1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include "compat.h" 42 #include "ctree.h" 43 #include "disk-io.h" 44 #include "transaction.h" 45 #include "btrfs_inode.h" 46 #include "ioctl.h" 47 #include "print-tree.h" 48 #include "volumes.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "compression.h" 53 #include "locking.h" 54 #include "free-space-cache.h" 55 #include "inode-map.h" 56 57 struct btrfs_iget_args { 58 u64 ino; 59 struct btrfs_root *root; 60 }; 61 62 static const struct inode_operations btrfs_dir_inode_operations; 63 static const struct inode_operations btrfs_symlink_inode_operations; 64 static const struct inode_operations btrfs_dir_ro_inode_operations; 65 static const struct inode_operations btrfs_special_inode_operations; 66 static const struct inode_operations btrfs_file_inode_operations; 67 static const struct address_space_operations btrfs_aops; 68 static const struct address_space_operations btrfs_symlink_aops; 69 static const struct file_operations btrfs_dir_file_operations; 70 static struct extent_io_ops btrfs_extent_io_ops; 71 72 static struct kmem_cache *btrfs_inode_cachep; 73 struct kmem_cache *btrfs_trans_handle_cachep; 74 struct kmem_cache *btrfs_transaction_cachep; 75 struct kmem_cache *btrfs_path_cachep; 76 struct kmem_cache *btrfs_free_space_cachep; 77 78 #define S_SHIFT 12 79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 87 }; 88 89 static int btrfs_setsize(struct inode *inode, loff_t newsize); 90 static int btrfs_truncate(struct inode *inode); 91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 92 static noinline int cow_file_range(struct inode *inode, 93 struct page *locked_page, 94 u64 start, u64 end, int *page_started, 95 unsigned long *nr_written, int unlock); 96 97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 98 struct inode *inode, struct inode *dir, 99 const struct qstr *qstr) 100 { 101 int err; 102 103 err = btrfs_init_acl(trans, inode, dir); 104 if (!err) 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 106 return err; 107 } 108 109 /* 110 * this does all the hard work for inserting an inline extent into 111 * the btree. The caller should have done a btrfs_drop_extents so that 112 * no overlapping inline items exist in the btree 113 */ 114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 115 struct btrfs_root *root, struct inode *inode, 116 u64 start, size_t size, size_t compressed_size, 117 int compress_type, 118 struct page **compressed_pages) 119 { 120 struct btrfs_key key; 121 struct btrfs_path *path; 122 struct extent_buffer *leaf; 123 struct page *page = NULL; 124 char *kaddr; 125 unsigned long ptr; 126 struct btrfs_file_extent_item *ei; 127 int err = 0; 128 int ret; 129 size_t cur_size = size; 130 size_t datasize; 131 unsigned long offset; 132 133 if (compressed_size && compressed_pages) 134 cur_size = compressed_size; 135 136 path = btrfs_alloc_path(); 137 if (!path) 138 return -ENOMEM; 139 140 path->leave_spinning = 1; 141 142 key.objectid = btrfs_ino(inode); 143 key.offset = start; 144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 145 datasize = btrfs_file_extent_calc_inline_size(cur_size); 146 147 inode_add_bytes(inode, size); 148 ret = btrfs_insert_empty_item(trans, root, path, &key, 149 datasize); 150 BUG_ON(ret); 151 if (ret) { 152 err = ret; 153 goto fail; 154 } 155 leaf = path->nodes[0]; 156 ei = btrfs_item_ptr(leaf, path->slots[0], 157 struct btrfs_file_extent_item); 158 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 160 btrfs_set_file_extent_encryption(leaf, ei, 0); 161 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 162 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 163 ptr = btrfs_file_extent_inline_start(ei); 164 165 if (compress_type != BTRFS_COMPRESS_NONE) { 166 struct page *cpage; 167 int i = 0; 168 while (compressed_size > 0) { 169 cpage = compressed_pages[i]; 170 cur_size = min_t(unsigned long, compressed_size, 171 PAGE_CACHE_SIZE); 172 173 kaddr = kmap_atomic(cpage, KM_USER0); 174 write_extent_buffer(leaf, kaddr, ptr, cur_size); 175 kunmap_atomic(kaddr, KM_USER0); 176 177 i++; 178 ptr += cur_size; 179 compressed_size -= cur_size; 180 } 181 btrfs_set_file_extent_compression(leaf, ei, 182 compress_type); 183 } else { 184 page = find_get_page(inode->i_mapping, 185 start >> PAGE_CACHE_SHIFT); 186 btrfs_set_file_extent_compression(leaf, ei, 0); 187 kaddr = kmap_atomic(page, KM_USER0); 188 offset = start & (PAGE_CACHE_SIZE - 1); 189 write_extent_buffer(leaf, kaddr + offset, ptr, size); 190 kunmap_atomic(kaddr, KM_USER0); 191 page_cache_release(page); 192 } 193 btrfs_mark_buffer_dirty(leaf); 194 btrfs_free_path(path); 195 196 /* 197 * we're an inline extent, so nobody can 198 * extend the file past i_size without locking 199 * a page we already have locked. 200 * 201 * We must do any isize and inode updates 202 * before we unlock the pages. Otherwise we 203 * could end up racing with unlink. 204 */ 205 BTRFS_I(inode)->disk_i_size = inode->i_size; 206 btrfs_update_inode(trans, root, inode); 207 208 return 0; 209 fail: 210 btrfs_free_path(path); 211 return err; 212 } 213 214 215 /* 216 * conditionally insert an inline extent into the file. This 217 * does the checks required to make sure the data is small enough 218 * to fit as an inline extent. 219 */ 220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 221 struct btrfs_root *root, 222 struct inode *inode, u64 start, u64 end, 223 size_t compressed_size, int compress_type, 224 struct page **compressed_pages) 225 { 226 u64 isize = i_size_read(inode); 227 u64 actual_end = min(end + 1, isize); 228 u64 inline_len = actual_end - start; 229 u64 aligned_end = (end + root->sectorsize - 1) & 230 ~((u64)root->sectorsize - 1); 231 u64 hint_byte; 232 u64 data_len = inline_len; 233 int ret; 234 235 if (compressed_size) 236 data_len = compressed_size; 237 238 if (start > 0 || 239 actual_end >= PAGE_CACHE_SIZE || 240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 241 (!compressed_size && 242 (actual_end & (root->sectorsize - 1)) == 0) || 243 end + 1 < isize || 244 data_len > root->fs_info->max_inline) { 245 return 1; 246 } 247 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 249 &hint_byte, 1); 250 BUG_ON(ret); 251 252 if (isize > actual_end) 253 inline_len = min_t(u64, isize, actual_end); 254 ret = insert_inline_extent(trans, root, inode, start, 255 inline_len, compressed_size, 256 compress_type, compressed_pages); 257 BUG_ON(ret); 258 btrfs_delalloc_release_metadata(inode, end + 1 - start); 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 260 return 0; 261 } 262 263 struct async_extent { 264 u64 start; 265 u64 ram_size; 266 u64 compressed_size; 267 struct page **pages; 268 unsigned long nr_pages; 269 int compress_type; 270 struct list_head list; 271 }; 272 273 struct async_cow { 274 struct inode *inode; 275 struct btrfs_root *root; 276 struct page *locked_page; 277 u64 start; 278 u64 end; 279 struct list_head extents; 280 struct btrfs_work work; 281 }; 282 283 static noinline int add_async_extent(struct async_cow *cow, 284 u64 start, u64 ram_size, 285 u64 compressed_size, 286 struct page **pages, 287 unsigned long nr_pages, 288 int compress_type) 289 { 290 struct async_extent *async_extent; 291 292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 293 BUG_ON(!async_extent); 294 async_extent->start = start; 295 async_extent->ram_size = ram_size; 296 async_extent->compressed_size = compressed_size; 297 async_extent->pages = pages; 298 async_extent->nr_pages = nr_pages; 299 async_extent->compress_type = compress_type; 300 list_add_tail(&async_extent->list, &cow->extents); 301 return 0; 302 } 303 304 /* 305 * we create compressed extents in two phases. The first 306 * phase compresses a range of pages that have already been 307 * locked (both pages and state bits are locked). 308 * 309 * This is done inside an ordered work queue, and the compression 310 * is spread across many cpus. The actual IO submission is step 311 * two, and the ordered work queue takes care of making sure that 312 * happens in the same order things were put onto the queue by 313 * writepages and friends. 314 * 315 * If this code finds it can't get good compression, it puts an 316 * entry onto the work queue to write the uncompressed bytes. This 317 * makes sure that both compressed inodes and uncompressed inodes 318 * are written in the same order that pdflush sent them down. 319 */ 320 static noinline int compress_file_range(struct inode *inode, 321 struct page *locked_page, 322 u64 start, u64 end, 323 struct async_cow *async_cow, 324 int *num_added) 325 { 326 struct btrfs_root *root = BTRFS_I(inode)->root; 327 struct btrfs_trans_handle *trans; 328 u64 num_bytes; 329 u64 blocksize = root->sectorsize; 330 u64 actual_end; 331 u64 isize = i_size_read(inode); 332 int ret = 0; 333 struct page **pages = NULL; 334 unsigned long nr_pages; 335 unsigned long nr_pages_ret = 0; 336 unsigned long total_compressed = 0; 337 unsigned long total_in = 0; 338 unsigned long max_compressed = 128 * 1024; 339 unsigned long max_uncompressed = 128 * 1024; 340 int i; 341 int will_compress; 342 int compress_type = root->fs_info->compress_type; 343 344 /* if this is a small write inside eof, kick off a defragbot */ 345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024) 346 btrfs_add_inode_defrag(NULL, inode); 347 348 actual_end = min_t(u64, isize, end + 1); 349 again: 350 will_compress = 0; 351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 353 354 /* 355 * we don't want to send crud past the end of i_size through 356 * compression, that's just a waste of CPU time. So, if the 357 * end of the file is before the start of our current 358 * requested range of bytes, we bail out to the uncompressed 359 * cleanup code that can deal with all of this. 360 * 361 * It isn't really the fastest way to fix things, but this is a 362 * very uncommon corner. 363 */ 364 if (actual_end <= start) 365 goto cleanup_and_bail_uncompressed; 366 367 total_compressed = actual_end - start; 368 369 /* we want to make sure that amount of ram required to uncompress 370 * an extent is reasonable, so we limit the total size in ram 371 * of a compressed extent to 128k. This is a crucial number 372 * because it also controls how easily we can spread reads across 373 * cpus for decompression. 374 * 375 * We also want to make sure the amount of IO required to do 376 * a random read is reasonably small, so we limit the size of 377 * a compressed extent to 128k. 378 */ 379 total_compressed = min(total_compressed, max_uncompressed); 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 381 num_bytes = max(blocksize, num_bytes); 382 total_in = 0; 383 ret = 0; 384 385 /* 386 * we do compression for mount -o compress and when the 387 * inode has not been flagged as nocompress. This flag can 388 * change at any time if we discover bad compression ratios. 389 */ 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 391 (btrfs_test_opt(root, COMPRESS) || 392 (BTRFS_I(inode)->force_compress) || 393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 394 WARN_ON(pages); 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 396 BUG_ON(!pages); 397 398 if (BTRFS_I(inode)->force_compress) 399 compress_type = BTRFS_I(inode)->force_compress; 400 401 ret = btrfs_compress_pages(compress_type, 402 inode->i_mapping, start, 403 total_compressed, pages, 404 nr_pages, &nr_pages_ret, 405 &total_in, 406 &total_compressed, 407 max_compressed); 408 409 if (!ret) { 410 unsigned long offset = total_compressed & 411 (PAGE_CACHE_SIZE - 1); 412 struct page *page = pages[nr_pages_ret - 1]; 413 char *kaddr; 414 415 /* zero the tail end of the last page, we might be 416 * sending it down to disk 417 */ 418 if (offset) { 419 kaddr = kmap_atomic(page, KM_USER0); 420 memset(kaddr + offset, 0, 421 PAGE_CACHE_SIZE - offset); 422 kunmap_atomic(kaddr, KM_USER0); 423 } 424 will_compress = 1; 425 } 426 } 427 if (start == 0) { 428 trans = btrfs_join_transaction(root); 429 BUG_ON(IS_ERR(trans)); 430 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 431 432 /* lets try to make an inline extent */ 433 if (ret || total_in < (actual_end - start)) { 434 /* we didn't compress the entire range, try 435 * to make an uncompressed inline extent. 436 */ 437 ret = cow_file_range_inline(trans, root, inode, 438 start, end, 0, 0, NULL); 439 } else { 440 /* try making a compressed inline extent */ 441 ret = cow_file_range_inline(trans, root, inode, 442 start, end, 443 total_compressed, 444 compress_type, pages); 445 } 446 if (ret == 0) { 447 /* 448 * inline extent creation worked, we don't need 449 * to create any more async work items. Unlock 450 * and free up our temp pages. 451 */ 452 extent_clear_unlock_delalloc(inode, 453 &BTRFS_I(inode)->io_tree, 454 start, end, NULL, 455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 456 EXTENT_CLEAR_DELALLOC | 457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 458 459 btrfs_end_transaction(trans, root); 460 goto free_pages_out; 461 } 462 btrfs_end_transaction(trans, root); 463 } 464 465 if (will_compress) { 466 /* 467 * we aren't doing an inline extent round the compressed size 468 * up to a block size boundary so the allocator does sane 469 * things 470 */ 471 total_compressed = (total_compressed + blocksize - 1) & 472 ~(blocksize - 1); 473 474 /* 475 * one last check to make sure the compression is really a 476 * win, compare the page count read with the blocks on disk 477 */ 478 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 479 ~(PAGE_CACHE_SIZE - 1); 480 if (total_compressed >= total_in) { 481 will_compress = 0; 482 } else { 483 num_bytes = total_in; 484 } 485 } 486 if (!will_compress && pages) { 487 /* 488 * the compression code ran but failed to make things smaller, 489 * free any pages it allocated and our page pointer array 490 */ 491 for (i = 0; i < nr_pages_ret; i++) { 492 WARN_ON(pages[i]->mapping); 493 page_cache_release(pages[i]); 494 } 495 kfree(pages); 496 pages = NULL; 497 total_compressed = 0; 498 nr_pages_ret = 0; 499 500 /* flag the file so we don't compress in the future */ 501 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 502 !(BTRFS_I(inode)->force_compress)) { 503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 504 } 505 } 506 if (will_compress) { 507 *num_added += 1; 508 509 /* the async work queues will take care of doing actual 510 * allocation on disk for these compressed pages, 511 * and will submit them to the elevator. 