1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 struct btrfs_dio_data { 70 u64 outstanding_extents; 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 }; 75 76 static const struct inode_operations btrfs_dir_inode_operations; 77 static const struct inode_operations btrfs_symlink_inode_operations; 78 static const struct inode_operations btrfs_dir_ro_inode_operations; 79 static const struct inode_operations btrfs_special_inode_operations; 80 static const struct inode_operations btrfs_file_inode_operations; 81 static const struct address_space_operations btrfs_aops; 82 static const struct address_space_operations btrfs_symlink_aops; 83 static const struct file_operations btrfs_dir_file_operations; 84 static const struct extent_io_ops btrfs_extent_io_ops; 85 86 static struct kmem_cache *btrfs_inode_cachep; 87 struct kmem_cache *btrfs_trans_handle_cachep; 88 struct kmem_cache *btrfs_transaction_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, int *page_started, 109 unsigned long *nr_written, int unlock); 110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 111 u64 len, u64 orig_start, 112 u64 block_start, u64 block_len, 113 u64 orig_block_len, u64 ram_bytes, 114 int type); 115 116 static int btrfs_dirty_inode(struct inode *inode); 117 118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 119 void btrfs_test_inode_set_ops(struct inode *inode) 120 { 121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 122 } 123 #endif 124 125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 126 struct inode *inode, struct inode *dir, 127 const struct qstr *qstr) 128 { 129 int err; 130 131 err = btrfs_init_acl(trans, inode, dir); 132 if (!err) 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 134 return err; 135 } 136 137 /* 138 * this does all the hard work for inserting an inline extent into 139 * the btree. The caller should have done a btrfs_drop_extents so that 140 * no overlapping inline items exist in the btree 141 */ 142 static int insert_inline_extent(struct btrfs_trans_handle *trans, 143 struct btrfs_path *path, int extent_inserted, 144 struct btrfs_root *root, struct inode *inode, 145 u64 start, size_t size, size_t compressed_size, 146 int compress_type, 147 struct page **compressed_pages) 148 { 149 struct extent_buffer *leaf; 150 struct page *page = NULL; 151 char *kaddr; 152 unsigned long ptr; 153 struct btrfs_file_extent_item *ei; 154 int err = 0; 155 int ret; 156 size_t cur_size = size; 157 unsigned long offset; 158 159 if (compressed_size && compressed_pages) 160 cur_size = compressed_size; 161 162 inode_add_bytes(inode, size); 163 164 if (!extent_inserted) { 165 struct btrfs_key key; 166 size_t datasize; 167 168 key.objectid = btrfs_ino(inode); 169 key.offset = start; 170 key.type = BTRFS_EXTENT_DATA_KEY; 171 172 datasize = btrfs_file_extent_calc_inline_size(cur_size); 173 path->leave_spinning = 1; 174 ret = btrfs_insert_empty_item(trans, root, path, &key, 175 datasize); 176 if (ret) { 177 err = ret; 178 goto fail; 179 } 180 } 181 leaf = path->nodes[0]; 182 ei = btrfs_item_ptr(leaf, path->slots[0], 183 struct btrfs_file_extent_item); 184 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 186 btrfs_set_file_extent_encryption(leaf, ei, 0); 187 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 188 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 189 ptr = btrfs_file_extent_inline_start(ei); 190 191 if (compress_type != BTRFS_COMPRESS_NONE) { 192 struct page *cpage; 193 int i = 0; 194 while (compressed_size > 0) { 195 cpage = compressed_pages[i]; 196 cur_size = min_t(unsigned long, compressed_size, 197 PAGE_SIZE); 198 199 kaddr = kmap_atomic(cpage); 200 write_extent_buffer(leaf, kaddr, ptr, cur_size); 201 kunmap_atomic(kaddr); 202 203 i++; 204 ptr += cur_size; 205 compressed_size -= cur_size; 206 } 207 btrfs_set_file_extent_compression(leaf, ei, 208 compress_type); 209 } else { 210 page = find_get_page(inode->i_mapping, 211 start >> PAGE_SHIFT); 212 btrfs_set_file_extent_compression(leaf, ei, 0); 213 kaddr = kmap_atomic(page); 214 offset = start & (PAGE_SIZE - 1); 215 write_extent_buffer(leaf, kaddr + offset, ptr, size); 216 kunmap_atomic(kaddr); 217 put_page(page); 218 } 219 btrfs_mark_buffer_dirty(leaf); 220 btrfs_release_path(path); 221 222 /* 223 * we're an inline extent, so nobody can 224 * extend the file past i_size without locking 225 * a page we already have locked. 226 * 227 * We must do any isize and inode updates 228 * before we unlock the pages. Otherwise we 229 * could end up racing with unlink. 230 */ 231 BTRFS_I(inode)->disk_i_size = inode->i_size; 232 ret = btrfs_update_inode(trans, root, inode); 233 234 return ret; 235 fail: 236 return err; 237 } 238 239 240 /* 241 * conditionally insert an inline extent into the file. This 242 * does the checks required to make sure the data is small enough 243 * to fit as an inline extent. 244 */ 245 static noinline int cow_file_range_inline(struct btrfs_root *root, 246 struct inode *inode, u64 start, 247 u64 end, size_t compressed_size, 248 int compress_type, 249 struct page **compressed_pages) 250 { 251 struct btrfs_trans_handle *trans; 252 u64 isize = i_size_read(inode); 253 u64 actual_end = min(end + 1, isize); 254 u64 inline_len = actual_end - start; 255 u64 aligned_end = ALIGN(end, root->sectorsize); 256 u64 data_len = inline_len; 257 int ret; 258 struct btrfs_path *path; 259 int extent_inserted = 0; 260 u32 extent_item_size; 261 262 if (compressed_size) 263 data_len = compressed_size; 264 265 if (start > 0 || 266 actual_end > root->sectorsize || 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 268 (!compressed_size && 269 (actual_end & (root->sectorsize - 1)) == 0) || 270 end + 1 < isize || 271 data_len > root->fs_info->max_inline) { 272 return 1; 273 } 274 275 path = btrfs_alloc_path(); 276 if (!path) 277 return -ENOMEM; 278 279 trans = btrfs_join_transaction(root); 280 if (IS_ERR(trans)) { 281 btrfs_free_path(path); 282 return PTR_ERR(trans); 283 } 284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 285 286 if (compressed_size && compressed_pages) 287 extent_item_size = btrfs_file_extent_calc_inline_size( 288 compressed_size); 289 else 290 extent_item_size = btrfs_file_extent_calc_inline_size( 291 inline_len); 292 293 ret = __btrfs_drop_extents(trans, root, inode, path, 294 start, aligned_end, NULL, 295 1, 1, extent_item_size, &extent_inserted); 296 if (ret) { 297 btrfs_abort_transaction(trans, root, ret); 298 goto out; 299 } 300 301 if (isize > actual_end) 302 inline_len = min_t(u64, isize, actual_end); 303 ret = insert_inline_extent(trans, path, extent_inserted, 304 root, inode, start, 305 inline_len, compressed_size, 306 compress_type, compressed_pages); 307 if (ret && ret != -ENOSPC) { 308 btrfs_abort_transaction(trans, root, ret); 309 goto out; 310 } else if (ret == -ENOSPC) { 311 ret = 1; 312 goto out; 313 } 314 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 316 btrfs_delalloc_release_metadata(inode, end + 1 - start); 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 318 out: 319 /* 320 * Don't forget to free the reserved space, as for inlined extent 321 * it won't count as data extent, free them directly here. 322 * And at reserve time, it's always aligned to page size, so 323 * just free one page here. 324 */ 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 326 btrfs_free_path(path); 327 btrfs_end_transaction(trans, root); 328 return ret; 329 } 330 331 struct async_extent { 332 u64 start; 333 u64 ram_size; 334 u64 compressed_size; 335 struct page **pages; 336 unsigned long nr_pages; 337 int compress_type; 338 struct list_head list; 339 }; 340 341 struct async_cow { 342 struct inode *inode; 343 struct btrfs_root *root; 344 struct page *locked_page; 345 u64 start; 346 u64 end; 347 struct list_head extents; 348 struct btrfs_work work; 349 }; 350 351 static noinline int add_async_extent(struct async_cow *cow, 352 u64 start, u64 ram_size, 353 u64 compressed_size, 354 struct page **pages, 355 unsigned long nr_pages, 356 int compress_type) 357 { 358 struct async_extent *async_extent; 359 360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 361 BUG_ON(!async_extent); /* -ENOMEM */ 362 async_extent->start = start; 363 async_extent->ram_size = ram_size; 364 async_extent->compressed_size = compressed_size; 365 async_extent->pages = pages; 366 async_extent->nr_pages = nr_pages; 367 async_extent->compress_type = compress_type; 368 list_add_tail(&async_extent->list, &cow->extents); 369 return 0; 370 } 371 372 static inline int inode_need_compress(struct inode *inode) 373 { 374 struct btrfs_root *root = BTRFS_I(inode)->root; 375 376 /* force compress */ 377 if (btrfs_test_opt(root, FORCE_COMPRESS)) 378 return 1; 379 /* bad compression ratios */ 380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 381 return 0; 382 if (btrfs_test_opt(root, COMPRESS) || 383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 384 BTRFS_I(inode)->force_compress) 385 return 1; 386 return 0; 387 } 388 389 /* 390 * we create compressed extents in two phases. The first 391 * phase compresses a range of pages that have already been 392 * locked (both pages and state bits are locked). 393 * 394 * This is done inside an ordered work queue, and the compression 395 * is spread across many cpus. The actual IO submission is step 396 * two, and the ordered work queue takes care of making sure that 397 * happens in the same order things were put onto the queue by 398 * writepages and friends. 399 * 400 * If this code finds it can't get good compression, it puts an 401 * entry onto the work queue to write the uncompressed bytes. This 402 * makes sure that both compressed inodes and uncompressed inodes 403 * are written in the same order that the flusher thread sent them 404 * down. 405 */ 406 static noinline void compress_file_range(struct inode *inode, 407 struct page *locked_page, 408 u64 start, u64 end, 409 struct async_cow *async_cow, 410 int *num_added) 411 { 412 struct btrfs_root *root = BTRFS_I(inode)->root; 413 u64 num_bytes; 414 u64 blocksize = root->sectorsize; 415 u64 actual_end; 416 u64 isize = i_size_read(inode); 417 int ret = 0; 418 struct page **pages = NULL; 419 unsigned long nr_pages; 420 unsigned long nr_pages_ret = 0; 421 unsigned long total_compressed = 0; 422 unsigned long total_in = 0; 423 unsigned long max_compressed = SZ_128K; 424 unsigned long max_uncompressed = SZ_128K; 425 int i; 426 int will_compress; 427 int compress_type = root->fs_info->compress_type; 428 int redirty = 0; 429 430 /* if this is a small write inside eof, kick off a defrag */ 431 if ((end - start + 1) < SZ_16K && 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 433 btrfs_add_inode_defrag(NULL, inode); 434 435 actual_end = min_t(u64, isize, end + 1); 436 again: 437 will_compress = 0; 438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 440 441 /* 442 * we don't want to send crud past the end of i_size through 443 * compression, that's just a waste of CPU time. So, if the 444 * end of the file is before the start of our current 445 * requested range of bytes, we bail out to the uncompressed 446 * cleanup code that can deal with all of this. 447 * 448 * It isn't really the fastest way to fix things, but this is a 449 * very uncommon corner. 450 */ 451 if (actual_end <= start) 452 goto cleanup_and_bail_uncompressed; 453 454 total_compressed = actual_end - start; 455 456 /* 457 * skip compression for a small file range(<=blocksize) that 458 * isn't an inline extent, since it doesn't save disk space at all. 459 */ 460 if (total_compressed <= blocksize && 461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 462 goto cleanup_and_bail_uncompressed; 463 464 /* we want to make sure that amount of ram required to uncompress 465 * an extent is reasonable, so we limit the total size in ram 466 * of a compressed extent to 128k. This is a crucial number 467 * because it also controls how easily we can spread reads across 468 * cpus for decompression. 469 * 470 * We also want to make sure the amount of IO required to do 471 * a random read is reasonably small, so we limit the size of 472 * a compressed extent to 128k. 473 */ 474 total_compressed = min(total_compressed, max_uncompressed); 475 num_bytes = ALIGN(end - start + 1, blocksize); 476 num_bytes = max(blocksize, num_bytes); 477 total_in = 0; 478 ret = 0; 479 480 /* 481 * we do compression for mount -o compress and when the 482 * inode has not been flagged as nocompress. This flag can 483 * change at any time if we discover bad compression ratios. 484 */ 485 if (inode_need_compress(inode)) { 486 WARN_ON(pages); 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 488 if (!pages) { 489 /* just bail out to the uncompressed code */ 490 goto cont; 491 } 492 493 if (BTRFS_I(inode)->force_compress) 494 compress_type = BTRFS_I(inode)->force_compress; 495 496 /* 497 * we need to call clear_page_dirty_for_io on each 498 * page in the range. Otherwise applications with the file 499 * mmap'd can wander in and change the page contents while 500 * we are compressing them. 501 * 502 * If the compression fails for any reason, we set the pages 503 * dirty again later on. 504 */ 505 extent_range_clear_dirty_for_io(inode, start, end); 506 redirty = 1; 507 ret = btrfs_compress_pages(compress_type, 508 inode->i_mapping, start, 509 total_compressed, pages, 510 nr_pages, &nr_pages_ret, 511 &total_in, 512 &total_compressed, 513 max_compressed); 514 515 if (!ret) { 516 unsigned long offset = total_compressed & 517 (PAGE_SIZE - 1); 518 struct page *page = pages[nr_pages_ret - 1]; 519 char *kaddr; 520 521 /* zero the tail end of the last page, we might be 522 * sending it down to disk 523 */ 524 if (offset) { 525 kaddr = kmap_atomic(page); 526 memset(kaddr + offset, 0, 527 PAGE_SIZE - offset); 528 kunmap_atomic(kaddr); 529 } 530 will_compress = 1; 531 } 532 } 533 cont: 534 if (start == 0) { 535 /* lets try to make an inline extent */ 536 if (ret || total_in < (actual_end - start)) { 537 /* we didn't compress the entire range, try 538 * to make an uncompressed inline extent. 539 */ 540 ret = cow_file_range_inline(root, inode, start, end, 541 0, 0, NULL); 542 } else { 543 /* try making a compressed inline extent */ 544 ret = cow_file_range_inline(root, inode, start, end, 545 total_compressed, 546 compress_type, pages); 547 } 548 if (ret <= 0) { 549 unsigned long clear_flags = EXTENT_DELALLOC | 550 EXTENT_DEFRAG; 551 unsigned long page_error_op; 552 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 555 556 /* 557 * inline extent creation worked or returned error, 558 * we don't need to create any more async work items. 559 * Unlock and free up our temp pages. 560 */ 561 extent_clear_unlock_delalloc(inode, start, end, NULL, 562 clear_flags, PAGE_UNLOCK | 563 PAGE_CLEAR_DIRTY | 564 PAGE_SET_WRITEBACK | 565 page_error_op | 566 PAGE_END_WRITEBACK); 567 goto free_pages_out; 568 } 569 } 570 571 if (will_compress) { 572 /* 573 * we aren't doing an inline extent round the compressed size 574 * up to a block size boundary so the allocator does sane 575 * things 576 */ 577 total_compressed = ALIGN(total_compressed, blocksize); 578 579 /* 580 * one last check to make sure the compression is really a 581 * win, compare the page count read with the blocks on disk 582 */ 583 total_in = ALIGN(total_in, PAGE_SIZE); 584 if (total_compressed >= total_in) { 585 will_compress = 0; 586 } else { 587 num_bytes = total_in; 588 } 589 } 590 if (!will_compress && pages) { 591 /* 592 * the compression code ran but failed to make things smaller, 593 * free any pages it allocated and our page pointer array 594 */ 595 for (i = 0; i < nr_pages_ret; i++) { 596 WARN_ON(pages[i]->mapping); 597 put_page(pages[i]); 598 } 599 kfree(pages); 600 pages = NULL; 601 total_compressed = 0; 602 nr_pages_ret = 0; 603 604 /* flag the file so we don't compress in the future */ 605 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 606 !(BTRFS_I(inode)->force_compress)) { 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 608 } 609 } 610 if (will_compress) { 611 *num_added += 1; 612 613 /* the async work queues will take care of doing actual 614 * allocation on disk for these compressed pages, 615 * and will submit them to the elevator. 616 */ 617 add_async_extent(async_cow, start, num_bytes, 618 total_compressed, pages, nr_pages_ret, 619 compress_type); 620 621 if (start + num_bytes < end) { 622 start += num_bytes; 623 pages = NULL; 624 cond_resched(); 625 goto again; 626 } 627 } else { 628 cleanup_and_bail_uncompressed: 629 /* 630 * No compression, but we still need to write the pages in 631 * the file we've been given so far. redirty the locked 632 * page if it corresponds to our extent and set things up 633 * for the async work queue to run cow_file_range to do 634 * the normal delalloc dance 635 */ 636 if (page_offset(locked_page) >= start && 637 page_offset(locked_page) <= end) { 638 __set_page_dirty_nobuffers(locked_page); 639 /* unlocked later on in the async handlers */ 640 } 641 if (redirty) 642 extent_range_redirty_for_io(inode, start, end); 643 add_async_extent(async_cow, start, end - start + 1, 644 0, NULL, 0, BTRFS_COMPRESS_NONE); 645 *num_added += 1; 646 } 647 648 return; 649 650 free_pages_out: 651 for (i = 0; i < nr_pages_ret; i++) { 652 WARN_ON(pages[i]->mapping); 653 put_page(pages[i]); 654 } 655 kfree(pages); 656 } 657 658 static void free_async_extent_pages(struct async_extent *async_extent) 659 { 660 int i; 661 662 if (!async_extent->pages) 663 return; 664 665 for (i = 0; i < async_extent->nr_pages; i++) { 666 WARN_ON(async_extent->pages[i]->mapping); 667 put_page(async_extent->pages[i]); 668 } 669 kfree(async_extent->pages); 670 async_extent->nr_pages = 0; 671 async_extent->pages = NULL; 672 } 673 674 /* 675 * phase two of compressed writeback. This is the ordered portion 676 * of the code, which only gets called in the order the work was 677 * queued. We walk all the async extents created by compress_file_range 678 * and send them down to the disk. 679 */ 680 static noinline void submit_compressed_extents(struct inode *inode, 681 struct async_cow *async_cow) 682 { 683 struct async_extent *async_extent; 684 u64 alloc_hint = 0; 685 struct btrfs_key ins; 686 struct extent_map *em; 687 struct btrfs_root *root = BTRFS_I(inode)->root; 688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 689 struct extent_io_tree *io_tree; 690 int ret = 0; 691 692 again: 693 while (!list_empty(&async_cow->extents)) { 694 async_extent = list_entry(async_cow->extents.next, 695 struct async_extent, list); 696 list_del(&async_extent->list); 697 698 io_tree = &BTRFS_I(inode)->io_tree; 699 700 retry: 701 /* did the compression code fall back to uncompressed IO? */ 702 if (!async_extent->pages) { 703 int page_started = 0; 704 unsigned long nr_written = 0; 705 706 lock_extent(io_tree, async_extent->start, 707 async_extent->start + 708 async_extent->ram_size - 1); 709 710 /* allocate blocks */ 711 ret = cow_file_range(inode, async_cow->locked_page, 712 async_extent->start, 713 async_extent->start + 714 async_extent->ram_size - 1, 715 &page_started, &nr_written, 0); 716 717 /* JDM XXX */ 718 719 /* 720 * if page_started, cow_file_range inserted an 721 * inline extent and took care of all the unlocking 722 * and IO for us. Otherwise, we need to submit 723 * all those pages down to the drive. 724 */ 725 if (!page_started && !ret) 726 extent_write_locked_range(io_tree, 727 inode, async_extent->start, 728 async_extent->start + 729 async_extent->ram_size - 1, 730 btrfs_get_extent, 731 WB_SYNC_ALL); 732 else if (ret) 733 unlock_page(async_cow->locked_page); 734 kfree(async_extent); 735 cond_resched(); 736 continue; 737 } 738 739 lock_extent(io_tree, async_extent->start, 740 async_extent->start + async_extent->ram_size - 1); 741 742 ret = btrfs_reserve_extent(root, 743 async_extent->compressed_size, 744 async_extent->compressed_size, 745 0, alloc_hint, &ins, 1, 1); 746 if (ret) { 747 free_async_extent_pages(async_extent); 748 749 if (ret == -ENOSPC) { 750 unlock_extent(io_tree, async_extent->start, 751 async_extent->start + 752 async_extent->ram_size - 1); 753 754 /* 755 * we need to redirty the pages if we decide to 756 * fallback to uncompressed IO, otherwise we 757 * will not submit these pages down to lower 758 * layers. 759 */ 760 extent_range_redirty_for_io(inode, 761 async_extent->start, 762 async_extent->start + 763 async_extent->ram_size - 1); 764 765 goto retry; 766 } 767 goto out_free; 768 } 769 /* 770 * here we're doing allocation and writeback of the 771 * compressed pages 772 */ 773 btrfs_drop_extent_cache(inode, async_extent->start, 774 async_extent->start + 775 async_extent->ram_size - 1, 0); 776 777 em = alloc_extent_map(); 778 if (!em) { 779 ret = -ENOMEM; 780 goto out_free_reserve; 781 } 782 em->start = async_extent->start; 783 em->len = async_extent->ram_size; 784 em->orig_start = em->start; 785 em->mod_start = em->start; 786 em->mod_len = em->len; 787 788 em->block_start = ins.objectid; 789 em->block_len = ins.offset; 790 em->orig_block_len = ins.offset; 791 em->ram_bytes = async_extent->ram_size; 792 em->bdev = root->fs_info->fs_devices->latest_bdev; 793 em->compress_type = async_extent->compress_type; 794 set_bit(EXTENT_FLAG_PINNED, &em->flags); 795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 796 em->generation = -1; 797 798 while (1) { 799 write_lock(&em_tree->lock); 800 ret = add_extent_mapping(em_tree, em, 1); 801 write_unlock(&em_tree->lock); 802 if (ret != -EEXIST) { 803 free_extent_map(em); 804 break; 805 } 806 btrfs_drop_extent_cache(inode, async_extent->start, 807 async_extent->start + 808 async_extent->ram_size - 1, 0); 809 } 810 811 if (ret) 812 goto out_free_reserve; 813 814 ret = btrfs_add_ordered_extent_compress(inode, 815 async_extent->start, 816 ins.objectid, 817 async_extent->ram_size, 818 ins.offset, 819 BTRFS_ORDERED_COMPRESSED, 820 async_extent->compress_type); 821 if (ret) { 822 btrfs_drop_extent_cache(inode, async_extent->start, 823 async_extent->start + 824 async_extent->ram_size - 1, 0); 825 goto out_free_reserve; 826 } 827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 828 829 /* 830 * clear dirty, set writeback and unlock the pages. 831 */ 832 extent_clear_unlock_delalloc(inode, async_extent->start, 833 async_extent->start + 834 async_extent->ram_size - 1, 835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 837 PAGE_SET_WRITEBACK); 838 ret = btrfs_submit_compressed_write(inode, 839 async_extent->start, 840 async_extent->ram_size, 841 ins.objectid, 842 ins.offset, async_extent->pages, 843 async_extent->nr_pages); 844 if (ret) { 845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 846 struct page *p = async_extent->pages[0]; 847 const u64 start = async_extent->start; 848 const u64 end = start + async_extent->ram_size - 1; 849 850 p->mapping = inode->i_mapping; 851 tree->ops->writepage_end_io_hook(p, start, end, 852 NULL, 0); 853 p->mapping = NULL; 854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 855 PAGE_END_WRITEBACK | 856 PAGE_SET_ERROR); 857 free_async_extent_pages(async_extent); 858 } 859 alloc_hint = ins.objectid + ins.offset; 860 kfree(async_extent); 861 cond_resched(); 862 } 863 return; 864 out_free_reserve: 865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 867 out_free: 868 extent_clear_unlock_delalloc(inode, async_extent->start, 869 async_extent->start + 870 async_extent->ram_size - 1, 871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 875 PAGE_SET_ERROR); 876 free_async_extent_pages(async_extent); 877 kfree(async_extent); 878 goto again; 879 } 880 881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 882 u64 num_bytes) 883 { 884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 885 struct extent_map *em; 886 u64 alloc_hint = 0; 887 888 read_lock(&em_tree->lock); 889 em = search_extent_mapping(em_tree, start, num_bytes); 890 if (em) { 891 /* 892 * if block start isn't an actual block number then find the 893 * first block in this inode and use that as a hint. If that 894 * block is also bogus then just don't worry about it. 895 */ 896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 897 free_extent_map(em); 898 em = search_extent_mapping(em_tree, 0, 0); 899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 900 alloc_hint = em->block_start; 901 if (em) 902 free_extent_map(em); 903 } else { 904 alloc_hint = em->block_start; 905 free_extent_map(em); 906 } 907 } 908 read_unlock(&em_tree->lock); 909 910 return alloc_hint; 911 } 912 913 /* 914 * when extent_io.c finds a delayed allocation range in the file, 915 * the call backs end up in this code. The basic idea is to 916 * allocate extents on disk for the range, and create ordered data structs 917 * in ram to track those extents. 918 * 919 * locked_page is the page that writepage had locked already. We use 920 * it to make sure we don't do extra locks or unlocks. 921 * 922 * *page_started is set to one if we unlock locked_page and do everything 923 * required to start IO on it. It may be clean and already done with 924 * IO when we return. 925 */ 926 static noinline int cow_file_range(struct inode *inode, 927 struct page *locked_page, 928 u64 start, u64 end, int *page_started, 929 unsigned long *nr_written, 930 int unlock) 931 { 932 struct btrfs_root *root = BTRFS_I(inode)->root; 933 u64 alloc_hint = 0; 934 u64 num_bytes; 935 unsigned long ram_size; 936 u64 disk_num_bytes; 937 u64 cur_alloc_size; 938 u64 blocksize = root->sectorsize; 939 struct btrfs_key ins; 940 struct extent_map *em; 941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 942 int ret = 0; 943 944 if (btrfs_is_free_space_inode(inode)) { 945 WARN_ON_ONCE(1); 946 ret = -EINVAL; 947 goto out_unlock; 948 } 949 950 num_bytes = ALIGN(end - start + 1, blocksize); 951 num_bytes = max(blocksize, num_bytes); 952 disk_num_bytes = num_bytes; 953 954 /* if this is a small write inside eof, kick off defrag */ 955 if (num_bytes < SZ_64K && 956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 957 btrfs_add_inode_defrag(NULL, inode); 958 959 if (start == 0) { 960 /* lets try to make an inline extent */ 961 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 962 NULL); 963 if (ret == 0) { 964 extent_clear_unlock_delalloc(inode, start, end, NULL, 965 EXTENT_LOCKED | EXTENT_DELALLOC | 966 EXTENT_DEFRAG, PAGE_UNLOCK | 967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 968 PAGE_END_WRITEBACK); 969 970 *nr_written = *nr_written + 971 (end - start + PAGE_SIZE) / PAGE_SIZE; 972 *page_started = 1; 973 goto out; 974 } else if (ret < 0) { 975 goto out_unlock; 976 } 977 } 978 979 BUG_ON(disk_num_bytes > 980 btrfs_super_total_bytes(root->fs_info->super_copy)); 981 982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 984 985 while (disk_num_bytes > 0) { 986 unsigned long op; 987 988 cur_alloc_size = disk_num_bytes; 989 ret = btrfs_reserve_extent(root, cur_alloc_size, 990 root->sectorsize, 0, alloc_hint, 991 &ins, 1, 1); 992 if (ret < 0) 993 goto out_unlock; 994 995 em = alloc_extent_map(); 996 if (!em) { 997 ret = -ENOMEM; 998 goto out_reserve; 999 } 1000 em->start = start; 1001 em->orig_start = em->start; 1002 ram_size = ins.offset; 1003 em->len = ins.offset; 1004 em->mod_start = em->start; 1005 em->mod_len = em->len; 1006 1007 em->block_start = ins.objectid; 1008 em->block_len = ins.offset; 1009 em->orig_block_len = ins.offset; 1010 em->ram_bytes = ram_size; 1011 em->bdev = root->fs_info->fs_devices->latest_bdev; 1012 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1013 em->generation = -1; 1014 1015 while (1) { 1016 write_lock(&em_tree->lock); 1017 ret = add_extent_mapping(em_tree, em, 1); 1018 write_unlock(&em_tree->lock); 1019 if (ret != -EEXIST) { 1020 free_extent_map(em); 1021 break; 1022 } 1023 btrfs_drop_extent_cache(inode, start, 1024 start + ram_size - 1, 0); 1025 } 1026 if (ret) 1027 goto out_reserve; 1028 1029 cur_alloc_size = ins.offset; 1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1031 ram_size, cur_alloc_size, 0); 1032 if (ret) 1033 goto out_drop_extent_cache; 1034 1035 if (root->root_key.objectid == 1036 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1037 ret = btrfs_reloc_clone_csums(inode, start, 1038 cur_alloc_size); 1039 if (ret) 1040 goto out_drop_extent_cache; 1041 } 1042 1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1044 1045 if (disk_num_bytes < cur_alloc_size) 1046 break; 1047 1048 /* we're not doing compressed IO, don't unlock the first 1049 * page (which the caller expects to stay locked), don't 1050 * clear any dirty bits and don't set any writeback bits 1051 * 1052 * Do set the Private2 bit so we know this page was properly 1053 * setup for writepage 1054 */ 1055 op = unlock ? PAGE_UNLOCK : 0; 1056 op |= PAGE_SET_PRIVATE2; 1057 1058 extent_clear_unlock_delalloc(inode, start, 1059 start + ram_size - 1, locked_page, 1060 EXTENT_LOCKED | EXTENT_DELALLOC, 1061 op); 1062 disk_num_bytes -= cur_alloc_size; 1063 num_bytes -= cur_alloc_size; 1064 alloc_hint = ins.objectid + ins.offset; 1065 start += cur_alloc_size; 1066 } 1067 out: 1068 return ret; 1069 1070 out_drop_extent_cache: 1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1072 out_reserve: 1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1075 out_unlock: 1076 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1078 EXTENT_DELALLOC | EXTENT_DEFRAG, 1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1081 goto out; 1082 } 1083 1084 /* 1085 * work queue call back to started compression on a file and pages 1086 */ 1087 static noinline void async_cow_start(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 int num_added = 0; 1091 async_cow = container_of(work, struct async_cow, work); 1092 1093 compress_file_range(async_cow->inode, async_cow->locked_page, 1094 async_cow->start, async_cow->end, async_cow, 1095 &num_added); 1096 if (num_added == 0) { 1097 btrfs_add_delayed_iput(async_cow->inode); 1098 async_cow->inode = NULL; 1099 } 1100 } 1101 1102 /* 1103 * work queue call back to submit previously compressed pages 1104 */ 1105 static noinline void async_cow_submit(struct btrfs_work *work) 1106 { 1107 struct async_cow *async_cow; 1108 struct btrfs_root *root; 1109 unsigned long nr_pages; 1110 1111 async_cow = container_of(work, struct async_cow, work); 1112 1113 root = async_cow->root; 1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1115 PAGE_SHIFT; 1116 1117 /* 1118 * atomic_sub_return implies a barrier for waitqueue_active 1119 */ 1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1121 5 * SZ_1M && 1122 waitqueue_active(&root->fs_info->async_submit_wait)) 1123 wake_up(&root->fs_info->async_submit_wait); 1124 1125 if (async_cow->inode) 1126 submit_compressed_extents(async_cow->inode, async_cow); 1127 } 1128 1129 static noinline void async_cow_free(struct btrfs_work *work) 1130 { 1131 struct async_cow *async_cow; 1132 async_cow = container_of(work, struct async_cow, work); 1133 if (async_cow->inode) 1134 btrfs_add_delayed_iput(async_cow->inode); 1135 kfree(async_cow); 1136 } 1137 1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1139 u64 start, u64 end, int *page_started, 1140 unsigned long *nr_written) 1141 { 1142 struct async_cow *async_cow; 1143 struct btrfs_root *root = BTRFS_I(inode)->root; 1144 unsigned long nr_pages; 1145 u64 cur_end; 1146 int limit = 10 * SZ_1M; 1147 1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1149 1, 0, NULL, GFP_NOFS); 1150 while (start < end) { 1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1152 BUG_ON(!async_cow); /* -ENOMEM */ 1153 async_cow->inode = igrab(inode); 1154 async_cow->root = root; 1155 async_cow->locked_page = locked_page; 1156 async_cow->start = start; 1157 1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1159 !btrfs_test_opt(root, FORCE_COMPRESS)) 1160 cur_end = end; 1161 else 1162 cur_end = min(end, start + SZ_512K - 1); 1163 1164 async_cow->end = cur_end; 1165 INIT_LIST_HEAD(&async_cow->extents); 1166 1167 btrfs_init_work(&async_cow->work, 1168 btrfs_delalloc_helper, 1169 async_cow_start, async_cow_submit, 1170 async_cow_free); 1171 1172 nr_pages = (cur_end - start + PAGE_SIZE) >> 1173 PAGE_SHIFT; 1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1175 1176 btrfs_queue_work(root->fs_info->delalloc_workers, 1177 &async_cow->work); 1178 1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1180 wait_event(root->fs_info->async_submit_wait, 1181 (atomic_read(&root->fs_info->async_delalloc_pages) < 1182 limit)); 1183 } 1184 1185 while (atomic_read(&root->fs_info->async_submit_draining) && 1186 atomic_read(&root->fs_info->async_delalloc_pages)) { 1187 wait_event(root->fs_info->async_submit_wait, 1188 (atomic_read(&root->fs_info->async_delalloc_pages) == 1189 0)); 1190 } 1191 1192 *nr_written += nr_pages; 1193 start = cur_end + 1; 1194 } 1195 *page_started = 1; 1196 return 0; 1197 } 1198 1199 static noinline int csum_exist_in_range(struct btrfs_root *root, 1200 u64 bytenr, u64 num_bytes) 1201 { 1202 int ret; 1203 struct btrfs_ordered_sum *sums; 1204 LIST_HEAD(list); 1205 1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1207 bytenr + num_bytes - 1, &list, 0); 1208 if (ret == 0 && list_empty(&list)) 1209 return 0; 1210 1211 while (!list_empty(&list)) { 1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1213 list_del(&sums->list); 1214 kfree(sums); 1215 } 1216 return 1; 1217 } 1218 1219 /* 1220 * when nowcow writeback call back. This checks for snapshots or COW copies 1221 * of the extents that exist in the file, and COWs the file as required. 1222 * 1223 * If no cow copies or snapshots exist, we write directly to the existing 1224 * blocks on disk 1225 */ 1226 static noinline int run_delalloc_nocow(struct inode *inode, 1227 struct page *locked_page, 1228 u64 start, u64 end, int *page_started, int force, 1229 unsigned long *nr_written) 1230 { 1231 struct btrfs_root *root = BTRFS_I(inode)->root; 1232 struct btrfs_trans_handle *trans; 1233 struct extent_buffer *leaf; 1234 struct btrfs_path *path; 1235 struct btrfs_file_extent_item *fi; 1236 struct btrfs_key found_key; 1237 u64 cow_start; 1238 u64 cur_offset; 1239 u64 extent_end; 1240 u64 extent_offset; 1241 u64 disk_bytenr; 1242 u64 num_bytes; 1243 u64 disk_num_bytes; 1244 u64 ram_bytes; 1245 int extent_type; 1246 int ret, err; 1247 int type; 1248 int nocow; 1249 int check_prev = 1; 1250 bool nolock; 1251 u64 ino = btrfs_ino(inode); 1252 1253 path = btrfs_alloc_path(); 1254 if (!path) { 1255 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1256 EXTENT_LOCKED | EXTENT_DELALLOC | 1257 EXTENT_DO_ACCOUNTING | 1258 EXTENT_DEFRAG, PAGE_UNLOCK | 1259 PAGE_CLEAR_DIRTY | 1260 PAGE_SET_WRITEBACK | 1261 PAGE_END_WRITEBACK); 1262 return -ENOMEM; 1263 } 1264 1265 nolock = btrfs_is_free_space_inode(inode); 1266 1267 if (nolock) 1268 trans = btrfs_join_transaction_nolock(root); 1269 else 1270 trans = btrfs_join_transaction(root); 1271 1272 if (IS_ERR(trans)) { 1273 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1274 EXTENT_LOCKED | EXTENT_DELALLOC | 1275 EXTENT_DO_ACCOUNTING | 1276 EXTENT_DEFRAG, PAGE_UNLOCK | 1277 PAGE_CLEAR_DIRTY | 1278 PAGE_SET_WRITEBACK | 1279 PAGE_END_WRITEBACK); 1280 btrfs_free_path(path); 1281 return PTR_ERR(trans); 1282 } 1283 1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1285 1286 cow_start = (u64)-1; 1287 cur_offset = start; 1288 while (1) { 1289 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1290 cur_offset, 0); 1291 if (ret < 0) 1292 goto error; 1293 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1294 leaf = path->nodes[0]; 1295 btrfs_item_key_to_cpu(leaf, &found_key, 1296 path->slots[0] - 1); 1297 if (found_key.objectid == ino && 1298 found_key.type == BTRFS_EXTENT_DATA_KEY) 1299 path->slots[0]--; 1300 } 1301 check_prev = 0; 1302 next_slot: 1303 leaf = path->nodes[0]; 1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1305 ret = btrfs_next_leaf(root, path); 1306 if (ret < 0) 1307 goto error; 1308 if (ret > 0) 1309 break; 1310 leaf = path->nodes[0]; 1311 } 1312 1313 nocow = 0; 1314 disk_bytenr = 0; 1315 num_bytes = 0; 1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1317 1318 if (found_key.objectid > ino) 1319 break; 1320 if (WARN_ON_ONCE(found_key.objectid < ino) || 1321 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1326 found_key.offset > end) 1327 break; 1328 1329 if (found_key.offset > cur_offset) { 1330 extent_end = found_key.offset; 1331 extent_type = 0; 1332 goto out_check; 1333 } 1334 1335 fi = btrfs_item_ptr(leaf, path->slots[0], 1336 struct btrfs_file_extent_item); 1337 extent_type = btrfs_file_extent_type(leaf, fi); 1338 1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1340 if (extent_type == BTRFS_FILE_EXTENT_REG || 1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1343 extent_offset = btrfs_file_extent_offset(leaf, fi); 1344 extent_end = found_key.offset + 1345 btrfs_file_extent_num_bytes(leaf, fi); 1346 disk_num_bytes = 1347 btrfs_file_extent_disk_num_bytes(leaf, fi); 1348 if (extent_end <= start) { 1349 path->slots[0]++; 1350 goto next_slot; 1351 } 1352 if (disk_bytenr == 0) 1353 goto out_check; 1354 if (btrfs_file_extent_compression(leaf, fi) || 1355 btrfs_file_extent_encryption(leaf, fi) || 1356 btrfs_file_extent_other_encoding(leaf, fi)) 1357 goto out_check; 1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1359 goto out_check; 1360 if (btrfs_extent_readonly(root, disk_bytenr)) 1361 goto out_check; 1362 if (btrfs_cross_ref_exist(trans, root, ino, 1363 found_key.offset - 1364 extent_offset, disk_bytenr)) 1365 goto out_check; 1366 disk_bytenr += extent_offset; 1367 disk_bytenr += cur_offset - found_key.offset; 1368 num_bytes = min(end + 1, extent_end) - cur_offset; 1369 /* 1370 * if there are pending snapshots for this root, 1371 * we fall into common COW way. 1372 */ 1373 if (!nolock) { 1374 err = btrfs_start_write_no_snapshoting(root); 1375 if (!err) 1376 goto out_check; 1377 } 1378 /* 1379 * force cow if csum exists in the range. 1380 * this ensure that csum for a given extent are 1381 * either valid or do not exist. 