xref: /openbmc/linux/fs/btrfs/inode.c (revision 3805e6a1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 struct btrfs_dio_data {
70 	u64 outstanding_extents;
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 };
75 
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85 
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91 
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
95 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
96 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
97 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
98 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
99 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
100 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
101 };
102 
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 				   struct page *locked_page,
108 				   u64 start, u64 end, int *page_started,
109 				   unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 					   u64 len, u64 orig_start,
112 					   u64 block_start, u64 block_len,
113 					   u64 orig_block_len, u64 ram_bytes,
114 					   int type);
115 
116 static int btrfs_dirty_inode(struct inode *inode);
117 
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124 
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 				     struct inode *inode,  struct inode *dir,
127 				     const struct qstr *qstr)
128 {
129 	int err;
130 
131 	err = btrfs_init_acl(trans, inode, dir);
132 	if (!err)
133 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 	return err;
135 }
136 
137 /*
138  * this does all the hard work for inserting an inline extent into
139  * the btree.  The caller should have done a btrfs_drop_extents so that
140  * no overlapping inline items exist in the btree
141  */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 				struct btrfs_path *path, int extent_inserted,
144 				struct btrfs_root *root, struct inode *inode,
145 				u64 start, size_t size, size_t compressed_size,
146 				int compress_type,
147 				struct page **compressed_pages)
148 {
149 	struct extent_buffer *leaf;
150 	struct page *page = NULL;
151 	char *kaddr;
152 	unsigned long ptr;
153 	struct btrfs_file_extent_item *ei;
154 	int err = 0;
155 	int ret;
156 	size_t cur_size = size;
157 	unsigned long offset;
158 
159 	if (compressed_size && compressed_pages)
160 		cur_size = compressed_size;
161 
162 	inode_add_bytes(inode, size);
163 
164 	if (!extent_inserted) {
165 		struct btrfs_key key;
166 		size_t datasize;
167 
168 		key.objectid = btrfs_ino(inode);
169 		key.offset = start;
170 		key.type = BTRFS_EXTENT_DATA_KEY;
171 
172 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 		path->leave_spinning = 1;
174 		ret = btrfs_insert_empty_item(trans, root, path, &key,
175 					      datasize);
176 		if (ret) {
177 			err = ret;
178 			goto fail;
179 		}
180 	}
181 	leaf = path->nodes[0];
182 	ei = btrfs_item_ptr(leaf, path->slots[0],
183 			    struct btrfs_file_extent_item);
184 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 	btrfs_set_file_extent_encryption(leaf, ei, 0);
187 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 	ptr = btrfs_file_extent_inline_start(ei);
190 
191 	if (compress_type != BTRFS_COMPRESS_NONE) {
192 		struct page *cpage;
193 		int i = 0;
194 		while (compressed_size > 0) {
195 			cpage = compressed_pages[i];
196 			cur_size = min_t(unsigned long, compressed_size,
197 				       PAGE_SIZE);
198 
199 			kaddr = kmap_atomic(cpage);
200 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 			kunmap_atomic(kaddr);
202 
203 			i++;
204 			ptr += cur_size;
205 			compressed_size -= cur_size;
206 		}
207 		btrfs_set_file_extent_compression(leaf, ei,
208 						  compress_type);
209 	} else {
210 		page = find_get_page(inode->i_mapping,
211 				     start >> PAGE_SHIFT);
212 		btrfs_set_file_extent_compression(leaf, ei, 0);
213 		kaddr = kmap_atomic(page);
214 		offset = start & (PAGE_SIZE - 1);
215 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 		kunmap_atomic(kaddr);
217 		put_page(page);
218 	}
219 	btrfs_mark_buffer_dirty(leaf);
220 	btrfs_release_path(path);
221 
222 	/*
223 	 * we're an inline extent, so nobody can
224 	 * extend the file past i_size without locking
225 	 * a page we already have locked.
226 	 *
227 	 * We must do any isize and inode updates
228 	 * before we unlock the pages.  Otherwise we
229 	 * could end up racing with unlink.
230 	 */
231 	BTRFS_I(inode)->disk_i_size = inode->i_size;
232 	ret = btrfs_update_inode(trans, root, inode);
233 
234 	return ret;
235 fail:
236 	return err;
237 }
238 
239 
240 /*
241  * conditionally insert an inline extent into the file.  This
242  * does the checks required to make sure the data is small enough
243  * to fit as an inline extent.
244  */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 					  struct inode *inode, u64 start,
247 					  u64 end, size_t compressed_size,
248 					  int compress_type,
249 					  struct page **compressed_pages)
250 {
251 	struct btrfs_trans_handle *trans;
252 	u64 isize = i_size_read(inode);
253 	u64 actual_end = min(end + 1, isize);
254 	u64 inline_len = actual_end - start;
255 	u64 aligned_end = ALIGN(end, root->sectorsize);
256 	u64 data_len = inline_len;
257 	int ret;
258 	struct btrfs_path *path;
259 	int extent_inserted = 0;
260 	u32 extent_item_size;
261 
262 	if (compressed_size)
263 		data_len = compressed_size;
264 
265 	if (start > 0 ||
266 	    actual_end > root->sectorsize ||
267 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 	    (!compressed_size &&
269 	    (actual_end & (root->sectorsize - 1)) == 0) ||
270 	    end + 1 < isize ||
271 	    data_len > root->fs_info->max_inline) {
272 		return 1;
273 	}
274 
275 	path = btrfs_alloc_path();
276 	if (!path)
277 		return -ENOMEM;
278 
279 	trans = btrfs_join_transaction(root);
280 	if (IS_ERR(trans)) {
281 		btrfs_free_path(path);
282 		return PTR_ERR(trans);
283 	}
284 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285 
286 	if (compressed_size && compressed_pages)
287 		extent_item_size = btrfs_file_extent_calc_inline_size(
288 		   compressed_size);
289 	else
290 		extent_item_size = btrfs_file_extent_calc_inline_size(
291 		    inline_len);
292 
293 	ret = __btrfs_drop_extents(trans, root, inode, path,
294 				   start, aligned_end, NULL,
295 				   1, 1, extent_item_size, &extent_inserted);
296 	if (ret) {
297 		btrfs_abort_transaction(trans, root, ret);
298 		goto out;
299 	}
300 
301 	if (isize > actual_end)
302 		inline_len = min_t(u64, isize, actual_end);
303 	ret = insert_inline_extent(trans, path, extent_inserted,
304 				   root, inode, start,
305 				   inline_len, compressed_size,
306 				   compress_type, compressed_pages);
307 	if (ret && ret != -ENOSPC) {
308 		btrfs_abort_transaction(trans, root, ret);
309 		goto out;
310 	} else if (ret == -ENOSPC) {
311 		ret = 1;
312 		goto out;
313 	}
314 
315 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 	/*
320 	 * Don't forget to free the reserved space, as for inlined extent
321 	 * it won't count as data extent, free them directly here.
322 	 * And at reserve time, it's always aligned to page size, so
323 	 * just free one page here.
324 	 */
325 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
326 	btrfs_free_path(path);
327 	btrfs_end_transaction(trans, root);
328 	return ret;
329 }
330 
331 struct async_extent {
332 	u64 start;
333 	u64 ram_size;
334 	u64 compressed_size;
335 	struct page **pages;
336 	unsigned long nr_pages;
337 	int compress_type;
338 	struct list_head list;
339 };
340 
341 struct async_cow {
342 	struct inode *inode;
343 	struct btrfs_root *root;
344 	struct page *locked_page;
345 	u64 start;
346 	u64 end;
347 	struct list_head extents;
348 	struct btrfs_work work;
349 };
350 
351 static noinline int add_async_extent(struct async_cow *cow,
352 				     u64 start, u64 ram_size,
353 				     u64 compressed_size,
354 				     struct page **pages,
355 				     unsigned long nr_pages,
356 				     int compress_type)
357 {
358 	struct async_extent *async_extent;
359 
360 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 	BUG_ON(!async_extent); /* -ENOMEM */
362 	async_extent->start = start;
363 	async_extent->ram_size = ram_size;
364 	async_extent->compressed_size = compressed_size;
365 	async_extent->pages = pages;
366 	async_extent->nr_pages = nr_pages;
367 	async_extent->compress_type = compress_type;
368 	list_add_tail(&async_extent->list, &cow->extents);
369 	return 0;
370 }
371 
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 	struct btrfs_root *root = BTRFS_I(inode)->root;
375 
376 	/* force compress */
377 	if (btrfs_test_opt(root, FORCE_COMPRESS))
378 		return 1;
379 	/* bad compression ratios */
380 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 		return 0;
382 	if (btrfs_test_opt(root, COMPRESS) ||
383 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 	    BTRFS_I(inode)->force_compress)
385 		return 1;
386 	return 0;
387 }
388 
389 /*
390  * we create compressed extents in two phases.  The first
391  * phase compresses a range of pages that have already been
392  * locked (both pages and state bits are locked).
393  *
394  * This is done inside an ordered work queue, and the compression
395  * is spread across many cpus.  The actual IO submission is step
396  * two, and the ordered work queue takes care of making sure that
397  * happens in the same order things were put onto the queue by
398  * writepages and friends.
399  *
400  * If this code finds it can't get good compression, it puts an
401  * entry onto the work queue to write the uncompressed bytes.  This
402  * makes sure that both compressed inodes and uncompressed inodes
403  * are written in the same order that the flusher thread sent them
404  * down.
405  */
406 static noinline void compress_file_range(struct inode *inode,
407 					struct page *locked_page,
408 					u64 start, u64 end,
409 					struct async_cow *async_cow,
410 					int *num_added)
411 {
412 	struct btrfs_root *root = BTRFS_I(inode)->root;
413 	u64 num_bytes;
414 	u64 blocksize = root->sectorsize;
415 	u64 actual_end;
416 	u64 isize = i_size_read(inode);
417 	int ret = 0;
418 	struct page **pages = NULL;
419 	unsigned long nr_pages;
420 	unsigned long nr_pages_ret = 0;
421 	unsigned long total_compressed = 0;
422 	unsigned long total_in = 0;
423 	unsigned long max_compressed = SZ_128K;
424 	unsigned long max_uncompressed = SZ_128K;
425 	int i;
426 	int will_compress;
427 	int compress_type = root->fs_info->compress_type;
428 	int redirty = 0;
429 
430 	/* if this is a small write inside eof, kick off a defrag */
431 	if ((end - start + 1) < SZ_16K &&
432 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 		btrfs_add_inode_defrag(NULL, inode);
434 
435 	actual_end = min_t(u64, isize, end + 1);
436 again:
437 	will_compress = 0;
438 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
440 
441 	/*
442 	 * we don't want to send crud past the end of i_size through
443 	 * compression, that's just a waste of CPU time.  So, if the
444 	 * end of the file is before the start of our current
445 	 * requested range of bytes, we bail out to the uncompressed
446 	 * cleanup code that can deal with all of this.
447 	 *
448 	 * It isn't really the fastest way to fix things, but this is a
449 	 * very uncommon corner.
450 	 */
451 	if (actual_end <= start)
452 		goto cleanup_and_bail_uncompressed;
453 
454 	total_compressed = actual_end - start;
455 
456 	/*
457 	 * skip compression for a small file range(<=blocksize) that
458 	 * isn't an inline extent, since it doesn't save disk space at all.
459 	 */
460 	if (total_compressed <= blocksize &&
461 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 		goto cleanup_and_bail_uncompressed;
463 
464 	/* we want to make sure that amount of ram required to uncompress
465 	 * an extent is reasonable, so we limit the total size in ram
466 	 * of a compressed extent to 128k.  This is a crucial number
467 	 * because it also controls how easily we can spread reads across
468 	 * cpus for decompression.
469 	 *
470 	 * We also want to make sure the amount of IO required to do
471 	 * a random read is reasonably small, so we limit the size of
472 	 * a compressed extent to 128k.
473 	 */
474 	total_compressed = min(total_compressed, max_uncompressed);
475 	num_bytes = ALIGN(end - start + 1, blocksize);
476 	num_bytes = max(blocksize,  num_bytes);
477 	total_in = 0;
478 	ret = 0;
479 
480 	/*
481 	 * we do compression for mount -o compress and when the
482 	 * inode has not been flagged as nocompress.  This flag can
483 	 * change at any time if we discover bad compression ratios.
484 	 */
485 	if (inode_need_compress(inode)) {
486 		WARN_ON(pages);
487 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 		if (!pages) {
489 			/* just bail out to the uncompressed code */
490 			goto cont;
491 		}
492 
493 		if (BTRFS_I(inode)->force_compress)
494 			compress_type = BTRFS_I(inode)->force_compress;
495 
496 		/*
497 		 * we need to call clear_page_dirty_for_io on each
498 		 * page in the range.  Otherwise applications with the file
499 		 * mmap'd can wander in and change the page contents while
500 		 * we are compressing them.
501 		 *
502 		 * If the compression fails for any reason, we set the pages
503 		 * dirty again later on.
504 		 */
505 		extent_range_clear_dirty_for_io(inode, start, end);
506 		redirty = 1;
507 		ret = btrfs_compress_pages(compress_type,
508 					   inode->i_mapping, start,
509 					   total_compressed, pages,
510 					   nr_pages, &nr_pages_ret,
511 					   &total_in,
512 					   &total_compressed,
513 					   max_compressed);
514 
515 		if (!ret) {
516 			unsigned long offset = total_compressed &
517 				(PAGE_SIZE - 1);
518 			struct page *page = pages[nr_pages_ret - 1];
519 			char *kaddr;
520 
521 			/* zero the tail end of the last page, we might be
522 			 * sending it down to disk
523 			 */
524 			if (offset) {
525 				kaddr = kmap_atomic(page);
526 				memset(kaddr + offset, 0,
527 				       PAGE_SIZE - offset);
528 				kunmap_atomic(kaddr);
529 			}
530 			will_compress = 1;
531 		}
532 	}
533 cont:
534 	if (start == 0) {
535 		/* lets try to make an inline extent */
536 		if (ret || total_in < (actual_end - start)) {
537 			/* we didn't compress the entire range, try
538 			 * to make an uncompressed inline extent.
539 			 */
540 			ret = cow_file_range_inline(root, inode, start, end,
541 						    0, 0, NULL);
542 		} else {
543 			/* try making a compressed inline extent */
544 			ret = cow_file_range_inline(root, inode, start, end,
545 						    total_compressed,
546 						    compress_type, pages);
547 		}
548 		if (ret <= 0) {
549 			unsigned long clear_flags = EXTENT_DELALLOC |
550 				EXTENT_DEFRAG;
551 			unsigned long page_error_op;
552 
553 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555 
556 			/*
557 			 * inline extent creation worked or returned error,
558 			 * we don't need to create any more async work items.
559 			 * Unlock and free up our temp pages.
560 			 */
561 			extent_clear_unlock_delalloc(inode, start, end, NULL,
562 						     clear_flags, PAGE_UNLOCK |
563 						     PAGE_CLEAR_DIRTY |
564 						     PAGE_SET_WRITEBACK |
565 						     page_error_op |
566 						     PAGE_END_WRITEBACK);
567 			goto free_pages_out;
568 		}
569 	}
570 
571 	if (will_compress) {
572 		/*
573 		 * we aren't doing an inline extent round the compressed size
574 		 * up to a block size boundary so the allocator does sane
575 		 * things
576 		 */
577 		total_compressed = ALIGN(total_compressed, blocksize);
578 
579 		/*
580 		 * one last check to make sure the compression is really a
581 		 * win, compare the page count read with the blocks on disk
582 		 */
583 		total_in = ALIGN(total_in, PAGE_SIZE);
584 		if (total_compressed >= total_in) {
585 			will_compress = 0;
586 		} else {
587 			num_bytes = total_in;
588 		}
589 	}
590 	if (!will_compress && pages) {
591 		/*
592 		 * the compression code ran but failed to make things smaller,
593 		 * free any pages it allocated and our page pointer array
594 		 */
595 		for (i = 0; i < nr_pages_ret; i++) {
596 			WARN_ON(pages[i]->mapping);
597 			put_page(pages[i]);
598 		}
599 		kfree(pages);
600 		pages = NULL;
601 		total_compressed = 0;
602 		nr_pages_ret = 0;
603 
604 		/* flag the file so we don't compress in the future */
605 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 		    !(BTRFS_I(inode)->force_compress)) {
607 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 		}
609 	}
610 	if (will_compress) {
611 		*num_added += 1;
612 
613 		/* the async work queues will take care of doing actual
614 		 * allocation on disk for these compressed pages,
615 		 * and will submit them to the elevator.
616 		 */
617 		add_async_extent(async_cow, start, num_bytes,
618 				 total_compressed, pages, nr_pages_ret,
619 				 compress_type);
620 
621 		if (start + num_bytes < end) {
622 			start += num_bytes;
623 			pages = NULL;
624 			cond_resched();
625 			goto again;
626 		}
627 	} else {
628 cleanup_and_bail_uncompressed:
629 		/*
630 		 * No compression, but we still need to write the pages in
631 		 * the file we've been given so far.  redirty the locked
632 		 * page if it corresponds to our extent and set things up
633 		 * for the async work queue to run cow_file_range to do
634 		 * the normal delalloc dance
635 		 */
636 		if (page_offset(locked_page) >= start &&
637 		    page_offset(locked_page) <= end) {
638 			__set_page_dirty_nobuffers(locked_page);
639 			/* unlocked later on in the async handlers */
640 		}
641 		if (redirty)
642 			extent_range_redirty_for_io(inode, start, end);
643 		add_async_extent(async_cow, start, end - start + 1,
644 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 		*num_added += 1;
646 	}
647 
648 	return;
649 
650 free_pages_out:
651 	for (i = 0; i < nr_pages_ret; i++) {
652 		WARN_ON(pages[i]->mapping);
653 		put_page(pages[i]);
654 	}
655 	kfree(pages);
656 }
657 
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 	int i;
661 
662 	if (!async_extent->pages)
663 		return;
664 
665 	for (i = 0; i < async_extent->nr_pages; i++) {
666 		WARN_ON(async_extent->pages[i]->mapping);
667 		put_page(async_extent->pages[i]);
668 	}
669 	kfree(async_extent->pages);
670 	async_extent->nr_pages = 0;
671 	async_extent->pages = NULL;
672 }
673 
674 /*
675  * phase two of compressed writeback.  This is the ordered portion
676  * of the code, which only gets called in the order the work was
677  * queued.  We walk all the async extents created by compress_file_range
678  * and send them down to the disk.
679  */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 					      struct async_cow *async_cow)
682 {
683 	struct async_extent *async_extent;
684 	u64 alloc_hint = 0;
685 	struct btrfs_key ins;
686 	struct extent_map *em;
687 	struct btrfs_root *root = BTRFS_I(inode)->root;
688 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 	struct extent_io_tree *io_tree;
690 	int ret = 0;
691 
692 again:
693 	while (!list_empty(&async_cow->extents)) {
694 		async_extent = list_entry(async_cow->extents.next,
695 					  struct async_extent, list);
696 		list_del(&async_extent->list);
697 
698 		io_tree = &BTRFS_I(inode)->io_tree;
699 
700 retry:
701 		/* did the compression code fall back to uncompressed IO? */
702 		if (!async_extent->pages) {
703 			int page_started = 0;
704 			unsigned long nr_written = 0;
705 
706 			lock_extent(io_tree, async_extent->start,
707 					 async_extent->start +
708 					 async_extent->ram_size - 1);
709 
710 			/* allocate blocks */
711 			ret = cow_file_range(inode, async_cow->locked_page,
712 					     async_extent->start,
713 					     async_extent->start +
714 					     async_extent->ram_size - 1,
715 					     &page_started, &nr_written, 0);
716 
717 			/* JDM XXX */
718 
719 			/*
720 			 * if page_started, cow_file_range inserted an
721 			 * inline extent and took care of all the unlocking
722 			 * and IO for us.  Otherwise, we need to submit
723 			 * all those pages down to the drive.
724 			 */
725 			if (!page_started && !ret)
726 				extent_write_locked_range(io_tree,
727 						  inode, async_extent->start,
728 						  async_extent->start +
729 						  async_extent->ram_size - 1,
730 						  btrfs_get_extent,
731 						  WB_SYNC_ALL);
732 			else if (ret)
733 				unlock_page(async_cow->locked_page);
734 			kfree(async_extent);
735 			cond_resched();
736 			continue;
737 		}
738 
739 		lock_extent(io_tree, async_extent->start,
740 			    async_extent->start + async_extent->ram_size - 1);
741 
742 		ret = btrfs_reserve_extent(root,
743 					   async_extent->compressed_size,
744 					   async_extent->compressed_size,
745 					   0, alloc_hint, &ins, 1, 1);
746 		if (ret) {
747 			free_async_extent_pages(async_extent);
748 
749 			if (ret == -ENOSPC) {
750 				unlock_extent(io_tree, async_extent->start,
751 					      async_extent->start +
752 					      async_extent->ram_size - 1);
753 
754 				/*
755 				 * we need to redirty the pages if we decide to
756 				 * fallback to uncompressed IO, otherwise we
757 				 * will not submit these pages down to lower
758 				 * layers.
759 				 */
760 				extent_range_redirty_for_io(inode,
761 						async_extent->start,
762 						async_extent->start +
763 						async_extent->ram_size - 1);
764 
765 				goto retry;
766 			}
767 			goto out_free;
768 		}
769 		/*
770 		 * here we're doing allocation and writeback of the
771 		 * compressed pages
772 		 */
773 		btrfs_drop_extent_cache(inode, async_extent->start,
774 					async_extent->start +
775 					async_extent->ram_size - 1, 0);
776 
777 		em = alloc_extent_map();
778 		if (!em) {
779 			ret = -ENOMEM;
780 			goto out_free_reserve;
781 		}
782 		em->start = async_extent->start;
783 		em->len = async_extent->ram_size;
784 		em->orig_start = em->start;
785 		em->mod_start = em->start;
786 		em->mod_len = em->len;
787 
788 		em->block_start = ins.objectid;
789 		em->block_len = ins.offset;
790 		em->orig_block_len = ins.offset;
791 		em->ram_bytes = async_extent->ram_size;
792 		em->bdev = root->fs_info->fs_devices->latest_bdev;
793 		em->compress_type = async_extent->compress_type;
794 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 		em->generation = -1;
797 
798 		while (1) {
799 			write_lock(&em_tree->lock);
800 			ret = add_extent_mapping(em_tree, em, 1);
801 			write_unlock(&em_tree->lock);
802 			if (ret != -EEXIST) {
803 				free_extent_map(em);
804 				break;
805 			}
806 			btrfs_drop_extent_cache(inode, async_extent->start,
807 						async_extent->start +
808 						async_extent->ram_size - 1, 0);
809 		}
810 
811 		if (ret)
812 			goto out_free_reserve;
813 
814 		ret = btrfs_add_ordered_extent_compress(inode,
815 						async_extent->start,
816 						ins.objectid,
817 						async_extent->ram_size,
818 						ins.offset,
819 						BTRFS_ORDERED_COMPRESSED,
820 						async_extent->compress_type);
821 		if (ret) {
822 			btrfs_drop_extent_cache(inode, async_extent->start,
823 						async_extent->start +
824 						async_extent->ram_size - 1, 0);
825 			goto out_free_reserve;
826 		}
827 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
828 
829 		/*
830 		 * clear dirty, set writeback and unlock the pages.
831 		 */
832 		extent_clear_unlock_delalloc(inode, async_extent->start,
833 				async_extent->start +
834 				async_extent->ram_size - 1,
835 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
837 				PAGE_SET_WRITEBACK);
838 		ret = btrfs_submit_compressed_write(inode,
839 				    async_extent->start,
840 				    async_extent->ram_size,
841 				    ins.objectid,
842 				    ins.offset, async_extent->pages,
843 				    async_extent->nr_pages);
844 		if (ret) {
845 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 			struct page *p = async_extent->pages[0];
847 			const u64 start = async_extent->start;
848 			const u64 end = start + async_extent->ram_size - 1;
849 
850 			p->mapping = inode->i_mapping;
851 			tree->ops->writepage_end_io_hook(p, start, end,
852 							 NULL, 0);
853 			p->mapping = NULL;
854 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 						     PAGE_END_WRITEBACK |
856 						     PAGE_SET_ERROR);
857 			free_async_extent_pages(async_extent);
858 		}
859 		alloc_hint = ins.objectid + ins.offset;
860 		kfree(async_extent);
861 		cond_resched();
862 	}
863 	return;
864 out_free_reserve:
865 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
866 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
867 out_free:
868 	extent_clear_unlock_delalloc(inode, async_extent->start,
869 				     async_extent->start +
870 				     async_extent->ram_size - 1,
871 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
872 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
874 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 				     PAGE_SET_ERROR);
876 	free_async_extent_pages(async_extent);
877 	kfree(async_extent);
878 	goto again;
879 }
880 
881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 				      u64 num_bytes)
883 {
884 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 	struct extent_map *em;
886 	u64 alloc_hint = 0;
887 
888 	read_lock(&em_tree->lock);
889 	em = search_extent_mapping(em_tree, start, num_bytes);
890 	if (em) {
891 		/*
892 		 * if block start isn't an actual block number then find the
893 		 * first block in this inode and use that as a hint.  If that
894 		 * block is also bogus then just don't worry about it.
895 		 */
896 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 			free_extent_map(em);
898 			em = search_extent_mapping(em_tree, 0, 0);
899 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 				alloc_hint = em->block_start;
901 			if (em)
902 				free_extent_map(em);
903 		} else {
904 			alloc_hint = em->block_start;
905 			free_extent_map(em);
906 		}
907 	}
908 	read_unlock(&em_tree->lock);
909 
910 	return alloc_hint;
911 }
912 
913 /*
914  * when extent_io.c finds a delayed allocation range in the file,
915  * the call backs end up in this code.  The basic idea is to
916  * allocate extents on disk for the range, and create ordered data structs
917  * in ram to track those extents.
918  *
919  * locked_page is the page that writepage had locked already.  We use
920  * it to make sure we don't do extra locks or unlocks.
921  *
922  * *page_started is set to one if we unlock locked_page and do everything
923  * required to start IO on it.  It may be clean and already done with
924  * IO when we return.
925  */
926 static noinline int cow_file_range(struct inode *inode,
927 				   struct page *locked_page,
928 				   u64 start, u64 end, int *page_started,
929 				   unsigned long *nr_written,
930 				   int unlock)
931 {
932 	struct btrfs_root *root = BTRFS_I(inode)->root;
933 	u64 alloc_hint = 0;
934 	u64 num_bytes;
935 	unsigned long ram_size;
936 	u64 disk_num_bytes;
937 	u64 cur_alloc_size;
938 	u64 blocksize = root->sectorsize;
939 	struct btrfs_key ins;
940 	struct extent_map *em;
941 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 	int ret = 0;
943 
944 	if (btrfs_is_free_space_inode(inode)) {
945 		WARN_ON_ONCE(1);
946 		ret = -EINVAL;
947 		goto out_unlock;
948 	}
949 
950 	num_bytes = ALIGN(end - start + 1, blocksize);
951 	num_bytes = max(blocksize,  num_bytes);
952 	disk_num_bytes = num_bytes;
953 
954 	/* if this is a small write inside eof, kick off defrag */
955 	if (num_bytes < SZ_64K &&
956 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
957 		btrfs_add_inode_defrag(NULL, inode);
958 
959 	if (start == 0) {
960 		/* lets try to make an inline extent */
961 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 					    NULL);
963 		if (ret == 0) {
964 			extent_clear_unlock_delalloc(inode, start, end, NULL,
965 				     EXTENT_LOCKED | EXTENT_DELALLOC |
966 				     EXTENT_DEFRAG, PAGE_UNLOCK |
967 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 				     PAGE_END_WRITEBACK);
969 
970 			*nr_written = *nr_written +
971 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
972 			*page_started = 1;
973 			goto out;
974 		} else if (ret < 0) {
975 			goto out_unlock;
976 		}
977 	}
978 
979 	BUG_ON(disk_num_bytes >
980 	       btrfs_super_total_bytes(root->fs_info->super_copy));
981 
982 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
983 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984 
985 	while (disk_num_bytes > 0) {
986 		unsigned long op;
987 
988 		cur_alloc_size = disk_num_bytes;
989 		ret = btrfs_reserve_extent(root, cur_alloc_size,
990 					   root->sectorsize, 0, alloc_hint,
991 					   &ins, 1, 1);
992 		if (ret < 0)
993 			goto out_unlock;
994 
995 		em = alloc_extent_map();
996 		if (!em) {
997 			ret = -ENOMEM;
998 			goto out_reserve;
999 		}
1000 		em->start = start;
1001 		em->orig_start = em->start;
1002 		ram_size = ins.offset;
1003 		em->len = ins.offset;
1004 		em->mod_start = em->start;
1005 		em->mod_len = em->len;
1006 
1007 		em->block_start = ins.objectid;
1008 		em->block_len = ins.offset;
1009 		em->orig_block_len = ins.offset;
1010 		em->ram_bytes = ram_size;
1011 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1012 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1013 		em->generation = -1;
1014 
1015 		while (1) {
1016 			write_lock(&em_tree->lock);
1017 			ret = add_extent_mapping(em_tree, em, 1);
1018 			write_unlock(&em_tree->lock);
1019 			if (ret != -EEXIST) {
1020 				free_extent_map(em);
1021 				break;
1022 			}
1023 			btrfs_drop_extent_cache(inode, start,
1024 						start + ram_size - 1, 0);
1025 		}
1026 		if (ret)
1027 			goto out_reserve;
1028 
1029 		cur_alloc_size = ins.offset;
1030 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1031 					       ram_size, cur_alloc_size, 0);
1032 		if (ret)
1033 			goto out_drop_extent_cache;
1034 
1035 		if (root->root_key.objectid ==
1036 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 			ret = btrfs_reloc_clone_csums(inode, start,
1038 						      cur_alloc_size);
1039 			if (ret)
1040 				goto out_drop_extent_cache;
1041 		}
1042 
1043 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044 
1045 		if (disk_num_bytes < cur_alloc_size)
1046 			break;
1047 
1048 		/* we're not doing compressed IO, don't unlock the first
1049 		 * page (which the caller expects to stay locked), don't
1050 		 * clear any dirty bits and don't set any writeback bits
1051 		 *
1052 		 * Do set the Private2 bit so we know this page was properly
1053 		 * setup for writepage
1054 		 */
1055 		op = unlock ? PAGE_UNLOCK : 0;
1056 		op |= PAGE_SET_PRIVATE2;
1057 
1058 		extent_clear_unlock_delalloc(inode, start,
1059 					     start + ram_size - 1, locked_page,
1060 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1061 					     op);
1062 		disk_num_bytes -= cur_alloc_size;
1063 		num_bytes -= cur_alloc_size;
1064 		alloc_hint = ins.objectid + ins.offset;
1065 		start += cur_alloc_size;
1066 	}
1067 out:
1068 	return ret;
1069 
1070 out_drop_extent_cache:
1071 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1072 out_reserve:
1073 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1074 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1075 out_unlock:
1076 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1077 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1081 	goto out;
1082 }
1083 
1084 /*
1085  * work queue call back to started compression on a file and pages
1086  */
1087 static noinline void async_cow_start(struct btrfs_work *work)
1088 {
1089 	struct async_cow *async_cow;
1090 	int num_added = 0;
1091 	async_cow = container_of(work, struct async_cow, work);
1092 
1093 	compress_file_range(async_cow->inode, async_cow->locked_page,
1094 			    async_cow->start, async_cow->end, async_cow,
1095 			    &num_added);
1096 	if (num_added == 0) {
1097 		btrfs_add_delayed_iput(async_cow->inode);
1098 		async_cow->inode = NULL;
1099 	}
1100 }
1101 
1102 /*
1103  * work queue call back to submit previously compressed pages
1104  */
1105 static noinline void async_cow_submit(struct btrfs_work *work)
1106 {
1107 	struct async_cow *async_cow;
1108 	struct btrfs_root *root;
1109 	unsigned long nr_pages;
1110 
1111 	async_cow = container_of(work, struct async_cow, work);
1112 
1113 	root = async_cow->root;
1114 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 		PAGE_SHIFT;
1116 
1117 	/*
1118 	 * atomic_sub_return implies a barrier for waitqueue_active
1119 	 */
1120 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1121 	    5 * SZ_1M &&
1122 	    waitqueue_active(&root->fs_info->async_submit_wait))
1123 		wake_up(&root->fs_info->async_submit_wait);
1124 
1125 	if (async_cow->inode)
1126 		submit_compressed_extents(async_cow->inode, async_cow);
1127 }
1128 
1129 static noinline void async_cow_free(struct btrfs_work *work)
1130 {
1131 	struct async_cow *async_cow;
1132 	async_cow = container_of(work, struct async_cow, work);
1133 	if (async_cow->inode)
1134 		btrfs_add_delayed_iput(async_cow->inode);
1135 	kfree(async_cow);
1136 }
1137 
1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 				u64 start, u64 end, int *page_started,
1140 				unsigned long *nr_written)
1141 {
1142 	struct async_cow *async_cow;
1143 	struct btrfs_root *root = BTRFS_I(inode)->root;
1144 	unsigned long nr_pages;
1145 	u64 cur_end;
1146 	int limit = 10 * SZ_1M;
1147 
1148 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 			 1, 0, NULL, GFP_NOFS);
1150 	while (start < end) {
1151 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1152 		BUG_ON(!async_cow); /* -ENOMEM */
1153 		async_cow->inode = igrab(inode);
1154 		async_cow->root = root;
1155 		async_cow->locked_page = locked_page;
1156 		async_cow->start = start;
1157 
1158 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1160 			cur_end = end;
1161 		else
1162 			cur_end = min(end, start + SZ_512K - 1);
1163 
1164 		async_cow->end = cur_end;
1165 		INIT_LIST_HEAD(&async_cow->extents);
1166 
1167 		btrfs_init_work(&async_cow->work,
1168 				btrfs_delalloc_helper,
1169 				async_cow_start, async_cow_submit,
1170 				async_cow_free);
1171 
1172 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 			PAGE_SHIFT;
1174 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175 
1176 		btrfs_queue_work(root->fs_info->delalloc_workers,
1177 				 &async_cow->work);
1178 
1179 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 			wait_event(root->fs_info->async_submit_wait,
1181 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 			    limit));
1183 		}
1184 
1185 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1186 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 			wait_event(root->fs_info->async_submit_wait,
1188 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 			   0));
1190 		}
1191 
1192 		*nr_written += nr_pages;
1193 		start = cur_end + 1;
1194 	}
1195 	*page_started = 1;
1196 	return 0;
1197 }
1198 
1199 static noinline int csum_exist_in_range(struct btrfs_root *root,
1200 					u64 bytenr, u64 num_bytes)
1201 {
1202 	int ret;
1203 	struct btrfs_ordered_sum *sums;
1204 	LIST_HEAD(list);
1205 
1206 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1207 				       bytenr + num_bytes - 1, &list, 0);
1208 	if (ret == 0 && list_empty(&list))
1209 		return 0;
1210 
1211 	while (!list_empty(&list)) {
1212 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 		list_del(&sums->list);
1214 		kfree(sums);
1215 	}
1216 	return 1;
1217 }
1218 
1219 /*
1220  * when nowcow writeback call back.  This checks for snapshots or COW copies
1221  * of the extents that exist in the file, and COWs the file as required.
1222  *
1223  * If no cow copies or snapshots exist, we write directly to the existing
1224  * blocks on disk
1225  */
1226 static noinline int run_delalloc_nocow(struct inode *inode,
1227 				       struct page *locked_page,
1228 			      u64 start, u64 end, int *page_started, int force,
1229 			      unsigned long *nr_written)
1230 {
1231 	struct btrfs_root *root = BTRFS_I(inode)->root;
1232 	struct btrfs_trans_handle *trans;
1233 	struct extent_buffer *leaf;
1234 	struct btrfs_path *path;
1235 	struct btrfs_file_extent_item *fi;
1236 	struct btrfs_key found_key;
1237 	u64 cow_start;
1238 	u64 cur_offset;
1239 	u64 extent_end;
1240 	u64 extent_offset;
1241 	u64 disk_bytenr;
1242 	u64 num_bytes;
1243 	u64 disk_num_bytes;
1244 	u64 ram_bytes;
1245 	int extent_type;
1246 	int ret, err;
1247 	int type;
1248 	int nocow;
1249 	int check_prev = 1;
1250 	bool nolock;
1251 	u64 ino = btrfs_ino(inode);
1252 
1253 	path = btrfs_alloc_path();
1254 	if (!path) {
1255 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1257 					     EXTENT_DO_ACCOUNTING |
1258 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1259 					     PAGE_CLEAR_DIRTY |
1260 					     PAGE_SET_WRITEBACK |
1261 					     PAGE_END_WRITEBACK);
1262 		return -ENOMEM;
1263 	}
1264 
1265 	nolock = btrfs_is_free_space_inode(inode);
1266 
1267 	if (nolock)
1268 		trans = btrfs_join_transaction_nolock(root);
1269 	else
1270 		trans = btrfs_join_transaction(root);
1271 
1272 	if (IS_ERR(trans)) {
1273 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1275 					     EXTENT_DO_ACCOUNTING |
1276 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1277 					     PAGE_CLEAR_DIRTY |
1278 					     PAGE_SET_WRITEBACK |
1279 					     PAGE_END_WRITEBACK);
1280 		btrfs_free_path(path);
1281 		return PTR_ERR(trans);
1282 	}
1283 
1284 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1285 
1286 	cow_start = (u64)-1;
1287 	cur_offset = start;
1288 	while (1) {
1289 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1290 					       cur_offset, 0);
1291 		if (ret < 0)
1292 			goto error;
1293 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 			leaf = path->nodes[0];
1295 			btrfs_item_key_to_cpu(leaf, &found_key,
1296 					      path->slots[0] - 1);
1297 			if (found_key.objectid == ino &&
1298 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 				path->slots[0]--;
1300 		}
1301 		check_prev = 0;
1302 next_slot:
1303 		leaf = path->nodes[0];
1304 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 			ret = btrfs_next_leaf(root, path);
1306 			if (ret < 0)
1307 				goto error;
1308 			if (ret > 0)
1309 				break;
1310 			leaf = path->nodes[0];
1311 		}
1312 
1313 		nocow = 0;
1314 		disk_bytenr = 0;
1315 		num_bytes = 0;
1316 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317 
1318 		if (found_key.objectid > ino)
1319 			break;
1320 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 			path->slots[0]++;
1323 			goto next_slot;
1324 		}
1325 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1326 		    found_key.offset > end)
1327 			break;
1328 
1329 		if (found_key.offset > cur_offset) {
1330 			extent_end = found_key.offset;
1331 			extent_type = 0;
1332 			goto out_check;
1333 		}
1334 
1335 		fi = btrfs_item_ptr(leaf, path->slots[0],
1336 				    struct btrfs_file_extent_item);
1337 		extent_type = btrfs_file_extent_type(leaf, fi);
1338 
1339 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1340 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1342 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1343 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1344 			extent_end = found_key.offset +
1345 				btrfs_file_extent_num_bytes(leaf, fi);
1346 			disk_num_bytes =
1347 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1348 			if (extent_end <= start) {
1349 				path->slots[0]++;
1350 				goto next_slot;
1351 			}
1352 			if (disk_bytenr == 0)
1353 				goto out_check;
1354 			if (btrfs_file_extent_compression(leaf, fi) ||
1355 			    btrfs_file_extent_encryption(leaf, fi) ||
1356 			    btrfs_file_extent_other_encoding(leaf, fi))
1357 				goto out_check;
1358 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 				goto out_check;
1360 			if (btrfs_extent_readonly(root, disk_bytenr))
1361 				goto out_check;
1362 			if (btrfs_cross_ref_exist(trans, root, ino,
1363 						  found_key.offset -
1364 						  extent_offset, disk_bytenr))
1365 				goto out_check;
1366 			disk_bytenr += extent_offset;
1367 			disk_bytenr += cur_offset - found_key.offset;
1368 			num_bytes = min(end + 1, extent_end) - cur_offset;
1369 			/*
1370 			 * if there are pending snapshots for this root,
1371 			 * we fall into common COW way.
1372 			 */
1373 			if (!nolock) {
1374 				err = btrfs_start_write_no_snapshoting(root);
1375 				if (!err)
1376 					goto out_check;
1377 			}
1378 			/*
1379 			 * force cow if csum exists in the range.
1380 			 * this ensure that csum for a given extent are
1381 			 * either valid or do not exist.
