xref: /openbmc/linux/fs/btrfs/inode.c (revision 330e261c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/mpage.h>
18 #include <linux/swap.h>
19 #include <linux/writeback.h>
20 #include <linux/compat.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/xattr.h>
23 #include <linux/posix_acl.h>
24 #include <linux/falloc.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/mount.h>
28 #include <linux/btrfs.h>
29 #include <linux/blkdev.h>
30 #include <linux/posix_acl_xattr.h>
31 #include <linux/uio.h>
32 #include <linux/magic.h>
33 #include <linux/iversion.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "ordered-data.h"
41 #include "xattr.h"
42 #include "tree-log.h"
43 #include "volumes.h"
44 #include "compression.h"
45 #include "locking.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "backref.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "dedupe.h"
52 
53 struct btrfs_iget_args {
54 	struct btrfs_key *location;
55 	struct btrfs_root *root;
56 };
57 
58 struct btrfs_dio_data {
59 	u64 reserve;
60 	u64 unsubmitted_oe_range_start;
61 	u64 unsubmitted_oe_range_end;
62 	int overwrite;
63 };
64 
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct address_space_operations btrfs_symlink_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
74 
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 
80 #define S_SHIFT 12
81 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
82 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
83 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
84 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
85 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
86 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
87 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
88 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
89 };
90 
91 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
92 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
94 static noinline int cow_file_range(struct inode *inode,
95 				   struct page *locked_page,
96 				   u64 start, u64 end, u64 delalloc_end,
97 				   int *page_started, unsigned long *nr_written,
98 				   int unlock, struct btrfs_dedupe_hash *hash);
99 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
100 				       u64 orig_start, u64 block_start,
101 				       u64 block_len, u64 orig_block_len,
102 				       u64 ram_bytes, int compress_type,
103 				       int type);
104 
105 static void __endio_write_update_ordered(struct inode *inode,
106 					 const u64 offset, const u64 bytes,
107 					 const bool uptodate);
108 
109 /*
110  * Cleanup all submitted ordered extents in specified range to handle errors
111  * from the fill_dellaloc() callback.
112  *
113  * NOTE: caller must ensure that when an error happens, it can not call
114  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
115  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
116  * to be released, which we want to happen only when finishing the ordered
117  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
118  * fill_delalloc() callback already does proper cleanup for the first page of
119  * the range, that is, it invokes the callback writepage_end_io_hook() for the
120  * range of the first page.
121  */
122 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
123 						 const u64 offset,
124 						 const u64 bytes)
125 {
126 	unsigned long index = offset >> PAGE_SHIFT;
127 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
128 	struct page *page;
129 
130 	while (index <= end_index) {
131 		page = find_get_page(inode->i_mapping, index);
132 		index++;
133 		if (!page)
134 			continue;
135 		ClearPagePrivate2(page);
136 		put_page(page);
137 	}
138 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 					    bytes - PAGE_SIZE, false);
140 }
141 
142 static int btrfs_dirty_inode(struct inode *inode);
143 
144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145 void btrfs_test_inode_set_ops(struct inode *inode)
146 {
147 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148 }
149 #endif
150 
151 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
152 				     struct inode *inode,  struct inode *dir,
153 				     const struct qstr *qstr)
154 {
155 	int err;
156 
157 	err = btrfs_init_acl(trans, inode, dir);
158 	if (!err)
159 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
160 	return err;
161 }
162 
163 /*
164  * this does all the hard work for inserting an inline extent into
165  * the btree.  The caller should have done a btrfs_drop_extents so that
166  * no overlapping inline items exist in the btree
167  */
168 static int insert_inline_extent(struct btrfs_trans_handle *trans,
169 				struct btrfs_path *path, int extent_inserted,
170 				struct btrfs_root *root, struct inode *inode,
171 				u64 start, size_t size, size_t compressed_size,
172 				int compress_type,
173 				struct page **compressed_pages)
174 {
175 	struct extent_buffer *leaf;
176 	struct page *page = NULL;
177 	char *kaddr;
178 	unsigned long ptr;
179 	struct btrfs_file_extent_item *ei;
180 	int ret;
181 	size_t cur_size = size;
182 	unsigned long offset;
183 
184 	if (compressed_size && compressed_pages)
185 		cur_size = compressed_size;
186 
187 	inode_add_bytes(inode, size);
188 
189 	if (!extent_inserted) {
190 		struct btrfs_key key;
191 		size_t datasize;
192 
193 		key.objectid = btrfs_ino(BTRFS_I(inode));
194 		key.offset = start;
195 		key.type = BTRFS_EXTENT_DATA_KEY;
196 
197 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 		path->leave_spinning = 1;
199 		ret = btrfs_insert_empty_item(trans, root, path, &key,
200 					      datasize);
201 		if (ret)
202 			goto fail;
203 	}
204 	leaf = path->nodes[0];
205 	ei = btrfs_item_ptr(leaf, path->slots[0],
206 			    struct btrfs_file_extent_item);
207 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 	btrfs_set_file_extent_encryption(leaf, ei, 0);
210 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 	ptr = btrfs_file_extent_inline_start(ei);
213 
214 	if (compress_type != BTRFS_COMPRESS_NONE) {
215 		struct page *cpage;
216 		int i = 0;
217 		while (compressed_size > 0) {
218 			cpage = compressed_pages[i];
219 			cur_size = min_t(unsigned long, compressed_size,
220 				       PAGE_SIZE);
221 
222 			kaddr = kmap_atomic(cpage);
223 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
224 			kunmap_atomic(kaddr);
225 
226 			i++;
227 			ptr += cur_size;
228 			compressed_size -= cur_size;
229 		}
230 		btrfs_set_file_extent_compression(leaf, ei,
231 						  compress_type);
232 	} else {
233 		page = find_get_page(inode->i_mapping,
234 				     start >> PAGE_SHIFT);
235 		btrfs_set_file_extent_compression(leaf, ei, 0);
236 		kaddr = kmap_atomic(page);
237 		offset = start & (PAGE_SIZE - 1);
238 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
239 		kunmap_atomic(kaddr);
240 		put_page(page);
241 	}
242 	btrfs_mark_buffer_dirty(leaf);
243 	btrfs_release_path(path);
244 
245 	/*
246 	 * we're an inline extent, so nobody can
247 	 * extend the file past i_size without locking
248 	 * a page we already have locked.
249 	 *
250 	 * We must do any isize and inode updates
251 	 * before we unlock the pages.  Otherwise we
252 	 * could end up racing with unlink.
253 	 */
254 	BTRFS_I(inode)->disk_i_size = inode->i_size;
255 	ret = btrfs_update_inode(trans, root, inode);
256 
257 fail:
258 	return ret;
259 }
260 
261 
262 /*
263  * conditionally insert an inline extent into the file.  This
264  * does the checks required to make sure the data is small enough
265  * to fit as an inline extent.
266  */
267 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
268 					  u64 end, size_t compressed_size,
269 					  int compress_type,
270 					  struct page **compressed_pages)
271 {
272 	struct btrfs_root *root = BTRFS_I(inode)->root;
273 	struct btrfs_fs_info *fs_info = root->fs_info;
274 	struct btrfs_trans_handle *trans;
275 	u64 isize = i_size_read(inode);
276 	u64 actual_end = min(end + 1, isize);
277 	u64 inline_len = actual_end - start;
278 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
279 	u64 data_len = inline_len;
280 	int ret;
281 	struct btrfs_path *path;
282 	int extent_inserted = 0;
283 	u32 extent_item_size;
284 
285 	if (compressed_size)
286 		data_len = compressed_size;
287 
288 	if (start > 0 ||
289 	    actual_end > fs_info->sectorsize ||
290 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
291 	    (!compressed_size &&
292 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
293 	    end + 1 < isize ||
294 	    data_len > fs_info->max_inline) {
295 		return 1;
296 	}
297 
298 	path = btrfs_alloc_path();
299 	if (!path)
300 		return -ENOMEM;
301 
302 	trans = btrfs_join_transaction(root);
303 	if (IS_ERR(trans)) {
304 		btrfs_free_path(path);
305 		return PTR_ERR(trans);
306 	}
307 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
308 
309 	if (compressed_size && compressed_pages)
310 		extent_item_size = btrfs_file_extent_calc_inline_size(
311 		   compressed_size);
312 	else
313 		extent_item_size = btrfs_file_extent_calc_inline_size(
314 		    inline_len);
315 
316 	ret = __btrfs_drop_extents(trans, root, inode, path,
317 				   start, aligned_end, NULL,
318 				   1, 1, extent_item_size, &extent_inserted);
319 	if (ret) {
320 		btrfs_abort_transaction(trans, ret);
321 		goto out;
322 	}
323 
324 	if (isize > actual_end)
325 		inline_len = min_t(u64, isize, actual_end);
326 	ret = insert_inline_extent(trans, path, extent_inserted,
327 				   root, inode, start,
328 				   inline_len, compressed_size,
329 				   compress_type, compressed_pages);
330 	if (ret && ret != -ENOSPC) {
331 		btrfs_abort_transaction(trans, ret);
332 		goto out;
333 	} else if (ret == -ENOSPC) {
334 		ret = 1;
335 		goto out;
336 	}
337 
338 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
339 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
340 out:
341 	/*
342 	 * Don't forget to free the reserved space, as for inlined extent
343 	 * it won't count as data extent, free them directly here.
344 	 * And at reserve time, it's always aligned to page size, so
345 	 * just free one page here.
346 	 */
347 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
348 	btrfs_free_path(path);
349 	btrfs_end_transaction(trans);
350 	return ret;
351 }
352 
353 struct async_extent {
354 	u64 start;
355 	u64 ram_size;
356 	u64 compressed_size;
357 	struct page **pages;
358 	unsigned long nr_pages;
359 	int compress_type;
360 	struct list_head list;
361 };
362 
363 struct async_cow {
364 	struct inode *inode;
365 	struct btrfs_root *root;
366 	struct page *locked_page;
367 	u64 start;
368 	u64 end;
369 	unsigned int write_flags;
370 	struct list_head extents;
371 	struct btrfs_work work;
372 };
373 
374 static noinline int add_async_extent(struct async_cow *cow,
375 				     u64 start, u64 ram_size,
376 				     u64 compressed_size,
377 				     struct page **pages,
378 				     unsigned long nr_pages,
379 				     int compress_type)
380 {
381 	struct async_extent *async_extent;
382 
383 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
384 	BUG_ON(!async_extent); /* -ENOMEM */
385 	async_extent->start = start;
386 	async_extent->ram_size = ram_size;
387 	async_extent->compressed_size = compressed_size;
388 	async_extent->pages = pages;
389 	async_extent->nr_pages = nr_pages;
390 	async_extent->compress_type = compress_type;
391 	list_add_tail(&async_extent->list, &cow->extents);
392 	return 0;
393 }
394 
395 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
396 {
397 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
398 
399 	/* force compress */
400 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
401 		return 1;
402 	/* defrag ioctl */
403 	if (BTRFS_I(inode)->defrag_compress)
404 		return 1;
405 	/* bad compression ratios */
406 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 		return 0;
408 	if (btrfs_test_opt(fs_info, COMPRESS) ||
409 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
410 	    BTRFS_I(inode)->prop_compress)
411 		return btrfs_compress_heuristic(inode, start, end);
412 	return 0;
413 }
414 
415 static inline void inode_should_defrag(struct btrfs_inode *inode,
416 		u64 start, u64 end, u64 num_bytes, u64 small_write)
417 {
418 	/* If this is a small write inside eof, kick off a defrag */
419 	if (num_bytes < small_write &&
420 	    (start > 0 || end + 1 < inode->disk_i_size))
421 		btrfs_add_inode_defrag(NULL, inode);
422 }
423 
424 /*
425  * we create compressed extents in two phases.  The first
426  * phase compresses a range of pages that have already been
427  * locked (both pages and state bits are locked).
428  *
429  * This is done inside an ordered work queue, and the compression
430  * is spread across many cpus.  The actual IO submission is step
431  * two, and the ordered work queue takes care of making sure that
432  * happens in the same order things were put onto the queue by
433  * writepages and friends.
434  *
435  * If this code finds it can't get good compression, it puts an
436  * entry onto the work queue to write the uncompressed bytes.  This
437  * makes sure that both compressed inodes and uncompressed inodes
438  * are written in the same order that the flusher thread sent them
439  * down.
440  */
441 static noinline void compress_file_range(struct inode *inode,
442 					struct page *locked_page,
443 					u64 start, u64 end,
444 					struct async_cow *async_cow,
445 					int *num_added)
446 {
447 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
448 	u64 blocksize = fs_info->sectorsize;
449 	u64 actual_end;
450 	u64 isize = i_size_read(inode);
451 	int ret = 0;
452 	struct page **pages = NULL;
453 	unsigned long nr_pages;
454 	unsigned long total_compressed = 0;
455 	unsigned long total_in = 0;
456 	int i;
457 	int will_compress;
458 	int compress_type = fs_info->compress_type;
459 	int redirty = 0;
460 
461 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
462 			SZ_16K);
463 
464 	actual_end = min_t(u64, isize, end + 1);
465 again:
466 	will_compress = 0;
467 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
468 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
469 	nr_pages = min_t(unsigned long, nr_pages,
470 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
471 
472 	/*
473 	 * we don't want to send crud past the end of i_size through
474 	 * compression, that's just a waste of CPU time.  So, if the
475 	 * end of the file is before the start of our current
476 	 * requested range of bytes, we bail out to the uncompressed
477 	 * cleanup code that can deal with all of this.
478 	 *
479 	 * It isn't really the fastest way to fix things, but this is a
480 	 * very uncommon corner.
481 	 */
482 	if (actual_end <= start)
483 		goto cleanup_and_bail_uncompressed;
484 
485 	total_compressed = actual_end - start;
486 
487 	/*
488 	 * skip compression for a small file range(<=blocksize) that
489 	 * isn't an inline extent, since it doesn't save disk space at all.
490 	 */
491 	if (total_compressed <= blocksize &&
492 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
493 		goto cleanup_and_bail_uncompressed;
494 
495 	total_compressed = min_t(unsigned long, total_compressed,
496 			BTRFS_MAX_UNCOMPRESSED);
497 	total_in = 0;
498 	ret = 0;
499 
500 	/*
501 	 * we do compression for mount -o compress and when the
502 	 * inode has not been flagged as nocompress.  This flag can
503 	 * change at any time if we discover bad compression ratios.
504 	 */
505 	if (inode_need_compress(inode, start, end)) {
506 		WARN_ON(pages);
507 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
508 		if (!pages) {
509 			/* just bail out to the uncompressed code */
510 			goto cont;
511 		}
512 
513 		if (BTRFS_I(inode)->defrag_compress)
514 			compress_type = BTRFS_I(inode)->defrag_compress;
515 		else if (BTRFS_I(inode)->prop_compress)
516 			compress_type = BTRFS_I(inode)->prop_compress;
517 
518 		/*
519 		 * we need to call clear_page_dirty_for_io on each
520 		 * page in the range.  Otherwise applications with the file
521 		 * mmap'd can wander in and change the page contents while
522 		 * we are compressing them.
523 		 *
524 		 * If the compression fails for any reason, we set the pages
525 		 * dirty again later on.
526 		 *
527 		 * Note that the remaining part is redirtied, the start pointer
528 		 * has moved, the end is the original one.
529 		 */
530 		if (!redirty) {
531 			extent_range_clear_dirty_for_io(inode, start, end);
532 			redirty = 1;
533 		}
534 
535 		/* Compression level is applied here and only here */
536 		ret = btrfs_compress_pages(
537 			compress_type | (fs_info->compress_level << 4),
538 					   inode->i_mapping, start,
539 					   pages,
540 					   &nr_pages,
541 					   &total_in,
542 					   &total_compressed);
543 
544 		if (!ret) {
545 			unsigned long offset = total_compressed &
546 				(PAGE_SIZE - 1);
547 			struct page *page = pages[nr_pages - 1];
548 			char *kaddr;
549 
550 			/* zero the tail end of the last page, we might be
551 			 * sending it down to disk
552 			 */
553 			if (offset) {
554 				kaddr = kmap_atomic(page);
555 				memset(kaddr + offset, 0,
556 				       PAGE_SIZE - offset);
557 				kunmap_atomic(kaddr);
558 			}
559 			will_compress = 1;
560 		}
561 	}
562 cont:
563 	if (start == 0) {
564 		/* lets try to make an inline extent */
565 		if (ret || total_in < actual_end) {
566 			/* we didn't compress the entire range, try
567 			 * to make an uncompressed inline extent.
568 			 */
569 			ret = cow_file_range_inline(inode, start, end, 0,
570 						    BTRFS_COMPRESS_NONE, NULL);
571 		} else {
572 			/* try making a compressed inline extent */
573 			ret = cow_file_range_inline(inode, start, end,
574 						    total_compressed,
575 						    compress_type, pages);
576 		}
577 		if (ret <= 0) {
578 			unsigned long clear_flags = EXTENT_DELALLOC |
579 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
580 				EXTENT_DO_ACCOUNTING;
581 			unsigned long page_error_op;
582 
583 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
584 
585 			/*
586 			 * inline extent creation worked or returned error,
587 			 * we don't need to create any more async work items.
588 			 * Unlock and free up our temp pages.
589 			 *
590 			 * We use DO_ACCOUNTING here because we need the
591 			 * delalloc_release_metadata to be done _after_ we drop
592 			 * our outstanding extent for clearing delalloc for this
593 			 * range.
594 			 */
595 			extent_clear_unlock_delalloc(inode, start, end, end,
596 						     NULL, clear_flags,
597 						     PAGE_UNLOCK |
598 						     PAGE_CLEAR_DIRTY |
599 						     PAGE_SET_WRITEBACK |
600 						     page_error_op |
601 						     PAGE_END_WRITEBACK);
602 			goto free_pages_out;
603 		}
604 	}
605 
606 	if (will_compress) {
607 		/*
608 		 * we aren't doing an inline extent round the compressed size
609 		 * up to a block size boundary so the allocator does sane
610 		 * things
611 		 */
612 		total_compressed = ALIGN(total_compressed, blocksize);
613 
614 		/*
615 		 * one last check to make sure the compression is really a
616 		 * win, compare the page count read with the blocks on disk,
617 		 * compression must free at least one sector size
618 		 */
619 		total_in = ALIGN(total_in, PAGE_SIZE);
620 		if (total_compressed + blocksize <= total_in) {
621 			*num_added += 1;
622 
623 			/*
624 			 * The async work queues will take care of doing actual
625 			 * allocation on disk for these compressed pages, and
626 			 * will submit them to the elevator.
627 			 */
628 			add_async_extent(async_cow, start, total_in,
629 					total_compressed, pages, nr_pages,
630 					compress_type);
631 
632 			if (start + total_in < end) {
633 				start += total_in;
634 				pages = NULL;
635 				cond_resched();
636 				goto again;
637 			}
638 			return;
639 		}
640 	}
641 	if (pages) {
642 		/*
643 		 * the compression code ran but failed to make things smaller,
644 		 * free any pages it allocated and our page pointer array
645 		 */
646 		for (i = 0; i < nr_pages; i++) {
647 			WARN_ON(pages[i]->mapping);
648 			put_page(pages[i]);
649 		}
650 		kfree(pages);
651 		pages = NULL;
652 		total_compressed = 0;
653 		nr_pages = 0;
654 
655 		/* flag the file so we don't compress in the future */
656 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
657 		    !(BTRFS_I(inode)->prop_compress)) {
658 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
659 		}
660 	}
661 cleanup_and_bail_uncompressed:
662 	/*
663 	 * No compression, but we still need to write the pages in the file
664 	 * we've been given so far.  redirty the locked page if it corresponds
665 	 * to our extent and set things up for the async work queue to run
666 	 * cow_file_range to do the normal delalloc dance.
667 	 */
668 	if (page_offset(locked_page) >= start &&
669 	    page_offset(locked_page) <= end)
670 		__set_page_dirty_nobuffers(locked_page);
671 		/* unlocked later on in the async handlers */
672 
673 	if (redirty)
674 		extent_range_redirty_for_io(inode, start, end);
675 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
676 			 BTRFS_COMPRESS_NONE);
677 	*num_added += 1;
678 
679 	return;
680 
681 free_pages_out:
682 	for (i = 0; i < nr_pages; i++) {
683 		WARN_ON(pages[i]->mapping);
684 		put_page(pages[i]);
685 	}
686 	kfree(pages);
687 }
688 
689 static void free_async_extent_pages(struct async_extent *async_extent)
690 {
691 	int i;
692 
693 	if (!async_extent->pages)
694 		return;
695 
696 	for (i = 0; i < async_extent->nr_pages; i++) {
697 		WARN_ON(async_extent->pages[i]->mapping);
698 		put_page(async_extent->pages[i]);
699 	}
700 	kfree(async_extent->pages);
701 	async_extent->nr_pages = 0;
702 	async_extent->pages = NULL;
703 }
704 
705 /*
706  * phase two of compressed writeback.  This is the ordered portion
707  * of the code, which only gets called in the order the work was
708  * queued.  We walk all the async extents created by compress_file_range
709  * and send them down to the disk.
710  */
711 static noinline void submit_compressed_extents(struct inode *inode,
712 					      struct async_cow *async_cow)
713 {
714 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
715 	struct async_extent *async_extent;
716 	u64 alloc_hint = 0;
717 	struct btrfs_key ins;
718 	struct extent_map *em;
719 	struct btrfs_root *root = BTRFS_I(inode)->root;
720 	struct extent_io_tree *io_tree;
721 	int ret = 0;
722 
723 again:
724 	while (!list_empty(&async_cow->extents)) {
725 		async_extent = list_entry(async_cow->extents.next,
726 					  struct async_extent, list);
727 		list_del(&async_extent->list);
728 
729 		io_tree = &BTRFS_I(inode)->io_tree;
730 
731 retry:
732 		/* did the compression code fall back to uncompressed IO? */
733 		if (!async_extent->pages) {
734 			int page_started = 0;
735 			unsigned long nr_written = 0;
736 
737 			lock_extent(io_tree, async_extent->start,
738 					 async_extent->start +
739 					 async_extent->ram_size - 1);
740 
741 			/* allocate blocks */
742 			ret = cow_file_range(inode, async_cow->locked_page,
743 					     async_extent->start,
744 					     async_extent->start +
745 					     async_extent->ram_size - 1,
746 					     async_extent->start +
747 					     async_extent->ram_size - 1,
748 					     &page_started, &nr_written, 0,
749 					     NULL);
750 
751 			/* JDM XXX */
752 
753 			/*
754 			 * if page_started, cow_file_range inserted an
755 			 * inline extent and took care of all the unlocking
756 			 * and IO for us.  Otherwise, we need to submit
757 			 * all those pages down to the drive.
758 			 */
759 			if (!page_started && !ret)
760 				extent_write_locked_range(inode,
761 						  async_extent->start,
762 						  async_extent->start +
763 						  async_extent->ram_size - 1,
764 						  WB_SYNC_ALL);
765 			else if (ret)
766 				unlock_page(async_cow->locked_page);
767 			kfree(async_extent);
768 			cond_resched();
769 			continue;
770 		}
771 
772 		lock_extent(io_tree, async_extent->start,
773 			    async_extent->start + async_extent->ram_size - 1);
774 
775 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
776 					   async_extent->compressed_size,
777 					   async_extent->compressed_size,
778 					   0, alloc_hint, &ins, 1, 1);
779 		if (ret) {
780 			free_async_extent_pages(async_extent);
781 
782 			if (ret == -ENOSPC) {
783 				unlock_extent(io_tree, async_extent->start,
784 					      async_extent->start +
785 					      async_extent->ram_size - 1);
786 
787 				/*
788 				 * we need to redirty the pages if we decide to
789 				 * fallback to uncompressed IO, otherwise we
790 				 * will not submit these pages down to lower
791 				 * layers.
792 				 */
793 				extent_range_redirty_for_io(inode,
794 						async_extent->start,
795 						async_extent->start +
796 						async_extent->ram_size - 1);
797 
798 				goto retry;
799 			}
800 			goto out_free;
801 		}
802 		/*
803 		 * here we're doing allocation and writeback of the
804 		 * compressed pages
805 		 */
806 		em = create_io_em(inode, async_extent->start,
807 				  async_extent->ram_size, /* len */
808 				  async_extent->start, /* orig_start */
809 				  ins.objectid, /* block_start */
810 				  ins.offset, /* block_len */
811 				  ins.offset, /* orig_block_len */
812 				  async_extent->ram_size, /* ram_bytes */
813 				  async_extent->compress_type,
814 				  BTRFS_ORDERED_COMPRESSED);
815 		if (IS_ERR(em))
816 			/* ret value is not necessary due to void function */
817 			goto out_free_reserve;
818 		free_extent_map(em);
819 
820 		ret = btrfs_add_ordered_extent_compress(inode,
821 						async_extent->start,
822 						ins.objectid,
823 						async_extent->ram_size,
824 						ins.offset,
825 						BTRFS_ORDERED_COMPRESSED,
826 						async_extent->compress_type);
827 		if (ret) {
828 			btrfs_drop_extent_cache(BTRFS_I(inode),
829 						async_extent->start,
830 						async_extent->start +
831 						async_extent->ram_size - 1, 0);
832 			goto out_free_reserve;
833 		}
834 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
835 
836 		/*
837 		 * clear dirty, set writeback and unlock the pages.
838 		 */
839 		extent_clear_unlock_delalloc(inode, async_extent->start,
840 				async_extent->start +
841 				async_extent->ram_size - 1,
842 				async_extent->start +
843 				async_extent->ram_size - 1,
844 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
845 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
846 				PAGE_SET_WRITEBACK);
847 		if (btrfs_submit_compressed_write(inode,
848 				    async_extent->start,
849 				    async_extent->ram_size,
850 				    ins.objectid,
851 				    ins.offset, async_extent->pages,
852 				    async_extent->nr_pages,
853 				    async_cow->write_flags)) {
854 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
855 			struct page *p = async_extent->pages[0];
856 			const u64 start = async_extent->start;
857 			const u64 end = start + async_extent->ram_size - 1;
858 
859 			p->mapping = inode->i_mapping;
860 			tree->ops->writepage_end_io_hook(p, start, end,
861 							 NULL, 0);
862 			p->mapping = NULL;
863 			extent_clear_unlock_delalloc(inode, start, end, end,
864 						     NULL, 0,
865 						     PAGE_END_WRITEBACK |
866 						     PAGE_SET_ERROR);
867 			free_async_extent_pages(async_extent);
868 		}
869 		alloc_hint = ins.objectid + ins.offset;
870 		kfree(async_extent);
871 		cond_resched();
872 	}
873 	return;
874 out_free_reserve:
875 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
876 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
877 out_free:
878 	extent_clear_unlock_delalloc(inode, async_extent->start,
879 				     async_extent->start +
880 				     async_extent->ram_size - 1,
881 				     async_extent->start +
882 				     async_extent->ram_size - 1,
883 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
884 				     EXTENT_DELALLOC_NEW |
885 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
886 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
887 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
888 				     PAGE_SET_ERROR);
889 	free_async_extent_pages(async_extent);
890 	kfree(async_extent);
891 	goto again;
892 }
893 
894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 				      u64 num_bytes)
896 {
897 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 	struct extent_map *em;
899 	u64 alloc_hint = 0;
900 
901 	read_lock(&em_tree->lock);
902 	em = search_extent_mapping(em_tree, start, num_bytes);
903 	if (em) {
904 		/*
905 		 * if block start isn't an actual block number then find the
906 		 * first block in this inode and use that as a hint.  If that
907 		 * block is also bogus then just don't worry about it.
908 		 */
909 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
910 			free_extent_map(em);
911 			em = search_extent_mapping(em_tree, 0, 0);
912 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
913 				alloc_hint = em->block_start;
914 			if (em)
915 				free_extent_map(em);
916 		} else {
917 			alloc_hint = em->block_start;
918 			free_extent_map(em);
919 		}
920 	}
921 	read_unlock(&em_tree->lock);
922 
923 	return alloc_hint;
924 }
925 
926 /*
927  * when extent_io.c finds a delayed allocation range in the file,
928  * the call backs end up in this code.  The basic idea is to
929  * allocate extents on disk for the range, and create ordered data structs
930  * in ram to track those extents.
931  *
932  * locked_page is the page that writepage had locked already.  We use
933  * it to make sure we don't do extra locks or unlocks.
934  *
935  * *page_started is set to one if we unlock locked_page and do everything
936  * required to start IO on it.  It may be clean and already done with
937  * IO when we return.
938  */
939 static noinline int cow_file_range(struct inode *inode,
940 				   struct page *locked_page,
941 				   u64 start, u64 end, u64 delalloc_end,
942 				   int *page_started, unsigned long *nr_written,
943 				   int unlock, struct btrfs_dedupe_hash *hash)
944 {
945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
946 	struct btrfs_root *root = BTRFS_I(inode)->root;
947 	u64 alloc_hint = 0;
948 	u64 num_bytes;
949 	unsigned long ram_size;
950 	u64 cur_alloc_size = 0;
951 	u64 blocksize = fs_info->sectorsize;
952 	struct btrfs_key ins;
953 	struct extent_map *em;
954 	unsigned clear_bits;
955 	unsigned long page_ops;
956 	bool extent_reserved = false;
957 	int ret = 0;
958 
959 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
960 		WARN_ON_ONCE(1);
961 		ret = -EINVAL;
962 		goto out_unlock;
963 	}
964 
965 	num_bytes = ALIGN(end - start + 1, blocksize);
966 	num_bytes = max(blocksize,  num_bytes);
967 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
968 
969 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
970 
971 	if (start == 0) {
972 		/* lets try to make an inline extent */
973 		ret = cow_file_range_inline(inode, start, end, 0,
974 					    BTRFS_COMPRESS_NONE, NULL);
975 		if (ret == 0) {
976 			/*
977 			 * We use DO_ACCOUNTING here because we need the
978 			 * delalloc_release_metadata to be run _after_ we drop
979 			 * our outstanding extent for clearing delalloc for this
980 			 * range.
981 			 */
982 			extent_clear_unlock_delalloc(inode, start, end,
983 				     delalloc_end, NULL,
984 				     EXTENT_LOCKED | EXTENT_DELALLOC |
985 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
987 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
988 				     PAGE_END_WRITEBACK);
989 			*nr_written = *nr_written +
990 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
991 			*page_started = 1;
992 			goto out;
993 		} else if (ret < 0) {
994 			goto out_unlock;
995 		}
996 	}
997 
998 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
999 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1000 			start + num_bytes - 1, 0);
1001 
1002 	while (num_bytes > 0) {
1003 		cur_alloc_size = num_bytes;
1004 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1005 					   fs_info->sectorsize, 0, alloc_hint,
1006 					   &ins, 1, 1);
1007 		if (ret < 0)
1008 			goto out_unlock;
1009 		cur_alloc_size = ins.offset;
1010 		extent_reserved = true;
1011 
1012 		ram_size = ins.offset;
1013 		em = create_io_em(inode, start, ins.offset, /* len */
1014 				  start, /* orig_start */
1015 				  ins.objectid, /* block_start */
1016 				  ins.offset, /* block_len */
1017 				  ins.offset, /* orig_block_len */
1018 				  ram_size, /* ram_bytes */
1019 				  BTRFS_COMPRESS_NONE, /* compress_type */
1020 				  BTRFS_ORDERED_REGULAR /* type */);
1021 		if (IS_ERR(em))
1022 			goto out_reserve;
1023 		free_extent_map(em);
1024 
1025 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1026 					       ram_size, cur_alloc_size, 0);
1027 		if (ret)
1028 			goto out_drop_extent_cache;
1029 
1030 		if (root->root_key.objectid ==
1031 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1032 			ret = btrfs_reloc_clone_csums(inode, start,
1033 						      cur_alloc_size);
1034 			/*
1035 			 * Only drop cache here, and process as normal.
1036 			 *
1037 			 * We must not allow extent_clear_unlock_delalloc()
1038 			 * at out_unlock label to free meta of this ordered
1039 			 * extent, as its meta should be freed by
1040 			 * btrfs_finish_ordered_io().
1041 			 *
1042 			 * So we must continue until @start is increased to
1043 			 * skip current ordered extent.
1044 			 */
1045 			if (ret)
1046 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1047 						start + ram_size - 1, 0);
1048 		}
1049 
1050 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1051 
1052 		/* we're not doing compressed IO, don't unlock the first
1053 		 * page (which the caller expects to stay locked), don't
1054 		 * clear any dirty bits and don't set any writeback bits
1055 		 *
1056 		 * Do set the Private2 bit so we know this page was properly
1057 		 * setup for writepage
1058 		 */
1059 		page_ops = unlock ? PAGE_UNLOCK : 0;
1060 		page_ops |= PAGE_SET_PRIVATE2;
1061 
1062 		extent_clear_unlock_delalloc(inode, start,
1063 					     start + ram_size - 1,
1064 					     delalloc_end, locked_page,
1065 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1066 					     page_ops);
1067 		if (num_bytes < cur_alloc_size)
1068 			num_bytes = 0;
1069 		else
1070 			num_bytes -= cur_alloc_size;
1071 		alloc_hint = ins.objectid + ins.offset;
1072 		start += cur_alloc_size;
1073 		extent_reserved = false;
1074 
1075 		/*
1076 		 * btrfs_reloc_clone_csums() error, since start is increased
1077 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1078 		 * free metadata of current ordered extent, we're OK to exit.
1079 		 */
1080 		if (ret)
1081 			goto out_unlock;
1082 	}
1083 out:
1084 	return ret;
1085 
1086 out_drop_extent_cache:
1087 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1088 out_reserve:
1089 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1090 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1091 out_unlock:
1092 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1093 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1094 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1095 		PAGE_END_WRITEBACK;
1096 	/*
1097 	 * If we reserved an extent for our delalloc range (or a subrange) and
1098 	 * failed to create the respective ordered extent, then it means that
1099 	 * when we reserved the extent we decremented the extent's size from
1100 	 * the data space_info's bytes_may_use counter and incremented the
1101 	 * space_info's bytes_reserved counter by the same amount. We must make
1102 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1103 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1104 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1105 	 */
1106 	if (extent_reserved) {
1107 		extent_clear_unlock_delalloc(inode, start,
1108 					     start + cur_alloc_size,
1109 					     start + cur_alloc_size,
1110 					     locked_page,
1111 					     clear_bits,
1112 					     page_ops);
1113 		start += cur_alloc_size;
1114 		if (start >= end)
1115 			goto out;
1116 	}
1117 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1118 				     locked_page,
1119 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1120 				     page_ops);
1121 	goto out;
1122 }
1123 
1124 /*
1125  * work queue call back to started compression on a file and pages
1126  */
1127 static noinline void async_cow_start(struct btrfs_work *work)
1128 {
1129 	struct async_cow *async_cow;
1130 	int num_added = 0;
1131 	async_cow = container_of(work, struct async_cow, work);
1132 
1133 	compress_file_range(async_cow->inode, async_cow->locked_page,
1134 			    async_cow->start, async_cow->end, async_cow,
1135 			    &num_added);
1136 	if (num_added == 0) {
1137 		btrfs_add_delayed_iput(async_cow->inode);
1138 		async_cow->inode = NULL;
1139 	}
1140 }
1141 
1142 /*
1143  * work queue call back to submit previously compressed pages
1144  */
1145 static noinline void async_cow_submit(struct btrfs_work *work)
1146 {
1147 	struct btrfs_fs_info *fs_info;
1148 	struct async_cow *async_cow;
1149 	struct btrfs_root *root;
1150 	unsigned long nr_pages;
1151 
1152 	async_cow = container_of(work, struct async_cow, work);
1153 
1154 	root = async_cow->root;
1155 	fs_info = root->fs_info;
1156 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1157 		PAGE_SHIFT;
1158 
1159 	/*
1160 	 * atomic_sub_return implies a barrier for waitqueue_active
1161 	 */
1162 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1163 	    5 * SZ_1M &&
1164 	    waitqueue_active(&fs_info->async_submit_wait))
1165 		wake_up(&fs_info->async_submit_wait);
1166 
1167 	if (async_cow->inode)
1168 		submit_compressed_extents(async_cow->inode, async_cow);
1169 }
1170 
1171 static noinline void async_cow_free(struct btrfs_work *work)
1172 {
1173 	struct async_cow *async_cow;
1174 	async_cow = container_of(work, struct async_cow, work);
1175 	if (async_cow->inode)
1176 		btrfs_add_delayed_iput(async_cow->inode);
1177 	kfree(async_cow);
1178 }
1179 
1180 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1181 				u64 start, u64 end, int *page_started,
1182 				unsigned long *nr_written,
1183 				unsigned int write_flags)
1184 {
1185 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1186 	struct async_cow *async_cow;
1187 	struct btrfs_root *root = BTRFS_I(inode)->root;
1188 	unsigned long nr_pages;
1189 	u64 cur_end;
1190 
1191 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1192 			 1, 0, NULL);
1193 	while (start < end) {
1194 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1195 		BUG_ON(!async_cow); /* -ENOMEM */
1196 		async_cow->inode = igrab(inode);
1197 		async_cow->root = root;
1198 		async_cow->locked_page = locked_page;
1199 		async_cow->start = start;
1200 		async_cow->write_flags = write_flags;
1201 
1202 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1203 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1204 			cur_end = end;
1205 		else
1206 			cur_end = min(end, start + SZ_512K - 1);
1207 
1208 		async_cow->end = cur_end;
1209 		INIT_LIST_HEAD(&async_cow->extents);
1210 
1211 		btrfs_init_work(&async_cow->work,
1212 				btrfs_delalloc_helper,
1213 				async_cow_start, async_cow_submit,
1214 				async_cow_free);
1215 
1216 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1217 			PAGE_SHIFT;
1218 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1219 
1220 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1221 
1222 		*nr_written += nr_pages;
1223 		start = cur_end + 1;
1224 	}
1225 	*page_started = 1;
1226 	return 0;
1227 }
1228 
1229 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1230 					u64 bytenr, u64 num_bytes)
1231 {
1232 	int ret;
1233 	struct btrfs_ordered_sum *sums;
1234 	LIST_HEAD(list);
1235 
1236 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1237 				       bytenr + num_bytes - 1, &list, 0);
1238 	if (ret == 0 && list_empty(&list))
1239 		return 0;
1240 
1241 	while (!list_empty(&list)) {
1242 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1243 		list_del(&sums->list);
1244 		kfree(sums);
1245 	}
1246 	if (ret < 0)
1247 		return ret;
1248 	return 1;
1249 }
1250 
1251 /*
1252  * when nowcow writeback call back.  This checks for snapshots or COW copies
1253  * of the extents that exist in the file, and COWs the file as required.
1254  *
1255  * If no cow copies or snapshots exist, we write directly to the existing
1256  * blocks on disk
1257  */
1258 static noinline int run_delalloc_nocow(struct inode *inode,
1259 				       struct page *locked_page,
1260 			      u64 start, u64 end, int *page_started, int force,
1261 			      unsigned long *nr_written)
1262 {
1263 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1264 	struct btrfs_root *root = BTRFS_I(inode)->root;
1265 	struct extent_buffer *leaf;
1266 	struct btrfs_path *path;
1267 	struct btrfs_file_extent_item *fi;
1268 	struct btrfs_key found_key;
1269 	struct extent_map *em;
1270 	u64 cow_start;
1271 	u64 cur_offset;
1272 	u64 extent_end;
1273 	u64 extent_offset;
1274 	u64 disk_bytenr;
1275 	u64 num_bytes;
1276 	u64 disk_num_bytes;
1277 	u64 ram_bytes;
1278 	int extent_type;
1279 	int ret, err;
1280 	int type;
1281 	int nocow;
1282 	int check_prev = 1;
1283 	bool nolock;
1284 	u64 ino = btrfs_ino(BTRFS_I(inode));
1285 
1286 	path = btrfs_alloc_path();
1287 	if (!path) {
1288 		extent_clear_unlock_delalloc(inode, start, end, end,
1289 					     locked_page,
1290 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1291 					     EXTENT_DO_ACCOUNTING |
1292 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1293 					     PAGE_CLEAR_DIRTY |
1294 					     PAGE_SET_WRITEBACK |
1295 					     PAGE_END_WRITEBACK);
1296 		return -ENOMEM;
1297 	}
1298 
1299 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1300 
1301 	cow_start = (u64)-1;
1302 	cur_offset = start;
1303 	while (1) {
1304 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1305 					       cur_offset, 0);
1306 		if (ret < 0)
1307 			goto error;
1308 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1309 			leaf = path->nodes[0];
1310 			btrfs_item_key_to_cpu(leaf, &found_key,
1311 					      path->slots[0] - 1);
1312 			if (found_key.objectid == ino &&
1313 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1314 				path->slots[0]--;
1315 		}
1316 		check_prev = 0;
1317 next_slot:
1318 		leaf = path->nodes[0];
1319 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1320 			ret = btrfs_next_leaf(root, path);
1321 			if (ret < 0) {
1322 				if (cow_start != (u64)-1)
1323 					cur_offset = cow_start;
1324 				goto error;
1325 			}
1326 			if (ret > 0)
1327 				break;
1328 			leaf = path->nodes[0];
1329 		}
1330 
1331 		nocow = 0;
1332 		disk_bytenr = 0;
1333 		num_bytes = 0;
1334 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1335 
1336 		if (found_key.objectid > ino)
1337 			break;
1338 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1339 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1340 			path->slots[0]++;
1341 			goto next_slot;
1342 		}
1343 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1344 		    found_key.offset > end)
1345 			break;
1346 
1347 		if (found_key.offset > cur_offset) {
1348 			extent_end = found_key.offset;
1349 			extent_type = 0;
1350 			goto out_check;
1351 		}
1352 
1353 		fi = btrfs_item_ptr(leaf, path->slots[0],
1354 				    struct btrfs_file_extent_item);
1355 		extent_type = btrfs_file_extent_type(leaf, fi);
1356 
1357 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1358 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1359 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1360 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1361 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1362 			extent_end = found_key.offset +
1363 				btrfs_file_extent_num_bytes(leaf, fi);
1364 			disk_num_bytes =
1365 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1366 			if (extent_end <= start) {
1367 				path->slots[0]++;
1368 				goto next_slot;
1369 			}
1370 			if (disk_bytenr == 0)
1371 				goto out_check;
1372 			if (btrfs_file_extent_compression(leaf, fi) ||
1373 			    btrfs_file_extent_encryption(leaf, fi) ||
1374 			    btrfs_file_extent_other_encoding(leaf, fi))
1375 				goto out_check;
1376 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1377 				goto out_check;
1378 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1379 				goto out_check;
1380 			ret = btrfs_cross_ref_exist(root, ino,
1381 						    found_key.offset -
1382 						    extent_offset, disk_bytenr);
1383 			if (ret) {
1384 				/*
1385 				 * ret could be -EIO if the above fails to read
1386 				 * metadata.
