xref: /openbmc/linux/fs/btrfs/inode.c (revision 3932b9ca)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 
63 struct btrfs_iget_args {
64 	struct btrfs_key *location;
65 	struct btrfs_root *root;
66 };
67 
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77 
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84 
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
88 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
89 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
90 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
91 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
92 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
93 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
94 };
95 
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 				   struct page *locked_page,
101 				   u64 start, u64 end, int *page_started,
102 				   unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 					   u64 len, u64 orig_start,
105 					   u64 block_start, u64 block_len,
106 					   u64 orig_block_len, u64 ram_bytes,
107 					   int type);
108 
109 static int btrfs_dirty_inode(struct inode *inode);
110 
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 				     struct inode *inode,  struct inode *dir,
113 				     const struct qstr *qstr)
114 {
115 	int err;
116 
117 	err = btrfs_init_acl(trans, inode, dir);
118 	if (!err)
119 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 	return err;
121 }
122 
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129 				struct btrfs_path *path, int extent_inserted,
130 				struct btrfs_root *root, struct inode *inode,
131 				u64 start, size_t size, size_t compressed_size,
132 				int compress_type,
133 				struct page **compressed_pages)
134 {
135 	struct extent_buffer *leaf;
136 	struct page *page = NULL;
137 	char *kaddr;
138 	unsigned long ptr;
139 	struct btrfs_file_extent_item *ei;
140 	int err = 0;
141 	int ret;
142 	size_t cur_size = size;
143 	unsigned long offset;
144 
145 	if (compressed_size && compressed_pages)
146 		cur_size = compressed_size;
147 
148 	inode_add_bytes(inode, size);
149 
150 	if (!extent_inserted) {
151 		struct btrfs_key key;
152 		size_t datasize;
153 
154 		key.objectid = btrfs_ino(inode);
155 		key.offset = start;
156 		btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
157 
158 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 		path->leave_spinning = 1;
160 		ret = btrfs_insert_empty_item(trans, root, path, &key,
161 					      datasize);
162 		if (ret) {
163 			err = ret;
164 			goto fail;
165 		}
166 	}
167 	leaf = path->nodes[0];
168 	ei = btrfs_item_ptr(leaf, path->slots[0],
169 			    struct btrfs_file_extent_item);
170 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 	btrfs_set_file_extent_encryption(leaf, ei, 0);
173 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 	ptr = btrfs_file_extent_inline_start(ei);
176 
177 	if (compress_type != BTRFS_COMPRESS_NONE) {
178 		struct page *cpage;
179 		int i = 0;
180 		while (compressed_size > 0) {
181 			cpage = compressed_pages[i];
182 			cur_size = min_t(unsigned long, compressed_size,
183 				       PAGE_CACHE_SIZE);
184 
185 			kaddr = kmap_atomic(cpage);
186 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 			kunmap_atomic(kaddr);
188 
189 			i++;
190 			ptr += cur_size;
191 			compressed_size -= cur_size;
192 		}
193 		btrfs_set_file_extent_compression(leaf, ei,
194 						  compress_type);
195 	} else {
196 		page = find_get_page(inode->i_mapping,
197 				     start >> PAGE_CACHE_SHIFT);
198 		btrfs_set_file_extent_compression(leaf, ei, 0);
199 		kaddr = kmap_atomic(page);
200 		offset = start & (PAGE_CACHE_SIZE - 1);
201 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 		kunmap_atomic(kaddr);
203 		page_cache_release(page);
204 	}
205 	btrfs_mark_buffer_dirty(leaf);
206 	btrfs_release_path(path);
207 
208 	/*
209 	 * we're an inline extent, so nobody can
210 	 * extend the file past i_size without locking
211 	 * a page we already have locked.
212 	 *
213 	 * We must do any isize and inode updates
214 	 * before we unlock the pages.  Otherwise we
215 	 * could end up racing with unlink.
216 	 */
217 	BTRFS_I(inode)->disk_i_size = inode->i_size;
218 	ret = btrfs_update_inode(trans, root, inode);
219 
220 	return ret;
221 fail:
222 	return err;
223 }
224 
225 
226 /*
227  * conditionally insert an inline extent into the file.  This
228  * does the checks required to make sure the data is small enough
229  * to fit as an inline extent.
230  */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232 					  struct inode *inode, u64 start,
233 					  u64 end, size_t compressed_size,
234 					  int compress_type,
235 					  struct page **compressed_pages)
236 {
237 	struct btrfs_trans_handle *trans;
238 	u64 isize = i_size_read(inode);
239 	u64 actual_end = min(end + 1, isize);
240 	u64 inline_len = actual_end - start;
241 	u64 aligned_end = ALIGN(end, root->sectorsize);
242 	u64 data_len = inline_len;
243 	int ret;
244 	struct btrfs_path *path;
245 	int extent_inserted = 0;
246 	u32 extent_item_size;
247 
248 	if (compressed_size)
249 		data_len = compressed_size;
250 
251 	if (start > 0 ||
252 	    actual_end >= PAGE_CACHE_SIZE ||
253 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 	    (!compressed_size &&
255 	    (actual_end & (root->sectorsize - 1)) == 0) ||
256 	    end + 1 < isize ||
257 	    data_len > root->fs_info->max_inline) {
258 		return 1;
259 	}
260 
261 	path = btrfs_alloc_path();
262 	if (!path)
263 		return -ENOMEM;
264 
265 	trans = btrfs_join_transaction(root);
266 	if (IS_ERR(trans)) {
267 		btrfs_free_path(path);
268 		return PTR_ERR(trans);
269 	}
270 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271 
272 	if (compressed_size && compressed_pages)
273 		extent_item_size = btrfs_file_extent_calc_inline_size(
274 		   compressed_size);
275 	else
276 		extent_item_size = btrfs_file_extent_calc_inline_size(
277 		    inline_len);
278 
279 	ret = __btrfs_drop_extents(trans, root, inode, path,
280 				   start, aligned_end, NULL,
281 				   1, 1, extent_item_size, &extent_inserted);
282 	if (ret) {
283 		btrfs_abort_transaction(trans, root, ret);
284 		goto out;
285 	}
286 
287 	if (isize > actual_end)
288 		inline_len = min_t(u64, isize, actual_end);
289 	ret = insert_inline_extent(trans, path, extent_inserted,
290 				   root, inode, start,
291 				   inline_len, compressed_size,
292 				   compress_type, compressed_pages);
293 	if (ret && ret != -ENOSPC) {
294 		btrfs_abort_transaction(trans, root, ret);
295 		goto out;
296 	} else if (ret == -ENOSPC) {
297 		ret = 1;
298 		goto out;
299 	}
300 
301 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305 	btrfs_free_path(path);
306 	btrfs_end_transaction(trans, root);
307 	return ret;
308 }
309 
310 struct async_extent {
311 	u64 start;
312 	u64 ram_size;
313 	u64 compressed_size;
314 	struct page **pages;
315 	unsigned long nr_pages;
316 	int compress_type;
317 	struct list_head list;
318 };
319 
320 struct async_cow {
321 	struct inode *inode;
322 	struct btrfs_root *root;
323 	struct page *locked_page;
324 	u64 start;
325 	u64 end;
326 	struct list_head extents;
327 	struct btrfs_work work;
328 };
329 
330 static noinline int add_async_extent(struct async_cow *cow,
331 				     u64 start, u64 ram_size,
332 				     u64 compressed_size,
333 				     struct page **pages,
334 				     unsigned long nr_pages,
335 				     int compress_type)
336 {
337 	struct async_extent *async_extent;
338 
339 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 	BUG_ON(!async_extent); /* -ENOMEM */
341 	async_extent->start = start;
342 	async_extent->ram_size = ram_size;
343 	async_extent->compressed_size = compressed_size;
344 	async_extent->pages = pages;
345 	async_extent->nr_pages = nr_pages;
346 	async_extent->compress_type = compress_type;
347 	list_add_tail(&async_extent->list, &cow->extents);
348 	return 0;
349 }
350 
351 /*
352  * we create compressed extents in two phases.  The first
353  * phase compresses a range of pages that have already been
354  * locked (both pages and state bits are locked).
355  *
356  * This is done inside an ordered work queue, and the compression
357  * is spread across many cpus.  The actual IO submission is step
358  * two, and the ordered work queue takes care of making sure that
359  * happens in the same order things were put onto the queue by
360  * writepages and friends.
361  *
362  * If this code finds it can't get good compression, it puts an
363  * entry onto the work queue to write the uncompressed bytes.  This
364  * makes sure that both compressed inodes and uncompressed inodes
365  * are written in the same order that the flusher thread sent them
366  * down.
367  */
368 static noinline int compress_file_range(struct inode *inode,
369 					struct page *locked_page,
370 					u64 start, u64 end,
371 					struct async_cow *async_cow,
372 					int *num_added)
373 {
374 	struct btrfs_root *root = BTRFS_I(inode)->root;
375 	u64 num_bytes;
376 	u64 blocksize = root->sectorsize;
377 	u64 actual_end;
378 	u64 isize = i_size_read(inode);
379 	int ret = 0;
380 	struct page **pages = NULL;
381 	unsigned long nr_pages;
382 	unsigned long nr_pages_ret = 0;
383 	unsigned long total_compressed = 0;
384 	unsigned long total_in = 0;
385 	unsigned long max_compressed = 128 * 1024;
386 	unsigned long max_uncompressed = 128 * 1024;
387 	int i;
388 	int will_compress;
389 	int compress_type = root->fs_info->compress_type;
390 	int redirty = 0;
391 
392 	/* if this is a small write inside eof, kick off a defrag */
393 	if ((end - start + 1) < 16 * 1024 &&
394 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
395 		btrfs_add_inode_defrag(NULL, inode);
396 
397 	/*
398 	 * skip compression for a small file range(<=blocksize) that
399 	 * isn't an inline extent, since it dosen't save disk space at all.
400 	 */
401 	if ((end - start + 1) <= blocksize &&
402 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
403 		goto cleanup_and_bail_uncompressed;
404 
405 	actual_end = min_t(u64, isize, end + 1);
406 again:
407 	will_compress = 0;
408 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
409 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
410 
411 	/*
412 	 * we don't want to send crud past the end of i_size through
413 	 * compression, that's just a waste of CPU time.  So, if the
414 	 * end of the file is before the start of our current
415 	 * requested range of bytes, we bail out to the uncompressed
416 	 * cleanup code that can deal with all of this.
417 	 *
418 	 * It isn't really the fastest way to fix things, but this is a
419 	 * very uncommon corner.
420 	 */
421 	if (actual_end <= start)
422 		goto cleanup_and_bail_uncompressed;
423 
424 	total_compressed = actual_end - start;
425 
426 	/* we want to make sure that amount of ram required to uncompress
427 	 * an extent is reasonable, so we limit the total size in ram
428 	 * of a compressed extent to 128k.  This is a crucial number
429 	 * because it also controls how easily we can spread reads across
430 	 * cpus for decompression.
431 	 *
432 	 * We also want to make sure the amount of IO required to do
433 	 * a random read is reasonably small, so we limit the size of
434 	 * a compressed extent to 128k.
435 	 */
436 	total_compressed = min(total_compressed, max_uncompressed);
437 	num_bytes = ALIGN(end - start + 1, blocksize);
438 	num_bytes = max(blocksize,  num_bytes);
439 	total_in = 0;
440 	ret = 0;
441 
442 	/*
443 	 * we do compression for mount -o compress and when the
444 	 * inode has not been flagged as nocompress.  This flag can
445 	 * change at any time if we discover bad compression ratios.
446 	 */
447 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
448 	    (btrfs_test_opt(root, COMPRESS) ||
449 	     (BTRFS_I(inode)->force_compress) ||
450 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
451 		WARN_ON(pages);
452 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
453 		if (!pages) {
454 			/* just bail out to the uncompressed code */
455 			goto cont;
456 		}
457 
458 		if (BTRFS_I(inode)->force_compress)
459 			compress_type = BTRFS_I(inode)->force_compress;
460 
461 		/*
462 		 * we need to call clear_page_dirty_for_io on each
463 		 * page in the range.  Otherwise applications with the file
464 		 * mmap'd can wander in and change the page contents while
465 		 * we are compressing them.
466 		 *
467 		 * If the compression fails for any reason, we set the pages
468 		 * dirty again later on.
469 		 */
470 		extent_range_clear_dirty_for_io(inode, start, end);
471 		redirty = 1;
472 		ret = btrfs_compress_pages(compress_type,
473 					   inode->i_mapping, start,
474 					   total_compressed, pages,
475 					   nr_pages, &nr_pages_ret,
476 					   &total_in,
477 					   &total_compressed,
478 					   max_compressed);
479 
480 		if (!ret) {
481 			unsigned long offset = total_compressed &
482 				(PAGE_CACHE_SIZE - 1);
483 			struct page *page = pages[nr_pages_ret - 1];
484 			char *kaddr;
485 
486 			/* zero the tail end of the last page, we might be
487 			 * sending it down to disk
488 			 */
489 			if (offset) {
490 				kaddr = kmap_atomic(page);
491 				memset(kaddr + offset, 0,
492 				       PAGE_CACHE_SIZE - offset);
493 				kunmap_atomic(kaddr);
494 			}
495 			will_compress = 1;
496 		}
497 	}
498 cont:
499 	if (start == 0) {
500 		/* lets try to make an inline extent */
501 		if (ret || total_in < (actual_end - start)) {
502 			/* we didn't compress the entire range, try
503 			 * to make an uncompressed inline extent.
504 			 */
505 			ret = cow_file_range_inline(root, inode, start, end,
506 						    0, 0, NULL);
507 		} else {
508 			/* try making a compressed inline extent */
509 			ret = cow_file_range_inline(root, inode, start, end,
510 						    total_compressed,
511 						    compress_type, pages);
512 		}
513 		if (ret <= 0) {
514 			unsigned long clear_flags = EXTENT_DELALLOC |
515 				EXTENT_DEFRAG;
516 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
517 
518 			/*
519 			 * inline extent creation worked or returned error,
520 			 * we don't need to create any more async work items.
521 			 * Unlock and free up our temp pages.
522 			 */
523 			extent_clear_unlock_delalloc(inode, start, end, NULL,
524 						     clear_flags, PAGE_UNLOCK |
525 						     PAGE_CLEAR_DIRTY |
526 						     PAGE_SET_WRITEBACK |
527 						     PAGE_END_WRITEBACK);
528 			goto free_pages_out;
529 		}
530 	}
531 
532 	if (will_compress) {
533 		/*
534 		 * we aren't doing an inline extent round the compressed size
535 		 * up to a block size boundary so the allocator does sane
536 		 * things
537 		 */
538 		total_compressed = ALIGN(total_compressed, blocksize);
539 
540 		/*
541 		 * one last check to make sure the compression is really a
542 		 * win, compare the page count read with the blocks on disk
543 		 */
544 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
545 		if (total_compressed >= total_in) {
546 			will_compress = 0;
547 		} else {
548 			num_bytes = total_in;
549 		}
550 	}
551 	if (!will_compress && pages) {
552 		/*
553 		 * the compression code ran but failed to make things smaller,
554 		 * free any pages it allocated and our page pointer array
555 		 */
556 		for (i = 0; i < nr_pages_ret; i++) {
557 			WARN_ON(pages[i]->mapping);
558 			page_cache_release(pages[i]);
559 		}
560 		kfree(pages);
561 		pages = NULL;
562 		total_compressed = 0;
563 		nr_pages_ret = 0;
564 
565 		/* flag the file so we don't compress in the future */
566 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
567 		    !(BTRFS_I(inode)->force_compress)) {
568 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
569 		}
570 	}
571 	if (will_compress) {
572 		*num_added += 1;
573 
574 		/* the async work queues will take care of doing actual
575 		 * allocation on disk for these compressed pages,
576 		 * and will submit them to the elevator.
577 		 */
578 		add_async_extent(async_cow, start, num_bytes,
579 				 total_compressed, pages, nr_pages_ret,
580 				 compress_type);
581 
582 		if (start + num_bytes < end) {
583 			start += num_bytes;
584 			pages = NULL;
585 			cond_resched();
586 			goto again;
587 		}
588 	} else {
589 cleanup_and_bail_uncompressed:
590 		/*
591 		 * No compression, but we still need to write the pages in
592 		 * the file we've been given so far.  redirty the locked
593 		 * page if it corresponds to our extent and set things up
594 		 * for the async work queue to run cow_file_range to do
595 		 * the normal delalloc dance
596 		 */
597 		if (page_offset(locked_page) >= start &&
598 		    page_offset(locked_page) <= end) {
599 			__set_page_dirty_nobuffers(locked_page);
600 			/* unlocked later on in the async handlers */
601 		}
602 		if (redirty)
603 			extent_range_redirty_for_io(inode, start, end);
604 		add_async_extent(async_cow, start, end - start + 1,
605 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
606 		*num_added += 1;
607 	}
608 
609 out:
610 	return ret;
611 
612 free_pages_out:
613 	for (i = 0; i < nr_pages_ret; i++) {
614 		WARN_ON(pages[i]->mapping);
615 		page_cache_release(pages[i]);
616 	}
617 	kfree(pages);
618 
619 	goto out;
620 }
621 
622 /*
623  * phase two of compressed writeback.  This is the ordered portion
624  * of the code, which only gets called in the order the work was
625  * queued.  We walk all the async extents created by compress_file_range
626  * and send them down to the disk.
627  */
628 static noinline int submit_compressed_extents(struct inode *inode,
629 					      struct async_cow *async_cow)
630 {
631 	struct async_extent *async_extent;
632 	u64 alloc_hint = 0;
633 	struct btrfs_key ins;
634 	struct extent_map *em;
635 	struct btrfs_root *root = BTRFS_I(inode)->root;
636 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
637 	struct extent_io_tree *io_tree;
638 	int ret = 0;
639 
640 	if (list_empty(&async_cow->extents))
641 		return 0;
642 
643 again:
644 	while (!list_empty(&async_cow->extents)) {
645 		async_extent = list_entry(async_cow->extents.next,
646 					  struct async_extent, list);
647 		list_del(&async_extent->list);
648 
649 		io_tree = &BTRFS_I(inode)->io_tree;
650 
651 retry:
652 		/* did the compression code fall back to uncompressed IO? */
653 		if (!async_extent->pages) {
654 			int page_started = 0;
655 			unsigned long nr_written = 0;
656 
657 			lock_extent(io_tree, async_extent->start,
658 					 async_extent->start +
659 					 async_extent->ram_size - 1);
660 
661 			/* allocate blocks */
662 			ret = cow_file_range(inode, async_cow->locked_page,
663 					     async_extent->start,
664 					     async_extent->start +
665 					     async_extent->ram_size - 1,
666 					     &page_started, &nr_written, 0);
667 
668 			/* JDM XXX */
669 
670 			/*
671 			 * if page_started, cow_file_range inserted an
672 			 * inline extent and took care of all the unlocking
673 			 * and IO for us.  Otherwise, we need to submit
674 			 * all those pages down to the drive.
675 			 */
676 			if (!page_started && !ret)
677 				extent_write_locked_range(io_tree,
678 						  inode, async_extent->start,
679 						  async_extent->start +
680 						  async_extent->ram_size - 1,
681 						  btrfs_get_extent,
682 						  WB_SYNC_ALL);
683 			else if (ret)
684 				unlock_page(async_cow->locked_page);
685 			kfree(async_extent);
686 			cond_resched();
687 			continue;
688 		}
689 
690 		lock_extent(io_tree, async_extent->start,
691 			    async_extent->start + async_extent->ram_size - 1);
692 
693 		ret = btrfs_reserve_extent(root,
694 					   async_extent->compressed_size,
695 					   async_extent->compressed_size,
696 					   0, alloc_hint, &ins, 1, 1);
697 		if (ret) {
698 			int i;
699 
700 			for (i = 0; i < async_extent->nr_pages; i++) {
701 				WARN_ON(async_extent->pages[i]->mapping);
702 				page_cache_release(async_extent->pages[i]);
703 			}
704 			kfree(async_extent->pages);
705 			async_extent->nr_pages = 0;
706 			async_extent->pages = NULL;
707 
708 			if (ret == -ENOSPC) {
709 				unlock_extent(io_tree, async_extent->start,
710 					      async_extent->start +
711 					      async_extent->ram_size - 1);
712 
713 				/*
714 				 * we need to redirty the pages if we decide to
715 				 * fallback to uncompressed IO, otherwise we
716 				 * will not submit these pages down to lower
717 				 * layers.
718 				 */
719 				extent_range_redirty_for_io(inode,
720 						async_extent->start,
721 						async_extent->start +
722 						async_extent->ram_size - 1);
723 
724 				goto retry;
725 			}
726 			goto out_free;
727 		}
728 
729 		/*
730 		 * here we're doing allocation and writeback of the
731 		 * compressed pages
732 		 */
733 		btrfs_drop_extent_cache(inode, async_extent->start,
734 					async_extent->start +
735 					async_extent->ram_size - 1, 0);
736 
737 		em = alloc_extent_map();
738 		if (!em) {
739 			ret = -ENOMEM;
740 			goto out_free_reserve;
741 		}
742 		em->start = async_extent->start;
743 		em->len = async_extent->ram_size;
744 		em->orig_start = em->start;
745 		em->mod_start = em->start;
746 		em->mod_len = em->len;
747 
748 		em->block_start = ins.objectid;
749 		em->block_len = ins.offset;
750 		em->orig_block_len = ins.offset;
751 		em->ram_bytes = async_extent->ram_size;
752 		em->bdev = root->fs_info->fs_devices->latest_bdev;
753 		em->compress_type = async_extent->compress_type;
754 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
755 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
756 		em->generation = -1;
757 
758 		while (1) {
759 			write_lock(&em_tree->lock);
760 			ret = add_extent_mapping(em_tree, em, 1);
761 			write_unlock(&em_tree->lock);
762 			if (ret != -EEXIST) {
763 				free_extent_map(em);
764 				break;
765 			}
766 			btrfs_drop_extent_cache(inode, async_extent->start,
767 						async_extent->start +
768 						async_extent->ram_size - 1, 0);
769 		}
770 
771 		if (ret)
772 			goto out_free_reserve;
773 
774 		ret = btrfs_add_ordered_extent_compress(inode,
775 						async_extent->start,
776 						ins.objectid,
777 						async_extent->ram_size,
778 						ins.offset,
779 						BTRFS_ORDERED_COMPRESSED,
780 						async_extent->compress_type);
781 		if (ret) {
782 			btrfs_drop_extent_cache(inode, async_extent->start,
783 						async_extent->start +
784 						async_extent->ram_size - 1, 0);
785 			goto out_free_reserve;
786 		}
787 
788 		/*
789 		 * clear dirty, set writeback and unlock the pages.
790 		 */
791 		extent_clear_unlock_delalloc(inode, async_extent->start,
792 				async_extent->start +
793 				async_extent->ram_size - 1,
794 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
795 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
796 				PAGE_SET_WRITEBACK);
797 		ret = btrfs_submit_compressed_write(inode,
798 				    async_extent->start,
799 				    async_extent->ram_size,
800 				    ins.objectid,
801 				    ins.offset, async_extent->pages,
802 				    async_extent->nr_pages);
803 		alloc_hint = ins.objectid + ins.offset;
804 		kfree(async_extent);
805 		if (ret)
806 			goto out;
807 		cond_resched();
808 	}
809 	ret = 0;
810 out:
811 	return ret;
812 out_free_reserve:
813 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
814 out_free:
815 	extent_clear_unlock_delalloc(inode, async_extent->start,
816 				     async_extent->start +
817 				     async_extent->ram_size - 1,
818 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
819 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
820 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
821 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
822 	kfree(async_extent);
823 	goto again;
824 }
825 
826 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
827 				      u64 num_bytes)
828 {
829 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
830 	struct extent_map *em;
831 	u64 alloc_hint = 0;
832 
833 	read_lock(&em_tree->lock);
834 	em = search_extent_mapping(em_tree, start, num_bytes);
835 	if (em) {
836 		/*
837 		 * if block start isn't an actual block number then find the
838 		 * first block in this inode and use that as a hint.  If that
839 		 * block is also bogus then just don't worry about it.
840 		 */
841 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
842 			free_extent_map(em);
843 			em = search_extent_mapping(em_tree, 0, 0);
844 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
845 				alloc_hint = em->block_start;
846 			if (em)
847 				free_extent_map(em);
848 		} else {
849 			alloc_hint = em->block_start;
850 			free_extent_map(em);
851 		}
852 	}
853 	read_unlock(&em_tree->lock);
854 
855 	return alloc_hint;
856 }
857 
858 /*
859  * when extent_io.c finds a delayed allocation range in the file,
860  * the call backs end up in this code.  The basic idea is to
861  * allocate extents on disk for the range, and create ordered data structs
862  * in ram to track those extents.
863  *
864  * locked_page is the page that writepage had locked already.  We use
865  * it to make sure we don't do extra locks or unlocks.
866  *
867  * *page_started is set to one if we unlock locked_page and do everything
868  * required to start IO on it.  It may be clean and already done with
869  * IO when we return.
870  */
871 static noinline int cow_file_range(struct inode *inode,
872 				   struct page *locked_page,
873 				   u64 start, u64 end, int *page_started,
874 				   unsigned long *nr_written,
875 				   int unlock)
876 {
877 	struct btrfs_root *root = BTRFS_I(inode)->root;
878 	u64 alloc_hint = 0;
879 	u64 num_bytes;
880 	unsigned long ram_size;
881 	u64 disk_num_bytes;
882 	u64 cur_alloc_size;
883 	u64 blocksize = root->sectorsize;
884 	struct btrfs_key ins;
885 	struct extent_map *em;
886 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
887 	int ret = 0;
888 
889 	if (btrfs_is_free_space_inode(inode)) {
890 		WARN_ON_ONCE(1);
891 		ret = -EINVAL;
892 		goto out_unlock;
893 	}
894 
895 	num_bytes = ALIGN(end - start + 1, blocksize);
896 	num_bytes = max(blocksize,  num_bytes);
897 	disk_num_bytes = num_bytes;
898 
899 	/* if this is a small write inside eof, kick off defrag */
900 	if (num_bytes < 64 * 1024 &&
901 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
902 		btrfs_add_inode_defrag(NULL, inode);
903 
904 	if (start == 0) {
905 		/* lets try to make an inline extent */
906 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
907 					    NULL);
908 		if (ret == 0) {
909 			extent_clear_unlock_delalloc(inode, start, end, NULL,
910 				     EXTENT_LOCKED | EXTENT_DELALLOC |
911 				     EXTENT_DEFRAG, PAGE_UNLOCK |
912 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
913 				     PAGE_END_WRITEBACK);
914 
915 			*nr_written = *nr_written +
916 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
917 			*page_started = 1;
918 			goto out;
919 		} else if (ret < 0) {
920 			goto out_unlock;
921 		}
922 	}
923 
924 	BUG_ON(disk_num_bytes >
925 	       btrfs_super_total_bytes(root->fs_info->super_copy));
926 
927 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
928 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
929 
930 	while (disk_num_bytes > 0) {
931 		unsigned long op;
932 
933 		cur_alloc_size = disk_num_bytes;
934 		ret = btrfs_reserve_extent(root, cur_alloc_size,
935 					   root->sectorsize, 0, alloc_hint,
936 					   &ins, 1, 1);
937 		if (ret < 0)
938 			goto out_unlock;
939 
940 		em = alloc_extent_map();
941 		if (!em) {
942 			ret = -ENOMEM;
943 			goto out_reserve;
944 		}
945 		em->start = start;
946 		em->orig_start = em->start;
947 		ram_size = ins.offset;
948 		em->len = ins.offset;
949 		em->mod_start = em->start;
950 		em->mod_len = em->len;
951 
952 		em->block_start = ins.objectid;
953 		em->block_len = ins.offset;
954 		em->orig_block_len = ins.offset;
955 		em->ram_bytes = ram_size;
956 		em->bdev = root->fs_info->fs_devices->latest_bdev;
957 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
958 		em->generation = -1;
959 
960 		while (1) {
961 			write_lock(&em_tree->lock);
962 			ret = add_extent_mapping(em_tree, em, 1);
963 			write_unlock(&em_tree->lock);
964 			if (ret != -EEXIST) {
965 				free_extent_map(em);
966 				break;
967 			}
968 			btrfs_drop_extent_cache(inode, start,
969 						start + ram_size - 1, 0);
970 		}
971 		if (ret)
972 			goto out_reserve;
973 
974 		cur_alloc_size = ins.offset;
975 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
976 					       ram_size, cur_alloc_size, 0);
977 		if (ret)
978 			goto out_drop_extent_cache;
979 
980 		if (root->root_key.objectid ==
981 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
982 			ret = btrfs_reloc_clone_csums(inode, start,
983 						      cur_alloc_size);
984 			if (ret)
985 				goto out_drop_extent_cache;
986 		}
987 
988 		if (disk_num_bytes < cur_alloc_size)
989 			break;
990 
991 		/* we're not doing compressed IO, don't unlock the first
992 		 * page (which the caller expects to stay locked), don't
993 		 * clear any dirty bits and don't set any writeback bits
994 		 *
995 		 * Do set the Private2 bit so we know this page was properly
996 		 * setup for writepage
997 		 */
998 		op = unlock ? PAGE_UNLOCK : 0;
999 		op |= PAGE_SET_PRIVATE2;
1000 
1001 		extent_clear_unlock_delalloc(inode, start,
1002 					     start + ram_size - 1, locked_page,
1003 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1004 					     op);
1005 		disk_num_bytes -= cur_alloc_size;
1006 		num_bytes -= cur_alloc_size;
1007 		alloc_hint = ins.objectid + ins.offset;
1008 		start += cur_alloc_size;
1009 	}
1010 out:
1011 	return ret;
1012 
1013 out_drop_extent_cache:
1014 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1015 out_reserve:
1016 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1017 out_unlock:
1018 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1019 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1020 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1021 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1022 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1023 	goto out;
1024 }
1025 
1026 /*
1027  * work queue call back to started compression on a file and pages
1028  */
1029 static noinline void async_cow_start(struct btrfs_work *work)
1030 {
1031 	struct async_cow *async_cow;
1032 	int num_added = 0;
1033 	async_cow = container_of(work, struct async_cow, work);
1034 
1035 	compress_file_range(async_cow->inode, async_cow->locked_page,
1036 			    async_cow->start, async_cow->end, async_cow,
1037 			    &num_added);
1038 	if (num_added == 0) {
1039 		btrfs_add_delayed_iput(async_cow->inode);
1040 		async_cow->inode = NULL;
1041 	}
1042 }
1043 
1044 /*
1045  * work queue call back to submit previously compressed pages
1046  */
1047 static noinline void async_cow_submit(struct btrfs_work *work)
1048 {
1049 	struct async_cow *async_cow;
1050 	struct btrfs_root *root;
1051 	unsigned long nr_pages;
1052 
1053 	async_cow = container_of(work, struct async_cow, work);
1054 
1055 	root = async_cow->root;
1056 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1057 		PAGE_CACHE_SHIFT;
1058 
1059 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1060 	    5 * 1024 * 1024 &&
1061 	    waitqueue_active(&root->fs_info->async_submit_wait))
1062 		wake_up(&root->fs_info->async_submit_wait);
1063 
1064 	if (async_cow->inode)
1065 		submit_compressed_extents(async_cow->inode, async_cow);
1066 }
1067 
1068 static noinline void async_cow_free(struct btrfs_work *work)
1069 {
1070 	struct async_cow *async_cow;
1071 	async_cow = container_of(work, struct async_cow, work);
1072 	if (async_cow->inode)
1073 		btrfs_add_delayed_iput(async_cow->inode);
1074 	kfree(async_cow);
1075 }
1076 
1077 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1078 				u64 start, u64 end, int *page_started,
1079 				unsigned long *nr_written)
1080 {
1081 	struct async_cow *async_cow;
1082 	struct btrfs_root *root = BTRFS_I(inode)->root;
1083 	unsigned long nr_pages;
1084 	u64 cur_end;
1085 	int limit = 10 * 1024 * 1024;
1086 
1087 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1088 			 1, 0, NULL, GFP_NOFS);
1089 	while (start < end) {
1090 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1091 		BUG_ON(!async_cow); /* -ENOMEM */
1092 		async_cow->inode = igrab(inode);
1093 		async_cow->root = root;
1094 		async_cow->locked_page = locked_page;
1095 		async_cow->start = start;
1096 
1097 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1098 			cur_end = end;
1099 		else
1100 			cur_end = min(end, start + 512 * 1024 - 1);
1101 
1102 		async_cow->end = cur_end;
1103 		INIT_LIST_HEAD(&async_cow->extents);
1104 
1105 		btrfs_init_work(&async_cow->work,
1106 				btrfs_delalloc_helper,
1107 				async_cow_start, async_cow_submit,
1108 				async_cow_free);
1109 
1110 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1111 			PAGE_CACHE_SHIFT;
1112 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1113 
1114 		btrfs_queue_work(root->fs_info->delalloc_workers,
1115 				 &async_cow->work);
1116 
1117 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1118 			wait_event(root->fs_info->async_submit_wait,
1119 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1120 			    limit));
1121 		}
1122 
1123 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1124 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1125 			wait_event(root->fs_info->async_submit_wait,
1126 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1127 			   0));
1128 		}
1129 
1130 		*nr_written += nr_pages;
1131 		start = cur_end + 1;
1132 	}
1133 	*page_started = 1;
1134 	return 0;
1135 }
1136 
1137 static noinline int csum_exist_in_range(struct btrfs_root *root,
1138 					u64 bytenr, u64 num_bytes)
1139 {
1140 	int ret;
1141 	struct btrfs_ordered_sum *sums;
1142 	LIST_HEAD(list);
1143 
1144 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1145 				       bytenr + num_bytes - 1, &list, 0);
1146 	if (ret == 0 && list_empty(&list))
1147 		return 0;
1148 
1149 	while (!list_empty(&list)) {
1150 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1151 		list_del(&sums->list);
1152 		kfree(sums);
1153 	}
1154 	return 1;
1155 }
1156 
1157 /*
1158  * when nowcow writeback call back.  This checks for snapshots or COW copies
1159  * of the extents that exist in the file, and COWs the file as required.
