xref: /openbmc/linux/fs/btrfs/inode.c (revision 46c039d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <asm/unaligned.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "ordered-data.h"
38 #include "xattr.h"
39 #include "tree-log.h"
40 #include "volumes.h"
41 #include "compression.h"
42 #include "locking.h"
43 #include "free-space-cache.h"
44 #include "inode-map.h"
45 #include "backref.h"
46 #include "props.h"
47 #include "qgroup.h"
48 #include "dedupe.h"
49 
50 struct btrfs_iget_args {
51 	struct btrfs_key *location;
52 	struct btrfs_root *root;
53 };
54 
55 struct btrfs_dio_data {
56 	u64 reserve;
57 	u64 unsubmitted_oe_range_start;
58 	u64 unsubmitted_oe_range_end;
59 	int overwrite;
60 };
61 
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static const struct extent_io_ops btrfs_extent_io_ops;
70 
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
75 
76 #define S_SHIFT 12
77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
79 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
80 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
81 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
82 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
83 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
84 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
85 };
86 
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct inode *inode,
91 				   struct page *locked_page,
92 				   u64 start, u64 end, u64 delalloc_end,
93 				   int *page_started, unsigned long *nr_written,
94 				   int unlock, struct btrfs_dedupe_hash *hash);
95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 				       u64 orig_start, u64 block_start,
97 				       u64 block_len, u64 orig_block_len,
98 				       u64 ram_bytes, int compress_type,
99 				       int type);
100 
101 static void __endio_write_update_ordered(struct inode *inode,
102 					 const u64 offset, const u64 bytes,
103 					 const bool uptodate);
104 
105 /*
106  * Cleanup all submitted ordered extents in specified range to handle errors
107  * from the btrfs_run_delalloc_range() callback.
108  *
109  * NOTE: caller must ensure that when an error happens, it can not call
110  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112  * to be released, which we want to happen only when finishing the ordered
113  * extent (btrfs_finish_ordered_io()).
114  */
115 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
116 						 struct page *locked_page,
117 						 u64 offset, u64 bytes)
118 {
119 	unsigned long index = offset >> PAGE_SHIFT;
120 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
121 	u64 page_start = page_offset(locked_page);
122 	u64 page_end = page_start + PAGE_SIZE - 1;
123 
124 	struct page *page;
125 
126 	while (index <= end_index) {
127 		page = find_get_page(inode->i_mapping, index);
128 		index++;
129 		if (!page)
130 			continue;
131 		ClearPagePrivate2(page);
132 		put_page(page);
133 	}
134 
135 	/*
136 	 * In case this page belongs to the delalloc range being instantiated
137 	 * then skip it, since the first page of a range is going to be
138 	 * properly cleaned up by the caller of run_delalloc_range
139 	 */
140 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
141 		offset += PAGE_SIZE;
142 		bytes -= PAGE_SIZE;
143 	}
144 
145 	return __endio_write_update_ordered(inode, offset, bytes, false);
146 }
147 
148 static int btrfs_dirty_inode(struct inode *inode);
149 
150 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
151 void btrfs_test_inode_set_ops(struct inode *inode)
152 {
153 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
154 }
155 #endif
156 
157 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
158 				     struct inode *inode,  struct inode *dir,
159 				     const struct qstr *qstr)
160 {
161 	int err;
162 
163 	err = btrfs_init_acl(trans, inode, dir);
164 	if (!err)
165 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
166 	return err;
167 }
168 
169 /*
170  * this does all the hard work for inserting an inline extent into
171  * the btree.  The caller should have done a btrfs_drop_extents so that
172  * no overlapping inline items exist in the btree
173  */
174 static int insert_inline_extent(struct btrfs_trans_handle *trans,
175 				struct btrfs_path *path, int extent_inserted,
176 				struct btrfs_root *root, struct inode *inode,
177 				u64 start, size_t size, size_t compressed_size,
178 				int compress_type,
179 				struct page **compressed_pages)
180 {
181 	struct extent_buffer *leaf;
182 	struct page *page = NULL;
183 	char *kaddr;
184 	unsigned long ptr;
185 	struct btrfs_file_extent_item *ei;
186 	int ret;
187 	size_t cur_size = size;
188 	unsigned long offset;
189 
190 	if (compressed_size && compressed_pages)
191 		cur_size = compressed_size;
192 
193 	inode_add_bytes(inode, size);
194 
195 	if (!extent_inserted) {
196 		struct btrfs_key key;
197 		size_t datasize;
198 
199 		key.objectid = btrfs_ino(BTRFS_I(inode));
200 		key.offset = start;
201 		key.type = BTRFS_EXTENT_DATA_KEY;
202 
203 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
204 		path->leave_spinning = 1;
205 		ret = btrfs_insert_empty_item(trans, root, path, &key,
206 					      datasize);
207 		if (ret)
208 			goto fail;
209 	}
210 	leaf = path->nodes[0];
211 	ei = btrfs_item_ptr(leaf, path->slots[0],
212 			    struct btrfs_file_extent_item);
213 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
214 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
215 	btrfs_set_file_extent_encryption(leaf, ei, 0);
216 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
217 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
218 	ptr = btrfs_file_extent_inline_start(ei);
219 
220 	if (compress_type != BTRFS_COMPRESS_NONE) {
221 		struct page *cpage;
222 		int i = 0;
223 		while (compressed_size > 0) {
224 			cpage = compressed_pages[i];
225 			cur_size = min_t(unsigned long, compressed_size,
226 				       PAGE_SIZE);
227 
228 			kaddr = kmap_atomic(cpage);
229 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
230 			kunmap_atomic(kaddr);
231 
232 			i++;
233 			ptr += cur_size;
234 			compressed_size -= cur_size;
235 		}
236 		btrfs_set_file_extent_compression(leaf, ei,
237 						  compress_type);
238 	} else {
239 		page = find_get_page(inode->i_mapping,
240 				     start >> PAGE_SHIFT);
241 		btrfs_set_file_extent_compression(leaf, ei, 0);
242 		kaddr = kmap_atomic(page);
243 		offset = offset_in_page(start);
244 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
245 		kunmap_atomic(kaddr);
246 		put_page(page);
247 	}
248 	btrfs_mark_buffer_dirty(leaf);
249 	btrfs_release_path(path);
250 
251 	/*
252 	 * we're an inline extent, so nobody can
253 	 * extend the file past i_size without locking
254 	 * a page we already have locked.
255 	 *
256 	 * We must do any isize and inode updates
257 	 * before we unlock the pages.  Otherwise we
258 	 * could end up racing with unlink.
259 	 */
260 	BTRFS_I(inode)->disk_i_size = inode->i_size;
261 	ret = btrfs_update_inode(trans, root, inode);
262 
263 fail:
264 	return ret;
265 }
266 
267 
268 /*
269  * conditionally insert an inline extent into the file.  This
270  * does the checks required to make sure the data is small enough
271  * to fit as an inline extent.
272  */
273 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
274 					  u64 end, size_t compressed_size,
275 					  int compress_type,
276 					  struct page **compressed_pages)
277 {
278 	struct btrfs_root *root = BTRFS_I(inode)->root;
279 	struct btrfs_fs_info *fs_info = root->fs_info;
280 	struct btrfs_trans_handle *trans;
281 	u64 isize = i_size_read(inode);
282 	u64 actual_end = min(end + 1, isize);
283 	u64 inline_len = actual_end - start;
284 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
285 	u64 data_len = inline_len;
286 	int ret;
287 	struct btrfs_path *path;
288 	int extent_inserted = 0;
289 	u32 extent_item_size;
290 
291 	if (compressed_size)
292 		data_len = compressed_size;
293 
294 	if (start > 0 ||
295 	    actual_end > fs_info->sectorsize ||
296 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
297 	    (!compressed_size &&
298 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
299 	    end + 1 < isize ||
300 	    data_len > fs_info->max_inline) {
301 		return 1;
302 	}
303 
304 	path = btrfs_alloc_path();
305 	if (!path)
306 		return -ENOMEM;
307 
308 	trans = btrfs_join_transaction(root);
309 	if (IS_ERR(trans)) {
310 		btrfs_free_path(path);
311 		return PTR_ERR(trans);
312 	}
313 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
314 
315 	if (compressed_size && compressed_pages)
316 		extent_item_size = btrfs_file_extent_calc_inline_size(
317 		   compressed_size);
318 	else
319 		extent_item_size = btrfs_file_extent_calc_inline_size(
320 		    inline_len);
321 
322 	ret = __btrfs_drop_extents(trans, root, inode, path,
323 				   start, aligned_end, NULL,
324 				   1, 1, extent_item_size, &extent_inserted);
325 	if (ret) {
326 		btrfs_abort_transaction(trans, ret);
327 		goto out;
328 	}
329 
330 	if (isize > actual_end)
331 		inline_len = min_t(u64, isize, actual_end);
332 	ret = insert_inline_extent(trans, path, extent_inserted,
333 				   root, inode, start,
334 				   inline_len, compressed_size,
335 				   compress_type, compressed_pages);
336 	if (ret && ret != -ENOSPC) {
337 		btrfs_abort_transaction(trans, ret);
338 		goto out;
339 	} else if (ret == -ENOSPC) {
340 		ret = 1;
341 		goto out;
342 	}
343 
344 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
345 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
346 out:
347 	/*
348 	 * Don't forget to free the reserved space, as for inlined extent
349 	 * it won't count as data extent, free them directly here.
350 	 * And at reserve time, it's always aligned to page size, so
351 	 * just free one page here.
352 	 */
353 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
354 	btrfs_free_path(path);
355 	btrfs_end_transaction(trans);
356 	return ret;
357 }
358 
359 struct async_extent {
360 	u64 start;
361 	u64 ram_size;
362 	u64 compressed_size;
363 	struct page **pages;
364 	unsigned long nr_pages;
365 	int compress_type;
366 	struct list_head list;
367 };
368 
369 struct async_cow {
370 	struct inode *inode;
371 	struct btrfs_fs_info *fs_info;
372 	struct page *locked_page;
373 	u64 start;
374 	u64 end;
375 	unsigned int write_flags;
376 	struct list_head extents;
377 	struct btrfs_work work;
378 };
379 
380 static noinline int add_async_extent(struct async_cow *cow,
381 				     u64 start, u64 ram_size,
382 				     u64 compressed_size,
383 				     struct page **pages,
384 				     unsigned long nr_pages,
385 				     int compress_type)
386 {
387 	struct async_extent *async_extent;
388 
389 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
390 	BUG_ON(!async_extent); /* -ENOMEM */
391 	async_extent->start = start;
392 	async_extent->ram_size = ram_size;
393 	async_extent->compressed_size = compressed_size;
394 	async_extent->pages = pages;
395 	async_extent->nr_pages = nr_pages;
396 	async_extent->compress_type = compress_type;
397 	list_add_tail(&async_extent->list, &cow->extents);
398 	return 0;
399 }
400 
401 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
402 {
403 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
404 
405 	/* force compress */
406 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
407 		return 1;
408 	/* defrag ioctl */
409 	if (BTRFS_I(inode)->defrag_compress)
410 		return 1;
411 	/* bad compression ratios */
412 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
413 		return 0;
414 	if (btrfs_test_opt(fs_info, COMPRESS) ||
415 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
416 	    BTRFS_I(inode)->prop_compress)
417 		return btrfs_compress_heuristic(inode, start, end);
418 	return 0;
419 }
420 
421 static inline void inode_should_defrag(struct btrfs_inode *inode,
422 		u64 start, u64 end, u64 num_bytes, u64 small_write)
423 {
424 	/* If this is a small write inside eof, kick off a defrag */
425 	if (num_bytes < small_write &&
426 	    (start > 0 || end + 1 < inode->disk_i_size))
427 		btrfs_add_inode_defrag(NULL, inode);
428 }
429 
430 /*
431  * we create compressed extents in two phases.  The first
432  * phase compresses a range of pages that have already been
433  * locked (both pages and state bits are locked).
434  *
435  * This is done inside an ordered work queue, and the compression
436  * is spread across many cpus.  The actual IO submission is step
437  * two, and the ordered work queue takes care of making sure that
438  * happens in the same order things were put onto the queue by
439  * writepages and friends.
440  *
441  * If this code finds it can't get good compression, it puts an
442  * entry onto the work queue to write the uncompressed bytes.  This
443  * makes sure that both compressed inodes and uncompressed inodes
444  * are written in the same order that the flusher thread sent them
445  * down.
446  */
447 static noinline void compress_file_range(struct inode *inode,
448 					struct page *locked_page,
449 					u64 start, u64 end,
450 					struct async_cow *async_cow,
451 					int *num_added)
452 {
453 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
454 	u64 blocksize = fs_info->sectorsize;
455 	u64 actual_end;
456 	u64 isize = i_size_read(inode);
457 	int ret = 0;
458 	struct page **pages = NULL;
459 	unsigned long nr_pages;
460 	unsigned long total_compressed = 0;
461 	unsigned long total_in = 0;
462 	int i;
463 	int will_compress;
464 	int compress_type = fs_info->compress_type;
465 	int redirty = 0;
466 
467 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
468 			SZ_16K);
469 
470 	actual_end = min_t(u64, isize, end + 1);
471 again:
472 	will_compress = 0;
473 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
474 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
475 	nr_pages = min_t(unsigned long, nr_pages,
476 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
477 
478 	/*
479 	 * we don't want to send crud past the end of i_size through
480 	 * compression, that's just a waste of CPU time.  So, if the
481 	 * end of the file is before the start of our current
482 	 * requested range of bytes, we bail out to the uncompressed
483 	 * cleanup code that can deal with all of this.
484 	 *
485 	 * It isn't really the fastest way to fix things, but this is a
486 	 * very uncommon corner.
487 	 */
488 	if (actual_end <= start)
489 		goto cleanup_and_bail_uncompressed;
490 
491 	total_compressed = actual_end - start;
492 
493 	/*
494 	 * skip compression for a small file range(<=blocksize) that
495 	 * isn't an inline extent, since it doesn't save disk space at all.
496 	 */
497 	if (total_compressed <= blocksize &&
498 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
499 		goto cleanup_and_bail_uncompressed;
500 
501 	total_compressed = min_t(unsigned long, total_compressed,
502 			BTRFS_MAX_UNCOMPRESSED);
503 	total_in = 0;
504 	ret = 0;
505 
506 	/*
507 	 * we do compression for mount -o compress and when the
508 	 * inode has not been flagged as nocompress.  This flag can
509 	 * change at any time if we discover bad compression ratios.
510 	 */
511 	if (inode_need_compress(inode, start, end)) {
512 		WARN_ON(pages);
513 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
514 		if (!pages) {
515 			/* just bail out to the uncompressed code */
516 			nr_pages = 0;
517 			goto cont;
518 		}
519 
520 		if (BTRFS_I(inode)->defrag_compress)
521 			compress_type = BTRFS_I(inode)->defrag_compress;
522 		else if (BTRFS_I(inode)->prop_compress)
523 			compress_type = BTRFS_I(inode)->prop_compress;
524 
525 		/*
526 		 * we need to call clear_page_dirty_for_io on each
527 		 * page in the range.  Otherwise applications with the file
528 		 * mmap'd can wander in and change the page contents while
529 		 * we are compressing them.
530 		 *
531 		 * If the compression fails for any reason, we set the pages
532 		 * dirty again later on.
533 		 *
534 		 * Note that the remaining part is redirtied, the start pointer
535 		 * has moved, the end is the original one.
536 		 */
537 		if (!redirty) {
538 			extent_range_clear_dirty_for_io(inode, start, end);
539 			redirty = 1;
540 		}
541 
542 		/* Compression level is applied here and only here */
543 		ret = btrfs_compress_pages(
544 			compress_type | (fs_info->compress_level << 4),
545 					   inode->i_mapping, start,
546 					   pages,
547 					   &nr_pages,
548 					   &total_in,
549 					   &total_compressed);
550 
551 		if (!ret) {
552 			unsigned long offset = offset_in_page(total_compressed);
553 			struct page *page = pages[nr_pages - 1];
554 			char *kaddr;
555 
556 			/* zero the tail end of the last page, we might be
557 			 * sending it down to disk
558 			 */
559 			if (offset) {
560 				kaddr = kmap_atomic(page);
561 				memset(kaddr + offset, 0,
562 				       PAGE_SIZE - offset);
563 				kunmap_atomic(kaddr);
564 			}
565 			will_compress = 1;
566 		}
567 	}
568 cont:
569 	if (start == 0) {
570 		/* lets try to make an inline extent */
571 		if (ret || total_in < actual_end) {
572 			/* we didn't compress the entire range, try
573 			 * to make an uncompressed inline extent.
574 			 */
575 			ret = cow_file_range_inline(inode, start, end, 0,
576 						    BTRFS_COMPRESS_NONE, NULL);
577 		} else {
578 			/* try making a compressed inline extent */
579 			ret = cow_file_range_inline(inode, start, end,
580 						    total_compressed,
581 						    compress_type, pages);
582 		}
583 		if (ret <= 0) {
584 			unsigned long clear_flags = EXTENT_DELALLOC |
585 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
586 				EXTENT_DO_ACCOUNTING;
587 			unsigned long page_error_op;
588 
589 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
590 
591 			/*
592 			 * inline extent creation worked or returned error,
593 			 * we don't need to create any more async work items.
594 			 * Unlock and free up our temp pages.
595 			 *
596 			 * We use DO_ACCOUNTING here because we need the
597 			 * delalloc_release_metadata to be done _after_ we drop
598 			 * our outstanding extent for clearing delalloc for this
599 			 * range.
600 			 */
601 			extent_clear_unlock_delalloc(inode, start, end, end,
602 						     NULL, clear_flags,
603 						     PAGE_UNLOCK |
604 						     PAGE_CLEAR_DIRTY |
605 						     PAGE_SET_WRITEBACK |
606 						     page_error_op |
607 						     PAGE_END_WRITEBACK);
608 			goto free_pages_out;
609 		}
610 	}
611 
612 	if (will_compress) {
613 		/*
614 		 * we aren't doing an inline extent round the compressed size
615 		 * up to a block size boundary so the allocator does sane
616 		 * things
617 		 */
618 		total_compressed = ALIGN(total_compressed, blocksize);
619 
620 		/*
621 		 * one last check to make sure the compression is really a
622 		 * win, compare the page count read with the blocks on disk,
623 		 * compression must free at least one sector size
624 		 */
625 		total_in = ALIGN(total_in, PAGE_SIZE);
626 		if (total_compressed + blocksize <= total_in) {
627 			*num_added += 1;
628 
629 			/*
630 			 * The async work queues will take care of doing actual
631 			 * allocation on disk for these compressed pages, and
632 			 * will submit them to the elevator.
633 			 */
634 			add_async_extent(async_cow, start, total_in,
635 					total_compressed, pages, nr_pages,
636 					compress_type);
637 
638 			if (start + total_in < end) {
639 				start += total_in;
640 				pages = NULL;
641 				cond_resched();
642 				goto again;
643 			}
644 			return;
645 		}
646 	}
647 	if (pages) {
648 		/*
649 		 * the compression code ran but failed to make things smaller,
650 		 * free any pages it allocated and our page pointer array
651 		 */
652 		for (i = 0; i < nr_pages; i++) {
653 			WARN_ON(pages[i]->mapping);
654 			put_page(pages[i]);
655 		}
656 		kfree(pages);
657 		pages = NULL;
658 		total_compressed = 0;
659 		nr_pages = 0;
660 
661 		/* flag the file so we don't compress in the future */
662 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
663 		    !(BTRFS_I(inode)->prop_compress)) {
664 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
665 		}
666 	}
667 cleanup_and_bail_uncompressed:
668 	/*
669 	 * No compression, but we still need to write the pages in the file
670 	 * we've been given so far.  redirty the locked page if it corresponds
671 	 * to our extent and set things up for the async work queue to run
672 	 * cow_file_range to do the normal delalloc dance.
673 	 */
674 	if (page_offset(locked_page) >= start &&
675 	    page_offset(locked_page) <= end)
676 		__set_page_dirty_nobuffers(locked_page);
677 		/* unlocked later on in the async handlers */
678 
679 	if (redirty)
680 		extent_range_redirty_for_io(inode, start, end);
681 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
682 			 BTRFS_COMPRESS_NONE);
683 	*num_added += 1;
684 
685 	return;
686 
687 free_pages_out:
688 	for (i = 0; i < nr_pages; i++) {
689 		WARN_ON(pages[i]->mapping);
690 		put_page(pages[i]);
691 	}
692 	kfree(pages);
693 }
694 
695 static void free_async_extent_pages(struct async_extent *async_extent)
696 {
697 	int i;
698 
699 	if (!async_extent->pages)
700 		return;
701 
702 	for (i = 0; i < async_extent->nr_pages; i++) {
703 		WARN_ON(async_extent->pages[i]->mapping);
704 		put_page(async_extent->pages[i]);
705 	}
706 	kfree(async_extent->pages);
707 	async_extent->nr_pages = 0;
708 	async_extent->pages = NULL;
709 }
710 
711 /*
712  * phase two of compressed writeback.  This is the ordered portion
713  * of the code, which only gets called in the order the work was
714  * queued.  We walk all the async extents created by compress_file_range
715  * and send them down to the disk.
716  */
717 static noinline void submit_compressed_extents(struct inode *inode,
718 					      struct async_cow *async_cow)
719 {
720 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
721 	struct async_extent *async_extent;
722 	u64 alloc_hint = 0;
723 	struct btrfs_key ins;
724 	struct extent_map *em;
725 	struct btrfs_root *root = BTRFS_I(inode)->root;
726 	struct extent_io_tree *io_tree;
727 	int ret = 0;
728 
729 again:
730 	while (!list_empty(&async_cow->extents)) {
731 		async_extent = list_entry(async_cow->extents.next,
732 					  struct async_extent, list);
733 		list_del(&async_extent->list);
734 
735 		io_tree = &BTRFS_I(inode)->io_tree;
736 
737 retry:
738 		/* did the compression code fall back to uncompressed IO? */
739 		if (!async_extent->pages) {
740 			int page_started = 0;
741 			unsigned long nr_written = 0;
742 
743 			lock_extent(io_tree, async_extent->start,
744 					 async_extent->start +
745 					 async_extent->ram_size - 1);
746 
747 			/* allocate blocks */
748 			ret = cow_file_range(inode, async_cow->locked_page,
749 					     async_extent->start,
750 					     async_extent->start +
751 					     async_extent->ram_size - 1,
752 					     async_extent->start +
753 					     async_extent->ram_size - 1,
754 					     &page_started, &nr_written, 0,
755 					     NULL);
756 
757 			/* JDM XXX */
758 
759 			/*
760 			 * if page_started, cow_file_range inserted an
761 			 * inline extent and took care of all the unlocking
762 			 * and IO for us.  Otherwise, we need to submit
763 			 * all those pages down to the drive.
764 			 */
765 			if (!page_started && !ret)
766 				extent_write_locked_range(inode,
767 						  async_extent->start,
768 						  async_extent->start +
769 						  async_extent->ram_size - 1,
770 						  WB_SYNC_ALL);
771 			else if (ret)
772 				unlock_page(async_cow->locked_page);
773 			kfree(async_extent);
774 			cond_resched();
775 			continue;
776 		}
777 
778 		lock_extent(io_tree, async_extent->start,
779 			    async_extent->start + async_extent->ram_size - 1);
780 
781 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
782 					   async_extent->compressed_size,
783 					   async_extent->compressed_size,
784 					   0, alloc_hint, &ins, 1, 1);
785 		if (ret) {
786 			free_async_extent_pages(async_extent);
787 
788 			if (ret == -ENOSPC) {
789 				unlock_extent(io_tree, async_extent->start,
790 					      async_extent->start +
791 					      async_extent->ram_size - 1);
792 
793 				/*
794 				 * we need to redirty the pages if we decide to
795 				 * fallback to uncompressed IO, otherwise we
796 				 * will not submit these pages down to lower
797 				 * layers.
798 				 */
799 				extent_range_redirty_for_io(inode,
800 						async_extent->start,
801 						async_extent->start +
802 						async_extent->ram_size - 1);
803 
804 				goto retry;
805 			}
806 			goto out_free;
807 		}
808 		/*
809 		 * here we're doing allocation and writeback of the
810 		 * compressed pages
811 		 */
812 		em = create_io_em(inode, async_extent->start,
813 				  async_extent->ram_size, /* len */
814 				  async_extent->start, /* orig_start */
815 				  ins.objectid, /* block_start */
816 				  ins.offset, /* block_len */
817 				  ins.offset, /* orig_block_len */
818 				  async_extent->ram_size, /* ram_bytes */
819 				  async_extent->compress_type,
820 				  BTRFS_ORDERED_COMPRESSED);
821 		if (IS_ERR(em))
822 			/* ret value is not necessary due to void function */
823 			goto out_free_reserve;
824 		free_extent_map(em);
825 
826 		ret = btrfs_add_ordered_extent_compress(inode,
827 						async_extent->start,
828 						ins.objectid,
829 						async_extent->ram_size,
830 						ins.offset,
831 						BTRFS_ORDERED_COMPRESSED,
832 						async_extent->compress_type);
833 		if (ret) {
834 			btrfs_drop_extent_cache(BTRFS_I(inode),
835 						async_extent->start,
836 						async_extent->start +
837 						async_extent->ram_size - 1, 0);
838 			goto out_free_reserve;
839 		}
840 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
841 
842 		/*
843 		 * clear dirty, set writeback and unlock the pages.
844 		 */
845 		extent_clear_unlock_delalloc(inode, async_extent->start,
846 				async_extent->start +
847 				async_extent->ram_size - 1,
848 				async_extent->start +
849 				async_extent->ram_size - 1,
850 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
851 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
852 				PAGE_SET_WRITEBACK);
853 		if (btrfs_submit_compressed_write(inode,
854 				    async_extent->start,
855 				    async_extent->ram_size,
856 				    ins.objectid,
857 				    ins.offset, async_extent->pages,
858 				    async_extent->nr_pages,
859 				    async_cow->write_flags)) {
860 			struct page *p = async_extent->pages[0];
861 			const u64 start = async_extent->start;
862 			const u64 end = start + async_extent->ram_size - 1;
863 
864 			p->mapping = inode->i_mapping;
865 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
866 
867 			p->mapping = NULL;
868 			extent_clear_unlock_delalloc(inode, start, end, end,
869 						     NULL, 0,
870 						     PAGE_END_WRITEBACK |
871 						     PAGE_SET_ERROR);
872 			free_async_extent_pages(async_extent);
873 		}
874 		alloc_hint = ins.objectid + ins.offset;
875 		kfree(async_extent);
876 		cond_resched();
877 	}
878 	return;
879 out_free_reserve:
880 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
881 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
882 out_free:
883 	extent_clear_unlock_delalloc(inode, async_extent->start,
884 				     async_extent->start +
885 				     async_extent->ram_size - 1,
886 				     async_extent->start +
887 				     async_extent->ram_size - 1,
888 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
889 				     EXTENT_DELALLOC_NEW |
890 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
891 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
892 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
893 				     PAGE_SET_ERROR);
894 	free_async_extent_pages(async_extent);
895 	kfree(async_extent);
896 	goto again;
897 }
898 
899 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
900 				      u64 num_bytes)
901 {
902 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
903 	struct extent_map *em;
904 	u64 alloc_hint = 0;
905 
906 	read_lock(&em_tree->lock);
907 	em = search_extent_mapping(em_tree, start, num_bytes);
908 	if (em) {
909 		/*
910 		 * if block start isn't an actual block number then find the
911 		 * first block in this inode and use that as a hint.  If that
912 		 * block is also bogus then just don't worry about it.
913 		 */
914 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
915 			free_extent_map(em);
916 			em = search_extent_mapping(em_tree, 0, 0);
917 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
918 				alloc_hint = em->block_start;
919 			if (em)
920 				free_extent_map(em);
921 		} else {
922 			alloc_hint = em->block_start;
923 			free_extent_map(em);
924 		}
925 	}
926 	read_unlock(&em_tree->lock);
927 
928 	return alloc_hint;
929 }
930 
931 /*
932  * when extent_io.c finds a delayed allocation range in the file,
933  * the call backs end up in this code.  The basic idea is to
934  * allocate extents on disk for the range, and create ordered data structs
935  * in ram to track those extents.
936  *
937  * locked_page is the page that writepage had locked already.  We use
938  * it to make sure we don't do extra locks or unlocks.
939  *
940  * *page_started is set to one if we unlock locked_page and do everything
941  * required to start IO on it.  It may be clean and already done with
942  * IO when we return.
943  */
944 static noinline int cow_file_range(struct inode *inode,
945 				   struct page *locked_page,
946 				   u64 start, u64 end, u64 delalloc_end,
947 				   int *page_started, unsigned long *nr_written,
948 				   int unlock, struct btrfs_dedupe_hash *hash)
949 {
950 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
951 	struct btrfs_root *root = BTRFS_I(inode)->root;
952 	u64 alloc_hint = 0;
953 	u64 num_bytes;
954 	unsigned long ram_size;
955 	u64 cur_alloc_size = 0;
956 	u64 blocksize = fs_info->sectorsize;
957 	struct btrfs_key ins;
958 	struct extent_map *em;
959 	unsigned clear_bits;
960 	unsigned long page_ops;
961 	bool extent_reserved = false;
962 	int ret = 0;
963 
964 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
965 		WARN_ON_ONCE(1);
966 		ret = -EINVAL;
967 		goto out_unlock;
968 	}
969 
970 	num_bytes = ALIGN(end - start + 1, blocksize);
971 	num_bytes = max(blocksize,  num_bytes);
972 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
973 
974 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
975 
976 	if (start == 0) {
977 		/* lets try to make an inline extent */
978 		ret = cow_file_range_inline(inode, start, end, 0,
979 					    BTRFS_COMPRESS_NONE, NULL);
980 		if (ret == 0) {
981 			/*
982 			 * We use DO_ACCOUNTING here because we need the
983 			 * delalloc_release_metadata to be run _after_ we drop
984 			 * our outstanding extent for clearing delalloc for this
985 			 * range.
986 			 */
987 			extent_clear_unlock_delalloc(inode, start, end,
988 				     delalloc_end, NULL,
989 				     EXTENT_LOCKED | EXTENT_DELALLOC |
990 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
991 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
992 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
993 				     PAGE_END_WRITEBACK);
994 			*nr_written = *nr_written +
995 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
996 			*page_started = 1;
997 			goto out;
998 		} else if (ret < 0) {
999 			goto out_unlock;
1000 		}
1001 	}
1002 
1003 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1004 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1005 			start + num_bytes - 1, 0);
1006 
1007 	while (num_bytes > 0) {
1008 		cur_alloc_size = num_bytes;
1009 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1010 					   fs_info->sectorsize, 0, alloc_hint,
1011 					   &ins, 1, 1);
1012 		if (ret < 0)
1013 			goto out_unlock;
1014 		cur_alloc_size = ins.offset;
1015 		extent_reserved = true;
1016 
1017 		ram_size = ins.offset;
1018 		em = create_io_em(inode, start, ins.offset, /* len */
1019 				  start, /* orig_start */
1020 				  ins.objectid, /* block_start */
1021 				  ins.offset, /* block_len */
1022 				  ins.offset, /* orig_block_len */
1023 				  ram_size, /* ram_bytes */
1024 				  BTRFS_COMPRESS_NONE, /* compress_type */
1025 				  BTRFS_ORDERED_REGULAR /* type */);
1026 		if (IS_ERR(em)) {
1027 			ret = PTR_ERR(em);
1028 			goto out_reserve;
1029 		}
1030 		free_extent_map(em);
1031 
1032 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1033 					       ram_size, cur_alloc_size, 0);
1034 		if (ret)
1035 			goto out_drop_extent_cache;
1036 
1037 		if (root->root_key.objectid ==
1038 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1039 			ret = btrfs_reloc_clone_csums(inode, start,
1040 						      cur_alloc_size);
1041 			/*
1042 			 * Only drop cache here, and process as normal.
1043 			 *
1044 			 * We must not allow extent_clear_unlock_delalloc()
1045 			 * at out_unlock label to free meta of this ordered
1046 			 * extent, as its meta should be freed by
1047 			 * btrfs_finish_ordered_io().
1048 			 *
1049 			 * So we must continue until @start is increased to
1050 			 * skip current ordered extent.
1051 			 */
1052 			if (ret)
1053 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1054 						start + ram_size - 1, 0);
1055 		}
1056 
1057 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1058 
1059 		/* we're not doing compressed IO, don't unlock the first
1060 		 * page (which the caller expects to stay locked), don't
1061 		 * clear any dirty bits and don't set any writeback bits
1062 		 *
1063 		 * Do set the Private2 bit so we know this page was properly
1064 		 * setup for writepage
1065 		 */
1066 		page_ops = unlock ? PAGE_UNLOCK : 0;
1067 		page_ops |= PAGE_SET_PRIVATE2;
1068 
1069 		extent_clear_unlock_delalloc(inode, start,
1070 					     start + ram_size - 1,
1071 					     delalloc_end, locked_page,
1072 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1073 					     page_ops);
1074 		if (num_bytes < cur_alloc_size)
1075 			num_bytes = 0;
1076 		else
1077 			num_bytes -= cur_alloc_size;
1078 		alloc_hint = ins.objectid + ins.offset;
1079 		start += cur_alloc_size;
1080 		extent_reserved = false;
1081 
1082 		/*
1083 		 * btrfs_reloc_clone_csums() error, since start is increased
1084 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1085 		 * free metadata of current ordered extent, we're OK to exit.
1086 		 */
1087 		if (ret)
1088 			goto out_unlock;
1089 	}
1090 out:
1091 	return ret;
1092 
1093 out_drop_extent_cache:
1094 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1095 out_reserve:
1096 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1097 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1098 out_unlock:
1099 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1100 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1101 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1102 		PAGE_END_WRITEBACK;
1103 	/*
1104 	 * If we reserved an extent for our delalloc range (or a subrange) and
1105 	 * failed to create the respective ordered extent, then it means that
1106 	 * when we reserved the extent we decremented the extent's size from
1107 	 * the data space_info's bytes_may_use counter and incremented the
1108 	 * space_info's bytes_reserved counter by the same amount. We must make
1109 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1110 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1111 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1112 	 */
1113 	if (extent_reserved) {
1114 		extent_clear_unlock_delalloc(inode, start,
1115 					     start + cur_alloc_size,
1116 					     start + cur_alloc_size,
1117 					     locked_page,
1118 					     clear_bits,
1119 					     page_ops);
1120 		start += cur_alloc_size;
1121 		if (start >= end)
1122 			goto out;
1123 	}
1124 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1125 				     locked_page,
1126 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1127 				     page_ops);
1128 	goto out;
1129 }
1130 
1131 /*
1132  * work queue call back to started compression on a file and pages
1133  */
1134 static noinline void async_cow_start(struct btrfs_work *work)
1135 {
1136 	struct async_cow *async_cow;
1137 	int num_added = 0;
1138 	async_cow = container_of(work, struct async_cow, work);
1139 
1140 	compress_file_range(async_cow->inode, async_cow->locked_page,
1141 			    async_cow->start, async_cow->end, async_cow,
1142 			    &num_added);
1143 	if (num_added == 0) {
1144 		btrfs_add_delayed_iput(async_cow->inode);
1145 		async_cow->inode = NULL;
1146 	}
1147 }
1148 
1149 /*
1150  * work queue call back to submit previously compressed pages
1151  */
1152 static noinline void async_cow_submit(struct btrfs_work *work)
1153 {
1154 	struct btrfs_fs_info *fs_info;
1155 	struct async_cow *async_cow;
1156 	unsigned long nr_pages;
1157 
1158 	async_cow = container_of(work, struct async_cow, work);
1159 
1160 	fs_info = async_cow->fs_info;
1161 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1162 		PAGE_SHIFT;
1163 
1164 	/* atomic_sub_return implies a barrier */
1165 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1166 	    5 * SZ_1M)
1167 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1168 
1169 	if (async_cow->inode)
1170 		submit_compressed_extents(async_cow->inode, async_cow);
1171 }
1172 
1173 static noinline void async_cow_free(struct btrfs_work *work)
1174 {
1175 	struct async_cow *async_cow;
1176 	async_cow = container_of(work, struct async_cow, work);
1177 	if (async_cow->inode)
1178 		btrfs_add_delayed_iput(async_cow->inode);
1179 	kfree(async_cow);
1180 }
1181 
1182 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1183 				u64 start, u64 end, int *page_started,
1184 				unsigned long *nr_written,
1185 				unsigned int write_flags)
1186 {
1187 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1188 	struct async_cow *async_cow;
1189 	unsigned long nr_pages;
1190 	u64 cur_end;
1191 
1192 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1193 			 1, 0, NULL);
1194 	while (start < end) {
1195 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1196 		BUG_ON(!async_cow); /* -ENOMEM */
1197 		async_cow->inode = igrab(inode);
1198 		async_cow->fs_info = fs_info;
1199 		async_cow->locked_page = locked_page;
1200 		async_cow->start = start;
1201 		async_cow->write_flags = write_flags;
1202 
1203 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1204 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1205 			cur_end = end;
1206 		else
1207 			cur_end = min(end, start + SZ_512K - 1);
1208 
1209 		async_cow->end = cur_end;
1210 		INIT_LIST_HEAD(&async_cow->extents);
1211 
1212 		btrfs_init_work(&async_cow->work,
1213 				btrfs_delalloc_helper,
1214 				async_cow_start, async_cow_submit,
1215 				async_cow_free);
1216 
1217 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1218 			PAGE_SHIFT;
1219 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1220 
1221 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1222 
1223 		*nr_written += nr_pages;
1224 		start = cur_end + 1;
1225 	}
1226 	*page_started = 1;
1227 	return 0;
1228 }
1229 
1230 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1231 					u64 bytenr, u64 num_bytes)
1232 {
1233 	int ret;
1234 	struct btrfs_ordered_sum *sums;
1235 	LIST_HEAD(list);
1236 
1237 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1238 				       bytenr + num_bytes - 1, &list, 0);
1239 	if (ret == 0 && list_empty(&list))
1240 		return 0;
1241 
1242 	while (!list_empty(&list)) {
1243 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1244 		list_del(&sums->list);
1245 		kfree(sums);
1246 	}
1247 	if (ret < 0)
1248 		return ret;
1249 	return 1;
1250 }
1251 
1252 /*
1253  * when nowcow writeback call back.  This checks for snapshots or COW copies
1254  * of the extents that exist in the file, and COWs the file as required.
1255  *
1256  * If no cow copies or snapshots exist, we write directly to the existing
1257  * blocks on disk
1258  */
1259 static noinline int run_delalloc_nocow(struct inode *inode,
1260 				       struct page *locked_page,
1261 			      u64 start, u64 end, int *page_started, int force,
1262 			      unsigned long *nr_written)
1263 {
1264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1265 	struct btrfs_root *root = BTRFS_I(inode)->root;
1266 	struct extent_buffer *leaf;
1267 	struct btrfs_path *path;
1268 	struct btrfs_file_extent_item *fi;
1269 	struct btrfs_key found_key;
1270 	struct extent_map *em;
1271 	u64 cow_start;
1272 	u64 cur_offset;
1273 	u64 extent_end;
1274 	u64 extent_offset;
1275 	u64 disk_bytenr;
1276 	u64 num_bytes;
1277 	u64 disk_num_bytes;
1278 	u64 ram_bytes;
1279 	int extent_type;
1280 	int ret;
1281 	int type;
1282 	int nocow;
1283 	int check_prev = 1;
1284 	bool nolock;
1285 	u64 ino = btrfs_ino(BTRFS_I(inode));
1286 
1287 	path = btrfs_alloc_path();
1288 	if (!path) {
1289 		extent_clear_unlock_delalloc(inode, start, end, end,
1290 					     locked_page,
1291 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1292 					     EXTENT_DO_ACCOUNTING |
1293 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1294 					     PAGE_CLEAR_DIRTY |
1295 					     PAGE_SET_WRITEBACK |
1296 					     PAGE_END_WRITEBACK);
1297 		return -ENOMEM;
1298 	}
1299 
1300 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1301 
1302 	cow_start = (u64)-1;
1303 	cur_offset = start;
1304 	while (1) {
1305 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1306 					       cur_offset, 0);
1307 		if (ret < 0)
1308 			goto error;
1309 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1310 			leaf = path->nodes[0];
1311 			btrfs_item_key_to_cpu(leaf, &found_key,
1312 					      path->slots[0] - 1);
1313 			if (found_key.objectid == ino &&
1314 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1315 				path->slots[0]--;
1316 		}
1317 		check_prev = 0;
1318 next_slot:
1319 		leaf = path->nodes[0];
1320 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1321 			ret = btrfs_next_leaf(root, path);
1322 			if (ret < 0) {
1323 				if (cow_start != (u64)-1)
1324 					cur_offset = cow_start;
1325 				goto error;
1326 			}
1327 			if (ret > 0)
1328 				break;
1329 			leaf = path->nodes[0];
1330 		}
1331 
1332 		nocow = 0;
1333 		disk_bytenr = 0;
1334 		num_bytes = 0;
1335 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1336 
1337 		if (found_key.objectid > ino)
1338 			break;
1339 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1340 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1341 			path->slots[0]++;
1342 			goto next_slot;
1343 		}
1344 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1345 		    found_key.offset > end)
1346 			break;
1347 
1348 		if (found_key.offset > cur_offset) {
1349 			extent_end = found_key.offset;
1350 			extent_type = 0;
1351 			goto out_check;
1352 		}
1353 
1354 		fi = btrfs_item_ptr(leaf, path->slots[0],
1355 				    struct btrfs_file_extent_item);
1356 		extent_type = btrfs_file_extent_type(leaf, fi);
1357 
1358 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1359 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1360 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1361 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1362 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1363 			extent_end = found_key.offset +
1364 				btrfs_file_extent_num_bytes(leaf, fi);
1365 			disk_num_bytes =
1366 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1367 			if (extent_end <= start) {
1368 				path->slots[0]++;
1369 				goto next_slot;
1370 			}
1371 			if (disk_bytenr == 0)
1372 				goto out_check;
1373 			if (btrfs_file_extent_compression(leaf, fi) ||
1374 			    btrfs_file_extent_encryption(leaf, fi) ||
1375 			    btrfs_file_extent_other_encoding(leaf, fi))
1376 				goto out_check;
1377 			/*
1378 			 * Do the same check as in btrfs_cross_ref_exist but
1379 			 * without the unnecessary search.