1382 */ 1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1384 goto out_check; 1385 if (!btrfs_inc_nocow_writers(root->fs_info, 1386 disk_bytenr)) 1387 goto out_check; 1388 nocow = 1; 1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1390 extent_end = found_key.offset + 1391 btrfs_file_extent_inline_len(leaf, 1392 path->slots[0], fi); 1393 extent_end = ALIGN(extent_end, root->sectorsize); 1394 } else { 1395 BUG_ON(1); 1396 } 1397 out_check: 1398 if (extent_end <= start) { 1399 path->slots[0]++; 1400 if (!nolock && nocow) 1401 btrfs_end_write_no_snapshoting(root); 1402 if (nocow) 1403 btrfs_dec_nocow_writers(root->fs_info, 1404 disk_bytenr); 1405 goto next_slot; 1406 } 1407 if (!nocow) { 1408 if (cow_start == (u64)-1) 1409 cow_start = cur_offset; 1410 cur_offset = extent_end; 1411 if (cur_offset > end) 1412 break; 1413 path->slots[0]++; 1414 goto next_slot; 1415 } 1416 1417 btrfs_release_path(path); 1418 if (cow_start != (u64)-1) { 1419 ret = cow_file_range(inode, locked_page, 1420 cow_start, found_key.offset - 1, 1421 page_started, nr_written, 1); 1422 if (ret) { 1423 if (!nolock && nocow) 1424 btrfs_end_write_no_snapshoting(root); 1425 if (nocow) 1426 btrfs_dec_nocow_writers(root->fs_info, 1427 disk_bytenr); 1428 goto error; 1429 } 1430 cow_start = (u64)-1; 1431 } 1432 1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1434 struct extent_map *em; 1435 struct extent_map_tree *em_tree; 1436 em_tree = &BTRFS_I(inode)->extent_tree; 1437 em = alloc_extent_map(); 1438 BUG_ON(!em); /* -ENOMEM */ 1439 em->start = cur_offset; 1440 em->orig_start = found_key.offset - extent_offset; 1441 em->len = num_bytes; 1442 em->block_len = num_bytes; 1443 em->block_start = disk_bytenr; 1444 em->orig_block_len = disk_num_bytes; 1445 em->ram_bytes = ram_bytes; 1446 em->bdev = root->fs_info->fs_devices->latest_bdev; 1447 em->mod_start = em->start; 1448 em->mod_len = em->len; 1449 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1450 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1451 em->generation = -1; 1452 while (1) { 1453 write_lock(&em_tree->lock); 1454 ret = add_extent_mapping(em_tree, em, 1); 1455 write_unlock(&em_tree->lock); 1456 if (ret != -EEXIST) { 1457 free_extent_map(em); 1458 break; 1459 } 1460 btrfs_drop_extent_cache(inode, em->start, 1461 em->start + em->len - 1, 0); 1462 } 1463 type = BTRFS_ORDERED_PREALLOC; 1464 } else { 1465 type = BTRFS_ORDERED_NOCOW; 1466 } 1467 1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1469 num_bytes, num_bytes, type); 1470 if (nocow) 1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr); 1472 BUG_ON(ret); /* -ENOMEM */ 1473 1474 if (root->root_key.objectid == 1475 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1476 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1477 num_bytes); 1478 if (ret) { 1479 if (!nolock && nocow) 1480 btrfs_end_write_no_snapshoting(root); 1481 goto error; 1482 } 1483 } 1484 1485 extent_clear_unlock_delalloc(inode, cur_offset, 1486 cur_offset + num_bytes - 1, 1487 locked_page, EXTENT_LOCKED | 1488 EXTENT_DELALLOC, PAGE_UNLOCK | 1489 PAGE_SET_PRIVATE2); 1490 if (!nolock && nocow) 1491 btrfs_end_write_no_snapshoting(root); 1492 cur_offset = extent_end; 1493 if (cur_offset > end) 1494 break; 1495 } 1496 btrfs_release_path(path); 1497 1498 if (cur_offset <= end && cow_start == (u64)-1) { 1499 cow_start = cur_offset; 1500 cur_offset = end; 1501 } 1502 1503 if (cow_start != (u64)-1) { 1504 ret = cow_file_range(inode, locked_page, cow_start, end, 1505 page_started, nr_written, 1); 1506 if (ret) 1507 goto error; 1508 } 1509 1510 error: 1511 err = btrfs_end_transaction(trans, root); 1512 if (!ret) 1513 ret = err; 1514 1515 if (ret && cur_offset < end) 1516 extent_clear_unlock_delalloc(inode, cur_offset, end, 1517 locked_page, EXTENT_LOCKED | 1518 EXTENT_DELALLOC | EXTENT_DEFRAG | 1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1520 PAGE_CLEAR_DIRTY | 1521 PAGE_SET_WRITEBACK | 1522 PAGE_END_WRITEBACK); 1523 btrfs_free_path(path); 1524 return ret; 1525 } 1526 1527 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1528 { 1529 1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1532 return 0; 1533 1534 /* 1535 * @defrag_bytes is a hint value, no spinlock held here, 1536 * if is not zero, it means the file is defragging. 1537 * Force cow if given extent needs to be defragged. 1538 */ 1539 if (BTRFS_I(inode)->defrag_bytes && 1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1541 EXTENT_DEFRAG, 0, NULL)) 1542 return 1; 1543 1544 return 0; 1545 } 1546 1547 /* 1548 * extent_io.c call back to do delayed allocation processing 1549 */ 1550 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1551 u64 start, u64 end, int *page_started, 1552 unsigned long *nr_written) 1553 { 1554 int ret; 1555 int force_cow = need_force_cow(inode, start, end); 1556 1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1558 ret = run_delalloc_nocow(inode, locked_page, start, end, 1559 page_started, 1, nr_written); 1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1561 ret = run_delalloc_nocow(inode, locked_page, start, end, 1562 page_started, 0, nr_written); 1563 } else if (!inode_need_compress(inode)) { 1564 ret = cow_file_range(inode, locked_page, start, end, 1565 page_started, nr_written, 1); 1566 } else { 1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1568 &BTRFS_I(inode)->runtime_flags); 1569 ret = cow_file_range_async(inode, locked_page, start, end, 1570 page_started, nr_written); 1571 } 1572 return ret; 1573 } 1574 1575 static void btrfs_split_extent_hook(struct inode *inode, 1576 struct extent_state *orig, u64 split) 1577 { 1578 u64 size; 1579 1580 /* not delalloc, ignore it */ 1581 if (!(orig->state & EXTENT_DELALLOC)) 1582 return; 1583 1584 size = orig->end - orig->start + 1; 1585 if (size > BTRFS_MAX_EXTENT_SIZE) { 1586 u64 num_extents; 1587 u64 new_size; 1588 1589 /* 1590 * See the explanation in btrfs_merge_extent_hook, the same 1591 * applies here, just in reverse. 1592 */ 1593 new_size = orig->end - split + 1; 1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1595 BTRFS_MAX_EXTENT_SIZE); 1596 new_size = split - orig->start; 1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1598 BTRFS_MAX_EXTENT_SIZE); 1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1601 return; 1602 } 1603 1604 spin_lock(&BTRFS_I(inode)->lock); 1605 BTRFS_I(inode)->outstanding_extents++; 1606 spin_unlock(&BTRFS_I(inode)->lock); 1607 } 1608 1609 /* 1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1611 * extents so we can keep track of new extents that are just merged onto old 1612 * extents, such as when we are doing sequential writes, so we can properly 1613 * account for the metadata space we'll need. 1614 */ 1615 static void btrfs_merge_extent_hook(struct inode *inode, 1616 struct extent_state *new, 1617 struct extent_state *other) 1618 { 1619 u64 new_size, old_size; 1620 u64 num_extents; 1621 1622 /* not delalloc, ignore it */ 1623 if (!(other->state & EXTENT_DELALLOC)) 1624 return; 1625 1626 if (new->start > other->start) 1627 new_size = new->end - other->start + 1; 1628 else 1629 new_size = other->end - new->start + 1; 1630 1631 /* we're not bigger than the max, unreserve the space and go */ 1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1633 spin_lock(&BTRFS_I(inode)->lock); 1634 BTRFS_I(inode)->outstanding_extents--; 1635 spin_unlock(&BTRFS_I(inode)->lock); 1636 return; 1637 } 1638 1639 /* 1640 * We have to add up either side to figure out how many extents were 1641 * accounted for before we merged into one big extent. If the number of 1642 * extents we accounted for is <= the amount we need for the new range 1643 * then we can return, otherwise drop. Think of it like this 1644 * 1645 * [ 4k][MAX_SIZE] 1646 * 1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1648 * need 2 outstanding extents, on one side we have 1 and the other side 1649 * we have 1 so they are == and we can return. But in this case 1650 * 1651 * [MAX_SIZE+4k][MAX_SIZE+4k] 1652 * 1653 * Each range on their own accounts for 2 extents, but merged together 1654 * they are only 3 extents worth of accounting, so we need to drop in 1655 * this case. 1656 */ 1657 old_size = other->end - other->start + 1; 1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1659 BTRFS_MAX_EXTENT_SIZE); 1660 old_size = new->end - new->start + 1; 1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1662 BTRFS_MAX_EXTENT_SIZE); 1663 1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1666 return; 1667 1668 spin_lock(&BTRFS_I(inode)->lock); 1669 BTRFS_I(inode)->outstanding_extents--; 1670 spin_unlock(&BTRFS_I(inode)->lock); 1671 } 1672 1673 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1674 struct inode *inode) 1675 { 1676 spin_lock(&root->delalloc_lock); 1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1679 &root->delalloc_inodes); 1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1681 &BTRFS_I(inode)->runtime_flags); 1682 root->nr_delalloc_inodes++; 1683 if (root->nr_delalloc_inodes == 1) { 1684 spin_lock(&root->fs_info->delalloc_root_lock); 1685 BUG_ON(!list_empty(&root->delalloc_root)); 1686 list_add_tail(&root->delalloc_root, 1687 &root->fs_info->delalloc_roots); 1688 spin_unlock(&root->fs_info->delalloc_root_lock); 1689 } 1690 } 1691 spin_unlock(&root->delalloc_lock); 1692 } 1693 1694 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1695 struct inode *inode) 1696 { 1697 spin_lock(&root->delalloc_lock); 1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1701 &BTRFS_I(inode)->runtime_flags); 1702 root->nr_delalloc_inodes--; 1703 if (!root->nr_delalloc_inodes) { 1704 spin_lock(&root->fs_info->delalloc_root_lock); 1705 BUG_ON(list_empty(&root->delalloc_root)); 1706 list_del_init(&root->delalloc_root); 1707 spin_unlock(&root->fs_info->delalloc_root_lock); 1708 } 1709 } 1710 spin_unlock(&root->delalloc_lock); 1711 } 1712 1713 /* 1714 * extent_io.c set_bit_hook, used to track delayed allocation 1715 * bytes in this file, and to maintain the list of inodes that 1716 * have pending delalloc work to be done. 1717 */ 1718 static void btrfs_set_bit_hook(struct inode *inode, 1719 struct extent_state *state, unsigned *bits) 1720 { 1721 1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1723 WARN_ON(1); 1724 /* 1725 * set_bit and clear bit hooks normally require _irqsave/restore 1726 * but in this case, we are only testing for the DELALLOC 1727 * bit, which is only set or cleared with irqs on 1728 */ 1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1730 struct btrfs_root *root = BTRFS_I(inode)->root; 1731 u64 len = state->end + 1 - state->start; 1732 bool do_list = !btrfs_is_free_space_inode(inode); 1733 1734 if (*bits & EXTENT_FIRST_DELALLOC) { 1735 *bits &= ~EXTENT_FIRST_DELALLOC; 1736 } else { 1737 spin_lock(&BTRFS_I(inode)->lock); 1738 BTRFS_I(inode)->outstanding_extents++; 1739 spin_unlock(&BTRFS_I(inode)->lock); 1740 } 1741 1742 /* For sanity tests */ 1743 if (btrfs_test_is_dummy_root(root)) 1744 return; 1745 1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1747 root->fs_info->delalloc_batch); 1748 spin_lock(&BTRFS_I(inode)->lock); 1749 BTRFS_I(inode)->delalloc_bytes += len; 1750 if (*bits & EXTENT_DEFRAG) 1751 BTRFS_I(inode)->defrag_bytes += len; 1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1753 &BTRFS_I(inode)->runtime_flags)) 1754 btrfs_add_delalloc_inodes(root, inode); 1755 spin_unlock(&BTRFS_I(inode)->lock); 1756 } 1757 } 1758 1759 /* 1760 * extent_io.c clear_bit_hook, see set_bit_hook for why 1761 */ 1762 static void btrfs_clear_bit_hook(struct inode *inode, 1763 struct extent_state *state, 1764 unsigned *bits) 1765 { 1766 u64 len = state->end + 1 - state->start; 1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1768 BTRFS_MAX_EXTENT_SIZE); 1769 1770 spin_lock(&BTRFS_I(inode)->lock); 1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1772 BTRFS_I(inode)->defrag_bytes -= len; 1773 spin_unlock(&BTRFS_I(inode)->lock); 1774 1775 /* 1776 * set_bit and clear bit hooks normally require _irqsave/restore 1777 * but in this case, we are only testing for the DELALLOC 1778 * bit, which is only set or cleared with irqs on 1779 */ 1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1781 struct btrfs_root *root = BTRFS_I(inode)->root; 1782 bool do_list = !btrfs_is_free_space_inode(inode); 1783 1784 if (*bits & EXTENT_FIRST_DELALLOC) { 1785 *bits &= ~EXTENT_FIRST_DELALLOC; 1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1787 spin_lock(&BTRFS_I(inode)->lock); 1788 BTRFS_I(inode)->outstanding_extents -= num_extents; 1789 spin_unlock(&BTRFS_I(inode)->lock); 1790 } 1791 1792 /* 1793 * We don't reserve metadata space for space cache inodes so we 1794 * don't need to call dellalloc_release_metadata if there is an 1795 * error. 1796 */ 1797 if (*bits & EXTENT_DO_ACCOUNTING && 1798 root != root->fs_info->tree_root) 1799 btrfs_delalloc_release_metadata(inode, len); 1800 1801 /* For sanity tests. */ 1802 if (btrfs_test_is_dummy_root(root)) 1803 return; 1804 1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1806 && do_list && !(state->state & EXTENT_NORESERVE)) 1807 btrfs_free_reserved_data_space_noquota(inode, 1808 state->start, len); 1809 1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1811 root->fs_info->delalloc_batch); 1812 spin_lock(&BTRFS_I(inode)->lock); 1813 BTRFS_I(inode)->delalloc_bytes -= len; 1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1816 &BTRFS_I(inode)->runtime_flags)) 1817 btrfs_del_delalloc_inode(root, inode); 1818 spin_unlock(&BTRFS_I(inode)->lock); 1819 } 1820 } 1821 1822 /* 1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1824 * we don't create bios that span stripes or chunks 1825 */ 1826 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1827 size_t size, struct bio *bio, 1828 unsigned long bio_flags) 1829 { 1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1832 u64 length = 0; 1833 u64 map_length; 1834 int ret; 1835 1836 if (bio_flags & EXTENT_BIO_COMPRESSED) 1837 return 0; 1838 1839 length = bio->bi_iter.bi_size; 1840 map_length = length; 1841 ret = btrfs_map_block(root->fs_info, rw, logical, 1842 &map_length, NULL, 0); 1843 /* Will always return 0 with map_multi == NULL */ 1844 BUG_ON(ret < 0); 1845 if (map_length < length + size) 1846 return 1; 1847 return 0; 1848 } 1849 1850 /* 1851 * in order to insert checksums into the metadata in large chunks, 1852 * we wait until bio submission time. All the pages in the bio are 1853 * checksummed and sums are attached onto the ordered extent record. 1854 * 1855 * At IO completion time the cums attached on the ordered extent record 1856 * are inserted into the btree 1857 */ 1858 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1859 struct bio *bio, int mirror_num, 1860 unsigned long bio_flags, 1861 u64 bio_offset) 1862 { 1863 struct btrfs_root *root = BTRFS_I(inode)->root; 1864 int ret = 0; 1865 1866 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1867 BUG_ON(ret); /* -ENOMEM */ 1868 return 0; 1869 } 1870 1871 /* 1872 * in order to insert checksums into the metadata in large chunks, 1873 * we wait until bio submission time. All the pages in the bio are 1874 * checksummed and sums are attached onto the ordered extent record. 1875 * 1876 * At IO completion time the cums attached on the ordered extent record 1877 * are inserted into the btree 1878 */ 1879 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1880 int mirror_num, unsigned long bio_flags, 1881 u64 bio_offset) 1882 { 1883 struct btrfs_root *root = BTRFS_I(inode)->root; 1884 int ret; 1885 1886 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1887 if (ret) { 1888 bio->bi_error = ret; 1889 bio_endio(bio); 1890 } 1891 return ret; 1892 } 1893 1894 /* 1895 * extent_io.c submission hook. This does the right thing for csum calculation 1896 * on write, or reading the csums from the tree before a read 1897 */ 1898 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1899 int mirror_num, unsigned long bio_flags, 1900 u64 bio_offset) 1901 { 1902 struct btrfs_root *root = BTRFS_I(inode)->root; 1903 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1904 int ret = 0; 1905 int skip_sum; 1906 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1907 1908 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1909 1910 if (btrfs_is_free_space_inode(inode)) 1911 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1912 1913 if (!(rw & REQ_WRITE)) { 1914 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1915 if (ret) 1916 goto out; 1917 1918 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1919 ret = btrfs_submit_compressed_read(inode, bio, 1920 mirror_num, 1921 bio_flags); 1922 goto out; 1923 } else if (!skip_sum) { 1924 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1925 if (ret) 1926 goto out; 1927 } 1928 goto mapit; 1929 } else if (async && !skip_sum) { 1930 /* csum items have already been cloned */ 1931 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1932 goto mapit; 1933 /* we're doing a write, do the async checksumming */ 1934 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1935 inode, rw, bio, mirror_num, 1936 bio_flags, bio_offset, 1937 __btrfs_submit_bio_start, 1938 __btrfs_submit_bio_done); 1939 goto out; 1940 } else if (!skip_sum) { 1941 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1942 if (ret) 1943 goto out; 1944 } 1945 1946 mapit: 1947 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1948 1949 out: 1950 if (ret < 0) { 1951 bio->bi_error = ret; 1952 bio_endio(bio); 1953 } 1954 return ret; 1955 } 1956 1957 /* 1958 * given a list of ordered sums record them in the inode. This happens 1959 * at IO completion time based on sums calculated at bio submission time. 1960 */ 1961 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1962 struct inode *inode, u64 file_offset, 1963 struct list_head *list) 1964 { 1965 struct btrfs_ordered_sum *sum; 1966 1967 list_for_each_entry(sum, list, list) { 1968 trans->adding_csums = 1; 1969 btrfs_csum_file_blocks(trans, 1970 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1971 trans->adding_csums = 0; 1972 } 1973 return 0; 1974 } 1975 1976 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1977 struct extent_state **cached_state) 1978 { 1979 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 1980 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1981 cached_state); 1982 } 1983 1984 /* see btrfs_writepage_start_hook for details on why this is required */ 1985 struct btrfs_writepage_fixup { 1986 struct page *page; 1987 struct btrfs_work work; 1988 }; 1989 1990 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1991 { 1992 struct btrfs_writepage_fixup *fixup; 1993 struct btrfs_ordered_extent *ordered; 1994 struct extent_state *cached_state = NULL; 1995 struct page *page; 1996 struct inode *inode; 1997 u64 page_start; 1998 u64 page_end; 1999 int ret; 2000 2001 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2002 page = fixup->page; 2003 again: 2004 lock_page(page); 2005 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2006 ClearPageChecked(page); 2007 goto out_page; 2008 } 2009 2010 inode = page->mapping->host; 2011 page_start = page_offset(page); 2012 page_end = page_offset(page) + PAGE_SIZE - 1; 2013 2014 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2015 &cached_state); 2016 2017 /* already ordered? We're done */ 2018 if (PagePrivate2(page)) 2019 goto out; 2020 2021 ordered = btrfs_lookup_ordered_range(inode, page_start, 2022 PAGE_SIZE); 2023 if (ordered) { 2024 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2025 page_end, &cached_state, GFP_NOFS); 2026 unlock_page(page); 2027 btrfs_start_ordered_extent(inode, ordered, 1); 2028 btrfs_put_ordered_extent(ordered); 2029 goto again; 2030 } 2031 2032 ret = btrfs_delalloc_reserve_space(inode, page_start, 2033 PAGE_SIZE); 2034 if (ret) { 2035 mapping_set_error(page->mapping, ret); 2036 end_extent_writepage(page, ret, page_start, page_end); 2037 ClearPageChecked(page); 2038 goto out; 2039 } 2040 2041 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2042 ClearPageChecked(page); 2043 set_page_dirty(page); 2044 out: 2045 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2046 &cached_state, GFP_NOFS); 2047 out_page: 2048 unlock_page(page); 2049 put_page(page); 2050 kfree(fixup); 2051 } 2052 2053 /* 2054 * There are a few paths in the higher layers of the kernel that directly 2055 * set the page dirty bit without asking the filesystem if it is a 2056 * good idea. This causes problems because we want to make sure COW 2057 * properly happens and the data=ordered rules are followed. 2058 * 2059 * In our case any range that doesn't have the ORDERED bit set 2060 * hasn't been properly setup for IO. We kick off an async process 2061 * to fix it up. The async helper will wait for ordered extents, set 2062 * the delalloc bit and make it safe to write the page. 2063 */ 2064 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2065 { 2066 struct inode *inode = page->mapping->host; 2067 struct btrfs_writepage_fixup *fixup; 2068 struct btrfs_root *root = BTRFS_I(inode)->root; 2069 2070 /* this page is properly in the ordered list */ 2071 if (TestClearPagePrivate2(page)) 2072 return 0; 2073 2074 if (PageChecked(page)) 2075 return -EAGAIN; 2076 2077 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2078 if (!fixup) 2079 return -EAGAIN; 2080 2081 SetPageChecked(page); 2082 get_page(page); 2083 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2084 btrfs_writepage_fixup_worker, NULL, NULL); 2085 fixup->page = page; 2086 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2087 return -EBUSY; 2088 } 2089 2090 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2091 struct inode *inode, u64 file_pos, 2092 u64 disk_bytenr, u64 disk_num_bytes, 2093 u64 num_bytes, u64 ram_bytes, 2094 u8 compression, u8 encryption, 2095 u16 other_encoding, int extent_type) 2096 { 2097 struct btrfs_root *root = BTRFS_I(inode)->root; 2098 struct btrfs_file_extent_item *fi; 2099 struct btrfs_path *path; 2100 struct extent_buffer *leaf; 2101 struct btrfs_key ins; 2102 int extent_inserted = 0; 2103 int ret; 2104 2105 path = btrfs_alloc_path(); 2106 if (!path) 2107 return -ENOMEM; 2108 2109 /* 2110 * we may be replacing one extent in the tree with another. 2111 * The new extent is pinned in the extent map, and we don't want 2112 * to drop it from the cache until it is completely in the btree. 2113 * 2114 * So, tell btrfs_drop_extents to leave this extent in the cache. 2115 * the caller is expected to unpin it and allow it to be merged 2116 * with the others. 2117 */ 2118 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2119 file_pos + num_bytes, NULL, 0, 2120 1, sizeof(*fi), &extent_inserted); 2121 if (ret) 2122 goto out; 2123 2124 if (!extent_inserted) { 2125 ins.objectid = btrfs_ino(inode); 2126 ins.offset = file_pos; 2127 ins.type = BTRFS_EXTENT_DATA_KEY; 2128 2129 path->leave_spinning = 1; 2130 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2131 sizeof(*fi)); 2132 if (ret) 2133 goto out; 2134 } 2135 leaf = path->nodes[0]; 2136 fi = btrfs_item_ptr(leaf, path->slots[0], 2137 struct btrfs_file_extent_item); 2138 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2139 btrfs_set_file_extent_type(leaf, fi, extent_type); 2140 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2141 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2142 btrfs_set_file_extent_offset(leaf, fi, 0); 2143 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2144 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2145 btrfs_set_file_extent_compression(leaf, fi, compression); 2146 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2147 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2148 2149 btrfs_mark_buffer_dirty(leaf); 2150 btrfs_release_path(path); 2151 2152 inode_add_bytes(inode, num_bytes); 2153 2154 ins.objectid = disk_bytenr; 2155 ins.offset = disk_num_bytes; 2156 ins.type = BTRFS_EXTENT_ITEM_KEY; 2157 ret = btrfs_alloc_reserved_file_extent(trans, root, 2158 root->root_key.objectid, 2159 btrfs_ino(inode), file_pos, 2160 ram_bytes, &ins); 2161 /* 2162 * Release the reserved range from inode dirty range map, as it is 2163 * already moved into delayed_ref_head 2164 */ 2165 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2166 out: 2167 btrfs_free_path(path); 2168 2169 return ret; 2170 } 2171 2172 /* snapshot-aware defrag */ 2173 struct sa_defrag_extent_backref { 2174 struct rb_node node; 2175 struct old_sa_defrag_extent *old; 2176 u64 root_id; 2177 u64 inum; 2178 u64 file_pos; 2179 u64 extent_offset; 2180 u64 num_bytes; 2181 u64 generation; 2182 }; 2183 2184 struct old_sa_defrag_extent { 2185 struct list_head list; 2186 struct new_sa_defrag_extent *new; 2187 2188 u64 extent_offset; 2189 u64 bytenr; 2190 u64 offset; 2191 u64 len; 2192 int count; 2193 }; 2194 2195 struct new_sa_defrag_extent { 2196 struct rb_root root; 2197 struct list_head head; 2198 struct btrfs_path *path; 2199 struct inode *inode; 2200 u64 file_pos; 2201 u64 len; 2202 u64 bytenr; 2203 u64 disk_len; 2204 u8 compress_type; 2205 }; 2206 2207 static int backref_comp(struct sa_defrag_extent_backref *b1, 2208 struct sa_defrag_extent_backref *b2) 2209 { 2210 if (b1->root_id < b2->root_id) 2211 return -1; 2212 else if (b1->root_id > b2->root_id) 2213 return 1; 2214 2215 if (b1->inum < b2->inum) 2216 return -1; 2217 else if (b1->inum > b2->inum) 2218 return 1; 2219 2220 if (b1->file_pos < b2->file_pos) 2221 return -1; 2222 else if (b1->file_pos > b2->file_pos) 2223 return 1; 2224 2225 /* 2226 * [------------------------------] ===> (a range of space) 2227 * |<--->| |<---->| =============> (fs/file tree A) 2228 * |<---------------------------->| ===> (fs/file tree B) 2229 * 2230 * A range of space can refer to two file extents in one tree while 2231 * refer to only one file extent in another tree. 2232 * 2233 * So we may process a disk offset more than one time(two extents in A) 2234 * and locate at the same extent(one extent in B), then insert two same 2235 * backrefs(both refer to the extent in B). 2236 */ 2237 return 0; 2238 } 2239 2240 static void backref_insert(struct rb_root *root, 2241 struct sa_defrag_extent_backref *backref) 2242 { 2243 struct rb_node **p = &root->rb_node; 2244 struct rb_node *parent = NULL; 2245 struct sa_defrag_extent_backref *entry; 2246 int ret; 2247 2248 while (*p) { 2249 parent = *p; 2250 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2251 2252 ret = backref_comp(backref, entry); 2253 if (ret < 0) 2254 p = &(*p)->rb_left; 2255 else 2256 p = &(*p)->rb_right; 2257 } 2258 2259 rb_link_node(&backref->node, parent, p); 2260 rb_insert_color(&backref->node, root); 2261 } 2262 2263 /* 2264 * Note the backref might has changed, and in this case we just return 0. 2265 */ 2266 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2267 void *ctx) 2268 { 2269 struct btrfs_file_extent_item *extent; 2270 struct btrfs_fs_info *fs_info; 2271 struct old_sa_defrag_extent *old = ctx; 2272 struct new_sa_defrag_extent *new = old->new; 2273 struct btrfs_path *path = new->path; 2274 struct btrfs_key key; 2275 struct btrfs_root *root; 2276 struct sa_defrag_extent_backref *backref; 2277 struct extent_buffer *leaf; 2278 struct inode *inode = new->inode; 2279 int slot; 2280 int ret; 2281 u64 extent_offset; 2282 u64 num_bytes; 2283 2284 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2285 inum == btrfs_ino(inode)) 2286 return 0; 2287 2288 key.objectid = root_id; 2289 key.type = BTRFS_ROOT_ITEM_KEY; 2290 key.offset = (u64)-1; 2291 2292 fs_info = BTRFS_I(inode)->root->fs_info; 2293 root = btrfs_read_fs_root_no_name(fs_info, &key); 2294 if (IS_ERR(root)) { 2295 if (PTR_ERR(root) == -ENOENT) 2296 return 0; 2297 WARN_ON(1); 2298 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2299 inum, offset, root_id); 2300 return PTR_ERR(root); 2301 } 2302 2303 key.objectid = inum; 2304 key.type = BTRFS_EXTENT_DATA_KEY; 2305 if (offset > (u64)-1 << 32) 2306 key.offset = 0; 2307 else 2308 key.offset = offset; 2309 2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2311 if (WARN_ON(ret < 0)) 2312 return ret; 2313 ret = 0; 2314 2315 while (1) { 2316 cond_resched(); 2317 2318 leaf = path->nodes[0]; 2319 slot = path->slots[0]; 2320 2321 if (slot >= btrfs_header_nritems(leaf)) { 2322 ret = btrfs_next_leaf(root, path); 2323 if (ret < 0) { 2324 goto out; 2325 } else if (ret > 0) { 2326 ret = 0; 2327 goto out; 2328 } 2329 continue; 2330 } 2331 2332 path->slots[0]++; 2333 2334 btrfs_item_key_to_cpu(leaf, &key, slot); 2335 2336 if (key.objectid > inum) 2337 goto out; 2338 2339 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2340 continue; 2341 2342 extent = btrfs_item_ptr(leaf, slot, 2343 struct btrfs_file_extent_item); 2344 2345 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2346 continue; 2347 2348 /* 2349 * 'offset' refers to the exact key.offset, 2350 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2351 * (key.offset - extent_offset). 2352 */ 2353 if (key.offset != offset) 2354 continue; 2355 2356 extent_offset = btrfs_file_extent_offset(leaf, extent); 2357 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2358 2359 if (extent_offset >= old->extent_offset + old->offset + 2360 old->len || extent_offset + num_bytes <= 2361 old->extent_offset + old->offset) 2362 continue; 2363 break; 2364 } 2365 2366 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2367 if (!backref) { 2368 ret = -ENOENT; 2369 goto out; 2370 } 2371 2372 backref->root_id = root_id; 2373 backref->inum = inum; 2374 backref->file_pos = offset; 2375 backref->num_bytes = num_bytes; 2376 backref->extent_offset = extent_offset; 2377 backref->generation = btrfs_file_extent_generation(leaf, extent); 2378 backref->old = old; 2379 backref_insert(&new->root, backref); 2380 old->count++; 2381 out: 2382 btrfs_release_path(path); 2383 WARN_ON(ret); 2384 return ret; 2385 } 2386 2387 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2388 struct new_sa_defrag_extent *new) 2389 { 2390 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2391 struct old_sa_defrag_extent *old, *tmp; 2392 int ret; 2393 2394 new->path = path; 2395 2396 list_for_each_entry_safe(old, tmp, &new->head, list) { 2397 ret = iterate_inodes_from_logical(old->bytenr + 2398 old->extent_offset, fs_info, 2399 path, record_one_backref, 2400 old); 2401 if (ret < 0 && ret != -ENOENT) 2402 return false; 2403 2404 /* no backref to be processed for this extent */ 2405 if (!old->count) { 2406 list_del(&old->list); 2407 kfree(old); 2408 } 2409 } 2410 2411 if (list_empty(&new->head)) 2412 return false; 2413 2414 return true; 2415 } 2416 2417 static int relink_is_mergable(struct extent_buffer *leaf, 2418 struct btrfs_file_extent_item *fi, 2419 struct new_sa_defrag_extent *new) 2420 { 2421 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2422 return 0; 2423 2424 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2425 return 0; 2426 2427 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2428 return 0; 2429 2430 if (btrfs_file_extent_encryption(leaf, fi) || 2431 btrfs_file_extent_other_encoding(leaf, fi)) 2432 return 0; 2433 2434 return 1; 2435 } 2436 2437 /* 2438 * Note the backref might has changed, and in this case we just return 0. 2439 */ 2440 static noinline int relink_extent_backref(struct btrfs_path *path, 2441 struct sa_defrag_extent_backref *prev, 2442 struct sa_defrag_extent_backref *backref) 2443 { 2444 struct btrfs_file_extent_item *extent; 2445 struct btrfs_file_extent_item *item; 2446 struct btrfs_ordered_extent *ordered; 2447 struct btrfs_trans_handle *trans; 2448 struct btrfs_fs_info *fs_info; 2449 struct btrfs_root *root; 2450 struct btrfs_key key; 2451 struct extent_buffer *leaf; 2452 struct old_sa_defrag_extent *old = backref->old; 2453 struct new_sa_defrag_extent *new = old->new; 2454 struct inode *src_inode = new->inode; 2455 struct inode *inode; 2456 struct extent_state *cached = NULL; 2457 int ret = 0; 2458 u64 start; 2459 u64 len; 2460 u64 lock_start; 2461 u64 lock_end; 2462 bool merge = false; 2463 int index; 2464 2465 if (prev && prev->root_id == backref->root_id && 2466 prev->inum == backref->inum && 2467 prev->file_pos + prev->num_bytes == backref->file_pos) 2468 merge = true; 2469 2470 /* step 1: get root */ 2471 key.objectid = backref->root_id; 2472 key.type = BTRFS_ROOT_ITEM_KEY; 2473 key.offset = (u64)-1; 2474 2475 fs_info = BTRFS_I(src_inode)->root->fs_info; 2476 index = srcu_read_lock(&fs_info->subvol_srcu); 2477 2478 root = btrfs_read_fs_root_no_name(fs_info, &key); 2479 if (IS_ERR(root)) { 2480 srcu_read_unlock(&fs_info->subvol_srcu, index); 2481 if (PTR_ERR(root) == -ENOENT) 2482 return 0; 2483 return PTR_ERR(root); 2484 } 2485 2486 if (btrfs_root_readonly(root)) { 2487 srcu_read_unlock(&fs_info->subvol_srcu, index); 2488 return 0; 2489 } 2490 2491 /* step 2: get inode */ 2492 key.objectid = backref->inum; 2493 key.type = BTRFS_INODE_ITEM_KEY; 2494 key.offset = 0; 2495 2496 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2497 if (IS_ERR(inode)) { 2498 srcu_read_unlock(&fs_info->subvol_srcu, index); 2499 return 0; 2500 } 2501 2502 srcu_read_unlock(&fs_info->subvol_srcu, index); 2503 2504 /* step 3: relink backref */ 2505 lock_start = backref->file_pos; 2506 lock_end = backref->file_pos + backref->num_bytes - 1; 2507 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2508 &cached); 2509 2510 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2511 if (ordered) { 2512 btrfs_put_ordered_extent(ordered); 2513 goto out_unlock; 2514 } 2515 2516 trans = btrfs_join_transaction(root); 2517 if (IS_ERR(trans)) { 2518 ret = PTR_ERR(trans); 2519 goto out_unlock; 2520 } 2521 2522 key.objectid = backref->inum; 2523 key.type = BTRFS_EXTENT_DATA_KEY; 2524 key.offset = backref->file_pos; 2525 2526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2527 if (ret < 0) { 2528 goto out_free_path; 2529 } else if (ret > 0) { 2530 ret = 0; 2531 goto out_free_path; 2532 } 2533 2534 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2535 struct btrfs_file_extent_item); 2536 2537 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2538 backref->generation) 2539 goto out_free_path; 2540 2541 btrfs_release_path(path); 2542 2543 start = backref->file_pos; 2544 if (backref->extent_offset < old->extent_offset + old->offset) 2545 start += old->extent_offset + old->offset - 2546 backref->extent_offset; 2547 2548 len = min(backref->extent_offset + backref->num_bytes, 2549 old->extent_offset + old->offset + old->len); 2550 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2551 2552 ret = btrfs_drop_extents(trans, root, inode, start, 2553 start + len, 1); 2554 if (ret) 2555 goto out_free_path; 2556 again: 2557 key.objectid = btrfs_ino(inode); 2558 key.type = BTRFS_EXTENT_DATA_KEY; 2559 key.offset = start; 2560 2561 path->leave_spinning = 1; 2562 if (merge) { 2563 struct btrfs_file_extent_item *fi; 2564 u64 extent_len; 2565 struct btrfs_key found_key; 2566 2567 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2568 if (ret < 0) 2569 goto out_free_path; 2570 2571 path->slots[0]--; 2572 leaf = path->nodes[0]; 2573 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2574 2575 fi = btrfs_item_ptr(leaf, path->slots[0], 2576 struct btrfs_file_extent_item); 2577 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2578 2579 if (extent_len + found_key.offset == start && 2580 relink_is_mergable(leaf, fi, new)) { 2581 btrfs_set_file_extent_num_bytes(leaf, fi, 2582 extent_len + len); 2583 btrfs_mark_buffer_dirty(leaf); 2584 inode_add_bytes(inode, len); 2585 2586 ret = 1; 2587 goto out_free_path; 2588 } else { 2589 merge = false; 2590 btrfs_release_path(path); 2591 goto again; 2592 } 2593 } 2594 2595 ret = btrfs_insert_empty_item(trans, root, path, &key, 2596 sizeof(*extent)); 2597 if (ret) { 2598 btrfs_abort_transaction(trans, root, ret); 2599 goto out_free_path; 2600 } 2601 2602 leaf = path->nodes[0]; 2603 item = btrfs_item_ptr(leaf, path->slots[0], 2604 struct btrfs_file_extent_item); 2605 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2606 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2607 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2608 btrfs_set_file_extent_num_bytes(leaf, item, len); 2609 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2610 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2611 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2612 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2613 btrfs_set_file_extent_encryption(leaf, item, 0); 2614 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2615 2616 btrfs_mark_buffer_dirty(leaf); 2617 inode_add_bytes(inode, len); 2618 btrfs_release_path(path); 2619 2620 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2621 new->disk_len, 0, 2622 backref->root_id, backref->inum, 2623 new->file_pos); /* start - extent_offset */ 2624 if (ret) { 2625 btrfs_abort_transaction(trans, root, ret); 2626 goto out_free_path; 2627 } 2628 2629 ret = 1; 2630 out_free_path: 2631 btrfs_release_path(path); 2632 path->leave_spinning = 0; 2633 btrfs_end_transaction(trans, root); 2634 out_unlock: 2635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2636 &cached, GFP_NOFS); 2637 iput(inode); 2638 return ret; 2639 } 2640 2641 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2642 { 2643 struct old_sa_defrag_extent *old, *tmp; 2644 2645 if (!new) 2646 return; 2647 2648 list_for_each_entry_safe(old, tmp, &new->head, list) { 2649 kfree(old); 2650 } 2651 kfree(new); 2652 } 2653 2654 static void relink_file_extents(struct new_sa_defrag_extent *new) 2655 { 2656 struct btrfs_path *path; 2657 struct sa_defrag_extent_backref *backref; 2658 struct sa_defrag_extent_backref *prev = NULL; 2659 struct inode *inode; 2660 struct btrfs_root *root; 2661 struct rb_node *node; 2662 int ret; 2663 2664 inode = new->inode; 2665 root = BTRFS_I(inode)->root; 2666 2667 path = btrfs_alloc_path(); 2668 if (!path) 2669 return; 2670 2671 if (!record_extent_backrefs(path, new)) { 2672 btrfs_free_path(path); 2673 goto out; 2674 } 2675 btrfs_release_path(path); 2676 2677 while (1) { 2678 node = rb_first(&new->root); 2679 if (!node) 2680 break; 2681 rb_erase(node, &new->root); 2682 2683 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2684 2685 ret = relink_extent_backref(path, prev, backref); 2686 WARN_ON(ret < 0); 2687 2688 kfree(prev); 2689 2690 if (ret == 1) 2691 prev = backref; 2692 else 2693 prev = NULL; 2694 cond_resched(); 2695 } 2696 kfree(prev); 2697 2698 btrfs_free_path(path); 2699 out: 2700 free_sa_defrag_extent(new); 2701 2702 atomic_dec(&root->fs_info->defrag_running); 2703 wake_up(&root->fs_info->transaction_wait); 2704 } 2705 2706 static struct new_sa_defrag_extent * 2707 record_old_file_extents(struct inode *inode, 2708 struct btrfs_ordered_extent *ordered) 2709 { 2710 struct btrfs_root *root = BTRFS_I(inode)->root; 2711 struct btrfs_path *path; 2712 struct btrfs_key key; 2713 struct old_sa_defrag_extent *old; 2714 struct new_sa_defrag_extent *new; 2715 int ret; 2716 2717 new = kmalloc(sizeof(*new), GFP_NOFS); 2718 if (!new) 2719 return NULL; 2720 2721 new->inode = inode; 2722 new->file_pos = ordered->file_offset; 2723 new->len = ordered->len; 2724 new->bytenr = ordered->start; 2725 new->disk_len = ordered->disk_len; 2726 new->compress_type = ordered->compress_type; 2727 new->root = RB_ROOT; 2728 INIT_LIST_HEAD(&new->head); 2729 2730 path = btrfs_alloc_path(); 2731 if (!path) 2732 goto out_kfree; 2733 2734 key.objectid = btrfs_ino(inode); 2735 key.type = BTRFS_EXTENT_DATA_KEY; 2736 key.offset = new->file_pos; 2737 2738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2739 if (ret < 0) 2740 goto out_free_path; 2741 if (ret > 0 && path->slots[0] > 0) 2742 path->slots[0]--; 2743 2744 /* find out all the old extents for the file range */ 2745 while (1) { 2746 struct btrfs_file_extent_item *extent; 2747 struct extent_buffer *l; 2748 int slot; 2749 u64 num_bytes; 2750 u64 offset; 2751 u64 end; 2752 u64 disk_bytenr; 2753 u64 extent_offset; 2754 2755 l = path->nodes[0]; 2756 slot = path->slots[0]; 2757 2758 if (slot >= btrfs_header_nritems(l)) { 2759 ret = btrfs_next_leaf(root, path); 2760 if (ret < 0) 2761 goto out_free_path; 2762 else if (ret > 0) 2763 break; 2764 continue; 2765 } 2766 2767 btrfs_item_key_to_cpu(l, &key, slot); 2768 2769 if (key.objectid != btrfs_ino(inode)) 2770 break; 2771 if (key.type != BTRFS_EXTENT_DATA_KEY) 2772 break; 2773 if (key.offset >= new->file_pos + new->len) 2774 break; 2775 2776 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2777 2778 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2779 if (key.offset + num_bytes < new->file_pos) 2780 goto next; 2781 2782 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2783 if (!disk_bytenr) 2784 goto next; 2785 2786 extent_offset = btrfs_file_extent_offset(l, extent); 2787 2788 old = kmalloc(sizeof(*old), GFP_NOFS); 2789 if (!old) 2790 goto out_free_path; 2791 2792 offset = max(new->file_pos, key.offset); 2793 end = min(new->file_pos + new->len, key.offset + num_bytes); 2794 2795 old->bytenr = disk_bytenr; 2796 old->extent_offset = extent_offset; 2797 old->offset = offset - key.offset; 2798 old->len = end - offset; 2799 old->new = new; 2800 old->count = 0; 2801 list_add_tail(&old->list, &new->head); 2802 next: 2803 path->slots[0]++; 2804 cond_resched(); 2805 } 2806 2807 btrfs_free_path(path); 2808 atomic_inc(&root->fs_info->defrag_running); 2809 2810 return new; 2811 2812 out_free_path: 2813 btrfs_free_path(path); 2814 out_kfree: 2815 free_sa_defrag_extent(new); 2816 return NULL; 2817 } 2818 2819 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2820 u64 start, u64 len) 2821 { 2822 struct btrfs_block_group_cache *cache; 2823 2824 cache = btrfs_lookup_block_group(root->fs_info, start); 2825 ASSERT(cache); 2826 2827 spin_lock(&cache->lock); 2828 cache->delalloc_bytes -= len; 2829 spin_unlock(&cache->lock); 2830 2831 btrfs_put_block_group(cache); 2832 } 2833 2834 /* as ordered data IO finishes, this gets called so we can finish 2835 * an ordered extent if the range of bytes in the file it covers are 2836 * fully written. 