1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/buffer_head.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "inode-map.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "delalloc-space.h" 52 #include "block-group.h" 53 #include "space-info.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 struct btrfs_dio_data { 61 u64 reserve; 62 u64 unsubmitted_oe_range_start; 63 u64 unsubmitted_oe_range_end; 64 int overwrite; 65 }; 66 67 static const struct inode_operations btrfs_dir_inode_operations; 68 static const struct inode_operations btrfs_symlink_inode_operations; 69 static const struct inode_operations btrfs_special_inode_operations; 70 static const struct inode_operations btrfs_file_inode_operations; 71 static const struct address_space_operations btrfs_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 static const struct extent_io_ops btrfs_extent_io_ops; 74 75 static struct kmem_cache *btrfs_inode_cachep; 76 struct kmem_cache *btrfs_trans_handle_cachep; 77 struct kmem_cache *btrfs_path_cachep; 78 struct kmem_cache *btrfs_free_space_cachep; 79 struct kmem_cache *btrfs_free_space_bitmap_cachep; 80 81 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 82 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 84 static noinline int cow_file_range(struct btrfs_inode *inode, 85 struct page *locked_page, 86 u64 start, u64 end, int *page_started, 87 unsigned long *nr_written, int unlock); 88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 89 u64 len, u64 orig_start, u64 block_start, 90 u64 block_len, u64 orig_block_len, 91 u64 ram_bytes, int compress_type, 92 int type); 93 94 static void __endio_write_update_ordered(struct btrfs_inode *inode, 95 const u64 offset, const u64 bytes, 96 const bool uptodate); 97 98 /* 99 * Cleanup all submitted ordered extents in specified range to handle errors 100 * from the btrfs_run_delalloc_range() callback. 101 * 102 * NOTE: caller must ensure that when an error happens, it can not call 103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 105 * to be released, which we want to happen only when finishing the ordered 106 * extent (btrfs_finish_ordered_io()). 107 */ 108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 109 struct page *locked_page, 110 u64 offset, u64 bytes) 111 { 112 unsigned long index = offset >> PAGE_SHIFT; 113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 114 u64 page_start = page_offset(locked_page); 115 u64 page_end = page_start + PAGE_SIZE - 1; 116 117 struct page *page; 118 119 while (index <= end_index) { 120 page = find_get_page(inode->vfs_inode.i_mapping, index); 121 index++; 122 if (!page) 123 continue; 124 ClearPagePrivate2(page); 125 put_page(page); 126 } 127 128 /* 129 * In case this page belongs to the delalloc range being instantiated 130 * then skip it, since the first page of a range is going to be 131 * properly cleaned up by the caller of run_delalloc_range 132 */ 133 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 134 offset += PAGE_SIZE; 135 bytes -= PAGE_SIZE; 136 } 137 138 return __endio_write_update_ordered(inode, offset, bytes, false); 139 } 140 141 static int btrfs_dirty_inode(struct inode *inode); 142 143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 144 void btrfs_test_inode_set_ops(struct inode *inode) 145 { 146 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 147 } 148 #endif 149 150 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 151 struct inode *inode, struct inode *dir, 152 const struct qstr *qstr) 153 { 154 int err; 155 156 err = btrfs_init_acl(trans, inode, dir); 157 if (!err) 158 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 159 return err; 160 } 161 162 /* 163 * this does all the hard work for inserting an inline extent into 164 * the btree. The caller should have done a btrfs_drop_extents so that 165 * no overlapping inline items exist in the btree 166 */ 167 static int insert_inline_extent(struct btrfs_trans_handle *trans, 168 struct btrfs_path *path, int extent_inserted, 169 struct btrfs_root *root, struct inode *inode, 170 u64 start, size_t size, size_t compressed_size, 171 int compress_type, 172 struct page **compressed_pages) 173 { 174 struct extent_buffer *leaf; 175 struct page *page = NULL; 176 char *kaddr; 177 unsigned long ptr; 178 struct btrfs_file_extent_item *ei; 179 int ret; 180 size_t cur_size = size; 181 unsigned long offset; 182 183 ASSERT((compressed_size > 0 && compressed_pages) || 184 (compressed_size == 0 && !compressed_pages)); 185 186 if (compressed_size && compressed_pages) 187 cur_size = compressed_size; 188 189 inode_add_bytes(inode, size); 190 191 if (!extent_inserted) { 192 struct btrfs_key key; 193 size_t datasize; 194 195 key.objectid = btrfs_ino(BTRFS_I(inode)); 196 key.offset = start; 197 key.type = BTRFS_EXTENT_DATA_KEY; 198 199 datasize = btrfs_file_extent_calc_inline_size(cur_size); 200 path->leave_spinning = 1; 201 ret = btrfs_insert_empty_item(trans, root, path, &key, 202 datasize); 203 if (ret) 204 goto fail; 205 } 206 leaf = path->nodes[0]; 207 ei = btrfs_item_ptr(leaf, path->slots[0], 208 struct btrfs_file_extent_item); 209 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 210 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 211 btrfs_set_file_extent_encryption(leaf, ei, 0); 212 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 213 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 214 ptr = btrfs_file_extent_inline_start(ei); 215 216 if (compress_type != BTRFS_COMPRESS_NONE) { 217 struct page *cpage; 218 int i = 0; 219 while (compressed_size > 0) { 220 cpage = compressed_pages[i]; 221 cur_size = min_t(unsigned long, compressed_size, 222 PAGE_SIZE); 223 224 kaddr = kmap_atomic(cpage); 225 write_extent_buffer(leaf, kaddr, ptr, cur_size); 226 kunmap_atomic(kaddr); 227 228 i++; 229 ptr += cur_size; 230 compressed_size -= cur_size; 231 } 232 btrfs_set_file_extent_compression(leaf, ei, 233 compress_type); 234 } else { 235 page = find_get_page(inode->i_mapping, 236 start >> PAGE_SHIFT); 237 btrfs_set_file_extent_compression(leaf, ei, 0); 238 kaddr = kmap_atomic(page); 239 offset = offset_in_page(start); 240 write_extent_buffer(leaf, kaddr + offset, ptr, size); 241 kunmap_atomic(kaddr); 242 put_page(page); 243 } 244 btrfs_mark_buffer_dirty(leaf); 245 btrfs_release_path(path); 246 247 /* 248 * We align size to sectorsize for inline extents just for simplicity 249 * sake. 250 */ 251 size = ALIGN(size, root->fs_info->sectorsize); 252 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 253 if (ret) 254 goto fail; 255 256 /* 257 * we're an inline extent, so nobody can 258 * extend the file past i_size without locking 259 * a page we already have locked. 260 * 261 * We must do any isize and inode updates 262 * before we unlock the pages. Otherwise we 263 * could end up racing with unlink. 264 */ 265 BTRFS_I(inode)->disk_i_size = inode->i_size; 266 ret = btrfs_update_inode(trans, root, inode); 267 268 fail: 269 return ret; 270 } 271 272 273 /* 274 * conditionally insert an inline extent into the file. This 275 * does the checks required to make sure the data is small enough 276 * to fit as an inline extent. 277 */ 278 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 279 u64 end, size_t compressed_size, 280 int compress_type, 281 struct page **compressed_pages) 282 { 283 struct btrfs_root *root = inode->root; 284 struct btrfs_fs_info *fs_info = root->fs_info; 285 struct btrfs_trans_handle *trans; 286 u64 isize = i_size_read(&inode->vfs_inode); 287 u64 actual_end = min(end + 1, isize); 288 u64 inline_len = actual_end - start; 289 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 290 u64 data_len = inline_len; 291 int ret; 292 struct btrfs_path *path; 293 int extent_inserted = 0; 294 u32 extent_item_size; 295 296 if (compressed_size) 297 data_len = compressed_size; 298 299 if (start > 0 || 300 actual_end > fs_info->sectorsize || 301 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 302 (!compressed_size && 303 (actual_end & (fs_info->sectorsize - 1)) == 0) || 304 end + 1 < isize || 305 data_len > fs_info->max_inline) { 306 return 1; 307 } 308 309 path = btrfs_alloc_path(); 310 if (!path) 311 return -ENOMEM; 312 313 trans = btrfs_join_transaction(root); 314 if (IS_ERR(trans)) { 315 btrfs_free_path(path); 316 return PTR_ERR(trans); 317 } 318 trans->block_rsv = &inode->block_rsv; 319 320 if (compressed_size && compressed_pages) 321 extent_item_size = btrfs_file_extent_calc_inline_size( 322 compressed_size); 323 else 324 extent_item_size = btrfs_file_extent_calc_inline_size( 325 inline_len); 326 327 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end, 328 NULL, 1, 1, extent_item_size, 329 &extent_inserted); 330 if (ret) { 331 btrfs_abort_transaction(trans, ret); 332 goto out; 333 } 334 335 if (isize > actual_end) 336 inline_len = min_t(u64, isize, actual_end); 337 ret = insert_inline_extent(trans, path, extent_inserted, 338 root, &inode->vfs_inode, start, 339 inline_len, compressed_size, 340 compress_type, compressed_pages); 341 if (ret && ret != -ENOSPC) { 342 btrfs_abort_transaction(trans, ret); 343 goto out; 344 } else if (ret == -ENOSPC) { 345 ret = 1; 346 goto out; 347 } 348 349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 350 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 351 out: 352 /* 353 * Don't forget to free the reserved space, as for inlined extent 354 * it won't count as data extent, free them directly here. 355 * And at reserve time, it's always aligned to page size, so 356 * just free one page here. 357 */ 358 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 359 btrfs_free_path(path); 360 btrfs_end_transaction(trans); 361 return ret; 362 } 363 364 struct async_extent { 365 u64 start; 366 u64 ram_size; 367 u64 compressed_size; 368 struct page **pages; 369 unsigned long nr_pages; 370 int compress_type; 371 struct list_head list; 372 }; 373 374 struct async_chunk { 375 struct inode *inode; 376 struct page *locked_page; 377 u64 start; 378 u64 end; 379 unsigned int write_flags; 380 struct list_head extents; 381 struct cgroup_subsys_state *blkcg_css; 382 struct btrfs_work work; 383 atomic_t *pending; 384 }; 385 386 struct async_cow { 387 /* Number of chunks in flight; must be first in the structure */ 388 atomic_t num_chunks; 389 struct async_chunk chunks[]; 390 }; 391 392 static noinline int add_async_extent(struct async_chunk *cow, 393 u64 start, u64 ram_size, 394 u64 compressed_size, 395 struct page **pages, 396 unsigned long nr_pages, 397 int compress_type) 398 { 399 struct async_extent *async_extent; 400 401 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 402 BUG_ON(!async_extent); /* -ENOMEM */ 403 async_extent->start = start; 404 async_extent->ram_size = ram_size; 405 async_extent->compressed_size = compressed_size; 406 async_extent->pages = pages; 407 async_extent->nr_pages = nr_pages; 408 async_extent->compress_type = compress_type; 409 list_add_tail(&async_extent->list, &cow->extents); 410 return 0; 411 } 412 413 /* 414 * Check if the inode has flags compatible with compression 415 */ 416 static inline bool inode_can_compress(struct btrfs_inode *inode) 417 { 418 if (inode->flags & BTRFS_INODE_NODATACOW || 419 inode->flags & BTRFS_INODE_NODATASUM) 420 return false; 421 return true; 422 } 423 424 /* 425 * Check if the inode needs to be submitted to compression, based on mount 426 * options, defragmentation, properties or heuristics. 427 */ 428 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 429 u64 end) 430 { 431 struct btrfs_fs_info *fs_info = inode->root->fs_info; 432 433 if (!inode_can_compress(inode)) { 434 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 435 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 436 btrfs_ino(inode)); 437 return 0; 438 } 439 /* force compress */ 440 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 441 return 1; 442 /* defrag ioctl */ 443 if (inode->defrag_compress) 444 return 1; 445 /* bad compression ratios */ 446 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 447 return 0; 448 if (btrfs_test_opt(fs_info, COMPRESS) || 449 inode->flags & BTRFS_INODE_COMPRESS || 450 inode->prop_compress) 451 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 452 return 0; 453 } 454 455 static inline void inode_should_defrag(struct btrfs_inode *inode, 456 u64 start, u64 end, u64 num_bytes, u64 small_write) 457 { 458 /* If this is a small write inside eof, kick off a defrag */ 459 if (num_bytes < small_write && 460 (start > 0 || end + 1 < inode->disk_i_size)) 461 btrfs_add_inode_defrag(NULL, inode); 462 } 463 464 /* 465 * we create compressed extents in two phases. The first 466 * phase compresses a range of pages that have already been 467 * locked (both pages and state bits are locked). 468 * 469 * This is done inside an ordered work queue, and the compression 470 * is spread across many cpus. The actual IO submission is step 471 * two, and the ordered work queue takes care of making sure that 472 * happens in the same order things were put onto the queue by 473 * writepages and friends. 474 * 475 * If this code finds it can't get good compression, it puts an 476 * entry onto the work queue to write the uncompressed bytes. This 477 * makes sure that both compressed inodes and uncompressed inodes 478 * are written in the same order that the flusher thread sent them 479 * down. 480 */ 481 static noinline int compress_file_range(struct async_chunk *async_chunk) 482 { 483 struct inode *inode = async_chunk->inode; 484 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 485 u64 blocksize = fs_info->sectorsize; 486 u64 start = async_chunk->start; 487 u64 end = async_chunk->end; 488 u64 actual_end; 489 u64 i_size; 490 int ret = 0; 491 struct page **pages = NULL; 492 unsigned long nr_pages; 493 unsigned long total_compressed = 0; 494 unsigned long total_in = 0; 495 int i; 496 int will_compress; 497 int compress_type = fs_info->compress_type; 498 int compressed_extents = 0; 499 int redirty = 0; 500 501 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 502 SZ_16K); 503 504 /* 505 * We need to save i_size before now because it could change in between 506 * us evaluating the size and assigning it. This is because we lock and 507 * unlock the page in truncate and fallocate, and then modify the i_size 508 * later on. 509 * 510 * The barriers are to emulate READ_ONCE, remove that once i_size_read 511 * does that for us. 512 */ 513 barrier(); 514 i_size = i_size_read(inode); 515 barrier(); 516 actual_end = min_t(u64, i_size, end + 1); 517 again: 518 will_compress = 0; 519 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 520 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 521 nr_pages = min_t(unsigned long, nr_pages, 522 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 523 524 /* 525 * we don't want to send crud past the end of i_size through 526 * compression, that's just a waste of CPU time. So, if the 527 * end of the file is before the start of our current 528 * requested range of bytes, we bail out to the uncompressed 529 * cleanup code that can deal with all of this. 530 * 531 * It isn't really the fastest way to fix things, but this is a 532 * very uncommon corner. 533 */ 534 if (actual_end <= start) 535 goto cleanup_and_bail_uncompressed; 536 537 total_compressed = actual_end - start; 538 539 /* 540 * skip compression for a small file range(<=blocksize) that 541 * isn't an inline extent, since it doesn't save disk space at all. 542 */ 543 if (total_compressed <= blocksize && 544 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 545 goto cleanup_and_bail_uncompressed; 546 547 total_compressed = min_t(unsigned long, total_compressed, 548 BTRFS_MAX_UNCOMPRESSED); 549 total_in = 0; 550 ret = 0; 551 552 /* 553 * we do compression for mount -o compress and when the 554 * inode has not been flagged as nocompress. This flag can 555 * change at any time if we discover bad compression ratios. 556 */ 557 if (inode_need_compress(BTRFS_I(inode), start, end)) { 558 WARN_ON(pages); 559 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 560 if (!pages) { 561 /* just bail out to the uncompressed code */ 562 nr_pages = 0; 563 goto cont; 564 } 565 566 if (BTRFS_I(inode)->defrag_compress) 567 compress_type = BTRFS_I(inode)->defrag_compress; 568 else if (BTRFS_I(inode)->prop_compress) 569 compress_type = BTRFS_I(inode)->prop_compress; 570 571 /* 572 * we need to call clear_page_dirty_for_io on each 573 * page in the range. Otherwise applications with the file 574 * mmap'd can wander in and change the page contents while 575 * we are compressing them. 576 * 577 * If the compression fails for any reason, we set the pages 578 * dirty again later on. 579 * 580 * Note that the remaining part is redirtied, the start pointer 581 * has moved, the end is the original one. 582 */ 583 if (!redirty) { 584 extent_range_clear_dirty_for_io(inode, start, end); 585 redirty = 1; 586 } 587 588 /* Compression level is applied here and only here */ 589 ret = btrfs_compress_pages( 590 compress_type | (fs_info->compress_level << 4), 591 inode->i_mapping, start, 592 pages, 593 &nr_pages, 594 &total_in, 595 &total_compressed); 596 597 if (!ret) { 598 unsigned long offset = offset_in_page(total_compressed); 599 struct page *page = pages[nr_pages - 1]; 600 char *kaddr; 601 602 /* zero the tail end of the last page, we might be 603 * sending it down to disk 604 */ 605 if (offset) { 606 kaddr = kmap_atomic(page); 607 memset(kaddr + offset, 0, 608 PAGE_SIZE - offset); 609 kunmap_atomic(kaddr); 610 } 611 will_compress = 1; 612 } 613 } 614 cont: 615 if (start == 0) { 616 /* lets try to make an inline extent */ 617 if (ret || total_in < actual_end) { 618 /* we didn't compress the entire range, try 619 * to make an uncompressed inline extent. 620 */ 621 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 622 0, BTRFS_COMPRESS_NONE, 623 NULL); 624 } else { 625 /* try making a compressed inline extent */ 626 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 627 total_compressed, 628 compress_type, pages); 629 } 630 if (ret <= 0) { 631 unsigned long clear_flags = EXTENT_DELALLOC | 632 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 633 EXTENT_DO_ACCOUNTING; 634 unsigned long page_error_op; 635 636 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 637 638 /* 639 * inline extent creation worked or returned error, 640 * we don't need to create any more async work items. 641 * Unlock and free up our temp pages. 642 * 643 * We use DO_ACCOUNTING here because we need the 644 * delalloc_release_metadata to be done _after_ we drop 645 * our outstanding extent for clearing delalloc for this 646 * range. 647 */ 648 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 649 NULL, 650 clear_flags, 651 PAGE_UNLOCK | 652 PAGE_CLEAR_DIRTY | 653 PAGE_SET_WRITEBACK | 654 page_error_op | 655 PAGE_END_WRITEBACK); 656 657 /* 658 * Ensure we only free the compressed pages if we have 659 * them allocated, as we can still reach here with 660 * inode_need_compress() == false. 661 */ 662 if (pages) { 663 for (i = 0; i < nr_pages; i++) { 664 WARN_ON(pages[i]->mapping); 665 put_page(pages[i]); 666 } 667 kfree(pages); 668 } 669 return 0; 670 } 671 } 672 673 if (will_compress) { 674 /* 675 * we aren't doing an inline extent round the compressed size 676 * up to a block size boundary so the allocator does sane 677 * things 678 */ 679 total_compressed = ALIGN(total_compressed, blocksize); 680 681 /* 682 * one last check to make sure the compression is really a 683 * win, compare the page count read with the blocks on disk, 684 * compression must free at least one sector size 685 */ 686 total_in = ALIGN(total_in, PAGE_SIZE); 687 if (total_compressed + blocksize <= total_in) { 688 compressed_extents++; 689 690 /* 691 * The async work queues will take care of doing actual 692 * allocation on disk for these compressed pages, and 693 * will submit them to the elevator. 694 */ 695 add_async_extent(async_chunk, start, total_in, 696 total_compressed, pages, nr_pages, 697 compress_type); 698 699 if (start + total_in < end) { 700 start += total_in; 701 pages = NULL; 702 cond_resched(); 703 goto again; 704 } 705 return compressed_extents; 706 } 707 } 708 if (pages) { 709 /* 710 * the compression code ran but failed to make things smaller, 711 * free any pages it allocated and our page pointer array 712 */ 713 for (i = 0; i < nr_pages; i++) { 714 WARN_ON(pages[i]->mapping); 715 put_page(pages[i]); 716 } 717 kfree(pages); 718 pages = NULL; 719 total_compressed = 0; 720 nr_pages = 0; 721 722 /* flag the file so we don't compress in the future */ 723 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 724 !(BTRFS_I(inode)->prop_compress)) { 725 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 726 } 727 } 728 cleanup_and_bail_uncompressed: 729 /* 730 * No compression, but we still need to write the pages in the file 731 * we've been given so far. redirty the locked page if it corresponds 732 * to our extent and set things up for the async work queue to run 733 * cow_file_range to do the normal delalloc dance. 734 */ 735 if (async_chunk->locked_page && 736 (page_offset(async_chunk->locked_page) >= start && 737 page_offset(async_chunk->locked_page)) <= end) { 738 __set_page_dirty_nobuffers(async_chunk->locked_page); 739 /* unlocked later on in the async handlers */ 740 } 741 742 if (redirty) 743 extent_range_redirty_for_io(inode, start, end); 744 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 745 BTRFS_COMPRESS_NONE); 746 compressed_extents++; 747 748 return compressed_extents; 749 } 750 751 static void free_async_extent_pages(struct async_extent *async_extent) 752 { 753 int i; 754 755 if (!async_extent->pages) 756 return; 757 758 for (i = 0; i < async_extent->nr_pages; i++) { 759 WARN_ON(async_extent->pages[i]->mapping); 760 put_page(async_extent->pages[i]); 761 } 762 kfree(async_extent->pages); 763 async_extent->nr_pages = 0; 764 async_extent->pages = NULL; 765 } 766 767 /* 768 * phase two of compressed writeback. This is the ordered portion 769 * of the code, which only gets called in the order the work was 770 * queued. We walk all the async extents created by compress_file_range 771 * and send them down to the disk. 772 */ 773 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 774 { 775 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 776 struct btrfs_fs_info *fs_info = inode->root->fs_info; 777 struct async_extent *async_extent; 778 u64 alloc_hint = 0; 779 struct btrfs_key ins; 780 struct extent_map *em; 781 struct btrfs_root *root = inode->root; 782 struct extent_io_tree *io_tree = &inode->io_tree; 783 int ret = 0; 784 785 again: 786 while (!list_empty(&async_chunk->extents)) { 787 async_extent = list_entry(async_chunk->extents.next, 788 struct async_extent, list); 789 list_del(&async_extent->list); 790 791 retry: 792 lock_extent(io_tree, async_extent->start, 793 async_extent->start + async_extent->ram_size - 1); 794 /* did the compression code fall back to uncompressed IO? */ 795 if (!async_extent->pages) { 796 int page_started = 0; 797 unsigned long nr_written = 0; 798 799 /* allocate blocks */ 800 ret = cow_file_range(inode, async_chunk->locked_page, 801 async_extent->start, 802 async_extent->start + 803 async_extent->ram_size - 1, 804 &page_started, &nr_written, 0); 805 806 /* JDM XXX */ 807 808 /* 809 * if page_started, cow_file_range inserted an 810 * inline extent and took care of all the unlocking 811 * and IO for us. Otherwise, we need to submit 812 * all those pages down to the drive. 813 */ 814 if (!page_started && !ret) 815 extent_write_locked_range(&inode->vfs_inode, 816 async_extent->start, 817 async_extent->start + 818 async_extent->ram_size - 1, 819 WB_SYNC_ALL); 820 else if (ret && async_chunk->locked_page) 821 unlock_page(async_chunk->locked_page); 822 kfree(async_extent); 823 cond_resched(); 824 continue; 825 } 826 827 ret = btrfs_reserve_extent(root, async_extent->ram_size, 828 async_extent->compressed_size, 829 async_extent->compressed_size, 830 0, alloc_hint, &ins, 1, 1); 831 if (ret) { 832 free_async_extent_pages(async_extent); 833 834 if (ret == -ENOSPC) { 835 unlock_extent(io_tree, async_extent->start, 836 async_extent->start + 837 async_extent->ram_size - 1); 838 839 /* 840 * we need to redirty the pages if we decide to 841 * fallback to uncompressed IO, otherwise we 842 * will not submit these pages down to lower 843 * layers. 844 */ 845 extent_range_redirty_for_io(&inode->vfs_inode, 846 async_extent->start, 847 async_extent->start + 848 async_extent->ram_size - 1); 849 850 goto retry; 851 } 852 goto out_free; 853 } 854 /* 855 * here we're doing allocation and writeback of the 856 * compressed pages 857 */ 858 em = create_io_em(inode, async_extent->start, 859 async_extent->ram_size, /* len */ 860 async_extent->start, /* orig_start */ 861 ins.objectid, /* block_start */ 862 ins.offset, /* block_len */ 863 ins.offset, /* orig_block_len */ 864 async_extent->ram_size, /* ram_bytes */ 865 async_extent->compress_type, 866 BTRFS_ORDERED_COMPRESSED); 867 if (IS_ERR(em)) 868 /* ret value is not necessary due to void function */ 869 goto out_free_reserve; 870 free_extent_map(em); 871 872 ret = btrfs_add_ordered_extent_compress(inode, 873 async_extent->start, 874 ins.objectid, 875 async_extent->ram_size, 876 ins.offset, 877 BTRFS_ORDERED_COMPRESSED, 878 async_extent->compress_type); 879 if (ret) { 880 btrfs_drop_extent_cache(inode, async_extent->start, 881 async_extent->start + 882 async_extent->ram_size - 1, 0); 883 goto out_free_reserve; 884 } 885 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 886 887 /* 888 * clear dirty, set writeback and unlock the pages. 889 */ 890 extent_clear_unlock_delalloc(inode, async_extent->start, 891 async_extent->start + 892 async_extent->ram_size - 1, 893 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 894 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 895 PAGE_SET_WRITEBACK); 896 if (btrfs_submit_compressed_write(inode, async_extent->start, 897 async_extent->ram_size, 898 ins.objectid, 899 ins.offset, async_extent->pages, 900 async_extent->nr_pages, 901 async_chunk->write_flags, 902 async_chunk->blkcg_css)) { 903 struct page *p = async_extent->pages[0]; 904 const u64 start = async_extent->start; 905 const u64 end = start + async_extent->ram_size - 1; 906 907 p->mapping = inode->vfs_inode.i_mapping; 908 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 909 910 p->mapping = NULL; 911 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 912 PAGE_END_WRITEBACK | 913 PAGE_SET_ERROR); 914 free_async_extent_pages(async_extent); 915 } 916 alloc_hint = ins.objectid + ins.offset; 917 kfree(async_extent); 918 cond_resched(); 919 } 920 return; 921 out_free_reserve: 922 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 923 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 924 out_free: 925 extent_clear_unlock_delalloc(inode, async_extent->start, 926 async_extent->start + 927 async_extent->ram_size - 1, 928 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 929 EXTENT_DELALLOC_NEW | 930 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 931 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 932 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 933 PAGE_SET_ERROR); 934 free_async_extent_pages(async_extent); 935 kfree(async_extent); 936 goto again; 937 } 938 939 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 940 u64 num_bytes) 941 { 942 struct extent_map_tree *em_tree = &inode->extent_tree; 943 struct extent_map *em; 944 u64 alloc_hint = 0; 945 946 read_lock(&em_tree->lock); 947 em = search_extent_mapping(em_tree, start, num_bytes); 948 if (em) { 949 /* 950 * if block start isn't an actual block number then find the 951 * first block in this inode and use that as a hint. If that 952 * block is also bogus then just don't worry about it. 953 */ 954 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 955 free_extent_map(em); 956 em = search_extent_mapping(em_tree, 0, 0); 957 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 958 alloc_hint = em->block_start; 959 if (em) 960 free_extent_map(em); 961 } else { 962 alloc_hint = em->block_start; 963 free_extent_map(em); 964 } 965 } 966 read_unlock(&em_tree->lock); 967 968 return alloc_hint; 969 } 970 971 /* 972 * when extent_io.c finds a delayed allocation range in the file, 973 * the call backs end up in this code. The basic idea is to 974 * allocate extents on disk for the range, and create ordered data structs 975 * in ram to track those extents. 976 * 977 * locked_page is the page that writepage had locked already. We use 978 * it to make sure we don't do extra locks or unlocks. 979 * 980 * *page_started is set to one if we unlock locked_page and do everything 981 * required to start IO on it. It may be clean and already done with 982 * IO when we return. 983 */ 984 static noinline int cow_file_range(struct btrfs_inode *inode, 985 struct page *locked_page, 986 u64 start, u64 end, int *page_started, 987 unsigned long *nr_written, int unlock) 988 { 989 struct btrfs_root *root = inode->root; 990 struct btrfs_fs_info *fs_info = root->fs_info; 991 u64 alloc_hint = 0; 992 u64 num_bytes; 993 unsigned long ram_size; 994 u64 cur_alloc_size = 0; 995 u64 min_alloc_size; 996 u64 blocksize = fs_info->sectorsize; 997 struct btrfs_key ins; 998 struct extent_map *em; 999 unsigned clear_bits; 1000 unsigned long page_ops; 1001 bool extent_reserved = false; 1002 int ret = 0; 1003 1004 if (btrfs_is_free_space_inode(inode)) { 1005 WARN_ON_ONCE(1); 1006 ret = -EINVAL; 1007 goto out_unlock; 1008 } 1009 1010 num_bytes = ALIGN(end - start + 1, blocksize); 1011 num_bytes = max(blocksize, num_bytes); 1012 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1013 1014 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1015 1016 if (start == 0) { 1017 /* lets try to make an inline extent */ 1018 ret = cow_file_range_inline(inode, start, end, 0, 1019 BTRFS_COMPRESS_NONE, NULL); 1020 if (ret == 0) { 1021 /* 1022 * We use DO_ACCOUNTING here because we need the 1023 * delalloc_release_metadata to be run _after_ we drop 1024 * our outstanding extent for clearing delalloc for this 1025 * range. 1026 */ 1027 extent_clear_unlock_delalloc(inode, start, end, NULL, 1028 EXTENT_LOCKED | EXTENT_DELALLOC | 1029 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1030 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1031 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1032 PAGE_END_WRITEBACK); 1033 *nr_written = *nr_written + 1034 (end - start + PAGE_SIZE) / PAGE_SIZE; 1035 *page_started = 1; 1036 goto out; 1037 } else if (ret < 0) { 1038 goto out_unlock; 1039 } 1040 } 1041 1042 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1043 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1044 1045 /* 1046 * Relocation relies on the relocated extents to have exactly the same 1047 * size as the original extents. Normally writeback for relocation data 1048 * extents follows a NOCOW path because relocation preallocates the 1049 * extents. However, due to an operation such as scrub turning a block 1050 * group to RO mode, it may fallback to COW mode, so we must make sure 1051 * an extent allocated during COW has exactly the requested size and can 1052 * not be split into smaller extents, otherwise relocation breaks and 1053 * fails during the stage where it updates the bytenr of file extent 1054 * items. 1055 */ 1056 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1057 min_alloc_size = num_bytes; 1058 else 1059 min_alloc_size = fs_info->sectorsize; 1060 1061 while (num_bytes > 0) { 1062 cur_alloc_size = num_bytes; 1063 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1064 min_alloc_size, 0, alloc_hint, 1065 &ins, 1, 1); 1066 if (ret < 0) 1067 goto out_unlock; 1068 cur_alloc_size = ins.offset; 1069 extent_reserved = true; 1070 1071 ram_size = ins.offset; 1072 em = create_io_em(inode, start, ins.offset, /* len */ 1073 start, /* orig_start */ 1074 ins.objectid, /* block_start */ 1075 ins.offset, /* block_len */ 1076 ins.offset, /* orig_block_len */ 1077 ram_size, /* ram_bytes */ 1078 BTRFS_COMPRESS_NONE, /* compress_type */ 1079 BTRFS_ORDERED_REGULAR /* type */); 1080 if (IS_ERR(em)) { 1081 ret = PTR_ERR(em); 1082 goto out_reserve; 1083 } 1084 free_extent_map(em); 1085 1086 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1087 ram_size, cur_alloc_size, 0); 1088 if (ret) 1089 goto out_drop_extent_cache; 1090 1091 if (root->root_key.objectid == 1092 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1093 ret = btrfs_reloc_clone_csums(inode, start, 1094 cur_alloc_size); 1095 /* 1096 * Only drop cache here, and process as normal. 1097 * 1098 * We must not allow extent_clear_unlock_delalloc() 1099 * at out_unlock label to free meta of this ordered 1100 * extent, as its meta should be freed by 1101 * btrfs_finish_ordered_io(). 1102 * 1103 * So we must continue until @start is increased to 1104 * skip current ordered extent. 1105 */ 1106 if (ret) 1107 btrfs_drop_extent_cache(inode, start, 1108 start + ram_size - 1, 0); 1109 } 1110 1111 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1112 1113 /* we're not doing compressed IO, don't unlock the first 1114 * page (which the caller expects to stay locked), don't 1115 * clear any dirty bits and don't set any writeback bits 1116 * 1117 * Do set the Private2 bit so we know this page was properly 1118 * setup for writepage 1119 */ 1120 page_ops = unlock ? PAGE_UNLOCK : 0; 1121 page_ops |= PAGE_SET_PRIVATE2; 1122 1123 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1124 locked_page, 1125 EXTENT_LOCKED | EXTENT_DELALLOC, 1126 page_ops); 1127 if (num_bytes < cur_alloc_size) 1128 num_bytes = 0; 1129 else 1130 num_bytes -= cur_alloc_size; 1131 alloc_hint = ins.objectid + ins.offset; 1132 start += cur_alloc_size; 1133 extent_reserved = false; 1134 1135 /* 1136 * btrfs_reloc_clone_csums() error, since start is increased 1137 * extent_clear_unlock_delalloc() at out_unlock label won't 1138 * free metadata of current ordered extent, we're OK to exit. 1139 */ 1140 if (ret) 1141 goto out_unlock; 1142 } 1143 out: 1144 return ret; 1145 1146 out_drop_extent_cache: 1147 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1148 out_reserve: 1149 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1150 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1151 out_unlock: 1152 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1153 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1154 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1155 PAGE_END_WRITEBACK; 1156 /* 1157 * If we reserved an extent for our delalloc range (or a subrange) and 1158 * failed to create the respective ordered extent, then it means that 1159 * when we reserved the extent we decremented the extent's size from 1160 * the data space_info's bytes_may_use counter and incremented the 1161 * space_info's bytes_reserved counter by the same amount. We must make 1162 * sure extent_clear_unlock_delalloc() does not try to decrement again 1163 * the data space_info's bytes_may_use counter, therefore we do not pass 1164 * it the flag EXTENT_CLEAR_DATA_RESV. 1165 */ 1166 if (extent_reserved) { 1167 extent_clear_unlock_delalloc(inode, start, 1168 start + cur_alloc_size - 1, 1169 locked_page, 1170 clear_bits, 1171 page_ops); 1172 start += cur_alloc_size; 1173 if (start >= end) 1174 goto out; 1175 } 1176 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1177 clear_bits | EXTENT_CLEAR_DATA_RESV, 1178 page_ops); 1179 goto out; 1180 } 1181 1182 /* 1183 * work queue call back to started compression on a file and pages 1184 */ 1185 static noinline void async_cow_start(struct btrfs_work *work) 1186 { 1187 struct async_chunk *async_chunk; 1188 int compressed_extents; 1189 1190 async_chunk = container_of(work, struct async_chunk, work); 1191 1192 compressed_extents = compress_file_range(async_chunk); 1193 if (compressed_extents == 0) { 1194 btrfs_add_delayed_iput(async_chunk->inode); 1195 async_chunk->inode = NULL; 1196 } 1197 } 1198 1199 /* 1200 * work queue call back to submit previously compressed pages 1201 */ 1202 static noinline void async_cow_submit(struct btrfs_work *work) 1203 { 1204 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1205 work); 1206 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1207 unsigned long nr_pages; 1208 1209 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1210 PAGE_SHIFT; 1211 1212 /* atomic_sub_return implies a barrier */ 1213 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1214 5 * SZ_1M) 1215 cond_wake_up_nomb(&fs_info->async_submit_wait); 1216 1217 /* 1218 * ->inode could be NULL if async_chunk_start has failed to compress, 1219 * in which case we don't have anything to submit, yet we need to 1220 * always adjust ->async_delalloc_pages as its paired with the init 1221 * happening in cow_file_range_async 1222 */ 1223 if (async_chunk->inode) 1224 submit_compressed_extents(async_chunk); 1225 } 1226 1227 static noinline void async_cow_free(struct btrfs_work *work) 1228 { 1229 struct async_chunk *async_chunk; 1230 1231 async_chunk = container_of(work, struct async_chunk, work); 1232 if (async_chunk->inode) 1233 btrfs_add_delayed_iput(async_chunk->inode); 1234 if (async_chunk->blkcg_css) 1235 css_put(async_chunk->blkcg_css); 1236 /* 1237 * Since the pointer to 'pending' is at the beginning of the array of 1238 * async_chunk's, freeing it ensures the whole array has been freed. 