1380 			 */
1381 			if (!nolock &&
1382 			    btrfs_file_extent_generation(leaf, fi) <=
1383 			    btrfs_root_last_snapshot(&root->root_item))
1384 				goto out_check;
1385 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1386 				goto out_check;
1387 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1388 				goto out_check;
1389 			ret = btrfs_cross_ref_exist(root, ino,
1390 						    found_key.offset -
1391 						    extent_offset, disk_bytenr);
1392 			if (ret) {
1393 				/*
1394 				 * ret could be -EIO if the above fails to read
1395 				 * metadata.
1396 				 */
1397 				if (ret < 0) {
1398 					if (cow_start != (u64)-1)
1399 						cur_offset = cow_start;
1400 					goto error;
1401 				}
1402 
1403 				WARN_ON_ONCE(nolock);
1404 				goto out_check;
1405 			}
1406 			disk_bytenr += extent_offset;
1407 			disk_bytenr += cur_offset - found_key.offset;
1408 			num_bytes = min(end + 1, extent_end) - cur_offset;
1409 			/*
1410 			 * if there are pending snapshots for this root,
1411 			 * we fall into common COW way.
1412 			 */
1413 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1414 				goto out_check;
1415 			/*
1416 			 * force cow if csum exists in the range.
1417 			 * this ensure that csum for a given extent are
1418 			 * either valid or do not exist.
1419 			 */
1420 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1421 						  num_bytes);
1422 			if (ret) {
1423 				/*
1424 				 * ret could be -EIO if the above fails to read
1425 				 * metadata.
1426 				 */
1427 				if (ret < 0) {
1428 					if (cow_start != (u64)-1)
1429 						cur_offset = cow_start;
1430 					goto error;
1431 				}
1432 				WARN_ON_ONCE(nolock);
1433 				goto out_check;
1434 			}
1435 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1436 				goto out_check;
1437 			nocow = 1;
1438 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1439 			extent_end = found_key.offset +
1440 				btrfs_file_extent_ram_bytes(leaf, fi);
1441 			extent_end = ALIGN(extent_end,
1442 					   fs_info->sectorsize);
1443 		} else {
1444 			BUG_ON(1);
1445 		}
1446 out_check:
1447 		if (extent_end <= start) {
1448 			path->slots[0]++;
1449 			if (nocow)
1450 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1451 			goto next_slot;
1452 		}
1453 		if (!nocow) {
1454 			if (cow_start == (u64)-1)
1455 				cow_start = cur_offset;
1456 			cur_offset = extent_end;
1457 			if (cur_offset > end)
1458 				break;
1459 			path->slots[0]++;
1460 			goto next_slot;
1461 		}
1462 
1463 		btrfs_release_path(path);
1464 		if (cow_start != (u64)-1) {
1465 			ret = cow_file_range(inode, locked_page,
1466 					     cow_start, found_key.offset - 1,
1467 					     end, page_started, nr_written, 1,
1468 					     NULL);
1469 			if (ret) {
1470 				if (nocow)
1471 					btrfs_dec_nocow_writers(fs_info,
1472 								disk_bytenr);
1473 				goto error;
1474 			}
1475 			cow_start = (u64)-1;
1476 		}
1477 
1478 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1479 			u64 orig_start = found_key.offset - extent_offset;
1480 
1481 			em = create_io_em(inode, cur_offset, num_bytes,
1482 					  orig_start,
1483 					  disk_bytenr, /* block_start */
1484 					  num_bytes, /* block_len */
1485 					  disk_num_bytes, /* orig_block_len */
1486 					  ram_bytes, BTRFS_COMPRESS_NONE,
1487 					  BTRFS_ORDERED_PREALLOC);
1488 			if (IS_ERR(em)) {
1489 				if (nocow)
1490 					btrfs_dec_nocow_writers(fs_info,
1491 								disk_bytenr);
1492 				ret = PTR_ERR(em);
1493 				goto error;
1494 			}
1495 			free_extent_map(em);
1496 		}
1497 
1498 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1499 			type = BTRFS_ORDERED_PREALLOC;
1500 		} else {
1501 			type = BTRFS_ORDERED_NOCOW;
1502 		}
1503 
1504 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1505 					       num_bytes, num_bytes, type);
1506 		if (nocow)
1507 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1508 		BUG_ON(ret); /* -ENOMEM */
1509 
1510 		if (root->root_key.objectid ==
1511 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1512 			/*
1513 			 * Error handled later, as we must prevent
1514 			 * extent_clear_unlock_delalloc() in error handler
1515 			 * from freeing metadata of created ordered extent.
1516 			 */
1517 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1518 						      num_bytes);
1519 
1520 		extent_clear_unlock_delalloc(inode, cur_offset,
1521 					     cur_offset + num_bytes - 1, end,
1522 					     locked_page, EXTENT_LOCKED |
1523 					     EXTENT_DELALLOC |
1524 					     EXTENT_CLEAR_DATA_RESV,
1525 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1526 
1527 		cur_offset = extent_end;
1528 
1529 		/*
1530 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1531 		 * handler, as metadata for created ordered extent will only
1532 		 * be freed by btrfs_finish_ordered_io().
1533 		 */
1534 		if (ret)
1535 			goto error;
1536 		if (cur_offset > end)
1537 			break;
1538 	}
1539 	btrfs_release_path(path);
1540 
1541 	if (cur_offset <= end && cow_start == (u64)-1)
1542 		cow_start = cur_offset;
1543 
1544 	if (cow_start != (u64)-1) {
1545 		cur_offset = end;
1546 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1547 				     page_started, nr_written, 1, NULL);
1548 		if (ret)
1549 			goto error;
1550 	}
1551 
1552 error:
1553 	if (ret && cur_offset < end)
1554 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1555 					     locked_page, EXTENT_LOCKED |
1556 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1557 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1558 					     PAGE_CLEAR_DIRTY |
1559 					     PAGE_SET_WRITEBACK |
1560 					     PAGE_END_WRITEBACK);
1561 	btrfs_free_path(path);
1562 	return ret;
1563 }
1564 
1565 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1566 {
1567 
1568 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1569 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1570 		return 0;
1571 
1572 	/*
1573 	 * @defrag_bytes is a hint value, no spinlock held here,
1574 	 * if is not zero, it means the file is defragging.
1575 	 * Force cow if given extent needs to be defragged.
1576 	 */
1577 	if (BTRFS_I(inode)->defrag_bytes &&
1578 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1579 			   EXTENT_DEFRAG, 0, NULL))
1580 		return 1;
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Function to process delayed allocation (create CoW) for ranges which are
1587  * being touched for the first time.
1588  */
1589 int btrfs_run_delalloc_range(void *private_data, struct page *locked_page,
1590 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1591 		struct writeback_control *wbc)
1592 {
1593 	struct inode *inode = private_data;
1594 	int ret;
1595 	int force_cow = need_force_cow(inode, start, end);
1596 	unsigned int write_flags = wbc_to_write_flags(wbc);
1597 
1598 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1599 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1600 					 page_started, 1, nr_written);
1601 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1602 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1603 					 page_started, 0, nr_written);
1604 	} else if (!inode_need_compress(inode, start, end)) {
1605 		ret = cow_file_range(inode, locked_page, start, end, end,
1606 				      page_started, nr_written, 1, NULL);
1607 	} else {
1608 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1609 			&BTRFS_I(inode)->runtime_flags);
1610 		ret = cow_file_range_async(inode, locked_page, start, end,
1611 					   page_started, nr_written,
1612 					   write_flags);
1613 	}
1614 	if (ret)
1615 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1616 					      end - start + 1);
1617 	return ret;
1618 }
1619 
1620 void btrfs_split_delalloc_extent(struct inode *inode,
1621 				 struct extent_state *orig, u64 split)
1622 {
1623 	u64 size;
1624 
1625 	/* not delalloc, ignore it */
1626 	if (!(orig->state & EXTENT_DELALLOC))
1627 		return;
1628 
1629 	size = orig->end - orig->start + 1;
1630 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1631 		u32 num_extents;
1632 		u64 new_size;
1633 
1634 		/*
1635 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1636 		 * applies here, just in reverse.
1637 		 */
1638 		new_size = orig->end - split + 1;
1639 		num_extents = count_max_extents(new_size);
1640 		new_size = split - orig->start;
1641 		num_extents += count_max_extents(new_size);
1642 		if (count_max_extents(size) >= num_extents)
1643 			return;
1644 	}
1645 
1646 	spin_lock(&BTRFS_I(inode)->lock);
1647 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1648 	spin_unlock(&BTRFS_I(inode)->lock);
1649 }
1650 
1651 /*
1652  * Handle merged delayed allocation extents so we can keep track of new extents
1653  * that are just merged onto old extents, such as when we are doing sequential
1654  * writes, so we can properly account for the metadata space we'll need.
1655  */
1656 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1657 				 struct extent_state *other)
1658 {
1659 	u64 new_size, old_size;
1660 	u32 num_extents;
1661 
1662 	/* not delalloc, ignore it */
1663 	if (!(other->state & EXTENT_DELALLOC))
1664 		return;
1665 
1666 	if (new->start > other->start)
1667 		new_size = new->end - other->start + 1;
1668 	else
1669 		new_size = other->end - new->start + 1;
1670 
1671 	/* we're not bigger than the max, unreserve the space and go */
1672 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1673 		spin_lock(&BTRFS_I(inode)->lock);
1674 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1675 		spin_unlock(&BTRFS_I(inode)->lock);
1676 		return;
1677 	}
1678 
1679 	/*
1680 	 * We have to add up either side to figure out how many extents were
1681 	 * accounted for before we merged into one big extent.  If the number of
1682 	 * extents we accounted for is <= the amount we need for the new range
1683 	 * then we can return, otherwise drop.  Think of it like this
1684 	 *
1685 	 * [ 4k][MAX_SIZE]
1686 	 *
1687 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1688 	 * need 2 outstanding extents, on one side we have 1 and the other side
1689 	 * we have 1 so they are == and we can return.  But in this case
1690 	 *
1691 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1692 	 *
1693 	 * Each range on their own accounts for 2 extents, but merged together
1694 	 * they are only 3 extents worth of accounting, so we need to drop in
1695 	 * this case.
1696 	 */
1697 	old_size = other->end - other->start + 1;
1698 	num_extents = count_max_extents(old_size);
1699 	old_size = new->end - new->start + 1;
1700 	num_extents += count_max_extents(old_size);
1701 	if (count_max_extents(new_size) >= num_extents)
1702 		return;
1703 
1704 	spin_lock(&BTRFS_I(inode)->lock);
1705 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1706 	spin_unlock(&BTRFS_I(inode)->lock);
1707 }
1708 
1709 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1710 				      struct inode *inode)
1711 {
1712 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1713 
1714 	spin_lock(&root->delalloc_lock);
1715 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1716 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1717 			      &root->delalloc_inodes);
1718 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1719 			&BTRFS_I(inode)->runtime_flags);
1720 		root->nr_delalloc_inodes++;
1721 		if (root->nr_delalloc_inodes == 1) {
1722 			spin_lock(&fs_info->delalloc_root_lock);
1723 			BUG_ON(!list_empty(&root->delalloc_root));
1724 			list_add_tail(&root->delalloc_root,
1725 				      &fs_info->delalloc_roots);
1726 			spin_unlock(&fs_info->delalloc_root_lock);
1727 		}
1728 	}
1729 	spin_unlock(&root->delalloc_lock);
1730 }
1731 
1732 
1733 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1734 				struct btrfs_inode *inode)
1735 {
1736 	struct btrfs_fs_info *fs_info = root->fs_info;
1737 
1738 	if (!list_empty(&inode->delalloc_inodes)) {
1739 		list_del_init(&inode->delalloc_inodes);
1740 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1741 			  &inode->runtime_flags);
1742 		root->nr_delalloc_inodes--;
1743 		if (!root->nr_delalloc_inodes) {
1744 			ASSERT(list_empty(&root->delalloc_inodes));
1745 			spin_lock(&fs_info->delalloc_root_lock);
1746 			BUG_ON(list_empty(&root->delalloc_root));
1747 			list_del_init(&root->delalloc_root);
1748 			spin_unlock(&fs_info->delalloc_root_lock);
1749 		}
1750 	}
1751 }
1752 
1753 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1754 				     struct btrfs_inode *inode)
1755 {
1756 	spin_lock(&root->delalloc_lock);
1757 	__btrfs_del_delalloc_inode(root, inode);
1758 	spin_unlock(&root->delalloc_lock);
1759 }
1760 
1761 /*
1762  * Properly track delayed allocation bytes in the inode and to maintain the
1763  * list of inodes that have pending delalloc work to be done.
1764  */
1765 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1766 			       unsigned *bits)
1767 {
1768 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769 
1770 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1771 		WARN_ON(1);
1772 	/*
1773 	 * set_bit and clear bit hooks normally require _irqsave/restore
1774 	 * but in this case, we are only testing for the DELALLOC
1775 	 * bit, which is only set or cleared with irqs on
1776 	 */
1777 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1778 		struct btrfs_root *root = BTRFS_I(inode)->root;
1779 		u64 len = state->end + 1 - state->start;
1780 		u32 num_extents = count_max_extents(len);
1781 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1782 
1783 		spin_lock(&BTRFS_I(inode)->lock);
1784 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1785 		spin_unlock(&BTRFS_I(inode)->lock);
1786 
1787 		/* For sanity tests */
1788 		if (btrfs_is_testing(fs_info))
1789 			return;
1790 
1791 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1792 					 fs_info->delalloc_batch);
1793 		spin_lock(&BTRFS_I(inode)->lock);
1794 		BTRFS_I(inode)->delalloc_bytes += len;
1795 		if (*bits & EXTENT_DEFRAG)
1796 			BTRFS_I(inode)->defrag_bytes += len;
1797 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1798 					 &BTRFS_I(inode)->runtime_flags))
1799 			btrfs_add_delalloc_inodes(root, inode);
1800 		spin_unlock(&BTRFS_I(inode)->lock);
1801 	}
1802 
1803 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1804 	    (*bits & EXTENT_DELALLOC_NEW)) {
1805 		spin_lock(&BTRFS_I(inode)->lock);
1806 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1807 			state->start;
1808 		spin_unlock(&BTRFS_I(inode)->lock);
1809 	}
1810 }
1811 
1812 /*
1813  * Once a range is no longer delalloc this function ensures that proper
1814  * accounting happens.
1815  */
1816 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1817 				 struct extent_state *state, unsigned *bits)
1818 {
1819 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1820 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1821 	u64 len = state->end + 1 - state->start;
1822 	u32 num_extents = count_max_extents(len);
1823 
1824 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1825 		spin_lock(&inode->lock);
1826 		inode->defrag_bytes -= len;
1827 		spin_unlock(&inode->lock);
1828 	}
1829 
1830 	/*
1831 	 * set_bit and clear bit hooks normally require _irqsave/restore
1832 	 * but in this case, we are only testing for the DELALLOC
1833 	 * bit, which is only set or cleared with irqs on
1834 	 */
1835 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1836 		struct btrfs_root *root = inode->root;
1837 		bool do_list = !btrfs_is_free_space_inode(inode);
1838 
1839 		spin_lock(&inode->lock);
1840 		btrfs_mod_outstanding_extents(inode, -num_extents);
1841 		spin_unlock(&inode->lock);
1842 
1843 		/*
1844 		 * We don't reserve metadata space for space cache inodes so we
1845 		 * don't need to call delalloc_release_metadata if there is an
1846 		 * error.
1847 		 */
1848 		if (*bits & EXTENT_CLEAR_META_RESV &&
1849 		    root != fs_info->tree_root)
1850 			btrfs_delalloc_release_metadata(inode, len, false);
1851 
1852 		/* For sanity tests. */
1853 		if (btrfs_is_testing(fs_info))
1854 			return;
1855 
1856 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1857 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1858 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1859 			btrfs_free_reserved_data_space_noquota(
1860 					&inode->vfs_inode,
1861 					state->start, len);
1862 
1863 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1864 					 fs_info->delalloc_batch);
1865 		spin_lock(&inode->lock);
1866 		inode->delalloc_bytes -= len;
1867 		if (do_list && inode->delalloc_bytes == 0 &&
1868 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1869 					&inode->runtime_flags))
1870 			btrfs_del_delalloc_inode(root, inode);
1871 		spin_unlock(&inode->lock);
1872 	}
1873 
1874 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1875 	    (*bits & EXTENT_DELALLOC_NEW)) {
1876 		spin_lock(&inode->lock);
1877 		ASSERT(inode->new_delalloc_bytes >= len);
1878 		inode->new_delalloc_bytes -= len;
1879 		spin_unlock(&inode->lock);
1880 	}
1881 }
1882 
1883 /*
1884  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1885  * in a chunk's stripe. This function ensures that bios do not span a
1886  * stripe/chunk
1887  *
1888  * @page - The page we are about to add to the bio
1889  * @size - size we want to add to the bio
1890  * @bio - bio we want to ensure is smaller than a stripe
1891  * @bio_flags - flags of the bio
1892  *
1893  * return 1 if page cannot be added to the bio
1894  * return 0 if page can be added to the bio
1895  * return error otherwise
1896  */
1897 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1898 			     unsigned long bio_flags)
1899 {
1900 	struct inode *inode = page->mapping->host;
1901 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1902 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1903 	u64 length = 0;
1904 	u64 map_length;
1905 	int ret;
1906 
1907 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1908 		return 0;
1909 
1910 	length = bio->bi_iter.bi_size;
1911 	map_length = length;
1912 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1913 			      NULL, 0);
1914 	if (ret < 0)
1915 		return ret;
1916 	if (map_length < length + size)
1917 		return 1;
1918 	return 0;
1919 }
1920 
1921 /*
1922  * in order to insert checksums into the metadata in large chunks,
1923  * we wait until bio submission time.   All the pages in the bio are
1924  * checksummed and sums are attached onto the ordered extent record.
1925  *
1926  * At IO completion time the cums attached on the ordered extent record
1927  * are inserted into the btree
1928  */
1929 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1930 				    u64 bio_offset)
1931 {
1932 	struct inode *inode = private_data;
1933 	blk_status_t ret = 0;
1934 
1935 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1936 	BUG_ON(ret); /* -ENOMEM */
1937 	return 0;
1938 }
1939 
1940 /*
1941  * extent_io.c submission hook. This does the right thing for csum calculation
1942  * on write, or reading the csums from the tree before a read.
1943  *
1944  * Rules about async/sync submit,
1945  * a) read:				sync submit
1946  *
1947  * b) write without checksum:		sync submit
1948  *
1949  * c) write with checksum:
1950  *    c-1) if bio is issued by fsync:	sync submit
1951  *         (sync_writers != 0)
1952  *
1953  *    c-2) if root is reloc root:	sync submit
1954  *         (only in case of buffered IO)
1955  *
1956  *    c-3) otherwise:			async submit
1957  */
1958 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1959 				 int mirror_num, unsigned long bio_flags,
1960 				 u64 bio_offset)
1961 {
1962 	struct inode *inode = private_data;
1963 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1964 	struct btrfs_root *root = BTRFS_I(inode)->root;
1965 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1966 	blk_status_t ret = 0;
1967 	int skip_sum;
1968 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1969 
1970 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1971 
1972 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1973 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1974 
1975 	if (bio_op(bio) != REQ_OP_WRITE) {
1976 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1977 		if (ret)
1978 			goto out;
1979 
1980 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1981 			ret = btrfs_submit_compressed_read(inode, bio,
1982 							   mirror_num,
1983 							   bio_flags);
1984 			goto out;
1985 		} else if (!skip_sum) {
1986 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1987 			if (ret)
1988 				goto out;
1989 		}
1990 		goto mapit;
1991 	} else if (async && !skip_sum) {
1992 		/* csum items have already been cloned */
1993 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1994 			goto mapit;
1995 		/* we're doing a write, do the async checksumming */
1996 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1997 					  bio_offset, inode,
1998 					  btrfs_submit_bio_start);
1999 		goto out;
2000 	} else if (!skip_sum) {
2001 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2002 		if (ret)
2003 			goto out;
2004 	}
2005 
2006 mapit:
2007 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2008 
2009 out:
2010 	if (ret) {
2011 		bio->bi_status = ret;
2012 		bio_endio(bio);
2013 	}
2014 	return ret;
2015 }
2016 
2017 /*
2018  * given a list of ordered sums record them in the inode.  This happens
2019  * at IO completion time based on sums calculated at bio submission time.
2020  */
2021 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2022 			     struct inode *inode, struct list_head *list)
2023 {
2024 	struct btrfs_ordered_sum *sum;
2025 	int ret;
2026 
2027 	list_for_each_entry(sum, list, list) {
2028 		trans->adding_csums = true;
2029 		ret = btrfs_csum_file_blocks(trans,
2030 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2031 		trans->adding_csums = false;
2032 		if (ret)
2033 			return ret;
2034 	}
2035 	return 0;
2036 }
2037 
2038 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2039 			      unsigned int extra_bits,
2040 			      struct extent_state **cached_state, int dedupe)
2041 {
2042 	WARN_ON(PAGE_ALIGNED(end));
2043 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2044 				   extra_bits, cached_state);
2045 }
2046 
2047 /* see btrfs_writepage_start_hook for details on why this is required */
2048 struct btrfs_writepage_fixup {
2049 	struct page *page;
2050 	struct btrfs_work work;
2051 };
2052 
2053 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2054 {
2055 	struct btrfs_writepage_fixup *fixup;
2056 	struct btrfs_ordered_extent *ordered;
2057 	struct extent_state *cached_state = NULL;
2058 	struct extent_changeset *data_reserved = NULL;
2059 	struct page *page;
2060 	struct inode *inode;
2061 	u64 page_start;
2062 	u64 page_end;
2063 	int ret;
2064 
2065 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2066 	page = fixup->page;
2067 again:
2068 	lock_page(page);
2069 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2070 		ClearPageChecked(page);
2071 		goto out_page;
2072 	}
2073 
2074 	inode = page->mapping->host;
2075 	page_start = page_offset(page);
2076 	page_end = page_offset(page) + PAGE_SIZE - 1;
2077 
2078 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2079 			 &cached_state);
2080 
2081 	/* already ordered? We're done */
2082 	if (PagePrivate2(page))
2083 		goto out;
2084 
2085 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2086 					PAGE_SIZE);
2087 	if (ordered) {
2088 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2089 				     page_end, &cached_state);
2090 		unlock_page(page);
2091 		btrfs_start_ordered_extent(inode, ordered, 1);
2092 		btrfs_put_ordered_extent(ordered);
2093 		goto again;
2094 	}
2095 
2096 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2097 					   PAGE_SIZE);
2098 	if (ret) {
2099 		mapping_set_error(page->mapping, ret);
2100 		end_extent_writepage(page, ret, page_start, page_end);
2101 		ClearPageChecked(page);
2102 		goto out;
2103 	 }
2104 
2105 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2106 					&cached_state, 0);
2107 	if (ret) {
2108 		mapping_set_error(page->mapping, ret);
2109 		end_extent_writepage(page, ret, page_start, page_end);
2110 		ClearPageChecked(page);
2111 		goto out;
2112 	}
2113 
2114 	ClearPageChecked(page);
2115 	set_page_dirty(page);
2116 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2117 out:
2118 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2119 			     &cached_state);
2120 out_page:
2121 	unlock_page(page);
2122 	put_page(page);
2123 	kfree(fixup);
2124 	extent_changeset_free(data_reserved);
2125 }
2126 
2127 /*
2128  * There are a few paths in the higher layers of the kernel that directly
2129  * set the page dirty bit without asking the filesystem if it is a
2130  * good idea.  This causes problems because we want to make sure COW
2131  * properly happens and the data=ordered rules are followed.
2132  *
2133  * In our case any range that doesn't have the ORDERED bit set
2134  * hasn't been properly setup for IO.  We kick off an async process
2135  * to fix it up.  The async helper will wait for ordered extents, set
2136  * the delalloc bit and make it safe to write the page.
2137  */
2138 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2139 {
2140 	struct inode *inode = page->mapping->host;
2141 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2142 	struct btrfs_writepage_fixup *fixup;
2143 
2144 	/* this page is properly in the ordered list */
2145 	if (TestClearPagePrivate2(page))
2146 		return 0;
2147 
2148 	if (PageChecked(page))
2149 		return -EAGAIN;
2150 
2151 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2152 	if (!fixup)
2153 		return -EAGAIN;
2154 
2155 	SetPageChecked(page);
2156 	get_page(page);
2157 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2158 			btrfs_writepage_fixup_worker, NULL, NULL);
2159 	fixup->page = page;
2160 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2161 	return -EBUSY;
2162 }
2163 
2164 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2165 				       struct inode *inode, u64 file_pos,
2166 				       u64 disk_bytenr, u64 disk_num_bytes,
2167 				       u64 num_bytes, u64 ram_bytes,
2168 				       u8 compression, u8 encryption,
2169 				       u16 other_encoding, int extent_type)
2170 {
2171 	struct btrfs_root *root = BTRFS_I(inode)->root;
2172 	struct btrfs_file_extent_item *fi;
2173 	struct btrfs_path *path;
2174 	struct extent_buffer *leaf;
2175 	struct btrfs_key ins;
2176 	u64 qg_released;
2177 	int extent_inserted = 0;
2178 	int ret;
2179 
2180 	path = btrfs_alloc_path();
2181 	if (!path)
2182 		return -ENOMEM;
2183 
2184 	/*
2185 	 * we may be replacing one extent in the tree with another.
2186 	 * The new extent is pinned in the extent map, and we don't want
2187 	 * to drop it from the cache until it is completely in the btree.
2188 	 *
2189 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2190 	 * the caller is expected to unpin it and allow it to be merged
2191 	 * with the others.
2192 	 */
2193 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2194 				   file_pos + num_bytes, NULL, 0,
2195 				   1, sizeof(*fi), &extent_inserted);
2196 	if (ret)
2197 		goto out;
2198 
2199 	if (!extent_inserted) {
2200 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2201 		ins.offset = file_pos;
2202 		ins.type = BTRFS_EXTENT_DATA_KEY;
2203 
2204 		path->leave_spinning = 1;
2205 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2206 					      sizeof(*fi));
2207 		if (ret)
2208 			goto out;
2209 	}
2210 	leaf = path->nodes[0];
2211 	fi = btrfs_item_ptr(leaf, path->slots[0],
2212 			    struct btrfs_file_extent_item);
2213 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2214 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2215 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2216 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2217 	btrfs_set_file_extent_offset(leaf, fi, 0);
2218 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2219 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2220 	btrfs_set_file_extent_compression(leaf, fi, compression);
2221 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2222 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2223 
2224 	btrfs_mark_buffer_dirty(leaf);
2225 	btrfs_release_path(path);
2226 
2227 	inode_add_bytes(inode, num_bytes);
2228 
2229 	ins.objectid = disk_bytenr;
2230 	ins.offset = disk_num_bytes;
2231 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2232 
2233 	/*
2234 	 * Release the reserved range from inode dirty range map, as it is
2235 	 * already moved into delayed_ref_head
2236 	 */
2237 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2238 	if (ret < 0)
2239 		goto out;
2240 	qg_released = ret;
2241 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2242 					       btrfs_ino(BTRFS_I(inode)),
2243 					       file_pos, qg_released, &ins);
2244 out:
2245 	btrfs_free_path(path);
2246 
2247 	return ret;
2248 }
2249 
2250 /* snapshot-aware defrag */
2251 struct sa_defrag_extent_backref {
2252 	struct rb_node node;
2253 	struct old_sa_defrag_extent *old;
2254 	u64 root_id;
2255 	u64 inum;
2256 	u64 file_pos;
2257 	u64 extent_offset;
2258 	u64 num_bytes;
2259 	u64 generation;
2260 };
2261 
2262 struct old_sa_defrag_extent {
2263 	struct list_head list;
2264 	struct new_sa_defrag_extent *new;
2265 
2266 	u64 extent_offset;
2267 	u64 bytenr;
2268 	u64 offset;
2269 	u64 len;
2270 	int count;
2271 };
2272 
2273 struct new_sa_defrag_extent {
2274 	struct rb_root root;
2275 	struct list_head head;
2276 	struct btrfs_path *path;
2277 	struct inode *inode;
2278 	u64 file_pos;
2279 	u64 len;
2280 	u64 bytenr;
2281 	u64 disk_len;
2282 	u8 compress_type;
2283 };
2284 
2285 static int backref_comp(struct sa_defrag_extent_backref *b1,
2286 			struct sa_defrag_extent_backref *b2)
2287 {
2288 	if (b1->root_id < b2->root_id)
2289 		return -1;
2290 	else if (b1->root_id > b2->root_id)
2291 		return 1;
2292 
2293 	if (b1->inum < b2->inum)
2294 		return -1;
2295 	else if (b1->inum > b2->inum)
2296 		return 1;
2297 
2298 	if (b1->file_pos < b2->file_pos)
2299 		return -1;
2300 	else if (b1->file_pos > b2->file_pos)
2301 		return 1;
2302 
2303 	/*
2304 	 * [------------------------------] ===> (a range of space)
2305 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2306 	 * |<---------------------------->| ===> (fs/file tree B)
2307 	 *
2308 	 * A range of space can refer to two file extents in one tree while
2309 	 * refer to only one file extent in another tree.
2310 	 *
2311 	 * So we may process a disk offset more than one time(two extents in A)
2312 	 * and locate at the same extent(one extent in B), then insert two same
2313 	 * backrefs(both refer to the extent in B).
2314 	 */
2315 	return 0;
2316 }
2317 
2318 static void backref_insert(struct rb_root *root,
2319 			   struct sa_defrag_extent_backref *backref)
2320 {
2321 	struct rb_node **p = &root->rb_node;
2322 	struct rb_node *parent = NULL;
2323 	struct sa_defrag_extent_backref *entry;
2324 	int ret;
2325 
2326 	while (*p) {
2327 		parent = *p;
2328 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2329 
2330 		ret = backref_comp(backref, entry);
2331 		if (ret < 0)
2332 			p = &(*p)->rb_left;
2333 		else
2334 			p = &(*p)->rb_right;
2335 	}
2336 
2337 	rb_link_node(&backref->node, parent, p);
2338 	rb_insert_color(&backref->node, root);
2339 }
2340 
2341 /*
2342  * Note the backref might has changed, and in this case we just return 0.
2343  */
2344 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2345 				       void *ctx)
2346 {
2347 	struct btrfs_file_extent_item *extent;
2348 	struct old_sa_defrag_extent *old = ctx;
2349 	struct new_sa_defrag_extent *new = old->new;
2350 	struct btrfs_path *path = new->path;
2351 	struct btrfs_key key;
2352 	struct btrfs_root *root;
2353 	struct sa_defrag_extent_backref *backref;
2354 	struct extent_buffer *leaf;
2355 	struct inode *inode = new->inode;
2356 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2357 	int slot;
2358 	int ret;
2359 	u64 extent_offset;
2360 	u64 num_bytes;
2361 
2362 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2363 	    inum == btrfs_ino(BTRFS_I(inode)))
2364 		return 0;
2365 
2366 	key.objectid = root_id;
2367 	key.type = BTRFS_ROOT_ITEM_KEY;
2368 	key.offset = (u64)-1;
2369 
2370 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2371 	if (IS_ERR(root)) {
2372 		if (PTR_ERR(root) == -ENOENT)
2373 			return 0;
2374 		WARN_ON(1);
2375 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2376 			 inum, offset, root_id);
2377 		return PTR_ERR(root);
2378 	}
2379 
2380 	key.objectid = inum;
2381 	key.type = BTRFS_EXTENT_DATA_KEY;
2382 	if (offset > (u64)-1 << 32)
2383 		key.offset = 0;
2384 	else
2385 		key.offset = offset;
2386 
2387 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2388 	if (WARN_ON(ret < 0))
2389 		return ret;
2390 	ret = 0;
2391 
2392 	while (1) {
2393 		cond_resched();
2394 
2395 		leaf = path->nodes[0];
2396 		slot = path->slots[0];
2397 
2398 		if (slot >= btrfs_header_nritems(leaf)) {
2399 			ret = btrfs_next_leaf(root, path);
2400 			if (ret < 0) {
2401 				goto out;
2402 			} else if (ret > 0) {
2403 				ret = 0;
2404 				goto out;
2405 			}
2406 			continue;
2407 		}
2408 
2409 		path->slots[0]++;
2410 
2411 		btrfs_item_key_to_cpu(leaf, &key, slot);
2412 
2413 		if (key.objectid > inum)
2414 			goto out;
2415 
2416 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2417 			continue;
2418 
2419 		extent = btrfs_item_ptr(leaf, slot,
2420 					struct btrfs_file_extent_item);
2421 
2422 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2423 			continue;
2424 
2425 		/*
2426 		 * 'offset' refers to the exact key.offset,
2427 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2428 		 * (key.offset - extent_offset).
2429 		 */
2430 		if (key.offset != offset)
2431 			continue;
2432 
2433 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2434 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2435 
2436 		if (extent_offset >= old->extent_offset + old->offset +
2437 		    old->len || extent_offset + num_bytes <=
2438 		    old->extent_offset + old->offset)
2439 			continue;
2440 		break;
2441 	}
2442 
2443 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2444 	if (!backref) {
2445 		ret = -ENOENT;
2446 		goto out;
2447 	}
2448 
2449 	backref->root_id = root_id;
2450 	backref->inum = inum;
2451 	backref->file_pos = offset;
2452 	backref->num_bytes = num_bytes;
2453 	backref->extent_offset = extent_offset;
2454 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2455 	backref->old = old;
2456 	backref_insert(&new->root, backref);
2457 	old->count++;
2458 out:
2459 	btrfs_release_path(path);
2460 	WARN_ON(ret);
2461 	return ret;
2462 }
2463 
2464 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2465 				   struct new_sa_defrag_extent *new)
2466 {
2467 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2468 	struct old_sa_defrag_extent *old, *tmp;
2469 	int ret;
2470 
2471 	new->path = path;
2472 
2473 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2474 		ret = iterate_inodes_from_logical(old->bytenr +
2475 						  old->extent_offset, fs_info,
2476 						  path, record_one_backref,
2477 						  old, false);
2478 		if (ret < 0 && ret != -ENOENT)
2479 			return false;
2480 
2481 		/* no backref to be processed for this extent */
2482 		if (!old->count) {
2483 			list_del(&old->list);
2484 			kfree(old);
2485 		}
2486 	}
2487 
2488 	if (list_empty(&new->head))
2489 		return false;
2490 
2491 	return true;
2492 }
2493 
2494 static int relink_is_mergable(struct extent_buffer *leaf,
2495 			      struct btrfs_file_extent_item *fi,
2496 			      struct new_sa_defrag_extent *new)
2497 {
2498 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2499 		return 0;
2500 
2501 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2502 		return 0;
2503 
2504 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2505 		return 0;
2506 
2507 	if (btrfs_file_extent_encryption(leaf, fi) ||
2508 	    btrfs_file_extent_other_encoding(leaf, fi))
2509 		return 0;
2510 
2511 	return 1;
2512 }
2513 
2514 /*
2515  * Note the backref might has changed, and in this case we just return 0.
2516  */
2517 static noinline int relink_extent_backref(struct btrfs_path *path,
2518 				 struct sa_defrag_extent_backref *prev,
2519 				 struct sa_defrag_extent_backref *backref)
2520 {
2521 	struct btrfs_file_extent_item *extent;
2522 	struct btrfs_file_extent_item *item;
2523 	struct btrfs_ordered_extent *ordered;
2524 	struct btrfs_trans_handle *trans;
2525 	struct btrfs_root *root;
2526 	struct btrfs_key key;
2527 	struct extent_buffer *leaf;
2528 	struct old_sa_defrag_extent *old = backref->old;
2529 	struct new_sa_defrag_extent *new = old->new;
2530 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2531 	struct inode *inode;
2532 	struct extent_state *cached = NULL;
2533 	int ret = 0;
2534 	u64 start;
2535 	u64 len;
2536 	u64 lock_start;
2537 	u64 lock_end;
2538 	bool merge = false;
2539 	int index;
2540 
2541 	if (prev && prev->root_id == backref->root_id &&
2542 	    prev->inum == backref->inum &&
2543 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2544 		merge = true;
2545 
2546 	/* step 1: get root */
2547 	key.objectid = backref->root_id;
2548 	key.type = BTRFS_ROOT_ITEM_KEY;
2549 	key.offset = (u64)-1;
2550 
2551 	index = srcu_read_lock(&fs_info->subvol_srcu);
2552 
2553 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2554 	if (IS_ERR(root)) {
2555 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2556 		if (PTR_ERR(root) == -ENOENT)
2557 			return 0;
2558 		return PTR_ERR(root);
2559 	}
2560 
2561 	if (btrfs_root_readonly(root)) {
2562 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2563 		return 0;
2564 	}
2565 
2566 	/* step 2: get inode */
2567 	key.objectid = backref->inum;
2568 	key.type = BTRFS_INODE_ITEM_KEY;
2569 	key.offset = 0;
2570 
2571 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2572 	if (IS_ERR(inode)) {
2573 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2574 		return 0;
2575 	}
2576 
2577 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2578 
2579 	/* step 3: relink backref */
2580 	lock_start = backref->file_pos;
2581 	lock_end = backref->file_pos + backref->num_bytes - 1;
2582 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2583 			 &cached);
2584 
2585 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2586 	if (ordered) {
2587 		btrfs_put_ordered_extent(ordered);
2588 		goto out_unlock;
2589 	}
2590 
2591 	trans = btrfs_join_transaction(root);
2592 	if (IS_ERR(trans)) {
2593 		ret = PTR_ERR(trans);
2594 		goto out_unlock;
2595 	}
2596 
2597 	key.objectid = backref->inum;
2598 	key.type = BTRFS_EXTENT_DATA_KEY;
2599 	key.offset = backref->file_pos;
2600 
2601 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2602 	if (ret < 0) {
2603 		goto out_free_path;
2604 	} else if (ret > 0) {
2605 		ret = 0;
2606 		goto out_free_path;
2607 	}
2608 
2609 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2610 				struct btrfs_file_extent_item);
2611 
2612 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2613 	    backref->generation)
2614 		goto out_free_path;
2615 
2616 	btrfs_release_path(path);
2617 
2618 	start = backref->file_pos;
2619 	if (backref->extent_offset < old->extent_offset + old->offset)
2620 		start += old->extent_offset + old->offset -
2621 			 backref->extent_offset;
2622 
2623 	len = min(backref->extent_offset + backref->num_bytes,
2624 		  old->extent_offset + old->offset + old->len);
2625 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2626 
2627 	ret = btrfs_drop_extents(trans, root, inode, start,
2628 				 start + len, 1);
2629 	if (ret)
2630 		goto out_free_path;
2631 again:
2632 	key.objectid = btrfs_ino(BTRFS_I(inode));
2633 	key.type = BTRFS_EXTENT_DATA_KEY;
2634 	key.offset = start;
2635 
2636 	path->leave_spinning = 1;
2637 	if (merge) {
2638 		struct btrfs_file_extent_item *fi;
2639 		u64 extent_len;
2640 		struct btrfs_key found_key;
2641 
2642 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2643 		if (ret < 0)
2644 			goto out_free_path;
2645 
2646 		path->slots[0]--;
2647 		leaf = path->nodes[0];
2648 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2649 
2650 		fi = btrfs_item_ptr(leaf, path->slots[0],
2651 				    struct btrfs_file_extent_item);
2652 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2653 
2654 		if (extent_len + found_key.offset == start &&
2655 		    relink_is_mergable(leaf, fi, new)) {
2656 			btrfs_set_file_extent_num_bytes(leaf, fi,
2657 							extent_len + len);
2658 			btrfs_mark_buffer_dirty(leaf);
2659 			inode_add_bytes(inode, len);
2660 
2661 			ret = 1;
2662 			goto out_free_path;
2663 		} else {
2664 			merge = false;
2665 			btrfs_release_path(path);
2666 			goto again;
2667 		}
2668 	}
2669 
2670 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2671 					sizeof(*extent));
2672 	if (ret) {
2673 		btrfs_abort_transaction(trans, ret);
2674 		goto out_free_path;
2675 	}
2676 
2677 	leaf = path->nodes[0];
2678 	item = btrfs_item_ptr(leaf, path->slots[0],
2679 				struct btrfs_file_extent_item);
2680 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2681 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2682 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2683 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2684 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2685 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2686 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2687 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2688 	btrfs_set_file_extent_encryption(leaf, item, 0);
2689 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2690 
2691 	btrfs_mark_buffer_dirty(leaf);
2692 	inode_add_bytes(inode, len);
2693 	btrfs_release_path(path);
2694 
2695 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2696 			new->disk_len, 0,
2697 			backref->root_id, backref->inum,
2698 			new->file_pos);	/* start - extent_offset */
2699 	if (ret) {
2700 		btrfs_abort_transaction(trans, ret);
2701 		goto out_free_path;
2702 	}
2703 
2704 	ret = 1;
2705 out_free_path:
2706 	btrfs_release_path(path);
2707 	path->leave_spinning = 0;
2708 	btrfs_end_transaction(trans);
2709 out_unlock:
2710 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2711 			     &cached);
2712 	iput(inode);
2713 	return ret;
2714 }
2715 
2716 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2717 {
2718 	struct old_sa_defrag_extent *old, *tmp;
2719 
2720 	if (!new)
2721 		return;
2722 
2723 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2724 		kfree(old);
2725 	}
2726 	kfree(new);
2727 }
2728 
2729 static void relink_file_extents(struct new_sa_defrag_extent *new)
2730 {
2731 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2732 	struct btrfs_path *path;
2733 	struct sa_defrag_extent_backref *backref;
2734 	struct sa_defrag_extent_backref *prev = NULL;
2735 	struct rb_node *node;
2736 	int ret;
2737 
2738 	path = btrfs_alloc_path();
2739 	if (!path)
2740 		return;
2741 
2742 	if (!record_extent_backrefs(path, new)) {
2743 		btrfs_free_path(path);
2744 		goto out;
2745 	}
2746 	btrfs_release_path(path);
2747 
2748 	while (1) {
2749 		node = rb_first(&new->root);
2750 		if (!node)
2751 			break;
2752 		rb_erase(node, &new->root);
2753 
2754 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2755 
2756 		ret = relink_extent_backref(path, prev, backref);
2757 		WARN_ON(ret < 0);
2758 
2759 		kfree(prev);
2760 
2761 		if (ret == 1)
2762 			prev = backref;
2763 		else
2764 			prev = NULL;
2765 		cond_resched();
2766 	}
2767 	kfree(prev);
2768 
2769 	btrfs_free_path(path);
2770 out:
2771 	free_sa_defrag_extent(new);
2772 
2773 	atomic_dec(&fs_info->defrag_running);
2774 	wake_up(&fs_info->transaction_wait);
2775 }
2776 
2777 static struct new_sa_defrag_extent *
2778 record_old_file_extents(struct inode *inode,
2779 			struct btrfs_ordered_extent *ordered)
2780 {
2781 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2782 	struct btrfs_root *root = BTRFS_I(inode)->root;
2783 	struct btrfs_path *path;
2784 	struct btrfs_key key;
2785 	struct old_sa_defrag_extent *old;
2786 	struct new_sa_defrag_extent *new;
2787 	int ret;
2788 
2789 	new = kmalloc(sizeof(*new), GFP_NOFS);
2790 	if (!new)
2791 		return NULL;
2792 
2793 	new->inode = inode;
2794 	new->file_pos = ordered->file_offset;
2795 	new->len = ordered->len;
2796 	new->bytenr = ordered->start;
2797 	new->disk_len = ordered->disk_len;
2798 	new->compress_type = ordered->compress_type;
2799 	new->root = RB_ROOT;
2800 	INIT_LIST_HEAD(&new->head);
2801 
2802 	path = btrfs_alloc_path();
2803 	if (!path)
2804 		goto out_kfree;
2805 
2806 	key.objectid = btrfs_ino(BTRFS_I(inode));
2807 	key.type = BTRFS_EXTENT_DATA_KEY;
2808 	key.offset = new->file_pos;
2809 
2810 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2811 	if (ret < 0)
2812 		goto out_free_path;
2813 	if (ret > 0 && path->slots[0] > 0)
2814 		path->slots[0]--;
2815 
2816 	/* find out all the old extents for the file range */
2817 	while (1) {
2818 		struct btrfs_file_extent_item *extent;
2819 		struct extent_buffer *l;
2820 		int slot;
2821 		u64 num_bytes;
2822 		u64 offset;
2823 		u64 end;
2824 		u64 disk_bytenr;
2825 		u64 extent_offset;
2826 
2827 		l = path->nodes[0];
2828 		slot = path->slots[0];
2829 
2830 		if (slot >= btrfs_header_nritems(l)) {
2831 			ret = btrfs_next_leaf(root, path);
2832 			if (ret < 0)
2833 				goto out_free_path;
2834 			else if (ret > 0)
2835 				break;
2836 			continue;
2837 		}
2838 
2839 		btrfs_item_key_to_cpu(l, &key, slot);
2840 
2841 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2842 			break;
2843 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2844 			break;
2845 		if (key.offset >= new->file_pos + new->len)
2846 			break;
2847 
2848 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2849 
2850 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2851 		if (key.offset + num_bytes < new->file_pos)
2852 			goto next;
2853 
2854 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2855 		if (!disk_bytenr)
2856 			goto next;
2857 
2858 		extent_offset = btrfs_file_extent_offset(l, extent);
2859 
2860 		old = kmalloc(sizeof(*old), GFP_NOFS);
2861 		if (!old)
2862 			goto out_free_path;
2863 
2864 		offset = max(new->file_pos, key.offset);
2865 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2866 
2867 		old->bytenr = disk_bytenr;
2868 		old->extent_offset = extent_offset;
2869 		old->offset = offset - key.offset;
2870 		old->len = end - offset;
2871 		old->new = new;
2872 		old->count = 0;
2873 		list_add_tail(&old->list, &new->head);
2874 next:
2875 		path->slots[0]++;
2876 		cond_resched();
2877 	}
2878 
2879 	btrfs_free_path(path);
2880 	atomic_inc(&fs_info->defrag_running);
2881 
2882 	return new;
2883 
2884 out_free_path:
2885 	btrfs_free_path(path);
2886 out_kfree:
2887 	free_sa_defrag_extent(new);
2888 	return NULL;
2889 }
2890 
2891 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2892 					 u64 start, u64 len)
2893 {
2894 	struct btrfs_block_group_cache *cache;
2895 
2896 	cache = btrfs_lookup_block_group(fs_info, start);
2897 	ASSERT(cache);
2898 
2899 	spin_lock(&cache->lock);
2900 	cache->delalloc_bytes -= len;
2901 	spin_unlock(&cache->lock);
2902 
2903 	btrfs_put_block_group(cache);
2904 }
2905 
2906 /* as ordered data IO finishes, this gets called so we can finish
2907  * an ordered extent if the range of bytes in the file it covers are
2908  * fully written.