2837 */ 2838 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2839 { 2840 struct inode *inode = ordered_extent->inode; 2841 struct btrfs_root *root = BTRFS_I(inode)->root; 2842 struct btrfs_trans_handle *trans = NULL; 2843 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2844 struct extent_state *cached_state = NULL; 2845 struct new_sa_defrag_extent *new = NULL; 2846 int compress_type = 0; 2847 int ret = 0; 2848 u64 logical_len = ordered_extent->len; 2849 bool nolock; 2850 bool truncated = false; 2851 2852 nolock = btrfs_is_free_space_inode(inode); 2853 2854 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2855 ret = -EIO; 2856 goto out; 2857 } 2858 2859 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2860 ordered_extent->file_offset + 2861 ordered_extent->len - 1); 2862 2863 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2864 truncated = true; 2865 logical_len = ordered_extent->truncated_len; 2866 /* Truncated the entire extent, don't bother adding */ 2867 if (!logical_len) 2868 goto out; 2869 } 2870 2871 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2872 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2873 2874 /* 2875 * For mwrite(mmap + memset to write) case, we still reserve 2876 * space for NOCOW range. 2877 * As NOCOW won't cause a new delayed ref, just free the space 2878 */ 2879 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2880 ordered_extent->len); 2881 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2882 if (nolock) 2883 trans = btrfs_join_transaction_nolock(root); 2884 else 2885 trans = btrfs_join_transaction(root); 2886 if (IS_ERR(trans)) { 2887 ret = PTR_ERR(trans); 2888 trans = NULL; 2889 goto out; 2890 } 2891 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2892 ret = btrfs_update_inode_fallback(trans, root, inode); 2893 if (ret) /* -ENOMEM or corruption */ 2894 btrfs_abort_transaction(trans, root, ret); 2895 goto out; 2896 } 2897 2898 lock_extent_bits(io_tree, ordered_extent->file_offset, 2899 ordered_extent->file_offset + ordered_extent->len - 1, 2900 &cached_state); 2901 2902 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2903 ordered_extent->file_offset + ordered_extent->len - 1, 2904 EXTENT_DEFRAG, 1, cached_state); 2905 if (ret) { 2906 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2907 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2908 /* the inode is shared */ 2909 new = record_old_file_extents(inode, ordered_extent); 2910 2911 clear_extent_bit(io_tree, ordered_extent->file_offset, 2912 ordered_extent->file_offset + ordered_extent->len - 1, 2913 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2914 } 2915 2916 if (nolock) 2917 trans = btrfs_join_transaction_nolock(root); 2918 else 2919 trans = btrfs_join_transaction(root); 2920 if (IS_ERR(trans)) { 2921 ret = PTR_ERR(trans); 2922 trans = NULL; 2923 goto out_unlock; 2924 } 2925 2926 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2927 2928 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2929 compress_type = ordered_extent->compress_type; 2930 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2931 BUG_ON(compress_type); 2932 ret = btrfs_mark_extent_written(trans, inode, 2933 ordered_extent->file_offset, 2934 ordered_extent->file_offset + 2935 logical_len); 2936 } else { 2937 BUG_ON(root == root->fs_info->tree_root); 2938 ret = insert_reserved_file_extent(trans, inode, 2939 ordered_extent->file_offset, 2940 ordered_extent->start, 2941 ordered_extent->disk_len, 2942 logical_len, logical_len, 2943 compress_type, 0, 0, 2944 BTRFS_FILE_EXTENT_REG); 2945 if (!ret) 2946 btrfs_release_delalloc_bytes(root, 2947 ordered_extent->start, 2948 ordered_extent->disk_len); 2949 } 2950 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2951 ordered_extent->file_offset, ordered_extent->len, 2952 trans->transid); 2953 if (ret < 0) { 2954 btrfs_abort_transaction(trans, root, ret); 2955 goto out_unlock; 2956 } 2957 2958 add_pending_csums(trans, inode, ordered_extent->file_offset, 2959 &ordered_extent->list); 2960 2961 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2962 ret = btrfs_update_inode_fallback(trans, root, inode); 2963 if (ret) { /* -ENOMEM or corruption */ 2964 btrfs_abort_transaction(trans, root, ret); 2965 goto out_unlock; 2966 } 2967 ret = 0; 2968 out_unlock: 2969 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2970 ordered_extent->file_offset + 2971 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2972 out: 2973 if (root != root->fs_info->tree_root) 2974 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2975 if (trans) 2976 btrfs_end_transaction(trans, root); 2977 2978 if (ret || truncated) { 2979 u64 start, end; 2980 2981 if (truncated) 2982 start = ordered_extent->file_offset + logical_len; 2983 else 2984 start = ordered_extent->file_offset; 2985 end = ordered_extent->file_offset + ordered_extent->len - 1; 2986 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2987 2988 /* Drop the cache for the part of the extent we didn't write. */ 2989 btrfs_drop_extent_cache(inode, start, end, 0); 2990 2991 /* 2992 * If the ordered extent had an IOERR or something else went 2993 * wrong we need to return the space for this ordered extent 2994 * back to the allocator. We only free the extent in the 2995 * truncated case if we didn't write out the extent at all. 2996 */ 2997 if ((ret || !logical_len) && 2998 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2999 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3000 btrfs_free_reserved_extent(root, ordered_extent->start, 3001 ordered_extent->disk_len, 1); 3002 } 3003 3004 3005 /* 3006 * This needs to be done to make sure anybody waiting knows we are done 3007 * updating everything for this ordered extent. 3008 */ 3009 btrfs_remove_ordered_extent(inode, ordered_extent); 3010 3011 /* for snapshot-aware defrag */ 3012 if (new) { 3013 if (ret) { 3014 free_sa_defrag_extent(new); 3015 atomic_dec(&root->fs_info->defrag_running); 3016 } else { 3017 relink_file_extents(new); 3018 } 3019 } 3020 3021 /* once for us */ 3022 btrfs_put_ordered_extent(ordered_extent); 3023 /* once for the tree */ 3024 btrfs_put_ordered_extent(ordered_extent); 3025 3026 return ret; 3027 } 3028 3029 static void finish_ordered_fn(struct btrfs_work *work) 3030 { 3031 struct btrfs_ordered_extent *ordered_extent; 3032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3033 btrfs_finish_ordered_io(ordered_extent); 3034 } 3035 3036 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3037 struct extent_state *state, int uptodate) 3038 { 3039 struct inode *inode = page->mapping->host; 3040 struct btrfs_root *root = BTRFS_I(inode)->root; 3041 struct btrfs_ordered_extent *ordered_extent = NULL; 3042 struct btrfs_workqueue *wq; 3043 btrfs_work_func_t func; 3044 3045 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3046 3047 ClearPagePrivate2(page); 3048 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3049 end - start + 1, uptodate)) 3050 return 0; 3051 3052 if (btrfs_is_free_space_inode(inode)) { 3053 wq = root->fs_info->endio_freespace_worker; 3054 func = btrfs_freespace_write_helper; 3055 } else { 3056 wq = root->fs_info->endio_write_workers; 3057 func = btrfs_endio_write_helper; 3058 } 3059 3060 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3061 NULL); 3062 btrfs_queue_work(wq, &ordered_extent->work); 3063 3064 return 0; 3065 } 3066 3067 static int __readpage_endio_check(struct inode *inode, 3068 struct btrfs_io_bio *io_bio, 3069 int icsum, struct page *page, 3070 int pgoff, u64 start, size_t len) 3071 { 3072 char *kaddr; 3073 u32 csum_expected; 3074 u32 csum = ~(u32)0; 3075 3076 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3077 3078 kaddr = kmap_atomic(page); 3079 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3080 btrfs_csum_final(csum, (char *)&csum); 3081 if (csum != csum_expected) 3082 goto zeroit; 3083 3084 kunmap_atomic(kaddr); 3085 return 0; 3086 zeroit: 3087 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3088 "csum failed ino %llu off %llu csum %u expected csum %u", 3089 btrfs_ino(inode), start, csum, csum_expected); 3090 memset(kaddr + pgoff, 1, len); 3091 flush_dcache_page(page); 3092 kunmap_atomic(kaddr); 3093 if (csum_expected == 0) 3094 return 0; 3095 return -EIO; 3096 } 3097 3098 /* 3099 * when reads are done, we need to check csums to verify the data is correct 3100 * if there's a match, we allow the bio to finish. If not, the code in 3101 * extent_io.c will try to find good copies for us. 3102 */ 3103 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3104 u64 phy_offset, struct page *page, 3105 u64 start, u64 end, int mirror) 3106 { 3107 size_t offset = start - page_offset(page); 3108 struct inode *inode = page->mapping->host; 3109 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3110 struct btrfs_root *root = BTRFS_I(inode)->root; 3111 3112 if (PageChecked(page)) { 3113 ClearPageChecked(page); 3114 return 0; 3115 } 3116 3117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3118 return 0; 3119 3120 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3121 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3122 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3123 return 0; 3124 } 3125 3126 phy_offset >>= inode->i_sb->s_blocksize_bits; 3127 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3128 start, (size_t)(end - start + 1)); 3129 } 3130 3131 void btrfs_add_delayed_iput(struct inode *inode) 3132 { 3133 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3134 struct btrfs_inode *binode = BTRFS_I(inode); 3135 3136 if (atomic_add_unless(&inode->i_count, -1, 1)) 3137 return; 3138 3139 spin_lock(&fs_info->delayed_iput_lock); 3140 if (binode->delayed_iput_count == 0) { 3141 ASSERT(list_empty(&binode->delayed_iput)); 3142 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3143 } else { 3144 binode->delayed_iput_count++; 3145 } 3146 spin_unlock(&fs_info->delayed_iput_lock); 3147 } 3148 3149 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3150 { 3151 struct btrfs_fs_info *fs_info = root->fs_info; 3152 3153 spin_lock(&fs_info->delayed_iput_lock); 3154 while (!list_empty(&fs_info->delayed_iputs)) { 3155 struct btrfs_inode *inode; 3156 3157 inode = list_first_entry(&fs_info->delayed_iputs, 3158 struct btrfs_inode, delayed_iput); 3159 if (inode->delayed_iput_count) { 3160 inode->delayed_iput_count--; 3161 list_move_tail(&inode->delayed_iput, 3162 &fs_info->delayed_iputs); 3163 } else { 3164 list_del_init(&inode->delayed_iput); 3165 } 3166 spin_unlock(&fs_info->delayed_iput_lock); 3167 iput(&inode->vfs_inode); 3168 spin_lock(&fs_info->delayed_iput_lock); 3169 } 3170 spin_unlock(&fs_info->delayed_iput_lock); 3171 } 3172 3173 /* 3174 * This is called in transaction commit time. If there are no orphan 3175 * files in the subvolume, it removes orphan item and frees block_rsv 3176 * structure. 3177 */ 3178 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3179 struct btrfs_root *root) 3180 { 3181 struct btrfs_block_rsv *block_rsv; 3182 int ret; 3183 3184 if (atomic_read(&root->orphan_inodes) || 3185 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3186 return; 3187 3188 spin_lock(&root->orphan_lock); 3189 if (atomic_read(&root->orphan_inodes)) { 3190 spin_unlock(&root->orphan_lock); 3191 return; 3192 } 3193 3194 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3195 spin_unlock(&root->orphan_lock); 3196 return; 3197 } 3198 3199 block_rsv = root->orphan_block_rsv; 3200 root->orphan_block_rsv = NULL; 3201 spin_unlock(&root->orphan_lock); 3202 3203 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3204 btrfs_root_refs(&root->root_item) > 0) { 3205 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3206 root->root_key.objectid); 3207 if (ret) 3208 btrfs_abort_transaction(trans, root, ret); 3209 else 3210 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3211 &root->state); 3212 } 3213 3214 if (block_rsv) { 3215 WARN_ON(block_rsv->size > 0); 3216 btrfs_free_block_rsv(root, block_rsv); 3217 } 3218 } 3219 3220 /* 3221 * This creates an orphan entry for the given inode in case something goes 3222 * wrong in the middle of an unlink/truncate. 3223 * 3224 * NOTE: caller of this function should reserve 5 units of metadata for 3225 * this function. 3226 */ 3227 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3228 { 3229 struct btrfs_root *root = BTRFS_I(inode)->root; 3230 struct btrfs_block_rsv *block_rsv = NULL; 3231 int reserve = 0; 3232 int insert = 0; 3233 int ret; 3234 3235 if (!root->orphan_block_rsv) { 3236 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3237 if (!block_rsv) 3238 return -ENOMEM; 3239 } 3240 3241 spin_lock(&root->orphan_lock); 3242 if (!root->orphan_block_rsv) { 3243 root->orphan_block_rsv = block_rsv; 3244 } else if (block_rsv) { 3245 btrfs_free_block_rsv(root, block_rsv); 3246 block_rsv = NULL; 3247 } 3248 3249 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3250 &BTRFS_I(inode)->runtime_flags)) { 3251 #if 0 3252 /* 3253 * For proper ENOSPC handling, we should do orphan 3254 * cleanup when mounting. But this introduces backward 3255 * compatibility issue. 3256 */ 3257 if (!xchg(&root->orphan_item_inserted, 1)) 3258 insert = 2; 3259 else 3260 insert = 1; 3261 #endif 3262 insert = 1; 3263 atomic_inc(&root->orphan_inodes); 3264 } 3265 3266 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3267 &BTRFS_I(inode)->runtime_flags)) 3268 reserve = 1; 3269 spin_unlock(&root->orphan_lock); 3270 3271 /* grab metadata reservation from transaction handle */ 3272 if (reserve) { 3273 ret = btrfs_orphan_reserve_metadata(trans, inode); 3274 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3275 } 3276 3277 /* insert an orphan item to track this unlinked/truncated file */ 3278 if (insert >= 1) { 3279 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3280 if (ret) { 3281 atomic_dec(&root->orphan_inodes); 3282 if (reserve) { 3283 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3284 &BTRFS_I(inode)->runtime_flags); 3285 btrfs_orphan_release_metadata(inode); 3286 } 3287 if (ret != -EEXIST) { 3288 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3289 &BTRFS_I(inode)->runtime_flags); 3290 btrfs_abort_transaction(trans, root, ret); 3291 return ret; 3292 } 3293 } 3294 ret = 0; 3295 } 3296 3297 /* insert an orphan item to track subvolume contains orphan files */ 3298 if (insert >= 2) { 3299 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3300 root->root_key.objectid); 3301 if (ret && ret != -EEXIST) { 3302 btrfs_abort_transaction(trans, root, ret); 3303 return ret; 3304 } 3305 } 3306 return 0; 3307 } 3308 3309 /* 3310 * We have done the truncate/delete so we can go ahead and remove the orphan 3311 * item for this particular inode. 3312 */ 3313 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3314 struct inode *inode) 3315 { 3316 struct btrfs_root *root = BTRFS_I(inode)->root; 3317 int delete_item = 0; 3318 int release_rsv = 0; 3319 int ret = 0; 3320 3321 spin_lock(&root->orphan_lock); 3322 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3323 &BTRFS_I(inode)->runtime_flags)) 3324 delete_item = 1; 3325 3326 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3327 &BTRFS_I(inode)->runtime_flags)) 3328 release_rsv = 1; 3329 spin_unlock(&root->orphan_lock); 3330 3331 if (delete_item) { 3332 atomic_dec(&root->orphan_inodes); 3333 if (trans) 3334 ret = btrfs_del_orphan_item(trans, root, 3335 btrfs_ino(inode)); 3336 } 3337 3338 if (release_rsv) 3339 btrfs_orphan_release_metadata(inode); 3340 3341 return ret; 3342 } 3343 3344 /* 3345 * this cleans up any orphans that may be left on the list from the last use 3346 * of this root. 3347 */ 3348 int btrfs_orphan_cleanup(struct btrfs_root *root) 3349 { 3350 struct btrfs_path *path; 3351 struct extent_buffer *leaf; 3352 struct btrfs_key key, found_key; 3353 struct btrfs_trans_handle *trans; 3354 struct inode *inode; 3355 u64 last_objectid = 0; 3356 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3357 3358 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3359 return 0; 3360 3361 path = btrfs_alloc_path(); 3362 if (!path) { 3363 ret = -ENOMEM; 3364 goto out; 3365 } 3366 path->reada = READA_BACK; 3367 3368 key.objectid = BTRFS_ORPHAN_OBJECTID; 3369 key.type = BTRFS_ORPHAN_ITEM_KEY; 3370 key.offset = (u64)-1; 3371 3372 while (1) { 3373 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3374 if (ret < 0) 3375 goto out; 3376 3377 /* 3378 * if ret == 0 means we found what we were searching for, which 3379 * is weird, but possible, so only screw with path if we didn't 3380 * find the key and see if we have stuff that matches 3381 */ 3382 if (ret > 0) { 3383 ret = 0; 3384 if (path->slots[0] == 0) 3385 break; 3386 path->slots[0]--; 3387 } 3388 3389 /* pull out the item */ 3390 leaf = path->nodes[0]; 3391 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3392 3393 /* make sure the item matches what we want */ 3394 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3395 break; 3396 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3397 break; 3398 3399 /* release the path since we're done with it */ 3400 btrfs_release_path(path); 3401 3402 /* 3403 * this is where we are basically btrfs_lookup, without the 3404 * crossing root thing. we store the inode number in the 3405 * offset of the orphan item. 3406 */ 3407 3408 if (found_key.offset == last_objectid) { 3409 btrfs_err(root->fs_info, 3410 "Error removing orphan entry, stopping orphan cleanup"); 3411 ret = -EINVAL; 3412 goto out; 3413 } 3414 3415 last_objectid = found_key.offset; 3416 3417 found_key.objectid = found_key.offset; 3418 found_key.type = BTRFS_INODE_ITEM_KEY; 3419 found_key.offset = 0; 3420 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3421 ret = PTR_ERR_OR_ZERO(inode); 3422 if (ret && ret != -ESTALE) 3423 goto out; 3424 3425 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3426 struct btrfs_root *dead_root; 3427 struct btrfs_fs_info *fs_info = root->fs_info; 3428 int is_dead_root = 0; 3429 3430 /* 3431 * this is an orphan in the tree root. Currently these 3432 * could come from 2 sources: 3433 * a) a snapshot deletion in progress 3434 * b) a free space cache inode 3435 * We need to distinguish those two, as the snapshot 3436 * orphan must not get deleted. 3437 * find_dead_roots already ran before us, so if this 3438 * is a snapshot deletion, we should find the root 3439 * in the dead_roots list 3440 */ 3441 spin_lock(&fs_info->trans_lock); 3442 list_for_each_entry(dead_root, &fs_info->dead_roots, 3443 root_list) { 3444 if (dead_root->root_key.objectid == 3445 found_key.objectid) { 3446 is_dead_root = 1; 3447 break; 3448 } 3449 } 3450 spin_unlock(&fs_info->trans_lock); 3451 if (is_dead_root) { 3452 /* prevent this orphan from being found again */ 3453 key.offset = found_key.objectid - 1; 3454 continue; 3455 } 3456 } 3457 /* 3458 * Inode is already gone but the orphan item is still there, 3459 * kill the orphan item. 3460 */ 3461 if (ret == -ESTALE) { 3462 trans = btrfs_start_transaction(root, 1); 3463 if (IS_ERR(trans)) { 3464 ret = PTR_ERR(trans); 3465 goto out; 3466 } 3467 btrfs_debug(root->fs_info, "auto deleting %Lu", 3468 found_key.objectid); 3469 ret = btrfs_del_orphan_item(trans, root, 3470 found_key.objectid); 3471 btrfs_end_transaction(trans, root); 3472 if (ret) 3473 goto out; 3474 continue; 3475 } 3476 3477 /* 3478 * add this inode to the orphan list so btrfs_orphan_del does 3479 * the proper thing when we hit it 3480 */ 3481 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3482 &BTRFS_I(inode)->runtime_flags); 3483 atomic_inc(&root->orphan_inodes); 3484 3485 /* if we have links, this was a truncate, lets do that */ 3486 if (inode->i_nlink) { 3487 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3488 iput(inode); 3489 continue; 3490 } 3491 nr_truncate++; 3492 3493 /* 1 for the orphan item deletion. */ 3494 trans = btrfs_start_transaction(root, 1); 3495 if (IS_ERR(trans)) { 3496 iput(inode); 3497 ret = PTR_ERR(trans); 3498 goto out; 3499 } 3500 ret = btrfs_orphan_add(trans, inode); 3501 btrfs_end_transaction(trans, root); 3502 if (ret) { 3503 iput(inode); 3504 goto out; 3505 } 3506 3507 ret = btrfs_truncate(inode); 3508 if (ret) 3509 btrfs_orphan_del(NULL, inode); 3510 } else { 3511 nr_unlink++; 3512 } 3513 3514 /* this will do delete_inode and everything for us */ 3515 iput(inode); 3516 if (ret) 3517 goto out; 3518 } 3519 /* release the path since we're done with it */ 3520 btrfs_release_path(path); 3521 3522 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3523 3524 if (root->orphan_block_rsv) 3525 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3526 (u64)-1); 3527 3528 if (root->orphan_block_rsv || 3529 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3530 trans = btrfs_join_transaction(root); 3531 if (!IS_ERR(trans)) 3532 btrfs_end_transaction(trans, root); 3533 } 3534 3535 if (nr_unlink) 3536 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3537 if (nr_truncate) 3538 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3539 3540 out: 3541 if (ret) 3542 btrfs_err(root->fs_info, 3543 "could not do orphan cleanup %d", ret); 3544 btrfs_free_path(path); 3545 return ret; 3546 } 3547 3548 /* 3549 * very simple check to peek ahead in the leaf looking for xattrs. If we 3550 * don't find any xattrs, we know there can't be any acls. 3551 * 3552 * slot is the slot the inode is in, objectid is the objectid of the inode 3553 */ 3554 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3555 int slot, u64 objectid, 3556 int *first_xattr_slot) 3557 { 3558 u32 nritems = btrfs_header_nritems(leaf); 3559 struct btrfs_key found_key; 3560 static u64 xattr_access = 0; 3561 static u64 xattr_default = 0; 3562 int scanned = 0; 3563 3564 if (!xattr_access) { 3565 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3566 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3567 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3568 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3569 } 3570 3571 slot++; 3572 *first_xattr_slot = -1; 3573 while (slot < nritems) { 3574 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3575 3576 /* we found a different objectid, there must not be acls */ 3577 if (found_key.objectid != objectid) 3578 return 0; 3579 3580 /* we found an xattr, assume we've got an acl */ 3581 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3582 if (*first_xattr_slot == -1) 3583 *first_xattr_slot = slot; 3584 if (found_key.offset == xattr_access || 3585 found_key.offset == xattr_default) 3586 return 1; 3587 } 3588 3589 /* 3590 * we found a key greater than an xattr key, there can't 3591 * be any acls later on 3592 */ 3593 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3594 return 0; 3595 3596 slot++; 3597 scanned++; 3598 3599 /* 3600 * it goes inode, inode backrefs, xattrs, extents, 3601 * so if there are a ton of hard links to an inode there can 3602 * be a lot of backrefs. Don't waste time searching too hard, 3603 * this is just an optimization 3604 */ 3605 if (scanned >= 8) 3606 break; 3607 } 3608 /* we hit the end of the leaf before we found an xattr or 3609 * something larger than an xattr. We have to assume the inode 3610 * has acls 3611 */ 3612 if (*first_xattr_slot == -1) 3613 *first_xattr_slot = slot; 3614 return 1; 3615 } 3616 3617 /* 3618 * read an inode from the btree into the in-memory inode 3619 */ 3620 static void btrfs_read_locked_inode(struct inode *inode) 3621 { 3622 struct btrfs_path *path; 3623 struct extent_buffer *leaf; 3624 struct btrfs_inode_item *inode_item; 3625 struct btrfs_root *root = BTRFS_I(inode)->root; 3626 struct btrfs_key location; 3627 unsigned long ptr; 3628 int maybe_acls; 3629 u32 rdev; 3630 int ret; 3631 bool filled = false; 3632 int first_xattr_slot; 3633 3634 ret = btrfs_fill_inode(inode, &rdev); 3635 if (!ret) 3636 filled = true; 3637 3638 path = btrfs_alloc_path(); 3639 if (!path) 3640 goto make_bad; 3641 3642 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3643 3644 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3645 if (ret) 3646 goto make_bad; 3647 3648 leaf = path->nodes[0]; 3649 3650 if (filled) 3651 goto cache_index; 3652 3653 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3654 struct btrfs_inode_item); 3655 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3656 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3657 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3658 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3659 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3660 3661 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3662 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3663 3664 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3665 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3666 3667 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3668 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3669 3670 BTRFS_I(inode)->i_otime.tv_sec = 3671 btrfs_timespec_sec(leaf, &inode_item->otime); 3672 BTRFS_I(inode)->i_otime.tv_nsec = 3673 btrfs_timespec_nsec(leaf, &inode_item->otime); 3674 3675 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3676 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3677 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3678 3679 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3680 inode->i_generation = BTRFS_I(inode)->generation; 3681 inode->i_rdev = 0; 3682 rdev = btrfs_inode_rdev(leaf, inode_item); 3683 3684 BTRFS_I(inode)->index_cnt = (u64)-1; 3685 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3686 3687 cache_index: 3688 /* 3689 * If we were modified in the current generation and evicted from memory 3690 * and then re-read we need to do a full sync since we don't have any 3691 * idea about which extents were modified before we were evicted from 3692 * cache. 3693 * 3694 * This is required for both inode re-read from disk and delayed inode 3695 * in delayed_nodes_tree. 3696 */ 3697 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3698 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3699 &BTRFS_I(inode)->runtime_flags); 3700 3701 /* 3702 * We don't persist the id of the transaction where an unlink operation 3703 * against the inode was last made. So here we assume the inode might 3704 * have been evicted, and therefore the exact value of last_unlink_trans 3705 * lost, and set it to last_trans to avoid metadata inconsistencies 3706 * between the inode and its parent if the inode is fsync'ed and the log 3707 * replayed. For example, in the scenario: 3708 * 3709 * touch mydir/foo 3710 * ln mydir/foo mydir/bar 3711 * sync 3712 * unlink mydir/bar 3713 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3714 * xfs_io -c fsync mydir/foo 3715 * <power failure> 3716 * mount fs, triggers fsync log replay 3717 * 3718 * We must make sure that when we fsync our inode foo we also log its 3719 * parent inode, otherwise after log replay the parent still has the 3720 * dentry with the "bar" name but our inode foo has a link count of 1 3721 * and doesn't have an inode ref with the name "bar" anymore. 3722 * 3723 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3724 * but it guarantees correctness at the expense of occasional full 3725 * transaction commits on fsync if our inode is a directory, or if our 3726 * inode is not a directory, logging its parent unnecessarily. 3727 */ 3728 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3729 3730 path->slots[0]++; 3731 if (inode->i_nlink != 1 || 3732 path->slots[0] >= btrfs_header_nritems(leaf)) 3733 goto cache_acl; 3734 3735 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3736 if (location.objectid != btrfs_ino(inode)) 3737 goto cache_acl; 3738 3739 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3740 if (location.type == BTRFS_INODE_REF_KEY) { 3741 struct btrfs_inode_ref *ref; 3742 3743 ref = (struct btrfs_inode_ref *)ptr; 3744 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3745 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3746 struct btrfs_inode_extref *extref; 3747 3748 extref = (struct btrfs_inode_extref *)ptr; 3749 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3750 extref); 3751 } 3752 cache_acl: 3753 /* 3754 * try to precache a NULL acl entry for files that don't have 3755 * any xattrs or acls 3756 */ 3757 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3758 btrfs_ino(inode), &first_xattr_slot); 3759 if (first_xattr_slot != -1) { 3760 path->slots[0] = first_xattr_slot; 3761 ret = btrfs_load_inode_props(inode, path); 3762 if (ret) 3763 btrfs_err(root->fs_info, 3764 "error loading props for ino %llu (root %llu): %d", 3765 btrfs_ino(inode), 3766 root->root_key.objectid, ret); 3767 } 3768 btrfs_free_path(path); 3769 3770 if (!maybe_acls) 3771 cache_no_acl(inode); 3772 3773 switch (inode->i_mode & S_IFMT) { 3774 case S_IFREG: 3775 inode->i_mapping->a_ops = &btrfs_aops; 3776 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3777 inode->i_fop = &btrfs_file_operations; 3778 inode->i_op = &btrfs_file_inode_operations; 3779 break; 3780 case S_IFDIR: 3781 inode->i_fop = &btrfs_dir_file_operations; 3782 if (root == root->fs_info->tree_root) 3783 inode->i_op = &btrfs_dir_ro_inode_operations; 3784 else 3785 inode->i_op = &btrfs_dir_inode_operations; 3786 break; 3787 case S_IFLNK: 3788 inode->i_op = &btrfs_symlink_inode_operations; 3789 inode_nohighmem(inode); 3790 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3791 break; 3792 default: 3793 inode->i_op = &btrfs_special_inode_operations; 3794 init_special_inode(inode, inode->i_mode, rdev); 3795 break; 3796 } 3797 3798 btrfs_update_iflags(inode); 3799 return; 3800 3801 make_bad: 3802 btrfs_free_path(path); 3803 make_bad_inode(inode); 3804 } 3805 3806 /* 3807 * given a leaf and an inode, copy the inode fields into the leaf 3808 */ 3809 static void fill_inode_item(struct btrfs_trans_handle *trans, 3810 struct extent_buffer *leaf, 3811 struct btrfs_inode_item *item, 3812 struct inode *inode) 3813 { 3814 struct btrfs_map_token token; 3815 3816 btrfs_init_map_token(&token); 3817 3818 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3819 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3820 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3821 &token); 3822 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3823 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3824 3825 btrfs_set_token_timespec_sec(leaf, &item->atime, 3826 inode->i_atime.tv_sec, &token); 3827 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3828 inode->i_atime.tv_nsec, &token); 3829 3830 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3831 inode->i_mtime.tv_sec, &token); 3832 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3833 inode->i_mtime.tv_nsec, &token); 3834 3835 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3836 inode->i_ctime.tv_sec, &token); 3837 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3838 inode->i_ctime.tv_nsec, &token); 3839 3840 btrfs_set_token_timespec_sec(leaf, &item->otime, 3841 BTRFS_I(inode)->i_otime.tv_sec, &token); 3842 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3843 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3844 3845 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3846 &token); 3847 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3848 &token); 3849 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3850 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3851 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3852 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3853 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3854 } 3855 3856 /* 3857 * copy everything in the in-memory inode into the btree. 3858 */ 3859 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3860 struct btrfs_root *root, struct inode *inode) 3861 { 3862 struct btrfs_inode_item *inode_item; 3863 struct btrfs_path *path; 3864 struct extent_buffer *leaf; 3865 int ret; 3866 3867 path = btrfs_alloc_path(); 3868 if (!path) 3869 return -ENOMEM; 3870 3871 path->leave_spinning = 1; 3872 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3873 1); 3874 if (ret) { 3875 if (ret > 0) 3876 ret = -ENOENT; 3877 goto failed; 3878 } 3879 3880 leaf = path->nodes[0]; 3881 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3882 struct btrfs_inode_item); 3883 3884 fill_inode_item(trans, leaf, inode_item, inode); 3885 btrfs_mark_buffer_dirty(leaf); 3886 btrfs_set_inode_last_trans(trans, inode); 3887 ret = 0; 3888 failed: 3889 btrfs_free_path(path); 3890 return ret; 3891 } 3892 3893 /* 3894 * copy everything in the in-memory inode into the btree. 3895 */ 3896 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3897 struct btrfs_root *root, struct inode *inode) 3898 { 3899 int ret; 3900 3901 /* 3902 * If the inode is a free space inode, we can deadlock during commit 3903 * if we put it into the delayed code. 3904 * 3905 * The data relocation inode should also be directly updated 3906 * without delay 3907 */ 3908 if (!btrfs_is_free_space_inode(inode) 3909 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3910 && !root->fs_info->log_root_recovering) { 3911 btrfs_update_root_times(trans, root); 3912 3913 ret = btrfs_delayed_update_inode(trans, root, inode); 3914 if (!ret) 3915 btrfs_set_inode_last_trans(trans, inode); 3916 return ret; 3917 } 3918 3919 return btrfs_update_inode_item(trans, root, inode); 3920 } 3921 3922 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3923 struct btrfs_root *root, 3924 struct inode *inode) 3925 { 3926 int ret; 3927 3928 ret = btrfs_update_inode(trans, root, inode); 3929 if (ret == -ENOSPC) 3930 return btrfs_update_inode_item(trans, root, inode); 3931 return ret; 3932 } 3933 3934 /* 3935 * unlink helper that gets used here in inode.c and in the tree logging 3936 * recovery code. It remove a link in a directory with a given name, and 3937 * also drops the back refs in the inode to the directory 3938 */ 3939 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3940 struct btrfs_root *root, 3941 struct inode *dir, struct inode *inode, 3942 const char *name, int name_len) 3943 { 3944 struct btrfs_path *path; 3945 int ret = 0; 3946 struct extent_buffer *leaf; 3947 struct btrfs_dir_item *di; 3948 struct btrfs_key key; 3949 u64 index; 3950 u64 ino = btrfs_ino(inode); 3951 u64 dir_ino = btrfs_ino(dir); 3952 3953 path = btrfs_alloc_path(); 3954 if (!path) { 3955 ret = -ENOMEM; 3956 goto out; 3957 } 3958 3959 path->leave_spinning = 1; 3960 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3961 name, name_len, -1); 3962 if (IS_ERR(di)) { 3963 ret = PTR_ERR(di); 3964 goto err; 3965 } 3966 if (!di) { 3967 ret = -ENOENT; 3968 goto err; 3969 } 3970 leaf = path->nodes[0]; 3971 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3972 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3973 if (ret) 3974 goto err; 3975 btrfs_release_path(path); 3976 3977 /* 3978 * If we don't have dir index, we have to get it by looking up 3979 * the inode ref, since we get the inode ref, remove it directly, 3980 * it is unnecessary to do delayed deletion. 3981 * 3982 * But if we have dir index, needn't search inode ref to get it. 3983 * Since the inode ref is close to the inode item, it is better 3984 * that we delay to delete it, and just do this deletion when 3985 * we update the inode item. 3986 */ 3987 if (BTRFS_I(inode)->dir_index) { 3988 ret = btrfs_delayed_delete_inode_ref(inode); 3989 if (!ret) { 3990 index = BTRFS_I(inode)->dir_index; 3991 goto skip_backref; 3992 } 3993 } 3994 3995 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3996 dir_ino, &index); 3997 if (ret) { 3998 btrfs_info(root->fs_info, 3999 "failed to delete reference to %.