1239 */ 1240 if (atomic_dec_and_test(async_chunk->pending)) 1241 kvfree(async_chunk->pending); 1242 } 1243 1244 static int cow_file_range_async(struct btrfs_inode *inode, 1245 struct writeback_control *wbc, 1246 struct page *locked_page, 1247 u64 start, u64 end, int *page_started, 1248 unsigned long *nr_written) 1249 { 1250 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1251 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1252 struct async_cow *ctx; 1253 struct async_chunk *async_chunk; 1254 unsigned long nr_pages; 1255 u64 cur_end; 1256 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1257 int i; 1258 bool should_compress; 1259 unsigned nofs_flag; 1260 const unsigned int write_flags = wbc_to_write_flags(wbc); 1261 1262 unlock_extent(&inode->io_tree, start, end); 1263 1264 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1265 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1266 num_chunks = 1; 1267 should_compress = false; 1268 } else { 1269 should_compress = true; 1270 } 1271 1272 nofs_flag = memalloc_nofs_save(); 1273 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1274 memalloc_nofs_restore(nofs_flag); 1275 1276 if (!ctx) { 1277 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1278 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1279 EXTENT_DO_ACCOUNTING; 1280 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1281 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1282 PAGE_SET_ERROR; 1283 1284 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1285 clear_bits, page_ops); 1286 return -ENOMEM; 1287 } 1288 1289 async_chunk = ctx->chunks; 1290 atomic_set(&ctx->num_chunks, num_chunks); 1291 1292 for (i = 0; i < num_chunks; i++) { 1293 if (should_compress) 1294 cur_end = min(end, start + SZ_512K - 1); 1295 else 1296 cur_end = end; 1297 1298 /* 1299 * igrab is called higher up in the call chain, take only the 1300 * lightweight reference for the callback lifetime 1301 */ 1302 ihold(&inode->vfs_inode); 1303 async_chunk[i].pending = &ctx->num_chunks; 1304 async_chunk[i].inode = &inode->vfs_inode; 1305 async_chunk[i].start = start; 1306 async_chunk[i].end = cur_end; 1307 async_chunk[i].write_flags = write_flags; 1308 INIT_LIST_HEAD(&async_chunk[i].extents); 1309 1310 /* 1311 * The locked_page comes all the way from writepage and its 1312 * the original page we were actually given. As we spread 1313 * this large delalloc region across multiple async_chunk 1314 * structs, only the first struct needs a pointer to locked_page 1315 * 1316 * This way we don't need racey decisions about who is supposed 1317 * to unlock it. 1318 */ 1319 if (locked_page) { 1320 /* 1321 * Depending on the compressibility, the pages might or 1322 * might not go through async. We want all of them to 1323 * be accounted against wbc once. Let's do it here 1324 * before the paths diverge. wbc accounting is used 1325 * only for foreign writeback detection and doesn't 1326 * need full accuracy. Just account the whole thing 1327 * against the first page. 1328 */ 1329 wbc_account_cgroup_owner(wbc, locked_page, 1330 cur_end - start); 1331 async_chunk[i].locked_page = locked_page; 1332 locked_page = NULL; 1333 } else { 1334 async_chunk[i].locked_page = NULL; 1335 } 1336 1337 if (blkcg_css != blkcg_root_css) { 1338 css_get(blkcg_css); 1339 async_chunk[i].blkcg_css = blkcg_css; 1340 } else { 1341 async_chunk[i].blkcg_css = NULL; 1342 } 1343 1344 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1345 async_cow_submit, async_cow_free); 1346 1347 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1348 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1349 1350 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1351 1352 *nr_written += nr_pages; 1353 start = cur_end + 1; 1354 } 1355 *page_started = 1; 1356 return 0; 1357 } 1358 1359 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1360 u64 bytenr, u64 num_bytes) 1361 { 1362 int ret; 1363 struct btrfs_ordered_sum *sums; 1364 LIST_HEAD(list); 1365 1366 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1367 bytenr + num_bytes - 1, &list, 0); 1368 if (ret == 0 && list_empty(&list)) 1369 return 0; 1370 1371 while (!list_empty(&list)) { 1372 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1373 list_del(&sums->list); 1374 kfree(sums); 1375 } 1376 if (ret < 0) 1377 return ret; 1378 return 1; 1379 } 1380 1381 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1382 const u64 start, const u64 end, 1383 int *page_started, unsigned long *nr_written) 1384 { 1385 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1386 const bool is_reloc_ino = (inode->root->root_key.objectid == 1387 BTRFS_DATA_RELOC_TREE_OBJECTID); 1388 const u64 range_bytes = end + 1 - start; 1389 struct extent_io_tree *io_tree = &inode->io_tree; 1390 u64 range_start = start; 1391 u64 count; 1392 1393 /* 1394 * If EXTENT_NORESERVE is set it means that when the buffered write was 1395 * made we had not enough available data space and therefore we did not 1396 * reserve data space for it, since we though we could do NOCOW for the 1397 * respective file range (either there is prealloc extent or the inode 1398 * has the NOCOW bit set). 1399 * 1400 * However when we need to fallback to COW mode (because for example the 1401 * block group for the corresponding extent was turned to RO mode by a 1402 * scrub or relocation) we need to do the following: 1403 * 1404 * 1) We increment the bytes_may_use counter of the data space info. 1405 * If COW succeeds, it allocates a new data extent and after doing 1406 * that it decrements the space info's bytes_may_use counter and 1407 * increments its bytes_reserved counter by the same amount (we do 1408 * this at btrfs_add_reserved_bytes()). So we need to increment the 1409 * bytes_may_use counter to compensate (when space is reserved at 1410 * buffered write time, the bytes_may_use counter is incremented); 1411 * 1412 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1413 * that if the COW path fails for any reason, it decrements (through 1414 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1415 * data space info, which we incremented in the step above. 1416 * 1417 * If we need to fallback to cow and the inode corresponds to a free 1418 * space cache inode or an inode of the data relocation tree, we must 1419 * also increment bytes_may_use of the data space_info for the same 1420 * reason. Space caches and relocated data extents always get a prealloc 1421 * extent for them, however scrub or balance may have set the block 1422 * group that contains that extent to RO mode and therefore force COW 1423 * when starting writeback. 1424 */ 1425 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1426 EXTENT_NORESERVE, 0); 1427 if (count > 0 || is_space_ino || is_reloc_ino) { 1428 u64 bytes = count; 1429 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1430 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1431 1432 if (is_space_ino || is_reloc_ino) 1433 bytes = range_bytes; 1434 1435 spin_lock(&sinfo->lock); 1436 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1437 spin_unlock(&sinfo->lock); 1438 1439 if (count > 0) 1440 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1441 0, 0, NULL); 1442 } 1443 1444 return cow_file_range(inode, locked_page, start, end, page_started, 1445 nr_written, 1); 1446 } 1447 1448 /* 1449 * when nowcow writeback call back. This checks for snapshots or COW copies 1450 * of the extents that exist in the file, and COWs the file as required. 1451 * 1452 * If no cow copies or snapshots exist, we write directly to the existing 1453 * blocks on disk 1454 */ 1455 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1456 struct page *locked_page, 1457 const u64 start, const u64 end, 1458 int *page_started, int force, 1459 unsigned long *nr_written) 1460 { 1461 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1462 struct btrfs_root *root = inode->root; 1463 struct btrfs_path *path; 1464 u64 cow_start = (u64)-1; 1465 u64 cur_offset = start; 1466 int ret; 1467 bool check_prev = true; 1468 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1469 u64 ino = btrfs_ino(inode); 1470 bool nocow = false; 1471 u64 disk_bytenr = 0; 1472 1473 path = btrfs_alloc_path(); 1474 if (!path) { 1475 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1476 EXTENT_LOCKED | EXTENT_DELALLOC | 1477 EXTENT_DO_ACCOUNTING | 1478 EXTENT_DEFRAG, PAGE_UNLOCK | 1479 PAGE_CLEAR_DIRTY | 1480 PAGE_SET_WRITEBACK | 1481 PAGE_END_WRITEBACK); 1482 return -ENOMEM; 1483 } 1484 1485 while (1) { 1486 struct btrfs_key found_key; 1487 struct btrfs_file_extent_item *fi; 1488 struct extent_buffer *leaf; 1489 u64 extent_end; 1490 u64 extent_offset; 1491 u64 num_bytes = 0; 1492 u64 disk_num_bytes; 1493 u64 ram_bytes; 1494 int extent_type; 1495 1496 nocow = false; 1497 1498 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1499 cur_offset, 0); 1500 if (ret < 0) 1501 goto error; 1502 1503 /* 1504 * If there is no extent for our range when doing the initial 1505 * search, then go back to the previous slot as it will be the 1506 * one containing the search offset 1507 */ 1508 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1509 leaf = path->nodes[0]; 1510 btrfs_item_key_to_cpu(leaf, &found_key, 1511 path->slots[0] - 1); 1512 if (found_key.objectid == ino && 1513 found_key.type == BTRFS_EXTENT_DATA_KEY) 1514 path->slots[0]--; 1515 } 1516 check_prev = false; 1517 next_slot: 1518 /* Go to next leaf if we have exhausted the current one */ 1519 leaf = path->nodes[0]; 1520 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1521 ret = btrfs_next_leaf(root, path); 1522 if (ret < 0) { 1523 if (cow_start != (u64)-1) 1524 cur_offset = cow_start; 1525 goto error; 1526 } 1527 if (ret > 0) 1528 break; 1529 leaf = path->nodes[0]; 1530 } 1531 1532 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1533 1534 /* Didn't find anything for our INO */ 1535 if (found_key.objectid > ino) 1536 break; 1537 /* 1538 * Keep searching until we find an EXTENT_ITEM or there are no 1539 * more extents for this inode 1540 */ 1541 if (WARN_ON_ONCE(found_key.objectid < ino) || 1542 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1543 path->slots[0]++; 1544 goto next_slot; 1545 } 1546 1547 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1548 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1549 found_key.offset > end) 1550 break; 1551 1552 /* 1553 * If the found extent starts after requested offset, then 1554 * adjust extent_end to be right before this extent begins 1555 */ 1556 if (found_key.offset > cur_offset) { 1557 extent_end = found_key.offset; 1558 extent_type = 0; 1559 goto out_check; 1560 } 1561 1562 /* 1563 * Found extent which begins before our range and potentially 1564 * intersect it 1565 */ 1566 fi = btrfs_item_ptr(leaf, path->slots[0], 1567 struct btrfs_file_extent_item); 1568 extent_type = btrfs_file_extent_type(leaf, fi); 1569 1570 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1571 if (extent_type == BTRFS_FILE_EXTENT_REG || 1572 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1573 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1574 extent_offset = btrfs_file_extent_offset(leaf, fi); 1575 extent_end = found_key.offset + 1576 btrfs_file_extent_num_bytes(leaf, fi); 1577 disk_num_bytes = 1578 btrfs_file_extent_disk_num_bytes(leaf, fi); 1579 /* 1580 * If the extent we got ends before our current offset, 1581 * skip to the next extent. 1582 */ 1583 if (extent_end <= cur_offset) { 1584 path->slots[0]++; 1585 goto next_slot; 1586 } 1587 /* Skip holes */ 1588 if (disk_bytenr == 0) 1589 goto out_check; 1590 /* Skip compressed/encrypted/encoded extents */ 1591 if (btrfs_file_extent_compression(leaf, fi) || 1592 btrfs_file_extent_encryption(leaf, fi) || 1593 btrfs_file_extent_other_encoding(leaf, fi)) 1594 goto out_check; 1595 /* 1596 * If extent is created before the last volume's snapshot 1597 * this implies the extent is shared, hence we can't do 1598 * nocow. This is the same check as in 1599 * btrfs_cross_ref_exist but without calling 1600 * btrfs_search_slot. 1601 */ 1602 if (!freespace_inode && 1603 btrfs_file_extent_generation(leaf, fi) <= 1604 btrfs_root_last_snapshot(&root->root_item)) 1605 goto out_check; 1606 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1607 goto out_check; 1608 /* If extent is RO, we must COW it */ 1609 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1610 goto out_check; 1611 ret = btrfs_cross_ref_exist(root, ino, 1612 found_key.offset - 1613 extent_offset, disk_bytenr); 1614 if (ret) { 1615 /* 1616 * ret could be -EIO if the above fails to read 1617 * metadata. 1618 */ 1619 if (ret < 0) { 1620 if (cow_start != (u64)-1) 1621 cur_offset = cow_start; 1622 goto error; 1623 } 1624 1625 WARN_ON_ONCE(freespace_inode); 1626 goto out_check; 1627 } 1628 disk_bytenr += extent_offset; 1629 disk_bytenr += cur_offset - found_key.offset; 1630 num_bytes = min(end + 1, extent_end) - cur_offset; 1631 /* 1632 * If there are pending snapshots for this root, we 1633 * fall into common COW way 1634 */ 1635 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1636 goto out_check; 1637 /* 1638 * force cow if csum exists in the range. 1639 * this ensure that csum for a given extent are 1640 * either valid or do not exist. 1641 */ 1642 ret = csum_exist_in_range(fs_info, disk_bytenr, 1643 num_bytes); 1644 if (ret) { 1645 /* 1646 * ret could be -EIO if the above fails to read 1647 * metadata. 1648 */ 1649 if (ret < 0) { 1650 if (cow_start != (u64)-1) 1651 cur_offset = cow_start; 1652 goto error; 1653 } 1654 WARN_ON_ONCE(freespace_inode); 1655 goto out_check; 1656 } 1657 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1658 goto out_check; 1659 nocow = true; 1660 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1661 extent_end = found_key.offset + ram_bytes; 1662 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1663 /* Skip extents outside of our requested range */ 1664 if (extent_end <= start) { 1665 path->slots[0]++; 1666 goto next_slot; 1667 } 1668 } else { 1669 /* If this triggers then we have a memory corruption */ 1670 BUG(); 1671 } 1672 out_check: 1673 /* 1674 * If nocow is false then record the beginning of the range 1675 * that needs to be COWed 1676 */ 1677 if (!nocow) { 1678 if (cow_start == (u64)-1) 1679 cow_start = cur_offset; 1680 cur_offset = extent_end; 1681 if (cur_offset > end) 1682 break; 1683 path->slots[0]++; 1684 goto next_slot; 1685 } 1686 1687 btrfs_release_path(path); 1688 1689 /* 1690 * COW range from cow_start to found_key.offset - 1. As the key 1691 * will contain the beginning of the first extent that can be 1692 * NOCOW, following one which needs to be COW'ed 1693 */ 1694 if (cow_start != (u64)-1) { 1695 ret = fallback_to_cow(inode, locked_page, 1696 cow_start, found_key.offset - 1, 1697 page_started, nr_written); 1698 if (ret) 1699 goto error; 1700 cow_start = (u64)-1; 1701 } 1702 1703 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1704 u64 orig_start = found_key.offset - extent_offset; 1705 struct extent_map *em; 1706 1707 em = create_io_em(inode, cur_offset, num_bytes, 1708 orig_start, 1709 disk_bytenr, /* block_start */ 1710 num_bytes, /* block_len */ 1711 disk_num_bytes, /* orig_block_len */ 1712 ram_bytes, BTRFS_COMPRESS_NONE, 1713 BTRFS_ORDERED_PREALLOC); 1714 if (IS_ERR(em)) { 1715 ret = PTR_ERR(em); 1716 goto error; 1717 } 1718 free_extent_map(em); 1719 ret = btrfs_add_ordered_extent(inode, cur_offset, 1720 disk_bytenr, num_bytes, 1721 num_bytes, 1722 BTRFS_ORDERED_PREALLOC); 1723 if (ret) { 1724 btrfs_drop_extent_cache(inode, cur_offset, 1725 cur_offset + num_bytes - 1, 1726 0); 1727 goto error; 1728 } 1729 } else { 1730 ret = btrfs_add_ordered_extent(inode, cur_offset, 1731 disk_bytenr, num_bytes, 1732 num_bytes, 1733 BTRFS_ORDERED_NOCOW); 1734 if (ret) 1735 goto error; 1736 } 1737 1738 if (nocow) 1739 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1740 nocow = false; 1741 1742 if (root->root_key.objectid == 1743 BTRFS_DATA_RELOC_TREE_OBJECTID) 1744 /* 1745 * Error handled later, as we must prevent 1746 * extent_clear_unlock_delalloc() in error handler 1747 * from freeing metadata of created ordered extent. 1748 */ 1749 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1750 num_bytes); 1751 1752 extent_clear_unlock_delalloc(inode, cur_offset, 1753 cur_offset + num_bytes - 1, 1754 locked_page, EXTENT_LOCKED | 1755 EXTENT_DELALLOC | 1756 EXTENT_CLEAR_DATA_RESV, 1757 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1758 1759 cur_offset = extent_end; 1760 1761 /* 1762 * btrfs_reloc_clone_csums() error, now we're OK to call error 1763 * handler, as metadata for created ordered extent will only 1764 * be freed by btrfs_finish_ordered_io(). 1765 */ 1766 if (ret) 1767 goto error; 1768 if (cur_offset > end) 1769 break; 1770 } 1771 btrfs_release_path(path); 1772 1773 if (cur_offset <= end && cow_start == (u64)-1) 1774 cow_start = cur_offset; 1775 1776 if (cow_start != (u64)-1) { 1777 cur_offset = end; 1778 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1779 page_started, nr_written); 1780 if (ret) 1781 goto error; 1782 } 1783 1784 error: 1785 if (nocow) 1786 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1787 1788 if (ret && cur_offset < end) 1789 extent_clear_unlock_delalloc(inode, cur_offset, end, 1790 locked_page, EXTENT_LOCKED | 1791 EXTENT_DELALLOC | EXTENT_DEFRAG | 1792 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1793 PAGE_CLEAR_DIRTY | 1794 PAGE_SET_WRITEBACK | 1795 PAGE_END_WRITEBACK); 1796 btrfs_free_path(path); 1797 return ret; 1798 } 1799 1800 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end) 1801 { 1802 1803 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1804 !(inode->flags & BTRFS_INODE_PREALLOC)) 1805 return 0; 1806 1807 /* 1808 * @defrag_bytes is a hint value, no spinlock held here, 1809 * if is not zero, it means the file is defragging. 1810 * Force cow if given extent needs to be defragged. 1811 */ 1812 if (inode->defrag_bytes && 1813 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL)) 1814 return 1; 1815 1816 return 0; 1817 } 1818 1819 /* 1820 * Function to process delayed allocation (create CoW) for ranges which are 1821 * being touched for the first time. 1822 */ 1823 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1824 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1825 struct writeback_control *wbc) 1826 { 1827 int ret; 1828 int force_cow = need_force_cow(inode, start, end); 1829 1830 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1831 ret = run_delalloc_nocow(inode, locked_page, start, end, 1832 page_started, 1, nr_written); 1833 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1834 ret = run_delalloc_nocow(inode, locked_page, start, end, 1835 page_started, 0, nr_written); 1836 } else if (!inode_can_compress(inode) || 1837 !inode_need_compress(inode, start, end)) { 1838 ret = cow_file_range(inode, locked_page, start, end, 1839 page_started, nr_written, 1); 1840 } else { 1841 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1842 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1843 page_started, nr_written); 1844 } 1845 if (ret) 1846 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1847 end - start + 1); 1848 return ret; 1849 } 1850 1851 void btrfs_split_delalloc_extent(struct inode *inode, 1852 struct extent_state *orig, u64 split) 1853 { 1854 u64 size; 1855 1856 /* not delalloc, ignore it */ 1857 if (!(orig->state & EXTENT_DELALLOC)) 1858 return; 1859 1860 size = orig->end - orig->start + 1; 1861 if (size > BTRFS_MAX_EXTENT_SIZE) { 1862 u32 num_extents; 1863 u64 new_size; 1864 1865 /* 1866 * See the explanation in btrfs_merge_delalloc_extent, the same 1867 * applies here, just in reverse. 1868 */ 1869 new_size = orig->end - split + 1; 1870 num_extents = count_max_extents(new_size); 1871 new_size = split - orig->start; 1872 num_extents += count_max_extents(new_size); 1873 if (count_max_extents(size) >= num_extents) 1874 return; 1875 } 1876 1877 spin_lock(&BTRFS_I(inode)->lock); 1878 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1879 spin_unlock(&BTRFS_I(inode)->lock); 1880 } 1881 1882 /* 1883 * Handle merged delayed allocation extents so we can keep track of new extents 1884 * that are just merged onto old extents, such as when we are doing sequential 1885 * writes, so we can properly account for the metadata space we'll need. 1886 */ 1887 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1888 struct extent_state *other) 1889 { 1890 u64 new_size, old_size; 1891 u32 num_extents; 1892 1893 /* not delalloc, ignore it */ 1894 if (!(other->state & EXTENT_DELALLOC)) 1895 return; 1896 1897 if (new->start > other->start) 1898 new_size = new->end - other->start + 1; 1899 else 1900 new_size = other->end - new->start + 1; 1901 1902 /* we're not bigger than the max, unreserve the space and go */ 1903 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1904 spin_lock(&BTRFS_I(inode)->lock); 1905 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1906 spin_unlock(&BTRFS_I(inode)->lock); 1907 return; 1908 } 1909 1910 /* 1911 * We have to add up either side to figure out how many extents were 1912 * accounted for before we merged into one big extent. If the number of 1913 * extents we accounted for is <= the amount we need for the new range 1914 * then we can return, otherwise drop. Think of it like this 1915 * 1916 * [ 4k][MAX_SIZE] 1917 * 1918 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1919 * need 2 outstanding extents, on one side we have 1 and the other side 1920 * we have 1 so they are == and we can return. But in this case 1921 * 1922 * [MAX_SIZE+4k][MAX_SIZE+4k] 1923 * 1924 * Each range on their own accounts for 2 extents, but merged together 1925 * they are only 3 extents worth of accounting, so we need to drop in 1926 * this case. 1927 */ 1928 old_size = other->end - other->start + 1; 1929 num_extents = count_max_extents(old_size); 1930 old_size = new->end - new->start + 1; 1931 num_extents += count_max_extents(old_size); 1932 if (count_max_extents(new_size) >= num_extents) 1933 return; 1934 1935 spin_lock(&BTRFS_I(inode)->lock); 1936 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1937 spin_unlock(&BTRFS_I(inode)->lock); 1938 } 1939 1940 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1941 struct inode *inode) 1942 { 1943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1944 1945 spin_lock(&root->delalloc_lock); 1946 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1947 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1948 &root->delalloc_inodes); 1949 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1950 &BTRFS_I(inode)->runtime_flags); 1951 root->nr_delalloc_inodes++; 1952 if (root->nr_delalloc_inodes == 1) { 1953 spin_lock(&fs_info->delalloc_root_lock); 1954 BUG_ON(!list_empty(&root->delalloc_root)); 1955 list_add_tail(&root->delalloc_root, 1956 &fs_info->delalloc_roots); 1957 spin_unlock(&fs_info->delalloc_root_lock); 1958 } 1959 } 1960 spin_unlock(&root->delalloc_lock); 1961 } 1962 1963 1964 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1965 struct btrfs_inode *inode) 1966 { 1967 struct btrfs_fs_info *fs_info = root->fs_info; 1968 1969 if (!list_empty(&inode->delalloc_inodes)) { 1970 list_del_init(&inode->delalloc_inodes); 1971 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1972 &inode->runtime_flags); 1973 root->nr_delalloc_inodes--; 1974 if (!root->nr_delalloc_inodes) { 1975 ASSERT(list_empty(&root->delalloc_inodes)); 1976 spin_lock(&fs_info->delalloc_root_lock); 1977 BUG_ON(list_empty(&root->delalloc_root)); 1978 list_del_init(&root->delalloc_root); 1979 spin_unlock(&fs_info->delalloc_root_lock); 1980 } 1981 } 1982 } 1983 1984 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1985 struct btrfs_inode *inode) 1986 { 1987 spin_lock(&root->delalloc_lock); 1988 __btrfs_del_delalloc_inode(root, inode); 1989 spin_unlock(&root->delalloc_lock); 1990 } 1991 1992 /* 1993 * Properly track delayed allocation bytes in the inode and to maintain the 1994 * list of inodes that have pending delalloc work to be done. 1995 */ 1996 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1997 unsigned *bits) 1998 { 1999 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2000 2001 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2002 WARN_ON(1); 2003 /* 2004 * set_bit and clear bit hooks normally require _irqsave/restore 2005 * but in this case, we are only testing for the DELALLOC 2006 * bit, which is only set or cleared with irqs on 2007 */ 2008 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2009 struct btrfs_root *root = BTRFS_I(inode)->root; 2010 u64 len = state->end + 1 - state->start; 2011 u32 num_extents = count_max_extents(len); 2012 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2013 2014 spin_lock(&BTRFS_I(inode)->lock); 2015 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2016 spin_unlock(&BTRFS_I(inode)->lock); 2017 2018 /* For sanity tests */ 2019 if (btrfs_is_testing(fs_info)) 2020 return; 2021 2022 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2023 fs_info->delalloc_batch); 2024 spin_lock(&BTRFS_I(inode)->lock); 2025 BTRFS_I(inode)->delalloc_bytes += len; 2026 if (*bits & EXTENT_DEFRAG) 2027 BTRFS_I(inode)->defrag_bytes += len; 2028 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2029 &BTRFS_I(inode)->runtime_flags)) 2030 btrfs_add_delalloc_inodes(root, inode); 2031 spin_unlock(&BTRFS_I(inode)->lock); 2032 } 2033 2034 if (!(state->state & EXTENT_DELALLOC_NEW) && 2035 (*bits & EXTENT_DELALLOC_NEW)) { 2036 spin_lock(&BTRFS_I(inode)->lock); 2037 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2038 state->start; 2039 spin_unlock(&BTRFS_I(inode)->lock); 2040 } 2041 } 2042 2043 /* 2044 * Once a range is no longer delalloc this function ensures that proper 2045 * accounting happens. 2046 */ 2047 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2048 struct extent_state *state, unsigned *bits) 2049 { 2050 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2051 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2052 u64 len = state->end + 1 - state->start; 2053 u32 num_extents = count_max_extents(len); 2054 2055 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2056 spin_lock(&inode->lock); 2057 inode->defrag_bytes -= len; 2058 spin_unlock(&inode->lock); 2059 } 2060 2061 /* 2062 * set_bit and clear bit hooks normally require _irqsave/restore 2063 * but in this case, we are only testing for the DELALLOC 2064 * bit, which is only set or cleared with irqs on 2065 */ 2066 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2067 struct btrfs_root *root = inode->root; 2068 bool do_list = !btrfs_is_free_space_inode(inode); 2069 2070 spin_lock(&inode->lock); 2071 btrfs_mod_outstanding_extents(inode, -num_extents); 2072 spin_unlock(&inode->lock); 2073 2074 /* 2075 * We don't reserve metadata space for space cache inodes so we 2076 * don't need to call delalloc_release_metadata if there is an 2077 * error. 2078 */ 2079 if (*bits & EXTENT_CLEAR_META_RESV && 2080 root != fs_info->tree_root) 2081 btrfs_delalloc_release_metadata(inode, len, false); 2082 2083 /* For sanity tests. */ 2084 if (btrfs_is_testing(fs_info)) 2085 return; 2086 2087 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2088 do_list && !(state->state & EXTENT_NORESERVE) && 2089 (*bits & EXTENT_CLEAR_DATA_RESV)) 2090 btrfs_free_reserved_data_space_noquota(fs_info, len); 2091 2092 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2093 fs_info->delalloc_batch); 2094 spin_lock(&inode->lock); 2095 inode->delalloc_bytes -= len; 2096 if (do_list && inode->delalloc_bytes == 0 && 2097 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2098 &inode->runtime_flags)) 2099 btrfs_del_delalloc_inode(root, inode); 2100 spin_unlock(&inode->lock); 2101 } 2102 2103 if ((state->state & EXTENT_DELALLOC_NEW) && 2104 (*bits & EXTENT_DELALLOC_NEW)) { 2105 spin_lock(&inode->lock); 2106 ASSERT(inode->new_delalloc_bytes >= len); 2107 inode->new_delalloc_bytes -= len; 2108 spin_unlock(&inode->lock); 2109 } 2110 } 2111 2112 /* 2113 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2114 * in a chunk's stripe. This function ensures that bios do not span a 2115 * stripe/chunk 2116 * 2117 * @page - The page we are about to add to the bio 2118 * @size - size we want to add to the bio 2119 * @bio - bio we want to ensure is smaller than a stripe 2120 * @bio_flags - flags of the bio 2121 * 2122 * return 1 if page cannot be added to the bio 2123 * return 0 if page can be added to the bio 2124 * return error otherwise 2125 */ 2126 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2127 unsigned long bio_flags) 2128 { 2129 struct inode *inode = page->mapping->host; 2130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2131 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2132 u64 length = 0; 2133 u64 map_length; 2134 int ret; 2135 struct btrfs_io_geometry geom; 2136 2137 if (bio_flags & EXTENT_BIO_COMPRESSED) 2138 return 0; 2139 2140 length = bio->bi_iter.bi_size; 2141 map_length = length; 2142 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2143 &geom); 2144 if (ret < 0) 2145 return ret; 2146 2147 if (geom.len < length + size) 2148 return 1; 2149 return 0; 2150 } 2151 2152 /* 2153 * in order to insert checksums into the metadata in large chunks, 2154 * we wait until bio submission time. All the pages in the bio are 2155 * checksummed and sums are attached onto the ordered extent record. 2156 * 2157 * At IO completion time the cums attached on the ordered extent record 2158 * are inserted into the btree 2159 */ 2160 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2161 u64 bio_offset) 2162 { 2163 struct inode *inode = private_data; 2164 blk_status_t ret = 0; 2165 2166 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2167 BUG_ON(ret); /* -ENOMEM */ 2168 return 0; 2169 } 2170 2171 /* 2172 * extent_io.c submission hook. This does the right thing for csum calculation 2173 * on write, or reading the csums from the tree before a read. 2174 * 2175 * Rules about async/sync submit, 2176 * a) read: sync submit 2177 * 2178 * b) write without checksum: sync submit 2179 * 2180 * c) write with checksum: 2181 * c-1) if bio is issued by fsync: sync submit 2182 * (sync_writers != 0) 2183 * 2184 * c-2) if root is reloc root: sync submit 2185 * (only in case of buffered IO) 2186 * 2187 * c-3) otherwise: async submit 2188 */ 2189 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2190 int mirror_num, 2191 unsigned long bio_flags) 2192 2193 { 2194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2195 struct btrfs_root *root = BTRFS_I(inode)->root; 2196 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2197 blk_status_t ret = 0; 2198 int skip_sum; 2199 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2200 2201 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2202 2203 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2204 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2205 2206 if (bio_op(bio) != REQ_OP_WRITE) { 2207 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2208 if (ret) 2209 goto out; 2210 2211 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2212 ret = btrfs_submit_compressed_read(inode, bio, 2213 mirror_num, 2214 bio_flags); 2215 goto out; 2216 } else if (!skip_sum) { 2217 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2218 if (ret) 2219 goto out; 2220 } 2221 goto mapit; 2222 } else if (async && !skip_sum) { 2223 /* csum items have already been cloned */ 2224 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2225 goto mapit; 2226 /* we're doing a write, do the async checksumming */ 2227 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2228 0, inode, btrfs_submit_bio_start); 2229 goto out; 2230 } else if (!skip_sum) { 2231 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2232 if (ret) 2233 goto out; 2234 } 2235 2236 mapit: 2237 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2238 2239 out: 2240 if (ret) { 2241 bio->bi_status = ret; 2242 bio_endio(bio); 2243 } 2244 return ret; 2245 } 2246 2247 /* 2248 * given a list of ordered sums record them in the inode. This happens 2249 * at IO completion time based on sums calculated at bio submission time. 2250 */ 2251 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2252 struct inode *inode, struct list_head *list) 2253 { 2254 struct btrfs_ordered_sum *sum; 2255 int ret; 2256 2257 list_for_each_entry(sum, list, list) { 2258 trans->adding_csums = true; 2259 ret = btrfs_csum_file_blocks(trans, 2260 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2261 trans->adding_csums = false; 2262 if (ret) 2263 return ret; 2264 } 2265 return 0; 2266 } 2267 2268 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2269 unsigned int extra_bits, 2270 struct extent_state **cached_state) 2271 { 2272 WARN_ON(PAGE_ALIGNED(end)); 2273 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2274 cached_state); 2275 } 2276 2277 /* see btrfs_writepage_start_hook for details on why this is required */ 2278 struct btrfs_writepage_fixup { 2279 struct page *page; 2280 struct inode *inode; 2281 struct btrfs_work work; 2282 }; 2283 2284 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2285 { 2286 struct btrfs_writepage_fixup *fixup; 2287 struct btrfs_ordered_extent *ordered; 2288 struct extent_state *cached_state = NULL; 2289 struct extent_changeset *data_reserved = NULL; 2290 struct page *page; 2291 struct btrfs_inode *inode; 2292 u64 page_start; 2293 u64 page_end; 2294 int ret = 0; 2295 bool free_delalloc_space = true; 2296 2297 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2298 page = fixup->page; 2299 inode = BTRFS_I(fixup->inode); 2300 page_start = page_offset(page); 2301 page_end = page_offset(page) + PAGE_SIZE - 1; 2302 2303 /* 2304 * This is similar to page_mkwrite, we need to reserve the space before 2305 * we take the page lock. 2306 */ 2307 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2308 PAGE_SIZE); 2309 again: 2310 lock_page(page); 2311 2312 /* 2313 * Before we queued this fixup, we took a reference on the page. 2314 * page->mapping may go NULL, but it shouldn't be moved to a different 2315 * address space. 2316 */ 2317 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2318 /* 2319 * Unfortunately this is a little tricky, either 2320 * 2321 * 1) We got here and our page had already been dealt with and 2322 * we reserved our space, thus ret == 0, so we need to just 2323 * drop our space reservation and bail. This can happen the 2324 * first time we come into the fixup worker, or could happen 2325 * while waiting for the ordered extent. 2326 * 2) Our page was already dealt with, but we happened to get an 2327 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2328 * this case we obviously don't have anything to release, but 2329 * because the page was already dealt with we don't want to 2330 * mark the page with an error, so make sure we're resetting 2331 * ret to 0. This is why we have this check _before_ the ret 2332 * check, because we do not want to have a surprise ENOSPC 2333 * when the page was already properly dealt with. 2334 */ 2335 if (!ret) { 2336 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2337 btrfs_delalloc_release_space(inode, data_reserved, 2338 page_start, PAGE_SIZE, 2339 true); 2340 } 2341 ret = 0; 2342 goto out_page; 2343 } 2344 2345 /* 2346 * We can't mess with the page state unless it is locked, so now that 2347 * it is locked bail if we failed to make our space reservation. 2348 */ 2349 if (ret) 2350 goto out_page; 2351 2352 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2353 2354 /* already ordered? We're done */ 2355 if (PagePrivate2(page)) 2356 goto out_reserved; 2357 2358 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2359 if (ordered) { 2360 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2361 &cached_state); 2362 unlock_page(page); 2363 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); 2364 btrfs_put_ordered_extent(ordered); 2365 goto again; 2366 } 2367 2368 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2369 &cached_state); 2370 if (ret) 2371 goto out_reserved; 2372 2373 /* 2374 * Everything went as planned, we're now the owner of a dirty page with 2375 * delayed allocation bits set and space reserved for our COW 2376 * destination. 2377 * 2378 * The page was dirty when we started, nothing should have cleaned it. 2379 */ 2380 BUG_ON(!PageDirty(page)); 2381 free_delalloc_space = false; 2382 out_reserved: 2383 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2384 if (free_delalloc_space) 2385 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2386 PAGE_SIZE, true); 2387 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2388 &cached_state); 2389 out_page: 2390 if (ret) { 2391 /* 2392 * We hit ENOSPC or other errors. Update the mapping and page 2393 * to reflect the errors and clean the page. 2394 */ 2395 mapping_set_error(page->mapping, ret); 2396 end_extent_writepage(page, ret, page_start, page_end); 2397 clear_page_dirty_for_io(page); 2398 SetPageError(page); 2399 } 2400 ClearPageChecked(page); 2401 unlock_page(page); 2402 put_page(page); 2403 kfree(fixup); 2404 extent_changeset_free(data_reserved); 2405 /* 2406 * As a precaution, do a delayed iput in case it would be the last iput 2407 * that could need flushing space. Recursing back to fixup worker would 2408 * deadlock. 2409 */ 2410 btrfs_add_delayed_iput(&inode->vfs_inode); 2411 } 2412 2413 /* 2414 * There are a few paths in the higher layers of the kernel that directly 2415 * set the page dirty bit without asking the filesystem if it is a 2416 * good idea. This causes problems because we want to make sure COW 2417 * properly happens and the data=ordered rules are followed. 2418 * 2419 * In our case any range that doesn't have the ORDERED bit set 2420 * hasn't been properly setup for IO. We kick off an async process 2421 * to fix it up. The async helper will wait for ordered extents, set 2422 * the delalloc bit and make it safe to write the page. 2423 */ 2424 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2425 { 2426 struct inode *inode = page->mapping->host; 2427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2428 struct btrfs_writepage_fixup *fixup; 2429 2430 /* this page is properly in the ordered list */ 2431 if (TestClearPagePrivate2(page)) 2432 return 0; 2433 2434 /* 2435 * PageChecked is set below when we create a fixup worker for this page, 2436 * don't try to create another one if we're already PageChecked() 2437 * 2438 * The extent_io writepage code will redirty the page if we send back 2439 * EAGAIN. 2440 */ 2441 if (PageChecked(page)) 2442 return -EAGAIN; 2443 2444 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2445 if (!fixup) 2446 return -EAGAIN; 2447 2448 /* 2449 * We are already holding a reference to this inode from 2450 * write_cache_pages. We need to hold it because the space reservation 2451 * takes place outside of the page lock, and we can't trust 2452 * page->mapping outside of the page lock. 2453 */ 2454 ihold(inode); 2455 SetPageChecked(page); 2456 get_page(page); 2457 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2458 fixup->page = page; 2459 fixup->inode = inode; 2460 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2461 2462 return -EAGAIN; 2463 } 2464 2465 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2466 struct btrfs_inode *inode, u64 file_pos, 2467 struct btrfs_file_extent_item *stack_fi, 2468 u64 qgroup_reserved) 2469 { 2470 struct btrfs_root *root = inode->root; 2471 struct btrfs_path *path; 2472 struct extent_buffer *leaf; 2473 struct btrfs_key ins; 2474 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2475 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2476 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2477 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2478 int extent_inserted = 0; 2479 int ret; 2480 2481 path = btrfs_alloc_path(); 2482 if (!path) 2483 return -ENOMEM; 2484 2485 /* 2486 * we may be replacing one extent in the tree with another. 2487 * The new extent is pinned in the extent map, and we don't want 2488 * to drop it from the cache until it is completely in the btree. 2489 * 2490 * So, tell btrfs_drop_extents to leave this extent in the cache. 2491 * the caller is expected to unpin it and allow it to be merged 2492 * with the others. 2493 */ 2494 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2495 file_pos + num_bytes, NULL, 0, 2496 1, sizeof(*stack_fi), &extent_inserted); 2497 if (ret) 2498 goto out; 2499 2500 if (!extent_inserted) { 2501 ins.objectid = btrfs_ino(inode); 2502 ins.offset = file_pos; 2503 ins.type = BTRFS_EXTENT_DATA_KEY; 2504 2505 path->leave_spinning = 1; 2506 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2507 sizeof(*stack_fi)); 2508 if (ret) 2509 goto out; 2510 } 2511 leaf = path->nodes[0]; 2512 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2513 write_extent_buffer(leaf, stack_fi, 2514 btrfs_item_ptr_offset(leaf, path->slots[0]), 2515 sizeof(struct btrfs_file_extent_item)); 2516 2517 btrfs_mark_buffer_dirty(leaf); 2518 btrfs_release_path(path); 2519 2520 inode_add_bytes(&inode->vfs_inode, num_bytes); 2521 2522 ins.objectid = disk_bytenr; 2523 ins.offset = disk_num_bytes; 2524 ins.type = BTRFS_EXTENT_ITEM_KEY; 2525 2526 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2527 if (ret) 2528 goto out; 2529 2530 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2531 file_pos, qgroup_reserved, &ins); 2532 out: 2533 btrfs_free_path(path); 2534 2535 return ret; 2536 } 2537 2538 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2539 u64 start, u64 len) 2540 { 2541 struct btrfs_block_group *cache; 2542 2543 cache = btrfs_lookup_block_group(fs_info, start); 2544 ASSERT(cache); 2545 2546 spin_lock(&cache->lock); 2547 cache->delalloc_bytes -= len; 2548 spin_unlock(&cache->lock); 2549 2550 btrfs_put_block_group(cache); 2551 } 2552 2553 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2554 struct inode *inode, 2555 struct btrfs_ordered_extent *oe) 2556 { 2557 struct btrfs_file_extent_item stack_fi; 2558 u64 logical_len; 2559 2560 memset(&stack_fi, 0, sizeof(stack_fi)); 2561 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2562 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2563 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2564 oe->disk_num_bytes); 2565 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2566 logical_len = oe->truncated_len; 2567 else 2568 logical_len = oe->num_bytes; 2569 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2570 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2571 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2572 /* Encryption and other encoding is reserved and all 0 */ 2573 2574 return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset, 2575 &stack_fi, oe->qgroup_rsv); 2576 } 2577 2578 /* 2579 * As ordered data IO finishes, this gets called so we can finish 2580 * an ordered extent if the range of bytes in the file it covers are 2581 * fully written. 