 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 6906 6907 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6908 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 6909 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 6910 old_dentry->d_name.name, 6911 old_dentry->d_name.len); 6912 } else { 6913 btrfs_inc_nlink(old_dentry->d_inode); 6914 ret = btrfs_unlink_inode(trans, root, old_dir, 6915 old_dentry->d_inode, 6916 old_dentry->d_name.name, 6917 old_dentry->d_name.len); 6918 } 6919 BUG_ON(ret); 6920 6921 if (new_inode) { 6922 new_inode->i_ctime = CURRENT_TIME; 6923 if (unlikely(new_inode->i_ino == 6924 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 6925 root_objectid = BTRFS_I(new_inode)->location.objectid; 6926 ret = btrfs_unlink_subvol(trans, dest, new_dir, 6927 root_objectid, 6928 new_dentry->d_name.name, 6929 new_dentry->d_name.len); 6930 BUG_ON(new_inode->i_nlink == 0); 6931 } else { 6932 ret = btrfs_unlink_inode(trans, dest, new_dir, 6933 new_dentry->d_inode, 6934 new_dentry->d_name.name, 6935 new_dentry->d_name.len); 6936 } 6937 BUG_ON(ret); 6938 if (new_inode->i_nlink == 0) { 6939 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 6940 BUG_ON(ret); 6941 } 6942 } 6943 6944 ret = btrfs_add_link(trans, new_dir, old_inode, 6945 new_dentry->d_name.name, 6946 new_dentry->d_name.len, 0, index); 6947 BUG_ON(ret); 6948 6949 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 6950 struct dentry *parent = dget_parent(new_dentry); 6951 btrfs_log_new_name(trans, old_inode, old_dir, parent); 6952 dput(parent); 6953 btrfs_end_log_trans(root); 6954 } 6955 out_fail: 6956 btrfs_end_transaction_throttle(trans, root); 6957 6958 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6959 up_read(&root->fs_info->subvol_sem); 6960 6961 return ret; 6962 } 6963 6964 /* 6965 * some fairly slow code that needs optimization. This walks the list 6966 * of all the inodes with pending delalloc and forces them to disk. 6967 */ 6968 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 6969 { 6970 struct list_head *head = &root->fs_info->delalloc_inodes; 6971 struct btrfs_inode *binode; 6972 struct inode *inode; 6973 6974 if (root->fs_info->sb->s_flags & MS_RDONLY) 6975 return -EROFS; 6976 6977 spin_lock(&root->fs_info->delalloc_lock); 6978 while (!list_empty(head)) { 6979 binode = list_entry(head->next, struct btrfs_inode, 6980 delalloc_inodes); 6981 inode = igrab(&binode->vfs_inode); 6982 if (!inode) 6983 list_del_init(&binode->delalloc_inodes); 6984 spin_unlock(&root->fs_info->delalloc_lock); 6985 if (inode) { 6986 filemap_flush(inode->i_mapping); 6987 if (delay_iput) 6988 btrfs_add_delayed_iput(inode); 6989 else 6990 iput(inode); 6991 } 6992 cond_resched(); 6993 spin_lock(&root->fs_info->delalloc_lock); 6994 } 6995 spin_unlock(&root->fs_info->delalloc_lock); 6996 6997 /* the filemap_flush will queue IO into the worker threads, but 6998 * we have to make sure the IO is actually started and that 6999 * ordered extents get created before we return 7000 */ 7001 atomic_inc(&root->fs_info->async_submit_draining); 7002 while (atomic_read(&root->fs_info->nr_async_submits) || 7003 atomic_read(&root->fs_info->async_delalloc_pages)) { 7004 wait_event(root->fs_info->async_submit_wait, 7005 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7006 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7007 } 7008 atomic_dec(&root->fs_info->async_submit_draining); 7009 return 0; 7010 } 7011 7012 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput, 7013 int sync) 7014 { 7015 struct btrfs_inode *binode; 7016 struct inode *inode = NULL; 7017 7018 spin_lock(&root->fs_info->delalloc_lock); 7019 while (!list_empty(&root->fs_info->delalloc_inodes)) { 7020 binode = list_entry(root->fs_info->delalloc_inodes.next, 7021 struct btrfs_inode, delalloc_inodes); 7022 inode = igrab(&binode->vfs_inode); 7023 if (inode) { 7024 list_move_tail(&binode->delalloc_inodes, 7025 &root->fs_info->delalloc_inodes); 7026 break; 7027 } 7028 7029 list_del_init(&binode->delalloc_inodes); 7030 cond_resched_lock(&root->fs_info->delalloc_lock); 7031 } 7032 spin_unlock(&root->fs_info->delalloc_lock); 7033 7034 if (inode) { 7035 if (sync) { 7036 filemap_write_and_wait(inode->i_mapping); 7037 /* 7038 * We have to do this because compression doesn't 7039 * actually set PG_writeback until it submits the pages 7040 * for IO, which happens in an async thread, so we could 7041 * race and not actually wait for any writeback pages 7042 * because they've not been submitted yet. Technically 7043 * this could still be the case for the ordered stuff 7044 * since the async thread may not have started to do its 7045 * work yet. If this becomes the case then we need to 7046 * figure out a way to make sure that in writepage we 7047 * wait for any async pages to be submitted before 7048 * returning so that fdatawait does what its supposed to 7049 * do. 7050 */ 7051 btrfs_wait_ordered_range(inode, 0, (u64)-1); 7052 } else { 7053 filemap_flush(inode->i_mapping); 7054 } 7055 if (delay_iput) 7056 btrfs_add_delayed_iput(inode); 7057 else 7058 iput(inode); 7059 return 1; 7060 } 7061 return 0; 7062 } 7063 7064 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7065 const char *symname) 7066 { 7067 struct btrfs_trans_handle *trans; 7068 struct btrfs_root *root = BTRFS_I(dir)->root; 7069 struct btrfs_path *path; 7070 struct btrfs_key key; 7071 struct inode *inode = NULL; 7072 int err; 7073 int drop_inode = 0; 7074 u64 objectid; 7075 u64 index = 0 ; 7076 int name_len; 7077 int datasize; 7078 unsigned long ptr; 7079 struct btrfs_file_extent_item *ei; 7080 struct extent_buffer *leaf; 7081 unsigned long nr = 0; 7082 7083 name_len = strlen(symname) + 1; 7084 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7085 return -ENAMETOOLONG; 7086 7087 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 7088 if (err) 7089 return err; 7090 /* 7091 * 2 items for inode item and ref 7092 * 2 items for dir items 7093 * 1 item for xattr if selinux is on 7094 */ 7095 trans = btrfs_start_transaction(root, 5); 7096 if (IS_ERR(trans)) 7097 return PTR_ERR(trans); 7098 7099 btrfs_set_trans_block_group(trans, dir); 7100 7101 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7102 dentry->d_name.len, dir->i_ino, objectid, 7103 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 7104 &index); 7105 err = PTR_ERR(inode); 7106 if (IS_ERR(inode)) 7107 goto out_unlock; 7108 7109 err = btrfs_init_inode_security(trans, inode, dir); 7110 if (err) { 7111 drop_inode = 1; 7112 goto out_unlock; 7113 } 7114 7115 btrfs_set_trans_block_group(trans, inode); 7116 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7117 if (err) 7118 drop_inode = 1; 7119 else { 7120 inode->i_mapping->a_ops = &btrfs_aops; 7121 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7122 inode->i_fop = &btrfs_file_operations; 7123 inode->i_op = &btrfs_file_inode_operations; 7124 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7125 } 7126 btrfs_update_inode_block_group(trans, inode); 7127 btrfs_update_inode_block_group(trans, dir); 7128 if (drop_inode) 7129 goto out_unlock; 7130 7131 path = btrfs_alloc_path(); 7132 BUG_ON(!path); 7133 key.objectid = inode->i_ino; 7134 key.offset = 0; 7135 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7136 datasize = btrfs_file_extent_calc_inline_size(name_len); 7137 err = btrfs_insert_empty_item(trans, root, path, &key, 7138 datasize); 7139 if (err) { 7140 drop_inode = 1; 7141 goto out_unlock; 7142 } 7143 leaf = path->nodes[0]; 7144 ei = btrfs_item_ptr(leaf, path->slots[0], 7145 struct btrfs_file_extent_item); 7146 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7147 btrfs_set_file_extent_type(leaf, ei, 7148 BTRFS_FILE_EXTENT_INLINE); 7149 btrfs_set_file_extent_encryption(leaf, ei, 0); 7150 btrfs_set_file_extent_compression(leaf, ei, 0); 7151 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7152 