xref: /openbmc/linux/fs/btrfs/inode.c (revision 400c2a45)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 
54 struct btrfs_iget_args {
55 	u64 ino;
56 	struct btrfs_root *root;
57 };
58 
59 struct btrfs_dio_data {
60 	u64 reserve;
61 	loff_t length;
62 	ssize_t submitted;
63 	struct extent_changeset *data_reserved;
64 };
65 
66 static const struct inode_operations btrfs_dir_inode_operations;
67 static const struct inode_operations btrfs_symlink_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct file_operations btrfs_dir_file_operations;
72 
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77 struct kmem_cache *btrfs_free_space_bitmap_cachep;
78 
79 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
80 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
81 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
82 static noinline int cow_file_range(struct btrfs_inode *inode,
83 				   struct page *locked_page,
84 				   u64 start, u64 end, int *page_started,
85 				   unsigned long *nr_written, int unlock);
86 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
87 				       u64 len, u64 orig_start, u64 block_start,
88 				       u64 block_len, u64 orig_block_len,
89 				       u64 ram_bytes, int compress_type,
90 				       int type);
91 
92 static void __endio_write_update_ordered(struct btrfs_inode *inode,
93 					 const u64 offset, const u64 bytes,
94 					 const bool uptodate);
95 
96 /*
97  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
98  *
99  * ilock_flags can have the following bit set:
100  *
101  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
102  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
103  *		     return -EAGAIN
104  */
105 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
106 {
107 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
108 		if (ilock_flags & BTRFS_ILOCK_TRY) {
109 			if (!inode_trylock_shared(inode))
110 				return -EAGAIN;
111 			else
112 				return 0;
113 		}
114 		inode_lock_shared(inode);
115 	} else {
116 		if (ilock_flags & BTRFS_ILOCK_TRY) {
117 			if (!inode_trylock(inode))
118 				return -EAGAIN;
119 			else
120 				return 0;
121 		}
122 		inode_lock(inode);
123 	}
124 	return 0;
125 }
126 
127 /*
128  * btrfs_inode_unlock - unock inode i_rwsem
129  *
130  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
131  * to decide whether the lock acquired is shared or exclusive.
132  */
133 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
134 {
135 	if (ilock_flags & BTRFS_ILOCK_SHARED)
136 		inode_unlock_shared(inode);
137 	else
138 		inode_unlock(inode);
139 }
140 
141 /*
142  * Cleanup all submitted ordered extents in specified range to handle errors
143  * from the btrfs_run_delalloc_range() callback.
144  *
145  * NOTE: caller must ensure that when an error happens, it can not call
146  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
147  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
148  * to be released, which we want to happen only when finishing the ordered
149  * extent (btrfs_finish_ordered_io()).
150  */
151 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
152 						 struct page *locked_page,
153 						 u64 offset, u64 bytes)
154 {
155 	unsigned long index = offset >> PAGE_SHIFT;
156 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
157 	u64 page_start = page_offset(locked_page);
158 	u64 page_end = page_start + PAGE_SIZE - 1;
159 
160 	struct page *page;
161 
162 	while (index <= end_index) {
163 		page = find_get_page(inode->vfs_inode.i_mapping, index);
164 		index++;
165 		if (!page)
166 			continue;
167 		ClearPagePrivate2(page);
168 		put_page(page);
169 	}
170 
171 	/*
172 	 * In case this page belongs to the delalloc range being instantiated
173 	 * then skip it, since the first page of a range is going to be
174 	 * properly cleaned up by the caller of run_delalloc_range
175 	 */
176 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
177 		offset += PAGE_SIZE;
178 		bytes -= PAGE_SIZE;
179 	}
180 
181 	return __endio_write_update_ordered(inode, offset, bytes, false);
182 }
183 
184 static int btrfs_dirty_inode(struct inode *inode);
185 
186 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
187 				     struct inode *inode,  struct inode *dir,
188 				     const struct qstr *qstr)
189 {
190 	int err;
191 
192 	err = btrfs_init_acl(trans, inode, dir);
193 	if (!err)
194 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
195 	return err;
196 }
197 
198 /*
199  * this does all the hard work for inserting an inline extent into
200  * the btree.  The caller should have done a btrfs_drop_extents so that
201  * no overlapping inline items exist in the btree
202  */
203 static int insert_inline_extent(struct btrfs_trans_handle *trans,
204 				struct btrfs_path *path, bool extent_inserted,
205 				struct btrfs_root *root, struct inode *inode,
206 				u64 start, size_t size, size_t compressed_size,
207 				int compress_type,
208 				struct page **compressed_pages)
209 {
210 	struct extent_buffer *leaf;
211 	struct page *page = NULL;
212 	char *kaddr;
213 	unsigned long ptr;
214 	struct btrfs_file_extent_item *ei;
215 	int ret;
216 	size_t cur_size = size;
217 	unsigned long offset;
218 
219 	ASSERT((compressed_size > 0 && compressed_pages) ||
220 	       (compressed_size == 0 && !compressed_pages));
221 
222 	if (compressed_size && compressed_pages)
223 		cur_size = compressed_size;
224 
225 	if (!extent_inserted) {
226 		struct btrfs_key key;
227 		size_t datasize;
228 
229 		key.objectid = btrfs_ino(BTRFS_I(inode));
230 		key.offset = start;
231 		key.type = BTRFS_EXTENT_DATA_KEY;
232 
233 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
234 		ret = btrfs_insert_empty_item(trans, root, path, &key,
235 					      datasize);
236 		if (ret)
237 			goto fail;
238 	}
239 	leaf = path->nodes[0];
240 	ei = btrfs_item_ptr(leaf, path->slots[0],
241 			    struct btrfs_file_extent_item);
242 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
243 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
244 	btrfs_set_file_extent_encryption(leaf, ei, 0);
245 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
246 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
247 	ptr = btrfs_file_extent_inline_start(ei);
248 
249 	if (compress_type != BTRFS_COMPRESS_NONE) {
250 		struct page *cpage;
251 		int i = 0;
252 		while (compressed_size > 0) {
253 			cpage = compressed_pages[i];
254 			cur_size = min_t(unsigned long, compressed_size,
255 				       PAGE_SIZE);
256 
257 			kaddr = kmap_atomic(cpage);
258 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
259 			kunmap_atomic(kaddr);
260 
261 			i++;
262 			ptr += cur_size;
263 			compressed_size -= cur_size;
264 		}
265 		btrfs_set_file_extent_compression(leaf, ei,
266 						  compress_type);
267 	} else {
268 		page = find_get_page(inode->i_mapping,
269 				     start >> PAGE_SHIFT);
270 		btrfs_set_file_extent_compression(leaf, ei, 0);
271 		kaddr = kmap_atomic(page);
272 		offset = offset_in_page(start);
273 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
274 		kunmap_atomic(kaddr);
275 		put_page(page);
276 	}
277 	btrfs_mark_buffer_dirty(leaf);
278 	btrfs_release_path(path);
279 
280 	/*
281 	 * We align size to sectorsize for inline extents just for simplicity
282 	 * sake.
283 	 */
284 	size = ALIGN(size, root->fs_info->sectorsize);
285 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
286 	if (ret)
287 		goto fail;
288 
289 	/*
290 	 * we're an inline extent, so nobody can
291 	 * extend the file past i_size without locking
292 	 * a page we already have locked.
293 	 *
294 	 * We must do any isize and inode updates
295 	 * before we unlock the pages.  Otherwise we
296 	 * could end up racing with unlink.
297 	 */
298 	BTRFS_I(inode)->disk_i_size = inode->i_size;
299 fail:
300 	return ret;
301 }
302 
303 
304 /*
305  * conditionally insert an inline extent into the file.  This
306  * does the checks required to make sure the data is small enough
307  * to fit as an inline extent.
308  */
309 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
310 					  u64 end, size_t compressed_size,
311 					  int compress_type,
312 					  struct page **compressed_pages)
313 {
314 	struct btrfs_drop_extents_args drop_args = { 0 };
315 	struct btrfs_root *root = inode->root;
316 	struct btrfs_fs_info *fs_info = root->fs_info;
317 	struct btrfs_trans_handle *trans;
318 	u64 isize = i_size_read(&inode->vfs_inode);
319 	u64 actual_end = min(end + 1, isize);
320 	u64 inline_len = actual_end - start;
321 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
322 	u64 data_len = inline_len;
323 	int ret;
324 	struct btrfs_path *path;
325 
326 	if (compressed_size)
327 		data_len = compressed_size;
328 
329 	if (start > 0 ||
330 	    actual_end > fs_info->sectorsize ||
331 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
332 	    (!compressed_size &&
333 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
334 	    end + 1 < isize ||
335 	    data_len > fs_info->max_inline) {
336 		return 1;
337 	}
338 
339 	path = btrfs_alloc_path();
340 	if (!path)
341 		return -ENOMEM;
342 
343 	trans = btrfs_join_transaction(root);
344 	if (IS_ERR(trans)) {
345 		btrfs_free_path(path);
346 		return PTR_ERR(trans);
347 	}
348 	trans->block_rsv = &inode->block_rsv;
349 
350 	drop_args.path = path;
351 	drop_args.start = start;
352 	drop_args.end = aligned_end;
353 	drop_args.drop_cache = true;
354 	drop_args.replace_extent = true;
355 
356 	if (compressed_size && compressed_pages)
357 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
358 		   compressed_size);
359 	else
360 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
361 		    inline_len);
362 
363 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
364 	if (ret) {
365 		btrfs_abort_transaction(trans, ret);
366 		goto out;
367 	}
368 
369 	if (isize > actual_end)
370 		inline_len = min_t(u64, isize, actual_end);
371 	ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
372 				   root, &inode->vfs_inode, start,
373 				   inline_len, compressed_size,
374 				   compress_type, compressed_pages);
375 	if (ret && ret != -ENOSPC) {
376 		btrfs_abort_transaction(trans, ret);
377 		goto out;
378 	} else if (ret == -ENOSPC) {
379 		ret = 1;
380 		goto out;
381 	}
382 
383 	btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
384 	ret = btrfs_update_inode(trans, root, inode);
385 	if (ret && ret != -ENOSPC) {
386 		btrfs_abort_transaction(trans, ret);
387 		goto out;
388 	} else if (ret == -ENOSPC) {
389 		ret = 1;
390 		goto out;
391 	}
392 
393 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
394 out:
395 	/*
396 	 * Don't forget to free the reserved space, as for inlined extent
397 	 * it won't count as data extent, free them directly here.
398 	 * And at reserve time, it's always aligned to page size, so
399 	 * just free one page here.
400 	 */
401 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
402 	btrfs_free_path(path);
403 	btrfs_end_transaction(trans);
404 	return ret;
405 }
406 
407 struct async_extent {
408 	u64 start;
409 	u64 ram_size;
410 	u64 compressed_size;
411 	struct page **pages;
412 	unsigned long nr_pages;
413 	int compress_type;
414 	struct list_head list;
415 };
416 
417 struct async_chunk {
418 	struct inode *inode;
419 	struct page *locked_page;
420 	u64 start;
421 	u64 end;
422 	unsigned int write_flags;
423 	struct list_head extents;
424 	struct cgroup_subsys_state *blkcg_css;
425 	struct btrfs_work work;
426 	atomic_t *pending;
427 };
428 
429 struct async_cow {
430 	/* Number of chunks in flight; must be first in the structure */
431 	atomic_t num_chunks;
432 	struct async_chunk chunks[];
433 };
434 
435 static noinline int add_async_extent(struct async_chunk *cow,
436 				     u64 start, u64 ram_size,
437 				     u64 compressed_size,
438 				     struct page **pages,
439 				     unsigned long nr_pages,
440 				     int compress_type)
441 {
442 	struct async_extent *async_extent;
443 
444 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
445 	BUG_ON(!async_extent); /* -ENOMEM */
446 	async_extent->start = start;
447 	async_extent->ram_size = ram_size;
448 	async_extent->compressed_size = compressed_size;
449 	async_extent->pages = pages;
450 	async_extent->nr_pages = nr_pages;
451 	async_extent->compress_type = compress_type;
452 	list_add_tail(&async_extent->list, &cow->extents);
453 	return 0;
454 }
455 
456 /*
457  * Check if the inode has flags compatible with compression
458  */
459 static inline bool inode_can_compress(struct btrfs_inode *inode)
460 {
461 	if (inode->flags & BTRFS_INODE_NODATACOW ||
462 	    inode->flags & BTRFS_INODE_NODATASUM)
463 		return false;
464 	return true;
465 }
466 
467 /*
468  * Check if the inode needs to be submitted to compression, based on mount
469  * options, defragmentation, properties or heuristics.
470  */
471 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
472 				      u64 end)
473 {
474 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
475 
476 	if (!inode_can_compress(inode)) {
477 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
478 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
479 			btrfs_ino(inode));
480 		return 0;
481 	}
482 	/* force compress */
483 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
484 		return 1;
485 	/* defrag ioctl */
486 	if (inode->defrag_compress)
487 		return 1;
488 	/* bad compression ratios */
489 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
490 		return 0;
491 	if (btrfs_test_opt(fs_info, COMPRESS) ||
492 	    inode->flags & BTRFS_INODE_COMPRESS ||
493 	    inode->prop_compress)
494 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
495 	return 0;
496 }
497 
498 static inline void inode_should_defrag(struct btrfs_inode *inode,
499 		u64 start, u64 end, u64 num_bytes, u64 small_write)
500 {
501 	/* If this is a small write inside eof, kick off a defrag */
502 	if (num_bytes < small_write &&
503 	    (start > 0 || end + 1 < inode->disk_i_size))
504 		btrfs_add_inode_defrag(NULL, inode);
505 }
506 
507 /*
508  * we create compressed extents in two phases.  The first
509  * phase compresses a range of pages that have already been
510  * locked (both pages and state bits are locked).
511  *
512  * This is done inside an ordered work queue, and the compression
513  * is spread across many cpus.  The actual IO submission is step
514  * two, and the ordered work queue takes care of making sure that
515  * happens in the same order things were put onto the queue by
516  * writepages and friends.
517  *
518  * If this code finds it can't get good compression, it puts an
519  * entry onto the work queue to write the uncompressed bytes.  This
520  * makes sure that both compressed inodes and uncompressed inodes
521  * are written in the same order that the flusher thread sent them
522  * down.
523  */
524 static noinline int compress_file_range(struct async_chunk *async_chunk)
525 {
526 	struct inode *inode = async_chunk->inode;
527 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
528 	u64 blocksize = fs_info->sectorsize;
529 	u64 start = async_chunk->start;
530 	u64 end = async_chunk->end;
531 	u64 actual_end;
532 	u64 i_size;
533 	int ret = 0;
534 	struct page **pages = NULL;
535 	unsigned long nr_pages;
536 	unsigned long total_compressed = 0;
537 	unsigned long total_in = 0;
538 	int i;
539 	int will_compress;
540 	int compress_type = fs_info->compress_type;
541 	int compressed_extents = 0;
542 	int redirty = 0;
543 
544 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
545 			SZ_16K);
546 
547 	/*
548 	 * We need to save i_size before now because it could change in between
549 	 * us evaluating the size and assigning it.  This is because we lock and
550 	 * unlock the page in truncate and fallocate, and then modify the i_size
551 	 * later on.
552 	 *
553 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
554 	 * does that for us.
555 	 */
556 	barrier();
557 	i_size = i_size_read(inode);
558 	barrier();
559 	actual_end = min_t(u64, i_size, end + 1);
560 again:
561 	will_compress = 0;
562 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
563 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
564 	nr_pages = min_t(unsigned long, nr_pages,
565 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
566 
567 	/*
568 	 * we don't want to send crud past the end of i_size through
569 	 * compression, that's just a waste of CPU time.  So, if the
570 	 * end of the file is before the start of our current
571 	 * requested range of bytes, we bail out to the uncompressed
572 	 * cleanup code that can deal with all of this.
573 	 *
574 	 * It isn't really the fastest way to fix things, but this is a
575 	 * very uncommon corner.
576 	 */
577 	if (actual_end <= start)
578 		goto cleanup_and_bail_uncompressed;
579 
580 	total_compressed = actual_end - start;
581 
582 	/*
583 	 * skip compression for a small file range(<=blocksize) that
584 	 * isn't an inline extent, since it doesn't save disk space at all.
585 	 */
586 	if (total_compressed <= blocksize &&
587 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
588 		goto cleanup_and_bail_uncompressed;
589 
590 	total_compressed = min_t(unsigned long, total_compressed,
591 			BTRFS_MAX_UNCOMPRESSED);
592 	total_in = 0;
593 	ret = 0;
594 
595 	/*
596 	 * we do compression for mount -o compress and when the
597 	 * inode has not been flagged as nocompress.  This flag can
598 	 * change at any time if we discover bad compression ratios.
599 	 */
600 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
601 		WARN_ON(pages);
602 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
603 		if (!pages) {
604 			/* just bail out to the uncompressed code */
605 			nr_pages = 0;
606 			goto cont;
607 		}
608 
609 		if (BTRFS_I(inode)->defrag_compress)
610 			compress_type = BTRFS_I(inode)->defrag_compress;
611 		else if (BTRFS_I(inode)->prop_compress)
612 			compress_type = BTRFS_I(inode)->prop_compress;
613 
614 		/*
615 		 * we need to call clear_page_dirty_for_io on each
616 		 * page in the range.  Otherwise applications with the file
617 		 * mmap'd can wander in and change the page contents while
618 		 * we are compressing them.
619 		 *
620 		 * If the compression fails for any reason, we set the pages
621 		 * dirty again later on.
622 		 *
623 		 * Note that the remaining part is redirtied, the start pointer
624 		 * has moved, the end is the original one.
625 		 */
626 		if (!redirty) {
627 			extent_range_clear_dirty_for_io(inode, start, end);
628 			redirty = 1;
629 		}
630 
631 		/* Compression level is applied here and only here */
632 		ret = btrfs_compress_pages(
633 			compress_type | (fs_info->compress_level << 4),
634 					   inode->i_mapping, start,
635 					   pages,
636 					   &nr_pages,
637 					   &total_in,
638 					   &total_compressed);
639 
640 		if (!ret) {
641 			unsigned long offset = offset_in_page(total_compressed);
642 			struct page *page = pages[nr_pages - 1];
643 			char *kaddr;
644 
645 			/* zero the tail end of the last page, we might be
646 			 * sending it down to disk
647 			 */
648 			if (offset) {
649 				kaddr = kmap_atomic(page);
650 				memset(kaddr + offset, 0,
651 				       PAGE_SIZE - offset);
652 				kunmap_atomic(kaddr);
653 			}
654 			will_compress = 1;
655 		}
656 	}
657 cont:
658 	if (start == 0) {
659 		/* lets try to make an inline extent */
660 		if (ret || total_in < actual_end) {
661 			/* we didn't compress the entire range, try
662 			 * to make an uncompressed inline extent.
663 			 */
664 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
665 						    0, BTRFS_COMPRESS_NONE,
666 						    NULL);
667 		} else {
668 			/* try making a compressed inline extent */
669 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
670 						    total_compressed,
671 						    compress_type, pages);
672 		}
673 		if (ret <= 0) {
674 			unsigned long clear_flags = EXTENT_DELALLOC |
675 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
676 				EXTENT_DO_ACCOUNTING;
677 			unsigned long page_error_op;
678 
679 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
680 
681 			/*
682 			 * inline extent creation worked or returned error,
683 			 * we don't need to create any more async work items.
684 			 * Unlock and free up our temp pages.
685 			 *
686 			 * We use DO_ACCOUNTING here because we need the
687 			 * delalloc_release_metadata to be done _after_ we drop
688 			 * our outstanding extent for clearing delalloc for this
689 			 * range.
690 			 */
691 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
692 						     NULL,
693 						     clear_flags,
694 						     PAGE_UNLOCK |
695 						     PAGE_CLEAR_DIRTY |
696 						     PAGE_SET_WRITEBACK |
697 						     page_error_op |
698 						     PAGE_END_WRITEBACK);
699 
700 			/*
701 			 * Ensure we only free the compressed pages if we have
702 			 * them allocated, as we can still reach here with
703 			 * inode_need_compress() == false.
704 			 */
705 			if (pages) {
706 				for (i = 0; i < nr_pages; i++) {
707 					WARN_ON(pages[i]->mapping);
708 					put_page(pages[i]);
709 				}
710 				kfree(pages);
711 			}
712 			return 0;
713 		}
714 	}
715 
716 	if (will_compress) {
717 		/*
718 		 * we aren't doing an inline extent round the compressed size
719 		 * up to a block size boundary so the allocator does sane
720 		 * things
721 		 */
722 		total_compressed = ALIGN(total_compressed, blocksize);
723 
724 		/*
725 		 * one last check to make sure the compression is really a
726 		 * win, compare the page count read with the blocks on disk,
727 		 * compression must free at least one sector size
728 		 */
729 		total_in = ALIGN(total_in, PAGE_SIZE);
730 		if (total_compressed + blocksize <= total_in) {
731 			compressed_extents++;
732 
733 			/*
734 			 * The async work queues will take care of doing actual
735 			 * allocation on disk for these compressed pages, and
736 			 * will submit them to the elevator.
737 			 */
738 			add_async_extent(async_chunk, start, total_in,
739 					total_compressed, pages, nr_pages,
740 					compress_type);
741 
742 			if (start + total_in < end) {
743 				start += total_in;
744 				pages = NULL;
745 				cond_resched();
746 				goto again;
747 			}
748 			return compressed_extents;
749 		}
750 	}
751 	if (pages) {
752 		/*
753 		 * the compression code ran but failed to make things smaller,
754 		 * free any pages it allocated and our page pointer array
755 		 */
756 		for (i = 0; i < nr_pages; i++) {
757 			WARN_ON(pages[i]->mapping);
758 			put_page(pages[i]);
759 		}
760 		kfree(pages);
761 		pages = NULL;
762 		total_compressed = 0;
763 		nr_pages = 0;
764 
765 		/* flag the file so we don't compress in the future */
766 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
767 		    !(BTRFS_I(inode)->prop_compress)) {
768 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
769 		}
770 	}
771 cleanup_and_bail_uncompressed:
772 	/*
773 	 * No compression, but we still need to write the pages in the file
774 	 * we've been given so far.  redirty the locked page if it corresponds
775 	 * to our extent and set things up for the async work queue to run
776 	 * cow_file_range to do the normal delalloc dance.
777 	 */
778 	if (async_chunk->locked_page &&
779 	    (page_offset(async_chunk->locked_page) >= start &&
780 	     page_offset(async_chunk->locked_page)) <= end) {
781 		__set_page_dirty_nobuffers(async_chunk->locked_page);
782 		/* unlocked later on in the async handlers */
783 	}
784 
785 	if (redirty)
786 		extent_range_redirty_for_io(inode, start, end);
787 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
788 			 BTRFS_COMPRESS_NONE);
789 	compressed_extents++;
790 
791 	return compressed_extents;
792 }
793 
794 static void free_async_extent_pages(struct async_extent *async_extent)
795 {
796 	int i;
797 
798 	if (!async_extent->pages)
799 		return;
800 
801 	for (i = 0; i < async_extent->nr_pages; i++) {
802 		WARN_ON(async_extent->pages[i]->mapping);
803 		put_page(async_extent->pages[i]);
804 	}
805 	kfree(async_extent->pages);
806 	async_extent->nr_pages = 0;
807 	async_extent->pages = NULL;
808 }
809 
810 /*
811  * phase two of compressed writeback.  This is the ordered portion
812  * of the code, which only gets called in the order the work was
813  * queued.  We walk all the async extents created by compress_file_range
814  * and send them down to the disk.
815  */
816 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
817 {
818 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
819 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
820 	struct async_extent *async_extent;
821 	u64 alloc_hint = 0;
822 	struct btrfs_key ins;
823 	struct extent_map *em;
824 	struct btrfs_root *root = inode->root;
825 	struct extent_io_tree *io_tree = &inode->io_tree;
826 	int ret = 0;
827 
828 again:
829 	while (!list_empty(&async_chunk->extents)) {
830 		async_extent = list_entry(async_chunk->extents.next,
831 					  struct async_extent, list);
832 		list_del(&async_extent->list);
833 
834 retry:
835 		lock_extent(io_tree, async_extent->start,
836 			    async_extent->start + async_extent->ram_size - 1);
837 		/* did the compression code fall back to uncompressed IO? */
838 		if (!async_extent->pages) {
839 			int page_started = 0;
840 			unsigned long nr_written = 0;
841 
842 			/* allocate blocks */
843 			ret = cow_file_range(inode, async_chunk->locked_page,
844 					     async_extent->start,
845 					     async_extent->start +
846 					     async_extent->ram_size - 1,
847 					     &page_started, &nr_written, 0);
848 
849 			/* JDM XXX */
850 
851 			/*
852 			 * if page_started, cow_file_range inserted an
853 			 * inline extent and took care of all the unlocking
854 			 * and IO for us.  Otherwise, we need to submit
855 			 * all those pages down to the drive.
856 			 */
857 			if (!page_started && !ret)
858 				extent_write_locked_range(&inode->vfs_inode,
859 						  async_extent->start,
860 						  async_extent->start +
861 						  async_extent->ram_size - 1,
862 						  WB_SYNC_ALL);
863 			else if (ret && async_chunk->locked_page)
864 				unlock_page(async_chunk->locked_page);
865 			kfree(async_extent);
866 			cond_resched();
867 			continue;
868 		}
869 
870 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
871 					   async_extent->compressed_size,
872 					   async_extent->compressed_size,
873 					   0, alloc_hint, &ins, 1, 1);
874 		if (ret) {
875 			free_async_extent_pages(async_extent);
876 
877 			if (ret == -ENOSPC) {
878 				unlock_extent(io_tree, async_extent->start,
879 					      async_extent->start +
880 					      async_extent->ram_size - 1);
881 
882 				/*
883 				 * we need to redirty the pages if we decide to
884 				 * fallback to uncompressed IO, otherwise we
885 				 * will not submit these pages down to lower
886 				 * layers.
887 				 */
888 				extent_range_redirty_for_io(&inode->vfs_inode,
889 						async_extent->start,
890 						async_extent->start +
891 						async_extent->ram_size - 1);
892 
893 				goto retry;
894 			}
895 			goto out_free;
896 		}
897 		/*
898 		 * here we're doing allocation and writeback of the
899 		 * compressed pages
900 		 */
901 		em = create_io_em(inode, async_extent->start,
902 				  async_extent->ram_size, /* len */
903 				  async_extent->start, /* orig_start */
904 				  ins.objectid, /* block_start */
905 				  ins.offset, /* block_len */
906 				  ins.offset, /* orig_block_len */
907 				  async_extent->ram_size, /* ram_bytes */
908 				  async_extent->compress_type,
909 				  BTRFS_ORDERED_COMPRESSED);
910 		if (IS_ERR(em))
911 			/* ret value is not necessary due to void function */
912 			goto out_free_reserve;
913 		free_extent_map(em);
914 
915 		ret = btrfs_add_ordered_extent_compress(inode,
916 						async_extent->start,
917 						ins.objectid,
918 						async_extent->ram_size,
919 						ins.offset,
920 						BTRFS_ORDERED_COMPRESSED,
921 						async_extent->compress_type);
922 		if (ret) {
923 			btrfs_drop_extent_cache(inode, async_extent->start,
924 						async_extent->start +
925 						async_extent->ram_size - 1, 0);
926 			goto out_free_reserve;
927 		}
928 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
929 
930 		/*
931 		 * clear dirty, set writeback and unlock the pages.
932 		 */
933 		extent_clear_unlock_delalloc(inode, async_extent->start,
934 				async_extent->start +
935 				async_extent->ram_size - 1,
936 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
937 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
938 				PAGE_SET_WRITEBACK);
939 		if (btrfs_submit_compressed_write(inode, async_extent->start,
940 				    async_extent->ram_size,
941 				    ins.objectid,
942 				    ins.offset, async_extent->pages,
943 				    async_extent->nr_pages,
944 				    async_chunk->write_flags,
945 				    async_chunk->blkcg_css)) {
946 			struct page *p = async_extent->pages[0];
947 			const u64 start = async_extent->start;
948 			const u64 end = start + async_extent->ram_size - 1;
949 
950 			p->mapping = inode->vfs_inode.i_mapping;
951 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
952 
953 			p->mapping = NULL;
954 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
955 						     PAGE_END_WRITEBACK |
956 						     PAGE_SET_ERROR);
957 			free_async_extent_pages(async_extent);
958 		}
959 		alloc_hint = ins.objectid + ins.offset;
960 		kfree(async_extent);
961 		cond_resched();
962 	}
963 	return;
964 out_free_reserve:
965 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
966 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
967 out_free:
968 	extent_clear_unlock_delalloc(inode, async_extent->start,
969 				     async_extent->start +
970 				     async_extent->ram_size - 1,
971 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
972 				     EXTENT_DELALLOC_NEW |
973 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
974 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
975 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
976 				     PAGE_SET_ERROR);
977 	free_async_extent_pages(async_extent);
978 	kfree(async_extent);
979 	goto again;
980 }
981 
982 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
983 				      u64 num_bytes)
984 {
985 	struct extent_map_tree *em_tree = &inode->extent_tree;
986 	struct extent_map *em;
987 	u64 alloc_hint = 0;
988 
989 	read_lock(&em_tree->lock);
990 	em = search_extent_mapping(em_tree, start, num_bytes);
991 	if (em) {
992 		/*
993 		 * if block start isn't an actual block number then find the
994 		 * first block in this inode and use that as a hint.  If that
995 		 * block is also bogus then just don't worry about it.
996 		 */
997 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
998 			free_extent_map(em);
999 			em = search_extent_mapping(em_tree, 0, 0);
1000 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1001 				alloc_hint = em->block_start;
1002 			if (em)
1003 				free_extent_map(em);
1004 		} else {
1005 			alloc_hint = em->block_start;
1006 			free_extent_map(em);
1007 		}
1008 	}
1009 	read_unlock(&em_tree->lock);
1010 
1011 	return alloc_hint;
1012 }
1013 
1014 /*
1015  * when extent_io.c finds a delayed allocation range in the file,
1016  * the call backs end up in this code.  The basic idea is to
1017  * allocate extents on disk for the range, and create ordered data structs
1018  * in ram to track those extents.
1019  *
1020  * locked_page is the page that writepage had locked already.  We use
1021  * it to make sure we don't do extra locks or unlocks.
1022  *
1023  * *page_started is set to one if we unlock locked_page and do everything
1024  * required to start IO on it.  It may be clean and already done with
1025  * IO when we return.
1026  */
1027 static noinline int cow_file_range(struct btrfs_inode *inode,
1028 				   struct page *locked_page,
1029 				   u64 start, u64 end, int *page_started,
1030 				   unsigned long *nr_written, int unlock)
1031 {
1032 	struct btrfs_root *root = inode->root;
1033 	struct btrfs_fs_info *fs_info = root->fs_info;
1034 	u64 alloc_hint = 0;
1035 	u64 num_bytes;
1036 	unsigned long ram_size;
1037 	u64 cur_alloc_size = 0;
1038 	u64 min_alloc_size;
1039 	u64 blocksize = fs_info->sectorsize;
1040 	struct btrfs_key ins;
1041 	struct extent_map *em;
1042 	unsigned clear_bits;
1043 	unsigned long page_ops;
1044 	bool extent_reserved = false;
1045 	int ret = 0;
1046 
1047 	if (btrfs_is_free_space_inode(inode)) {
1048 		WARN_ON_ONCE(1);
1049 		ret = -EINVAL;
1050 		goto out_unlock;
1051 	}
1052 
1053 	num_bytes = ALIGN(end - start + 1, blocksize);
1054 	num_bytes = max(blocksize,  num_bytes);
1055 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1056 
1057 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1058 
1059 	if (start == 0) {
1060 		/* lets try to make an inline extent */
1061 		ret = cow_file_range_inline(inode, start, end, 0,
1062 					    BTRFS_COMPRESS_NONE, NULL);
1063 		if (ret == 0) {
1064 			/*
1065 			 * We use DO_ACCOUNTING here because we need the
1066 			 * delalloc_release_metadata to be run _after_ we drop
1067 			 * our outstanding extent for clearing delalloc for this
1068 			 * range.
1069 			 */
1070 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1071 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1072 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1073 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1074 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1075 				     PAGE_END_WRITEBACK);
1076 			*nr_written = *nr_written +
1077 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1078 			*page_started = 1;
1079 			goto out;
1080 		} else if (ret < 0) {
1081 			goto out_unlock;
1082 		}
1083 	}
1084 
1085 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1086 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1087 
1088 	/*
1089 	 * Relocation relies on the relocated extents to have exactly the same
1090 	 * size as the original extents. Normally writeback for relocation data
1091 	 * extents follows a NOCOW path because relocation preallocates the
1092 	 * extents. However, due to an operation such as scrub turning a block
1093 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1094 	 * an extent allocated during COW has exactly the requested size and can
1095 	 * not be split into smaller extents, otherwise relocation breaks and
1096 	 * fails during the stage where it updates the bytenr of file extent
1097 	 * items.
1098 	 */
1099 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1100 		min_alloc_size = num_bytes;
1101 	else
1102 		min_alloc_size = fs_info->sectorsize;
1103 
1104 	while (num_bytes > 0) {
1105 		cur_alloc_size = num_bytes;
1106 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1107 					   min_alloc_size, 0, alloc_hint,
1108 					   &ins, 1, 1);
1109 		if (ret < 0)
1110 			goto out_unlock;
1111 		cur_alloc_size = ins.offset;
1112 		extent_reserved = true;
1113 
1114 		ram_size = ins.offset;
1115 		em = create_io_em(inode, start, ins.offset, /* len */
1116 				  start, /* orig_start */
1117 				  ins.objectid, /* block_start */
1118 				  ins.offset, /* block_len */
1119 				  ins.offset, /* orig_block_len */
1120 				  ram_size, /* ram_bytes */
1121 				  BTRFS_COMPRESS_NONE, /* compress_type */
1122 				  BTRFS_ORDERED_REGULAR /* type */);
1123 		if (IS_ERR(em)) {
1124 			ret = PTR_ERR(em);
1125 			goto out_reserve;
1126 		}
1127 		free_extent_map(em);
1128 
1129 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1130 					       ram_size, cur_alloc_size, 0);
1131 		if (ret)
1132 			goto out_drop_extent_cache;
1133 
1134 		if (root->root_key.objectid ==
1135 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1136 			ret = btrfs_reloc_clone_csums(inode, start,
1137 						      cur_alloc_size);
1138 			/*
1139 			 * Only drop cache here, and process as normal.
1140 			 *
1141 			 * We must not allow extent_clear_unlock_delalloc()
1142 			 * at out_unlock label to free meta of this ordered
1143 			 * extent, as its meta should be freed by
1144 			 * btrfs_finish_ordered_io().
1145 			 *
1146 			 * So we must continue until @start is increased to
1147 			 * skip current ordered extent.
1148 			 */
1149 			if (ret)
1150 				btrfs_drop_extent_cache(inode, start,
1151 						start + ram_size - 1, 0);
1152 		}
1153 
1154 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1155 
1156 		/* we're not doing compressed IO, don't unlock the first
1157 		 * page (which the caller expects to stay locked), don't
1158 		 * clear any dirty bits and don't set any writeback bits
1159 		 *
1160 		 * Do set the Private2 bit so we know this page was properly
1161 		 * setup for writepage
1162 		 */
1163 		page_ops = unlock ? PAGE_UNLOCK : 0;
1164 		page_ops |= PAGE_SET_PRIVATE2;
1165 
1166 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1167 					     locked_page,
1168 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1169 					     page_ops);
1170 		if (num_bytes < cur_alloc_size)
1171 			num_bytes = 0;
1172 		else
1173 			num_bytes -= cur_alloc_size;
1174 		alloc_hint = ins.objectid + ins.offset;
1175 		start += cur_alloc_size;
1176 		extent_reserved = false;
1177 
1178 		/*
1179 		 * btrfs_reloc_clone_csums() error, since start is increased
1180 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1181 		 * free metadata of current ordered extent, we're OK to exit.
1182 		 */
1183 		if (ret)
1184 			goto out_unlock;
1185 	}
1186 out:
1187 	return ret;
1188 
1189 out_drop_extent_cache:
1190 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1191 out_reserve:
1192 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1193 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1194 out_unlock:
1195 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1196 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1197 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1198 		PAGE_END_WRITEBACK;
1199 	/*
1200 	 * If we reserved an extent for our delalloc range (or a subrange) and
1201 	 * failed to create the respective ordered extent, then it means that
1202 	 * when we reserved the extent we decremented the extent's size from
1203 	 * the data space_info's bytes_may_use counter and incremented the
1204 	 * space_info's bytes_reserved counter by the same amount. We must make
1205 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1206 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1207 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1208 	 */
1209 	if (extent_reserved) {
1210 		extent_clear_unlock_delalloc(inode, start,
1211 					     start + cur_alloc_size - 1,
1212 					     locked_page,
1213 					     clear_bits,
1214 					     page_ops);
1215 		start += cur_alloc_size;
1216 		if (start >= end)
1217 			goto out;
1218 	}
1219 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1220 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1221 				     page_ops);
1222 	goto out;
1223 }
1224 
1225 /*
1226  * work queue call back to started compression on a file and pages
1227  */
1228 static noinline void async_cow_start(struct btrfs_work *work)
1229 {
1230 	struct async_chunk *async_chunk;
1231 	int compressed_extents;
1232 
1233 	async_chunk = container_of(work, struct async_chunk, work);
1234 
1235 	compressed_extents = compress_file_range(async_chunk);
1236 	if (compressed_extents == 0) {
1237 		btrfs_add_delayed_iput(async_chunk->inode);
1238 		async_chunk->inode = NULL;
1239 	}
1240 }
1241 
1242 /*
1243  * work queue call back to submit previously compressed pages
1244  */
1245 static noinline void async_cow_submit(struct btrfs_work *work)
1246 {
1247 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1248 						     work);
1249 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1250 	unsigned long nr_pages;
1251 
1252 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1253 		PAGE_SHIFT;
1254 
1255 	/* atomic_sub_return implies a barrier */
1256 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1257 	    5 * SZ_1M)
1258 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1259 
1260 	/*
1261 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1262 	 * in which case we don't have anything to submit, yet we need to
1263 	 * always adjust ->async_delalloc_pages as its paired with the init
1264 	 * happening in cow_file_range_async
1265 	 */
1266 	if (async_chunk->inode)
1267 		submit_compressed_extents(async_chunk);
1268 }
1269 
1270 static noinline void async_cow_free(struct btrfs_work *work)
1271 {
1272 	struct async_chunk *async_chunk;
1273 
1274 	async_chunk = container_of(work, struct async_chunk, work);
1275 	if (async_chunk->inode)
1276 		btrfs_add_delayed_iput(async_chunk->inode);
1277 	if (async_chunk->blkcg_css)
1278 		css_put(async_chunk->blkcg_css);
1279 	/*
1280 	 * Since the pointer to 'pending' is at the beginning of the array of
1281 	 * async_chunk's, freeing it ensures the whole array has been freed.
1282 	 */
1283 	if (atomic_dec_and_test(async_chunk->pending))
1284 		kvfree(async_chunk->pending);
1285 }
1286 
1287 static int cow_file_range_async(struct btrfs_inode *inode,
1288 				struct writeback_control *wbc,
1289 				struct page *locked_page,
1290 				u64 start, u64 end, int *page_started,
1291 				unsigned long *nr_written)
1292 {
1293 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1294 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1295 	struct async_cow *ctx;
1296 	struct async_chunk *async_chunk;
1297 	unsigned long nr_pages;
1298 	u64 cur_end;
1299 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1300 	int i;
1301 	bool should_compress;
1302 	unsigned nofs_flag;
1303 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1304 
1305 	unlock_extent(&inode->io_tree, start, end);
1306 
1307 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1308 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1309 		num_chunks = 1;
1310 		should_compress = false;
1311 	} else {
1312 		should_compress = true;
1313 	}
1314 
1315 	nofs_flag = memalloc_nofs_save();
1316 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1317 	memalloc_nofs_restore(nofs_flag);
1318 
1319 	if (!ctx) {
1320 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1321 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1322 			EXTENT_DO_ACCOUNTING;
1323 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1324 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1325 			PAGE_SET_ERROR;
1326 
1327 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1328 					     clear_bits, page_ops);
1329 		return -ENOMEM;
1330 	}
1331 
1332 	async_chunk = ctx->chunks;
1333 	atomic_set(&ctx->num_chunks, num_chunks);
1334 
1335 	for (i = 0; i < num_chunks; i++) {
1336 		if (should_compress)
1337 			cur_end = min(end, start + SZ_512K - 1);
1338 		else
1339 			cur_end = end;
1340 
1341 		/*
1342 		 * igrab is called higher up in the call chain, take only the
1343 		 * lightweight reference for the callback lifetime
1344 		 */
1345 		ihold(&inode->vfs_inode);
1346 		async_chunk[i].pending = &ctx->num_chunks;
1347 		async_chunk[i].inode = &inode->vfs_inode;
1348 		async_chunk[i].start = start;
1349 		async_chunk[i].end = cur_end;
1350 		async_chunk[i].write_flags = write_flags;
1351 		INIT_LIST_HEAD(&async_chunk[i].extents);
1352 
1353 		/*
1354 		 * The locked_page comes all the way from writepage and its
1355 		 * the original page we were actually given.  As we spread
1356 		 * this large delalloc region across multiple async_chunk
1357 		 * structs, only the first struct needs a pointer to locked_page
1358 		 *
1359 		 * This way we don't need racey decisions about who is supposed
1360 		 * to unlock it.