2909  */
2910 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2911 {
2912 	struct inode *inode = ordered_extent->inode;
2913 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2914 	struct btrfs_root *root = BTRFS_I(inode)->root;
2915 	struct btrfs_trans_handle *trans = NULL;
2916 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2917 	struct extent_state *cached_state = NULL;
2918 	struct new_sa_defrag_extent *new = NULL;
2919 	int compress_type = 0;
2920 	int ret = 0;
2921 	u64 logical_len = ordered_extent->len;
2922 	bool nolock;
2923 	bool truncated = false;
2924 	bool range_locked = false;
2925 	bool clear_new_delalloc_bytes = false;
2926 	bool clear_reserved_extent = true;
2927 
2928 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2929 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2930 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2931 		clear_new_delalloc_bytes = true;
2932 
2933 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2934 
2935 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2936 		ret = -EIO;
2937 		goto out;
2938 	}
2939 
2940 	btrfs_free_io_failure_record(BTRFS_I(inode),
2941 			ordered_extent->file_offset,
2942 			ordered_extent->file_offset +
2943 			ordered_extent->len - 1);
2944 
2945 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2946 		truncated = true;
2947 		logical_len = ordered_extent->truncated_len;
2948 		/* Truncated the entire extent, don't bother adding */
2949 		if (!logical_len)
2950 			goto out;
2951 	}
2952 
2953 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2954 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2955 
2956 		/*
2957 		 * For mwrite(mmap + memset to write) case, we still reserve
2958 		 * space for NOCOW range.
2959 		 * As NOCOW won't cause a new delayed ref, just free the space
2960 		 */
2961 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2962 				       ordered_extent->len);
2963 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2964 		if (nolock)
2965 			trans = btrfs_join_transaction_nolock(root);
2966 		else
2967 			trans = btrfs_join_transaction(root);
2968 		if (IS_ERR(trans)) {
2969 			ret = PTR_ERR(trans);
2970 			trans = NULL;
2971 			goto out;
2972 		}
2973 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2974 		ret = btrfs_update_inode_fallback(trans, root, inode);
2975 		if (ret) /* -ENOMEM or corruption */
2976 			btrfs_abort_transaction(trans, ret);
2977 		goto out;
2978 	}
2979 
2980 	range_locked = true;
2981 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2982 			 ordered_extent->file_offset + ordered_extent->len - 1,
2983 			 &cached_state);
2984 
2985 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2986 			ordered_extent->file_offset + ordered_extent->len - 1,
2987 			EXTENT_DEFRAG, 0, cached_state);
2988 	if (ret) {
2989 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2990 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2991 			/* the inode is shared */
2992 			new = record_old_file_extents(inode, ordered_extent);
2993 
2994 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2995 			ordered_extent->file_offset + ordered_extent->len - 1,
2996 			EXTENT_DEFRAG, 0, 0, &cached_state);
2997 	}
2998 
2999 	if (nolock)
3000 		trans = btrfs_join_transaction_nolock(root);
3001 	else
3002 		trans = btrfs_join_transaction(root);
3003 	if (IS_ERR(trans)) {
3004 		ret = PTR_ERR(trans);
3005 		trans = NULL;
3006 		goto out;
3007 	}
3008 
3009 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3010 
3011 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3012 		compress_type = ordered_extent->compress_type;
3013 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3014 		BUG_ON(compress_type);
3015 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3016 				       ordered_extent->len);
3017 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3018 						ordered_extent->file_offset,
3019 						ordered_extent->file_offset +
3020 						logical_len);
3021 	} else {
3022 		BUG_ON(root == fs_info->tree_root);
3023 		ret = insert_reserved_file_extent(trans, inode,
3024 						ordered_extent->file_offset,
3025 						ordered_extent->start,
3026 						ordered_extent->disk_len,
3027 						logical_len, logical_len,
3028 						compress_type, 0, 0,
3029 						BTRFS_FILE_EXTENT_REG);
3030 		if (!ret) {
3031 			clear_reserved_extent = false;
3032 			btrfs_release_delalloc_bytes(fs_info,
3033 						     ordered_extent->start,
3034 						     ordered_extent->disk_len);
3035 		}
3036 	}
3037 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3038 			   ordered_extent->file_offset, ordered_extent->len,
3039 			   trans->transid);
3040 	if (ret < 0) {
3041 		btrfs_abort_transaction(trans, ret);
3042 		goto out;
3043 	}
3044 
3045 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3046 	if (ret) {
3047 		btrfs_abort_transaction(trans, ret);
3048 		goto out;
3049 	}
3050 
3051 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3052 	ret = btrfs_update_inode_fallback(trans, root, inode);
3053 	if (ret) { /* -ENOMEM or corruption */
3054 		btrfs_abort_transaction(trans, ret);
3055 		goto out;
3056 	}
3057 	ret = 0;
3058 out:
3059 	if (range_locked || clear_new_delalloc_bytes) {
3060 		unsigned int clear_bits = 0;
3061 
3062 		if (range_locked)
3063 			clear_bits |= EXTENT_LOCKED;
3064 		if (clear_new_delalloc_bytes)
3065 			clear_bits |= EXTENT_DELALLOC_NEW;
3066 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3067 				 ordered_extent->file_offset,
3068 				 ordered_extent->file_offset +
3069 				 ordered_extent->len - 1,
3070 				 clear_bits,
3071 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3072 				 0, &cached_state);
3073 	}
3074 
3075 	if (trans)
3076 		btrfs_end_transaction(trans);
3077 
3078 	if (ret || truncated) {
3079 		u64 start, end;
3080 
3081 		if (truncated)
3082 			start = ordered_extent->file_offset + logical_len;
3083 		else
3084 			start = ordered_extent->file_offset;
3085 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3086 		clear_extent_uptodate(io_tree, start, end, NULL);
3087 
3088 		/* Drop the cache for the part of the extent we didn't write. */
3089 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3090 
3091 		/*
3092 		 * If the ordered extent had an IOERR or something else went
3093 		 * wrong we need to return the space for this ordered extent
3094 		 * back to the allocator.  We only free the extent in the
3095 		 * truncated case if we didn't write out the extent at all.
3096 		 *
3097 		 * If we made it past insert_reserved_file_extent before we
3098 		 * errored out then we don't need to do this as the accounting
3099 		 * has already been done.
3100 		 */
3101 		if ((ret || !logical_len) &&
3102 		    clear_reserved_extent &&
3103 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3104 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3105 			btrfs_free_reserved_extent(fs_info,
3106 						   ordered_extent->start,
3107 						   ordered_extent->disk_len, 1);
3108 	}
3109 
3110 
3111 	/*
3112 	 * This needs to be done to make sure anybody waiting knows we are done
3113 	 * updating everything for this ordered extent.
3114 	 */
3115 	btrfs_remove_ordered_extent(inode, ordered_extent);
3116 
3117 	/* for snapshot-aware defrag */
3118 	if (new) {
3119 		if (ret) {
3120 			free_sa_defrag_extent(new);
3121 			atomic_dec(&fs_info->defrag_running);
3122 		} else {
3123 			relink_file_extents(new);
3124 		}
3125 	}
3126 
3127 	/* once for us */
3128 	btrfs_put_ordered_extent(ordered_extent);
3129 	/* once for the tree */
3130 	btrfs_put_ordered_extent(ordered_extent);
3131 
3132 	return ret;
3133 }
3134 
3135 static void finish_ordered_fn(struct btrfs_work *work)
3136 {
3137 	struct btrfs_ordered_extent *ordered_extent;
3138 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3139 	btrfs_finish_ordered_io(ordered_extent);
3140 }
3141 
3142 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3143 					  u64 end, int uptodate)
3144 {
3145 	struct inode *inode = page->mapping->host;
3146 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3147 	struct btrfs_ordered_extent *ordered_extent = NULL;
3148 	struct btrfs_workqueue *wq;
3149 	btrfs_work_func_t func;
3150 
3151 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3152 
3153 	ClearPagePrivate2(page);
3154 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3155 					    end - start + 1, uptodate))
3156 		return;
3157 
3158 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3159 		wq = fs_info->endio_freespace_worker;
3160 		func = btrfs_freespace_write_helper;
3161 	} else {
3162 		wq = fs_info->endio_write_workers;
3163 		func = btrfs_endio_write_helper;
3164 	}
3165 
3166 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3167 			NULL);
3168 	btrfs_queue_work(wq, &ordered_extent->work);
3169 }
3170 
3171 static int __readpage_endio_check(struct inode *inode,
3172 				  struct btrfs_io_bio *io_bio,
3173 				  int icsum, struct page *page,
3174 				  int pgoff, u64 start, size_t len)
3175 {
3176 	char *kaddr;
3177 	u32 csum_expected;
3178 	u32 csum = ~(u32)0;
3179 
3180 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3181 
3182 	kaddr = kmap_atomic(page);
3183 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3184 	btrfs_csum_final(csum, (u8 *)&csum);
3185 	if (csum != csum_expected)
3186 		goto zeroit;
3187 
3188 	kunmap_atomic(kaddr);
3189 	return 0;
3190 zeroit:
3191 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3192 				    io_bio->mirror_num);
3193 	memset(kaddr + pgoff, 1, len);
3194 	flush_dcache_page(page);
3195 	kunmap_atomic(kaddr);
3196 	return -EIO;
3197 }
3198 
3199 /*
3200  * when reads are done, we need to check csums to verify the data is correct
3201  * if there's a match, we allow the bio to finish.  If not, the code in
3202  * extent_io.c will try to find good copies for us.
3203  */
3204 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3205 				      u64 phy_offset, struct page *page,
3206 				      u64 start, u64 end, int mirror)
3207 {
3208 	size_t offset = start - page_offset(page);
3209 	struct inode *inode = page->mapping->host;
3210 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3211 	struct btrfs_root *root = BTRFS_I(inode)->root;
3212 
3213 	if (PageChecked(page)) {
3214 		ClearPageChecked(page);
3215 		return 0;
3216 	}
3217 
3218 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3219 		return 0;
3220 
3221 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3222 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3223 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3224 		return 0;
3225 	}
3226 
3227 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3228 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3229 				      start, (size_t)(end - start + 1));
3230 }
3231 
3232 /*
3233  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3234  *
3235  * @inode: The inode we want to perform iput on
3236  *
3237  * This function uses the generic vfs_inode::i_count to track whether we should
3238  * just decrement it (in case it's > 1) or if this is the last iput then link
3239  * the inode to the delayed iput machinery. Delayed iputs are processed at
3240  * transaction commit time/superblock commit/cleaner kthread.
3241  */
3242 void btrfs_add_delayed_iput(struct inode *inode)
3243 {
3244 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3245 	struct btrfs_inode *binode = BTRFS_I(inode);
3246 
3247 	if (atomic_add_unless(&inode->i_count, -1, 1))
3248 		return;
3249 
3250 	spin_lock(&fs_info->delayed_iput_lock);
3251 	ASSERT(list_empty(&binode->delayed_iput));
3252 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3253 	spin_unlock(&fs_info->delayed_iput_lock);
3254 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3255 		wake_up_process(fs_info->cleaner_kthread);
3256 }
3257 
3258 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3259 {
3260 
3261 	spin_lock(&fs_info->delayed_iput_lock);
3262 	while (!list_empty(&fs_info->delayed_iputs)) {
3263 		struct btrfs_inode *inode;
3264 
3265 		inode = list_first_entry(&fs_info->delayed_iputs,
3266 				struct btrfs_inode, delayed_iput);
3267 		list_del_init(&inode->delayed_iput);
3268 		spin_unlock(&fs_info->delayed_iput_lock);
3269 		iput(&inode->vfs_inode);
3270 		spin_lock(&fs_info->delayed_iput_lock);
3271 	}
3272 	spin_unlock(&fs_info->delayed_iput_lock);
3273 }
3274 
3275 /*
3276  * This creates an orphan entry for the given inode in case something goes wrong
3277  * in the middle of an unlink.
3278  */
3279 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3280 		     struct btrfs_inode *inode)
3281 {
3282 	int ret;
3283 
3284 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3285 	if (ret && ret != -EEXIST) {
3286 		btrfs_abort_transaction(trans, ret);
3287 		return ret;
3288 	}
3289 
3290 	return 0;
3291 }
3292 
3293 /*
3294  * We have done the delete so we can go ahead and remove the orphan item for
3295  * this particular inode.
3296  */
3297 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3298 			    struct btrfs_inode *inode)
3299 {
3300 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3301 }
3302 
3303 /*
3304  * this cleans up any orphans that may be left on the list from the last use
3305  * of this root.
3306  */
3307 int btrfs_orphan_cleanup(struct btrfs_root *root)
3308 {
3309 	struct btrfs_fs_info *fs_info = root->fs_info;
3310 	struct btrfs_path *path;
3311 	struct extent_buffer *leaf;
3312 	struct btrfs_key key, found_key;
3313 	struct btrfs_trans_handle *trans;
3314 	struct inode *inode;
3315 	u64 last_objectid = 0;
3316 	int ret = 0, nr_unlink = 0;
3317 
3318 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3319 		return 0;
3320 
3321 	path = btrfs_alloc_path();
3322 	if (!path) {
3323 		ret = -ENOMEM;
3324 		goto out;
3325 	}
3326 	path->reada = READA_BACK;
3327 
3328 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3329 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3330 	key.offset = (u64)-1;
3331 
3332 	while (1) {
3333 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3334 		if (ret < 0)
3335 			goto out;
3336 
3337 		/*
3338 		 * if ret == 0 means we found what we were searching for, which
3339 		 * is weird, but possible, so only screw with path if we didn't
3340 		 * find the key and see if we have stuff that matches
3341 		 */
3342 		if (ret > 0) {
3343 			ret = 0;
3344 			if (path->slots[0] == 0)
3345 				break;
3346 			path->slots[0]--;
3347 		}
3348 
3349 		/* pull out the item */
3350 		leaf = path->nodes[0];
3351 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352 
3353 		/* make sure the item matches what we want */
3354 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3355 			break;
3356 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3357 			break;
3358 
3359 		/* release the path since we're done with it */
3360 		btrfs_release_path(path);
3361 
3362 		/*
3363 		 * this is where we are basically btrfs_lookup, without the
3364 		 * crossing root thing.  we store the inode number in the
3365 		 * offset of the orphan item.
3366 		 */
3367 
3368 		if (found_key.offset == last_objectid) {
3369 			btrfs_err(fs_info,
3370 				  "Error removing orphan entry, stopping orphan cleanup");
3371 			ret = -EINVAL;
3372 			goto out;
3373 		}
3374 
3375 		last_objectid = found_key.offset;
3376 
3377 		found_key.objectid = found_key.offset;
3378 		found_key.type = BTRFS_INODE_ITEM_KEY;
3379 		found_key.offset = 0;
3380 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3381 		ret = PTR_ERR_OR_ZERO(inode);
3382 		if (ret && ret != -ENOENT)
3383 			goto out;
3384 
3385 		if (ret == -ENOENT && root == fs_info->tree_root) {
3386 			struct btrfs_root *dead_root;
3387 			struct btrfs_fs_info *fs_info = root->fs_info;
3388 			int is_dead_root = 0;
3389 
3390 			/*
3391 			 * this is an orphan in the tree root. Currently these
3392 			 * could come from 2 sources:
3393 			 *  a) a snapshot deletion in progress
3394 			 *  b) a free space cache inode
3395 			 * We need to distinguish those two, as the snapshot
3396 			 * orphan must not get deleted.
3397 			 * find_dead_roots already ran before us, so if this
3398 			 * is a snapshot deletion, we should find the root
3399 			 * in the dead_roots list
3400 			 */
3401 			spin_lock(&fs_info->trans_lock);
3402 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3403 					    root_list) {
3404 				if (dead_root->root_key.objectid ==
3405 				    found_key.objectid) {
3406 					is_dead_root = 1;
3407 					break;
3408 				}
3409 			}
3410 			spin_unlock(&fs_info->trans_lock);
3411 			if (is_dead_root) {
3412 				/* prevent this orphan from being found again */
3413 				key.offset = found_key.objectid - 1;
3414 				continue;
3415 			}
3416 
3417 		}
3418 
3419 		/*
3420 		 * If we have an inode with links, there are a couple of
3421 		 * possibilities. Old kernels (before v3.12) used to create an
3422 		 * orphan item for truncate indicating that there were possibly
3423 		 * extent items past i_size that needed to be deleted. In v3.12,
3424 		 * truncate was changed to update i_size in sync with the extent
3425 		 * items, but the (useless) orphan item was still created. Since
3426 		 * v4.18, we don't create the orphan item for truncate at all.
3427 		 *
3428 		 * So, this item could mean that we need to do a truncate, but
3429 		 * only if this filesystem was last used on a pre-v3.12 kernel
3430 		 * and was not cleanly unmounted. The odds of that are quite
3431 		 * slim, and it's a pain to do the truncate now, so just delete
3432 		 * the orphan item.
3433 		 *
3434 		 * It's also possible that this orphan item was supposed to be
3435 		 * deleted but wasn't. The inode number may have been reused,
3436 		 * but either way, we can delete the orphan item.
3437 		 */
3438 		if (ret == -ENOENT || inode->i_nlink) {
3439 			if (!ret)
3440 				iput(inode);
3441 			trans = btrfs_start_transaction(root, 1);
3442 			if (IS_ERR(trans)) {
3443 				ret = PTR_ERR(trans);
3444 				goto out;
3445 			}
3446 			btrfs_debug(fs_info, "auto deleting %Lu",
3447 				    found_key.objectid);
3448 			ret = btrfs_del_orphan_item(trans, root,
3449 						    found_key.objectid);
3450 			btrfs_end_transaction(trans);
3451 			if (ret)
3452 				goto out;
3453 			continue;
3454 		}
3455 
3456 		nr_unlink++;
3457 
3458 		/* this will do delete_inode and everything for us */
3459 		iput(inode);
3460 	}
3461 	/* release the path since we're done with it */
3462 	btrfs_release_path(path);
3463 
3464 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3465 
3466 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3467 		trans = btrfs_join_transaction(root);
3468 		if (!IS_ERR(trans))
3469 			btrfs_end_transaction(trans);
3470 	}
3471 
3472 	if (nr_unlink)
3473 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3474 
3475 out:
3476 	if (ret)
3477 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3478 	btrfs_free_path(path);
3479 	return ret;
3480 }
3481 
3482 /*
3483  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3484  * don't find any xattrs, we know there can't be any acls.
3485  *
3486  * slot is the slot the inode is in, objectid is the objectid of the inode
3487  */
3488 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3489 					  int slot, u64 objectid,
3490 					  int *first_xattr_slot)
3491 {
3492 	u32 nritems = btrfs_header_nritems(leaf);
3493 	struct btrfs_key found_key;
3494 	static u64 xattr_access = 0;
3495 	static u64 xattr_default = 0;
3496 	int scanned = 0;
3497 
3498 	if (!xattr_access) {
3499 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3500 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3501 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3502 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3503 	}
3504 
3505 	slot++;
3506 	*first_xattr_slot = -1;
3507 	while (slot < nritems) {
3508 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3509 
3510 		/* we found a different objectid, there must not be acls */
3511 		if (found_key.objectid != objectid)
3512 			return 0;
3513 
3514 		/* we found an xattr, assume we've got an acl */
3515 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3516 			if (*first_xattr_slot == -1)
3517 				*first_xattr_slot = slot;
3518 			if (found_key.offset == xattr_access ||
3519 			    found_key.offset == xattr_default)
3520 				return 1;
3521 		}
3522 
3523 		/*
3524 		 * we found a key greater than an xattr key, there can't
3525 		 * be any acls later on
3526 		 */
3527 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3528 			return 0;
3529 
3530 		slot++;
3531 		scanned++;
3532 
3533 		/*
3534 		 * it goes inode, inode backrefs, xattrs, extents,
3535 		 * so if there are a ton of hard links to an inode there can
3536 		 * be a lot of backrefs.  Don't waste time searching too hard,
3537 		 * this is just an optimization
3538 		 */
3539 		if (scanned >= 8)
3540 			break;
3541 	}
3542 	/* we hit the end of the leaf before we found an xattr or
3543 	 * something larger than an xattr.  We have to assume the inode
3544 	 * has acls
3545 	 */
3546 	if (*first_xattr_slot == -1)
3547 		*first_xattr_slot = slot;
3548 	return 1;
3549 }
3550 
3551 /*
3552  * read an inode from the btree into the in-memory inode
3553  */
3554 static int btrfs_read_locked_inode(struct inode *inode,
3555 				   struct btrfs_path *in_path)
3556 {
3557 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3558 	struct btrfs_path *path = in_path;
3559 	struct extent_buffer *leaf;
3560 	struct btrfs_inode_item *inode_item;
3561 	struct btrfs_root *root = BTRFS_I(inode)->root;
3562 	struct btrfs_key location;
3563 	unsigned long ptr;
3564 	int maybe_acls;
3565 	u32 rdev;
3566 	int ret;
3567 	bool filled = false;
3568 	int first_xattr_slot;
3569 
3570 	ret = btrfs_fill_inode(inode, &rdev);
3571 	if (!ret)
3572 		filled = true;
3573 
3574 	if (!path) {
3575 		path = btrfs_alloc_path();
3576 		if (!path)
3577 			return -ENOMEM;
3578 	}
3579 
3580 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3581 
3582 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3583 	if (ret) {
3584 		if (path != in_path)
3585 			btrfs_free_path(path);
3586 		return ret;
3587 	}
3588 
3589 	leaf = path->nodes[0];
3590 
3591 	if (filled)
3592 		goto cache_index;
3593 
3594 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3595 				    struct btrfs_inode_item);
3596 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3597 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3598 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3599 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3600 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3601 
3602 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3603 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3604 
3605 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3606 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3607 
3608 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3609 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3610 
3611 	BTRFS_I(inode)->i_otime.tv_sec =
3612 		btrfs_timespec_sec(leaf, &inode_item->otime);
3613 	BTRFS_I(inode)->i_otime.tv_nsec =
3614 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3615 
3616 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3617 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3618 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3619 
3620 	inode_set_iversion_queried(inode,
3621 				   btrfs_inode_sequence(leaf, inode_item));
3622 	inode->i_generation = BTRFS_I(inode)->generation;
3623 	inode->i_rdev = 0;
3624 	rdev = btrfs_inode_rdev(leaf, inode_item);
3625 
3626 	BTRFS_I(inode)->index_cnt = (u64)-1;
3627 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3628 
3629 cache_index:
3630 	/*
3631 	 * If we were modified in the current generation and evicted from memory
3632 	 * and then re-read we need to do a full sync since we don't have any
3633 	 * idea about which extents were modified before we were evicted from
3634 	 * cache.
3635 	 *
3636 	 * This is required for both inode re-read from disk and delayed inode
3637 	 * in delayed_nodes_tree.
3638 	 */
3639 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3640 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3641 			&BTRFS_I(inode)->runtime_flags);
3642 
3643 	/*
3644 	 * We don't persist the id of the transaction where an unlink operation
3645 	 * against the inode was last made. So here we assume the inode might
3646 	 * have been evicted, and therefore the exact value of last_unlink_trans
3647 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3648 	 * between the inode and its parent if the inode is fsync'ed and the log
3649 	 * replayed. For example, in the scenario:
3650 	 *
3651 	 * touch mydir/foo
3652 	 * ln mydir/foo mydir/bar
3653 	 * sync
3654 	 * unlink mydir/bar
3655 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3656 	 * xfs_io -c fsync mydir/foo
3657 	 * <power failure>
3658 	 * mount fs, triggers fsync log replay
3659 	 *
3660 	 * We must make sure that when we fsync our inode foo we also log its
3661 	 * parent inode, otherwise after log replay the parent still has the
3662 	 * dentry with the "bar" name but our inode foo has a link count of 1
3663 	 * and doesn't have an inode ref with the name "bar" anymore.
3664 	 *
3665 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3666 	 * but it guarantees correctness at the expense of occasional full
3667 	 * transaction commits on fsync if our inode is a directory, or if our
3668 	 * inode is not a directory, logging its parent unnecessarily.
3669 	 */
3670 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3671 	/*
3672 	 * Similar reasoning for last_link_trans, needs to be set otherwise
3673 	 * for a case like the following:
3674 	 *
3675 	 * mkdir A
3676 	 * touch foo
3677 	 * ln foo A/bar
3678 	 * echo 2 > /proc/sys/vm/drop_caches
3679 	 * fsync foo
3680 	 * <power failure>
3681 	 *
3682 	 * Would result in link bar and directory A not existing after the power
3683 	 * failure.
3684 	 */
3685 	BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
3686 
3687 	path->slots[0]++;
3688 	if (inode->i_nlink != 1 ||
3689 	    path->slots[0] >= btrfs_header_nritems(leaf))
3690 		goto cache_acl;
3691 
3692 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3693 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3694 		goto cache_acl;
3695 
3696 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3697 	if (location.type == BTRFS_INODE_REF_KEY) {
3698 		struct btrfs_inode_ref *ref;
3699 
3700 		ref = (struct btrfs_inode_ref *)ptr;
3701 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3702 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3703 		struct btrfs_inode_extref *extref;
3704 
3705 		extref = (struct btrfs_inode_extref *)ptr;
3706 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3707 								     extref);
3708 	}
3709 cache_acl:
3710 	/*
3711 	 * try to precache a NULL acl entry for files that don't have
3712 	 * any xattrs or acls
3713 	 */
3714 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3715 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3716 	if (first_xattr_slot != -1) {
3717 		path->slots[0] = first_xattr_slot;
3718 		ret = btrfs_load_inode_props(inode, path);
3719 		if (ret)
3720 			btrfs_err(fs_info,
3721 				  "error loading props for ino %llu (root %llu): %d",
3722 				  btrfs_ino(BTRFS_I(inode)),
3723 				  root->root_key.objectid, ret);
3724 	}
3725 	if (path != in_path)
3726 		btrfs_free_path(path);
3727 
3728 	if (!maybe_acls)
3729 		cache_no_acl(inode);
3730 
3731 	switch (inode->i_mode & S_IFMT) {
3732 	case S_IFREG:
3733 		inode->i_mapping->a_ops = &btrfs_aops;
3734 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3735 		inode->i_fop = &btrfs_file_operations;
3736 		inode->i_op = &btrfs_file_inode_operations;
3737 		break;
3738 	case S_IFDIR:
3739 		inode->i_fop = &btrfs_dir_file_operations;
3740 		inode->i_op = &btrfs_dir_inode_operations;
3741 		break;
3742 	case S_IFLNK:
3743 		inode->i_op = &btrfs_symlink_inode_operations;
3744 		inode_nohighmem(inode);
3745 		inode->i_mapping->a_ops = &btrfs_aops;
3746 		break;
3747 	default:
3748 		inode->i_op = &btrfs_special_inode_operations;
3749 		init_special_inode(inode, inode->i_mode, rdev);
3750 		break;
3751 	}
3752 
3753 	btrfs_sync_inode_flags_to_i_flags(inode);
3754 	return 0;
3755 }
3756 
3757 /*
3758  * given a leaf and an inode, copy the inode fields into the leaf
3759  */
3760 static void fill_inode_item(struct btrfs_trans_handle *trans,
3761 			    struct extent_buffer *leaf,
3762 			    struct btrfs_inode_item *item,
3763 			    struct inode *inode)
3764 {
3765 	struct btrfs_map_token token;
3766 
3767 	btrfs_init_map_token(&token);
3768 
3769 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3770 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3771 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3772 				   &token);
3773 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3774 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3775 
3776 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3777 				     inode->i_atime.tv_sec, &token);
3778 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3779 				      inode->i_atime.tv_nsec, &token);
3780 
3781 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3782 				     inode->i_mtime.tv_sec, &token);
3783 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3784 				      inode->i_mtime.tv_nsec, &token);
3785 
3786 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3787 				     inode->i_ctime.tv_sec, &token);
3788 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3789 				      inode->i_ctime.tv_nsec, &token);
3790 
3791 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3792 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3793 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3794 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3795 
3796 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3797 				     &token);
3798 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3799 					 &token);
3800 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3801 				       &token);
3802 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3803 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3804 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3805 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3806 }
3807 
3808 /*
3809  * copy everything in the in-memory inode into the btree.
3810  */
3811 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3812 				struct btrfs_root *root, struct inode *inode)
3813 {
3814 	struct btrfs_inode_item *inode_item;
3815 	struct btrfs_path *path;
3816 	struct extent_buffer *leaf;
3817 	int ret;
3818 
3819 	path = btrfs_alloc_path();
3820 	if (!path)
3821 		return -ENOMEM;
3822 
3823 	path->leave_spinning = 1;
3824 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3825 				 1);
3826 	if (ret) {
3827 		if (ret > 0)
3828 			ret = -ENOENT;
3829 		goto failed;
3830 	}
3831 
3832 	leaf = path->nodes[0];
3833 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3834 				    struct btrfs_inode_item);
3835 
3836 	fill_inode_item(trans, leaf, inode_item, inode);
3837 	btrfs_mark_buffer_dirty(leaf);
3838 	btrfs_set_inode_last_trans(trans, inode);
3839 	ret = 0;
3840 failed:
3841 	btrfs_free_path(path);
3842 	return ret;
3843 }
3844 
3845 /*
3846  * copy everything in the in-memory inode into the btree.
3847  */
3848 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3849 				struct btrfs_root *root, struct inode *inode)
3850 {
3851 	struct btrfs_fs_info *fs_info = root->fs_info;
3852 	int ret;
3853 
3854 	/*
3855 	 * If the inode is a free space inode, we can deadlock during commit
3856 	 * if we put it into the delayed code.
3857 	 *
3858 	 * The data relocation inode should also be directly updated
3859 	 * without delay
3860 	 */
3861 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3862 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3863 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3864 		btrfs_update_root_times(trans, root);
3865 
3866 		ret = btrfs_delayed_update_inode(trans, root, inode);
3867 		if (!ret)
3868 			btrfs_set_inode_last_trans(trans, inode);
3869 		return ret;
3870 	}
3871 
3872 	return btrfs_update_inode_item(trans, root, inode);
3873 }
3874 
3875 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3876 					 struct btrfs_root *root,
3877 					 struct inode *inode)
3878 {
3879 	int ret;
3880 
3881 	ret = btrfs_update_inode(trans, root, inode);
3882 	if (ret == -ENOSPC)
3883 		return btrfs_update_inode_item(trans, root, inode);
3884 	return ret;
3885 }
3886 
3887 /*
3888  * unlink helper that gets used here in inode.c and in the tree logging
3889  * recovery code.  It remove a link in a directory with a given name, and
3890  * also drops the back refs in the inode to the directory
3891  */
3892 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3893 				struct btrfs_root *root,
3894 				struct btrfs_inode *dir,
3895 				struct btrfs_inode *inode,
3896 				const char *name, int name_len)
3897 {
3898 	struct btrfs_fs_info *fs_info = root->fs_info;
3899 	struct btrfs_path *path;
3900 	int ret = 0;
3901 	struct extent_buffer *leaf;
3902 	struct btrfs_dir_item *di;
3903 	struct btrfs_key key;
3904 	u64 index;
3905 	u64 ino = btrfs_ino(inode);
3906 	u64 dir_ino = btrfs_ino(dir);
3907 
3908 	path = btrfs_alloc_path();
3909 	if (!path) {
3910 		ret = -ENOMEM;
3911 		goto out;
3912 	}
3913 
3914 	path->leave_spinning = 1;
3915 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3916 				    name, name_len, -1);
3917 	if (IS_ERR_OR_NULL(di)) {
3918 		ret = di ? PTR_ERR(di) : -ENOENT;
3919 		goto err;
3920 	}
3921 	leaf = path->nodes[0];
3922 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3923 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3924 	if (ret)
3925 		goto err;
3926 	btrfs_release_path(path);
3927 
3928 	/*
3929 	 * If we don't have dir index, we have to get it by looking up
3930 	 * the inode ref, since we get the inode ref, remove it directly,
3931 	 * it is unnecessary to do delayed deletion.
3932 	 *
3933 	 * But if we have dir index, needn't search inode ref to get it.
3934 	 * Since the inode ref is close to the inode item, it is better
3935 	 * that we delay to delete it, and just do this deletion when
3936 	 * we update the inode item.
3937 	 */
3938 	if (inode->dir_index) {
3939 		ret = btrfs_delayed_delete_inode_ref(inode);
3940 		if (!ret) {
3941 			index = inode->dir_index;
3942 			goto skip_backref;
3943 		}
3944 	}
3945 
3946 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3947 				  dir_ino, &index);
3948 	if (ret) {
3949 		btrfs_info(fs_info,
3950 			"failed to delete reference to %.*s, inode %llu parent %llu",
3951 			name_len, name, ino, dir_ino);
3952 		btrfs_abort_transaction(trans, ret);
3953 		goto err;
3954 	}
3955 skip_backref:
3956 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3957 	if (ret) {
3958 		btrfs_abort_transaction(trans, ret);
3959 		goto err;
3960 	}
3961 
3962 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3963 			dir_ino);
3964 	if (ret != 0 && ret != -ENOENT) {
3965 		btrfs_abort_transaction(trans, ret);
3966 		goto err;
3967 	}
3968 
3969 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3970 			index);
3971 	if (ret == -ENOENT)
3972 		ret = 0;
3973 	else if (ret)
3974 		btrfs_abort_transaction(trans, ret);
3975 err:
3976 	btrfs_free_path(path);
3977 	if (ret)
3978 		goto out;
3979 
3980 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3981 	inode_inc_iversion(&inode->vfs_inode);
3982 	inode_inc_iversion(&dir->vfs_inode);
3983 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3984 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3985 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3986 out:
3987 	return ret;
3988 }
3989 
3990 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3991 		       struct btrfs_root *root,
3992 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3993 		       const char *name, int name_len)
3994 {
3995 	int ret;
3996 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3997 	if (!ret) {
3998 		drop_nlink(&inode->vfs_inode);
3999 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4000 	}
4001 	return ret;
4002 }
4003 
4004 /*
4005  * helper to start transaction for unlink and rmdir.
4006  *
4007  * unlink and rmdir are special in btrfs, they do not always free space, so
4008  * if we cannot make our reservations the normal way try and see if there is
4009  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4010  * allow the unlink to occur.
4011  */
4012 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4013 {
4014 	struct btrfs_root *root = BTRFS_I(dir)->root;
4015 
4016 	/*
4017 	 * 1 for the possible orphan item
4018 	 * 1 for the dir item
4019 	 * 1 for the dir index
4020 	 * 1 for the inode ref
4021 	 * 1 for the inode
4022 	 */
4023 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4024 }
4025 
4026 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4027 {
4028 	struct btrfs_root *root = BTRFS_I(dir)->root;
4029 	struct btrfs_trans_handle *trans;
4030 	struct inode *inode = d_inode(dentry);
4031 	int ret;
4032 
4033 	trans = __unlink_start_trans(dir);
4034 	if (IS_ERR(trans))
4035 		return PTR_ERR(trans);
4036 
4037 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4038 			0);
4039 
4040 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4041 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4042 			dentry->d_name.len);
4043 	if (ret)
4044 		goto out;
4045 
4046 	if (inode->i_nlink == 0) {
4047 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4048 		if (ret)
4049 			goto out;
4050 	}
4051 
4052 out:
4053 	btrfs_end_transaction(trans);
4054 	btrfs_btree_balance_dirty(root->fs_info);
4055 	return ret;
4056 }
4057 
4058 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4059 			       struct inode *dir, u64 objectid,
4060 			       const char *name, int name_len)
4061 {
4062 	struct btrfs_root *root = BTRFS_I(dir)->root;
4063 	struct btrfs_path *path;
4064 	struct extent_buffer *leaf;
4065 	struct btrfs_dir_item *di;
4066 	struct btrfs_key key;
4067 	u64 index;
4068 	int ret;
4069 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4070 
4071 	path = btrfs_alloc_path();
4072 	if (!path)
4073 		return -ENOMEM;
4074 
4075 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4076 				   name, name_len, -1);
4077 	if (IS_ERR_OR_NULL(di)) {
4078 		ret = di ? PTR_ERR(di) : -ENOENT;
4079 		goto out;
4080 	}
4081 
4082 	leaf = path->nodes[0];
4083 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4084 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4085 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4086 	if (ret) {
4087 		btrfs_abort_transaction(trans, ret);
4088 		goto out;
4089 	}
4090 	btrfs_release_path(path);
4091 
4092 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4093 				 dir_ino, &index, name, name_len);
4094 	if (ret < 0) {
4095 		if (ret != -ENOENT) {
4096 			btrfs_abort_transaction(trans, ret);
4097 			goto out;
4098 		}
4099 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4100 						 name, name_len);
4101 		if (IS_ERR_OR_NULL(di)) {
4102 			if (!di)
4103 				ret = -ENOENT;
4104 			else
4105 				ret = PTR_ERR(di);
4106 			btrfs_abort_transaction(trans, ret);
4107 			goto out;
4108 		}
4109 
4110 		leaf = path->nodes[0];
4111 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4112 		index = key.offset;
4113 	}
4114 	btrfs_release_path(path);
4115 
4116 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4117 	if (ret) {
4118 		btrfs_abort_transaction(trans, ret);
4119 		goto out;
4120 	}
4121 
4122 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4123 	inode_inc_iversion(dir);
4124 	dir->i_mtime = dir->i_ctime = current_time(dir);
4125 	ret = btrfs_update_inode_fallback(trans, root, dir);
4126 	if (ret)
4127 		btrfs_abort_transaction(trans, ret);
4128 out:
4129 	btrfs_free_path(path);
4130 	return ret;
4131 }
4132 
4133 /*
4134  * Helper to check if the subvolume references other subvolumes or if it's
4135  * default.