2582 */ 2583 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2584 { 2585 struct inode *inode = ordered_extent->inode; 2586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2587 struct btrfs_root *root = BTRFS_I(inode)->root; 2588 struct btrfs_trans_handle *trans = NULL; 2589 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2590 struct extent_state *cached_state = NULL; 2591 u64 start, end; 2592 int compress_type = 0; 2593 int ret = 0; 2594 u64 logical_len = ordered_extent->num_bytes; 2595 bool freespace_inode; 2596 bool truncated = false; 2597 bool range_locked = false; 2598 bool clear_new_delalloc_bytes = false; 2599 bool clear_reserved_extent = true; 2600 unsigned int clear_bits; 2601 2602 start = ordered_extent->file_offset; 2603 end = start + ordered_extent->num_bytes - 1; 2604 2605 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2606 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2607 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2608 clear_new_delalloc_bytes = true; 2609 2610 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2611 2612 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2613 ret = -EIO; 2614 goto out; 2615 } 2616 2617 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2618 2619 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2620 truncated = true; 2621 logical_len = ordered_extent->truncated_len; 2622 /* Truncated the entire extent, don't bother adding */ 2623 if (!logical_len) 2624 goto out; 2625 } 2626 2627 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2628 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2629 2630 btrfs_inode_safe_disk_i_size_write(inode, 0); 2631 if (freespace_inode) 2632 trans = btrfs_join_transaction_spacecache(root); 2633 else 2634 trans = btrfs_join_transaction(root); 2635 if (IS_ERR(trans)) { 2636 ret = PTR_ERR(trans); 2637 trans = NULL; 2638 goto out; 2639 } 2640 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2641 ret = btrfs_update_inode_fallback(trans, root, inode); 2642 if (ret) /* -ENOMEM or corruption */ 2643 btrfs_abort_transaction(trans, ret); 2644 goto out; 2645 } 2646 2647 range_locked = true; 2648 lock_extent_bits(io_tree, start, end, &cached_state); 2649 2650 if (freespace_inode) 2651 trans = btrfs_join_transaction_spacecache(root); 2652 else 2653 trans = btrfs_join_transaction(root); 2654 if (IS_ERR(trans)) { 2655 ret = PTR_ERR(trans); 2656 trans = NULL; 2657 goto out; 2658 } 2659 2660 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2661 2662 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2663 compress_type = ordered_extent->compress_type; 2664 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2665 BUG_ON(compress_type); 2666 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2667 ordered_extent->file_offset, 2668 ordered_extent->file_offset + 2669 logical_len); 2670 } else { 2671 BUG_ON(root == fs_info->tree_root); 2672 ret = insert_ordered_extent_file_extent(trans, inode, 2673 ordered_extent); 2674 if (!ret) { 2675 clear_reserved_extent = false; 2676 btrfs_release_delalloc_bytes(fs_info, 2677 ordered_extent->disk_bytenr, 2678 ordered_extent->disk_num_bytes); 2679 } 2680 } 2681 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2682 ordered_extent->file_offset, 2683 ordered_extent->num_bytes, trans->transid); 2684 if (ret < 0) { 2685 btrfs_abort_transaction(trans, ret); 2686 goto out; 2687 } 2688 2689 ret = add_pending_csums(trans, inode, &ordered_extent->list); 2690 if (ret) { 2691 btrfs_abort_transaction(trans, ret); 2692 goto out; 2693 } 2694 2695 btrfs_inode_safe_disk_i_size_write(inode, 0); 2696 ret = btrfs_update_inode_fallback(trans, root, inode); 2697 if (ret) { /* -ENOMEM or corruption */ 2698 btrfs_abort_transaction(trans, ret); 2699 goto out; 2700 } 2701 ret = 0; 2702 out: 2703 clear_bits = EXTENT_DEFRAG; 2704 if (range_locked) 2705 clear_bits |= EXTENT_LOCKED; 2706 if (clear_new_delalloc_bytes) 2707 clear_bits |= EXTENT_DELALLOC_NEW; 2708 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2709 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2710 &cached_state); 2711 2712 if (trans) 2713 btrfs_end_transaction(trans); 2714 2715 if (ret || truncated) { 2716 u64 unwritten_start = start; 2717 2718 if (truncated) 2719 unwritten_start += logical_len; 2720 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2721 2722 /* Drop the cache for the part of the extent we didn't write. */ 2723 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2724 2725 /* 2726 * If the ordered extent had an IOERR or something else went 2727 * wrong we need to return the space for this ordered extent 2728 * back to the allocator. We only free the extent in the 2729 * truncated case if we didn't write out the extent at all. 2730 * 2731 * If we made it past insert_reserved_file_extent before we 2732 * errored out then we don't need to do this as the accounting 2733 * has already been done. 2734 */ 2735 if ((ret || !logical_len) && 2736 clear_reserved_extent && 2737 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2738 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2739 /* 2740 * Discard the range before returning it back to the 2741 * free space pool 2742 */ 2743 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2744 btrfs_discard_extent(fs_info, 2745 ordered_extent->disk_bytenr, 2746 ordered_extent->disk_num_bytes, 2747 NULL); 2748 btrfs_free_reserved_extent(fs_info, 2749 ordered_extent->disk_bytenr, 2750 ordered_extent->disk_num_bytes, 1); 2751 } 2752 } 2753 2754 /* 2755 * This needs to be done to make sure anybody waiting knows we are done 2756 * updating everything for this ordered extent. 2757 */ 2758 btrfs_remove_ordered_extent(inode, ordered_extent); 2759 2760 /* once for us */ 2761 btrfs_put_ordered_extent(ordered_extent); 2762 /* once for the tree */ 2763 btrfs_put_ordered_extent(ordered_extent); 2764 2765 return ret; 2766 } 2767 2768 static void finish_ordered_fn(struct btrfs_work *work) 2769 { 2770 struct btrfs_ordered_extent *ordered_extent; 2771 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2772 btrfs_finish_ordered_io(ordered_extent); 2773 } 2774 2775 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2776 u64 end, int uptodate) 2777 { 2778 struct inode *inode = page->mapping->host; 2779 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2780 struct btrfs_ordered_extent *ordered_extent = NULL; 2781 struct btrfs_workqueue *wq; 2782 2783 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2784 2785 ClearPagePrivate2(page); 2786 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2787 end - start + 1, uptodate)) 2788 return; 2789 2790 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2791 wq = fs_info->endio_freespace_worker; 2792 else 2793 wq = fs_info->endio_write_workers; 2794 2795 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2796 btrfs_queue_work(wq, &ordered_extent->work); 2797 } 2798 2799 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 2800 int icsum, struct page *page, int pgoff, u64 start, 2801 size_t len) 2802 { 2803 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2804 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2805 char *kaddr; 2806 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2807 u8 *csum_expected; 2808 u8 csum[BTRFS_CSUM_SIZE]; 2809 2810 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2811 2812 kaddr = kmap_atomic(page); 2813 shash->tfm = fs_info->csum_shash; 2814 2815 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 2816 2817 if (memcmp(csum, csum_expected, csum_size)) 2818 goto zeroit; 2819 2820 kunmap_atomic(kaddr); 2821 return 0; 2822 zeroit: 2823 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2824 io_bio->mirror_num); 2825 if (io_bio->device) 2826 btrfs_dev_stat_inc_and_print(io_bio->device, 2827 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2828 memset(kaddr + pgoff, 1, len); 2829 flush_dcache_page(page); 2830 kunmap_atomic(kaddr); 2831 return -EIO; 2832 } 2833 2834 /* 2835 * when reads are done, we need to check csums to verify the data is correct 2836 * if there's a match, we allow the bio to finish. If not, the code in 2837 * extent_io.c will try to find good copies for us. 2838 */ 2839 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2840 u64 phy_offset, struct page *page, 2841 u64 start, u64 end, int mirror) 2842 { 2843 size_t offset = start - page_offset(page); 2844 struct inode *inode = page->mapping->host; 2845 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2846 struct btrfs_root *root = BTRFS_I(inode)->root; 2847 2848 if (PageChecked(page)) { 2849 ClearPageChecked(page); 2850 return 0; 2851 } 2852 2853 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2854 return 0; 2855 2856 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2857 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2858 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2859 return 0; 2860 } 2861 2862 phy_offset >>= inode->i_sb->s_blocksize_bits; 2863 return check_data_csum(inode, io_bio, phy_offset, page, offset, start, 2864 (size_t)(end - start + 1)); 2865 } 2866 2867 /* 2868 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2869 * 2870 * @inode: The inode we want to perform iput on 2871 * 2872 * This function uses the generic vfs_inode::i_count to track whether we should 2873 * just decrement it (in case it's > 1) or if this is the last iput then link 2874 * the inode to the delayed iput machinery. Delayed iputs are processed at 2875 * transaction commit time/superblock commit/cleaner kthread. 2876 */ 2877 void btrfs_add_delayed_iput(struct inode *inode) 2878 { 2879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2880 struct btrfs_inode *binode = BTRFS_I(inode); 2881 2882 if (atomic_add_unless(&inode->i_count, -1, 1)) 2883 return; 2884 2885 atomic_inc(&fs_info->nr_delayed_iputs); 2886 spin_lock(&fs_info->delayed_iput_lock); 2887 ASSERT(list_empty(&binode->delayed_iput)); 2888 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2889 spin_unlock(&fs_info->delayed_iput_lock); 2890 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2891 wake_up_process(fs_info->cleaner_kthread); 2892 } 2893 2894 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2895 struct btrfs_inode *inode) 2896 { 2897 list_del_init(&inode->delayed_iput); 2898 spin_unlock(&fs_info->delayed_iput_lock); 2899 iput(&inode->vfs_inode); 2900 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2901 wake_up(&fs_info->delayed_iputs_wait); 2902 spin_lock(&fs_info->delayed_iput_lock); 2903 } 2904 2905 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2906 struct btrfs_inode *inode) 2907 { 2908 if (!list_empty(&inode->delayed_iput)) { 2909 spin_lock(&fs_info->delayed_iput_lock); 2910 if (!list_empty(&inode->delayed_iput)) 2911 run_delayed_iput_locked(fs_info, inode); 2912 spin_unlock(&fs_info->delayed_iput_lock); 2913 } 2914 } 2915 2916 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2917 { 2918 2919 spin_lock(&fs_info->delayed_iput_lock); 2920 while (!list_empty(&fs_info->delayed_iputs)) { 2921 struct btrfs_inode *inode; 2922 2923 inode = list_first_entry(&fs_info->delayed_iputs, 2924 struct btrfs_inode, delayed_iput); 2925 run_delayed_iput_locked(fs_info, inode); 2926 } 2927 spin_unlock(&fs_info->delayed_iput_lock); 2928 } 2929 2930 /** 2931 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2932 * @fs_info - the fs_info for this fs 2933 * @return - EINTR if we were killed, 0 if nothing's pending 2934 * 2935 * This will wait on any delayed iputs that are currently running with KILLABLE 2936 * set. Once they are all done running we will return, unless we are killed in 2937 * which case we return EINTR. This helps in user operations like fallocate etc 2938 * that might get blocked on the iputs. 2939 */ 2940 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2941 { 2942 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2943 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2944 if (ret) 2945 return -EINTR; 2946 return 0; 2947 } 2948 2949 /* 2950 * This creates an orphan entry for the given inode in case something goes wrong 2951 * in the middle of an unlink. 2952 */ 2953 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2954 struct btrfs_inode *inode) 2955 { 2956 int ret; 2957 2958 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2959 if (ret && ret != -EEXIST) { 2960 btrfs_abort_transaction(trans, ret); 2961 return ret; 2962 } 2963 2964 return 0; 2965 } 2966 2967 /* 2968 * We have done the delete so we can go ahead and remove the orphan item for 2969 * this particular inode. 2970 */ 2971 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2972 struct btrfs_inode *inode) 2973 { 2974 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2975 } 2976 2977 /* 2978 * this cleans up any orphans that may be left on the list from the last use 2979 * of this root. 2980 */ 2981 int btrfs_orphan_cleanup(struct btrfs_root *root) 2982 { 2983 struct btrfs_fs_info *fs_info = root->fs_info; 2984 struct btrfs_path *path; 2985 struct extent_buffer *leaf; 2986 struct btrfs_key key, found_key; 2987 struct btrfs_trans_handle *trans; 2988 struct inode *inode; 2989 u64 last_objectid = 0; 2990 int ret = 0, nr_unlink = 0; 2991 2992 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2993 return 0; 2994 2995 path = btrfs_alloc_path(); 2996 if (!path) { 2997 ret = -ENOMEM; 2998 goto out; 2999 } 3000 path->reada = READA_BACK; 3001 3002 key.objectid = BTRFS_ORPHAN_OBJECTID; 3003 key.type = BTRFS_ORPHAN_ITEM_KEY; 3004 key.offset = (u64)-1; 3005 3006 while (1) { 3007 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3008 if (ret < 0) 3009 goto out; 3010 3011 /* 3012 * if ret == 0 means we found what we were searching for, which 3013 * is weird, but possible, so only screw with path if we didn't 3014 * find the key and see if we have stuff that matches 3015 */ 3016 if (ret > 0) { 3017 ret = 0; 3018 if (path->slots[0] == 0) 3019 break; 3020 path->slots[0]--; 3021 } 3022 3023 /* pull out the item */ 3024 leaf = path->nodes[0]; 3025 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3026 3027 /* make sure the item matches what we want */ 3028 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3029 break; 3030 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3031 break; 3032 3033 /* release the path since we're done with it */ 3034 btrfs_release_path(path); 3035 3036 /* 3037 * this is where we are basically btrfs_lookup, without the 3038 * crossing root thing. we store the inode number in the 3039 * offset of the orphan item. 3040 */ 3041 3042 if (found_key.offset == last_objectid) { 3043 btrfs_err(fs_info, 3044 "Error removing orphan entry, stopping orphan cleanup"); 3045 ret = -EINVAL; 3046 goto out; 3047 } 3048 3049 last_objectid = found_key.offset; 3050 3051 found_key.objectid = found_key.offset; 3052 found_key.type = BTRFS_INODE_ITEM_KEY; 3053 found_key.offset = 0; 3054 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3055 ret = PTR_ERR_OR_ZERO(inode); 3056 if (ret && ret != -ENOENT) 3057 goto out; 3058 3059 if (ret == -ENOENT && root == fs_info->tree_root) { 3060 struct btrfs_root *dead_root; 3061 struct btrfs_fs_info *fs_info = root->fs_info; 3062 int is_dead_root = 0; 3063 3064 /* 3065 * this is an orphan in the tree root. Currently these 3066 * could come from 2 sources: 3067 * a) a snapshot deletion in progress 3068 * b) a free space cache inode 3069 * We need to distinguish those two, as the snapshot 3070 * orphan must not get deleted. 3071 * find_dead_roots already ran before us, so if this 3072 * is a snapshot deletion, we should find the root 3073 * in the fs_roots radix tree. 3074 */ 3075 3076 spin_lock(&fs_info->fs_roots_radix_lock); 3077 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3078 (unsigned long)found_key.objectid); 3079 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3080 is_dead_root = 1; 3081 spin_unlock(&fs_info->fs_roots_radix_lock); 3082 3083 if (is_dead_root) { 3084 /* prevent this orphan from being found again */ 3085 key.offset = found_key.objectid - 1; 3086 continue; 3087 } 3088 3089 } 3090 3091 /* 3092 * If we have an inode with links, there are a couple of 3093 * possibilities. Old kernels (before v3.12) used to create an 3094 * orphan item for truncate indicating that there were possibly 3095 * extent items past i_size that needed to be deleted. In v3.12, 3096 * truncate was changed to update i_size in sync with the extent 3097 * items, but the (useless) orphan item was still created. Since 3098 * v4.18, we don't create the orphan item for truncate at all. 3099 * 3100 * So, this item could mean that we need to do a truncate, but 3101 * only if this filesystem was last used on a pre-v3.12 kernel 3102 * and was not cleanly unmounted. The odds of that are quite 3103 * slim, and it's a pain to do the truncate now, so just delete 3104 * the orphan item. 3105 * 3106 * It's also possible that this orphan item was supposed to be 3107 * deleted but wasn't. The inode number may have been reused, 3108 * but either way, we can delete the orphan item. 3109 */ 3110 if (ret == -ENOENT || inode->i_nlink) { 3111 if (!ret) 3112 iput(inode); 3113 trans = btrfs_start_transaction(root, 1); 3114 if (IS_ERR(trans)) { 3115 ret = PTR_ERR(trans); 3116 goto out; 3117 } 3118 btrfs_debug(fs_info, "auto deleting %Lu", 3119 found_key.objectid); 3120 ret = btrfs_del_orphan_item(trans, root, 3121 found_key.objectid); 3122 btrfs_end_transaction(trans); 3123 if (ret) 3124 goto out; 3125 continue; 3126 } 3127 3128 nr_unlink++; 3129 3130 /* this will do delete_inode and everything for us */ 3131 iput(inode); 3132 } 3133 /* release the path since we're done with it */ 3134 btrfs_release_path(path); 3135 3136 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3137 3138 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3139 trans = btrfs_join_transaction(root); 3140 if (!IS_ERR(trans)) 3141 btrfs_end_transaction(trans); 3142 } 3143 3144 if (nr_unlink) 3145 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3146 3147 out: 3148 if (ret) 3149 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3150 btrfs_free_path(path); 3151 return ret; 3152 } 3153 3154 /* 3155 * very simple check to peek ahead in the leaf looking for xattrs. If we 3156 * don't find any xattrs, we know there can't be any acls. 3157 * 3158 * slot is the slot the inode is in, objectid is the objectid of the inode 3159 */ 3160 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3161 int slot, u64 objectid, 3162 int *first_xattr_slot) 3163 { 3164 u32 nritems = btrfs_header_nritems(leaf); 3165 struct btrfs_key found_key; 3166 static u64 xattr_access = 0; 3167 static u64 xattr_default = 0; 3168 int scanned = 0; 3169 3170 if (!xattr_access) { 3171 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3172 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3173 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3174 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3175 } 3176 3177 slot++; 3178 *first_xattr_slot = -1; 3179 while (slot < nritems) { 3180 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3181 3182 /* we found a different objectid, there must not be acls */ 3183 if (found_key.objectid != objectid) 3184 return 0; 3185 3186 /* we found an xattr, assume we've got an acl */ 3187 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3188 if (*first_xattr_slot == -1) 3189 *first_xattr_slot = slot; 3190 if (found_key.offset == xattr_access || 3191 found_key.offset == xattr_default) 3192 return 1; 3193 } 3194 3195 /* 3196 * we found a key greater than an xattr key, there can't 3197 * be any acls later on 3198 */ 3199 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3200 return 0; 3201 3202 slot++; 3203 scanned++; 3204 3205 /* 3206 * it goes inode, inode backrefs, xattrs, extents, 3207 * so if there are a ton of hard links to an inode there can 3208 * be a lot of backrefs. Don't waste time searching too hard, 3209 * this is just an optimization 3210 */ 3211 if (scanned >= 8) 3212 break; 3213 } 3214 /* we hit the end of the leaf before we found an xattr or 3215 * something larger than an xattr. We have to assume the inode 3216 * has acls 3217 */ 3218 if (*first_xattr_slot == -1) 3219 *first_xattr_slot = slot; 3220 return 1; 3221 } 3222 3223 /* 3224 * read an inode from the btree into the in-memory inode 3225 */ 3226 static int btrfs_read_locked_inode(struct inode *inode, 3227 struct btrfs_path *in_path) 3228 { 3229 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3230 struct btrfs_path *path = in_path; 3231 struct extent_buffer *leaf; 3232 struct btrfs_inode_item *inode_item; 3233 struct btrfs_root *root = BTRFS_I(inode)->root; 3234 struct btrfs_key location; 3235 unsigned long ptr; 3236 int maybe_acls; 3237 u32 rdev; 3238 int ret; 3239 bool filled = false; 3240 int first_xattr_slot; 3241 3242 ret = btrfs_fill_inode(inode, &rdev); 3243 if (!ret) 3244 filled = true; 3245 3246 if (!path) { 3247 path = btrfs_alloc_path(); 3248 if (!path) 3249 return -ENOMEM; 3250 } 3251 3252 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3253 3254 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3255 if (ret) { 3256 if (path != in_path) 3257 btrfs_free_path(path); 3258 return ret; 3259 } 3260 3261 leaf = path->nodes[0]; 3262 3263 if (filled) 3264 goto cache_index; 3265 3266 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3267 struct btrfs_inode_item); 3268 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3269 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3270 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3271 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3272 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3273 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3274 round_up(i_size_read(inode), fs_info->sectorsize)); 3275 3276 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3277 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3278 3279 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3280 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3281 3282 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3283 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3284 3285 BTRFS_I(inode)->i_otime.tv_sec = 3286 btrfs_timespec_sec(leaf, &inode_item->otime); 3287 BTRFS_I(inode)->i_otime.tv_nsec = 3288 btrfs_timespec_nsec(leaf, &inode_item->otime); 3289 3290 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3291 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3292 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3293 3294 inode_set_iversion_queried(inode, 3295 btrfs_inode_sequence(leaf, inode_item)); 3296 inode->i_generation = BTRFS_I(inode)->generation; 3297 inode->i_rdev = 0; 3298 rdev = btrfs_inode_rdev(leaf, inode_item); 3299 3300 BTRFS_I(inode)->index_cnt = (u64)-1; 3301 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3302 3303 cache_index: 3304 /* 3305 * If we were modified in the current generation and evicted from memory 3306 * and then re-read we need to do a full sync since we don't have any 3307 * idea about which extents were modified before we were evicted from 3308 * cache. 3309 * 3310 * This is required for both inode re-read from disk and delayed inode 3311 * in delayed_nodes_tree. 3312 */ 3313 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3314 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3315 &BTRFS_I(inode)->runtime_flags); 3316 3317 /* 3318 * We don't persist the id of the transaction where an unlink operation 3319 * against the inode was last made. So here we assume the inode might 3320 * have been evicted, and therefore the exact value of last_unlink_trans 3321 * lost, and set it to last_trans to avoid metadata inconsistencies 3322 * between the inode and its parent if the inode is fsync'ed and the log 3323 * replayed. For example, in the scenario: 3324 * 3325 * touch mydir/foo 3326 * ln mydir/foo mydir/bar 3327 * sync 3328 * unlink mydir/bar 3329 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3330 * xfs_io -c fsync mydir/foo 3331 * <power failure> 3332 * mount fs, triggers fsync log replay 3333 * 3334 * We must make sure that when we fsync our inode foo we also log its 3335 * parent inode, otherwise after log replay the parent still has the 3336 * dentry with the "bar" name but our inode foo has a link count of 1 3337 * and doesn't have an inode ref with the name "bar" anymore. 3338 * 3339 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3340 * but it guarantees correctness at the expense of occasional full 3341 * transaction commits on fsync if our inode is a directory, or if our 3342 * inode is not a directory, logging its parent unnecessarily. 3343 */ 3344 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3345 3346 /* 3347 * Same logic as for last_unlink_trans. We don't persist the generation 3348 * of the last transaction where this inode was used for a reflink 3349 * operation, so after eviction and reloading the inode we must be 3350 * pessimistic and assume the last transaction that modified the inode. 3351 */ 3352 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3353 3354 path->slots[0]++; 3355 if (inode->i_nlink != 1 || 3356 path->slots[0] >= btrfs_header_nritems(leaf)) 3357 goto cache_acl; 3358 3359 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3360 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3361 goto cache_acl; 3362 3363 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3364 if (location.type == BTRFS_INODE_REF_KEY) { 3365 struct btrfs_inode_ref *ref; 3366 3367 ref = (struct btrfs_inode_ref *)ptr; 3368 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3369 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3370 struct btrfs_inode_extref *extref; 3371 3372 extref = (struct btrfs_inode_extref *)ptr; 3373 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3374 extref); 3375 } 3376 cache_acl: 3377 /* 3378 * try to precache a NULL acl entry for files that don't have 3379 * any xattrs or acls 3380 */ 3381 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3382 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3383 if (first_xattr_slot != -1) { 3384 path->slots[0] = first_xattr_slot; 3385 ret = btrfs_load_inode_props(inode, path); 3386 if (ret) 3387 btrfs_err(fs_info, 3388 "error loading props for ino %llu (root %llu): %d", 3389 btrfs_ino(BTRFS_I(inode)), 3390 root->root_key.objectid, ret); 3391 } 3392 if (path != in_path) 3393 btrfs_free_path(path); 3394 3395 if (!maybe_acls) 3396 cache_no_acl(inode); 3397 3398 switch (inode->i_mode & S_IFMT) { 3399 case S_IFREG: 3400 inode->i_mapping->a_ops = &btrfs_aops; 3401 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3402 inode->i_fop = &btrfs_file_operations; 3403 inode->i_op = &btrfs_file_inode_operations; 3404 break; 3405 case S_IFDIR: 3406 inode->i_fop = &btrfs_dir_file_operations; 3407 inode->i_op = &btrfs_dir_inode_operations; 3408 break; 3409 case S_IFLNK: 3410 inode->i_op = &btrfs_symlink_inode_operations; 3411 inode_nohighmem(inode); 3412 inode->i_mapping->a_ops = &btrfs_aops; 3413 break; 3414 default: 3415 inode->i_op = &btrfs_special_inode_operations; 3416 init_special_inode(inode, inode->i_mode, rdev); 3417 break; 3418 } 3419 3420 btrfs_sync_inode_flags_to_i_flags(inode); 3421 return 0; 3422 } 3423 3424 /* 3425 * given a leaf and an inode, copy the inode fields into the leaf 3426 */ 3427 static void fill_inode_item(struct btrfs_trans_handle *trans, 3428 struct extent_buffer *leaf, 3429 struct btrfs_inode_item *item, 3430 struct inode *inode) 3431 { 3432 struct btrfs_map_token token; 3433 3434 btrfs_init_map_token(&token, leaf); 3435 3436 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3437 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3438 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3439 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3440 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3441 3442 btrfs_set_token_timespec_sec(&token, &item->atime, 3443 inode->i_atime.tv_sec); 3444 btrfs_set_token_timespec_nsec(&token, &item->atime, 3445 inode->i_atime.tv_nsec); 3446 3447 btrfs_set_token_timespec_sec(&token, &item->mtime, 3448 inode->i_mtime.tv_sec); 3449 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3450 inode->i_mtime.tv_nsec); 3451 3452 btrfs_set_token_timespec_sec(&token, &item->ctime, 3453 inode->i_ctime.tv_sec); 3454 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3455 inode->i_ctime.tv_nsec); 3456 3457 btrfs_set_token_timespec_sec(&token, &item->otime, 3458 BTRFS_I(inode)->i_otime.tv_sec); 3459 btrfs_set_token_timespec_nsec(&token, &item->otime, 3460 BTRFS_I(inode)->i_otime.tv_nsec); 3461 3462 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3463 btrfs_set_token_inode_generation(&token, item, 3464 BTRFS_I(inode)->generation); 3465 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3466 btrfs_set_token_inode_transid(&token, item, trans->transid); 3467 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3468 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3469 btrfs_set_token_inode_block_group(&token, item, 0); 3470 } 3471 3472 /* 3473 * copy everything in the in-memory inode into the btree. 3474 */ 3475 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3476 struct btrfs_root *root, struct inode *inode) 3477 { 3478 struct btrfs_inode_item *inode_item; 3479 struct btrfs_path *path; 3480 struct extent_buffer *leaf; 3481 int ret; 3482 3483 path = btrfs_alloc_path(); 3484 if (!path) 3485 return -ENOMEM; 3486 3487 path->leave_spinning = 1; 3488 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3489 1); 3490 if (ret) { 3491 if (ret > 0) 3492 ret = -ENOENT; 3493 goto failed; 3494 } 3495 3496 leaf = path->nodes[0]; 3497 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3498 struct btrfs_inode_item); 3499 3500 fill_inode_item(trans, leaf, inode_item, inode); 3501 btrfs_mark_buffer_dirty(leaf); 3502 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 3503 ret = 0; 3504 failed: 3505 btrfs_free_path(path); 3506 return ret; 3507 } 3508 3509 /* 3510 * copy everything in the in-memory inode into the btree. 3511 */ 3512 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3513 struct btrfs_root *root, struct inode *inode) 3514 { 3515 struct btrfs_fs_info *fs_info = root->fs_info; 3516 int ret; 3517 3518 /* 3519 * If the inode is a free space inode, we can deadlock during commit 3520 * if we put it into the delayed code. 3521 * 3522 * The data relocation inode should also be directly updated 3523 * without delay 3524 */ 3525 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3526 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3527 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3528 btrfs_update_root_times(trans, root); 3529 3530 ret = btrfs_delayed_update_inode(trans, root, inode); 3531 if (!ret) 3532 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 3533 return ret; 3534 } 3535 3536 return btrfs_update_inode_item(trans, root, inode); 3537 } 3538 3539 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3540 struct btrfs_root *root, 3541 struct inode *inode) 3542 { 3543 int ret; 3544 3545 ret = btrfs_update_inode(trans, root, inode); 3546 if (ret == -ENOSPC) 3547 return btrfs_update_inode_item(trans, root, inode); 3548 return ret; 3549 } 3550 3551 /* 3552 * unlink helper that gets used here in inode.c and in the tree logging 3553 * recovery code. It remove a link in a directory with a given name, and 3554 * also drops the back refs in the inode to the directory 3555 */ 3556 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3557 struct btrfs_root *root, 3558 struct btrfs_inode *dir, 3559 struct btrfs_inode *inode, 3560 const char *name, int name_len) 3561 { 3562 struct btrfs_fs_info *fs_info = root->fs_info; 3563 struct btrfs_path *path; 3564 int ret = 0; 3565 struct btrfs_dir_item *di; 3566 u64 index; 3567 u64 ino = btrfs_ino(inode); 3568 u64 dir_ino = btrfs_ino(dir); 3569 3570 path = btrfs_alloc_path(); 3571 if (!path) { 3572 ret = -ENOMEM; 3573 goto out; 3574 } 3575 3576 path->leave_spinning = 1; 3577 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3578 name, name_len, -1); 3579 if (IS_ERR_OR_NULL(di)) { 3580 ret = di ? PTR_ERR(di) : -ENOENT; 3581 goto err; 3582 } 3583 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3584 if (ret) 3585 goto err; 3586 btrfs_release_path(path); 3587 3588 /* 3589 * If we don't have dir index, we have to get it by looking up 3590 * the inode ref, since we get the inode ref, remove it directly, 3591 * it is unnecessary to do delayed deletion. 3592 * 3593 * But if we have dir index, needn't search inode ref to get it. 3594 * Since the inode ref is close to the inode item, it is better 3595 * that we delay to delete it, and just do this deletion when 3596 * we update the inode item. 3597 */ 3598 if (inode->dir_index) { 3599 ret = btrfs_delayed_delete_inode_ref(inode); 3600 if (!ret) { 3601 index = inode->dir_index; 3602 goto skip_backref; 3603 } 3604 } 3605 3606 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3607 dir_ino, &index); 3608 if (ret) { 3609 btrfs_info(fs_info, 3610 "failed to delete reference to %.*s, inode %llu parent %llu", 3611 name_len, name, ino, dir_ino); 3612 btrfs_abort_transaction(trans, ret); 3613 goto err; 3614 } 3615 skip_backref: 3616 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3617 if (ret) { 3618 btrfs_abort_transaction(trans, ret); 3619 goto err; 3620 } 3621 3622 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3623 dir_ino); 3624 if (ret != 0 && ret != -ENOENT) { 3625 btrfs_abort_transaction(trans, ret); 3626 goto err; 3627 } 3628 3629 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3630 index); 3631 if (ret == -ENOENT) 3632 ret = 0; 3633 else if (ret) 3634 btrfs_abort_transaction(trans, ret); 3635 3636 /* 3637 * If we have a pending delayed iput we could end up with the final iput 3638 * being run in btrfs-cleaner context. If we have enough of these built 3639 * up we can end up burning a lot of time in btrfs-cleaner without any 3640 * way to throttle the unlinks. Since we're currently holding a ref on 3641 * the inode we can run the delayed iput here without any issues as the 3642 * final iput won't be done until after we drop the ref we're currently 3643 * holding. 3644 */ 3645 btrfs_run_delayed_iput(fs_info, inode); 3646 err: 3647 btrfs_free_path(path); 3648 if (ret) 3649 goto out; 3650 3651 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3652 inode_inc_iversion(&inode->vfs_inode); 3653 inode_inc_iversion(&dir->vfs_inode); 3654 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3655 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3656 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3657 out: 3658 return ret; 3659 } 3660 3661 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3662 struct btrfs_root *root, 3663 struct btrfs_inode *dir, struct btrfs_inode *inode, 3664 const char *name, int name_len) 3665 { 3666 int ret; 3667 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3668 if (!ret) { 3669 drop_nlink(&inode->vfs_inode); 3670 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3671 } 3672 return ret; 3673 } 3674 3675 /* 3676 * helper to start transaction for unlink and rmdir. 3677 * 3678 * unlink and rmdir are special in btrfs, they do not always free space, so 3679 * if we cannot make our reservations the normal way try and see if there is 3680 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3681 * allow the unlink to occur. 3682 */ 3683 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3684 { 3685 struct btrfs_root *root = BTRFS_I(dir)->root; 3686 3687 /* 3688 * 1 for the possible orphan item 3689 * 1 for the dir item 3690 * 1 for the dir index 3691 * 1 for the inode ref 3692 * 1 for the inode 3693 */ 3694 return btrfs_start_transaction_fallback_global_rsv(root, 5); 3695 } 3696 3697 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3698 { 3699 struct btrfs_root *root = BTRFS_I(dir)->root; 3700 struct btrfs_trans_handle *trans; 3701 struct inode *inode = d_inode(dentry); 3702 int ret; 3703 3704 trans = __unlink_start_trans(dir); 3705 if (IS_ERR(trans)) 3706 return PTR_ERR(trans); 3707 3708 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3709 0); 3710 3711 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3712 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3713 dentry->d_name.len); 3714 if (ret) 3715 goto out; 3716 3717 if (inode->i_nlink == 0) { 3718 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3719 if (ret) 3720 goto out; 3721 } 3722 3723 out: 3724 btrfs_end_transaction(trans); 3725 btrfs_btree_balance_dirty(root->fs_info); 3726 return ret; 3727 } 3728 3729 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3730 struct inode *dir, struct dentry *dentry) 3731 { 3732 struct btrfs_root *root = BTRFS_I(dir)->root; 3733 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3734 struct btrfs_path *path; 3735 struct extent_buffer *leaf; 3736 struct btrfs_dir_item *di; 3737 struct btrfs_key key; 3738 const char *name = dentry->d_name.name; 3739 int name_len = dentry->d_name.len; 3740 u64 index; 3741 int ret; 3742 u64 objectid; 3743 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3744 3745 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3746 objectid = inode->root->root_key.objectid; 3747 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3748 objectid = inode->location.objectid; 3749 } else { 3750 WARN_ON(1); 3751 return -EINVAL; 3752 } 3753 3754 path = btrfs_alloc_path(); 3755 if (!path) 3756 return -ENOMEM; 3757 3758 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3759 name, name_len, -1); 3760 if (IS_ERR_OR_NULL(di)) { 3761 ret = di ? PTR_ERR(di) : -ENOENT; 3762 goto out; 3763 } 3764 3765 leaf = path->nodes[0]; 3766 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3767 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3768 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3769 if (ret) { 3770 btrfs_abort_transaction(trans, ret); 3771 goto out; 3772 } 3773 btrfs_release_path(path); 3774 3775 /* 3776 * This is a placeholder inode for a subvolume we didn't have a 3777 * reference to at the time of the snapshot creation. In the meantime 3778 * we could have renamed the real subvol link into our snapshot, so 3779 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3780 * Instead simply lookup the dir_index_item for this entry so we can 3781 * remove it. Otherwise we know we have a ref to the root and we can 3782 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3783 */ 3784 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3785 di = btrfs_search_dir_index_item(root, path, dir_ino, 3786 name, name_len); 3787 if (IS_ERR_OR_NULL(di)) { 3788 if (!di) 3789 ret = -ENOENT; 3790 else 3791 ret = PTR_ERR(di); 3792 btrfs_abort_transaction(trans, ret); 3793 goto out; 3794 } 3795 3796 leaf = path->nodes[0]; 3797 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3798 index = key.offset; 3799 btrfs_release_path(path); 3800 } else { 3801 ret = btrfs_del_root_ref(trans, objectid, 3802 root->root_key.objectid, dir_ino, 3803 &index, name, name_len); 3804 if (ret) { 3805 btrfs_abort_transaction(trans, ret); 3806 goto out; 3807 } 3808 } 3809 3810 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3811 if (ret) { 3812 btrfs_abort_transaction(trans, ret); 3813 goto out; 3814 } 3815 3816 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3817 inode_inc_iversion(dir); 3818 dir->i_mtime = dir->i_ctime = current_time(dir); 3819 ret = btrfs_update_inode_fallback(trans, root, dir); 3820 if (ret) 3821 btrfs_abort_transaction(trans, ret); 3822 out: 3823 btrfs_free_path(path); 3824 return ret; 3825 } 3826 3827 /* 3828 * Helper to check if the subvolume references other subvolumes or if it's 3829 * default. 