1160  *
1161  * If no cow copies or snapshots exist, we write directly to the existing
1162  * blocks on disk
1163  */
1164 static noinline int run_delalloc_nocow(struct inode *inode,
1165 				       struct page *locked_page,
1166 			      u64 start, u64 end, int *page_started, int force,
1167 			      unsigned long *nr_written)
1168 {
1169 	struct btrfs_root *root = BTRFS_I(inode)->root;
1170 	struct btrfs_trans_handle *trans;
1171 	struct extent_buffer *leaf;
1172 	struct btrfs_path *path;
1173 	struct btrfs_file_extent_item *fi;
1174 	struct btrfs_key found_key;
1175 	u64 cow_start;
1176 	u64 cur_offset;
1177 	u64 extent_end;
1178 	u64 extent_offset;
1179 	u64 disk_bytenr;
1180 	u64 num_bytes;
1181 	u64 disk_num_bytes;
1182 	u64 ram_bytes;
1183 	int extent_type;
1184 	int ret, err;
1185 	int type;
1186 	int nocow;
1187 	int check_prev = 1;
1188 	bool nolock;
1189 	u64 ino = btrfs_ino(inode);
1190 
1191 	path = btrfs_alloc_path();
1192 	if (!path) {
1193 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1194 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1195 					     EXTENT_DO_ACCOUNTING |
1196 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1197 					     PAGE_CLEAR_DIRTY |
1198 					     PAGE_SET_WRITEBACK |
1199 					     PAGE_END_WRITEBACK);
1200 		return -ENOMEM;
1201 	}
1202 
1203 	nolock = btrfs_is_free_space_inode(inode);
1204 
1205 	if (nolock)
1206 		trans = btrfs_join_transaction_nolock(root);
1207 	else
1208 		trans = btrfs_join_transaction(root);
1209 
1210 	if (IS_ERR(trans)) {
1211 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1212 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1213 					     EXTENT_DO_ACCOUNTING |
1214 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1215 					     PAGE_CLEAR_DIRTY |
1216 					     PAGE_SET_WRITEBACK |
1217 					     PAGE_END_WRITEBACK);
1218 		btrfs_free_path(path);
1219 		return PTR_ERR(trans);
1220 	}
1221 
1222 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1223 
1224 	cow_start = (u64)-1;
1225 	cur_offset = start;
1226 	while (1) {
1227 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1228 					       cur_offset, 0);
1229 		if (ret < 0)
1230 			goto error;
1231 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1232 			leaf = path->nodes[0];
1233 			btrfs_item_key_to_cpu(leaf, &found_key,
1234 					      path->slots[0] - 1);
1235 			if (found_key.objectid == ino &&
1236 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1237 				path->slots[0]--;
1238 		}
1239 		check_prev = 0;
1240 next_slot:
1241 		leaf = path->nodes[0];
1242 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1243 			ret = btrfs_next_leaf(root, path);
1244 			if (ret < 0)
1245 				goto error;
1246 			if (ret > 0)
1247 				break;
1248 			leaf = path->nodes[0];
1249 		}
1250 
1251 		nocow = 0;
1252 		disk_bytenr = 0;
1253 		num_bytes = 0;
1254 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1255 
1256 		if (found_key.objectid > ino ||
1257 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1258 		    found_key.offset > end)
1259 			break;
1260 
1261 		if (found_key.offset > cur_offset) {
1262 			extent_end = found_key.offset;
1263 			extent_type = 0;
1264 			goto out_check;
1265 		}
1266 
1267 		fi = btrfs_item_ptr(leaf, path->slots[0],
1268 				    struct btrfs_file_extent_item);
1269 		extent_type = btrfs_file_extent_type(leaf, fi);
1270 
1271 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1272 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1273 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1274 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1275 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1276 			extent_end = found_key.offset +
1277 				btrfs_file_extent_num_bytes(leaf, fi);
1278 			disk_num_bytes =
1279 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1280 			if (extent_end <= start) {
1281 				path->slots[0]++;
1282 				goto next_slot;
1283 			}
1284 			if (disk_bytenr == 0)
1285 				goto out_check;
1286 			if (btrfs_file_extent_compression(leaf, fi) ||
1287 			    btrfs_file_extent_encryption(leaf, fi) ||
1288 			    btrfs_file_extent_other_encoding(leaf, fi))
1289 				goto out_check;
1290 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1291 				goto out_check;
1292 			if (btrfs_extent_readonly(root, disk_bytenr))
1293 				goto out_check;
1294 			if (btrfs_cross_ref_exist(trans, root, ino,
1295 						  found_key.offset -
1296 						  extent_offset, disk_bytenr))
1297 				goto out_check;
1298 			disk_bytenr += extent_offset;
1299 			disk_bytenr += cur_offset - found_key.offset;
1300 			num_bytes = min(end + 1, extent_end) - cur_offset;
1301 			/*
1302 			 * if there are pending snapshots for this root,
1303 			 * we fall into common COW way.
1304 			 */
1305 			if (!nolock) {
1306 				err = btrfs_start_nocow_write(root);
1307 				if (!err)
1308 					goto out_check;
1309 			}
1310 			/*
1311 			 * force cow if csum exists in the range.
1312 			 * this ensure that csum for a given extent are
1313 			 * either valid or do not exist.
1314 			 */
1315 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1316 				goto out_check;
1317 			nocow = 1;
1318 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1319 			extent_end = found_key.offset +
1320 				btrfs_file_extent_inline_len(leaf,
1321 						     path->slots[0], fi);
1322 			extent_end = ALIGN(extent_end, root->sectorsize);
1323 		} else {
1324 			BUG_ON(1);
1325 		}
1326 out_check:
1327 		if (extent_end <= start) {
1328 			path->slots[0]++;
1329 			if (!nolock && nocow)
1330 				btrfs_end_nocow_write(root);
1331 			goto next_slot;
1332 		}
1333 		if (!nocow) {
1334 			if (cow_start == (u64)-1)
1335 				cow_start = cur_offset;
1336 			cur_offset = extent_end;
1337 			if (cur_offset > end)
1338 				break;
1339 			path->slots[0]++;
1340 			goto next_slot;
1341 		}
1342 
1343 		btrfs_release_path(path);
1344 		if (cow_start != (u64)-1) {
1345 			ret = cow_file_range(inode, locked_page,
1346 					     cow_start, found_key.offset - 1,
1347 					     page_started, nr_written, 1);
1348 			if (ret) {
1349 				if (!nolock && nocow)
1350 					btrfs_end_nocow_write(root);
1351 				goto error;
1352 			}
1353 			cow_start = (u64)-1;
1354 		}
1355 
1356 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1357 			struct extent_map *em;
1358 			struct extent_map_tree *em_tree;
1359 			em_tree = &BTRFS_I(inode)->extent_tree;
1360 			em = alloc_extent_map();
1361 			BUG_ON(!em); /* -ENOMEM */
1362 			em->start = cur_offset;
1363 			em->orig_start = found_key.offset - extent_offset;
1364 			em->len = num_bytes;
1365 			em->block_len = num_bytes;
1366 			em->block_start = disk_bytenr;
1367 			em->orig_block_len = disk_num_bytes;
1368 			em->ram_bytes = ram_bytes;
1369 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1370 			em->mod_start = em->start;
1371 			em->mod_len = em->len;
1372 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1373 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1374 			em->generation = -1;
1375 			while (1) {
1376 				write_lock(&em_tree->lock);
1377 				ret = add_extent_mapping(em_tree, em, 1);
1378 				write_unlock(&em_tree->lock);
1379 				if (ret != -EEXIST) {
1380 					free_extent_map(em);
1381 					break;
1382 				}
1383 				btrfs_drop_extent_cache(inode, em->start,
1384 						em->start + em->len - 1, 0);
1385 			}
1386 			type = BTRFS_ORDERED_PREALLOC;
1387 		} else {
1388 			type = BTRFS_ORDERED_NOCOW;
1389 		}
1390 
1391 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1392 					       num_bytes, num_bytes, type);
1393 		BUG_ON(ret); /* -ENOMEM */
1394 
1395 		if (root->root_key.objectid ==
1396 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1397 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1398 						      num_bytes);
1399 			if (ret) {
1400 				if (!nolock && nocow)
1401 					btrfs_end_nocow_write(root);
1402 				goto error;
1403 			}
1404 		}
1405 
1406 		extent_clear_unlock_delalloc(inode, cur_offset,
1407 					     cur_offset + num_bytes - 1,
1408 					     locked_page, EXTENT_LOCKED |
1409 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1410 					     PAGE_SET_PRIVATE2);
1411 		if (!nolock && nocow)
1412 			btrfs_end_nocow_write(root);
1413 		cur_offset = extent_end;
1414 		if (cur_offset > end)
1415 			break;
1416 	}
1417 	btrfs_release_path(path);
1418 
1419 	if (cur_offset <= end && cow_start == (u64)-1) {
1420 		cow_start = cur_offset;
1421 		cur_offset = end;
1422 	}
1423 
1424 	if (cow_start != (u64)-1) {
1425 		ret = cow_file_range(inode, locked_page, cow_start, end,
1426 				     page_started, nr_written, 1);
1427 		if (ret)
1428 			goto error;
1429 	}
1430 
1431 error:
1432 	err = btrfs_end_transaction(trans, root);
1433 	if (!ret)
1434 		ret = err;
1435 
1436 	if (ret && cur_offset < end)
1437 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1438 					     locked_page, EXTENT_LOCKED |
1439 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1440 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1441 					     PAGE_CLEAR_DIRTY |
1442 					     PAGE_SET_WRITEBACK |
1443 					     PAGE_END_WRITEBACK);
1444 	btrfs_free_path(path);
1445 	return ret;
1446 }
1447 
1448 /*
1449  * extent_io.c call back to do delayed allocation processing
1450  */
1451 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1452 			      u64 start, u64 end, int *page_started,
1453 			      unsigned long *nr_written)
1454 {
1455 	int ret;
1456 	struct btrfs_root *root = BTRFS_I(inode)->root;
1457 
1458 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1459 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1460 					 page_started, 1, nr_written);
1461 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1462 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1463 					 page_started, 0, nr_written);
1464 	} else if (!btrfs_test_opt(root, COMPRESS) &&
1465 		   !(BTRFS_I(inode)->force_compress) &&
1466 		   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1467 		ret = cow_file_range(inode, locked_page, start, end,
1468 				      page_started, nr_written, 1);
1469 	} else {
1470 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1471 			&BTRFS_I(inode)->runtime_flags);
1472 		ret = cow_file_range_async(inode, locked_page, start, end,
1473 					   page_started, nr_written);
1474 	}
1475 	return ret;
1476 }
1477 
1478 static void btrfs_split_extent_hook(struct inode *inode,
1479 				    struct extent_state *orig, u64 split)
1480 {
1481 	/* not delalloc, ignore it */
1482 	if (!(orig->state & EXTENT_DELALLOC))
1483 		return;
1484 
1485 	spin_lock(&BTRFS_I(inode)->lock);
1486 	BTRFS_I(inode)->outstanding_extents++;
1487 	spin_unlock(&BTRFS_I(inode)->lock);
1488 }
1489 
1490 /*
1491  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1492  * extents so we can keep track of new extents that are just merged onto old
1493  * extents, such as when we are doing sequential writes, so we can properly
1494  * account for the metadata space we'll need.
1495  */
1496 static void btrfs_merge_extent_hook(struct inode *inode,
1497 				    struct extent_state *new,
1498 				    struct extent_state *other)
1499 {
1500 	/* not delalloc, ignore it */
1501 	if (!(other->state & EXTENT_DELALLOC))
1502 		return;
1503 
1504 	spin_lock(&BTRFS_I(inode)->lock);
1505 	BTRFS_I(inode)->outstanding_extents--;
1506 	spin_unlock(&BTRFS_I(inode)->lock);
1507 }
1508 
1509 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1510 				      struct inode *inode)
1511 {
1512 	spin_lock(&root->delalloc_lock);
1513 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1514 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1515 			      &root->delalloc_inodes);
1516 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1517 			&BTRFS_I(inode)->runtime_flags);
1518 		root->nr_delalloc_inodes++;
1519 		if (root->nr_delalloc_inodes == 1) {
1520 			spin_lock(&root->fs_info->delalloc_root_lock);
1521 			BUG_ON(!list_empty(&root->delalloc_root));
1522 			list_add_tail(&root->delalloc_root,
1523 				      &root->fs_info->delalloc_roots);
1524 			spin_unlock(&root->fs_info->delalloc_root_lock);
1525 		}
1526 	}
1527 	spin_unlock(&root->delalloc_lock);
1528 }
1529 
1530 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1531 				     struct inode *inode)
1532 {
1533 	spin_lock(&root->delalloc_lock);
1534 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1535 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1536 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1537 			  &BTRFS_I(inode)->runtime_flags);
1538 		root->nr_delalloc_inodes--;
1539 		if (!root->nr_delalloc_inodes) {
1540 			spin_lock(&root->fs_info->delalloc_root_lock);
1541 			BUG_ON(list_empty(&root->delalloc_root));
1542 			list_del_init(&root->delalloc_root);
1543 			spin_unlock(&root->fs_info->delalloc_root_lock);
1544 		}
1545 	}
1546 	spin_unlock(&root->delalloc_lock);
1547 }
1548 
1549 /*
1550  * extent_io.c set_bit_hook, used to track delayed allocation
1551  * bytes in this file, and to maintain the list of inodes that
1552  * have pending delalloc work to be done.
1553  */
1554 static void btrfs_set_bit_hook(struct inode *inode,
1555 			       struct extent_state *state, unsigned long *bits)
1556 {
1557 
1558 	/*
1559 	 * set_bit and clear bit hooks normally require _irqsave/restore
1560 	 * but in this case, we are only testing for the DELALLOC
1561 	 * bit, which is only set or cleared with irqs on
1562 	 */
1563 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1564 		struct btrfs_root *root = BTRFS_I(inode)->root;
1565 		u64 len = state->end + 1 - state->start;
1566 		bool do_list = !btrfs_is_free_space_inode(inode);
1567 
1568 		if (*bits & EXTENT_FIRST_DELALLOC) {
1569 			*bits &= ~EXTENT_FIRST_DELALLOC;
1570 		} else {
1571 			spin_lock(&BTRFS_I(inode)->lock);
1572 			BTRFS_I(inode)->outstanding_extents++;
1573 			spin_unlock(&BTRFS_I(inode)->lock);
1574 		}
1575 
1576 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1577 				     root->fs_info->delalloc_batch);
1578 		spin_lock(&BTRFS_I(inode)->lock);
1579 		BTRFS_I(inode)->delalloc_bytes += len;
1580 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1581 					 &BTRFS_I(inode)->runtime_flags))
1582 			btrfs_add_delalloc_inodes(root, inode);
1583 		spin_unlock(&BTRFS_I(inode)->lock);
1584 	}
1585 }
1586 
1587 /*
1588  * extent_io.c clear_bit_hook, see set_bit_hook for why
1589  */
1590 static void btrfs_clear_bit_hook(struct inode *inode,
1591 				 struct extent_state *state,
1592 				 unsigned long *bits)
1593 {
1594 	/*
1595 	 * set_bit and clear bit hooks normally require _irqsave/restore
1596 	 * but in this case, we are only testing for the DELALLOC
1597 	 * bit, which is only set or cleared with irqs on
1598 	 */
1599 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1600 		struct btrfs_root *root = BTRFS_I(inode)->root;
1601 		u64 len = state->end + 1 - state->start;
1602 		bool do_list = !btrfs_is_free_space_inode(inode);
1603 
1604 		if (*bits & EXTENT_FIRST_DELALLOC) {
1605 			*bits &= ~EXTENT_FIRST_DELALLOC;
1606 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1607 			spin_lock(&BTRFS_I(inode)->lock);
1608 			BTRFS_I(inode)->outstanding_extents--;
1609 			spin_unlock(&BTRFS_I(inode)->lock);
1610 		}
1611 
1612 		/*
1613 		 * We don't reserve metadata space for space cache inodes so we
1614 		 * don't need to call dellalloc_release_metadata if there is an
1615 		 * error.
1616 		 */
1617 		if (*bits & EXTENT_DO_ACCOUNTING &&
1618 		    root != root->fs_info->tree_root)
1619 			btrfs_delalloc_release_metadata(inode, len);
1620 
1621 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1622 		    && do_list && !(state->state & EXTENT_NORESERVE))
1623 			btrfs_free_reserved_data_space(inode, len);
1624 
1625 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1626 				     root->fs_info->delalloc_batch);
1627 		spin_lock(&BTRFS_I(inode)->lock);
1628 		BTRFS_I(inode)->delalloc_bytes -= len;
1629 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1630 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1631 			     &BTRFS_I(inode)->runtime_flags))
1632 			btrfs_del_delalloc_inode(root, inode);
1633 		spin_unlock(&BTRFS_I(inode)->lock);
1634 	}
1635 }
1636 
1637 /*
1638  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1639  * we don't create bios that span stripes or chunks
1640  */
1641 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1642 			 size_t size, struct bio *bio,
1643 			 unsigned long bio_flags)
1644 {
1645 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1646 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1647 	u64 length = 0;
1648 	u64 map_length;
1649 	int ret;
1650 
1651 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1652 		return 0;
1653 
1654 	length = bio->bi_iter.bi_size;
1655 	map_length = length;
1656 	ret = btrfs_map_block(root->fs_info, rw, logical,
1657 			      &map_length, NULL, 0);
1658 	/* Will always return 0 with map_multi == NULL */
1659 	BUG_ON(ret < 0);
1660 	if (map_length < length + size)
1661 		return 1;
1662 	return 0;
1663 }
1664 
1665 /*
1666  * in order to insert checksums into the metadata in large chunks,
1667  * we wait until bio submission time.   All the pages in the bio are
1668  * checksummed and sums are attached onto the ordered extent record.
1669  *
1670  * At IO completion time the cums attached on the ordered extent record
1671  * are inserted into the btree
1672  */
1673 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1674 				    struct bio *bio, int mirror_num,
1675 				    unsigned long bio_flags,
1676 				    u64 bio_offset)
1677 {
1678 	struct btrfs_root *root = BTRFS_I(inode)->root;
1679 	int ret = 0;
1680 
1681 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1682 	BUG_ON(ret); /* -ENOMEM */
1683 	return 0;
1684 }
1685 
1686 /*
1687  * in order to insert checksums into the metadata in large chunks,
1688  * we wait until bio submission time.   All the pages in the bio are
1689  * checksummed and sums are attached onto the ordered extent record.
1690  *
1691  * At IO completion time the cums attached on the ordered extent record
1692  * are inserted into the btree
1693  */
1694 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1695 			  int mirror_num, unsigned long bio_flags,
1696 			  u64 bio_offset)
1697 {
1698 	struct btrfs_root *root = BTRFS_I(inode)->root;
1699 	int ret;
1700 
1701 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1702 	if (ret)
1703 		bio_endio(bio, ret);
1704 	return ret;
1705 }
1706 
1707 /*
1708  * extent_io.c submission hook. This does the right thing for csum calculation
1709  * on write, or reading the csums from the tree before a read
1710  */
1711 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1712 			  int mirror_num, unsigned long bio_flags,
1713 			  u64 bio_offset)
1714 {
1715 	struct btrfs_root *root = BTRFS_I(inode)->root;
1716 	int ret = 0;
1717 	int skip_sum;
1718 	int metadata = 0;
1719 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1720 
1721 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1722 
1723 	if (btrfs_is_free_space_inode(inode))
1724 		metadata = 2;
1725 
1726 	if (!(rw & REQ_WRITE)) {
1727 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1728 		if (ret)
1729 			goto out;
1730 
1731 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1732 			ret = btrfs_submit_compressed_read(inode, bio,
1733 							   mirror_num,
1734 							   bio_flags);
1735 			goto out;
1736 		} else if (!skip_sum) {
1737 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1738 			if (ret)
1739 				goto out;
1740 		}
1741 		goto mapit;
1742 	} else if (async && !skip_sum) {
1743 		/* csum items have already been cloned */
1744 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1745 			goto mapit;
1746 		/* we're doing a write, do the async checksumming */
1747 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1748 				   inode, rw, bio, mirror_num,
1749 				   bio_flags, bio_offset,
1750 				   __btrfs_submit_bio_start,
1751 				   __btrfs_submit_bio_done);
1752 		goto out;
1753 	} else if (!skip_sum) {
1754 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1755 		if (ret)
1756 			goto out;
1757 	}
1758 
1759 mapit:
1760 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1761 
1762 out:
1763 	if (ret < 0)
1764 		bio_endio(bio, ret);
1765 	return ret;
1766 }
1767 
1768 /*
1769  * given a list of ordered sums record them in the inode.  This happens
1770  * at IO completion time based on sums calculated at bio submission time.
1771  */
1772 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1773 			     struct inode *inode, u64 file_offset,
1774 			     struct list_head *list)
1775 {
1776 	struct btrfs_ordered_sum *sum;
1777 
1778 	list_for_each_entry(sum, list, list) {
1779 		trans->adding_csums = 1;
1780 		btrfs_csum_file_blocks(trans,
1781 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1782 		trans->adding_csums = 0;
1783 	}
1784 	return 0;
1785 }
1786 
1787 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1788 			      struct extent_state **cached_state)
1789 {
1790 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1791 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1792 				   cached_state, GFP_NOFS);
1793 }
1794 
1795 /* see btrfs_writepage_start_hook for details on why this is required */
1796 struct btrfs_writepage_fixup {
1797 	struct page *page;
1798 	struct btrfs_work work;
1799 };
1800 
1801 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1802 {
1803 	struct btrfs_writepage_fixup *fixup;
1804 	struct btrfs_ordered_extent *ordered;
1805 	struct extent_state *cached_state = NULL;
1806 	struct page *page;
1807 	struct inode *inode;
1808 	u64 page_start;
1809 	u64 page_end;
1810 	int ret;
1811 
1812 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1813 	page = fixup->page;
1814 again:
1815 	lock_page(page);
1816 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1817 		ClearPageChecked(page);
1818 		goto out_page;
1819 	}
1820 
1821 	inode = page->mapping->host;
1822 	page_start = page_offset(page);
1823 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1824 
1825 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1826 			 &cached_state);
1827 
1828 	/* already ordered? We're done */
1829 	if (PagePrivate2(page))
1830 		goto out;
1831 
1832 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1833 	if (ordered) {
1834 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1835 				     page_end, &cached_state, GFP_NOFS);
1836 		unlock_page(page);
1837 		btrfs_start_ordered_extent(inode, ordered, 1);
1838 		btrfs_put_ordered_extent(ordered);
1839 		goto again;
1840 	}
1841 
1842 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1843 	if (ret) {
1844 		mapping_set_error(page->mapping, ret);
1845 		end_extent_writepage(page, ret, page_start, page_end);
1846 		ClearPageChecked(page);
1847 		goto out;
1848 	 }
1849 
1850 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1851 	ClearPageChecked(page);
1852 	set_page_dirty(page);
1853 out:
1854 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1855 			     &cached_state, GFP_NOFS);
1856 out_page:
1857 	unlock_page(page);
1858 	page_cache_release(page);
1859 	kfree(fixup);
1860 }
1861 
1862 /*
1863  * There are a few paths in the higher layers of the kernel that directly
1864  * set the page dirty bit without asking the filesystem if it is a
1865  * good idea.  This causes problems because we want to make sure COW
1866  * properly happens and the data=ordered rules are followed.
1867  *
1868  * In our case any range that doesn't have the ORDERED bit set
1869  * hasn't been properly setup for IO.  We kick off an async process
1870  * to fix it up.  The async helper will wait for ordered extents, set
1871  * the delalloc bit and make it safe to write the page.
1872  */
1873 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1874 {
1875 	struct inode *inode = page->mapping->host;
1876 	struct btrfs_writepage_fixup *fixup;
1877 	struct btrfs_root *root = BTRFS_I(inode)->root;
1878 
1879 	/* this page is properly in the ordered list */
1880 	if (TestClearPagePrivate2(page))
1881 		return 0;
1882 
1883 	if (PageChecked(page))
1884 		return -EAGAIN;
1885 
1886 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1887 	if (!fixup)
1888 		return -EAGAIN;
1889 
1890 	SetPageChecked(page);
1891 	page_cache_get(page);
1892 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1893 			btrfs_writepage_fixup_worker, NULL, NULL);
1894 	fixup->page = page;
1895 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1896 	return -EBUSY;
1897 }
1898 
1899 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1900 				       struct inode *inode, u64 file_pos,
1901 				       u64 disk_bytenr, u64 disk_num_bytes,
1902 				       u64 num_bytes, u64 ram_bytes,
1903 				       u8 compression, u8 encryption,
1904 				       u16 other_encoding, int extent_type)
1905 {
1906 	struct btrfs_root *root = BTRFS_I(inode)->root;
1907 	struct btrfs_file_extent_item *fi;
1908 	struct btrfs_path *path;
1909 	struct extent_buffer *leaf;
1910 	struct btrfs_key ins;
1911 	int extent_inserted = 0;
1912 	int ret;
1913 
1914 	path = btrfs_alloc_path();
1915 	if (!path)
1916 		return -ENOMEM;
1917 
1918 	/*
1919 	 * we may be replacing one extent in the tree with another.
1920 	 * The new extent is pinned in the extent map, and we don't want
1921 	 * to drop it from the cache until it is completely in the btree.
1922 	 *
1923 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1924 	 * the caller is expected to unpin it and allow it to be merged
1925 	 * with the others.
1926 	 */
1927 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1928 				   file_pos + num_bytes, NULL, 0,
1929 				   1, sizeof(*fi), &extent_inserted);
1930 	if (ret)
1931 		goto out;
1932 
1933 	if (!extent_inserted) {
1934 		ins.objectid = btrfs_ino(inode);
1935 		ins.offset = file_pos;
1936 		ins.type = BTRFS_EXTENT_DATA_KEY;
1937 
1938 		path->leave_spinning = 1;
1939 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
1940 					      sizeof(*fi));
1941 		if (ret)
1942 			goto out;
1943 	}
1944 	leaf = path->nodes[0];
1945 	fi = btrfs_item_ptr(leaf, path->slots[0],
1946 			    struct btrfs_file_extent_item);
1947 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1948 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1949 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1950 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1951 	btrfs_set_file_extent_offset(leaf, fi, 0);
1952 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1953 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1954 	btrfs_set_file_extent_compression(leaf, fi, compression);
1955 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1956 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1957 
1958 	btrfs_mark_buffer_dirty(leaf);
1959 	btrfs_release_path(path);
1960 
1961 	inode_add_bytes(inode, num_bytes);
1962 
1963 	ins.objectid = disk_bytenr;
1964 	ins.offset = disk_num_bytes;
1965 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1966 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1967 					root->root_key.objectid,
1968 					btrfs_ino(inode), file_pos, &ins);
1969 out:
1970 	btrfs_free_path(path);
1971 
1972 	return ret;
1973 }
1974 
1975 /* snapshot-aware defrag */
1976 struct sa_defrag_extent_backref {
1977 	struct rb_node node;
1978 	struct old_sa_defrag_extent *old;
1979 	u64 root_id;
1980 	u64 inum;
1981 	u64 file_pos;
1982 	u64 extent_offset;
1983 	u64 num_bytes;
1984 	u64 generation;
1985 };
1986 
1987 struct old_sa_defrag_extent {
1988 	struct list_head list;
1989 	struct new_sa_defrag_extent *new;
1990 
1991 	u64 extent_offset;
1992 	u64 bytenr;
1993 	u64 offset;
1994 	u64 len;
1995 	int count;
1996 };
1997 
1998 struct new_sa_defrag_extent {
1999 	struct rb_root root;
2000 	struct list_head head;
2001 	struct btrfs_path *path;
2002 	struct inode *inode;
2003 	u64 file_pos;
2004 	u64 len;
2005 	u64 bytenr;
2006 	u64 disk_len;
2007 	u8 compress_type;
2008 };
2009 
2010 static int backref_comp(struct sa_defrag_extent_backref *b1,
2011 			struct sa_defrag_extent_backref *b2)
2012 {
2013 	if (b1->root_id < b2->root_id)
2014 		return -1;
2015 	else if (b1->root_id > b2->root_id)
2016 		return 1;
2017 
2018 	if (b1->inum < b2->inum)
2019 		return -1;
2020 	else if (b1->inum > b2->inum)
2021 		return 1;
2022 
2023 	if (b1->file_pos < b2->file_pos)
2024 		return -1;
2025 	else if (b1->file_pos > b2->file_pos)
2026 		return 1;
2027 
2028 	/*
2029 	 * [------------------------------] ===> (a range of space)
2030 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2031 	 * |<---------------------------->| ===> (fs/file tree B)
2032 	 *
2033 	 * A range of space can refer to two file extents in one tree while
2034 	 * refer to only one file extent in another tree.
2035 	 *
2036 	 * So we may process a disk offset more than one time(two extents in A)
2037 	 * and locate at the same extent(one extent in B), then insert two same
2038 	 * backrefs(both refer to the extent in B).
2039 	 */
2040 	return 0;
2041 }
2042 
2043 static void backref_insert(struct rb_root *root,
2044 			   struct sa_defrag_extent_backref *backref)
2045 {
2046 	struct rb_node **p = &root->rb_node;
2047 	struct rb_node *parent = NULL;
2048 	struct sa_defrag_extent_backref *entry;
2049 	int ret;
2050 
2051 	while (*p) {
2052 		parent = *p;
2053 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2054 
2055 		ret = backref_comp(backref, entry);
2056 		if (ret < 0)
2057 			p = &(*p)->rb_left;
2058 		else
2059 			p = &(*p)->rb_right;
2060 	}
2061 
2062 	rb_link_node(&backref->node, parent, p);
2063 	rb_insert_color(&backref->node, root);
2064 }
2065 
2066 /*
2067  * Note the backref might has changed, and in this case we just return 0.
2068  */
2069 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2070 				       void *ctx)
2071 {
2072 	struct btrfs_file_extent_item *extent;
2073 	struct btrfs_fs_info *fs_info;
2074 	struct old_sa_defrag_extent *old = ctx;
2075 	struct new_sa_defrag_extent *new = old->new;
2076 	struct btrfs_path *path = new->path;
2077 	struct btrfs_key key;
2078 	struct btrfs_root *root;
2079 	struct sa_defrag_extent_backref *backref;
2080 	struct extent_buffer *leaf;
2081 	struct inode *inode = new->inode;
2082 	int slot;
2083 	int ret;
2084 	u64 extent_offset;
2085 	u64 num_bytes;
2086 
2087 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2088 	    inum == btrfs_ino(inode))
2089 		return 0;
2090 
2091 	key.objectid = root_id;
2092 	key.type = BTRFS_ROOT_ITEM_KEY;
2093 	key.offset = (u64)-1;
2094 
2095 	fs_info = BTRFS_I(inode)->root->fs_info;
2096 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2097 	if (IS_ERR(root)) {
2098 		if (PTR_ERR(root) == -ENOENT)
2099 			return 0;
2100 		WARN_ON(1);
2101 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2102 			 inum, offset, root_id);
2103 		return PTR_ERR(root);
2104 	}
2105 
2106 	key.objectid = inum;
2107 	key.type = BTRFS_EXTENT_DATA_KEY;
2108 	if (offset > (u64)-1 << 32)
2109 		key.offset = 0;
2110 	else
2111 		key.offset = offset;
2112 
2113 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2114 	if (WARN_ON(ret < 0))
2115 		return ret;
2116 	ret = 0;
2117 
2118 	while (1) {
2119 		cond_resched();
2120 
2121 		leaf = path->nodes[0];
2122 		slot = path->slots[0];
2123 
2124 		if (slot >= btrfs_header_nritems(leaf)) {
2125 			ret = btrfs_next_leaf(root, path);
2126 			if (ret < 0) {
2127 				goto out;
2128 			} else if (ret > 0) {
2129 				ret = 0;
2130 				goto out;
2131 			}
2132 			continue;
2133 		}
2134 
2135 		path->slots[0]++;
2136 
2137 		btrfs_item_key_to_cpu(leaf, &key, slot);
2138 
2139 		if (key.objectid > inum)
2140 			goto out;
2141 
2142 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2143 			continue;
2144 
2145 		extent = btrfs_item_ptr(leaf, slot,
2146 					struct btrfs_file_extent_item);
2147 
2148 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2149 			continue;
2150 
2151 		/*
2152 		 * 'offset' refers to the exact key.offset,
2153 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2154 		 * (key.offset - extent_offset).
2155 		 */
2156 		if (key.offset != offset)
2157 			continue;
2158 
2159 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2160 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2161 
2162 		if (extent_offset >= old->extent_offset + old->offset +
2163 		    old->len || extent_offset + num_bytes <=
2164 		    old->extent_offset + old->offset)
2165 			continue;
2166 		break;
2167 	}
2168 
2169 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2170 	if (!backref) {
2171 		ret = -ENOENT;
2172 		goto out;
2173 	}
2174 
2175 	backref->root_id = root_id;
2176 	backref->inum = inum;
2177 	backref->file_pos = offset;
2178 	backref->num_bytes = num_bytes;
2179 	backref->extent_offset = extent_offset;
2180 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2181 	backref->old = old;
2182 	backref_insert(&new->root, backref);
2183 	old->count++;
2184 out:
2185 	btrfs_release_path(path);
2186 	WARN_ON(ret);
2187 	return ret;
2188 }
2189 
2190 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2191 				   struct new_sa_defrag_extent *new)
2192 {
2193 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2194 	struct old_sa_defrag_extent *old, *tmp;
2195 	int ret;
2196 
2197 	new->path = path;
2198 
2199 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2200 		ret = iterate_inodes_from_logical(old->bytenr +
2201 						  old->extent_offset, fs_info,
2202 						  path, record_one_backref,
2203 						  old);
2204 		if (ret < 0 && ret != -ENOENT)
2205 			return false;
2206 
2207 		/* no backref to be processed for this extent */
2208 		if (!old->count) {
2209 			list_del(&old->list);
2210 			kfree(old);
2211 		}
2212 	}
2213 
2214 	if (list_empty(&new->head))
2215 		return false;
2216 
2217 	return true;
2218 }
2219 
2220 static int relink_is_mergable(struct extent_buffer *leaf,
2221 			      struct btrfs_file_extent_item *fi,
2222 			      struct new_sa_defrag_extent *new)
2223 {
2224 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2225 		return 0;
2226 
2227 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2228 		return 0;
2229 
2230 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2231 		return 0;
2232 
2233 	if (btrfs_file_extent_encryption(leaf, fi) ||
2234 	    btrfs_file_extent_other_encoding(leaf, fi))
2235 		return 0;
2236 
2237 	return 1;
2238 }
2239 
2240 /*
2241  * Note the backref might has changed, and in this case we just return 0.