512 */ 513 add_async_extent(async_cow, start, num_bytes, 514 total_compressed, pages, nr_pages_ret, 515 compress_type); 516 517 if (start + num_bytes < end) { 518 start += num_bytes; 519 pages = NULL; 520 cond_resched(); 521 goto again; 522 } 523 } else { 524 cleanup_and_bail_uncompressed: 525 /* 526 * No compression, but we still need to write the pages in 527 * the file we've been given so far. redirty the locked 528 * page if it corresponds to our extent and set things up 529 * for the async work queue to run cow_file_range to do 530 * the normal delalloc dance 531 */ 532 if (page_offset(locked_page) >= start && 533 page_offset(locked_page) <= end) { 534 __set_page_dirty_nobuffers(locked_page); 535 /* unlocked later on in the async handlers */ 536 } 537 add_async_extent(async_cow, start, end - start + 1, 538 0, NULL, 0, BTRFS_COMPRESS_NONE); 539 *num_added += 1; 540 } 541 542 out: 543 return 0; 544 545 free_pages_out: 546 for (i = 0; i < nr_pages_ret; i++) { 547 WARN_ON(pages[i]->mapping); 548 page_cache_release(pages[i]); 549 } 550 kfree(pages); 551 552 goto out; 553 } 554 555 /* 556 * phase two of compressed writeback. This is the ordered portion 557 * of the code, which only gets called in the order the work was 558 * queued. We walk all the async extents created by compress_file_range 559 * and send them down to the disk. 560 */ 561 static noinline int submit_compressed_extents(struct inode *inode, 562 struct async_cow *async_cow) 563 { 564 struct async_extent *async_extent; 565 u64 alloc_hint = 0; 566 struct btrfs_trans_handle *trans; 567 struct btrfs_key ins; 568 struct extent_map *em; 569 struct btrfs_root *root = BTRFS_I(inode)->root; 570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 571 struct extent_io_tree *io_tree; 572 int ret = 0; 573 574 if (list_empty(&async_cow->extents)) 575 return 0; 576 577 578 while (!list_empty(&async_cow->extents)) { 579 async_extent = list_entry(async_cow->extents.next, 580 struct async_extent, list); 581 list_del(&async_extent->list); 582 583 io_tree = &BTRFS_I(inode)->io_tree; 584 585 retry: 586 /* did the compression code fall back to uncompressed IO? */ 587 if (!async_extent->pages) { 588 int page_started = 0; 589 unsigned long nr_written = 0; 590 591 lock_extent(io_tree, async_extent->start, 592 async_extent->start + 593 async_extent->ram_size - 1, GFP_NOFS); 594 595 /* allocate blocks */ 596 ret = cow_file_range(inode, async_cow->locked_page, 597 async_extent->start, 598 async_extent->start + 599 async_extent->ram_size - 1, 600 &page_started, &nr_written, 0); 601 602 /* 603 * if page_started, cow_file_range inserted an 604 * inline extent and took care of all the unlocking 605 * and IO for us. Otherwise, we need to submit 606 * all those pages down to the drive. 607 */ 608 if (!page_started && !ret) 609 extent_write_locked_range(io_tree, 610 inode, async_extent->start, 611 async_extent->start + 612 async_extent->ram_size - 1, 613 btrfs_get_extent, 614 WB_SYNC_ALL); 615 kfree(async_extent); 616 cond_resched(); 617 continue; 618 } 619 620 lock_extent(io_tree, async_extent->start, 621 async_extent->start + async_extent->ram_size - 1, 622 GFP_NOFS); 623 624 trans = btrfs_join_transaction(root); 625 BUG_ON(IS_ERR(trans)); 626 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 627 ret = btrfs_reserve_extent(trans, root, 628 async_extent->compressed_size, 629 async_extent->compressed_size, 630 0, alloc_hint, 631 (u64)-1, &ins, 1); 632 btrfs_end_transaction(trans, root); 633 634 if (ret) { 635 int i; 636 for (i = 0; i < async_extent->nr_pages; i++) { 637 WARN_ON(async_extent->pages[i]->mapping); 638 page_cache_release(async_extent->pages[i]); 639 } 640 kfree(async_extent->pages); 641 async_extent->nr_pages = 0; 642 async_extent->pages = NULL; 643 unlock_extent(io_tree, async_extent->start, 644 async_extent->start + 645 async_extent->ram_size - 1, GFP_NOFS); 646 goto retry; 647 } 648 649 /* 650 * here we're doing allocation and writeback of the 651 * compressed pages 652 */ 653 btrfs_drop_extent_cache(inode, async_extent->start, 654 async_extent->start + 655 async_extent->ram_size - 1, 0); 656 657 em = alloc_extent_map(); 658 BUG_ON(!em); 659 em->start = async_extent->start; 660 em->len = async_extent->ram_size; 661 em->orig_start = em->start; 662 663 em->block_start = ins.objectid; 664 em->block_len = ins.offset; 665 em->bdev = root->fs_info->fs_devices->latest_bdev; 666 em->compress_type = async_extent->compress_type; 667 set_bit(EXTENT_FLAG_PINNED, &em->flags); 668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 669 670 while (1) { 671 write_lock(&em_tree->lock); 672 ret = add_extent_mapping(em_tree, em); 673 write_unlock(&em_tree->lock); 674 if (ret != -EEXIST) { 675 free_extent_map(em); 676 break; 677 } 678 btrfs_drop_extent_cache(inode, async_extent->start, 679 async_extent->start + 680 async_extent->ram_size - 1, 0); 681 } 682 683 ret = btrfs_add_ordered_extent_compress(inode, 684 async_extent->start, 685 ins.objectid, 686 async_extent->ram_size, 687 ins.offset, 688 BTRFS_ORDERED_COMPRESSED, 689 async_extent->compress_type); 690 BUG_ON(ret); 691 692 /* 693 * clear dirty, set writeback and unlock the pages. 694 */ 695 extent_clear_unlock_delalloc(inode, 696 &BTRFS_I(inode)->io_tree, 697 async_extent->start, 698 async_extent->start + 699 async_extent->ram_size - 1, 700 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 701 EXTENT_CLEAR_UNLOCK | 702 EXTENT_CLEAR_DELALLOC | 703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 704 705 ret = btrfs_submit_compressed_write(inode, 706 async_extent->start, 707 async_extent->ram_size, 708 ins.objectid, 709 ins.offset, async_extent->pages, 710 async_extent->nr_pages); 711 712 BUG_ON(ret); 713 alloc_hint = ins.objectid + ins.offset; 714 kfree(async_extent); 715 cond_resched(); 716 } 717 718 return 0; 719 } 720 721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 722 u64 num_bytes) 723 { 724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 725 struct extent_map *em; 726 u64 alloc_hint = 0; 727 728 read_lock(&em_tree->lock); 729 em = search_extent_mapping(em_tree, start, num_bytes); 730 if (em) { 731 /* 732 * if block start isn't an actual block number then find the 733 * first block in this inode and use that as a hint. If that 734 * block is also bogus then just don't worry about it. 735 */ 736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 737 free_extent_map(em); 738 em = search_extent_mapping(em_tree, 0, 0); 739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 740 alloc_hint = em->block_start; 741 if (em) 742 free_extent_map(em); 743 } else { 744 alloc_hint = em->block_start; 745 free_extent_map(em); 746 } 747 } 748 read_unlock(&em_tree->lock); 749 750 return alloc_hint; 751 } 752 753 static inline bool is_free_space_inode(struct btrfs_root *root, 754 struct inode *inode) 755 { 756 if (root == root->fs_info->tree_root || 757 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) 758 return true; 759 return false; 760 } 761 762 /* 763 * when extent_io.c finds a delayed allocation range in the file, 764 * the call backs end up in this code. The basic idea is to 765 * allocate extents on disk for the range, and create ordered data structs 766 * in ram to track those extents. 767 * 768 * locked_page is the page that writepage had locked already. We use 769 * it to make sure we don't do extra locks or unlocks. 770 * 771 * *page_started is set to one if we unlock locked_page and do everything 772 * required to start IO on it. It may be clean and already done with 773 * IO when we return. 774 */ 775 static noinline int cow_file_range(struct inode *inode, 776 struct page *locked_page, 777 u64 start, u64 end, int *page_started, 778 unsigned long *nr_written, 779 int unlock) 780 { 781 struct btrfs_root *root = BTRFS_I(inode)->root; 782 struct btrfs_trans_handle *trans; 783 u64 alloc_hint = 0; 784 u64 num_bytes; 785 unsigned long ram_size; 786 u64 disk_num_bytes; 787 u64 cur_alloc_size; 788 u64 blocksize = root->sectorsize; 789 struct btrfs_key ins; 790 struct extent_map *em; 791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 792 int ret = 0; 793 794 BUG_ON(is_free_space_inode(root, inode)); 795 trans = btrfs_join_transaction(root); 796 BUG_ON(IS_ERR(trans)); 797 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 798 799 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 800 num_bytes = max(blocksize, num_bytes); 801 disk_num_bytes = num_bytes; 802 ret = 0; 803 804 /* if this is a small write inside eof, kick off defrag */ 805 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024) 806 btrfs_add_inode_defrag(trans, inode); 807 808 if (start == 0) { 809 /* lets try to make an inline extent */ 810 ret = cow_file_range_inline(trans, root, inode, 811 start, end, 0, 0, NULL); 812 if (ret == 0) { 813 extent_clear_unlock_delalloc(inode, 814 &BTRFS_I(inode)->io_tree, 815 start, end, NULL, 816 EXTENT_CLEAR_UNLOCK_PAGE | 817 EXTENT_CLEAR_UNLOCK | 818 EXTENT_CLEAR_DELALLOC | 819 EXTENT_CLEAR_DIRTY | 820 EXTENT_SET_WRITEBACK | 821 EXTENT_END_WRITEBACK); 822 823 *nr_written = *nr_written + 824 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 825 *page_started = 1; 826 ret = 0; 827 goto out; 828 } 829 } 830 831 BUG_ON(disk_num_bytes > 832 btrfs_super_total_bytes(&root->fs_info->super_copy)); 833 834 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 835 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 836 837 while (disk_num_bytes > 0) { 838 unsigned long op; 839 840 cur_alloc_size = disk_num_bytes; 841 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 842 root->sectorsize, 0, alloc_hint, 843 (u64)-1, &ins, 1); 844 BUG_ON(ret); 845 846 em = alloc_extent_map(); 847 BUG_ON(!em); 848 em->start = start; 849 em->orig_start = em->start; 850 ram_size = ins.offset; 851 em->len = ins.offset; 852 853 em->block_start = ins.objectid; 854 em->block_len = ins.offset; 855 em->bdev = root->fs_info->fs_devices->latest_bdev; 856 set_bit(EXTENT_FLAG_PINNED, &em->flags); 857 858 while (1) { 859 write_lock(&em_tree->lock); 860 ret = add_extent_mapping(em_tree, em); 861 write_unlock(&em_tree->lock); 862 if (ret != -EEXIST) { 863 free_extent_map(em); 864 break; 865 } 866 btrfs_drop_extent_cache(inode, start, 867 start + ram_size - 1, 0); 868 } 869 870 cur_alloc_size = ins.offset; 871 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 872 ram_size, cur_alloc_size, 0); 873 BUG_ON(ret); 874 875 if (root->root_key.objectid == 876 BTRFS_DATA_RELOC_TREE_OBJECTID) { 877 ret = btrfs_reloc_clone_csums(inode, start, 878 cur_alloc_size); 879 BUG_ON(ret); 880 } 881 882 if (disk_num_bytes < cur_alloc_size) 883 break; 884 885 /* we're not doing compressed IO, don't unlock the first 886 * page (which the caller expects to stay locked), don't 887 * clear any dirty bits and don't set any writeback bits 888 * 889 * Do set the Private2 bit so we know this page was properly 890 * setup for writepage 891 */ 892 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 893 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 894 EXTENT_SET_PRIVATE2; 895 896 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 897 start, start + ram_size - 1, 898 locked_page, op); 899 disk_num_bytes -= cur_alloc_size; 900 num_bytes -= cur_alloc_size; 901 alloc_hint = ins.objectid + ins.offset; 902 start += cur_alloc_size; 903 } 904 out: 905 ret = 0; 906 btrfs_end_transaction(trans, root); 907 908 return ret; 909 } 910 911 /* 912 * work queue call back to started compression on a file and pages 913 */ 914 static noinline void async_cow_start(struct btrfs_work *work) 915 { 916 struct async_cow *async_cow; 917 int num_added = 0; 918 async_cow = container_of(work, struct async_cow, work); 919 920 compress_file_range(async_cow->inode, async_cow->locked_page, 921 async_cow->start, async_cow->end, async_cow, 922 &num_added); 923 if (num_added == 0) 924 async_cow->inode = NULL; 925 } 926 927 /* 928 * work queue call back to submit previously compressed pages 929 */ 930 static noinline void async_cow_submit(struct btrfs_work *work) 931 { 932 struct async_cow *async_cow; 933 struct btrfs_root *root; 934 unsigned long nr_pages; 935 936 async_cow = container_of(work, struct async_cow, work); 937 938 root = async_cow->root; 939 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 940 PAGE_CACHE_SHIFT; 941 942 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 943 944 if (atomic_read(&root->fs_info->async_delalloc_pages) < 945 5 * 1042 * 1024 && 946 waitqueue_active(&root->fs_info->async_submit_wait)) 947 wake_up(&root->fs_info->async_submit_wait); 948 949 if (async_cow->inode) 950 submit_compressed_extents(async_cow->inode, async_cow); 951 } 952 953 static noinline void async_cow_free(struct btrfs_work *work) 954 { 955 struct async_cow *async_cow; 956 async_cow = container_of(work, struct async_cow, work); 957 kfree(async_cow); 958 } 959 960 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 961 u64 start, u64 end, int *page_started, 962 unsigned long *nr_written) 963 { 964 struct async_cow *async_cow; 965 struct btrfs_root *root = BTRFS_I(inode)->root; 966 unsigned long nr_pages; 967 u64 cur_end; 968 int limit = 10 * 1024 * 1042; 969 970 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 971 1, 0, NULL, GFP_NOFS); 972 while (start < end) { 973 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 974 BUG_ON(!async_cow); 975 async_cow->inode = inode; 976 async_cow->root = root; 977 async_cow->locked_page = locked_page; 978 async_cow->start = start; 979 980 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 981 cur_end = end; 982 else 983 cur_end = min(end, start + 512 * 1024 - 1); 984 985 async_cow->end = cur_end; 986 INIT_LIST_HEAD(&async_cow->extents); 987 988 async_cow->work.func = async_cow_start; 989 async_cow->work.ordered_func = async_cow_submit; 990 async_cow->work.ordered_free = async_cow_free; 991 async_cow->work.flags = 0; 992 993 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 994 PAGE_CACHE_SHIFT; 995 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 996 997 btrfs_queue_worker(&root->fs_info->delalloc_workers, 998 &async_cow->work); 999 1000 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1001 wait_event(root->fs_info->async_submit_wait, 1002 (atomic_read(&root->fs_info->async_delalloc_pages) < 1003 limit)); 1004 } 1005 1006 while (atomic_read(&root->fs_info->async_submit_draining) && 1007 atomic_read(&root->fs_info->async_delalloc_pages)) { 1008 wait_event(root->fs_info->async_submit_wait, 1009 (atomic_read(&root->fs_info->async_delalloc_pages) == 1010 0)); 1011 } 1012 1013 *nr_written += nr_pages; 1014 start = cur_end + 1; 1015 } 1016 *page_started = 1; 1017 return 0; 1018 } 1019 1020 static noinline int csum_exist_in_range(struct btrfs_root *root, 1021 u64 bytenr, u64 num_bytes) 1022 { 1023 int ret; 1024 struct btrfs_ordered_sum *sums; 1025 LIST_HEAD(list); 1026 1027 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1028 bytenr + num_bytes - 1, &list, 0); 1029 if (ret == 0 && list_empty(&list)) 1030 return 0; 1031 1032 while (!list_empty(&list)) { 1033 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1034 list_del(&sums->list); 1035 kfree(sums); 1036 } 1037 return 1; 1038 } 1039 1040 /* 1041 * when nowcow writeback call back. This checks for snapshots or COW copies 1042 * of the extents that exist in the file, and COWs the file as required. 