xref: /openbmc/linux/fs/btrfs/inode.c (revision 3bf90eca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 
74 struct btrfs_iget_args {
75 	u64 ino;
76 	struct btrfs_root *root;
77 };
78 
79 struct btrfs_dio_data {
80 	ssize_t submitted;
81 	struct extent_changeset *data_reserved;
82 	bool data_space_reserved;
83 	bool nocow_done;
84 };
85 
86 struct btrfs_dio_private {
87 	struct btrfs_inode *inode;
88 
89 	/*
90 	 * Since DIO can use anonymous page, we cannot use page_offset() to
91 	 * grab the file offset, thus need a dedicated member for file offset.
92 	 */
93 	u64 file_offset;
94 	/* Used for bio::bi_size */
95 	u32 bytes;
96 
97 	/*
98 	 * References to this structure. There is one reference per in-flight
99 	 * bio plus one while we're still setting up.
100 	 */
101 	refcount_t refs;
102 
103 	/* Array of checksums */
104 	u8 *csums;
105 
106 	/* This must be last */
107 	struct bio bio;
108 };
109 
110 static struct bio_set btrfs_dio_bioset;
111 
112 struct btrfs_rename_ctx {
113 	/* Output field. Stores the index number of the old directory entry. */
114 	u64 index;
115 };
116 
117 static const struct inode_operations btrfs_dir_inode_operations;
118 static const struct inode_operations btrfs_symlink_inode_operations;
119 static const struct inode_operations btrfs_special_inode_operations;
120 static const struct inode_operations btrfs_file_inode_operations;
121 static const struct address_space_operations btrfs_aops;
122 static const struct file_operations btrfs_dir_file_operations;
123 
124 static struct kmem_cache *btrfs_inode_cachep;
125 
126 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
127 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
128 static noinline int cow_file_range(struct btrfs_inode *inode,
129 				   struct page *locked_page,
130 				   u64 start, u64 end, int *page_started,
131 				   unsigned long *nr_written, int unlock,
132 				   u64 *done_offset);
133 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
134 				       u64 len, u64 orig_start, u64 block_start,
135 				       u64 block_len, u64 orig_block_len,
136 				       u64 ram_bytes, int compress_type,
137 				       int type);
138 
139 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
140 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
141 {
142 	struct btrfs_root *root = inode->root;
143 	const u32 csum_size = root->fs_info->csum_size;
144 
145 	/* Output without objectid, which is more meaningful */
146 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
147 		btrfs_warn_rl(root->fs_info,
148 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
149 			root->root_key.objectid, btrfs_ino(inode),
150 			logical_start,
151 			CSUM_FMT_VALUE(csum_size, csum),
152 			CSUM_FMT_VALUE(csum_size, csum_expected),
153 			mirror_num);
154 	} else {
155 		btrfs_warn_rl(root->fs_info,
156 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
157 			root->root_key.objectid, btrfs_ino(inode),
158 			logical_start,
159 			CSUM_FMT_VALUE(csum_size, csum),
160 			CSUM_FMT_VALUE(csum_size, csum_expected),
161 			mirror_num);
162 	}
163 }
164 
165 /*
166  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
167  *
168  * ilock_flags can have the following bit set:
169  *
170  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
171  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
172  *		     return -EAGAIN
173  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
174  */
175 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
176 {
177 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
178 		if (ilock_flags & BTRFS_ILOCK_TRY) {
179 			if (!inode_trylock_shared(&inode->vfs_inode))
180 				return -EAGAIN;
181 			else
182 				return 0;
183 		}
184 		inode_lock_shared(&inode->vfs_inode);
185 	} else {
186 		if (ilock_flags & BTRFS_ILOCK_TRY) {
187 			if (!inode_trylock(&inode->vfs_inode))
188 				return -EAGAIN;
189 			else
190 				return 0;
191 		}
192 		inode_lock(&inode->vfs_inode);
193 	}
194 	if (ilock_flags & BTRFS_ILOCK_MMAP)
195 		down_write(&inode->i_mmap_lock);
196 	return 0;
197 }
198 
199 /*
200  * btrfs_inode_unlock - unock inode i_rwsem
201  *
202  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
203  * to decide whether the lock acquired is shared or exclusive.
204  */
205 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
206 {
207 	if (ilock_flags & BTRFS_ILOCK_MMAP)
208 		up_write(&inode->i_mmap_lock);
209 	if (ilock_flags & BTRFS_ILOCK_SHARED)
210 		inode_unlock_shared(&inode->vfs_inode);
211 	else
212 		inode_unlock(&inode->vfs_inode);
213 }
214 
215 /*
216  * Cleanup all submitted ordered extents in specified range to handle errors
217  * from the btrfs_run_delalloc_range() callback.
218  *
219  * NOTE: caller must ensure that when an error happens, it can not call
220  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
221  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
222  * to be released, which we want to happen only when finishing the ordered
223  * extent (btrfs_finish_ordered_io()).
224  */
225 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
226 						 struct page *locked_page,
227 						 u64 offset, u64 bytes)
228 {
229 	unsigned long index = offset >> PAGE_SHIFT;
230 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
231 	u64 page_start, page_end;
232 	struct page *page;
233 
234 	if (locked_page) {
235 		page_start = page_offset(locked_page);
236 		page_end = page_start + PAGE_SIZE - 1;
237 	}
238 
239 	while (index <= end_index) {
240 		/*
241 		 * For locked page, we will call end_extent_writepage() on it
242 		 * in run_delalloc_range() for the error handling.  That
243 		 * end_extent_writepage() function will call
244 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
245 		 * run the ordered extent accounting.
246 		 *
247 		 * Here we can't just clear the Ordered bit, or
248 		 * btrfs_mark_ordered_io_finished() would skip the accounting
249 		 * for the page range, and the ordered extent will never finish.
250 		 */
251 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
252 			index++;
253 			continue;
254 		}
255 		page = find_get_page(inode->vfs_inode.i_mapping, index);
256 		index++;
257 		if (!page)
258 			continue;
259 
260 		/*
261 		 * Here we just clear all Ordered bits for every page in the
262 		 * range, then btrfs_mark_ordered_io_finished() will handle
263 		 * the ordered extent accounting for the range.
264 		 */
265 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
266 					       offset, bytes);
267 		put_page(page);
268 	}
269 
270 	if (locked_page) {
271 		/* The locked page covers the full range, nothing needs to be done */
272 		if (bytes + offset <= page_start + PAGE_SIZE)
273 			return;
274 		/*
275 		 * In case this page belongs to the delalloc range being
276 		 * instantiated then skip it, since the first page of a range is
277 		 * going to be properly cleaned up by the caller of
278 		 * run_delalloc_range
279 		 */
280 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
281 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
282 			offset = page_offset(locked_page) + PAGE_SIZE;
283 		}
284 	}
285 
286 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
287 }
288 
289 static int btrfs_dirty_inode(struct btrfs_inode *inode);
290 
291 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
292 				     struct btrfs_new_inode_args *args)
293 {
294 	int err;
295 
296 	if (args->default_acl) {
297 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
298 				      ACL_TYPE_DEFAULT);
299 		if (err)
300 			return err;
301 	}
302 	if (args->acl) {
303 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
304 		if (err)
305 			return err;
306 	}
307 	if (!args->default_acl && !args->acl)
308 		cache_no_acl(args->inode);
309 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
310 					 &args->dentry->d_name);
311 }
312 
313 /*
314  * this does all the hard work for inserting an inline extent into
315  * the btree.  The caller should have done a btrfs_drop_extents so that
316  * no overlapping inline items exist in the btree
317  */
318 static int insert_inline_extent(struct btrfs_trans_handle *trans,
319 				struct btrfs_path *path,
320 				struct btrfs_inode *inode, bool extent_inserted,
321 				size_t size, size_t compressed_size,
322 				int compress_type,
323 				struct page **compressed_pages,
324 				bool update_i_size)
325 {
326 	struct btrfs_root *root = inode->root;
327 	struct extent_buffer *leaf;
328 	struct page *page = NULL;
329 	char *kaddr;
330 	unsigned long ptr;
331 	struct btrfs_file_extent_item *ei;
332 	int ret;
333 	size_t cur_size = size;
334 	u64 i_size;
335 
336 	ASSERT((compressed_size > 0 && compressed_pages) ||
337 	       (compressed_size == 0 && !compressed_pages));
338 
339 	if (compressed_size && compressed_pages)
340 		cur_size = compressed_size;
341 
342 	if (!extent_inserted) {
343 		struct btrfs_key key;
344 		size_t datasize;
345 
346 		key.objectid = btrfs_ino(inode);
347 		key.offset = 0;
348 		key.type = BTRFS_EXTENT_DATA_KEY;
349 
350 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
351 		ret = btrfs_insert_empty_item(trans, root, path, &key,
352 					      datasize);
353 		if (ret)
354 			goto fail;
355 	}
356 	leaf = path->nodes[0];
357 	ei = btrfs_item_ptr(leaf, path->slots[0],
358 			    struct btrfs_file_extent_item);
359 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
360 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
361 	btrfs_set_file_extent_encryption(leaf, ei, 0);
362 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
363 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
364 	ptr = btrfs_file_extent_inline_start(ei);
365 
366 	if (compress_type != BTRFS_COMPRESS_NONE) {
367 		struct page *cpage;
368 		int i = 0;
369 		while (compressed_size > 0) {
370 			cpage = compressed_pages[i];
371 			cur_size = min_t(unsigned long, compressed_size,
372 				       PAGE_SIZE);
373 
374 			kaddr = kmap_local_page(cpage);
375 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
376 			kunmap_local(kaddr);
377 
378 			i++;
379 			ptr += cur_size;
380 			compressed_size -= cur_size;
381 		}
382 		btrfs_set_file_extent_compression(leaf, ei,
383 						  compress_type);
384 	} else {
385 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
386 		btrfs_set_file_extent_compression(leaf, ei, 0);
387 		kaddr = kmap_local_page(page);
388 		write_extent_buffer(leaf, kaddr, ptr, size);
389 		kunmap_local(kaddr);
390 		put_page(page);
391 	}
392 	btrfs_mark_buffer_dirty(leaf);
393 	btrfs_release_path(path);
394 
395 	/*
396 	 * We align size to sectorsize for inline extents just for simplicity
397 	 * sake.
398 	 */
399 	ret = btrfs_inode_set_file_extent_range(inode, 0,
400 					ALIGN(size, root->fs_info->sectorsize));
401 	if (ret)
402 		goto fail;
403 
404 	/*
405 	 * We're an inline extent, so nobody can extend the file past i_size
406 	 * without locking a page we already have locked.
407 	 *
408 	 * We must do any i_size and inode updates before we unlock the pages.
409 	 * Otherwise we could end up racing with unlink.
410 	 */
411 	i_size = i_size_read(&inode->vfs_inode);
412 	if (update_i_size && size > i_size) {
413 		i_size_write(&inode->vfs_inode, size);
414 		i_size = size;
415 	}
416 	inode->disk_i_size = i_size;
417 
418 fail:
419 	return ret;
420 }
421 
422 
423 /*
424  * conditionally insert an inline extent into the file.  This
425  * does the checks required to make sure the data is small enough
426  * to fit as an inline extent.
427  */
428 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
429 					  size_t compressed_size,
430 					  int compress_type,
431 					  struct page **compressed_pages,
432 					  bool update_i_size)
433 {
434 	struct btrfs_drop_extents_args drop_args = { 0 };
435 	struct btrfs_root *root = inode->root;
436 	struct btrfs_fs_info *fs_info = root->fs_info;
437 	struct btrfs_trans_handle *trans;
438 	u64 data_len = (compressed_size ?: size);
439 	int ret;
440 	struct btrfs_path *path;
441 
442 	/*
443 	 * We can create an inline extent if it ends at or beyond the current
444 	 * i_size, is no larger than a sector (decompressed), and the (possibly
445 	 * compressed) data fits in a leaf and the configured maximum inline
446 	 * size.
447 	 */
448 	if (size < i_size_read(&inode->vfs_inode) ||
449 	    size > fs_info->sectorsize ||
450 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
451 	    data_len > fs_info->max_inline)
452 		return 1;
453 
454 	path = btrfs_alloc_path();
455 	if (!path)
456 		return -ENOMEM;
457 
458 	trans = btrfs_join_transaction(root);
459 	if (IS_ERR(trans)) {
460 		btrfs_free_path(path);
461 		return PTR_ERR(trans);
462 	}
463 	trans->block_rsv = &inode->block_rsv;
464 
465 	drop_args.path = path;
466 	drop_args.start = 0;
467 	drop_args.end = fs_info->sectorsize;
468 	drop_args.drop_cache = true;
469 	drop_args.replace_extent = true;
470 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
471 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
472 	if (ret) {
473 		btrfs_abort_transaction(trans, ret);
474 		goto out;
475 	}
476 
477 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
478 				   size, compressed_size, compress_type,
479 				   compressed_pages, update_i_size);
480 	if (ret && ret != -ENOSPC) {
481 		btrfs_abort_transaction(trans, ret);
482 		goto out;
483 	} else if (ret == -ENOSPC) {
484 		ret = 1;
485 		goto out;
486 	}
487 
488 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
489 	ret = btrfs_update_inode(trans, root, inode);
490 	if (ret && ret != -ENOSPC) {
491 		btrfs_abort_transaction(trans, ret);
492 		goto out;
493 	} else if (ret == -ENOSPC) {
494 		ret = 1;
495 		goto out;
496 	}
497 
498 	btrfs_set_inode_full_sync(inode);
499 out:
500 	/*
501 	 * Don't forget to free the reserved space, as for inlined extent
502 	 * it won't count as data extent, free them directly here.
503 	 * And at reserve time, it's always aligned to page size, so
504 	 * just free one page here.
505 	 */
506 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
507 	btrfs_free_path(path);
508 	btrfs_end_transaction(trans);
509 	return ret;
510 }
511 
512 struct async_extent {
513 	u64 start;
514 	u64 ram_size;
515 	u64 compressed_size;
516 	struct page **pages;
517 	unsigned long nr_pages;
518 	int compress_type;
519 	struct list_head list;
520 };
521 
522 struct async_chunk {
523 	struct btrfs_inode *inode;
524 	struct page *locked_page;
525 	u64 start;
526 	u64 end;
527 	blk_opf_t write_flags;
528 	struct list_head extents;
529 	struct cgroup_subsys_state *blkcg_css;
530 	struct btrfs_work work;
531 	struct async_cow *async_cow;
532 };
533 
534 struct async_cow {
535 	atomic_t num_chunks;
536 	struct async_chunk chunks[];
537 };
538 
539 static noinline int add_async_extent(struct async_chunk *cow,
540 				     u64 start, u64 ram_size,
541 				     u64 compressed_size,
542 				     struct page **pages,
543 				     unsigned long nr_pages,
544 				     int compress_type)
545 {
546 	struct async_extent *async_extent;
547 
548 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
549 	BUG_ON(!async_extent); /* -ENOMEM */
550 	async_extent->start = start;
551 	async_extent->ram_size = ram_size;
552 	async_extent->compressed_size = compressed_size;
553 	async_extent->pages = pages;
554 	async_extent->nr_pages = nr_pages;
555 	async_extent->compress_type = compress_type;
556 	list_add_tail(&async_extent->list, &cow->extents);
557 	return 0;
558 }
559 
560 /*
561  * Check if the inode needs to be submitted to compression, based on mount
562  * options, defragmentation, properties or heuristics.
563  */
564 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
565 				      u64 end)
566 {
567 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
568 
569 	if (!btrfs_inode_can_compress(inode)) {
570 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
571 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
572 			btrfs_ino(inode));
573 		return 0;
574 	}
575 	/*
576 	 * Special check for subpage.
577 	 *
578 	 * We lock the full page then run each delalloc range in the page, thus
579 	 * for the following case, we will hit some subpage specific corner case:
580 	 *
581 	 * 0		32K		64K
582 	 * |	|///////|	|///////|
583 	 *		\- A		\- B
584 	 *
585 	 * In above case, both range A and range B will try to unlock the full
586 	 * page [0, 64K), causing the one finished later will have page
587 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
588 	 *
589 	 * So here we add an artificial limit that subpage compression can only
590 	 * if the range is fully page aligned.
591 	 *
592 	 * In theory we only need to ensure the first page is fully covered, but
593 	 * the tailing partial page will be locked until the full compression
594 	 * finishes, delaying the write of other range.
595 	 *
596 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
597 	 * first to prevent any submitted async extent to unlock the full page.
598 	 * By this, we can ensure for subpage case that only the last async_cow
599 	 * will unlock the full page.
600 	 */
601 	if (fs_info->sectorsize < PAGE_SIZE) {
602 		if (!PAGE_ALIGNED(start) ||
603 		    !PAGE_ALIGNED(end + 1))
604 			return 0;
605 	}
606 
607 	/* force compress */
608 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
609 		return 1;
610 	/* defrag ioctl */
611 	if (inode->defrag_compress)
612 		return 1;
613 	/* bad compression ratios */
614 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
615 		return 0;
616 	if (btrfs_test_opt(fs_info, COMPRESS) ||
617 	    inode->flags & BTRFS_INODE_COMPRESS ||
618 	    inode->prop_compress)
619 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
620 	return 0;
621 }
622 
623 static inline void inode_should_defrag(struct btrfs_inode *inode,
624 		u64 start, u64 end, u64 num_bytes, u32 small_write)
625 {
626 	/* If this is a small write inside eof, kick off a defrag */
627 	if (num_bytes < small_write &&
628 	    (start > 0 || end + 1 < inode->disk_i_size))
629 		btrfs_add_inode_defrag(NULL, inode, small_write);
630 }
631 
632 /*
633  * we create compressed extents in two phases.  The first
634  * phase compresses a range of pages that have already been
635  * locked (both pages and state bits are locked).
636  *
637  * This is done inside an ordered work queue, and the compression
638  * is spread across many cpus.  The actual IO submission is step
639  * two, and the ordered work queue takes care of making sure that
640  * happens in the same order things were put onto the queue by
641  * writepages and friends.
642  *
643  * If this code finds it can't get good compression, it puts an
644  * entry onto the work queue to write the uncompressed bytes.  This
645  * makes sure that both compressed inodes and uncompressed inodes
646  * are written in the same order that the flusher thread sent them
647  * down.
648  */
649 static noinline int compress_file_range(struct async_chunk *async_chunk)
650 {
651 	struct btrfs_inode *inode = async_chunk->inode;
652 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
653 	u64 blocksize = fs_info->sectorsize;
654 	u64 start = async_chunk->start;
655 	u64 end = async_chunk->end;
656 	u64 actual_end;
657 	u64 i_size;
658 	int ret = 0;
659 	struct page **pages = NULL;
660 	unsigned long nr_pages;
661 	unsigned long total_compressed = 0;
662 	unsigned long total_in = 0;
663 	int i;
664 	int will_compress;
665 	int compress_type = fs_info->compress_type;
666 	int compressed_extents = 0;
667 	int redirty = 0;
668 
669 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
670 
671 	/*
672 	 * We need to save i_size before now because it could change in between
673 	 * us evaluating the size and assigning it.  This is because we lock and
674 	 * unlock the page in truncate and fallocate, and then modify the i_size
675 	 * later on.
676 	 *
677 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
678 	 * does that for us.
679 	 */
680 	barrier();
681 	i_size = i_size_read(&inode->vfs_inode);
682 	barrier();
683 	actual_end = min_t(u64, i_size, end + 1);
684 again:
685 	will_compress = 0;
686 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
687 	nr_pages = min_t(unsigned long, nr_pages,
688 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
689 
690 	/*
691 	 * we don't want to send crud past the end of i_size through
692 	 * compression, that's just a waste of CPU time.  So, if the
693 	 * end of the file is before the start of our current
694 	 * requested range of bytes, we bail out to the uncompressed
695 	 * cleanup code that can deal with all of this.
696 	 *
697 	 * It isn't really the fastest way to fix things, but this is a
698 	 * very uncommon corner.
699 	 */
700 	if (actual_end <= start)
701 		goto cleanup_and_bail_uncompressed;
702 
703 	total_compressed = actual_end - start;
704 
705 	/*
706 	 * Skip compression for a small file range(<=blocksize) that
707 	 * isn't an inline extent, since it doesn't save disk space at all.
708 	 */
709 	if (total_compressed <= blocksize &&
710 	   (start > 0 || end + 1 < inode->disk_i_size))
711 		goto cleanup_and_bail_uncompressed;
712 
713 	/*
714 	 * For subpage case, we require full page alignment for the sector
715 	 * aligned range.
716 	 * Thus we must also check against @actual_end, not just @end.
717 	 */
718 	if (blocksize < PAGE_SIZE) {
719 		if (!PAGE_ALIGNED(start) ||
720 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
721 			goto cleanup_and_bail_uncompressed;
722 	}
723 
724 	total_compressed = min_t(unsigned long, total_compressed,
725 			BTRFS_MAX_UNCOMPRESSED);
726 	total_in = 0;
727 	ret = 0;
728 
729 	/*
730 	 * we do compression for mount -o compress and when the
731 	 * inode has not been flagged as nocompress.  This flag can
732 	 * change at any time if we discover bad compression ratios.
733 	 */
734 	if (inode_need_compress(inode, start, end)) {
735 		WARN_ON(pages);
736 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
737 		if (!pages) {
738 			/* just bail out to the uncompressed code */
739 			nr_pages = 0;
740 			goto cont;
741 		}
742 
743 		if (inode->defrag_compress)
744 			compress_type = inode->defrag_compress;
745 		else if (inode->prop_compress)
746 			compress_type = inode->prop_compress;
747 
748 		/*
749 		 * we need to call clear_page_dirty_for_io on each
750 		 * page in the range.  Otherwise applications with the file
751 		 * mmap'd can wander in and change the page contents while
752 		 * we are compressing them.
753 		 *
754 		 * If the compression fails for any reason, we set the pages
755 		 * dirty again later on.
756 		 *
757 		 * Note that the remaining part is redirtied, the start pointer
758 		 * has moved, the end is the original one.
759 		 */
760 		if (!redirty) {
761 			extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
762 			redirty = 1;
763 		}
764 
765 		/* Compression level is applied here and only here */
766 		ret = btrfs_compress_pages(
767 			compress_type | (fs_info->compress_level << 4),
768 					   inode->vfs_inode.i_mapping, start,
769 					   pages,
770 					   &nr_pages,
771 					   &total_in,
772 					   &total_compressed);
773 
774 		if (!ret) {
775 			unsigned long offset = offset_in_page(total_compressed);
776 			struct page *page = pages[nr_pages - 1];
777 
778 			/* zero the tail end of the last page, we might be
779 			 * sending it down to disk
780 			 */
781 			if (offset)
782 				memzero_page(page, offset, PAGE_SIZE - offset);
783 			will_compress = 1;
784 		}
785 	}
786 cont:
787 	/*
788 	 * Check cow_file_range() for why we don't even try to create inline
789 	 * extent for subpage case.
790 	 */
791 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
792 		/* lets try to make an inline extent */
793 		if (ret || total_in < actual_end) {
794 			/* we didn't compress the entire range, try
795 			 * to make an uncompressed inline extent.
796 			 */
797 			ret = cow_file_range_inline(inode, actual_end,
798 						    0, BTRFS_COMPRESS_NONE,
799 						    NULL, false);
800 		} else {
801 			/* try making a compressed inline extent */
802 			ret = cow_file_range_inline(inode, actual_end,
803 						    total_compressed,
804 						    compress_type, pages,
805 						    false);
806 		}
807 		if (ret <= 0) {
808 			unsigned long clear_flags = EXTENT_DELALLOC |
809 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
810 				EXTENT_DO_ACCOUNTING;
811 			unsigned long page_error_op;
812 
813 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
814 
815 			/*
816 			 * inline extent creation worked or returned error,
817 			 * we don't need to create any more async work items.
818 			 * Unlock and free up our temp pages.
819 			 *
820 			 * We use DO_ACCOUNTING here because we need the
821 			 * delalloc_release_metadata to be done _after_ we drop
822 			 * our outstanding extent for clearing delalloc for this
823 			 * range.
824 			 */
825 			extent_clear_unlock_delalloc(inode, start, end,
826 						     NULL,
827 						     clear_flags,
828 						     PAGE_UNLOCK |
829 						     PAGE_START_WRITEBACK |
830 						     page_error_op |
831 						     PAGE_END_WRITEBACK);
832 
833 			/*
834 			 * Ensure we only free the compressed pages if we have
835 			 * them allocated, as we can still reach here with
836 			 * inode_need_compress() == false.
837 			 */
838 			if (pages) {
839 				for (i = 0; i < nr_pages; i++) {
840 					WARN_ON(pages[i]->mapping);
841 					put_page(pages[i]);
842 				}
843 				kfree(pages);
844 			}
845 			return 0;
846 		}
847 	}
848 
849 	if (will_compress) {
850 		/*
851 		 * we aren't doing an inline extent round the compressed size
852 		 * up to a block size boundary so the allocator does sane
853 		 * things
854 		 */
855 		total_compressed = ALIGN(total_compressed, blocksize);
856 
857 		/*
858 		 * one last check to make sure the compression is really a
859 		 * win, compare the page count read with the blocks on disk,
860 		 * compression must free at least one sector size
861 		 */
862 		total_in = round_up(total_in, fs_info->sectorsize);
863 		if (total_compressed + blocksize <= total_in) {
864 			compressed_extents++;
865 
866 			/*
867 			 * The async work queues will take care of doing actual
868 			 * allocation on disk for these compressed pages, and
869 			 * will submit them to the elevator.
870 			 */
871 			add_async_extent(async_chunk, start, total_in,
872 					total_compressed, pages, nr_pages,
873 					compress_type);
874 
875 			if (start + total_in < end) {
876 				start += total_in;
877 				pages = NULL;
878 				cond_resched();
879 				goto again;
880 			}
881 			return compressed_extents;
882 		}
883 	}
884 	if (pages) {
885 		/*
886 		 * the compression code ran but failed to make things smaller,
887 		 * free any pages it allocated and our page pointer array
888 		 */
889 		for (i = 0; i < nr_pages; i++) {
890 			WARN_ON(pages[i]->mapping);
891 			put_page(pages[i]);
892 		}
893 		kfree(pages);
894 		pages = NULL;
895 		total_compressed = 0;
896 		nr_pages = 0;
897 
898 		/* flag the file so we don't compress in the future */
899 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
900 		    !(inode->prop_compress)) {
901 			inode->flags |= BTRFS_INODE_NOCOMPRESS;
902 		}
903 	}
904 cleanup_and_bail_uncompressed:
905 	/*
906 	 * No compression, but we still need to write the pages in the file
907 	 * we've been given so far.  redirty the locked page if it corresponds
908 	 * to our extent and set things up for the async work queue to run
909 	 * cow_file_range to do the normal delalloc dance.
910 	 */
911 	if (async_chunk->locked_page &&
912 	    (page_offset(async_chunk->locked_page) >= start &&
913 	     page_offset(async_chunk->locked_page)) <= end) {
914 		__set_page_dirty_nobuffers(async_chunk->locked_page);
915 		/* unlocked later on in the async handlers */
916 	}
917 
918 	if (redirty)
919 		extent_range_redirty_for_io(&inode->vfs_inode, start, end);
920 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
921 			 BTRFS_COMPRESS_NONE);
922 	compressed_extents++;
923 
924 	return compressed_extents;
925 }
926 
927 static void free_async_extent_pages(struct async_extent *async_extent)
928 {
929 	int i;
930 
931 	if (!async_extent->pages)
932 		return;
933 
934 	for (i = 0; i < async_extent->nr_pages; i++) {
935 		WARN_ON(async_extent->pages[i]->mapping);
936 		put_page(async_extent->pages[i]);
937 	}
938 	kfree(async_extent->pages);
939 	async_extent->nr_pages = 0;
940 	async_extent->pages = NULL;
941 }
942 
943 static int submit_uncompressed_range(struct btrfs_inode *inode,
944 				     struct async_extent *async_extent,
945 				     struct page *locked_page)
946 {
947 	u64 start = async_extent->start;
948 	u64 end = async_extent->start + async_extent->ram_size - 1;
949 	unsigned long nr_written = 0;
950 	int page_started = 0;
951 	int ret;
952 
953 	/*
954 	 * Call cow_file_range() to run the delalloc range directly, since we
955 	 * won't go to NOCOW or async path again.
956 	 *
957 	 * Also we call cow_file_range() with @unlock_page == 0, so that we
958 	 * can directly submit them without interruption.
959 	 */
960 	ret = cow_file_range(inode, locked_page, start, end, &page_started,
961 			     &nr_written, 0, NULL);
962 	/* Inline extent inserted, page gets unlocked and everything is done */
963 	if (page_started) {
964 		ret = 0;
965 		goto out;
966 	}
967 	if (ret < 0) {
968 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
969 		if (locked_page) {
970 			const u64 page_start = page_offset(locked_page);
971 			const u64 page_end = page_start + PAGE_SIZE - 1;
972 
973 			btrfs_page_set_error(inode->root->fs_info, locked_page,
974 					     page_start, PAGE_SIZE);
975 			set_page_writeback(locked_page);
976 			end_page_writeback(locked_page);
977 			end_extent_writepage(locked_page, ret, page_start, page_end);
978 			unlock_page(locked_page);
979 		}
980 		goto out;
981 	}
982 
983 	ret = extent_write_locked_range(&inode->vfs_inode, start, end);
984 	/* All pages will be unlocked, including @locked_page */
985 out:
986 	kfree(async_extent);
987 	return ret;
988 }
989 
990 static int submit_one_async_extent(struct btrfs_inode *inode,
991 				   struct async_chunk *async_chunk,
992 				   struct async_extent *async_extent,
993 				   u64 *alloc_hint)
994 {
995 	struct extent_io_tree *io_tree = &inode->io_tree;
996 	struct btrfs_root *root = inode->root;
997 	struct btrfs_fs_info *fs_info = root->fs_info;
998 	struct btrfs_key ins;
999 	struct page *locked_page = NULL;
1000 	struct extent_map *em;
1001 	int ret = 0;
1002 	u64 start = async_extent->start;
1003 	u64 end = async_extent->start + async_extent->ram_size - 1;
1004 
1005 	/*
1006 	 * If async_chunk->locked_page is in the async_extent range, we need to
1007 	 * handle it.
1008 	 */
1009 	if (async_chunk->locked_page) {
1010 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1011 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1012 
1013 		if (!(start >= locked_page_end || end <= locked_page_start))
1014 			locked_page = async_chunk->locked_page;
1015 	}
1016 	lock_extent(io_tree, start, end, NULL);
1017 
1018 	/* We have fall back to uncompressed write */
1019 	if (!async_extent->pages)
1020 		return submit_uncompressed_range(inode, async_extent, locked_page);
1021 
1022 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1023 				   async_extent->compressed_size,
1024 				   async_extent->compressed_size,
1025 				   0, *alloc_hint, &ins, 1, 1);
1026 	if (ret) {
1027 		free_async_extent_pages(async_extent);
1028 		/*
1029 		 * Here we used to try again by going back to non-compressed
1030 		 * path for ENOSPC.  But we can't reserve space even for
1031 		 * compressed size, how could it work for uncompressed size
1032 		 * which requires larger size?  So here we directly go error
1033 		 * path.
1034 		 */
1035 		goto out_free;
1036 	}
1037 
1038 	/* Here we're doing allocation and writeback of the compressed pages */
1039 	em = create_io_em(inode, start,
1040 			  async_extent->ram_size,	/* len */
1041 			  start,			/* orig_start */
1042 			  ins.objectid,			/* block_start */
1043 			  ins.offset,			/* block_len */
1044 			  ins.offset,			/* orig_block_len */
1045 			  async_extent->ram_size,	/* ram_bytes */
1046 			  async_extent->compress_type,
1047 			  BTRFS_ORDERED_COMPRESSED);
1048 	if (IS_ERR(em)) {
1049 		ret = PTR_ERR(em);
1050 		goto out_free_reserve;
1051 	}
1052 	free_extent_map(em);
1053 
1054 	ret = btrfs_add_ordered_extent(inode, start,		/* file_offset */
1055 				       async_extent->ram_size,	/* num_bytes */
1056 				       async_extent->ram_size,	/* ram_bytes */
1057 				       ins.objectid,		/* disk_bytenr */
1058 				       ins.offset,		/* disk_num_bytes */
1059 				       0,			/* offset */
1060 				       1 << BTRFS_ORDERED_COMPRESSED,
1061 				       async_extent->compress_type);
1062 	if (ret) {
1063 		btrfs_drop_extent_map_range(inode, start, end, false);
1064 		goto out_free_reserve;
1065 	}
1066 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1067 
1068 	/* Clear dirty, set writeback and unlock the pages. */
1069 	extent_clear_unlock_delalloc(inode, start, end,
1070 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1071 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1072 	if (btrfs_submit_compressed_write(inode, start,	/* file_offset */
1073 			    async_extent->ram_size,	/* num_bytes */
1074 			    ins.objectid,		/* disk_bytenr */
1075 			    ins.offset,			/* compressed_len */
1076 			    async_extent->pages,	/* compressed_pages */
1077 			    async_extent->nr_pages,
1078 			    async_chunk->write_flags,
1079 			    async_chunk->blkcg_css, true)) {
1080 		const u64 start = async_extent->start;
1081 		const u64 end = start + async_extent->ram_size - 1;
1082 
1083 		btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1084 
1085 		extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1086 					     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1087 		free_async_extent_pages(async_extent);
1088 	}
1089 	*alloc_hint = ins.objectid + ins.offset;
1090 	kfree(async_extent);
1091 	return ret;
1092 
1093 out_free_reserve:
1094 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1095 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1096 out_free:
1097 	extent_clear_unlock_delalloc(inode, start, end,
1098 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1099 				     EXTENT_DELALLOC_NEW |
1100 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1101 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1102 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1103 	free_async_extent_pages(async_extent);
1104 	kfree(async_extent);
1105 	return ret;
1106 }
1107 
1108 /*
1109  * Phase two of compressed writeback.  This is the ordered portion of the code,
1110  * which only gets called in the order the work was queued.  We walk all the
1111  * async extents created by compress_file_range and send them down to the disk.
1112  */
1113 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1114 {
1115 	struct btrfs_inode *inode = async_chunk->inode;
1116 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1117 	struct async_extent *async_extent;
1118 	u64 alloc_hint = 0;
1119 	int ret = 0;
1120 
1121 	while (!list_empty(&async_chunk->extents)) {
1122 		u64 extent_start;
1123 		u64 ram_size;
1124 
1125 		async_extent = list_entry(async_chunk->extents.next,
1126 					  struct async_extent, list);
1127 		list_del(&async_extent->list);
1128 		extent_start = async_extent->start;
1129 		ram_size = async_extent->ram_size;
1130 
1131 		ret = submit_one_async_extent(inode, async_chunk, async_extent,
1132 					      &alloc_hint);
1133 		btrfs_debug(fs_info,
1134 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1135 			    inode->root->root_key.objectid,
1136 			    btrfs_ino(inode), extent_start, ram_size, ret);
1137 	}
1138 }
1139 
1140 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1141 				      u64 num_bytes)
1142 {
1143 	struct extent_map_tree *em_tree = &inode->extent_tree;
1144 	struct extent_map *em;
1145 	u64 alloc_hint = 0;
1146 
1147 	read_lock(&em_tree->lock);
1148 	em = search_extent_mapping(em_tree, start, num_bytes);
1149 	if (em) {
1150 		/*
1151 		 * if block start isn't an actual block number then find the
1152 		 * first block in this inode and use that as a hint.  If that
1153 		 * block is also bogus then just don't worry about it.
1154 		 */
1155 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1156 			free_extent_map(em);
1157 			em = search_extent_mapping(em_tree, 0, 0);
1158 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1159 				alloc_hint = em->block_start;
1160 			if (em)
1161 				free_extent_map(em);
1162 		} else {
1163 			alloc_hint = em->block_start;
1164 			free_extent_map(em);
1165 		}
1166 	}
1167 	read_unlock(&em_tree->lock);
1168 
1169 	return alloc_hint;
1170 }
1171 
1172 /*
1173  * when extent_io.c finds a delayed allocation range in the file,
1174  * the call backs end up in this code.  The basic idea is to
1175  * allocate extents on disk for the range, and create ordered data structs
1176  * in ram to track those extents.
1177  *
1178  * locked_page is the page that writepage had locked already.  We use
1179  * it to make sure we don't do extra locks or unlocks.
1180  *
1181  * *page_started is set to one if we unlock locked_page and do everything
1182  * required to start IO on it.  It may be clean and already done with
1183  * IO when we return.
1184  *
1185  * When unlock == 1, we unlock the pages in successfully allocated regions.
1186  * When unlock == 0, we leave them locked for writing them out.
1187  *
1188  * However, we unlock all the pages except @locked_page in case of failure.
1189  *
1190  * In summary, page locking state will be as follow:
1191  *
1192  * - page_started == 1 (return value)
1193  *     - All the pages are unlocked. IO is started.
1194  *     - Note that this can happen only on success
1195  * - unlock == 1
1196  *     - All the pages except @locked_page are unlocked in any case
1197  * - unlock == 0
1198  *     - On success, all the pages are locked for writing out them
1199  *     - On failure, all the pages except @locked_page are unlocked
1200  *
1201  * When a failure happens in the second or later iteration of the
1202  * while-loop, the ordered extents created in previous iterations are kept
1203  * intact. So, the caller must clean them up by calling
1204  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1205  * example.
1206  */
1207 static noinline int cow_file_range(struct btrfs_inode *inode,
1208 				   struct page *locked_page,
1209 				   u64 start, u64 end, int *page_started,
1210 				   unsigned long *nr_written, int unlock,
1211 				   u64 *done_offset)
1212 {
1213 	struct btrfs_root *root = inode->root;
1214 	struct btrfs_fs_info *fs_info = root->fs_info;
1215 	u64 alloc_hint = 0;
1216 	u64 orig_start = start;
1217 	u64 num_bytes;
1218 	unsigned long ram_size;
1219 	u64 cur_alloc_size = 0;
1220 	u64 min_alloc_size;
1221 	u64 blocksize = fs_info->sectorsize;
1222 	struct btrfs_key ins;
1223 	struct extent_map *em;
1224 	unsigned clear_bits;
1225 	unsigned long page_ops;
1226 	bool extent_reserved = false;
1227 	int ret = 0;
1228 
1229 	if (btrfs_is_free_space_inode(inode)) {
1230 		ret = -EINVAL;
1231 		goto out_unlock;
1232 	}
1233 
1234 	num_bytes = ALIGN(end - start + 1, blocksize);
1235 	num_bytes = max(blocksize,  num_bytes);
1236 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1237 
1238 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1239 
1240 	/*
1241 	 * Due to the page size limit, for subpage we can only trigger the
1242 	 * writeback for the dirty sectors of page, that means data writeback
1243 	 * is doing more writeback than what we want.
1244 	 *
1245 	 * This is especially unexpected for some call sites like fallocate,
1246 	 * where we only increase i_size after everything is done.
1247 	 * This means we can trigger inline extent even if we didn't want to.
1248 	 * So here we skip inline extent creation completely.
1249 	 */
1250 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1251 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1252 				       end + 1);
1253 
1254 		/* lets try to make an inline extent */
1255 		ret = cow_file_range_inline(inode, actual_end, 0,
1256 					    BTRFS_COMPRESS_NONE, NULL, false);
1257 		if (ret == 0) {
1258 			/*
1259 			 * We use DO_ACCOUNTING here because we need the
1260 			 * delalloc_release_metadata to be run _after_ we drop
1261 			 * our outstanding extent for clearing delalloc for this
1262 			 * range.
1263 			 */
1264 			extent_clear_unlock_delalloc(inode, start, end,
1265 				     locked_page,
1266 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1267 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1268 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1269 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1270 			*nr_written = *nr_written +
1271 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1272 			*page_started = 1;
1273 			/*
1274 			 * locked_page is locked by the caller of
1275 			 * writepage_delalloc(), not locked by
1276 			 * __process_pages_contig().
1277 			 *
1278 			 * We can't let __process_pages_contig() to unlock it,
1279 			 * as it doesn't have any subpage::writers recorded.
1280 			 *
1281 			 * Here we manually unlock the page, since the caller
1282 			 * can't use page_started to determine if it's an
1283 			 * inline extent or a compressed extent.
1284 			 */
1285 			unlock_page(locked_page);
1286 			goto out;
1287 		} else if (ret < 0) {
1288 			goto out_unlock;
1289 		}
1290 	}
1291 
1292 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1293 
1294 	/*
1295 	 * Relocation relies on the relocated extents to have exactly the same
1296 	 * size as the original extents. Normally writeback for relocation data
1297 	 * extents follows a NOCOW path because relocation preallocates the
1298 	 * extents. However, due to an operation such as scrub turning a block
1299 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1300 	 * an extent allocated during COW has exactly the requested size and can
1301 	 * not be split into smaller extents, otherwise relocation breaks and
1302 	 * fails during the stage where it updates the bytenr of file extent
1303 	 * items.
1304 	 */
1305 	if (btrfs_is_data_reloc_root(root))
1306 		min_alloc_size = num_bytes;
1307 	else
1308 		min_alloc_size = fs_info->sectorsize;
1309 
1310 	while (num_bytes > 0) {
1311 		cur_alloc_size = num_bytes;
1312 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1313 					   min_alloc_size, 0, alloc_hint,
1314 					   &ins, 1, 1);
1315 		if (ret < 0)
1316 			goto out_unlock;
1317 		cur_alloc_size = ins.offset;
1318 		extent_reserved = true;
1319 
1320 		ram_size = ins.offset;
1321 		em = create_io_em(inode, start, ins.offset, /* len */
1322 				  start, /* orig_start */
1323 				  ins.objectid, /* block_start */
1324 				  ins.offset, /* block_len */
1325 				  ins.offset, /* orig_block_len */
1326 				  ram_size, /* ram_bytes */
1327 				  BTRFS_COMPRESS_NONE, /* compress_type */
1328 				  BTRFS_ORDERED_REGULAR /* type */);
1329 		if (IS_ERR(em)) {
1330 			ret = PTR_ERR(em);
1331 			goto out_reserve;
1332 		}
1333 		free_extent_map(em);
1334 
1335 		ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1336 					       ins.objectid, cur_alloc_size, 0,
1337 					       1 << BTRFS_ORDERED_REGULAR,
1338 					       BTRFS_COMPRESS_NONE);
1339 		if (ret)
1340 			goto out_drop_extent_cache;
1341 
1342 		if (btrfs_is_data_reloc_root(root)) {
1343 			ret = btrfs_reloc_clone_csums(inode, start,
1344 						      cur_alloc_size);
1345 			/*
1346 			 * Only drop cache here, and process as normal.
1347 			 *
1348 			 * We must not allow extent_clear_unlock_delalloc()
1349 			 * at out_unlock label to free meta of this ordered
1350 			 * extent, as its meta should be freed by
1351 			 * btrfs_finish_ordered_io().
1352 			 *
1353 			 * So we must continue until @start is increased to
1354 			 * skip current ordered extent.
1355 			 */
1356 			if (ret)
1357 				btrfs_drop_extent_map_range(inode, start,
1358 							    start + ram_size - 1,
1359 							    false);
1360 		}
1361 
1362 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1363 
1364 		/*
1365 		 * We're not doing compressed IO, don't unlock the first page
1366 		 * (which the caller expects to stay locked), don't clear any
1367 		 * dirty bits and don't set any writeback bits
1368 		 *
1369 		 * Do set the Ordered (Private2) bit so we know this page was
1370 		 * properly setup for writepage.
1371 		 */
1372 		page_ops = unlock ? PAGE_UNLOCK : 0;
1373 		page_ops |= PAGE_SET_ORDERED;
1374 
1375 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1376 					     locked_page,
1377 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1378 					     page_ops);
1379 		if (num_bytes < cur_alloc_size)
1380 			num_bytes = 0;
1381 		else
1382 			num_bytes -= cur_alloc_size;
1383 		alloc_hint = ins.objectid + ins.offset;
1384 		start += cur_alloc_size;
1385 		extent_reserved = false;
1386 
1387 		/*
1388 		 * btrfs_reloc_clone_csums() error, since start is increased
1389 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1390 		 * free metadata of current ordered extent, we're OK to exit.
1391 		 */
1392 		if (ret)
1393 			goto out_unlock;
1394 	}
1395 out:
1396 	return ret;
1397 
1398 out_drop_extent_cache:
1399 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1400 out_reserve:
1401 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1402 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1403 out_unlock:
1404 	/*
1405 	 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1406 	 * caller to write out the successfully allocated region and retry.
1407 	 */
1408 	if (done_offset && ret == -EAGAIN) {
1409 		if (orig_start < start)
1410 			*done_offset = start - 1;
1411 		else
1412 			*done_offset = start;
1413 		return ret;
1414 	} else if (ret == -EAGAIN) {
1415 		/* Convert to -ENOSPC since the caller cannot retry. */
1416 		ret = -ENOSPC;
1417 	}
1418 
1419 	/*
1420 	 * Now, we have three regions to clean up:
1421 	 *
1422 	 * |-------(1)----|---(2)---|-------------(3)----------|
1423 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1424 	 *
1425 	 * We process each region below.
1426 	 */
1427 
1428 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1429 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1430 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1431 
1432 	/*
1433 	 * For the range (1). We have already instantiated the ordered extents
1434 	 * for this region. They are cleaned up by
1435 	 * btrfs_cleanup_ordered_extents() in e.g,
1436 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1437 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1438 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1439 	 * function.
1440 	 *
1441 	 * However, in case of unlock == 0, we still need to unlock the pages
1442 	 * (except @locked_page) to ensure all the pages are unlocked.