1387 				 */
1388 				if (ret < 0) {
1389 					if (cow_start != (u64)-1)
1390 						cur_offset = cow_start;
1391 					goto error;
1392 				}
1393 
1394 				WARN_ON_ONCE(nolock);
1395 				goto out_check;
1396 			}
1397 			disk_bytenr += extent_offset;
1398 			disk_bytenr += cur_offset - found_key.offset;
1399 			num_bytes = min(end + 1, extent_end) - cur_offset;
1400 			/*
1401 			 * if there are pending snapshots for this root,
1402 			 * we fall into common COW way.
1403 			 */
1404 			if (!nolock) {
1405 				err = btrfs_start_write_no_snapshotting(root);
1406 				if (!err)
1407 					goto out_check;
1408 			}
1409 			/*
1410 			 * force cow if csum exists in the range.
1411 			 * this ensure that csum for a given extent are
1412 			 * either valid or do not exist.
1413 			 */
1414 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1415 						  num_bytes);
1416 			if (ret) {
1417 				if (!nolock)
1418 					btrfs_end_write_no_snapshotting(root);
1419 
1420 				/*
1421 				 * ret could be -EIO if the above fails to read
1422 				 * metadata.
1423 				 */
1424 				if (ret < 0) {
1425 					if (cow_start != (u64)-1)
1426 						cur_offset = cow_start;
1427 					goto error;
1428 				}
1429 				WARN_ON_ONCE(nolock);
1430 				goto out_check;
1431 			}
1432 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1433 				if (!nolock)
1434 					btrfs_end_write_no_snapshotting(root);
1435 				goto out_check;
1436 			}
1437 			nocow = 1;
1438 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1439 			extent_end = found_key.offset +
1440 				btrfs_file_extent_inline_len(leaf,
1441 						     path->slots[0], fi);
1442 			extent_end = ALIGN(extent_end,
1443 					   fs_info->sectorsize);
1444 		} else {
1445 			BUG_ON(1);
1446 		}
1447 out_check:
1448 		if (extent_end <= start) {
1449 			path->slots[0]++;
1450 			if (!nolock && nocow)
1451 				btrfs_end_write_no_snapshotting(root);
1452 			if (nocow)
1453 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1454 			goto next_slot;
1455 		}
1456 		if (!nocow) {
1457 			if (cow_start == (u64)-1)
1458 				cow_start = cur_offset;
1459 			cur_offset = extent_end;
1460 			if (cur_offset > end)
1461 				break;
1462 			path->slots[0]++;
1463 			goto next_slot;
1464 		}
1465 
1466 		btrfs_release_path(path);
1467 		if (cow_start != (u64)-1) {
1468 			ret = cow_file_range(inode, locked_page,
1469 					     cow_start, found_key.offset - 1,
1470 					     end, page_started, nr_written, 1,
1471 					     NULL);
1472 			if (ret) {
1473 				if (!nolock && nocow)
1474 					btrfs_end_write_no_snapshotting(root);
1475 				if (nocow)
1476 					btrfs_dec_nocow_writers(fs_info,
1477 								disk_bytenr);
1478 				goto error;
1479 			}
1480 			cow_start = (u64)-1;
1481 		}
1482 
1483 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1484 			u64 orig_start = found_key.offset - extent_offset;
1485 
1486 			em = create_io_em(inode, cur_offset, num_bytes,
1487 					  orig_start,
1488 					  disk_bytenr, /* block_start */
1489 					  num_bytes, /* block_len */
1490 					  disk_num_bytes, /* orig_block_len */
1491 					  ram_bytes, BTRFS_COMPRESS_NONE,
1492 					  BTRFS_ORDERED_PREALLOC);
1493 			if (IS_ERR(em)) {
1494 				if (!nolock && nocow)
1495 					btrfs_end_write_no_snapshotting(root);
1496 				if (nocow)
1497 					btrfs_dec_nocow_writers(fs_info,
1498 								disk_bytenr);
1499 				ret = PTR_ERR(em);
1500 				goto error;
1501 			}
1502 			free_extent_map(em);
1503 		}
1504 
1505 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1506 			type = BTRFS_ORDERED_PREALLOC;
1507 		} else {
1508 			type = BTRFS_ORDERED_NOCOW;
1509 		}
1510 
1511 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1512 					       num_bytes, num_bytes, type);
1513 		if (nocow)
1514 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1515 		BUG_ON(ret); /* -ENOMEM */
1516 
1517 		if (root->root_key.objectid ==
1518 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1519 			/*
1520 			 * Error handled later, as we must prevent
1521 			 * extent_clear_unlock_delalloc() in error handler
1522 			 * from freeing metadata of created ordered extent.
1523 			 */
1524 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1525 						      num_bytes);
1526 
1527 		extent_clear_unlock_delalloc(inode, cur_offset,
1528 					     cur_offset + num_bytes - 1, end,
1529 					     locked_page, EXTENT_LOCKED |
1530 					     EXTENT_DELALLOC |
1531 					     EXTENT_CLEAR_DATA_RESV,
1532 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1533 
1534 		if (!nolock && nocow)
1535 			btrfs_end_write_no_snapshotting(root);
1536 		cur_offset = extent_end;
1537 
1538 		/*
1539 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1540 		 * handler, as metadata for created ordered extent will only
1541 		 * be freed by btrfs_finish_ordered_io().
1542 		 */
1543 		if (ret)
1544 			goto error;
1545 		if (cur_offset > end)
1546 			break;
1547 	}
1548 	btrfs_release_path(path);
1549 
1550 	if (cur_offset <= end && cow_start == (u64)-1) {
1551 		cow_start = cur_offset;
1552 		cur_offset = end;
1553 	}
1554 
1555 	if (cow_start != (u64)-1) {
1556 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1557 				     page_started, nr_written, 1, NULL);
1558 		if (ret)
1559 			goto error;
1560 	}
1561 
1562 error:
1563 	if (ret && cur_offset < end)
1564 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1565 					     locked_page, EXTENT_LOCKED |
1566 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1567 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1568 					     PAGE_CLEAR_DIRTY |
1569 					     PAGE_SET_WRITEBACK |
1570 					     PAGE_END_WRITEBACK);
1571 	btrfs_free_path(path);
1572 	return ret;
1573 }
1574 
1575 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1576 {
1577 
1578 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1579 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1580 		return 0;
1581 
1582 	/*
1583 	 * @defrag_bytes is a hint value, no spinlock held here,
1584 	 * if is not zero, it means the file is defragging.
1585 	 * Force cow if given extent needs to be defragged.
1586 	 */
1587 	if (BTRFS_I(inode)->defrag_bytes &&
1588 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1589 			   EXTENT_DEFRAG, 0, NULL))
1590 		return 1;
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  * extent_io.c call back to do delayed allocation processing
1597  */
1598 static int run_delalloc_range(void *private_data, struct page *locked_page,
1599 			      u64 start, u64 end, int *page_started,
1600 			      unsigned long *nr_written,
1601 			      struct writeback_control *wbc)
1602 {
1603 	struct inode *inode = private_data;
1604 	int ret;
1605 	int force_cow = need_force_cow(inode, start, end);
1606 	unsigned int write_flags = wbc_to_write_flags(wbc);
1607 
1608 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1609 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1610 					 page_started, 1, nr_written);
1611 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1612 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1613 					 page_started, 0, nr_written);
1614 	} else if (!inode_need_compress(inode, start, end)) {
1615 		ret = cow_file_range(inode, locked_page, start, end, end,
1616 				      page_started, nr_written, 1, NULL);
1617 	} else {
1618 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1619 			&BTRFS_I(inode)->runtime_flags);
1620 		ret = cow_file_range_async(inode, locked_page, start, end,
1621 					   page_started, nr_written,
1622 					   write_flags);
1623 	}
1624 	if (ret)
1625 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1626 	return ret;
1627 }
1628 
1629 static void btrfs_split_extent_hook(void *private_data,
1630 				    struct extent_state *orig, u64 split)
1631 {
1632 	struct inode *inode = private_data;
1633 	u64 size;
1634 
1635 	/* not delalloc, ignore it */
1636 	if (!(orig->state & EXTENT_DELALLOC))
1637 		return;
1638 
1639 	size = orig->end - orig->start + 1;
1640 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1641 		u32 num_extents;
1642 		u64 new_size;
1643 
1644 		/*
1645 		 * See the explanation in btrfs_merge_extent_hook, the same
1646 		 * applies here, just in reverse.
1647 		 */
1648 		new_size = orig->end - split + 1;
1649 		num_extents = count_max_extents(new_size);
1650 		new_size = split - orig->start;
1651 		num_extents += count_max_extents(new_size);
1652 		if (count_max_extents(size) >= num_extents)
1653 			return;
1654 	}
1655 
1656 	spin_lock(&BTRFS_I(inode)->lock);
1657 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1658 	spin_unlock(&BTRFS_I(inode)->lock);
1659 }
1660 
1661 /*
1662  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1663  * extents so we can keep track of new extents that are just merged onto old
1664  * extents, such as when we are doing sequential writes, so we can properly
1665  * account for the metadata space we'll need.
1666  */
1667 static void btrfs_merge_extent_hook(void *private_data,
1668 				    struct extent_state *new,
1669 				    struct extent_state *other)
1670 {
1671 	struct inode *inode = private_data;
1672 	u64 new_size, old_size;
1673 	u32 num_extents;
1674 
1675 	/* not delalloc, ignore it */
1676 	if (!(other->state & EXTENT_DELALLOC))
1677 		return;
1678 
1679 	if (new->start > other->start)
1680 		new_size = new->end - other->start + 1;
1681 	else
1682 		new_size = other->end - new->start + 1;
1683 
1684 	/* we're not bigger than the max, unreserve the space and go */
1685 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1686 		spin_lock(&BTRFS_I(inode)->lock);
1687 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1688 		spin_unlock(&BTRFS_I(inode)->lock);
1689 		return;
1690 	}
1691 
1692 	/*
1693 	 * We have to add up either side to figure out how many extents were
1694 	 * accounted for before we merged into one big extent.  If the number of
1695 	 * extents we accounted for is <= the amount we need for the new range
1696 	 * then we can return, otherwise drop.  Think of it like this
1697 	 *
1698 	 * [ 4k][MAX_SIZE]
1699 	 *
1700 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1701 	 * need 2 outstanding extents, on one side we have 1 and the other side
1702 	 * we have 1 so they are == and we can return.  But in this case
1703 	 *
1704 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1705 	 *
1706 	 * Each range on their own accounts for 2 extents, but merged together
1707 	 * they are only 3 extents worth of accounting, so we need to drop in
1708 	 * this case.
1709 	 */
1710 	old_size = other->end - other->start + 1;
1711 	num_extents = count_max_extents(old_size);
1712 	old_size = new->end - new->start + 1;
1713 	num_extents += count_max_extents(old_size);
1714 	if (count_max_extents(new_size) >= num_extents)
1715 		return;
1716 
1717 	spin_lock(&BTRFS_I(inode)->lock);
1718 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1719 	spin_unlock(&BTRFS_I(inode)->lock);
1720 }
1721 
1722 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1723 				      struct inode *inode)
1724 {
1725 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1726 
1727 	spin_lock(&root->delalloc_lock);
1728 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1729 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1730 			      &root->delalloc_inodes);
1731 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1732 			&BTRFS_I(inode)->runtime_flags);
1733 		root->nr_delalloc_inodes++;
1734 		if (root->nr_delalloc_inodes == 1) {
1735 			spin_lock(&fs_info->delalloc_root_lock);
1736 			BUG_ON(!list_empty(&root->delalloc_root));
1737 			list_add_tail(&root->delalloc_root,
1738 				      &fs_info->delalloc_roots);
1739 			spin_unlock(&fs_info->delalloc_root_lock);
1740 		}
1741 	}
1742 	spin_unlock(&root->delalloc_lock);
1743 }
1744 
1745 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1746 				     struct btrfs_inode *inode)
1747 {
1748 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1749 
1750 	spin_lock(&root->delalloc_lock);
1751 	if (!list_empty(&inode->delalloc_inodes)) {
1752 		list_del_init(&inode->delalloc_inodes);
1753 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1754 			  &inode->runtime_flags);
1755 		root->nr_delalloc_inodes--;
1756 		if (!root->nr_delalloc_inodes) {
1757 			spin_lock(&fs_info->delalloc_root_lock);
1758 			BUG_ON(list_empty(&root->delalloc_root));
1759 			list_del_init(&root->delalloc_root);
1760 			spin_unlock(&fs_info->delalloc_root_lock);
1761 		}
1762 	}
1763 	spin_unlock(&root->delalloc_lock);
1764 }
1765 
1766 /*
1767  * extent_io.c set_bit_hook, used to track delayed allocation
1768  * bytes in this file, and to maintain the list of inodes that
1769  * have pending delalloc work to be done.
1770  */
1771 static void btrfs_set_bit_hook(void *private_data,
1772 			       struct extent_state *state, unsigned *bits)
1773 {
1774 	struct inode *inode = private_data;
1775 
1776 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1777 
1778 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1779 		WARN_ON(1);
1780 	/*
1781 	 * set_bit and clear bit hooks normally require _irqsave/restore
1782 	 * but in this case, we are only testing for the DELALLOC
1783 	 * bit, which is only set or cleared with irqs on
1784 	 */
1785 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1786 		struct btrfs_root *root = BTRFS_I(inode)->root;
1787 		u64 len = state->end + 1 - state->start;
1788 		u32 num_extents = count_max_extents(len);
1789 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1790 
1791 		spin_lock(&BTRFS_I(inode)->lock);
1792 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1793 		spin_unlock(&BTRFS_I(inode)->lock);
1794 
1795 		/* For sanity tests */
1796 		if (btrfs_is_testing(fs_info))
1797 			return;
1798 
1799 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1800 					 fs_info->delalloc_batch);
1801 		spin_lock(&BTRFS_I(inode)->lock);
1802 		BTRFS_I(inode)->delalloc_bytes += len;
1803 		if (*bits & EXTENT_DEFRAG)
1804 			BTRFS_I(inode)->defrag_bytes += len;
1805 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1806 					 &BTRFS_I(inode)->runtime_flags))
1807 			btrfs_add_delalloc_inodes(root, inode);
1808 		spin_unlock(&BTRFS_I(inode)->lock);
1809 	}
1810 
1811 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1812 	    (*bits & EXTENT_DELALLOC_NEW)) {
1813 		spin_lock(&BTRFS_I(inode)->lock);
1814 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1815 			state->start;
1816 		spin_unlock(&BTRFS_I(inode)->lock);
1817 	}
1818 }
1819 
1820 /*
1821  * extent_io.c clear_bit_hook, see set_bit_hook for why
1822  */
1823 static void btrfs_clear_bit_hook(void *private_data,
1824 				 struct extent_state *state,
1825 				 unsigned *bits)
1826 {
1827 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1828 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1829 	u64 len = state->end + 1 - state->start;
1830 	u32 num_extents = count_max_extents(len);
1831 
1832 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1833 		spin_lock(&inode->lock);
1834 		inode->defrag_bytes -= len;
1835 		spin_unlock(&inode->lock);
1836 	}
1837 
1838 	/*
1839 	 * set_bit and clear bit hooks normally require _irqsave/restore
1840 	 * but in this case, we are only testing for the DELALLOC
1841 	 * bit, which is only set or cleared with irqs on
1842 	 */
1843 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1844 		struct btrfs_root *root = inode->root;
1845 		bool do_list = !btrfs_is_free_space_inode(inode);
1846 
1847 		spin_lock(&inode->lock);
1848 		btrfs_mod_outstanding_extents(inode, -num_extents);
1849 		spin_unlock(&inode->lock);
1850 
1851 		/*
1852 		 * We don't reserve metadata space for space cache inodes so we
1853 		 * don't need to call dellalloc_release_metadata if there is an
1854 		 * error.
1855 		 */
1856 		if (*bits & EXTENT_CLEAR_META_RESV &&
1857 		    root != fs_info->tree_root)
1858 			btrfs_delalloc_release_metadata(inode, len, false);
1859 
1860 		/* For sanity tests. */
1861 		if (btrfs_is_testing(fs_info))
1862 			return;
1863 
1864 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1865 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1866 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1867 			btrfs_free_reserved_data_space_noquota(
1868 					&inode->vfs_inode,
1869 					state->start, len);
1870 
1871 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1872 					 fs_info->delalloc_batch);
1873 		spin_lock(&inode->lock);
1874 		inode->delalloc_bytes -= len;
1875 		if (do_list && inode->delalloc_bytes == 0 &&
1876 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1877 					&inode->runtime_flags))
1878 			btrfs_del_delalloc_inode(root, inode);
1879 		spin_unlock(&inode->lock);
1880 	}
1881 
1882 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1883 	    (*bits & EXTENT_DELALLOC_NEW)) {
1884 		spin_lock(&inode->lock);
1885 		ASSERT(inode->new_delalloc_bytes >= len);
1886 		inode->new_delalloc_bytes -= len;
1887 		spin_unlock(&inode->lock);
1888 	}
1889 }
1890 
1891 /*
1892  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1893  * we don't create bios that span stripes or chunks
1894  *
1895  * return 1 if page cannot be merged to bio
1896  * return 0 if page can be merged to bio
1897  * return error otherwise
1898  */
1899 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1900 			 size_t size, struct bio *bio,
1901 			 unsigned long bio_flags)
1902 {
1903 	struct inode *inode = page->mapping->host;
1904 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1905 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1906 	u64 length = 0;
1907 	u64 map_length;
1908 	int ret;
1909 
1910 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1911 		return 0;
1912 
1913 	length = bio->bi_iter.bi_size;
1914 	map_length = length;
1915 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1916 			      NULL, 0);
1917 	if (ret < 0)
1918 		return ret;
1919 	if (map_length < length + size)
1920 		return 1;
1921 	return 0;
1922 }
1923 
1924 /*
1925  * in order to insert checksums into the metadata in large chunks,
1926  * we wait until bio submission time.   All the pages in the bio are
1927  * checksummed and sums are attached onto the ordered extent record.
1928  *
1929  * At IO completion time the cums attached on the ordered extent record
1930  * are inserted into the btree
1931  */
1932 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1933 				    u64 bio_offset)
1934 {
1935 	struct inode *inode = private_data;
1936 	blk_status_t ret = 0;
1937 
1938 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1939 	BUG_ON(ret); /* -ENOMEM */
1940 	return 0;
1941 }
1942 
1943 /*
1944  * in order to insert checksums into the metadata in large chunks,
1945  * we wait until bio submission time.   All the pages in the bio are
1946  * checksummed and sums are attached onto the ordered extent record.
1947  *
1948  * At IO completion time the cums attached on the ordered extent record
1949  * are inserted into the btree
1950  */
1951 static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1952 			  int mirror_num)
1953 {
1954 	struct inode *inode = private_data;
1955 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1956 	blk_status_t ret;
1957 
1958 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1959 	if (ret) {
1960 		bio->bi_status = ret;
1961 		bio_endio(bio);
1962 	}
1963 	return ret;
1964 }
1965 
1966 /*
1967  * extent_io.c submission hook. This does the right thing for csum calculation
1968  * on write, or reading the csums from the tree before a read.
1969  *
1970  * Rules about async/sync submit,
1971  * a) read:				sync submit
1972  *
1973  * b) write without checksum:		sync submit
1974  *
1975  * c) write with checksum:
1976  *    c-1) if bio is issued by fsync:	sync submit
1977  *         (sync_writers != 0)
1978  *
1979  *    c-2) if root is reloc root:	sync submit
1980  *         (only in case of buffered IO)
1981  *
1982  *    c-3) otherwise:			async submit
1983  */
1984 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1985 				 int mirror_num, unsigned long bio_flags,
1986 				 u64 bio_offset)
1987 {
1988 	struct inode *inode = private_data;
1989 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1990 	struct btrfs_root *root = BTRFS_I(inode)->root;
1991 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1992 	blk_status_t ret = 0;
1993 	int skip_sum;
1994 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1995 
1996 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1997 
1998 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1999 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2000 
2001 	if (bio_op(bio) != REQ_OP_WRITE) {
2002 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2003 		if (ret)
2004 			goto out;
2005 
2006 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2007 			ret = btrfs_submit_compressed_read(inode, bio,
2008 							   mirror_num,
2009 							   bio_flags);
2010 			goto out;
2011 		} else if (!skip_sum) {
2012 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2013 			if (ret)
2014 				goto out;
2015 		}
2016 		goto mapit;
2017 	} else if (async && !skip_sum) {
2018 		/* csum items have already been cloned */
2019 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2020 			goto mapit;
2021 		/* we're doing a write, do the async checksumming */
2022 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2023 					  bio_offset, inode,
2024 					  btrfs_submit_bio_start,
2025 					  btrfs_submit_bio_done);
2026 		goto out;
2027 	} else if (!skip_sum) {
2028 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2029 		if (ret)
2030 			goto out;
2031 	}
2032 
2033 mapit:
2034 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2035 
2036 out:
2037 	if (ret) {
2038 		bio->bi_status = ret;
2039 		bio_endio(bio);
2040 	}
2041 	return ret;
2042 }
2043 
2044 /*
2045  * given a list of ordered sums record them in the inode.  This happens
2046  * at IO completion time based on sums calculated at bio submission time.
2047  */
2048 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2049 			     struct inode *inode, struct list_head *list)
2050 {
2051 	struct btrfs_ordered_sum *sum;
2052 	int ret;
2053 
2054 	list_for_each_entry(sum, list, list) {
2055 		trans->adding_csums = true;
2056 		ret = btrfs_csum_file_blocks(trans,
2057 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2058 		trans->adding_csums = false;
2059 		if (ret)
2060 			return ret;
2061 	}
2062 	return 0;
2063 }
2064 
2065 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2066 			      unsigned int extra_bits,
2067 			      struct extent_state **cached_state, int dedupe)
2068 {
2069 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2070 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2071 				   extra_bits, cached_state);
2072 }
2073 
2074 /* see btrfs_writepage_start_hook for details on why this is required */
2075 struct btrfs_writepage_fixup {
2076 	struct page *page;
2077 	struct btrfs_work work;
2078 };
2079 
2080 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2081 {
2082 	struct btrfs_writepage_fixup *fixup;
2083 	struct btrfs_ordered_extent *ordered;
2084 	struct extent_state *cached_state = NULL;
2085 	struct extent_changeset *data_reserved = NULL;
2086 	struct page *page;
2087 	struct inode *inode;
2088 	u64 page_start;
2089 	u64 page_end;
2090 	int ret;
2091 
2092 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2093 	page = fixup->page;
2094 again:
2095 	lock_page(page);
2096 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2097 		ClearPageChecked(page);
2098 		goto out_page;
2099 	}
2100 
2101 	inode = page->mapping->host;
2102 	page_start = page_offset(page);
2103 	page_end = page_offset(page) + PAGE_SIZE - 1;
2104 
2105 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2106 			 &cached_state);
2107 
2108 	/* already ordered? We're done */
2109 	if (PagePrivate2(page))
2110 		goto out;
2111 
2112 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2113 					PAGE_SIZE);
2114 	if (ordered) {
2115 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2116 				     page_end, &cached_state);
2117 		unlock_page(page);
2118 		btrfs_start_ordered_extent(inode, ordered, 1);
2119 		btrfs_put_ordered_extent(ordered);
2120 		goto again;
2121 	}
2122 
2123 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2124 					   PAGE_SIZE);
2125 	if (ret) {
2126 		mapping_set_error(page->mapping, ret);
2127 		end_extent_writepage(page, ret, page_start, page_end);
2128 		ClearPageChecked(page);
2129 		goto out;
2130 	 }
2131 
2132 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2133 					&cached_state, 0);
2134 	if (ret) {
2135 		mapping_set_error(page->mapping, ret);
2136 		end_extent_writepage(page, ret, page_start, page_end);
2137 		ClearPageChecked(page);
2138 		goto out;
2139 	}
2140 
2141 	ClearPageChecked(page);
2142 	set_page_dirty(page);
2143 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2144 out:
2145 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2146 			     &cached_state);
2147 out_page:
2148 	unlock_page(page);
2149 	put_page(page);
2150 	kfree(fixup);
2151 	extent_changeset_free(data_reserved);
2152 }
2153 
2154 /*
2155  * There are a few paths in the higher layers of the kernel that directly
2156  * set the page dirty bit without asking the filesystem if it is a
2157  * good idea.  This causes problems because we want to make sure COW
2158  * properly happens and the data=ordered rules are followed.
2159  *
2160  * In our case any range that doesn't have the ORDERED bit set
2161  * hasn't been properly setup for IO.  We kick off an async process
2162  * to fix it up.  The async helper will wait for ordered extents, set
2163  * the delalloc bit and make it safe to write the page.
2164  */
2165 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2166 {
2167 	struct inode *inode = page->mapping->host;
2168 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2169 	struct btrfs_writepage_fixup *fixup;
2170 
2171 	/* this page is properly in the ordered list */
2172 	if (TestClearPagePrivate2(page))
2173 		return 0;
2174 
2175 	if (PageChecked(page))
2176 		return -EAGAIN;
2177 
2178 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2179 	if (!fixup)
2180 		return -EAGAIN;
2181 
2182 	SetPageChecked(page);
2183 	get_page(page);
2184 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2185 			btrfs_writepage_fixup_worker, NULL, NULL);
2186 	fixup->page = page;
2187 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2188 	return -EBUSY;
2189 }
2190 
2191 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2192 				       struct inode *inode, u64 file_pos,
2193 				       u64 disk_bytenr, u64 disk_num_bytes,
2194 				       u64 num_bytes, u64 ram_bytes,
2195 				       u8 compression, u8 encryption,
2196 				       u16 other_encoding, int extent_type)
2197 {
2198 	struct btrfs_root *root = BTRFS_I(inode)->root;
2199 	struct btrfs_file_extent_item *fi;
2200 	struct btrfs_path *path;
2201 	struct extent_buffer *leaf;
2202 	struct btrfs_key ins;
2203 	u64 qg_released;
2204 	int extent_inserted = 0;
2205 	int ret;
2206 
2207 	path = btrfs_alloc_path();
2208 	if (!path)
2209 		return -ENOMEM;
2210 
2211 	/*
2212 	 * we may be replacing one extent in the tree with another.
2213 	 * The new extent is pinned in the extent map, and we don't want
2214 	 * to drop it from the cache until it is completely in the btree.
2215 	 *
2216 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2217 	 * the caller is expected to unpin it and allow it to be merged
2218 	 * with the others.
2219 	 */
2220 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2221 				   file_pos + num_bytes, NULL, 0,
2222 				   1, sizeof(*fi), &extent_inserted);
2223 	if (ret)
2224 		goto out;
2225 
2226 	if (!extent_inserted) {
2227 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2228 		ins.offset = file_pos;
2229 		ins.type = BTRFS_EXTENT_DATA_KEY;
2230 
2231 		path->leave_spinning = 1;
2232 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2233 					      sizeof(*fi));
2234 		if (ret)
2235 			goto out;
2236 	}
2237 	leaf = path->nodes[0];
2238 	fi = btrfs_item_ptr(leaf, path->slots[0],
2239 			    struct btrfs_file_extent_item);
2240 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2241 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2242 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2243 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2244 	btrfs_set_file_extent_offset(leaf, fi, 0);
2245 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2246 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2247 	btrfs_set_file_extent_compression(leaf, fi, compression);
2248 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2249 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2250 
2251 	btrfs_mark_buffer_dirty(leaf);
2252 	btrfs_release_path(path);
2253 
2254 	inode_add_bytes(inode, num_bytes);
2255 
2256 	ins.objectid = disk_bytenr;
2257 	ins.offset = disk_num_bytes;
2258 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2259 
2260 	/*
2261 	 * Release the reserved range from inode dirty range map, as it is
2262 	 * already moved into delayed_ref_head
2263 	 */
2264 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2265 	if (ret < 0)
2266 		goto out;
2267 	qg_released = ret;
2268 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2269 					       btrfs_ino(BTRFS_I(inode)),
2270 					       file_pos, qg_released, &ins);
2271 out:
2272 	btrfs_free_path(path);
2273 
2274 	return ret;
2275 }
2276 
2277 /* snapshot-aware defrag */
2278 struct sa_defrag_extent_backref {
2279 	struct rb_node node;
2280 	struct old_sa_defrag_extent *old;
2281 	u64 root_id;
2282 	u64 inum;
2283 	u64 file_pos;
2284 	u64 extent_offset;
2285 	u64 num_bytes;
2286 	u64 generation;
2287 };
2288 
2289 struct old_sa_defrag_extent {
2290 	struct list_head list;
2291 	struct new_sa_defrag_extent *new;
2292 
2293 	u64 extent_offset;
2294 	u64 bytenr;
2295 	u64 offset;
2296 	u64 len;
2297 	int count;
2298 };
2299 
2300 struct new_sa_defrag_extent {
2301 	struct rb_root root;
2302 	struct list_head head;
2303 	struct btrfs_path *path;
2304 	struct inode *inode;
2305 	u64 file_pos;
2306 	u64 len;
2307 	u64 bytenr;
2308 	u64 disk_len;
2309 	u8 compress_type;
2310 };
2311 
2312 static int backref_comp(struct sa_defrag_extent_backref *b1,
2313 			struct sa_defrag_extent_backref *b2)
2314 {
2315 	if (b1->root_id < b2->root_id)
2316 		return -1;
2317 	else if (b1->root_id > b2->root_id)
2318 		return 1;
2319 
2320 	if (b1->inum < b2->inum)
2321 		return -1;
2322 	else if (b1->inum > b2->inum)
2323 		return 1;
2324 
2325 	if (b1->file_pos < b2->file_pos)
2326 		return -1;
2327 	else if (b1->file_pos > b2->file_pos)
2328 		return 1;
2329 
2330 	/*
2331 	 * [------------------------------] ===> (a range of space)
2332 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2333 	 * |<---------------------------->| ===> (fs/file tree B)
2334 	 *
2335 	 * A range of space can refer to two file extents in one tree while
2336 	 * refer to only one file extent in another tree.
2337 	 *
2338 	 * So we may process a disk offset more than one time(two extents in A)
2339 	 * and locate at the same extent(one extent in B), then insert two same
2340 	 * backrefs(both refer to the extent in B).
2341 	 */
2342 	return 0;
2343 }
2344 
2345 static void backref_insert(struct rb_root *root,
2346 			   struct sa_defrag_extent_backref *backref)
2347 {
2348 	struct rb_node **p = &root->rb_node;
2349 	struct rb_node *parent = NULL;
2350 	struct sa_defrag_extent_backref *entry;
2351 	int ret;
2352 
2353 	while (*p) {
2354 		parent = *p;
2355 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2356 
2357 		ret = backref_comp(backref, entry);
2358 		if (ret < 0)
2359 			p = &(*p)->rb_left;
2360 		else
2361 			p = &(*p)->rb_right;
2362 	}
2363 
2364 	rb_link_node(&backref->node, parent, p);
2365 	rb_insert_color(&backref->node, root);
2366 }
2367 
2368 /*
2369  * Note the backref might has changed, and in this case we just return 0.
2370  */
2371 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2372 				       void *ctx)
2373 {
2374 	struct btrfs_file_extent_item *extent;
2375 	struct old_sa_defrag_extent *old = ctx;
2376 	struct new_sa_defrag_extent *new = old->new;
2377 	struct btrfs_path *path = new->path;
2378 	struct btrfs_key key;
2379 	struct btrfs_root *root;
2380 	struct sa_defrag_extent_backref *backref;
2381 	struct extent_buffer *leaf;
2382 	struct inode *inode = new->inode;
2383 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2384 	int slot;
2385 	int ret;
2386 	u64 extent_offset;
2387 	u64 num_bytes;
2388 
2389 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2390 	    inum == btrfs_ino(BTRFS_I(inode)))
2391 		return 0;
2392 
2393 	key.objectid = root_id;
2394 	key.type = BTRFS_ROOT_ITEM_KEY;
2395 	key.offset = (u64)-1;
2396 
2397 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2398 	if (IS_ERR(root)) {
2399 		if (PTR_ERR(root) == -ENOENT)
2400 			return 0;
2401 		WARN_ON(1);
2402 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2403 			 inum, offset, root_id);
2404 		return PTR_ERR(root);
2405 	}
2406 
2407 	key.objectid = inum;
2408 	key.type = BTRFS_EXTENT_DATA_KEY;
2409 	if (offset > (u64)-1 << 32)
2410 		key.offset = 0;
2411 	else
2412 		key.offset = offset;
2413 
2414 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2415 	if (WARN_ON(ret < 0))
2416 		return ret;
2417 	ret = 0;
2418 
2419 	while (1) {
2420 		cond_resched();
2421 
2422 		leaf = path->nodes[0];
2423 		slot = path->slots[0];
2424 
2425 		if (slot >= btrfs_header_nritems(leaf)) {
2426 			ret = btrfs_next_leaf(root, path);
2427 			if (ret < 0) {
2428 				goto out;
2429 			} else if (ret > 0) {
2430 				ret = 0;
2431 				goto out;
2432 			}
2433 			continue;
2434 		}
2435 
2436 		path->slots[0]++;
2437 
2438 		btrfs_item_key_to_cpu(leaf, &key, slot);
2439 
2440 		if (key.objectid > inum)
2441 			goto out;
2442 
2443 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2444 			continue;
2445 
2446 		extent = btrfs_item_ptr(leaf, slot,
2447 					struct btrfs_file_extent_item);
2448 
2449 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2450 			continue;
2451 
2452 		/*
2453 		 * 'offset' refers to the exact key.offset,
2454 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2455 		 * (key.offset - extent_offset).
2456 		 */
2457 		if (key.offset != offset)
2458 			continue;
2459 
2460 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2461 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2462 
2463 		if (extent_offset >= old->extent_offset + old->offset +
2464 		    old->len || extent_offset + num_bytes <=
2465 		    old->extent_offset + old->offset)
2466 			continue;
2467 		break;
2468 	}
2469 
2470 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2471 	if (!backref) {
2472 		ret = -ENOENT;
2473 		goto out;
2474 	}
2475 
2476 	backref->root_id = root_id;
2477 	backref->inum = inum;
2478 	backref->file_pos = offset;
2479 	backref->num_bytes = num_bytes;
2480 	backref->extent_offset = extent_offset;
2481 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2482 	backref->old = old;
2483 	backref_insert(&new->root, backref);
2484 	old->count++;
2485 out:
2486 	btrfs_release_path(path);
2487 	WARN_ON(ret);
2488 	return ret;
2489 }
2490 
2491 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2492 				   struct new_sa_defrag_extent *new)
2493 {
2494 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2495 	struct old_sa_defrag_extent *old, *tmp;
2496 	int ret;
2497 
2498 	new->path = path;
2499 
2500 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2501 		ret = iterate_inodes_from_logical(old->bytenr +
2502 						  old->extent_offset, fs_info,
2503 						  path, record_one_backref,
2504 						  old, false);
2505 		if (ret < 0 && ret != -ENOENT)
2506 			return false;
2507 
2508 		/* no backref to be processed for this extent */
2509 		if (!old->count) {
2510 			list_del(&old->list);
2511 			kfree(old);
2512 		}
2513 	}
2514 
2515 	if (list_empty(&new->head))
2516 		return false;
2517 
2518 	return true;
2519 }
2520 
2521 static int relink_is_mergable(struct extent_buffer *leaf,
2522 			      struct btrfs_file_extent_item *fi,
2523 			      struct new_sa_defrag_extent *new)
2524 {
2525 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2526 		return 0;
2527 
2528 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2529 		return 0;
2530 
2531 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2532 		return 0;
2533 
2534 	if (btrfs_file_extent_encryption(leaf, fi) ||
2535 	    btrfs_file_extent_other_encoding(leaf, fi))
2536 		return 0;
2537 
2538 	return 1;
2539 }
2540 
2541 /*
2542  * Note the backref might has changed, and in this case we just return 0.