3830 */ 3831 static noinline int may_destroy_subvol(struct btrfs_root *root) 3832 { 3833 struct btrfs_fs_info *fs_info = root->fs_info; 3834 struct btrfs_path *path; 3835 struct btrfs_dir_item *di; 3836 struct btrfs_key key; 3837 u64 dir_id; 3838 int ret; 3839 3840 path = btrfs_alloc_path(); 3841 if (!path) 3842 return -ENOMEM; 3843 3844 /* Make sure this root isn't set as the default subvol */ 3845 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3846 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3847 dir_id, "default", 7, 0); 3848 if (di && !IS_ERR(di)) { 3849 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3850 if (key.objectid == root->root_key.objectid) { 3851 ret = -EPERM; 3852 btrfs_err(fs_info, 3853 "deleting default subvolume %llu is not allowed", 3854 key.objectid); 3855 goto out; 3856 } 3857 btrfs_release_path(path); 3858 } 3859 3860 key.objectid = root->root_key.objectid; 3861 key.type = BTRFS_ROOT_REF_KEY; 3862 key.offset = (u64)-1; 3863 3864 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3865 if (ret < 0) 3866 goto out; 3867 BUG_ON(ret == 0); 3868 3869 ret = 0; 3870 if (path->slots[0] > 0) { 3871 path->slots[0]--; 3872 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3873 if (key.objectid == root->root_key.objectid && 3874 key.type == BTRFS_ROOT_REF_KEY) 3875 ret = -ENOTEMPTY; 3876 } 3877 out: 3878 btrfs_free_path(path); 3879 return ret; 3880 } 3881 3882 /* Delete all dentries for inodes belonging to the root */ 3883 static void btrfs_prune_dentries(struct btrfs_root *root) 3884 { 3885 struct btrfs_fs_info *fs_info = root->fs_info; 3886 struct rb_node *node; 3887 struct rb_node *prev; 3888 struct btrfs_inode *entry; 3889 struct inode *inode; 3890 u64 objectid = 0; 3891 3892 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3893 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3894 3895 spin_lock(&root->inode_lock); 3896 again: 3897 node = root->inode_tree.rb_node; 3898 prev = NULL; 3899 while (node) { 3900 prev = node; 3901 entry = rb_entry(node, struct btrfs_inode, rb_node); 3902 3903 if (objectid < btrfs_ino(entry)) 3904 node = node->rb_left; 3905 else if (objectid > btrfs_ino(entry)) 3906 node = node->rb_right; 3907 else 3908 break; 3909 } 3910 if (!node) { 3911 while (prev) { 3912 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3913 if (objectid <= btrfs_ino(entry)) { 3914 node = prev; 3915 break; 3916 } 3917 prev = rb_next(prev); 3918 } 3919 } 3920 while (node) { 3921 entry = rb_entry(node, struct btrfs_inode, rb_node); 3922 objectid = btrfs_ino(entry) + 1; 3923 inode = igrab(&entry->vfs_inode); 3924 if (inode) { 3925 spin_unlock(&root->inode_lock); 3926 if (atomic_read(&inode->i_count) > 1) 3927 d_prune_aliases(inode); 3928 /* 3929 * btrfs_drop_inode will have it removed from the inode 3930 * cache when its usage count hits zero. 3931 */ 3932 iput(inode); 3933 cond_resched(); 3934 spin_lock(&root->inode_lock); 3935 goto again; 3936 } 3937 3938 if (cond_resched_lock(&root->inode_lock)) 3939 goto again; 3940 3941 node = rb_next(node); 3942 } 3943 spin_unlock(&root->inode_lock); 3944 } 3945 3946 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3947 { 3948 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3949 struct btrfs_root *root = BTRFS_I(dir)->root; 3950 struct inode *inode = d_inode(dentry); 3951 struct btrfs_root *dest = BTRFS_I(inode)->root; 3952 struct btrfs_trans_handle *trans; 3953 struct btrfs_block_rsv block_rsv; 3954 u64 root_flags; 3955 int ret; 3956 int err; 3957 3958 /* 3959 * Don't allow to delete a subvolume with send in progress. This is 3960 * inside the inode lock so the error handling that has to drop the bit 3961 * again is not run concurrently. 3962 */ 3963 spin_lock(&dest->root_item_lock); 3964 if (dest->send_in_progress) { 3965 spin_unlock(&dest->root_item_lock); 3966 btrfs_warn(fs_info, 3967 "attempt to delete subvolume %llu during send", 3968 dest->root_key.objectid); 3969 return -EPERM; 3970 } 3971 root_flags = btrfs_root_flags(&dest->root_item); 3972 btrfs_set_root_flags(&dest->root_item, 3973 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3974 spin_unlock(&dest->root_item_lock); 3975 3976 down_write(&fs_info->subvol_sem); 3977 3978 err = may_destroy_subvol(dest); 3979 if (err) 3980 goto out_up_write; 3981 3982 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3983 /* 3984 * One for dir inode, 3985 * two for dir entries, 3986 * two for root ref/backref. 3987 */ 3988 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3989 if (err) 3990 goto out_up_write; 3991 3992 trans = btrfs_start_transaction(root, 0); 3993 if (IS_ERR(trans)) { 3994 err = PTR_ERR(trans); 3995 goto out_release; 3996 } 3997 trans->block_rsv = &block_rsv; 3998 trans->bytes_reserved = block_rsv.size; 3999 4000 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4001 4002 ret = btrfs_unlink_subvol(trans, dir, dentry); 4003 if (ret) { 4004 err = ret; 4005 btrfs_abort_transaction(trans, ret); 4006 goto out_end_trans; 4007 } 4008 4009 btrfs_record_root_in_trans(trans, dest); 4010 4011 memset(&dest->root_item.drop_progress, 0, 4012 sizeof(dest->root_item.drop_progress)); 4013 dest->root_item.drop_level = 0; 4014 btrfs_set_root_refs(&dest->root_item, 0); 4015 4016 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4017 ret = btrfs_insert_orphan_item(trans, 4018 fs_info->tree_root, 4019 dest->root_key.objectid); 4020 if (ret) { 4021 btrfs_abort_transaction(trans, ret); 4022 err = ret; 4023 goto out_end_trans; 4024 } 4025 } 4026 4027 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4028 BTRFS_UUID_KEY_SUBVOL, 4029 dest->root_key.objectid); 4030 if (ret && ret != -ENOENT) { 4031 btrfs_abort_transaction(trans, ret); 4032 err = ret; 4033 goto out_end_trans; 4034 } 4035 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4036 ret = btrfs_uuid_tree_remove(trans, 4037 dest->root_item.received_uuid, 4038 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4039 dest->root_key.objectid); 4040 if (ret && ret != -ENOENT) { 4041 btrfs_abort_transaction(trans, ret); 4042 err = ret; 4043 goto out_end_trans; 4044 } 4045 } 4046 4047 free_anon_bdev(dest->anon_dev); 4048 dest->anon_dev = 0; 4049 out_end_trans: 4050 trans->block_rsv = NULL; 4051 trans->bytes_reserved = 0; 4052 ret = btrfs_end_transaction(trans); 4053 if (ret && !err) 4054 err = ret; 4055 inode->i_flags |= S_DEAD; 4056 out_release: 4057 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4058 out_up_write: 4059 up_write(&fs_info->subvol_sem); 4060 if (err) { 4061 spin_lock(&dest->root_item_lock); 4062 root_flags = btrfs_root_flags(&dest->root_item); 4063 btrfs_set_root_flags(&dest->root_item, 4064 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4065 spin_unlock(&dest->root_item_lock); 4066 } else { 4067 d_invalidate(dentry); 4068 btrfs_prune_dentries(dest); 4069 ASSERT(dest->send_in_progress == 0); 4070 4071 /* the last ref */ 4072 if (dest->ino_cache_inode) { 4073 iput(dest->ino_cache_inode); 4074 dest->ino_cache_inode = NULL; 4075 } 4076 } 4077 4078 return err; 4079 } 4080 4081 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4082 { 4083 struct inode *inode = d_inode(dentry); 4084 int err = 0; 4085 struct btrfs_root *root = BTRFS_I(dir)->root; 4086 struct btrfs_trans_handle *trans; 4087 u64 last_unlink_trans; 4088 4089 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4090 return -ENOTEMPTY; 4091 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4092 return btrfs_delete_subvolume(dir, dentry); 4093 4094 trans = __unlink_start_trans(dir); 4095 if (IS_ERR(trans)) 4096 return PTR_ERR(trans); 4097 4098 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4099 err = btrfs_unlink_subvol(trans, dir, dentry); 4100 goto out; 4101 } 4102 4103 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4104 if (err) 4105 goto out; 4106 4107 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4108 4109 /* now the directory is empty */ 4110 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4111 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4112 dentry->d_name.len); 4113 if (!err) { 4114 btrfs_i_size_write(BTRFS_I(inode), 0); 4115 /* 4116 * Propagate the last_unlink_trans value of the deleted dir to 4117 * its parent directory. This is to prevent an unrecoverable 4118 * log tree in the case we do something like this: 4119 * 1) create dir foo 4120 * 2) create snapshot under dir foo 4121 * 3) delete the snapshot 4122 * 4) rmdir foo 4123 * 5) mkdir foo 4124 * 6) fsync foo or some file inside foo 4125 */ 4126 if (last_unlink_trans >= trans->transid) 4127 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4128 } 4129 out: 4130 btrfs_end_transaction(trans); 4131 btrfs_btree_balance_dirty(root->fs_info); 4132 4133 return err; 4134 } 4135 4136 /* 4137 * Return this if we need to call truncate_block for the last bit of the 4138 * truncate. 4139 */ 4140 #define NEED_TRUNCATE_BLOCK 1 4141 4142 /* 4143 * this can truncate away extent items, csum items and directory items. 4144 * It starts at a high offset and removes keys until it can't find 4145 * any higher than new_size 4146 * 4147 * csum items that cross the new i_size are truncated to the new size 4148 * as well. 4149 * 4150 * min_type is the minimum key type to truncate down to. If set to 0, this 4151 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4152 */ 4153 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4154 struct btrfs_root *root, 4155 struct inode *inode, 4156 u64 new_size, u32 min_type) 4157 { 4158 struct btrfs_fs_info *fs_info = root->fs_info; 4159 struct btrfs_path *path; 4160 struct extent_buffer *leaf; 4161 struct btrfs_file_extent_item *fi; 4162 struct btrfs_key key; 4163 struct btrfs_key found_key; 4164 u64 extent_start = 0; 4165 u64 extent_num_bytes = 0; 4166 u64 extent_offset = 0; 4167 u64 item_end = 0; 4168 u64 last_size = new_size; 4169 u32 found_type = (u8)-1; 4170 int found_extent; 4171 int del_item; 4172 int pending_del_nr = 0; 4173 int pending_del_slot = 0; 4174 int extent_type = -1; 4175 int ret; 4176 u64 ino = btrfs_ino(BTRFS_I(inode)); 4177 u64 bytes_deleted = 0; 4178 bool be_nice = false; 4179 bool should_throttle = false; 4180 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4181 struct extent_state *cached_state = NULL; 4182 4183 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4184 4185 /* 4186 * For non-free space inodes and non-shareable roots, we want to back 4187 * off from time to time. This means all inodes in subvolume roots, 4188 * reloc roots, and data reloc roots. 4189 */ 4190 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4191 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4192 be_nice = true; 4193 4194 path = btrfs_alloc_path(); 4195 if (!path) 4196 return -ENOMEM; 4197 path->reada = READA_BACK; 4198 4199 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4200 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 4201 &cached_state); 4202 4203 /* 4204 * We want to drop from the next block forward in case this 4205 * new size is not block aligned since we will be keeping the 4206 * last block of the extent just the way it is. 4207 */ 4208 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4209 fs_info->sectorsize), 4210 (u64)-1, 0); 4211 } 4212 4213 /* 4214 * This function is also used to drop the items in the log tree before 4215 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4216 * it is used to drop the logged items. So we shouldn't kill the delayed 4217 * items. 4218 */ 4219 if (min_type == 0 && root == BTRFS_I(inode)->root) 4220 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4221 4222 key.objectid = ino; 4223 key.offset = (u64)-1; 4224 key.type = (u8)-1; 4225 4226 search_again: 4227 /* 4228 * with a 16K leaf size and 128MB extents, you can actually queue 4229 * up a huge file in a single leaf. Most of the time that 4230 * bytes_deleted is > 0, it will be huge by the time we get here 4231 */ 4232 if (be_nice && bytes_deleted > SZ_32M && 4233 btrfs_should_end_transaction(trans)) { 4234 ret = -EAGAIN; 4235 goto out; 4236 } 4237 4238 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4239 if (ret < 0) 4240 goto out; 4241 4242 if (ret > 0) { 4243 ret = 0; 4244 /* there are no items in the tree for us to truncate, we're 4245 * done 4246 */ 4247 if (path->slots[0] == 0) 4248 goto out; 4249 path->slots[0]--; 4250 } 4251 4252 while (1) { 4253 u64 clear_start = 0, clear_len = 0; 4254 4255 fi = NULL; 4256 leaf = path->nodes[0]; 4257 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4258 found_type = found_key.type; 4259 4260 if (found_key.objectid != ino) 4261 break; 4262 4263 if (found_type < min_type) 4264 break; 4265 4266 item_end = found_key.offset; 4267 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4268 fi = btrfs_item_ptr(leaf, path->slots[0], 4269 struct btrfs_file_extent_item); 4270 extent_type = btrfs_file_extent_type(leaf, fi); 4271 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4272 item_end += 4273 btrfs_file_extent_num_bytes(leaf, fi); 4274 4275 trace_btrfs_truncate_show_fi_regular( 4276 BTRFS_I(inode), leaf, fi, 4277 found_key.offset); 4278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4279 item_end += btrfs_file_extent_ram_bytes(leaf, 4280 fi); 4281 4282 trace_btrfs_truncate_show_fi_inline( 4283 BTRFS_I(inode), leaf, fi, path->slots[0], 4284 found_key.offset); 4285 } 4286 item_end--; 4287 } 4288 if (found_type > min_type) { 4289 del_item = 1; 4290 } else { 4291 if (item_end < new_size) 4292 break; 4293 if (found_key.offset >= new_size) 4294 del_item = 1; 4295 else 4296 del_item = 0; 4297 } 4298 found_extent = 0; 4299 /* FIXME, shrink the extent if the ref count is only 1 */ 4300 if (found_type != BTRFS_EXTENT_DATA_KEY) 4301 goto delete; 4302 4303 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4304 u64 num_dec; 4305 4306 clear_start = found_key.offset; 4307 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4308 if (!del_item) { 4309 u64 orig_num_bytes = 4310 btrfs_file_extent_num_bytes(leaf, fi); 4311 extent_num_bytes = ALIGN(new_size - 4312 found_key.offset, 4313 fs_info->sectorsize); 4314 clear_start = ALIGN(new_size, fs_info->sectorsize); 4315 btrfs_set_file_extent_num_bytes(leaf, fi, 4316 extent_num_bytes); 4317 num_dec = (orig_num_bytes - 4318 extent_num_bytes); 4319 if (test_bit(BTRFS_ROOT_SHAREABLE, 4320 &root->state) && 4321 extent_start != 0) 4322 inode_sub_bytes(inode, num_dec); 4323 btrfs_mark_buffer_dirty(leaf); 4324 } else { 4325 extent_num_bytes = 4326 btrfs_file_extent_disk_num_bytes(leaf, 4327 fi); 4328 extent_offset = found_key.offset - 4329 btrfs_file_extent_offset(leaf, fi); 4330 4331 /* FIXME blocksize != 4096 */ 4332 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4333 if (extent_start != 0) { 4334 found_extent = 1; 4335 if (test_bit(BTRFS_ROOT_SHAREABLE, 4336 &root->state)) 4337 inode_sub_bytes(inode, num_dec); 4338 } 4339 } 4340 clear_len = num_dec; 4341 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4342 /* 4343 * we can't truncate inline items that have had 4344 * special encodings 4345 */ 4346 if (!del_item && 4347 btrfs_file_extent_encryption(leaf, fi) == 0 && 4348 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4349 btrfs_file_extent_compression(leaf, fi) == 0) { 4350 u32 size = (u32)(new_size - found_key.offset); 4351 4352 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4353 size = btrfs_file_extent_calc_inline_size(size); 4354 btrfs_truncate_item(path, size, 1); 4355 } else if (!del_item) { 4356 /* 4357 * We have to bail so the last_size is set to 4358 * just before this extent. 4359 */ 4360 ret = NEED_TRUNCATE_BLOCK; 4361 break; 4362 } else { 4363 /* 4364 * Inline extents are special, we just treat 4365 * them as a full sector worth in the file 4366 * extent tree just for simplicity sake. 4367 */ 4368 clear_len = fs_info->sectorsize; 4369 } 4370 4371 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4372 inode_sub_bytes(inode, item_end + 1 - new_size); 4373 } 4374 delete: 4375 /* 4376 * We use btrfs_truncate_inode_items() to clean up log trees for 4377 * multiple fsyncs, and in this case we don't want to clear the 4378 * file extent range because it's just the log. 4379 */ 4380 if (root == BTRFS_I(inode)->root) { 4381 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 4382 clear_start, clear_len); 4383 if (ret) { 4384 btrfs_abort_transaction(trans, ret); 4385 break; 4386 } 4387 } 4388 4389 if (del_item) 4390 last_size = found_key.offset; 4391 else 4392 last_size = new_size; 4393 if (del_item) { 4394 if (!pending_del_nr) { 4395 /* no pending yet, add ourselves */ 4396 pending_del_slot = path->slots[0]; 4397 pending_del_nr = 1; 4398 } else if (pending_del_nr && 4399 path->slots[0] + 1 == pending_del_slot) { 4400 /* hop on the pending chunk */ 4401 pending_del_nr++; 4402 pending_del_slot = path->slots[0]; 4403 } else { 4404 BUG(); 4405 } 4406 } else { 4407 break; 4408 } 4409 should_throttle = false; 4410 4411 if (found_extent && 4412 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4413 struct btrfs_ref ref = { 0 }; 4414 4415 bytes_deleted += extent_num_bytes; 4416 4417 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4418 extent_start, extent_num_bytes, 0); 4419 ref.real_root = root->root_key.objectid; 4420 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4421 ino, extent_offset); 4422 ret = btrfs_free_extent(trans, &ref); 4423 if (ret) { 4424 btrfs_abort_transaction(trans, ret); 4425 break; 4426 } 4427 if (be_nice) { 4428 if (btrfs_should_throttle_delayed_refs(trans)) 4429 should_throttle = true; 4430 } 4431 } 4432 4433 if (found_type == BTRFS_INODE_ITEM_KEY) 4434 break; 4435 4436 if (path->slots[0] == 0 || 4437 path->slots[0] != pending_del_slot || 4438 should_throttle) { 4439 if (pending_del_nr) { 4440 ret = btrfs_del_items(trans, root, path, 4441 pending_del_slot, 4442 pending_del_nr); 4443 if (ret) { 4444 btrfs_abort_transaction(trans, ret); 4445 break; 4446 } 4447 pending_del_nr = 0; 4448 } 4449 btrfs_release_path(path); 4450 4451 /* 4452 * We can generate a lot of delayed refs, so we need to 4453 * throttle every once and a while and make sure we're 4454 * adding enough space to keep up with the work we are 4455 * generating. Since we hold a transaction here we 4456 * can't flush, and we don't want to FLUSH_LIMIT because 4457 * we could have generated too many delayed refs to 4458 * actually allocate, so just bail if we're short and 4459 * let the normal reservation dance happen higher up. 4460 */ 4461 if (should_throttle) { 4462 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4463 BTRFS_RESERVE_NO_FLUSH); 4464 if (ret) { 4465 ret = -EAGAIN; 4466 break; 4467 } 4468 } 4469 goto search_again; 4470 } else { 4471 path->slots[0]--; 4472 } 4473 } 4474 out: 4475 if (ret >= 0 && pending_del_nr) { 4476 int err; 4477 4478 err = btrfs_del_items(trans, root, path, pending_del_slot, 4479 pending_del_nr); 4480 if (err) { 4481 btrfs_abort_transaction(trans, err); 4482 ret = err; 4483 } 4484 } 4485 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4486 ASSERT(last_size >= new_size); 4487 if (!ret && last_size > new_size) 4488 last_size = new_size; 4489 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4490 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 4491 (u64)-1, &cached_state); 4492 } 4493 4494 btrfs_free_path(path); 4495 return ret; 4496 } 4497 4498 /* 4499 * btrfs_truncate_block - read, zero a chunk and write a block 4500 * @inode - inode that we're zeroing 4501 * @from - the offset to start zeroing 4502 * @len - the length to zero, 0 to zero the entire range respective to the 4503 * offset 4504 * @front - zero up to the offset instead of from the offset on 4505 * 4506 * This will find the block for the "from" offset and cow the block and zero the 4507 * part we want to zero. This is used with truncate and hole punching. 4508 */ 4509 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4510 int front) 4511 { 4512 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4513 struct address_space *mapping = inode->i_mapping; 4514 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4515 struct btrfs_ordered_extent *ordered; 4516 struct extent_state *cached_state = NULL; 4517 struct extent_changeset *data_reserved = NULL; 4518 char *kaddr; 4519 bool only_release_metadata = false; 4520 u32 blocksize = fs_info->sectorsize; 4521 pgoff_t index = from >> PAGE_SHIFT; 4522 unsigned offset = from & (blocksize - 1); 4523 struct page *page; 4524 gfp_t mask = btrfs_alloc_write_mask(mapping); 4525 size_t write_bytes = blocksize; 4526 int ret = 0; 4527 u64 block_start; 4528 u64 block_end; 4529 4530 if (IS_ALIGNED(offset, blocksize) && 4531 (!len || IS_ALIGNED(len, blocksize))) 4532 goto out; 4533 4534 block_start = round_down(from, blocksize); 4535 block_end = block_start + blocksize - 1; 4536 4537 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 4538 block_start, blocksize); 4539 if (ret < 0) { 4540 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start, 4541 &write_bytes) > 0) { 4542 /* For nocow case, no need to reserve data space */ 4543 only_release_metadata = true; 4544 } else { 4545 goto out; 4546 } 4547 } 4548 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize); 4549 if (ret < 0) { 4550 if (!only_release_metadata) 4551 btrfs_free_reserved_data_space(BTRFS_I(inode), 4552 data_reserved, block_start, blocksize); 4553 goto out; 4554 } 4555 again: 4556 page = find_or_create_page(mapping, index, mask); 4557 if (!page) { 4558 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 4559 block_start, blocksize, true); 4560 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4561 ret = -ENOMEM; 4562 goto out; 4563 } 4564 4565 if (!PageUptodate(page)) { 4566 ret = btrfs_readpage(NULL, page); 4567 lock_page(page); 4568 if (page->mapping != mapping) { 4569 unlock_page(page); 4570 put_page(page); 4571 goto again; 4572 } 4573 if (!PageUptodate(page)) { 4574 ret = -EIO; 4575 goto out_unlock; 4576 } 4577 } 4578 wait_on_page_writeback(page); 4579 4580 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4581 set_page_extent_mapped(page); 4582 4583 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start); 4584 if (ordered) { 4585 unlock_extent_cached(io_tree, block_start, block_end, 4586 &cached_state); 4587 unlock_page(page); 4588 put_page(page); 4589 btrfs_start_ordered_extent(inode, ordered, 1); 4590 btrfs_put_ordered_extent(ordered); 4591 goto again; 4592 } 4593 4594 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4595 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4596 0, 0, &cached_state); 4597 4598 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0, 4599 &cached_state); 4600 if (ret) { 4601 unlock_extent_cached(io_tree, block_start, block_end, 4602 &cached_state); 4603 goto out_unlock; 4604 } 4605 4606 if (offset != blocksize) { 4607 if (!len) 4608 len = blocksize - offset; 4609 kaddr = kmap(page); 4610 if (front) 4611 memset(kaddr + (block_start - page_offset(page)), 4612 0, offset); 4613 else 4614 memset(kaddr + (block_start - page_offset(page)) + offset, 4615 0, len); 4616 flush_dcache_page(page); 4617 kunmap(page); 4618 } 4619 ClearPageChecked(page); 4620 set_page_dirty(page); 4621 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4622 4623 if (only_release_metadata) 4624 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start, 4625 block_end, EXTENT_NORESERVE, NULL, NULL, 4626 GFP_NOFS); 4627 4628 out_unlock: 4629 if (ret) { 4630 if (only_release_metadata) 4631 btrfs_delalloc_release_metadata(BTRFS_I(inode), 4632 blocksize, true); 4633 else 4634 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 4635 block_start, blocksize, true); 4636 } 4637 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4638 unlock_page(page); 4639 put_page(page); 4640 out: 4641 if (only_release_metadata) 4642 btrfs_check_nocow_unlock(BTRFS_I(inode)); 4643 extent_changeset_free(data_reserved); 4644 return ret; 4645 } 4646 4647 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4648 u64 offset, u64 len) 4649 { 4650 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4651 struct btrfs_trans_handle *trans; 4652 int ret; 4653 4654 /* 4655 * Still need to make sure the inode looks like it's been updated so 4656 * that any holes get logged if we fsync. 4657 */ 4658 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4659 BTRFS_I(inode)->last_trans = fs_info->generation; 4660 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4661 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4662 return 0; 4663 } 4664 4665 /* 4666 * 1 - for the one we're dropping 4667 * 1 - for the one we're adding 4668 * 1 - for updating the inode. 4669 */ 4670 trans = btrfs_start_transaction(root, 3); 4671 if (IS_ERR(trans)) 4672 return PTR_ERR(trans); 4673 4674 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4675 if (ret) { 4676 btrfs_abort_transaction(trans, ret); 4677 btrfs_end_transaction(trans); 4678 return ret; 4679 } 4680 4681 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4682 offset, 0, 0, len, 0, len, 0, 0, 0); 4683 if (ret) 4684 btrfs_abort_transaction(trans, ret); 4685 else 4686 btrfs_update_inode(trans, root, inode); 4687 btrfs_end_transaction(trans); 4688 return ret; 4689 } 4690 4691 /* 4692 * This function puts in dummy file extents for the area we're creating a hole 4693 * for. So if we are truncating this file to a larger size we need to insert 4694 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4695 * the range between oldsize and size 4696 */ 4697 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4698 { 4699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4700 struct btrfs_root *root = BTRFS_I(inode)->root; 4701 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4702 struct extent_map *em = NULL; 4703 struct extent_state *cached_state = NULL; 4704 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4705 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4706 u64 block_end = ALIGN(size, fs_info->sectorsize); 4707 u64 last_byte; 4708 u64 cur_offset; 4709 u64 hole_size; 4710 int err = 0; 4711 4712 /* 4713 * If our size started in the middle of a block we need to zero out the 4714 * rest of the block before we expand the i_size, otherwise we could 4715 * expose stale data. 4716 */ 4717 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4718 if (err) 4719 return err; 4720 4721 if (size <= hole_start) 4722 return 0; 4723 4724 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start, 4725 block_end - 1, &cached_state); 4726 cur_offset = hole_start; 4727 while (1) { 4728 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4729 block_end - cur_offset); 4730 if (IS_ERR(em)) { 4731 err = PTR_ERR(em); 4732 em = NULL; 4733 break; 4734 } 4735 last_byte = min(extent_map_end(em), block_end); 4736 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4737 hole_size = last_byte - cur_offset; 4738 4739 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4740 struct extent_map *hole_em; 4741 4742 err = maybe_insert_hole(root, inode, cur_offset, 4743 hole_size); 4744 if (err) 4745 break; 4746 4747 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4748 cur_offset, hole_size); 4749 if (err) 4750 break; 4751 4752 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4753 cur_offset + hole_size - 1, 0); 4754 hole_em = alloc_extent_map(); 4755 if (!hole_em) { 4756 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4757 &BTRFS_I(inode)->runtime_flags); 4758 goto next; 4759 } 4760 hole_em->start = cur_offset; 4761 hole_em->len = hole_size; 4762 hole_em->orig_start = cur_offset; 4763 4764 hole_em->block_start = EXTENT_MAP_HOLE; 4765 hole_em->block_len = 0; 4766 hole_em->orig_block_len = 0; 4767 hole_em->ram_bytes = hole_size; 4768 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4769 hole_em->generation = fs_info->generation; 4770 4771 while (1) { 4772 write_lock(&em_tree->lock); 4773 err = add_extent_mapping(em_tree, hole_em, 1); 4774 write_unlock(&em_tree->lock); 4775 if (err != -EEXIST) 4776 break; 4777 btrfs_drop_extent_cache(BTRFS_I(inode), 4778 cur_offset, 4779 cur_offset + 4780 hole_size - 1, 0); 4781 } 4782 free_extent_map(hole_em); 4783 } else { 4784 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4785 cur_offset, hole_size); 4786 if (err) 4787 break; 4788 } 4789 next: 4790 free_extent_map(em); 4791 em = NULL; 4792 cur_offset = last_byte; 4793 if (cur_offset >= block_end) 4794 break; 4795 } 4796 free_extent_map(em); 4797 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4798 return err; 4799 } 4800 4801 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4802 { 4803 struct btrfs_root *root = BTRFS_I(inode)->root; 4804 struct btrfs_trans_handle *trans; 4805 loff_t oldsize = i_size_read(inode); 4806 loff_t newsize = attr->ia_size; 4807 int mask = attr->ia_valid; 4808 int ret; 4809 4810 /* 4811 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4812 * special case where we need to update the times despite not having 4813 * these flags set. For all other operations the VFS set these flags 4814 * explicitly if it wants a timestamp update. 4815 */ 4816 if (newsize != oldsize) { 4817 inode_inc_iversion(inode); 4818 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4819 inode->i_ctime = inode->i_mtime = 4820 current_time(inode); 4821 } 4822 4823 if (newsize > oldsize) { 4824 /* 4825 * Don't do an expanding truncate while snapshotting is ongoing. 4826 * This is to ensure the snapshot captures a fully consistent 4827 * state of this file - if the snapshot captures this expanding 4828 * truncation, it must capture all writes that happened before 4829 * this truncation. 4830 */ 4831 btrfs_drew_write_lock(&root->snapshot_lock); 4832 ret = btrfs_cont_expand(inode, oldsize, newsize); 4833 if (ret) { 4834 btrfs_drew_write_unlock(&root->snapshot_lock); 4835 return ret; 4836 } 4837 4838 trans = btrfs_start_transaction(root, 1); 4839 if (IS_ERR(trans)) { 4840 btrfs_drew_write_unlock(&root->snapshot_lock); 4841 return PTR_ERR(trans); 4842 } 4843 4844 i_size_write(inode, newsize); 4845 btrfs_inode_safe_disk_i_size_write(inode, 0); 4846 pagecache_isize_extended(inode, oldsize, newsize); 4847 ret = btrfs_update_inode(trans, root, inode); 4848 btrfs_drew_write_unlock(&root->snapshot_lock); 4849 btrfs_end_transaction(trans); 4850 } else { 4851 4852 /* 4853 * We're truncating a file that used to have good data down to 4854 * zero. Make sure it gets into the ordered flush list so that 4855 * any new writes get down to disk quickly. 4856 */ 4857 if (newsize == 0) 4858 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4859 &BTRFS_I(inode)->runtime_flags); 4860 4861 truncate_setsize(inode, newsize); 4862 4863 /* Disable nonlocked read DIO to avoid the endless truncate */ 4864 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 4865 inode_dio_wait(inode); 4866 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 4867 4868 ret = btrfs_truncate(inode, newsize == oldsize); 4869 if (ret && inode->i_nlink) { 4870 int err; 4871 4872 /* 4873 * Truncate failed, so fix up the in-memory size. We 4874 * adjusted disk_i_size down as we removed extents, so 4875 * wait for disk_i_size to be stable and then update the 4876 * in-memory size to match. 4877 */ 4878 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4879 if (err) 4880 return err; 4881 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4882 } 4883 } 4884 4885 return ret; 4886 } 4887 4888 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4889 { 4890 struct inode *inode = d_inode(dentry); 4891 struct btrfs_root *root = BTRFS_I(inode)->root; 4892 int err; 4893 4894 if (btrfs_root_readonly(root)) 4895 return -EROFS; 4896 4897 err = setattr_prepare(dentry, attr); 4898 if (err) 4899 return err; 4900 4901 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4902 err = btrfs_setsize(inode, attr); 4903 if (err) 4904 return err; 4905 } 4906 4907 if (attr->ia_valid) { 4908 setattr_copy(inode, attr); 4909 inode_inc_iversion(inode); 4910 err = btrfs_dirty_inode(inode); 4911 4912 if (!err && attr->ia_valid & ATTR_MODE) 4913 err = posix_acl_chmod(inode, inode->i_mode); 4914 } 4915 4916 return err; 4917 } 4918 4919 /* 4920 * While truncating the inode pages during eviction, we get the VFS calling 4921 * btrfs_invalidatepage() against each page of the inode. This is slow because 4922 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4923 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4924 * extent_state structures over and over, wasting lots of time. 4925 * 4926 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4927 * those expensive operations on a per page basis and do only the ordered io 4928 * finishing, while we release here the extent_map and extent_state structures, 4929 * without the excessive merging and splitting. 4930 */ 4931 static void evict_inode_truncate_pages(struct inode *inode) 4932 { 4933 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4934 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4935 struct rb_node *node; 4936 4937 ASSERT(inode->i_state & I_FREEING); 4938 truncate_inode_pages_final(&inode->i_data); 4939 4940 write_lock(&map_tree->lock); 4941 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4942 struct extent_map *em; 4943 4944 node = rb_first_cached(&map_tree->map); 4945 em = rb_entry(node, struct extent_map, rb_node); 4946 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4947 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4948 remove_extent_mapping(map_tree, em); 4949 free_extent_map(em); 4950 if (need_resched()) { 4951 write_unlock(&map_tree->lock); 4952 cond_resched(); 4953 write_lock(&map_tree->lock); 4954 } 4955 } 4956 write_unlock(&map_tree->lock); 4957 4958 /* 4959 * Keep looping until we have no more ranges in the io tree. 4960 * We can have ongoing bios started by readahead that have 4961 * their endio callback (extent_io.c:end_bio_extent_readpage) 4962 * still in progress (unlocked the pages in the bio but did not yet 4963 * unlocked the ranges in the io tree). Therefore this means some 4964 * ranges can still be locked and eviction started because before 4965 * submitting those bios, which are executed by a separate task (work 4966 * queue kthread), inode references (inode->i_count) were not taken 4967 * (which would be dropped in the end io callback of each bio). 4968 * Therefore here we effectively end up waiting for those bios and 4969 * anyone else holding locked ranges without having bumped the inode's 4970 * reference count - if we don't do it, when they access the inode's 4971 * io_tree to unlock a range it may be too late, leading to an 4972 * use-after-free issue. 4973 */ 4974 spin_lock(&io_tree->lock); 4975 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4976 struct extent_state *state; 4977 struct extent_state *cached_state = NULL; 4978 u64 start; 4979 u64 end; 4980 unsigned state_flags; 4981 4982 node = rb_first(&io_tree->state); 4983 state = rb_entry(node, struct extent_state, rb_node); 4984 start = state->start; 4985 end = state->end; 4986 state_flags = state->state; 4987 spin_unlock(&io_tree->lock); 4988 4989 lock_extent_bits(io_tree, start, end, &cached_state); 4990 4991 /* 4992 * If still has DELALLOC flag, the extent didn't reach disk, 4993 * and its reserved space won't be freed by delayed_ref. 4994 * So we need to free its reserved space here. 4995 * (Refer to comment in btrfs_invalidatepage, case 2) 4996 * 4997 * Note, end is the bytenr of last byte, so we need + 1 here. 4998 */ 4999 if (state_flags & EXTENT_DELALLOC) 5000 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5001 end - start + 1); 5002 5003 clear_extent_bit(io_tree, start, end, 5004 EXTENT_LOCKED | EXTENT_DELALLOC | 5005 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5006 &cached_state); 5007 5008 cond_resched(); 5009 spin_lock(&io_tree->lock); 5010 } 5011 spin_unlock(&io_tree->lock); 5012 } 5013 5014 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5015 struct btrfs_block_rsv *rsv) 5016 { 5017 struct btrfs_fs_info *fs_info = root->fs_info; 5018 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5019 struct btrfs_trans_handle *trans; 5020 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5021 int ret; 5022 5023 /* 5024 * Eviction should be taking place at some place safe because of our 5025 * delayed iputs. However the normal flushing code will run delayed 5026 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5027 * 5028 * We reserve the delayed_refs_extra here again because we can't use 5029 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5030 * above. We reserve our extra bit here because we generate a ton of 5031 * delayed refs activity by truncating. 5032 * 5033 * If we cannot make our reservation we'll attempt to steal from the 5034 * global reserve, because we really want to be able to free up space. 