1443 	 */
1444 	if (!unlock && orig_start < start) {
1445 		if (!locked_page)
1446 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1447 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1448 					     locked_page, 0, page_ops);
1449 	}
1450 
1451 	/*
1452 	 * For the range (2). If we reserved an extent for our delalloc range
1453 	 * (or a subrange) and failed to create the respective ordered extent,
1454 	 * then it means that when we reserved the extent we decremented the
1455 	 * extent's size from the data space_info's bytes_may_use counter and
1456 	 * incremented the space_info's bytes_reserved counter by the same
1457 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1458 	 * to decrement again the data space_info's bytes_may_use counter,
1459 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1460 	 */
1461 	if (extent_reserved) {
1462 		extent_clear_unlock_delalloc(inode, start,
1463 					     start + cur_alloc_size - 1,
1464 					     locked_page,
1465 					     clear_bits,
1466 					     page_ops);
1467 		start += cur_alloc_size;
1468 		if (start >= end)
1469 			return ret;
1470 	}
1471 
1472 	/*
1473 	 * For the range (3). We never touched the region. In addition to the
1474 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1475 	 * space_info's bytes_may_use counter, reserved in
1476 	 * btrfs_check_data_free_space().
1477 	 */
1478 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1479 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1480 				     page_ops);
1481 	return ret;
1482 }
1483 
1484 /*
1485  * work queue call back to started compression on a file and pages
1486  */
1487 static noinline void async_cow_start(struct btrfs_work *work)
1488 {
1489 	struct async_chunk *async_chunk;
1490 	int compressed_extents;
1491 
1492 	async_chunk = container_of(work, struct async_chunk, work);
1493 
1494 	compressed_extents = compress_file_range(async_chunk);
1495 	if (compressed_extents == 0) {
1496 		btrfs_add_delayed_iput(async_chunk->inode);
1497 		async_chunk->inode = NULL;
1498 	}
1499 }
1500 
1501 /*
1502  * work queue call back to submit previously compressed pages
1503  */
1504 static noinline void async_cow_submit(struct btrfs_work *work)
1505 {
1506 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1507 						     work);
1508 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1509 	unsigned long nr_pages;
1510 
1511 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1512 		PAGE_SHIFT;
1513 
1514 	/*
1515 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1516 	 * in which case we don't have anything to submit, yet we need to
1517 	 * always adjust ->async_delalloc_pages as its paired with the init
1518 	 * happening in cow_file_range_async
1519 	 */
1520 	if (async_chunk->inode)
1521 		submit_compressed_extents(async_chunk);
1522 
1523 	/* atomic_sub_return implies a barrier */
1524 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1525 	    5 * SZ_1M)
1526 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1527 }
1528 
1529 static noinline void async_cow_free(struct btrfs_work *work)
1530 {
1531 	struct async_chunk *async_chunk;
1532 	struct async_cow *async_cow;
1533 
1534 	async_chunk = container_of(work, struct async_chunk, work);
1535 	if (async_chunk->inode)
1536 		btrfs_add_delayed_iput(async_chunk->inode);
1537 	if (async_chunk->blkcg_css)
1538 		css_put(async_chunk->blkcg_css);
1539 
1540 	async_cow = async_chunk->async_cow;
1541 	if (atomic_dec_and_test(&async_cow->num_chunks))
1542 		kvfree(async_cow);
1543 }
1544 
1545 static int cow_file_range_async(struct btrfs_inode *inode,
1546 				struct writeback_control *wbc,
1547 				struct page *locked_page,
1548 				u64 start, u64 end, int *page_started,
1549 				unsigned long *nr_written)
1550 {
1551 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1552 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1553 	struct async_cow *ctx;
1554 	struct async_chunk *async_chunk;
1555 	unsigned long nr_pages;
1556 	u64 cur_end;
1557 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1558 	int i;
1559 	bool should_compress;
1560 	unsigned nofs_flag;
1561 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1562 
1563 	unlock_extent(&inode->io_tree, start, end, NULL);
1564 
1565 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1566 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1567 		num_chunks = 1;
1568 		should_compress = false;
1569 	} else {
1570 		should_compress = true;
1571 	}
1572 
1573 	nofs_flag = memalloc_nofs_save();
1574 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1575 	memalloc_nofs_restore(nofs_flag);
1576 
1577 	if (!ctx) {
1578 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1579 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1580 			EXTENT_DO_ACCOUNTING;
1581 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1582 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1583 
1584 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1585 					     clear_bits, page_ops);
1586 		return -ENOMEM;
1587 	}
1588 
1589 	async_chunk = ctx->chunks;
1590 	atomic_set(&ctx->num_chunks, num_chunks);
1591 
1592 	for (i = 0; i < num_chunks; i++) {
1593 		if (should_compress)
1594 			cur_end = min(end, start + SZ_512K - 1);
1595 		else
1596 			cur_end = end;
1597 
1598 		/*
1599 		 * igrab is called higher up in the call chain, take only the
1600 		 * lightweight reference for the callback lifetime
1601 		 */
1602 		ihold(&inode->vfs_inode);
1603 		async_chunk[i].async_cow = ctx;
1604 		async_chunk[i].inode = inode;
1605 		async_chunk[i].start = start;
1606 		async_chunk[i].end = cur_end;
1607 		async_chunk[i].write_flags = write_flags;
1608 		INIT_LIST_HEAD(&async_chunk[i].extents);
1609 
1610 		/*
1611 		 * The locked_page comes all the way from writepage and its
1612 		 * the original page we were actually given.  As we spread
1613 		 * this large delalloc region across multiple async_chunk
1614 		 * structs, only the first struct needs a pointer to locked_page
1615 		 *
1616 		 * This way we don't need racey decisions about who is supposed
1617 		 * to unlock it.
1618 		 */
1619 		if (locked_page) {
1620 			/*
1621 			 * Depending on the compressibility, the pages might or
1622 			 * might not go through async.  We want all of them to
1623 			 * be accounted against wbc once.  Let's do it here
1624 			 * before the paths diverge.  wbc accounting is used
1625 			 * only for foreign writeback detection and doesn't
1626 			 * need full accuracy.  Just account the whole thing
1627 			 * against the first page.
1628 			 */
1629 			wbc_account_cgroup_owner(wbc, locked_page,
1630 						 cur_end - start);
1631 			async_chunk[i].locked_page = locked_page;
1632 			locked_page = NULL;
1633 		} else {
1634 			async_chunk[i].locked_page = NULL;
1635 		}
1636 
1637 		if (blkcg_css != blkcg_root_css) {
1638 			css_get(blkcg_css);
1639 			async_chunk[i].blkcg_css = blkcg_css;
1640 		} else {
1641 			async_chunk[i].blkcg_css = NULL;
1642 		}
1643 
1644 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1645 				async_cow_submit, async_cow_free);
1646 
1647 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1648 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1649 
1650 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1651 
1652 		*nr_written += nr_pages;
1653 		start = cur_end + 1;
1654 	}
1655 	*page_started = 1;
1656 	return 0;
1657 }
1658 
1659 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1660 				       struct page *locked_page, u64 start,
1661 				       u64 end, int *page_started,
1662 				       unsigned long *nr_written)
1663 {
1664 	u64 done_offset = end;
1665 	int ret;
1666 	bool locked_page_done = false;
1667 
1668 	while (start <= end) {
1669 		ret = cow_file_range(inode, locked_page, start, end, page_started,
1670 				     nr_written, 0, &done_offset);
1671 		if (ret && ret != -EAGAIN)
1672 			return ret;
1673 
1674 		if (*page_started) {
1675 			ASSERT(ret == 0);
1676 			return 0;
1677 		}
1678 
1679 		if (ret == 0)
1680 			done_offset = end;
1681 
1682 		if (done_offset == start) {
1683 			wait_on_bit_io(&inode->root->fs_info->flags,
1684 				       BTRFS_FS_NEED_ZONE_FINISH,
1685 				       TASK_UNINTERRUPTIBLE);
1686 			continue;
1687 		}
1688 
1689 		if (!locked_page_done) {
1690 			__set_page_dirty_nobuffers(locked_page);
1691 			account_page_redirty(locked_page);
1692 		}
1693 		locked_page_done = true;
1694 		extent_write_locked_range(&inode->vfs_inode, start, done_offset);
1695 
1696 		start = done_offset + 1;
1697 	}
1698 
1699 	*page_started = 1;
1700 
1701 	return 0;
1702 }
1703 
1704 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1705 					u64 bytenr, u64 num_bytes, bool nowait)
1706 {
1707 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1708 	struct btrfs_ordered_sum *sums;
1709 	int ret;
1710 	LIST_HEAD(list);
1711 
1712 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1713 				      &list, 0, nowait);
1714 	if (ret == 0 && list_empty(&list))
1715 		return 0;
1716 
1717 	while (!list_empty(&list)) {
1718 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1719 		list_del(&sums->list);
1720 		kfree(sums);
1721 	}
1722 	if (ret < 0)
1723 		return ret;
1724 	return 1;
1725 }
1726 
1727 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1728 			   const u64 start, const u64 end,
1729 			   int *page_started, unsigned long *nr_written)
1730 {
1731 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1732 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1733 	const u64 range_bytes = end + 1 - start;
1734 	struct extent_io_tree *io_tree = &inode->io_tree;
1735 	u64 range_start = start;
1736 	u64 count;
1737 
1738 	/*
1739 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1740 	 * made we had not enough available data space and therefore we did not
1741 	 * reserve data space for it, since we though we could do NOCOW for the
1742 	 * respective file range (either there is prealloc extent or the inode
1743 	 * has the NOCOW bit set).
1744 	 *
1745 	 * However when we need to fallback to COW mode (because for example the
1746 	 * block group for the corresponding extent was turned to RO mode by a
1747 	 * scrub or relocation) we need to do the following:
1748 	 *
1749 	 * 1) We increment the bytes_may_use counter of the data space info.
1750 	 *    If COW succeeds, it allocates a new data extent and after doing
1751 	 *    that it decrements the space info's bytes_may_use counter and
1752 	 *    increments its bytes_reserved counter by the same amount (we do
1753 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1754 	 *    bytes_may_use counter to compensate (when space is reserved at
1755 	 *    buffered write time, the bytes_may_use counter is incremented);
1756 	 *
1757 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1758 	 *    that if the COW path fails for any reason, it decrements (through
1759 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1760 	 *    data space info, which we incremented in the step above.
1761 	 *
1762 	 * If we need to fallback to cow and the inode corresponds to a free
1763 	 * space cache inode or an inode of the data relocation tree, we must
1764 	 * also increment bytes_may_use of the data space_info for the same
1765 	 * reason. Space caches and relocated data extents always get a prealloc
1766 	 * extent for them, however scrub or balance may have set the block
1767 	 * group that contains that extent to RO mode and therefore force COW
1768 	 * when starting writeback.
1769 	 */
1770 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1771 				 EXTENT_NORESERVE, 0, NULL);
1772 	if (count > 0 || is_space_ino || is_reloc_ino) {
1773 		u64 bytes = count;
1774 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1775 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1776 
1777 		if (is_space_ino || is_reloc_ino)
1778 			bytes = range_bytes;
1779 
1780 		spin_lock(&sinfo->lock);
1781 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1782 		spin_unlock(&sinfo->lock);
1783 
1784 		if (count > 0)
1785 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1786 					 NULL);
1787 	}
1788 
1789 	return cow_file_range(inode, locked_page, start, end, page_started,
1790 			      nr_written, 1, NULL);
1791 }
1792 
1793 struct can_nocow_file_extent_args {
1794 	/* Input fields. */
1795 
1796 	/* Start file offset of the range we want to NOCOW. */
1797 	u64 start;
1798 	/* End file offset (inclusive) of the range we want to NOCOW. */
1799 	u64 end;
1800 	bool writeback_path;
1801 	bool strict;
1802 	/*
1803 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1804 	 * anymore.
1805 	 */
1806 	bool free_path;
1807 
1808 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1809 
1810 	u64 disk_bytenr;
1811 	u64 disk_num_bytes;
1812 	u64 extent_offset;
1813 	/* Number of bytes that can be written to in NOCOW mode. */
1814 	u64 num_bytes;
1815 };
1816 
1817 /*
1818  * Check if we can NOCOW the file extent that the path points to.
1819  * This function may return with the path released, so the caller should check
1820  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1821  *
1822  * Returns: < 0 on error
1823  *            0 if we can not NOCOW
1824  *            1 if we can NOCOW
1825  */
1826 static int can_nocow_file_extent(struct btrfs_path *path,
1827 				 struct btrfs_key *key,
1828 				 struct btrfs_inode *inode,
1829 				 struct can_nocow_file_extent_args *args)
1830 {
1831 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1832 	struct extent_buffer *leaf = path->nodes[0];
1833 	struct btrfs_root *root = inode->root;
1834 	struct btrfs_file_extent_item *fi;
1835 	u64 extent_end;
1836 	u8 extent_type;
1837 	int can_nocow = 0;
1838 	int ret = 0;
1839 	bool nowait = path->nowait;
1840 
1841 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1842 	extent_type = btrfs_file_extent_type(leaf, fi);
1843 
1844 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1845 		goto out;
1846 
1847 	/* Can't access these fields unless we know it's not an inline extent. */
1848 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1849 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1850 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1851 
1852 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1853 	    extent_type == BTRFS_FILE_EXTENT_REG)
1854 		goto out;
1855 
1856 	/*
1857 	 * If the extent was created before the generation where the last snapshot
1858 	 * for its subvolume was created, then this implies the extent is shared,
1859 	 * hence we must COW.
1860 	 */
1861 	if (!args->strict &&
1862 	    btrfs_file_extent_generation(leaf, fi) <=
1863 	    btrfs_root_last_snapshot(&root->root_item))
1864 		goto out;
1865 
1866 	/* An explicit hole, must COW. */
1867 	if (args->disk_bytenr == 0)
1868 		goto out;
1869 
1870 	/* Compressed/encrypted/encoded extents must be COWed. */
1871 	if (btrfs_file_extent_compression(leaf, fi) ||
1872 	    btrfs_file_extent_encryption(leaf, fi) ||
1873 	    btrfs_file_extent_other_encoding(leaf, fi))
1874 		goto out;
1875 
1876 	extent_end = btrfs_file_extent_end(path);
1877 
1878 	/*
1879 	 * The following checks can be expensive, as they need to take other
1880 	 * locks and do btree or rbtree searches, so release the path to avoid
1881 	 * blocking other tasks for too long.
1882 	 */
1883 	btrfs_release_path(path);
1884 
1885 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1886 				    key->offset - args->extent_offset,
1887 				    args->disk_bytenr, false, path);
1888 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1889 	if (ret != 0)
1890 		goto out;
1891 
1892 	if (args->free_path) {
1893 		/*
1894 		 * We don't need the path anymore, plus through the
1895 		 * csum_exist_in_range() call below we will end up allocating
1896 		 * another path. So free the path to avoid unnecessary extra
1897 		 * memory usage.
1898 		 */
1899 		btrfs_free_path(path);
1900 		path = NULL;
1901 	}
1902 
1903 	/* If there are pending snapshots for this root, we must COW. */
1904 	if (args->writeback_path && !is_freespace_inode &&
1905 	    atomic_read(&root->snapshot_force_cow))
1906 		goto out;
1907 
1908 	args->disk_bytenr += args->extent_offset;
1909 	args->disk_bytenr += args->start - key->offset;
1910 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1911 
1912 	/*
1913 	 * Force COW if csums exist in the range. This ensures that csums for a
1914 	 * given extent are either valid or do not exist.
1915 	 */
1916 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1917 				  nowait);
1918 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1919 	if (ret != 0)
1920 		goto out;
1921 
1922 	can_nocow = 1;
1923  out:
1924 	if (args->free_path && path)
1925 		btrfs_free_path(path);
1926 
1927 	return ret < 0 ? ret : can_nocow;
1928 }
1929 
1930 /*
1931  * when nowcow writeback call back.  This checks for snapshots or COW copies
1932  * of the extents that exist in the file, and COWs the file as required.
1933  *
1934  * If no cow copies or snapshots exist, we write directly to the existing
1935  * blocks on disk
1936  */
1937 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1938 				       struct page *locked_page,
1939 				       const u64 start, const u64 end,
1940 				       int *page_started,
1941 				       unsigned long *nr_written)
1942 {
1943 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1944 	struct btrfs_root *root = inode->root;
1945 	struct btrfs_path *path;
1946 	u64 cow_start = (u64)-1;
1947 	u64 cur_offset = start;
1948 	int ret;
1949 	bool check_prev = true;
1950 	u64 ino = btrfs_ino(inode);
1951 	struct btrfs_block_group *bg;
1952 	bool nocow = false;
1953 	struct can_nocow_file_extent_args nocow_args = { 0 };
1954 
1955 	path = btrfs_alloc_path();
1956 	if (!path) {
1957 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1958 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1959 					     EXTENT_DO_ACCOUNTING |
1960 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1961 					     PAGE_START_WRITEBACK |
1962 					     PAGE_END_WRITEBACK);
1963 		return -ENOMEM;
1964 	}
1965 
1966 	nocow_args.end = end;
1967 	nocow_args.writeback_path = true;
1968 
1969 	while (1) {
1970 		struct btrfs_key found_key;
1971 		struct btrfs_file_extent_item *fi;
1972 		struct extent_buffer *leaf;
1973 		u64 extent_end;
1974 		u64 ram_bytes;
1975 		u64 nocow_end;
1976 		int extent_type;
1977 
1978 		nocow = false;
1979 
1980 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1981 					       cur_offset, 0);
1982 		if (ret < 0)
1983 			goto error;
1984 
1985 		/*
1986 		 * If there is no extent for our range when doing the initial
1987 		 * search, then go back to the previous slot as it will be the
1988 		 * one containing the search offset
1989 		 */
1990 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1991 			leaf = path->nodes[0];
1992 			btrfs_item_key_to_cpu(leaf, &found_key,
1993 					      path->slots[0] - 1);
1994 			if (found_key.objectid == ino &&
1995 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1996 				path->slots[0]--;
1997 		}
1998 		check_prev = false;
1999 next_slot:
2000 		/* Go to next leaf if we have exhausted the current one */
2001 		leaf = path->nodes[0];
2002 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2003 			ret = btrfs_next_leaf(root, path);
2004 			if (ret < 0) {
2005 				if (cow_start != (u64)-1)
2006 					cur_offset = cow_start;
2007 				goto error;
2008 			}
2009 			if (ret > 0)
2010 				break;
2011 			leaf = path->nodes[0];
2012 		}
2013 
2014 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2015 
2016 		/* Didn't find anything for our INO */
2017 		if (found_key.objectid > ino)
2018 			break;
2019 		/*
2020 		 * Keep searching until we find an EXTENT_ITEM or there are no
2021 		 * more extents for this inode
2022 		 */
2023 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2024 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2025 			path->slots[0]++;
2026 			goto next_slot;
2027 		}
2028 
2029 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2030 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2031 		    found_key.offset > end)
2032 			break;
2033 
2034 		/*
2035 		 * If the found extent starts after requested offset, then
2036 		 * adjust extent_end to be right before this extent begins
2037 		 */
2038 		if (found_key.offset > cur_offset) {
2039 			extent_end = found_key.offset;
2040 			extent_type = 0;
2041 			goto out_check;
2042 		}
2043 
2044 		/*
2045 		 * Found extent which begins before our range and potentially
2046 		 * intersect it
2047 		 */
2048 		fi = btrfs_item_ptr(leaf, path->slots[0],
2049 				    struct btrfs_file_extent_item);
2050 		extent_type = btrfs_file_extent_type(leaf, fi);
2051 		/* If this is triggered then we have a memory corruption. */
2052 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2053 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2054 			ret = -EUCLEAN;
2055 			goto error;
2056 		}
2057 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2058 		extent_end = btrfs_file_extent_end(path);
2059 
2060 		/*
2061 		 * If the extent we got ends before our current offset, skip to
2062 		 * the next extent.
2063 		 */
2064 		if (extent_end <= cur_offset) {
2065 			path->slots[0]++;
2066 			goto next_slot;
2067 		}
2068 
2069 		nocow_args.start = cur_offset;
2070 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2071 		if (ret < 0) {
2072 			if (cow_start != (u64)-1)
2073 				cur_offset = cow_start;
2074 			goto error;
2075 		} else if (ret == 0) {
2076 			goto out_check;
2077 		}
2078 
2079 		ret = 0;
2080 		bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2081 		if (bg)
2082 			nocow = true;
2083 out_check:
2084 		/*
2085 		 * If nocow is false then record the beginning of the range
2086 		 * that needs to be COWed
2087 		 */
2088 		if (!nocow) {
2089 			if (cow_start == (u64)-1)
2090 				cow_start = cur_offset;
2091 			cur_offset = extent_end;
2092 			if (cur_offset > end)
2093 				break;
2094 			if (!path->nodes[0])
2095 				continue;
2096 			path->slots[0]++;
2097 			goto next_slot;
2098 		}
2099 
2100 		/*
2101 		 * COW range from cow_start to found_key.offset - 1. As the key
2102 		 * will contain the beginning of the first extent that can be
2103 		 * NOCOW, following one which needs to be COW'ed
2104 		 */
2105 		if (cow_start != (u64)-1) {
2106 			ret = fallback_to_cow(inode, locked_page,
2107 					      cow_start, found_key.offset - 1,
2108 					      page_started, nr_written);
2109 			if (ret)
2110 				goto error;
2111 			cow_start = (u64)-1;
2112 		}
2113 
2114 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2115 
2116 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2117 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2118 			struct extent_map *em;
2119 
2120 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2121 					  orig_start,
2122 					  nocow_args.disk_bytenr, /* block_start */
2123 					  nocow_args.num_bytes, /* block_len */
2124 					  nocow_args.disk_num_bytes, /* orig_block_len */
2125 					  ram_bytes, BTRFS_COMPRESS_NONE,
2126 					  BTRFS_ORDERED_PREALLOC);
2127 			if (IS_ERR(em)) {
2128 				ret = PTR_ERR(em);
2129 				goto error;
2130 			}
2131 			free_extent_map(em);
2132 			ret = btrfs_add_ordered_extent(inode,
2133 					cur_offset, nocow_args.num_bytes,
2134 					nocow_args.num_bytes,
2135 					nocow_args.disk_bytenr,
2136 					nocow_args.num_bytes, 0,
2137 					1 << BTRFS_ORDERED_PREALLOC,
2138 					BTRFS_COMPRESS_NONE);
2139 			if (ret) {
2140 				btrfs_drop_extent_map_range(inode, cur_offset,
2141 							    nocow_end, false);
2142 				goto error;
2143 			}
2144 		} else {
2145 			ret = btrfs_add_ordered_extent(inode, cur_offset,
2146 						       nocow_args.num_bytes,
2147 						       nocow_args.num_bytes,
2148 						       nocow_args.disk_bytenr,
2149 						       nocow_args.num_bytes,
2150 						       0,
2151 						       1 << BTRFS_ORDERED_NOCOW,
2152 						       BTRFS_COMPRESS_NONE);
2153 			if (ret)
2154 				goto error;
2155 		}
2156 
2157 		if (nocow) {
2158 			btrfs_dec_nocow_writers(bg);
2159 			nocow = false;
2160 		}
2161 
2162 		if (btrfs_is_data_reloc_root(root))
2163 			/*
2164 			 * Error handled later, as we must prevent
2165 			 * extent_clear_unlock_delalloc() in error handler
2166 			 * from freeing metadata of created ordered extent.
2167 			 */
2168 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
2169 						      nocow_args.num_bytes);
2170 
2171 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2172 					     locked_page, EXTENT_LOCKED |
2173 					     EXTENT_DELALLOC |
2174 					     EXTENT_CLEAR_DATA_RESV,
2175 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2176 
2177 		cur_offset = extent_end;
2178 
2179 		/*
2180 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2181 		 * handler, as metadata for created ordered extent will only
2182 		 * be freed by btrfs_finish_ordered_io().
2183 		 */
2184 		if (ret)
2185 			goto error;
2186 		if (cur_offset > end)
2187 			break;
2188 	}
2189 	btrfs_release_path(path);
2190 
2191 	if (cur_offset <= end && cow_start == (u64)-1)
2192 		cow_start = cur_offset;
2193 
2194 	if (cow_start != (u64)-1) {
2195 		cur_offset = end;
2196 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
2197 				      page_started, nr_written);
2198 		if (ret)
2199 			goto error;
2200 	}
2201 
2202 error:
2203 	if (nocow)
2204 		btrfs_dec_nocow_writers(bg);
2205 
2206 	if (ret && cur_offset < end)
2207 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2208 					     locked_page, EXTENT_LOCKED |
2209 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2210 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2211 					     PAGE_START_WRITEBACK |
2212 					     PAGE_END_WRITEBACK);
2213 	btrfs_free_path(path);
2214 	return ret;
2215 }
2216 
2217 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2218 {
2219 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2220 		if (inode->defrag_bytes &&
2221 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2222 				   0, NULL))
2223 			return false;
2224 		return true;
2225 	}
2226 	return false;
2227 }
2228 
2229 /*
2230  * Function to process delayed allocation (create CoW) for ranges which are
2231  * being touched for the first time.
2232  */
2233 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2234 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
2235 		struct writeback_control *wbc)
2236 {
2237 	int ret;
2238 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2239 
2240 	/*
2241 	 * The range must cover part of the @locked_page, or the returned
2242 	 * @page_started can confuse the caller.
2243 	 */
2244 	ASSERT(!(end <= page_offset(locked_page) ||
2245 		 start >= page_offset(locked_page) + PAGE_SIZE));
2246 
2247 	if (should_nocow(inode, start, end)) {
2248 		/*
2249 		 * Normally on a zoned device we're only doing COW writes, but
2250 		 * in case of relocation on a zoned filesystem we have taken
2251 		 * precaution, that we're only writing sequentially. It's safe
2252 		 * to use run_delalloc_nocow() here, like for  regular
2253 		 * preallocated inodes.
2254 		 */
2255 		ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2256 		ret = run_delalloc_nocow(inode, locked_page, start, end,
2257 					 page_started, nr_written);
2258 	} else if (!btrfs_inode_can_compress(inode) ||
2259 		   !inode_need_compress(inode, start, end)) {
2260 		if (zoned)
2261 			ret = run_delalloc_zoned(inode, locked_page, start, end,
2262 						 page_started, nr_written);
2263 		else
2264 			ret = cow_file_range(inode, locked_page, start, end,
2265 					     page_started, nr_written, 1, NULL);
2266 	} else {
2267 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2268 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2269 					   page_started, nr_written);
2270 	}
2271 	ASSERT(ret <= 0);
2272 	if (ret)
2273 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2274 					      end - start + 1);
2275 	return ret;
2276 }
2277 
2278 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2279 				 struct extent_state *orig, u64 split)
2280 {
2281 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2282 	u64 size;
2283 
2284 	/* not delalloc, ignore it */
2285 	if (!(orig->state & EXTENT_DELALLOC))
2286 		return;
2287 
2288 	size = orig->end - orig->start + 1;
2289 	if (size > fs_info->max_extent_size) {
2290 		u32 num_extents;
2291 		u64 new_size;
2292 
2293 		/*
2294 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2295 		 * applies here, just in reverse.
2296 		 */
2297 		new_size = orig->end - split + 1;
2298 		num_extents = count_max_extents(fs_info, new_size);
2299 		new_size = split - orig->start;
2300 		num_extents += count_max_extents(fs_info, new_size);
2301 		if (count_max_extents(fs_info, size) >= num_extents)
2302 			return;
2303 	}
2304 
2305 	spin_lock(&inode->lock);
2306 	btrfs_mod_outstanding_extents(inode, 1);
2307 	spin_unlock(&inode->lock);
2308 }
2309 
2310 /*
2311  * Handle merged delayed allocation extents so we can keep track of new extents
2312  * that are just merged onto old extents, such as when we are doing sequential
2313  * writes, so we can properly account for the metadata space we'll need.
2314  */
2315 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2316 				 struct extent_state *other)
2317 {
2318 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2319 	u64 new_size, old_size;
2320 	u32 num_extents;
2321 
2322 	/* not delalloc, ignore it */
2323 	if (!(other->state & EXTENT_DELALLOC))
2324 		return;
2325 
2326 	if (new->start > other->start)
2327 		new_size = new->end - other->start + 1;
2328 	else
2329 		new_size = other->end - new->start + 1;
2330 
2331 	/* we're not bigger than the max, unreserve the space and go */
2332 	if (new_size <= fs_info->max_extent_size) {
2333 		spin_lock(&inode->lock);
2334 		btrfs_mod_outstanding_extents(inode, -1);
2335 		spin_unlock(&inode->lock);
2336 		return;
2337 	}
2338 
2339 	/*
2340 	 * We have to add up either side to figure out how many extents were
2341 	 * accounted for before we merged into one big extent.  If the number of
2342 	 * extents we accounted for is <= the amount we need for the new range
2343 	 * then we can return, otherwise drop.  Think of it like this
2344 	 *
2345 	 * [ 4k][MAX_SIZE]
2346 	 *
2347 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2348 	 * need 2 outstanding extents, on one side we have 1 and the other side
2349 	 * we have 1 so they are == and we can return.  But in this case
2350 	 *
2351 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2352 	 *
2353 	 * Each range on their own accounts for 2 extents, but merged together
2354 	 * they are only 3 extents worth of accounting, so we need to drop in
2355 	 * this case.
2356 	 */
2357 	old_size = other->end - other->start + 1;
2358 	num_extents = count_max_extents(fs_info, old_size);
2359 	old_size = new->end - new->start + 1;
2360 	num_extents += count_max_extents(fs_info, old_size);
2361 	if (count_max_extents(fs_info, new_size) >= num_extents)
2362 		return;
2363 
2364 	spin_lock(&inode->lock);
2365 	btrfs_mod_outstanding_extents(inode, -1);
2366 	spin_unlock(&inode->lock);
2367 }
2368 
2369 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2370 				      struct btrfs_inode *inode)
2371 {
2372 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2373 
2374 	spin_lock(&root->delalloc_lock);
2375 	if (list_empty(&inode->delalloc_inodes)) {
2376 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2377 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2378 		root->nr_delalloc_inodes++;
2379 		if (root->nr_delalloc_inodes == 1) {
2380 			spin_lock(&fs_info->delalloc_root_lock);
2381 			BUG_ON(!list_empty(&root->delalloc_root));
2382 			list_add_tail(&root->delalloc_root,
2383 				      &fs_info->delalloc_roots);
2384 			spin_unlock(&fs_info->delalloc_root_lock);
2385 		}
2386 	}
2387 	spin_unlock(&root->delalloc_lock);
2388 }
2389 
2390 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2391 				struct btrfs_inode *inode)
2392 {
2393 	struct btrfs_fs_info *fs_info = root->fs_info;
2394 
2395 	if (!list_empty(&inode->delalloc_inodes)) {
2396 		list_del_init(&inode->delalloc_inodes);
2397 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2398 			  &inode->runtime_flags);
2399 		root->nr_delalloc_inodes--;
2400 		if (!root->nr_delalloc_inodes) {
2401 			ASSERT(list_empty(&root->delalloc_inodes));
2402 			spin_lock(&fs_info->delalloc_root_lock);
2403 			BUG_ON(list_empty(&root->delalloc_root));
2404 			list_del_init(&root->delalloc_root);
2405 			spin_unlock(&fs_info->delalloc_root_lock);
2406 		}
2407 	}
2408 }
2409 
2410 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2411 				     struct btrfs_inode *inode)
2412 {
2413 	spin_lock(&root->delalloc_lock);
2414 	__btrfs_del_delalloc_inode(root, inode);
2415 	spin_unlock(&root->delalloc_lock);
2416 }
2417 
2418 /*
2419  * Properly track delayed allocation bytes in the inode and to maintain the
2420  * list of inodes that have pending delalloc work to be done.
2421  */
2422 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2423 			       u32 bits)
2424 {
2425 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2426 
2427 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2428 		WARN_ON(1);
2429 	/*
2430 	 * set_bit and clear bit hooks normally require _irqsave/restore
2431 	 * but in this case, we are only testing for the DELALLOC
2432 	 * bit, which is only set or cleared with irqs on
2433 	 */
2434 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2435 		struct btrfs_root *root = inode->root;
2436 		u64 len = state->end + 1 - state->start;
2437 		u32 num_extents = count_max_extents(fs_info, len);
2438 		bool do_list = !btrfs_is_free_space_inode(inode);
2439 
2440 		spin_lock(&inode->lock);
2441 		btrfs_mod_outstanding_extents(inode, num_extents);
2442 		spin_unlock(&inode->lock);
2443 
2444 		/* For sanity tests */
2445 		if (btrfs_is_testing(fs_info))
2446 			return;
2447 
2448 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2449 					 fs_info->delalloc_batch);
2450 		spin_lock(&inode->lock);
2451 		inode->delalloc_bytes += len;
2452 		if (bits & EXTENT_DEFRAG)
2453 			inode->defrag_bytes += len;
2454 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2455 					 &inode->runtime_flags))
2456 			btrfs_add_delalloc_inodes(root, inode);
2457 		spin_unlock(&inode->lock);
2458 	}
2459 
2460 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2461 	    (bits & EXTENT_DELALLOC_NEW)) {
2462 		spin_lock(&inode->lock);
2463 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2464 		spin_unlock(&inode->lock);
2465 	}
2466 }
2467 
2468 /*
2469  * Once a range is no longer delalloc this function ensures that proper
2470  * accounting happens.
2471  */
2472 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2473 				 struct extent_state *state, u32 bits)
2474 {
2475 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2476 	u64 len = state->end + 1 - state->start;
2477 	u32 num_extents = count_max_extents(fs_info, len);
2478 
2479 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2480 		spin_lock(&inode->lock);
2481 		inode->defrag_bytes -= len;
2482 		spin_unlock(&inode->lock);
2483 	}
2484 
2485 	/*
2486 	 * set_bit and clear bit hooks normally require _irqsave/restore
2487 	 * but in this case, we are only testing for the DELALLOC
2488 	 * bit, which is only set or cleared with irqs on
2489 	 */
2490 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2491 		struct btrfs_root *root = inode->root;
2492 		bool do_list = !btrfs_is_free_space_inode(inode);
2493 
2494 		spin_lock(&inode->lock);
2495 		btrfs_mod_outstanding_extents(inode, -num_extents);
2496 		spin_unlock(&inode->lock);
2497 
2498 		/*
2499 		 * We don't reserve metadata space for space cache inodes so we
2500 		 * don't need to call delalloc_release_metadata if there is an
2501 		 * error.
2502 		 */
2503 		if (bits & EXTENT_CLEAR_META_RESV &&
2504 		    root != fs_info->tree_root)
2505 			btrfs_delalloc_release_metadata(inode, len, false);
2506 
2507 		/* For sanity tests. */
2508 		if (btrfs_is_testing(fs_info))
2509 			return;
2510 
2511 		if (!btrfs_is_data_reloc_root(root) &&
2512 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2513 		    (bits & EXTENT_CLEAR_DATA_RESV))
2514 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2515 
2516 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2517 					 fs_info->delalloc_batch);
2518 		spin_lock(&inode->lock);
2519 		inode->delalloc_bytes -= len;
2520 		if (do_list && inode->delalloc_bytes == 0 &&
2521 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2522 					&inode->runtime_flags))
2523 			btrfs_del_delalloc_inode(root, inode);
2524 		spin_unlock(&inode->lock);
2525 	}
2526 
2527 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2528 	    (bits & EXTENT_DELALLOC_NEW)) {
2529 		spin_lock(&inode->lock);
2530 		ASSERT(inode->new_delalloc_bytes >= len);
2531 		inode->new_delalloc_bytes -= len;
2532 		if (bits & EXTENT_ADD_INODE_BYTES)
2533 			inode_add_bytes(&inode->vfs_inode, len);
2534 		spin_unlock(&inode->lock);
2535 	}
2536 }
2537 
2538 /*
2539  * in order to insert checksums into the metadata in large chunks,
2540  * we wait until bio submission time.   All the pages in the bio are
2541  * checksummed and sums are attached onto the ordered extent record.
2542  *
2543  * At IO completion time the cums attached on the ordered extent record
2544  * are inserted into the btree
2545  */
2546 blk_status_t btrfs_submit_bio_start(struct btrfs_inode *inode, struct bio *bio)
2547 {
2548 	return btrfs_csum_one_bio(inode, bio, (u64)-1, false);
2549 }
2550 
2551 /*
2552  * Split an extent_map at [start, start + len]
2553  *
2554  * This function is intended to be used only for extract_ordered_extent().
2555  */
2556 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2557 			  u64 pre, u64 post)
2558 {
2559 	struct extent_map_tree *em_tree = &inode->extent_tree;
2560 	struct extent_map *em;
2561 	struct extent_map *split_pre = NULL;
2562 	struct extent_map *split_mid = NULL;
2563 	struct extent_map *split_post = NULL;
2564 	int ret = 0;
2565 	unsigned long flags;
2566 
2567 	/* Sanity check */
2568 	if (pre == 0 && post == 0)
2569 		return 0;
2570 
2571 	split_pre = alloc_extent_map();
2572 	if (pre)
2573 		split_mid = alloc_extent_map();
2574 	if (post)
2575 		split_post = alloc_extent_map();
2576 	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2577 		ret = -ENOMEM;
2578 		goto out;
2579 	}
2580 
2581 	ASSERT(pre + post < len);
2582 
2583 	lock_extent(&inode->io_tree, start, start + len - 1, NULL);
2584 	write_lock(&em_tree->lock);
2585 	em = lookup_extent_mapping(em_tree, start, len);
2586 	if (!em) {
2587 		ret = -EIO;
2588 		goto out_unlock;
2589 	}
2590 
2591 	ASSERT(em->len == len);
2592 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2593 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2594 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2595 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2596 	ASSERT(!list_empty(&em->list));
2597 
2598 	flags = em->flags;
2599 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2600 
2601 	/* First, replace the em with a new extent_map starting from * em->start */
2602 	split_pre->start = em->start;
2603 	split_pre->len = (pre ? pre : em->len - post);
2604 	split_pre->orig_start = split_pre->start;
2605 	split_pre->block_start = em->block_start;
2606 	split_pre->block_len = split_pre->len;
2607 	split_pre->orig_block_len = split_pre->block_len;
2608 	split_pre->ram_bytes = split_pre->len;
2609 	split_pre->flags = flags;
2610 	split_pre->compress_type = em->compress_type;
2611 	split_pre->generation = em->generation;
2612 
2613 	replace_extent_mapping(em_tree, em, split_pre, 1);
2614 
2615 	/*
2616 	 * Now we only have an extent_map at:
2617 	 *     [em->start, em->start + pre] if pre != 0
2618 	 *     [em->start, em->start + em->len - post] if pre == 0
2619 	 */
2620 
2621 	if (pre) {
2622 		/* Insert the middle extent_map */
2623 		split_mid->start = em->start + pre;
2624 		split_mid->len = em->len - pre - post;
2625 		split_mid->orig_start = split_mid->start;
2626 		split_mid->block_start = em->block_start + pre;
2627 		split_mid->block_len = split_mid->len;
2628 		split_mid->orig_block_len = split_mid->block_len;
2629 		split_mid->ram_bytes = split_mid->len;
2630 		split_mid->flags = flags;
2631 		split_mid->compress_type = em->compress_type;
2632 		split_mid->generation = em->generation;
2633 		add_extent_mapping(em_tree, split_mid, 1);
2634 	}
2635 
2636 	if (post) {
2637 		split_post->start = em->start + em->len - post;
2638 		split_post->len = post;
2639 		split_post->orig_start = split_post->start;
2640 		split_post->block_start = em->block_start + em->len - post;
2641 		split_post->block_len = split_post->len;
2642 		split_post->orig_block_len = split_post->block_len;
2643 		split_post->ram_bytes = split_post->len;
2644 		split_post->flags = flags;
2645 		split_post->compress_type = em->compress_type;
2646 		split_post->generation = em->generation;
2647 		add_extent_mapping(em_tree, split_post, 1);
2648 	}
2649 
2650 	/* Once for us */
2651 	free_extent_map(em);
2652 	/* Once for the tree */
2653 	free_extent_map(em);
2654 
2655 out_unlock:
2656 	write_unlock(&em_tree->lock);
2657 	unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
2658 out:
2659 	free_extent_map(split_pre);
2660 	free_extent_map(split_mid);
2661 	free_extent_map(split_post);
2662 
2663 	return ret;
2664 }
2665 
2666 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2667 					   struct bio *bio, loff_t file_offset)
2668 {
2669 	struct btrfs_ordered_extent *ordered;
2670 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2671 	u64 file_len;
2672 	u64 len = bio->bi_iter.bi_size;
2673 	u64 end = start + len;
2674 	u64 ordered_end;
2675 	u64 pre, post;
2676 	int ret = 0;
2677 
2678 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2679 	if (WARN_ON_ONCE(!ordered))
2680 		return BLK_STS_IOERR;
2681 
2682 	/* No need to split */
2683 	if (ordered->disk_num_bytes == len)
2684 		goto out;
2685 
2686 	/* We cannot split once end_bio'd ordered extent */
2687 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2688 		ret = -EINVAL;
2689 		goto out;
2690 	}
2691 
2692 	/* We cannot split a compressed ordered extent */
2693 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2694 		ret = -EINVAL;
2695 		goto out;
2696 	}
2697 
2698 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2699 	/* bio must be in one ordered extent */
2700 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2701 		ret = -EINVAL;
2702 		goto out;
2703 	}
2704 
2705 	/* Checksum list should be empty */
2706 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2707 		ret = -EINVAL;
2708 		goto out;
2709 	}
2710 
2711 	file_len = ordered->num_bytes;
2712 	pre = start - ordered->disk_bytenr;
2713 	post = ordered_end - end;
2714 
2715 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2716 	if (ret)
2717 		goto out;
2718 	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2719 
2720 out:
2721 	btrfs_put_ordered_extent(ordered);
2722 
2723 	return errno_to_blk_status(ret);
2724 }
2725 
2726 void btrfs_submit_data_write_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
2727 {
2728 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2729 	blk_status_t ret;
2730 
2731 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2732 		ret = extract_ordered_extent(inode, bio,
2733 				page_offset(bio_first_bvec_all(bio)->bv_page));
2734 		if (ret) {
2735 			btrfs_bio_end_io(btrfs_bio(bio), ret);
2736 			return;
2737 		}
2738 	}
2739 
2740 	/*
2741 	 * If we need to checksum, and the I/O is not issued by fsync and
2742 	 * friends, that is ->sync_writers != 0, defer the submission to a
2743 	 * workqueue to parallelize it.
2744 	 *
2745 	 * Csum items for reloc roots have already been cloned at this point,
2746 	 * so they are handled as part of the no-checksum case.
2747 	 */
2748 	if (!(inode->flags & BTRFS_INODE_NODATASUM) &&
2749 	    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
2750 	    !btrfs_is_data_reloc_root(inode->root)) {
2751 		if (!atomic_read(&inode->sync_writers) &&
2752 		    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_DATA))
2753 			return;
2754 
2755 		ret = btrfs_csum_one_bio(inode, bio, (u64)-1, false);
2756 		if (ret) {
2757 			btrfs_bio_end_io(btrfs_bio(bio), ret);
2758 			return;
2759 		}
2760 	}
2761 	btrfs_submit_bio(fs_info, bio, mirror_num);
2762 }
2763 
2764 void btrfs_submit_data_read_bio(struct btrfs_inode *inode, struct bio *bio,
2765 			int mirror_num, enum btrfs_compression_type compress_type)
2766 {
2767 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2768 	blk_status_t ret;
2769 
2770 	if (compress_type != BTRFS_COMPRESS_NONE) {
2771 		/*
2772 		 * btrfs_submit_compressed_read will handle completing the bio
2773 		 * if there were any errors, so just return here.
2774 		 */
2775 		btrfs_submit_compressed_read(&inode->vfs_inode, bio, mirror_num);
2776 		return;
2777 	}
2778 
2779 	/* Save the original iter for read repair */
2780 	btrfs_bio(bio)->iter = bio->bi_iter;
2781 
2782 	/*
2783 	 * Lookup bio sums does extra checks around whether we need to csum or
2784 	 * not, which is why we ignore skip_sum here.
2785 	 */
2786 	ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
2787 	if (ret) {
2788 		btrfs_bio_end_io(btrfs_bio(bio), ret);
2789 		return;
2790 	}
2791 
2792 	btrfs_submit_bio(fs_info, bio, mirror_num);
2793 }
2794 
2795 /*
2796  * given a list of ordered sums record them in the inode.  This happens
2797  * at IO completion time based on sums calculated at bio submission time.
2798  */
2799 static int add_pending_csums(struct btrfs_trans_handle *trans,
2800 			     struct list_head *list)
2801 {
2802 	struct btrfs_ordered_sum *sum;
2803 	struct btrfs_root *csum_root = NULL;
2804 	int ret;
2805 
2806 	list_for_each_entry(sum, list, list) {
2807 		trans->adding_csums = true;
2808 		if (!csum_root)
2809 			csum_root = btrfs_csum_root(trans->fs_info,
2810 						    sum->bytenr);
2811 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2812 		trans->adding_csums = false;
2813 		if (ret)
2814 			return ret;
2815 	}
2816 	return 0;
2817 }
2818 
2819 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2820 					 const u64 start,
2821 					 const u64 len,
2822 					 struct extent_state **cached_state)
2823 {
2824 	u64 search_start = start;
2825 	const u64 end = start + len - 1;
2826 
2827 	while (search_start < end) {
2828 		const u64 search_len = end - search_start + 1;
2829 		struct extent_map *em;
2830 		u64 em_len;
2831 		int ret = 0;
2832 
2833 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2834 		if (IS_ERR(em))
2835 			return PTR_ERR(em);
2836 
2837 		if (em->block_start != EXTENT_MAP_HOLE)
2838 			goto next;
2839 
2840 		em_len = em->len;
2841 		if (em->start < search_start)
2842 			em_len -= search_start - em->start;
2843 		if (em_len > search_len)
2844 			em_len = search_len;
2845 
2846 		ret = set_extent_bit(&inode->io_tree, search_start,
2847 				     search_start + em_len - 1,
2848 				     EXTENT_DELALLOC_NEW, cached_state,
2849 				     GFP_NOFS);
2850 next:
2851 		search_start = extent_map_end(em);
2852 		free_extent_map(em);
2853 		if (ret)
2854 			return ret;
2855 	}
2856 	return 0;
2857 }
2858 
2859 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2860 			      unsigned int extra_bits,
2861 			      struct extent_state **cached_state)
2862 {
2863 	WARN_ON(PAGE_ALIGNED(end));
2864 
2865 	if (start >= i_size_read(&inode->vfs_inode) &&
2866 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2867 		/*
2868 		 * There can't be any extents following eof in this case so just
2869 		 * set the delalloc new bit for the range directly.