*s, inode %llu parent %llu", 4000 name_len, name, ino, dir_ino); 4001 btrfs_abort_transaction(trans, root, ret); 4002 goto err; 4003 } 4004 skip_backref: 4005 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4006 if (ret) { 4007 btrfs_abort_transaction(trans, root, ret); 4008 goto err; 4009 } 4010 4011 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 4012 inode, dir_ino); 4013 if (ret != 0 && ret != -ENOENT) { 4014 btrfs_abort_transaction(trans, root, ret); 4015 goto err; 4016 } 4017 4018 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4019 dir, index); 4020 if (ret == -ENOENT) 4021 ret = 0; 4022 else if (ret) 4023 btrfs_abort_transaction(trans, root, ret); 4024 err: 4025 btrfs_free_path(path); 4026 if (ret) 4027 goto out; 4028 4029 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4030 inode_inc_iversion(inode); 4031 inode_inc_iversion(dir); 4032 inode->i_ctime = dir->i_mtime = 4033 dir->i_ctime = current_fs_time(inode->i_sb); 4034 ret = btrfs_update_inode(trans, root, dir); 4035 out: 4036 return ret; 4037 } 4038 4039 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4040 struct btrfs_root *root, 4041 struct inode *dir, struct inode *inode, 4042 const char *name, int name_len) 4043 { 4044 int ret; 4045 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4046 if (!ret) { 4047 drop_nlink(inode); 4048 ret = btrfs_update_inode(trans, root, inode); 4049 } 4050 return ret; 4051 } 4052 4053 /* 4054 * helper to start transaction for unlink and rmdir. 4055 * 4056 * unlink and rmdir are special in btrfs, they do not always free space, so 4057 * if we cannot make our reservations the normal way try and see if there is 4058 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4059 * allow the unlink to occur. 4060 */ 4061 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4062 { 4063 struct btrfs_root *root = BTRFS_I(dir)->root; 4064 4065 /* 4066 * 1 for the possible orphan item 4067 * 1 for the dir item 4068 * 1 for the dir index 4069 * 1 for the inode ref 4070 * 1 for the inode 4071 */ 4072 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4073 } 4074 4075 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4076 { 4077 struct btrfs_root *root = BTRFS_I(dir)->root; 4078 struct btrfs_trans_handle *trans; 4079 struct inode *inode = d_inode(dentry); 4080 int ret; 4081 4082 trans = __unlink_start_trans(dir); 4083 if (IS_ERR(trans)) 4084 return PTR_ERR(trans); 4085 4086 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4087 4088 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4089 dentry->d_name.name, dentry->d_name.len); 4090 if (ret) 4091 goto out; 4092 4093 if (inode->i_nlink == 0) { 4094 ret = btrfs_orphan_add(trans, inode); 4095 if (ret) 4096 goto out; 4097 } 4098 4099 out: 4100 btrfs_end_transaction(trans, root); 4101 btrfs_btree_balance_dirty(root); 4102 return ret; 4103 } 4104 4105 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4106 struct btrfs_root *root, 4107 struct inode *dir, u64 objectid, 4108 const char *name, int name_len) 4109 { 4110 struct btrfs_path *path; 4111 struct extent_buffer *leaf; 4112 struct btrfs_dir_item *di; 4113 struct btrfs_key key; 4114 u64 index; 4115 int ret; 4116 u64 dir_ino = btrfs_ino(dir); 4117 4118 path = btrfs_alloc_path(); 4119 if (!path) 4120 return -ENOMEM; 4121 4122 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4123 name, name_len, -1); 4124 if (IS_ERR_OR_NULL(di)) { 4125 if (!di) 4126 ret = -ENOENT; 4127 else 4128 ret = PTR_ERR(di); 4129 goto out; 4130 } 4131 4132 leaf = path->nodes[0]; 4133 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4134 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4135 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4136 if (ret) { 4137 btrfs_abort_transaction(trans, root, ret); 4138 goto out; 4139 } 4140 btrfs_release_path(path); 4141 4142 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4143 objectid, root->root_key.objectid, 4144 dir_ino, &index, name, name_len); 4145 if (ret < 0) { 4146 if (ret != -ENOENT) { 4147 btrfs_abort_transaction(trans, root, ret); 4148 goto out; 4149 } 4150 di = btrfs_search_dir_index_item(root, path, dir_ino, 4151 name, name_len); 4152 if (IS_ERR_OR_NULL(di)) { 4153 if (!di) 4154 ret = -ENOENT; 4155 else 4156 ret = PTR_ERR(di); 4157 btrfs_abort_transaction(trans, root, ret); 4158 goto out; 4159 } 4160 4161 leaf = path->nodes[0]; 4162 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4163 btrfs_release_path(path); 4164 index = key.offset; 4165 } 4166 btrfs_release_path(path); 4167 4168 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4169 if (ret) { 4170 btrfs_abort_transaction(trans, root, ret); 4171 goto out; 4172 } 4173 4174 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4175 inode_inc_iversion(dir); 4176 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); 4177 ret = btrfs_update_inode_fallback(trans, root, dir); 4178 if (ret) 4179 btrfs_abort_transaction(trans, root, ret); 4180 out: 4181 btrfs_free_path(path); 4182 return ret; 4183 } 4184 4185 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4186 { 4187 struct inode *inode = d_inode(dentry); 4188 int err = 0; 4189 struct btrfs_root *root = BTRFS_I(dir)->root; 4190 struct btrfs_trans_handle *trans; 4191 4192 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4193 return -ENOTEMPTY; 4194 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4195 return -EPERM; 4196 4197 trans = __unlink_start_trans(dir); 4198 if (IS_ERR(trans)) 4199 return PTR_ERR(trans); 4200 4201 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4202 err = btrfs_unlink_subvol(trans, root, dir, 4203 BTRFS_I(inode)->location.objectid, 4204 dentry->d_name.name, 4205 dentry->d_name.len); 4206 goto out; 4207 } 4208 4209 err = btrfs_orphan_add(trans, inode); 4210 if (err) 4211 goto out; 4212 4213 /* now the directory is empty */ 4214 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4215 dentry->d_name.name, dentry->d_name.len); 4216 if (!err) 4217 btrfs_i_size_write(inode, 0); 4218 out: 4219 btrfs_end_transaction(trans, root); 4220 btrfs_btree_balance_dirty(root); 4221 4222 return err; 4223 } 4224 4225 static int truncate_space_check(struct btrfs_trans_handle *trans, 4226 struct btrfs_root *root, 4227 u64 bytes_deleted) 4228 { 4229 int ret; 4230 4231 /* 4232 * This is only used to apply pressure to the enospc system, we don't 4233 * intend to use this reservation at all. 4234 */ 4235 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4236 bytes_deleted *= root->nodesize; 4237 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4238 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4239 if (!ret) { 4240 trace_btrfs_space_reservation(root->fs_info, "transaction", 4241 trans->transid, 4242 bytes_deleted, 1); 4243 trans->bytes_reserved += bytes_deleted; 4244 } 4245 return ret; 4246 4247 } 4248 4249 static int truncate_inline_extent(struct inode *inode, 4250 struct btrfs_path *path, 4251 struct btrfs_key *found_key, 4252 const u64 item_end, 4253 const u64 new_size) 4254 { 4255 struct extent_buffer *leaf = path->nodes[0]; 4256 int slot = path->slots[0]; 4257 struct btrfs_file_extent_item *fi; 4258 u32 size = (u32)(new_size - found_key->offset); 4259 struct btrfs_root *root = BTRFS_I(inode)->root; 4260 4261 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4262 4263 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4264 loff_t offset = new_size; 4265 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4266 4267 /* 4268 * Zero out the remaining of the last page of our inline extent, 4269 * instead of directly truncating our inline extent here - that 4270 * would be much more complex (decompressing all the data, then 4271 * compressing the truncated data, which might be bigger than 4272 * the size of the inline extent, resize the extent, etc). 4273 * We release the path because to get the page we might need to 4274 * read the extent item from disk (data not in the page cache). 4275 */ 4276 btrfs_release_path(path); 4277 return btrfs_truncate_block(inode, offset, page_end - offset, 4278 0); 4279 } 4280 4281 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4282 size = btrfs_file_extent_calc_inline_size(size); 4283 btrfs_truncate_item(root, path, size, 1); 4284 4285 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4286 inode_sub_bytes(inode, item_end + 1 - new_size); 4287 4288 return 0; 4289 } 4290 4291 /* 4292 * this can truncate away extent items, csum items and directory items. 4293 * It starts at a high offset and removes keys until it can't find 4294 * any higher than new_size 4295 * 4296 * csum items that cross the new i_size are truncated to the new size 4297 * as well. 4298 * 4299 * min_type is the minimum key type to truncate down to. If set to 0, this 4300 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4301 */ 4302 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4303 struct btrfs_root *root, 4304 struct inode *inode, 4305 u64 new_size, u32 min_type) 4306 { 4307 struct btrfs_path *path; 4308 struct extent_buffer *leaf; 4309 struct btrfs_file_extent_item *fi; 4310 struct btrfs_key key; 4311 struct btrfs_key found_key; 4312 u64 extent_start = 0; 4313 u64 extent_num_bytes = 0; 4314 u64 extent_offset = 0; 4315 u64 item_end = 0; 4316 u64 last_size = new_size; 4317 u32 found_type = (u8)-1; 4318 int found_extent; 4319 int del_item; 4320 int pending_del_nr = 0; 4321 int pending_del_slot = 0; 4322 int extent_type = -1; 4323 int ret; 4324 int err = 0; 4325 u64 ino = btrfs_ino(inode); 4326 u64 bytes_deleted = 0; 4327 bool be_nice = 0; 4328 bool should_throttle = 0; 4329 bool should_end = 0; 4330 4331 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4332 4333 /* 4334 * for non-free space inodes and ref cows, we want to back off from 4335 * time to time 4336 */ 4337 if (!btrfs_is_free_space_inode(inode) && 4338 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4339 be_nice = 1; 4340 4341 path = btrfs_alloc_path(); 4342 if (!path) 4343 return -ENOMEM; 4344 path->reada = READA_BACK; 4345 4346 /* 4347 * We want to drop from the next block forward in case this new size is 4348 * not block aligned since we will be keeping the last block of the 4349 * extent just the way it is. 4350 */ 4351 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4352 root == root->fs_info->tree_root) 4353 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4354 root->sectorsize), (u64)-1, 0); 4355 4356 /* 4357 * This function is also used to drop the items in the log tree before 4358 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4359 * it is used to drop the loged items. So we shouldn't kill the delayed 4360 * items. 4361 */ 4362 if (min_type == 0 && root == BTRFS_I(inode)->root) 4363 btrfs_kill_delayed_inode_items(inode); 4364 4365 key.objectid = ino; 4366 key.offset = (u64)-1; 4367 key.type = (u8)-1; 4368 4369 search_again: 4370 /* 4371 * with a 16K leaf size and 128MB extents, you can actually queue 4372 * up a huge file in a single leaf. Most of the time that 4373 * bytes_deleted is > 0, it will be huge by the time we get here 4374 */ 4375 if (be_nice && bytes_deleted > SZ_32M) { 4376 if (btrfs_should_end_transaction(trans, root)) { 4377 err = -EAGAIN; 4378 goto error; 4379 } 4380 } 4381 4382 4383 path->leave_spinning = 1; 4384 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4385 if (ret < 0) { 4386 err = ret; 4387 goto out; 4388 } 4389 4390 if (ret > 0) { 4391 /* there are no items in the tree for us to truncate, we're 4392 * done 4393 */ 4394 if (path->slots[0] == 0) 4395 goto out; 4396 path->slots[0]--; 4397 } 4398 4399 while (1) { 4400 fi = NULL; 4401 leaf = path->nodes[0]; 4402 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4403 found_type = found_key.type; 4404 4405 if (found_key.objectid != ino) 4406 break; 4407 4408 if (found_type < min_type) 4409 break; 4410 4411 item_end = found_key.offset; 4412 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4413 fi = btrfs_item_ptr(leaf, path->slots[0], 4414 struct btrfs_file_extent_item); 4415 extent_type = btrfs_file_extent_type(leaf, fi); 4416 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4417 item_end += 4418 btrfs_file_extent_num_bytes(leaf, fi); 4419 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4420 item_end += btrfs_file_extent_inline_len(leaf, 4421 path->slots[0], fi); 4422 } 4423 item_end--; 4424 } 4425 if (found_type > min_type) { 4426 del_item = 1; 4427 } else { 4428 if (item_end < new_size) 4429 break; 4430 if (found_key.offset >= new_size) 4431 del_item = 1; 4432 else 4433 del_item = 0; 4434 } 4435 found_extent = 0; 4436 /* FIXME, shrink the extent if the ref count is only 1 */ 4437 if (found_type != BTRFS_EXTENT_DATA_KEY) 4438 goto delete; 4439 4440 if (del_item) 4441 last_size = found_key.offset; 4442 else 4443 last_size = new_size; 4444 4445 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4446 u64 num_dec; 4447 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4448 if (!del_item) { 4449 u64 orig_num_bytes = 4450 btrfs_file_extent_num_bytes(leaf, fi); 4451 extent_num_bytes = ALIGN(new_size - 4452 found_key.offset, 4453 root->sectorsize); 4454 btrfs_set_file_extent_num_bytes(leaf, fi, 4455 extent_num_bytes); 4456 num_dec = (orig_num_bytes - 4457 extent_num_bytes); 4458 if (test_bit(BTRFS_ROOT_REF_COWS, 4459 &root->state) && 4460 extent_start != 0) 4461 inode_sub_bytes(inode, num_dec); 4462 btrfs_mark_buffer_dirty(leaf); 4463 } else { 4464 extent_num_bytes = 4465 btrfs_file_extent_disk_num_bytes(leaf, 4466 fi); 4467 extent_offset = found_key.offset - 4468 btrfs_file_extent_offset(leaf, fi); 4469 4470 /* FIXME blocksize != 4096 */ 4471 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4472 if (extent_start != 0) { 4473 found_extent = 1; 4474 if (test_bit(BTRFS_ROOT_REF_COWS, 4475 &root->state)) 4476 inode_sub_bytes(inode, num_dec); 4477 } 4478 } 4479 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4480 /* 4481 * we can't truncate inline items that have had 4482 * special encodings 4483 */ 4484 if (!del_item && 4485 btrfs_file_extent_encryption(leaf, fi) == 0 && 4486 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4487 4488 /* 4489 * Need to release path in order to truncate a 4490 * compressed extent. So delete any accumulated 4491 * extent items so far. 4492 */ 4493 if (btrfs_file_extent_compression(leaf, fi) != 4494 BTRFS_COMPRESS_NONE && pending_del_nr) { 4495 err = btrfs_del_items(trans, root, path, 4496 pending_del_slot, 4497 pending_del_nr); 4498 if (err) { 4499 btrfs_abort_transaction(trans, 4500 root, 4501 err); 4502 goto error; 4503 } 4504 pending_del_nr = 0; 4505 } 4506 4507 err = truncate_inline_extent(inode, path, 4508 &found_key, 4509 item_end, 4510 new_size); 4511 if (err) { 4512 btrfs_abort_transaction(trans, 4513 root, err); 4514 goto error; 4515 } 4516 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4517 &root->state)) { 4518 inode_sub_bytes(inode, item_end + 1 - new_size); 4519 } 4520 } 4521 delete: 4522 if (del_item) { 4523 if (!pending_del_nr) { 4524 /* no pending yet, add ourselves */ 4525 pending_del_slot = path->slots[0]; 4526 pending_del_nr = 1; 4527 } else if (pending_del_nr && 4528 path->slots[0] + 1 == pending_del_slot) { 4529 /* hop on the pending chunk */ 4530 pending_del_nr++; 4531 pending_del_slot = path->slots[0]; 4532 } else { 4533 BUG(); 4534 } 4535 } else { 4536 break; 4537 } 4538 should_throttle = 0; 4539 4540 if (found_extent && 4541 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4542 root == root->fs_info->tree_root)) { 4543 btrfs_set_path_blocking(path); 4544 bytes_deleted += extent_num_bytes; 4545 ret = btrfs_free_extent(trans, root, extent_start, 4546 extent_num_bytes, 0, 4547 btrfs_header_owner(leaf), 4548 ino, extent_offset); 4549 BUG_ON(ret); 4550 if (btrfs_should_throttle_delayed_refs(trans, root)) 4551 btrfs_async_run_delayed_refs(root, 4552 trans->delayed_ref_updates * 2, 0); 4553 if (be_nice) { 4554 if (truncate_space_check(trans, root, 4555 extent_num_bytes)) { 4556 should_end = 1; 4557 } 4558 if (btrfs_should_throttle_delayed_refs(trans, 4559 root)) { 4560 should_throttle = 1; 4561 } 4562 } 4563 } 4564 4565 if (found_type == BTRFS_INODE_ITEM_KEY) 4566 break; 4567 4568 if (path->slots[0] == 0 || 4569 path->slots[0] != pending_del_slot || 4570 should_throttle || should_end) { 4571 if (pending_del_nr) { 4572 ret = btrfs_del_items(trans, root, path, 4573 pending_del_slot, 4574 pending_del_nr); 4575 if (ret) { 4576 btrfs_abort_transaction(trans, 4577 root, ret); 4578 goto error; 4579 } 4580 pending_del_nr = 0; 4581 } 4582 btrfs_release_path(path); 4583 if (should_throttle) { 4584 unsigned long updates = trans->delayed_ref_updates; 4585 if (updates) { 4586 trans->delayed_ref_updates = 0; 4587 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4588 if (ret && !err) 4589 err = ret; 4590 } 4591 } 4592 /* 4593 * if we failed to refill our space rsv, bail out 4594 * and let the transaction restart 4595 */ 4596 if (should_end) { 4597 err = -EAGAIN; 4598 goto error; 4599 } 4600 goto search_again; 4601 } else { 4602 path->slots[0]--; 4603 } 4604 } 4605 out: 4606 if (pending_del_nr) { 4607 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4608 pending_del_nr); 4609 if (ret) 4610 btrfs_abort_transaction(trans, root, ret); 4611 } 4612 error: 4613 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4614 btrfs_ordered_update_i_size(inode, last_size, NULL); 4615 4616 btrfs_free_path(path); 4617 4618 if (be_nice && bytes_deleted > SZ_32M) { 4619 unsigned long updates = trans->delayed_ref_updates; 4620 if (updates) { 4621 trans->delayed_ref_updates = 0; 4622 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4623 if (ret && !err) 4624 err = ret; 4625 } 4626 } 4627 return err; 4628 } 4629 4630 /* 4631 * btrfs_truncate_block - read, zero a chunk and write a block 4632 * @inode - inode that we're zeroing 4633 * @from - the offset to start zeroing 4634 * @len - the length to zero, 0 to zero the entire range respective to the 4635 * offset 4636 * @front - zero up to the offset instead of from the offset on 4637 * 4638 * This will find the block for the "from" offset and cow the block and zero the 4639 * part we want to zero. This is used with truncate and hole punching. 4640 */ 4641 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4642 int front) 4643 { 4644 struct address_space *mapping = inode->i_mapping; 4645 struct btrfs_root *root = BTRFS_I(inode)->root; 4646 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4647 struct btrfs_ordered_extent *ordered; 4648 struct extent_state *cached_state = NULL; 4649 char *kaddr; 4650 u32 blocksize = root->sectorsize; 4651 pgoff_t index = from >> PAGE_SHIFT; 4652 unsigned offset = from & (blocksize - 1); 4653 struct page *page; 4654 gfp_t mask = btrfs_alloc_write_mask(mapping); 4655 int ret = 0; 4656 u64 block_start; 4657 u64 block_end; 4658 4659 if ((offset & (blocksize - 1)) == 0 && 4660 (!len || ((len & (blocksize - 1)) == 0))) 4661 goto out; 4662 4663 ret = btrfs_delalloc_reserve_space(inode, 4664 round_down(from, blocksize), blocksize); 4665 if (ret) 4666 goto out; 4667 4668 again: 4669 page = find_or_create_page(mapping, index, mask); 4670 if (!page) { 4671 btrfs_delalloc_release_space(inode, 4672 round_down(from, blocksize), 4673 blocksize); 4674 ret = -ENOMEM; 4675 goto out; 4676 } 4677 4678 block_start = round_down(from, blocksize); 4679 block_end = block_start + blocksize - 1; 4680 4681 if (!PageUptodate(page)) { 4682 ret = btrfs_readpage(NULL, page); 4683 lock_page(page); 4684 if (page->mapping != mapping) { 4685 unlock_page(page); 4686 put_page(page); 4687 goto again; 4688 } 4689 if (!PageUptodate(page)) { 4690 ret = -EIO; 4691 goto out_unlock; 4692 } 4693 } 4694 wait_on_page_writeback(page); 4695 4696 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4697 set_page_extent_mapped(page); 4698 4699 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4700 if (ordered) { 4701 unlock_extent_cached(io_tree, block_start, block_end, 4702 &cached_state, GFP_NOFS); 4703 unlock_page(page); 4704 put_page(page); 4705 btrfs_start_ordered_extent(inode, ordered, 1); 4706 btrfs_put_ordered_extent(ordered); 4707 goto again; 4708 } 4709 4710 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4711 EXTENT_DIRTY | EXTENT_DELALLOC | 4712 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4713 0, 0, &cached_state, GFP_NOFS); 4714 4715 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4716 &cached_state); 4717 if (ret) { 4718 unlock_extent_cached(io_tree, block_start, block_end, 4719 &cached_state, GFP_NOFS); 4720 goto out_unlock; 4721 } 4722 4723 if (offset != blocksize) { 4724 if (!len) 4725 len = blocksize - offset; 4726 kaddr = kmap(page); 4727 if (front) 4728 memset(kaddr + (block_start - page_offset(page)), 4729 0, offset); 4730 else 4731 memset(kaddr + (block_start - page_offset(page)) + offset, 4732 0, len); 4733 flush_dcache_page(page); 4734 kunmap(page); 4735 } 4736 ClearPageChecked(page); 4737 set_page_dirty(page); 4738 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4739 GFP_NOFS); 4740 4741 out_unlock: 4742 if (ret) 4743 btrfs_delalloc_release_space(inode, block_start, 4744 blocksize); 4745 unlock_page(page); 4746 put_page(page); 4747 out: 4748 return ret; 4749 } 4750 4751 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4752 u64 offset, u64 len) 4753 { 4754 struct btrfs_trans_handle *trans; 4755 int ret; 4756 4757 /* 4758 * Still need to make sure the inode looks like it's been updated so 4759 * that any holes get logged if we fsync. 4760 */ 4761 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4762 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4763 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4764 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4765 return 0; 4766 } 4767 4768 /* 4769 * 1 - for the one we're dropping 4770 * 1 - for the one we're adding 4771 * 1 - for updating the inode. 4772 */ 4773 trans = btrfs_start_transaction(root, 3); 4774 if (IS_ERR(trans)) 4775 return PTR_ERR(trans); 4776 4777 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4778 if (ret) { 4779 btrfs_abort_transaction(trans, root, ret); 4780 btrfs_end_transaction(trans, root); 4781 return ret; 4782 } 4783 4784 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4785 0, 0, len, 0, len, 0, 0, 0); 4786 if (ret) 4787 btrfs_abort_transaction(trans, root, ret); 4788 else 4789 btrfs_update_inode(trans, root, inode); 4790 btrfs_end_transaction(trans, root); 4791 return ret; 4792 } 4793 4794 /* 4795 * This function puts in dummy file extents for the area we're creating a hole 4796 * for. So if we are truncating this file to a larger size we need to insert 4797 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4798 * the range between oldsize and size 4799 */ 4800 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4801 { 4802 struct btrfs_root *root = BTRFS_I(inode)->root; 4803 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4804 struct extent_map *em = NULL; 4805 struct extent_state *cached_state = NULL; 4806 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4807 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4808 u64 block_end = ALIGN(size, root->sectorsize); 4809 u64 last_byte; 4810 u64 cur_offset; 4811 u64 hole_size; 4812 int err = 0; 4813 4814 /* 4815 * If our size started in the middle of a block we need to zero out the 4816 * rest of the block before we expand the i_size, otherwise we could 4817 * expose stale data. 4818 */ 4819 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4820 if (err) 4821 return err; 4822 4823 if (size <= hole_start) 4824 return 0; 4825 4826 while (1) { 4827 struct btrfs_ordered_extent *ordered; 4828 4829 lock_extent_bits(io_tree, hole_start, block_end - 1, 4830 &cached_state); 4831 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4832 block_end - hole_start); 4833 if (!ordered) 4834 break; 4835 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4836 &cached_state, GFP_NOFS); 4837 btrfs_start_ordered_extent(inode, ordered, 1); 4838 btrfs_put_ordered_extent(ordered); 4839 } 4840 4841 cur_offset = hole_start; 4842 while (1) { 4843 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4844 block_end - cur_offset, 0); 4845 if (IS_ERR(em)) { 4846 err = PTR_ERR(em); 4847 em = NULL; 4848 break; 4849 } 4850 last_byte = min(extent_map_end(em), block_end); 4851 last_byte = ALIGN(last_byte , root->sectorsize); 4852 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4853 struct extent_map *hole_em; 4854 hole_size = last_byte - cur_offset; 4855 4856 err = maybe_insert_hole(root, inode, cur_offset, 4857 hole_size); 4858 if (err) 4859 break; 4860 btrfs_drop_extent_cache(inode, cur_offset, 4861 cur_offset + hole_size - 1, 0); 4862 hole_em = alloc_extent_map(); 4863 if (!hole_em) { 4864 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4865 &BTRFS_I(inode)->runtime_flags); 4866 goto next; 4867 } 4868 hole_em->start = cur_offset; 4869 hole_em->len = hole_size; 4870 hole_em->orig_start = cur_offset; 4871 4872 hole_em->block_start = EXTENT_MAP_HOLE; 4873 hole_em->block_len = 0; 4874 hole_em->orig_block_len = 0; 4875 hole_em->ram_bytes = hole_size; 4876 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4877 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4878 hole_em->generation = root->fs_info->generation; 4879 4880 while (1) { 4881 write_lock(&em_tree->lock); 4882 err = add_extent_mapping(em_tree, hole_em, 1); 4883 write_unlock(&em_tree->lock); 4884 if (err != -EEXIST) 4885 break; 4886 btrfs_drop_extent_cache(inode, cur_offset, 4887 cur_offset + 4888 hole_size - 1, 0); 4889 } 4890 free_extent_map(hole_em); 4891 } 4892 next: 4893 free_extent_map(em); 4894 em = NULL; 4895 cur_offset = last_byte; 4896 if (cur_offset >= block_end) 4897 break; 4898 } 4899 free_extent_map(em); 4900 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4901 GFP_NOFS); 4902 return err; 4903 } 4904 4905 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4906 { 4907 struct btrfs_root *root = BTRFS_I(inode)->root; 4908 struct btrfs_trans_handle *trans; 4909 loff_t oldsize = i_size_read(inode); 4910 loff_t newsize = attr->ia_size; 4911 int mask = attr->ia_valid; 4912 int ret; 4913 4914 /* 4915 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4916 * special case where we need to update the times despite not having 4917 * these flags set. For all other operations the VFS set these flags 4918 * explicitly if it wants a timestamp update. 4919 */ 4920 if (newsize != oldsize) { 4921 inode_inc_iversion(inode); 4922 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4923 inode->i_ctime = inode->i_mtime = 4924 current_fs_time(inode->i_sb); 4925 } 4926 4927 if (newsize > oldsize) { 4928 /* 4929 * Don't do an expanding truncate while snapshoting is ongoing. 4930 * This is to ensure the snapshot captures a fully consistent 4931 * state of this file - if the snapshot captures this expanding 4932 * truncation, it must capture all writes that happened before 4933 * this truncation. 4934 */ 4935 btrfs_wait_for_snapshot_creation(root); 4936 ret = btrfs_cont_expand(inode, oldsize, newsize); 4937 if (ret) { 4938 btrfs_end_write_no_snapshoting(root); 4939 return ret; 4940 } 4941 4942 trans = btrfs_start_transaction(root, 1); 4943 if (IS_ERR(trans)) { 4944 btrfs_end_write_no_snapshoting(root); 4945 return PTR_ERR(trans); 4946 } 4947 4948 i_size_write(inode, newsize); 4949 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4950 pagecache_isize_extended(inode, oldsize, newsize); 4951 ret = btrfs_update_inode(trans, root, inode); 4952 btrfs_end_write_no_snapshoting(root); 4953 btrfs_end_transaction(trans, root); 4954 } else { 4955 4956 /* 4957 * We're truncating a file that used to have good data down to 4958 * zero. Make sure it gets into the ordered flush list so that 4959 * any new writes get down to disk quickly. 4960 */ 4961 if (newsize == 0) 4962 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4963 &BTRFS_I(inode)->runtime_flags); 4964 4965 /* 4966 * 1 for the orphan item we're going to add 4967 * 1 for the orphan item deletion. 4968 */ 4969 trans = btrfs_start_transaction(root, 2); 4970 if (IS_ERR(trans)) 4971 return PTR_ERR(trans); 4972 4973 /* 4974 * We need to do this in case we fail at _any_ point during the 4975 * actual truncate. Once we do the truncate_setsize we could 4976 * invalidate pages which forces any outstanding ordered io to 4977 * be instantly completed which will give us extents that need 4978 * to be truncated. If we fail to get an orphan inode down we 4979 * could have left over extents that were never meant to live, 4980 * so we need to guarantee from this point on that everything 4981 * will be consistent. 4982 */ 4983 ret = btrfs_orphan_add(trans, inode); 4984 btrfs_end_transaction(trans, root); 4985 if (ret) 4986 return ret; 4987 4988 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4989 truncate_setsize(inode, newsize); 4990 4991 /* Disable nonlocked read DIO to avoid the end less truncate */ 4992 btrfs_inode_block_unlocked_dio(inode); 4993 inode_dio_wait(inode); 4994 btrfs_inode_resume_unlocked_dio(inode); 4995 4996 ret = btrfs_truncate(inode); 4997 if (ret && inode->i_nlink) { 4998 int err; 4999 5000 /* 5001 * failed to truncate, disk_i_size is only adjusted down 5002 * as we remove extents, so it should represent the true 5003 * size of the inode, so reset the in memory size and 5004 * delete our orphan entry. 5005 */ 5006 trans = btrfs_join_transaction(root); 5007 if (IS_ERR(trans)) { 5008 btrfs_orphan_del(NULL, inode); 5009 return ret; 5010 } 5011 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5012 err = btrfs_orphan_del(trans, inode); 5013 if (err) 5014 btrfs_abort_transaction(trans, root, err); 5015 btrfs_end_transaction(trans, root); 5016 } 5017 } 5018 5019 return ret; 5020 } 5021 5022 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5023 { 5024 struct inode *inode = d_inode(dentry); 5025 struct btrfs_root *root = BTRFS_I(inode)->root; 5026 int err; 5027 5028 if (btrfs_root_readonly(root)) 5029 return -EROFS; 5030 5031 err = inode_change_ok(inode, attr); 5032 if (err) 5033 return err; 5034 5035 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5036 err = btrfs_setsize(inode, attr); 5037 if (err) 5038 return err; 5039 } 5040 5041 if (attr->ia_valid) { 5042 setattr_copy(inode, attr); 5043 inode_inc_iversion(inode); 5044 err = btrfs_dirty_inode(inode); 5045 5046 if (!err && attr->ia_valid & ATTR_MODE) 5047 err = posix_acl_chmod(inode, inode->i_mode); 5048 } 5049 5050 return err; 5051 } 5052 5053 /* 5054 * While truncating the inode pages during eviction, we get the VFS calling 5055 * btrfs_invalidatepage() against each page of the inode. This is slow because 5056 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5057 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5058 * extent_state structures over and over, wasting lots of time. 5059 * 5060 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5061 * those expensive operations on a per page basis and do only the ordered io 5062 * finishing, while we release here the extent_map and extent_state structures, 5063 * without the excessive merging and splitting. 5064 */ 5065 static void evict_inode_truncate_pages(struct inode *inode) 5066 { 5067 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5068 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5069 struct rb_node *node; 5070 5071 ASSERT(inode->i_state & I_FREEING); 5072 truncate_inode_pages_final(&inode->i_data); 5073 5074 write_lock(&map_tree->lock); 5075 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5076 struct extent_map *em; 5077 5078 node = rb_first(&map_tree->map); 5079 em = rb_entry(node, struct extent_map, rb_node); 5080 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5081 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5082 remove_extent_mapping(map_tree, em); 5083 free_extent_map(em); 5084 if (need_resched()) { 5085 write_unlock(&map_tree->lock); 5086 cond_resched(); 5087 write_lock(&map_tree->lock); 5088 } 5089 } 5090 write_unlock(&map_tree->lock); 5091 5092 /* 5093 * Keep looping until we have no more ranges in the io tree. 5094 * We can have ongoing bios started by readpages (called from readahead) 5095 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5096 * still in progress (unlocked the pages in the bio but did not yet 5097 * unlocked the ranges in the io tree). Therefore this means some 5098 * ranges can still be locked and eviction started because before 5099 * submitting those bios, which are executed by a separate task (work 5100 * queue kthread), inode references (inode->i_count) were not taken 5101 * (which would be dropped in the end io callback of each bio). 5102 * Therefore here we effectively end up waiting for those bios and 5103 * anyone else holding locked ranges without having bumped the inode's 5104 * reference count - if we don't do it, when they access the inode's 5105 * io_tree to unlock a range it may be too late, leading to an 5106 * use-after-free issue. 5107 */ 5108 spin_lock(&io_tree->lock); 5109 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5110 struct extent_state *state; 5111 struct extent_state *cached_state = NULL; 5112 u64 start; 5113 u64 end; 5114 5115 node = rb_first(&io_tree->state); 5116 state = rb_entry(node, struct extent_state, rb_node); 5117 start = state->start; 5118 end = state->end; 5119 spin_unlock(&io_tree->lock); 5120 5121 lock_extent_bits(io_tree, start, end, &cached_state); 5122 5123 /* 5124 * If still has DELALLOC flag, the extent didn't reach disk, 5125 * and its reserved space won't be freed by delayed_ref. 5126 * So we need to free its reserved space here. 5127 * (Refer to comment in btrfs_invalidatepage, case 2) 5128 * 5129 * Note, end is the bytenr of last byte, so we need + 1 here. 5130 */ 5131 if (state->state & EXTENT_DELALLOC) 5132 btrfs_qgroup_free_data(inode, start, end - start + 1); 5133 5134 clear_extent_bit(io_tree, start, end, 5135 EXTENT_LOCKED | EXTENT_DIRTY | 5136 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5137 EXTENT_DEFRAG, 1, 1, 5138 &cached_state, GFP_NOFS); 5139 5140 cond_resched(); 5141 spin_lock(&io_tree->lock); 5142 } 5143 spin_unlock(&io_tree->lock); 5144 } 5145 5146 void btrfs_evict_inode(struct inode *inode) 5147 { 5148 struct btrfs_trans_handle *trans; 5149 struct btrfs_root *root = BTRFS_I(inode)->root; 5150 struct btrfs_block_rsv *rsv, *global_rsv; 5151 int steal_from_global = 0; 5152 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5153 int ret; 5154 5155 trace_btrfs_inode_evict(inode); 5156 5157 evict_inode_truncate_pages(inode); 5158 5159 if (inode->i_nlink && 5160 ((btrfs_root_refs(&root->root_item) != 0 && 5161 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5162 btrfs_is_free_space_inode(inode))) 5163 goto no_delete; 5164 5165 if (is_bad_inode(inode)) { 5166 btrfs_orphan_del(NULL, inode); 5167 goto no_delete; 5168 } 5169 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5170 if (!special_file(inode->i_mode)) 5171 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5172 5173 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5174 5175 if (root->fs_info->log_root_recovering) { 5176 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5177 &BTRFS_I(inode)->runtime_flags)); 5178 goto no_delete; 5179 } 5180 5181 if (inode->i_nlink > 0) { 5182 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5183 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5184 goto no_delete; 5185 } 5186 5187 ret = btrfs_commit_inode_delayed_inode(inode); 5188 if (ret) { 5189 btrfs_orphan_del(NULL, inode); 5190 goto no_delete; 5191 } 5192 5193 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5194 if (!rsv) { 5195 btrfs_orphan_del(NULL, inode); 5196 goto no_delete; 5197 } 5198 rsv->size = min_size; 5199 rsv->failfast = 1; 5200 global_rsv = &root->fs_info->global_block_rsv; 5201 5202 btrfs_i_size_write(inode, 0); 5203 5204 /* 5205 * This is a bit simpler than btrfs_truncate since we've already 5206 * reserved our space for our orphan item in the unlink, so we just 5207 * need to reserve some slack space in case we add bytes and update 5208 * inode item when doing the truncate. 5209 */ 5210 while (1) { 5211 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5212 BTRFS_RESERVE_FLUSH_LIMIT); 5213 5214 /* 5215 * Try and steal from the global reserve since we will 5216 * likely not use this space anyway, we want to try as 5217 * hard as possible to get this to work. 5218 */ 5219 if (ret) 5220 steal_from_global++; 5221 else 5222 steal_from_global = 0; 5223 ret = 0; 5224 5225 /* 5226 * steal_from_global == 0: we reserved stuff, hooray! 5227 * steal_from_global == 1: we didn't reserve stuff, boo! 5228 * steal_from_global == 2: we've committed, still not a lot of 5229 * room but maybe we'll have room in the global reserve this 5230 * time. 5231 * steal_from_global == 3: abandon all hope! 5232 */ 5233 if (steal_from_global > 2) { 5234 btrfs_warn(root->fs_info, 5235 "Could not get space for a delete, will truncate on mount %d", 5236 ret); 5237 btrfs_orphan_del(NULL, inode); 5238 btrfs_free_block_rsv(root, rsv); 5239 goto no_delete; 5240 } 5241 5242 trans = btrfs_join_transaction(root); 5243 if (IS_ERR(trans)) { 5244 btrfs_orphan_del(NULL, inode); 5245 btrfs_free_block_rsv(root, rsv); 5246 goto no_delete; 5247 } 5248 5249 /* 5250 * We can't just steal from the global reserve, we need to make 5251 * sure there is room to do it, if not we need to commit and try 5252 * again. 5253 */ 5254 if (steal_from_global) { 5255 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5256 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5257 min_size); 5258 else 5259 ret = -ENOSPC; 5260 } 5261 5262 /* 5263 * Couldn't steal from the global reserve, we have too much 5264 * pending stuff built up, commit the transaction and try it 5265 * again. 5266 */ 5267 if (ret) { 5268 ret = btrfs_commit_transaction(trans, root); 5269 if (ret) { 5270 btrfs_orphan_del(NULL, inode); 5271 btrfs_free_block_rsv(root, rsv); 5272 goto no_delete; 5273 } 5274 continue; 5275 } else { 5276 steal_from_global = 0; 5277 } 5278 5279 trans->block_rsv = rsv; 5280 5281 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5282 if (ret != -ENOSPC && ret != -EAGAIN) 5283 break; 5284 5285 trans->block_rsv = &root->fs_info->trans_block_rsv; 5286 btrfs_end_transaction(trans, root); 5287 trans = NULL; 5288 btrfs_btree_balance_dirty(root); 5289 } 5290 5291 btrfs_free_block_rsv(root, rsv); 5292 5293 /* 5294 * Errors here aren't a big deal, it just means we leave orphan items 5295 * in the tree. They will be cleaned up on the next mount. 5296 */ 5297 if (ret == 0) { 5298 trans->block_rsv = root->orphan_block_rsv; 5299 btrfs_orphan_del(trans, inode); 5300 } else { 5301 btrfs_orphan_del(NULL, inode); 5302 } 5303 5304 trans->block_rsv = &root->fs_info->trans_block_rsv; 5305 if (!(root == root->fs_info->tree_root || 5306 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5307 btrfs_return_ino(root, btrfs_ino(inode)); 5308 5309 btrfs_end_transaction(trans, root); 5310 btrfs_btree_balance_dirty(root); 5311 no_delete: 5312 btrfs_remove_delayed_node(inode); 5313 clear_inode(inode); 5314 } 5315 5316 /* 5317 * this returns the key found in the dir entry in the location pointer. 5318 * If no dir entries were found, location->objectid is 0. 