2242  */
2243 static noinline int relink_extent_backref(struct btrfs_path *path,
2244 				 struct sa_defrag_extent_backref *prev,
2245 				 struct sa_defrag_extent_backref *backref)
2246 {
2247 	struct btrfs_file_extent_item *extent;
2248 	struct btrfs_file_extent_item *item;
2249 	struct btrfs_ordered_extent *ordered;
2250 	struct btrfs_trans_handle *trans;
2251 	struct btrfs_fs_info *fs_info;
2252 	struct btrfs_root *root;
2253 	struct btrfs_key key;
2254 	struct extent_buffer *leaf;
2255 	struct old_sa_defrag_extent *old = backref->old;
2256 	struct new_sa_defrag_extent *new = old->new;
2257 	struct inode *src_inode = new->inode;
2258 	struct inode *inode;
2259 	struct extent_state *cached = NULL;
2260 	int ret = 0;
2261 	u64 start;
2262 	u64 len;
2263 	u64 lock_start;
2264 	u64 lock_end;
2265 	bool merge = false;
2266 	int index;
2267 
2268 	if (prev && prev->root_id == backref->root_id &&
2269 	    prev->inum == backref->inum &&
2270 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2271 		merge = true;
2272 
2273 	/* step 1: get root */
2274 	key.objectid = backref->root_id;
2275 	key.type = BTRFS_ROOT_ITEM_KEY;
2276 	key.offset = (u64)-1;
2277 
2278 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2279 	index = srcu_read_lock(&fs_info->subvol_srcu);
2280 
2281 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2282 	if (IS_ERR(root)) {
2283 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2284 		if (PTR_ERR(root) == -ENOENT)
2285 			return 0;
2286 		return PTR_ERR(root);
2287 	}
2288 
2289 	if (btrfs_root_readonly(root)) {
2290 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2291 		return 0;
2292 	}
2293 
2294 	/* step 2: get inode */
2295 	key.objectid = backref->inum;
2296 	key.type = BTRFS_INODE_ITEM_KEY;
2297 	key.offset = 0;
2298 
2299 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2300 	if (IS_ERR(inode)) {
2301 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2302 		return 0;
2303 	}
2304 
2305 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2306 
2307 	/* step 3: relink backref */
2308 	lock_start = backref->file_pos;
2309 	lock_end = backref->file_pos + backref->num_bytes - 1;
2310 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2311 			 0, &cached);
2312 
2313 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2314 	if (ordered) {
2315 		btrfs_put_ordered_extent(ordered);
2316 		goto out_unlock;
2317 	}
2318 
2319 	trans = btrfs_join_transaction(root);
2320 	if (IS_ERR(trans)) {
2321 		ret = PTR_ERR(trans);
2322 		goto out_unlock;
2323 	}
2324 
2325 	key.objectid = backref->inum;
2326 	key.type = BTRFS_EXTENT_DATA_KEY;
2327 	key.offset = backref->file_pos;
2328 
2329 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2330 	if (ret < 0) {
2331 		goto out_free_path;
2332 	} else if (ret > 0) {
2333 		ret = 0;
2334 		goto out_free_path;
2335 	}
2336 
2337 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2338 				struct btrfs_file_extent_item);
2339 
2340 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2341 	    backref->generation)
2342 		goto out_free_path;
2343 
2344 	btrfs_release_path(path);
2345 
2346 	start = backref->file_pos;
2347 	if (backref->extent_offset < old->extent_offset + old->offset)
2348 		start += old->extent_offset + old->offset -
2349 			 backref->extent_offset;
2350 
2351 	len = min(backref->extent_offset + backref->num_bytes,
2352 		  old->extent_offset + old->offset + old->len);
2353 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2354 
2355 	ret = btrfs_drop_extents(trans, root, inode, start,
2356 				 start + len, 1);
2357 	if (ret)
2358 		goto out_free_path;
2359 again:
2360 	key.objectid = btrfs_ino(inode);
2361 	key.type = BTRFS_EXTENT_DATA_KEY;
2362 	key.offset = start;
2363 
2364 	path->leave_spinning = 1;
2365 	if (merge) {
2366 		struct btrfs_file_extent_item *fi;
2367 		u64 extent_len;
2368 		struct btrfs_key found_key;
2369 
2370 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2371 		if (ret < 0)
2372 			goto out_free_path;
2373 
2374 		path->slots[0]--;
2375 		leaf = path->nodes[0];
2376 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2377 
2378 		fi = btrfs_item_ptr(leaf, path->slots[0],
2379 				    struct btrfs_file_extent_item);
2380 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2381 
2382 		if (extent_len + found_key.offset == start &&
2383 		    relink_is_mergable(leaf, fi, new)) {
2384 			btrfs_set_file_extent_num_bytes(leaf, fi,
2385 							extent_len + len);
2386 			btrfs_mark_buffer_dirty(leaf);
2387 			inode_add_bytes(inode, len);
2388 
2389 			ret = 1;
2390 			goto out_free_path;
2391 		} else {
2392 			merge = false;
2393 			btrfs_release_path(path);
2394 			goto again;
2395 		}
2396 	}
2397 
2398 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2399 					sizeof(*extent));
2400 	if (ret) {
2401 		btrfs_abort_transaction(trans, root, ret);
2402 		goto out_free_path;
2403 	}
2404 
2405 	leaf = path->nodes[0];
2406 	item = btrfs_item_ptr(leaf, path->slots[0],
2407 				struct btrfs_file_extent_item);
2408 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2409 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2410 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2411 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2412 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2413 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2414 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2415 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2416 	btrfs_set_file_extent_encryption(leaf, item, 0);
2417 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2418 
2419 	btrfs_mark_buffer_dirty(leaf);
2420 	inode_add_bytes(inode, len);
2421 	btrfs_release_path(path);
2422 
2423 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2424 			new->disk_len, 0,
2425 			backref->root_id, backref->inum,
2426 			new->file_pos, 0);	/* start - extent_offset */
2427 	if (ret) {
2428 		btrfs_abort_transaction(trans, root, ret);
2429 		goto out_free_path;
2430 	}
2431 
2432 	ret = 1;
2433 out_free_path:
2434 	btrfs_release_path(path);
2435 	path->leave_spinning = 0;
2436 	btrfs_end_transaction(trans, root);
2437 out_unlock:
2438 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2439 			     &cached, GFP_NOFS);
2440 	iput(inode);
2441 	return ret;
2442 }
2443 
2444 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2445 {
2446 	struct old_sa_defrag_extent *old, *tmp;
2447 
2448 	if (!new)
2449 		return;
2450 
2451 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2452 		list_del(&old->list);
2453 		kfree(old);
2454 	}
2455 	kfree(new);
2456 }
2457 
2458 static void relink_file_extents(struct new_sa_defrag_extent *new)
2459 {
2460 	struct btrfs_path *path;
2461 	struct sa_defrag_extent_backref *backref;
2462 	struct sa_defrag_extent_backref *prev = NULL;
2463 	struct inode *inode;
2464 	struct btrfs_root *root;
2465 	struct rb_node *node;
2466 	int ret;
2467 
2468 	inode = new->inode;
2469 	root = BTRFS_I(inode)->root;
2470 
2471 	path = btrfs_alloc_path();
2472 	if (!path)
2473 		return;
2474 
2475 	if (!record_extent_backrefs(path, new)) {
2476 		btrfs_free_path(path);
2477 		goto out;
2478 	}
2479 	btrfs_release_path(path);
2480 
2481 	while (1) {
2482 		node = rb_first(&new->root);
2483 		if (!node)
2484 			break;
2485 		rb_erase(node, &new->root);
2486 
2487 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2488 
2489 		ret = relink_extent_backref(path, prev, backref);
2490 		WARN_ON(ret < 0);
2491 
2492 		kfree(prev);
2493 
2494 		if (ret == 1)
2495 			prev = backref;
2496 		else
2497 			prev = NULL;
2498 		cond_resched();
2499 	}
2500 	kfree(prev);
2501 
2502 	btrfs_free_path(path);
2503 out:
2504 	free_sa_defrag_extent(new);
2505 
2506 	atomic_dec(&root->fs_info->defrag_running);
2507 	wake_up(&root->fs_info->transaction_wait);
2508 }
2509 
2510 static struct new_sa_defrag_extent *
2511 record_old_file_extents(struct inode *inode,
2512 			struct btrfs_ordered_extent *ordered)
2513 {
2514 	struct btrfs_root *root = BTRFS_I(inode)->root;
2515 	struct btrfs_path *path;
2516 	struct btrfs_key key;
2517 	struct old_sa_defrag_extent *old;
2518 	struct new_sa_defrag_extent *new;
2519 	int ret;
2520 
2521 	new = kmalloc(sizeof(*new), GFP_NOFS);
2522 	if (!new)
2523 		return NULL;
2524 
2525 	new->inode = inode;
2526 	new->file_pos = ordered->file_offset;
2527 	new->len = ordered->len;
2528 	new->bytenr = ordered->start;
2529 	new->disk_len = ordered->disk_len;
2530 	new->compress_type = ordered->compress_type;
2531 	new->root = RB_ROOT;
2532 	INIT_LIST_HEAD(&new->head);
2533 
2534 	path = btrfs_alloc_path();
2535 	if (!path)
2536 		goto out_kfree;
2537 
2538 	key.objectid = btrfs_ino(inode);
2539 	key.type = BTRFS_EXTENT_DATA_KEY;
2540 	key.offset = new->file_pos;
2541 
2542 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2543 	if (ret < 0)
2544 		goto out_free_path;
2545 	if (ret > 0 && path->slots[0] > 0)
2546 		path->slots[0]--;
2547 
2548 	/* find out all the old extents for the file range */
2549 	while (1) {
2550 		struct btrfs_file_extent_item *extent;
2551 		struct extent_buffer *l;
2552 		int slot;
2553 		u64 num_bytes;
2554 		u64 offset;
2555 		u64 end;
2556 		u64 disk_bytenr;
2557 		u64 extent_offset;
2558 
2559 		l = path->nodes[0];
2560 		slot = path->slots[0];
2561 
2562 		if (slot >= btrfs_header_nritems(l)) {
2563 			ret = btrfs_next_leaf(root, path);
2564 			if (ret < 0)
2565 				goto out_free_path;
2566 			else if (ret > 0)
2567 				break;
2568 			continue;
2569 		}
2570 
2571 		btrfs_item_key_to_cpu(l, &key, slot);
2572 
2573 		if (key.objectid != btrfs_ino(inode))
2574 			break;
2575 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2576 			break;
2577 		if (key.offset >= new->file_pos + new->len)
2578 			break;
2579 
2580 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2581 
2582 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2583 		if (key.offset + num_bytes < new->file_pos)
2584 			goto next;
2585 
2586 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2587 		if (!disk_bytenr)
2588 			goto next;
2589 
2590 		extent_offset = btrfs_file_extent_offset(l, extent);
2591 
2592 		old = kmalloc(sizeof(*old), GFP_NOFS);
2593 		if (!old)
2594 			goto out_free_path;
2595 
2596 		offset = max(new->file_pos, key.offset);
2597 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2598 
2599 		old->bytenr = disk_bytenr;
2600 		old->extent_offset = extent_offset;
2601 		old->offset = offset - key.offset;
2602 		old->len = end - offset;
2603 		old->new = new;
2604 		old->count = 0;
2605 		list_add_tail(&old->list, &new->head);
2606 next:
2607 		path->slots[0]++;
2608 		cond_resched();
2609 	}
2610 
2611 	btrfs_free_path(path);
2612 	atomic_inc(&root->fs_info->defrag_running);
2613 
2614 	return new;
2615 
2616 out_free_path:
2617 	btrfs_free_path(path);
2618 out_kfree:
2619 	free_sa_defrag_extent(new);
2620 	return NULL;
2621 }
2622 
2623 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2624 					 u64 start, u64 len)
2625 {
2626 	struct btrfs_block_group_cache *cache;
2627 
2628 	cache = btrfs_lookup_block_group(root->fs_info, start);
2629 	ASSERT(cache);
2630 
2631 	spin_lock(&cache->lock);
2632 	cache->delalloc_bytes -= len;
2633 	spin_unlock(&cache->lock);
2634 
2635 	btrfs_put_block_group(cache);
2636 }
2637 
2638 /* as ordered data IO finishes, this gets called so we can finish
2639  * an ordered extent if the range of bytes in the file it covers are
2640  * fully written.
2641  */
2642 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2643 {
2644 	struct inode *inode = ordered_extent->inode;
2645 	struct btrfs_root *root = BTRFS_I(inode)->root;
2646 	struct btrfs_trans_handle *trans = NULL;
2647 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2648 	struct extent_state *cached_state = NULL;
2649 	struct new_sa_defrag_extent *new = NULL;
2650 	int compress_type = 0;
2651 	int ret = 0;
2652 	u64 logical_len = ordered_extent->len;
2653 	bool nolock;
2654 	bool truncated = false;
2655 
2656 	nolock = btrfs_is_free_space_inode(inode);
2657 
2658 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2659 		ret = -EIO;
2660 		goto out;
2661 	}
2662 
2663 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2664 		truncated = true;
2665 		logical_len = ordered_extent->truncated_len;
2666 		/* Truncated the entire extent, don't bother adding */
2667 		if (!logical_len)
2668 			goto out;
2669 	}
2670 
2671 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2672 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2673 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2674 		if (nolock)
2675 			trans = btrfs_join_transaction_nolock(root);
2676 		else
2677 			trans = btrfs_join_transaction(root);
2678 		if (IS_ERR(trans)) {
2679 			ret = PTR_ERR(trans);
2680 			trans = NULL;
2681 			goto out;
2682 		}
2683 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2684 		ret = btrfs_update_inode_fallback(trans, root, inode);
2685 		if (ret) /* -ENOMEM or corruption */
2686 			btrfs_abort_transaction(trans, root, ret);
2687 		goto out;
2688 	}
2689 
2690 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2691 			 ordered_extent->file_offset + ordered_extent->len - 1,
2692 			 0, &cached_state);
2693 
2694 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2695 			ordered_extent->file_offset + ordered_extent->len - 1,
2696 			EXTENT_DEFRAG, 1, cached_state);
2697 	if (ret) {
2698 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2699 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2700 			/* the inode is shared */
2701 			new = record_old_file_extents(inode, ordered_extent);
2702 
2703 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2704 			ordered_extent->file_offset + ordered_extent->len - 1,
2705 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2706 	}
2707 
2708 	if (nolock)
2709 		trans = btrfs_join_transaction_nolock(root);
2710 	else
2711 		trans = btrfs_join_transaction(root);
2712 	if (IS_ERR(trans)) {
2713 		ret = PTR_ERR(trans);
2714 		trans = NULL;
2715 		goto out_unlock;
2716 	}
2717 
2718 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2719 
2720 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2721 		compress_type = ordered_extent->compress_type;
2722 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2723 		BUG_ON(compress_type);
2724 		ret = btrfs_mark_extent_written(trans, inode,
2725 						ordered_extent->file_offset,
2726 						ordered_extent->file_offset +
2727 						logical_len);
2728 	} else {
2729 		BUG_ON(root == root->fs_info->tree_root);
2730 		ret = insert_reserved_file_extent(trans, inode,
2731 						ordered_extent->file_offset,
2732 						ordered_extent->start,
2733 						ordered_extent->disk_len,
2734 						logical_len, logical_len,
2735 						compress_type, 0, 0,
2736 						BTRFS_FILE_EXTENT_REG);
2737 		if (!ret)
2738 			btrfs_release_delalloc_bytes(root,
2739 						     ordered_extent->start,
2740 						     ordered_extent->disk_len);
2741 	}
2742 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2743 			   ordered_extent->file_offset, ordered_extent->len,
2744 			   trans->transid);
2745 	if (ret < 0) {
2746 		btrfs_abort_transaction(trans, root, ret);
2747 		goto out_unlock;
2748 	}
2749 
2750 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2751 			  &ordered_extent->list);
2752 
2753 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2754 	ret = btrfs_update_inode_fallback(trans, root, inode);
2755 	if (ret) { /* -ENOMEM or corruption */
2756 		btrfs_abort_transaction(trans, root, ret);
2757 		goto out_unlock;
2758 	}
2759 	ret = 0;
2760 out_unlock:
2761 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2762 			     ordered_extent->file_offset +
2763 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2764 out:
2765 	if (root != root->fs_info->tree_root)
2766 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2767 	if (trans)
2768 		btrfs_end_transaction(trans, root);
2769 
2770 	if (ret || truncated) {
2771 		u64 start, end;
2772 
2773 		if (truncated)
2774 			start = ordered_extent->file_offset + logical_len;
2775 		else
2776 			start = ordered_extent->file_offset;
2777 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2778 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2779 
2780 		/* Drop the cache for the part of the extent we didn't write. */
2781 		btrfs_drop_extent_cache(inode, start, end, 0);
2782 
2783 		/*
2784 		 * If the ordered extent had an IOERR or something else went
2785 		 * wrong we need to return the space for this ordered extent
2786 		 * back to the allocator.  We only free the extent in the
2787 		 * truncated case if we didn't write out the extent at all.
2788 		 */
2789 		if ((ret || !logical_len) &&
2790 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2791 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2792 			btrfs_free_reserved_extent(root, ordered_extent->start,
2793 						   ordered_extent->disk_len, 1);
2794 	}
2795 
2796 
2797 	/*
2798 	 * This needs to be done to make sure anybody waiting knows we are done
2799 	 * updating everything for this ordered extent.
2800 	 */
2801 	btrfs_remove_ordered_extent(inode, ordered_extent);
2802 
2803 	/* for snapshot-aware defrag */
2804 	if (new) {
2805 		if (ret) {
2806 			free_sa_defrag_extent(new);
2807 			atomic_dec(&root->fs_info->defrag_running);
2808 		} else {
2809 			relink_file_extents(new);
2810 		}
2811 	}
2812 
2813 	/* once for us */
2814 	btrfs_put_ordered_extent(ordered_extent);
2815 	/* once for the tree */
2816 	btrfs_put_ordered_extent(ordered_extent);
2817 
2818 	return ret;
2819 }
2820 
2821 static void finish_ordered_fn(struct btrfs_work *work)
2822 {
2823 	struct btrfs_ordered_extent *ordered_extent;
2824 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2825 	btrfs_finish_ordered_io(ordered_extent);
2826 }
2827 
2828 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2829 				struct extent_state *state, int uptodate)
2830 {
2831 	struct inode *inode = page->mapping->host;
2832 	struct btrfs_root *root = BTRFS_I(inode)->root;
2833 	struct btrfs_ordered_extent *ordered_extent = NULL;
2834 	struct btrfs_workqueue *wq;
2835 	btrfs_work_func_t func;
2836 
2837 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2838 
2839 	ClearPagePrivate2(page);
2840 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2841 					    end - start + 1, uptodate))
2842 		return 0;
2843 
2844 	if (btrfs_is_free_space_inode(inode)) {
2845 		wq = root->fs_info->endio_freespace_worker;
2846 		func = btrfs_freespace_write_helper;
2847 	} else {
2848 		wq = root->fs_info->endio_write_workers;
2849 		func = btrfs_endio_write_helper;
2850 	}
2851 
2852 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2853 			NULL);
2854 	btrfs_queue_work(wq, &ordered_extent->work);
2855 
2856 	return 0;
2857 }
2858 
2859 /*
2860  * when reads are done, we need to check csums to verify the data is correct
2861  * if there's a match, we allow the bio to finish.  If not, the code in
2862  * extent_io.c will try to find good copies for us.
2863  */
2864 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2865 				      u64 phy_offset, struct page *page,
2866 				      u64 start, u64 end, int mirror)
2867 {
2868 	size_t offset = start - page_offset(page);
2869 	struct inode *inode = page->mapping->host;
2870 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2871 	char *kaddr;
2872 	struct btrfs_root *root = BTRFS_I(inode)->root;
2873 	u32 csum_expected;
2874 	u32 csum = ~(u32)0;
2875 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2876 	                              DEFAULT_RATELIMIT_BURST);
2877 
2878 	if (PageChecked(page)) {
2879 		ClearPageChecked(page);
2880 		goto good;
2881 	}
2882 
2883 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2884 		goto good;
2885 
2886 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2887 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2888 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2889 				  GFP_NOFS);
2890 		return 0;
2891 	}
2892 
2893 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2894 	csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2895 
2896 	kaddr = kmap_atomic(page);
2897 	csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2898 	btrfs_csum_final(csum, (char *)&csum);
2899 	if (csum != csum_expected)
2900 		goto zeroit;
2901 
2902 	kunmap_atomic(kaddr);
2903 good:
2904 	return 0;
2905 
2906 zeroit:
2907 	if (__ratelimit(&_rs))
2908 		btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2909 			btrfs_ino(page->mapping->host), start, csum, csum_expected);
2910 	memset(kaddr + offset, 1, end - start + 1);
2911 	flush_dcache_page(page);
2912 	kunmap_atomic(kaddr);
2913 	if (csum_expected == 0)
2914 		return 0;
2915 	return -EIO;
2916 }
2917 
2918 struct delayed_iput {
2919 	struct list_head list;
2920 	struct inode *inode;
2921 };
2922 
2923 /* JDM: If this is fs-wide, why can't we add a pointer to
2924  * btrfs_inode instead and avoid the allocation? */
2925 void btrfs_add_delayed_iput(struct inode *inode)
2926 {
2927 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2928 	struct delayed_iput *delayed;
2929 
2930 	if (atomic_add_unless(&inode->i_count, -1, 1))
2931 		return;
2932 
2933 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2934 	delayed->inode = inode;
2935 
2936 	spin_lock(&fs_info->delayed_iput_lock);
2937 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2938 	spin_unlock(&fs_info->delayed_iput_lock);
2939 }
2940 
2941 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2942 {
2943 	LIST_HEAD(list);
2944 	struct btrfs_fs_info *fs_info = root->fs_info;
2945 	struct delayed_iput *delayed;
2946 	int empty;
2947 
2948 	spin_lock(&fs_info->delayed_iput_lock);
2949 	empty = list_empty(&fs_info->delayed_iputs);
2950 	spin_unlock(&fs_info->delayed_iput_lock);
2951 	if (empty)
2952 		return;
2953 
2954 	spin_lock(&fs_info->delayed_iput_lock);
2955 	list_splice_init(&fs_info->delayed_iputs, &list);
2956 	spin_unlock(&fs_info->delayed_iput_lock);
2957 
2958 	while (!list_empty(&list)) {
2959 		delayed = list_entry(list.next, struct delayed_iput, list);
2960 		list_del(&delayed->list);
2961 		iput(delayed->inode);
2962 		kfree(delayed);
2963 	}
2964 }
2965 
2966 /*
2967  * This is called in transaction commit time. If there are no orphan
2968  * files in the subvolume, it removes orphan item and frees block_rsv
2969  * structure.
2970  */
2971 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2972 			      struct btrfs_root *root)
2973 {
2974 	struct btrfs_block_rsv *block_rsv;
2975 	int ret;
2976 
2977 	if (atomic_read(&root->orphan_inodes) ||
2978 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2979 		return;
2980 
2981 	spin_lock(&root->orphan_lock);
2982 	if (atomic_read(&root->orphan_inodes)) {
2983 		spin_unlock(&root->orphan_lock);
2984 		return;
2985 	}
2986 
2987 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2988 		spin_unlock(&root->orphan_lock);
2989 		return;
2990 	}
2991 
2992 	block_rsv = root->orphan_block_rsv;
2993 	root->orphan_block_rsv = NULL;
2994 	spin_unlock(&root->orphan_lock);
2995 
2996 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
2997 	    btrfs_root_refs(&root->root_item) > 0) {
2998 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2999 					    root->root_key.objectid);
3000 		if (ret)
3001 			btrfs_abort_transaction(trans, root, ret);
3002 		else
3003 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3004 				  &root->state);
3005 	}
3006 
3007 	if (block_rsv) {
3008 		WARN_ON(block_rsv->size > 0);
3009 		btrfs_free_block_rsv(root, block_rsv);
3010 	}
3011 }
3012 
3013 /*
3014  * This creates an orphan entry for the given inode in case something goes
3015  * wrong in the middle of an unlink/truncate.
3016  *
3017  * NOTE: caller of this function should reserve 5 units of metadata for
3018  *	 this function.
3019  */
3020 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3021 {
3022 	struct btrfs_root *root = BTRFS_I(inode)->root;
3023 	struct btrfs_block_rsv *block_rsv = NULL;
3024 	int reserve = 0;
3025 	int insert = 0;
3026 	int ret;
3027 
3028 	if (!root->orphan_block_rsv) {
3029 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3030 		if (!block_rsv)
3031 			return -ENOMEM;
3032 	}
3033 
3034 	spin_lock(&root->orphan_lock);
3035 	if (!root->orphan_block_rsv) {
3036 		root->orphan_block_rsv = block_rsv;
3037 	} else if (block_rsv) {
3038 		btrfs_free_block_rsv(root, block_rsv);
3039 		block_rsv = NULL;
3040 	}
3041 
3042 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3043 			      &BTRFS_I(inode)->runtime_flags)) {
3044 #if 0
3045 		/*
3046 		 * For proper ENOSPC handling, we should do orphan
3047 		 * cleanup when mounting. But this introduces backward
3048 		 * compatibility issue.
3049 		 */
3050 		if (!xchg(&root->orphan_item_inserted, 1))
3051 			insert = 2;
3052 		else
3053 			insert = 1;
3054 #endif
3055 		insert = 1;
3056 		atomic_inc(&root->orphan_inodes);
3057 	}
3058 
3059 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3060 			      &BTRFS_I(inode)->runtime_flags))
3061 		reserve = 1;
3062 	spin_unlock(&root->orphan_lock);
3063 
3064 	/* grab metadata reservation from transaction handle */
3065 	if (reserve) {
3066 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3067 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3068 	}
3069 
3070 	/* insert an orphan item to track this unlinked/truncated file */
3071 	if (insert >= 1) {
3072 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3073 		if (ret) {
3074 			atomic_dec(&root->orphan_inodes);
3075 			if (reserve) {
3076 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3077 					  &BTRFS_I(inode)->runtime_flags);
3078 				btrfs_orphan_release_metadata(inode);
3079 			}
3080 			if (ret != -EEXIST) {
3081 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3082 					  &BTRFS_I(inode)->runtime_flags);
3083 				btrfs_abort_transaction(trans, root, ret);
3084 				return ret;
3085 			}
3086 		}
3087 		ret = 0;
3088 	}
3089 
3090 	/* insert an orphan item to track subvolume contains orphan files */
3091 	if (insert >= 2) {
3092 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3093 					       root->root_key.objectid);
3094 		if (ret && ret != -EEXIST) {
3095 			btrfs_abort_transaction(trans, root, ret);
3096 			return ret;
3097 		}
3098 	}
3099 	return 0;
3100 }
3101 
3102 /*
3103  * We have done the truncate/delete so we can go ahead and remove the orphan
3104  * item for this particular inode.
3105  */
3106 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3107 			    struct inode *inode)
3108 {
3109 	struct btrfs_root *root = BTRFS_I(inode)->root;
3110 	int delete_item = 0;
3111 	int release_rsv = 0;
3112 	int ret = 0;
3113 
3114 	spin_lock(&root->orphan_lock);
3115 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3116 			       &BTRFS_I(inode)->runtime_flags))
3117 		delete_item = 1;
3118 
3119 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3120 			       &BTRFS_I(inode)->runtime_flags))
3121 		release_rsv = 1;
3122 	spin_unlock(&root->orphan_lock);
3123 
3124 	if (delete_item) {
3125 		atomic_dec(&root->orphan_inodes);
3126 		if (trans)
3127 			ret = btrfs_del_orphan_item(trans, root,
3128 						    btrfs_ino(inode));
3129 	}
3130 
3131 	if (release_rsv)
3132 		btrfs_orphan_release_metadata(inode);
3133 
3134 	return ret;
3135 }
3136 
3137 /*
3138  * this cleans up any orphans that may be left on the list from the last use
3139  * of this root.
3140  */
3141 int btrfs_orphan_cleanup(struct btrfs_root *root)
3142 {
3143 	struct btrfs_path *path;
3144 	struct extent_buffer *leaf;
3145 	struct btrfs_key key, found_key;
3146 	struct btrfs_trans_handle *trans;
3147 	struct inode *inode;
3148 	u64 last_objectid = 0;
3149 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3150 
3151 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3152 		return 0;
3153 
3154 	path = btrfs_alloc_path();
3155 	if (!path) {
3156 		ret = -ENOMEM;
3157 		goto out;
3158 	}
3159 	path->reada = -1;
3160 
3161 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3162 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3163 	key.offset = (u64)-1;
3164 
3165 	while (1) {
3166 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3167 		if (ret < 0)
3168 			goto out;
3169 
3170 		/*
3171 		 * if ret == 0 means we found what we were searching for, which
3172 		 * is weird, but possible, so only screw with path if we didn't
3173 		 * find the key and see if we have stuff that matches
3174 		 */
3175 		if (ret > 0) {
3176 			ret = 0;
3177 			if (path->slots[0] == 0)
3178 				break;
3179 			path->slots[0]--;
3180 		}
3181 
3182 		/* pull out the item */
3183 		leaf = path->nodes[0];
3184 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3185 
3186 		/* make sure the item matches what we want */
3187 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3188 			break;
3189 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3190 			break;
3191 
3192 		/* release the path since we're done with it */
3193 		btrfs_release_path(path);
3194 
3195 		/*
3196 		 * this is where we are basically btrfs_lookup, without the
3197 		 * crossing root thing.  we store the inode number in the
3198 		 * offset of the orphan item.
3199 		 */
3200 
3201 		if (found_key.offset == last_objectid) {
3202 			btrfs_err(root->fs_info,
3203 				"Error removing orphan entry, stopping orphan cleanup");
3204 			ret = -EINVAL;
3205 			goto out;
3206 		}
3207 
3208 		last_objectid = found_key.offset;
3209 
3210 		found_key.objectid = found_key.offset;
3211 		found_key.type = BTRFS_INODE_ITEM_KEY;
3212 		found_key.offset = 0;
3213 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3214 		ret = PTR_ERR_OR_ZERO(inode);
3215 		if (ret && ret != -ESTALE)
3216 			goto out;
3217 
3218 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3219 			struct btrfs_root *dead_root;
3220 			struct btrfs_fs_info *fs_info = root->fs_info;
3221 			int is_dead_root = 0;
3222 
3223 			/*
3224 			 * this is an orphan in the tree root. Currently these
3225 			 * could come from 2 sources:
3226 			 *  a) a snapshot deletion in progress
3227 			 *  b) a free space cache inode
3228 			 * We need to distinguish those two, as the snapshot
3229 			 * orphan must not get deleted.
3230 			 * find_dead_roots already ran before us, so if this
3231 			 * is a snapshot deletion, we should find the root
3232 			 * in the dead_roots list
3233 			 */
3234 			spin_lock(&fs_info->trans_lock);
3235 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3236 					    root_list) {
3237 				if (dead_root->root_key.objectid ==
3238 				    found_key.objectid) {
3239 					is_dead_root = 1;
3240 					break;
3241 				}
3242 			}
3243 			spin_unlock(&fs_info->trans_lock);
3244 			if (is_dead_root) {
3245 				/* prevent this orphan from being found again */
3246 				key.offset = found_key.objectid - 1;
3247 				continue;
3248 			}
3249 		}
3250 		/*
3251 		 * Inode is already gone but the orphan item is still there,
3252 		 * kill the orphan item.
3253 		 */
3254 		if (ret == -ESTALE) {
3255 			trans = btrfs_start_transaction(root, 1);
3256 			if (IS_ERR(trans)) {
3257 				ret = PTR_ERR(trans);
3258 				goto out;
3259 			}
3260 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3261 				found_key.objectid);
3262 			ret = btrfs_del_orphan_item(trans, root,
3263 						    found_key.objectid);
3264 			btrfs_end_transaction(trans, root);
3265 			if (ret)
3266 				goto out;
3267 			continue;
3268 		}
3269 
3270 		/*
3271 		 * add this inode to the orphan list so btrfs_orphan_del does
3272 		 * the proper thing when we hit it
3273 		 */
3274 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275 			&BTRFS_I(inode)->runtime_flags);
3276 		atomic_inc(&root->orphan_inodes);
3277 
3278 		/* if we have links, this was a truncate, lets do that */
3279 		if (inode->i_nlink) {
3280 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3281 				iput(inode);
3282 				continue;
3283 			}
3284 			nr_truncate++;
3285 
3286 			/* 1 for the orphan item deletion. */
3287 			trans = btrfs_start_transaction(root, 1);
3288 			if (IS_ERR(trans)) {
3289 				iput(inode);
3290 				ret = PTR_ERR(trans);
3291 				goto out;
3292 			}
3293 			ret = btrfs_orphan_add(trans, inode);
3294 			btrfs_end_transaction(trans, root);
3295 			if (ret) {
3296 				iput(inode);
3297 				goto out;
3298 			}
3299 
3300 			ret = btrfs_truncate(inode);
3301 			if (ret)
3302 				btrfs_orphan_del(NULL, inode);
3303 		} else {
3304 			nr_unlink++;
3305 		}
3306 
3307 		/* this will do delete_inode and everything for us */
3308 		iput(inode);
3309 		if (ret)
3310 			goto out;
3311 	}
3312 	/* release the path since we're done with it */
3313 	btrfs_release_path(path);
3314 
3315 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3316 
3317 	if (root->orphan_block_rsv)
3318 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3319 					(u64)-1);
3320 
3321 	if (root->orphan_block_rsv ||
3322 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3323 		trans = btrfs_join_transaction(root);
3324 		if (!IS_ERR(trans))
3325 			btrfs_end_transaction(trans, root);
3326 	}
3327 
3328 	if (nr_unlink)
3329 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3330 	if (nr_truncate)
3331 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3332 
3333 out:
3334 	if (ret)
3335 		btrfs_crit(root->fs_info,
3336 			"could not do orphan cleanup %d", ret);
3337 	btrfs_free_path(path);
3338 	return ret;
3339 }
3340 
3341 /*
3342  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3343  * don't find any xattrs, we know there can't be any acls.
3344  *
3345  * slot is the slot the inode is in, objectid is the objectid of the inode
3346  */
3347 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3348 					  int slot, u64 objectid,
3349 					  int *first_xattr_slot)
3350 {
3351 	u32 nritems = btrfs_header_nritems(leaf);
3352 	struct btrfs_key found_key;
3353 	static u64 xattr_access = 0;
3354 	static u64 xattr_default = 0;
3355 	int scanned = 0;
3356 
3357 	if (!xattr_access) {
3358 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3359 					strlen(POSIX_ACL_XATTR_ACCESS));
3360 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3361 					strlen(POSIX_ACL_XATTR_DEFAULT));
3362 	}
3363 
3364 	slot++;
3365 	*first_xattr_slot = -1;
3366 	while (slot < nritems) {
3367 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3368 
3369 		/* we found a different objectid, there must not be acls */
3370 		if (found_key.objectid != objectid)
3371 			return 0;
3372 
3373 		/* we found an xattr, assume we've got an acl */
3374 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3375 			if (*first_xattr_slot == -1)
3376 				*first_xattr_slot = slot;
3377 			if (found_key.offset == xattr_access ||
3378 			    found_key.offset == xattr_default)
3379 				return 1;
3380 		}
3381 
3382 		/*
3383 		 * we found a key greater than an xattr key, there can't
3384 		 * be any acls later on
3385 		 */
3386 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3387 			return 0;
3388 
3389 		slot++;
3390 		scanned++;
3391 
3392 		/*
3393 		 * it goes inode, inode backrefs, xattrs, extents,
3394 		 * so if there are a ton of hard links to an inode there can
3395 		 * be a lot of backrefs.  Don't waste time searching too hard,
3396 		 * this is just an optimization
3397 		 */
3398 		if (scanned >= 8)
3399 			break;
3400 	}
3401 	/* we hit the end of the leaf before we found an xattr or
3402 	 * something larger than an xattr.  We have to assume the inode
3403 	 * has acls
3404 	 */
3405 	if (*first_xattr_slot == -1)
3406 		*first_xattr_slot = slot;
3407 	return 1;
3408 }
3409 
3410 /*
3411  * read an inode from the btree into the in-memory inode
3412  */
3413 static void btrfs_read_locked_inode(struct inode *inode)
3414 {
3415 	struct btrfs_path *path;
3416 	struct extent_buffer *leaf;
3417 	struct btrfs_inode_item *inode_item;
3418 	struct btrfs_timespec *tspec;
3419 	struct btrfs_root *root = BTRFS_I(inode)->root;
3420 	struct btrfs_key location;
3421 	unsigned long ptr;
3422 	int maybe_acls;
3423 	u32 rdev;
3424 	int ret;
3425 	bool filled = false;
3426 	int first_xattr_slot;
3427 
3428 	ret = btrfs_fill_inode(inode, &rdev);
3429 	if (!ret)
3430 		filled = true;
3431 
3432 	path = btrfs_alloc_path();
3433 	if (!path)
3434 		goto make_bad;
3435 
3436 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3437 
3438 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3439 	if (ret)
3440 		goto make_bad;
3441 
3442 	leaf = path->nodes[0];
3443 
3444 	if (filled)
3445 		goto cache_index;
3446 
3447 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3448 				    struct btrfs_inode_item);
3449 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3450 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3451 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3452 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3453 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3454 
3455 	tspec = btrfs_inode_atime(inode_item);
3456 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3457 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3458 
3459 	tspec = btrfs_inode_mtime(inode_item);
3460 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3461 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3462 
3463 	tspec = btrfs_inode_ctime(inode_item);
3464 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3465 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3466 
3467 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3468 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3469 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3470 
3471 	/*
3472 	 * If we were modified in the current generation and evicted from memory
3473 	 * and then re-read we need to do a full sync since we don't have any
3474 	 * idea about which extents were modified before we were evicted from
3475 	 * cache.
3476 	 */
3477 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3478 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3479 			&BTRFS_I(inode)->runtime_flags);
3480 
3481 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3482 	inode->i_generation = BTRFS_I(inode)->generation;
3483 	inode->i_rdev = 0;
3484 	rdev = btrfs_inode_rdev(leaf, inode_item);
3485 
3486 	BTRFS_I(inode)->index_cnt = (u64)-1;
3487 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3488 
3489 cache_index:
3490 	path->slots[0]++;
3491 	if (inode->i_nlink != 1 ||
3492 	    path->slots[0] >= btrfs_header_nritems(leaf))
3493 		goto cache_acl;
3494 
3495 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3496 	if (location.objectid != btrfs_ino(inode))
3497 		goto cache_acl;
3498 
3499 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3500 	if (location.type == BTRFS_INODE_REF_KEY) {
3501 		struct btrfs_inode_ref *ref;
3502 
3503 		ref = (struct btrfs_inode_ref *)ptr;
3504 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3505 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3506 		struct btrfs_inode_extref *extref;
3507 
3508 		extref = (struct btrfs_inode_extref *)ptr;
3509 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3510 								     extref);
3511 	}
3512 cache_acl:
3513 	/*
3514 	 * try to precache a NULL acl entry for files that don't have
3515 	 * any xattrs or acls
3516 	 */
3517 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3518 					   btrfs_ino(inode), &first_xattr_slot);
3519 	if (first_xattr_slot != -1) {
3520 		path->slots[0] = first_xattr_slot;
3521 		ret = btrfs_load_inode_props(inode, path);
3522 		if (ret)
3523 			btrfs_err(root->fs_info,
3524 				  "error loading props for ino %llu (root %llu): %d",
3525 				  btrfs_ino(inode),
3526 				  root->root_key.objectid, ret);
3527 	}
3528 	btrfs_free_path(path);
3529 
3530 	if (!maybe_acls)
3531 		cache_no_acl(inode);
3532 
3533 	switch (inode->i_mode & S_IFMT) {
3534 	case S_IFREG:
3535 		inode->i_mapping->a_ops = &btrfs_aops;
3536 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3537 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3538 		inode->i_fop = &btrfs_file_operations;
3539 		inode->i_op = &btrfs_file_inode_operations;
3540 		break;
3541 	case S_IFDIR:
3542 		inode->i_fop = &btrfs_dir_file_operations;
3543 		if (root == root->fs_info->tree_root)
3544 			inode->i_op = &btrfs_dir_ro_inode_operations;
3545 		else
3546 			inode->i_op = &btrfs_dir_inode_operations;
3547 		break;
3548 	case S_IFLNK:
3549 		inode->i_op = &btrfs_symlink_inode_operations;
3550 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3551 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3552 		break;
3553 	default:
3554 		inode->i_op = &btrfs_special_inode_operations;
3555 		init_special_inode(inode, inode->i_mode, rdev);
3556 		break;
3557 	}
3558 
3559 	btrfs_update_iflags(inode);
3560 	return;
3561 
3562 make_bad:
3563 	btrfs_free_path(path);
3564 	make_bad_inode(inode);
3565 }
3566 
3567 /*
3568  * given a leaf and an inode, copy the inode fields into the leaf
3569  */
3570 static void fill_inode_item(struct btrfs_trans_handle *trans,
3571 			    struct extent_buffer *leaf,
3572 			    struct btrfs_inode_item *item,
3573 			    struct inode *inode)
3574 {
3575 	struct btrfs_map_token token;
3576 
3577 	btrfs_init_map_token(&token);
3578 
3579 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3580 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3581 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3582 				   &token);
3583 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3584 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3585 
3586 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3587 				     inode->i_atime.tv_sec, &token);
3588 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3589 				      inode->i_atime.tv_nsec, &token);
3590 
3591 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3592 				     inode->i_mtime.tv_sec, &token);
3593 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3594 				      inode->i_mtime.tv_nsec, &token);
3595 
3596 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3597 				     inode->i_ctime.tv_sec, &token);
3598 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3599 				      inode->i_ctime.tv_nsec, &token);
3600 
3601 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3602 				     &token);
3603 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3604 					 &token);
3605 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3606 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3607 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3608 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3609 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3610 }
3611 
3612 /*
3613  * copy everything in the in-memory inode into the btree.