2870 		 */
2871 		extra_bits |= EXTENT_DELALLOC_NEW;
2872 	} else {
2873 		int ret;
2874 
2875 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2876 						    end + 1 - start,
2877 						    cached_state);
2878 		if (ret)
2879 			return ret;
2880 	}
2881 
2882 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2883 				   cached_state);
2884 }
2885 
2886 /* see btrfs_writepage_start_hook for details on why this is required */
2887 struct btrfs_writepage_fixup {
2888 	struct page *page;
2889 	struct btrfs_inode *inode;
2890 	struct btrfs_work work;
2891 };
2892 
2893 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2894 {
2895 	struct btrfs_writepage_fixup *fixup;
2896 	struct btrfs_ordered_extent *ordered;
2897 	struct extent_state *cached_state = NULL;
2898 	struct extent_changeset *data_reserved = NULL;
2899 	struct page *page;
2900 	struct btrfs_inode *inode;
2901 	u64 page_start;
2902 	u64 page_end;
2903 	int ret = 0;
2904 	bool free_delalloc_space = true;
2905 
2906 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2907 	page = fixup->page;
2908 	inode = fixup->inode;
2909 	page_start = page_offset(page);
2910 	page_end = page_offset(page) + PAGE_SIZE - 1;
2911 
2912 	/*
2913 	 * This is similar to page_mkwrite, we need to reserve the space before
2914 	 * we take the page lock.
2915 	 */
2916 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2917 					   PAGE_SIZE);
2918 again:
2919 	lock_page(page);
2920 
2921 	/*
2922 	 * Before we queued this fixup, we took a reference on the page.
2923 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2924 	 * address space.
2925 	 */
2926 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2927 		/*
2928 		 * Unfortunately this is a little tricky, either
2929 		 *
2930 		 * 1) We got here and our page had already been dealt with and
2931 		 *    we reserved our space, thus ret == 0, so we need to just
2932 		 *    drop our space reservation and bail.  This can happen the
2933 		 *    first time we come into the fixup worker, or could happen
2934 		 *    while waiting for the ordered extent.
2935 		 * 2) Our page was already dealt with, but we happened to get an
2936 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2937 		 *    this case we obviously don't have anything to release, but
2938 		 *    because the page was already dealt with we don't want to
2939 		 *    mark the page with an error, so make sure we're resetting
2940 		 *    ret to 0.  This is why we have this check _before_ the ret
2941 		 *    check, because we do not want to have a surprise ENOSPC
2942 		 *    when the page was already properly dealt with.
2943 		 */
2944 		if (!ret) {
2945 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2946 			btrfs_delalloc_release_space(inode, data_reserved,
2947 						     page_start, PAGE_SIZE,
2948 						     true);
2949 		}
2950 		ret = 0;
2951 		goto out_page;
2952 	}
2953 
2954 	/*
2955 	 * We can't mess with the page state unless it is locked, so now that
2956 	 * it is locked bail if we failed to make our space reservation.
2957 	 */
2958 	if (ret)
2959 		goto out_page;
2960 
2961 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2962 
2963 	/* already ordered? We're done */
2964 	if (PageOrdered(page))
2965 		goto out_reserved;
2966 
2967 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2968 	if (ordered) {
2969 		unlock_extent(&inode->io_tree, page_start, page_end,
2970 			      &cached_state);
2971 		unlock_page(page);
2972 		btrfs_start_ordered_extent(ordered, 1);
2973 		btrfs_put_ordered_extent(ordered);
2974 		goto again;
2975 	}
2976 
2977 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2978 					&cached_state);
2979 	if (ret)
2980 		goto out_reserved;
2981 
2982 	/*
2983 	 * Everything went as planned, we're now the owner of a dirty page with
2984 	 * delayed allocation bits set and space reserved for our COW
2985 	 * destination.
2986 	 *
2987 	 * The page was dirty when we started, nothing should have cleaned it.
2988 	 */
2989 	BUG_ON(!PageDirty(page));
2990 	free_delalloc_space = false;
2991 out_reserved:
2992 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2993 	if (free_delalloc_space)
2994 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2995 					     PAGE_SIZE, true);
2996 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2997 out_page:
2998 	if (ret) {
2999 		/*
3000 		 * We hit ENOSPC or other errors.  Update the mapping and page
3001 		 * to reflect the errors and clean the page.
3002 		 */
3003 		mapping_set_error(page->mapping, ret);
3004 		end_extent_writepage(page, ret, page_start, page_end);
3005 		clear_page_dirty_for_io(page);
3006 		SetPageError(page);
3007 	}
3008 	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
3009 	unlock_page(page);
3010 	put_page(page);
3011 	kfree(fixup);
3012 	extent_changeset_free(data_reserved);
3013 	/*
3014 	 * As a precaution, do a delayed iput in case it would be the last iput
3015 	 * that could need flushing space. Recursing back to fixup worker would
3016 	 * deadlock.
3017 	 */
3018 	btrfs_add_delayed_iput(inode);
3019 }
3020 
3021 /*
3022  * There are a few paths in the higher layers of the kernel that directly
3023  * set the page dirty bit without asking the filesystem if it is a
3024  * good idea.  This causes problems because we want to make sure COW
3025  * properly happens and the data=ordered rules are followed.
3026  *
3027  * In our case any range that doesn't have the ORDERED bit set
3028  * hasn't been properly setup for IO.  We kick off an async process
3029  * to fix it up.  The async helper will wait for ordered extents, set
3030  * the delalloc bit and make it safe to write the page.
3031  */
3032 int btrfs_writepage_cow_fixup(struct page *page)
3033 {
3034 	struct inode *inode = page->mapping->host;
3035 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3036 	struct btrfs_writepage_fixup *fixup;
3037 
3038 	/* This page has ordered extent covering it already */
3039 	if (PageOrdered(page))
3040 		return 0;
3041 
3042 	/*
3043 	 * PageChecked is set below when we create a fixup worker for this page,
3044 	 * don't try to create another one if we're already PageChecked()
3045 	 *
3046 	 * The extent_io writepage code will redirty the page if we send back
3047 	 * EAGAIN.
3048 	 */
3049 	if (PageChecked(page))
3050 		return -EAGAIN;
3051 
3052 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
3053 	if (!fixup)
3054 		return -EAGAIN;
3055 
3056 	/*
3057 	 * We are already holding a reference to this inode from
3058 	 * write_cache_pages.  We need to hold it because the space reservation
3059 	 * takes place outside of the page lock, and we can't trust
3060 	 * page->mapping outside of the page lock.
3061 	 */
3062 	ihold(inode);
3063 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3064 	get_page(page);
3065 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
3066 	fixup->page = page;
3067 	fixup->inode = BTRFS_I(inode);
3068 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
3069 
3070 	return -EAGAIN;
3071 }
3072 
3073 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
3074 				       struct btrfs_inode *inode, u64 file_pos,
3075 				       struct btrfs_file_extent_item *stack_fi,
3076 				       const bool update_inode_bytes,
3077 				       u64 qgroup_reserved)
3078 {
3079 	struct btrfs_root *root = inode->root;
3080 	const u64 sectorsize = root->fs_info->sectorsize;
3081 	struct btrfs_path *path;
3082 	struct extent_buffer *leaf;
3083 	struct btrfs_key ins;
3084 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3085 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3086 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3087 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3088 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3089 	struct btrfs_drop_extents_args drop_args = { 0 };
3090 	int ret;
3091 
3092 	path = btrfs_alloc_path();
3093 	if (!path)
3094 		return -ENOMEM;
3095 
3096 	/*
3097 	 * we may be replacing one extent in the tree with another.
3098 	 * The new extent is pinned in the extent map, and we don't want
3099 	 * to drop it from the cache until it is completely in the btree.
3100 	 *
3101 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
3102 	 * the caller is expected to unpin it and allow it to be merged
3103 	 * with the others.
3104 	 */
3105 	drop_args.path = path;
3106 	drop_args.start = file_pos;
3107 	drop_args.end = file_pos + num_bytes;
3108 	drop_args.replace_extent = true;
3109 	drop_args.extent_item_size = sizeof(*stack_fi);
3110 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3111 	if (ret)
3112 		goto out;
3113 
3114 	if (!drop_args.extent_inserted) {
3115 		ins.objectid = btrfs_ino(inode);
3116 		ins.offset = file_pos;
3117 		ins.type = BTRFS_EXTENT_DATA_KEY;
3118 
3119 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
3120 					      sizeof(*stack_fi));
3121 		if (ret)
3122 			goto out;
3123 	}
3124 	leaf = path->nodes[0];
3125 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3126 	write_extent_buffer(leaf, stack_fi,
3127 			btrfs_item_ptr_offset(leaf, path->slots[0]),
3128 			sizeof(struct btrfs_file_extent_item));
3129 
3130 	btrfs_mark_buffer_dirty(leaf);
3131 	btrfs_release_path(path);
3132 
3133 	/*
3134 	 * If we dropped an inline extent here, we know the range where it is
3135 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3136 	 * number of bytes only for that range containing the inline extent.
3137 	 * The remaining of the range will be processed when clearning the
3138 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3139 	 */
3140 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3141 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3142 
3143 		inline_size = drop_args.bytes_found - inline_size;
3144 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3145 		drop_args.bytes_found -= inline_size;
3146 		num_bytes -= sectorsize;
3147 	}
3148 
3149 	if (update_inode_bytes)
3150 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3151 
3152 	ins.objectid = disk_bytenr;
3153 	ins.offset = disk_num_bytes;
3154 	ins.type = BTRFS_EXTENT_ITEM_KEY;
3155 
3156 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3157 	if (ret)
3158 		goto out;
3159 
3160 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3161 					       file_pos - offset,
3162 					       qgroup_reserved, &ins);
3163 out:
3164 	btrfs_free_path(path);
3165 
3166 	return ret;
3167 }
3168 
3169 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3170 					 u64 start, u64 len)
3171 {
3172 	struct btrfs_block_group *cache;
3173 
3174 	cache = btrfs_lookup_block_group(fs_info, start);
3175 	ASSERT(cache);
3176 
3177 	spin_lock(&cache->lock);
3178 	cache->delalloc_bytes -= len;
3179 	spin_unlock(&cache->lock);
3180 
3181 	btrfs_put_block_group(cache);
3182 }
3183 
3184 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3185 					     struct btrfs_ordered_extent *oe)
3186 {
3187 	struct btrfs_file_extent_item stack_fi;
3188 	bool update_inode_bytes;
3189 	u64 num_bytes = oe->num_bytes;
3190 	u64 ram_bytes = oe->ram_bytes;
3191 
3192 	memset(&stack_fi, 0, sizeof(stack_fi));
3193 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3194 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3195 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3196 						   oe->disk_num_bytes);
3197 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3198 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3199 		num_bytes = oe->truncated_len;
3200 		ram_bytes = num_bytes;
3201 	}
3202 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3203 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3204 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3205 	/* Encryption and other encoding is reserved and all 0 */
3206 
3207 	/*
3208 	 * For delalloc, when completing an ordered extent we update the inode's
3209 	 * bytes when clearing the range in the inode's io tree, so pass false
3210 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3211 	 * except if the ordered extent was truncated.
3212 	 */
3213 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3214 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3215 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3216 
3217 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3218 					   oe->file_offset, &stack_fi,
3219 					   update_inode_bytes, oe->qgroup_rsv);
3220 }
3221 
3222 /*
3223  * As ordered data IO finishes, this gets called so we can finish
3224  * an ordered extent if the range of bytes in the file it covers are
3225  * fully written.
3226  */
3227 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3228 {
3229 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3230 	struct btrfs_root *root = inode->root;
3231 	struct btrfs_fs_info *fs_info = root->fs_info;
3232 	struct btrfs_trans_handle *trans = NULL;
3233 	struct extent_io_tree *io_tree = &inode->io_tree;
3234 	struct extent_state *cached_state = NULL;
3235 	u64 start, end;
3236 	int compress_type = 0;
3237 	int ret = 0;
3238 	u64 logical_len = ordered_extent->num_bytes;
3239 	bool freespace_inode;
3240 	bool truncated = false;
3241 	bool clear_reserved_extent = true;
3242 	unsigned int clear_bits = EXTENT_DEFRAG;
3243 
3244 	start = ordered_extent->file_offset;
3245 	end = start + ordered_extent->num_bytes - 1;
3246 
3247 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3248 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3249 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3250 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3251 		clear_bits |= EXTENT_DELALLOC_NEW;
3252 
3253 	freespace_inode = btrfs_is_free_space_inode(inode);
3254 	if (!freespace_inode)
3255 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3256 
3257 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3258 		ret = -EIO;
3259 		goto out;
3260 	}
3261 
3262 	/* A valid bdev implies a write on a sequential zone */
3263 	if (ordered_extent->bdev) {
3264 		btrfs_rewrite_logical_zoned(ordered_extent);
3265 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3266 					ordered_extent->disk_num_bytes);
3267 	}
3268 
3269 	btrfs_free_io_failure_record(inode, start, end);
3270 
3271 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3272 		truncated = true;
3273 		logical_len = ordered_extent->truncated_len;
3274 		/* Truncated the entire extent, don't bother adding */
3275 		if (!logical_len)
3276 			goto out;
3277 	}
3278 
3279 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3280 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3281 
3282 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3283 		if (freespace_inode)
3284 			trans = btrfs_join_transaction_spacecache(root);
3285 		else
3286 			trans = btrfs_join_transaction(root);
3287 		if (IS_ERR(trans)) {
3288 			ret = PTR_ERR(trans);
3289 			trans = NULL;
3290 			goto out;
3291 		}
3292 		trans->block_rsv = &inode->block_rsv;
3293 		ret = btrfs_update_inode_fallback(trans, root, inode);
3294 		if (ret) /* -ENOMEM or corruption */
3295 			btrfs_abort_transaction(trans, ret);
3296 		goto out;
3297 	}
3298 
3299 	clear_bits |= EXTENT_LOCKED;
3300 	lock_extent(io_tree, start, end, &cached_state);
3301 
3302 	if (freespace_inode)
3303 		trans = btrfs_join_transaction_spacecache(root);
3304 	else
3305 		trans = btrfs_join_transaction(root);
3306 	if (IS_ERR(trans)) {
3307 		ret = PTR_ERR(trans);
3308 		trans = NULL;
3309 		goto out;
3310 	}
3311 
3312 	trans->block_rsv = &inode->block_rsv;
3313 
3314 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3315 		compress_type = ordered_extent->compress_type;
3316 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3317 		BUG_ON(compress_type);
3318 		ret = btrfs_mark_extent_written(trans, inode,
3319 						ordered_extent->file_offset,
3320 						ordered_extent->file_offset +
3321 						logical_len);
3322 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3323 						  ordered_extent->disk_num_bytes);
3324 	} else {
3325 		BUG_ON(root == fs_info->tree_root);
3326 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3327 		if (!ret) {
3328 			clear_reserved_extent = false;
3329 			btrfs_release_delalloc_bytes(fs_info,
3330 						ordered_extent->disk_bytenr,
3331 						ordered_extent->disk_num_bytes);
3332 		}
3333 	}
3334 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3335 			   ordered_extent->num_bytes, trans->transid);
3336 	if (ret < 0) {
3337 		btrfs_abort_transaction(trans, ret);
3338 		goto out;
3339 	}
3340 
3341 	ret = add_pending_csums(trans, &ordered_extent->list);
3342 	if (ret) {
3343 		btrfs_abort_transaction(trans, ret);
3344 		goto out;
3345 	}
3346 
3347 	/*
3348 	 * If this is a new delalloc range, clear its new delalloc flag to
3349 	 * update the inode's number of bytes. This needs to be done first
3350 	 * before updating the inode item.
3351 	 */
3352 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3353 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3354 		clear_extent_bit(&inode->io_tree, start, end,
3355 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3356 				 &cached_state);
3357 
3358 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3359 	ret = btrfs_update_inode_fallback(trans, root, inode);
3360 	if (ret) { /* -ENOMEM or corruption */
3361 		btrfs_abort_transaction(trans, ret);
3362 		goto out;
3363 	}
3364 	ret = 0;
3365 out:
3366 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3367 			 &cached_state);
3368 
3369 	if (trans)
3370 		btrfs_end_transaction(trans);
3371 
3372 	if (ret || truncated) {
3373 		u64 unwritten_start = start;
3374 
3375 		/*
3376 		 * If we failed to finish this ordered extent for any reason we
3377 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3378 		 * extent, and mark the inode with the error if it wasn't
3379 		 * already set.  Any error during writeback would have already
3380 		 * set the mapping error, so we need to set it if we're the ones
3381 		 * marking this ordered extent as failed.
3382 		 */
3383 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3384 					     &ordered_extent->flags))
3385 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3386 
3387 		if (truncated)
3388 			unwritten_start += logical_len;
3389 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3390 
3391 		/* Drop extent maps for the part of the extent we didn't write. */
3392 		btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3393 
3394 		/*
3395 		 * If the ordered extent had an IOERR or something else went
3396 		 * wrong we need to return the space for this ordered extent
3397 		 * back to the allocator.  We only free the extent in the
3398 		 * truncated case if we didn't write out the extent at all.
3399 		 *
3400 		 * If we made it past insert_reserved_file_extent before we
3401 		 * errored out then we don't need to do this as the accounting
3402 		 * has already been done.
3403 		 */
3404 		if ((ret || !logical_len) &&
3405 		    clear_reserved_extent &&
3406 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3407 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3408 			/*
3409 			 * Discard the range before returning it back to the
3410 			 * free space pool
3411 			 */
3412 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3413 				btrfs_discard_extent(fs_info,
3414 						ordered_extent->disk_bytenr,
3415 						ordered_extent->disk_num_bytes,
3416 						NULL);
3417 			btrfs_free_reserved_extent(fs_info,
3418 					ordered_extent->disk_bytenr,
3419 					ordered_extent->disk_num_bytes, 1);
3420 		}
3421 	}
3422 
3423 	/*
3424 	 * This needs to be done to make sure anybody waiting knows we are done
3425 	 * updating everything for this ordered extent.
3426 	 */
3427 	btrfs_remove_ordered_extent(inode, ordered_extent);
3428 
3429 	/* once for us */
3430 	btrfs_put_ordered_extent(ordered_extent);
3431 	/* once for the tree */
3432 	btrfs_put_ordered_extent(ordered_extent);
3433 
3434 	return ret;
3435 }
3436 
3437 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3438 					  struct page *page, u64 start,
3439 					  u64 end, bool uptodate)
3440 {
3441 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3442 
3443 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate);
3444 }
3445 
3446 /*
3447  * Verify the checksum for a single sector without any extra action that depend
3448  * on the type of I/O.
3449  */
3450 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3451 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3452 {
3453 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3454 	char *kaddr;
3455 
3456 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3457 
3458 	shash->tfm = fs_info->csum_shash;
3459 
3460 	kaddr = kmap_local_page(page) + pgoff;
3461 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3462 	kunmap_local(kaddr);
3463 
3464 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3465 		return -EIO;
3466 	return 0;
3467 }
3468 
3469 static u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, u64 offset)
3470 {
3471 	u64 offset_in_sectors = offset >> fs_info->sectorsize_bits;
3472 
3473 	return csums + offset_in_sectors * fs_info->csum_size;
3474 }
3475 
3476 /*
3477  * check_data_csum - verify checksum of one sector of uncompressed data
3478  * @inode:	inode
3479  * @bbio:	btrfs_bio which contains the csum
3480  * @bio_offset:	offset to the beginning of the bio (in bytes)
3481  * @page:	page where is the data to be verified
3482  * @pgoff:	offset inside the page
3483  *
3484  * The length of such check is always one sector size.
3485  *
3486  * When csum mismatch is detected, we will also report the error and fill the
3487  * corrupted range with zero. (Thus it needs the extra parameters)
3488  */
3489 int btrfs_check_data_csum(struct btrfs_inode *inode, struct btrfs_bio *bbio,
3490 			  u32 bio_offset, struct page *page, u32 pgoff)
3491 {
3492 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3493 	u32 len = fs_info->sectorsize;
3494 	u8 *csum_expected;
3495 	u8 csum[BTRFS_CSUM_SIZE];
3496 
3497 	ASSERT(pgoff + len <= PAGE_SIZE);
3498 
3499 	csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset);
3500 
3501 	if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected))
3502 		goto zeroit;
3503 	return 0;
3504 
3505 zeroit:
3506 	btrfs_print_data_csum_error(inode, bbio->file_offset + bio_offset,
3507 				    csum, csum_expected, bbio->mirror_num);
3508 	if (bbio->device)
3509 		btrfs_dev_stat_inc_and_print(bbio->device,
3510 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3511 	memzero_page(page, pgoff, len);
3512 	return -EIO;
3513 }
3514 
3515 /*
3516  * When reads are done, we need to check csums to verify the data is correct.
3517  * if there's a match, we allow the bio to finish.  If not, the code in
3518  * extent_io.c will try to find good copies for us.
3519  *
3520  * @bio_offset:	offset to the beginning of the bio (in bytes)
3521  * @start:	file offset of the range start
3522  * @end:	file offset of the range end (inclusive)
3523  *
3524  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3525  * csum match.
3526  */
3527 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3528 				    u32 bio_offset, struct page *page,
3529 				    u64 start, u64 end)
3530 {
3531 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3532 	struct btrfs_root *root = inode->root;
3533 	struct btrfs_fs_info *fs_info = root->fs_info;
3534 	struct extent_io_tree *io_tree = &inode->io_tree;
3535 	const u32 sectorsize = root->fs_info->sectorsize;
3536 	u32 pg_off;
3537 	unsigned int result = 0;
3538 
3539 	/*
3540 	 * This only happens for NODATASUM or compressed read.
3541 	 * Normally this should be covered by above check for compressed read
3542 	 * or the next check for NODATASUM.  Just do a quicker exit here.
3543 	 */
3544 	if (bbio->csum == NULL)
3545 		return 0;
3546 
3547 	if (inode->flags & BTRFS_INODE_NODATASUM)
3548 		return 0;
3549 
3550 	if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3551 		return 0;
3552 
3553 	ASSERT(page_offset(page) <= start &&
3554 	       end <= page_offset(page) + PAGE_SIZE - 1);
3555 	for (pg_off = offset_in_page(start);
3556 	     pg_off < offset_in_page(end);
3557 	     pg_off += sectorsize, bio_offset += sectorsize) {
3558 		u64 file_offset = pg_off + page_offset(page);
3559 		int ret;
3560 
3561 		if (btrfs_is_data_reloc_root(root) &&
3562 		    test_range_bit(io_tree, file_offset,
3563 				   file_offset + sectorsize - 1,
3564 				   EXTENT_NODATASUM, 1, NULL)) {
3565 			/* Skip the range without csum for data reloc inode */
3566 			clear_extent_bits(io_tree, file_offset,
3567 					  file_offset + sectorsize - 1,
3568 					  EXTENT_NODATASUM);
3569 			continue;
3570 		}
3571 		ret = btrfs_check_data_csum(inode, bbio, bio_offset, page, pg_off);
3572 		if (ret < 0) {
3573 			const int nr_bit = (pg_off - offset_in_page(start)) >>
3574 				     root->fs_info->sectorsize_bits;
3575 
3576 			result |= (1U << nr_bit);
3577 		}
3578 	}
3579 	return result;
3580 }
3581 
3582 /*
3583  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3584  *
3585  * @inode: The inode we want to perform iput on
3586  *
3587  * This function uses the generic vfs_inode::i_count to track whether we should
3588  * just decrement it (in case it's > 1) or if this is the last iput then link
3589  * the inode to the delayed iput machinery. Delayed iputs are processed at
3590  * transaction commit time/superblock commit/cleaner kthread.
3591  */
3592 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3593 {
3594 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3595 
3596 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3597 		return;
3598 
3599 	atomic_inc(&fs_info->nr_delayed_iputs);
3600 	spin_lock(&fs_info->delayed_iput_lock);
3601 	ASSERT(list_empty(&inode->delayed_iput));
3602 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3603 	spin_unlock(&fs_info->delayed_iput_lock);
3604 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3605 		wake_up_process(fs_info->cleaner_kthread);
3606 }
3607 
3608 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3609 				    struct btrfs_inode *inode)
3610 {
3611 	list_del_init(&inode->delayed_iput);
3612 	spin_unlock(&fs_info->delayed_iput_lock);
3613 	iput(&inode->vfs_inode);
3614 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3615 		wake_up(&fs_info->delayed_iputs_wait);
3616 	spin_lock(&fs_info->delayed_iput_lock);
3617 }
3618 
3619 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3620 				   struct btrfs_inode *inode)
3621 {
3622 	if (!list_empty(&inode->delayed_iput)) {
3623 		spin_lock(&fs_info->delayed_iput_lock);
3624 		if (!list_empty(&inode->delayed_iput))
3625 			run_delayed_iput_locked(fs_info, inode);
3626 		spin_unlock(&fs_info->delayed_iput_lock);
3627 	}
3628 }
3629 
3630 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3631 {
3632 
3633 	spin_lock(&fs_info->delayed_iput_lock);
3634 	while (!list_empty(&fs_info->delayed_iputs)) {
3635 		struct btrfs_inode *inode;
3636 
3637 		inode = list_first_entry(&fs_info->delayed_iputs,
3638 				struct btrfs_inode, delayed_iput);
3639 		run_delayed_iput_locked(fs_info, inode);
3640 		cond_resched_lock(&fs_info->delayed_iput_lock);
3641 	}
3642 	spin_unlock(&fs_info->delayed_iput_lock);
3643 }
3644 
3645 /*
3646  * Wait for flushing all delayed iputs
3647  *
3648  * @fs_info:  the filesystem
3649  *
3650  * This will wait on any delayed iputs that are currently running with KILLABLE
3651  * set.  Once they are all done running we will return, unless we are killed in
3652  * which case we return EINTR. This helps in user operations like fallocate etc
3653  * that might get blocked on the iputs.
3654  *
3655  * Return EINTR if we were killed, 0 if nothing's pending
3656  */
3657 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3658 {
3659 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3660 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3661 	if (ret)
3662 		return -EINTR;
3663 	return 0;
3664 }
3665 
3666 /*
3667  * This creates an orphan entry for the given inode in case something goes wrong
3668  * in the middle of an unlink.
3669  */
3670 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3671 		     struct btrfs_inode *inode)
3672 {
3673 	int ret;
3674 
3675 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3676 	if (ret && ret != -EEXIST) {
3677 		btrfs_abort_transaction(trans, ret);
3678 		return ret;
3679 	}
3680 
3681 	return 0;
3682 }
3683 
3684 /*
3685  * We have done the delete so we can go ahead and remove the orphan item for
3686  * this particular inode.
3687  */
3688 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3689 			    struct btrfs_inode *inode)
3690 {
3691 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3692 }
3693 
3694 /*
3695  * this cleans up any orphans that may be left on the list from the last use
3696  * of this root.
3697  */
3698 int btrfs_orphan_cleanup(struct btrfs_root *root)
3699 {
3700 	struct btrfs_fs_info *fs_info = root->fs_info;
3701 	struct btrfs_path *path;
3702 	struct extent_buffer *leaf;
3703 	struct btrfs_key key, found_key;
3704 	struct btrfs_trans_handle *trans;
3705 	struct inode *inode;
3706 	u64 last_objectid = 0;
3707 	int ret = 0, nr_unlink = 0;
3708 
3709 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3710 		return 0;
3711 
3712 	path = btrfs_alloc_path();
3713 	if (!path) {
3714 		ret = -ENOMEM;
3715 		goto out;
3716 	}
3717 	path->reada = READA_BACK;
3718 
3719 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3720 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3721 	key.offset = (u64)-1;
3722 
3723 	while (1) {
3724 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3725 		if (ret < 0)
3726 			goto out;
3727 
3728 		/*
3729 		 * if ret == 0 means we found what we were searching for, which
3730 		 * is weird, but possible, so only screw with path if we didn't
3731 		 * find the key and see if we have stuff that matches
3732 		 */
3733 		if (ret > 0) {
3734 			ret = 0;
3735 			if (path->slots[0] == 0)
3736 				break;
3737 			path->slots[0]--;
3738 		}
3739 
3740 		/* pull out the item */
3741 		leaf = path->nodes[0];
3742 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3743 
3744 		/* make sure the item matches what we want */
3745 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3746 			break;
3747 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3748 			break;
3749 
3750 		/* release the path since we're done with it */
3751 		btrfs_release_path(path);
3752 
3753 		/*
3754 		 * this is where we are basically btrfs_lookup, without the
3755 		 * crossing root thing.  we store the inode number in the
3756 		 * offset of the orphan item.
3757 		 */
3758 
3759 		if (found_key.offset == last_objectid) {
3760 			btrfs_err(fs_info,
3761 				  "Error removing orphan entry, stopping orphan cleanup");
3762 			ret = -EINVAL;
3763 			goto out;
3764 		}
3765 
3766 		last_objectid = found_key.offset;
3767 
3768 		found_key.objectid = found_key.offset;
3769 		found_key.type = BTRFS_INODE_ITEM_KEY;
3770 		found_key.offset = 0;
3771 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3772 		ret = PTR_ERR_OR_ZERO(inode);
3773 		if (ret && ret != -ENOENT)
3774 			goto out;
3775 
3776 		if (ret == -ENOENT && root == fs_info->tree_root) {
3777 			struct btrfs_root *dead_root;
3778 			int is_dead_root = 0;
3779 
3780 			/*
3781 			 * This is an orphan in the tree root. Currently these
3782 			 * could come from 2 sources:
3783 			 *  a) a root (snapshot/subvolume) deletion in progress
3784 			 *  b) a free space cache inode
3785 			 * We need to distinguish those two, as the orphan item
3786 			 * for a root must not get deleted before the deletion
3787 			 * of the snapshot/subvolume's tree completes.
3788 			 *
3789 			 * btrfs_find_orphan_roots() ran before us, which has
3790 			 * found all deleted roots and loaded them into
3791 			 * fs_info->fs_roots_radix. So here we can find if an
3792 			 * orphan item corresponds to a deleted root by looking
3793 			 * up the root from that radix tree.
3794 			 */
3795 
3796 			spin_lock(&fs_info->fs_roots_radix_lock);
3797 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3798 							 (unsigned long)found_key.objectid);
3799 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3800 				is_dead_root = 1;
3801 			spin_unlock(&fs_info->fs_roots_radix_lock);
3802 
3803 			if (is_dead_root) {
3804 				/* prevent this orphan from being found again */
3805 				key.offset = found_key.objectid - 1;
3806 				continue;
3807 			}
3808 
3809 		}
3810 
3811 		/*
3812 		 * If we have an inode with links, there are a couple of
3813 		 * possibilities:
3814 		 *
3815 		 * 1. We were halfway through creating fsverity metadata for the
3816 		 * file. In that case, the orphan item represents incomplete
3817 		 * fsverity metadata which must be cleaned up with
3818 		 * btrfs_drop_verity_items and deleting the orphan item.
3819 
3820 		 * 2. Old kernels (before v3.12) used to create an
3821 		 * orphan item for truncate indicating that there were possibly
3822 		 * extent items past i_size that needed to be deleted. In v3.12,
3823 		 * truncate was changed to update i_size in sync with the extent
3824 		 * items, but the (useless) orphan item was still created. Since
3825 		 * v4.18, we don't create the orphan item for truncate at all.
3826 		 *
3827 		 * So, this item could mean that we need to do a truncate, but
3828 		 * only if this filesystem was last used on a pre-v3.12 kernel
3829 		 * and was not cleanly unmounted. The odds of that are quite
3830 		 * slim, and it's a pain to do the truncate now, so just delete
3831 		 * the orphan item.
3832 		 *
3833 		 * It's also possible that this orphan item was supposed to be
3834 		 * deleted but wasn't. The inode number may have been reused,
3835 		 * but either way, we can delete the orphan item.
3836 		 */
3837 		if (ret == -ENOENT || inode->i_nlink) {
3838 			if (!ret) {
3839 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3840 				iput(inode);
3841 				if (ret)
3842 					goto out;
3843 			}
3844 			trans = btrfs_start_transaction(root, 1);
3845 			if (IS_ERR(trans)) {
3846 				ret = PTR_ERR(trans);
3847 				goto out;
3848 			}
3849 			btrfs_debug(fs_info, "auto deleting %Lu",
3850 				    found_key.objectid);
3851 			ret = btrfs_del_orphan_item(trans, root,
3852 						    found_key.objectid);
3853 			btrfs_end_transaction(trans);
3854 			if (ret)
3855 				goto out;
3856 			continue;
3857 		}
3858 
3859 		nr_unlink++;
3860 
3861 		/* this will do delete_inode and everything for us */
3862 		iput(inode);
3863 	}
3864 	/* release the path since we're done with it */
3865 	btrfs_release_path(path);
3866 
3867 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3868 		trans = btrfs_join_transaction(root);
3869 		if (!IS_ERR(trans))
3870 			btrfs_end_transaction(trans);
3871 	}
3872 
3873 	if (nr_unlink)
3874 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3875 
3876 out:
3877 	if (ret)
3878 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3879 	btrfs_free_path(path);
3880 	return ret;
3881 }
3882 
3883 /*
3884  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3885  * don't find any xattrs, we know there can't be any acls.
3886  *
3887  * slot is the slot the inode is in, objectid is the objectid of the inode
3888  */
3889 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3890 					  int slot, u64 objectid,
3891 					  int *first_xattr_slot)
3892 {
3893 	u32 nritems = btrfs_header_nritems(leaf);
3894 	struct btrfs_key found_key;
3895 	static u64 xattr_access = 0;
3896 	static u64 xattr_default = 0;
3897 	int scanned = 0;
3898 
3899 	if (!xattr_access) {
3900 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3901 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3902 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3903 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3904 	}
3905 
3906 	slot++;
3907 	*first_xattr_slot = -1;
3908 	while (slot < nritems) {
3909 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3910 
3911 		/* we found a different objectid, there must not be acls */
3912 		if (found_key.objectid != objectid)
3913 			return 0;
3914 
3915 		/* we found an xattr, assume we've got an acl */
3916 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3917 			if (*first_xattr_slot == -1)
3918 				*first_xattr_slot = slot;
3919 			if (found_key.offset == xattr_access ||
3920 			    found_key.offset == xattr_default)
3921 				return 1;
3922 		}
3923 
3924 		/*
3925 		 * we found a key greater than an xattr key, there can't
3926 		 * be any acls later on
3927 		 */
3928 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3929 			return 0;
3930 
3931 		slot++;
3932 		scanned++;
3933 
3934 		/*
3935 		 * it goes inode, inode backrefs, xattrs, extents,
3936 		 * so if there are a ton of hard links to an inode there can
3937 		 * be a lot of backrefs.  Don't waste time searching too hard,
3938 		 * this is just an optimization
3939 		 */
3940 		if (scanned >= 8)
3941 			break;
3942 	}
3943 	/* we hit the end of the leaf before we found an xattr or
3944 	 * something larger than an xattr.  We have to assume the inode
3945 	 * has acls
3946 	 */
3947 	if (*first_xattr_slot == -1)
3948 		*first_xattr_slot = slot;
3949 	return 1;
3950 }
3951 
3952 /*
3953  * read an inode from the btree into the in-memory inode
3954  */
3955 static int btrfs_read_locked_inode(struct inode *inode,
3956 				   struct btrfs_path *in_path)
3957 {
3958 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3959 	struct btrfs_path *path = in_path;
3960 	struct extent_buffer *leaf;
3961 	struct btrfs_inode_item *inode_item;
3962 	struct btrfs_root *root = BTRFS_I(inode)->root;
3963 	struct btrfs_key location;
3964 	unsigned long ptr;
3965 	int maybe_acls;
3966 	u32 rdev;
3967 	int ret;
3968 	bool filled = false;
3969 	int first_xattr_slot;
3970 
3971 	ret = btrfs_fill_inode(inode, &rdev);
3972 	if (!ret)
3973 		filled = true;
3974 
3975 	if (!path) {
3976 		path = btrfs_alloc_path();
3977 		if (!path)
3978 			return -ENOMEM;
3979 	}
3980 
3981 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3982 
3983 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3984 	if (ret) {
3985 		if (path != in_path)
3986 			btrfs_free_path(path);
3987 		return ret;
3988 	}
3989 
3990 	leaf = path->nodes[0];
3991 
3992 	if (filled)
3993 		goto cache_index;
3994 
3995 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3996 				    struct btrfs_inode_item);
3997 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3998 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3999 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
4000 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
4001 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
4002 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
4003 			round_up(i_size_read(inode), fs_info->sectorsize));
4004 
4005 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
4006 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
4007 
4008 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
4009 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
4010 
4011 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
4012 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
4013 
4014 	BTRFS_I(inode)->i_otime.tv_sec =
4015 		btrfs_timespec_sec(leaf, &inode_item->otime);
4016 	BTRFS_I(inode)->i_otime.tv_nsec =
4017 		btrfs_timespec_nsec(leaf, &inode_item->otime);
4018 
4019 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
4020 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
4021 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
4022 
4023 	inode_set_iversion_queried(inode,
4024 				   btrfs_inode_sequence(leaf, inode_item));
4025 	inode->i_generation = BTRFS_I(inode)->generation;
4026 	inode->i_rdev = 0;
4027 	rdev = btrfs_inode_rdev(leaf, inode_item);
4028 
4029 	BTRFS_I(inode)->index_cnt = (u64)-1;
4030 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4031 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
4032 
4033 cache_index:
4034 	/*
4035 	 * If we were modified in the current generation and evicted from memory
4036 	 * and then re-read we need to do a full sync since we don't have any
4037 	 * idea about which extents were modified before we were evicted from
4038 	 * cache.
4039 	 *
4040 	 * This is required for both inode re-read from disk and delayed inode
4041 	 * in delayed_nodes_tree.
4042 	 */
4043 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
4044 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4045 			&BTRFS_I(inode)->runtime_flags);
4046 
4047 	/*
4048 	 * We don't persist the id of the transaction where an unlink operation
4049 	 * against the inode was last made. So here we assume the inode might
4050 	 * have been evicted, and therefore the exact value of last_unlink_trans
4051 	 * lost, and set it to last_trans to avoid metadata inconsistencies
4052 	 * between the inode and its parent if the inode is fsync'ed and the log
4053 	 * replayed. For example, in the scenario:
4054 	 *
4055 	 * touch mydir/foo
4056 	 * ln mydir/foo mydir/bar
4057 	 * sync
4058 	 * unlink mydir/bar
4059 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
4060 	 * xfs_io -c fsync mydir/foo
4061 	 * <power failure>
4062 	 * mount fs, triggers fsync log replay
4063 	 *
4064 	 * We must make sure that when we fsync our inode foo we also log its
4065 	 * parent inode, otherwise after log replay the parent still has the
4066 	 * dentry with the "bar" name but our inode foo has a link count of 1
4067 	 * and doesn't have an inode ref with the name "bar" anymore.
4068 	 *
4069 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4070 	 * but it guarantees correctness at the expense of occasional full
4071 	 * transaction commits on fsync if our inode is a directory, or if our
4072 	 * inode is not a directory, logging its parent unnecessarily.
4073 	 */
4074 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4075 
4076 	/*
4077 	 * Same logic as for last_unlink_trans. We don't persist the generation
4078 	 * of the last transaction where this inode was used for a reflink
4079 	 * operation, so after eviction and reloading the inode we must be
4080 	 * pessimistic and assume the last transaction that modified the inode.
4081 	 */
4082 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
4083 
4084 	path->slots[0]++;
4085 	if (inode->i_nlink != 1 ||
4086 	    path->slots[0] >= btrfs_header_nritems(leaf))
4087 		goto cache_acl;
4088 
4089 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4090 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4091 		goto cache_acl;
4092 
4093 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4094 	if (location.type == BTRFS_INODE_REF_KEY) {
4095 		struct btrfs_inode_ref *ref;
4096 
4097 		ref = (struct btrfs_inode_ref *)ptr;
4098 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4099 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4100 		struct btrfs_inode_extref *extref;
4101 
4102 		extref = (struct btrfs_inode_extref *)ptr;
4103 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4104 								     extref);
4105 	}
4106 cache_acl:
4107 	/*
4108 	 * try to precache a NULL acl entry for files that don't have
4109 	 * any xattrs or acls
4110 	 */
4111 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4112 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4113 	if (first_xattr_slot != -1) {
4114 		path->slots[0] = first_xattr_slot;
4115 		ret = btrfs_load_inode_props(inode, path);
4116 		if (ret)
4117 			btrfs_err(fs_info,
4118 				  "error loading props for ino %llu (root %llu): %d",
4119 				  btrfs_ino(BTRFS_I(inode)),
4120 				  root->root_key.objectid, ret);
4121 	}
4122 	if (path != in_path)
4123 		btrfs_free_path(path);
4124 
4125 	if (!maybe_acls)
4126 		cache_no_acl(inode);
4127 
4128 	switch (inode->i_mode & S_IFMT) {
4129 	case S_IFREG:
4130 		inode->i_mapping->a_ops = &btrfs_aops;
4131 		inode->i_fop = &btrfs_file_operations;
4132 		inode->i_op = &btrfs_file_inode_operations;
4133 		break;
4134 	case S_IFDIR:
4135 		inode->i_fop = &btrfs_dir_file_operations;
4136 		inode->i_op = &btrfs_dir_inode_operations;
4137 		break;
4138 	case S_IFLNK:
4139 		inode->i_op = &btrfs_symlink_inode_operations;
4140 		inode_nohighmem(inode);
4141 		inode->i_mapping->a_ops = &btrfs_aops;
4142 		break;
4143 	default:
4144 		inode->i_op = &btrfs_special_inode_operations;
4145 		init_special_inode(inode, inode->i_mode, rdev);
4146 		break;
4147 	}
4148 
4149 	btrfs_sync_inode_flags_to_i_flags(inode);
4150 	return 0;
4151 }
4152 
4153 /*
4154  * given a leaf and an inode, copy the inode fields into the leaf
4155  */
4156 static void fill_inode_item(struct btrfs_trans_handle *trans,
4157 			    struct extent_buffer *leaf,
4158 			    struct btrfs_inode_item *item,
4159 			    struct inode *inode)
4160 {
4161 	struct btrfs_map_token token;
4162 	u64 flags;
4163 
4164 	btrfs_init_map_token(&token, leaf);
4165 
4166 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4167 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4168 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4169 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4170 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4171 
4172 	btrfs_set_token_timespec_sec(&token, &item->atime,
4173 				     inode->i_atime.tv_sec);
4174 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4175 				      inode->i_atime.tv_nsec);
4176 
4177 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4178 				     inode->i_mtime.tv_sec);
4179 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4180 				      inode->i_mtime.tv_nsec);
4181 
4182 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4183 				     inode->i_ctime.tv_sec);
4184 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4185 				      inode->i_ctime.tv_nsec);
4186 
4187 	btrfs_set_token_timespec_sec(&token, &item->otime,
4188 				     BTRFS_I(inode)->i_otime.tv_sec);
4189 	btrfs_set_token_timespec_nsec(&token, &item->otime,
4190 				      BTRFS_I(inode)->i_otime.tv_nsec);
4191 
4192 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4193 	btrfs_set_token_inode_generation(&token, item,
4194 					 BTRFS_I(inode)->generation);
4195 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4196 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4197 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4198 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4199 					  BTRFS_I(inode)->ro_flags);
4200 	btrfs_set_token_inode_flags(&token, item, flags);
4201 	btrfs_set_token_inode_block_group(&token, item, 0);
4202 }
4203 
4204 /*
4205  * copy everything in the in-memory inode into the btree.
4206  */
4207 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4208 				struct btrfs_root *root,
4209 				struct btrfs_inode *inode)
4210 {
4211 	struct btrfs_inode_item *inode_item;
4212 	struct btrfs_path *path;
4213 	struct extent_buffer *leaf;
4214 	int ret;
4215 
4216 	path = btrfs_alloc_path();
4217 	if (!path)
4218 		return -ENOMEM;
4219 
4220 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4221 	if (ret) {
4222 		if (ret > 0)
4223 			ret = -ENOENT;
4224 		goto failed;
4225 	}
4226 
4227 	leaf = path->nodes[0];
4228 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4229 				    struct btrfs_inode_item);
4230 
4231 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4232 	btrfs_mark_buffer_dirty(leaf);
4233 	btrfs_set_inode_last_trans(trans, inode);
4234 	ret = 0;
4235 failed:
4236 	btrfs_free_path(path);
4237 	return ret;
4238 }
4239 
4240 /*
4241  * copy everything in the in-memory inode into the btree.
4242  */
4243 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4244 				struct btrfs_root *root,
4245 				struct btrfs_inode *inode)
4246 {
4247 	struct btrfs_fs_info *fs_info = root->fs_info;
4248 	int ret;
4249 
4250 	/*
4251 	 * If the inode is a free space inode, we can deadlock during commit
4252 	 * if we put it into the delayed code.