1361 		 */
1362 		if (locked_page) {
1363 			/*
1364 			 * Depending on the compressibility, the pages might or
1365 			 * might not go through async.  We want all of them to
1366 			 * be accounted against wbc once.  Let's do it here
1367 			 * before the paths diverge.  wbc accounting is used
1368 			 * only for foreign writeback detection and doesn't
1369 			 * need full accuracy.  Just account the whole thing
1370 			 * against the first page.
1371 			 */
1372 			wbc_account_cgroup_owner(wbc, locked_page,
1373 						 cur_end - start);
1374 			async_chunk[i].locked_page = locked_page;
1375 			locked_page = NULL;
1376 		} else {
1377 			async_chunk[i].locked_page = NULL;
1378 		}
1379 
1380 		if (blkcg_css != blkcg_root_css) {
1381 			css_get(blkcg_css);
1382 			async_chunk[i].blkcg_css = blkcg_css;
1383 		} else {
1384 			async_chunk[i].blkcg_css = NULL;
1385 		}
1386 
1387 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1388 				async_cow_submit, async_cow_free);
1389 
1390 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1391 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1392 
1393 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1394 
1395 		*nr_written += nr_pages;
1396 		start = cur_end + 1;
1397 	}
1398 	*page_started = 1;
1399 	return 0;
1400 }
1401 
1402 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1403 					u64 bytenr, u64 num_bytes)
1404 {
1405 	int ret;
1406 	struct btrfs_ordered_sum *sums;
1407 	LIST_HEAD(list);
1408 
1409 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1410 				       bytenr + num_bytes - 1, &list, 0);
1411 	if (ret == 0 && list_empty(&list))
1412 		return 0;
1413 
1414 	while (!list_empty(&list)) {
1415 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1416 		list_del(&sums->list);
1417 		kfree(sums);
1418 	}
1419 	if (ret < 0)
1420 		return ret;
1421 	return 1;
1422 }
1423 
1424 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1425 			   const u64 start, const u64 end,
1426 			   int *page_started, unsigned long *nr_written)
1427 {
1428 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1429 	const bool is_reloc_ino = (inode->root->root_key.objectid ==
1430 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1431 	const u64 range_bytes = end + 1 - start;
1432 	struct extent_io_tree *io_tree = &inode->io_tree;
1433 	u64 range_start = start;
1434 	u64 count;
1435 
1436 	/*
1437 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1438 	 * made we had not enough available data space and therefore we did not
1439 	 * reserve data space for it, since we though we could do NOCOW for the
1440 	 * respective file range (either there is prealloc extent or the inode
1441 	 * has the NOCOW bit set).
1442 	 *
1443 	 * However when we need to fallback to COW mode (because for example the
1444 	 * block group for the corresponding extent was turned to RO mode by a
1445 	 * scrub or relocation) we need to do the following:
1446 	 *
1447 	 * 1) We increment the bytes_may_use counter of the data space info.
1448 	 *    If COW succeeds, it allocates a new data extent and after doing
1449 	 *    that it decrements the space info's bytes_may_use counter and
1450 	 *    increments its bytes_reserved counter by the same amount (we do
1451 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1452 	 *    bytes_may_use counter to compensate (when space is reserved at
1453 	 *    buffered write time, the bytes_may_use counter is incremented);
1454 	 *
1455 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1456 	 *    that if the COW path fails for any reason, it decrements (through
1457 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1458 	 *    data space info, which we incremented in the step above.
1459 	 *
1460 	 * If we need to fallback to cow and the inode corresponds to a free
1461 	 * space cache inode or an inode of the data relocation tree, we must
1462 	 * also increment bytes_may_use of the data space_info for the same
1463 	 * reason. Space caches and relocated data extents always get a prealloc
1464 	 * extent for them, however scrub or balance may have set the block
1465 	 * group that contains that extent to RO mode and therefore force COW
1466 	 * when starting writeback.
1467 	 */
1468 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1469 				 EXTENT_NORESERVE, 0);
1470 	if (count > 0 || is_space_ino || is_reloc_ino) {
1471 		u64 bytes = count;
1472 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1473 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1474 
1475 		if (is_space_ino || is_reloc_ino)
1476 			bytes = range_bytes;
1477 
1478 		spin_lock(&sinfo->lock);
1479 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1480 		spin_unlock(&sinfo->lock);
1481 
1482 		if (count > 0)
1483 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1484 					 0, 0, NULL);
1485 	}
1486 
1487 	return cow_file_range(inode, locked_page, start, end, page_started,
1488 			      nr_written, 1);
1489 }
1490 
1491 /*
1492  * when nowcow writeback call back.  This checks for snapshots or COW copies
1493  * of the extents that exist in the file, and COWs the file as required.
1494  *
1495  * If no cow copies or snapshots exist, we write directly to the existing
1496  * blocks on disk
1497  */
1498 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1499 				       struct page *locked_page,
1500 				       const u64 start, const u64 end,
1501 				       int *page_started, int force,
1502 				       unsigned long *nr_written)
1503 {
1504 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1505 	struct btrfs_root *root = inode->root;
1506 	struct btrfs_path *path;
1507 	u64 cow_start = (u64)-1;
1508 	u64 cur_offset = start;
1509 	int ret;
1510 	bool check_prev = true;
1511 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1512 	u64 ino = btrfs_ino(inode);
1513 	bool nocow = false;
1514 	u64 disk_bytenr = 0;
1515 
1516 	path = btrfs_alloc_path();
1517 	if (!path) {
1518 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1519 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1520 					     EXTENT_DO_ACCOUNTING |
1521 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1522 					     PAGE_CLEAR_DIRTY |
1523 					     PAGE_SET_WRITEBACK |
1524 					     PAGE_END_WRITEBACK);
1525 		return -ENOMEM;
1526 	}
1527 
1528 	while (1) {
1529 		struct btrfs_key found_key;
1530 		struct btrfs_file_extent_item *fi;
1531 		struct extent_buffer *leaf;
1532 		u64 extent_end;
1533 		u64 extent_offset;
1534 		u64 num_bytes = 0;
1535 		u64 disk_num_bytes;
1536 		u64 ram_bytes;
1537 		int extent_type;
1538 
1539 		nocow = false;
1540 
1541 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1542 					       cur_offset, 0);
1543 		if (ret < 0)
1544 			goto error;
1545 
1546 		/*
1547 		 * If there is no extent for our range when doing the initial
1548 		 * search, then go back to the previous slot as it will be the
1549 		 * one containing the search offset
1550 		 */
1551 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1552 			leaf = path->nodes[0];
1553 			btrfs_item_key_to_cpu(leaf, &found_key,
1554 					      path->slots[0] - 1);
1555 			if (found_key.objectid == ino &&
1556 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1557 				path->slots[0]--;
1558 		}
1559 		check_prev = false;
1560 next_slot:
1561 		/* Go to next leaf if we have exhausted the current one */
1562 		leaf = path->nodes[0];
1563 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1564 			ret = btrfs_next_leaf(root, path);
1565 			if (ret < 0) {
1566 				if (cow_start != (u64)-1)
1567 					cur_offset = cow_start;
1568 				goto error;
1569 			}
1570 			if (ret > 0)
1571 				break;
1572 			leaf = path->nodes[0];
1573 		}
1574 
1575 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1576 
1577 		/* Didn't find anything for our INO */
1578 		if (found_key.objectid > ino)
1579 			break;
1580 		/*
1581 		 * Keep searching until we find an EXTENT_ITEM or there are no
1582 		 * more extents for this inode
1583 		 */
1584 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1585 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1586 			path->slots[0]++;
1587 			goto next_slot;
1588 		}
1589 
1590 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1591 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1592 		    found_key.offset > end)
1593 			break;
1594 
1595 		/*
1596 		 * If the found extent starts after requested offset, then
1597 		 * adjust extent_end to be right before this extent begins
1598 		 */
1599 		if (found_key.offset > cur_offset) {
1600 			extent_end = found_key.offset;
1601 			extent_type = 0;
1602 			goto out_check;
1603 		}
1604 
1605 		/*
1606 		 * Found extent which begins before our range and potentially
1607 		 * intersect it
1608 		 */
1609 		fi = btrfs_item_ptr(leaf, path->slots[0],
1610 				    struct btrfs_file_extent_item);
1611 		extent_type = btrfs_file_extent_type(leaf, fi);
1612 
1613 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1614 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1615 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1616 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1617 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1618 			extent_end = found_key.offset +
1619 				btrfs_file_extent_num_bytes(leaf, fi);
1620 			disk_num_bytes =
1621 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1622 			/*
1623 			 * If the extent we got ends before our current offset,
1624 			 * skip to the next extent.
1625 			 */
1626 			if (extent_end <= cur_offset) {
1627 				path->slots[0]++;
1628 				goto next_slot;
1629 			}
1630 			/* Skip holes */
1631 			if (disk_bytenr == 0)
1632 				goto out_check;
1633 			/* Skip compressed/encrypted/encoded extents */
1634 			if (btrfs_file_extent_compression(leaf, fi) ||
1635 			    btrfs_file_extent_encryption(leaf, fi) ||
1636 			    btrfs_file_extent_other_encoding(leaf, fi))
1637 				goto out_check;
1638 			/*
1639 			 * If extent is created before the last volume's snapshot
1640 			 * this implies the extent is shared, hence we can't do
1641 			 * nocow. This is the same check as in
1642 			 * btrfs_cross_ref_exist but without calling
1643 			 * btrfs_search_slot.
1644 			 */
1645 			if (!freespace_inode &&
1646 			    btrfs_file_extent_generation(leaf, fi) <=
1647 			    btrfs_root_last_snapshot(&root->root_item))
1648 				goto out_check;
1649 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1650 				goto out_check;
1651 
1652 			/*
1653 			 * The following checks can be expensive, as they need to
1654 			 * take other locks and do btree or rbtree searches, so
1655 			 * release the path to avoid blocking other tasks for too
1656 			 * long.
1657 			 */
1658 			btrfs_release_path(path);
1659 
1660 			/* If extent is RO, we must COW it */
1661 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1662 				goto out_check;
1663 			ret = btrfs_cross_ref_exist(root, ino,
1664 						    found_key.offset -
1665 						    extent_offset, disk_bytenr, false);
1666 			if (ret) {
1667 				/*
1668 				 * ret could be -EIO if the above fails to read
1669 				 * metadata.
1670 				 */
1671 				if (ret < 0) {
1672 					if (cow_start != (u64)-1)
1673 						cur_offset = cow_start;
1674 					goto error;
1675 				}
1676 
1677 				WARN_ON_ONCE(freespace_inode);
1678 				goto out_check;
1679 			}
1680 			disk_bytenr += extent_offset;
1681 			disk_bytenr += cur_offset - found_key.offset;
1682 			num_bytes = min(end + 1, extent_end) - cur_offset;
1683 			/*
1684 			 * If there are pending snapshots for this root, we
1685 			 * fall into common COW way
1686 			 */
1687 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1688 				goto out_check;
1689 			/*
1690 			 * force cow if csum exists in the range.
1691 			 * this ensure that csum for a given extent are
1692 			 * either valid or do not exist.
1693 			 */
1694 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1695 						  num_bytes);
1696 			if (ret) {
1697 				/*
1698 				 * ret could be -EIO if the above fails to read
1699 				 * metadata.
1700 				 */
1701 				if (ret < 0) {
1702 					if (cow_start != (u64)-1)
1703 						cur_offset = cow_start;
1704 					goto error;
1705 				}
1706 				WARN_ON_ONCE(freespace_inode);
1707 				goto out_check;
1708 			}
1709 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1710 				goto out_check;
1711 			nocow = true;
1712 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1713 			extent_end = found_key.offset + ram_bytes;
1714 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1715 			/* Skip extents outside of our requested range */
1716 			if (extent_end <= start) {
1717 				path->slots[0]++;
1718 				goto next_slot;
1719 			}
1720 		} else {
1721 			/* If this triggers then we have a memory corruption */
1722 			BUG();
1723 		}
1724 out_check:
1725 		/*
1726 		 * If nocow is false then record the beginning of the range
1727 		 * that needs to be COWed
1728 		 */
1729 		if (!nocow) {
1730 			if (cow_start == (u64)-1)
1731 				cow_start = cur_offset;
1732 			cur_offset = extent_end;
1733 			if (cur_offset > end)
1734 				break;
1735 			if (!path->nodes[0])
1736 				continue;
1737 			path->slots[0]++;
1738 			goto next_slot;
1739 		}
1740 
1741 		/*
1742 		 * COW range from cow_start to found_key.offset - 1. As the key
1743 		 * will contain the beginning of the first extent that can be
1744 		 * NOCOW, following one which needs to be COW'ed
1745 		 */
1746 		if (cow_start != (u64)-1) {
1747 			ret = fallback_to_cow(inode, locked_page,
1748 					      cow_start, found_key.offset - 1,
1749 					      page_started, nr_written);
1750 			if (ret)
1751 				goto error;
1752 			cow_start = (u64)-1;
1753 		}
1754 
1755 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1756 			u64 orig_start = found_key.offset - extent_offset;
1757 			struct extent_map *em;
1758 
1759 			em = create_io_em(inode, cur_offset, num_bytes,
1760 					  orig_start,
1761 					  disk_bytenr, /* block_start */
1762 					  num_bytes, /* block_len */
1763 					  disk_num_bytes, /* orig_block_len */
1764 					  ram_bytes, BTRFS_COMPRESS_NONE,
1765 					  BTRFS_ORDERED_PREALLOC);
1766 			if (IS_ERR(em)) {
1767 				ret = PTR_ERR(em);
1768 				goto error;
1769 			}
1770 			free_extent_map(em);
1771 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1772 						       disk_bytenr, num_bytes,
1773 						       num_bytes,
1774 						       BTRFS_ORDERED_PREALLOC);
1775 			if (ret) {
1776 				btrfs_drop_extent_cache(inode, cur_offset,
1777 							cur_offset + num_bytes - 1,
1778 							0);
1779 				goto error;
1780 			}
1781 		} else {
1782 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1783 						       disk_bytenr, num_bytes,
1784 						       num_bytes,
1785 						       BTRFS_ORDERED_NOCOW);
1786 			if (ret)
1787 				goto error;
1788 		}
1789 
1790 		if (nocow)
1791 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1792 		nocow = false;
1793 
1794 		if (root->root_key.objectid ==
1795 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1796 			/*
1797 			 * Error handled later, as we must prevent
1798 			 * extent_clear_unlock_delalloc() in error handler
1799 			 * from freeing metadata of created ordered extent.
1800 			 */
1801 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1802 						      num_bytes);
1803 
1804 		extent_clear_unlock_delalloc(inode, cur_offset,
1805 					     cur_offset + num_bytes - 1,
1806 					     locked_page, EXTENT_LOCKED |
1807 					     EXTENT_DELALLOC |
1808 					     EXTENT_CLEAR_DATA_RESV,
1809 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1810 
1811 		cur_offset = extent_end;
1812 
1813 		/*
1814 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1815 		 * handler, as metadata for created ordered extent will only
1816 		 * be freed by btrfs_finish_ordered_io().
1817 		 */
1818 		if (ret)
1819 			goto error;
1820 		if (cur_offset > end)
1821 			break;
1822 	}
1823 	btrfs_release_path(path);
1824 
1825 	if (cur_offset <= end && cow_start == (u64)-1)
1826 		cow_start = cur_offset;
1827 
1828 	if (cow_start != (u64)-1) {
1829 		cur_offset = end;
1830 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1831 				      page_started, nr_written);
1832 		if (ret)
1833 			goto error;
1834 	}
1835 
1836 error:
1837 	if (nocow)
1838 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1839 
1840 	if (ret && cur_offset < end)
1841 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1842 					     locked_page, EXTENT_LOCKED |
1843 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1844 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1845 					     PAGE_CLEAR_DIRTY |
1846 					     PAGE_SET_WRITEBACK |
1847 					     PAGE_END_WRITEBACK);
1848 	btrfs_free_path(path);
1849 	return ret;
1850 }
1851 
1852 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1853 {
1854 
1855 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1856 	    !(inode->flags & BTRFS_INODE_PREALLOC))
1857 		return 0;
1858 
1859 	/*
1860 	 * @defrag_bytes is a hint value, no spinlock held here,
1861 	 * if is not zero, it means the file is defragging.
1862 	 * Force cow if given extent needs to be defragged.
1863 	 */
1864 	if (inode->defrag_bytes &&
1865 	    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1866 		return 1;
1867 
1868 	return 0;
1869 }
1870 
1871 /*
1872  * Function to process delayed allocation (create CoW) for ranges which are
1873  * being touched for the first time.
1874  */
1875 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1876 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1877 		struct writeback_control *wbc)
1878 {
1879 	int ret;
1880 	int force_cow = need_force_cow(inode, start, end);
1881 
1882 	if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1883 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1884 					 page_started, 1, nr_written);
1885 	} else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1886 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1887 					 page_started, 0, nr_written);
1888 	} else if (!inode_can_compress(inode) ||
1889 		   !inode_need_compress(inode, start, end)) {
1890 		ret = cow_file_range(inode, locked_page, start, end,
1891 				     page_started, nr_written, 1);
1892 	} else {
1893 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1894 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1895 					   page_started, nr_written);
1896 	}
1897 	if (ret)
1898 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1899 					      end - start + 1);
1900 	return ret;
1901 }
1902 
1903 void btrfs_split_delalloc_extent(struct inode *inode,
1904 				 struct extent_state *orig, u64 split)
1905 {
1906 	u64 size;
1907 
1908 	/* not delalloc, ignore it */
1909 	if (!(orig->state & EXTENT_DELALLOC))
1910 		return;
1911 
1912 	size = orig->end - orig->start + 1;
1913 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1914 		u32 num_extents;
1915 		u64 new_size;
1916 
1917 		/*
1918 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1919 		 * applies here, just in reverse.
1920 		 */
1921 		new_size = orig->end - split + 1;
1922 		num_extents = count_max_extents(new_size);
1923 		new_size = split - orig->start;
1924 		num_extents += count_max_extents(new_size);
1925 		if (count_max_extents(size) >= num_extents)
1926 			return;
1927 	}
1928 
1929 	spin_lock(&BTRFS_I(inode)->lock);
1930 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1931 	spin_unlock(&BTRFS_I(inode)->lock);
1932 }
1933 
1934 /*
1935  * Handle merged delayed allocation extents so we can keep track of new extents
1936  * that are just merged onto old extents, such as when we are doing sequential
1937  * writes, so we can properly account for the metadata space we'll need.
1938  */
1939 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1940 				 struct extent_state *other)
1941 {
1942 	u64 new_size, old_size;
1943 	u32 num_extents;
1944 
1945 	/* not delalloc, ignore it */
1946 	if (!(other->state & EXTENT_DELALLOC))
1947 		return;
1948 
1949 	if (new->start > other->start)
1950 		new_size = new->end - other->start + 1;
1951 	else
1952 		new_size = other->end - new->start + 1;
1953 
1954 	/* we're not bigger than the max, unreserve the space and go */
1955 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1956 		spin_lock(&BTRFS_I(inode)->lock);
1957 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1958 		spin_unlock(&BTRFS_I(inode)->lock);
1959 		return;
1960 	}
1961 
1962 	/*
1963 	 * We have to add up either side to figure out how many extents were
1964 	 * accounted for before we merged into one big extent.  If the number of
1965 	 * extents we accounted for is <= the amount we need for the new range
1966 	 * then we can return, otherwise drop.  Think of it like this
1967 	 *
1968 	 * [ 4k][MAX_SIZE]
1969 	 *
1970 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1971 	 * need 2 outstanding extents, on one side we have 1 and the other side
1972 	 * we have 1 so they are == and we can return.  But in this case
1973 	 *
1974 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1975 	 *
1976 	 * Each range on their own accounts for 2 extents, but merged together
1977 	 * they are only 3 extents worth of accounting, so we need to drop in
1978 	 * this case.
1979 	 */
1980 	old_size = other->end - other->start + 1;
1981 	num_extents = count_max_extents(old_size);
1982 	old_size = new->end - new->start + 1;
1983 	num_extents += count_max_extents(old_size);
1984 	if (count_max_extents(new_size) >= num_extents)
1985 		return;
1986 
1987 	spin_lock(&BTRFS_I(inode)->lock);
1988 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1989 	spin_unlock(&BTRFS_I(inode)->lock);
1990 }
1991 
1992 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1993 				      struct inode *inode)
1994 {
1995 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1996 
1997 	spin_lock(&root->delalloc_lock);
1998 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1999 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2000 			      &root->delalloc_inodes);
2001 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2002 			&BTRFS_I(inode)->runtime_flags);
2003 		root->nr_delalloc_inodes++;
2004 		if (root->nr_delalloc_inodes == 1) {
2005 			spin_lock(&fs_info->delalloc_root_lock);
2006 			BUG_ON(!list_empty(&root->delalloc_root));
2007 			list_add_tail(&root->delalloc_root,
2008 				      &fs_info->delalloc_roots);
2009 			spin_unlock(&fs_info->delalloc_root_lock);
2010 		}
2011 	}
2012 	spin_unlock(&root->delalloc_lock);
2013 }
2014 
2015 
2016 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2017 				struct btrfs_inode *inode)
2018 {
2019 	struct btrfs_fs_info *fs_info = root->fs_info;
2020 
2021 	if (!list_empty(&inode->delalloc_inodes)) {
2022 		list_del_init(&inode->delalloc_inodes);
2023 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2024 			  &inode->runtime_flags);
2025 		root->nr_delalloc_inodes--;
2026 		if (!root->nr_delalloc_inodes) {
2027 			ASSERT(list_empty(&root->delalloc_inodes));
2028 			spin_lock(&fs_info->delalloc_root_lock);
2029 			BUG_ON(list_empty(&root->delalloc_root));
2030 			list_del_init(&root->delalloc_root);
2031 			spin_unlock(&fs_info->delalloc_root_lock);
2032 		}
2033 	}
2034 }
2035 
2036 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2037 				     struct btrfs_inode *inode)
2038 {
2039 	spin_lock(&root->delalloc_lock);
2040 	__btrfs_del_delalloc_inode(root, inode);
2041 	spin_unlock(&root->delalloc_lock);
2042 }
2043 
2044 /*
2045  * Properly track delayed allocation bytes in the inode and to maintain the
2046  * list of inodes that have pending delalloc work to be done.
2047  */
2048 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2049 			       unsigned *bits)
2050 {
2051 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2052 
2053 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2054 		WARN_ON(1);
2055 	/*
2056 	 * set_bit and clear bit hooks normally require _irqsave/restore
2057 	 * but in this case, we are only testing for the DELALLOC
2058 	 * bit, which is only set or cleared with irqs on
2059 	 */
2060 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2061 		struct btrfs_root *root = BTRFS_I(inode)->root;
2062 		u64 len = state->end + 1 - state->start;
2063 		u32 num_extents = count_max_extents(len);
2064 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2065 
2066 		spin_lock(&BTRFS_I(inode)->lock);
2067 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2068 		spin_unlock(&BTRFS_I(inode)->lock);
2069 
2070 		/* For sanity tests */
2071 		if (btrfs_is_testing(fs_info))
2072 			return;
2073 
2074 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2075 					 fs_info->delalloc_batch);
2076 		spin_lock(&BTRFS_I(inode)->lock);
2077 		BTRFS_I(inode)->delalloc_bytes += len;
2078 		if (*bits & EXTENT_DEFRAG)
2079 			BTRFS_I(inode)->defrag_bytes += len;
2080 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2081 					 &BTRFS_I(inode)->runtime_flags))
2082 			btrfs_add_delalloc_inodes(root, inode);
2083 		spin_unlock(&BTRFS_I(inode)->lock);
2084 	}
2085 
2086 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2087 	    (*bits & EXTENT_DELALLOC_NEW)) {
2088 		spin_lock(&BTRFS_I(inode)->lock);
2089 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2090 			state->start;
2091 		spin_unlock(&BTRFS_I(inode)->lock);
2092 	}
2093 }
2094 
2095 /*
2096  * Once a range is no longer delalloc this function ensures that proper
2097  * accounting happens.
2098  */
2099 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2100 				 struct extent_state *state, unsigned *bits)
2101 {
2102 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2103 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2104 	u64 len = state->end + 1 - state->start;
2105 	u32 num_extents = count_max_extents(len);
2106 
2107 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2108 		spin_lock(&inode->lock);
2109 		inode->defrag_bytes -= len;
2110 		spin_unlock(&inode->lock);
2111 	}
2112 
2113 	/*
2114 	 * set_bit and clear bit hooks normally require _irqsave/restore
2115 	 * but in this case, we are only testing for the DELALLOC
2116 	 * bit, which is only set or cleared with irqs on
2117 	 */
2118 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2119 		struct btrfs_root *root = inode->root;
2120 		bool do_list = !btrfs_is_free_space_inode(inode);
2121 
2122 		spin_lock(&inode->lock);
2123 		btrfs_mod_outstanding_extents(inode, -num_extents);
2124 		spin_unlock(&inode->lock);
2125 
2126 		/*
2127 		 * We don't reserve metadata space for space cache inodes so we
2128 		 * don't need to call delalloc_release_metadata if there is an
2129 		 * error.
2130 		 */
2131 		if (*bits & EXTENT_CLEAR_META_RESV &&
2132 		    root != fs_info->tree_root)
2133 			btrfs_delalloc_release_metadata(inode, len, false);
2134 
2135 		/* For sanity tests. */
2136 		if (btrfs_is_testing(fs_info))
2137 			return;
2138 
2139 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2140 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2141 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2142 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2143 
2144 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2145 					 fs_info->delalloc_batch);
2146 		spin_lock(&inode->lock);
2147 		inode->delalloc_bytes -= len;
2148 		if (do_list && inode->delalloc_bytes == 0 &&
2149 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2150 					&inode->runtime_flags))
2151 			btrfs_del_delalloc_inode(root, inode);
2152 		spin_unlock(&inode->lock);
2153 	}
2154 
2155 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2156 	    (*bits & EXTENT_DELALLOC_NEW)) {
2157 		spin_lock(&inode->lock);
2158 		ASSERT(inode->new_delalloc_bytes >= len);
2159 		inode->new_delalloc_bytes -= len;
2160 		if (*bits & EXTENT_ADD_INODE_BYTES)
2161 			inode_add_bytes(&inode->vfs_inode, len);
2162 		spin_unlock(&inode->lock);
2163 	}
2164 }
2165 
2166 /*
2167  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2168  * in a chunk's stripe. This function ensures that bios do not span a
2169  * stripe/chunk
2170  *
2171  * @page - The page we are about to add to the bio
2172  * @size - size we want to add to the bio
2173  * @bio - bio we want to ensure is smaller than a stripe
2174  * @bio_flags - flags of the bio
2175  *
2176  * return 1 if page cannot be added to the bio
2177  * return 0 if page can be added to the bio
2178  * return error otherwise
2179  */
2180 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2181 			     unsigned long bio_flags)
2182 {
2183 	struct inode *inode = page->mapping->host;
2184 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2185 	u64 logical = bio->bi_iter.bi_sector << 9;
2186 	u64 length = 0;
2187 	u64 map_length;
2188 	int ret;
2189 	struct btrfs_io_geometry geom;
2190 
2191 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2192 		return 0;
2193 
2194 	length = bio->bi_iter.bi_size;
2195 	map_length = length;
2196 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2197 				    &geom);
2198 	if (ret < 0)
2199 		return ret;
2200 
2201 	if (geom.len < length + size)
2202 		return 1;
2203 	return 0;
2204 }
2205 
2206 /*
2207  * in order to insert checksums into the metadata in large chunks,
2208  * we wait until bio submission time.   All the pages in the bio are
2209  * checksummed and sums are attached onto the ordered extent record.
2210  *
2211  * At IO completion time the cums attached on the ordered extent record
2212  * are inserted into the btree
2213  */
2214 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2215 					   u64 dio_file_offset)
2216 {
2217 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2218 }
2219 
2220 /*
2221  * extent_io.c submission hook. This does the right thing for csum calculation
2222  * on write, or reading the csums from the tree before a read.
2223  *
2224  * Rules about async/sync submit,
2225  * a) read:				sync submit
2226  *
2227  * b) write without checksum:		sync submit
2228  *
2229  * c) write with checksum:
2230  *    c-1) if bio is issued by fsync:	sync submit
2231  *         (sync_writers != 0)
2232  *
2233  *    c-2) if root is reloc root:	sync submit
2234  *         (only in case of buffered IO)
2235  *
2236  *    c-3) otherwise:			async submit
2237  */
2238 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2239 				   int mirror_num, unsigned long bio_flags)
2240 
2241 {
2242 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2243 	struct btrfs_root *root = BTRFS_I(inode)->root;
2244 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2245 	blk_status_t ret = 0;
2246 	int skip_sum;
2247 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2248 
2249 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2250 		   !fs_info->csum_root;
2251 
2252 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2253 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2254 
2255 	if (bio_op(bio) != REQ_OP_WRITE) {
2256 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2257 		if (ret)
2258 			goto out;
2259 
2260 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2261 			ret = btrfs_submit_compressed_read(inode, bio,
2262 							   mirror_num,
2263 							   bio_flags);
2264 			goto out;
2265 		} else {
2266 			/*
2267 			 * Lookup bio sums does extra checks around whether we
2268 			 * need to csum or not, which is why we ignore skip_sum
2269 			 * here.
2270 			 */
2271 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2272 			if (ret)
2273 				goto out;
2274 		}
2275 		goto mapit;
2276 	} else if (async && !skip_sum) {
2277 		/* csum items have already been cloned */
2278 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2279 			goto mapit;
2280 		/* we're doing a write, do the async checksumming */
2281 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2282 					  0, btrfs_submit_bio_start);
2283 		goto out;
2284 	} else if (!skip_sum) {
2285 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2286 		if (ret)
2287 			goto out;
2288 	}
2289 
2290 mapit:
2291 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2292 
2293 out:
2294 	if (ret) {
2295 		bio->bi_status = ret;
2296 		bio_endio(bio);
2297 	}
2298 	return ret;
2299 }
2300 
2301 /*
2302  * given a list of ordered sums record them in the inode.  This happens
2303  * at IO completion time based on sums calculated at bio submission time.
2304  */
2305 static int add_pending_csums(struct btrfs_trans_handle *trans,
2306 			     struct list_head *list)
2307 {
2308 	struct btrfs_ordered_sum *sum;
2309 	int ret;
2310 
2311 	list_for_each_entry(sum, list, list) {
2312 		trans->adding_csums = true;
2313 		ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2314 		trans->adding_csums = false;
2315 		if (ret)
2316 			return ret;
2317 	}
2318 	return 0;
2319 }
2320 
2321 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2322 					 const u64 start,
2323 					 const u64 len,
2324 					 struct extent_state **cached_state)
2325 {
2326 	u64 search_start = start;
2327 	const u64 end = start + len - 1;
2328 
2329 	while (search_start < end) {
2330 		const u64 search_len = end - search_start + 1;
2331 		struct extent_map *em;
2332 		u64 em_len;
2333 		int ret = 0;
2334 
2335 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2336 		if (IS_ERR(em))
2337 			return PTR_ERR(em);
2338 
2339 		if (em->block_start != EXTENT_MAP_HOLE)
2340 			goto next;
2341 
2342 		em_len = em->len;
2343 		if (em->start < search_start)
2344 			em_len -= search_start - em->start;
2345 		if (em_len > search_len)
2346 			em_len = search_len;
2347 
2348 		ret = set_extent_bit(&inode->io_tree, search_start,
2349 				     search_start + em_len - 1,
2350 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2351 				     GFP_NOFS, NULL);
2352 next:
2353 		search_start = extent_map_end(em);
2354 		free_extent_map(em);
2355 		if (ret)
2356 			return ret;
2357 	}
2358 	return 0;
2359 }
2360 
2361 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2362 			      unsigned int extra_bits,
2363 			      struct extent_state **cached_state)
2364 {
2365 	WARN_ON(PAGE_ALIGNED(end));
2366 
2367 	if (start >= i_size_read(&inode->vfs_inode) &&
2368 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2369 		/*
2370 		 * There can't be any extents following eof in this case so just
2371 		 * set the delalloc new bit for the range directly.
2372 		 */
2373 		extra_bits |= EXTENT_DELALLOC_NEW;
2374 	} else {
2375 		int ret;
2376 
2377 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2378 						    end + 1 - start,
2379 						    cached_state);
2380 		if (ret)
2381 			return ret;
2382 	}
2383 
2384 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2385 				   cached_state);
2386 }
2387 
2388 /* see btrfs_writepage_start_hook for details on why this is required */
2389 struct btrfs_writepage_fixup {
2390 	struct page *page;
2391 	struct inode *inode;
2392 	struct btrfs_work work;
2393 };
2394 
2395 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2396 {
2397 	struct btrfs_writepage_fixup *fixup;
2398 	struct btrfs_ordered_extent *ordered;
2399 	struct extent_state *cached_state = NULL;
2400 	struct extent_changeset *data_reserved = NULL;
2401 	struct page *page;
2402 	struct btrfs_inode *inode;
2403 	u64 page_start;
2404 	u64 page_end;
2405 	int ret = 0;
2406 	bool free_delalloc_space = true;
2407 
2408 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2409 	page = fixup->page;
2410 	inode = BTRFS_I(fixup->inode);
2411 	page_start = page_offset(page);
2412 	page_end = page_offset(page) + PAGE_SIZE - 1;
2413 
2414 	/*
2415 	 * This is similar to page_mkwrite, we need to reserve the space before
2416 	 * we take the page lock.
2417 	 */
2418 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2419 					   PAGE_SIZE);
2420 again:
2421 	lock_page(page);
2422 
2423 	/*
2424 	 * Before we queued this fixup, we took a reference on the page.
2425 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2426 	 * address space.
2427 	 */
2428 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2429 		/*
2430 		 * Unfortunately this is a little tricky, either
2431 		 *
2432 		 * 1) We got here and our page had already been dealt with and
2433 		 *    we reserved our space, thus ret == 0, so we need to just
2434 		 *    drop our space reservation and bail.  This can happen the
2435 		 *    first time we come into the fixup worker, or could happen
2436 		 *    while waiting for the ordered extent.
2437 		 * 2) Our page was already dealt with, but we happened to get an
2438 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2439 		 *    this case we obviously don't have anything to release, but
2440 		 *    because the page was already dealt with we don't want to
2441 		 *    mark the page with an error, so make sure we're resetting
2442 		 *    ret to 0.  This is why we have this check _before_ the ret
2443 		 *    check, because we do not want to have a surprise ENOSPC
2444 		 *    when the page was already properly dealt with.
2445 		 */
2446 		if (!ret) {
2447 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2448 			btrfs_delalloc_release_space(inode, data_reserved,
2449 						     page_start, PAGE_SIZE,
2450 						     true);
2451 		}
2452 		ret = 0;
2453 		goto out_page;
2454 	}
2455 
2456 	/*
2457 	 * We can't mess with the page state unless it is locked, so now that
2458 	 * it is locked bail if we failed to make our space reservation.
2459 	 */
2460 	if (ret)
2461 		goto out_page;
2462 
2463 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2464 
2465 	/* already ordered? We're done */
2466 	if (PagePrivate2(page))
2467 		goto out_reserved;
2468 
2469 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2470 	if (ordered) {
2471 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2472 				     &cached_state);
2473 		unlock_page(page);
2474 		btrfs_start_ordered_extent(ordered, 1);
2475 		btrfs_put_ordered_extent(ordered);
2476 		goto again;
2477 	}
2478 
2479 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2480 					&cached_state);
2481 	if (ret)
2482 		goto out_reserved;
2483 
2484 	/*
2485 	 * Everything went as planned, we're now the owner of a dirty page with
2486 	 * delayed allocation bits set and space reserved for our COW
2487 	 * destination.
2488 	 *
2489 	 * The page was dirty when we started, nothing should have cleaned it.
2490 	 */
2491 	BUG_ON(!PageDirty(page));
2492 	free_delalloc_space = false;
2493 out_reserved:
2494 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2495 	if (free_delalloc_space)
2496 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2497 					     PAGE_SIZE, true);
2498 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2499 			     &cached_state);
2500 out_page:
2501 	if (ret) {
2502 		/*
2503 		 * We hit ENOSPC or other errors.  Update the mapping and page
2504 		 * to reflect the errors and clean the page.
2505 		 */
2506 		mapping_set_error(page->mapping, ret);
2507 		end_extent_writepage(page, ret, page_start, page_end);
2508 		clear_page_dirty_for_io(page);
2509 		SetPageError(page);
2510 	}
2511 	ClearPageChecked(page);
2512 	unlock_page(page);
2513 	put_page(page);
2514 	kfree(fixup);
2515 	extent_changeset_free(data_reserved);
2516 	/*
2517 	 * As a precaution, do a delayed iput in case it would be the last iput
2518 	 * that could need flushing space. Recursing back to fixup worker would
2519 	 * deadlock.
2520 	 */
2521 	btrfs_add_delayed_iput(&inode->vfs_inode);
2522 }
2523 
2524 /*
2525  * There are a few paths in the higher layers of the kernel that directly
2526  * set the page dirty bit without asking the filesystem if it is a
2527  * good idea.  This causes problems because we want to make sure COW
2528  * properly happens and the data=ordered rules are followed.
2529  *
2530  * In our case any range that doesn't have the ORDERED bit set
2531  * hasn't been properly setup for IO.  We kick off an async process
2532  * to fix it up.  The async helper will wait for ordered extents, set
2533  * the delalloc bit and make it safe to write the page.
2534  */
2535 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2536 {
2537 	struct inode *inode = page->mapping->host;
2538 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2539 	struct btrfs_writepage_fixup *fixup;
2540 
2541 	/* this page is properly in the ordered list */
2542 	if (TestClearPagePrivate2(page))
2543 		return 0;
2544 
2545 	/*
2546 	 * PageChecked is set below when we create a fixup worker for this page,
2547 	 * don't try to create another one if we're already PageChecked()
2548 	 *
2549 	 * The extent_io writepage code will redirty the page if we send back
2550 	 * EAGAIN.
2551 	 */
2552 	if (PageChecked(page))
2553 		return -EAGAIN;
2554 
2555 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2556 	if (!fixup)
2557 		return -EAGAIN;
2558 
2559 	/*
2560 	 * We are already holding a reference to this inode from
2561 	 * write_cache_pages.  We need to hold it because the space reservation
2562 	 * takes place outside of the page lock, and we can't trust
2563 	 * page->mapping outside of the page lock.
2564 	 */
2565 	ihold(inode);
2566 	SetPageChecked(page);
2567 	get_page(page);
2568 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2569 	fixup->page = page;
2570 	fixup->inode = inode;
2571 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2572 
2573 	return -EAGAIN;
2574 }
2575 
2576 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2577 				       struct btrfs_inode *inode, u64 file_pos,
2578 				       struct btrfs_file_extent_item *stack_fi,
2579 				       const bool update_inode_bytes,
2580 				       u64 qgroup_reserved)
2581 {
2582 	struct btrfs_root *root = inode->root;
2583 	const u64 sectorsize = root->fs_info->sectorsize;
2584 	struct btrfs_path *path;
2585 	struct extent_buffer *leaf;
2586 	struct btrfs_key ins;
2587 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2588 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2589 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2590 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2591 	struct btrfs_drop_extents_args drop_args = { 0 };
2592 	int ret;
2593 
2594 	path = btrfs_alloc_path();
2595 	if (!path)
2596 		return -ENOMEM;
2597 
2598 	/*
2599 	 * we may be replacing one extent in the tree with another.
2600 	 * The new extent is pinned in the extent map, and we don't want
2601 	 * to drop it from the cache until it is completely in the btree.
2602 	 *
2603 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2604 	 * the caller is expected to unpin it and allow it to be merged
2605 	 * with the others.
2606 	 */
2607 	drop_args.path = path;
2608 	drop_args.start = file_pos;
2609 	drop_args.end = file_pos + num_bytes;
2610 	drop_args.replace_extent = true;
2611 	drop_args.extent_item_size = sizeof(*stack_fi);
2612 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2613 	if (ret)
2614 		goto out;
2615 
2616 	if (!drop_args.extent_inserted) {
2617 		ins.objectid = btrfs_ino(inode);
2618 		ins.offset = file_pos;
2619 		ins.type = BTRFS_EXTENT_DATA_KEY;
2620 
2621 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2622 					      sizeof(*stack_fi));
2623 		if (ret)
2624 			goto out;
2625 	}
2626 	leaf = path->nodes[0];
2627 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2628 	write_extent_buffer(leaf, stack_fi,
2629 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2630 			sizeof(struct btrfs_file_extent_item));
2631 
2632 	btrfs_mark_buffer_dirty(leaf);
2633 	btrfs_release_path(path);
2634 
2635 	/*
2636 	 * If we dropped an inline extent here, we know the range where it is
2637 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2638 	 * number of bytes only for that range contaning the inline extent.