5035 */ 5036 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5037 BTRFS_RESERVE_FLUSH_EVICT); 5038 if (ret) { 5039 /* 5040 * Try to steal from the global reserve if there is space for 5041 * it. 5042 */ 5043 if (btrfs_check_space_for_delayed_refs(fs_info) || 5044 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5045 btrfs_warn(fs_info, 5046 "could not allocate space for delete; will truncate on mount"); 5047 return ERR_PTR(-ENOSPC); 5048 } 5049 delayed_refs_extra = 0; 5050 } 5051 5052 trans = btrfs_join_transaction(root); 5053 if (IS_ERR(trans)) 5054 return trans; 5055 5056 if (delayed_refs_extra) { 5057 trans->block_rsv = &fs_info->trans_block_rsv; 5058 trans->bytes_reserved = delayed_refs_extra; 5059 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5060 delayed_refs_extra, 1); 5061 } 5062 return trans; 5063 } 5064 5065 void btrfs_evict_inode(struct inode *inode) 5066 { 5067 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5068 struct btrfs_trans_handle *trans; 5069 struct btrfs_root *root = BTRFS_I(inode)->root; 5070 struct btrfs_block_rsv *rsv; 5071 int ret; 5072 5073 trace_btrfs_inode_evict(inode); 5074 5075 if (!root) { 5076 clear_inode(inode); 5077 return; 5078 } 5079 5080 evict_inode_truncate_pages(inode); 5081 5082 if (inode->i_nlink && 5083 ((btrfs_root_refs(&root->root_item) != 0 && 5084 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5085 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5086 goto no_delete; 5087 5088 if (is_bad_inode(inode)) 5089 goto no_delete; 5090 5091 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5092 5093 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5094 goto no_delete; 5095 5096 if (inode->i_nlink > 0) { 5097 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5098 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5099 goto no_delete; 5100 } 5101 5102 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5103 if (ret) 5104 goto no_delete; 5105 5106 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5107 if (!rsv) 5108 goto no_delete; 5109 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5110 rsv->failfast = 1; 5111 5112 btrfs_i_size_write(BTRFS_I(inode), 0); 5113 5114 while (1) { 5115 trans = evict_refill_and_join(root, rsv); 5116 if (IS_ERR(trans)) 5117 goto free_rsv; 5118 5119 trans->block_rsv = rsv; 5120 5121 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5122 trans->block_rsv = &fs_info->trans_block_rsv; 5123 btrfs_end_transaction(trans); 5124 btrfs_btree_balance_dirty(fs_info); 5125 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5126 goto free_rsv; 5127 else if (!ret) 5128 break; 5129 } 5130 5131 /* 5132 * Errors here aren't a big deal, it just means we leave orphan items in 5133 * the tree. They will be cleaned up on the next mount. If the inode 5134 * number gets reused, cleanup deletes the orphan item without doing 5135 * anything, and unlink reuses the existing orphan item. 5136 * 5137 * If it turns out that we are dropping too many of these, we might want 5138 * to add a mechanism for retrying these after a commit. 5139 */ 5140 trans = evict_refill_and_join(root, rsv); 5141 if (!IS_ERR(trans)) { 5142 trans->block_rsv = rsv; 5143 btrfs_orphan_del(trans, BTRFS_I(inode)); 5144 trans->block_rsv = &fs_info->trans_block_rsv; 5145 btrfs_end_transaction(trans); 5146 } 5147 5148 if (!(root == fs_info->tree_root || 5149 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5150 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5151 5152 free_rsv: 5153 btrfs_free_block_rsv(fs_info, rsv); 5154 no_delete: 5155 /* 5156 * If we didn't successfully delete, the orphan item will still be in 5157 * the tree and we'll retry on the next mount. Again, we might also want 5158 * to retry these periodically in the future. 5159 */ 5160 btrfs_remove_delayed_node(BTRFS_I(inode)); 5161 clear_inode(inode); 5162 } 5163 5164 /* 5165 * Return the key found in the dir entry in the location pointer, fill @type 5166 * with BTRFS_FT_*, and return 0. 5167 * 5168 * If no dir entries were found, returns -ENOENT. 5169 * If found a corrupted location in dir entry, returns -EUCLEAN. 5170 */ 5171 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5172 struct btrfs_key *location, u8 *type) 5173 { 5174 const char *name = dentry->d_name.name; 5175 int namelen = dentry->d_name.len; 5176 struct btrfs_dir_item *di; 5177 struct btrfs_path *path; 5178 struct btrfs_root *root = BTRFS_I(dir)->root; 5179 int ret = 0; 5180 5181 path = btrfs_alloc_path(); 5182 if (!path) 5183 return -ENOMEM; 5184 5185 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5186 name, namelen, 0); 5187 if (IS_ERR_OR_NULL(di)) { 5188 ret = di ? PTR_ERR(di) : -ENOENT; 5189 goto out; 5190 } 5191 5192 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5193 if (location->type != BTRFS_INODE_ITEM_KEY && 5194 location->type != BTRFS_ROOT_ITEM_KEY) { 5195 ret = -EUCLEAN; 5196 btrfs_warn(root->fs_info, 5197 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5198 __func__, name, btrfs_ino(BTRFS_I(dir)), 5199 location->objectid, location->type, location->offset); 5200 } 5201 if (!ret) 5202 *type = btrfs_dir_type(path->nodes[0], di); 5203 out: 5204 btrfs_free_path(path); 5205 return ret; 5206 } 5207 5208 /* 5209 * when we hit a tree root in a directory, the btrfs part of the inode 5210 * needs to be changed to reflect the root directory of the tree root. This 5211 * is kind of like crossing a mount point. 5212 */ 5213 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5214 struct inode *dir, 5215 struct dentry *dentry, 5216 struct btrfs_key *location, 5217 struct btrfs_root **sub_root) 5218 { 5219 struct btrfs_path *path; 5220 struct btrfs_root *new_root; 5221 struct btrfs_root_ref *ref; 5222 struct extent_buffer *leaf; 5223 struct btrfs_key key; 5224 int ret; 5225 int err = 0; 5226 5227 path = btrfs_alloc_path(); 5228 if (!path) { 5229 err = -ENOMEM; 5230 goto out; 5231 } 5232 5233 err = -ENOENT; 5234 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5235 key.type = BTRFS_ROOT_REF_KEY; 5236 key.offset = location->objectid; 5237 5238 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5239 if (ret) { 5240 if (ret < 0) 5241 err = ret; 5242 goto out; 5243 } 5244 5245 leaf = path->nodes[0]; 5246 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5247 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5248 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5249 goto out; 5250 5251 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5252 (unsigned long)(ref + 1), 5253 dentry->d_name.len); 5254 if (ret) 5255 goto out; 5256 5257 btrfs_release_path(path); 5258 5259 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5260 if (IS_ERR(new_root)) { 5261 err = PTR_ERR(new_root); 5262 goto out; 5263 } 5264 5265 *sub_root = new_root; 5266 location->objectid = btrfs_root_dirid(&new_root->root_item); 5267 location->type = BTRFS_INODE_ITEM_KEY; 5268 location->offset = 0; 5269 err = 0; 5270 out: 5271 btrfs_free_path(path); 5272 return err; 5273 } 5274 5275 static void inode_tree_add(struct inode *inode) 5276 { 5277 struct btrfs_root *root = BTRFS_I(inode)->root; 5278 struct btrfs_inode *entry; 5279 struct rb_node **p; 5280 struct rb_node *parent; 5281 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5282 u64 ino = btrfs_ino(BTRFS_I(inode)); 5283 5284 if (inode_unhashed(inode)) 5285 return; 5286 parent = NULL; 5287 spin_lock(&root->inode_lock); 5288 p = &root->inode_tree.rb_node; 5289 while (*p) { 5290 parent = *p; 5291 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5292 5293 if (ino < btrfs_ino(entry)) 5294 p = &parent->rb_left; 5295 else if (ino > btrfs_ino(entry)) 5296 p = &parent->rb_right; 5297 else { 5298 WARN_ON(!(entry->vfs_inode.i_state & 5299 (I_WILL_FREE | I_FREEING))); 5300 rb_replace_node(parent, new, &root->inode_tree); 5301 RB_CLEAR_NODE(parent); 5302 spin_unlock(&root->inode_lock); 5303 return; 5304 } 5305 } 5306 rb_link_node(new, parent, p); 5307 rb_insert_color(new, &root->inode_tree); 5308 spin_unlock(&root->inode_lock); 5309 } 5310 5311 static void inode_tree_del(struct inode *inode) 5312 { 5313 struct btrfs_root *root = BTRFS_I(inode)->root; 5314 int empty = 0; 5315 5316 spin_lock(&root->inode_lock); 5317 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5318 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5319 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5320 empty = RB_EMPTY_ROOT(&root->inode_tree); 5321 } 5322 spin_unlock(&root->inode_lock); 5323 5324 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5325 spin_lock(&root->inode_lock); 5326 empty = RB_EMPTY_ROOT(&root->inode_tree); 5327 spin_unlock(&root->inode_lock); 5328 if (empty) 5329 btrfs_add_dead_root(root); 5330 } 5331 } 5332 5333 5334 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5335 { 5336 struct btrfs_iget_args *args = p; 5337 5338 inode->i_ino = args->ino; 5339 BTRFS_I(inode)->location.objectid = args->ino; 5340 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5341 BTRFS_I(inode)->location.offset = 0; 5342 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5343 BUG_ON(args->root && !BTRFS_I(inode)->root); 5344 return 0; 5345 } 5346 5347 static int btrfs_find_actor(struct inode *inode, void *opaque) 5348 { 5349 struct btrfs_iget_args *args = opaque; 5350 5351 return args->ino == BTRFS_I(inode)->location.objectid && 5352 args->root == BTRFS_I(inode)->root; 5353 } 5354 5355 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5356 struct btrfs_root *root) 5357 { 5358 struct inode *inode; 5359 struct btrfs_iget_args args; 5360 unsigned long hashval = btrfs_inode_hash(ino, root); 5361 5362 args.ino = ino; 5363 args.root = root; 5364 5365 inode = iget5_locked(s, hashval, btrfs_find_actor, 5366 btrfs_init_locked_inode, 5367 (void *)&args); 5368 return inode; 5369 } 5370 5371 /* 5372 * Get an inode object given its inode number and corresponding root. 5373 * Path can be preallocated to prevent recursing back to iget through 5374 * allocator. NULL is also valid but may require an additional allocation 5375 * later. 5376 */ 5377 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5378 struct btrfs_root *root, struct btrfs_path *path) 5379 { 5380 struct inode *inode; 5381 5382 inode = btrfs_iget_locked(s, ino, root); 5383 if (!inode) 5384 return ERR_PTR(-ENOMEM); 5385 5386 if (inode->i_state & I_NEW) { 5387 int ret; 5388 5389 ret = btrfs_read_locked_inode(inode, path); 5390 if (!ret) { 5391 inode_tree_add(inode); 5392 unlock_new_inode(inode); 5393 } else { 5394 iget_failed(inode); 5395 /* 5396 * ret > 0 can come from btrfs_search_slot called by 5397 * btrfs_read_locked_inode, this means the inode item 5398 * was not found. 5399 */ 5400 if (ret > 0) 5401 ret = -ENOENT; 5402 inode = ERR_PTR(ret); 5403 } 5404 } 5405 5406 return inode; 5407 } 5408 5409 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5410 { 5411 return btrfs_iget_path(s, ino, root, NULL); 5412 } 5413 5414 static struct inode *new_simple_dir(struct super_block *s, 5415 struct btrfs_key *key, 5416 struct btrfs_root *root) 5417 { 5418 struct inode *inode = new_inode(s); 5419 5420 if (!inode) 5421 return ERR_PTR(-ENOMEM); 5422 5423 BTRFS_I(inode)->root = btrfs_grab_root(root); 5424 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5425 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5426 5427 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5428 /* 5429 * We only need lookup, the rest is read-only and there's no inode 5430 * associated with the dentry 5431 */ 5432 inode->i_op = &simple_dir_inode_operations; 5433 inode->i_opflags &= ~IOP_XATTR; 5434 inode->i_fop = &simple_dir_operations; 5435 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5436 inode->i_mtime = current_time(inode); 5437 inode->i_atime = inode->i_mtime; 5438 inode->i_ctime = inode->i_mtime; 5439 BTRFS_I(inode)->i_otime = inode->i_mtime; 5440 5441 return inode; 5442 } 5443 5444 static inline u8 btrfs_inode_type(struct inode *inode) 5445 { 5446 /* 5447 * Compile-time asserts that generic FT_* types still match 5448 * BTRFS_FT_* types 5449 */ 5450 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5451 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5452 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5453 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5454 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5455 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5456 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5457 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5458 5459 return fs_umode_to_ftype(inode->i_mode); 5460 } 5461 5462 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5463 { 5464 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5465 struct inode *inode; 5466 struct btrfs_root *root = BTRFS_I(dir)->root; 5467 struct btrfs_root *sub_root = root; 5468 struct btrfs_key location; 5469 u8 di_type = 0; 5470 int ret = 0; 5471 5472 if (dentry->d_name.len > BTRFS_NAME_LEN) 5473 return ERR_PTR(-ENAMETOOLONG); 5474 5475 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5476 if (ret < 0) 5477 return ERR_PTR(ret); 5478 5479 if (location.type == BTRFS_INODE_ITEM_KEY) { 5480 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5481 if (IS_ERR(inode)) 5482 return inode; 5483 5484 /* Do extra check against inode mode with di_type */ 5485 if (btrfs_inode_type(inode) != di_type) { 5486 btrfs_crit(fs_info, 5487 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5488 inode->i_mode, btrfs_inode_type(inode), 5489 di_type); 5490 iput(inode); 5491 return ERR_PTR(-EUCLEAN); 5492 } 5493 return inode; 5494 } 5495 5496 ret = fixup_tree_root_location(fs_info, dir, dentry, 5497 &location, &sub_root); 5498 if (ret < 0) { 5499 if (ret != -ENOENT) 5500 inode = ERR_PTR(ret); 5501 else 5502 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5503 } else { 5504 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5505 } 5506 if (root != sub_root) 5507 btrfs_put_root(sub_root); 5508 5509 if (!IS_ERR(inode) && root != sub_root) { 5510 down_read(&fs_info->cleanup_work_sem); 5511 if (!sb_rdonly(inode->i_sb)) 5512 ret = btrfs_orphan_cleanup(sub_root); 5513 up_read(&fs_info->cleanup_work_sem); 5514 if (ret) { 5515 iput(inode); 5516 inode = ERR_PTR(ret); 5517 } 5518 } 5519 5520 return inode; 5521 } 5522 5523 static int btrfs_dentry_delete(const struct dentry *dentry) 5524 { 5525 struct btrfs_root *root; 5526 struct inode *inode = d_inode(dentry); 5527 5528 if (!inode && !IS_ROOT(dentry)) 5529 inode = d_inode(dentry->d_parent); 5530 5531 if (inode) { 5532 root = BTRFS_I(inode)->root; 5533 if (btrfs_root_refs(&root->root_item) == 0) 5534 return 1; 5535 5536 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5537 return 1; 5538 } 5539 return 0; 5540 } 5541 5542 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5543 unsigned int flags) 5544 { 5545 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5546 5547 if (inode == ERR_PTR(-ENOENT)) 5548 inode = NULL; 5549 return d_splice_alias(inode, dentry); 5550 } 5551 5552 /* 5553 * All this infrastructure exists because dir_emit can fault, and we are holding 5554 * the tree lock when doing readdir. For now just allocate a buffer and copy 5555 * our information into that, and then dir_emit from the buffer. This is 5556 * similar to what NFS does, only we don't keep the buffer around in pagecache 5557 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5558 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5559 * tree lock. 5560 */ 5561 static int btrfs_opendir(struct inode *inode, struct file *file) 5562 { 5563 struct btrfs_file_private *private; 5564 5565 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5566 if (!private) 5567 return -ENOMEM; 5568 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5569 if (!private->filldir_buf) { 5570 kfree(private); 5571 return -ENOMEM; 5572 } 5573 file->private_data = private; 5574 return 0; 5575 } 5576 5577 struct dir_entry { 5578 u64 ino; 5579 u64 offset; 5580 unsigned type; 5581 int name_len; 5582 }; 5583 5584 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5585 { 5586 while (entries--) { 5587 struct dir_entry *entry = addr; 5588 char *name = (char *)(entry + 1); 5589 5590 ctx->pos = get_unaligned(&entry->offset); 5591 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5592 get_unaligned(&entry->ino), 5593 get_unaligned(&entry->type))) 5594 return 1; 5595 addr += sizeof(struct dir_entry) + 5596 get_unaligned(&entry->name_len); 5597 ctx->pos++; 5598 } 5599 return 0; 5600 } 5601 5602 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5603 { 5604 struct inode *inode = file_inode(file); 5605 struct btrfs_root *root = BTRFS_I(inode)->root; 5606 struct btrfs_file_private *private = file->private_data; 5607 struct btrfs_dir_item *di; 5608 struct btrfs_key key; 5609 struct btrfs_key found_key; 5610 struct btrfs_path *path; 5611 void *addr; 5612 struct list_head ins_list; 5613 struct list_head del_list; 5614 int ret; 5615 struct extent_buffer *leaf; 5616 int slot; 5617 char *name_ptr; 5618 int name_len; 5619 int entries = 0; 5620 int total_len = 0; 5621 bool put = false; 5622 struct btrfs_key location; 5623 5624 if (!dir_emit_dots(file, ctx)) 5625 return 0; 5626 5627 path = btrfs_alloc_path(); 5628 if (!path) 5629 return -ENOMEM; 5630 5631 addr = private->filldir_buf; 5632 path->reada = READA_FORWARD; 5633 5634 INIT_LIST_HEAD(&ins_list); 5635 INIT_LIST_HEAD(&del_list); 5636 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5637 5638 again: 5639 key.type = BTRFS_DIR_INDEX_KEY; 5640 key.offset = ctx->pos; 5641 key.objectid = btrfs_ino(BTRFS_I(inode)); 5642 5643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5644 if (ret < 0) 5645 goto err; 5646 5647 while (1) { 5648 struct dir_entry *entry; 5649 5650 leaf = path->nodes[0]; 5651 slot = path->slots[0]; 5652 if (slot >= btrfs_header_nritems(leaf)) { 5653 ret = btrfs_next_leaf(root, path); 5654 if (ret < 0) 5655 goto err; 5656 else if (ret > 0) 5657 break; 5658 continue; 5659 } 5660 5661 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5662 5663 if (found_key.objectid != key.objectid) 5664 break; 5665 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5666 break; 5667 if (found_key.offset < ctx->pos) 5668 goto next; 5669 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5670 goto next; 5671 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5672 name_len = btrfs_dir_name_len(leaf, di); 5673 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5674 PAGE_SIZE) { 5675 btrfs_release_path(path); 5676 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5677 if (ret) 5678 goto nopos; 5679 addr = private->filldir_buf; 5680 entries = 0; 5681 total_len = 0; 5682 goto again; 5683 } 5684 5685 entry = addr; 5686 put_unaligned(name_len, &entry->name_len); 5687 name_ptr = (char *)(entry + 1); 5688 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5689 name_len); 5690 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5691 &entry->type); 5692 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5693 put_unaligned(location.objectid, &entry->ino); 5694 put_unaligned(found_key.offset, &entry->offset); 5695 entries++; 5696 addr += sizeof(struct dir_entry) + name_len; 5697 total_len += sizeof(struct dir_entry) + name_len; 5698 next: 5699 path->slots[0]++; 5700 } 5701 btrfs_release_path(path); 5702 5703 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5704 if (ret) 5705 goto nopos; 5706 5707 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5708 if (ret) 5709 goto nopos; 5710 5711 /* 5712 * Stop new entries from being returned after we return the last 5713 * entry. 5714 * 5715 * New directory entries are assigned a strictly increasing 5716 * offset. This means that new entries created during readdir 5717 * are *guaranteed* to be seen in the future by that readdir. 5718 * This has broken buggy programs which operate on names as 5719 * they're returned by readdir. Until we re-use freed offsets 5720 * we have this hack to stop new entries from being returned 5721 * under the assumption that they'll never reach this huge 5722 * offset. 5723 * 5724 * This is being careful not to overflow 32bit loff_t unless the 5725 * last entry requires it because doing so has broken 32bit apps 5726 * in the past. 5727 */ 5728 if (ctx->pos >= INT_MAX) 5729 ctx->pos = LLONG_MAX; 5730 else 5731 ctx->pos = INT_MAX; 5732 nopos: 5733 ret = 0; 5734 err: 5735 if (put) 5736 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5737 btrfs_free_path(path); 5738 return ret; 5739 } 5740 5741 /* 5742 * This is somewhat expensive, updating the tree every time the 5743 * inode changes. But, it is most likely to find the inode in cache. 5744 * FIXME, needs more benchmarking...there are no reasons other than performance 5745 * to keep or drop this code. 5746 */ 5747 static int btrfs_dirty_inode(struct inode *inode) 5748 { 5749 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5750 struct btrfs_root *root = BTRFS_I(inode)->root; 5751 struct btrfs_trans_handle *trans; 5752 int ret; 5753 5754 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5755 return 0; 5756 5757 trans = btrfs_join_transaction(root); 5758 if (IS_ERR(trans)) 5759 return PTR_ERR(trans); 5760 5761 ret = btrfs_update_inode(trans, root, inode); 5762 if (ret && ret == -ENOSPC) { 5763 /* whoops, lets try again with the full transaction */ 5764 btrfs_end_transaction(trans); 5765 trans = btrfs_start_transaction(root, 1); 5766 if (IS_ERR(trans)) 5767 return PTR_ERR(trans); 5768 5769 ret = btrfs_update_inode(trans, root, inode); 5770 } 5771 btrfs_end_transaction(trans); 5772 if (BTRFS_I(inode)->delayed_node) 5773 btrfs_balance_delayed_items(fs_info); 5774 5775 return ret; 5776 } 5777 5778 /* 5779 * This is a copy of file_update_time. We need this so we can return error on 5780 * ENOSPC for updating the inode in the case of file write and mmap writes. 5781 */ 5782 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5783 int flags) 5784 { 5785 struct btrfs_root *root = BTRFS_I(inode)->root; 5786 bool dirty = flags & ~S_VERSION; 5787 5788 if (btrfs_root_readonly(root)) 5789 return -EROFS; 5790 5791 if (flags & S_VERSION) 5792 dirty |= inode_maybe_inc_iversion(inode, dirty); 5793 if (flags & S_CTIME) 5794 inode->i_ctime = *now; 5795 if (flags & S_MTIME) 5796 inode->i_mtime = *now; 5797 if (flags & S_ATIME) 5798 inode->i_atime = *now; 5799 return dirty ? btrfs_dirty_inode(inode) : 0; 5800 } 5801 5802 /* 5803 * find the highest existing sequence number in a directory 5804 * and then set the in-memory index_cnt variable to reflect 5805 * free sequence numbers 5806 */ 5807 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5808 { 5809 struct btrfs_root *root = inode->root; 5810 struct btrfs_key key, found_key; 5811 struct btrfs_path *path; 5812 struct extent_buffer *leaf; 5813 int ret; 5814 5815 key.objectid = btrfs_ino(inode); 5816 key.type = BTRFS_DIR_INDEX_KEY; 5817 key.offset = (u64)-1; 5818 5819 path = btrfs_alloc_path(); 5820 if (!path) 5821 return -ENOMEM; 5822 5823 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5824 if (ret < 0) 5825 goto out; 5826 /* FIXME: we should be able to handle this */ 5827 if (ret == 0) 5828 goto out; 5829 ret = 0; 5830 5831 /* 5832 * MAGIC NUMBER EXPLANATION: 5833 * since we search a directory based on f_pos we have to start at 2 5834 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5835 * else has to start at 2 5836 */ 5837 if (path->slots[0] == 0) { 5838 inode->index_cnt = 2; 5839 goto out; 5840 } 5841 5842 path->slots[0]--; 5843 5844 leaf = path->nodes[0]; 5845 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5846 5847 if (found_key.objectid != btrfs_ino(inode) || 5848 found_key.type != BTRFS_DIR_INDEX_KEY) { 5849 inode->index_cnt = 2; 5850 goto out; 5851 } 5852 5853 inode->index_cnt = found_key.offset + 1; 5854 out: 5855 btrfs_free_path(path); 5856 return ret; 5857 } 5858 5859 /* 5860 * helper to find a free sequence number in a given directory. This current 5861 * code is very simple, later versions will do smarter things in the btree 5862 */ 5863 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5864 { 5865 int ret = 0; 5866 5867 if (dir->index_cnt == (u64)-1) { 5868 ret = btrfs_inode_delayed_dir_index_count(dir); 5869 if (ret) { 5870 ret = btrfs_set_inode_index_count(dir); 5871 if (ret) 5872 return ret; 5873 } 5874 } 5875 5876 *index = dir->index_cnt; 5877 dir->index_cnt++; 5878 5879 return ret; 5880 } 5881 5882 static int btrfs_insert_inode_locked(struct inode *inode) 5883 { 5884 struct btrfs_iget_args args; 5885 5886 args.ino = BTRFS_I(inode)->location.objectid; 5887 args.root = BTRFS_I(inode)->root; 5888 5889 return insert_inode_locked4(inode, 5890 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5891 btrfs_find_actor, &args); 5892 } 5893 5894 /* 5895 * Inherit flags from the parent inode. 5896 * 5897 * Currently only the compression flags and the cow flags are inherited. 5898 */ 5899 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5900 { 5901 unsigned int flags; 5902 5903 if (!dir) 5904 return; 5905 5906 flags = BTRFS_I(dir)->flags; 5907 5908 if (flags & BTRFS_INODE_NOCOMPRESS) { 5909 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5910 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5911 } else if (flags & BTRFS_INODE_COMPRESS) { 5912 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5913 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5914 } 5915 5916 if (flags & BTRFS_INODE_NODATACOW) { 5917 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5918 if (S_ISREG(inode->i_mode)) 5919 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5920 } 5921 5922 btrfs_sync_inode_flags_to_i_flags(inode); 5923 } 5924 5925 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5926 struct btrfs_root *root, 5927 struct inode *dir, 5928 const char *name, int name_len, 5929 u64 ref_objectid, u64 objectid, 5930 umode_t mode, u64 *index) 5931 { 5932 struct btrfs_fs_info *fs_info = root->fs_info; 5933 struct inode *inode; 5934 struct btrfs_inode_item *inode_item; 5935 struct btrfs_key *location; 5936 struct btrfs_path *path; 5937 struct btrfs_inode_ref *ref; 5938 struct btrfs_key key[2]; 5939 u32 sizes[2]; 5940 int nitems = name ? 2 : 1; 5941 unsigned long ptr; 5942 unsigned int nofs_flag; 5943 int ret; 5944 5945 path = btrfs_alloc_path(); 5946 if (!path) 5947 return ERR_PTR(-ENOMEM); 5948 5949 nofs_flag = memalloc_nofs_save(); 5950 inode = new_inode(fs_info->sb); 5951 memalloc_nofs_restore(nofs_flag); 5952 if (!inode) { 5953 btrfs_free_path(path); 5954 return ERR_PTR(-ENOMEM); 5955 } 5956 5957 /* 5958 * O_TMPFILE, set link count to 0, so that after this point, 5959 * we fill in an inode item with the correct link count. 5960 */ 5961 if (!name) 5962 set_nlink(inode, 0); 5963 5964 /* 5965 * we have to initialize this early, so we can reclaim the inode 5966 * number if we fail afterwards in this function. 5967 */ 5968 inode->i_ino = objectid; 5969 5970 if (dir && name) { 5971 trace_btrfs_inode_request(dir); 5972 5973 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5974 if (ret) { 5975 btrfs_free_path(path); 5976 iput(inode); 5977 return ERR_PTR(ret); 5978 } 5979 } else if (dir) { 5980 *index = 0; 5981 } 5982 /* 5983 * index_cnt is ignored for everything but a dir, 5984 * btrfs_set_inode_index_count has an explanation for the magic 5985 * number 5986 */ 5987 BTRFS_I(inode)->index_cnt = 2; 5988 BTRFS_I(inode)->dir_index = *index; 5989 BTRFS_I(inode)->root = btrfs_grab_root(root); 5990 BTRFS_I(inode)->generation = trans->transid; 5991 inode->i_generation = BTRFS_I(inode)->generation; 5992 5993 /* 5994 * We could have gotten an inode number from somebody who was fsynced 5995 * and then removed in this same transaction, so let's just set full 5996 * sync since it will be a full sync anyway and this will blow away the 5997 * old info in the log. 5998 */ 5999 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6000 6001 key[0].objectid = objectid; 6002 key[0].type = BTRFS_INODE_ITEM_KEY; 6003 key[0].offset = 0; 6004 6005 sizes[0] = sizeof(struct btrfs_inode_item); 6006 6007 if (name) { 6008 /* 6009 * Start new inodes with an inode_ref. This is slightly more 6010 * efficient for small numbers of hard links since they will 6011 * be packed into one item. Extended refs will kick in if we 6012 * add more hard links than can fit in the ref item. 6013 */ 6014 key[1].objectid = objectid; 6015 key[1].type = BTRFS_INODE_REF_KEY; 6016 key[1].offset = ref_objectid; 6017 6018 sizes[1] = name_len + sizeof(*ref); 6019 } 6020 6021 location = &BTRFS_I(inode)->location; 6022 location->objectid = objectid; 6023 location->offset = 0; 6024 location->type = BTRFS_INODE_ITEM_KEY; 6025 6026 ret = btrfs_insert_inode_locked(inode); 6027 if (ret < 0) { 6028 iput(inode); 6029 goto fail; 6030 } 6031 6032 path->leave_spinning = 1; 6033 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6034 if (ret != 0) 6035 goto fail_unlock; 6036 6037 inode_init_owner(inode, dir, mode); 6038 inode_set_bytes(inode, 0); 6039 6040 inode->i_mtime = current_time(inode); 6041 inode->i_atime = inode->i_mtime; 6042 inode->i_ctime = inode->i_mtime; 6043 BTRFS_I(inode)->i_otime = inode->i_mtime; 6044 6045 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6046 struct btrfs_inode_item); 6047 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6048 sizeof(*inode_item)); 6049 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6050 6051 if (name) { 6052 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6053 struct btrfs_inode_ref); 6054 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6055 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6056 ptr = (unsigned long)(ref + 1); 6057 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6058 } 6059 6060 btrfs_mark_buffer_dirty(path->nodes[0]); 6061 btrfs_free_path(path); 6062 6063 btrfs_inherit_iflags(inode, dir); 6064 6065 if (S_ISREG(mode)) { 6066 if (btrfs_test_opt(fs_info, NODATASUM)) 6067 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6068 if (btrfs_test_opt(fs_info, NODATACOW)) 6069 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6070 BTRFS_INODE_NODATASUM; 6071 } 6072 6073 inode_tree_add(inode); 6074 6075 trace_btrfs_inode_new(inode); 6076 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6077 6078 btrfs_update_root_times(trans, root); 6079 6080 ret = btrfs_inode_inherit_props(trans, inode, dir); 6081 if (ret) 6082 btrfs_err(fs_info, 6083 "error inheriting props for ino %llu (root %llu): %d", 6084 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6085 6086 return inode; 6087 6088 fail_unlock: 6089 discard_new_inode(inode); 6090 fail: 6091 if (dir && name) 6092 BTRFS_I(dir)->index_cnt--; 6093 btrfs_free_path(path); 6094 return ERR_PTR(ret); 6095 } 6096 6097 /* 6098 * utility function to add 'inode' into 'parent_inode' with 6099 * a give name and a given sequence number. 6100 * if 'add_backref' is true, also insert a backref from the 6101 * inode to the parent directory. 6102 */ 6103 int btrfs_add_link(struct btrfs_trans_handle *trans, 6104 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6105 const char *name, int name_len, int add_backref, u64 index) 6106 { 6107 int ret = 0; 6108 struct btrfs_key key; 6109 struct btrfs_root *root = parent_inode->root; 6110 u64 ino = btrfs_ino(inode); 6111 u64 parent_ino = btrfs_ino(parent_inode); 6112 6113 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6114 memcpy(&key, &inode->root->root_key, sizeof(key)); 6115 } else { 6116 key.objectid = ino; 6117 key.type = BTRFS_INODE_ITEM_KEY; 6118 key.offset = 0; 6119 } 6120 6121 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6122 ret = btrfs_add_root_ref(trans, key.objectid, 6123 root->root_key.objectid, parent_ino, 6124 index, name, name_len); 6125 } else if (add_backref) { 6126 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6127 parent_ino, index); 6128 } 6129 6130 /* Nothing to clean up yet */ 6131 if (ret) 6132 return ret; 6133 6134 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6135 btrfs_inode_type(&inode->vfs_inode), index); 6136 if (ret == -EEXIST || ret == -EOVERFLOW) 6137 goto fail_dir_item; 6138 else if (ret) { 6139 btrfs_abort_transaction(trans, ret); 6140 return ret; 6141 } 6142 6143 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6144 name_len * 2); 6145 inode_inc_iversion(&parent_inode->vfs_inode); 6146 /* 6147 * If we are replaying a log tree, we do not want to update the mtime 6148 * and ctime of the parent directory with the current time, since the 6149 * log replay procedure is responsible for setting them to their correct 6150 * values (the ones it had when the fsync was done). 6151 */ 6152 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6153 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6154 6155 parent_inode->vfs_inode.i_mtime = now; 6156 parent_inode->vfs_inode.i_ctime = now; 6157 } 6158 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6159 if (ret) 6160 btrfs_abort_transaction(trans, ret); 6161 return ret; 6162 6163 fail_dir_item: 6164 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6165 u64 local_index; 6166 int err; 6167 err = btrfs_del_root_ref(trans, key.objectid, 6168 root->root_key.objectid, parent_ino, 6169 &local_index, name, name_len); 6170 if (err) 6171 btrfs_abort_transaction(trans, err); 6172 } else if (add_backref) { 6173 u64 local_index; 6174 int err; 6175 6176 err = btrfs_del_inode_ref(trans, root, name, name_len, 6177 ino, parent_ino, &local_index); 6178 if (err) 6179 btrfs_abort_transaction(trans, err); 6180 } 6181 6182 /* Return the original error code */ 6183 return ret; 6184 } 6185 6186 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6187 struct btrfs_inode *dir, struct dentry *dentry, 6188 struct btrfs_inode *inode, int backref, u64 index) 6189 { 6190 int err = btrfs_add_link(trans, dir, inode, 6191 dentry->d_name.name, dentry->d_name.len, 6192 backref, index); 6193 if (err > 0) 6194 err = -EEXIST; 6195 return err; 6196 } 6197 6198 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6199 umode_t mode, dev_t rdev) 6200 { 6201 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6202 struct btrfs_trans_handle *trans; 6203 struct btrfs_root *root = BTRFS_I(dir)->root; 6204 struct inode *inode = NULL; 6205 int err; 6206 u64 objectid; 6207 u64 index = 0; 6208 6209 /* 6210 * 2 for inode item and ref 6211 * 2 for dir items 6212 * 1 for xattr if selinux is on 6213 */ 6214 trans = btrfs_start_transaction(root, 5); 6215 if (IS_ERR(trans)) 6216 return PTR_ERR(trans); 6217 6218 err = btrfs_find_free_ino(root, &objectid); 6219 if (err) 6220 goto out_unlock; 6221 6222 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6223 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6224 mode, &index); 6225 if (IS_ERR(inode)) { 6226 err = PTR_ERR(inode); 6227 inode = NULL; 6228 goto out_unlock; 6229 } 6230 6231 /* 6232 * If the active LSM wants to access the inode during 6233 * d_instantiate it needs these. Smack checks to see 6234 * if the filesystem supports xattrs by looking at the 6235 * ops vector. 6236 */ 6237 inode->i_op = &btrfs_special_inode_operations; 6238 init_special_inode(inode, inode->i_mode, rdev); 6239 6240 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6241 if (err) 6242 goto out_unlock; 6243 6244 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6245 0, index); 6246 if (err) 6247 goto out_unlock; 6248 6249 btrfs_update_inode(trans, root, inode); 6250 d_instantiate_new(dentry, inode); 6251 6252 out_unlock: 6253 btrfs_end_transaction(trans); 6254 btrfs_btree_balance_dirty(fs_info); 6255 if (err && inode) { 6256 inode_dec_link_count(inode); 6257 discard_new_inode(inode); 6258 } 6259 return err; 6260 } 6261 6262 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6263 umode_t mode, bool excl) 6264 { 6265 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6266 struct btrfs_trans_handle *trans; 6267 struct btrfs_root *root = BTRFS_I(dir)->root; 6268 struct inode *inode = NULL; 6269 int err; 6270 u64 objectid; 6271 u64 index = 0; 6272 6273 /* 6274 * 2 for inode item and ref 6275 * 2 for dir items 6276 * 1 for xattr if selinux is on 6277 */ 6278 trans = btrfs_start_transaction(root, 5); 6279 if (IS_ERR(trans)) 6280 return PTR_ERR(trans); 6281 6282 err = btrfs_find_free_ino(root, &objectid); 6283 if (err) 6284 goto out_unlock; 6285 6286 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6287 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6288 mode, &index); 6289 if (IS_ERR(inode)) { 6290 err = PTR_ERR(inode); 6291 inode = NULL; 6292 goto out_unlock; 6293 } 6294 /* 6295 * If the active LSM wants to access the inode during 6296 * d_instantiate it needs these. Smack checks to see 6297 * if the filesystem supports xattrs by looking at the 6298 * ops vector. 6299 */ 6300 inode->i_fop = &btrfs_file_operations; 6301 inode->i_op = &btrfs_file_inode_operations; 6302 inode->i_mapping->a_ops = &btrfs_aops; 6303 6304 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6305 if (err) 6306 goto out_unlock; 6307 6308 err = btrfs_update_inode(trans, root, inode); 6309 if (err) 6310 goto out_unlock; 6311 6312 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6313 0, index); 6314 if (err) 6315 goto out_unlock; 6316 6317 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6318 d_instantiate_new(dentry, inode); 6319 6320 out_unlock: 6321 btrfs_end_transaction(trans); 6322 if (err && inode) { 6323 inode_dec_link_count(inode); 6324 discard_new_inode(inode); 6325 } 6326 btrfs_btree_balance_dirty(fs_info); 6327 return err; 6328 } 6329 6330 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6331 struct dentry *dentry) 6332 { 6333 struct btrfs_trans_handle *trans = NULL; 6334 struct btrfs_root *root = BTRFS_I(dir)->root; 6335 struct inode *inode = d_inode(old_dentry); 6336 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6337 u64 index; 6338 int err; 6339 int drop_inode = 0; 6340 6341 /* do not allow sys_link's with other subvols of the same device */ 6342 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6343 return -EXDEV; 6344 6345 if (inode->i_nlink >= BTRFS_LINK_MAX) 6346 return -EMLINK; 6347 6348 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6349 if (err) 6350 goto fail; 6351 6352 /* 6353 * 2 items for inode and inode ref 6354 * 2 items for dir items 6355 * 1 item for parent inode 6356 * 1 item for orphan item deletion if O_TMPFILE 6357 */ 6358 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6359 if (IS_ERR(trans)) { 6360 err = PTR_ERR(trans); 6361 trans = NULL; 6362 goto fail; 6363 } 6364 6365 /* There are several dir indexes for this inode, clear the cache. */ 6366 BTRFS_I(inode)->dir_index = 0ULL; 6367 inc_nlink(inode); 6368 inode_inc_iversion(inode); 6369 inode->i_ctime = current_time(inode); 6370 ihold(inode); 6371 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6372 6373 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6374 1, index); 6375 6376 if (err) { 6377 drop_inode = 1; 6378 } else { 6379 struct dentry *parent = dentry->d_parent; 6380 int ret; 6381 6382 err = btrfs_update_inode(trans, root, inode); 6383 if (err) 6384 goto fail; 6385 if (inode->i_nlink == 1) { 6386 /* 6387 * If new hard link count is 1, it's a file created 6388 * with open(2) O_TMPFILE flag. 6389 */ 6390 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6391 if (err) 6392 goto fail; 6393 } 6394 d_instantiate(dentry, inode); 6395 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6396 true, NULL); 6397 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6398 err = btrfs_commit_transaction(trans); 6399 trans = NULL; 6400 } 6401 } 6402 6403 fail: 6404 if (trans) 6405 btrfs_end_transaction(trans); 6406 if (drop_inode) { 6407 inode_dec_link_count(inode); 6408 iput(inode); 6409 } 6410 btrfs_btree_balance_dirty(fs_info); 6411 return err; 6412 } 6413 6414 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6415 { 6416 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6417 struct inode *inode = NULL; 6418 struct btrfs_trans_handle *trans; 6419 struct btrfs_root *root = BTRFS_I(dir)->root; 6420 int err = 0; 6421 u64 objectid = 0; 6422 u64 index = 0; 6423 6424 /* 6425 * 2 items for inode and ref 6426 * 2 items for dir items 6427 * 1 for xattr if selinux is on 6428 */ 6429 trans = btrfs_start_transaction(root, 5); 6430 if (IS_ERR(trans)) 6431 return PTR_ERR(trans); 6432 6433 err = btrfs_find_free_ino(root, &objectid); 6434 if (err) 6435 goto out_fail; 6436 6437 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6438 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6439 S_IFDIR | mode, &index); 6440 if (IS_ERR(inode)) { 6441 err = PTR_ERR(inode); 6442 inode = NULL; 6443 goto out_fail; 6444 } 6445 6446 /* these must be set before we unlock the inode */ 6447 inode->i_op = &btrfs_dir_inode_operations; 6448 inode->i_fop = &btrfs_dir_file_operations; 6449 6450 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6451 if (err) 6452 goto out_fail; 6453 6454 btrfs_i_size_write(BTRFS_I(inode), 0); 6455 err = btrfs_update_inode(trans, root, inode); 6456 if (err) 6457 goto out_fail; 6458 6459 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6460 dentry->d_name.name, 6461 dentry->d_name.len, 0, index); 6462 if (err) 6463 goto out_fail; 6464 6465 d_instantiate_new(dentry, inode); 6466 6467 out_fail: 6468 btrfs_end_transaction(trans); 6469 if (err && inode) { 6470 inode_dec_link_count(inode); 6471 discard_new_inode(inode); 6472 } 6473 btrfs_btree_balance_dirty(fs_info); 6474 return err; 6475 } 6476 6477 static noinline int uncompress_inline(struct btrfs_path *path, 6478 struct page *page, 6479 size_t pg_offset, u64 extent_offset, 6480 struct btrfs_file_extent_item *item) 6481 { 6482 int ret; 6483 struct extent_buffer *leaf = path->nodes[0]; 6484 char *tmp; 6485 size_t max_size; 6486 unsigned long inline_size; 6487 unsigned long ptr; 6488 int compress_type; 6489 6490 WARN_ON(pg_offset != 0); 6491 compress_type = btrfs_file_extent_compression(leaf, item); 6492 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6493 inline_size = btrfs_file_extent_inline_item_len(leaf, 6494 btrfs_item_nr(path->slots[0])); 6495 tmp = kmalloc(inline_size, GFP_NOFS); 6496 if (!tmp) 6497 return -ENOMEM; 6498 ptr = btrfs_file_extent_inline_start(item); 6499 6500 read_extent_buffer(leaf, tmp, ptr, inline_size); 6501 6502 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6503 ret = btrfs_decompress(compress_type, tmp, page, 6504 extent_offset, inline_size, max_size); 6505 6506 /* 6507 * decompression code contains a memset to fill in any space between the end 6508 * of the uncompressed data and the end of max_size in case the decompressed 6509 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6510 * the end of an inline extent and the beginning of the next block, so we 6511 * cover that region here. 6512 */ 6513 6514 if (max_size + pg_offset < PAGE_SIZE) { 6515 char *map = kmap(page); 6516 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6517 kunmap(page); 6518 } 6519 kfree(tmp); 6520 return ret; 6521 } 6522 6523 /** 6524 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6525 * @inode: file to search in 6526 * @page: page to read extent data into if the extent is inline 6527 * @pg_offset: offset into @page to copy to 6528 * @start: file offset 6529 * @len: length of range starting at @start 6530 * 6531 * This returns the first &struct extent_map which overlaps with the given 6532 * range, reading it from the B-tree and caching it if necessary. Note that 6533 * there may be more extents which overlap the given range after the returned 6534 * extent_map. 6535 * 6536 * If @page is not NULL and the extent is inline, this also reads the extent 6537 * data directly into the page and marks the extent up to date in the io_tree. 6538 * 6539 * Return: ERR_PTR on error, non-NULL extent_map on success. 