1382 			 */
1383 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 				goto out_check;
1385 			if (!btrfs_inc_nocow_writers(root->fs_info,
1386 						     disk_bytenr))
1387 				goto out_check;
1388 			nocow = 1;
1389 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1390 			extent_end = found_key.offset +
1391 				btrfs_file_extent_inline_len(leaf,
1392 						     path->slots[0], fi);
1393 			extent_end = ALIGN(extent_end, root->sectorsize);
1394 		} else {
1395 			BUG_ON(1);
1396 		}
1397 out_check:
1398 		if (extent_end <= start) {
1399 			path->slots[0]++;
1400 			if (!nolock && nocow)
1401 				btrfs_end_write_no_snapshoting(root);
1402 			if (nocow)
1403 				btrfs_dec_nocow_writers(root->fs_info,
1404 							disk_bytenr);
1405 			goto next_slot;
1406 		}
1407 		if (!nocow) {
1408 			if (cow_start == (u64)-1)
1409 				cow_start = cur_offset;
1410 			cur_offset = extent_end;
1411 			if (cur_offset > end)
1412 				break;
1413 			path->slots[0]++;
1414 			goto next_slot;
1415 		}
1416 
1417 		btrfs_release_path(path);
1418 		if (cow_start != (u64)-1) {
1419 			ret = cow_file_range(inode, locked_page,
1420 					     cow_start, found_key.offset - 1,
1421 					     page_started, nr_written, 1);
1422 			if (ret) {
1423 				if (!nolock && nocow)
1424 					btrfs_end_write_no_snapshoting(root);
1425 				if (nocow)
1426 					btrfs_dec_nocow_writers(root->fs_info,
1427 								disk_bytenr);
1428 				goto error;
1429 			}
1430 			cow_start = (u64)-1;
1431 		}
1432 
1433 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1434 			struct extent_map *em;
1435 			struct extent_map_tree *em_tree;
1436 			em_tree = &BTRFS_I(inode)->extent_tree;
1437 			em = alloc_extent_map();
1438 			BUG_ON(!em); /* -ENOMEM */
1439 			em->start = cur_offset;
1440 			em->orig_start = found_key.offset - extent_offset;
1441 			em->len = num_bytes;
1442 			em->block_len = num_bytes;
1443 			em->block_start = disk_bytenr;
1444 			em->orig_block_len = disk_num_bytes;
1445 			em->ram_bytes = ram_bytes;
1446 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1447 			em->mod_start = em->start;
1448 			em->mod_len = em->len;
1449 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1450 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1451 			em->generation = -1;
1452 			while (1) {
1453 				write_lock(&em_tree->lock);
1454 				ret = add_extent_mapping(em_tree, em, 1);
1455 				write_unlock(&em_tree->lock);
1456 				if (ret != -EEXIST) {
1457 					free_extent_map(em);
1458 					break;
1459 				}
1460 				btrfs_drop_extent_cache(inode, em->start,
1461 						em->start + em->len - 1, 0);
1462 			}
1463 			type = BTRFS_ORDERED_PREALLOC;
1464 		} else {
1465 			type = BTRFS_ORDERED_NOCOW;
1466 		}
1467 
1468 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1469 					       num_bytes, num_bytes, type);
1470 		if (nocow)
1471 			btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1472 		BUG_ON(ret); /* -ENOMEM */
1473 
1474 		if (root->root_key.objectid ==
1475 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1476 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1477 						      num_bytes);
1478 			if (ret) {
1479 				if (!nolock && nocow)
1480 					btrfs_end_write_no_snapshoting(root);
1481 				goto error;
1482 			}
1483 		}
1484 
1485 		extent_clear_unlock_delalloc(inode, cur_offset,
1486 					     cur_offset + num_bytes - 1,
1487 					     locked_page, EXTENT_LOCKED |
1488 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1489 					     PAGE_SET_PRIVATE2);
1490 		if (!nolock && nocow)
1491 			btrfs_end_write_no_snapshoting(root);
1492 		cur_offset = extent_end;
1493 		if (cur_offset > end)
1494 			break;
1495 	}
1496 	btrfs_release_path(path);
1497 
1498 	if (cur_offset <= end && cow_start == (u64)-1) {
1499 		cow_start = cur_offset;
1500 		cur_offset = end;
1501 	}
1502 
1503 	if (cow_start != (u64)-1) {
1504 		ret = cow_file_range(inode, locked_page, cow_start, end,
1505 				     page_started, nr_written, 1);
1506 		if (ret)
1507 			goto error;
1508 	}
1509 
1510 error:
1511 	err = btrfs_end_transaction(trans, root);
1512 	if (!ret)
1513 		ret = err;
1514 
1515 	if (ret && cur_offset < end)
1516 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1517 					     locked_page, EXTENT_LOCKED |
1518 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1519 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1520 					     PAGE_CLEAR_DIRTY |
1521 					     PAGE_SET_WRITEBACK |
1522 					     PAGE_END_WRITEBACK);
1523 	btrfs_free_path(path);
1524 	return ret;
1525 }
1526 
1527 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1528 {
1529 
1530 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1531 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1532 		return 0;
1533 
1534 	/*
1535 	 * @defrag_bytes is a hint value, no spinlock held here,
1536 	 * if is not zero, it means the file is defragging.
1537 	 * Force cow if given extent needs to be defragged.
1538 	 */
1539 	if (BTRFS_I(inode)->defrag_bytes &&
1540 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1541 			   EXTENT_DEFRAG, 0, NULL))
1542 		return 1;
1543 
1544 	return 0;
1545 }
1546 
1547 /*
1548  * extent_io.c call back to do delayed allocation processing
1549  */
1550 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1551 			      u64 start, u64 end, int *page_started,
1552 			      unsigned long *nr_written)
1553 {
1554 	int ret;
1555 	int force_cow = need_force_cow(inode, start, end);
1556 
1557 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1558 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1559 					 page_started, 1, nr_written);
1560 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1561 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1562 					 page_started, 0, nr_written);
1563 	} else if (!inode_need_compress(inode)) {
1564 		ret = cow_file_range(inode, locked_page, start, end,
1565 				      page_started, nr_written, 1);
1566 	} else {
1567 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 			&BTRFS_I(inode)->runtime_flags);
1569 		ret = cow_file_range_async(inode, locked_page, start, end,
1570 					   page_started, nr_written);
1571 	}
1572 	return ret;
1573 }
1574 
1575 static void btrfs_split_extent_hook(struct inode *inode,
1576 				    struct extent_state *orig, u64 split)
1577 {
1578 	u64 size;
1579 
1580 	/* not delalloc, ignore it */
1581 	if (!(orig->state & EXTENT_DELALLOC))
1582 		return;
1583 
1584 	size = orig->end - orig->start + 1;
1585 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1586 		u64 num_extents;
1587 		u64 new_size;
1588 
1589 		/*
1590 		 * See the explanation in btrfs_merge_extent_hook, the same
1591 		 * applies here, just in reverse.
1592 		 */
1593 		new_size = orig->end - split + 1;
1594 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1595 					BTRFS_MAX_EXTENT_SIZE);
1596 		new_size = split - orig->start;
1597 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1598 					BTRFS_MAX_EXTENT_SIZE);
1599 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1600 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1601 			return;
1602 	}
1603 
1604 	spin_lock(&BTRFS_I(inode)->lock);
1605 	BTRFS_I(inode)->outstanding_extents++;
1606 	spin_unlock(&BTRFS_I(inode)->lock);
1607 }
1608 
1609 /*
1610  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611  * extents so we can keep track of new extents that are just merged onto old
1612  * extents, such as when we are doing sequential writes, so we can properly
1613  * account for the metadata space we'll need.
1614  */
1615 static void btrfs_merge_extent_hook(struct inode *inode,
1616 				    struct extent_state *new,
1617 				    struct extent_state *other)
1618 {
1619 	u64 new_size, old_size;
1620 	u64 num_extents;
1621 
1622 	/* not delalloc, ignore it */
1623 	if (!(other->state & EXTENT_DELALLOC))
1624 		return;
1625 
1626 	if (new->start > other->start)
1627 		new_size = new->end - other->start + 1;
1628 	else
1629 		new_size = other->end - new->start + 1;
1630 
1631 	/* we're not bigger than the max, unreserve the space and go */
1632 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1633 		spin_lock(&BTRFS_I(inode)->lock);
1634 		BTRFS_I(inode)->outstanding_extents--;
1635 		spin_unlock(&BTRFS_I(inode)->lock);
1636 		return;
1637 	}
1638 
1639 	/*
1640 	 * We have to add up either side to figure out how many extents were
1641 	 * accounted for before we merged into one big extent.  If the number of
1642 	 * extents we accounted for is <= the amount we need for the new range
1643 	 * then we can return, otherwise drop.  Think of it like this
1644 	 *
1645 	 * [ 4k][MAX_SIZE]
1646 	 *
1647 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 	 * need 2 outstanding extents, on one side we have 1 and the other side
1649 	 * we have 1 so they are == and we can return.  But in this case
1650 	 *
1651 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1652 	 *
1653 	 * Each range on their own accounts for 2 extents, but merged together
1654 	 * they are only 3 extents worth of accounting, so we need to drop in
1655 	 * this case.
1656 	 */
1657 	old_size = other->end - other->start + 1;
1658 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1659 				BTRFS_MAX_EXTENT_SIZE);
1660 	old_size = new->end - new->start + 1;
1661 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1662 				 BTRFS_MAX_EXTENT_SIZE);
1663 
1664 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1665 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1666 		return;
1667 
1668 	spin_lock(&BTRFS_I(inode)->lock);
1669 	BTRFS_I(inode)->outstanding_extents--;
1670 	spin_unlock(&BTRFS_I(inode)->lock);
1671 }
1672 
1673 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1674 				      struct inode *inode)
1675 {
1676 	spin_lock(&root->delalloc_lock);
1677 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1678 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1679 			      &root->delalloc_inodes);
1680 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1681 			&BTRFS_I(inode)->runtime_flags);
1682 		root->nr_delalloc_inodes++;
1683 		if (root->nr_delalloc_inodes == 1) {
1684 			spin_lock(&root->fs_info->delalloc_root_lock);
1685 			BUG_ON(!list_empty(&root->delalloc_root));
1686 			list_add_tail(&root->delalloc_root,
1687 				      &root->fs_info->delalloc_roots);
1688 			spin_unlock(&root->fs_info->delalloc_root_lock);
1689 		}
1690 	}
1691 	spin_unlock(&root->delalloc_lock);
1692 }
1693 
1694 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1695 				     struct inode *inode)
1696 {
1697 	spin_lock(&root->delalloc_lock);
1698 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1699 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1700 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 			  &BTRFS_I(inode)->runtime_flags);
1702 		root->nr_delalloc_inodes--;
1703 		if (!root->nr_delalloc_inodes) {
1704 			spin_lock(&root->fs_info->delalloc_root_lock);
1705 			BUG_ON(list_empty(&root->delalloc_root));
1706 			list_del_init(&root->delalloc_root);
1707 			spin_unlock(&root->fs_info->delalloc_root_lock);
1708 		}
1709 	}
1710 	spin_unlock(&root->delalloc_lock);
1711 }
1712 
1713 /*
1714  * extent_io.c set_bit_hook, used to track delayed allocation
1715  * bytes in this file, and to maintain the list of inodes that
1716  * have pending delalloc work to be done.
1717  */
1718 static void btrfs_set_bit_hook(struct inode *inode,
1719 			       struct extent_state *state, unsigned *bits)
1720 {
1721 
1722 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1723 		WARN_ON(1);
1724 	/*
1725 	 * set_bit and clear bit hooks normally require _irqsave/restore
1726 	 * but in this case, we are only testing for the DELALLOC
1727 	 * bit, which is only set or cleared with irqs on
1728 	 */
1729 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1730 		struct btrfs_root *root = BTRFS_I(inode)->root;
1731 		u64 len = state->end + 1 - state->start;
1732 		bool do_list = !btrfs_is_free_space_inode(inode);
1733 
1734 		if (*bits & EXTENT_FIRST_DELALLOC) {
1735 			*bits &= ~EXTENT_FIRST_DELALLOC;
1736 		} else {
1737 			spin_lock(&BTRFS_I(inode)->lock);
1738 			BTRFS_I(inode)->outstanding_extents++;
1739 			spin_unlock(&BTRFS_I(inode)->lock);
1740 		}
1741 
1742 		/* For sanity tests */
1743 		if (btrfs_test_is_dummy_root(root))
1744 			return;
1745 
1746 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1747 				     root->fs_info->delalloc_batch);
1748 		spin_lock(&BTRFS_I(inode)->lock);
1749 		BTRFS_I(inode)->delalloc_bytes += len;
1750 		if (*bits & EXTENT_DEFRAG)
1751 			BTRFS_I(inode)->defrag_bytes += len;
1752 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1753 					 &BTRFS_I(inode)->runtime_flags))
1754 			btrfs_add_delalloc_inodes(root, inode);
1755 		spin_unlock(&BTRFS_I(inode)->lock);
1756 	}
1757 }
1758 
1759 /*
1760  * extent_io.c clear_bit_hook, see set_bit_hook for why
1761  */
1762 static void btrfs_clear_bit_hook(struct inode *inode,
1763 				 struct extent_state *state,
1764 				 unsigned *bits)
1765 {
1766 	u64 len = state->end + 1 - state->start;
1767 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1768 				    BTRFS_MAX_EXTENT_SIZE);
1769 
1770 	spin_lock(&BTRFS_I(inode)->lock);
1771 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1772 		BTRFS_I(inode)->defrag_bytes -= len;
1773 	spin_unlock(&BTRFS_I(inode)->lock);
1774 
1775 	/*
1776 	 * set_bit and clear bit hooks normally require _irqsave/restore
1777 	 * but in this case, we are only testing for the DELALLOC
1778 	 * bit, which is only set or cleared with irqs on
1779 	 */
1780 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1781 		struct btrfs_root *root = BTRFS_I(inode)->root;
1782 		bool do_list = !btrfs_is_free_space_inode(inode);
1783 
1784 		if (*bits & EXTENT_FIRST_DELALLOC) {
1785 			*bits &= ~EXTENT_FIRST_DELALLOC;
1786 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1787 			spin_lock(&BTRFS_I(inode)->lock);
1788 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1789 			spin_unlock(&BTRFS_I(inode)->lock);
1790 		}
1791 
1792 		/*
1793 		 * We don't reserve metadata space for space cache inodes so we
1794 		 * don't need to call dellalloc_release_metadata if there is an
1795 		 * error.
1796 		 */
1797 		if (*bits & EXTENT_DO_ACCOUNTING &&
1798 		    root != root->fs_info->tree_root)
1799 			btrfs_delalloc_release_metadata(inode, len);
1800 
1801 		/* For sanity tests. */
1802 		if (btrfs_test_is_dummy_root(root))
1803 			return;
1804 
1805 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1806 		    && do_list && !(state->state & EXTENT_NORESERVE))
1807 			btrfs_free_reserved_data_space_noquota(inode,
1808 					state->start, len);
1809 
1810 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1811 				     root->fs_info->delalloc_batch);
1812 		spin_lock(&BTRFS_I(inode)->lock);
1813 		BTRFS_I(inode)->delalloc_bytes -= len;
1814 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1815 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1816 			     &BTRFS_I(inode)->runtime_flags))
1817 			btrfs_del_delalloc_inode(root, inode);
1818 		spin_unlock(&BTRFS_I(inode)->lock);
1819 	}
1820 }
1821 
1822 /*
1823  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824  * we don't create bios that span stripes or chunks
1825  */
1826 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1827 			 size_t size, struct bio *bio,
1828 			 unsigned long bio_flags)
1829 {
1830 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1831 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1832 	u64 length = 0;
1833 	u64 map_length;
1834 	int ret;
1835 
1836 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1837 		return 0;
1838 
1839 	length = bio->bi_iter.bi_size;
1840 	map_length = length;
1841 	ret = btrfs_map_block(root->fs_info, rw, logical,
1842 			      &map_length, NULL, 0);
1843 	/* Will always return 0 with map_multi == NULL */
1844 	BUG_ON(ret < 0);
1845 	if (map_length < length + size)
1846 		return 1;
1847 	return 0;
1848 }
1849 
1850 /*
1851  * in order to insert checksums into the metadata in large chunks,
1852  * we wait until bio submission time.   All the pages in the bio are
1853  * checksummed and sums are attached onto the ordered extent record.
1854  *
1855  * At IO completion time the cums attached on the ordered extent record
1856  * are inserted into the btree
1857  */
1858 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1859 				    struct bio *bio, int mirror_num,
1860 				    unsigned long bio_flags,
1861 				    u64 bio_offset)
1862 {
1863 	struct btrfs_root *root = BTRFS_I(inode)->root;
1864 	int ret = 0;
1865 
1866 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1867 	BUG_ON(ret); /* -ENOMEM */
1868 	return 0;
1869 }
1870 
1871 /*
1872  * in order to insert checksums into the metadata in large chunks,
1873  * we wait until bio submission time.   All the pages in the bio are
1874  * checksummed and sums are attached onto the ordered extent record.
1875  *
1876  * At IO completion time the cums attached on the ordered extent record
1877  * are inserted into the btree
1878  */
1879 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1880 			  int mirror_num, unsigned long bio_flags,
1881 			  u64 bio_offset)
1882 {
1883 	struct btrfs_root *root = BTRFS_I(inode)->root;
1884 	int ret;
1885 
1886 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1887 	if (ret) {
1888 		bio->bi_error = ret;
1889 		bio_endio(bio);
1890 	}
1891 	return ret;
1892 }
1893 
1894 /*
1895  * extent_io.c submission hook. This does the right thing for csum calculation
1896  * on write, or reading the csums from the tree before a read
1897  */
1898 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1899 			  int mirror_num, unsigned long bio_flags,
1900 			  u64 bio_offset)
1901 {
1902 	struct btrfs_root *root = BTRFS_I(inode)->root;
1903 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1904 	int ret = 0;
1905 	int skip_sum;
1906 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1907 
1908 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1909 
1910 	if (btrfs_is_free_space_inode(inode))
1911 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1912 
1913 	if (!(rw & REQ_WRITE)) {
1914 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1915 		if (ret)
1916 			goto out;
1917 
1918 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1919 			ret = btrfs_submit_compressed_read(inode, bio,
1920 							   mirror_num,
1921 							   bio_flags);
1922 			goto out;
1923 		} else if (!skip_sum) {
1924 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1925 			if (ret)
1926 				goto out;
1927 		}
1928 		goto mapit;
1929 	} else if (async && !skip_sum) {
1930 		/* csum items have already been cloned */
1931 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1932 			goto mapit;
1933 		/* we're doing a write, do the async checksumming */
1934 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1935 				   inode, rw, bio, mirror_num,
1936 				   bio_flags, bio_offset,
1937 				   __btrfs_submit_bio_start,
1938 				   __btrfs_submit_bio_done);
1939 		goto out;
1940 	} else if (!skip_sum) {
1941 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1942 		if (ret)
1943 			goto out;
1944 	}
1945 
1946 mapit:
1947 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1948 
1949 out:
1950 	if (ret < 0) {
1951 		bio->bi_error = ret;
1952 		bio_endio(bio);
1953 	}
1954 	return ret;
1955 }
1956 
1957 /*
1958  * given a list of ordered sums record them in the inode.  This happens
1959  * at IO completion time based on sums calculated at bio submission time.
1960  */
1961 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1962 			     struct inode *inode, u64 file_offset,
1963 			     struct list_head *list)
1964 {
1965 	struct btrfs_ordered_sum *sum;
1966 
1967 	list_for_each_entry(sum, list, list) {
1968 		trans->adding_csums = 1;
1969 		btrfs_csum_file_blocks(trans,
1970 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1971 		trans->adding_csums = 0;
1972 	}
1973 	return 0;
1974 }
1975 
1976 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1977 			      struct extent_state **cached_state)
1978 {
1979 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1980 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1981 				   cached_state);
1982 }
1983 
1984 /* see btrfs_writepage_start_hook for details on why this is required */
1985 struct btrfs_writepage_fixup {
1986 	struct page *page;
1987 	struct btrfs_work work;
1988 };
1989 
1990 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1991 {
1992 	struct btrfs_writepage_fixup *fixup;
1993 	struct btrfs_ordered_extent *ordered;
1994 	struct extent_state *cached_state = NULL;
1995 	struct page *page;
1996 	struct inode *inode;
1997 	u64 page_start;
1998 	u64 page_end;
1999 	int ret;
2000 
2001 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2002 	page = fixup->page;
2003 again:
2004 	lock_page(page);
2005 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2006 		ClearPageChecked(page);
2007 		goto out_page;
2008 	}
2009 
2010 	inode = page->mapping->host;
2011 	page_start = page_offset(page);
2012 	page_end = page_offset(page) + PAGE_SIZE - 1;
2013 
2014 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2015 			 &cached_state);
2016 
2017 	/* already ordered? We're done */
2018 	if (PagePrivate2(page))
2019 		goto out;
2020 
2021 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2022 					PAGE_SIZE);
2023 	if (ordered) {
2024 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2025 				     page_end, &cached_state, GFP_NOFS);
2026 		unlock_page(page);
2027 		btrfs_start_ordered_extent(inode, ordered, 1);
2028 		btrfs_put_ordered_extent(ordered);
2029 		goto again;
2030 	}
2031 
2032 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2033 					   PAGE_SIZE);
2034 	if (ret) {
2035 		mapping_set_error(page->mapping, ret);
2036 		end_extent_writepage(page, ret, page_start, page_end);
2037 		ClearPageChecked(page);
2038 		goto out;
2039 	 }
2040 
2041 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2042 	ClearPageChecked(page);
2043 	set_page_dirty(page);
2044 out:
2045 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2046 			     &cached_state, GFP_NOFS);
2047 out_page:
2048 	unlock_page(page);
2049 	put_page(page);
2050 	kfree(fixup);
2051 }
2052 
2053 /*
2054  * There are a few paths in the higher layers of the kernel that directly
2055  * set the page dirty bit without asking the filesystem if it is a
2056  * good idea.  This causes problems because we want to make sure COW
2057  * properly happens and the data=ordered rules are followed.
2058  *
2059  * In our case any range that doesn't have the ORDERED bit set
2060  * hasn't been properly setup for IO.  We kick off an async process
2061  * to fix it up.  The async helper will wait for ordered extents, set
2062  * the delalloc bit and make it safe to write the page.
2063  */
2064 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2065 {
2066 	struct inode *inode = page->mapping->host;
2067 	struct btrfs_writepage_fixup *fixup;
2068 	struct btrfs_root *root = BTRFS_I(inode)->root;
2069 
2070 	/* this page is properly in the ordered list */
2071 	if (TestClearPagePrivate2(page))
2072 		return 0;
2073 
2074 	if (PageChecked(page))
2075 		return -EAGAIN;
2076 
2077 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2078 	if (!fixup)
2079 		return -EAGAIN;
2080 
2081 	SetPageChecked(page);
2082 	get_page(page);
2083 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2084 			btrfs_writepage_fixup_worker, NULL, NULL);
2085 	fixup->page = page;
2086 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2087 	return -EBUSY;
2088 }
2089 
2090 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2091 				       struct inode *inode, u64 file_pos,
2092 				       u64 disk_bytenr, u64 disk_num_bytes,
2093 				       u64 num_bytes, u64 ram_bytes,
2094 				       u8 compression, u8 encryption,
2095 				       u16 other_encoding, int extent_type)
2096 {
2097 	struct btrfs_root *root = BTRFS_I(inode)->root;
2098 	struct btrfs_file_extent_item *fi;
2099 	struct btrfs_path *path;
2100 	struct extent_buffer *leaf;
2101 	struct btrfs_key ins;
2102 	int extent_inserted = 0;
2103 	int ret;
2104 
2105 	path = btrfs_alloc_path();
2106 	if (!path)
2107 		return -ENOMEM;
2108 
2109 	/*
2110 	 * we may be replacing one extent in the tree with another.
2111 	 * The new extent is pinned in the extent map, and we don't want
2112 	 * to drop it from the cache until it is completely in the btree.
2113 	 *
2114 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2115 	 * the caller is expected to unpin it and allow it to be merged
2116 	 * with the others.
2117 	 */
2118 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2119 				   file_pos + num_bytes, NULL, 0,
2120 				   1, sizeof(*fi), &extent_inserted);
2121 	if (ret)
2122 		goto out;
2123 
2124 	if (!extent_inserted) {
2125 		ins.objectid = btrfs_ino(inode);
2126 		ins.offset = file_pos;
2127 		ins.type = BTRFS_EXTENT_DATA_KEY;
2128 
2129 		path->leave_spinning = 1;
2130 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2131 					      sizeof(*fi));
2132 		if (ret)
2133 			goto out;
2134 	}
2135 	leaf = path->nodes[0];
2136 	fi = btrfs_item_ptr(leaf, path->slots[0],
2137 			    struct btrfs_file_extent_item);
2138 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2139 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2140 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2141 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2142 	btrfs_set_file_extent_offset(leaf, fi, 0);
2143 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2144 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2145 	btrfs_set_file_extent_compression(leaf, fi, compression);
2146 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2147 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2148 
2149 	btrfs_mark_buffer_dirty(leaf);
2150 	btrfs_release_path(path);
2151 
2152 	inode_add_bytes(inode, num_bytes);
2153 
2154 	ins.objectid = disk_bytenr;
2155 	ins.offset = disk_num_bytes;
2156 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2157 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2158 					root->root_key.objectid,
2159 					btrfs_ino(inode), file_pos,
2160 					ram_bytes, &ins);
2161 	/*
2162 	 * Release the reserved range from inode dirty range map, as it is
2163 	 * already moved into delayed_ref_head
2164 	 */
2165 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2166 out:
2167 	btrfs_free_path(path);
2168 
2169 	return ret;
2170 }
2171 
2172 /* snapshot-aware defrag */
2173 struct sa_defrag_extent_backref {
2174 	struct rb_node node;
2175 	struct old_sa_defrag_extent *old;
2176 	u64 root_id;
2177 	u64 inum;
2178 	u64 file_pos;
2179 	u64 extent_offset;
2180 	u64 num_bytes;
2181 	u64 generation;
2182 };
2183 
2184 struct old_sa_defrag_extent {
2185 	struct list_head list;
2186 	struct new_sa_defrag_extent *new;
2187 
2188 	u64 extent_offset;
2189 	u64 bytenr;
2190 	u64 offset;
2191 	u64 len;
2192 	int count;
2193 };
2194 
2195 struct new_sa_defrag_extent {
2196 	struct rb_root root;
2197 	struct list_head head;
2198 	struct btrfs_path *path;
2199 	struct inode *inode;
2200 	u64 file_pos;
2201 	u64 len;
2202 	u64 bytenr;
2203 	u64 disk_len;
2204 	u8 compress_type;
2205 };
2206 
2207 static int backref_comp(struct sa_defrag_extent_backref *b1,
2208 			struct sa_defrag_extent_backref *b2)
2209 {
2210 	if (b1->root_id < b2->root_id)
2211 		return -1;
2212 	else if (b1->root_id > b2->root_id)
2213 		return 1;
2214 
2215 	if (b1->inum < b2->inum)
2216 		return -1;
2217 	else if (b1->inum > b2->inum)
2218 		return 1;
2219 
2220 	if (b1->file_pos < b2->file_pos)
2221 		return -1;
2222 	else if (b1->file_pos > b2->file_pos)
2223 		return 1;
2224 
2225 	/*
2226 	 * [------------------------------] ===> (a range of space)
2227 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2228 	 * |<---------------------------->| ===> (fs/file tree B)
2229 	 *
2230 	 * A range of space can refer to two file extents in one tree while
2231 	 * refer to only one file extent in another tree.
2232 	 *
2233 	 * So we may process a disk offset more than one time(two extents in A)
2234 	 * and locate at the same extent(one extent in B), then insert two same
2235 	 * backrefs(both refer to the extent in B).
2236 	 */
2237 	return 0;
2238 }
2239 
2240 static void backref_insert(struct rb_root *root,
2241 			   struct sa_defrag_extent_backref *backref)
2242 {
2243 	struct rb_node **p = &root->rb_node;
2244 	struct rb_node *parent = NULL;
2245 	struct sa_defrag_extent_backref *entry;
2246 	int ret;
2247 
2248 	while (*p) {
2249 		parent = *p;
2250 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2251 
2252 		ret = backref_comp(backref, entry);
2253 		if (ret < 0)
2254 			p = &(*p)->rb_left;
2255 		else
2256 			p = &(*p)->rb_right;
2257 	}
2258 
2259 	rb_link_node(&backref->node, parent, p);
2260 	rb_insert_color(&backref->node, root);
2261 }
2262 
2263 /*
2264  * Note the backref might has changed, and in this case we just return 0.
2265  */
2266 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2267 				       void *ctx)
2268 {
2269 	struct btrfs_file_extent_item *extent;
2270 	struct btrfs_fs_info *fs_info;
2271 	struct old_sa_defrag_extent *old = ctx;
2272 	struct new_sa_defrag_extent *new = old->new;
2273 	struct btrfs_path *path = new->path;
2274 	struct btrfs_key key;
2275 	struct btrfs_root *root;
2276 	struct sa_defrag_extent_backref *backref;
2277 	struct extent_buffer *leaf;
2278 	struct inode *inode = new->inode;
2279 	int slot;
2280 	int ret;
2281 	u64 extent_offset;
2282 	u64 num_bytes;
2283 
2284 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2285 	    inum == btrfs_ino(inode))
2286 		return 0;
2287 
2288 	key.objectid = root_id;
2289 	key.type = BTRFS_ROOT_ITEM_KEY;
2290 	key.offset = (u64)-1;
2291 
2292 	fs_info = BTRFS_I(inode)->root->fs_info;
2293 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2294 	if (IS_ERR(root)) {
2295 		if (PTR_ERR(root) == -ENOENT)
2296 			return 0;
2297 		WARN_ON(1);
2298 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2299 			 inum, offset, root_id);
2300 		return PTR_ERR(root);
2301 	}
2302 
2303 	key.objectid = inum;
2304 	key.type = BTRFS_EXTENT_DATA_KEY;
2305 	if (offset > (u64)-1 << 32)
2306 		key.offset = 0;
2307 	else
2308 		key.offset = offset;
2309 
2310 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2311 	if (WARN_ON(ret < 0))
2312 		return ret;
2313 	ret = 0;
2314 
2315 	while (1) {
2316 		cond_resched();
2317 
2318 		leaf = path->nodes[0];
2319 		slot = path->slots[0];
2320 
2321 		if (slot >= btrfs_header_nritems(leaf)) {
2322 			ret = btrfs_next_leaf(root, path);
2323 			if (ret < 0) {
2324 				goto out;
2325 			} else if (ret > 0) {
2326 				ret = 0;
2327 				goto out;
2328 			}
2329 			continue;
2330 		}
2331 
2332 		path->slots[0]++;
2333 
2334 		btrfs_item_key_to_cpu(leaf, &key, slot);
2335 
2336 		if (key.objectid > inum)
2337 			goto out;
2338 
2339 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2340 			continue;
2341 
2342 		extent = btrfs_item_ptr(leaf, slot,
2343 					struct btrfs_file_extent_item);
2344 
2345 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2346 			continue;
2347 
2348 		/*
2349 		 * 'offset' refers to the exact key.offset,
2350 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2351 		 * (key.offset - extent_offset).
2352 		 */
2353 		if (key.offset != offset)
2354 			continue;
2355 
2356 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2357 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2358 
2359 		if (extent_offset >= old->extent_offset + old->offset +
2360 		    old->len || extent_offset + num_bytes <=
2361 		    old->extent_offset + old->offset)
2362 			continue;
2363 		break;
2364 	}
2365 
2366 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2367 	if (!backref) {
2368 		ret = -ENOENT;
2369 		goto out;
2370 	}
2371 
2372 	backref->root_id = root_id;
2373 	backref->inum = inum;
2374 	backref->file_pos = offset;
2375 	backref->num_bytes = num_bytes;
2376 	backref->extent_offset = extent_offset;
2377 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2378 	backref->old = old;
2379 	backref_insert(&new->root, backref);
2380 	old->count++;
2381 out:
2382 	btrfs_release_path(path);
2383 	WARN_ON(ret);
2384 	return ret;
2385 }
2386 
2387 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2388 				   struct new_sa_defrag_extent *new)
2389 {
2390 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2391 	struct old_sa_defrag_extent *old, *tmp;
2392 	int ret;
2393 
2394 	new->path = path;
2395 
2396 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2397 		ret = iterate_inodes_from_logical(old->bytenr +
2398 						  old->extent_offset, fs_info,
2399 						  path, record_one_backref,
2400 						  old);
2401 		if (ret < 0 && ret != -ENOENT)
2402 			return false;
2403 
2404 		/* no backref to be processed for this extent */
2405 		if (!old->count) {
2406 			list_del(&old->list);
2407 			kfree(old);
2408 		}
2409 	}
2410 
2411 	if (list_empty(&new->head))
2412 		return false;
2413 
2414 	return true;
2415 }
2416 
2417 static int relink_is_mergable(struct extent_buffer *leaf,
2418 			      struct btrfs_file_extent_item *fi,
2419 			      struct new_sa_defrag_extent *new)
2420 {
2421 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2422 		return 0;
2423 
2424 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2425 		return 0;
2426 
2427 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2428 		return 0;
2429 
2430 	if (btrfs_file_extent_encryption(leaf, fi) ||
2431 	    btrfs_file_extent_other_encoding(leaf, fi))
2432 		return 0;
2433 
2434 	return 1;
2435 }
2436 
2437 /*
2438  * Note the backref might has changed, and in this case we just return 0.
2439  */
2440 static noinline int relink_extent_backref(struct btrfs_path *path,
2441 				 struct sa_defrag_extent_backref *prev,
2442 				 struct sa_defrag_extent_backref *backref)
2443 {
2444 	struct btrfs_file_extent_item *extent;
2445 	struct btrfs_file_extent_item *item;
2446 	struct btrfs_ordered_extent *ordered;
2447 	struct btrfs_trans_handle *trans;
2448 	struct btrfs_fs_info *fs_info;
2449 	struct btrfs_root *root;
2450 	struct btrfs_key key;
2451 	struct extent_buffer *leaf;
2452 	struct old_sa_defrag_extent *old = backref->old;
2453 	struct new_sa_defrag_extent *new = old->new;
2454 	struct inode *src_inode = new->inode;
2455 	struct inode *inode;
2456 	struct extent_state *cached = NULL;
2457 	int ret = 0;
2458 	u64 start;
2459 	u64 len;
2460 	u64 lock_start;
2461 	u64 lock_end;
2462 	bool merge = false;
2463 	int index;
2464 
2465 	if (prev && prev->root_id == backref->root_id &&
2466 	    prev->inum == backref->inum &&
2467 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2468 		merge = true;
2469 
2470 	/* step 1: get root */
2471 	key.objectid = backref->root_id;
2472 	key.type = BTRFS_ROOT_ITEM_KEY;
2473 	key.offset = (u64)-1;
2474 
2475 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2476 	index = srcu_read_lock(&fs_info->subvol_srcu);
2477 
2478 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2479 	if (IS_ERR(root)) {
2480 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2481 		if (PTR_ERR(root) == -ENOENT)
2482 			return 0;
2483 		return PTR_ERR(root);
2484 	}
2485 
2486 	if (btrfs_root_readonly(root)) {
2487 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 		return 0;
2489 	}
2490 
2491 	/* step 2: get inode */
2492 	key.objectid = backref->inum;
2493 	key.type = BTRFS_INODE_ITEM_KEY;
2494 	key.offset = 0;
2495 
2496 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2497 	if (IS_ERR(inode)) {
2498 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2499 		return 0;
2500 	}
2501 
2502 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2503 
2504 	/* step 3: relink backref */
2505 	lock_start = backref->file_pos;
2506 	lock_end = backref->file_pos + backref->num_bytes - 1;
2507 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2508 			 &cached);
2509 
2510 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2511 	if (ordered) {
2512 		btrfs_put_ordered_extent(ordered);
2513 		goto out_unlock;
2514 	}
2515 
2516 	trans = btrfs_join_transaction(root);
2517 	if (IS_ERR(trans)) {
2518 		ret = PTR_ERR(trans);
2519 		goto out_unlock;
2520 	}
2521 
2522 	key.objectid = backref->inum;
2523 	key.type = BTRFS_EXTENT_DATA_KEY;
2524 	key.offset = backref->file_pos;
2525 
2526 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2527 	if (ret < 0) {
2528 		goto out_free_path;
2529 	} else if (ret > 0) {
2530 		ret = 0;
2531 		goto out_free_path;
2532 	}
2533 
2534 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2535 				struct btrfs_file_extent_item);
2536 
2537 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2538 	    backref->generation)
2539 		goto out_free_path;
2540 
2541 	btrfs_release_path(path);
2542 
2543 	start = backref->file_pos;
2544 	if (backref->extent_offset < old->extent_offset + old->offset)
2545 		start += old->extent_offset + old->offset -
2546 			 backref->extent_offset;
2547 
2548 	len = min(backref->extent_offset + backref->num_bytes,
2549 		  old->extent_offset + old->offset + old->len);
2550 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2551 
2552 	ret = btrfs_drop_extents(trans, root, inode, start,
2553 				 start + len, 1);
2554 	if (ret)
2555 		goto out_free_path;
2556 again:
2557 	key.objectid = btrfs_ino(inode);
2558 	key.type = BTRFS_EXTENT_DATA_KEY;
2559 	key.offset = start;
2560 
2561 	path->leave_spinning = 1;
2562 	if (merge) {
2563 		struct btrfs_file_extent_item *fi;
2564 		u64 extent_len;
2565 		struct btrfs_key found_key;
2566 
2567 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2568 		if (ret < 0)
2569 			goto out_free_path;
2570 
2571 		path->slots[0]--;
2572 		leaf = path->nodes[0];
2573 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2574 
2575 		fi = btrfs_item_ptr(leaf, path->slots[0],
2576 				    struct btrfs_file_extent_item);
2577 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2578 
2579 		if (extent_len + found_key.offset == start &&
2580 		    relink_is_mergable(leaf, fi, new)) {
2581 			btrfs_set_file_extent_num_bytes(leaf, fi,
2582 							extent_len + len);
2583 			btrfs_mark_buffer_dirty(leaf);
2584 			inode_add_bytes(inode, len);
2585 
2586 			ret = 1;
2587 			goto out_free_path;
2588 		} else {
2589 			merge = false;
2590 			btrfs_release_path(path);
2591 			goto again;
2592 		}
2593 	}
2594 
2595 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2596 					sizeof(*extent));
2597 	if (ret) {
2598 		btrfs_abort_transaction(trans, root, ret);
2599 		goto out_free_path;
2600 	}
2601 
2602 	leaf = path->nodes[0];
2603 	item = btrfs_item_ptr(leaf, path->slots[0],
2604 				struct btrfs_file_extent_item);
2605 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2606 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2607 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2608 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2609 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2610 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2611 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2612 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2613 	btrfs_set_file_extent_encryption(leaf, item, 0);
2614 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2615 
2616 	btrfs_mark_buffer_dirty(leaf);
2617 	inode_add_bytes(inode, len);
2618 	btrfs_release_path(path);
2619 
2620 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2621 			new->disk_len, 0,
2622 			backref->root_id, backref->inum,
2623 			new->file_pos);	/* start - extent_offset */
2624 	if (ret) {
2625 		btrfs_abort_transaction(trans, root, ret);
2626 		goto out_free_path;
2627 	}
2628 
2629 	ret = 1;
2630 out_free_path:
2631 	btrfs_release_path(path);
2632 	path->leave_spinning = 0;
2633 	btrfs_end_transaction(trans, root);
2634 out_unlock:
2635 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2636 			     &cached, GFP_NOFS);
2637 	iput(inode);
2638 	return ret;
2639 }
2640 
2641 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2642 {
2643 	struct old_sa_defrag_extent *old, *tmp;
2644 
2645 	if (!new)
2646 		return;
2647 
2648 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2649 		kfree(old);
2650 	}
2651 	kfree(new);
2652 }
2653 
2654 static void relink_file_extents(struct new_sa_defrag_extent *new)
2655 {
2656 	struct btrfs_path *path;
2657 	struct sa_defrag_extent_backref *backref;
2658 	struct sa_defrag_extent_backref *prev = NULL;
2659 	struct inode *inode;
2660 	struct btrfs_root *root;
2661 	struct rb_node *node;
2662 	int ret;
2663 
2664 	inode = new->inode;
2665 	root = BTRFS_I(inode)->root;
2666 
2667 	path = btrfs_alloc_path();
2668 	if (!path)
2669 		return;
2670 
2671 	if (!record_extent_backrefs(path, new)) {
2672 		btrfs_free_path(path);
2673 		goto out;
2674 	}
2675 	btrfs_release_path(path);
2676 
2677 	while (1) {
2678 		node = rb_first(&new->root);
2679 		if (!node)
2680 			break;
2681 		rb_erase(node, &new->root);
2682 
2683 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2684 
2685 		ret = relink_extent_backref(path, prev, backref);
2686 		WARN_ON(ret < 0);
2687 
2688 		kfree(prev);
2689 
2690 		if (ret == 1)
2691 			prev = backref;
2692 		else
2693 			prev = NULL;
2694 		cond_resched();
2695 	}
2696 	kfree(prev);
2697 
2698 	btrfs_free_path(path);
2699 out:
2700 	free_sa_defrag_extent(new);
2701 
2702 	atomic_dec(&root->fs_info->defrag_running);
2703 	wake_up(&root->fs_info->transaction_wait);
2704 }
2705 
2706 static struct new_sa_defrag_extent *
2707 record_old_file_extents(struct inode *inode,
2708 			struct btrfs_ordered_extent *ordered)
2709 {
2710 	struct btrfs_root *root = BTRFS_I(inode)->root;
2711 	struct btrfs_path *path;
2712 	struct btrfs_key key;
2713 	struct old_sa_defrag_extent *old;
2714 	struct new_sa_defrag_extent *new;
2715 	int ret;
2716 
2717 	new = kmalloc(sizeof(*new), GFP_NOFS);
2718 	if (!new)
2719 		return NULL;
2720 
2721 	new->inode = inode;
2722 	new->file_pos = ordered->file_offset;
2723 	new->len = ordered->len;
2724 	new->bytenr = ordered->start;
2725 	new->disk_len = ordered->disk_len;
2726 	new->compress_type = ordered->compress_type;
2727 	new->root = RB_ROOT;
2728 	INIT_LIST_HEAD(&new->head);
2729 
2730 	path = btrfs_alloc_path();
2731 	if (!path)
2732 		goto out_kfree;
2733 
2734 	key.objectid = btrfs_ino(inode);
2735 	key.type = BTRFS_EXTENT_DATA_KEY;
2736 	key.offset = new->file_pos;
2737 
2738 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2739 	if (ret < 0)
2740 		goto out_free_path;
2741 	if (ret > 0 && path->slots[0] > 0)
2742 		path->slots[0]--;
2743 
2744 	/* find out all the old extents for the file range */
2745 	while (1) {
2746 		struct btrfs_file_extent_item *extent;
2747 		struct extent_buffer *l;
2748 		int slot;
2749 		u64 num_bytes;
2750 		u64 offset;
2751 		u64 end;
2752 		u64 disk_bytenr;
2753 		u64 extent_offset;
2754 
2755 		l = path->nodes[0];
2756 		slot = path->slots[0];
2757 
2758 		if (slot >= btrfs_header_nritems(l)) {
2759 			ret = btrfs_next_leaf(root, path);
2760 			if (ret < 0)
2761 				goto out_free_path;
2762 			else if (ret > 0)
2763 				break;
2764 			continue;
2765 		}
2766 
2767 		btrfs_item_key_to_cpu(l, &key, slot);
2768 
2769 		if (key.objectid != btrfs_ino(inode))
2770 			break;
2771 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2772 			break;
2773 		if (key.offset >= new->file_pos + new->len)
2774 			break;
2775 
2776 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2777 
2778 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2779 		if (key.offset + num_bytes < new->file_pos)
2780 			goto next;
2781 
2782 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2783 		if (!disk_bytenr)
2784 			goto next;
2785 
2786 		extent_offset = btrfs_file_extent_offset(l, extent);
2787 
2788 		old = kmalloc(sizeof(*old), GFP_NOFS);
2789 		if (!old)
2790 			goto out_free_path;
2791 
2792 		offset = max(new->file_pos, key.offset);
2793 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2794 
2795 		old->bytenr = disk_bytenr;
2796 		old->extent_offset = extent_offset;
2797 		old->offset = offset - key.offset;
2798 		old->len = end - offset;
2799 		old->new = new;
2800 		old->count = 0;
2801 		list_add_tail(&old->list, &new->head);
2802 next:
2803 		path->slots[0]++;
2804 		cond_resched();
2805 	}
2806 
2807 	btrfs_free_path(path);
2808 	atomic_inc(&root->fs_info->defrag_running);
2809 
2810 	return new;
2811 
2812 out_free_path:
2813 	btrfs_free_path(path);
2814 out_kfree:
2815 	free_sa_defrag_extent(new);
2816 	return NULL;
2817 }
2818 
2819 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2820 					 u64 start, u64 len)
2821 {
2822 	struct btrfs_block_group_cache *cache;
2823 
2824 	cache = btrfs_lookup_block_group(root->fs_info, start);
2825 	ASSERT(cache);
2826 
2827 	spin_lock(&cache->lock);
2828 	cache->delalloc_bytes -= len;
2829 	spin_unlock(&cache->lock);
2830 
2831 	btrfs_put_block_group(cache);
2832 }
2833 
2834 /* as ordered data IO finishes, this gets called so we can finish
2835  * an ordered extent if the range of bytes in the file it covers are
2836  * fully written.