4136  */
4137 static noinline int may_destroy_subvol(struct btrfs_root *root)
4138 {
4139 	struct btrfs_fs_info *fs_info = root->fs_info;
4140 	struct btrfs_path *path;
4141 	struct btrfs_dir_item *di;
4142 	struct btrfs_key key;
4143 	u64 dir_id;
4144 	int ret;
4145 
4146 	path = btrfs_alloc_path();
4147 	if (!path)
4148 		return -ENOMEM;
4149 
4150 	/* Make sure this root isn't set as the default subvol */
4151 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4152 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4153 				   dir_id, "default", 7, 0);
4154 	if (di && !IS_ERR(di)) {
4155 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4156 		if (key.objectid == root->root_key.objectid) {
4157 			ret = -EPERM;
4158 			btrfs_err(fs_info,
4159 				  "deleting default subvolume %llu is not allowed",
4160 				  key.objectid);
4161 			goto out;
4162 		}
4163 		btrfs_release_path(path);
4164 	}
4165 
4166 	key.objectid = root->root_key.objectid;
4167 	key.type = BTRFS_ROOT_REF_KEY;
4168 	key.offset = (u64)-1;
4169 
4170 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4171 	if (ret < 0)
4172 		goto out;
4173 	BUG_ON(ret == 0);
4174 
4175 	ret = 0;
4176 	if (path->slots[0] > 0) {
4177 		path->slots[0]--;
4178 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4179 		if (key.objectid == root->root_key.objectid &&
4180 		    key.type == BTRFS_ROOT_REF_KEY)
4181 			ret = -ENOTEMPTY;
4182 	}
4183 out:
4184 	btrfs_free_path(path);
4185 	return ret;
4186 }
4187 
4188 /* Delete all dentries for inodes belonging to the root */
4189 static void btrfs_prune_dentries(struct btrfs_root *root)
4190 {
4191 	struct btrfs_fs_info *fs_info = root->fs_info;
4192 	struct rb_node *node;
4193 	struct rb_node *prev;
4194 	struct btrfs_inode *entry;
4195 	struct inode *inode;
4196 	u64 objectid = 0;
4197 
4198 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4199 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4200 
4201 	spin_lock(&root->inode_lock);
4202 again:
4203 	node = root->inode_tree.rb_node;
4204 	prev = NULL;
4205 	while (node) {
4206 		prev = node;
4207 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4208 
4209 		if (objectid < btrfs_ino(entry))
4210 			node = node->rb_left;
4211 		else if (objectid > btrfs_ino(entry))
4212 			node = node->rb_right;
4213 		else
4214 			break;
4215 	}
4216 	if (!node) {
4217 		while (prev) {
4218 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4219 			if (objectid <= btrfs_ino(entry)) {
4220 				node = prev;
4221 				break;
4222 			}
4223 			prev = rb_next(prev);
4224 		}
4225 	}
4226 	while (node) {
4227 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4228 		objectid = btrfs_ino(entry) + 1;
4229 		inode = igrab(&entry->vfs_inode);
4230 		if (inode) {
4231 			spin_unlock(&root->inode_lock);
4232 			if (atomic_read(&inode->i_count) > 1)
4233 				d_prune_aliases(inode);
4234 			/*
4235 			 * btrfs_drop_inode will have it removed from the inode
4236 			 * cache when its usage count hits zero.
4237 			 */
4238 			iput(inode);
4239 			cond_resched();
4240 			spin_lock(&root->inode_lock);
4241 			goto again;
4242 		}
4243 
4244 		if (cond_resched_lock(&root->inode_lock))
4245 			goto again;
4246 
4247 		node = rb_next(node);
4248 	}
4249 	spin_unlock(&root->inode_lock);
4250 }
4251 
4252 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4253 {
4254 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4255 	struct btrfs_root *root = BTRFS_I(dir)->root;
4256 	struct inode *inode = d_inode(dentry);
4257 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4258 	struct btrfs_trans_handle *trans;
4259 	struct btrfs_block_rsv block_rsv;
4260 	u64 root_flags;
4261 	int ret;
4262 	int err;
4263 
4264 	/*
4265 	 * Don't allow to delete a subvolume with send in progress. This is
4266 	 * inside the inode lock so the error handling that has to drop the bit
4267 	 * again is not run concurrently.
4268 	 */
4269 	spin_lock(&dest->root_item_lock);
4270 	if (dest->send_in_progress) {
4271 		spin_unlock(&dest->root_item_lock);
4272 		btrfs_warn(fs_info,
4273 			   "attempt to delete subvolume %llu during send",
4274 			   dest->root_key.objectid);
4275 		return -EPERM;
4276 	}
4277 	root_flags = btrfs_root_flags(&dest->root_item);
4278 	btrfs_set_root_flags(&dest->root_item,
4279 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4280 	spin_unlock(&dest->root_item_lock);
4281 
4282 	down_write(&fs_info->subvol_sem);
4283 
4284 	err = may_destroy_subvol(dest);
4285 	if (err)
4286 		goto out_up_write;
4287 
4288 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4289 	/*
4290 	 * One for dir inode,
4291 	 * two for dir entries,
4292 	 * two for root ref/backref.
4293 	 */
4294 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4295 	if (err)
4296 		goto out_up_write;
4297 
4298 	trans = btrfs_start_transaction(root, 0);
4299 	if (IS_ERR(trans)) {
4300 		err = PTR_ERR(trans);
4301 		goto out_release;
4302 	}
4303 	trans->block_rsv = &block_rsv;
4304 	trans->bytes_reserved = block_rsv.size;
4305 
4306 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4307 
4308 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4309 				  dentry->d_name.name, dentry->d_name.len);
4310 	if (ret) {
4311 		err = ret;
4312 		btrfs_abort_transaction(trans, ret);
4313 		goto out_end_trans;
4314 	}
4315 
4316 	btrfs_record_root_in_trans(trans, dest);
4317 
4318 	memset(&dest->root_item.drop_progress, 0,
4319 		sizeof(dest->root_item.drop_progress));
4320 	dest->root_item.drop_level = 0;
4321 	btrfs_set_root_refs(&dest->root_item, 0);
4322 
4323 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4324 		ret = btrfs_insert_orphan_item(trans,
4325 					fs_info->tree_root,
4326 					dest->root_key.objectid);
4327 		if (ret) {
4328 			btrfs_abort_transaction(trans, ret);
4329 			err = ret;
4330 			goto out_end_trans;
4331 		}
4332 	}
4333 
4334 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4335 				  BTRFS_UUID_KEY_SUBVOL,
4336 				  dest->root_key.objectid);
4337 	if (ret && ret != -ENOENT) {
4338 		btrfs_abort_transaction(trans, ret);
4339 		err = ret;
4340 		goto out_end_trans;
4341 	}
4342 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4343 		ret = btrfs_uuid_tree_remove(trans,
4344 					  dest->root_item.received_uuid,
4345 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4346 					  dest->root_key.objectid);
4347 		if (ret && ret != -ENOENT) {
4348 			btrfs_abort_transaction(trans, ret);
4349 			err = ret;
4350 			goto out_end_trans;
4351 		}
4352 	}
4353 
4354 out_end_trans:
4355 	trans->block_rsv = NULL;
4356 	trans->bytes_reserved = 0;
4357 	ret = btrfs_end_transaction(trans);
4358 	if (ret && !err)
4359 		err = ret;
4360 	inode->i_flags |= S_DEAD;
4361 out_release:
4362 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4363 out_up_write:
4364 	up_write(&fs_info->subvol_sem);
4365 	if (err) {
4366 		spin_lock(&dest->root_item_lock);
4367 		root_flags = btrfs_root_flags(&dest->root_item);
4368 		btrfs_set_root_flags(&dest->root_item,
4369 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4370 		spin_unlock(&dest->root_item_lock);
4371 	} else {
4372 		d_invalidate(dentry);
4373 		btrfs_prune_dentries(dest);
4374 		ASSERT(dest->send_in_progress == 0);
4375 
4376 		/* the last ref */
4377 		if (dest->ino_cache_inode) {
4378 			iput(dest->ino_cache_inode);
4379 			dest->ino_cache_inode = NULL;
4380 		}
4381 	}
4382 
4383 	return err;
4384 }
4385 
4386 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4387 {
4388 	struct inode *inode = d_inode(dentry);
4389 	int err = 0;
4390 	struct btrfs_root *root = BTRFS_I(dir)->root;
4391 	struct btrfs_trans_handle *trans;
4392 	u64 last_unlink_trans;
4393 
4394 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4395 		return -ENOTEMPTY;
4396 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4397 		return btrfs_delete_subvolume(dir, dentry);
4398 
4399 	trans = __unlink_start_trans(dir);
4400 	if (IS_ERR(trans))
4401 		return PTR_ERR(trans);
4402 
4403 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4404 		err = btrfs_unlink_subvol(trans, dir,
4405 					  BTRFS_I(inode)->location.objectid,
4406 					  dentry->d_name.name,
4407 					  dentry->d_name.len);
4408 		goto out;
4409 	}
4410 
4411 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4412 	if (err)
4413 		goto out;
4414 
4415 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4416 
4417 	/* now the directory is empty */
4418 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4419 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4420 			dentry->d_name.len);
4421 	if (!err) {
4422 		btrfs_i_size_write(BTRFS_I(inode), 0);
4423 		/*
4424 		 * Propagate the last_unlink_trans value of the deleted dir to
4425 		 * its parent directory. This is to prevent an unrecoverable
4426 		 * log tree in the case we do something like this:
4427 		 * 1) create dir foo
4428 		 * 2) create snapshot under dir foo
4429 		 * 3) delete the snapshot
4430 		 * 4) rmdir foo
4431 		 * 5) mkdir foo
4432 		 * 6) fsync foo or some file inside foo
4433 		 */
4434 		if (last_unlink_trans >= trans->transid)
4435 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4436 	}
4437 out:
4438 	btrfs_end_transaction(trans);
4439 	btrfs_btree_balance_dirty(root->fs_info);
4440 
4441 	return err;
4442 }
4443 
4444 /*
4445  * Return this if we need to call truncate_block for the last bit of the
4446  * truncate.
4447  */
4448 #define NEED_TRUNCATE_BLOCK 1
4449 
4450 /*
4451  * this can truncate away extent items, csum items and directory items.
4452  * It starts at a high offset and removes keys until it can't find
4453  * any higher than new_size
4454  *
4455  * csum items that cross the new i_size are truncated to the new size
4456  * as well.
4457  *
4458  * min_type is the minimum key type to truncate down to.  If set to 0, this
4459  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4460  */
4461 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4462 			       struct btrfs_root *root,
4463 			       struct inode *inode,
4464 			       u64 new_size, u32 min_type)
4465 {
4466 	struct btrfs_fs_info *fs_info = root->fs_info;
4467 	struct btrfs_path *path;
4468 	struct extent_buffer *leaf;
4469 	struct btrfs_file_extent_item *fi;
4470 	struct btrfs_key key;
4471 	struct btrfs_key found_key;
4472 	u64 extent_start = 0;
4473 	u64 extent_num_bytes = 0;
4474 	u64 extent_offset = 0;
4475 	u64 item_end = 0;
4476 	u64 last_size = new_size;
4477 	u32 found_type = (u8)-1;
4478 	int found_extent;
4479 	int del_item;
4480 	int pending_del_nr = 0;
4481 	int pending_del_slot = 0;
4482 	int extent_type = -1;
4483 	int ret;
4484 	u64 ino = btrfs_ino(BTRFS_I(inode));
4485 	u64 bytes_deleted = 0;
4486 	bool be_nice = false;
4487 	bool should_throttle = false;
4488 
4489 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4490 
4491 	/*
4492 	 * for non-free space inodes and ref cows, we want to back off from
4493 	 * time to time
4494 	 */
4495 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4496 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4497 		be_nice = true;
4498 
4499 	path = btrfs_alloc_path();
4500 	if (!path)
4501 		return -ENOMEM;
4502 	path->reada = READA_BACK;
4503 
4504 	/*
4505 	 * We want to drop from the next block forward in case this new size is
4506 	 * not block aligned since we will be keeping the last block of the
4507 	 * extent just the way it is.
4508 	 */
4509 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4510 	    root == fs_info->tree_root)
4511 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4512 					fs_info->sectorsize),
4513 					(u64)-1, 0);
4514 
4515 	/*
4516 	 * This function is also used to drop the items in the log tree before
4517 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4518 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4519 	 * items.
4520 	 */
4521 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4522 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4523 
4524 	key.objectid = ino;
4525 	key.offset = (u64)-1;
4526 	key.type = (u8)-1;
4527 
4528 search_again:
4529 	/*
4530 	 * with a 16K leaf size and 128MB extents, you can actually queue
4531 	 * up a huge file in a single leaf.  Most of the time that
4532 	 * bytes_deleted is > 0, it will be huge by the time we get here
4533 	 */
4534 	if (be_nice && bytes_deleted > SZ_32M &&
4535 	    btrfs_should_end_transaction(trans)) {
4536 		ret = -EAGAIN;
4537 		goto out;
4538 	}
4539 
4540 	path->leave_spinning = 1;
4541 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4542 	if (ret < 0)
4543 		goto out;
4544 
4545 	if (ret > 0) {
4546 		ret = 0;
4547 		/* there are no items in the tree for us to truncate, we're
4548 		 * done
4549 		 */
4550 		if (path->slots[0] == 0)
4551 			goto out;
4552 		path->slots[0]--;
4553 	}
4554 
4555 	while (1) {
4556 		fi = NULL;
4557 		leaf = path->nodes[0];
4558 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4559 		found_type = found_key.type;
4560 
4561 		if (found_key.objectid != ino)
4562 			break;
4563 
4564 		if (found_type < min_type)
4565 			break;
4566 
4567 		item_end = found_key.offset;
4568 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4569 			fi = btrfs_item_ptr(leaf, path->slots[0],
4570 					    struct btrfs_file_extent_item);
4571 			extent_type = btrfs_file_extent_type(leaf, fi);
4572 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4573 				item_end +=
4574 				    btrfs_file_extent_num_bytes(leaf, fi);
4575 
4576 				trace_btrfs_truncate_show_fi_regular(
4577 					BTRFS_I(inode), leaf, fi,
4578 					found_key.offset);
4579 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4580 				item_end += btrfs_file_extent_ram_bytes(leaf,
4581 									fi);
4582 
4583 				trace_btrfs_truncate_show_fi_inline(
4584 					BTRFS_I(inode), leaf, fi, path->slots[0],
4585 					found_key.offset);
4586 			}
4587 			item_end--;
4588 		}
4589 		if (found_type > min_type) {
4590 			del_item = 1;
4591 		} else {
4592 			if (item_end < new_size)
4593 				break;
4594 			if (found_key.offset >= new_size)
4595 				del_item = 1;
4596 			else
4597 				del_item = 0;
4598 		}
4599 		found_extent = 0;
4600 		/* FIXME, shrink the extent if the ref count is only 1 */
4601 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4602 			goto delete;
4603 
4604 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4605 			u64 num_dec;
4606 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4607 			if (!del_item) {
4608 				u64 orig_num_bytes =
4609 					btrfs_file_extent_num_bytes(leaf, fi);
4610 				extent_num_bytes = ALIGN(new_size -
4611 						found_key.offset,
4612 						fs_info->sectorsize);
4613 				btrfs_set_file_extent_num_bytes(leaf, fi,
4614 							 extent_num_bytes);
4615 				num_dec = (orig_num_bytes -
4616 					   extent_num_bytes);
4617 				if (test_bit(BTRFS_ROOT_REF_COWS,
4618 					     &root->state) &&
4619 				    extent_start != 0)
4620 					inode_sub_bytes(inode, num_dec);
4621 				btrfs_mark_buffer_dirty(leaf);
4622 			} else {
4623 				extent_num_bytes =
4624 					btrfs_file_extent_disk_num_bytes(leaf,
4625 									 fi);
4626 				extent_offset = found_key.offset -
4627 					btrfs_file_extent_offset(leaf, fi);
4628 
4629 				/* FIXME blocksize != 4096 */
4630 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4631 				if (extent_start != 0) {
4632 					found_extent = 1;
4633 					if (test_bit(BTRFS_ROOT_REF_COWS,
4634 						     &root->state))
4635 						inode_sub_bytes(inode, num_dec);
4636 				}
4637 			}
4638 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4639 			/*
4640 			 * we can't truncate inline items that have had
4641 			 * special encodings
4642 			 */
4643 			if (!del_item &&
4644 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4645 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4646 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4647 				u32 size = (u32)(new_size - found_key.offset);
4648 
4649 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4650 				size = btrfs_file_extent_calc_inline_size(size);
4651 				btrfs_truncate_item(root->fs_info, path, size, 1);
4652 			} else if (!del_item) {
4653 				/*
4654 				 * We have to bail so the last_size is set to
4655 				 * just before this extent.
4656 				 */
4657 				ret = NEED_TRUNCATE_BLOCK;
4658 				break;
4659 			}
4660 
4661 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4662 				inode_sub_bytes(inode, item_end + 1 - new_size);
4663 		}
4664 delete:
4665 		if (del_item)
4666 			last_size = found_key.offset;
4667 		else
4668 			last_size = new_size;
4669 		if (del_item) {
4670 			if (!pending_del_nr) {
4671 				/* no pending yet, add ourselves */
4672 				pending_del_slot = path->slots[0];
4673 				pending_del_nr = 1;
4674 			} else if (pending_del_nr &&
4675 				   path->slots[0] + 1 == pending_del_slot) {
4676 				/* hop on the pending chunk */
4677 				pending_del_nr++;
4678 				pending_del_slot = path->slots[0];
4679 			} else {
4680 				BUG();
4681 			}
4682 		} else {
4683 			break;
4684 		}
4685 		should_throttle = false;
4686 
4687 		if (found_extent &&
4688 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4689 		     root == fs_info->tree_root)) {
4690 			btrfs_set_path_blocking(path);
4691 			bytes_deleted += extent_num_bytes;
4692 			ret = btrfs_free_extent(trans, root, extent_start,
4693 						extent_num_bytes, 0,
4694 						btrfs_header_owner(leaf),
4695 						ino, extent_offset);
4696 			if (ret) {
4697 				btrfs_abort_transaction(trans, ret);
4698 				break;
4699 			}
4700 			if (be_nice) {
4701 				if (btrfs_should_throttle_delayed_refs(trans))
4702 					should_throttle = true;
4703 			}
4704 		}
4705 
4706 		if (found_type == BTRFS_INODE_ITEM_KEY)
4707 			break;
4708 
4709 		if (path->slots[0] == 0 ||
4710 		    path->slots[0] != pending_del_slot ||
4711 		    should_throttle) {
4712 			if (pending_del_nr) {
4713 				ret = btrfs_del_items(trans, root, path,
4714 						pending_del_slot,
4715 						pending_del_nr);
4716 				if (ret) {
4717 					btrfs_abort_transaction(trans, ret);
4718 					break;
4719 				}
4720 				pending_del_nr = 0;
4721 			}
4722 			btrfs_release_path(path);
4723 
4724 			/*
4725 			 * We can generate a lot of delayed refs, so we need to
4726 			 * throttle every once and a while and make sure we're
4727 			 * adding enough space to keep up with the work we are
4728 			 * generating.  Since we hold a transaction here we
4729 			 * can't flush, and we don't want to FLUSH_LIMIT because
4730 			 * we could have generated too many delayed refs to
4731 			 * actually allocate, so just bail if we're short and
4732 			 * let the normal reservation dance happen higher up.
4733 			 */
4734 			if (should_throttle) {
4735 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4736 							BTRFS_RESERVE_NO_FLUSH);
4737 				if (ret) {
4738 					ret = -EAGAIN;
4739 					break;
4740 				}
4741 			}
4742 			goto search_again;
4743 		} else {
4744 			path->slots[0]--;
4745 		}
4746 	}
4747 out:
4748 	if (ret >= 0 && pending_del_nr) {
4749 		int err;
4750 
4751 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4752 				      pending_del_nr);
4753 		if (err) {
4754 			btrfs_abort_transaction(trans, err);
4755 			ret = err;
4756 		}
4757 	}
4758 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4759 		ASSERT(last_size >= new_size);
4760 		if (!ret && last_size > new_size)
4761 			last_size = new_size;
4762 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4763 	}
4764 
4765 	btrfs_free_path(path);
4766 	return ret;
4767 }
4768 
4769 /*
4770  * btrfs_truncate_block - read, zero a chunk and write a block
4771  * @inode - inode that we're zeroing
4772  * @from - the offset to start zeroing
4773  * @len - the length to zero, 0 to zero the entire range respective to the
4774  *	offset
4775  * @front - zero up to the offset instead of from the offset on
4776  *
4777  * This will find the block for the "from" offset and cow the block and zero the
4778  * part we want to zero.  This is used with truncate and hole punching.
4779  */
4780 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4781 			int front)
4782 {
4783 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4784 	struct address_space *mapping = inode->i_mapping;
4785 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4786 	struct btrfs_ordered_extent *ordered;
4787 	struct extent_state *cached_state = NULL;
4788 	struct extent_changeset *data_reserved = NULL;
4789 	char *kaddr;
4790 	u32 blocksize = fs_info->sectorsize;
4791 	pgoff_t index = from >> PAGE_SHIFT;
4792 	unsigned offset = from & (blocksize - 1);
4793 	struct page *page;
4794 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4795 	int ret = 0;
4796 	u64 block_start;
4797 	u64 block_end;
4798 
4799 	if (IS_ALIGNED(offset, blocksize) &&
4800 	    (!len || IS_ALIGNED(len, blocksize)))
4801 		goto out;
4802 
4803 	block_start = round_down(from, blocksize);
4804 	block_end = block_start + blocksize - 1;
4805 
4806 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4807 					   block_start, blocksize);
4808 	if (ret)
4809 		goto out;
4810 
4811 again:
4812 	page = find_or_create_page(mapping, index, mask);
4813 	if (!page) {
4814 		btrfs_delalloc_release_space(inode, data_reserved,
4815 					     block_start, blocksize, true);
4816 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4817 		ret = -ENOMEM;
4818 		goto out;
4819 	}
4820 
4821 	if (!PageUptodate(page)) {
4822 		ret = btrfs_readpage(NULL, page);
4823 		lock_page(page);
4824 		if (page->mapping != mapping) {
4825 			unlock_page(page);
4826 			put_page(page);
4827 			goto again;
4828 		}
4829 		if (!PageUptodate(page)) {
4830 			ret = -EIO;
4831 			goto out_unlock;
4832 		}
4833 	}
4834 	wait_on_page_writeback(page);
4835 
4836 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4837 	set_page_extent_mapped(page);
4838 
4839 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4840 	if (ordered) {
4841 		unlock_extent_cached(io_tree, block_start, block_end,
4842 				     &cached_state);
4843 		unlock_page(page);
4844 		put_page(page);
4845 		btrfs_start_ordered_extent(inode, ordered, 1);
4846 		btrfs_put_ordered_extent(ordered);
4847 		goto again;
4848 	}
4849 
4850 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4851 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4852 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4853 			  0, 0, &cached_state);
4854 
4855 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4856 					&cached_state, 0);
4857 	if (ret) {
4858 		unlock_extent_cached(io_tree, block_start, block_end,
4859 				     &cached_state);
4860 		goto out_unlock;
4861 	}
4862 
4863 	if (offset != blocksize) {
4864 		if (!len)
4865 			len = blocksize - offset;
4866 		kaddr = kmap(page);
4867 		if (front)
4868 			memset(kaddr + (block_start - page_offset(page)),
4869 				0, offset);
4870 		else
4871 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4872 				0, len);
4873 		flush_dcache_page(page);
4874 		kunmap(page);
4875 	}
4876 	ClearPageChecked(page);
4877 	set_page_dirty(page);
4878 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4879 
4880 out_unlock:
4881 	if (ret)
4882 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4883 					     blocksize, true);
4884 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4885 	unlock_page(page);
4886 	put_page(page);
4887 out:
4888 	extent_changeset_free(data_reserved);
4889 	return ret;
4890 }
4891 
4892 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4893 			     u64 offset, u64 len)
4894 {
4895 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4896 	struct btrfs_trans_handle *trans;
4897 	int ret;
4898 
4899 	/*
4900 	 * Still need to make sure the inode looks like it's been updated so
4901 	 * that any holes get logged if we fsync.
4902 	 */
4903 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4904 		BTRFS_I(inode)->last_trans = fs_info->generation;
4905 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4906 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4907 		return 0;
4908 	}
4909 
4910 	/*
4911 	 * 1 - for the one we're dropping
4912 	 * 1 - for the one we're adding
4913 	 * 1 - for updating the inode.
4914 	 */
4915 	trans = btrfs_start_transaction(root, 3);
4916 	if (IS_ERR(trans))
4917 		return PTR_ERR(trans);
4918 
4919 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4920 	if (ret) {
4921 		btrfs_abort_transaction(trans, ret);
4922 		btrfs_end_transaction(trans);
4923 		return ret;
4924 	}
4925 
4926 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4927 			offset, 0, 0, len, 0, len, 0, 0, 0);
4928 	if (ret)
4929 		btrfs_abort_transaction(trans, ret);
4930 	else
4931 		btrfs_update_inode(trans, root, inode);
4932 	btrfs_end_transaction(trans);
4933 	return ret;
4934 }
4935 
4936 /*
4937  * This function puts in dummy file extents for the area we're creating a hole
4938  * for.  So if we are truncating this file to a larger size we need to insert
4939  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4940  * the range between oldsize and size
4941  */
4942 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4943 {
4944 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4945 	struct btrfs_root *root = BTRFS_I(inode)->root;
4946 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4947 	struct extent_map *em = NULL;
4948 	struct extent_state *cached_state = NULL;
4949 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4950 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4951 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4952 	u64 last_byte;
4953 	u64 cur_offset;
4954 	u64 hole_size;
4955 	int err = 0;
4956 
4957 	/*
4958 	 * If our size started in the middle of a block we need to zero out the
4959 	 * rest of the block before we expand the i_size, otherwise we could
4960 	 * expose stale data.
4961 	 */
4962 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4963 	if (err)
4964 		return err;
4965 
4966 	if (size <= hole_start)
4967 		return 0;
4968 
4969 	while (1) {
4970 		struct btrfs_ordered_extent *ordered;
4971 
4972 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4973 				 &cached_state);
4974 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4975 						     block_end - hole_start);
4976 		if (!ordered)
4977 			break;
4978 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4979 				     &cached_state);
4980 		btrfs_start_ordered_extent(inode, ordered, 1);
4981 		btrfs_put_ordered_extent(ordered);
4982 	}
4983 
4984 	cur_offset = hole_start;
4985 	while (1) {
4986 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4987 				block_end - cur_offset, 0);
4988 		if (IS_ERR(em)) {
4989 			err = PTR_ERR(em);
4990 			em = NULL;
4991 			break;
4992 		}
4993 		last_byte = min(extent_map_end(em), block_end);
4994 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4995 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4996 			struct extent_map *hole_em;
4997 			hole_size = last_byte - cur_offset;
4998 
4999 			err = maybe_insert_hole(root, inode, cur_offset,
5000 						hole_size);
5001 			if (err)
5002 				break;
5003 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5004 						cur_offset + hole_size - 1, 0);
5005 			hole_em = alloc_extent_map();
5006 			if (!hole_em) {
5007 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5008 					&BTRFS_I(inode)->runtime_flags);
5009 				goto next;
5010 			}
5011 			hole_em->start = cur_offset;
5012 			hole_em->len = hole_size;
5013 			hole_em->orig_start = cur_offset;
5014 
5015 			hole_em->block_start = EXTENT_MAP_HOLE;
5016 			hole_em->block_len = 0;
5017 			hole_em->orig_block_len = 0;
5018 			hole_em->ram_bytes = hole_size;
5019 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5020 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5021 			hole_em->generation = fs_info->generation;
5022 
5023 			while (1) {
5024 				write_lock(&em_tree->lock);
5025 				err = add_extent_mapping(em_tree, hole_em, 1);
5026 				write_unlock(&em_tree->lock);
5027 				if (err != -EEXIST)
5028 					break;
5029 				btrfs_drop_extent_cache(BTRFS_I(inode),
5030 							cur_offset,
5031 							cur_offset +
5032 							hole_size - 1, 0);
5033 			}
5034 			free_extent_map(hole_em);
5035 		}
5036 next:
5037 		free_extent_map(em);
5038 		em = NULL;
5039 		cur_offset = last_byte;
5040 		if (cur_offset >= block_end)
5041 			break;
5042 	}
5043 	free_extent_map(em);
5044 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5045 	return err;
5046 }
5047 
5048 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5049 {
5050 	struct btrfs_root *root = BTRFS_I(inode)->root;
5051 	struct btrfs_trans_handle *trans;
5052 	loff_t oldsize = i_size_read(inode);
5053 	loff_t newsize = attr->ia_size;
5054 	int mask = attr->ia_valid;
5055 	int ret;
5056 
5057 	/*
5058 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5059 	 * special case where we need to update the times despite not having
5060 	 * these flags set.  For all other operations the VFS set these flags
5061 	 * explicitly if it wants a timestamp update.
5062 	 */
5063 	if (newsize != oldsize) {
5064 		inode_inc_iversion(inode);
5065 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5066 			inode->i_ctime = inode->i_mtime =
5067 				current_time(inode);
5068 	}
5069 
5070 	if (newsize > oldsize) {
5071 		/*
5072 		 * Don't do an expanding truncate while snapshotting is ongoing.
5073 		 * This is to ensure the snapshot captures a fully consistent
5074 		 * state of this file - if the snapshot captures this expanding
5075 		 * truncation, it must capture all writes that happened before
5076 		 * this truncation.
5077 		 */
5078 		btrfs_wait_for_snapshot_creation(root);
5079 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5080 		if (ret) {
5081 			btrfs_end_write_no_snapshotting(root);
5082 			return ret;
5083 		}
5084 
5085 		trans = btrfs_start_transaction(root, 1);
5086 		if (IS_ERR(trans)) {
5087 			btrfs_end_write_no_snapshotting(root);
5088 			return PTR_ERR(trans);
5089 		}
5090 
5091 		i_size_write(inode, newsize);
5092 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5093 		pagecache_isize_extended(inode, oldsize, newsize);
5094 		ret = btrfs_update_inode(trans, root, inode);
5095 		btrfs_end_write_no_snapshotting(root);
5096 		btrfs_end_transaction(trans);
5097 	} else {
5098 
5099 		/*
5100 		 * We're truncating a file that used to have good data down to
5101 		 * zero. Make sure it gets into the ordered flush list so that
5102 		 * any new writes get down to disk quickly.
5103 		 */
5104 		if (newsize == 0)
5105 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5106 				&BTRFS_I(inode)->runtime_flags);
5107 
5108 		truncate_setsize(inode, newsize);
5109 
5110 		/* Disable nonlocked read DIO to avoid the endless truncate */
5111 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5112 		inode_dio_wait(inode);
5113 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5114 
5115 		ret = btrfs_truncate(inode, newsize == oldsize);
5116 		if (ret && inode->i_nlink) {
5117 			int err;
5118 
5119 			/*
5120 			 * Truncate failed, so fix up the in-memory size. We
5121 			 * adjusted disk_i_size down as we removed extents, so
5122 			 * wait for disk_i_size to be stable and then update the
5123 			 * in-memory size to match.
5124 			 */
5125 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5126 			if (err)
5127 				return err;
5128 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5129 		}
5130 	}
5131 
5132 	return ret;
5133 }
5134 
5135 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5136 {
5137 	struct inode *inode = d_inode(dentry);
5138 	struct btrfs_root *root = BTRFS_I(inode)->root;
5139 	int err;
5140 
5141 	if (btrfs_root_readonly(root))
5142 		return -EROFS;
5143 
5144 	err = setattr_prepare(dentry, attr);
5145 	if (err)
5146 		return err;
5147 
5148 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5149 		err = btrfs_setsize(inode, attr);
5150 		if (err)
5151 			return err;
5152 	}
5153 
5154 	if (attr->ia_valid) {
5155 		setattr_copy(inode, attr);
5156 		inode_inc_iversion(inode);
5157 		err = btrfs_dirty_inode(inode);
5158 
5159 		if (!err && attr->ia_valid & ATTR_MODE)
5160 			err = posix_acl_chmod(inode, inode->i_mode);
5161 	}
5162 
5163 	return err;
5164 }
5165 
5166 /*
5167  * While truncating the inode pages during eviction, we get the VFS calling
5168  * btrfs_invalidatepage() against each page of the inode. This is slow because
5169  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5170  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5171  * extent_state structures over and over, wasting lots of time.
5172  *
5173  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5174  * those expensive operations on a per page basis and do only the ordered io
5175  * finishing, while we release here the extent_map and extent_state structures,
5176  * without the excessive merging and splitting.
5177  */
5178 static void evict_inode_truncate_pages(struct inode *inode)
5179 {
5180 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5181 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5182 	struct rb_node *node;
5183 
5184 	ASSERT(inode->i_state & I_FREEING);
5185 	truncate_inode_pages_final(&inode->i_data);
5186 
5187 	write_lock(&map_tree->lock);
5188 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5189 		struct extent_map *em;
5190 
5191 		node = rb_first_cached(&map_tree->map);
5192 		em = rb_entry(node, struct extent_map, rb_node);
5193 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5194 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5195 		remove_extent_mapping(map_tree, em);
5196 		free_extent_map(em);
5197 		if (need_resched()) {
5198 			write_unlock(&map_tree->lock);
5199 			cond_resched();
5200 			write_lock(&map_tree->lock);
5201 		}
5202 	}
5203 	write_unlock(&map_tree->lock);
5204 
5205 	/*
5206 	 * Keep looping until we have no more ranges in the io tree.
5207 	 * We can have ongoing bios started by readpages (called from readahead)
5208 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5209 	 * still in progress (unlocked the pages in the bio but did not yet
5210 	 * unlocked the ranges in the io tree). Therefore this means some
5211 	 * ranges can still be locked and eviction started because before
5212 	 * submitting those bios, which are executed by a separate task (work
5213 	 * queue kthread), inode references (inode->i_count) were not taken
5214 	 * (which would be dropped in the end io callback of each bio).
5215 	 * Therefore here we effectively end up waiting for those bios and
5216 	 * anyone else holding locked ranges without having bumped the inode's
5217 	 * reference count - if we don't do it, when they access the inode's
5218 	 * io_tree to unlock a range it may be too late, leading to an
5219 	 * use-after-free issue.
5220 	 */
5221 	spin_lock(&io_tree->lock);
5222 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5223 		struct extent_state *state;
5224 		struct extent_state *cached_state = NULL;
5225 		u64 start;
5226 		u64 end;
5227 		unsigned state_flags;
5228 
5229 		node = rb_first(&io_tree->state);
5230 		state = rb_entry(node, struct extent_state, rb_node);
5231 		start = state->start;
5232 		end = state->end;
5233 		state_flags = state->state;
5234 		spin_unlock(&io_tree->lock);
5235 
5236 		lock_extent_bits(io_tree, start, end, &cached_state);
5237 
5238 		/*
5239 		 * If still has DELALLOC flag, the extent didn't reach disk,
5240 		 * and its reserved space won't be freed by delayed_ref.
5241 		 * So we need to free its reserved space here.
5242 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5243 		 *
5244 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5245 		 */
5246 		if (state_flags & EXTENT_DELALLOC)
5247 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5248 
5249 		clear_extent_bit(io_tree, start, end,
5250 				 EXTENT_LOCKED | EXTENT_DIRTY |
5251 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5252 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5253 
5254 		cond_resched();
5255 		spin_lock(&io_tree->lock);
5256 	}
5257 	spin_unlock(&io_tree->lock);
5258 }
5259 
5260 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5261 							struct btrfs_block_rsv *rsv)
5262 {
5263 	struct btrfs_fs_info *fs_info = root->fs_info;
5264 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5265 	int failures = 0;
5266 
5267 	for (;;) {
5268 		struct btrfs_trans_handle *trans;
5269 		int ret;
5270 
5271 		ret = btrfs_block_rsv_refill(root, rsv, rsv->size,
5272 					     BTRFS_RESERVE_FLUSH_LIMIT);
5273 
5274 		if (ret && ++failures > 2) {
5275 			btrfs_warn(fs_info,
5276 				   "could not allocate space for a delete; will truncate on mount");
5277 			return ERR_PTR(-ENOSPC);
5278 		}
5279 
5280 		trans = btrfs_join_transaction(root);
5281 		if (IS_ERR(trans) || !ret)
5282 			return trans;
5283 
5284 		/*
5285 		 * Try to steal from the global reserve if there is space for
5286 		 * it.
5287 		 */
5288 		if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5289 		    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
5290 			return trans;
5291 
5292 		/* If not, commit and try again. */
5293 		ret = btrfs_commit_transaction(trans);
5294 		if (ret)
5295 			return ERR_PTR(ret);
5296 	}
5297 }
5298 
5299 void btrfs_evict_inode(struct inode *inode)
5300 {
5301 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5302 	struct btrfs_trans_handle *trans;
5303 	struct btrfs_root *root = BTRFS_I(inode)->root;
5304 	struct btrfs_block_rsv *rsv;
5305 	int ret;
5306 
5307 	trace_btrfs_inode_evict(inode);
5308 
5309 	if (!root) {
5310 		clear_inode(inode);
5311 		return;
5312 	}
5313 
5314 	evict_inode_truncate_pages(inode);
5315 
5316 	if (inode->i_nlink &&
5317 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5318 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5319 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5320 		goto no_delete;
5321 
5322 	if (is_bad_inode(inode))
5323 		goto no_delete;
5324 
5325 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5326 
5327 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5328 		goto no_delete;
5329 
5330 	if (inode->i_nlink > 0) {
5331 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5332 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5333 		goto no_delete;
5334 	}
5335 
5336 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5337 	if (ret)
5338 		goto no_delete;
5339 
5340 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5341 	if (!rsv)
5342 		goto no_delete;
5343 	rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5344 	rsv->failfast = 1;
5345 
5346 	btrfs_i_size_write(BTRFS_I(inode), 0);
5347 
5348 	while (1) {
5349 		trans = evict_refill_and_join(root, rsv);
5350 		if (IS_ERR(trans))
5351 			goto free_rsv;
5352 
5353 		trans->block_rsv = rsv;
5354 
5355 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5356 		trans->block_rsv = &fs_info->trans_block_rsv;
5357 		btrfs_end_transaction(trans);
5358 		btrfs_btree_balance_dirty(fs_info);
5359 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5360 			goto free_rsv;
5361 		else if (!ret)
5362 			break;
5363 	}
5364 
5365 	/*
5366 	 * Errors here aren't a big deal, it just means we leave orphan items in
5367 	 * the tree. They will be cleaned up on the next mount. If the inode
5368 	 * number gets reused, cleanup deletes the orphan item without doing
5369 	 * anything, and unlink reuses the existing orphan item.
5370 	 *
5371 	 * If it turns out that we are dropping too many of these, we might want
5372 	 * to add a mechanism for retrying these after a commit.
5373 	 */
5374 	trans = evict_refill_and_join(root, rsv);
5375 	if (!IS_ERR(trans)) {
5376 		trans->block_rsv = rsv;
5377 		btrfs_orphan_del(trans, BTRFS_I(inode));
5378 		trans->block_rsv = &fs_info->trans_block_rsv;
5379 		btrfs_end_transaction(trans);
5380 	}
5381 
5382 	if (!(root == fs_info->tree_root ||
5383 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5384 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5385 
5386 free_rsv:
5387 	btrfs_free_block_rsv(fs_info, rsv);
5388 no_delete:
5389 	/*
5390 	 * If we didn't successfully delete, the orphan item will still be in
5391 	 * the tree and we'll retry on the next mount. Again, we might also want
5392 	 * to retry these periodically in the future.
5393 	 */
5394 	btrfs_remove_delayed_node(BTRFS_I(inode));
5395 	clear_inode(inode);
5396 }
5397 
5398 /*
5399  * this returns the key found in the dir entry in the location pointer.
5400  * If no dir entries were found, returns -ENOENT.
5401  * If found a corrupted location in dir entry, returns -EUCLEAN.
5402  */
5403 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5404 			       struct btrfs_key *location)
5405 {
5406 	const char *name = dentry->d_name.name;
5407 	int namelen = dentry->d_name.len;
5408 	struct btrfs_dir_item *di;
5409 	struct btrfs_path *path;
5410 	struct btrfs_root *root = BTRFS_I(dir)->root;
5411 	int ret = 0;
5412 
5413 	path = btrfs_alloc_path();
5414 	if (!path)
5415 		return -ENOMEM;
5416 
5417 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5418 			name, namelen, 0);
5419 	if (IS_ERR_OR_NULL(di)) {
5420 		ret = di ? PTR_ERR(di) : -ENOENT;
5421 		goto out;
5422 	}
5423 
5424 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5425 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5426 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5427 		ret = -EUCLEAN;
5428 		btrfs_warn(root->fs_info,
5429 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5430 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5431 			   location->objectid, location->type, location->offset);
5432 	}
5433 out:
5434 	btrfs_free_path(path);
5435 	return ret;
5436 }
5437 
5438 /*
5439  * when we hit a tree root in a directory, the btrfs part of the inode
5440  * needs to be changed to reflect the root directory of the tree root.  This
5441  * is kind of like crossing a mount point.