3614  */
3615 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3616 				struct btrfs_root *root, struct inode *inode)
3617 {
3618 	struct btrfs_inode_item *inode_item;
3619 	struct btrfs_path *path;
3620 	struct extent_buffer *leaf;
3621 	int ret;
3622 
3623 	path = btrfs_alloc_path();
3624 	if (!path)
3625 		return -ENOMEM;
3626 
3627 	path->leave_spinning = 1;
3628 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3629 				 1);
3630 	if (ret) {
3631 		if (ret > 0)
3632 			ret = -ENOENT;
3633 		goto failed;
3634 	}
3635 
3636 	leaf = path->nodes[0];
3637 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3638 				    struct btrfs_inode_item);
3639 
3640 	fill_inode_item(trans, leaf, inode_item, inode);
3641 	btrfs_mark_buffer_dirty(leaf);
3642 	btrfs_set_inode_last_trans(trans, inode);
3643 	ret = 0;
3644 failed:
3645 	btrfs_free_path(path);
3646 	return ret;
3647 }
3648 
3649 /*
3650  * copy everything in the in-memory inode into the btree.
3651  */
3652 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3653 				struct btrfs_root *root, struct inode *inode)
3654 {
3655 	int ret;
3656 
3657 	/*
3658 	 * If the inode is a free space inode, we can deadlock during commit
3659 	 * if we put it into the delayed code.
3660 	 *
3661 	 * The data relocation inode should also be directly updated
3662 	 * without delay
3663 	 */
3664 	if (!btrfs_is_free_space_inode(inode)
3665 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3666 		btrfs_update_root_times(trans, root);
3667 
3668 		ret = btrfs_delayed_update_inode(trans, root, inode);
3669 		if (!ret)
3670 			btrfs_set_inode_last_trans(trans, inode);
3671 		return ret;
3672 	}
3673 
3674 	return btrfs_update_inode_item(trans, root, inode);
3675 }
3676 
3677 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3678 					 struct btrfs_root *root,
3679 					 struct inode *inode)
3680 {
3681 	int ret;
3682 
3683 	ret = btrfs_update_inode(trans, root, inode);
3684 	if (ret == -ENOSPC)
3685 		return btrfs_update_inode_item(trans, root, inode);
3686 	return ret;
3687 }
3688 
3689 /*
3690  * unlink helper that gets used here in inode.c and in the tree logging
3691  * recovery code.  It remove a link in a directory with a given name, and
3692  * also drops the back refs in the inode to the directory
3693  */
3694 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3695 				struct btrfs_root *root,
3696 				struct inode *dir, struct inode *inode,
3697 				const char *name, int name_len)
3698 {
3699 	struct btrfs_path *path;
3700 	int ret = 0;
3701 	struct extent_buffer *leaf;
3702 	struct btrfs_dir_item *di;
3703 	struct btrfs_key key;
3704 	u64 index;
3705 	u64 ino = btrfs_ino(inode);
3706 	u64 dir_ino = btrfs_ino(dir);
3707 
3708 	path = btrfs_alloc_path();
3709 	if (!path) {
3710 		ret = -ENOMEM;
3711 		goto out;
3712 	}
3713 
3714 	path->leave_spinning = 1;
3715 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3716 				    name, name_len, -1);
3717 	if (IS_ERR(di)) {
3718 		ret = PTR_ERR(di);
3719 		goto err;
3720 	}
3721 	if (!di) {
3722 		ret = -ENOENT;
3723 		goto err;
3724 	}
3725 	leaf = path->nodes[0];
3726 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3727 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3728 	if (ret)
3729 		goto err;
3730 	btrfs_release_path(path);
3731 
3732 	/*
3733 	 * If we don't have dir index, we have to get it by looking up
3734 	 * the inode ref, since we get the inode ref, remove it directly,
3735 	 * it is unnecessary to do delayed deletion.
3736 	 *
3737 	 * But if we have dir index, needn't search inode ref to get it.
3738 	 * Since the inode ref is close to the inode item, it is better
3739 	 * that we delay to delete it, and just do this deletion when
3740 	 * we update the inode item.
3741 	 */
3742 	if (BTRFS_I(inode)->dir_index) {
3743 		ret = btrfs_delayed_delete_inode_ref(inode);
3744 		if (!ret) {
3745 			index = BTRFS_I(inode)->dir_index;
3746 			goto skip_backref;
3747 		}
3748 	}
3749 
3750 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3751 				  dir_ino, &index);
3752 	if (ret) {
3753 		btrfs_info(root->fs_info,
3754 			"failed to delete reference to %.*s, inode %llu parent %llu",
3755 			name_len, name, ino, dir_ino);
3756 		btrfs_abort_transaction(trans, root, ret);
3757 		goto err;
3758 	}
3759 skip_backref:
3760 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3761 	if (ret) {
3762 		btrfs_abort_transaction(trans, root, ret);
3763 		goto err;
3764 	}
3765 
3766 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3767 					 inode, dir_ino);
3768 	if (ret != 0 && ret != -ENOENT) {
3769 		btrfs_abort_transaction(trans, root, ret);
3770 		goto err;
3771 	}
3772 
3773 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3774 					   dir, index);
3775 	if (ret == -ENOENT)
3776 		ret = 0;
3777 	else if (ret)
3778 		btrfs_abort_transaction(trans, root, ret);
3779 err:
3780 	btrfs_free_path(path);
3781 	if (ret)
3782 		goto out;
3783 
3784 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3785 	inode_inc_iversion(inode);
3786 	inode_inc_iversion(dir);
3787 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3788 	ret = btrfs_update_inode(trans, root, dir);
3789 out:
3790 	return ret;
3791 }
3792 
3793 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3794 		       struct btrfs_root *root,
3795 		       struct inode *dir, struct inode *inode,
3796 		       const char *name, int name_len)
3797 {
3798 	int ret;
3799 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3800 	if (!ret) {
3801 		drop_nlink(inode);
3802 		ret = btrfs_update_inode(trans, root, inode);
3803 	}
3804 	return ret;
3805 }
3806 
3807 /*
3808  * helper to start transaction for unlink and rmdir.
3809  *
3810  * unlink and rmdir are special in btrfs, they do not always free space, so
3811  * if we cannot make our reservations the normal way try and see if there is
3812  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3813  * allow the unlink to occur.
3814  */
3815 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3816 {
3817 	struct btrfs_trans_handle *trans;
3818 	struct btrfs_root *root = BTRFS_I(dir)->root;
3819 	int ret;
3820 
3821 	/*
3822 	 * 1 for the possible orphan item
3823 	 * 1 for the dir item
3824 	 * 1 for the dir index
3825 	 * 1 for the inode ref
3826 	 * 1 for the inode
3827 	 */
3828 	trans = btrfs_start_transaction(root, 5);
3829 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3830 		return trans;
3831 
3832 	if (PTR_ERR(trans) == -ENOSPC) {
3833 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3834 
3835 		trans = btrfs_start_transaction(root, 0);
3836 		if (IS_ERR(trans))
3837 			return trans;
3838 		ret = btrfs_cond_migrate_bytes(root->fs_info,
3839 					       &root->fs_info->trans_block_rsv,
3840 					       num_bytes, 5);
3841 		if (ret) {
3842 			btrfs_end_transaction(trans, root);
3843 			return ERR_PTR(ret);
3844 		}
3845 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3846 		trans->bytes_reserved = num_bytes;
3847 	}
3848 	return trans;
3849 }
3850 
3851 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3852 {
3853 	struct btrfs_root *root = BTRFS_I(dir)->root;
3854 	struct btrfs_trans_handle *trans;
3855 	struct inode *inode = dentry->d_inode;
3856 	int ret;
3857 
3858 	trans = __unlink_start_trans(dir);
3859 	if (IS_ERR(trans))
3860 		return PTR_ERR(trans);
3861 
3862 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3863 
3864 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3865 				 dentry->d_name.name, dentry->d_name.len);
3866 	if (ret)
3867 		goto out;
3868 
3869 	if (inode->i_nlink == 0) {
3870 		ret = btrfs_orphan_add(trans, inode);
3871 		if (ret)
3872 			goto out;
3873 	}
3874 
3875 out:
3876 	btrfs_end_transaction(trans, root);
3877 	btrfs_btree_balance_dirty(root);
3878 	return ret;
3879 }
3880 
3881 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3882 			struct btrfs_root *root,
3883 			struct inode *dir, u64 objectid,
3884 			const char *name, int name_len)
3885 {
3886 	struct btrfs_path *path;
3887 	struct extent_buffer *leaf;
3888 	struct btrfs_dir_item *di;
3889 	struct btrfs_key key;
3890 	u64 index;
3891 	int ret;
3892 	u64 dir_ino = btrfs_ino(dir);
3893 
3894 	path = btrfs_alloc_path();
3895 	if (!path)
3896 		return -ENOMEM;
3897 
3898 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3899 				   name, name_len, -1);
3900 	if (IS_ERR_OR_NULL(di)) {
3901 		if (!di)
3902 			ret = -ENOENT;
3903 		else
3904 			ret = PTR_ERR(di);
3905 		goto out;
3906 	}
3907 
3908 	leaf = path->nodes[0];
3909 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3910 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3911 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3912 	if (ret) {
3913 		btrfs_abort_transaction(trans, root, ret);
3914 		goto out;
3915 	}
3916 	btrfs_release_path(path);
3917 
3918 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3919 				 objectid, root->root_key.objectid,
3920 				 dir_ino, &index, name, name_len);
3921 	if (ret < 0) {
3922 		if (ret != -ENOENT) {
3923 			btrfs_abort_transaction(trans, root, ret);
3924 			goto out;
3925 		}
3926 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3927 						 name, name_len);
3928 		if (IS_ERR_OR_NULL(di)) {
3929 			if (!di)
3930 				ret = -ENOENT;
3931 			else
3932 				ret = PTR_ERR(di);
3933 			btrfs_abort_transaction(trans, root, ret);
3934 			goto out;
3935 		}
3936 
3937 		leaf = path->nodes[0];
3938 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3939 		btrfs_release_path(path);
3940 		index = key.offset;
3941 	}
3942 	btrfs_release_path(path);
3943 
3944 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3945 	if (ret) {
3946 		btrfs_abort_transaction(trans, root, ret);
3947 		goto out;
3948 	}
3949 
3950 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3951 	inode_inc_iversion(dir);
3952 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3953 	ret = btrfs_update_inode_fallback(trans, root, dir);
3954 	if (ret)
3955 		btrfs_abort_transaction(trans, root, ret);
3956 out:
3957 	btrfs_free_path(path);
3958 	return ret;
3959 }
3960 
3961 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3962 {
3963 	struct inode *inode = dentry->d_inode;
3964 	int err = 0;
3965 	struct btrfs_root *root = BTRFS_I(dir)->root;
3966 	struct btrfs_trans_handle *trans;
3967 
3968 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3969 		return -ENOTEMPTY;
3970 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3971 		return -EPERM;
3972 
3973 	trans = __unlink_start_trans(dir);
3974 	if (IS_ERR(trans))
3975 		return PTR_ERR(trans);
3976 
3977 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3978 		err = btrfs_unlink_subvol(trans, root, dir,
3979 					  BTRFS_I(inode)->location.objectid,
3980 					  dentry->d_name.name,
3981 					  dentry->d_name.len);
3982 		goto out;
3983 	}
3984 
3985 	err = btrfs_orphan_add(trans, inode);
3986 	if (err)
3987 		goto out;
3988 
3989 	/* now the directory is empty */
3990 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3991 				 dentry->d_name.name, dentry->d_name.len);
3992 	if (!err)
3993 		btrfs_i_size_write(inode, 0);
3994 out:
3995 	btrfs_end_transaction(trans, root);
3996 	btrfs_btree_balance_dirty(root);
3997 
3998 	return err;
3999 }
4000 
4001 /*
4002  * this can truncate away extent items, csum items and directory items.
4003  * It starts at a high offset and removes keys until it can't find
4004  * any higher than new_size
4005  *
4006  * csum items that cross the new i_size are truncated to the new size
4007  * as well.
4008  *
4009  * min_type is the minimum key type to truncate down to.  If set to 0, this
4010  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4011  */
4012 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4013 			       struct btrfs_root *root,
4014 			       struct inode *inode,
4015 			       u64 new_size, u32 min_type)
4016 {
4017 	struct btrfs_path *path;
4018 	struct extent_buffer *leaf;
4019 	struct btrfs_file_extent_item *fi;
4020 	struct btrfs_key key;
4021 	struct btrfs_key found_key;
4022 	u64 extent_start = 0;
4023 	u64 extent_num_bytes = 0;
4024 	u64 extent_offset = 0;
4025 	u64 item_end = 0;
4026 	u64 last_size = (u64)-1;
4027 	u32 found_type = (u8)-1;
4028 	int found_extent;
4029 	int del_item;
4030 	int pending_del_nr = 0;
4031 	int pending_del_slot = 0;
4032 	int extent_type = -1;
4033 	int ret;
4034 	int err = 0;
4035 	u64 ino = btrfs_ino(inode);
4036 
4037 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4038 
4039 	path = btrfs_alloc_path();
4040 	if (!path)
4041 		return -ENOMEM;
4042 	path->reada = -1;
4043 
4044 	/*
4045 	 * We want to drop from the next block forward in case this new size is
4046 	 * not block aligned since we will be keeping the last block of the
4047 	 * extent just the way it is.
4048 	 */
4049 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4050 	    root == root->fs_info->tree_root)
4051 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4052 					root->sectorsize), (u64)-1, 0);
4053 
4054 	/*
4055 	 * This function is also used to drop the items in the log tree before
4056 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4057 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4058 	 * items.
4059 	 */
4060 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4061 		btrfs_kill_delayed_inode_items(inode);
4062 
4063 	key.objectid = ino;
4064 	key.offset = (u64)-1;
4065 	key.type = (u8)-1;
4066 
4067 search_again:
4068 	path->leave_spinning = 1;
4069 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4070 	if (ret < 0) {
4071 		err = ret;
4072 		goto out;
4073 	}
4074 
4075 	if (ret > 0) {
4076 		/* there are no items in the tree for us to truncate, we're
4077 		 * done
4078 		 */
4079 		if (path->slots[0] == 0)
4080 			goto out;
4081 		path->slots[0]--;
4082 	}
4083 
4084 	while (1) {
4085 		fi = NULL;
4086 		leaf = path->nodes[0];
4087 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4088 		found_type = btrfs_key_type(&found_key);
4089 
4090 		if (found_key.objectid != ino)
4091 			break;
4092 
4093 		if (found_type < min_type)
4094 			break;
4095 
4096 		item_end = found_key.offset;
4097 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4098 			fi = btrfs_item_ptr(leaf, path->slots[0],
4099 					    struct btrfs_file_extent_item);
4100 			extent_type = btrfs_file_extent_type(leaf, fi);
4101 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4102 				item_end +=
4103 				    btrfs_file_extent_num_bytes(leaf, fi);
4104 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4105 				item_end += btrfs_file_extent_inline_len(leaf,
4106 							 path->slots[0], fi);
4107 			}
4108 			item_end--;
4109 		}
4110 		if (found_type > min_type) {
4111 			del_item = 1;
4112 		} else {
4113 			if (item_end < new_size)
4114 				break;
4115 			if (found_key.offset >= new_size)
4116 				del_item = 1;
4117 			else
4118 				del_item = 0;
4119 		}
4120 		found_extent = 0;
4121 		/* FIXME, shrink the extent if the ref count is only 1 */
4122 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4123 			goto delete;
4124 
4125 		if (del_item)
4126 			last_size = found_key.offset;
4127 		else
4128 			last_size = new_size;
4129 
4130 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4131 			u64 num_dec;
4132 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4133 			if (!del_item) {
4134 				u64 orig_num_bytes =
4135 					btrfs_file_extent_num_bytes(leaf, fi);
4136 				extent_num_bytes = ALIGN(new_size -
4137 						found_key.offset,
4138 						root->sectorsize);
4139 				btrfs_set_file_extent_num_bytes(leaf, fi,
4140 							 extent_num_bytes);
4141 				num_dec = (orig_num_bytes -
4142 					   extent_num_bytes);
4143 				if (test_bit(BTRFS_ROOT_REF_COWS,
4144 					     &root->state) &&
4145 				    extent_start != 0)
4146 					inode_sub_bytes(inode, num_dec);
4147 				btrfs_mark_buffer_dirty(leaf);
4148 			} else {
4149 				extent_num_bytes =
4150 					btrfs_file_extent_disk_num_bytes(leaf,
4151 									 fi);
4152 				extent_offset = found_key.offset -
4153 					btrfs_file_extent_offset(leaf, fi);
4154 
4155 				/* FIXME blocksize != 4096 */
4156 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4157 				if (extent_start != 0) {
4158 					found_extent = 1;
4159 					if (test_bit(BTRFS_ROOT_REF_COWS,
4160 						     &root->state))
4161 						inode_sub_bytes(inode, num_dec);
4162 				}
4163 			}
4164 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4165 			/*
4166 			 * we can't truncate inline items that have had
4167 			 * special encodings
4168 			 */
4169 			if (!del_item &&
4170 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4171 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4172 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4173 				u32 size = new_size - found_key.offset;
4174 
4175 				if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4176 					inode_sub_bytes(inode, item_end + 1 -
4177 							new_size);
4178 
4179 				/*
4180 				 * update the ram bytes to properly reflect
4181 				 * the new size of our item
4182 				 */
4183 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4184 				size =
4185 				    btrfs_file_extent_calc_inline_size(size);
4186 				btrfs_truncate_item(root, path, size, 1);
4187 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4188 					    &root->state)) {
4189 				inode_sub_bytes(inode, item_end + 1 -
4190 						found_key.offset);
4191 			}
4192 		}
4193 delete:
4194 		if (del_item) {
4195 			if (!pending_del_nr) {
4196 				/* no pending yet, add ourselves */
4197 				pending_del_slot = path->slots[0];
4198 				pending_del_nr = 1;
4199 			} else if (pending_del_nr &&
4200 				   path->slots[0] + 1 == pending_del_slot) {
4201 				/* hop on the pending chunk */
4202 				pending_del_nr++;
4203 				pending_del_slot = path->slots[0];
4204 			} else {
4205 				BUG();
4206 			}
4207 		} else {
4208 			break;
4209 		}
4210 		if (found_extent &&
4211 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4212 		     root == root->fs_info->tree_root)) {
4213 			btrfs_set_path_blocking(path);
4214 			ret = btrfs_free_extent(trans, root, extent_start,
4215 						extent_num_bytes, 0,
4216 						btrfs_header_owner(leaf),
4217 						ino, extent_offset, 0);
4218 			BUG_ON(ret);
4219 		}
4220 
4221 		if (found_type == BTRFS_INODE_ITEM_KEY)
4222 			break;
4223 
4224 		if (path->slots[0] == 0 ||
4225 		    path->slots[0] != pending_del_slot) {
4226 			if (pending_del_nr) {
4227 				ret = btrfs_del_items(trans, root, path,
4228 						pending_del_slot,
4229 						pending_del_nr);
4230 				if (ret) {
4231 					btrfs_abort_transaction(trans,
4232 								root, ret);
4233 					goto error;
4234 				}
4235 				pending_del_nr = 0;
4236 			}
4237 			btrfs_release_path(path);
4238 			goto search_again;
4239 		} else {
4240 			path->slots[0]--;
4241 		}
4242 	}
4243 out:
4244 	if (pending_del_nr) {
4245 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4246 				      pending_del_nr);
4247 		if (ret)
4248 			btrfs_abort_transaction(trans, root, ret);
4249 	}
4250 error:
4251 	if (last_size != (u64)-1 &&
4252 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4253 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4254 	btrfs_free_path(path);
4255 	return err;
4256 }
4257 
4258 /*
4259  * btrfs_truncate_page - read, zero a chunk and write a page
4260  * @inode - inode that we're zeroing
4261  * @from - the offset to start zeroing
4262  * @len - the length to zero, 0 to zero the entire range respective to the
4263  *	offset
4264  * @front - zero up to the offset instead of from the offset on
4265  *
4266  * This will find the page for the "from" offset and cow the page and zero the
4267  * part we want to zero.  This is used with truncate and hole punching.
4268  */
4269 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4270 			int front)
4271 {
4272 	struct address_space *mapping = inode->i_mapping;
4273 	struct btrfs_root *root = BTRFS_I(inode)->root;
4274 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4275 	struct btrfs_ordered_extent *ordered;
4276 	struct extent_state *cached_state = NULL;
4277 	char *kaddr;
4278 	u32 blocksize = root->sectorsize;
4279 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4280 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4281 	struct page *page;
4282 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4283 	int ret = 0;
4284 	u64 page_start;
4285 	u64 page_end;
4286 
4287 	if ((offset & (blocksize - 1)) == 0 &&
4288 	    (!len || ((len & (blocksize - 1)) == 0)))
4289 		goto out;
4290 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4291 	if (ret)
4292 		goto out;
4293 
4294 again:
4295 	page = find_or_create_page(mapping, index, mask);
4296 	if (!page) {
4297 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4298 		ret = -ENOMEM;
4299 		goto out;
4300 	}
4301 
4302 	page_start = page_offset(page);
4303 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4304 
4305 	if (!PageUptodate(page)) {
4306 		ret = btrfs_readpage(NULL, page);
4307 		lock_page(page);
4308 		if (page->mapping != mapping) {
4309 			unlock_page(page);
4310 			page_cache_release(page);
4311 			goto again;
4312 		}
4313 		if (!PageUptodate(page)) {
4314 			ret = -EIO;
4315 			goto out_unlock;
4316 		}
4317 	}
4318 	wait_on_page_writeback(page);
4319 
4320 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4321 	set_page_extent_mapped(page);
4322 
4323 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4324 	if (ordered) {
4325 		unlock_extent_cached(io_tree, page_start, page_end,
4326 				     &cached_state, GFP_NOFS);
4327 		unlock_page(page);
4328 		page_cache_release(page);
4329 		btrfs_start_ordered_extent(inode, ordered, 1);
4330 		btrfs_put_ordered_extent(ordered);
4331 		goto again;
4332 	}
4333 
4334 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4335 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4336 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4337 			  0, 0, &cached_state, GFP_NOFS);
4338 
4339 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4340 					&cached_state);
4341 	if (ret) {
4342 		unlock_extent_cached(io_tree, page_start, page_end,
4343 				     &cached_state, GFP_NOFS);
4344 		goto out_unlock;
4345 	}
4346 
4347 	if (offset != PAGE_CACHE_SIZE) {
4348 		if (!len)
4349 			len = PAGE_CACHE_SIZE - offset;
4350 		kaddr = kmap(page);
4351 		if (front)
4352 			memset(kaddr, 0, offset);
4353 		else
4354 			memset(kaddr + offset, 0, len);
4355 		flush_dcache_page(page);
4356 		kunmap(page);
4357 	}
4358 	ClearPageChecked(page);
4359 	set_page_dirty(page);
4360 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4361 			     GFP_NOFS);
4362 
4363 out_unlock:
4364 	if (ret)
4365 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4366 	unlock_page(page);
4367 	page_cache_release(page);
4368 out:
4369 	return ret;
4370 }
4371 
4372 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4373 			     u64 offset, u64 len)
4374 {
4375 	struct btrfs_trans_handle *trans;
4376 	int ret;
4377 
4378 	/*
4379 	 * Still need to make sure the inode looks like it's been updated so
4380 	 * that any holes get logged if we fsync.
4381 	 */
4382 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4383 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4384 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4385 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4386 		return 0;
4387 	}
4388 
4389 	/*
4390 	 * 1 - for the one we're dropping
4391 	 * 1 - for the one we're adding
4392 	 * 1 - for updating the inode.
4393 	 */
4394 	trans = btrfs_start_transaction(root, 3);
4395 	if (IS_ERR(trans))
4396 		return PTR_ERR(trans);
4397 
4398 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4399 	if (ret) {
4400 		btrfs_abort_transaction(trans, root, ret);
4401 		btrfs_end_transaction(trans, root);
4402 		return ret;
4403 	}
4404 
4405 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4406 				       0, 0, len, 0, len, 0, 0, 0);
4407 	if (ret)
4408 		btrfs_abort_transaction(trans, root, ret);
4409 	else
4410 		btrfs_update_inode(trans, root, inode);
4411 	btrfs_end_transaction(trans, root);
4412 	return ret;
4413 }
4414 
4415 /*
4416  * This function puts in dummy file extents for the area we're creating a hole
4417  * for.  So if we are truncating this file to a larger size we need to insert
4418  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4419  * the range between oldsize and size
4420  */
4421 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4422 {
4423 	struct btrfs_root *root = BTRFS_I(inode)->root;
4424 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4425 	struct extent_map *em = NULL;
4426 	struct extent_state *cached_state = NULL;
4427 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4428 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4429 	u64 block_end = ALIGN(size, root->sectorsize);
4430 	u64 last_byte;
4431 	u64 cur_offset;
4432 	u64 hole_size;
4433 	int err = 0;
4434 
4435 	/*
4436 	 * If our size started in the middle of a page we need to zero out the
4437 	 * rest of the page before we expand the i_size, otherwise we could
4438 	 * expose stale data.
4439 	 */
4440 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4441 	if (err)
4442 		return err;
4443 
4444 	if (size <= hole_start)
4445 		return 0;
4446 
4447 	while (1) {
4448 		struct btrfs_ordered_extent *ordered;
4449 
4450 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4451 				 &cached_state);
4452 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4453 						     block_end - hole_start);
4454 		if (!ordered)
4455 			break;
4456 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4457 				     &cached_state, GFP_NOFS);
4458 		btrfs_start_ordered_extent(inode, ordered, 1);
4459 		btrfs_put_ordered_extent(ordered);
4460 	}
4461 
4462 	cur_offset = hole_start;
4463 	while (1) {
4464 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4465 				block_end - cur_offset, 0);
4466 		if (IS_ERR(em)) {
4467 			err = PTR_ERR(em);
4468 			em = NULL;
4469 			break;
4470 		}
4471 		last_byte = min(extent_map_end(em), block_end);
4472 		last_byte = ALIGN(last_byte , root->sectorsize);
4473 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4474 			struct extent_map *hole_em;
4475 			hole_size = last_byte - cur_offset;
4476 
4477 			err = maybe_insert_hole(root, inode, cur_offset,
4478 						hole_size);
4479 			if (err)
4480 				break;
4481 			btrfs_drop_extent_cache(inode, cur_offset,
4482 						cur_offset + hole_size - 1, 0);
4483 			hole_em = alloc_extent_map();
4484 			if (!hole_em) {
4485 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4486 					&BTRFS_I(inode)->runtime_flags);
4487 				goto next;
4488 			}
4489 			hole_em->start = cur_offset;
4490 			hole_em->len = hole_size;
4491 			hole_em->orig_start = cur_offset;
4492 
4493 			hole_em->block_start = EXTENT_MAP_HOLE;
4494 			hole_em->block_len = 0;
4495 			hole_em->orig_block_len = 0;
4496 			hole_em->ram_bytes = hole_size;
4497 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4498 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4499 			hole_em->generation = root->fs_info->generation;
4500 
4501 			while (1) {
4502 				write_lock(&em_tree->lock);
4503 				err = add_extent_mapping(em_tree, hole_em, 1);
4504 				write_unlock(&em_tree->lock);
4505 				if (err != -EEXIST)
4506 					break;
4507 				btrfs_drop_extent_cache(inode, cur_offset,
4508 							cur_offset +
4509 							hole_size - 1, 0);
4510 			}
4511 			free_extent_map(hole_em);
4512 		}
4513 next:
4514 		free_extent_map(em);
4515 		em = NULL;
4516 		cur_offset = last_byte;
4517 		if (cur_offset >= block_end)
4518 			break;
4519 	}
4520 	free_extent_map(em);
4521 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4522 			     GFP_NOFS);
4523 	return err;
4524 }
4525 
4526 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4527 {
4528 	struct btrfs_root *root = BTRFS_I(inode)->root;
4529 	struct btrfs_trans_handle *trans;
4530 	loff_t oldsize = i_size_read(inode);
4531 	loff_t newsize = attr->ia_size;
4532 	int mask = attr->ia_valid;
4533 	int ret;
4534 
4535 	/*
4536 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4537 	 * special case where we need to update the times despite not having
4538 	 * these flags set.  For all other operations the VFS set these flags
4539 	 * explicitly if it wants a timestamp update.
4540 	 */
4541 	if (newsize != oldsize) {
4542 		inode_inc_iversion(inode);
4543 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4544 			inode->i_ctime = inode->i_mtime =
4545 				current_fs_time(inode->i_sb);
4546 	}
4547 
4548 	if (newsize > oldsize) {
4549 		truncate_pagecache(inode, newsize);
4550 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4551 		if (ret)
4552 			return ret;
4553 
4554 		trans = btrfs_start_transaction(root, 1);
4555 		if (IS_ERR(trans))
4556 			return PTR_ERR(trans);
4557 
4558 		i_size_write(inode, newsize);
4559 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4560 		ret = btrfs_update_inode(trans, root, inode);
4561 		btrfs_end_transaction(trans, root);
4562 	} else {
4563 
4564 		/*
4565 		 * We're truncating a file that used to have good data down to
4566 		 * zero. Make sure it gets into the ordered flush list so that
4567 		 * any new writes get down to disk quickly.
4568 		 */
4569 		if (newsize == 0)
4570 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4571 				&BTRFS_I(inode)->runtime_flags);
4572 
4573 		/*
4574 		 * 1 for the orphan item we're going to add
4575 		 * 1 for the orphan item deletion.
4576 		 */
4577 		trans = btrfs_start_transaction(root, 2);
4578 		if (IS_ERR(trans))
4579 			return PTR_ERR(trans);
4580 
4581 		/*
4582 		 * We need to do this in case we fail at _any_ point during the
4583 		 * actual truncate.  Once we do the truncate_setsize we could
4584 		 * invalidate pages which forces any outstanding ordered io to
4585 		 * be instantly completed which will give us extents that need
4586 		 * to be truncated.  If we fail to get an orphan inode down we
4587 		 * could have left over extents that were never meant to live,
4588 		 * so we need to garuntee from this point on that everything
4589 		 * will be consistent.
4590 		 */
4591 		ret = btrfs_orphan_add(trans, inode);
4592 		btrfs_end_transaction(trans, root);
4593 		if (ret)
4594 			return ret;
4595 
4596 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4597 		truncate_setsize(inode, newsize);
4598 
4599 		/* Disable nonlocked read DIO to avoid the end less truncate */
4600 		btrfs_inode_block_unlocked_dio(inode);
4601 		inode_dio_wait(inode);
4602 		btrfs_inode_resume_unlocked_dio(inode);
4603 
4604 		ret = btrfs_truncate(inode);
4605 		if (ret && inode->i_nlink) {
4606 			int err;
4607 
4608 			/*
4609 			 * failed to truncate, disk_i_size is only adjusted down
4610 			 * as we remove extents, so it should represent the true
4611 			 * size of the inode, so reset the in memory size and
4612 			 * delete our orphan entry.
4613 			 */
4614 			trans = btrfs_join_transaction(root);
4615 			if (IS_ERR(trans)) {
4616 				btrfs_orphan_del(NULL, inode);
4617 				return ret;
4618 			}
4619 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4620 			err = btrfs_orphan_del(trans, inode);
4621 			if (err)
4622 				btrfs_abort_transaction(trans, root, err);
4623 			btrfs_end_transaction(trans, root);
4624 		}
4625 	}
4626 
4627 	return ret;
4628 }
4629 
4630 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4631 {
4632 	struct inode *inode = dentry->d_inode;
4633 	struct btrfs_root *root = BTRFS_I(inode)->root;
4634 	int err;
4635 
4636 	if (btrfs_root_readonly(root))
4637 		return -EROFS;
4638 
4639 	err = inode_change_ok(inode, attr);
4640 	if (err)
4641 		return err;
4642 
4643 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4644 		err = btrfs_setsize(inode, attr);
4645 		if (err)
4646 			return err;
4647 	}
4648 
4649 	if (attr->ia_valid) {
4650 		setattr_copy(inode, attr);
4651 		inode_inc_iversion(inode);
4652 		err = btrfs_dirty_inode(inode);
4653 
4654 		if (!err && attr->ia_valid & ATTR_MODE)
4655 			err = posix_acl_chmod(inode, inode->i_mode);
4656 	}
4657 
4658 	return err;
4659 }
4660 
4661 /*
4662  * While truncating the inode pages during eviction, we get the VFS calling
4663  * btrfs_invalidatepage() against each page of the inode. This is slow because
4664  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4665  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4666  * extent_state structures over and over, wasting lots of time.
4667  *
4668  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4669  * those expensive operations on a per page basis and do only the ordered io
4670  * finishing, while we release here the extent_map and extent_state structures,
4671  * without the excessive merging and splitting.