2639 	 * The remaining of the range will be processed when clearning the
2640 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2641 	 */
2642 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2643 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2644 
2645 		inline_size = drop_args.bytes_found - inline_size;
2646 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2647 		drop_args.bytes_found -= inline_size;
2648 		num_bytes -= sectorsize;
2649 	}
2650 
2651 	if (update_inode_bytes)
2652 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2653 
2654 	ins.objectid = disk_bytenr;
2655 	ins.offset = disk_num_bytes;
2656 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2657 
2658 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2659 	if (ret)
2660 		goto out;
2661 
2662 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2663 					       file_pos, qgroup_reserved, &ins);
2664 out:
2665 	btrfs_free_path(path);
2666 
2667 	return ret;
2668 }
2669 
2670 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2671 					 u64 start, u64 len)
2672 {
2673 	struct btrfs_block_group *cache;
2674 
2675 	cache = btrfs_lookup_block_group(fs_info, start);
2676 	ASSERT(cache);
2677 
2678 	spin_lock(&cache->lock);
2679 	cache->delalloc_bytes -= len;
2680 	spin_unlock(&cache->lock);
2681 
2682 	btrfs_put_block_group(cache);
2683 }
2684 
2685 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2686 					     struct btrfs_ordered_extent *oe)
2687 {
2688 	struct btrfs_file_extent_item stack_fi;
2689 	u64 logical_len;
2690 	bool update_inode_bytes;
2691 
2692 	memset(&stack_fi, 0, sizeof(stack_fi));
2693 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2694 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2695 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2696 						   oe->disk_num_bytes);
2697 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2698 		logical_len = oe->truncated_len;
2699 	else
2700 		logical_len = oe->num_bytes;
2701 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2702 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2703 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2704 	/* Encryption and other encoding is reserved and all 0 */
2705 
2706 	/*
2707 	 * For delalloc, when completing an ordered extent we update the inode's
2708 	 * bytes when clearing the range in the inode's io tree, so pass false
2709 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2710 	 * except if the ordered extent was truncated.
2711 	 */
2712 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2713 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2714 
2715 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2716 					   oe->file_offset, &stack_fi,
2717 					   update_inode_bytes, oe->qgroup_rsv);
2718 }
2719 
2720 /*
2721  * As ordered data IO finishes, this gets called so we can finish
2722  * an ordered extent if the range of bytes in the file it covers are
2723  * fully written.
2724  */
2725 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2726 {
2727 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2728 	struct btrfs_root *root = inode->root;
2729 	struct btrfs_fs_info *fs_info = root->fs_info;
2730 	struct btrfs_trans_handle *trans = NULL;
2731 	struct extent_io_tree *io_tree = &inode->io_tree;
2732 	struct extent_state *cached_state = NULL;
2733 	u64 start, end;
2734 	int compress_type = 0;
2735 	int ret = 0;
2736 	u64 logical_len = ordered_extent->num_bytes;
2737 	bool freespace_inode;
2738 	bool truncated = false;
2739 	bool clear_reserved_extent = true;
2740 	unsigned int clear_bits = EXTENT_DEFRAG;
2741 
2742 	start = ordered_extent->file_offset;
2743 	end = start + ordered_extent->num_bytes - 1;
2744 
2745 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2746 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2747 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2748 		clear_bits |= EXTENT_DELALLOC_NEW;
2749 
2750 	freespace_inode = btrfs_is_free_space_inode(inode);
2751 
2752 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2753 		ret = -EIO;
2754 		goto out;
2755 	}
2756 
2757 	btrfs_free_io_failure_record(inode, start, end);
2758 
2759 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2760 		truncated = true;
2761 		logical_len = ordered_extent->truncated_len;
2762 		/* Truncated the entire extent, don't bother adding */
2763 		if (!logical_len)
2764 			goto out;
2765 	}
2766 
2767 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2768 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2769 
2770 		btrfs_inode_safe_disk_i_size_write(inode, 0);
2771 		if (freespace_inode)
2772 			trans = btrfs_join_transaction_spacecache(root);
2773 		else
2774 			trans = btrfs_join_transaction(root);
2775 		if (IS_ERR(trans)) {
2776 			ret = PTR_ERR(trans);
2777 			trans = NULL;
2778 			goto out;
2779 		}
2780 		trans->block_rsv = &inode->block_rsv;
2781 		ret = btrfs_update_inode_fallback(trans, root, inode);
2782 		if (ret) /* -ENOMEM or corruption */
2783 			btrfs_abort_transaction(trans, ret);
2784 		goto out;
2785 	}
2786 
2787 	clear_bits |= EXTENT_LOCKED;
2788 	lock_extent_bits(io_tree, start, end, &cached_state);
2789 
2790 	if (freespace_inode)
2791 		trans = btrfs_join_transaction_spacecache(root);
2792 	else
2793 		trans = btrfs_join_transaction(root);
2794 	if (IS_ERR(trans)) {
2795 		ret = PTR_ERR(trans);
2796 		trans = NULL;
2797 		goto out;
2798 	}
2799 
2800 	trans->block_rsv = &inode->block_rsv;
2801 
2802 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2803 		compress_type = ordered_extent->compress_type;
2804 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2805 		BUG_ON(compress_type);
2806 		ret = btrfs_mark_extent_written(trans, inode,
2807 						ordered_extent->file_offset,
2808 						ordered_extent->file_offset +
2809 						logical_len);
2810 	} else {
2811 		BUG_ON(root == fs_info->tree_root);
2812 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2813 		if (!ret) {
2814 			clear_reserved_extent = false;
2815 			btrfs_release_delalloc_bytes(fs_info,
2816 						ordered_extent->disk_bytenr,
2817 						ordered_extent->disk_num_bytes);
2818 		}
2819 	}
2820 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
2821 			   ordered_extent->num_bytes, trans->transid);
2822 	if (ret < 0) {
2823 		btrfs_abort_transaction(trans, ret);
2824 		goto out;
2825 	}
2826 
2827 	ret = add_pending_csums(trans, &ordered_extent->list);
2828 	if (ret) {
2829 		btrfs_abort_transaction(trans, ret);
2830 		goto out;
2831 	}
2832 
2833 	/*
2834 	 * If this is a new delalloc range, clear its new delalloc flag to
2835 	 * update the inode's number of bytes. This needs to be done first
2836 	 * before updating the inode item.
2837 	 */
2838 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
2839 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
2840 		clear_extent_bit(&inode->io_tree, start, end,
2841 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
2842 				 0, 0, &cached_state);
2843 
2844 	btrfs_inode_safe_disk_i_size_write(inode, 0);
2845 	ret = btrfs_update_inode_fallback(trans, root, inode);
2846 	if (ret) { /* -ENOMEM or corruption */
2847 		btrfs_abort_transaction(trans, ret);
2848 		goto out;
2849 	}
2850 	ret = 0;
2851 out:
2852 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
2853 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2854 			 &cached_state);
2855 
2856 	if (trans)
2857 		btrfs_end_transaction(trans);
2858 
2859 	if (ret || truncated) {
2860 		u64 unwritten_start = start;
2861 
2862 		if (truncated)
2863 			unwritten_start += logical_len;
2864 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2865 
2866 		/* Drop the cache for the part of the extent we didn't write. */
2867 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
2868 
2869 		/*
2870 		 * If the ordered extent had an IOERR or something else went
2871 		 * wrong we need to return the space for this ordered extent
2872 		 * back to the allocator.  We only free the extent in the
2873 		 * truncated case if we didn't write out the extent at all.
2874 		 *
2875 		 * If we made it past insert_reserved_file_extent before we
2876 		 * errored out then we don't need to do this as the accounting
2877 		 * has already been done.
2878 		 */
2879 		if ((ret || !logical_len) &&
2880 		    clear_reserved_extent &&
2881 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2882 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2883 			/*
2884 			 * Discard the range before returning it back to the
2885 			 * free space pool
2886 			 */
2887 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2888 				btrfs_discard_extent(fs_info,
2889 						ordered_extent->disk_bytenr,
2890 						ordered_extent->disk_num_bytes,
2891 						NULL);
2892 			btrfs_free_reserved_extent(fs_info,
2893 					ordered_extent->disk_bytenr,
2894 					ordered_extent->disk_num_bytes, 1);
2895 		}
2896 	}
2897 
2898 	/*
2899 	 * This needs to be done to make sure anybody waiting knows we are done
2900 	 * updating everything for this ordered extent.
2901 	 */
2902 	btrfs_remove_ordered_extent(inode, ordered_extent);
2903 
2904 	/* once for us */
2905 	btrfs_put_ordered_extent(ordered_extent);
2906 	/* once for the tree */
2907 	btrfs_put_ordered_extent(ordered_extent);
2908 
2909 	return ret;
2910 }
2911 
2912 static void finish_ordered_fn(struct btrfs_work *work)
2913 {
2914 	struct btrfs_ordered_extent *ordered_extent;
2915 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2916 	btrfs_finish_ordered_io(ordered_extent);
2917 }
2918 
2919 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2920 					  u64 end, int uptodate)
2921 {
2922 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2923 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2924 	struct btrfs_ordered_extent *ordered_extent = NULL;
2925 	struct btrfs_workqueue *wq;
2926 
2927 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2928 
2929 	ClearPagePrivate2(page);
2930 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2931 					    end - start + 1, uptodate))
2932 		return;
2933 
2934 	if (btrfs_is_free_space_inode(inode))
2935 		wq = fs_info->endio_freespace_worker;
2936 	else
2937 		wq = fs_info->endio_write_workers;
2938 
2939 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2940 	btrfs_queue_work(wq, &ordered_extent->work);
2941 }
2942 
2943 /*
2944  * check_data_csum - verify checksum of one sector of uncompressed data
2945  * @inode:	inode
2946  * @io_bio:	btrfs_io_bio which contains the csum
2947  * @bio_offset:	offset to the beginning of the bio (in bytes)
2948  * @page:	page where is the data to be verified
2949  * @pgoff:	offset inside the page
2950  *
2951  * The length of such check is always one sector size.
2952  */
2953 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2954 			   u32 bio_offset, struct page *page, u32 pgoff)
2955 {
2956 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2957 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2958 	char *kaddr;
2959 	u32 len = fs_info->sectorsize;
2960 	const u32 csum_size = fs_info->csum_size;
2961 	unsigned int offset_sectors;
2962 	u8 *csum_expected;
2963 	u8 csum[BTRFS_CSUM_SIZE];
2964 
2965 	ASSERT(pgoff + len <= PAGE_SIZE);
2966 
2967 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
2968 	csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
2969 
2970 	kaddr = kmap_atomic(page);
2971 	shash->tfm = fs_info->csum_shash;
2972 
2973 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2974 
2975 	if (memcmp(csum, csum_expected, csum_size))
2976 		goto zeroit;
2977 
2978 	kunmap_atomic(kaddr);
2979 	return 0;
2980 zeroit:
2981 	btrfs_print_data_csum_error(BTRFS_I(inode), page_offset(page) + pgoff,
2982 				    csum, csum_expected, io_bio->mirror_num);
2983 	if (io_bio->device)
2984 		btrfs_dev_stat_inc_and_print(io_bio->device,
2985 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
2986 	memset(kaddr + pgoff, 1, len);
2987 	flush_dcache_page(page);
2988 	kunmap_atomic(kaddr);
2989 	return -EIO;
2990 }
2991 
2992 /*
2993  * When reads are done, we need to check csums to verify the data is correct.
2994  * if there's a match, we allow the bio to finish.  If not, the code in
2995  * extent_io.c will try to find good copies for us.
2996  *
2997  * @bio_offset:	offset to the beginning of the bio (in bytes)
2998  * @start:	file offset of the range start
2999  * @end:	file offset of the range end (inclusive)
3000  * @mirror:	mirror number
3001  */
3002 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3003 			   struct page *page, u64 start, u64 end, int mirror)
3004 {
3005 	struct inode *inode = page->mapping->host;
3006 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3007 	struct btrfs_root *root = BTRFS_I(inode)->root;
3008 	const u32 sectorsize = root->fs_info->sectorsize;
3009 	u32 pg_off;
3010 
3011 	if (PageChecked(page)) {
3012 		ClearPageChecked(page);
3013 		return 0;
3014 	}
3015 
3016 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3017 		return 0;
3018 
3019 	if (!root->fs_info->csum_root)
3020 		return 0;
3021 
3022 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3023 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3024 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3025 		return 0;
3026 	}
3027 
3028 	ASSERT(page_offset(page) <= start &&
3029 	       end <= page_offset(page) + PAGE_SIZE - 1);
3030 	for (pg_off = offset_in_page(start);
3031 	     pg_off < offset_in_page(end);
3032 	     pg_off += sectorsize, bio_offset += sectorsize) {
3033 		int ret;
3034 
3035 		ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off);
3036 		if (ret < 0)
3037 			return -EIO;
3038 	}
3039 	return 0;
3040 }
3041 
3042 /*
3043  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3044  *
3045  * @inode: The inode we want to perform iput on
3046  *
3047  * This function uses the generic vfs_inode::i_count to track whether we should
3048  * just decrement it (in case it's > 1) or if this is the last iput then link
3049  * the inode to the delayed iput machinery. Delayed iputs are processed at
3050  * transaction commit time/superblock commit/cleaner kthread.
3051  */
3052 void btrfs_add_delayed_iput(struct inode *inode)
3053 {
3054 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3055 	struct btrfs_inode *binode = BTRFS_I(inode);
3056 
3057 	if (atomic_add_unless(&inode->i_count, -1, 1))
3058 		return;
3059 
3060 	atomic_inc(&fs_info->nr_delayed_iputs);
3061 	spin_lock(&fs_info->delayed_iput_lock);
3062 	ASSERT(list_empty(&binode->delayed_iput));
3063 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3064 	spin_unlock(&fs_info->delayed_iput_lock);
3065 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3066 		wake_up_process(fs_info->cleaner_kthread);
3067 }
3068 
3069 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3070 				    struct btrfs_inode *inode)
3071 {
3072 	list_del_init(&inode->delayed_iput);
3073 	spin_unlock(&fs_info->delayed_iput_lock);
3074 	iput(&inode->vfs_inode);
3075 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3076 		wake_up(&fs_info->delayed_iputs_wait);
3077 	spin_lock(&fs_info->delayed_iput_lock);
3078 }
3079 
3080 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3081 				   struct btrfs_inode *inode)
3082 {
3083 	if (!list_empty(&inode->delayed_iput)) {
3084 		spin_lock(&fs_info->delayed_iput_lock);
3085 		if (!list_empty(&inode->delayed_iput))
3086 			run_delayed_iput_locked(fs_info, inode);
3087 		spin_unlock(&fs_info->delayed_iput_lock);
3088 	}
3089 }
3090 
3091 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3092 {
3093 
3094 	spin_lock(&fs_info->delayed_iput_lock);
3095 	while (!list_empty(&fs_info->delayed_iputs)) {
3096 		struct btrfs_inode *inode;
3097 
3098 		inode = list_first_entry(&fs_info->delayed_iputs,
3099 				struct btrfs_inode, delayed_iput);
3100 		run_delayed_iput_locked(fs_info, inode);
3101 	}
3102 	spin_unlock(&fs_info->delayed_iput_lock);
3103 }
3104 
3105 /**
3106  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3107  * @fs_info - the fs_info for this fs
3108  * @return - EINTR if we were killed, 0 if nothing's pending
3109  *
3110  * This will wait on any delayed iputs that are currently running with KILLABLE
3111  * set.  Once they are all done running we will return, unless we are killed in
3112  * which case we return EINTR. This helps in user operations like fallocate etc
3113  * that might get blocked on the iputs.
3114  */
3115 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3116 {
3117 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3118 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3119 	if (ret)
3120 		return -EINTR;
3121 	return 0;
3122 }
3123 
3124 /*
3125  * This creates an orphan entry for the given inode in case something goes wrong
3126  * in the middle of an unlink.
3127  */
3128 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3129 		     struct btrfs_inode *inode)
3130 {
3131 	int ret;
3132 
3133 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3134 	if (ret && ret != -EEXIST) {
3135 		btrfs_abort_transaction(trans, ret);
3136 		return ret;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 /*
3143  * We have done the delete so we can go ahead and remove the orphan item for
3144  * this particular inode.
3145  */
3146 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3147 			    struct btrfs_inode *inode)
3148 {
3149 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3150 }
3151 
3152 /*
3153  * this cleans up any orphans that may be left on the list from the last use
3154  * of this root.
3155  */
3156 int btrfs_orphan_cleanup(struct btrfs_root *root)
3157 {
3158 	struct btrfs_fs_info *fs_info = root->fs_info;
3159 	struct btrfs_path *path;
3160 	struct extent_buffer *leaf;
3161 	struct btrfs_key key, found_key;
3162 	struct btrfs_trans_handle *trans;
3163 	struct inode *inode;
3164 	u64 last_objectid = 0;
3165 	int ret = 0, nr_unlink = 0;
3166 
3167 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3168 		return 0;
3169 
3170 	path = btrfs_alloc_path();
3171 	if (!path) {
3172 		ret = -ENOMEM;
3173 		goto out;
3174 	}
3175 	path->reada = READA_BACK;
3176 
3177 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3178 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3179 	key.offset = (u64)-1;
3180 
3181 	while (1) {
3182 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3183 		if (ret < 0)
3184 			goto out;
3185 
3186 		/*
3187 		 * if ret == 0 means we found what we were searching for, which
3188 		 * is weird, but possible, so only screw with path if we didn't
3189 		 * find the key and see if we have stuff that matches
3190 		 */
3191 		if (ret > 0) {
3192 			ret = 0;
3193 			if (path->slots[0] == 0)
3194 				break;
3195 			path->slots[0]--;
3196 		}
3197 
3198 		/* pull out the item */
3199 		leaf = path->nodes[0];
3200 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3201 
3202 		/* make sure the item matches what we want */
3203 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3204 			break;
3205 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3206 			break;
3207 
3208 		/* release the path since we're done with it */
3209 		btrfs_release_path(path);
3210 
3211 		/*
3212 		 * this is where we are basically btrfs_lookup, without the
3213 		 * crossing root thing.  we store the inode number in the
3214 		 * offset of the orphan item.
3215 		 */
3216 
3217 		if (found_key.offset == last_objectid) {
3218 			btrfs_err(fs_info,
3219 				  "Error removing orphan entry, stopping orphan cleanup");
3220 			ret = -EINVAL;
3221 			goto out;
3222 		}
3223 
3224 		last_objectid = found_key.offset;
3225 
3226 		found_key.objectid = found_key.offset;
3227 		found_key.type = BTRFS_INODE_ITEM_KEY;
3228 		found_key.offset = 0;
3229 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3230 		ret = PTR_ERR_OR_ZERO(inode);
3231 		if (ret && ret != -ENOENT)
3232 			goto out;
3233 
3234 		if (ret == -ENOENT && root == fs_info->tree_root) {
3235 			struct btrfs_root *dead_root;
3236 			int is_dead_root = 0;
3237 
3238 			/*
3239 			 * this is an orphan in the tree root. Currently these
3240 			 * could come from 2 sources:
3241 			 *  a) a snapshot deletion in progress
3242 			 *  b) a free space cache inode
3243 			 * We need to distinguish those two, as the snapshot
3244 			 * orphan must not get deleted.
3245 			 * find_dead_roots already ran before us, so if this
3246 			 * is a snapshot deletion, we should find the root
3247 			 * in the fs_roots radix tree.
3248 			 */
3249 
3250 			spin_lock(&fs_info->fs_roots_radix_lock);
3251 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3252 							 (unsigned long)found_key.objectid);
3253 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3254 				is_dead_root = 1;
3255 			spin_unlock(&fs_info->fs_roots_radix_lock);
3256 
3257 			if (is_dead_root) {
3258 				/* prevent this orphan from being found again */
3259 				key.offset = found_key.objectid - 1;
3260 				continue;
3261 			}
3262 
3263 		}
3264 
3265 		/*
3266 		 * If we have an inode with links, there are a couple of
3267 		 * possibilities. Old kernels (before v3.12) used to create an
3268 		 * orphan item for truncate indicating that there were possibly
3269 		 * extent items past i_size that needed to be deleted. In v3.12,
3270 		 * truncate was changed to update i_size in sync with the extent
3271 		 * items, but the (useless) orphan item was still created. Since
3272 		 * v4.18, we don't create the orphan item for truncate at all.
3273 		 *
3274 		 * So, this item could mean that we need to do a truncate, but
3275 		 * only if this filesystem was last used on a pre-v3.12 kernel
3276 		 * and was not cleanly unmounted. The odds of that are quite
3277 		 * slim, and it's a pain to do the truncate now, so just delete
3278 		 * the orphan item.
3279 		 *
3280 		 * It's also possible that this orphan item was supposed to be
3281 		 * deleted but wasn't. The inode number may have been reused,
3282 		 * but either way, we can delete the orphan item.
3283 		 */
3284 		if (ret == -ENOENT || inode->i_nlink) {
3285 			if (!ret)
3286 				iput(inode);
3287 			trans = btrfs_start_transaction(root, 1);
3288 			if (IS_ERR(trans)) {
3289 				ret = PTR_ERR(trans);
3290 				goto out;
3291 			}
3292 			btrfs_debug(fs_info, "auto deleting %Lu",
3293 				    found_key.objectid);
3294 			ret = btrfs_del_orphan_item(trans, root,
3295 						    found_key.objectid);
3296 			btrfs_end_transaction(trans);
3297 			if (ret)
3298 				goto out;
3299 			continue;
3300 		}
3301 
3302 		nr_unlink++;
3303 
3304 		/* this will do delete_inode and everything for us */
3305 		iput(inode);
3306 	}
3307 	/* release the path since we're done with it */
3308 	btrfs_release_path(path);
3309 
3310 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3311 
3312 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3313 		trans = btrfs_join_transaction(root);
3314 		if (!IS_ERR(trans))
3315 			btrfs_end_transaction(trans);
3316 	}
3317 
3318 	if (nr_unlink)
3319 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3320 
3321 out:
3322 	if (ret)
3323 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3324 	btrfs_free_path(path);
3325 	return ret;
3326 }
3327 
3328 /*
3329  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3330  * don't find any xattrs, we know there can't be any acls.
3331  *
3332  * slot is the slot the inode is in, objectid is the objectid of the inode
3333  */
3334 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3335 					  int slot, u64 objectid,
3336 					  int *first_xattr_slot)
3337 {
3338 	u32 nritems = btrfs_header_nritems(leaf);
3339 	struct btrfs_key found_key;
3340 	static u64 xattr_access = 0;
3341 	static u64 xattr_default = 0;
3342 	int scanned = 0;
3343 
3344 	if (!xattr_access) {
3345 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3346 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3347 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3348 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3349 	}
3350 
3351 	slot++;
3352 	*first_xattr_slot = -1;
3353 	while (slot < nritems) {
3354 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3355 
3356 		/* we found a different objectid, there must not be acls */
3357 		if (found_key.objectid != objectid)
3358 			return 0;
3359 
3360 		/* we found an xattr, assume we've got an acl */
3361 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3362 			if (*first_xattr_slot == -1)
3363 				*first_xattr_slot = slot;
3364 			if (found_key.offset == xattr_access ||
3365 			    found_key.offset == xattr_default)
3366 				return 1;
3367 		}
3368 
3369 		/*
3370 		 * we found a key greater than an xattr key, there can't
3371 		 * be any acls later on
3372 		 */
3373 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3374 			return 0;
3375 
3376 		slot++;
3377 		scanned++;
3378 
3379 		/*
3380 		 * it goes inode, inode backrefs, xattrs, extents,
3381 		 * so if there are a ton of hard links to an inode there can
3382 		 * be a lot of backrefs.  Don't waste time searching too hard,
3383 		 * this is just an optimization
3384 		 */
3385 		if (scanned >= 8)
3386 			break;
3387 	}
3388 	/* we hit the end of the leaf before we found an xattr or
3389 	 * something larger than an xattr.  We have to assume the inode
3390 	 * has acls
3391 	 */
3392 	if (*first_xattr_slot == -1)
3393 		*first_xattr_slot = slot;
3394 	return 1;
3395 }
3396 
3397 /*
3398  * read an inode from the btree into the in-memory inode
3399  */
3400 static int btrfs_read_locked_inode(struct inode *inode,
3401 				   struct btrfs_path *in_path)
3402 {
3403 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3404 	struct btrfs_path *path = in_path;
3405 	struct extent_buffer *leaf;
3406 	struct btrfs_inode_item *inode_item;
3407 	struct btrfs_root *root = BTRFS_I(inode)->root;
3408 	struct btrfs_key location;
3409 	unsigned long ptr;
3410 	int maybe_acls;
3411 	u32 rdev;
3412 	int ret;
3413 	bool filled = false;
3414 	int first_xattr_slot;
3415 
3416 	ret = btrfs_fill_inode(inode, &rdev);
3417 	if (!ret)
3418 		filled = true;
3419 
3420 	if (!path) {
3421 		path = btrfs_alloc_path();
3422 		if (!path)
3423 			return -ENOMEM;
3424 	}
3425 
3426 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3427 
3428 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3429 	if (ret) {
3430 		if (path != in_path)
3431 			btrfs_free_path(path);
3432 		return ret;
3433 	}
3434 
3435 	leaf = path->nodes[0];
3436 
3437 	if (filled)
3438 		goto cache_index;
3439 
3440 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3441 				    struct btrfs_inode_item);
3442 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3443 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3444 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3445 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3446 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3447 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3448 			round_up(i_size_read(inode), fs_info->sectorsize));
3449 
3450 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3451 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3452 
3453 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3454 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3455 
3456 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3457 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3458 
3459 	BTRFS_I(inode)->i_otime.tv_sec =
3460 		btrfs_timespec_sec(leaf, &inode_item->otime);
3461 	BTRFS_I(inode)->i_otime.tv_nsec =
3462 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3463 
3464 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3465 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3466 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3467 
3468 	inode_set_iversion_queried(inode,
3469 				   btrfs_inode_sequence(leaf, inode_item));
3470 	inode->i_generation = BTRFS_I(inode)->generation;
3471 	inode->i_rdev = 0;
3472 	rdev = btrfs_inode_rdev(leaf, inode_item);
3473 
3474 	BTRFS_I(inode)->index_cnt = (u64)-1;
3475 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3476 
3477 cache_index:
3478 	/*
3479 	 * If we were modified in the current generation and evicted from memory
3480 	 * and then re-read we need to do a full sync since we don't have any
3481 	 * idea about which extents were modified before we were evicted from
3482 	 * cache.
3483 	 *
3484 	 * This is required for both inode re-read from disk and delayed inode
3485 	 * in delayed_nodes_tree.
3486 	 */
3487 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3488 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3489 			&BTRFS_I(inode)->runtime_flags);
3490 
3491 	/*
3492 	 * We don't persist the id of the transaction where an unlink operation
3493 	 * against the inode was last made. So here we assume the inode might
3494 	 * have been evicted, and therefore the exact value of last_unlink_trans
3495 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3496 	 * between the inode and its parent if the inode is fsync'ed and the log
3497 	 * replayed. For example, in the scenario:
3498 	 *
3499 	 * touch mydir/foo
3500 	 * ln mydir/foo mydir/bar
3501 	 * sync
3502 	 * unlink mydir/bar
3503 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3504 	 * xfs_io -c fsync mydir/foo
3505 	 * <power failure>
3506 	 * mount fs, triggers fsync log replay
3507 	 *
3508 	 * We must make sure that when we fsync our inode foo we also log its
3509 	 * parent inode, otherwise after log replay the parent still has the
3510 	 * dentry with the "bar" name but our inode foo has a link count of 1
3511 	 * and doesn't have an inode ref with the name "bar" anymore.
3512 	 *
3513 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3514 	 * but it guarantees correctness at the expense of occasional full
3515 	 * transaction commits on fsync if our inode is a directory, or if our
3516 	 * inode is not a directory, logging its parent unnecessarily.
3517 	 */
3518 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3519 
3520 	/*
3521 	 * Same logic as for last_unlink_trans. We don't persist the generation
3522 	 * of the last transaction where this inode was used for a reflink
3523 	 * operation, so after eviction and reloading the inode we must be
3524 	 * pessimistic and assume the last transaction that modified the inode.
3525 	 */
3526 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3527 
3528 	path->slots[0]++;
3529 	if (inode->i_nlink != 1 ||
3530 	    path->slots[0] >= btrfs_header_nritems(leaf))
3531 		goto cache_acl;
3532 
3533 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3534 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3535 		goto cache_acl;
3536 
3537 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3538 	if (location.type == BTRFS_INODE_REF_KEY) {
3539 		struct btrfs_inode_ref *ref;
3540 
3541 		ref = (struct btrfs_inode_ref *)ptr;
3542 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3543 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3544 		struct btrfs_inode_extref *extref;
3545 
3546 		extref = (struct btrfs_inode_extref *)ptr;
3547 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3548 								     extref);
3549 	}
3550 cache_acl:
3551 	/*
3552 	 * try to precache a NULL acl entry for files that don't have
3553 	 * any xattrs or acls
3554 	 */
3555 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3556 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3557 	if (first_xattr_slot != -1) {
3558 		path->slots[0] = first_xattr_slot;
3559 		ret = btrfs_load_inode_props(inode, path);
3560 		if (ret)
3561 			btrfs_err(fs_info,
3562 				  "error loading props for ino %llu (root %llu): %d",
3563 				  btrfs_ino(BTRFS_I(inode)),
3564 				  root->root_key.objectid, ret);
3565 	}
3566 	if (path != in_path)
3567 		btrfs_free_path(path);
3568 
3569 	if (!maybe_acls)
3570 		cache_no_acl(inode);
3571 
3572 	switch (inode->i_mode & S_IFMT) {
3573 	case S_IFREG:
3574 		inode->i_mapping->a_ops = &btrfs_aops;
3575 		inode->i_fop = &btrfs_file_operations;
3576 		inode->i_op = &btrfs_file_inode_operations;
3577 		break;
3578 	case S_IFDIR:
3579 		inode->i_fop = &btrfs_dir_file_operations;
3580 		inode->i_op = &btrfs_dir_inode_operations;
3581 		break;
3582 	case S_IFLNK:
3583 		inode->i_op = &btrfs_symlink_inode_operations;
3584 		inode_nohighmem(inode);
3585 		inode->i_mapping->a_ops = &btrfs_aops;
3586 		break;
3587 	default:
3588 		inode->i_op = &btrfs_special_inode_operations;
3589 		init_special_inode(inode, inode->i_mode, rdev);
3590 		break;
3591 	}
3592 
3593 	btrfs_sync_inode_flags_to_i_flags(inode);
3594 	return 0;
3595 }
3596 
3597 /*
3598  * given a leaf and an inode, copy the inode fields into the leaf
3599  */
3600 static void fill_inode_item(struct btrfs_trans_handle *trans,
3601 			    struct extent_buffer *leaf,
3602 			    struct btrfs_inode_item *item,
3603 			    struct inode *inode)
3604 {
3605 	struct btrfs_map_token token;
3606 
3607 	btrfs_init_map_token(&token, leaf);
3608 
3609 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3610 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3611 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3612 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3613 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3614 
3615 	btrfs_set_token_timespec_sec(&token, &item->atime,
3616 				     inode->i_atime.tv_sec);
3617 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3618 				      inode->i_atime.tv_nsec);
3619 
3620 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3621 				     inode->i_mtime.tv_sec);
3622 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3623 				      inode->i_mtime.tv_nsec);
3624 
3625 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3626 				     inode->i_ctime.tv_sec);
3627 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3628 				      inode->i_ctime.tv_nsec);
3629 
3630 	btrfs_set_token_timespec_sec(&token, &item->otime,
3631 				     BTRFS_I(inode)->i_otime.tv_sec);
3632 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3633 				      BTRFS_I(inode)->i_otime.tv_nsec);
3634 
3635 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3636 	btrfs_set_token_inode_generation(&token, item,
3637 					 BTRFS_I(inode)->generation);
3638 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3639 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3640 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3641 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3642 	btrfs_set_token_inode_block_group(&token, item, 0);
3643 }
3644 
3645 /*
3646  * copy everything in the in-memory inode into the btree.
3647  */
3648 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3649 				struct btrfs_root *root,
3650 				struct btrfs_inode *inode)
3651 {
3652 	struct btrfs_inode_item *inode_item;
3653 	struct btrfs_path *path;
3654 	struct extent_buffer *leaf;
3655 	int ret;
3656 
3657 	path = btrfs_alloc_path();
3658 	if (!path)
3659 		return -ENOMEM;
3660 
3661 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3662 	if (ret) {
3663 		if (ret > 0)
3664 			ret = -ENOENT;
3665 		goto failed;
3666 	}
3667 
3668 	leaf = path->nodes[0];
3669 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3670 				    struct btrfs_inode_item);
3671 
3672 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3673 	btrfs_mark_buffer_dirty(leaf);
3674 	btrfs_set_inode_last_trans(trans, inode);
3675 	ret = 0;
3676 failed:
3677 	btrfs_free_path(path);
3678 	return ret;
3679 }
3680 
3681 /*
3682  * copy everything in the in-memory inode into the btree.
3683  */
3684 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3685 				struct btrfs_root *root,
3686 				struct btrfs_inode *inode)
3687 {
3688 	struct btrfs_fs_info *fs_info = root->fs_info;
3689 	int ret;
3690 
3691 	/*
3692 	 * If the inode is a free space inode, we can deadlock during commit
3693 	 * if we put it into the delayed code.
3694 	 *
3695 	 * The data relocation inode should also be directly updated
3696 	 * without delay
3697 	 */
3698 	if (!btrfs_is_free_space_inode(inode)
3699 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3700 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3701 		btrfs_update_root_times(trans, root);
3702 
3703 		ret = btrfs_delayed_update_inode(trans, root, inode);
3704 		if (!ret)
3705 			btrfs_set_inode_last_trans(trans, inode);
3706 		return ret;
3707 	}
3708 
3709 	return btrfs_update_inode_item(trans, root, inode);
3710 }
3711 
3712 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3713 				struct btrfs_root *root, struct btrfs_inode *inode)
3714 {
3715 	int ret;
3716 
3717 	ret = btrfs_update_inode(trans, root, inode);
3718 	if (ret == -ENOSPC)
3719 		return btrfs_update_inode_item(trans, root, inode);
3720 	return ret;
3721 }
3722 
3723 /*
3724  * unlink helper that gets used here in inode.c and in the tree logging
3725  * recovery code.  It remove a link in a directory with a given name, and
3726  * also drops the back refs in the inode to the directory
3727  */
3728 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3729 				struct btrfs_root *root,
3730 				struct btrfs_inode *dir,
3731 				struct btrfs_inode *inode,
3732 				const char *name, int name_len)
3733 {
3734 	struct btrfs_fs_info *fs_info = root->fs_info;
3735 	struct btrfs_path *path;
3736 	int ret = 0;
3737 	struct btrfs_dir_item *di;
3738 	u64 index;
3739 	u64 ino = btrfs_ino(inode);
3740 	u64 dir_ino = btrfs_ino(dir);
3741 
3742 	path = btrfs_alloc_path();
3743 	if (!path) {
3744 		ret = -ENOMEM;
3745 		goto out;
3746 	}
3747 
3748 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3749 				    name, name_len, -1);
3750 	if (IS_ERR_OR_NULL(di)) {
3751 		ret = di ? PTR_ERR(di) : -ENOENT;
3752 		goto err;
3753 	}
3754 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3755 	if (ret)
3756 		goto err;
3757 	btrfs_release_path(path);
3758 
3759 	/*
3760 	 * If we don't have dir index, we have to get it by looking up
3761 	 * the inode ref, since we get the inode ref, remove it directly,
3762 	 * it is unnecessary to do delayed deletion.
3763 	 *
3764 	 * But if we have dir index, needn't search inode ref to get it.
3765 	 * Since the inode ref is close to the inode item, it is better
3766 	 * that we delay to delete it, and just do this deletion when
3767 	 * we update the inode item.
3768 	 */
3769 	if (inode->dir_index) {
3770 		ret = btrfs_delayed_delete_inode_ref(inode);
3771 		if (!ret) {
3772 			index = inode->dir_index;
3773 			goto skip_backref;
3774 		}
3775 	}
3776 
3777 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3778 				  dir_ino, &index);
3779 	if (ret) {
3780 		btrfs_info(fs_info,
3781 			"failed to delete reference to %.*s, inode %llu parent %llu",
3782 			name_len, name, ino, dir_ino);
3783 		btrfs_abort_transaction(trans, ret);
3784 		goto err;
3785 	}
3786 skip_backref:
3787 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3788 	if (ret) {
3789 		btrfs_abort_transaction(trans, ret);
3790 		goto err;
3791 	}
3792 
3793 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3794 			dir_ino);
3795 	if (ret != 0 && ret != -ENOENT) {
3796 		btrfs_abort_transaction(trans, ret);
3797 		goto err;
3798 	}
3799 
3800 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3801 			index);
3802 	if (ret == -ENOENT)
3803 		ret = 0;
3804 	else if (ret)
3805 		btrfs_abort_transaction(trans, ret);
3806 
3807 	/*
3808 	 * If we have a pending delayed iput we could end up with the final iput
3809 	 * being run in btrfs-cleaner context.  If we have enough of these built
3810 	 * up we can end up burning a lot of time in btrfs-cleaner without any
3811 	 * way to throttle the unlinks.  Since we're currently holding a ref on
3812 	 * the inode we can run the delayed iput here without any issues as the
3813 	 * final iput won't be done until after we drop the ref we're currently
3814 	 * holding.
3815 	 */
3816 	btrfs_run_delayed_iput(fs_info, inode);
3817 err:
3818 	btrfs_free_path(path);
3819 	if (ret)
3820 		goto out;
3821 
3822 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3823 	inode_inc_iversion(&inode->vfs_inode);
3824 	inode_inc_iversion(&dir->vfs_inode);
3825 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3826 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3827 	ret = btrfs_update_inode(trans, root, dir);
3828 out:
3829 	return ret;
3830 }
3831 
3832 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3833 		       struct btrfs_root *root,
3834 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3835 		       const char *name, int name_len)
3836 {
3837 	int ret;
3838 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3839 	if (!ret) {
3840 		drop_nlink(&inode->vfs_inode);
3841 		ret = btrfs_update_inode(trans, root, inode);
3842 	}
3843 	return ret;
3844 }
3845 
3846 /*
3847  * helper to start transaction for unlink and rmdir.
3848  *
3849  * unlink and rmdir are special in btrfs, they do not always free space, so
3850  * if we cannot make our reservations the normal way try and see if there is
3851  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3852  * allow the unlink to occur.
3853  */
3854 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3855 {
3856 	struct btrfs_root *root = BTRFS_I(dir)->root;
3857 
3858 	/*
3859 	 * 1 for the possible orphan item
3860 	 * 1 for the dir item
3861 	 * 1 for the dir index
3862 	 * 1 for the inode ref
3863 	 * 1 for the inode
3864 	 */
3865 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
3866 }
3867 
3868 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3869 {
3870 	struct btrfs_root *root = BTRFS_I(dir)->root;
3871 	struct btrfs_trans_handle *trans;
3872 	struct inode *inode = d_inode(dentry);
3873 	int ret;
3874 
3875 	trans = __unlink_start_trans(dir);
3876 	if (IS_ERR(trans))
3877 		return PTR_ERR(trans);
3878 
3879 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3880 			0);
3881 
3882 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3883 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3884 			dentry->d_name.len);
3885 	if (ret)
3886 		goto out;
3887 
3888 	if (inode->i_nlink == 0) {
3889 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3890 		if (ret)
3891 			goto out;
3892 	}
3893 
3894 out:
3895 	btrfs_end_transaction(trans);
3896 	btrfs_btree_balance_dirty(root->fs_info);
3897 	return ret;
3898 }
3899 
3900 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3901 			       struct inode *dir, struct dentry *dentry)
3902 {
3903 	struct btrfs_root *root = BTRFS_I(dir)->root;
3904 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3905 	struct btrfs_path *path;
3906 	struct extent_buffer *leaf;
3907 	struct btrfs_dir_item *di;
3908 	struct btrfs_key key;
3909 	const char *name = dentry->d_name.name;
3910 	int name_len = dentry->d_name.len;
3911 	u64 index;
3912 	int ret;
3913 	u64 objectid;
3914 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3915 
3916 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3917 		objectid = inode->root->root_key.objectid;
3918 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3919 		objectid = inode->location.objectid;
3920 	} else {
3921 		WARN_ON(1);
3922 		return -EINVAL;
3923 	}
3924 
3925 	path = btrfs_alloc_path();
3926 	if (!path)
3927 		return -ENOMEM;
3928 
3929 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3930 				   name, name_len, -1);
3931 	if (IS_ERR_OR_NULL(di)) {
3932 		ret = di ? PTR_ERR(di) : -ENOENT;
3933 		goto out;
3934 	}
3935 
3936 	leaf = path->nodes[0];
3937 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3938 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3939 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3940 	if (ret) {
3941 		btrfs_abort_transaction(trans, ret);
3942 		goto out;
3943 	}
3944 	btrfs_release_path(path);
3945 
3946 	/*
3947 	 * This is a placeholder inode for a subvolume we didn't have a
3948 	 * reference to at the time of the snapshot creation.  In the meantime
3949 	 * we could have renamed the real subvol link into our snapshot, so
3950 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3951 	 * Instead simply lookup the dir_index_item for this entry so we can
3952 	 * remove it.  Otherwise we know we have a ref to the root and we can
3953 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3954 	 */
3955 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3956 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3957 						 name, name_len);
3958 		if (IS_ERR_OR_NULL(di)) {
3959 			if (!di)
3960 				ret = -ENOENT;
3961 			else
3962 				ret = PTR_ERR(di);
3963 			btrfs_abort_transaction(trans, ret);
3964 			goto out;
3965 		}
3966 
3967 		leaf = path->nodes[0];
3968 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3969 		index = key.offset;
3970 		btrfs_release_path(path);
3971 	} else {
3972 		ret = btrfs_del_root_ref(trans, objectid,
3973 					 root->root_key.objectid, dir_ino,
3974 					 &index, name, name_len);
3975 		if (ret) {
3976 			btrfs_abort_transaction(trans, ret);
3977 			goto out;
3978 		}
3979 	}
3980 
3981 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3982 	if (ret) {
3983 		btrfs_abort_transaction(trans, ret);
3984 		goto out;
3985 	}
3986 
3987 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3988 	inode_inc_iversion(dir);
3989 	dir->i_mtime = dir->i_ctime = current_time(dir);
3990 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
3991 	if (ret)
3992 		btrfs_abort_transaction(trans, ret);
3993 out:
3994 	btrfs_free_path(path);
3995 	return ret;
3996 }
3997 
3998 /*
3999  * Helper to check if the subvolume references other subvolumes or if it's
4000  * default.