1043 * 1044 * If no cow copies or snapshots exist, we write directly to the existing 1045 * blocks on disk 1046 */ 1047 static noinline int run_delalloc_nocow(struct inode *inode, 1048 struct page *locked_page, 1049 u64 start, u64 end, int *page_started, int force, 1050 unsigned long *nr_written) 1051 { 1052 struct btrfs_root *root = BTRFS_I(inode)->root; 1053 struct btrfs_trans_handle *trans; 1054 struct extent_buffer *leaf; 1055 struct btrfs_path *path; 1056 struct btrfs_file_extent_item *fi; 1057 struct btrfs_key found_key; 1058 u64 cow_start; 1059 u64 cur_offset; 1060 u64 extent_end; 1061 u64 extent_offset; 1062 u64 disk_bytenr; 1063 u64 num_bytes; 1064 int extent_type; 1065 int ret; 1066 int type; 1067 int nocow; 1068 int check_prev = 1; 1069 bool nolock; 1070 u64 ino = btrfs_ino(inode); 1071 1072 path = btrfs_alloc_path(); 1073 BUG_ON(!path); 1074 1075 nolock = is_free_space_inode(root, inode); 1076 1077 if (nolock) 1078 trans = btrfs_join_transaction_nolock(root); 1079 else 1080 trans = btrfs_join_transaction(root); 1081 1082 BUG_ON(IS_ERR(trans)); 1083 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1084 1085 cow_start = (u64)-1; 1086 cur_offset = start; 1087 while (1) { 1088 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1089 cur_offset, 0); 1090 BUG_ON(ret < 0); 1091 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1092 leaf = path->nodes[0]; 1093 btrfs_item_key_to_cpu(leaf, &found_key, 1094 path->slots[0] - 1); 1095 if (found_key.objectid == ino && 1096 found_key.type == BTRFS_EXTENT_DATA_KEY) 1097 path->slots[0]--; 1098 } 1099 check_prev = 0; 1100 next_slot: 1101 leaf = path->nodes[0]; 1102 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1103 ret = btrfs_next_leaf(root, path); 1104 if (ret < 0) 1105 BUG_ON(1); 1106 if (ret > 0) 1107 break; 1108 leaf = path->nodes[0]; 1109 } 1110 1111 nocow = 0; 1112 disk_bytenr = 0; 1113 num_bytes = 0; 1114 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1115 1116 if (found_key.objectid > ino || 1117 found_key.type > BTRFS_EXTENT_DATA_KEY || 1118 found_key.offset > end) 1119 break; 1120 1121 if (found_key.offset > cur_offset) { 1122 extent_end = found_key.offset; 1123 extent_type = 0; 1124 goto out_check; 1125 } 1126 1127 fi = btrfs_item_ptr(leaf, path->slots[0], 1128 struct btrfs_file_extent_item); 1129 extent_type = btrfs_file_extent_type(leaf, fi); 1130 1131 if (extent_type == BTRFS_FILE_EXTENT_REG || 1132 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1133 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1134 extent_offset = btrfs_file_extent_offset(leaf, fi); 1135 extent_end = found_key.offset + 1136 btrfs_file_extent_num_bytes(leaf, fi); 1137 if (extent_end <= start) { 1138 path->slots[0]++; 1139 goto next_slot; 1140 } 1141 if (disk_bytenr == 0) 1142 goto out_check; 1143 if (btrfs_file_extent_compression(leaf, fi) || 1144 btrfs_file_extent_encryption(leaf, fi) || 1145 btrfs_file_extent_other_encoding(leaf, fi)) 1146 goto out_check; 1147 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1148 goto out_check; 1149 if (btrfs_extent_readonly(root, disk_bytenr)) 1150 goto out_check; 1151 if (btrfs_cross_ref_exist(trans, root, ino, 1152 found_key.offset - 1153 extent_offset, disk_bytenr)) 1154 goto out_check; 1155 disk_bytenr += extent_offset; 1156 disk_bytenr += cur_offset - found_key.offset; 1157 num_bytes = min(end + 1, extent_end) - cur_offset; 1158 /* 1159 * force cow if csum exists in the range. 1160 * this ensure that csum for a given extent are 1161 * either valid or do not exist. 1162 */ 1163 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1164 goto out_check; 1165 nocow = 1; 1166 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1167 extent_end = found_key.offset + 1168 btrfs_file_extent_inline_len(leaf, fi); 1169 extent_end = ALIGN(extent_end, root->sectorsize); 1170 } else { 1171 BUG_ON(1); 1172 } 1173 out_check: 1174 if (extent_end <= start) { 1175 path->slots[0]++; 1176 goto next_slot; 1177 } 1178 if (!nocow) { 1179 if (cow_start == (u64)-1) 1180 cow_start = cur_offset; 1181 cur_offset = extent_end; 1182 if (cur_offset > end) 1183 break; 1184 path->slots[0]++; 1185 goto next_slot; 1186 } 1187 1188 btrfs_release_path(path); 1189 if (cow_start != (u64)-1) { 1190 ret = cow_file_range(inode, locked_page, cow_start, 1191 found_key.offset - 1, page_started, 1192 nr_written, 1); 1193 BUG_ON(ret); 1194 cow_start = (u64)-1; 1195 } 1196 1197 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1198 struct extent_map *em; 1199 struct extent_map_tree *em_tree; 1200 em_tree = &BTRFS_I(inode)->extent_tree; 1201 em = alloc_extent_map(); 1202 BUG_ON(!em); 1203 em->start = cur_offset; 1204 em->orig_start = em->start; 1205 em->len = num_bytes; 1206 em->block_len = num_bytes; 1207 em->block_start = disk_bytenr; 1208 em->bdev = root->fs_info->fs_devices->latest_bdev; 1209 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1210 while (1) { 1211 write_lock(&em_tree->lock); 1212 ret = add_extent_mapping(em_tree, em); 1213 write_unlock(&em_tree->lock); 1214 if (ret != -EEXIST) { 1215 free_extent_map(em); 1216 break; 1217 } 1218 btrfs_drop_extent_cache(inode, em->start, 1219 em->start + em->len - 1, 0); 1220 } 1221 type = BTRFS_ORDERED_PREALLOC; 1222 } else { 1223 type = BTRFS_ORDERED_NOCOW; 1224 } 1225 1226 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1227 num_bytes, num_bytes, type); 1228 BUG_ON(ret); 1229 1230 if (root->root_key.objectid == 1231 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1232 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1233 num_bytes); 1234 BUG_ON(ret); 1235 } 1236 1237 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1238 cur_offset, cur_offset + num_bytes - 1, 1239 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1240 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1241 EXTENT_SET_PRIVATE2); 1242 cur_offset = extent_end; 1243 if (cur_offset > end) 1244 break; 1245 } 1246 btrfs_release_path(path); 1247 1248 if (cur_offset <= end && cow_start == (u64)-1) 1249 cow_start = cur_offset; 1250 if (cow_start != (u64)-1) { 1251 ret = cow_file_range(inode, locked_page, cow_start, end, 1252 page_started, nr_written, 1); 1253 BUG_ON(ret); 1254 } 1255 1256 if (nolock) { 1257 ret = btrfs_end_transaction_nolock(trans, root); 1258 BUG_ON(ret); 1259 } else { 1260 ret = btrfs_end_transaction(trans, root); 1261 BUG_ON(ret); 1262 } 1263 btrfs_free_path(path); 1264 return 0; 1265 } 1266 1267 /* 1268 * extent_io.c call back to do delayed allocation processing 1269 */ 1270 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1271 u64 start, u64 end, int *page_started, 1272 unsigned long *nr_written) 1273 { 1274 int ret; 1275 struct btrfs_root *root = BTRFS_I(inode)->root; 1276 1277 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1278 ret = run_delalloc_nocow(inode, locked_page, start, end, 1279 page_started, 1, nr_written); 1280 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1281 ret = run_delalloc_nocow(inode, locked_page, start, end, 1282 page_started, 0, nr_written); 1283 else if (!btrfs_test_opt(root, COMPRESS) && 1284 !(BTRFS_I(inode)->force_compress) && 1285 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) 1286 ret = cow_file_range(inode, locked_page, start, end, 1287 page_started, nr_written, 1); 1288 else 1289 ret = cow_file_range_async(inode, locked_page, start, end, 1290 page_started, nr_written); 1291 return ret; 1292 } 1293 1294 static int btrfs_split_extent_hook(struct inode *inode, 1295 struct extent_state *orig, u64 split) 1296 { 1297 /* not delalloc, ignore it */ 1298 if (!(orig->state & EXTENT_DELALLOC)) 1299 return 0; 1300 1301 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1302 return 0; 1303 } 1304 1305 /* 1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1307 * extents so we can keep track of new extents that are just merged onto old 1308 * extents, such as when we are doing sequential writes, so we can properly 1309 * account for the metadata space we'll need. 1310 */ 1311 static int btrfs_merge_extent_hook(struct inode *inode, 1312 struct extent_state *new, 1313 struct extent_state *other) 1314 { 1315 /* not delalloc, ignore it */ 1316 if (!(other->state & EXTENT_DELALLOC)) 1317 return 0; 1318 1319 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1320 return 0; 1321 } 1322 1323 /* 1324 * extent_io.c set_bit_hook, used to track delayed allocation 1325 * bytes in this file, and to maintain the list of inodes that 1326 * have pending delalloc work to be done. 1327 */ 1328 static int btrfs_set_bit_hook(struct inode *inode, 1329 struct extent_state *state, int *bits) 1330 { 1331 1332 /* 1333 * set_bit and clear bit hooks normally require _irqsave/restore 1334 * but in this case, we are only testing for the DELALLOC 1335 * bit, which is only set or cleared with irqs on 1336 */ 1337 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1338 struct btrfs_root *root = BTRFS_I(inode)->root; 1339 u64 len = state->end + 1 - state->start; 1340 bool do_list = !is_free_space_inode(root, inode); 1341 1342 if (*bits & EXTENT_FIRST_DELALLOC) 1343 *bits &= ~EXTENT_FIRST_DELALLOC; 1344 else 1345 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1346 1347 spin_lock(&root->fs_info->delalloc_lock); 1348 BTRFS_I(inode)->delalloc_bytes += len; 1349 root->fs_info->delalloc_bytes += len; 1350 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1351 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1352 &root->fs_info->delalloc_inodes); 1353 } 1354 spin_unlock(&root->fs_info->delalloc_lock); 1355 } 1356 return 0; 1357 } 1358 1359 /* 1360 * extent_io.c clear_bit_hook, see set_bit_hook for why 1361 */ 1362 static int btrfs_clear_bit_hook(struct inode *inode, 1363 struct extent_state *state, int *bits) 1364 { 1365 /* 1366 * set_bit and clear bit hooks normally require _irqsave/restore 1367 * but in this case, we are only testing for the DELALLOC 1368 * bit, which is only set or cleared with irqs on 1369 */ 1370 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1371 struct btrfs_root *root = BTRFS_I(inode)->root; 1372 u64 len = state->end + 1 - state->start; 1373 bool do_list = !is_free_space_inode(root, inode); 1374 1375 if (*bits & EXTENT_FIRST_DELALLOC) 1376 *bits &= ~EXTENT_FIRST_DELALLOC; 1377 else if (!(*bits & EXTENT_DO_ACCOUNTING)) 1378 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1379 1380 if (*bits & EXTENT_DO_ACCOUNTING) 1381 btrfs_delalloc_release_metadata(inode, len); 1382 1383 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1384 && do_list) 1385 btrfs_free_reserved_data_space(inode, len); 1386 1387 spin_lock(&root->fs_info->delalloc_lock); 1388 root->fs_info->delalloc_bytes -= len; 1389 BTRFS_I(inode)->delalloc_bytes -= len; 1390 1391 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1392 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1393 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1394 } 1395 spin_unlock(&root->fs_info->delalloc_lock); 1396 } 1397 return 0; 1398 } 1399 1400 /* 1401 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1402 * we don't create bios that span stripes or chunks 1403 */ 1404 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1405 size_t size, struct bio *bio, 1406 unsigned long bio_flags) 1407 { 1408 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1409 struct btrfs_mapping_tree *map_tree; 1410 u64 logical = (u64)bio->bi_sector << 9; 1411 u64 length = 0; 1412 u64 map_length; 1413 int ret; 1414 1415 if (bio_flags & EXTENT_BIO_COMPRESSED) 1416 return 0; 1417 1418 length = bio->bi_size; 1419 map_tree = &root->fs_info->mapping_tree; 1420 map_length = length; 1421 ret = btrfs_map_block(map_tree, READ, logical, 1422 &map_length, NULL, 0); 1423 1424 if (map_length < length + size) 1425 return 1; 1426 return ret; 1427 } 1428 1429 /* 1430 * in order to insert checksums into the metadata in large chunks, 1431 * we wait until bio submission time. All the pages in the bio are 1432 * checksummed and sums are attached onto the ordered extent record. 1433 * 1434 * At IO completion time the cums attached on the ordered extent record 1435 * are inserted into the btree 1436 */ 1437 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1438 struct bio *bio, int mirror_num, 1439 unsigned long bio_flags, 1440 u64 bio_offset) 1441 { 1442 struct btrfs_root *root = BTRFS_I(inode)->root; 1443 int ret = 0; 1444 1445 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1446 BUG_ON(ret); 1447 return 0; 1448 } 1449 1450 /* 1451 * in order to insert checksums into the metadata in large chunks, 1452 * we wait until bio submission time. All the pages in the bio are 1453 * checksummed and sums are attached onto the ordered extent record. 1454 * 1455 * At IO completion time the cums attached on the ordered extent record 1456 * are inserted into the btree 1457 */ 1458 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1459 int mirror_num, unsigned long bio_flags, 1460 u64 bio_offset) 1461 { 1462 struct btrfs_root *root = BTRFS_I(inode)->root; 1463 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1464 } 1465 1466 /* 1467 * extent_io.c submission hook. This does the right thing for csum calculation 1468 * on write, or reading the csums from the tree before a read 1469 */ 1470 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1471 int mirror_num, unsigned long bio_flags, 1472 u64 bio_offset) 1473 { 1474 struct btrfs_root *root = BTRFS_I(inode)->root; 1475 int ret = 0; 1476 int skip_sum; 1477 1478 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1479 1480 if (is_free_space_inode(root, inode)) 1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1482 else 1483 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1484 BUG_ON(ret); 1485 1486 if (!