4253 	 *
4254 	 * The data relocation inode should also be directly updated
4255 	 * without delay
4256 	 */
4257 	if (!btrfs_is_free_space_inode(inode)
4258 	    && !btrfs_is_data_reloc_root(root)
4259 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4260 		btrfs_update_root_times(trans, root);
4261 
4262 		ret = btrfs_delayed_update_inode(trans, root, inode);
4263 		if (!ret)
4264 			btrfs_set_inode_last_trans(trans, inode);
4265 		return ret;
4266 	}
4267 
4268 	return btrfs_update_inode_item(trans, root, inode);
4269 }
4270 
4271 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4272 				struct btrfs_root *root, struct btrfs_inode *inode)
4273 {
4274 	int ret;
4275 
4276 	ret = btrfs_update_inode(trans, root, inode);
4277 	if (ret == -ENOSPC)
4278 		return btrfs_update_inode_item(trans, root, inode);
4279 	return ret;
4280 }
4281 
4282 /*
4283  * unlink helper that gets used here in inode.c and in the tree logging
4284  * recovery code.  It remove a link in a directory with a given name, and
4285  * also drops the back refs in the inode to the directory
4286  */
4287 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4288 				struct btrfs_inode *dir,
4289 				struct btrfs_inode *inode,
4290 				const struct fscrypt_str *name,
4291 				struct btrfs_rename_ctx *rename_ctx)
4292 {
4293 	struct btrfs_root *root = dir->root;
4294 	struct btrfs_fs_info *fs_info = root->fs_info;
4295 	struct btrfs_path *path;
4296 	int ret = 0;
4297 	struct btrfs_dir_item *di;
4298 	u64 index;
4299 	u64 ino = btrfs_ino(inode);
4300 	u64 dir_ino = btrfs_ino(dir);
4301 
4302 	path = btrfs_alloc_path();
4303 	if (!path) {
4304 		ret = -ENOMEM;
4305 		goto out;
4306 	}
4307 
4308 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4309 	if (IS_ERR_OR_NULL(di)) {
4310 		ret = di ? PTR_ERR(di) : -ENOENT;
4311 		goto err;
4312 	}
4313 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4314 	if (ret)
4315 		goto err;
4316 	btrfs_release_path(path);
4317 
4318 	/*
4319 	 * If we don't have dir index, we have to get it by looking up
4320 	 * the inode ref, since we get the inode ref, remove it directly,
4321 	 * it is unnecessary to do delayed deletion.
4322 	 *
4323 	 * But if we have dir index, needn't search inode ref to get it.
4324 	 * Since the inode ref is close to the inode item, it is better
4325 	 * that we delay to delete it, and just do this deletion when
4326 	 * we update the inode item.
4327 	 */
4328 	if (inode->dir_index) {
4329 		ret = btrfs_delayed_delete_inode_ref(inode);
4330 		if (!ret) {
4331 			index = inode->dir_index;
4332 			goto skip_backref;
4333 		}
4334 	}
4335 
4336 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4337 	if (ret) {
4338 		btrfs_info(fs_info,
4339 			"failed to delete reference to %.*s, inode %llu parent %llu",
4340 			name->len, name->name, ino, dir_ino);
4341 		btrfs_abort_transaction(trans, ret);
4342 		goto err;
4343 	}
4344 skip_backref:
4345 	if (rename_ctx)
4346 		rename_ctx->index = index;
4347 
4348 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4349 	if (ret) {
4350 		btrfs_abort_transaction(trans, ret);
4351 		goto err;
4352 	}
4353 
4354 	/*
4355 	 * If we are in a rename context, we don't need to update anything in the
4356 	 * log. That will be done later during the rename by btrfs_log_new_name().
4357 	 * Besides that, doing it here would only cause extra unnecessary btree
4358 	 * operations on the log tree, increasing latency for applications.
4359 	 */
4360 	if (!rename_ctx) {
4361 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4362 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4363 	}
4364 
4365 	/*
4366 	 * If we have a pending delayed iput we could end up with the final iput
4367 	 * being run in btrfs-cleaner context.  If we have enough of these built
4368 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4369 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4370 	 * the inode we can run the delayed iput here without any issues as the
4371 	 * final iput won't be done until after we drop the ref we're currently
4372 	 * holding.
4373 	 */
4374 	btrfs_run_delayed_iput(fs_info, inode);
4375 err:
4376 	btrfs_free_path(path);
4377 	if (ret)
4378 		goto out;
4379 
4380 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4381 	inode_inc_iversion(&inode->vfs_inode);
4382 	inode_inc_iversion(&dir->vfs_inode);
4383 	inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4384 	dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime;
4385 	dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime;
4386 	ret = btrfs_update_inode(trans, root, dir);
4387 out:
4388 	return ret;
4389 }
4390 
4391 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4392 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4393 		       const struct fscrypt_str *name)
4394 {
4395 	int ret;
4396 
4397 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4398 	if (!ret) {
4399 		drop_nlink(&inode->vfs_inode);
4400 		ret = btrfs_update_inode(trans, inode->root, inode);
4401 	}
4402 	return ret;
4403 }
4404 
4405 /*
4406  * helper to start transaction for unlink and rmdir.
4407  *
4408  * unlink and rmdir are special in btrfs, they do not always free space, so
4409  * if we cannot make our reservations the normal way try and see if there is
4410  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4411  * allow the unlink to occur.
4412  */
4413 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4414 {
4415 	struct btrfs_root *root = dir->root;
4416 
4417 	/*
4418 	 * 1 for the possible orphan item
4419 	 * 1 for the dir item
4420 	 * 1 for the dir index
4421 	 * 1 for the inode ref
4422 	 * 1 for the inode
4423 	 * 1 for the parent inode
4424 	 */
4425 	return btrfs_start_transaction_fallback_global_rsv(root, 6);
4426 }
4427 
4428 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4429 {
4430 	struct btrfs_trans_handle *trans;
4431 	struct inode *inode = d_inode(dentry);
4432 	int ret;
4433 	struct fscrypt_name fname;
4434 
4435 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4436 	if (ret)
4437 		return ret;
4438 
4439 	/* This needs to handle no-key deletions later on */
4440 
4441 	trans = __unlink_start_trans(BTRFS_I(dir));
4442 	if (IS_ERR(trans)) {
4443 		ret = PTR_ERR(trans);
4444 		goto fscrypt_free;
4445 	}
4446 
4447 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4448 			0);
4449 
4450 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4451 				 &fname.disk_name);
4452 	if (ret)
4453 		goto end_trans;
4454 
4455 	if (inode->i_nlink == 0) {
4456 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4457 		if (ret)
4458 			goto end_trans;
4459 	}
4460 
4461 end_trans:
4462 	btrfs_end_transaction(trans);
4463 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4464 fscrypt_free:
4465 	fscrypt_free_filename(&fname);
4466 	return ret;
4467 }
4468 
4469 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4470 			       struct btrfs_inode *dir, struct dentry *dentry)
4471 {
4472 	struct btrfs_root *root = dir->root;
4473 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4474 	struct btrfs_path *path;
4475 	struct extent_buffer *leaf;
4476 	struct btrfs_dir_item *di;
4477 	struct btrfs_key key;
4478 	u64 index;
4479 	int ret;
4480 	u64 objectid;
4481 	u64 dir_ino = btrfs_ino(dir);
4482 	struct fscrypt_name fname;
4483 
4484 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4485 	if (ret)
4486 		return ret;
4487 
4488 	/* This needs to handle no-key deletions later on */
4489 
4490 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4491 		objectid = inode->root->root_key.objectid;
4492 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4493 		objectid = inode->location.objectid;
4494 	} else {
4495 		WARN_ON(1);
4496 		fscrypt_free_filename(&fname);
4497 		return -EINVAL;
4498 	}
4499 
4500 	path = btrfs_alloc_path();
4501 	if (!path) {
4502 		ret = -ENOMEM;
4503 		goto out;
4504 	}
4505 
4506 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4507 				   &fname.disk_name, -1);
4508 	if (IS_ERR_OR_NULL(di)) {
4509 		ret = di ? PTR_ERR(di) : -ENOENT;
4510 		goto out;
4511 	}
4512 
4513 	leaf = path->nodes[0];
4514 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4515 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4516 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4517 	if (ret) {
4518 		btrfs_abort_transaction(trans, ret);
4519 		goto out;
4520 	}
4521 	btrfs_release_path(path);
4522 
4523 	/*
4524 	 * This is a placeholder inode for a subvolume we didn't have a
4525 	 * reference to at the time of the snapshot creation.  In the meantime
4526 	 * we could have renamed the real subvol link into our snapshot, so
4527 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4528 	 * Instead simply lookup the dir_index_item for this entry so we can
4529 	 * remove it.  Otherwise we know we have a ref to the root and we can
4530 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4531 	 */
4532 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4533 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4534 		if (IS_ERR_OR_NULL(di)) {
4535 			if (!di)
4536 				ret = -ENOENT;
4537 			else
4538 				ret = PTR_ERR(di);
4539 			btrfs_abort_transaction(trans, ret);
4540 			goto out;
4541 		}
4542 
4543 		leaf = path->nodes[0];
4544 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4545 		index = key.offset;
4546 		btrfs_release_path(path);
4547 	} else {
4548 		ret = btrfs_del_root_ref(trans, objectid,
4549 					 root->root_key.objectid, dir_ino,
4550 					 &index, &fname.disk_name);
4551 		if (ret) {
4552 			btrfs_abort_transaction(trans, ret);
4553 			goto out;
4554 		}
4555 	}
4556 
4557 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4558 	if (ret) {
4559 		btrfs_abort_transaction(trans, ret);
4560 		goto out;
4561 	}
4562 
4563 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4564 	inode_inc_iversion(&dir->vfs_inode);
4565 	dir->vfs_inode.i_mtime = current_time(&dir->vfs_inode);
4566 	dir->vfs_inode.i_ctime = dir->vfs_inode.i_mtime;
4567 	ret = btrfs_update_inode_fallback(trans, root, dir);
4568 	if (ret)
4569 		btrfs_abort_transaction(trans, ret);
4570 out:
4571 	btrfs_free_path(path);
4572 	fscrypt_free_filename(&fname);
4573 	return ret;
4574 }
4575 
4576 /*
4577  * Helper to check if the subvolume references other subvolumes or if it's
4578  * default.
4579  */
4580 static noinline int may_destroy_subvol(struct btrfs_root *root)
4581 {
4582 	struct btrfs_fs_info *fs_info = root->fs_info;
4583 	struct btrfs_path *path;
4584 	struct btrfs_dir_item *di;
4585 	struct btrfs_key key;
4586 	struct fscrypt_str name = FSTR_INIT("default", 7);
4587 	u64 dir_id;
4588 	int ret;
4589 
4590 	path = btrfs_alloc_path();
4591 	if (!path)
4592 		return -ENOMEM;
4593 
4594 	/* Make sure this root isn't set as the default subvol */
4595 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4596 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4597 				   dir_id, &name, 0);
4598 	if (di && !IS_ERR(di)) {
4599 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4600 		if (key.objectid == root->root_key.objectid) {
4601 			ret = -EPERM;
4602 			btrfs_err(fs_info,
4603 				  "deleting default subvolume %llu is not allowed",
4604 				  key.objectid);
4605 			goto out;
4606 		}
4607 		btrfs_release_path(path);
4608 	}
4609 
4610 	key.objectid = root->root_key.objectid;
4611 	key.type = BTRFS_ROOT_REF_KEY;
4612 	key.offset = (u64)-1;
4613 
4614 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4615 	if (ret < 0)
4616 		goto out;
4617 	BUG_ON(ret == 0);
4618 
4619 	ret = 0;
4620 	if (path->slots[0] > 0) {
4621 		path->slots[0]--;
4622 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4623 		if (key.objectid == root->root_key.objectid &&
4624 		    key.type == BTRFS_ROOT_REF_KEY)
4625 			ret = -ENOTEMPTY;
4626 	}
4627 out:
4628 	btrfs_free_path(path);
4629 	return ret;
4630 }
4631 
4632 /* Delete all dentries for inodes belonging to the root */
4633 static void btrfs_prune_dentries(struct btrfs_root *root)
4634 {
4635 	struct btrfs_fs_info *fs_info = root->fs_info;
4636 	struct rb_node *node;
4637 	struct rb_node *prev;
4638 	struct btrfs_inode *entry;
4639 	struct inode *inode;
4640 	u64 objectid = 0;
4641 
4642 	if (!BTRFS_FS_ERROR(fs_info))
4643 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4644 
4645 	spin_lock(&root->inode_lock);
4646 again:
4647 	node = root->inode_tree.rb_node;
4648 	prev = NULL;
4649 	while (node) {
4650 		prev = node;
4651 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4652 
4653 		if (objectid < btrfs_ino(entry))
4654 			node = node->rb_left;
4655 		else if (objectid > btrfs_ino(entry))
4656 			node = node->rb_right;
4657 		else
4658 			break;
4659 	}
4660 	if (!node) {
4661 		while (prev) {
4662 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4663 			if (objectid <= btrfs_ino(entry)) {
4664 				node = prev;
4665 				break;
4666 			}
4667 			prev = rb_next(prev);
4668 		}
4669 	}
4670 	while (node) {
4671 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4672 		objectid = btrfs_ino(entry) + 1;
4673 		inode = igrab(&entry->vfs_inode);
4674 		if (inode) {
4675 			spin_unlock(&root->inode_lock);
4676 			if (atomic_read(&inode->i_count) > 1)
4677 				d_prune_aliases(inode);
4678 			/*
4679 			 * btrfs_drop_inode will have it removed from the inode
4680 			 * cache when its usage count hits zero.
4681 			 */
4682 			iput(inode);
4683 			cond_resched();
4684 			spin_lock(&root->inode_lock);
4685 			goto again;
4686 		}
4687 
4688 		if (cond_resched_lock(&root->inode_lock))
4689 			goto again;
4690 
4691 		node = rb_next(node);
4692 	}
4693 	spin_unlock(&root->inode_lock);
4694 }
4695 
4696 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4697 {
4698 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4699 	struct btrfs_root *root = dir->root;
4700 	struct inode *inode = d_inode(dentry);
4701 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4702 	struct btrfs_trans_handle *trans;
4703 	struct btrfs_block_rsv block_rsv;
4704 	u64 root_flags;
4705 	int ret;
4706 
4707 	/*
4708 	 * Don't allow to delete a subvolume with send in progress. This is
4709 	 * inside the inode lock so the error handling that has to drop the bit
4710 	 * again is not run concurrently.
4711 	 */
4712 	spin_lock(&dest->root_item_lock);
4713 	if (dest->send_in_progress) {
4714 		spin_unlock(&dest->root_item_lock);
4715 		btrfs_warn(fs_info,
4716 			   "attempt to delete subvolume %llu during send",
4717 			   dest->root_key.objectid);
4718 		return -EPERM;
4719 	}
4720 	if (atomic_read(&dest->nr_swapfiles)) {
4721 		spin_unlock(&dest->root_item_lock);
4722 		btrfs_warn(fs_info,
4723 			   "attempt to delete subvolume %llu with active swapfile",
4724 			   root->root_key.objectid);
4725 		return -EPERM;
4726 	}
4727 	root_flags = btrfs_root_flags(&dest->root_item);
4728 	btrfs_set_root_flags(&dest->root_item,
4729 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4730 	spin_unlock(&dest->root_item_lock);
4731 
4732 	down_write(&fs_info->subvol_sem);
4733 
4734 	ret = may_destroy_subvol(dest);
4735 	if (ret)
4736 		goto out_up_write;
4737 
4738 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4739 	/*
4740 	 * One for dir inode,
4741 	 * two for dir entries,
4742 	 * two for root ref/backref.
4743 	 */
4744 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4745 	if (ret)
4746 		goto out_up_write;
4747 
4748 	trans = btrfs_start_transaction(root, 0);
4749 	if (IS_ERR(trans)) {
4750 		ret = PTR_ERR(trans);
4751 		goto out_release;
4752 	}
4753 	trans->block_rsv = &block_rsv;
4754 	trans->bytes_reserved = block_rsv.size;
4755 
4756 	btrfs_record_snapshot_destroy(trans, dir);
4757 
4758 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4759 	if (ret) {
4760 		btrfs_abort_transaction(trans, ret);
4761 		goto out_end_trans;
4762 	}
4763 
4764 	ret = btrfs_record_root_in_trans(trans, dest);
4765 	if (ret) {
4766 		btrfs_abort_transaction(trans, ret);
4767 		goto out_end_trans;
4768 	}
4769 
4770 	memset(&dest->root_item.drop_progress, 0,
4771 		sizeof(dest->root_item.drop_progress));
4772 	btrfs_set_root_drop_level(&dest->root_item, 0);
4773 	btrfs_set_root_refs(&dest->root_item, 0);
4774 
4775 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4776 		ret = btrfs_insert_orphan_item(trans,
4777 					fs_info->tree_root,
4778 					dest->root_key.objectid);
4779 		if (ret) {
4780 			btrfs_abort_transaction(trans, ret);
4781 			goto out_end_trans;
4782 		}
4783 	}
4784 
4785 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4786 				  BTRFS_UUID_KEY_SUBVOL,
4787 				  dest->root_key.objectid);
4788 	if (ret && ret != -ENOENT) {
4789 		btrfs_abort_transaction(trans, ret);
4790 		goto out_end_trans;
4791 	}
4792 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4793 		ret = btrfs_uuid_tree_remove(trans,
4794 					  dest->root_item.received_uuid,
4795 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4796 					  dest->root_key.objectid);
4797 		if (ret && ret != -ENOENT) {
4798 			btrfs_abort_transaction(trans, ret);
4799 			goto out_end_trans;
4800 		}
4801 	}
4802 
4803 	free_anon_bdev(dest->anon_dev);
4804 	dest->anon_dev = 0;
4805 out_end_trans:
4806 	trans->block_rsv = NULL;
4807 	trans->bytes_reserved = 0;
4808 	ret = btrfs_end_transaction(trans);
4809 	inode->i_flags |= S_DEAD;
4810 out_release:
4811 	btrfs_subvolume_release_metadata(root, &block_rsv);
4812 out_up_write:
4813 	up_write(&fs_info->subvol_sem);
4814 	if (ret) {
4815 		spin_lock(&dest->root_item_lock);
4816 		root_flags = btrfs_root_flags(&dest->root_item);
4817 		btrfs_set_root_flags(&dest->root_item,
4818 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4819 		spin_unlock(&dest->root_item_lock);
4820 	} else {
4821 		d_invalidate(dentry);
4822 		btrfs_prune_dentries(dest);
4823 		ASSERT(dest->send_in_progress == 0);
4824 	}
4825 
4826 	return ret;
4827 }
4828 
4829 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4830 {
4831 	struct inode *inode = d_inode(dentry);
4832 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4833 	int err = 0;
4834 	struct btrfs_trans_handle *trans;
4835 	u64 last_unlink_trans;
4836 	struct fscrypt_name fname;
4837 
4838 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4839 		return -ENOTEMPTY;
4840 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4841 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4842 			btrfs_err(fs_info,
4843 			"extent tree v2 doesn't support snapshot deletion yet");
4844 			return -EOPNOTSUPP;
4845 		}
4846 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4847 	}
4848 
4849 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4850 	if (err)
4851 		return err;
4852 
4853 	/* This needs to handle no-key deletions later on */
4854 
4855 	trans = __unlink_start_trans(BTRFS_I(dir));
4856 	if (IS_ERR(trans)) {
4857 		err = PTR_ERR(trans);
4858 		goto out_notrans;
4859 	}
4860 
4861 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4862 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4863 		goto out;
4864 	}
4865 
4866 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4867 	if (err)
4868 		goto out;
4869 
4870 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4871 
4872 	/* now the directory is empty */
4873 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4874 				 &fname.disk_name);
4875 	if (!err) {
4876 		btrfs_i_size_write(BTRFS_I(inode), 0);
4877 		/*
4878 		 * Propagate the last_unlink_trans value of the deleted dir to
4879 		 * its parent directory. This is to prevent an unrecoverable
4880 		 * log tree in the case we do something like this:
4881 		 * 1) create dir foo
4882 		 * 2) create snapshot under dir foo
4883 		 * 3) delete the snapshot
4884 		 * 4) rmdir foo
4885 		 * 5) mkdir foo
4886 		 * 6) fsync foo or some file inside foo
4887 		 */
4888 		if (last_unlink_trans >= trans->transid)
4889 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4890 	}
4891 out:
4892 	btrfs_end_transaction(trans);
4893 out_notrans:
4894 	btrfs_btree_balance_dirty(fs_info);
4895 	fscrypt_free_filename(&fname);
4896 
4897 	return err;
4898 }
4899 
4900 /*
4901  * btrfs_truncate_block - read, zero a chunk and write a block
4902  * @inode - inode that we're zeroing
4903  * @from - the offset to start zeroing
4904  * @len - the length to zero, 0 to zero the entire range respective to the
4905  *	offset
4906  * @front - zero up to the offset instead of from the offset on
4907  *
4908  * This will find the block for the "from" offset and cow the block and zero the
4909  * part we want to zero.  This is used with truncate and hole punching.
4910  */
4911 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4912 			 int front)
4913 {
4914 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4915 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4916 	struct extent_io_tree *io_tree = &inode->io_tree;
4917 	struct btrfs_ordered_extent *ordered;
4918 	struct extent_state *cached_state = NULL;
4919 	struct extent_changeset *data_reserved = NULL;
4920 	bool only_release_metadata = false;
4921 	u32 blocksize = fs_info->sectorsize;
4922 	pgoff_t index = from >> PAGE_SHIFT;
4923 	unsigned offset = from & (blocksize - 1);
4924 	struct page *page;
4925 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4926 	size_t write_bytes = blocksize;
4927 	int ret = 0;
4928 	u64 block_start;
4929 	u64 block_end;
4930 
4931 	if (IS_ALIGNED(offset, blocksize) &&
4932 	    (!len || IS_ALIGNED(len, blocksize)))
4933 		goto out;
4934 
4935 	block_start = round_down(from, blocksize);
4936 	block_end = block_start + blocksize - 1;
4937 
4938 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4939 					  blocksize, false);
4940 	if (ret < 0) {
4941 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4942 			/* For nocow case, no need to reserve data space */
4943 			only_release_metadata = true;
4944 		} else {
4945 			goto out;
4946 		}
4947 	}
4948 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4949 	if (ret < 0) {
4950 		if (!only_release_metadata)
4951 			btrfs_free_reserved_data_space(inode, data_reserved,
4952 						       block_start, blocksize);
4953 		goto out;
4954 	}
4955 again:
4956 	page = find_or_create_page(mapping, index, mask);
4957 	if (!page) {
4958 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4959 					     blocksize, true);
4960 		btrfs_delalloc_release_extents(inode, blocksize);
4961 		ret = -ENOMEM;
4962 		goto out;
4963 	}
4964 	ret = set_page_extent_mapped(page);
4965 	if (ret < 0)
4966 		goto out_unlock;
4967 
4968 	if (!PageUptodate(page)) {
4969 		ret = btrfs_read_folio(NULL, page_folio(page));
4970 		lock_page(page);
4971 		if (page->mapping != mapping) {
4972 			unlock_page(page);
4973 			put_page(page);
4974 			goto again;
4975 		}
4976 		if (!PageUptodate(page)) {
4977 			ret = -EIO;
4978 			goto out_unlock;
4979 		}
4980 	}
4981 	wait_on_page_writeback(page);
4982 
4983 	lock_extent(io_tree, block_start, block_end, &cached_state);
4984 
4985 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4986 	if (ordered) {
4987 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4988 		unlock_page(page);
4989 		put_page(page);
4990 		btrfs_start_ordered_extent(ordered, 1);
4991 		btrfs_put_ordered_extent(ordered);
4992 		goto again;
4993 	}
4994 
4995 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4996 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4997 			 &cached_state);
4998 
4999 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5000 					&cached_state);
5001 	if (ret) {
5002 		unlock_extent(io_tree, block_start, block_end, &cached_state);
5003 		goto out_unlock;
5004 	}
5005 
5006 	if (offset != blocksize) {
5007 		if (!len)
5008 			len = blocksize - offset;
5009 		if (front)
5010 			memzero_page(page, (block_start - page_offset(page)),
5011 				     offset);
5012 		else
5013 			memzero_page(page, (block_start - page_offset(page)) + offset,
5014 				     len);
5015 	}
5016 	btrfs_page_clear_checked(fs_info, page, block_start,
5017 				 block_end + 1 - block_start);
5018 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
5019 	unlock_extent(io_tree, block_start, block_end, &cached_state);
5020 
5021 	if (only_release_metadata)
5022 		set_extent_bit(&inode->io_tree, block_start, block_end,
5023 			       EXTENT_NORESERVE, NULL, GFP_NOFS);
5024 
5025 out_unlock:
5026 	if (ret) {
5027 		if (only_release_metadata)
5028 			btrfs_delalloc_release_metadata(inode, blocksize, true);
5029 		else
5030 			btrfs_delalloc_release_space(inode, data_reserved,
5031 					block_start, blocksize, true);
5032 	}
5033 	btrfs_delalloc_release_extents(inode, blocksize);
5034 	unlock_page(page);
5035 	put_page(page);
5036 out:
5037 	if (only_release_metadata)
5038 		btrfs_check_nocow_unlock(inode);
5039 	extent_changeset_free(data_reserved);
5040 	return ret;
5041 }
5042 
5043 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
5044 			     u64 offset, u64 len)
5045 {
5046 	struct btrfs_fs_info *fs_info = root->fs_info;
5047 	struct btrfs_trans_handle *trans;
5048 	struct btrfs_drop_extents_args drop_args = { 0 };
5049 	int ret;
5050 
5051 	/*
5052 	 * If NO_HOLES is enabled, we don't need to do anything.
5053 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5054 	 * or btrfs_update_inode() will be called, which guarantee that the next
5055 	 * fsync will know this inode was changed and needs to be logged.
5056 	 */
5057 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
5058 		return 0;
5059 
5060 	/*
5061 	 * 1 - for the one we're dropping
5062 	 * 1 - for the one we're adding
5063 	 * 1 - for updating the inode.
5064 	 */
5065 	trans = btrfs_start_transaction(root, 3);
5066 	if (IS_ERR(trans))
5067 		return PTR_ERR(trans);
5068 
5069 	drop_args.start = offset;
5070 	drop_args.end = offset + len;
5071 	drop_args.drop_cache = true;
5072 
5073 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5074 	if (ret) {
5075 		btrfs_abort_transaction(trans, ret);
5076 		btrfs_end_transaction(trans);
5077 		return ret;
5078 	}
5079 
5080 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
5081 	if (ret) {
5082 		btrfs_abort_transaction(trans, ret);
5083 	} else {
5084 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5085 		btrfs_update_inode(trans, root, inode);
5086 	}
5087 	btrfs_end_transaction(trans);
5088 	return ret;
5089 }
5090 
5091 /*
5092  * This function puts in dummy file extents for the area we're creating a hole
5093  * for.  So if we are truncating this file to a larger size we need to insert
5094  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5095  * the range between oldsize and size
5096  */
5097 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5098 {
5099 	struct btrfs_root *root = inode->root;
5100 	struct btrfs_fs_info *fs_info = root->fs_info;
5101 	struct extent_io_tree *io_tree = &inode->io_tree;
5102 	struct extent_map *em = NULL;
5103 	struct extent_state *cached_state = NULL;
5104 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5105 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5106 	u64 last_byte;
5107 	u64 cur_offset;
5108 	u64 hole_size;
5109 	int err = 0;
5110 
5111 	/*
5112 	 * If our size started in the middle of a block we need to zero out the
5113 	 * rest of the block before we expand the i_size, otherwise we could
5114 	 * expose stale data.
5115 	 */
5116 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5117 	if (err)
5118 		return err;
5119 
5120 	if (size <= hole_start)
5121 		return 0;
5122 
5123 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5124 					   &cached_state);
5125 	cur_offset = hole_start;
5126 	while (1) {
5127 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5128 				      block_end - cur_offset);
5129 		if (IS_ERR(em)) {
5130 			err = PTR_ERR(em);
5131 			em = NULL;
5132 			break;
5133 		}
5134 		last_byte = min(extent_map_end(em), block_end);
5135 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5136 		hole_size = last_byte - cur_offset;
5137 
5138 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5139 			struct extent_map *hole_em;
5140 
5141 			err = maybe_insert_hole(root, inode, cur_offset,
5142 						hole_size);
5143 			if (err)
5144 				break;
5145 
5146 			err = btrfs_inode_set_file_extent_range(inode,
5147 							cur_offset, hole_size);
5148 			if (err)
5149 				break;
5150 
5151 			hole_em = alloc_extent_map();
5152 			if (!hole_em) {
5153 				btrfs_drop_extent_map_range(inode, cur_offset,
5154 						    cur_offset + hole_size - 1,
5155 						    false);
5156 				btrfs_set_inode_full_sync(inode);
5157 				goto next;
5158 			}
5159 			hole_em->start = cur_offset;
5160 			hole_em->len = hole_size;
5161 			hole_em->orig_start = cur_offset;
5162 
5163 			hole_em->block_start = EXTENT_MAP_HOLE;
5164 			hole_em->block_len = 0;
5165 			hole_em->orig_block_len = 0;
5166 			hole_em->ram_bytes = hole_size;
5167 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5168 			hole_em->generation = fs_info->generation;
5169 
5170 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
5171 			free_extent_map(hole_em);
5172 		} else {
5173 			err = btrfs_inode_set_file_extent_range(inode,
5174 							cur_offset, hole_size);
5175 			if (err)
5176 				break;
5177 		}
5178 next:
5179 		free_extent_map(em);
5180 		em = NULL;
5181 		cur_offset = last_byte;
5182 		if (cur_offset >= block_end)
5183 			break;
5184 	}
5185 	free_extent_map(em);
5186 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5187 	return err;
5188 }
5189 
5190 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5191 {
5192 	struct btrfs_root *root = BTRFS_I(inode)->root;
5193 	struct btrfs_trans_handle *trans;
5194 	loff_t oldsize = i_size_read(inode);
5195 	loff_t newsize = attr->ia_size;
5196 	int mask = attr->ia_valid;
5197 	int ret;
5198 
5199 	/*
5200 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5201 	 * special case where we need to update the times despite not having
5202 	 * these flags set.  For all other operations the VFS set these flags
5203 	 * explicitly if it wants a timestamp update.
5204 	 */
5205 	if (newsize != oldsize) {
5206 		inode_inc_iversion(inode);
5207 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5208 			inode->i_mtime = current_time(inode);
5209 			inode->i_ctime = inode->i_mtime;
5210 		}
5211 	}
5212 
5213 	if (newsize > oldsize) {
5214 		/*
5215 		 * Don't do an expanding truncate while snapshotting is ongoing.
5216 		 * This is to ensure the snapshot captures a fully consistent
5217 		 * state of this file - if the snapshot captures this expanding
5218 		 * truncation, it must capture all writes that happened before
5219 		 * this truncation.
5220 		 */
5221 		btrfs_drew_write_lock(&root->snapshot_lock);
5222 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5223 		if (ret) {
5224 			btrfs_drew_write_unlock(&root->snapshot_lock);
5225 			return ret;
5226 		}
5227 
5228 		trans = btrfs_start_transaction(root, 1);
5229 		if (IS_ERR(trans)) {
5230 			btrfs_drew_write_unlock(&root->snapshot_lock);
5231 			return PTR_ERR(trans);
5232 		}
5233 
5234 		i_size_write(inode, newsize);
5235 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5236 		pagecache_isize_extended(inode, oldsize, newsize);
5237 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5238 		btrfs_drew_write_unlock(&root->snapshot_lock);
5239 		btrfs_end_transaction(trans);
5240 	} else {
5241 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5242 
5243 		if (btrfs_is_zoned(fs_info)) {
5244 			ret = btrfs_wait_ordered_range(inode,
5245 					ALIGN(newsize, fs_info->sectorsize),
5246 					(u64)-1);
5247 			if (ret)
5248 				return ret;
5249 		}
5250 
5251 		/*
5252 		 * We're truncating a file that used to have good data down to
5253 		 * zero. Make sure any new writes to the file get on disk
5254 		 * on close.
5255 		 */
5256 		if (newsize == 0)
5257 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5258 				&BTRFS_I(inode)->runtime_flags);
5259 
5260 		truncate_setsize(inode, newsize);
5261 
5262 		inode_dio_wait(inode);
5263 
5264 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5265 		if (ret && inode->i_nlink) {
5266 			int err;
5267 
5268 			/*
5269 			 * Truncate failed, so fix up the in-memory size. We
5270 			 * adjusted disk_i_size down as we removed extents, so
5271 			 * wait for disk_i_size to be stable and then update the
5272 			 * in-memory size to match.
5273 			 */
5274 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5275 			if (err)
5276 				return err;
5277 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5278 		}
5279 	}
5280 
5281 	return ret;
5282 }
5283 
5284 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5285 			 struct iattr *attr)
5286 {
5287 	struct inode *inode = d_inode(dentry);
5288 	struct btrfs_root *root = BTRFS_I(inode)->root;
5289 	int err;
5290 
5291 	if (btrfs_root_readonly(root))
5292 		return -EROFS;
5293 
5294 	err = setattr_prepare(mnt_userns, dentry, attr);
5295 	if (err)
5296 		return err;
5297 
5298 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5299 		err = btrfs_setsize(inode, attr);
5300 		if (err)
5301 			return err;
5302 	}
5303 
5304 	if (attr->ia_valid) {
5305 		setattr_copy(mnt_userns, inode, attr);
5306 		inode_inc_iversion(inode);
5307 		err = btrfs_dirty_inode(BTRFS_I(inode));
5308 
5309 		if (!err && attr->ia_valid & ATTR_MODE)
5310 			err = posix_acl_chmod(mnt_userns, dentry, inode->i_mode);
5311 	}
5312 
5313 	return err;
5314 }
5315 
5316 /*
5317  * While truncating the inode pages during eviction, we get the VFS
5318  * calling btrfs_invalidate_folio() against each folio of the inode. This
5319  * is slow because the calls to btrfs_invalidate_folio() result in a
5320  * huge amount of calls to lock_extent() and clear_extent_bit(),
5321  * which keep merging and splitting extent_state structures over and over,
5322  * wasting lots of time.
5323  *
5324  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5325  * skip all those expensive operations on a per folio basis and do only
5326  * the ordered io finishing, while we release here the extent_map and
5327  * extent_state structures, without the excessive merging and splitting.
5328  */
5329 static void evict_inode_truncate_pages(struct inode *inode)
5330 {
5331 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5332 	struct rb_node *node;
5333 
5334 	ASSERT(inode->i_state & I_FREEING);
5335 	truncate_inode_pages_final(&inode->i_data);
5336 
5337 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5338 
5339 	/*
5340 	 * Keep looping until we have no more ranges in the io tree.
5341 	 * We can have ongoing bios started by readahead that have
5342 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5343 	 * still in progress (unlocked the pages in the bio but did not yet
5344 	 * unlocked the ranges in the io tree). Therefore this means some
5345 	 * ranges can still be locked and eviction started because before
5346 	 * submitting those bios, which are executed by a separate task (work
5347 	 * queue kthread), inode references (inode->i_count) were not taken
5348 	 * (which would be dropped in the end io callback of each bio).
5349 	 * Therefore here we effectively end up waiting for those bios and
5350 	 * anyone else holding locked ranges without having bumped the inode's
5351 	 * reference count - if we don't do it, when they access the inode's
5352 	 * io_tree to unlock a range it may be too late, leading to an
5353 	 * use-after-free issue.
5354 	 */
5355 	spin_lock(&io_tree->lock);
5356 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5357 		struct extent_state *state;
5358 		struct extent_state *cached_state = NULL;
5359 		u64 start;
5360 		u64 end;
5361 		unsigned state_flags;
5362 
5363 		node = rb_first(&io_tree->state);
5364 		state = rb_entry(node, struct extent_state, rb_node);
5365 		start = state->start;
5366 		end = state->end;
5367 		state_flags = state->state;
5368 		spin_unlock(&io_tree->lock);
5369 
5370 		lock_extent(io_tree, start, end, &cached_state);
5371 
5372 		/*
5373 		 * If still has DELALLOC flag, the extent didn't reach disk,
5374 		 * and its reserved space won't be freed by delayed_ref.
5375 		 * So we need to free its reserved space here.
5376 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5377 		 *
5378 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5379 		 */
5380 		if (state_flags & EXTENT_DELALLOC)
5381 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5382 					       end - start + 1);
5383 
5384 		clear_extent_bit(io_tree, start, end,
5385 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5386 				 &cached_state);
5387 
5388 		cond_resched();
5389 		spin_lock(&io_tree->lock);
5390 	}
5391 	spin_unlock(&io_tree->lock);
5392 }
5393 
5394 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5395 							struct btrfs_block_rsv *rsv)
5396 {
5397 	struct btrfs_fs_info *fs_info = root->fs_info;
5398 	struct btrfs_trans_handle *trans;
5399 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5400 	int ret;
5401 
5402 	/*
5403 	 * Eviction should be taking place at some place safe because of our
5404 	 * delayed iputs.  However the normal flushing code will run delayed
5405 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5406 	 *
5407 	 * We reserve the delayed_refs_extra here again because we can't use
5408 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5409 	 * above.  We reserve our extra bit here because we generate a ton of
5410 	 * delayed refs activity by truncating.
5411 	 *
5412 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5413 	 * if we fail to make this reservation we can re-try without the
5414 	 * delayed_refs_extra so we can make some forward progress.
5415 	 */
5416 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5417 				     BTRFS_RESERVE_FLUSH_EVICT);
5418 	if (ret) {
5419 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5420 					     BTRFS_RESERVE_FLUSH_EVICT);
5421 		if (ret) {
5422 			btrfs_warn(fs_info,
5423 				   "could not allocate space for delete; will truncate on mount");
5424 			return ERR_PTR(-ENOSPC);
5425 		}
5426 		delayed_refs_extra = 0;
5427 	}
5428 
5429 	trans = btrfs_join_transaction(root);
5430 	if (IS_ERR(trans))
5431 		return trans;
5432 
5433 	if (delayed_refs_extra) {
5434 		trans->block_rsv = &fs_info->trans_block_rsv;
5435 		trans->bytes_reserved = delayed_refs_extra;
5436 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5437 					delayed_refs_extra, 1);
5438 	}
5439 	return trans;
5440 }
5441 
5442 void btrfs_evict_inode(struct inode *inode)
5443 {
5444 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5445 	struct btrfs_trans_handle *trans;
5446 	struct btrfs_root *root = BTRFS_I(inode)->root;
5447 	struct btrfs_block_rsv *rsv;
5448 	int ret;
5449 
5450 	trace_btrfs_inode_evict(inode);
5451 
5452 	if (!root) {
5453 		fsverity_cleanup_inode(inode);
5454 		clear_inode(inode);
5455 		return;
5456 	}
5457 
5458 	evict_inode_truncate_pages(inode);
5459 
5460 	if (inode->i_nlink &&
5461 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5462 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5463 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5464 		goto no_delete;
5465 
5466 	if (is_bad_inode(inode))
5467 		goto no_delete;
5468 
5469 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5470 
5471 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5472 		goto no_delete;
5473 
5474 	if (inode->i_nlink > 0) {
5475 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5476 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5477 		goto no_delete;
5478 	}
5479 
5480 	/*
5481 	 * This makes sure the inode item in tree is uptodate and the space for
5482 	 * the inode update is released.
5483 	 */
5484 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5485 	if (ret)
5486 		goto no_delete;
5487 
5488 	/*
5489 	 * This drops any pending insert or delete operations we have for this
5490 	 * inode.  We could have a delayed dir index deletion queued up, but
5491 	 * we're removing the inode completely so that'll be taken care of in
5492 	 * the truncate.
5493 	 */
5494 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5495 
5496 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5497 	if (!rsv)
5498 		goto no_delete;
5499 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5500 	rsv->failfast = true;
5501 
5502 	btrfs_i_size_write(BTRFS_I(inode), 0);
5503 
5504 	while (1) {
5505 		struct btrfs_truncate_control control = {
5506 			.inode = BTRFS_I(inode),
5507 			.ino = btrfs_ino(BTRFS_I(inode)),
5508 			.new_size = 0,
5509 			.min_type = 0,
5510 		};
5511 
5512 		trans = evict_refill_and_join(root, rsv);
5513 		if (IS_ERR(trans))
5514 			goto free_rsv;
5515 
5516 		trans->block_rsv = rsv;
5517 
5518 		ret = btrfs_truncate_inode_items(trans, root, &control);
5519 		trans->block_rsv = &fs_info->trans_block_rsv;
5520 		btrfs_end_transaction(trans);
5521 		btrfs_btree_balance_dirty(fs_info);
5522 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5523 			goto free_rsv;
5524 		else if (!ret)
5525 			break;
5526 	}
5527 
5528 	/*
5529 	 * Errors here aren't a big deal, it just means we leave orphan items in
5530 	 * the tree. They will be cleaned up on the next mount. If the inode
5531 	 * number gets reused, cleanup deletes the orphan item without doing
5532 	 * anything, and unlink reuses the existing orphan item.
5533 	 *
5534 	 * If it turns out that we are dropping too many of these, we might want
5535 	 * to add a mechanism for retrying these after a commit.
5536 	 */
5537 	trans = evict_refill_and_join(root, rsv);
5538 	if (!IS_ERR(trans)) {
5539 		trans->block_rsv = rsv;
5540 		btrfs_orphan_del(trans, BTRFS_I(inode));
5541 		trans->block_rsv = &fs_info->trans_block_rsv;
5542 		btrfs_end_transaction(trans);
5543 	}
5544 
5545 free_rsv:
5546 	btrfs_free_block_rsv(fs_info, rsv);
5547 no_delete:
5548 	/*
5549 	 * If we didn't successfully delete, the orphan item will still be in
5550 	 * the tree and we'll retry on the next mount. Again, we might also want
5551 	 * to retry these periodically in the future.
5552 	 */
5553 	btrfs_remove_delayed_node(BTRFS_I(inode));
5554 	fsverity_cleanup_inode(inode);
5555 	clear_inode(inode);
5556 }
5557 
5558 /*
5559  * Return the key found in the dir entry in the location pointer, fill @type
5560  * with BTRFS_FT_*, and return 0.
5561  *
5562  * If no dir entries were found, returns -ENOENT.
5563  * If found a corrupted location in dir entry, returns -EUCLEAN.
5564  */
5565 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5566 			       struct btrfs_key *location, u8 *type)
5567 {
5568 	struct btrfs_dir_item *di;
5569 	struct btrfs_path *path;
5570 	struct btrfs_root *root = dir->root;
5571 	int ret = 0;
5572 	struct fscrypt_name fname;
5573 
5574 	path = btrfs_alloc_path();
5575 	if (!path)
5576 		return -ENOMEM;
5577 
5578 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5579 	if (ret)
5580 		goto out;
5581 
5582 	/* This needs to handle no-key deletions later on */
5583 
5584 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5585 				   &fname.disk_name, 0);
5586 	if (IS_ERR_OR_NULL(di)) {
5587 		ret = di ? PTR_ERR(di) : -ENOENT;
5588 		goto out;
5589 	}
5590 
5591 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5592 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5593 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5594 		ret = -EUCLEAN;
5595 		btrfs_warn(root->fs_info,
5596 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5597 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5598 			   location->objectid, location->type, location->offset);
5599 	}
5600 	if (!ret)
5601 		*type = btrfs_dir_ftype(path->nodes[0], di);
5602 out:
5603 	fscrypt_free_filename(&fname);
5604 	btrfs_free_path(path);
5605 	return ret;
5606 }
5607 
5608 /*
5609  * when we hit a tree root in a directory, the btrfs part of the inode
5610  * needs to be changed to reflect the root directory of the tree root.  This
5611  * is kind of like crossing a mount point.
5612  */
5613 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5614 				    struct btrfs_inode *dir,
5615 				    struct dentry *dentry,
5616 				    struct btrfs_key *location,
5617 				    struct btrfs_root **sub_root)
5618 {
5619 	struct btrfs_path *path;
5620 	struct btrfs_root *new_root;
5621 	struct btrfs_root_ref *ref;
5622 	struct extent_buffer *leaf;
5623 	struct btrfs_key key;
5624 	int ret;
5625 	int err = 0;
5626 	struct fscrypt_name fname;
5627 
5628 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5629 	if (ret)
5630 		return ret;
5631 
5632 	path = btrfs_alloc_path();
5633 	if (!path) {
5634 		err = -ENOMEM;
5635 		goto out;
5636 	}
5637 
5638 	err = -ENOENT;
5639 	key.objectid = dir->root->root_key.objectid;
5640 	key.type = BTRFS_ROOT_REF_KEY;
5641 	key.offset = location->objectid;
5642 
5643 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5644 	if (ret) {
5645 		if (ret < 0)
5646 			err = ret;
5647 		goto out;
5648 	}
5649 
5650 	leaf = path->nodes[0];
5651 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5652 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5653 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5654 		goto out;
5655 
5656 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5657 				   (unsigned long)(ref + 1), fname.disk_name.len);
5658 	if (ret)
5659 		goto out;
5660 
5661 	btrfs_release_path(path);
5662 
5663 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5664 	if (IS_ERR(new_root)) {
5665 		err = PTR_ERR(new_root);
5666 		goto out;
5667 	}
5668 
5669 	*sub_root = new_root;
5670 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5671 	location->type = BTRFS_INODE_ITEM_KEY;
5672 	location->offset = 0;
5673 	err = 0;
5674 out:
5675 	btrfs_free_path(path);
5676 	fscrypt_free_filename(&fname);
5677 	return err;
5678 }
5679 
5680 static void inode_tree_add(struct btrfs_inode *inode)
5681 {
5682 	struct btrfs_root *root = inode->root;
5683 	struct btrfs_inode *entry;
5684 	struct rb_node **p;
5685 	struct rb_node *parent;
5686 	struct rb_node *new = &inode->rb_node;
5687 	u64 ino = btrfs_ino(inode);
5688 
5689 	if (inode_unhashed(&inode->vfs_inode))
5690 		return;
5691 	parent = NULL;
5692 	spin_lock(&root->inode_lock);
5693 	p = &root->inode_tree.rb_node;
5694 	while (*p) {
5695 		parent = *p;
5696 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5697 
5698 		if (ino < btrfs_ino(entry))
5699 			p = &parent->rb_left;
5700 		else if (ino > btrfs_ino(entry))
5701 			p = &parent->rb_right;
5702 		else {
5703 			WARN_ON(!(entry->vfs_inode.i_state &
5704 				  (I_WILL_FREE | I_FREEING)));
5705 			rb_replace_node(parent, new, &root->inode_tree);
5706 			RB_CLEAR_NODE(parent);
5707 			spin_unlock(&root->inode_lock);
5708 			return;
5709 		}
5710 	}
5711 	rb_link_node(new, parent, p);
5712 	rb_insert_color(new, &root->inode_tree);
5713 	spin_unlock(&root->inode_lock);
5714 }
5715 
5716 static void inode_tree_del(struct btrfs_inode *inode)
5717 {
5718 	struct btrfs_root *root = inode->root;
5719 	int empty = 0;
5720 
5721 	spin_lock(&root->inode_lock);
5722 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5723 		rb_erase(&inode->rb_node, &root->inode_tree);
5724 		RB_CLEAR_NODE(&inode->rb_node);
5725 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5726 	}
5727 	spin_unlock(&root->inode_lock);
5728 
5729 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5730 		spin_lock(&root->inode_lock);
5731 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5732 		spin_unlock(&root->inode_lock);
5733 		if (empty)
5734 			btrfs_add_dead_root(root);
5735 	}
5736 }
5737 
5738 
5739 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5740 {
5741 	struct btrfs_iget_args *args = p;
5742 
5743 	inode->i_ino = args->ino;
5744 	BTRFS_I(inode)->location.objectid = args->ino;
5745 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5746 	BTRFS_I(inode)->location.offset = 0;
5747 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5748 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5749 
5750 	if (args->root && args->root == args->root->fs_info->tree_root &&
5751 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5752 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5753 			&BTRFS_I(inode)->runtime_flags);
5754 	return 0;
5755 }
5756 
5757 static int btrfs_find_actor(struct inode *inode, void *opaque)
5758 {
5759 	struct btrfs_iget_args *args = opaque;
5760 
5761 	return args->ino == BTRFS_I(inode)->location.objectid &&
5762 		args->root == BTRFS_I(inode)->root;
5763 }
5764 
5765 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5766 				       struct btrfs_root *root)
5767 {
5768 	struct inode *inode;
5769 	struct btrfs_iget_args args;
5770 	unsigned long hashval = btrfs_inode_hash(ino, root);
5771 
5772 	args.ino = ino;
5773 	args.root = root;
5774 
5775 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5776 			     btrfs_init_locked_inode,
5777 			     (void *)&args);
5778 	return inode;
5779 }
5780 
5781 /*
5782  * Get an inode object given its inode number and corresponding root.