5442  */
5443 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5444 				    struct inode *dir,
5445 				    struct dentry *dentry,
5446 				    struct btrfs_key *location,
5447 				    struct btrfs_root **sub_root)
5448 {
5449 	struct btrfs_path *path;
5450 	struct btrfs_root *new_root;
5451 	struct btrfs_root_ref *ref;
5452 	struct extent_buffer *leaf;
5453 	struct btrfs_key key;
5454 	int ret;
5455 	int err = 0;
5456 
5457 	path = btrfs_alloc_path();
5458 	if (!path) {
5459 		err = -ENOMEM;
5460 		goto out;
5461 	}
5462 
5463 	err = -ENOENT;
5464 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5465 	key.type = BTRFS_ROOT_REF_KEY;
5466 	key.offset = location->objectid;
5467 
5468 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5469 	if (ret) {
5470 		if (ret < 0)
5471 			err = ret;
5472 		goto out;
5473 	}
5474 
5475 	leaf = path->nodes[0];
5476 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5477 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5478 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5479 		goto out;
5480 
5481 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5482 				   (unsigned long)(ref + 1),
5483 				   dentry->d_name.len);
5484 	if (ret)
5485 		goto out;
5486 
5487 	btrfs_release_path(path);
5488 
5489 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5490 	if (IS_ERR(new_root)) {
5491 		err = PTR_ERR(new_root);
5492 		goto out;
5493 	}
5494 
5495 	*sub_root = new_root;
5496 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5497 	location->type = BTRFS_INODE_ITEM_KEY;
5498 	location->offset = 0;
5499 	err = 0;
5500 out:
5501 	btrfs_free_path(path);
5502 	return err;
5503 }
5504 
5505 static void inode_tree_add(struct inode *inode)
5506 {
5507 	struct btrfs_root *root = BTRFS_I(inode)->root;
5508 	struct btrfs_inode *entry;
5509 	struct rb_node **p;
5510 	struct rb_node *parent;
5511 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5512 	u64 ino = btrfs_ino(BTRFS_I(inode));
5513 
5514 	if (inode_unhashed(inode))
5515 		return;
5516 	parent = NULL;
5517 	spin_lock(&root->inode_lock);
5518 	p = &root->inode_tree.rb_node;
5519 	while (*p) {
5520 		parent = *p;
5521 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5522 
5523 		if (ino < btrfs_ino(entry))
5524 			p = &parent->rb_left;
5525 		else if (ino > btrfs_ino(entry))
5526 			p = &parent->rb_right;
5527 		else {
5528 			WARN_ON(!(entry->vfs_inode.i_state &
5529 				  (I_WILL_FREE | I_FREEING)));
5530 			rb_replace_node(parent, new, &root->inode_tree);
5531 			RB_CLEAR_NODE(parent);
5532 			spin_unlock(&root->inode_lock);
5533 			return;
5534 		}
5535 	}
5536 	rb_link_node(new, parent, p);
5537 	rb_insert_color(new, &root->inode_tree);
5538 	spin_unlock(&root->inode_lock);
5539 }
5540 
5541 static void inode_tree_del(struct inode *inode)
5542 {
5543 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5544 	struct btrfs_root *root = BTRFS_I(inode)->root;
5545 	int empty = 0;
5546 
5547 	spin_lock(&root->inode_lock);
5548 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5549 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5550 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5551 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5552 	}
5553 	spin_unlock(&root->inode_lock);
5554 
5555 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5556 		synchronize_srcu(&fs_info->subvol_srcu);
5557 		spin_lock(&root->inode_lock);
5558 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5559 		spin_unlock(&root->inode_lock);
5560 		if (empty)
5561 			btrfs_add_dead_root(root);
5562 	}
5563 }
5564 
5565 
5566 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5567 {
5568 	struct btrfs_iget_args *args = p;
5569 	inode->i_ino = args->location->objectid;
5570 	memcpy(&BTRFS_I(inode)->location, args->location,
5571 	       sizeof(*args->location));
5572 	BTRFS_I(inode)->root = args->root;
5573 	return 0;
5574 }
5575 
5576 static int btrfs_find_actor(struct inode *inode, void *opaque)
5577 {
5578 	struct btrfs_iget_args *args = opaque;
5579 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5580 		args->root == BTRFS_I(inode)->root;
5581 }
5582 
5583 static struct inode *btrfs_iget_locked(struct super_block *s,
5584 				       struct btrfs_key *location,
5585 				       struct btrfs_root *root)
5586 {
5587 	struct inode *inode;
5588 	struct btrfs_iget_args args;
5589 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5590 
5591 	args.location = location;
5592 	args.root = root;
5593 
5594 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5595 			     btrfs_init_locked_inode,
5596 			     (void *)&args);
5597 	return inode;
5598 }
5599 
5600 /* Get an inode object given its location and corresponding root.
5601  * Returns in *is_new if the inode was read from disk
5602  */
5603 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5604 			      struct btrfs_root *root, int *new,
5605 			      struct btrfs_path *path)
5606 {
5607 	struct inode *inode;
5608 
5609 	inode = btrfs_iget_locked(s, location, root);
5610 	if (!inode)
5611 		return ERR_PTR(-ENOMEM);
5612 
5613 	if (inode->i_state & I_NEW) {
5614 		int ret;
5615 
5616 		ret = btrfs_read_locked_inode(inode, path);
5617 		if (!ret) {
5618 			inode_tree_add(inode);
5619 			unlock_new_inode(inode);
5620 			if (new)
5621 				*new = 1;
5622 		} else {
5623 			iget_failed(inode);
5624 			/*
5625 			 * ret > 0 can come from btrfs_search_slot called by
5626 			 * btrfs_read_locked_inode, this means the inode item
5627 			 * was not found.
5628 			 */
5629 			if (ret > 0)
5630 				ret = -ENOENT;
5631 			inode = ERR_PTR(ret);
5632 		}
5633 	}
5634 
5635 	return inode;
5636 }
5637 
5638 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5639 			 struct btrfs_root *root, int *new)
5640 {
5641 	return btrfs_iget_path(s, location, root, new, NULL);
5642 }
5643 
5644 static struct inode *new_simple_dir(struct super_block *s,
5645 				    struct btrfs_key *key,
5646 				    struct btrfs_root *root)
5647 {
5648 	struct inode *inode = new_inode(s);
5649 
5650 	if (!inode)
5651 		return ERR_PTR(-ENOMEM);
5652 
5653 	BTRFS_I(inode)->root = root;
5654 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5655 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5656 
5657 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5658 	inode->i_op = &btrfs_dir_ro_inode_operations;
5659 	inode->i_opflags &= ~IOP_XATTR;
5660 	inode->i_fop = &simple_dir_operations;
5661 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5662 	inode->i_mtime = current_time(inode);
5663 	inode->i_atime = inode->i_mtime;
5664 	inode->i_ctime = inode->i_mtime;
5665 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5666 
5667 	return inode;
5668 }
5669 
5670 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5671 {
5672 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5673 	struct inode *inode;
5674 	struct btrfs_root *root = BTRFS_I(dir)->root;
5675 	struct btrfs_root *sub_root = root;
5676 	struct btrfs_key location;
5677 	int index;
5678 	int ret = 0;
5679 
5680 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5681 		return ERR_PTR(-ENAMETOOLONG);
5682 
5683 	ret = btrfs_inode_by_name(dir, dentry, &location);
5684 	if (ret < 0)
5685 		return ERR_PTR(ret);
5686 
5687 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5688 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5689 		return inode;
5690 	}
5691 
5692 	index = srcu_read_lock(&fs_info->subvol_srcu);
5693 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5694 				       &location, &sub_root);
5695 	if (ret < 0) {
5696 		if (ret != -ENOENT)
5697 			inode = ERR_PTR(ret);
5698 		else
5699 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5700 	} else {
5701 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5702 	}
5703 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5704 
5705 	if (!IS_ERR(inode) && root != sub_root) {
5706 		down_read(&fs_info->cleanup_work_sem);
5707 		if (!sb_rdonly(inode->i_sb))
5708 			ret = btrfs_orphan_cleanup(sub_root);
5709 		up_read(&fs_info->cleanup_work_sem);
5710 		if (ret) {
5711 			iput(inode);
5712 			inode = ERR_PTR(ret);
5713 		}
5714 	}
5715 
5716 	return inode;
5717 }
5718 
5719 static int btrfs_dentry_delete(const struct dentry *dentry)
5720 {
5721 	struct btrfs_root *root;
5722 	struct inode *inode = d_inode(dentry);
5723 
5724 	if (!inode && !IS_ROOT(dentry))
5725 		inode = d_inode(dentry->d_parent);
5726 
5727 	if (inode) {
5728 		root = BTRFS_I(inode)->root;
5729 		if (btrfs_root_refs(&root->root_item) == 0)
5730 			return 1;
5731 
5732 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5733 			return 1;
5734 	}
5735 	return 0;
5736 }
5737 
5738 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5739 				   unsigned int flags)
5740 {
5741 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5742 
5743 	if (inode == ERR_PTR(-ENOENT))
5744 		inode = NULL;
5745 	return d_splice_alias(inode, dentry);
5746 }
5747 
5748 unsigned char btrfs_filetype_table[] = {
5749 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5750 };
5751 
5752 /*
5753  * All this infrastructure exists because dir_emit can fault, and we are holding
5754  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5755  * our information into that, and then dir_emit from the buffer.  This is
5756  * similar to what NFS does, only we don't keep the buffer around in pagecache
5757  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5758  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5759  * tree lock.
5760  */
5761 static int btrfs_opendir(struct inode *inode, struct file *file)
5762 {
5763 	struct btrfs_file_private *private;
5764 
5765 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5766 	if (!private)
5767 		return -ENOMEM;
5768 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5769 	if (!private->filldir_buf) {
5770 		kfree(private);
5771 		return -ENOMEM;
5772 	}
5773 	file->private_data = private;
5774 	return 0;
5775 }
5776 
5777 struct dir_entry {
5778 	u64 ino;
5779 	u64 offset;
5780 	unsigned type;
5781 	int name_len;
5782 };
5783 
5784 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5785 {
5786 	while (entries--) {
5787 		struct dir_entry *entry = addr;
5788 		char *name = (char *)(entry + 1);
5789 
5790 		ctx->pos = get_unaligned(&entry->offset);
5791 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5792 					 get_unaligned(&entry->ino),
5793 					 get_unaligned(&entry->type)))
5794 			return 1;
5795 		addr += sizeof(struct dir_entry) +
5796 			get_unaligned(&entry->name_len);
5797 		ctx->pos++;
5798 	}
5799 	return 0;
5800 }
5801 
5802 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5803 {
5804 	struct inode *inode = file_inode(file);
5805 	struct btrfs_root *root = BTRFS_I(inode)->root;
5806 	struct btrfs_file_private *private = file->private_data;
5807 	struct btrfs_dir_item *di;
5808 	struct btrfs_key key;
5809 	struct btrfs_key found_key;
5810 	struct btrfs_path *path;
5811 	void *addr;
5812 	struct list_head ins_list;
5813 	struct list_head del_list;
5814 	int ret;
5815 	struct extent_buffer *leaf;
5816 	int slot;
5817 	char *name_ptr;
5818 	int name_len;
5819 	int entries = 0;
5820 	int total_len = 0;
5821 	bool put = false;
5822 	struct btrfs_key location;
5823 
5824 	if (!dir_emit_dots(file, ctx))
5825 		return 0;
5826 
5827 	path = btrfs_alloc_path();
5828 	if (!path)
5829 		return -ENOMEM;
5830 
5831 	addr = private->filldir_buf;
5832 	path->reada = READA_FORWARD;
5833 
5834 	INIT_LIST_HEAD(&ins_list);
5835 	INIT_LIST_HEAD(&del_list);
5836 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5837 
5838 again:
5839 	key.type = BTRFS_DIR_INDEX_KEY;
5840 	key.offset = ctx->pos;
5841 	key.objectid = btrfs_ino(BTRFS_I(inode));
5842 
5843 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5844 	if (ret < 0)
5845 		goto err;
5846 
5847 	while (1) {
5848 		struct dir_entry *entry;
5849 
5850 		leaf = path->nodes[0];
5851 		slot = path->slots[0];
5852 		if (slot >= btrfs_header_nritems(leaf)) {
5853 			ret = btrfs_next_leaf(root, path);
5854 			if (ret < 0)
5855 				goto err;
5856 			else if (ret > 0)
5857 				break;
5858 			continue;
5859 		}
5860 
5861 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5862 
5863 		if (found_key.objectid != key.objectid)
5864 			break;
5865 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5866 			break;
5867 		if (found_key.offset < ctx->pos)
5868 			goto next;
5869 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5870 			goto next;
5871 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5872 		name_len = btrfs_dir_name_len(leaf, di);
5873 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5874 		    PAGE_SIZE) {
5875 			btrfs_release_path(path);
5876 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5877 			if (ret)
5878 				goto nopos;
5879 			addr = private->filldir_buf;
5880 			entries = 0;
5881 			total_len = 0;
5882 			goto again;
5883 		}
5884 
5885 		entry = addr;
5886 		put_unaligned(name_len, &entry->name_len);
5887 		name_ptr = (char *)(entry + 1);
5888 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5889 				   name_len);
5890 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5891 				&entry->type);
5892 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5893 		put_unaligned(location.objectid, &entry->ino);
5894 		put_unaligned(found_key.offset, &entry->offset);
5895 		entries++;
5896 		addr += sizeof(struct dir_entry) + name_len;
5897 		total_len += sizeof(struct dir_entry) + name_len;
5898 next:
5899 		path->slots[0]++;
5900 	}
5901 	btrfs_release_path(path);
5902 
5903 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5904 	if (ret)
5905 		goto nopos;
5906 
5907 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5908 	if (ret)
5909 		goto nopos;
5910 
5911 	/*
5912 	 * Stop new entries from being returned after we return the last
5913 	 * entry.
5914 	 *
5915 	 * New directory entries are assigned a strictly increasing
5916 	 * offset.  This means that new entries created during readdir
5917 	 * are *guaranteed* to be seen in the future by that readdir.
5918 	 * This has broken buggy programs which operate on names as
5919 	 * they're returned by readdir.  Until we re-use freed offsets
5920 	 * we have this hack to stop new entries from being returned
5921 	 * under the assumption that they'll never reach this huge
5922 	 * offset.
5923 	 *
5924 	 * This is being careful not to overflow 32bit loff_t unless the
5925 	 * last entry requires it because doing so has broken 32bit apps
5926 	 * in the past.
5927 	 */
5928 	if (ctx->pos >= INT_MAX)
5929 		ctx->pos = LLONG_MAX;
5930 	else
5931 		ctx->pos = INT_MAX;
5932 nopos:
5933 	ret = 0;
5934 err:
5935 	if (put)
5936 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5937 	btrfs_free_path(path);
5938 	return ret;
5939 }
5940 
5941 /*
5942  * This is somewhat expensive, updating the tree every time the
5943  * inode changes.  But, it is most likely to find the inode in cache.
5944  * FIXME, needs more benchmarking...there are no reasons other than performance
5945  * to keep or drop this code.
5946  */
5947 static int btrfs_dirty_inode(struct inode *inode)
5948 {
5949 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5950 	struct btrfs_root *root = BTRFS_I(inode)->root;
5951 	struct btrfs_trans_handle *trans;
5952 	int ret;
5953 
5954 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5955 		return 0;
5956 
5957 	trans = btrfs_join_transaction(root);
5958 	if (IS_ERR(trans))
5959 		return PTR_ERR(trans);
5960 
5961 	ret = btrfs_update_inode(trans, root, inode);
5962 	if (ret && ret == -ENOSPC) {
5963 		/* whoops, lets try again with the full transaction */
5964 		btrfs_end_transaction(trans);
5965 		trans = btrfs_start_transaction(root, 1);
5966 		if (IS_ERR(trans))
5967 			return PTR_ERR(trans);
5968 
5969 		ret = btrfs_update_inode(trans, root, inode);
5970 	}
5971 	btrfs_end_transaction(trans);
5972 	if (BTRFS_I(inode)->delayed_node)
5973 		btrfs_balance_delayed_items(fs_info);
5974 
5975 	return ret;
5976 }
5977 
5978 /*
5979  * This is a copy of file_update_time.  We need this so we can return error on
5980  * ENOSPC for updating the inode in the case of file write and mmap writes.
5981  */
5982 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5983 			     int flags)
5984 {
5985 	struct btrfs_root *root = BTRFS_I(inode)->root;
5986 	bool dirty = flags & ~S_VERSION;
5987 
5988 	if (btrfs_root_readonly(root))
5989 		return -EROFS;
5990 
5991 	if (flags & S_VERSION)
5992 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5993 	if (flags & S_CTIME)
5994 		inode->i_ctime = *now;
5995 	if (flags & S_MTIME)
5996 		inode->i_mtime = *now;
5997 	if (flags & S_ATIME)
5998 		inode->i_atime = *now;
5999 	return dirty ? btrfs_dirty_inode(inode) : 0;
6000 }
6001 
6002 /*
6003  * find the highest existing sequence number in a directory
6004  * and then set the in-memory index_cnt variable to reflect
6005  * free sequence numbers
6006  */
6007 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6008 {
6009 	struct btrfs_root *root = inode->root;
6010 	struct btrfs_key key, found_key;
6011 	struct btrfs_path *path;
6012 	struct extent_buffer *leaf;
6013 	int ret;
6014 
6015 	key.objectid = btrfs_ino(inode);
6016 	key.type = BTRFS_DIR_INDEX_KEY;
6017 	key.offset = (u64)-1;
6018 
6019 	path = btrfs_alloc_path();
6020 	if (!path)
6021 		return -ENOMEM;
6022 
6023 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6024 	if (ret < 0)
6025 		goto out;
6026 	/* FIXME: we should be able to handle this */
6027 	if (ret == 0)
6028 		goto out;
6029 	ret = 0;
6030 
6031 	/*
6032 	 * MAGIC NUMBER EXPLANATION:
6033 	 * since we search a directory based on f_pos we have to start at 2
6034 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6035 	 * else has to start at 2
6036 	 */
6037 	if (path->slots[0] == 0) {
6038 		inode->index_cnt = 2;
6039 		goto out;
6040 	}
6041 
6042 	path->slots[0]--;
6043 
6044 	leaf = path->nodes[0];
6045 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6046 
6047 	if (found_key.objectid != btrfs_ino(inode) ||
6048 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6049 		inode->index_cnt = 2;
6050 		goto out;
6051 	}
6052 
6053 	inode->index_cnt = found_key.offset + 1;
6054 out:
6055 	btrfs_free_path(path);
6056 	return ret;
6057 }
6058 
6059 /*
6060  * helper to find a free sequence number in a given directory.  This current
6061  * code is very simple, later versions will do smarter things in the btree
6062  */
6063 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6064 {
6065 	int ret = 0;
6066 
6067 	if (dir->index_cnt == (u64)-1) {
6068 		ret = btrfs_inode_delayed_dir_index_count(dir);
6069 		if (ret) {
6070 			ret = btrfs_set_inode_index_count(dir);
6071 			if (ret)
6072 				return ret;
6073 		}
6074 	}
6075 
6076 	*index = dir->index_cnt;
6077 	dir->index_cnt++;
6078 
6079 	return ret;
6080 }
6081 
6082 static int btrfs_insert_inode_locked(struct inode *inode)
6083 {
6084 	struct btrfs_iget_args args;
6085 	args.location = &BTRFS_I(inode)->location;
6086 	args.root = BTRFS_I(inode)->root;
6087 
6088 	return insert_inode_locked4(inode,
6089 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6090 		   btrfs_find_actor, &args);
6091 }
6092 
6093 /*
6094  * Inherit flags from the parent inode.
6095  *
6096  * Currently only the compression flags and the cow flags are inherited.
6097  */
6098 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6099 {
6100 	unsigned int flags;
6101 
6102 	if (!dir)
6103 		return;
6104 
6105 	flags = BTRFS_I(dir)->flags;
6106 
6107 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6108 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6109 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6110 	} else if (flags & BTRFS_INODE_COMPRESS) {
6111 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6112 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6113 	}
6114 
6115 	if (flags & BTRFS_INODE_NODATACOW) {
6116 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6117 		if (S_ISREG(inode->i_mode))
6118 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6119 	}
6120 
6121 	btrfs_sync_inode_flags_to_i_flags(inode);
6122 }
6123 
6124 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6125 				     struct btrfs_root *root,
6126 				     struct inode *dir,
6127 				     const char *name, int name_len,
6128 				     u64 ref_objectid, u64 objectid,
6129 				     umode_t mode, u64 *index)
6130 {
6131 	struct btrfs_fs_info *fs_info = root->fs_info;
6132 	struct inode *inode;
6133 	struct btrfs_inode_item *inode_item;
6134 	struct btrfs_key *location;
6135 	struct btrfs_path *path;
6136 	struct btrfs_inode_ref *ref;
6137 	struct btrfs_key key[2];
6138 	u32 sizes[2];
6139 	int nitems = name ? 2 : 1;
6140 	unsigned long ptr;
6141 	int ret;
6142 
6143 	path = btrfs_alloc_path();
6144 	if (!path)
6145 		return ERR_PTR(-ENOMEM);
6146 
6147 	inode = new_inode(fs_info->sb);
6148 	if (!inode) {
6149 		btrfs_free_path(path);
6150 		return ERR_PTR(-ENOMEM);
6151 	}
6152 
6153 	/*
6154 	 * O_TMPFILE, set link count to 0, so that after this point,
6155 	 * we fill in an inode item with the correct link count.
6156 	 */
6157 	if (!name)
6158 		set_nlink(inode, 0);
6159 
6160 	/*
6161 	 * we have to initialize this early, so we can reclaim the inode
6162 	 * number if we fail afterwards in this function.
6163 	 */
6164 	inode->i_ino = objectid;
6165 
6166 	if (dir && name) {
6167 		trace_btrfs_inode_request(dir);
6168 
6169 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6170 		if (ret) {
6171 			btrfs_free_path(path);
6172 			iput(inode);
6173 			return ERR_PTR(ret);
6174 		}
6175 	} else if (dir) {
6176 		*index = 0;
6177 	}
6178 	/*
6179 	 * index_cnt is ignored for everything but a dir,
6180 	 * btrfs_set_inode_index_count has an explanation for the magic
6181 	 * number
6182 	 */
6183 	BTRFS_I(inode)->index_cnt = 2;
6184 	BTRFS_I(inode)->dir_index = *index;
6185 	BTRFS_I(inode)->root = root;
6186 	BTRFS_I(inode)->generation = trans->transid;
6187 	inode->i_generation = BTRFS_I(inode)->generation;
6188 
6189 	/*
6190 	 * We could have gotten an inode number from somebody who was fsynced
6191 	 * and then removed in this same transaction, so let's just set full
6192 	 * sync since it will be a full sync anyway and this will blow away the
6193 	 * old info in the log.
6194 	 */
6195 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6196 
6197 	key[0].objectid = objectid;
6198 	key[0].type = BTRFS_INODE_ITEM_KEY;
6199 	key[0].offset = 0;
6200 
6201 	sizes[0] = sizeof(struct btrfs_inode_item);
6202 
6203 	if (name) {
6204 		/*
6205 		 * Start new inodes with an inode_ref. This is slightly more
6206 		 * efficient for small numbers of hard links since they will
6207 		 * be packed into one item. Extended refs will kick in if we
6208 		 * add more hard links than can fit in the ref item.
6209 		 */
6210 		key[1].objectid = objectid;
6211 		key[1].type = BTRFS_INODE_REF_KEY;
6212 		key[1].offset = ref_objectid;
6213 
6214 		sizes[1] = name_len + sizeof(*ref);
6215 	}
6216 
6217 	location = &BTRFS_I(inode)->location;
6218 	location->objectid = objectid;
6219 	location->offset = 0;
6220 	location->type = BTRFS_INODE_ITEM_KEY;
6221 
6222 	ret = btrfs_insert_inode_locked(inode);
6223 	if (ret < 0) {
6224 		iput(inode);
6225 		goto fail;
6226 	}
6227 
6228 	path->leave_spinning = 1;
6229 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6230 	if (ret != 0)
6231 		goto fail_unlock;
6232 
6233 	inode_init_owner(inode, dir, mode);
6234 	inode_set_bytes(inode, 0);
6235 
6236 	inode->i_mtime = current_time(inode);
6237 	inode->i_atime = inode->i_mtime;
6238 	inode->i_ctime = inode->i_mtime;
6239 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6240 
6241 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6242 				  struct btrfs_inode_item);
6243 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6244 			     sizeof(*inode_item));
6245 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6246 
6247 	if (name) {
6248 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6249 				     struct btrfs_inode_ref);
6250 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6251 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6252 		ptr = (unsigned long)(ref + 1);
6253 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6254 	}
6255 
6256 	btrfs_mark_buffer_dirty(path->nodes[0]);
6257 	btrfs_free_path(path);
6258 
6259 	btrfs_inherit_iflags(inode, dir);
6260 
6261 	if (S_ISREG(mode)) {
6262 		if (btrfs_test_opt(fs_info, NODATASUM))
6263 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6264 		if (btrfs_test_opt(fs_info, NODATACOW))
6265 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6266 				BTRFS_INODE_NODATASUM;
6267 	}
6268 
6269 	inode_tree_add(inode);
6270 
6271 	trace_btrfs_inode_new(inode);
6272 	btrfs_set_inode_last_trans(trans, inode);
6273 
6274 	btrfs_update_root_times(trans, root);
6275 
6276 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6277 	if (ret)
6278 		btrfs_err(fs_info,
6279 			  "error inheriting props for ino %llu (root %llu): %d",
6280 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6281 
6282 	return inode;
6283 
6284 fail_unlock:
6285 	discard_new_inode(inode);
6286 fail:
6287 	if (dir && name)
6288 		BTRFS_I(dir)->index_cnt--;
6289 	btrfs_free_path(path);
6290 	return ERR_PTR(ret);
6291 }
6292 
6293 static inline u8 btrfs_inode_type(struct inode *inode)
6294 {
6295 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6296 }
6297 
6298 /*
6299  * utility function to add 'inode' into 'parent_inode' with
6300  * a give name and a given sequence number.
6301  * if 'add_backref' is true, also insert a backref from the
6302  * inode to the parent directory.
6303  */
6304 int btrfs_add_link(struct btrfs_trans_handle *trans,
6305 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6306 		   const char *name, int name_len, int add_backref, u64 index)
6307 {
6308 	int ret = 0;
6309 	struct btrfs_key key;
6310 	struct btrfs_root *root = parent_inode->root;
6311 	u64 ino = btrfs_ino(inode);
6312 	u64 parent_ino = btrfs_ino(parent_inode);
6313 
6314 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6315 		memcpy(&key, &inode->root->root_key, sizeof(key));
6316 	} else {
6317 		key.objectid = ino;
6318 		key.type = BTRFS_INODE_ITEM_KEY;
6319 		key.offset = 0;
6320 	}
6321 
6322 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6323 		ret = btrfs_add_root_ref(trans, key.objectid,
6324 					 root->root_key.objectid, parent_ino,
6325 					 index, name, name_len);
6326 	} else if (add_backref) {
6327 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6328 					     parent_ino, index);
6329 	}
6330 
6331 	/* Nothing to clean up yet */
6332 	if (ret)
6333 		return ret;
6334 
6335 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6336 				    btrfs_inode_type(&inode->vfs_inode), index);
6337 	if (ret == -EEXIST || ret == -EOVERFLOW)
6338 		goto fail_dir_item;
6339 	else if (ret) {
6340 		btrfs_abort_transaction(trans, ret);
6341 		return ret;
6342 	}
6343 
6344 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6345 			   name_len * 2);
6346 	inode_inc_iversion(&parent_inode->vfs_inode);
6347 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6348 		current_time(&parent_inode->vfs_inode);
6349 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6350 	if (ret)
6351 		btrfs_abort_transaction(trans, ret);
6352 	return ret;
6353 
6354 fail_dir_item:
6355 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6356 		u64 local_index;
6357 		int err;
6358 		err = btrfs_del_root_ref(trans, key.objectid,
6359 					 root->root_key.objectid, parent_ino,
6360 					 &local_index, name, name_len);
6361 		if (err)
6362 			btrfs_abort_transaction(trans, err);
6363 	} else if (add_backref) {
6364 		u64 local_index;
6365 		int err;
6366 
6367 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6368 					  ino, parent_ino, &local_index);
6369 		if (err)
6370 			btrfs_abort_transaction(trans, err);
6371 	}
6372 
6373 	/* Return the original error code */
6374 	return ret;
6375 }
6376 
6377 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6378 			    struct btrfs_inode *dir, struct dentry *dentry,
6379 			    struct btrfs_inode *inode, int backref, u64 index)
6380 {
6381 	int err = btrfs_add_link(trans, dir, inode,
6382 				 dentry->d_name.name, dentry->d_name.len,
6383 				 backref, index);
6384 	if (err > 0)
6385 		err = -EEXIST;
6386 	return err;
6387 }
6388 
6389 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6390 			umode_t mode, dev_t rdev)
6391 {
6392 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6393 	struct btrfs_trans_handle *trans;
6394 	struct btrfs_root *root = BTRFS_I(dir)->root;
6395 	struct inode *inode = NULL;
6396 	int err;
6397 	u64 objectid;
6398 	u64 index = 0;
6399 
6400 	/*
6401 	 * 2 for inode item and ref
6402 	 * 2 for dir items
6403 	 * 1 for xattr if selinux is on
6404 	 */
6405 	trans = btrfs_start_transaction(root, 5);
6406 	if (IS_ERR(trans))
6407 		return PTR_ERR(trans);
6408 
6409 	err = btrfs_find_free_ino(root, &objectid);
6410 	if (err)
6411 		goto out_unlock;
6412 
6413 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6414 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6415 			mode, &index);
6416 	if (IS_ERR(inode)) {
6417 		err = PTR_ERR(inode);
6418 		inode = NULL;
6419 		goto out_unlock;
6420 	}
6421 
6422 	/*
6423 	* If the active LSM wants to access the inode during
6424 	* d_instantiate it needs these. Smack checks to see
6425 	* if the filesystem supports xattrs by looking at the
6426 	* ops vector.
6427 	*/
6428 	inode->i_op = &btrfs_special_inode_operations;
6429 	init_special_inode(inode, inode->i_mode, rdev);
6430 
6431 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6432 	if (err)
6433 		goto out_unlock;
6434 
6435 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6436 			0, index);
6437 	if (err)
6438 		goto out_unlock;
6439 
6440 	btrfs_update_inode(trans, root, inode);
6441 	d_instantiate_new(dentry, inode);
6442 
6443 out_unlock:
6444 	btrfs_end_transaction(trans);
6445 	btrfs_btree_balance_dirty(fs_info);
6446 	if (err && inode) {
6447 		inode_dec_link_count(inode);
6448 		discard_new_inode(inode);
6449 	}
6450 	return err;
6451 }
6452 
6453 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6454 			umode_t mode, bool excl)
6455 {
6456 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6457 	struct btrfs_trans_handle *trans;
6458 	struct btrfs_root *root = BTRFS_I(dir)->root;
6459 	struct inode *inode = NULL;
6460 	int err;
6461 	u64 objectid;
6462 	u64 index = 0;
6463 
6464 	/*
6465 	 * 2 for inode item and ref
6466 	 * 2 for dir items
6467 	 * 1 for xattr if selinux is on
6468 	 */
6469 	trans = btrfs_start_transaction(root, 5);
6470 	if (IS_ERR(trans))
6471 		return PTR_ERR(trans);
6472 
6473 	err = btrfs_find_free_ino(root, &objectid);
6474 	if (err)
6475 		goto out_unlock;
6476 
6477 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6478 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6479 			mode, &index);
6480 	if (IS_ERR(inode)) {
6481 		err = PTR_ERR(inode);
6482 		inode = NULL;
6483 		goto out_unlock;
6484 	}
6485 	/*
6486 	* If the active LSM wants to access the inode during
6487 	* d_instantiate it needs these. Smack checks to see
6488 	* if the filesystem supports xattrs by looking at the
6489 	* ops vector.
6490 	*/
6491 	inode->i_fop = &btrfs_file_operations;
6492 	inode->i_op = &btrfs_file_inode_operations;
6493 	inode->i_mapping->a_ops = &btrfs_aops;
6494 
6495 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6496 	if (err)
6497 		goto out_unlock;
6498 
6499 	err = btrfs_update_inode(trans, root, inode);
6500 	if (err)
6501 		goto out_unlock;
6502 
6503 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6504 			0, index);
6505 	if (err)
6506 		goto out_unlock;
6507 
6508 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6509 	d_instantiate_new(dentry, inode);
6510 
6511 out_unlock:
6512 	btrfs_end_transaction(trans);
6513 	if (err && inode) {
6514 		inode_dec_link_count(inode);
6515 		discard_new_inode(inode);
6516 	}
6517 	btrfs_btree_balance_dirty(fs_info);
6518 	return err;
6519 }
6520 
6521 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6522 		      struct dentry *dentry)
6523 {
6524 	struct btrfs_trans_handle *trans = NULL;
6525 	struct btrfs_root *root = BTRFS_I(dir)->root;
6526 	struct inode *inode = d_inode(old_dentry);
6527 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6528 	u64 index;
6529 	int err;
6530 	int drop_inode = 0;
6531 
6532 	/* do not allow sys_link's with other subvols of the same device */
6533 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6534 		return -EXDEV;
6535 
6536 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6537 		return -EMLINK;
6538 
6539 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6540 	if (err)
6541 		goto fail;
6542 
6543 	/*
6544 	 * 2 items for inode and inode ref
6545 	 * 2 items for dir items
6546 	 * 1 item for parent inode
6547 	 * 1 item for orphan item deletion if O_TMPFILE
6548 	 */
6549 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6550 	if (IS_ERR(trans)) {
6551 		err = PTR_ERR(trans);
6552 		trans = NULL;
6553 		goto fail;
6554 	}
6555 
6556 	/* There are several dir indexes for this inode, clear the cache. */
6557 	BTRFS_I(inode)->dir_index = 0ULL;
6558 	inc_nlink(inode);
6559 	inode_inc_iversion(inode);
6560 	inode->i_ctime = current_time(inode);
6561 	ihold(inode);
6562 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6563 
6564 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6565 			1, index);
6566 
6567 	if (err) {
6568 		drop_inode = 1;
6569 	} else {
6570 		struct dentry *parent = dentry->d_parent;
6571 		int ret;
6572 
6573 		err = btrfs_update_inode(trans, root, inode);
6574 		if (err)
6575 			goto fail;
6576 		if (inode->i_nlink == 1) {
6577 			/*
6578 			 * If new hard link count is 1, it's a file created
6579 			 * with open(2) O_TMPFILE flag.
6580 			 */
6581 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6582 			if (err)
6583 				goto fail;
6584 		}
6585 		BTRFS_I(inode)->last_link_trans = trans->transid;
6586 		d_instantiate(dentry, inode);
6587 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6588 					 true, NULL);
6589 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6590 			err = btrfs_commit_transaction(trans);
6591 			trans = NULL;
6592 		}
6593 	}
6594 
6595 fail:
6596 	if (trans)
6597 		btrfs_end_transaction(trans);
6598 	if (drop_inode) {
6599 		inode_dec_link_count(inode);
6600 		iput(inode);
6601 	}
6602 	btrfs_btree_balance_dirty(fs_info);
6603 	return err;
6604 }
6605 
6606 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6607 {
6608 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6609 	struct inode *inode = NULL;
6610 	struct btrfs_trans_handle *trans;
6611 	struct btrfs_root *root = BTRFS_I(dir)->root;
6612 	int err = 0;
6613 	u64 objectid = 0;
6614 	u64 index = 0;
6615 
6616 	/*
6617 	 * 2 items for inode and ref
6618 	 * 2 items for dir items
6619 	 * 1 for xattr if selinux is on
6620 	 */
6621 	trans = btrfs_start_transaction(root, 5);
6622 	if (IS_ERR(trans))
6623 		return PTR_ERR(trans);
6624 
6625 	err = btrfs_find_free_ino(root, &objectid);
6626 	if (err)
6627 		goto out_fail;
6628 
6629 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6630 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6631 			S_IFDIR | mode, &index);
6632 	if (IS_ERR(inode)) {
6633 		err = PTR_ERR(inode);
6634 		inode = NULL;
6635 		goto out_fail;
6636 	}
6637 
6638 	/* these must be set before we unlock the inode */
6639 	inode->i_op = &btrfs_dir_inode_operations;
6640 	inode->i_fop = &btrfs_dir_file_operations;
6641 
6642 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6643 	if (err)
6644 		goto out_fail;
6645 
6646 	btrfs_i_size_write(BTRFS_I(inode), 0);
6647 	err = btrfs_update_inode(trans, root, inode);
6648 	if (err)
6649 		goto out_fail;
6650 
6651 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6652 			dentry->d_name.name,
6653 			dentry->d_name.len, 0, index);
6654 	if (err)
6655 		goto out_fail;
6656 
6657 	d_instantiate_new(dentry, inode);
6658 
6659 out_fail:
6660 	btrfs_end_transaction(trans);
6661 	if (err && inode) {
6662 		inode_dec_link_count(inode);
6663 		discard_new_inode(inode);
6664 	}
6665 	btrfs_btree_balance_dirty(fs_info);
6666 	return err;
6667 }
6668 
6669 static noinline int uncompress_inline(struct btrfs_path *path,
6670 				      struct page *page,
6671 				      size_t pg_offset, u64 extent_offset,
6672 				      struct btrfs_file_extent_item *item)
6673 {
6674 	int ret;
6675 	struct extent_buffer *leaf = path->nodes[0];
6676 	char *tmp;
6677 	size_t max_size;
6678 	unsigned long inline_size;
6679 	unsigned long ptr;
6680 	int compress_type;
6681 
6682 	WARN_ON(pg_offset != 0);
6683 	compress_type = btrfs_file_extent_compression(leaf, item);
6684 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6685 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6686 					btrfs_item_nr(path->slots[0]));
6687 	tmp = kmalloc(inline_size, GFP_NOFS);
6688 	if (!tmp)
6689 		return -ENOMEM;
6690 	ptr = btrfs_file_extent_inline_start(item);
6691 
6692 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6693 
6694 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6695 	ret = btrfs_decompress(compress_type, tmp, page,
6696 			       extent_offset, inline_size, max_size);
6697 
6698 	/*
6699 	 * decompression code contains a memset to fill in any space between the end
6700 	 * of the uncompressed data and the end of max_size in case the decompressed
6701 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6702 	 * the end of an inline extent and the beginning of the next block, so we
6703 	 * cover that region here.
6704 	 */
6705 
6706 	if (max_size + pg_offset < PAGE_SIZE) {
6707 		char *map = kmap(page);
6708 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6709 		kunmap(page);
6710 	}
6711 	kfree(tmp);
6712 	return ret;
6713 }
6714 
6715 /*
6716  * a bit scary, this does extent mapping from logical file offset to the disk.
6717  * the ugly parts come from merging extents from the disk with the in-ram
6718  * representation.  This gets more complex because of the data=ordered code,
6719  * where the in-ram extents might be locked pending data=ordered completion.
6720  *
6721  * This also copies inline extents directly into the page.
6722  */
6723 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6724 				    struct page *page,
6725 				    size_t pg_offset, u64 start, u64 len,
6726 				    int create)
6727 {
6728 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6729 	int ret;
6730 	int err = 0;
6731 	u64 extent_start = 0;
6732 	u64 extent_end = 0;
6733 	u64 objectid = btrfs_ino(inode);
6734 	u32 found_type;
6735 	struct btrfs_path *path = NULL;
6736 	struct btrfs_root *root = inode->root;
6737 	struct btrfs_file_extent_item *item;
6738 	struct extent_buffer *leaf;
6739 	struct btrfs_key found_key;
6740 	struct extent_map *em = NULL;
6741 	struct extent_map_tree *em_tree = &inode->extent_tree;
6742 	struct extent_io_tree *io_tree = &inode->io_tree;
6743 	const bool new_inline = !page || create;
6744 
6745 	read_lock(&em_tree->lock);
6746 	em = lookup_extent_mapping(em_tree, start, len);
6747 	if (em)
6748 		em->bdev = fs_info->fs_devices->latest_bdev;
6749 	read_unlock(&em_tree->lock);
6750 
6751 	if (em) {
6752 		if (em->start > start || em->start + em->len <= start)
6753 			free_extent_map(em);
6754 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6755 			free_extent_map(em);
6756 		else
6757 			goto out;
6758 	}
6759 	em = alloc_extent_map();
6760 	if (!em) {
6761 		err = -ENOMEM;
6762 		goto out;
6763 	}
6764 	em->bdev = fs_info->fs_devices->latest_bdev;
6765 	em->start = EXTENT_MAP_HOLE;
6766 	em->orig_start = EXTENT_MAP_HOLE;
6767 	em->len = (u64)-1;
6768 	em->block_len = (u64)-1;
6769 
6770 	path = btrfs_alloc_path();
6771 	if (!path) {
6772 		err = -ENOMEM;
6773 		goto out;
6774 	}
6775 
6776 	/* Chances are we'll be called again, so go ahead and do readahead */
6777 	path->reada = READA_FORWARD;
6778 
6779 	/*
6780 	 * Unless we're going to uncompress the inline extent, no sleep would
6781 	 * happen.
6782 	 */
6783 	path->leave_spinning = 1;
6784 
6785 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6786 	if (ret < 0) {
6787 		err = ret;
6788 		goto out;
6789 	}
6790 
6791 	if (ret != 0) {
6792 		if (path->slots[0] == 0)
6793 			goto not_found;
6794 		path->slots[0]--;
6795 	}
6796 
6797 	leaf = path->nodes[0];
6798 	item = btrfs_item_ptr(leaf, path->slots[0],
6799 			      struct btrfs_file_extent_item);
6800 	/* are we inside the extent that was found? */
6801 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6802 	found_type = found_key.type;
6803 	if (found_key.objectid != objectid ||
6804 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6805 		/*
6806 		 * If we backup past the first extent we want to move forward
6807 		 * and see if there is an extent in front of us, otherwise we'll
6808 		 * say there is a hole for our whole search range which can
6809 		 * cause problems.