4001  */
4002 static noinline int may_destroy_subvol(struct btrfs_root *root)
4003 {
4004 	struct btrfs_fs_info *fs_info = root->fs_info;
4005 	struct btrfs_path *path;
4006 	struct btrfs_dir_item *di;
4007 	struct btrfs_key key;
4008 	u64 dir_id;
4009 	int ret;
4010 
4011 	path = btrfs_alloc_path();
4012 	if (!path)
4013 		return -ENOMEM;
4014 
4015 	/* Make sure this root isn't set as the default subvol */
4016 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4017 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4018 				   dir_id, "default", 7, 0);
4019 	if (di && !IS_ERR(di)) {
4020 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4021 		if (key.objectid == root->root_key.objectid) {
4022 			ret = -EPERM;
4023 			btrfs_err(fs_info,
4024 				  "deleting default subvolume %llu is not allowed",
4025 				  key.objectid);
4026 			goto out;
4027 		}
4028 		btrfs_release_path(path);
4029 	}
4030 
4031 	key.objectid = root->root_key.objectid;
4032 	key.type = BTRFS_ROOT_REF_KEY;
4033 	key.offset = (u64)-1;
4034 
4035 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4036 	if (ret < 0)
4037 		goto out;
4038 	BUG_ON(ret == 0);
4039 
4040 	ret = 0;
4041 	if (path->slots[0] > 0) {
4042 		path->slots[0]--;
4043 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4044 		if (key.objectid == root->root_key.objectid &&
4045 		    key.type == BTRFS_ROOT_REF_KEY)
4046 			ret = -ENOTEMPTY;
4047 	}
4048 out:
4049 	btrfs_free_path(path);
4050 	return ret;
4051 }
4052 
4053 /* Delete all dentries for inodes belonging to the root */
4054 static void btrfs_prune_dentries(struct btrfs_root *root)
4055 {
4056 	struct btrfs_fs_info *fs_info = root->fs_info;
4057 	struct rb_node *node;
4058 	struct rb_node *prev;
4059 	struct btrfs_inode *entry;
4060 	struct inode *inode;
4061 	u64 objectid = 0;
4062 
4063 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4064 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4065 
4066 	spin_lock(&root->inode_lock);
4067 again:
4068 	node = root->inode_tree.rb_node;
4069 	prev = NULL;
4070 	while (node) {
4071 		prev = node;
4072 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4073 
4074 		if (objectid < btrfs_ino(entry))
4075 			node = node->rb_left;
4076 		else if (objectid > btrfs_ino(entry))
4077 			node = node->rb_right;
4078 		else
4079 			break;
4080 	}
4081 	if (!node) {
4082 		while (prev) {
4083 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4084 			if (objectid <= btrfs_ino(entry)) {
4085 				node = prev;
4086 				break;
4087 			}
4088 			prev = rb_next(prev);
4089 		}
4090 	}
4091 	while (node) {
4092 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4093 		objectid = btrfs_ino(entry) + 1;
4094 		inode = igrab(&entry->vfs_inode);
4095 		if (inode) {
4096 			spin_unlock(&root->inode_lock);
4097 			if (atomic_read(&inode->i_count) > 1)
4098 				d_prune_aliases(inode);
4099 			/*
4100 			 * btrfs_drop_inode will have it removed from the inode
4101 			 * cache when its usage count hits zero.
4102 			 */
4103 			iput(inode);
4104 			cond_resched();
4105 			spin_lock(&root->inode_lock);
4106 			goto again;
4107 		}
4108 
4109 		if (cond_resched_lock(&root->inode_lock))
4110 			goto again;
4111 
4112 		node = rb_next(node);
4113 	}
4114 	spin_unlock(&root->inode_lock);
4115 }
4116 
4117 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4118 {
4119 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4120 	struct btrfs_root *root = BTRFS_I(dir)->root;
4121 	struct inode *inode = d_inode(dentry);
4122 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4123 	struct btrfs_trans_handle *trans;
4124 	struct btrfs_block_rsv block_rsv;
4125 	u64 root_flags;
4126 	int ret;
4127 
4128 	/*
4129 	 * Don't allow to delete a subvolume with send in progress. This is
4130 	 * inside the inode lock so the error handling that has to drop the bit
4131 	 * again is not run concurrently.
4132 	 */
4133 	spin_lock(&dest->root_item_lock);
4134 	if (dest->send_in_progress) {
4135 		spin_unlock(&dest->root_item_lock);
4136 		btrfs_warn(fs_info,
4137 			   "attempt to delete subvolume %llu during send",
4138 			   dest->root_key.objectid);
4139 		return -EPERM;
4140 	}
4141 	root_flags = btrfs_root_flags(&dest->root_item);
4142 	btrfs_set_root_flags(&dest->root_item,
4143 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4144 	spin_unlock(&dest->root_item_lock);
4145 
4146 	down_write(&fs_info->subvol_sem);
4147 
4148 	ret = may_destroy_subvol(dest);
4149 	if (ret)
4150 		goto out_up_write;
4151 
4152 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4153 	/*
4154 	 * One for dir inode,
4155 	 * two for dir entries,
4156 	 * two for root ref/backref.
4157 	 */
4158 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4159 	if (ret)
4160 		goto out_up_write;
4161 
4162 	trans = btrfs_start_transaction(root, 0);
4163 	if (IS_ERR(trans)) {
4164 		ret = PTR_ERR(trans);
4165 		goto out_release;
4166 	}
4167 	trans->block_rsv = &block_rsv;
4168 	trans->bytes_reserved = block_rsv.size;
4169 
4170 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4171 
4172 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4173 	if (ret) {
4174 		btrfs_abort_transaction(trans, ret);
4175 		goto out_end_trans;
4176 	}
4177 
4178 	btrfs_record_root_in_trans(trans, dest);
4179 
4180 	memset(&dest->root_item.drop_progress, 0,
4181 		sizeof(dest->root_item.drop_progress));
4182 	btrfs_set_root_drop_level(&dest->root_item, 0);
4183 	btrfs_set_root_refs(&dest->root_item, 0);
4184 
4185 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4186 		ret = btrfs_insert_orphan_item(trans,
4187 					fs_info->tree_root,
4188 					dest->root_key.objectid);
4189 		if (ret) {
4190 			btrfs_abort_transaction(trans, ret);
4191 			goto out_end_trans;
4192 		}
4193 	}
4194 
4195 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4196 				  BTRFS_UUID_KEY_SUBVOL,
4197 				  dest->root_key.objectid);
4198 	if (ret && ret != -ENOENT) {
4199 		btrfs_abort_transaction(trans, ret);
4200 		goto out_end_trans;
4201 	}
4202 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4203 		ret = btrfs_uuid_tree_remove(trans,
4204 					  dest->root_item.received_uuid,
4205 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4206 					  dest->root_key.objectid);
4207 		if (ret && ret != -ENOENT) {
4208 			btrfs_abort_transaction(trans, ret);
4209 			goto out_end_trans;
4210 		}
4211 	}
4212 
4213 	free_anon_bdev(dest->anon_dev);
4214 	dest->anon_dev = 0;
4215 out_end_trans:
4216 	trans->block_rsv = NULL;
4217 	trans->bytes_reserved = 0;
4218 	ret = btrfs_end_transaction(trans);
4219 	inode->i_flags |= S_DEAD;
4220 out_release:
4221 	btrfs_subvolume_release_metadata(root, &block_rsv);
4222 out_up_write:
4223 	up_write(&fs_info->subvol_sem);
4224 	if (ret) {
4225 		spin_lock(&dest->root_item_lock);
4226 		root_flags = btrfs_root_flags(&dest->root_item);
4227 		btrfs_set_root_flags(&dest->root_item,
4228 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4229 		spin_unlock(&dest->root_item_lock);
4230 	} else {
4231 		d_invalidate(dentry);
4232 		btrfs_prune_dentries(dest);
4233 		ASSERT(dest->send_in_progress == 0);
4234 	}
4235 
4236 	return ret;
4237 }
4238 
4239 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4240 {
4241 	struct inode *inode = d_inode(dentry);
4242 	int err = 0;
4243 	struct btrfs_root *root = BTRFS_I(dir)->root;
4244 	struct btrfs_trans_handle *trans;
4245 	u64 last_unlink_trans;
4246 
4247 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4248 		return -ENOTEMPTY;
4249 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4250 		return btrfs_delete_subvolume(dir, dentry);
4251 
4252 	trans = __unlink_start_trans(dir);
4253 	if (IS_ERR(trans))
4254 		return PTR_ERR(trans);
4255 
4256 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4257 		err = btrfs_unlink_subvol(trans, dir, dentry);
4258 		goto out;
4259 	}
4260 
4261 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4262 	if (err)
4263 		goto out;
4264 
4265 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4266 
4267 	/* now the directory is empty */
4268 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4269 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4270 			dentry->d_name.len);
4271 	if (!err) {
4272 		btrfs_i_size_write(BTRFS_I(inode), 0);
4273 		/*
4274 		 * Propagate the last_unlink_trans value of the deleted dir to
4275 		 * its parent directory. This is to prevent an unrecoverable
4276 		 * log tree in the case we do something like this:
4277 		 * 1) create dir foo
4278 		 * 2) create snapshot under dir foo
4279 		 * 3) delete the snapshot
4280 		 * 4) rmdir foo
4281 		 * 5) mkdir foo
4282 		 * 6) fsync foo or some file inside foo
4283 		 */
4284 		if (last_unlink_trans >= trans->transid)
4285 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4286 	}
4287 out:
4288 	btrfs_end_transaction(trans);
4289 	btrfs_btree_balance_dirty(root->fs_info);
4290 
4291 	return err;
4292 }
4293 
4294 /*
4295  * Return this if we need to call truncate_block for the last bit of the
4296  * truncate.
4297  */
4298 #define NEED_TRUNCATE_BLOCK 1
4299 
4300 /*
4301  * this can truncate away extent items, csum items and directory items.
4302  * It starts at a high offset and removes keys until it can't find
4303  * any higher than new_size
4304  *
4305  * csum items that cross the new i_size are truncated to the new size
4306  * as well.
4307  *
4308  * min_type is the minimum key type to truncate down to.  If set to 0, this
4309  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4310  */
4311 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4312 			       struct btrfs_root *root,
4313 			       struct btrfs_inode *inode,
4314 			       u64 new_size, u32 min_type)
4315 {
4316 	struct btrfs_fs_info *fs_info = root->fs_info;
4317 	struct btrfs_path *path;
4318 	struct extent_buffer *leaf;
4319 	struct btrfs_file_extent_item *fi;
4320 	struct btrfs_key key;
4321 	struct btrfs_key found_key;
4322 	u64 extent_start = 0;
4323 	u64 extent_num_bytes = 0;
4324 	u64 extent_offset = 0;
4325 	u64 item_end = 0;
4326 	u64 last_size = new_size;
4327 	u32 found_type = (u8)-1;
4328 	int found_extent;
4329 	int del_item;
4330 	int pending_del_nr = 0;
4331 	int pending_del_slot = 0;
4332 	int extent_type = -1;
4333 	int ret;
4334 	u64 ino = btrfs_ino(inode);
4335 	u64 bytes_deleted = 0;
4336 	bool be_nice = false;
4337 	bool should_throttle = false;
4338 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4339 	struct extent_state *cached_state = NULL;
4340 
4341 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4342 
4343 	/*
4344 	 * For non-free space inodes and non-shareable roots, we want to back
4345 	 * off from time to time.  This means all inodes in subvolume roots,
4346 	 * reloc roots, and data reloc roots.
4347 	 */
4348 	if (!btrfs_is_free_space_inode(inode) &&
4349 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4350 		be_nice = true;
4351 
4352 	path = btrfs_alloc_path();
4353 	if (!path)
4354 		return -ENOMEM;
4355 	path->reada = READA_BACK;
4356 
4357 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4358 		lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4359 				 &cached_state);
4360 
4361 		/*
4362 		 * We want to drop from the next block forward in case this
4363 		 * new size is not block aligned since we will be keeping the
4364 		 * last block of the extent just the way it is.
4365 		 */
4366 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4367 					fs_info->sectorsize),
4368 					(u64)-1, 0);
4369 	}
4370 
4371 	/*
4372 	 * This function is also used to drop the items in the log tree before
4373 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4374 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4375 	 * items.
4376 	 */
4377 	if (min_type == 0 && root == inode->root)
4378 		btrfs_kill_delayed_inode_items(inode);
4379 
4380 	key.objectid = ino;
4381 	key.offset = (u64)-1;
4382 	key.type = (u8)-1;
4383 
4384 search_again:
4385 	/*
4386 	 * with a 16K leaf size and 128MB extents, you can actually queue
4387 	 * up a huge file in a single leaf.  Most of the time that
4388 	 * bytes_deleted is > 0, it will be huge by the time we get here
4389 	 */
4390 	if (be_nice && bytes_deleted > SZ_32M &&
4391 	    btrfs_should_end_transaction(trans)) {
4392 		ret = -EAGAIN;
4393 		goto out;
4394 	}
4395 
4396 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4397 	if (ret < 0)
4398 		goto out;
4399 
4400 	if (ret > 0) {
4401 		ret = 0;
4402 		/* there are no items in the tree for us to truncate, we're
4403 		 * done
4404 		 */
4405 		if (path->slots[0] == 0)
4406 			goto out;
4407 		path->slots[0]--;
4408 	}
4409 
4410 	while (1) {
4411 		u64 clear_start = 0, clear_len = 0;
4412 
4413 		fi = NULL;
4414 		leaf = path->nodes[0];
4415 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4416 		found_type = found_key.type;
4417 
4418 		if (found_key.objectid != ino)
4419 			break;
4420 
4421 		if (found_type < min_type)
4422 			break;
4423 
4424 		item_end = found_key.offset;
4425 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4426 			fi = btrfs_item_ptr(leaf, path->slots[0],
4427 					    struct btrfs_file_extent_item);
4428 			extent_type = btrfs_file_extent_type(leaf, fi);
4429 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4430 				item_end +=
4431 				    btrfs_file_extent_num_bytes(leaf, fi);
4432 
4433 				trace_btrfs_truncate_show_fi_regular(
4434 					inode, leaf, fi, found_key.offset);
4435 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4436 				item_end += btrfs_file_extent_ram_bytes(leaf,
4437 									fi);
4438 
4439 				trace_btrfs_truncate_show_fi_inline(
4440 					inode, leaf, fi, path->slots[0],
4441 					found_key.offset);
4442 			}
4443 			item_end--;
4444 		}
4445 		if (found_type > min_type) {
4446 			del_item = 1;
4447 		} else {
4448 			if (item_end < new_size)
4449 				break;
4450 			if (found_key.offset >= new_size)
4451 				del_item = 1;
4452 			else
4453 				del_item = 0;
4454 		}
4455 		found_extent = 0;
4456 		/* FIXME, shrink the extent if the ref count is only 1 */
4457 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4458 			goto delete;
4459 
4460 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4461 			u64 num_dec;
4462 
4463 			clear_start = found_key.offset;
4464 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4465 			if (!del_item) {
4466 				u64 orig_num_bytes =
4467 					btrfs_file_extent_num_bytes(leaf, fi);
4468 				extent_num_bytes = ALIGN(new_size -
4469 						found_key.offset,
4470 						fs_info->sectorsize);
4471 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4472 				btrfs_set_file_extent_num_bytes(leaf, fi,
4473 							 extent_num_bytes);
4474 				num_dec = (orig_num_bytes -
4475 					   extent_num_bytes);
4476 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4477 					     &root->state) &&
4478 				    extent_start != 0)
4479 					inode_sub_bytes(&inode->vfs_inode,
4480 							num_dec);
4481 				btrfs_mark_buffer_dirty(leaf);
4482 			} else {
4483 				extent_num_bytes =
4484 					btrfs_file_extent_disk_num_bytes(leaf,
4485 									 fi);
4486 				extent_offset = found_key.offset -
4487 					btrfs_file_extent_offset(leaf, fi);
4488 
4489 				/* FIXME blocksize != 4096 */
4490 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4491 				if (extent_start != 0) {
4492 					found_extent = 1;
4493 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4494 						     &root->state))
4495 						inode_sub_bytes(&inode->vfs_inode,
4496 								num_dec);
4497 				}
4498 			}
4499 			clear_len = num_dec;
4500 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4501 			/*
4502 			 * we can't truncate inline items that have had
4503 			 * special encodings
4504 			 */
4505 			if (!del_item &&
4506 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4507 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4508 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4509 				u32 size = (u32)(new_size - found_key.offset);
4510 
4511 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4512 				size = btrfs_file_extent_calc_inline_size(size);
4513 				btrfs_truncate_item(path, size, 1);
4514 			} else if (!del_item) {
4515 				/*
4516 				 * We have to bail so the last_size is set to
4517 				 * just before this extent.
4518 				 */
4519 				ret = NEED_TRUNCATE_BLOCK;
4520 				break;
4521 			} else {
4522 				/*
4523 				 * Inline extents are special, we just treat
4524 				 * them as a full sector worth in the file
4525 				 * extent tree just for simplicity sake.
4526 				 */
4527 				clear_len = fs_info->sectorsize;
4528 			}
4529 
4530 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4531 				inode_sub_bytes(&inode->vfs_inode,
4532 						item_end + 1 - new_size);
4533 		}
4534 delete:
4535 		/*
4536 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4537 		 * multiple fsyncs, and in this case we don't want to clear the
4538 		 * file extent range because it's just the log.
4539 		 */
4540 		if (root == inode->root) {
4541 			ret = btrfs_inode_clear_file_extent_range(inode,
4542 						  clear_start, clear_len);
4543 			if (ret) {
4544 				btrfs_abort_transaction(trans, ret);
4545 				break;
4546 			}
4547 		}
4548 
4549 		if (del_item)
4550 			last_size = found_key.offset;
4551 		else
4552 			last_size = new_size;
4553 		if (del_item) {
4554 			if (!pending_del_nr) {
4555 				/* no pending yet, add ourselves */
4556 				pending_del_slot = path->slots[0];
4557 				pending_del_nr = 1;
4558 			} else if (pending_del_nr &&
4559 				   path->slots[0] + 1 == pending_del_slot) {
4560 				/* hop on the pending chunk */
4561 				pending_del_nr++;
4562 				pending_del_slot = path->slots[0];
4563 			} else {
4564 				BUG();
4565 			}
4566 		} else {
4567 			break;
4568 		}
4569 		should_throttle = false;
4570 
4571 		if (found_extent &&
4572 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4573 			struct btrfs_ref ref = { 0 };
4574 
4575 			bytes_deleted += extent_num_bytes;
4576 
4577 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4578 					extent_start, extent_num_bytes, 0);
4579 			ref.real_root = root->root_key.objectid;
4580 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4581 					ino, extent_offset);
4582 			ret = btrfs_free_extent(trans, &ref);
4583 			if (ret) {
4584 				btrfs_abort_transaction(trans, ret);
4585 				break;
4586 			}
4587 			if (be_nice) {
4588 				if (btrfs_should_throttle_delayed_refs(trans))
4589 					should_throttle = true;
4590 			}
4591 		}
4592 
4593 		if (found_type == BTRFS_INODE_ITEM_KEY)
4594 			break;
4595 
4596 		if (path->slots[0] == 0 ||
4597 		    path->slots[0] != pending_del_slot ||
4598 		    should_throttle) {
4599 			if (pending_del_nr) {
4600 				ret = btrfs_del_items(trans, root, path,
4601 						pending_del_slot,
4602 						pending_del_nr);
4603 				if (ret) {
4604 					btrfs_abort_transaction(trans, ret);
4605 					break;
4606 				}
4607 				pending_del_nr = 0;
4608 			}
4609 			btrfs_release_path(path);
4610 
4611 			/*
4612 			 * We can generate a lot of delayed refs, so we need to
4613 			 * throttle every once and a while and make sure we're
4614 			 * adding enough space to keep up with the work we are
4615 			 * generating.  Since we hold a transaction here we
4616 			 * can't flush, and we don't want to FLUSH_LIMIT because
4617 			 * we could have generated too many delayed refs to
4618 			 * actually allocate, so just bail if we're short and
4619 			 * let the normal reservation dance happen higher up.
4620 			 */
4621 			if (should_throttle) {
4622 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4623 							BTRFS_RESERVE_NO_FLUSH);
4624 				if (ret) {
4625 					ret = -EAGAIN;
4626 					break;
4627 				}
4628 			}
4629 			goto search_again;
4630 		} else {
4631 			path->slots[0]--;
4632 		}
4633 	}
4634 out:
4635 	if (ret >= 0 && pending_del_nr) {
4636 		int err;
4637 
4638 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4639 				      pending_del_nr);
4640 		if (err) {
4641 			btrfs_abort_transaction(trans, err);
4642 			ret = err;
4643 		}
4644 	}
4645 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4646 		ASSERT(last_size >= new_size);
4647 		if (!ret && last_size > new_size)
4648 			last_size = new_size;
4649 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4650 		unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4651 				     &cached_state);
4652 	}
4653 
4654 	btrfs_free_path(path);
4655 	return ret;
4656 }
4657 
4658 /*
4659  * btrfs_truncate_block - read, zero a chunk and write a block
4660  * @inode - inode that we're zeroing
4661  * @from - the offset to start zeroing
4662  * @len - the length to zero, 0 to zero the entire range respective to the
4663  *	offset
4664  * @front - zero up to the offset instead of from the offset on
4665  *
4666  * This will find the block for the "from" offset and cow the block and zero the
4667  * part we want to zero.  This is used with truncate and hole punching.
4668  */
4669 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4670 			 int front)
4671 {
4672 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4673 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4674 	struct extent_io_tree *io_tree = &inode->io_tree;
4675 	struct btrfs_ordered_extent *ordered;
4676 	struct extent_state *cached_state = NULL;
4677 	struct extent_changeset *data_reserved = NULL;
4678 	char *kaddr;
4679 	bool only_release_metadata = false;
4680 	u32 blocksize = fs_info->sectorsize;
4681 	pgoff_t index = from >> PAGE_SHIFT;
4682 	unsigned offset = from & (blocksize - 1);
4683 	struct page *page;
4684 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4685 	size_t write_bytes = blocksize;
4686 	int ret = 0;
4687 	u64 block_start;
4688 	u64 block_end;
4689 
4690 	if (IS_ALIGNED(offset, blocksize) &&
4691 	    (!len || IS_ALIGNED(len, blocksize)))
4692 		goto out;
4693 
4694 	block_start = round_down(from, blocksize);
4695 	block_end = block_start + blocksize - 1;
4696 
4697 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4698 					  blocksize);
4699 	if (ret < 0) {
4700 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4701 			/* For nocow case, no need to reserve data space */
4702 			only_release_metadata = true;
4703 		} else {
4704 			goto out;
4705 		}
4706 	}
4707 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
4708 	if (ret < 0) {
4709 		if (!only_release_metadata)
4710 			btrfs_free_reserved_data_space(inode, data_reserved,
4711 						       block_start, blocksize);
4712 		goto out;
4713 	}
4714 again:
4715 	page = find_or_create_page(mapping, index, mask);
4716 	if (!page) {
4717 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4718 					     blocksize, true);
4719 		btrfs_delalloc_release_extents(inode, blocksize);
4720 		ret = -ENOMEM;
4721 		goto out;
4722 	}
4723 
4724 	if (!PageUptodate(page)) {
4725 		ret = btrfs_readpage(NULL, page);
4726 		lock_page(page);
4727 		if (page->mapping != mapping) {
4728 			unlock_page(page);
4729 			put_page(page);
4730 			goto again;
4731 		}
4732 		if (!PageUptodate(page)) {
4733 			ret = -EIO;
4734 			goto out_unlock;
4735 		}
4736 	}
4737 	wait_on_page_writeback(page);
4738 
4739 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4740 	set_page_extent_mapped(page);
4741 
4742 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4743 	if (ordered) {
4744 		unlock_extent_cached(io_tree, block_start, block_end,
4745 				     &cached_state);
4746 		unlock_page(page);
4747 		put_page(page);
4748 		btrfs_start_ordered_extent(ordered, 1);
4749 		btrfs_put_ordered_extent(ordered);
4750 		goto again;
4751 	}
4752 
4753 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4754 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4755 			 0, 0, &cached_state);
4756 
4757 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4758 					&cached_state);
4759 	if (ret) {
4760 		unlock_extent_cached(io_tree, block_start, block_end,
4761 				     &cached_state);
4762 		goto out_unlock;
4763 	}
4764 
4765 	if (offset != blocksize) {
4766 		if (!len)
4767 			len = blocksize - offset;
4768 		kaddr = kmap(page);
4769 		if (front)
4770 			memset(kaddr + (block_start - page_offset(page)),
4771 				0, offset);
4772 		else
4773 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4774 				0, len);
4775 		flush_dcache_page(page);
4776 		kunmap(page);
4777 	}
4778 	ClearPageChecked(page);
4779 	set_page_dirty(page);
4780 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4781 
4782 	if (only_release_metadata)
4783 		set_extent_bit(&inode->io_tree, block_start, block_end,
4784 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4785 
4786 out_unlock:
4787 	if (ret) {
4788 		if (only_release_metadata)
4789 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4790 		else
4791 			btrfs_delalloc_release_space(inode, data_reserved,
4792 					block_start, blocksize, true);
4793 	}
4794 	btrfs_delalloc_release_extents(inode, blocksize);
4795 	unlock_page(page);
4796 	put_page(page);
4797 out:
4798 	if (only_release_metadata)
4799 		btrfs_check_nocow_unlock(inode);
4800 	extent_changeset_free(data_reserved);
4801 	return ret;
4802 }
4803 
4804 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4805 			     u64 offset, u64 len)
4806 {
4807 	struct btrfs_fs_info *fs_info = root->fs_info;
4808 	struct btrfs_trans_handle *trans;
4809 	struct btrfs_drop_extents_args drop_args = { 0 };
4810 	int ret;
4811 
4812 	/*
4813 	 * Still need to make sure the inode looks like it's been updated so
4814 	 * that any holes get logged if we fsync.
4815 	 */
4816 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4817 		inode->last_trans = fs_info->generation;
4818 		inode->last_sub_trans = root->log_transid;
4819 		inode->last_log_commit = root->last_log_commit;
4820 		return 0;
4821 	}
4822 
4823 	/*
4824 	 * 1 - for the one we're dropping
4825 	 * 1 - for the one we're adding
4826 	 * 1 - for updating the inode.
4827 	 */
4828 	trans = btrfs_start_transaction(root, 3);
4829 	if (IS_ERR(trans))
4830 		return PTR_ERR(trans);
4831 
4832 	drop_args.start = offset;
4833 	drop_args.end = offset + len;
4834 	drop_args.drop_cache = true;
4835 
4836 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4837 	if (ret) {
4838 		btrfs_abort_transaction(trans, ret);
4839 		btrfs_end_transaction(trans);
4840 		return ret;
4841 	}
4842 
4843 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4844 			offset, 0, 0, len, 0, len, 0, 0, 0);
4845 	if (ret) {
4846 		btrfs_abort_transaction(trans, ret);
4847 	} else {
4848 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4849 		btrfs_update_inode(trans, root, inode);
4850 	}
4851 	btrfs_end_transaction(trans);
4852 	return ret;
4853 }
4854 
4855 /*
4856  * This function puts in dummy file extents for the area we're creating a hole
4857  * for.  So if we are truncating this file to a larger size we need to insert
4858  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4859  * the range between oldsize and size
4860  */
4861 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4862 {
4863 	struct btrfs_root *root = inode->root;
4864 	struct btrfs_fs_info *fs_info = root->fs_info;
4865 	struct extent_io_tree *io_tree = &inode->io_tree;
4866 	struct extent_map *em = NULL;
4867 	struct extent_state *cached_state = NULL;
4868 	struct extent_map_tree *em_tree = &inode->extent_tree;
4869 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4870 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4871 	u64 last_byte;
4872 	u64 cur_offset;
4873 	u64 hole_size;
4874 	int err = 0;
4875 
4876 	/*
4877 	 * If our size started in the middle of a block we need to zero out the
4878 	 * rest of the block before we expand the i_size, otherwise we could
4879 	 * expose stale data.
4880 	 */
4881 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4882 	if (err)
4883 		return err;
4884 
4885 	if (size <= hole_start)
4886 		return 0;
4887 
4888 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4889 					   &cached_state);
4890 	cur_offset = hole_start;
4891 	while (1) {
4892 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4893 				      block_end - cur_offset);
4894 		if (IS_ERR(em)) {
4895 			err = PTR_ERR(em);
4896 			em = NULL;
4897 			break;
4898 		}
4899 		last_byte = min(extent_map_end(em), block_end);
4900 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4901 		hole_size = last_byte - cur_offset;
4902 
4903 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4904 			struct extent_map *hole_em;
4905 
4906 			err = maybe_insert_hole(root, inode, cur_offset,
4907 						hole_size);
4908 			if (err)
4909 				break;
4910 
4911 			err = btrfs_inode_set_file_extent_range(inode,
4912 							cur_offset, hole_size);
4913 			if (err)
4914 				break;
4915 
4916 			btrfs_drop_extent_cache(inode, cur_offset,
4917 						cur_offset + hole_size - 1, 0);
4918 			hole_em = alloc_extent_map();
4919 			if (!hole_em) {
4920 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4921 					&inode->runtime_flags);
4922 				goto next;
4923 			}
4924 			hole_em->start = cur_offset;
4925 			hole_em->len = hole_size;
4926 			hole_em->orig_start = cur_offset;
4927 
4928 			hole_em->block_start = EXTENT_MAP_HOLE;
4929 			hole_em->block_len = 0;
4930 			hole_em->orig_block_len = 0;
4931 			hole_em->ram_bytes = hole_size;
4932 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4933 			hole_em->generation = fs_info->generation;
4934 
4935 			while (1) {
4936 				write_lock(&em_tree->lock);
4937 				err = add_extent_mapping(em_tree, hole_em, 1);
4938 				write_unlock(&em_tree->lock);
4939 				if (err != -EEXIST)
4940 					break;
4941 				btrfs_drop_extent_cache(inode, cur_offset,
4942 							cur_offset +
4943 							hole_size - 1, 0);
4944 			}
4945 			free_extent_map(hole_em);
4946 		} else {
4947 			err = btrfs_inode_set_file_extent_range(inode,
4948 							cur_offset, hole_size);
4949 			if (err)
4950 				break;
4951 		}
4952 next:
4953 		free_extent_map(em);
4954 		em = NULL;
4955 		cur_offset = last_byte;
4956 		if (cur_offset >= block_end)
4957 			break;
4958 	}
4959 	free_extent_map(em);
4960 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4961 	return err;
4962 }
4963 
4964 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4965 {
4966 	struct btrfs_root *root = BTRFS_I(inode)->root;
4967 	struct btrfs_trans_handle *trans;
4968 	loff_t oldsize = i_size_read(inode);
4969 	loff_t newsize = attr->ia_size;
4970 	int mask = attr->ia_valid;
4971 	int ret;
4972 
4973 	/*
4974 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4975 	 * special case where we need to update the times despite not having
4976 	 * these flags set.  For all other operations the VFS set these flags
4977 	 * explicitly if it wants a timestamp update.
4978 	 */
4979 	if (newsize != oldsize) {
4980 		inode_inc_iversion(inode);
4981 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4982 			inode->i_ctime = inode->i_mtime =
4983 				current_time(inode);
4984 	}
4985 
4986 	if (newsize > oldsize) {
4987 		/*
4988 		 * Don't do an expanding truncate while snapshotting is ongoing.
4989 		 * This is to ensure the snapshot captures a fully consistent
4990 		 * state of this file - if the snapshot captures this expanding
4991 		 * truncation, it must capture all writes that happened before
4992 		 * this truncation.
4993 		 */
4994 		btrfs_drew_write_lock(&root->snapshot_lock);
4995 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4996 		if (ret) {
4997 			btrfs_drew_write_unlock(&root->snapshot_lock);
4998 			return ret;
4999 		}
5000 
5001 		trans = btrfs_start_transaction(root, 1);
5002 		if (IS_ERR(trans)) {
5003 			btrfs_drew_write_unlock(&root->snapshot_lock);
5004 			return PTR_ERR(trans);
5005 		}
5006 
5007 		i_size_write(inode, newsize);
5008 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5009 		pagecache_isize_extended(inode, oldsize, newsize);
5010 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5011 		btrfs_drew_write_unlock(&root->snapshot_lock);
5012 		btrfs_end_transaction(trans);
5013 	} else {
5014 
5015 		/*
5016 		 * We're truncating a file that used to have good data down to
5017 		 * zero. Make sure any new writes to the file get on disk
5018 		 * on close.
5019 		 */
5020 		if (newsize == 0)
5021 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5022 				&BTRFS_I(inode)->runtime_flags);
5023 
5024 		truncate_setsize(inode, newsize);
5025 
5026 		inode_dio_wait(inode);
5027 
5028 		ret = btrfs_truncate(inode, newsize == oldsize);
5029 		if (ret && inode->i_nlink) {
5030 			int err;
5031 
5032 			/*
5033 			 * Truncate failed, so fix up the in-memory size. We
5034 			 * adjusted disk_i_size down as we removed extents, so
5035 			 * wait for disk_i_size to be stable and then update the
5036 			 * in-memory size to match.
5037 			 */
5038 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5039 			if (err)
5040 				return err;
5041 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5042 		}
5043 	}
5044 
5045 	return ret;
5046 }
5047 
5048 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5049 {
5050 	struct inode *inode = d_inode(dentry);
5051 	struct btrfs_root *root = BTRFS_I(inode)->root;
5052 	int err;
5053 
5054 	if (btrfs_root_readonly(root))
5055 		return -EROFS;
5056 
5057 	err = setattr_prepare(dentry, attr);
5058 	if (err)
5059 		return err;
5060 
5061 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5062 		err = btrfs_setsize(inode, attr);
5063 		if (err)
5064 			return err;
5065 	}
5066 
5067 	if (attr->ia_valid) {
5068 		setattr_copy(inode, attr);
5069 		inode_inc_iversion(inode);
5070 		err = btrfs_dirty_inode(inode);
5071 
5072 		if (!err && attr->ia_valid & ATTR_MODE)
5073 			err = posix_acl_chmod(inode, inode->i_mode);
5074 	}
5075 
5076 	return err;
5077 }
5078 
5079 /*
5080  * While truncating the inode pages during eviction, we get the VFS calling
5081  * btrfs_invalidatepage() against each page of the inode. This is slow because
5082  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5083  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5084  * extent_state structures over and over, wasting lots of time.
5085  *
5086  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5087  * those expensive operations on a per page basis and do only the ordered io
5088  * finishing, while we release here the extent_map and extent_state structures,
5089  * without the excessive merging and splitting.
5090  */
5091 static void evict_inode_truncate_pages(struct inode *inode)
5092 {
5093 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5094 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5095 	struct rb_node *node;
5096 
5097 	ASSERT(inode->i_state & I_FREEING);
5098 	truncate_inode_pages_final(&inode->i_data);
5099 
5100 	write_lock(&map_tree->lock);
5101 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5102 		struct extent_map *em;
5103 
5104 		node = rb_first_cached(&map_tree->map);
5105 		em = rb_entry(node, struct extent_map, rb_node);
5106 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5107 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5108 		remove_extent_mapping(map_tree, em);
5109 		free_extent_map(em);
5110 		if (need_resched()) {
5111 			write_unlock(&map_tree->lock);
5112 			cond_resched();
5113 			write_lock(&map_tree->lock);
5114 		}
5115 	}
5116 	write_unlock(&map_tree->lock);
5117 
5118 	/*
5119 	 * Keep looping until we have no more ranges in the io tree.
5120 	 * We can have ongoing bios started by readahead that have
5121 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5122 	 * still in progress (unlocked the pages in the bio but did not yet
5123 	 * unlocked the ranges in the io tree). Therefore this means some
5124 	 * ranges can still be locked and eviction started because before
5125 	 * submitting those bios, which are executed by a separate task (work
5126 	 * queue kthread), inode references (inode->i_count) were not taken
5127 	 * (which would be dropped in the end io callback of each bio).
5128 	 * Therefore here we effectively end up waiting for those bios and
5129 	 * anyone else holding locked ranges without having bumped the inode's
5130 	 * reference count - if we don't do it, when they access the inode's
5131 	 * io_tree to unlock a range it may be too late, leading to an
5132 	 * use-after-free issue.
5133 	 */
5134 	spin_lock(&io_tree->lock);
5135 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5136 		struct extent_state *state;
5137 		struct extent_state *cached_state = NULL;
5138 		u64 start;
5139 		u64 end;
5140 		unsigned state_flags;
5141 
5142 		node = rb_first(&io_tree->state);
5143 		state = rb_entry(node, struct extent_state, rb_node);
5144 		start = state->start;
5145 		end = state->end;
5146 		state_flags = state->state;
5147 		spin_unlock(&io_tree->lock);
5148 
5149 		lock_extent_bits(io_tree, start, end, &cached_state);
5150 
5151 		/*
5152 		 * If still has DELALLOC flag, the extent didn't reach disk,
5153 		 * and its reserved space won't be freed by delayed_ref.
5154 		 * So we need to free its reserved space here.
5155 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5156 		 *
5157 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5158 		 */
5159 		if (state_flags & EXTENT_DELALLOC)
5160 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5161 					       end - start + 1);
5162 
5163 		clear_extent_bit(io_tree, start, end,
5164 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5165 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5166 				 &cached_state);
5167 
5168 		cond_resched();
5169 		spin_lock(&io_tree->lock);
5170 	}
5171 	spin_unlock(&io_tree->lock);
5172 }
5173 
5174 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5175 							struct btrfs_block_rsv *rsv)
5176 {
5177 	struct btrfs_fs_info *fs_info = root->fs_info;
5178 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5179 	struct btrfs_trans_handle *trans;
5180 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5181 	int ret;
5182 
5183 	/*
5184 	 * Eviction should be taking place at some place safe because of our
5185 	 * delayed iputs.  However the normal flushing code will run delayed
5186 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5187 	 *
5188 	 * We reserve the delayed_refs_extra here again because we can't use
5189 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5190 	 * above.  We reserve our extra bit here because we generate a ton of
5191 	 * delayed refs activity by truncating.
5192 	 *
5193 	 * If we cannot make our reservation we'll attempt to steal from the
5194 	 * global reserve, because we really want to be able to free up space.
5195 	 */
5196 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5197 				     BTRFS_RESERVE_FLUSH_EVICT);
5198 	if (ret) {
5199 		/*
5200 		 * Try to steal from the global reserve if there is space for
5201 		 * it.