2837  */
2838 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2839 {
2840 	struct inode *inode = ordered_extent->inode;
2841 	struct btrfs_root *root = BTRFS_I(inode)->root;
2842 	struct btrfs_trans_handle *trans = NULL;
2843 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2844 	struct extent_state *cached_state = NULL;
2845 	struct new_sa_defrag_extent *new = NULL;
2846 	int compress_type = 0;
2847 	int ret = 0;
2848 	u64 logical_len = ordered_extent->len;
2849 	bool nolock;
2850 	bool truncated = false;
2851 
2852 	nolock = btrfs_is_free_space_inode(inode);
2853 
2854 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2855 		ret = -EIO;
2856 		goto out;
2857 	}
2858 
2859 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2860 				     ordered_extent->file_offset +
2861 				     ordered_extent->len - 1);
2862 
2863 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2864 		truncated = true;
2865 		logical_len = ordered_extent->truncated_len;
2866 		/* Truncated the entire extent, don't bother adding */
2867 		if (!logical_len)
2868 			goto out;
2869 	}
2870 
2871 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2872 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2873 
2874 		/*
2875 		 * For mwrite(mmap + memset to write) case, we still reserve
2876 		 * space for NOCOW range.
2877 		 * As NOCOW won't cause a new delayed ref, just free the space
2878 		 */
2879 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2880 				       ordered_extent->len);
2881 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2882 		if (nolock)
2883 			trans = btrfs_join_transaction_nolock(root);
2884 		else
2885 			trans = btrfs_join_transaction(root);
2886 		if (IS_ERR(trans)) {
2887 			ret = PTR_ERR(trans);
2888 			trans = NULL;
2889 			goto out;
2890 		}
2891 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2892 		ret = btrfs_update_inode_fallback(trans, root, inode);
2893 		if (ret) /* -ENOMEM or corruption */
2894 			btrfs_abort_transaction(trans, root, ret);
2895 		goto out;
2896 	}
2897 
2898 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2899 			 ordered_extent->file_offset + ordered_extent->len - 1,
2900 			 &cached_state);
2901 
2902 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2903 			ordered_extent->file_offset + ordered_extent->len - 1,
2904 			EXTENT_DEFRAG, 1, cached_state);
2905 	if (ret) {
2906 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2907 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2908 			/* the inode is shared */
2909 			new = record_old_file_extents(inode, ordered_extent);
2910 
2911 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2912 			ordered_extent->file_offset + ordered_extent->len - 1,
2913 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2914 	}
2915 
2916 	if (nolock)
2917 		trans = btrfs_join_transaction_nolock(root);
2918 	else
2919 		trans = btrfs_join_transaction(root);
2920 	if (IS_ERR(trans)) {
2921 		ret = PTR_ERR(trans);
2922 		trans = NULL;
2923 		goto out_unlock;
2924 	}
2925 
2926 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2927 
2928 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2929 		compress_type = ordered_extent->compress_type;
2930 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2931 		BUG_ON(compress_type);
2932 		ret = btrfs_mark_extent_written(trans, inode,
2933 						ordered_extent->file_offset,
2934 						ordered_extent->file_offset +
2935 						logical_len);
2936 	} else {
2937 		BUG_ON(root == root->fs_info->tree_root);
2938 		ret = insert_reserved_file_extent(trans, inode,
2939 						ordered_extent->file_offset,
2940 						ordered_extent->start,
2941 						ordered_extent->disk_len,
2942 						logical_len, logical_len,
2943 						compress_type, 0, 0,
2944 						BTRFS_FILE_EXTENT_REG);
2945 		if (!ret)
2946 			btrfs_release_delalloc_bytes(root,
2947 						     ordered_extent->start,
2948 						     ordered_extent->disk_len);
2949 	}
2950 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2951 			   ordered_extent->file_offset, ordered_extent->len,
2952 			   trans->transid);
2953 	if (ret < 0) {
2954 		btrfs_abort_transaction(trans, root, ret);
2955 		goto out_unlock;
2956 	}
2957 
2958 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2959 			  &ordered_extent->list);
2960 
2961 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2962 	ret = btrfs_update_inode_fallback(trans, root, inode);
2963 	if (ret) { /* -ENOMEM or corruption */
2964 		btrfs_abort_transaction(trans, root, ret);
2965 		goto out_unlock;
2966 	}
2967 	ret = 0;
2968 out_unlock:
2969 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2970 			     ordered_extent->file_offset +
2971 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2972 out:
2973 	if (root != root->fs_info->tree_root)
2974 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2975 	if (trans)
2976 		btrfs_end_transaction(trans, root);
2977 
2978 	if (ret || truncated) {
2979 		u64 start, end;
2980 
2981 		if (truncated)
2982 			start = ordered_extent->file_offset + logical_len;
2983 		else
2984 			start = ordered_extent->file_offset;
2985 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2986 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2987 
2988 		/* Drop the cache for the part of the extent we didn't write. */
2989 		btrfs_drop_extent_cache(inode, start, end, 0);
2990 
2991 		/*
2992 		 * If the ordered extent had an IOERR or something else went
2993 		 * wrong we need to return the space for this ordered extent
2994 		 * back to the allocator.  We only free the extent in the
2995 		 * truncated case if we didn't write out the extent at all.
2996 		 */
2997 		if ((ret || !logical_len) &&
2998 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2999 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3000 			btrfs_free_reserved_extent(root, ordered_extent->start,
3001 						   ordered_extent->disk_len, 1);
3002 	}
3003 
3004 
3005 	/*
3006 	 * This needs to be done to make sure anybody waiting knows we are done
3007 	 * updating everything for this ordered extent.
3008 	 */
3009 	btrfs_remove_ordered_extent(inode, ordered_extent);
3010 
3011 	/* for snapshot-aware defrag */
3012 	if (new) {
3013 		if (ret) {
3014 			free_sa_defrag_extent(new);
3015 			atomic_dec(&root->fs_info->defrag_running);
3016 		} else {
3017 			relink_file_extents(new);
3018 		}
3019 	}
3020 
3021 	/* once for us */
3022 	btrfs_put_ordered_extent(ordered_extent);
3023 	/* once for the tree */
3024 	btrfs_put_ordered_extent(ordered_extent);
3025 
3026 	return ret;
3027 }
3028 
3029 static void finish_ordered_fn(struct btrfs_work *work)
3030 {
3031 	struct btrfs_ordered_extent *ordered_extent;
3032 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3033 	btrfs_finish_ordered_io(ordered_extent);
3034 }
3035 
3036 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3037 				struct extent_state *state, int uptodate)
3038 {
3039 	struct inode *inode = page->mapping->host;
3040 	struct btrfs_root *root = BTRFS_I(inode)->root;
3041 	struct btrfs_ordered_extent *ordered_extent = NULL;
3042 	struct btrfs_workqueue *wq;
3043 	btrfs_work_func_t func;
3044 
3045 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3046 
3047 	ClearPagePrivate2(page);
3048 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3049 					    end - start + 1, uptodate))
3050 		return 0;
3051 
3052 	if (btrfs_is_free_space_inode(inode)) {
3053 		wq = root->fs_info->endio_freespace_worker;
3054 		func = btrfs_freespace_write_helper;
3055 	} else {
3056 		wq = root->fs_info->endio_write_workers;
3057 		func = btrfs_endio_write_helper;
3058 	}
3059 
3060 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3061 			NULL);
3062 	btrfs_queue_work(wq, &ordered_extent->work);
3063 
3064 	return 0;
3065 }
3066 
3067 static int __readpage_endio_check(struct inode *inode,
3068 				  struct btrfs_io_bio *io_bio,
3069 				  int icsum, struct page *page,
3070 				  int pgoff, u64 start, size_t len)
3071 {
3072 	char *kaddr;
3073 	u32 csum_expected;
3074 	u32 csum = ~(u32)0;
3075 
3076 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3077 
3078 	kaddr = kmap_atomic(page);
3079 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3080 	btrfs_csum_final(csum, (char *)&csum);
3081 	if (csum != csum_expected)
3082 		goto zeroit;
3083 
3084 	kunmap_atomic(kaddr);
3085 	return 0;
3086 zeroit:
3087 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3088 		"csum failed ino %llu off %llu csum %u expected csum %u",
3089 			   btrfs_ino(inode), start, csum, csum_expected);
3090 	memset(kaddr + pgoff, 1, len);
3091 	flush_dcache_page(page);
3092 	kunmap_atomic(kaddr);
3093 	if (csum_expected == 0)
3094 		return 0;
3095 	return -EIO;
3096 }
3097 
3098 /*
3099  * when reads are done, we need to check csums to verify the data is correct
3100  * if there's a match, we allow the bio to finish.  If not, the code in
3101  * extent_io.c will try to find good copies for us.
3102  */
3103 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3104 				      u64 phy_offset, struct page *page,
3105 				      u64 start, u64 end, int mirror)
3106 {
3107 	size_t offset = start - page_offset(page);
3108 	struct inode *inode = page->mapping->host;
3109 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3110 	struct btrfs_root *root = BTRFS_I(inode)->root;
3111 
3112 	if (PageChecked(page)) {
3113 		ClearPageChecked(page);
3114 		return 0;
3115 	}
3116 
3117 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3118 		return 0;
3119 
3120 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3121 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3122 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3123 		return 0;
3124 	}
3125 
3126 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3127 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3128 				      start, (size_t)(end - start + 1));
3129 }
3130 
3131 void btrfs_add_delayed_iput(struct inode *inode)
3132 {
3133 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3134 	struct btrfs_inode *binode = BTRFS_I(inode);
3135 
3136 	if (atomic_add_unless(&inode->i_count, -1, 1))
3137 		return;
3138 
3139 	spin_lock(&fs_info->delayed_iput_lock);
3140 	if (binode->delayed_iput_count == 0) {
3141 		ASSERT(list_empty(&binode->delayed_iput));
3142 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3143 	} else {
3144 		binode->delayed_iput_count++;
3145 	}
3146 	spin_unlock(&fs_info->delayed_iput_lock);
3147 }
3148 
3149 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3150 {
3151 	struct btrfs_fs_info *fs_info = root->fs_info;
3152 
3153 	spin_lock(&fs_info->delayed_iput_lock);
3154 	while (!list_empty(&fs_info->delayed_iputs)) {
3155 		struct btrfs_inode *inode;
3156 
3157 		inode = list_first_entry(&fs_info->delayed_iputs,
3158 				struct btrfs_inode, delayed_iput);
3159 		if (inode->delayed_iput_count) {
3160 			inode->delayed_iput_count--;
3161 			list_move_tail(&inode->delayed_iput,
3162 					&fs_info->delayed_iputs);
3163 		} else {
3164 			list_del_init(&inode->delayed_iput);
3165 		}
3166 		spin_unlock(&fs_info->delayed_iput_lock);
3167 		iput(&inode->vfs_inode);
3168 		spin_lock(&fs_info->delayed_iput_lock);
3169 	}
3170 	spin_unlock(&fs_info->delayed_iput_lock);
3171 }
3172 
3173 /*
3174  * This is called in transaction commit time. If there are no orphan
3175  * files in the subvolume, it removes orphan item and frees block_rsv
3176  * structure.
3177  */
3178 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3179 			      struct btrfs_root *root)
3180 {
3181 	struct btrfs_block_rsv *block_rsv;
3182 	int ret;
3183 
3184 	if (atomic_read(&root->orphan_inodes) ||
3185 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3186 		return;
3187 
3188 	spin_lock(&root->orphan_lock);
3189 	if (atomic_read(&root->orphan_inodes)) {
3190 		spin_unlock(&root->orphan_lock);
3191 		return;
3192 	}
3193 
3194 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3195 		spin_unlock(&root->orphan_lock);
3196 		return;
3197 	}
3198 
3199 	block_rsv = root->orphan_block_rsv;
3200 	root->orphan_block_rsv = NULL;
3201 	spin_unlock(&root->orphan_lock);
3202 
3203 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3204 	    btrfs_root_refs(&root->root_item) > 0) {
3205 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3206 					    root->root_key.objectid);
3207 		if (ret)
3208 			btrfs_abort_transaction(trans, root, ret);
3209 		else
3210 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3211 				  &root->state);
3212 	}
3213 
3214 	if (block_rsv) {
3215 		WARN_ON(block_rsv->size > 0);
3216 		btrfs_free_block_rsv(root, block_rsv);
3217 	}
3218 }
3219 
3220 /*
3221  * This creates an orphan entry for the given inode in case something goes
3222  * wrong in the middle of an unlink/truncate.
3223  *
3224  * NOTE: caller of this function should reserve 5 units of metadata for
3225  *	 this function.
3226  */
3227 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3228 {
3229 	struct btrfs_root *root = BTRFS_I(inode)->root;
3230 	struct btrfs_block_rsv *block_rsv = NULL;
3231 	int reserve = 0;
3232 	int insert = 0;
3233 	int ret;
3234 
3235 	if (!root->orphan_block_rsv) {
3236 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3237 		if (!block_rsv)
3238 			return -ENOMEM;
3239 	}
3240 
3241 	spin_lock(&root->orphan_lock);
3242 	if (!root->orphan_block_rsv) {
3243 		root->orphan_block_rsv = block_rsv;
3244 	} else if (block_rsv) {
3245 		btrfs_free_block_rsv(root, block_rsv);
3246 		block_rsv = NULL;
3247 	}
3248 
3249 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3250 			      &BTRFS_I(inode)->runtime_flags)) {
3251 #if 0
3252 		/*
3253 		 * For proper ENOSPC handling, we should do orphan
3254 		 * cleanup when mounting. But this introduces backward
3255 		 * compatibility issue.
3256 		 */
3257 		if (!xchg(&root->orphan_item_inserted, 1))
3258 			insert = 2;
3259 		else
3260 			insert = 1;
3261 #endif
3262 		insert = 1;
3263 		atomic_inc(&root->orphan_inodes);
3264 	}
3265 
3266 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3267 			      &BTRFS_I(inode)->runtime_flags))
3268 		reserve = 1;
3269 	spin_unlock(&root->orphan_lock);
3270 
3271 	/* grab metadata reservation from transaction handle */
3272 	if (reserve) {
3273 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3274 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3275 	}
3276 
3277 	/* insert an orphan item to track this unlinked/truncated file */
3278 	if (insert >= 1) {
3279 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3280 		if (ret) {
3281 			atomic_dec(&root->orphan_inodes);
3282 			if (reserve) {
3283 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3284 					  &BTRFS_I(inode)->runtime_flags);
3285 				btrfs_orphan_release_metadata(inode);
3286 			}
3287 			if (ret != -EEXIST) {
3288 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3289 					  &BTRFS_I(inode)->runtime_flags);
3290 				btrfs_abort_transaction(trans, root, ret);
3291 				return ret;
3292 			}
3293 		}
3294 		ret = 0;
3295 	}
3296 
3297 	/* insert an orphan item to track subvolume contains orphan files */
3298 	if (insert >= 2) {
3299 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3300 					       root->root_key.objectid);
3301 		if (ret && ret != -EEXIST) {
3302 			btrfs_abort_transaction(trans, root, ret);
3303 			return ret;
3304 		}
3305 	}
3306 	return 0;
3307 }
3308 
3309 /*
3310  * We have done the truncate/delete so we can go ahead and remove the orphan
3311  * item for this particular inode.
3312  */
3313 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3314 			    struct inode *inode)
3315 {
3316 	struct btrfs_root *root = BTRFS_I(inode)->root;
3317 	int delete_item = 0;
3318 	int release_rsv = 0;
3319 	int ret = 0;
3320 
3321 	spin_lock(&root->orphan_lock);
3322 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3323 			       &BTRFS_I(inode)->runtime_flags))
3324 		delete_item = 1;
3325 
3326 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3327 			       &BTRFS_I(inode)->runtime_flags))
3328 		release_rsv = 1;
3329 	spin_unlock(&root->orphan_lock);
3330 
3331 	if (delete_item) {
3332 		atomic_dec(&root->orphan_inodes);
3333 		if (trans)
3334 			ret = btrfs_del_orphan_item(trans, root,
3335 						    btrfs_ino(inode));
3336 	}
3337 
3338 	if (release_rsv)
3339 		btrfs_orphan_release_metadata(inode);
3340 
3341 	return ret;
3342 }
3343 
3344 /*
3345  * this cleans up any orphans that may be left on the list from the last use
3346  * of this root.
3347  */
3348 int btrfs_orphan_cleanup(struct btrfs_root *root)
3349 {
3350 	struct btrfs_path *path;
3351 	struct extent_buffer *leaf;
3352 	struct btrfs_key key, found_key;
3353 	struct btrfs_trans_handle *trans;
3354 	struct inode *inode;
3355 	u64 last_objectid = 0;
3356 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3357 
3358 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3359 		return 0;
3360 
3361 	path = btrfs_alloc_path();
3362 	if (!path) {
3363 		ret = -ENOMEM;
3364 		goto out;
3365 	}
3366 	path->reada = READA_BACK;
3367 
3368 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3369 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3370 	key.offset = (u64)-1;
3371 
3372 	while (1) {
3373 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3374 		if (ret < 0)
3375 			goto out;
3376 
3377 		/*
3378 		 * if ret == 0 means we found what we were searching for, which
3379 		 * is weird, but possible, so only screw with path if we didn't
3380 		 * find the key and see if we have stuff that matches
3381 		 */
3382 		if (ret > 0) {
3383 			ret = 0;
3384 			if (path->slots[0] == 0)
3385 				break;
3386 			path->slots[0]--;
3387 		}
3388 
3389 		/* pull out the item */
3390 		leaf = path->nodes[0];
3391 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3392 
3393 		/* make sure the item matches what we want */
3394 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3395 			break;
3396 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3397 			break;
3398 
3399 		/* release the path since we're done with it */
3400 		btrfs_release_path(path);
3401 
3402 		/*
3403 		 * this is where we are basically btrfs_lookup, without the
3404 		 * crossing root thing.  we store the inode number in the
3405 		 * offset of the orphan item.
3406 		 */
3407 
3408 		if (found_key.offset == last_objectid) {
3409 			btrfs_err(root->fs_info,
3410 				"Error removing orphan entry, stopping orphan cleanup");
3411 			ret = -EINVAL;
3412 			goto out;
3413 		}
3414 
3415 		last_objectid = found_key.offset;
3416 
3417 		found_key.objectid = found_key.offset;
3418 		found_key.type = BTRFS_INODE_ITEM_KEY;
3419 		found_key.offset = 0;
3420 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3421 		ret = PTR_ERR_OR_ZERO(inode);
3422 		if (ret && ret != -ESTALE)
3423 			goto out;
3424 
3425 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3426 			struct btrfs_root *dead_root;
3427 			struct btrfs_fs_info *fs_info = root->fs_info;
3428 			int is_dead_root = 0;
3429 
3430 			/*
3431 			 * this is an orphan in the tree root. Currently these
3432 			 * could come from 2 sources:
3433 			 *  a) a snapshot deletion in progress
3434 			 *  b) a free space cache inode
3435 			 * We need to distinguish those two, as the snapshot
3436 			 * orphan must not get deleted.
3437 			 * find_dead_roots already ran before us, so if this
3438 			 * is a snapshot deletion, we should find the root
3439 			 * in the dead_roots list
3440 			 */
3441 			spin_lock(&fs_info->trans_lock);
3442 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3443 					    root_list) {
3444 				if (dead_root->root_key.objectid ==
3445 				    found_key.objectid) {
3446 					is_dead_root = 1;
3447 					break;
3448 				}
3449 			}
3450 			spin_unlock(&fs_info->trans_lock);
3451 			if (is_dead_root) {
3452 				/* prevent this orphan from being found again */
3453 				key.offset = found_key.objectid - 1;
3454 				continue;
3455 			}
3456 		}
3457 		/*
3458 		 * Inode is already gone but the orphan item is still there,
3459 		 * kill the orphan item.
3460 		 */
3461 		if (ret == -ESTALE) {
3462 			trans = btrfs_start_transaction(root, 1);
3463 			if (IS_ERR(trans)) {
3464 				ret = PTR_ERR(trans);
3465 				goto out;
3466 			}
3467 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3468 				found_key.objectid);
3469 			ret = btrfs_del_orphan_item(trans, root,
3470 						    found_key.objectid);
3471 			btrfs_end_transaction(trans, root);
3472 			if (ret)
3473 				goto out;
3474 			continue;
3475 		}
3476 
3477 		/*
3478 		 * add this inode to the orphan list so btrfs_orphan_del does
3479 		 * the proper thing when we hit it
3480 		 */
3481 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3482 			&BTRFS_I(inode)->runtime_flags);
3483 		atomic_inc(&root->orphan_inodes);
3484 
3485 		/* if we have links, this was a truncate, lets do that */
3486 		if (inode->i_nlink) {
3487 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3488 				iput(inode);
3489 				continue;
3490 			}
3491 			nr_truncate++;
3492 
3493 			/* 1 for the orphan item deletion. */
3494 			trans = btrfs_start_transaction(root, 1);
3495 			if (IS_ERR(trans)) {
3496 				iput(inode);
3497 				ret = PTR_ERR(trans);
3498 				goto out;
3499 			}
3500 			ret = btrfs_orphan_add(trans, inode);
3501 			btrfs_end_transaction(trans, root);
3502 			if (ret) {
3503 				iput(inode);
3504 				goto out;
3505 			}
3506 
3507 			ret = btrfs_truncate(inode);
3508 			if (ret)
3509 				btrfs_orphan_del(NULL, inode);
3510 		} else {
3511 			nr_unlink++;
3512 		}
3513 
3514 		/* this will do delete_inode and everything for us */
3515 		iput(inode);
3516 		if (ret)
3517 			goto out;
3518 	}
3519 	/* release the path since we're done with it */
3520 	btrfs_release_path(path);
3521 
3522 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3523 
3524 	if (root->orphan_block_rsv)
3525 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3526 					(u64)-1);
3527 
3528 	if (root->orphan_block_rsv ||
3529 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3530 		trans = btrfs_join_transaction(root);
3531 		if (!IS_ERR(trans))
3532 			btrfs_end_transaction(trans, root);
3533 	}
3534 
3535 	if (nr_unlink)
3536 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3537 	if (nr_truncate)
3538 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3539 
3540 out:
3541 	if (ret)
3542 		btrfs_err(root->fs_info,
3543 			"could not do orphan cleanup %d", ret);
3544 	btrfs_free_path(path);
3545 	return ret;
3546 }
3547 
3548 /*
3549  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3550  * don't find any xattrs, we know there can't be any acls.
3551  *
3552  * slot is the slot the inode is in, objectid is the objectid of the inode
3553  */
3554 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3555 					  int slot, u64 objectid,
3556 					  int *first_xattr_slot)
3557 {
3558 	u32 nritems = btrfs_header_nritems(leaf);
3559 	struct btrfs_key found_key;
3560 	static u64 xattr_access = 0;
3561 	static u64 xattr_default = 0;
3562 	int scanned = 0;
3563 
3564 	if (!xattr_access) {
3565 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3566 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3567 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3568 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3569 	}
3570 
3571 	slot++;
3572 	*first_xattr_slot = -1;
3573 	while (slot < nritems) {
3574 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3575 
3576 		/* we found a different objectid, there must not be acls */
3577 		if (found_key.objectid != objectid)
3578 			return 0;
3579 
3580 		/* we found an xattr, assume we've got an acl */
3581 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3582 			if (*first_xattr_slot == -1)
3583 				*first_xattr_slot = slot;
3584 			if (found_key.offset == xattr_access ||
3585 			    found_key.offset == xattr_default)
3586 				return 1;
3587 		}
3588 
3589 		/*
3590 		 * we found a key greater than an xattr key, there can't
3591 		 * be any acls later on
3592 		 */
3593 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3594 			return 0;
3595 
3596 		slot++;
3597 		scanned++;
3598 
3599 		/*
3600 		 * it goes inode, inode backrefs, xattrs, extents,
3601 		 * so if there are a ton of hard links to an inode there can
3602 		 * be a lot of backrefs.  Don't waste time searching too hard,
3603 		 * this is just an optimization
3604 		 */
3605 		if (scanned >= 8)
3606 			break;
3607 	}
3608 	/* we hit the end of the leaf before we found an xattr or
3609 	 * something larger than an xattr.  We have to assume the inode
3610 	 * has acls
3611 	 */
3612 	if (*first_xattr_slot == -1)
3613 		*first_xattr_slot = slot;
3614 	return 1;
3615 }
3616 
3617 /*
3618  * read an inode from the btree into the in-memory inode
3619  */
3620 static void btrfs_read_locked_inode(struct inode *inode)
3621 {
3622 	struct btrfs_path *path;
3623 	struct extent_buffer *leaf;
3624 	struct btrfs_inode_item *inode_item;
3625 	struct btrfs_root *root = BTRFS_I(inode)->root;
3626 	struct btrfs_key location;
3627 	unsigned long ptr;
3628 	int maybe_acls;
3629 	u32 rdev;
3630 	int ret;
3631 	bool filled = false;
3632 	int first_xattr_slot;
3633 
3634 	ret = btrfs_fill_inode(inode, &rdev);
3635 	if (!ret)
3636 		filled = true;
3637 
3638 	path = btrfs_alloc_path();
3639 	if (!path)
3640 		goto make_bad;
3641 
3642 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3643 
3644 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3645 	if (ret)
3646 		goto make_bad;
3647 
3648 	leaf = path->nodes[0];
3649 
3650 	if (filled)
3651 		goto cache_index;
3652 
3653 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3654 				    struct btrfs_inode_item);
3655 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3656 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3657 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3658 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3659 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3660 
3661 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3662 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3663 
3664 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3665 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3666 
3667 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3668 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3669 
3670 	BTRFS_I(inode)->i_otime.tv_sec =
3671 		btrfs_timespec_sec(leaf, &inode_item->otime);
3672 	BTRFS_I(inode)->i_otime.tv_nsec =
3673 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3674 
3675 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3676 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3677 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3678 
3679 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3680 	inode->i_generation = BTRFS_I(inode)->generation;
3681 	inode->i_rdev = 0;
3682 	rdev = btrfs_inode_rdev(leaf, inode_item);
3683 
3684 	BTRFS_I(inode)->index_cnt = (u64)-1;
3685 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3686 
3687 cache_index:
3688 	/*
3689 	 * If we were modified in the current generation and evicted from memory
3690 	 * and then re-read we need to do a full sync since we don't have any
3691 	 * idea about which extents were modified before we were evicted from
3692 	 * cache.
3693 	 *
3694 	 * This is required for both inode re-read from disk and delayed inode
3695 	 * in delayed_nodes_tree.
3696 	 */
3697 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3698 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3699 			&BTRFS_I(inode)->runtime_flags);
3700 
3701 	/*
3702 	 * We don't persist the id of the transaction where an unlink operation
3703 	 * against the inode was last made. So here we assume the inode might
3704 	 * have been evicted, and therefore the exact value of last_unlink_trans
3705 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3706 	 * between the inode and its parent if the inode is fsync'ed and the log
3707 	 * replayed. For example, in the scenario:
3708 	 *
3709 	 * touch mydir/foo
3710 	 * ln mydir/foo mydir/bar
3711 	 * sync
3712 	 * unlink mydir/bar
3713 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3714 	 * xfs_io -c fsync mydir/foo
3715 	 * <power failure>
3716 	 * mount fs, triggers fsync log replay
3717 	 *
3718 	 * We must make sure that when we fsync our inode foo we also log its
3719 	 * parent inode, otherwise after log replay the parent still has the
3720 	 * dentry with the "bar" name but our inode foo has a link count of 1
3721 	 * and doesn't have an inode ref with the name "bar" anymore.
3722 	 *
3723 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3724 	 * but it guarantees correctness at the expense of occasional full
3725 	 * transaction commits on fsync if our inode is a directory, or if our
3726 	 * inode is not a directory, logging its parent unnecessarily.
3727 	 */
3728 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3729 
3730 	path->slots[0]++;
3731 	if (inode->i_nlink != 1 ||
3732 	    path->slots[0] >= btrfs_header_nritems(leaf))
3733 		goto cache_acl;
3734 
3735 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3736 	if (location.objectid != btrfs_ino(inode))
3737 		goto cache_acl;
3738 
3739 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3740 	if (location.type == BTRFS_INODE_REF_KEY) {
3741 		struct btrfs_inode_ref *ref;
3742 
3743 		ref = (struct btrfs_inode_ref *)ptr;
3744 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3745 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3746 		struct btrfs_inode_extref *extref;
3747 
3748 		extref = (struct btrfs_inode_extref *)ptr;
3749 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3750 								     extref);
3751 	}
3752 cache_acl:
3753 	/*
3754 	 * try to precache a NULL acl entry for files that don't have
3755 	 * any xattrs or acls
3756 	 */
3757 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3758 					   btrfs_ino(inode), &first_xattr_slot);
3759 	if (first_xattr_slot != -1) {
3760 		path->slots[0] = first_xattr_slot;
3761 		ret = btrfs_load_inode_props(inode, path);
3762 		if (ret)
3763 			btrfs_err(root->fs_info,
3764 				  "error loading props for ino %llu (root %llu): %d",
3765 				  btrfs_ino(inode),
3766 				  root->root_key.objectid, ret);
3767 	}
3768 	btrfs_free_path(path);
3769 
3770 	if (!maybe_acls)
3771 		cache_no_acl(inode);
3772 
3773 	switch (inode->i_mode & S_IFMT) {
3774 	case S_IFREG:
3775 		inode->i_mapping->a_ops = &btrfs_aops;
3776 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3777 		inode->i_fop = &btrfs_file_operations;
3778 		inode->i_op = &btrfs_file_inode_operations;
3779 		break;
3780 	case S_IFDIR:
3781 		inode->i_fop = &btrfs_dir_file_operations;
3782 		if (root == root->fs_info->tree_root)
3783 			inode->i_op = &btrfs_dir_ro_inode_operations;
3784 		else
3785 			inode->i_op = &btrfs_dir_inode_operations;
3786 		break;
3787 	case S_IFLNK:
3788 		inode->i_op = &btrfs_symlink_inode_operations;
3789 		inode_nohighmem(inode);
3790 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3791 		break;
3792 	default:
3793 		inode->i_op = &btrfs_special_inode_operations;
3794 		init_special_inode(inode, inode->i_mode, rdev);
3795 		break;
3796 	}
3797 
3798 	btrfs_update_iflags(inode);
3799 	return;
3800 
3801 make_bad:
3802 	btrfs_free_path(path);
3803 	make_bad_inode(inode);
3804 }
3805 
3806 /*
3807  * given a leaf and an inode, copy the inode fields into the leaf
3808  */
3809 static void fill_inode_item(struct btrfs_trans_handle *trans,
3810 			    struct extent_buffer *leaf,
3811 			    struct btrfs_inode_item *item,
3812 			    struct inode *inode)
3813 {
3814 	struct btrfs_map_token token;
3815 
3816 	btrfs_init_map_token(&token);
3817 
3818 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3819 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3820 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3821 				   &token);
3822 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3823 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3824 
3825 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3826 				     inode->i_atime.tv_sec, &token);
3827 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3828 				      inode->i_atime.tv_nsec, &token);
3829 
3830 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3831 				     inode->i_mtime.tv_sec, &token);
3832 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3833 				      inode->i_mtime.tv_nsec, &token);
3834 
3835 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3836 				     inode->i_ctime.tv_sec, &token);
3837 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3838 				      inode->i_ctime.tv_nsec, &token);
3839 
3840 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3841 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3842 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3843 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3844 
3845 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3846 				     &token);
3847 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3848 					 &token);
3849 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3850 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3851 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3852 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3853 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3854 }
3855 
3856 /*
3857  * copy everything in the in-memory inode into the btree.
3858  */
3859 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3860 				struct btrfs_root *root, struct inode *inode)
3861 {
3862 	struct btrfs_inode_item *inode_item;
3863 	struct btrfs_path *path;
3864 	struct extent_buffer *leaf;
3865 	int ret;
3866 
3867 	path = btrfs_alloc_path();
3868 	if (!path)
3869 		return -ENOMEM;
3870 
3871 	path->leave_spinning = 1;
3872 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3873 				 1);
3874 	if (ret) {
3875 		if (ret > 0)
3876 			ret = -ENOENT;
3877 		goto failed;
3878 	}
3879 
3880 	leaf = path->nodes[0];
3881 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3882 				    struct btrfs_inode_item);
3883 
3884 	fill_inode_item(trans, leaf, inode_item, inode);
3885 	btrfs_mark_buffer_dirty(leaf);
3886 	btrfs_set_inode_last_trans(trans, inode);
3887 	ret = 0;
3888 failed:
3889 	btrfs_free_path(path);
3890 	return ret;
3891 }
3892 
3893 /*
3894  * copy everything in the in-memory inode into the btree.
3895  */
3896 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3897 				struct btrfs_root *root, struct inode *inode)
3898 {
3899 	int ret;
3900 
3901 	/*
3902 	 * If the inode is a free space inode, we can deadlock during commit
3903 	 * if we put it into the delayed code.
3904 	 *
3905 	 * The data relocation inode should also be directly updated
3906 	 * without delay
3907 	 */
3908 	if (!btrfs_is_free_space_inode(inode)
3909 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3910 	    && !root->fs_info->log_root_recovering) {
3911 		btrfs_update_root_times(trans, root);
3912 
3913 		ret = btrfs_delayed_update_inode(trans, root, inode);
3914 		if (!ret)
3915 			btrfs_set_inode_last_trans(trans, inode);
3916 		return ret;
3917 	}
3918 
3919 	return btrfs_update_inode_item(trans, root, inode);
3920 }
3921 
3922 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3923 					 struct btrfs_root *root,
3924 					 struct inode *inode)
3925 {
3926 	int ret;
3927 
3928 	ret = btrfs_update_inode(trans, root, inode);
3929 	if (ret == -ENOSPC)
3930 		return btrfs_update_inode_item(trans, root, inode);
3931 	return ret;
3932 }
3933 
3934 /*
3935  * unlink helper that gets used here in inode.c and in the tree logging
3936  * recovery code.  It remove a link in a directory with a given name, and
3937  * also drops the back refs in the inode to the directory
3938  */
3939 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3940 				struct btrfs_root *root,
3941 				struct inode *dir, struct inode *inode,
3942 				const char *name, int name_len)
3943 {
3944 	struct btrfs_path *path;
3945 	int ret = 0;
3946 	struct extent_buffer *leaf;
3947 	struct btrfs_dir_item *di;
3948 	struct btrfs_key key;
3949 	u64 index;
3950 	u64 ino = btrfs_ino(inode);
3951 	u64 dir_ino = btrfs_ino(dir);
3952 
3953 	path = btrfs_alloc_path();
3954 	if (!path) {
3955 		ret = -ENOMEM;
3956 		goto out;
3957 	}
3958 
3959 	path->leave_spinning = 1;
3960 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3961 				    name, name_len, -1);
3962 	if (IS_ERR(di)) {
3963 		ret = PTR_ERR(di);
3964 		goto err;
3965 	}
3966 	if (!di) {
3967 		ret = -ENOENT;
3968 		goto err;
3969 	}
3970 	leaf = path->nodes[0];
3971 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3972 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3973 	if (ret)
3974 		goto err;
3975 	btrfs_release_path(path);
3976 
3977 	/*
3978 	 * If we don't have dir index, we have to get it by looking up
3979 	 * the inode ref, since we get the inode ref, remove it directly,
3980 	 * it is unnecessary to do delayed deletion.
3981 	 *
3982 	 * But if we have dir index, needn't search inode ref to get it.
3983 	 * Since the inode ref is close to the inode item, it is better
3984 	 * that we delay to delete it, and just do this deletion when
3985 	 * we update the inode item.
3986 	 */
3987 	if (BTRFS_I(inode)->dir_index) {
3988 		ret = btrfs_delayed_delete_inode_ref(inode);
3989 		if (!ret) {
3990 			index = BTRFS_I(inode)->dir_index;
3991 			goto skip_backref;
3992 		}
3993 	}
3994 
3995 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3996 				  dir_ino, &index);
3997 	if (ret) {
3998 		btrfs_info(root->fs_info,
3999 			"failed to delete reference to %.*s, inode %llu parent %llu",
4000 			name_len, name, ino, dir_ino);
4001 		btrfs_abort_transaction(trans, root, ret);
4002 		goto err;
4003 	}
4004 skip_backref:
4005 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4006 	if (ret) {
4007 		btrfs_abort_transaction(trans, root, ret);
4008 		goto err;
4009 	}
4010 
4011 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4012 					 inode, dir_ino);
4013 	if (ret != 0 && ret != -ENOENT) {
4014 		btrfs_abort_transaction(trans, root, ret);
4015 		goto err;
4016 	}
4017 
4018 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4019 					   dir, index);
4020 	if (ret == -ENOENT)
4021 		ret = 0;
4022 	else if (ret)
4023 		btrfs_abort_transaction(trans, root, ret);
4024 err:
4025 	btrfs_free_path(path);
4026 	if (ret)
4027 		goto out;
4028 
4029 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4030 	inode_inc_iversion(inode);
4031 	inode_inc_iversion(dir);
4032 	inode->i_ctime = dir->i_mtime =
4033 		dir->i_ctime = current_fs_time(inode->i_sb);
4034 	ret = btrfs_update_inode(trans, root, dir);
4035 out:
4036 	return ret;
4037 }
4038 
4039 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4040 		       struct btrfs_root *root,
4041 		       struct inode *dir, struct inode *inode,
4042 		       const char *name, int name_len)
4043 {
4044 	int ret;
4045 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4046 	if (!ret) {
4047 		drop_nlink(inode);
4048 		ret = btrfs_update_inode(trans, root, inode);
4049 	}
4050 	return ret;
4051 }
4052 
4053 /*
4054  * helper to start transaction for unlink and rmdir.
4055  *
4056  * unlink and rmdir are special in btrfs, they do not always free space, so
4057  * if we cannot make our reservations the normal way try and see if there is
4058  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4059  * allow the unlink to occur.