(rw & REQ_WRITE)) { 1487 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1488 return btrfs_submit_compressed_read(inode, bio, 1489 mirror_num, bio_flags); 1490 } else if (!skip_sum) { 1491 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1492 if (ret) 1493 return ret; 1494 } 1495 goto mapit; 1496 } else if (!skip_sum) { 1497 /* csum items have already been cloned */ 1498 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1499 goto mapit; 1500 /* we're doing a write, do the async checksumming */ 1501 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1502 inode, rw, bio, mirror_num, 1503 bio_flags, bio_offset, 1504 __btrfs_submit_bio_start, 1505 __btrfs_submit_bio_done); 1506 } 1507 1508 mapit: 1509 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1510 } 1511 1512 /* 1513 * given a list of ordered sums record them in the inode. This happens 1514 * at IO completion time based on sums calculated at bio submission time. 1515 */ 1516 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1517 struct inode *inode, u64 file_offset, 1518 struct list_head *list) 1519 { 1520 struct btrfs_ordered_sum *sum; 1521 1522 list_for_each_entry(sum, list, list) { 1523 btrfs_csum_file_blocks(trans, 1524 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1525 } 1526 return 0; 1527 } 1528 1529 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1530 struct extent_state **cached_state) 1531 { 1532 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1533 WARN_ON(1); 1534 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1535 cached_state, GFP_NOFS); 1536 } 1537 1538 /* see btrfs_writepage_start_hook for details on why this is required */ 1539 struct btrfs_writepage_fixup { 1540 struct page *page; 1541 struct btrfs_work work; 1542 }; 1543 1544 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1545 { 1546 struct btrfs_writepage_fixup *fixup; 1547 struct btrfs_ordered_extent *ordered; 1548 struct extent_state *cached_state = NULL; 1549 struct page *page; 1550 struct inode *inode; 1551 u64 page_start; 1552 u64 page_end; 1553 1554 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1555 page = fixup->page; 1556 again: 1557 lock_page(page); 1558 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1559 ClearPageChecked(page); 1560 goto out_page; 1561 } 1562 1563 inode = page->mapping->host; 1564 page_start = page_offset(page); 1565 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1566 1567 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1568 &cached_state, GFP_NOFS); 1569 1570 /* already ordered? We're done */ 1571 if (PagePrivate2(page)) 1572 goto out; 1573 1574 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1575 if (ordered) { 1576 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1577 page_end, &cached_state, GFP_NOFS); 1578 unlock_page(page); 1579 btrfs_start_ordered_extent(inode, ordered, 1); 1580 goto again; 1581 } 1582 1583 BUG(); 1584 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1585 ClearPageChecked(page); 1586 out: 1587 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1588 &cached_state, GFP_NOFS); 1589 out_page: 1590 unlock_page(page); 1591 page_cache_release(page); 1592 kfree(fixup); 1593 } 1594 1595 /* 1596 * There are a few paths in the higher layers of the kernel that directly 1597 * set the page dirty bit without asking the filesystem if it is a 1598 * good idea. This causes problems because we want to make sure COW 1599 * properly happens and the data=ordered rules are followed. 1600 * 1601 * In our case any range that doesn't have the ORDERED bit set 1602 * hasn't been properly setup for IO. We kick off an async process 1603 * to fix it up. The async helper will wait for ordered extents, set 1604 * the delalloc bit and make it safe to write the page. 1605 */ 1606 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1607 { 1608 struct inode *inode = page->mapping->host; 1609 struct btrfs_writepage_fixup *fixup; 1610 struct btrfs_root *root = BTRFS_I(inode)->root; 1611 1612 /* this page is properly in the ordered list */ 1613 if (TestClearPagePrivate2(page)) 1614 return 0; 1615 1616 if (PageChecked(page)) 1617 return -EAGAIN; 1618 1619 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1620 if (!fixup) 1621 return -EAGAIN; 1622 1623 SetPageChecked(page); 1624 page_cache_get(page); 1625 fixup->work.func = btrfs_writepage_fixup_worker; 1626 fixup->page = page; 1627 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1628 return -EAGAIN; 1629 } 1630 1631 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1632 struct inode *inode, u64 file_pos, 1633 u64 disk_bytenr, u64 disk_num_bytes, 1634 u64 num_bytes, u64 ram_bytes, 1635 u8 compression, u8 encryption, 1636 u16 other_encoding, int extent_type) 1637 { 1638 struct btrfs_root *root = BTRFS_I(inode)->root; 1639 struct btrfs_file_extent_item *fi; 1640 struct btrfs_path *path; 1641 struct extent_buffer *leaf; 1642 struct btrfs_key ins; 1643 u64 hint; 1644 int ret; 1645 1646 path = btrfs_alloc_path(); 1647 BUG_ON(!path); 1648 1649 path->leave_spinning = 1; 1650 1651 /* 1652 * we may be replacing one extent in the tree with another. 1653 * The new extent is pinned in the extent map, and we don't want 1654 * to drop it from the cache until it is completely in the btree. 1655 * 1656 * So, tell btrfs_drop_extents to leave this extent in the cache. 1657 * the caller is expected to unpin it and allow it to be merged 1658 * with the others. 1659 */ 1660 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1661 &hint, 0); 1662 BUG_ON(ret); 1663 1664 ins.objectid = btrfs_ino(inode); 1665 ins.offset = file_pos; 1666 ins.type = BTRFS_EXTENT_DATA_KEY; 1667 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1668 BUG_ON(ret); 1669 leaf = path->nodes[0]; 1670 fi = btrfs_item_ptr(leaf, path->slots[0], 1671 struct btrfs_file_extent_item); 1672 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1673 btrfs_set_file_extent_type(leaf, fi, extent_type); 1674 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1675 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1676 btrfs_set_file_extent_offset(leaf, fi, 0); 1677 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1678 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1679 btrfs_set_file_extent_compression(leaf, fi, compression); 1680 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1681 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1682 1683 btrfs_unlock_up_safe(path, 1); 1684 btrfs_set_lock_blocking(leaf); 1685 1686 btrfs_mark_buffer_dirty(leaf); 1687 1688 inode_add_bytes(inode, num_bytes); 1689 1690 ins.objectid = disk_bytenr; 1691 ins.offset = disk_num_bytes; 1692 ins.type = BTRFS_EXTENT_ITEM_KEY; 1693 ret = btrfs_alloc_reserved_file_extent(trans, root, 1694 root->root_key.objectid, 1695 btrfs_ino(inode), file_pos, &ins); 1696 BUG_ON(ret); 1697 btrfs_free_path(path); 1698 1699 return 0; 1700 } 1701 1702 /* 1703 * helper function for btrfs_finish_ordered_io, this 1704 * just reads in some of the csum leaves to prime them into ram 1705 * before we start the transaction. It limits the amount of btree 1706 * reads required while inside the transaction. 1707 */ 1708 /* as ordered data IO finishes, this gets called so we can finish 1709 * an ordered extent if the range of bytes in the file it covers are 1710 * fully written. 1711 */ 1712 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1713 { 1714 struct btrfs_root *root = BTRFS_I(inode)->root; 1715 struct btrfs_trans_handle *trans = NULL; 1716 struct btrfs_ordered_extent *ordered_extent = NULL; 1717 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1718 struct extent_state *cached_state = NULL; 1719 int compress_type = 0; 1720 int ret; 1721 bool nolock; 1722 1723 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1724 end - start + 1); 1725 if (!ret) 1726 return 0; 1727 BUG_ON(!ordered_extent); 1728 1729 nolock = is_free_space_inode(root, inode); 1730 1731 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1732 BUG_ON(!list_empty(&ordered_extent->list)); 1733 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1734 if (!ret) { 1735 if (nolock) 1736 trans = btrfs_join_transaction_nolock(root); 1737 else 1738 trans = btrfs_join_transaction(root); 1739 BUG_ON(IS_ERR(trans)); 1740 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1741 ret = btrfs_update_inode(trans, root, inode); 1742 BUG_ON(ret); 1743 } 1744 goto out; 1745 } 1746 1747 lock_extent_bits(io_tree, ordered_extent->file_offset, 1748 ordered_extent->file_offset + ordered_extent->len - 1, 1749 0, &cached_state, GFP_NOFS); 1750 1751 if (nolock) 1752 trans = btrfs_join_transaction_nolock(root); 1753 else 1754 trans = btrfs_join_transaction(root); 1755 BUG_ON(IS_ERR(trans)); 1756 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1757 1758 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1759 compress_type = ordered_extent->compress_type; 1760 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1761 BUG_ON(compress_type); 1762 ret = btrfs_mark_extent_written(trans, inode, 1763 ordered_extent->file_offset, 1764 ordered_extent->file_offset + 1765 ordered_extent->len); 1766 BUG_ON(ret); 1767 } else { 1768 BUG_ON(root == root->fs_info->tree_root); 1769 ret = insert_reserved_file_extent(trans, inode, 1770 ordered_extent->file_offset, 1771 ordered_extent->start, 1772 ordered_extent->disk_len, 1773 ordered_extent->len, 1774 ordered_extent->len, 1775 compress_type, 0, 0, 1776 BTRFS_FILE_EXTENT_REG); 1777 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1778 ordered_extent->file_offset, 1779 ordered_extent->len); 1780 BUG_ON(ret); 1781 } 1782 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1783 ordered_extent->file_offset + 1784 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1785 1786 add_pending_csums(trans, inode, ordered_extent->file_offset, 1787 &ordered_extent->list); 1788 1789 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1790 if (!ret) { 1791 ret = btrfs_update_inode(trans, root, inode); 1792 BUG_ON(ret); 1793 } 1794 ret = 0; 1795 out: 1796 if (nolock) { 1797 if (trans) 1798 btrfs_end_transaction_nolock(trans, root); 1799 } else { 1800 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1801 if (trans) 1802 btrfs_end_transaction(trans, root); 1803 } 1804 1805 /* once for us */ 1806 btrfs_put_ordered_extent(ordered_extent); 1807 /* once for the tree */ 1808 btrfs_put_ordered_extent(ordered_extent); 1809 1810 return 0; 1811 } 1812 1813 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1814 struct extent_state *state, int uptodate) 1815 { 1816 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 1817 1818 ClearPagePrivate2(page); 1819 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1820 } 1821 1822 /* 1823 * When IO fails, either with EIO or csum verification fails, we 1824 * try other mirrors that might have a good copy of the data. This 1825 * io_failure_record is used to record state as we go through all the 1826 * mirrors. If another mirror has good data, the page is set up to date 1827 * and things continue. If a good mirror can't be found, the original 1828 * bio end_io callback is called to indicate things have failed. 1829 */ 1830 struct io_failure_record { 1831 struct page *page; 1832 u64 start; 1833 u64 len; 1834 u64 logical; 1835 unsigned long bio_flags; 1836 int last_mirror; 1837 }; 1838 1839 static int btrfs_io_failed_hook(struct bio *failed_bio, 1840 struct page *page, u64 start, u64 end, 1841 struct extent_state *state) 1842 { 1843 struct io_failure_record *failrec = NULL; 1844 u64 private; 1845 struct extent_map *em; 1846 struct inode *inode = page->mapping->host; 1847 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1848 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1849 struct bio *bio; 1850 int num_copies; 1851 int ret; 1852 int rw; 1853 u64 logical; 1854 1855 ret = get_state_private(failure_tree, start, &private); 1856 if (ret) { 1857 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1858 if (!failrec) 1859 return -ENOMEM; 1860 failrec->start = start; 1861 failrec->len = end - start + 1; 1862 failrec->last_mirror = 0; 1863 failrec->bio_flags = 0; 1864 1865 read_lock(&em_tree->lock); 1866 em = lookup_extent_mapping(em_tree, start, failrec->len); 1867 if (em->start > start || em->start + em->len < start) { 1868 free_extent_map(em); 1869 em = NULL; 1870 } 1871 read_unlock(&em_tree->lock); 1872 1873 if (IS_ERR_OR_NULL(em)) { 1874 kfree(failrec); 1875 return -EIO; 1876 } 1877 logical = start - em->start; 1878 logical = em->block_start + logical; 1879 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1880 logical = em->block_start; 1881 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1882 extent_set_compress_type(&failrec->bio_flags, 1883 em->compress_type); 1884 } 1885 failrec->logical = logical; 1886 free_extent_map(em); 1887 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1888 EXTENT_DIRTY, GFP_NOFS); 1889 set_state_private(failure_tree, start, 1890 (u64)(unsigned long)failrec); 1891 } else { 1892 failrec = (struct io_failure_record *)(unsigned long)private; 1893 } 1894 num_copies = btrfs_num_copies( 1895 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1896 failrec->logical, failrec->len); 1897 failrec->last_mirror++; 1898 if (!state) { 1899 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1900 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1901 failrec->start, 1902 EXTENT_LOCKED); 1903 if (state && state->start != failrec->start) 1904 state = NULL; 1905 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1906 } 1907 if (!state || failrec->last_mirror > num_copies) { 1908 set_state_private(failure_tree, failrec->start, 0); 1909 clear_extent_bits(failure_tree, failrec->start, 1910 failrec->start + failrec->len - 1, 1911 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1912 kfree(failrec); 1913 return -EIO; 1914 } 1915 bio = bio_alloc(GFP_NOFS, 1); 1916 bio->bi_private = state; 1917 bio->bi_end_io = failed_bio->bi_end_io; 1918 bio->bi_sector = failrec->logical >> 9; 1919 bio->bi_bdev = failed_bio->bi_bdev; 1920 bio->bi_size = 0; 1921 1922 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1923 if (failed_bio->bi_rw & REQ_WRITE) 1924 rw = WRITE; 1925 else 1926 rw = READ; 1927 1928 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1929 failrec->last_mirror, 1930 failrec->bio_flags, 0); 1931 return ret; 1932 } 1933 1934 /* 1935 * each time an IO finishes, we do a fast check in the IO failure tree 1936 * to see if we need to process or clean up an io_failure_record 1937 */ 1938 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1939 { 1940 u64 private; 1941 u64 private_failure; 1942 struct io_failure_record *failure; 1943 int ret; 1944 1945 private = 0; 1946 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1947 (u64)-1, 1, EXTENT_DIRTY, 0)) { 1948 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1949 start, &private_failure); 1950 if (ret == 0) { 1951 failure = (struct io_failure_record *)(unsigned long) 1952 private_failure; 1953 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1954 failure->start, 0); 1955 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1956 failure->start, 1957 failure->start + failure->len - 1, 1958 EXTENT_DIRTY | EXTENT_LOCKED, 1959 GFP_NOFS); 1960 kfree(failure); 1961 } 1962 } 1963 return 0; 1964 } 1965 1966 /* 1967 * when reads are done, we need to check csums to verify the data is correct 1968 * if there's a match, we allow the bio to finish. If not, we go through 1969 * the io_failure_record routines to find good copies 1970 */ 1971 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1972 struct extent_state *state) 1973 { 1974 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1975 struct inode *inode = page->mapping->host; 1976 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1977 char *kaddr; 1978 u64 private = ~(u32)0; 1979 int ret; 1980 struct btrfs_root *root = BTRFS_I(inode)->root; 1981 u32 csum = ~(u32)0; 1982 1983 if (PageChecked(page)) { 1984 ClearPageChecked(page); 1985 goto good; 1986 } 1987 1988 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1989 return 0; 1990 1991 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1992 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1993 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1994 GFP_NOFS); 1995 return 0; 1996 } 