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7153 7154 ptr = btrfs_file_extent_inline_start(ei); 7155 write_extent_buffer(leaf, symname, ptr, name_len); 7156 btrfs_mark_buffer_dirty(leaf); 7157 btrfs_free_path(path); 7158 7159 inode->i_op = &btrfs_symlink_inode_operations; 7160 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7161 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7162 inode_set_bytes(inode, name_len); 7163 btrfs_i_size_write(inode, name_len - 1); 7164 err = btrfs_update_inode(trans, root, inode); 7165 if (err) 7166 drop_inode = 1; 7167 7168 out_unlock: 7169 nr = trans->blocks_used; 7170 btrfs_end_transaction_throttle(trans, root); 7171 if (drop_inode) { 7172 inode_dec_link_count(inode); 7173 iput(inode); 7174 } 7175 btrfs_btree_balance_dirty(root, nr); 7176 return err; 7177 } 7178 7179 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7180 u64 start, u64 num_bytes, u64 min_size, 7181 loff_t actual_len, u64 *alloc_hint, 7182 struct btrfs_trans_handle *trans) 7183 { 7184 struct btrfs_root *root = BTRFS_I(inode)->root; 7185 struct btrfs_key ins; 7186 u64 cur_offset = start; 7187 u64 i_size; 7188 int ret = 0; 7189 bool own_trans = true; 7190 7191 if (trans) 7192 own_trans = false; 7193 while (num_bytes > 0) { 7194 if (own_trans) { 7195 trans = btrfs_start_transaction(root, 3); 7196 if (IS_ERR(trans)) { 7197 ret = PTR_ERR(trans); 7198 break; 7199 } 7200 } 7201 7202 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7203 0, *alloc_hint, (u64)-1, &ins, 1); 7204 if (ret) { 7205 if (own_trans) 7206 btrfs_end_transaction(trans, root); 7207 break; 7208 } 7209 7210 ret = insert_reserved_file_extent(trans, inode, 7211 cur_offset, ins.objectid, 7212 ins.offset, ins.offset, 7213 ins.offset, 0, 0, 0, 7214 BTRFS_FILE_EXTENT_PREALLOC); 7215 BUG_ON(ret); 7216 btrfs_drop_extent_cache(inode, cur_offset, 7217 cur_offset + ins.offset -1, 0); 7218 7219 num_bytes -= ins.offset; 7220 cur_offset += ins.offset; 7221 *alloc_hint = ins.objectid + ins.offset; 7222 7223 inode->i_ctime = CURRENT_TIME; 7224 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7225 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7226 (actual_len > inode->i_size) && 7227 (cur_offset > inode->i_size)) { 7228 if (cur_offset > actual_len) 7229 i_size = actual_len; 7230 else 7231 i_size = cur_offset; 7232 i_size_write(inode, i_size); 7233 btrfs_ordered_update_i_size(inode, i_size, NULL); 7234 } 7235 7236 ret = btrfs_update_inode(trans, root, inode); 7237 BUG_ON(ret); 7238 7239 if (own_trans) 7240 btrfs_end_transaction(trans, root); 7241 } 7242 return ret; 7243 } 7244 7245 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7246 u64 start, u64 num_bytes, u64 min_size, 7247 loff_t actual_len, u64 *alloc_hint) 7248 { 7249 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7250 min_size, actual_len, alloc_hint, 7251 NULL); 7252 } 7253 7254 int btrfs_prealloc_file_range_trans(struct inode *inode, 7255 struct btrfs_trans_handle *trans, int mode, 7256 u64 start, u64 num_bytes, u64 min_size, 7257 loff_t actual_len, u64 *alloc_hint) 7258 { 7259 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7260 min_size, actual_len, alloc_hint, trans); 7261 } 7262 7263 static int btrfs_set_page_dirty(struct page *page) 7264 { 7265 return __set_page_dirty_nobuffers(page); 7266 } 7267 7268 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags) 7269 { 7270 struct btrfs_root *root = BTRFS_I(inode)->root; 7271 7272 if (btrfs_root_readonly(root) && (mask & MAY_WRITE)) 7273 return -EROFS; 7274 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 7275 return -EACCES; 7276 return generic_permission(inode, mask, flags, btrfs_check_acl); 7277 } 7278 7279 static const struct inode_operations btrfs_dir_inode_operations = { 7280 .getattr = btrfs_getattr, 7281 .lookup = btrfs_lookup, 7282 .create = btrfs_create, 7283 .unlink = btrfs_unlink, 7284 .link = btrfs_link, 7285 .mkdir = btrfs_mkdir, 