5202 		 */
5203 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5204 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5205 			btrfs_warn(fs_info,
5206 				   "could not allocate space for delete; will truncate on mount");
5207 			return ERR_PTR(-ENOSPC);
5208 		}
5209 		delayed_refs_extra = 0;
5210 	}
5211 
5212 	trans = btrfs_join_transaction(root);
5213 	if (IS_ERR(trans))
5214 		return trans;
5215 
5216 	if (delayed_refs_extra) {
5217 		trans->block_rsv = &fs_info->trans_block_rsv;
5218 		trans->bytes_reserved = delayed_refs_extra;
5219 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5220 					delayed_refs_extra, 1);
5221 	}
5222 	return trans;
5223 }
5224 
5225 void btrfs_evict_inode(struct inode *inode)
5226 {
5227 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5228 	struct btrfs_trans_handle *trans;
5229 	struct btrfs_root *root = BTRFS_I(inode)->root;
5230 	struct btrfs_block_rsv *rsv;
5231 	int ret;
5232 
5233 	trace_btrfs_inode_evict(inode);
5234 
5235 	if (!root) {
5236 		clear_inode(inode);
5237 		return;
5238 	}
5239 
5240 	evict_inode_truncate_pages(inode);
5241 
5242 	if (inode->i_nlink &&
5243 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5244 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5245 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5246 		goto no_delete;
5247 
5248 	if (is_bad_inode(inode))
5249 		goto no_delete;
5250 
5251 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5252 
5253 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5254 		goto no_delete;
5255 
5256 	if (inode->i_nlink > 0) {
5257 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5258 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5259 		goto no_delete;
5260 	}
5261 
5262 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5263 	if (ret)
5264 		goto no_delete;
5265 
5266 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5267 	if (!rsv)
5268 		goto no_delete;
5269 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5270 	rsv->failfast = 1;
5271 
5272 	btrfs_i_size_write(BTRFS_I(inode), 0);
5273 
5274 	while (1) {
5275 		trans = evict_refill_and_join(root, rsv);
5276 		if (IS_ERR(trans))
5277 			goto free_rsv;
5278 
5279 		trans->block_rsv = rsv;
5280 
5281 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5282 						 0, 0);
5283 		trans->block_rsv = &fs_info->trans_block_rsv;
5284 		btrfs_end_transaction(trans);
5285 		btrfs_btree_balance_dirty(fs_info);
5286 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5287 			goto free_rsv;
5288 		else if (!ret)
5289 			break;
5290 	}
5291 
5292 	/*
5293 	 * Errors here aren't a big deal, it just means we leave orphan items in
5294 	 * the tree. They will be cleaned up on the next mount. If the inode
5295 	 * number gets reused, cleanup deletes the orphan item without doing
5296 	 * anything, and unlink reuses the existing orphan item.
5297 	 *
5298 	 * If it turns out that we are dropping too many of these, we might want
5299 	 * to add a mechanism for retrying these after a commit.
5300 	 */
5301 	trans = evict_refill_and_join(root, rsv);
5302 	if (!IS_ERR(trans)) {
5303 		trans->block_rsv = rsv;
5304 		btrfs_orphan_del(trans, BTRFS_I(inode));
5305 		trans->block_rsv = &fs_info->trans_block_rsv;
5306 		btrfs_end_transaction(trans);
5307 	}
5308 
5309 free_rsv:
5310 	btrfs_free_block_rsv(fs_info, rsv);
5311 no_delete:
5312 	/*
5313 	 * If we didn't successfully delete, the orphan item will still be in
5314 	 * the tree and we'll retry on the next mount. Again, we might also want
5315 	 * to retry these periodically in the future.
5316 	 */
5317 	btrfs_remove_delayed_node(BTRFS_I(inode));
5318 	clear_inode(inode);
5319 }
5320 
5321 /*
5322  * Return the key found in the dir entry in the location pointer, fill @type
5323  * with BTRFS_FT_*, and return 0.
5324  *
5325  * If no dir entries were found, returns -ENOENT.
5326  * If found a corrupted location in dir entry, returns -EUCLEAN.
5327  */
5328 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5329 			       struct btrfs_key *location, u8 *type)
5330 {
5331 	const char *name = dentry->d_name.name;
5332 	int namelen = dentry->d_name.len;
5333 	struct btrfs_dir_item *di;
5334 	struct btrfs_path *path;
5335 	struct btrfs_root *root = BTRFS_I(dir)->root;
5336 	int ret = 0;
5337 
5338 	path = btrfs_alloc_path();
5339 	if (!path)
5340 		return -ENOMEM;
5341 
5342 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5343 			name, namelen, 0);
5344 	if (IS_ERR_OR_NULL(di)) {
5345 		ret = di ? PTR_ERR(di) : -ENOENT;
5346 		goto out;
5347 	}
5348 
5349 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5350 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5351 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5352 		ret = -EUCLEAN;
5353 		btrfs_warn(root->fs_info,
5354 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5355 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5356 			   location->objectid, location->type, location->offset);
5357 	}
5358 	if (!ret)
5359 		*type = btrfs_dir_type(path->nodes[0], di);
5360 out:
5361 	btrfs_free_path(path);
5362 	return ret;
5363 }
5364 
5365 /*
5366  * when we hit a tree root in a directory, the btrfs part of the inode
5367  * needs to be changed to reflect the root directory of the tree root.  This
5368  * is kind of like crossing a mount point.
5369  */
5370 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5371 				    struct inode *dir,
5372 				    struct dentry *dentry,
5373 				    struct btrfs_key *location,
5374 				    struct btrfs_root **sub_root)
5375 {
5376 	struct btrfs_path *path;
5377 	struct btrfs_root *new_root;
5378 	struct btrfs_root_ref *ref;
5379 	struct extent_buffer *leaf;
5380 	struct btrfs_key key;
5381 	int ret;
5382 	int err = 0;
5383 
5384 	path = btrfs_alloc_path();
5385 	if (!path) {
5386 		err = -ENOMEM;
5387 		goto out;
5388 	}
5389 
5390 	err = -ENOENT;
5391 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5392 	key.type = BTRFS_ROOT_REF_KEY;
5393 	key.offset = location->objectid;
5394 
5395 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5396 	if (ret) {
5397 		if (ret < 0)
5398 			err = ret;
5399 		goto out;
5400 	}
5401 
5402 	leaf = path->nodes[0];
5403 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5404 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5405 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5406 		goto out;
5407 
5408 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5409 				   (unsigned long)(ref + 1),
5410 				   dentry->d_name.len);
5411 	if (ret)
5412 		goto out;
5413 
5414 	btrfs_release_path(path);
5415 
5416 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5417 	if (IS_ERR(new_root)) {
5418 		err = PTR_ERR(new_root);
5419 		goto out;
5420 	}
5421 
5422 	*sub_root = new_root;
5423 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5424 	location->type = BTRFS_INODE_ITEM_KEY;
5425 	location->offset = 0;
5426 	err = 0;
5427 out:
5428 	btrfs_free_path(path);
5429 	return err;
5430 }
5431 
5432 static void inode_tree_add(struct inode *inode)
5433 {
5434 	struct btrfs_root *root = BTRFS_I(inode)->root;
5435 	struct btrfs_inode *entry;
5436 	struct rb_node **p;
5437 	struct rb_node *parent;
5438 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5439 	u64 ino = btrfs_ino(BTRFS_I(inode));
5440 
5441 	if (inode_unhashed(inode))
5442 		return;
5443 	parent = NULL;
5444 	spin_lock(&root->inode_lock);
5445 	p = &root->inode_tree.rb_node;
5446 	while (*p) {
5447 		parent = *p;
5448 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5449 
5450 		if (ino < btrfs_ino(entry))
5451 			p = &parent->rb_left;
5452 		else if (ino > btrfs_ino(entry))
5453 			p = &parent->rb_right;
5454 		else {
5455 			WARN_ON(!(entry->vfs_inode.i_state &
5456 				  (I_WILL_FREE | I_FREEING)));
5457 			rb_replace_node(parent, new, &root->inode_tree);
5458 			RB_CLEAR_NODE(parent);
5459 			spin_unlock(&root->inode_lock);
5460 			return;
5461 		}
5462 	}
5463 	rb_link_node(new, parent, p);
5464 	rb_insert_color(new, &root->inode_tree);
5465 	spin_unlock(&root->inode_lock);
5466 }
5467 
5468 static void inode_tree_del(struct btrfs_inode *inode)
5469 {
5470 	struct btrfs_root *root = inode->root;
5471 	int empty = 0;
5472 
5473 	spin_lock(&root->inode_lock);
5474 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5475 		rb_erase(&inode->rb_node, &root->inode_tree);
5476 		RB_CLEAR_NODE(&inode->rb_node);
5477 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5478 	}
5479 	spin_unlock(&root->inode_lock);
5480 
5481 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5482 		spin_lock(&root->inode_lock);
5483 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5484 		spin_unlock(&root->inode_lock);
5485 		if (empty)
5486 			btrfs_add_dead_root(root);
5487 	}
5488 }
5489 
5490 
5491 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5492 {
5493 	struct btrfs_iget_args *args = p;
5494 
5495 	inode->i_ino = args->ino;
5496 	BTRFS_I(inode)->location.objectid = args->ino;
5497 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5498 	BTRFS_I(inode)->location.offset = 0;
5499 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5500 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5501 	return 0;
5502 }
5503 
5504 static int btrfs_find_actor(struct inode *inode, void *opaque)
5505 {
5506 	struct btrfs_iget_args *args = opaque;
5507 
5508 	return args->ino == BTRFS_I(inode)->location.objectid &&
5509 		args->root == BTRFS_I(inode)->root;
5510 }
5511 
5512 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5513 				       struct btrfs_root *root)
5514 {
5515 	struct inode *inode;
5516 	struct btrfs_iget_args args;
5517 	unsigned long hashval = btrfs_inode_hash(ino, root);
5518 
5519 	args.ino = ino;
5520 	args.root = root;
5521 
5522 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5523 			     btrfs_init_locked_inode,
5524 			     (void *)&args);
5525 	return inode;
5526 }
5527 
5528 /*
5529  * Get an inode object given its inode number and corresponding root.
5530  * Path can be preallocated to prevent recursing back to iget through
5531  * allocator. NULL is also valid but may require an additional allocation
5532  * later.
5533  */
5534 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5535 			      struct btrfs_root *root, struct btrfs_path *path)
5536 {
5537 	struct inode *inode;
5538 
5539 	inode = btrfs_iget_locked(s, ino, root);
5540 	if (!inode)
5541 		return ERR_PTR(-ENOMEM);
5542 
5543 	if (inode->i_state & I_NEW) {
5544 		int ret;
5545 
5546 		ret = btrfs_read_locked_inode(inode, path);
5547 		if (!ret) {
5548 			inode_tree_add(inode);
5549 			unlock_new_inode(inode);
5550 		} else {
5551 			iget_failed(inode);
5552 			/*
5553 			 * ret > 0 can come from btrfs_search_slot called by
5554 			 * btrfs_read_locked_inode, this means the inode item
5555 			 * was not found.
5556 			 */
5557 			if (ret > 0)
5558 				ret = -ENOENT;
5559 			inode = ERR_PTR(ret);
5560 		}
5561 	}
5562 
5563 	return inode;
5564 }
5565 
5566 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5567 {
5568 	return btrfs_iget_path(s, ino, root, NULL);
5569 }
5570 
5571 static struct inode *new_simple_dir(struct super_block *s,
5572 				    struct btrfs_key *key,
5573 				    struct btrfs_root *root)
5574 {
5575 	struct inode *inode = new_inode(s);
5576 
5577 	if (!inode)
5578 		return ERR_PTR(-ENOMEM);
5579 
5580 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5581 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5582 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5583 
5584 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5585 	/*
5586 	 * We only need lookup, the rest is read-only and there's no inode
5587 	 * associated with the dentry
5588 	 */
5589 	inode->i_op = &simple_dir_inode_operations;
5590 	inode->i_opflags &= ~IOP_XATTR;
5591 	inode->i_fop = &simple_dir_operations;
5592 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5593 	inode->i_mtime = current_time(inode);
5594 	inode->i_atime = inode->i_mtime;
5595 	inode->i_ctime = inode->i_mtime;
5596 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5597 
5598 	return inode;
5599 }
5600 
5601 static inline u8 btrfs_inode_type(struct inode *inode)
5602 {
5603 	/*
5604 	 * Compile-time asserts that generic FT_* types still match
5605 	 * BTRFS_FT_* types
5606 	 */
5607 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5608 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5609 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5610 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5611 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5612 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5613 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5614 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5615 
5616 	return fs_umode_to_ftype(inode->i_mode);
5617 }
5618 
5619 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5620 {
5621 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5622 	struct inode *inode;
5623 	struct btrfs_root *root = BTRFS_I(dir)->root;
5624 	struct btrfs_root *sub_root = root;
5625 	struct btrfs_key location;
5626 	u8 di_type = 0;
5627 	int ret = 0;
5628 
5629 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5630 		return ERR_PTR(-ENAMETOOLONG);
5631 
5632 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5633 	if (ret < 0)
5634 		return ERR_PTR(ret);
5635 
5636 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5637 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5638 		if (IS_ERR(inode))
5639 			return inode;
5640 
5641 		/* Do extra check against inode mode with di_type */
5642 		if (btrfs_inode_type(inode) != di_type) {
5643 			btrfs_crit(fs_info,
5644 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5645 				  inode->i_mode, btrfs_inode_type(inode),
5646 				  di_type);
5647 			iput(inode);
5648 			return ERR_PTR(-EUCLEAN);
5649 		}
5650 		return inode;
5651 	}
5652 
5653 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5654 				       &location, &sub_root);
5655 	if (ret < 0) {
5656 		if (ret != -ENOENT)
5657 			inode = ERR_PTR(ret);
5658 		else
5659 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5660 	} else {
5661 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5662 	}
5663 	if (root != sub_root)
5664 		btrfs_put_root(sub_root);
5665 
5666 	if (!IS_ERR(inode) && root != sub_root) {
5667 		down_read(&fs_info->cleanup_work_sem);
5668 		if (!sb_rdonly(inode->i_sb))
5669 			ret = btrfs_orphan_cleanup(sub_root);
5670 		up_read(&fs_info->cleanup_work_sem);
5671 		if (ret) {
5672 			iput(inode);
5673 			inode = ERR_PTR(ret);
5674 		}
5675 	}
5676 
5677 	return inode;
5678 }
5679 
5680 static int btrfs_dentry_delete(const struct dentry *dentry)
5681 {
5682 	struct btrfs_root *root;
5683 	struct inode *inode = d_inode(dentry);
5684 
5685 	if (!inode && !IS_ROOT(dentry))
5686 		inode = d_inode(dentry->d_parent);
5687 
5688 	if (inode) {
5689 		root = BTRFS_I(inode)->root;
5690 		if (btrfs_root_refs(&root->root_item) == 0)
5691 			return 1;
5692 
5693 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5694 			return 1;
5695 	}
5696 	return 0;
5697 }
5698 
5699 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5700 				   unsigned int flags)
5701 {
5702 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5703 
5704 	if (inode == ERR_PTR(-ENOENT))
5705 		inode = NULL;
5706 	return d_splice_alias(inode, dentry);
5707 }
5708 
5709 /*
5710  * All this infrastructure exists because dir_emit can fault, and we are holding
5711  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5712  * our information into that, and then dir_emit from the buffer.  This is
5713  * similar to what NFS does, only we don't keep the buffer around in pagecache
5714  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5715  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5716  * tree lock.
5717  */
5718 static int btrfs_opendir(struct inode *inode, struct file *file)
5719 {
5720 	struct btrfs_file_private *private;
5721 
5722 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5723 	if (!private)
5724 		return -ENOMEM;
5725 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5726 	if (!private->filldir_buf) {
5727 		kfree(private);
5728 		return -ENOMEM;
5729 	}
5730 	file->private_data = private;
5731 	return 0;
5732 }
5733 
5734 struct dir_entry {
5735 	u64 ino;
5736 	u64 offset;
5737 	unsigned type;
5738 	int name_len;
5739 };
5740 
5741 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5742 {
5743 	while (entries--) {
5744 		struct dir_entry *entry = addr;
5745 		char *name = (char *)(entry + 1);
5746 
5747 		ctx->pos = get_unaligned(&entry->offset);
5748 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5749 					 get_unaligned(&entry->ino),
5750 					 get_unaligned(&entry->type)))
5751 			return 1;
5752 		addr += sizeof(struct dir_entry) +
5753 			get_unaligned(&entry->name_len);
5754 		ctx->pos++;
5755 	}
5756 	return 0;
5757 }
5758 
5759 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5760 {
5761 	struct inode *inode = file_inode(file);
5762 	struct btrfs_root *root = BTRFS_I(inode)->root;
5763 	struct btrfs_file_private *private = file->private_data;
5764 	struct btrfs_dir_item *di;
5765 	struct btrfs_key key;
5766 	struct btrfs_key found_key;
5767 	struct btrfs_path *path;
5768 	void *addr;
5769 	struct list_head ins_list;
5770 	struct list_head del_list;
5771 	int ret;
5772 	struct extent_buffer *leaf;
5773 	int slot;
5774 	char *name_ptr;
5775 	int name_len;
5776 	int entries = 0;
5777 	int total_len = 0;
5778 	bool put = false;
5779 	struct btrfs_key location;
5780 
5781 	if (!dir_emit_dots(file, ctx))
5782 		return 0;
5783 
5784 	path = btrfs_alloc_path();
5785 	if (!path)
5786 		return -ENOMEM;
5787 
5788 	addr = private->filldir_buf;
5789 	path->reada = READA_FORWARD;
5790 
5791 	INIT_LIST_HEAD(&ins_list);
5792 	INIT_LIST_HEAD(&del_list);
5793 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5794 
5795 again:
5796 	key.type = BTRFS_DIR_INDEX_KEY;
5797 	key.offset = ctx->pos;
5798 	key.objectid = btrfs_ino(BTRFS_I(inode));
5799 
5800 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5801 	if (ret < 0)
5802 		goto err;
5803 
5804 	while (1) {
5805 		struct dir_entry *entry;
5806 
5807 		leaf = path->nodes[0];
5808 		slot = path->slots[0];
5809 		if (slot >= btrfs_header_nritems(leaf)) {
5810 			ret = btrfs_next_leaf(root, path);
5811 			if (ret < 0)
5812 				goto err;
5813 			else if (ret > 0)
5814 				break;
5815 			continue;
5816 		}
5817 
5818 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5819 
5820 		if (found_key.objectid != key.objectid)
5821 			break;
5822 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5823 			break;
5824 		if (found_key.offset < ctx->pos)
5825 			goto next;
5826 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5827 			goto next;
5828 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5829 		name_len = btrfs_dir_name_len(leaf, di);
5830 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5831 		    PAGE_SIZE) {
5832 			btrfs_release_path(path);
5833 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5834 			if (ret)
5835 				goto nopos;
5836 			addr = private->filldir_buf;
5837 			entries = 0;
5838 			total_len = 0;
5839 			goto again;
5840 		}
5841 
5842 		entry = addr;
5843 		put_unaligned(name_len, &entry->name_len);
5844 		name_ptr = (char *)(entry + 1);
5845 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5846 				   name_len);
5847 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5848 				&entry->type);
5849 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5850 		put_unaligned(location.objectid, &entry->ino);
5851 		put_unaligned(found_key.offset, &entry->offset);
5852 		entries++;
5853 		addr += sizeof(struct dir_entry) + name_len;
5854 		total_len += sizeof(struct dir_entry) + name_len;
5855 next:
5856 		path->slots[0]++;
5857 	}
5858 	btrfs_release_path(path);
5859 
5860 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5861 	if (ret)
5862 		goto nopos;
5863 
5864 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5865 	if (ret)
5866 		goto nopos;
5867 
5868 	/*
5869 	 * Stop new entries from being returned after we return the last
5870 	 * entry.
5871 	 *
5872 	 * New directory entries are assigned a strictly increasing
5873 	 * offset.  This means that new entries created during readdir
5874 	 * are *guaranteed* to be seen in the future by that readdir.
5875 	 * This has broken buggy programs which operate on names as
5876 	 * they're returned by readdir.  Until we re-use freed offsets
5877 	 * we have this hack to stop new entries from being returned
5878 	 * under the assumption that they'll never reach this huge
5879 	 * offset.
5880 	 *
5881 	 * This is being careful not to overflow 32bit loff_t unless the
5882 	 * last entry requires it because doing so has broken 32bit apps
5883 	 * in the past.
5884 	 */
5885 	if (ctx->pos >= INT_MAX)
5886 		ctx->pos = LLONG_MAX;
5887 	else
5888 		ctx->pos = INT_MAX;
5889 nopos:
5890 	ret = 0;
5891 err:
5892 	if (put)
5893 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5894 	btrfs_free_path(path);
5895 	return ret;
5896 }
5897 
5898 /*
5899  * This is somewhat expensive, updating the tree every time the
5900  * inode changes.  But, it is most likely to find the inode in cache.
5901  * FIXME, needs more benchmarking...there are no reasons other than performance
5902  * to keep or drop this code.
5903  */
5904 static int btrfs_dirty_inode(struct inode *inode)
5905 {
5906 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5907 	struct btrfs_root *root = BTRFS_I(inode)->root;
5908 	struct btrfs_trans_handle *trans;
5909 	int ret;
5910 
5911 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5912 		return 0;
5913 
5914 	trans = btrfs_join_transaction(root);
5915 	if (IS_ERR(trans))
5916 		return PTR_ERR(trans);
5917 
5918 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5919 	if (ret && ret == -ENOSPC) {
5920 		/* whoops, lets try again with the full transaction */
5921 		btrfs_end_transaction(trans);
5922 		trans = btrfs_start_transaction(root, 1);
5923 		if (IS_ERR(trans))
5924 			return PTR_ERR(trans);
5925 
5926 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5927 	}
5928 	btrfs_end_transaction(trans);
5929 	if (BTRFS_I(inode)->delayed_node)
5930 		btrfs_balance_delayed_items(fs_info);
5931 
5932 	return ret;
5933 }
5934 
5935 /*
5936  * This is a copy of file_update_time.  We need this so we can return error on
5937  * ENOSPC for updating the inode in the case of file write and mmap writes.
5938  */
5939 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5940 			     int flags)
5941 {
5942 	struct btrfs_root *root = BTRFS_I(inode)->root;
5943 	bool dirty = flags & ~S_VERSION;
5944 
5945 	if (btrfs_root_readonly(root))
5946 		return -EROFS;
5947 
5948 	if (flags & S_VERSION)
5949 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5950 	if (flags & S_CTIME)
5951 		inode->i_ctime = *now;
5952 	if (flags & S_MTIME)
5953 		inode->i_mtime = *now;
5954 	if (flags & S_ATIME)
5955 		inode->i_atime = *now;
5956 	return dirty ? btrfs_dirty_inode(inode) : 0;
5957 }
5958 
5959 /*
5960  * find the highest existing sequence number in a directory
5961  * and then set the in-memory index_cnt variable to reflect
5962  * free sequence numbers
5963  */
5964 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5965 {
5966 	struct btrfs_root *root = inode->root;
5967 	struct btrfs_key key, found_key;
5968 	struct btrfs_path *path;
5969 	struct extent_buffer *leaf;
5970 	int ret;
5971 
5972 	key.objectid = btrfs_ino(inode);
5973 	key.type = BTRFS_DIR_INDEX_KEY;
5974 	key.offset = (u64)-1;
5975 
5976 	path = btrfs_alloc_path();
5977 	if (!path)
5978 		return -ENOMEM;
5979 
5980 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5981 	if (ret < 0)
5982 		goto out;
5983 	/* FIXME: we should be able to handle this */
5984 	if (ret == 0)
5985 		goto out;
5986 	ret = 0;
5987 
5988 	/*
5989 	 * MAGIC NUMBER EXPLANATION:
5990 	 * since we search a directory based on f_pos we have to start at 2
5991 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5992 	 * else has to start at 2
5993 	 */
5994 	if (path->slots[0] == 0) {
5995 		inode->index_cnt = 2;
5996 		goto out;
5997 	}
5998 
5999 	path->slots[0]--;
6000 
6001 	leaf = path->nodes[0];
6002 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6003 
6004 	if (found_key.objectid != btrfs_ino(inode) ||
6005 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6006 		inode->index_cnt = 2;
6007 		goto out;
6008 	}
6009 
6010 	inode->index_cnt = found_key.offset + 1;
6011 out:
6012 	btrfs_free_path(path);
6013 	return ret;
6014 }
6015 
6016 /*
6017  * helper to find a free sequence number in a given directory.  This current
6018  * code is very simple, later versions will do smarter things in the btree
6019  */
6020 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6021 {
6022 	int ret = 0;
6023 
6024 	if (dir->index_cnt == (u64)-1) {
6025 		ret = btrfs_inode_delayed_dir_index_count(dir);
6026 		if (ret) {
6027 			ret = btrfs_set_inode_index_count(dir);
6028 			if (ret)
6029 				return ret;
6030 		}
6031 	}
6032 
6033 	*index = dir->index_cnt;
6034 	dir->index_cnt++;
6035 
6036 	return ret;
6037 }
6038 
6039 static int btrfs_insert_inode_locked(struct inode *inode)
6040 {
6041 	struct btrfs_iget_args args;
6042 
6043 	args.ino = BTRFS_I(inode)->location.objectid;
6044 	args.root = BTRFS_I(inode)->root;
6045 
6046 	return insert_inode_locked4(inode,
6047 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6048 		   btrfs_find_actor, &args);
6049 }
6050 
6051 /*
6052  * Inherit flags from the parent inode.
6053  *
6054  * Currently only the compression flags and the cow flags are inherited.
6055  */
6056 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6057 {
6058 	unsigned int flags;
6059 
6060 	if (!dir)
6061 		return;
6062 
6063 	flags = BTRFS_I(dir)->flags;
6064 
6065 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6066 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6067 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6068 	} else if (flags & BTRFS_INODE_COMPRESS) {
6069 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6070 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6071 	}
6072 
6073 	if (flags & BTRFS_INODE_NODATACOW) {
6074 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6075 		if (S_ISREG(inode->i_mode))
6076 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6077 	}
6078 
6079 	btrfs_sync_inode_flags_to_i_flags(inode);
6080 }
6081 
6082 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6083 				     struct btrfs_root *root,
6084 				     struct inode *dir,
6085 				     const char *name, int name_len,
6086 				     u64 ref_objectid, u64 objectid,
6087 				     umode_t mode, u64 *index)
6088 {
6089 	struct btrfs_fs_info *fs_info = root->fs_info;
6090 	struct inode *inode;
6091 	struct btrfs_inode_item *inode_item;
6092 	struct btrfs_key *location;
6093 	struct btrfs_path *path;
6094 	struct btrfs_inode_ref *ref;
6095 	struct btrfs_key key[2];
6096 	u32 sizes[2];
6097 	int nitems = name ? 2 : 1;
6098 	unsigned long ptr;
6099 	unsigned int nofs_flag;
6100 	int ret;
6101 
6102 	path = btrfs_alloc_path();
6103 	if (!path)
6104 		return ERR_PTR(-ENOMEM);
6105 
6106 	nofs_flag = memalloc_nofs_save();
6107 	inode = new_inode(fs_info->sb);
6108 	memalloc_nofs_restore(nofs_flag);
6109 	if (!inode) {
6110 		btrfs_free_path(path);
6111 		return ERR_PTR(-ENOMEM);
6112 	}
6113 
6114 	/*
6115 	 * O_TMPFILE, set link count to 0, so that after this point,
6116 	 * we fill in an inode item with the correct link count.
6117 	 */
6118 	if (!name)
6119 		set_nlink(inode, 0);
6120 
6121 	/*
6122 	 * we have to initialize this early, so we can reclaim the inode
6123 	 * number if we fail afterwards in this function.
6124 	 */
6125 	inode->i_ino = objectid;
6126 
6127 	if (dir && name) {
6128 		trace_btrfs_inode_request(dir);
6129 
6130 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6131 		if (ret) {
6132 			btrfs_free_path(path);
6133 			iput(inode);
6134 			return ERR_PTR(ret);
6135 		}
6136 	} else if (dir) {
6137 		*index = 0;
6138 	}
6139 	/*
6140 	 * index_cnt is ignored for everything but a dir,
6141 	 * btrfs_set_inode_index_count has an explanation for the magic
6142 	 * number
6143 	 */
6144 	BTRFS_I(inode)->index_cnt = 2;
6145 	BTRFS_I(inode)->dir_index = *index;
6146 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6147 	BTRFS_I(inode)->generation = trans->transid;
6148 	inode->i_generation = BTRFS_I(inode)->generation;
6149 
6150 	/*
6151 	 * We could have gotten an inode number from somebody who was fsynced
6152 	 * and then removed in this same transaction, so let's just set full
6153 	 * sync since it will be a full sync anyway and this will blow away the
6154 	 * old info in the log.
6155 	 */
6156 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6157 
6158 	key[0].objectid = objectid;
6159 	key[0].type = BTRFS_INODE_ITEM_KEY;
6160 	key[0].offset = 0;
6161 
6162 	sizes[0] = sizeof(struct btrfs_inode_item);
6163 
6164 	if (name) {
6165 		/*
6166 		 * Start new inodes with an inode_ref. This is slightly more
6167 		 * efficient for small numbers of hard links since they will
6168 		 * be packed into one item. Extended refs will kick in if we
6169 		 * add more hard links than can fit in the ref item.
6170 		 */
6171 		key[1].objectid = objectid;
6172 		key[1].type = BTRFS_INODE_REF_KEY;
6173 		key[1].offset = ref_objectid;
6174 
6175 		sizes[1] = name_len + sizeof(*ref);
6176 	}
6177 
6178 	location = &BTRFS_I(inode)->location;
6179 	location->objectid = objectid;
6180 	location->offset = 0;
6181 	location->type = BTRFS_INODE_ITEM_KEY;
6182 
6183 	ret = btrfs_insert_inode_locked(inode);
6184 	if (ret < 0) {
6185 		iput(inode);
6186 		goto fail;
6187 	}
6188 
6189 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6190 	if (ret != 0)
6191 		goto fail_unlock;
6192 
6193 	inode_init_owner(inode, dir, mode);
6194 	inode_set_bytes(inode, 0);
6195 
6196 	inode->i_mtime = current_time(inode);
6197 	inode->i_atime = inode->i_mtime;
6198 	inode->i_ctime = inode->i_mtime;
6199 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6200 
6201 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6202 				  struct btrfs_inode_item);
6203 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6204 			     sizeof(*inode_item));
6205 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6206 
6207 	if (name) {
6208 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6209 				     struct btrfs_inode_ref);
6210 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6211 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6212 		ptr = (unsigned long)(ref + 1);
6213 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6214 	}
6215 
6216 	btrfs_mark_buffer_dirty(path->nodes[0]);
6217 	btrfs_free_path(path);
6218 
6219 	btrfs_inherit_iflags(inode, dir);
6220 
6221 	if (S_ISREG(mode)) {
6222 		if (btrfs_test_opt(fs_info, NODATASUM))
6223 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6224 		if (btrfs_test_opt(fs_info, NODATACOW))
6225 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6226 				BTRFS_INODE_NODATASUM;
6227 	}
6228 
6229 	inode_tree_add(inode);
6230 
6231 	trace_btrfs_inode_new(inode);
6232 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6233 
6234 	btrfs_update_root_times(trans, root);
6235 
6236 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6237 	if (ret)
6238 		btrfs_err(fs_info,
6239 			  "error inheriting props for ino %llu (root %llu): %d",
6240 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6241 
6242 	return inode;
6243 
6244 fail_unlock:
6245 	discard_new_inode(inode);
6246 fail:
6247 	if (dir && name)
6248 		BTRFS_I(dir)->index_cnt--;
6249 	btrfs_free_path(path);
6250 	return ERR_PTR(ret);
6251 }
6252 
6253 /*
6254  * utility function to add 'inode' into 'parent_inode' with
6255  * a give name and a given sequence number.
6256  * if 'add_backref' is true, also insert a backref from the
6257  * inode to the parent directory.
6258  */
6259 int btrfs_add_link(struct btrfs_trans_handle *trans,
6260 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6261 		   const char *name, int name_len, int add_backref, u64 index)
6262 {
6263 	int ret = 0;
6264 	struct btrfs_key key;
6265 	struct btrfs_root *root = parent_inode->root;
6266 	u64 ino = btrfs_ino(inode);
6267 	u64 parent_ino = btrfs_ino(parent_inode);
6268 
6269 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6270 		memcpy(&key, &inode->root->root_key, sizeof(key));
6271 	} else {
6272 		key.objectid = ino;
6273 		key.type = BTRFS_INODE_ITEM_KEY;
6274 		key.offset = 0;
6275 	}
6276 
6277 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6278 		ret = btrfs_add_root_ref(trans, key.objectid,
6279 					 root->root_key.objectid, parent_ino,
6280 					 index, name, name_len);
6281 	} else if (add_backref) {
6282 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6283 					     parent_ino, index);
6284 	}
6285 
6286 	/* Nothing to clean up yet */
6287 	if (ret)
6288 		return ret;
6289 
6290 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6291 				    btrfs_inode_type(&inode->vfs_inode), index);
6292 	if (ret == -EEXIST || ret == -EOVERFLOW)
6293 		goto fail_dir_item;
6294 	else if (ret) {
6295 		btrfs_abort_transaction(trans, ret);
6296 		return ret;
6297 	}
6298 
6299 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6300 			   name_len * 2);
6301 	inode_inc_iversion(&parent_inode->vfs_inode);
6302 	/*
6303 	 * If we are replaying a log tree, we do not want to update the mtime
6304 	 * and ctime of the parent directory with the current time, since the
6305 	 * log replay procedure is responsible for setting them to their correct
6306 	 * values (the ones it had when the fsync was done).
6307 	 */
6308 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6309 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6310 
6311 		parent_inode->vfs_inode.i_mtime = now;
6312 		parent_inode->vfs_inode.i_ctime = now;
6313 	}
6314 	ret = btrfs_update_inode(trans, root, parent_inode);
6315 	if (ret)
6316 		btrfs_abort_transaction(trans, ret);
6317 	return ret;
6318 
6319 fail_dir_item:
6320 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6321 		u64 local_index;
6322 		int err;
6323 		err = btrfs_del_root_ref(trans, key.objectid,
6324 					 root->root_key.objectid, parent_ino,
6325 					 &local_index, name, name_len);
6326 		if (err)
6327 			btrfs_abort_transaction(trans, err);
6328 	} else if (add_backref) {
6329 		u64 local_index;
6330 		int err;
6331 
6332 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6333 					  ino, parent_ino, &local_index);
6334 		if (err)
6335 			btrfs_abort_transaction(trans, err);
6336 	}
6337 
6338 	/* Return the original error code */
6339 	return ret;
6340 }
6341 
6342 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6343 			    struct btrfs_inode *dir, struct dentry *dentry,
6344 			    struct btrfs_inode *inode, int backref, u64 index)
6345 {
6346 	int err = btrfs_add_link(trans, dir, inode,
6347 				 dentry->d_name.name, dentry->d_name.len,
6348 				 backref, index);
6349 	if (err > 0)
6350 		err = -EEXIST;
6351 	return err;
6352 }
6353 
6354 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6355 			umode_t mode, dev_t rdev)
6356 {
6357 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6358 	struct btrfs_trans_handle *trans;
6359 	struct btrfs_root *root = BTRFS_I(dir)->root;
6360 	struct inode *inode = NULL;
6361 	int err;
6362 	u64 objectid;
6363 	u64 index = 0;
6364 
6365 	/*
6366 	 * 2 for inode item and ref
6367 	 * 2 for dir items
6368 	 * 1 for xattr if selinux is on
6369 	 */
6370 	trans = btrfs_start_transaction(root, 5);
6371 	if (IS_ERR(trans))
6372 		return PTR_ERR(trans);
6373 
6374 	err = btrfs_find_free_objectid(root, &objectid);
6375 	if (err)
6376 		goto out_unlock;
6377 
6378 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6379 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6380 			mode, &index);
6381 	if (IS_ERR(inode)) {
6382 		err = PTR_ERR(inode);
6383 		inode = NULL;
6384 		goto out_unlock;
6385 	}
6386 
6387 	/*
6388 	* If the active LSM wants to access the inode during
6389 	* d_instantiate it needs these. Smack checks to see
6390 	* if the filesystem supports xattrs by looking at the
6391 	* ops vector.
6392 	*/
6393 	inode->i_op = &btrfs_special_inode_operations;
6394 	init_special_inode(inode, inode->i_mode, rdev);
6395 
6396 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6397 	if (err)
6398 		goto out_unlock;
6399 
6400 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6401 			0, index);
6402 	if (err)
6403 		goto out_unlock;
6404 
6405 	btrfs_update_inode(trans, root, BTRFS_I(inode));
6406 	d_instantiate_new(dentry, inode);
6407 
6408 out_unlock:
6409 	btrfs_end_transaction(trans);
6410 	btrfs_btree_balance_dirty(fs_info);
6411 	if (err && inode) {
6412 		inode_dec_link_count(inode);
6413 		discard_new_inode(inode);
6414 	}
6415 	return err;
6416 }
6417 
6418 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6419 			umode_t mode, bool excl)
6420 {
6421 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6422 	struct btrfs_trans_handle *trans;
6423 	struct btrfs_root *root = BTRFS_I(dir)->root;
6424 	struct inode *inode = NULL;
6425 	int err;
6426 	u64 objectid;
6427 	u64 index = 0;
6428 
6429 	/*
6430 	 * 2 for inode item and ref
6431 	 * 2 for dir items
6432 	 * 1 for xattr if selinux is on
6433 	 */
6434 	trans = btrfs_start_transaction(root, 5);
6435 	if (IS_ERR(trans))
6436 		return PTR_ERR(trans);
6437 
6438 	err = btrfs_find_free_objectid(root, &objectid);
6439 	if (err)
6440 		goto out_unlock;
6441 
6442 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6443 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6444 			mode, &index);
6445 	if (IS_ERR(inode)) {
6446 		err = PTR_ERR(inode);
6447 		inode = NULL;
6448 		goto out_unlock;
6449 	}
6450 	/*
6451 	* If the active LSM wants to access the inode during
6452 	* d_instantiate it needs these. Smack checks to see
6453 	* if the filesystem supports xattrs by looking at the
6454 	* ops vector.
6455 	*/
6456 	inode->i_fop = &btrfs_file_operations;
6457 	inode->i_op = &btrfs_file_inode_operations;
6458 	inode->i_mapping->a_ops = &btrfs_aops;
6459 
6460 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6461 	if (err)
6462 		goto out_unlock;
6463 
6464 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6465 	if (err)
6466 		goto out_unlock;
6467 
6468 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6469 			0, index);
6470 	if (err)
6471 		goto out_unlock;
6472 
6473 	d_instantiate_new(dentry, inode);
6474 
6475 out_unlock:
6476 	btrfs_end_transaction(trans);
6477 	if (err && inode) {
6478 		inode_dec_link_count(inode);
6479 		discard_new_inode(inode);
6480 	}
6481 	btrfs_btree_balance_dirty(fs_info);
6482 	return err;
6483 }
6484 
6485 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6486 		      struct dentry *dentry)
6487 {
6488 	struct btrfs_trans_handle *trans = NULL;
6489 	struct btrfs_root *root = BTRFS_I(dir)->root;
6490 	struct inode *inode = d_inode(old_dentry);
6491 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6492 	u64 index;
6493 	int err;
6494 	int drop_inode = 0;
6495 
6496 	/* do not allow sys_link's with other subvols of the same device */
6497 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6498 		return -EXDEV;
6499 
6500 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6501 		return -EMLINK;
6502 
6503 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6504 	if (err)
6505 		goto fail;
6506 
6507 	/*
6508 	 * 2 items for inode and inode ref
6509 	 * 2 items for dir items
6510 	 * 1 item for parent inode
6511 	 * 1 item for orphan item deletion if O_TMPFILE
6512 	 */
6513 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6514 	if (IS_ERR(trans)) {
6515 		err = PTR_ERR(trans);
6516 		trans = NULL;
6517 		goto fail;
6518 	}
6519 
6520 	/* There are several dir indexes for this inode, clear the cache. */
6521 	BTRFS_I(inode)->dir_index = 0ULL;
6522 	inc_nlink(inode);
6523 	inode_inc_iversion(inode);
6524 	inode->i_ctime = current_time(inode);
6525 	ihold(inode);
6526 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6527 
6528 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6529 			1, index);
6530 
6531 	if (err) {
6532 		drop_inode = 1;
6533 	} else {
6534 		struct dentry *parent = dentry->d_parent;
6535 
6536 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6537 		if (err)
6538 			goto fail;
6539 		if (inode->i_nlink == 1) {
6540 			/*
6541 			 * If new hard link count is 1, it's a file created
6542 			 * with open(2) O_TMPFILE flag.