5783  * Path can be preallocated to prevent recursing back to iget through
5784  * allocator. NULL is also valid but may require an additional allocation
5785  * later.
5786  */
5787 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5788 			      struct btrfs_root *root, struct btrfs_path *path)
5789 {
5790 	struct inode *inode;
5791 
5792 	inode = btrfs_iget_locked(s, ino, root);
5793 	if (!inode)
5794 		return ERR_PTR(-ENOMEM);
5795 
5796 	if (inode->i_state & I_NEW) {
5797 		int ret;
5798 
5799 		ret = btrfs_read_locked_inode(inode, path);
5800 		if (!ret) {
5801 			inode_tree_add(BTRFS_I(inode));
5802 			unlock_new_inode(inode);
5803 		} else {
5804 			iget_failed(inode);
5805 			/*
5806 			 * ret > 0 can come from btrfs_search_slot called by
5807 			 * btrfs_read_locked_inode, this means the inode item
5808 			 * was not found.
5809 			 */
5810 			if (ret > 0)
5811 				ret = -ENOENT;
5812 			inode = ERR_PTR(ret);
5813 		}
5814 	}
5815 
5816 	return inode;
5817 }
5818 
5819 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5820 {
5821 	return btrfs_iget_path(s, ino, root, NULL);
5822 }
5823 
5824 static struct inode *new_simple_dir(struct super_block *s,
5825 				    struct btrfs_key *key,
5826 				    struct btrfs_root *root)
5827 {
5828 	struct inode *inode = new_inode(s);
5829 
5830 	if (!inode)
5831 		return ERR_PTR(-ENOMEM);
5832 
5833 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5834 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5835 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5836 
5837 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5838 	/*
5839 	 * We only need lookup, the rest is read-only and there's no inode
5840 	 * associated with the dentry
5841 	 */
5842 	inode->i_op = &simple_dir_inode_operations;
5843 	inode->i_opflags &= ~IOP_XATTR;
5844 	inode->i_fop = &simple_dir_operations;
5845 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5846 	inode->i_mtime = current_time(inode);
5847 	inode->i_atime = inode->i_mtime;
5848 	inode->i_ctime = inode->i_mtime;
5849 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5850 
5851 	return inode;
5852 }
5853 
5854 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5855 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5856 static_assert(BTRFS_FT_DIR == FT_DIR);
5857 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5858 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5859 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5860 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5861 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5862 
5863 static inline u8 btrfs_inode_type(struct inode *inode)
5864 {
5865 	return fs_umode_to_ftype(inode->i_mode);
5866 }
5867 
5868 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5869 {
5870 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5871 	struct inode *inode;
5872 	struct btrfs_root *root = BTRFS_I(dir)->root;
5873 	struct btrfs_root *sub_root = root;
5874 	struct btrfs_key location;
5875 	u8 di_type = 0;
5876 	int ret = 0;
5877 
5878 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5879 		return ERR_PTR(-ENAMETOOLONG);
5880 
5881 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5882 	if (ret < 0)
5883 		return ERR_PTR(ret);
5884 
5885 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5886 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5887 		if (IS_ERR(inode))
5888 			return inode;
5889 
5890 		/* Do extra check against inode mode with di_type */
5891 		if (btrfs_inode_type(inode) != di_type) {
5892 			btrfs_crit(fs_info,
5893 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5894 				  inode->i_mode, btrfs_inode_type(inode),
5895 				  di_type);
5896 			iput(inode);
5897 			return ERR_PTR(-EUCLEAN);
5898 		}
5899 		return inode;
5900 	}
5901 
5902 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5903 				       &location, &sub_root);
5904 	if (ret < 0) {
5905 		if (ret != -ENOENT)
5906 			inode = ERR_PTR(ret);
5907 		else
5908 			inode = new_simple_dir(dir->i_sb, &location, root);
5909 	} else {
5910 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5911 		btrfs_put_root(sub_root);
5912 
5913 		if (IS_ERR(inode))
5914 			return inode;
5915 
5916 		down_read(&fs_info->cleanup_work_sem);
5917 		if (!sb_rdonly(inode->i_sb))
5918 			ret = btrfs_orphan_cleanup(sub_root);
5919 		up_read(&fs_info->cleanup_work_sem);
5920 		if (ret) {
5921 			iput(inode);
5922 			inode = ERR_PTR(ret);
5923 		}
5924 	}
5925 
5926 	return inode;
5927 }
5928 
5929 static int btrfs_dentry_delete(const struct dentry *dentry)
5930 {
5931 	struct btrfs_root *root;
5932 	struct inode *inode = d_inode(dentry);
5933 
5934 	if (!inode && !IS_ROOT(dentry))
5935 		inode = d_inode(dentry->d_parent);
5936 
5937 	if (inode) {
5938 		root = BTRFS_I(inode)->root;
5939 		if (btrfs_root_refs(&root->root_item) == 0)
5940 			return 1;
5941 
5942 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5943 			return 1;
5944 	}
5945 	return 0;
5946 }
5947 
5948 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5949 				   unsigned int flags)
5950 {
5951 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5952 
5953 	if (inode == ERR_PTR(-ENOENT))
5954 		inode = NULL;
5955 	return d_splice_alias(inode, dentry);
5956 }
5957 
5958 /*
5959  * All this infrastructure exists because dir_emit can fault, and we are holding
5960  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5961  * our information into that, and then dir_emit from the buffer.  This is
5962  * similar to what NFS does, only we don't keep the buffer around in pagecache
5963  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5964  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5965  * tree lock.
5966  */
5967 static int btrfs_opendir(struct inode *inode, struct file *file)
5968 {
5969 	struct btrfs_file_private *private;
5970 
5971 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5972 	if (!private)
5973 		return -ENOMEM;
5974 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5975 	if (!private->filldir_buf) {
5976 		kfree(private);
5977 		return -ENOMEM;
5978 	}
5979 	file->private_data = private;
5980 	return 0;
5981 }
5982 
5983 struct dir_entry {
5984 	u64 ino;
5985 	u64 offset;
5986 	unsigned type;
5987 	int name_len;
5988 };
5989 
5990 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5991 {
5992 	while (entries--) {
5993 		struct dir_entry *entry = addr;
5994 		char *name = (char *)(entry + 1);
5995 
5996 		ctx->pos = get_unaligned(&entry->offset);
5997 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5998 					 get_unaligned(&entry->ino),
5999 					 get_unaligned(&entry->type)))
6000 			return 1;
6001 		addr += sizeof(struct dir_entry) +
6002 			get_unaligned(&entry->name_len);
6003 		ctx->pos++;
6004 	}
6005 	return 0;
6006 }
6007 
6008 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6009 {
6010 	struct inode *inode = file_inode(file);
6011 	struct btrfs_root *root = BTRFS_I(inode)->root;
6012 	struct btrfs_file_private *private = file->private_data;
6013 	struct btrfs_dir_item *di;
6014 	struct btrfs_key key;
6015 	struct btrfs_key found_key;
6016 	struct btrfs_path *path;
6017 	void *addr;
6018 	struct list_head ins_list;
6019 	struct list_head del_list;
6020 	int ret;
6021 	char *name_ptr;
6022 	int name_len;
6023 	int entries = 0;
6024 	int total_len = 0;
6025 	bool put = false;
6026 	struct btrfs_key location;
6027 
6028 	if (!dir_emit_dots(file, ctx))
6029 		return 0;
6030 
6031 	path = btrfs_alloc_path();
6032 	if (!path)
6033 		return -ENOMEM;
6034 
6035 	addr = private->filldir_buf;
6036 	path->reada = READA_FORWARD;
6037 
6038 	INIT_LIST_HEAD(&ins_list);
6039 	INIT_LIST_HEAD(&del_list);
6040 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6041 
6042 again:
6043 	key.type = BTRFS_DIR_INDEX_KEY;
6044 	key.offset = ctx->pos;
6045 	key.objectid = btrfs_ino(BTRFS_I(inode));
6046 
6047 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6048 		struct dir_entry *entry;
6049 		struct extent_buffer *leaf = path->nodes[0];
6050 		u8 ftype;
6051 
6052 		if (found_key.objectid != key.objectid)
6053 			break;
6054 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6055 			break;
6056 		if (found_key.offset < ctx->pos)
6057 			continue;
6058 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6059 			continue;
6060 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6061 		name_len = btrfs_dir_name_len(leaf, di);
6062 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6063 		    PAGE_SIZE) {
6064 			btrfs_release_path(path);
6065 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6066 			if (ret)
6067 				goto nopos;
6068 			addr = private->filldir_buf;
6069 			entries = 0;
6070 			total_len = 0;
6071 			goto again;
6072 		}
6073 
6074 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6075 		entry = addr;
6076 		name_ptr = (char *)(entry + 1);
6077 		read_extent_buffer(leaf, name_ptr,
6078 				   (unsigned long)(di + 1), name_len);
6079 		put_unaligned(name_len, &entry->name_len);
6080 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6081 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6082 		put_unaligned(location.objectid, &entry->ino);
6083 		put_unaligned(found_key.offset, &entry->offset);
6084 		entries++;
6085 		addr += sizeof(struct dir_entry) + name_len;
6086 		total_len += sizeof(struct dir_entry) + name_len;
6087 	}
6088 	/* Catch error encountered during iteration */
6089 	if (ret < 0)
6090 		goto err;
6091 
6092 	btrfs_release_path(path);
6093 
6094 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6095 	if (ret)
6096 		goto nopos;
6097 
6098 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6099 	if (ret)
6100 		goto nopos;
6101 
6102 	/*
6103 	 * Stop new entries from being returned after we return the last
6104 	 * entry.
6105 	 *
6106 	 * New directory entries are assigned a strictly increasing
6107 	 * offset.  This means that new entries created during readdir
6108 	 * are *guaranteed* to be seen in the future by that readdir.
6109 	 * This has broken buggy programs which operate on names as
6110 	 * they're returned by readdir.  Until we re-use freed offsets
6111 	 * we have this hack to stop new entries from being returned
6112 	 * under the assumption that they'll never reach this huge
6113 	 * offset.
6114 	 *
6115 	 * This is being careful not to overflow 32bit loff_t unless the
6116 	 * last entry requires it because doing so has broken 32bit apps
6117 	 * in the past.
6118 	 */
6119 	if (ctx->pos >= INT_MAX)
6120 		ctx->pos = LLONG_MAX;
6121 	else
6122 		ctx->pos = INT_MAX;
6123 nopos:
6124 	ret = 0;
6125 err:
6126 	if (put)
6127 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6128 	btrfs_free_path(path);
6129 	return ret;
6130 }
6131 
6132 /*
6133  * This is somewhat expensive, updating the tree every time the
6134  * inode changes.  But, it is most likely to find the inode in cache.
6135  * FIXME, needs more benchmarking...there are no reasons other than performance
6136  * to keep or drop this code.
6137  */
6138 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6139 {
6140 	struct btrfs_root *root = inode->root;
6141 	struct btrfs_fs_info *fs_info = root->fs_info;
6142 	struct btrfs_trans_handle *trans;
6143 	int ret;
6144 
6145 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6146 		return 0;
6147 
6148 	trans = btrfs_join_transaction(root);
6149 	if (IS_ERR(trans))
6150 		return PTR_ERR(trans);
6151 
6152 	ret = btrfs_update_inode(trans, root, inode);
6153 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6154 		/* whoops, lets try again with the full transaction */
6155 		btrfs_end_transaction(trans);
6156 		trans = btrfs_start_transaction(root, 1);
6157 		if (IS_ERR(trans))
6158 			return PTR_ERR(trans);
6159 
6160 		ret = btrfs_update_inode(trans, root, inode);
6161 	}
6162 	btrfs_end_transaction(trans);
6163 	if (inode->delayed_node)
6164 		btrfs_balance_delayed_items(fs_info);
6165 
6166 	return ret;
6167 }
6168 
6169 /*
6170  * This is a copy of file_update_time.  We need this so we can return error on
6171  * ENOSPC for updating the inode in the case of file write and mmap writes.
6172  */
6173 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6174 			     int flags)
6175 {
6176 	struct btrfs_root *root = BTRFS_I(inode)->root;
6177 	bool dirty = flags & ~S_VERSION;
6178 
6179 	if (btrfs_root_readonly(root))
6180 		return -EROFS;
6181 
6182 	if (flags & S_VERSION)
6183 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6184 	if (flags & S_CTIME)
6185 		inode->i_ctime = *now;
6186 	if (flags & S_MTIME)
6187 		inode->i_mtime = *now;
6188 	if (flags & S_ATIME)
6189 		inode->i_atime = *now;
6190 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6191 }
6192 
6193 /*
6194  * find the highest existing sequence number in a directory
6195  * and then set the in-memory index_cnt variable to reflect
6196  * free sequence numbers
6197  */
6198 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6199 {
6200 	struct btrfs_root *root = inode->root;
6201 	struct btrfs_key key, found_key;
6202 	struct btrfs_path *path;
6203 	struct extent_buffer *leaf;
6204 	int ret;
6205 
6206 	key.objectid = btrfs_ino(inode);
6207 	key.type = BTRFS_DIR_INDEX_KEY;
6208 	key.offset = (u64)-1;
6209 
6210 	path = btrfs_alloc_path();
6211 	if (!path)
6212 		return -ENOMEM;
6213 
6214 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6215 	if (ret < 0)
6216 		goto out;
6217 	/* FIXME: we should be able to handle this */
6218 	if (ret == 0)
6219 		goto out;
6220 	ret = 0;
6221 
6222 	if (path->slots[0] == 0) {
6223 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6224 		goto out;
6225 	}
6226 
6227 	path->slots[0]--;
6228 
6229 	leaf = path->nodes[0];
6230 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6231 
6232 	if (found_key.objectid != btrfs_ino(inode) ||
6233 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6234 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6235 		goto out;
6236 	}
6237 
6238 	inode->index_cnt = found_key.offset + 1;
6239 out:
6240 	btrfs_free_path(path);
6241 	return ret;
6242 }
6243 
6244 /*
6245  * helper to find a free sequence number in a given directory.  This current
6246  * code is very simple, later versions will do smarter things in the btree
6247  */
6248 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6249 {
6250 	int ret = 0;
6251 
6252 	if (dir->index_cnt == (u64)-1) {
6253 		ret = btrfs_inode_delayed_dir_index_count(dir);
6254 		if (ret) {
6255 			ret = btrfs_set_inode_index_count(dir);
6256 			if (ret)
6257 				return ret;
6258 		}
6259 	}
6260 
6261 	*index = dir->index_cnt;
6262 	dir->index_cnt++;
6263 
6264 	return ret;
6265 }
6266 
6267 static int btrfs_insert_inode_locked(struct inode *inode)
6268 {
6269 	struct btrfs_iget_args args;
6270 
6271 	args.ino = BTRFS_I(inode)->location.objectid;
6272 	args.root = BTRFS_I(inode)->root;
6273 
6274 	return insert_inode_locked4(inode,
6275 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6276 		   btrfs_find_actor, &args);
6277 }
6278 
6279 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6280 			    unsigned int *trans_num_items)
6281 {
6282 	struct inode *dir = args->dir;
6283 	struct inode *inode = args->inode;
6284 	int ret;
6285 
6286 	if (!args->orphan) {
6287 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6288 					     &args->fname);
6289 		if (ret)
6290 			return ret;
6291 	}
6292 
6293 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6294 	if (ret) {
6295 		fscrypt_free_filename(&args->fname);
6296 		return ret;
6297 	}
6298 
6299 	/* 1 to add inode item */
6300 	*trans_num_items = 1;
6301 	/* 1 to add compression property */
6302 	if (BTRFS_I(dir)->prop_compress)
6303 		(*trans_num_items)++;
6304 	/* 1 to add default ACL xattr */
6305 	if (args->default_acl)
6306 		(*trans_num_items)++;
6307 	/* 1 to add access ACL xattr */
6308 	if (args->acl)
6309 		(*trans_num_items)++;
6310 #ifdef CONFIG_SECURITY
6311 	/* 1 to add LSM xattr */
6312 	if (dir->i_security)
6313 		(*trans_num_items)++;
6314 #endif
6315 	if (args->orphan) {
6316 		/* 1 to add orphan item */
6317 		(*trans_num_items)++;
6318 	} else {
6319 		/*
6320 		 * 1 to add dir item
6321 		 * 1 to add dir index
6322 		 * 1 to update parent inode item
6323 		 *
6324 		 * No need for 1 unit for the inode ref item because it is
6325 		 * inserted in a batch together with the inode item at
6326 		 * btrfs_create_new_inode().
6327 		 */
6328 		*trans_num_items += 3;
6329 	}
6330 	return 0;
6331 }
6332 
6333 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6334 {
6335 	posix_acl_release(args->acl);
6336 	posix_acl_release(args->default_acl);
6337 	fscrypt_free_filename(&args->fname);
6338 }
6339 
6340 /*
6341  * Inherit flags from the parent inode.
6342  *
6343  * Currently only the compression flags and the cow flags are inherited.
6344  */
6345 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6346 {
6347 	unsigned int flags;
6348 
6349 	flags = dir->flags;
6350 
6351 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6352 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6353 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6354 	} else if (flags & BTRFS_INODE_COMPRESS) {
6355 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6356 		inode->flags |= BTRFS_INODE_COMPRESS;
6357 	}
6358 
6359 	if (flags & BTRFS_INODE_NODATACOW) {
6360 		inode->flags |= BTRFS_INODE_NODATACOW;
6361 		if (S_ISREG(inode->vfs_inode.i_mode))
6362 			inode->flags |= BTRFS_INODE_NODATASUM;
6363 	}
6364 
6365 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6366 }
6367 
6368 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6369 			   struct btrfs_new_inode_args *args)
6370 {
6371 	struct inode *dir = args->dir;
6372 	struct inode *inode = args->inode;
6373 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6374 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6375 	struct btrfs_root *root;
6376 	struct btrfs_inode_item *inode_item;
6377 	struct btrfs_key *location;
6378 	struct btrfs_path *path;
6379 	u64 objectid;
6380 	struct btrfs_inode_ref *ref;
6381 	struct btrfs_key key[2];
6382 	u32 sizes[2];
6383 	struct btrfs_item_batch batch;
6384 	unsigned long ptr;
6385 	int ret;
6386 
6387 	path = btrfs_alloc_path();
6388 	if (!path)
6389 		return -ENOMEM;
6390 
6391 	if (!args->subvol)
6392 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6393 	root = BTRFS_I(inode)->root;
6394 
6395 	ret = btrfs_get_free_objectid(root, &objectid);
6396 	if (ret)
6397 		goto out;
6398 	inode->i_ino = objectid;
6399 
6400 	if (args->orphan) {
6401 		/*
6402 		 * O_TMPFILE, set link count to 0, so that after this point, we
6403 		 * fill in an inode item with the correct link count.
6404 		 */
6405 		set_nlink(inode, 0);
6406 	} else {
6407 		trace_btrfs_inode_request(dir);
6408 
6409 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6410 		if (ret)
6411 			goto out;
6412 	}
6413 	/* index_cnt is ignored for everything but a dir. */
6414 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6415 	BTRFS_I(inode)->generation = trans->transid;
6416 	inode->i_generation = BTRFS_I(inode)->generation;
6417 
6418 	/*
6419 	 * Subvolumes don't inherit flags from their parent directory.
6420 	 * Originally this was probably by accident, but we probably can't
6421 	 * change it now without compatibility issues.
6422 	 */
6423 	if (!args->subvol)
6424 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6425 
6426 	if (S_ISREG(inode->i_mode)) {
6427 		if (btrfs_test_opt(fs_info, NODATASUM))
6428 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6429 		if (btrfs_test_opt(fs_info, NODATACOW))
6430 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6431 				BTRFS_INODE_NODATASUM;
6432 	}
6433 
6434 	location = &BTRFS_I(inode)->location;
6435 	location->objectid = objectid;
6436 	location->offset = 0;
6437 	location->type = BTRFS_INODE_ITEM_KEY;
6438 
6439 	ret = btrfs_insert_inode_locked(inode);
6440 	if (ret < 0) {
6441 		if (!args->orphan)
6442 			BTRFS_I(dir)->index_cnt--;
6443 		goto out;
6444 	}
6445 
6446 	/*
6447 	 * We could have gotten an inode number from somebody who was fsynced
6448 	 * and then removed in this same transaction, so let's just set full
6449 	 * sync since it will be a full sync anyway and this will blow away the
6450 	 * old info in the log.
6451 	 */
6452 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6453 
6454 	key[0].objectid = objectid;
6455 	key[0].type = BTRFS_INODE_ITEM_KEY;
6456 	key[0].offset = 0;
6457 
6458 	sizes[0] = sizeof(struct btrfs_inode_item);
6459 
6460 	if (!args->orphan) {
6461 		/*
6462 		 * Start new inodes with an inode_ref. This is slightly more
6463 		 * efficient for small numbers of hard links since they will
6464 		 * be packed into one item. Extended refs will kick in if we
6465 		 * add more hard links than can fit in the ref item.
6466 		 */
6467 		key[1].objectid = objectid;
6468 		key[1].type = BTRFS_INODE_REF_KEY;
6469 		if (args->subvol) {
6470 			key[1].offset = objectid;
6471 			sizes[1] = 2 + sizeof(*ref);
6472 		} else {
6473 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6474 			sizes[1] = name->len + sizeof(*ref);
6475 		}
6476 	}
6477 
6478 	batch.keys = &key[0];
6479 	batch.data_sizes = &sizes[0];
6480 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6481 	batch.nr = args->orphan ? 1 : 2;
6482 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6483 	if (ret != 0) {
6484 		btrfs_abort_transaction(trans, ret);
6485 		goto discard;
6486 	}
6487 
6488 	inode->i_mtime = current_time(inode);
6489 	inode->i_atime = inode->i_mtime;
6490 	inode->i_ctime = inode->i_mtime;
6491 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6492 
6493 	/*
6494 	 * We're going to fill the inode item now, so at this point the inode
6495 	 * must be fully initialized.
6496 	 */
6497 
6498 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6499 				  struct btrfs_inode_item);
6500 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6501 			     sizeof(*inode_item));
6502 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6503 
6504 	if (!args->orphan) {
6505 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6506 				     struct btrfs_inode_ref);
6507 		ptr = (unsigned long)(ref + 1);
6508 		if (args->subvol) {
6509 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6510 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6511 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6512 		} else {
6513 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6514 						     name->len);
6515 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6516 						  BTRFS_I(inode)->dir_index);
6517 			write_extent_buffer(path->nodes[0], name->name, ptr,
6518 					    name->len);
6519 		}
6520 	}
6521 
6522 	btrfs_mark_buffer_dirty(path->nodes[0]);
6523 	/*
6524 	 * We don't need the path anymore, plus inheriting properties, adding
6525 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6526 	 * allocating yet another path. So just free our path.
6527 	 */
6528 	btrfs_free_path(path);
6529 	path = NULL;
6530 
6531 	if (args->subvol) {
6532 		struct inode *parent;
6533 
6534 		/*
6535 		 * Subvolumes inherit properties from their parent subvolume,
6536 		 * not the directory they were created in.
6537 		 */
6538 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6539 				    BTRFS_I(dir)->root);
6540 		if (IS_ERR(parent)) {
6541 			ret = PTR_ERR(parent);
6542 		} else {
6543 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6544 			iput(parent);
6545 		}
6546 	} else {
6547 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6548 	}
6549 	if (ret) {
6550 		btrfs_err(fs_info,
6551 			  "error inheriting props for ino %llu (root %llu): %d",
6552 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6553 			  ret);
6554 	}
6555 
6556 	/*
6557 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6558 	 * probably a bug.
6559 	 */
6560 	if (!args->subvol) {
6561 		ret = btrfs_init_inode_security(trans, args);
6562 		if (ret) {
6563 			btrfs_abort_transaction(trans, ret);
6564 			goto discard;
6565 		}
6566 	}
6567 
6568 	inode_tree_add(BTRFS_I(inode));
6569 
6570 	trace_btrfs_inode_new(inode);
6571 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6572 
6573 	btrfs_update_root_times(trans, root);
6574 
6575 	if (args->orphan) {
6576 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6577 	} else {
6578 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6579 				     0, BTRFS_I(inode)->dir_index);
6580 	}
6581 	if (ret) {
6582 		btrfs_abort_transaction(trans, ret);
6583 		goto discard;
6584 	}
6585 
6586 	return 0;
6587 
6588 discard:
6589 	/*
6590 	 * discard_new_inode() calls iput(), but the caller owns the reference
6591 	 * to the inode.
6592 	 */
6593 	ihold(inode);
6594 	discard_new_inode(inode);
6595 out:
6596 	btrfs_free_path(path);
6597 	return ret;
6598 }
6599 
6600 /*
6601  * utility function to add 'inode' into 'parent_inode' with
6602  * a give name and a given sequence number.
6603  * if 'add_backref' is true, also insert a backref from the
6604  * inode to the parent directory.
6605  */
6606 int btrfs_add_link(struct btrfs_trans_handle *trans,
6607 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6608 		   const struct fscrypt_str *name, int add_backref, u64 index)
6609 {
6610 	int ret = 0;
6611 	struct btrfs_key key;
6612 	struct btrfs_root *root = parent_inode->root;
6613 	u64 ino = btrfs_ino(inode);
6614 	u64 parent_ino = btrfs_ino(parent_inode);
6615 
6616 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6617 		memcpy(&key, &inode->root->root_key, sizeof(key));
6618 	} else {
6619 		key.objectid = ino;
6620 		key.type = BTRFS_INODE_ITEM_KEY;
6621 		key.offset = 0;
6622 	}
6623 
6624 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6625 		ret = btrfs_add_root_ref(trans, key.objectid,
6626 					 root->root_key.objectid, parent_ino,
6627 					 index, name);
6628 	} else if (add_backref) {
6629 		ret = btrfs_insert_inode_ref(trans, root, name,
6630 					     ino, parent_ino, index);
6631 	}
6632 
6633 	/* Nothing to clean up yet */
6634 	if (ret)
6635 		return ret;
6636 
6637 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6638 				    btrfs_inode_type(&inode->vfs_inode), index);
6639 	if (ret == -EEXIST || ret == -EOVERFLOW)
6640 		goto fail_dir_item;
6641 	else if (ret) {
6642 		btrfs_abort_transaction(trans, ret);
6643 		return ret;
6644 	}
6645 
6646 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6647 			   name->len * 2);
6648 	inode_inc_iversion(&parent_inode->vfs_inode);
6649 	/*
6650 	 * If we are replaying a log tree, we do not want to update the mtime
6651 	 * and ctime of the parent directory with the current time, since the
6652 	 * log replay procedure is responsible for setting them to their correct
6653 	 * values (the ones it had when the fsync was done).
6654 	 */
6655 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6656 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6657 
6658 		parent_inode->vfs_inode.i_mtime = now;
6659 		parent_inode->vfs_inode.i_ctime = now;
6660 	}
6661 	ret = btrfs_update_inode(trans, root, parent_inode);
6662 	if (ret)
6663 		btrfs_abort_transaction(trans, ret);
6664 	return ret;
6665 
6666 fail_dir_item:
6667 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6668 		u64 local_index;
6669 		int err;
6670 		err = btrfs_del_root_ref(trans, key.objectid,
6671 					 root->root_key.objectid, parent_ino,
6672 					 &local_index, name);
6673 		if (err)
6674 			btrfs_abort_transaction(trans, err);
6675 	} else if (add_backref) {
6676 		u64 local_index;
6677 		int err;
6678 
6679 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6680 					  &local_index);
6681 		if (err)
6682 			btrfs_abort_transaction(trans, err);
6683 	}
6684 
6685 	/* Return the original error code */
6686 	return ret;
6687 }
6688 
6689 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6690 			       struct inode *inode)
6691 {
6692 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6693 	struct btrfs_root *root = BTRFS_I(dir)->root;
6694 	struct btrfs_new_inode_args new_inode_args = {
6695 		.dir = dir,
6696 		.dentry = dentry,
6697 		.inode = inode,
6698 	};
6699 	unsigned int trans_num_items;
6700 	struct btrfs_trans_handle *trans;
6701 	int err;
6702 
6703 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6704 	if (err)
6705 		goto out_inode;
6706 
6707 	trans = btrfs_start_transaction(root, trans_num_items);
6708 	if (IS_ERR(trans)) {
6709 		err = PTR_ERR(trans);
6710 		goto out_new_inode_args;
6711 	}
6712 
6713 	err = btrfs_create_new_inode(trans, &new_inode_args);
6714 	if (!err)
6715 		d_instantiate_new(dentry, inode);
6716 
6717 	btrfs_end_transaction(trans);
6718 	btrfs_btree_balance_dirty(fs_info);
6719 out_new_inode_args:
6720 	btrfs_new_inode_args_destroy(&new_inode_args);
6721 out_inode:
6722 	if (err)
6723 		iput(inode);
6724 	return err;
6725 }
6726 
6727 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6728 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6729 {
6730 	struct inode *inode;
6731 
6732 	inode = new_inode(dir->i_sb);
6733 	if (!inode)
6734 		return -ENOMEM;
6735 	inode_init_owner(mnt_userns, inode, dir, mode);
6736 	inode->i_op = &btrfs_special_inode_operations;
6737 	init_special_inode(inode, inode->i_mode, rdev);
6738 	return btrfs_create_common(dir, dentry, inode);
6739 }
6740 
6741 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6742 			struct dentry *dentry, umode_t mode, bool excl)
6743 {
6744 	struct inode *inode;
6745 
6746 	inode = new_inode(dir->i_sb);
6747 	if (!inode)
6748 		return -ENOMEM;
6749 	inode_init_owner(mnt_userns, inode, dir, mode);
6750 	inode->i_fop = &btrfs_file_operations;
6751 	inode->i_op = &btrfs_file_inode_operations;
6752 	inode->i_mapping->a_ops = &btrfs_aops;
6753 	return btrfs_create_common(dir, dentry, inode);
6754 }
6755 
6756 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6757 		      struct dentry *dentry)
6758 {
6759 	struct btrfs_trans_handle *trans = NULL;
6760 	struct btrfs_root *root = BTRFS_I(dir)->root;
6761 	struct inode *inode = d_inode(old_dentry);
6762 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6763 	struct fscrypt_name fname;
6764 	u64 index;
6765 	int err;
6766 	int drop_inode = 0;
6767 
6768 	/* do not allow sys_link's with other subvols of the same device */
6769 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6770 		return -EXDEV;
6771 
6772 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6773 		return -EMLINK;
6774 
6775 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6776 	if (err)
6777 		goto fail;
6778 
6779 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6780 	if (err)
6781 		goto fail;
6782 
6783 	/*
6784 	 * 2 items for inode and inode ref
6785 	 * 2 items for dir items
6786 	 * 1 item for parent inode
6787 	 * 1 item for orphan item deletion if O_TMPFILE
6788 	 */
6789 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6790 	if (IS_ERR(trans)) {
6791 		err = PTR_ERR(trans);
6792 		trans = NULL;
6793 		goto fail;
6794 	}
6795 
6796 	/* There are several dir indexes for this inode, clear the cache. */
6797 	BTRFS_I(inode)->dir_index = 0ULL;
6798 	inc_nlink(inode);
6799 	inode_inc_iversion(inode);
6800 	inode->i_ctime = current_time(inode);
6801 	ihold(inode);
6802 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6803 
6804 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6805 			     &fname.disk_name, 1, index);
6806 
6807 	if (err) {
6808 		drop_inode = 1;
6809 	} else {
6810 		struct dentry *parent = dentry->d_parent;
6811 
6812 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6813 		if (err)
6814 			goto fail;
6815 		if (inode->i_nlink == 1) {
6816 			/*
6817 			 * If new hard link count is 1, it's a file created
6818 			 * with open(2) O_TMPFILE flag.
6819 			 */
6820 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6821 			if (err)
6822 				goto fail;
6823 		}
6824 		d_instantiate(dentry, inode);
6825 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6826 	}
6827 
6828 fail:
6829 	fscrypt_free_filename(&fname);
6830 	if (trans)
6831 		btrfs_end_transaction(trans);
6832 	if (drop_inode) {
6833 		inode_dec_link_count(inode);
6834 		iput(inode);
6835 	}
6836 	btrfs_btree_balance_dirty(fs_info);
6837 	return err;
6838 }
6839 
6840 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6841 		       struct dentry *dentry, umode_t mode)
6842 {
6843 	struct inode *inode;
6844 
6845 	inode = new_inode(dir->i_sb);
6846 	if (!inode)
6847 		return -ENOMEM;
6848 	inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6849 	inode->i_op = &btrfs_dir_inode_operations;
6850 	inode->i_fop = &btrfs_dir_file_operations;
6851 	return btrfs_create_common(dir, dentry, inode);
6852 }
6853 
6854 static noinline int uncompress_inline(struct btrfs_path *path,
6855 				      struct page *page,
6856 				      struct btrfs_file_extent_item *item)
6857 {
6858 	int ret;
6859 	struct extent_buffer *leaf = path->nodes[0];
6860 	char *tmp;
6861 	size_t max_size;
6862 	unsigned long inline_size;
6863 	unsigned long ptr;
6864 	int compress_type;
6865 
6866 	compress_type = btrfs_file_extent_compression(leaf, item);
6867 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6868 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6869 	tmp = kmalloc(inline_size, GFP_NOFS);
6870 	if (!tmp)
6871 		return -ENOMEM;
6872 	ptr = btrfs_file_extent_inline_start(item);
6873 
6874 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6875 
6876 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6877 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6878 
6879 	/*
6880 	 * decompression code contains a memset to fill in any space between the end
6881 	 * of the uncompressed data and the end of max_size in case the decompressed
6882 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6883 	 * the end of an inline extent and the beginning of the next block, so we
6884 	 * cover that region here.
6885 	 */
6886 
6887 	if (max_size < PAGE_SIZE)
6888 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6889 	kfree(tmp);
6890 	return ret;
6891 }
6892 
6893 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6894 			      struct page *page)
6895 {
6896 	struct btrfs_file_extent_item *fi;
6897 	void *kaddr;
6898 	size_t copy_size;
6899 
6900 	if (!page || PageUptodate(page))
6901 		return 0;
6902 
6903 	ASSERT(page_offset(page) == 0);
6904 
6905 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6906 			    struct btrfs_file_extent_item);
6907 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6908 		return uncompress_inline(path, page, fi);
6909 
6910 	copy_size = min_t(u64, PAGE_SIZE,
6911 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6912 	kaddr = kmap_local_page(page);
6913 	read_extent_buffer(path->nodes[0], kaddr,
6914 			   btrfs_file_extent_inline_start(fi), copy_size);
6915 	kunmap_local(kaddr);
6916 	if (copy_size < PAGE_SIZE)
6917 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6918 	return 0;
6919 }
6920 
6921 /*
6922  * Lookup the first extent overlapping a range in a file.
6923  *
6924  * @inode:	file to search in
6925  * @page:	page to read extent data into if the extent is inline
6926  * @pg_offset:	offset into @page to copy to
6927  * @start:	file offset
6928  * @len:	length of range starting at @start
6929  *
6930  * Return the first &struct extent_map which overlaps the given range, reading
6931  * it from the B-tree and caching it if necessary. Note that there may be more
6932  * extents which overlap the given range after the returned extent_map.
6933  *
6934  * If @page is not NULL and the extent is inline, this also reads the extent
6935  * data directly into the page and marks the extent up to date in the io_tree.
6936  *
6937  * Return: ERR_PTR on error, non-NULL extent_map on success.
6938  */
6939 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6940 				    struct page *page, size_t pg_offset,
6941 				    u64 start, u64 len)
6942 {
6943 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6944 	int ret = 0;
6945 	u64 extent_start = 0;
6946 	u64 extent_end = 0;
6947 	u64 objectid = btrfs_ino(inode);
6948 	int extent_type = -1;
6949 	struct btrfs_path *path = NULL;
6950 	struct btrfs_root *root = inode->root;
6951 	struct btrfs_file_extent_item *item;
6952 	struct extent_buffer *leaf;
6953 	struct btrfs_key found_key;
6954 	struct extent_map *em = NULL;
6955 	struct extent_map_tree *em_tree = &inode->extent_tree;
6956 
6957 	read_lock(&em_tree->lock);
6958 	em = lookup_extent_mapping(em_tree, start, len);
6959 	read_unlock(&em_tree->lock);
6960 
6961 	if (em) {
6962 		if (em->start > start || em->start + em->len <= start)
6963 			free_extent_map(em);
6964 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6965 			free_extent_map(em);
6966 		else
6967 			goto out;
6968 	}
6969 	em = alloc_extent_map();
6970 	if (!em) {
6971 		ret = -ENOMEM;
6972 		goto out;
6973 	}
6974 	em->start = EXTENT_MAP_HOLE;
6975 	em->orig_start = EXTENT_MAP_HOLE;
6976 	em->len = (u64)-1;
6977 	em->block_len = (u64)-1;
6978 
6979 	path = btrfs_alloc_path();
6980 	if (!path) {
6981 		ret = -ENOMEM;
6982 		goto out;
6983 	}
6984 
6985 	/* Chances are we'll be called again, so go ahead and do readahead */
6986 	path->reada = READA_FORWARD;
6987 
6988 	/*
6989 	 * The same explanation in load_free_space_cache applies here as well,
6990 	 * we only read when we're loading the free space cache, and at that
6991 	 * point the commit_root has everything we need.
6992 	 */
6993 	if (btrfs_is_free_space_inode(inode)) {
6994 		path->search_commit_root = 1;
6995 		path->skip_locking = 1;
6996 	}
6997 
6998 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6999 	if (ret < 0) {
7000 		goto out;
7001 	} else if (ret > 0) {
7002 		if (path->slots[0] == 0)
7003 			goto not_found;
7004 		path->slots[0]--;
7005 		ret = 0;
7006 	}
7007 
7008 	leaf = path->nodes[0];
7009 	item = btrfs_item_ptr(leaf, path->slots[0],
7010 			      struct btrfs_file_extent_item);
7011 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7012 	if (found_key.objectid != objectid ||
7013 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
7014 		/*
7015 		 * If we backup past the first extent we want to move forward
7016 		 * and see if there is an extent in front of us, otherwise we'll
7017 		 * say there is a hole for our whole search range which can
7018 		 * cause problems.
7019 		 */
7020 		extent_end = start;
7021 		goto next;
7022 	}
7023 
7024 	extent_type = btrfs_file_extent_type(leaf, item);
7025 	extent_start = found_key.offset;
7026 	extent_end = btrfs_file_extent_end(path);
7027 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7028 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7029 		/* Only regular file could have regular/prealloc extent */
7030 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
7031 			ret = -EUCLEAN;
7032 			btrfs_crit(fs_info,
7033 		"regular/prealloc extent found for non-regular inode %llu",
7034 				   btrfs_ino(inode));
7035 			goto out;
7036 		}
7037 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7038 						       extent_start);
7039 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7040 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7041 						      path->slots[0],
7042 						      extent_start);
7043 	}
7044 next:
7045 	if (start >= extent_end) {
7046 		path->slots[0]++;
7047 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7048 			ret = btrfs_next_leaf(root, path);
7049 			if (ret < 0)
7050 				goto out;
7051 			else if (ret > 0)
7052 				goto not_found;
7053 
7054 			leaf = path->nodes[0];
7055 		}
7056 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7057 		if (found_key.objectid != objectid ||
7058 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7059 			goto not_found;
7060 		if (start + len <= found_key.offset)
7061 			goto not_found;
7062 		if (start > found_key.offset)
7063 			goto next;
7064 
7065 		/* New extent overlaps with existing one */
7066 		em->start = start;
7067 		em->orig_start = start;
7068 		em->len = found_key.offset - start;
7069 		em->block_start = EXTENT_MAP_HOLE;
7070 		goto insert;
7071 	}
7072 
7073 	btrfs_extent_item_to_extent_map(inode, path, item, em);
7074 
7075 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7076 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7077 		goto insert;
7078 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7079 		/*
7080 		 * Inline extent can only exist at file offset 0. This is
7081 		 * ensured by tree-checker and inline extent creation path.
7082 		 * Thus all members representing file offsets should be zero.
7083 		 */
7084 		ASSERT(pg_offset == 0);
7085 		ASSERT(extent_start == 0);
7086 		ASSERT(em->start == 0);
7087 
7088 		/*
7089 		 * btrfs_extent_item_to_extent_map() should have properly
7090 		 * initialized em members already.
7091 		 *
7092 		 * Other members are not utilized for inline extents.
7093 		 */
7094 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
7095 		ASSERT(em->len = fs_info->sectorsize);
7096 
7097 		ret = read_inline_extent(inode, path, page);
7098 		if (ret < 0)
7099 			goto out;
7100 		goto insert;
7101 	}
7102 not_found:
7103 	em->start = start;
7104 	em->orig_start = start;
7105 	em->len = len;
7106 	em->block_start = EXTENT_MAP_HOLE;
7107 insert:
7108 	ret = 0;
7109 	btrfs_release_path(path);
7110 	if (em->start > start || extent_map_end(em) <= start) {
7111 		btrfs_err(fs_info,
7112 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7113 			  em->start, em->len, start, len);
7114 		ret = -EIO;
7115 		goto out;
7116 	}
7117 
7118 	write_lock(&em_tree->lock);
7119 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7120 	write_unlock(&em_tree->lock);
7121 out:
7122 	btrfs_free_path(path);
7123 
7124 	trace_btrfs_get_extent(root, inode, em);
7125 
7126 	if (ret) {
7127 		free_extent_map(em);
7128 		return ERR_PTR(ret);
7129 	}
7130 	return em;
7131 }
7132 
7133 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7134 						  const u64 start,
7135 						  const u64 len,
7136 						  const u64 orig_start,
7137 						  const u64 block_start,
7138 						  const u64 block_len,
7139 						  const u64 orig_block_len,
7140 						  const u64 ram_bytes,
7141 						  const int type)
7142 {
7143 	struct extent_map *em = NULL;
7144 	int ret;
7145 
7146 	if (type != BTRFS_ORDERED_NOCOW) {
7147 		em = create_io_em(inode, start, len, orig_start, block_start,
7148 				  block_len, orig_block_len, ram_bytes,
7149 				  BTRFS_COMPRESS_NONE, /* compress_type */
7150 				  type);
7151 		if (IS_ERR(em))
7152 			goto out;
7153 	}
7154 	ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7155 				       block_len, 0,
7156 				       (1 << type) |
7157 				       (1 << BTRFS_ORDERED_DIRECT),
7158 				       BTRFS_COMPRESS_NONE);
7159 	if (ret) {
7160 		if (em) {
7161 			free_extent_map(em);
7162 			btrfs_drop_extent_map_range(inode, start,
7163 						    start + len - 1, false);
7164 		}
7165 		em = ERR_PTR(ret);
7166 	}
7167  out:
7168 
7169 	return em;
7170 }
7171 
7172 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7173 						  u64 start, u64 len)
7174 {
7175 	struct btrfs_root *root = inode->root;
7176 	struct btrfs_fs_info *fs_info = root->fs_info;
7177 	struct extent_map *em;
7178 	struct btrfs_key ins;
7179 	u64 alloc_hint;
7180 	int ret;
7181 
7182 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7183 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7184 				   0, alloc_hint, &ins, 1, 1);
7185 	if (ret)
7186 		return ERR_PTR(ret);
7187 
7188 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7189 				     ins.objectid, ins.offset, ins.offset,
7190 				     ins.offset, BTRFS_ORDERED_REGULAR);
7191 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7192 	if (IS_ERR(em))
7193 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7194 					   1);
7195 
7196 	return em;
7197 }
7198 
7199 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7200 {
7201 	struct btrfs_block_group *block_group;
7202 	bool readonly = false;
7203 
7204 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7205 	if (!block_group || block_group->ro)
7206 		readonly = true;
7207 	if (block_group)
7208 		btrfs_put_block_group(block_group);
7209 	return readonly;
7210 }
7211 
7212 /*
7213  * Check if we can do nocow write into the range [@offset, @offset + @len)
7214  *
7215  * @offset:	File offset
7216  * @len:	The length to write, will be updated to the nocow writeable
7217  *		range
7218  * @orig_start:	(optional) Return the original file offset of the file extent
7219  * @orig_len:	(optional) Return the original on-disk length of the file extent
7220  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7221  * @strict:	if true, omit optimizations that might force us into unnecessary
7222  *		cow. e.g., don't trust generation number.