4060  */
4061 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4062 {
4063 	struct btrfs_root *root = BTRFS_I(dir)->root;
4064 
4065 	/*
4066 	 * 1 for the possible orphan item
4067 	 * 1 for the dir item
4068 	 * 1 for the dir index
4069 	 * 1 for the inode ref
4070 	 * 1 for the inode
4071 	 */
4072 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4073 }
4074 
4075 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4076 {
4077 	struct btrfs_root *root = BTRFS_I(dir)->root;
4078 	struct btrfs_trans_handle *trans;
4079 	struct inode *inode = d_inode(dentry);
4080 	int ret;
4081 
4082 	trans = __unlink_start_trans(dir);
4083 	if (IS_ERR(trans))
4084 		return PTR_ERR(trans);
4085 
4086 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4087 
4088 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4089 				 dentry->d_name.name, dentry->d_name.len);
4090 	if (ret)
4091 		goto out;
4092 
4093 	if (inode->i_nlink == 0) {
4094 		ret = btrfs_orphan_add(trans, inode);
4095 		if (ret)
4096 			goto out;
4097 	}
4098 
4099 out:
4100 	btrfs_end_transaction(trans, root);
4101 	btrfs_btree_balance_dirty(root);
4102 	return ret;
4103 }
4104 
4105 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4106 			struct btrfs_root *root,
4107 			struct inode *dir, u64 objectid,
4108 			const char *name, int name_len)
4109 {
4110 	struct btrfs_path *path;
4111 	struct extent_buffer *leaf;
4112 	struct btrfs_dir_item *di;
4113 	struct btrfs_key key;
4114 	u64 index;
4115 	int ret;
4116 	u64 dir_ino = btrfs_ino(dir);
4117 
4118 	path = btrfs_alloc_path();
4119 	if (!path)
4120 		return -ENOMEM;
4121 
4122 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4123 				   name, name_len, -1);
4124 	if (IS_ERR_OR_NULL(di)) {
4125 		if (!di)
4126 			ret = -ENOENT;
4127 		else
4128 			ret = PTR_ERR(di);
4129 		goto out;
4130 	}
4131 
4132 	leaf = path->nodes[0];
4133 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4134 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4135 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4136 	if (ret) {
4137 		btrfs_abort_transaction(trans, root, ret);
4138 		goto out;
4139 	}
4140 	btrfs_release_path(path);
4141 
4142 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4143 				 objectid, root->root_key.objectid,
4144 				 dir_ino, &index, name, name_len);
4145 	if (ret < 0) {
4146 		if (ret != -ENOENT) {
4147 			btrfs_abort_transaction(trans, root, ret);
4148 			goto out;
4149 		}
4150 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4151 						 name, name_len);
4152 		if (IS_ERR_OR_NULL(di)) {
4153 			if (!di)
4154 				ret = -ENOENT;
4155 			else
4156 				ret = PTR_ERR(di);
4157 			btrfs_abort_transaction(trans, root, ret);
4158 			goto out;
4159 		}
4160 
4161 		leaf = path->nodes[0];
4162 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4163 		btrfs_release_path(path);
4164 		index = key.offset;
4165 	}
4166 	btrfs_release_path(path);
4167 
4168 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4169 	if (ret) {
4170 		btrfs_abort_transaction(trans, root, ret);
4171 		goto out;
4172 	}
4173 
4174 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4175 	inode_inc_iversion(dir);
4176 	dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4177 	ret = btrfs_update_inode_fallback(trans, root, dir);
4178 	if (ret)
4179 		btrfs_abort_transaction(trans, root, ret);
4180 out:
4181 	btrfs_free_path(path);
4182 	return ret;
4183 }
4184 
4185 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4186 {
4187 	struct inode *inode = d_inode(dentry);
4188 	int err = 0;
4189 	struct btrfs_root *root = BTRFS_I(dir)->root;
4190 	struct btrfs_trans_handle *trans;
4191 
4192 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4193 		return -ENOTEMPTY;
4194 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4195 		return -EPERM;
4196 
4197 	trans = __unlink_start_trans(dir);
4198 	if (IS_ERR(trans))
4199 		return PTR_ERR(trans);
4200 
4201 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4202 		err = btrfs_unlink_subvol(trans, root, dir,
4203 					  BTRFS_I(inode)->location.objectid,
4204 					  dentry->d_name.name,
4205 					  dentry->d_name.len);
4206 		goto out;
4207 	}
4208 
4209 	err = btrfs_orphan_add(trans, inode);
4210 	if (err)
4211 		goto out;
4212 
4213 	/* now the directory is empty */
4214 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4215 				 dentry->d_name.name, dentry->d_name.len);
4216 	if (!err)
4217 		btrfs_i_size_write(inode, 0);
4218 out:
4219 	btrfs_end_transaction(trans, root);
4220 	btrfs_btree_balance_dirty(root);
4221 
4222 	return err;
4223 }
4224 
4225 static int truncate_space_check(struct btrfs_trans_handle *trans,
4226 				struct btrfs_root *root,
4227 				u64 bytes_deleted)
4228 {
4229 	int ret;
4230 
4231 	/*
4232 	 * This is only used to apply pressure to the enospc system, we don't
4233 	 * intend to use this reservation at all.
4234 	 */
4235 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4236 	bytes_deleted *= root->nodesize;
4237 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4238 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4239 	if (!ret) {
4240 		trace_btrfs_space_reservation(root->fs_info, "transaction",
4241 					      trans->transid,
4242 					      bytes_deleted, 1);
4243 		trans->bytes_reserved += bytes_deleted;
4244 	}
4245 	return ret;
4246 
4247 }
4248 
4249 static int truncate_inline_extent(struct inode *inode,
4250 				  struct btrfs_path *path,
4251 				  struct btrfs_key *found_key,
4252 				  const u64 item_end,
4253 				  const u64 new_size)
4254 {
4255 	struct extent_buffer *leaf = path->nodes[0];
4256 	int slot = path->slots[0];
4257 	struct btrfs_file_extent_item *fi;
4258 	u32 size = (u32)(new_size - found_key->offset);
4259 	struct btrfs_root *root = BTRFS_I(inode)->root;
4260 
4261 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4262 
4263 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4264 		loff_t offset = new_size;
4265 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4266 
4267 		/*
4268 		 * Zero out the remaining of the last page of our inline extent,
4269 		 * instead of directly truncating our inline extent here - that
4270 		 * would be much more complex (decompressing all the data, then
4271 		 * compressing the truncated data, which might be bigger than
4272 		 * the size of the inline extent, resize the extent, etc).
4273 		 * We release the path because to get the page we might need to
4274 		 * read the extent item from disk (data not in the page cache).
4275 		 */
4276 		btrfs_release_path(path);
4277 		return btrfs_truncate_block(inode, offset, page_end - offset,
4278 					0);
4279 	}
4280 
4281 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4282 	size = btrfs_file_extent_calc_inline_size(size);
4283 	btrfs_truncate_item(root, path, size, 1);
4284 
4285 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4286 		inode_sub_bytes(inode, item_end + 1 - new_size);
4287 
4288 	return 0;
4289 }
4290 
4291 /*
4292  * this can truncate away extent items, csum items and directory items.
4293  * It starts at a high offset and removes keys until it can't find
4294  * any higher than new_size
4295  *
4296  * csum items that cross the new i_size are truncated to the new size
4297  * as well.
4298  *
4299  * min_type is the minimum key type to truncate down to.  If set to 0, this
4300  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4301  */
4302 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4303 			       struct btrfs_root *root,
4304 			       struct inode *inode,
4305 			       u64 new_size, u32 min_type)
4306 {
4307 	struct btrfs_path *path;
4308 	struct extent_buffer *leaf;
4309 	struct btrfs_file_extent_item *fi;
4310 	struct btrfs_key key;
4311 	struct btrfs_key found_key;
4312 	u64 extent_start = 0;
4313 	u64 extent_num_bytes = 0;
4314 	u64 extent_offset = 0;
4315 	u64 item_end = 0;
4316 	u64 last_size = new_size;
4317 	u32 found_type = (u8)-1;
4318 	int found_extent;
4319 	int del_item;
4320 	int pending_del_nr = 0;
4321 	int pending_del_slot = 0;
4322 	int extent_type = -1;
4323 	int ret;
4324 	int err = 0;
4325 	u64 ino = btrfs_ino(inode);
4326 	u64 bytes_deleted = 0;
4327 	bool be_nice = 0;
4328 	bool should_throttle = 0;
4329 	bool should_end = 0;
4330 
4331 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4332 
4333 	/*
4334 	 * for non-free space inodes and ref cows, we want to back off from
4335 	 * time to time
4336 	 */
4337 	if (!btrfs_is_free_space_inode(inode) &&
4338 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4339 		be_nice = 1;
4340 
4341 	path = btrfs_alloc_path();
4342 	if (!path)
4343 		return -ENOMEM;
4344 	path->reada = READA_BACK;
4345 
4346 	/*
4347 	 * We want to drop from the next block forward in case this new size is
4348 	 * not block aligned since we will be keeping the last block of the
4349 	 * extent just the way it is.
4350 	 */
4351 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4352 	    root == root->fs_info->tree_root)
4353 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4354 					root->sectorsize), (u64)-1, 0);
4355 
4356 	/*
4357 	 * This function is also used to drop the items in the log tree before
4358 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4359 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4360 	 * items.
4361 	 */
4362 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4363 		btrfs_kill_delayed_inode_items(inode);
4364 
4365 	key.objectid = ino;
4366 	key.offset = (u64)-1;
4367 	key.type = (u8)-1;
4368 
4369 search_again:
4370 	/*
4371 	 * with a 16K leaf size and 128MB extents, you can actually queue
4372 	 * up a huge file in a single leaf.  Most of the time that
4373 	 * bytes_deleted is > 0, it will be huge by the time we get here
4374 	 */
4375 	if (be_nice && bytes_deleted > SZ_32M) {
4376 		if (btrfs_should_end_transaction(trans, root)) {
4377 			err = -EAGAIN;
4378 			goto error;
4379 		}
4380 	}
4381 
4382 
4383 	path->leave_spinning = 1;
4384 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4385 	if (ret < 0) {
4386 		err = ret;
4387 		goto out;
4388 	}
4389 
4390 	if (ret > 0) {
4391 		/* there are no items in the tree for us to truncate, we're
4392 		 * done
4393 		 */
4394 		if (path->slots[0] == 0)
4395 			goto out;
4396 		path->slots[0]--;
4397 	}
4398 
4399 	while (1) {
4400 		fi = NULL;
4401 		leaf = path->nodes[0];
4402 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4403 		found_type = found_key.type;
4404 
4405 		if (found_key.objectid != ino)
4406 			break;
4407 
4408 		if (found_type < min_type)
4409 			break;
4410 
4411 		item_end = found_key.offset;
4412 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4413 			fi = btrfs_item_ptr(leaf, path->slots[0],
4414 					    struct btrfs_file_extent_item);
4415 			extent_type = btrfs_file_extent_type(leaf, fi);
4416 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4417 				item_end +=
4418 				    btrfs_file_extent_num_bytes(leaf, fi);
4419 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4420 				item_end += btrfs_file_extent_inline_len(leaf,
4421 							 path->slots[0], fi);
4422 			}
4423 			item_end--;
4424 		}
4425 		if (found_type > min_type) {
4426 			del_item = 1;
4427 		} else {
4428 			if (item_end < new_size)
4429 				break;
4430 			if (found_key.offset >= new_size)
4431 				del_item = 1;
4432 			else
4433 				del_item = 0;
4434 		}
4435 		found_extent = 0;
4436 		/* FIXME, shrink the extent if the ref count is only 1 */
4437 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4438 			goto delete;
4439 
4440 		if (del_item)
4441 			last_size = found_key.offset;
4442 		else
4443 			last_size = new_size;
4444 
4445 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4446 			u64 num_dec;
4447 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4448 			if (!del_item) {
4449 				u64 orig_num_bytes =
4450 					btrfs_file_extent_num_bytes(leaf, fi);
4451 				extent_num_bytes = ALIGN(new_size -
4452 						found_key.offset,
4453 						root->sectorsize);
4454 				btrfs_set_file_extent_num_bytes(leaf, fi,
4455 							 extent_num_bytes);
4456 				num_dec = (orig_num_bytes -
4457 					   extent_num_bytes);
4458 				if (test_bit(BTRFS_ROOT_REF_COWS,
4459 					     &root->state) &&
4460 				    extent_start != 0)
4461 					inode_sub_bytes(inode, num_dec);
4462 				btrfs_mark_buffer_dirty(leaf);
4463 			} else {
4464 				extent_num_bytes =
4465 					btrfs_file_extent_disk_num_bytes(leaf,
4466 									 fi);
4467 				extent_offset = found_key.offset -
4468 					btrfs_file_extent_offset(leaf, fi);
4469 
4470 				/* FIXME blocksize != 4096 */
4471 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4472 				if (extent_start != 0) {
4473 					found_extent = 1;
4474 					if (test_bit(BTRFS_ROOT_REF_COWS,
4475 						     &root->state))
4476 						inode_sub_bytes(inode, num_dec);
4477 				}
4478 			}
4479 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4480 			/*
4481 			 * we can't truncate inline items that have had
4482 			 * special encodings
4483 			 */
4484 			if (!del_item &&
4485 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4486 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4487 
4488 				/*
4489 				 * Need to release path in order to truncate a
4490 				 * compressed extent. So delete any accumulated
4491 				 * extent items so far.
4492 				 */
4493 				if (btrfs_file_extent_compression(leaf, fi) !=
4494 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4495 					err = btrfs_del_items(trans, root, path,
4496 							      pending_del_slot,
4497 							      pending_del_nr);
4498 					if (err) {
4499 						btrfs_abort_transaction(trans,
4500 									root,
4501 									err);
4502 						goto error;
4503 					}
4504 					pending_del_nr = 0;
4505 				}
4506 
4507 				err = truncate_inline_extent(inode, path,
4508 							     &found_key,
4509 							     item_end,
4510 							     new_size);
4511 				if (err) {
4512 					btrfs_abort_transaction(trans,
4513 								root, err);
4514 					goto error;
4515 				}
4516 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4517 					    &root->state)) {
4518 				inode_sub_bytes(inode, item_end + 1 - new_size);
4519 			}
4520 		}
4521 delete:
4522 		if (del_item) {
4523 			if (!pending_del_nr) {
4524 				/* no pending yet, add ourselves */
4525 				pending_del_slot = path->slots[0];
4526 				pending_del_nr = 1;
4527 			} else if (pending_del_nr &&
4528 				   path->slots[0] + 1 == pending_del_slot) {
4529 				/* hop on the pending chunk */
4530 				pending_del_nr++;
4531 				pending_del_slot = path->slots[0];
4532 			} else {
4533 				BUG();
4534 			}
4535 		} else {
4536 			break;
4537 		}
4538 		should_throttle = 0;
4539 
4540 		if (found_extent &&
4541 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4542 		     root == root->fs_info->tree_root)) {
4543 			btrfs_set_path_blocking(path);
4544 			bytes_deleted += extent_num_bytes;
4545 			ret = btrfs_free_extent(trans, root, extent_start,
4546 						extent_num_bytes, 0,
4547 						btrfs_header_owner(leaf),
4548 						ino, extent_offset);
4549 			BUG_ON(ret);
4550 			if (btrfs_should_throttle_delayed_refs(trans, root))
4551 				btrfs_async_run_delayed_refs(root,
4552 					trans->delayed_ref_updates * 2, 0);
4553 			if (be_nice) {
4554 				if (truncate_space_check(trans, root,
4555 							 extent_num_bytes)) {
4556 					should_end = 1;
4557 				}
4558 				if (btrfs_should_throttle_delayed_refs(trans,
4559 								       root)) {
4560 					should_throttle = 1;
4561 				}
4562 			}
4563 		}
4564 
4565 		if (found_type == BTRFS_INODE_ITEM_KEY)
4566 			break;
4567 
4568 		if (path->slots[0] == 0 ||
4569 		    path->slots[0] != pending_del_slot ||
4570 		    should_throttle || should_end) {
4571 			if (pending_del_nr) {
4572 				ret = btrfs_del_items(trans, root, path,
4573 						pending_del_slot,
4574 						pending_del_nr);
4575 				if (ret) {
4576 					btrfs_abort_transaction(trans,
4577 								root, ret);
4578 					goto error;
4579 				}
4580 				pending_del_nr = 0;
4581 			}
4582 			btrfs_release_path(path);
4583 			if (should_throttle) {
4584 				unsigned long updates = trans->delayed_ref_updates;
4585 				if (updates) {
4586 					trans->delayed_ref_updates = 0;
4587 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4588 					if (ret && !err)
4589 						err = ret;
4590 				}
4591 			}
4592 			/*
4593 			 * if we failed to refill our space rsv, bail out
4594 			 * and let the transaction restart
4595 			 */
4596 			if (should_end) {
4597 				err = -EAGAIN;
4598 				goto error;
4599 			}
4600 			goto search_again;
4601 		} else {
4602 			path->slots[0]--;
4603 		}
4604 	}
4605 out:
4606 	if (pending_del_nr) {
4607 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4608 				      pending_del_nr);
4609 		if (ret)
4610 			btrfs_abort_transaction(trans, root, ret);
4611 	}
4612 error:
4613 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4614 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4615 
4616 	btrfs_free_path(path);
4617 
4618 	if (be_nice && bytes_deleted > SZ_32M) {
4619 		unsigned long updates = trans->delayed_ref_updates;
4620 		if (updates) {
4621 			trans->delayed_ref_updates = 0;
4622 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4623 			if (ret && !err)
4624 				err = ret;
4625 		}
4626 	}
4627 	return err;
4628 }
4629 
4630 /*
4631  * btrfs_truncate_block - read, zero a chunk and write a block
4632  * @inode - inode that we're zeroing
4633  * @from - the offset to start zeroing
4634  * @len - the length to zero, 0 to zero the entire range respective to the
4635  *	offset
4636  * @front - zero up to the offset instead of from the offset on
4637  *
4638  * This will find the block for the "from" offset and cow the block and zero the
4639  * part we want to zero.  This is used with truncate and hole punching.
4640  */
4641 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4642 			int front)
4643 {
4644 	struct address_space *mapping = inode->i_mapping;
4645 	struct btrfs_root *root = BTRFS_I(inode)->root;
4646 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4647 	struct btrfs_ordered_extent *ordered;
4648 	struct extent_state *cached_state = NULL;
4649 	char *kaddr;
4650 	u32 blocksize = root->sectorsize;
4651 	pgoff_t index = from >> PAGE_SHIFT;
4652 	unsigned offset = from & (blocksize - 1);
4653 	struct page *page;
4654 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4655 	int ret = 0;
4656 	u64 block_start;
4657 	u64 block_end;
4658 
4659 	if ((offset & (blocksize - 1)) == 0 &&
4660 	    (!len || ((len & (blocksize - 1)) == 0)))
4661 		goto out;
4662 
4663 	ret = btrfs_delalloc_reserve_space(inode,
4664 			round_down(from, blocksize), blocksize);
4665 	if (ret)
4666 		goto out;
4667 
4668 again:
4669 	page = find_or_create_page(mapping, index, mask);
4670 	if (!page) {
4671 		btrfs_delalloc_release_space(inode,
4672 				round_down(from, blocksize),
4673 				blocksize);
4674 		ret = -ENOMEM;
4675 		goto out;
4676 	}
4677 
4678 	block_start = round_down(from, blocksize);
4679 	block_end = block_start + blocksize - 1;
4680 
4681 	if (!PageUptodate(page)) {
4682 		ret = btrfs_readpage(NULL, page);
4683 		lock_page(page);
4684 		if (page->mapping != mapping) {
4685 			unlock_page(page);
4686 			put_page(page);
4687 			goto again;
4688 		}
4689 		if (!PageUptodate(page)) {
4690 			ret = -EIO;
4691 			goto out_unlock;
4692 		}
4693 	}
4694 	wait_on_page_writeback(page);
4695 
4696 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4697 	set_page_extent_mapped(page);
4698 
4699 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4700 	if (ordered) {
4701 		unlock_extent_cached(io_tree, block_start, block_end,
4702 				     &cached_state, GFP_NOFS);
4703 		unlock_page(page);
4704 		put_page(page);
4705 		btrfs_start_ordered_extent(inode, ordered, 1);
4706 		btrfs_put_ordered_extent(ordered);
4707 		goto again;
4708 	}
4709 
4710 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4711 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4712 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4713 			  0, 0, &cached_state, GFP_NOFS);
4714 
4715 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4716 					&cached_state);
4717 	if (ret) {
4718 		unlock_extent_cached(io_tree, block_start, block_end,
4719 				     &cached_state, GFP_NOFS);
4720 		goto out_unlock;
4721 	}
4722 
4723 	if (offset != blocksize) {
4724 		if (!len)
4725 			len = blocksize - offset;
4726 		kaddr = kmap(page);
4727 		if (front)
4728 			memset(kaddr + (block_start - page_offset(page)),
4729 				0, offset);
4730 		else
4731 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4732 				0, len);
4733 		flush_dcache_page(page);
4734 		kunmap(page);
4735 	}
4736 	ClearPageChecked(page);
4737 	set_page_dirty(page);
4738 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4739 			     GFP_NOFS);
4740 
4741 out_unlock:
4742 	if (ret)
4743 		btrfs_delalloc_release_space(inode, block_start,
4744 					     blocksize);
4745 	unlock_page(page);
4746 	put_page(page);
4747 out:
4748 	return ret;
4749 }
4750 
4751 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4752 			     u64 offset, u64 len)
4753 {
4754 	struct btrfs_trans_handle *trans;
4755 	int ret;
4756 
4757 	/*
4758 	 * Still need to make sure the inode looks like it's been updated so
4759 	 * that any holes get logged if we fsync.
4760 	 */
4761 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4762 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4763 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4764 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4765 		return 0;
4766 	}
4767 
4768 	/*
4769 	 * 1 - for the one we're dropping
4770 	 * 1 - for the one we're adding
4771 	 * 1 - for updating the inode.
4772 	 */
4773 	trans = btrfs_start_transaction(root, 3);
4774 	if (IS_ERR(trans))
4775 		return PTR_ERR(trans);
4776 
4777 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4778 	if (ret) {
4779 		btrfs_abort_transaction(trans, root, ret);
4780 		btrfs_end_transaction(trans, root);
4781 		return ret;
4782 	}
4783 
4784 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4785 				       0, 0, len, 0, len, 0, 0, 0);
4786 	if (ret)
4787 		btrfs_abort_transaction(trans, root, ret);
4788 	else
4789 		btrfs_update_inode(trans, root, inode);
4790 	btrfs_end_transaction(trans, root);
4791 	return ret;
4792 }
4793 
4794 /*
4795  * This function puts in dummy file extents for the area we're creating a hole
4796  * for.  So if we are truncating this file to a larger size we need to insert
4797  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4798  * the range between oldsize and size
4799  */
4800 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4801 {
4802 	struct btrfs_root *root = BTRFS_I(inode)->root;
4803 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4804 	struct extent_map *em = NULL;
4805 	struct extent_state *cached_state = NULL;
4806 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4807 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4808 	u64 block_end = ALIGN(size, root->sectorsize);
4809 	u64 last_byte;
4810 	u64 cur_offset;
4811 	u64 hole_size;
4812 	int err = 0;
4813 
4814 	/*
4815 	 * If our size started in the middle of a block we need to zero out the
4816 	 * rest of the block before we expand the i_size, otherwise we could
4817 	 * expose stale data.
4818 	 */
4819 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4820 	if (err)
4821 		return err;
4822 
4823 	if (size <= hole_start)
4824 		return 0;
4825 
4826 	while (1) {
4827 		struct btrfs_ordered_extent *ordered;
4828 
4829 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4830 				 &cached_state);
4831 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4832 						     block_end - hole_start);
4833 		if (!ordered)
4834 			break;
4835 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4836 				     &cached_state, GFP_NOFS);
4837 		btrfs_start_ordered_extent(inode, ordered, 1);
4838 		btrfs_put_ordered_extent(ordered);
4839 	}
4840 
4841 	cur_offset = hole_start;
4842 	while (1) {
4843 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4844 				block_end - cur_offset, 0);
4845 		if (IS_ERR(em)) {
4846 			err = PTR_ERR(em);
4847 			em = NULL;
4848 			break;
4849 		}
4850 		last_byte = min(extent_map_end(em), block_end);
4851 		last_byte = ALIGN(last_byte , root->sectorsize);
4852 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4853 			struct extent_map *hole_em;
4854 			hole_size = last_byte - cur_offset;
4855 
4856 			err = maybe_insert_hole(root, inode, cur_offset,
4857 						hole_size);
4858 			if (err)
4859 				break;
4860 			btrfs_drop_extent_cache(inode, cur_offset,
4861 						cur_offset + hole_size - 1, 0);
4862 			hole_em = alloc_extent_map();
4863 			if (!hole_em) {
4864 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4865 					&BTRFS_I(inode)->runtime_flags);
4866 				goto next;
4867 			}
4868 			hole_em->start = cur_offset;
4869 			hole_em->len = hole_size;
4870 			hole_em->orig_start = cur_offset;
4871 
4872 			hole_em->block_start = EXTENT_MAP_HOLE;
4873 			hole_em->block_len = 0;
4874 			hole_em->orig_block_len = 0;
4875 			hole_em->ram_bytes = hole_size;
4876 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4877 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4878 			hole_em->generation = root->fs_info->generation;
4879 
4880 			while (1) {
4881 				write_lock(&em_tree->lock);
4882 				err = add_extent_mapping(em_tree, hole_em, 1);
4883 				write_unlock(&em_tree->lock);
4884 				if (err != -EEXIST)
4885 					break;
4886 				btrfs_drop_extent_cache(inode, cur_offset,
4887 							cur_offset +
4888 							hole_size - 1, 0);
4889 			}
4890 			free_extent_map(hole_em);
4891 		}
4892 next:
4893 		free_extent_map(em);
4894 		em = NULL;
4895 		cur_offset = last_byte;
4896 		if (cur_offset >= block_end)
4897 			break;
4898 	}
4899 	free_extent_map(em);
4900 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4901 			     GFP_NOFS);
4902 	return err;
4903 }
4904 
4905 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4906 {
4907 	struct btrfs_root *root = BTRFS_I(inode)->root;
4908 	struct btrfs_trans_handle *trans;
4909 	loff_t oldsize = i_size_read(inode);
4910 	loff_t newsize = attr->ia_size;
4911 	int mask = attr->ia_valid;
4912 	int ret;
4913 
4914 	/*
4915 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4916 	 * special case where we need to update the times despite not having
4917 	 * these flags set.  For all other operations the VFS set these flags
4918 	 * explicitly if it wants a timestamp update.
4919 	 */
4920 	if (newsize != oldsize) {
4921 		inode_inc_iversion(inode);
4922 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4923 			inode->i_ctime = inode->i_mtime =
4924 				current_fs_time(inode->i_sb);
4925 	}
4926 
4927 	if (newsize > oldsize) {
4928 		/*
4929 		 * Don't do an expanding truncate while snapshoting is ongoing.
4930 		 * This is to ensure the snapshot captures a fully consistent
4931 		 * state of this file - if the snapshot captures this expanding
4932 		 * truncation, it must capture all writes that happened before
4933 		 * this truncation.
4934 		 */
4935 		btrfs_wait_for_snapshot_creation(root);
4936 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4937 		if (ret) {
4938 			btrfs_end_write_no_snapshoting(root);
4939 			return ret;
4940 		}
4941 
4942 		trans = btrfs_start_transaction(root, 1);
4943 		if (IS_ERR(trans)) {
4944 			btrfs_end_write_no_snapshoting(root);
4945 			return PTR_ERR(trans);
4946 		}
4947 
4948 		i_size_write(inode, newsize);
4949 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4950 		pagecache_isize_extended(inode, oldsize, newsize);
4951 		ret = btrfs_update_inode(trans, root, inode);
4952 		btrfs_end_write_no_snapshoting(root);
4953 		btrfs_end_transaction(trans, root);
4954 	} else {
4955 
4956 		/*
4957 		 * We're truncating a file that used to have good data down to
4958 		 * zero. Make sure it gets into the ordered flush list so that
4959 		 * any new writes get down to disk quickly.
4960 		 */
4961 		if (newsize == 0)
4962 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4963 				&BTRFS_I(inode)->runtime_flags);
4964 
4965 		/*
4966 		 * 1 for the orphan item we're going to add
4967 		 * 1 for the orphan item deletion.
4968 		 */
4969 		trans = btrfs_start_transaction(root, 2);
4970 		if (IS_ERR(trans))
4971 			return PTR_ERR(trans);
4972 
4973 		/*
4974 		 * We need to do this in case we fail at _any_ point during the
4975 		 * actual truncate.  Once we do the truncate_setsize we could
4976 		 * invalidate pages which forces any outstanding ordered io to
4977 		 * be instantly completed which will give us extents that need
4978 		 * to be truncated.  If we fail to get an orphan inode down we
4979 		 * could have left over extents that were never meant to live,
4980 		 * so we need to guarantee from this point on that everything
4981 		 * will be consistent.
4982 		 */
4983 		ret = btrfs_orphan_add(trans, inode);
4984 		btrfs_end_transaction(trans, root);
4985 		if (ret)
4986 			return ret;
4987 
4988 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4989 		truncate_setsize(inode, newsize);
4990 
4991 		/* Disable nonlocked read DIO to avoid the end less truncate */
4992 		btrfs_inode_block_unlocked_dio(inode);
4993 		inode_dio_wait(inode);
4994 		btrfs_inode_resume_unlocked_dio(inode);
4995 
4996 		ret = btrfs_truncate(inode);
4997 		if (ret && inode->i_nlink) {
4998 			int err;
4999 
5000 			/*
5001 			 * failed to truncate, disk_i_size is only adjusted down
5002 			 * as we remove extents, so it should represent the true
5003 			 * size of the inode, so reset the in memory size and
5004 			 * delete our orphan entry.
5005 			 */
5006 			trans = btrfs_join_transaction(root);
5007 			if (IS_ERR(trans)) {
5008 				btrfs_orphan_del(NULL, inode);
5009 				return ret;
5010 			}
5011 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5012 			err = btrfs_orphan_del(trans, inode);
5013 			if (err)
5014 				btrfs_abort_transaction(trans, root, err);
5015 			btrfs_end_transaction(trans, root);
5016 		}
5017 	}
5018 
5019 	return ret;
5020 }
5021 
5022 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5023 {
5024 	struct inode *inode = d_inode(dentry);
5025 	struct btrfs_root *root = BTRFS_I(inode)->root;
5026 	int err;
5027 
5028 	if (btrfs_root_readonly(root))
5029 		return -EROFS;
5030 
5031 	err = inode_change_ok(inode, attr);
5032 	if (err)
5033 		return err;
5034 
5035 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5036 		err = btrfs_setsize(inode, attr);
5037 		if (err)
5038 			return err;
5039 	}
5040 
5041 	if (attr->ia_valid) {
5042 		setattr_copy(inode, attr);
5043 		inode_inc_iversion(inode);
5044 		err = btrfs_dirty_inode(inode);
5045 
5046 		if (!err && attr->ia_valid & ATTR_MODE)
5047 			err = posix_acl_chmod(inode, inode->i_mode);
5048 	}
5049 
5050 	return err;
5051 }
5052 
5053 /*
5054  * While truncating the inode pages during eviction, we get the VFS calling
5055  * btrfs_invalidatepage() against each page of the inode. This is slow because
5056  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5057  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5058  * extent_state structures over and over, wasting lots of time.
5059  *
5060  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5061  * those expensive operations on a per page basis and do only the ordered io
5062  * finishing, while we release here the extent_map and extent_state structures,
5063  * without the excessive merging and splitting.
5064  */
5065 static void evict_inode_truncate_pages(struct inode *inode)
5066 {
5067 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5068 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5069 	struct rb_node *node;
5070 
5071 	ASSERT(inode->i_state & I_FREEING);
5072 	truncate_inode_pages_final(&inode->i_data);
5073 
5074 	write_lock(&map_tree->lock);
5075 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5076 		struct extent_map *em;
5077 
5078 		node = rb_first(&map_tree->map);
5079 		em = rb_entry(node, struct extent_map, rb_node);
5080 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5081 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5082 		remove_extent_mapping(map_tree, em);
5083 		free_extent_map(em);
5084 		if (need_resched()) {
5085 			write_unlock(&map_tree->lock);
5086 			cond_resched();
5087 			write_lock(&map_tree->lock);
5088 		}
5089 	}
5090 	write_unlock(&map_tree->lock);
5091 
5092 	/*
5093 	 * Keep looping until we have no more ranges in the io tree.
5094 	 * We can have ongoing bios started by readpages (called from readahead)
5095 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5096 	 * still in progress (unlocked the pages in the bio but did not yet
5097 	 * unlocked the ranges in the io tree). Therefore this means some
5098 	 * ranges can still be locked and eviction started because before
5099 	 * submitting those bios, which are executed by a separate task (work
5100 	 * queue kthread), inode references (inode->i_count) were not taken
5101 	 * (which would be dropped in the end io callback of each bio).
5102 	 * Therefore here we effectively end up waiting for those bios and
5103 	 * anyone else holding locked ranges without having bumped the inode's
5104 	 * reference count - if we don't do it, when they access the inode's
5105 	 * io_tree to unlock a range it may be too late, leading to an
5106 	 * use-after-free issue.
5107 	 */
5108 	spin_lock(&io_tree->lock);
5109 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5110 		struct extent_state *state;
5111 		struct extent_state *cached_state = NULL;
5112 		u64 start;
5113 		u64 end;
5114 
5115 		node = rb_first(&io_tree->state);
5116 		state = rb_entry(node, struct extent_state, rb_node);
5117 		start = state->start;
5118 		end = state->end;
5119 		spin_unlock(&io_tree->lock);
5120 
5121 		lock_extent_bits(io_tree, start, end, &cached_state);
5122 
5123 		/*
5124 		 * If still has DELALLOC flag, the extent didn't reach disk,
5125 		 * and its reserved space won't be freed by delayed_ref.
5126 		 * So we need to free its reserved space here.
5127 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5128 		 *
5129 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5130 		 */
5131 		if (state->state & EXTENT_DELALLOC)
5132 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5133 
5134 		clear_extent_bit(io_tree, start, end,
5135 				 EXTENT_LOCKED | EXTENT_DIRTY |
5136 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5137 				 EXTENT_DEFRAG, 1, 1,
5138 				 &cached_state, GFP_NOFS);
5139 
5140 		cond_resched();
5141 		spin_lock(&io_tree->lock);
5142 	}
5143 	spin_unlock(&io_tree->lock);
5144 }
5145 
5146 void btrfs_evict_inode(struct inode *inode)
5147 {
5148 	struct btrfs_trans_handle *trans;
5149 	struct btrfs_root *root = BTRFS_I(inode)->root;
5150 	struct btrfs_block_rsv *rsv, *global_rsv;
5151 	int steal_from_global = 0;
5152 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5153 	int ret;
5154 
5155 	trace_btrfs_inode_evict(inode);
5156 
5157 	evict_inode_truncate_pages(inode);
5158 
5159 	if (inode->i_nlink &&
5160 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5161 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5162 	     btrfs_is_free_space_inode(inode)))
5163 		goto no_delete;
5164 
5165 	if (is_bad_inode(inode)) {
5166 		btrfs_orphan_del(NULL, inode);
5167 		goto no_delete;
5168 	}
5169 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5170 	if (!special_file(inode->i_mode))
5171 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5172 
5173 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5174 
5175 	if (root->fs_info->log_root_recovering) {
5176 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5177 				 &BTRFS_I(inode)->runtime_flags));
5178 		goto no_delete;
5179 	}
5180 
5181 	if (inode->i_nlink > 0) {
5182 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5183 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5184 		goto no_delete;
5185 	}
5186 
5187 	ret = btrfs_commit_inode_delayed_inode(inode);
5188 	if (ret) {
5189 		btrfs_orphan_del(NULL, inode);
5190 		goto no_delete;
5191 	}
5192 
5193 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5194 	if (!rsv) {
5195 		btrfs_orphan_del(NULL, inode);
5196 		goto no_delete;
5197 	}
5198 	rsv->size = min_size;
5199 	rsv->failfast = 1;
5200 	global_rsv = &root->fs_info->global_block_rsv;
5201 
5202 	btrfs_i_size_write(inode, 0);
5203 
5204 	/*
5205 	 * This is a bit simpler than btrfs_truncate since we've already
5206 	 * reserved our space for our orphan item in the unlink, so we just
5207 	 * need to reserve some slack space in case we add bytes and update
5208 	 * inode item when doing the truncate.
5209 	 */
5210 	while (1) {
5211 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5212 					     BTRFS_RESERVE_FLUSH_LIMIT);
5213 
5214 		/*
5215 		 * Try and steal from the global reserve since we will
5216 		 * likely not use this space anyway, we want to try as
5217 		 * hard as possible to get this to work.
5218 		 */
5219 		if (ret)
5220 			steal_from_global++;
5221 		else
5222 			steal_from_global = 0;
5223 		ret = 0;
5224 
5225 		/*
5226 		 * steal_from_global == 0: we reserved stuff, hooray!
5227 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5228 		 * steal_from_global == 2: we've committed, still not a lot of
5229 		 * room but maybe we'll have room in the global reserve this
5230 		 * time.
5231 		 * steal_from_global == 3: abandon all hope!
5232 		 */
5233 		if (steal_from_global > 2) {
5234 			btrfs_warn(root->fs_info,
5235 				"Could not get space for a delete, will truncate on mount %d",
5236 				ret);
5237 			btrfs_orphan_del(NULL, inode);
5238 			btrfs_free_block_rsv(root, rsv);
5239 			goto no_delete;
5240 		}
5241 
5242 		trans = btrfs_join_transaction(root);
5243 		if (IS_ERR(trans)) {
5244 			btrfs_orphan_del(NULL, inode);
5245 			btrfs_free_block_rsv(root, rsv);
5246 			goto no_delete;
5247 		}
5248 
5249 		/*
5250 		 * We can't just steal from the global reserve, we need to make
5251 		 * sure there is room to do it, if not we need to commit and try
5252 		 * again.
5253 		 */
5254 		if (steal_from_global) {
5255 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5256 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5257 							      min_size);
5258 			else
5259 				ret = -ENOSPC;
5260 		}
5261 
5262 		/*
5263 		 * Couldn't steal from the global reserve, we have too much
5264 		 * pending stuff built up, commit the transaction and try it
5265 		 * again.
5266 		 */
5267 		if (ret) {
5268 			ret = btrfs_commit_transaction(trans, root);
5269 			if (ret) {
5270 				btrfs_orphan_del(NULL, inode);
5271 				btrfs_free_block_rsv(root, rsv);
5272 				goto no_delete;
5273 			}
5274 			continue;
5275 		} else {
5276 			steal_from_global = 0;
5277 		}
5278 
5279 		trans->block_rsv = rsv;
5280 
5281 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5282 		if (ret != -ENOSPC && ret != -EAGAIN)
5283 			break;
5284 
5285 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5286 		btrfs_end_transaction(trans, root);
5287 		trans = NULL;
5288 		btrfs_btree_balance_dirty(root);
5289 	}
5290 
5291 	btrfs_free_block_rsv(root, rsv);
5292 
5293 	/*
5294 	 * Errors here aren't a big deal, it just means we leave orphan items
5295 	 * in the tree.  They will be cleaned up on the next mount.
5296 	 */
5297 	if (ret == 0) {
5298 		trans->block_rsv = root->orphan_block_rsv;
5299 		btrfs_orphan_del(trans, inode);
5300 	} else {
5301 		btrfs_orphan_del(NULL, inode);
5302 	}
5303 
5304 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5305 	if (!(root == root->fs_info->tree_root ||
5306 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5307 		btrfs_return_ino(root, btrfs_ino(inode));
5308 
5309 	btrfs_end_transaction(trans, root);
5310 	btrfs_btree_balance_dirty(root);
5311 no_delete:
5312 	btrfs_remove_delayed_node(inode);
5313 	clear_inode(inode);
5314 }
5315 
5316 /*
5317  * this returns the key found in the dir entry in the location pointer.
5318  * If no dir entries were found, location->objectid is 0.
5319  */
5320 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5321 			       struct btrfs_key *location)
5322 {
5323 	const char *name = dentry->d_name.name;
5324 	int namelen = dentry->d_name.len;
5325 	struct btrfs_dir_item *di;
5326 	struct btrfs_path *path;
5327 	struct btrfs_root *root = BTRFS_I(dir)->root;
5328 	int ret = 0;
5329 
5330 	path = btrfs_alloc_path();
5331 	if (!path)
5332 		return -ENOMEM;
5333 
5334 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5335 				    namelen, 0);
5336 	if (IS_ERR(di))
5337 		ret = PTR_ERR(di);
5338 
5339 	if (IS_ERR_OR_NULL(di))
5340 		goto out_err;
5341 
5342 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5343 out:
5344 	btrfs_free_path(path);
5345 	return ret;
5346 out_err:
5347 	location->objectid = 0;
5348 	goto out;
5349 }
5350 
5351 /*
5352  * when we hit a tree root in a directory, the btrfs part of the inode
5353  * needs to be changed to reflect the root directory of the tree root.  This
5354  * is kind of like crossing a mount point.