1997 1998 if (state && state->start == start) { 1999 private = state->private; 2000 ret = 0; 2001 } else { 2002 ret = get_state_private(io_tree, start, &private); 2003 } 2004 kaddr = kmap_atomic(page, KM_USER0); 2005 if (ret) 2006 goto zeroit; 2007 2008 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2009 btrfs_csum_final(csum, (char *)&csum); 2010 if (csum != private) 2011 goto zeroit; 2012 2013 kunmap_atomic(kaddr, KM_USER0); 2014 good: 2015 /* if the io failure tree for this inode is non-empty, 2016 * check to see if we've recovered from a failed IO 2017 */ 2018 btrfs_clean_io_failures(inode, start); 2019 return 0; 2020 2021 zeroit: 2022 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2023 "private %llu\n", 2024 (unsigned long long)btrfs_ino(page->mapping->host), 2025 (unsigned long long)start, csum, 2026 (unsigned long long)private); 2027 memset(kaddr + offset, 1, end - start + 1); 2028 flush_dcache_page(page); 2029 kunmap_atomic(kaddr, KM_USER0); 2030 if (private == 0) 2031 return 0; 2032 return -EIO; 2033 } 2034 2035 struct delayed_iput { 2036 struct list_head list; 2037 struct inode *inode; 2038 }; 2039 2040 void btrfs_add_delayed_iput(struct inode *inode) 2041 { 2042 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2043 struct delayed_iput *delayed; 2044 2045 if (atomic_add_unless(&inode->i_count, -1, 1)) 2046 return; 2047 2048 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2049 delayed->inode = inode; 2050 2051 spin_lock(&fs_info->delayed_iput_lock); 2052 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2053 spin_unlock(&fs_info->delayed_iput_lock); 2054 } 2055 2056 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2057 { 2058 LIST_HEAD(list); 2059 struct btrfs_fs_info *fs_info = root->fs_info; 2060 struct delayed_iput *delayed; 2061 int empty; 2062 2063 spin_lock(&fs_info->delayed_iput_lock); 2064 empty = list_empty(&fs_info->delayed_iputs); 2065 spin_unlock(&fs_info->delayed_iput_lock); 2066 if (empty) 2067 return; 2068 2069 down_read(&root->fs_info->cleanup_work_sem); 2070 spin_lock(&fs_info->delayed_iput_lock); 2071 list_splice_init(&fs_info->delayed_iputs, &list); 2072 spin_unlock(&fs_info->delayed_iput_lock); 2073 2074 while (!list_empty(&list)) { 2075 delayed = list_entry(list.next, struct delayed_iput, list); 2076 list_del(&delayed->list); 2077 iput(delayed->inode); 2078 kfree(delayed); 2079 } 2080 up_read(&root->fs_info->cleanup_work_sem); 2081 } 2082 2083 /* 2084 * calculate extra metadata reservation when snapshotting a subvolume 2085 * contains orphan files. 2086 */ 2087 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2088 struct btrfs_pending_snapshot *pending, 2089 u64 *bytes_to_reserve) 2090 { 2091 struct btrfs_root *root; 2092 struct btrfs_block_rsv *block_rsv; 2093 u64 num_bytes; 2094 int index; 2095 2096 root = pending->root; 2097 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2098 return; 2099 2100 block_rsv = root->orphan_block_rsv; 2101 2102 /* orphan block reservation for the snapshot */ 2103 num_bytes = block_rsv->size; 2104 2105 /* 2106 * after the snapshot is created, COWing tree blocks may use more 2107 * space than it frees. So we should make sure there is enough 2108 * reserved space. 2109 */ 2110 index = trans->transid & 0x1; 2111 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2112 num_bytes += block_rsv->size - 2113 (block_rsv->reserved + block_rsv->freed[index]); 2114 } 2115 2116 *bytes_to_reserve += num_bytes; 2117 } 2118 2119 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2120 struct btrfs_pending_snapshot *pending) 2121 { 2122 struct btrfs_root *root = pending->root; 2123 struct btrfs_root *snap = pending->snap; 2124 struct btrfs_block_rsv *block_rsv; 2125 u64 num_bytes; 2126 int index; 2127 int ret; 2128 2129 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2130 return; 2131 2132 /* refill source subvolume's orphan block reservation */ 2133 block_rsv = root->orphan_block_rsv; 2134 index = trans->transid & 0x1; 2135 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2136 num_bytes = block_rsv->size - 2137 (block_rsv->reserved + block_rsv->freed[index]); 2138 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2139 root->orphan_block_rsv, 2140 num_bytes); 2141 BUG_ON(ret); 2142 } 2143 2144 /* setup orphan block reservation for the snapshot */ 2145 block_rsv = btrfs_alloc_block_rsv(snap); 2146 BUG_ON(!block_rsv); 2147 2148 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2149 snap->orphan_block_rsv = block_rsv; 2150 2151 num_bytes = root->orphan_block_rsv->size; 2152 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2153 block_rsv, num_bytes); 2154 BUG_ON(ret); 2155 2156 #if 0 2157 /* insert orphan item for the snapshot */ 2158 WARN_ON(!root->orphan_item_inserted); 2159 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2160 snap->root_key.objectid); 2161 BUG_ON(ret); 2162 snap->orphan_item_inserted = 1; 2163 #endif 2164 } 2165 2166 enum btrfs_orphan_cleanup_state { 2167 ORPHAN_CLEANUP_STARTED = 1, 2168 ORPHAN_CLEANUP_DONE = 2, 2169 }; 2170 2171 /* 2172 * This is called in transaction commmit time. If there are no orphan 2173 * files in the subvolume, it removes orphan item and frees block_rsv 2174 * structure. 2175 */ 2176 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2177 struct btrfs_root *root) 2178 { 2179 int ret; 2180 2181 if (!list_empty(&root->orphan_list) || 2182 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2183 return; 2184 2185 if (root->orphan_item_inserted && 2186 btrfs_root_refs(&root->root_item) > 0) { 2187 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2188 root->root_key.objectid); 2189 BUG_ON(ret); 2190 root->orphan_item_inserted = 0; 2191 } 2192 2193 if (root->orphan_block_rsv) { 2194 WARN_ON(root->orphan_block_rsv->size > 0); 2195 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2196 root->orphan_block_rsv = NULL; 2197 } 2198 } 2199 2200 /* 2201 * This creates an orphan entry for the given inode in case something goes 2202 * wrong in the middle of an unlink/truncate. 2203 * 2204 * NOTE: caller of this function should reserve 5 units of metadata for 2205 * this function. 2206 */ 2207 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2208 { 2209 struct btrfs_root *root = BTRFS_I(inode)->root; 2210 struct btrfs_block_rsv *block_rsv = NULL; 2211 int reserve = 0; 2212 int insert = 0; 2213 int ret; 2214 2215 if (!root->orphan_block_rsv) { 2216 block_rsv = btrfs_alloc_block_rsv(root); 2217 BUG_ON(!block_rsv); 2218 } 2219 2220 spin_lock(&root->orphan_lock); 2221 if (!root->orphan_block_rsv) { 2222 root->orphan_block_rsv = block_rsv; 2223 } else if (block_rsv) { 2224 btrfs_free_block_rsv(root, block_rsv); 2225 block_rsv = NULL; 2226 } 2227 2228 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2229 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2230 #if 0 2231 /* 2232 * For proper ENOSPC handling, we should do orphan 2233 * cleanup when mounting. But this introduces backward 2234 * compatibility issue. 2235 */ 2236 if (!xchg(&root->orphan_item_inserted, 1)) 2237 insert = 2; 2238 else 2239 insert = 1; 2240 #endif 2241 insert = 1; 2242 } 2243 2244 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2245 BTRFS_I(inode)->orphan_meta_reserved = 1; 2246 reserve = 1; 2247 } 2248 spin_unlock(&root->orphan_lock); 2249 2250 if (block_rsv) 2251 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2252 2253 /* grab metadata reservation from transaction handle */ 2254 if (reserve) { 2255 ret = btrfs_orphan_reserve_metadata(trans, inode); 2256 BUG_ON(ret); 2257 } 2258 2259 /* insert an orphan item to track this unlinked/truncated file */ 2260 if (insert >= 1) { 2261 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2262 BUG_ON(ret); 2263 } 2264 2265 /* insert an orphan item to track subvolume contains orphan files */ 2266 if (insert >= 2) { 2267 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2268 root->root_key.objectid); 2269 BUG_ON(ret); 2270 } 2271 return 0; 2272 } 2273 2274 /* 2275 * We have done the truncate/delete so we can go ahead and remove the orphan 2276 * item for this particular inode. 2277 */ 2278 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2279 { 2280 struct btrfs_root *root = BTRFS_I(inode)->root; 2281 int delete_item = 0; 2282 int release_rsv = 0; 2283 int ret = 0; 2284 2285 spin_lock(&root->orphan_lock); 2286 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2287 list_del_init(&BTRFS_I(inode)->i_orphan); 2288 delete_item = 1; 2289 } 2290 2291 if (BTRFS_I(inode)->orphan_meta_reserved) { 2292 BTRFS_I(inode)->orphan_meta_reserved = 0; 2293 release_rsv = 1; 2294 } 2295 spin_unlock(&root->orphan_lock); 2296 2297 if (trans && delete_item) { 2298 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2299 BUG_ON(ret); 2300 } 2301 2302 if (release_rsv) 2303 btrfs_orphan_release_metadata(inode); 2304 2305 return 0; 2306 } 2307 2308 /* 2309 * this cleans up any orphans that may be left on the list from the last use 2310 * of this root. 2311 */ 2312 int btrfs_orphan_cleanup(struct btrfs_root *root) 2313 { 2314 struct btrfs_path *path; 2315 struct extent_buffer *leaf; 2316 struct btrfs_key key, found_key; 2317 struct btrfs_trans_handle *trans; 2318 struct inode *inode; 2319 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2320 2321 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2322 return 0; 2323 2324 path = btrfs_alloc_path(); 2325 if (!path) { 2326 ret = -ENOMEM; 2327 goto out; 2328 } 2329 path->reada = -1; 2330 2331 key.objectid = BTRFS_ORPHAN_OBJECTID; 2332 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2333 key.offset = (u64)-1; 2334 2335 while (1) { 2336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2337 if (ret < 0) 2338 goto out; 2339 2340 /* 2341 * if ret == 0 means we found what we were searching for, which 2342 * is weird, but possible, so only screw with path if we didn't 2343 * find the key and see if we have stuff that matches 2344 */ 2345 if (ret > 0) { 2346 ret = 0; 2347 if (path->slots[0] == 0) 2348 break; 2349 path->slots[0]--; 2350 } 2351 2352 /* pull out the item */ 2353 leaf = path->nodes[0]; 2354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2355 2356 /* make sure the item matches what we want */ 2357 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2358 break; 2359 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2360 break; 2361 2362 /* release the path since we're done with it */ 2363 btrfs_release_path(path); 2364 2365 /* 2366 * this is where we are basically btrfs_lookup, without the 2367 * crossing root thing. we store the inode number in the 2368 * offset of the orphan item. 2369 */ 2370 found_key.objectid = found_key.offset; 2371 found_key.type = BTRFS_INODE_ITEM_KEY; 2372 found_key.offset = 0; 2373 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2374 if (IS_ERR(inode)) { 2375 ret = PTR_ERR(inode); 2376 goto out; 2377 } 2378 2379 /* 2380 * add this inode to the orphan list so btrfs_orphan_del does 2381 * the proper thing when we hit it 2382 */ 2383 spin_lock(&root->orphan_lock); 2384 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2385 spin_unlock(&root->orphan_lock); 2386 2387 /* 2388 * if this is a bad inode, means we actually succeeded in 2389 * removing the inode, but not the orphan record, which means 2390 * we need to manually delete the orphan since iput will just 2391 * do a destroy_inode 2392 */ 2393 if (is_bad_inode(inode)) { 2394 trans = btrfs_start_transaction(root, 0); 2395 if (IS_ERR(trans)) { 2396 ret = PTR_ERR(trans); 2397 goto out; 2398 } 2399 btrfs_orphan_del(trans, inode); 2400 btrfs_end_transaction(trans, root); 2401 iput(inode); 2402 continue; 2403 } 2404 2405 /* if we have links, this was a truncate, lets do that */ 2406 if (inode->i_nlink) { 2407 if (!S_ISREG(inode->i_mode)) { 2408 WARN_ON(1); 2409 iput(inode); 2410 continue; 2411 } 2412 nr_truncate++; 2413 ret = btrfs_truncate(inode); 2414 } else { 2415 nr_unlink++; 2416 } 2417 2418 /* this will do delete_inode and everything for us */ 2419 iput(inode); 2420 if (ret) 2421 goto out; 2422 } 2423 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2424 2425 if (root->orphan_block_rsv) 2426 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2427 (u64)-1); 2428 2429 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2430 trans = btrfs_join_transaction(root); 2431 if (!IS_ERR(trans)) 2432 btrfs_end_transaction(trans, root); 2433 } 2434 2435 if (nr_unlink) 2436 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2437 if (nr_truncate) 2438 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2439 2440 out: 2441 if (ret) 2442 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2443 btrfs_free_path(path); 2444 return ret; 2445 } 2446 2447 /* 2448 * very simple check to peek ahead in the leaf looking for xattrs. If we 2449 * don't find any xattrs, we know there can't be any acls. 2450 * 2451 * slot is the slot the inode is in, objectid is the objectid of the inode 2452 */ 2453 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2454 int slot, u64 objectid) 2455 { 2456 u32 nritems = btrfs_header_nritems(leaf); 2457 struct btrfs_key found_key; 2458 int scanned = 0; 2459 2460 slot++; 2461 while (slot < nritems) { 2462 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2463 2464 /* we found a different objectid, there must not be acls */ 2465 if (found_key.objectid != objectid) 2466 return 0; 2467 2468 /* we found an xattr, assume we've got an acl */ 2469 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2470 return 1; 2471 2472 /* 2473 * we found a key greater than an xattr key, there can't 2474 * be any acls later on 2475 */ 2476 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2477 return 0; 2478 2479 slot++; 2480 scanned++; 2481 2482 /* 2483 * it goes inode, inode backrefs, xattrs, extents, 2484 * so if there are a ton of hard links to an inode there can 2485 * be a lot of backrefs. Don't waste time searching too hard, 2486 * this is just an optimization 2487 */ 2488 if (scanned >= 8) 2489 break; 2490 } 2491 /* we hit the end of the leaf before we found an xattr or 2492 * something larger than an xattr. We have to assume the inode 2493 * has acls 2494 */ 2495 return 1; 2496 } 2497 2498 /* 2499 * read an inode from the btree into the in-memory inode 2500 */ 2501 static void btrfs_read_locked_inode(struct inode *inode) 2502 { 2503 struct btrfs_path *path; 2504 struct extent_buffer *leaf; 2505 struct btrfs_inode_item *inode_item; 2506 struct btrfs_timespec *tspec; 2507 struct btrfs_root *root = BTRFS_I(inode)->root; 2508 struct btrfs_key location; 2509 int maybe_acls; 2510 u32 rdev; 2511 int ret; 2512 2513 path = btrfs_alloc_path(); 2514 BUG_ON(!path); 2515 path->leave_spinning = 1; 2516 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2517 2518 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2519 if (ret) 2520 goto make_bad; 2521 2522 leaf = path->nodes[0]; 2523 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2524 struct btrfs_inode_item); 