6810 		 */
6811 		extent_end = start;
6812 		goto next;
6813 	}
6814 
6815 	found_type = btrfs_file_extent_type(leaf, item);
6816 	extent_start = found_key.offset;
6817 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6818 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6819 		extent_end = extent_start +
6820 		       btrfs_file_extent_num_bytes(leaf, item);
6821 
6822 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6823 						       extent_start);
6824 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6825 		size_t size;
6826 
6827 		size = btrfs_file_extent_ram_bytes(leaf, item);
6828 		extent_end = ALIGN(extent_start + size,
6829 				   fs_info->sectorsize);
6830 
6831 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6832 						      path->slots[0],
6833 						      extent_start);
6834 	}
6835 next:
6836 	if (start >= extent_end) {
6837 		path->slots[0]++;
6838 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6839 			ret = btrfs_next_leaf(root, path);
6840 			if (ret < 0) {
6841 				err = ret;
6842 				goto out;
6843 			}
6844 			if (ret > 0)
6845 				goto not_found;
6846 			leaf = path->nodes[0];
6847 		}
6848 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6849 		if (found_key.objectid != objectid ||
6850 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6851 			goto not_found;
6852 		if (start + len <= found_key.offset)
6853 			goto not_found;
6854 		if (start > found_key.offset)
6855 			goto next;
6856 		em->start = start;
6857 		em->orig_start = start;
6858 		em->len = found_key.offset - start;
6859 		goto not_found_em;
6860 	}
6861 
6862 	btrfs_extent_item_to_extent_map(inode, path, item,
6863 			new_inline, em);
6864 
6865 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6866 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6867 		goto insert;
6868 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6869 		unsigned long ptr;
6870 		char *map;
6871 		size_t size;
6872 		size_t extent_offset;
6873 		size_t copy_size;
6874 
6875 		if (new_inline)
6876 			goto out;
6877 
6878 		size = btrfs_file_extent_ram_bytes(leaf, item);
6879 		extent_offset = page_offset(page) + pg_offset - extent_start;
6880 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6881 				  size - extent_offset);
6882 		em->start = extent_start + extent_offset;
6883 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6884 		em->orig_block_len = em->len;
6885 		em->orig_start = em->start;
6886 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6887 
6888 		btrfs_set_path_blocking(path);
6889 		if (!PageUptodate(page)) {
6890 			if (btrfs_file_extent_compression(leaf, item) !=
6891 			    BTRFS_COMPRESS_NONE) {
6892 				ret = uncompress_inline(path, page, pg_offset,
6893 							extent_offset, item);
6894 				if (ret) {
6895 					err = ret;
6896 					goto out;
6897 				}
6898 			} else {
6899 				map = kmap(page);
6900 				read_extent_buffer(leaf, map + pg_offset, ptr,
6901 						   copy_size);
6902 				if (pg_offset + copy_size < PAGE_SIZE) {
6903 					memset(map + pg_offset + copy_size, 0,
6904 					       PAGE_SIZE - pg_offset -
6905 					       copy_size);
6906 				}
6907 				kunmap(page);
6908 			}
6909 			flush_dcache_page(page);
6910 		}
6911 		set_extent_uptodate(io_tree, em->start,
6912 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6913 		goto insert;
6914 	}
6915 not_found:
6916 	em->start = start;
6917 	em->orig_start = start;
6918 	em->len = len;
6919 not_found_em:
6920 	em->block_start = EXTENT_MAP_HOLE;
6921 insert:
6922 	btrfs_release_path(path);
6923 	if (em->start > start || extent_map_end(em) <= start) {
6924 		btrfs_err(fs_info,
6925 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6926 			  em->start, em->len, start, len);
6927 		err = -EIO;
6928 		goto out;
6929 	}
6930 
6931 	err = 0;
6932 	write_lock(&em_tree->lock);
6933 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6934 	write_unlock(&em_tree->lock);
6935 out:
6936 	btrfs_free_path(path);
6937 
6938 	trace_btrfs_get_extent(root, inode, em);
6939 
6940 	if (err) {
6941 		free_extent_map(em);
6942 		return ERR_PTR(err);
6943 	}
6944 	BUG_ON(!em); /* Error is always set */
6945 	return em;
6946 }
6947 
6948 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6949 		struct page *page,
6950 		size_t pg_offset, u64 start, u64 len,
6951 		int create)
6952 {
6953 	struct extent_map *em;
6954 	struct extent_map *hole_em = NULL;
6955 	u64 range_start = start;
6956 	u64 end;
6957 	u64 found;
6958 	u64 found_end;
6959 	int err = 0;
6960 
6961 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6962 	if (IS_ERR(em))
6963 		return em;
6964 	/*
6965 	 * If our em maps to:
6966 	 * - a hole or
6967 	 * - a pre-alloc extent,
6968 	 * there might actually be delalloc bytes behind it.
6969 	 */
6970 	if (em->block_start != EXTENT_MAP_HOLE &&
6971 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6972 		return em;
6973 	else
6974 		hole_em = em;
6975 
6976 	/* check to see if we've wrapped (len == -1 or similar) */
6977 	end = start + len;
6978 	if (end < start)
6979 		end = (u64)-1;
6980 	else
6981 		end -= 1;
6982 
6983 	em = NULL;
6984 
6985 	/* ok, we didn't find anything, lets look for delalloc */
6986 	found = count_range_bits(&inode->io_tree, &range_start,
6987 				 end, len, EXTENT_DELALLOC, 1);
6988 	found_end = range_start + found;
6989 	if (found_end < range_start)
6990 		found_end = (u64)-1;
6991 
6992 	/*
6993 	 * we didn't find anything useful, return
6994 	 * the original results from get_extent()
6995 	 */
6996 	if (range_start > end || found_end <= start) {
6997 		em = hole_em;
6998 		hole_em = NULL;
6999 		goto out;
7000 	}
7001 
7002 	/* adjust the range_start to make sure it doesn't
7003 	 * go backwards from the start they passed in
7004 	 */
7005 	range_start = max(start, range_start);
7006 	found = found_end - range_start;
7007 
7008 	if (found > 0) {
7009 		u64 hole_start = start;
7010 		u64 hole_len = len;
7011 
7012 		em = alloc_extent_map();
7013 		if (!em) {
7014 			err = -ENOMEM;
7015 			goto out;
7016 		}
7017 		/*
7018 		 * when btrfs_get_extent can't find anything it
7019 		 * returns one huge hole
7020 		 *
7021 		 * make sure what it found really fits our range, and
7022 		 * adjust to make sure it is based on the start from
7023 		 * the caller
7024 		 */
7025 		if (hole_em) {
7026 			u64 calc_end = extent_map_end(hole_em);
7027 
7028 			if (calc_end <= start || (hole_em->start > end)) {
7029 				free_extent_map(hole_em);
7030 				hole_em = NULL;
7031 			} else {
7032 				hole_start = max(hole_em->start, start);
7033 				hole_len = calc_end - hole_start;
7034 			}
7035 		}
7036 		em->bdev = NULL;
7037 		if (hole_em && range_start > hole_start) {
7038 			/* our hole starts before our delalloc, so we
7039 			 * have to return just the parts of the hole
7040 			 * that go until  the delalloc starts
7041 			 */
7042 			em->len = min(hole_len,
7043 				      range_start - hole_start);
7044 			em->start = hole_start;
7045 			em->orig_start = hole_start;
7046 			/*
7047 			 * don't adjust block start at all,
7048 			 * it is fixed at EXTENT_MAP_HOLE
7049 			 */
7050 			em->block_start = hole_em->block_start;
7051 			em->block_len = hole_len;
7052 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7053 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7054 		} else {
7055 			em->start = range_start;
7056 			em->len = found;
7057 			em->orig_start = range_start;
7058 			em->block_start = EXTENT_MAP_DELALLOC;
7059 			em->block_len = found;
7060 		}
7061 	} else {
7062 		return hole_em;
7063 	}
7064 out:
7065 
7066 	free_extent_map(hole_em);
7067 	if (err) {
7068 		free_extent_map(em);
7069 		return ERR_PTR(err);
7070 	}
7071 	return em;
7072 }
7073 
7074 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7075 						  const u64 start,
7076 						  const u64 len,
7077 						  const u64 orig_start,
7078 						  const u64 block_start,
7079 						  const u64 block_len,
7080 						  const u64 orig_block_len,
7081 						  const u64 ram_bytes,
7082 						  const int type)
7083 {
7084 	struct extent_map *em = NULL;
7085 	int ret;
7086 
7087 	if (type != BTRFS_ORDERED_NOCOW) {
7088 		em = create_io_em(inode, start, len, orig_start,
7089 				  block_start, block_len, orig_block_len,
7090 				  ram_bytes,
7091 				  BTRFS_COMPRESS_NONE, /* compress_type */
7092 				  type);
7093 		if (IS_ERR(em))
7094 			goto out;
7095 	}
7096 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7097 					   len, block_len, type);
7098 	if (ret) {
7099 		if (em) {
7100 			free_extent_map(em);
7101 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7102 						start + len - 1, 0);
7103 		}
7104 		em = ERR_PTR(ret);
7105 	}
7106  out:
7107 
7108 	return em;
7109 }
7110 
7111 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7112 						  u64 start, u64 len)
7113 {
7114 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7115 	struct btrfs_root *root = BTRFS_I(inode)->root;
7116 	struct extent_map *em;
7117 	struct btrfs_key ins;
7118 	u64 alloc_hint;
7119 	int ret;
7120 
7121 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7122 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7123 				   0, alloc_hint, &ins, 1, 1);
7124 	if (ret)
7125 		return ERR_PTR(ret);
7126 
7127 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7128 				     ins.objectid, ins.offset, ins.offset,
7129 				     ins.offset, BTRFS_ORDERED_REGULAR);
7130 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7131 	if (IS_ERR(em))
7132 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7133 					   ins.offset, 1);
7134 
7135 	return em;
7136 }
7137 
7138 /*
7139  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7140  * block must be cow'd
7141  */
7142 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7143 			      u64 *orig_start, u64 *orig_block_len,
7144 			      u64 *ram_bytes)
7145 {
7146 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7147 	struct btrfs_path *path;
7148 	int ret;
7149 	struct extent_buffer *leaf;
7150 	struct btrfs_root *root = BTRFS_I(inode)->root;
7151 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7152 	struct btrfs_file_extent_item *fi;
7153 	struct btrfs_key key;
7154 	u64 disk_bytenr;
7155 	u64 backref_offset;
7156 	u64 extent_end;
7157 	u64 num_bytes;
7158 	int slot;
7159 	int found_type;
7160 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7161 
7162 	path = btrfs_alloc_path();
7163 	if (!path)
7164 		return -ENOMEM;
7165 
7166 	ret = btrfs_lookup_file_extent(NULL, root, path,
7167 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7168 	if (ret < 0)
7169 		goto out;
7170 
7171 	slot = path->slots[0];
7172 	if (ret == 1) {
7173 		if (slot == 0) {
7174 			/* can't find the item, must cow */
7175 			ret = 0;
7176 			goto out;
7177 		}
7178 		slot--;
7179 	}
7180 	ret = 0;
7181 	leaf = path->nodes[0];
7182 	btrfs_item_key_to_cpu(leaf, &key, slot);
7183 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7184 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7185 		/* not our file or wrong item type, must cow */
7186 		goto out;
7187 	}
7188 
7189 	if (key.offset > offset) {
7190 		/* Wrong offset, must cow */
7191 		goto out;
7192 	}
7193 
7194 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7195 	found_type = btrfs_file_extent_type(leaf, fi);
7196 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7197 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7198 		/* not a regular extent, must cow */
7199 		goto out;
7200 	}
7201 
7202 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7203 		goto out;
7204 
7205 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7206 	if (extent_end <= offset)
7207 		goto out;
7208 
7209 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7210 	if (disk_bytenr == 0)
7211 		goto out;
7212 
7213 	if (btrfs_file_extent_compression(leaf, fi) ||
7214 	    btrfs_file_extent_encryption(leaf, fi) ||
7215 	    btrfs_file_extent_other_encoding(leaf, fi))
7216 		goto out;
7217 
7218 	/*
7219 	 * Do the same check as in btrfs_cross_ref_exist but without the
7220 	 * unnecessary search.
7221 	 */
7222 	if (btrfs_file_extent_generation(leaf, fi) <=
7223 	    btrfs_root_last_snapshot(&root->root_item))
7224 		goto out;
7225 
7226 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7227 
7228 	if (orig_start) {
7229 		*orig_start = key.offset - backref_offset;
7230 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7231 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7232 	}
7233 
7234 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7235 		goto out;
7236 
7237 	num_bytes = min(offset + *len, extent_end) - offset;
7238 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7239 		u64 range_end;
7240 
7241 		range_end = round_up(offset + num_bytes,
7242 				     root->fs_info->sectorsize) - 1;
7243 		ret = test_range_bit(io_tree, offset, range_end,
7244 				     EXTENT_DELALLOC, 0, NULL);
7245 		if (ret) {
7246 			ret = -EAGAIN;
7247 			goto out;
7248 		}
7249 	}
7250 
7251 	btrfs_release_path(path);
7252 
7253 	/*
7254 	 * look for other files referencing this extent, if we
7255 	 * find any we must cow
7256 	 */
7257 
7258 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7259 				    key.offset - backref_offset, disk_bytenr);
7260 	if (ret) {
7261 		ret = 0;
7262 		goto out;
7263 	}
7264 
7265 	/*
7266 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7267 	 * in this extent we are about to write.  If there
7268 	 * are any csums in that range we have to cow in order
7269 	 * to keep the csums correct
7270 	 */
7271 	disk_bytenr += backref_offset;
7272 	disk_bytenr += offset - key.offset;
7273 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7274 		goto out;
7275 	/*
7276 	 * all of the above have passed, it is safe to overwrite this extent
7277 	 * without cow
7278 	 */
7279 	*len = num_bytes;
7280 	ret = 1;
7281 out:
7282 	btrfs_free_path(path);
7283 	return ret;
7284 }
7285 
7286 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7287 			      struct extent_state **cached_state, int writing)
7288 {
7289 	struct btrfs_ordered_extent *ordered;
7290 	int ret = 0;
7291 
7292 	while (1) {
7293 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7294 				 cached_state);
7295 		/*
7296 		 * We're concerned with the entire range that we're going to be
7297 		 * doing DIO to, so we need to make sure there's no ordered
7298 		 * extents in this range.
7299 		 */
7300 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7301 						     lockend - lockstart + 1);
7302 
7303 		/*
7304 		 * We need to make sure there are no buffered pages in this
7305 		 * range either, we could have raced between the invalidate in
7306 		 * generic_file_direct_write and locking the extent.  The
7307 		 * invalidate needs to happen so that reads after a write do not
7308 		 * get stale data.
7309 		 */
7310 		if (!ordered &&
7311 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7312 							 lockstart, lockend)))
7313 			break;
7314 
7315 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7316 				     cached_state);
7317 
7318 		if (ordered) {
7319 			/*
7320 			 * If we are doing a DIO read and the ordered extent we
7321 			 * found is for a buffered write, we can not wait for it
7322 			 * to complete and retry, because if we do so we can
7323 			 * deadlock with concurrent buffered writes on page
7324 			 * locks. This happens only if our DIO read covers more
7325 			 * than one extent map, if at this point has already
7326 			 * created an ordered extent for a previous extent map
7327 			 * and locked its range in the inode's io tree, and a
7328 			 * concurrent write against that previous extent map's
7329 			 * range and this range started (we unlock the ranges
7330 			 * in the io tree only when the bios complete and
7331 			 * buffered writes always lock pages before attempting
7332 			 * to lock range in the io tree).
7333 			 */
7334 			if (writing ||
7335 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7336 				btrfs_start_ordered_extent(inode, ordered, 1);
7337 			else
7338 				ret = -ENOTBLK;
7339 			btrfs_put_ordered_extent(ordered);
7340 		} else {
7341 			/*
7342 			 * We could trigger writeback for this range (and wait
7343 			 * for it to complete) and then invalidate the pages for
7344 			 * this range (through invalidate_inode_pages2_range()),
7345 			 * but that can lead us to a deadlock with a concurrent
7346 			 * call to readpages() (a buffered read or a defrag call
7347 			 * triggered a readahead) on a page lock due to an
7348 			 * ordered dio extent we created before but did not have
7349 			 * yet a corresponding bio submitted (whence it can not
7350 			 * complete), which makes readpages() wait for that
7351 			 * ordered extent to complete while holding a lock on
7352 			 * that page.
7353 			 */
7354 			ret = -ENOTBLK;
7355 		}
7356 
7357 		if (ret)
7358 			break;
7359 
7360 		cond_resched();
7361 	}
7362 
7363 	return ret;
7364 }
7365 
7366 /* The callers of this must take lock_extent() */
7367 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7368 				       u64 orig_start, u64 block_start,
7369 				       u64 block_len, u64 orig_block_len,
7370 				       u64 ram_bytes, int compress_type,
7371 				       int type)
7372 {
7373 	struct extent_map_tree *em_tree;
7374 	struct extent_map *em;
7375 	struct btrfs_root *root = BTRFS_I(inode)->root;
7376 	int ret;
7377 
7378 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7379 	       type == BTRFS_ORDERED_COMPRESSED ||
7380 	       type == BTRFS_ORDERED_NOCOW ||
7381 	       type == BTRFS_ORDERED_REGULAR);
7382 
7383 	em_tree = &BTRFS_I(inode)->extent_tree;
7384 	em = alloc_extent_map();
7385 	if (!em)
7386 		return ERR_PTR(-ENOMEM);
7387 
7388 	em->start = start;
7389 	em->orig_start = orig_start;
7390 	em->len = len;
7391 	em->block_len = block_len;
7392 	em->block_start = block_start;
7393 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7394 	em->orig_block_len = orig_block_len;
7395 	em->ram_bytes = ram_bytes;
7396 	em->generation = -1;
7397 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7398 	if (type == BTRFS_ORDERED_PREALLOC) {
7399 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7400 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7401 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7402 		em->compress_type = compress_type;
7403 	}
7404 
7405 	do {
7406 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7407 				em->start + em->len - 1, 0);
7408 		write_lock(&em_tree->lock);
7409 		ret = add_extent_mapping(em_tree, em, 1);
7410 		write_unlock(&em_tree->lock);
7411 		/*
7412 		 * The caller has taken lock_extent(), who could race with us
7413 		 * to add em?
7414 		 */
7415 	} while (ret == -EEXIST);
7416 
7417 	if (ret) {
7418 		free_extent_map(em);
7419 		return ERR_PTR(ret);
7420 	}
7421 
7422 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7423 	return em;
7424 }
7425 
7426 
7427 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7428 					struct buffer_head *bh_result,
7429 					struct inode *inode,
7430 					u64 start, u64 len)
7431 {
7432 	if (em->block_start == EXTENT_MAP_HOLE ||
7433 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7434 		return -ENOENT;
7435 
7436 	len = min(len, em->len - (start - em->start));
7437 
7438 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7439 		inode->i_blkbits;
7440 	bh_result->b_size = len;
7441 	bh_result->b_bdev = em->bdev;
7442 	set_buffer_mapped(bh_result);
7443 
7444 	return 0;
7445 }
7446 
7447 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7448 					 struct buffer_head *bh_result,
7449 					 struct inode *inode,
7450 					 struct btrfs_dio_data *dio_data,
7451 					 u64 start, u64 len)
7452 {
7453 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7454 	struct extent_map *em = *map;
7455 	int ret = 0;
7456 
7457 	/*
7458 	 * We don't allocate a new extent in the following cases
7459 	 *
7460 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7461 	 * existing extent.
7462 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7463 	 * just use the extent.
7464 	 *
7465 	 */
7466 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7467 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7468 	     em->block_start != EXTENT_MAP_HOLE)) {
7469 		int type;
7470 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7471 
7472 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7473 			type = BTRFS_ORDERED_PREALLOC;
7474 		else
7475 			type = BTRFS_ORDERED_NOCOW;
7476 		len = min(len, em->len - (start - em->start));
7477 		block_start = em->block_start + (start - em->start);
7478 
7479 		if (can_nocow_extent(inode, start, &len, &orig_start,
7480 				     &orig_block_len, &ram_bytes) == 1 &&
7481 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7482 			struct extent_map *em2;
7483 
7484 			em2 = btrfs_create_dio_extent(inode, start, len,
7485 						      orig_start, block_start,
7486 						      len, orig_block_len,
7487 						      ram_bytes, type);
7488 			btrfs_dec_nocow_writers(fs_info, block_start);
7489 			if (type == BTRFS_ORDERED_PREALLOC) {
7490 				free_extent_map(em);
7491 				*map = em = em2;
7492 			}
7493 
7494 			if (em2 && IS_ERR(em2)) {
7495 				ret = PTR_ERR(em2);
7496 				goto out;
7497 			}
7498 			/*
7499 			 * For inode marked NODATACOW or extent marked PREALLOC,
7500 			 * use the existing or preallocated extent, so does not
7501 			 * need to adjust btrfs_space_info's bytes_may_use.
7502 			 */
7503 			btrfs_free_reserved_data_space_noquota(inode, start,
7504 							       len);
7505 			goto skip_cow;
7506 		}
7507 	}
7508 
7509 	/* this will cow the extent */
7510 	len = bh_result->b_size;
7511 	free_extent_map(em);
7512 	*map = em = btrfs_new_extent_direct(inode, start, len);
7513 	if (IS_ERR(em)) {
7514 		ret = PTR_ERR(em);
7515 		goto out;
7516 	}
7517 
7518 	len = min(len, em->len - (start - em->start));
7519 
7520 skip_cow:
7521 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7522 		inode->i_blkbits;
7523 	bh_result->b_size = len;
7524 	bh_result->b_bdev = em->bdev;
7525 	set_buffer_mapped(bh_result);
7526 
7527 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7528 		set_buffer_new(bh_result);
7529 
7530 	/*
7531 	 * Need to update the i_size under the extent lock so buffered
7532 	 * readers will get the updated i_size when we unlock.
7533 	 */
7534 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7535 		i_size_write(inode, start + len);
7536 
7537 	WARN_ON(dio_data->reserve < len);
7538 	dio_data->reserve -= len;
7539 	dio_data->unsubmitted_oe_range_end = start + len;
7540 	current->journal_info = dio_data;
7541 out:
7542 	return ret;
7543 }
7544 
7545 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7546 				   struct buffer_head *bh_result, int create)
7547 {
7548 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7549 	struct extent_map *em;
7550 	struct extent_state *cached_state = NULL;
7551 	struct btrfs_dio_data *dio_data = NULL;
7552 	u64 start = iblock << inode->i_blkbits;
7553 	u64 lockstart, lockend;
7554 	u64 len = bh_result->b_size;
7555 	int unlock_bits = EXTENT_LOCKED;
7556 	int ret = 0;
7557 
7558 	if (create)
7559 		unlock_bits |= EXTENT_DIRTY;
7560 	else
7561 		len = min_t(u64, len, fs_info->sectorsize);
7562 
7563 	lockstart = start;
7564 	lockend = start + len - 1;
7565 
7566 	if (current->journal_info) {
7567 		/*
7568 		 * Need to pull our outstanding extents and set journal_info to NULL so
7569 		 * that anything that needs to check if there's a transaction doesn't get
7570 		 * confused.
7571 		 */
7572 		dio_data = current->journal_info;
7573 		current->journal_info = NULL;
7574 	}
7575 
7576 	/*
7577 	 * If this errors out it's because we couldn't invalidate pagecache for
7578 	 * this range and we need to fallback to buffered.
7579 	 */
7580 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7581 			       create)) {
7582 		ret = -ENOTBLK;
7583 		goto err;
7584 	}
7585 
7586 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7587 	if (IS_ERR(em)) {
7588 		ret = PTR_ERR(em);
7589 		goto unlock_err;
7590 	}
7591 
7592 	/*
7593 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7594 	 * io.  INLINE is special, and we could probably kludge it in here, but
7595 	 * it's still buffered so for safety lets just fall back to the generic
7596 	 * buffered path.
7597 	 *
7598 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7599 	 * decompress it, so there will be buffering required no matter what we
7600 	 * do, so go ahead and fallback to buffered.
7601 	 *
7602 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7603 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7604 	 * the generic code.
7605 	 */
7606 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7607 	    em->block_start == EXTENT_MAP_INLINE) {
7608 		free_extent_map(em);
7609 		ret = -ENOTBLK;
7610 		goto unlock_err;
7611 	}
7612 
7613 	if (create) {
7614 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7615 						    dio_data, start, len);
7616 		if (ret < 0)
7617 			goto unlock_err;
7618 
7619 		/* clear and unlock the entire range */
7620 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7621 				 unlock_bits, 1, 0, &cached_state);
7622 	} else {
7623 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7624 						   start, len);
7625 		/* Can be negative only if we read from a hole */
7626 		if (ret < 0) {
7627 			ret = 0;
7628 			free_extent_map(em);
7629 			goto unlock_err;
7630 		}
7631 		/*
7632 		 * We need to unlock only the end area that we aren't using.
7633 		 * The rest is going to be unlocked by the endio routine.
7634 		 */
7635 		lockstart = start + bh_result->b_size;
7636 		if (lockstart < lockend) {
7637 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7638 					 lockend, unlock_bits, 1, 0,
7639 					 &cached_state);
7640 		} else {
7641 			free_extent_state(cached_state);
7642 		}
7643 	}
7644 
7645 	free_extent_map(em);
7646 
7647 	return 0;
7648 
7649 unlock_err:
7650 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7651 			 unlock_bits, 1, 0, &cached_state);
7652 err:
7653 	if (dio_data)
7654 		current->journal_info = dio_data;
7655 	return ret;
7656 }
7657 
7658 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7659 						 struct bio *bio,
7660 						 int mirror_num)
7661 {
7662 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7663 	blk_status_t ret;
7664 
7665 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7666 
7667 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7668 	if (ret)
7669 		return ret;
7670 
7671 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7672 
7673 	return ret;
7674 }
7675 
7676 static int btrfs_check_dio_repairable(struct inode *inode,
7677 				      struct bio *failed_bio,
7678 				      struct io_failure_record *failrec,
7679 				      int failed_mirror)
7680 {
7681 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7682 	int num_copies;
7683 
7684 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7685 	if (num_copies == 1) {
7686 		/*
7687 		 * we only have a single copy of the data, so don't bother with
7688 		 * all the retry and error correction code that follows. no
7689 		 * matter what the error is, it is very likely to persist.
7690 		 */
7691 		btrfs_debug(fs_info,
7692 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7693 			num_copies, failrec->this_mirror, failed_mirror);
7694 		return 0;
7695 	}
7696 
7697 	failrec->failed_mirror = failed_mirror;
7698 	failrec->this_mirror++;
7699 	if (failrec->this_mirror == failed_mirror)
7700 		failrec->this_mirror++;
7701 
7702 	if (failrec->this_mirror > num_copies) {
7703 		btrfs_debug(fs_info,
7704 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7705 			num_copies, failrec->this_mirror, failed_mirror);
7706 		return 0;
7707 	}
7708 
7709 	return 1;
7710 }
7711 
7712 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7713 				   struct page *page, unsigned int pgoff,
7714 				   u64 start, u64 end, int failed_mirror,
7715 				   bio_end_io_t *repair_endio, void *repair_arg)
7716 {
7717 	struct io_failure_record *failrec;
7718 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7719 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7720 	struct bio *bio;
7721 	int isector;
7722 	unsigned int read_mode = 0;
7723 	int segs;
7724 	int ret;
7725 	blk_status_t status;
7726 	struct bio_vec bvec;
7727 
7728 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7729 
7730 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7731 	if (ret)
7732 		return errno_to_blk_status(ret);
7733 
7734 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7735 					 failed_mirror);
7736 	if (!ret) {
7737 		free_io_failure(failure_tree, io_tree, failrec);
7738 		return BLK_STS_IOERR;
7739 	}
7740 
7741 	segs = bio_segments(failed_bio);
7742 	bio_get_first_bvec(failed_bio, &bvec);
7743 	if (segs > 1 ||
7744 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7745 		read_mode |= REQ_FAILFAST_DEV;
7746 
7747 	isector = start - btrfs_io_bio(failed_bio)->logical;
7748 	isector >>= inode->i_sb->s_blocksize_bits;
7749 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7750 				pgoff, isector, repair_endio, repair_arg);
7751 	bio->bi_opf = REQ_OP_READ | read_mode;
7752 
7753 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7754 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7755 		    read_mode, failrec->this_mirror, failrec->in_validation);
7756 
7757 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7758 	if (status) {
7759 		free_io_failure(failure_tree, io_tree, failrec);
7760 		bio_put(bio);
7761 	}
7762 
7763 	return status;
7764 }
7765 
7766 struct btrfs_retry_complete {
7767 	struct completion done;
7768 	struct inode *inode;
7769 	u64 start;
7770 	int uptodate;
7771 };
7772 
7773 static void btrfs_retry_endio_nocsum(struct bio *bio)
7774 {
7775 	struct btrfs_retry_complete *done = bio->bi_private;
7776 	struct inode *inode = done->inode;
7777 	struct bio_vec *bvec;
7778 	struct extent_io_tree *io_tree, *failure_tree;
7779 	int i;
7780 
7781 	if (bio->bi_status)
7782 		goto end;
7783 
7784 	ASSERT(bio->bi_vcnt == 1);
7785 	io_tree = &BTRFS_I(inode)->io_tree;
7786 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7787 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7788 
7789 	done->uptodate = 1;
7790 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7791 	bio_for_each_segment_all(bvec, bio, i)
7792 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7793 				 io_tree, done->start, bvec->bv_page,
7794 				 btrfs_ino(BTRFS_I(inode)), 0);
7795 end:
7796 	complete(&done->done);
7797 	bio_put(bio);
7798 }
7799 
7800 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7801 						struct btrfs_io_bio *io_bio)
7802 {
7803 	struct btrfs_fs_info *fs_info;
7804 	struct bio_vec bvec;
7805 	struct bvec_iter iter;
7806 	struct btrfs_retry_complete done;
7807 	u64 start;
7808 	unsigned int pgoff;
7809 	u32 sectorsize;
7810 	int nr_sectors;
7811 	blk_status_t ret;
7812 	blk_status_t err = BLK_STS_OK;
7813 
7814 	fs_info = BTRFS_I(inode)->root->fs_info;
7815 	sectorsize = fs_info->sectorsize;
7816 
7817 	start = io_bio->logical;
7818 	done.inode = inode;
7819 	io_bio->bio.bi_iter = io_bio->iter;
7820 
7821 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7822 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7823 		pgoff = bvec.bv_offset;
7824 
7825 next_block_or_try_again:
7826 		done.uptodate = 0;
7827 		done.start = start;
7828 		init_completion(&done.done);
7829 
7830 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7831 				pgoff, start, start + sectorsize - 1,
7832 				io_bio->mirror_num,
7833 				btrfs_retry_endio_nocsum, &done);
7834 		if (ret) {
7835 			err = ret;
7836 			goto next;
7837 		}
7838 
7839 		wait_for_completion_io(&done.done);
7840 
7841 		if (!done.uptodate) {
7842 			/* We might have another mirror, so try again */
7843 			goto next_block_or_try_again;
7844 		}
7845 
7846 next:
7847 		start += sectorsize;
7848 
7849 		nr_sectors--;
7850 		if (nr_sectors) {
7851 			pgoff += sectorsize;
7852 			ASSERT(pgoff < PAGE_SIZE);
7853 			goto next_block_or_try_again;
7854 		}
7855 	}
7856 
7857 	return err;
7858 }
7859 
7860 static void btrfs_retry_endio(struct bio *bio)
7861 {
7862 	struct btrfs_retry_complete *done = bio->bi_private;
7863 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7864 	struct extent_io_tree *io_tree, *failure_tree;
7865 	struct inode *inode = done->inode;
7866 	struct bio_vec *bvec;
7867 	int uptodate;
7868 	int ret;
7869 	int i;
7870 
7871 	if (bio->bi_status)
7872 		goto end;
7873 
7874 	uptodate = 1;
7875 
7876 	ASSERT(bio->bi_vcnt == 1);
7877 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7878 
7879 	io_tree = &BTRFS_I(inode)->io_tree;
7880 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7881 
7882 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7883 	bio_for_each_segment_all(bvec, bio, i) {
7884 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7885 					     bvec->bv_offset, done->start,
7886 					     bvec->bv_len);
7887 		if (!ret)
7888 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7889 					 failure_tree, io_tree, done->start,
7890 					 bvec->bv_page,
7891 					 btrfs_ino(BTRFS_I(inode)),
7892 					 bvec->bv_offset);
7893 		else
7894 			uptodate = 0;
7895 	}
7896 
7897 	done->uptodate = uptodate;
7898 end:
7899 	complete(&done->done);
7900 	bio_put(bio);
7901 }
7902 
7903 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7904 		struct btrfs_io_bio *io_bio, blk_status_t err)
7905 {
7906 	struct btrfs_fs_info *fs_info;
7907 	struct bio_vec bvec;
7908 	struct bvec_iter iter;
7909 	struct btrfs_retry_complete done;
7910 	u64 start;
7911 	u64 offset = 0;
7912 	u32 sectorsize;
7913 	int nr_sectors;
7914 	unsigned int pgoff;
7915 	int csum_pos;
7916 	bool uptodate = (err == 0);
7917 	int ret;
7918 	blk_status_t status;
7919 
7920 	fs_info = BTRFS_I(inode)->root->fs_info;
7921 	sectorsize = fs_info->sectorsize;
7922 
7923 	err = BLK_STS_OK;
7924 	start = io_bio->logical;
7925 	done.inode = inode;
7926 	io_bio->bio.bi_iter = io_bio->iter;
7927 
7928 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7929 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7930 
7931 		pgoff = bvec.bv_offset;
7932 next_block:
7933 		if (uptodate) {
7934 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7935 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
7936 					bvec.bv_page, pgoff, start, sectorsize);
7937 			if (likely(!ret))
7938 				goto next;
7939 		}
7940 try_again:
7941 		done.uptodate = 0;
7942 		done.start = start;
7943 		init_completion(&done.done);
7944 
7945 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7946 					pgoff, start, start + sectorsize - 1,
7947 					io_bio->mirror_num, btrfs_retry_endio,
7948 					&done);
7949 		if (status) {
7950 			err = status;
7951 			goto next;
7952 		}
7953 
7954 		wait_for_completion_io(&done.done);
7955 
7956 		if (!done.uptodate) {
7957 			/* We might have another mirror, so try again */
7958 			goto try_again;
7959 		}
7960 next:
7961 		offset += sectorsize;
7962 		start += sectorsize;
7963 
7964 		ASSERT(nr_sectors);
7965 
7966 		nr_sectors--;
7967 		if (nr_sectors) {
7968 			pgoff += sectorsize;
7969 			ASSERT(pgoff < PAGE_SIZE);
7970 			goto next_block;
7971 		}
7972 	}
7973 
7974 	return err;
7975 }
7976 
7977 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
7978 		struct btrfs_io_bio *io_bio, blk_status_t err)
7979 {
7980 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7981 
7982 	if (skip_csum) {
7983 		if (unlikely(err))
7984 			return __btrfs_correct_data_nocsum(inode, io_bio);
7985 		else
7986 			return BLK_STS_OK;
7987 	} else {
7988 		return __btrfs_subio_endio_read(inode, io_bio, err);
7989 	}
7990 }
7991 
7992 static void btrfs_endio_direct_read(struct bio *bio)
7993 {
7994 	struct btrfs_dio_private *dip = bio->bi_private;
7995 	struct inode *inode = dip->inode;
7996 	struct bio *dio_bio;
7997 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7998 	blk_status_t err = bio->bi_status;
7999 
8000 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8001 		err = btrfs_subio_endio_read(inode, io_bio, err);
8002 
8003 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8004 		      dip->logical_offset + dip->bytes - 1);
8005 	dio_bio = dip->dio_bio;
8006 
8007 	kfree(dip);
8008 
8009 	dio_bio->bi_status = err;
8010 	dio_end_io(dio_bio);
8011 	btrfs_io_bio_free_csum(io_bio);
8012 	bio_put(bio);
8013 }
8014 
8015 static void __endio_write_update_ordered(struct inode *inode,
8016 					 const u64 offset, const u64 bytes,
8017 					 const bool uptodate)
8018 {
8019 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8020 	struct btrfs_ordered_extent *ordered = NULL;
8021 	struct btrfs_workqueue *wq;
8022 	btrfs_work_func_t func;
8023 	u64 ordered_offset = offset;
8024 	u64 ordered_bytes = bytes;
8025 	u64 last_offset;
8026 
8027 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8028 		wq = fs_info->endio_freespace_worker;
8029 		func = btrfs_freespace_write_helper;
8030 	} else {
8031 		wq = fs_info->endio_write_workers;
8032 		func = btrfs_endio_write_helper;
8033 	}
8034 
8035 	while (ordered_offset < offset + bytes) {
8036 		last_offset = ordered_offset;
8037 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8038 							   &ordered_offset,
8039 							   ordered_bytes,
8040 							   uptodate)) {
8041 			btrfs_init_work(&ordered->work, func,
8042 					finish_ordered_fn,
8043 					NULL, NULL);
8044 			btrfs_queue_work(wq, &ordered->work);
8045 		}
8046 		/*
8047 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8048 		 * extent in the range, we can exit.
8049 		 */
8050 		if (ordered_offset == last_offset)
8051 			return;
8052 		/*
8053 		 * Our bio might span multiple ordered extents. In this case
8054 		 * we keep going until we have accounted the whole dio.
8055 		 */
8056 		if (ordered_offset < offset + bytes) {
8057 			ordered_bytes = offset + bytes - ordered_offset;
8058 			ordered = NULL;
8059 		}
8060 	}
8061 }
8062 
8063 static void btrfs_endio_direct_write(struct bio *bio)
8064 {
8065 	struct btrfs_dio_private *dip = bio->bi_private;
8066 	struct bio *dio_bio = dip->dio_bio;
8067 
8068 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8069 				     dip->bytes, !bio->bi_status);
8070 
8071 	kfree(dip);
8072 
8073 	dio_bio->bi_status = bio->bi_status;
8074 	dio_end_io(dio_bio);
8075 	bio_put(bio);
8076 }
8077 
8078 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8079 				    struct bio *bio, u64 offset)
8080 {
8081 	struct inode *inode = private_data;
8082 	blk_status_t ret;
8083 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8084 	BUG_ON(ret); /* -ENOMEM */
8085 	return 0;
8086 }
8087 
8088 static void btrfs_end_dio_bio(struct bio *bio)
8089 {
8090 	struct btrfs_dio_private *dip = bio->bi_private;
8091 	blk_status_t err = bio->bi_status;
8092 
8093 	if (err)
8094 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8095 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8096 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8097 			   bio->bi_opf,
8098 			   (unsigned long long)bio->bi_iter.bi_sector,
8099 			   bio->bi_iter.bi_size, err);
8100 
8101 	if (dip->subio_endio)
8102 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8103 
8104 	if (err) {
8105 		/*
8106 		 * We want to perceive the errors flag being set before
8107 		 * decrementing the reference count. We don't need a barrier
8108 		 * since atomic operations with a return value are fully
8109 		 * ordered as per atomic_t.txt
8110 		 */
8111 		dip->errors = 1;
8112 	}
8113 
8114 	/* if there are more bios still pending for this dio, just exit */
8115 	if (!atomic_dec_and_test(&dip->pending_bios))
8116 		goto out;
8117 
8118 	if (dip->errors) {
8119 		bio_io_error(dip->orig_bio);
8120 	} else {
8121 		dip->dio_bio->bi_status = BLK_STS_OK;
8122 		bio_endio(dip->orig_bio);
8123 	}
8124 out:
8125 	bio_put(bio);
8126 }
8127 
8128 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8129 						 struct btrfs_dio_private *dip,
8130 						 struct bio *bio,
8131 						 u64 file_offset)
8132 {
8133 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8134 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8135 	blk_status_t ret;
8136 
8137 	/*
8138 	 * We load all the csum data we need when we submit
8139 	 * the first bio to reduce the csum tree search and
8140 	 * contention.
8141 	 */
8142 	if (dip->logical_offset == file_offset) {
8143 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8144 						file_offset);
8145 		if (ret)
8146 			return ret;
8147 	}
8148 
8149 	if (bio == dip->orig_bio)
8150 		return 0;
8151 
8152 	file_offset -= dip->logical_offset;
8153 	file_offset >>= inode->i_sb->s_blocksize_bits;
8154 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8155 
8156 	return 0;
8157 }
8158 
8159 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8160 		struct inode *inode, u64 file_offset, int async_submit)
8161 {
8162 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8163 	struct btrfs_dio_private *dip = bio->bi_private;
8164 	bool write = bio_op(bio) == REQ_OP_WRITE;
8165 	blk_status_t ret;
8166 
8167 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8168 	if (async_submit)
8169 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8170 
8171 	if (!write) {
8172 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8173 		if (ret)
8174 			goto err;
8175 	}
8176 
8177 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8178 		goto map;
8179 
8180 	if (write && async_submit) {
8181 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8182 					  file_offset, inode,
8183 					  btrfs_submit_bio_start_direct_io);
8184 		goto err;
8185 	} else if (write) {
8186 		/*
8187 		 * If we aren't doing async submit, calculate the csum of the
8188 		 * bio now.
8189 		 */
8190 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8191 		if (ret)
8192 			goto err;
8193 	} else {
8194 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8195 						     file_offset);
8196 		if (ret)
8197 			goto err;
8198 	}
8199 map:
8200 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8201 err:
8202 	return ret;
8203 }
8204 
8205 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8206 {
8207 	struct inode *inode = dip->inode;
8208 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8209 	struct bio *bio;
8210 	struct bio *orig_bio = dip->orig_bio;
8211 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8212 	u64 file_offset = dip->logical_offset;
8213 	u64 map_length;
8214 	int async_submit = 0;
8215 	u64 submit_len;
8216 	int clone_offset = 0;
8217 	int clone_len;
8218 	int ret;
8219 	blk_status_t status;
8220 
8221 	map_length = orig_bio->bi_iter.bi_size;
8222 	submit_len = map_length;
8223 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8224 			      &map_length, NULL, 0);
8225 	if (ret)
8226 		return -EIO;
8227 
8228 	if (map_length >= submit_len) {
8229 		bio = orig_bio;
8230 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8231 		goto submit;
8232 	}
8233 
8234 	/* async crcs make it difficult to collect full stripe writes. */
8235 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8236 		async_submit = 0;
8237 	else
8238 		async_submit = 1;
8239 
8240 	/* bio split */
8241 	ASSERT(map_length <= INT_MAX);
8242 	atomic_inc(&dip->pending_bios);
8243 	do {
8244 		clone_len = min_t(int, submit_len, map_length);
8245 
8246 		/*
8247 		 * This will never fail as it's passing GPF_NOFS and
8248 		 * the allocation is backed by btrfs_bioset.
8249 		 */
8250 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8251 					      clone_len);
8252 		bio->bi_private = dip;
8253 		bio->bi_end_io = btrfs_end_dio_bio;
8254 		btrfs_io_bio(bio)->logical = file_offset;
8255 
8256 		ASSERT(submit_len >= clone_len);
8257 		submit_len -= clone_len;
8258 		if (submit_len == 0)
8259 			break;
8260 
8261 		/*
8262 		 * Increase the count before we submit the bio so we know
8263 		 * the end IO handler won't happen before we increase the
8264 		 * count. Otherwise, the dip might get freed before we're
8265 		 * done setting it up.