2543  */
2544 static noinline int relink_extent_backref(struct btrfs_path *path,
2545 				 struct sa_defrag_extent_backref *prev,
2546 				 struct sa_defrag_extent_backref *backref)
2547 {
2548 	struct btrfs_file_extent_item *extent;
2549 	struct btrfs_file_extent_item *item;
2550 	struct btrfs_ordered_extent *ordered;
2551 	struct btrfs_trans_handle *trans;
2552 	struct btrfs_root *root;
2553 	struct btrfs_key key;
2554 	struct extent_buffer *leaf;
2555 	struct old_sa_defrag_extent *old = backref->old;
2556 	struct new_sa_defrag_extent *new = old->new;
2557 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2558 	struct inode *inode;
2559 	struct extent_state *cached = NULL;
2560 	int ret = 0;
2561 	u64 start;
2562 	u64 len;
2563 	u64 lock_start;
2564 	u64 lock_end;
2565 	bool merge = false;
2566 	int index;
2567 
2568 	if (prev && prev->root_id == backref->root_id &&
2569 	    prev->inum == backref->inum &&
2570 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2571 		merge = true;
2572 
2573 	/* step 1: get root */
2574 	key.objectid = backref->root_id;
2575 	key.type = BTRFS_ROOT_ITEM_KEY;
2576 	key.offset = (u64)-1;
2577 
2578 	index = srcu_read_lock(&fs_info->subvol_srcu);
2579 
2580 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2581 	if (IS_ERR(root)) {
2582 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2583 		if (PTR_ERR(root) == -ENOENT)
2584 			return 0;
2585 		return PTR_ERR(root);
2586 	}
2587 
2588 	if (btrfs_root_readonly(root)) {
2589 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2590 		return 0;
2591 	}
2592 
2593 	/* step 2: get inode */
2594 	key.objectid = backref->inum;
2595 	key.type = BTRFS_INODE_ITEM_KEY;
2596 	key.offset = 0;
2597 
2598 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2599 	if (IS_ERR(inode)) {
2600 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2601 		return 0;
2602 	}
2603 
2604 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2605 
2606 	/* step 3: relink backref */
2607 	lock_start = backref->file_pos;
2608 	lock_end = backref->file_pos + backref->num_bytes - 1;
2609 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2610 			 &cached);
2611 
2612 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2613 	if (ordered) {
2614 		btrfs_put_ordered_extent(ordered);
2615 		goto out_unlock;
2616 	}
2617 
2618 	trans = btrfs_join_transaction(root);
2619 	if (IS_ERR(trans)) {
2620 		ret = PTR_ERR(trans);
2621 		goto out_unlock;
2622 	}
2623 
2624 	key.objectid = backref->inum;
2625 	key.type = BTRFS_EXTENT_DATA_KEY;
2626 	key.offset = backref->file_pos;
2627 
2628 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2629 	if (ret < 0) {
2630 		goto out_free_path;
2631 	} else if (ret > 0) {
2632 		ret = 0;
2633 		goto out_free_path;
2634 	}
2635 
2636 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2637 				struct btrfs_file_extent_item);
2638 
2639 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2640 	    backref->generation)
2641 		goto out_free_path;
2642 
2643 	btrfs_release_path(path);
2644 
2645 	start = backref->file_pos;
2646 	if (backref->extent_offset < old->extent_offset + old->offset)
2647 		start += old->extent_offset + old->offset -
2648 			 backref->extent_offset;
2649 
2650 	len = min(backref->extent_offset + backref->num_bytes,
2651 		  old->extent_offset + old->offset + old->len);
2652 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2653 
2654 	ret = btrfs_drop_extents(trans, root, inode, start,
2655 				 start + len, 1);
2656 	if (ret)
2657 		goto out_free_path;
2658 again:
2659 	key.objectid = btrfs_ino(BTRFS_I(inode));
2660 	key.type = BTRFS_EXTENT_DATA_KEY;
2661 	key.offset = start;
2662 
2663 	path->leave_spinning = 1;
2664 	if (merge) {
2665 		struct btrfs_file_extent_item *fi;
2666 		u64 extent_len;
2667 		struct btrfs_key found_key;
2668 
2669 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2670 		if (ret < 0)
2671 			goto out_free_path;
2672 
2673 		path->slots[0]--;
2674 		leaf = path->nodes[0];
2675 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2676 
2677 		fi = btrfs_item_ptr(leaf, path->slots[0],
2678 				    struct btrfs_file_extent_item);
2679 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2680 
2681 		if (extent_len + found_key.offset == start &&
2682 		    relink_is_mergable(leaf, fi, new)) {
2683 			btrfs_set_file_extent_num_bytes(leaf, fi,
2684 							extent_len + len);
2685 			btrfs_mark_buffer_dirty(leaf);
2686 			inode_add_bytes(inode, len);
2687 
2688 			ret = 1;
2689 			goto out_free_path;
2690 		} else {
2691 			merge = false;
2692 			btrfs_release_path(path);
2693 			goto again;
2694 		}
2695 	}
2696 
2697 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2698 					sizeof(*extent));
2699 	if (ret) {
2700 		btrfs_abort_transaction(trans, ret);
2701 		goto out_free_path;
2702 	}
2703 
2704 	leaf = path->nodes[0];
2705 	item = btrfs_item_ptr(leaf, path->slots[0],
2706 				struct btrfs_file_extent_item);
2707 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2708 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2709 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2710 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2711 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2712 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2713 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2714 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2715 	btrfs_set_file_extent_encryption(leaf, item, 0);
2716 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2717 
2718 	btrfs_mark_buffer_dirty(leaf);
2719 	inode_add_bytes(inode, len);
2720 	btrfs_release_path(path);
2721 
2722 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2723 			new->disk_len, 0,
2724 			backref->root_id, backref->inum,
2725 			new->file_pos);	/* start - extent_offset */
2726 	if (ret) {
2727 		btrfs_abort_transaction(trans, ret);
2728 		goto out_free_path;
2729 	}
2730 
2731 	ret = 1;
2732 out_free_path:
2733 	btrfs_release_path(path);
2734 	path->leave_spinning = 0;
2735 	btrfs_end_transaction(trans);
2736 out_unlock:
2737 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2738 			     &cached);
2739 	iput(inode);
2740 	return ret;
2741 }
2742 
2743 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2744 {
2745 	struct old_sa_defrag_extent *old, *tmp;
2746 
2747 	if (!new)
2748 		return;
2749 
2750 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2751 		kfree(old);
2752 	}
2753 	kfree(new);
2754 }
2755 
2756 static void relink_file_extents(struct new_sa_defrag_extent *new)
2757 {
2758 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2759 	struct btrfs_path *path;
2760 	struct sa_defrag_extent_backref *backref;
2761 	struct sa_defrag_extent_backref *prev = NULL;
2762 	struct inode *inode;
2763 	struct rb_node *node;
2764 	int ret;
2765 
2766 	inode = new->inode;
2767 
2768 	path = btrfs_alloc_path();
2769 	if (!path)
2770 		return;
2771 
2772 	if (!record_extent_backrefs(path, new)) {
2773 		btrfs_free_path(path);
2774 		goto out;
2775 	}
2776 	btrfs_release_path(path);
2777 
2778 	while (1) {
2779 		node = rb_first(&new->root);
2780 		if (!node)
2781 			break;
2782 		rb_erase(node, &new->root);
2783 
2784 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2785 
2786 		ret = relink_extent_backref(path, prev, backref);
2787 		WARN_ON(ret < 0);
2788 
2789 		kfree(prev);
2790 
2791 		if (ret == 1)
2792 			prev = backref;
2793 		else
2794 			prev = NULL;
2795 		cond_resched();
2796 	}
2797 	kfree(prev);
2798 
2799 	btrfs_free_path(path);
2800 out:
2801 	free_sa_defrag_extent(new);
2802 
2803 	atomic_dec(&fs_info->defrag_running);
2804 	wake_up(&fs_info->transaction_wait);
2805 }
2806 
2807 static struct new_sa_defrag_extent *
2808 record_old_file_extents(struct inode *inode,
2809 			struct btrfs_ordered_extent *ordered)
2810 {
2811 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2812 	struct btrfs_root *root = BTRFS_I(inode)->root;
2813 	struct btrfs_path *path;
2814 	struct btrfs_key key;
2815 	struct old_sa_defrag_extent *old;
2816 	struct new_sa_defrag_extent *new;
2817 	int ret;
2818 
2819 	new = kmalloc(sizeof(*new), GFP_NOFS);
2820 	if (!new)
2821 		return NULL;
2822 
2823 	new->inode = inode;
2824 	new->file_pos = ordered->file_offset;
2825 	new->len = ordered->len;
2826 	new->bytenr = ordered->start;
2827 	new->disk_len = ordered->disk_len;
2828 	new->compress_type = ordered->compress_type;
2829 	new->root = RB_ROOT;
2830 	INIT_LIST_HEAD(&new->head);
2831 
2832 	path = btrfs_alloc_path();
2833 	if (!path)
2834 		goto out_kfree;
2835 
2836 	key.objectid = btrfs_ino(BTRFS_I(inode));
2837 	key.type = BTRFS_EXTENT_DATA_KEY;
2838 	key.offset = new->file_pos;
2839 
2840 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2841 	if (ret < 0)
2842 		goto out_free_path;
2843 	if (ret > 0 && path->slots[0] > 0)
2844 		path->slots[0]--;
2845 
2846 	/* find out all the old extents for the file range */
2847 	while (1) {
2848 		struct btrfs_file_extent_item *extent;
2849 		struct extent_buffer *l;
2850 		int slot;
2851 		u64 num_bytes;
2852 		u64 offset;
2853 		u64 end;
2854 		u64 disk_bytenr;
2855 		u64 extent_offset;
2856 
2857 		l = path->nodes[0];
2858 		slot = path->slots[0];
2859 
2860 		if (slot >= btrfs_header_nritems(l)) {
2861 			ret = btrfs_next_leaf(root, path);
2862 			if (ret < 0)
2863 				goto out_free_path;
2864 			else if (ret > 0)
2865 				break;
2866 			continue;
2867 		}
2868 
2869 		btrfs_item_key_to_cpu(l, &key, slot);
2870 
2871 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2872 			break;
2873 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2874 			break;
2875 		if (key.offset >= new->file_pos + new->len)
2876 			break;
2877 
2878 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2879 
2880 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2881 		if (key.offset + num_bytes < new->file_pos)
2882 			goto next;
2883 
2884 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2885 		if (!disk_bytenr)
2886 			goto next;
2887 
2888 		extent_offset = btrfs_file_extent_offset(l, extent);
2889 
2890 		old = kmalloc(sizeof(*old), GFP_NOFS);
2891 		if (!old)
2892 			goto out_free_path;
2893 
2894 		offset = max(new->file_pos, key.offset);
2895 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2896 
2897 		old->bytenr = disk_bytenr;
2898 		old->extent_offset = extent_offset;
2899 		old->offset = offset - key.offset;
2900 		old->len = end - offset;
2901 		old->new = new;
2902 		old->count = 0;
2903 		list_add_tail(&old->list, &new->head);
2904 next:
2905 		path->slots[0]++;
2906 		cond_resched();
2907 	}
2908 
2909 	btrfs_free_path(path);
2910 	atomic_inc(&fs_info->defrag_running);
2911 
2912 	return new;
2913 
2914 out_free_path:
2915 	btrfs_free_path(path);
2916 out_kfree:
2917 	free_sa_defrag_extent(new);
2918 	return NULL;
2919 }
2920 
2921 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2922 					 u64 start, u64 len)
2923 {
2924 	struct btrfs_block_group_cache *cache;
2925 
2926 	cache = btrfs_lookup_block_group(fs_info, start);
2927 	ASSERT(cache);
2928 
2929 	spin_lock(&cache->lock);
2930 	cache->delalloc_bytes -= len;
2931 	spin_unlock(&cache->lock);
2932 
2933 	btrfs_put_block_group(cache);
2934 }
2935 
2936 /* as ordered data IO finishes, this gets called so we can finish
2937  * an ordered extent if the range of bytes in the file it covers are
2938  * fully written.
2939  */
2940 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2941 {
2942 	struct inode *inode = ordered_extent->inode;
2943 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2944 	struct btrfs_root *root = BTRFS_I(inode)->root;
2945 	struct btrfs_trans_handle *trans = NULL;
2946 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2947 	struct extent_state *cached_state = NULL;
2948 	struct new_sa_defrag_extent *new = NULL;
2949 	int compress_type = 0;
2950 	int ret = 0;
2951 	u64 logical_len = ordered_extent->len;
2952 	bool nolock;
2953 	bool truncated = false;
2954 	bool range_locked = false;
2955 	bool clear_new_delalloc_bytes = false;
2956 
2957 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2958 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2959 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2960 		clear_new_delalloc_bytes = true;
2961 
2962 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2963 
2964 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2965 		ret = -EIO;
2966 		goto out;
2967 	}
2968 
2969 	btrfs_free_io_failure_record(BTRFS_I(inode),
2970 			ordered_extent->file_offset,
2971 			ordered_extent->file_offset +
2972 			ordered_extent->len - 1);
2973 
2974 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2975 		truncated = true;
2976 		logical_len = ordered_extent->truncated_len;
2977 		/* Truncated the entire extent, don't bother adding */
2978 		if (!logical_len)
2979 			goto out;
2980 	}
2981 
2982 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2983 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2984 
2985 		/*
2986 		 * For mwrite(mmap + memset to write) case, we still reserve
2987 		 * space for NOCOW range.
2988 		 * As NOCOW won't cause a new delayed ref, just free the space
2989 		 */
2990 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2991 				       ordered_extent->len);
2992 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2993 		if (nolock)
2994 			trans = btrfs_join_transaction_nolock(root);
2995 		else
2996 			trans = btrfs_join_transaction(root);
2997 		if (IS_ERR(trans)) {
2998 			ret = PTR_ERR(trans);
2999 			trans = NULL;
3000 			goto out;
3001 		}
3002 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3003 		ret = btrfs_update_inode_fallback(trans, root, inode);
3004 		if (ret) /* -ENOMEM or corruption */
3005 			btrfs_abort_transaction(trans, ret);
3006 		goto out;
3007 	}
3008 
3009 	range_locked = true;
3010 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3011 			 ordered_extent->file_offset + ordered_extent->len - 1,
3012 			 &cached_state);
3013 
3014 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3015 			ordered_extent->file_offset + ordered_extent->len - 1,
3016 			EXTENT_DEFRAG, 0, cached_state);
3017 	if (ret) {
3018 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3019 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3020 			/* the inode is shared */
3021 			new = record_old_file_extents(inode, ordered_extent);
3022 
3023 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3024 			ordered_extent->file_offset + ordered_extent->len - 1,
3025 			EXTENT_DEFRAG, 0, 0, &cached_state);
3026 	}
3027 
3028 	if (nolock)
3029 		trans = btrfs_join_transaction_nolock(root);
3030 	else
3031 		trans = btrfs_join_transaction(root);
3032 	if (IS_ERR(trans)) {
3033 		ret = PTR_ERR(trans);
3034 		trans = NULL;
3035 		goto out;
3036 	}
3037 
3038 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3039 
3040 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3041 		compress_type = ordered_extent->compress_type;
3042 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3043 		BUG_ON(compress_type);
3044 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3045 				       ordered_extent->len);
3046 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3047 						ordered_extent->file_offset,
3048 						ordered_extent->file_offset +
3049 						logical_len);
3050 	} else {
3051 		BUG_ON(root == fs_info->tree_root);
3052 		ret = insert_reserved_file_extent(trans, inode,
3053 						ordered_extent->file_offset,
3054 						ordered_extent->start,
3055 						ordered_extent->disk_len,
3056 						logical_len, logical_len,
3057 						compress_type, 0, 0,
3058 						BTRFS_FILE_EXTENT_REG);
3059 		if (!ret)
3060 			btrfs_release_delalloc_bytes(fs_info,
3061 						     ordered_extent->start,
3062 						     ordered_extent->disk_len);
3063 	}
3064 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3065 			   ordered_extent->file_offset, ordered_extent->len,
3066 			   trans->transid);
3067 	if (ret < 0) {
3068 		btrfs_abort_transaction(trans, ret);
3069 		goto out;
3070 	}
3071 
3072 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3073 	if (ret) {
3074 		btrfs_abort_transaction(trans, ret);
3075 		goto out;
3076 	}
3077 
3078 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3079 	ret = btrfs_update_inode_fallback(trans, root, inode);
3080 	if (ret) { /* -ENOMEM or corruption */
3081 		btrfs_abort_transaction(trans, ret);
3082 		goto out;
3083 	}
3084 	ret = 0;
3085 out:
3086 	if (range_locked || clear_new_delalloc_bytes) {
3087 		unsigned int clear_bits = 0;
3088 
3089 		if (range_locked)
3090 			clear_bits |= EXTENT_LOCKED;
3091 		if (clear_new_delalloc_bytes)
3092 			clear_bits |= EXTENT_DELALLOC_NEW;
3093 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3094 				 ordered_extent->file_offset,
3095 				 ordered_extent->file_offset +
3096 				 ordered_extent->len - 1,
3097 				 clear_bits,
3098 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3099 				 0, &cached_state);
3100 	}
3101 
3102 	if (trans)
3103 		btrfs_end_transaction(trans);
3104 
3105 	if (ret || truncated) {
3106 		u64 start, end;
3107 
3108 		if (truncated)
3109 			start = ordered_extent->file_offset + logical_len;
3110 		else
3111 			start = ordered_extent->file_offset;
3112 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3113 		clear_extent_uptodate(io_tree, start, end, NULL);
3114 
3115 		/* Drop the cache for the part of the extent we didn't write. */
3116 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3117 
3118 		/*
3119 		 * If the ordered extent had an IOERR or something else went
3120 		 * wrong we need to return the space for this ordered extent
3121 		 * back to the allocator.  We only free the extent in the
3122 		 * truncated case if we didn't write out the extent at all.
3123 		 */
3124 		if ((ret || !logical_len) &&
3125 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3126 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3127 			btrfs_free_reserved_extent(fs_info,
3128 						   ordered_extent->start,
3129 						   ordered_extent->disk_len, 1);
3130 	}
3131 
3132 
3133 	/*
3134 	 * This needs to be done to make sure anybody waiting knows we are done
3135 	 * updating everything for this ordered extent.
3136 	 */
3137 	btrfs_remove_ordered_extent(inode, ordered_extent);
3138 
3139 	/* for snapshot-aware defrag */
3140 	if (new) {
3141 		if (ret) {
3142 			free_sa_defrag_extent(new);
3143 			atomic_dec(&fs_info->defrag_running);
3144 		} else {
3145 			relink_file_extents(new);
3146 		}
3147 	}
3148 
3149 	/* once for us */
3150 	btrfs_put_ordered_extent(ordered_extent);
3151 	/* once for the tree */
3152 	btrfs_put_ordered_extent(ordered_extent);
3153 
3154 	return ret;
3155 }
3156 
3157 static void finish_ordered_fn(struct btrfs_work *work)
3158 {
3159 	struct btrfs_ordered_extent *ordered_extent;
3160 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3161 	btrfs_finish_ordered_io(ordered_extent);
3162 }
3163 
3164 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3165 				struct extent_state *state, int uptodate)
3166 {
3167 	struct inode *inode = page->mapping->host;
3168 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3169 	struct btrfs_ordered_extent *ordered_extent = NULL;
3170 	struct btrfs_workqueue *wq;
3171 	btrfs_work_func_t func;
3172 
3173 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3174 
3175 	ClearPagePrivate2(page);
3176 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3177 					    end - start + 1, uptodate))
3178 		return;
3179 
3180 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3181 		wq = fs_info->endio_freespace_worker;
3182 		func = btrfs_freespace_write_helper;
3183 	} else {
3184 		wq = fs_info->endio_write_workers;
3185 		func = btrfs_endio_write_helper;
3186 	}
3187 
3188 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3189 			NULL);
3190 	btrfs_queue_work(wq, &ordered_extent->work);
3191 }
3192 
3193 static int __readpage_endio_check(struct inode *inode,
3194 				  struct btrfs_io_bio *io_bio,
3195 				  int icsum, struct page *page,
3196 				  int pgoff, u64 start, size_t len)
3197 {
3198 	char *kaddr;
3199 	u32 csum_expected;
3200 	u32 csum = ~(u32)0;
3201 
3202 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3203 
3204 	kaddr = kmap_atomic(page);
3205 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3206 	btrfs_csum_final(csum, (u8 *)&csum);
3207 	if (csum != csum_expected)
3208 		goto zeroit;
3209 
3210 	kunmap_atomic(kaddr);
3211 	return 0;
3212 zeroit:
3213 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3214 				    io_bio->mirror_num);
3215 	memset(kaddr + pgoff, 1, len);
3216 	flush_dcache_page(page);
3217 	kunmap_atomic(kaddr);
3218 	return -EIO;
3219 }
3220 
3221 /*
3222  * when reads are done, we need to check csums to verify the data is correct
3223  * if there's a match, we allow the bio to finish.  If not, the code in
3224  * extent_io.c will try to find good copies for us.
3225  */
3226 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3227 				      u64 phy_offset, struct page *page,
3228 				      u64 start, u64 end, int mirror)
3229 {
3230 	size_t offset = start - page_offset(page);
3231 	struct inode *inode = page->mapping->host;
3232 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3233 	struct btrfs_root *root = BTRFS_I(inode)->root;
3234 
3235 	if (PageChecked(page)) {
3236 		ClearPageChecked(page);
3237 		return 0;
3238 	}
3239 
3240 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3241 		return 0;
3242 
3243 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3244 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3245 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3246 		return 0;
3247 	}
3248 
3249 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3250 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3251 				      start, (size_t)(end - start + 1));
3252 }
3253 
3254 /*
3255  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3256  *
3257  * @inode: The inode we want to perform iput on
3258  *
3259  * This function uses the generic vfs_inode::i_count to track whether we should
3260  * just decrement it (in case it's > 1) or if this is the last iput then link
3261  * the inode to the delayed iput machinery. Delayed iputs are processed at
3262  * transaction commit time/superblock commit/cleaner kthread.
3263  */
3264 void btrfs_add_delayed_iput(struct inode *inode)
3265 {
3266 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3267 	struct btrfs_inode *binode = BTRFS_I(inode);
3268 
3269 	if (atomic_add_unless(&inode->i_count, -1, 1))
3270 		return;
3271 
3272 	spin_lock(&fs_info->delayed_iput_lock);
3273 	ASSERT(list_empty(&binode->delayed_iput));
3274 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3275 	spin_unlock(&fs_info->delayed_iput_lock);
3276 }
3277 
3278 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3279 {
3280 
3281 	spin_lock(&fs_info->delayed_iput_lock);
3282 	while (!list_empty(&fs_info->delayed_iputs)) {
3283 		struct btrfs_inode *inode;
3284 
3285 		inode = list_first_entry(&fs_info->delayed_iputs,
3286 				struct btrfs_inode, delayed_iput);
3287 		list_del_init(&inode->delayed_iput);
3288 		spin_unlock(&fs_info->delayed_iput_lock);
3289 		iput(&inode->vfs_inode);
3290 		spin_lock(&fs_info->delayed_iput_lock);
3291 	}
3292 	spin_unlock(&fs_info->delayed_iput_lock);
3293 }
3294 
3295 /*
3296  * This is called in transaction commit time. If there are no orphan
3297  * files in the subvolume, it removes orphan item and frees block_rsv
3298  * structure.
3299  */
3300 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3301 			      struct btrfs_root *root)
3302 {
3303 	struct btrfs_fs_info *fs_info = root->fs_info;
3304 	struct btrfs_block_rsv *block_rsv;
3305 	int ret;
3306 
3307 	if (atomic_read(&root->orphan_inodes) ||
3308 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3309 		return;
3310 
3311 	spin_lock(&root->orphan_lock);
3312 	if (atomic_read(&root->orphan_inodes)) {
3313 		spin_unlock(&root->orphan_lock);
3314 		return;
3315 	}
3316 
3317 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3318 		spin_unlock(&root->orphan_lock);
3319 		return;
3320 	}
3321 
3322 	block_rsv = root->orphan_block_rsv;
3323 	root->orphan_block_rsv = NULL;
3324 	spin_unlock(&root->orphan_lock);
3325 
3326 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3327 	    btrfs_root_refs(&root->root_item) > 0) {
3328 		ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3329 					    root->root_key.objectid);
3330 		if (ret)
3331 			btrfs_abort_transaction(trans, ret);
3332 		else
3333 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3334 				  &root->state);
3335 	}
3336 
3337 	if (block_rsv) {
3338 		WARN_ON(block_rsv->size > 0);
3339 		btrfs_free_block_rsv(fs_info, block_rsv);
3340 	}
3341 }
3342 
3343 /*
3344  * This creates an orphan entry for the given inode in case something goes
3345  * wrong in the middle of an unlink/truncate.
3346  *
3347  * NOTE: caller of this function should reserve 5 units of metadata for
3348  *	 this function.
3349  */
3350 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3351 		struct btrfs_inode *inode)
3352 {
3353 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3354 	struct btrfs_root *root = inode->root;
3355 	struct btrfs_block_rsv *block_rsv = NULL;
3356 	int reserve = 0;
3357 	bool insert = false;
3358 	int ret;
3359 
3360 	if (!root->orphan_block_rsv) {
3361 		block_rsv = btrfs_alloc_block_rsv(fs_info,
3362 						  BTRFS_BLOCK_RSV_TEMP);
3363 		if (!block_rsv)
3364 			return -ENOMEM;
3365 	}
3366 
3367 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3368 			      &inode->runtime_flags))
3369 		insert = true;
3370 
3371 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3372 			      &inode->runtime_flags))
3373 		reserve = 1;
3374 
3375 	spin_lock(&root->orphan_lock);
3376 	/* If someone has created ->orphan_block_rsv, be happy to use it. */
3377 	if (!root->orphan_block_rsv) {
3378 		root->orphan_block_rsv = block_rsv;
3379 	} else if (block_rsv) {
3380 		btrfs_free_block_rsv(fs_info, block_rsv);
3381 		block_rsv = NULL;
3382 	}
3383 
3384 	if (insert)
3385 		atomic_inc(&root->orphan_inodes);
3386 	spin_unlock(&root->orphan_lock);
3387 
3388 	/* grab metadata reservation from transaction handle */
3389 	if (reserve) {
3390 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3391 		ASSERT(!ret);
3392 		if (ret) {
3393 			/*
3394 			 * dec doesn't need spin_lock as ->orphan_block_rsv
3395 			 * would be released only if ->orphan_inodes is
3396 			 * zero.
3397 			 */
3398 			atomic_dec(&root->orphan_inodes);
3399 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3400 				  &inode->runtime_flags);
3401 			if (insert)
3402 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3403 					  &inode->runtime_flags);
3404 			return ret;
3405 		}
3406 	}
3407 
3408 	/* insert an orphan item to track this unlinked/truncated file */
3409 	if (insert) {
3410 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3411 		if (ret) {
3412 			if (reserve) {
3413 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3414 					  &inode->runtime_flags);
3415 				btrfs_orphan_release_metadata(inode);
3416 			}
3417 			/*
3418 			 * btrfs_orphan_commit_root may race with us and set
3419 			 * ->orphan_block_rsv to zero, in order to avoid that,
3420 			 * decrease ->orphan_inodes after everything is done.
3421 			 */
3422 			atomic_dec(&root->orphan_inodes);
3423 			if (ret != -EEXIST) {
3424 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3425 					  &inode->runtime_flags);
3426 				btrfs_abort_transaction(trans, ret);
3427 				return ret;
3428 			}
3429 		}
3430 		ret = 0;
3431 	}
3432 
3433 	return 0;
3434 }
3435 
3436 /*
3437  * We have done the truncate/delete so we can go ahead and remove the orphan
3438  * item for this particular inode.
3439  */
3440 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3441 			    struct btrfs_inode *inode)
3442 {
3443 	struct btrfs_root *root = inode->root;
3444 	int delete_item = 0;
3445 	int ret = 0;
3446 
3447 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3448 			       &inode->runtime_flags))
3449 		delete_item = 1;
3450 
3451 	if (delete_item && trans)
3452 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3453 
3454 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3455 			       &inode->runtime_flags))
3456 		btrfs_orphan_release_metadata(inode);
3457 
3458 	/*
3459 	 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3460 	 * to zero, in order to avoid that, decrease ->orphan_inodes after
3461 	 * everything is done.
3462 	 */
3463 	if (delete_item)
3464 		atomic_dec(&root->orphan_inodes);
3465 
3466 	return ret;
3467 }
3468 
3469 /*
3470  * this cleans up any orphans that may be left on the list from the last use
3471  * of this root.
3472  */
3473 int btrfs_orphan_cleanup(struct btrfs_root *root)
3474 {
3475 	struct btrfs_fs_info *fs_info = root->fs_info;
3476 	struct btrfs_path *path;
3477 	struct extent_buffer *leaf;
3478 	struct btrfs_key key, found_key;
3479 	struct btrfs_trans_handle *trans;
3480 	struct inode *inode;
3481 	u64 last_objectid = 0;
3482 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3483 
3484 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3485 		return 0;
3486 
3487 	path = btrfs_alloc_path();
3488 	if (!path) {
3489 		ret = -ENOMEM;
3490 		goto out;
3491 	}
3492 	path->reada = READA_BACK;
3493 
3494 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3495 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3496 	key.offset = (u64)-1;
3497 
3498 	while (1) {
3499 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3500 		if (ret < 0)
3501 			goto out;
3502 
3503 		/*
3504 		 * if ret == 0 means we found what we were searching for, which
3505 		 * is weird, but possible, so only screw with path if we didn't
3506 		 * find the key and see if we have stuff that matches
3507 		 */
3508 		if (ret > 0) {
3509 			ret = 0;
3510 			if (path->slots[0] == 0)
3511 				break;
3512 			path->slots[0]--;
3513 		}
3514 
3515 		/* pull out the item */
3516 		leaf = path->nodes[0];
3517 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3518 
3519 		/* make sure the item matches what we want */
3520 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3521 			break;
3522 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3523 			break;
3524 
3525 		/* release the path since we're done with it */
3526 		btrfs_release_path(path);
3527 
3528 		/*
3529 		 * this is where we are basically btrfs_lookup, without the
3530 		 * crossing root thing.  we store the inode number in the
3531 		 * offset of the orphan item.
3532 		 */
3533 
3534 		if (found_key.offset == last_objectid) {
3535 			btrfs_err(fs_info,
3536 				  "Error removing orphan entry, stopping orphan cleanup");
3537 			ret = -EINVAL;
3538 			goto out;
3539 		}
3540 
3541 		last_objectid = found_key.offset;
3542 
3543 		found_key.objectid = found_key.offset;
3544 		found_key.type = BTRFS_INODE_ITEM_KEY;
3545 		found_key.offset = 0;
3546 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3547 		ret = PTR_ERR_OR_ZERO(inode);
3548 		if (ret && ret != -ENOENT)
3549 			goto out;
3550 
3551 		if (ret == -ENOENT && root == fs_info->tree_root) {
3552 			struct btrfs_root *dead_root;
3553 			struct btrfs_fs_info *fs_info = root->fs_info;
3554 			int is_dead_root = 0;
3555 
3556 			/*
3557 			 * this is an orphan in the tree root. Currently these
3558 			 * could come from 2 sources:
3559 			 *  a) a snapshot deletion in progress
3560 			 *  b) a free space cache inode
3561 			 * We need to distinguish those two, as the snapshot
3562 			 * orphan must not get deleted.
3563 			 * find_dead_roots already ran before us, so if this
3564 			 * is a snapshot deletion, we should find the root
3565 			 * in the dead_roots list
3566 			 */
3567 			spin_lock(&fs_info->trans_lock);
3568 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3569 					    root_list) {
3570 				if (dead_root->root_key.objectid ==
3571 				    found_key.objectid) {
3572 					is_dead_root = 1;
3573 					break;
3574 				}
3575 			}
3576 			spin_unlock(&fs_info->trans_lock);
3577 			if (is_dead_root) {
3578 				/* prevent this orphan from being found again */
3579 				key.offset = found_key.objectid - 1;
3580 				continue;
3581 			}
3582 		}
3583 		/*
3584 		 * Inode is already gone but the orphan item is still there,
3585 		 * kill the orphan item.
3586 		 */
3587 		if (ret == -ENOENT) {
3588 			trans = btrfs_start_transaction(root, 1);
3589 			if (IS_ERR(trans)) {
3590 				ret = PTR_ERR(trans);
3591 				goto out;
3592 			}
3593 			btrfs_debug(fs_info, "auto deleting %Lu",
3594 				    found_key.objectid);
3595 			ret = btrfs_del_orphan_item(trans, root,
3596 						    found_key.objectid);
3597 			btrfs_end_transaction(trans);
3598 			if (ret)
3599 				goto out;
3600 			continue;
3601 		}
3602 
3603 		/*
3604 		 * add this inode to the orphan list so btrfs_orphan_del does
3605 		 * the proper thing when we hit it
3606 		 */
3607 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3608 			&BTRFS_I(inode)->runtime_flags);
3609 		atomic_inc(&root->orphan_inodes);
3610 
3611 		/* if we have links, this was a truncate, lets do that */
3612 		if (inode->i_nlink) {
3613 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3614 				iput(inode);
3615 				continue;
3616 			}
3617 			nr_truncate++;
3618 
3619 			/* 1 for the orphan item deletion. */
3620 			trans = btrfs_start_transaction(root, 1);
3621 			if (IS_ERR(trans)) {
3622 				iput(inode);
3623 				ret = PTR_ERR(trans);
3624 				goto out;
3625 			}
3626 			ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3627 			btrfs_end_transaction(trans);
3628 			if (ret) {
3629 				iput(inode);
3630 				goto out;
3631 			}
3632 
3633 			ret = btrfs_truncate(inode, false);
3634 			if (ret)
3635 				btrfs_orphan_del(NULL, BTRFS_I(inode));
3636 		} else {
3637 			nr_unlink++;
3638 		}
3639 
3640 		/* this will do delete_inode and everything for us */
3641 		iput(inode);
3642 		if (ret)
3643 			goto out;
3644 	}
3645 	/* release the path since we're done with it */
3646 	btrfs_release_path(path);
3647 
3648 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3649 
3650 	if (root->orphan_block_rsv)
3651 		btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3652 					(u64)-1);
3653 
3654 	if (root->orphan_block_rsv ||
3655 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3656 		trans = btrfs_join_transaction(root);
3657 		if (!IS_ERR(trans))
3658 			btrfs_end_transaction(trans);
3659 	}
3660 
3661 	if (nr_unlink)
3662 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3663 	if (nr_truncate)
3664 		btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3665 
3666 out:
3667 	if (ret)
3668 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3669 	btrfs_free_path(path);
3670 	return ret;
3671 }
3672 
3673 /*
3674  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3675  * don't find any xattrs, we know there can't be any acls.
3676  *
3677  * slot is the slot the inode is in, objectid is the objectid of the inode
3678  */
3679 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3680 					  int slot, u64 objectid,
3681 					  int *first_xattr_slot)
3682 {
3683 	u32 nritems = btrfs_header_nritems(leaf);
3684 	struct btrfs_key found_key;
3685 	static u64 xattr_access = 0;
3686 	static u64 xattr_default = 0;
3687 	int scanned = 0;
3688 
3689 	if (!xattr_access) {
3690 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3691 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3692 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3693 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3694 	}
3695 
3696 	slot++;
3697 	*first_xattr_slot = -1;
3698 	while (slot < nritems) {
3699 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3700 
3701 		/* we found a different objectid, there must not be acls */
3702 		if (found_key.objectid != objectid)
3703 			return 0;
3704 
3705 		/* we found an xattr, assume we've got an acl */
3706 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3707 			if (*first_xattr_slot == -1)
3708 				*first_xattr_slot = slot;
3709 			if (found_key.offset == xattr_access ||
3710 			    found_key.offset == xattr_default)
3711 				return 1;
3712 		}
3713 
3714 		/*
3715 		 * we found a key greater than an xattr key, there can't
3716 		 * be any acls later on
3717 		 */
3718 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3719 			return 0;
3720 
3721 		slot++;
3722 		scanned++;
3723 
3724 		/*
3725 		 * it goes inode, inode backrefs, xattrs, extents,
3726 		 * so if there are a ton of hard links to an inode there can
3727 		 * be a lot of backrefs.  Don't waste time searching too hard,
3728 		 * this is just an optimization
3729 		 */
3730 		if (scanned >= 8)
3731 			break;
3732 	}
3733 	/* we hit the end of the leaf before we found an xattr or
3734 	 * something larger than an xattr.  We have to assume the inode
3735 	 * has acls
3736 	 */
3737 	if (*first_xattr_slot == -1)
3738 		*first_xattr_slot = slot;
3739 	return 1;
3740 }
3741 
3742 /*
3743  * read an inode from the btree into the in-memory inode
3744  */
3745 static int btrfs_read_locked_inode(struct inode *inode)
3746 {
3747 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3748 	struct btrfs_path *path;
3749 	struct extent_buffer *leaf;
3750 	struct btrfs_inode_item *inode_item;
3751 	struct btrfs_root *root = BTRFS_I(inode)->root;
3752 	struct btrfs_key location;
3753 	unsigned long ptr;
3754 	int maybe_acls;
3755 	u32 rdev;
3756 	int ret;
3757 	bool filled = false;
3758 	int first_xattr_slot;
3759 
3760 	ret = btrfs_fill_inode(inode, &rdev);
3761 	if (!ret)
3762 		filled = true;
3763 
3764 	path = btrfs_alloc_path();
3765 	if (!path) {
3766 		ret = -ENOMEM;
3767 		goto make_bad;
3768 	}
3769 
3770 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3771 
3772 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3773 	if (ret) {
3774 		if (ret > 0)
3775 			ret = -ENOENT;
3776 		goto make_bad;
3777 	}
3778 
3779 	leaf = path->nodes[0];
3780 
3781 	if (filled)
3782 		goto cache_index;
3783 
3784 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3785 				    struct btrfs_inode_item);
3786 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3787 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3788 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3789 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3790 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3791 
3792 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3793 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3794 
3795 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3796 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3797 
3798 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3799 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3800 
3801 	BTRFS_I(inode)->i_otime.tv_sec =
3802 		btrfs_timespec_sec(leaf, &inode_item->otime);
3803 	BTRFS_I(inode)->i_otime.tv_nsec =
3804 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3805 
3806 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3807 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3808 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3809 
3810 	inode_set_iversion_queried(inode,
3811 				   btrfs_inode_sequence(leaf, inode_item));
3812 	inode->i_generation = BTRFS_I(inode)->generation;
3813 	inode->i_rdev = 0;
3814 	rdev = btrfs_inode_rdev(leaf, inode_item);
3815 
3816 	BTRFS_I(inode)->index_cnt = (u64)-1;
3817 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3818 
3819 cache_index:
3820 	/*
3821 	 * If we were modified in the current generation and evicted from memory
3822 	 * and then re-read we need to do a full sync since we don't have any
3823 	 * idea about which extents were modified before we were evicted from
3824 	 * cache.
3825 	 *
3826 	 * This is required for both inode re-read from disk and delayed inode
3827 	 * in delayed_nodes_tree.
3828 	 */
3829 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3830 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3831 			&BTRFS_I(inode)->runtime_flags);
3832 
3833 	/*
3834 	 * We don't persist the id of the transaction where an unlink operation
3835 	 * against the inode was last made. So here we assume the inode might
3836 	 * have been evicted, and therefore the exact value of last_unlink_trans
3837 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3838 	 * between the inode and its parent if the inode is fsync'ed and the log
3839 	 * replayed. For example, in the scenario:
3840 	 *
3841 	 * touch mydir/foo
3842 	 * ln mydir/foo mydir/bar
3843 	 * sync
3844 	 * unlink mydir/bar
3845 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3846 	 * xfs_io -c fsync mydir/foo
3847 	 * <power failure>
3848 	 * mount fs, triggers fsync log replay
3849 	 *
3850 	 * We must make sure that when we fsync our inode foo we also log its
3851 	 * parent inode, otherwise after log replay the parent still has the
3852 	 * dentry with the "bar" name but our inode foo has a link count of 1
3853 	 * and doesn't have an inode ref with the name "bar" anymore.
3854 	 *
3855 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3856 	 * but it guarantees correctness at the expense of occasional full
3857 	 * transaction commits on fsync if our inode is a directory, or if our
3858 	 * inode is not a directory, logging its parent unnecessarily.
3859 	 */
3860 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3861 
3862 	path->slots[0]++;
3863 	if (inode->i_nlink != 1 ||
3864 	    path->slots[0] >= btrfs_header_nritems(leaf))
3865 		goto cache_acl;
3866 
3867 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3868 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3869 		goto cache_acl;
3870 
3871 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3872 	if (location.type == BTRFS_INODE_REF_KEY) {
3873 		struct btrfs_inode_ref *ref;
3874 
3875 		ref = (struct btrfs_inode_ref *)ptr;
3876 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3877 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3878 		struct btrfs_inode_extref *extref;
3879 
3880 		extref = (struct btrfs_inode_extref *)ptr;
3881 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3882 								     extref);
3883 	}
3884 cache_acl:
3885 	/*
3886 	 * try to precache a NULL acl entry for files that don't have
3887 	 * any xattrs or acls
3888 	 */
3889 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3890 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3891 	if (first_xattr_slot != -1) {
3892 		path->slots[0] = first_xattr_slot;
3893 		ret = btrfs_load_inode_props(inode, path);
3894 		if (ret)
3895 			btrfs_err(fs_info,
3896 				  "error loading props for ino %llu (root %llu): %d",
3897 				  btrfs_ino(BTRFS_I(inode)),
3898 				  root->root_key.objectid, ret);
3899 	}
3900 	btrfs_free_path(path);
3901 
3902 	if (!maybe_acls)
3903 		cache_no_acl(inode);
3904 
3905 	switch (inode->i_mode & S_IFMT) {
3906 	case S_IFREG:
3907 		inode->i_mapping->a_ops = &btrfs_aops;
3908 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3909 		inode->i_fop = &btrfs_file_operations;
3910 		inode->i_op = &btrfs_file_inode_operations;
3911 		break;
3912 	case S_IFDIR:
3913 		inode->i_fop = &btrfs_dir_file_operations;
3914 		inode->i_op = &btrfs_dir_inode_operations;
3915 		break;
3916 	case S_IFLNK:
3917 		inode->i_op = &btrfs_symlink_inode_operations;
3918 		inode_nohighmem(inode);
3919 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3920 		break;
3921 	default:
3922 		inode->i_op = &btrfs_special_inode_operations;
3923 		init_special_inode(inode, inode->i_mode, rdev);
3924 		break;
3925 	}
3926 
3927 	btrfs_update_iflags(inode);
3928 	return 0;
3929 
3930 make_bad:
3931 	btrfs_free_path(path);
3932 	make_bad_inode(inode);
3933 	return ret;
3934 }
3935 
3936 /*
3937  * given a leaf and an inode, copy the inode fields into the leaf
3938  */
3939 static void fill_inode_item(struct btrfs_trans_handle *trans,
3940 			    struct extent_buffer *leaf,
3941 			    struct btrfs_inode_item *item,
3942 			    struct inode *inode)
3943 {
3944 	struct btrfs_map_token token;
3945 
3946 	btrfs_init_map_token(&token);
3947 
3948 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3949 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3950 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3951 				   &token);
3952 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3953 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3954 
3955 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3956 				     inode->i_atime.tv_sec, &token);
3957 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3958 				      inode->i_atime.tv_nsec, &token);
3959 
3960 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3961 				     inode->i_mtime.tv_sec, &token);
3962 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3963 				      inode->i_mtime.tv_nsec, &token);
3964 
3965 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3966 				     inode->i_ctime.tv_sec, &token);
3967 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3968 				      inode->i_ctime.tv_nsec, &token);
3969 
3970 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3971 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3972 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3973 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3974 
3975 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3976 				     &token);
3977 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3978 					 &token);
3979 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3980 				       &token);
3981 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3982 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3983 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3984 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3985 }
3986 
3987 /*
3988  * copy everything in the in-memory inode into the btree.
3989  */
3990 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3991 				struct btrfs_root *root, struct inode *inode)
3992 {
3993 	struct btrfs_inode_item *inode_item;
3994 	struct btrfs_path *path;
3995 	struct extent_buffer *leaf;
3996 	int ret;
3997 
3998 	path = btrfs_alloc_path();
3999 	if (!path)
4000 		return -ENOMEM;
4001 
4002 	path->leave_spinning = 1;
4003 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4004 				 1);
4005 	if (ret) {
4006 		if (ret > 0)
4007 			ret = -ENOENT;
4008 		goto failed;
4009 	}
4010 
4011 	leaf = path->nodes[0];
4012 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4013 				    struct btrfs_inode_item);
4014 
4015 	fill_inode_item(trans, leaf, inode_item, inode);
4016 	btrfs_mark_buffer_dirty(leaf);
4017 	btrfs_set_inode_last_trans(trans, inode);
4018 	ret = 0;
4019 failed:
4020 	btrfs_free_path(path);
4021 	return ret;
4022 }
4023 
4024 /*
4025  * copy everything in the in-memory inode into the btree.
4026  */
4027 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4028 				struct btrfs_root *root, struct inode *inode)
4029 {
4030 	struct btrfs_fs_info *fs_info = root->fs_info;
4031 	int ret;
4032 
4033 	/*
4034 	 * If the inode is a free space inode, we can deadlock during commit
4035 	 * if we put it into the delayed code.