2525 if (!leaf->map_token) 2526 map_private_extent_buffer(leaf, (unsigned long)inode_item, 2527 sizeof(struct btrfs_inode_item), 2528 &leaf->map_token, &leaf->kaddr, 2529 &leaf->map_start, &leaf->map_len, 2530 KM_USER1); 2531 2532 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2533 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2534 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2535 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2536 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2537 2538 tspec = btrfs_inode_atime(inode_item); 2539 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2540 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2541 2542 tspec = btrfs_inode_mtime(inode_item); 2543 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2544 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2545 2546 tspec = btrfs_inode_ctime(inode_item); 2547 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2548 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2549 2550 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2551 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2552 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2553 inode->i_generation = BTRFS_I(inode)->generation; 2554 inode->i_rdev = 0; 2555 rdev = btrfs_inode_rdev(leaf, inode_item); 2556 2557 BTRFS_I(inode)->index_cnt = (u64)-1; 2558 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2559 2560 /* 2561 * try to precache a NULL acl entry for files that don't have 2562 * any xattrs or acls 2563 */ 2564 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2565 btrfs_ino(inode)); 2566 if (!maybe_acls) 2567 cache_no_acl(inode); 2568 2569 if (leaf->map_token) { 2570 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 2571 leaf->map_token = NULL; 2572 } 2573 2574 btrfs_free_path(path); 2575 inode_item = NULL; 2576 2577 switch (inode->i_mode & S_IFMT) { 2578 case S_IFREG: 2579 inode->i_mapping->a_ops = &btrfs_aops; 2580 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2581 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2582 inode->i_fop = &btrfs_file_operations; 2583 inode->i_op = &btrfs_file_inode_operations; 2584 break; 2585 case S_IFDIR: 2586 inode->i_fop = &btrfs_dir_file_operations; 2587 if (root == root->fs_info->tree_root) 2588 inode->i_op = &btrfs_dir_ro_inode_operations; 2589 else 2590 inode->i_op = &btrfs_dir_inode_operations; 2591 break; 2592 case S_IFLNK: 2593 inode->i_op = &btrfs_symlink_inode_operations; 2594 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2595 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2596 break; 2597 default: 2598 inode->i_op = &btrfs_special_inode_operations; 2599 init_special_inode(inode, inode->i_mode, rdev); 2600 break; 2601 } 2602 2603 btrfs_update_iflags(inode); 2604 return; 2605 2606 make_bad: 2607 btrfs_free_path(path); 2608 make_bad_inode(inode); 2609 } 2610 2611 /* 2612 * given a leaf and an inode, copy the inode fields into the leaf 2613 */ 2614 static void fill_inode_item(struct btrfs_trans_handle *trans, 2615 struct extent_buffer *leaf, 2616 struct btrfs_inode_item *item, 2617 struct inode *inode) 2618 { 2619 if (!leaf->map_token) 2620 map_private_extent_buffer(leaf, (unsigned long)item, 2621 sizeof(struct btrfs_inode_item), 2622 &leaf->map_token, &leaf->kaddr, 2623 &leaf->map_start, &leaf->map_len, 2624 KM_USER1); 2625 2626 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2627 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2628 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2629 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2630 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2631 2632 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2633 inode->i_atime.tv_sec); 2634 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2635 inode->i_atime.tv_nsec); 2636 2637 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2638 inode->i_mtime.tv_sec); 2639 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2640 inode->i_mtime.tv_nsec); 2641 2642 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2643 inode->i_ctime.tv_sec); 2644 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2645 inode->i_ctime.tv_nsec); 2646 2647 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2648 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2649 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2650 btrfs_set_inode_transid(leaf, item, trans->transid); 2651 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2652 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2653 btrfs_set_inode_block_group(leaf, item, 0); 2654 2655 if (leaf->map_token) { 2656 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 2657 leaf->map_token = NULL; 2658 } 2659 } 2660 2661 /* 2662 * copy everything in the in-memory inode into the btree. 2663 */ 2664 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2665 struct btrfs_root *root, struct inode *inode) 2666 { 2667 struct btrfs_inode_item *inode_item; 2668 struct btrfs_path *path; 2669 struct extent_buffer *leaf; 2670 int ret; 2671 2672 /* 2673 * If root is tree root, it means this inode is used to 2674 * store free space information. And these inodes are updated 2675 * when committing the transaction, so they needn't delaye to 2676 * be updated, or deadlock will occured. 2677 */ 2678 if (!is_free_space_inode(root, inode)) { 2679 ret = btrfs_delayed_update_inode(trans, root, inode); 2680 if (!ret) 2681 btrfs_set_inode_last_trans(trans, inode); 2682 return ret; 2683 } 2684 2685 path = btrfs_alloc_path(); 2686 if (!path) 2687 return -ENOMEM; 2688 2689 path->leave_spinning = 1; 2690 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2691 1); 2692 if (ret) { 2693 if (ret > 0) 2694 ret = -ENOENT; 2695 goto failed; 2696 } 2697 2698 btrfs_unlock_up_safe(path, 1); 2699 leaf = path->nodes[0]; 2700 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2701 struct btrfs_inode_item); 2702 2703 fill_inode_item(trans, leaf, inode_item, inode); 2704 btrfs_mark_buffer_dirty(leaf); 2705 btrfs_set_inode_last_trans(trans, inode); 2706 ret = 0; 2707 failed: 2708 btrfs_free_path(path); 2709 return ret; 2710 } 2711 2712 /* 2713 * unlink helper that gets used here in inode.c and in the tree logging 2714 * recovery code. It remove a link in a directory with a given name, and 2715 * also drops the back refs in the inode to the directory 2716 */ 2717 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2718 struct btrfs_root *root, 2719 struct inode *dir, struct inode *inode, 2720 const char *name, int name_len) 2721 { 2722 struct btrfs_path *path; 2723 int ret = 0; 2724 struct extent_buffer *leaf; 2725 struct btrfs_dir_item *di; 2726 struct btrfs_key key; 2727 u64 index; 2728 u64 ino = btrfs_ino(inode); 2729 u64 dir_ino = btrfs_ino(dir); 2730 2731 path = btrfs_alloc_path(); 2732 if (!path) { 2733 ret = -ENOMEM; 2734 goto out; 2735 } 2736 2737 path->leave_spinning = 1; 2738 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2739 name, name_len, -1); 2740 if (IS_ERR(di)) { 2741 ret = PTR_ERR(di); 2742 goto err; 2743 } 2744 if (!di) { 2745 ret = -ENOENT; 2746 goto err; 2747 } 2748 leaf = path->nodes[0]; 2749 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2750 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2751 if (ret) 2752 goto err; 2753 btrfs_release_path(path); 2754 2755 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2756 dir_ino, &index); 2757 if (ret) { 2758 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2759 "inode %llu parent %llu\n", name_len, name, 2760 (unsigned long long)ino, (unsigned long long)dir_ino); 2761 goto err; 2762 } 2763 2764 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2765 if (ret) 2766 goto err; 2767 2768 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2769 inode, dir_ino); 2770 BUG_ON(ret != 0 && ret != -ENOENT); 2771 2772 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2773 dir, index); 2774 if (ret == -ENOENT) 2775 ret = 0; 2776 err: 2777 btrfs_free_path(path); 2778 if (ret) 2779 goto out; 2780 2781 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2782 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2783 btrfs_update_inode(trans, root, dir); 2784 out: 2785 return ret; 2786 } 2787 2788 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2789 struct btrfs_root *root, 2790 struct inode *dir, struct inode *inode, 2791 const char *name, int name_len) 2792 { 2793 int ret; 2794 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2795 if (!ret) { 2796 btrfs_drop_nlink(inode); 2797 ret = btrfs_update_inode(trans, root, inode); 2798 } 2799 return ret; 2800 } 2801 2802 2803 /* helper to check if there is any shared block in the path */ 2804 static int check_path_shared(struct btrfs_root *root, 2805 struct btrfs_path *path) 2806 { 2807 struct extent_buffer *eb; 2808 int level; 2809 u64 refs = 1; 2810 2811 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2812 int ret; 2813 2814 if (!path->nodes[level]) 2815 break; 2816 eb = path->nodes[level]; 2817 if (!btrfs_block_can_be_shared(root, eb)) 2818 continue; 2819 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2820 &refs, NULL); 2821 if (refs > 1) 2822 return 1; 2823 } 2824 return 0; 2825 } 2826 2827 /* 2828 * helper to start transaction for unlink and rmdir. 2829 * 2830 * unlink and rmdir are special in btrfs, they do not always free space. 2831 * so in enospc case, we should make sure they will free space before 2832 * allowing them to use the global metadata reservation. 2833 */ 2834 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2835 struct dentry *dentry) 2836 { 2837 struct btrfs_trans_handle *trans; 2838 struct btrfs_root *root = BTRFS_I(dir)->root; 2839 struct btrfs_path *path; 2840 struct btrfs_inode_ref *ref; 2841 struct btrfs_dir_item *di; 2842 struct inode *inode = dentry->d_inode; 2843 u64 index; 2844 int check_link = 1; 2845 int err = -ENOSPC; 2846 int ret; 2847 u64 ino = btrfs_ino(inode); 2848 u64 dir_ino = btrfs_ino(dir); 2849 2850 trans = btrfs_start_transaction(root, 10); 2851 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2852 return trans; 2853 2854 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2855 return ERR_PTR(-ENOSPC); 2856 2857 /* check if there is someone else holds reference */ 2858 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2859 return ERR_PTR(-ENOSPC); 2860 2861 if (atomic_read(&inode->i_count) > 2) 2862 return ERR_PTR(-ENOSPC); 2863 2864 if (xchg(&root->fs_info->enospc_unlink, 1)) 2865 return ERR_PTR(-ENOSPC); 2866 2867 path = btrfs_alloc_path(); 2868 if (!path) { 2869 root->fs_info->enospc_unlink = 0; 2870 return ERR_PTR(-ENOMEM); 2871 } 2872 2873 trans = btrfs_start_transaction(root, 0); 2874 if (IS_ERR(trans)) { 2875 btrfs_free_path(path); 2876 root->fs_info->enospc_unlink = 0; 2877 return trans; 2878 } 2879 2880 path->skip_locking = 1; 2881 path->search_commit_root = 1; 2882 2883 ret = btrfs_lookup_inode(trans, root, path, 2884 &BTRFS_I(dir)->location, 0); 2885 if (ret < 0) { 2886 err = ret; 2887 goto out; 2888 } 2889 if (ret == 0) { 2890 if (check_path_shared(root, path)) 2891 goto out; 2892 } else { 2893 check_link = 0; 2894 } 2895 btrfs_release_path(path); 2896 2897 ret = btrfs_lookup_inode(trans, root, path, 2898 &BTRFS_I(inode)->location, 0); 2899 if (ret < 0) { 2900 err = ret; 2901 goto out; 2902 } 2903 if (ret == 0) { 2904 if (check_path_shared(root, path)) 2905 goto out; 2906 } else { 2907 check_link = 0; 2908 } 2909 btrfs_release_path(path); 2910 2911 if (ret == 0 && S_ISREG(inode->i_mode)) { 2912 ret = btrfs_lookup_file_extent(trans, root, path, 2913 ino, (u64)-1, 0); 2914 if (ret < 0) { 2915 err = ret; 2916 goto out; 2917 } 2918 BUG_ON(ret == 0); 2919 if (check_path_shared(root, path)) 2920 goto out; 2921 btrfs_release_path(path); 2922 } 2923 2924 if (!check_link) { 2925 err = 0; 2926 goto out; 2927 } 2928 2929 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2930 dentry->d_name.name, dentry->d_name.len, 0); 2931 if (IS_ERR(di)) { 2932 err = PTR_ERR(di); 2933 goto out; 2934 } 2935 if (di) { 2936 if (check_path_shared(root, path)) 2937 goto out; 2938 } else { 2939 err = 0; 2940 goto out; 2941 } 2942 btrfs_release_path(path); 2943 2944 ref = btrfs_lookup_inode_ref(trans, root, path, 2945 dentry->d_name.name, dentry->d_name.len, 2946 ino, dir_ino, 0); 2947 if (IS_ERR(ref)) { 2948 err = PTR_ERR(ref); 2949 goto out; 2950 } 2951 BUG_ON(!ref); 2952 if (check_path_shared(root, path)) 2953 goto out; 2954 index = btrfs_inode_ref_index(path->nodes[0], ref); 2955 btrfs_release_path(path); 2956 2957 /* 2958 * This is a commit root search, if we can lookup inode item and other 2959 * relative items in the commit root, it means the transaction of 2960 * dir/file creation has been committed, and the dir index item that we 2961 * delay to insert has also been inserted into the commit root. So 2962 * we needn't worry about the delayed insertion of the dir index item 2963 * here. 2964 */ 2965 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 2966 dentry->d_name.name, dentry->d_name.len, 0); 2967 if (IS_ERR(di)) { 2968 err = PTR_ERR(di); 2969 goto out; 2970 } 2971 BUG_ON(ret == -ENOENT); 2972 if (check_path_shared(root, path)) 2973 goto out; 2974 2975 err = 0; 2976 out: 2977 btrfs_free_path(path); 2978 if (err) { 2979 btrfs_end_transaction(trans, root); 2980 root->fs_info->enospc_unlink = 0; 2981 return ERR_PTR(err); 2982 } 2983 2984 trans->block_rsv = &root->fs_info->global_block_rsv; 2985 return trans; 2986 } 2987 2988 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2989 struct btrfs_root *root) 2990 { 2991 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2992 BUG_ON(!root->fs_info->enospc_unlink); 2993 root->fs_info->enospc_unlink = 0; 2994 } 2995 btrfs_end_transaction_throttle(trans, root); 2996 } 2997 2998 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2999 { 3000 struct btrfs_root *root = BTRFS_I(dir)->root; 3001 struct btrfs_trans_handle *trans; 3002 struct inode *inode = dentry->d_inode; 3003 int ret; 3004 unsigned long nr = 0; 3005 3006 trans = __unlink_start_trans(dir, dentry); 3007 if (IS_ERR(trans)) 3008 return PTR_ERR(trans); 3009 3010 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3011 3012 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3013 dentry->d_name.name, dentry->d_name.len); 3014 BUG_ON(ret); 3015 3016 if (inode->i_nlink == 0) { 3017 ret = btrfs_orphan_add(trans, inode); 3018 BUG_ON(ret); 3019 } 3020 3021 nr = trans->blocks_used; 3022 __unlink_end_trans(trans, root); 3023 btrfs_btree_balance_dirty(root, nr); 3024 return ret; 3025 } 3026 3027 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3028 struct btrfs_root *root, 3029 struct inode *dir, u64 objectid, 3030 const char *name, int name_len) 3031 { 3032 struct btrfs_path *path; 3033 struct extent_buffer *leaf; 3034 struct btrfs_dir_item *di; 3035 struct btrfs_key key; 3036 u64 index; 3037 int ret; 3038 u64 dir_ino = btrfs_ino(dir); 3039 3040 path = btrfs_alloc_path(); 3041 