5355  */
5356 static int fixup_tree_root_location(struct btrfs_root *root,
5357 				    struct inode *dir,
5358 				    struct dentry *dentry,
5359 				    struct btrfs_key *location,
5360 				    struct btrfs_root **sub_root)
5361 {
5362 	struct btrfs_path *path;
5363 	struct btrfs_root *new_root;
5364 	struct btrfs_root_ref *ref;
5365 	struct extent_buffer *leaf;
5366 	struct btrfs_key key;
5367 	int ret;
5368 	int err = 0;
5369 
5370 	path = btrfs_alloc_path();
5371 	if (!path) {
5372 		err = -ENOMEM;
5373 		goto out;
5374 	}
5375 
5376 	err = -ENOENT;
5377 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5378 	key.type = BTRFS_ROOT_REF_KEY;
5379 	key.offset = location->objectid;
5380 
5381 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5382 				0, 0);
5383 	if (ret) {
5384 		if (ret < 0)
5385 			err = ret;
5386 		goto out;
5387 	}
5388 
5389 	leaf = path->nodes[0];
5390 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5391 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5392 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5393 		goto out;
5394 
5395 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5396 				   (unsigned long)(ref + 1),
5397 				   dentry->d_name.len);
5398 	if (ret)
5399 		goto out;
5400 
5401 	btrfs_release_path(path);
5402 
5403 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5404 	if (IS_ERR(new_root)) {
5405 		err = PTR_ERR(new_root);
5406 		goto out;
5407 	}
5408 
5409 	*sub_root = new_root;
5410 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5411 	location->type = BTRFS_INODE_ITEM_KEY;
5412 	location->offset = 0;
5413 	err = 0;
5414 out:
5415 	btrfs_free_path(path);
5416 	return err;
5417 }
5418 
5419 static void inode_tree_add(struct inode *inode)
5420 {
5421 	struct btrfs_root *root = BTRFS_I(inode)->root;
5422 	struct btrfs_inode *entry;
5423 	struct rb_node **p;
5424 	struct rb_node *parent;
5425 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5426 	u64 ino = btrfs_ino(inode);
5427 
5428 	if (inode_unhashed(inode))
5429 		return;
5430 	parent = NULL;
5431 	spin_lock(&root->inode_lock);
5432 	p = &root->inode_tree.rb_node;
5433 	while (*p) {
5434 		parent = *p;
5435 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5436 
5437 		if (ino < btrfs_ino(&entry->vfs_inode))
5438 			p = &parent->rb_left;
5439 		else if (ino > btrfs_ino(&entry->vfs_inode))
5440 			p = &parent->rb_right;
5441 		else {
5442 			WARN_ON(!(entry->vfs_inode.i_state &
5443 				  (I_WILL_FREE | I_FREEING)));
5444 			rb_replace_node(parent, new, &root->inode_tree);
5445 			RB_CLEAR_NODE(parent);
5446 			spin_unlock(&root->inode_lock);
5447 			return;
5448 		}
5449 	}
5450 	rb_link_node(new, parent, p);
5451 	rb_insert_color(new, &root->inode_tree);
5452 	spin_unlock(&root->inode_lock);
5453 }
5454 
5455 static void inode_tree_del(struct inode *inode)
5456 {
5457 	struct btrfs_root *root = BTRFS_I(inode)->root;
5458 	int empty = 0;
5459 
5460 	spin_lock(&root->inode_lock);
5461 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5462 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5463 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5464 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5465 	}
5466 	spin_unlock(&root->inode_lock);
5467 
5468 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5469 		synchronize_srcu(&root->fs_info->subvol_srcu);
5470 		spin_lock(&root->inode_lock);
5471 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5472 		spin_unlock(&root->inode_lock);
5473 		if (empty)
5474 			btrfs_add_dead_root(root);
5475 	}
5476 }
5477 
5478 void btrfs_invalidate_inodes(struct btrfs_root *root)
5479 {
5480 	struct rb_node *node;
5481 	struct rb_node *prev;
5482 	struct btrfs_inode *entry;
5483 	struct inode *inode;
5484 	u64 objectid = 0;
5485 
5486 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5487 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5488 
5489 	spin_lock(&root->inode_lock);
5490 again:
5491 	node = root->inode_tree.rb_node;
5492 	prev = NULL;
5493 	while (node) {
5494 		prev = node;
5495 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5496 
5497 		if (objectid < btrfs_ino(&entry->vfs_inode))
5498 			node = node->rb_left;
5499 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5500 			node = node->rb_right;
5501 		else
5502 			break;
5503 	}
5504 	if (!node) {
5505 		while (prev) {
5506 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5507 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5508 				node = prev;
5509 				break;
5510 			}
5511 			prev = rb_next(prev);
5512 		}
5513 	}
5514 	while (node) {
5515 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5516 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5517 		inode = igrab(&entry->vfs_inode);
5518 		if (inode) {
5519 			spin_unlock(&root->inode_lock);
5520 			if (atomic_read(&inode->i_count) > 1)
5521 				d_prune_aliases(inode);
5522 			/*
5523 			 * btrfs_drop_inode will have it removed from
5524 			 * the inode cache when its usage count
5525 			 * hits zero.
5526 			 */
5527 			iput(inode);
5528 			cond_resched();
5529 			spin_lock(&root->inode_lock);
5530 			goto again;
5531 		}
5532 
5533 		if (cond_resched_lock(&root->inode_lock))
5534 			goto again;
5535 
5536 		node = rb_next(node);
5537 	}
5538 	spin_unlock(&root->inode_lock);
5539 }
5540 
5541 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5542 {
5543 	struct btrfs_iget_args *args = p;
5544 	inode->i_ino = args->location->objectid;
5545 	memcpy(&BTRFS_I(inode)->location, args->location,
5546 	       sizeof(*args->location));
5547 	BTRFS_I(inode)->root = args->root;
5548 	return 0;
5549 }
5550 
5551 static int btrfs_find_actor(struct inode *inode, void *opaque)
5552 {
5553 	struct btrfs_iget_args *args = opaque;
5554 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5555 		args->root == BTRFS_I(inode)->root;
5556 }
5557 
5558 static struct inode *btrfs_iget_locked(struct super_block *s,
5559 				       struct btrfs_key *location,
5560 				       struct btrfs_root *root)
5561 {
5562 	struct inode *inode;
5563 	struct btrfs_iget_args args;
5564 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5565 
5566 	args.location = location;
5567 	args.root = root;
5568 
5569 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5570 			     btrfs_init_locked_inode,
5571 			     (void *)&args);
5572 	return inode;
5573 }
5574 
5575 /* Get an inode object given its location and corresponding root.
5576  * Returns in *is_new if the inode was read from disk
5577  */
5578 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5579 			 struct btrfs_root *root, int *new)
5580 {
5581 	struct inode *inode;
5582 
5583 	inode = btrfs_iget_locked(s, location, root);
5584 	if (!inode)
5585 		return ERR_PTR(-ENOMEM);
5586 
5587 	if (inode->i_state & I_NEW) {
5588 		btrfs_read_locked_inode(inode);
5589 		if (!is_bad_inode(inode)) {
5590 			inode_tree_add(inode);
5591 			unlock_new_inode(inode);
5592 			if (new)
5593 				*new = 1;
5594 		} else {
5595 			unlock_new_inode(inode);
5596 			iput(inode);
5597 			inode = ERR_PTR(-ESTALE);
5598 		}
5599 	}
5600 
5601 	return inode;
5602 }
5603 
5604 static struct inode *new_simple_dir(struct super_block *s,
5605 				    struct btrfs_key *key,
5606 				    struct btrfs_root *root)
5607 {
5608 	struct inode *inode = new_inode(s);
5609 
5610 	if (!inode)
5611 		return ERR_PTR(-ENOMEM);
5612 
5613 	BTRFS_I(inode)->root = root;
5614 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5615 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5616 
5617 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5618 	inode->i_op = &btrfs_dir_ro_inode_operations;
5619 	inode->i_fop = &simple_dir_operations;
5620 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5621 	inode->i_mtime = current_fs_time(inode->i_sb);
5622 	inode->i_atime = inode->i_mtime;
5623 	inode->i_ctime = inode->i_mtime;
5624 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5625 
5626 	return inode;
5627 }
5628 
5629 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5630 {
5631 	struct inode *inode;
5632 	struct btrfs_root *root = BTRFS_I(dir)->root;
5633 	struct btrfs_root *sub_root = root;
5634 	struct btrfs_key location;
5635 	int index;
5636 	int ret = 0;
5637 
5638 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5639 		return ERR_PTR(-ENAMETOOLONG);
5640 
5641 	ret = btrfs_inode_by_name(dir, dentry, &location);
5642 	if (ret < 0)
5643 		return ERR_PTR(ret);
5644 
5645 	if (location.objectid == 0)
5646 		return ERR_PTR(-ENOENT);
5647 
5648 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5649 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5650 		return inode;
5651 	}
5652 
5653 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5654 
5655 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5656 	ret = fixup_tree_root_location(root, dir, dentry,
5657 				       &location, &sub_root);
5658 	if (ret < 0) {
5659 		if (ret != -ENOENT)
5660 			inode = ERR_PTR(ret);
5661 		else
5662 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5663 	} else {
5664 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5665 	}
5666 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5667 
5668 	if (!IS_ERR(inode) && root != sub_root) {
5669 		down_read(&root->fs_info->cleanup_work_sem);
5670 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5671 			ret = btrfs_orphan_cleanup(sub_root);
5672 		up_read(&root->fs_info->cleanup_work_sem);
5673 		if (ret) {
5674 			iput(inode);
5675 			inode = ERR_PTR(ret);
5676 		}
5677 	}
5678 
5679 	return inode;
5680 }
5681 
5682 static int btrfs_dentry_delete(const struct dentry *dentry)
5683 {
5684 	struct btrfs_root *root;
5685 	struct inode *inode = d_inode(dentry);
5686 
5687 	if (!inode && !IS_ROOT(dentry))
5688 		inode = d_inode(dentry->d_parent);
5689 
5690 	if (inode) {
5691 		root = BTRFS_I(inode)->root;
5692 		if (btrfs_root_refs(&root->root_item) == 0)
5693 			return 1;
5694 
5695 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5696 			return 1;
5697 	}
5698 	return 0;
5699 }
5700 
5701 static void btrfs_dentry_release(struct dentry *dentry)
5702 {
5703 	kfree(dentry->d_fsdata);
5704 }
5705 
5706 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5707 				   unsigned int flags)
5708 {
5709 	struct inode *inode;
5710 
5711 	inode = btrfs_lookup_dentry(dir, dentry);
5712 	if (IS_ERR(inode)) {
5713 		if (PTR_ERR(inode) == -ENOENT)
5714 			inode = NULL;
5715 		else
5716 			return ERR_CAST(inode);
5717 	}
5718 
5719 	return d_splice_alias(inode, dentry);
5720 }
5721 
5722 unsigned char btrfs_filetype_table[] = {
5723 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5724 };
5725 
5726 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5727 {
5728 	struct inode *inode = file_inode(file);
5729 	struct btrfs_root *root = BTRFS_I(inode)->root;
5730 	struct btrfs_item *item;
5731 	struct btrfs_dir_item *di;
5732 	struct btrfs_key key;
5733 	struct btrfs_key found_key;
5734 	struct btrfs_path *path;
5735 	struct list_head ins_list;
5736 	struct list_head del_list;
5737 	int ret;
5738 	struct extent_buffer *leaf;
5739 	int slot;
5740 	unsigned char d_type;
5741 	int over = 0;
5742 	u32 di_cur;
5743 	u32 di_total;
5744 	u32 di_len;
5745 	int key_type = BTRFS_DIR_INDEX_KEY;
5746 	char tmp_name[32];
5747 	char *name_ptr;
5748 	int name_len;
5749 	int is_curr = 0;	/* ctx->pos points to the current index? */
5750 	bool emitted;
5751 
5752 	/* FIXME, use a real flag for deciding about the key type */
5753 	if (root->fs_info->tree_root == root)
5754 		key_type = BTRFS_DIR_ITEM_KEY;
5755 
5756 	if (!dir_emit_dots(file, ctx))
5757 		return 0;
5758 
5759 	path = btrfs_alloc_path();
5760 	if (!path)
5761 		return -ENOMEM;
5762 
5763 	path->reada = READA_FORWARD;
5764 
5765 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5766 		INIT_LIST_HEAD(&ins_list);
5767 		INIT_LIST_HEAD(&del_list);
5768 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5769 	}
5770 
5771 	key.type = key_type;
5772 	key.offset = ctx->pos;
5773 	key.objectid = btrfs_ino(inode);
5774 
5775 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5776 	if (ret < 0)
5777 		goto err;
5778 
5779 	emitted = false;
5780 	while (1) {
5781 		leaf = path->nodes[0];
5782 		slot = path->slots[0];
5783 		if (slot >= btrfs_header_nritems(leaf)) {
5784 			ret = btrfs_next_leaf(root, path);
5785 			if (ret < 0)
5786 				goto err;
5787 			else if (ret > 0)
5788 				break;
5789 			continue;
5790 		}
5791 
5792 		item = btrfs_item_nr(slot);
5793 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5794 
5795 		if (found_key.objectid != key.objectid)
5796 			break;
5797 		if (found_key.type != key_type)
5798 			break;
5799 		if (found_key.offset < ctx->pos)
5800 			goto next;
5801 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5802 		    btrfs_should_delete_dir_index(&del_list,
5803 						  found_key.offset))
5804 			goto next;
5805 
5806 		ctx->pos = found_key.offset;
5807 		is_curr = 1;
5808 
5809 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5810 		di_cur = 0;
5811 		di_total = btrfs_item_size(leaf, item);
5812 
5813 		while (di_cur < di_total) {
5814 			struct btrfs_key location;
5815 
5816 			if (verify_dir_item(root, leaf, di))
5817 				break;
5818 
5819 			name_len = btrfs_dir_name_len(leaf, di);
5820 			if (name_len <= sizeof(tmp_name)) {
5821 				name_ptr = tmp_name;
5822 			} else {
5823 				name_ptr = kmalloc(name_len, GFP_KERNEL);
5824 				if (!name_ptr) {
5825 					ret = -ENOMEM;
5826 					goto err;
5827 				}
5828 			}
5829 			read_extent_buffer(leaf, name_ptr,
5830 					   (unsigned long)(di + 1), name_len);
5831 
5832 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5833 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5834 
5835 
5836 			/* is this a reference to our own snapshot? If so
5837 			 * skip it.
5838 			 *
5839 			 * In contrast to old kernels, we insert the snapshot's
5840 			 * dir item and dir index after it has been created, so
5841 			 * we won't find a reference to our own snapshot. We
5842 			 * still keep the following code for backward
5843 			 * compatibility.
5844 			 */
5845 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5846 			    location.objectid == root->root_key.objectid) {
5847 				over = 0;
5848 				goto skip;
5849 			}
5850 			over = !dir_emit(ctx, name_ptr, name_len,
5851 				       location.objectid, d_type);
5852 
5853 skip:
5854 			if (name_ptr != tmp_name)
5855 				kfree(name_ptr);
5856 
5857 			if (over)
5858 				goto nopos;
5859 			emitted = true;
5860 			di_len = btrfs_dir_name_len(leaf, di) +
5861 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5862 			di_cur += di_len;
5863 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5864 		}
5865 next:
5866 		path->slots[0]++;
5867 	}
5868 
5869 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5870 		if (is_curr)
5871 			ctx->pos++;
5872 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5873 		if (ret)
5874 			goto nopos;
5875 	}
5876 
5877 	/*
5878 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5879 	 * it was was set to the termination value in previous call. We assume
5880 	 * that "." and ".." were emitted if we reach this point and set the
5881 	 * termination value as well for an empty directory.
5882 	 */
5883 	if (ctx->pos > 2 && !emitted)
5884 		goto nopos;
5885 
5886 	/* Reached end of directory/root. Bump pos past the last item. */
5887 	ctx->pos++;
5888 
5889 	/*
5890 	 * Stop new entries from being returned after we return the last
5891 	 * entry.
5892 	 *
5893 	 * New directory entries are assigned a strictly increasing
5894 	 * offset.  This means that new entries created during readdir
5895 	 * are *guaranteed* to be seen in the future by that readdir.
5896 	 * This has broken buggy programs which operate on names as
5897 	 * they're returned by readdir.  Until we re-use freed offsets
5898 	 * we have this hack to stop new entries from being returned
5899 	 * under the assumption that they'll never reach this huge
5900 	 * offset.
5901 	 *
5902 	 * This is being careful not to overflow 32bit loff_t unless the
5903 	 * last entry requires it because doing so has broken 32bit apps
5904 	 * in the past.
5905 	 */
5906 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5907 		if (ctx->pos >= INT_MAX)
5908 			ctx->pos = LLONG_MAX;
5909 		else
5910 			ctx->pos = INT_MAX;
5911 	}
5912 nopos:
5913 	ret = 0;
5914 err:
5915 	if (key_type == BTRFS_DIR_INDEX_KEY)
5916 		btrfs_put_delayed_items(&ins_list, &del_list);
5917 	btrfs_free_path(path);
5918 	return ret;
5919 }
5920 
5921 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5922 {
5923 	struct btrfs_root *root = BTRFS_I(inode)->root;
5924 	struct btrfs_trans_handle *trans;
5925 	int ret = 0;
5926 	bool nolock = false;
5927 
5928 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5929 		return 0;
5930 
5931 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5932 		nolock = true;
5933 
5934 	if (wbc->sync_mode == WB_SYNC_ALL) {
5935 		if (nolock)
5936 			trans = btrfs_join_transaction_nolock(root);
5937 		else
5938 			trans = btrfs_join_transaction(root);
5939 		if (IS_ERR(trans))
5940 			return PTR_ERR(trans);
5941 		ret = btrfs_commit_transaction(trans, root);
5942 	}
5943 	return ret;
5944 }
5945 
5946 /*
5947  * This is somewhat expensive, updating the tree every time the
5948  * inode changes.  But, it is most likely to find the inode in cache.
5949  * FIXME, needs more benchmarking...there are no reasons other than performance
5950  * to keep or drop this code.
5951  */
5952 static int btrfs_dirty_inode(struct inode *inode)
5953 {
5954 	struct btrfs_root *root = BTRFS_I(inode)->root;
5955 	struct btrfs_trans_handle *trans;
5956 	int ret;
5957 
5958 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5959 		return 0;
5960 
5961 	trans = btrfs_join_transaction(root);
5962 	if (IS_ERR(trans))
5963 		return PTR_ERR(trans);
5964 
5965 	ret = btrfs_update_inode(trans, root, inode);
5966 	if (ret && ret == -ENOSPC) {
5967 		/* whoops, lets try again with the full transaction */
5968 		btrfs_end_transaction(trans, root);
5969 		trans = btrfs_start_transaction(root, 1);
5970 		if (IS_ERR(trans))
5971 			return PTR_ERR(trans);
5972 
5973 		ret = btrfs_update_inode(trans, root, inode);
5974 	}
5975 	btrfs_end_transaction(trans, root);
5976 	if (BTRFS_I(inode)->delayed_node)
5977 		btrfs_balance_delayed_items(root);
5978 
5979 	return ret;
5980 }
5981 
5982 /*
5983  * This is a copy of file_update_time.  We need this so we can return error on
5984  * ENOSPC for updating the inode in the case of file write and mmap writes.
5985  */
5986 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5987 			     int flags)
5988 {
5989 	struct btrfs_root *root = BTRFS_I(inode)->root;
5990 
5991 	if (btrfs_root_readonly(root))
5992 		return -EROFS;
5993 
5994 	if (flags & S_VERSION)
5995 		inode_inc_iversion(inode);
5996 	if (flags & S_CTIME)
5997 		inode->i_ctime = *now;
5998 	if (flags & S_MTIME)
5999 		inode->i_mtime = *now;
6000 	if (flags & S_ATIME)
6001 		inode->i_atime = *now;
6002 	return btrfs_dirty_inode(inode);
6003 }
6004 
6005 /*
6006  * find the highest existing sequence number in a directory
6007  * and then set the in-memory index_cnt variable to reflect
6008  * free sequence numbers
6009  */
6010 static int btrfs_set_inode_index_count(struct inode *inode)
6011 {
6012 	struct btrfs_root *root = BTRFS_I(inode)->root;
6013 	struct btrfs_key key, found_key;
6014 	struct btrfs_path *path;
6015 	struct extent_buffer *leaf;
6016 	int ret;
6017 
6018 	key.objectid = btrfs_ino(inode);
6019 	key.type = BTRFS_DIR_INDEX_KEY;
6020 	key.offset = (u64)-1;
6021 
6022 	path = btrfs_alloc_path();
6023 	if (!path)
6024 		return -ENOMEM;
6025 
6026 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6027 	if (ret < 0)
6028 		goto out;
6029 	/* FIXME: we should be able to handle this */
6030 	if (ret == 0)
6031 		goto out;
6032 	ret = 0;
6033 
6034 	/*
6035 	 * MAGIC NUMBER EXPLANATION:
6036 	 * since we search a directory based on f_pos we have to start at 2
6037 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6038 	 * else has to start at 2
6039 	 */
6040 	if (path->slots[0] == 0) {
6041 		BTRFS_I(inode)->index_cnt = 2;
6042 		goto out;
6043 	}
6044 
6045 	path->slots[0]--;
6046 
6047 	leaf = path->nodes[0];
6048 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6049 
6050 	if (found_key.objectid != btrfs_ino(inode) ||
6051 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6052 		BTRFS_I(inode)->index_cnt = 2;
6053 		goto out;
6054 	}
6055 
6056 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6057 out:
6058 	btrfs_free_path(path);
6059 	return ret;
6060 }
6061 
6062 /*
6063  * helper to find a free sequence number in a given directory.  This current
6064  * code is very simple, later versions will do smarter things in the btree
6065  */
6066 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6067 {
6068 	int ret = 0;
6069 
6070 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6071 		ret = btrfs_inode_delayed_dir_index_count(dir);
6072 		if (ret) {
6073 			ret = btrfs_set_inode_index_count(dir);
6074 			if (ret)
6075 				return ret;
6076 		}
6077 	}
6078 
6079 	*index = BTRFS_I(dir)->index_cnt;
6080 	BTRFS_I(dir)->index_cnt++;
6081 
6082 	return ret;
6083 }
6084 
6085 static int btrfs_insert_inode_locked(struct inode *inode)
6086 {
6087 	struct btrfs_iget_args args;
6088 	args.location = &BTRFS_I(inode)->location;
6089 	args.root = BTRFS_I(inode)->root;
6090 
6091 	return insert_inode_locked4(inode,
6092 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6093 		   btrfs_find_actor, &args);
6094 }
6095 
6096 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6097 				     struct btrfs_root *root,
6098 				     struct inode *dir,
6099 				     const char *name, int name_len,
6100 				     u64 ref_objectid, u64 objectid,
6101 				     umode_t mode, u64 *index)
6102 {
6103 	struct inode *inode;
6104 	struct btrfs_inode_item *inode_item;
6105 	struct btrfs_key *location;
6106 	struct btrfs_path *path;
6107 	struct btrfs_inode_ref *ref;
6108 	struct btrfs_key key[2];
6109 	u32 sizes[2];
6110 	int nitems = name ? 2 : 1;
6111 	unsigned long ptr;
6112 	int ret;
6113 
6114 	path = btrfs_alloc_path();
6115 	if (!path)
6116 		return ERR_PTR(-ENOMEM);
6117 
6118 	inode = new_inode(root->fs_info->sb);
6119 	if (!inode) {
6120 		btrfs_free_path(path);
6121 		return ERR_PTR(-ENOMEM);
6122 	}
6123 
6124 	/*
6125 	 * O_TMPFILE, set link count to 0, so that after this point,
6126 	 * we fill in an inode item with the correct link count.
6127 	 */
6128 	if (!name)
6129 		set_nlink(inode, 0);
6130 
6131 	/*
6132 	 * we have to initialize this early, so we can reclaim the inode
6133 	 * number if we fail afterwards in this function.
6134 	 */
6135 	inode->i_ino = objectid;
6136 
6137 	if (dir && name) {
6138 		trace_btrfs_inode_request(dir);
6139 
6140 		ret = btrfs_set_inode_index(dir, index);
6141 		if (ret) {
6142 			btrfs_free_path(path);
6143 			iput(inode);
6144 			return ERR_PTR(ret);
6145 		}
6146 	} else if (dir) {
6147 		*index = 0;
6148 	}
6149 	/*
6150 	 * index_cnt is ignored for everything but a dir,
6151 	 * btrfs_get_inode_index_count has an explanation for the magic
6152 	 * number
6153 	 */
6154 	BTRFS_I(inode)->index_cnt = 2;
6155 	BTRFS_I(inode)->dir_index = *index;
6156 	BTRFS_I(inode)->root = root;
6157 	BTRFS_I(inode)->generation = trans->transid;
6158 	inode->i_generation = BTRFS_I(inode)->generation;
6159 
6160 	/*
6161 	 * We could have gotten an inode number from somebody who was fsynced
6162 	 * and then removed in this same transaction, so let's just set full
6163 	 * sync since it will be a full sync anyway and this will blow away the
6164 	 * old info in the log.
6165 	 */
6166 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6167 
6168 	key[0].objectid = objectid;
6169 	key[0].type = BTRFS_INODE_ITEM_KEY;
6170 	key[0].offset = 0;
6171 
6172 	sizes[0] = sizeof(struct btrfs_inode_item);
6173 
6174 	if (name) {
6175 		/*
6176 		 * Start new inodes with an inode_ref. This is slightly more
6177 		 * efficient for small numbers of hard links since they will
6178 		 * be packed into one item. Extended refs will kick in if we
6179 		 * add more hard links than can fit in the ref item.
6180 		 */
6181 		key[1].objectid = objectid;
6182 		key[1].type = BTRFS_INODE_REF_KEY;
6183 		key[1].offset = ref_objectid;
6184 
6185 		sizes[1] = name_len + sizeof(*ref);
6186 	}
6187 
6188 	location = &BTRFS_I(inode)->location;
6189 	location->objectid = objectid;
6190 	location->offset = 0;
6191 	location->type = BTRFS_INODE_ITEM_KEY;
6192 
6193 	ret = btrfs_insert_inode_locked(inode);
6194 	if (ret < 0)
6195 		goto fail;
6196 
6197 	path->leave_spinning = 1;
6198 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6199 	if (ret != 0)
6200 		goto fail_unlock;
6201 
6202 	inode_init_owner(inode, dir, mode);
6203 	inode_set_bytes(inode, 0);
6204 
6205 	inode->i_mtime = current_fs_time(inode->i_sb);
6206 	inode->i_atime = inode->i_mtime;
6207 	inode->i_ctime = inode->i_mtime;
6208 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6209 
6210 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6211 				  struct btrfs_inode_item);
6212 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6213 			     sizeof(*inode_item));
6214 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6215 
6216 	if (name) {
6217 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6218 				     struct btrfs_inode_ref);
6219 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6220 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6221 		ptr = (unsigned long)(ref + 1);
6222 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6223 	}
6224 
6225 	btrfs_mark_buffer_dirty(path->nodes[0]);
6226 	btrfs_free_path(path);
6227 
6228 	btrfs_inherit_iflags(inode, dir);
6229 
6230 	if (S_ISREG(mode)) {
6231 		if (btrfs_test_opt(root, NODATASUM))
6232 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6233 		if (btrfs_test_opt(root, NODATACOW))
6234 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6235 				BTRFS_INODE_NODATASUM;
6236 	}
6237 
6238 	inode_tree_add(inode);
6239 
6240 	trace_btrfs_inode_new(inode);
6241 	btrfs_set_inode_last_trans(trans, inode);
6242 
6243 	btrfs_update_root_times(trans, root);
6244 
6245 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6246 	if (ret)
6247 		btrfs_err(root->fs_info,
6248 			  "error inheriting props for ino %llu (root %llu): %d",
6249 			  btrfs_ino(inode), root->root_key.objectid, ret);
6250 
6251 	return inode;
6252 
6253 fail_unlock:
6254 	unlock_new_inode(inode);
6255 fail:
6256 	if (dir && name)
6257 		BTRFS_I(dir)->index_cnt--;
6258 	btrfs_free_path(path);
6259 	iput(inode);
6260 	return ERR_PTR(ret);
6261 }
6262 
6263 static inline u8 btrfs_inode_type(struct inode *inode)
6264 {
6265 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6266 }
6267 
6268 /*
6269  * utility function to add 'inode' into 'parent_inode' with
6270  * a give name and a given sequence number.
6271  * if 'add_backref' is true, also insert a backref from the
6272  * inode to the parent directory.
6273  */
6274 int btrfs_add_link(struct btrfs_trans_handle *trans,
6275 		   struct inode *parent_inode, struct inode *inode,
6276 		   const char *name, int name_len, int add_backref, u64 index)
6277 {
6278 	int ret = 0;
6279 	struct btrfs_key key;
6280 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6281 	u64 ino = btrfs_ino(inode);
6282 	u64 parent_ino = btrfs_ino(parent_inode);
6283 
6284 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6285 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6286 	} else {
6287 		key.objectid = ino;
6288 		key.type = BTRFS_INODE_ITEM_KEY;
6289 		key.offset = 0;
6290 	}
6291 
6292 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6293 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6294 					 key.objectid, root->root_key.objectid,
6295 					 parent_ino, index, name, name_len);
6296 	} else if (add_backref) {
6297 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6298 					     parent_ino, index);
6299 	}
6300 
6301 	/* Nothing to clean up yet */
6302 	if (ret)
6303 		return ret;
6304 
6305 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6306 				    parent_inode, &key,
6307 				    btrfs_inode_type(inode), index);
6308 	if (ret == -EEXIST || ret == -EOVERFLOW)
6309 		goto fail_dir_item;
6310 	else if (ret) {
6311 		btrfs_abort_transaction(trans, root, ret);
6312 		return ret;
6313 	}
6314 
6315 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6316 			   name_len * 2);
6317 	inode_inc_iversion(parent_inode);
6318 	parent_inode->i_mtime = parent_inode->i_ctime =
6319 		current_fs_time(parent_inode->i_sb);
6320 	ret = btrfs_update_inode(trans, root, parent_inode);
6321 	if (ret)
6322 		btrfs_abort_transaction(trans, root, ret);
6323 	return ret;
6324 
6325 fail_dir_item:
6326 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6327 		u64 local_index;
6328 		int err;
6329 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6330 				 key.objectid, root->root_key.objectid,
6331 				 parent_ino, &local_index, name, name_len);
6332 
6333 	} else if (add_backref) {
6334 		u64 local_index;
6335 		int err;
6336 
6337 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6338 					  ino, parent_ino, &local_index);
6339 	}
6340 	return ret;
6341 }
6342 
6343 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6344 			    struct inode *dir, struct dentry *dentry,
6345 			    struct inode *inode, int backref, u64 index)
6346 {
6347 	int err = btrfs_add_link(trans, dir, inode,
6348 				 dentry->d_name.name, dentry->d_name.len,
6349 				 backref, index);
6350 	if (err > 0)
6351 		err = -EEXIST;
6352 	return err;
6353 }
6354 
6355 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6356 			umode_t mode, dev_t rdev)
6357 {
6358 	struct btrfs_trans_handle *trans;
6359 	struct btrfs_root *root = BTRFS_I(dir)->root;
6360 	struct inode *inode = NULL;
6361 	int err;
6362 	int drop_inode = 0;
6363 	u64 objectid;
6364 	u64 index = 0;
6365 
6366 	/*
6367 	 * 2 for inode item and ref
6368 	 * 2 for dir items
6369 	 * 1 for xattr if selinux is on
6370 	 */
6371 	trans = btrfs_start_transaction(root, 5);
6372 	if (IS_ERR(trans))
6373 		return PTR_ERR(trans);
6374 
6375 	err = btrfs_find_free_ino(root, &objectid);
6376 	if (err)
6377 		goto out_unlock;
6378 
6379 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6380 				dentry->d_name.len, btrfs_ino(dir), objectid,
6381 				mode, &index);
6382 	if (IS_ERR(inode)) {
6383 		err = PTR_ERR(inode);
6384 		goto out_unlock;
6385 	}
6386 
6387 	/*
6388 	* If the active LSM wants to access the inode during
6389 	* d_instantiate it needs these. Smack checks to see
6390 	* if the filesystem supports xattrs by looking at the
6391 	* ops vector.
6392 	*/
6393 	inode->i_op = &btrfs_special_inode_operations;
6394 	init_special_inode(inode, inode->i_mode, rdev);
6395 
6396 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6397 	if (err)
6398 		goto out_unlock_inode;
6399 
6400 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6401 	if (err) {
6402 		goto out_unlock_inode;
6403 	} else {
6404 		btrfs_update_inode(trans, root, inode);
6405 		unlock_new_inode(inode);
6406 		d_instantiate(dentry, inode);
6407 	}
6408 
6409 out_unlock:
6410 	btrfs_end_transaction(trans, root);
6411 	btrfs_balance_delayed_items(root);
6412 	btrfs_btree_balance_dirty(root);
6413 	if (drop_inode) {
6414 		inode_dec_link_count(inode);
6415 		iput(inode);
6416 	}
6417 	return err;
6418 
6419 out_unlock_inode:
6420 	drop_inode = 1;
6421 	unlock_new_inode(inode);
6422 	goto out_unlock;
6423 
6424 }
6425 
6426 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6427 			umode_t mode, bool excl)
6428 {
6429 	struct btrfs_trans_handle *trans;
6430 	struct btrfs_root *root = BTRFS_I(dir)->root;
6431 	struct inode *inode = NULL;
6432 	int drop_inode_on_err = 0;
6433 	int err;
6434 	u64 objectid;
6435 	u64 index = 0;
6436 
6437 	/*
6438 	 * 2 for inode item and ref
6439 	 * 2 for dir items
6440 	 * 1 for xattr if selinux is on
6441 	 */
6442 	trans = btrfs_start_transaction(root, 5);
6443 	if (IS_ERR(trans))
6444 		return PTR_ERR(trans);
6445 
6446 	err = btrfs_find_free_ino(root, &objectid);
6447 	if (err)
6448 		goto out_unlock;
6449 
6450 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6451 				dentry->d_name.len, btrfs_ino(dir), objectid,
6452 				mode, &index);
6453 	if (IS_ERR(inode)) {
6454 		err = PTR_ERR(inode);
6455 		goto out_unlock;
6456 	}
6457 	drop_inode_on_err = 1;
6458 	/*
6459 	* If the active LSM wants to access the inode during
6460 	* d_instantiate it needs these. Smack checks to see
6461 	* if the filesystem supports xattrs by looking at the
6462 	* ops vector.
6463 	*/
6464 	inode->i_fop = &btrfs_file_operations;
6465 	inode->i_op = &btrfs_file_inode_operations;
6466 	inode->i_mapping->a_ops = &btrfs_aops;
6467 
6468 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6469 	if (err)
6470 		goto out_unlock_inode;
6471 
6472 	err = btrfs_update_inode(trans, root, inode);
6473 	if (err)
6474 		goto out_unlock_inode;
6475 
6476 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6477 	if (err)
6478 		goto out_unlock_inode;
6479 
6480 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6481 	unlock_new_inode(inode);
6482 	d_instantiate(dentry, inode);
6483 
6484 out_unlock:
6485 	btrfs_end_transaction(trans, root);
6486 	if (err && drop_inode_on_err) {
6487 		inode_dec_link_count(inode);
6488 		iput(inode);
6489 	}
6490 	btrfs_balance_delayed_items(root);
6491 	btrfs_btree_balance_dirty(root);
6492 	return err;
6493 
6494 out_unlock_inode:
6495 	unlock_new_inode(inode);
6496 	goto out_unlock;
6497 
6498 }
6499 
6500 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6501 		      struct dentry *dentry)
6502 {
6503 	struct btrfs_trans_handle *trans = NULL;
6504 	struct btrfs_root *root = BTRFS_I(dir)->root;
6505 	struct inode *inode = d_inode(old_dentry);
6506 	u64 index;
6507 	int err;
6508 	int drop_inode = 0;
6509 
6510 	/* do not allow sys_link's with other subvols of the same device */
6511 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6512 		return -EXDEV;
6513 
6514 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6515 		return -EMLINK;
6516 
6517 	err = btrfs_set_inode_index(dir, &index);
6518 	if (err)
6519 		goto fail;
6520 
6521 	/*
6522 	 * 2 items for inode and inode ref
6523 	 * 2 items for dir items
6524 	 * 1 item for parent inode
6525 	 */
6526 	trans = btrfs_start_transaction(root, 5);
6527 	if (IS_ERR(trans)) {
6528 		err = PTR_ERR(trans);
6529 		trans = NULL;
6530 		goto fail;
6531 	}
6532 
6533 	/* There are several dir indexes for this inode, clear the cache. */
6534 	BTRFS_I(inode)->dir_index = 0ULL;
6535 	inc_nlink(inode);
6536 	inode_inc_iversion(inode);
6537 	inode->i_ctime = current_fs_time(inode->i_sb);
6538 	ihold(inode);
6539 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6540 
6541 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6542 
6543 	if (err) {
6544 		drop_inode = 1;
6545 	} else {
6546 		struct dentry *parent = dentry->d_parent;
6547 		err = btrfs_update_inode(trans, root, inode);
6548 		if (err)
6549 			goto fail;
6550 		if (inode->i_nlink == 1) {
6551 			/*
6552 			 * If new hard link count is 1, it's a file created
6553 			 * with open(2) O_TMPFILE flag.
6554 			 */
6555 			err = btrfs_orphan_del(trans, inode);
6556 			if (err)
6557 				goto fail;
6558 		}
6559 		d_instantiate(dentry, inode);
6560 		btrfs_log_new_name(trans, inode, NULL, parent);
6561 	}
6562 
6563 	btrfs_balance_delayed_items(root);
6564 fail:
6565 	if (trans)
6566 		btrfs_end_transaction(trans, root);
6567 	if (drop_inode) {
6568 		inode_dec_link_count(inode);
6569 		iput(inode);
6570 	}
6571 	btrfs_btree_balance_dirty(root);
6572 	return err;
6573 }
6574 
6575 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6576 {
6577 	struct inode *inode = NULL;
6578 	struct btrfs_trans_handle *trans;
6579 	struct btrfs_root *root = BTRFS_I(dir)->root;
6580 	int err = 0;
6581 	int drop_on_err = 0;
6582 	u64 objectid = 0;
6583 	u64 index = 0;
6584 
6585 	/*
6586 	 * 2 items for inode and ref
6587 	 * 2 items for dir items
6588 	 * 1 for xattr if selinux is on
6589 	 */
6590 	trans = btrfs_start_transaction(root, 5);
6591 	if (IS_ERR(trans))
6592 		return PTR_ERR(trans);
6593 
6594 	err = btrfs_find_free_ino(root, &objectid);
6595 	if (err)
6596 		goto out_fail;
6597 
6598 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6599 				dentry->d_name.len, btrfs_ino(dir), objectid,
6600 				S_IFDIR | mode, &index);
6601 	if (IS_ERR(inode)) {
6602 		err = PTR_ERR(inode);
6603 		goto out_fail;
6604 	}
6605 
6606 	drop_on_err = 1;
6607 	/* these must be set before we unlock the inode */
6608 	inode->i_op = &btrfs_dir_inode_operations;
6609 	inode->i_fop = &btrfs_dir_file_operations;
6610 
6611 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6612 	if (err)
6613 		goto out_fail_inode;
6614 
6615 	btrfs_i_size_write(inode, 0);
6616 	err = btrfs_update_inode(trans, root, inode);
6617 	if (err)
6618 		goto out_fail_inode;
6619 
6620 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6621 			     dentry->d_name.len, 0, index);
6622 	if (err)
6623 		goto out_fail_inode;
6624 
6625 	d_instantiate(dentry, inode);
6626 	/*
6627 	 * mkdir is special.  We're unlocking after we call d_instantiate
6628 	 * to avoid a race with nfsd calling d_instantiate.
6629 	 */
6630 	unlock_new_inode(inode);
6631 	drop_on_err = 0;
6632 
6633 out_fail:
6634 	btrfs_end_transaction(trans, root);
6635 	if (drop_on_err) {
6636 		inode_dec_link_count(inode);
6637 		iput(inode);
6638 	}
6639 	btrfs_balance_delayed_items(root);
6640 	btrfs_btree_balance_dirty(root);
6641 	return err;
6642 
6643 out_fail_inode:
6644 	unlock_new_inode(inode);
6645 	goto out_fail;
6646 }
6647 
6648 /* Find next extent map of a given extent map, caller needs to ensure locks */
6649 static struct extent_map *next_extent_map(struct extent_map *em)
6650 {
6651 	struct rb_node *next;
6652 
6653 	next = rb_next(&em->rb_node);
6654 	if (!next)
6655 		return NULL;
6656 	return container_of(next, struct extent_map, rb_node);
6657 }
6658 
6659 static struct extent_map *prev_extent_map(struct extent_map *em)
6660 {
6661 	struct rb_node *prev;
6662 
6663 	prev = rb_prev(&em->rb_node);
6664 	if (!prev)
6665 		return NULL;
6666 	return container_of(prev, struct extent_map, rb_node);
6667 }
6668 
6669 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6670  * the existing extent is the nearest extent to map_start,
6671  * and an extent that you want to insert, deal with overlap and insert
6672  * the best fitted new extent into the tree.
6673  */
6674 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6675 				struct extent_map *existing,
6676 				struct extent_map *em,
6677 				u64 map_start)
6678 {
6679 	struct extent_map *prev;
6680 	struct extent_map *next;
6681 	u64 start;
6682 	u64 end;
6683 	u64 start_diff;
6684 
6685 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6686 
6687 	if (existing->start > map_start) {
6688 		next = existing;
6689 		prev = prev_extent_map(next);
6690 	} else {
6691 		prev = existing;
6692 		next = next_extent_map(prev);
6693 	}
6694 
6695 	start = prev ? extent_map_end(prev) : em->start;
6696 	start = max_t(u64, start, em->start);
6697 	end = next ? next->start : extent_map_end(em);
6698 	end = min_t(u64, end, extent_map_end(em));
6699 	start_diff = start - em->start;
6700 	em->start = start;
6701 	em->len = end - start;
6702 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6703 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6704 		em->block_start += start_diff;
6705 		em->block_len -= start_diff;
6706 	}
6707 	return add_extent_mapping(em_tree, em, 0);
6708 }
6709 
6710 static noinline int uncompress_inline(struct btrfs_path *path,
6711 				      struct page *page,
6712 				      size_t pg_offset, u64 extent_offset,
6713 				      struct btrfs_file_extent_item *item)
6714 {
6715 	int ret;
6716 	struct extent_buffer *leaf = path->nodes[0];
6717 	char *tmp;
6718 	size_t max_size;
6719 	unsigned long inline_size;
6720 	unsigned long ptr;
6721 	int compress_type;
6722 
6723 	WARN_ON(pg_offset != 0);
6724 	compress_type = btrfs_file_extent_compression(leaf, item);
6725 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6726 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6727 					btrfs_item_nr(path->slots[0]));
6728 	tmp = kmalloc(inline_size, GFP_NOFS);
6729 	if (!tmp)
6730 		return -ENOMEM;
6731 	ptr = btrfs_file_extent_inline_start(item);
6732 
6733 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6734 
6735 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6736 	ret = btrfs_decompress(compress_type, tmp, page,
6737 			       extent_offset, inline_size, max_size);
6738 	kfree(tmp);
6739 	return ret;
6740 }
6741 
6742 /*
6743  * a bit scary, this does extent mapping from logical file offset to the disk.