4036 	 *
4037 	 * The data relocation inode should also be directly updated
4038 	 * without delay
4039 	 */
4040 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4041 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4042 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4043 		btrfs_update_root_times(trans, root);
4044 
4045 		ret = btrfs_delayed_update_inode(trans, root, inode);
4046 		if (!ret)
4047 			btrfs_set_inode_last_trans(trans, inode);
4048 		return ret;
4049 	}
4050 
4051 	return btrfs_update_inode_item(trans, root, inode);
4052 }
4053 
4054 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4055 					 struct btrfs_root *root,
4056 					 struct inode *inode)
4057 {
4058 	int ret;
4059 
4060 	ret = btrfs_update_inode(trans, root, inode);
4061 	if (ret == -ENOSPC)
4062 		return btrfs_update_inode_item(trans, root, inode);
4063 	return ret;
4064 }
4065 
4066 /*
4067  * unlink helper that gets used here in inode.c and in the tree logging
4068  * recovery code.  It remove a link in a directory with a given name, and
4069  * also drops the back refs in the inode to the directory
4070  */
4071 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4072 				struct btrfs_root *root,
4073 				struct btrfs_inode *dir,
4074 				struct btrfs_inode *inode,
4075 				const char *name, int name_len)
4076 {
4077 	struct btrfs_fs_info *fs_info = root->fs_info;
4078 	struct btrfs_path *path;
4079 	int ret = 0;
4080 	struct extent_buffer *leaf;
4081 	struct btrfs_dir_item *di;
4082 	struct btrfs_key key;
4083 	u64 index;
4084 	u64 ino = btrfs_ino(inode);
4085 	u64 dir_ino = btrfs_ino(dir);
4086 
4087 	path = btrfs_alloc_path();
4088 	if (!path) {
4089 		ret = -ENOMEM;
4090 		goto out;
4091 	}
4092 
4093 	path->leave_spinning = 1;
4094 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4095 				    name, name_len, -1);
4096 	if (IS_ERR(di)) {
4097 		ret = PTR_ERR(di);
4098 		goto err;
4099 	}
4100 	if (!di) {
4101 		ret = -ENOENT;
4102 		goto err;
4103 	}
4104 	leaf = path->nodes[0];
4105 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4106 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4107 	if (ret)
4108 		goto err;
4109 	btrfs_release_path(path);
4110 
4111 	/*
4112 	 * If we don't have dir index, we have to get it by looking up
4113 	 * the inode ref, since we get the inode ref, remove it directly,
4114 	 * it is unnecessary to do delayed deletion.
4115 	 *
4116 	 * But if we have dir index, needn't search inode ref to get it.
4117 	 * Since the inode ref is close to the inode item, it is better
4118 	 * that we delay to delete it, and just do this deletion when
4119 	 * we update the inode item.
4120 	 */
4121 	if (inode->dir_index) {
4122 		ret = btrfs_delayed_delete_inode_ref(inode);
4123 		if (!ret) {
4124 			index = inode->dir_index;
4125 			goto skip_backref;
4126 		}
4127 	}
4128 
4129 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4130 				  dir_ino, &index);
4131 	if (ret) {
4132 		btrfs_info(fs_info,
4133 			"failed to delete reference to %.*s, inode %llu parent %llu",
4134 			name_len, name, ino, dir_ino);
4135 		btrfs_abort_transaction(trans, ret);
4136 		goto err;
4137 	}
4138 skip_backref:
4139 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4140 	if (ret) {
4141 		btrfs_abort_transaction(trans, ret);
4142 		goto err;
4143 	}
4144 
4145 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4146 			dir_ino);
4147 	if (ret != 0 && ret != -ENOENT) {
4148 		btrfs_abort_transaction(trans, ret);
4149 		goto err;
4150 	}
4151 
4152 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4153 			index);
4154 	if (ret == -ENOENT)
4155 		ret = 0;
4156 	else if (ret)
4157 		btrfs_abort_transaction(trans, ret);
4158 err:
4159 	btrfs_free_path(path);
4160 	if (ret)
4161 		goto out;
4162 
4163 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4164 	inode_inc_iversion(&inode->vfs_inode);
4165 	inode_inc_iversion(&dir->vfs_inode);
4166 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4167 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4168 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4169 out:
4170 	return ret;
4171 }
4172 
4173 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4174 		       struct btrfs_root *root,
4175 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4176 		       const char *name, int name_len)
4177 {
4178 	int ret;
4179 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4180 	if (!ret) {
4181 		drop_nlink(&inode->vfs_inode);
4182 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4183 	}
4184 	return ret;
4185 }
4186 
4187 /*
4188  * helper to start transaction for unlink and rmdir.
4189  *
4190  * unlink and rmdir are special in btrfs, they do not always free space, so
4191  * if we cannot make our reservations the normal way try and see if there is
4192  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4193  * allow the unlink to occur.
4194  */
4195 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4196 {
4197 	struct btrfs_root *root = BTRFS_I(dir)->root;
4198 
4199 	/*
4200 	 * 1 for the possible orphan item
4201 	 * 1 for the dir item
4202 	 * 1 for the dir index
4203 	 * 1 for the inode ref
4204 	 * 1 for the inode
4205 	 */
4206 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4207 }
4208 
4209 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4210 {
4211 	struct btrfs_root *root = BTRFS_I(dir)->root;
4212 	struct btrfs_trans_handle *trans;
4213 	struct inode *inode = d_inode(dentry);
4214 	int ret;
4215 
4216 	trans = __unlink_start_trans(dir);
4217 	if (IS_ERR(trans))
4218 		return PTR_ERR(trans);
4219 
4220 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4221 			0);
4222 
4223 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4224 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4225 			dentry->d_name.len);
4226 	if (ret)
4227 		goto out;
4228 
4229 	if (inode->i_nlink == 0) {
4230 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4231 		if (ret)
4232 			goto out;
4233 	}
4234 
4235 out:
4236 	btrfs_end_transaction(trans);
4237 	btrfs_btree_balance_dirty(root->fs_info);
4238 	return ret;
4239 }
4240 
4241 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4242 			struct btrfs_root *root,
4243 			struct inode *dir, u64 objectid,
4244 			const char *name, int name_len)
4245 {
4246 	struct btrfs_fs_info *fs_info = root->fs_info;
4247 	struct btrfs_path *path;
4248 	struct extent_buffer *leaf;
4249 	struct btrfs_dir_item *di;
4250 	struct btrfs_key key;
4251 	u64 index;
4252 	int ret;
4253 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4254 
4255 	path = btrfs_alloc_path();
4256 	if (!path)
4257 		return -ENOMEM;
4258 
4259 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4260 				   name, name_len, -1);
4261 	if (IS_ERR_OR_NULL(di)) {
4262 		if (!di)
4263 			ret = -ENOENT;
4264 		else
4265 			ret = PTR_ERR(di);
4266 		goto out;
4267 	}
4268 
4269 	leaf = path->nodes[0];
4270 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4271 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4272 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4273 	if (ret) {
4274 		btrfs_abort_transaction(trans, ret);
4275 		goto out;
4276 	}
4277 	btrfs_release_path(path);
4278 
4279 	ret = btrfs_del_root_ref(trans, fs_info, objectid,
4280 				 root->root_key.objectid, dir_ino,
4281 				 &index, name, name_len);
4282 	if (ret < 0) {
4283 		if (ret != -ENOENT) {
4284 			btrfs_abort_transaction(trans, ret);
4285 			goto out;
4286 		}
4287 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4288 						 name, name_len);
4289 		if (IS_ERR_OR_NULL(di)) {
4290 			if (!di)
4291 				ret = -ENOENT;
4292 			else
4293 				ret = PTR_ERR(di);
4294 			btrfs_abort_transaction(trans, ret);
4295 			goto out;
4296 		}
4297 
4298 		leaf = path->nodes[0];
4299 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4300 		btrfs_release_path(path);
4301 		index = key.offset;
4302 	}
4303 	btrfs_release_path(path);
4304 
4305 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4306 	if (ret) {
4307 		btrfs_abort_transaction(trans, ret);
4308 		goto out;
4309 	}
4310 
4311 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4312 	inode_inc_iversion(dir);
4313 	dir->i_mtime = dir->i_ctime = current_time(dir);
4314 	ret = btrfs_update_inode_fallback(trans, root, dir);
4315 	if (ret)
4316 		btrfs_abort_transaction(trans, ret);
4317 out:
4318 	btrfs_free_path(path);
4319 	return ret;
4320 }
4321 
4322 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4323 {
4324 	struct inode *inode = d_inode(dentry);
4325 	int err = 0;
4326 	struct btrfs_root *root = BTRFS_I(dir)->root;
4327 	struct btrfs_trans_handle *trans;
4328 	u64 last_unlink_trans;
4329 
4330 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4331 		return -ENOTEMPTY;
4332 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4333 		return -EPERM;
4334 
4335 	trans = __unlink_start_trans(dir);
4336 	if (IS_ERR(trans))
4337 		return PTR_ERR(trans);
4338 
4339 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4340 		err = btrfs_unlink_subvol(trans, root, dir,
4341 					  BTRFS_I(inode)->location.objectid,
4342 					  dentry->d_name.name,
4343 					  dentry->d_name.len);
4344 		goto out;
4345 	}
4346 
4347 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4348 	if (err)
4349 		goto out;
4350 
4351 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4352 
4353 	/* now the directory is empty */
4354 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4355 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4356 			dentry->d_name.len);
4357 	if (!err) {
4358 		btrfs_i_size_write(BTRFS_I(inode), 0);
4359 		/*
4360 		 * Propagate the last_unlink_trans value of the deleted dir to
4361 		 * its parent directory. This is to prevent an unrecoverable
4362 		 * log tree in the case we do something like this:
4363 		 * 1) create dir foo
4364 		 * 2) create snapshot under dir foo
4365 		 * 3) delete the snapshot
4366 		 * 4) rmdir foo
4367 		 * 5) mkdir foo
4368 		 * 6) fsync foo or some file inside foo
4369 		 */
4370 		if (last_unlink_trans >= trans->transid)
4371 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4372 	}
4373 out:
4374 	btrfs_end_transaction(trans);
4375 	btrfs_btree_balance_dirty(root->fs_info);
4376 
4377 	return err;
4378 }
4379 
4380 static int truncate_space_check(struct btrfs_trans_handle *trans,
4381 				struct btrfs_root *root,
4382 				u64 bytes_deleted)
4383 {
4384 	struct btrfs_fs_info *fs_info = root->fs_info;
4385 	int ret;
4386 
4387 	/*
4388 	 * This is only used to apply pressure to the enospc system, we don't
4389 	 * intend to use this reservation at all.
4390 	 */
4391 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4392 	bytes_deleted *= fs_info->nodesize;
4393 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4394 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4395 	if (!ret) {
4396 		trace_btrfs_space_reservation(fs_info, "transaction",
4397 					      trans->transid,
4398 					      bytes_deleted, 1);
4399 		trans->bytes_reserved += bytes_deleted;
4400 	}
4401 	return ret;
4402 
4403 }
4404 
4405 /*
4406  * Return this if we need to call truncate_block for the last bit of the
4407  * truncate.
4408  */
4409 #define NEED_TRUNCATE_BLOCK 1
4410 
4411 /*
4412  * this can truncate away extent items, csum items and directory items.
4413  * It starts at a high offset and removes keys until it can't find
4414  * any higher than new_size
4415  *
4416  * csum items that cross the new i_size are truncated to the new size
4417  * as well.
4418  *
4419  * min_type is the minimum key type to truncate down to.  If set to 0, this
4420  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4421  */
4422 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4423 			       struct btrfs_root *root,
4424 			       struct inode *inode,
4425 			       u64 new_size, u32 min_type)
4426 {
4427 	struct btrfs_fs_info *fs_info = root->fs_info;
4428 	struct btrfs_path *path;
4429 	struct extent_buffer *leaf;
4430 	struct btrfs_file_extent_item *fi;
4431 	struct btrfs_key key;
4432 	struct btrfs_key found_key;
4433 	u64 extent_start = 0;
4434 	u64 extent_num_bytes = 0;
4435 	u64 extent_offset = 0;
4436 	u64 item_end = 0;
4437 	u64 last_size = new_size;
4438 	u32 found_type = (u8)-1;
4439 	int found_extent;
4440 	int del_item;
4441 	int pending_del_nr = 0;
4442 	int pending_del_slot = 0;
4443 	int extent_type = -1;
4444 	int ret;
4445 	int err = 0;
4446 	u64 ino = btrfs_ino(BTRFS_I(inode));
4447 	u64 bytes_deleted = 0;
4448 	bool be_nice = false;
4449 	bool should_throttle = false;
4450 	bool should_end = false;
4451 
4452 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4453 
4454 	/*
4455 	 * for non-free space inodes and ref cows, we want to back off from
4456 	 * time to time
4457 	 */
4458 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4459 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4460 		be_nice = true;
4461 
4462 	path = btrfs_alloc_path();
4463 	if (!path)
4464 		return -ENOMEM;
4465 	path->reada = READA_BACK;
4466 
4467 	/*
4468 	 * We want to drop from the next block forward in case this new size is
4469 	 * not block aligned since we will be keeping the last block of the
4470 	 * extent just the way it is.
4471 	 */
4472 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4473 	    root == fs_info->tree_root)
4474 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4475 					fs_info->sectorsize),
4476 					(u64)-1, 0);
4477 
4478 	/*
4479 	 * This function is also used to drop the items in the log tree before
4480 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4481 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4482 	 * items.
4483 	 */
4484 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4485 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4486 
4487 	key.objectid = ino;
4488 	key.offset = (u64)-1;
4489 	key.type = (u8)-1;
4490 
4491 search_again:
4492 	/*
4493 	 * with a 16K leaf size and 128MB extents, you can actually queue
4494 	 * up a huge file in a single leaf.  Most of the time that
4495 	 * bytes_deleted is > 0, it will be huge by the time we get here
4496 	 */
4497 	if (be_nice && bytes_deleted > SZ_32M) {
4498 		if (btrfs_should_end_transaction(trans)) {
4499 			err = -EAGAIN;
4500 			goto error;
4501 		}
4502 	}
4503 
4504 
4505 	path->leave_spinning = 1;
4506 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4507 	if (ret < 0) {
4508 		err = ret;
4509 		goto out;
4510 	}
4511 
4512 	if (ret > 0) {
4513 		/* there are no items in the tree for us to truncate, we're
4514 		 * done
4515 		 */
4516 		if (path->slots[0] == 0)
4517 			goto out;
4518 		path->slots[0]--;
4519 	}
4520 
4521 	while (1) {
4522 		fi = NULL;
4523 		leaf = path->nodes[0];
4524 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4525 		found_type = found_key.type;
4526 
4527 		if (found_key.objectid != ino)
4528 			break;
4529 
4530 		if (found_type < min_type)
4531 			break;
4532 
4533 		item_end = found_key.offset;
4534 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4535 			fi = btrfs_item_ptr(leaf, path->slots[0],
4536 					    struct btrfs_file_extent_item);
4537 			extent_type = btrfs_file_extent_type(leaf, fi);
4538 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4539 				item_end +=
4540 				    btrfs_file_extent_num_bytes(leaf, fi);
4541 
4542 				trace_btrfs_truncate_show_fi_regular(
4543 					BTRFS_I(inode), leaf, fi,
4544 					found_key.offset);
4545 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4546 				item_end += btrfs_file_extent_inline_len(leaf,
4547 							 path->slots[0], fi);
4548 
4549 				trace_btrfs_truncate_show_fi_inline(
4550 					BTRFS_I(inode), leaf, fi, path->slots[0],
4551 					found_key.offset);
4552 			}
4553 			item_end--;
4554 		}
4555 		if (found_type > min_type) {
4556 			del_item = 1;
4557 		} else {
4558 			if (item_end < new_size)
4559 				break;
4560 			if (found_key.offset >= new_size)
4561 				del_item = 1;
4562 			else
4563 				del_item = 0;
4564 		}
4565 		found_extent = 0;
4566 		/* FIXME, shrink the extent if the ref count is only 1 */
4567 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4568 			goto delete;
4569 
4570 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4571 			u64 num_dec;
4572 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4573 			if (!del_item) {
4574 				u64 orig_num_bytes =
4575 					btrfs_file_extent_num_bytes(leaf, fi);
4576 				extent_num_bytes = ALIGN(new_size -
4577 						found_key.offset,
4578 						fs_info->sectorsize);
4579 				btrfs_set_file_extent_num_bytes(leaf, fi,
4580 							 extent_num_bytes);
4581 				num_dec = (orig_num_bytes -
4582 					   extent_num_bytes);
4583 				if (test_bit(BTRFS_ROOT_REF_COWS,
4584 					     &root->state) &&
4585 				    extent_start != 0)
4586 					inode_sub_bytes(inode, num_dec);
4587 				btrfs_mark_buffer_dirty(leaf);
4588 			} else {
4589 				extent_num_bytes =
4590 					btrfs_file_extent_disk_num_bytes(leaf,
4591 									 fi);
4592 				extent_offset = found_key.offset -
4593 					btrfs_file_extent_offset(leaf, fi);
4594 
4595 				/* FIXME blocksize != 4096 */
4596 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4597 				if (extent_start != 0) {
4598 					found_extent = 1;
4599 					if (test_bit(BTRFS_ROOT_REF_COWS,
4600 						     &root->state))
4601 						inode_sub_bytes(inode, num_dec);
4602 				}
4603 			}
4604 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4605 			/*
4606 			 * we can't truncate inline items that have had
4607 			 * special encodings
4608 			 */
4609 			if (!del_item &&
4610 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4611 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4612 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4613 				u32 size = (u32)(new_size - found_key.offset);
4614 
4615 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4616 				size = btrfs_file_extent_calc_inline_size(size);
4617 				btrfs_truncate_item(root->fs_info, path, size, 1);
4618 			} else if (!del_item) {
4619 				/*
4620 				 * We have to bail so the last_size is set to
4621 				 * just before this extent.
4622 				 */
4623 				err = NEED_TRUNCATE_BLOCK;
4624 				break;
4625 			}
4626 
4627 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4628 				inode_sub_bytes(inode, item_end + 1 - new_size);
4629 		}
4630 delete:
4631 		if (del_item)
4632 			last_size = found_key.offset;
4633 		else
4634 			last_size = new_size;
4635 		if (del_item) {
4636 			if (!pending_del_nr) {
4637 				/* no pending yet, add ourselves */
4638 				pending_del_slot = path->slots[0];
4639 				pending_del_nr = 1;
4640 			} else if (pending_del_nr &&
4641 				   path->slots[0] + 1 == pending_del_slot) {
4642 				/* hop on the pending chunk */
4643 				pending_del_nr++;
4644 				pending_del_slot = path->slots[0];
4645 			} else {
4646 				BUG();
4647 			}
4648 		} else {
4649 			break;
4650 		}
4651 		should_throttle = false;
4652 
4653 		if (found_extent &&
4654 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4655 		     root == fs_info->tree_root)) {
4656 			btrfs_set_path_blocking(path);
4657 			bytes_deleted += extent_num_bytes;
4658 			ret = btrfs_free_extent(trans, root, extent_start,
4659 						extent_num_bytes, 0,
4660 						btrfs_header_owner(leaf),
4661 						ino, extent_offset);
4662 			BUG_ON(ret);
4663 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4664 				btrfs_async_run_delayed_refs(fs_info,
4665 					trans->delayed_ref_updates * 2,
4666 					trans->transid, 0);
4667 			if (be_nice) {
4668 				if (truncate_space_check(trans, root,
4669 							 extent_num_bytes)) {
4670 					should_end = true;
4671 				}
4672 				if (btrfs_should_throttle_delayed_refs(trans,
4673 								       fs_info))
4674 					should_throttle = true;
4675 			}
4676 		}
4677 
4678 		if (found_type == BTRFS_INODE_ITEM_KEY)
4679 			break;
4680 
4681 		if (path->slots[0] == 0 ||
4682 		    path->slots[0] != pending_del_slot ||
4683 		    should_throttle || should_end) {
4684 			if (pending_del_nr) {
4685 				ret = btrfs_del_items(trans, root, path,
4686 						pending_del_slot,
4687 						pending_del_nr);
4688 				if (ret) {
4689 					btrfs_abort_transaction(trans, ret);
4690 					goto error;
4691 				}
4692 				pending_del_nr = 0;
4693 			}
4694 			btrfs_release_path(path);
4695 			if (should_throttle) {
4696 				unsigned long updates = trans->delayed_ref_updates;
4697 				if (updates) {
4698 					trans->delayed_ref_updates = 0;
4699 					ret = btrfs_run_delayed_refs(trans,
4700 								   updates * 2);
4701 					if (ret && !err)
4702 						err = ret;
4703 				}
4704 			}
4705 			/*
4706 			 * if we failed to refill our space rsv, bail out
4707 			 * and let the transaction restart
4708 			 */
4709 			if (should_end) {
4710 				err = -EAGAIN;
4711 				goto error;
4712 			}
4713 			goto search_again;
4714 		} else {
4715 			path->slots[0]--;
4716 		}
4717 	}
4718 out:
4719 	if (pending_del_nr) {
4720 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4721 				      pending_del_nr);
4722 		if (ret)
4723 			btrfs_abort_transaction(trans, ret);
4724 	}
4725 error:
4726 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4727 		ASSERT(last_size >= new_size);
4728 		if (!err && last_size > new_size)
4729 			last_size = new_size;
4730 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4731 	}
4732 
4733 	btrfs_free_path(path);
4734 
4735 	if (be_nice && bytes_deleted > SZ_32M) {
4736 		unsigned long updates = trans->delayed_ref_updates;
4737 		if (updates) {
4738 			trans->delayed_ref_updates = 0;
4739 			ret = btrfs_run_delayed_refs(trans, updates * 2);
4740 			if (ret && !err)
4741 				err = ret;
4742 		}
4743 	}
4744 	return err;
4745 }
4746 
4747 /*
4748  * btrfs_truncate_block - read, zero a chunk and write a block
4749  * @inode - inode that we're zeroing
4750  * @from - the offset to start zeroing
4751  * @len - the length to zero, 0 to zero the entire range respective to the
4752  *	offset
4753  * @front - zero up to the offset instead of from the offset on
4754  *
4755  * This will find the block for the "from" offset and cow the block and zero the
4756  * part we want to zero.  This is used with truncate and hole punching.
4757  */
4758 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4759 			int front)
4760 {
4761 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4762 	struct address_space *mapping = inode->i_mapping;
4763 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4764 	struct btrfs_ordered_extent *ordered;
4765 	struct extent_state *cached_state = NULL;
4766 	struct extent_changeset *data_reserved = NULL;
4767 	char *kaddr;
4768 	u32 blocksize = fs_info->sectorsize;
4769 	pgoff_t index = from >> PAGE_SHIFT;
4770 	unsigned offset = from & (blocksize - 1);
4771 	struct page *page;
4772 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4773 	int ret = 0;
4774 	u64 block_start;
4775 	u64 block_end;
4776 
4777 	if (IS_ALIGNED(offset, blocksize) &&
4778 	    (!len || IS_ALIGNED(len, blocksize)))
4779 		goto out;
4780 
4781 	block_start = round_down(from, blocksize);
4782 	block_end = block_start + blocksize - 1;
4783 
4784 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4785 					   block_start, blocksize);
4786 	if (ret)
4787 		goto out;
4788 
4789 again:
4790 	page = find_or_create_page(mapping, index, mask);
4791 	if (!page) {
4792 		btrfs_delalloc_release_space(inode, data_reserved,
4793 					     block_start, blocksize, true);
4794 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4795 		ret = -ENOMEM;
4796 		goto out;
4797 	}
4798 
4799 	if (!PageUptodate(page)) {
4800 		ret = btrfs_readpage(NULL, page);
4801 		lock_page(page);
4802 		if (page->mapping != mapping) {
4803 			unlock_page(page);
4804 			put_page(page);
4805 			goto again;
4806 		}
4807 		if (!PageUptodate(page)) {
4808 			ret = -EIO;
4809 			goto out_unlock;
4810 		}
4811 	}
4812 	wait_on_page_writeback(page);
4813 
4814 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4815 	set_page_extent_mapped(page);
4816 
4817 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4818 	if (ordered) {
4819 		unlock_extent_cached(io_tree, block_start, block_end,
4820 				     &cached_state);
4821 		unlock_page(page);
4822 		put_page(page);
4823 		btrfs_start_ordered_extent(inode, ordered, 1);
4824 		btrfs_put_ordered_extent(ordered);
4825 		goto again;
4826 	}
4827 
4828 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4829 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4830 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4831 			  0, 0, &cached_state);
4832 
4833 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4834 					&cached_state, 0);
4835 	if (ret) {
4836 		unlock_extent_cached(io_tree, block_start, block_end,
4837 				     &cached_state);
4838 		goto out_unlock;
4839 	}
4840 
4841 	if (offset != blocksize) {
4842 		if (!len)
4843 			len = blocksize - offset;
4844 		kaddr = kmap(page);
4845 		if (front)
4846 			memset(kaddr + (block_start - page_offset(page)),
4847 				0, offset);
4848 		else
4849 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4850 				0, len);
4851 		flush_dcache_page(page);
4852 		kunmap(page);
4853 	}
4854 	ClearPageChecked(page);
4855 	set_page_dirty(page);
4856 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4857 
4858 out_unlock:
4859 	if (ret)
4860 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4861 					     blocksize, true);
4862 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4863 	unlock_page(page);
4864 	put_page(page);
4865 out:
4866 	extent_changeset_free(data_reserved);
4867 	return ret;
4868 }
4869 
4870 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4871 			     u64 offset, u64 len)
4872 {
4873 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4874 	struct btrfs_trans_handle *trans;
4875 	int ret;
4876 
4877 	/*
4878 	 * Still need to make sure the inode looks like it's been updated so
4879 	 * that any holes get logged if we fsync.
4880 	 */
4881 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4882 		BTRFS_I(inode)->last_trans = fs_info->generation;
4883 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4884 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4885 		return 0;
4886 	}
4887 
4888 	/*
4889 	 * 1 - for the one we're dropping
4890 	 * 1 - for the one we're adding
4891 	 * 1 - for updating the inode.
4892 	 */
4893 	trans = btrfs_start_transaction(root, 3);
4894 	if (IS_ERR(trans))
4895 		return PTR_ERR(trans);
4896 
4897 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4898 	if (ret) {
4899 		btrfs_abort_transaction(trans, ret);
4900 		btrfs_end_transaction(trans);
4901 		return ret;
4902 	}
4903 
4904 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4905 			offset, 0, 0, len, 0, len, 0, 0, 0);
4906 	if (ret)
4907 		btrfs_abort_transaction(trans, ret);
4908 	else
4909 		btrfs_update_inode(trans, root, inode);
4910 	btrfs_end_transaction(trans);
4911 	return ret;
4912 }
4913 
4914 /*
4915  * This function puts in dummy file extents for the area we're creating a hole
4916  * for.  So if we are truncating this file to a larger size we need to insert
4917  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4918  * the range between oldsize and size
4919  */
4920 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4921 {
4922 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4923 	struct btrfs_root *root = BTRFS_I(inode)->root;
4924 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4925 	struct extent_map *em = NULL;
4926 	struct extent_state *cached_state = NULL;
4927 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4928 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4929 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4930 	u64 last_byte;
4931 	u64 cur_offset;
4932 	u64 hole_size;
4933 	int err = 0;
4934 
4935 	/*
4936 	 * If our size started in the middle of a block we need to zero out the
4937 	 * rest of the block before we expand the i_size, otherwise we could
4938 	 * expose stale data.
4939 	 */
4940 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4941 	if (err)
4942 		return err;
4943 
4944 	if (size <= hole_start)
4945 		return 0;
4946 
4947 	while (1) {
4948 		struct btrfs_ordered_extent *ordered;
4949 
4950 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4951 				 &cached_state);
4952 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4953 						     block_end - hole_start);
4954 		if (!ordered)
4955 			break;
4956 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4957 				     &cached_state);
4958 		btrfs_start_ordered_extent(inode, ordered, 1);
4959 		btrfs_put_ordered_extent(ordered);
4960 	}
4961 
4962 	cur_offset = hole_start;
4963 	while (1) {
4964 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4965 				block_end - cur_offset, 0);
4966 		if (IS_ERR(em)) {
4967 			err = PTR_ERR(em);
4968 			em = NULL;
4969 			break;
4970 		}
4971 		last_byte = min(extent_map_end(em), block_end);
4972 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4973 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4974 			struct extent_map *hole_em;
4975 			hole_size = last_byte - cur_offset;
4976 
4977 			err = maybe_insert_hole(root, inode, cur_offset,
4978 						hole_size);
4979 			if (err)
4980 				break;
4981 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4982 						cur_offset + hole_size - 1, 0);
4983 			hole_em = alloc_extent_map();
4984 			if (!hole_em) {
4985 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4986 					&BTRFS_I(inode)->runtime_flags);
4987 				goto next;
4988 			}
4989 			hole_em->start = cur_offset;
4990 			hole_em->len = hole_size;
4991 			hole_em->orig_start = cur_offset;
4992 
4993 			hole_em->block_start = EXTENT_MAP_HOLE;
4994 			hole_em->block_len = 0;
4995 			hole_em->orig_block_len = 0;
4996 			hole_em->ram_bytes = hole_size;
4997 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
4998 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4999 			hole_em->generation = fs_info->generation;
5000 
5001 			while (1) {
5002 				write_lock(&em_tree->lock);
5003 				err = add_extent_mapping(em_tree, hole_em, 1);
5004 				write_unlock(&em_tree->lock);
5005 				if (err != -EEXIST)
5006 					break;
5007 				btrfs_drop_extent_cache(BTRFS_I(inode),
5008 							cur_offset,
5009 							cur_offset +
5010 							hole_size - 1, 0);
5011 			}
5012 			free_extent_map(hole_em);
5013 		}
5014 next:
5015 		free_extent_map(em);
5016 		em = NULL;
5017 		cur_offset = last_byte;
5018 		if (cur_offset >= block_end)
5019 			break;
5020 	}
5021 	free_extent_map(em);
5022 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5023 	return err;
5024 }
5025 
5026 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5027 {
5028 	struct btrfs_root *root = BTRFS_I(inode)->root;
5029 	struct btrfs_trans_handle *trans;
5030 	loff_t oldsize = i_size_read(inode);
5031 	loff_t newsize = attr->ia_size;
5032 	int mask = attr->ia_valid;
5033 	int ret;
5034 
5035 	/*
5036 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5037 	 * special case where we need to update the times despite not having
5038 	 * these flags set.  For all other operations the VFS set these flags
5039 	 * explicitly if it wants a timestamp update.
5040 	 */
5041 	if (newsize != oldsize) {
5042 		inode_inc_iversion(inode);
5043 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5044 			inode->i_ctime = inode->i_mtime =
5045 				current_time(inode);
5046 	}
5047 
5048 	if (newsize > oldsize) {
5049 		/*
5050 		 * Don't do an expanding truncate while snapshotting is ongoing.
5051 		 * This is to ensure the snapshot captures a fully consistent
5052 		 * state of this file - if the snapshot captures this expanding
5053 		 * truncation, it must capture all writes that happened before
5054 		 * this truncation.
5055 		 */
5056 		btrfs_wait_for_snapshot_creation(root);
5057 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5058 		if (ret) {
5059 			btrfs_end_write_no_snapshotting(root);
5060 			return ret;
5061 		}
5062 
5063 		trans = btrfs_start_transaction(root, 1);
5064 		if (IS_ERR(trans)) {
5065 			btrfs_end_write_no_snapshotting(root);
5066 			return PTR_ERR(trans);
5067 		}
5068 
5069 		i_size_write(inode, newsize);
5070 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5071 		pagecache_isize_extended(inode, oldsize, newsize);
5072 		ret = btrfs_update_inode(trans, root, inode);
5073 		btrfs_end_write_no_snapshotting(root);
5074 		btrfs_end_transaction(trans);
5075 	} else {
5076 
5077 		/*
5078 		 * We're truncating a file that used to have good data down to
5079 		 * zero. Make sure it gets into the ordered flush list so that
5080 		 * any new writes get down to disk quickly.
5081 		 */
5082 		if (newsize == 0)
5083 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5084 				&BTRFS_I(inode)->runtime_flags);
5085 
5086 		/*
5087 		 * 1 for the orphan item we're going to add
5088 		 * 1 for the orphan item deletion.
5089 		 */
5090 		trans = btrfs_start_transaction(root, 2);
5091 		if (IS_ERR(trans))
5092 			return PTR_ERR(trans);
5093 
5094 		/*
5095 		 * We need to do this in case we fail at _any_ point during the
5096 		 * actual truncate.  Once we do the truncate_setsize we could
5097 		 * invalidate pages which forces any outstanding ordered io to
5098 		 * be instantly completed which will give us extents that need
5099 		 * to be truncated.  If we fail to get an orphan inode down we
5100 		 * could have left over extents that were never meant to live,
5101 		 * so we need to guarantee from this point on that everything
5102 		 * will be consistent.
5103 		 */
5104 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5105 		btrfs_end_transaction(trans);
5106 		if (ret)
5107 			return ret;
5108 
5109 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5110 		truncate_setsize(inode, newsize);
5111 
5112 		/* Disable nonlocked read DIO to avoid the end less truncate */
5113 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5114 		inode_dio_wait(inode);
5115 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5116 
5117 		ret = btrfs_truncate(inode, newsize == oldsize);
5118 		if (ret && inode->i_nlink) {
5119 			int err;
5120 
5121 			/* To get a stable disk_i_size */
5122 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5123 			if (err) {
5124 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5125 				return err;
5126 			}
5127 
5128 			/*
5129 			 * failed to truncate, disk_i_size is only adjusted down
5130 			 * as we remove extents, so it should represent the true
5131 			 * size of the inode, so reset the in memory size and
5132 			 * delete our orphan entry.
5133 			 */
5134 			trans = btrfs_join_transaction(root);
5135 			if (IS_ERR(trans)) {
5136 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5137 				return ret;
5138 			}
5139 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5140 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
5141 			if (err)
5142 				btrfs_abort_transaction(trans, err);
5143 			btrfs_end_transaction(trans);
5144 		}
5145 	}
5146 
5147 	return ret;
5148 }
5149 
5150 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5151 {
5152 	struct inode *inode = d_inode(dentry);
5153 	struct btrfs_root *root = BTRFS_I(inode)->root;
5154 	int err;
5155 
5156 	if (btrfs_root_readonly(root))
5157 		return -EROFS;
5158 
5159 	err = setattr_prepare(dentry, attr);
5160 	if (err)
5161 		return err;
5162 
5163 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5164 		err = btrfs_setsize(inode, attr);
5165 		if (err)
5166 			return err;
5167 	}
5168 
5169 	if (attr->ia_valid) {
5170 		setattr_copy(inode, attr);
5171 		inode_inc_iversion(inode);
5172 		err = btrfs_dirty_inode(inode);
5173 
5174 		if (!err && attr->ia_valid & ATTR_MODE)
5175 			err = posix_acl_chmod(inode, inode->i_mode);
5176 	}
5177 
5178 	return err;
5179 }
5180 
5181 /*
5182  * While truncating the inode pages during eviction, we get the VFS calling
5183  * btrfs_invalidatepage() against each page of the inode. This is slow because
5184  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5185  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5186  * extent_state structures over and over, wasting lots of time.
5187  *
5188  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5189  * those expensive operations on a per page basis and do only the ordered io
5190  * finishing, while we release here the extent_map and extent_state structures,
5191  * without the excessive merging and splitting.
5192  */
5193 static void evict_inode_truncate_pages(struct inode *inode)
5194 {
5195 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5196 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5197 	struct rb_node *node;
5198 
5199 	ASSERT(inode->i_state & I_FREEING);
5200 	truncate_inode_pages_final(&inode->i_data);
5201 
5202 	write_lock(&map_tree->lock);
5203 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5204 		struct extent_map *em;
5205 
5206 		node = rb_first(&map_tree->map);
5207 		em = rb_entry(node, struct extent_map, rb_node);
5208 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5209 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5210 		remove_extent_mapping(map_tree, em);
5211 		free_extent_map(em);
5212 		if (need_resched()) {
5213 			write_unlock(&map_tree->lock);
5214 			cond_resched();
5215 			write_lock(&map_tree->lock);
5216 		}
5217 	}
5218 	write_unlock(&map_tree->lock);
5219 
5220 	/*
5221 	 * Keep looping until we have no more ranges in the io tree.
5222 	 * We can have ongoing bios started by readpages (called from readahead)
5223 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5224 	 * still in progress (unlocked the pages in the bio but did not yet
5225 	 * unlocked the ranges in the io tree). Therefore this means some
5226 	 * ranges can still be locked and eviction started because before
5227 	 * submitting those bios, which are executed by a separate task (work
5228 	 * queue kthread), inode references (inode->i_count) were not taken
5229 	 * (which would be dropped in the end io callback of each bio).
5230 	 * Therefore here we effectively end up waiting for those bios and
5231 	 * anyone else holding locked ranges without having bumped the inode's
5232 	 * reference count - if we don't do it, when they access the inode's
5233 	 * io_tree to unlock a range it may be too late, leading to an
5234 	 * use-after-free issue.
5235 	 */
5236 	spin_lock(&io_tree->lock);
5237 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5238 		struct extent_state *state;
5239 		struct extent_state *cached_state = NULL;
5240 		u64 start;
5241 		u64 end;
5242 
5243 		node = rb_first(&io_tree->state);
5244 		state = rb_entry(node, struct extent_state, rb_node);
5245 		start = state->start;
5246 		end = state->end;
5247 		spin_unlock(&io_tree->lock);
5248 
5249 		lock_extent_bits(io_tree, start, end, &cached_state);
5250 
5251 		/*
5252 		 * If still has DELALLOC flag, the extent didn't reach disk,
5253 		 * and its reserved space won't be freed by delayed_ref.
5254 		 * So we need to free its reserved space here.
5255 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5256 		 *
5257 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5258 		 */
5259 		if (state->state & EXTENT_DELALLOC)
5260 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5261 
5262 		clear_extent_bit(io_tree, start, end,
5263 				 EXTENT_LOCKED | EXTENT_DIRTY |
5264 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5265 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5266 
5267 		cond_resched();
5268 		spin_lock(&io_tree->lock);
5269 	}
5270 	spin_unlock(&io_tree->lock);
5271 }
5272 
5273 void btrfs_evict_inode(struct inode *inode)
5274 {
5275 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5276 	struct btrfs_trans_handle *trans;
5277 	struct btrfs_root *root = BTRFS_I(inode)->root;
5278 	struct btrfs_block_rsv *rsv, *global_rsv;
5279 	int steal_from_global = 0;
5280 	u64 min_size;
5281 	int ret;
5282 
5283 	trace_btrfs_inode_evict(inode);
5284 
5285 	if (!root) {
5286 		clear_inode(inode);
5287 		return;
5288 	}
5289 
5290 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5291 
5292 	evict_inode_truncate_pages(inode);
5293 
5294 	if (inode->i_nlink &&
5295 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5296 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5297 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5298 		goto no_delete;
5299 
5300 	if (is_bad_inode(inode)) {
5301 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5302 		goto no_delete;
5303 	}
5304 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5305 	if (!special_file(inode->i_mode))
5306 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5307 
5308 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5309 
5310 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5311 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5312 				 &BTRFS_I(inode)->runtime_flags));
5313 		goto no_delete;
5314 	}
5315 
5316 	if (inode->i_nlink > 0) {
5317 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5318 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5319 		goto no_delete;
5320 	}
5321 
5322 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5323 	if (ret) {
5324 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5325 		goto no_delete;
5326 	}
5327 
5328 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5329 	if (!rsv) {
5330 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5331 		goto no_delete;
5332 	}
5333 	rsv->size = min_size;
5334 	rsv->failfast = 1;
5335 	global_rsv = &fs_info->global_block_rsv;
5336 
5337 	btrfs_i_size_write(BTRFS_I(inode), 0);
5338 
5339 	/*
5340 	 * This is a bit simpler than btrfs_truncate since we've already
5341 	 * reserved our space for our orphan item in the unlink, so we just
5342 	 * need to reserve some slack space in case we add bytes and update
5343 	 * inode item when doing the truncate.
5344 	 */
5345 	while (1) {
5346 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5347 					     BTRFS_RESERVE_FLUSH_LIMIT);
5348 
5349 		/*
5350 		 * Try and steal from the global reserve since we will
5351 		 * likely not use this space anyway, we want to try as
5352 		 * hard as possible to get this to work.
5353 		 */
5354 		if (ret)
5355 			steal_from_global++;
5356 		else
5357 			steal_from_global = 0;
5358 		ret = 0;
5359 
5360 		/*
5361 		 * steal_from_global == 0: we reserved stuff, hooray!
5362 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5363 		 * steal_from_global == 2: we've committed, still not a lot of
5364 		 * room but maybe we'll have room in the global reserve this
5365 		 * time.
5366 		 * steal_from_global == 3: abandon all hope!
5367 		 */
5368 		if (steal_from_global > 2) {
5369 			btrfs_warn(fs_info,
5370 				   "Could not get space for a delete, will truncate on mount %d",
5371 				   ret);
5372 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5373 			btrfs_free_block_rsv(fs_info, rsv);
5374 			goto no_delete;
5375 		}
5376 
5377 		trans = btrfs_join_transaction(root);
5378 		if (IS_ERR(trans)) {
5379 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5380 			btrfs_free_block_rsv(fs_info, rsv);
5381 			goto no_delete;
5382 		}
5383 
5384 		/*
5385 		 * We can't just steal from the global reserve, we need to make
5386 		 * sure there is room to do it, if not we need to commit and try
5387 		 * again.
5388 		 */
5389 		if (steal_from_global) {
5390 			if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5391 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5392 							      min_size, 0);
5393 			else
5394 				ret = -ENOSPC;
5395 		}
5396 
5397 		/*
5398 		 * Couldn't steal from the global reserve, we have too much
5399 		 * pending stuff built up, commit the transaction and try it
5400 		 * again.