if (!path) 3042 return -ENOMEM; 3043 3044 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3045 name, name_len, -1); 3046 BUG_ON(IS_ERR_OR_NULL(di)); 3047 3048 leaf = path->nodes[0]; 3049 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3050 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3051 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3052 BUG_ON(ret); 3053 btrfs_release_path(path); 3054 3055 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3056 objectid, root->root_key.objectid, 3057 dir_ino, &index, name, name_len); 3058 if (ret < 0) { 3059 BUG_ON(ret != -ENOENT); 3060 di = btrfs_search_dir_index_item(root, path, dir_ino, 3061 name, name_len); 3062 BUG_ON(IS_ERR_OR_NULL(di)); 3063 3064 leaf = path->nodes[0]; 3065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3066 btrfs_release_path(path); 3067 index = key.offset; 3068 } 3069 btrfs_release_path(path); 3070 3071 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3072 BUG_ON(ret); 3073 3074 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3075 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3076 ret = btrfs_update_inode(trans, root, dir); 3077 BUG_ON(ret); 3078 3079 return 0; 3080 } 3081 3082 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3083 { 3084 struct inode *inode = dentry->d_inode; 3085 int err = 0; 3086 struct btrfs_root *root = BTRFS_I(dir)->root; 3087 struct btrfs_trans_handle *trans; 3088 unsigned long nr = 0; 3089 3090 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 3091 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3092 return -ENOTEMPTY; 3093 3094 trans = __unlink_start_trans(dir, dentry); 3095 if (IS_ERR(trans)) 3096 return PTR_ERR(trans); 3097 3098 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3099 err = btrfs_unlink_subvol(trans, root, dir, 3100 BTRFS_I(inode)->location.objectid, 3101 dentry->d_name.name, 3102 dentry->d_name.len); 3103 goto out; 3104 } 3105 3106 err = btrfs_orphan_add(trans, inode); 3107 if (err) 3108 goto out; 3109 3110 /* now the directory is empty */ 3111 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3112 dentry->d_name.name, dentry->d_name.len); 3113 if (!err) 3114 btrfs_i_size_write(inode, 0); 3115 out: 3116 nr = trans->blocks_used; 3117 __unlink_end_trans(trans, root); 3118 btrfs_btree_balance_dirty(root, nr); 3119 3120 return err; 3121 } 3122 3123 /* 3124 * this can truncate away extent items, csum items and directory items. 3125 * It starts at a high offset and removes keys until it can't find 3126 * any higher than new_size 3127 * 3128 * csum items that cross the new i_size are truncated to the new size 3129 * as well. 3130 * 3131 * min_type is the minimum key type to truncate down to. If set to 0, this 3132 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3133 */ 3134 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3135 struct btrfs_root *root, 3136 struct inode *inode, 3137 u64 new_size, u32 min_type) 3138 { 3139 struct btrfs_path *path; 3140 struct extent_buffer *leaf; 3141 struct btrfs_file_extent_item *fi; 3142 struct btrfs_key key; 3143 struct btrfs_key found_key; 3144 u64 extent_start = 0; 3145 u64 extent_num_bytes = 0; 3146 u64 extent_offset = 0; 3147 u64 item_end = 0; 3148 u64 mask = root->sectorsize - 1; 3149 u32 found_type = (u8)-1; 3150 int found_extent; 3151 int del_item; 3152 int pending_del_nr = 0; 3153 int pending_del_slot = 0; 3154 int extent_type = -1; 3155 int encoding; 3156 int ret; 3157 int err = 0; 3158 u64 ino = btrfs_ino(inode); 3159 3160 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3161 3162 if (root->ref_cows || root == root->fs_info->tree_root) 3163 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3164 3165 /* 3166 * This function is also used to drop the items in the log tree before 3167 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3168 * it is used to drop the loged items. So we shouldn't kill the delayed 3169 * items. 3170 */ 3171 if (min_type == 0 && root == BTRFS_I(inode)->root) 3172 btrfs_kill_delayed_inode_items(inode); 3173 3174 path = btrfs_alloc_path(); 3175 BUG_ON(!path); 3176 path->reada = -1; 3177 3178 key.objectid = ino; 3179 key.offset = (u64)-1; 3180 key.type = (u8)-1; 3181 3182 search_again: 3183 path->leave_spinning = 1; 3184 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3185 if (ret < 0) { 3186 err = ret; 3187 goto out; 3188 } 3189 3190 if (ret > 0) { 3191 /* there are no items in the tree for us to truncate, we're 3192 * done 3193 */ 3194 if (path->slots[0] == 0) 3195 goto out; 3196 path->slots[0]--; 3197 } 3198 3199 while (1) { 3200 fi = NULL; 3201 leaf = path->nodes[0]; 3202 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3203 found_type = btrfs_key_type(&found_key); 3204 encoding = 0; 3205 3206 if (found_key.objectid != ino) 3207 break; 3208 3209 if (found_type < min_type) 3210 break; 3211 3212 item_end = found_key.offset; 3213 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3214 fi = btrfs_item_ptr(leaf, path->slots[0], 3215 struct btrfs_file_extent_item); 3216 extent_type = btrfs_file_extent_type(leaf, fi); 3217 encoding = btrfs_file_extent_compression(leaf, fi); 3218 encoding |= btrfs_file_extent_encryption(leaf, fi); 3219 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3220 3221 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3222 item_end += 3223 btrfs_file_extent_num_bytes(leaf, fi); 3224 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3225 item_end += btrfs_file_extent_inline_len(leaf, 3226 fi); 3227 } 3228 item_end--; 3229 } 3230 if (found_type > min_type) { 3231 del_item = 1; 3232 } else { 3233 if (item_end < new_size) 3234 break; 3235 if (found_key.offset >= new_size) 3236 del_item = 1; 3237 else 3238 del_item = 0; 3239 } 3240 found_extent = 0; 3241 /* FIXME, shrink the extent if the ref count is only 1 */ 3242 if (found_type != BTRFS_EXTENT_DATA_KEY) 3243 goto delete; 3244 3245 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3246 u64 num_dec; 3247 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3248 if (!del_item && !encoding) { 3249 u64 orig_num_bytes = 3250 btrfs_file_extent_num_bytes(leaf, fi); 3251 extent_num_bytes = new_size - 3252 found_key.offset + root->sectorsize - 1; 3253 extent_num_bytes = extent_num_bytes & 3254 ~((u64)root->sectorsize - 1); 3255 btrfs_set_file_extent_num_bytes(leaf, fi, 3256 extent_num_bytes); 3257 num_dec = (orig_num_bytes - 3258 extent_num_bytes); 3259 if (root->ref_cows && extent_start != 0) 3260 inode_sub_bytes(inode, num_dec); 3261 btrfs_mark_buffer_dirty(leaf); 3262 } else { 3263 extent_num_bytes = 3264 btrfs_file_extent_disk_num_bytes(leaf, 3265 fi); 3266 extent_offset = found_key.offset - 3267 btrfs_file_extent_offset(leaf, fi); 3268 3269 /* FIXME blocksize != 4096 */ 3270 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3271 if (extent_start != 0) { 3272 found_extent = 1; 3273 if (root->ref_cows) 3274 inode_sub_bytes(inode, num_dec); 3275 } 3276 } 3277 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3278 /* 3279 * we can't truncate inline items that have had 3280 * special encodings 3281 */ 3282 if (!del_item && 3283 btrfs_file_extent_compression(leaf, fi) == 0 && 3284 btrfs_file_extent_encryption(leaf, fi) == 0 && 3285 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3286 u32 size = new_size - found_key.offset; 3287 3288 if (root->ref_cows) { 3289 inode_sub_bytes(inode, item_end + 1 - 3290 new_size); 3291 } 3292 size = 3293 btrfs_file_extent_calc_inline_size(size); 3294 ret = btrfs_truncate_item(trans, root, path, 3295 size, 1); 3296 } else if (root->ref_cows) { 3297 inode_sub_bytes(inode, item_end + 1 - 3298 found_key.offset); 3299 } 3300 } 3301 delete: 3302 if (del_item) { 3303 if (!pending_del_nr) { 3304 /* no pending yet, add ourselves */ 3305 pending_del_slot = path->slots[0]; 3306 pending_del_nr = 1; 3307 } else if (pending_del_nr && 3308 path->slots[0] + 1 == pending_del_slot) { 3309 /* hop on the pending chunk */ 3310 pending_del_nr++; 3311 pending_del_slot = path->slots[0]; 3312 } else { 3313 BUG(); 3314 } 3315 } else { 3316 break; 3317 } 3318 if (found_extent && (root->ref_cows || 3319 root == root->fs_info->tree_root)) { 3320 btrfs_set_path_blocking(path); 3321 ret = btrfs_free_extent(trans, root, extent_start, 3322 extent_num_bytes, 0, 3323 btrfs_header_owner(leaf), 3324 ino, extent_offset); 3325 BUG_ON(ret); 3326 } 3327 3328 if (found_type == BTRFS_INODE_ITEM_KEY) 3329 break; 3330 3331 if (path->slots[0] == 0 || 3332 path->slots[0] != pending_del_slot) { 3333 if (root->ref_cows && 3334 BTRFS_I(inode)->location.objectid != 3335 BTRFS_FREE_INO_OBJECTID) { 3336 err = -EAGAIN; 3337 goto out; 3338 } 3339 if (pending_del_nr) { 3340 ret = btrfs_del_items(trans, root, path, 3341 pending_del_slot, 3342 pending_del_nr); 3343 BUG_ON(ret); 3344 pending_del_nr = 0; 3345 } 3346 btrfs_release_path(path); 3347 goto search_again; 3348 } else { 3349 path->slots[0]--; 3350 } 3351 } 3352 out: 3353 if (pending_del_nr) { 3354 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3355 pending_del_nr); 3356 BUG_ON(ret); 3357 } 3358 btrfs_free_path(path); 3359 return err; 3360 } 3361 3362 /* 3363 * taken from block_truncate_page, but does cow as it zeros out 3364 * any bytes left in the last page in the file. 3365 */ 3366 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3367 { 3368 struct inode *inode = mapping->host; 3369 struct btrfs_root *root = BTRFS_I(inode)->root; 3370 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3371 struct btrfs_ordered_extent *ordered; 3372 struct extent_state *cached_state = NULL; 3373 char *kaddr; 3374 u32 blocksize = root->sectorsize; 3375 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3376 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3377 struct page *page; 3378 int ret = 0; 3379 u64 page_start; 3380 u64 page_end; 3381 3382 if ((offset & (blocksize - 1)) == 0) 3383 goto out; 3384 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3385 if (ret) 3386 goto out; 3387 3388 ret = -ENOMEM; 3389 again: 3390 page = grab_cache_page(mapping, index); 3391 if (!page) { 3392 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3393 goto out; 3394 } 3395 3396 page_start = page_offset(page); 3397 page_end = page_start + PAGE_CACHE_SIZE - 1; 3398 3399 if (!PageUptodate(page)) { 3400 ret = btrfs_readpage(NULL, page); 3401 lock_page(page); 3402 if (page->mapping != mapping) { 3403 unlock_page(page); 3404 page_cache_release(page); 3405 goto again; 3406 } 3407 if (!PageUptodate(page)) { 3408 ret = -EIO; 3409 goto out_unlock; 3410 } 3411 } 3412 wait_on_page_writeback(page); 3413 3414 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3415 GFP_NOFS); 3416 set_page_extent_mapped(page); 3417 3418 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3419 if (ordered) { 3420 unlock_extent_cached(io_tree, page_start, page_end, 3421 &cached_state, GFP_NOFS); 3422 unlock_page(page); 3423 page_cache_release(page); 3424 btrfs_start_ordered_extent(inode, ordered, 1); 3425 btrfs_put_ordered_extent(ordered); 3426 goto again; 3427 } 3428 3429 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3430 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3431 0, 0, &cached_state, GFP_NOFS); 3432 3433 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3434 &cached_state); 3435 if (ret) { 3436 unlock_extent_cached(io_tree, page_start, page_end, 3437 &cached_state, GFP_NOFS); 3438 goto out_unlock; 3439 } 3440 3441 ret = 0; 3442 if (offset != PAGE_CACHE_SIZE) { 3443 kaddr = kmap(page); 3444 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3445 flush_dcache_page(page); 3446 kunmap(page); 3447 } 3448 ClearPageChecked(page); 3449 set_page_dirty(page); 3450 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3451 GFP_NOFS); 3452 3453 out_unlock: 3454 if (ret) 3455 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3456 unlock_page(page); 3457 page_cache_release(page); 3458 out: 3459 return ret; 3460 } 3461 3462 /* 3463 * This function puts in dummy file extents for the area we're creating a hole 3464 * for. So if we are truncating this file to a larger size we need to insert 3465 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3466 * the range between oldsize and size 3467 */ 3468 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3469 { 3470 struct btrfs_trans_handle *trans; 3471 struct btrfs_root *root = BTRFS_I(inode)->root; 3472 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3473 struct extent_map *em = NULL; 3474 struct extent_state *cached_state = NULL; 3475 u64 mask = root->sectorsize - 1; 3476 u64 hole_start = (oldsize + mask) & ~mask; 3477 u64 block_end = (size + mask) & ~mask; 3478 u64 last_byte; 3479 u64 cur_offset; 3480 u64 hole_size; 3481 int err = 0; 3482 3483 if (size <= hole_start) 3484 return 0; 3485 3486 while (1) { 3487 struct btrfs_ordered_extent *ordered; 3488 btrfs_wait_ordered_range(inode, hole_start, 3489 block_end - hole_start); 3490 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3491 &cached_state, GFP_NOFS); 3492 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3493 if (!ordered) 3494 break; 3495 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3496 &cached_state, GFP_NOFS); 3497 btrfs_put_ordered_extent(ordered); 3498 } 3499 3500 cur_offset = hole_start; 3501 while (1) { 3502 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3503 block_end - cur_offset, 0); 3504 BUG_ON(IS_ERR_OR_NULL(em)); 3505 last_byte = min(extent_map_end(em), block_end); 3506 last_byte = (last_byte + mask) & ~mask; 3507 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3508 u64 hint_byte = 0; 3509 hole_size = last_byte - cur_offset; 3510 3511 trans = btrfs_start_transaction(root, 2); 3512 if (IS_ERR(trans)) { 3513 err = PTR_ERR(trans); 3514 break; 3515 } 3516 3517 err = btrfs_drop_extents(trans, inode, cur_offset, 3518 cur_offset + hole_size, 3519 &hint_byte, 1); 3520 if (err) 3521 break; 3522 3523 err = btrfs_insert_file_extent(trans, root, 3524 btrfs_ino(inode), cur_offset, 0, 3525 0, hole_size, 0, hole_size, 3526 0, 0, 0); 3527 if (err) 3528 break; 3529 3530 btrfs_drop_extent_cache(inode, hole_start, 3531 last_byte - 1, 0); 3532 3533 btrfs_end_transaction(trans, root); 3534 } 3535 free_extent_map(em); 3536 em = NULL; 3537 cur_offset = last_byte; 3538 if (cur_offset >= block_end) 3539 break; 3540 } 3541 3542 free_extent_map(em); 3543 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3544 GFP_NOFS); 3545 return err; 3546 } 3547 3548 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3549 { 3550 loff_t oldsize = i_size_read(inode); 3551 int ret; 3552 3553 if (newsize == oldsize) 3554 return 0; 3555 3556 if (newsize > oldsize) { 3557 i_size_write(inode, newsize); 3558 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3559 truncate_pagecache(inode, oldsize, newsize); 3560 ret = btrfs_cont_expand(inode, oldsize, newsize); 3561 if (ret) { 3562 btrfs_setsize(inode, oldsize); 3563 return ret; 3564 } 3565 3566 mark_inode_dirty(inode); 3567 } else { 3568 3569 /* 3570 * We're truncating a file that used to have good data down to 3571 * zero. Make sure it gets into the ordered flush list so that 3572 * any new writes get down to disk quickly. 