5319 */ 5320 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5321 struct btrfs_key *location) 5322 { 5323 const char *name = dentry->d_name.name; 5324 int namelen = dentry->d_name.len; 5325 struct btrfs_dir_item *di; 5326 struct btrfs_path *path; 5327 struct btrfs_root *root = BTRFS_I(dir)->root; 5328 int ret = 0; 5329 5330 path = btrfs_alloc_path(); 5331 if (!path) 5332 return -ENOMEM; 5333 5334 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5335 namelen, 0); 5336 if (IS_ERR(di)) 5337 ret = PTR_ERR(di); 5338 5339 if (IS_ERR_OR_NULL(di)) 5340 goto out_err; 5341 5342 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5343 out: 5344 btrfs_free_path(path); 5345 return ret; 5346 out_err: 5347 location->objectid = 0; 5348 goto out; 5349 } 5350 5351 /* 5352 * when we hit a tree root in a directory, the btrfs part of the inode 5353 * needs to be changed to reflect the root directory of the tree root. This 5354 * is kind of like crossing a mount point. 5355 */ 5356 static int fixup_tree_root_location(struct btrfs_root *root, 5357 struct inode *dir, 5358 struct dentry *dentry, 5359 struct btrfs_key *location, 5360 struct btrfs_root **sub_root) 5361 { 5362 struct btrfs_path *path; 5363 struct btrfs_root *new_root; 5364 struct btrfs_root_ref *ref; 5365 struct extent_buffer *leaf; 5366 struct btrfs_key key; 5367 int ret; 5368 int err = 0; 5369 5370 path = btrfs_alloc_path(); 5371 if (!path) { 5372 err = -ENOMEM; 5373 goto out; 5374 } 5375 5376 err = -ENOENT; 5377 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5378 key.type = BTRFS_ROOT_REF_KEY; 5379 key.offset = location->objectid; 5380 5381 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5382 0, 0); 5383 if (ret) { 5384 if (ret < 0) 5385 err = ret; 5386 goto out; 5387 } 5388 5389 leaf = path->nodes[0]; 5390 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5391 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5392 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5393 goto out; 5394 5395 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5396 (unsigned long)(ref + 1), 5397 dentry->d_name.len); 5398 if (ret) 5399 goto out; 5400 5401 btrfs_release_path(path); 5402 5403 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5404 if (IS_ERR(new_root)) { 5405 err = PTR_ERR(new_root); 5406 goto out; 5407 } 5408 5409 *sub_root = new_root; 5410 location->objectid = btrfs_root_dirid(&new_root->root_item); 5411 location->type = BTRFS_INODE_ITEM_KEY; 5412 location->offset = 0; 5413 err = 0; 5414 out: 5415 btrfs_free_path(path); 5416 return err; 5417 } 5418 5419 static void inode_tree_add(struct inode *inode) 5420 { 5421 struct btrfs_root *root = BTRFS_I(inode)->root; 5422 struct btrfs_inode *entry; 5423 struct rb_node **p; 5424 struct rb_node *parent; 5425 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5426 u64 ino = btrfs_ino(inode); 5427 5428 if (inode_unhashed(inode)) 5429 return; 5430 parent = NULL; 5431 spin_lock(&root->inode_lock); 5432 p = &root->inode_tree.rb_node; 5433 while (*p) { 5434 parent = *p; 5435 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5436 5437 if (ino < btrfs_ino(&entry->vfs_inode)) 5438 p = &parent->rb_left; 5439 else if (ino > btrfs_ino(&entry->vfs_inode)) 5440 p = &parent->rb_right; 5441 else { 5442 WARN_ON(!(entry->vfs_inode.i_state & 5443 (I_WILL_FREE | I_FREEING))); 5444 rb_replace_node(parent, new, &root->inode_tree); 5445 RB_CLEAR_NODE(parent); 5446 spin_unlock(&root->inode_lock); 5447 return; 5448 } 5449 } 5450 rb_link_node(new, parent, p); 5451 rb_insert_color(new, &root->inode_tree); 5452 spin_unlock(&root->inode_lock); 5453 } 5454 5455 static void inode_tree_del(struct inode *inode) 5456 { 5457 struct btrfs_root *root = BTRFS_I(inode)->root; 5458 int empty = 0; 5459 5460 spin_lock(&root->inode_lock); 5461 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5462 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5463 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5464 empty = RB_EMPTY_ROOT(&root->inode_tree); 5465 } 5466 spin_unlock(&root->inode_lock); 5467 5468 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5469 synchronize_srcu(&root->fs_info->subvol_srcu); 5470 spin_lock(&root->inode_lock); 5471 empty = RB_EMPTY_ROOT(&root->inode_tree); 5472 spin_unlock(&root->inode_lock); 5473 if (empty) 5474 btrfs_add_dead_root(root); 5475 } 5476 } 5477 5478 void btrfs_invalidate_inodes(struct btrfs_root *root) 5479 { 5480 struct rb_node *node; 5481 struct rb_node *prev; 5482 struct btrfs_inode *entry; 5483 struct inode *inode; 5484 u64 objectid = 0; 5485 5486 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5487 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5488 5489 spin_lock(&root->inode_lock); 5490 again: 5491 node = root->inode_tree.rb_node; 5492 prev = NULL; 5493 while (node) { 5494 prev = node; 5495 entry = rb_entry(node, struct btrfs_inode, rb_node); 5496 5497 if (objectid < btrfs_ino(&entry->vfs_inode)) 5498 node = node->rb_left; 5499 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5500 node = node->rb_right; 5501 else 5502 break; 5503 } 5504 if (!node) { 5505 while (prev) { 5506 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5507 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5508 node = prev; 5509 break; 5510 } 5511 prev = rb_next(prev); 5512 } 5513 } 5514 while (node) { 5515 entry = rb_entry(node, struct btrfs_inode, rb_node); 5516 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5517 inode = igrab(&entry->vfs_inode); 5518 if (inode) { 5519 spin_unlock(&root->inode_lock); 5520 if (atomic_read(&inode->i_count) > 1) 5521 d_prune_aliases(inode); 5522 /* 5523 * btrfs_drop_inode will have it removed from 5524 * the inode cache when its usage count 5525 * hits zero. 5526 */ 5527 iput(inode); 5528 cond_resched(); 5529 spin_lock(&root->inode_lock); 5530 goto again; 5531 } 5532 5533 if (cond_resched_lock(&root->inode_lock)) 5534 goto again; 5535 5536 node = rb_next(node); 5537 } 5538 spin_unlock(&root->inode_lock); 5539 } 5540 5541 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5542 { 5543 struct btrfs_iget_args *args = p; 5544 inode->i_ino = args->location->objectid; 5545 memcpy(&BTRFS_I(inode)->location, args->location, 5546 sizeof(*args->location)); 5547 BTRFS_I(inode)->root = args->root; 5548 return 0; 5549 } 5550 5551 static int btrfs_find_actor(struct inode *inode, void *opaque) 5552 { 5553 struct btrfs_iget_args *args = opaque; 5554 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5555 args->root == BTRFS_I(inode)->root; 5556 } 5557 5558 static struct inode *btrfs_iget_locked(struct super_block *s, 5559 struct btrfs_key *location, 5560 struct btrfs_root *root) 5561 { 5562 struct inode *inode; 5563 struct btrfs_iget_args args; 5564 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5565 5566 args.location = location; 5567 args.root = root; 5568 5569 inode = iget5_locked(s, hashval, btrfs_find_actor, 5570 btrfs_init_locked_inode, 5571 (void *)&args); 5572 return inode; 5573 } 5574 5575 /* Get an inode object given its location and corresponding root. 5576 * Returns in *is_new if the inode was read from disk 5577 */ 5578 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5579 struct btrfs_root *root, int *new) 5580 { 5581 struct inode *inode; 5582 5583 inode = btrfs_iget_locked(s, location, root); 5584 if (!inode) 5585 return ERR_PTR(-ENOMEM); 5586 5587 if (inode->i_state & I_NEW) { 5588 btrfs_read_locked_inode(inode); 5589 if (!is_bad_inode(inode)) { 5590 inode_tree_add(inode); 5591 unlock_new_inode(inode); 5592 if (new) 5593 *new = 1; 5594 } else { 5595 unlock_new_inode(inode); 5596 iput(inode); 5597 inode = ERR_PTR(-ESTALE); 5598 } 5599 } 5600 5601 return inode; 5602 } 5603 5604 static struct inode *new_simple_dir(struct super_block *s, 5605 struct btrfs_key *key, 5606 struct btrfs_root *root) 5607 { 5608 struct inode *inode = new_inode(s); 5609 5610 if (!inode) 5611 return ERR_PTR(-ENOMEM); 5612 5613 BTRFS_I(inode)->root = root; 5614 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5615 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5616 5617 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5618 inode->i_op = &btrfs_dir_ro_inode_operations; 5619 inode->i_fop = &simple_dir_operations; 5620 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5621 inode->i_mtime = current_fs_time(inode->i_sb); 5622 inode->i_atime = inode->i_mtime; 5623 inode->i_ctime = inode->i_mtime; 5624 BTRFS_I(inode)->i_otime = inode->i_mtime; 5625 5626 return inode; 5627 } 5628 5629 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5630 { 5631 struct inode *inode; 5632 struct btrfs_root *root = BTRFS_I(dir)->root; 5633 struct btrfs_root *sub_root = root; 5634 struct btrfs_key location; 5635 int index; 5636 int ret = 0; 5637 5638 if (dentry->d_name.len > BTRFS_NAME_LEN) 5639 return ERR_PTR(-ENAMETOOLONG); 5640 5641 ret = btrfs_inode_by_name(dir, dentry, &location); 5642 if (ret < 0) 5643 return ERR_PTR(ret); 5644 5645 if (location.objectid == 0) 5646 return ERR_PTR(-ENOENT); 5647 5648 if (location.type == BTRFS_INODE_ITEM_KEY) { 5649 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5650 return inode; 5651 } 5652 5653 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5654 5655 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5656 ret = fixup_tree_root_location(root, dir, dentry, 5657 &location, &sub_root); 5658 if (ret < 0) { 5659 if (ret != -ENOENT) 5660 inode = ERR_PTR(ret); 5661 else 5662 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5663 } else { 5664 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5665 } 5666 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5667 5668 if (!IS_ERR(inode) && root != sub_root) { 5669 down_read(&root->fs_info->cleanup_work_sem); 5670 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5671 ret = btrfs_orphan_cleanup(sub_root); 5672 up_read(&root->fs_info->cleanup_work_sem); 5673 if (ret) { 5674 iput(inode); 5675 inode = ERR_PTR(ret); 5676 } 5677 } 5678 5679 return inode; 5680 } 5681 5682 static int btrfs_dentry_delete(const struct dentry *dentry) 5683 { 5684 struct btrfs_root *root; 5685 struct inode *inode = d_inode(dentry); 5686 5687 if (!inode && !IS_ROOT(dentry)) 5688 inode = d_inode(dentry->d_parent); 5689 5690 if (inode) { 5691 root = BTRFS_I(inode)->root; 5692 if (btrfs_root_refs(&root->root_item) == 0) 5693 return 1; 5694 5695 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5696 return 1; 5697 } 5698 return 0; 5699 } 5700 5701 static void btrfs_dentry_release(struct dentry *dentry) 5702 { 5703 kfree(dentry->d_fsdata); 5704 } 5705 5706 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5707 unsigned int flags) 5708 { 5709 struct inode *inode; 5710 5711 inode = btrfs_lookup_dentry(dir, dentry); 5712 if (IS_ERR(inode)) { 5713 if (PTR_ERR(inode) == -ENOENT) 5714 inode = NULL; 5715 else 5716 return ERR_CAST(inode); 5717 } 5718 5719 return d_splice_alias(inode, dentry); 5720 } 5721 5722 unsigned char btrfs_filetype_table[] = { 5723 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5724 }; 5725 5726 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5727 { 5728 struct inode *inode = file_inode(file); 5729 struct btrfs_root *root = BTRFS_I(inode)->root; 5730 struct btrfs_item *item; 5731 struct btrfs_dir_item *di; 5732 struct btrfs_key key; 5733 struct btrfs_key found_key; 5734 struct btrfs_path *path; 5735 struct list_head ins_list; 5736 struct list_head del_list; 5737 int ret; 5738 struct extent_buffer *leaf; 5739 int slot; 5740 unsigned char d_type; 5741 int over = 0; 5742 u32 di_cur; 5743 u32 di_total; 5744 u32 di_len; 5745 int key_type = BTRFS_DIR_INDEX_KEY; 5746 char tmp_name[32]; 5747 char *name_ptr; 5748 int name_len; 5749 int is_curr = 0; /* ctx->pos points to the current index? */ 5750 bool emitted; 5751 5752 /* FIXME, use a real flag for deciding about the key type */ 5753 if (root->fs_info->tree_root == root) 5754 key_type = BTRFS_DIR_ITEM_KEY; 5755 5756 if (!dir_emit_dots(file, ctx)) 5757 return 0; 5758 5759 path = btrfs_alloc_path(); 5760 if (!path) 5761 return -ENOMEM; 5762 5763 path->reada = READA_FORWARD; 5764 5765 if (key_type == BTRFS_DIR_INDEX_KEY) { 5766 INIT_LIST_HEAD(&ins_list); 5767 INIT_LIST_HEAD(&del_list); 5768 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5769 } 5770 5771 key.type = key_type; 5772 key.offset = ctx->pos; 5773 key.objectid = btrfs_ino(inode); 5774 5775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5776 if (ret < 0) 5777 goto err; 5778 5779 emitted = false; 5780 while (1) { 5781 leaf = path->nodes[0]; 5782 slot = path->slots[0]; 5783 if (slot >= btrfs_header_nritems(leaf)) { 5784 ret = btrfs_next_leaf(root, path); 5785 if (ret < 0) 5786 goto err; 5787 else if (ret > 0) 5788 break; 5789 continue; 5790 } 5791 5792 item = btrfs_item_nr(slot); 5793 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5794 5795 if (found_key.objectid != key.objectid) 5796 break; 5797 if (found_key.type != key_type) 5798 break; 5799 if (found_key.offset < ctx->pos) 5800 goto next; 5801 if (key_type == BTRFS_DIR_INDEX_KEY && 5802 btrfs_should_delete_dir_index(&del_list, 5803 found_key.offset)) 5804 goto next; 5805 5806 ctx->pos = found_key.offset; 5807 is_curr = 1; 5808 5809 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5810 di_cur = 0; 5811 di_total = btrfs_item_size(leaf, item); 5812 5813 while (di_cur < di_total) { 5814 struct btrfs_key location; 5815 5816 if (verify_dir_item(root, leaf, di)) 5817 break; 5818 5819 name_len = btrfs_dir_name_len(leaf, di); 5820 if (name_len <= sizeof(tmp_name)) { 5821 name_ptr = tmp_name; 5822 } else { 5823 name_ptr = kmalloc(name_len, GFP_KERNEL); 5824 if (!name_ptr) { 5825 ret = -ENOMEM; 5826 goto err; 5827 } 5828 } 5829 read_extent_buffer(leaf, name_ptr, 5830 (unsigned long)(di + 1), name_len); 5831 5832 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5833 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5834 5835 5836 /* is this a reference to our own snapshot? If so 5837 * skip it. 5838 * 5839 * In contrast to old kernels, we insert the snapshot's 5840 * dir item and dir index after it has been created, so 5841 * we won't find a reference to our own snapshot. We 5842 * still keep the following code for backward 5843 * compatibility. 5844 */ 5845 if (location.type == BTRFS_ROOT_ITEM_KEY && 5846 location.objectid == root->root_key.objectid) { 5847 over = 0; 5848 goto skip; 5849 } 5850 over = !dir_emit(ctx, name_ptr, name_len, 5851 location.objectid, d_type); 5852 5853 skip: 5854 if (name_ptr != tmp_name) 5855 kfree(name_ptr); 5856 5857 if (over) 5858 goto nopos; 5859 emitted = true; 5860 di_len = btrfs_dir_name_len(leaf, di) + 5861 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5862 di_cur += di_len; 5863 di = (struct btrfs_dir_item *)((char *)di + di_len); 5864 } 5865 next: 5866 path->slots[0]++; 5867 } 5868 5869 if (key_type == BTRFS_DIR_INDEX_KEY) { 5870 if (is_curr) 5871 ctx->pos++; 5872 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); 5873 if (ret) 5874 goto nopos; 5875 } 5876 5877 /* 5878 * If we haven't emitted any dir entry, we must not touch ctx->pos as 5879 * it was was set to the termination value in previous call. We assume 5880 * that "." and ".." were emitted if we reach this point and set the 5881 * termination value as well for an empty directory. 5882 */ 5883 if (ctx->pos > 2 && !emitted) 5884 goto nopos; 5885 5886 /* Reached end of directory/root. Bump pos past the last item. */ 5887 ctx->pos++; 5888 5889 /* 5890 * Stop new entries from being returned after we return the last 5891 * entry. 5892 * 5893 * New directory entries are assigned a strictly increasing 5894 * offset. This means that new entries created during readdir 5895 * are *guaranteed* to be seen in the future by that readdir. 5896 * This has broken buggy programs which operate on names as 5897 * they're returned by readdir. Until we re-use freed offsets 5898 * we have this hack to stop new entries from being returned 5899 * under the assumption that they'll never reach this huge 5900 * offset. 5901 * 5902 * This is being careful not to overflow 32bit loff_t unless the 5903 * last entry requires it because doing so has broken 32bit apps 5904 * in the past. 5905 */ 5906 if (key_type == BTRFS_DIR_INDEX_KEY) { 5907 if (ctx->pos >= INT_MAX) 5908 ctx->pos = LLONG_MAX; 5909 else 5910 ctx->pos = INT_MAX; 5911 } 5912 nopos: 5913 ret = 0; 5914 err: 5915 if (key_type == BTRFS_DIR_INDEX_KEY) 5916 btrfs_put_delayed_items(&ins_list, &del_list); 5917 btrfs_free_path(path); 5918 return ret; 5919 } 5920 5921 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5922 { 5923 struct btrfs_root *root = BTRFS_I(inode)->root; 5924 struct btrfs_trans_handle *trans; 5925 int ret = 0; 5926 bool nolock = false; 5927 5928 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5929 return 0; 5930 5931 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5932 nolock = true; 5933 5934 if (wbc->sync_mode == WB_SYNC_ALL) { 5935 if (nolock) 5936 trans = btrfs_join_transaction_nolock(root); 5937 else 5938 trans = btrfs_join_transaction(root); 5939 if (IS_ERR(trans)) 5940 return PTR_ERR(trans); 5941 ret = btrfs_commit_transaction(trans, root); 5942 } 5943 return ret; 5944 } 5945 5946 /* 5947 * This is somewhat expensive, updating the tree every time the 5948 * inode changes. But, it is most likely to find the inode in cache. 5949 * FIXME, needs more benchmarking...there are no reasons other than performance 5950 * to keep or drop this code. 5951 */ 5952 static int btrfs_dirty_inode(struct inode *inode) 5953 { 5954 struct btrfs_root *root = BTRFS_I(inode)->root; 5955 struct btrfs_trans_handle *trans; 5956 int ret; 5957 5958 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5959 return 0; 5960 5961 trans = btrfs_join_transaction(root); 5962 if (IS_ERR(trans)) 5963 return PTR_ERR(trans); 5964 5965 ret = btrfs_update_inode(trans, root, inode); 5966 if (ret && ret == -ENOSPC) { 5967 /* whoops, lets try again with the full transaction */ 5968 btrfs_end_transaction(trans, root); 5969 trans = btrfs_start_transaction(root, 1); 5970 if (IS_ERR(trans)) 5971 return PTR_ERR(trans); 5972 5973 ret = btrfs_update_inode(trans, root, inode); 5974 } 5975 btrfs_end_transaction(trans, root); 5976 if (BTRFS_I(inode)->delayed_node) 5977 btrfs_balance_delayed_items(root); 5978 5979 return ret; 5980 } 5981 5982 /* 5983 * This is a copy of file_update_time. We need this so we can return error on 5984 * ENOSPC for updating the inode in the case of file write and mmap writes. 5985 */ 5986 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5987 int flags) 5988 { 5989 struct btrfs_root *root = BTRFS_I(inode)->root; 5990 5991 if (btrfs_root_readonly(root)) 5992 return -EROFS; 5993 5994 if (flags & S_VERSION) 5995 inode_inc_iversion(inode); 5996 if (flags & S_CTIME) 5997 inode->i_ctime = *now; 5998 if (flags & S_MTIME) 5999 inode->i_mtime = *now; 6000 if (flags & S_ATIME) 6001 inode->i_atime = *now; 6002 return btrfs_dirty_inode(inode); 6003 } 6004 6005 /* 6006 * find the highest existing sequence number in a directory 6007 * and then set the in-memory index_cnt variable to reflect 6008 * free sequence numbers 6009 */ 6010 static int btrfs_set_inode_index_count(struct inode *inode) 6011 { 6012 struct btrfs_root *root = BTRFS_I(inode)->root; 6013 struct btrfs_key key, found_key; 6014 struct btrfs_path *path; 6015 struct extent_buffer *leaf; 6016 int ret; 6017 6018 key.objectid = btrfs_ino(inode); 6019 key.type = BTRFS_DIR_INDEX_KEY; 6020 key.offset = (u64)-1; 6021 6022 path = btrfs_alloc_path(); 6023 if (!path) 6024 return -ENOMEM; 6025 6026 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6027 if (ret < 0) 6028 goto out; 6029 /* FIXME: we should be able to handle this */ 6030 if (ret == 0) 6031 goto out; 6032 ret = 0; 6033 6034 /* 6035 * MAGIC NUMBER EXPLANATION: 6036 * since we search a directory based on f_pos we have to start at 2 6037 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6038 * else has to start at 2 6039 */ 6040 if (path->slots[0] == 0) { 6041 BTRFS_I(inode)->index_cnt = 2; 6042 goto out; 6043 } 6044 6045 path->slots[0]--; 6046 6047 leaf = path->nodes[0]; 6048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6049 6050 if (found_key.objectid != btrfs_ino(inode) || 6051 found_key.type != BTRFS_DIR_INDEX_KEY) { 6052 BTRFS_I(inode)->index_cnt = 2; 6053 goto out; 6054 } 6055 6056 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6057 out: 6058 btrfs_free_path(path); 6059 return ret; 6060 } 6061 6062 /* 6063 * helper to find a free sequence number in a given directory. This current 6064 * code is very simple, later versions will do smarter things in the btree 6065 */ 6066 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6067 { 6068 int ret = 0; 6069 6070 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6071 ret = btrfs_inode_delayed_dir_index_count(dir); 6072 if (ret) { 6073 ret = btrfs_set_inode_index_count(dir); 6074 if (ret) 6075 return ret; 6076 } 6077 } 6078 6079 *index = BTRFS_I(dir)->index_cnt; 6080 BTRFS_I(dir)->index_cnt++; 6081 6082 return ret; 6083 } 6084 6085 static int btrfs_insert_inode_locked(struct inode *inode) 6086 { 6087 struct btrfs_iget_args args; 6088 args.location = &BTRFS_I(inode)->location; 6089 args.root = BTRFS_I(inode)->root; 6090 6091 return insert_inode_locked4(inode, 6092 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6093 btrfs_find_actor, &args); 6094 } 6095 6096 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6097 struct btrfs_root *root, 6098 struct inode *dir, 6099 const char *name, int name_len, 6100 u64 ref_objectid, u64 objectid, 6101 umode_t mode, u64 *index) 6102 { 6103 struct inode *inode; 6104 struct btrfs_inode_item *inode_item; 6105 struct btrfs_key *location; 6106 struct btrfs_path *path; 6107 struct btrfs_inode_ref *ref; 6108 struct btrfs_key key[2]; 6109 u32 sizes[2]; 6110 int nitems = name ? 2 : 1; 6111 unsigned long ptr; 6112 int ret; 6113 6114 path = btrfs_alloc_path(); 6115 if (!path) 6116 return ERR_PTR(-ENOMEM); 6117 6118 inode = new_inode(root->fs_info->sb); 6119 if (!inode) { 6120 btrfs_free_path(path); 6121 return ERR_PTR(-ENOMEM); 6122 } 6123 6124 /* 6125 * O_TMPFILE, set link count to 0, so that after this point, 6126 * we fill in an inode item with the correct link count. 6127 */ 6128 if (!name) 6129 set_nlink(inode, 0); 6130 6131 /* 6132 * we have to initialize this early, so we can reclaim the inode 6133 * number if we fail afterwards in this function. 6134 */ 6135 inode->i_ino = objectid; 6136 6137 if (dir && name) { 6138 trace_btrfs_inode_request(dir); 6139 6140 ret = btrfs_set_inode_index(dir, index); 6141 if (ret) { 6142 btrfs_free_path(path); 6143 iput(inode); 6144 return ERR_PTR(ret); 6145 } 6146 } else if (dir) { 6147 *index = 0; 6148 } 6149 /* 6150 * index_cnt is ignored for everything but a dir, 6151 * btrfs_get_inode_index_count has an explanation for the magic 6152 * number 6153 */ 6154 BTRFS_I(inode)->index_cnt = 2; 6155 BTRFS_I(inode)->dir_index = *index; 6156 BTRFS_I(inode)->root = root; 6157 BTRFS_I(inode)->generation = trans->transid; 6158 inode->i_generation = BTRFS_I(inode)->generation; 6159 6160 /* 6161 * We could have gotten an inode number from somebody who was fsynced 6162 * and then removed in this same transaction, so let's just set full 6163 * sync since it will be a full sync anyway and this will blow away the 6164 * old info in the log. 6165 */ 6166 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6167 6168 key[0].objectid = objectid; 6169 key[0].type = BTRFS_INODE_ITEM_KEY; 6170 key[0].offset = 0; 6171 6172 sizes[0] = sizeof(struct btrfs_inode_item); 6173 6174 if (name) { 6175 /* 6176 * Start new inodes with an inode_ref. This is slightly more 6177 * efficient for small numbers of hard links since they will 6178 * be packed into one item. Extended refs will kick in if we 6179 * add more hard links than can fit in the ref item. 6180 */ 6181 key[1].objectid = objectid; 6182 key[1].type = BTRFS_INODE_REF_KEY; 6183 key[1].offset = ref_objectid; 6184 6185 sizes[1] = name_len + sizeof(*ref); 6186 } 6187 6188 location = &BTRFS_I(inode)->location; 6189 location->objectid = objectid; 6190 location->offset = 0; 6191 location->type = BTRFS_INODE_ITEM_KEY; 6192 6193 ret = btrfs_insert_inode_locked(inode); 6194 if (ret < 0) 6195 goto fail; 6196 6197 path->leave_spinning = 1; 6198 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6199 if (ret != 0) 6200 goto fail_unlock; 6201 6202 inode_init_owner(inode, dir, mode); 6203 inode_set_bytes(inode, 0); 6204 6205 inode->i_mtime = current_fs_time(inode->i_sb); 6206 inode->i_atime = inode->i_mtime; 6207 inode->i_ctime = inode->i_mtime; 6208 BTRFS_I(inode)->i_otime = inode->i_mtime; 6209 6210 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6211 struct btrfs_inode_item); 6212 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6213 sizeof(*inode_item)); 6214 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6215 6216 if (name) { 6217 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6218 struct btrfs_inode_ref); 6219 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6220 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6221 ptr = (unsigned long)(ref + 1); 6222 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6223 } 6224 6225 btrfs_mark_buffer_dirty(path->nodes[0]); 6226 btrfs_free_path(path); 6227 6228 btrfs_inherit_iflags(inode, dir); 6229 6230 if (S_ISREG(mode)) { 6231 if (btrfs_test_opt(root, NODATASUM)) 6232 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6233 if (btrfs_test_opt(root, NODATACOW)) 6234 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6235 BTRFS_INODE_NODATASUM; 6236 } 6237 6238 inode_tree_add(inode); 6239 6240 trace_btrfs_inode_new(inode); 6241 btrfs_set_inode_last_trans(trans, inode); 6242 6243 btrfs_update_root_times(trans, root); 6244 6245 ret = btrfs_inode_inherit_props(trans, inode, dir); 6246 if (ret) 6247 btrfs_err(root->fs_info, 6248 "error inheriting props for ino %llu (root %llu): %d", 6249 btrfs_ino(inode), root->root_key.objectid, ret); 6250 6251 return inode; 6252 6253 fail_unlock: 6254 unlock_new_inode(inode); 6255 fail: 6256 if (dir && name) 6257 BTRFS_I(dir)->index_cnt--; 6258 btrfs_free_path(path); 6259 iput(inode); 6260 return ERR_PTR(ret); 6261 } 6262 6263 static inline u8 btrfs_inode_type(struct inode *inode) 6264 { 6265 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6266 } 6267 6268 /* 6269 * utility function to add 'inode' into 'parent_inode' with 6270 * a give name and a given sequence number. 6271 * if 'add_backref' is true, also insert a backref from the 6272 * inode to the parent directory. 6273 */ 6274 int btrfs_add_link(struct btrfs_trans_handle *trans, 6275 struct inode *parent_inode, struct inode *inode, 6276 const char *name, int name_len, int add_backref, u64 index) 6277 { 6278 int ret = 0; 6279 struct btrfs_key key; 6280 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6281 u64 ino = btrfs_ino(inode); 6282 u64 parent_ino = btrfs_ino(parent_inode); 6283 6284 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6285 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6286 } else { 6287 key.objectid = ino; 6288 key.type = BTRFS_INODE_ITEM_KEY; 6289 key.offset = 0; 6290 } 6291 6292 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6293 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6294 key.objectid, root->root_key.objectid, 6295 parent_ino, index, name, name_len); 6296 } else if (add_backref) { 6297 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6298 parent_ino, index); 6299 } 6300 6301 /* Nothing to clean up yet */ 6302 if (ret) 6303 return ret; 6304 6305 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6306 parent_inode, &key, 6307 btrfs_inode_type(inode), index); 6308 if (ret == -EEXIST || ret == -EOVERFLOW) 6309 goto fail_dir_item; 6310 else if (ret) { 6311 btrfs_abort_transaction(trans, root, ret); 6312 return ret; 6313 } 6314 6315 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6316 name_len * 2); 6317 inode_inc_iversion(parent_inode); 6318 parent_inode->i_mtime = parent_inode->i_ctime = 6319 current_fs_time(parent_inode->i_sb); 6320 ret = btrfs_update_inode(trans, root, parent_inode); 6321 if (ret) 6322 btrfs_abort_transaction(trans, root, ret); 6323 return ret; 6324 6325 fail_dir_item: 6326 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6327 u64 local_index; 6328 int err; 6329 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6330 key.objectid, root->root_key.objectid, 6331 parent_ino, &local_index, name, name_len); 6332 6333 } else if (add_backref) { 6334 u64 local_index; 6335 int err; 6336 6337 err = btrfs_del_inode_ref(trans, root, name, name_len, 6338 ino, parent_ino, &local_index); 6339 } 6340 return ret; 6341 } 6342 6343 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6344 struct inode *dir, struct dentry *dentry, 6345 struct inode *inode, int backref, u64 index) 6346 { 6347 int err = btrfs_add_link(trans, dir, inode, 6348 dentry->d_name.name, dentry->d_name.len, 6349 backref, index); 6350 if (err > 0) 6351 err = -EEXIST; 6352 return err; 6353 } 6354 6355 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6356 umode_t mode, dev_t rdev) 6357 { 6358 struct btrfs_trans_handle *trans; 6359 struct btrfs_root *root = BTRFS_I(dir)->root; 6360 struct inode *inode = NULL; 6361 int err; 6362 int drop_inode = 0; 6363 u64 objectid; 6364 u64 index = 0; 6365 6366 /* 6367 * 2 for inode item and ref 6368 * 2 for dir items 6369 * 1 for xattr if selinux is on 6370 */ 6371 trans = btrfs_start_transaction(root, 5); 6372 if (IS_ERR(trans)) 6373 return PTR_ERR(trans); 6374 6375 err = btrfs_find_free_ino(root, &objectid); 6376 if (err) 6377 goto out_unlock; 6378 6379 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6380 dentry->d_name.len, btrfs_ino(dir), objectid, 6381 mode, &index); 6382 if (IS_ERR(inode)) { 6383 err = PTR_ERR(inode); 6384 goto out_unlock; 6385 } 6386 6387 /* 6388 * If the active LSM wants to access the inode during 6389 * d_instantiate it needs these. Smack checks to see 6390 * if the filesystem supports xattrs by looking at the 6391 * ops vector. 6392 */ 6393 inode->i_op = &btrfs_special_inode_operations; 6394 init_special_inode(inode, inode->i_mode, rdev); 6395 6396 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6397 if (err) 6398 goto out_unlock_inode; 6399 6400 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6401 if (err) { 6402 goto out_unlock_inode; 6403 } else { 6404 btrfs_update_inode(trans, root, inode); 6405 unlock_new_inode(inode); 6406 d_instantiate(dentry, inode); 6407 } 6408 6409 out_unlock: 6410 btrfs_end_transaction(trans, root); 6411 btrfs_balance_delayed_items(root); 6412 btrfs_btree_balance_dirty(root); 6413 if (drop_inode) { 6414 inode_dec_link_count(inode); 6415 iput(inode); 6416 } 6417 return err; 6418 6419 out_unlock_inode: 6420 drop_inode = 1; 6421 unlock_new_inode(inode); 6422 goto out_unlock; 6423 6424 } 6425 6426 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6427 umode_t mode, bool excl) 6428 { 6429 struct btrfs_trans_handle *trans; 6430 struct btrfs_root *root = BTRFS_I(dir)->root; 6431 struct inode *inode = NULL; 6432 int drop_inode_on_err = 0; 6433 int err; 6434 u64 objectid; 6435 u64 index = 0; 6436 6437 /* 6438 * 2 for inode item and ref 6439 * 2 for dir items 6440 * 1 for xattr if selinux is on 6441 */ 6442 trans = btrfs_start_transaction(root, 5); 6443 if (IS_ERR(trans)) 6444 return PTR_ERR(trans); 6445 6446 err = btrfs_find_free_ino(root, &objectid); 6447 if (err) 6448 goto out_unlock; 6449 6450 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6451 dentry->d_name.len, btrfs_ino(dir), objectid, 6452 mode, &index); 6453 if (IS_ERR(inode)) { 6454 err = PTR_ERR(inode); 6455 goto out_unlock; 6456 } 6457 drop_inode_on_err = 1; 6458 /* 6459 * If the active LSM wants to access the inode during 6460 * d_instantiate it needs these. Smack checks to see 6461 * if the filesystem supports xattrs by looking at the 6462 * ops vector. 6463 */ 6464 inode->i_fop = &btrfs_file_operations; 6465 inode->i_op = &btrfs_file_inode_operations; 6466 inode->i_mapping->a_ops = &btrfs_aops; 6467 6468 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6469 if (err) 6470 goto out_unlock_inode; 6471 6472 err = btrfs_update_inode(trans, root, inode); 6473 if (err) 6474 goto out_unlock_inode; 6475 6476 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6477 if (err) 6478 goto out_unlock_inode; 6479 6480 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6481 unlock_new_inode(inode); 6482 d_instantiate(dentry, inode); 6483 6484 out_unlock: 6485 btrfs_end_transaction(trans, root); 6486 if (err && drop_inode_on_err) { 6487 inode_dec_link_count(inode); 6488 iput(inode); 6489 } 6490 btrfs_balance_delayed_items(root); 6491 btrfs_btree_balance_dirty(root); 6492 return err; 6493 6494 out_unlock_inode: 6495 unlock_new_inode(inode); 6496 goto out_unlock; 6497 6498 } 6499 6500 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6501 struct dentry *dentry) 6502 { 6503 struct btrfs_trans_handle *trans = NULL; 6504 struct btrfs_root *root = BTRFS_I(dir)->root; 6505 struct inode *inode = d_inode(old_dentry); 6506 u64 index; 6507 int err; 6508 int drop_inode = 0; 6509 6510 /* do not allow sys_link's with other subvols of the same device */ 6511 if (root->objectid != BTRFS_I(inode)->root->objectid) 6512 return -EXDEV; 6513 6514 if (inode->i_nlink >= BTRFS_LINK_MAX) 6515 return -EMLINK; 6516 6517 err = btrfs_set_inode_index(dir, &index); 6518 if (err) 6519 goto fail; 6520 6521 /* 6522 * 2 items for inode and inode ref 6523 * 2 items for dir items 6524 * 1 item for parent inode 6525 */ 6526 trans = btrfs_start_transaction(root, 5); 6527 if (IS_ERR(trans)) { 6528 err = PTR_ERR(trans); 6529 trans = NULL; 6530 goto fail; 6531 } 6532 6533 /* There are several dir indexes for this inode, clear the cache. */ 6534 BTRFS_I(inode)->dir_index = 0ULL; 6535 inc_nlink(inode); 6536 inode_inc_iversion(inode); 6537 inode->i_ctime = current_fs_time(inode->i_sb); 6538 ihold(inode); 6539 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6540 6541 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6542 6543 if (err) { 6544 drop_inode = 1; 6545 } else { 6546 struct dentry *parent = dentry->d_parent; 6547 err = btrfs_update_inode(trans, root, inode); 6548 if (err) 6549 goto fail; 6550 if (inode->i_nlink == 1) { 6551 /* 6552 * If new hard link count is 1, it's a file created 6553 * with open(2) O_TMPFILE flag. 6554 */ 6555 err = btrfs_orphan_del(trans, inode); 6556 if (err) 6557 goto fail; 6558 } 6559 d_instantiate(dentry, inode); 6560 btrfs_log_new_name(trans, inode, NULL, parent); 6561 } 6562 6563 btrfs_balance_delayed_items(root); 6564 fail: 6565 if (trans) 6566 btrfs_end_transaction(trans, root); 6567 if (drop_inode) { 6568 inode_dec_link_count(inode); 6569 iput(inode); 6570 } 6571 btrfs_btree_balance_dirty(root); 6572 return err; 6573 } 6574 6575 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6576 { 6577 struct inode *inode = NULL; 6578 struct btrfs_trans_handle *trans; 6579 struct btrfs_root *root = BTRFS_I(dir)->root; 6580 int err = 0; 6581 int drop_on_err = 0; 6582 u64 objectid = 0; 6583 u64 index = 0; 6584 6585 /* 6586 * 2 items for inode and ref 6587 * 2 items for dir items 6588 * 1 for xattr if selinux is on 6589 */ 6590 trans = btrfs_start_transaction(root, 5); 6591 if (IS_ERR(trans)) 6592 return PTR_ERR(trans); 6593 6594 err = btrfs_find_free_ino(root, &objectid); 6595 if (err) 6596 goto out_fail; 6597 6598 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6599 dentry->d_name.len, btrfs_ino(dir), objectid, 6600 S_IFDIR | mode, &index); 6601 if (IS_ERR(inode)) { 6602 err = PTR_ERR(inode); 6603 goto out_fail; 6604 } 6605 6606 drop_on_err = 1; 6607 /* these must be set before we unlock the inode */ 6608 inode->i_op = &btrfs_dir_inode_operations; 6609 inode->i_fop = &btrfs_dir_file_operations; 6610 6611 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6612 if (err) 6613 goto out_fail_inode; 6614 6615 btrfs_i_size_write(inode, 0); 6616 err = btrfs_update_inode(trans, root, inode); 6617 if (err) 6618 goto out_fail_inode; 6619 6620 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6621 dentry->d_name.len, 0, index); 6622 if (err) 6623 goto out_fail_inode; 6624 6625 d_instantiate(dentry, inode); 6626 /* 6627 * mkdir is special. We're unlocking after we call d_instantiate 6628 * to avoid a race with nfsd calling d_instantiate. 6629 */ 6630 unlock_new_inode(inode); 6631 drop_on_err = 0; 6632 6633 out_fail: 6634 btrfs_end_transaction(trans, root); 6635 if (drop_on_err) { 6636 inode_dec_link_count(inode); 6637 iput(inode); 6638 } 6639 btrfs_balance_delayed_items(root); 6640 btrfs_btree_balance_dirty(root); 6641 return err; 6642 6643 out_fail_inode: 6644 unlock_new_inode(inode); 6645 goto out_fail; 6646 } 6647 6648 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6649 static struct extent_map *next_extent_map(struct extent_map *em) 6650 { 6651 struct rb_node *next; 6652 6653 next = rb_next(&em->rb_node); 6654 if (!next) 6655 return NULL; 6656 return container_of(next, struct extent_map, rb_node); 6657 } 6658 6659 static struct extent_map *prev_extent_map(struct extent_map *em) 6660 { 6661 struct rb_node *prev; 6662 6663 prev = rb_prev(&em->rb_node); 6664 if (!prev) 6665 return NULL; 6666 return container_of(prev, struct extent_map, rb_node); 6667 } 6668 6669 /* helper for btfs_get_extent. Given an existing extent in the tree, 6670 * the existing extent is the nearest extent to map_start, 6671 * and an extent that you want to insert, deal with overlap and insert 6672 * the best fitted new extent into the tree. 6673 */ 6674 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6675 struct extent_map *existing, 6676 struct extent_map *em, 6677 u64 map_start) 6678 { 6679 struct extent_map *prev; 6680 struct extent_map *next; 6681 u64 start; 6682 u64 end; 6683 u64 start_diff; 6684 6685 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6686 6687 if (existing->start > map_start) { 6688 next = existing; 6689 prev = prev_extent_map(next); 6690 } else { 6691 prev = existing; 6692 next = next_extent_map(prev); 6693 } 6694 6695 start = prev ? extent_map_end(prev) : em->start; 6696 start = max_t(u64, start, em->start); 6697 end = next ? next->start : extent_map_end(em); 6698 end = min_t(u64, end, extent_map_end(em)); 6699 start_diff = start - em->start; 6700 em->start = start; 6701 em->len = end - start; 6702 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6703 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6704 em->block_start += start_diff; 6705 em->block_len -= start_diff; 6706 } 6707 return add_extent_mapping(em_tree, em, 0); 6708 } 6709 6710 static noinline int uncompress_inline(struct btrfs_path *path, 6711 struct page *page, 6712 size_t pg_offset, u64 extent_offset, 6713 struct btrfs_file_extent_item *item) 6714 { 6715 int ret; 6716 struct extent_buffer *leaf = path->nodes[0]; 6717 char *tmp; 6718 size_t max_size; 6719 unsigned long inline_size; 6720 unsigned long ptr; 6721 int compress_type; 6722 6723 WARN_ON(pg_offset != 0); 6724 compress_type = btrfs_file_extent_compression(leaf, item); 6725 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6726 inline_size = btrfs_file_extent_inline_item_len(leaf, 6727 btrfs_item_nr(path->slots[0])); 6728 tmp = kmalloc(inline_size, GFP_NOFS); 6729 if (!tmp) 6730 return -ENOMEM; 6731 ptr = btrfs_file_extent_inline_start(item); 6732 6733 read_extent_buffer(leaf, tmp, ptr, inline_size); 6734 6735 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6736 ret = btrfs_decompress(compress_type, tmp, page, 6737 extent_offset, inline_size, max_size); 6738 kfree(tmp); 6739 return ret; 6740 } 6741 6742 /* 6743 * a bit scary, this does extent mapping from logical file offset to the disk. 6744 * the ugly parts come from merging extents from the disk with the in-ram 6745 * representation. This gets more complex because of the data=ordered code, 6746 * where the in-ram extents might be locked pending data=ordered completion. 