6744  * the ugly parts come from merging extents from the disk with the in-ram
6745  * representation.  This gets more complex because of the data=ordered code,
6746  * where the in-ram extents might be locked pending data=ordered completion.
6747  *
6748  * This also copies inline extents directly into the page.
6749  */
6750 
6751 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6752 				    size_t pg_offset, u64 start, u64 len,
6753 				    int create)
6754 {
6755 	int ret;
6756 	int err = 0;
6757 	u64 extent_start = 0;
6758 	u64 extent_end = 0;
6759 	u64 objectid = btrfs_ino(inode);
6760 	u32 found_type;
6761 	struct btrfs_path *path = NULL;
6762 	struct btrfs_root *root = BTRFS_I(inode)->root;
6763 	struct btrfs_file_extent_item *item;
6764 	struct extent_buffer *leaf;
6765 	struct btrfs_key found_key;
6766 	struct extent_map *em = NULL;
6767 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6768 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6769 	struct btrfs_trans_handle *trans = NULL;
6770 	const bool new_inline = !page || create;
6771 
6772 again:
6773 	read_lock(&em_tree->lock);
6774 	em = lookup_extent_mapping(em_tree, start, len);
6775 	if (em)
6776 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6777 	read_unlock(&em_tree->lock);
6778 
6779 	if (em) {
6780 		if (em->start > start || em->start + em->len <= start)
6781 			free_extent_map(em);
6782 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6783 			free_extent_map(em);
6784 		else
6785 			goto out;
6786 	}
6787 	em = alloc_extent_map();
6788 	if (!em) {
6789 		err = -ENOMEM;
6790 		goto out;
6791 	}
6792 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6793 	em->start = EXTENT_MAP_HOLE;
6794 	em->orig_start = EXTENT_MAP_HOLE;
6795 	em->len = (u64)-1;
6796 	em->block_len = (u64)-1;
6797 
6798 	if (!path) {
6799 		path = btrfs_alloc_path();
6800 		if (!path) {
6801 			err = -ENOMEM;
6802 			goto out;
6803 		}
6804 		/*
6805 		 * Chances are we'll be called again, so go ahead and do
6806 		 * readahead
6807 		 */
6808 		path->reada = READA_FORWARD;
6809 	}
6810 
6811 	ret = btrfs_lookup_file_extent(trans, root, path,
6812 				       objectid, start, trans != NULL);
6813 	if (ret < 0) {
6814 		err = ret;
6815 		goto out;
6816 	}
6817 
6818 	if (ret != 0) {
6819 		if (path->slots[0] == 0)
6820 			goto not_found;
6821 		path->slots[0]--;
6822 	}
6823 
6824 	leaf = path->nodes[0];
6825 	item = btrfs_item_ptr(leaf, path->slots[0],
6826 			      struct btrfs_file_extent_item);
6827 	/* are we inside the extent that was found? */
6828 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6829 	found_type = found_key.type;
6830 	if (found_key.objectid != objectid ||
6831 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6832 		/*
6833 		 * If we backup past the first extent we want to move forward
6834 		 * and see if there is an extent in front of us, otherwise we'll
6835 		 * say there is a hole for our whole search range which can
6836 		 * cause problems.
6837 		 */
6838 		extent_end = start;
6839 		goto next;
6840 	}
6841 
6842 	found_type = btrfs_file_extent_type(leaf, item);
6843 	extent_start = found_key.offset;
6844 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6845 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6846 		extent_end = extent_start +
6847 		       btrfs_file_extent_num_bytes(leaf, item);
6848 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6849 		size_t size;
6850 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6851 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6852 	}
6853 next:
6854 	if (start >= extent_end) {
6855 		path->slots[0]++;
6856 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6857 			ret = btrfs_next_leaf(root, path);
6858 			if (ret < 0) {
6859 				err = ret;
6860 				goto out;
6861 			}
6862 			if (ret > 0)
6863 				goto not_found;
6864 			leaf = path->nodes[0];
6865 		}
6866 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6867 		if (found_key.objectid != objectid ||
6868 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6869 			goto not_found;
6870 		if (start + len <= found_key.offset)
6871 			goto not_found;
6872 		if (start > found_key.offset)
6873 			goto next;
6874 		em->start = start;
6875 		em->orig_start = start;
6876 		em->len = found_key.offset - start;
6877 		goto not_found_em;
6878 	}
6879 
6880 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6881 
6882 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6883 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6884 		goto insert;
6885 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6886 		unsigned long ptr;
6887 		char *map;
6888 		size_t size;
6889 		size_t extent_offset;
6890 		size_t copy_size;
6891 
6892 		if (new_inline)
6893 			goto out;
6894 
6895 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6896 		extent_offset = page_offset(page) + pg_offset - extent_start;
6897 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6898 				  size - extent_offset);
6899 		em->start = extent_start + extent_offset;
6900 		em->len = ALIGN(copy_size, root->sectorsize);
6901 		em->orig_block_len = em->len;
6902 		em->orig_start = em->start;
6903 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6904 		if (create == 0 && !PageUptodate(page)) {
6905 			if (btrfs_file_extent_compression(leaf, item) !=
6906 			    BTRFS_COMPRESS_NONE) {
6907 				ret = uncompress_inline(path, page, pg_offset,
6908 							extent_offset, item);
6909 				if (ret) {
6910 					err = ret;
6911 					goto out;
6912 				}
6913 			} else {
6914 				map = kmap(page);
6915 				read_extent_buffer(leaf, map + pg_offset, ptr,
6916 						   copy_size);
6917 				if (pg_offset + copy_size < PAGE_SIZE) {
6918 					memset(map + pg_offset + copy_size, 0,
6919 					       PAGE_SIZE - pg_offset -
6920 					       copy_size);
6921 				}
6922 				kunmap(page);
6923 			}
6924 			flush_dcache_page(page);
6925 		} else if (create && PageUptodate(page)) {
6926 			BUG();
6927 			if (!trans) {
6928 				kunmap(page);
6929 				free_extent_map(em);
6930 				em = NULL;
6931 
6932 				btrfs_release_path(path);
6933 				trans = btrfs_join_transaction(root);
6934 
6935 				if (IS_ERR(trans))
6936 					return ERR_CAST(trans);
6937 				goto again;
6938 			}
6939 			map = kmap(page);
6940 			write_extent_buffer(leaf, map + pg_offset, ptr,
6941 					    copy_size);
6942 			kunmap(page);
6943 			btrfs_mark_buffer_dirty(leaf);
6944 		}
6945 		set_extent_uptodate(io_tree, em->start,
6946 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6947 		goto insert;
6948 	}
6949 not_found:
6950 	em->start = start;
6951 	em->orig_start = start;
6952 	em->len = len;
6953 not_found_em:
6954 	em->block_start = EXTENT_MAP_HOLE;
6955 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6956 insert:
6957 	btrfs_release_path(path);
6958 	if (em->start > start || extent_map_end(em) <= start) {
6959 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6960 			em->start, em->len, start, len);
6961 		err = -EIO;
6962 		goto out;
6963 	}
6964 
6965 	err = 0;
6966 	write_lock(&em_tree->lock);
6967 	ret = add_extent_mapping(em_tree, em, 0);
6968 	/* it is possible that someone inserted the extent into the tree
6969 	 * while we had the lock dropped.  It is also possible that
6970 	 * an overlapping map exists in the tree
6971 	 */
6972 	if (ret == -EEXIST) {
6973 		struct extent_map *existing;
6974 
6975 		ret = 0;
6976 
6977 		existing = search_extent_mapping(em_tree, start, len);
6978 		/*
6979 		 * existing will always be non-NULL, since there must be
6980 		 * extent causing the -EEXIST.
6981 		 */
6982 		if (start >= extent_map_end(existing) ||
6983 		    start <= existing->start) {
6984 			/*
6985 			 * The existing extent map is the one nearest to
6986 			 * the [start, start + len) range which overlaps
6987 			 */
6988 			err = merge_extent_mapping(em_tree, existing,
6989 						   em, start);
6990 			free_extent_map(existing);
6991 			if (err) {
6992 				free_extent_map(em);
6993 				em = NULL;
6994 			}
6995 		} else {
6996 			free_extent_map(em);
6997 			em = existing;
6998 			err = 0;
6999 		}
7000 	}
7001 	write_unlock(&em_tree->lock);
7002 out:
7003 
7004 	trace_btrfs_get_extent(root, em);
7005 
7006 	btrfs_free_path(path);
7007 	if (trans) {
7008 		ret = btrfs_end_transaction(trans, root);
7009 		if (!err)
7010 			err = ret;
7011 	}
7012 	if (err) {
7013 		free_extent_map(em);
7014 		return ERR_PTR(err);
7015 	}
7016 	BUG_ON(!em); /* Error is always set */
7017 	return em;
7018 }
7019 
7020 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7021 					   size_t pg_offset, u64 start, u64 len,
7022 					   int create)
7023 {
7024 	struct extent_map *em;
7025 	struct extent_map *hole_em = NULL;
7026 	u64 range_start = start;
7027 	u64 end;
7028 	u64 found;
7029 	u64 found_end;
7030 	int err = 0;
7031 
7032 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7033 	if (IS_ERR(em))
7034 		return em;
7035 	if (em) {
7036 		/*
7037 		 * if our em maps to
7038 		 * -  a hole or
7039 		 * -  a pre-alloc extent,
7040 		 * there might actually be delalloc bytes behind it.
7041 		 */
7042 		if (em->block_start != EXTENT_MAP_HOLE &&
7043 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7044 			return em;
7045 		else
7046 			hole_em = em;
7047 	}
7048 
7049 	/* check to see if we've wrapped (len == -1 or similar) */
7050 	end = start + len;
7051 	if (end < start)
7052 		end = (u64)-1;
7053 	else
7054 		end -= 1;
7055 
7056 	em = NULL;
7057 
7058 	/* ok, we didn't find anything, lets look for delalloc */
7059 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7060 				 end, len, EXTENT_DELALLOC, 1);
7061 	found_end = range_start + found;
7062 	if (found_end < range_start)
7063 		found_end = (u64)-1;
7064 
7065 	/*
7066 	 * we didn't find anything useful, return
7067 	 * the original results from get_extent()
7068 	 */
7069 	if (range_start > end || found_end <= start) {
7070 		em = hole_em;
7071 		hole_em = NULL;
7072 		goto out;
7073 	}
7074 
7075 	/* adjust the range_start to make sure it doesn't
7076 	 * go backwards from the start they passed in
7077 	 */
7078 	range_start = max(start, range_start);
7079 	found = found_end - range_start;
7080 
7081 	if (found > 0) {
7082 		u64 hole_start = start;
7083 		u64 hole_len = len;
7084 
7085 		em = alloc_extent_map();
7086 		if (!em) {
7087 			err = -ENOMEM;
7088 			goto out;
7089 		}
7090 		/*
7091 		 * when btrfs_get_extent can't find anything it
7092 		 * returns one huge hole
7093 		 *
7094 		 * make sure what it found really fits our range, and
7095 		 * adjust to make sure it is based on the start from
7096 		 * the caller
7097 		 */
7098 		if (hole_em) {
7099 			u64 calc_end = extent_map_end(hole_em);
7100 
7101 			if (calc_end <= start || (hole_em->start > end)) {
7102 				free_extent_map(hole_em);
7103 				hole_em = NULL;
7104 			} else {
7105 				hole_start = max(hole_em->start, start);
7106 				hole_len = calc_end - hole_start;
7107 			}
7108 		}
7109 		em->bdev = NULL;
7110 		if (hole_em && range_start > hole_start) {
7111 			/* our hole starts before our delalloc, so we
7112 			 * have to return just the parts of the hole
7113 			 * that go until  the delalloc starts
7114 			 */
7115 			em->len = min(hole_len,
7116 				      range_start - hole_start);
7117 			em->start = hole_start;
7118 			em->orig_start = hole_start;
7119 			/*
7120 			 * don't adjust block start at all,
7121 			 * it is fixed at EXTENT_MAP_HOLE
7122 			 */
7123 			em->block_start = hole_em->block_start;
7124 			em->block_len = hole_len;
7125 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7126 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7127 		} else {
7128 			em->start = range_start;
7129 			em->len = found;
7130 			em->orig_start = range_start;
7131 			em->block_start = EXTENT_MAP_DELALLOC;
7132 			em->block_len = found;
7133 		}
7134 	} else if (hole_em) {
7135 		return hole_em;
7136 	}
7137 out:
7138 
7139 	free_extent_map(hole_em);
7140 	if (err) {
7141 		free_extent_map(em);
7142 		return ERR_PTR(err);
7143 	}
7144 	return em;
7145 }
7146 
7147 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7148 						  const u64 start,
7149 						  const u64 len,
7150 						  const u64 orig_start,
7151 						  const u64 block_start,
7152 						  const u64 block_len,
7153 						  const u64 orig_block_len,
7154 						  const u64 ram_bytes,
7155 						  const int type)
7156 {
7157 	struct extent_map *em = NULL;
7158 	int ret;
7159 
7160 	down_read(&BTRFS_I(inode)->dio_sem);
7161 	if (type != BTRFS_ORDERED_NOCOW) {
7162 		em = create_pinned_em(inode, start, len, orig_start,
7163 				      block_start, block_len, orig_block_len,
7164 				      ram_bytes, type);
7165 		if (IS_ERR(em))
7166 			goto out;
7167 	}
7168 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7169 					   len, block_len, type);
7170 	if (ret) {
7171 		if (em) {
7172 			free_extent_map(em);
7173 			btrfs_drop_extent_cache(inode, start,
7174 						start + len - 1, 0);
7175 		}
7176 		em = ERR_PTR(ret);
7177 	}
7178  out:
7179 	up_read(&BTRFS_I(inode)->dio_sem);
7180 
7181 	return em;
7182 }
7183 
7184 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7185 						  u64 start, u64 len)
7186 {
7187 	struct btrfs_root *root = BTRFS_I(inode)->root;
7188 	struct extent_map *em;
7189 	struct btrfs_key ins;
7190 	u64 alloc_hint;
7191 	int ret;
7192 
7193 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7194 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7195 				   alloc_hint, &ins, 1, 1);
7196 	if (ret)
7197 		return ERR_PTR(ret);
7198 
7199 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7200 				     ins.objectid, ins.offset, ins.offset,
7201 				     ins.offset, 0);
7202 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7203 	if (IS_ERR(em))
7204 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7205 
7206 	return em;
7207 }
7208 
7209 /*
7210  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7211  * block must be cow'd
7212  */
7213 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7214 			      u64 *orig_start, u64 *orig_block_len,
7215 			      u64 *ram_bytes)
7216 {
7217 	struct btrfs_trans_handle *trans;
7218 	struct btrfs_path *path;
7219 	int ret;
7220 	struct extent_buffer *leaf;
7221 	struct btrfs_root *root = BTRFS_I(inode)->root;
7222 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7223 	struct btrfs_file_extent_item *fi;
7224 	struct btrfs_key key;
7225 	u64 disk_bytenr;
7226 	u64 backref_offset;
7227 	u64 extent_end;
7228 	u64 num_bytes;
7229 	int slot;
7230 	int found_type;
7231 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7232 
7233 	path = btrfs_alloc_path();
7234 	if (!path)
7235 		return -ENOMEM;
7236 
7237 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7238 				       offset, 0);
7239 	if (ret < 0)
7240 		goto out;
7241 
7242 	slot = path->slots[0];
7243 	if (ret == 1) {
7244 		if (slot == 0) {
7245 			/* can't find the item, must cow */
7246 			ret = 0;
7247 			goto out;
7248 		}
7249 		slot--;
7250 	}
7251 	ret = 0;
7252 	leaf = path->nodes[0];
7253 	btrfs_item_key_to_cpu(leaf, &key, slot);
7254 	if (key.objectid != btrfs_ino(inode) ||
7255 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7256 		/* not our file or wrong item type, must cow */
7257 		goto out;
7258 	}
7259 
7260 	if (key.offset > offset) {
7261 		/* Wrong offset, must cow */
7262 		goto out;
7263 	}
7264 
7265 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7266 	found_type = btrfs_file_extent_type(leaf, fi);
7267 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7268 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7269 		/* not a regular extent, must cow */
7270 		goto out;
7271 	}
7272 
7273 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7274 		goto out;
7275 
7276 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7277 	if (extent_end <= offset)
7278 		goto out;
7279 
7280 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7281 	if (disk_bytenr == 0)
7282 		goto out;
7283 
7284 	if (btrfs_file_extent_compression(leaf, fi) ||
7285 	    btrfs_file_extent_encryption(leaf, fi) ||
7286 	    btrfs_file_extent_other_encoding(leaf, fi))
7287 		goto out;
7288 
7289 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7290 
7291 	if (orig_start) {
7292 		*orig_start = key.offset - backref_offset;
7293 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7294 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7295 	}
7296 
7297 	if (btrfs_extent_readonly(root, disk_bytenr))
7298 		goto out;
7299 
7300 	num_bytes = min(offset + *len, extent_end) - offset;
7301 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7302 		u64 range_end;
7303 
7304 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7305 		ret = test_range_bit(io_tree, offset, range_end,
7306 				     EXTENT_DELALLOC, 0, NULL);
7307 		if (ret) {
7308 			ret = -EAGAIN;
7309 			goto out;
7310 		}
7311 	}
7312 
7313 	btrfs_release_path(path);
7314 
7315 	/*
7316 	 * look for other files referencing this extent, if we
7317 	 * find any we must cow
7318 	 */
7319 	trans = btrfs_join_transaction(root);
7320 	if (IS_ERR(trans)) {
7321 		ret = 0;
7322 		goto out;
7323 	}
7324 
7325 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7326 				    key.offset - backref_offset, disk_bytenr);
7327 	btrfs_end_transaction(trans, root);
7328 	if (ret) {
7329 		ret = 0;
7330 		goto out;
7331 	}
7332 
7333 	/*
7334 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7335 	 * in this extent we are about to write.  If there
7336 	 * are any csums in that range we have to cow in order
7337 	 * to keep the csums correct
7338 	 */
7339 	disk_bytenr += backref_offset;
7340 	disk_bytenr += offset - key.offset;
7341 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7342 				goto out;
7343 	/*
7344 	 * all of the above have passed, it is safe to overwrite this extent
7345 	 * without cow
7346 	 */
7347 	*len = num_bytes;
7348 	ret = 1;
7349 out:
7350 	btrfs_free_path(path);
7351 	return ret;
7352 }
7353 
7354 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7355 {
7356 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7357 	int found = false;
7358 	void **pagep = NULL;
7359 	struct page *page = NULL;
7360 	int start_idx;
7361 	int end_idx;
7362 
7363 	start_idx = start >> PAGE_SHIFT;
7364 
7365 	/*
7366 	 * end is the last byte in the last page.  end == start is legal
7367 	 */
7368 	end_idx = end >> PAGE_SHIFT;
7369 
7370 	rcu_read_lock();
7371 
7372 	/* Most of the code in this while loop is lifted from
7373 	 * find_get_page.  It's been modified to begin searching from a
7374 	 * page and return just the first page found in that range.  If the
7375 	 * found idx is less than or equal to the end idx then we know that
7376 	 * a page exists.  If no pages are found or if those pages are
7377 	 * outside of the range then we're fine (yay!) */
7378 	while (page == NULL &&
7379 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7380 		page = radix_tree_deref_slot(pagep);
7381 		if (unlikely(!page))
7382 			break;
7383 
7384 		if (radix_tree_exception(page)) {
7385 			if (radix_tree_deref_retry(page)) {
7386 				page = NULL;
7387 				continue;
7388 			}
7389 			/*
7390 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7391 			 * here as an exceptional entry: so return it without
7392 			 * attempting to raise page count.
7393 			 */
7394 			page = NULL;
7395 			break; /* TODO: Is this relevant for this use case? */
7396 		}
7397 
7398 		if (!page_cache_get_speculative(page)) {
7399 			page = NULL;
7400 			continue;
7401 		}
7402 
7403 		/*
7404 		 * Has the page moved?
7405 		 * This is part of the lockless pagecache protocol. See
7406 		 * include/linux/pagemap.h for details.
7407 		 */
7408 		if (unlikely(page != *pagep)) {
7409 			put_page(page);
7410 			page = NULL;
7411 		}
7412 	}
7413 
7414 	if (page) {
7415 		if (page->index <= end_idx)
7416 			found = true;
7417 		put_page(page);
7418 	}
7419 
7420 	rcu_read_unlock();
7421 	return found;
7422 }
7423 
7424 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7425 			      struct extent_state **cached_state, int writing)
7426 {
7427 	struct btrfs_ordered_extent *ordered;
7428 	int ret = 0;
7429 
7430 	while (1) {
7431 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7432 				 cached_state);
7433 		/*
7434 		 * We're concerned with the entire range that we're going to be
7435 		 * doing DIO to, so we need to make sure there's no ordered
7436 		 * extents in this range.
7437 		 */
7438 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7439 						     lockend - lockstart + 1);
7440 
7441 		/*
7442 		 * We need to make sure there are no buffered pages in this
7443 		 * range either, we could have raced between the invalidate in
7444 		 * generic_file_direct_write and locking the extent.  The
7445 		 * invalidate needs to happen so that reads after a write do not
7446 		 * get stale data.
7447 		 */
7448 		if (!ordered &&
7449 		    (!writing ||
7450 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7451 			break;
7452 
7453 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7454 				     cached_state, GFP_NOFS);
7455 
7456 		if (ordered) {
7457 			/*
7458 			 * If we are doing a DIO read and the ordered extent we
7459 			 * found is for a buffered write, we can not wait for it
7460 			 * to complete and retry, because if we do so we can
7461 			 * deadlock with concurrent buffered writes on page
7462 			 * locks. This happens only if our DIO read covers more
7463 			 * than one extent map, if at this point has already
7464 			 * created an ordered extent for a previous extent map
7465 			 * and locked its range in the inode's io tree, and a
7466 			 * concurrent write against that previous extent map's
7467 			 * range and this range started (we unlock the ranges
7468 			 * in the io tree only when the bios complete and
7469 			 * buffered writes always lock pages before attempting
7470 			 * to lock range in the io tree).
7471 			 */
7472 			if (writing ||
7473 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7474 				btrfs_start_ordered_extent(inode, ordered, 1);
7475 			else
7476 				ret = -ENOTBLK;
7477 			btrfs_put_ordered_extent(ordered);
7478 		} else {
7479 			/*
7480 			 * We could trigger writeback for this range (and wait
7481 			 * for it to complete) and then invalidate the pages for
7482 			 * this range (through invalidate_inode_pages2_range()),
7483 			 * but that can lead us to a deadlock with a concurrent
7484 			 * call to readpages() (a buffered read or a defrag call
7485 			 * triggered a readahead) on a page lock due to an
7486 			 * ordered dio extent we created before but did not have
7487 			 * yet a corresponding bio submitted (whence it can not
7488 			 * complete), which makes readpages() wait for that
7489 			 * ordered extent to complete while holding a lock on
7490 			 * that page.
7491 			 */
7492 			ret = -ENOTBLK;
7493 		}
7494 
7495 		if (ret)
7496 			break;
7497 
7498 		cond_resched();
7499 	}
7500 
7501 	return ret;
7502 }
7503 
7504 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7505 					   u64 len, u64 orig_start,
7506 					   u64 block_start, u64 block_len,
7507 					   u64 orig_block_len, u64 ram_bytes,
7508 					   int type)
7509 {
7510 	struct extent_map_tree *em_tree;
7511 	struct extent_map *em;
7512 	struct btrfs_root *root = BTRFS_I(inode)->root;
7513 	int ret;
7514 
7515 	em_tree = &BTRFS_I(inode)->extent_tree;
7516 	em = alloc_extent_map();
7517 	if (!em)
7518 		return ERR_PTR(-ENOMEM);
7519 
7520 	em->start = start;
7521 	em->orig_start = orig_start;
7522 	em->mod_start = start;
7523 	em->mod_len = len;
7524 	em->len = len;
7525 	em->block_len = block_len;
7526 	em->block_start = block_start;
7527 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7528 	em->orig_block_len = orig_block_len;
7529 	em->ram_bytes = ram_bytes;
7530 	em->generation = -1;
7531 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7532 	if (type == BTRFS_ORDERED_PREALLOC)
7533 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7534 
7535 	do {
7536 		btrfs_drop_extent_cache(inode, em->start,
7537 				em->start + em->len - 1, 0);
7538 		write_lock(&em_tree->lock);
7539 		ret = add_extent_mapping(em_tree, em, 1);
7540 		write_unlock(&em_tree->lock);
7541 	} while (ret == -EEXIST);
7542 
7543 	if (ret) {
7544 		free_extent_map(em);
7545 		return ERR_PTR(ret);
7546 	}
7547 
7548 	return em;
7549 }
7550 
7551 static void adjust_dio_outstanding_extents(struct inode *inode,
7552 					   struct btrfs_dio_data *dio_data,
7553 					   const u64 len)
7554 {
7555 	unsigned num_extents;
7556 
7557 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7558 					   BTRFS_MAX_EXTENT_SIZE);
7559 	/*
7560 	 * If we have an outstanding_extents count still set then we're
7561 	 * within our reservation, otherwise we need to adjust our inode
7562 	 * counter appropriately.
7563 	 */
7564 	if (dio_data->outstanding_extents) {
7565 		dio_data->outstanding_extents -= num_extents;
7566 	} else {
7567 		spin_lock(&BTRFS_I(inode)->lock);
7568 		BTRFS_I(inode)->outstanding_extents += num_extents;
7569 		spin_unlock(&BTRFS_I(inode)->lock);
7570 	}
7571 }
7572 
7573 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7574 				   struct buffer_head *bh_result, int create)
7575 {
7576 	struct extent_map *em;
7577 	struct btrfs_root *root = BTRFS_I(inode)->root;
7578 	struct extent_state *cached_state = NULL;
7579 	struct btrfs_dio_data *dio_data = NULL;
7580 	u64 start = iblock << inode->i_blkbits;
7581 	u64 lockstart, lockend;
7582 	u64 len = bh_result->b_size;
7583 	int unlock_bits = EXTENT_LOCKED;
7584 	int ret = 0;
7585 
7586 	if (create)
7587 		unlock_bits |= EXTENT_DIRTY;
7588 	else
7589 		len = min_t(u64, len, root->sectorsize);
7590 
7591 	lockstart = start;
7592 	lockend = start + len - 1;
7593 
7594 	if (current->journal_info) {
7595 		/*
7596 		 * Need to pull our outstanding extents and set journal_info to NULL so
7597 		 * that anything that needs to check if there's a transaction doesn't get
7598 		 * confused.
7599 		 */
7600 		dio_data = current->journal_info;
7601 		current->journal_info = NULL;
7602 	}
7603 
7604 	/*
7605 	 * If this errors out it's because we couldn't invalidate pagecache for
7606 	 * this range and we need to fallback to buffered.
7607 	 */
7608 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7609 			       create)) {
7610 		ret = -ENOTBLK;
7611 		goto err;
7612 	}
7613 
7614 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7615 	if (IS_ERR(em)) {
7616 		ret = PTR_ERR(em);
7617 		goto unlock_err;
7618 	}
7619 
7620 	/*
7621 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7622 	 * io.  INLINE is special, and we could probably kludge it in here, but
7623 	 * it's still buffered so for safety lets just fall back to the generic
7624 	 * buffered path.
7625 	 *
7626 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7627 	 * decompress it, so there will be buffering required no matter what we
7628 	 * do, so go ahead and fallback to buffered.
7629 	 *
7630 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7631 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7632 	 * the generic code.
7633 	 */
7634 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7635 	    em->block_start == EXTENT_MAP_INLINE) {
7636 		free_extent_map(em);
7637 		ret = -ENOTBLK;
7638 		goto unlock_err;
7639 	}
7640 
7641 	/* Just a good old fashioned hole, return */
7642 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7643 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7644 		free_extent_map(em);
7645 		goto unlock_err;
7646 	}
7647 
7648 	/*
7649 	 * We don't allocate a new extent in the following cases
7650 	 *
7651 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7652 	 * existing extent.
7653 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7654 	 * just use the extent.
7655 	 *
7656 	 */
7657 	if (!create) {
7658 		len = min(len, em->len - (start - em->start));
7659 		lockstart = start + len;
7660 		goto unlock;
7661 	}
7662 
7663 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7664 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7665 	     em->block_start != EXTENT_MAP_HOLE)) {
7666 		int type;
7667 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7668 
7669 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7670 			type = BTRFS_ORDERED_PREALLOC;
7671 		else
7672 			type = BTRFS_ORDERED_NOCOW;
7673 		len = min(len, em->len - (start - em->start));
7674 		block_start = em->block_start + (start - em->start);
7675 
7676 		if (can_nocow_extent(inode, start, &len, &orig_start,
7677 				     &orig_block_len, &ram_bytes) == 1 &&
7678 		    btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7679 			struct extent_map *em2;
7680 
7681 			em2 = btrfs_create_dio_extent(inode, start, len,
7682 						      orig_start, block_start,
7683 						      len, orig_block_len,
7684 						      ram_bytes, type);
7685 			btrfs_dec_nocow_writers(root->fs_info, block_start);
7686 			if (type == BTRFS_ORDERED_PREALLOC) {
7687 				free_extent_map(em);
7688 				em = em2;
7689 			}
7690 			if (em2 && IS_ERR(em2)) {
7691 				ret = PTR_ERR(em2);
7692 				goto unlock_err;
7693 			}
7694 			goto unlock;
7695 		}
7696 	}
7697 
7698 	/*
7699 	 * this will cow the extent, reset the len in case we changed
7700 	 * it above
7701 	 */
7702 	len = bh_result->b_size;
7703 	free_extent_map(em);
7704 	em = btrfs_new_extent_direct(inode, start, len);
7705 	if (IS_ERR(em)) {
7706 		ret = PTR_ERR(em);
7707 		goto unlock_err;
7708 	}
7709 	len = min(len, em->len - (start - em->start));
7710 unlock:
7711 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7712 		inode->i_blkbits;
7713 	bh_result->b_size = len;
7714 	bh_result->b_bdev = em->bdev;
7715 	set_buffer_mapped(bh_result);
7716 	if (create) {
7717 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7718 			set_buffer_new(bh_result);
7719 
7720 		/*
7721 		 * Need to update the i_size under the extent lock so buffered
7722 		 * readers will get the updated i_size when we unlock.
7723 		 */
7724 		if (start + len > i_size_read(inode))
7725 			i_size_write(inode, start + len);
7726 
7727 		adjust_dio_outstanding_extents(inode, dio_data, len);
7728 		btrfs_free_reserved_data_space(inode, start, len);
7729 		WARN_ON(dio_data->reserve < len);
7730 		dio_data->reserve -= len;
7731 		dio_data->unsubmitted_oe_range_end = start + len;
7732 		current->journal_info = dio_data;
7733 	}
7734 
7735 	/*
7736 	 * In the case of write we need to clear and unlock the entire range,
7737 	 * in the case of read we need to unlock only the end area that we
7738 	 * aren't using if there is any left over space.
7739 	 */
7740 	if (lockstart < lockend) {
7741 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7742 				 lockend, unlock_bits, 1, 0,
7743 				 &cached_state, GFP_NOFS);
7744 	} else {
7745 		free_extent_state(cached_state);
7746 	}
7747 
7748 	free_extent_map(em);
7749 
7750 	return 0;
7751 
7752 unlock_err:
7753 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7754 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7755 err:
7756 	if (dio_data)
7757 		current->journal_info = dio_data;
7758 	/*
7759 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7760 	 * write less data then expected, so that we don't underflow our inode's
7761 	 * outstanding extents counter.
7762 	 */
7763 	if (create && dio_data)
7764 		adjust_dio_outstanding_extents(inode, dio_data, len);
7765 
7766 	return ret;
7767 }
7768 
7769 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7770 					int rw, int mirror_num)
7771 {
7772 	struct btrfs_root *root = BTRFS_I(inode)->root;
7773 	int ret;
7774 
7775 	BUG_ON(rw & REQ_WRITE);
7776 
7777 	bio_get(bio);
7778 
7779 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7780 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7781 	if (ret)
7782 		goto err;
7783 
7784 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7785 err:
7786 	bio_put(bio);
7787 	return ret;
7788 }
7789 
7790 static int btrfs_check_dio_repairable(struct inode *inode,
7791 				      struct bio *failed_bio,
7792 				      struct io_failure_record *failrec,
7793 				      int failed_mirror)
7794 {
7795 	int num_copies;
7796 
7797 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7798 				      failrec->logical, failrec->len);
7799 	if (num_copies == 1) {
7800 		/*
7801 		 * we only have a single copy of the data, so don't bother with
7802 		 * all the retry and error correction code that follows. no
7803 		 * matter what the error is, it is very likely to persist.
7804 		 */
7805 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7806 			 num_copies, failrec->this_mirror, failed_mirror);
7807 		return 0;
7808 	}
7809 
7810 	failrec->failed_mirror = failed_mirror;
7811 	failrec->this_mirror++;
7812 	if (failrec->this_mirror == failed_mirror)
7813 		failrec->this_mirror++;
7814 
7815 	if (failrec->this_mirror > num_copies) {
7816 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7817 			 num_copies, failrec->this_mirror, failed_mirror);
7818 		return 0;
7819 	}
7820 
7821 	return 1;
7822 }
7823 
7824 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7825 			struct page *page, unsigned int pgoff,
7826 			u64 start, u64 end, int failed_mirror,
7827 			bio_end_io_t *repair_endio, void *repair_arg)
7828 {
7829 	struct io_failure_record *failrec;
7830 	struct bio *bio;
7831 	int isector;
7832 	int read_mode;
7833 	int ret;
7834 
7835 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7836 
7837 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7838 	if (ret)
7839 		return ret;
7840 
7841 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7842 					 failed_mirror);
7843 	if (!ret) {
7844 		free_io_failure(inode, failrec);
7845 		return -EIO;
7846 	}
7847 
7848 	if ((failed_bio->bi_vcnt > 1)
7849 		|| (failed_bio->bi_io_vec->bv_len
7850 			> BTRFS_I(inode)->root->sectorsize))
7851 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7852 	else
7853 		read_mode = READ_SYNC;
7854 
7855 	isector = start - btrfs_io_bio(failed_bio)->logical;
7856 	isector >>= inode->i_sb->s_blocksize_bits;
7857 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7858 				pgoff, isector, repair_endio, repair_arg);
7859 	if (!bio) {
7860 		free_io_failure(inode, failrec);
7861 		return -EIO;
7862 	}
7863 
7864 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7865 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7866 		    read_mode, failrec->this_mirror, failrec->in_validation);
7867 
7868 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7869 				    failrec->this_mirror);
7870 	if (ret) {
7871 		free_io_failure(inode, failrec);
7872 		bio_put(bio);
7873 	}
7874 
7875 	return ret;
7876 }
7877 
7878 struct btrfs_retry_complete {
7879 	struct completion done;
7880 	struct inode *inode;
7881 	u64 start;
7882 	int uptodate;
7883 };
7884 
7885 static void btrfs_retry_endio_nocsum(struct bio *bio)
7886 {
7887 	struct btrfs_retry_complete *done = bio->bi_private;
7888 	struct inode *inode;
7889 	struct bio_vec *bvec;
7890 	int i;
7891 
7892 	if (bio->bi_error)
7893 		goto end;
7894 
7895 	ASSERT(bio->bi_vcnt == 1);
7896 	inode = bio->bi_io_vec->bv_page->mapping->host;
7897 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7898 
7899 	done->uptodate = 1;
7900 	bio_for_each_segment_all(bvec, bio, i)
7901 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7902 end:
7903 	complete(&done->done);
7904 	bio_put(bio);
7905 }
7906 
7907 static int __btrfs_correct_data_nocsum(struct inode *inode,
7908 				       struct btrfs_io_bio *io_bio)
7909 {
7910 	struct btrfs_fs_info *fs_info;
7911 	struct bio_vec *bvec;
7912 	struct btrfs_retry_complete done;
7913 	u64 start;
7914 	unsigned int pgoff;
7915 	u32 sectorsize;
7916 	int nr_sectors;
7917 	int i;
7918 	int ret;
7919 
7920 	fs_info = BTRFS_I(inode)->root->fs_info;
7921 	sectorsize = BTRFS_I(inode)->root->sectorsize;
7922 
7923 	start = io_bio->logical;
7924 	done.inode = inode;
7925 
7926 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7927 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7928 		pgoff = bvec->bv_offset;
7929 
7930 next_block_or_try_again:
7931 		done.uptodate = 0;
7932 		done.start = start;
7933 		init_completion(&done.done);
7934 
7935 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7936 				pgoff, start, start + sectorsize - 1,
7937 				io_bio->mirror_num,
7938 				btrfs_retry_endio_nocsum, &done);
7939 		if (ret)
7940 			return ret;
7941 
7942 		wait_for_completion(&done.done);
7943 
7944 		if (!done.uptodate) {
7945 			/* We might have another mirror, so try again */
7946 			goto next_block_or_try_again;
7947 		}
7948 
7949 		start += sectorsize;
7950 
7951 		if (nr_sectors--) {
7952 			pgoff += sectorsize;
7953 			goto next_block_or_try_again;
7954 		}
7955 	}
7956 
7957 	return 0;
7958 }
7959 
7960 static void btrfs_retry_endio(struct bio *bio)
7961 {
7962 	struct btrfs_retry_complete *done = bio->bi_private;
7963 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7964 	struct inode *inode;
7965 	struct bio_vec *bvec;
7966 	u64 start;
7967 	int uptodate;
7968 	int ret;
7969 	int i;
7970 
7971 	if (bio->bi_error)
7972 		goto end;
7973 
7974 	uptodate = 1;
7975 
7976 	start = done->start;
7977 
7978 	ASSERT(bio->bi_vcnt == 1);
7979 	inode = bio->bi_io_vec->bv_page->mapping->host;
7980 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7981 
7982 	bio_for_each_segment_all(bvec, bio, i) {
7983 		ret = __readpage_endio_check(done->inode, io_bio, i,
7984 					bvec->bv_page, bvec->bv_offset,
7985 					done->start, bvec->bv_len);
7986 		if (!ret)
7987 			clean_io_failure(done->inode, done->start,
7988 					bvec->bv_page, bvec->bv_offset);
7989 		else
7990 			uptodate = 0;
7991 	}
7992 
7993 	done->uptodate = uptodate;
7994 end:
7995 	complete(&done->done);
7996 	bio_put(bio);
7997 }
7998 
7999 static int __btrfs_subio_endio_read(struct inode *inode,
8000 				    struct btrfs_io_bio *io_bio, int err)
8001 {
8002 	struct btrfs_fs_info *fs_info;
8003 	struct bio_vec *bvec;
8004 	struct btrfs_retry_complete done;
8005 	u64 start;
8006 	u64 offset = 0;
8007 	u32 sectorsize;
8008 	int nr_sectors;
8009 	unsigned int pgoff;
8010 	int csum_pos;
8011 	int i;
8012 	int ret;
8013 
8014 	fs_info = BTRFS_I(inode)->root->fs_info;
8015 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8016 
8017 	err = 0;
8018 	start = io_bio->logical;
8019 	done.inode = inode;
8020 
8021 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8022 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8023 
8024 		pgoff = bvec->bv_offset;
8025 next_block:
8026 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8027 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8028 					bvec->bv_page, pgoff, start,
8029 					sectorsize);
8030 		if (likely(!ret))
8031 			goto next;
8032 try_again:
8033 		done.uptodate = 0;
8034 		done.start = start;
8035 		init_completion(&done.done);
8036 
8037 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8038 				pgoff, start, start + sectorsize - 1,
8039 				io_bio->mirror_num,
8040 				btrfs_retry_endio, &done);
8041 		if (ret) {
8042 			err = ret;
8043 			goto next;
8044 		}
8045 
8046 		wait_for_completion(&done.done);
8047 
8048 		if (!done.uptodate) {
8049 			/* We might have another mirror, so try again */
8050 			goto try_again;
8051 		}
8052 next:
8053 		offset += sectorsize;
8054 		start += sectorsize;
8055 
8056 		ASSERT(nr_sectors);
8057 
8058 		if (--nr_sectors) {
8059 			pgoff += sectorsize;
8060 			goto next_block;
8061 		}
8062 	}
8063 
8064 	return err;
8065 }
8066 
8067 static int btrfs_subio_endio_read(struct inode *inode,
8068 				  struct btrfs_io_bio *io_bio, int err)
8069 {
8070 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8071 
8072 	if (skip_csum) {
8073 		if (unlikely(err))
8074 			return __btrfs_correct_data_nocsum(inode, io_bio);
8075 		else
8076 			return 0;
8077 	} else {
8078 		return __btrfs_subio_endio_read(inode, io_bio, err);
8079 	}
8080 }
8081 
8082 static void btrfs_endio_direct_read(struct bio *bio)
8083 {
8084 	struct btrfs_dio_private *dip = bio->bi_private;
8085 	struct inode *inode = dip->inode;
8086 	struct bio *dio_bio;
8087 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8088 	int err = bio->bi_error;
8089 
8090 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8091 		err = btrfs_subio_endio_read(inode, io_bio, err);
8092 
8093 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8094 		      dip->logical_offset + dip->bytes - 1);
8095 	dio_bio = dip->dio_bio;
8096 
8097 	kfree(dip);
8098 
8099 	dio_bio->bi_error = bio->bi_error;
8100 	dio_end_io(dio_bio, bio->bi_error);
8101 
8102 	if (io_bio->end_io)
8103 		io_bio->end_io(io_bio, err);
8104 	bio_put(bio);
8105 }
8106 
8107 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8108 						    const u64 offset,
8109 						    const u64 bytes,
8110 						    const int uptodate)
8111 {
8112 	struct btrfs_root *root = BTRFS_I(inode)->root;
8113 	struct btrfs_ordered_extent *ordered = NULL;
8114 	u64 ordered_offset = offset;
8115 	u64 ordered_bytes = bytes;
8116 	int ret;
8117 
8118 again:
8119 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8120 						   &ordered_offset,
8121 						   ordered_bytes,
8122 						   uptodate);
8123 	if (!ret)
8124 		goto out_test;
8125 
8126 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8127 			finish_ordered_fn, NULL, NULL);
8128 	btrfs_queue_work(root->fs_info->endio_write_workers,
8129 			 &ordered->work);
8130 out_test:
8131 	/*
8132 	 * our bio might span multiple ordered extents.  If we haven't
8133 	 * completed the accounting for the whole dio, go back and try again
8134 	 */
8135 	if (ordered_offset < offset + bytes) {
8136 		ordered_bytes = offset + bytes - ordered_offset;
8137 		ordered = NULL;
8138 		goto again;
8139 	}
8140 }
8141 
8142 static void btrfs_endio_direct_write(struct bio *bio)
8143 {
8144 	struct btrfs_dio_private *dip = bio->bi_private;
8145 	struct bio *dio_bio = dip->dio_bio;
8146 
8147 	btrfs_endio_direct_write_update_ordered(dip->inode,
8148 						dip->logical_offset,
8149 						dip->bytes,
8150 						!bio->bi_error);
8151 
8152 	kfree(dip);
8153 
8154 	dio_bio->bi_error = bio->bi_error;
8155 	dio_end_io(dio_bio, bio->bi_error);
8156 	bio_put(bio);
8157 }
8158 
8159 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8160 				    struct bio *bio, int mirror_num,
8161 				    unsigned long bio_flags, u64 offset)
8162 {
8163 	int ret;
8164 	struct btrfs_root *root = BTRFS_I(inode)->root;
8165 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8166 	BUG_ON(ret); /* -ENOMEM */
8167 	return 0;
8168 }
8169 
8170 static void btrfs_end_dio_bio(struct bio *bio)
8171 {
8172 	struct btrfs_dio_private *dip = bio->bi_private;
8173 	int err = bio->bi_error;
8174 
8175 	if (err)
8176 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8177 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8178 			   btrfs_ino(dip->inode), bio->bi_rw,
8179 			   (unsigned long long)bio->bi_iter.bi_sector,
8180 			   bio->bi_iter.bi_size, err);
8181 
8182 	if (dip->subio_endio)
8183 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8184 
8185 	if (err) {
8186 		dip->errors = 1;
8187 
8188 		/*
8189 		 * before atomic variable goto zero, we must make sure
8190 		 * dip->errors is perceived to be set.