6540 */ 6541 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6542 struct page *page, size_t pg_offset, 6543 u64 start, u64 len) 6544 { 6545 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6546 int ret; 6547 int err = 0; 6548 u64 extent_start = 0; 6549 u64 extent_end = 0; 6550 u64 objectid = btrfs_ino(inode); 6551 int extent_type = -1; 6552 struct btrfs_path *path = NULL; 6553 struct btrfs_root *root = inode->root; 6554 struct btrfs_file_extent_item *item; 6555 struct extent_buffer *leaf; 6556 struct btrfs_key found_key; 6557 struct extent_map *em = NULL; 6558 struct extent_map_tree *em_tree = &inode->extent_tree; 6559 struct extent_io_tree *io_tree = &inode->io_tree; 6560 6561 read_lock(&em_tree->lock); 6562 em = lookup_extent_mapping(em_tree, start, len); 6563 read_unlock(&em_tree->lock); 6564 6565 if (em) { 6566 if (em->start > start || em->start + em->len <= start) 6567 free_extent_map(em); 6568 else if (em->block_start == EXTENT_MAP_INLINE && page) 6569 free_extent_map(em); 6570 else 6571 goto out; 6572 } 6573 em = alloc_extent_map(); 6574 if (!em) { 6575 err = -ENOMEM; 6576 goto out; 6577 } 6578 em->start = EXTENT_MAP_HOLE; 6579 em->orig_start = EXTENT_MAP_HOLE; 6580 em->len = (u64)-1; 6581 em->block_len = (u64)-1; 6582 6583 path = btrfs_alloc_path(); 6584 if (!path) { 6585 err = -ENOMEM; 6586 goto out; 6587 } 6588 6589 /* Chances are we'll be called again, so go ahead and do readahead */ 6590 path->reada = READA_FORWARD; 6591 6592 /* 6593 * Unless we're going to uncompress the inline extent, no sleep would 6594 * happen. 6595 */ 6596 path->leave_spinning = 1; 6597 6598 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6599 if (ret < 0) { 6600 err = ret; 6601 goto out; 6602 } else if (ret > 0) { 6603 if (path->slots[0] == 0) 6604 goto not_found; 6605 path->slots[0]--; 6606 } 6607 6608 leaf = path->nodes[0]; 6609 item = btrfs_item_ptr(leaf, path->slots[0], 6610 struct btrfs_file_extent_item); 6611 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6612 if (found_key.objectid != objectid || 6613 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6614 /* 6615 * If we backup past the first extent we want to move forward 6616 * and see if there is an extent in front of us, otherwise we'll 6617 * say there is a hole for our whole search range which can 6618 * cause problems. 6619 */ 6620 extent_end = start; 6621 goto next; 6622 } 6623 6624 extent_type = btrfs_file_extent_type(leaf, item); 6625 extent_start = found_key.offset; 6626 extent_end = btrfs_file_extent_end(path); 6627 if (extent_type == BTRFS_FILE_EXTENT_REG || 6628 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6629 /* Only regular file could have regular/prealloc extent */ 6630 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6631 err = -EUCLEAN; 6632 btrfs_crit(fs_info, 6633 "regular/prealloc extent found for non-regular inode %llu", 6634 btrfs_ino(inode)); 6635 goto out; 6636 } 6637 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6638 extent_start); 6639 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6640 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6641 path->slots[0], 6642 extent_start); 6643 } 6644 next: 6645 if (start >= extent_end) { 6646 path->slots[0]++; 6647 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6648 ret = btrfs_next_leaf(root, path); 6649 if (ret < 0) { 6650 err = ret; 6651 goto out; 6652 } else if (ret > 0) { 6653 goto not_found; 6654 } 6655 leaf = path->nodes[0]; 6656 } 6657 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6658 if (found_key.objectid != objectid || 6659 found_key.type != BTRFS_EXTENT_DATA_KEY) 6660 goto not_found; 6661 if (start + len <= found_key.offset) 6662 goto not_found; 6663 if (start > found_key.offset) 6664 goto next; 6665 6666 /* New extent overlaps with existing one */ 6667 em->start = start; 6668 em->orig_start = start; 6669 em->len = found_key.offset - start; 6670 em->block_start = EXTENT_MAP_HOLE; 6671 goto insert; 6672 } 6673 6674 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6675 6676 if (extent_type == BTRFS_FILE_EXTENT_REG || 6677 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6678 goto insert; 6679 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6680 unsigned long ptr; 6681 char *map; 6682 size_t size; 6683 size_t extent_offset; 6684 size_t copy_size; 6685 6686 if (!page) 6687 goto out; 6688 6689 size = btrfs_file_extent_ram_bytes(leaf, item); 6690 extent_offset = page_offset(page) + pg_offset - extent_start; 6691 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6692 size - extent_offset); 6693 em->start = extent_start + extent_offset; 6694 em->len = ALIGN(copy_size, fs_info->sectorsize); 6695 em->orig_block_len = em->len; 6696 em->orig_start = em->start; 6697 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6698 6699 btrfs_set_path_blocking(path); 6700 if (!PageUptodate(page)) { 6701 if (btrfs_file_extent_compression(leaf, item) != 6702 BTRFS_COMPRESS_NONE) { 6703 ret = uncompress_inline(path, page, pg_offset, 6704 extent_offset, item); 6705 if (ret) { 6706 err = ret; 6707 goto out; 6708 } 6709 } else { 6710 map = kmap(page); 6711 read_extent_buffer(leaf, map + pg_offset, ptr, 6712 copy_size); 6713 if (pg_offset + copy_size < PAGE_SIZE) { 6714 memset(map + pg_offset + copy_size, 0, 6715 PAGE_SIZE - pg_offset - 6716 copy_size); 6717 } 6718 kunmap(page); 6719 } 6720 flush_dcache_page(page); 6721 } 6722 set_extent_uptodate(io_tree, em->start, 6723 extent_map_end(em) - 1, NULL, GFP_NOFS); 6724 goto insert; 6725 } 6726 not_found: 6727 em->start = start; 6728 em->orig_start = start; 6729 em->len = len; 6730 em->block_start = EXTENT_MAP_HOLE; 6731 insert: 6732 btrfs_release_path(path); 6733 if (em->start > start || extent_map_end(em) <= start) { 6734 btrfs_err(fs_info, 6735 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6736 em->start, em->len, start, len); 6737 err = -EIO; 6738 goto out; 6739 } 6740 6741 err = 0; 6742 write_lock(&em_tree->lock); 6743 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6744 write_unlock(&em_tree->lock); 6745 out: 6746 btrfs_free_path(path); 6747 6748 trace_btrfs_get_extent(root, inode, em); 6749 6750 if (err) { 6751 free_extent_map(em); 6752 return ERR_PTR(err); 6753 } 6754 BUG_ON(!em); /* Error is always set */ 6755 return em; 6756 } 6757 6758 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6759 u64 start, u64 len) 6760 { 6761 struct extent_map *em; 6762 struct extent_map *hole_em = NULL; 6763 u64 delalloc_start = start; 6764 u64 end; 6765 u64 delalloc_len; 6766 u64 delalloc_end; 6767 int err = 0; 6768 6769 em = btrfs_get_extent(inode, NULL, 0, start, len); 6770 if (IS_ERR(em)) 6771 return em; 6772 /* 6773 * If our em maps to: 6774 * - a hole or 6775 * - a pre-alloc extent, 6776 * there might actually be delalloc bytes behind it. 6777 */ 6778 if (em->block_start != EXTENT_MAP_HOLE && 6779 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6780 return em; 6781 else 6782 hole_em = em; 6783 6784 /* check to see if we've wrapped (len == -1 or similar) */ 6785 end = start + len; 6786 if (end < start) 6787 end = (u64)-1; 6788 else 6789 end -= 1; 6790 6791 em = NULL; 6792 6793 /* ok, we didn't find anything, lets look for delalloc */ 6794 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6795 end, len, EXTENT_DELALLOC, 1); 6796 delalloc_end = delalloc_start + delalloc_len; 6797 if (delalloc_end < delalloc_start) 6798 delalloc_end = (u64)-1; 6799 6800 /* 6801 * We didn't find anything useful, return the original results from 6802 * get_extent() 6803 */ 6804 if (delalloc_start > end || delalloc_end <= start) { 6805 em = hole_em; 6806 hole_em = NULL; 6807 goto out; 6808 } 6809 6810 /* 6811 * Adjust the delalloc_start to make sure it doesn't go backwards from 6812 * the start they passed in 6813 */ 6814 delalloc_start = max(start, delalloc_start); 6815 delalloc_len = delalloc_end - delalloc_start; 6816 6817 if (delalloc_len > 0) { 6818 u64 hole_start; 6819 u64 hole_len; 6820 const u64 hole_end = extent_map_end(hole_em); 6821 6822 em = alloc_extent_map(); 6823 if (!em) { 6824 err = -ENOMEM; 6825 goto out; 6826 } 6827 6828 ASSERT(hole_em); 6829 /* 6830 * When btrfs_get_extent can't find anything it returns one 6831 * huge hole 6832 * 6833 * Make sure what it found really fits our range, and adjust to 6834 * make sure it is based on the start from the caller 6835 */ 6836 if (hole_end <= start || hole_em->start > end) { 6837 free_extent_map(hole_em); 6838 hole_em = NULL; 6839 } else { 6840 hole_start = max(hole_em->start, start); 6841 hole_len = hole_end - hole_start; 6842 } 6843 6844 if (hole_em && delalloc_start > hole_start) { 6845 /* 6846 * Our hole starts before our delalloc, so we have to 6847 * return just the parts of the hole that go until the 6848 * delalloc starts 6849 */ 6850 em->len = min(hole_len, delalloc_start - hole_start); 6851 em->start = hole_start; 6852 em->orig_start = hole_start; 6853 /* 6854 * Don't adjust block start at all, it is fixed at 6855 * EXTENT_MAP_HOLE 6856 */ 6857 em->block_start = hole_em->block_start; 6858 em->block_len = hole_len; 6859 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6860 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6861 } else { 6862 /* 6863 * Hole is out of passed range or it starts after 6864 * delalloc range 6865 */ 6866 em->start = delalloc_start; 6867 em->len = delalloc_len; 6868 em->orig_start = delalloc_start; 6869 em->block_start = EXTENT_MAP_DELALLOC; 6870 em->block_len = delalloc_len; 6871 } 6872 } else { 6873 return hole_em; 6874 } 6875 out: 6876 6877 free_extent_map(hole_em); 6878 if (err) { 6879 free_extent_map(em); 6880 return ERR_PTR(err); 6881 } 6882 return em; 6883 } 6884 6885 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6886 const u64 start, 6887 const u64 len, 6888 const u64 orig_start, 6889 const u64 block_start, 6890 const u64 block_len, 6891 const u64 orig_block_len, 6892 const u64 ram_bytes, 6893 const int type) 6894 { 6895 struct extent_map *em = NULL; 6896 int ret; 6897 6898 if (type != BTRFS_ORDERED_NOCOW) { 6899 em = create_io_em(inode, start, len, orig_start, block_start, 6900 block_len, orig_block_len, ram_bytes, 6901 BTRFS_COMPRESS_NONE, /* compress_type */ 6902 type); 6903 if (IS_ERR(em)) 6904 goto out; 6905 } 6906 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 6907 block_len, type); 6908 if (ret) { 6909 if (em) { 6910 free_extent_map(em); 6911 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 6912 } 6913 em = ERR_PTR(ret); 6914 } 6915 out: 6916 6917 return em; 6918 } 6919 6920 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 6921 u64 start, u64 len) 6922 { 6923 struct btrfs_root *root = inode->root; 6924 struct btrfs_fs_info *fs_info = root->fs_info; 6925 struct extent_map *em; 6926 struct btrfs_key ins; 6927 u64 alloc_hint; 6928 int ret; 6929 6930 alloc_hint = get_extent_allocation_hint(inode, start, len); 6931 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6932 0, alloc_hint, &ins, 1, 1); 6933 if (ret) 6934 return ERR_PTR(ret); 6935 6936 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6937 ins.objectid, ins.offset, ins.offset, 6938 ins.offset, BTRFS_ORDERED_REGULAR); 6939 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6940 if (IS_ERR(em)) 6941 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 6942 1); 6943 6944 return em; 6945 } 6946 6947 /* 6948 * Check if we can do nocow write into the range [@offset, @offset + @len) 6949 * 6950 * @offset: File offset 6951 * @len: The length to write, will be updated to the nocow writeable 6952 * range 6953 * @orig_start: (optional) Return the original file offset of the file extent 6954 * @orig_len: (optional) Return the original on-disk length of the file extent 6955 * @ram_bytes: (optional) Return the ram_bytes of the file extent 6956 * 6957 * This function will flush ordered extents in the range to ensure proper 6958 * nocow checks for (nowait == false) case. 6959 * 6960 * Return: 6961 * >0 and update @len if we can do nocow write 6962 * 0 if we can't do nocow write 6963 * <0 if error happened 6964 * 6965 * NOTE: This only checks the file extents, caller is responsible to wait for 6966 * any ordered extents. 6967 */ 6968 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6969 u64 *orig_start, u64 *orig_block_len, 6970 u64 *ram_bytes) 6971 { 6972 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6973 struct btrfs_path *path; 6974 int ret; 6975 struct extent_buffer *leaf; 6976 struct btrfs_root *root = BTRFS_I(inode)->root; 6977 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6978 struct btrfs_file_extent_item *fi; 6979 struct btrfs_key key; 6980 u64 disk_bytenr; 6981 u64 backref_offset; 6982 u64 extent_end; 6983 u64 num_bytes; 6984 int slot; 6985 int found_type; 6986 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6987 6988 path = btrfs_alloc_path(); 6989 if (!path) 6990 return -ENOMEM; 6991 6992 ret = btrfs_lookup_file_extent(NULL, root, path, 6993 btrfs_ino(BTRFS_I(inode)), offset, 0); 6994 if (ret < 0) 6995 goto out; 6996 6997 slot = path->slots[0]; 6998 if (ret == 1) { 6999 if (slot == 0) { 7000 /* can't find the item, must cow */ 7001 ret = 0; 7002 goto out; 7003 } 7004 slot--; 7005 } 7006 ret = 0; 7007 leaf = path->nodes[0]; 7008 btrfs_item_key_to_cpu(leaf, &key, slot); 7009 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7010 key.type != BTRFS_EXTENT_DATA_KEY) { 7011 /* not our file or wrong item type, must cow */ 7012 goto out; 7013 } 7014 7015 if (key.offset > offset) { 7016 /* Wrong offset, must cow */ 7017 goto out; 7018 } 7019 7020 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7021 found_type = btrfs_file_extent_type(leaf, fi); 7022 if (found_type != BTRFS_FILE_EXTENT_REG && 7023 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7024 /* not a regular extent, must cow */ 7025 goto out; 7026 } 7027 7028 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7029 goto out; 7030 7031 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7032 if (extent_end <= offset) 7033 goto out; 7034 7035 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7036 if (disk_bytenr == 0) 7037 goto out; 7038 7039 if (btrfs_file_extent_compression(leaf, fi) || 7040 btrfs_file_extent_encryption(leaf, fi) || 7041 btrfs_file_extent_other_encoding(leaf, fi)) 7042 goto out; 7043 7044 /* 7045 * Do the same check as in btrfs_cross_ref_exist but without the 7046 * unnecessary search. 7047 */ 7048 if (btrfs_file_extent_generation(leaf, fi) <= 7049 btrfs_root_last_snapshot(&root->root_item)) 7050 goto out; 7051 7052 backref_offset = btrfs_file_extent_offset(leaf, fi); 7053 7054 if (orig_start) { 7055 *orig_start = key.offset - backref_offset; 7056 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7057 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7058 } 7059 7060 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7061 goto out; 7062 7063 num_bytes = min(offset + *len, extent_end) - offset; 7064 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7065 u64 range_end; 7066 7067 range_end = round_up(offset + num_bytes, 7068 root->fs_info->sectorsize) - 1; 7069 ret = test_range_bit(io_tree, offset, range_end, 7070 EXTENT_DELALLOC, 0, NULL); 7071 if (ret) { 7072 ret = -EAGAIN; 7073 goto out; 7074 } 7075 } 7076 7077 btrfs_release_path(path); 7078 7079 /* 7080 * look for other files referencing this extent, if we 7081 * find any we must cow 7082 */ 7083 7084 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7085 key.offset - backref_offset, disk_bytenr); 7086 if (ret) { 7087 ret = 0; 7088 goto out; 7089 } 7090 7091 /* 7092 * adjust disk_bytenr and num_bytes to cover just the bytes 7093 * in this extent we are about to write. If there 7094 * are any csums in that range we have to cow in order 7095 * to keep the csums correct 7096 */ 7097 disk_bytenr += backref_offset; 7098 disk_bytenr += offset - key.offset; 7099 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7100 goto out; 7101 /* 7102 * all of the above have passed, it is safe to overwrite this extent 7103 * without cow 7104 */ 7105 *len = num_bytes; 7106 ret = 1; 7107 out: 7108 btrfs_free_path(path); 7109 return ret; 7110 } 7111 7112 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7113 struct extent_state **cached_state, int writing) 7114 { 7115 struct btrfs_ordered_extent *ordered; 7116 int ret = 0; 7117 7118 while (1) { 7119 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7120 cached_state); 7121 /* 7122 * We're concerned with the entire range that we're going to be 7123 * doing DIO to, so we need to make sure there's no ordered 7124 * extents in this range. 7125 */ 7126 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7127 lockend - lockstart + 1); 7128 7129 /* 7130 * We need to make sure there are no buffered pages in this 7131 * range either, we could have raced between the invalidate in 7132 * generic_file_direct_write and locking the extent. The 7133 * invalidate needs to happen so that reads after a write do not 7134 * get stale data. 7135 */ 7136 if (!ordered && 7137 (!writing || !filemap_range_has_page(inode->i_mapping, 7138 lockstart, lockend))) 7139 break; 7140 7141 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7142 cached_state); 7143 7144 if (ordered) { 7145 /* 7146 * If we are doing a DIO read and the ordered extent we 7147 * found is for a buffered write, we can not wait for it 7148 * to complete and retry, because if we do so we can 7149 * deadlock with concurrent buffered writes on page 7150 * locks. This happens only if our DIO read covers more 7151 * than one extent map, if at this point has already 7152 * created an ordered extent for a previous extent map 7153 * and locked its range in the inode's io tree, and a 7154 * concurrent write against that previous extent map's 7155 * range and this range started (we unlock the ranges 7156 * in the io tree only when the bios complete and 7157 * buffered writes always lock pages before attempting 7158 * to lock range in the io tree). 7159 */ 7160 if (writing || 7161 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7162 btrfs_start_ordered_extent(inode, ordered, 1); 7163 else 7164 ret = -ENOTBLK; 7165 btrfs_put_ordered_extent(ordered); 7166 } else { 7167 /* 7168 * We could trigger writeback for this range (and wait 7169 * for it to complete) and then invalidate the pages for 7170 * this range (through invalidate_inode_pages2_range()), 7171 * but that can lead us to a deadlock with a concurrent 7172 * call to readahead (a buffered read or a defrag call 7173 * triggered a readahead) on a page lock due to an 7174 * ordered dio extent we created before but did not have 7175 * yet a corresponding bio submitted (whence it can not 7176 * complete), which makes readahead wait for that 7177 * ordered extent to complete while holding a lock on 7178 * that page. 7179 */ 7180 ret = -ENOTBLK; 7181 } 7182 7183 if (ret) 7184 break; 7185 7186 cond_resched(); 7187 } 7188 7189 return ret; 7190 } 7191 7192 /* The callers of this must take lock_extent() */ 7193 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7194 u64 len, u64 orig_start, u64 block_start, 7195 u64 block_len, u64 orig_block_len, 7196 u64 ram_bytes, int compress_type, 7197 int type) 7198 { 7199 struct extent_map_tree *em_tree; 7200 struct extent_map *em; 7201 int ret; 7202 7203 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7204 type == BTRFS_ORDERED_COMPRESSED || 7205 type == BTRFS_ORDERED_NOCOW || 7206 type == BTRFS_ORDERED_REGULAR); 7207 7208 em_tree = &inode->extent_tree; 7209 em = alloc_extent_map(); 7210 if (!em) 7211 return ERR_PTR(-ENOMEM); 7212 7213 em->start = start; 7214 em->orig_start = orig_start; 7215 em->len = len; 7216 em->block_len = block_len; 7217 em->block_start = block_start; 7218 em->orig_block_len = orig_block_len; 7219 em->ram_bytes = ram_bytes; 7220 em->generation = -1; 7221 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7222 if (type == BTRFS_ORDERED_PREALLOC) { 7223 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7224 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7225 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7226 em->compress_type = compress_type; 7227 } 7228 7229 do { 7230 btrfs_drop_extent_cache(inode, em->start, 7231 em->start + em->len - 1, 0); 7232 write_lock(&em_tree->lock); 7233 ret = add_extent_mapping(em_tree, em, 1); 7234 write_unlock(&em_tree->lock); 7235 /* 7236 * The caller has taken lock_extent(), who could race with us 7237 * to add em? 7238 */ 7239 } while (ret == -EEXIST); 7240 7241 if (ret) { 7242 free_extent_map(em); 7243 return ERR_PTR(ret); 7244 } 7245 7246 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7247 return em; 7248 } 7249 7250 7251 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7252 struct buffer_head *bh_result, 7253 struct inode *inode, 7254 u64 start, u64 len) 7255 { 7256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7257 7258 if (em->block_start == EXTENT_MAP_HOLE || 7259 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7260 return -ENOENT; 7261 7262 len = min(len, em->len - (start - em->start)); 7263 7264 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7265 inode->i_blkbits; 7266 bh_result->b_size = len; 7267 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7268 set_buffer_mapped(bh_result); 7269 7270 return 0; 7271 } 7272 7273 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7274 struct buffer_head *bh_result, 7275 struct inode *inode, 7276 struct btrfs_dio_data *dio_data, 7277 u64 start, u64 len) 7278 { 7279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7280 struct extent_map *em = *map; 7281 int ret = 0; 7282 7283 /* 7284 * We don't allocate a new extent in the following cases 7285 * 7286 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7287 * existing extent. 7288 * 2) The extent is marked as PREALLOC. We're good to go here and can 7289 * just use the extent. 7290 * 7291 */ 7292 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7293 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7294 em->block_start != EXTENT_MAP_HOLE)) { 7295 int type; 7296 u64 block_start, orig_start, orig_block_len, ram_bytes; 7297 7298 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7299 type = BTRFS_ORDERED_PREALLOC; 7300 else 7301 type = BTRFS_ORDERED_NOCOW; 7302 len = min(len, em->len - (start - em->start)); 7303 block_start = em->block_start + (start - em->start); 7304 7305 if (can_nocow_extent(inode, start, &len, &orig_start, 7306 &orig_block_len, &ram_bytes) == 1 && 7307 btrfs_inc_nocow_writers(fs_info, block_start)) { 7308 struct extent_map *em2; 7309 7310 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7311 orig_start, block_start, 7312 len, orig_block_len, 7313 ram_bytes, type); 7314 btrfs_dec_nocow_writers(fs_info, block_start); 7315 if (type == BTRFS_ORDERED_PREALLOC) { 7316 free_extent_map(em); 7317 *map = em = em2; 7318 } 7319 7320 if (em2 && IS_ERR(em2)) { 7321 ret = PTR_ERR(em2); 7322 goto out; 7323 } 7324 /* 7325 * For inode marked NODATACOW or extent marked PREALLOC, 7326 * use the existing or preallocated extent, so does not 7327 * need to adjust btrfs_space_info's bytes_may_use. 7328 */ 7329 btrfs_free_reserved_data_space_noquota(fs_info, len); 7330 goto skip_cow; 7331 } 7332 } 7333 7334 /* this will cow the extent */ 7335 len = bh_result->b_size; 7336 free_extent_map(em); 7337 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7338 if (IS_ERR(em)) { 7339 ret = PTR_ERR(em); 7340 goto out; 7341 } 7342 7343 len = min(len, em->len - (start - em->start)); 7344 7345 skip_cow: 7346 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7347 inode->i_blkbits; 7348 bh_result->b_size = len; 7349 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7350 set_buffer_mapped(bh_result); 7351 7352 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7353 set_buffer_new(bh_result); 7354 7355 /* 7356 * Need to update the i_size under the extent lock so buffered 7357 * readers will get the updated i_size when we unlock. 7358 */ 7359 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7360 i_size_write(inode, start + len); 7361 7362 WARN_ON(dio_data->reserve < len); 7363 dio_data->reserve -= len; 7364 dio_data->unsubmitted_oe_range_end = start + len; 7365 current->journal_info = dio_data; 7366 out: 7367 return ret; 7368 } 7369 7370 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7371 struct buffer_head *bh_result, int create) 7372 { 7373 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7374 struct extent_map *em; 7375 struct extent_state *cached_state = NULL; 7376 struct btrfs_dio_data *dio_data = NULL; 7377 u64 start = iblock << inode->i_blkbits; 7378 u64 lockstart, lockend; 7379 u64 len = bh_result->b_size; 7380 int ret = 0; 7381 7382 if (!create) 7383 len = min_t(u64, len, fs_info->sectorsize); 7384 7385 lockstart = start; 7386 lockend = start + len - 1; 7387 7388 if (current->journal_info) { 7389 /* 7390 * Need to pull our outstanding extents and set journal_info to NULL so 7391 * that anything that needs to check if there's a transaction doesn't get 7392 * confused. 7393 */ 7394 dio_data = current->journal_info; 7395 current->journal_info = NULL; 7396 } 7397 7398 /* 7399 * If this errors out it's because we couldn't invalidate pagecache for 7400 * this range and we need to fallback to buffered. 7401 */ 7402 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7403 create)) { 7404 ret = -ENOTBLK; 7405 goto err; 7406 } 7407 7408 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7409 if (IS_ERR(em)) { 7410 ret = PTR_ERR(em); 7411 goto unlock_err; 7412 } 7413 7414 /* 7415 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7416 * io. INLINE is special, and we could probably kludge it in here, but 7417 * it's still buffered so for safety lets just fall back to the generic 7418 * buffered path. 7419 * 7420 * For COMPRESSED we _have_ to read the entire extent in so we can 7421 * decompress it, so there will be buffering required no matter what we 7422 * do, so go ahead and fallback to buffered. 7423 * 7424 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7425 * to buffered IO. Don't blame me, this is the price we pay for using 7426 * the generic code. 7427 */ 7428 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7429 em->block_start == EXTENT_MAP_INLINE) { 7430 free_extent_map(em); 7431 ret = -ENOTBLK; 7432 goto unlock_err; 7433 } 7434 7435 if (create) { 7436 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7437 dio_data, start, len); 7438 if (ret < 0) 7439 goto unlock_err; 7440 7441 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7442 lockend, &cached_state); 7443 } else { 7444 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7445 start, len); 7446 /* Can be negative only if we read from a hole */ 7447 if (ret < 0) { 7448 ret = 0; 7449 free_extent_map(em); 7450 goto unlock_err; 7451 } 7452 /* 7453 * We need to unlock only the end area that we aren't using. 7454 * The rest is going to be unlocked by the endio routine. 7455 */ 7456 lockstart = start + bh_result->b_size; 7457 if (lockstart < lockend) { 7458 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7459 lockstart, lockend, &cached_state); 7460 } else { 7461 free_extent_state(cached_state); 7462 } 7463 } 7464 7465 free_extent_map(em); 7466 7467 return 0; 7468 7469 unlock_err: 7470 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7471 &cached_state); 7472 err: 7473 if (dio_data) 7474 current->journal_info = dio_data; 7475 return ret; 7476 } 7477 7478 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7479 { 7480 /* 7481 * This implies a barrier so that stores to dio_bio->bi_status before 7482 * this and loads of dio_bio->bi_status after this are fully ordered. 7483 */ 7484 if (!refcount_dec_and_test(&dip->refs)) 7485 return; 7486 7487 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) { 7488 __endio_write_update_ordered(BTRFS_I(dip->inode), 7489 dip->logical_offset, 7490 dip->bytes, 7491 !dip->dio_bio->bi_status); 7492 } else { 7493 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7494 dip->logical_offset, 7495 dip->logical_offset + dip->bytes - 1); 7496 } 7497 7498 dio_end_io(dip->dio_bio); 7499 kfree(dip); 7500 } 7501 7502 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7503 int mirror_num, 7504 unsigned long bio_flags) 7505 { 7506 struct btrfs_dio_private *dip = bio->bi_private; 7507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7508 blk_status_t ret; 7509 7510 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7511 7512 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7513 if (ret) 7514 return ret; 7515 7516 refcount_inc(&dip->refs); 7517 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7518 if (ret) 7519 refcount_dec(&dip->refs); 7520 return ret; 7521 } 7522 7523 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7524 struct btrfs_io_bio *io_bio, 7525 const bool uptodate) 7526 { 7527 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7528 const u32 sectorsize = fs_info->sectorsize; 7529 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7531 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7532 struct bio_vec bvec; 7533 struct bvec_iter iter; 7534 u64 start = io_bio->logical; 7535 int icsum = 0; 7536 blk_status_t err = BLK_STS_OK; 7537 7538 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7539 unsigned int i, nr_sectors, pgoff; 7540 7541 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7542 pgoff = bvec.bv_offset; 7543 for (i = 0; i < nr_sectors; i++) { 7544 ASSERT(pgoff < PAGE_SIZE); 7545 if (uptodate && 7546 (!csum || !check_data_csum(inode, io_bio, icsum, 7547 bvec.bv_page, pgoff, 7548 start, sectorsize))) { 7549 clean_io_failure(fs_info, failure_tree, io_tree, 7550 start, bvec.bv_page, 7551 btrfs_ino(BTRFS_I(inode)), 7552 pgoff); 7553 } else { 7554 blk_status_t status; 7555 7556 status = btrfs_submit_read_repair(inode, 7557 &io_bio->bio, 7558 start - io_bio->logical, 7559 bvec.bv_page, pgoff, 7560 start, 7561 start + sectorsize - 1, 7562 io_bio->mirror_num, 7563 submit_dio_repair_bio); 7564 if (status) 7565 err = status; 7566 } 7567 start += sectorsize; 7568 icsum++; 7569 pgoff += sectorsize; 7570 } 7571 } 7572 return err; 7573 } 7574 7575 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7576 const u64 offset, const u64 bytes, 7577 const bool uptodate) 7578 { 7579 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7580 struct btrfs_ordered_extent *ordered = NULL; 7581 struct btrfs_workqueue *wq; 7582 u64 ordered_offset = offset; 7583 u64 ordered_bytes = bytes; 7584 u64 last_offset; 7585 7586 if (btrfs_is_free_space_inode(inode)) 7587 wq = fs_info->endio_freespace_worker; 7588 else 7589 wq = fs_info->endio_write_workers; 7590 7591 while (ordered_offset < offset + bytes) { 7592 last_offset = ordered_offset; 7593 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7594 &ordered_offset, 7595 ordered_bytes, 7596 uptodate)) { 7597 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7598 NULL); 7599 btrfs_queue_work(wq, &ordered->work); 7600 } 7601 /* 7602 * If btrfs_dec_test_ordered_pending does not find any ordered 7603 * extent in the range, we can exit. 7604 */ 7605 if (ordered_offset == last_offset) 7606 return; 7607 /* 7608 * Our bio might span multiple ordered extents. In this case 7609 * we keep going until we have accounted the whole dio. 7610 */ 7611 if (ordered_offset < offset + bytes) { 7612 ordered_bytes = offset + bytes - ordered_offset; 7613 ordered = NULL; 7614 } 7615 } 7616 } 7617 7618 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7619 struct bio *bio, u64 offset) 7620 { 7621 struct inode *inode = private_data; 7622 blk_status_t ret; 7623 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1); 7624 BUG_ON(ret); /* -ENOMEM */ 7625 return 0; 7626 } 7627 7628 static void btrfs_end_dio_bio(struct bio *bio) 7629 { 7630 struct btrfs_dio_private *dip = bio->bi_private; 7631 blk_status_t err = bio->bi_status; 7632 7633 if (err) 7634 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7635 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7636 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7637 bio->bi_opf, 7638 (unsigned long long)bio->bi_iter.bi_sector, 7639 bio->bi_iter.bi_size, err); 7640 7641 if (bio_op(bio) == REQ_OP_READ) { 7642 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 7643 !err); 7644 } 7645 7646 if (err) 7647 dip->dio_bio->bi_status = err; 7648 7649 bio_put(bio); 7650 btrfs_dio_private_put(dip); 7651 } 7652 7653 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7654 struct inode *inode, u64 file_offset, int async_submit) 7655 { 7656 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7657 struct btrfs_dio_private *dip = bio->bi_private; 7658 bool write = bio_op(bio) == REQ_OP_WRITE; 7659 blk_status_t ret; 7660 7661 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7662 if (async_submit) 7663 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7664 7665 if (!write) { 7666 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7667 if (ret) 7668 goto err; 7669 } 7670 7671 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7672 goto map; 7673 7674 if (write && async_submit) { 7675 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7676 file_offset, inode, 7677 btrfs_submit_bio_start_direct_io); 7678 goto err; 7679 } else if (write) { 7680 /* 7681 * If we aren't doing async submit, calculate the csum of the 7682 * bio now. 7683 */ 7684 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 7685 if (ret) 7686 goto err; 7687 } else { 7688 u64 csum_offset; 7689 7690 csum_offset = file_offset - dip->logical_offset; 7691 csum_offset >>= inode->i_sb->s_blocksize_bits; 7692 csum_offset *= btrfs_super_csum_size(fs_info->super_copy); 7693 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 7694 } 7695 map: 7696 ret = btrfs_map_bio(fs_info, bio, 0); 7697 err: 7698 return ret; 7699 } 7700 7701 /* 7702 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7703 * or ordered extents whether or not we submit any bios. 7704 */ 7705 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7706 struct inode *inode, 7707 loff_t file_offset) 7708 { 7709 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7710 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7711 size_t dip_size; 7712 struct btrfs_dio_private *dip; 7713 7714 dip_size = sizeof(*dip); 7715 if (!write && csum) { 7716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7717 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 7718 size_t nblocks; 7719 7720 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; 7721 dip_size += csum_size * nblocks; 7722 } 7723 7724 dip = kzalloc(dip_size, GFP_NOFS); 7725 if (!dip) 7726 return NULL; 7727 7728 dip->inode = inode; 7729 dip->logical_offset = file_offset; 7730 dip->bytes = dio_bio->bi_iter.bi_size; 7731 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7732 dip->dio_bio = dio_bio; 7733 refcount_set(&dip->refs, 1); 7734 7735 if (write) { 7736 struct btrfs_dio_data *dio_data = current->journal_info; 7737 7738 /* 7739 * Setting range start and end to the same value means that 7740 * no cleanup will happen in btrfs_direct_IO 7741 */ 7742 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 7743 dip->bytes; 7744 dio_data->unsubmitted_oe_range_start = 7745 dio_data->unsubmitted_oe_range_end; 7746 } 7747 return dip; 7748 } 7749 7750 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 7751 loff_t file_offset) 7752 { 7753 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7754 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7756 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7757 BTRFS_BLOCK_GROUP_RAID56_MASK); 7758 struct btrfs_dio_private *dip; 7759 struct bio *bio; 7760 u64 start_sector; 7761 int async_submit = 0; 7762 u64 submit_len; 7763 int clone_offset = 0; 7764 int clone_len; 7765 int ret; 7766 blk_status_t status; 7767 struct btrfs_io_geometry geom; 7768 7769 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7770 if (!dip) { 7771 if (!write) { 7772 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7773 file_offset + dio_bio->bi_iter.bi_size - 1); 7774 } 7775 dio_bio->bi_status = BLK_STS_RESOURCE; 7776 dio_end_io(dio_bio); 7777 return; 7778 } 7779 7780 if (!write && csum) { 7781 /* 7782 * Load the csums up front to reduce csum tree searches and 7783 * contention when submitting bios. 7784 */ 7785 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset, 7786 dip->csums); 7787 if (status != BLK_STS_OK) 7788 goto out_err; 7789 } 7790 7791 start_sector = dio_bio->bi_iter.bi_sector; 7792 submit_len = dio_bio->bi_iter.bi_size; 7793 7794 do { 7795 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio), 7796 start_sector << 9, submit_len, 7797 &geom); 7798 if (ret) { 7799 status = errno_to_blk_status(ret); 7800 goto out_err; 7801 } 7802 ASSERT(geom.len <= INT_MAX); 7803 7804 clone_len = min_t(int, submit_len, geom.len); 7805 7806 /* 7807 * This will never fail as it's passing GPF_NOFS and 7808 * the allocation is backed by btrfs_bioset. 