6747 * 6748 * This also copies inline extents directly into the page. 6749 */ 6750 6751 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6752 size_t pg_offset, u64 start, u64 len, 6753 int create) 6754 { 6755 int ret; 6756 int err = 0; 6757 u64 extent_start = 0; 6758 u64 extent_end = 0; 6759 u64 objectid = btrfs_ino(inode); 6760 u32 found_type; 6761 struct btrfs_path *path = NULL; 6762 struct btrfs_root *root = BTRFS_I(inode)->root; 6763 struct btrfs_file_extent_item *item; 6764 struct extent_buffer *leaf; 6765 struct btrfs_key found_key; 6766 struct extent_map *em = NULL; 6767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6768 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6769 struct btrfs_trans_handle *trans = NULL; 6770 const bool new_inline = !page || create; 6771 6772 again: 6773 read_lock(&em_tree->lock); 6774 em = lookup_extent_mapping(em_tree, start, len); 6775 if (em) 6776 em->bdev = root->fs_info->fs_devices->latest_bdev; 6777 read_unlock(&em_tree->lock); 6778 6779 if (em) { 6780 if (em->start > start || em->start + em->len <= start) 6781 free_extent_map(em); 6782 else if (em->block_start == EXTENT_MAP_INLINE && page) 6783 free_extent_map(em); 6784 else 6785 goto out; 6786 } 6787 em = alloc_extent_map(); 6788 if (!em) { 6789 err = -ENOMEM; 6790 goto out; 6791 } 6792 em->bdev = root->fs_info->fs_devices->latest_bdev; 6793 em->start = EXTENT_MAP_HOLE; 6794 em->orig_start = EXTENT_MAP_HOLE; 6795 em->len = (u64)-1; 6796 em->block_len = (u64)-1; 6797 6798 if (!path) { 6799 path = btrfs_alloc_path(); 6800 if (!path) { 6801 err = -ENOMEM; 6802 goto out; 6803 } 6804 /* 6805 * Chances are we'll be called again, so go ahead and do 6806 * readahead 6807 */ 6808 path->reada = READA_FORWARD; 6809 } 6810 6811 ret = btrfs_lookup_file_extent(trans, root, path, 6812 objectid, start, trans != NULL); 6813 if (ret < 0) { 6814 err = ret; 6815 goto out; 6816 } 6817 6818 if (ret != 0) { 6819 if (path->slots[0] == 0) 6820 goto not_found; 6821 path->slots[0]--; 6822 } 6823 6824 leaf = path->nodes[0]; 6825 item = btrfs_item_ptr(leaf, path->slots[0], 6826 struct btrfs_file_extent_item); 6827 /* are we inside the extent that was found? */ 6828 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6829 found_type = found_key.type; 6830 if (found_key.objectid != objectid || 6831 found_type != BTRFS_EXTENT_DATA_KEY) { 6832 /* 6833 * If we backup past the first extent we want to move forward 6834 * and see if there is an extent in front of us, otherwise we'll 6835 * say there is a hole for our whole search range which can 6836 * cause problems. 6837 */ 6838 extent_end = start; 6839 goto next; 6840 } 6841 6842 found_type = btrfs_file_extent_type(leaf, item); 6843 extent_start = found_key.offset; 6844 if (found_type == BTRFS_FILE_EXTENT_REG || 6845 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6846 extent_end = extent_start + 6847 btrfs_file_extent_num_bytes(leaf, item); 6848 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6849 size_t size; 6850 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6851 extent_end = ALIGN(extent_start + size, root->sectorsize); 6852 } 6853 next: 6854 if (start >= extent_end) { 6855 path->slots[0]++; 6856 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6857 ret = btrfs_next_leaf(root, path); 6858 if (ret < 0) { 6859 err = ret; 6860 goto out; 6861 } 6862 if (ret > 0) 6863 goto not_found; 6864 leaf = path->nodes[0]; 6865 } 6866 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6867 if (found_key.objectid != objectid || 6868 found_key.type != BTRFS_EXTENT_DATA_KEY) 6869 goto not_found; 6870 if (start + len <= found_key.offset) 6871 goto not_found; 6872 if (start > found_key.offset) 6873 goto next; 6874 em->start = start; 6875 em->orig_start = start; 6876 em->len = found_key.offset - start; 6877 goto not_found_em; 6878 } 6879 6880 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6881 6882 if (found_type == BTRFS_FILE_EXTENT_REG || 6883 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6884 goto insert; 6885 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6886 unsigned long ptr; 6887 char *map; 6888 size_t size; 6889 size_t extent_offset; 6890 size_t copy_size; 6891 6892 if (new_inline) 6893 goto out; 6894 6895 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6896 extent_offset = page_offset(page) + pg_offset - extent_start; 6897 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6898 size - extent_offset); 6899 em->start = extent_start + extent_offset; 6900 em->len = ALIGN(copy_size, root->sectorsize); 6901 em->orig_block_len = em->len; 6902 em->orig_start = em->start; 6903 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6904 if (create == 0 && !PageUptodate(page)) { 6905 if (btrfs_file_extent_compression(leaf, item) != 6906 BTRFS_COMPRESS_NONE) { 6907 ret = uncompress_inline(path, page, pg_offset, 6908 extent_offset, item); 6909 if (ret) { 6910 err = ret; 6911 goto out; 6912 } 6913 } else { 6914 map = kmap(page); 6915 read_extent_buffer(leaf, map + pg_offset, ptr, 6916 copy_size); 6917 if (pg_offset + copy_size < PAGE_SIZE) { 6918 memset(map + pg_offset + copy_size, 0, 6919 PAGE_SIZE - pg_offset - 6920 copy_size); 6921 } 6922 kunmap(page); 6923 } 6924 flush_dcache_page(page); 6925 } else if (create && PageUptodate(page)) { 6926 BUG(); 6927 if (!trans) { 6928 kunmap(page); 6929 free_extent_map(em); 6930 em = NULL; 6931 6932 btrfs_release_path(path); 6933 trans = btrfs_join_transaction(root); 6934 6935 if (IS_ERR(trans)) 6936 return ERR_CAST(trans); 6937 goto again; 6938 } 6939 map = kmap(page); 6940 write_extent_buffer(leaf, map + pg_offset, ptr, 6941 copy_size); 6942 kunmap(page); 6943 btrfs_mark_buffer_dirty(leaf); 6944 } 6945 set_extent_uptodate(io_tree, em->start, 6946 extent_map_end(em) - 1, NULL, GFP_NOFS); 6947 goto insert; 6948 } 6949 not_found: 6950 em->start = start; 6951 em->orig_start = start; 6952 em->len = len; 6953 not_found_em: 6954 em->block_start = EXTENT_MAP_HOLE; 6955 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6956 insert: 6957 btrfs_release_path(path); 6958 if (em->start > start || extent_map_end(em) <= start) { 6959 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6960 em->start, em->len, start, len); 6961 err = -EIO; 6962 goto out; 6963 } 6964 6965 err = 0; 6966 write_lock(&em_tree->lock); 6967 ret = add_extent_mapping(em_tree, em, 0); 6968 /* it is possible that someone inserted the extent into the tree 6969 * while we had the lock dropped. It is also possible that 6970 * an overlapping map exists in the tree 6971 */ 6972 if (ret == -EEXIST) { 6973 struct extent_map *existing; 6974 6975 ret = 0; 6976 6977 existing = search_extent_mapping(em_tree, start, len); 6978 /* 6979 * existing will always be non-NULL, since there must be 6980 * extent causing the -EEXIST. 6981 */ 6982 if (start >= extent_map_end(existing) || 6983 start <= existing->start) { 6984 /* 6985 * The existing extent map is the one nearest to 6986 * the [start, start + len) range which overlaps 6987 */ 6988 err = merge_extent_mapping(em_tree, existing, 6989 em, start); 6990 free_extent_map(existing); 6991 if (err) { 6992 free_extent_map(em); 6993 em = NULL; 6994 } 6995 } else { 6996 free_extent_map(em); 6997 em = existing; 6998 err = 0; 6999 } 7000 } 7001 write_unlock(&em_tree->lock); 7002 out: 7003 7004 trace_btrfs_get_extent(root, em); 7005 7006 btrfs_free_path(path); 7007 if (trans) { 7008 ret = btrfs_end_transaction(trans, root); 7009 if (!err) 7010 err = ret; 7011 } 7012 if (err) { 7013 free_extent_map(em); 7014 return ERR_PTR(err); 7015 } 7016 BUG_ON(!em); /* Error is always set */ 7017 return em; 7018 } 7019 7020 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7021 size_t pg_offset, u64 start, u64 len, 7022 int create) 7023 { 7024 struct extent_map *em; 7025 struct extent_map *hole_em = NULL; 7026 u64 range_start = start; 7027 u64 end; 7028 u64 found; 7029 u64 found_end; 7030 int err = 0; 7031 7032 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7033 if (IS_ERR(em)) 7034 return em; 7035 if (em) { 7036 /* 7037 * if our em maps to 7038 * - a hole or 7039 * - a pre-alloc extent, 7040 * there might actually be delalloc bytes behind it. 7041 */ 7042 if (em->block_start != EXTENT_MAP_HOLE && 7043 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7044 return em; 7045 else 7046 hole_em = em; 7047 } 7048 7049 /* check to see if we've wrapped (len == -1 or similar) */ 7050 end = start + len; 7051 if (end < start) 7052 end = (u64)-1; 7053 else 7054 end -= 1; 7055 7056 em = NULL; 7057 7058 /* ok, we didn't find anything, lets look for delalloc */ 7059 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7060 end, len, EXTENT_DELALLOC, 1); 7061 found_end = range_start + found; 7062 if (found_end < range_start) 7063 found_end = (u64)-1; 7064 7065 /* 7066 * we didn't find anything useful, return 7067 * the original results from get_extent() 7068 */ 7069 if (range_start > end || found_end <= start) { 7070 em = hole_em; 7071 hole_em = NULL; 7072 goto out; 7073 } 7074 7075 /* adjust the range_start to make sure it doesn't 7076 * go backwards from the start they passed in 7077 */ 7078 range_start = max(start, range_start); 7079 found = found_end - range_start; 7080 7081 if (found > 0) { 7082 u64 hole_start = start; 7083 u64 hole_len = len; 7084 7085 em = alloc_extent_map(); 7086 if (!em) { 7087 err = -ENOMEM; 7088 goto out; 7089 } 7090 /* 7091 * when btrfs_get_extent can't find anything it 7092 * returns one huge hole 7093 * 7094 * make sure what it found really fits our range, and 7095 * adjust to make sure it is based on the start from 7096 * the caller 7097 */ 7098 if (hole_em) { 7099 u64 calc_end = extent_map_end(hole_em); 7100 7101 if (calc_end <= start || (hole_em->start > end)) { 7102 free_extent_map(hole_em); 7103 hole_em = NULL; 7104 } else { 7105 hole_start = max(hole_em->start, start); 7106 hole_len = calc_end - hole_start; 7107 } 7108 } 7109 em->bdev = NULL; 7110 if (hole_em && range_start > hole_start) { 7111 /* our hole starts before our delalloc, so we 7112 * have to return just the parts of the hole 7113 * that go until the delalloc starts 7114 */ 7115 em->len = min(hole_len, 7116 range_start - hole_start); 7117 em->start = hole_start; 7118 em->orig_start = hole_start; 7119 /* 7120 * don't adjust block start at all, 7121 * it is fixed at EXTENT_MAP_HOLE 7122 */ 7123 em->block_start = hole_em->block_start; 7124 em->block_len = hole_len; 7125 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7126 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7127 } else { 7128 em->start = range_start; 7129 em->len = found; 7130 em->orig_start = range_start; 7131 em->block_start = EXTENT_MAP_DELALLOC; 7132 em->block_len = found; 7133 } 7134 } else if (hole_em) { 7135 return hole_em; 7136 } 7137 out: 7138 7139 free_extent_map(hole_em); 7140 if (err) { 7141 free_extent_map(em); 7142 return ERR_PTR(err); 7143 } 7144 return em; 7145 } 7146 7147 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7148 const u64 start, 7149 const u64 len, 7150 const u64 orig_start, 7151 const u64 block_start, 7152 const u64 block_len, 7153 const u64 orig_block_len, 7154 const u64 ram_bytes, 7155 const int type) 7156 { 7157 struct extent_map *em = NULL; 7158 int ret; 7159 7160 down_read(&BTRFS_I(inode)->dio_sem); 7161 if (type != BTRFS_ORDERED_NOCOW) { 7162 em = create_pinned_em(inode, start, len, orig_start, 7163 block_start, block_len, orig_block_len, 7164 ram_bytes, type); 7165 if (IS_ERR(em)) 7166 goto out; 7167 } 7168 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7169 len, block_len, type); 7170 if (ret) { 7171 if (em) { 7172 free_extent_map(em); 7173 btrfs_drop_extent_cache(inode, start, 7174 start + len - 1, 0); 7175 } 7176 em = ERR_PTR(ret); 7177 } 7178 out: 7179 up_read(&BTRFS_I(inode)->dio_sem); 7180 7181 return em; 7182 } 7183 7184 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7185 u64 start, u64 len) 7186 { 7187 struct btrfs_root *root = BTRFS_I(inode)->root; 7188 struct extent_map *em; 7189 struct btrfs_key ins; 7190 u64 alloc_hint; 7191 int ret; 7192 7193 alloc_hint = get_extent_allocation_hint(inode, start, len); 7194 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7195 alloc_hint, &ins, 1, 1); 7196 if (ret) 7197 return ERR_PTR(ret); 7198 7199 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7200 ins.objectid, ins.offset, ins.offset, 7201 ins.offset, 0); 7202 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 7203 if (IS_ERR(em)) 7204 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7205 7206 return em; 7207 } 7208 7209 /* 7210 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7211 * block must be cow'd 7212 */ 7213 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7214 u64 *orig_start, u64 *orig_block_len, 7215 u64 *ram_bytes) 7216 { 7217 struct btrfs_trans_handle *trans; 7218 struct btrfs_path *path; 7219 int ret; 7220 struct extent_buffer *leaf; 7221 struct btrfs_root *root = BTRFS_I(inode)->root; 7222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7223 struct btrfs_file_extent_item *fi; 7224 struct btrfs_key key; 7225 u64 disk_bytenr; 7226 u64 backref_offset; 7227 u64 extent_end; 7228 u64 num_bytes; 7229 int slot; 7230 int found_type; 7231 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7232 7233 path = btrfs_alloc_path(); 7234 if (!path) 7235 return -ENOMEM; 7236 7237 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7238 offset, 0); 7239 if (ret < 0) 7240 goto out; 7241 7242 slot = path->slots[0]; 7243 if (ret == 1) { 7244 if (slot == 0) { 7245 /* can't find the item, must cow */ 7246 ret = 0; 7247 goto out; 7248 } 7249 slot--; 7250 } 7251 ret = 0; 7252 leaf = path->nodes[0]; 7253 btrfs_item_key_to_cpu(leaf, &key, slot); 7254 if (key.objectid != btrfs_ino(inode) || 7255 key.type != BTRFS_EXTENT_DATA_KEY) { 7256 /* not our file or wrong item type, must cow */ 7257 goto out; 7258 } 7259 7260 if (key.offset > offset) { 7261 /* Wrong offset, must cow */ 7262 goto out; 7263 } 7264 7265 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7266 found_type = btrfs_file_extent_type(leaf, fi); 7267 if (found_type != BTRFS_FILE_EXTENT_REG && 7268 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7269 /* not a regular extent, must cow */ 7270 goto out; 7271 } 7272 7273 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7274 goto out; 7275 7276 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7277 if (extent_end <= offset) 7278 goto out; 7279 7280 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7281 if (disk_bytenr == 0) 7282 goto out; 7283 7284 if (btrfs_file_extent_compression(leaf, fi) || 7285 btrfs_file_extent_encryption(leaf, fi) || 7286 btrfs_file_extent_other_encoding(leaf, fi)) 7287 goto out; 7288 7289 backref_offset = btrfs_file_extent_offset(leaf, fi); 7290 7291 if (orig_start) { 7292 *orig_start = key.offset - backref_offset; 7293 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7294 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7295 } 7296 7297 if (btrfs_extent_readonly(root, disk_bytenr)) 7298 goto out; 7299 7300 num_bytes = min(offset + *len, extent_end) - offset; 7301 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7302 u64 range_end; 7303 7304 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7305 ret = test_range_bit(io_tree, offset, range_end, 7306 EXTENT_DELALLOC, 0, NULL); 7307 if (ret) { 7308 ret = -EAGAIN; 7309 goto out; 7310 } 7311 } 7312 7313 btrfs_release_path(path); 7314 7315 /* 7316 * look for other files referencing this extent, if we 7317 * find any we must cow 7318 */ 7319 trans = btrfs_join_transaction(root); 7320 if (IS_ERR(trans)) { 7321 ret = 0; 7322 goto out; 7323 } 7324 7325 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7326 key.offset - backref_offset, disk_bytenr); 7327 btrfs_end_transaction(trans, root); 7328 if (ret) { 7329 ret = 0; 7330 goto out; 7331 } 7332 7333 /* 7334 * adjust disk_bytenr and num_bytes to cover just the bytes 7335 * in this extent we are about to write. If there 7336 * are any csums in that range we have to cow in order 7337 * to keep the csums correct 7338 */ 7339 disk_bytenr += backref_offset; 7340 disk_bytenr += offset - key.offset; 7341 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7342 goto out; 7343 /* 7344 * all of the above have passed, it is safe to overwrite this extent 7345 * without cow 7346 */ 7347 *len = num_bytes; 7348 ret = 1; 7349 out: 7350 btrfs_free_path(path); 7351 return ret; 7352 } 7353 7354 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7355 { 7356 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7357 int found = false; 7358 void **pagep = NULL; 7359 struct page *page = NULL; 7360 int start_idx; 7361 int end_idx; 7362 7363 start_idx = start >> PAGE_SHIFT; 7364 7365 /* 7366 * end is the last byte in the last page. end == start is legal 7367 */ 7368 end_idx = end >> PAGE_SHIFT; 7369 7370 rcu_read_lock(); 7371 7372 /* Most of the code in this while loop is lifted from 7373 * find_get_page. It's been modified to begin searching from a 7374 * page and return just the first page found in that range. If the 7375 * found idx is less than or equal to the end idx then we know that 7376 * a page exists. If no pages are found or if those pages are 7377 * outside of the range then we're fine (yay!) */ 7378 while (page == NULL && 7379 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7380 page = radix_tree_deref_slot(pagep); 7381 if (unlikely(!page)) 7382 break; 7383 7384 if (radix_tree_exception(page)) { 7385 if (radix_tree_deref_retry(page)) { 7386 page = NULL; 7387 continue; 7388 } 7389 /* 7390 * Otherwise, shmem/tmpfs must be storing a swap entry 7391 * here as an exceptional entry: so return it without 7392 * attempting to raise page count. 7393 */ 7394 page = NULL; 7395 break; /* TODO: Is this relevant for this use case? */ 7396 } 7397 7398 if (!page_cache_get_speculative(page)) { 7399 page = NULL; 7400 continue; 7401 } 7402 7403 /* 7404 * Has the page moved? 7405 * This is part of the lockless pagecache protocol. See 7406 * include/linux/pagemap.h for details. 7407 */ 7408 if (unlikely(page != *pagep)) { 7409 put_page(page); 7410 page = NULL; 7411 } 7412 } 7413 7414 if (page) { 7415 if (page->index <= end_idx) 7416 found = true; 7417 put_page(page); 7418 } 7419 7420 rcu_read_unlock(); 7421 return found; 7422 } 7423 7424 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7425 struct extent_state **cached_state, int writing) 7426 { 7427 struct btrfs_ordered_extent *ordered; 7428 int ret = 0; 7429 7430 while (1) { 7431 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7432 cached_state); 7433 /* 7434 * We're concerned with the entire range that we're going to be 7435 * doing DIO to, so we need to make sure there's no ordered 7436 * extents in this range. 7437 */ 7438 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7439 lockend - lockstart + 1); 7440 7441 /* 7442 * We need to make sure there are no buffered pages in this 7443 * range either, we could have raced between the invalidate in 7444 * generic_file_direct_write and locking the extent. The 7445 * invalidate needs to happen so that reads after a write do not 7446 * get stale data. 7447 */ 7448 if (!ordered && 7449 (!writing || 7450 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7451 break; 7452 7453 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7454 cached_state, GFP_NOFS); 7455 7456 if (ordered) { 7457 /* 7458 * If we are doing a DIO read and the ordered extent we 7459 * found is for a buffered write, we can not wait for it 7460 * to complete and retry, because if we do so we can 7461 * deadlock with concurrent buffered writes on page 7462 * locks. This happens only if our DIO read covers more 7463 * than one extent map, if at this point has already 7464 * created an ordered extent for a previous extent map 7465 * and locked its range in the inode's io tree, and a 7466 * concurrent write against that previous extent map's 7467 * range and this range started (we unlock the ranges 7468 * in the io tree only when the bios complete and 7469 * buffered writes always lock pages before attempting 7470 * to lock range in the io tree). 7471 */ 7472 if (writing || 7473 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7474 btrfs_start_ordered_extent(inode, ordered, 1); 7475 else 7476 ret = -ENOTBLK; 7477 btrfs_put_ordered_extent(ordered); 7478 } else { 7479 /* 7480 * We could trigger writeback for this range (and wait 7481 * for it to complete) and then invalidate the pages for 7482 * this range (through invalidate_inode_pages2_range()), 7483 * but that can lead us to a deadlock with a concurrent 7484 * call to readpages() (a buffered read or a defrag call 7485 * triggered a readahead) on a page lock due to an 7486 * ordered dio extent we created before but did not have 7487 * yet a corresponding bio submitted (whence it can not 7488 * complete), which makes readpages() wait for that 7489 * ordered extent to complete while holding a lock on 7490 * that page. 7491 */ 7492 ret = -ENOTBLK; 7493 } 7494 7495 if (ret) 7496 break; 7497 7498 cond_resched(); 7499 } 7500 7501 return ret; 7502 } 7503 7504 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7505 u64 len, u64 orig_start, 7506 u64 block_start, u64 block_len, 7507 u64 orig_block_len, u64 ram_bytes, 7508 int type) 7509 { 7510 struct extent_map_tree *em_tree; 7511 struct extent_map *em; 7512 struct btrfs_root *root = BTRFS_I(inode)->root; 7513 int ret; 7514 7515 em_tree = &BTRFS_I(inode)->extent_tree; 7516 em = alloc_extent_map(); 7517 if (!em) 7518 return ERR_PTR(-ENOMEM); 7519 7520 em->start = start; 7521 em->orig_start = orig_start; 7522 em->mod_start = start; 7523 em->mod_len = len; 7524 em->len = len; 7525 em->block_len = block_len; 7526 em->block_start = block_start; 7527 em->bdev = root->fs_info->fs_devices->latest_bdev; 7528 em->orig_block_len = orig_block_len; 7529 em->ram_bytes = ram_bytes; 7530 em->generation = -1; 7531 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7532 if (type == BTRFS_ORDERED_PREALLOC) 7533 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7534 7535 do { 7536 btrfs_drop_extent_cache(inode, em->start, 7537 em->start + em->len - 1, 0); 7538 write_lock(&em_tree->lock); 7539 ret = add_extent_mapping(em_tree, em, 1); 7540 write_unlock(&em_tree->lock); 7541 } while (ret == -EEXIST); 7542 7543 if (ret) { 7544 free_extent_map(em); 7545 return ERR_PTR(ret); 7546 } 7547 7548 return em; 7549 } 7550 7551 static void adjust_dio_outstanding_extents(struct inode *inode, 7552 struct btrfs_dio_data *dio_data, 7553 const u64 len) 7554 { 7555 unsigned num_extents; 7556 7557 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7558 BTRFS_MAX_EXTENT_SIZE); 7559 /* 7560 * If we have an outstanding_extents count still set then we're 7561 * within our reservation, otherwise we need to adjust our inode 7562 * counter appropriately. 7563 */ 7564 if (dio_data->outstanding_extents) { 7565 dio_data->outstanding_extents -= num_extents; 7566 } else { 7567 spin_lock(&BTRFS_I(inode)->lock); 7568 BTRFS_I(inode)->outstanding_extents += num_extents; 7569 spin_unlock(&BTRFS_I(inode)->lock); 7570 } 7571 } 7572 7573 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7574 struct buffer_head *bh_result, int create) 7575 { 7576 struct extent_map *em; 7577 struct btrfs_root *root = BTRFS_I(inode)->root; 7578 struct extent_state *cached_state = NULL; 7579 struct btrfs_dio_data *dio_data = NULL; 7580 u64 start = iblock << inode->i_blkbits; 7581 u64 lockstart, lockend; 7582 u64 len = bh_result->b_size; 7583 int unlock_bits = EXTENT_LOCKED; 7584 int ret = 0; 7585 7586 if (create) 7587 unlock_bits |= EXTENT_DIRTY; 7588 else 7589 len = min_t(u64, len, root->sectorsize); 7590 7591 lockstart = start; 7592 lockend = start + len - 1; 7593 7594 if (current->journal_info) { 7595 /* 7596 * Need to pull our outstanding extents and set journal_info to NULL so 7597 * that anything that needs to check if there's a transaction doesn't get 7598 * confused. 7599 */ 7600 dio_data = current->journal_info; 7601 current->journal_info = NULL; 7602 } 7603 7604 /* 7605 * If this errors out it's because we couldn't invalidate pagecache for 7606 * this range and we need to fallback to buffered. 7607 */ 7608 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7609 create)) { 7610 ret = -ENOTBLK; 7611 goto err; 7612 } 7613 7614 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7615 if (IS_ERR(em)) { 7616 ret = PTR_ERR(em); 7617 goto unlock_err; 7618 } 7619 7620 /* 7621 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7622 * io. INLINE is special, and we could probably kludge it in here, but 7623 * it's still buffered so for safety lets just fall back to the generic 7624 * buffered path. 7625 * 7626 * For COMPRESSED we _have_ to read the entire extent in so we can 7627 * decompress it, so there will be buffering required no matter what we 7628 * do, so go ahead and fallback to buffered. 7629 * 7630 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7631 * to buffered IO. Don't blame me, this is the price we pay for using 7632 * the generic code. 7633 */ 7634 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7635 em->block_start == EXTENT_MAP_INLINE) { 7636 free_extent_map(em); 7637 ret = -ENOTBLK; 7638 goto unlock_err; 7639 } 7640 7641 /* Just a good old fashioned hole, return */ 7642 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7643 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7644 free_extent_map(em); 7645 goto unlock_err; 7646 } 7647 7648 /* 7649 * We don't allocate a new extent in the following cases 7650 * 7651 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7652 * existing extent. 7653 * 2) The extent is marked as PREALLOC. We're good to go here and can 7654 * just use the extent. 7655 * 7656 */ 7657 if (!create) { 7658 len = min(len, em->len - (start - em->start)); 7659 lockstart = start + len; 7660 goto unlock; 7661 } 7662 7663 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7664 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7665 em->block_start != EXTENT_MAP_HOLE)) { 7666 int type; 7667 u64 block_start, orig_start, orig_block_len, ram_bytes; 7668 7669 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7670 type = BTRFS_ORDERED_PREALLOC; 7671 else 7672 type = BTRFS_ORDERED_NOCOW; 7673 len = min(len, em->len - (start - em->start)); 7674 block_start = em->block_start + (start - em->start); 7675 7676 if (can_nocow_extent(inode, start, &len, &orig_start, 7677 &orig_block_len, &ram_bytes) == 1 && 7678 btrfs_inc_nocow_writers(root->fs_info, block_start)) { 7679 struct extent_map *em2; 7680 7681 em2 = btrfs_create_dio_extent(inode, start, len, 7682 orig_start, block_start, 7683 len, orig_block_len, 7684 ram_bytes, type); 7685 btrfs_dec_nocow_writers(root->fs_info, block_start); 7686 if (type == BTRFS_ORDERED_PREALLOC) { 7687 free_extent_map(em); 7688 em = em2; 7689 } 7690 if (em2 && IS_ERR(em2)) { 7691 ret = PTR_ERR(em2); 7692 goto unlock_err; 7693 } 7694 goto unlock; 7695 } 7696 } 7697 7698 /* 7699 * this will cow the extent, reset the len in case we changed 7700 * it above 7701 */ 7702 len = bh_result->b_size; 7703 free_extent_map(em); 7704 em = btrfs_new_extent_direct(inode, start, len); 7705 if (IS_ERR(em)) { 7706 ret = PTR_ERR(em); 7707 goto unlock_err; 7708 } 7709 len = min(len, em->len - (start - em->start)); 7710 unlock: 7711 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7712 inode->i_blkbits; 7713 bh_result->b_size = len; 7714 bh_result->b_bdev = em->bdev; 7715 set_buffer_mapped(bh_result); 7716 if (create) { 7717 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7718 set_buffer_new(bh_result); 7719 7720 /* 7721 * Need to update the i_size under the extent lock so buffered 7722 * readers will get the updated i_size when we unlock. 7723 */ 7724 if (start + len > i_size_read(inode)) 7725 i_size_write(inode, start + len); 7726 7727 adjust_dio_outstanding_extents(inode, dio_data, len); 7728 btrfs_free_reserved_data_space(inode, start, len); 7729 WARN_ON(dio_data->reserve < len); 7730 dio_data->reserve -= len; 7731 dio_data->unsubmitted_oe_range_end = start + len; 7732 current->journal_info = dio_data; 7733 } 7734 7735 /* 7736 * In the case of write we need to clear and unlock the entire range, 7737 * in the case of read we need to unlock only the end area that we 7738 * aren't using if there is any left over space. 7739 */ 7740 if (lockstart < lockend) { 7741 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7742 lockend, unlock_bits, 1, 0, 7743 &cached_state, GFP_NOFS); 7744 } else { 7745 free_extent_state(cached_state); 7746 } 7747 7748 free_extent_map(em); 7749 7750 return 0; 7751 7752 unlock_err: 7753 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7754 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7755 err: 7756 if (dio_data) 7757 current->journal_info = dio_data; 7758 /* 7759 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7760 * write less data then expected, so that we don't underflow our inode's 7761 * outstanding extents counter. 7762 */ 7763 if (create && dio_data) 7764 adjust_dio_outstanding_extents(inode, dio_data, len); 7765 7766 return ret; 7767 } 7768 7769 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7770 int rw, int mirror_num) 7771 { 7772 struct btrfs_root *root = BTRFS_I(inode)->root; 7773 int ret; 7774 7775 BUG_ON(rw & REQ_WRITE); 7776 7777 bio_get(bio); 7778 7779 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7780 BTRFS_WQ_ENDIO_DIO_REPAIR); 7781 if (ret) 7782 goto err; 7783 7784 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7785 err: 7786 bio_put(bio); 7787 return ret; 7788 } 7789 7790 static int btrfs_check_dio_repairable(struct inode *inode, 7791 struct bio *failed_bio, 7792 struct io_failure_record *failrec, 7793 int failed_mirror) 7794 { 7795 int num_copies; 7796 7797 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7798 failrec->logical, failrec->len); 7799 if (num_copies == 1) { 7800 /* 7801 * we only have a single copy of the data, so don't bother with 7802 * all the retry and error correction code that follows. no 7803 * matter what the error is, it is very likely to persist. 7804 */ 7805 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7806 num_copies, failrec->this_mirror, failed_mirror); 7807 return 0; 7808 } 7809 7810 failrec->failed_mirror = failed_mirror; 7811 failrec->this_mirror++; 7812 if (failrec->this_mirror == failed_mirror) 7813 failrec->this_mirror++; 7814 7815 if (failrec->this_mirror > num_copies) { 7816 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7817 num_copies, failrec->this_mirror, failed_mirror); 7818 return 0; 7819 } 7820 7821 return 1; 7822 } 7823 7824 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7825 struct page *page, unsigned int pgoff, 7826 u64 start, u64 end, int failed_mirror, 7827 bio_end_io_t *repair_endio, void *repair_arg) 7828 { 7829 struct io_failure_record *failrec; 7830 struct bio *bio; 7831 int isector; 7832 int read_mode; 7833 int ret; 7834 7835 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7836 7837 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7838 if (ret) 7839 return ret; 7840 7841 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7842 failed_mirror); 7843 if (!ret) { 7844 free_io_failure(inode, failrec); 7845 return -EIO; 7846 } 7847 7848 if ((failed_bio->bi_vcnt > 1) 7849 || (failed_bio->bi_io_vec->bv_len 7850 > BTRFS_I(inode)->root->sectorsize)) 7851 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7852 else 7853 read_mode = READ_SYNC; 7854 7855 isector = start - btrfs_io_bio(failed_bio)->logical; 7856 isector >>= inode->i_sb->s_blocksize_bits; 7857 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7858 pgoff, isector, repair_endio, repair_arg); 7859 if (!bio) { 7860 free_io_failure(inode, failrec); 7861 return -EIO; 7862 } 7863 7864 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7865 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7866 read_mode, failrec->this_mirror, failrec->in_validation); 7867 7868 ret = submit_dio_repair_bio(inode, bio, read_mode, 7869 failrec->this_mirror); 7870 if (ret) { 7871 free_io_failure(inode, failrec); 7872 bio_put(bio); 7873 } 7874 7875 return ret; 7876 } 7877 7878 struct btrfs_retry_complete { 7879 struct completion done; 7880 struct inode *inode; 7881 u64 start; 7882 int uptodate; 7883 }; 7884 7885 static void btrfs_retry_endio_nocsum(struct bio *bio) 7886 { 7887 struct btrfs_retry_complete *done = bio->bi_private; 7888 struct inode *inode; 7889 struct bio_vec *bvec; 7890 int i; 7891 7892 if (bio->bi_error) 7893 goto end; 7894 7895 ASSERT(bio->bi_vcnt == 1); 7896 inode = bio->bi_io_vec->bv_page->mapping->host; 7897 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7898 7899 done->uptodate = 1; 7900 bio_for_each_segment_all(bvec, bio, i) 7901 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7902 end: 7903 complete(&done->done); 7904 bio_put(bio); 7905 } 7906 7907 static int __btrfs_correct_data_nocsum(struct inode *inode, 7908 struct btrfs_io_bio *io_bio) 7909 { 7910 struct btrfs_fs_info *fs_info; 7911 struct bio_vec *bvec; 7912 struct btrfs_retry_complete done; 7913 u64 start; 7914 unsigned int pgoff; 7915 u32 sectorsize; 7916 int nr_sectors; 7917 int i; 7918 int ret; 7919 7920 fs_info = BTRFS_I(inode)->root->fs_info; 7921 sectorsize = BTRFS_I(inode)->root->sectorsize; 7922 7923 start = io_bio->logical; 7924 done.inode = inode; 7925 7926 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7927 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 7928 pgoff = bvec->bv_offset; 7929 7930 next_block_or_try_again: 7931 done.uptodate = 0; 7932 done.start = start; 7933 init_completion(&done.done); 7934 7935 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 7936 pgoff, start, start + sectorsize - 1, 7937 io_bio->mirror_num, 7938 btrfs_retry_endio_nocsum, &done); 7939 if (ret) 7940 return ret; 7941 7942 wait_for_completion(&done.done); 7943 7944 if (!done.uptodate) { 7945 /* We might have another mirror, so try again */ 7946 goto next_block_or_try_again; 7947 } 7948 7949 start += sectorsize; 7950 7951 if (nr_sectors--) { 7952 pgoff += sectorsize; 7953 goto next_block_or_try_again; 7954 } 7955 } 7956 7957 return 0; 7958 } 7959 7960 static void btrfs_retry_endio(struct bio *bio) 7961 { 7962 struct btrfs_retry_complete *done = bio->bi_private; 7963 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7964 struct inode *inode; 7965 struct bio_vec *bvec; 7966 u64 start; 7967 int uptodate; 7968 int ret; 7969 int i; 7970 7971 if (bio->bi_error) 7972 goto end; 7973 7974 uptodate = 1; 7975 7976 start = done->start; 7977 7978 ASSERT(bio->bi_vcnt == 1); 7979 inode = bio->bi_io_vec->bv_page->mapping->host; 7980 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7981 7982 bio_for_each_segment_all(bvec, bio, i) { 7983 ret = __readpage_endio_check(done->inode, io_bio, i, 7984 bvec->bv_page, bvec->bv_offset, 7985 done->start, bvec->bv_len); 7986 if (!ret) 7987 clean_io_failure(done->inode, done->start, 7988 bvec->bv_page, bvec->bv_offset); 7989 else 7990 uptodate = 0; 7991 } 7992 7993 done->uptodate = uptodate; 7994 end: 7995 complete(&done->done); 7996 bio_put(bio); 7997 } 7998 7999 static int __btrfs_subio_endio_read(struct inode *inode, 8000 struct btrfs_io_bio *io_bio, int err) 8001 { 8002 struct btrfs_fs_info *fs_info; 8003 struct bio_vec *bvec; 8004 struct btrfs_retry_complete done; 8005 u64 start; 8006 u64 offset = 0; 8007 u32 sectorsize; 8008 int nr_sectors; 8009 unsigned int pgoff; 8010 int csum_pos; 8011 int i; 8012 int ret; 8013 8014 fs_info = BTRFS_I(inode)->root->fs_info; 8015 sectorsize = BTRFS_I(inode)->root->sectorsize; 8016 8017 err = 0; 8018 start = io_bio->logical; 8019 done.inode = inode; 8020 8021 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8022 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8023 8024 pgoff = bvec->bv_offset; 8025 next_block: 8026 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8027 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8028 bvec->bv_page, pgoff, start, 8029 sectorsize); 8030 if (likely(!ret)) 8031 goto next; 8032 try_again: 8033 done.uptodate = 0; 8034 done.start = start; 8035 init_completion(&done.done); 8036 8037 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8038 pgoff, start, start + sectorsize - 1, 8039 io_bio->mirror_num, 8040 btrfs_retry_endio, &done); 8041 if (ret) { 8042 err = ret; 8043 goto next; 8044 } 8045 8046 wait_for_completion(&done.done); 8047 8048 if (!done.uptodate) { 8049 /* We might have another mirror, so try again */ 8050 goto try_again; 8051 } 8052 next: 8053 offset += sectorsize; 8054 start += sectorsize; 8055 8056 ASSERT(nr_sectors); 8057 8058 if (--nr_sectors) { 8059 pgoff += sectorsize; 8060 goto next_block; 8061 } 8062 } 8063 8064 return err; 8065 } 8066 8067 static int btrfs_subio_endio_read(struct inode *inode, 8068 struct btrfs_io_bio *io_bio, int err) 8069 { 8070 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8071 8072 if (skip_csum) { 8073 if (unlikely(err)) 8074 return __btrfs_correct_data_nocsum(inode, io_bio); 8075 else 8076 return 0; 8077 } else { 8078 return __btrfs_subio_endio_read(inode, io_bio, err); 8079 } 8080 } 8081 8082 static void btrfs_endio_direct_read(struct bio *bio) 8083 { 8084 struct btrfs_dio_private *dip = bio->bi_private; 8085 struct inode *inode = dip->inode; 8086 struct bio *dio_bio; 8087 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8088 int err = bio->bi_error; 8089 8090 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8091 err = btrfs_subio_endio_read(inode, io_bio, err); 8092 8093 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8094 dip->logical_offset + dip->bytes - 1); 8095 dio_bio = dip->dio_bio; 8096 8097 kfree(dip); 8098 8099 dio_bio->bi_error = bio->bi_error; 8100 dio_end_io(dio_bio, bio->bi_error); 8101 8102 if (io_bio->end_io) 8103 io_bio->end_io(io_bio, err); 8104 bio_put(bio); 8105 } 8106 8107 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8108 const u64 offset, 8109 const u64 bytes, 8110 const int uptodate) 8111 { 8112 struct btrfs_root *root = BTRFS_I(inode)->root; 8113 struct btrfs_ordered_extent *ordered = NULL; 8114 u64 ordered_offset = offset; 8115 u64 ordered_bytes = bytes; 8116 int ret; 8117 8118 again: 8119 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8120 &ordered_offset, 8121 ordered_bytes, 8122 uptodate); 8123 if (!ret) 8124 goto out_test; 8125 8126 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8127 finish_ordered_fn, NULL, NULL); 8128 btrfs_queue_work(root->fs_info->endio_write_workers, 8129 &ordered->work); 8130 out_test: 8131 /* 8132 * our bio might span multiple ordered extents. If we haven't 8133 * completed the accounting for the whole dio, go back and try again 8134 */ 8135 if (ordered_offset < offset + bytes) { 8136 ordered_bytes = offset + bytes - ordered_offset; 8137 ordered = NULL; 8138 goto again; 8139 } 8140 } 8141 8142 static void btrfs_endio_direct_write(struct bio *bio) 8143 { 8144 struct btrfs_dio_private *dip = bio->bi_private; 8145 struct bio *dio_bio = dip->dio_bio; 8146 8147 btrfs_endio_direct_write_update_ordered(dip->inode, 8148 dip->logical_offset, 8149 dip->bytes, 8150 !bio->bi_error); 8151 8152 kfree(dip); 8153 8154 dio_bio->bi_error = bio->bi_error; 8155 dio_end_io(dio_bio, bio->bi_error); 8156 bio_put(bio); 8157 } 8158 8159 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 8160 struct bio *bio, int mirror_num, 8161 unsigned long bio_flags, u64 offset) 8162 { 8163 int ret; 8164 struct btrfs_root *root = BTRFS_I(inode)->root; 8165 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8166 BUG_ON(ret); /* -ENOMEM */ 8167 return 0; 8168 } 8169 8170 static void btrfs_end_dio_bio(struct bio *bio) 8171 { 8172 struct btrfs_dio_private *dip = bio->bi_private; 8173 int err = bio->bi_error; 8174 8175 if (err) 8176 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8177 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 8178 btrfs_ino(dip->inode), bio->bi_rw, 8179 (unsigned long long)bio->bi_iter.bi_sector, 8180 bio->bi_iter.bi_size, err); 8181 8182 if (dip->subio_endio) 8183 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8184 8185 if (err) { 8186 dip->errors = 1; 8187 8188 /* 8189 * before atomic variable goto zero, we must make sure 8190 * dip->errors is perceived to be set. 8191 */ 8192 smp_mb__before_atomic(); 8193 } 8194 8195 /* if there are more bios still pending for this dio, just exit */ 8196 if (!atomic_dec_and_test(&dip->pending_bios)) 8197 goto out; 8198 8199 if (dip->errors) { 8200 bio_io_error(dip->orig_bio); 8201 } else { 8202 dip->dio_bio->bi_error = 0; 8203 bio_endio(dip->orig_bio); 8204 } 8205 out: 8206 bio_put(bio); 8207 } 8208 8209 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8210 u64 first_sector, gfp_t gfp_flags) 8211 { 8212 struct bio *bio; 8213 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8214 if (bio) 8215 bio_associate_current(bio); 8216 return bio; 8217 } 8218 8219 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8220 struct inode *inode, 8221 struct btrfs_dio_private *dip, 8222 struct bio *bio, 8223 u64 file_offset) 8224 { 8225 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8226 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8227 int ret; 8228 8229 /* 8230 * We load all the csum data we need when we submit 8231 * the first bio to reduce the csum tree search and 8232 * contention. 