4672  */
4673 static void evict_inode_truncate_pages(struct inode *inode)
4674 {
4675 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4676 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4677 	struct rb_node *node;
4678 
4679 	ASSERT(inode->i_state & I_FREEING);
4680 	truncate_inode_pages_final(&inode->i_data);
4681 
4682 	write_lock(&map_tree->lock);
4683 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
4684 		struct extent_map *em;
4685 
4686 		node = rb_first(&map_tree->map);
4687 		em = rb_entry(node, struct extent_map, rb_node);
4688 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4689 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4690 		remove_extent_mapping(map_tree, em);
4691 		free_extent_map(em);
4692 		if (need_resched()) {
4693 			write_unlock(&map_tree->lock);
4694 			cond_resched();
4695 			write_lock(&map_tree->lock);
4696 		}
4697 	}
4698 	write_unlock(&map_tree->lock);
4699 
4700 	spin_lock(&io_tree->lock);
4701 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
4702 		struct extent_state *state;
4703 		struct extent_state *cached_state = NULL;
4704 
4705 		node = rb_first(&io_tree->state);
4706 		state = rb_entry(node, struct extent_state, rb_node);
4707 		atomic_inc(&state->refs);
4708 		spin_unlock(&io_tree->lock);
4709 
4710 		lock_extent_bits(io_tree, state->start, state->end,
4711 				 0, &cached_state);
4712 		clear_extent_bit(io_tree, state->start, state->end,
4713 				 EXTENT_LOCKED | EXTENT_DIRTY |
4714 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4715 				 EXTENT_DEFRAG, 1, 1,
4716 				 &cached_state, GFP_NOFS);
4717 		free_extent_state(state);
4718 
4719 		cond_resched();
4720 		spin_lock(&io_tree->lock);
4721 	}
4722 	spin_unlock(&io_tree->lock);
4723 }
4724 
4725 void btrfs_evict_inode(struct inode *inode)
4726 {
4727 	struct btrfs_trans_handle *trans;
4728 	struct btrfs_root *root = BTRFS_I(inode)->root;
4729 	struct btrfs_block_rsv *rsv, *global_rsv;
4730 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4731 	int ret;
4732 
4733 	trace_btrfs_inode_evict(inode);
4734 
4735 	evict_inode_truncate_pages(inode);
4736 
4737 	if (inode->i_nlink &&
4738 	    ((btrfs_root_refs(&root->root_item) != 0 &&
4739 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4740 	     btrfs_is_free_space_inode(inode)))
4741 		goto no_delete;
4742 
4743 	if (is_bad_inode(inode)) {
4744 		btrfs_orphan_del(NULL, inode);
4745 		goto no_delete;
4746 	}
4747 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4748 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
4749 
4750 	if (root->fs_info->log_root_recovering) {
4751 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4752 				 &BTRFS_I(inode)->runtime_flags));
4753 		goto no_delete;
4754 	}
4755 
4756 	if (inode->i_nlink > 0) {
4757 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4758 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4759 		goto no_delete;
4760 	}
4761 
4762 	ret = btrfs_commit_inode_delayed_inode(inode);
4763 	if (ret) {
4764 		btrfs_orphan_del(NULL, inode);
4765 		goto no_delete;
4766 	}
4767 
4768 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4769 	if (!rsv) {
4770 		btrfs_orphan_del(NULL, inode);
4771 		goto no_delete;
4772 	}
4773 	rsv->size = min_size;
4774 	rsv->failfast = 1;
4775 	global_rsv = &root->fs_info->global_block_rsv;
4776 
4777 	btrfs_i_size_write(inode, 0);
4778 
4779 	/*
4780 	 * This is a bit simpler than btrfs_truncate since we've already
4781 	 * reserved our space for our orphan item in the unlink, so we just
4782 	 * need to reserve some slack space in case we add bytes and update
4783 	 * inode item when doing the truncate.
4784 	 */
4785 	while (1) {
4786 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
4787 					     BTRFS_RESERVE_FLUSH_LIMIT);
4788 
4789 		/*
4790 		 * Try and steal from the global reserve since we will
4791 		 * likely not use this space anyway, we want to try as
4792 		 * hard as possible to get this to work.
4793 		 */
4794 		if (ret)
4795 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4796 
4797 		if (ret) {
4798 			btrfs_warn(root->fs_info,
4799 				"Could not get space for a delete, will truncate on mount %d",
4800 				ret);
4801 			btrfs_orphan_del(NULL, inode);
4802 			btrfs_free_block_rsv(root, rsv);
4803 			goto no_delete;
4804 		}
4805 
4806 		trans = btrfs_join_transaction(root);
4807 		if (IS_ERR(trans)) {
4808 			btrfs_orphan_del(NULL, inode);
4809 			btrfs_free_block_rsv(root, rsv);
4810 			goto no_delete;
4811 		}
4812 
4813 		trans->block_rsv = rsv;
4814 
4815 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4816 		if (ret != -ENOSPC)
4817 			break;
4818 
4819 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4820 		btrfs_end_transaction(trans, root);
4821 		trans = NULL;
4822 		btrfs_btree_balance_dirty(root);
4823 	}
4824 
4825 	btrfs_free_block_rsv(root, rsv);
4826 
4827 	/*
4828 	 * Errors here aren't a big deal, it just means we leave orphan items
4829 	 * in the tree.  They will be cleaned up on the next mount.
4830 	 */
4831 	if (ret == 0) {
4832 		trans->block_rsv = root->orphan_block_rsv;
4833 		btrfs_orphan_del(trans, inode);
4834 	} else {
4835 		btrfs_orphan_del(NULL, inode);
4836 	}
4837 
4838 	trans->block_rsv = &root->fs_info->trans_block_rsv;
4839 	if (!(root == root->fs_info->tree_root ||
4840 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4841 		btrfs_return_ino(root, btrfs_ino(inode));
4842 
4843 	btrfs_end_transaction(trans, root);
4844 	btrfs_btree_balance_dirty(root);
4845 no_delete:
4846 	btrfs_remove_delayed_node(inode);
4847 	clear_inode(inode);
4848 	return;
4849 }
4850 
4851 /*
4852  * this returns the key found in the dir entry in the location pointer.
4853  * If no dir entries were found, location->objectid is 0.
4854  */
4855 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4856 			       struct btrfs_key *location)
4857 {
4858 	const char *name = dentry->d_name.name;
4859 	int namelen = dentry->d_name.len;
4860 	struct btrfs_dir_item *di;
4861 	struct btrfs_path *path;
4862 	struct btrfs_root *root = BTRFS_I(dir)->root;
4863 	int ret = 0;
4864 
4865 	path = btrfs_alloc_path();
4866 	if (!path)
4867 		return -ENOMEM;
4868 
4869 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4870 				    namelen, 0);
4871 	if (IS_ERR(di))
4872 		ret = PTR_ERR(di);
4873 
4874 	if (IS_ERR_OR_NULL(di))
4875 		goto out_err;
4876 
4877 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4878 out:
4879 	btrfs_free_path(path);
4880 	return ret;
4881 out_err:
4882 	location->objectid = 0;
4883 	goto out;
4884 }
4885 
4886 /*
4887  * when we hit a tree root in a directory, the btrfs part of the inode
4888  * needs to be changed to reflect the root directory of the tree root.  This
4889  * is kind of like crossing a mount point.
4890  */
4891 static int fixup_tree_root_location(struct btrfs_root *root,
4892 				    struct inode *dir,
4893 				    struct dentry *dentry,
4894 				    struct btrfs_key *location,
4895 				    struct btrfs_root **sub_root)
4896 {
4897 	struct btrfs_path *path;
4898 	struct btrfs_root *new_root;
4899 	struct btrfs_root_ref *ref;
4900 	struct extent_buffer *leaf;
4901 	int ret;
4902 	int err = 0;
4903 
4904 	path = btrfs_alloc_path();
4905 	if (!path) {
4906 		err = -ENOMEM;
4907 		goto out;
4908 	}
4909 
4910 	err = -ENOENT;
4911 	ret = btrfs_find_item(root->fs_info->tree_root, path,
4912 				BTRFS_I(dir)->root->root_key.objectid,
4913 				location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4914 	if (ret) {
4915 		if (ret < 0)
4916 			err = ret;
4917 		goto out;
4918 	}
4919 
4920 	leaf = path->nodes[0];
4921 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4922 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4923 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4924 		goto out;
4925 
4926 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4927 				   (unsigned long)(ref + 1),
4928 				   dentry->d_name.len);
4929 	if (ret)
4930 		goto out;
4931 
4932 	btrfs_release_path(path);
4933 
4934 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4935 	if (IS_ERR(new_root)) {
4936 		err = PTR_ERR(new_root);
4937 		goto out;
4938 	}
4939 
4940 	*sub_root = new_root;
4941 	location->objectid = btrfs_root_dirid(&new_root->root_item);
4942 	location->type = BTRFS_INODE_ITEM_KEY;
4943 	location->offset = 0;
4944 	err = 0;
4945 out:
4946 	btrfs_free_path(path);
4947 	return err;
4948 }
4949 
4950 static void inode_tree_add(struct inode *inode)
4951 {
4952 	struct btrfs_root *root = BTRFS_I(inode)->root;
4953 	struct btrfs_inode *entry;
4954 	struct rb_node **p;
4955 	struct rb_node *parent;
4956 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
4957 	u64 ino = btrfs_ino(inode);
4958 
4959 	if (inode_unhashed(inode))
4960 		return;
4961 	parent = NULL;
4962 	spin_lock(&root->inode_lock);
4963 	p = &root->inode_tree.rb_node;
4964 	while (*p) {
4965 		parent = *p;
4966 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
4967 
4968 		if (ino < btrfs_ino(&entry->vfs_inode))
4969 			p = &parent->rb_left;
4970 		else if (ino > btrfs_ino(&entry->vfs_inode))
4971 			p = &parent->rb_right;
4972 		else {
4973 			WARN_ON(!(entry->vfs_inode.i_state &
4974 				  (I_WILL_FREE | I_FREEING)));
4975 			rb_replace_node(parent, new, &root->inode_tree);
4976 			RB_CLEAR_NODE(parent);
4977 			spin_unlock(&root->inode_lock);
4978 			return;
4979 		}
4980 	}
4981 	rb_link_node(new, parent, p);
4982 	rb_insert_color(new, &root->inode_tree);
4983 	spin_unlock(&root->inode_lock);
4984 }
4985 
4986 static void inode_tree_del(struct inode *inode)
4987 {
4988 	struct btrfs_root *root = BTRFS_I(inode)->root;
4989 	int empty = 0;
4990 
4991 	spin_lock(&root->inode_lock);
4992 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4993 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4994 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4995 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4996 	}
4997 	spin_unlock(&root->inode_lock);
4998 
4999 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5000 		synchronize_srcu(&root->fs_info->subvol_srcu);
5001 		spin_lock(&root->inode_lock);
5002 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5003 		spin_unlock(&root->inode_lock);
5004 		if (empty)
5005 			btrfs_add_dead_root(root);
5006 	}
5007 }
5008 
5009 void btrfs_invalidate_inodes(struct btrfs_root *root)
5010 {
5011 	struct rb_node *node;
5012 	struct rb_node *prev;
5013 	struct btrfs_inode *entry;
5014 	struct inode *inode;
5015 	u64 objectid = 0;
5016 
5017 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5018 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5019 
5020 	spin_lock(&root->inode_lock);
5021 again:
5022 	node = root->inode_tree.rb_node;
5023 	prev = NULL;
5024 	while (node) {
5025 		prev = node;
5026 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5027 
5028 		if (objectid < btrfs_ino(&entry->vfs_inode))
5029 			node = node->rb_left;
5030 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5031 			node = node->rb_right;
5032 		else
5033 			break;
5034 	}
5035 	if (!node) {
5036 		while (prev) {
5037 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5038 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5039 				node = prev;
5040 				break;
5041 			}
5042 			prev = rb_next(prev);
5043 		}
5044 	}
5045 	while (node) {
5046 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5047 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5048 		inode = igrab(&entry->vfs_inode);
5049 		if (inode) {
5050 			spin_unlock(&root->inode_lock);
5051 			if (atomic_read(&inode->i_count) > 1)
5052 				d_prune_aliases(inode);
5053 			/*
5054 			 * btrfs_drop_inode will have it removed from
5055 			 * the inode cache when its usage count
5056 			 * hits zero.
5057 			 */
5058 			iput(inode);
5059 			cond_resched();
5060 			spin_lock(&root->inode_lock);
5061 			goto again;
5062 		}
5063 
5064 		if (cond_resched_lock(&root->inode_lock))
5065 			goto again;
5066 
5067 		node = rb_next(node);
5068 	}
5069 	spin_unlock(&root->inode_lock);
5070 }
5071 
5072 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5073 {
5074 	struct btrfs_iget_args *args = p;
5075 	inode->i_ino = args->location->objectid;
5076 	memcpy(&BTRFS_I(inode)->location, args->location,
5077 	       sizeof(*args->location));
5078 	BTRFS_I(inode)->root = args->root;
5079 	return 0;
5080 }
5081 
5082 static int btrfs_find_actor(struct inode *inode, void *opaque)
5083 {
5084 	struct btrfs_iget_args *args = opaque;
5085 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5086 		args->root == BTRFS_I(inode)->root;
5087 }
5088 
5089 static struct inode *btrfs_iget_locked(struct super_block *s,
5090 				       struct btrfs_key *location,
5091 				       struct btrfs_root *root)
5092 {
5093 	struct inode *inode;
5094 	struct btrfs_iget_args args;
5095 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5096 
5097 	args.location = location;
5098 	args.root = root;
5099 
5100 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5101 			     btrfs_init_locked_inode,
5102 			     (void *)&args);
5103 	return inode;
5104 }
5105 
5106 /* Get an inode object given its location and corresponding root.
5107  * Returns in *is_new if the inode was read from disk
5108  */
5109 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5110 			 struct btrfs_root *root, int *new)
5111 {
5112 	struct inode *inode;
5113 
5114 	inode = btrfs_iget_locked(s, location, root);
5115 	if (!inode)
5116 		return ERR_PTR(-ENOMEM);
5117 
5118 	if (inode->i_state & I_NEW) {
5119 		btrfs_read_locked_inode(inode);
5120 		if (!is_bad_inode(inode)) {
5121 			inode_tree_add(inode);
5122 			unlock_new_inode(inode);
5123 			if (new)
5124 				*new = 1;
5125 		} else {
5126 			unlock_new_inode(inode);
5127 			iput(inode);
5128 			inode = ERR_PTR(-ESTALE);
5129 		}
5130 	}
5131 
5132 	return inode;
5133 }
5134 
5135 static struct inode *new_simple_dir(struct super_block *s,
5136 				    struct btrfs_key *key,
5137 				    struct btrfs_root *root)
5138 {
5139 	struct inode *inode = new_inode(s);
5140 
5141 	if (!inode)
5142 		return ERR_PTR(-ENOMEM);
5143 
5144 	BTRFS_I(inode)->root = root;
5145 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5146 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5147 
5148 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5149 	inode->i_op = &btrfs_dir_ro_inode_operations;
5150 	inode->i_fop = &simple_dir_operations;
5151 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5152 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5153 
5154 	return inode;
5155 }
5156 
5157 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5158 {
5159 	struct inode *inode;
5160 	struct btrfs_root *root = BTRFS_I(dir)->root;
5161 	struct btrfs_root *sub_root = root;
5162 	struct btrfs_key location;
5163 	int index;
5164 	int ret = 0;
5165 
5166 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5167 		return ERR_PTR(-ENAMETOOLONG);
5168 
5169 	ret = btrfs_inode_by_name(dir, dentry, &location);
5170 	if (ret < 0)
5171 		return ERR_PTR(ret);
5172 
5173 	if (location.objectid == 0)
5174 		return ERR_PTR(-ENOENT);
5175 
5176 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5177 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5178 		return inode;
5179 	}
5180 
5181 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5182 
5183 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5184 	ret = fixup_tree_root_location(root, dir, dentry,
5185 				       &location, &sub_root);
5186 	if (ret < 0) {
5187 		if (ret != -ENOENT)
5188 			inode = ERR_PTR(ret);
5189 		else
5190 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5191 	} else {
5192 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5193 	}
5194 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5195 
5196 	if (!IS_ERR(inode) && root != sub_root) {
5197 		down_read(&root->fs_info->cleanup_work_sem);
5198 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5199 			ret = btrfs_orphan_cleanup(sub_root);
5200 		up_read(&root->fs_info->cleanup_work_sem);
5201 		if (ret) {
5202 			iput(inode);
5203 			inode = ERR_PTR(ret);
5204 		}
5205 		/*
5206 		 * If orphan cleanup did remove any orphans, it means the tree
5207 		 * was modified and therefore the commit root is not the same as
5208 		 * the current root anymore. This is a problem, because send
5209 		 * uses the commit root and therefore can see inode items that
5210 		 * don't exist in the current root anymore, and for example make
5211 		 * calls to btrfs_iget, which will do tree lookups based on the
5212 		 * current root and not on the commit root. Those lookups will
5213 		 * fail, returning a -ESTALE error, and making send fail with
5214 		 * that error. So make sure a send does not see any orphans we
5215 		 * have just removed, and that it will see the same inodes
5216 		 * regardless of whether a transaction commit happened before
5217 		 * it started (meaning that the commit root will be the same as
5218 		 * the current root) or not.
5219 		 */
5220 		if (sub_root->node != sub_root->commit_root) {
5221 			u64 sub_flags = btrfs_root_flags(&sub_root->root_item);
5222 
5223 			if (sub_flags & BTRFS_ROOT_SUBVOL_RDONLY) {
5224 				struct extent_buffer *eb;
5225 
5226 				/*
5227 				 * Assert we can't have races between dentry
5228 				 * lookup called through the snapshot creation
5229 				 * ioctl and the VFS.
5230 				 */
5231 				ASSERT(mutex_is_locked(&dir->i_mutex));
5232 
5233 				down_write(&root->fs_info->commit_root_sem);
5234 				eb = sub_root->commit_root;
5235 				sub_root->commit_root =
5236 					btrfs_root_node(sub_root);
5237 				up_write(&root->fs_info->commit_root_sem);
5238 				free_extent_buffer(eb);
5239 			}
5240 		}
5241 	}
5242 
5243 	return inode;
5244 }
5245 
5246 static int btrfs_dentry_delete(const struct dentry *dentry)
5247 {
5248 	struct btrfs_root *root;
5249 	struct inode *inode = dentry->d_inode;
5250 
5251 	if (!inode && !IS_ROOT(dentry))
5252 		inode = dentry->d_parent->d_inode;
5253 
5254 	if (inode) {
5255 		root = BTRFS_I(inode)->root;
5256 		if (btrfs_root_refs(&root->root_item) == 0)
5257 			return 1;
5258 
5259 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5260 			return 1;
5261 	}
5262 	return 0;
5263 }
5264 
5265 static void btrfs_dentry_release(struct dentry *dentry)
5266 {
5267 	kfree(dentry->d_fsdata);
5268 }
5269 
5270 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5271 				   unsigned int flags)
5272 {
5273 	struct inode *inode;
5274 
5275 	inode = btrfs_lookup_dentry(dir, dentry);
5276 	if (IS_ERR(inode)) {
5277 		if (PTR_ERR(inode) == -ENOENT)
5278 			inode = NULL;
5279 		else
5280 			return ERR_CAST(inode);
5281 	}
5282 
5283 	return d_materialise_unique(dentry, inode);
5284 }
5285 
5286 unsigned char btrfs_filetype_table[] = {
5287 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5288 };
5289 
5290 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5291 {
5292 	struct inode *inode = file_inode(file);
5293 	struct btrfs_root *root = BTRFS_I(inode)->root;
5294 	struct btrfs_item *item;
5295 	struct btrfs_dir_item *di;
5296 	struct btrfs_key key;
5297 	struct btrfs_key found_key;
5298 	struct btrfs_path *path;
5299 	struct list_head ins_list;
5300 	struct list_head del_list;
5301 	int ret;
5302 	struct extent_buffer *leaf;
5303 	int slot;
5304 	unsigned char d_type;
5305 	int over = 0;
5306 	u32 di_cur;
5307 	u32 di_total;
5308 	u32 di_len;
5309 	int key_type = BTRFS_DIR_INDEX_KEY;
5310 	char tmp_name[32];
5311 	char *name_ptr;
5312 	int name_len;
5313 	int is_curr = 0;	/* ctx->pos points to the current index? */
5314 
5315 	/* FIXME, use a real flag for deciding about the key type */
5316 	if (root->fs_info->tree_root == root)
5317 		key_type = BTRFS_DIR_ITEM_KEY;
5318 
5319 	if (!dir_emit_dots(file, ctx))
5320 		return 0;
5321 
5322 	path = btrfs_alloc_path();
5323 	if (!path)
5324 		return -ENOMEM;
5325 
5326 	path->reada = 1;
5327 
5328 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5329 		INIT_LIST_HEAD(&ins_list);
5330 		INIT_LIST_HEAD(&del_list);
5331 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5332 	}
5333 
5334 	btrfs_set_key_type(&key, key_type);
5335 	key.offset = ctx->pos;
5336 	key.objectid = btrfs_ino(inode);
5337 
5338 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5339 	if (ret < 0)
5340 		goto err;
5341 
5342 	while (1) {
5343 		leaf = path->nodes[0];
5344 		slot = path->slots[0];
5345 		if (slot >= btrfs_header_nritems(leaf)) {
5346 			ret = btrfs_next_leaf(root, path);
5347 			if (ret < 0)
5348 				goto err;
5349 			else if (ret > 0)
5350 				break;
5351 			continue;
5352 		}
5353 
5354 		item = btrfs_item_nr(slot);
5355 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5356 
5357 		if (found_key.objectid != key.objectid)
5358 			break;
5359 		if (btrfs_key_type(&found_key) != key_type)
5360 			break;
5361 		if (found_key.offset < ctx->pos)
5362 			goto next;
5363 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5364 		    btrfs_should_delete_dir_index(&del_list,
5365 						  found_key.offset))
5366 			goto next;
5367 
5368 		ctx->pos = found_key.offset;
5369 		is_curr = 1;
5370 
5371 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5372 		di_cur = 0;
5373 		di_total = btrfs_item_size(leaf, item);
5374 
5375 		while (di_cur < di_total) {
5376 			struct btrfs_key location;
5377 
5378 			if (verify_dir_item(root, leaf, di))
5379 				break;
5380 
5381 			name_len = btrfs_dir_name_len(leaf, di);
5382 			if (name_len <= sizeof(tmp_name)) {
5383 				name_ptr = tmp_name;
5384 			} else {
5385 				name_ptr = kmalloc(name_len, GFP_NOFS);
5386 				if (!name_ptr) {
5387 					ret = -ENOMEM;
5388 					goto err;
5389 				}
5390 			}
5391 			read_extent_buffer(leaf, name_ptr,
5392 					   (unsigned long)(di + 1), name_len);
5393 
5394 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5395 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5396 
5397 
5398 			/* is this a reference to our own snapshot? If so
5399 			 * skip it.
5400 			 *
5401 			 * In contrast to old kernels, we insert the snapshot's
5402 			 * dir item and dir index after it has been created, so
5403 			 * we won't find a reference to our own snapshot. We
5404 			 * still keep the following code for backward
5405 			 * compatibility.
5406 			 */
5407 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5408 			    location.objectid == root->root_key.objectid) {
5409 				over = 0;
5410 				goto skip;
5411 			}
5412 			over = !dir_emit(ctx, name_ptr, name_len,
5413 				       location.objectid, d_type);
5414 
5415 skip:
5416 			if (name_ptr != tmp_name)
5417 				kfree(name_ptr);
5418 
5419 			if (over)
5420 				goto nopos;
5421 			di_len = btrfs_dir_name_len(leaf, di) +
5422 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5423 			di_cur += di_len;
5424 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5425 		}
5426 next:
5427 		path->slots[0]++;
5428 	}
5429 
5430 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5431 		if (is_curr)
5432 			ctx->pos++;
5433 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5434 		if (ret)
5435 			goto nopos;
5436 	}
5437 
5438 	/* Reached end of directory/root. Bump pos past the last item. */
5439 	ctx->pos++;
5440 
5441 	/*
5442 	 * Stop new entries from being returned after we return the last
5443 	 * entry.
5444 	 *
5445 	 * New directory entries are assigned a strictly increasing
5446 	 * offset.  This means that new entries created during readdir
5447 	 * are *guaranteed* to be seen in the future by that readdir.
5448 	 * This has broken buggy programs which operate on names as
5449 	 * they're returned by readdir.  Until we re-use freed offsets
5450 	 * we have this hack to stop new entries from being returned
5451 	 * under the assumption that they'll never reach this huge
5452 	 * offset.
5453 	 *
5454 	 * This is being careful not to overflow 32bit loff_t unless the
5455 	 * last entry requires it because doing so has broken 32bit apps
5456 	 * in the past.
5457 	 */
5458 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5459 		if (ctx->pos >= INT_MAX)
5460 			ctx->pos = LLONG_MAX;
5461 		else
5462 			ctx->pos = INT_MAX;
5463 	}
5464 nopos:
5465 	ret = 0;
5466 err:
5467 	if (key_type == BTRFS_DIR_INDEX_KEY)
5468 		btrfs_put_delayed_items(&ins_list, &del_list);
5469 	btrfs_free_path(path);
5470 	return ret;
5471 }
5472 
5473 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5474 {
5475 	struct btrfs_root *root = BTRFS_I(inode)->root;
5476 	struct btrfs_trans_handle *trans;
5477 	int ret = 0;
5478 	bool nolock = false;
5479 
5480 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5481 		return 0;
5482 
5483 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5484 		nolock = true;
5485 
5486 	if (wbc->sync_mode == WB_SYNC_ALL) {
5487 		if (nolock)
5488 			trans = btrfs_join_transaction_nolock(root);
5489 		else
5490 			trans = btrfs_join_transaction(root);
5491 		if (IS_ERR(trans))
5492 			return PTR_ERR(trans);
5493 		ret = btrfs_commit_transaction(trans, root);
5494 	}
5495 	return ret;
5496 }
5497 
5498 /*
5499  * This is somewhat expensive, updating the tree every time the
5500  * inode changes.  But, it is most likely to find the inode in cache.
5501  * FIXME, needs more benchmarking...there are no reasons other than performance
5502  * to keep or drop this code.
5503  */
5504 static int btrfs_dirty_inode(struct inode *inode)
5505 {
5506 	struct btrfs_root *root = BTRFS_I(inode)->root;
5507 	struct btrfs_trans_handle *trans;
5508 	int ret;
5509 
5510 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5511 		return 0;
5512 
5513 	trans = btrfs_join_transaction(root);
5514 	if (IS_ERR(trans))
5515 		return PTR_ERR(trans);
5516 
5517 	ret = btrfs_update_inode(trans, root, inode);
5518 	if (ret && ret == -ENOSPC) {
5519 		/* whoops, lets try again with the full transaction */
5520 		btrfs_end_transaction(trans, root);
5521 		trans = btrfs_start_transaction(root, 1);
5522 		if (IS_ERR(trans))
5523 			return PTR_ERR(trans);
5524 
5525 		ret = btrfs_update_inode(trans, root, inode);
5526 	}
5527 	btrfs_end_transaction(trans, root);
5528 	if (BTRFS_I(inode)->delayed_node)
5529 		btrfs_balance_delayed_items(root);
5530 
5531 	return ret;
5532 }
5533 
5534 /*
5535  * This is a copy of file_update_time.  We need this so we can return error on
5536  * ENOSPC for updating the inode in the case of file write and mmap writes.
5537  */
5538 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5539 			     int flags)
5540 {
5541 	struct btrfs_root *root = BTRFS_I(inode)->root;
5542 
5543 	if (btrfs_root_readonly(root))
5544 		return -EROFS;
5545 
5546 	if (flags & S_VERSION)
5547 		inode_inc_iversion(inode);
5548 	if (flags & S_CTIME)
5549 		inode->i_ctime = *now;
5550 	if (flags & S_MTIME)
5551 		inode->i_mtime = *now;
5552 	if (flags & S_ATIME)
5553 		inode->i_atime = *now;
5554 	return btrfs_dirty_inode(inode);
5555 }
5556 
5557 /*
5558  * find the highest existing sequence number in a directory
5559  * and then set the in-memory index_cnt variable to reflect
5560  * free sequence numbers
5561  */
5562 static int btrfs_set_inode_index_count(struct inode *inode)
5563 {
5564 	struct btrfs_root *root = BTRFS_I(inode)->root;
5565 	struct btrfs_key key, found_key;
5566 	struct btrfs_path *path;
5567 	struct extent_buffer *leaf;
5568 	int ret;
5569 
5570 	key.objectid = btrfs_ino(inode);
5571 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5572 	key.offset = (u64)-1;
5573 
5574 	path = btrfs_alloc_path();
5575 	if (!path)
5576 		return -ENOMEM;
5577 
5578 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5579 	if (ret < 0)
5580 		goto out;
5581 	/* FIXME: we should be able to handle this */
5582 	if (ret == 0)
5583 		goto out;
5584 	ret = 0;
5585 
5586 	/*
5587 	 * MAGIC NUMBER EXPLANATION:
5588 	 * since we search a directory based on f_pos we have to start at 2
5589 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5590 	 * else has to start at 2
5591 	 */
5592 	if (path->slots[0] == 0) {
5593 		BTRFS_I(inode)->index_cnt = 2;
5594 		goto out;
5595 	}
5596 
5597 	path->slots[0]--;
5598 
5599 	leaf = path->nodes[0];
5600 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5601 
5602 	if (found_key.objectid != btrfs_ino(inode) ||
5603 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5604 		BTRFS_I(inode)->index_cnt = 2;
5605 		goto out;
5606 	}
5607 
5608 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5609 out:
5610 	btrfs_free_path(path);
5611 	return ret;
5612 }
5613 
5614 /*
5615  * helper to find a free sequence number in a given directory.  This current
5616  * code is very simple, later versions will do smarter things in the btree
5617  */
5618 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5619 {
5620 	int ret = 0;
5621 
5622 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5623 		ret = btrfs_inode_delayed_dir_index_count(dir);
5624 		if (ret) {
5625 			ret = btrfs_set_inode_index_count(dir);
5626 			if (ret)
5627 				return ret;
5628 		}
5629 	}
5630 
5631 	*index = BTRFS_I(dir)->index_cnt;
5632 	BTRFS_I(dir)->index_cnt++;
5633 
5634 	return ret;
5635 }
5636 
5637 static int btrfs_insert_inode_locked(struct inode *inode)
5638 {
5639 	struct btrfs_iget_args args;
5640 	args.location = &BTRFS_I(inode)->location;
5641 	args.root = BTRFS_I(inode)->root;
5642 
5643 	return insert_inode_locked4(inode,
5644 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5645 		   btrfs_find_actor, &args);
5646 }
5647 
5648 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5649 				     struct btrfs_root *root,
5650 				     struct inode *dir,
5651 				     const char *name, int name_len,
5652 				     u64 ref_objectid, u64 objectid,
5653 				     umode_t mode, u64 *index)
5654 {
5655 	struct inode *inode;
5656 	struct btrfs_inode_item *inode_item;
5657 	struct btrfs_key *location;
5658 	struct btrfs_path *path;
5659 	struct btrfs_inode_ref *ref;
5660 	struct btrfs_key key[2];
5661 	u32 sizes[2];
5662 	int nitems = name ? 2 : 1;
5663 	unsigned long ptr;
5664 	int ret;
5665 
5666 	path = btrfs_alloc_path();
5667 	if (!path)
5668 		return ERR_PTR(-ENOMEM);
5669 
5670 	inode = new_inode(root->fs_info->sb);
5671 	if (!inode) {
5672 		btrfs_free_path(path);
5673 		return ERR_PTR(-ENOMEM);
5674 	}
5675 
5676 	/*
5677 	 * O_TMPFILE, set link count to 0, so that after this point,
5678 	 * we fill in an inode item with the correct link count.
5679 	 */
5680 	if (!name)
5681 		set_nlink(inode, 0);
5682 
5683 	/*
5684 	 * we have to initialize this early, so we can reclaim the inode
5685 	 * number if we fail afterwards in this function.
5686 	 */
5687 	inode->i_ino = objectid;
5688 
5689 	if (dir && name) {
5690 		trace_btrfs_inode_request(dir);
5691 
5692 		ret = btrfs_set_inode_index(dir, index);
5693 		if (ret) {
5694 			btrfs_free_path(path);
5695 			iput(inode);
5696 			return ERR_PTR(ret);
5697 		}
5698 	} else if (dir) {
5699 		*index = 0;
5700 	}
5701 	/*
5702 	 * index_cnt is ignored for everything but a dir,
5703 	 * btrfs_get_inode_index_count has an explanation for the magic
5704 	 * number
5705 	 */
5706 	BTRFS_I(inode)->index_cnt = 2;
5707 	BTRFS_I(inode)->dir_index = *index;
5708 	BTRFS_I(inode)->root = root;
5709 	BTRFS_I(inode)->generation = trans->transid;
5710 	inode->i_generation = BTRFS_I(inode)->generation;
5711 
5712 	/*
5713 	 * We could have gotten an inode number from somebody who was fsynced
5714 	 * and then removed in this same transaction, so let's just set full
5715 	 * sync since it will be a full sync anyway and this will blow away the
5716 	 * old info in the log.
5717 	 */
5718 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5719 
5720 	key[0].objectid = objectid;
5721 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5722 	key[0].offset = 0;
5723 
5724 	sizes[0] = sizeof(struct btrfs_inode_item);
5725 
5726 	if (name) {
5727 		/*
5728 		 * Start new inodes with an inode_ref. This is slightly more
5729 		 * efficient for small numbers of hard links since they will
5730 		 * be packed into one item. Extended refs will kick in if we
5731 		 * add more hard links than can fit in the ref item.
5732 		 */
5733 		key[1].objectid = objectid;
5734 		btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5735 		key[1].offset = ref_objectid;
5736 
5737 		sizes[1] = name_len + sizeof(*ref);
5738 	}
5739 
5740 	location = &BTRFS_I(inode)->location;
5741 	location->objectid = objectid;
5742 	location->offset = 0;
5743 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5744 
5745 	ret = btrfs_insert_inode_locked(inode);
5746 	if (ret < 0)
5747 		goto fail;
5748 
5749 	path->leave_spinning = 1;
5750 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5751 	if (ret != 0)
5752 		goto fail_unlock;
5753 
5754 	inode_init_owner(inode, dir, mode);
5755 	inode_set_bytes(inode, 0);
5756 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5757 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5758 				  struct btrfs_inode_item);
5759 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5760 			     sizeof(*inode_item));
5761 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
5762 
5763 	if (name) {
5764 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5765 				     struct btrfs_inode_ref);
5766 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5767 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5768 		ptr = (unsigned long)(ref + 1);
5769 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
5770 	}
5771 
5772 	btrfs_mark_buffer_dirty(path->nodes[0]);
5773 	btrfs_free_path(path);
5774 
5775 	btrfs_inherit_iflags(inode, dir);
5776 
5777 	if (S_ISREG(mode)) {
5778 		if (btrfs_test_opt(root, NODATASUM))
5779 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5780 		if (btrfs_test_opt(root, NODATACOW))
5781 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5782 				BTRFS_INODE_NODATASUM;
5783 	}
5784 
5785 	inode_tree_add(inode);
5786 
5787 	trace_btrfs_inode_new(inode);
5788 	btrfs_set_inode_last_trans(trans, inode);
5789 
5790 	btrfs_update_root_times(trans, root);
5791 
5792 	ret = btrfs_inode_inherit_props(trans, inode, dir);
5793 	if (ret)
5794 		btrfs_err(root->fs_info,
5795 			  "error inheriting props for ino %llu (root %llu): %d",
5796 			  btrfs_ino(inode), root->root_key.objectid, ret);
5797 
5798 	return inode;
5799 
5800 fail_unlock:
5801 	unlock_new_inode(inode);
5802 fail:
5803 	if (dir && name)
5804 		BTRFS_I(dir)->index_cnt--;
5805 	btrfs_free_path(path);
5806 	iput(inode);
5807 	return ERR_PTR(ret);
5808 }
5809 
5810 static inline u8 btrfs_inode_type(struct inode *inode)
5811 {
5812 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5813 }
5814 
5815 /*
5816  * utility function to add 'inode' into 'parent_inode' with
5817  * a give name and a given sequence number.
5818  * if 'add_backref' is true, also insert a backref from the
5819  * inode to the parent directory.