5401 		 */
5402 		if (ret) {
5403 			ret = btrfs_commit_transaction(trans);
5404 			if (ret) {
5405 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5406 				btrfs_free_block_rsv(fs_info, rsv);
5407 				goto no_delete;
5408 			}
5409 			continue;
5410 		} else {
5411 			steal_from_global = 0;
5412 		}
5413 
5414 		trans->block_rsv = rsv;
5415 
5416 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5417 		if (ret != -ENOSPC && ret != -EAGAIN)
5418 			break;
5419 
5420 		trans->block_rsv = &fs_info->trans_block_rsv;
5421 		btrfs_end_transaction(trans);
5422 		trans = NULL;
5423 		btrfs_btree_balance_dirty(fs_info);
5424 	}
5425 
5426 	btrfs_free_block_rsv(fs_info, rsv);
5427 
5428 	/*
5429 	 * Errors here aren't a big deal, it just means we leave orphan items
5430 	 * in the tree.  They will be cleaned up on the next mount.
5431 	 */
5432 	if (ret == 0) {
5433 		trans->block_rsv = root->orphan_block_rsv;
5434 		btrfs_orphan_del(trans, BTRFS_I(inode));
5435 	} else {
5436 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5437 	}
5438 
5439 	trans->block_rsv = &fs_info->trans_block_rsv;
5440 	if (!(root == fs_info->tree_root ||
5441 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5442 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5443 
5444 	btrfs_end_transaction(trans);
5445 	btrfs_btree_balance_dirty(fs_info);
5446 no_delete:
5447 	btrfs_remove_delayed_node(BTRFS_I(inode));
5448 	clear_inode(inode);
5449 }
5450 
5451 /*
5452  * this returns the key found in the dir entry in the location pointer.
5453  * If no dir entries were found, returns -ENOENT.
5454  * If found a corrupted location in dir entry, returns -EUCLEAN.
5455  */
5456 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5457 			       struct btrfs_key *location)
5458 {
5459 	const char *name = dentry->d_name.name;
5460 	int namelen = dentry->d_name.len;
5461 	struct btrfs_dir_item *di;
5462 	struct btrfs_path *path;
5463 	struct btrfs_root *root = BTRFS_I(dir)->root;
5464 	int ret = 0;
5465 
5466 	path = btrfs_alloc_path();
5467 	if (!path)
5468 		return -ENOMEM;
5469 
5470 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5471 			name, namelen, 0);
5472 	if (!di) {
5473 		ret = -ENOENT;
5474 		goto out;
5475 	}
5476 	if (IS_ERR(di)) {
5477 		ret = PTR_ERR(di);
5478 		goto out;
5479 	}
5480 
5481 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5482 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5483 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5484 		ret = -EUCLEAN;
5485 		btrfs_warn(root->fs_info,
5486 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5487 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5488 			   location->objectid, location->type, location->offset);
5489 	}
5490 out:
5491 	btrfs_free_path(path);
5492 	return ret;
5493 }
5494 
5495 /*
5496  * when we hit a tree root in a directory, the btrfs part of the inode
5497  * needs to be changed to reflect the root directory of the tree root.  This
5498  * is kind of like crossing a mount point.
5499  */
5500 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5501 				    struct inode *dir,
5502 				    struct dentry *dentry,
5503 				    struct btrfs_key *location,
5504 				    struct btrfs_root **sub_root)
5505 {
5506 	struct btrfs_path *path;
5507 	struct btrfs_root *new_root;
5508 	struct btrfs_root_ref *ref;
5509 	struct extent_buffer *leaf;
5510 	struct btrfs_key key;
5511 	int ret;
5512 	int err = 0;
5513 
5514 	path = btrfs_alloc_path();
5515 	if (!path) {
5516 		err = -ENOMEM;
5517 		goto out;
5518 	}
5519 
5520 	err = -ENOENT;
5521 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5522 	key.type = BTRFS_ROOT_REF_KEY;
5523 	key.offset = location->objectid;
5524 
5525 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5526 	if (ret) {
5527 		if (ret < 0)
5528 			err = ret;
5529 		goto out;
5530 	}
5531 
5532 	leaf = path->nodes[0];
5533 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5534 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5535 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5536 		goto out;
5537 
5538 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5539 				   (unsigned long)(ref + 1),
5540 				   dentry->d_name.len);
5541 	if (ret)
5542 		goto out;
5543 
5544 	btrfs_release_path(path);
5545 
5546 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5547 	if (IS_ERR(new_root)) {
5548 		err = PTR_ERR(new_root);
5549 		goto out;
5550 	}
5551 
5552 	*sub_root = new_root;
5553 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5554 	location->type = BTRFS_INODE_ITEM_KEY;
5555 	location->offset = 0;
5556 	err = 0;
5557 out:
5558 	btrfs_free_path(path);
5559 	return err;
5560 }
5561 
5562 static void inode_tree_add(struct inode *inode)
5563 {
5564 	struct btrfs_root *root = BTRFS_I(inode)->root;
5565 	struct btrfs_inode *entry;
5566 	struct rb_node **p;
5567 	struct rb_node *parent;
5568 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5569 	u64 ino = btrfs_ino(BTRFS_I(inode));
5570 
5571 	if (inode_unhashed(inode))
5572 		return;
5573 	parent = NULL;
5574 	spin_lock(&root->inode_lock);
5575 	p = &root->inode_tree.rb_node;
5576 	while (*p) {
5577 		parent = *p;
5578 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5579 
5580 		if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5581 			p = &parent->rb_left;
5582 		else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5583 			p = &parent->rb_right;
5584 		else {
5585 			WARN_ON(!(entry->vfs_inode.i_state &
5586 				  (I_WILL_FREE | I_FREEING)));
5587 			rb_replace_node(parent, new, &root->inode_tree);
5588 			RB_CLEAR_NODE(parent);
5589 			spin_unlock(&root->inode_lock);
5590 			return;
5591 		}
5592 	}
5593 	rb_link_node(new, parent, p);
5594 	rb_insert_color(new, &root->inode_tree);
5595 	spin_unlock(&root->inode_lock);
5596 }
5597 
5598 static void inode_tree_del(struct inode *inode)
5599 {
5600 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5601 	struct btrfs_root *root = BTRFS_I(inode)->root;
5602 	int empty = 0;
5603 
5604 	spin_lock(&root->inode_lock);
5605 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5606 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5607 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5608 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5609 	}
5610 	spin_unlock(&root->inode_lock);
5611 
5612 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5613 		synchronize_srcu(&fs_info->subvol_srcu);
5614 		spin_lock(&root->inode_lock);
5615 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5616 		spin_unlock(&root->inode_lock);
5617 		if (empty)
5618 			btrfs_add_dead_root(root);
5619 	}
5620 }
5621 
5622 void btrfs_invalidate_inodes(struct btrfs_root *root)
5623 {
5624 	struct btrfs_fs_info *fs_info = root->fs_info;
5625 	struct rb_node *node;
5626 	struct rb_node *prev;
5627 	struct btrfs_inode *entry;
5628 	struct inode *inode;
5629 	u64 objectid = 0;
5630 
5631 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5632 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5633 
5634 	spin_lock(&root->inode_lock);
5635 again:
5636 	node = root->inode_tree.rb_node;
5637 	prev = NULL;
5638 	while (node) {
5639 		prev = node;
5640 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5641 
5642 		if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5643 			node = node->rb_left;
5644 		else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5645 			node = node->rb_right;
5646 		else
5647 			break;
5648 	}
5649 	if (!node) {
5650 		while (prev) {
5651 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5652 			if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5653 				node = prev;
5654 				break;
5655 			}
5656 			prev = rb_next(prev);
5657 		}
5658 	}
5659 	while (node) {
5660 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5661 		objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5662 		inode = igrab(&entry->vfs_inode);
5663 		if (inode) {
5664 			spin_unlock(&root->inode_lock);
5665 			if (atomic_read(&inode->i_count) > 1)
5666 				d_prune_aliases(inode);
5667 			/*
5668 			 * btrfs_drop_inode will have it removed from
5669 			 * the inode cache when its usage count
5670 			 * hits zero.
5671 			 */
5672 			iput(inode);
5673 			cond_resched();
5674 			spin_lock(&root->inode_lock);
5675 			goto again;
5676 		}
5677 
5678 		if (cond_resched_lock(&root->inode_lock))
5679 			goto again;
5680 
5681 		node = rb_next(node);
5682 	}
5683 	spin_unlock(&root->inode_lock);
5684 }
5685 
5686 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5687 {
5688 	struct btrfs_iget_args *args = p;
5689 	inode->i_ino = args->location->objectid;
5690 	memcpy(&BTRFS_I(inode)->location, args->location,
5691 	       sizeof(*args->location));
5692 	BTRFS_I(inode)->root = args->root;
5693 	return 0;
5694 }
5695 
5696 static int btrfs_find_actor(struct inode *inode, void *opaque)
5697 {
5698 	struct btrfs_iget_args *args = opaque;
5699 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5700 		args->root == BTRFS_I(inode)->root;
5701 }
5702 
5703 static struct inode *btrfs_iget_locked(struct super_block *s,
5704 				       struct btrfs_key *location,
5705 				       struct btrfs_root *root)
5706 {
5707 	struct inode *inode;
5708 	struct btrfs_iget_args args;
5709 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5710 
5711 	args.location = location;
5712 	args.root = root;
5713 
5714 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5715 			     btrfs_init_locked_inode,
5716 			     (void *)&args);
5717 	return inode;
5718 }
5719 
5720 /* Get an inode object given its location and corresponding root.
5721  * Returns in *is_new if the inode was read from disk
5722  */
5723 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5724 			 struct btrfs_root *root, int *new)
5725 {
5726 	struct inode *inode;
5727 
5728 	inode = btrfs_iget_locked(s, location, root);
5729 	if (!inode)
5730 		return ERR_PTR(-ENOMEM);
5731 
5732 	if (inode->i_state & I_NEW) {
5733 		int ret;
5734 
5735 		ret = btrfs_read_locked_inode(inode);
5736 		if (!is_bad_inode(inode)) {
5737 			inode_tree_add(inode);
5738 			unlock_new_inode(inode);
5739 			if (new)
5740 				*new = 1;
5741 		} else {
5742 			unlock_new_inode(inode);
5743 			iput(inode);
5744 			ASSERT(ret < 0);
5745 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5746 		}
5747 	}
5748 
5749 	return inode;
5750 }
5751 
5752 static struct inode *new_simple_dir(struct super_block *s,
5753 				    struct btrfs_key *key,
5754 				    struct btrfs_root *root)
5755 {
5756 	struct inode *inode = new_inode(s);
5757 
5758 	if (!inode)
5759 		return ERR_PTR(-ENOMEM);
5760 
5761 	BTRFS_I(inode)->root = root;
5762 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5763 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5764 
5765 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5766 	inode->i_op = &btrfs_dir_ro_inode_operations;
5767 	inode->i_opflags &= ~IOP_XATTR;
5768 	inode->i_fop = &simple_dir_operations;
5769 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5770 	inode->i_mtime = current_time(inode);
5771 	inode->i_atime = inode->i_mtime;
5772 	inode->i_ctime = inode->i_mtime;
5773 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5774 
5775 	return inode;
5776 }
5777 
5778 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5779 {
5780 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5781 	struct inode *inode;
5782 	struct btrfs_root *root = BTRFS_I(dir)->root;
5783 	struct btrfs_root *sub_root = root;
5784 	struct btrfs_key location;
5785 	int index;
5786 	int ret = 0;
5787 
5788 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5789 		return ERR_PTR(-ENAMETOOLONG);
5790 
5791 	ret = btrfs_inode_by_name(dir, dentry, &location);
5792 	if (ret < 0)
5793 		return ERR_PTR(ret);
5794 
5795 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5796 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5797 		return inode;
5798 	}
5799 
5800 	index = srcu_read_lock(&fs_info->subvol_srcu);
5801 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5802 				       &location, &sub_root);
5803 	if (ret < 0) {
5804 		if (ret != -ENOENT)
5805 			inode = ERR_PTR(ret);
5806 		else
5807 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5808 	} else {
5809 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5810 	}
5811 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5812 
5813 	if (!IS_ERR(inode) && root != sub_root) {
5814 		down_read(&fs_info->cleanup_work_sem);
5815 		if (!sb_rdonly(inode->i_sb))
5816 			ret = btrfs_orphan_cleanup(sub_root);
5817 		up_read(&fs_info->cleanup_work_sem);
5818 		if (ret) {
5819 			iput(inode);
5820 			inode = ERR_PTR(ret);
5821 		}
5822 	}
5823 
5824 	return inode;
5825 }
5826 
5827 static int btrfs_dentry_delete(const struct dentry *dentry)
5828 {
5829 	struct btrfs_root *root;
5830 	struct inode *inode = d_inode(dentry);
5831 
5832 	if (!inode && !IS_ROOT(dentry))
5833 		inode = d_inode(dentry->d_parent);
5834 
5835 	if (inode) {
5836 		root = BTRFS_I(inode)->root;
5837 		if (btrfs_root_refs(&root->root_item) == 0)
5838 			return 1;
5839 
5840 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5841 			return 1;
5842 	}
5843 	return 0;
5844 }
5845 
5846 static void btrfs_dentry_release(struct dentry *dentry)
5847 {
5848 	kfree(dentry->d_fsdata);
5849 }
5850 
5851 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5852 				   unsigned int flags)
5853 {
5854 	struct inode *inode;
5855 
5856 	inode = btrfs_lookup_dentry(dir, dentry);
5857 	if (IS_ERR(inode)) {
5858 		if (PTR_ERR(inode) == -ENOENT)
5859 			inode = NULL;
5860 		else
5861 			return ERR_CAST(inode);
5862 	}
5863 
5864 	return d_splice_alias(inode, dentry);
5865 }
5866 
5867 unsigned char btrfs_filetype_table[] = {
5868 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5869 };
5870 
5871 /*
5872  * All this infrastructure exists because dir_emit can fault, and we are holding
5873  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5874  * our information into that, and then dir_emit from the buffer.  This is
5875  * similar to what NFS does, only we don't keep the buffer around in pagecache
5876  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5877  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5878  * tree lock.
5879  */
5880 static int btrfs_opendir(struct inode *inode, struct file *file)
5881 {
5882 	struct btrfs_file_private *private;
5883 
5884 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5885 	if (!private)
5886 		return -ENOMEM;
5887 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5888 	if (!private->filldir_buf) {
5889 		kfree(private);
5890 		return -ENOMEM;
5891 	}
5892 	file->private_data = private;
5893 	return 0;
5894 }
5895 
5896 struct dir_entry {
5897 	u64 ino;
5898 	u64 offset;
5899 	unsigned type;
5900 	int name_len;
5901 };
5902 
5903 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5904 {
5905 	while (entries--) {
5906 		struct dir_entry *entry = addr;
5907 		char *name = (char *)(entry + 1);
5908 
5909 		ctx->pos = get_unaligned(&entry->offset);
5910 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5911 					 get_unaligned(&entry->ino),
5912 					 get_unaligned(&entry->type)))
5913 			return 1;
5914 		addr += sizeof(struct dir_entry) +
5915 			get_unaligned(&entry->name_len);
5916 		ctx->pos++;
5917 	}
5918 	return 0;
5919 }
5920 
5921 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5922 {
5923 	struct inode *inode = file_inode(file);
5924 	struct btrfs_root *root = BTRFS_I(inode)->root;
5925 	struct btrfs_file_private *private = file->private_data;
5926 	struct btrfs_dir_item *di;
5927 	struct btrfs_key key;
5928 	struct btrfs_key found_key;
5929 	struct btrfs_path *path;
5930 	void *addr;
5931 	struct list_head ins_list;
5932 	struct list_head del_list;
5933 	int ret;
5934 	struct extent_buffer *leaf;
5935 	int slot;
5936 	char *name_ptr;
5937 	int name_len;
5938 	int entries = 0;
5939 	int total_len = 0;
5940 	bool put = false;
5941 	struct btrfs_key location;
5942 
5943 	if (!dir_emit_dots(file, ctx))
5944 		return 0;
5945 
5946 	path = btrfs_alloc_path();
5947 	if (!path)
5948 		return -ENOMEM;
5949 
5950 	addr = private->filldir_buf;
5951 	path->reada = READA_FORWARD;
5952 
5953 	INIT_LIST_HEAD(&ins_list);
5954 	INIT_LIST_HEAD(&del_list);
5955 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5956 
5957 again:
5958 	key.type = BTRFS_DIR_INDEX_KEY;
5959 	key.offset = ctx->pos;
5960 	key.objectid = btrfs_ino(BTRFS_I(inode));
5961 
5962 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5963 	if (ret < 0)
5964 		goto err;
5965 
5966 	while (1) {
5967 		struct dir_entry *entry;
5968 
5969 		leaf = path->nodes[0];
5970 		slot = path->slots[0];
5971 		if (slot >= btrfs_header_nritems(leaf)) {
5972 			ret = btrfs_next_leaf(root, path);
5973 			if (ret < 0)
5974 				goto err;
5975 			else if (ret > 0)
5976 				break;
5977 			continue;
5978 		}
5979 
5980 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5981 
5982 		if (found_key.objectid != key.objectid)
5983 			break;
5984 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5985 			break;
5986 		if (found_key.offset < ctx->pos)
5987 			goto next;
5988 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5989 			goto next;
5990 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5991 		name_len = btrfs_dir_name_len(leaf, di);
5992 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5993 		    PAGE_SIZE) {
5994 			btrfs_release_path(path);
5995 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5996 			if (ret)
5997 				goto nopos;
5998 			addr = private->filldir_buf;
5999 			entries = 0;
6000 			total_len = 0;
6001 			goto again;
6002 		}
6003 
6004 		entry = addr;
6005 		put_unaligned(name_len, &entry->name_len);
6006 		name_ptr = (char *)(entry + 1);
6007 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6008 				   name_len);
6009 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
6010 				&entry->type);
6011 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6012 		put_unaligned(location.objectid, &entry->ino);
6013 		put_unaligned(found_key.offset, &entry->offset);
6014 		entries++;
6015 		addr += sizeof(struct dir_entry) + name_len;
6016 		total_len += sizeof(struct dir_entry) + name_len;
6017 next:
6018 		path->slots[0]++;
6019 	}
6020 	btrfs_release_path(path);
6021 
6022 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6023 	if (ret)
6024 		goto nopos;
6025 
6026 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6027 	if (ret)
6028 		goto nopos;
6029 
6030 	/*
6031 	 * Stop new entries from being returned after we return the last
6032 	 * entry.
6033 	 *
6034 	 * New directory entries are assigned a strictly increasing
6035 	 * offset.  This means that new entries created during readdir
6036 	 * are *guaranteed* to be seen in the future by that readdir.
6037 	 * This has broken buggy programs which operate on names as
6038 	 * they're returned by readdir.  Until we re-use freed offsets
6039 	 * we have this hack to stop new entries from being returned
6040 	 * under the assumption that they'll never reach this huge
6041 	 * offset.
6042 	 *
6043 	 * This is being careful not to overflow 32bit loff_t unless the
6044 	 * last entry requires it because doing so has broken 32bit apps
6045 	 * in the past.
6046 	 */
6047 	if (ctx->pos >= INT_MAX)
6048 		ctx->pos = LLONG_MAX;
6049 	else
6050 		ctx->pos = INT_MAX;
6051 nopos:
6052 	ret = 0;
6053 err:
6054 	if (put)
6055 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6056 	btrfs_free_path(path);
6057 	return ret;
6058 }
6059 
6060 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6061 {
6062 	struct btrfs_root *root = BTRFS_I(inode)->root;
6063 	struct btrfs_trans_handle *trans;
6064 	int ret = 0;
6065 	bool nolock = false;
6066 
6067 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6068 		return 0;
6069 
6070 	if (btrfs_fs_closing(root->fs_info) &&
6071 			btrfs_is_free_space_inode(BTRFS_I(inode)))
6072 		nolock = true;
6073 
6074 	if (wbc->sync_mode == WB_SYNC_ALL) {
6075 		if (nolock)
6076 			trans = btrfs_join_transaction_nolock(root);
6077 		else
6078 			trans = btrfs_join_transaction(root);
6079 		if (IS_ERR(trans))
6080 			return PTR_ERR(trans);
6081 		ret = btrfs_commit_transaction(trans);
6082 	}
6083 	return ret;
6084 }
6085 
6086 /*
6087  * This is somewhat expensive, updating the tree every time the
6088  * inode changes.  But, it is most likely to find the inode in cache.
6089  * FIXME, needs more benchmarking...there are no reasons other than performance
6090  * to keep or drop this code.
6091  */
6092 static int btrfs_dirty_inode(struct inode *inode)
6093 {
6094 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6095 	struct btrfs_root *root = BTRFS_I(inode)->root;
6096 	struct btrfs_trans_handle *trans;
6097 	int ret;
6098 
6099 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6100 		return 0;
6101 
6102 	trans = btrfs_join_transaction(root);
6103 	if (IS_ERR(trans))
6104 		return PTR_ERR(trans);
6105 
6106 	ret = btrfs_update_inode(trans, root, inode);
6107 	if (ret && ret == -ENOSPC) {
6108 		/* whoops, lets try again with the full transaction */
6109 		btrfs_end_transaction(trans);
6110 		trans = btrfs_start_transaction(root, 1);
6111 		if (IS_ERR(trans))
6112 			return PTR_ERR(trans);
6113 
6114 		ret = btrfs_update_inode(trans, root, inode);
6115 	}
6116 	btrfs_end_transaction(trans);
6117 	if (BTRFS_I(inode)->delayed_node)
6118 		btrfs_balance_delayed_items(fs_info);
6119 
6120 	return ret;
6121 }
6122 
6123 /*
6124  * This is a copy of file_update_time.  We need this so we can return error on
6125  * ENOSPC for updating the inode in the case of file write and mmap writes.
6126  */
6127 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6128 			     int flags)
6129 {
6130 	struct btrfs_root *root = BTRFS_I(inode)->root;
6131 	bool dirty = flags & ~S_VERSION;
6132 
6133 	if (btrfs_root_readonly(root))
6134 		return -EROFS;
6135 
6136 	if (flags & S_VERSION)
6137 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6138 	if (flags & S_CTIME)
6139 		inode->i_ctime = *now;
6140 	if (flags & S_MTIME)
6141 		inode->i_mtime = *now;
6142 	if (flags & S_ATIME)
6143 		inode->i_atime = *now;
6144 	return dirty ? btrfs_dirty_inode(inode) : 0;
6145 }
6146 
6147 /*
6148  * find the highest existing sequence number in a directory
6149  * and then set the in-memory index_cnt variable to reflect
6150  * free sequence numbers
6151  */
6152 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6153 {
6154 	struct btrfs_root *root = inode->root;
6155 	struct btrfs_key key, found_key;
6156 	struct btrfs_path *path;
6157 	struct extent_buffer *leaf;
6158 	int ret;
6159 
6160 	key.objectid = btrfs_ino(inode);
6161 	key.type = BTRFS_DIR_INDEX_KEY;
6162 	key.offset = (u64)-1;
6163 
6164 	path = btrfs_alloc_path();
6165 	if (!path)
6166 		return -ENOMEM;
6167 
6168 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6169 	if (ret < 0)
6170 		goto out;
6171 	/* FIXME: we should be able to handle this */
6172 	if (ret == 0)
6173 		goto out;
6174 	ret = 0;
6175 
6176 	/*
6177 	 * MAGIC NUMBER EXPLANATION:
6178 	 * since we search a directory based on f_pos we have to start at 2
6179 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6180 	 * else has to start at 2
6181 	 */
6182 	if (path->slots[0] == 0) {
6183 		inode->index_cnt = 2;
6184 		goto out;
6185 	}
6186 
6187 	path->slots[0]--;
6188 
6189 	leaf = path->nodes[0];
6190 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6191 
6192 	if (found_key.objectid != btrfs_ino(inode) ||
6193 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6194 		inode->index_cnt = 2;
6195 		goto out;
6196 	}
6197 
6198 	inode->index_cnt = found_key.offset + 1;
6199 out:
6200 	btrfs_free_path(path);
6201 	return ret;
6202 }
6203 
6204 /*
6205  * helper to find a free sequence number in a given directory.  This current
6206  * code is very simple, later versions will do smarter things in the btree
6207  */
6208 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6209 {
6210 	int ret = 0;
6211 
6212 	if (dir->index_cnt == (u64)-1) {
6213 		ret = btrfs_inode_delayed_dir_index_count(dir);
6214 		if (ret) {
6215 			ret = btrfs_set_inode_index_count(dir);
6216 			if (ret)
6217 				return ret;
6218 		}
6219 	}
6220 
6221 	*index = dir->index_cnt;
6222 	dir->index_cnt++;
6223 
6224 	return ret;
6225 }
6226 
6227 static int btrfs_insert_inode_locked(struct inode *inode)
6228 {
6229 	struct btrfs_iget_args args;
6230 	args.location = &BTRFS_I(inode)->location;
6231 	args.root = BTRFS_I(inode)->root;
6232 
6233 	return insert_inode_locked4(inode,
6234 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6235 		   btrfs_find_actor, &args);
6236 }
6237 
6238 /*
6239  * Inherit flags from the parent inode.
6240  *
6241  * Currently only the compression flags and the cow flags are inherited.
6242  */
6243 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6244 {
6245 	unsigned int flags;
6246 
6247 	if (!dir)
6248 		return;
6249 
6250 	flags = BTRFS_I(dir)->flags;
6251 
6252 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6253 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6254 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6255 	} else if (flags & BTRFS_INODE_COMPRESS) {
6256 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6257 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6258 	}
6259 
6260 	if (flags & BTRFS_INODE_NODATACOW) {
6261 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6262 		if (S_ISREG(inode->i_mode))
6263 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6264 	}
6265 
6266 	btrfs_update_iflags(inode);
6267 }
6268 
6269 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6270 				     struct btrfs_root *root,
6271 				     struct inode *dir,
6272 				     const char *name, int name_len,
6273 				     u64 ref_objectid, u64 objectid,
6274 				     umode_t mode, u64 *index)
6275 {
6276 	struct btrfs_fs_info *fs_info = root->fs_info;
6277 	struct inode *inode;
6278 	struct btrfs_inode_item *inode_item;
6279 	struct btrfs_key *location;
6280 	struct btrfs_path *path;
6281 	struct btrfs_inode_ref *ref;
6282 	struct btrfs_key key[2];
6283 	u32 sizes[2];
6284 	int nitems = name ? 2 : 1;
6285 	unsigned long ptr;
6286 	int ret;
6287 
6288 	path = btrfs_alloc_path();
6289 	if (!path)
6290 		return ERR_PTR(-ENOMEM);
6291 
6292 	inode = new_inode(fs_info->sb);
6293 	if (!inode) {
6294 		btrfs_free_path(path);
6295 		return ERR_PTR(-ENOMEM);
6296 	}
6297 
6298 	/*
6299 	 * O_TMPFILE, set link count to 0, so that after this point,
6300 	 * we fill in an inode item with the correct link count.
6301 	 */
6302 	if (!name)
6303 		set_nlink(inode, 0);
6304 
6305 	/*
6306 	 * we have to initialize this early, so we can reclaim the inode
6307 	 * number if we fail afterwards in this function.
6308 	 */
6309 	inode->i_ino = objectid;
6310 
6311 	if (dir && name) {
6312 		trace_btrfs_inode_request(dir);
6313 
6314 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6315 		if (ret) {
6316 			btrfs_free_path(path);
6317 			iput(inode);
6318 			return ERR_PTR(ret);
6319 		}
6320 	} else if (dir) {
6321 		*index = 0;
6322 	}
6323 	/*
6324 	 * index_cnt is ignored for everything but a dir,
6325 	 * btrfs_set_inode_index_count has an explanation for the magic
6326 	 * number
6327 	 */
6328 	BTRFS_I(inode)->index_cnt = 2;
6329 	BTRFS_I(inode)->dir_index = *index;
6330 	BTRFS_I(inode)->root = root;
6331 	BTRFS_I(inode)->generation = trans->transid;
6332 	inode->i_generation = BTRFS_I(inode)->generation;
6333 
6334 	/*
6335 	 * We could have gotten an inode number from somebody who was fsynced
6336 	 * and then removed in this same transaction, so let's just set full
6337 	 * sync since it will be a full sync anyway and this will blow away the
6338 	 * old info in the log.
6339 	 */
6340 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6341 
6342 	key[0].objectid = objectid;
6343 	key[0].type = BTRFS_INODE_ITEM_KEY;
6344 	key[0].offset = 0;
6345 
6346 	sizes[0] = sizeof(struct btrfs_inode_item);
6347 
6348 	if (name) {
6349 		/*
6350 		 * Start new inodes with an inode_ref. This is slightly more
6351 		 * efficient for small numbers of hard links since they will
6352 		 * be packed into one item. Extended refs will kick in if we
6353 		 * add more hard links than can fit in the ref item.
6354 		 */
6355 		key[1].objectid = objectid;
6356 		key[1].type = BTRFS_INODE_REF_KEY;
6357 		key[1].offset = ref_objectid;
6358 
6359 		sizes[1] = name_len + sizeof(*ref);
6360 	}
6361 
6362 	location = &BTRFS_I(inode)->location;
6363 	location->objectid = objectid;
6364 	location->offset = 0;
6365 	location->type = BTRFS_INODE_ITEM_KEY;
6366 
6367 	ret = btrfs_insert_inode_locked(inode);
6368 	if (ret < 0)
6369 		goto fail;
6370 
6371 	path->leave_spinning = 1;
6372 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6373 	if (ret != 0)
6374 		goto fail_unlock;
6375 
6376 	inode_init_owner(inode, dir, mode);
6377 	inode_set_bytes(inode, 0);
6378 
6379 	inode->i_mtime = current_time(inode);
6380 	inode->i_atime = inode->i_mtime;
6381 	inode->i_ctime = inode->i_mtime;
6382 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6383 
6384 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6385 				  struct btrfs_inode_item);
6386 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6387 			     sizeof(*inode_item));
6388 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6389 
6390 	if (name) {
6391 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6392 				     struct btrfs_inode_ref);
6393 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6394 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6395 		ptr = (unsigned long)(ref + 1);
6396 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6397 	}
6398 
6399 	btrfs_mark_buffer_dirty(path->nodes[0]);
6400 	btrfs_free_path(path);
6401 
6402 	btrfs_inherit_iflags(inode, dir);
6403 
6404 	if (S_ISREG(mode)) {
6405 		if (btrfs_test_opt(fs_info, NODATASUM))
6406 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6407 		if (btrfs_test_opt(fs_info, NODATACOW))
6408 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6409 				BTRFS_INODE_NODATASUM;
6410 	}
6411 
6412 	inode_tree_add(inode);
6413 
6414 	trace_btrfs_inode_new(inode);
6415 	btrfs_set_inode_last_trans(trans, inode);
6416 
6417 	btrfs_update_root_times(trans, root);
6418 
6419 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6420 	if (ret)
6421 		btrfs_err(fs_info,
6422 			  "error inheriting props for ino %llu (root %llu): %d",
6423 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6424 
6425 	return inode;
6426 
6427 fail_unlock:
6428 	unlock_new_inode(inode);
6429 fail:
6430 	if (dir && name)
6431 		BTRFS_I(dir)->index_cnt--;
6432 	btrfs_free_path(path);
6433 	iput(inode);
6434 	return ERR_PTR(ret);
6435 }
6436 
6437 static inline u8 btrfs_inode_type(struct inode *inode)
6438 {
6439 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6440 }
6441 
6442 /*
6443  * utility function to add 'inode' into 'parent_inode' with
6444  * a give name and a given sequence number.
6445  * if 'add_backref' is true, also insert a backref from the
6446  * inode to the parent directory.
6447  */
6448 int btrfs_add_link(struct btrfs_trans_handle *trans,
6449 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6450 		   const char *name, int name_len, int add_backref, u64 index)
6451 {
6452 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6453 	int ret = 0;
6454 	struct btrfs_key key;
6455 	struct btrfs_root *root = parent_inode->root;
6456 	u64 ino = btrfs_ino(inode);
6457 	u64 parent_ino = btrfs_ino(parent_inode);
6458 
6459 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6460 		memcpy(&key, &inode->root->root_key, sizeof(key));
6461 	} else {
6462 		key.objectid = ino;
6463 		key.type = BTRFS_INODE_ITEM_KEY;
6464 		key.offset = 0;
6465 	}
6466 
6467 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6468 		ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6469 					 root->root_key.objectid, parent_ino,
6470 					 index, name, name_len);
6471 	} else if (add_backref) {
6472 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6473 					     parent_ino, index);
6474 	}
6475 
6476 	/* Nothing to clean up yet */
6477 	if (ret)
6478 		return ret;
6479 
6480 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6481 				    parent_inode, &key,
6482 				    btrfs_inode_type(&inode->vfs_inode), index);
6483 	if (ret == -EEXIST || ret == -EOVERFLOW)
6484 		goto fail_dir_item;
6485 	else if (ret) {
6486 		btrfs_abort_transaction(trans, ret);
6487 		return ret;
6488 	}
6489 
6490 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6491 			   name_len * 2);
6492 	inode_inc_iversion(&parent_inode->vfs_inode);
6493 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6494 		current_time(&parent_inode->vfs_inode);
6495 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6496 	if (ret)
6497 		btrfs_abort_transaction(trans, ret);
6498 	return ret;
6499 
6500 fail_dir_item:
6501 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6502 		u64 local_index;
6503 		int err;
6504 		err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6505 					 root->root_key.objectid, parent_ino,
6506 					 &local_index, name, name_len);
6507 
6508 	} else if (add_backref) {
6509 		u64 local_index;
6510 		int err;
6511 
6512 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6513 					  ino, parent_ino, &local_index);
6514 	}
6515 	return ret;
6516 }
6517 
6518 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6519 			    struct btrfs_inode *dir, struct dentry *dentry,
6520 			    struct btrfs_inode *inode, int backref, u64 index)
6521 {
6522 	int err = btrfs_add_link(trans, dir, inode,
6523 				 dentry->d_name.name, dentry->d_name.len,
6524 				 backref, index);
6525 	if (err > 0)
6526 		err = -EEXIST;
6527 	return err;
6528 }
6529 
6530 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6531 			umode_t mode, dev_t rdev)
6532 {
6533 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6534 	struct btrfs_trans_handle *trans;
6535 	struct btrfs_root *root = BTRFS_I(dir)->root;
6536 	struct inode *inode = NULL;
6537 	int err;
6538 	int drop_inode = 0;
6539 	u64 objectid;
6540 	u64 index = 0;
6541 
6542 	/*
6543 	 * 2 for inode item and ref
6544 	 * 2 for dir items
6545 	 * 1 for xattr if selinux is on
6546 	 */
6547 	trans = btrfs_start_transaction(root, 5);
6548 	if (IS_ERR(trans))
6549 		return PTR_ERR(trans);
6550 
6551 	err = btrfs_find_free_ino(root, &objectid);
6552 	if (err)
6553 		goto out_unlock;
6554 
6555 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6556 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6557 			mode, &index);
6558 	if (IS_ERR(inode)) {
6559 		err = PTR_ERR(inode);
6560 		goto out_unlock;
6561 	}
6562 
6563 	/*
6564 	* If the active LSM wants to access the inode during
6565 	* d_instantiate it needs these. Smack checks to see
6566 	* if the filesystem supports xattrs by looking at the
6567 	* ops vector.
6568 	*/
6569 	inode->i_op = &btrfs_special_inode_operations;
6570 	init_special_inode(inode, inode->i_mode, rdev);
6571 
6572 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6573 	if (err)
6574 		goto out_unlock_inode;
6575 
6576 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6577 			0, index);
6578 	if (err) {
6579 		goto out_unlock_inode;
6580 	} else {
6581 		btrfs_update_inode(trans, root, inode);
6582 		unlock_new_inode(inode);
6583 		d_instantiate(dentry, inode);
6584 	}
6585 
6586 out_unlock:
6587 	btrfs_end_transaction(trans);
6588 	btrfs_btree_balance_dirty(fs_info);
6589 	if (drop_inode) {
6590 		inode_dec_link_count(inode);
6591 		iput(inode);
6592 	}
6593 	return err;
6594 
6595 out_unlock_inode:
6596 	drop_inode = 1;
6597 	unlock_new_inode(inode);
6598 	goto out_unlock;
6599 
6600 }
6601 
6602 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6603 			umode_t mode, bool excl)
6604 {
6605 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6606 	struct btrfs_trans_handle *trans;
6607 	struct btrfs_root *root = BTRFS_I(dir)->root;
6608 	struct inode *inode = NULL;
6609 	int drop_inode_on_err = 0;
6610 	int err;
6611 	u64 objectid;
6612 	u64 index = 0;
6613 
6614 	/*
6615 	 * 2 for inode item and ref
6616 	 * 2 for dir items
6617 	 * 1 for xattr if selinux is on
6618 	 */
6619 	trans = btrfs_start_transaction(root, 5);
6620 	if (IS_ERR(trans))
6621 		return PTR_ERR(trans);
6622 
6623 	err = btrfs_find_free_ino(root, &objectid);
6624 	if (err)
6625 		goto out_unlock;
6626 
6627 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6628 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6629 			mode, &index);
6630 	if (IS_ERR(inode)) {
6631 		err = PTR_ERR(inode);
6632 		goto out_unlock;
6633 	}
6634 	drop_inode_on_err = 1;
6635 	/*
6636 	* If the active LSM wants to access the inode during
6637 	* d_instantiate it needs these. Smack checks to see
6638 	* if the filesystem supports xattrs by looking at the
6639 	* ops vector.
6640 	*/
6641 	inode->i_fop = &btrfs_file_operations;
6642 	inode->i_op = &btrfs_file_inode_operations;
6643 	inode->i_mapping->a_ops = &btrfs_aops;
6644 
6645 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6646 	if (err)
6647 		goto out_unlock_inode;
6648 
6649 	err = btrfs_update_inode(trans, root, inode);
6650 	if (err)
6651 		goto out_unlock_inode;
6652 
6653 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6654 			0, index);
6655 	if (err)
6656 		goto out_unlock_inode;
6657 
6658 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6659 	unlock_new_inode(inode);
6660 	d_instantiate(dentry, inode);
6661 
6662 out_unlock:
6663 	btrfs_end_transaction(trans);
6664 	if (err && drop_inode_on_err) {
6665 		inode_dec_link_count(inode);
6666 		iput(inode);
6667 	}
6668 	btrfs_btree_balance_dirty(fs_info);
6669 	return err;
6670 
6671 out_unlock_inode:
6672 	unlock_new_inode(inode);
6673 	goto out_unlock;
6674 
6675 }
6676 
6677 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6678 		      struct dentry *dentry)
6679 {
6680 	struct btrfs_trans_handle *trans = NULL;
6681 	struct btrfs_root *root = BTRFS_I(dir)->root;
6682 	struct inode *inode = d_inode(old_dentry);
6683 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6684 	u64 index;
6685 	int err;
6686 	int drop_inode = 0;
6687 
6688 	/* do not allow sys_link's with other subvols of the same device */
6689 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6690 		return -EXDEV;
6691 
6692 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6693 		return -EMLINK;
6694 
6695 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6696 	if (err)
6697 		goto fail;
6698 
6699 	/*
6700 	 * 2 items for inode and inode ref
6701 	 * 2 items for dir items
6702 	 * 1 item for parent inode
6703 	 */
6704 	trans = btrfs_start_transaction(root, 5);
6705 	if (IS_ERR(trans)) {
6706 		err = PTR_ERR(trans);
6707 		trans = NULL;
6708 		goto fail;
6709 	}
6710 
6711 	/* There are several dir indexes for this inode, clear the cache. */
6712 	BTRFS_I(inode)->dir_index = 0ULL;
6713 	inc_nlink(inode);
6714 	inode_inc_iversion(inode);
6715 	inode->i_ctime = current_time(inode);
6716 	ihold(inode);
6717 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6718 
6719 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6720 			1, index);
6721 
6722 	if (err) {
6723 		drop_inode = 1;
6724 	} else {
6725 		struct dentry *parent = dentry->d_parent;
6726 		err = btrfs_update_inode(trans, root, inode);
6727 		if (err)
6728 			goto fail;
6729 		if (inode->i_nlink == 1) {
6730 			/*
6731 			 * If new hard link count is 1, it's a file created
6732 			 * with open(2) O_TMPFILE flag.