8233 */ 8234 if (dip->logical_offset == file_offset) { 8235 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8236 file_offset); 8237 if (ret) 8238 return ret; 8239 } 8240 8241 if (bio == dip->orig_bio) 8242 return 0; 8243 8244 file_offset -= dip->logical_offset; 8245 file_offset >>= inode->i_sb->s_blocksize_bits; 8246 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8247 8248 return 0; 8249 } 8250 8251 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8252 int rw, u64 file_offset, int skip_sum, 8253 int async_submit) 8254 { 8255 struct btrfs_dio_private *dip = bio->bi_private; 8256 int write = rw & REQ_WRITE; 8257 struct btrfs_root *root = BTRFS_I(inode)->root; 8258 int ret; 8259 8260 if (async_submit) 8261 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8262 8263 bio_get(bio); 8264 8265 if (!write) { 8266 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8267 BTRFS_WQ_ENDIO_DATA); 8268 if (ret) 8269 goto err; 8270 } 8271 8272 if (skip_sum) 8273 goto map; 8274 8275 if (write && async_submit) { 8276 ret = btrfs_wq_submit_bio(root->fs_info, 8277 inode, rw, bio, 0, 0, 8278 file_offset, 8279 __btrfs_submit_bio_start_direct_io, 8280 __btrfs_submit_bio_done); 8281 goto err; 8282 } else if (write) { 8283 /* 8284 * If we aren't doing async submit, calculate the csum of the 8285 * bio now. 8286 */ 8287 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8288 if (ret) 8289 goto err; 8290 } else { 8291 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8292 file_offset); 8293 if (ret) 8294 goto err; 8295 } 8296 map: 8297 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8298 err: 8299 bio_put(bio); 8300 return ret; 8301 } 8302 8303 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8304 int skip_sum) 8305 { 8306 struct inode *inode = dip->inode; 8307 struct btrfs_root *root = BTRFS_I(inode)->root; 8308 struct bio *bio; 8309 struct bio *orig_bio = dip->orig_bio; 8310 struct bio_vec *bvec = orig_bio->bi_io_vec; 8311 u64 start_sector = orig_bio->bi_iter.bi_sector; 8312 u64 file_offset = dip->logical_offset; 8313 u64 submit_len = 0; 8314 u64 map_length; 8315 u32 blocksize = root->sectorsize; 8316 int async_submit = 0; 8317 int nr_sectors; 8318 int ret; 8319 int i; 8320 8321 map_length = orig_bio->bi_iter.bi_size; 8322 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8323 &map_length, NULL, 0); 8324 if (ret) 8325 return -EIO; 8326 8327 if (map_length >= orig_bio->bi_iter.bi_size) { 8328 bio = orig_bio; 8329 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8330 goto submit; 8331 } 8332 8333 /* async crcs make it difficult to collect full stripe writes. */ 8334 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8335 async_submit = 0; 8336 else 8337 async_submit = 1; 8338 8339 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8340 if (!bio) 8341 return -ENOMEM; 8342 8343 bio->bi_private = dip; 8344 bio->bi_end_io = btrfs_end_dio_bio; 8345 btrfs_io_bio(bio)->logical = file_offset; 8346 atomic_inc(&dip->pending_bios); 8347 8348 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8349 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); 8350 i = 0; 8351 next_block: 8352 if (unlikely(map_length < submit_len + blocksize || 8353 bio_add_page(bio, bvec->bv_page, blocksize, 8354 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8355 /* 8356 * inc the count before we submit the bio so 8357 * we know the end IO handler won't happen before 8358 * we inc the count. Otherwise, the dip might get freed 8359 * before we're done setting it up 8360 */ 8361 atomic_inc(&dip->pending_bios); 8362 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8363 file_offset, skip_sum, 8364 async_submit); 8365 if (ret) { 8366 bio_put(bio); 8367 atomic_dec(&dip->pending_bios); 8368 goto out_err; 8369 } 8370 8371 start_sector += submit_len >> 9; 8372 file_offset += submit_len; 8373 8374 submit_len = 0; 8375 8376 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8377 start_sector, GFP_NOFS); 8378 if (!bio) 8379 goto out_err; 8380 bio->bi_private = dip; 8381 bio->bi_end_io = btrfs_end_dio_bio; 8382 btrfs_io_bio(bio)->logical = file_offset; 8383 8384 map_length = orig_bio->bi_iter.bi_size; 8385 ret = btrfs_map_block(root->fs_info, rw, 8386 start_sector << 9, 8387 &map_length, NULL, 0); 8388 if (ret) { 8389 bio_put(bio); 8390 goto out_err; 8391 } 8392 8393 goto next_block; 8394 } else { 8395 submit_len += blocksize; 8396 if (--nr_sectors) { 8397 i++; 8398 goto next_block; 8399 } 8400 bvec++; 8401 } 8402 } 8403 8404 submit: 8405 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8406 async_submit); 8407 if (!ret) 8408 return 0; 8409 8410 bio_put(bio); 8411 out_err: 8412 dip->errors = 1; 8413 /* 8414 * before atomic variable goto zero, we must 8415 * make sure dip->errors is perceived to be set. 8416 */ 8417 smp_mb__before_atomic(); 8418 if (atomic_dec_and_test(&dip->pending_bios)) 8419 bio_io_error(dip->orig_bio); 8420 8421 /* bio_end_io() will handle error, so we needn't return it */ 8422 return 0; 8423 } 8424 8425 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8426 struct inode *inode, loff_t file_offset) 8427 { 8428 struct btrfs_dio_private *dip = NULL; 8429 struct bio *io_bio = NULL; 8430 struct btrfs_io_bio *btrfs_bio; 8431 int skip_sum; 8432 int write = rw & REQ_WRITE; 8433 int ret = 0; 8434 8435 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8436 8437 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8438 if (!io_bio) { 8439 ret = -ENOMEM; 8440 goto free_ordered; 8441 } 8442 8443 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8444 if (!dip) { 8445 ret = -ENOMEM; 8446 goto free_ordered; 8447 } 8448 8449 dip->private = dio_bio->bi_private; 8450 dip->inode = inode; 8451 dip->logical_offset = file_offset; 8452 dip->bytes = dio_bio->bi_iter.bi_size; 8453 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8454 io_bio->bi_private = dip; 8455 dip->orig_bio = io_bio; 8456 dip->dio_bio = dio_bio; 8457 atomic_set(&dip->pending_bios, 0); 8458 btrfs_bio = btrfs_io_bio(io_bio); 8459 btrfs_bio->logical = file_offset; 8460 8461 if (write) { 8462 io_bio->bi_end_io = btrfs_endio_direct_write; 8463 } else { 8464 io_bio->bi_end_io = btrfs_endio_direct_read; 8465 dip->subio_endio = btrfs_subio_endio_read; 8466 } 8467 8468 /* 8469 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8470 * even if we fail to submit a bio, because in such case we do the 8471 * corresponding error handling below and it must not be done a second 8472 * time by btrfs_direct_IO(). 8473 */ 8474 if (write) { 8475 struct btrfs_dio_data *dio_data = current->journal_info; 8476 8477 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8478 dip->bytes; 8479 dio_data->unsubmitted_oe_range_start = 8480 dio_data->unsubmitted_oe_range_end; 8481 } 8482 8483 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8484 if (!ret) 8485 return; 8486 8487 if (btrfs_bio->end_io) 8488 btrfs_bio->end_io(btrfs_bio, ret); 8489 8490 free_ordered: 8491 /* 8492 * If we arrived here it means either we failed to submit the dip 8493 * or we either failed to clone the dio_bio or failed to allocate the 8494 * dip. If we cloned the dio_bio and allocated the dip, we can just 8495 * call bio_endio against our io_bio so that we get proper resource 8496 * cleanup if we fail to submit the dip, otherwise, we must do the 8497 * same as btrfs_endio_direct_[write|read] because we can't call these 8498 * callbacks - they require an allocated dip and a clone of dio_bio. 8499 */ 8500 if (io_bio && dip) { 8501 io_bio->bi_error = -EIO; 8502 bio_endio(io_bio); 8503 /* 8504 * The end io callbacks free our dip, do the final put on io_bio 8505 * and all the cleanup and final put for dio_bio (through 8506 * dio_end_io()). 8507 */ 8508 dip = NULL; 8509 io_bio = NULL; 8510 } else { 8511 if (write) 8512 btrfs_endio_direct_write_update_ordered(inode, 8513 file_offset, 8514 dio_bio->bi_iter.bi_size, 8515 0); 8516 else 8517 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8518 file_offset + dio_bio->bi_iter.bi_size - 1); 8519 8520 dio_bio->bi_error = -EIO; 8521 /* 8522 * Releases and cleans up our dio_bio, no need to bio_put() 8523 * nor bio_endio()/bio_io_error() against dio_bio. 8524 */ 8525 dio_end_io(dio_bio, ret); 8526 } 8527 if (io_bio) 8528 bio_put(io_bio); 8529 kfree(dip); 8530 } 8531 8532 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8533 const struct iov_iter *iter, loff_t offset) 8534 { 8535 int seg; 8536 int i; 8537 unsigned blocksize_mask = root->sectorsize - 1; 8538 ssize_t retval = -EINVAL; 8539 8540 if (offset & blocksize_mask) 8541 goto out; 8542 8543 if (iov_iter_alignment(iter) & blocksize_mask) 8544 goto out; 8545 8546 /* If this is a write we don't need to check anymore */ 8547 if (iov_iter_rw(iter) == WRITE) 8548 return 0; 8549 /* 8550 * Check to make sure we don't have duplicate iov_base's in this 8551 * iovec, if so return EINVAL, otherwise we'll get csum errors 8552 * when reading back. 8553 */ 8554 for (seg = 0; seg < iter->nr_segs; seg++) { 8555 for (i = seg + 1; i < iter->nr_segs; i++) { 8556 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8557 goto out; 8558 } 8559 } 8560 retval = 0; 8561 out: 8562 return retval; 8563 } 8564 8565 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8566 { 8567 struct file *file = iocb->ki_filp; 8568 struct inode *inode = file->f_mapping->host; 8569 struct btrfs_root *root = BTRFS_I(inode)->root; 8570 struct btrfs_dio_data dio_data = { 0 }; 8571 loff_t offset = iocb->ki_pos; 8572 size_t count = 0; 8573 int flags = 0; 8574 bool wakeup = true; 8575 bool relock = false; 8576 ssize_t ret; 8577 8578 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8579 return 0; 8580 8581 inode_dio_begin(inode); 8582 smp_mb__after_atomic(); 8583 8584 /* 8585 * The generic stuff only does filemap_write_and_wait_range, which 8586 * isn't enough if we've written compressed pages to this area, so 8587 * we need to flush the dirty pages again to make absolutely sure 8588 * that any outstanding dirty pages are on disk. 8589 */ 8590 count = iov_iter_count(iter); 8591 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8592 &BTRFS_I(inode)->runtime_flags)) 8593 filemap_fdatawrite_range(inode->i_mapping, offset, 8594 offset + count - 1); 8595 8596 if (iov_iter_rw(iter) == WRITE) { 8597 /* 8598 * If the write DIO is beyond the EOF, we need update 8599 * the isize, but it is protected by i_mutex. So we can 8600 * not unlock the i_mutex at this case. 8601 */ 8602 if (offset + count <= inode->i_size) { 8603 inode_unlock(inode); 8604 relock = true; 8605 } 8606 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8607 if (ret) 8608 goto out; 8609 dio_data.outstanding_extents = div64_u64(count + 8610 BTRFS_MAX_EXTENT_SIZE - 1, 8611 BTRFS_MAX_EXTENT_SIZE); 8612 8613 /* 8614 * We need to know how many extents we reserved so that we can 8615 * do the accounting properly if we go over the number we 8616 * originally calculated. Abuse current->journal_info for this. 8617 */ 8618 dio_data.reserve = round_up(count, root->sectorsize); 8619 dio_data.unsubmitted_oe_range_start = (u64)offset; 8620 dio_data.unsubmitted_oe_range_end = (u64)offset; 8621 current->journal_info = &dio_data; 8622 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8623 &BTRFS_I(inode)->runtime_flags)) { 8624 inode_dio_end(inode); 8625 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8626 wakeup = false; 8627 } 8628 8629 ret = __blockdev_direct_IO(iocb, inode, 8630 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8631 iter, btrfs_get_blocks_direct, NULL, 8632 btrfs_submit_direct, flags); 8633 if (iov_iter_rw(iter) == WRITE) { 8634 current->journal_info = NULL; 8635 if (ret < 0 && ret != -EIOCBQUEUED) { 8636 if (dio_data.reserve) 8637 btrfs_delalloc_release_space(inode, offset, 8638 dio_data.reserve); 8639 /* 8640 * On error we might have left some ordered extents 8641 * without submitting corresponding bios for them, so 8642 * cleanup them up to avoid other tasks getting them 8643 * and waiting for them to complete forever. 8644 */ 8645 if (dio_data.unsubmitted_oe_range_start < 8646 dio_data.unsubmitted_oe_range_end) 8647 btrfs_endio_direct_write_update_ordered(inode, 8648 dio_data.unsubmitted_oe_range_start, 8649 dio_data.unsubmitted_oe_range_end - 8650 dio_data.unsubmitted_oe_range_start, 8651 0); 8652 } else if (ret >= 0 && (size_t)ret < count) 8653 btrfs_delalloc_release_space(inode, offset, 8654 count - (size_t)ret); 8655 } 8656 out: 8657 if (wakeup) 8658 inode_dio_end(inode); 8659 if (relock) 8660 inode_lock(inode); 8661 8662 return ret; 8663 } 8664 8665 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8666 8667 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8668 __u64 start, __u64 len) 8669 { 8670 int ret; 8671 8672 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8673 if (ret) 8674 return ret; 8675 8676 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8677 } 8678 8679 int btrfs_readpage(struct file *file, struct page *page) 8680 { 8681 struct extent_io_tree *tree; 8682 tree = &BTRFS_I(page->mapping->host)->io_tree; 8683 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8684 } 8685 8686 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8687 { 8688 struct extent_io_tree *tree; 8689 struct inode *inode = page->mapping->host; 8690 int ret; 8691 8692 if (current->flags & PF_MEMALLOC) { 8693 redirty_page_for_writepage(wbc, page); 8694 unlock_page(page); 8695 return 0; 8696 } 8697 8698 /* 8699 * If we are under memory pressure we will call this directly from the 8700 * VM, we need to make sure we have the inode referenced for the ordered 8701 * extent. If not just return like we didn't do anything. 8702 */ 8703 if (!igrab(inode)) { 8704 redirty_page_for_writepage(wbc, page); 8705 return AOP_WRITEPAGE_ACTIVATE; 8706 } 8707 tree = &BTRFS_I(page->mapping->host)->io_tree; 8708 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8709 btrfs_add_delayed_iput(inode); 8710 return ret; 8711 } 8712 8713 static int btrfs_writepages(struct address_space *mapping, 8714 struct writeback_control *wbc) 8715 { 8716 struct extent_io_tree *tree; 8717 8718 tree = &BTRFS_I(mapping->host)->io_tree; 8719 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8720 } 8721 8722 static int 8723 btrfs_readpages(struct file *file, struct address_space *mapping, 8724 struct list_head *pages, unsigned nr_pages) 8725 { 8726 struct extent_io_tree *tree; 8727 tree = &BTRFS_I(mapping->host)->io_tree; 8728 return extent_readpages(tree, mapping, pages, nr_pages, 8729 btrfs_get_extent); 8730 } 8731 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8732 { 8733 struct extent_io_tree *tree; 8734 struct extent_map_tree *map; 8735 int ret; 8736 8737 tree = &BTRFS_I(page->mapping->host)->io_tree; 8738 map = &BTRFS_I(page->mapping->host)->extent_tree; 8739 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8740 if (ret == 1) { 8741 ClearPagePrivate(page); 8742 set_page_private(page, 0); 8743 put_page(page); 8744 } 8745 return ret; 8746 } 8747 8748 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8749 { 8750 if (PageWriteback(page) || PageDirty(page)) 8751 return 0; 8752 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8753 } 8754 8755 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8756 unsigned int length) 8757 { 8758 struct inode *inode = page->mapping->host; 8759 struct extent_io_tree *tree; 8760 struct btrfs_ordered_extent *ordered; 8761 struct extent_state *cached_state = NULL; 8762 u64 page_start = page_offset(page); 8763 u64 page_end = page_start + PAGE_SIZE - 1; 8764 u64 start; 8765 u64 end; 8766 int inode_evicting = inode->i_state & I_FREEING; 8767 8768 /* 8769 * we have the page locked, so new writeback can't start, 8770 * and the dirty bit won't be cleared while we are here. 8771 * 8772 * Wait for IO on this page so that we can safely clear 8773 * the PagePrivate2 bit and do ordered accounting 8774 */ 8775 wait_on_page_writeback(page); 8776 8777 tree = &BTRFS_I(inode)->io_tree; 8778 if (offset) { 8779 btrfs_releasepage(page, GFP_NOFS); 8780 return; 8781 } 8782 8783 if (!inode_evicting) 8784 lock_extent_bits(tree, page_start, page_end, &cached_state); 8785 again: 8786 start = page_start; 8787 ordered = btrfs_lookup_ordered_range(inode, start, 8788 page_end - start + 1); 8789 if (ordered) { 8790 end = min(page_end, ordered->file_offset + ordered->len - 1); 8791 /* 8792 * IO on this page will never be started, so we need 8793 * to account for any ordered extents now 8794 */ 8795 if (!inode_evicting) 8796 clear_extent_bit(tree, start, end, 8797 EXTENT_DIRTY | EXTENT_DELALLOC | 8798 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8799 EXTENT_DEFRAG, 1, 0, &cached_state, 8800 GFP_NOFS); 8801 /* 8802 * whoever cleared the private bit is responsible 8803 * for the finish_ordered_io 8804 */ 8805 if (TestClearPagePrivate2(page)) { 8806 struct btrfs_ordered_inode_tree *tree; 8807 u64 new_len; 8808 8809 tree = &BTRFS_I(inode)->ordered_tree; 8810 8811 spin_lock_irq(&tree->lock); 8812 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8813 new_len = start - ordered->file_offset; 8814 if (new_len < ordered->truncated_len) 8815 ordered->truncated_len = new_len; 8816 spin_unlock_irq(&tree->lock); 8817 8818 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8819 start, 8820 end - start + 1, 1)) 8821 btrfs_finish_ordered_io(ordered); 8822 } 8823 btrfs_put_ordered_extent(ordered); 8824 if (!inode_evicting) { 8825 cached_state = NULL; 8826 lock_extent_bits(tree, start, end, 8827 &cached_state); 8828 } 8829 8830 start = end + 1; 8831 if (start < page_end) 8832 goto again; 8833 } 8834 8835 /* 8836 * Qgroup reserved space handler 8837 * Page here will be either 8838 * 1) Already written to disk 8839 * In this case, its reserved space is released from data rsv map 8840 * and will be freed by delayed_ref handler finally. 8841 * So even we call qgroup_free_data(), it won't decrease reserved 8842 * space. 8843 * 2) Not written to disk 8844 * This means the reserved space should be freed here. 8845 */ 8846 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8847 if (!inode_evicting) { 8848 clear_extent_bit(tree, page_start, page_end, 8849 EXTENT_LOCKED | EXTENT_DIRTY | 8850 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8851 EXTENT_DEFRAG, 1, 1, 8852 &cached_state, GFP_NOFS); 8853 8854 __btrfs_releasepage(page, GFP_NOFS); 8855 } 8856 8857 ClearPageChecked(page); 8858 if (PagePrivate(page)) { 8859 ClearPagePrivate(page); 8860 set_page_private(page, 0); 8861 put_page(page); 8862 } 8863 } 8864 8865 /* 8866 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8867 * called from a page fault handler when a page is first dirtied. Hence we must 8868 * be careful to check for EOF conditions here. We set the page up correctly 8869 * for a written page which means we get ENOSPC checking when writing into 8870 * holes and correct delalloc and unwritten extent mapping on filesystems that 8871 * support these features. 8872 * 8873 * We are not allowed to take the i_mutex here so we have to play games to 8874 * protect against truncate races as the page could now be beyond EOF. Because 8875 * vmtruncate() writes the inode size before removing pages, once we have the 8876 * page lock we can determine safely if the page is beyond EOF. If it is not 8877 * beyond EOF, then the page is guaranteed safe against truncation until we 8878 * unlock the page. 8879 */ 8880 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8881 { 8882 struct page *page = vmf->page; 8883 struct inode *inode = file_inode(vma->vm_file); 8884 struct btrfs_root *root = BTRFS_I(inode)->root; 8885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8886 struct btrfs_ordered_extent *ordered; 8887 struct extent_state *cached_state = NULL; 8888 char *kaddr; 8889 unsigned long zero_start; 8890 loff_t size; 8891 int ret; 8892 int reserved = 0; 8893 u64 reserved_space; 8894 u64 page_start; 8895 u64 page_end; 8896 u64 end; 8897 8898 reserved_space = PAGE_SIZE; 8899 8900 sb_start_pagefault(inode->i_sb); 8901 page_start = page_offset(page); 8902 page_end = page_start + PAGE_SIZE - 1; 8903 end = page_end; 8904 8905 /* 8906 * Reserving delalloc space after obtaining the page lock can lead to 8907 * deadlock. For example, if a dirty page is locked by this function 8908 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8909 * dirty page write out, then the btrfs_writepage() function could 8910 * end up waiting indefinitely to get a lock on the page currently 8911 * being processed by btrfs_page_mkwrite() function. 8912 */ 8913 ret = btrfs_delalloc_reserve_space(inode, page_start, 8914 reserved_space); 8915 if (!ret) { 8916 ret = file_update_time(vma->vm_file); 8917 reserved = 1; 8918 } 8919 if (ret) { 8920 if (ret == -ENOMEM) 8921 ret = VM_FAULT_OOM; 8922 else /* -ENOSPC, -EIO, etc */ 8923 ret = VM_FAULT_SIGBUS; 8924 if (reserved) 8925 goto out; 8926 goto out_noreserve; 8927 } 8928 8929 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8930 again: 8931 lock_page(page); 8932 size = i_size_read(inode); 8933 8934 if ((page->mapping != inode->i_mapping) || 8935 (page_start >= size)) { 8936 /* page got truncated out from underneath us */ 8937 goto out_unlock; 8938 } 8939 wait_on_page_writeback(page); 8940 8941 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8942 set_page_extent_mapped(page); 8943 8944 /* 8945 * we can't set the delalloc bits if there are pending ordered 8946 * extents. Drop our locks and wait for them to finish 8947 */ 8948 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 8949 if (ordered) { 8950 unlock_extent_cached(io_tree, page_start, page_end, 8951 &cached_state, GFP_NOFS); 8952 unlock_page(page); 8953 btrfs_start_ordered_extent(inode, ordered, 1); 8954 btrfs_put_ordered_extent(ordered); 8955 goto again; 8956 } 8957 8958 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8959 reserved_space = round_up(size - page_start, root->sectorsize); 8960 if (reserved_space < PAGE_SIZE) { 8961 end = page_start + reserved_space - 1; 8962 spin_lock(&BTRFS_I(inode)->lock); 8963 BTRFS_I(inode)->outstanding_extents++; 8964 spin_unlock(&BTRFS_I(inode)->lock); 8965 btrfs_delalloc_release_space(inode, page_start, 8966 PAGE_SIZE - reserved_space); 8967 } 8968 } 8969 8970 /* 8971 * XXX - page_mkwrite gets called every time the page is dirtied, even 8972 * if it was already dirty, so for space accounting reasons we need to 8973 * clear any delalloc bits for the range we are fixing to save. There 8974 * is probably a better way to do this, but for now keep consistent with 8975 * prepare_pages in the normal write path. 8976 */ 8977 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8978 EXTENT_DIRTY | EXTENT_DELALLOC | 8979 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8980 0, 0, &cached_state, GFP_NOFS); 8981 8982 ret = btrfs_set_extent_delalloc(inode, page_start, end, 8983 &cached_state); 8984 if (ret) { 8985 unlock_extent_cached(io_tree, page_start, page_end, 8986 &cached_state, GFP_NOFS); 8987 ret = VM_FAULT_SIGBUS; 8988 goto out_unlock; 8989 } 8990 ret = 0; 8991 8992 /* page is wholly or partially inside EOF */ 8993 if (page_start + PAGE_SIZE > size) 8994 zero_start = size & ~PAGE_MASK; 8995 else 8996 zero_start = PAGE_SIZE; 8997 8998 if (zero_start != PAGE_SIZE) { 8999 kaddr = kmap(page); 9000 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9001 flush_dcache_page(page); 9002 kunmap(page); 9003 } 9004 ClearPageChecked(page); 9005 set_page_dirty(page); 9006 SetPageUptodate(page); 9007 9008 BTRFS_I(inode)->last_trans = root->fs_info->generation; 9009 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9010 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9011 9012 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9013 9014 out_unlock: 9015 if (!ret) { 9016 sb_end_pagefault(inode->i_sb); 9017 return VM_FAULT_LOCKED; 9018 } 9019 unlock_page(page); 9020 out: 9021 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9022 out_noreserve: 9023 sb_end_pagefault(inode->i_sb); 9024 return ret; 9025 } 9026 9027 static int btrfs_truncate(struct inode *inode) 9028 { 9029 struct btrfs_root *root = BTRFS_I(inode)->root; 9030 struct btrfs_block_rsv *rsv; 9031 int ret = 0; 9032 int err = 0; 9033 struct btrfs_trans_handle *trans; 9034 u64 mask = root->sectorsize - 1; 9035 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 9036 9037 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9038 (u64)-1); 9039 if (ret) 9040 return ret; 9041 9042 /* 9043 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9044 * 3 things going on here 9045 * 9046 * 1) We need to reserve space for our orphan item and the space to 9047 * delete our orphan item. Lord knows we don't want to have a dangling 9048 * orphan item because we didn't reserve space to remove it. 9049 * 9050 * 2) We need to reserve space to update our inode. 9051 * 9052 * 3) We need to have something to cache all the space that is going to 9053 * be free'd up by the truncate operation, but also have some slack 9054 * space reserved in case it uses space during the truncate (thank you 9055 * very much snapshotting). 9056 * 9057 * And we need these to all be separate. The fact is we can use a lot of 9058 * space doing the truncate, and we have no earthly idea how much space 9059 * we will use, so we need the truncate reservation to be separate so it 9060 * doesn't end up using space reserved for updating the inode or 9061 * removing the orphan item. We also need to be able to stop the 9062 * transaction and start a new one, which means we need to be able to 9063 * update the inode several times, and we have no idea of knowing how 9064 * many times that will be, so we can't just reserve 1 item for the 9065 * entirety of the operation, so that has to be done separately as well. 9066 * Then there is the orphan item, which does indeed need to be held on 9067 * to for the whole operation, and we need nobody to touch this reserved 9068 * space except the orphan code. 9069 * 9070 * So that leaves us with 9071 * 9072 * 1) root->orphan_block_rsv - for the orphan deletion. 9073 * 2) rsv - for the truncate reservation, which we will steal from the 9074 * transaction reservation. 9075 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9076 * updating the inode. 9077 */ 9078 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 9079 if (!rsv) 9080 return -ENOMEM; 9081 rsv->size = min_size; 9082 rsv->failfast = 1; 9083 9084 /* 9085 * 1 for the truncate slack space 9086 * 1 for updating the inode. 9087 */ 9088 trans = btrfs_start_transaction(root, 2); 9089 if (IS_ERR(trans)) { 9090 err = PTR_ERR(trans); 9091 goto out; 9092 } 9093 9094 /* Migrate the slack space for the truncate to our reserve */ 9095 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 9096 min_size); 9097 BUG_ON(ret); 9098 9099 /* 9100 * So if we truncate and then write and fsync we normally would just 9101 * write the extents that changed, which is a problem if we need to 9102 * first truncate that entire inode. So set this flag so we write out 9103 * all of the extents in the inode to the sync log so we're completely 9104 * safe. 9105 */ 9106 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9107 trans->block_rsv = rsv; 9108 9109 while (1) { 9110 ret = btrfs_truncate_inode_items(trans, root, inode, 9111 inode->i_size, 9112 BTRFS_EXTENT_DATA_KEY); 9113 if (ret != -ENOSPC && ret != -EAGAIN) { 9114 err = ret; 9115 break; 9116 } 9117 9118 trans->block_rsv = &root->fs_info->trans_block_rsv; 9119 ret = btrfs_update_inode(trans, root, inode); 9120 if (ret) { 9121 err = ret; 9122 break; 9123 } 9124 9125 btrfs_end_transaction(trans, root); 9126 btrfs_btree_balance_dirty(root); 9127 9128 trans = btrfs_start_transaction(root, 2); 9129 if (IS_ERR(trans)) { 9130 ret = err = PTR_ERR(trans); 9131 trans = NULL; 9132 break; 9133 } 9134 9135 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 9136 rsv, min_size); 9137 BUG_ON(ret); /* shouldn't happen */ 9138 trans->block_rsv = rsv; 9139 } 9140 9141 if (ret == 0 && inode->i_nlink > 0) { 9142 trans->block_rsv = root->orphan_block_rsv; 9143 ret = btrfs_orphan_del(trans, inode); 9144 if (ret) 9145 err = ret; 9146 } 9147 9148 if (trans) { 9149 trans->block_rsv = &root->fs_info->trans_block_rsv; 9150 ret = btrfs_update_inode(trans, root, inode); 9151 if (ret && !err) 9152 err = ret; 9153 9154 ret = btrfs_end_transaction(trans, root); 9155 btrfs_btree_balance_dirty(root); 9156 } 9157 9158 out: 9159 btrfs_free_block_rsv(root, rsv); 9160 9161 if (ret && !err) 9162 err = ret; 9163 9164 return err; 9165 } 9166 9167 /* 9168 * create a new subvolume directory/inode (helper for the ioctl). 9169 */ 9170 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9171 struct btrfs_root *new_root, 9172 struct btrfs_root *parent_root, 9173 u64 new_dirid) 9174 { 9175 struct inode *inode; 9176 int err; 9177 u64 index = 0; 9178 9179 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9180 new_dirid, new_dirid, 9181 S_IFDIR | (~current_umask() & S_IRWXUGO), 9182 &index); 9183 if (IS_ERR(inode)) 9184 return PTR_ERR(inode); 9185 inode->i_op = &btrfs_dir_inode_operations; 9186 inode->i_fop = &btrfs_dir_file_operations; 9187 9188 set_nlink(inode, 1); 9189 btrfs_i_size_write(inode, 0); 9190 unlock_new_inode(inode); 9191 9192 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9193 if (err) 9194 btrfs_err(new_root->fs_info, 9195 "error inheriting subvolume %llu properties: %d", 9196 new_root->root_key.objectid, err); 9197 9198 err = btrfs_update_inode(trans, new_root, inode); 9199 9200 iput(inode); 9201 return err; 9202 } 9203 9204 struct inode *btrfs_alloc_inode(struct super_block *sb) 9205 { 9206 struct btrfs_inode *ei; 9207 struct inode *inode; 9208 9209 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9210 if (!ei) 9211 return NULL; 9212 9213 ei->root = NULL; 9214 ei->generation = 0; 9215 ei->last_trans = 0; 9216 ei->last_sub_trans = 0; 9217 ei->logged_trans = 0; 9218 ei->delalloc_bytes = 0; 9219 ei->defrag_bytes = 0; 9220 ei->disk_i_size = 0; 9221 ei->flags = 0; 9222 ei->csum_bytes = 0; 9223 ei->index_cnt = (u64)-1; 9224 ei->dir_index = 0; 9225 ei->last_unlink_trans = 0; 9226 ei->last_log_commit = 0; 9227 ei->delayed_iput_count = 0; 9228 9229 spin_lock_init(&ei->lock); 9230 ei->outstanding_extents = 0; 9231 ei->reserved_extents = 0; 9232 9233 ei->runtime_flags = 0; 9234 ei->force_compress = BTRFS_COMPRESS_NONE; 9235 9236 ei->delayed_node = NULL; 9237 9238 ei->i_otime.tv_sec = 0; 9239 ei->i_otime.tv_nsec = 0; 9240 9241 inode = &ei->vfs_inode; 9242 extent_map_tree_init(&ei->extent_tree); 9243 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9244 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9245 ei->io_tree.track_uptodate = 1; 9246 ei->io_failure_tree.track_uptodate = 1; 9247 atomic_set(&ei->sync_writers, 0); 9248 mutex_init(&ei->log_mutex); 9249 mutex_init(&ei->delalloc_mutex); 9250 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9251 INIT_LIST_HEAD(&ei->delalloc_inodes); 9252 INIT_LIST_HEAD(&ei->delayed_iput); 9253 RB_CLEAR_NODE(&ei->rb_node); 9254 init_rwsem(&ei->dio_sem); 9255 9256 return inode; 9257 } 9258 9259 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9260 void btrfs_test_destroy_inode(struct inode *inode) 9261 { 9262 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9263 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9264 } 9265 #endif 9266 9267 static void btrfs_i_callback(struct rcu_head *head) 9268 { 9269 struct inode *inode = container_of(head, struct inode, i_rcu); 9270 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9271 } 9272 9273 void btrfs_destroy_inode(struct inode *inode) 9274 { 9275 struct btrfs_ordered_extent *ordered; 9276 struct btrfs_root *root = BTRFS_I(inode)->root; 9277 9278 WARN_ON(!hlist_empty(&inode->i_dentry)); 9279 WARN_ON(inode->i_data.nrpages); 9280 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9281 WARN_ON(BTRFS_I(inode)->reserved_extents); 9282 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9283 WARN_ON(BTRFS_I(inode)->csum_bytes); 9284 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9285 9286 /* 9287 * This can happen where we create an inode, but somebody else also 9288 * created the same inode and we need to destroy the one we already 9289 * created. 9290 */ 9291 if (!root) 9292 goto free; 9293 9294 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9295 &BTRFS_I(inode)->runtime_flags)) { 9296 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9297 btrfs_ino(inode)); 9298 atomic_dec(&root->orphan_inodes); 9299 } 9300 9301 while (1) { 9302 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9303 if (!ordered) 9304 break; 9305 else { 9306 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 9307 ordered->file_offset, ordered->len); 9308 btrfs_remove_ordered_extent(inode, ordered); 9309 btrfs_put_ordered_extent(ordered); 9310 btrfs_put_ordered_extent(ordered); 9311 } 9312 } 9313 btrfs_qgroup_check_reserved_leak(inode); 9314 inode_tree_del(inode); 9315 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9316 free: 9317 call_rcu(&inode->i_rcu, btrfs_i_callback); 9318 } 9319 9320 int btrfs_drop_inode(struct inode *inode) 9321 { 9322 struct btrfs_root *root = BTRFS_I(inode)->root; 9323 9324 if (root == NULL) 9325 return 1; 9326 9327 /* the snap/subvol tree is on deleting */ 9328 if (btrfs_root_refs(&root->root_item) == 0) 9329 return 1; 9330 else 9331 return generic_drop_inode(inode); 9332 } 9333 9334 static void init_once(void *foo) 9335 { 9336 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9337 9338 inode_init_once(&ei->vfs_inode); 9339 } 9340 9341 void btrfs_destroy_cachep(void) 9342 { 9343 /* 9344 * Make sure all delayed rcu free inodes are flushed before we 9345 * destroy cache. 