5820  */
5821 int btrfs_add_link(struct btrfs_trans_handle *trans,
5822 		   struct inode *parent_inode, struct inode *inode,
5823 		   const char *name, int name_len, int add_backref, u64 index)
5824 {
5825 	int ret = 0;
5826 	struct btrfs_key key;
5827 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5828 	u64 ino = btrfs_ino(inode);
5829 	u64 parent_ino = btrfs_ino(parent_inode);
5830 
5831 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5832 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5833 	} else {
5834 		key.objectid = ino;
5835 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5836 		key.offset = 0;
5837 	}
5838 
5839 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5840 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5841 					 key.objectid, root->root_key.objectid,
5842 					 parent_ino, index, name, name_len);
5843 	} else if (add_backref) {
5844 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5845 					     parent_ino, index);
5846 	}
5847 
5848 	/* Nothing to clean up yet */
5849 	if (ret)
5850 		return ret;
5851 
5852 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
5853 				    parent_inode, &key,
5854 				    btrfs_inode_type(inode), index);
5855 	if (ret == -EEXIST || ret == -EOVERFLOW)
5856 		goto fail_dir_item;
5857 	else if (ret) {
5858 		btrfs_abort_transaction(trans, root, ret);
5859 		return ret;
5860 	}
5861 
5862 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
5863 			   name_len * 2);
5864 	inode_inc_iversion(parent_inode);
5865 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5866 	ret = btrfs_update_inode(trans, root, parent_inode);
5867 	if (ret)
5868 		btrfs_abort_transaction(trans, root, ret);
5869 	return ret;
5870 
5871 fail_dir_item:
5872 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5873 		u64 local_index;
5874 		int err;
5875 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5876 				 key.objectid, root->root_key.objectid,
5877 				 parent_ino, &local_index, name, name_len);
5878 
5879 	} else if (add_backref) {
5880 		u64 local_index;
5881 		int err;
5882 
5883 		err = btrfs_del_inode_ref(trans, root, name, name_len,
5884 					  ino, parent_ino, &local_index);
5885 	}
5886 	return ret;
5887 }
5888 
5889 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5890 			    struct inode *dir, struct dentry *dentry,
5891 			    struct inode *inode, int backref, u64 index)
5892 {
5893 	int err = btrfs_add_link(trans, dir, inode,
5894 				 dentry->d_name.name, dentry->d_name.len,
5895 				 backref, index);
5896 	if (err > 0)
5897 		err = -EEXIST;
5898 	return err;
5899 }
5900 
5901 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5902 			umode_t mode, dev_t rdev)
5903 {
5904 	struct btrfs_trans_handle *trans;
5905 	struct btrfs_root *root = BTRFS_I(dir)->root;
5906 	struct inode *inode = NULL;
5907 	int err;
5908 	int drop_inode = 0;
5909 	u64 objectid;
5910 	u64 index = 0;
5911 
5912 	if (!new_valid_dev(rdev))
5913 		return -EINVAL;
5914 
5915 	/*
5916 	 * 2 for inode item and ref
5917 	 * 2 for dir items
5918 	 * 1 for xattr if selinux is on
5919 	 */
5920 	trans = btrfs_start_transaction(root, 5);
5921 	if (IS_ERR(trans))
5922 		return PTR_ERR(trans);
5923 
5924 	err = btrfs_find_free_ino(root, &objectid);
5925 	if (err)
5926 		goto out_unlock;
5927 
5928 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5929 				dentry->d_name.len, btrfs_ino(dir), objectid,
5930 				mode, &index);
5931 	if (IS_ERR(inode)) {
5932 		err = PTR_ERR(inode);
5933 		goto out_unlock;
5934 	}
5935 
5936 	/*
5937 	* If the active LSM wants to access the inode during
5938 	* d_instantiate it needs these. Smack checks to see
5939 	* if the filesystem supports xattrs by looking at the
5940 	* ops vector.
5941 	*/
5942 	inode->i_op = &btrfs_special_inode_operations;
5943 	init_special_inode(inode, inode->i_mode, rdev);
5944 
5945 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5946 	if (err)
5947 		goto out_unlock_inode;
5948 
5949 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5950 	if (err) {
5951 		goto out_unlock_inode;
5952 	} else {
5953 		btrfs_update_inode(trans, root, inode);
5954 		unlock_new_inode(inode);
5955 		d_instantiate(dentry, inode);
5956 	}
5957 
5958 out_unlock:
5959 	btrfs_end_transaction(trans, root);
5960 	btrfs_balance_delayed_items(root);
5961 	btrfs_btree_balance_dirty(root);
5962 	if (drop_inode) {
5963 		inode_dec_link_count(inode);
5964 		iput(inode);
5965 	}
5966 	return err;
5967 
5968 out_unlock_inode:
5969 	drop_inode = 1;
5970 	unlock_new_inode(inode);
5971 	goto out_unlock;
5972 
5973 }
5974 
5975 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5976 			umode_t mode, bool excl)
5977 {
5978 	struct btrfs_trans_handle *trans;
5979 	struct btrfs_root *root = BTRFS_I(dir)->root;
5980 	struct inode *inode = NULL;
5981 	int drop_inode_on_err = 0;
5982 	int err;
5983 	u64 objectid;
5984 	u64 index = 0;
5985 
5986 	/*
5987 	 * 2 for inode item and ref
5988 	 * 2 for dir items
5989 	 * 1 for xattr if selinux is on
5990 	 */
5991 	trans = btrfs_start_transaction(root, 5);
5992 	if (IS_ERR(trans))
5993 		return PTR_ERR(trans);
5994 
5995 	err = btrfs_find_free_ino(root, &objectid);
5996 	if (err)
5997 		goto out_unlock;
5998 
5999 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6000 				dentry->d_name.len, btrfs_ino(dir), objectid,
6001 				mode, &index);
6002 	if (IS_ERR(inode)) {
6003 		err = PTR_ERR(inode);
6004 		goto out_unlock;
6005 	}
6006 	drop_inode_on_err = 1;
6007 	/*
6008 	* If the active LSM wants to access the inode during
6009 	* d_instantiate it needs these. Smack checks to see
6010 	* if the filesystem supports xattrs by looking at the
6011 	* ops vector.
6012 	*/
6013 	inode->i_fop = &btrfs_file_operations;
6014 	inode->i_op = &btrfs_file_inode_operations;
6015 	inode->i_mapping->a_ops = &btrfs_aops;
6016 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6017 
6018 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6019 	if (err)
6020 		goto out_unlock_inode;
6021 
6022 	err = btrfs_update_inode(trans, root, inode);
6023 	if (err)
6024 		goto out_unlock_inode;
6025 
6026 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6027 	if (err)
6028 		goto out_unlock_inode;
6029 
6030 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6031 	unlock_new_inode(inode);
6032 	d_instantiate(dentry, inode);
6033 
6034 out_unlock:
6035 	btrfs_end_transaction(trans, root);
6036 	if (err && drop_inode_on_err) {
6037 		inode_dec_link_count(inode);
6038 		iput(inode);
6039 	}
6040 	btrfs_balance_delayed_items(root);
6041 	btrfs_btree_balance_dirty(root);
6042 	return err;
6043 
6044 out_unlock_inode:
6045 	unlock_new_inode(inode);
6046 	goto out_unlock;
6047 
6048 }
6049 
6050 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6051 		      struct dentry *dentry)
6052 {
6053 	struct btrfs_trans_handle *trans;
6054 	struct btrfs_root *root = BTRFS_I(dir)->root;
6055 	struct inode *inode = old_dentry->d_inode;
6056 	u64 index;
6057 	int err;
6058 	int drop_inode = 0;
6059 
6060 	/* do not allow sys_link's with other subvols of the same device */
6061 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6062 		return -EXDEV;
6063 
6064 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6065 		return -EMLINK;
6066 
6067 	err = btrfs_set_inode_index(dir, &index);
6068 	if (err)
6069 		goto fail;
6070 
6071 	/*
6072 	 * 2 items for inode and inode ref
6073 	 * 2 items for dir items
6074 	 * 1 item for parent inode
6075 	 */
6076 	trans = btrfs_start_transaction(root, 5);
6077 	if (IS_ERR(trans)) {
6078 		err = PTR_ERR(trans);
6079 		goto fail;
6080 	}
6081 
6082 	/* There are several dir indexes for this inode, clear the cache. */
6083 	BTRFS_I(inode)->dir_index = 0ULL;
6084 	inc_nlink(inode);
6085 	inode_inc_iversion(inode);
6086 	inode->i_ctime = CURRENT_TIME;
6087 	ihold(inode);
6088 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6089 
6090 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6091 
6092 	if (err) {
6093 		drop_inode = 1;
6094 	} else {
6095 		struct dentry *parent = dentry->d_parent;
6096 		err = btrfs_update_inode(trans, root, inode);
6097 		if (err)
6098 			goto fail;
6099 		if (inode->i_nlink == 1) {
6100 			/*
6101 			 * If new hard link count is 1, it's a file created
6102 			 * with open(2) O_TMPFILE flag.
6103 			 */
6104 			err = btrfs_orphan_del(trans, inode);
6105 			if (err)
6106 				goto fail;
6107 		}
6108 		d_instantiate(dentry, inode);
6109 		btrfs_log_new_name(trans, inode, NULL, parent);
6110 	}
6111 
6112 	btrfs_end_transaction(trans, root);
6113 	btrfs_balance_delayed_items(root);
6114 fail:
6115 	if (drop_inode) {
6116 		inode_dec_link_count(inode);
6117 		iput(inode);
6118 	}
6119 	btrfs_btree_balance_dirty(root);
6120 	return err;
6121 }
6122 
6123 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6124 {
6125 	struct inode *inode = NULL;
6126 	struct btrfs_trans_handle *trans;
6127 	struct btrfs_root *root = BTRFS_I(dir)->root;
6128 	int err = 0;
6129 	int drop_on_err = 0;
6130 	u64 objectid = 0;
6131 	u64 index = 0;
6132 
6133 	/*
6134 	 * 2 items for inode and ref
6135 	 * 2 items for dir items
6136 	 * 1 for xattr if selinux is on
6137 	 */
6138 	trans = btrfs_start_transaction(root, 5);
6139 	if (IS_ERR(trans))
6140 		return PTR_ERR(trans);
6141 
6142 	err = btrfs_find_free_ino(root, &objectid);
6143 	if (err)
6144 		goto out_fail;
6145 
6146 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6147 				dentry->d_name.len, btrfs_ino(dir), objectid,
6148 				S_IFDIR | mode, &index);
6149 	if (IS_ERR(inode)) {
6150 		err = PTR_ERR(inode);
6151 		goto out_fail;
6152 	}
6153 
6154 	drop_on_err = 1;
6155 	/* these must be set before we unlock the inode */
6156 	inode->i_op = &btrfs_dir_inode_operations;
6157 	inode->i_fop = &btrfs_dir_file_operations;
6158 
6159 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6160 	if (err)
6161 		goto out_fail_inode;
6162 
6163 	btrfs_i_size_write(inode, 0);
6164 	err = btrfs_update_inode(trans, root, inode);
6165 	if (err)
6166 		goto out_fail_inode;
6167 
6168 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6169 			     dentry->d_name.len, 0, index);
6170 	if (err)
6171 		goto out_fail_inode;
6172 
6173 	d_instantiate(dentry, inode);
6174 	/*
6175 	 * mkdir is special.  We're unlocking after we call d_instantiate
6176 	 * to avoid a race with nfsd calling d_instantiate.
6177 	 */
6178 	unlock_new_inode(inode);
6179 	drop_on_err = 0;
6180 
6181 out_fail:
6182 	btrfs_end_transaction(trans, root);
6183 	if (drop_on_err)
6184 		iput(inode);
6185 	btrfs_balance_delayed_items(root);
6186 	btrfs_btree_balance_dirty(root);
6187 	return err;
6188 
6189 out_fail_inode:
6190 	unlock_new_inode(inode);
6191 	goto out_fail;
6192 }
6193 
6194 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6195  * and an extent that you want to insert, deal with overlap and insert
6196  * the new extent into the tree.
6197  */
6198 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6199 				struct extent_map *existing,
6200 				struct extent_map *em,
6201 				u64 map_start)
6202 {
6203 	u64 start_diff;
6204 
6205 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6206 	start_diff = map_start - em->start;
6207 	em->start = map_start;
6208 	em->len = existing->start - em->start;
6209 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6210 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6211 		em->block_start += start_diff;
6212 		em->block_len -= start_diff;
6213 	}
6214 	return add_extent_mapping(em_tree, em, 0);
6215 }
6216 
6217 static noinline int uncompress_inline(struct btrfs_path *path,
6218 				      struct inode *inode, struct page *page,
6219 				      size_t pg_offset, u64 extent_offset,
6220 				      struct btrfs_file_extent_item *item)
6221 {
6222 	int ret;
6223 	struct extent_buffer *leaf = path->nodes[0];
6224 	char *tmp;
6225 	size_t max_size;
6226 	unsigned long inline_size;
6227 	unsigned long ptr;
6228 	int compress_type;
6229 
6230 	WARN_ON(pg_offset != 0);
6231 	compress_type = btrfs_file_extent_compression(leaf, item);
6232 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6233 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6234 					btrfs_item_nr(path->slots[0]));
6235 	tmp = kmalloc(inline_size, GFP_NOFS);
6236 	if (!tmp)
6237 		return -ENOMEM;
6238 	ptr = btrfs_file_extent_inline_start(item);
6239 
6240 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6241 
6242 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6243 	ret = btrfs_decompress(compress_type, tmp, page,
6244 			       extent_offset, inline_size, max_size);
6245 	kfree(tmp);
6246 	return ret;
6247 }
6248 
6249 /*
6250  * a bit scary, this does extent mapping from logical file offset to the disk.
6251  * the ugly parts come from merging extents from the disk with the in-ram
6252  * representation.  This gets more complex because of the data=ordered code,
6253  * where the in-ram extents might be locked pending data=ordered completion.
6254  *
6255  * This also copies inline extents directly into the page.
6256  */
6257 
6258 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6259 				    size_t pg_offset, u64 start, u64 len,
6260 				    int create)
6261 {
6262 	int ret;
6263 	int err = 0;
6264 	u64 extent_start = 0;
6265 	u64 extent_end = 0;
6266 	u64 objectid = btrfs_ino(inode);
6267 	u32 found_type;
6268 	struct btrfs_path *path = NULL;
6269 	struct btrfs_root *root = BTRFS_I(inode)->root;
6270 	struct btrfs_file_extent_item *item;
6271 	struct extent_buffer *leaf;
6272 	struct btrfs_key found_key;
6273 	struct extent_map *em = NULL;
6274 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6275 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6276 	struct btrfs_trans_handle *trans = NULL;
6277 	const bool new_inline = !page || create;
6278 
6279 again:
6280 	read_lock(&em_tree->lock);
6281 	em = lookup_extent_mapping(em_tree, start, len);
6282 	if (em)
6283 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6284 	read_unlock(&em_tree->lock);
6285 
6286 	if (em) {
6287 		if (em->start > start || em->start + em->len <= start)
6288 			free_extent_map(em);
6289 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6290 			free_extent_map(em);
6291 		else
6292 			goto out;
6293 	}
6294 	em = alloc_extent_map();
6295 	if (!em) {
6296 		err = -ENOMEM;
6297 		goto out;
6298 	}
6299 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6300 	em->start = EXTENT_MAP_HOLE;
6301 	em->orig_start = EXTENT_MAP_HOLE;
6302 	em->len = (u64)-1;
6303 	em->block_len = (u64)-1;
6304 
6305 	if (!path) {
6306 		path = btrfs_alloc_path();
6307 		if (!path) {
6308 			err = -ENOMEM;
6309 			goto out;
6310 		}
6311 		/*
6312 		 * Chances are we'll be called again, so go ahead and do
6313 		 * readahead
6314 		 */
6315 		path->reada = 1;
6316 	}
6317 
6318 	ret = btrfs_lookup_file_extent(trans, root, path,
6319 				       objectid, start, trans != NULL);
6320 	if (ret < 0) {
6321 		err = ret;
6322 		goto out;
6323 	}
6324 
6325 	if (ret != 0) {
6326 		if (path->slots[0] == 0)
6327 			goto not_found;
6328 		path->slots[0]--;
6329 	}
6330 
6331 	leaf = path->nodes[0];
6332 	item = btrfs_item_ptr(leaf, path->slots[0],
6333 			      struct btrfs_file_extent_item);
6334 	/* are we inside the extent that was found? */
6335 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6336 	found_type = btrfs_key_type(&found_key);
6337 	if (found_key.objectid != objectid ||
6338 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6339 		/*
6340 		 * If we backup past the first extent we want to move forward
6341 		 * and see if there is an extent in front of us, otherwise we'll
6342 		 * say there is a hole for our whole search range which can
6343 		 * cause problems.
6344 		 */
6345 		extent_end = start;
6346 		goto next;
6347 	}
6348 
6349 	found_type = btrfs_file_extent_type(leaf, item);
6350 	extent_start = found_key.offset;
6351 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6352 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6353 		extent_end = extent_start +
6354 		       btrfs_file_extent_num_bytes(leaf, item);
6355 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6356 		size_t size;
6357 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6358 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6359 	}
6360 next:
6361 	if (start >= extent_end) {
6362 		path->slots[0]++;
6363 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6364 			ret = btrfs_next_leaf(root, path);
6365 			if (ret < 0) {
6366 				err = ret;
6367 				goto out;
6368 			}
6369 			if (ret > 0)
6370 				goto not_found;
6371 			leaf = path->nodes[0];
6372 		}
6373 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6374 		if (found_key.objectid != objectid ||
6375 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6376 			goto not_found;
6377 		if (start + len <= found_key.offset)
6378 			goto not_found;
6379 		if (start > found_key.offset)
6380 			goto next;
6381 		em->start = start;
6382 		em->orig_start = start;
6383 		em->len = found_key.offset - start;
6384 		goto not_found_em;
6385 	}
6386 
6387 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6388 
6389 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6390 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6391 		goto insert;
6392 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6393 		unsigned long ptr;
6394 		char *map;
6395 		size_t size;
6396 		size_t extent_offset;
6397 		size_t copy_size;
6398 
6399 		if (new_inline)
6400 			goto out;
6401 
6402 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6403 		extent_offset = page_offset(page) + pg_offset - extent_start;
6404 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6405 				size - extent_offset);
6406 		em->start = extent_start + extent_offset;
6407 		em->len = ALIGN(copy_size, root->sectorsize);
6408 		em->orig_block_len = em->len;
6409 		em->orig_start = em->start;
6410 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6411 		if (create == 0 && !PageUptodate(page)) {
6412 			if (btrfs_file_extent_compression(leaf, item) !=
6413 			    BTRFS_COMPRESS_NONE) {
6414 				ret = uncompress_inline(path, inode, page,
6415 							pg_offset,
6416 							extent_offset, item);
6417 				if (ret) {
6418 					err = ret;
6419 					goto out;
6420 				}
6421 			} else {
6422 				map = kmap(page);
6423 				read_extent_buffer(leaf, map + pg_offset, ptr,
6424 						   copy_size);
6425 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6426 					memset(map + pg_offset + copy_size, 0,
6427 					       PAGE_CACHE_SIZE - pg_offset -
6428 					       copy_size);
6429 				}
6430 				kunmap(page);
6431 			}
6432 			flush_dcache_page(page);
6433 		} else if (create && PageUptodate(page)) {
6434 			BUG();
6435 			if (!trans) {
6436 				kunmap(page);
6437 				free_extent_map(em);
6438 				em = NULL;
6439 
6440 				btrfs_release_path(path);
6441 				trans = btrfs_join_transaction(root);
6442 
6443 				if (IS_ERR(trans))
6444 					return ERR_CAST(trans);
6445 				goto again;
6446 			}
6447 			map = kmap(page);
6448 			write_extent_buffer(leaf, map + pg_offset, ptr,
6449 					    copy_size);
6450 			kunmap(page);
6451 			btrfs_mark_buffer_dirty(leaf);
6452 		}
6453 		set_extent_uptodate(io_tree, em->start,
6454 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6455 		goto insert;
6456 	}
6457 not_found:
6458 	em->start = start;
6459 	em->orig_start = start;
6460 	em->len = len;
6461 not_found_em:
6462 	em->block_start = EXTENT_MAP_HOLE;
6463 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6464 insert:
6465 	btrfs_release_path(path);
6466 	if (em->start > start || extent_map_end(em) <= start) {
6467 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6468 			em->start, em->len, start, len);
6469 		err = -EIO;
6470 		goto out;
6471 	}
6472 
6473 	err = 0;
6474 	write_lock(&em_tree->lock);
6475 	ret = add_extent_mapping(em_tree, em, 0);
6476 	/* it is possible that someone inserted the extent into the tree
6477 	 * while we had the lock dropped.  It is also possible that
6478 	 * an overlapping map exists in the tree
6479 	 */
6480 	if (ret == -EEXIST) {
6481 		struct extent_map *existing;
6482 
6483 		ret = 0;
6484 
6485 		existing = lookup_extent_mapping(em_tree, start, len);
6486 		if (existing && (existing->start > start ||
6487 		    existing->start + existing->len <= start)) {
6488 			free_extent_map(existing);
6489 			existing = NULL;
6490 		}
6491 		if (!existing) {
6492 			existing = lookup_extent_mapping(em_tree, em->start,
6493 							 em->len);
6494 			if (existing) {
6495 				err = merge_extent_mapping(em_tree, existing,
6496 							   em, start);
6497 				free_extent_map(existing);
6498 				if (err) {
6499 					free_extent_map(em);
6500 					em = NULL;
6501 				}
6502 			} else {
6503 				err = -EIO;
6504 				free_extent_map(em);
6505 				em = NULL;
6506 			}
6507 		} else {
6508 			free_extent_map(em);
6509 			em = existing;
6510 			err = 0;
6511 		}
6512 	}
6513 	write_unlock(&em_tree->lock);
6514 out:
6515 
6516 	trace_btrfs_get_extent(root, em);
6517 
6518 	if (path)
6519 		btrfs_free_path(path);
6520 	if (trans) {
6521 		ret = btrfs_end_transaction(trans, root);
6522 		if (!err)
6523 			err = ret;
6524 	}
6525 	if (err) {
6526 		free_extent_map(em);
6527 		return ERR_PTR(err);
6528 	}
6529 	BUG_ON(!em); /* Error is always set */
6530 	return em;
6531 }
6532 
6533 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6534 					   size_t pg_offset, u64 start, u64 len,
6535 					   int create)
6536 {
6537 	struct extent_map *em;
6538 	struct extent_map *hole_em = NULL;
6539 	u64 range_start = start;
6540 	u64 end;
6541 	u64 found;
6542 	u64 found_end;
6543 	int err = 0;
6544 
6545 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6546 	if (IS_ERR(em))
6547 		return em;
6548 	if (em) {
6549 		/*
6550 		 * if our em maps to
6551 		 * -  a hole or
6552 		 * -  a pre-alloc extent,
6553 		 * there might actually be delalloc bytes behind it.
6554 		 */
6555 		if (em->block_start != EXTENT_MAP_HOLE &&
6556 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6557 			return em;
6558 		else
6559 			hole_em = em;
6560 	}
6561 
6562 	/* check to see if we've wrapped (len == -1 or similar) */
6563 	end = start + len;
6564 	if (end < start)
6565 		end = (u64)-1;
6566 	else
6567 		end -= 1;
6568 
6569 	em = NULL;
6570 
6571 	/* ok, we didn't find anything, lets look for delalloc */
6572 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6573 				 end, len, EXTENT_DELALLOC, 1);
6574 	found_end = range_start + found;
6575 	if (found_end < range_start)
6576 		found_end = (u64)-1;
6577 
6578 	/*
6579 	 * we didn't find anything useful, return
6580 	 * the original results from get_extent()
6581 	 */
6582 	if (range_start > end || found_end <= start) {
6583 		em = hole_em;
6584 		hole_em = NULL;
6585 		goto out;
6586 	}
6587 
6588 	/* adjust the range_start to make sure it doesn't
6589 	 * go backwards from the start they passed in
6590 	 */
6591 	range_start = max(start, range_start);
6592 	found = found_end - range_start;
6593 
6594 	if (found > 0) {
6595 		u64 hole_start = start;
6596 		u64 hole_len = len;
6597 
6598 		em = alloc_extent_map();
6599 		if (!em) {
6600 			err = -ENOMEM;
6601 			goto out;
6602 		}
6603 		/*
6604 		 * when btrfs_get_extent can't find anything it
6605 		 * returns one huge hole
6606 		 *
6607 		 * make sure what it found really fits our range, and
6608 		 * adjust to make sure it is based on the start from
6609 		 * the caller
6610 		 */
6611 		if (hole_em) {
6612 			u64 calc_end = extent_map_end(hole_em);
6613 
6614 			if (calc_end <= start || (hole_em->start > end)) {
6615 				free_extent_map(hole_em);
6616 				hole_em = NULL;
6617 			} else {
6618 				hole_start = max(hole_em->start, start);
6619 				hole_len = calc_end - hole_start;
6620 			}
6621 		}
6622 		em->bdev = NULL;
6623 		if (hole_em && range_start > hole_start) {
6624 			/* our hole starts before our delalloc, so we
6625 			 * have to return just the parts of the hole
6626 			 * that go until  the delalloc starts
6627 			 */
6628 			em->len = min(hole_len,
6629 				      range_start - hole_start);
6630 			em->start = hole_start;
6631 			em->orig_start = hole_start;
6632 			/*
6633 			 * don't adjust block start at all,
6634 			 * it is fixed at EXTENT_MAP_HOLE
6635 			 */
6636 			em->block_start = hole_em->block_start;
6637 			em->block_len = hole_len;
6638 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6639 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6640 		} else {
6641 			em->start = range_start;
6642 			em->len = found;
6643 			em->orig_start = range_start;
6644 			em->block_start = EXTENT_MAP_DELALLOC;
6645 			em->block_len = found;
6646 		}
6647 	} else if (hole_em) {
6648 		return hole_em;
6649 	}
6650 out:
6651 
6652 	free_extent_map(hole_em);
6653 	if (err) {
6654 		free_extent_map(em);
6655 		return ERR_PTR(err);
6656 	}
6657 	return em;
6658 }
6659 
6660 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6661 						  u64 start, u64 len)
6662 {
6663 	struct btrfs_root *root = BTRFS_I(inode)->root;
6664 	struct extent_map *em;
6665 	struct btrfs_key ins;
6666 	u64 alloc_hint;
6667 	int ret;
6668 
6669 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6670 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6671 				   alloc_hint, &ins, 1, 1);
6672 	if (ret)
6673 		return ERR_PTR(ret);
6674 
6675 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6676 			      ins.offset, ins.offset, ins.offset, 0);
6677 	if (IS_ERR(em)) {
6678 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6679 		return em;
6680 	}
6681 
6682 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6683 					   ins.offset, ins.offset, 0);
6684 	if (ret) {
6685 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6686 		free_extent_map(em);
6687 		return ERR_PTR(ret);
6688 	}
6689 
6690 	return em;
6691 }
6692 
6693 /*
6694  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6695  * block must be cow'd
6696  */
6697 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6698 			      u64 *orig_start, u64 *orig_block_len,
6699 			      u64 *ram_bytes)
6700 {
6701 	struct btrfs_trans_handle *trans;
6702 	struct btrfs_path *path;
6703 	int ret;
6704 	struct extent_buffer *leaf;
6705 	struct btrfs_root *root = BTRFS_I(inode)->root;
6706 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6707 	struct btrfs_file_extent_item *fi;
6708 	struct btrfs_key key;
6709 	u64 disk_bytenr;
6710 	u64 backref_offset;
6711 	u64 extent_end;
6712 	u64 num_bytes;
6713 	int slot;
6714 	int found_type;
6715 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6716 
6717 	path = btrfs_alloc_path();
6718 	if (!path)
6719 		return -ENOMEM;
6720 
6721 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6722 				       offset, 0);
6723 	if (ret < 0)
6724 		goto out;
6725 
6726 	slot = path->slots[0];
6727 	if (ret == 1) {
6728 		if (slot == 0) {
6729 			/* can't find the item, must cow */
6730 			ret = 0;
6731 			goto out;
6732 		}
6733 		slot--;
6734 	}
6735 	ret = 0;
6736 	leaf = path->nodes[0];
6737 	btrfs_item_key_to_cpu(leaf, &key, slot);
6738 	if (key.objectid != btrfs_ino(inode) ||
6739 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6740 		/* not our file or wrong item type, must cow */
6741 		goto out;
6742 	}
6743 
6744 	if (key.offset > offset) {
6745 		/* Wrong offset, must cow */
6746 		goto out;
6747 	}
6748 
6749 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6750 	found_type = btrfs_file_extent_type(leaf, fi);
6751 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6752 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6753 		/* not a regular extent, must cow */
6754 		goto out;
6755 	}
6756 
6757 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6758 		goto out;
6759 
6760 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6761 	if (extent_end <= offset)
6762 		goto out;
6763 
6764 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6765 	if (disk_bytenr == 0)
6766 		goto out;
6767 
6768 	if (btrfs_file_extent_compression(leaf, fi) ||
6769 	    btrfs_file_extent_encryption(leaf, fi) ||
6770 	    btrfs_file_extent_other_encoding(leaf, fi))
6771 		goto out;
6772 
6773 	backref_offset = btrfs_file_extent_offset(leaf, fi);
6774 
6775 	if (orig_start) {
6776 		*orig_start = key.offset - backref_offset;
6777 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6778 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6779 	}
6780 
6781 	if (btrfs_extent_readonly(root, disk_bytenr))
6782 		goto out;
6783 
6784 	num_bytes = min(offset + *len, extent_end) - offset;
6785 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6786 		u64 range_end;
6787 
6788 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6789 		ret = test_range_bit(io_tree, offset, range_end,
6790 				     EXTENT_DELALLOC, 0, NULL);
6791 		if (ret) {
6792 			ret = -EAGAIN;
6793 			goto out;
6794 		}
6795 	}
6796 
6797 	btrfs_release_path(path);
6798 
6799 	/*
6800 	 * look for other files referencing this extent, if we
6801 	 * find any we must cow
6802 	 */
6803 	trans = btrfs_join_transaction(root);
6804 	if (IS_ERR(trans)) {
6805 		ret = 0;
6806 		goto out;
6807 	}
6808 
6809 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6810 				    key.offset - backref_offset, disk_bytenr);
6811 	btrfs_end_transaction(trans, root);
6812 	if (ret) {
6813 		ret = 0;
6814 		goto out;
6815 	}
6816 
6817 	/*
6818 	 * adjust disk_bytenr and num_bytes to cover just the bytes
6819 	 * in this extent we are about to write.  If there
6820 	 * are any csums in that range we have to cow in order
6821 	 * to keep the csums correct
6822 	 */
6823 	disk_bytenr += backref_offset;
6824 	disk_bytenr += offset - key.offset;
6825 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6826 				goto out;
6827 	/*
6828 	 * all of the above have passed, it is safe to overwrite this extent
6829 	 * without cow
6830 	 */
6831 	*len = num_bytes;
6832 	ret = 1;
6833 out:
6834 	btrfs_free_path(path);
6835 	return ret;
6836 }
6837 
6838 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6839 {
6840 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
6841 	int found = false;
6842 	void **pagep = NULL;
6843 	struct page *page = NULL;
6844 	int start_idx;
6845 	int end_idx;
6846 
6847 	start_idx = start >> PAGE_CACHE_SHIFT;
6848 
6849 	/*
6850 	 * end is the last byte in the last page.  end == start is legal
6851 	 */
6852 	end_idx = end >> PAGE_CACHE_SHIFT;
6853 
6854 	rcu_read_lock();
6855 
6856 	/* Most of the code in this while loop is lifted from
6857 	 * find_get_page.  It's been modified to begin searching from a
6858 	 * page and return just the first page found in that range.  If the
6859 	 * found idx is less than or equal to the end idx then we know that
6860 	 * a page exists.  If no pages are found or if those pages are
6861 	 * outside of the range then we're fine (yay!) */
6862 	while (page == NULL &&
6863 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6864 		page = radix_tree_deref_slot(pagep);
6865 		if (unlikely(!page))
6866 			break;
6867 
6868 		if (radix_tree_exception(page)) {
6869 			if (radix_tree_deref_retry(page)) {
6870 				page = NULL;
6871 				continue;
6872 			}
6873 			/*
6874 			 * Otherwise, shmem/tmpfs must be storing a swap entry
6875 			 * here as an exceptional entry: so return it without
6876 			 * attempting to raise page count.
6877 			 */
6878 			page = NULL;
6879 			break; /* TODO: Is this relevant for this use case? */
6880 		}
6881 
6882 		if (!page_cache_get_speculative(page)) {
6883 			page = NULL;
6884 			continue;
6885 		}
6886 
6887 		/*
6888 		 * Has the page moved?
6889 		 * This is part of the lockless pagecache protocol. See
6890 		 * include/linux/pagemap.h for details.
6891 		 */
6892 		if (unlikely(page != *pagep)) {
6893 			page_cache_release(page);
6894 			page = NULL;
6895 		}
6896 	}
6897 
6898 	if (page) {
6899 		if (page->index <= end_idx)
6900 			found = true;
6901 		page_cache_release(page);
6902 	}
6903 
6904 	rcu_read_unlock();
6905 	return found;
6906 }
6907 
6908 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6909 			      struct extent_state **cached_state, int writing)
6910 {
6911 	struct btrfs_ordered_extent *ordered;
6912 	int ret = 0;
6913 
6914 	while (1) {
6915 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6916 				 0, cached_state);
6917 		/*
6918 		 * We're concerned with the entire range that we're going to be
6919 		 * doing DIO to, so we need to make sure theres no ordered
6920 		 * extents in this range.
6921 		 */
6922 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6923 						     lockend - lockstart + 1);
6924 
6925 		/*
6926 		 * We need to make sure there are no buffered pages in this
6927 		 * range either, we could have raced between the invalidate in
6928 		 * generic_file_direct_write and locking the extent.  The
6929 		 * invalidate needs to happen so that reads after a write do not
6930 		 * get stale data.
6931 		 */
6932 		if (!ordered &&
6933 		    (!writing ||
6934 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
6935 			break;
6936 
6937 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6938 				     cached_state, GFP_NOFS);
6939 
6940 		if (ordered) {
6941 			btrfs_start_ordered_extent(inode, ordered, 1);
6942 			btrfs_put_ordered_extent(ordered);
6943 		} else {
6944 			/* Screw you mmap */
6945 			ret = filemap_write_and_wait_range(inode->i_mapping,
6946 							   lockstart,
6947 							   lockend);
6948 			if (ret)
6949 				break;
6950 
6951 			/*
6952 			 * If we found a page that couldn't be invalidated just
6953 			 * fall back to buffered.
6954 			 */
6955 			ret = invalidate_inode_pages2_range(inode->i_mapping,
6956 					lockstart >> PAGE_CACHE_SHIFT,
6957 					lockend >> PAGE_CACHE_SHIFT);
6958 			if (ret)
6959 				break;
6960 		}
6961 
6962 		cond_resched();
6963 	}
6964 
6965 	return ret;
6966 }
6967 
6968 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6969 					   u64 len, u64 orig_start,
6970 					   u64 block_start, u64 block_len,
6971 					   u64 orig_block_len, u64 ram_bytes,
6972 					   int type)
6973 {
6974 	struct extent_map_tree *em_tree;
6975 	struct extent_map *em;
6976 	struct btrfs_root *root = BTRFS_I(inode)->root;
6977 	int ret;
6978 
6979 	em_tree = &BTRFS_I(inode)->extent_tree;
6980 	em = alloc_extent_map();
6981 	if (!em)
6982 		return ERR_PTR(-ENOMEM);
6983 
6984 	em->start = start;
6985 	em->orig_start = orig_start;
6986 	em->mod_start = start;
6987 	em->mod_len = len;
6988 	em->len = len;
6989 	em->block_len = block_len;
6990 	em->block_start = block_start;
6991 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6992 	em->orig_block_len = orig_block_len;
6993 	em->ram_bytes = ram_bytes;
6994 	em->generation = -1;
6995 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
6996 	if (type == BTRFS_ORDERED_PREALLOC)
6997 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
6998 
6999 	do {
7000 		btrfs_drop_extent_cache(inode, em->start,
7001 				em->start + em->len - 1, 0);
7002 		write_lock(&em_tree->lock);
7003 		ret = add_extent_mapping(em_tree, em, 1);
7004 		write_unlock(&em_tree->lock);
7005 	} while (ret == -EEXIST);
7006 
7007 	if (ret) {
7008 		free_extent_map(em);
7009 		return ERR_PTR(ret);
7010 	}
7011 
7012 	return em;
7013 }
7014 
7015 
7016 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7017 				   struct buffer_head *bh_result, int create)
7018 {
7019 	struct extent_map *em;
7020 	struct btrfs_root *root = BTRFS_I(inode)->root;
7021 	struct extent_state *cached_state = NULL;
7022 	u64 start = iblock << inode->i_blkbits;
7023 	u64 lockstart, lockend;
7024 	u64 len = bh_result->b_size;
7025 	int unlock_bits = EXTENT_LOCKED;
7026 	int ret = 0;
7027 
7028 	if (create)
7029 		unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
7030 	else
7031 		len = min_t(u64, len, root->sectorsize);
7032 
7033 	lockstart = start;
7034 	lockend = start + len - 1;
7035 
7036 	/*
7037 	 * If this errors out it's because we couldn't invalidate pagecache for
7038 	 * this range and we need to fallback to buffered.
7039 	 */
7040 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7041 		return -ENOTBLK;
7042 
7043 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7044 	if (IS_ERR(em)) {
7045 		ret = PTR_ERR(em);
7046 		goto unlock_err;
7047 	}
7048 
7049 	/*
7050 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7051 	 * io.  INLINE is special, and we could probably kludge it in here, but
7052 	 * it's still buffered so for safety lets just fall back to the generic
7053 	 * buffered path.