6543 			 */
6544 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6545 			if (err)
6546 				goto fail;
6547 		}
6548 		d_instantiate(dentry, inode);
6549 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6550 	}
6551 
6552 fail:
6553 	if (trans)
6554 		btrfs_end_transaction(trans);
6555 	if (drop_inode) {
6556 		inode_dec_link_count(inode);
6557 		iput(inode);
6558 	}
6559 	btrfs_btree_balance_dirty(fs_info);
6560 	return err;
6561 }
6562 
6563 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6564 {
6565 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6566 	struct inode *inode = NULL;
6567 	struct btrfs_trans_handle *trans;
6568 	struct btrfs_root *root = BTRFS_I(dir)->root;
6569 	int err = 0;
6570 	u64 objectid = 0;
6571 	u64 index = 0;
6572 
6573 	/*
6574 	 * 2 items for inode and ref
6575 	 * 2 items for dir items
6576 	 * 1 for xattr if selinux is on
6577 	 */
6578 	trans = btrfs_start_transaction(root, 5);
6579 	if (IS_ERR(trans))
6580 		return PTR_ERR(trans);
6581 
6582 	err = btrfs_find_free_objectid(root, &objectid);
6583 	if (err)
6584 		goto out_fail;
6585 
6586 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6587 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6588 			S_IFDIR | mode, &index);
6589 	if (IS_ERR(inode)) {
6590 		err = PTR_ERR(inode);
6591 		inode = NULL;
6592 		goto out_fail;
6593 	}
6594 
6595 	/* these must be set before we unlock the inode */
6596 	inode->i_op = &btrfs_dir_inode_operations;
6597 	inode->i_fop = &btrfs_dir_file_operations;
6598 
6599 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6600 	if (err)
6601 		goto out_fail;
6602 
6603 	btrfs_i_size_write(BTRFS_I(inode), 0);
6604 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6605 	if (err)
6606 		goto out_fail;
6607 
6608 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6609 			dentry->d_name.name,
6610 			dentry->d_name.len, 0, index);
6611 	if (err)
6612 		goto out_fail;
6613 
6614 	d_instantiate_new(dentry, inode);
6615 
6616 out_fail:
6617 	btrfs_end_transaction(trans);
6618 	if (err && inode) {
6619 		inode_dec_link_count(inode);
6620 		discard_new_inode(inode);
6621 	}
6622 	btrfs_btree_balance_dirty(fs_info);
6623 	return err;
6624 }
6625 
6626 static noinline int uncompress_inline(struct btrfs_path *path,
6627 				      struct page *page,
6628 				      size_t pg_offset, u64 extent_offset,
6629 				      struct btrfs_file_extent_item *item)
6630 {
6631 	int ret;
6632 	struct extent_buffer *leaf = path->nodes[0];
6633 	char *tmp;
6634 	size_t max_size;
6635 	unsigned long inline_size;
6636 	unsigned long ptr;
6637 	int compress_type;
6638 
6639 	WARN_ON(pg_offset != 0);
6640 	compress_type = btrfs_file_extent_compression(leaf, item);
6641 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6642 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6643 					btrfs_item_nr(path->slots[0]));
6644 	tmp = kmalloc(inline_size, GFP_NOFS);
6645 	if (!tmp)
6646 		return -ENOMEM;
6647 	ptr = btrfs_file_extent_inline_start(item);
6648 
6649 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6650 
6651 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6652 	ret = btrfs_decompress(compress_type, tmp, page,
6653 			       extent_offset, inline_size, max_size);
6654 
6655 	/*
6656 	 * decompression code contains a memset to fill in any space between the end
6657 	 * of the uncompressed data and the end of max_size in case the decompressed
6658 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6659 	 * the end of an inline extent and the beginning of the next block, so we
6660 	 * cover that region here.
6661 	 */
6662 
6663 	if (max_size + pg_offset < PAGE_SIZE) {
6664 		char *map = kmap(page);
6665 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6666 		kunmap(page);
6667 	}
6668 	kfree(tmp);
6669 	return ret;
6670 }
6671 
6672 /**
6673  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6674  * @inode:	file to search in
6675  * @page:	page to read extent data into if the extent is inline
6676  * @pg_offset:	offset into @page to copy to
6677  * @start:	file offset
6678  * @len:	length of range starting at @start
6679  *
6680  * This returns the first &struct extent_map which overlaps with the given
6681  * range, reading it from the B-tree and caching it if necessary. Note that
6682  * there may be more extents which overlap the given range after the returned
6683  * extent_map.
6684  *
6685  * If @page is not NULL and the extent is inline, this also reads the extent
6686  * data directly into the page and marks the extent up to date in the io_tree.
6687  *
6688  * Return: ERR_PTR on error, non-NULL extent_map on success.
6689  */
6690 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6691 				    struct page *page, size_t pg_offset,
6692 				    u64 start, u64 len)
6693 {
6694 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6695 	int ret = 0;
6696 	u64 extent_start = 0;
6697 	u64 extent_end = 0;
6698 	u64 objectid = btrfs_ino(inode);
6699 	int extent_type = -1;
6700 	struct btrfs_path *path = NULL;
6701 	struct btrfs_root *root = inode->root;
6702 	struct btrfs_file_extent_item *item;
6703 	struct extent_buffer *leaf;
6704 	struct btrfs_key found_key;
6705 	struct extent_map *em = NULL;
6706 	struct extent_map_tree *em_tree = &inode->extent_tree;
6707 	struct extent_io_tree *io_tree = &inode->io_tree;
6708 
6709 	read_lock(&em_tree->lock);
6710 	em = lookup_extent_mapping(em_tree, start, len);
6711 	read_unlock(&em_tree->lock);
6712 
6713 	if (em) {
6714 		if (em->start > start || em->start + em->len <= start)
6715 			free_extent_map(em);
6716 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6717 			free_extent_map(em);
6718 		else
6719 			goto out;
6720 	}
6721 	em = alloc_extent_map();
6722 	if (!em) {
6723 		ret = -ENOMEM;
6724 		goto out;
6725 	}
6726 	em->start = EXTENT_MAP_HOLE;
6727 	em->orig_start = EXTENT_MAP_HOLE;
6728 	em->len = (u64)-1;
6729 	em->block_len = (u64)-1;
6730 
6731 	path = btrfs_alloc_path();
6732 	if (!path) {
6733 		ret = -ENOMEM;
6734 		goto out;
6735 	}
6736 
6737 	/* Chances are we'll be called again, so go ahead and do readahead */
6738 	path->reada = READA_FORWARD;
6739 
6740 	/*
6741 	 * The same explanation in load_free_space_cache applies here as well,
6742 	 * we only read when we're loading the free space cache, and at that
6743 	 * point the commit_root has everything we need.
6744 	 */
6745 	if (btrfs_is_free_space_inode(inode)) {
6746 		path->search_commit_root = 1;
6747 		path->skip_locking = 1;
6748 	}
6749 
6750 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6751 	if (ret < 0) {
6752 		goto out;
6753 	} else if (ret > 0) {
6754 		if (path->slots[0] == 0)
6755 			goto not_found;
6756 		path->slots[0]--;
6757 		ret = 0;
6758 	}
6759 
6760 	leaf = path->nodes[0];
6761 	item = btrfs_item_ptr(leaf, path->slots[0],
6762 			      struct btrfs_file_extent_item);
6763 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6764 	if (found_key.objectid != objectid ||
6765 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6766 		/*
6767 		 * If we backup past the first extent we want to move forward
6768 		 * and see if there is an extent in front of us, otherwise we'll
6769 		 * say there is a hole for our whole search range which can
6770 		 * cause problems.
6771 		 */
6772 		extent_end = start;
6773 		goto next;
6774 	}
6775 
6776 	extent_type = btrfs_file_extent_type(leaf, item);
6777 	extent_start = found_key.offset;
6778 	extent_end = btrfs_file_extent_end(path);
6779 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6780 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6781 		/* Only regular file could have regular/prealloc extent */
6782 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6783 			ret = -EUCLEAN;
6784 			btrfs_crit(fs_info,
6785 		"regular/prealloc extent found for non-regular inode %llu",
6786 				   btrfs_ino(inode));
6787 			goto out;
6788 		}
6789 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6790 						       extent_start);
6791 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6792 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6793 						      path->slots[0],
6794 						      extent_start);
6795 	}
6796 next:
6797 	if (start >= extent_end) {
6798 		path->slots[0]++;
6799 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6800 			ret = btrfs_next_leaf(root, path);
6801 			if (ret < 0)
6802 				goto out;
6803 			else if (ret > 0)
6804 				goto not_found;
6805 
6806 			leaf = path->nodes[0];
6807 		}
6808 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6809 		if (found_key.objectid != objectid ||
6810 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6811 			goto not_found;
6812 		if (start + len <= found_key.offset)
6813 			goto not_found;
6814 		if (start > found_key.offset)
6815 			goto next;
6816 
6817 		/* New extent overlaps with existing one */
6818 		em->start = start;
6819 		em->orig_start = start;
6820 		em->len = found_key.offset - start;
6821 		em->block_start = EXTENT_MAP_HOLE;
6822 		goto insert;
6823 	}
6824 
6825 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6826 
6827 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6828 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6829 		goto insert;
6830 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6831 		unsigned long ptr;
6832 		char *map;
6833 		size_t size;
6834 		size_t extent_offset;
6835 		size_t copy_size;
6836 
6837 		if (!page)
6838 			goto out;
6839 
6840 		size = btrfs_file_extent_ram_bytes(leaf, item);
6841 		extent_offset = page_offset(page) + pg_offset - extent_start;
6842 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6843 				  size - extent_offset);
6844 		em->start = extent_start + extent_offset;
6845 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6846 		em->orig_block_len = em->len;
6847 		em->orig_start = em->start;
6848 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6849 
6850 		if (!PageUptodate(page)) {
6851 			if (btrfs_file_extent_compression(leaf, item) !=
6852 			    BTRFS_COMPRESS_NONE) {
6853 				ret = uncompress_inline(path, page, pg_offset,
6854 							extent_offset, item);
6855 				if (ret)
6856 					goto out;
6857 			} else {
6858 				map = kmap(page);
6859 				read_extent_buffer(leaf, map + pg_offset, ptr,
6860 						   copy_size);
6861 				if (pg_offset + copy_size < PAGE_SIZE) {
6862 					memset(map + pg_offset + copy_size, 0,
6863 					       PAGE_SIZE - pg_offset -
6864 					       copy_size);
6865 				}
6866 				kunmap(page);
6867 			}
6868 			flush_dcache_page(page);
6869 		}
6870 		set_extent_uptodate(io_tree, em->start,
6871 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6872 		goto insert;
6873 	}
6874 not_found:
6875 	em->start = start;
6876 	em->orig_start = start;
6877 	em->len = len;
6878 	em->block_start = EXTENT_MAP_HOLE;
6879 insert:
6880 	ret = 0;
6881 	btrfs_release_path(path);
6882 	if (em->start > start || extent_map_end(em) <= start) {
6883 		btrfs_err(fs_info,
6884 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6885 			  em->start, em->len, start, len);
6886 		ret = -EIO;
6887 		goto out;
6888 	}
6889 
6890 	write_lock(&em_tree->lock);
6891 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6892 	write_unlock(&em_tree->lock);
6893 out:
6894 	btrfs_free_path(path);
6895 
6896 	trace_btrfs_get_extent(root, inode, em);
6897 
6898 	if (ret) {
6899 		free_extent_map(em);
6900 		return ERR_PTR(ret);
6901 	}
6902 	return em;
6903 }
6904 
6905 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6906 					   u64 start, u64 len)
6907 {
6908 	struct extent_map *em;
6909 	struct extent_map *hole_em = NULL;
6910 	u64 delalloc_start = start;
6911 	u64 end;
6912 	u64 delalloc_len;
6913 	u64 delalloc_end;
6914 	int err = 0;
6915 
6916 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6917 	if (IS_ERR(em))
6918 		return em;
6919 	/*
6920 	 * If our em maps to:
6921 	 * - a hole or
6922 	 * - a pre-alloc extent,
6923 	 * there might actually be delalloc bytes behind it.
6924 	 */
6925 	if (em->block_start != EXTENT_MAP_HOLE &&
6926 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6927 		return em;
6928 	else
6929 		hole_em = em;
6930 
6931 	/* check to see if we've wrapped (len == -1 or similar) */
6932 	end = start + len;
6933 	if (end < start)
6934 		end = (u64)-1;
6935 	else
6936 		end -= 1;
6937 
6938 	em = NULL;
6939 
6940 	/* ok, we didn't find anything, lets look for delalloc */
6941 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6942 				 end, len, EXTENT_DELALLOC, 1);
6943 	delalloc_end = delalloc_start + delalloc_len;
6944 	if (delalloc_end < delalloc_start)
6945 		delalloc_end = (u64)-1;
6946 
6947 	/*
6948 	 * We didn't find anything useful, return the original results from
6949 	 * get_extent()
6950 	 */
6951 	if (delalloc_start > end || delalloc_end <= start) {
6952 		em = hole_em;
6953 		hole_em = NULL;
6954 		goto out;
6955 	}
6956 
6957 	/*
6958 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
6959 	 * the start they passed in
6960 	 */
6961 	delalloc_start = max(start, delalloc_start);
6962 	delalloc_len = delalloc_end - delalloc_start;
6963 
6964 	if (delalloc_len > 0) {
6965 		u64 hole_start;
6966 		u64 hole_len;
6967 		const u64 hole_end = extent_map_end(hole_em);
6968 
6969 		em = alloc_extent_map();
6970 		if (!em) {
6971 			err = -ENOMEM;
6972 			goto out;
6973 		}
6974 
6975 		ASSERT(hole_em);
6976 		/*
6977 		 * When btrfs_get_extent can't find anything it returns one
6978 		 * huge hole
6979 		 *
6980 		 * Make sure what it found really fits our range, and adjust to
6981 		 * make sure it is based on the start from the caller
6982 		 */
6983 		if (hole_end <= start || hole_em->start > end) {
6984 		       free_extent_map(hole_em);
6985 		       hole_em = NULL;
6986 		} else {
6987 		       hole_start = max(hole_em->start, start);
6988 		       hole_len = hole_end - hole_start;
6989 		}
6990 
6991 		if (hole_em && delalloc_start > hole_start) {
6992 			/*
6993 			 * Our hole starts before our delalloc, so we have to
6994 			 * return just the parts of the hole that go until the
6995 			 * delalloc starts
6996 			 */
6997 			em->len = min(hole_len, delalloc_start - hole_start);
6998 			em->start = hole_start;
6999 			em->orig_start = hole_start;
7000 			/*
7001 			 * Don't adjust block start at all, it is fixed at
7002 			 * EXTENT_MAP_HOLE
7003 			 */
7004 			em->block_start = hole_em->block_start;
7005 			em->block_len = hole_len;
7006 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7007 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7008 		} else {
7009 			/*
7010 			 * Hole is out of passed range or it starts after
7011 			 * delalloc range
7012 			 */
7013 			em->start = delalloc_start;
7014 			em->len = delalloc_len;
7015 			em->orig_start = delalloc_start;
7016 			em->block_start = EXTENT_MAP_DELALLOC;
7017 			em->block_len = delalloc_len;
7018 		}
7019 	} else {
7020 		return hole_em;
7021 	}
7022 out:
7023 
7024 	free_extent_map(hole_em);
7025 	if (err) {
7026 		free_extent_map(em);
7027 		return ERR_PTR(err);
7028 	}
7029 	return em;
7030 }
7031 
7032 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7033 						  const u64 start,
7034 						  const u64 len,
7035 						  const u64 orig_start,
7036 						  const u64 block_start,
7037 						  const u64 block_len,
7038 						  const u64 orig_block_len,
7039 						  const u64 ram_bytes,
7040 						  const int type)
7041 {
7042 	struct extent_map *em = NULL;
7043 	int ret;
7044 
7045 	if (type != BTRFS_ORDERED_NOCOW) {
7046 		em = create_io_em(inode, start, len, orig_start, block_start,
7047 				  block_len, orig_block_len, ram_bytes,
7048 				  BTRFS_COMPRESS_NONE, /* compress_type */
7049 				  type);
7050 		if (IS_ERR(em))
7051 			goto out;
7052 	}
7053 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7054 					   block_len, type);
7055 	if (ret) {
7056 		if (em) {
7057 			free_extent_map(em);
7058 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7059 		}
7060 		em = ERR_PTR(ret);
7061 	}
7062  out:
7063 
7064 	return em;
7065 }
7066 
7067 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7068 						  u64 start, u64 len)
7069 {
7070 	struct btrfs_root *root = inode->root;
7071 	struct btrfs_fs_info *fs_info = root->fs_info;
7072 	struct extent_map *em;
7073 	struct btrfs_key ins;
7074 	u64 alloc_hint;
7075 	int ret;
7076 
7077 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7078 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7079 				   0, alloc_hint, &ins, 1, 1);
7080 	if (ret)
7081 		return ERR_PTR(ret);
7082 
7083 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7084 				     ins.objectid, ins.offset, ins.offset,
7085 				     ins.offset, BTRFS_ORDERED_REGULAR);
7086 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7087 	if (IS_ERR(em))
7088 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7089 					   1);
7090 
7091 	return em;
7092 }
7093 
7094 /*
7095  * Check if we can do nocow write into the range [@offset, @offset + @len)
7096  *
7097  * @offset:	File offset
7098  * @len:	The length to write, will be updated to the nocow writeable
7099  *		range
7100  * @orig_start:	(optional) Return the original file offset of the file extent
7101  * @orig_len:	(optional) Return the original on-disk length of the file extent
7102  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7103  * @strict:	if true, omit optimizations that might force us into unnecessary
7104  *		cow. e.g., don't trust generation number.
7105  *
7106  * This function will flush ordered extents in the range to ensure proper
7107  * nocow checks for (nowait == false) case.
7108  *
7109  * Return:
7110  * >0	and update @len if we can do nocow write
7111  *  0	if we can't do nocow write
7112  * <0	if error happened
7113  *
7114  * NOTE: This only checks the file extents, caller is responsible to wait for
7115  *	 any ordered extents.
7116  */
7117 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7118 			      u64 *orig_start, u64 *orig_block_len,
7119 			      u64 *ram_bytes, bool strict)
7120 {
7121 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7122 	struct btrfs_path *path;
7123 	int ret;
7124 	struct extent_buffer *leaf;
7125 	struct btrfs_root *root = BTRFS_I(inode)->root;
7126 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7127 	struct btrfs_file_extent_item *fi;
7128 	struct btrfs_key key;
7129 	u64 disk_bytenr;
7130 	u64 backref_offset;
7131 	u64 extent_end;
7132 	u64 num_bytes;
7133 	int slot;
7134 	int found_type;
7135 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7136 
7137 	path = btrfs_alloc_path();
7138 	if (!path)
7139 		return -ENOMEM;
7140 
7141 	ret = btrfs_lookup_file_extent(NULL, root, path,
7142 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7143 	if (ret < 0)
7144 		goto out;
7145 
7146 	slot = path->slots[0];
7147 	if (ret == 1) {
7148 		if (slot == 0) {
7149 			/* can't find the item, must cow */
7150 			ret = 0;
7151 			goto out;
7152 		}
7153 		slot--;
7154 	}
7155 	ret = 0;
7156 	leaf = path->nodes[0];
7157 	btrfs_item_key_to_cpu(leaf, &key, slot);
7158 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7159 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7160 		/* not our file or wrong item type, must cow */
7161 		goto out;
7162 	}
7163 
7164 	if (key.offset > offset) {
7165 		/* Wrong offset, must cow */
7166 		goto out;
7167 	}
7168 
7169 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7170 	found_type = btrfs_file_extent_type(leaf, fi);
7171 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7172 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7173 		/* not a regular extent, must cow */
7174 		goto out;
7175 	}
7176 
7177 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7178 		goto out;
7179 
7180 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7181 	if (extent_end <= offset)
7182 		goto out;
7183 
7184 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7185 	if (disk_bytenr == 0)
7186 		goto out;
7187 
7188 	if (btrfs_file_extent_compression(leaf, fi) ||
7189 	    btrfs_file_extent_encryption(leaf, fi) ||
7190 	    btrfs_file_extent_other_encoding(leaf, fi))
7191 		goto out;
7192 
7193 	/*
7194 	 * Do the same check as in btrfs_cross_ref_exist but without the
7195 	 * unnecessary search.
7196 	 */
7197 	if (!strict &&
7198 	    (btrfs_file_extent_generation(leaf, fi) <=
7199 	     btrfs_root_last_snapshot(&root->root_item)))
7200 		goto out;
7201 
7202 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7203 
7204 	if (orig_start) {
7205 		*orig_start = key.offset - backref_offset;
7206 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7207 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7208 	}
7209 
7210 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7211 		goto out;
7212 
7213 	num_bytes = min(offset + *len, extent_end) - offset;
7214 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7215 		u64 range_end;
7216 
7217 		range_end = round_up(offset + num_bytes,
7218 				     root->fs_info->sectorsize) - 1;
7219 		ret = test_range_bit(io_tree, offset, range_end,
7220 				     EXTENT_DELALLOC, 0, NULL);
7221 		if (ret) {
7222 			ret = -EAGAIN;
7223 			goto out;
7224 		}
7225 	}
7226 
7227 	btrfs_release_path(path);
7228 
7229 	/*
7230 	 * look for other files referencing this extent, if we
7231 	 * find any we must cow
7232 	 */
7233 
7234 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7235 				    key.offset - backref_offset, disk_bytenr,
7236 				    strict);
7237 	if (ret) {
7238 		ret = 0;
7239 		goto out;
7240 	}
7241 
7242 	/*
7243 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7244 	 * in this extent we are about to write.  If there
7245 	 * are any csums in that range we have to cow in order
7246 	 * to keep the csums correct
7247 	 */
7248 	disk_bytenr += backref_offset;
7249 	disk_bytenr += offset - key.offset;
7250 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7251 		goto out;
7252 	/*
7253 	 * all of the above have passed, it is safe to overwrite this extent
7254 	 * without cow
7255 	 */
7256 	*len = num_bytes;
7257 	ret = 1;
7258 out:
7259 	btrfs_free_path(path);
7260 	return ret;
7261 }
7262 
7263 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7264 			      struct extent_state **cached_state, bool writing)
7265 {
7266 	struct btrfs_ordered_extent *ordered;
7267 	int ret = 0;
7268 
7269 	while (1) {
7270 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7271 				 cached_state);
7272 		/*
7273 		 * We're concerned with the entire range that we're going to be
7274 		 * doing DIO to, so we need to make sure there's no ordered
7275 		 * extents in this range.
7276 		 */
7277 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7278 						     lockend - lockstart + 1);
7279 
7280 		/*
7281 		 * We need to make sure there are no buffered pages in this
7282 		 * range either, we could have raced between the invalidate in
7283 		 * generic_file_direct_write and locking the extent.  The
7284 		 * invalidate needs to happen so that reads after a write do not
7285 		 * get stale data.
7286 		 */
7287 		if (!ordered &&
7288 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7289 							 lockstart, lockend)))
7290 			break;
7291 
7292 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7293 				     cached_state);
7294 
7295 		if (ordered) {
7296 			/*
7297 			 * If we are doing a DIO read and the ordered extent we
7298 			 * found is for a buffered write, we can not wait for it
7299 			 * to complete and retry, because if we do so we can
7300 			 * deadlock with concurrent buffered writes on page
7301 			 * locks. This happens only if our DIO read covers more
7302 			 * than one extent map, if at this point has already
7303 			 * created an ordered extent for a previous extent map
7304 			 * and locked its range in the inode's io tree, and a
7305 			 * concurrent write against that previous extent map's
7306 			 * range and this range started (we unlock the ranges
7307 			 * in the io tree only when the bios complete and
7308 			 * buffered writes always lock pages before attempting
7309 			 * to lock range in the io tree).
7310 			 */
7311 			if (writing ||
7312 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7313 				btrfs_start_ordered_extent(ordered, 1);
7314 			else
7315 				ret = -ENOTBLK;
7316 			btrfs_put_ordered_extent(ordered);
7317 		} else {
7318 			/*
7319 			 * We could trigger writeback for this range (and wait
7320 			 * for it to complete) and then invalidate the pages for
7321 			 * this range (through invalidate_inode_pages2_range()),
7322 			 * but that can lead us to a deadlock with a concurrent
7323 			 * call to readahead (a buffered read or a defrag call
7324 			 * triggered a readahead) on a page lock due to an
7325 			 * ordered dio extent we created before but did not have
7326 			 * yet a corresponding bio submitted (whence it can not
7327 			 * complete), which makes readahead wait for that
7328 			 * ordered extent to complete while holding a lock on
7329 			 * that page.
7330 			 */
7331 			ret = -ENOTBLK;
7332 		}
7333 
7334 		if (ret)
7335 			break;
7336 
7337 		cond_resched();
7338 	}
7339 
7340 	return ret;
7341 }
7342 
7343 /* The callers of this must take lock_extent() */
7344 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7345 				       u64 len, u64 orig_start, u64 block_start,
7346 				       u64 block_len, u64 orig_block_len,
7347 				       u64 ram_bytes, int compress_type,
7348 				       int type)
7349 {
7350 	struct extent_map_tree *em_tree;
7351 	struct extent_map *em;
7352 	int ret;
7353 
7354 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7355 	       type == BTRFS_ORDERED_COMPRESSED ||
7356 	       type == BTRFS_ORDERED_NOCOW ||
7357 	       type == BTRFS_ORDERED_REGULAR);
7358 
7359 	em_tree = &inode->extent_tree;
7360 	em = alloc_extent_map();
7361 	if (!em)
7362 		return ERR_PTR(-ENOMEM);
7363 
7364 	em->start = start;
7365 	em->orig_start = orig_start;
7366 	em->len = len;
7367 	em->block_len = block_len;
7368 	em->block_start = block_start;
7369 	em->orig_block_len = orig_block_len;
7370 	em->ram_bytes = ram_bytes;
7371 	em->generation = -1;
7372 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7373 	if (type == BTRFS_ORDERED_PREALLOC) {
7374 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7375 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7376 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7377 		em->compress_type = compress_type;
7378 	}
7379 
7380 	do {
7381 		btrfs_drop_extent_cache(inode, em->start,
7382 					em->start + em->len - 1, 0);
7383 		write_lock(&em_tree->lock);
7384 		ret = add_extent_mapping(em_tree, em, 1);
7385 		write_unlock(&em_tree->lock);
7386 		/*
7387 		 * The caller has taken lock_extent(), who could race with us
7388 		 * to add em?
7389 		 */
7390 	} while (ret == -EEXIST);
7391 
7392 	if (ret) {
7393 		free_extent_map(em);
7394 		return ERR_PTR(ret);
7395 	}
7396 
7397 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7398 	return em;
7399 }
7400 
7401 
7402 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7403 					 struct inode *inode,
7404 					 struct btrfs_dio_data *dio_data,
7405 					 u64 start, u64 len)
7406 {
7407 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7408 	struct extent_map *em = *map;
7409 	int ret = 0;
7410 
7411 	/*
7412 	 * We don't allocate a new extent in the following cases
7413 	 *
7414 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7415 	 * existing extent.
7416 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7417 	 * just use the extent.
7418 	 *
7419 	 */
7420 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7421 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7422 	     em->block_start != EXTENT_MAP_HOLE)) {
7423 		int type;
7424 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7425 
7426 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7427 			type = BTRFS_ORDERED_PREALLOC;
7428 		else
7429 			type = BTRFS_ORDERED_NOCOW;
7430 		len = min(len, em->len - (start - em->start));
7431 		block_start = em->block_start + (start - em->start);
7432 
7433 		if (can_nocow_extent(inode, start, &len, &orig_start,
7434 				     &orig_block_len, &ram_bytes, false) == 1 &&
7435 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7436 			struct extent_map *em2;
7437 
7438 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7439 						      orig_start, block_start,
7440 						      len, orig_block_len,
7441 						      ram_bytes, type);
7442 			btrfs_dec_nocow_writers(fs_info, block_start);
7443 			if (type == BTRFS_ORDERED_PREALLOC) {
7444 				free_extent_map(em);
7445 				*map = em = em2;
7446 			}
7447 
7448 			if (em2 && IS_ERR(em2)) {
7449 				ret = PTR_ERR(em2);
7450 				goto out;
7451 			}
7452 			/*
7453 			 * For inode marked NODATACOW or extent marked PREALLOC,
7454 			 * use the existing or preallocated extent, so does not
7455 			 * need to adjust btrfs_space_info's bytes_may_use.
7456 			 */
7457 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7458 			goto skip_cow;
7459 		}
7460 	}
7461 
7462 	/* this will cow the extent */
7463 	free_extent_map(em);
7464 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7465 	if (IS_ERR(em)) {
7466 		ret = PTR_ERR(em);
7467 		goto out;
7468 	}
7469 
7470 	len = min(len, em->len - (start - em->start));
7471 
7472 skip_cow:
7473 	/*
7474 	 * Need to update the i_size under the extent lock so buffered
7475 	 * readers will get the updated i_size when we unlock.
7476 	 */
7477 	if (start + len > i_size_read(inode))
7478 		i_size_write(inode, start + len);
7479 
7480 	dio_data->reserve -= len;
7481 out:
7482 	return ret;
7483 }
7484 
7485 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7486 		loff_t length, unsigned int flags, struct iomap *iomap,
7487 		struct iomap *srcmap)
7488 {
7489 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7490 	struct extent_map *em;
7491 	struct extent_state *cached_state = NULL;
7492 	struct btrfs_dio_data *dio_data = NULL;
7493 	u64 lockstart, lockend;
7494 	const bool write = !!(flags & IOMAP_WRITE);
7495 	int ret = 0;
7496 	u64 len = length;
7497 	bool unlock_extents = false;
7498 
7499 	if (!write)
7500 		len = min_t(u64, len, fs_info->sectorsize);
7501 
7502 	lockstart = start;
7503 	lockend = start + len - 1;
7504 
7505 	/*
7506 	 * The generic stuff only does filemap_write_and_wait_range, which
7507 	 * isn't enough if we've written compressed pages to this area, so we
7508 	 * need to flush the dirty pages again to make absolutely sure that any
7509 	 * outstanding dirty pages are on disk.
7510 	 */
7511 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7512 		     &BTRFS_I(inode)->runtime_flags)) {
7513 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7514 					       start + length - 1);
7515 		if (ret)
7516 			return ret;
7517 	}
7518 
7519 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7520 	if (!dio_data)
7521 		return -ENOMEM;
7522 
7523 	dio_data->length = length;
7524 	if (write) {
7525 		dio_data->reserve = round_up(length, fs_info->sectorsize);
7526 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7527 				&dio_data->data_reserved,
7528 				start, dio_data->reserve);
7529 		if (ret) {
7530 			extent_changeset_free(dio_data->data_reserved);
7531 			kfree(dio_data);
7532 			return ret;
7533 		}
7534 	}
7535 	iomap->private = dio_data;
7536 
7537 
7538 	/*
7539 	 * If this errors out it's because we couldn't invalidate pagecache for
7540 	 * this range and we need to fallback to buffered.
7541 	 */
7542 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7543 		ret = -ENOTBLK;
7544 		goto err;
7545 	}
7546 
7547 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7548 	if (IS_ERR(em)) {
7549 		ret = PTR_ERR(em);
7550 		goto unlock_err;
7551 	}
7552 
7553 	/*
7554 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7555 	 * io.  INLINE is special, and we could probably kludge it in here, but
7556 	 * it's still buffered so for safety lets just fall back to the generic
7557 	 * buffered path.
7558 	 *
7559 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7560 	 * decompress it, so there will be buffering required no matter what we
7561 	 * do, so go ahead and fallback to buffered.
7562 	 *
7563 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7564 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7565 	 * the generic code.
7566 	 */
7567 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7568 	    em->block_start == EXTENT_MAP_INLINE) {
7569 		free_extent_map(em);
7570 		ret = -ENOTBLK;
7571 		goto unlock_err;
7572 	}
7573 
7574 	len = min(len, em->len - (start - em->start));
7575 	if (write) {
7576 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7577 						    start, len);
7578 		if (ret < 0)
7579 			goto unlock_err;
7580 		unlock_extents = true;
7581 		/* Recalc len in case the new em is smaller than requested */
7582 		len = min(len, em->len - (start - em->start));
7583 	} else {
7584 		/*
7585 		 * We need to unlock only the end area that we aren't using.
7586 		 * The rest is going to be unlocked by the endio routine.
7587 		 */
7588 		lockstart = start + len;
7589 		if (lockstart < lockend)
7590 			unlock_extents = true;
7591 	}
7592 
7593 	if (unlock_extents)
7594 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7595 				     lockstart, lockend, &cached_state);
7596 	else
7597 		free_extent_state(cached_state);
7598 
7599 	/*
7600 	 * Translate extent map information to iomap.
7601 	 * We trim the extents (and move the addr) even though iomap code does
7602 	 * that, since we have locked only the parts we are performing I/O in.
7603 	 */
7604 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7605 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7606 		iomap->addr = IOMAP_NULL_ADDR;
7607 		iomap->type = IOMAP_HOLE;
7608 	} else {
7609 		iomap->addr = em->block_start + (start - em->start);
7610 		iomap->type = IOMAP_MAPPED;
7611 	}
7612 	iomap->offset = start;
7613 	iomap->bdev = fs_info->fs_devices->latest_bdev;
7614 	iomap->length = len;
7615 
7616 	free_extent_map(em);
7617 
7618 	return 0;
7619 
7620 unlock_err:
7621 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7622 			     &cached_state);
7623 err:
7624 	if (dio_data) {
7625 		btrfs_delalloc_release_space(BTRFS_I(inode),
7626 				dio_data->data_reserved, start,
7627 				dio_data->reserve, true);
7628 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7629 		extent_changeset_free(dio_data->data_reserved);
7630 		kfree(dio_data);
7631 	}
7632 	return ret;
7633 }
7634 
7635 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7636 		ssize_t written, unsigned int flags, struct iomap *iomap)
7637 {
7638 	int ret = 0;
7639 	struct btrfs_dio_data *dio_data = iomap->private;
7640 	size_t submitted = dio_data->submitted;
7641 	const bool write = !!(flags & IOMAP_WRITE);
7642 
7643 	if (!write && (iomap->type == IOMAP_HOLE)) {
7644 		/* If reading from a hole, unlock and return */
7645 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7646 		goto out;
7647 	}
7648 
7649 	if (submitted < length) {
7650 		pos += submitted;
7651 		length -= submitted;
7652 		if (write)
7653 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7654 					length, false);
7655 		else
7656 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7657 				      pos + length - 1);
7658 		ret = -ENOTBLK;
7659 	}
7660 
7661 	if (write) {
7662 		if (dio_data->reserve)
7663 			btrfs_delalloc_release_space(BTRFS_I(inode),
7664 					dio_data->data_reserved, pos,
7665 					dio_data->reserve, true);
7666 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7667 		extent_changeset_free(dio_data->data_reserved);
7668 	}
7669 out:
7670 	kfree(dio_data);
7671 	iomap->private = NULL;
7672 
7673 	return ret;
7674 }
7675 
7676 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7677 {
7678 	/*
7679 	 * This implies a barrier so that stores to dio_bio->bi_status before
7680 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7681 	 */
7682 	if (!refcount_dec_and_test(&dip->refs))
7683 		return;
7684 
7685 	if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7686 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7687 					     dip->logical_offset,
7688 					     dip->bytes,
7689 					     !dip->dio_bio->bi_status);
7690 	} else {
7691 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7692 			      dip->logical_offset,
7693 			      dip->logical_offset + dip->bytes - 1);
7694 	}
7695 
7696 	bio_endio(dip->dio_bio);
7697 	kfree(dip);
7698 }
7699 
7700 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7701 					  int mirror_num,
7702 					  unsigned long bio_flags)
7703 {
7704 	struct btrfs_dio_private *dip = bio->bi_private;
7705 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7706 	blk_status_t ret;
7707 
7708 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7709 
7710 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7711 	if (ret)
7712 		return ret;
7713 
7714 	refcount_inc(&dip->refs);
7715 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7716 	if (ret)
7717 		refcount_dec(&dip->refs);
7718 	return ret;
7719 }
7720 
7721 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7722 					     struct btrfs_io_bio *io_bio,
7723 					     const bool uptodate)
7724 {
7725 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7726 	const u32 sectorsize = fs_info->sectorsize;
7727 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7728 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7729 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7730 	struct bio_vec bvec;
7731 	struct bvec_iter iter;
7732 	u64 start = io_bio->logical;
7733 	u32 bio_offset = 0;
7734 	blk_status_t err = BLK_STS_OK;
7735 
7736 	__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7737 		unsigned int i, nr_sectors, pgoff;
7738 
7739 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7740 		pgoff = bvec.bv_offset;
7741 		for (i = 0; i < nr_sectors; i++) {
7742 			ASSERT(pgoff < PAGE_SIZE);
7743 			if (uptodate &&
7744 			    (!csum || !check_data_csum(inode, io_bio,
7745 					bio_offset, bvec.bv_page, pgoff))) {
7746 				clean_io_failure(fs_info, failure_tree, io_tree,
7747 						 start, bvec.bv_page,
7748 						 btrfs_ino(BTRFS_I(inode)),
7749 						 pgoff);
7750 			} else {
7751 				blk_status_t status;
7752 
7753 				ASSERT((start - io_bio->logical) < UINT_MAX);
7754 				status = btrfs_submit_read_repair(inode,
7755 							&io_bio->bio,
7756 							start - io_bio->logical,
7757 							bvec.bv_page, pgoff,
7758 							start,
7759 							start + sectorsize - 1,
7760 							io_bio->mirror_num,
7761 							submit_dio_repair_bio);
7762 				if (status)
7763 					err = status;
7764 			}
7765 			start += sectorsize;
7766 			ASSERT(bio_offset + sectorsize > bio_offset);
7767 			bio_offset += sectorsize;
7768 			pgoff += sectorsize;
7769 		}
7770 	}
7771 	return err;
7772 }
7773 
7774 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7775 					 const u64 offset, const u64 bytes,
7776 					 const bool uptodate)
7777 {
7778 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7779 	struct btrfs_ordered_extent *ordered = NULL;
7780 	struct btrfs_workqueue *wq;
7781 	u64 ordered_offset = offset;
7782 	u64 ordered_bytes = bytes;
7783 	u64 last_offset;
7784 
7785 	if (btrfs_is_free_space_inode(inode))
7786 		wq = fs_info->endio_freespace_worker;
7787 	else
7788 		wq = fs_info->endio_write_workers;
7789 
7790 	while (ordered_offset < offset + bytes) {
7791 		last_offset = ordered_offset;
7792 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7793 							 &ordered_offset,
7794 							 ordered_bytes,
7795 							 uptodate)) {
7796 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7797 					NULL);
7798 			btrfs_queue_work(wq, &ordered->work);
7799 		}
7800 		/*
7801 		 * If btrfs_dec_test_ordered_pending does not find any ordered
7802 		 * extent in the range, we can exit.
7803 		 */
7804 		if (ordered_offset == last_offset)
7805 			return;
7806 		/*
7807 		 * Our bio might span multiple ordered extents. In this case
7808 		 * we keep going until we have accounted the whole dio.
7809 		 */
7810 		if (ordered_offset < offset + bytes) {
7811 			ordered_bytes = offset + bytes - ordered_offset;
7812 			ordered = NULL;
7813 		}
7814 	}
7815 }
7816 
7817 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7818 						     struct bio *bio,
7819 						     u64 dio_file_offset)
7820 {
7821 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
7822 }
7823 
7824 static void btrfs_end_dio_bio(struct bio *bio)
7825 {
7826 	struct btrfs_dio_private *dip = bio->bi_private;
7827 	blk_status_t err = bio->bi_status;
7828 
7829 	if (err)
7830 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7831 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7832 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7833 			   bio->bi_opf, bio->bi_iter.bi_sector,
7834 			   bio->bi_iter.bi_size, err);
7835 
7836 	if (bio_op(bio) == REQ_OP_READ) {
7837 		err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7838 					       !err);
7839 	}
7840 
7841 	if (err)
7842 		dip->dio_bio->bi_status = err;
7843 
7844 	bio_put(bio);
7845 	btrfs_dio_private_put(dip);
7846 }
7847 
7848 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7849 		struct inode *inode, u64 file_offset, int async_submit)
7850 {
7851 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7852 	struct btrfs_dio_private *dip = bio->bi_private;
7853 	bool write = bio_op(bio) == REQ_OP_WRITE;
7854 	blk_status_t ret;
7855 
7856 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7857 	if (async_submit)
7858 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7859 
7860 	if (!write) {
7861 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7862 		if (ret)
7863 			goto err;
7864 	}
7865 
7866 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7867 		goto map;
7868 
7869 	if (write && async_submit) {
7870 		ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
7871 					  btrfs_submit_bio_start_direct_io);
7872 		goto err;
7873 	} else if (write) {
7874 		/*
7875 		 * If we aren't doing async submit, calculate the csum of the
7876 		 * bio now.
7877 		 */
7878 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7879 		if (ret)
7880 			goto err;
7881 	} else {
7882 		u64 csum_offset;
7883 
7884 		csum_offset = file_offset - dip->logical_offset;
7885 		csum_offset >>= fs_info->sectorsize_bits;
7886 		csum_offset *= fs_info->csum_size;
7887 		btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7888 	}
7889 map:
7890 	ret = btrfs_map_bio(fs_info, bio, 0);
7891 err:
7892 	return ret;
7893 }
7894 
7895 /*
7896  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7897  * or ordered extents whether or not we submit any bios.