8266 		 */
8267 		atomic_inc(&dip->pending_bios);
8268 
8269 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8270 						async_submit);
8271 		if (status) {
8272 			bio_put(bio);
8273 			atomic_dec(&dip->pending_bios);
8274 			goto out_err;
8275 		}
8276 
8277 		clone_offset += clone_len;
8278 		start_sector += clone_len >> 9;
8279 		file_offset += clone_len;
8280 
8281 		map_length = submit_len;
8282 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8283 				      start_sector << 9, &map_length, NULL, 0);
8284 		if (ret)
8285 			goto out_err;
8286 	} while (submit_len > 0);
8287 
8288 submit:
8289 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8290 	if (!status)
8291 		return 0;
8292 
8293 	bio_put(bio);
8294 out_err:
8295 	dip->errors = 1;
8296 	/*
8297 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8298 	 * perceived to be set. This ordering is ensured by the fact that an
8299 	 * atomic operations with a return value are fully ordered as per
8300 	 * atomic_t.txt
8301 	 */
8302 	if (atomic_dec_and_test(&dip->pending_bios))
8303 		bio_io_error(dip->orig_bio);
8304 
8305 	/* bio_end_io() will handle error, so we needn't return it */
8306 	return 0;
8307 }
8308 
8309 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8310 				loff_t file_offset)
8311 {
8312 	struct btrfs_dio_private *dip = NULL;
8313 	struct bio *bio = NULL;
8314 	struct btrfs_io_bio *io_bio;
8315 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8316 	int ret = 0;
8317 
8318 	bio = btrfs_bio_clone(dio_bio);
8319 
8320 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8321 	if (!dip) {
8322 		ret = -ENOMEM;
8323 		goto free_ordered;
8324 	}
8325 
8326 	dip->private = dio_bio->bi_private;
8327 	dip->inode = inode;
8328 	dip->logical_offset = file_offset;
8329 	dip->bytes = dio_bio->bi_iter.bi_size;
8330 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8331 	bio->bi_private = dip;
8332 	dip->orig_bio = bio;
8333 	dip->dio_bio = dio_bio;
8334 	atomic_set(&dip->pending_bios, 0);
8335 	io_bio = btrfs_io_bio(bio);
8336 	io_bio->logical = file_offset;
8337 
8338 	if (write) {
8339 		bio->bi_end_io = btrfs_endio_direct_write;
8340 	} else {
8341 		bio->bi_end_io = btrfs_endio_direct_read;
8342 		dip->subio_endio = btrfs_subio_endio_read;
8343 	}
8344 
8345 	/*
8346 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8347 	 * even if we fail to submit a bio, because in such case we do the
8348 	 * corresponding error handling below and it must not be done a second
8349 	 * time by btrfs_direct_IO().
8350 	 */
8351 	if (write) {
8352 		struct btrfs_dio_data *dio_data = current->journal_info;
8353 
8354 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8355 			dip->bytes;
8356 		dio_data->unsubmitted_oe_range_start =
8357 			dio_data->unsubmitted_oe_range_end;
8358 	}
8359 
8360 	ret = btrfs_submit_direct_hook(dip);
8361 	if (!ret)
8362 		return;
8363 
8364 	btrfs_io_bio_free_csum(io_bio);
8365 
8366 free_ordered:
8367 	/*
8368 	 * If we arrived here it means either we failed to submit the dip
8369 	 * or we either failed to clone the dio_bio or failed to allocate the
8370 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8371 	 * call bio_endio against our io_bio so that we get proper resource
8372 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8373 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8374 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8375 	 */
8376 	if (bio && dip) {
8377 		bio_io_error(bio);
8378 		/*
8379 		 * The end io callbacks free our dip, do the final put on bio
8380 		 * and all the cleanup and final put for dio_bio (through
8381 		 * dio_end_io()).
8382 		 */
8383 		dip = NULL;
8384 		bio = NULL;
8385 	} else {
8386 		if (write)
8387 			__endio_write_update_ordered(inode,
8388 						file_offset,
8389 						dio_bio->bi_iter.bi_size,
8390 						false);
8391 		else
8392 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8393 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8394 
8395 		dio_bio->bi_status = BLK_STS_IOERR;
8396 		/*
8397 		 * Releases and cleans up our dio_bio, no need to bio_put()
8398 		 * nor bio_endio()/bio_io_error() against dio_bio.
8399 		 */
8400 		dio_end_io(dio_bio);
8401 	}
8402 	if (bio)
8403 		bio_put(bio);
8404 	kfree(dip);
8405 }
8406 
8407 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8408 			       const struct iov_iter *iter, loff_t offset)
8409 {
8410 	int seg;
8411 	int i;
8412 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8413 	ssize_t retval = -EINVAL;
8414 
8415 	if (offset & blocksize_mask)
8416 		goto out;
8417 
8418 	if (iov_iter_alignment(iter) & blocksize_mask)
8419 		goto out;
8420 
8421 	/* If this is a write we don't need to check anymore */
8422 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8423 		return 0;
8424 	/*
8425 	 * Check to make sure we don't have duplicate iov_base's in this
8426 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8427 	 * when reading back.
8428 	 */
8429 	for (seg = 0; seg < iter->nr_segs; seg++) {
8430 		for (i = seg + 1; i < iter->nr_segs; i++) {
8431 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8432 				goto out;
8433 		}
8434 	}
8435 	retval = 0;
8436 out:
8437 	return retval;
8438 }
8439 
8440 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8441 {
8442 	struct file *file = iocb->ki_filp;
8443 	struct inode *inode = file->f_mapping->host;
8444 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8445 	struct btrfs_dio_data dio_data = { 0 };
8446 	struct extent_changeset *data_reserved = NULL;
8447 	loff_t offset = iocb->ki_pos;
8448 	size_t count = 0;
8449 	int flags = 0;
8450 	bool wakeup = true;
8451 	bool relock = false;
8452 	ssize_t ret;
8453 
8454 	if (check_direct_IO(fs_info, iter, offset))
8455 		return 0;
8456 
8457 	inode_dio_begin(inode);
8458 
8459 	/*
8460 	 * The generic stuff only does filemap_write_and_wait_range, which
8461 	 * isn't enough if we've written compressed pages to this area, so
8462 	 * we need to flush the dirty pages again to make absolutely sure
8463 	 * that any outstanding dirty pages are on disk.
8464 	 */
8465 	count = iov_iter_count(iter);
8466 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8467 		     &BTRFS_I(inode)->runtime_flags))
8468 		filemap_fdatawrite_range(inode->i_mapping, offset,
8469 					 offset + count - 1);
8470 
8471 	if (iov_iter_rw(iter) == WRITE) {
8472 		/*
8473 		 * If the write DIO is beyond the EOF, we need update
8474 		 * the isize, but it is protected by i_mutex. So we can
8475 		 * not unlock the i_mutex at this case.
8476 		 */
8477 		if (offset + count <= inode->i_size) {
8478 			dio_data.overwrite = 1;
8479 			inode_unlock(inode);
8480 			relock = true;
8481 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8482 			ret = -EAGAIN;
8483 			goto out;
8484 		}
8485 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8486 						   offset, count);
8487 		if (ret)
8488 			goto out;
8489 
8490 		/*
8491 		 * We need to know how many extents we reserved so that we can
8492 		 * do the accounting properly if we go over the number we
8493 		 * originally calculated.  Abuse current->journal_info for this.
8494 		 */
8495 		dio_data.reserve = round_up(count,
8496 					    fs_info->sectorsize);
8497 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8498 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8499 		current->journal_info = &dio_data;
8500 		down_read(&BTRFS_I(inode)->dio_sem);
8501 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8502 				     &BTRFS_I(inode)->runtime_flags)) {
8503 		inode_dio_end(inode);
8504 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8505 		wakeup = false;
8506 	}
8507 
8508 	ret = __blockdev_direct_IO(iocb, inode,
8509 				   fs_info->fs_devices->latest_bdev,
8510 				   iter, btrfs_get_blocks_direct, NULL,
8511 				   btrfs_submit_direct, flags);
8512 	if (iov_iter_rw(iter) == WRITE) {
8513 		up_read(&BTRFS_I(inode)->dio_sem);
8514 		current->journal_info = NULL;
8515 		if (ret < 0 && ret != -EIOCBQUEUED) {
8516 			if (dio_data.reserve)
8517 				btrfs_delalloc_release_space(inode, data_reserved,
8518 					offset, dio_data.reserve, true);
8519 			/*
8520 			 * On error we might have left some ordered extents
8521 			 * without submitting corresponding bios for them, so
8522 			 * cleanup them up to avoid other tasks getting them
8523 			 * and waiting for them to complete forever.
8524 			 */
8525 			if (dio_data.unsubmitted_oe_range_start <
8526 			    dio_data.unsubmitted_oe_range_end)
8527 				__endio_write_update_ordered(inode,
8528 					dio_data.unsubmitted_oe_range_start,
8529 					dio_data.unsubmitted_oe_range_end -
8530 					dio_data.unsubmitted_oe_range_start,
8531 					false);
8532 		} else if (ret >= 0 && (size_t)ret < count)
8533 			btrfs_delalloc_release_space(inode, data_reserved,
8534 					offset, count - (size_t)ret, true);
8535 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8536 	}
8537 out:
8538 	if (wakeup)
8539 		inode_dio_end(inode);
8540 	if (relock)
8541 		inode_lock(inode);
8542 
8543 	extent_changeset_free(data_reserved);
8544 	return ret;
8545 }
8546 
8547 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8548 
8549 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8550 		__u64 start, __u64 len)
8551 {
8552 	int	ret;
8553 
8554 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8555 	if (ret)
8556 		return ret;
8557 
8558 	return extent_fiemap(inode, fieinfo, start, len);
8559 }
8560 
8561 int btrfs_readpage(struct file *file, struct page *page)
8562 {
8563 	struct extent_io_tree *tree;
8564 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8565 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8566 }
8567 
8568 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8569 {
8570 	struct inode *inode = page->mapping->host;
8571 	int ret;
8572 
8573 	if (current->flags & PF_MEMALLOC) {
8574 		redirty_page_for_writepage(wbc, page);
8575 		unlock_page(page);
8576 		return 0;
8577 	}
8578 
8579 	/*
8580 	 * If we are under memory pressure we will call this directly from the
8581 	 * VM, we need to make sure we have the inode referenced for the ordered
8582 	 * extent.  If not just return like we didn't do anything.
8583 	 */
8584 	if (!igrab(inode)) {
8585 		redirty_page_for_writepage(wbc, page);
8586 		return AOP_WRITEPAGE_ACTIVATE;
8587 	}
8588 	ret = extent_write_full_page(page, wbc);
8589 	btrfs_add_delayed_iput(inode);
8590 	return ret;
8591 }
8592 
8593 static int btrfs_writepages(struct address_space *mapping,
8594 			    struct writeback_control *wbc)
8595 {
8596 	return extent_writepages(mapping, wbc);
8597 }
8598 
8599 static int
8600 btrfs_readpages(struct file *file, struct address_space *mapping,
8601 		struct list_head *pages, unsigned nr_pages)
8602 {
8603 	return extent_readpages(mapping, pages, nr_pages);
8604 }
8605 
8606 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8607 {
8608 	int ret = try_release_extent_mapping(page, gfp_flags);
8609 	if (ret == 1) {
8610 		ClearPagePrivate(page);
8611 		set_page_private(page, 0);
8612 		put_page(page);
8613 	}
8614 	return ret;
8615 }
8616 
8617 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8618 {
8619 	if (PageWriteback(page) || PageDirty(page))
8620 		return 0;
8621 	return __btrfs_releasepage(page, gfp_flags);
8622 }
8623 
8624 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8625 				 unsigned int length)
8626 {
8627 	struct inode *inode = page->mapping->host;
8628 	struct extent_io_tree *tree;
8629 	struct btrfs_ordered_extent *ordered;
8630 	struct extent_state *cached_state = NULL;
8631 	u64 page_start = page_offset(page);
8632 	u64 page_end = page_start + PAGE_SIZE - 1;
8633 	u64 start;
8634 	u64 end;
8635 	int inode_evicting = inode->i_state & I_FREEING;
8636 
8637 	/*
8638 	 * we have the page locked, so new writeback can't start,
8639 	 * and the dirty bit won't be cleared while we are here.
8640 	 *
8641 	 * Wait for IO on this page so that we can safely clear
8642 	 * the PagePrivate2 bit and do ordered accounting
8643 	 */
8644 	wait_on_page_writeback(page);
8645 
8646 	tree = &BTRFS_I(inode)->io_tree;
8647 	if (offset) {
8648 		btrfs_releasepage(page, GFP_NOFS);
8649 		return;
8650 	}
8651 
8652 	if (!inode_evicting)
8653 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8654 again:
8655 	start = page_start;
8656 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8657 					page_end - start + 1);
8658 	if (ordered) {
8659 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8660 		/*
8661 		 * IO on this page will never be started, so we need
8662 		 * to account for any ordered extents now
8663 		 */
8664 		if (!inode_evicting)
8665 			clear_extent_bit(tree, start, end,
8666 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8667 					 EXTENT_DELALLOC_NEW |
8668 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8669 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8670 		/*
8671 		 * whoever cleared the private bit is responsible
8672 		 * for the finish_ordered_io
8673 		 */
8674 		if (TestClearPagePrivate2(page)) {
8675 			struct btrfs_ordered_inode_tree *tree;
8676 			u64 new_len;
8677 
8678 			tree = &BTRFS_I(inode)->ordered_tree;
8679 
8680 			spin_lock_irq(&tree->lock);
8681 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8682 			new_len = start - ordered->file_offset;
8683 			if (new_len < ordered->truncated_len)
8684 				ordered->truncated_len = new_len;
8685 			spin_unlock_irq(&tree->lock);
8686 
8687 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8688 							   start,
8689 							   end - start + 1, 1))
8690 				btrfs_finish_ordered_io(ordered);
8691 		}
8692 		btrfs_put_ordered_extent(ordered);
8693 		if (!inode_evicting) {
8694 			cached_state = NULL;
8695 			lock_extent_bits(tree, start, end,
8696 					 &cached_state);
8697 		}
8698 
8699 		start = end + 1;
8700 		if (start < page_end)
8701 			goto again;
8702 	}
8703 
8704 	/*
8705 	 * Qgroup reserved space handler
8706 	 * Page here will be either
8707 	 * 1) Already written to disk
8708 	 *    In this case, its reserved space is released from data rsv map
8709 	 *    and will be freed by delayed_ref handler finally.
8710 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8711 	 *    space.
8712 	 * 2) Not written to disk
8713 	 *    This means the reserved space should be freed here. However,
8714 	 *    if a truncate invalidates the page (by clearing PageDirty)
8715 	 *    and the page is accounted for while allocating extent
8716 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8717 	 *    free the entire extent.
8718 	 */
8719 	if (PageDirty(page))
8720 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8721 	if (!inode_evicting) {
8722 		clear_extent_bit(tree, page_start, page_end,
8723 				 EXTENT_LOCKED | EXTENT_DIRTY |
8724 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8725 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8726 				 &cached_state);
8727 
8728 		__btrfs_releasepage(page, GFP_NOFS);
8729 	}
8730 
8731 	ClearPageChecked(page);
8732 	if (PagePrivate(page)) {
8733 		ClearPagePrivate(page);
8734 		set_page_private(page, 0);
8735 		put_page(page);
8736 	}
8737 }
8738 
8739 /*
8740  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8741  * called from a page fault handler when a page is first dirtied. Hence we must
8742  * be careful to check for EOF conditions here. We set the page up correctly
8743  * for a written page which means we get ENOSPC checking when writing into
8744  * holes and correct delalloc and unwritten extent mapping on filesystems that
8745  * support these features.
8746  *
8747  * We are not allowed to take the i_mutex here so we have to play games to
8748  * protect against truncate races as the page could now be beyond EOF.  Because
8749  * truncate_setsize() writes the inode size before removing pages, once we have
8750  * the page lock we can determine safely if the page is beyond EOF. If it is not
8751  * beyond EOF, then the page is guaranteed safe against truncation until we
8752  * unlock the page.
8753  */
8754 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8755 {
8756 	struct page *page = vmf->page;
8757 	struct inode *inode = file_inode(vmf->vma->vm_file);
8758 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8759 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8760 	struct btrfs_ordered_extent *ordered;
8761 	struct extent_state *cached_state = NULL;
8762 	struct extent_changeset *data_reserved = NULL;
8763 	char *kaddr;
8764 	unsigned long zero_start;
8765 	loff_t size;
8766 	vm_fault_t ret;
8767 	int ret2;
8768 	int reserved = 0;
8769 	u64 reserved_space;
8770 	u64 page_start;
8771 	u64 page_end;
8772 	u64 end;
8773 
8774 	reserved_space = PAGE_SIZE;
8775 
8776 	sb_start_pagefault(inode->i_sb);
8777 	page_start = page_offset(page);
8778 	page_end = page_start + PAGE_SIZE - 1;
8779 	end = page_end;
8780 
8781 	/*
8782 	 * Reserving delalloc space after obtaining the page lock can lead to
8783 	 * deadlock. For example, if a dirty page is locked by this function
8784 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8785 	 * dirty page write out, then the btrfs_writepage() function could
8786 	 * end up waiting indefinitely to get a lock on the page currently
8787 	 * being processed by btrfs_page_mkwrite() function.
8788 	 */
8789 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8790 					   reserved_space);
8791 	if (!ret2) {
8792 		ret2 = file_update_time(vmf->vma->vm_file);
8793 		reserved = 1;
8794 	}
8795 	if (ret2) {
8796 		ret = vmf_error(ret2);
8797 		if (reserved)
8798 			goto out;
8799 		goto out_noreserve;
8800 	}
8801 
8802 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8803 again:
8804 	lock_page(page);
8805 	size = i_size_read(inode);
8806 
8807 	if ((page->mapping != inode->i_mapping) ||
8808 	    (page_start >= size)) {
8809 		/* page got truncated out from underneath us */
8810 		goto out_unlock;
8811 	}
8812 	wait_on_page_writeback(page);
8813 
8814 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8815 	set_page_extent_mapped(page);
8816 
8817 	/*
8818 	 * we can't set the delalloc bits if there are pending ordered
8819 	 * extents.  Drop our locks and wait for them to finish
8820 	 */
8821 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8822 			PAGE_SIZE);
8823 	if (ordered) {
8824 		unlock_extent_cached(io_tree, page_start, page_end,
8825 				     &cached_state);
8826 		unlock_page(page);
8827 		btrfs_start_ordered_extent(inode, ordered, 1);
8828 		btrfs_put_ordered_extent(ordered);
8829 		goto again;
8830 	}
8831 
8832 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8833 		reserved_space = round_up(size - page_start,
8834 					  fs_info->sectorsize);
8835 		if (reserved_space < PAGE_SIZE) {
8836 			end = page_start + reserved_space - 1;
8837 			btrfs_delalloc_release_space(inode, data_reserved,
8838 					page_start, PAGE_SIZE - reserved_space,
8839 					true);
8840 		}
8841 	}
8842 
8843 	/*
8844 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8845 	 * faulted in, but write(2) could also dirty a page and set delalloc
8846 	 * bits, thus in this case for space account reason, we still need to
8847 	 * clear any delalloc bits within this page range since we have to
8848 	 * reserve data&meta space before lock_page() (see above comments).
8849 	 */
8850 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8851 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8852 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8853 			  0, 0, &cached_state);
8854 
8855 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8856 					&cached_state, 0);
8857 	if (ret2) {
8858 		unlock_extent_cached(io_tree, page_start, page_end,
8859 				     &cached_state);
8860 		ret = VM_FAULT_SIGBUS;
8861 		goto out_unlock;
8862 	}
8863 	ret2 = 0;
8864 
8865 	/* page is wholly or partially inside EOF */
8866 	if (page_start + PAGE_SIZE > size)
8867 		zero_start = offset_in_page(size);
8868 	else
8869 		zero_start = PAGE_SIZE;
8870 
8871 	if (zero_start != PAGE_SIZE) {
8872 		kaddr = kmap(page);
8873 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8874 		flush_dcache_page(page);
8875 		kunmap(page);
8876 	}
8877 	ClearPageChecked(page);
8878 	set_page_dirty(page);
8879 	SetPageUptodate(page);
8880 
8881 	BTRFS_I(inode)->last_trans = fs_info->generation;
8882 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8883 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8884 
8885 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8886 
8887 	if (!ret2) {
8888 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8889 		sb_end_pagefault(inode->i_sb);
8890 		extent_changeset_free(data_reserved);
8891 		return VM_FAULT_LOCKED;
8892 	}
8893 
8894 out_unlock:
8895 	unlock_page(page);
8896 out:
8897 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8898 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
8899 				     reserved_space, (ret != 0));
8900 out_noreserve:
8901 	sb_end_pagefault(inode->i_sb);
8902 	extent_changeset_free(data_reserved);
8903 	return ret;
8904 }
8905 
8906 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8907 {
8908 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8909 	struct btrfs_root *root = BTRFS_I(inode)->root;
8910 	struct btrfs_block_rsv *rsv;
8911 	int ret;
8912 	struct btrfs_trans_handle *trans;
8913 	u64 mask = fs_info->sectorsize - 1;
8914 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8915 
8916 	if (!skip_writeback) {
8917 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8918 					       (u64)-1);
8919 		if (ret)
8920 			return ret;
8921 	}
8922 
8923 	/*
8924 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8925 	 * things going on here:
8926 	 *
8927 	 * 1) We need to reserve space to update our inode.
8928 	 *
8929 	 * 2) We need to have something to cache all the space that is going to
8930 	 * be free'd up by the truncate operation, but also have some slack
8931 	 * space reserved in case it uses space during the truncate (thank you
8932 	 * very much snapshotting).
8933 	 *
8934 	 * And we need these to be separate.  The fact is we can use a lot of
8935 	 * space doing the truncate, and we have no earthly idea how much space
8936 	 * we will use, so we need the truncate reservation to be separate so it
8937 	 * doesn't end up using space reserved for updating the inode.  We also
8938 	 * need to be able to stop the transaction and start a new one, which
8939 	 * means we need to be able to update the inode several times, and we
8940 	 * have no idea of knowing how many times that will be, so we can't just
8941 	 * reserve 1 item for the entirety of the operation, so that has to be
8942 	 * done separately as well.
8943 	 *
8944 	 * So that leaves us with
8945 	 *
8946 	 * 1) rsv - for the truncate reservation, which we will steal from the
8947 	 * transaction reservation.
8948 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8949 	 * updating the inode.
8950 	 */
8951 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8952 	if (!rsv)
8953 		return -ENOMEM;
8954 	rsv->size = min_size;
8955 	rsv->failfast = 1;
8956 
8957 	/*
8958 	 * 1 for the truncate slack space
8959 	 * 1 for updating the inode.
8960 	 */
8961 	trans = btrfs_start_transaction(root, 2);
8962 	if (IS_ERR(trans)) {
8963 		ret = PTR_ERR(trans);
8964 		goto out;
8965 	}
8966 
8967 	/* Migrate the slack space for the truncate to our reserve */
8968 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8969 				      min_size, false);
8970 	BUG_ON(ret);
8971 
8972 	/*
8973 	 * So if we truncate and then write and fsync we normally would just
8974 	 * write the extents that changed, which is a problem if we need to
8975 	 * first truncate that entire inode.  So set this flag so we write out
8976 	 * all of the extents in the inode to the sync log so we're completely
8977 	 * safe.
8978 	 */
8979 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8980 	trans->block_rsv = rsv;
8981 
8982 	while (1) {
8983 		ret = btrfs_truncate_inode_items(trans, root, inode,
8984 						 inode->i_size,
8985 						 BTRFS_EXTENT_DATA_KEY);
8986 		trans->block_rsv = &fs_info->trans_block_rsv;
8987 		if (ret != -ENOSPC && ret != -EAGAIN)
8988 			break;
8989 
8990 		ret = btrfs_update_inode(trans, root, inode);
8991 		if (ret)
8992 			break;
8993 
8994 		btrfs_end_transaction(trans);
8995 		btrfs_btree_balance_dirty(fs_info);
8996 
8997 		trans = btrfs_start_transaction(root, 2);
8998 		if (IS_ERR(trans)) {
8999 			ret = PTR_ERR(trans);
9000 			trans = NULL;
9001 			break;
9002 		}
9003 
9004 		btrfs_block_rsv_release(fs_info, rsv, -1);
9005 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9006 					      rsv, min_size, false);
9007 		BUG_ON(ret);	/* shouldn't happen */
9008 		trans->block_rsv = rsv;
9009 	}
9010 
9011 	/*
9012 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9013 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9014 	 * we've truncated everything except the last little bit, and can do
9015 	 * btrfs_truncate_block and then update the disk_i_size.
9016 	 */
9017 	if (ret == NEED_TRUNCATE_BLOCK) {
9018 		btrfs_end_transaction(trans);
9019 		btrfs_btree_balance_dirty(fs_info);
9020 
9021 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9022 		if (ret)
9023 			goto out;
9024 		trans = btrfs_start_transaction(root, 1);
9025 		if (IS_ERR(trans)) {
9026 			ret = PTR_ERR(trans);
9027 			goto out;
9028 		}
9029 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9030 	}
9031 
9032 	if (trans) {
9033 		int ret2;
9034 
9035 		trans->block_rsv = &fs_info->trans_block_rsv;
9036 		ret2 = btrfs_update_inode(trans, root, inode);
9037 		if (ret2 && !ret)
9038 			ret = ret2;
9039 
9040 		ret2 = btrfs_end_transaction(trans);
9041 		if (ret2 && !ret)
9042 			ret = ret2;
9043 		btrfs_btree_balance_dirty(fs_info);
9044 	}
9045 out:
9046 	btrfs_free_block_rsv(fs_info, rsv);
9047 
9048 	return ret;
9049 }
9050 
9051 /*
9052  * create a new subvolume directory/inode (helper for the ioctl).
9053  */
9054 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9055 			     struct btrfs_root *new_root,
9056 			     struct btrfs_root *parent_root,
9057 			     u64 new_dirid)
9058 {
9059 	struct inode *inode;
9060 	int err;
9061 	u64 index = 0;
9062 
9063 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9064 				new_dirid, new_dirid,
9065 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9066 				&index);
9067 	if (IS_ERR(inode))
9068 		return PTR_ERR(inode);
9069 	inode->i_op = &btrfs_dir_inode_operations;
9070 	inode->i_fop = &btrfs_dir_file_operations;
9071 
9072 	set_nlink(inode, 1);
9073 	btrfs_i_size_write(BTRFS_I(inode), 0);
9074 	unlock_new_inode(inode);
9075 
9076 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9077 	if (err)
9078 		btrfs_err(new_root->fs_info,
9079 			  "error inheriting subvolume %llu properties: %d",
9080 			  new_root->root_key.objectid, err);
9081 
9082 	err = btrfs_update_inode(trans, new_root, inode);
9083 
9084 	iput(inode);
9085 	return err;
9086 }
9087 
9088 struct inode *btrfs_alloc_inode(struct super_block *sb)
9089 {
9090 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9091 	struct btrfs_inode *ei;
9092 	struct inode *inode;
9093 
9094 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9095 	if (!ei)
9096 		return NULL;
9097 
9098 	ei->root = NULL;
9099 	ei->generation = 0;
9100 	ei->last_trans = 0;
9101 	ei->last_sub_trans = 0;
9102 	ei->logged_trans = 0;
9103 	ei->delalloc_bytes = 0;
9104 	ei->new_delalloc_bytes = 0;
9105 	ei->defrag_bytes = 0;
9106 	ei->disk_i_size = 0;
9107 	ei->flags = 0;
9108 	ei->csum_bytes = 0;
9109 	ei->index_cnt = (u64)-1;
9110 	ei->dir_index = 0;
9111 	ei->last_unlink_trans = 0;
9112 	ei->last_link_trans = 0;
9113 	ei->last_log_commit = 0;
9114 
9115 	spin_lock_init(&ei->lock);
9116 	ei->outstanding_extents = 0;
9117 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9118 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9119 					      BTRFS_BLOCK_RSV_DELALLOC);
9120 	ei->runtime_flags = 0;
9121 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9122 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9123 
9124 	ei->delayed_node = NULL;
9125 
9126 	ei->i_otime.tv_sec = 0;
9127 	ei->i_otime.tv_nsec = 0;
9128 
9129 	inode = &ei->vfs_inode;
9130 	extent_map_tree_init(&ei->extent_tree);
9131 	extent_io_tree_init(&ei->io_tree, inode);
9132 	extent_io_tree_init(&ei->io_failure_tree, inode);
9133 	ei->io_tree.track_uptodate = 1;
9134 	ei->io_failure_tree.track_uptodate = 1;
9135 	atomic_set(&ei->sync_writers, 0);
9136 	mutex_init(&ei->log_mutex);
9137 	mutex_init(&ei->delalloc_mutex);
9138 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9139 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9140 	INIT_LIST_HEAD(&ei->delayed_iput);
9141 	RB_CLEAR_NODE(&ei->rb_node);
9142 	init_rwsem(&ei->dio_sem);
9143 
9144 	return inode;
9145 }
9146 
9147 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9148 void btrfs_test_destroy_inode(struct inode *inode)
9149 {
9150 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9151 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9152 }
9153 #endif
9154 
9155 static void btrfs_i_callback(struct rcu_head *head)
9156 {
9157 	struct inode *inode = container_of(head, struct inode, i_rcu);
9158 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9159 }
9160 
9161 void btrfs_destroy_inode(struct inode *inode)
9162 {
9163 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9164 	struct btrfs_ordered_extent *ordered;
9165 	struct btrfs_root *root = BTRFS_I(inode)->root;
9166 
9167 	WARN_ON(!hlist_empty(&inode->i_dentry));
9168 	WARN_ON(inode->i_data.nrpages);
9169 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9170 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9171 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9172 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9173 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9174 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9175 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9176 
9177 	/*
9178 	 * This can happen where we create an inode, but somebody else also
9179 	 * created the same inode and we need to destroy the one we already
9180 	 * created.
9181 	 */
9182 	if (!root)
9183 		goto free;
9184 
9185 	while (1) {
9186 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9187 		if (!ordered)
9188 			break;
9189 		else {
9190 			btrfs_err(fs_info,
9191 				  "found ordered extent %llu %llu on inode cleanup",
9192 				  ordered->file_offset, ordered->len);
9193 			btrfs_remove_ordered_extent(inode, ordered);
9194 			btrfs_put_ordered_extent(ordered);
9195 			btrfs_put_ordered_extent(ordered);
9196 		}
9197 	}
9198 	btrfs_qgroup_check_reserved_leak(inode);
9199 	inode_tree_del(inode);
9200 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9201 free:
9202 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9203 }
9204 
9205 int btrfs_drop_inode(struct inode *inode)
9206 {
9207 	struct btrfs_root *root = BTRFS_I(inode)->root;
9208 
9209 	if (root == NULL)
9210 		return 1;
9211 
9212 	/* the snap/subvol tree is on deleting */
9213 	if (btrfs_root_refs(&root->root_item) == 0)
9214 		return 1;
9215 	else
9216 		return generic_drop_inode(inode);
9217 }
9218 
9219 static void init_once(void *foo)
9220 {
9221 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9222 
9223 	inode_init_once(&ei->vfs_inode);
9224 }
9225 
9226 void __cold btrfs_destroy_cachep(void)
9227 {
9228 	/*
9229 	 * Make sure all delayed rcu free inodes are flushed before we
9230 	 * destroy cache.
9231 	 */
9232 	rcu_barrier();
9233 	kmem_cache_destroy(btrfs_inode_cachep);
9234 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9235 	kmem_cache_destroy(btrfs_path_cachep);
9236 	kmem_cache_destroy(btrfs_free_space_cachep);
9237 }
9238 
9239 int __init btrfs_init_cachep(void)
9240 {
9241 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9242 			sizeof(struct btrfs_inode), 0,
9243 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9244 			init_once);
9245 	if (!btrfs_inode_cachep)
9246 		goto fail;
9247 
9248 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9249 			sizeof(struct btrfs_trans_handle), 0,
9250 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9251 	if (!btrfs_trans_handle_cachep)
9252 		goto fail;
9253 
9254 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9255 			sizeof(struct btrfs_path), 0,
9256 			SLAB_MEM_SPREAD, NULL);
9257 	if (!btrfs_path_cachep)
9258 		goto fail;
9259 
9260 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9261 			sizeof(struct btrfs_free_space), 0,
9262 			SLAB_MEM_SPREAD, NULL);
9263 	if (!btrfs_free_space_cachep)
9264 		goto fail;
9265 
9266 	return 0;
9267 fail:
9268 	btrfs_destroy_cachep();
9269 	return -ENOMEM;
9270 }
9271 
9272 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9273 			 u32 request_mask, unsigned int flags)
9274 {
9275 	u64 delalloc_bytes;
9276 	struct inode *inode = d_inode(path->dentry);
9277 	u32 blocksize = inode->i_sb->s_blocksize;
9278 	u32 bi_flags = BTRFS_I(inode)->flags;
9279 
9280 	stat->result_mask |= STATX_BTIME;
9281 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9282 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9283 	if (bi_flags & BTRFS_INODE_APPEND)
9284 		stat->attributes |= STATX_ATTR_APPEND;
9285 	if (bi_flags & BTRFS_INODE_COMPRESS)
9286 		stat->attributes |= STATX_ATTR_COMPRESSED;
9287 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9288 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9289 	if (bi_flags & BTRFS_INODE_NODUMP)
9290 		stat->attributes |= STATX_ATTR_NODUMP;
9291 
9292 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9293 				  STATX_ATTR_COMPRESSED |
9294 				  STATX_ATTR_IMMUTABLE |
9295 				  STATX_ATTR_NODUMP);
9296 
9297 	generic_fillattr(inode, stat);
9298 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9299 
9300 	spin_lock(&BTRFS_I(inode)->lock);
9301 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9302 	spin_unlock(&BTRFS_I(inode)->lock);
9303 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9304 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9305 	return 0;
9306 }
9307 
9308 static int btrfs_rename_exchange(struct inode *old_dir,
9309 			      struct dentry *old_dentry,
9310 			      struct inode *new_dir,
9311 			      struct dentry *new_dentry)
9312 {
9313 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9314 	struct btrfs_trans_handle *trans;
9315 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9316 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9317 	struct inode *new_inode = new_dentry->d_inode;
9318 	struct inode *old_inode = old_dentry->d_inode;
9319 	struct timespec64 ctime = current_time(old_inode);
9320 	struct dentry *parent;
9321 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9322 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9323 	u64 old_idx = 0;
9324 	u64 new_idx = 0;
9325 	u64 root_objectid;
9326 	int ret;
9327 	bool root_log_pinned = false;
9328 	bool dest_log_pinned = false;
9329 	struct btrfs_log_ctx ctx_root;
9330 	struct btrfs_log_ctx ctx_dest;
9331 	bool sync_log_root = false;
9332 	bool sync_log_dest = false;
9333 	bool commit_transaction = false;
9334 
9335 	/* we only allow rename subvolume link between subvolumes */
9336 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9337 		return -EXDEV;
9338 
9339 	btrfs_init_log_ctx(&ctx_root, old_inode);
9340 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9341 
9342 	/* close the race window with snapshot create/destroy ioctl */
9343 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9344 		down_read(&fs_info->subvol_sem);
9345 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9346 		down_read(&fs_info->subvol_sem);
9347 
9348 	/*
9349 	 * We want to reserve the absolute worst case amount of items.  So if
9350 	 * both inodes are subvols and we need to unlink them then that would
9351 	 * require 4 item modifications, but if they are both normal inodes it
9352 	 * would require 5 item modifications, so we'll assume their normal
9353 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9354 	 * should cover the worst case number of items we'll modify.
9355 	 */
9356 	trans = btrfs_start_transaction(root, 12);
9357 	if (IS_ERR(trans)) {
9358 		ret = PTR_ERR(trans);
9359 		goto out_notrans;
9360 	}
9361 
9362 	/*
9363 	 * We need to find a free sequence number both in the source and
9364 	 * in the destination directory for the exchange.
9365 	 */
9366 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9367 	if (ret)
9368 		goto out_fail;
9369 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9370 	if (ret)
9371 		goto out_fail;
9372 
9373 	BTRFS_I(old_inode)->dir_index = 0ULL;
9374 	BTRFS_I(new_inode)->dir_index = 0ULL;
9375 
9376 	/* Reference for the source. */
9377 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9378 		/* force full log commit if subvolume involved. */
9379 		btrfs_set_log_full_commit(fs_info, trans);
9380 	} else {
9381 		btrfs_pin_log_trans(root);
9382 		root_log_pinned = true;
9383 		ret = btrfs_insert_inode_ref(trans, dest,
9384 					     new_dentry->d_name.name,
9385 					     new_dentry->d_name.len,
9386 					     old_ino,
9387 					     btrfs_ino(BTRFS_I(new_dir)),
9388 					     old_idx);
9389 		if (ret)
9390 			goto out_fail;
9391 	}
9392 
9393 	/* And now for the dest. */
9394 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9395 		/* force full log commit if subvolume involved. */
9396 		btrfs_set_log_full_commit(fs_info, trans);
9397 	} else {
9398 		btrfs_pin_log_trans(dest);
9399 		dest_log_pinned = true;
9400 		ret = btrfs_insert_inode_ref(trans, root,
9401 					     old_dentry->d_name.name,
9402 					     old_dentry->d_name.len,
9403 					     new_ino,
9404 					     btrfs_ino(BTRFS_I(old_dir)),
9405 					     new_idx);
9406 		if (ret)
9407 			goto out_fail;
9408 	}
9409 
9410 	/* Update inode version and ctime/mtime. */
9411 	inode_inc_iversion(old_dir);
9412 	inode_inc_iversion(new_dir);
9413 	inode_inc_iversion(old_inode);
9414 	inode_inc_iversion(new_inode);
9415 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9416 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9417 	old_inode->i_ctime = ctime;
9418 	new_inode->i_ctime = ctime;
9419 
9420 	if (old_dentry->d_parent != new_dentry->d_parent) {
9421 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9422 				BTRFS_I(old_inode), 1);
9423 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9424 				BTRFS_I(new_inode), 1);
9425 	}
9426 
9427 	/* src is a subvolume */
9428 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9429 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9430 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9431 					  old_dentry->d_name.name,
9432 					  old_dentry->d_name.len);
9433 	} else { /* src is an inode */
9434 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9435 					   BTRFS_I(old_dentry->d_inode),
9436 					   old_dentry->d_name.name,
9437 					   old_dentry->d_name.len);
9438 		if (!ret)
9439 			ret = btrfs_update_inode(trans, root, old_inode);
9440 	}
9441 	if (ret) {
9442 		btrfs_abort_transaction(trans, ret);
9443 		goto out_fail;
9444 	}
9445 
9446 	/* dest is a subvolume */
9447 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9448 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9449 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9450 					  new_dentry->d_name.name,
9451 					  new_dentry->d_name.len);
9452 	} else { /* dest is an inode */
9453 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9454 					   BTRFS_I(new_dentry->d_inode),
9455 					   new_dentry->d_name.name,
9456 					   new_dentry->d_name.len);
9457 		if (!ret)
9458 			ret = btrfs_update_inode(trans, dest, new_inode);
9459 	}
9460 	if (ret) {
9461 		btrfs_abort_transaction(trans, ret);
9462 		goto out_fail;
9463 	}
9464 
9465 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9466 			     new_dentry->d_name.name,
9467 			     new_dentry->d_name.len, 0, old_idx);
9468 	if (ret) {
9469 		btrfs_abort_transaction(trans, ret);
9470 		goto out_fail;
9471 	}
9472 
9473 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9474 			     old_dentry->d_name.name,
9475 			     old_dentry->d_name.len, 0, new_idx);
9476 	if (ret) {
9477 		btrfs_abort_transaction(trans, ret);
9478 		goto out_fail;
9479 	}
9480 
9481 	if (old_inode->i_nlink == 1)
9482 		BTRFS_I(old_inode)->dir_index = old_idx;
9483 	if (new_inode->i_nlink == 1)
9484 		BTRFS_I(new_inode)->dir_index = new_idx;
9485 
9486 	if (root_log_pinned) {
9487 		parent = new_dentry->d_parent;
9488 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9489 					 BTRFS_I(old_dir), parent,
9490 					 false, &ctx_root);
9491 		if (ret == BTRFS_NEED_LOG_SYNC)
9492 			sync_log_root = true;
9493 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9494 			commit_transaction = true;
9495 		ret = 0;
9496 		btrfs_end_log_trans(root);
9497 		root_log_pinned = false;
9498 	}
9499 	if (dest_log_pinned) {
9500 		if (!commit_transaction) {
9501 			parent = old_dentry->d_parent;
9502 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9503 						 BTRFS_I(new_dir), parent,
9504 						 false, &ctx_dest);
9505 			if (ret == BTRFS_NEED_LOG_SYNC)
9506 				sync_log_dest = true;
9507 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9508 				commit_transaction = true;
9509 			ret = 0;
9510 		}
9511 		btrfs_end_log_trans(dest);
9512 		dest_log_pinned = false;
9513 	}
9514 out_fail:
9515 	/*
9516 	 * If we have pinned a log and an error happened, we unpin tasks
9517 	 * trying to sync the log and force them to fallback to a transaction
9518 	 * commit if the log currently contains any of the inodes involved in
9519 	 * this rename operation (to ensure we do not persist a log with an
9520 	 * inconsistent state for any of these inodes or leading to any
9521 	 * inconsistencies when replayed). If the transaction was aborted, the
9522 	 * abortion reason is propagated to userspace when attempting to commit
9523 	 * the transaction. If the log does not contain any of these inodes, we
9524 	 * allow the tasks to sync it.