7223  *
7224  * Return:
7225  * >0	and update @len if we can do nocow write
7226  *  0	if we can't do nocow write
7227  * <0	if error happened
7228  *
7229  * NOTE: This only checks the file extents, caller is responsible to wait for
7230  *	 any ordered extents.
7231  */
7232 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7233 			      u64 *orig_start, u64 *orig_block_len,
7234 			      u64 *ram_bytes, bool nowait, bool strict)
7235 {
7236 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7237 	struct can_nocow_file_extent_args nocow_args = { 0 };
7238 	struct btrfs_path *path;
7239 	int ret;
7240 	struct extent_buffer *leaf;
7241 	struct btrfs_root *root = BTRFS_I(inode)->root;
7242 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7243 	struct btrfs_file_extent_item *fi;
7244 	struct btrfs_key key;
7245 	int found_type;
7246 
7247 	path = btrfs_alloc_path();
7248 	if (!path)
7249 		return -ENOMEM;
7250 	path->nowait = nowait;
7251 
7252 	ret = btrfs_lookup_file_extent(NULL, root, path,
7253 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7254 	if (ret < 0)
7255 		goto out;
7256 
7257 	if (ret == 1) {
7258 		if (path->slots[0] == 0) {
7259 			/* can't find the item, must cow */
7260 			ret = 0;
7261 			goto out;
7262 		}
7263 		path->slots[0]--;
7264 	}
7265 	ret = 0;
7266 	leaf = path->nodes[0];
7267 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7268 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7269 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7270 		/* not our file or wrong item type, must cow */
7271 		goto out;
7272 	}
7273 
7274 	if (key.offset > offset) {
7275 		/* Wrong offset, must cow */
7276 		goto out;
7277 	}
7278 
7279 	if (btrfs_file_extent_end(path) <= offset)
7280 		goto out;
7281 
7282 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7283 	found_type = btrfs_file_extent_type(leaf, fi);
7284 	if (ram_bytes)
7285 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7286 
7287 	nocow_args.start = offset;
7288 	nocow_args.end = offset + *len - 1;
7289 	nocow_args.strict = strict;
7290 	nocow_args.free_path = true;
7291 
7292 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7293 	/* can_nocow_file_extent() has freed the path. */
7294 	path = NULL;
7295 
7296 	if (ret != 1) {
7297 		/* Treat errors as not being able to NOCOW. */
7298 		ret = 0;
7299 		goto out;
7300 	}
7301 
7302 	ret = 0;
7303 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7304 		goto out;
7305 
7306 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7307 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7308 		u64 range_end;
7309 
7310 		range_end = round_up(offset + nocow_args.num_bytes,
7311 				     root->fs_info->sectorsize) - 1;
7312 		ret = test_range_bit(io_tree, offset, range_end,
7313 				     EXTENT_DELALLOC, 0, NULL);
7314 		if (ret) {
7315 			ret = -EAGAIN;
7316 			goto out;
7317 		}
7318 	}
7319 
7320 	if (orig_start)
7321 		*orig_start = key.offset - nocow_args.extent_offset;
7322 	if (orig_block_len)
7323 		*orig_block_len = nocow_args.disk_num_bytes;
7324 
7325 	*len = nocow_args.num_bytes;
7326 	ret = 1;
7327 out:
7328 	btrfs_free_path(path);
7329 	return ret;
7330 }
7331 
7332 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7333 			      struct extent_state **cached_state,
7334 			      unsigned int iomap_flags)
7335 {
7336 	const bool writing = (iomap_flags & IOMAP_WRITE);
7337 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7338 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7339 	struct btrfs_ordered_extent *ordered;
7340 	int ret = 0;
7341 
7342 	while (1) {
7343 		if (nowait) {
7344 			if (!try_lock_extent(io_tree, lockstart, lockend,
7345 					     cached_state))
7346 				return -EAGAIN;
7347 		} else {
7348 			lock_extent(io_tree, lockstart, lockend, cached_state);
7349 		}
7350 		/*
7351 		 * We're concerned with the entire range that we're going to be
7352 		 * doing DIO to, so we need to make sure there's no ordered
7353 		 * extents in this range.
7354 		 */
7355 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7356 						     lockend - lockstart + 1);
7357 
7358 		/*
7359 		 * We need to make sure there are no buffered pages in this
7360 		 * range either, we could have raced between the invalidate in
7361 		 * generic_file_direct_write and locking the extent.  The
7362 		 * invalidate needs to happen so that reads after a write do not
7363 		 * get stale data.
7364 		 */
7365 		if (!ordered &&
7366 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7367 							 lockstart, lockend)))
7368 			break;
7369 
7370 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7371 
7372 		if (ordered) {
7373 			if (nowait) {
7374 				btrfs_put_ordered_extent(ordered);
7375 				ret = -EAGAIN;
7376 				break;
7377 			}
7378 			/*
7379 			 * If we are doing a DIO read and the ordered extent we
7380 			 * found is for a buffered write, we can not wait for it
7381 			 * to complete and retry, because if we do so we can
7382 			 * deadlock with concurrent buffered writes on page
7383 			 * locks. This happens only if our DIO read covers more
7384 			 * than one extent map, if at this point has already
7385 			 * created an ordered extent for a previous extent map
7386 			 * and locked its range in the inode's io tree, and a
7387 			 * concurrent write against that previous extent map's
7388 			 * range and this range started (we unlock the ranges
7389 			 * in the io tree only when the bios complete and
7390 			 * buffered writes always lock pages before attempting
7391 			 * to lock range in the io tree).
7392 			 */
7393 			if (writing ||
7394 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7395 				btrfs_start_ordered_extent(ordered, 1);
7396 			else
7397 				ret = nowait ? -EAGAIN : -ENOTBLK;
7398 			btrfs_put_ordered_extent(ordered);
7399 		} else {
7400 			/*
7401 			 * We could trigger writeback for this range (and wait
7402 			 * for it to complete) and then invalidate the pages for
7403 			 * this range (through invalidate_inode_pages2_range()),
7404 			 * but that can lead us to a deadlock with a concurrent
7405 			 * call to readahead (a buffered read or a defrag call
7406 			 * triggered a readahead) on a page lock due to an
7407 			 * ordered dio extent we created before but did not have
7408 			 * yet a corresponding bio submitted (whence it can not
7409 			 * complete), which makes readahead wait for that
7410 			 * ordered extent to complete while holding a lock on
7411 			 * that page.
7412 			 */
7413 			ret = nowait ? -EAGAIN : -ENOTBLK;
7414 		}
7415 
7416 		if (ret)
7417 			break;
7418 
7419 		cond_resched();
7420 	}
7421 
7422 	return ret;
7423 }
7424 
7425 /* The callers of this must take lock_extent() */
7426 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7427 				       u64 len, u64 orig_start, u64 block_start,
7428 				       u64 block_len, u64 orig_block_len,
7429 				       u64 ram_bytes, int compress_type,
7430 				       int type)
7431 {
7432 	struct extent_map *em;
7433 	int ret;
7434 
7435 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7436 	       type == BTRFS_ORDERED_COMPRESSED ||
7437 	       type == BTRFS_ORDERED_NOCOW ||
7438 	       type == BTRFS_ORDERED_REGULAR);
7439 
7440 	em = alloc_extent_map();
7441 	if (!em)
7442 		return ERR_PTR(-ENOMEM);
7443 
7444 	em->start = start;
7445 	em->orig_start = orig_start;
7446 	em->len = len;
7447 	em->block_len = block_len;
7448 	em->block_start = block_start;
7449 	em->orig_block_len = orig_block_len;
7450 	em->ram_bytes = ram_bytes;
7451 	em->generation = -1;
7452 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7453 	if (type == BTRFS_ORDERED_PREALLOC) {
7454 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7455 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7456 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7457 		em->compress_type = compress_type;
7458 	}
7459 
7460 	ret = btrfs_replace_extent_map_range(inode, em, true);
7461 	if (ret) {
7462 		free_extent_map(em);
7463 		return ERR_PTR(ret);
7464 	}
7465 
7466 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7467 	return em;
7468 }
7469 
7470 
7471 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7472 					 struct inode *inode,
7473 					 struct btrfs_dio_data *dio_data,
7474 					 u64 start, u64 len,
7475 					 unsigned int iomap_flags)
7476 {
7477 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7478 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7479 	struct extent_map *em = *map;
7480 	int type;
7481 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7482 	struct btrfs_block_group *bg;
7483 	bool can_nocow = false;
7484 	bool space_reserved = false;
7485 	u64 prev_len;
7486 	int ret = 0;
7487 
7488 	/*
7489 	 * We don't allocate a new extent in the following cases
7490 	 *
7491 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7492 	 * existing extent.
7493 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7494 	 * just use the extent.
7495 	 *
7496 	 */
7497 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7498 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7499 	     em->block_start != EXTENT_MAP_HOLE)) {
7500 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7501 			type = BTRFS_ORDERED_PREALLOC;
7502 		else
7503 			type = BTRFS_ORDERED_NOCOW;
7504 		len = min(len, em->len - (start - em->start));
7505 		block_start = em->block_start + (start - em->start);
7506 
7507 		if (can_nocow_extent(inode, start, &len, &orig_start,
7508 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7509 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7510 			if (bg)
7511 				can_nocow = true;
7512 		}
7513 	}
7514 
7515 	prev_len = len;
7516 	if (can_nocow) {
7517 		struct extent_map *em2;
7518 
7519 		/* We can NOCOW, so only need to reserve metadata space. */
7520 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7521 						      nowait);
7522 		if (ret < 0) {
7523 			/* Our caller expects us to free the input extent map. */
7524 			free_extent_map(em);
7525 			*map = NULL;
7526 			btrfs_dec_nocow_writers(bg);
7527 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7528 				ret = -EAGAIN;
7529 			goto out;
7530 		}
7531 		space_reserved = true;
7532 
7533 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7534 					      orig_start, block_start,
7535 					      len, orig_block_len,
7536 					      ram_bytes, type);
7537 		btrfs_dec_nocow_writers(bg);
7538 		if (type == BTRFS_ORDERED_PREALLOC) {
7539 			free_extent_map(em);
7540 			*map = em2;
7541 			em = em2;
7542 		}
7543 
7544 		if (IS_ERR(em2)) {
7545 			ret = PTR_ERR(em2);
7546 			goto out;
7547 		}
7548 
7549 		dio_data->nocow_done = true;
7550 	} else {
7551 		/* Our caller expects us to free the input extent map. */
7552 		free_extent_map(em);
7553 		*map = NULL;
7554 
7555 		if (nowait)
7556 			return -EAGAIN;
7557 
7558 		/*
7559 		 * If we could not allocate data space before locking the file
7560 		 * range and we can't do a NOCOW write, then we have to fail.
7561 		 */
7562 		if (!dio_data->data_space_reserved)
7563 			return -ENOSPC;
7564 
7565 		/*
7566 		 * We have to COW and we have already reserved data space before,
7567 		 * so now we reserve only metadata.
7568 		 */
7569 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7570 						      false);
7571 		if (ret < 0)
7572 			goto out;
7573 		space_reserved = true;
7574 
7575 		em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7576 		if (IS_ERR(em)) {
7577 			ret = PTR_ERR(em);
7578 			goto out;
7579 		}
7580 		*map = em;
7581 		len = min(len, em->len - (start - em->start));
7582 		if (len < prev_len)
7583 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7584 							prev_len - len, true);
7585 	}
7586 
7587 	/*
7588 	 * We have created our ordered extent, so we can now release our reservation
7589 	 * for an outstanding extent.
7590 	 */
7591 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7592 
7593 	/*
7594 	 * Need to update the i_size under the extent lock so buffered
7595 	 * readers will get the updated i_size when we unlock.
7596 	 */
7597 	if (start + len > i_size_read(inode))
7598 		i_size_write(inode, start + len);
7599 out:
7600 	if (ret && space_reserved) {
7601 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7602 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7603 	}
7604 	return ret;
7605 }
7606 
7607 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7608 		loff_t length, unsigned int flags, struct iomap *iomap,
7609 		struct iomap *srcmap)
7610 {
7611 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7612 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7613 	struct extent_map *em;
7614 	struct extent_state *cached_state = NULL;
7615 	struct btrfs_dio_data *dio_data = iter->private;
7616 	u64 lockstart, lockend;
7617 	const bool write = !!(flags & IOMAP_WRITE);
7618 	int ret = 0;
7619 	u64 len = length;
7620 	const u64 data_alloc_len = length;
7621 	bool unlock_extents = false;
7622 
7623 	/*
7624 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7625 	 * we're NOWAIT we may submit a bio for a partial range and return
7626 	 * EIOCBQUEUED, which would result in an errant short read.
7627 	 *
7628 	 * The best way to handle this would be to allow for partial completions
7629 	 * of iocb's, so we could submit the partial bio, return and fault in
7630 	 * the rest of the pages, and then submit the io for the rest of the
7631 	 * range.  However we don't have that currently, so simply return
7632 	 * -EAGAIN at this point so that the normal path is used.
7633 	 */
7634 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7635 		return -EAGAIN;
7636 
7637 	/*
7638 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7639 	 * to allocate a contiguous array for the checksums.
7640 	 */
7641 	if (!write)
7642 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7643 
7644 	lockstart = start;
7645 	lockend = start + len - 1;
7646 
7647 	/*
7648 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7649 	 * enough if we've written compressed pages to this area, so we need to
7650 	 * flush the dirty pages again to make absolutely sure that any
7651 	 * outstanding dirty pages are on disk - the first flush only starts
7652 	 * compression on the data, while keeping the pages locked, so by the
7653 	 * time the second flush returns we know bios for the compressed pages
7654 	 * were submitted and finished, and the pages no longer under writeback.
7655 	 *
7656 	 * If we have a NOWAIT request and we have any pages in the range that
7657 	 * are locked, likely due to compression still in progress, we don't want
7658 	 * to block on page locks. We also don't want to block on pages marked as
7659 	 * dirty or under writeback (same as for the non-compression case).
7660 	 * iomap_dio_rw() did the same check, but after that and before we got
7661 	 * here, mmap'ed writes may have happened or buffered reads started
7662 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7663 	 * the file range yet.
7664 	 */
7665 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7666 		     &BTRFS_I(inode)->runtime_flags)) {
7667 		if (flags & IOMAP_NOWAIT) {
7668 			if (filemap_range_needs_writeback(inode->i_mapping,
7669 							  lockstart, lockend))
7670 				return -EAGAIN;
7671 		} else {
7672 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7673 						       start + length - 1);
7674 			if (ret)
7675 				return ret;
7676 		}
7677 	}
7678 
7679 	memset(dio_data, 0, sizeof(*dio_data));
7680 
7681 	/*
7682 	 * We always try to allocate data space and must do it before locking
7683 	 * the file range, to avoid deadlocks with concurrent writes to the same
7684 	 * range if the range has several extents and the writes don't expand the
7685 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7686 	 * allocate data space here we continue and later, after locking the
7687 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7688 	 * NOCOW write.
7689 	 */
7690 	if (write && !(flags & IOMAP_NOWAIT)) {
7691 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7692 						  &dio_data->data_reserved,
7693 						  start, data_alloc_len, false);
7694 		if (!ret)
7695 			dio_data->data_space_reserved = true;
7696 		else if (ret && !(BTRFS_I(inode)->flags &
7697 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7698 			goto err;
7699 	}
7700 
7701 	/*
7702 	 * If this errors out it's because we couldn't invalidate pagecache for
7703 	 * this range and we need to fallback to buffered IO, or we are doing a
7704 	 * NOWAIT read/write and we need to block.
7705 	 */
7706 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7707 	if (ret < 0)
7708 		goto err;
7709 
7710 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7711 	if (IS_ERR(em)) {
7712 		ret = PTR_ERR(em);
7713 		goto unlock_err;
7714 	}
7715 
7716 	/*
7717 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7718 	 * io.  INLINE is special, and we could probably kludge it in here, but
7719 	 * it's still buffered so for safety lets just fall back to the generic
7720 	 * buffered path.
7721 	 *
7722 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7723 	 * decompress it, so there will be buffering required no matter what we
7724 	 * do, so go ahead and fallback to buffered.
7725 	 *
7726 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7727 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7728 	 * the generic code.
7729 	 */
7730 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7731 	    em->block_start == EXTENT_MAP_INLINE) {
7732 		free_extent_map(em);
7733 		/*
7734 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7735 		 * fallback to buffered IO. This is not only because we can
7736 		 * block with buffered IO (no support for NOWAIT semantics at
7737 		 * the moment) but also to avoid returning short reads to user
7738 		 * space - this happens if we were able to read some data from
7739 		 * previous non-compressed extents and then when we fallback to
7740 		 * buffered IO, at btrfs_file_read_iter() by calling
7741 		 * filemap_read(), we fail to fault in pages for the read buffer,
7742 		 * in which case filemap_read() returns a short read (the number
7743 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7744 		 */
7745 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7746 		goto unlock_err;
7747 	}
7748 
7749 	len = min(len, em->len - (start - em->start));
7750 
7751 	/*
7752 	 * If we have a NOWAIT request and the range contains multiple extents
7753 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7754 	 * caller fallback to a context where it can do a blocking (without
7755 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7756 	 * success to the caller, which is not optimal for writes and for reads
7757 	 * it can result in unexpected behaviour for an application.
7758 	 *
7759 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7760 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7761 	 * asked for, resulting in an unexpected, and incorrect, short read.
7762 	 * That is, the caller asked to read N bytes and we return less than that,
7763 	 * which is wrong unless we are crossing EOF. This happens if we get a
7764 	 * page fault error when trying to fault in pages for the buffer that is
7765 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7766 	 * have previously submitted bios for other extents in the range, in
7767 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7768 	 * those bios have completed by the time we get the page fault error,
7769 	 * which we return back to our caller - we should only return EIOCBQUEUED
7770 	 * after we have submitted bios for all the extents in the range.
7771 	 */
7772 	if ((flags & IOMAP_NOWAIT) && len < length) {
7773 		free_extent_map(em);
7774 		ret = -EAGAIN;
7775 		goto unlock_err;
7776 	}
7777 
7778 	if (write) {
7779 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7780 						    start, len, flags);
7781 		if (ret < 0)
7782 			goto unlock_err;
7783 		unlock_extents = true;
7784 		/* Recalc len in case the new em is smaller than requested */
7785 		len = min(len, em->len - (start - em->start));
7786 		if (dio_data->data_space_reserved) {
7787 			u64 release_offset;
7788 			u64 release_len = 0;
7789 
7790 			if (dio_data->nocow_done) {
7791 				release_offset = start;
7792 				release_len = data_alloc_len;
7793 			} else if (len < data_alloc_len) {
7794 				release_offset = start + len;
7795 				release_len = data_alloc_len - len;
7796 			}
7797 
7798 			if (release_len > 0)
7799 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7800 							       dio_data->data_reserved,
7801 							       release_offset,
7802 							       release_len);
7803 		}
7804 	} else {
7805 		/*
7806 		 * We need to unlock only the end area that we aren't using.
7807 		 * The rest is going to be unlocked by the endio routine.
7808 		 */
7809 		lockstart = start + len;
7810 		if (lockstart < lockend)
7811 			unlock_extents = true;
7812 	}
7813 
7814 	if (unlock_extents)
7815 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7816 			      &cached_state);
7817 	else
7818 		free_extent_state(cached_state);
7819 
7820 	/*
7821 	 * Translate extent map information to iomap.
7822 	 * We trim the extents (and move the addr) even though iomap code does
7823 	 * that, since we have locked only the parts we are performing I/O in.
7824 	 */
7825 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7826 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7827 		iomap->addr = IOMAP_NULL_ADDR;
7828 		iomap->type = IOMAP_HOLE;
7829 	} else {
7830 		iomap->addr = em->block_start + (start - em->start);
7831 		iomap->type = IOMAP_MAPPED;
7832 	}
7833 	iomap->offset = start;
7834 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7835 	iomap->length = len;
7836 
7837 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7838 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7839 
7840 	free_extent_map(em);
7841 
7842 	return 0;
7843 
7844 unlock_err:
7845 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7846 		      &cached_state);
7847 err:
7848 	if (dio_data->data_space_reserved) {
7849 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7850 					       dio_data->data_reserved,
7851 					       start, data_alloc_len);
7852 		extent_changeset_free(dio_data->data_reserved);
7853 	}
7854 
7855 	return ret;
7856 }
7857 
7858 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7859 		ssize_t written, unsigned int flags, struct iomap *iomap)
7860 {
7861 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7862 	struct btrfs_dio_data *dio_data = iter->private;
7863 	size_t submitted = dio_data->submitted;
7864 	const bool write = !!(flags & IOMAP_WRITE);
7865 	int ret = 0;
7866 
7867 	if (!write && (iomap->type == IOMAP_HOLE)) {
7868 		/* If reading from a hole, unlock and return */
7869 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7870 			      NULL);
7871 		return 0;
7872 	}
7873 
7874 	if (submitted < length) {
7875 		pos += submitted;
7876 		length -= submitted;
7877 		if (write)
7878 			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
7879 						       pos, length, false);
7880 		else
7881 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7882 				      pos + length - 1, NULL);
7883 		ret = -ENOTBLK;
7884 	}
7885 
7886 	if (write)
7887 		extent_changeset_free(dio_data->data_reserved);
7888 	return ret;
7889 }
7890 
7891 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7892 {
7893 	/*
7894 	 * This implies a barrier so that stores to dio_bio->bi_status before
7895 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7896 	 */
7897 	if (!refcount_dec_and_test(&dip->refs))
7898 		return;
7899 
7900 	if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
7901 		btrfs_mark_ordered_io_finished(dip->inode, NULL,
7902 					       dip->file_offset, dip->bytes,
7903 					       !dip->bio.bi_status);
7904 	} else {
7905 		unlock_extent(&dip->inode->io_tree,
7906 			      dip->file_offset,
7907 			      dip->file_offset + dip->bytes - 1, NULL);
7908 	}
7909 
7910 	kfree(dip->csums);
7911 	bio_endio(&dip->bio);
7912 }
7913 
7914 void btrfs_submit_dio_repair_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
7915 {
7916 	struct btrfs_dio_private *dip = btrfs_bio(bio)->private;
7917 
7918 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7919 
7920 	refcount_inc(&dip->refs);
7921 	btrfs_submit_bio(inode->root->fs_info, bio, mirror_num);
7922 }
7923 
7924 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7925 					     struct btrfs_bio *bbio,
7926 					     const bool uptodate)
7927 {
7928 	struct inode *inode = &dip->inode->vfs_inode;
7929 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7930 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7931 	blk_status_t err = BLK_STS_OK;
7932 	struct bvec_iter iter;
7933 	struct bio_vec bv;
7934 	u32 offset;
7935 
7936 	btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
7937 		u64 start = bbio->file_offset + offset;
7938 
7939 		if (uptodate &&
7940 		    (!csum || !btrfs_check_data_csum(BTRFS_I(inode), bbio, offset,
7941 						     bv.bv_page, bv.bv_offset))) {
7942 			btrfs_clean_io_failure(BTRFS_I(inode), start,
7943 					       bv.bv_page, bv.bv_offset);
7944 		} else {
7945 			int ret;
7946 
7947 			ret = btrfs_repair_one_sector(BTRFS_I(inode), bbio, offset,
7948 					bv.bv_page, bv.bv_offset, false);
7949 			if (ret)
7950 				err = errno_to_blk_status(ret);
7951 		}
7952 	}
7953 
7954 	return err;
7955 }
7956 
7957 blk_status_t btrfs_submit_bio_start_direct_io(struct btrfs_inode *inode,
7958 					      struct bio *bio,
7959 					      u64 dio_file_offset)
7960 {
7961 	return btrfs_csum_one_bio(inode, bio, dio_file_offset, false);
7962 }
7963 
7964 static void btrfs_end_dio_bio(struct btrfs_bio *bbio)
7965 {
7966 	struct btrfs_dio_private *dip = bbio->private;
7967 	struct bio *bio = &bbio->bio;
7968 	blk_status_t err = bio->bi_status;
7969 
7970 	if (err)
7971 		btrfs_warn(dip->inode->root->fs_info,
7972 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7973 			   btrfs_ino(dip->inode), bio_op(bio),
7974 			   bio->bi_opf, bio->bi_iter.bi_sector,
7975 			   bio->bi_iter.bi_size, err);
7976 
7977 	if (bio_op(bio) == REQ_OP_READ)
7978 		err = btrfs_check_read_dio_bio(dip, bbio, !err);
7979 
7980 	if (err)
7981 		dip->bio.bi_status = err;
7982 
7983 	btrfs_record_physical_zoned(&dip->inode->vfs_inode, bbio->file_offset, bio);
7984 
7985 	bio_put(bio);
7986 	btrfs_dio_private_put(dip);
7987 }
7988 
7989 static void btrfs_submit_dio_bio(struct bio *bio, struct btrfs_inode *inode,
7990 				 u64 file_offset, int async_submit)
7991 {
7992 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7993 	struct btrfs_dio_private *dip = btrfs_bio(bio)->private;
7994 	blk_status_t ret;
7995 
7996 	/* Save the original iter for read repair */
7997 	if (btrfs_op(bio) == BTRFS_MAP_READ)
7998 		btrfs_bio(bio)->iter = bio->bi_iter;
7999 
8000 	if (inode->flags & BTRFS_INODE_NODATASUM)
8001 		goto map;
8002 
8003 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
8004 		/* Check btrfs_submit_data_write_bio() for async submit rules */
8005 		if (async_submit && !atomic_read(&inode->sync_writers) &&
8006 		    btrfs_wq_submit_bio(inode, bio, 0, file_offset,
8007 					WQ_SUBMIT_DATA_DIO))
8008 			return;
8009 
8010 		/*
8011 		 * If we aren't doing async submit, calculate the csum of the
8012 		 * bio now.
8013 		 */
8014 		ret = btrfs_csum_one_bio(inode, bio, file_offset, false);
8015 		if (ret) {
8016 			btrfs_bio_end_io(btrfs_bio(bio), ret);
8017 			return;
8018 		}
8019 	} else {
8020 		btrfs_bio(bio)->csum = btrfs_csum_ptr(fs_info, dip->csums,
8021 						      file_offset - dip->file_offset);
8022 	}
8023 map:
8024 	btrfs_submit_bio(fs_info, bio, 0);
8025 }
8026 
8027 static void btrfs_submit_direct(const struct iomap_iter *iter,
8028 		struct bio *dio_bio, loff_t file_offset)
8029 {
8030 	struct btrfs_dio_private *dip =
8031 		container_of(dio_bio, struct btrfs_dio_private, bio);
8032 	struct inode *inode = iter->inode;
8033 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8034 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8035 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8036 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
8037 	struct bio *bio;
8038 	u64 start_sector;
8039 	int async_submit = 0;
8040 	u64 submit_len;
8041 	u64 clone_offset = 0;
8042 	u64 clone_len;
8043 	u64 logical;
8044 	int ret;
8045 	blk_status_t status;
8046 	struct btrfs_io_geometry geom;
8047 	struct btrfs_dio_data *dio_data = iter->private;
8048 	struct extent_map *em = NULL;
8049 
8050 	dip->inode = BTRFS_I(inode);
8051 	dip->file_offset = file_offset;
8052 	dip->bytes = dio_bio->bi_iter.bi_size;
8053 	refcount_set(&dip->refs, 1);
8054 	dip->csums = NULL;
8055 
8056 	if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
8057 		unsigned int nr_sectors =
8058 			(dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
8059 
8060 		/*
8061 		 * Load the csums up front to reduce csum tree searches and
8062 		 * contention when submitting bios.
8063 		 */
8064 		status = BLK_STS_RESOURCE;
8065 		dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
8066 		if (!dip->csums)
8067 			goto out_err;
8068 
8069 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8070 		if (status != BLK_STS_OK)
8071 			goto out_err;
8072 	}
8073 
8074 	start_sector = dio_bio->bi_iter.bi_sector;
8075 	submit_len = dio_bio->bi_iter.bi_size;
8076 
8077 	do {
8078 		logical = start_sector << 9;
8079 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8080 		if (IS_ERR(em)) {
8081 			status = errno_to_blk_status(PTR_ERR(em));
8082 			em = NULL;
8083 			goto out_err_em;
8084 		}
8085 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8086 					    logical, &geom);
8087 		if (ret) {
8088 			status = errno_to_blk_status(ret);
8089 			goto out_err_em;
8090 		}
8091 
8092 		clone_len = min(submit_len, geom.len);
8093 		ASSERT(clone_len <= UINT_MAX);
8094 
8095 		/*
8096 		 * This will never fail as it's passing GPF_NOFS and
8097 		 * the allocation is backed by btrfs_bioset.
8098 		 */
8099 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len,
8100 					      btrfs_end_dio_bio, dip);
8101 		btrfs_bio(bio)->file_offset = file_offset;
8102 
8103 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8104 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8105 							file_offset);
8106 			if (status) {
8107 				bio_put(bio);
8108 				goto out_err;
8109 			}
8110 		}
8111 
8112 		ASSERT(submit_len >= clone_len);
8113 		submit_len -= clone_len;
8114 
8115 		/*
8116 		 * Increase the count before we submit the bio so we know
8117 		 * the end IO handler won't happen before we increase the
8118 		 * count. Otherwise, the dip might get freed before we're
8119 		 * done setting it up.
8120 		 *
8121 		 * We transfer the initial reference to the last bio, so we
8122 		 * don't need to increment the reference count for the last one.
8123 		 */
8124 		if (submit_len > 0) {
8125 			refcount_inc(&dip->refs);
8126 			/*
8127 			 * If we are submitting more than one bio, submit them
8128 			 * all asynchronously. The exception is RAID 5 or 6, as
8129 			 * asynchronous checksums make it difficult to collect
8130 			 * full stripe writes.
8131 			 */
8132 			if (!raid56)
8133 				async_submit = 1;
8134 		}
8135 
8136 		btrfs_submit_dio_bio(bio, BTRFS_I(inode), file_offset, async_submit);
8137 
8138 		dio_data->submitted += clone_len;
8139 		clone_offset += clone_len;
8140 		start_sector += clone_len >> 9;
8141 		file_offset += clone_len;
8142 
8143 		free_extent_map(em);
8144 	} while (submit_len > 0);
8145 	return;
8146 
8147 out_err_em:
8148 	free_extent_map(em);
8149 out_err:
8150 	dio_bio->bi_status = status;
8151 	btrfs_dio_private_put(dip);
8152 }
8153 
8154 static const struct iomap_ops btrfs_dio_iomap_ops = {
8155 	.iomap_begin            = btrfs_dio_iomap_begin,
8156 	.iomap_end              = btrfs_dio_iomap_end,
8157 };
8158 
8159 static const struct iomap_dio_ops btrfs_dio_ops = {
8160 	.submit_io		= btrfs_submit_direct,
8161 	.bio_set		= &btrfs_dio_bioset,
8162 };
8163 
8164 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
8165 {
8166 	struct btrfs_dio_data data;
8167 
8168 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8169 			    IOMAP_DIO_PARTIAL, &data, done_before);
8170 }
8171 
8172 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
8173 				  size_t done_before)
8174 {
8175 	struct btrfs_dio_data data;
8176 
8177 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8178 			    IOMAP_DIO_PARTIAL, &data, done_before);
8179 }
8180 
8181 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8182 			u64 start, u64 len)
8183 {
8184 	int	ret;
8185 
8186 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8187 	if (ret)
8188 		return ret;
8189 
8190 	/*
8191 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
8192 	 * file range (0 to LLONG_MAX), but that is not enough if we have
8193 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
8194 	 * in the compression of data (in an async thread) and will return
8195 	 * before the compression is done and writeback is started. A second
8196 	 * filemap_fdatawrite_range() is needed to wait for the compression to
8197 	 * complete and writeback to start. We also need to wait for ordered
8198 	 * extents to complete, because our fiemap implementation uses mainly
8199 	 * file extent items to list the extents, searching for extent maps
8200 	 * only for file ranges with holes or prealloc extents to figure out
8201 	 * if we have delalloc in those ranges.
8202 	 */
8203 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
8204 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
8205 		if (ret)
8206 			return ret;
8207 	}
8208 
8209 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8210 }
8211 
8212 static int btrfs_writepages(struct address_space *mapping,
8213 			    struct writeback_control *wbc)
8214 {
8215 	return extent_writepages(mapping, wbc);
8216 }
8217 
8218 static void btrfs_readahead(struct readahead_control *rac)
8219 {
8220 	extent_readahead(rac);
8221 }
8222 
8223 /*
8224  * For release_folio() and invalidate_folio() we have a race window where
8225  * folio_end_writeback() is called but the subpage spinlock is not yet released.
8226  * If we continue to release/invalidate the page, we could cause use-after-free
8227  * for subpage spinlock.  So this function is to spin and wait for subpage
8228  * spinlock.
8229  */
8230 static void wait_subpage_spinlock(struct page *page)
8231 {
8232 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8233 	struct btrfs_subpage *subpage;
8234 
8235 	if (!btrfs_is_subpage(fs_info, page))
8236 		return;
8237 
8238 	ASSERT(PagePrivate(page) && page->private);
8239 	subpage = (struct btrfs_subpage *)page->private;
8240 
8241 	/*
8242 	 * This may look insane as we just acquire the spinlock and release it,
8243 	 * without doing anything.  But we just want to make sure no one is
8244 	 * still holding the subpage spinlock.
8245 	 * And since the page is not dirty nor writeback, and we have page
8246 	 * locked, the only possible way to hold a spinlock is from the endio
8247 	 * function to clear page writeback.
8248 	 *
8249 	 * Here we just acquire the spinlock so that all existing callers
8250 	 * should exit and we're safe to release/invalidate the page.
8251 	 */
8252 	spin_lock_irq(&subpage->lock);
8253 	spin_unlock_irq(&subpage->lock);
8254 }
8255 
8256 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8257 {
8258 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8259 
8260 	if (ret == 1) {
8261 		wait_subpage_spinlock(&folio->page);
8262 		clear_page_extent_mapped(&folio->page);
8263 	}
8264 	return ret;
8265 }
8266 
8267 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8268 {
8269 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
8270 		return false;
8271 	return __btrfs_release_folio(folio, gfp_flags);
8272 }
8273 
8274 #ifdef CONFIG_MIGRATION
8275 static int btrfs_migrate_folio(struct address_space *mapping,
8276 			     struct folio *dst, struct folio *src,
8277 			     enum migrate_mode mode)
8278 {
8279 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
8280 
8281 	if (ret != MIGRATEPAGE_SUCCESS)
8282 		return ret;
8283 
8284 	if (folio_test_ordered(src)) {
8285 		folio_clear_ordered(src);
8286 		folio_set_ordered(dst);
8287 	}
8288 
8289 	return MIGRATEPAGE_SUCCESS;
8290 }
8291 #else
8292 #define btrfs_migrate_folio NULL
8293 #endif
8294 
8295 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8296 				 size_t length)
8297 {
8298 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8299 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8300 	struct extent_io_tree *tree = &inode->io_tree;
8301 	struct extent_state *cached_state = NULL;
8302 	u64 page_start = folio_pos(folio);
8303 	u64 page_end = page_start + folio_size(folio) - 1;
8304 	u64 cur;
8305 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8306 
8307 	/*
8308 	 * We have folio locked so no new ordered extent can be created on this
8309 	 * page, nor bio can be submitted for this folio.
8310 	 *
8311 	 * But already submitted bio can still be finished on this folio.
8312 	 * Furthermore, endio function won't skip folio which has Ordered
8313 	 * (Private2) already cleared, so it's possible for endio and
8314 	 * invalidate_folio to do the same ordered extent accounting twice
8315 	 * on one folio.
8316 	 *
8317 	 * So here we wait for any submitted bios to finish, so that we won't
8318 	 * do double ordered extent accounting on the same folio.
8319 	 */
8320 	folio_wait_writeback(folio);
8321 	wait_subpage_spinlock(&folio->page);
8322 
8323 	/*
8324 	 * For subpage case, we have call sites like
8325 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8326 	 * sectorsize.
8327 	 * If the range doesn't cover the full folio, we don't need to and
8328 	 * shouldn't clear page extent mapped, as folio->private can still
8329 	 * record subpage dirty bits for other part of the range.
8330 	 *
8331 	 * For cases that invalidate the full folio even the range doesn't
8332 	 * cover the full folio, like invalidating the last folio, we're
8333 	 * still safe to wait for ordered extent to finish.
8334 	 */
8335 	if (!(offset == 0 && length == folio_size(folio))) {
8336 		btrfs_release_folio(folio, GFP_NOFS);
8337 		return;
8338 	}
8339 
8340 	if (!inode_evicting)
8341 		lock_extent(tree, page_start, page_end, &cached_state);
8342 
8343 	cur = page_start;
8344 	while (cur < page_end) {
8345 		struct btrfs_ordered_extent *ordered;
8346 		u64 range_end;
8347 		u32 range_len;
8348 		u32 extra_flags = 0;
8349 
8350 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8351 							   page_end + 1 - cur);
8352 		if (!ordered) {
8353 			range_end = page_end;
8354 			/*
8355 			 * No ordered extent covering this range, we are safe
8356 			 * to delete all extent states in the range.
8357 			 */
8358 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8359 			goto next;
8360 		}
8361 		if (ordered->file_offset > cur) {
8362 			/*
8363 			 * There is a range between [cur, oe->file_offset) not
8364 			 * covered by any ordered extent.
8365 			 * We are safe to delete all extent states, and handle
8366 			 * the ordered extent in the next iteration.
8367 			 */
8368 			range_end = ordered->file_offset - 1;
8369 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8370 			goto next;
8371 		}
8372 
8373 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8374 				page_end);
8375 		ASSERT(range_end + 1 - cur < U32_MAX);
8376 		range_len = range_end + 1 - cur;
8377 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8378 			/*
8379 			 * If Ordered (Private2) is cleared, it means endio has
8380 			 * already been executed for the range.
8381 			 * We can't delete the extent states as
8382 			 * btrfs_finish_ordered_io() may still use some of them.
8383 			 */
8384 			goto next;
8385 		}
8386 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8387 
8388 		/*
8389 		 * IO on this page will never be started, so we need to account
8390 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8391 		 * here, must leave that up for the ordered extent completion.
8392 		 *
8393 		 * This will also unlock the range for incoming
8394 		 * btrfs_finish_ordered_io().
8395 		 */
8396 		if (!inode_evicting)
8397 			clear_extent_bit(tree, cur, range_end,
8398 					 EXTENT_DELALLOC |
8399 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8400 					 EXTENT_DEFRAG, &cached_state);
8401 
8402 		spin_lock_irq(&inode->ordered_tree.lock);
8403 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8404 		ordered->truncated_len = min(ordered->truncated_len,
8405 					     cur - ordered->file_offset);
8406 		spin_unlock_irq(&inode->ordered_tree.lock);
8407 
8408 		/*
8409 		 * If the ordered extent has finished, we're safe to delete all
8410 		 * the extent states of the range, otherwise
8411 		 * btrfs_finish_ordered_io() will get executed by endio for
8412 		 * other pages, so we can't delete extent states.
8413 		 */
8414 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8415 						   cur, range_end + 1 - cur)) {
8416 			btrfs_finish_ordered_io(ordered);
8417 			/*
8418 			 * The ordered extent has finished, now we're again
8419 			 * safe to delete all extent states of the range.
8420 			 */
8421 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8422 		}
8423 next:
8424 		if (ordered)
8425 			btrfs_put_ordered_extent(ordered);
8426 		/*
8427 		 * Qgroup reserved space handler
8428 		 * Sector(s) here will be either:
8429 		 *
8430 		 * 1) Already written to disk or bio already finished
8431 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8432 		 *    Qgroup will be handled by its qgroup_record then.
8433 		 *    btrfs_qgroup_free_data() call will do nothing here.
8434 		 *
8435 		 * 2) Not written to disk yet
8436 		 *    Then btrfs_qgroup_free_data() call will clear the
8437 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8438 		 *    reserved data space.
8439 		 *    Since the IO will never happen for this page.
8440 		 */
8441 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8442 		if (!inode_evicting) {
8443 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8444 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8445 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8446 				 extra_flags, &cached_state);
8447 		}
8448 		cur = range_end + 1;
8449 	}
8450 	/*
8451 	 * We have iterated through all ordered extents of the page, the page
8452 	 * should not have Ordered (Private2) anymore, or the above iteration
8453 	 * did something wrong.
8454 	 */
8455 	ASSERT(!folio_test_ordered(folio));
8456 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8457 	if (!inode_evicting)
8458 		__btrfs_release_folio(folio, GFP_NOFS);
8459 	clear_page_extent_mapped(&folio->page);
8460 }
8461 
8462 /*
8463  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8464  * called from a page fault handler when a page is first dirtied. Hence we must
8465  * be careful to check for EOF conditions here. We set the page up correctly
8466  * for a written page which means we get ENOSPC checking when writing into
8467  * holes and correct delalloc and unwritten extent mapping on filesystems that
8468  * support these features.
8469  *
8470  * We are not allowed to take the i_mutex here so we have to play games to
8471  * protect against truncate races as the page could now be beyond EOF.  Because
8472  * truncate_setsize() writes the inode size before removing pages, once we have
8473  * the page lock we can determine safely if the page is beyond EOF. If it is not
8474  * beyond EOF, then the page is guaranteed safe against truncation until we
8475  * unlock the page.
8476  */
8477 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8478 {
8479 	struct page *page = vmf->page;
8480 	struct inode *inode = file_inode(vmf->vma->vm_file);
8481 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8482 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8483 	struct btrfs_ordered_extent *ordered;
8484 	struct extent_state *cached_state = NULL;
8485 	struct extent_changeset *data_reserved = NULL;
8486 	unsigned long zero_start;
8487 	loff_t size;
8488 	vm_fault_t ret;
8489 	int ret2;
8490 	int reserved = 0;
8491 	u64 reserved_space;
8492 	u64 page_start;
8493 	u64 page_end;
8494 	u64 end;
8495 
8496 	reserved_space = PAGE_SIZE;
8497 
8498 	sb_start_pagefault(inode->i_sb);
8499 	page_start = page_offset(page);
8500 	page_end = page_start + PAGE_SIZE - 1;
8501 	end = page_end;
8502 
8503 	/*
8504 	 * Reserving delalloc space after obtaining the page lock can lead to
8505 	 * deadlock. For example, if a dirty page is locked by this function
8506 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8507 	 * dirty page write out, then the btrfs_writepages() function could
8508 	 * end up waiting indefinitely to get a lock on the page currently
8509 	 * being processed by btrfs_page_mkwrite() function.
8510 	 */
8511 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8512 					    page_start, reserved_space);
8513 	if (!ret2) {
8514 		ret2 = file_update_time(vmf->vma->vm_file);
8515 		reserved = 1;
8516 	}
8517 	if (ret2) {
8518 		ret = vmf_error(ret2);
8519 		if (reserved)
8520 			goto out;
8521 		goto out_noreserve;
8522 	}
8523 
8524 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8525 again:
8526 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8527 	lock_page(page);
8528 	size = i_size_read(inode);
8529 
8530 	if ((page->mapping != inode->i_mapping) ||
8531 	    (page_start >= size)) {
8532 		/* page got truncated out from underneath us */
8533 		goto out_unlock;
8534 	}
8535 	wait_on_page_writeback(page);
8536 
8537 	lock_extent(io_tree, page_start, page_end, &cached_state);
8538 	ret2 = set_page_extent_mapped(page);
8539 	if (ret2 < 0) {
8540 		ret = vmf_error(ret2);
8541 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8542 		goto out_unlock;
8543 	}
8544 
8545 	/*
8546 	 * we can't set the delalloc bits if there are pending ordered
8547 	 * extents.  Drop our locks and wait for them to finish
8548 	 */
8549 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8550 			PAGE_SIZE);
8551 	if (ordered) {
8552 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8553 		unlock_page(page);
8554 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8555 		btrfs_start_ordered_extent(ordered, 1);
8556 		btrfs_put_ordered_extent(ordered);
8557 		goto again;
8558 	}
8559 
8560 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8561 		reserved_space = round_up(size - page_start,
8562 					  fs_info->sectorsize);
8563 		if (reserved_space < PAGE_SIZE) {
8564 			end = page_start + reserved_space - 1;
8565 			btrfs_delalloc_release_space(BTRFS_I(inode),
8566 					data_reserved, page_start,
8567 					PAGE_SIZE - reserved_space, true);
8568 		}
8569 	}
8570 
8571 	/*
8572 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8573 	 * faulted in, but write(2) could also dirty a page and set delalloc
8574 	 * bits, thus in this case for space account reason, we still need to
8575 	 * clear any delalloc bits within this page range since we have to
8576 	 * reserve data&meta space before lock_page() (see above comments).
8577 	 */
8578 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8579 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8580 			  EXTENT_DEFRAG, &cached_state);
8581 
8582 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8583 					&cached_state);
8584 	if (ret2) {
8585 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8586 		ret = VM_FAULT_SIGBUS;
8587 		goto out_unlock;
8588 	}
8589 
8590 	/* page is wholly or partially inside EOF */
8591 	if (page_start + PAGE_SIZE > size)
8592 		zero_start = offset_in_page(size);
8593 	else
8594 		zero_start = PAGE_SIZE;
8595 
8596 	if (zero_start != PAGE_SIZE)
8597 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8598 
8599 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8600 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8601 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8602 
8603 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8604 
8605 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8606 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8607 
8608 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8609 	sb_end_pagefault(inode->i_sb);
8610 	extent_changeset_free(data_reserved);
8611 	return VM_FAULT_LOCKED;
8612 
8613 out_unlock:
8614 	unlock_page(page);
8615 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8616 out:
8617 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8618 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8619 				     reserved_space, (ret != 0));
8620 out_noreserve:
8621 	sb_end_pagefault(inode->i_sb);
8622 	extent_changeset_free(data_reserved);
8623 	return ret;
8624 }
8625 
8626 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8627 {
8628 	struct btrfs_truncate_control control = {
8629 		.inode = inode,
8630 		.ino = btrfs_ino(inode),
8631 		.min_type = BTRFS_EXTENT_DATA_KEY,
8632 		.clear_extent_range = true,
8633 	};
8634 	struct btrfs_root *root = inode->root;
8635 	struct btrfs_fs_info *fs_info = root->fs_info;
8636 	struct btrfs_block_rsv *rsv;
8637 	int ret;
8638 	struct btrfs_trans_handle *trans;
8639 	u64 mask = fs_info->sectorsize - 1;
8640 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8641 
8642 	if (!skip_writeback) {
8643 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8644 					       inode->vfs_inode.i_size & (~mask),
8645 					       (u64)-1);
8646 		if (ret)
8647 			return ret;
8648 	}
8649 
8650 	/*
8651 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8652 	 * things going on here:
8653 	 *
8654 	 * 1) We need to reserve space to update our inode.