7809 */ 7810 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 7811 bio->bi_private = dip; 7812 bio->bi_end_io = btrfs_end_dio_bio; 7813 btrfs_io_bio(bio)->logical = file_offset; 7814 7815 ASSERT(submit_len >= clone_len); 7816 submit_len -= clone_len; 7817 7818 /* 7819 * Increase the count before we submit the bio so we know 7820 * the end IO handler won't happen before we increase the 7821 * count. Otherwise, the dip might get freed before we're 7822 * done setting it up. 7823 * 7824 * We transfer the initial reference to the last bio, so we 7825 * don't need to increment the reference count for the last one. 7826 */ 7827 if (submit_len > 0) { 7828 refcount_inc(&dip->refs); 7829 /* 7830 * If we are submitting more than one bio, submit them 7831 * all asynchronously. The exception is RAID 5 or 6, as 7832 * asynchronous checksums make it difficult to collect 7833 * full stripe writes. 7834 */ 7835 if (!raid56) 7836 async_submit = 1; 7837 } 7838 7839 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7840 async_submit); 7841 if (status) { 7842 bio_put(bio); 7843 if (submit_len > 0) 7844 refcount_dec(&dip->refs); 7845 goto out_err; 7846 } 7847 7848 clone_offset += clone_len; 7849 start_sector += clone_len >> 9; 7850 file_offset += clone_len; 7851 } while (submit_len > 0); 7852 return; 7853 7854 out_err: 7855 dip->dio_bio->bi_status = status; 7856 btrfs_dio_private_put(dip); 7857 } 7858 7859 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 7860 const struct iov_iter *iter, loff_t offset) 7861 { 7862 int seg; 7863 int i; 7864 unsigned int blocksize_mask = fs_info->sectorsize - 1; 7865 ssize_t retval = -EINVAL; 7866 7867 if (offset & blocksize_mask) 7868 goto out; 7869 7870 if (iov_iter_alignment(iter) & blocksize_mask) 7871 goto out; 7872 7873 /* If this is a write we don't need to check anymore */ 7874 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 7875 return 0; 7876 /* 7877 * Check to make sure we don't have duplicate iov_base's in this 7878 * iovec, if so return EINVAL, otherwise we'll get csum errors 7879 * when reading back. 7880 */ 7881 for (seg = 0; seg < iter->nr_segs; seg++) { 7882 for (i = seg + 1; i < iter->nr_segs; i++) { 7883 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 7884 goto out; 7885 } 7886 } 7887 retval = 0; 7888 out: 7889 return retval; 7890 } 7891 7892 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 7893 { 7894 struct file *file = iocb->ki_filp; 7895 struct inode *inode = file->f_mapping->host; 7896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7897 struct btrfs_dio_data dio_data = { 0 }; 7898 struct extent_changeset *data_reserved = NULL; 7899 loff_t offset = iocb->ki_pos; 7900 size_t count = 0; 7901 int flags = 0; 7902 bool wakeup = true; 7903 bool relock = false; 7904 ssize_t ret; 7905 7906 if (check_direct_IO(fs_info, iter, offset)) 7907 return 0; 7908 7909 inode_dio_begin(inode); 7910 7911 /* 7912 * The generic stuff only does filemap_write_and_wait_range, which 7913 * isn't enough if we've written compressed pages to this area, so 7914 * we need to flush the dirty pages again to make absolutely sure 7915 * that any outstanding dirty pages are on disk. 7916 */ 7917 count = iov_iter_count(iter); 7918 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7919 &BTRFS_I(inode)->runtime_flags)) 7920 filemap_fdatawrite_range(inode->i_mapping, offset, 7921 offset + count - 1); 7922 7923 if (iov_iter_rw(iter) == WRITE) { 7924 /* 7925 * If the write DIO is beyond the EOF, we need update 7926 * the isize, but it is protected by i_mutex. So we can 7927 * not unlock the i_mutex at this case. 7928 */ 7929 if (offset + count <= inode->i_size) { 7930 dio_data.overwrite = 1; 7931 inode_unlock(inode); 7932 relock = true; 7933 } 7934 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 7935 offset, count); 7936 if (ret) 7937 goto out; 7938 7939 /* 7940 * We need to know how many extents we reserved so that we can 7941 * do the accounting properly if we go over the number we 7942 * originally calculated. Abuse current->journal_info for this. 7943 */ 7944 dio_data.reserve = round_up(count, 7945 fs_info->sectorsize); 7946 dio_data.unsubmitted_oe_range_start = (u64)offset; 7947 dio_data.unsubmitted_oe_range_end = (u64)offset; 7948 current->journal_info = &dio_data; 7949 down_read(&BTRFS_I(inode)->dio_sem); 7950 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7951 &BTRFS_I(inode)->runtime_flags)) { 7952 inode_dio_end(inode); 7953 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7954 wakeup = false; 7955 } 7956 7957 ret = __blockdev_direct_IO(iocb, inode, 7958 fs_info->fs_devices->latest_bdev, 7959 iter, btrfs_get_blocks_direct, NULL, 7960 btrfs_submit_direct, flags); 7961 if (iov_iter_rw(iter) == WRITE) { 7962 up_read(&BTRFS_I(inode)->dio_sem); 7963 current->journal_info = NULL; 7964 if (ret < 0 && ret != -EIOCBQUEUED) { 7965 if (dio_data.reserve) 7966 btrfs_delalloc_release_space(BTRFS_I(inode), 7967 data_reserved, offset, dio_data.reserve, 7968 true); 7969 /* 7970 * On error we might have left some ordered extents 7971 * without submitting corresponding bios for them, so 7972 * cleanup them up to avoid other tasks getting them 7973 * and waiting for them to complete forever. 7974 */ 7975 if (dio_data.unsubmitted_oe_range_start < 7976 dio_data.unsubmitted_oe_range_end) 7977 __endio_write_update_ordered(BTRFS_I(inode), 7978 dio_data.unsubmitted_oe_range_start, 7979 dio_data.unsubmitted_oe_range_end - 7980 dio_data.unsubmitted_oe_range_start, 7981 false); 7982 } else if (ret >= 0 && (size_t)ret < count) 7983 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 7984 offset, count - (size_t)ret, true); 7985 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 7986 } 7987 out: 7988 if (wakeup) 7989 inode_dio_end(inode); 7990 if (relock) 7991 inode_lock(inode); 7992 7993 extent_changeset_free(data_reserved); 7994 return ret; 7995 } 7996 7997 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7998 u64 start, u64 len) 7999 { 8000 int ret; 8001 8002 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8003 if (ret) 8004 return ret; 8005 8006 return extent_fiemap(inode, fieinfo, start, len); 8007 } 8008 8009 int btrfs_readpage(struct file *file, struct page *page) 8010 { 8011 return extent_read_full_page(page, btrfs_get_extent, 0); 8012 } 8013 8014 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8015 { 8016 struct inode *inode = page->mapping->host; 8017 int ret; 8018 8019 if (current->flags & PF_MEMALLOC) { 8020 redirty_page_for_writepage(wbc, page); 8021 unlock_page(page); 8022 return 0; 8023 } 8024 8025 /* 8026 * If we are under memory pressure we will call this directly from the 8027 * VM, we need to make sure we have the inode referenced for the ordered 8028 * extent. If not just return like we didn't do anything. 8029 */ 8030 if (!igrab(inode)) { 8031 redirty_page_for_writepage(wbc, page); 8032 return AOP_WRITEPAGE_ACTIVATE; 8033 } 8034 ret = extent_write_full_page(page, wbc); 8035 btrfs_add_delayed_iput(inode); 8036 return ret; 8037 } 8038 8039 static int btrfs_writepages(struct address_space *mapping, 8040 struct writeback_control *wbc) 8041 { 8042 return extent_writepages(mapping, wbc); 8043 } 8044 8045 static void btrfs_readahead(struct readahead_control *rac) 8046 { 8047 extent_readahead(rac); 8048 } 8049 8050 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8051 { 8052 int ret = try_release_extent_mapping(page, gfp_flags); 8053 if (ret == 1) 8054 detach_page_private(page); 8055 return ret; 8056 } 8057 8058 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8059 { 8060 if (PageWriteback(page) || PageDirty(page)) 8061 return 0; 8062 return __btrfs_releasepage(page, gfp_flags); 8063 } 8064 8065 #ifdef CONFIG_MIGRATION 8066 static int btrfs_migratepage(struct address_space *mapping, 8067 struct page *newpage, struct page *page, 8068 enum migrate_mode mode) 8069 { 8070 int ret; 8071 8072 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8073 if (ret != MIGRATEPAGE_SUCCESS) 8074 return ret; 8075 8076 if (page_has_private(page)) 8077 attach_page_private(newpage, detach_page_private(page)); 8078 8079 if (PagePrivate2(page)) { 8080 ClearPagePrivate2(page); 8081 SetPagePrivate2(newpage); 8082 } 8083 8084 if (mode != MIGRATE_SYNC_NO_COPY) 8085 migrate_page_copy(newpage, page); 8086 else 8087 migrate_page_states(newpage, page); 8088 return MIGRATEPAGE_SUCCESS; 8089 } 8090 #endif 8091 8092 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8093 unsigned int length) 8094 { 8095 struct inode *inode = page->mapping->host; 8096 struct extent_io_tree *tree; 8097 struct btrfs_ordered_extent *ordered; 8098 struct extent_state *cached_state = NULL; 8099 u64 page_start = page_offset(page); 8100 u64 page_end = page_start + PAGE_SIZE - 1; 8101 u64 start; 8102 u64 end; 8103 int inode_evicting = inode->i_state & I_FREEING; 8104 8105 /* 8106 * we have the page locked, so new writeback can't start, 8107 * and the dirty bit won't be cleared while we are here. 8108 * 8109 * Wait for IO on this page so that we can safely clear 8110 * the PagePrivate2 bit and do ordered accounting 8111 */ 8112 wait_on_page_writeback(page); 8113 8114 tree = &BTRFS_I(inode)->io_tree; 8115 if (offset) { 8116 btrfs_releasepage(page, GFP_NOFS); 8117 return; 8118 } 8119 8120 if (!inode_evicting) 8121 lock_extent_bits(tree, page_start, page_end, &cached_state); 8122 again: 8123 start = page_start; 8124 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8125 page_end - start + 1); 8126 if (ordered) { 8127 end = min(page_end, 8128 ordered->file_offset + ordered->num_bytes - 1); 8129 /* 8130 * IO on this page will never be started, so we need 8131 * to account for any ordered extents now 8132 */ 8133 if (!inode_evicting) 8134 clear_extent_bit(tree, start, end, 8135 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8136 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8137 EXTENT_DEFRAG, 1, 0, &cached_state); 8138 /* 8139 * whoever cleared the private bit is responsible 8140 * for the finish_ordered_io 8141 */ 8142 if (TestClearPagePrivate2(page)) { 8143 struct btrfs_ordered_inode_tree *tree; 8144 u64 new_len; 8145 8146 tree = &BTRFS_I(inode)->ordered_tree; 8147 8148 spin_lock_irq(&tree->lock); 8149 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8150 new_len = start - ordered->file_offset; 8151 if (new_len < ordered->truncated_len) 8152 ordered->truncated_len = new_len; 8153 spin_unlock_irq(&tree->lock); 8154 8155 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8156 start, 8157 end - start + 1, 1)) 8158 btrfs_finish_ordered_io(ordered); 8159 } 8160 btrfs_put_ordered_extent(ordered); 8161 if (!inode_evicting) { 8162 cached_state = NULL; 8163 lock_extent_bits(tree, start, end, 8164 &cached_state); 8165 } 8166 8167 start = end + 1; 8168 if (start < page_end) 8169 goto again; 8170 } 8171 8172 /* 8173 * Qgroup reserved space handler 8174 * Page here will be either 8175 * 1) Already written to disk or ordered extent already submitted 8176 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8177 * Qgroup will be handled by its qgroup_record then. 8178 * btrfs_qgroup_free_data() call will do nothing here. 8179 * 8180 * 2) Not written to disk yet 8181 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8182 * bit of its io_tree, and free the qgroup reserved data space. 8183 * Since the IO will never happen for this page. 8184 */ 8185 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE); 8186 if (!inode_evicting) { 8187 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8188 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8189 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8190 &cached_state); 8191 8192 __btrfs_releasepage(page, GFP_NOFS); 8193 } 8194 8195 ClearPageChecked(page); 8196 detach_page_private(page); 8197 } 8198 8199 /* 8200 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8201 * called from a page fault handler when a page is first dirtied. Hence we must 8202 * be careful to check for EOF conditions here. We set the page up correctly 8203 * for a written page which means we get ENOSPC checking when writing into 8204 * holes and correct delalloc and unwritten extent mapping on filesystems that 8205 * support these features. 8206 * 8207 * We are not allowed to take the i_mutex here so we have to play games to 8208 * protect against truncate races as the page could now be beyond EOF. Because 8209 * truncate_setsize() writes the inode size before removing pages, once we have 8210 * the page lock we can determine safely if the page is beyond EOF. If it is not 8211 * beyond EOF, then the page is guaranteed safe against truncation until we 8212 * unlock the page. 8213 */ 8214 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8215 { 8216 struct page *page = vmf->page; 8217 struct inode *inode = file_inode(vmf->vma->vm_file); 8218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8219 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8220 struct btrfs_ordered_extent *ordered; 8221 struct extent_state *cached_state = NULL; 8222 struct extent_changeset *data_reserved = NULL; 8223 char *kaddr; 8224 unsigned long zero_start; 8225 loff_t size; 8226 vm_fault_t ret; 8227 int ret2; 8228 int reserved = 0; 8229 u64 reserved_space; 8230 u64 page_start; 8231 u64 page_end; 8232 u64 end; 8233 8234 reserved_space = PAGE_SIZE; 8235 8236 sb_start_pagefault(inode->i_sb); 8237 page_start = page_offset(page); 8238 page_end = page_start + PAGE_SIZE - 1; 8239 end = page_end; 8240 8241 /* 8242 * Reserving delalloc space after obtaining the page lock can lead to 8243 * deadlock. For example, if a dirty page is locked by this function 8244 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8245 * dirty page write out, then the btrfs_writepage() function could 8246 * end up waiting indefinitely to get a lock on the page currently 8247 * being processed by btrfs_page_mkwrite() function. 8248 */ 8249 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8250 page_start, reserved_space); 8251 if (!ret2) { 8252 ret2 = file_update_time(vmf->vma->vm_file); 8253 reserved = 1; 8254 } 8255 if (ret2) { 8256 ret = vmf_error(ret2); 8257 if (reserved) 8258 goto out; 8259 goto out_noreserve; 8260 } 8261 8262 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8263 again: 8264 lock_page(page); 8265 size = i_size_read(inode); 8266 8267 if ((page->mapping != inode->i_mapping) || 8268 (page_start >= size)) { 8269 /* page got truncated out from underneath us */ 8270 goto out_unlock; 8271 } 8272 wait_on_page_writeback(page); 8273 8274 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8275 set_page_extent_mapped(page); 8276 8277 /* 8278 * we can't set the delalloc bits if there are pending ordered 8279 * extents. Drop our locks and wait for them to finish 8280 */ 8281 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8282 PAGE_SIZE); 8283 if (ordered) { 8284 unlock_extent_cached(io_tree, page_start, page_end, 8285 &cached_state); 8286 unlock_page(page); 8287 btrfs_start_ordered_extent(inode, ordered, 1); 8288 btrfs_put_ordered_extent(ordered); 8289 goto again; 8290 } 8291 8292 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8293 reserved_space = round_up(size - page_start, 8294 fs_info->sectorsize); 8295 if (reserved_space < PAGE_SIZE) { 8296 end = page_start + reserved_space - 1; 8297 btrfs_delalloc_release_space(BTRFS_I(inode), 8298 data_reserved, page_start, 8299 PAGE_SIZE - reserved_space, true); 8300 } 8301 } 8302 8303 /* 8304 * page_mkwrite gets called when the page is firstly dirtied after it's 8305 * faulted in, but write(2) could also dirty a page and set delalloc 8306 * bits, thus in this case for space account reason, we still need to 8307 * clear any delalloc bits within this page range since we have to 8308 * reserve data&meta space before lock_page() (see above comments). 8309 */ 8310 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8311 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8312 EXTENT_DEFRAG, 0, 0, &cached_state); 8313 8314 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8315 &cached_state); 8316 if (ret2) { 8317 unlock_extent_cached(io_tree, page_start, page_end, 8318 &cached_state); 8319 ret = VM_FAULT_SIGBUS; 8320 goto out_unlock; 8321 } 8322 8323 /* page is wholly or partially inside EOF */ 8324 if (page_start + PAGE_SIZE > size) 8325 zero_start = offset_in_page(size); 8326 else 8327 zero_start = PAGE_SIZE; 8328 8329 if (zero_start != PAGE_SIZE) { 8330 kaddr = kmap(page); 8331 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8332 flush_dcache_page(page); 8333 kunmap(page); 8334 } 8335 ClearPageChecked(page); 8336 set_page_dirty(page); 8337 SetPageUptodate(page); 8338 8339 BTRFS_I(inode)->last_trans = fs_info->generation; 8340 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8341 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8342 8343 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8344 8345 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8346 sb_end_pagefault(inode->i_sb); 8347 extent_changeset_free(data_reserved); 8348 return VM_FAULT_LOCKED; 8349 8350 out_unlock: 8351 unlock_page(page); 8352 out: 8353 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8354 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8355 reserved_space, (ret != 0)); 8356 out_noreserve: 8357 sb_end_pagefault(inode->i_sb); 8358 extent_changeset_free(data_reserved); 8359 return ret; 8360 } 8361 8362 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8363 { 8364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8365 struct btrfs_root *root = BTRFS_I(inode)->root; 8366 struct btrfs_block_rsv *rsv; 8367 int ret; 8368 struct btrfs_trans_handle *trans; 8369 u64 mask = fs_info->sectorsize - 1; 8370 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8371 8372 if (!skip_writeback) { 8373 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8374 (u64)-1); 8375 if (ret) 8376 return ret; 8377 } 8378 8379 /* 8380 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8381 * things going on here: 8382 * 8383 * 1) We need to reserve space to update our inode. 8384 * 8385 * 2) We need to have something to cache all the space that is going to 8386 * be free'd up by the truncate operation, but also have some slack 8387 * space reserved in case it uses space during the truncate (thank you 8388 * very much snapshotting). 8389 * 8390 * And we need these to be separate. The fact is we can use a lot of 8391 * space doing the truncate, and we have no earthly idea how much space 8392 * we will use, so we need the truncate reservation to be separate so it 8393 * doesn't end up using space reserved for updating the inode. We also 8394 * need to be able to stop the transaction and start a new one, which 8395 * means we need to be able to update the inode several times, and we 8396 * have no idea of knowing how many times that will be, so we can't just 8397 * reserve 1 item for the entirety of the operation, so that has to be 8398 * done separately as well. 8399 * 8400 * So that leaves us with 8401 * 8402 * 1) rsv - for the truncate reservation, which we will steal from the 8403 * transaction reservation. 8404 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8405 * updating the inode. 8406 */ 8407 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8408 if (!rsv) 8409 return -ENOMEM; 8410 rsv->size = min_size; 8411 rsv->failfast = 1; 8412 8413 /* 8414 * 1 for the truncate slack space 8415 * 1 for updating the inode. 8416 */ 8417 trans = btrfs_start_transaction(root, 2); 8418 if (IS_ERR(trans)) { 8419 ret = PTR_ERR(trans); 8420 goto out; 8421 } 8422 8423 /* Migrate the slack space for the truncate to our reserve */ 8424 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8425 min_size, false); 8426 BUG_ON(ret); 8427 8428 /* 8429 * So if we truncate and then write and fsync we normally would just 8430 * write the extents that changed, which is a problem if we need to 8431 * first truncate that entire inode. So set this flag so we write out 8432 * all of the extents in the inode to the sync log so we're completely 8433 * safe. 8434 */ 8435 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8436 trans->block_rsv = rsv; 8437 8438 while (1) { 8439 ret = btrfs_truncate_inode_items(trans, root, inode, 8440 inode->i_size, 8441 BTRFS_EXTENT_DATA_KEY); 8442 trans->block_rsv = &fs_info->trans_block_rsv; 8443 if (ret != -ENOSPC && ret != -EAGAIN) 8444 break; 8445 8446 ret = btrfs_update_inode(trans, root, inode); 8447 if (ret) 8448 break; 8449 8450 btrfs_end_transaction(trans); 8451 btrfs_btree_balance_dirty(fs_info); 8452 8453 trans = btrfs_start_transaction(root, 2); 8454 if (IS_ERR(trans)) { 8455 ret = PTR_ERR(trans); 8456 trans = NULL; 8457 break; 8458 } 8459 8460 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8461 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8462 rsv, min_size, false); 8463 BUG_ON(ret); /* shouldn't happen */ 8464 trans->block_rsv = rsv; 8465 } 8466 8467 /* 8468 * We can't call btrfs_truncate_block inside a trans handle as we could 8469 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8470 * we've truncated everything except the last little bit, and can do 8471 * btrfs_truncate_block and then update the disk_i_size. 8472 */ 8473 if (ret == NEED_TRUNCATE_BLOCK) { 8474 btrfs_end_transaction(trans); 8475 btrfs_btree_balance_dirty(fs_info); 8476 8477 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8478 if (ret) 8479 goto out; 8480 trans = btrfs_start_transaction(root, 1); 8481 if (IS_ERR(trans)) { 8482 ret = PTR_ERR(trans); 8483 goto out; 8484 } 8485 btrfs_inode_safe_disk_i_size_write(inode, 0); 8486 } 8487 8488 if (trans) { 8489 int ret2; 8490 8491 trans->block_rsv = &fs_info->trans_block_rsv; 8492 ret2 = btrfs_update_inode(trans, root, inode); 8493 if (ret2 && !ret) 8494 ret = ret2; 8495 8496 ret2 = btrfs_end_transaction(trans); 8497 if (ret2 && !ret) 8498 ret = ret2; 8499 btrfs_btree_balance_dirty(fs_info); 8500 } 8501 out: 8502 btrfs_free_block_rsv(fs_info, rsv); 8503 8504 return ret; 8505 } 8506 8507 /* 8508 * create a new subvolume directory/inode (helper for the ioctl). 8509 */ 8510 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8511 struct btrfs_root *new_root, 8512 struct btrfs_root *parent_root, 8513 u64 new_dirid) 8514 { 8515 struct inode *inode; 8516 int err; 8517 u64 index = 0; 8518 8519 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8520 new_dirid, new_dirid, 8521 S_IFDIR | (~current_umask() & S_IRWXUGO), 8522 &index); 8523 if (IS_ERR(inode)) 8524 return PTR_ERR(inode); 8525 inode->i_op = &btrfs_dir_inode_operations; 8526 inode->i_fop = &btrfs_dir_file_operations; 8527 8528 set_nlink(inode, 1); 8529 btrfs_i_size_write(BTRFS_I(inode), 0); 8530 unlock_new_inode(inode); 8531 8532 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8533 if (err) 8534 btrfs_err(new_root->fs_info, 8535 "error inheriting subvolume %llu properties: %d", 8536 new_root->root_key.objectid, err); 8537 8538 err = btrfs_update_inode(trans, new_root, inode); 8539 8540 iput(inode); 8541 return err; 8542 } 8543 8544 struct inode *btrfs_alloc_inode(struct super_block *sb) 8545 { 8546 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8547 struct btrfs_inode *ei; 8548 struct inode *inode; 8549 8550 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8551 if (!ei) 8552 return NULL; 8553 8554 ei->root = NULL; 8555 ei->generation = 0; 8556 ei->last_trans = 0; 8557 ei->last_sub_trans = 0; 8558 ei->logged_trans = 0; 8559 ei->delalloc_bytes = 0; 8560 ei->new_delalloc_bytes = 0; 8561 ei->defrag_bytes = 0; 8562 ei->disk_i_size = 0; 8563 ei->flags = 0; 8564 ei->csum_bytes = 0; 8565 ei->index_cnt = (u64)-1; 8566 ei->dir_index = 0; 8567 ei->last_unlink_trans = 0; 8568 ei->last_reflink_trans = 0; 8569 ei->last_log_commit = 0; 8570 8571 spin_lock_init(&ei->lock); 8572 ei->outstanding_extents = 0; 8573 if (sb->s_magic != BTRFS_TEST_MAGIC) 8574 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8575 BTRFS_BLOCK_RSV_DELALLOC); 8576 ei->runtime_flags = 0; 8577 ei->prop_compress = BTRFS_COMPRESS_NONE; 8578 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8579 8580 ei->delayed_node = NULL; 8581 8582 ei->i_otime.tv_sec = 0; 8583 ei->i_otime.tv_nsec = 0; 8584 8585 inode = &ei->vfs_inode; 8586 extent_map_tree_init(&ei->extent_tree); 8587 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8588 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8589 IO_TREE_INODE_IO_FAILURE, inode); 8590 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8591 IO_TREE_INODE_FILE_EXTENT, inode); 8592 ei->io_tree.track_uptodate = true; 8593 ei->io_failure_tree.track_uptodate = true; 8594 atomic_set(&ei->sync_writers, 0); 8595 mutex_init(&ei->log_mutex); 8596 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8597 INIT_LIST_HEAD(&ei->delalloc_inodes); 8598 INIT_LIST_HEAD(&ei->delayed_iput); 8599 RB_CLEAR_NODE(&ei->rb_node); 8600 init_rwsem(&ei->dio_sem); 8601 8602 return inode; 8603 } 8604 8605 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8606 void btrfs_test_destroy_inode(struct inode *inode) 8607 { 8608 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8609 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8610 } 8611 #endif 8612 8613 void btrfs_free_inode(struct inode *inode) 8614 { 8615 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8616 } 8617 8618 void btrfs_destroy_inode(struct inode *inode) 8619 { 8620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8621 struct btrfs_ordered_extent *ordered; 8622 struct btrfs_root *root = BTRFS_I(inode)->root; 8623 8624 WARN_ON(!hlist_empty(&inode->i_dentry)); 8625 WARN_ON(inode->i_data.nrpages); 8626 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 8627 WARN_ON(BTRFS_I(inode)->block_rsv.size); 8628 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8629 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8630 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 8631 WARN_ON(BTRFS_I(inode)->csum_bytes); 8632 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8633 8634 /* 8635 * This can happen where we create an inode, but somebody else also 8636 * created the same inode and we need to destroy the one we already 8637 * created. 8638 */ 8639 if (!root) 8640 return; 8641 8642 while (1) { 8643 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8644 if (!ordered) 8645 break; 8646 else { 8647 btrfs_err(fs_info, 8648 "found ordered extent %llu %llu on inode cleanup", 8649 ordered->file_offset, ordered->num_bytes); 8650 btrfs_remove_ordered_extent(inode, ordered); 8651 btrfs_put_ordered_extent(ordered); 8652 btrfs_put_ordered_extent(ordered); 8653 } 8654 } 8655 btrfs_qgroup_check_reserved_leak(BTRFS_I(inode)); 8656 inode_tree_del(inode); 8657 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8658 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1); 8659 btrfs_put_root(BTRFS_I(inode)->root); 8660 } 8661 8662 int btrfs_drop_inode(struct inode *inode) 8663 { 8664 struct btrfs_root *root = BTRFS_I(inode)->root; 8665 8666 if (root == NULL) 8667 return 1; 8668 8669 /* the snap/subvol tree is on deleting */ 8670 if (btrfs_root_refs(&root->root_item) == 0) 8671 return 1; 8672 else 8673 return generic_drop_inode(inode); 8674 } 8675 8676 static void init_once(void *foo) 8677 { 8678 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8679 8680 inode_init_once(&ei->vfs_inode); 8681 } 8682 8683 void __cold btrfs_destroy_cachep(void) 8684 { 8685 /* 8686 * Make sure all delayed rcu free inodes are flushed before we 8687 * destroy cache. 8688 */ 8689 rcu_barrier(); 8690 kmem_cache_destroy(btrfs_inode_cachep); 8691 kmem_cache_destroy(btrfs_trans_handle_cachep); 8692 kmem_cache_destroy(btrfs_path_cachep); 8693 kmem_cache_destroy(btrfs_free_space_cachep); 8694 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8695 } 8696 8697 int __init btrfs_init_cachep(void) 8698 { 8699 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8700 sizeof(struct btrfs_inode), 0, 8701 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8702 init_once); 8703 if (!btrfs_inode_cachep) 8704 goto fail; 8705 8706 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8707 sizeof(struct btrfs_trans_handle), 0, 8708 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8709 if (!btrfs_trans_handle_cachep) 8710 goto fail; 8711 8712 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8713 sizeof(struct btrfs_path), 0, 8714 SLAB_MEM_SPREAD, NULL); 8715 if (!btrfs_path_cachep) 8716 goto fail; 8717 8718 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8719 sizeof(struct btrfs_free_space), 0, 8720 SLAB_MEM_SPREAD, NULL); 8721 if (!btrfs_free_space_cachep) 8722 goto fail; 8723 8724 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8725 PAGE_SIZE, PAGE_SIZE, 8726 SLAB_RED_ZONE, NULL); 8727 if (!btrfs_free_space_bitmap_cachep) 8728 goto fail; 8729 8730 return 0; 8731 fail: 8732 btrfs_destroy_cachep(); 8733 return -ENOMEM; 8734 } 8735 8736 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8737 u32 request_mask, unsigned int flags) 8738 { 8739 u64 delalloc_bytes; 8740 struct inode *inode = d_inode(path->dentry); 8741 u32 blocksize = inode->i_sb->s_blocksize; 8742 u32 bi_flags = BTRFS_I(inode)->flags; 8743 8744 stat->result_mask |= STATX_BTIME; 8745 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8746 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8747 if (bi_flags & BTRFS_INODE_APPEND) 8748 stat->attributes |= STATX_ATTR_APPEND; 8749 if (bi_flags & BTRFS_INODE_COMPRESS) 8750 stat->attributes |= STATX_ATTR_COMPRESSED; 8751 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8752 stat->attributes |= STATX_ATTR_IMMUTABLE; 8753 if (bi_flags & BTRFS_INODE_NODUMP) 8754 stat->attributes |= STATX_ATTR_NODUMP; 8755 8756 stat->attributes_mask |= (STATX_ATTR_APPEND | 8757 STATX_ATTR_COMPRESSED | 8758 STATX_ATTR_IMMUTABLE | 8759 STATX_ATTR_NODUMP); 8760 8761 generic_fillattr(inode, stat); 8762 stat->dev = BTRFS_I(inode)->root->anon_dev; 8763 8764 spin_lock(&BTRFS_I(inode)->lock); 8765 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8766 spin_unlock(&BTRFS_I(inode)->lock); 8767 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8768 ALIGN(delalloc_bytes, blocksize)) >> 9; 8769 return 0; 8770 } 8771 8772 static int btrfs_rename_exchange(struct inode *old_dir, 8773 struct dentry *old_dentry, 8774 struct inode *new_dir, 8775 struct dentry *new_dentry) 8776 { 8777 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8778 struct btrfs_trans_handle *trans; 8779 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8780 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8781 struct inode *new_inode = new_dentry->d_inode; 8782 struct inode *old_inode = old_dentry->d_inode; 8783 struct timespec64 ctime = current_time(old_inode); 8784 struct dentry *parent; 8785 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8786 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8787 u64 old_idx = 0; 8788 u64 new_idx = 0; 8789 int ret; 8790 bool root_log_pinned = false; 8791 bool dest_log_pinned = false; 8792 struct btrfs_log_ctx ctx_root; 8793 struct btrfs_log_ctx ctx_dest; 8794 bool sync_log_root = false; 8795 bool sync_log_dest = false; 8796 bool commit_transaction = false; 8797 8798 /* we only allow rename subvolume link between subvolumes */ 8799 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8800 return -EXDEV; 8801 8802 btrfs_init_log_ctx(&ctx_root, old_inode); 8803 btrfs_init_log_ctx(&ctx_dest, new_inode); 8804 8805 /* close the race window with snapshot create/destroy ioctl */ 8806 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8807 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8808 down_read(&fs_info->subvol_sem); 8809 8810 /* 8811 * We want to reserve the absolute worst case amount of items. So if 8812 * both inodes are subvols and we need to unlink them then that would 8813 * require 4 item modifications, but if they are both normal inodes it 8814 * would require 5 item modifications, so we'll assume their normal 8815 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8816 * should cover the worst case number of items we'll modify. 8817 */ 8818 trans = btrfs_start_transaction(root, 12); 8819 if (IS_ERR(trans)) { 8820 ret = PTR_ERR(trans); 8821 goto out_notrans; 8822 } 8823 8824 if (dest != root) 8825 btrfs_record_root_in_trans(trans, dest); 8826 8827 /* 8828 * We need to find a free sequence number both in the source and 8829 * in the destination directory for the exchange. 8830 */ 8831 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8832 if (ret) 8833 goto out_fail; 8834 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8835 if (ret) 8836 goto out_fail; 8837 8838 BTRFS_I(old_inode)->dir_index = 0ULL; 8839 BTRFS_I(new_inode)->dir_index = 0ULL; 8840 8841 /* Reference for the source. */ 8842 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8843 /* force full log commit if subvolume involved. */ 8844 btrfs_set_log_full_commit(trans); 8845 } else { 8846 btrfs_pin_log_trans(root); 8847 root_log_pinned = true; 8848 ret = btrfs_insert_inode_ref(trans, dest, 8849 new_dentry->d_name.name, 8850 new_dentry->d_name.len, 8851 old_ino, 8852 btrfs_ino(BTRFS_I(new_dir)), 8853 old_idx); 8854 if (ret) 8855 goto out_fail; 8856 } 8857 8858 /* And now for the dest. */ 8859 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8860 /* force full log commit if subvolume involved. */ 8861 btrfs_set_log_full_commit(trans); 8862 } else { 8863 btrfs_pin_log_trans(dest); 8864 dest_log_pinned = true; 8865 ret = btrfs_insert_inode_ref(trans, root, 8866 old_dentry->d_name.name, 8867 old_dentry->d_name.len, 8868 new_ino, 8869 btrfs_ino(BTRFS_I(old_dir)), 8870 new_idx); 8871 if (ret) 8872 goto out_fail; 8873 } 8874 8875 /* Update inode version and ctime/mtime. */ 8876 inode_inc_iversion(old_dir); 8877 inode_inc_iversion(new_dir); 8878 inode_inc_iversion(old_inode); 8879 inode_inc_iversion(new_inode); 8880 old_dir->i_ctime = old_dir->i_mtime = ctime; 8881 new_dir->i_ctime = new_dir->i_mtime = ctime; 8882 old_inode->i_ctime = ctime; 8883 new_inode->i_ctime = ctime; 8884 8885 if (old_dentry->d_parent != new_dentry->d_parent) { 8886 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8887 BTRFS_I(old_inode), 1); 8888 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8889 BTRFS_I(new_inode), 1); 8890 } 8891 8892 /* src is a subvolume */ 8893 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8894 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 8895 } else { /* src is an inode */ 8896 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 8897 BTRFS_I(old_dentry->d_inode), 8898 old_dentry->d_name.name, 8899 old_dentry->d_name.len); 8900 if (!ret) 8901 ret = btrfs_update_inode(trans, root, old_inode); 8902 } 8903 if (ret) { 8904 btrfs_abort_transaction(trans, ret); 8905 goto out_fail; 8906 } 8907 8908 /* dest is a subvolume */ 8909 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8910 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 8911 } else { /* dest is an inode */ 8912 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 8913 BTRFS_I(new_dentry->d_inode), 8914 new_dentry->d_name.name, 8915 new_dentry->d_name.len); 8916 if (!ret) 8917 ret = btrfs_update_inode(trans, dest, new_inode); 8918 } 8919 if (ret) { 8920 btrfs_abort_transaction(trans, ret); 8921 goto out_fail; 8922 } 8923 8924 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8925 new_dentry->d_name.name, 8926 new_dentry->d_name.len, 0, old_idx); 8927 if (ret) { 8928 btrfs_abort_transaction(trans, ret); 8929 goto out_fail; 8930 } 8931 8932 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8933 old_dentry->d_name.name, 8934 old_dentry->d_name.len, 0, new_idx); 8935 if (ret) { 8936 btrfs_abort_transaction(trans, ret); 8937 goto out_fail; 8938 } 8939 8940 if (old_inode->i_nlink == 1) 8941 BTRFS_I(old_inode)->dir_index = old_idx; 8942 if (new_inode->i_nlink == 1) 8943 BTRFS_I(new_inode)->dir_index = new_idx; 8944 8945 if (root_log_pinned) { 8946 parent = new_dentry->d_parent; 8947 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 8948 BTRFS_I(old_dir), parent, 8949 false, &ctx_root); 8950 if (ret == BTRFS_NEED_LOG_SYNC) 8951 sync_log_root = true; 8952 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8953 commit_transaction = true; 8954 ret = 0; 8955 btrfs_end_log_trans(root); 8956 root_log_pinned = false; 8957 } 8958 if (dest_log_pinned) { 8959 if (!commit_transaction) { 8960 parent = old_dentry->d_parent; 8961 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 8962 BTRFS_I(new_dir), parent, 8963 false, &ctx_dest); 8964 if (ret == BTRFS_NEED_LOG_SYNC) 8965 sync_log_dest = true; 8966 else if (ret == BTRFS_NEED_TRANS_COMMIT) 8967 commit_transaction = true; 8968 ret = 0; 8969 } 8970 btrfs_end_log_trans(dest); 8971 dest_log_pinned = false; 8972 } 8973 out_fail: 8974 /* 8975 * If we have pinned a log and an error happened, we unpin tasks 8976 * trying to sync the log and force them to fallback to a transaction 8977 * commit if the log currently contains any of the inodes involved in 8978 * this rename operation (to ensure we do not persist a log with an 8979 * inconsistent state for any of these inodes or leading to any 8980 * inconsistencies when replayed). If the transaction was aborted, the 8981 * abortion reason is propagated to userspace when attempting to commit 8982 * the transaction. If the log does not contain any of these inodes, we 8983 * allow the tasks to sync it. 8984 */ 8985 if (ret && (root_log_pinned || dest_log_pinned)) { 8986 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 8987 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 8988 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 8989 (new_inode && 8990 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 8991 btrfs_set_log_full_commit(trans); 8992 8993 if (root_log_pinned) { 8994 btrfs_end_log_trans(root); 8995 root_log_pinned = false; 8996 } 8997 if (dest_log_pinned) { 8998 btrfs_end_log_trans(dest); 8999 dest_log_pinned = false; 9000 } 9001 } 9002 if (!ret && sync_log_root && !commit_transaction) { 9003 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9004 &ctx_root); 9005 if (ret) 9006 commit_transaction = true; 9007 } 9008 if (!ret && sync_log_dest && !commit_transaction) { 9009 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9010 &ctx_dest); 9011 if (ret) 9012 commit_transaction = true; 9013 } 9014 if (commit_transaction) { 9015 /* 9016 * We may have set commit_transaction when logging the new name 9017 * in the destination root, in which case we left the source 9018 * root context in the list of log contextes. So make sure we 9019 * remove it to avoid invalid memory accesses, since the context 9020 * was allocated in our stack frame. 