9525 	 */
9526 	if (ret && (root_log_pinned || dest_log_pinned)) {
9527 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9528 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9529 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9530 		    (new_inode &&
9531 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9532 			btrfs_set_log_full_commit(fs_info, trans);
9533 
9534 		if (root_log_pinned) {
9535 			btrfs_end_log_trans(root);
9536 			root_log_pinned = false;
9537 		}
9538 		if (dest_log_pinned) {
9539 			btrfs_end_log_trans(dest);
9540 			dest_log_pinned = false;
9541 		}
9542 	}
9543 	if (!ret && sync_log_root && !commit_transaction) {
9544 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9545 				     &ctx_root);
9546 		if (ret)
9547 			commit_transaction = true;
9548 	}
9549 	if (!ret && sync_log_dest && !commit_transaction) {
9550 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9551 				     &ctx_dest);
9552 		if (ret)
9553 			commit_transaction = true;
9554 	}
9555 	if (commit_transaction) {
9556 		ret = btrfs_commit_transaction(trans);
9557 	} else {
9558 		int ret2;
9559 
9560 		ret2 = btrfs_end_transaction(trans);
9561 		ret = ret ? ret : ret2;
9562 	}
9563 out_notrans:
9564 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9565 		up_read(&fs_info->subvol_sem);
9566 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9567 		up_read(&fs_info->subvol_sem);
9568 
9569 	return ret;
9570 }
9571 
9572 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9573 				     struct btrfs_root *root,
9574 				     struct inode *dir,
9575 				     struct dentry *dentry)
9576 {
9577 	int ret;
9578 	struct inode *inode;
9579 	u64 objectid;
9580 	u64 index;
9581 
9582 	ret = btrfs_find_free_ino(root, &objectid);
9583 	if (ret)
9584 		return ret;
9585 
9586 	inode = btrfs_new_inode(trans, root, dir,
9587 				dentry->d_name.name,
9588 				dentry->d_name.len,
9589 				btrfs_ino(BTRFS_I(dir)),
9590 				objectid,
9591 				S_IFCHR | WHITEOUT_MODE,
9592 				&index);
9593 
9594 	if (IS_ERR(inode)) {
9595 		ret = PTR_ERR(inode);
9596 		return ret;
9597 	}
9598 
9599 	inode->i_op = &btrfs_special_inode_operations;
9600 	init_special_inode(inode, inode->i_mode,
9601 		WHITEOUT_DEV);
9602 
9603 	ret = btrfs_init_inode_security(trans, inode, dir,
9604 				&dentry->d_name);
9605 	if (ret)
9606 		goto out;
9607 
9608 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9609 				BTRFS_I(inode), 0, index);
9610 	if (ret)
9611 		goto out;
9612 
9613 	ret = btrfs_update_inode(trans, root, inode);
9614 out:
9615 	unlock_new_inode(inode);
9616 	if (ret)
9617 		inode_dec_link_count(inode);
9618 	iput(inode);
9619 
9620 	return ret;
9621 }
9622 
9623 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9624 			   struct inode *new_dir, struct dentry *new_dentry,
9625 			   unsigned int flags)
9626 {
9627 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9628 	struct btrfs_trans_handle *trans;
9629 	unsigned int trans_num_items;
9630 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9631 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9632 	struct inode *new_inode = d_inode(new_dentry);
9633 	struct inode *old_inode = d_inode(old_dentry);
9634 	u64 index = 0;
9635 	u64 root_objectid;
9636 	int ret;
9637 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9638 	bool log_pinned = false;
9639 	struct btrfs_log_ctx ctx;
9640 	bool sync_log = false;
9641 	bool commit_transaction = false;
9642 
9643 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9644 		return -EPERM;
9645 
9646 	/* we only allow rename subvolume link between subvolumes */
9647 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9648 		return -EXDEV;
9649 
9650 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9651 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9652 		return -ENOTEMPTY;
9653 
9654 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9655 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9656 		return -ENOTEMPTY;
9657 
9658 
9659 	/* check for collisions, even if the  name isn't there */
9660 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9661 			     new_dentry->d_name.name,
9662 			     new_dentry->d_name.len);
9663 
9664 	if (ret) {
9665 		if (ret == -EEXIST) {
9666 			/* we shouldn't get
9667 			 * eexist without a new_inode */
9668 			if (WARN_ON(!new_inode)) {
9669 				return ret;
9670 			}
9671 		} else {
9672 			/* maybe -EOVERFLOW */
9673 			return ret;
9674 		}
9675 	}
9676 	ret = 0;
9677 
9678 	/*
9679 	 * we're using rename to replace one file with another.  Start IO on it
9680 	 * now so  we don't add too much work to the end of the transaction
9681 	 */
9682 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9683 		filemap_flush(old_inode->i_mapping);
9684 
9685 	/* close the racy window with snapshot create/destroy ioctl */
9686 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9687 		down_read(&fs_info->subvol_sem);
9688 	/*
9689 	 * We want to reserve the absolute worst case amount of items.  So if
9690 	 * both inodes are subvols and we need to unlink them then that would
9691 	 * require 4 item modifications, but if they are both normal inodes it
9692 	 * would require 5 item modifications, so we'll assume they are normal
9693 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9694 	 * should cover the worst case number of items we'll modify.
9695 	 * If our rename has the whiteout flag, we need more 5 units for the
9696 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9697 	 * when selinux is enabled).
9698 	 */
9699 	trans_num_items = 11;
9700 	if (flags & RENAME_WHITEOUT)
9701 		trans_num_items += 5;
9702 	trans = btrfs_start_transaction(root, trans_num_items);
9703 	if (IS_ERR(trans)) {
9704 		ret = PTR_ERR(trans);
9705 		goto out_notrans;
9706 	}
9707 
9708 	if (dest != root)
9709 		btrfs_record_root_in_trans(trans, dest);
9710 
9711 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9712 	if (ret)
9713 		goto out_fail;
9714 
9715 	BTRFS_I(old_inode)->dir_index = 0ULL;
9716 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9717 		/* force full log commit if subvolume involved. */
9718 		btrfs_set_log_full_commit(fs_info, trans);
9719 	} else {
9720 		btrfs_pin_log_trans(root);
9721 		log_pinned = true;
9722 		ret = btrfs_insert_inode_ref(trans, dest,
9723 					     new_dentry->d_name.name,
9724 					     new_dentry->d_name.len,
9725 					     old_ino,
9726 					     btrfs_ino(BTRFS_I(new_dir)), index);
9727 		if (ret)
9728 			goto out_fail;
9729 	}
9730 
9731 	inode_inc_iversion(old_dir);
9732 	inode_inc_iversion(new_dir);
9733 	inode_inc_iversion(old_inode);
9734 	old_dir->i_ctime = old_dir->i_mtime =
9735 	new_dir->i_ctime = new_dir->i_mtime =
9736 	old_inode->i_ctime = current_time(old_dir);
9737 
9738 	if (old_dentry->d_parent != new_dentry->d_parent)
9739 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9740 				BTRFS_I(old_inode), 1);
9741 
9742 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9743 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9744 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9745 					old_dentry->d_name.name,
9746 					old_dentry->d_name.len);
9747 	} else {
9748 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9749 					BTRFS_I(d_inode(old_dentry)),
9750 					old_dentry->d_name.name,
9751 					old_dentry->d_name.len);
9752 		if (!ret)
9753 			ret = btrfs_update_inode(trans, root, old_inode);
9754 	}
9755 	if (ret) {
9756 		btrfs_abort_transaction(trans, ret);
9757 		goto out_fail;
9758 	}
9759 
9760 	if (new_inode) {
9761 		inode_inc_iversion(new_inode);
9762 		new_inode->i_ctime = current_time(new_inode);
9763 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9764 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9765 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9766 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9767 						new_dentry->d_name.name,
9768 						new_dentry->d_name.len);
9769 			BUG_ON(new_inode->i_nlink == 0);
9770 		} else {
9771 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9772 						 BTRFS_I(d_inode(new_dentry)),
9773 						 new_dentry->d_name.name,
9774 						 new_dentry->d_name.len);
9775 		}
9776 		if (!ret && new_inode->i_nlink == 0)
9777 			ret = btrfs_orphan_add(trans,
9778 					BTRFS_I(d_inode(new_dentry)));
9779 		if (ret) {
9780 			btrfs_abort_transaction(trans, ret);
9781 			goto out_fail;
9782 		}
9783 	}
9784 
9785 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9786 			     new_dentry->d_name.name,
9787 			     new_dentry->d_name.len, 0, index);
9788 	if (ret) {
9789 		btrfs_abort_transaction(trans, ret);
9790 		goto out_fail;
9791 	}
9792 
9793 	if (old_inode->i_nlink == 1)
9794 		BTRFS_I(old_inode)->dir_index = index;
9795 
9796 	if (log_pinned) {
9797 		struct dentry *parent = new_dentry->d_parent;
9798 
9799 		btrfs_init_log_ctx(&ctx, old_inode);
9800 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9801 					 BTRFS_I(old_dir), parent,
9802 					 false, &ctx);
9803 		if (ret == BTRFS_NEED_LOG_SYNC)
9804 			sync_log = true;
9805 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9806 			commit_transaction = true;
9807 		ret = 0;
9808 		btrfs_end_log_trans(root);
9809 		log_pinned = false;
9810 	}
9811 
9812 	if (flags & RENAME_WHITEOUT) {
9813 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9814 						old_dentry);
9815 
9816 		if (ret) {
9817 			btrfs_abort_transaction(trans, ret);
9818 			goto out_fail;
9819 		}
9820 	}
9821 out_fail:
9822 	/*
9823 	 * If we have pinned the log and an error happened, we unpin tasks
9824 	 * trying to sync the log and force them to fallback to a transaction
9825 	 * commit if the log currently contains any of the inodes involved in
9826 	 * this rename operation (to ensure we do not persist a log with an
9827 	 * inconsistent state for any of these inodes or leading to any
9828 	 * inconsistencies when replayed). If the transaction was aborted, the
9829 	 * abortion reason is propagated to userspace when attempting to commit
9830 	 * the transaction. If the log does not contain any of these inodes, we
9831 	 * allow the tasks to sync it.
9832 	 */
9833 	if (ret && log_pinned) {
9834 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9835 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9836 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9837 		    (new_inode &&
9838 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9839 			btrfs_set_log_full_commit(fs_info, trans);
9840 
9841 		btrfs_end_log_trans(root);
9842 		log_pinned = false;
9843 	}
9844 	if (!ret && sync_log) {
9845 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9846 		if (ret)
9847 			commit_transaction = true;
9848 	}
9849 	if (commit_transaction) {
9850 		ret = btrfs_commit_transaction(trans);
9851 	} else {
9852 		int ret2;
9853 
9854 		ret2 = btrfs_end_transaction(trans);
9855 		ret = ret ? ret : ret2;
9856 	}
9857 out_notrans:
9858 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9859 		up_read(&fs_info->subvol_sem);
9860 
9861 	return ret;
9862 }
9863 
9864 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9865 			 struct inode *new_dir, struct dentry *new_dentry,
9866 			 unsigned int flags)
9867 {
9868 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9869 		return -EINVAL;
9870 
9871 	if (flags & RENAME_EXCHANGE)
9872 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9873 					  new_dentry);
9874 
9875 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9876 }
9877 
9878 struct btrfs_delalloc_work {
9879 	struct inode *inode;
9880 	struct completion completion;
9881 	struct list_head list;
9882 	struct btrfs_work work;
9883 };
9884 
9885 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9886 {
9887 	struct btrfs_delalloc_work *delalloc_work;
9888 	struct inode *inode;
9889 
9890 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9891 				     work);
9892 	inode = delalloc_work->inode;
9893 	filemap_flush(inode->i_mapping);
9894 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9895 				&BTRFS_I(inode)->runtime_flags))
9896 		filemap_flush(inode->i_mapping);
9897 
9898 	iput(inode);
9899 	complete(&delalloc_work->completion);
9900 }
9901 
9902 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9903 {
9904 	struct btrfs_delalloc_work *work;
9905 
9906 	work = kmalloc(sizeof(*work), GFP_NOFS);
9907 	if (!work)
9908 		return NULL;
9909 
9910 	init_completion(&work->completion);
9911 	INIT_LIST_HEAD(&work->list);
9912 	work->inode = inode;
9913 	WARN_ON_ONCE(!inode);
9914 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9915 			btrfs_run_delalloc_work, NULL, NULL);
9916 
9917 	return work;
9918 }
9919 
9920 /*
9921  * some fairly slow code that needs optimization. This walks the list
9922  * of all the inodes with pending delalloc and forces them to disk.
9923  */
9924 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9925 {
9926 	struct btrfs_inode *binode;
9927 	struct inode *inode;
9928 	struct btrfs_delalloc_work *work, *next;
9929 	struct list_head works;
9930 	struct list_head splice;
9931 	int ret = 0;
9932 
9933 	INIT_LIST_HEAD(&works);
9934 	INIT_LIST_HEAD(&splice);
9935 
9936 	mutex_lock(&root->delalloc_mutex);
9937 	spin_lock(&root->delalloc_lock);
9938 	list_splice_init(&root->delalloc_inodes, &splice);
9939 	while (!list_empty(&splice)) {
9940 		binode = list_entry(splice.next, struct btrfs_inode,
9941 				    delalloc_inodes);
9942 
9943 		list_move_tail(&binode->delalloc_inodes,
9944 			       &root->delalloc_inodes);
9945 		inode = igrab(&binode->vfs_inode);
9946 		if (!inode) {
9947 			cond_resched_lock(&root->delalloc_lock);
9948 			continue;
9949 		}
9950 		spin_unlock(&root->delalloc_lock);
9951 
9952 		if (snapshot)
9953 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9954 				&binode->runtime_flags);
9955 		work = btrfs_alloc_delalloc_work(inode);
9956 		if (!work) {
9957 			iput(inode);
9958 			ret = -ENOMEM;
9959 			goto out;
9960 		}
9961 		list_add_tail(&work->list, &works);
9962 		btrfs_queue_work(root->fs_info->flush_workers,
9963 				 &work->work);
9964 		ret++;
9965 		if (nr != -1 && ret >= nr)
9966 			goto out;
9967 		cond_resched();
9968 		spin_lock(&root->delalloc_lock);
9969 	}
9970 	spin_unlock(&root->delalloc_lock);
9971 
9972 out:
9973 	list_for_each_entry_safe(work, next, &works, list) {
9974 		list_del_init(&work->list);
9975 		wait_for_completion(&work->completion);
9976 		kfree(work);
9977 	}
9978 
9979 	if (!list_empty(&splice)) {
9980 		spin_lock(&root->delalloc_lock);
9981 		list_splice_tail(&splice, &root->delalloc_inodes);
9982 		spin_unlock(&root->delalloc_lock);
9983 	}
9984 	mutex_unlock(&root->delalloc_mutex);
9985 	return ret;
9986 }
9987 
9988 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9989 {
9990 	struct btrfs_fs_info *fs_info = root->fs_info;
9991 	int ret;
9992 
9993 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9994 		return -EROFS;
9995 
9996 	ret = start_delalloc_inodes(root, -1, true);
9997 	if (ret > 0)
9998 		ret = 0;
9999 	return ret;
10000 }
10001 
10002 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10003 {
10004 	struct btrfs_root *root;
10005 	struct list_head splice;
10006 	int ret;
10007 
10008 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10009 		return -EROFS;
10010 
10011 	INIT_LIST_HEAD(&splice);
10012 
10013 	mutex_lock(&fs_info->delalloc_root_mutex);
10014 	spin_lock(&fs_info->delalloc_root_lock);
10015 	list_splice_init(&fs_info->delalloc_roots, &splice);
10016 	while (!list_empty(&splice) && nr) {
10017 		root = list_first_entry(&splice, struct btrfs_root,
10018 					delalloc_root);
10019 		root = btrfs_grab_fs_root(root);
10020 		BUG_ON(!root);
10021 		list_move_tail(&root->delalloc_root,
10022 			       &fs_info->delalloc_roots);
10023 		spin_unlock(&fs_info->delalloc_root_lock);
10024 
10025 		ret = start_delalloc_inodes(root, nr, false);
10026 		btrfs_put_fs_root(root);
10027 		if (ret < 0)
10028 			goto out;
10029 
10030 		if (nr != -1) {
10031 			nr -= ret;
10032 			WARN_ON(nr < 0);
10033 		}
10034 		spin_lock(&fs_info->delalloc_root_lock);
10035 	}
10036 	spin_unlock(&fs_info->delalloc_root_lock);
10037 
10038 	ret = 0;
10039 out:
10040 	if (!list_empty(&splice)) {
10041 		spin_lock(&fs_info->delalloc_root_lock);
10042 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10043 		spin_unlock(&fs_info->delalloc_root_lock);
10044 	}
10045 	mutex_unlock(&fs_info->delalloc_root_mutex);
10046 	return ret;
10047 }
10048 
10049 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10050 			 const char *symname)
10051 {
10052 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10053 	struct btrfs_trans_handle *trans;
10054 	struct btrfs_root *root = BTRFS_I(dir)->root;
10055 	struct btrfs_path *path;
10056 	struct btrfs_key key;
10057 	struct inode *inode = NULL;
10058 	int err;
10059 	u64 objectid;
10060 	u64 index = 0;
10061 	int name_len;
10062 	int datasize;
10063 	unsigned long ptr;
10064 	struct btrfs_file_extent_item *ei;
10065 	struct extent_buffer *leaf;
10066 
10067 	name_len = strlen(symname);
10068 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10069 		return -ENAMETOOLONG;
10070 
10071 	/*
10072 	 * 2 items for inode item and ref
10073 	 * 2 items for dir items
10074 	 * 1 item for updating parent inode item
10075 	 * 1 item for the inline extent item
10076 	 * 1 item for xattr if selinux is on
10077 	 */
10078 	trans = btrfs_start_transaction(root, 7);
10079 	if (IS_ERR(trans))
10080 		return PTR_ERR(trans);
10081 
10082 	err = btrfs_find_free_ino(root, &objectid);
10083 	if (err)
10084 		goto out_unlock;
10085 
10086 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10087 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10088 				objectid, S_IFLNK|S_IRWXUGO, &index);
10089 	if (IS_ERR(inode)) {
10090 		err = PTR_ERR(inode);
10091 		inode = NULL;
10092 		goto out_unlock;
10093 	}
10094 
10095 	/*
10096 	* If the active LSM wants to access the inode during
10097 	* d_instantiate it needs these. Smack checks to see
10098 	* if the filesystem supports xattrs by looking at the
10099 	* ops vector.
10100 	*/
10101 	inode->i_fop = &btrfs_file_operations;
10102 	inode->i_op = &btrfs_file_inode_operations;
10103 	inode->i_mapping->a_ops = &btrfs_aops;
10104 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10105 
10106 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10107 	if (err)
10108 		goto out_unlock;
10109 
10110 	path = btrfs_alloc_path();
10111 	if (!path) {
10112 		err = -ENOMEM;
10113 		goto out_unlock;
10114 	}
10115 	key.objectid = btrfs_ino(BTRFS_I(inode));
10116 	key.offset = 0;
10117 	key.type = BTRFS_EXTENT_DATA_KEY;
10118 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10119 	err = btrfs_insert_empty_item(trans, root, path, &key,
10120 				      datasize);
10121 	if (err) {
10122 		btrfs_free_path(path);
10123 		goto out_unlock;
10124 	}
10125 	leaf = path->nodes[0];
10126 	ei = btrfs_item_ptr(leaf, path->slots[0],
10127 			    struct btrfs_file_extent_item);
10128 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10129 	btrfs_set_file_extent_type(leaf, ei,
10130 				   BTRFS_FILE_EXTENT_INLINE);
10131 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10132 	btrfs_set_file_extent_compression(leaf, ei, 0);
10133 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10134 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10135 
10136 	ptr = btrfs_file_extent_inline_start(ei);
10137 	write_extent_buffer(leaf, symname, ptr, name_len);
10138 	btrfs_mark_buffer_dirty(leaf);
10139 	btrfs_free_path(path);
10140 
10141 	inode->i_op = &btrfs_symlink_inode_operations;
10142 	inode_nohighmem(inode);
10143 	inode->i_mapping->a_ops = &btrfs_aops;
10144 	inode_set_bytes(inode, name_len);
10145 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10146 	err = btrfs_update_inode(trans, root, inode);
10147 	/*
10148 	 * Last step, add directory indexes for our symlink inode. This is the
10149 	 * last step to avoid extra cleanup of these indexes if an error happens
10150 	 * elsewhere above.
10151 	 */
10152 	if (!err)
10153 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10154 				BTRFS_I(inode), 0, index);
10155 	if (err)
10156 		goto out_unlock;
10157 
10158 	d_instantiate_new(dentry, inode);
10159 
10160 out_unlock:
10161 	btrfs_end_transaction(trans);
10162 	if (err && inode) {
10163 		inode_dec_link_count(inode);
10164 		discard_new_inode(inode);
10165 	}
10166 	btrfs_btree_balance_dirty(fs_info);
10167 	return err;
10168 }
10169 
10170 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10171 				       u64 start, u64 num_bytes, u64 min_size,
10172 				       loff_t actual_len, u64 *alloc_hint,
10173 				       struct btrfs_trans_handle *trans)
10174 {
10175 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10176 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10177 	struct extent_map *em;
10178 	struct btrfs_root *root = BTRFS_I(inode)->root;
10179 	struct btrfs_key ins;
10180 	u64 cur_offset = start;
10181 	u64 i_size;
10182 	u64 cur_bytes;
10183 	u64 last_alloc = (u64)-1;
10184 	int ret = 0;
10185 	bool own_trans = true;
10186 	u64 end = start + num_bytes - 1;
10187 
10188 	if (trans)
10189 		own_trans = false;
10190 	while (num_bytes > 0) {
10191 		if (own_trans) {
10192 			trans = btrfs_start_transaction(root, 3);
10193 			if (IS_ERR(trans)) {
10194 				ret = PTR_ERR(trans);
10195 				break;
10196 			}
10197 		}
10198 
10199 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10200 		cur_bytes = max(cur_bytes, min_size);
10201 		/*
10202 		 * If we are severely fragmented we could end up with really
10203 		 * small allocations, so if the allocator is returning small
10204 		 * chunks lets make its job easier by only searching for those
10205 		 * sized chunks.
10206 		 */
10207 		cur_bytes = min(cur_bytes, last_alloc);
10208 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10209 				min_size, 0, *alloc_hint, &ins, 1, 0);
10210 		if (ret) {
10211 			if (own_trans)
10212 				btrfs_end_transaction(trans);
10213 			break;
10214 		}
10215 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10216 
10217 		last_alloc = ins.offset;
10218 		ret = insert_reserved_file_extent(trans, inode,
10219 						  cur_offset, ins.objectid,
10220 						  ins.offset, ins.offset,
10221 						  ins.offset, 0, 0, 0,
10222 						  BTRFS_FILE_EXTENT_PREALLOC);
10223 		if (ret) {
10224 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10225 						   ins.offset, 0);
10226 			btrfs_abort_transaction(trans, ret);
10227 			if (own_trans)
10228 				btrfs_end_transaction(trans);
10229 			break;
10230 		}
10231 
10232 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10233 					cur_offset + ins.offset -1, 0);
10234 
10235 		em = alloc_extent_map();
10236 		if (!em) {
10237 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10238 				&BTRFS_I(inode)->runtime_flags);
10239 			goto next;
10240 		}
10241 
10242 		em->start = cur_offset;
10243 		em->orig_start = cur_offset;
10244 		em->len = ins.offset;
10245 		em->block_start = ins.objectid;
10246 		em->block_len = ins.offset;
10247 		em->orig_block_len = ins.offset;
10248 		em->ram_bytes = ins.offset;
10249 		em->bdev = fs_info->fs_devices->latest_bdev;
10250 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10251 		em->generation = trans->transid;
10252 
10253 		while (1) {
10254 			write_lock(&em_tree->lock);
10255 			ret = add_extent_mapping(em_tree, em, 1);
10256 			write_unlock(&em_tree->lock);
10257 			if (ret != -EEXIST)
10258 				break;
10259 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10260 						cur_offset + ins.offset - 1,
10261 						0);
10262 		}
10263 		free_extent_map(em);
10264 next:
10265 		num_bytes -= ins.offset;
10266 		cur_offset += ins.offset;
10267 		*alloc_hint = ins.objectid + ins.offset;
10268 
10269 		inode_inc_iversion(inode);
10270 		inode->i_ctime = current_time(inode);
10271 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10272 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10273 		    (actual_len > inode->i_size) &&
10274 		    (cur_offset > inode->i_size)) {
10275 			if (cur_offset > actual_len)
10276 				i_size = actual_len;
10277 			else
10278 				i_size = cur_offset;
10279 			i_size_write(inode, i_size);
10280 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10281 		}
10282 
10283 		ret = btrfs_update_inode(trans, root, inode);
10284 
10285 		if (ret) {
10286 			btrfs_abort_transaction(trans, ret);
10287 			if (own_trans)
10288 				btrfs_end_transaction(trans);
10289 			break;
10290 		}
10291 
10292 		if (own_trans)
10293 			btrfs_end_transaction(trans);
10294 	}
10295 	if (cur_offset < end)
10296 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10297 			end - cur_offset + 1);
10298 	return ret;
10299 }
10300 
10301 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10302 			      u64 start, u64 num_bytes, u64 min_size,
10303 			      loff_t actual_len, u64 *alloc_hint)
10304 {
10305 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10306 					   min_size, actual_len, alloc_hint,
10307 					   NULL);
10308 }
10309 
10310 int btrfs_prealloc_file_range_trans(struct inode *inode,
10311 				    struct btrfs_trans_handle *trans, int mode,
10312 				    u64 start, u64 num_bytes, u64 min_size,
10313 				    loff_t actual_len, u64 *alloc_hint)
10314 {
10315 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10316 					   min_size, actual_len, alloc_hint, trans);
10317 }
10318 
10319 static int btrfs_set_page_dirty(struct page *page)
10320 {
10321 	return __set_page_dirty_nobuffers(page);
10322 }
10323 
10324 static int btrfs_permission(struct inode *inode, int mask)
10325 {
10326 	struct btrfs_root *root = BTRFS_I(inode)->root;
10327 	umode_t mode = inode->i_mode;
10328 
10329 	if (mask & MAY_WRITE &&
10330 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10331 		if (btrfs_root_readonly(root))
10332 			return -EROFS;
10333 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10334 			return -EACCES;
10335 	}
10336 	return generic_permission(inode, mask);
10337 }
10338 
10339 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10340 {
10341 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10342 	struct btrfs_trans_handle *trans;
10343 	struct btrfs_root *root = BTRFS_I(dir)->root;
10344 	struct inode *inode = NULL;
10345 	u64 objectid;
10346 	u64 index;
10347 	int ret = 0;
10348 
10349 	/*
10350 	 * 5 units required for adding orphan entry
10351 	 */
10352 	trans = btrfs_start_transaction(root, 5);
10353 	if (IS_ERR(trans))
10354 		return PTR_ERR(trans);
10355 
10356 	ret = btrfs_find_free_ino(root, &objectid);
10357 	if (ret)
10358 		goto out;
10359 
10360 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10361 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10362 	if (IS_ERR(inode)) {
10363 		ret = PTR_ERR(inode);
10364 		inode = NULL;
10365 		goto out;
10366 	}
10367 
10368 	inode->i_fop = &btrfs_file_operations;
10369 	inode->i_op = &btrfs_file_inode_operations;
10370 
10371 	inode->i_mapping->a_ops = &btrfs_aops;
10372 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10373 
10374 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10375 	if (ret)
10376 		goto out;
10377 
10378 	ret = btrfs_update_inode(trans, root, inode);
10379 	if (ret)
10380 		goto out;
10381 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10382 	if (ret)
10383 		goto out;
10384 
10385 	/*
10386 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10387 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10388 	 * through:
10389 	 *
10390 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10391 	 */
10392 	set_nlink(inode, 1);
10393 	d_tmpfile(dentry, inode);
10394 	unlock_new_inode(inode);
10395 	mark_inode_dirty(inode);
10396 out:
10397 	btrfs_end_transaction(trans);
10398 	if (ret && inode)
10399 		discard_new_inode(inode);
10400 	btrfs_btree_balance_dirty(fs_info);
10401 	return ret;
10402 }
10403 
10404 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10405 {
10406 	struct inode *inode = tree->private_data;
10407 	unsigned long index = start >> PAGE_SHIFT;
10408 	unsigned long end_index = end >> PAGE_SHIFT;
10409 	struct page *page;
10410 
10411 	while (index <= end_index) {
10412 		page = find_get_page(inode->i_mapping, index);
10413 		ASSERT(page); /* Pages should be in the extent_io_tree */
10414 		set_page_writeback(page);
10415 		put_page(page);
10416 		index++;
10417 	}
10418 }
10419 
10420 #ifdef CONFIG_SWAP
10421 /*
10422  * Add an entry indicating a block group or device which is pinned by a
10423  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10424  * negative errno on failure.
10425  */
10426 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10427 				  bool is_block_group)
10428 {
10429 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10430 	struct btrfs_swapfile_pin *sp, *entry;
10431 	struct rb_node **p;
10432 	struct rb_node *parent = NULL;
10433 
10434 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10435 	if (!sp)
10436 		return -ENOMEM;
10437 	sp->ptr = ptr;
10438 	sp->inode = inode;
10439 	sp->is_block_group = is_block_group;
10440 
10441 	spin_lock(&fs_info->swapfile_pins_lock);
10442 	p = &fs_info->swapfile_pins.rb_node;
10443 	while (*p) {
10444 		parent = *p;
10445 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10446 		if (sp->ptr < entry->ptr ||
10447 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10448 			p = &(*p)->rb_left;
10449 		} else if (sp->ptr > entry->ptr ||
10450 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10451 			p = &(*p)->rb_right;
10452 		} else {
10453 			spin_unlock(&fs_info->swapfile_pins_lock);
10454 			kfree(sp);
10455 			return 1;
10456 		}
10457 	}
10458 	rb_link_node(&sp->node, parent, p);
10459 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10460 	spin_unlock(&fs_info->swapfile_pins_lock);
10461 	return 0;
10462 }
10463 
10464 /* Free all of the entries pinned by this swapfile. */
10465 static void btrfs_free_swapfile_pins(struct inode *inode)
10466 {
10467 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10468 	struct btrfs_swapfile_pin *sp;
10469 	struct rb_node *node, *next;
10470 
10471 	spin_lock(&fs_info->swapfile_pins_lock);
10472 	node = rb_first(&fs_info->swapfile_pins);
10473 	while (node) {
10474 		next = rb_next(node);
10475 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10476 		if (sp->inode == inode) {
10477 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10478 			if (sp->is_block_group)
10479 				btrfs_put_block_group(sp->ptr);
10480 			kfree(sp);
10481 		}
10482 		node = next;
10483 	}
10484 	spin_unlock(&fs_info->swapfile_pins_lock);
10485 }
10486 
10487 struct btrfs_swap_info {
10488 	u64 start;
10489 	u64 block_start;
10490 	u64 block_len;
10491 	u64 lowest_ppage;
10492 	u64 highest_ppage;
10493 	unsigned long nr_pages;
10494 	int nr_extents;
10495 };
10496 
10497 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10498 				 struct btrfs_swap_info *bsi)
10499 {
10500 	unsigned long nr_pages;
10501 	u64 first_ppage, first_ppage_reported, next_ppage;
10502 	int ret;
10503 
10504 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10505 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10506 				PAGE_SIZE) >> PAGE_SHIFT;
10507 
10508 	if (first_ppage >= next_ppage)
10509 		return 0;
10510 	nr_pages = next_ppage - first_ppage;
10511 
10512 	first_ppage_reported = first_ppage;
10513 	if (bsi->start == 0)
10514 		first_ppage_reported++;
10515 	if (bsi->lowest_ppage > first_ppage_reported)
10516 		bsi->lowest_ppage = first_ppage_reported;
10517 	if (bsi->highest_ppage < (next_ppage - 1))
10518 		bsi->highest_ppage = next_ppage - 1;
10519 
10520 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10521 	if (ret < 0)
10522 		return ret;
10523 	bsi->nr_extents += ret;
10524 	bsi->nr_pages += nr_pages;
10525 	return 0;
10526 }
10527 
10528 static void btrfs_swap_deactivate(struct file *file)
10529 {
10530 	struct inode *inode = file_inode(file);
10531 
10532 	btrfs_free_swapfile_pins(inode);
10533 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10534 }
10535 
10536 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10537 			       sector_t *span)
10538 {
10539 	struct inode *inode = file_inode(file);
10540 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10541 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10542 	struct extent_state *cached_state = NULL;
10543 	struct extent_map *em = NULL;
10544 	struct btrfs_device *device = NULL;
10545 	struct btrfs_swap_info bsi = {
10546 		.lowest_ppage = (sector_t)-1ULL,
10547 	};
10548 	int ret = 0;
10549 	u64 isize;
10550 	u64 start;
10551 
10552 	/*
10553 	 * If the swap file was just created, make sure delalloc is done. If the
10554 	 * file changes again after this, the user is doing something stupid and
10555 	 * we don't really care.
10556 	 */
10557 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10558 	if (ret)
10559 		return ret;
10560 
10561 	/*
10562 	 * The inode is locked, so these flags won't change after we check them.
10563 	 */
10564 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10565 		btrfs_warn(fs_info, "swapfile must not be compressed");
10566 		return -EINVAL;
10567 	}
10568 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10569 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10570 		return -EINVAL;
10571 	}
10572 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10573 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10574 		return -EINVAL;
10575 	}
10576 
10577 	/*
10578 	 * Balance or device remove/replace/resize can move stuff around from
10579 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10580 	 * concurrently while we are mapping the swap extents, and
10581 	 * fs_info->swapfile_pins prevents them from running while the swap file
10582 	 * is active and moving the extents. Note that this also prevents a
10583 	 * concurrent device add which isn't actually necessary, but it's not
10584 	 * really worth the trouble to allow it.
10585 	 */
10586 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10587 		btrfs_warn(fs_info,
10588 	   "cannot activate swapfile while exclusive operation is running");
10589 		return -EBUSY;
10590 	}
10591 	/*
10592 	 * Snapshots can create extents which require COW even if NODATACOW is
10593 	 * set. We use this counter to prevent snapshots. We must increment it
10594 	 * before walking the extents because we don't want a concurrent
10595 	 * snapshot to run after we've already checked the extents.
10596 	 */
10597 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10598 
10599 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10600 
10601 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10602 	start = 0;
10603 	while (start < isize) {
10604 		u64 logical_block_start, physical_block_start;
10605 		struct btrfs_block_group_cache *bg;
10606 		u64 len = isize - start;
10607 
10608 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10609 		if (IS_ERR(em)) {
10610 			ret = PTR_ERR(em);
10611 			goto out;
10612 		}
10613 
10614 		if (em->block_start == EXTENT_MAP_HOLE) {
10615 			btrfs_warn(fs_info, "swapfile must not have holes");
10616 			ret = -EINVAL;
10617 			goto out;
10618 		}
10619 		if (em->block_start == EXTENT_MAP_INLINE) {
10620 			/*
10621 			 * It's unlikely we'll ever actually find ourselves
10622 			 * here, as a file small enough to fit inline won't be
10623 			 * big enough to store more than the swap header, but in
10624 			 * case something changes in the future, let's catch it
10625 			 * here rather than later.
10626 			 */
10627 			btrfs_warn(fs_info, "swapfile must not be inline");
10628 			ret = -EINVAL;
10629 			goto out;
10630 		}
10631 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10632 			btrfs_warn(fs_info, "swapfile must not be compressed");
10633 			ret = -EINVAL;
10634 			goto out;
10635 		}
10636 
10637 		logical_block_start = em->block_start + (start - em->start);
10638 		len = min(len, em->len - (start - em->start));
10639 		free_extent_map(em);
10640 		em = NULL;
10641 
10642 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10643 		if (ret < 0) {
10644 			goto out;
10645 		} else if (ret) {
10646 			ret = 0;
10647 		} else {
10648 			btrfs_warn(fs_info,
10649 				   "swapfile must not be copy-on-write");
10650 			ret = -EINVAL;
10651 			goto out;
10652 		}
10653 
10654 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10655 		if (IS_ERR(em)) {
10656 			ret = PTR_ERR(em);
10657 			goto out;
10658 		}
10659 
10660 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10661 			btrfs_warn(fs_info,
10662 				   "swapfile must have single data profile");
10663 			ret = -EINVAL;
10664 			goto out;
10665 		}
10666 
10667 		if (device == NULL) {
10668 			device = em->map_lookup->stripes[0].dev;
10669 			ret = btrfs_add_swapfile_pin(inode, device, false);
10670 			if (ret == 1)
10671 				ret = 0;
10672 			else if (ret)
10673 				goto out;
10674 		} else if (device != em->map_lookup->stripes[0].dev) {
10675 			btrfs_warn(fs_info, "swapfile must be on one device");
10676 			ret = -EINVAL;
10677 			goto out;
10678 		}
10679 
10680 		physical_block_start = (em->map_lookup->stripes[0].physical +
10681 					(logical_block_start - em->start));
10682 		len = min(len, em->len - (logical_block_start - em->start));
10683 		free_extent_map(em);
10684 		em = NULL;
10685 
10686 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10687 		if (!bg) {
10688 			btrfs_warn(fs_info,
10689 			   "could not find block group containing swapfile");
10690 			ret = -EINVAL;
10691 			goto out;
10692 		}
10693 
10694 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10695 		if (ret) {
10696 			btrfs_put_block_group(bg);
10697 			if (ret == 1)
10698 				ret = 0;
10699 			else
10700 				goto out;
10701 		}
10702 
10703 		if (bsi.block_len &&
10704 		    bsi.block_start + bsi.block_len == physical_block_start) {
10705 			bsi.block_len += len;
10706 		} else {
10707 			if (bsi.block_len) {
10708 				ret = btrfs_add_swap_extent(sis, &bsi);
10709 				if (ret)
10710 					goto out;
10711 			}
10712 			bsi.start = start;
10713 			bsi.block_start = physical_block_start;
10714 			bsi.block_len = len;
10715 		}
10716 
10717 		start += len;
10718 	}
10719 
10720 	if (bsi.block_len)
10721 		ret = btrfs_add_swap_extent(sis, &bsi);
10722 
10723 out:
10724 	if (!IS_ERR_OR_NULL(em))
10725 		free_extent_map(em);
10726 
10727 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10728 
10729 	if (ret)
10730 		btrfs_swap_deactivate(file);
10731 
10732 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10733 
10734 	if (ret)
10735 		return ret;
10736 
10737 	if (device)
10738 		sis->bdev = device->bdev;
10739 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10740 	sis->max = bsi.nr_pages;
10741 	sis->pages = bsi.nr_pages - 1;
10742 	sis->highest_bit = bsi.nr_pages - 1;
10743 	return bsi.nr_extents;
10744 }
10745 #else
10746 static void btrfs_swap_deactivate(struct file *file)
10747 {
10748 }
10749 
10750 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10751 			       sector_t *span)
10752 {
10753 	return -EOPNOTSUPP;
10754 }
10755 #endif
10756 
10757 static const struct inode_operations btrfs_dir_inode_operations = {
10758 	.getattr	= btrfs_getattr,
10759 	.lookup		= btrfs_lookup,
10760 	.create		= btrfs_create,
10761 	.unlink		= btrfs_unlink,
10762 	.link		= btrfs_link,
10763 	.mkdir		= btrfs_mkdir,
10764 	.rmdir		= btrfs_rmdir,
10765 	.rename		= btrfs_rename2,
10766 	.symlink	= btrfs_symlink,
10767 	.setattr	= btrfs_setattr,
10768 	.mknod		= btrfs_mknod,
10769 	.listxattr	= btrfs_listxattr,
10770 	.permission	= btrfs_permission,
10771 	.get_acl	= btrfs_get_acl,
10772 	.set_acl	= btrfs_set_acl,
10773 	.update_time	= btrfs_update_time,
10774 	.tmpfile        = btrfs_tmpfile,
10775 };
10776 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10777 	.lookup		= btrfs_lookup,
10778 	.permission	= btrfs_permission,
10779 	.update_time	= btrfs_update_time,
10780 };
10781 
10782 static const struct file_operations btrfs_dir_file_operations = {
10783 	.llseek		= generic_file_llseek,
10784 	.read		= generic_read_dir,
10785 	.iterate_shared	= btrfs_real_readdir,
10786 	.open		= btrfs_opendir,
10787 	.unlocked_ioctl	= btrfs_ioctl,
10788 #ifdef CONFIG_COMPAT
10789 	.compat_ioctl	= btrfs_compat_ioctl,
10790 #endif
10791 	.release        = btrfs_release_file,
10792 	.fsync		= btrfs_sync_file,
10793 };
10794 
10795 static const struct extent_io_ops btrfs_extent_io_ops = {
10796 	/* mandatory callbacks */
10797 	.submit_bio_hook = btrfs_submit_bio_hook,
10798 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10799 };
10800 
10801 /*
10802  * btrfs doesn't support the bmap operation because swapfiles
10803  * use bmap to make a mapping of extents in the file.  They assume
10804  * these extents won't change over the life of the file and they
10805  * use the bmap result to do IO directly to the drive.
10806  *
10807  * the btrfs bmap call would return logical addresses that aren't
10808  * suitable for IO and they also will change frequently as COW
10809  * operations happen.  So, swapfile + btrfs == corruption.
10810  *
10811  * For now we're avoiding this by dropping bmap.
10812  */
10813 static const struct address_space_operations btrfs_aops = {
10814 	.readpage	= btrfs_readpage,
10815 	.writepage	= btrfs_writepage,
10816 	.writepages	= btrfs_writepages,
10817 	.readpages	= btrfs_readpages,
10818 	.direct_IO	= btrfs_direct_IO,
10819 	.invalidatepage = btrfs_invalidatepage,
10820 	.releasepage	= btrfs_releasepage,
10821 	.set_page_dirty	= btrfs_set_page_dirty,
10822 	.error_remove_page = generic_error_remove_page,
10823 	.swap_activate	= btrfs_swap_activate,
10824 	.swap_deactivate = btrfs_swap_deactivate,
10825 };
10826 
10827 static const struct inode_operations btrfs_file_inode_operations = {
10828 	.getattr	= btrfs_getattr,
10829 	.setattr	= btrfs_setattr,
10830 	.listxattr      = btrfs_listxattr,
10831 	.permission	= btrfs_permission,
10832 	.fiemap		= btrfs_fiemap,
10833 	.get_acl	= btrfs_get_acl,
10834 	.set_acl	= btrfs_set_acl,
10835 	.update_time	= btrfs_update_time,
10836 };
10837 static const struct inode_operations btrfs_special_inode_operations = {
10838 	.getattr	= btrfs_getattr,
10839 	.setattr	= btrfs_setattr,
10840 	.permission	= btrfs_permission,
10841 	.listxattr	= btrfs_listxattr,
10842 	.get_acl	= btrfs_get_acl,
10843 	.set_acl	= btrfs_set_acl,
10844 	.update_time	= btrfs_update_time,
10845 };
10846 static const struct inode_operations btrfs_symlink_inode_operations = {
10847 	.get_link	= page_get_link,
10848 	.getattr	= btrfs_getattr,
10849 	.setattr	= btrfs_setattr,
10850 	.permission	= btrfs_permission,
10851 	.listxattr	= btrfs_listxattr,
10852 	.update_time	= btrfs_update_time,
10853 };
10854 
10855 const struct dentry_operations btrfs_dentry_operations = {
10856 	.d_delete	= btrfs_dentry_delete,
10857 };
10858