7898  */
7899 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7900 							  struct inode *inode,
7901 							  loff_t file_offset)
7902 {
7903 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7904 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7905 	size_t dip_size;
7906 	struct btrfs_dio_private *dip;
7907 
7908 	dip_size = sizeof(*dip);
7909 	if (!write && csum) {
7910 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7911 		size_t nblocks;
7912 
7913 		nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
7914 		dip_size += fs_info->csum_size * nblocks;
7915 	}
7916 
7917 	dip = kzalloc(dip_size, GFP_NOFS);
7918 	if (!dip)
7919 		return NULL;
7920 
7921 	dip->inode = inode;
7922 	dip->logical_offset = file_offset;
7923 	dip->bytes = dio_bio->bi_iter.bi_size;
7924 	dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
7925 	dip->dio_bio = dio_bio;
7926 	refcount_set(&dip->refs, 1);
7927 	return dip;
7928 }
7929 
7930 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
7931 		struct bio *dio_bio, loff_t file_offset)
7932 {
7933 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7934 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7935 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7936 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
7937 	struct btrfs_dio_private *dip;
7938 	struct bio *bio;
7939 	u64 start_sector;
7940 	int async_submit = 0;
7941 	u64 submit_len;
7942 	int clone_offset = 0;
7943 	int clone_len;
7944 	int ret;
7945 	blk_status_t status;
7946 	struct btrfs_io_geometry geom;
7947 	struct btrfs_dio_data *dio_data = iomap->private;
7948 
7949 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7950 	if (!dip) {
7951 		if (!write) {
7952 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7953 				file_offset + dio_bio->bi_iter.bi_size - 1);
7954 		}
7955 		dio_bio->bi_status = BLK_STS_RESOURCE;
7956 		bio_endio(dio_bio);
7957 		return BLK_QC_T_NONE;
7958 	}
7959 
7960 	if (!write) {
7961 		/*
7962 		 * Load the csums up front to reduce csum tree searches and
7963 		 * contention when submitting bios.
7964 		 *
7965 		 * If we have csums disabled this will do nothing.
7966 		 */
7967 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
7968 		if (status != BLK_STS_OK)
7969 			goto out_err;
7970 	}
7971 
7972 	start_sector = dio_bio->bi_iter.bi_sector;
7973 	submit_len = dio_bio->bi_iter.bi_size;
7974 
7975 	do {
7976 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7977 					    start_sector << 9, submit_len,
7978 					    &geom);
7979 		if (ret) {
7980 			status = errno_to_blk_status(ret);
7981 			goto out_err;
7982 		}
7983 		ASSERT(geom.len <= INT_MAX);
7984 
7985 		clone_len = min_t(int, submit_len, geom.len);
7986 
7987 		/*
7988 		 * This will never fail as it's passing GPF_NOFS and
7989 		 * the allocation is backed by btrfs_bioset.
7990 		 */
7991 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7992 		bio->bi_private = dip;
7993 		bio->bi_end_io = btrfs_end_dio_bio;
7994 		btrfs_io_bio(bio)->logical = file_offset;
7995 
7996 		ASSERT(submit_len >= clone_len);
7997 		submit_len -= clone_len;
7998 
7999 		/*
8000 		 * Increase the count before we submit the bio so we know
8001 		 * the end IO handler won't happen before we increase the
8002 		 * count. Otherwise, the dip might get freed before we're
8003 		 * done setting it up.
8004 		 *
8005 		 * We transfer the initial reference to the last bio, so we
8006 		 * don't need to increment the reference count for the last one.
8007 		 */
8008 		if (submit_len > 0) {
8009 			refcount_inc(&dip->refs);
8010 			/*
8011 			 * If we are submitting more than one bio, submit them
8012 			 * all asynchronously. The exception is RAID 5 or 6, as
8013 			 * asynchronous checksums make it difficult to collect
8014 			 * full stripe writes.
8015 			 */
8016 			if (!raid56)
8017 				async_submit = 1;
8018 		}
8019 
8020 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8021 						async_submit);
8022 		if (status) {
8023 			bio_put(bio);
8024 			if (submit_len > 0)
8025 				refcount_dec(&dip->refs);
8026 			goto out_err;
8027 		}
8028 
8029 		dio_data->submitted += clone_len;
8030 		clone_offset += clone_len;
8031 		start_sector += clone_len >> 9;
8032 		file_offset += clone_len;
8033 	} while (submit_len > 0);
8034 	return BLK_QC_T_NONE;
8035 
8036 out_err:
8037 	dip->dio_bio->bi_status = status;
8038 	btrfs_dio_private_put(dip);
8039 	return BLK_QC_T_NONE;
8040 }
8041 
8042 const struct iomap_ops btrfs_dio_iomap_ops = {
8043 	.iomap_begin            = btrfs_dio_iomap_begin,
8044 	.iomap_end              = btrfs_dio_iomap_end,
8045 };
8046 
8047 const struct iomap_dio_ops btrfs_dio_ops = {
8048 	.submit_io		= btrfs_submit_direct,
8049 };
8050 
8051 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8052 			u64 start, u64 len)
8053 {
8054 	int	ret;
8055 
8056 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8057 	if (ret)
8058 		return ret;
8059 
8060 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8061 }
8062 
8063 int btrfs_readpage(struct file *file, struct page *page)
8064 {
8065 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8066 	u64 start = page_offset(page);
8067 	u64 end = start + PAGE_SIZE - 1;
8068 	unsigned long bio_flags = 0;
8069 	struct bio *bio = NULL;
8070 	int ret;
8071 
8072 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8073 
8074 	ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8075 	if (bio)
8076 		ret = submit_one_bio(bio, 0, bio_flags);
8077 	return ret;
8078 }
8079 
8080 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8081 {
8082 	struct inode *inode = page->mapping->host;
8083 	int ret;
8084 
8085 	if (current->flags & PF_MEMALLOC) {
8086 		redirty_page_for_writepage(wbc, page);
8087 		unlock_page(page);
8088 		return 0;
8089 	}
8090 
8091 	/*
8092 	 * If we are under memory pressure we will call this directly from the
8093 	 * VM, we need to make sure we have the inode referenced for the ordered
8094 	 * extent.  If not just return like we didn't do anything.
8095 	 */
8096 	if (!igrab(inode)) {
8097 		redirty_page_for_writepage(wbc, page);
8098 		return AOP_WRITEPAGE_ACTIVATE;
8099 	}
8100 	ret = extent_write_full_page(page, wbc);
8101 	btrfs_add_delayed_iput(inode);
8102 	return ret;
8103 }
8104 
8105 static int btrfs_writepages(struct address_space *mapping,
8106 			    struct writeback_control *wbc)
8107 {
8108 	return extent_writepages(mapping, wbc);
8109 }
8110 
8111 static void btrfs_readahead(struct readahead_control *rac)
8112 {
8113 	extent_readahead(rac);
8114 }
8115 
8116 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8117 {
8118 	int ret = try_release_extent_mapping(page, gfp_flags);
8119 	if (ret == 1)
8120 		detach_page_private(page);
8121 	return ret;
8122 }
8123 
8124 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8125 {
8126 	if (PageWriteback(page) || PageDirty(page))
8127 		return 0;
8128 	return __btrfs_releasepage(page, gfp_flags);
8129 }
8130 
8131 #ifdef CONFIG_MIGRATION
8132 static int btrfs_migratepage(struct address_space *mapping,
8133 			     struct page *newpage, struct page *page,
8134 			     enum migrate_mode mode)
8135 {
8136 	int ret;
8137 
8138 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8139 	if (ret != MIGRATEPAGE_SUCCESS)
8140 		return ret;
8141 
8142 	if (page_has_private(page))
8143 		attach_page_private(newpage, detach_page_private(page));
8144 
8145 	if (PagePrivate2(page)) {
8146 		ClearPagePrivate2(page);
8147 		SetPagePrivate2(newpage);
8148 	}
8149 
8150 	if (mode != MIGRATE_SYNC_NO_COPY)
8151 		migrate_page_copy(newpage, page);
8152 	else
8153 		migrate_page_states(newpage, page);
8154 	return MIGRATEPAGE_SUCCESS;
8155 }
8156 #endif
8157 
8158 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8159 				 unsigned int length)
8160 {
8161 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8162 	struct extent_io_tree *tree = &inode->io_tree;
8163 	struct btrfs_ordered_extent *ordered;
8164 	struct extent_state *cached_state = NULL;
8165 	u64 page_start = page_offset(page);
8166 	u64 page_end = page_start + PAGE_SIZE - 1;
8167 	u64 start;
8168 	u64 end;
8169 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8170 	bool found_ordered = false;
8171 	bool completed_ordered = false;
8172 
8173 	/*
8174 	 * we have the page locked, so new writeback can't start,
8175 	 * and the dirty bit won't be cleared while we are here.
8176 	 *
8177 	 * Wait for IO on this page so that we can safely clear
8178 	 * the PagePrivate2 bit and do ordered accounting
8179 	 */
8180 	wait_on_page_writeback(page);
8181 
8182 	if (offset) {
8183 		btrfs_releasepage(page, GFP_NOFS);
8184 		return;
8185 	}
8186 
8187 	if (!inode_evicting)
8188 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8189 again:
8190 	start = page_start;
8191 	ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8192 	if (ordered) {
8193 		found_ordered = true;
8194 		end = min(page_end,
8195 			  ordered->file_offset + ordered->num_bytes - 1);
8196 		/*
8197 		 * IO on this page will never be started, so we need to account
8198 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8199 		 * here, must leave that up for the ordered extent completion.
8200 		 */
8201 		if (!inode_evicting)
8202 			clear_extent_bit(tree, start, end,
8203 					 EXTENT_DELALLOC |
8204 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8205 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8206 		/*
8207 		 * whoever cleared the private bit is responsible
8208 		 * for the finish_ordered_io
8209 		 */
8210 		if (TestClearPagePrivate2(page)) {
8211 			struct btrfs_ordered_inode_tree *tree;
8212 			u64 new_len;
8213 
8214 			tree = &inode->ordered_tree;
8215 
8216 			spin_lock_irq(&tree->lock);
8217 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8218 			new_len = start - ordered->file_offset;
8219 			if (new_len < ordered->truncated_len)
8220 				ordered->truncated_len = new_len;
8221 			spin_unlock_irq(&tree->lock);
8222 
8223 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8224 							   start,
8225 							   end - start + 1, 1)) {
8226 				btrfs_finish_ordered_io(ordered);
8227 				completed_ordered = true;
8228 			}
8229 		}
8230 		btrfs_put_ordered_extent(ordered);
8231 		if (!inode_evicting) {
8232 			cached_state = NULL;
8233 			lock_extent_bits(tree, start, end,
8234 					 &cached_state);
8235 		}
8236 
8237 		start = end + 1;
8238 		if (start < page_end)
8239 			goto again;
8240 	}
8241 
8242 	/*
8243 	 * Qgroup reserved space handler
8244 	 * Page here will be either
8245 	 * 1) Already written to disk or ordered extent already submitted
8246 	 *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8247 	 *    Qgroup will be handled by its qgroup_record then.
8248 	 *    btrfs_qgroup_free_data() call will do nothing here.
8249 	 *
8250 	 * 2) Not written to disk yet
8251 	 *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8252 	 *    bit of its io_tree, and free the qgroup reserved data space.
8253 	 *    Since the IO will never happen for this page.
8254 	 */
8255 	btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8256 	if (!inode_evicting) {
8257 		bool delete = true;
8258 
8259 		/*
8260 		 * If there's an ordered extent for this range and we have not
8261 		 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set
8262 		 * in the range for the ordered extent completion. We must also
8263 		 * not delete the range, otherwise we would lose that bit (and
8264 		 * any other bits set in the range). Make sure EXTENT_UPTODATE
8265 		 * is cleared if we don't delete, otherwise it can lead to
8266 		 * corruptions if the i_size is extented later.
8267 		 */
8268 		if (found_ordered && !completed_ordered)
8269 			delete = false;
8270 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8271 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8272 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8273 				 delete, &cached_state);
8274 
8275 		__btrfs_releasepage(page, GFP_NOFS);
8276 	}
8277 
8278 	ClearPageChecked(page);
8279 	detach_page_private(page);
8280 }
8281 
8282 /*
8283  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8284  * called from a page fault handler when a page is first dirtied. Hence we must
8285  * be careful to check for EOF conditions here. We set the page up correctly
8286  * for a written page which means we get ENOSPC checking when writing into
8287  * holes and correct delalloc and unwritten extent mapping on filesystems that
8288  * support these features.
8289  *
8290  * We are not allowed to take the i_mutex here so we have to play games to
8291  * protect against truncate races as the page could now be beyond EOF.  Because
8292  * truncate_setsize() writes the inode size before removing pages, once we have
8293  * the page lock we can determine safely if the page is beyond EOF. If it is not
8294  * beyond EOF, then the page is guaranteed safe against truncation until we
8295  * unlock the page.
8296  */
8297 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8298 {
8299 	struct page *page = vmf->page;
8300 	struct inode *inode = file_inode(vmf->vma->vm_file);
8301 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8302 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8303 	struct btrfs_ordered_extent *ordered;
8304 	struct extent_state *cached_state = NULL;
8305 	struct extent_changeset *data_reserved = NULL;
8306 	char *kaddr;
8307 	unsigned long zero_start;
8308 	loff_t size;
8309 	vm_fault_t ret;
8310 	int ret2;
8311 	int reserved = 0;
8312 	u64 reserved_space;
8313 	u64 page_start;
8314 	u64 page_end;
8315 	u64 end;
8316 
8317 	reserved_space = PAGE_SIZE;
8318 
8319 	sb_start_pagefault(inode->i_sb);
8320 	page_start = page_offset(page);
8321 	page_end = page_start + PAGE_SIZE - 1;
8322 	end = page_end;
8323 
8324 	/*
8325 	 * Reserving delalloc space after obtaining the page lock can lead to
8326 	 * deadlock. For example, if a dirty page is locked by this function
8327 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8328 	 * dirty page write out, then the btrfs_writepage() function could
8329 	 * end up waiting indefinitely to get a lock on the page currently
8330 	 * being processed by btrfs_page_mkwrite() function.
8331 	 */
8332 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8333 					    page_start, reserved_space);
8334 	if (!ret2) {
8335 		ret2 = file_update_time(vmf->vma->vm_file);
8336 		reserved = 1;
8337 	}
8338 	if (ret2) {
8339 		ret = vmf_error(ret2);
8340 		if (reserved)
8341 			goto out;
8342 		goto out_noreserve;
8343 	}
8344 
8345 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8346 again:
8347 	lock_page(page);
8348 	size = i_size_read(inode);
8349 
8350 	if ((page->mapping != inode->i_mapping) ||
8351 	    (page_start >= size)) {
8352 		/* page got truncated out from underneath us */
8353 		goto out_unlock;
8354 	}
8355 	wait_on_page_writeback(page);
8356 
8357 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8358 	set_page_extent_mapped(page);
8359 
8360 	/*
8361 	 * we can't set the delalloc bits if there are pending ordered
8362 	 * extents.  Drop our locks and wait for them to finish
8363 	 */
8364 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8365 			PAGE_SIZE);
8366 	if (ordered) {
8367 		unlock_extent_cached(io_tree, page_start, page_end,
8368 				     &cached_state);
8369 		unlock_page(page);
8370 		btrfs_start_ordered_extent(ordered, 1);
8371 		btrfs_put_ordered_extent(ordered);
8372 		goto again;
8373 	}
8374 
8375 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8376 		reserved_space = round_up(size - page_start,
8377 					  fs_info->sectorsize);
8378 		if (reserved_space < PAGE_SIZE) {
8379 			end = page_start + reserved_space - 1;
8380 			btrfs_delalloc_release_space(BTRFS_I(inode),
8381 					data_reserved, page_start,
8382 					PAGE_SIZE - reserved_space, true);
8383 		}
8384 	}
8385 
8386 	/*
8387 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8388 	 * faulted in, but write(2) could also dirty a page and set delalloc
8389 	 * bits, thus in this case for space account reason, we still need to
8390 	 * clear any delalloc bits within this page range since we have to
8391 	 * reserve data&meta space before lock_page() (see above comments).
8392 	 */
8393 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8394 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8395 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8396 
8397 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8398 					&cached_state);
8399 	if (ret2) {
8400 		unlock_extent_cached(io_tree, page_start, page_end,
8401 				     &cached_state);
8402 		ret = VM_FAULT_SIGBUS;
8403 		goto out_unlock;
8404 	}
8405 
8406 	/* page is wholly or partially inside EOF */
8407 	if (page_start + PAGE_SIZE > size)
8408 		zero_start = offset_in_page(size);
8409 	else
8410 		zero_start = PAGE_SIZE;
8411 
8412 	if (zero_start != PAGE_SIZE) {
8413 		kaddr = kmap(page);
8414 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8415 		flush_dcache_page(page);
8416 		kunmap(page);
8417 	}
8418 	ClearPageChecked(page);
8419 	set_page_dirty(page);
8420 	SetPageUptodate(page);
8421 
8422 	BTRFS_I(inode)->last_trans = fs_info->generation;
8423 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8424 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8425 
8426 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8427 
8428 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8429 	sb_end_pagefault(inode->i_sb);
8430 	extent_changeset_free(data_reserved);
8431 	return VM_FAULT_LOCKED;
8432 
8433 out_unlock:
8434 	unlock_page(page);
8435 out:
8436 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8437 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8438 				     reserved_space, (ret != 0));
8439 out_noreserve:
8440 	sb_end_pagefault(inode->i_sb);
8441 	extent_changeset_free(data_reserved);
8442 	return ret;
8443 }
8444 
8445 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8446 {
8447 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8448 	struct btrfs_root *root = BTRFS_I(inode)->root;
8449 	struct btrfs_block_rsv *rsv;
8450 	int ret;
8451 	struct btrfs_trans_handle *trans;
8452 	u64 mask = fs_info->sectorsize - 1;
8453 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8454 
8455 	if (!skip_writeback) {
8456 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8457 					       (u64)-1);
8458 		if (ret)
8459 			return ret;
8460 	}
8461 
8462 	/*
8463 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8464 	 * things going on here:
8465 	 *
8466 	 * 1) We need to reserve space to update our inode.
8467 	 *
8468 	 * 2) We need to have something to cache all the space that is going to
8469 	 * be free'd up by the truncate operation, but also have some slack
8470 	 * space reserved in case it uses space during the truncate (thank you
8471 	 * very much snapshotting).
8472 	 *
8473 	 * And we need these to be separate.  The fact is we can use a lot of
8474 	 * space doing the truncate, and we have no earthly idea how much space
8475 	 * we will use, so we need the truncate reservation to be separate so it
8476 	 * doesn't end up using space reserved for updating the inode.  We also
8477 	 * need to be able to stop the transaction and start a new one, which
8478 	 * means we need to be able to update the inode several times, and we
8479 	 * have no idea of knowing how many times that will be, so we can't just
8480 	 * reserve 1 item for the entirety of the operation, so that has to be
8481 	 * done separately as well.
8482 	 *
8483 	 * So that leaves us with
8484 	 *
8485 	 * 1) rsv - for the truncate reservation, which we will steal from the
8486 	 * transaction reservation.
8487 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8488 	 * updating the inode.
8489 	 */
8490 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8491 	if (!rsv)
8492 		return -ENOMEM;
8493 	rsv->size = min_size;
8494 	rsv->failfast = 1;
8495 
8496 	/*
8497 	 * 1 for the truncate slack space
8498 	 * 1 for updating the inode.
8499 	 */
8500 	trans = btrfs_start_transaction(root, 2);
8501 	if (IS_ERR(trans)) {
8502 		ret = PTR_ERR(trans);
8503 		goto out;
8504 	}
8505 
8506 	/* Migrate the slack space for the truncate to our reserve */
8507 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8508 				      min_size, false);
8509 	BUG_ON(ret);
8510 
8511 	/*
8512 	 * So if we truncate and then write and fsync we normally would just
8513 	 * write the extents that changed, which is a problem if we need to
8514 	 * first truncate that entire inode.  So set this flag so we write out
8515 	 * all of the extents in the inode to the sync log so we're completely
8516 	 * safe.
8517 	 */
8518 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8519 	trans->block_rsv = rsv;
8520 
8521 	while (1) {
8522 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8523 						 inode->i_size,
8524 						 BTRFS_EXTENT_DATA_KEY);
8525 		trans->block_rsv = &fs_info->trans_block_rsv;
8526 		if (ret != -ENOSPC && ret != -EAGAIN)
8527 			break;
8528 
8529 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8530 		if (ret)
8531 			break;
8532 
8533 		btrfs_end_transaction(trans);
8534 		btrfs_btree_balance_dirty(fs_info);
8535 
8536 		trans = btrfs_start_transaction(root, 2);
8537 		if (IS_ERR(trans)) {
8538 			ret = PTR_ERR(trans);
8539 			trans = NULL;
8540 			break;
8541 		}
8542 
8543 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8544 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8545 					      rsv, min_size, false);
8546 		BUG_ON(ret);	/* shouldn't happen */
8547 		trans->block_rsv = rsv;
8548 	}
8549 
8550 	/*
8551 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8552 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8553 	 * we've truncated everything except the last little bit, and can do
8554 	 * btrfs_truncate_block and then update the disk_i_size.
8555 	 */
8556 	if (ret == NEED_TRUNCATE_BLOCK) {
8557 		btrfs_end_transaction(trans);
8558 		btrfs_btree_balance_dirty(fs_info);
8559 
8560 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8561 		if (ret)
8562 			goto out;
8563 		trans = btrfs_start_transaction(root, 1);
8564 		if (IS_ERR(trans)) {
8565 			ret = PTR_ERR(trans);
8566 			goto out;
8567 		}
8568 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8569 	}
8570 
8571 	if (trans) {
8572 		int ret2;
8573 
8574 		trans->block_rsv = &fs_info->trans_block_rsv;
8575 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8576 		if (ret2 && !ret)
8577 			ret = ret2;
8578 
8579 		ret2 = btrfs_end_transaction(trans);
8580 		if (ret2 && !ret)
8581 			ret = ret2;
8582 		btrfs_btree_balance_dirty(fs_info);
8583 	}
8584 out:
8585 	btrfs_free_block_rsv(fs_info, rsv);
8586 
8587 	return ret;
8588 }
8589 
8590 /*
8591  * create a new subvolume directory/inode (helper for the ioctl).
8592  */
8593 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8594 			     struct btrfs_root *new_root,
8595 			     struct btrfs_root *parent_root,
8596 			     u64 new_dirid)
8597 {
8598 	struct inode *inode;
8599 	int err;
8600 	u64 index = 0;
8601 
8602 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8603 				new_dirid, new_dirid,
8604 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8605 				&index);
8606 	if (IS_ERR(inode))
8607 		return PTR_ERR(inode);
8608 	inode->i_op = &btrfs_dir_inode_operations;
8609 	inode->i_fop = &btrfs_dir_file_operations;
8610 
8611 	set_nlink(inode, 1);
8612 	btrfs_i_size_write(BTRFS_I(inode), 0);
8613 	unlock_new_inode(inode);
8614 
8615 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8616 	if (err)
8617 		btrfs_err(new_root->fs_info,
8618 			  "error inheriting subvolume %llu properties: %d",
8619 			  new_root->root_key.objectid, err);
8620 
8621 	err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8622 
8623 	iput(inode);
8624 	return err;
8625 }
8626 
8627 struct inode *btrfs_alloc_inode(struct super_block *sb)
8628 {
8629 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8630 	struct btrfs_inode *ei;
8631 	struct inode *inode;
8632 
8633 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8634 	if (!ei)
8635 		return NULL;
8636 
8637 	ei->root = NULL;
8638 	ei->generation = 0;
8639 	ei->last_trans = 0;
8640 	ei->last_sub_trans = 0;
8641 	ei->logged_trans = 0;
8642 	ei->delalloc_bytes = 0;
8643 	ei->new_delalloc_bytes = 0;
8644 	ei->defrag_bytes = 0;
8645 	ei->disk_i_size = 0;
8646 	ei->flags = 0;
8647 	ei->csum_bytes = 0;
8648 	ei->index_cnt = (u64)-1;
8649 	ei->dir_index = 0;
8650 	ei->last_unlink_trans = 0;
8651 	ei->last_reflink_trans = 0;
8652 	ei->last_log_commit = 0;
8653 
8654 	spin_lock_init(&ei->lock);
8655 	ei->outstanding_extents = 0;
8656 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8657 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8658 					      BTRFS_BLOCK_RSV_DELALLOC);
8659 	ei->runtime_flags = 0;
8660 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8661 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8662 
8663 	ei->delayed_node = NULL;
8664 
8665 	ei->i_otime.tv_sec = 0;
8666 	ei->i_otime.tv_nsec = 0;
8667 
8668 	inode = &ei->vfs_inode;
8669 	extent_map_tree_init(&ei->extent_tree);
8670 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8671 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8672 			    IO_TREE_INODE_IO_FAILURE, inode);
8673 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8674 			    IO_TREE_INODE_FILE_EXTENT, inode);
8675 	ei->io_tree.track_uptodate = true;
8676 	ei->io_failure_tree.track_uptodate = true;
8677 	atomic_set(&ei->sync_writers, 0);
8678 	mutex_init(&ei->log_mutex);
8679 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8680 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8681 	INIT_LIST_HEAD(&ei->delayed_iput);
8682 	RB_CLEAR_NODE(&ei->rb_node);
8683 
8684 	return inode;
8685 }
8686 
8687 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8688 void btrfs_test_destroy_inode(struct inode *inode)
8689 {
8690 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8691 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8692 }
8693 #endif
8694 
8695 void btrfs_free_inode(struct inode *inode)
8696 {
8697 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8698 }
8699 
8700 void btrfs_destroy_inode(struct inode *vfs_inode)
8701 {
8702 	struct btrfs_ordered_extent *ordered;
8703 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8704 	struct btrfs_root *root = inode->root;
8705 
8706 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8707 	WARN_ON(vfs_inode->i_data.nrpages);
8708 	WARN_ON(inode->block_rsv.reserved);
8709 	WARN_ON(inode->block_rsv.size);
8710 	WARN_ON(inode->outstanding_extents);
8711 	WARN_ON(inode->delalloc_bytes);
8712 	WARN_ON(inode->new_delalloc_bytes);
8713 	WARN_ON(inode->csum_bytes);
8714 	WARN_ON(inode->defrag_bytes);
8715 
8716 	/*
8717 	 * This can happen where we create an inode, but somebody else also
8718 	 * created the same inode and we need to destroy the one we already
8719 	 * created.
8720 	 */
8721 	if (!root)
8722 		return;
8723 
8724 	while (1) {
8725 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8726 		if (!ordered)
8727 			break;
8728 		else {
8729 			btrfs_err(root->fs_info,
8730 				  "found ordered extent %llu %llu on inode cleanup",
8731 				  ordered->file_offset, ordered->num_bytes);
8732 			btrfs_remove_ordered_extent(inode, ordered);
8733 			btrfs_put_ordered_extent(ordered);
8734 			btrfs_put_ordered_extent(ordered);
8735 		}
8736 	}
8737 	btrfs_qgroup_check_reserved_leak(inode);
8738 	inode_tree_del(inode);
8739 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8740 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8741 	btrfs_put_root(inode->root);
8742 }
8743 
8744 int btrfs_drop_inode(struct inode *inode)
8745 {
8746 	struct btrfs_root *root = BTRFS_I(inode)->root;
8747 
8748 	if (root == NULL)
8749 		return 1;
8750 
8751 	/* the snap/subvol tree is on deleting */
8752 	if (btrfs_root_refs(&root->root_item) == 0)
8753 		return 1;
8754 	else
8755 		return generic_drop_inode(inode);
8756 }
8757 
8758 static void init_once(void *foo)
8759 {
8760 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8761 
8762 	inode_init_once(&ei->vfs_inode);
8763 }
8764 
8765 void __cold btrfs_destroy_cachep(void)
8766 {
8767 	/*
8768 	 * Make sure all delayed rcu free inodes are flushed before we
8769 	 * destroy cache.
8770 	 */
8771 	rcu_barrier();
8772 	kmem_cache_destroy(btrfs_inode_cachep);
8773 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8774 	kmem_cache_destroy(btrfs_path_cachep);
8775 	kmem_cache_destroy(btrfs_free_space_cachep);
8776 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8777 }
8778 
8779 int __init btrfs_init_cachep(void)
8780 {
8781 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8782 			sizeof(struct btrfs_inode), 0,
8783 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8784 			init_once);
8785 	if (!btrfs_inode_cachep)
8786 		goto fail;
8787 
8788 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8789 			sizeof(struct btrfs_trans_handle), 0,
8790 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8791 	if (!btrfs_trans_handle_cachep)
8792 		goto fail;
8793 
8794 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8795 			sizeof(struct btrfs_path), 0,
8796 			SLAB_MEM_SPREAD, NULL);
8797 	if (!btrfs_path_cachep)
8798 		goto fail;
8799 
8800 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8801 			sizeof(struct btrfs_free_space), 0,
8802 			SLAB_MEM_SPREAD, NULL);
8803 	if (!btrfs_free_space_cachep)
8804 		goto fail;
8805 
8806 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8807 							PAGE_SIZE, PAGE_SIZE,
8808 							SLAB_RED_ZONE, NULL);
8809 	if (!btrfs_free_space_bitmap_cachep)
8810 		goto fail;
8811 
8812 	return 0;
8813 fail:
8814 	btrfs_destroy_cachep();
8815 	return -ENOMEM;
8816 }
8817 
8818 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8819 			 u32 request_mask, unsigned int flags)
8820 {
8821 	u64 delalloc_bytes;
8822 	u64 inode_bytes;
8823 	struct inode *inode = d_inode(path->dentry);
8824 	u32 blocksize = inode->i_sb->s_blocksize;
8825 	u32 bi_flags = BTRFS_I(inode)->flags;
8826 
8827 	stat->result_mask |= STATX_BTIME;
8828 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8829 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8830 	if (bi_flags & BTRFS_INODE_APPEND)
8831 		stat->attributes |= STATX_ATTR_APPEND;
8832 	if (bi_flags & BTRFS_INODE_COMPRESS)
8833 		stat->attributes |= STATX_ATTR_COMPRESSED;
8834 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8835 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8836 	if (bi_flags & BTRFS_INODE_NODUMP)
8837 		stat->attributes |= STATX_ATTR_NODUMP;
8838 
8839 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8840 				  STATX_ATTR_COMPRESSED |
8841 				  STATX_ATTR_IMMUTABLE |
8842 				  STATX_ATTR_NODUMP);
8843 
8844 	generic_fillattr(inode, stat);
8845 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8846 
8847 	spin_lock(&BTRFS_I(inode)->lock);
8848 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8849 	inode_bytes = inode_get_bytes(inode);
8850 	spin_unlock(&BTRFS_I(inode)->lock);
8851 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8852 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8853 	return 0;
8854 }
8855 
8856 static int btrfs_rename_exchange(struct inode *old_dir,
8857 			      struct dentry *old_dentry,
8858 			      struct inode *new_dir,
8859 			      struct dentry *new_dentry)
8860 {
8861 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8862 	struct btrfs_trans_handle *trans;
8863 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8864 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8865 	struct inode *new_inode = new_dentry->d_inode;
8866 	struct inode *old_inode = old_dentry->d_inode;
8867 	struct timespec64 ctime = current_time(old_inode);
8868 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8869 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8870 	u64 old_idx = 0;
8871 	u64 new_idx = 0;
8872 	int ret;
8873 	int ret2;
8874 	bool root_log_pinned = false;
8875 	bool dest_log_pinned = false;
8876 
8877 	/* we only allow rename subvolume link between subvolumes */
8878 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8879 		return -EXDEV;
8880 
8881 	/* close the race window with snapshot create/destroy ioctl */
8882 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8883 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8884 		down_read(&fs_info->subvol_sem);
8885 
8886 	/*
8887 	 * We want to reserve the absolute worst case amount of items.  So if
8888 	 * both inodes are subvols and we need to unlink them then that would
8889 	 * require 4 item modifications, but if they are both normal inodes it
8890 	 * would require 5 item modifications, so we'll assume their normal
8891 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8892 	 * should cover the worst case number of items we'll modify.
8893 	 */
8894 	trans = btrfs_start_transaction(root, 12);
8895 	if (IS_ERR(trans)) {
8896 		ret = PTR_ERR(trans);
8897 		goto out_notrans;
8898 	}
8899 
8900 	if (dest != root)
8901 		btrfs_record_root_in_trans(trans, dest);
8902 
8903 	/*
8904 	 * We need to find a free sequence number both in the source and
8905 	 * in the destination directory for the exchange.
8906 	 */
8907 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8908 	if (ret)
8909 		goto out_fail;
8910 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8911 	if (ret)
8912 		goto out_fail;
8913 
8914 	BTRFS_I(old_inode)->dir_index = 0ULL;
8915 	BTRFS_I(new_inode)->dir_index = 0ULL;
8916 
8917 	/* Reference for the source. */
8918 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8919 		/* force full log commit if subvolume involved. */
8920 		btrfs_set_log_full_commit(trans);
8921 	} else {
8922 		btrfs_pin_log_trans(root);
8923 		root_log_pinned = true;
8924 		ret = btrfs_insert_inode_ref(trans, dest,
8925 					     new_dentry->d_name.name,
8926 					     new_dentry->d_name.len,
8927 					     old_ino,
8928 					     btrfs_ino(BTRFS_I(new_dir)),
8929 					     old_idx);
8930 		if (ret)
8931 			goto out_fail;
8932 	}
8933 
8934 	/* And now for the dest. */
8935 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8936 		/* force full log commit if subvolume involved. */
8937 		btrfs_set_log_full_commit(trans);
8938 	} else {
8939 		btrfs_pin_log_trans(dest);
8940 		dest_log_pinned = true;
8941 		ret = btrfs_insert_inode_ref(trans, root,
8942 					     old_dentry->d_name.name,
8943 					     old_dentry->d_name.len,
8944 					     new_ino,
8945 					     btrfs_ino(BTRFS_I(old_dir)),
8946 					     new_idx);
8947 		if (ret)
8948 			goto out_fail;
8949 	}
8950 
8951 	/* Update inode version and ctime/mtime. */
8952 	inode_inc_iversion(old_dir);
8953 	inode_inc_iversion(new_dir);
8954 	inode_inc_iversion(old_inode);
8955 	inode_inc_iversion(new_inode);
8956 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8957 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8958 	old_inode->i_ctime = ctime;
8959 	new_inode->i_ctime = ctime;
8960 
8961 	if (old_dentry->d_parent != new_dentry->d_parent) {
8962 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8963 				BTRFS_I(old_inode), 1);
8964 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8965 				BTRFS_I(new_inode), 1);
8966 	}
8967 
8968 	/* src is a subvolume */
8969 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8970 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
8971 	} else { /* src is an inode */
8972 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8973 					   BTRFS_I(old_dentry->d_inode),
8974 					   old_dentry->d_name.name,
8975 					   old_dentry->d_name.len);
8976 		if (!ret)
8977 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8978 	}
8979 	if (ret) {
8980 		btrfs_abort_transaction(trans, ret);
8981 		goto out_fail;
8982 	}
8983 
8984 	/* dest is a subvolume */
8985 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8986 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
8987 	} else { /* dest is an inode */
8988 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8989 					   BTRFS_I(new_dentry->d_inode),
8990 					   new_dentry->d_name.name,
8991 					   new_dentry->d_name.len);
8992 		if (!ret)
8993 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8994 	}
8995 	if (ret) {
8996 		btrfs_abort_transaction(trans, ret);
8997 		goto out_fail;
8998 	}
8999 
9000 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9001 			     new_dentry->d_name.name,
9002 			     new_dentry->d_name.len, 0, old_idx);
9003 	if (ret) {
9004 		btrfs_abort_transaction(trans, ret);
9005 		goto out_fail;
9006 	}
9007 
9008 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9009 			     old_dentry->d_name.name,
9010 			     old_dentry->d_name.len, 0, new_idx);
9011 	if (ret) {
9012 		btrfs_abort_transaction(trans, ret);
9013 		goto out_fail;
9014 	}
9015 
9016 	if (old_inode->i_nlink == 1)
9017 		BTRFS_I(old_inode)->dir_index = old_idx;
9018 	if (new_inode->i_nlink == 1)
9019 		BTRFS_I(new_inode)->dir_index = new_idx;
9020 
9021 	if (root_log_pinned) {
9022 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9023 				   new_dentry->d_parent);
9024 		btrfs_end_log_trans(root);
9025 		root_log_pinned = false;
9026 	}
9027 	if (dest_log_pinned) {
9028 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9029 				   old_dentry->d_parent);
9030 		btrfs_end_log_trans(dest);
9031 		dest_log_pinned = false;
9032 	}
9033 out_fail:
9034 	/*
9035 	 * If we have pinned a log and an error happened, we unpin tasks
9036 	 * trying to sync the log and force them to fallback to a transaction
9037 	 * commit if the log currently contains any of the inodes involved in
9038 	 * this rename operation (to ensure we do not persist a log with an
9039 	 * inconsistent state for any of these inodes or leading to any
9040 	 * inconsistencies when replayed). If the transaction was aborted, the
9041 	 * abortion reason is propagated to userspace when attempting to commit
9042 	 * the transaction. If the log does not contain any of these inodes, we
9043 	 * allow the tasks to sync it.
9044 	 */
9045 	if (ret && (root_log_pinned || dest_log_pinned)) {
9046 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9047 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9048 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9049 		    (new_inode &&
9050 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9051 			btrfs_set_log_full_commit(trans);
9052 
9053 		if (root_log_pinned) {
9054 			btrfs_end_log_trans(root);
9055 			root_log_pinned = false;
9056 		}
9057 		if (dest_log_pinned) {
9058 			btrfs_end_log_trans(dest);
9059 			dest_log_pinned = false;
9060 		}
9061 	}
9062 	ret2 = btrfs_end_transaction(trans);
9063 	ret = ret ? ret : ret2;
9064 out_notrans:
9065 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9066 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9067 		up_read(&fs_info->subvol_sem);
9068 
9069 	return ret;
9070 }
9071 
9072 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9073 				     struct btrfs_root *root,
9074 				     struct inode *dir,
9075 				     struct dentry *dentry)
9076 {
9077 	int ret;
9078 	struct inode *inode;
9079 	u64 objectid;
9080 	u64 index;
9081 
9082 	ret = btrfs_find_free_objectid(root, &objectid);
9083 	if (ret)
9084 		return ret;
9085 
9086 	inode = btrfs_new_inode(trans, root, dir,
9087 				dentry->d_name.name,
9088 				dentry->d_name.len,
9089 				btrfs_ino(BTRFS_I(dir)),
9090 				objectid,
9091 				S_IFCHR | WHITEOUT_MODE,
9092 				&index);
9093 
9094 	if (IS_ERR(inode)) {
9095 		ret = PTR_ERR(inode);
9096 		return ret;
9097 	}
9098 
9099 	inode->i_op = &btrfs_special_inode_operations;
9100 	init_special_inode(inode, inode->i_mode,
9101 		WHITEOUT_DEV);
9102 
9103 	ret = btrfs_init_inode_security(trans, inode, dir,
9104 				&dentry->d_name);
9105 	if (ret)
9106 		goto out;
9107 
9108 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9109 				BTRFS_I(inode), 0, index);
9110 	if (ret)
9111 		goto out;
9112 
9113 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9114 out:
9115 	unlock_new_inode(inode);
9116 	if (ret)
9117 		inode_dec_link_count(inode);
9118 	iput(inode);
9119 
9120 	return ret;
9121 }
9122 
9123 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9124 			   struct inode *new_dir, struct dentry *new_dentry,
9125 			   unsigned int flags)
9126 {
9127 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9128 	struct btrfs_trans_handle *trans;
9129 	unsigned int trans_num_items;
9130 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9131 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9132 	struct inode *new_inode = d_inode(new_dentry);
9133 	struct inode *old_inode = d_inode(old_dentry);
9134 	u64 index = 0;
9135 	int ret;
9136 	int ret2;
9137 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9138 	bool log_pinned = false;
9139 
9140 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9141 		return -EPERM;
9142 
9143 	/* we only allow rename subvolume link between subvolumes */
9144 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9145 		return -EXDEV;
9146 
9147 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9148 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9149 		return -ENOTEMPTY;
9150 
9151 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9152 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9153 		return -ENOTEMPTY;
9154 
9155 
9156 	/* check for collisions, even if the  name isn't there */
9157 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9158 			     new_dentry->d_name.name,
9159 			     new_dentry->d_name.len);
9160 
9161 	if (ret) {
9162 		if (ret == -EEXIST) {
9163 			/* we shouldn't get
9164 			 * eexist without a new_inode */
9165 			if (WARN_ON(!new_inode)) {
9166 				return ret;
9167 			}
9168 		} else {
9169 			/* maybe -EOVERFLOW */
9170 			return ret;
9171 		}
9172 	}
9173 	ret = 0;
9174 
9175 	/*
9176 	 * we're using rename to replace one file with another.  Start IO on it
9177 	 * now so  we don't add too much work to the end of the transaction
9178 	 */
9179 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9180 		filemap_flush(old_inode->i_mapping);
9181 
9182 	/* close the racy window with snapshot create/destroy ioctl */
9183 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9184 		down_read(&fs_info->subvol_sem);
9185 	/*
9186 	 * We want to reserve the absolute worst case amount of items.  So if
9187 	 * both inodes are subvols and we need to unlink them then that would
9188 	 * require 4 item modifications, but if they are both normal inodes it
9189 	 * would require 5 item modifications, so we'll assume they are normal
9190 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9191 	 * should cover the worst case number of items we'll modify.