7054 	 *
7055 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7056 	 * decompress it, so there will be buffering required no matter what we
7057 	 * do, so go ahead and fallback to buffered.
7058 	 *
7059 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7060 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7061 	 * the generic code.
7062 	 */
7063 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7064 	    em->block_start == EXTENT_MAP_INLINE) {
7065 		free_extent_map(em);
7066 		ret = -ENOTBLK;
7067 		goto unlock_err;
7068 	}
7069 
7070 	/* Just a good old fashioned hole, return */
7071 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7072 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7073 		free_extent_map(em);
7074 		goto unlock_err;
7075 	}
7076 
7077 	/*
7078 	 * We don't allocate a new extent in the following cases
7079 	 *
7080 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7081 	 * existing extent.
7082 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7083 	 * just use the extent.
7084 	 *
7085 	 */
7086 	if (!create) {
7087 		len = min(len, em->len - (start - em->start));
7088 		lockstart = start + len;
7089 		goto unlock;
7090 	}
7091 
7092 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7093 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7094 	     em->block_start != EXTENT_MAP_HOLE)) {
7095 		int type;
7096 		int ret;
7097 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7098 
7099 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7100 			type = BTRFS_ORDERED_PREALLOC;
7101 		else
7102 			type = BTRFS_ORDERED_NOCOW;
7103 		len = min(len, em->len - (start - em->start));
7104 		block_start = em->block_start + (start - em->start);
7105 
7106 		if (can_nocow_extent(inode, start, &len, &orig_start,
7107 				     &orig_block_len, &ram_bytes) == 1) {
7108 			if (type == BTRFS_ORDERED_PREALLOC) {
7109 				free_extent_map(em);
7110 				em = create_pinned_em(inode, start, len,
7111 						       orig_start,
7112 						       block_start, len,
7113 						       orig_block_len,
7114 						       ram_bytes, type);
7115 				if (IS_ERR(em))
7116 					goto unlock_err;
7117 			}
7118 
7119 			ret = btrfs_add_ordered_extent_dio(inode, start,
7120 					   block_start, len, len, type);
7121 			if (ret) {
7122 				free_extent_map(em);
7123 				goto unlock_err;
7124 			}
7125 			goto unlock;
7126 		}
7127 	}
7128 
7129 	/*
7130 	 * this will cow the extent, reset the len in case we changed
7131 	 * it above
7132 	 */
7133 	len = bh_result->b_size;
7134 	free_extent_map(em);
7135 	em = btrfs_new_extent_direct(inode, start, len);
7136 	if (IS_ERR(em)) {
7137 		ret = PTR_ERR(em);
7138 		goto unlock_err;
7139 	}
7140 	len = min(len, em->len - (start - em->start));
7141 unlock:
7142 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7143 		inode->i_blkbits;
7144 	bh_result->b_size = len;
7145 	bh_result->b_bdev = em->bdev;
7146 	set_buffer_mapped(bh_result);
7147 	if (create) {
7148 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7149 			set_buffer_new(bh_result);
7150 
7151 		/*
7152 		 * Need to update the i_size under the extent lock so buffered
7153 		 * readers will get the updated i_size when we unlock.
7154 		 */
7155 		if (start + len > i_size_read(inode))
7156 			i_size_write(inode, start + len);
7157 
7158 		spin_lock(&BTRFS_I(inode)->lock);
7159 		BTRFS_I(inode)->outstanding_extents++;
7160 		spin_unlock(&BTRFS_I(inode)->lock);
7161 
7162 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7163 				     lockstart + len - 1, EXTENT_DELALLOC, NULL,
7164 				     &cached_state, GFP_NOFS);
7165 		BUG_ON(ret);
7166 	}
7167 
7168 	/*
7169 	 * In the case of write we need to clear and unlock the entire range,
7170 	 * in the case of read we need to unlock only the end area that we
7171 	 * aren't using if there is any left over space.
7172 	 */
7173 	if (lockstart < lockend) {
7174 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7175 				 lockend, unlock_bits, 1, 0,
7176 				 &cached_state, GFP_NOFS);
7177 	} else {
7178 		free_extent_state(cached_state);
7179 	}
7180 
7181 	free_extent_map(em);
7182 
7183 	return 0;
7184 
7185 unlock_err:
7186 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7187 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7188 	return ret;
7189 }
7190 
7191 static void btrfs_endio_direct_read(struct bio *bio, int err)
7192 {
7193 	struct btrfs_dio_private *dip = bio->bi_private;
7194 	struct bio_vec *bvec;
7195 	struct inode *inode = dip->inode;
7196 	struct btrfs_root *root = BTRFS_I(inode)->root;
7197 	struct bio *dio_bio;
7198 	u32 *csums = (u32 *)dip->csum;
7199 	u64 start;
7200 	int i;
7201 
7202 	start = dip->logical_offset;
7203 	bio_for_each_segment_all(bvec, bio, i) {
7204 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7205 			struct page *page = bvec->bv_page;
7206 			char *kaddr;
7207 			u32 csum = ~(u32)0;
7208 			unsigned long flags;
7209 
7210 			local_irq_save(flags);
7211 			kaddr = kmap_atomic(page);
7212 			csum = btrfs_csum_data(kaddr + bvec->bv_offset,
7213 					       csum, bvec->bv_len);
7214 			btrfs_csum_final(csum, (char *)&csum);
7215 			kunmap_atomic(kaddr);
7216 			local_irq_restore(flags);
7217 
7218 			flush_dcache_page(bvec->bv_page);
7219 			if (csum != csums[i]) {
7220 				btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
7221 					  btrfs_ino(inode), start, csum,
7222 					  csums[i]);
7223 				err = -EIO;
7224 			}
7225 		}
7226 
7227 		start += bvec->bv_len;
7228 	}
7229 
7230 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7231 		      dip->logical_offset + dip->bytes - 1);
7232 	dio_bio = dip->dio_bio;
7233 
7234 	kfree(dip);
7235 
7236 	/* If we had a csum failure make sure to clear the uptodate flag */
7237 	if (err)
7238 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7239 	dio_end_io(dio_bio, err);
7240 	bio_put(bio);
7241 }
7242 
7243 static void btrfs_endio_direct_write(struct bio *bio, int err)
7244 {
7245 	struct btrfs_dio_private *dip = bio->bi_private;
7246 	struct inode *inode = dip->inode;
7247 	struct btrfs_root *root = BTRFS_I(inode)->root;
7248 	struct btrfs_ordered_extent *ordered = NULL;
7249 	u64 ordered_offset = dip->logical_offset;
7250 	u64 ordered_bytes = dip->bytes;
7251 	struct bio *dio_bio;
7252 	int ret;
7253 
7254 	if (err)
7255 		goto out_done;
7256 again:
7257 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7258 						   &ordered_offset,
7259 						   ordered_bytes, !err);
7260 	if (!ret)
7261 		goto out_test;
7262 
7263 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7264 			finish_ordered_fn, NULL, NULL);
7265 	btrfs_queue_work(root->fs_info->endio_write_workers,
7266 			 &ordered->work);
7267 out_test:
7268 	/*
7269 	 * our bio might span multiple ordered extents.  If we haven't
7270 	 * completed the accounting for the whole dio, go back and try again
7271 	 */
7272 	if (ordered_offset < dip->logical_offset + dip->bytes) {
7273 		ordered_bytes = dip->logical_offset + dip->bytes -
7274 			ordered_offset;
7275 		ordered = NULL;
7276 		goto again;
7277 	}
7278 out_done:
7279 	dio_bio = dip->dio_bio;
7280 
7281 	kfree(dip);
7282 
7283 	/* If we had an error make sure to clear the uptodate flag */
7284 	if (err)
7285 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7286 	dio_end_io(dio_bio, err);
7287 	bio_put(bio);
7288 }
7289 
7290 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7291 				    struct bio *bio, int mirror_num,
7292 				    unsigned long bio_flags, u64 offset)
7293 {
7294 	int ret;
7295 	struct btrfs_root *root = BTRFS_I(inode)->root;
7296 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7297 	BUG_ON(ret); /* -ENOMEM */
7298 	return 0;
7299 }
7300 
7301 static void btrfs_end_dio_bio(struct bio *bio, int err)
7302 {
7303 	struct btrfs_dio_private *dip = bio->bi_private;
7304 
7305 	if (err) {
7306 		btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7307 			  "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7308 		      btrfs_ino(dip->inode), bio->bi_rw,
7309 		      (unsigned long long)bio->bi_iter.bi_sector,
7310 		      bio->bi_iter.bi_size, err);
7311 		dip->errors = 1;
7312 
7313 		/*
7314 		 * before atomic variable goto zero, we must make sure
7315 		 * dip->errors is perceived to be set.
7316 		 */
7317 		smp_mb__before_atomic();
7318 	}
7319 
7320 	/* if there are more bios still pending for this dio, just exit */
7321 	if (!atomic_dec_and_test(&dip->pending_bios))
7322 		goto out;
7323 
7324 	if (dip->errors) {
7325 		bio_io_error(dip->orig_bio);
7326 	} else {
7327 		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7328 		bio_endio(dip->orig_bio, 0);
7329 	}
7330 out:
7331 	bio_put(bio);
7332 }
7333 
7334 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7335 				       u64 first_sector, gfp_t gfp_flags)
7336 {
7337 	int nr_vecs = bio_get_nr_vecs(bdev);
7338 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7339 }
7340 
7341 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7342 					 int rw, u64 file_offset, int skip_sum,
7343 					 int async_submit)
7344 {
7345 	struct btrfs_dio_private *dip = bio->bi_private;
7346 	int write = rw & REQ_WRITE;
7347 	struct btrfs_root *root = BTRFS_I(inode)->root;
7348 	int ret;
7349 
7350 	if (async_submit)
7351 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7352 
7353 	bio_get(bio);
7354 
7355 	if (!write) {
7356 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7357 		if (ret)
7358 			goto err;
7359 	}
7360 
7361 	if (skip_sum)
7362 		goto map;
7363 
7364 	if (write && async_submit) {
7365 		ret = btrfs_wq_submit_bio(root->fs_info,
7366 				   inode, rw, bio, 0, 0,
7367 				   file_offset,
7368 				   __btrfs_submit_bio_start_direct_io,
7369 				   __btrfs_submit_bio_done);
7370 		goto err;
7371 	} else if (write) {
7372 		/*
7373 		 * If we aren't doing async submit, calculate the csum of the
7374 		 * bio now.
7375 		 */
7376 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7377 		if (ret)
7378 			goto err;
7379 	} else if (!skip_sum) {
7380 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7381 						file_offset);
7382 		if (ret)
7383 			goto err;
7384 	}
7385 
7386 map:
7387 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7388 err:
7389 	bio_put(bio);
7390 	return ret;
7391 }
7392 
7393 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7394 				    int skip_sum)
7395 {
7396 	struct inode *inode = dip->inode;
7397 	struct btrfs_root *root = BTRFS_I(inode)->root;
7398 	struct bio *bio;
7399 	struct bio *orig_bio = dip->orig_bio;
7400 	struct bio_vec *bvec = orig_bio->bi_io_vec;
7401 	u64 start_sector = orig_bio->bi_iter.bi_sector;
7402 	u64 file_offset = dip->logical_offset;
7403 	u64 submit_len = 0;
7404 	u64 map_length;
7405 	int nr_pages = 0;
7406 	int ret = 0;
7407 	int async_submit = 0;
7408 
7409 	map_length = orig_bio->bi_iter.bi_size;
7410 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7411 			      &map_length, NULL, 0);
7412 	if (ret)
7413 		return -EIO;
7414 
7415 	if (map_length >= orig_bio->bi_iter.bi_size) {
7416 		bio = orig_bio;
7417 		goto submit;
7418 	}
7419 
7420 	/* async crcs make it difficult to collect full stripe writes. */
7421 	if (btrfs_get_alloc_profile(root, 1) &
7422 	    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7423 		async_submit = 0;
7424 	else
7425 		async_submit = 1;
7426 
7427 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7428 	if (!bio)
7429 		return -ENOMEM;
7430 
7431 	bio->bi_private = dip;
7432 	bio->bi_end_io = btrfs_end_dio_bio;
7433 	atomic_inc(&dip->pending_bios);
7434 
7435 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7436 		if (unlikely(map_length < submit_len + bvec->bv_len ||
7437 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7438 				 bvec->bv_offset) < bvec->bv_len)) {
7439 			/*
7440 			 * inc the count before we submit the bio so
7441 			 * we know the end IO handler won't happen before
7442 			 * we inc the count. Otherwise, the dip might get freed
7443 			 * before we're done setting it up
7444 			 */
7445 			atomic_inc(&dip->pending_bios);
7446 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
7447 						     file_offset, skip_sum,
7448 						     async_submit);
7449 			if (ret) {
7450 				bio_put(bio);
7451 				atomic_dec(&dip->pending_bios);
7452 				goto out_err;
7453 			}
7454 
7455 			start_sector += submit_len >> 9;
7456 			file_offset += submit_len;
7457 
7458 			submit_len = 0;
7459 			nr_pages = 0;
7460 
7461 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7462 						  start_sector, GFP_NOFS);
7463 			if (!bio)
7464 				goto out_err;
7465 			bio->bi_private = dip;
7466 			bio->bi_end_io = btrfs_end_dio_bio;
7467 
7468 			map_length = orig_bio->bi_iter.bi_size;
7469 			ret = btrfs_map_block(root->fs_info, rw,
7470 					      start_sector << 9,
7471 					      &map_length, NULL, 0);
7472 			if (ret) {
7473 				bio_put(bio);
7474 				goto out_err;
7475 			}
7476 		} else {
7477 			submit_len += bvec->bv_len;
7478 			nr_pages++;
7479 			bvec++;
7480 		}
7481 	}
7482 
7483 submit:
7484 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7485 				     async_submit);
7486 	if (!ret)
7487 		return 0;
7488 
7489 	bio_put(bio);
7490 out_err:
7491 	dip->errors = 1;
7492 	/*
7493 	 * before atomic variable goto zero, we must
7494 	 * make sure dip->errors is perceived to be set.
7495 	 */
7496 	smp_mb__before_atomic();
7497 	if (atomic_dec_and_test(&dip->pending_bios))
7498 		bio_io_error(dip->orig_bio);
7499 
7500 	/* bio_end_io() will handle error, so we needn't return it */
7501 	return 0;
7502 }
7503 
7504 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7505 				struct inode *inode, loff_t file_offset)
7506 {
7507 	struct btrfs_root *root = BTRFS_I(inode)->root;
7508 	struct btrfs_dio_private *dip;
7509 	struct bio *io_bio;
7510 	int skip_sum;
7511 	int sum_len;
7512 	int write = rw & REQ_WRITE;
7513 	int ret = 0;
7514 	u16 csum_size;
7515 
7516 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7517 
7518 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7519 	if (!io_bio) {
7520 		ret = -ENOMEM;
7521 		goto free_ordered;
7522 	}
7523 
7524 	if (!skip_sum && !write) {
7525 		csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7526 		sum_len = dio_bio->bi_iter.bi_size >>
7527 			inode->i_sb->s_blocksize_bits;
7528 		sum_len *= csum_size;
7529 	} else {
7530 		sum_len = 0;
7531 	}
7532 
7533 	dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7534 	if (!dip) {
7535 		ret = -ENOMEM;
7536 		goto free_io_bio;
7537 	}
7538 
7539 	dip->private = dio_bio->bi_private;
7540 	dip->inode = inode;
7541 	dip->logical_offset = file_offset;
7542 	dip->bytes = dio_bio->bi_iter.bi_size;
7543 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7544 	io_bio->bi_private = dip;
7545 	dip->errors = 0;
7546 	dip->orig_bio = io_bio;
7547 	dip->dio_bio = dio_bio;
7548 	atomic_set(&dip->pending_bios, 0);
7549 
7550 	if (write)
7551 		io_bio->bi_end_io = btrfs_endio_direct_write;
7552 	else
7553 		io_bio->bi_end_io = btrfs_endio_direct_read;
7554 
7555 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7556 	if (!ret)
7557 		return;
7558 
7559 free_io_bio:
7560 	bio_put(io_bio);
7561 
7562 free_ordered:
7563 	/*
7564 	 * If this is a write, we need to clean up the reserved space and kill
7565 	 * the ordered extent.
7566 	 */
7567 	if (write) {
7568 		struct btrfs_ordered_extent *ordered;
7569 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7570 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7571 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7572 			btrfs_free_reserved_extent(root, ordered->start,
7573 						   ordered->disk_len, 1);
7574 		btrfs_put_ordered_extent(ordered);
7575 		btrfs_put_ordered_extent(ordered);
7576 	}
7577 	bio_endio(dio_bio, ret);
7578 }
7579 
7580 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7581 			const struct iov_iter *iter, loff_t offset)
7582 {
7583 	int seg;
7584 	int i;
7585 	unsigned blocksize_mask = root->sectorsize - 1;
7586 	ssize_t retval = -EINVAL;
7587 
7588 	if (offset & blocksize_mask)
7589 		goto out;
7590 
7591 	if (iov_iter_alignment(iter) & blocksize_mask)
7592 		goto out;
7593 
7594 	/* If this is a write we don't need to check anymore */
7595 	if (rw & WRITE)
7596 		return 0;
7597 	/*
7598 	 * Check to make sure we don't have duplicate iov_base's in this
7599 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
7600 	 * when reading back.
7601 	 */
7602 	for (seg = 0; seg < iter->nr_segs; seg++) {
7603 		for (i = seg + 1; i < iter->nr_segs; i++) {
7604 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7605 				goto out;
7606 		}
7607 	}
7608 	retval = 0;
7609 out:
7610 	return retval;
7611 }
7612 
7613 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7614 			struct iov_iter *iter, loff_t offset)
7615 {
7616 	struct file *file = iocb->ki_filp;
7617 	struct inode *inode = file->f_mapping->host;
7618 	size_t count = 0;
7619 	int flags = 0;
7620 	bool wakeup = true;
7621 	bool relock = false;
7622 	ssize_t ret;
7623 
7624 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
7625 		return 0;
7626 
7627 	atomic_inc(&inode->i_dio_count);
7628 	smp_mb__after_atomic();
7629 
7630 	/*
7631 	 * The generic stuff only does filemap_write_and_wait_range, which
7632 	 * isn't enough if we've written compressed pages to this area, so
7633 	 * we need to flush the dirty pages again to make absolutely sure
7634 	 * that any outstanding dirty pages are on disk.
7635 	 */
7636 	count = iov_iter_count(iter);
7637 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7638 		     &BTRFS_I(inode)->runtime_flags))
7639 		filemap_fdatawrite_range(inode->i_mapping, offset,
7640 					 offset + count - 1);
7641 
7642 	if (rw & WRITE) {
7643 		/*
7644 		 * If the write DIO is beyond the EOF, we need update
7645 		 * the isize, but it is protected by i_mutex. So we can
7646 		 * not unlock the i_mutex at this case.
7647 		 */
7648 		if (offset + count <= inode->i_size) {
7649 			mutex_unlock(&inode->i_mutex);
7650 			relock = true;
7651 		}
7652 		ret = btrfs_delalloc_reserve_space(inode, count);
7653 		if (ret)
7654 			goto out;
7655 	} else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7656 				     &BTRFS_I(inode)->runtime_flags))) {
7657 		inode_dio_done(inode);
7658 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
7659 		wakeup = false;
7660 	}
7661 
7662 	ret = __blockdev_direct_IO(rw, iocb, inode,
7663 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7664 			iter, offset, btrfs_get_blocks_direct, NULL,
7665 			btrfs_submit_direct, flags);
7666 	if (rw & WRITE) {
7667 		if (ret < 0 && ret != -EIOCBQUEUED)
7668 			btrfs_delalloc_release_space(inode, count);
7669 		else if (ret >= 0 && (size_t)ret < count)
7670 			btrfs_delalloc_release_space(inode,
7671 						     count - (size_t)ret);
7672 		else
7673 			btrfs_delalloc_release_metadata(inode, 0);
7674 	}
7675 out:
7676 	if (wakeup)
7677 		inode_dio_done(inode);
7678 	if (relock)
7679 		mutex_lock(&inode->i_mutex);
7680 
7681 	return ret;
7682 }
7683 
7684 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
7685 
7686 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7687 		__u64 start, __u64 len)
7688 {
7689 	int	ret;
7690 
7691 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7692 	if (ret)
7693 		return ret;
7694 
7695 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7696 }
7697 
7698 int btrfs_readpage(struct file *file, struct page *page)
7699 {
7700 	struct extent_io_tree *tree;
7701 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7702 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7703 }
7704 
7705 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7706 {
7707 	struct extent_io_tree *tree;
7708 
7709 
7710 	if (current->flags & PF_MEMALLOC) {
7711 		redirty_page_for_writepage(wbc, page);
7712 		unlock_page(page);
7713 		return 0;
7714 	}
7715 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7716 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7717 }
7718 
7719 static int btrfs_writepages(struct address_space *mapping,
7720 			    struct writeback_control *wbc)
7721 {
7722 	struct extent_io_tree *tree;
7723 
7724 	tree = &BTRFS_I(mapping->host)->io_tree;
7725 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7726 }
7727 
7728 static int
7729 btrfs_readpages(struct file *file, struct address_space *mapping,
7730 		struct list_head *pages, unsigned nr_pages)
7731 {
7732 	struct extent_io_tree *tree;
7733 	tree = &BTRFS_I(mapping->host)->io_tree;
7734 	return extent_readpages(tree, mapping, pages, nr_pages,
7735 				btrfs_get_extent);
7736 }
7737 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7738 {
7739 	struct extent_io_tree *tree;
7740 	struct extent_map_tree *map;
7741 	int ret;
7742 
7743 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7744 	map = &BTRFS_I(page->mapping->host)->extent_tree;
7745 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7746 	if (ret == 1) {
7747 		ClearPagePrivate(page);
7748 		set_page_private(page, 0);
7749 		page_cache_release(page);
7750 	}
7751 	return ret;
7752 }
7753 
7754 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7755 {
7756 	if (PageWriteback(page) || PageDirty(page))
7757 		return 0;
7758 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7759 }
7760 
7761 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7762 				 unsigned int length)
7763 {
7764 	struct inode *inode = page->mapping->host;
7765 	struct extent_io_tree *tree;
7766 	struct btrfs_ordered_extent *ordered;
7767 	struct extent_state *cached_state = NULL;
7768 	u64 page_start = page_offset(page);
7769 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7770 	int inode_evicting = inode->i_state & I_FREEING;
7771 
7772 	/*
7773 	 * we have the page locked, so new writeback can't start,
7774 	 * and the dirty bit won't be cleared while we are here.
7775 	 *
7776 	 * Wait for IO on this page so that we can safely clear
7777 	 * the PagePrivate2 bit and do ordered accounting
7778 	 */
7779 	wait_on_page_writeback(page);
7780 
7781 	tree = &BTRFS_I(inode)->io_tree;
7782 	if (offset) {
7783 		btrfs_releasepage(page, GFP_NOFS);
7784 		return;
7785 	}
7786 
7787 	if (!inode_evicting)
7788 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7789 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
7790 	if (ordered) {
7791 		/*
7792 		 * IO on this page will never be started, so we need
7793 		 * to account for any ordered extents now
7794 		 */
7795 		if (!inode_evicting)
7796 			clear_extent_bit(tree, page_start, page_end,
7797 					 EXTENT_DIRTY | EXTENT_DELALLOC |
7798 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7799 					 EXTENT_DEFRAG, 1, 0, &cached_state,
7800 					 GFP_NOFS);
7801 		/*
7802 		 * whoever cleared the private bit is responsible
7803 		 * for the finish_ordered_io
7804 		 */
7805 		if (TestClearPagePrivate2(page)) {
7806 			struct btrfs_ordered_inode_tree *tree;
7807 			u64 new_len;
7808 
7809 			tree = &BTRFS_I(inode)->ordered_tree;
7810 
7811 			spin_lock_irq(&tree->lock);
7812 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7813 			new_len = page_start - ordered->file_offset;
7814 			if (new_len < ordered->truncated_len)
7815 				ordered->truncated_len = new_len;
7816 			spin_unlock_irq(&tree->lock);
7817 
7818 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
7819 							   page_start,
7820 							   PAGE_CACHE_SIZE, 1))
7821 				btrfs_finish_ordered_io(ordered);
7822 		}
7823 		btrfs_put_ordered_extent(ordered);
7824 		if (!inode_evicting) {
7825 			cached_state = NULL;
7826 			lock_extent_bits(tree, page_start, page_end, 0,
7827 					 &cached_state);
7828 		}
7829 	}
7830 
7831 	if (!inode_evicting) {
7832 		clear_extent_bit(tree, page_start, page_end,
7833 				 EXTENT_LOCKED | EXTENT_DIRTY |
7834 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7835 				 EXTENT_DEFRAG, 1, 1,
7836 				 &cached_state, GFP_NOFS);
7837 
7838 		__btrfs_releasepage(page, GFP_NOFS);
7839 	}
7840 
7841 	ClearPageChecked(page);
7842 	if (PagePrivate(page)) {
7843 		ClearPagePrivate(page);
7844 		set_page_private(page, 0);
7845 		page_cache_release(page);
7846 	}
7847 }
7848 
7849 /*
7850  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7851  * called from a page fault handler when a page is first dirtied. Hence we must
7852  * be careful to check for EOF conditions here. We set the page up correctly
7853  * for a written page which means we get ENOSPC checking when writing into
7854  * holes and correct delalloc and unwritten extent mapping on filesystems that
7855  * support these features.
7856  *
7857  * We are not allowed to take the i_mutex here so we have to play games to
7858  * protect against truncate races as the page could now be beyond EOF.  Because
7859  * vmtruncate() writes the inode size before removing pages, once we have the
7860  * page lock we can determine safely if the page is beyond EOF. If it is not
7861  * beyond EOF, then the page is guaranteed safe against truncation until we
7862  * unlock the page.
7863  */
7864 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7865 {
7866 	struct page *page = vmf->page;
7867 	struct inode *inode = file_inode(vma->vm_file);
7868 	struct btrfs_root *root = BTRFS_I(inode)->root;
7869 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7870 	struct btrfs_ordered_extent *ordered;
7871 	struct extent_state *cached_state = NULL;
7872 	char *kaddr;
7873 	unsigned long zero_start;
7874 	loff_t size;
7875 	int ret;
7876 	int reserved = 0;
7877 	u64 page_start;
7878 	u64 page_end;
7879 
7880 	sb_start_pagefault(inode->i_sb);
7881 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7882 	if (!ret) {
7883 		ret = file_update_time(vma->vm_file);
7884 		reserved = 1;
7885 	}
7886 	if (ret) {
7887 		if (ret == -ENOMEM)
7888 			ret = VM_FAULT_OOM;
7889 		else /* -ENOSPC, -EIO, etc */
7890 			ret = VM_FAULT_SIGBUS;
7891 		if (reserved)
7892 			goto out;
7893 		goto out_noreserve;
7894 	}
7895 
7896 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7897 again:
7898 	lock_page(page);
7899 	size = i_size_read(inode);
7900 	page_start = page_offset(page);
7901 	page_end = page_start + PAGE_CACHE_SIZE - 1;
7902 
7903 	if ((page->mapping != inode->i_mapping) ||
7904 	    (page_start >= size)) {
7905 		/* page got truncated out from underneath us */
7906 		goto out_unlock;
7907 	}
7908 	wait_on_page_writeback(page);
7909 
7910 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7911 	set_page_extent_mapped(page);
7912 
7913 	/*
7914 	 * we can't set the delalloc bits if there are pending ordered
7915 	 * extents.  Drop our locks and wait for them to finish
7916 	 */
7917 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
7918 	if (ordered) {
7919 		unlock_extent_cached(io_tree, page_start, page_end,
7920 				     &cached_state, GFP_NOFS);
7921 		unlock_page(page);
7922 		btrfs_start_ordered_extent(inode, ordered, 1);
7923 		btrfs_put_ordered_extent(ordered);
7924 		goto again;
7925 	}
7926 
7927 	/*
7928 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
7929 	 * if it was already dirty, so for space accounting reasons we need to
7930 	 * clear any delalloc bits for the range we are fixing to save.  There
7931 	 * is probably a better way to do this, but for now keep consistent with
7932 	 * prepare_pages in the normal write path.
7933 	 */
7934 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7935 			  EXTENT_DIRTY | EXTENT_DELALLOC |
7936 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7937 			  0, 0, &cached_state, GFP_NOFS);
7938 
7939 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7940 					&cached_state);
7941 	if (ret) {
7942 		unlock_extent_cached(io_tree, page_start, page_end,
7943 				     &cached_state, GFP_NOFS);
7944 		ret = VM_FAULT_SIGBUS;
7945 		goto out_unlock;
7946 	}
7947 	ret = 0;
7948 
7949 	/* page is wholly or partially inside EOF */
7950 	if (page_start + PAGE_CACHE_SIZE > size)
7951 		zero_start = size & ~PAGE_CACHE_MASK;
7952 	else
7953 		zero_start = PAGE_CACHE_SIZE;
7954 
7955 	if (zero_start != PAGE_CACHE_SIZE) {
7956 		kaddr = kmap(page);
7957 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7958 		flush_dcache_page(page);
7959 		kunmap(page);
7960 	}
7961 	ClearPageChecked(page);
7962 	set_page_dirty(page);
7963 	SetPageUptodate(page);
7964 
7965 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
7966 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7967 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7968 
7969 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7970 
7971 out_unlock:
7972 	if (!ret) {
7973 		sb_end_pagefault(inode->i_sb);
7974 		return VM_FAULT_LOCKED;
7975 	}
7976 	unlock_page(page);
7977 out:
7978 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7979 out_noreserve:
7980 	sb_end_pagefault(inode->i_sb);
7981 	return ret;
7982 }
7983 
7984 static int btrfs_truncate(struct inode *inode)
7985 {
7986 	struct btrfs_root *root = BTRFS_I(inode)->root;
7987 	struct btrfs_block_rsv *rsv;
7988 	int ret = 0;
7989 	int err = 0;
7990 	struct btrfs_trans_handle *trans;
7991 	u64 mask = root->sectorsize - 1;
7992 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7993 
7994 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7995 				       (u64)-1);
7996 	if (ret)
7997 		return ret;
7998 
7999 	/*
8000 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8001 	 * 3 things going on here
8002 	 *
8003 	 * 1) We need to reserve space for our orphan item and the space to
8004 	 * delete our orphan item.  Lord knows we don't want to have a dangling
8005 	 * orphan item because we didn't reserve space to remove it.
8006 	 *
8007 	 * 2) We need to reserve space to update our inode.
8008 	 *
8009 	 * 3) We need to have something to cache all the space that is going to
8010 	 * be free'd up by the truncate operation, but also have some slack
8011 	 * space reserved in case it uses space during the truncate (thank you
8012 	 * very much snapshotting).
8013 	 *
8014 	 * And we need these to all be seperate.  The fact is we can use alot of
8015 	 * space doing the truncate, and we have no earthly idea how much space
8016 	 * we will use, so we need the truncate reservation to be seperate so it
8017 	 * doesn't end up using space reserved for updating the inode or
8018 	 * removing the orphan item.  We also need to be able to stop the
8019 	 * transaction and start a new one, which means we need to be able to
8020 	 * update the inode several times, and we have no idea of knowing how
8021 	 * many times that will be, so we can't just reserve 1 item for the
8022 	 * entirety of the opration, so that has to be done seperately as well.
8023 	 * Then there is the orphan item, which does indeed need to be held on
8024 	 * to for the whole operation, and we need nobody to touch this reserved
8025 	 * space except the orphan code.
8026 	 *
8027 	 * So that leaves us with
8028 	 *
8029 	 * 1) root->orphan_block_rsv - for the orphan deletion.
8030 	 * 2) rsv - for the truncate reservation, which we will steal from the
8031 	 * transaction reservation.
8032 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8033 	 * updating the inode.
8034 	 */
8035 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8036 	if (!rsv)
8037 		return -ENOMEM;
8038 	rsv->size = min_size;
8039 	rsv->failfast = 1;
8040 
8041 	/*
8042 	 * 1 for the truncate slack space
8043 	 * 1 for updating the inode.
8044 	 */
8045 	trans = btrfs_start_transaction(root, 2);
8046 	if (IS_ERR(trans)) {
8047 		err = PTR_ERR(trans);
8048 		goto out;
8049 	}
8050 
8051 	/* Migrate the slack space for the truncate to our reserve */
8052 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8053 				      min_size);
8054 	BUG_ON(ret);
8055 
8056 	/*
8057 	 * So if we truncate and then write and fsync we normally would just
8058 	 * write the extents that changed, which is a problem if we need to
8059 	 * first truncate that entire inode.  So set this flag so we write out
8060 	 * all of the extents in the inode to the sync log so we're completely
8061 	 * safe.
8062 	 */
8063 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8064 	trans->block_rsv = rsv;
8065 
8066 	while (1) {
8067 		ret = btrfs_truncate_inode_items(trans, root, inode,
8068 						 inode->i_size,
8069 						 BTRFS_EXTENT_DATA_KEY);
8070 		if (ret != -ENOSPC) {
8071 			err = ret;
8072 			break;
8073 		}
8074 
8075 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8076 		ret = btrfs_update_inode(trans, root, inode);
8077 		if (ret) {
8078 			err = ret;
8079 			break;
8080 		}
8081 
8082 		btrfs_end_transaction(trans, root);
8083 		btrfs_btree_balance_dirty(root);
8084 
8085 		trans = btrfs_start_transaction(root, 2);
8086 		if (IS_ERR(trans)) {
8087 			ret = err = PTR_ERR(trans);
8088 			trans = NULL;
8089 			break;
8090 		}
8091 
8092 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8093 					      rsv, min_size);
8094 		BUG_ON(ret);	/* shouldn't happen */
8095 		trans->block_rsv = rsv;
8096 	}
8097 
8098 	if (ret == 0 && inode->i_nlink > 0) {
8099 		trans->block_rsv = root->orphan_block_rsv;
8100 		ret = btrfs_orphan_del(trans, inode);
8101 		if (ret)
8102 			err = ret;
8103 	}
8104 
8105 	if (trans) {
8106 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8107 		ret = btrfs_update_inode(trans, root, inode);
8108 		if (ret && !err)
8109 			err = ret;
8110 
8111 		ret = btrfs_end_transaction(trans, root);
8112 		btrfs_btree_balance_dirty(root);
8113 	}
8114 
8115 out:
8116 	btrfs_free_block_rsv(root, rsv);
8117 
8118 	if (ret && !err)
8119 		err = ret;
8120 
8121 	return err;
8122 }
8123 
8124 /*
8125  * create a new subvolume directory/inode (helper for the ioctl).