6733 			 */
6734 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6735 			if (err)
6736 				goto fail;
6737 		}
6738 		d_instantiate(dentry, inode);
6739 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6740 	}
6741 
6742 fail:
6743 	if (trans)
6744 		btrfs_end_transaction(trans);
6745 	if (drop_inode) {
6746 		inode_dec_link_count(inode);
6747 		iput(inode);
6748 	}
6749 	btrfs_btree_balance_dirty(fs_info);
6750 	return err;
6751 }
6752 
6753 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6754 {
6755 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6756 	struct inode *inode = NULL;
6757 	struct btrfs_trans_handle *trans;
6758 	struct btrfs_root *root = BTRFS_I(dir)->root;
6759 	int err = 0;
6760 	int drop_on_err = 0;
6761 	u64 objectid = 0;
6762 	u64 index = 0;
6763 
6764 	/*
6765 	 * 2 items for inode and ref
6766 	 * 2 items for dir items
6767 	 * 1 for xattr if selinux is on
6768 	 */
6769 	trans = btrfs_start_transaction(root, 5);
6770 	if (IS_ERR(trans))
6771 		return PTR_ERR(trans);
6772 
6773 	err = btrfs_find_free_ino(root, &objectid);
6774 	if (err)
6775 		goto out_fail;
6776 
6777 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6778 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6779 			S_IFDIR | mode, &index);
6780 	if (IS_ERR(inode)) {
6781 		err = PTR_ERR(inode);
6782 		goto out_fail;
6783 	}
6784 
6785 	drop_on_err = 1;
6786 	/* these must be set before we unlock the inode */
6787 	inode->i_op = &btrfs_dir_inode_operations;
6788 	inode->i_fop = &btrfs_dir_file_operations;
6789 
6790 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6791 	if (err)
6792 		goto out_fail_inode;
6793 
6794 	btrfs_i_size_write(BTRFS_I(inode), 0);
6795 	err = btrfs_update_inode(trans, root, inode);
6796 	if (err)
6797 		goto out_fail_inode;
6798 
6799 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6800 			dentry->d_name.name,
6801 			dentry->d_name.len, 0, index);
6802 	if (err)
6803 		goto out_fail_inode;
6804 
6805 	d_instantiate(dentry, inode);
6806 	/*
6807 	 * mkdir is special.  We're unlocking after we call d_instantiate
6808 	 * to avoid a race with nfsd calling d_instantiate.
6809 	 */
6810 	unlock_new_inode(inode);
6811 	drop_on_err = 0;
6812 
6813 out_fail:
6814 	btrfs_end_transaction(trans);
6815 	if (drop_on_err) {
6816 		inode_dec_link_count(inode);
6817 		iput(inode);
6818 	}
6819 	btrfs_btree_balance_dirty(fs_info);
6820 	return err;
6821 
6822 out_fail_inode:
6823 	unlock_new_inode(inode);
6824 	goto out_fail;
6825 }
6826 
6827 static noinline int uncompress_inline(struct btrfs_path *path,
6828 				      struct page *page,
6829 				      size_t pg_offset, u64 extent_offset,
6830 				      struct btrfs_file_extent_item *item)
6831 {
6832 	int ret;
6833 	struct extent_buffer *leaf = path->nodes[0];
6834 	char *tmp;
6835 	size_t max_size;
6836 	unsigned long inline_size;
6837 	unsigned long ptr;
6838 	int compress_type;
6839 
6840 	WARN_ON(pg_offset != 0);
6841 	compress_type = btrfs_file_extent_compression(leaf, item);
6842 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6843 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6844 					btrfs_item_nr(path->slots[0]));
6845 	tmp = kmalloc(inline_size, GFP_NOFS);
6846 	if (!tmp)
6847 		return -ENOMEM;
6848 	ptr = btrfs_file_extent_inline_start(item);
6849 
6850 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6851 
6852 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6853 	ret = btrfs_decompress(compress_type, tmp, page,
6854 			       extent_offset, inline_size, max_size);
6855 
6856 	/*
6857 	 * decompression code contains a memset to fill in any space between the end
6858 	 * of the uncompressed data and the end of max_size in case the decompressed
6859 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6860 	 * the end of an inline extent and the beginning of the next block, so we
6861 	 * cover that region here.
6862 	 */
6863 
6864 	if (max_size + pg_offset < PAGE_SIZE) {
6865 		char *map = kmap(page);
6866 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6867 		kunmap(page);
6868 	}
6869 	kfree(tmp);
6870 	return ret;
6871 }
6872 
6873 /*
6874  * a bit scary, this does extent mapping from logical file offset to the disk.
6875  * the ugly parts come from merging extents from the disk with the in-ram
6876  * representation.  This gets more complex because of the data=ordered code,
6877  * where the in-ram extents might be locked pending data=ordered completion.
6878  *
6879  * This also copies inline extents directly into the page.
6880  */
6881 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6882 		struct page *page,
6883 	    size_t pg_offset, u64 start, u64 len,
6884 		int create)
6885 {
6886 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6887 	int ret;
6888 	int err = 0;
6889 	u64 extent_start = 0;
6890 	u64 extent_end = 0;
6891 	u64 objectid = btrfs_ino(inode);
6892 	u32 found_type;
6893 	struct btrfs_path *path = NULL;
6894 	struct btrfs_root *root = inode->root;
6895 	struct btrfs_file_extent_item *item;
6896 	struct extent_buffer *leaf;
6897 	struct btrfs_key found_key;
6898 	struct extent_map *em = NULL;
6899 	struct extent_map_tree *em_tree = &inode->extent_tree;
6900 	struct extent_io_tree *io_tree = &inode->io_tree;
6901 	const bool new_inline = !page || create;
6902 
6903 	read_lock(&em_tree->lock);
6904 	em = lookup_extent_mapping(em_tree, start, len);
6905 	if (em)
6906 		em->bdev = fs_info->fs_devices->latest_bdev;
6907 	read_unlock(&em_tree->lock);
6908 
6909 	if (em) {
6910 		if (em->start > start || em->start + em->len <= start)
6911 			free_extent_map(em);
6912 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6913 			free_extent_map(em);
6914 		else
6915 			goto out;
6916 	}
6917 	em = alloc_extent_map();
6918 	if (!em) {
6919 		err = -ENOMEM;
6920 		goto out;
6921 	}
6922 	em->bdev = fs_info->fs_devices->latest_bdev;
6923 	em->start = EXTENT_MAP_HOLE;
6924 	em->orig_start = EXTENT_MAP_HOLE;
6925 	em->len = (u64)-1;
6926 	em->block_len = (u64)-1;
6927 
6928 	if (!path) {
6929 		path = btrfs_alloc_path();
6930 		if (!path) {
6931 			err = -ENOMEM;
6932 			goto out;
6933 		}
6934 		/*
6935 		 * Chances are we'll be called again, so go ahead and do
6936 		 * readahead
6937 		 */
6938 		path->reada = READA_FORWARD;
6939 	}
6940 
6941 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6942 	if (ret < 0) {
6943 		err = ret;
6944 		goto out;
6945 	}
6946 
6947 	if (ret != 0) {
6948 		if (path->slots[0] == 0)
6949 			goto not_found;
6950 		path->slots[0]--;
6951 	}
6952 
6953 	leaf = path->nodes[0];
6954 	item = btrfs_item_ptr(leaf, path->slots[0],
6955 			      struct btrfs_file_extent_item);
6956 	/* are we inside the extent that was found? */
6957 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6958 	found_type = found_key.type;
6959 	if (found_key.objectid != objectid ||
6960 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6961 		/*
6962 		 * If we backup past the first extent we want to move forward
6963 		 * and see if there is an extent in front of us, otherwise we'll
6964 		 * say there is a hole for our whole search range which can
6965 		 * cause problems.
6966 		 */
6967 		extent_end = start;
6968 		goto next;
6969 	}
6970 
6971 	found_type = btrfs_file_extent_type(leaf, item);
6972 	extent_start = found_key.offset;
6973 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6974 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6975 		extent_end = extent_start +
6976 		       btrfs_file_extent_num_bytes(leaf, item);
6977 
6978 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6979 						       extent_start);
6980 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6981 		size_t size;
6982 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6983 		extent_end = ALIGN(extent_start + size,
6984 				   fs_info->sectorsize);
6985 
6986 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6987 						      path->slots[0],
6988 						      extent_start);
6989 	}
6990 next:
6991 	if (start >= extent_end) {
6992 		path->slots[0]++;
6993 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6994 			ret = btrfs_next_leaf(root, path);
6995 			if (ret < 0) {
6996 				err = ret;
6997 				goto out;
6998 			}
6999 			if (ret > 0)
7000 				goto not_found;
7001 			leaf = path->nodes[0];
7002 		}
7003 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7004 		if (found_key.objectid != objectid ||
7005 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7006 			goto not_found;
7007 		if (start + len <= found_key.offset)
7008 			goto not_found;
7009 		if (start > found_key.offset)
7010 			goto next;
7011 		em->start = start;
7012 		em->orig_start = start;
7013 		em->len = found_key.offset - start;
7014 		goto not_found_em;
7015 	}
7016 
7017 	btrfs_extent_item_to_extent_map(inode, path, item,
7018 			new_inline, em);
7019 
7020 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7021 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7022 		goto insert;
7023 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7024 		unsigned long ptr;
7025 		char *map;
7026 		size_t size;
7027 		size_t extent_offset;
7028 		size_t copy_size;
7029 
7030 		if (new_inline)
7031 			goto out;
7032 
7033 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7034 		extent_offset = page_offset(page) + pg_offset - extent_start;
7035 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7036 				  size - extent_offset);
7037 		em->start = extent_start + extent_offset;
7038 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7039 		em->orig_block_len = em->len;
7040 		em->orig_start = em->start;
7041 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7042 		if (!PageUptodate(page)) {
7043 			if (btrfs_file_extent_compression(leaf, item) !=
7044 			    BTRFS_COMPRESS_NONE) {
7045 				ret = uncompress_inline(path, page, pg_offset,
7046 							extent_offset, item);
7047 				if (ret) {
7048 					err = ret;
7049 					goto out;
7050 				}
7051 			} else {
7052 				map = kmap(page);
7053 				read_extent_buffer(leaf, map + pg_offset, ptr,
7054 						   copy_size);
7055 				if (pg_offset + copy_size < PAGE_SIZE) {
7056 					memset(map + pg_offset + copy_size, 0,
7057 					       PAGE_SIZE - pg_offset -
7058 					       copy_size);
7059 				}
7060 				kunmap(page);
7061 			}
7062 			flush_dcache_page(page);
7063 		}
7064 		set_extent_uptodate(io_tree, em->start,
7065 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7066 		goto insert;
7067 	}
7068 not_found:
7069 	em->start = start;
7070 	em->orig_start = start;
7071 	em->len = len;
7072 not_found_em:
7073 	em->block_start = EXTENT_MAP_HOLE;
7074 insert:
7075 	btrfs_release_path(path);
7076 	if (em->start > start || extent_map_end(em) <= start) {
7077 		btrfs_err(fs_info,
7078 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7079 			  em->start, em->len, start, len);
7080 		err = -EIO;
7081 		goto out;
7082 	}
7083 
7084 	err = 0;
7085 	write_lock(&em_tree->lock);
7086 	err = btrfs_add_extent_mapping(em_tree, &em, start, len);
7087 	write_unlock(&em_tree->lock);
7088 out:
7089 
7090 	trace_btrfs_get_extent(root, inode, em);
7091 
7092 	btrfs_free_path(path);
7093 	if (err) {
7094 		free_extent_map(em);
7095 		return ERR_PTR(err);
7096 	}
7097 	BUG_ON(!em); /* Error is always set */
7098 	return em;
7099 }
7100 
7101 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7102 		struct page *page,
7103 		size_t pg_offset, u64 start, u64 len,
7104 		int create)
7105 {
7106 	struct extent_map *em;
7107 	struct extent_map *hole_em = NULL;
7108 	u64 range_start = start;
7109 	u64 end;
7110 	u64 found;
7111 	u64 found_end;
7112 	int err = 0;
7113 
7114 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7115 	if (IS_ERR(em))
7116 		return em;
7117 	/*
7118 	 * If our em maps to:
7119 	 * - a hole or
7120 	 * - a pre-alloc extent,
7121 	 * there might actually be delalloc bytes behind it.
7122 	 */
7123 	if (em->block_start != EXTENT_MAP_HOLE &&
7124 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7125 		return em;
7126 	else
7127 		hole_em = em;
7128 
7129 	/* check to see if we've wrapped (len == -1 or similar) */
7130 	end = start + len;
7131 	if (end < start)
7132 		end = (u64)-1;
7133 	else
7134 		end -= 1;
7135 
7136 	em = NULL;
7137 
7138 	/* ok, we didn't find anything, lets look for delalloc */
7139 	found = count_range_bits(&inode->io_tree, &range_start,
7140 				 end, len, EXTENT_DELALLOC, 1);
7141 	found_end = range_start + found;
7142 	if (found_end < range_start)
7143 		found_end = (u64)-1;
7144 
7145 	/*
7146 	 * we didn't find anything useful, return
7147 	 * the original results from get_extent()
7148 	 */
7149 	if (range_start > end || found_end <= start) {
7150 		em = hole_em;
7151 		hole_em = NULL;
7152 		goto out;
7153 	}
7154 
7155 	/* adjust the range_start to make sure it doesn't
7156 	 * go backwards from the start they passed in
7157 	 */
7158 	range_start = max(start, range_start);
7159 	found = found_end - range_start;
7160 
7161 	if (found > 0) {
7162 		u64 hole_start = start;
7163 		u64 hole_len = len;
7164 
7165 		em = alloc_extent_map();
7166 		if (!em) {
7167 			err = -ENOMEM;
7168 			goto out;
7169 		}
7170 		/*
7171 		 * when btrfs_get_extent can't find anything it
7172 		 * returns one huge hole
7173 		 *
7174 		 * make sure what it found really fits our range, and
7175 		 * adjust to make sure it is based on the start from
7176 		 * the caller
7177 		 */
7178 		if (hole_em) {
7179 			u64 calc_end = extent_map_end(hole_em);
7180 
7181 			if (calc_end <= start || (hole_em->start > end)) {
7182 				free_extent_map(hole_em);
7183 				hole_em = NULL;
7184 			} else {
7185 				hole_start = max(hole_em->start, start);
7186 				hole_len = calc_end - hole_start;
7187 			}
7188 		}
7189 		em->bdev = NULL;
7190 		if (hole_em && range_start > hole_start) {
7191 			/* our hole starts before our delalloc, so we
7192 			 * have to return just the parts of the hole
7193 			 * that go until  the delalloc starts
7194 			 */
7195 			em->len = min(hole_len,
7196 				      range_start - hole_start);
7197 			em->start = hole_start;
7198 			em->orig_start = hole_start;
7199 			/*
7200 			 * don't adjust block start at all,
7201 			 * it is fixed at EXTENT_MAP_HOLE
7202 			 */
7203 			em->block_start = hole_em->block_start;
7204 			em->block_len = hole_len;
7205 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7206 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7207 		} else {
7208 			em->start = range_start;
7209 			em->len = found;
7210 			em->orig_start = range_start;
7211 			em->block_start = EXTENT_MAP_DELALLOC;
7212 			em->block_len = found;
7213 		}
7214 	} else {
7215 		return hole_em;
7216 	}
7217 out:
7218 
7219 	free_extent_map(hole_em);
7220 	if (err) {
7221 		free_extent_map(em);
7222 		return ERR_PTR(err);
7223 	}
7224 	return em;
7225 }
7226 
7227 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7228 						  const u64 start,
7229 						  const u64 len,
7230 						  const u64 orig_start,
7231 						  const u64 block_start,
7232 						  const u64 block_len,
7233 						  const u64 orig_block_len,
7234 						  const u64 ram_bytes,
7235 						  const int type)
7236 {
7237 	struct extent_map *em = NULL;
7238 	int ret;
7239 
7240 	if (type != BTRFS_ORDERED_NOCOW) {
7241 		em = create_io_em(inode, start, len, orig_start,
7242 				  block_start, block_len, orig_block_len,
7243 				  ram_bytes,
7244 				  BTRFS_COMPRESS_NONE, /* compress_type */
7245 				  type);
7246 		if (IS_ERR(em))
7247 			goto out;
7248 	}
7249 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7250 					   len, block_len, type);
7251 	if (ret) {
7252 		if (em) {
7253 			free_extent_map(em);
7254 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7255 						start + len - 1, 0);
7256 		}
7257 		em = ERR_PTR(ret);
7258 	}
7259  out:
7260 
7261 	return em;
7262 }
7263 
7264 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7265 						  u64 start, u64 len)
7266 {
7267 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7268 	struct btrfs_root *root = BTRFS_I(inode)->root;
7269 	struct extent_map *em;
7270 	struct btrfs_key ins;
7271 	u64 alloc_hint;
7272 	int ret;
7273 
7274 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7275 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7276 				   0, alloc_hint, &ins, 1, 1);
7277 	if (ret)
7278 		return ERR_PTR(ret);
7279 
7280 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7281 				     ins.objectid, ins.offset, ins.offset,
7282 				     ins.offset, BTRFS_ORDERED_REGULAR);
7283 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7284 	if (IS_ERR(em))
7285 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7286 					   ins.offset, 1);
7287 
7288 	return em;
7289 }
7290 
7291 /*
7292  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7293  * block must be cow'd
7294  */
7295 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7296 			      u64 *orig_start, u64 *orig_block_len,
7297 			      u64 *ram_bytes)
7298 {
7299 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7300 	struct btrfs_path *path;
7301 	int ret;
7302 	struct extent_buffer *leaf;
7303 	struct btrfs_root *root = BTRFS_I(inode)->root;
7304 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7305 	struct btrfs_file_extent_item *fi;
7306 	struct btrfs_key key;
7307 	u64 disk_bytenr;
7308 	u64 backref_offset;
7309 	u64 extent_end;
7310 	u64 num_bytes;
7311 	int slot;
7312 	int found_type;
7313 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7314 
7315 	path = btrfs_alloc_path();
7316 	if (!path)
7317 		return -ENOMEM;
7318 
7319 	ret = btrfs_lookup_file_extent(NULL, root, path,
7320 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7321 	if (ret < 0)
7322 		goto out;
7323 
7324 	slot = path->slots[0];
7325 	if (ret == 1) {
7326 		if (slot == 0) {
7327 			/* can't find the item, must cow */
7328 			ret = 0;
7329 			goto out;
7330 		}
7331 		slot--;
7332 	}
7333 	ret = 0;
7334 	leaf = path->nodes[0];
7335 	btrfs_item_key_to_cpu(leaf, &key, slot);
7336 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7337 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7338 		/* not our file or wrong item type, must cow */
7339 		goto out;
7340 	}
7341 
7342 	if (key.offset > offset) {
7343 		/* Wrong offset, must cow */
7344 		goto out;
7345 	}
7346 
7347 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7348 	found_type = btrfs_file_extent_type(leaf, fi);
7349 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7350 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7351 		/* not a regular extent, must cow */
7352 		goto out;
7353 	}
7354 
7355 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7356 		goto out;
7357 
7358 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7359 	if (extent_end <= offset)
7360 		goto out;
7361 
7362 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7363 	if (disk_bytenr == 0)
7364 		goto out;
7365 
7366 	if (btrfs_file_extent_compression(leaf, fi) ||
7367 	    btrfs_file_extent_encryption(leaf, fi) ||
7368 	    btrfs_file_extent_other_encoding(leaf, fi))
7369 		goto out;
7370 
7371 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7372 
7373 	if (orig_start) {
7374 		*orig_start = key.offset - backref_offset;
7375 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7376 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7377 	}
7378 
7379 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7380 		goto out;
7381 
7382 	num_bytes = min(offset + *len, extent_end) - offset;
7383 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7384 		u64 range_end;
7385 
7386 		range_end = round_up(offset + num_bytes,
7387 				     root->fs_info->sectorsize) - 1;
7388 		ret = test_range_bit(io_tree, offset, range_end,
7389 				     EXTENT_DELALLOC, 0, NULL);
7390 		if (ret) {
7391 			ret = -EAGAIN;
7392 			goto out;
7393 		}
7394 	}
7395 
7396 	btrfs_release_path(path);
7397 
7398 	/*
7399 	 * look for other files referencing this extent, if we
7400 	 * find any we must cow
7401 	 */
7402 
7403 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7404 				    key.offset - backref_offset, disk_bytenr);
7405 	if (ret) {
7406 		ret = 0;
7407 		goto out;
7408 	}
7409 
7410 	/*
7411 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7412 	 * in this extent we are about to write.  If there
7413 	 * are any csums in that range we have to cow in order
7414 	 * to keep the csums correct
7415 	 */
7416 	disk_bytenr += backref_offset;
7417 	disk_bytenr += offset - key.offset;
7418 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7419 		goto out;
7420 	/*
7421 	 * all of the above have passed, it is safe to overwrite this extent
7422 	 * without cow
7423 	 */
7424 	*len = num_bytes;
7425 	ret = 1;
7426 out:
7427 	btrfs_free_path(path);
7428 	return ret;
7429 }
7430 
7431 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7432 			      struct extent_state **cached_state, int writing)
7433 {
7434 	struct btrfs_ordered_extent *ordered;
7435 	int ret = 0;
7436 
7437 	while (1) {
7438 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7439 				 cached_state);
7440 		/*
7441 		 * We're concerned with the entire range that we're going to be
7442 		 * doing DIO to, so we need to make sure there's no ordered
7443 		 * extents in this range.
7444 		 */
7445 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7446 						     lockend - lockstart + 1);
7447 
7448 		/*
7449 		 * We need to make sure there are no buffered pages in this
7450 		 * range either, we could have raced between the invalidate in
7451 		 * generic_file_direct_write and locking the extent.  The
7452 		 * invalidate needs to happen so that reads after a write do not
7453 		 * get stale data.
7454 		 */
7455 		if (!ordered &&
7456 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7457 							 lockstart, lockend)))
7458 			break;
7459 
7460 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7461 				     cached_state);
7462 
7463 		if (ordered) {
7464 			/*
7465 			 * If we are doing a DIO read and the ordered extent we
7466 			 * found is for a buffered write, we can not wait for it
7467 			 * to complete and retry, because if we do so we can
7468 			 * deadlock with concurrent buffered writes on page
7469 			 * locks. This happens only if our DIO read covers more
7470 			 * than one extent map, if at this point has already
7471 			 * created an ordered extent for a previous extent map
7472 			 * and locked its range in the inode's io tree, and a
7473 			 * concurrent write against that previous extent map's
7474 			 * range and this range started (we unlock the ranges
7475 			 * in the io tree only when the bios complete and
7476 			 * buffered writes always lock pages before attempting
7477 			 * to lock range in the io tree).
7478 			 */
7479 			if (writing ||
7480 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7481 				btrfs_start_ordered_extent(inode, ordered, 1);
7482 			else
7483 				ret = -ENOTBLK;
7484 			btrfs_put_ordered_extent(ordered);
7485 		} else {
7486 			/*
7487 			 * We could trigger writeback for this range (and wait
7488 			 * for it to complete) and then invalidate the pages for
7489 			 * this range (through invalidate_inode_pages2_range()),
7490 			 * but that can lead us to a deadlock with a concurrent
7491 			 * call to readpages() (a buffered read or a defrag call
7492 			 * triggered a readahead) on a page lock due to an
7493 			 * ordered dio extent we created before but did not have
7494 			 * yet a corresponding bio submitted (whence it can not
7495 			 * complete), which makes readpages() wait for that
7496 			 * ordered extent to complete while holding a lock on
7497 			 * that page.
7498 			 */
7499 			ret = -ENOTBLK;
7500 		}
7501 
7502 		if (ret)
7503 			break;
7504 
7505 		cond_resched();
7506 	}
7507 
7508 	return ret;
7509 }
7510 
7511 /* The callers of this must take lock_extent() */
7512 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7513 				       u64 orig_start, u64 block_start,
7514 				       u64 block_len, u64 orig_block_len,
7515 				       u64 ram_bytes, int compress_type,
7516 				       int type)
7517 {
7518 	struct extent_map_tree *em_tree;
7519 	struct extent_map *em;
7520 	struct btrfs_root *root = BTRFS_I(inode)->root;
7521 	int ret;
7522 
7523 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7524 	       type == BTRFS_ORDERED_COMPRESSED ||
7525 	       type == BTRFS_ORDERED_NOCOW ||
7526 	       type == BTRFS_ORDERED_REGULAR);
7527 
7528 	em_tree = &BTRFS_I(inode)->extent_tree;
7529 	em = alloc_extent_map();
7530 	if (!em)
7531 		return ERR_PTR(-ENOMEM);
7532 
7533 	em->start = start;
7534 	em->orig_start = orig_start;
7535 	em->len = len;
7536 	em->block_len = block_len;
7537 	em->block_start = block_start;
7538 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7539 	em->orig_block_len = orig_block_len;
7540 	em->ram_bytes = ram_bytes;
7541 	em->generation = -1;
7542 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7543 	if (type == BTRFS_ORDERED_PREALLOC) {
7544 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7545 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7546 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7547 		em->compress_type = compress_type;
7548 	}
7549 
7550 	do {
7551 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7552 				em->start + em->len - 1, 0);
7553 		write_lock(&em_tree->lock);
7554 		ret = add_extent_mapping(em_tree, em, 1);
7555 		write_unlock(&em_tree->lock);
7556 		/*
7557 		 * The caller has taken lock_extent(), who could race with us
7558 		 * to add em?
7559 		 */
7560 	} while (ret == -EEXIST);
7561 
7562 	if (ret) {
7563 		free_extent_map(em);
7564 		return ERR_PTR(ret);
7565 	}
7566 
7567 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7568 	return em;
7569 }
7570 
7571 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7572 				   struct buffer_head *bh_result, int create)
7573 {
7574 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7575 	struct extent_map *em;
7576 	struct extent_state *cached_state = NULL;
7577 	struct btrfs_dio_data *dio_data = NULL;
7578 	u64 start = iblock << inode->i_blkbits;
7579 	u64 lockstart, lockend;
7580 	u64 len = bh_result->b_size;
7581 	int unlock_bits = EXTENT_LOCKED;
7582 	int ret = 0;
7583 
7584 	if (create)
7585 		unlock_bits |= EXTENT_DIRTY;
7586 	else
7587 		len = min_t(u64, len, fs_info->sectorsize);
7588 
7589 	lockstart = start;
7590 	lockend = start + len - 1;
7591 
7592 	if (current->journal_info) {
7593 		/*
7594 		 * Need to pull our outstanding extents and set journal_info to NULL so
7595 		 * that anything that needs to check if there's a transaction doesn't get
7596 		 * confused.
7597 		 */
7598 		dio_data = current->journal_info;
7599 		current->journal_info = NULL;
7600 	}
7601 
7602 	/*
7603 	 * If this errors out it's because we couldn't invalidate pagecache for
7604 	 * this range and we need to fallback to buffered.
7605 	 */
7606 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7607 			       create)) {
7608 		ret = -ENOTBLK;
7609 		goto err;
7610 	}
7611 
7612 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7613 	if (IS_ERR(em)) {
7614 		ret = PTR_ERR(em);
7615 		goto unlock_err;
7616 	}
7617 
7618 	/*
7619 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7620 	 * io.  INLINE is special, and we could probably kludge it in here, but
7621 	 * it's still buffered so for safety lets just fall back to the generic
7622 	 * buffered path.
7623 	 *
7624 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7625 	 * decompress it, so there will be buffering required no matter what we
7626 	 * do, so go ahead and fallback to buffered.
7627 	 *
7628 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7629 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7630 	 * the generic code.
7631 	 */
7632 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7633 	    em->block_start == EXTENT_MAP_INLINE) {
7634 		free_extent_map(em);
7635 		ret = -ENOTBLK;
7636 		goto unlock_err;
7637 	}
7638 
7639 	/* Just a good old fashioned hole, return */
7640 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7641 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7642 		free_extent_map(em);
7643 		goto unlock_err;
7644 	}
7645 
7646 	/*
7647 	 * We don't allocate a new extent in the following cases
7648 	 *
7649 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7650 	 * existing extent.
7651 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7652 	 * just use the extent.
7653 	 *
7654 	 */
7655 	if (!create) {
7656 		len = min(len, em->len - (start - em->start));
7657 		lockstart = start + len;
7658 		goto unlock;
7659 	}
7660 
7661 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7662 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7663 	     em->block_start != EXTENT_MAP_HOLE)) {
7664 		int type;
7665 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7666 
7667 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7668 			type = BTRFS_ORDERED_PREALLOC;
7669 		else
7670 			type = BTRFS_ORDERED_NOCOW;
7671 		len = min(len, em->len - (start - em->start));
7672 		block_start = em->block_start + (start - em->start);
7673 
7674 		if (can_nocow_extent(inode, start, &len, &orig_start,
7675 				     &orig_block_len, &ram_bytes) == 1 &&
7676 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7677 			struct extent_map *em2;
7678 
7679 			em2 = btrfs_create_dio_extent(inode, start, len,
7680 						      orig_start, block_start,
7681 						      len, orig_block_len,
7682 						      ram_bytes, type);
7683 			btrfs_dec_nocow_writers(fs_info, block_start);
7684 			if (type == BTRFS_ORDERED_PREALLOC) {
7685 				free_extent_map(em);
7686 				em = em2;
7687 			}
7688 			if (em2 && IS_ERR(em2)) {
7689 				ret = PTR_ERR(em2);
7690 				goto unlock_err;
7691 			}
7692 			/*
7693 			 * For inode marked NODATACOW or extent marked PREALLOC,
7694 			 * use the existing or preallocated extent, so does not
7695 			 * need to adjust btrfs_space_info's bytes_may_use.
7696 			 */
7697 			btrfs_free_reserved_data_space_noquota(inode,
7698 					start, len);
7699 			goto unlock;
7700 		}
7701 	}
7702 
7703 	/*
7704 	 * this will cow the extent, reset the len in case we changed
7705 	 * it above
7706 	 */
7707 	len = bh_result->b_size;
7708 	free_extent_map(em);
7709 	em = btrfs_new_extent_direct(inode, start, len);
7710 	if (IS_ERR(em)) {
7711 		ret = PTR_ERR(em);
7712 		goto unlock_err;
7713 	}
7714 	len = min(len, em->len - (start - em->start));
7715 unlock:
7716 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7717 		inode->i_blkbits;
7718 	bh_result->b_size = len;
7719 	bh_result->b_bdev = em->bdev;
7720 	set_buffer_mapped(bh_result);
7721 	if (create) {
7722 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7723 			set_buffer_new(bh_result);
7724 
7725 		/*
7726 		 * Need to update the i_size under the extent lock so buffered
7727 		 * readers will get the updated i_size when we unlock.
7728 		 */
7729 		if (!dio_data->overwrite && start + len > i_size_read(inode))
7730 			i_size_write(inode, start + len);
7731 
7732 		WARN_ON(dio_data->reserve < len);
7733 		dio_data->reserve -= len;
7734 		dio_data->unsubmitted_oe_range_end = start + len;
7735 		current->journal_info = dio_data;
7736 	}
7737 
7738 	/*
7739 	 * In the case of write we need to clear and unlock the entire range,
7740 	 * in the case of read we need to unlock only the end area that we
7741 	 * aren't using if there is any left over space.
7742 	 */
7743 	if (lockstart < lockend) {
7744 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7745 				 lockend, unlock_bits, 1, 0,
7746 				 &cached_state);
7747 	} else {
7748 		free_extent_state(cached_state);
7749 	}
7750 
7751 	free_extent_map(em);
7752 
7753 	return 0;
7754 
7755 unlock_err:
7756 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7757 			 unlock_bits, 1, 0, &cached_state);
7758 err:
7759 	if (dio_data)
7760 		current->journal_info = dio_data;
7761 	return ret;
7762 }
7763 
7764 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7765 						 struct bio *bio,
7766 						 int mirror_num)
7767 {
7768 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7769 	blk_status_t ret;
7770 
7771 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7772 
7773 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7774 	if (ret)
7775 		return ret;
7776 
7777 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7778 
7779 	return ret;
7780 }
7781 
7782 static int btrfs_check_dio_repairable(struct inode *inode,
7783 				      struct bio *failed_bio,
7784 				      struct io_failure_record *failrec,
7785 				      int failed_mirror)
7786 {
7787 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7788 	int num_copies;
7789 
7790 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7791 	if (num_copies == 1) {
7792 		/*
7793 		 * we only have a single copy of the data, so don't bother with
7794 		 * all the retry and error correction code that follows. no
7795 		 * matter what the error is, it is very likely to persist.
7796 		 */
7797 		btrfs_debug(fs_info,
7798 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7799 			num_copies, failrec->this_mirror, failed_mirror);
7800 		return 0;
7801 	}
7802 
7803 	failrec->failed_mirror = failed_mirror;
7804 	failrec->this_mirror++;
7805 	if (failrec->this_mirror == failed_mirror)
7806 		failrec->this_mirror++;
7807 
7808 	if (failrec->this_mirror > num_copies) {
7809 		btrfs_debug(fs_info,
7810 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7811 			num_copies, failrec->this_mirror, failed_mirror);
7812 		return 0;
7813 	}
7814 
7815 	return 1;
7816 }
7817 
7818 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7819 				   struct page *page, unsigned int pgoff,
7820 				   u64 start, u64 end, int failed_mirror,
7821 				   bio_end_io_t *repair_endio, void *repair_arg)
7822 {
7823 	struct io_failure_record *failrec;
7824 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7825 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7826 	struct bio *bio;
7827 	int isector;
7828 	unsigned int read_mode = 0;
7829 	int segs;
7830 	int ret;
7831 	blk_status_t status;
7832 	struct bio_vec bvec;
7833 
7834 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7835 
7836 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7837 	if (ret)
7838 		return errno_to_blk_status(ret);
7839 
7840 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7841 					 failed_mirror);
7842 	if (!ret) {
7843 		free_io_failure(failure_tree, io_tree, failrec);
7844 		return BLK_STS_IOERR;
7845 	}
7846 
7847 	segs = bio_segments(failed_bio);
7848 	bio_get_first_bvec(failed_bio, &bvec);
7849 	if (segs > 1 ||
7850 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7851 		read_mode |= REQ_FAILFAST_DEV;
7852 
7853 	isector = start - btrfs_io_bio(failed_bio)->logical;
7854 	isector >>= inode->i_sb->s_blocksize_bits;
7855 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7856 				pgoff, isector, repair_endio, repair_arg);
7857 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7858 
7859 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7860 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7861 		    read_mode, failrec->this_mirror, failrec->in_validation);
7862 
7863 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7864 	if (status) {
7865 		free_io_failure(failure_tree, io_tree, failrec);
7866 		bio_put(bio);
7867 	}
7868 
7869 	return status;
7870 }
7871 
7872 struct btrfs_retry_complete {
7873 	struct completion done;
7874 	struct inode *inode;
7875 	u64 start;
7876 	int uptodate;
7877 };
7878 
7879 static void btrfs_retry_endio_nocsum(struct bio *bio)
7880 {
7881 	struct btrfs_retry_complete *done = bio->bi_private;
7882 	struct inode *inode = done->inode;
7883 	struct bio_vec *bvec;
7884 	struct extent_io_tree *io_tree, *failure_tree;
7885 	int i;
7886 
7887 	if (bio->bi_status)
7888 		goto end;
7889 
7890 	ASSERT(bio->bi_vcnt == 1);
7891 	io_tree = &BTRFS_I(inode)->io_tree;
7892 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7893 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7894 
7895 	done->uptodate = 1;
7896 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7897 	bio_for_each_segment_all(bvec, bio, i)
7898 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7899 				 io_tree, done->start, bvec->bv_page,
7900 				 btrfs_ino(BTRFS_I(inode)), 0);
7901 end:
7902 	complete(&done->done);
7903 	bio_put(bio);
7904 }
7905 
7906 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7907 						struct btrfs_io_bio *io_bio)
7908 {
7909 	struct btrfs_fs_info *fs_info;
7910 	struct bio_vec bvec;
7911 	struct bvec_iter iter;
7912 	struct btrfs_retry_complete done;
7913 	u64 start;
7914 	unsigned int pgoff;
7915 	u32 sectorsize;
7916 	int nr_sectors;
7917 	blk_status_t ret;
7918 	blk_status_t err = BLK_STS_OK;
7919 
7920 	fs_info = BTRFS_I(inode)->root->fs_info;
7921 	sectorsize = fs_info->sectorsize;
7922 
7923 	start = io_bio->logical;
7924 	done.inode = inode;
7925 	io_bio->bio.bi_iter = io_bio->iter;
7926 
7927 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7928 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7929 		pgoff = bvec.bv_offset;
7930 
7931 next_block_or_try_again:
7932 		done.uptodate = 0;
7933 		done.start = start;
7934 		init_completion(&done.done);
7935 
7936 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7937 				pgoff, start, start + sectorsize - 1,
7938 				io_bio->mirror_num,
7939 				btrfs_retry_endio_nocsum, &done);
7940 		if (ret) {
7941 			err = ret;
7942 			goto next;
7943 		}
7944 
7945 		wait_for_completion_io(&done.done);
7946 
7947 		if (!done.uptodate) {
7948 			/* We might have another mirror, so try again */
7949 			goto next_block_or_try_again;
7950 		}
7951 
7952 next:
7953 		start += sectorsize;
7954 
7955 		nr_sectors--;
7956 		if (nr_sectors) {
7957 			pgoff += sectorsize;
7958 			ASSERT(pgoff < PAGE_SIZE);
7959 			goto next_block_or_try_again;
7960 		}
7961 	}
7962 
7963 	return err;
7964 }
7965 
7966 static void btrfs_retry_endio(struct bio *bio)
7967 {
7968 	struct btrfs_retry_complete *done = bio->bi_private;
7969 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7970 	struct extent_io_tree *io_tree, *failure_tree;
7971 	struct inode *inode = done->inode;
7972 	struct bio_vec *bvec;
7973 	int uptodate;
7974 	int ret;
7975 	int i;
7976 
7977 	if (bio->bi_status)
7978 		goto end;
7979 
7980 	uptodate = 1;
7981 
7982 	ASSERT(bio->bi_vcnt == 1);
7983 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7984 
7985 	io_tree = &BTRFS_I(inode)->io_tree;
7986 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7987 
7988 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7989 	bio_for_each_segment_all(bvec, bio, i) {
7990 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7991 					     bvec->bv_offset, done->start,
7992 					     bvec->bv_len);
7993 		if (!ret)
7994 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7995 					 failure_tree, io_tree, done->start,
7996 					 bvec->bv_page,
7997 					 btrfs_ino(BTRFS_I(inode)),
7998 					 bvec->bv_offset);
7999 		else
8000 			uptodate = 0;
8001 	}
8002 
8003 	done->uptodate = uptodate;
8004 end:
8005 	complete(&done->done);
8006 	bio_put(bio);
8007 }
8008 
8009 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8010 		struct btrfs_io_bio *io_bio, blk_status_t err)
8011 {
8012 	struct btrfs_fs_info *fs_info;
8013 	struct bio_vec bvec;
8014 	struct bvec_iter iter;
8015 	struct btrfs_retry_complete done;
8016 	u64 start;
8017 	u64 offset = 0;
8018 	u32 sectorsize;
8019 	int nr_sectors;
8020 	unsigned int pgoff;
8021 	int csum_pos;
8022 	bool uptodate = (err == 0);
8023 	int ret;
8024 	blk_status_t status;
8025 
8026 	fs_info = BTRFS_I(inode)->root->fs_info;
8027 	sectorsize = fs_info->sectorsize;
8028 
8029 	err = BLK_STS_OK;
8030 	start = io_bio->logical;
8031 	done.inode = inode;
8032 	io_bio->bio.bi_iter = io_bio->iter;
8033 
8034 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8035 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8036 
8037 		pgoff = bvec.bv_offset;
8038 next_block:
8039 		if (uptodate) {
8040 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8041 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8042 					bvec.bv_page, pgoff, start, sectorsize);
8043 			if (likely(!ret))
8044 				goto next;
8045 		}
8046 try_again:
8047 		done.uptodate = 0;
8048 		done.start = start;
8049 		init_completion(&done.done);
8050 
8051 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8052 					pgoff, start, start + sectorsize - 1,
8053 					io_bio->mirror_num, btrfs_retry_endio,
8054 					&done);
8055 		if (status) {
8056 			err = status;
8057 			goto next;
8058 		}
8059 
8060 		wait_for_completion_io(&done.done);
8061 
8062 		if (!done.uptodate) {
8063 			/* We might have another mirror, so try again */
8064 			goto try_again;
8065 		}
8066 next:
8067 		offset += sectorsize;
8068 		start += sectorsize;
8069 
8070 		ASSERT(nr_sectors);
8071 
8072 		nr_sectors--;
8073 		if (nr_sectors) {
8074 			pgoff += sectorsize;
8075 			ASSERT(pgoff < PAGE_SIZE);
8076 			goto next_block;
8077 		}
8078 	}
8079 
8080 	return err;
8081 }
8082 
8083 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8084 		struct btrfs_io_bio *io_bio, blk_status_t err)
8085 {
8086 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8087 
8088 	if (skip_csum) {
8089 		if (unlikely(err))
8090 			return __btrfs_correct_data_nocsum(inode, io_bio);
8091 		else
8092 			return BLK_STS_OK;
8093 	} else {
8094 		return __btrfs_subio_endio_read(inode, io_bio, err);
8095 	}
8096 }
8097 
8098 static void btrfs_endio_direct_read(struct bio *bio)
8099 {
8100 	struct btrfs_dio_private *dip = bio->bi_private;
8101 	struct inode *inode = dip->inode;
8102 	struct bio *dio_bio;
8103 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8104 	blk_status_t err = bio->bi_status;
8105 
8106 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8107 		err = btrfs_subio_endio_read(inode, io_bio, err);
8108 
8109 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8110 		      dip->logical_offset + dip->bytes - 1);
8111 	dio_bio = dip->dio_bio;
8112 
8113 	kfree(dip);
8114 
8115 	dio_bio->bi_status = err;
8116 	dio_end_io(dio_bio);
8117 
8118 	if (io_bio->end_io)
8119 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8120 	bio_put(bio);
8121 }
8122 
8123 static void __endio_write_update_ordered(struct inode *inode,
8124 					 const u64 offset, const u64 bytes,
8125 					 const bool uptodate)
8126 {
8127 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8128 	struct btrfs_ordered_extent *ordered = NULL;
8129 	struct btrfs_workqueue *wq;
8130 	btrfs_work_func_t func;
8131 	u64 ordered_offset = offset;
8132 	u64 ordered_bytes = bytes;
8133 	u64 last_offset;
8134 	int ret;
8135 
8136 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8137 		wq = fs_info->endio_freespace_worker;
8138 		func = btrfs_freespace_write_helper;
8139 	} else {
8140 		wq = fs_info->endio_write_workers;
8141 		func = btrfs_endio_write_helper;
8142 	}
8143 
8144 again:
8145 	last_offset = ordered_offset;
8146 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8147 						   &ordered_offset,
8148 						   ordered_bytes,
8149 						   uptodate);
8150 	if (!ret)
8151 		goto out_test;
8152 
8153 	btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8154 	btrfs_queue_work(wq, &ordered->work);
8155 out_test:
8156 	/*
8157 	 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8158 	 * in the range, we can exit.