8655 	 *
8656 	 * 2) We need to have something to cache all the space that is going to
8657 	 * be free'd up by the truncate operation, but also have some slack
8658 	 * space reserved in case it uses space during the truncate (thank you
8659 	 * very much snapshotting).
8660 	 *
8661 	 * And we need these to be separate.  The fact is we can use a lot of
8662 	 * space doing the truncate, and we have no earthly idea how much space
8663 	 * we will use, so we need the truncate reservation to be separate so it
8664 	 * doesn't end up using space reserved for updating the inode.  We also
8665 	 * need to be able to stop the transaction and start a new one, which
8666 	 * means we need to be able to update the inode several times, and we
8667 	 * have no idea of knowing how many times that will be, so we can't just
8668 	 * reserve 1 item for the entirety of the operation, so that has to be
8669 	 * done separately as well.
8670 	 *
8671 	 * So that leaves us with
8672 	 *
8673 	 * 1) rsv - for the truncate reservation, which we will steal from the
8674 	 * transaction reservation.
8675 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8676 	 * updating the inode.
8677 	 */
8678 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8679 	if (!rsv)
8680 		return -ENOMEM;
8681 	rsv->size = min_size;
8682 	rsv->failfast = true;
8683 
8684 	/*
8685 	 * 1 for the truncate slack space
8686 	 * 1 for updating the inode.
8687 	 */
8688 	trans = btrfs_start_transaction(root, 2);
8689 	if (IS_ERR(trans)) {
8690 		ret = PTR_ERR(trans);
8691 		goto out;
8692 	}
8693 
8694 	/* Migrate the slack space for the truncate to our reserve */
8695 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8696 				      min_size, false);
8697 	BUG_ON(ret);
8698 
8699 	trans->block_rsv = rsv;
8700 
8701 	while (1) {
8702 		struct extent_state *cached_state = NULL;
8703 		const u64 new_size = inode->vfs_inode.i_size;
8704 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8705 
8706 		control.new_size = new_size;
8707 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8708 		/*
8709 		 * We want to drop from the next block forward in case this new
8710 		 * size is not block aligned since we will be keeping the last
8711 		 * block of the extent just the way it is.
8712 		 */
8713 		btrfs_drop_extent_map_range(inode,
8714 					    ALIGN(new_size, fs_info->sectorsize),
8715 					    (u64)-1, false);
8716 
8717 		ret = btrfs_truncate_inode_items(trans, root, &control);
8718 
8719 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8720 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8721 
8722 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8723 
8724 		trans->block_rsv = &fs_info->trans_block_rsv;
8725 		if (ret != -ENOSPC && ret != -EAGAIN)
8726 			break;
8727 
8728 		ret = btrfs_update_inode(trans, root, inode);
8729 		if (ret)
8730 			break;
8731 
8732 		btrfs_end_transaction(trans);
8733 		btrfs_btree_balance_dirty(fs_info);
8734 
8735 		trans = btrfs_start_transaction(root, 2);
8736 		if (IS_ERR(trans)) {
8737 			ret = PTR_ERR(trans);
8738 			trans = NULL;
8739 			break;
8740 		}
8741 
8742 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8743 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8744 					      rsv, min_size, false);
8745 		BUG_ON(ret);	/* shouldn't happen */
8746 		trans->block_rsv = rsv;
8747 	}
8748 
8749 	/*
8750 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8751 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8752 	 * know we've truncated everything except the last little bit, and can
8753 	 * do btrfs_truncate_block and then update the disk_i_size.
8754 	 */
8755 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8756 		btrfs_end_transaction(trans);
8757 		btrfs_btree_balance_dirty(fs_info);
8758 
8759 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8760 		if (ret)
8761 			goto out;
8762 		trans = btrfs_start_transaction(root, 1);
8763 		if (IS_ERR(trans)) {
8764 			ret = PTR_ERR(trans);
8765 			goto out;
8766 		}
8767 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8768 	}
8769 
8770 	if (trans) {
8771 		int ret2;
8772 
8773 		trans->block_rsv = &fs_info->trans_block_rsv;
8774 		ret2 = btrfs_update_inode(trans, root, inode);
8775 		if (ret2 && !ret)
8776 			ret = ret2;
8777 
8778 		ret2 = btrfs_end_transaction(trans);
8779 		if (ret2 && !ret)
8780 			ret = ret2;
8781 		btrfs_btree_balance_dirty(fs_info);
8782 	}
8783 out:
8784 	btrfs_free_block_rsv(fs_info, rsv);
8785 	/*
8786 	 * So if we truncate and then write and fsync we normally would just
8787 	 * write the extents that changed, which is a problem if we need to
8788 	 * first truncate that entire inode.  So set this flag so we write out
8789 	 * all of the extents in the inode to the sync log so we're completely
8790 	 * safe.
8791 	 *
8792 	 * If no extents were dropped or trimmed we don't need to force the next
8793 	 * fsync to truncate all the inode's items from the log and re-log them
8794 	 * all. This means the truncate operation did not change the file size,
8795 	 * or changed it to a smaller size but there was only an implicit hole
8796 	 * between the old i_size and the new i_size, and there were no prealloc
8797 	 * extents beyond i_size to drop.
8798 	 */
8799 	if (control.extents_found > 0)
8800 		btrfs_set_inode_full_sync(inode);
8801 
8802 	return ret;
8803 }
8804 
8805 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8806 				     struct inode *dir)
8807 {
8808 	struct inode *inode;
8809 
8810 	inode = new_inode(dir->i_sb);
8811 	if (inode) {
8812 		/*
8813 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8814 		 * the parent's sgid bit is set. This is probably a bug.
8815 		 */
8816 		inode_init_owner(mnt_userns, inode, NULL,
8817 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8818 		inode->i_op = &btrfs_dir_inode_operations;
8819 		inode->i_fop = &btrfs_dir_file_operations;
8820 	}
8821 	return inode;
8822 }
8823 
8824 struct inode *btrfs_alloc_inode(struct super_block *sb)
8825 {
8826 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8827 	struct btrfs_inode *ei;
8828 	struct inode *inode;
8829 
8830 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8831 	if (!ei)
8832 		return NULL;
8833 
8834 	ei->root = NULL;
8835 	ei->generation = 0;
8836 	ei->last_trans = 0;
8837 	ei->last_sub_trans = 0;
8838 	ei->logged_trans = 0;
8839 	ei->delalloc_bytes = 0;
8840 	ei->new_delalloc_bytes = 0;
8841 	ei->defrag_bytes = 0;
8842 	ei->disk_i_size = 0;
8843 	ei->flags = 0;
8844 	ei->ro_flags = 0;
8845 	ei->csum_bytes = 0;
8846 	ei->index_cnt = (u64)-1;
8847 	ei->dir_index = 0;
8848 	ei->last_unlink_trans = 0;
8849 	ei->last_reflink_trans = 0;
8850 	ei->last_log_commit = 0;
8851 
8852 	spin_lock_init(&ei->lock);
8853 	spin_lock_init(&ei->io_failure_lock);
8854 	ei->outstanding_extents = 0;
8855 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8856 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8857 					      BTRFS_BLOCK_RSV_DELALLOC);
8858 	ei->runtime_flags = 0;
8859 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8860 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8861 
8862 	ei->delayed_node = NULL;
8863 
8864 	ei->i_otime.tv_sec = 0;
8865 	ei->i_otime.tv_nsec = 0;
8866 
8867 	inode = &ei->vfs_inode;
8868 	extent_map_tree_init(&ei->extent_tree);
8869 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8870 	ei->io_tree.inode = ei;
8871 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8872 			    IO_TREE_INODE_FILE_EXTENT);
8873 	ei->io_failure_tree = RB_ROOT;
8874 	atomic_set(&ei->sync_writers, 0);
8875 	mutex_init(&ei->log_mutex);
8876 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8877 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8878 	INIT_LIST_HEAD(&ei->delayed_iput);
8879 	RB_CLEAR_NODE(&ei->rb_node);
8880 	init_rwsem(&ei->i_mmap_lock);
8881 
8882 	return inode;
8883 }
8884 
8885 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8886 void btrfs_test_destroy_inode(struct inode *inode)
8887 {
8888 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8889 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8890 }
8891 #endif
8892 
8893 void btrfs_free_inode(struct inode *inode)
8894 {
8895 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8896 }
8897 
8898 void btrfs_destroy_inode(struct inode *vfs_inode)
8899 {
8900 	struct btrfs_ordered_extent *ordered;
8901 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8902 	struct btrfs_root *root = inode->root;
8903 	bool freespace_inode;
8904 
8905 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8906 	WARN_ON(vfs_inode->i_data.nrpages);
8907 	WARN_ON(inode->block_rsv.reserved);
8908 	WARN_ON(inode->block_rsv.size);
8909 	WARN_ON(inode->outstanding_extents);
8910 	if (!S_ISDIR(vfs_inode->i_mode)) {
8911 		WARN_ON(inode->delalloc_bytes);
8912 		WARN_ON(inode->new_delalloc_bytes);
8913 	}
8914 	WARN_ON(inode->csum_bytes);
8915 	WARN_ON(inode->defrag_bytes);
8916 
8917 	/*
8918 	 * This can happen where we create an inode, but somebody else also
8919 	 * created the same inode and we need to destroy the one we already
8920 	 * created.
8921 	 */
8922 	if (!root)
8923 		return;
8924 
8925 	/*
8926 	 * If this is a free space inode do not take the ordered extents lockdep
8927 	 * map.
8928 	 */
8929 	freespace_inode = btrfs_is_free_space_inode(inode);
8930 
8931 	while (1) {
8932 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8933 		if (!ordered)
8934 			break;
8935 		else {
8936 			btrfs_err(root->fs_info,
8937 				  "found ordered extent %llu %llu on inode cleanup",
8938 				  ordered->file_offset, ordered->num_bytes);
8939 
8940 			if (!freespace_inode)
8941 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8942 
8943 			btrfs_remove_ordered_extent(inode, ordered);
8944 			btrfs_put_ordered_extent(ordered);
8945 			btrfs_put_ordered_extent(ordered);
8946 		}
8947 	}
8948 	btrfs_qgroup_check_reserved_leak(inode);
8949 	inode_tree_del(inode);
8950 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8951 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8952 	btrfs_put_root(inode->root);
8953 }
8954 
8955 int btrfs_drop_inode(struct inode *inode)
8956 {
8957 	struct btrfs_root *root = BTRFS_I(inode)->root;
8958 
8959 	if (root == NULL)
8960 		return 1;
8961 
8962 	/* the snap/subvol tree is on deleting */
8963 	if (btrfs_root_refs(&root->root_item) == 0)
8964 		return 1;
8965 	else
8966 		return generic_drop_inode(inode);
8967 }
8968 
8969 static void init_once(void *foo)
8970 {
8971 	struct btrfs_inode *ei = foo;
8972 
8973 	inode_init_once(&ei->vfs_inode);
8974 }
8975 
8976 void __cold btrfs_destroy_cachep(void)
8977 {
8978 	/*
8979 	 * Make sure all delayed rcu free inodes are flushed before we
8980 	 * destroy cache.
8981 	 */
8982 	rcu_barrier();
8983 	bioset_exit(&btrfs_dio_bioset);
8984 	kmem_cache_destroy(btrfs_inode_cachep);
8985 }
8986 
8987 int __init btrfs_init_cachep(void)
8988 {
8989 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8990 			sizeof(struct btrfs_inode), 0,
8991 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8992 			init_once);
8993 	if (!btrfs_inode_cachep)
8994 		goto fail;
8995 
8996 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8997 			offsetof(struct btrfs_dio_private, bio),
8998 			BIOSET_NEED_BVECS))
8999 		goto fail;
9000 
9001 	return 0;
9002 fail:
9003 	btrfs_destroy_cachep();
9004 	return -ENOMEM;
9005 }
9006 
9007 static int btrfs_getattr(struct user_namespace *mnt_userns,
9008 			 const struct path *path, struct kstat *stat,
9009 			 u32 request_mask, unsigned int flags)
9010 {
9011 	u64 delalloc_bytes;
9012 	u64 inode_bytes;
9013 	struct inode *inode = d_inode(path->dentry);
9014 	u32 blocksize = inode->i_sb->s_blocksize;
9015 	u32 bi_flags = BTRFS_I(inode)->flags;
9016 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9017 
9018 	stat->result_mask |= STATX_BTIME;
9019 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9020 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9021 	if (bi_flags & BTRFS_INODE_APPEND)
9022 		stat->attributes |= STATX_ATTR_APPEND;
9023 	if (bi_flags & BTRFS_INODE_COMPRESS)
9024 		stat->attributes |= STATX_ATTR_COMPRESSED;
9025 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9026 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9027 	if (bi_flags & BTRFS_INODE_NODUMP)
9028 		stat->attributes |= STATX_ATTR_NODUMP;
9029 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9030 		stat->attributes |= STATX_ATTR_VERITY;
9031 
9032 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9033 				  STATX_ATTR_COMPRESSED |
9034 				  STATX_ATTR_IMMUTABLE |
9035 				  STATX_ATTR_NODUMP);
9036 
9037 	generic_fillattr(mnt_userns, inode, stat);
9038 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9039 
9040 	spin_lock(&BTRFS_I(inode)->lock);
9041 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9042 	inode_bytes = inode_get_bytes(inode);
9043 	spin_unlock(&BTRFS_I(inode)->lock);
9044 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9045 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9046 	return 0;
9047 }
9048 
9049 static int btrfs_rename_exchange(struct inode *old_dir,
9050 			      struct dentry *old_dentry,
9051 			      struct inode *new_dir,
9052 			      struct dentry *new_dentry)
9053 {
9054 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9055 	struct btrfs_trans_handle *trans;
9056 	unsigned int trans_num_items;
9057 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9058 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9059 	struct inode *new_inode = new_dentry->d_inode;
9060 	struct inode *old_inode = old_dentry->d_inode;
9061 	struct timespec64 ctime = current_time(old_inode);
9062 	struct btrfs_rename_ctx old_rename_ctx;
9063 	struct btrfs_rename_ctx new_rename_ctx;
9064 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9065 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9066 	u64 old_idx = 0;
9067 	u64 new_idx = 0;
9068 	int ret;
9069 	int ret2;
9070 	bool need_abort = false;
9071 	struct fscrypt_name old_fname, new_fname;
9072 	struct fscrypt_str *old_name, *new_name;
9073 
9074 	/*
9075 	 * For non-subvolumes allow exchange only within one subvolume, in the
9076 	 * same inode namespace. Two subvolumes (represented as directory) can
9077 	 * be exchanged as they're a logical link and have a fixed inode number.
9078 	 */
9079 	if (root != dest &&
9080 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9081 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9082 		return -EXDEV;
9083 
9084 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9085 	if (ret)
9086 		return ret;
9087 
9088 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9089 	if (ret) {
9090 		fscrypt_free_filename(&old_fname);
9091 		return ret;
9092 	}
9093 
9094 	old_name = &old_fname.disk_name;
9095 	new_name = &new_fname.disk_name;
9096 
9097 	/* close the race window with snapshot create/destroy ioctl */
9098 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9099 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9100 		down_read(&fs_info->subvol_sem);
9101 
9102 	/*
9103 	 * For each inode:
9104 	 * 1 to remove old dir item
9105 	 * 1 to remove old dir index
9106 	 * 1 to add new dir item
9107 	 * 1 to add new dir index
9108 	 * 1 to update parent inode
9109 	 *
9110 	 * If the parents are the same, we only need to account for one
9111 	 */
9112 	trans_num_items = (old_dir == new_dir ? 9 : 10);
9113 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9114 		/*
9115 		 * 1 to remove old root ref
9116 		 * 1 to remove old root backref
9117 		 * 1 to add new root ref
9118 		 * 1 to add new root backref
9119 		 */
9120 		trans_num_items += 4;
9121 	} else {
9122 		/*
9123 		 * 1 to update inode item
9124 		 * 1 to remove old inode ref
9125 		 * 1 to add new inode ref
9126 		 */
9127 		trans_num_items += 3;
9128 	}
9129 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9130 		trans_num_items += 4;
9131 	else
9132 		trans_num_items += 3;
9133 	trans = btrfs_start_transaction(root, trans_num_items);
9134 	if (IS_ERR(trans)) {
9135 		ret = PTR_ERR(trans);
9136 		goto out_notrans;
9137 	}
9138 
9139 	if (dest != root) {
9140 		ret = btrfs_record_root_in_trans(trans, dest);
9141 		if (ret)
9142 			goto out_fail;
9143 	}
9144 
9145 	/*
9146 	 * We need to find a free sequence number both in the source and
9147 	 * in the destination directory for the exchange.
9148 	 */
9149 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9150 	if (ret)
9151 		goto out_fail;
9152 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9153 	if (ret)
9154 		goto out_fail;
9155 
9156 	BTRFS_I(old_inode)->dir_index = 0ULL;
9157 	BTRFS_I(new_inode)->dir_index = 0ULL;
9158 
9159 	/* Reference for the source. */
9160 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9161 		/* force full log commit if subvolume involved. */
9162 		btrfs_set_log_full_commit(trans);
9163 	} else {
9164 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
9165 					     btrfs_ino(BTRFS_I(new_dir)),
9166 					     old_idx);
9167 		if (ret)
9168 			goto out_fail;
9169 		need_abort = true;
9170 	}
9171 
9172 	/* And now for the dest. */
9173 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9174 		/* force full log commit if subvolume involved. */
9175 		btrfs_set_log_full_commit(trans);
9176 	} else {
9177 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
9178 					     btrfs_ino(BTRFS_I(old_dir)),
9179 					     new_idx);
9180 		if (ret) {
9181 			if (need_abort)
9182 				btrfs_abort_transaction(trans, ret);
9183 			goto out_fail;
9184 		}
9185 	}
9186 
9187 	/* Update inode version and ctime/mtime. */
9188 	inode_inc_iversion(old_dir);
9189 	inode_inc_iversion(new_dir);
9190 	inode_inc_iversion(old_inode);
9191 	inode_inc_iversion(new_inode);
9192 	old_dir->i_mtime = ctime;
9193 	old_dir->i_ctime = ctime;
9194 	new_dir->i_mtime = ctime;
9195 	new_dir->i_ctime = ctime;
9196 	old_inode->i_ctime = ctime;
9197 	new_inode->i_ctime = ctime;
9198 
9199 	if (old_dentry->d_parent != new_dentry->d_parent) {
9200 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9201 				BTRFS_I(old_inode), 1);
9202 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9203 				BTRFS_I(new_inode), 1);
9204 	}
9205 
9206 	/* src is a subvolume */
9207 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9208 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9209 	} else { /* src is an inode */
9210 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9211 					   BTRFS_I(old_dentry->d_inode),
9212 					   old_name, &old_rename_ctx);
9213 		if (!ret)
9214 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9215 	}
9216 	if (ret) {
9217 		btrfs_abort_transaction(trans, ret);
9218 		goto out_fail;
9219 	}
9220 
9221 	/* dest is a subvolume */
9222 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9223 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9224 	} else { /* dest is an inode */
9225 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9226 					   BTRFS_I(new_dentry->d_inode),
9227 					   new_name, &new_rename_ctx);
9228 		if (!ret)
9229 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9230 	}
9231 	if (ret) {
9232 		btrfs_abort_transaction(trans, ret);
9233 		goto out_fail;
9234 	}
9235 
9236 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9237 			     new_name, 0, old_idx);
9238 	if (ret) {
9239 		btrfs_abort_transaction(trans, ret);
9240 		goto out_fail;
9241 	}
9242 
9243 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9244 			     old_name, 0, new_idx);
9245 	if (ret) {
9246 		btrfs_abort_transaction(trans, ret);
9247 		goto out_fail;
9248 	}
9249 
9250 	if (old_inode->i_nlink == 1)
9251 		BTRFS_I(old_inode)->dir_index = old_idx;
9252 	if (new_inode->i_nlink == 1)
9253 		BTRFS_I(new_inode)->dir_index = new_idx;
9254 
9255 	/*
9256 	 * Now pin the logs of the roots. We do it to ensure that no other task
9257 	 * can sync the logs while we are in progress with the rename, because
9258 	 * that could result in an inconsistency in case any of the inodes that
9259 	 * are part of this rename operation were logged before.
9260 	 */
9261 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9262 		btrfs_pin_log_trans(root);
9263 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9264 		btrfs_pin_log_trans(dest);
9265 
9266 	/* Do the log updates for all inodes. */
9267 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9268 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9269 				   old_rename_ctx.index, new_dentry->d_parent);
9270 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9271 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9272 				   new_rename_ctx.index, old_dentry->d_parent);
9273 
9274 	/* Now unpin the logs. */
9275 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9276 		btrfs_end_log_trans(root);
9277 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9278 		btrfs_end_log_trans(dest);
9279 out_fail:
9280 	ret2 = btrfs_end_transaction(trans);
9281 	ret = ret ? ret : ret2;
9282 out_notrans:
9283 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9284 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9285 		up_read(&fs_info->subvol_sem);
9286 
9287 	fscrypt_free_filename(&new_fname);
9288 	fscrypt_free_filename(&old_fname);
9289 	return ret;
9290 }
9291 
9292 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9293 					struct inode *dir)
9294 {
9295 	struct inode *inode;
9296 
9297 	inode = new_inode(dir->i_sb);
9298 	if (inode) {
9299 		inode_init_owner(mnt_userns, inode, dir,
9300 				 S_IFCHR | WHITEOUT_MODE);
9301 		inode->i_op = &btrfs_special_inode_operations;
9302 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9303 	}
9304 	return inode;
9305 }
9306 
9307 static int btrfs_rename(struct user_namespace *mnt_userns,
9308 			struct inode *old_dir, struct dentry *old_dentry,
9309 			struct inode *new_dir, struct dentry *new_dentry,
9310 			unsigned int flags)
9311 {
9312 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9313 	struct btrfs_new_inode_args whiteout_args = {
9314 		.dir = old_dir,
9315 		.dentry = old_dentry,
9316 	};
9317 	struct btrfs_trans_handle *trans;
9318 	unsigned int trans_num_items;
9319 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9320 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9321 	struct inode *new_inode = d_inode(new_dentry);
9322 	struct inode *old_inode = d_inode(old_dentry);
9323 	struct btrfs_rename_ctx rename_ctx;
9324 	u64 index = 0;
9325 	int ret;
9326 	int ret2;
9327 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9328 	struct fscrypt_name old_fname, new_fname;
9329 
9330 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9331 		return -EPERM;
9332 
9333 	/* we only allow rename subvolume link between subvolumes */
9334 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9335 		return -EXDEV;
9336 
9337 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9338 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9339 		return -ENOTEMPTY;
9340 
9341 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9342 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9343 		return -ENOTEMPTY;
9344 
9345 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9346 	if (ret)
9347 		return ret;
9348 
9349 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9350 	if (ret) {
9351 		fscrypt_free_filename(&old_fname);
9352 		return ret;
9353 	}
9354 
9355 	/* check for collisions, even if the  name isn't there */
9356 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9357 	if (ret) {
9358 		if (ret == -EEXIST) {
9359 			/* we shouldn't get
9360 			 * eexist without a new_inode */
9361 			if (WARN_ON(!new_inode)) {
9362 				goto out_fscrypt_names;
9363 			}
9364 		} else {
9365 			/* maybe -EOVERFLOW */
9366 			goto out_fscrypt_names;
9367 		}
9368 	}
9369 	ret = 0;
9370 
9371 	/*
9372 	 * we're using rename to replace one file with another.  Start IO on it
9373 	 * now so  we don't add too much work to the end of the transaction
9374 	 */
9375 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9376 		filemap_flush(old_inode->i_mapping);
9377 
9378 	if (flags & RENAME_WHITEOUT) {
9379 		whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9380 		if (!whiteout_args.inode)
9381 			return -ENOMEM;
9382 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9383 		if (ret)
9384 			goto out_whiteout_inode;
9385 	} else {
9386 		/* 1 to update the old parent inode. */
9387 		trans_num_items = 1;
9388 	}
9389 
9390 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9391 		/* Close the race window with snapshot create/destroy ioctl */
9392 		down_read(&fs_info->subvol_sem);
9393 		/*
9394 		 * 1 to remove old root ref
9395 		 * 1 to remove old root backref
9396 		 * 1 to add new root ref
9397 		 * 1 to add new root backref
9398 		 */
9399 		trans_num_items += 4;
9400 	} else {
9401 		/*
9402 		 * 1 to update inode
9403 		 * 1 to remove old inode ref
9404 		 * 1 to add new inode ref
9405 		 */
9406 		trans_num_items += 3;
9407 	}
9408 	/*
9409 	 * 1 to remove old dir item
9410 	 * 1 to remove old dir index
9411 	 * 1 to add new dir item
9412 	 * 1 to add new dir index
9413 	 */
9414 	trans_num_items += 4;
9415 	/* 1 to update new parent inode if it's not the same as the old parent */
9416 	if (new_dir != old_dir)
9417 		trans_num_items++;
9418 	if (new_inode) {
9419 		/*
9420 		 * 1 to update inode
9421 		 * 1 to remove inode ref
9422 		 * 1 to remove dir item
9423 		 * 1 to remove dir index
9424 		 * 1 to possibly add orphan item
9425 		 */
9426 		trans_num_items += 5;
9427 	}
9428 	trans = btrfs_start_transaction(root, trans_num_items);
9429 	if (IS_ERR(trans)) {
9430 		ret = PTR_ERR(trans);
9431 		goto out_notrans;
9432 	}
9433 
9434 	if (dest != root) {
9435 		ret = btrfs_record_root_in_trans(trans, dest);
9436 		if (ret)
9437 			goto out_fail;
9438 	}
9439 
9440 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9441 	if (ret)
9442 		goto out_fail;
9443 
9444 	BTRFS_I(old_inode)->dir_index = 0ULL;
9445 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9446 		/* force full log commit if subvolume involved. */
9447 		btrfs_set_log_full_commit(trans);
9448 	} else {
9449 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9450 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9451 					     index);
9452 		if (ret)
9453 			goto out_fail;
9454 	}
9455 
9456 	inode_inc_iversion(old_dir);
9457 	inode_inc_iversion(new_dir);
9458 	inode_inc_iversion(old_inode);
9459 	old_dir->i_mtime = current_time(old_dir);
9460 	old_dir->i_ctime = old_dir->i_mtime;
9461 	new_dir->i_mtime = old_dir->i_mtime;
9462 	new_dir->i_ctime = old_dir->i_mtime;
9463 	old_inode->i_ctime = old_dir->i_mtime;
9464 
9465 	if (old_dentry->d_parent != new_dentry->d_parent)
9466 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9467 				BTRFS_I(old_inode), 1);
9468 
9469 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9470 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9471 	} else {
9472 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9473 					   BTRFS_I(d_inode(old_dentry)),
9474 					   &old_fname.disk_name, &rename_ctx);
9475 		if (!ret)
9476 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9477 	}
9478 	if (ret) {
9479 		btrfs_abort_transaction(trans, ret);
9480 		goto out_fail;
9481 	}
9482 
9483 	if (new_inode) {
9484 		inode_inc_iversion(new_inode);
9485 		new_inode->i_ctime = current_time(new_inode);
9486 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9487 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9488 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9489 			BUG_ON(new_inode->i_nlink == 0);
9490 		} else {
9491 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9492 						 BTRFS_I(d_inode(new_dentry)),
9493 						 &new_fname.disk_name);
9494 		}
9495 		if (!ret && new_inode->i_nlink == 0)
9496 			ret = btrfs_orphan_add(trans,
9497 					BTRFS_I(d_inode(new_dentry)));
9498 		if (ret) {
9499 			btrfs_abort_transaction(trans, ret);
9500 			goto out_fail;
9501 		}
9502 	}
9503 
9504 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9505 			     &new_fname.disk_name, 0, index);
9506 	if (ret) {
9507 		btrfs_abort_transaction(trans, ret);
9508 		goto out_fail;
9509 	}
9510 
9511 	if (old_inode->i_nlink == 1)
9512 		BTRFS_I(old_inode)->dir_index = index;
9513 
9514 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9515 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9516 				   rename_ctx.index, new_dentry->d_parent);
9517 
9518 	if (flags & RENAME_WHITEOUT) {
9519 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9520 		if (ret) {
9521 			btrfs_abort_transaction(trans, ret);
9522 			goto out_fail;
9523 		} else {
9524 			unlock_new_inode(whiteout_args.inode);
9525 			iput(whiteout_args.inode);
9526 			whiteout_args.inode = NULL;
9527 		}
9528 	}
9529 out_fail:
9530 	ret2 = btrfs_end_transaction(trans);
9531 	ret = ret ? ret : ret2;
9532 out_notrans:
9533 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9534 		up_read(&fs_info->subvol_sem);
9535 	if (flags & RENAME_WHITEOUT)
9536 		btrfs_new_inode_args_destroy(&whiteout_args);
9537 out_whiteout_inode:
9538 	if (flags & RENAME_WHITEOUT)
9539 		iput(whiteout_args.inode);
9540 out_fscrypt_names:
9541 	fscrypt_free_filename(&old_fname);
9542 	fscrypt_free_filename(&new_fname);
9543 	return ret;
9544 }
9545 
9546 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9547 			 struct dentry *old_dentry, struct inode *new_dir,
9548 			 struct dentry *new_dentry, unsigned int flags)
9549 {
9550 	int ret;
9551 
9552 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9553 		return -EINVAL;
9554 
9555 	if (flags & RENAME_EXCHANGE)
9556 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9557 					    new_dentry);
9558 	else
9559 		ret = btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9560 				   new_dentry, flags);
9561 
9562 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9563 
9564 	return ret;
9565 }
9566 
9567 struct btrfs_delalloc_work {
9568 	struct inode *inode;
9569 	struct completion completion;
9570 	struct list_head list;
9571 	struct btrfs_work work;
9572 };
9573 
9574 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9575 {
9576 	struct btrfs_delalloc_work *delalloc_work;
9577 	struct inode *inode;
9578 
9579 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9580 				     work);
9581 	inode = delalloc_work->inode;
9582 	filemap_flush(inode->i_mapping);
9583 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9584 				&BTRFS_I(inode)->runtime_flags))
9585 		filemap_flush(inode->i_mapping);
9586 
9587 	iput(inode);
9588 	complete(&delalloc_work->completion);
9589 }
9590 
9591 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9592 {
9593 	struct btrfs_delalloc_work *work;
9594 
9595 	work = kmalloc(sizeof(*work), GFP_NOFS);
9596 	if (!work)
9597 		return NULL;
9598 
9599 	init_completion(&work->completion);
9600 	INIT_LIST_HEAD(&work->list);
9601 	work->inode = inode;
9602 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9603 
9604 	return work;
9605 }
9606 
9607 /*
9608  * some fairly slow code that needs optimization. This walks the list
9609  * of all the inodes with pending delalloc and forces them to disk.
9610  */
9611 static int start_delalloc_inodes(struct btrfs_root *root,
9612 				 struct writeback_control *wbc, bool snapshot,
9613 				 bool in_reclaim_context)
9614 {
9615 	struct btrfs_inode *binode;
9616 	struct inode *inode;
9617 	struct btrfs_delalloc_work *work, *next;
9618 	struct list_head works;
9619 	struct list_head splice;
9620 	int ret = 0;
9621 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9622 
9623 	INIT_LIST_HEAD(&works);
9624 	INIT_LIST_HEAD(&splice);
9625 
9626 	mutex_lock(&root->delalloc_mutex);
9627 	spin_lock(&root->delalloc_lock);
9628 	list_splice_init(&root->delalloc_inodes, &splice);
9629 	while (!list_empty(&splice)) {
9630 		binode = list_entry(splice.next, struct btrfs_inode,
9631 				    delalloc_inodes);
9632 
9633 		list_move_tail(&binode->delalloc_inodes,
9634 			       &root->delalloc_inodes);
9635 
9636 		if (in_reclaim_context &&
9637 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9638 			continue;
9639 
9640 		inode = igrab(&binode->vfs_inode);
9641 		if (!inode) {
9642 			cond_resched_lock(&root->delalloc_lock);
9643 			continue;
9644 		}
9645 		spin_unlock(&root->delalloc_lock);
9646 
9647 		if (snapshot)
9648 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9649 				&binode->runtime_flags);
9650 		if (full_flush) {
9651 			work = btrfs_alloc_delalloc_work(inode);
9652 			if (!work) {
9653 				iput(inode);
9654 				ret = -ENOMEM;
9655 				goto out;
9656 			}
9657 			list_add_tail(&work->list, &works);
9658 			btrfs_queue_work(root->fs_info->flush_workers,
9659 					 &work->work);
9660 		} else {
9661 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9662 			btrfs_add_delayed_iput(BTRFS_I(inode));
9663 			if (ret || wbc->nr_to_write <= 0)
9664 				goto out;
9665 		}
9666 		cond_resched();
9667 		spin_lock(&root->delalloc_lock);
9668 	}
9669 	spin_unlock(&root->delalloc_lock);
9670 
9671 out:
9672 	list_for_each_entry_safe(work, next, &works, list) {
9673 		list_del_init(&work->list);
9674 		wait_for_completion(&work->completion);
9675 		kfree(work);
9676 	}
9677 
9678 	if (!list_empty(&splice)) {
9679 		spin_lock(&root->delalloc_lock);
9680 		list_splice_tail(&splice, &root->delalloc_inodes);
9681 		spin_unlock(&root->delalloc_lock);
9682 	}
9683 	mutex_unlock(&root->delalloc_mutex);
9684 	return ret;
9685 }
9686 
9687 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9688 {
9689 	struct writeback_control wbc = {
9690 		.nr_to_write = LONG_MAX,
9691 		.sync_mode = WB_SYNC_NONE,
9692 		.range_start = 0,
9693 		.range_end = LLONG_MAX,
9694 	};
9695 	struct btrfs_fs_info *fs_info = root->fs_info;
9696 
9697 	if (BTRFS_FS_ERROR(fs_info))
9698 		return -EROFS;
9699 
9700 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9701 }
9702 
9703 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9704 			       bool in_reclaim_context)
9705 {
9706 	struct writeback_control wbc = {
9707 		.nr_to_write = nr,
9708 		.sync_mode = WB_SYNC_NONE,
9709 		.range_start = 0,
9710 		.range_end = LLONG_MAX,
9711 	};
9712 	struct btrfs_root *root;
9713 	struct list_head splice;
9714 	int ret;
9715 
9716 	if (BTRFS_FS_ERROR(fs_info))
9717 		return -EROFS;
9718 
9719 	INIT_LIST_HEAD(&splice);
9720 
9721 	mutex_lock(&fs_info->delalloc_root_mutex);
9722 	spin_lock(&fs_info->delalloc_root_lock);
9723 	list_splice_init(&fs_info->delalloc_roots, &splice);
9724 	while (!list_empty(&splice)) {
9725 		/*
9726 		 * Reset nr_to_write here so we know that we're doing a full
9727 		 * flush.
9728 		 */
9729 		if (nr == LONG_MAX)
9730 			wbc.nr_to_write = LONG_MAX;
9731 
9732 		root = list_first_entry(&splice, struct btrfs_root,
9733 					delalloc_root);
9734 		root = btrfs_grab_root(root);
9735 		BUG_ON(!root);
9736 		list_move_tail(&root->delalloc_root,
9737 			       &fs_info->delalloc_roots);
9738 		spin_unlock(&fs_info->delalloc_root_lock);
9739 
9740 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9741 		btrfs_put_root(root);
9742 		if (ret < 0 || wbc.nr_to_write <= 0)
9743 			goto out;
9744 		spin_lock(&fs_info->delalloc_root_lock);
9745 	}
9746 	spin_unlock(&fs_info->delalloc_root_lock);
9747 
9748 	ret = 0;
9749 out:
9750 	if (!list_empty(&splice)) {
9751 		spin_lock(&fs_info->delalloc_root_lock);
9752 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9753 		spin_unlock(&fs_info->delalloc_root_lock);
9754 	}
9755 	mutex_unlock(&fs_info->delalloc_root_mutex);
9756 	return ret;
9757 }
9758 
9759 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9760 			 struct dentry *dentry, const char *symname)
9761 {
9762 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9763 	struct btrfs_trans_handle *trans;
9764 	struct btrfs_root *root = BTRFS_I(dir)->root;
9765 	struct btrfs_path *path;
9766 	struct btrfs_key key;
9767 	struct inode *inode;
9768 	struct btrfs_new_inode_args new_inode_args = {
9769 		.dir = dir,
9770 		.dentry = dentry,
9771 	};
9772 	unsigned int trans_num_items;
9773 	int err;
9774 	int name_len;
9775 	int datasize;
9776 	unsigned long ptr;
9777 	struct btrfs_file_extent_item *ei;
9778 	struct extent_buffer *leaf;
9779 
9780 	name_len = strlen(symname);
9781 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9782 		return -ENAMETOOLONG;
9783 
9784 	inode = new_inode(dir->i_sb);
9785 	if (!inode)
9786 		return -ENOMEM;
9787 	inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9788 	inode->i_op = &btrfs_symlink_inode_operations;
9789 	inode_nohighmem(inode);
9790 	inode->i_mapping->a_ops = &btrfs_aops;
9791 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9792 	inode_set_bytes(inode, name_len);
9793 
9794 	new_inode_args.inode = inode;
9795 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9796 	if (err)
9797 		goto out_inode;
9798 	/* 1 additional item for the inline extent */
9799 	trans_num_items++;
9800 
9801 	trans = btrfs_start_transaction(root, trans_num_items);
9802 	if (IS_ERR(trans)) {
9803 		err = PTR_ERR(trans);
9804 		goto out_new_inode_args;
9805 	}
9806 
9807 	err = btrfs_create_new_inode(trans, &new_inode_args);
9808 	if (err)
9809 		goto out;
9810 
9811 	path = btrfs_alloc_path();
9812 	if (!path) {
9813 		err = -ENOMEM;
9814 		btrfs_abort_transaction(trans, err);
9815 		discard_new_inode(inode);
9816 		inode = NULL;
9817 		goto out;
9818 	}
9819 	key.objectid = btrfs_ino(BTRFS_I(inode));
9820 	key.offset = 0;
9821 	key.type = BTRFS_EXTENT_DATA_KEY;
9822 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9823 	err = btrfs_insert_empty_item(trans, root, path, &key,
9824 				      datasize);
9825 	if (err) {
9826 		btrfs_abort_transaction(trans, err);
9827 		btrfs_free_path(path);
9828 		discard_new_inode(inode);
9829 		inode = NULL;
9830 		goto out;
9831 	}
9832 	leaf = path->nodes[0];
9833 	ei = btrfs_item_ptr(leaf, path->slots[0],
9834 			    struct btrfs_file_extent_item);
9835 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9836 	btrfs_set_file_extent_type(leaf, ei,
9837 				   BTRFS_FILE_EXTENT_INLINE);
9838 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9839 	btrfs_set_file_extent_compression(leaf, ei, 0);
9840 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9841 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9842 
9843 	ptr = btrfs_file_extent_inline_start(ei);
9844 	write_extent_buffer(leaf, symname, ptr, name_len);
9845 	btrfs_mark_buffer_dirty(leaf);
9846 	btrfs_free_path(path);
9847 
9848 	d_instantiate_new(dentry, inode);
9849 	err = 0;
9850 out:
9851 	btrfs_end_transaction(trans);
9852 	btrfs_btree_balance_dirty(fs_info);
9853 out_new_inode_args:
9854 	btrfs_new_inode_args_destroy(&new_inode_args);
9855 out_inode:
9856 	if (err)
9857 		iput(inode);
9858 	return err;
9859 }
9860 
9861 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9862 				       struct btrfs_trans_handle *trans_in,
9863 				       struct btrfs_inode *inode,
9864 				       struct btrfs_key *ins,
9865 				       u64 file_offset)
9866 {
9867 	struct btrfs_file_extent_item stack_fi;
9868 	struct btrfs_replace_extent_info extent_info;
9869 	struct btrfs_trans_handle *trans = trans_in;
9870 	struct btrfs_path *path;
9871 	u64 start = ins->objectid;
9872 	u64 len = ins->offset;
9873 	int qgroup_released;
9874 	int ret;
9875 
9876 	memset(&stack_fi, 0, sizeof(stack_fi));
9877 
9878 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9879 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9880 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9881 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9882 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9883 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9884 	/* Encryption and other encoding is reserved and all 0 */
9885 
9886 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9887 	if (qgroup_released < 0)
9888 		return ERR_PTR(qgroup_released);
9889 
9890 	if (trans) {
9891 		ret = insert_reserved_file_extent(trans, inode,
9892 						  file_offset, &stack_fi,
9893 						  true, qgroup_released);
9894 		if (ret)
9895 			goto free_qgroup;
9896 		return trans;
9897 	}
9898 
9899 	extent_info.disk_offset = start;
9900 	extent_info.disk_len = len;
9901 	extent_info.data_offset = 0;
9902 	extent_info.data_len = len;
9903 	extent_info.file_offset = file_offset;
9904 	extent_info.extent_buf = (char *)&stack_fi;
9905 	extent_info.is_new_extent = true;
9906 	extent_info.update_times = true;
9907 	extent_info.qgroup_reserved = qgroup_released;
9908 	extent_info.insertions = 0;
9909 
9910 	path = btrfs_alloc_path();
9911 	if (!path) {
9912 		ret = -ENOMEM;
9913 		goto free_qgroup;
9914 	}
9915 
9916 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9917 				     file_offset + len - 1, &extent_info,
9918 				     &trans);
9919 	btrfs_free_path(path);
9920 	if (ret)
9921 		goto free_qgroup;
9922 	return trans;
9923 
9924 free_qgroup:
9925 	/*
9926 	 * We have released qgroup data range at the beginning of the function,
9927 	 * and normally qgroup_released bytes will be freed when committing
9928 	 * transaction.
9929 	 * But if we error out early, we have to free what we have released
9930 	 * or we leak qgroup data reservation.
9931 	 */
9932 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9933 			inode->root->root_key.objectid, qgroup_released,
9934 			BTRFS_QGROUP_RSV_DATA);
9935 	return ERR_PTR(ret);
9936 }
9937 
9938 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9939 				       u64 start, u64 num_bytes, u64 min_size,
9940 				       loff_t actual_len, u64 *alloc_hint,
9941 				       struct btrfs_trans_handle *trans)
9942 {
9943 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9944 	struct extent_map *em;
9945 	struct btrfs_root *root = BTRFS_I(inode)->root;
9946 	struct btrfs_key ins;
9947 	u64 cur_offset = start;
9948 	u64 clear_offset = start;
9949 	u64 i_size;
9950 	u64 cur_bytes;
9951 	u64 last_alloc = (u64)-1;
9952 	int ret = 0;
9953 	bool own_trans = true;
9954 	u64 end = start + num_bytes - 1;
9955 
9956 	if (trans)
9957 		own_trans = false;
9958 	while (num_bytes > 0) {
9959 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9960 		cur_bytes = max(cur_bytes, min_size);
9961 		/*
9962 		 * If we are severely fragmented we could end up with really
9963 		 * small allocations, so if the allocator is returning small
9964 		 * chunks lets make its job easier by only searching for those
9965 		 * sized chunks.
9966 		 */
9967 		cur_bytes = min(cur_bytes, last_alloc);
9968 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9969 				min_size, 0, *alloc_hint, &ins, 1, 0);
9970 		if (ret)
9971 			break;
9972 
9973 		/*
9974 		 * We've reserved this space, and thus converted it from
9975 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9976 		 * from here on out we will only need to clear our reservation
9977 		 * for the remaining unreserved area, so advance our
9978 		 * clear_offset by our extent size.
9979 		 */
9980 		clear_offset += ins.offset;
9981 
9982 		last_alloc = ins.offset;
9983 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9984 						    &ins, cur_offset);
9985 		/*
9986 		 * Now that we inserted the prealloc extent we can finally
9987 		 * decrement the number of reservations in the block group.
9988 		 * If we did it before, we could race with relocation and have
9989 		 * relocation miss the reserved extent, making it fail later.