7286 .rmdir = btrfs_rmdir, 7287 .rename = btrfs_rename, 7288 .symlink = btrfs_symlink, 7289 .setattr = btrfs_setattr, 7290 .mknod = btrfs_mknod, 7291 .setxattr = btrfs_setxattr, 7292 .getxattr = btrfs_getxattr, 7293 .listxattr = btrfs_listxattr, 7294 .removexattr = btrfs_removexattr, 7295 .permission = btrfs_permission, 7296 }; 7297 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7298 .lookup = btrfs_lookup, 7299 .permission = btrfs_permission, 7300 }; 7301 7302 static const struct file_operations btrfs_dir_file_operations = { 7303 .llseek = generic_file_llseek, 7304 .read = generic_read_dir, 7305 .readdir = btrfs_real_readdir, 7306 .unlocked_ioctl = btrfs_ioctl, 7307 #ifdef CONFIG_COMPAT 7308 .compat_ioctl = btrfs_ioctl, 7309 #endif 7310 .release = btrfs_release_file, 7311 .fsync = btrfs_sync_file, 7312 }; 7313 7314 static struct extent_io_ops btrfs_extent_io_ops = { 7315 .fill_delalloc = run_delalloc_range, 7316 .submit_bio_hook = btrfs_submit_bio_hook, 7317 .merge_bio_hook = btrfs_merge_bio_hook, 7318 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7319 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7320 .writepage_start_hook = btrfs_writepage_start_hook, 7321 .readpage_io_failed_hook = btrfs_io_failed_hook, 7322 .set_bit_hook = btrfs_set_bit_hook, 7323 .clear_bit_hook = btrfs_clear_bit_hook, 7324 .merge_extent_hook = btrfs_merge_extent_hook, 7325 .split_extent_hook = btrfs_split_extent_hook, 7326 }; 7327 7328 /* 7329 * btrfs doesn't support the bmap operation because swapfiles 7330 * use bmap to make a mapping of extents in the file. They assume 7331 * these extents won't change over the life of the file and they 7332 * use the bmap result to do IO directly to the drive. 7333 * 7334 * the btrfs bmap call would return logical addresses that aren't 7335 * suitable for IO and they also will change frequently as COW 7336 * operations happen. So, swapfile + btrfs == corruption. 7337 * 7338 * For now we're avoiding this by dropping bmap. 7339 */ 7340 static const struct address_space_operations btrfs_aops = { 7341 .readpage = btrfs_readpage, 7342 .writepage = btrfs_writepage, 7343 .writepages = btrfs_writepages, 7344 .readpages = btrfs_readpages, 7345 .sync_page = block_sync_page, 7346 .direct_IO = btrfs_direct_IO, 7347 .invalidatepage = btrfs_invalidatepage, 7348 .releasepage = btrfs_releasepage, 7349 .set_page_dirty = btrfs_set_page_dirty, 7350 .error_remove_page = generic_error_remove_page, 7351 }; 7352 7353 static const struct address_space_operations btrfs_symlink_aops = { 7354 .readpage = btrfs_readpage, 7355 .writepage = btrfs_writepage, 7356 .invalidatepage = btrfs_invalidatepage, 7357 .releasepage = btrfs_releasepage, 7358 }; 7359 7360 static const struct inode_operations btrfs_file_inode_operations = { 7361 .truncate = btrfs_truncate, 7362 .getattr = btrfs_getattr, 7363 .setattr = btrfs_setattr, 7364 .setxattr = btrfs_setxattr, 7365 .getxattr = btrfs_getxattr, 7366 .listxattr = btrfs_listxattr, 7367 .removexattr = btrfs_removexattr, 7368 .permission = btrfs_permission, 7369 .fiemap = btrfs_fiemap, 7370 }; 7371 static const struct inode_operations btrfs_special_inode_operations = { 7372 .getattr = btrfs_getattr, 7373 .setattr = btrfs_setattr, 7374 .permission = btrfs_permission, 7375 .setxattr = btrfs_setxattr, 7376 .getxattr = btrfs_getxattr, 7377 .listxattr = btrfs_listxattr, 7378 .removexattr = btrfs_removexattr, 7379 }; 7380 static const struct inode_operations btrfs_symlink_inode_operations = { 7381 .readlink = generic_readlink, 7382 .follow_link = page_follow_link_light, 7383 .put_link = page_put_link, 7384 .getattr = btrfs_getattr, 7385 .permission = btrfs_permission, 7386 .setxattr = btrfs_setxattr, 7387 .getxattr = btrfs_getxattr, 7388 .listxattr = btrfs_listxattr, 7389 .removexattr = btrfs_removexattr, 7390 }; 7391 7392 const struct dentry_operations btrfs_dentry_operations = { 7393 .d_delete = btrfs_dentry_delete, 7394 }; 7395