8191 		 */
8192 		smp_mb__before_atomic();
8193 	}
8194 
8195 	/* if there are more bios still pending for this dio, just exit */
8196 	if (!atomic_dec_and_test(&dip->pending_bios))
8197 		goto out;
8198 
8199 	if (dip->errors) {
8200 		bio_io_error(dip->orig_bio);
8201 	} else {
8202 		dip->dio_bio->bi_error = 0;
8203 		bio_endio(dip->orig_bio);
8204 	}
8205 out:
8206 	bio_put(bio);
8207 }
8208 
8209 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8210 				       u64 first_sector, gfp_t gfp_flags)
8211 {
8212 	struct bio *bio;
8213 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8214 	if (bio)
8215 		bio_associate_current(bio);
8216 	return bio;
8217 }
8218 
8219 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8220 						 struct inode *inode,
8221 						 struct btrfs_dio_private *dip,
8222 						 struct bio *bio,
8223 						 u64 file_offset)
8224 {
8225 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8226 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8227 	int ret;
8228 
8229 	/*
8230 	 * We load all the csum data we need when we submit
8231 	 * the first bio to reduce the csum tree search and
8232 	 * contention.
8233 	 */
8234 	if (dip->logical_offset == file_offset) {
8235 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8236 						file_offset);
8237 		if (ret)
8238 			return ret;
8239 	}
8240 
8241 	if (bio == dip->orig_bio)
8242 		return 0;
8243 
8244 	file_offset -= dip->logical_offset;
8245 	file_offset >>= inode->i_sb->s_blocksize_bits;
8246 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8247 
8248 	return 0;
8249 }
8250 
8251 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8252 					 int rw, u64 file_offset, int skip_sum,
8253 					 int async_submit)
8254 {
8255 	struct btrfs_dio_private *dip = bio->bi_private;
8256 	int write = rw & REQ_WRITE;
8257 	struct btrfs_root *root = BTRFS_I(inode)->root;
8258 	int ret;
8259 
8260 	if (async_submit)
8261 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8262 
8263 	bio_get(bio);
8264 
8265 	if (!write) {
8266 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8267 				BTRFS_WQ_ENDIO_DATA);
8268 		if (ret)
8269 			goto err;
8270 	}
8271 
8272 	if (skip_sum)
8273 		goto map;
8274 
8275 	if (write && async_submit) {
8276 		ret = btrfs_wq_submit_bio(root->fs_info,
8277 				   inode, rw, bio, 0, 0,
8278 				   file_offset,
8279 				   __btrfs_submit_bio_start_direct_io,
8280 				   __btrfs_submit_bio_done);
8281 		goto err;
8282 	} else if (write) {
8283 		/*
8284 		 * If we aren't doing async submit, calculate the csum of the
8285 		 * bio now.
8286 		 */
8287 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8288 		if (ret)
8289 			goto err;
8290 	} else {
8291 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8292 						     file_offset);
8293 		if (ret)
8294 			goto err;
8295 	}
8296 map:
8297 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8298 err:
8299 	bio_put(bio);
8300 	return ret;
8301 }
8302 
8303 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8304 				    int skip_sum)
8305 {
8306 	struct inode *inode = dip->inode;
8307 	struct btrfs_root *root = BTRFS_I(inode)->root;
8308 	struct bio *bio;
8309 	struct bio *orig_bio = dip->orig_bio;
8310 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8311 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8312 	u64 file_offset = dip->logical_offset;
8313 	u64 submit_len = 0;
8314 	u64 map_length;
8315 	u32 blocksize = root->sectorsize;
8316 	int async_submit = 0;
8317 	int nr_sectors;
8318 	int ret;
8319 	int i;
8320 
8321 	map_length = orig_bio->bi_iter.bi_size;
8322 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8323 			      &map_length, NULL, 0);
8324 	if (ret)
8325 		return -EIO;
8326 
8327 	if (map_length >= orig_bio->bi_iter.bi_size) {
8328 		bio = orig_bio;
8329 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8330 		goto submit;
8331 	}
8332 
8333 	/* async crcs make it difficult to collect full stripe writes. */
8334 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8335 		async_submit = 0;
8336 	else
8337 		async_submit = 1;
8338 
8339 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8340 	if (!bio)
8341 		return -ENOMEM;
8342 
8343 	bio->bi_private = dip;
8344 	bio->bi_end_io = btrfs_end_dio_bio;
8345 	btrfs_io_bio(bio)->logical = file_offset;
8346 	atomic_inc(&dip->pending_bios);
8347 
8348 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8349 		nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8350 		i = 0;
8351 next_block:
8352 		if (unlikely(map_length < submit_len + blocksize ||
8353 		    bio_add_page(bio, bvec->bv_page, blocksize,
8354 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8355 			/*
8356 			 * inc the count before we submit the bio so
8357 			 * we know the end IO handler won't happen before
8358 			 * we inc the count. Otherwise, the dip might get freed
8359 			 * before we're done setting it up
8360 			 */
8361 			atomic_inc(&dip->pending_bios);
8362 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8363 						     file_offset, skip_sum,
8364 						     async_submit);
8365 			if (ret) {
8366 				bio_put(bio);
8367 				atomic_dec(&dip->pending_bios);
8368 				goto out_err;
8369 			}
8370 
8371 			start_sector += submit_len >> 9;
8372 			file_offset += submit_len;
8373 
8374 			submit_len = 0;
8375 
8376 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8377 						  start_sector, GFP_NOFS);
8378 			if (!bio)
8379 				goto out_err;
8380 			bio->bi_private = dip;
8381 			bio->bi_end_io = btrfs_end_dio_bio;
8382 			btrfs_io_bio(bio)->logical = file_offset;
8383 
8384 			map_length = orig_bio->bi_iter.bi_size;
8385 			ret = btrfs_map_block(root->fs_info, rw,
8386 					      start_sector << 9,
8387 					      &map_length, NULL, 0);
8388 			if (ret) {
8389 				bio_put(bio);
8390 				goto out_err;
8391 			}
8392 
8393 			goto next_block;
8394 		} else {
8395 			submit_len += blocksize;
8396 			if (--nr_sectors) {
8397 				i++;
8398 				goto next_block;
8399 			}
8400 			bvec++;
8401 		}
8402 	}
8403 
8404 submit:
8405 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8406 				     async_submit);
8407 	if (!ret)
8408 		return 0;
8409 
8410 	bio_put(bio);
8411 out_err:
8412 	dip->errors = 1;
8413 	/*
8414 	 * before atomic variable goto zero, we must
8415 	 * make sure dip->errors is perceived to be set.
8416 	 */
8417 	smp_mb__before_atomic();
8418 	if (atomic_dec_and_test(&dip->pending_bios))
8419 		bio_io_error(dip->orig_bio);
8420 
8421 	/* bio_end_io() will handle error, so we needn't return it */
8422 	return 0;
8423 }
8424 
8425 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8426 				struct inode *inode, loff_t file_offset)
8427 {
8428 	struct btrfs_dio_private *dip = NULL;
8429 	struct bio *io_bio = NULL;
8430 	struct btrfs_io_bio *btrfs_bio;
8431 	int skip_sum;
8432 	int write = rw & REQ_WRITE;
8433 	int ret = 0;
8434 
8435 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8436 
8437 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8438 	if (!io_bio) {
8439 		ret = -ENOMEM;
8440 		goto free_ordered;
8441 	}
8442 
8443 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8444 	if (!dip) {
8445 		ret = -ENOMEM;
8446 		goto free_ordered;
8447 	}
8448 
8449 	dip->private = dio_bio->bi_private;
8450 	dip->inode = inode;
8451 	dip->logical_offset = file_offset;
8452 	dip->bytes = dio_bio->bi_iter.bi_size;
8453 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8454 	io_bio->bi_private = dip;
8455 	dip->orig_bio = io_bio;
8456 	dip->dio_bio = dio_bio;
8457 	atomic_set(&dip->pending_bios, 0);
8458 	btrfs_bio = btrfs_io_bio(io_bio);
8459 	btrfs_bio->logical = file_offset;
8460 
8461 	if (write) {
8462 		io_bio->bi_end_io = btrfs_endio_direct_write;
8463 	} else {
8464 		io_bio->bi_end_io = btrfs_endio_direct_read;
8465 		dip->subio_endio = btrfs_subio_endio_read;
8466 	}
8467 
8468 	/*
8469 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8470 	 * even if we fail to submit a bio, because in such case we do the
8471 	 * corresponding error handling below and it must not be done a second
8472 	 * time by btrfs_direct_IO().
8473 	 */
8474 	if (write) {
8475 		struct btrfs_dio_data *dio_data = current->journal_info;
8476 
8477 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8478 			dip->bytes;
8479 		dio_data->unsubmitted_oe_range_start =
8480 			dio_data->unsubmitted_oe_range_end;
8481 	}
8482 
8483 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8484 	if (!ret)
8485 		return;
8486 
8487 	if (btrfs_bio->end_io)
8488 		btrfs_bio->end_io(btrfs_bio, ret);
8489 
8490 free_ordered:
8491 	/*
8492 	 * If we arrived here it means either we failed to submit the dip
8493 	 * or we either failed to clone the dio_bio or failed to allocate the
8494 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8495 	 * call bio_endio against our io_bio so that we get proper resource
8496 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8497 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8498 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8499 	 */
8500 	if (io_bio && dip) {
8501 		io_bio->bi_error = -EIO;
8502 		bio_endio(io_bio);
8503 		/*
8504 		 * The end io callbacks free our dip, do the final put on io_bio
8505 		 * and all the cleanup and final put for dio_bio (through
8506 		 * dio_end_io()).
8507 		 */
8508 		dip = NULL;
8509 		io_bio = NULL;
8510 	} else {
8511 		if (write)
8512 			btrfs_endio_direct_write_update_ordered(inode,
8513 						file_offset,
8514 						dio_bio->bi_iter.bi_size,
8515 						0);
8516 		else
8517 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8518 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8519 
8520 		dio_bio->bi_error = -EIO;
8521 		/*
8522 		 * Releases and cleans up our dio_bio, no need to bio_put()
8523 		 * nor bio_endio()/bio_io_error() against dio_bio.
8524 		 */
8525 		dio_end_io(dio_bio, ret);
8526 	}
8527 	if (io_bio)
8528 		bio_put(io_bio);
8529 	kfree(dip);
8530 }
8531 
8532 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8533 			const struct iov_iter *iter, loff_t offset)
8534 {
8535 	int seg;
8536 	int i;
8537 	unsigned blocksize_mask = root->sectorsize - 1;
8538 	ssize_t retval = -EINVAL;
8539 
8540 	if (offset & blocksize_mask)
8541 		goto out;
8542 
8543 	if (iov_iter_alignment(iter) & blocksize_mask)
8544 		goto out;
8545 
8546 	/* If this is a write we don't need to check anymore */
8547 	if (iov_iter_rw(iter) == WRITE)
8548 		return 0;
8549 	/*
8550 	 * Check to make sure we don't have duplicate iov_base's in this
8551 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8552 	 * when reading back.
8553 	 */
8554 	for (seg = 0; seg < iter->nr_segs; seg++) {
8555 		for (i = seg + 1; i < iter->nr_segs; i++) {
8556 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8557 				goto out;
8558 		}
8559 	}
8560 	retval = 0;
8561 out:
8562 	return retval;
8563 }
8564 
8565 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8566 {
8567 	struct file *file = iocb->ki_filp;
8568 	struct inode *inode = file->f_mapping->host;
8569 	struct btrfs_root *root = BTRFS_I(inode)->root;
8570 	struct btrfs_dio_data dio_data = { 0 };
8571 	loff_t offset = iocb->ki_pos;
8572 	size_t count = 0;
8573 	int flags = 0;
8574 	bool wakeup = true;
8575 	bool relock = false;
8576 	ssize_t ret;
8577 
8578 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8579 		return 0;
8580 
8581 	inode_dio_begin(inode);
8582 	smp_mb__after_atomic();
8583 
8584 	/*
8585 	 * The generic stuff only does filemap_write_and_wait_range, which
8586 	 * isn't enough if we've written compressed pages to this area, so
8587 	 * we need to flush the dirty pages again to make absolutely sure
8588 	 * that any outstanding dirty pages are on disk.
8589 	 */
8590 	count = iov_iter_count(iter);
8591 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8592 		     &BTRFS_I(inode)->runtime_flags))
8593 		filemap_fdatawrite_range(inode->i_mapping, offset,
8594 					 offset + count - 1);
8595 
8596 	if (iov_iter_rw(iter) == WRITE) {
8597 		/*
8598 		 * If the write DIO is beyond the EOF, we need update
8599 		 * the isize, but it is protected by i_mutex. So we can
8600 		 * not unlock the i_mutex at this case.
8601 		 */
8602 		if (offset + count <= inode->i_size) {
8603 			inode_unlock(inode);
8604 			relock = true;
8605 		}
8606 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8607 		if (ret)
8608 			goto out;
8609 		dio_data.outstanding_extents = div64_u64(count +
8610 						BTRFS_MAX_EXTENT_SIZE - 1,
8611 						BTRFS_MAX_EXTENT_SIZE);
8612 
8613 		/*
8614 		 * We need to know how many extents we reserved so that we can
8615 		 * do the accounting properly if we go over the number we
8616 		 * originally calculated.  Abuse current->journal_info for this.
8617 		 */
8618 		dio_data.reserve = round_up(count, root->sectorsize);
8619 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8620 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8621 		current->journal_info = &dio_data;
8622 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8623 				     &BTRFS_I(inode)->runtime_flags)) {
8624 		inode_dio_end(inode);
8625 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8626 		wakeup = false;
8627 	}
8628 
8629 	ret = __blockdev_direct_IO(iocb, inode,
8630 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8631 				   iter, btrfs_get_blocks_direct, NULL,
8632 				   btrfs_submit_direct, flags);
8633 	if (iov_iter_rw(iter) == WRITE) {
8634 		current->journal_info = NULL;
8635 		if (ret < 0 && ret != -EIOCBQUEUED) {
8636 			if (dio_data.reserve)
8637 				btrfs_delalloc_release_space(inode, offset,
8638 							     dio_data.reserve);
8639 			/*
8640 			 * On error we might have left some ordered extents
8641 			 * without submitting corresponding bios for them, so
8642 			 * cleanup them up to avoid other tasks getting them
8643 			 * and waiting for them to complete forever.
8644 			 */
8645 			if (dio_data.unsubmitted_oe_range_start <
8646 			    dio_data.unsubmitted_oe_range_end)
8647 				btrfs_endio_direct_write_update_ordered(inode,
8648 					dio_data.unsubmitted_oe_range_start,
8649 					dio_data.unsubmitted_oe_range_end -
8650 					dio_data.unsubmitted_oe_range_start,
8651 					0);
8652 		} else if (ret >= 0 && (size_t)ret < count)
8653 			btrfs_delalloc_release_space(inode, offset,
8654 						     count - (size_t)ret);
8655 	}
8656 out:
8657 	if (wakeup)
8658 		inode_dio_end(inode);
8659 	if (relock)
8660 		inode_lock(inode);
8661 
8662 	return ret;
8663 }
8664 
8665 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8666 
8667 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8668 		__u64 start, __u64 len)
8669 {
8670 	int	ret;
8671 
8672 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8673 	if (ret)
8674 		return ret;
8675 
8676 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8677 }
8678 
8679 int btrfs_readpage(struct file *file, struct page *page)
8680 {
8681 	struct extent_io_tree *tree;
8682 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8683 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8684 }
8685 
8686 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8687 {
8688 	struct extent_io_tree *tree;
8689 	struct inode *inode = page->mapping->host;
8690 	int ret;
8691 
8692 	if (current->flags & PF_MEMALLOC) {
8693 		redirty_page_for_writepage(wbc, page);
8694 		unlock_page(page);
8695 		return 0;
8696 	}
8697 
8698 	/*
8699 	 * If we are under memory pressure we will call this directly from the
8700 	 * VM, we need to make sure we have the inode referenced for the ordered
8701 	 * extent.  If not just return like we didn't do anything.
8702 	 */
8703 	if (!igrab(inode)) {
8704 		redirty_page_for_writepage(wbc, page);
8705 		return AOP_WRITEPAGE_ACTIVATE;
8706 	}
8707 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8708 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8709 	btrfs_add_delayed_iput(inode);
8710 	return ret;
8711 }
8712 
8713 static int btrfs_writepages(struct address_space *mapping,
8714 			    struct writeback_control *wbc)
8715 {
8716 	struct extent_io_tree *tree;
8717 
8718 	tree = &BTRFS_I(mapping->host)->io_tree;
8719 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8720 }
8721 
8722 static int
8723 btrfs_readpages(struct file *file, struct address_space *mapping,
8724 		struct list_head *pages, unsigned nr_pages)
8725 {
8726 	struct extent_io_tree *tree;
8727 	tree = &BTRFS_I(mapping->host)->io_tree;
8728 	return extent_readpages(tree, mapping, pages, nr_pages,
8729 				btrfs_get_extent);
8730 }
8731 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8732 {
8733 	struct extent_io_tree *tree;
8734 	struct extent_map_tree *map;
8735 	int ret;
8736 
8737 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8738 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8739 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8740 	if (ret == 1) {
8741 		ClearPagePrivate(page);
8742 		set_page_private(page, 0);
8743 		put_page(page);
8744 	}
8745 	return ret;
8746 }
8747 
8748 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8749 {
8750 	if (PageWriteback(page) || PageDirty(page))
8751 		return 0;
8752 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8753 }
8754 
8755 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8756 				 unsigned int length)
8757 {
8758 	struct inode *inode = page->mapping->host;
8759 	struct extent_io_tree *tree;
8760 	struct btrfs_ordered_extent *ordered;
8761 	struct extent_state *cached_state = NULL;
8762 	u64 page_start = page_offset(page);
8763 	u64 page_end = page_start + PAGE_SIZE - 1;
8764 	u64 start;
8765 	u64 end;
8766 	int inode_evicting = inode->i_state & I_FREEING;
8767 
8768 	/*
8769 	 * we have the page locked, so new writeback can't start,
8770 	 * and the dirty bit won't be cleared while we are here.
8771 	 *
8772 	 * Wait for IO on this page so that we can safely clear
8773 	 * the PagePrivate2 bit and do ordered accounting
8774 	 */
8775 	wait_on_page_writeback(page);
8776 
8777 	tree = &BTRFS_I(inode)->io_tree;
8778 	if (offset) {
8779 		btrfs_releasepage(page, GFP_NOFS);
8780 		return;
8781 	}
8782 
8783 	if (!inode_evicting)
8784 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8785 again:
8786 	start = page_start;
8787 	ordered = btrfs_lookup_ordered_range(inode, start,
8788 					page_end - start + 1);
8789 	if (ordered) {
8790 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8791 		/*
8792 		 * IO on this page will never be started, so we need
8793 		 * to account for any ordered extents now
8794 		 */
8795 		if (!inode_evicting)
8796 			clear_extent_bit(tree, start, end,
8797 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8798 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8799 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8800 					 GFP_NOFS);
8801 		/*
8802 		 * whoever cleared the private bit is responsible
8803 		 * for the finish_ordered_io
8804 		 */
8805 		if (TestClearPagePrivate2(page)) {
8806 			struct btrfs_ordered_inode_tree *tree;
8807 			u64 new_len;
8808 
8809 			tree = &BTRFS_I(inode)->ordered_tree;
8810 
8811 			spin_lock_irq(&tree->lock);
8812 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8813 			new_len = start - ordered->file_offset;
8814 			if (new_len < ordered->truncated_len)
8815 				ordered->truncated_len = new_len;
8816 			spin_unlock_irq(&tree->lock);
8817 
8818 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8819 							   start,
8820 							   end - start + 1, 1))
8821 				btrfs_finish_ordered_io(ordered);
8822 		}
8823 		btrfs_put_ordered_extent(ordered);
8824 		if (!inode_evicting) {
8825 			cached_state = NULL;
8826 			lock_extent_bits(tree, start, end,
8827 					 &cached_state);
8828 		}
8829 
8830 		start = end + 1;
8831 		if (start < page_end)
8832 			goto again;
8833 	}
8834 
8835 	/*
8836 	 * Qgroup reserved space handler
8837 	 * Page here will be either
8838 	 * 1) Already written to disk
8839 	 *    In this case, its reserved space is released from data rsv map
8840 	 *    and will be freed by delayed_ref handler finally.
8841 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8842 	 *    space.
8843 	 * 2) Not written to disk
8844 	 *    This means the reserved space should be freed here.
8845 	 */
8846 	btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8847 	if (!inode_evicting) {
8848 		clear_extent_bit(tree, page_start, page_end,
8849 				 EXTENT_LOCKED | EXTENT_DIRTY |
8850 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8851 				 EXTENT_DEFRAG, 1, 1,
8852 				 &cached_state, GFP_NOFS);
8853 
8854 		__btrfs_releasepage(page, GFP_NOFS);
8855 	}
8856 
8857 	ClearPageChecked(page);
8858 	if (PagePrivate(page)) {
8859 		ClearPagePrivate(page);
8860 		set_page_private(page, 0);
8861 		put_page(page);
8862 	}
8863 }
8864 
8865 /*
8866  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8867  * called from a page fault handler when a page is first dirtied. Hence we must
8868  * be careful to check for EOF conditions here. We set the page up correctly
8869  * for a written page which means we get ENOSPC checking when writing into
8870  * holes and correct delalloc and unwritten extent mapping on filesystems that
8871  * support these features.
8872  *
8873  * We are not allowed to take the i_mutex here so we have to play games to
8874  * protect against truncate races as the page could now be beyond EOF.  Because
8875  * vmtruncate() writes the inode size before removing pages, once we have the
8876  * page lock we can determine safely if the page is beyond EOF. If it is not
8877  * beyond EOF, then the page is guaranteed safe against truncation until we
8878  * unlock the page.
8879  */
8880 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8881 {
8882 	struct page *page = vmf->page;
8883 	struct inode *inode = file_inode(vma->vm_file);
8884 	struct btrfs_root *root = BTRFS_I(inode)->root;
8885 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8886 	struct btrfs_ordered_extent *ordered;
8887 	struct extent_state *cached_state = NULL;
8888 	char *kaddr;
8889 	unsigned long zero_start;
8890 	loff_t size;
8891 	int ret;
8892 	int reserved = 0;
8893 	u64 reserved_space;
8894 	u64 page_start;
8895 	u64 page_end;
8896 	u64 end;
8897 
8898 	reserved_space = PAGE_SIZE;
8899 
8900 	sb_start_pagefault(inode->i_sb);
8901 	page_start = page_offset(page);
8902 	page_end = page_start + PAGE_SIZE - 1;
8903 	end = page_end;
8904 
8905 	/*
8906 	 * Reserving delalloc space after obtaining the page lock can lead to
8907 	 * deadlock. For example, if a dirty page is locked by this function
8908 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8909 	 * dirty page write out, then the btrfs_writepage() function could
8910 	 * end up waiting indefinitely to get a lock on the page currently
8911 	 * being processed by btrfs_page_mkwrite() function.
8912 	 */
8913 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8914 					   reserved_space);
8915 	if (!ret) {
8916 		ret = file_update_time(vma->vm_file);
8917 		reserved = 1;
8918 	}
8919 	if (ret) {
8920 		if (ret == -ENOMEM)
8921 			ret = VM_FAULT_OOM;
8922 		else /* -ENOSPC, -EIO, etc */
8923 			ret = VM_FAULT_SIGBUS;
8924 		if (reserved)
8925 			goto out;
8926 		goto out_noreserve;
8927 	}
8928 
8929 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8930 again:
8931 	lock_page(page);
8932 	size = i_size_read(inode);
8933 
8934 	if ((page->mapping != inode->i_mapping) ||
8935 	    (page_start >= size)) {
8936 		/* page got truncated out from underneath us */
8937 		goto out_unlock;
8938 	}
8939 	wait_on_page_writeback(page);
8940 
8941 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8942 	set_page_extent_mapped(page);
8943 
8944 	/*
8945 	 * we can't set the delalloc bits if there are pending ordered
8946 	 * extents.  Drop our locks and wait for them to finish
8947 	 */
8948 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8949 	if (ordered) {
8950 		unlock_extent_cached(io_tree, page_start, page_end,
8951 				     &cached_state, GFP_NOFS);
8952 		unlock_page(page);
8953 		btrfs_start_ordered_extent(inode, ordered, 1);
8954 		btrfs_put_ordered_extent(ordered);
8955 		goto again;
8956 	}
8957 
8958 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8959 		reserved_space = round_up(size - page_start, root->sectorsize);
8960 		if (reserved_space < PAGE_SIZE) {
8961 			end = page_start + reserved_space - 1;
8962 			spin_lock(&BTRFS_I(inode)->lock);
8963 			BTRFS_I(inode)->outstanding_extents++;
8964 			spin_unlock(&BTRFS_I(inode)->lock);
8965 			btrfs_delalloc_release_space(inode, page_start,
8966 						PAGE_SIZE - reserved_space);
8967 		}
8968 	}
8969 
8970 	/*
8971 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8972 	 * if it was already dirty, so for space accounting reasons we need to
8973 	 * clear any delalloc bits for the range we are fixing to save.  There
8974 	 * is probably a better way to do this, but for now keep consistent with
8975 	 * prepare_pages in the normal write path.
8976 	 */
8977 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8978 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8979 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8980 			  0, 0, &cached_state, GFP_NOFS);
8981 
8982 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
8983 					&cached_state);
8984 	if (ret) {
8985 		unlock_extent_cached(io_tree, page_start, page_end,
8986 				     &cached_state, GFP_NOFS);
8987 		ret = VM_FAULT_SIGBUS;
8988 		goto out_unlock;
8989 	}
8990 	ret = 0;
8991 
8992 	/* page is wholly or partially inside EOF */
8993 	if (page_start + PAGE_SIZE > size)
8994 		zero_start = size & ~PAGE_MASK;
8995 	else
8996 		zero_start = PAGE_SIZE;
8997 
8998 	if (zero_start != PAGE_SIZE) {
8999 		kaddr = kmap(page);
9000 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9001 		flush_dcache_page(page);
9002 		kunmap(page);
9003 	}
9004 	ClearPageChecked(page);
9005 	set_page_dirty(page);
9006 	SetPageUptodate(page);
9007 
9008 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
9009 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9010 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9011 
9012 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9013 
9014 out_unlock:
9015 	if (!ret) {
9016 		sb_end_pagefault(inode->i_sb);
9017 		return VM_FAULT_LOCKED;
9018 	}
9019 	unlock_page(page);
9020 out:
9021 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9022 out_noreserve:
9023 	sb_end_pagefault(inode->i_sb);
9024 	return ret;
9025 }
9026 
9027 static int btrfs_truncate(struct inode *inode)
9028 {
9029 	struct btrfs_root *root = BTRFS_I(inode)->root;
9030 	struct btrfs_block_rsv *rsv;
9031 	int ret = 0;
9032 	int err = 0;
9033 	struct btrfs_trans_handle *trans;
9034 	u64 mask = root->sectorsize - 1;
9035 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9036 
9037 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9038 				       (u64)-1);
9039 	if (ret)
9040 		return ret;
9041 
9042 	/*
9043 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9044 	 * 3 things going on here
9045 	 *
9046 	 * 1) We need to reserve space for our orphan item and the space to
9047 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9048 	 * orphan item because we didn't reserve space to remove it.
9049 	 *
9050 	 * 2) We need to reserve space to update our inode.
9051 	 *
9052 	 * 3) We need to have something to cache all the space that is going to
9053 	 * be free'd up by the truncate operation, but also have some slack
9054 	 * space reserved in case it uses space during the truncate (thank you
9055 	 * very much snapshotting).
9056 	 *
9057 	 * And we need these to all be separate.  The fact is we can use a lot of
9058 	 * space doing the truncate, and we have no earthly idea how much space
9059 	 * we will use, so we need the truncate reservation to be separate so it
9060 	 * doesn't end up using space reserved for updating the inode or
9061 	 * removing the orphan item.  We also need to be able to stop the
9062 	 * transaction and start a new one, which means we need to be able to
9063 	 * update the inode several times, and we have no idea of knowing how
9064 	 * many times that will be, so we can't just reserve 1 item for the
9065 	 * entirety of the operation, so that has to be done separately as well.
9066 	 * Then there is the orphan item, which does indeed need to be held on
9067 	 * to for the whole operation, and we need nobody to touch this reserved
9068 	 * space except the orphan code.
9069 	 *
9070 	 * So that leaves us with
9071 	 *
9072 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9073 	 * 2) rsv - for the truncate reservation, which we will steal from the
9074 	 * transaction reservation.
9075 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9076 	 * updating the inode.
9077 	 */
9078 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9079 	if (!rsv)
9080 		return -ENOMEM;
9081 	rsv->size = min_size;
9082 	rsv->failfast = 1;
9083 
9084 	/*
9085 	 * 1 for the truncate slack space
9086 	 * 1 for updating the inode.
9087 	 */
9088 	trans = btrfs_start_transaction(root, 2);
9089 	if (IS_ERR(trans)) {
9090 		err = PTR_ERR(trans);
9091 		goto out;
9092 	}
9093 
9094 	/* Migrate the slack space for the truncate to our reserve */
9095 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9096 				      min_size);
9097 	BUG_ON(ret);
9098 
9099 	/*
9100 	 * So if we truncate and then write and fsync we normally would just
9101 	 * write the extents that changed, which is a problem if we need to
9102 	 * first truncate that entire inode.  So set this flag so we write out
9103 	 * all of the extents in the inode to the sync log so we're completely
9104 	 * safe.
9105 	 */
9106 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9107 	trans->block_rsv = rsv;
9108 
9109 	while (1) {
9110 		ret = btrfs_truncate_inode_items(trans, root, inode,
9111 						 inode->i_size,
9112 						 BTRFS_EXTENT_DATA_KEY);
9113 		if (ret != -ENOSPC && ret != -EAGAIN) {
9114 			err = ret;
9115 			break;
9116 		}
9117 
9118 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9119 		ret = btrfs_update_inode(trans, root, inode);
9120 		if (ret) {
9121 			err = ret;
9122 			break;
9123 		}
9124 
9125 		btrfs_end_transaction(trans, root);
9126 		btrfs_btree_balance_dirty(root);
9127 
9128 		trans = btrfs_start_transaction(root, 2);
9129 		if (IS_ERR(trans)) {
9130 			ret = err = PTR_ERR(trans);
9131 			trans = NULL;
9132 			break;
9133 		}
9134 
9135 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9136 					      rsv, min_size);
9137 		BUG_ON(ret);	/* shouldn't happen */
9138 		trans->block_rsv = rsv;
9139 	}
9140 
9141 	if (ret == 0 && inode->i_nlink > 0) {
9142 		trans->block_rsv = root->orphan_block_rsv;
9143 		ret = btrfs_orphan_del(trans, inode);
9144 		if (ret)
9145 			err = ret;
9146 	}
9147 
9148 	if (trans) {
9149 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9150 		ret = btrfs_update_inode(trans, root, inode);
9151 		if (ret && !err)
9152 			err = ret;
9153 
9154 		ret = btrfs_end_transaction(trans, root);
9155 		btrfs_btree_balance_dirty(root);
9156 	}
9157 
9158 out:
9159 	btrfs_free_block_rsv(root, rsv);
9160 
9161 	if (ret && !err)
9162 		err = ret;
9163 
9164 	return err;
9165 }
9166 
9167 /*
9168  * create a new subvolume directory/inode (helper for the ioctl).
9169  */
9170 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9171 			     struct btrfs_root *new_root,
9172 			     struct btrfs_root *parent_root,
9173 			     u64 new_dirid)
9174 {
9175 	struct inode *inode;
9176 	int err;
9177 	u64 index = 0;
9178 
9179 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9180 				new_dirid, new_dirid,
9181 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9182 				&index);
9183 	if (IS_ERR(inode))
9184 		return PTR_ERR(inode);
9185 	inode->i_op = &btrfs_dir_inode_operations;
9186 	inode->i_fop = &btrfs_dir_file_operations;
9187 
9188 	set_nlink(inode, 1);
9189 	btrfs_i_size_write(inode, 0);
9190 	unlock_new_inode(inode);
9191 
9192 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9193 	if (err)
9194 		btrfs_err(new_root->fs_info,
9195 			  "error inheriting subvolume %llu properties: %d",
9196 			  new_root->root_key.objectid, err);
9197 
9198 	err = btrfs_update_inode(trans, new_root, inode);
9199 
9200 	iput(inode);
9201 	return err;
9202 }
9203 
9204 struct inode *btrfs_alloc_inode(struct super_block *sb)
9205 {
9206 	struct btrfs_inode *ei;
9207 	struct inode *inode;
9208 
9209 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9210 	if (!ei)
9211 		return NULL;
9212 
9213 	ei->root = NULL;
9214 	ei->generation = 0;
9215 	ei->last_trans = 0;
9216 	ei->last_sub_trans = 0;
9217 	ei->logged_trans = 0;
9218 	ei->delalloc_bytes = 0;
9219 	ei->defrag_bytes = 0;
9220 	ei->disk_i_size = 0;
9221 	ei->flags = 0;
9222 	ei->csum_bytes = 0;
9223 	ei->index_cnt = (u64)-1;
9224 	ei->dir_index = 0;
9225 	ei->last_unlink_trans = 0;
9226 	ei->last_log_commit = 0;
9227 	ei->delayed_iput_count = 0;
9228 
9229 	spin_lock_init(&ei->lock);
9230 	ei->outstanding_extents = 0;
9231 	ei->reserved_extents = 0;
9232 
9233 	ei->runtime_flags = 0;
9234 	ei->force_compress = BTRFS_COMPRESS_NONE;
9235 
9236 	ei->delayed_node = NULL;
9237 
9238 	ei->i_otime.tv_sec = 0;
9239 	ei->i_otime.tv_nsec = 0;
9240 
9241 	inode = &ei->vfs_inode;
9242 	extent_map_tree_init(&ei->extent_tree);
9243 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9244 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9245 	ei->io_tree.track_uptodate = 1;
9246 	ei->io_failure_tree.track_uptodate = 1;
9247 	atomic_set(&ei->sync_writers, 0);
9248 	mutex_init(&ei->log_mutex);
9249 	mutex_init(&ei->delalloc_mutex);
9250 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9251 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9252 	INIT_LIST_HEAD(&ei->delayed_iput);
9253 	RB_CLEAR_NODE(&ei->rb_node);
9254 	init_rwsem(&ei->dio_sem);
9255 
9256 	return inode;
9257 }
9258 
9259 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9260 void btrfs_test_destroy_inode(struct inode *inode)
9261 {
9262 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9263 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9264 }
9265 #endif
9266 
9267 static void btrfs_i_callback(struct rcu_head *head)
9268 {
9269 	struct inode *inode = container_of(head, struct inode, i_rcu);
9270 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9271 }
9272 
9273 void btrfs_destroy_inode(struct inode *inode)
9274 {
9275 	struct btrfs_ordered_extent *ordered;
9276 	struct btrfs_root *root = BTRFS_I(inode)->root;
9277 
9278 	WARN_ON(!hlist_empty(&inode->i_dentry));
9279 	WARN_ON(inode->i_data.nrpages);
9280 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9281 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9282 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9283 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9284 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9285 
9286 	/*
9287 	 * This can happen where we create an inode, but somebody else also
9288 	 * created the same inode and we need to destroy the one we already
9289 	 * created.
9290 	 */
9291 	if (!root)
9292 		goto free;
9293 
9294 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9295 		     &BTRFS_I(inode)->runtime_flags)) {
9296 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9297 			btrfs_ino(inode));
9298 		atomic_dec(&root->orphan_inodes);
9299 	}
9300 
9301 	while (1) {
9302 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9303 		if (!ordered)
9304 			break;
9305 		else {
9306 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9307 				ordered->file_offset, ordered->len);
9308 			btrfs_remove_ordered_extent(inode, ordered);
9309 			btrfs_put_ordered_extent(ordered);
9310 			btrfs_put_ordered_extent(ordered);
9311 		}
9312 	}
9313 	btrfs_qgroup_check_reserved_leak(inode);
9314 	inode_tree_del(inode);
9315 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9316 free:
9317 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9318 }
9319 
9320 int btrfs_drop_inode(struct inode *inode)
9321 {
9322 	struct btrfs_root *root = BTRFS_I(inode)->root;
9323 
9324 	if (root == NULL)
9325 		return 1;
9326 
9327 	/* the snap/subvol tree is on deleting */
9328 	if (btrfs_root_refs(&root->root_item) == 0)
9329 		return 1;
9330 	else
9331 		return generic_drop_inode(inode);
9332 }
9333 
9334 static void init_once(void *foo)
9335 {
9336 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9337 
9338 	inode_init_once(&ei->vfs_inode);
9339 }
9340 
9341 void btrfs_destroy_cachep(void)
9342 {
9343 	/*
9344 	 * Make sure all delayed rcu free inodes are flushed before we
9345 	 * destroy cache.
9346 	 */
9347 	rcu_barrier();
9348 	kmem_cache_destroy(btrfs_inode_cachep);
9349 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9350 	kmem_cache_destroy(btrfs_transaction_cachep);
9351 	kmem_cache_destroy(btrfs_path_cachep);
9352 	kmem_cache_destroy(btrfs_free_space_cachep);
9353 }
9354 
9355 int btrfs_init_cachep(void)
9356 {
9357 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9358 			sizeof(struct btrfs_inode), 0,
9359 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9360 			init_once);
9361 	if (!btrfs_inode_cachep)
9362 		goto fail;
9363 
9364 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9365 			sizeof(struct btrfs_trans_handle), 0,
9366 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9367 	if (!btrfs_trans_handle_cachep)
9368 		goto fail;
9369 
9370 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9371 			sizeof(struct btrfs_transaction), 0,
9372 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9373 	if (!btrfs_transaction_cachep)
9374 		goto fail;
9375 
9376 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9377 			sizeof(struct btrfs_path), 0,
9378 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9379 	if (!btrfs_path_cachep)
9380 		goto fail;
9381 
9382 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9383 			sizeof(struct btrfs_free_space), 0,
9384 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9385 	if (!btrfs_free_space_cachep)
9386 		goto fail;
9387 
9388 	return 0;
9389 fail:
9390 	btrfs_destroy_cachep();
9391 	return -ENOMEM;
9392 }
9393 
9394 static int btrfs_getattr(struct vfsmount *mnt,
9395 			 struct dentry *dentry, struct kstat *stat)
9396 {
9397 	u64 delalloc_bytes;
9398 	struct inode *inode = d_inode(dentry);
9399 	u32 blocksize = inode->i_sb->s_blocksize;
9400 
9401 	generic_fillattr(inode, stat);
9402 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9403 
9404 	spin_lock(&BTRFS_I(inode)->lock);
9405 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9406 	spin_unlock(&BTRFS_I(inode)->lock);
9407 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9408 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9409 	return 0;
9410 }
9411 
9412 static int btrfs_rename_exchange(struct inode *old_dir,
9413 			      struct dentry *old_dentry,
9414 			      struct inode *new_dir,
9415 			      struct dentry *new_dentry)
9416 {
9417 	struct btrfs_trans_handle *trans;
9418 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9419 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9420 	struct inode *new_inode = new_dentry->d_inode;
9421 	struct inode *old_inode = old_dentry->d_inode;
9422 	struct timespec ctime = CURRENT_TIME;
9423 	struct dentry *parent;
9424 	u64 old_ino = btrfs_ino(old_inode);
9425 	u64 new_ino = btrfs_ino(new_inode);
9426 	u64 old_idx = 0;
9427 	u64 new_idx = 0;
9428 	u64 root_objectid;
9429 	int ret;
9430 	bool root_log_pinned = false;
9431 	bool dest_log_pinned = false;
9432 
9433 	/* we only allow rename subvolume link between subvolumes */
9434 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9435 		return -EXDEV;
9436 
9437 	/* close the race window with snapshot create/destroy ioctl */
9438 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9439 		down_read(&root->fs_info->subvol_sem);
9440 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9441 		down_read(&dest->fs_info->subvol_sem);
9442 
9443 	/*
9444 	 * We want to reserve the absolute worst case amount of items.  So if
9445 	 * both inodes are subvols and we need to unlink them then that would
9446 	 * require 4 item modifications, but if they are both normal inodes it
9447 	 * would require 5 item modifications, so we'll assume their normal
9448 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9449 	 * should cover the worst case number of items we'll modify.