8159 	 */
8160 	if (ordered_offset == last_offset)
8161 		return;
8162 	/*
8163 	 * our bio might span multiple ordered extents.  If we haven't
8164 	 * completed the accounting for the whole dio, go back and try again
8165 	 */
8166 	if (ordered_offset < offset + bytes) {
8167 		ordered_bytes = offset + bytes - ordered_offset;
8168 		ordered = NULL;
8169 		goto again;
8170 	}
8171 }
8172 
8173 static void btrfs_endio_direct_write(struct bio *bio)
8174 {
8175 	struct btrfs_dio_private *dip = bio->bi_private;
8176 	struct bio *dio_bio = dip->dio_bio;
8177 
8178 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8179 				     dip->bytes, !bio->bi_status);
8180 
8181 	kfree(dip);
8182 
8183 	dio_bio->bi_status = bio->bi_status;
8184 	dio_end_io(dio_bio);
8185 	bio_put(bio);
8186 }
8187 
8188 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8189 				    struct bio *bio, u64 offset)
8190 {
8191 	struct inode *inode = private_data;
8192 	blk_status_t ret;
8193 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8194 	BUG_ON(ret); /* -ENOMEM */
8195 	return 0;
8196 }
8197 
8198 static void btrfs_end_dio_bio(struct bio *bio)
8199 {
8200 	struct btrfs_dio_private *dip = bio->bi_private;
8201 	blk_status_t err = bio->bi_status;
8202 
8203 	if (err)
8204 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8205 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8206 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8207 			   bio->bi_opf,
8208 			   (unsigned long long)bio->bi_iter.bi_sector,
8209 			   bio->bi_iter.bi_size, err);
8210 
8211 	if (dip->subio_endio)
8212 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8213 
8214 	if (err) {
8215 		/*
8216 		 * We want to perceive the errors flag being set before
8217 		 * decrementing the reference count. We don't need a barrier
8218 		 * since atomic operations with a return value are fully
8219 		 * ordered as per atomic_t.txt
8220 		 */
8221 		dip->errors = 1;
8222 	}
8223 
8224 	/* if there are more bios still pending for this dio, just exit */
8225 	if (!atomic_dec_and_test(&dip->pending_bios))
8226 		goto out;
8227 
8228 	if (dip->errors) {
8229 		bio_io_error(dip->orig_bio);
8230 	} else {
8231 		dip->dio_bio->bi_status = BLK_STS_OK;
8232 		bio_endio(dip->orig_bio);
8233 	}
8234 out:
8235 	bio_put(bio);
8236 }
8237 
8238 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8239 						 struct btrfs_dio_private *dip,
8240 						 struct bio *bio,
8241 						 u64 file_offset)
8242 {
8243 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8244 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8245 	blk_status_t ret;
8246 
8247 	/*
8248 	 * We load all the csum data we need when we submit
8249 	 * the first bio to reduce the csum tree search and
8250 	 * contention.
8251 	 */
8252 	if (dip->logical_offset == file_offset) {
8253 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8254 						file_offset);
8255 		if (ret)
8256 			return ret;
8257 	}
8258 
8259 	if (bio == dip->orig_bio)
8260 		return 0;
8261 
8262 	file_offset -= dip->logical_offset;
8263 	file_offset >>= inode->i_sb->s_blocksize_bits;
8264 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8265 
8266 	return 0;
8267 }
8268 
8269 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8270 		struct inode *inode, u64 file_offset, int async_submit)
8271 {
8272 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8273 	struct btrfs_dio_private *dip = bio->bi_private;
8274 	bool write = bio_op(bio) == REQ_OP_WRITE;
8275 	blk_status_t ret;
8276 
8277 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8278 	if (async_submit)
8279 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8280 
8281 	if (!write) {
8282 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8283 		if (ret)
8284 			goto err;
8285 	}
8286 
8287 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8288 		goto map;
8289 
8290 	if (write && async_submit) {
8291 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8292 					  file_offset, inode,
8293 					  btrfs_submit_bio_start_direct_io,
8294 					  btrfs_submit_bio_done);
8295 		goto err;
8296 	} else if (write) {
8297 		/*
8298 		 * If we aren't doing async submit, calculate the csum of the
8299 		 * bio now.
8300 		 */
8301 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8302 		if (ret)
8303 			goto err;
8304 	} else {
8305 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8306 						     file_offset);
8307 		if (ret)
8308 			goto err;
8309 	}
8310 map:
8311 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8312 err:
8313 	return ret;
8314 }
8315 
8316 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8317 {
8318 	struct inode *inode = dip->inode;
8319 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8320 	struct bio *bio;
8321 	struct bio *orig_bio = dip->orig_bio;
8322 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8323 	u64 file_offset = dip->logical_offset;
8324 	u64 map_length;
8325 	int async_submit = 0;
8326 	u64 submit_len;
8327 	int clone_offset = 0;
8328 	int clone_len;
8329 	int ret;
8330 	blk_status_t status;
8331 
8332 	map_length = orig_bio->bi_iter.bi_size;
8333 	submit_len = map_length;
8334 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8335 			      &map_length, NULL, 0);
8336 	if (ret)
8337 		return -EIO;
8338 
8339 	if (map_length >= submit_len) {
8340 		bio = orig_bio;
8341 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8342 		goto submit;
8343 	}
8344 
8345 	/* async crcs make it difficult to collect full stripe writes. */
8346 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8347 		async_submit = 0;
8348 	else
8349 		async_submit = 1;
8350 
8351 	/* bio split */
8352 	ASSERT(map_length <= INT_MAX);
8353 	atomic_inc(&dip->pending_bios);
8354 	do {
8355 		clone_len = min_t(int, submit_len, map_length);
8356 
8357 		/*
8358 		 * This will never fail as it's passing GPF_NOFS and
8359 		 * the allocation is backed by btrfs_bioset.
8360 		 */
8361 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8362 					      clone_len);
8363 		bio->bi_private = dip;
8364 		bio->bi_end_io = btrfs_end_dio_bio;
8365 		btrfs_io_bio(bio)->logical = file_offset;
8366 
8367 		ASSERT(submit_len >= clone_len);
8368 		submit_len -= clone_len;
8369 		if (submit_len == 0)
8370 			break;
8371 
8372 		/*
8373 		 * Increase the count before we submit the bio so we know
8374 		 * the end IO handler won't happen before we increase the
8375 		 * count. Otherwise, the dip might get freed before we're
8376 		 * done setting it up.
8377 		 */
8378 		atomic_inc(&dip->pending_bios);
8379 
8380 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8381 						async_submit);
8382 		if (status) {
8383 			bio_put(bio);
8384 			atomic_dec(&dip->pending_bios);
8385 			goto out_err;
8386 		}
8387 
8388 		clone_offset += clone_len;
8389 		start_sector += clone_len >> 9;
8390 		file_offset += clone_len;
8391 
8392 		map_length = submit_len;
8393 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8394 				      start_sector << 9, &map_length, NULL, 0);
8395 		if (ret)
8396 			goto out_err;
8397 	} while (submit_len > 0);
8398 
8399 submit:
8400 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8401 	if (!status)
8402 		return 0;
8403 
8404 	bio_put(bio);
8405 out_err:
8406 	dip->errors = 1;
8407 	/*
8408 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8409 	 * perceived to be set. This ordering is ensured by the fact that an
8410 	 * atomic operations with a return value are fully ordered as per
8411 	 * atomic_t.txt
8412 	 */
8413 	if (atomic_dec_and_test(&dip->pending_bios))
8414 		bio_io_error(dip->orig_bio);
8415 
8416 	/* bio_end_io() will handle error, so we needn't return it */
8417 	return 0;
8418 }
8419 
8420 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8421 				loff_t file_offset)
8422 {
8423 	struct btrfs_dio_private *dip = NULL;
8424 	struct bio *bio = NULL;
8425 	struct btrfs_io_bio *io_bio;
8426 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8427 	int ret = 0;
8428 
8429 	bio = btrfs_bio_clone(dio_bio);
8430 
8431 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8432 	if (!dip) {
8433 		ret = -ENOMEM;
8434 		goto free_ordered;
8435 	}
8436 
8437 	dip->private = dio_bio->bi_private;
8438 	dip->inode = inode;
8439 	dip->logical_offset = file_offset;
8440 	dip->bytes = dio_bio->bi_iter.bi_size;
8441 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8442 	bio->bi_private = dip;
8443 	dip->orig_bio = bio;
8444 	dip->dio_bio = dio_bio;
8445 	atomic_set(&dip->pending_bios, 0);
8446 	io_bio = btrfs_io_bio(bio);
8447 	io_bio->logical = file_offset;
8448 
8449 	if (write) {
8450 		bio->bi_end_io = btrfs_endio_direct_write;
8451 	} else {
8452 		bio->bi_end_io = btrfs_endio_direct_read;
8453 		dip->subio_endio = btrfs_subio_endio_read;
8454 	}
8455 
8456 	/*
8457 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8458 	 * even if we fail to submit a bio, because in such case we do the
8459 	 * corresponding error handling below and it must not be done a second
8460 	 * time by btrfs_direct_IO().
8461 	 */
8462 	if (write) {
8463 		struct btrfs_dio_data *dio_data = current->journal_info;
8464 
8465 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8466 			dip->bytes;
8467 		dio_data->unsubmitted_oe_range_start =
8468 			dio_data->unsubmitted_oe_range_end;
8469 	}
8470 
8471 	ret = btrfs_submit_direct_hook(dip);
8472 	if (!ret)
8473 		return;
8474 
8475 	if (io_bio->end_io)
8476 		io_bio->end_io(io_bio, ret);
8477 
8478 free_ordered:
8479 	/*
8480 	 * If we arrived here it means either we failed to submit the dip
8481 	 * or we either failed to clone the dio_bio or failed to allocate the
8482 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8483 	 * call bio_endio against our io_bio so that we get proper resource
8484 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8485 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8486 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8487 	 */
8488 	if (bio && dip) {
8489 		bio_io_error(bio);
8490 		/*
8491 		 * The end io callbacks free our dip, do the final put on bio
8492 		 * and all the cleanup and final put for dio_bio (through
8493 		 * dio_end_io()).
8494 		 */
8495 		dip = NULL;
8496 		bio = NULL;
8497 	} else {
8498 		if (write)
8499 			__endio_write_update_ordered(inode,
8500 						file_offset,
8501 						dio_bio->bi_iter.bi_size,
8502 						false);
8503 		else
8504 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8505 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8506 
8507 		dio_bio->bi_status = BLK_STS_IOERR;
8508 		/*
8509 		 * Releases and cleans up our dio_bio, no need to bio_put()
8510 		 * nor bio_endio()/bio_io_error() against dio_bio.
8511 		 */
8512 		dio_end_io(dio_bio);
8513 	}
8514 	if (bio)
8515 		bio_put(bio);
8516 	kfree(dip);
8517 }
8518 
8519 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8520 			       const struct iov_iter *iter, loff_t offset)
8521 {
8522 	int seg;
8523 	int i;
8524 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8525 	ssize_t retval = -EINVAL;
8526 
8527 	if (offset & blocksize_mask)
8528 		goto out;
8529 
8530 	if (iov_iter_alignment(iter) & blocksize_mask)
8531 		goto out;
8532 
8533 	/* If this is a write we don't need to check anymore */
8534 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8535 		return 0;
8536 	/*
8537 	 * Check to make sure we don't have duplicate iov_base's in this
8538 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8539 	 * when reading back.
8540 	 */
8541 	for (seg = 0; seg < iter->nr_segs; seg++) {
8542 		for (i = seg + 1; i < iter->nr_segs; i++) {
8543 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8544 				goto out;
8545 		}
8546 	}
8547 	retval = 0;
8548 out:
8549 	return retval;
8550 }
8551 
8552 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8553 {
8554 	struct file *file = iocb->ki_filp;
8555 	struct inode *inode = file->f_mapping->host;
8556 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8557 	struct btrfs_dio_data dio_data = { 0 };
8558 	struct extent_changeset *data_reserved = NULL;
8559 	loff_t offset = iocb->ki_pos;
8560 	size_t count = 0;
8561 	int flags = 0;
8562 	bool wakeup = true;
8563 	bool relock = false;
8564 	ssize_t ret;
8565 
8566 	if (check_direct_IO(fs_info, iter, offset))
8567 		return 0;
8568 
8569 	inode_dio_begin(inode);
8570 
8571 	/*
8572 	 * The generic stuff only does filemap_write_and_wait_range, which
8573 	 * isn't enough if we've written compressed pages to this area, so
8574 	 * we need to flush the dirty pages again to make absolutely sure
8575 	 * that any outstanding dirty pages are on disk.
8576 	 */
8577 	count = iov_iter_count(iter);
8578 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8579 		     &BTRFS_I(inode)->runtime_flags))
8580 		filemap_fdatawrite_range(inode->i_mapping, offset,
8581 					 offset + count - 1);
8582 
8583 	if (iov_iter_rw(iter) == WRITE) {
8584 		/*
8585 		 * If the write DIO is beyond the EOF, we need update
8586 		 * the isize, but it is protected by i_mutex. So we can
8587 		 * not unlock the i_mutex at this case.
8588 		 */
8589 		if (offset + count <= inode->i_size) {
8590 			dio_data.overwrite = 1;
8591 			inode_unlock(inode);
8592 			relock = true;
8593 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8594 			ret = -EAGAIN;
8595 			goto out;
8596 		}
8597 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8598 						   offset, count);
8599 		if (ret)
8600 			goto out;
8601 
8602 		/*
8603 		 * We need to know how many extents we reserved so that we can
8604 		 * do the accounting properly if we go over the number we
8605 		 * originally calculated.  Abuse current->journal_info for this.
8606 		 */
8607 		dio_data.reserve = round_up(count,
8608 					    fs_info->sectorsize);
8609 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8610 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8611 		current->journal_info = &dio_data;
8612 		down_read(&BTRFS_I(inode)->dio_sem);
8613 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8614 				     &BTRFS_I(inode)->runtime_flags)) {
8615 		inode_dio_end(inode);
8616 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8617 		wakeup = false;
8618 	}
8619 
8620 	ret = __blockdev_direct_IO(iocb, inode,
8621 				   fs_info->fs_devices->latest_bdev,
8622 				   iter, btrfs_get_blocks_direct, NULL,
8623 				   btrfs_submit_direct, flags);
8624 	if (iov_iter_rw(iter) == WRITE) {
8625 		up_read(&BTRFS_I(inode)->dio_sem);
8626 		current->journal_info = NULL;
8627 		if (ret < 0 && ret != -EIOCBQUEUED) {
8628 			if (dio_data.reserve)
8629 				btrfs_delalloc_release_space(inode, data_reserved,
8630 					offset, dio_data.reserve, true);
8631 			/*
8632 			 * On error we might have left some ordered extents
8633 			 * without submitting corresponding bios for them, so
8634 			 * cleanup them up to avoid other tasks getting them
8635 			 * and waiting for them to complete forever.
8636 			 */
8637 			if (dio_data.unsubmitted_oe_range_start <
8638 			    dio_data.unsubmitted_oe_range_end)
8639 				__endio_write_update_ordered(inode,
8640 					dio_data.unsubmitted_oe_range_start,
8641 					dio_data.unsubmitted_oe_range_end -
8642 					dio_data.unsubmitted_oe_range_start,
8643 					false);
8644 		} else if (ret >= 0 && (size_t)ret < count)
8645 			btrfs_delalloc_release_space(inode, data_reserved,
8646 					offset, count - (size_t)ret, true);
8647 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8648 	}
8649 out:
8650 	if (wakeup)
8651 		inode_dio_end(inode);
8652 	if (relock)
8653 		inode_lock(inode);
8654 
8655 	extent_changeset_free(data_reserved);
8656 	return ret;
8657 }
8658 
8659 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8660 
8661 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8662 		__u64 start, __u64 len)
8663 {
8664 	int	ret;
8665 
8666 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8667 	if (ret)
8668 		return ret;
8669 
8670 	return extent_fiemap(inode, fieinfo, start, len);
8671 }
8672 
8673 int btrfs_readpage(struct file *file, struct page *page)
8674 {
8675 	struct extent_io_tree *tree;
8676 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8677 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8678 }
8679 
8680 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8681 {
8682 	struct inode *inode = page->mapping->host;
8683 	int ret;
8684 
8685 	if (current->flags & PF_MEMALLOC) {
8686 		redirty_page_for_writepage(wbc, page);
8687 		unlock_page(page);
8688 		return 0;
8689 	}
8690 
8691 	/*
8692 	 * If we are under memory pressure we will call this directly from the
8693 	 * VM, we need to make sure we have the inode referenced for the ordered
8694 	 * extent.  If not just return like we didn't do anything.
8695 	 */
8696 	if (!igrab(inode)) {
8697 		redirty_page_for_writepage(wbc, page);
8698 		return AOP_WRITEPAGE_ACTIVATE;
8699 	}
8700 	ret = extent_write_full_page(page, wbc);
8701 	btrfs_add_delayed_iput(inode);
8702 	return ret;
8703 }
8704 
8705 static int btrfs_writepages(struct address_space *mapping,
8706 			    struct writeback_control *wbc)
8707 {
8708 	struct extent_io_tree *tree;
8709 
8710 	tree = &BTRFS_I(mapping->host)->io_tree;
8711 	return extent_writepages(tree, mapping, wbc);
8712 }
8713 
8714 static int
8715 btrfs_readpages(struct file *file, struct address_space *mapping,
8716 		struct list_head *pages, unsigned nr_pages)
8717 {
8718 	struct extent_io_tree *tree;
8719 	tree = &BTRFS_I(mapping->host)->io_tree;
8720 	return extent_readpages(tree, mapping, pages, nr_pages);
8721 }
8722 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8723 {
8724 	struct extent_io_tree *tree;
8725 	struct extent_map_tree *map;
8726 	int ret;
8727 
8728 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8729 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8730 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8731 	if (ret == 1) {
8732 		ClearPagePrivate(page);
8733 		set_page_private(page, 0);
8734 		put_page(page);
8735 	}
8736 	return ret;
8737 }
8738 
8739 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8740 {
8741 	if (PageWriteback(page) || PageDirty(page))
8742 		return 0;
8743 	return __btrfs_releasepage(page, gfp_flags);
8744 }
8745 
8746 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8747 				 unsigned int length)
8748 {
8749 	struct inode *inode = page->mapping->host;
8750 	struct extent_io_tree *tree;
8751 	struct btrfs_ordered_extent *ordered;
8752 	struct extent_state *cached_state = NULL;
8753 	u64 page_start = page_offset(page);
8754 	u64 page_end = page_start + PAGE_SIZE - 1;
8755 	u64 start;
8756 	u64 end;
8757 	int inode_evicting = inode->i_state & I_FREEING;
8758 
8759 	/*
8760 	 * we have the page locked, so new writeback can't start,
8761 	 * and the dirty bit won't be cleared while we are here.
8762 	 *
8763 	 * Wait for IO on this page so that we can safely clear
8764 	 * the PagePrivate2 bit and do ordered accounting
8765 	 */
8766 	wait_on_page_writeback(page);
8767 
8768 	tree = &BTRFS_I(inode)->io_tree;
8769 	if (offset) {
8770 		btrfs_releasepage(page, GFP_NOFS);
8771 		return;
8772 	}
8773 
8774 	if (!inode_evicting)
8775 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8776 again:
8777 	start = page_start;
8778 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8779 					page_end - start + 1);
8780 	if (ordered) {
8781 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8782 		/*
8783 		 * IO on this page will never be started, so we need
8784 		 * to account for any ordered extents now
8785 		 */
8786 		if (!inode_evicting)
8787 			clear_extent_bit(tree, start, end,
8788 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8789 					 EXTENT_DELALLOC_NEW |
8790 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8791 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8792 		/*
8793 		 * whoever cleared the private bit is responsible
8794 		 * for the finish_ordered_io
8795 		 */
8796 		if (TestClearPagePrivate2(page)) {
8797 			struct btrfs_ordered_inode_tree *tree;
8798 			u64 new_len;
8799 
8800 			tree = &BTRFS_I(inode)->ordered_tree;
8801 
8802 			spin_lock_irq(&tree->lock);
8803 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8804 			new_len = start - ordered->file_offset;
8805 			if (new_len < ordered->truncated_len)
8806 				ordered->truncated_len = new_len;
8807 			spin_unlock_irq(&tree->lock);
8808 
8809 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8810 							   start,
8811 							   end - start + 1, 1))
8812 				btrfs_finish_ordered_io(ordered);
8813 		}
8814 		btrfs_put_ordered_extent(ordered);
8815 		if (!inode_evicting) {
8816 			cached_state = NULL;
8817 			lock_extent_bits(tree, start, end,
8818 					 &cached_state);
8819 		}
8820 
8821 		start = end + 1;
8822 		if (start < page_end)
8823 			goto again;
8824 	}
8825 
8826 	/*
8827 	 * Qgroup reserved space handler
8828 	 * Page here will be either
8829 	 * 1) Already written to disk
8830 	 *    In this case, its reserved space is released from data rsv map
8831 	 *    and will be freed by delayed_ref handler finally.
8832 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8833 	 *    space.
8834 	 * 2) Not written to disk
8835 	 *    This means the reserved space should be freed here. However,
8836 	 *    if a truncate invalidates the page (by clearing PageDirty)
8837 	 *    and the page is accounted for while allocating extent
8838 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8839 	 *    free the entire extent.
8840 	 */
8841 	if (PageDirty(page))
8842 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8843 	if (!inode_evicting) {
8844 		clear_extent_bit(tree, page_start, page_end,
8845 				 EXTENT_LOCKED | EXTENT_DIRTY |
8846 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8847 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8848 				 &cached_state);
8849 
8850 		__btrfs_releasepage(page, GFP_NOFS);
8851 	}
8852 
8853 	ClearPageChecked(page);
8854 	if (PagePrivate(page)) {
8855 		ClearPagePrivate(page);
8856 		set_page_private(page, 0);
8857 		put_page(page);
8858 	}
8859 }
8860 
8861 /*
8862  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8863  * called from a page fault handler when a page is first dirtied. Hence we must
8864  * be careful to check for EOF conditions here. We set the page up correctly
8865  * for a written page which means we get ENOSPC checking when writing into
8866  * holes and correct delalloc and unwritten extent mapping on filesystems that
8867  * support these features.
8868  *
8869  * We are not allowed to take the i_mutex here so we have to play games to
8870  * protect against truncate races as the page could now be beyond EOF.  Because
8871  * vmtruncate() writes the inode size before removing pages, once we have the
8872  * page lock we can determine safely if the page is beyond EOF. If it is not
8873  * beyond EOF, then the page is guaranteed safe against truncation until we
8874  * unlock the page.
8875  */
8876 int btrfs_page_mkwrite(struct vm_fault *vmf)
8877 {
8878 	struct page *page = vmf->page;
8879 	struct inode *inode = file_inode(vmf->vma->vm_file);
8880 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8881 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8882 	struct btrfs_ordered_extent *ordered;
8883 	struct extent_state *cached_state = NULL;
8884 	struct extent_changeset *data_reserved = NULL;
8885 	char *kaddr;
8886 	unsigned long zero_start;
8887 	loff_t size;
8888 	int ret;
8889 	int reserved = 0;
8890 	u64 reserved_space;
8891 	u64 page_start;
8892 	u64 page_end;
8893 	u64 end;
8894 
8895 	reserved_space = PAGE_SIZE;
8896 
8897 	sb_start_pagefault(inode->i_sb);
8898 	page_start = page_offset(page);
8899 	page_end = page_start + PAGE_SIZE - 1;
8900 	end = page_end;
8901 
8902 	/*
8903 	 * Reserving delalloc space after obtaining the page lock can lead to
8904 	 * deadlock. For example, if a dirty page is locked by this function
8905 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8906 	 * dirty page write out, then the btrfs_writepage() function could
8907 	 * end up waiting indefinitely to get a lock on the page currently
8908 	 * being processed by btrfs_page_mkwrite() function.
8909 	 */
8910 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8911 					   reserved_space);
8912 	if (!ret) {
8913 		ret = file_update_time(vmf->vma->vm_file);
8914 		reserved = 1;
8915 	}
8916 	if (ret) {
8917 		if (ret == -ENOMEM)
8918 			ret = VM_FAULT_OOM;
8919 		else /* -ENOSPC, -EIO, etc */
8920 			ret = VM_FAULT_SIGBUS;
8921 		if (reserved)
8922 			goto out;
8923 		goto out_noreserve;
8924 	}
8925 
8926 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8927 again:
8928 	lock_page(page);
8929 	size = i_size_read(inode);
8930 
8931 	if ((page->mapping != inode->i_mapping) ||
8932 	    (page_start >= size)) {
8933 		/* page got truncated out from underneath us */
8934 		goto out_unlock;
8935 	}
8936 	wait_on_page_writeback(page);
8937 
8938 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8939 	set_page_extent_mapped(page);
8940 
8941 	/*
8942 	 * we can't set the delalloc bits if there are pending ordered
8943 	 * extents.  Drop our locks and wait for them to finish
8944 	 */
8945 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8946 			PAGE_SIZE);
8947 	if (ordered) {
8948 		unlock_extent_cached(io_tree, page_start, page_end,
8949 				     &cached_state);
8950 		unlock_page(page);
8951 		btrfs_start_ordered_extent(inode, ordered, 1);
8952 		btrfs_put_ordered_extent(ordered);
8953 		goto again;
8954 	}
8955 
8956 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8957 		reserved_space = round_up(size - page_start,
8958 					  fs_info->sectorsize);
8959 		if (reserved_space < PAGE_SIZE) {
8960 			end = page_start + reserved_space - 1;
8961 			btrfs_delalloc_release_space(inode, data_reserved,
8962 					page_start, PAGE_SIZE - reserved_space,
8963 					true);
8964 		}
8965 	}
8966 
8967 	/*
8968 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8969 	 * faulted in, but write(2) could also dirty a page and set delalloc
8970 	 * bits, thus in this case for space account reason, we still need to
8971 	 * clear any delalloc bits within this page range since we have to
8972 	 * reserve data&meta space before lock_page() (see above comments).
8973 	 */
8974 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8975 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8976 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8977 			  0, 0, &cached_state);
8978 
8979 	ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8980 					&cached_state, 0);
8981 	if (ret) {
8982 		unlock_extent_cached(io_tree, page_start, page_end,
8983 				     &cached_state);
8984 		ret = VM_FAULT_SIGBUS;
8985 		goto out_unlock;
8986 	}
8987 	ret = 0;
8988 
8989 	/* page is wholly or partially inside EOF */
8990 	if (page_start + PAGE_SIZE > size)
8991 		zero_start = size & ~PAGE_MASK;
8992 	else
8993 		zero_start = PAGE_SIZE;
8994 
8995 	if (zero_start != PAGE_SIZE) {
8996 		kaddr = kmap(page);
8997 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8998 		flush_dcache_page(page);
8999 		kunmap(page);
9000 	}
9001 	ClearPageChecked(page);
9002 	set_page_dirty(page);
9003 	SetPageUptodate(page);
9004 
9005 	BTRFS_I(inode)->last_trans = fs_info->generation;
9006 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9007 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9008 
9009 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9010 
9011 out_unlock:
9012 	if (!ret) {
9013 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
9014 		sb_end_pagefault(inode->i_sb);
9015 		extent_changeset_free(data_reserved);
9016 		return VM_FAULT_LOCKED;
9017 	}
9018 	unlock_page(page);
9019 out:
9020 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
9021 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9022 				     reserved_space, (ret != 0));
9023 out_noreserve:
9024 	sb_end_pagefault(inode->i_sb);
9025 	extent_changeset_free(data_reserved);
9026 	return ret;
9027 }
9028 
9029 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9030 {
9031 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9032 	struct btrfs_root *root = BTRFS_I(inode)->root;
9033 	struct btrfs_block_rsv *rsv;
9034 	int ret = 0;
9035 	int err = 0;
9036 	struct btrfs_trans_handle *trans;
9037 	u64 mask = fs_info->sectorsize - 1;
9038 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9039 
9040 	if (!skip_writeback) {
9041 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9042 					       (u64)-1);
9043 		if (ret)
9044 			return ret;
9045 	}
9046 
9047 	/*
9048 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9049 	 * 3 things going on here
9050 	 *
9051 	 * 1) We need to reserve space for our orphan item and the space to
9052 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9053 	 * orphan item because we didn't reserve space to remove it.
9054 	 *
9055 	 * 2) We need to reserve space to update our inode.
9056 	 *
9057 	 * 3) We need to have something to cache all the space that is going to
9058 	 * be free'd up by the truncate operation, but also have some slack
9059 	 * space reserved in case it uses space during the truncate (thank you
9060 	 * very much snapshotting).
9061 	 *
9062 	 * And we need these to all be separate.  The fact is we can use a lot of
9063 	 * space doing the truncate, and we have no earthly idea how much space
9064 	 * we will use, so we need the truncate reservation to be separate so it
9065 	 * doesn't end up using space reserved for updating the inode or
9066 	 * removing the orphan item.  We also need to be able to stop the
9067 	 * transaction and start a new one, which means we need to be able to
9068 	 * update the inode several times, and we have no idea of knowing how
9069 	 * many times that will be, so we can't just reserve 1 item for the
9070 	 * entirety of the operation, so that has to be done separately as well.
9071 	 * Then there is the orphan item, which does indeed need to be held on
9072 	 * to for the whole operation, and we need nobody to touch this reserved
9073 	 * space except the orphan code.
9074 	 *
9075 	 * So that leaves us with
9076 	 *
9077 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9078 	 * 2) rsv - for the truncate reservation, which we will steal from the
9079 	 * transaction reservation.
9080 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9081 	 * updating the inode.
9082 	 */
9083 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9084 	if (!rsv)
9085 		return -ENOMEM;
9086 	rsv->size = min_size;
9087 	rsv->failfast = 1;
9088 
9089 	/*
9090 	 * 1 for the truncate slack space
9091 	 * 1 for updating the inode.
9092 	 */
9093 	trans = btrfs_start_transaction(root, 2);
9094 	if (IS_ERR(trans)) {
9095 		err = PTR_ERR(trans);
9096 		goto out;
9097 	}
9098 
9099 	/* Migrate the slack space for the truncate to our reserve */
9100 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9101 				      min_size, 0);
9102 	BUG_ON(ret);
9103 
9104 	/*
9105 	 * So if we truncate and then write and fsync we normally would just
9106 	 * write the extents that changed, which is a problem if we need to
9107 	 * first truncate that entire inode.  So set this flag so we write out
9108 	 * all of the extents in the inode to the sync log so we're completely
9109 	 * safe.
9110 	 */
9111 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9112 	trans->block_rsv = rsv;
9113 
9114 	while (1) {
9115 		ret = btrfs_truncate_inode_items(trans, root, inode,
9116 						 inode->i_size,
9117 						 BTRFS_EXTENT_DATA_KEY);
9118 		trans->block_rsv = &fs_info->trans_block_rsv;
9119 		if (ret != -ENOSPC && ret != -EAGAIN) {
9120 			err = ret;
9121 			break;
9122 		}
9123 
9124 		ret = btrfs_update_inode(trans, root, inode);
9125 		if (ret) {
9126 			err = ret;
9127 			break;
9128 		}
9129 
9130 		btrfs_end_transaction(trans);
9131 		btrfs_btree_balance_dirty(fs_info);
9132 
9133 		trans = btrfs_start_transaction(root, 2);
9134 		if (IS_ERR(trans)) {
9135 			ret = err = PTR_ERR(trans);
9136 			trans = NULL;
9137 			break;
9138 		}
9139 
9140 		btrfs_block_rsv_release(fs_info, rsv, -1);
9141 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9142 					      rsv, min_size, 0);
9143 		BUG_ON(ret);	/* shouldn't happen */
9144 		trans->block_rsv = rsv;
9145 	}
9146 
9147 	/*
9148 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9149 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9150 	 * we've truncated everything except the last little bit, and can do
9151 	 * btrfs_truncate_block and then update the disk_i_size.
9152 	 */
9153 	if (ret == NEED_TRUNCATE_BLOCK) {
9154 		btrfs_end_transaction(trans);
9155 		btrfs_btree_balance_dirty(fs_info);
9156 
9157 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9158 		if (ret)
9159 			goto out;
9160 		trans = btrfs_start_transaction(root, 1);
9161 		if (IS_ERR(trans)) {
9162 			ret = PTR_ERR(trans);
9163 			goto out;
9164 		}
9165 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9166 	}
9167 
9168 	if (ret == 0 && inode->i_nlink > 0) {
9169 		trans->block_rsv = root->orphan_block_rsv;
9170 		ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9171 		if (ret)
9172 			err = ret;
9173 	}
9174 
9175 	if (trans) {
9176 		trans->block_rsv = &fs_info->trans_block_rsv;
9177 		ret = btrfs_update_inode(trans, root, inode);
9178 		if (ret && !err)
9179 			err = ret;
9180 
9181 		ret = btrfs_end_transaction(trans);
9182 		btrfs_btree_balance_dirty(fs_info);
9183 	}
9184 out:
9185 	btrfs_free_block_rsv(fs_info, rsv);
9186 
9187 	if (ret && !err)
9188 		err = ret;
9189 
9190 	return err;
9191 }
9192 
9193 /*
9194  * create a new subvolume directory/inode (helper for the ioctl).
9195  */
9196 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9197 			     struct btrfs_root *new_root,
9198 			     struct btrfs_root *parent_root,
9199 			     u64 new_dirid)
9200 {
9201 	struct inode *inode;
9202 	int err;
9203 	u64 index = 0;
9204 
9205 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9206 				new_dirid, new_dirid,
9207 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9208 				&index);
9209 	if (IS_ERR(inode))
9210 		return PTR_ERR(inode);
9211 	inode->i_op = &btrfs_dir_inode_operations;
9212 	inode->i_fop = &btrfs_dir_file_operations;
9213 
9214 	set_nlink(inode, 1);
9215 	btrfs_i_size_write(BTRFS_I(inode), 0);
9216 	unlock_new_inode(inode);
9217 
9218 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9219 	if (err)
9220 		btrfs_err(new_root->fs_info,
9221 			  "error inheriting subvolume %llu properties: %d",
9222 			  new_root->root_key.objectid, err);
9223 
9224 	err = btrfs_update_inode(trans, new_root, inode);
9225 
9226 	iput(inode);
9227 	return err;
9228 }
9229 
9230 struct inode *btrfs_alloc_inode(struct super_block *sb)
9231 {
9232 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9233 	struct btrfs_inode *ei;
9234 	struct inode *inode;
9235 
9236 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9237 	if (!ei)
9238 		return NULL;
9239 
9240 	ei->root = NULL;
9241 	ei->generation = 0;
9242 	ei->last_trans = 0;
9243 	ei->last_sub_trans = 0;
9244 	ei->logged_trans = 0;
9245 	ei->delalloc_bytes = 0;
9246 	ei->new_delalloc_bytes = 0;
9247 	ei->defrag_bytes = 0;
9248 	ei->disk_i_size = 0;
9249 	ei->flags = 0;
9250 	ei->csum_bytes = 0;
9251 	ei->index_cnt = (u64)-1;
9252 	ei->dir_index = 0;
9253 	ei->last_unlink_trans = 0;
9254 	ei->last_log_commit = 0;
9255 
9256 	spin_lock_init(&ei->lock);
9257 	ei->outstanding_extents = 0;
9258 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9259 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9260 					      BTRFS_BLOCK_RSV_DELALLOC);
9261 	ei->runtime_flags = 0;
9262 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9263 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9264 
9265 	ei->delayed_node = NULL;
9266 
9267 	ei->i_otime.tv_sec = 0;
9268 	ei->i_otime.tv_nsec = 0;
9269 
9270 	inode = &ei->vfs_inode;
9271 	extent_map_tree_init(&ei->extent_tree);
9272 	extent_io_tree_init(&ei->io_tree, inode);
9273 	extent_io_tree_init(&ei->io_failure_tree, inode);
9274 	ei->io_tree.track_uptodate = 1;
9275 	ei->io_failure_tree.track_uptodate = 1;
9276 	atomic_set(&ei->sync_writers, 0);
9277 	mutex_init(&ei->log_mutex);
9278 	mutex_init(&ei->delalloc_mutex);
9279 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9280 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9281 	INIT_LIST_HEAD(&ei->delayed_iput);
9282 	RB_CLEAR_NODE(&ei->rb_node);
9283 	init_rwsem(&ei->dio_sem);
9284 
9285 	return inode;
9286 }
9287 
9288 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9289 void btrfs_test_destroy_inode(struct inode *inode)
9290 {
9291 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9292 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9293 }
9294 #endif
9295 
9296 static void btrfs_i_callback(struct rcu_head *head)
9297 {
9298 	struct inode *inode = container_of(head, struct inode, i_rcu);
9299 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9300 }
9301 
9302 void btrfs_destroy_inode(struct inode *inode)
9303 {
9304 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9305 	struct btrfs_ordered_extent *ordered;
9306 	struct btrfs_root *root = BTRFS_I(inode)->root;
9307 
9308 	WARN_ON(!hlist_empty(&inode->i_dentry));
9309 	WARN_ON(inode->i_data.nrpages);
9310 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9311 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9312 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9313 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9314 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9315 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9316 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9317 
9318 	/*
9319 	 * This can happen where we create an inode, but somebody else also
9320 	 * created the same inode and we need to destroy the one we already
9321 	 * created.
9322 	 */
9323 	if (!root)
9324 		goto free;
9325 
9326 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9327 		     &BTRFS_I(inode)->runtime_flags)) {
9328 		btrfs_info(fs_info, "inode %llu still on the orphan list",
9329 			   btrfs_ino(BTRFS_I(inode)));
9330 		atomic_dec(&root->orphan_inodes);
9331 	}
9332 
9333 	while (1) {
9334 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9335 		if (!ordered)
9336 			break;
9337 		else {
9338 			btrfs_err(fs_info,
9339 				  "found ordered extent %llu %llu on inode cleanup",
9340 				  ordered->file_offset, ordered->len);
9341 			btrfs_remove_ordered_extent(inode, ordered);
9342 			btrfs_put_ordered_extent(ordered);
9343 			btrfs_put_ordered_extent(ordered);
9344 		}
9345 	}
9346 	btrfs_qgroup_check_reserved_leak(inode);
9347 	inode_tree_del(inode);
9348 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9349 free:
9350 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9351 }
9352 
9353 int btrfs_drop_inode(struct inode *inode)
9354 {
9355 	struct btrfs_root *root = BTRFS_I(inode)->root;
9356 
9357 	if (root == NULL)
9358 		return 1;
9359 
9360 	/* the snap/subvol tree is on deleting */
9361 	if (btrfs_root_refs(&root->root_item) == 0)
9362 		return 1;
9363 	else
9364 		return generic_drop_inode(inode);
9365 }
9366 
9367 static void init_once(void *foo)
9368 {
9369 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9370 
9371 	inode_init_once(&ei->vfs_inode);
9372 }
9373 
9374 void __cold btrfs_destroy_cachep(void)
9375 {
9376 	/*
9377 	 * Make sure all delayed rcu free inodes are flushed before we
9378 	 * destroy cache.