9192 	 * If our rename has the whiteout flag, we need more 5 units for the
9193 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9194 	 * when selinux is enabled).
9195 	 */
9196 	trans_num_items = 11;
9197 	if (flags & RENAME_WHITEOUT)
9198 		trans_num_items += 5;
9199 	trans = btrfs_start_transaction(root, trans_num_items);
9200 	if (IS_ERR(trans)) {
9201 		ret = PTR_ERR(trans);
9202 		goto out_notrans;
9203 	}
9204 
9205 	if (dest != root)
9206 		btrfs_record_root_in_trans(trans, dest);
9207 
9208 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9209 	if (ret)
9210 		goto out_fail;
9211 
9212 	BTRFS_I(old_inode)->dir_index = 0ULL;
9213 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9214 		/* force full log commit if subvolume involved. */
9215 		btrfs_set_log_full_commit(trans);
9216 	} else {
9217 		btrfs_pin_log_trans(root);
9218 		log_pinned = true;
9219 		ret = btrfs_insert_inode_ref(trans, dest,
9220 					     new_dentry->d_name.name,
9221 					     new_dentry->d_name.len,
9222 					     old_ino,
9223 					     btrfs_ino(BTRFS_I(new_dir)), index);
9224 		if (ret)
9225 			goto out_fail;
9226 	}
9227 
9228 	inode_inc_iversion(old_dir);
9229 	inode_inc_iversion(new_dir);
9230 	inode_inc_iversion(old_inode);
9231 	old_dir->i_ctime = old_dir->i_mtime =
9232 	new_dir->i_ctime = new_dir->i_mtime =
9233 	old_inode->i_ctime = current_time(old_dir);
9234 
9235 	if (old_dentry->d_parent != new_dentry->d_parent)
9236 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9237 				BTRFS_I(old_inode), 1);
9238 
9239 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9240 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9241 	} else {
9242 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9243 					BTRFS_I(d_inode(old_dentry)),
9244 					old_dentry->d_name.name,
9245 					old_dentry->d_name.len);
9246 		if (!ret)
9247 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9248 	}
9249 	if (ret) {
9250 		btrfs_abort_transaction(trans, ret);
9251 		goto out_fail;
9252 	}
9253 
9254 	if (new_inode) {
9255 		inode_inc_iversion(new_inode);
9256 		new_inode->i_ctime = current_time(new_inode);
9257 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9258 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9259 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9260 			BUG_ON(new_inode->i_nlink == 0);
9261 		} else {
9262 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9263 						 BTRFS_I(d_inode(new_dentry)),
9264 						 new_dentry->d_name.name,
9265 						 new_dentry->d_name.len);
9266 		}
9267 		if (!ret && new_inode->i_nlink == 0)
9268 			ret = btrfs_orphan_add(trans,
9269 					BTRFS_I(d_inode(new_dentry)));
9270 		if (ret) {
9271 			btrfs_abort_transaction(trans, ret);
9272 			goto out_fail;
9273 		}
9274 	}
9275 
9276 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9277 			     new_dentry->d_name.name,
9278 			     new_dentry->d_name.len, 0, index);
9279 	if (ret) {
9280 		btrfs_abort_transaction(trans, ret);
9281 		goto out_fail;
9282 	}
9283 
9284 	if (old_inode->i_nlink == 1)
9285 		BTRFS_I(old_inode)->dir_index = index;
9286 
9287 	if (log_pinned) {
9288 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9289 				   new_dentry->d_parent);
9290 		btrfs_end_log_trans(root);
9291 		log_pinned = false;
9292 	}
9293 
9294 	if (flags & RENAME_WHITEOUT) {
9295 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9296 						old_dentry);
9297 
9298 		if (ret) {
9299 			btrfs_abort_transaction(trans, ret);
9300 			goto out_fail;
9301 		}
9302 	}
9303 out_fail:
9304 	/*
9305 	 * If we have pinned the log and an error happened, we unpin tasks
9306 	 * trying to sync the log and force them to fallback to a transaction
9307 	 * commit if the log currently contains any of the inodes involved in
9308 	 * this rename operation (to ensure we do not persist a log with an
9309 	 * inconsistent state for any of these inodes or leading to any
9310 	 * inconsistencies when replayed). If the transaction was aborted, the
9311 	 * abortion reason is propagated to userspace when attempting to commit
9312 	 * the transaction. If the log does not contain any of these inodes, we
9313 	 * allow the tasks to sync it.
9314 	 */
9315 	if (ret && log_pinned) {
9316 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9317 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9318 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9319 		    (new_inode &&
9320 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9321 			btrfs_set_log_full_commit(trans);
9322 
9323 		btrfs_end_log_trans(root);
9324 		log_pinned = false;
9325 	}
9326 	ret2 = btrfs_end_transaction(trans);
9327 	ret = ret ? ret : ret2;
9328 out_notrans:
9329 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9330 		up_read(&fs_info->subvol_sem);
9331 
9332 	return ret;
9333 }
9334 
9335 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9336 			 struct inode *new_dir, struct dentry *new_dentry,
9337 			 unsigned int flags)
9338 {
9339 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9340 		return -EINVAL;
9341 
9342 	if (flags & RENAME_EXCHANGE)
9343 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9344 					  new_dentry);
9345 
9346 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9347 }
9348 
9349 struct btrfs_delalloc_work {
9350 	struct inode *inode;
9351 	struct completion completion;
9352 	struct list_head list;
9353 	struct btrfs_work work;
9354 };
9355 
9356 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9357 {
9358 	struct btrfs_delalloc_work *delalloc_work;
9359 	struct inode *inode;
9360 
9361 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9362 				     work);
9363 	inode = delalloc_work->inode;
9364 	filemap_flush(inode->i_mapping);
9365 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9366 				&BTRFS_I(inode)->runtime_flags))
9367 		filemap_flush(inode->i_mapping);
9368 
9369 	iput(inode);
9370 	complete(&delalloc_work->completion);
9371 }
9372 
9373 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9374 {
9375 	struct btrfs_delalloc_work *work;
9376 
9377 	work = kmalloc(sizeof(*work), GFP_NOFS);
9378 	if (!work)
9379 		return NULL;
9380 
9381 	init_completion(&work->completion);
9382 	INIT_LIST_HEAD(&work->list);
9383 	work->inode = inode;
9384 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9385 
9386 	return work;
9387 }
9388 
9389 /*
9390  * some fairly slow code that needs optimization. This walks the list
9391  * of all the inodes with pending delalloc and forces them to disk.
9392  */
9393 static int start_delalloc_inodes(struct btrfs_root *root,
9394 				 struct writeback_control *wbc, bool snapshot,
9395 				 bool in_reclaim_context)
9396 {
9397 	struct btrfs_inode *binode;
9398 	struct inode *inode;
9399 	struct btrfs_delalloc_work *work, *next;
9400 	struct list_head works;
9401 	struct list_head splice;
9402 	int ret = 0;
9403 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9404 
9405 	INIT_LIST_HEAD(&works);
9406 	INIT_LIST_HEAD(&splice);
9407 
9408 	mutex_lock(&root->delalloc_mutex);
9409 	spin_lock(&root->delalloc_lock);
9410 	list_splice_init(&root->delalloc_inodes, &splice);
9411 	while (!list_empty(&splice)) {
9412 		binode = list_entry(splice.next, struct btrfs_inode,
9413 				    delalloc_inodes);
9414 
9415 		list_move_tail(&binode->delalloc_inodes,
9416 			       &root->delalloc_inodes);
9417 
9418 		if (in_reclaim_context &&
9419 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9420 			continue;
9421 
9422 		inode = igrab(&binode->vfs_inode);
9423 		if (!inode) {
9424 			cond_resched_lock(&root->delalloc_lock);
9425 			continue;
9426 		}
9427 		spin_unlock(&root->delalloc_lock);
9428 
9429 		if (snapshot)
9430 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9431 				&binode->runtime_flags);
9432 		if (full_flush) {
9433 			work = btrfs_alloc_delalloc_work(inode);
9434 			if (!work) {
9435 				iput(inode);
9436 				ret = -ENOMEM;
9437 				goto out;
9438 			}
9439 			list_add_tail(&work->list, &works);
9440 			btrfs_queue_work(root->fs_info->flush_workers,
9441 					 &work->work);
9442 		} else {
9443 			ret = sync_inode(inode, wbc);
9444 			if (!ret &&
9445 			    test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9446 				     &BTRFS_I(inode)->runtime_flags))
9447 				ret = sync_inode(inode, wbc);
9448 			btrfs_add_delayed_iput(inode);
9449 			if (ret || wbc->nr_to_write <= 0)
9450 				goto out;
9451 		}
9452 		cond_resched();
9453 		spin_lock(&root->delalloc_lock);
9454 	}
9455 	spin_unlock(&root->delalloc_lock);
9456 
9457 out:
9458 	list_for_each_entry_safe(work, next, &works, list) {
9459 		list_del_init(&work->list);
9460 		wait_for_completion(&work->completion);
9461 		kfree(work);
9462 	}
9463 
9464 	if (!list_empty(&splice)) {
9465 		spin_lock(&root->delalloc_lock);
9466 		list_splice_tail(&splice, &root->delalloc_inodes);
9467 		spin_unlock(&root->delalloc_lock);
9468 	}
9469 	mutex_unlock(&root->delalloc_mutex);
9470 	return ret;
9471 }
9472 
9473 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9474 {
9475 	struct writeback_control wbc = {
9476 		.nr_to_write = LONG_MAX,
9477 		.sync_mode = WB_SYNC_NONE,
9478 		.range_start = 0,
9479 		.range_end = LLONG_MAX,
9480 	};
9481 	struct btrfs_fs_info *fs_info = root->fs_info;
9482 
9483 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9484 		return -EROFS;
9485 
9486 	return start_delalloc_inodes(root, &wbc, true, false);
9487 }
9488 
9489 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr,
9490 			       bool in_reclaim_context)
9491 {
9492 	struct writeback_control wbc = {
9493 		.nr_to_write = (nr == U64_MAX) ? LONG_MAX : (unsigned long)nr,
9494 		.sync_mode = WB_SYNC_NONE,
9495 		.range_start = 0,
9496 		.range_end = LLONG_MAX,
9497 	};
9498 	struct btrfs_root *root;
9499 	struct list_head splice;
9500 	int ret;
9501 
9502 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9503 		return -EROFS;
9504 
9505 	INIT_LIST_HEAD(&splice);
9506 
9507 	mutex_lock(&fs_info->delalloc_root_mutex);
9508 	spin_lock(&fs_info->delalloc_root_lock);
9509 	list_splice_init(&fs_info->delalloc_roots, &splice);
9510 	while (!list_empty(&splice) && nr) {
9511 		/*
9512 		 * Reset nr_to_write here so we know that we're doing a full
9513 		 * flush.
9514 		 */
9515 		if (nr == U64_MAX)
9516 			wbc.nr_to_write = LONG_MAX;
9517 
9518 		root = list_first_entry(&splice, struct btrfs_root,
9519 					delalloc_root);
9520 		root = btrfs_grab_root(root);
9521 		BUG_ON(!root);
9522 		list_move_tail(&root->delalloc_root,
9523 			       &fs_info->delalloc_roots);
9524 		spin_unlock(&fs_info->delalloc_root_lock);
9525 
9526 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9527 		btrfs_put_root(root);
9528 		if (ret < 0 || wbc.nr_to_write <= 0)
9529 			goto out;
9530 		spin_lock(&fs_info->delalloc_root_lock);
9531 	}
9532 	spin_unlock(&fs_info->delalloc_root_lock);
9533 
9534 	ret = 0;
9535 out:
9536 	if (!list_empty(&splice)) {
9537 		spin_lock(&fs_info->delalloc_root_lock);
9538 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9539 		spin_unlock(&fs_info->delalloc_root_lock);
9540 	}
9541 	mutex_unlock(&fs_info->delalloc_root_mutex);
9542 	return ret;
9543 }
9544 
9545 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9546 			 const char *symname)
9547 {
9548 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9549 	struct btrfs_trans_handle *trans;
9550 	struct btrfs_root *root = BTRFS_I(dir)->root;
9551 	struct btrfs_path *path;
9552 	struct btrfs_key key;
9553 	struct inode *inode = NULL;
9554 	int err;
9555 	u64 objectid;
9556 	u64 index = 0;
9557 	int name_len;
9558 	int datasize;
9559 	unsigned long ptr;
9560 	struct btrfs_file_extent_item *ei;
9561 	struct extent_buffer *leaf;
9562 
9563 	name_len = strlen(symname);
9564 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9565 		return -ENAMETOOLONG;
9566 
9567 	/*
9568 	 * 2 items for inode item and ref
9569 	 * 2 items for dir items
9570 	 * 1 item for updating parent inode item
9571 	 * 1 item for the inline extent item
9572 	 * 1 item for xattr if selinux is on
9573 	 */
9574 	trans = btrfs_start_transaction(root, 7);
9575 	if (IS_ERR(trans))
9576 		return PTR_ERR(trans);
9577 
9578 	err = btrfs_find_free_objectid(root, &objectid);
9579 	if (err)
9580 		goto out_unlock;
9581 
9582 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9583 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9584 				objectid, S_IFLNK|S_IRWXUGO, &index);
9585 	if (IS_ERR(inode)) {
9586 		err = PTR_ERR(inode);
9587 		inode = NULL;
9588 		goto out_unlock;
9589 	}
9590 
9591 	/*
9592 	* If the active LSM wants to access the inode during
9593 	* d_instantiate it needs these. Smack checks to see
9594 	* if the filesystem supports xattrs by looking at the
9595 	* ops vector.
9596 	*/
9597 	inode->i_fop = &btrfs_file_operations;
9598 	inode->i_op = &btrfs_file_inode_operations;
9599 	inode->i_mapping->a_ops = &btrfs_aops;
9600 
9601 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9602 	if (err)
9603 		goto out_unlock;
9604 
9605 	path = btrfs_alloc_path();
9606 	if (!path) {
9607 		err = -ENOMEM;
9608 		goto out_unlock;
9609 	}
9610 	key.objectid = btrfs_ino(BTRFS_I(inode));
9611 	key.offset = 0;
9612 	key.type = BTRFS_EXTENT_DATA_KEY;
9613 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9614 	err = btrfs_insert_empty_item(trans, root, path, &key,
9615 				      datasize);
9616 	if (err) {
9617 		btrfs_free_path(path);
9618 		goto out_unlock;
9619 	}
9620 	leaf = path->nodes[0];
9621 	ei = btrfs_item_ptr(leaf, path->slots[0],
9622 			    struct btrfs_file_extent_item);
9623 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9624 	btrfs_set_file_extent_type(leaf, ei,
9625 				   BTRFS_FILE_EXTENT_INLINE);
9626 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9627 	btrfs_set_file_extent_compression(leaf, ei, 0);
9628 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9629 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9630 
9631 	ptr = btrfs_file_extent_inline_start(ei);
9632 	write_extent_buffer(leaf, symname, ptr, name_len);
9633 	btrfs_mark_buffer_dirty(leaf);
9634 	btrfs_free_path(path);
9635 
9636 	inode->i_op = &btrfs_symlink_inode_operations;
9637 	inode_nohighmem(inode);
9638 	inode_set_bytes(inode, name_len);
9639 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9640 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9641 	/*
9642 	 * Last step, add directory indexes for our symlink inode. This is the
9643 	 * last step to avoid extra cleanup of these indexes if an error happens
9644 	 * elsewhere above.
9645 	 */
9646 	if (!err)
9647 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9648 				BTRFS_I(inode), 0, index);
9649 	if (err)
9650 		goto out_unlock;
9651 
9652 	d_instantiate_new(dentry, inode);
9653 
9654 out_unlock:
9655 	btrfs_end_transaction(trans);
9656 	if (err && inode) {
9657 		inode_dec_link_count(inode);
9658 		discard_new_inode(inode);
9659 	}
9660 	btrfs_btree_balance_dirty(fs_info);
9661 	return err;
9662 }
9663 
9664 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9665 				       struct btrfs_trans_handle *trans_in,
9666 				       struct btrfs_inode *inode,
9667 				       struct btrfs_key *ins,
9668 				       u64 file_offset)
9669 {
9670 	struct btrfs_file_extent_item stack_fi;
9671 	struct btrfs_replace_extent_info extent_info;
9672 	struct btrfs_trans_handle *trans = trans_in;
9673 	struct btrfs_path *path;
9674 	u64 start = ins->objectid;
9675 	u64 len = ins->offset;
9676 	int ret;
9677 
9678 	memset(&stack_fi, 0, sizeof(stack_fi));
9679 
9680 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9681 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9682 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9683 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9684 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9685 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9686 	/* Encryption and other encoding is reserved and all 0 */
9687 
9688 	ret = btrfs_qgroup_release_data(inode, file_offset, len);
9689 	if (ret < 0)
9690 		return ERR_PTR(ret);
9691 
9692 	if (trans) {
9693 		ret = insert_reserved_file_extent(trans, inode,
9694 						  file_offset, &stack_fi,
9695 						  true, ret);
9696 		if (ret)
9697 			return ERR_PTR(ret);
9698 		return trans;
9699 	}
9700 
9701 	extent_info.disk_offset = start;
9702 	extent_info.disk_len = len;
9703 	extent_info.data_offset = 0;
9704 	extent_info.data_len = len;
9705 	extent_info.file_offset = file_offset;
9706 	extent_info.extent_buf = (char *)&stack_fi;
9707 	extent_info.is_new_extent = true;
9708 	extent_info.qgroup_reserved = ret;
9709 	extent_info.insertions = 0;
9710 
9711 	path = btrfs_alloc_path();
9712 	if (!path)
9713 		return ERR_PTR(-ENOMEM);
9714 
9715 	ret = btrfs_replace_file_extents(&inode->vfs_inode, path, file_offset,
9716 				     file_offset + len - 1, &extent_info,
9717 				     &trans);
9718 	btrfs_free_path(path);
9719 	if (ret)
9720 		return ERR_PTR(ret);
9721 
9722 	return trans;
9723 }
9724 
9725 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9726 				       u64 start, u64 num_bytes, u64 min_size,
9727 				       loff_t actual_len, u64 *alloc_hint,
9728 				       struct btrfs_trans_handle *trans)
9729 {
9730 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9731 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9732 	struct extent_map *em;
9733 	struct btrfs_root *root = BTRFS_I(inode)->root;
9734 	struct btrfs_key ins;
9735 	u64 cur_offset = start;
9736 	u64 clear_offset = start;
9737 	u64 i_size;
9738 	u64 cur_bytes;
9739 	u64 last_alloc = (u64)-1;
9740 	int ret = 0;
9741 	bool own_trans = true;
9742 	u64 end = start + num_bytes - 1;
9743 
9744 	if (trans)
9745 		own_trans = false;
9746 	while (num_bytes > 0) {
9747 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9748 		cur_bytes = max(cur_bytes, min_size);
9749 		/*
9750 		 * If we are severely fragmented we could end up with really
9751 		 * small allocations, so if the allocator is returning small
9752 		 * chunks lets make its job easier by only searching for those
9753 		 * sized chunks.
9754 		 */
9755 		cur_bytes = min(cur_bytes, last_alloc);
9756 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9757 				min_size, 0, *alloc_hint, &ins, 1, 0);
9758 		if (ret)
9759 			break;
9760 
9761 		/*
9762 		 * We've reserved this space, and thus converted it from
9763 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9764 		 * from here on out we will only need to clear our reservation
9765 		 * for the remaining unreserved area, so advance our
9766 		 * clear_offset by our extent size.
9767 		 */
9768 		clear_offset += ins.offset;
9769 
9770 		last_alloc = ins.offset;
9771 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9772 						    &ins, cur_offset);
9773 		/*
9774 		 * Now that we inserted the prealloc extent we can finally
9775 		 * decrement the number of reservations in the block group.
9776 		 * If we did it before, we could race with relocation and have
9777 		 * relocation miss the reserved extent, making it fail later.
9778 		 */
9779 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9780 		if (IS_ERR(trans)) {
9781 			ret = PTR_ERR(trans);
9782 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9783 						   ins.offset, 0);
9784 			break;
9785 		}
9786 
9787 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9788 					cur_offset + ins.offset -1, 0);
9789 
9790 		em = alloc_extent_map();
9791 		if (!em) {
9792 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9793 				&BTRFS_I(inode)->runtime_flags);
9794 			goto next;
9795 		}
9796 
9797 		em->start = cur_offset;
9798 		em->orig_start = cur_offset;
9799 		em->len = ins.offset;
9800 		em->block_start = ins.objectid;
9801 		em->block_len = ins.offset;
9802 		em->orig_block_len = ins.offset;
9803 		em->ram_bytes = ins.offset;
9804 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9805 		em->generation = trans->transid;
9806 
9807 		while (1) {
9808 			write_lock(&em_tree->lock);
9809 			ret = add_extent_mapping(em_tree, em, 1);
9810 			write_unlock(&em_tree->lock);
9811 			if (ret != -EEXIST)
9812 				break;
9813 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9814 						cur_offset + ins.offset - 1,
9815 						0);
9816 		}
9817 		free_extent_map(em);
9818 next:
9819 		num_bytes -= ins.offset;
9820 		cur_offset += ins.offset;
9821 		*alloc_hint = ins.objectid + ins.offset;
9822 
9823 		inode_inc_iversion(inode);
9824 		inode->i_ctime = current_time(inode);
9825 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9826 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9827 		    (actual_len > inode->i_size) &&
9828 		    (cur_offset > inode->i_size)) {
9829 			if (cur_offset > actual_len)
9830 				i_size = actual_len;
9831 			else
9832 				i_size = cur_offset;
9833 			i_size_write(inode, i_size);
9834 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9835 		}
9836 
9837 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9838 
9839 		if (ret) {
9840 			btrfs_abort_transaction(trans, ret);
9841 			if (own_trans)
9842 				btrfs_end_transaction(trans);
9843 			break;
9844 		}
9845 
9846 		if (own_trans) {
9847 			btrfs_end_transaction(trans);
9848 			trans = NULL;
9849 		}
9850 	}
9851 	if (clear_offset < end)
9852 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9853 			end - clear_offset + 1);
9854 	return ret;
9855 }
9856 
9857 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9858 			      u64 start, u64 num_bytes, u64 min_size,
9859 			      loff_t actual_len, u64 *alloc_hint)
9860 {
9861 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9862 					   min_size, actual_len, alloc_hint,
9863 					   NULL);
9864 }
9865 
9866 int btrfs_prealloc_file_range_trans(struct inode *inode,
9867 				    struct btrfs_trans_handle *trans, int mode,
9868 				    u64 start, u64 num_bytes, u64 min_size,
9869 				    loff_t actual_len, u64 *alloc_hint)
9870 {
9871 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9872 					   min_size, actual_len, alloc_hint, trans);
9873 }
9874 
9875 static int btrfs_set_page_dirty(struct page *page)
9876 {
9877 	return __set_page_dirty_nobuffers(page);
9878 }
9879 
9880 static int btrfs_permission(struct inode *inode, int mask)
9881 {
9882 	struct btrfs_root *root = BTRFS_I(inode)->root;
9883 	umode_t mode = inode->i_mode;
9884 
9885 	if (mask & MAY_WRITE &&
9886 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9887 		if (btrfs_root_readonly(root))
9888 			return -EROFS;
9889 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9890 			return -EACCES;
9891 	}
9892 	return generic_permission(inode, mask);
9893 }
9894 
9895 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9896 {
9897 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9898 	struct btrfs_trans_handle *trans;
9899 	struct btrfs_root *root = BTRFS_I(dir)->root;
9900 	struct inode *inode = NULL;
9901 	u64 objectid;
9902 	u64 index;
9903 	int ret = 0;
9904 
9905 	/*
9906 	 * 5 units required for adding orphan entry
9907 	 */
9908 	trans = btrfs_start_transaction(root, 5);
9909 	if (IS_ERR(trans))
9910 		return PTR_ERR(trans);
9911 
9912 	ret = btrfs_find_free_objectid(root, &objectid);
9913 	if (ret)
9914 		goto out;
9915 
9916 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9917 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9918 	if (IS_ERR(inode)) {
9919 		ret = PTR_ERR(inode);
9920 		inode = NULL;
9921 		goto out;
9922 	}
9923 
9924 	inode->i_fop = &btrfs_file_operations;
9925 	inode->i_op = &btrfs_file_inode_operations;
9926 
9927 	inode->i_mapping->a_ops = &btrfs_aops;
9928 
9929 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9930 	if (ret)
9931 		goto out;
9932 
9933 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9934 	if (ret)
9935 		goto out;
9936 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9937 	if (ret)
9938 		goto out;
9939 
9940 	/*
9941 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9942 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9943 	 * through:
9944 	 *
9945 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9946 	 */
9947 	set_nlink(inode, 1);
9948 	d_tmpfile(dentry, inode);
9949 	unlock_new_inode(inode);
9950 	mark_inode_dirty(inode);
9951 out:
9952 	btrfs_end_transaction(trans);
9953 	if (ret && inode)
9954 		discard_new_inode(inode);
9955 	btrfs_btree_balance_dirty(fs_info);
9956 	return ret;
9957 }
9958 
9959 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
9960 {
9961 	struct inode *inode = tree->private_data;
9962 	unsigned long index = start >> PAGE_SHIFT;
9963 	unsigned long end_index = end >> PAGE_SHIFT;
9964 	struct page *page;
9965 
9966 	while (index <= end_index) {
9967 		page = find_get_page(inode->i_mapping, index);
9968 		ASSERT(page); /* Pages should be in the extent_io_tree */
9969 		set_page_writeback(page);
9970 		put_page(page);
9971 		index++;
9972 	}
9973 }
9974 
9975 #ifdef CONFIG_SWAP
9976 /*
9977  * Add an entry indicating a block group or device which is pinned by a
9978  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9979  * negative errno on failure.
9980  */
9981 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9982 				  bool is_block_group)
9983 {
9984 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9985 	struct btrfs_swapfile_pin *sp, *entry;
9986 	struct rb_node **p;
9987 	struct rb_node *parent = NULL;
9988 
9989 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9990 	if (!sp)
9991 		return -ENOMEM;
9992 	sp->ptr = ptr;
9993 	sp->inode = inode;
9994 	sp->is_block_group = is_block_group;
9995 
9996 	spin_lock(&fs_info->swapfile_pins_lock);
9997 	p = &fs_info->swapfile_pins.rb_node;
9998 	while (*p) {
9999 		parent = *p;
10000 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10001 		if (sp->ptr < entry->ptr ||
10002 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10003 			p = &(*p)->rb_left;
10004 		} else if (sp->ptr > entry->ptr ||
10005 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10006 			p = &(*p)->rb_right;
10007 		} else {
10008 			spin_unlock(&fs_info->swapfile_pins_lock);
10009 			kfree(sp);
10010 			return 1;
10011 		}
10012 	}
10013 	rb_link_node(&sp->node, parent, p);
10014 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10015 	spin_unlock(&fs_info->swapfile_pins_lock);
10016 	return 0;
10017 }
10018 
10019 /* Free all of the entries pinned by this swapfile. */
10020 static void btrfs_free_swapfile_pins(struct inode *inode)
10021 {
10022 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10023 	struct btrfs_swapfile_pin *sp;
10024 	struct rb_node *node, *next;
10025 
10026 	spin_lock(&fs_info->swapfile_pins_lock);
10027 	node = rb_first(&fs_info->swapfile_pins);
10028 	while (node) {
10029 		next = rb_next(node);
10030 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10031 		if (sp->inode == inode) {
10032 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10033 			if (sp->is_block_group)
10034 				btrfs_put_block_group(sp->ptr);
10035 			kfree(sp);
10036 		}
10037 		node = next;
10038 	}
10039 	spin_unlock(&fs_info->swapfile_pins_lock);
10040 }
10041 
10042 struct btrfs_swap_info {
10043 	u64 start;
10044 	u64 block_start;
10045 	u64 block_len;
10046 	u64 lowest_ppage;
10047 	u64 highest_ppage;
10048 	unsigned long nr_pages;
10049 	int nr_extents;
10050 };
10051 
10052 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10053 				 struct btrfs_swap_info *bsi)
10054 {
10055 	unsigned long nr_pages;
10056 	u64 first_ppage, first_ppage_reported, next_ppage;
10057 	int ret;
10058 
10059 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10060 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10061 				PAGE_SIZE) >> PAGE_SHIFT;
10062 
10063 	if (first_ppage >= next_ppage)
10064 		return 0;
10065 	nr_pages = next_ppage - first_ppage;
10066 
10067 	first_ppage_reported = first_ppage;
10068 	if (bsi->start == 0)
10069 		first_ppage_reported++;
10070 	if (bsi->lowest_ppage > first_ppage_reported)
10071 		bsi->lowest_ppage = first_ppage_reported;
10072 	if (bsi->highest_ppage < (next_ppage - 1))
10073 		bsi->highest_ppage = next_ppage - 1;
10074 
10075 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10076 	if (ret < 0)
10077 		return ret;
10078 	bsi->nr_extents += ret;
10079 	bsi->nr_pages += nr_pages;
10080 	return 0;
10081 }
10082 
10083 static void btrfs_swap_deactivate(struct file *file)
10084 {
10085 	struct inode *inode = file_inode(file);
10086 
10087 	btrfs_free_swapfile_pins(inode);
10088 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10089 }
10090 
10091 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10092 			       sector_t *span)
10093 {
10094 	struct inode *inode = file_inode(file);
10095 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10096 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10097 	struct extent_state *cached_state = NULL;
10098 	struct extent_map *em = NULL;
10099 	struct btrfs_device *device = NULL;
10100 	struct btrfs_swap_info bsi = {
10101 		.lowest_ppage = (sector_t)-1ULL,
10102 	};
10103 	int ret = 0;
10104 	u64 isize;
10105 	u64 start;
10106 
10107 	/*
10108 	 * If the swap file was just created, make sure delalloc is done. If the
10109 	 * file changes again after this, the user is doing something stupid and
10110 	 * we don't really care.
10111 	 */
10112 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10113 	if (ret)
10114 		return ret;
10115 
10116 	/*
10117 	 * The inode is locked, so these flags won't change after we check them.
10118 	 */
10119 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10120 		btrfs_warn(fs_info, "swapfile must not be compressed");
10121 		return -EINVAL;
10122 	}
10123 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10124 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10125 		return -EINVAL;
10126 	}
10127 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10128 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10129 		return -EINVAL;
10130 	}
10131 
10132 	/*
10133 	 * Balance or device remove/replace/resize can move stuff around from
10134 	 * under us. The exclop protection makes sure they aren't running/won't
10135 	 * run concurrently while we are mapping the swap extents, and
10136 	 * fs_info->swapfile_pins prevents them from running while the swap
10137 	 * file is active and moving the extents. Note that this also prevents
10138 	 * a concurrent device add which isn't actually necessary, but it's not
10139 	 * really worth the trouble to allow it.
10140 	 */
10141 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10142 		btrfs_warn(fs_info,
10143 	   "cannot activate swapfile while exclusive operation is running");
10144 		return -EBUSY;
10145 	}
10146 	/*
10147 	 * Snapshots can create extents which require COW even if NODATACOW is
10148 	 * set. We use this counter to prevent snapshots. We must increment it
10149 	 * before walking the extents because we don't want a concurrent
10150 	 * snapshot to run after we've already checked the extents.
10151 	 */
10152 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10153 
10154 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10155 
10156 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10157 	start = 0;
10158 	while (start < isize) {
10159 		u64 logical_block_start, physical_block_start;
10160 		struct btrfs_block_group *bg;
10161 		u64 len = isize - start;
10162 
10163 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10164 		if (IS_ERR(em)) {
10165 			ret = PTR_ERR(em);
10166 			goto out;
10167 		}
10168 
10169 		if (em->block_start == EXTENT_MAP_HOLE) {
10170 			btrfs_warn(fs_info, "swapfile must not have holes");
10171 			ret = -EINVAL;
10172 			goto out;
10173 		}
10174 		if (em->block_start == EXTENT_MAP_INLINE) {
10175 			/*
10176 			 * It's unlikely we'll ever actually find ourselves
10177 			 * here, as a file small enough to fit inline won't be
10178 			 * big enough to store more than the swap header, but in
10179 			 * case something changes in the future, let's catch it
10180 			 * here rather than later.
10181 			 */
10182 			btrfs_warn(fs_info, "swapfile must not be inline");
10183 			ret = -EINVAL;
10184 			goto out;
10185 		}
10186 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10187 			btrfs_warn(fs_info, "swapfile must not be compressed");
10188 			ret = -EINVAL;
10189 			goto out;
10190 		}
10191 
10192 		logical_block_start = em->block_start + (start - em->start);
10193 		len = min(len, em->len - (start - em->start));
10194 		free_extent_map(em);
10195 		em = NULL;
10196 
10197 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10198 		if (ret < 0) {
10199 			goto out;
10200 		} else if (ret) {
10201 			ret = 0;
10202 		} else {
10203 			btrfs_warn(fs_info,
10204 				   "swapfile must not be copy-on-write");
10205 			ret = -EINVAL;
10206 			goto out;
10207 		}
10208 
10209 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10210 		if (IS_ERR(em)) {
10211 			ret = PTR_ERR(em);
10212 			goto out;
10213 		}
10214 
10215 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10216 			btrfs_warn(fs_info,
10217 				   "swapfile must have single data profile");
10218 			ret = -EINVAL;
10219 			goto out;
10220 		}
10221 
10222 		if (device == NULL) {
10223 			device = em->map_lookup->stripes[0].dev;
10224 			ret = btrfs_add_swapfile_pin(inode, device, false);
10225 			if (ret == 1)
10226 				ret = 0;
10227 			else if (ret)
10228 				goto out;
10229 		} else if (device != em->map_lookup->stripes[0].dev) {
10230 			btrfs_warn(fs_info, "swapfile must be on one device");
10231 			ret = -EINVAL;
10232 			goto out;
10233 		}
10234 
10235 		physical_block_start = (em->map_lookup->stripes[0].physical +
10236 					(logical_block_start - em->start));
10237 		len = min(len, em->len - (logical_block_start - em->start));
10238 		free_extent_map(em);
10239 		em = NULL;
10240 
10241 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10242 		if (!bg) {
10243 			btrfs_warn(fs_info,
10244 			   "could not find block group containing swapfile");
10245 			ret = -EINVAL;
10246 			goto out;
10247 		}
10248 
10249 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10250 		if (ret) {
10251 			btrfs_put_block_group(bg);
10252 			if (ret == 1)
10253 				ret = 0;
10254 			else
10255 				goto out;
10256 		}
10257 
10258 		if (bsi.block_len &&
10259 		    bsi.block_start + bsi.block_len == physical_block_start) {
10260 			bsi.block_len += len;
10261 		} else {
10262 			if (bsi.block_len) {
10263 				ret = btrfs_add_swap_extent(sis, &bsi);
10264 				if (ret)
10265 					goto out;
10266 			}
10267 			bsi.start = start;
10268 			bsi.block_start = physical_block_start;
10269 			bsi.block_len = len;
10270 		}
10271 
10272 		start += len;
10273 	}
10274 
10275 	if (bsi.block_len)
10276 		ret = btrfs_add_swap_extent(sis, &bsi);
10277 
10278 out:
10279 	if (!IS_ERR_OR_NULL(em))
10280 		free_extent_map(em);
10281 
10282 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10283 
10284 	if (ret)
10285 		btrfs_swap_deactivate(file);
10286 
10287 	btrfs_exclop_finish(fs_info);
10288 
10289 	if (ret)
10290 		return ret;
10291 
10292 	if (device)
10293 		sis->bdev = device->bdev;
10294 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10295 	sis->max = bsi.nr_pages;
10296 	sis->pages = bsi.nr_pages - 1;
10297 	sis->highest_bit = bsi.nr_pages - 1;
10298 	return bsi.nr_extents;
10299 }
10300 #else
10301 static void btrfs_swap_deactivate(struct file *file)
10302 {
10303 }
10304 
10305 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10306 			       sector_t *span)
10307 {
10308 	return -EOPNOTSUPP;
10309 }
10310 #endif
10311 
10312 /*
10313  * Update the number of bytes used in the VFS' inode. When we replace extents in
10314  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10315  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10316  * always get a correct value.
10317  */
10318 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10319 			      const u64 add_bytes,
10320 			      const u64 del_bytes)
10321 {
10322 	if (add_bytes == del_bytes)
10323 		return;
10324 
10325 	spin_lock(&inode->lock);
10326 	if (del_bytes > 0)
10327 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10328 	if (add_bytes > 0)
10329 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10330 	spin_unlock(&inode->lock);
10331 }
10332 
10333 static const struct inode_operations btrfs_dir_inode_operations = {
10334 	.getattr	= btrfs_getattr,
10335 	.lookup		= btrfs_lookup,
10336 	.create		= btrfs_create,
10337 	.unlink		= btrfs_unlink,
10338 	.link		= btrfs_link,
10339 	.mkdir		= btrfs_mkdir,
10340 	.rmdir		= btrfs_rmdir,
10341 	.rename		= btrfs_rename2,
10342 	.symlink	= btrfs_symlink,
10343 	.setattr	= btrfs_setattr,
10344 	.mknod		= btrfs_mknod,
10345 	.listxattr	= btrfs_listxattr,
10346 	.permission	= btrfs_permission,
10347 	.get_acl	= btrfs_get_acl,
10348 	.set_acl	= btrfs_set_acl,
10349 	.update_time	= btrfs_update_time,
10350 	.tmpfile        = btrfs_tmpfile,
10351 };
10352 
10353 static const struct file_operations btrfs_dir_file_operations = {
10354 	.llseek		= generic_file_llseek,
10355 	.read		= generic_read_dir,
10356 	.iterate_shared	= btrfs_real_readdir,
10357 	.open		= btrfs_opendir,
10358 	.unlocked_ioctl	= btrfs_ioctl,
10359 #ifdef CONFIG_COMPAT
10360 	.compat_ioctl	= btrfs_compat_ioctl,
10361 #endif
10362 	.release        = btrfs_release_file,
10363 	.fsync		= btrfs_sync_file,
10364 };
10365 
10366 /*
10367  * btrfs doesn't support the bmap operation because swapfiles
10368  * use bmap to make a mapping of extents in the file.  They assume
10369  * these extents won't change over the life of the file and they
10370  * use the bmap result to do IO directly to the drive.
10371  *
10372  * the btrfs bmap call would return logical addresses that aren't
10373  * suitable for IO and they also will change frequently as COW
10374  * operations happen.  So, swapfile + btrfs == corruption.
10375  *
10376  * For now we're avoiding this by dropping bmap.
10377  */
10378 static const struct address_space_operations btrfs_aops = {
10379 	.readpage	= btrfs_readpage,
10380 	.writepage	= btrfs_writepage,
10381 	.writepages	= btrfs_writepages,
10382 	.readahead	= btrfs_readahead,
10383 	.direct_IO	= noop_direct_IO,
10384 	.invalidatepage = btrfs_invalidatepage,
10385 	.releasepage	= btrfs_releasepage,
10386 #ifdef CONFIG_MIGRATION
10387 	.migratepage	= btrfs_migratepage,
10388 #endif
10389 	.set_page_dirty	= btrfs_set_page_dirty,
10390 	.error_remove_page = generic_error_remove_page,
10391 	.swap_activate	= btrfs_swap_activate,
10392 	.swap_deactivate = btrfs_swap_deactivate,
10393 };
10394 
10395 static const struct inode_operations btrfs_file_inode_operations = {
10396 	.getattr	= btrfs_getattr,
10397 	.setattr	= btrfs_setattr,
10398 	.listxattr      = btrfs_listxattr,
10399 	.permission	= btrfs_permission,
10400 	.fiemap		= btrfs_fiemap,
10401 	.get_acl	= btrfs_get_acl,
10402 	.set_acl	= btrfs_set_acl,
10403 	.update_time	= btrfs_update_time,
10404 };
10405 static const struct inode_operations btrfs_special_inode_operations = {
10406 	.getattr	= btrfs_getattr,
10407 	.setattr	= btrfs_setattr,
10408 	.permission	= btrfs_permission,
10409 	.listxattr	= btrfs_listxattr,
10410 	.get_acl	= btrfs_get_acl,
10411 	.set_acl	= btrfs_set_acl,
10412 	.update_time	= btrfs_update_time,
10413 };
10414 static const struct inode_operations btrfs_symlink_inode_operations = {
10415 	.get_link	= page_get_link,
10416 	.getattr	= btrfs_getattr,
10417 	.setattr	= btrfs_setattr,
10418 	.permission	= btrfs_permission,
10419 	.listxattr	= btrfs_listxattr,
10420 	.update_time	= btrfs_update_time,
10421 };
10422 
10423 const struct dentry_operations btrfs_dentry_operations = {
10424 	.d_delete	= btrfs_dentry_delete,
10425 };
10426