9450 	 */
9451 	trans = btrfs_start_transaction(root, 12);
9452 	if (IS_ERR(trans)) {
9453 		ret = PTR_ERR(trans);
9454 		goto out_notrans;
9455 	}
9456 
9457 	/*
9458 	 * We need to find a free sequence number both in the source and
9459 	 * in the destination directory for the exchange.
9460 	 */
9461 	ret = btrfs_set_inode_index(new_dir, &old_idx);
9462 	if (ret)
9463 		goto out_fail;
9464 	ret = btrfs_set_inode_index(old_dir, &new_idx);
9465 	if (ret)
9466 		goto out_fail;
9467 
9468 	BTRFS_I(old_inode)->dir_index = 0ULL;
9469 	BTRFS_I(new_inode)->dir_index = 0ULL;
9470 
9471 	/* Reference for the source. */
9472 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9473 		/* force full log commit if subvolume involved. */
9474 		btrfs_set_log_full_commit(root->fs_info, trans);
9475 	} else {
9476 		btrfs_pin_log_trans(root);
9477 		root_log_pinned = true;
9478 		ret = btrfs_insert_inode_ref(trans, dest,
9479 					     new_dentry->d_name.name,
9480 					     new_dentry->d_name.len,
9481 					     old_ino,
9482 					     btrfs_ino(new_dir), old_idx);
9483 		if (ret)
9484 			goto out_fail;
9485 	}
9486 
9487 	/* And now for the dest. */
9488 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9489 		/* force full log commit if subvolume involved. */
9490 		btrfs_set_log_full_commit(dest->fs_info, trans);
9491 	} else {
9492 		btrfs_pin_log_trans(dest);
9493 		dest_log_pinned = true;
9494 		ret = btrfs_insert_inode_ref(trans, root,
9495 					     old_dentry->d_name.name,
9496 					     old_dentry->d_name.len,
9497 					     new_ino,
9498 					     btrfs_ino(old_dir), new_idx);
9499 		if (ret)
9500 			goto out_fail;
9501 	}
9502 
9503 	/* Update inode version and ctime/mtime. */
9504 	inode_inc_iversion(old_dir);
9505 	inode_inc_iversion(new_dir);
9506 	inode_inc_iversion(old_inode);
9507 	inode_inc_iversion(new_inode);
9508 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9509 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9510 	old_inode->i_ctime = ctime;
9511 	new_inode->i_ctime = ctime;
9512 
9513 	if (old_dentry->d_parent != new_dentry->d_parent) {
9514 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9515 		btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9516 	}
9517 
9518 	/* src is a subvolume */
9519 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9520 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9521 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9522 					  root_objectid,
9523 					  old_dentry->d_name.name,
9524 					  old_dentry->d_name.len);
9525 	} else { /* src is an inode */
9526 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9527 					   old_dentry->d_inode,
9528 					   old_dentry->d_name.name,
9529 					   old_dentry->d_name.len);
9530 		if (!ret)
9531 			ret = btrfs_update_inode(trans, root, old_inode);
9532 	}
9533 	if (ret) {
9534 		btrfs_abort_transaction(trans, root, ret);
9535 		goto out_fail;
9536 	}
9537 
9538 	/* dest is a subvolume */
9539 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9540 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9541 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9542 					  root_objectid,
9543 					  new_dentry->d_name.name,
9544 					  new_dentry->d_name.len);
9545 	} else { /* dest is an inode */
9546 		ret = __btrfs_unlink_inode(trans, dest, new_dir,
9547 					   new_dentry->d_inode,
9548 					   new_dentry->d_name.name,
9549 					   new_dentry->d_name.len);
9550 		if (!ret)
9551 			ret = btrfs_update_inode(trans, dest, new_inode);
9552 	}
9553 	if (ret) {
9554 		btrfs_abort_transaction(trans, root, ret);
9555 		goto out_fail;
9556 	}
9557 
9558 	ret = btrfs_add_link(trans, new_dir, old_inode,
9559 			     new_dentry->d_name.name,
9560 			     new_dentry->d_name.len, 0, old_idx);
9561 	if (ret) {
9562 		btrfs_abort_transaction(trans, root, ret);
9563 		goto out_fail;
9564 	}
9565 
9566 	ret = btrfs_add_link(trans, old_dir, new_inode,
9567 			     old_dentry->d_name.name,
9568 			     old_dentry->d_name.len, 0, new_idx);
9569 	if (ret) {
9570 		btrfs_abort_transaction(trans, root, ret);
9571 		goto out_fail;
9572 	}
9573 
9574 	if (old_inode->i_nlink == 1)
9575 		BTRFS_I(old_inode)->dir_index = old_idx;
9576 	if (new_inode->i_nlink == 1)
9577 		BTRFS_I(new_inode)->dir_index = new_idx;
9578 
9579 	if (root_log_pinned) {
9580 		parent = new_dentry->d_parent;
9581 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9582 		btrfs_end_log_trans(root);
9583 		root_log_pinned = false;
9584 	}
9585 	if (dest_log_pinned) {
9586 		parent = old_dentry->d_parent;
9587 		btrfs_log_new_name(trans, new_inode, new_dir, parent);
9588 		btrfs_end_log_trans(dest);
9589 		dest_log_pinned = false;
9590 	}
9591 out_fail:
9592 	/*
9593 	 * If we have pinned a log and an error happened, we unpin tasks
9594 	 * trying to sync the log and force them to fallback to a transaction
9595 	 * commit if the log currently contains any of the inodes involved in
9596 	 * this rename operation (to ensure we do not persist a log with an
9597 	 * inconsistent state for any of these inodes or leading to any
9598 	 * inconsistencies when replayed). If the transaction was aborted, the
9599 	 * abortion reason is propagated to userspace when attempting to commit
9600 	 * the transaction. If the log does not contain any of these inodes, we
9601 	 * allow the tasks to sync it.
9602 	 */
9603 	if (ret && (root_log_pinned || dest_log_pinned)) {
9604 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9605 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9606 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9607 		    (new_inode &&
9608 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9609 		    btrfs_set_log_full_commit(root->fs_info, trans);
9610 
9611 		if (root_log_pinned) {
9612 			btrfs_end_log_trans(root);
9613 			root_log_pinned = false;
9614 		}
9615 		if (dest_log_pinned) {
9616 			btrfs_end_log_trans(dest);
9617 			dest_log_pinned = false;
9618 		}
9619 	}
9620 	ret = btrfs_end_transaction(trans, root);
9621 out_notrans:
9622 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9623 		up_read(&dest->fs_info->subvol_sem);
9624 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9625 		up_read(&root->fs_info->subvol_sem);
9626 
9627 	return ret;
9628 }
9629 
9630 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9631 				     struct btrfs_root *root,
9632 				     struct inode *dir,
9633 				     struct dentry *dentry)
9634 {
9635 	int ret;
9636 	struct inode *inode;
9637 	u64 objectid;
9638 	u64 index;
9639 
9640 	ret = btrfs_find_free_ino(root, &objectid);
9641 	if (ret)
9642 		return ret;
9643 
9644 	inode = btrfs_new_inode(trans, root, dir,
9645 				dentry->d_name.name,
9646 				dentry->d_name.len,
9647 				btrfs_ino(dir),
9648 				objectid,
9649 				S_IFCHR | WHITEOUT_MODE,
9650 				&index);
9651 
9652 	if (IS_ERR(inode)) {
9653 		ret = PTR_ERR(inode);
9654 		return ret;
9655 	}
9656 
9657 	inode->i_op = &btrfs_special_inode_operations;
9658 	init_special_inode(inode, inode->i_mode,
9659 		WHITEOUT_DEV);
9660 
9661 	ret = btrfs_init_inode_security(trans, inode, dir,
9662 				&dentry->d_name);
9663 	if (ret)
9664 		goto out;
9665 
9666 	ret = btrfs_add_nondir(trans, dir, dentry,
9667 				inode, 0, index);
9668 	if (ret)
9669 		goto out;
9670 
9671 	ret = btrfs_update_inode(trans, root, inode);
9672 out:
9673 	unlock_new_inode(inode);
9674 	if (ret)
9675 		inode_dec_link_count(inode);
9676 	iput(inode);
9677 
9678 	return ret;
9679 }
9680 
9681 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9682 			   struct inode *new_dir, struct dentry *new_dentry,
9683 			   unsigned int flags)
9684 {
9685 	struct btrfs_trans_handle *trans;
9686 	unsigned int trans_num_items;
9687 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9688 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9689 	struct inode *new_inode = d_inode(new_dentry);
9690 	struct inode *old_inode = d_inode(old_dentry);
9691 	u64 index = 0;
9692 	u64 root_objectid;
9693 	int ret;
9694 	u64 old_ino = btrfs_ino(old_inode);
9695 	bool log_pinned = false;
9696 
9697 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9698 		return -EPERM;
9699 
9700 	/* we only allow rename subvolume link between subvolumes */
9701 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9702 		return -EXDEV;
9703 
9704 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9705 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9706 		return -ENOTEMPTY;
9707 
9708 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9709 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9710 		return -ENOTEMPTY;
9711 
9712 
9713 	/* check for collisions, even if the  name isn't there */
9714 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9715 			     new_dentry->d_name.name,
9716 			     new_dentry->d_name.len);
9717 
9718 	if (ret) {
9719 		if (ret == -EEXIST) {
9720 			/* we shouldn't get
9721 			 * eexist without a new_inode */
9722 			if (WARN_ON(!new_inode)) {
9723 				return ret;
9724 			}
9725 		} else {
9726 			/* maybe -EOVERFLOW */
9727 			return ret;
9728 		}
9729 	}
9730 	ret = 0;
9731 
9732 	/*
9733 	 * we're using rename to replace one file with another.  Start IO on it
9734 	 * now so  we don't add too much work to the end of the transaction
9735 	 */
9736 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9737 		filemap_flush(old_inode->i_mapping);
9738 
9739 	/* close the racy window with snapshot create/destroy ioctl */
9740 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9741 		down_read(&root->fs_info->subvol_sem);
9742 	/*
9743 	 * We want to reserve the absolute worst case amount of items.  So if
9744 	 * both inodes are subvols and we need to unlink them then that would
9745 	 * require 4 item modifications, but if they are both normal inodes it
9746 	 * would require 5 item modifications, so we'll assume they are normal
9747 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9748 	 * should cover the worst case number of items we'll modify.
9749 	 * If our rename has the whiteout flag, we need more 5 units for the
9750 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9751 	 * when selinux is enabled).
9752 	 */
9753 	trans_num_items = 11;
9754 	if (flags & RENAME_WHITEOUT)
9755 		trans_num_items += 5;
9756 	trans = btrfs_start_transaction(root, trans_num_items);
9757 	if (IS_ERR(trans)) {
9758 		ret = PTR_ERR(trans);
9759 		goto out_notrans;
9760 	}
9761 
9762 	if (dest != root)
9763 		btrfs_record_root_in_trans(trans, dest);
9764 
9765 	ret = btrfs_set_inode_index(new_dir, &index);
9766 	if (ret)
9767 		goto out_fail;
9768 
9769 	BTRFS_I(old_inode)->dir_index = 0ULL;
9770 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9771 		/* force full log commit if subvolume involved. */
9772 		btrfs_set_log_full_commit(root->fs_info, trans);
9773 	} else {
9774 		btrfs_pin_log_trans(root);
9775 		log_pinned = true;
9776 		ret = btrfs_insert_inode_ref(trans, dest,
9777 					     new_dentry->d_name.name,
9778 					     new_dentry->d_name.len,
9779 					     old_ino,
9780 					     btrfs_ino(new_dir), index);
9781 		if (ret)
9782 			goto out_fail;
9783 	}
9784 
9785 	inode_inc_iversion(old_dir);
9786 	inode_inc_iversion(new_dir);
9787 	inode_inc_iversion(old_inode);
9788 	old_dir->i_ctime = old_dir->i_mtime =
9789 	new_dir->i_ctime = new_dir->i_mtime =
9790 	old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9791 
9792 	if (old_dentry->d_parent != new_dentry->d_parent)
9793 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9794 
9795 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9796 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9797 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9798 					old_dentry->d_name.name,
9799 					old_dentry->d_name.len);
9800 	} else {
9801 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9802 					d_inode(old_dentry),
9803 					old_dentry->d_name.name,
9804 					old_dentry->d_name.len);
9805 		if (!ret)
9806 			ret = btrfs_update_inode(trans, root, old_inode);
9807 	}
9808 	if (ret) {
9809 		btrfs_abort_transaction(trans, root, ret);
9810 		goto out_fail;
9811 	}
9812 
9813 	if (new_inode) {
9814 		inode_inc_iversion(new_inode);
9815 		new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9816 		if (unlikely(btrfs_ino(new_inode) ==
9817 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9818 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9819 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9820 						root_objectid,
9821 						new_dentry->d_name.name,
9822 						new_dentry->d_name.len);
9823 			BUG_ON(new_inode->i_nlink == 0);
9824 		} else {
9825 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9826 						 d_inode(new_dentry),
9827 						 new_dentry->d_name.name,
9828 						 new_dentry->d_name.len);
9829 		}
9830 		if (!ret && new_inode->i_nlink == 0)
9831 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9832 		if (ret) {
9833 			btrfs_abort_transaction(trans, root, ret);
9834 			goto out_fail;
9835 		}
9836 	}
9837 
9838 	ret = btrfs_add_link(trans, new_dir, old_inode,
9839 			     new_dentry->d_name.name,
9840 			     new_dentry->d_name.len, 0, index);
9841 	if (ret) {
9842 		btrfs_abort_transaction(trans, root, ret);
9843 		goto out_fail;
9844 	}
9845 
9846 	if (old_inode->i_nlink == 1)
9847 		BTRFS_I(old_inode)->dir_index = index;
9848 
9849 	if (log_pinned) {
9850 		struct dentry *parent = new_dentry->d_parent;
9851 
9852 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9853 		btrfs_end_log_trans(root);
9854 		log_pinned = false;
9855 	}
9856 
9857 	if (flags & RENAME_WHITEOUT) {
9858 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9859 						old_dentry);
9860 
9861 		if (ret) {
9862 			btrfs_abort_transaction(trans, root, ret);
9863 			goto out_fail;
9864 		}
9865 	}
9866 out_fail:
9867 	/*
9868 	 * If we have pinned the log and an error happened, we unpin tasks
9869 	 * trying to sync the log and force them to fallback to a transaction
9870 	 * commit if the log currently contains any of the inodes involved in
9871 	 * this rename operation (to ensure we do not persist a log with an
9872 	 * inconsistent state for any of these inodes or leading to any
9873 	 * inconsistencies when replayed). If the transaction was aborted, the
9874 	 * abortion reason is propagated to userspace when attempting to commit
9875 	 * the transaction. If the log does not contain any of these inodes, we
9876 	 * allow the tasks to sync it.
9877 	 */
9878 	if (ret && log_pinned) {
9879 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9880 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9881 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9882 		    (new_inode &&
9883 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9884 		    btrfs_set_log_full_commit(root->fs_info, trans);
9885 
9886 		btrfs_end_log_trans(root);
9887 		log_pinned = false;
9888 	}
9889 	btrfs_end_transaction(trans, root);
9890 out_notrans:
9891 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9892 		up_read(&root->fs_info->subvol_sem);
9893 
9894 	return ret;
9895 }
9896 
9897 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9898 			 struct inode *new_dir, struct dentry *new_dentry,
9899 			 unsigned int flags)
9900 {
9901 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9902 		return -EINVAL;
9903 
9904 	if (flags & RENAME_EXCHANGE)
9905 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9906 					  new_dentry);
9907 
9908 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9909 }
9910 
9911 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9912 {
9913 	struct btrfs_delalloc_work *delalloc_work;
9914 	struct inode *inode;
9915 
9916 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9917 				     work);
9918 	inode = delalloc_work->inode;
9919 	filemap_flush(inode->i_mapping);
9920 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9921 				&BTRFS_I(inode)->runtime_flags))
9922 		filemap_flush(inode->i_mapping);
9923 
9924 	if (delalloc_work->delay_iput)
9925 		btrfs_add_delayed_iput(inode);
9926 	else
9927 		iput(inode);
9928 	complete(&delalloc_work->completion);
9929 }
9930 
9931 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9932 						    int delay_iput)
9933 {
9934 	struct btrfs_delalloc_work *work;
9935 
9936 	work = kmalloc(sizeof(*work), GFP_NOFS);
9937 	if (!work)
9938 		return NULL;
9939 
9940 	init_completion(&work->completion);
9941 	INIT_LIST_HEAD(&work->list);
9942 	work->inode = inode;
9943 	work->delay_iput = delay_iput;
9944 	WARN_ON_ONCE(!inode);
9945 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9946 			btrfs_run_delalloc_work, NULL, NULL);
9947 
9948 	return work;
9949 }
9950 
9951 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9952 {
9953 	wait_for_completion(&work->completion);
9954 	kfree(work);
9955 }
9956 
9957 /*
9958  * some fairly slow code that needs optimization. This walks the list
9959  * of all the inodes with pending delalloc and forces them to disk.
9960  */
9961 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9962 				   int nr)
9963 {
9964 	struct btrfs_inode *binode;
9965 	struct inode *inode;
9966 	struct btrfs_delalloc_work *work, *next;
9967 	struct list_head works;
9968 	struct list_head splice;
9969 	int ret = 0;
9970 
9971 	INIT_LIST_HEAD(&works);
9972 	INIT_LIST_HEAD(&splice);
9973 
9974 	mutex_lock(&root->delalloc_mutex);
9975 	spin_lock(&root->delalloc_lock);
9976 	list_splice_init(&root->delalloc_inodes, &splice);
9977 	while (!list_empty(&splice)) {
9978 		binode = list_entry(splice.next, struct btrfs_inode,
9979 				    delalloc_inodes);
9980 
9981 		list_move_tail(&binode->delalloc_inodes,
9982 			       &root->delalloc_inodes);
9983 		inode = igrab(&binode->vfs_inode);
9984 		if (!inode) {
9985 			cond_resched_lock(&root->delalloc_lock);
9986 			continue;
9987 		}
9988 		spin_unlock(&root->delalloc_lock);
9989 
9990 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
9991 		if (!work) {
9992 			if (delay_iput)
9993 				btrfs_add_delayed_iput(inode);
9994 			else
9995 				iput(inode);
9996 			ret = -ENOMEM;
9997 			goto out;
9998 		}
9999 		list_add_tail(&work->list, &works);
10000 		btrfs_queue_work(root->fs_info->flush_workers,
10001 				 &work->work);
10002 		ret++;
10003 		if (nr != -1 && ret >= nr)
10004 			goto out;
10005 		cond_resched();
10006 		spin_lock(&root->delalloc_lock);
10007 	}
10008 	spin_unlock(&root->delalloc_lock);
10009 
10010 out:
10011 	list_for_each_entry_safe(work, next, &works, list) {
10012 		list_del_init(&work->list);
10013 		btrfs_wait_and_free_delalloc_work(work);
10014 	}
10015 
10016 	if (!list_empty_careful(&splice)) {
10017 		spin_lock(&root->delalloc_lock);
10018 		list_splice_tail(&splice, &root->delalloc_inodes);
10019 		spin_unlock(&root->delalloc_lock);
10020 	}
10021 	mutex_unlock(&root->delalloc_mutex);
10022 	return ret;
10023 }
10024 
10025 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10026 {
10027 	int ret;
10028 
10029 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10030 		return -EROFS;
10031 
10032 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10033 	if (ret > 0)
10034 		ret = 0;
10035 	/*
10036 	 * the filemap_flush will queue IO into the worker threads, but
10037 	 * we have to make sure the IO is actually started and that
10038 	 * ordered extents get created before we return
10039 	 */
10040 	atomic_inc(&root->fs_info->async_submit_draining);
10041 	while (atomic_read(&root->fs_info->nr_async_submits) ||
10042 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
10043 		wait_event(root->fs_info->async_submit_wait,
10044 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10045 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10046 	}
10047 	atomic_dec(&root->fs_info->async_submit_draining);
10048 	return ret;
10049 }
10050 
10051 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10052 			       int nr)
10053 {
10054 	struct btrfs_root *root;
10055 	struct list_head splice;
10056 	int ret;
10057 
10058 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10059 		return -EROFS;
10060 
10061 	INIT_LIST_HEAD(&splice);
10062 
10063 	mutex_lock(&fs_info->delalloc_root_mutex);
10064 	spin_lock(&fs_info->delalloc_root_lock);
10065 	list_splice_init(&fs_info->delalloc_roots, &splice);
10066 	while (!list_empty(&splice) && nr) {
10067 		root = list_first_entry(&splice, struct btrfs_root,
10068 					delalloc_root);
10069 		root = btrfs_grab_fs_root(root);
10070 		BUG_ON(!root);
10071 		list_move_tail(&root->delalloc_root,
10072 			       &fs_info->delalloc_roots);
10073 		spin_unlock(&fs_info->delalloc_root_lock);
10074 
10075 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10076 		btrfs_put_fs_root(root);
10077 		if (ret < 0)
10078 			goto out;
10079 
10080 		if (nr != -1) {
10081 			nr -= ret;
10082 			WARN_ON(nr < 0);
10083 		}
10084 		spin_lock(&fs_info->delalloc_root_lock);
10085 	}
10086 	spin_unlock(&fs_info->delalloc_root_lock);
10087 
10088 	ret = 0;
10089 	atomic_inc(&fs_info->async_submit_draining);
10090 	while (atomic_read(&fs_info->nr_async_submits) ||
10091 	      atomic_read(&fs_info->async_delalloc_pages)) {
10092 		wait_event(fs_info->async_submit_wait,
10093 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10094 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10095 	}
10096 	atomic_dec(&fs_info->async_submit_draining);
10097 out:
10098 	if (!list_empty_careful(&splice)) {
10099 		spin_lock(&fs_info->delalloc_root_lock);
10100 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10101 		spin_unlock(&fs_info->delalloc_root_lock);
10102 	}
10103 	mutex_unlock(&fs_info->delalloc_root_mutex);
10104 	return ret;
10105 }
10106 
10107 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10108 			 const char *symname)
10109 {
10110 	struct btrfs_trans_handle *trans;
10111 	struct btrfs_root *root = BTRFS_I(dir)->root;
10112 	struct btrfs_path *path;
10113 	struct btrfs_key key;
10114 	struct inode *inode = NULL;
10115 	int err;
10116 	int drop_inode = 0;
10117 	u64 objectid;
10118 	u64 index = 0;
10119 	int name_len;
10120 	int datasize;
10121 	unsigned long ptr;
10122 	struct btrfs_file_extent_item *ei;
10123 	struct extent_buffer *leaf;
10124 
10125 	name_len = strlen(symname);
10126 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10127 		return -ENAMETOOLONG;
10128 
10129 	/*
10130 	 * 2 items for inode item and ref
10131 	 * 2 items for dir items
10132 	 * 1 item for updating parent inode item
10133 	 * 1 item for the inline extent item
10134 	 * 1 item for xattr if selinux is on
10135 	 */
10136 	trans = btrfs_start_transaction(root, 7);
10137 	if (IS_ERR(trans))
10138 		return PTR_ERR(trans);
10139 
10140 	err = btrfs_find_free_ino(root, &objectid);
10141 	if (err)
10142 		goto out_unlock;
10143 
10144 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10145 				dentry->d_name.len, btrfs_ino(dir), objectid,
10146 				S_IFLNK|S_IRWXUGO, &index);
10147 	if (IS_ERR(inode)) {
10148 		err = PTR_ERR(inode);
10149 		goto out_unlock;
10150 	}
10151 
10152 	/*
10153 	* If the active LSM wants to access the inode during
10154 	* d_instantiate it needs these. Smack checks to see
10155 	* if the filesystem supports xattrs by looking at the
10156 	* ops vector.
10157 	*/
10158 	inode->i_fop = &btrfs_file_operations;
10159 	inode->i_op = &btrfs_file_inode_operations;
10160 	inode->i_mapping->a_ops = &btrfs_aops;
10161 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10162 
10163 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10164 	if (err)
10165 		goto out_unlock_inode;
10166 
10167 	path = btrfs_alloc_path();
10168 	if (!path) {
10169 		err = -ENOMEM;
10170 		goto out_unlock_inode;
10171 	}
10172 	key.objectid = btrfs_ino(inode);
10173 	key.offset = 0;
10174 	key.type = BTRFS_EXTENT_DATA_KEY;
10175 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10176 	err = btrfs_insert_empty_item(trans, root, path, &key,
10177 				      datasize);
10178 	if (err) {
10179 		btrfs_free_path(path);
10180 		goto out_unlock_inode;
10181 	}
10182 	leaf = path->nodes[0];
10183 	ei = btrfs_item_ptr(leaf, path->slots[0],
10184 			    struct btrfs_file_extent_item);
10185 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10186 	btrfs_set_file_extent_type(leaf, ei,
10187 				   BTRFS_FILE_EXTENT_INLINE);
10188 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10189 	btrfs_set_file_extent_compression(leaf, ei, 0);
10190 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10191 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10192 
10193 	ptr = btrfs_file_extent_inline_start(ei);
10194 	write_extent_buffer(leaf, symname, ptr, name_len);
10195 	btrfs_mark_buffer_dirty(leaf);
10196 	btrfs_free_path(path);
10197 
10198 	inode->i_op = &btrfs_symlink_inode_operations;
10199 	inode_nohighmem(inode);
10200 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10201 	inode_set_bytes(inode, name_len);
10202 	btrfs_i_size_write(inode, name_len);
10203 	err = btrfs_update_inode(trans, root, inode);
10204 	/*
10205 	 * Last step, add directory indexes for our symlink inode. This is the
10206 	 * last step to avoid extra cleanup of these indexes if an error happens
10207 	 * elsewhere above.
10208 	 */
10209 	if (!err)
10210 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10211 	if (err) {
10212 		drop_inode = 1;
10213 		goto out_unlock_inode;
10214 	}
10215 
10216 	unlock_new_inode(inode);
10217 	d_instantiate(dentry, inode);
10218 
10219 out_unlock:
10220 	btrfs_end_transaction(trans, root);
10221 	if (drop_inode) {
10222 		inode_dec_link_count(inode);
10223 		iput(inode);
10224 	}
10225 	btrfs_btree_balance_dirty(root);
10226 	return err;
10227 
10228 out_unlock_inode:
10229 	drop_inode = 1;
10230 	unlock_new_inode(inode);
10231 	goto out_unlock;
10232 }
10233 
10234 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10235 				       u64 start, u64 num_bytes, u64 min_size,
10236 				       loff_t actual_len, u64 *alloc_hint,
10237 				       struct btrfs_trans_handle *trans)
10238 {
10239 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10240 	struct extent_map *em;
10241 	struct btrfs_root *root = BTRFS_I(inode)->root;
10242 	struct btrfs_key ins;
10243 	u64 cur_offset = start;
10244 	u64 i_size;
10245 	u64 cur_bytes;
10246 	u64 last_alloc = (u64)-1;
10247 	int ret = 0;
10248 	bool own_trans = true;
10249 
10250 	if (trans)
10251 		own_trans = false;
10252 	while (num_bytes > 0) {
10253 		if (own_trans) {
10254 			trans = btrfs_start_transaction(root, 3);
10255 			if (IS_ERR(trans)) {
10256 				ret = PTR_ERR(trans);
10257 				break;
10258 			}
10259 		}
10260 
10261 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10262 		cur_bytes = max(cur_bytes, min_size);
10263 		/*
10264 		 * If we are severely fragmented we could end up with really
10265 		 * small allocations, so if the allocator is returning small
10266 		 * chunks lets make its job easier by only searching for those
10267 		 * sized chunks.
10268 		 */
10269 		cur_bytes = min(cur_bytes, last_alloc);
10270 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
10271 					   *alloc_hint, &ins, 1, 0);
10272 		if (ret) {
10273 			if (own_trans)
10274 				btrfs_end_transaction(trans, root);
10275 			break;
10276 		}
10277 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10278 
10279 		last_alloc = ins.offset;
10280 		ret = insert_reserved_file_extent(trans, inode,
10281 						  cur_offset, ins.objectid,
10282 						  ins.offset, ins.offset,
10283 						  ins.offset, 0, 0, 0,
10284 						  BTRFS_FILE_EXTENT_PREALLOC);
10285 		if (ret) {
10286 			btrfs_free_reserved_extent(root, ins.objectid,
10287 						   ins.offset, 0);
10288 			btrfs_abort_transaction(trans, root, ret);
10289 			if (own_trans)
10290 				btrfs_end_transaction(trans, root);
10291 			break;
10292 		}
10293 
10294 		btrfs_drop_extent_cache(inode, cur_offset,
10295 					cur_offset + ins.offset -1, 0);
10296 
10297 		em = alloc_extent_map();
10298 		if (!em) {
10299 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10300 				&BTRFS_I(inode)->runtime_flags);
10301 			goto next;
10302 		}
10303 
10304 		em->start = cur_offset;
10305 		em->orig_start = cur_offset;
10306 		em->len = ins.offset;
10307 		em->block_start = ins.objectid;
10308 		em->block_len = ins.offset;
10309 		em->orig_block_len = ins.offset;
10310 		em->ram_bytes = ins.offset;
10311 		em->bdev = root->fs_info->fs_devices->latest_bdev;
10312 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10313 		em->generation = trans->transid;
10314 
10315 		while (1) {
10316 			write_lock(&em_tree->lock);
10317 			ret = add_extent_mapping(em_tree, em, 1);
10318 			write_unlock(&em_tree->lock);
10319 			if (ret != -EEXIST)
10320 				break;
10321 			btrfs_drop_extent_cache(inode, cur_offset,
10322 						cur_offset + ins.offset - 1,
10323 						0);
10324 		}
10325 		free_extent_map(em);
10326 next:
10327 		num_bytes -= ins.offset;
10328 		cur_offset += ins.offset;
10329 		*alloc_hint = ins.objectid + ins.offset;
10330 
10331 		inode_inc_iversion(inode);
10332 		inode->i_ctime = current_fs_time(inode->i_sb);
10333 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10334 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10335 		    (actual_len > inode->i_size) &&
10336 		    (cur_offset > inode->i_size)) {
10337 			if (cur_offset > actual_len)
10338 				i_size = actual_len;
10339 			else
10340 				i_size = cur_offset;
10341 			i_size_write(inode, i_size);
10342 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10343 		}
10344 
10345 		ret = btrfs_update_inode(trans, root, inode);
10346 
10347 		if (ret) {
10348 			btrfs_abort_transaction(trans, root, ret);
10349 			if (own_trans)
10350 				btrfs_end_transaction(trans, root);
10351 			break;
10352 		}
10353 
10354 		if (own_trans)
10355 			btrfs_end_transaction(trans, root);
10356 	}
10357 	return ret;
10358 }
10359 
10360 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10361 			      u64 start, u64 num_bytes, u64 min_size,
10362 			      loff_t actual_len, u64 *alloc_hint)
10363 {
10364 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10365 					   min_size, actual_len, alloc_hint,
10366 					   NULL);
10367 }
10368 
10369 int btrfs_prealloc_file_range_trans(struct inode *inode,
10370 				    struct btrfs_trans_handle *trans, int mode,
10371 				    u64 start, u64 num_bytes, u64 min_size,
10372 				    loff_t actual_len, u64 *alloc_hint)
10373 {
10374 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10375 					   min_size, actual_len, alloc_hint, trans);
10376 }
10377 
10378 static int btrfs_set_page_dirty(struct page *page)
10379 {
10380 	return __set_page_dirty_nobuffers(page);
10381 }
10382 
10383 static int btrfs_permission(struct inode *inode, int mask)
10384 {
10385 	struct btrfs_root *root = BTRFS_I(inode)->root;
10386 	umode_t mode = inode->i_mode;
10387 
10388 	if (mask & MAY_WRITE &&
10389 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10390 		if (btrfs_root_readonly(root))
10391 			return -EROFS;
10392 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10393 			return -EACCES;
10394 	}
10395 	return generic_permission(inode, mask);
10396 }
10397 
10398 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10399 {
10400 	struct btrfs_trans_handle *trans;
10401 	struct btrfs_root *root = BTRFS_I(dir)->root;
10402 	struct inode *inode = NULL;
10403 	u64 objectid;
10404 	u64 index;
10405 	int ret = 0;
10406 
10407 	/*
10408 	 * 5 units required for adding orphan entry
10409 	 */
10410 	trans = btrfs_start_transaction(root, 5);
10411 	if (IS_ERR(trans))
10412 		return PTR_ERR(trans);
10413 
10414 	ret = btrfs_find_free_ino(root, &objectid);
10415 	if (ret)
10416 		goto out;
10417 
10418 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10419 				btrfs_ino(dir), objectid, mode, &index);
10420 	if (IS_ERR(inode)) {
10421 		ret = PTR_ERR(inode);
10422 		inode = NULL;
10423 		goto out;
10424 	}
10425 
10426 	inode->i_fop = &btrfs_file_operations;
10427 	inode->i_op = &btrfs_file_inode_operations;
10428 
10429 	inode->i_mapping->a_ops = &btrfs_aops;
10430 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10431 
10432 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10433 	if (ret)
10434 		goto out_inode;
10435 
10436 	ret = btrfs_update_inode(trans, root, inode);
10437 	if (ret)
10438 		goto out_inode;
10439 	ret = btrfs_orphan_add(trans, inode);
10440 	if (ret)
10441 		goto out_inode;
10442 
10443 	/*
10444 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10445 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10446 	 * through:
10447 	 *
10448 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10449 	 */
10450 	set_nlink(inode, 1);
10451 	unlock_new_inode(inode);
10452 	d_tmpfile(dentry, inode);
10453 	mark_inode_dirty(inode);
10454 
10455 out:
10456 	btrfs_end_transaction(trans, root);
10457 	if (ret)
10458 		iput(inode);
10459 	btrfs_balance_delayed_items(root);
10460 	btrfs_btree_balance_dirty(root);
10461 	return ret;
10462 
10463 out_inode:
10464 	unlock_new_inode(inode);
10465 	goto out;
10466 
10467 }
10468 
10469 /* Inspired by filemap_check_errors() */
10470 int btrfs_inode_check_errors(struct inode *inode)
10471 {
10472 	int ret = 0;
10473 
10474 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10475 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10476 		ret = -ENOSPC;
10477 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10478 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10479 		ret = -EIO;
10480 
10481 	return ret;
10482 }
10483 
10484 static const struct inode_operations btrfs_dir_inode_operations = {
10485 	.getattr	= btrfs_getattr,
10486 	.lookup		= btrfs_lookup,
10487 	.create		= btrfs_create,
10488 	.unlink		= btrfs_unlink,
10489 	.link		= btrfs_link,
10490 	.mkdir		= btrfs_mkdir,
10491 	.rmdir		= btrfs_rmdir,
10492 	.rename2	= btrfs_rename2,
10493 	.symlink	= btrfs_symlink,
10494 	.setattr	= btrfs_setattr,
10495 	.mknod		= btrfs_mknod,
10496 	.setxattr	= generic_setxattr,
10497 	.getxattr	= generic_getxattr,
10498 	.listxattr	= btrfs_listxattr,
10499 	.removexattr	= generic_removexattr,
10500 	.permission	= btrfs_permission,
10501 	.get_acl	= btrfs_get_acl,
10502 	.set_acl	= btrfs_set_acl,
10503 	.update_time	= btrfs_update_time,
10504 	.tmpfile        = btrfs_tmpfile,
10505 };
10506 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10507 	.lookup		= btrfs_lookup,
10508 	.permission	= btrfs_permission,
10509 	.get_acl	= btrfs_get_acl,
10510 	.set_acl	= btrfs_set_acl,
10511 	.update_time	= btrfs_update_time,
10512 };
10513 
10514 static const struct file_operations btrfs_dir_file_operations = {
10515 	.llseek		= generic_file_llseek,
10516 	.read		= generic_read_dir,
10517 	.iterate	= btrfs_real_readdir,
10518 	.unlocked_ioctl	= btrfs_ioctl,
10519 #ifdef CONFIG_COMPAT
10520 	.compat_ioctl	= btrfs_compat_ioctl,
10521 #endif
10522 	.release        = btrfs_release_file,
10523 	.fsync		= btrfs_sync_file,
10524 };
10525 
10526 static const struct extent_io_ops btrfs_extent_io_ops = {
10527 	.fill_delalloc = run_delalloc_range,
10528 	.submit_bio_hook = btrfs_submit_bio_hook,
10529 	.merge_bio_hook = btrfs_merge_bio_hook,
10530 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10531 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10532 	.writepage_start_hook = btrfs_writepage_start_hook,
10533 	.set_bit_hook = btrfs_set_bit_hook,
10534 	.clear_bit_hook = btrfs_clear_bit_hook,
10535 	.merge_extent_hook = btrfs_merge_extent_hook,
10536 	.split_extent_hook = btrfs_split_extent_hook,
10537 };
10538 
10539 /*
10540  * btrfs doesn't support the bmap operation because swapfiles
10541  * use bmap to make a mapping of extents in the file.  They assume
10542  * these extents won't change over the life of the file and they
10543  * use the bmap result to do IO directly to the drive.
10544  *
10545  * the btrfs bmap call would return logical addresses that aren't
10546  * suitable for IO and they also will change frequently as COW
10547  * operations happen.  So, swapfile + btrfs == corruption.
10548  *
10549  * For now we're avoiding this by dropping bmap.
10550  */
10551 static const struct address_space_operations btrfs_aops = {
10552 	.readpage	= btrfs_readpage,
10553 	.writepage	= btrfs_writepage,
10554 	.writepages	= btrfs_writepages,
10555 	.readpages	= btrfs_readpages,
10556 	.direct_IO	= btrfs_direct_IO,
10557 	.invalidatepage = btrfs_invalidatepage,
10558 	.releasepage	= btrfs_releasepage,
10559 	.set_page_dirty	= btrfs_set_page_dirty,
10560 	.error_remove_page = generic_error_remove_page,
10561 };
10562 
10563 static const struct address_space_operations btrfs_symlink_aops = {
10564 	.readpage	= btrfs_readpage,
10565 	.writepage	= btrfs_writepage,
10566 	.invalidatepage = btrfs_invalidatepage,
10567 	.releasepage	= btrfs_releasepage,
10568 };
10569 
10570 static const struct inode_operations btrfs_file_inode_operations = {
10571 	.getattr	= btrfs_getattr,
10572 	.setattr	= btrfs_setattr,
10573 	.setxattr	= generic_setxattr,
10574 	.getxattr	= generic_getxattr,
10575 	.listxattr      = btrfs_listxattr,
10576 	.removexattr	= generic_removexattr,
10577 	.permission	= btrfs_permission,
10578 	.fiemap		= btrfs_fiemap,
10579 	.get_acl	= btrfs_get_acl,
10580 	.set_acl	= btrfs_set_acl,
10581 	.update_time	= btrfs_update_time,
10582 };
10583 static const struct inode_operations btrfs_special_inode_operations = {
10584 	.getattr	= btrfs_getattr,
10585 	.setattr	= btrfs_setattr,
10586 	.permission	= btrfs_permission,
10587 	.setxattr	= generic_setxattr,
10588 	.getxattr	= generic_getxattr,
10589 	.listxattr	= btrfs_listxattr,
10590 	.removexattr	= generic_removexattr,
10591 	.get_acl	= btrfs_get_acl,
10592 	.set_acl	= btrfs_set_acl,
10593 	.update_time	= btrfs_update_time,
10594 };
10595 static const struct inode_operations btrfs_symlink_inode_operations = {
10596 	.readlink	= generic_readlink,
10597 	.get_link	= page_get_link,
10598 	.getattr	= btrfs_getattr,
10599 	.setattr	= btrfs_setattr,
10600 	.permission	= btrfs_permission,
10601 	.setxattr	= generic_setxattr,
10602 	.getxattr	= generic_getxattr,
10603 	.listxattr	= btrfs_listxattr,
10604 	.removexattr	= generic_removexattr,
10605 	.update_time	= btrfs_update_time,
10606 };
10607 
10608 const struct dentry_operations btrfs_dentry_operations = {
10609 	.d_delete	= btrfs_dentry_delete,
10610 	.d_release	= btrfs_dentry_release,
10611 };
10612