9379 	 */
9380 	rcu_barrier();
9381 	kmem_cache_destroy(btrfs_inode_cachep);
9382 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9383 	kmem_cache_destroy(btrfs_path_cachep);
9384 	kmem_cache_destroy(btrfs_free_space_cachep);
9385 }
9386 
9387 int __init btrfs_init_cachep(void)
9388 {
9389 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9390 			sizeof(struct btrfs_inode), 0,
9391 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9392 			init_once);
9393 	if (!btrfs_inode_cachep)
9394 		goto fail;
9395 
9396 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9397 			sizeof(struct btrfs_trans_handle), 0,
9398 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9399 	if (!btrfs_trans_handle_cachep)
9400 		goto fail;
9401 
9402 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9403 			sizeof(struct btrfs_path), 0,
9404 			SLAB_MEM_SPREAD, NULL);
9405 	if (!btrfs_path_cachep)
9406 		goto fail;
9407 
9408 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9409 			sizeof(struct btrfs_free_space), 0,
9410 			SLAB_MEM_SPREAD, NULL);
9411 	if (!btrfs_free_space_cachep)
9412 		goto fail;
9413 
9414 	return 0;
9415 fail:
9416 	btrfs_destroy_cachep();
9417 	return -ENOMEM;
9418 }
9419 
9420 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9421 			 u32 request_mask, unsigned int flags)
9422 {
9423 	u64 delalloc_bytes;
9424 	struct inode *inode = d_inode(path->dentry);
9425 	u32 blocksize = inode->i_sb->s_blocksize;
9426 	u32 bi_flags = BTRFS_I(inode)->flags;
9427 
9428 	stat->result_mask |= STATX_BTIME;
9429 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9430 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9431 	if (bi_flags & BTRFS_INODE_APPEND)
9432 		stat->attributes |= STATX_ATTR_APPEND;
9433 	if (bi_flags & BTRFS_INODE_COMPRESS)
9434 		stat->attributes |= STATX_ATTR_COMPRESSED;
9435 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9436 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9437 	if (bi_flags & BTRFS_INODE_NODUMP)
9438 		stat->attributes |= STATX_ATTR_NODUMP;
9439 
9440 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9441 				  STATX_ATTR_COMPRESSED |
9442 				  STATX_ATTR_IMMUTABLE |
9443 				  STATX_ATTR_NODUMP);
9444 
9445 	generic_fillattr(inode, stat);
9446 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9447 
9448 	spin_lock(&BTRFS_I(inode)->lock);
9449 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9450 	spin_unlock(&BTRFS_I(inode)->lock);
9451 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9452 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9453 	return 0;
9454 }
9455 
9456 static int btrfs_rename_exchange(struct inode *old_dir,
9457 			      struct dentry *old_dentry,
9458 			      struct inode *new_dir,
9459 			      struct dentry *new_dentry)
9460 {
9461 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9462 	struct btrfs_trans_handle *trans;
9463 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9464 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9465 	struct inode *new_inode = new_dentry->d_inode;
9466 	struct inode *old_inode = old_dentry->d_inode;
9467 	struct timespec ctime = current_time(old_inode);
9468 	struct dentry *parent;
9469 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9470 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9471 	u64 old_idx = 0;
9472 	u64 new_idx = 0;
9473 	u64 root_objectid;
9474 	int ret;
9475 	bool root_log_pinned = false;
9476 	bool dest_log_pinned = false;
9477 
9478 	/* we only allow rename subvolume link between subvolumes */
9479 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9480 		return -EXDEV;
9481 
9482 	/* close the race window with snapshot create/destroy ioctl */
9483 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9484 		down_read(&fs_info->subvol_sem);
9485 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9486 		down_read(&fs_info->subvol_sem);
9487 
9488 	/*
9489 	 * We want to reserve the absolute worst case amount of items.  So if
9490 	 * both inodes are subvols and we need to unlink them then that would
9491 	 * require 4 item modifications, but if they are both normal inodes it
9492 	 * would require 5 item modifications, so we'll assume their normal
9493 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9494 	 * should cover the worst case number of items we'll modify.
9495 	 */
9496 	trans = btrfs_start_transaction(root, 12);
9497 	if (IS_ERR(trans)) {
9498 		ret = PTR_ERR(trans);
9499 		goto out_notrans;
9500 	}
9501 
9502 	/*
9503 	 * We need to find a free sequence number both in the source and
9504 	 * in the destination directory for the exchange.
9505 	 */
9506 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9507 	if (ret)
9508 		goto out_fail;
9509 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9510 	if (ret)
9511 		goto out_fail;
9512 
9513 	BTRFS_I(old_inode)->dir_index = 0ULL;
9514 	BTRFS_I(new_inode)->dir_index = 0ULL;
9515 
9516 	/* Reference for the source. */
9517 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9518 		/* force full log commit if subvolume involved. */
9519 		btrfs_set_log_full_commit(fs_info, trans);
9520 	} else {
9521 		btrfs_pin_log_trans(root);
9522 		root_log_pinned = true;
9523 		ret = btrfs_insert_inode_ref(trans, dest,
9524 					     new_dentry->d_name.name,
9525 					     new_dentry->d_name.len,
9526 					     old_ino,
9527 					     btrfs_ino(BTRFS_I(new_dir)),
9528 					     old_idx);
9529 		if (ret)
9530 			goto out_fail;
9531 	}
9532 
9533 	/* And now for the dest. */
9534 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9535 		/* force full log commit if subvolume involved. */
9536 		btrfs_set_log_full_commit(fs_info, trans);
9537 	} else {
9538 		btrfs_pin_log_trans(dest);
9539 		dest_log_pinned = true;
9540 		ret = btrfs_insert_inode_ref(trans, root,
9541 					     old_dentry->d_name.name,
9542 					     old_dentry->d_name.len,
9543 					     new_ino,
9544 					     btrfs_ino(BTRFS_I(old_dir)),
9545 					     new_idx);
9546 		if (ret)
9547 			goto out_fail;
9548 	}
9549 
9550 	/* Update inode version and ctime/mtime. */
9551 	inode_inc_iversion(old_dir);
9552 	inode_inc_iversion(new_dir);
9553 	inode_inc_iversion(old_inode);
9554 	inode_inc_iversion(new_inode);
9555 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9556 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9557 	old_inode->i_ctime = ctime;
9558 	new_inode->i_ctime = ctime;
9559 
9560 	if (old_dentry->d_parent != new_dentry->d_parent) {
9561 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9562 				BTRFS_I(old_inode), 1);
9563 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9564 				BTRFS_I(new_inode), 1);
9565 	}
9566 
9567 	/* src is a subvolume */
9568 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9569 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9570 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9571 					  root_objectid,
9572 					  old_dentry->d_name.name,
9573 					  old_dentry->d_name.len);
9574 	} else { /* src is an inode */
9575 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9576 					   BTRFS_I(old_dentry->d_inode),
9577 					   old_dentry->d_name.name,
9578 					   old_dentry->d_name.len);
9579 		if (!ret)
9580 			ret = btrfs_update_inode(trans, root, old_inode);
9581 	}
9582 	if (ret) {
9583 		btrfs_abort_transaction(trans, ret);
9584 		goto out_fail;
9585 	}
9586 
9587 	/* dest is a subvolume */
9588 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9589 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9590 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9591 					  root_objectid,
9592 					  new_dentry->d_name.name,
9593 					  new_dentry->d_name.len);
9594 	} else { /* dest is an inode */
9595 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9596 					   BTRFS_I(new_dentry->d_inode),
9597 					   new_dentry->d_name.name,
9598 					   new_dentry->d_name.len);
9599 		if (!ret)
9600 			ret = btrfs_update_inode(trans, dest, new_inode);
9601 	}
9602 	if (ret) {
9603 		btrfs_abort_transaction(trans, ret);
9604 		goto out_fail;
9605 	}
9606 
9607 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9608 			     new_dentry->d_name.name,
9609 			     new_dentry->d_name.len, 0, old_idx);
9610 	if (ret) {
9611 		btrfs_abort_transaction(trans, ret);
9612 		goto out_fail;
9613 	}
9614 
9615 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9616 			     old_dentry->d_name.name,
9617 			     old_dentry->d_name.len, 0, new_idx);
9618 	if (ret) {
9619 		btrfs_abort_transaction(trans, ret);
9620 		goto out_fail;
9621 	}
9622 
9623 	if (old_inode->i_nlink == 1)
9624 		BTRFS_I(old_inode)->dir_index = old_idx;
9625 	if (new_inode->i_nlink == 1)
9626 		BTRFS_I(new_inode)->dir_index = new_idx;
9627 
9628 	if (root_log_pinned) {
9629 		parent = new_dentry->d_parent;
9630 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9631 				parent);
9632 		btrfs_end_log_trans(root);
9633 		root_log_pinned = false;
9634 	}
9635 	if (dest_log_pinned) {
9636 		parent = old_dentry->d_parent;
9637 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9638 				parent);
9639 		btrfs_end_log_trans(dest);
9640 		dest_log_pinned = false;
9641 	}
9642 out_fail:
9643 	/*
9644 	 * If we have pinned a log and an error happened, we unpin tasks
9645 	 * trying to sync the log and force them to fallback to a transaction
9646 	 * commit if the log currently contains any of the inodes involved in
9647 	 * this rename operation (to ensure we do not persist a log with an
9648 	 * inconsistent state for any of these inodes or leading to any
9649 	 * inconsistencies when replayed). If the transaction was aborted, the
9650 	 * abortion reason is propagated to userspace when attempting to commit
9651 	 * the transaction. If the log does not contain any of these inodes, we
9652 	 * allow the tasks to sync it.
9653 	 */
9654 	if (ret && (root_log_pinned || dest_log_pinned)) {
9655 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9656 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9657 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9658 		    (new_inode &&
9659 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9660 			btrfs_set_log_full_commit(fs_info, trans);
9661 
9662 		if (root_log_pinned) {
9663 			btrfs_end_log_trans(root);
9664 			root_log_pinned = false;
9665 		}
9666 		if (dest_log_pinned) {
9667 			btrfs_end_log_trans(dest);
9668 			dest_log_pinned = false;
9669 		}
9670 	}
9671 	ret = btrfs_end_transaction(trans);
9672 out_notrans:
9673 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9674 		up_read(&fs_info->subvol_sem);
9675 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9676 		up_read(&fs_info->subvol_sem);
9677 
9678 	return ret;
9679 }
9680 
9681 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9682 				     struct btrfs_root *root,
9683 				     struct inode *dir,
9684 				     struct dentry *dentry)
9685 {
9686 	int ret;
9687 	struct inode *inode;
9688 	u64 objectid;
9689 	u64 index;
9690 
9691 	ret = btrfs_find_free_ino(root, &objectid);
9692 	if (ret)
9693 		return ret;
9694 
9695 	inode = btrfs_new_inode(trans, root, dir,
9696 				dentry->d_name.name,
9697 				dentry->d_name.len,
9698 				btrfs_ino(BTRFS_I(dir)),
9699 				objectid,
9700 				S_IFCHR | WHITEOUT_MODE,
9701 				&index);
9702 
9703 	if (IS_ERR(inode)) {
9704 		ret = PTR_ERR(inode);
9705 		return ret;
9706 	}
9707 
9708 	inode->i_op = &btrfs_special_inode_operations;
9709 	init_special_inode(inode, inode->i_mode,
9710 		WHITEOUT_DEV);
9711 
9712 	ret = btrfs_init_inode_security(trans, inode, dir,
9713 				&dentry->d_name);
9714 	if (ret)
9715 		goto out;
9716 
9717 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9718 				BTRFS_I(inode), 0, index);
9719 	if (ret)
9720 		goto out;
9721 
9722 	ret = btrfs_update_inode(trans, root, inode);
9723 out:
9724 	unlock_new_inode(inode);
9725 	if (ret)
9726 		inode_dec_link_count(inode);
9727 	iput(inode);
9728 
9729 	return ret;
9730 }
9731 
9732 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9733 			   struct inode *new_dir, struct dentry *new_dentry,
9734 			   unsigned int flags)
9735 {
9736 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9737 	struct btrfs_trans_handle *trans;
9738 	unsigned int trans_num_items;
9739 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9740 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9741 	struct inode *new_inode = d_inode(new_dentry);
9742 	struct inode *old_inode = d_inode(old_dentry);
9743 	u64 index = 0;
9744 	u64 root_objectid;
9745 	int ret;
9746 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9747 	bool log_pinned = false;
9748 
9749 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9750 		return -EPERM;
9751 
9752 	/* we only allow rename subvolume link between subvolumes */
9753 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9754 		return -EXDEV;
9755 
9756 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9757 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9758 		return -ENOTEMPTY;
9759 
9760 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9761 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9762 		return -ENOTEMPTY;
9763 
9764 
9765 	/* check for collisions, even if the  name isn't there */
9766 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9767 			     new_dentry->d_name.name,
9768 			     new_dentry->d_name.len);
9769 
9770 	if (ret) {
9771 		if (ret == -EEXIST) {
9772 			/* we shouldn't get
9773 			 * eexist without a new_inode */
9774 			if (WARN_ON(!new_inode)) {
9775 				return ret;
9776 			}
9777 		} else {
9778 			/* maybe -EOVERFLOW */
9779 			return ret;
9780 		}
9781 	}
9782 	ret = 0;
9783 
9784 	/*
9785 	 * we're using rename to replace one file with another.  Start IO on it
9786 	 * now so  we don't add too much work to the end of the transaction
9787 	 */
9788 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9789 		filemap_flush(old_inode->i_mapping);
9790 
9791 	/* close the racy window with snapshot create/destroy ioctl */
9792 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9793 		down_read(&fs_info->subvol_sem);
9794 	/*
9795 	 * We want to reserve the absolute worst case amount of items.  So if
9796 	 * both inodes are subvols and we need to unlink them then that would
9797 	 * require 4 item modifications, but if they are both normal inodes it
9798 	 * would require 5 item modifications, so we'll assume they are normal
9799 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9800 	 * should cover the worst case number of items we'll modify.
9801 	 * If our rename has the whiteout flag, we need more 5 units for the
9802 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9803 	 * when selinux is enabled).
9804 	 */
9805 	trans_num_items = 11;
9806 	if (flags & RENAME_WHITEOUT)
9807 		trans_num_items += 5;
9808 	trans = btrfs_start_transaction(root, trans_num_items);
9809 	if (IS_ERR(trans)) {
9810 		ret = PTR_ERR(trans);
9811 		goto out_notrans;
9812 	}
9813 
9814 	if (dest != root)
9815 		btrfs_record_root_in_trans(trans, dest);
9816 
9817 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9818 	if (ret)
9819 		goto out_fail;
9820 
9821 	BTRFS_I(old_inode)->dir_index = 0ULL;
9822 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9823 		/* force full log commit if subvolume involved. */
9824 		btrfs_set_log_full_commit(fs_info, trans);
9825 	} else {
9826 		btrfs_pin_log_trans(root);
9827 		log_pinned = true;
9828 		ret = btrfs_insert_inode_ref(trans, dest,
9829 					     new_dentry->d_name.name,
9830 					     new_dentry->d_name.len,
9831 					     old_ino,
9832 					     btrfs_ino(BTRFS_I(new_dir)), index);
9833 		if (ret)
9834 			goto out_fail;
9835 	}
9836 
9837 	inode_inc_iversion(old_dir);
9838 	inode_inc_iversion(new_dir);
9839 	inode_inc_iversion(old_inode);
9840 	old_dir->i_ctime = old_dir->i_mtime =
9841 	new_dir->i_ctime = new_dir->i_mtime =
9842 	old_inode->i_ctime = current_time(old_dir);
9843 
9844 	if (old_dentry->d_parent != new_dentry->d_parent)
9845 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9846 				BTRFS_I(old_inode), 1);
9847 
9848 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9849 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9850 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9851 					old_dentry->d_name.name,
9852 					old_dentry->d_name.len);
9853 	} else {
9854 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9855 					BTRFS_I(d_inode(old_dentry)),
9856 					old_dentry->d_name.name,
9857 					old_dentry->d_name.len);
9858 		if (!ret)
9859 			ret = btrfs_update_inode(trans, root, old_inode);
9860 	}
9861 	if (ret) {
9862 		btrfs_abort_transaction(trans, ret);
9863 		goto out_fail;
9864 	}
9865 
9866 	if (new_inode) {
9867 		inode_inc_iversion(new_inode);
9868 		new_inode->i_ctime = current_time(new_inode);
9869 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9870 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9871 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9872 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9873 						root_objectid,
9874 						new_dentry->d_name.name,
9875 						new_dentry->d_name.len);
9876 			BUG_ON(new_inode->i_nlink == 0);
9877 		} else {
9878 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9879 						 BTRFS_I(d_inode(new_dentry)),
9880 						 new_dentry->d_name.name,
9881 						 new_dentry->d_name.len);
9882 		}
9883 		if (!ret && new_inode->i_nlink == 0)
9884 			ret = btrfs_orphan_add(trans,
9885 					BTRFS_I(d_inode(new_dentry)));
9886 		if (ret) {
9887 			btrfs_abort_transaction(trans, ret);
9888 			goto out_fail;
9889 		}
9890 	}
9891 
9892 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9893 			     new_dentry->d_name.name,
9894 			     new_dentry->d_name.len, 0, index);
9895 	if (ret) {
9896 		btrfs_abort_transaction(trans, ret);
9897 		goto out_fail;
9898 	}
9899 
9900 	if (old_inode->i_nlink == 1)
9901 		BTRFS_I(old_inode)->dir_index = index;
9902 
9903 	if (log_pinned) {
9904 		struct dentry *parent = new_dentry->d_parent;
9905 
9906 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9907 				parent);
9908 		btrfs_end_log_trans(root);
9909 		log_pinned = false;
9910 	}
9911 
9912 	if (flags & RENAME_WHITEOUT) {
9913 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9914 						old_dentry);
9915 
9916 		if (ret) {
9917 			btrfs_abort_transaction(trans, ret);
9918 			goto out_fail;
9919 		}
9920 	}
9921 out_fail:
9922 	/*
9923 	 * If we have pinned the log and an error happened, we unpin tasks
9924 	 * trying to sync the log and force them to fallback to a transaction
9925 	 * commit if the log currently contains any of the inodes involved in
9926 	 * this rename operation (to ensure we do not persist a log with an
9927 	 * inconsistent state for any of these inodes or leading to any
9928 	 * inconsistencies when replayed). If the transaction was aborted, the
9929 	 * abortion reason is propagated to userspace when attempting to commit
9930 	 * the transaction. If the log does not contain any of these inodes, we
9931 	 * allow the tasks to sync it.
9932 	 */
9933 	if (ret && log_pinned) {
9934 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9935 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9936 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9937 		    (new_inode &&
9938 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9939 			btrfs_set_log_full_commit(fs_info, trans);
9940 
9941 		btrfs_end_log_trans(root);
9942 		log_pinned = false;
9943 	}
9944 	btrfs_end_transaction(trans);
9945 out_notrans:
9946 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9947 		up_read(&fs_info->subvol_sem);
9948 
9949 	return ret;
9950 }
9951 
9952 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9953 			 struct inode *new_dir, struct dentry *new_dentry,
9954 			 unsigned int flags)
9955 {
9956 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9957 		return -EINVAL;
9958 
9959 	if (flags & RENAME_EXCHANGE)
9960 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9961 					  new_dentry);
9962 
9963 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9964 }
9965 
9966 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9967 {
9968 	struct btrfs_delalloc_work *delalloc_work;
9969 	struct inode *inode;
9970 
9971 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9972 				     work);
9973 	inode = delalloc_work->inode;
9974 	filemap_flush(inode->i_mapping);
9975 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9976 				&BTRFS_I(inode)->runtime_flags))
9977 		filemap_flush(inode->i_mapping);
9978 
9979 	if (delalloc_work->delay_iput)
9980 		btrfs_add_delayed_iput(inode);
9981 	else
9982 		iput(inode);
9983 	complete(&delalloc_work->completion);
9984 }
9985 
9986 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9987 						    int delay_iput)
9988 {
9989 	struct btrfs_delalloc_work *work;
9990 
9991 	work = kmalloc(sizeof(*work), GFP_NOFS);
9992 	if (!work)
9993 		return NULL;
9994 
9995 	init_completion(&work->completion);
9996 	INIT_LIST_HEAD(&work->list);
9997 	work->inode = inode;
9998 	work->delay_iput = delay_iput;
9999 	WARN_ON_ONCE(!inode);
10000 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10001 			btrfs_run_delalloc_work, NULL, NULL);
10002 
10003 	return work;
10004 }
10005 
10006 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10007 {
10008 	wait_for_completion(&work->completion);
10009 	kfree(work);
10010 }
10011 
10012 /*
10013  * some fairly slow code that needs optimization. This walks the list
10014  * of all the inodes with pending delalloc and forces them to disk.
10015  */
10016 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10017 				   int nr)
10018 {
10019 	struct btrfs_inode *binode;
10020 	struct inode *inode;
10021 	struct btrfs_delalloc_work *work, *next;
10022 	struct list_head works;
10023 	struct list_head splice;
10024 	int ret = 0;
10025 
10026 	INIT_LIST_HEAD(&works);
10027 	INIT_LIST_HEAD(&splice);
10028 
10029 	mutex_lock(&root->delalloc_mutex);
10030 	spin_lock(&root->delalloc_lock);
10031 	list_splice_init(&root->delalloc_inodes, &splice);
10032 	while (!list_empty(&splice)) {
10033 		binode = list_entry(splice.next, struct btrfs_inode,
10034 				    delalloc_inodes);
10035 
10036 		list_move_tail(&binode->delalloc_inodes,
10037 			       &root->delalloc_inodes);
10038 		inode = igrab(&binode->vfs_inode);
10039 		if (!inode) {
10040 			cond_resched_lock(&root->delalloc_lock);
10041 			continue;
10042 		}
10043 		spin_unlock(&root->delalloc_lock);
10044 
10045 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10046 		if (!work) {
10047 			if (delay_iput)
10048 				btrfs_add_delayed_iput(inode);
10049 			else
10050 				iput(inode);
10051 			ret = -ENOMEM;
10052 			goto out;
10053 		}
10054 		list_add_tail(&work->list, &works);
10055 		btrfs_queue_work(root->fs_info->flush_workers,
10056 				 &work->work);
10057 		ret++;
10058 		if (nr != -1 && ret >= nr)
10059 			goto out;
10060 		cond_resched();
10061 		spin_lock(&root->delalloc_lock);
10062 	}
10063 	spin_unlock(&root->delalloc_lock);
10064 
10065 out:
10066 	list_for_each_entry_safe(work, next, &works, list) {
10067 		list_del_init(&work->list);
10068 		btrfs_wait_and_free_delalloc_work(work);
10069 	}
10070 
10071 	if (!list_empty_careful(&splice)) {
10072 		spin_lock(&root->delalloc_lock);
10073 		list_splice_tail(&splice, &root->delalloc_inodes);
10074 		spin_unlock(&root->delalloc_lock);
10075 	}
10076 	mutex_unlock(&root->delalloc_mutex);
10077 	return ret;
10078 }
10079 
10080 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10081 {
10082 	struct btrfs_fs_info *fs_info = root->fs_info;
10083 	int ret;
10084 
10085 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10086 		return -EROFS;
10087 
10088 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10089 	if (ret > 0)
10090 		ret = 0;
10091 	return ret;
10092 }
10093 
10094 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10095 			       int nr)
10096 {
10097 	struct btrfs_root *root;
10098 	struct list_head splice;
10099 	int ret;
10100 
10101 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10102 		return -EROFS;
10103 
10104 	INIT_LIST_HEAD(&splice);
10105 
10106 	mutex_lock(&fs_info->delalloc_root_mutex);
10107 	spin_lock(&fs_info->delalloc_root_lock);
10108 	list_splice_init(&fs_info->delalloc_roots, &splice);
10109 	while (!list_empty(&splice) && nr) {
10110 		root = list_first_entry(&splice, struct btrfs_root,
10111 					delalloc_root);
10112 		root = btrfs_grab_fs_root(root);
10113 		BUG_ON(!root);
10114 		list_move_tail(&root->delalloc_root,
10115 			       &fs_info->delalloc_roots);
10116 		spin_unlock(&fs_info->delalloc_root_lock);
10117 
10118 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10119 		btrfs_put_fs_root(root);
10120 		if (ret < 0)
10121 			goto out;
10122 
10123 		if (nr != -1) {
10124 			nr -= ret;
10125 			WARN_ON(nr < 0);
10126 		}
10127 		spin_lock(&fs_info->delalloc_root_lock);
10128 	}
10129 	spin_unlock(&fs_info->delalloc_root_lock);
10130 
10131 	ret = 0;
10132 out:
10133 	if (!list_empty_careful(&splice)) {
10134 		spin_lock(&fs_info->delalloc_root_lock);
10135 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10136 		spin_unlock(&fs_info->delalloc_root_lock);
10137 	}
10138 	mutex_unlock(&fs_info->delalloc_root_mutex);
10139 	return ret;
10140 }
10141 
10142 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10143 			 const char *symname)
10144 {
10145 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10146 	struct btrfs_trans_handle *trans;
10147 	struct btrfs_root *root = BTRFS_I(dir)->root;
10148 	struct btrfs_path *path;
10149 	struct btrfs_key key;
10150 	struct inode *inode = NULL;
10151 	int err;
10152 	int drop_inode = 0;
10153 	u64 objectid;
10154 	u64 index = 0;
10155 	int name_len;
10156 	int datasize;
10157 	unsigned long ptr;
10158 	struct btrfs_file_extent_item *ei;
10159 	struct extent_buffer *leaf;
10160 
10161 	name_len = strlen(symname);
10162 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10163 		return -ENAMETOOLONG;
10164 
10165 	/*
10166 	 * 2 items for inode item and ref
10167 	 * 2 items for dir items
10168 	 * 1 item for updating parent inode item
10169 	 * 1 item for the inline extent item
10170 	 * 1 item for xattr if selinux is on
10171 	 */
10172 	trans = btrfs_start_transaction(root, 7);
10173 	if (IS_ERR(trans))
10174 		return PTR_ERR(trans);
10175 
10176 	err = btrfs_find_free_ino(root, &objectid);
10177 	if (err)
10178 		goto out_unlock;
10179 
10180 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10181 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10182 				objectid, S_IFLNK|S_IRWXUGO, &index);
10183 	if (IS_ERR(inode)) {
10184 		err = PTR_ERR(inode);
10185 		goto out_unlock;
10186 	}
10187 
10188 	/*
10189 	* If the active LSM wants to access the inode during
10190 	* d_instantiate it needs these. Smack checks to see
10191 	* if the filesystem supports xattrs by looking at the
10192 	* ops vector.
10193 	*/
10194 	inode->i_fop = &btrfs_file_operations;
10195 	inode->i_op = &btrfs_file_inode_operations;
10196 	inode->i_mapping->a_ops = &btrfs_aops;
10197 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10198 
10199 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10200 	if (err)
10201 		goto out_unlock_inode;
10202 
10203 	path = btrfs_alloc_path();
10204 	if (!path) {
10205 		err = -ENOMEM;
10206 		goto out_unlock_inode;
10207 	}
10208 	key.objectid = btrfs_ino(BTRFS_I(inode));
10209 	key.offset = 0;
10210 	key.type = BTRFS_EXTENT_DATA_KEY;
10211 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10212 	err = btrfs_insert_empty_item(trans, root, path, &key,
10213 				      datasize);
10214 	if (err) {
10215 		btrfs_free_path(path);
10216 		goto out_unlock_inode;
10217 	}
10218 	leaf = path->nodes[0];
10219 	ei = btrfs_item_ptr(leaf, path->slots[0],
10220 			    struct btrfs_file_extent_item);
10221 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10222 	btrfs_set_file_extent_type(leaf, ei,
10223 				   BTRFS_FILE_EXTENT_INLINE);
10224 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10225 	btrfs_set_file_extent_compression(leaf, ei, 0);
10226 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10227 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10228 
10229 	ptr = btrfs_file_extent_inline_start(ei);
10230 	write_extent_buffer(leaf, symname, ptr, name_len);
10231 	btrfs_mark_buffer_dirty(leaf);
10232 	btrfs_free_path(path);
10233 
10234 	inode->i_op = &btrfs_symlink_inode_operations;
10235 	inode_nohighmem(inode);
10236 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10237 	inode_set_bytes(inode, name_len);
10238 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10239 	err = btrfs_update_inode(trans, root, inode);
10240 	/*
10241 	 * Last step, add directory indexes for our symlink inode. This is the
10242 	 * last step to avoid extra cleanup of these indexes if an error happens
10243 	 * elsewhere above.
10244 	 */
10245 	if (!err)
10246 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10247 				BTRFS_I(inode), 0, index);
10248 	if (err) {
10249 		drop_inode = 1;
10250 		goto out_unlock_inode;
10251 	}
10252 
10253 	unlock_new_inode(inode);
10254 	d_instantiate(dentry, inode);
10255 
10256 out_unlock:
10257 	btrfs_end_transaction(trans);
10258 	if (drop_inode) {
10259 		inode_dec_link_count(inode);
10260 		iput(inode);
10261 	}
10262 	btrfs_btree_balance_dirty(fs_info);
10263 	return err;
10264 
10265 out_unlock_inode:
10266 	drop_inode = 1;
10267 	unlock_new_inode(inode);
10268 	goto out_unlock;
10269 }
10270 
10271 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10272 				       u64 start, u64 num_bytes, u64 min_size,
10273 				       loff_t actual_len, u64 *alloc_hint,
10274 				       struct btrfs_trans_handle *trans)
10275 {
10276 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10277 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10278 	struct extent_map *em;
10279 	struct btrfs_root *root = BTRFS_I(inode)->root;
10280 	struct btrfs_key ins;
10281 	u64 cur_offset = start;
10282 	u64 i_size;
10283 	u64 cur_bytes;
10284 	u64 last_alloc = (u64)-1;
10285 	int ret = 0;
10286 	bool own_trans = true;
10287 	u64 end = start + num_bytes - 1;
10288 
10289 	if (trans)
10290 		own_trans = false;
10291 	while (num_bytes > 0) {
10292 		if (own_trans) {
10293 			trans = btrfs_start_transaction(root, 3);
10294 			if (IS_ERR(trans)) {
10295 				ret = PTR_ERR(trans);
10296 				break;
10297 			}
10298 		}
10299 
10300 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10301 		cur_bytes = max(cur_bytes, min_size);
10302 		/*
10303 		 * If we are severely fragmented we could end up with really
10304 		 * small allocations, so if the allocator is returning small
10305 		 * chunks lets make its job easier by only searching for those
10306 		 * sized chunks.
10307 		 */
10308 		cur_bytes = min(cur_bytes, last_alloc);
10309 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10310 				min_size, 0, *alloc_hint, &ins, 1, 0);
10311 		if (ret) {
10312 			if (own_trans)
10313 				btrfs_end_transaction(trans);
10314 			break;
10315 		}
10316 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10317 
10318 		last_alloc = ins.offset;
10319 		ret = insert_reserved_file_extent(trans, inode,
10320 						  cur_offset, ins.objectid,
10321 						  ins.offset, ins.offset,
10322 						  ins.offset, 0, 0, 0,
10323 						  BTRFS_FILE_EXTENT_PREALLOC);
10324 		if (ret) {
10325 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10326 						   ins.offset, 0);
10327 			btrfs_abort_transaction(trans, ret);
10328 			if (own_trans)
10329 				btrfs_end_transaction(trans);
10330 			break;
10331 		}
10332 
10333 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10334 					cur_offset + ins.offset -1, 0);
10335 
10336 		em = alloc_extent_map();
10337 		if (!em) {
10338 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10339 				&BTRFS_I(inode)->runtime_flags);
10340 			goto next;
10341 		}
10342 
10343 		em->start = cur_offset;
10344 		em->orig_start = cur_offset;
10345 		em->len = ins.offset;
10346 		em->block_start = ins.objectid;
10347 		em->block_len = ins.offset;
10348 		em->orig_block_len = ins.offset;
10349 		em->ram_bytes = ins.offset;
10350 		em->bdev = fs_info->fs_devices->latest_bdev;
10351 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10352 		em->generation = trans->transid;
10353 
10354 		while (1) {
10355 			write_lock(&em_tree->lock);
10356 			ret = add_extent_mapping(em_tree, em, 1);
10357 			write_unlock(&em_tree->lock);
10358 			if (ret != -EEXIST)
10359 				break;
10360 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10361 						cur_offset + ins.offset - 1,
10362 						0);
10363 		}
10364 		free_extent_map(em);
10365 next:
10366 		num_bytes -= ins.offset;
10367 		cur_offset += ins.offset;
10368 		*alloc_hint = ins.objectid + ins.offset;
10369 
10370 		inode_inc_iversion(inode);
10371 		inode->i_ctime = current_time(inode);
10372 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10373 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10374 		    (actual_len > inode->i_size) &&
10375 		    (cur_offset > inode->i_size)) {
10376 			if (cur_offset > actual_len)
10377 				i_size = actual_len;
10378 			else
10379 				i_size = cur_offset;
10380 			i_size_write(inode, i_size);
10381 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10382 		}
10383 
10384 		ret = btrfs_update_inode(trans, root, inode);
10385 
10386 		if (ret) {
10387 			btrfs_abort_transaction(trans, ret);
10388 			if (own_trans)
10389 				btrfs_end_transaction(trans);
10390 			break;
10391 		}
10392 
10393 		if (own_trans)
10394 			btrfs_end_transaction(trans);
10395 	}
10396 	if (cur_offset < end)
10397 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10398 			end - cur_offset + 1);
10399 	return ret;
10400 }
10401 
10402 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10403 			      u64 start, u64 num_bytes, u64 min_size,
10404 			      loff_t actual_len, u64 *alloc_hint)
10405 {
10406 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10407 					   min_size, actual_len, alloc_hint,
10408 					   NULL);
10409 }
10410 
10411 int btrfs_prealloc_file_range_trans(struct inode *inode,
10412 				    struct btrfs_trans_handle *trans, int mode,
10413 				    u64 start, u64 num_bytes, u64 min_size,
10414 				    loff_t actual_len, u64 *alloc_hint)
10415 {
10416 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10417 					   min_size, actual_len, alloc_hint, trans);
10418 }
10419 
10420 static int btrfs_set_page_dirty(struct page *page)
10421 {
10422 	return __set_page_dirty_nobuffers(page);
10423 }
10424 
10425 static int btrfs_permission(struct inode *inode, int mask)
10426 {
10427 	struct btrfs_root *root = BTRFS_I(inode)->root;
10428 	umode_t mode = inode->i_mode;
10429 
10430 	if (mask & MAY_WRITE &&
10431 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10432 		if (btrfs_root_readonly(root))
10433 			return -EROFS;
10434 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10435 			return -EACCES;
10436 	}
10437 	return generic_permission(inode, mask);
10438 }
10439 
10440 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10441 {
10442 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10443 	struct btrfs_trans_handle *trans;
10444 	struct btrfs_root *root = BTRFS_I(dir)->root;
10445 	struct inode *inode = NULL;
10446 	u64 objectid;
10447 	u64 index;
10448 	int ret = 0;
10449 
10450 	/*
10451 	 * 5 units required for adding orphan entry
10452 	 */
10453 	trans = btrfs_start_transaction(root, 5);
10454 	if (IS_ERR(trans))
10455 		return PTR_ERR(trans);
10456 
10457 	ret = btrfs_find_free_ino(root, &objectid);
10458 	if (ret)
10459 		goto out;
10460 
10461 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10462 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10463 	if (IS_ERR(inode)) {
10464 		ret = PTR_ERR(inode);
10465 		inode = NULL;
10466 		goto out;
10467 	}
10468 
10469 	inode->i_fop = &btrfs_file_operations;
10470 	inode->i_op = &btrfs_file_inode_operations;
10471 
10472 	inode->i_mapping->a_ops = &btrfs_aops;
10473 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10474 
10475 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10476 	if (ret)
10477 		goto out_inode;
10478 
10479 	ret = btrfs_update_inode(trans, root, inode);
10480 	if (ret)
10481 		goto out_inode;
10482 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10483 	if (ret)
10484 		goto out_inode;
10485 
10486 	/*
10487 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10488 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10489 	 * through:
10490 	 *
10491 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10492 	 */
10493 	set_nlink(inode, 1);
10494 	unlock_new_inode(inode);
10495 	d_tmpfile(dentry, inode);
10496 	mark_inode_dirty(inode);
10497 
10498 out:
10499 	btrfs_end_transaction(trans);
10500 	if (ret)
10501 		iput(inode);
10502 	btrfs_btree_balance_dirty(fs_info);
10503 	return ret;
10504 
10505 out_inode:
10506 	unlock_new_inode(inode);
10507 	goto out;
10508 
10509 }
10510 
10511 __attribute__((const))
10512 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10513 {
10514 	return -EAGAIN;
10515 }
10516 
10517 static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10518 {
10519 	struct inode *inode = private_data;
10520 	return btrfs_sb(inode->i_sb);
10521 }
10522 
10523 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10524 					u64 start, u64 end)
10525 {
10526 	struct inode *inode = private_data;
10527 	u64 isize;
10528 
10529 	isize = i_size_read(inode);
10530 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10531 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10532 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10533 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10534 	}
10535 }
10536 
10537 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10538 {
10539 	struct inode *inode = private_data;
10540 	unsigned long index = start >> PAGE_SHIFT;
10541 	unsigned long end_index = end >> PAGE_SHIFT;
10542 	struct page *page;
10543 
10544 	while (index <= end_index) {
10545 		page = find_get_page(inode->i_mapping, index);
10546 		ASSERT(page); /* Pages should be in the extent_io_tree */
10547 		set_page_writeback(page);
10548 		put_page(page);
10549 		index++;
10550 	}
10551 }
10552 
10553 static const struct inode_operations btrfs_dir_inode_operations = {
10554 	.getattr	= btrfs_getattr,
10555 	.lookup		= btrfs_lookup,
10556 	.create		= btrfs_create,
10557 	.unlink		= btrfs_unlink,
10558 	.link		= btrfs_link,
10559 	.mkdir		= btrfs_mkdir,
10560 	.rmdir		= btrfs_rmdir,
10561 	.rename		= btrfs_rename2,
10562 	.symlink	= btrfs_symlink,
10563 	.setattr	= btrfs_setattr,
10564 	.mknod		= btrfs_mknod,
10565 	.listxattr	= btrfs_listxattr,
10566 	.permission	= btrfs_permission,
10567 	.get_acl	= btrfs_get_acl,
10568 	.set_acl	= btrfs_set_acl,
10569 	.update_time	= btrfs_update_time,
10570 	.tmpfile        = btrfs_tmpfile,
10571 };
10572 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10573 	.lookup		= btrfs_lookup,
10574 	.permission	= btrfs_permission,
10575 	.update_time	= btrfs_update_time,
10576 };
10577 
10578 static const struct file_operations btrfs_dir_file_operations = {
10579 	.llseek		= generic_file_llseek,
10580 	.read		= generic_read_dir,
10581 	.iterate_shared	= btrfs_real_readdir,
10582 	.open		= btrfs_opendir,
10583 	.unlocked_ioctl	= btrfs_ioctl,
10584 #ifdef CONFIG_COMPAT
10585 	.compat_ioctl	= btrfs_compat_ioctl,
10586 #endif
10587 	.release        = btrfs_release_file,
10588 	.fsync		= btrfs_sync_file,
10589 };
10590 
10591 static const struct extent_io_ops btrfs_extent_io_ops = {
10592 	/* mandatory callbacks */
10593 	.submit_bio_hook = btrfs_submit_bio_hook,
10594 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10595 	.merge_bio_hook = btrfs_merge_bio_hook,
10596 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10597 	.tree_fs_info = iotree_fs_info,
10598 	.set_range_writeback = btrfs_set_range_writeback,
10599 
10600 	/* optional callbacks */
10601 	.fill_delalloc = run_delalloc_range,
10602 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10603 	.writepage_start_hook = btrfs_writepage_start_hook,
10604 	.set_bit_hook = btrfs_set_bit_hook,
10605 	.clear_bit_hook = btrfs_clear_bit_hook,
10606 	.merge_extent_hook = btrfs_merge_extent_hook,
10607 	.split_extent_hook = btrfs_split_extent_hook,
10608 	.check_extent_io_range = btrfs_check_extent_io_range,
10609 };
10610 
10611 /*
10612  * btrfs doesn't support the bmap operation because swapfiles
10613  * use bmap to make a mapping of extents in the file.  They assume
10614  * these extents won't change over the life of the file and they
10615  * use the bmap result to do IO directly to the drive.
10616  *
10617  * the btrfs bmap call would return logical addresses that aren't
10618  * suitable for IO and they also will change frequently as COW
10619  * operations happen.  So, swapfile + btrfs == corruption.
10620  *
10621  * For now we're avoiding this by dropping bmap.
10622  */
10623 static const struct address_space_operations btrfs_aops = {
10624 	.readpage	= btrfs_readpage,
10625 	.writepage	= btrfs_writepage,
10626 	.writepages	= btrfs_writepages,
10627 	.readpages	= btrfs_readpages,
10628 	.direct_IO	= btrfs_direct_IO,
10629 	.invalidatepage = btrfs_invalidatepage,
10630 	.releasepage	= btrfs_releasepage,
10631 	.set_page_dirty	= btrfs_set_page_dirty,
10632 	.error_remove_page = generic_error_remove_page,
10633 };
10634 
10635 static const struct address_space_operations btrfs_symlink_aops = {
10636 	.readpage	= btrfs_readpage,
10637 	.writepage	= btrfs_writepage,
10638 	.invalidatepage = btrfs_invalidatepage,
10639 	.releasepage	= btrfs_releasepage,
10640 };
10641 
10642 static const struct inode_operations btrfs_file_inode_operations = {
10643 	.getattr	= btrfs_getattr,
10644 	.setattr	= btrfs_setattr,
10645 	.listxattr      = btrfs_listxattr,
10646 	.permission	= btrfs_permission,
10647 	.fiemap		= btrfs_fiemap,
10648 	.get_acl	= btrfs_get_acl,
10649 	.set_acl	= btrfs_set_acl,
10650 	.update_time	= btrfs_update_time,
10651 };
10652 static const struct inode_operations btrfs_special_inode_operations = {
10653 	.getattr	= btrfs_getattr,
10654 	.setattr	= btrfs_setattr,
10655 	.permission	= btrfs_permission,
10656 	.listxattr	= btrfs_listxattr,
10657 	.get_acl	= btrfs_get_acl,
10658 	.set_acl	= btrfs_set_acl,
10659 	.update_time	= btrfs_update_time,
10660 };
10661 static const struct inode_operations btrfs_symlink_inode_operations = {
10662 	.get_link	= page_get_link,
10663 	.getattr	= btrfs_getattr,
10664 	.setattr	= btrfs_setattr,
10665 	.permission	= btrfs_permission,
10666 	.listxattr	= btrfs_listxattr,
10667 	.update_time	= btrfs_update_time,
10668 };
10669 
10670 const struct dentry_operations btrfs_dentry_operations = {
10671 	.d_delete	= btrfs_dentry_delete,
10672 	.d_release	= btrfs_dentry_release,
10673 };
10674