9021 */ 9022 if (sync_log_root) { 9023 mutex_lock(&root->log_mutex); 9024 list_del_init(&ctx_root.list); 9025 mutex_unlock(&root->log_mutex); 9026 } 9027 ret = btrfs_commit_transaction(trans); 9028 } else { 9029 int ret2; 9030 9031 ret2 = btrfs_end_transaction(trans); 9032 ret = ret ? ret : ret2; 9033 } 9034 out_notrans: 9035 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9036 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9037 up_read(&fs_info->subvol_sem); 9038 9039 ASSERT(list_empty(&ctx_root.list)); 9040 ASSERT(list_empty(&ctx_dest.list)); 9041 9042 return ret; 9043 } 9044 9045 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9046 struct btrfs_root *root, 9047 struct inode *dir, 9048 struct dentry *dentry) 9049 { 9050 int ret; 9051 struct inode *inode; 9052 u64 objectid; 9053 u64 index; 9054 9055 ret = btrfs_find_free_ino(root, &objectid); 9056 if (ret) 9057 return ret; 9058 9059 inode = btrfs_new_inode(trans, root, dir, 9060 dentry->d_name.name, 9061 dentry->d_name.len, 9062 btrfs_ino(BTRFS_I(dir)), 9063 objectid, 9064 S_IFCHR | WHITEOUT_MODE, 9065 &index); 9066 9067 if (IS_ERR(inode)) { 9068 ret = PTR_ERR(inode); 9069 return ret; 9070 } 9071 9072 inode->i_op = &btrfs_special_inode_operations; 9073 init_special_inode(inode, inode->i_mode, 9074 WHITEOUT_DEV); 9075 9076 ret = btrfs_init_inode_security(trans, inode, dir, 9077 &dentry->d_name); 9078 if (ret) 9079 goto out; 9080 9081 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9082 BTRFS_I(inode), 0, index); 9083 if (ret) 9084 goto out; 9085 9086 ret = btrfs_update_inode(trans, root, inode); 9087 out: 9088 unlock_new_inode(inode); 9089 if (ret) 9090 inode_dec_link_count(inode); 9091 iput(inode); 9092 9093 return ret; 9094 } 9095 9096 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9097 struct inode *new_dir, struct dentry *new_dentry, 9098 unsigned int flags) 9099 { 9100 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9101 struct btrfs_trans_handle *trans; 9102 unsigned int trans_num_items; 9103 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9104 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9105 struct inode *new_inode = d_inode(new_dentry); 9106 struct inode *old_inode = d_inode(old_dentry); 9107 u64 index = 0; 9108 int ret; 9109 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9110 bool log_pinned = false; 9111 struct btrfs_log_ctx ctx; 9112 bool sync_log = false; 9113 bool commit_transaction = false; 9114 9115 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9116 return -EPERM; 9117 9118 /* we only allow rename subvolume link between subvolumes */ 9119 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9120 return -EXDEV; 9121 9122 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9123 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9124 return -ENOTEMPTY; 9125 9126 if (S_ISDIR(old_inode->i_mode) && new_inode && 9127 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9128 return -ENOTEMPTY; 9129 9130 9131 /* check for collisions, even if the name isn't there */ 9132 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9133 new_dentry->d_name.name, 9134 new_dentry->d_name.len); 9135 9136 if (ret) { 9137 if (ret == -EEXIST) { 9138 /* we shouldn't get 9139 * eexist without a new_inode */ 9140 if (WARN_ON(!new_inode)) { 9141 return ret; 9142 } 9143 } else { 9144 /* maybe -EOVERFLOW */ 9145 return ret; 9146 } 9147 } 9148 ret = 0; 9149 9150 /* 9151 * we're using rename to replace one file with another. Start IO on it 9152 * now so we don't add too much work to the end of the transaction 9153 */ 9154 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9155 filemap_flush(old_inode->i_mapping); 9156 9157 /* close the racy window with snapshot create/destroy ioctl */ 9158 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9159 down_read(&fs_info->subvol_sem); 9160 /* 9161 * We want to reserve the absolute worst case amount of items. So if 9162 * both inodes are subvols and we need to unlink them then that would 9163 * require 4 item modifications, but if they are both normal inodes it 9164 * would require 5 item modifications, so we'll assume they are normal 9165 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9166 * should cover the worst case number of items we'll modify. 9167 * If our rename has the whiteout flag, we need more 5 units for the 9168 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9169 * when selinux is enabled). 9170 */ 9171 trans_num_items = 11; 9172 if (flags & RENAME_WHITEOUT) 9173 trans_num_items += 5; 9174 trans = btrfs_start_transaction(root, trans_num_items); 9175 if (IS_ERR(trans)) { 9176 ret = PTR_ERR(trans); 9177 goto out_notrans; 9178 } 9179 9180 if (dest != root) 9181 btrfs_record_root_in_trans(trans, dest); 9182 9183 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9184 if (ret) 9185 goto out_fail; 9186 9187 BTRFS_I(old_inode)->dir_index = 0ULL; 9188 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9189 /* force full log commit if subvolume involved. */ 9190 btrfs_set_log_full_commit(trans); 9191 } else { 9192 btrfs_pin_log_trans(root); 9193 log_pinned = true; 9194 ret = btrfs_insert_inode_ref(trans, dest, 9195 new_dentry->d_name.name, 9196 new_dentry->d_name.len, 9197 old_ino, 9198 btrfs_ino(BTRFS_I(new_dir)), index); 9199 if (ret) 9200 goto out_fail; 9201 } 9202 9203 inode_inc_iversion(old_dir); 9204 inode_inc_iversion(new_dir); 9205 inode_inc_iversion(old_inode); 9206 old_dir->i_ctime = old_dir->i_mtime = 9207 new_dir->i_ctime = new_dir->i_mtime = 9208 old_inode->i_ctime = current_time(old_dir); 9209 9210 if (old_dentry->d_parent != new_dentry->d_parent) 9211 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9212 BTRFS_I(old_inode), 1); 9213 9214 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9215 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9216 } else { 9217 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9218 BTRFS_I(d_inode(old_dentry)), 9219 old_dentry->d_name.name, 9220 old_dentry->d_name.len); 9221 if (!ret) 9222 ret = btrfs_update_inode(trans, root, old_inode); 9223 } 9224 if (ret) { 9225 btrfs_abort_transaction(trans, ret); 9226 goto out_fail; 9227 } 9228 9229 if (new_inode) { 9230 inode_inc_iversion(new_inode); 9231 new_inode->i_ctime = current_time(new_inode); 9232 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9233 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9234 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9235 BUG_ON(new_inode->i_nlink == 0); 9236 } else { 9237 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9238 BTRFS_I(d_inode(new_dentry)), 9239 new_dentry->d_name.name, 9240 new_dentry->d_name.len); 9241 } 9242 if (!ret && new_inode->i_nlink == 0) 9243 ret = btrfs_orphan_add(trans, 9244 BTRFS_I(d_inode(new_dentry))); 9245 if (ret) { 9246 btrfs_abort_transaction(trans, ret); 9247 goto out_fail; 9248 } 9249 } 9250 9251 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9252 new_dentry->d_name.name, 9253 new_dentry->d_name.len, 0, index); 9254 if (ret) { 9255 btrfs_abort_transaction(trans, ret); 9256 goto out_fail; 9257 } 9258 9259 if (old_inode->i_nlink == 1) 9260 BTRFS_I(old_inode)->dir_index = index; 9261 9262 if (log_pinned) { 9263 struct dentry *parent = new_dentry->d_parent; 9264 9265 btrfs_init_log_ctx(&ctx, old_inode); 9266 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9267 BTRFS_I(old_dir), parent, 9268 false, &ctx); 9269 if (ret == BTRFS_NEED_LOG_SYNC) 9270 sync_log = true; 9271 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9272 commit_transaction = true; 9273 ret = 0; 9274 btrfs_end_log_trans(root); 9275 log_pinned = false; 9276 } 9277 9278 if (flags & RENAME_WHITEOUT) { 9279 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9280 old_dentry); 9281 9282 if (ret) { 9283 btrfs_abort_transaction(trans, ret); 9284 goto out_fail; 9285 } 9286 } 9287 out_fail: 9288 /* 9289 * If we have pinned the log and an error happened, we unpin tasks 9290 * trying to sync the log and force them to fallback to a transaction 9291 * commit if the log currently contains any of the inodes involved in 9292 * this rename operation (to ensure we do not persist a log with an 9293 * inconsistent state for any of these inodes or leading to any 9294 * inconsistencies when replayed). If the transaction was aborted, the 9295 * abortion reason is propagated to userspace when attempting to commit 9296 * the transaction. If the log does not contain any of these inodes, we 9297 * allow the tasks to sync it. 9298 */ 9299 if (ret && log_pinned) { 9300 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9301 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9302 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9303 (new_inode && 9304 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9305 btrfs_set_log_full_commit(trans); 9306 9307 btrfs_end_log_trans(root); 9308 log_pinned = false; 9309 } 9310 if (!ret && sync_log) { 9311 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9312 if (ret) 9313 commit_transaction = true; 9314 } else if (sync_log) { 9315 mutex_lock(&root->log_mutex); 9316 list_del(&ctx.list); 9317 mutex_unlock(&root->log_mutex); 9318 } 9319 if (commit_transaction) { 9320 ret = btrfs_commit_transaction(trans); 9321 } else { 9322 int ret2; 9323 9324 ret2 = btrfs_end_transaction(trans); 9325 ret = ret ? ret : ret2; 9326 } 9327 out_notrans: 9328 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9329 up_read(&fs_info->subvol_sem); 9330 9331 return ret; 9332 } 9333 9334 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9335 struct inode *new_dir, struct dentry *new_dentry, 9336 unsigned int flags) 9337 { 9338 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9339 return -EINVAL; 9340 9341 if (flags & RENAME_EXCHANGE) 9342 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9343 new_dentry); 9344 9345 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9346 } 9347 9348 struct btrfs_delalloc_work { 9349 struct inode *inode; 9350 struct completion completion; 9351 struct list_head list; 9352 struct btrfs_work work; 9353 }; 9354 9355 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9356 { 9357 struct btrfs_delalloc_work *delalloc_work; 9358 struct inode *inode; 9359 9360 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9361 work); 9362 inode = delalloc_work->inode; 9363 filemap_flush(inode->i_mapping); 9364 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9365 &BTRFS_I(inode)->runtime_flags)) 9366 filemap_flush(inode->i_mapping); 9367 9368 iput(inode); 9369 complete(&delalloc_work->completion); 9370 } 9371 9372 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9373 { 9374 struct btrfs_delalloc_work *work; 9375 9376 work = kmalloc(sizeof(*work), GFP_NOFS); 9377 if (!work) 9378 return NULL; 9379 9380 init_completion(&work->completion); 9381 INIT_LIST_HEAD(&work->list); 9382 work->inode = inode; 9383 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9384 9385 return work; 9386 } 9387 9388 /* 9389 * some fairly slow code that needs optimization. This walks the list 9390 * of all the inodes with pending delalloc and forces them to disk. 9391 */ 9392 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9393 { 9394 struct btrfs_inode *binode; 9395 struct inode *inode; 9396 struct btrfs_delalloc_work *work, *next; 9397 struct list_head works; 9398 struct list_head splice; 9399 int ret = 0; 9400 9401 INIT_LIST_HEAD(&works); 9402 INIT_LIST_HEAD(&splice); 9403 9404 mutex_lock(&root->delalloc_mutex); 9405 spin_lock(&root->delalloc_lock); 9406 list_splice_init(&root->delalloc_inodes, &splice); 9407 while (!list_empty(&splice)) { 9408 binode = list_entry(splice.next, struct btrfs_inode, 9409 delalloc_inodes); 9410 9411 list_move_tail(&binode->delalloc_inodes, 9412 &root->delalloc_inodes); 9413 inode = igrab(&binode->vfs_inode); 9414 if (!inode) { 9415 cond_resched_lock(&root->delalloc_lock); 9416 continue; 9417 } 9418 spin_unlock(&root->delalloc_lock); 9419 9420 if (snapshot) 9421 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9422 &binode->runtime_flags); 9423 work = btrfs_alloc_delalloc_work(inode); 9424 if (!work) { 9425 iput(inode); 9426 ret = -ENOMEM; 9427 goto out; 9428 } 9429 list_add_tail(&work->list, &works); 9430 btrfs_queue_work(root->fs_info->flush_workers, 9431 &work->work); 9432 ret++; 9433 if (nr != -1 && ret >= nr) 9434 goto out; 9435 cond_resched(); 9436 spin_lock(&root->delalloc_lock); 9437 } 9438 spin_unlock(&root->delalloc_lock); 9439 9440 out: 9441 list_for_each_entry_safe(work, next, &works, list) { 9442 list_del_init(&work->list); 9443 wait_for_completion(&work->completion); 9444 kfree(work); 9445 } 9446 9447 if (!list_empty(&splice)) { 9448 spin_lock(&root->delalloc_lock); 9449 list_splice_tail(&splice, &root->delalloc_inodes); 9450 spin_unlock(&root->delalloc_lock); 9451 } 9452 mutex_unlock(&root->delalloc_mutex); 9453 return ret; 9454 } 9455 9456 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9457 { 9458 struct btrfs_fs_info *fs_info = root->fs_info; 9459 int ret; 9460 9461 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9462 return -EROFS; 9463 9464 ret = start_delalloc_inodes(root, -1, true); 9465 if (ret > 0) 9466 ret = 0; 9467 return ret; 9468 } 9469 9470 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 9471 { 9472 struct btrfs_root *root; 9473 struct list_head splice; 9474 int ret; 9475 9476 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9477 return -EROFS; 9478 9479 INIT_LIST_HEAD(&splice); 9480 9481 mutex_lock(&fs_info->delalloc_root_mutex); 9482 spin_lock(&fs_info->delalloc_root_lock); 9483 list_splice_init(&fs_info->delalloc_roots, &splice); 9484 while (!list_empty(&splice) && nr) { 9485 root = list_first_entry(&splice, struct btrfs_root, 9486 delalloc_root); 9487 root = btrfs_grab_root(root); 9488 BUG_ON(!root); 9489 list_move_tail(&root->delalloc_root, 9490 &fs_info->delalloc_roots); 9491 spin_unlock(&fs_info->delalloc_root_lock); 9492 9493 ret = start_delalloc_inodes(root, nr, false); 9494 btrfs_put_root(root); 9495 if (ret < 0) 9496 goto out; 9497 9498 if (nr != -1) { 9499 nr -= ret; 9500 WARN_ON(nr < 0); 9501 } 9502 spin_lock(&fs_info->delalloc_root_lock); 9503 } 9504 spin_unlock(&fs_info->delalloc_root_lock); 9505 9506 ret = 0; 9507 out: 9508 if (!list_empty(&splice)) { 9509 spin_lock(&fs_info->delalloc_root_lock); 9510 list_splice_tail(&splice, &fs_info->delalloc_roots); 9511 spin_unlock(&fs_info->delalloc_root_lock); 9512 } 9513 mutex_unlock(&fs_info->delalloc_root_mutex); 9514 return ret; 9515 } 9516 9517 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9518 const char *symname) 9519 { 9520 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9521 struct btrfs_trans_handle *trans; 9522 struct btrfs_root *root = BTRFS_I(dir)->root; 9523 struct btrfs_path *path; 9524 struct btrfs_key key; 9525 struct inode *inode = NULL; 9526 int err; 9527 u64 objectid; 9528 u64 index = 0; 9529 int name_len; 9530 int datasize; 9531 unsigned long ptr; 9532 struct btrfs_file_extent_item *ei; 9533 struct extent_buffer *leaf; 9534 9535 name_len = strlen(symname); 9536 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9537 return -ENAMETOOLONG; 9538 9539 /* 9540 * 2 items for inode item and ref 9541 * 2 items for dir items 9542 * 1 item for updating parent inode item 9543 * 1 item for the inline extent item 9544 * 1 item for xattr if selinux is on 9545 */ 9546 trans = btrfs_start_transaction(root, 7); 9547 if (IS_ERR(trans)) 9548 return PTR_ERR(trans); 9549 9550 err = btrfs_find_free_ino(root, &objectid); 9551 if (err) 9552 goto out_unlock; 9553 9554 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9555 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9556 objectid, S_IFLNK|S_IRWXUGO, &index); 9557 if (IS_ERR(inode)) { 9558 err = PTR_ERR(inode); 9559 inode = NULL; 9560 goto out_unlock; 9561 } 9562 9563 /* 9564 * If the active LSM wants to access the inode during 9565 * d_instantiate it needs these. Smack checks to see 9566 * if the filesystem supports xattrs by looking at the 9567 * ops vector. 9568 */ 9569 inode->i_fop = &btrfs_file_operations; 9570 inode->i_op = &btrfs_file_inode_operations; 9571 inode->i_mapping->a_ops = &btrfs_aops; 9572 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9573 9574 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9575 if (err) 9576 goto out_unlock; 9577 9578 path = btrfs_alloc_path(); 9579 if (!path) { 9580 err = -ENOMEM; 9581 goto out_unlock; 9582 } 9583 key.objectid = btrfs_ino(BTRFS_I(inode)); 9584 key.offset = 0; 9585 key.type = BTRFS_EXTENT_DATA_KEY; 9586 datasize = btrfs_file_extent_calc_inline_size(name_len); 9587 err = btrfs_insert_empty_item(trans, root, path, &key, 9588 datasize); 9589 if (err) { 9590 btrfs_free_path(path); 9591 goto out_unlock; 9592 } 9593 leaf = path->nodes[0]; 9594 ei = btrfs_item_ptr(leaf, path->slots[0], 9595 struct btrfs_file_extent_item); 9596 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9597 btrfs_set_file_extent_type(leaf, ei, 9598 BTRFS_FILE_EXTENT_INLINE); 9599 btrfs_set_file_extent_encryption(leaf, ei, 0); 9600 btrfs_set_file_extent_compression(leaf, ei, 0); 9601 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9602 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9603 9604 ptr = btrfs_file_extent_inline_start(ei); 9605 write_extent_buffer(leaf, symname, ptr, name_len); 9606 btrfs_mark_buffer_dirty(leaf); 9607 btrfs_free_path(path); 9608 9609 inode->i_op = &btrfs_symlink_inode_operations; 9610 inode_nohighmem(inode); 9611 inode_set_bytes(inode, name_len); 9612 btrfs_i_size_write(BTRFS_I(inode), name_len); 9613 err = btrfs_update_inode(trans, root, inode); 9614 /* 9615 * Last step, add directory indexes for our symlink inode. This is the 9616 * last step to avoid extra cleanup of these indexes if an error happens 9617 * elsewhere above. 9618 */ 9619 if (!err) 9620 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9621 BTRFS_I(inode), 0, index); 9622 if (err) 9623 goto out_unlock; 9624 9625 d_instantiate_new(dentry, inode); 9626 9627 out_unlock: 9628 btrfs_end_transaction(trans); 9629 if (err && inode) { 9630 inode_dec_link_count(inode); 9631 discard_new_inode(inode); 9632 } 9633 btrfs_btree_balance_dirty(fs_info); 9634 return err; 9635 } 9636 9637 static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans, 9638 struct inode *inode, struct btrfs_key *ins, 9639 u64 file_offset) 9640 { 9641 struct btrfs_file_extent_item stack_fi; 9642 u64 start = ins->objectid; 9643 u64 len = ins->offset; 9644 int ret; 9645 9646 memset(&stack_fi, 0, sizeof(stack_fi)); 9647 9648 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9649 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9650 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9651 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9652 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9653 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9654 /* Encryption and other encoding is reserved and all 0 */ 9655 9656 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len); 9657 if (ret < 0) 9658 return ret; 9659 return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset, 9660 &stack_fi, ret); 9661 } 9662 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9663 u64 start, u64 num_bytes, u64 min_size, 9664 loff_t actual_len, u64 *alloc_hint, 9665 struct btrfs_trans_handle *trans) 9666 { 9667 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9668 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9669 struct extent_map *em; 9670 struct btrfs_root *root = BTRFS_I(inode)->root; 9671 struct btrfs_key ins; 9672 u64 cur_offset = start; 9673 u64 clear_offset = start; 9674 u64 i_size; 9675 u64 cur_bytes; 9676 u64 last_alloc = (u64)-1; 9677 int ret = 0; 9678 bool own_trans = true; 9679 u64 end = start + num_bytes - 1; 9680 9681 if (trans) 9682 own_trans = false; 9683 while (num_bytes > 0) { 9684 if (own_trans) { 9685 trans = btrfs_start_transaction(root, 3); 9686 if (IS_ERR(trans)) { 9687 ret = PTR_ERR(trans); 9688 break; 9689 } 9690 } 9691 9692 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9693 cur_bytes = max(cur_bytes, min_size); 9694 /* 9695 * If we are severely fragmented we could end up with really 9696 * small allocations, so if the allocator is returning small 9697 * chunks lets make its job easier by only searching for those 9698 * sized chunks. 9699 */ 9700 cur_bytes = min(cur_bytes, last_alloc); 9701 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9702 min_size, 0, *alloc_hint, &ins, 1, 0); 9703 if (ret) { 9704 if (own_trans) 9705 btrfs_end_transaction(trans); 9706 break; 9707 } 9708 9709 /* 9710 * We've reserved this space, and thus converted it from 9711 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9712 * from here on out we will only need to clear our reservation 9713 * for the remaining unreserved area, so advance our 9714 * clear_offset by our extent size. 9715 */ 9716 clear_offset += ins.offset; 9717 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9718 9719 last_alloc = ins.offset; 9720 ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset); 9721 if (ret) { 9722 btrfs_free_reserved_extent(fs_info, ins.objectid, 9723 ins.offset, 0); 9724 btrfs_abort_transaction(trans, ret); 9725 if (own_trans) 9726 btrfs_end_transaction(trans); 9727 break; 9728 } 9729 9730 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9731 cur_offset + ins.offset -1, 0); 9732 9733 em = alloc_extent_map(); 9734 if (!em) { 9735 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9736 &BTRFS_I(inode)->runtime_flags); 9737 goto next; 9738 } 9739 9740 em->start = cur_offset; 9741 em->orig_start = cur_offset; 9742 em->len = ins.offset; 9743 em->block_start = ins.objectid; 9744 em->block_len = ins.offset; 9745 em->orig_block_len = ins.offset; 9746 em->ram_bytes = ins.offset; 9747 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9748 em->generation = trans->transid; 9749 9750 while (1) { 9751 write_lock(&em_tree->lock); 9752 ret = add_extent_mapping(em_tree, em, 1); 9753 write_unlock(&em_tree->lock); 9754 if (ret != -EEXIST) 9755 break; 9756 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9757 cur_offset + ins.offset - 1, 9758 0); 9759 } 9760 free_extent_map(em); 9761 next: 9762 num_bytes -= ins.offset; 9763 cur_offset += ins.offset; 9764 *alloc_hint = ins.objectid + ins.offset; 9765 9766 inode_inc_iversion(inode); 9767 inode->i_ctime = current_time(inode); 9768 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9769 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9770 (actual_len > inode->i_size) && 9771 (cur_offset > inode->i_size)) { 9772 if (cur_offset > actual_len) 9773 i_size = actual_len; 9774 else 9775 i_size = cur_offset; 9776 i_size_write(inode, i_size); 9777 btrfs_inode_safe_disk_i_size_write(inode, 0); 9778 } 9779 9780 ret = btrfs_update_inode(trans, root, inode); 9781 9782 if (ret) { 9783 btrfs_abort_transaction(trans, ret); 9784 if (own_trans) 9785 btrfs_end_transaction(trans); 9786 break; 9787 } 9788 9789 if (own_trans) 9790 btrfs_end_transaction(trans); 9791 } 9792 if (clear_offset < end) 9793 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9794 end - clear_offset + 1); 9795 return ret; 9796 } 9797 9798 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9799 u64 start, u64 num_bytes, u64 min_size, 9800 loff_t actual_len, u64 *alloc_hint) 9801 { 9802 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9803 min_size, actual_len, alloc_hint, 9804 NULL); 9805 } 9806 9807 int btrfs_prealloc_file_range_trans(struct inode *inode, 9808 struct btrfs_trans_handle *trans, int mode, 9809 u64 start, u64 num_bytes, u64 min_size, 9810 loff_t actual_len, u64 *alloc_hint) 9811 { 9812 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9813 min_size, actual_len, alloc_hint, trans); 9814 } 9815 9816 static int btrfs_set_page_dirty(struct page *page) 9817 { 9818 return __set_page_dirty_nobuffers(page); 9819 } 9820 9821 static int btrfs_permission(struct inode *inode, int mask) 9822 { 9823 struct btrfs_root *root = BTRFS_I(inode)->root; 9824 umode_t mode = inode->i_mode; 9825 9826 if (mask & MAY_WRITE && 9827 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9828 if (btrfs_root_readonly(root)) 9829 return -EROFS; 9830 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9831 return -EACCES; 9832 } 9833 return generic_permission(inode, mask); 9834 } 9835 9836 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9837 { 9838 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9839 struct btrfs_trans_handle *trans; 9840 struct btrfs_root *root = BTRFS_I(dir)->root; 9841 struct inode *inode = NULL; 9842 u64 objectid; 9843 u64 index; 9844 int ret = 0; 9845 9846 /* 9847 * 5 units required for adding orphan entry 9848 */ 9849 trans = btrfs_start_transaction(root, 5); 9850 if (IS_ERR(trans)) 9851 return PTR_ERR(trans); 9852 9853 ret = btrfs_find_free_ino(root, &objectid); 9854 if (ret) 9855 goto out; 9856 9857 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9858 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 9859 if (IS_ERR(inode)) { 9860 ret = PTR_ERR(inode); 9861 inode = NULL; 9862 goto out; 9863 } 9864 9865 inode->i_fop = &btrfs_file_operations; 9866 inode->i_op = &btrfs_file_inode_operations; 9867 9868 inode->i_mapping->a_ops = &btrfs_aops; 9869 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9870 9871 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9872 if (ret) 9873 goto out; 9874 9875 ret = btrfs_update_inode(trans, root, inode); 9876 if (ret) 9877 goto out; 9878 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 9879 if (ret) 9880 goto out; 9881 9882 /* 9883 * We set number of links to 0 in btrfs_new_inode(), and here we set 9884 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9885 * through: 9886 * 9887 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9888 */ 9889 set_nlink(inode, 1); 9890 d_tmpfile(dentry, inode); 9891 unlock_new_inode(inode); 9892 mark_inode_dirty(inode); 9893 out: 9894 btrfs_end_transaction(trans); 9895 if (ret && inode) 9896 discard_new_inode(inode); 9897 btrfs_btree_balance_dirty(fs_info); 9898 return ret; 9899 } 9900 9901 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 9902 { 9903 struct inode *inode = tree->private_data; 9904 unsigned long index = start >> PAGE_SHIFT; 9905 unsigned long end_index = end >> PAGE_SHIFT; 9906 struct page *page; 9907 9908 while (index <= end_index) { 9909 page = find_get_page(inode->i_mapping, index); 9910 ASSERT(page); /* Pages should be in the extent_io_tree */ 9911 set_page_writeback(page); 9912 put_page(page); 9913 index++; 9914 } 9915 } 9916 9917 #ifdef CONFIG_SWAP 9918 /* 9919 * Add an entry indicating a block group or device which is pinned by a 9920 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9921 * negative errno on failure. 9922 */ 9923 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9924 bool is_block_group) 9925 { 9926 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9927 struct btrfs_swapfile_pin *sp, *entry; 9928 struct rb_node **p; 9929 struct rb_node *parent = NULL; 9930 9931 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9932 if (!sp) 9933 return -ENOMEM; 9934 sp->ptr = ptr; 9935 sp->inode = inode; 9936 sp->is_block_group = is_block_group; 9937 9938 spin_lock(&fs_info->swapfile_pins_lock); 9939 p = &fs_info->swapfile_pins.rb_node; 9940 while (*p) { 9941 parent = *p; 9942 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9943 if (sp->ptr < entry->ptr || 9944 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9945 p = &(*p)->rb_left; 9946 } else if (sp->ptr > entry->ptr || 9947 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9948 p = &(*p)->rb_right; 9949 } else { 9950 spin_unlock(&fs_info->swapfile_pins_lock); 9951 kfree(sp); 9952 return 1; 9953 } 9954 } 9955 rb_link_node(&sp->node, parent, p); 9956 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9957 spin_unlock(&fs_info->swapfile_pins_lock); 9958 return 0; 9959 } 9960 9961 /* Free all of the entries pinned by this swapfile. */ 9962 static void btrfs_free_swapfile_pins(struct inode *inode) 9963 { 9964 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9965 struct btrfs_swapfile_pin *sp; 9966 struct rb_node *node, *next; 9967 9968 spin_lock(&fs_info->swapfile_pins_lock); 9969 node = rb_first(&fs_info->swapfile_pins); 9970 while (node) { 9971 next = rb_next(node); 9972 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9973 if (sp->inode == inode) { 9974 rb_erase(&sp->node, &fs_info->swapfile_pins); 9975 if (sp->is_block_group) 9976 btrfs_put_block_group(sp->ptr); 9977 kfree(sp); 9978 } 9979 node = next; 9980 } 9981 spin_unlock(&fs_info->swapfile_pins_lock); 9982 } 9983 9984 struct btrfs_swap_info { 9985 u64 start; 9986 u64 block_start; 9987 u64 block_len; 9988 u64 lowest_ppage; 9989 u64 highest_ppage; 9990 unsigned long nr_pages; 9991 int nr_extents; 9992 }; 9993 9994 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9995 struct btrfs_swap_info *bsi) 9996 { 9997 unsigned long nr_pages; 9998 u64 first_ppage, first_ppage_reported, next_ppage; 9999 int ret; 10000 10001 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10002 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10003 PAGE_SIZE) >> PAGE_SHIFT; 10004 10005 if (first_ppage >= next_ppage) 10006 return 0; 10007 nr_pages = next_ppage - first_ppage; 10008 10009 first_ppage_reported = first_ppage; 10010 if (bsi->start == 0) 10011 first_ppage_reported++; 10012 if (bsi->lowest_ppage > first_ppage_reported) 10013 bsi->lowest_ppage = first_ppage_reported; 10014 if (bsi->highest_ppage < (next_ppage - 1)) 10015 bsi->highest_ppage = next_ppage - 1; 10016 10017 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10018 if (ret < 0) 10019 return ret; 10020 bsi->nr_extents += ret; 10021 bsi->nr_pages += nr_pages; 10022 return 0; 10023 } 10024 10025 static void btrfs_swap_deactivate(struct file *file) 10026 { 10027 struct inode *inode = file_inode(file); 10028 10029 btrfs_free_swapfile_pins(inode); 10030 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10031 } 10032 10033 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10034 sector_t *span) 10035 { 10036 struct inode *inode = file_inode(file); 10037 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10038 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10039 struct extent_state *cached_state = NULL; 10040 struct extent_map *em = NULL; 10041 struct btrfs_device *device = NULL; 10042 struct btrfs_swap_info bsi = { 10043 .lowest_ppage = (sector_t)-1ULL, 10044 }; 10045 int ret = 0; 10046 u64 isize; 10047 u64 start; 10048 10049 /* 10050 * If the swap file was just created, make sure delalloc is done. If the 10051 * file changes again after this, the user is doing something stupid and 10052 * we don't really care. 10053 */ 10054 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10055 if (ret) 10056 return ret; 10057 10058 /* 10059 * The inode is locked, so these flags won't change after we check them. 10060 */ 10061 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10062 btrfs_warn(fs_info, "swapfile must not be compressed"); 10063 return -EINVAL; 10064 } 10065 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10066 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10067 return -EINVAL; 10068 } 10069 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10070 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10071 return -EINVAL; 10072 } 10073 10074 /* 10075 * Balance or device remove/replace/resize can move stuff around from 10076 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10077 * concurrently while we are mapping the swap extents, and 10078 * fs_info->swapfile_pins prevents them from running while the swap file 10079 * is active and moving the extents. Note that this also prevents a 10080 * concurrent device add which isn't actually necessary, but it's not 10081 * really worth the trouble to allow it. 10082 */ 10083 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10084 btrfs_warn(fs_info, 10085 "cannot activate swapfile while exclusive operation is running"); 10086 return -EBUSY; 10087 } 10088 /* 10089 * Snapshots can create extents which require COW even if NODATACOW is 10090 * set. We use this counter to prevent snapshots. We must increment it 10091 * before walking the extents because we don't want a concurrent 10092 * snapshot to run after we've already checked the extents. 10093 */ 10094 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10095 10096 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10097 10098 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10099 start = 0; 10100 while (start < isize) { 10101 u64 logical_block_start, physical_block_start; 10102 struct btrfs_block_group *bg; 10103 u64 len = isize - start; 10104 10105 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10106 if (IS_ERR(em)) { 10107 ret = PTR_ERR(em); 10108 goto out; 10109 } 10110 10111 if (em->block_start == EXTENT_MAP_HOLE) { 10112 btrfs_warn(fs_info, "swapfile must not have holes"); 10113 ret = -EINVAL; 10114 goto out; 10115 } 10116 if (em->block_start == EXTENT_MAP_INLINE) { 10117 /* 10118 * It's unlikely we'll ever actually find ourselves 10119 * here, as a file small enough to fit inline won't be 10120 * big enough to store more than the swap header, but in 10121 * case something changes in the future, let's catch it 10122 * here rather than later. 10123 */ 10124 btrfs_warn(fs_info, "swapfile must not be inline"); 10125 ret = -EINVAL; 10126 goto out; 10127 } 10128 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10129 btrfs_warn(fs_info, "swapfile must not be compressed"); 10130 ret = -EINVAL; 10131 goto out; 10132 } 10133 10134 logical_block_start = em->block_start + (start - em->start); 10135 len = min(len, em->len - (start - em->start)); 10136 free_extent_map(em); 10137 em = NULL; 10138 10139 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10140 if (ret < 0) { 10141 goto out; 10142 } else if (ret) { 10143 ret = 0; 10144 } else { 10145 btrfs_warn(fs_info, 10146 "swapfile must not be copy-on-write"); 10147 ret = -EINVAL; 10148 goto out; 10149 } 10150 10151 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10152 if (IS_ERR(em)) { 10153 ret = PTR_ERR(em); 10154 goto out; 10155 } 10156 10157 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10158 btrfs_warn(fs_info, 10159 "swapfile must have single data profile"); 10160 ret = -EINVAL; 10161 goto out; 10162 } 10163 10164 if (device == NULL) { 10165 device = em->map_lookup->stripes[0].dev; 10166 ret = btrfs_add_swapfile_pin(inode, device, false); 10167 if (ret == 1) 10168 ret = 0; 10169 else if (ret) 10170 goto out; 10171 } else if (device != em->map_lookup->stripes[0].dev) { 10172 btrfs_warn(fs_info, "swapfile must be on one device"); 10173 ret = -EINVAL; 10174 goto out; 10175 } 10176 10177 physical_block_start = (em->map_lookup->stripes[0].physical + 10178 (logical_block_start - em->start)); 10179 len = min(len, em->len - (logical_block_start - em->start)); 10180 free_extent_map(em); 10181 em = NULL; 10182 10183 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10184 if (!bg) { 10185 btrfs_warn(fs_info, 10186 "could not find block group containing swapfile"); 10187 ret = -EINVAL; 10188 goto out; 10189 } 10190 10191 ret = btrfs_add_swapfile_pin(inode, bg, true); 10192 if (ret) { 10193 btrfs_put_block_group(bg); 10194 if (ret == 1) 10195 ret = 0; 10196 else 10197 goto out; 10198 } 10199 10200 if (bsi.block_len && 10201 bsi.block_start + bsi.block_len == physical_block_start) { 10202 bsi.block_len += len; 10203 } else { 10204 if (bsi.block_len) { 10205 ret = btrfs_add_swap_extent(sis, &bsi); 10206 if (ret) 10207 goto out; 10208 } 10209 bsi.start = start; 10210 bsi.block_start = physical_block_start; 10211 bsi.block_len = len; 10212 } 10213 10214 start += len; 10215 } 10216 10217 if (bsi.block_len) 10218 ret = btrfs_add_swap_extent(sis, &bsi); 10219 10220 out: 10221 if (!IS_ERR_OR_NULL(em)) 10222 free_extent_map(em); 10223 10224 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10225 10226 if (ret) 10227 btrfs_swap_deactivate(file); 10228 10229 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10230 10231 if (ret) 10232 return ret; 10233 10234 if (device) 10235 sis->bdev = device->bdev; 10236 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10237 sis->max = bsi.nr_pages; 10238 sis->pages = bsi.nr_pages - 1; 10239 sis->highest_bit = bsi.nr_pages - 1; 10240 return bsi.nr_extents; 10241 } 10242 #else 10243 static void btrfs_swap_deactivate(struct file *file) 10244 { 10245 } 10246 10247 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10248 sector_t *span) 10249 { 10250 return -EOPNOTSUPP; 10251 } 10252 #endif 10253 10254 static const struct inode_operations btrfs_dir_inode_operations = { 10255 .getattr = btrfs_getattr, 10256 .lookup = btrfs_lookup, 10257 .create = btrfs_create, 10258 .unlink = btrfs_unlink, 10259 .link = btrfs_link, 10260 .mkdir = btrfs_mkdir, 10261 .rmdir = btrfs_rmdir, 10262 .rename = btrfs_rename2, 10263 .symlink = btrfs_symlink, 10264 .setattr = btrfs_setattr, 10265 .mknod = btrfs_mknod, 10266 .listxattr = btrfs_listxattr, 10267 .permission = btrfs_permission, 10268 .get_acl = btrfs_get_acl, 10269 .set_acl = btrfs_set_acl, 10270 .update_time = btrfs_update_time, 10271 .tmpfile = btrfs_tmpfile, 10272 }; 10273 10274 static const struct file_operations btrfs_dir_file_operations = { 10275 .llseek = generic_file_llseek, 10276 .read = generic_read_dir, 10277 .iterate_shared = btrfs_real_readdir, 10278 .open = btrfs_opendir, 10279 .unlocked_ioctl = btrfs_ioctl, 10280 #ifdef CONFIG_COMPAT 10281 .compat_ioctl = btrfs_compat_ioctl, 10282 #endif 10283 .release = btrfs_release_file, 10284 .fsync = btrfs_sync_file, 10285 }; 10286 10287 static const struct extent_io_ops btrfs_extent_io_ops = { 10288 /* mandatory callbacks */ 10289 .submit_bio_hook = btrfs_submit_bio_hook, 10290 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10291 }; 10292 10293 /* 10294 * btrfs doesn't support the bmap operation because swapfiles 10295 * use bmap to make a mapping of extents in the file. They assume 10296 * these extents won't change over the life of the file and they 10297 * use the bmap result to do IO directly to the drive. 10298 * 10299 * the btrfs bmap call would return logical addresses that aren't 10300 * suitable for IO and they also will change frequently as COW 10301 * operations happen. So, swapfile + btrfs == corruption. 10302 * 10303 * For now we're avoiding this by dropping bmap. 10304 */ 10305 static const struct address_space_operations btrfs_aops = { 10306 .readpage = btrfs_readpage, 10307 .writepage = btrfs_writepage, 10308 .writepages = btrfs_writepages, 10309 .readahead = btrfs_readahead, 10310 .direct_IO = btrfs_direct_IO, 10311 .invalidatepage = btrfs_invalidatepage, 10312 .releasepage = btrfs_releasepage, 10313 #ifdef CONFIG_MIGRATION 10314 .migratepage = btrfs_migratepage, 10315 #endif 10316 .set_page_dirty = btrfs_set_page_dirty, 10317 .error_remove_page = generic_error_remove_page, 10318 .swap_activate = btrfs_swap_activate, 10319 .swap_deactivate = btrfs_swap_deactivate, 10320 }; 10321 10322 static const struct inode_operations btrfs_file_inode_operations = { 10323 .getattr = btrfs_getattr, 10324 .setattr = btrfs_setattr, 10325 .listxattr = btrfs_listxattr, 10326 .permission = btrfs_permission, 10327 .fiemap = btrfs_fiemap, 10328 .get_acl = btrfs_get_acl, 10329 .set_acl = btrfs_set_acl, 10330 .update_time = btrfs_update_time, 10331 }; 10332 static const struct inode_operations btrfs_special_inode_operations = { 10333 .getattr = btrfs_getattr, 10334 .setattr = btrfs_setattr, 10335 .permission = btrfs_permission, 10336 .listxattr = btrfs_listxattr, 10337 .get_acl = btrfs_get_acl, 10338 .set_acl = btrfs_set_acl, 10339 .update_time = btrfs_update_time, 10340 }; 10341 static const struct inode_operations btrfs_symlink_inode_operations = { 10342 .get_link = page_get_link, 10343 .getattr = btrfs_getattr, 10344 .setattr = btrfs_setattr, 10345 .permission = btrfs_permission, 10346 .listxattr = btrfs_listxattr, 10347 .update_time = btrfs_update_time, 10348 }; 10349 10350 const struct dentry_operations btrfs_dentry_operations = { 10351 .d_delete = btrfs_dentry_delete, 10352 }; 10353