9990 		 */
9991 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9992 		if (IS_ERR(trans)) {
9993 			ret = PTR_ERR(trans);
9994 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9995 						   ins.offset, 0);
9996 			break;
9997 		}
9998 
9999 		em = alloc_extent_map();
10000 		if (!em) {
10001 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
10002 					    cur_offset + ins.offset - 1, false);
10003 			btrfs_set_inode_full_sync(BTRFS_I(inode));
10004 			goto next;
10005 		}
10006 
10007 		em->start = cur_offset;
10008 		em->orig_start = cur_offset;
10009 		em->len = ins.offset;
10010 		em->block_start = ins.objectid;
10011 		em->block_len = ins.offset;
10012 		em->orig_block_len = ins.offset;
10013 		em->ram_bytes = ins.offset;
10014 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10015 		em->generation = trans->transid;
10016 
10017 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
10018 		free_extent_map(em);
10019 next:
10020 		num_bytes -= ins.offset;
10021 		cur_offset += ins.offset;
10022 		*alloc_hint = ins.objectid + ins.offset;
10023 
10024 		inode_inc_iversion(inode);
10025 		inode->i_ctime = current_time(inode);
10026 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10027 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10028 		    (actual_len > inode->i_size) &&
10029 		    (cur_offset > inode->i_size)) {
10030 			if (cur_offset > actual_len)
10031 				i_size = actual_len;
10032 			else
10033 				i_size = cur_offset;
10034 			i_size_write(inode, i_size);
10035 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10036 		}
10037 
10038 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10039 
10040 		if (ret) {
10041 			btrfs_abort_transaction(trans, ret);
10042 			if (own_trans)
10043 				btrfs_end_transaction(trans);
10044 			break;
10045 		}
10046 
10047 		if (own_trans) {
10048 			btrfs_end_transaction(trans);
10049 			trans = NULL;
10050 		}
10051 	}
10052 	if (clear_offset < end)
10053 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10054 			end - clear_offset + 1);
10055 	return ret;
10056 }
10057 
10058 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10059 			      u64 start, u64 num_bytes, u64 min_size,
10060 			      loff_t actual_len, u64 *alloc_hint)
10061 {
10062 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10063 					   min_size, actual_len, alloc_hint,
10064 					   NULL);
10065 }
10066 
10067 int btrfs_prealloc_file_range_trans(struct inode *inode,
10068 				    struct btrfs_trans_handle *trans, int mode,
10069 				    u64 start, u64 num_bytes, u64 min_size,
10070 				    loff_t actual_len, u64 *alloc_hint)
10071 {
10072 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10073 					   min_size, actual_len, alloc_hint, trans);
10074 }
10075 
10076 static int btrfs_permission(struct user_namespace *mnt_userns,
10077 			    struct inode *inode, int mask)
10078 {
10079 	struct btrfs_root *root = BTRFS_I(inode)->root;
10080 	umode_t mode = inode->i_mode;
10081 
10082 	if (mask & MAY_WRITE &&
10083 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10084 		if (btrfs_root_readonly(root))
10085 			return -EROFS;
10086 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10087 			return -EACCES;
10088 	}
10089 	return generic_permission(mnt_userns, inode, mask);
10090 }
10091 
10092 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10093 			 struct file *file, umode_t mode)
10094 {
10095 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10096 	struct btrfs_trans_handle *trans;
10097 	struct btrfs_root *root = BTRFS_I(dir)->root;
10098 	struct inode *inode;
10099 	struct btrfs_new_inode_args new_inode_args = {
10100 		.dir = dir,
10101 		.dentry = file->f_path.dentry,
10102 		.orphan = true,
10103 	};
10104 	unsigned int trans_num_items;
10105 	int ret;
10106 
10107 	inode = new_inode(dir->i_sb);
10108 	if (!inode)
10109 		return -ENOMEM;
10110 	inode_init_owner(mnt_userns, inode, dir, mode);
10111 	inode->i_fop = &btrfs_file_operations;
10112 	inode->i_op = &btrfs_file_inode_operations;
10113 	inode->i_mapping->a_ops = &btrfs_aops;
10114 
10115 	new_inode_args.inode = inode;
10116 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
10117 	if (ret)
10118 		goto out_inode;
10119 
10120 	trans = btrfs_start_transaction(root, trans_num_items);
10121 	if (IS_ERR(trans)) {
10122 		ret = PTR_ERR(trans);
10123 		goto out_new_inode_args;
10124 	}
10125 
10126 	ret = btrfs_create_new_inode(trans, &new_inode_args);
10127 
10128 	/*
10129 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
10130 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
10131 	 * 0, through:
10132 	 *
10133 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10134 	 */
10135 	set_nlink(inode, 1);
10136 
10137 	if (!ret) {
10138 		d_tmpfile(file, inode);
10139 		unlock_new_inode(inode);
10140 		mark_inode_dirty(inode);
10141 	}
10142 
10143 	btrfs_end_transaction(trans);
10144 	btrfs_btree_balance_dirty(fs_info);
10145 out_new_inode_args:
10146 	btrfs_new_inode_args_destroy(&new_inode_args);
10147 out_inode:
10148 	if (ret)
10149 		iput(inode);
10150 	return finish_open_simple(file, ret);
10151 }
10152 
10153 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10154 {
10155 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10156 	unsigned long index = start >> PAGE_SHIFT;
10157 	unsigned long end_index = end >> PAGE_SHIFT;
10158 	struct page *page;
10159 	u32 len;
10160 
10161 	ASSERT(end + 1 - start <= U32_MAX);
10162 	len = end + 1 - start;
10163 	while (index <= end_index) {
10164 		page = find_get_page(inode->vfs_inode.i_mapping, index);
10165 		ASSERT(page); /* Pages should be in the extent_io_tree */
10166 
10167 		btrfs_page_set_writeback(fs_info, page, start, len);
10168 		put_page(page);
10169 		index++;
10170 	}
10171 }
10172 
10173 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
10174 					     int compress_type)
10175 {
10176 	switch (compress_type) {
10177 	case BTRFS_COMPRESS_NONE:
10178 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10179 	case BTRFS_COMPRESS_ZLIB:
10180 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10181 	case BTRFS_COMPRESS_LZO:
10182 		/*
10183 		 * The LZO format depends on the sector size. 64K is the maximum
10184 		 * sector size that we support.
10185 		 */
10186 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10187 			return -EINVAL;
10188 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10189 		       (fs_info->sectorsize_bits - 12);
10190 	case BTRFS_COMPRESS_ZSTD:
10191 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10192 	default:
10193 		return -EUCLEAN;
10194 	}
10195 }
10196 
10197 static ssize_t btrfs_encoded_read_inline(
10198 				struct kiocb *iocb,
10199 				struct iov_iter *iter, u64 start,
10200 				u64 lockend,
10201 				struct extent_state **cached_state,
10202 				u64 extent_start, size_t count,
10203 				struct btrfs_ioctl_encoded_io_args *encoded,
10204 				bool *unlocked)
10205 {
10206 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10207 	struct btrfs_root *root = inode->root;
10208 	struct btrfs_fs_info *fs_info = root->fs_info;
10209 	struct extent_io_tree *io_tree = &inode->io_tree;
10210 	struct btrfs_path *path;
10211 	struct extent_buffer *leaf;
10212 	struct btrfs_file_extent_item *item;
10213 	u64 ram_bytes;
10214 	unsigned long ptr;
10215 	void *tmp;
10216 	ssize_t ret;
10217 
10218 	path = btrfs_alloc_path();
10219 	if (!path) {
10220 		ret = -ENOMEM;
10221 		goto out;
10222 	}
10223 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10224 				       extent_start, 0);
10225 	if (ret) {
10226 		if (ret > 0) {
10227 			/* The extent item disappeared? */
10228 			ret = -EIO;
10229 		}
10230 		goto out;
10231 	}
10232 	leaf = path->nodes[0];
10233 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10234 
10235 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10236 	ptr = btrfs_file_extent_inline_start(item);
10237 
10238 	encoded->len = min_t(u64, extent_start + ram_bytes,
10239 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10240 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
10241 				 btrfs_file_extent_compression(leaf, item));
10242 	if (ret < 0)
10243 		goto out;
10244 	encoded->compression = ret;
10245 	if (encoded->compression) {
10246 		size_t inline_size;
10247 
10248 		inline_size = btrfs_file_extent_inline_item_len(leaf,
10249 								path->slots[0]);
10250 		if (inline_size > count) {
10251 			ret = -ENOBUFS;
10252 			goto out;
10253 		}
10254 		count = inline_size;
10255 		encoded->unencoded_len = ram_bytes;
10256 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
10257 	} else {
10258 		count = min_t(u64, count, encoded->len);
10259 		encoded->len = count;
10260 		encoded->unencoded_len = count;
10261 		ptr += iocb->ki_pos - extent_start;
10262 	}
10263 
10264 	tmp = kmalloc(count, GFP_NOFS);
10265 	if (!tmp) {
10266 		ret = -ENOMEM;
10267 		goto out;
10268 	}
10269 	read_extent_buffer(leaf, tmp, ptr, count);
10270 	btrfs_release_path(path);
10271 	unlock_extent(io_tree, start, lockend, cached_state);
10272 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10273 	*unlocked = true;
10274 
10275 	ret = copy_to_iter(tmp, count, iter);
10276 	if (ret != count)
10277 		ret = -EFAULT;
10278 	kfree(tmp);
10279 out:
10280 	btrfs_free_path(path);
10281 	return ret;
10282 }
10283 
10284 struct btrfs_encoded_read_private {
10285 	struct btrfs_inode *inode;
10286 	u64 file_offset;
10287 	wait_queue_head_t wait;
10288 	atomic_t pending;
10289 	blk_status_t status;
10290 	bool skip_csum;
10291 };
10292 
10293 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10294 					    struct bio *bio, int mirror_num)
10295 {
10296 	struct btrfs_encoded_read_private *priv = btrfs_bio(bio)->private;
10297 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10298 	blk_status_t ret;
10299 
10300 	if (!priv->skip_csum) {
10301 		ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10302 		if (ret)
10303 			return ret;
10304 	}
10305 
10306 	atomic_inc(&priv->pending);
10307 	btrfs_submit_bio(fs_info, bio, mirror_num);
10308 	return BLK_STS_OK;
10309 }
10310 
10311 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10312 {
10313 	const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10314 	struct btrfs_encoded_read_private *priv = bbio->private;
10315 	struct btrfs_inode *inode = priv->inode;
10316 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10317 	u32 sectorsize = fs_info->sectorsize;
10318 	struct bio_vec *bvec;
10319 	struct bvec_iter_all iter_all;
10320 	u32 bio_offset = 0;
10321 
10322 	if (priv->skip_csum || !uptodate)
10323 		return bbio->bio.bi_status;
10324 
10325 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10326 		unsigned int i, nr_sectors, pgoff;
10327 
10328 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10329 		pgoff = bvec->bv_offset;
10330 		for (i = 0; i < nr_sectors; i++) {
10331 			ASSERT(pgoff < PAGE_SIZE);
10332 			if (btrfs_check_data_csum(inode, bbio, bio_offset,
10333 					    bvec->bv_page, pgoff))
10334 				return BLK_STS_IOERR;
10335 			bio_offset += sectorsize;
10336 			pgoff += sectorsize;
10337 		}
10338 	}
10339 	return BLK_STS_OK;
10340 }
10341 
10342 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10343 {
10344 	struct btrfs_encoded_read_private *priv = bbio->private;
10345 	blk_status_t status;
10346 
10347 	status = btrfs_encoded_read_verify_csum(bbio);
10348 	if (status) {
10349 		/*
10350 		 * The memory barrier implied by the atomic_dec_return() here
10351 		 * pairs with the memory barrier implied by the
10352 		 * atomic_dec_return() or io_wait_event() in
10353 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10354 		 * write is observed before the load of status in
10355 		 * btrfs_encoded_read_regular_fill_pages().
10356 		 */
10357 		WRITE_ONCE(priv->status, status);
10358 	}
10359 	if (!atomic_dec_return(&priv->pending))
10360 		wake_up(&priv->wait);
10361 	btrfs_bio_free_csum(bbio);
10362 	bio_put(&bbio->bio);
10363 }
10364 
10365 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10366 					  u64 file_offset, u64 disk_bytenr,
10367 					  u64 disk_io_size, struct page **pages)
10368 {
10369 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10370 	struct btrfs_encoded_read_private priv = {
10371 		.inode = inode,
10372 		.file_offset = file_offset,
10373 		.pending = ATOMIC_INIT(1),
10374 		.skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10375 	};
10376 	unsigned long i = 0;
10377 	u64 cur = 0;
10378 	int ret;
10379 
10380 	init_waitqueue_head(&priv.wait);
10381 	/*
10382 	 * Submit bios for the extent, splitting due to bio or stripe limits as
10383 	 * necessary.
10384 	 */
10385 	while (cur < disk_io_size) {
10386 		struct extent_map *em;
10387 		struct btrfs_io_geometry geom;
10388 		struct bio *bio = NULL;
10389 		u64 remaining;
10390 
10391 		em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10392 					 disk_io_size - cur);
10393 		if (IS_ERR(em)) {
10394 			ret = PTR_ERR(em);
10395 		} else {
10396 			ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10397 						    disk_bytenr + cur, &geom);
10398 			free_extent_map(em);
10399 		}
10400 		if (ret) {
10401 			WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10402 			break;
10403 		}
10404 		remaining = min(geom.len, disk_io_size - cur);
10405 		while (bio || remaining) {
10406 			size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10407 
10408 			if (!bio) {
10409 				bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ,
10410 						      btrfs_encoded_read_endio,
10411 						      &priv);
10412 				bio->bi_iter.bi_sector =
10413 					(disk_bytenr + cur) >> SECTOR_SHIFT;
10414 			}
10415 
10416 			if (!bytes ||
10417 			    bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10418 				blk_status_t status;
10419 
10420 				status = submit_encoded_read_bio(inode, bio, 0);
10421 				if (status) {
10422 					WRITE_ONCE(priv.status, status);
10423 					bio_put(bio);
10424 					goto out;
10425 				}
10426 				bio = NULL;
10427 				continue;
10428 			}
10429 
10430 			i++;
10431 			cur += bytes;
10432 			remaining -= bytes;
10433 		}
10434 	}
10435 
10436 out:
10437 	if (atomic_dec_return(&priv.pending))
10438 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10439 	/* See btrfs_encoded_read_endio() for ordering. */
10440 	return blk_status_to_errno(READ_ONCE(priv.status));
10441 }
10442 
10443 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10444 					  struct iov_iter *iter,
10445 					  u64 start, u64 lockend,
10446 					  struct extent_state **cached_state,
10447 					  u64 disk_bytenr, u64 disk_io_size,
10448 					  size_t count, bool compressed,
10449 					  bool *unlocked)
10450 {
10451 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10452 	struct extent_io_tree *io_tree = &inode->io_tree;
10453 	struct page **pages;
10454 	unsigned long nr_pages, i;
10455 	u64 cur;
10456 	size_t page_offset;
10457 	ssize_t ret;
10458 
10459 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10460 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10461 	if (!pages)
10462 		return -ENOMEM;
10463 	ret = btrfs_alloc_page_array(nr_pages, pages);
10464 	if (ret) {
10465 		ret = -ENOMEM;
10466 		goto out;
10467 		}
10468 
10469 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10470 						    disk_io_size, pages);
10471 	if (ret)
10472 		goto out;
10473 
10474 	unlock_extent(io_tree, start, lockend, cached_state);
10475 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10476 	*unlocked = true;
10477 
10478 	if (compressed) {
10479 		i = 0;
10480 		page_offset = 0;
10481 	} else {
10482 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10483 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10484 	}
10485 	cur = 0;
10486 	while (cur < count) {
10487 		size_t bytes = min_t(size_t, count - cur,
10488 				     PAGE_SIZE - page_offset);
10489 
10490 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10491 				      iter) != bytes) {
10492 			ret = -EFAULT;
10493 			goto out;
10494 		}
10495 		i++;
10496 		cur += bytes;
10497 		page_offset = 0;
10498 	}
10499 	ret = count;
10500 out:
10501 	for (i = 0; i < nr_pages; i++) {
10502 		if (pages[i])
10503 			__free_page(pages[i]);
10504 	}
10505 	kfree(pages);
10506 	return ret;
10507 }
10508 
10509 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10510 			   struct btrfs_ioctl_encoded_io_args *encoded)
10511 {
10512 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10513 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10514 	struct extent_io_tree *io_tree = &inode->io_tree;
10515 	ssize_t ret;
10516 	size_t count = iov_iter_count(iter);
10517 	u64 start, lockend, disk_bytenr, disk_io_size;
10518 	struct extent_state *cached_state = NULL;
10519 	struct extent_map *em;
10520 	bool unlocked = false;
10521 
10522 	file_accessed(iocb->ki_filp);
10523 
10524 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10525 
10526 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10527 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10528 		return 0;
10529 	}
10530 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10531 	/*
10532 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10533 	 * it's compressed we know that it won't be longer than this.
10534 	 */
10535 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10536 
10537 	for (;;) {
10538 		struct btrfs_ordered_extent *ordered;
10539 
10540 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10541 					       lockend - start + 1);
10542 		if (ret)
10543 			goto out_unlock_inode;
10544 		lock_extent(io_tree, start, lockend, &cached_state);
10545 		ordered = btrfs_lookup_ordered_range(inode, start,
10546 						     lockend - start + 1);
10547 		if (!ordered)
10548 			break;
10549 		btrfs_put_ordered_extent(ordered);
10550 		unlock_extent(io_tree, start, lockend, &cached_state);
10551 		cond_resched();
10552 	}
10553 
10554 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10555 	if (IS_ERR(em)) {
10556 		ret = PTR_ERR(em);
10557 		goto out_unlock_extent;
10558 	}
10559 
10560 	if (em->block_start == EXTENT_MAP_INLINE) {
10561 		u64 extent_start = em->start;
10562 
10563 		/*
10564 		 * For inline extents we get everything we need out of the
10565 		 * extent item.
10566 		 */
10567 		free_extent_map(em);
10568 		em = NULL;
10569 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10570 						&cached_state, extent_start,
10571 						count, encoded, &unlocked);
10572 		goto out;
10573 	}
10574 
10575 	/*
10576 	 * We only want to return up to EOF even if the extent extends beyond
10577 	 * that.
10578 	 */
10579 	encoded->len = min_t(u64, extent_map_end(em),
10580 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10581 	if (em->block_start == EXTENT_MAP_HOLE ||
10582 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10583 		disk_bytenr = EXTENT_MAP_HOLE;
10584 		count = min_t(u64, count, encoded->len);
10585 		encoded->len = count;
10586 		encoded->unencoded_len = count;
10587 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10588 		disk_bytenr = em->block_start;
10589 		/*
10590 		 * Bail if the buffer isn't large enough to return the whole
10591 		 * compressed extent.
10592 		 */
10593 		if (em->block_len > count) {
10594 			ret = -ENOBUFS;
10595 			goto out_em;
10596 		}
10597 		disk_io_size = em->block_len;
10598 		count = em->block_len;
10599 		encoded->unencoded_len = em->ram_bytes;
10600 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10601 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10602 							     em->compress_type);
10603 		if (ret < 0)
10604 			goto out_em;
10605 		encoded->compression = ret;
10606 	} else {
10607 		disk_bytenr = em->block_start + (start - em->start);
10608 		if (encoded->len > count)
10609 			encoded->len = count;
10610 		/*
10611 		 * Don't read beyond what we locked. This also limits the page
10612 		 * allocations that we'll do.
10613 		 */
10614 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10615 		count = start + disk_io_size - iocb->ki_pos;
10616 		encoded->len = count;
10617 		encoded->unencoded_len = count;
10618 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10619 	}
10620 	free_extent_map(em);
10621 	em = NULL;
10622 
10623 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10624 		unlock_extent(io_tree, start, lockend, &cached_state);
10625 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10626 		unlocked = true;
10627 		ret = iov_iter_zero(count, iter);
10628 		if (ret != count)
10629 			ret = -EFAULT;
10630 	} else {
10631 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10632 						 &cached_state, disk_bytenr,
10633 						 disk_io_size, count,
10634 						 encoded->compression,
10635 						 &unlocked);
10636 	}
10637 
10638 out:
10639 	if (ret >= 0)
10640 		iocb->ki_pos += encoded->len;
10641 out_em:
10642 	free_extent_map(em);
10643 out_unlock_extent:
10644 	if (!unlocked)
10645 		unlock_extent(io_tree, start, lockend, &cached_state);
10646 out_unlock_inode:
10647 	if (!unlocked)
10648 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10649 	return ret;
10650 }
10651 
10652 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10653 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10654 {
10655 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10656 	struct btrfs_root *root = inode->root;
10657 	struct btrfs_fs_info *fs_info = root->fs_info;
10658 	struct extent_io_tree *io_tree = &inode->io_tree;
10659 	struct extent_changeset *data_reserved = NULL;
10660 	struct extent_state *cached_state = NULL;
10661 	int compression;
10662 	size_t orig_count;
10663 	u64 start, end;
10664 	u64 num_bytes, ram_bytes, disk_num_bytes;
10665 	unsigned long nr_pages, i;
10666 	struct page **pages;
10667 	struct btrfs_key ins;
10668 	bool extent_reserved = false;
10669 	struct extent_map *em;
10670 	ssize_t ret;
10671 
10672 	switch (encoded->compression) {
10673 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10674 		compression = BTRFS_COMPRESS_ZLIB;
10675 		break;
10676 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10677 		compression = BTRFS_COMPRESS_ZSTD;
10678 		break;
10679 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10680 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10681 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10682 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10683 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10684 		/* The sector size must match for LZO. */
10685 		if (encoded->compression -
10686 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10687 		    fs_info->sectorsize_bits)
10688 			return -EINVAL;
10689 		compression = BTRFS_COMPRESS_LZO;
10690 		break;
10691 	default:
10692 		return -EINVAL;
10693 	}
10694 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10695 		return -EINVAL;
10696 
10697 	orig_count = iov_iter_count(from);
10698 
10699 	/* The extent size must be sane. */
10700 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10701 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10702 		return -EINVAL;
10703 
10704 	/*
10705 	 * The compressed data must be smaller than the decompressed data.
10706 	 *
10707 	 * It's of course possible for data to compress to larger or the same
10708 	 * size, but the buffered I/O path falls back to no compression for such
10709 	 * data, and we don't want to break any assumptions by creating these
10710 	 * extents.
10711 	 *
10712 	 * Note that this is less strict than the current check we have that the
10713 	 * compressed data must be at least one sector smaller than the
10714 	 * decompressed data. We only want to enforce the weaker requirement
10715 	 * from old kernels that it is at least one byte smaller.
10716 	 */
10717 	if (orig_count >= encoded->unencoded_len)
10718 		return -EINVAL;
10719 
10720 	/* The extent must start on a sector boundary. */
10721 	start = iocb->ki_pos;
10722 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10723 		return -EINVAL;
10724 
10725 	/*
10726 	 * The extent must end on a sector boundary. However, we allow a write
10727 	 * which ends at or extends i_size to have an unaligned length; we round
10728 	 * up the extent size and set i_size to the unaligned end.
10729 	 */
10730 	if (start + encoded->len < inode->vfs_inode.i_size &&
10731 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10732 		return -EINVAL;
10733 
10734 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10735 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10736 		return -EINVAL;
10737 
10738 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10739 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10740 	end = start + num_bytes - 1;
10741 
10742 	/*
10743 	 * If the extent cannot be inline, the compressed data on disk must be
10744 	 * sector-aligned. For convenience, we extend it with zeroes if it
10745 	 * isn't.
10746 	 */
10747 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10748 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10749 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10750 	if (!pages)
10751 		return -ENOMEM;
10752 	for (i = 0; i < nr_pages; i++) {
10753 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10754 		char *kaddr;
10755 
10756 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10757 		if (!pages[i]) {
10758 			ret = -ENOMEM;
10759 			goto out_pages;
10760 		}
10761 		kaddr = kmap_local_page(pages[i]);
10762 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10763 			kunmap_local(kaddr);
10764 			ret = -EFAULT;
10765 			goto out_pages;
10766 		}
10767 		if (bytes < PAGE_SIZE)
10768 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10769 		kunmap_local(kaddr);
10770 	}
10771 
10772 	for (;;) {
10773 		struct btrfs_ordered_extent *ordered;
10774 
10775 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10776 		if (ret)
10777 			goto out_pages;
10778 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10779 						    start >> PAGE_SHIFT,
10780 						    end >> PAGE_SHIFT);
10781 		if (ret)
10782 			goto out_pages;
10783 		lock_extent(io_tree, start, end, &cached_state);
10784 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10785 		if (!ordered &&
10786 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10787 			break;
10788 		if (ordered)
10789 			btrfs_put_ordered_extent(ordered);
10790 		unlock_extent(io_tree, start, end, &cached_state);
10791 		cond_resched();
10792 	}
10793 
10794 	/*
10795 	 * We don't use the higher-level delalloc space functions because our
10796 	 * num_bytes and disk_num_bytes are different.
10797 	 */
10798 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10799 	if (ret)
10800 		goto out_unlock;
10801 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10802 	if (ret)
10803 		goto out_free_data_space;
10804 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10805 					      false);
10806 	if (ret)
10807 		goto out_qgroup_free_data;
10808 
10809 	/* Try an inline extent first. */
10810 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10811 	    encoded->unencoded_offset == 0) {
10812 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10813 					    compression, pages, true);
10814 		if (ret <= 0) {
10815 			if (ret == 0)
10816 				ret = orig_count;
10817 			goto out_delalloc_release;
10818 		}
10819 	}
10820 
10821 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10822 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10823 	if (ret)
10824 		goto out_delalloc_release;
10825 	extent_reserved = true;
10826 
10827 	em = create_io_em(inode, start, num_bytes,
10828 			  start - encoded->unencoded_offset, ins.objectid,
10829 			  ins.offset, ins.offset, ram_bytes, compression,
10830 			  BTRFS_ORDERED_COMPRESSED);
10831 	if (IS_ERR(em)) {
10832 		ret = PTR_ERR(em);
10833 		goto out_free_reserved;
10834 	}
10835 	free_extent_map(em);
10836 
10837 	ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10838 				       ins.objectid, ins.offset,
10839 				       encoded->unencoded_offset,
10840 				       (1 << BTRFS_ORDERED_ENCODED) |
10841 				       (1 << BTRFS_ORDERED_COMPRESSED),
10842 				       compression);
10843 	if (ret) {
10844 		btrfs_drop_extent_map_range(inode, start, end, false);
10845 		goto out_free_reserved;
10846 	}
10847 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10848 
10849 	if (start + encoded->len > inode->vfs_inode.i_size)
10850 		i_size_write(&inode->vfs_inode, start + encoded->len);
10851 
10852 	unlock_extent(io_tree, start, end, &cached_state);
10853 
10854 	btrfs_delalloc_release_extents(inode, num_bytes);
10855 
10856 	if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10857 					  ins.offset, pages, nr_pages, 0, NULL,
10858 					  false)) {
10859 		btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10860 		ret = -EIO;
10861 		goto out_pages;
10862 	}
10863 	ret = orig_count;
10864 	goto out;
10865 
10866 out_free_reserved:
10867 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10868 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10869 out_delalloc_release:
10870 	btrfs_delalloc_release_extents(inode, num_bytes);
10871 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10872 out_qgroup_free_data:
10873 	if (ret < 0)
10874 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10875 out_free_data_space:
10876 	/*
10877 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10878 	 * bytes_may_use.
10879 	 */
10880 	if (!extent_reserved)
10881 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10882 out_unlock:
10883 	unlock_extent(io_tree, start, end, &cached_state);
10884 out_pages:
10885 	for (i = 0; i < nr_pages; i++) {
10886 		if (pages[i])
10887 			__free_page(pages[i]);
10888 	}
10889 	kvfree(pages);
10890 out:
10891 	if (ret >= 0)
10892 		iocb->ki_pos += encoded->len;
10893 	return ret;
10894 }
10895 
10896 #ifdef CONFIG_SWAP
10897 /*
10898  * Add an entry indicating a block group or device which is pinned by a
10899  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10900  * negative errno on failure.
10901  */
10902 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10903 				  bool is_block_group)
10904 {
10905 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10906 	struct btrfs_swapfile_pin *sp, *entry;
10907 	struct rb_node **p;
10908 	struct rb_node *parent = NULL;
10909 
10910 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10911 	if (!sp)
10912 		return -ENOMEM;
10913 	sp->ptr = ptr;
10914 	sp->inode = inode;
10915 	sp->is_block_group = is_block_group;
10916 	sp->bg_extent_count = 1;
10917 
10918 	spin_lock(&fs_info->swapfile_pins_lock);
10919 	p = &fs_info->swapfile_pins.rb_node;
10920 	while (*p) {
10921 		parent = *p;
10922 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10923 		if (sp->ptr < entry->ptr ||
10924 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10925 			p = &(*p)->rb_left;
10926 		} else if (sp->ptr > entry->ptr ||
10927 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10928 			p = &(*p)->rb_right;
10929 		} else {
10930 			if (is_block_group)
10931 				entry->bg_extent_count++;
10932 			spin_unlock(&fs_info->swapfile_pins_lock);
10933 			kfree(sp);
10934 			return 1;
10935 		}
10936 	}
10937 	rb_link_node(&sp->node, parent, p);
10938 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10939 	spin_unlock(&fs_info->swapfile_pins_lock);
10940 	return 0;
10941 }
10942 
10943 /* Free all of the entries pinned by this swapfile. */
10944 static void btrfs_free_swapfile_pins(struct inode *inode)
10945 {
10946 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10947 	struct btrfs_swapfile_pin *sp;
10948 	struct rb_node *node, *next;
10949 
10950 	spin_lock(&fs_info->swapfile_pins_lock);
10951 	node = rb_first(&fs_info->swapfile_pins);
10952 	while (node) {
10953 		next = rb_next(node);
10954 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10955 		if (sp->inode == inode) {
10956 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10957 			if (sp->is_block_group) {
10958 				btrfs_dec_block_group_swap_extents(sp->ptr,
10959 							   sp->bg_extent_count);
10960 				btrfs_put_block_group(sp->ptr);
10961 			}
10962 			kfree(sp);
10963 		}
10964 		node = next;
10965 	}
10966 	spin_unlock(&fs_info->swapfile_pins_lock);
10967 }
10968 
10969 struct btrfs_swap_info {
10970 	u64 start;
10971 	u64 block_start;
10972 	u64 block_len;
10973 	u64 lowest_ppage;
10974 	u64 highest_ppage;
10975 	unsigned long nr_pages;
10976 	int nr_extents;
10977 };
10978 
10979 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10980 				 struct btrfs_swap_info *bsi)
10981 {
10982 	unsigned long nr_pages;
10983 	unsigned long max_pages;
10984 	u64 first_ppage, first_ppage_reported, next_ppage;
10985 	int ret;
10986 
10987 	/*
10988 	 * Our swapfile may have had its size extended after the swap header was
10989 	 * written. In that case activating the swapfile should not go beyond
10990 	 * the max size set in the swap header.
10991 	 */
10992 	if (bsi->nr_pages >= sis->max)
10993 		return 0;
10994 
10995 	max_pages = sis->max - bsi->nr_pages;
10996 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10997 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10998 				PAGE_SIZE) >> PAGE_SHIFT;
10999 
11000 	if (first_ppage >= next_ppage)
11001 		return 0;
11002 	nr_pages = next_ppage - first_ppage;
11003 	nr_pages = min(nr_pages, max_pages);
11004 
11005 	first_ppage_reported = first_ppage;
11006 	if (bsi->start == 0)
11007 		first_ppage_reported++;
11008 	if (bsi->lowest_ppage > first_ppage_reported)
11009 		bsi->lowest_ppage = first_ppage_reported;
11010 	if (bsi->highest_ppage < (next_ppage - 1))
11011 		bsi->highest_ppage = next_ppage - 1;
11012 
11013 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11014 	if (ret < 0)
11015 		return ret;
11016 	bsi->nr_extents += ret;
11017 	bsi->nr_pages += nr_pages;
11018 	return 0;
11019 }
11020 
11021 static void btrfs_swap_deactivate(struct file *file)
11022 {
11023 	struct inode *inode = file_inode(file);
11024 
11025 	btrfs_free_swapfile_pins(inode);
11026 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11027 }
11028 
11029 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11030 			       sector_t *span)
11031 {
11032 	struct inode *inode = file_inode(file);
11033 	struct btrfs_root *root = BTRFS_I(inode)->root;
11034 	struct btrfs_fs_info *fs_info = root->fs_info;
11035 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11036 	struct extent_state *cached_state = NULL;
11037 	struct extent_map *em = NULL;
11038 	struct btrfs_device *device = NULL;
11039 	struct btrfs_swap_info bsi = {
11040 		.lowest_ppage = (sector_t)-1ULL,
11041 	};
11042 	int ret = 0;
11043 	u64 isize;
11044 	u64 start;
11045 
11046 	/*
11047 	 * If the swap file was just created, make sure delalloc is done. If the
11048 	 * file changes again after this, the user is doing something stupid and
11049 	 * we don't really care.
11050 	 */
11051 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11052 	if (ret)
11053 		return ret;
11054 
11055 	/*
11056 	 * The inode is locked, so these flags won't change after we check them.
11057 	 */
11058 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11059 		btrfs_warn(fs_info, "swapfile must not be compressed");
11060 		return -EINVAL;
11061 	}
11062 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11063 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11064 		return -EINVAL;
11065 	}
11066 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11067 		btrfs_warn(fs_info, "swapfile must not be checksummed");
11068 		return -EINVAL;
11069 	}
11070 
11071 	/*
11072 	 * Balance or device remove/replace/resize can move stuff around from
11073 	 * under us. The exclop protection makes sure they aren't running/won't
11074 	 * run concurrently while we are mapping the swap extents, and
11075 	 * fs_info->swapfile_pins prevents them from running while the swap
11076 	 * file is active and moving the extents. Note that this also prevents
11077 	 * a concurrent device add which isn't actually necessary, but it's not
11078 	 * really worth the trouble to allow it.
11079 	 */
11080 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11081 		btrfs_warn(fs_info,
11082 	   "cannot activate swapfile while exclusive operation is running");
11083 		return -EBUSY;
11084 	}
11085 
11086 	/*
11087 	 * Prevent snapshot creation while we are activating the swap file.
11088 	 * We do not want to race with snapshot creation. If snapshot creation
11089 	 * already started before we bumped nr_swapfiles from 0 to 1 and
11090 	 * completes before the first write into the swap file after it is
11091 	 * activated, than that write would fallback to COW.
11092 	 */
11093 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11094 		btrfs_exclop_finish(fs_info);
11095 		btrfs_warn(fs_info,
11096 	   "cannot activate swapfile because snapshot creation is in progress");
11097 		return -EINVAL;
11098 	}
11099 	/*
11100 	 * Snapshots can create extents which require COW even if NODATACOW is
11101 	 * set. We use this counter to prevent snapshots. We must increment it
11102 	 * before walking the extents because we don't want a concurrent
11103 	 * snapshot to run after we've already checked the extents.
11104 	 *
11105 	 * It is possible that subvolume is marked for deletion but still not
11106 	 * removed yet. To prevent this race, we check the root status before
11107 	 * activating the swapfile.
11108 	 */
11109 	spin_lock(&root->root_item_lock);
11110 	if (btrfs_root_dead(root)) {
11111 		spin_unlock(&root->root_item_lock);
11112 
11113 		btrfs_exclop_finish(fs_info);
11114 		btrfs_warn(fs_info,
11115 		"cannot activate swapfile because subvolume %llu is being deleted",
11116 			root->root_key.objectid);
11117 		return -EPERM;
11118 	}
11119 	atomic_inc(&root->nr_swapfiles);
11120 	spin_unlock(&root->root_item_lock);
11121 
11122 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11123 
11124 	lock_extent(io_tree, 0, isize - 1, &cached_state);
11125 	start = 0;
11126 	while (start < isize) {
11127 		u64 logical_block_start, physical_block_start;
11128 		struct btrfs_block_group *bg;
11129 		u64 len = isize - start;
11130 
11131 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11132 		if (IS_ERR(em)) {
11133 			ret = PTR_ERR(em);
11134 			goto out;
11135 		}
11136 
11137 		if (em->block_start == EXTENT_MAP_HOLE) {
11138 			btrfs_warn(fs_info, "swapfile must not have holes");
11139 			ret = -EINVAL;
11140 			goto out;
11141 		}
11142 		if (em->block_start == EXTENT_MAP_INLINE) {
11143 			/*
11144 			 * It's unlikely we'll ever actually find ourselves
11145 			 * here, as a file small enough to fit inline won't be
11146 			 * big enough to store more than the swap header, but in
11147 			 * case something changes in the future, let's catch it
11148 			 * here rather than later.
11149 			 */
11150 			btrfs_warn(fs_info, "swapfile must not be inline");
11151 			ret = -EINVAL;
11152 			goto out;
11153 		}
11154 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11155 			btrfs_warn(fs_info, "swapfile must not be compressed");
11156 			ret = -EINVAL;
11157 			goto out;
11158 		}
11159 
11160 		logical_block_start = em->block_start + (start - em->start);
11161 		len = min(len, em->len - (start - em->start));
11162 		free_extent_map(em);
11163 		em = NULL;
11164 
11165 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
11166 		if (ret < 0) {
11167 			goto out;
11168 		} else if (ret) {
11169 			ret = 0;
11170 		} else {
11171 			btrfs_warn(fs_info,
11172 				   "swapfile must not be copy-on-write");
11173 			ret = -EINVAL;
11174 			goto out;
11175 		}
11176 
11177 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11178 		if (IS_ERR(em)) {
11179 			ret = PTR_ERR(em);
11180 			goto out;
11181 		}
11182 
11183 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11184 			btrfs_warn(fs_info,
11185 				   "swapfile must have single data profile");
11186 			ret = -EINVAL;
11187 			goto out;
11188 		}
11189 
11190 		if (device == NULL) {
11191 			device = em->map_lookup->stripes[0].dev;
11192 			ret = btrfs_add_swapfile_pin(inode, device, false);
11193 			if (ret == 1)
11194 				ret = 0;
11195 			else if (ret)
11196 				goto out;
11197 		} else if (device != em->map_lookup->stripes[0].dev) {
11198 			btrfs_warn(fs_info, "swapfile must be on one device");
11199 			ret = -EINVAL;
11200 			goto out;
11201 		}
11202 
11203 		physical_block_start = (em->map_lookup->stripes[0].physical +
11204 					(logical_block_start - em->start));
11205 		len = min(len, em->len - (logical_block_start - em->start));
11206 		free_extent_map(em);
11207 		em = NULL;
11208 
11209 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11210 		if (!bg) {
11211 			btrfs_warn(fs_info,
11212 			   "could not find block group containing swapfile");
11213 			ret = -EINVAL;
11214 			goto out;
11215 		}
11216 
11217 		if (!btrfs_inc_block_group_swap_extents(bg)) {
11218 			btrfs_warn(fs_info,
11219 			   "block group for swapfile at %llu is read-only%s",
11220 			   bg->start,
11221 			   atomic_read(&fs_info->scrubs_running) ?
11222 				       " (scrub running)" : "");
11223 			btrfs_put_block_group(bg);
11224 			ret = -EINVAL;
11225 			goto out;
11226 		}
11227 
11228 		ret = btrfs_add_swapfile_pin(inode, bg, true);
11229 		if (ret) {
11230 			btrfs_put_block_group(bg);
11231 			if (ret == 1)
11232 				ret = 0;
11233 			else
11234 				goto out;
11235 		}
11236 
11237 		if (bsi.block_len &&
11238 		    bsi.block_start + bsi.block_len == physical_block_start) {
11239 			bsi.block_len += len;
11240 		} else {
11241 			if (bsi.block_len) {
11242 				ret = btrfs_add_swap_extent(sis, &bsi);
11243 				if (ret)
11244 					goto out;
11245 			}
11246 			bsi.start = start;
11247 			bsi.block_start = physical_block_start;
11248 			bsi.block_len = len;
11249 		}
11250 
11251 		start += len;
11252 	}
11253 
11254 	if (bsi.block_len)
11255 		ret = btrfs_add_swap_extent(sis, &bsi);
11256 
11257 out:
11258 	if (!IS_ERR_OR_NULL(em))
11259 		free_extent_map(em);
11260 
11261 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
11262 
11263 	if (ret)
11264 		btrfs_swap_deactivate(file);
11265 
11266 	btrfs_drew_write_unlock(&root->snapshot_lock);
11267 
11268 	btrfs_exclop_finish(fs_info);
11269 
11270 	if (ret)
11271 		return ret;
11272 
11273 	if (device)
11274 		sis->bdev = device->bdev;
11275 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11276 	sis->max = bsi.nr_pages;
11277 	sis->pages = bsi.nr_pages - 1;
11278 	sis->highest_bit = bsi.nr_pages - 1;
11279 	return bsi.nr_extents;
11280 }
11281 #else
11282 static void btrfs_swap_deactivate(struct file *file)
11283 {
11284 }
11285 
11286 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11287 			       sector_t *span)
11288 {
11289 	return -EOPNOTSUPP;
11290 }
11291 #endif
11292 
11293 /*
11294  * Update the number of bytes used in the VFS' inode. When we replace extents in
11295  * a range (clone, dedupe, fallocate's zero range), we must update the number of
11296  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11297  * always get a correct value.
11298  */
11299 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11300 			      const u64 add_bytes,
11301 			      const u64 del_bytes)
11302 {
11303 	if (add_bytes == del_bytes)
11304 		return;
11305 
11306 	spin_lock(&inode->lock);
11307 	if (del_bytes > 0)
11308 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
11309 	if (add_bytes > 0)
11310 		inode_add_bytes(&inode->vfs_inode, add_bytes);
11311 	spin_unlock(&inode->lock);
11312 }
11313 
11314 /*
11315  * Verify that there are no ordered extents for a given file range.
11316  *
11317  * @inode:   The target inode.
11318  * @start:   Start offset of the file range, should be sector size aligned.
11319  * @end:     End offset (inclusive) of the file range, its value +1 should be
11320  *           sector size aligned.
11321  *
11322  * This should typically be used for cases where we locked an inode's VFS lock in
11323  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11324  * we have flushed all delalloc in the range, we have waited for all ordered
11325  * extents in the range to complete and finally we have locked the file range in
11326  * the inode's io_tree.
11327  */
11328 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11329 {
11330 	struct btrfs_root *root = inode->root;
11331 	struct btrfs_ordered_extent *ordered;
11332 
11333 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11334 		return;
11335 
11336 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11337 	if (ordered) {
11338 		btrfs_err(root->fs_info,
11339 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11340 			  start, end, btrfs_ino(inode), root->root_key.objectid,
11341 			  ordered->file_offset,
11342 			  ordered->file_offset + ordered->num_bytes - 1);
11343 		btrfs_put_ordered_extent(ordered);
11344 	}
11345 
11346 	ASSERT(ordered == NULL);
11347 }
11348 
11349 static const struct inode_operations btrfs_dir_inode_operations = {
11350 	.getattr	= btrfs_getattr,
11351 	.lookup		= btrfs_lookup,
11352 	.create		= btrfs_create,
11353 	.unlink		= btrfs_unlink,
11354 	.link		= btrfs_link,
11355 	.mkdir		= btrfs_mkdir,
11356 	.rmdir		= btrfs_rmdir,
11357 	.rename		= btrfs_rename2,
11358 	.symlink	= btrfs_symlink,
11359 	.setattr	= btrfs_setattr,
11360 	.mknod		= btrfs_mknod,
11361 	.listxattr	= btrfs_listxattr,
11362 	.permission	= btrfs_permission,
11363 	.get_inode_acl	= btrfs_get_acl,
11364 	.set_acl	= btrfs_set_acl,
11365 	.update_time	= btrfs_update_time,
11366 	.tmpfile        = btrfs_tmpfile,
11367 	.fileattr_get	= btrfs_fileattr_get,
11368 	.fileattr_set	= btrfs_fileattr_set,
11369 };
11370 
11371 static const struct file_operations btrfs_dir_file_operations = {
11372 	.llseek		= generic_file_llseek,
11373 	.read		= generic_read_dir,
11374 	.iterate_shared	= btrfs_real_readdir,
11375 	.open		= btrfs_opendir,
11376 	.unlocked_ioctl	= btrfs_ioctl,
11377 #ifdef CONFIG_COMPAT
11378 	.compat_ioctl	= btrfs_compat_ioctl,
11379 #endif
11380 	.release        = btrfs_release_file,
11381 	.fsync		= btrfs_sync_file,
11382 };
11383 
11384 /*
11385  * btrfs doesn't support the bmap operation because swapfiles
11386  * use bmap to make a mapping of extents in the file.  They assume
11387  * these extents won't change over the life of the file and they
11388  * use the bmap result to do IO directly to the drive.
11389  *
11390  * the btrfs bmap call would return logical addresses that aren't
11391  * suitable for IO and they also will change frequently as COW
11392  * operations happen.  So, swapfile + btrfs == corruption.
11393  *
11394  * For now we're avoiding this by dropping bmap.
11395  */
11396 static const struct address_space_operations btrfs_aops = {
11397 	.read_folio	= btrfs_read_folio,
11398 	.writepages	= btrfs_writepages,
11399 	.readahead	= btrfs_readahead,
11400 	.direct_IO	= noop_direct_IO,
11401 	.invalidate_folio = btrfs_invalidate_folio,
11402 	.release_folio	= btrfs_release_folio,
11403 	.migrate_folio	= btrfs_migrate_folio,
11404 	.dirty_folio	= filemap_dirty_folio,
11405 	.error_remove_page = generic_error_remove_page,
11406 	.swap_activate	= btrfs_swap_activate,
11407 	.swap_deactivate = btrfs_swap_deactivate,
11408 };
11409 
11410 static const struct inode_operations btrfs_file_inode_operations = {
11411 	.getattr	= btrfs_getattr,
11412 	.setattr	= btrfs_setattr,
11413 	.listxattr      = btrfs_listxattr,
11414 	.permission	= btrfs_permission,
11415 	.fiemap		= btrfs_fiemap,
11416 	.get_inode_acl	= btrfs_get_acl,
11417 	.set_acl	= btrfs_set_acl,
11418 	.update_time	= btrfs_update_time,
11419 	.fileattr_get	= btrfs_fileattr_get,
11420 	.fileattr_set	= btrfs_fileattr_set,
11421 };
11422 static const struct inode_operations btrfs_special_inode_operations = {
11423 	.getattr	= btrfs_getattr,
11424 	.setattr	= btrfs_setattr,
11425 	.permission	= btrfs_permission,
11426 	.listxattr	= btrfs_listxattr,
11427 	.get_inode_acl	= btrfs_get_acl,
11428 	.set_acl	= btrfs_set_acl,
11429 	.update_time	= btrfs_update_time,
11430 };
11431 static const struct inode_operations btrfs_symlink_inode_operations = {
11432 	.get_link	= page_get_link,
11433 	.getattr	= btrfs_getattr,
11434 	.setattr	= btrfs_setattr,
11435 	.permission	= btrfs_permission,
11436 	.listxattr	= btrfs_listxattr,
11437 	.update_time	= btrfs_update_time,
11438 };
11439 
11440 const struct dentry_operations btrfs_dentry_operations = {
11441 	.d_delete	= btrfs_dentry_delete,
11442 };
11443