8126  */
8127 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8128 			     struct btrfs_root *new_root,
8129 			     struct btrfs_root *parent_root,
8130 			     u64 new_dirid)
8131 {
8132 	struct inode *inode;
8133 	int err;
8134 	u64 index = 0;
8135 
8136 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8137 				new_dirid, new_dirid,
8138 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8139 				&index);
8140 	if (IS_ERR(inode))
8141 		return PTR_ERR(inode);
8142 	inode->i_op = &btrfs_dir_inode_operations;
8143 	inode->i_fop = &btrfs_dir_file_operations;
8144 
8145 	set_nlink(inode, 1);
8146 	btrfs_i_size_write(inode, 0);
8147 	unlock_new_inode(inode);
8148 
8149 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8150 	if (err)
8151 		btrfs_err(new_root->fs_info,
8152 			  "error inheriting subvolume %llu properties: %d",
8153 			  new_root->root_key.objectid, err);
8154 
8155 	err = btrfs_update_inode(trans, new_root, inode);
8156 
8157 	iput(inode);
8158 	return err;
8159 }
8160 
8161 struct inode *btrfs_alloc_inode(struct super_block *sb)
8162 {
8163 	struct btrfs_inode *ei;
8164 	struct inode *inode;
8165 
8166 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8167 	if (!ei)
8168 		return NULL;
8169 
8170 	ei->root = NULL;
8171 	ei->generation = 0;
8172 	ei->last_trans = 0;
8173 	ei->last_sub_trans = 0;
8174 	ei->logged_trans = 0;
8175 	ei->delalloc_bytes = 0;
8176 	ei->disk_i_size = 0;
8177 	ei->flags = 0;
8178 	ei->csum_bytes = 0;
8179 	ei->index_cnt = (u64)-1;
8180 	ei->dir_index = 0;
8181 	ei->last_unlink_trans = 0;
8182 	ei->last_log_commit = 0;
8183 
8184 	spin_lock_init(&ei->lock);
8185 	ei->outstanding_extents = 0;
8186 	ei->reserved_extents = 0;
8187 
8188 	ei->runtime_flags = 0;
8189 	ei->force_compress = BTRFS_COMPRESS_NONE;
8190 
8191 	ei->delayed_node = NULL;
8192 
8193 	inode = &ei->vfs_inode;
8194 	extent_map_tree_init(&ei->extent_tree);
8195 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
8196 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8197 	ei->io_tree.track_uptodate = 1;
8198 	ei->io_failure_tree.track_uptodate = 1;
8199 	atomic_set(&ei->sync_writers, 0);
8200 	mutex_init(&ei->log_mutex);
8201 	mutex_init(&ei->delalloc_mutex);
8202 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8203 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8204 	RB_CLEAR_NODE(&ei->rb_node);
8205 
8206 	return inode;
8207 }
8208 
8209 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8210 void btrfs_test_destroy_inode(struct inode *inode)
8211 {
8212 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8213 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8214 }
8215 #endif
8216 
8217 static void btrfs_i_callback(struct rcu_head *head)
8218 {
8219 	struct inode *inode = container_of(head, struct inode, i_rcu);
8220 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8221 }
8222 
8223 void btrfs_destroy_inode(struct inode *inode)
8224 {
8225 	struct btrfs_ordered_extent *ordered;
8226 	struct btrfs_root *root = BTRFS_I(inode)->root;
8227 
8228 	WARN_ON(!hlist_empty(&inode->i_dentry));
8229 	WARN_ON(inode->i_data.nrpages);
8230 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8231 	WARN_ON(BTRFS_I(inode)->reserved_extents);
8232 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8233 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8234 
8235 	/*
8236 	 * This can happen where we create an inode, but somebody else also
8237 	 * created the same inode and we need to destroy the one we already
8238 	 * created.
8239 	 */
8240 	if (!root)
8241 		goto free;
8242 
8243 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8244 		     &BTRFS_I(inode)->runtime_flags)) {
8245 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8246 			btrfs_ino(inode));
8247 		atomic_dec(&root->orphan_inodes);
8248 	}
8249 
8250 	while (1) {
8251 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8252 		if (!ordered)
8253 			break;
8254 		else {
8255 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8256 				ordered->file_offset, ordered->len);
8257 			btrfs_remove_ordered_extent(inode, ordered);
8258 			btrfs_put_ordered_extent(ordered);
8259 			btrfs_put_ordered_extent(ordered);
8260 		}
8261 	}
8262 	inode_tree_del(inode);
8263 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8264 free:
8265 	call_rcu(&inode->i_rcu, btrfs_i_callback);
8266 }
8267 
8268 int btrfs_drop_inode(struct inode *inode)
8269 {
8270 	struct btrfs_root *root = BTRFS_I(inode)->root;
8271 
8272 	if (root == NULL)
8273 		return 1;
8274 
8275 	/* the snap/subvol tree is on deleting */
8276 	if (btrfs_root_refs(&root->root_item) == 0)
8277 		return 1;
8278 	else
8279 		return generic_drop_inode(inode);
8280 }
8281 
8282 static void init_once(void *foo)
8283 {
8284 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8285 
8286 	inode_init_once(&ei->vfs_inode);
8287 }
8288 
8289 void btrfs_destroy_cachep(void)
8290 {
8291 	/*
8292 	 * Make sure all delayed rcu free inodes are flushed before we
8293 	 * destroy cache.
8294 	 */
8295 	rcu_barrier();
8296 	if (btrfs_inode_cachep)
8297 		kmem_cache_destroy(btrfs_inode_cachep);
8298 	if (btrfs_trans_handle_cachep)
8299 		kmem_cache_destroy(btrfs_trans_handle_cachep);
8300 	if (btrfs_transaction_cachep)
8301 		kmem_cache_destroy(btrfs_transaction_cachep);
8302 	if (btrfs_path_cachep)
8303 		kmem_cache_destroy(btrfs_path_cachep);
8304 	if (btrfs_free_space_cachep)
8305 		kmem_cache_destroy(btrfs_free_space_cachep);
8306 	if (btrfs_delalloc_work_cachep)
8307 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
8308 }
8309 
8310 int btrfs_init_cachep(void)
8311 {
8312 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8313 			sizeof(struct btrfs_inode), 0,
8314 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8315 	if (!btrfs_inode_cachep)
8316 		goto fail;
8317 
8318 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8319 			sizeof(struct btrfs_trans_handle), 0,
8320 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8321 	if (!btrfs_trans_handle_cachep)
8322 		goto fail;
8323 
8324 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8325 			sizeof(struct btrfs_transaction), 0,
8326 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8327 	if (!btrfs_transaction_cachep)
8328 		goto fail;
8329 
8330 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8331 			sizeof(struct btrfs_path), 0,
8332 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8333 	if (!btrfs_path_cachep)
8334 		goto fail;
8335 
8336 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8337 			sizeof(struct btrfs_free_space), 0,
8338 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8339 	if (!btrfs_free_space_cachep)
8340 		goto fail;
8341 
8342 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8343 			sizeof(struct btrfs_delalloc_work), 0,
8344 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8345 			NULL);
8346 	if (!btrfs_delalloc_work_cachep)
8347 		goto fail;
8348 
8349 	return 0;
8350 fail:
8351 	btrfs_destroy_cachep();
8352 	return -ENOMEM;
8353 }
8354 
8355 static int btrfs_getattr(struct vfsmount *mnt,
8356 			 struct dentry *dentry, struct kstat *stat)
8357 {
8358 	u64 delalloc_bytes;
8359 	struct inode *inode = dentry->d_inode;
8360 	u32 blocksize = inode->i_sb->s_blocksize;
8361 
8362 	generic_fillattr(inode, stat);
8363 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8364 	stat->blksize = PAGE_CACHE_SIZE;
8365 
8366 	spin_lock(&BTRFS_I(inode)->lock);
8367 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8368 	spin_unlock(&BTRFS_I(inode)->lock);
8369 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8370 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8371 	return 0;
8372 }
8373 
8374 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8375 			   struct inode *new_dir, struct dentry *new_dentry)
8376 {
8377 	struct btrfs_trans_handle *trans;
8378 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8379 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8380 	struct inode *new_inode = new_dentry->d_inode;
8381 	struct inode *old_inode = old_dentry->d_inode;
8382 	struct timespec ctime = CURRENT_TIME;
8383 	u64 index = 0;
8384 	u64 root_objectid;
8385 	int ret;
8386 	u64 old_ino = btrfs_ino(old_inode);
8387 
8388 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8389 		return -EPERM;
8390 
8391 	/* we only allow rename subvolume link between subvolumes */
8392 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8393 		return -EXDEV;
8394 
8395 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8396 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8397 		return -ENOTEMPTY;
8398 
8399 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8400 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8401 		return -ENOTEMPTY;
8402 
8403 
8404 	/* check for collisions, even if the  name isn't there */
8405 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8406 			     new_dentry->d_name.name,
8407 			     new_dentry->d_name.len);
8408 
8409 	if (ret) {
8410 		if (ret == -EEXIST) {
8411 			/* we shouldn't get
8412 			 * eexist without a new_inode */
8413 			if (WARN_ON(!new_inode)) {
8414 				return ret;
8415 			}
8416 		} else {
8417 			/* maybe -EOVERFLOW */
8418 			return ret;
8419 		}
8420 	}
8421 	ret = 0;
8422 
8423 	/*
8424 	 * we're using rename to replace one file with another.  Start IO on it
8425 	 * now so  we don't add too much work to the end of the transaction
8426 	 */
8427 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8428 		filemap_flush(old_inode->i_mapping);
8429 
8430 	/* close the racy window with snapshot create/destroy ioctl */
8431 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8432 		down_read(&root->fs_info->subvol_sem);
8433 	/*
8434 	 * We want to reserve the absolute worst case amount of items.  So if
8435 	 * both inodes are subvols and we need to unlink them then that would
8436 	 * require 4 item modifications, but if they are both normal inodes it
8437 	 * would require 5 item modifications, so we'll assume their normal
8438 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8439 	 * should cover the worst case number of items we'll modify.
8440 	 */
8441 	trans = btrfs_start_transaction(root, 11);
8442 	if (IS_ERR(trans)) {
8443                 ret = PTR_ERR(trans);
8444                 goto out_notrans;
8445         }
8446 
8447 	if (dest != root)
8448 		btrfs_record_root_in_trans(trans, dest);
8449 
8450 	ret = btrfs_set_inode_index(new_dir, &index);
8451 	if (ret)
8452 		goto out_fail;
8453 
8454 	BTRFS_I(old_inode)->dir_index = 0ULL;
8455 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8456 		/* force full log commit if subvolume involved. */
8457 		btrfs_set_log_full_commit(root->fs_info, trans);
8458 	} else {
8459 		ret = btrfs_insert_inode_ref(trans, dest,
8460 					     new_dentry->d_name.name,
8461 					     new_dentry->d_name.len,
8462 					     old_ino,
8463 					     btrfs_ino(new_dir), index);
8464 		if (ret)
8465 			goto out_fail;
8466 		/*
8467 		 * this is an ugly little race, but the rename is required
8468 		 * to make sure that if we crash, the inode is either at the
8469 		 * old name or the new one.  pinning the log transaction lets
8470 		 * us make sure we don't allow a log commit to come in after
8471 		 * we unlink the name but before we add the new name back in.
8472 		 */
8473 		btrfs_pin_log_trans(root);
8474 	}
8475 
8476 	inode_inc_iversion(old_dir);
8477 	inode_inc_iversion(new_dir);
8478 	inode_inc_iversion(old_inode);
8479 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8480 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8481 	old_inode->i_ctime = ctime;
8482 
8483 	if (old_dentry->d_parent != new_dentry->d_parent)
8484 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8485 
8486 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8487 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8488 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8489 					old_dentry->d_name.name,
8490 					old_dentry->d_name.len);
8491 	} else {
8492 		ret = __btrfs_unlink_inode(trans, root, old_dir,
8493 					old_dentry->d_inode,
8494 					old_dentry->d_name.name,
8495 					old_dentry->d_name.len);
8496 		if (!ret)
8497 			ret = btrfs_update_inode(trans, root, old_inode);
8498 	}
8499 	if (ret) {
8500 		btrfs_abort_transaction(trans, root, ret);
8501 		goto out_fail;
8502 	}
8503 
8504 	if (new_inode) {
8505 		inode_inc_iversion(new_inode);
8506 		new_inode->i_ctime = CURRENT_TIME;
8507 		if (unlikely(btrfs_ino(new_inode) ==
8508 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8509 			root_objectid = BTRFS_I(new_inode)->location.objectid;
8510 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
8511 						root_objectid,
8512 						new_dentry->d_name.name,
8513 						new_dentry->d_name.len);
8514 			BUG_ON(new_inode->i_nlink == 0);
8515 		} else {
8516 			ret = btrfs_unlink_inode(trans, dest, new_dir,
8517 						 new_dentry->d_inode,
8518 						 new_dentry->d_name.name,
8519 						 new_dentry->d_name.len);
8520 		}
8521 		if (!ret && new_inode->i_nlink == 0)
8522 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8523 		if (ret) {
8524 			btrfs_abort_transaction(trans, root, ret);
8525 			goto out_fail;
8526 		}
8527 	}
8528 
8529 	ret = btrfs_add_link(trans, new_dir, old_inode,
8530 			     new_dentry->d_name.name,
8531 			     new_dentry->d_name.len, 0, index);
8532 	if (ret) {
8533 		btrfs_abort_transaction(trans, root, ret);
8534 		goto out_fail;
8535 	}
8536 
8537 	if (old_inode->i_nlink == 1)
8538 		BTRFS_I(old_inode)->dir_index = index;
8539 
8540 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8541 		struct dentry *parent = new_dentry->d_parent;
8542 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
8543 		btrfs_end_log_trans(root);
8544 	}
8545 out_fail:
8546 	btrfs_end_transaction(trans, root);
8547 out_notrans:
8548 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8549 		up_read(&root->fs_info->subvol_sem);
8550 
8551 	return ret;
8552 }
8553 
8554 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8555 			 struct inode *new_dir, struct dentry *new_dentry,
8556 			 unsigned int flags)
8557 {
8558 	if (flags & ~RENAME_NOREPLACE)
8559 		return -EINVAL;
8560 
8561 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8562 }
8563 
8564 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8565 {
8566 	struct btrfs_delalloc_work *delalloc_work;
8567 	struct inode *inode;
8568 
8569 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8570 				     work);
8571 	inode = delalloc_work->inode;
8572 	if (delalloc_work->wait) {
8573 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
8574 	} else {
8575 		filemap_flush(inode->i_mapping);
8576 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8577 			     &BTRFS_I(inode)->runtime_flags))
8578 			filemap_flush(inode->i_mapping);
8579 	}
8580 
8581 	if (delalloc_work->delay_iput)
8582 		btrfs_add_delayed_iput(inode);
8583 	else
8584 		iput(inode);
8585 	complete(&delalloc_work->completion);
8586 }
8587 
8588 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8589 						    int wait, int delay_iput)
8590 {
8591 	struct btrfs_delalloc_work *work;
8592 
8593 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8594 	if (!work)
8595 		return NULL;
8596 
8597 	init_completion(&work->completion);
8598 	INIT_LIST_HEAD(&work->list);
8599 	work->inode = inode;
8600 	work->wait = wait;
8601 	work->delay_iput = delay_iput;
8602 	WARN_ON_ONCE(!inode);
8603 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8604 			btrfs_run_delalloc_work, NULL, NULL);
8605 
8606 	return work;
8607 }
8608 
8609 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8610 {
8611 	wait_for_completion(&work->completion);
8612 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
8613 }
8614 
8615 /*
8616  * some fairly slow code that needs optimization. This walks the list
8617  * of all the inodes with pending delalloc and forces them to disk.
8618  */
8619 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8620 				   int nr)
8621 {
8622 	struct btrfs_inode *binode;
8623 	struct inode *inode;
8624 	struct btrfs_delalloc_work *work, *next;
8625 	struct list_head works;
8626 	struct list_head splice;
8627 	int ret = 0;
8628 
8629 	INIT_LIST_HEAD(&works);
8630 	INIT_LIST_HEAD(&splice);
8631 
8632 	mutex_lock(&root->delalloc_mutex);
8633 	spin_lock(&root->delalloc_lock);
8634 	list_splice_init(&root->delalloc_inodes, &splice);
8635 	while (!list_empty(&splice)) {
8636 		binode = list_entry(splice.next, struct btrfs_inode,
8637 				    delalloc_inodes);
8638 
8639 		list_move_tail(&binode->delalloc_inodes,
8640 			       &root->delalloc_inodes);
8641 		inode = igrab(&binode->vfs_inode);
8642 		if (!inode) {
8643 			cond_resched_lock(&root->delalloc_lock);
8644 			continue;
8645 		}
8646 		spin_unlock(&root->delalloc_lock);
8647 
8648 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8649 		if (unlikely(!work)) {
8650 			if (delay_iput)
8651 				btrfs_add_delayed_iput(inode);
8652 			else
8653 				iput(inode);
8654 			ret = -ENOMEM;
8655 			goto out;
8656 		}
8657 		list_add_tail(&work->list, &works);
8658 		btrfs_queue_work(root->fs_info->flush_workers,
8659 				 &work->work);
8660 		ret++;
8661 		if (nr != -1 && ret >= nr)
8662 			goto out;
8663 		cond_resched();
8664 		spin_lock(&root->delalloc_lock);
8665 	}
8666 	spin_unlock(&root->delalloc_lock);
8667 
8668 out:
8669 	list_for_each_entry_safe(work, next, &works, list) {
8670 		list_del_init(&work->list);
8671 		btrfs_wait_and_free_delalloc_work(work);
8672 	}
8673 
8674 	if (!list_empty_careful(&splice)) {
8675 		spin_lock(&root->delalloc_lock);
8676 		list_splice_tail(&splice, &root->delalloc_inodes);
8677 		spin_unlock(&root->delalloc_lock);
8678 	}
8679 	mutex_unlock(&root->delalloc_mutex);
8680 	return ret;
8681 }
8682 
8683 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8684 {
8685 	int ret;
8686 
8687 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
8688 		return -EROFS;
8689 
8690 	ret = __start_delalloc_inodes(root, delay_iput, -1);
8691 	if (ret > 0)
8692 		ret = 0;
8693 	/*
8694 	 * the filemap_flush will queue IO into the worker threads, but
8695 	 * we have to make sure the IO is actually started and that
8696 	 * ordered extents get created before we return
8697 	 */
8698 	atomic_inc(&root->fs_info->async_submit_draining);
8699 	while (atomic_read(&root->fs_info->nr_async_submits) ||
8700 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
8701 		wait_event(root->fs_info->async_submit_wait,
8702 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8703 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8704 	}
8705 	atomic_dec(&root->fs_info->async_submit_draining);
8706 	return ret;
8707 }
8708 
8709 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8710 			       int nr)
8711 {
8712 	struct btrfs_root *root;
8713 	struct list_head splice;
8714 	int ret;
8715 
8716 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
8717 		return -EROFS;
8718 
8719 	INIT_LIST_HEAD(&splice);
8720 
8721 	mutex_lock(&fs_info->delalloc_root_mutex);
8722 	spin_lock(&fs_info->delalloc_root_lock);
8723 	list_splice_init(&fs_info->delalloc_roots, &splice);
8724 	while (!list_empty(&splice) && nr) {
8725 		root = list_first_entry(&splice, struct btrfs_root,
8726 					delalloc_root);
8727 		root = btrfs_grab_fs_root(root);
8728 		BUG_ON(!root);
8729 		list_move_tail(&root->delalloc_root,
8730 			       &fs_info->delalloc_roots);
8731 		spin_unlock(&fs_info->delalloc_root_lock);
8732 
8733 		ret = __start_delalloc_inodes(root, delay_iput, nr);
8734 		btrfs_put_fs_root(root);
8735 		if (ret < 0)
8736 			goto out;
8737 
8738 		if (nr != -1) {
8739 			nr -= ret;
8740 			WARN_ON(nr < 0);
8741 		}
8742 		spin_lock(&fs_info->delalloc_root_lock);
8743 	}
8744 	spin_unlock(&fs_info->delalloc_root_lock);
8745 
8746 	ret = 0;
8747 	atomic_inc(&fs_info->async_submit_draining);
8748 	while (atomic_read(&fs_info->nr_async_submits) ||
8749 	      atomic_read(&fs_info->async_delalloc_pages)) {
8750 		wait_event(fs_info->async_submit_wait,
8751 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
8752 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
8753 	}
8754 	atomic_dec(&fs_info->async_submit_draining);
8755 out:
8756 	if (!list_empty_careful(&splice)) {
8757 		spin_lock(&fs_info->delalloc_root_lock);
8758 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8759 		spin_unlock(&fs_info->delalloc_root_lock);
8760 	}
8761 	mutex_unlock(&fs_info->delalloc_root_mutex);
8762 	return ret;
8763 }
8764 
8765 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8766 			 const char *symname)
8767 {
8768 	struct btrfs_trans_handle *trans;
8769 	struct btrfs_root *root = BTRFS_I(dir)->root;
8770 	struct btrfs_path *path;
8771 	struct btrfs_key key;
8772 	struct inode *inode = NULL;
8773 	int err;
8774 	int drop_inode = 0;
8775 	u64 objectid;
8776 	u64 index = 0;
8777 	int name_len;
8778 	int datasize;
8779 	unsigned long ptr;
8780 	struct btrfs_file_extent_item *ei;
8781 	struct extent_buffer *leaf;
8782 
8783 	name_len = strlen(symname);
8784 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8785 		return -ENAMETOOLONG;
8786 
8787 	/*
8788 	 * 2 items for inode item and ref
8789 	 * 2 items for dir items
8790 	 * 1 item for xattr if selinux is on
8791 	 */
8792 	trans = btrfs_start_transaction(root, 5);
8793 	if (IS_ERR(trans))
8794 		return PTR_ERR(trans);
8795 
8796 	err = btrfs_find_free_ino(root, &objectid);
8797 	if (err)
8798 		goto out_unlock;
8799 
8800 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8801 				dentry->d_name.len, btrfs_ino(dir), objectid,
8802 				S_IFLNK|S_IRWXUGO, &index);
8803 	if (IS_ERR(inode)) {
8804 		err = PTR_ERR(inode);
8805 		goto out_unlock;
8806 	}
8807 
8808 	/*
8809 	* If the active LSM wants to access the inode during
8810 	* d_instantiate it needs these. Smack checks to see
8811 	* if the filesystem supports xattrs by looking at the
8812 	* ops vector.
8813 	*/
8814 	inode->i_fop = &btrfs_file_operations;
8815 	inode->i_op = &btrfs_file_inode_operations;
8816 	inode->i_mapping->a_ops = &btrfs_aops;
8817 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8818 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8819 
8820 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8821 	if (err)
8822 		goto out_unlock_inode;
8823 
8824 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8825 	if (err)
8826 		goto out_unlock_inode;
8827 
8828 	path = btrfs_alloc_path();
8829 	if (!path) {
8830 		err = -ENOMEM;
8831 		goto out_unlock_inode;
8832 	}
8833 	key.objectid = btrfs_ino(inode);
8834 	key.offset = 0;
8835 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8836 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8837 	err = btrfs_insert_empty_item(trans, root, path, &key,
8838 				      datasize);
8839 	if (err) {
8840 		btrfs_free_path(path);
8841 		goto out_unlock_inode;
8842 	}
8843 	leaf = path->nodes[0];
8844 	ei = btrfs_item_ptr(leaf, path->slots[0],
8845 			    struct btrfs_file_extent_item);
8846 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8847 	btrfs_set_file_extent_type(leaf, ei,
8848 				   BTRFS_FILE_EXTENT_INLINE);
8849 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8850 	btrfs_set_file_extent_compression(leaf, ei, 0);
8851 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8852 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8853 
8854 	ptr = btrfs_file_extent_inline_start(ei);
8855 	write_extent_buffer(leaf, symname, ptr, name_len);
8856 	btrfs_mark_buffer_dirty(leaf);
8857 	btrfs_free_path(path);
8858 
8859 	inode->i_op = &btrfs_symlink_inode_operations;
8860 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
8861 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8862 	inode_set_bytes(inode, name_len);
8863 	btrfs_i_size_write(inode, name_len);
8864 	err = btrfs_update_inode(trans, root, inode);
8865 	if (err) {
8866 		drop_inode = 1;
8867 		goto out_unlock_inode;
8868 	}
8869 
8870 	unlock_new_inode(inode);
8871 	d_instantiate(dentry, inode);
8872 
8873 out_unlock:
8874 	btrfs_end_transaction(trans, root);
8875 	if (drop_inode) {
8876 		inode_dec_link_count(inode);
8877 		iput(inode);
8878 	}
8879 	btrfs_btree_balance_dirty(root);
8880 	return err;
8881 
8882 out_unlock_inode:
8883 	drop_inode = 1;
8884 	unlock_new_inode(inode);
8885 	goto out_unlock;
8886 }
8887 
8888 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8889 				       u64 start, u64 num_bytes, u64 min_size,
8890 				       loff_t actual_len, u64 *alloc_hint,
8891 				       struct btrfs_trans_handle *trans)
8892 {
8893 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8894 	struct extent_map *em;
8895 	struct btrfs_root *root = BTRFS_I(inode)->root;
8896 	struct btrfs_key ins;
8897 	u64 cur_offset = start;
8898 	u64 i_size;
8899 	u64 cur_bytes;
8900 	int ret = 0;
8901 	bool own_trans = true;
8902 
8903 	if (trans)
8904 		own_trans = false;
8905 	while (num_bytes > 0) {
8906 		if (own_trans) {
8907 			trans = btrfs_start_transaction(root, 3);
8908 			if (IS_ERR(trans)) {
8909 				ret = PTR_ERR(trans);
8910 				break;
8911 			}
8912 		}
8913 
8914 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8915 		cur_bytes = max(cur_bytes, min_size);
8916 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8917 					   *alloc_hint, &ins, 1, 0);
8918 		if (ret) {
8919 			if (own_trans)
8920 				btrfs_end_transaction(trans, root);
8921 			break;
8922 		}
8923 
8924 		ret = insert_reserved_file_extent(trans, inode,
8925 						  cur_offset, ins.objectid,
8926 						  ins.offset, ins.offset,
8927 						  ins.offset, 0, 0, 0,
8928 						  BTRFS_FILE_EXTENT_PREALLOC);
8929 		if (ret) {
8930 			btrfs_free_reserved_extent(root, ins.objectid,
8931 						   ins.offset, 0);
8932 			btrfs_abort_transaction(trans, root, ret);
8933 			if (own_trans)
8934 				btrfs_end_transaction(trans, root);
8935 			break;
8936 		}
8937 		btrfs_drop_extent_cache(inode, cur_offset,
8938 					cur_offset + ins.offset -1, 0);
8939 
8940 		em = alloc_extent_map();
8941 		if (!em) {
8942 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8943 				&BTRFS_I(inode)->runtime_flags);
8944 			goto next;
8945 		}
8946 
8947 		em->start = cur_offset;
8948 		em->orig_start = cur_offset;
8949 		em->len = ins.offset;
8950 		em->block_start = ins.objectid;
8951 		em->block_len = ins.offset;
8952 		em->orig_block_len = ins.offset;
8953 		em->ram_bytes = ins.offset;
8954 		em->bdev = root->fs_info->fs_devices->latest_bdev;
8955 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8956 		em->generation = trans->transid;
8957 
8958 		while (1) {
8959 			write_lock(&em_tree->lock);
8960 			ret = add_extent_mapping(em_tree, em, 1);
8961 			write_unlock(&em_tree->lock);
8962 			if (ret != -EEXIST)
8963 				break;
8964 			btrfs_drop_extent_cache(inode, cur_offset,
8965 						cur_offset + ins.offset - 1,
8966 						0);
8967 		}
8968 		free_extent_map(em);
8969 next:
8970 		num_bytes -= ins.offset;
8971 		cur_offset += ins.offset;
8972 		*alloc_hint = ins.objectid + ins.offset;
8973 
8974 		inode_inc_iversion(inode);
8975 		inode->i_ctime = CURRENT_TIME;
8976 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8977 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8978 		    (actual_len > inode->i_size) &&
8979 		    (cur_offset > inode->i_size)) {
8980 			if (cur_offset > actual_len)
8981 				i_size = actual_len;
8982 			else
8983 				i_size = cur_offset;
8984 			i_size_write(inode, i_size);
8985 			btrfs_ordered_update_i_size(inode, i_size, NULL);
8986 		}
8987 
8988 		ret = btrfs_update_inode(trans, root, inode);
8989 
8990 		if (ret) {
8991 			btrfs_abort_transaction(trans, root, ret);
8992 			if (own_trans)
8993 				btrfs_end_transaction(trans, root);
8994 			break;
8995 		}
8996 
8997 		if (own_trans)
8998 			btrfs_end_transaction(trans, root);
8999 	}
9000 	return ret;
9001 }
9002 
9003 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9004 			      u64 start, u64 num_bytes, u64 min_size,
9005 			      loff_t actual_len, u64 *alloc_hint)
9006 {
9007 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9008 					   min_size, actual_len, alloc_hint,
9009 					   NULL);
9010 }
9011 
9012 int btrfs_prealloc_file_range_trans(struct inode *inode,
9013 				    struct btrfs_trans_handle *trans, int mode,
9014 				    u64 start, u64 num_bytes, u64 min_size,
9015 				    loff_t actual_len, u64 *alloc_hint)
9016 {
9017 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9018 					   min_size, actual_len, alloc_hint, trans);
9019 }
9020 
9021 static int btrfs_set_page_dirty(struct page *page)
9022 {
9023 	return __set_page_dirty_nobuffers(page);
9024 }
9025 
9026 static int btrfs_permission(struct inode *inode, int mask)
9027 {
9028 	struct btrfs_root *root = BTRFS_I(inode)->root;
9029 	umode_t mode = inode->i_mode;
9030 
9031 	if (mask & MAY_WRITE &&
9032 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9033 		if (btrfs_root_readonly(root))
9034 			return -EROFS;
9035 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9036 			return -EACCES;
9037 	}
9038 	return generic_permission(inode, mask);
9039 }
9040 
9041 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9042 {
9043 	struct btrfs_trans_handle *trans;
9044 	struct btrfs_root *root = BTRFS_I(dir)->root;
9045 	struct inode *inode = NULL;
9046 	u64 objectid;
9047 	u64 index;
9048 	int ret = 0;
9049 
9050 	/*
9051 	 * 5 units required for adding orphan entry
9052 	 */
9053 	trans = btrfs_start_transaction(root, 5);
9054 	if (IS_ERR(trans))
9055 		return PTR_ERR(trans);
9056 
9057 	ret = btrfs_find_free_ino(root, &objectid);
9058 	if (ret)
9059 		goto out;
9060 
9061 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9062 				btrfs_ino(dir), objectid, mode, &index);
9063 	if (IS_ERR(inode)) {
9064 		ret = PTR_ERR(inode);
9065 		inode = NULL;
9066 		goto out;
9067 	}
9068 
9069 	inode->i_fop = &btrfs_file_operations;
9070 	inode->i_op = &btrfs_file_inode_operations;
9071 
9072 	inode->i_mapping->a_ops = &btrfs_aops;
9073 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9074 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9075 
9076 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9077 	if (ret)
9078 		goto out_inode;
9079 
9080 	ret = btrfs_update_inode(trans, root, inode);
9081 	if (ret)
9082 		goto out_inode;
9083 	ret = btrfs_orphan_add(trans, inode);
9084 	if (ret)
9085 		goto out_inode;
9086 
9087 	/*
9088 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9089 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9090 	 * through:
9091 	 *
9092 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9093 	 */
9094 	set_nlink(inode, 1);
9095 	unlock_new_inode(inode);
9096 	d_tmpfile(dentry, inode);
9097 	mark_inode_dirty(inode);
9098 
9099 out:
9100 	btrfs_end_transaction(trans, root);
9101 	if (ret)
9102 		iput(inode);
9103 	btrfs_balance_delayed_items(root);
9104 	btrfs_btree_balance_dirty(root);
9105 	return ret;
9106 
9107 out_inode:
9108 	unlock_new_inode(inode);
9109 	goto out;
9110 
9111 }
9112 
9113 static const struct inode_operations btrfs_dir_inode_operations = {
9114 	.getattr	= btrfs_getattr,
9115 	.lookup		= btrfs_lookup,
9116 	.create		= btrfs_create,
9117 	.unlink		= btrfs_unlink,
9118 	.link		= btrfs_link,
9119 	.mkdir		= btrfs_mkdir,
9120 	.rmdir		= btrfs_rmdir,
9121 	.rename2	= btrfs_rename2,
9122 	.symlink	= btrfs_symlink,
9123 	.setattr	= btrfs_setattr,
9124 	.mknod		= btrfs_mknod,
9125 	.setxattr	= btrfs_setxattr,
9126 	.getxattr	= btrfs_getxattr,
9127 	.listxattr	= btrfs_listxattr,
9128 	.removexattr	= btrfs_removexattr,
9129 	.permission	= btrfs_permission,
9130 	.get_acl	= btrfs_get_acl,
9131 	.set_acl	= btrfs_set_acl,
9132 	.update_time	= btrfs_update_time,
9133 	.tmpfile        = btrfs_tmpfile,
9134 };
9135 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9136 	.lookup		= btrfs_lookup,
9137 	.permission	= btrfs_permission,
9138 	.get_acl	= btrfs_get_acl,
9139 	.set_acl	= btrfs_set_acl,
9140 	.update_time	= btrfs_update_time,
9141 };
9142 
9143 static const struct file_operations btrfs_dir_file_operations = {
9144 	.llseek		= generic_file_llseek,
9145 	.read		= generic_read_dir,
9146 	.iterate	= btrfs_real_readdir,
9147 	.unlocked_ioctl	= btrfs_ioctl,
9148 #ifdef CONFIG_COMPAT
9149 	.compat_ioctl	= btrfs_ioctl,
9150 #endif
9151 	.release        = btrfs_release_file,
9152 	.fsync		= btrfs_sync_file,
9153 };
9154 
9155 static struct extent_io_ops btrfs_extent_io_ops = {
9156 	.fill_delalloc = run_delalloc_range,
9157 	.submit_bio_hook = btrfs_submit_bio_hook,
9158 	.merge_bio_hook = btrfs_merge_bio_hook,
9159 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
9160 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
9161 	.writepage_start_hook = btrfs_writepage_start_hook,
9162 	.set_bit_hook = btrfs_set_bit_hook,
9163 	.clear_bit_hook = btrfs_clear_bit_hook,
9164 	.merge_extent_hook = btrfs_merge_extent_hook,
9165 	.split_extent_hook = btrfs_split_extent_hook,
9166 };
9167 
9168 /*
9169  * btrfs doesn't support the bmap operation because swapfiles
9170  * use bmap to make a mapping of extents in the file.  They assume
9171  * these extents won't change over the life of the file and they
9172  * use the bmap result to do IO directly to the drive.
9173  *
9174  * the btrfs bmap call would return logical addresses that aren't
9175  * suitable for IO and they also will change frequently as COW
9176  * operations happen.  So, swapfile + btrfs == corruption.
9177  *
9178  * For now we're avoiding this by dropping bmap.
9179  */
9180 static const struct address_space_operations btrfs_aops = {
9181 	.readpage	= btrfs_readpage,
9182 	.writepage	= btrfs_writepage,
9183 	.writepages	= btrfs_writepages,
9184 	.readpages	= btrfs_readpages,
9185 	.direct_IO	= btrfs_direct_IO,
9186 	.invalidatepage = btrfs_invalidatepage,
9187 	.releasepage	= btrfs_releasepage,
9188 	.set_page_dirty	= btrfs_set_page_dirty,
9189 	.error_remove_page = generic_error_remove_page,
9190 };
9191 
9192 static const struct address_space_operations btrfs_symlink_aops = {
9193 	.readpage	= btrfs_readpage,
9194 	.writepage	= btrfs_writepage,
9195 	.invalidatepage = btrfs_invalidatepage,
9196 	.releasepage	= btrfs_releasepage,
9197 };
9198 
9199 static const struct inode_operations btrfs_file_inode_operations = {
9200 	.getattr	= btrfs_getattr,
9201 	.setattr	= btrfs_setattr,
9202 	.setxattr	= btrfs_setxattr,
9203 	.getxattr	= btrfs_getxattr,
9204 	.listxattr      = btrfs_listxattr,
9205 	.removexattr	= btrfs_removexattr,
9206 	.permission	= btrfs_permission,
9207 	.fiemap		= btrfs_fiemap,
9208 	.get_acl	= btrfs_get_acl,
9209 	.set_acl	= btrfs_set_acl,
9210 	.update_time	= btrfs_update_time,
9211 };
9212 static const struct inode_operations btrfs_special_inode_operations = {
9213 	.getattr	= btrfs_getattr,
9214 	.setattr	= btrfs_setattr,
9215 	.permission	= btrfs_permission,
9216 	.setxattr	= btrfs_setxattr,
9217 	.getxattr	= btrfs_getxattr,
9218 	.listxattr	= btrfs_listxattr,
9219 	.removexattr	= btrfs_removexattr,
9220 	.get_acl	= btrfs_get_acl,
9221 	.set_acl	= btrfs_set_acl,
9222 	.update_time	= btrfs_update_time,
9223 };
9224 static const struct inode_operations btrfs_symlink_inode_operations = {
9225 	.readlink	= generic_readlink,
9226 	.follow_link	= page_follow_link_light,
9227 	.put_link	= page_put_link,
9228 	.getattr	= btrfs_getattr,
9229 	.setattr	= btrfs_setattr,
9230 	.permission	= btrfs_permission,
9231 	.setxattr	= btrfs_setxattr,
9232 	.getxattr	= btrfs_getxattr,
9233 	.listxattr	= btrfs_listxattr,
9234 	.removexattr	= btrfs_removexattr,
9235 	.update_time	= btrfs_update_time,
9236 };
9237 
9238 const struct dentry_operations btrfs_dentry_operations = {
9239 	.d_delete	= btrfs_dentry_delete,
9240 	.d_release	= btrfs_dentry_release,
9241 };
9242