9346 */ 9347 rcu_barrier(); 9348 kmem_cache_destroy(btrfs_inode_cachep); 9349 kmem_cache_destroy(btrfs_trans_handle_cachep); 9350 kmem_cache_destroy(btrfs_transaction_cachep); 9351 kmem_cache_destroy(btrfs_path_cachep); 9352 kmem_cache_destroy(btrfs_free_space_cachep); 9353 } 9354 9355 int btrfs_init_cachep(void) 9356 { 9357 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9358 sizeof(struct btrfs_inode), 0, 9359 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9360 init_once); 9361 if (!btrfs_inode_cachep) 9362 goto fail; 9363 9364 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9365 sizeof(struct btrfs_trans_handle), 0, 9366 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9367 if (!btrfs_trans_handle_cachep) 9368 goto fail; 9369 9370 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9371 sizeof(struct btrfs_transaction), 0, 9372 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9373 if (!btrfs_transaction_cachep) 9374 goto fail; 9375 9376 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9377 sizeof(struct btrfs_path), 0, 9378 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9379 if (!btrfs_path_cachep) 9380 goto fail; 9381 9382 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9383 sizeof(struct btrfs_free_space), 0, 9384 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9385 if (!btrfs_free_space_cachep) 9386 goto fail; 9387 9388 return 0; 9389 fail: 9390 btrfs_destroy_cachep(); 9391 return -ENOMEM; 9392 } 9393 9394 static int btrfs_getattr(struct vfsmount *mnt, 9395 struct dentry *dentry, struct kstat *stat) 9396 { 9397 u64 delalloc_bytes; 9398 struct inode *inode = d_inode(dentry); 9399 u32 blocksize = inode->i_sb->s_blocksize; 9400 9401 generic_fillattr(inode, stat); 9402 stat->dev = BTRFS_I(inode)->root->anon_dev; 9403 9404 spin_lock(&BTRFS_I(inode)->lock); 9405 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9406 spin_unlock(&BTRFS_I(inode)->lock); 9407 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9408 ALIGN(delalloc_bytes, blocksize)) >> 9; 9409 return 0; 9410 } 9411 9412 static int btrfs_rename_exchange(struct inode *old_dir, 9413 struct dentry *old_dentry, 9414 struct inode *new_dir, 9415 struct dentry *new_dentry) 9416 { 9417 struct btrfs_trans_handle *trans; 9418 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9419 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9420 struct inode *new_inode = new_dentry->d_inode; 9421 struct inode *old_inode = old_dentry->d_inode; 9422 struct timespec ctime = CURRENT_TIME; 9423 struct dentry *parent; 9424 u64 old_ino = btrfs_ino(old_inode); 9425 u64 new_ino = btrfs_ino(new_inode); 9426 u64 old_idx = 0; 9427 u64 new_idx = 0; 9428 u64 root_objectid; 9429 int ret; 9430 bool root_log_pinned = false; 9431 bool dest_log_pinned = false; 9432 9433 /* we only allow rename subvolume link between subvolumes */ 9434 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9435 return -EXDEV; 9436 9437 /* close the race window with snapshot create/destroy ioctl */ 9438 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9439 down_read(&root->fs_info->subvol_sem); 9440 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9441 down_read(&dest->fs_info->subvol_sem); 9442 9443 /* 9444 * We want to reserve the absolute worst case amount of items. So if 9445 * both inodes are subvols and we need to unlink them then that would 9446 * require 4 item modifications, but if they are both normal inodes it 9447 * would require 5 item modifications, so we'll assume their normal 9448 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9449 * should cover the worst case number of items we'll modify. 9450 */ 9451 trans = btrfs_start_transaction(root, 12); 9452 if (IS_ERR(trans)) { 9453 ret = PTR_ERR(trans); 9454 goto out_notrans; 9455 } 9456 9457 /* 9458 * We need to find a free sequence number both in the source and 9459 * in the destination directory for the exchange. 9460 */ 9461 ret = btrfs_set_inode_index(new_dir, &old_idx); 9462 if (ret) 9463 goto out_fail; 9464 ret = btrfs_set_inode_index(old_dir, &new_idx); 9465 if (ret) 9466 goto out_fail; 9467 9468 BTRFS_I(old_inode)->dir_index = 0ULL; 9469 BTRFS_I(new_inode)->dir_index = 0ULL; 9470 9471 /* Reference for the source. */ 9472 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9473 /* force full log commit if subvolume involved. */ 9474 btrfs_set_log_full_commit(root->fs_info, trans); 9475 } else { 9476 btrfs_pin_log_trans(root); 9477 root_log_pinned = true; 9478 ret = btrfs_insert_inode_ref(trans, dest, 9479 new_dentry->d_name.name, 9480 new_dentry->d_name.len, 9481 old_ino, 9482 btrfs_ino(new_dir), old_idx); 9483 if (ret) 9484 goto out_fail; 9485 } 9486 9487 /* And now for the dest. */ 9488 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9489 /* force full log commit if subvolume involved. */ 9490 btrfs_set_log_full_commit(dest->fs_info, trans); 9491 } else { 9492 btrfs_pin_log_trans(dest); 9493 dest_log_pinned = true; 9494 ret = btrfs_insert_inode_ref(trans, root, 9495 old_dentry->d_name.name, 9496 old_dentry->d_name.len, 9497 new_ino, 9498 btrfs_ino(old_dir), new_idx); 9499 if (ret) 9500 goto out_fail; 9501 } 9502 9503 /* Update inode version and ctime/mtime. */ 9504 inode_inc_iversion(old_dir); 9505 inode_inc_iversion(new_dir); 9506 inode_inc_iversion(old_inode); 9507 inode_inc_iversion(new_inode); 9508 old_dir->i_ctime = old_dir->i_mtime = ctime; 9509 new_dir->i_ctime = new_dir->i_mtime = ctime; 9510 old_inode->i_ctime = ctime; 9511 new_inode->i_ctime = ctime; 9512 9513 if (old_dentry->d_parent != new_dentry->d_parent) { 9514 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9515 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); 9516 } 9517 9518 /* src is a subvolume */ 9519 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9520 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9521 ret = btrfs_unlink_subvol(trans, root, old_dir, 9522 root_objectid, 9523 old_dentry->d_name.name, 9524 old_dentry->d_name.len); 9525 } else { /* src is an inode */ 9526 ret = __btrfs_unlink_inode(trans, root, old_dir, 9527 old_dentry->d_inode, 9528 old_dentry->d_name.name, 9529 old_dentry->d_name.len); 9530 if (!ret) 9531 ret = btrfs_update_inode(trans, root, old_inode); 9532 } 9533 if (ret) { 9534 btrfs_abort_transaction(trans, root, ret); 9535 goto out_fail; 9536 } 9537 9538 /* dest is a subvolume */ 9539 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9540 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9541 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9542 root_objectid, 9543 new_dentry->d_name.name, 9544 new_dentry->d_name.len); 9545 } else { /* dest is an inode */ 9546 ret = __btrfs_unlink_inode(trans, dest, new_dir, 9547 new_dentry->d_inode, 9548 new_dentry->d_name.name, 9549 new_dentry->d_name.len); 9550 if (!ret) 9551 ret = btrfs_update_inode(trans, dest, new_inode); 9552 } 9553 if (ret) { 9554 btrfs_abort_transaction(trans, root, ret); 9555 goto out_fail; 9556 } 9557 9558 ret = btrfs_add_link(trans, new_dir, old_inode, 9559 new_dentry->d_name.name, 9560 new_dentry->d_name.len, 0, old_idx); 9561 if (ret) { 9562 btrfs_abort_transaction(trans, root, ret); 9563 goto out_fail; 9564 } 9565 9566 ret = btrfs_add_link(trans, old_dir, new_inode, 9567 old_dentry->d_name.name, 9568 old_dentry->d_name.len, 0, new_idx); 9569 if (ret) { 9570 btrfs_abort_transaction(trans, root, ret); 9571 goto out_fail; 9572 } 9573 9574 if (old_inode->i_nlink == 1) 9575 BTRFS_I(old_inode)->dir_index = old_idx; 9576 if (new_inode->i_nlink == 1) 9577 BTRFS_I(new_inode)->dir_index = new_idx; 9578 9579 if (root_log_pinned) { 9580 parent = new_dentry->d_parent; 9581 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9582 btrfs_end_log_trans(root); 9583 root_log_pinned = false; 9584 } 9585 if (dest_log_pinned) { 9586 parent = old_dentry->d_parent; 9587 btrfs_log_new_name(trans, new_inode, new_dir, parent); 9588 btrfs_end_log_trans(dest); 9589 dest_log_pinned = false; 9590 } 9591 out_fail: 9592 /* 9593 * If we have pinned a log and an error happened, we unpin tasks 9594 * trying to sync the log and force them to fallback to a transaction 9595 * commit if the log currently contains any of the inodes involved in 9596 * this rename operation (to ensure we do not persist a log with an 9597 * inconsistent state for any of these inodes or leading to any 9598 * inconsistencies when replayed). If the transaction was aborted, the 9599 * abortion reason is propagated to userspace when attempting to commit 9600 * the transaction. If the log does not contain any of these inodes, we 9601 * allow the tasks to sync it. 9602 */ 9603 if (ret && (root_log_pinned || dest_log_pinned)) { 9604 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9605 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9606 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9607 (new_inode && 9608 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9609 btrfs_set_log_full_commit(root->fs_info, trans); 9610 9611 if (root_log_pinned) { 9612 btrfs_end_log_trans(root); 9613 root_log_pinned = false; 9614 } 9615 if (dest_log_pinned) { 9616 btrfs_end_log_trans(dest); 9617 dest_log_pinned = false; 9618 } 9619 } 9620 ret = btrfs_end_transaction(trans, root); 9621 out_notrans: 9622 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9623 up_read(&dest->fs_info->subvol_sem); 9624 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9625 up_read(&root->fs_info->subvol_sem); 9626 9627 return ret; 9628 } 9629 9630 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9631 struct btrfs_root *root, 9632 struct inode *dir, 9633 struct dentry *dentry) 9634 { 9635 int ret; 9636 struct inode *inode; 9637 u64 objectid; 9638 u64 index; 9639 9640 ret = btrfs_find_free_ino(root, &objectid); 9641 if (ret) 9642 return ret; 9643 9644 inode = btrfs_new_inode(trans, root, dir, 9645 dentry->d_name.name, 9646 dentry->d_name.len, 9647 btrfs_ino(dir), 9648 objectid, 9649 S_IFCHR | WHITEOUT_MODE, 9650 &index); 9651 9652 if (IS_ERR(inode)) { 9653 ret = PTR_ERR(inode); 9654 return ret; 9655 } 9656 9657 inode->i_op = &btrfs_special_inode_operations; 9658 init_special_inode(inode, inode->i_mode, 9659 WHITEOUT_DEV); 9660 9661 ret = btrfs_init_inode_security(trans, inode, dir, 9662 &dentry->d_name); 9663 if (ret) 9664 goto out; 9665 9666 ret = btrfs_add_nondir(trans, dir, dentry, 9667 inode, 0, index); 9668 if (ret) 9669 goto out; 9670 9671 ret = btrfs_update_inode(trans, root, inode); 9672 out: 9673 unlock_new_inode(inode); 9674 if (ret) 9675 inode_dec_link_count(inode); 9676 iput(inode); 9677 9678 return ret; 9679 } 9680 9681 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9682 struct inode *new_dir, struct dentry *new_dentry, 9683 unsigned int flags) 9684 { 9685 struct btrfs_trans_handle *trans; 9686 unsigned int trans_num_items; 9687 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9688 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9689 struct inode *new_inode = d_inode(new_dentry); 9690 struct inode *old_inode = d_inode(old_dentry); 9691 u64 index = 0; 9692 u64 root_objectid; 9693 int ret; 9694 u64 old_ino = btrfs_ino(old_inode); 9695 bool log_pinned = false; 9696 9697 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9698 return -EPERM; 9699 9700 /* we only allow rename subvolume link between subvolumes */ 9701 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9702 return -EXDEV; 9703 9704 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9705 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9706 return -ENOTEMPTY; 9707 9708 if (S_ISDIR(old_inode->i_mode) && new_inode && 9709 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9710 return -ENOTEMPTY; 9711 9712 9713 /* check for collisions, even if the name isn't there */ 9714 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9715 new_dentry->d_name.name, 9716 new_dentry->d_name.len); 9717 9718 if (ret) { 9719 if (ret == -EEXIST) { 9720 /* we shouldn't get 9721 * eexist without a new_inode */ 9722 if (WARN_ON(!new_inode)) { 9723 return ret; 9724 } 9725 } else { 9726 /* maybe -EOVERFLOW */ 9727 return ret; 9728 } 9729 } 9730 ret = 0; 9731 9732 /* 9733 * we're using rename to replace one file with another. Start IO on it 9734 * now so we don't add too much work to the end of the transaction 9735 */ 9736 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9737 filemap_flush(old_inode->i_mapping); 9738 9739 /* close the racy window with snapshot create/destroy ioctl */ 9740 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9741 down_read(&root->fs_info->subvol_sem); 9742 /* 9743 * We want to reserve the absolute worst case amount of items. So if 9744 * both inodes are subvols and we need to unlink them then that would 9745 * require 4 item modifications, but if they are both normal inodes it 9746 * would require 5 item modifications, so we'll assume they are normal 9747 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9748 * should cover the worst case number of items we'll modify. 9749 * If our rename has the whiteout flag, we need more 5 units for the 9750 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9751 * when selinux is enabled). 9752 */ 9753 trans_num_items = 11; 9754 if (flags & RENAME_WHITEOUT) 9755 trans_num_items += 5; 9756 trans = btrfs_start_transaction(root, trans_num_items); 9757 if (IS_ERR(trans)) { 9758 ret = PTR_ERR(trans); 9759 goto out_notrans; 9760 } 9761 9762 if (dest != root) 9763 btrfs_record_root_in_trans(trans, dest); 9764 9765 ret = btrfs_set_inode_index(new_dir, &index); 9766 if (ret) 9767 goto out_fail; 9768 9769 BTRFS_I(old_inode)->dir_index = 0ULL; 9770 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9771 /* force full log commit if subvolume involved. */ 9772 btrfs_set_log_full_commit(root->fs_info, trans); 9773 } else { 9774 btrfs_pin_log_trans(root); 9775 log_pinned = true; 9776 ret = btrfs_insert_inode_ref(trans, dest, 9777 new_dentry->d_name.name, 9778 new_dentry->d_name.len, 9779 old_ino, 9780 btrfs_ino(new_dir), index); 9781 if (ret) 9782 goto out_fail; 9783 } 9784 9785 inode_inc_iversion(old_dir); 9786 inode_inc_iversion(new_dir); 9787 inode_inc_iversion(old_inode); 9788 old_dir->i_ctime = old_dir->i_mtime = 9789 new_dir->i_ctime = new_dir->i_mtime = 9790 old_inode->i_ctime = current_fs_time(old_dir->i_sb); 9791 9792 if (old_dentry->d_parent != new_dentry->d_parent) 9793 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9794 9795 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9796 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9797 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9798 old_dentry->d_name.name, 9799 old_dentry->d_name.len); 9800 } else { 9801 ret = __btrfs_unlink_inode(trans, root, old_dir, 9802 d_inode(old_dentry), 9803 old_dentry->d_name.name, 9804 old_dentry->d_name.len); 9805 if (!ret) 9806 ret = btrfs_update_inode(trans, root, old_inode); 9807 } 9808 if (ret) { 9809 btrfs_abort_transaction(trans, root, ret); 9810 goto out_fail; 9811 } 9812 9813 if (new_inode) { 9814 inode_inc_iversion(new_inode); 9815 new_inode->i_ctime = current_fs_time(new_inode->i_sb); 9816 if (unlikely(btrfs_ino(new_inode) == 9817 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9818 root_objectid = BTRFS_I(new_inode)->location.objectid; 9819 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9820 root_objectid, 9821 new_dentry->d_name.name, 9822 new_dentry->d_name.len); 9823 BUG_ON(new_inode->i_nlink == 0); 9824 } else { 9825 ret = btrfs_unlink_inode(trans, dest, new_dir, 9826 d_inode(new_dentry), 9827 new_dentry->d_name.name, 9828 new_dentry->d_name.len); 9829 } 9830 if (!ret && new_inode->i_nlink == 0) 9831 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9832 if (ret) { 9833 btrfs_abort_transaction(trans, root, ret); 9834 goto out_fail; 9835 } 9836 } 9837 9838 ret = btrfs_add_link(trans, new_dir, old_inode, 9839 new_dentry->d_name.name, 9840 new_dentry->d_name.len, 0, index); 9841 if (ret) { 9842 btrfs_abort_transaction(trans, root, ret); 9843 goto out_fail; 9844 } 9845 9846 if (old_inode->i_nlink == 1) 9847 BTRFS_I(old_inode)->dir_index = index; 9848 9849 if (log_pinned) { 9850 struct dentry *parent = new_dentry->d_parent; 9851 9852 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9853 btrfs_end_log_trans(root); 9854 log_pinned = false; 9855 } 9856 9857 if (flags & RENAME_WHITEOUT) { 9858 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9859 old_dentry); 9860 9861 if (ret) { 9862 btrfs_abort_transaction(trans, root, ret); 9863 goto out_fail; 9864 } 9865 } 9866 out_fail: 9867 /* 9868 * If we have pinned the log and an error happened, we unpin tasks 9869 * trying to sync the log and force them to fallback to a transaction 9870 * commit if the log currently contains any of the inodes involved in 9871 * this rename operation (to ensure we do not persist a log with an 9872 * inconsistent state for any of these inodes or leading to any 9873 * inconsistencies when replayed). If the transaction was aborted, the 9874 * abortion reason is propagated to userspace when attempting to commit 9875 * the transaction. If the log does not contain any of these inodes, we 9876 * allow the tasks to sync it. 9877 */ 9878 if (ret && log_pinned) { 9879 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9880 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9881 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9882 (new_inode && 9883 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9884 btrfs_set_log_full_commit(root->fs_info, trans); 9885 9886 btrfs_end_log_trans(root); 9887 log_pinned = false; 9888 } 9889 btrfs_end_transaction(trans, root); 9890 out_notrans: 9891 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9892 up_read(&root->fs_info->subvol_sem); 9893 9894 return ret; 9895 } 9896 9897 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9898 struct inode *new_dir, struct dentry *new_dentry, 9899 unsigned int flags) 9900 { 9901 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9902 return -EINVAL; 9903 9904 if (flags & RENAME_EXCHANGE) 9905 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9906 new_dentry); 9907 9908 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9909 } 9910 9911 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9912 { 9913 struct btrfs_delalloc_work *delalloc_work; 9914 struct inode *inode; 9915 9916 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9917 work); 9918 inode = delalloc_work->inode; 9919 filemap_flush(inode->i_mapping); 9920 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9921 &BTRFS_I(inode)->runtime_flags)) 9922 filemap_flush(inode->i_mapping); 9923 9924 if (delalloc_work->delay_iput) 9925 btrfs_add_delayed_iput(inode); 9926 else 9927 iput(inode); 9928 complete(&delalloc_work->completion); 9929 } 9930 9931 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9932 int delay_iput) 9933 { 9934 struct btrfs_delalloc_work *work; 9935 9936 work = kmalloc(sizeof(*work), GFP_NOFS); 9937 if (!work) 9938 return NULL; 9939 9940 init_completion(&work->completion); 9941 INIT_LIST_HEAD(&work->list); 9942 work->inode = inode; 9943 work->delay_iput = delay_iput; 9944 WARN_ON_ONCE(!inode); 9945 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9946 btrfs_run_delalloc_work, NULL, NULL); 9947 9948 return work; 9949 } 9950 9951 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9952 { 9953 wait_for_completion(&work->completion); 9954 kfree(work); 9955 } 9956 9957 /* 9958 * some fairly slow code that needs optimization. This walks the list 9959 * of all the inodes with pending delalloc and forces them to disk. 9960 */ 9961 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9962 int nr) 9963 { 9964 struct btrfs_inode *binode; 9965 struct inode *inode; 9966 struct btrfs_delalloc_work *work, *next; 9967 struct list_head works; 9968 struct list_head splice; 9969 int ret = 0; 9970 9971 INIT_LIST_HEAD(&works); 9972 INIT_LIST_HEAD(&splice); 9973 9974 mutex_lock(&root->delalloc_mutex); 9975 spin_lock(&root->delalloc_lock); 9976 list_splice_init(&root->delalloc_inodes, &splice); 9977 while (!list_empty(&splice)) { 9978 binode = list_entry(splice.next, struct btrfs_inode, 9979 delalloc_inodes); 9980 9981 list_move_tail(&binode->delalloc_inodes, 9982 &root->delalloc_inodes); 9983 inode = igrab(&binode->vfs_inode); 9984 if (!inode) { 9985 cond_resched_lock(&root->delalloc_lock); 9986 continue; 9987 } 9988 spin_unlock(&root->delalloc_lock); 9989 9990 work = btrfs_alloc_delalloc_work(inode, delay_iput); 9991 if (!work) { 9992 if (delay_iput) 9993 btrfs_add_delayed_iput(inode); 9994 else 9995 iput(inode); 9996 ret = -ENOMEM; 9997 goto out; 9998 } 9999 list_add_tail(&work->list, &works); 10000 btrfs_queue_work(root->fs_info->flush_workers, 10001 &work->work); 10002 ret++; 10003 if (nr != -1 && ret >= nr) 10004 goto out; 10005 cond_resched(); 10006 spin_lock(&root->delalloc_lock); 10007 } 10008 spin_unlock(&root->delalloc_lock); 10009 10010 out: 10011 list_for_each_entry_safe(work, next, &works, list) { 10012 list_del_init(&work->list); 10013 btrfs_wait_and_free_delalloc_work(work); 10014 } 10015 10016 if (!list_empty_careful(&splice)) { 10017 spin_lock(&root->delalloc_lock); 10018 list_splice_tail(&splice, &root->delalloc_inodes); 10019 spin_unlock(&root->delalloc_lock); 10020 } 10021 mutex_unlock(&root->delalloc_mutex); 10022 return ret; 10023 } 10024 10025 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10026 { 10027 int ret; 10028 10029 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 10030 return -EROFS; 10031 10032 ret = __start_delalloc_inodes(root, delay_iput, -1); 10033 if (ret > 0) 10034 ret = 0; 10035 /* 10036 * the filemap_flush will queue IO into the worker threads, but 10037 * we have to make sure the IO is actually started and that 10038 * ordered extents get created before we return 10039 */ 10040 atomic_inc(&root->fs_info->async_submit_draining); 10041 while (atomic_read(&root->fs_info->nr_async_submits) || 10042 atomic_read(&root->fs_info->async_delalloc_pages)) { 10043 wait_event(root->fs_info->async_submit_wait, 10044 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 10045 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 10046 } 10047 atomic_dec(&root->fs_info->async_submit_draining); 10048 return ret; 10049 } 10050 10051 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10052 int nr) 10053 { 10054 struct btrfs_root *root; 10055 struct list_head splice; 10056 int ret; 10057 10058 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10059 return -EROFS; 10060 10061 INIT_LIST_HEAD(&splice); 10062 10063 mutex_lock(&fs_info->delalloc_root_mutex); 10064 spin_lock(&fs_info->delalloc_root_lock); 10065 list_splice_init(&fs_info->delalloc_roots, &splice); 10066 while (!list_empty(&splice) && nr) { 10067 root = list_first_entry(&splice, struct btrfs_root, 10068 delalloc_root); 10069 root = btrfs_grab_fs_root(root); 10070 BUG_ON(!root); 10071 list_move_tail(&root->delalloc_root, 10072 &fs_info->delalloc_roots); 10073 spin_unlock(&fs_info->delalloc_root_lock); 10074 10075 ret = __start_delalloc_inodes(root, delay_iput, nr); 10076 btrfs_put_fs_root(root); 10077 if (ret < 0) 10078 goto out; 10079 10080 if (nr != -1) { 10081 nr -= ret; 10082 WARN_ON(nr < 0); 10083 } 10084 spin_lock(&fs_info->delalloc_root_lock); 10085 } 10086 spin_unlock(&fs_info->delalloc_root_lock); 10087 10088 ret = 0; 10089 atomic_inc(&fs_info->async_submit_draining); 10090 while (atomic_read(&fs_info->nr_async_submits) || 10091 atomic_read(&fs_info->async_delalloc_pages)) { 10092 wait_event(fs_info->async_submit_wait, 10093 (atomic_read(&fs_info->nr_async_submits) == 0 && 10094 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10095 } 10096 atomic_dec(&fs_info->async_submit_draining); 10097 out: 10098 if (!list_empty_careful(&splice)) { 10099 spin_lock(&fs_info->delalloc_root_lock); 10100 list_splice_tail(&splice, &fs_info->delalloc_roots); 10101 spin_unlock(&fs_info->delalloc_root_lock); 10102 } 10103 mutex_unlock(&fs_info->delalloc_root_mutex); 10104 return ret; 10105 } 10106 10107 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10108 const char *symname) 10109 { 10110 struct btrfs_trans_handle *trans; 10111 struct btrfs_root *root = BTRFS_I(dir)->root; 10112 struct btrfs_path *path; 10113 struct btrfs_key key; 10114 struct inode *inode = NULL; 10115 int err; 10116 int drop_inode = 0; 10117 u64 objectid; 10118 u64 index = 0; 10119 int name_len; 10120 int datasize; 10121 unsigned long ptr; 10122 struct btrfs_file_extent_item *ei; 10123 struct extent_buffer *leaf; 10124 10125 name_len = strlen(symname); 10126 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 10127 return -ENAMETOOLONG; 10128 10129 /* 10130 * 2 items for inode item and ref 10131 * 2 items for dir items 10132 * 1 item for updating parent inode item 10133 * 1 item for the inline extent item 10134 * 1 item for xattr if selinux is on 10135 */ 10136 trans = btrfs_start_transaction(root, 7); 10137 if (IS_ERR(trans)) 10138 return PTR_ERR(trans); 10139 10140 err = btrfs_find_free_ino(root, &objectid); 10141 if (err) 10142 goto out_unlock; 10143 10144 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10145 dentry->d_name.len, btrfs_ino(dir), objectid, 10146 S_IFLNK|S_IRWXUGO, &index); 10147 if (IS_ERR(inode)) { 10148 err = PTR_ERR(inode); 10149 goto out_unlock; 10150 } 10151 10152 /* 10153 * If the active LSM wants to access the inode during 10154 * d_instantiate it needs these. Smack checks to see 10155 * if the filesystem supports xattrs by looking at the 10156 * ops vector. 10157 */ 10158 inode->i_fop = &btrfs_file_operations; 10159 inode->i_op = &btrfs_file_inode_operations; 10160 inode->i_mapping->a_ops = &btrfs_aops; 10161 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10162 10163 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10164 if (err) 10165 goto out_unlock_inode; 10166 10167 path = btrfs_alloc_path(); 10168 if (!path) { 10169 err = -ENOMEM; 10170 goto out_unlock_inode; 10171 } 10172 key.objectid = btrfs_ino(inode); 10173 key.offset = 0; 10174 key.type = BTRFS_EXTENT_DATA_KEY; 10175 datasize = btrfs_file_extent_calc_inline_size(name_len); 10176 err = btrfs_insert_empty_item(trans, root, path, &key, 10177 datasize); 10178 if (err) { 10179 btrfs_free_path(path); 10180 goto out_unlock_inode; 10181 } 10182 leaf = path->nodes[0]; 10183 ei = btrfs_item_ptr(leaf, path->slots[0], 10184 struct btrfs_file_extent_item); 10185 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10186 btrfs_set_file_extent_type(leaf, ei, 10187 BTRFS_FILE_EXTENT_INLINE); 10188 btrfs_set_file_extent_encryption(leaf, ei, 0); 10189 btrfs_set_file_extent_compression(leaf, ei, 0); 10190 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10191 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10192 10193 ptr = btrfs_file_extent_inline_start(ei); 10194 write_extent_buffer(leaf, symname, ptr, name_len); 10195 btrfs_mark_buffer_dirty(leaf); 10196 btrfs_free_path(path); 10197 10198 inode->i_op = &btrfs_symlink_inode_operations; 10199 inode_nohighmem(inode); 10200 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10201 inode_set_bytes(inode, name_len); 10202 btrfs_i_size_write(inode, name_len); 10203 err = btrfs_update_inode(trans, root, inode); 10204 /* 10205 * Last step, add directory indexes for our symlink inode. This is the 10206 * last step to avoid extra cleanup of these indexes if an error happens 10207 * elsewhere above. 10208 */ 10209 if (!err) 10210 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 10211 if (err) { 10212 drop_inode = 1; 10213 goto out_unlock_inode; 10214 } 10215 10216 unlock_new_inode(inode); 10217 d_instantiate(dentry, inode); 10218 10219 out_unlock: 10220 btrfs_end_transaction(trans, root); 10221 if (drop_inode) { 10222 inode_dec_link_count(inode); 10223 iput(inode); 10224 } 10225 btrfs_btree_balance_dirty(root); 10226 return err; 10227 10228 out_unlock_inode: 10229 drop_inode = 1; 10230 unlock_new_inode(inode); 10231 goto out_unlock; 10232 } 10233 10234 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10235 u64 start, u64 num_bytes, u64 min_size, 10236 loff_t actual_len, u64 *alloc_hint, 10237 struct btrfs_trans_handle *trans) 10238 { 10239 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10240 struct extent_map *em; 10241 struct btrfs_root *root = BTRFS_I(inode)->root; 10242 struct btrfs_key ins; 10243 u64 cur_offset = start; 10244 u64 i_size; 10245 u64 cur_bytes; 10246 u64 last_alloc = (u64)-1; 10247 int ret = 0; 10248 bool own_trans = true; 10249 10250 if (trans) 10251 own_trans = false; 10252 while (num_bytes > 0) { 10253 if (own_trans) { 10254 trans = btrfs_start_transaction(root, 3); 10255 if (IS_ERR(trans)) { 10256 ret = PTR_ERR(trans); 10257 break; 10258 } 10259 } 10260 10261 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10262 cur_bytes = max(cur_bytes, min_size); 10263 /* 10264 * If we are severely fragmented we could end up with really 10265 * small allocations, so if the allocator is returning small 10266 * chunks lets make its job easier by only searching for those 10267 * sized chunks. 10268 */ 10269 cur_bytes = min(cur_bytes, last_alloc); 10270 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 10271 *alloc_hint, &ins, 1, 0); 10272 if (ret) { 10273 if (own_trans) 10274 btrfs_end_transaction(trans, root); 10275 break; 10276 } 10277 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 10278 10279 last_alloc = ins.offset; 10280 ret = insert_reserved_file_extent(trans, inode, 10281 cur_offset, ins.objectid, 10282 ins.offset, ins.offset, 10283 ins.offset, 0, 0, 0, 10284 BTRFS_FILE_EXTENT_PREALLOC); 10285 if (ret) { 10286 btrfs_free_reserved_extent(root, ins.objectid, 10287 ins.offset, 0); 10288 btrfs_abort_transaction(trans, root, ret); 10289 if (own_trans) 10290 btrfs_end_transaction(trans, root); 10291 break; 10292 } 10293 10294 btrfs_drop_extent_cache(inode, cur_offset, 10295 cur_offset + ins.offset -1, 0); 10296 10297 em = alloc_extent_map(); 10298 if (!em) { 10299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10300 &BTRFS_I(inode)->runtime_flags); 10301 goto next; 10302 } 10303 10304 em->start = cur_offset; 10305 em->orig_start = cur_offset; 10306 em->len = ins.offset; 10307 em->block_start = ins.objectid; 10308 em->block_len = ins.offset; 10309 em->orig_block_len = ins.offset; 10310 em->ram_bytes = ins.offset; 10311 em->bdev = root->fs_info->fs_devices->latest_bdev; 10312 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10313 em->generation = trans->transid; 10314 10315 while (1) { 10316 write_lock(&em_tree->lock); 10317 ret = add_extent_mapping(em_tree, em, 1); 10318 write_unlock(&em_tree->lock); 10319 if (ret != -EEXIST) 10320 break; 10321 btrfs_drop_extent_cache(inode, cur_offset, 10322 cur_offset + ins.offset - 1, 10323 0); 10324 } 10325 free_extent_map(em); 10326 next: 10327 num_bytes -= ins.offset; 10328 cur_offset += ins.offset; 10329 *alloc_hint = ins.objectid + ins.offset; 10330 10331 inode_inc_iversion(inode); 10332 inode->i_ctime = current_fs_time(inode->i_sb); 10333 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10334 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10335 (actual_len > inode->i_size) && 10336 (cur_offset > inode->i_size)) { 10337 if (cur_offset > actual_len) 10338 i_size = actual_len; 10339 else 10340 i_size = cur_offset; 10341 i_size_write(inode, i_size); 10342 btrfs_ordered_update_i_size(inode, i_size, NULL); 10343 } 10344 10345 ret = btrfs_update_inode(trans, root, inode); 10346 10347 if (ret) { 10348 btrfs_abort_transaction(trans, root, ret); 10349 if (own_trans) 10350 btrfs_end_transaction(trans, root); 10351 break; 10352 } 10353 10354 if (own_trans) 10355 btrfs_end_transaction(trans, root); 10356 } 10357 return ret; 10358 } 10359 10360 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10361 u64 start, u64 num_bytes, u64 min_size, 10362 loff_t actual_len, u64 *alloc_hint) 10363 { 10364 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10365 min_size, actual_len, alloc_hint, 10366 NULL); 10367 } 10368 10369 int btrfs_prealloc_file_range_trans(struct inode *inode, 10370 struct btrfs_trans_handle *trans, int mode, 10371 u64 start, u64 num_bytes, u64 min_size, 10372 loff_t actual_len, u64 *alloc_hint) 10373 { 10374 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10375 min_size, actual_len, alloc_hint, trans); 10376 } 10377 10378 static int btrfs_set_page_dirty(struct page *page) 10379 { 10380 return __set_page_dirty_nobuffers(page); 10381 } 10382 10383 static int btrfs_permission(struct inode *inode, int mask) 10384 { 10385 struct btrfs_root *root = BTRFS_I(inode)->root; 10386 umode_t mode = inode->i_mode; 10387 10388 if (mask & MAY_WRITE && 10389 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10390 if (btrfs_root_readonly(root)) 10391 return -EROFS; 10392 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10393 return -EACCES; 10394 } 10395 return generic_permission(inode, mask); 10396 } 10397 10398 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10399 { 10400 struct btrfs_trans_handle *trans; 10401 struct btrfs_root *root = BTRFS_I(dir)->root; 10402 struct inode *inode = NULL; 10403 u64 objectid; 10404 u64 index; 10405 int ret = 0; 10406 10407 /* 10408 * 5 units required for adding orphan entry 10409 */ 10410 trans = btrfs_start_transaction(root, 5); 10411 if (IS_ERR(trans)) 10412 return PTR_ERR(trans); 10413 10414 ret = btrfs_find_free_ino(root, &objectid); 10415 if (ret) 10416 goto out; 10417 10418 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10419 btrfs_ino(dir), objectid, mode, &index); 10420 if (IS_ERR(inode)) { 10421 ret = PTR_ERR(inode); 10422 inode = NULL; 10423 goto out; 10424 } 10425 10426 inode->i_fop = &btrfs_file_operations; 10427 inode->i_op = &btrfs_file_inode_operations; 10428 10429 inode->i_mapping->a_ops = &btrfs_aops; 10430 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10431 10432 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10433 if (ret) 10434 goto out_inode; 10435 10436 ret = btrfs_update_inode(trans, root, inode); 10437 if (ret) 10438 goto out_inode; 10439 ret = btrfs_orphan_add(trans, inode); 10440 if (ret) 10441 goto out_inode; 10442 10443 /* 10444 * We set number of links to 0 in btrfs_new_inode(), and here we set 10445 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10446 * through: 10447 * 10448 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10449 */ 10450 set_nlink(inode, 1); 10451 unlock_new_inode(inode); 10452 d_tmpfile(dentry, inode); 10453 mark_inode_dirty(inode); 10454 10455 out: 10456 btrfs_end_transaction(trans, root); 10457 if (ret) 10458 iput(inode); 10459 btrfs_balance_delayed_items(root); 10460 btrfs_btree_balance_dirty(root); 10461 return ret; 10462 10463 out_inode: 10464 unlock_new_inode(inode); 10465 goto out; 10466 10467 } 10468 10469 /* Inspired by filemap_check_errors() */ 10470 int btrfs_inode_check_errors(struct inode *inode) 10471 { 10472 int ret = 0; 10473 10474 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 10475 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 10476 ret = -ENOSPC; 10477 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 10478 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 10479 ret = -EIO; 10480 10481 return ret; 10482 } 10483 10484 static const struct inode_operations btrfs_dir_inode_operations = { 10485 .getattr = btrfs_getattr, 10486 .lookup = btrfs_lookup, 10487 .create = btrfs_create, 10488 .unlink = btrfs_unlink, 10489 .link = btrfs_link, 10490 .mkdir = btrfs_mkdir, 10491 .rmdir = btrfs_rmdir, 10492 .rename2 = btrfs_rename2, 10493 .symlink = btrfs_symlink, 10494 .setattr = btrfs_setattr, 10495 .mknod = btrfs_mknod, 10496 .setxattr = generic_setxattr, 10497 .getxattr = generic_getxattr, 10498 .listxattr = btrfs_listxattr, 10499 .removexattr = generic_removexattr, 10500 .permission = btrfs_permission, 10501 .get_acl = btrfs_get_acl, 10502 .set_acl = btrfs_set_acl, 10503 .update_time = btrfs_update_time, 10504 .tmpfile = btrfs_tmpfile, 10505 }; 10506 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10507 .lookup = btrfs_lookup, 10508 .permission = btrfs_permission, 10509 .get_acl = btrfs_get_acl, 10510 .set_acl = btrfs_set_acl, 10511 .update_time = btrfs_update_time, 10512 }; 10513 10514 static const struct file_operations btrfs_dir_file_operations = { 10515 .llseek = generic_file_llseek, 10516 .read = generic_read_dir, 10517 .iterate = btrfs_real_readdir, 10518 .unlocked_ioctl = btrfs_ioctl, 10519 #ifdef CONFIG_COMPAT 10520 .compat_ioctl = btrfs_compat_ioctl, 10521 #endif 10522 .release = btrfs_release_file, 10523 .fsync = btrfs_sync_file, 10524 }; 10525 10526 static const struct extent_io_ops btrfs_extent_io_ops = { 10527 .fill_delalloc = run_delalloc_range, 10528 .submit_bio_hook = btrfs_submit_bio_hook, 10529 .merge_bio_hook = btrfs_merge_bio_hook, 10530 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10531 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10532 .writepage_start_hook = btrfs_writepage_start_hook, 10533 .set_bit_hook = btrfs_set_bit_hook, 10534 .clear_bit_hook = btrfs_clear_bit_hook, 10535 .merge_extent_hook = btrfs_merge_extent_hook, 10536 .split_extent_hook = btrfs_split_extent_hook, 10537 }; 10538 10539 /* 10540 * btrfs doesn't support the bmap operation because swapfiles 10541 * use bmap to make a mapping of extents in the file. They assume 10542 * these extents won't change over the life of the file and they 10543 * use the bmap result to do IO directly to the drive. 10544 * 10545 * the btrfs bmap call would return logical addresses that aren't 10546 * suitable for IO and they also will change frequently as COW 10547 * operations happen. So, swapfile + btrfs == corruption. 10548 * 10549 * For now we're avoiding this by dropping bmap. 10550 */ 10551 static const struct address_space_operations btrfs_aops = { 10552 .readpage = btrfs_readpage, 10553 .writepage = btrfs_writepage, 10554 .writepages = btrfs_writepages, 10555 .readpages = btrfs_readpages, 10556 .direct_IO = btrfs_direct_IO, 10557 .invalidatepage = btrfs_invalidatepage, 10558 .releasepage = btrfs_releasepage, 10559 .set_page_dirty = btrfs_set_page_dirty, 10560 .error_remove_page = generic_error_remove_page, 10561 }; 10562 10563 static const struct address_space_operations btrfs_symlink_aops = { 10564 .readpage = btrfs_readpage, 10565 .writepage = btrfs_writepage, 10566 .invalidatepage = btrfs_invalidatepage, 10567 .releasepage = btrfs_releasepage, 10568 }; 10569 10570 static const struct inode_operations btrfs_file_inode_operations = { 10571 .getattr = btrfs_getattr, 10572 .setattr = btrfs_setattr, 10573 .setxattr = generic_setxattr, 10574 .getxattr = generic_getxattr, 10575 .listxattr = btrfs_listxattr, 10576 .removexattr = generic_removexattr, 10577 .permission = btrfs_permission, 10578 .fiemap = btrfs_fiemap, 10579 .get_acl = btrfs_get_acl, 10580 .set_acl = btrfs_set_acl, 10581 .update_time = btrfs_update_time, 10582 }; 10583 static const struct inode_operations btrfs_special_inode_operations = { 10584 .getattr = btrfs_getattr, 10585 .setattr = btrfs_setattr, 10586 .permission = btrfs_permission, 10587 .setxattr = generic_setxattr, 10588 .getxattr = generic_getxattr, 10589 .listxattr = btrfs_listxattr, 10590 .removexattr = generic_removexattr, 10591 .get_acl = btrfs_get_acl, 10592 .set_acl = btrfs_set_acl, 10593 .update_time = btrfs_update_time, 10594 }; 10595 static const struct inode_operations btrfs_symlink_inode_operations = { 10596 .readlink = generic_readlink, 10597 .get_link = page_get_link, 10598 .getattr = btrfs_getattr, 10599 .setattr = btrfs_setattr, 10600 .permission = btrfs_permission, 10601 .setxattr = generic_setxattr, 10602 .getxattr = generic_getxattr, 10603 .listxattr = btrfs_listxattr, 10604 .removexattr = generic_removexattr, 10605 .update_time = btrfs_update_time, 10606 }; 10607 10608 const struct dentry_operations btrfs_dentry_operations = { 10609 .d_delete = btrfs_dentry_delete, 10610 .d_release = btrfs_dentry_release, 10611 }; 10612