3573 */ 3574 if (newsize == 0) 3575 BTRFS_I(inode)->ordered_data_close = 1; 3576 3577 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3578 truncate_setsize(inode, newsize); 3579 ret = btrfs_truncate(inode); 3580 } 3581 3582 return ret; 3583 } 3584 3585 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3586 { 3587 struct inode *inode = dentry->d_inode; 3588 struct btrfs_root *root = BTRFS_I(inode)->root; 3589 int err; 3590 3591 if (btrfs_root_readonly(root)) 3592 return -EROFS; 3593 3594 err = inode_change_ok(inode, attr); 3595 if (err) 3596 return err; 3597 3598 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3599 err = btrfs_setsize(inode, attr->ia_size); 3600 if (err) 3601 return err; 3602 } 3603 3604 if (attr->ia_valid) { 3605 setattr_copy(inode, attr); 3606 mark_inode_dirty(inode); 3607 3608 if (attr->ia_valid & ATTR_MODE) 3609 err = btrfs_acl_chmod(inode); 3610 } 3611 3612 return err; 3613 } 3614 3615 void btrfs_evict_inode(struct inode *inode) 3616 { 3617 struct btrfs_trans_handle *trans; 3618 struct btrfs_root *root = BTRFS_I(inode)->root; 3619 unsigned long nr; 3620 int ret; 3621 3622 trace_btrfs_inode_evict(inode); 3623 3624 truncate_inode_pages(&inode->i_data, 0); 3625 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3626 is_free_space_inode(root, inode))) 3627 goto no_delete; 3628 3629 if (is_bad_inode(inode)) { 3630 btrfs_orphan_del(NULL, inode); 3631 goto no_delete; 3632 } 3633 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3634 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3635 3636 if (root->fs_info->log_root_recovering) { 3637 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3638 goto no_delete; 3639 } 3640 3641 if (inode->i_nlink > 0) { 3642 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3643 goto no_delete; 3644 } 3645 3646 btrfs_i_size_write(inode, 0); 3647 3648 while (1) { 3649 trans = btrfs_start_transaction(root, 0); 3650 BUG_ON(IS_ERR(trans)); 3651 trans->block_rsv = root->orphan_block_rsv; 3652 3653 ret = btrfs_block_rsv_check(trans, root, 3654 root->orphan_block_rsv, 0, 5); 3655 if (ret) { 3656 BUG_ON(ret != -EAGAIN); 3657 ret = btrfs_commit_transaction(trans, root); 3658 BUG_ON(ret); 3659 continue; 3660 } 3661 3662 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3663 if (ret != -EAGAIN) 3664 break; 3665 3666 nr = trans->blocks_used; 3667 btrfs_end_transaction(trans, root); 3668 trans = NULL; 3669 btrfs_btree_balance_dirty(root, nr); 3670 3671 } 3672 3673 if (ret == 0) { 3674 ret = btrfs_orphan_del(trans, inode); 3675 BUG_ON(ret); 3676 } 3677 3678 if (!(root == root->fs_info->tree_root || 3679 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3680 btrfs_return_ino(root, btrfs_ino(inode)); 3681 3682 nr = trans->blocks_used; 3683 btrfs_end_transaction(trans, root); 3684 btrfs_btree_balance_dirty(root, nr); 3685 no_delete: 3686 end_writeback(inode); 3687 return; 3688 } 3689 3690 /* 3691 * this returns the key found in the dir entry in the location pointer. 3692 * If no dir entries were found, location->objectid is 0. 3693 */ 3694 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3695 struct btrfs_key *location) 3696 { 3697 const char *name = dentry->d_name.name; 3698 int namelen = dentry->d_name.len; 3699 struct btrfs_dir_item *di; 3700 struct btrfs_path *path; 3701 struct btrfs_root *root = BTRFS_I(dir)->root; 3702 int ret = 0; 3703 3704 path = btrfs_alloc_path(); 3705 BUG_ON(!path); 3706 3707 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3708 namelen, 0); 3709 if (IS_ERR(di)) 3710 ret = PTR_ERR(di); 3711 3712 if (IS_ERR_OR_NULL(di)) 3713 goto out_err; 3714 3715 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3716 out: 3717 btrfs_free_path(path); 3718 return ret; 3719 out_err: 3720 location->objectid = 0; 3721 goto out; 3722 } 3723 3724 /* 3725 * when we hit a tree root in a directory, the btrfs part of the inode 3726 * needs to be changed to reflect the root directory of the tree root. This 3727 * is kind of like crossing a mount point. 3728 */ 3729 static int fixup_tree_root_location(struct btrfs_root *root, 3730 struct inode *dir, 3731 struct dentry *dentry, 3732 struct btrfs_key *location, 3733 struct btrfs_root **sub_root) 3734 { 3735 struct btrfs_path *path; 3736 struct btrfs_root *new_root; 3737 struct btrfs_root_ref *ref; 3738 struct extent_buffer *leaf; 3739 int ret; 3740 int err = 0; 3741 3742 path = btrfs_alloc_path(); 3743 if (!path) { 3744 err = -ENOMEM; 3745 goto out; 3746 } 3747 3748 err = -ENOENT; 3749 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3750 BTRFS_I(dir)->root->root_key.objectid, 3751 location->objectid); 3752 if (ret) { 3753 if (ret < 0) 3754 err = ret; 3755 goto out; 3756 } 3757 3758 leaf = path->nodes[0]; 3759 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3760 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3761 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3762 goto out; 3763 3764 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3765 (unsigned long)(ref + 1), 3766 dentry->d_name.len); 3767 if (ret) 3768 goto out; 3769 3770 btrfs_release_path(path); 3771 3772 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3773 if (IS_ERR(new_root)) { 3774 err = PTR_ERR(new_root); 3775 goto out; 3776 } 3777 3778 if (btrfs_root_refs(&new_root->root_item) == 0) { 3779 err = -ENOENT; 3780 goto out; 3781 } 3782 3783 *sub_root = new_root; 3784 location->objectid = btrfs_root_dirid(&new_root->root_item); 3785 location->type = BTRFS_INODE_ITEM_KEY; 3786 location->offset = 0; 3787 err = 0; 3788 out: 3789 btrfs_free_path(path); 3790 return err; 3791 } 3792 3793 static void inode_tree_add(struct inode *inode) 3794 { 3795 struct btrfs_root *root = BTRFS_I(inode)->root; 3796 struct btrfs_inode *entry; 3797 struct rb_node **p; 3798 struct rb_node *parent; 3799 u64 ino = btrfs_ino(inode); 3800 again: 3801 p = &root->inode_tree.rb_node; 3802 parent = NULL; 3803 3804 if (inode_unhashed(inode)) 3805 return; 3806 3807 spin_lock(&root->inode_lock); 3808 while (*p) { 3809 parent = *p; 3810 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3811 3812 if (ino < btrfs_ino(&entry->vfs_inode)) 3813 p = &parent->rb_left; 3814 else if (ino > btrfs_ino(&entry->vfs_inode)) 3815 p = &parent->rb_right; 3816 else { 3817 WARN_ON(!(entry->vfs_inode.i_state & 3818 (I_WILL_FREE | I_FREEING))); 3819 rb_erase(parent, &root->inode_tree); 3820 RB_CLEAR_NODE(parent); 3821 spin_unlock(&root->inode_lock); 3822 goto again; 3823 } 3824 } 3825 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3826 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3827 spin_unlock(&root->inode_lock); 3828 } 3829 3830 static void inode_tree_del(struct inode *inode) 3831 { 3832 struct btrfs_root *root = BTRFS_I(inode)->root; 3833 int empty = 0; 3834 3835 spin_lock(&root->inode_lock); 3836 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3837 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3838 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3839 empty = RB_EMPTY_ROOT(&root->inode_tree); 3840 } 3841 spin_unlock(&root->inode_lock); 3842 3843 /* 3844 * Free space cache has inodes in the tree root, but the tree root has a 3845 * root_refs of 0, so this could end up dropping the tree root as a 3846 * snapshot, so we need the extra !root->fs_info->tree_root check to 3847 * make sure we don't drop it. 3848 */ 3849 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3850 root != root->fs_info->tree_root) { 3851 synchronize_srcu(&root->fs_info->subvol_srcu); 3852 spin_lock(&root->inode_lock); 3853 empty = RB_EMPTY_ROOT(&root->inode_tree); 3854 spin_unlock(&root->inode_lock); 3855 if (empty) 3856 btrfs_add_dead_root(root); 3857 } 3858 } 3859 3860 int btrfs_invalidate_inodes(struct btrfs_root *root) 3861 { 3862 struct rb_node *node; 3863 struct rb_node *prev; 3864 struct btrfs_inode *entry; 3865 struct inode *inode; 3866 u64 objectid = 0; 3867 3868 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3869 3870 spin_lock(&root->inode_lock); 3871 again: 3872 node = root->inode_tree.rb_node; 3873 prev = NULL; 3874 while (node) { 3875 prev = node; 3876 entry = rb_entry(node, struct btrfs_inode, rb_node); 3877 3878 if (objectid < btrfs_ino(&entry->vfs_inode)) 3879 node = node->rb_left; 3880 else if (objectid > btrfs_ino(&entry->vfs_inode)) 3881 node = node->rb_right; 3882 else 3883 break; 3884 } 3885 if (!node) { 3886 while (prev) { 3887 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3888 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 3889 node = prev; 3890 break; 3891 } 3892 prev = rb_next(prev); 3893 } 3894 } 3895 while (node) { 3896 entry = rb_entry(node, struct btrfs_inode, rb_node); 3897 objectid = btrfs_ino(&entry->vfs_inode) + 1; 3898 inode = igrab(&entry->vfs_inode); 3899 if (inode) { 3900 spin_unlock(&root->inode_lock); 3901 if (atomic_read(&inode->i_count) > 1) 3902 d_prune_aliases(inode); 3903 /* 3904 * btrfs_drop_inode will have it removed from 3905 * the inode cache when its usage count 3906 * hits zero. 3907 */ 3908 iput(inode); 3909 cond_resched(); 3910 spin_lock(&root->inode_lock); 3911 goto again; 3912 } 3913 3914 if (cond_resched_lock(&root->inode_lock)) 3915 goto again; 3916 3917 node = rb_next(node); 3918 } 3919 spin_unlock(&root->inode_lock); 3920 return 0; 3921 } 3922 3923 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3924 { 3925 struct btrfs_iget_args *args = p; 3926 inode->i_ino = args->ino; 3927 BTRFS_I(inode)->root = args->root; 3928 btrfs_set_inode_space_info(args->root, inode); 3929 return 0; 3930 } 3931 3932 static int btrfs_find_actor(struct inode *inode, void *opaque) 3933 { 3934 struct btrfs_iget_args *args = opaque; 3935 return args->ino == btrfs_ino(inode) && 3936 args->root == BTRFS_I(inode)->root; 3937 } 3938 3939 static struct inode *btrfs_iget_locked(struct super_block *s, 3940 u64 objectid, 3941 struct btrfs_root *root) 3942 { 3943 struct inode *inode; 3944 struct btrfs_iget_args args; 3945 args.ino = objectid; 3946 args.root = root; 3947 3948 inode = iget5_locked(s, objectid, btrfs_find_actor, 3949 btrfs_init_locked_inode, 3950 (void *)&args); 3951 return inode; 3952 } 3953 3954 /* Get an inode object given its location and corresponding root. 3955 * Returns in *is_new if the inode was read from disk 3956 */ 3957 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3958 struct btrfs_root *root, int *new) 3959 { 3960 struct inode *inode; 3961 3962 inode = btrfs_iget_locked(s, location->objectid, root); 3963 if (!inode) 3964 return ERR_PTR(-ENOMEM); 3965 3966 if (inode->i_state & I_NEW) { 3967 BTRFS_I(inode)->root = root; 3968 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3969 btrfs_read_locked_inode(inode); 3970 inode_tree_add(inode); 3971 unlock_new_inode(inode); 3972 if (new) 3973 *new = 1; 3974 } 3975 3976 return inode; 3977 } 3978 3979 static struct inode *new_simple_dir(struct super_block *s, 3980 struct btrfs_key *key, 3981 struct btrfs_root *root) 3982 { 3983 struct inode *inode = new_inode(s); 3984 3985 if (!inode) 3986 return ERR_PTR(-ENOMEM); 3987 3988 BTRFS_I(inode)->root = root; 3989 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3990 BTRFS_I(inode)->dummy_inode = 1; 3991 3992 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3993 inode->i_op = &simple_dir_inode_operations; 3994 inode->i_fop = &simple_dir_operations; 3995 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 3996 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3997 3998 return inode; 3999 } 4000 4001 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4002 { 4003 struct inode *inode; 4004 struct btrfs_root *root = BTRFS_I(dir)->root; 4005 struct btrfs_root *sub_root = root; 4006 struct btrfs_key location; 4007 int index; 4008 int ret; 4009 4010 if (dentry->d_name.len > BTRFS_NAME_LEN) 4011 return ERR_PTR(-ENAMETOOLONG); 4012 4013 ret = btrfs_inode_by_name(dir, dentry, &location); 4014 4015 if (ret < 0) 4016 return ERR_PTR(ret); 4017 4018 if (location.objectid == 0) 4019 return NULL; 4020 4021 if (location.type == BTRFS_INODE_ITEM_KEY) { 4022 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4023 return inode; 4024 } 4025 4026 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4027 4028 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4029 ret = fixup_tree_root_location(root, dir, dentry, 4030 &location, &sub_root); 4031 if (ret < 0) { 4032 if (ret != -ENOENT) 4033 inode = ERR_PTR(ret); 4034 else 4035 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4036 } else { 4037 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4038 } 4039 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4040 4041 if (!IS_ERR(inode) && root != sub_root) { 4042 down_read(&root->fs_info->cleanup_work_sem); 4043 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4044 ret = btrfs_orphan_cleanup(sub_root); 4045 up_read(&root->fs_info->cleanup_work_sem); 4046 if (ret) 4047 inode = ERR_PTR(ret); 4048 } 4049 4050 return inode; 4051 } 4052 4053 static int btrfs_dentry_delete(const struct dentry *dentry) 4054 { 4055 struct btrfs_root *root; 4056 4057 if (!dentry->d_inode && !IS_ROOT(dentry)) 4058 dentry = dentry->d_parent; 4059 4060 if (dentry->d_inode) { 4061 root = BTRFS_I(dentry->d_inode)->root; 4062 if (btrfs_root_refs(&root->root_item) == 0) 4063 return 1; 4064 } 4065 return 0; 4066 } 4067 4068 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4069 struct nameidata *nd) 4070 { 4071 struct inode *inode; 4072 4073 inode = btrfs_lookup_dentry(dir, dentry); 4074 if (IS_ERR(inode)) 4075 return ERR_CAST(inode); 4076 4077 return d_splice_alias(inode, dentry); 4078 } 4079 4080 unsigned char btrfs_filetype_table[] = { 4081 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4082 }; 4083 4084 static int btrfs_real_readdir(struct file *filp, void *dirent, 4085 filldir_t filldir) 4086 { 4087 struct inode *inode = filp->f_dentry->d_inode; 4088 struct btrfs_root *root = BTRFS_I(inode)->root; 4089 struct btrfs_item *item; 4090 struct btrfs_dir_item *di; 4091 struct btrfs_key key; 4092 struct btrfs_key found_key; 4093 struct btrfs_path *path; 4094 struct list_head ins_list; 4095 struct list_head del_list; 4096 int ret; 4097 struct extent_buffer *leaf; 4098 int slot; 4099 unsigned char d_type; 4100 int over = 0; 4101 u32 di_cur; 4102 u32 di_total; 4103 u32 di_len; 4104 int key_type = BTRFS_DIR_INDEX_KEY; 4105 char tmp_name[32]; 4106 char *name_ptr; 4107 int name_len; 4108 int is_curr = 0; /* filp->f_pos points to the current index? */ 4109 4110 /* FIXME, use a real flag for deciding about the key type */ 4111 if (root->fs_info->tree_root == root) 4112 key_type = BTRFS_DIR_ITEM_KEY; 4113 4114 /* special case for "." */ 4115 if (filp->f_pos == 0) { 4116 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR); 4117 if (over) 4118 return 0; 4119 filp->f_pos = 1; 4120 } 4121 /* special case for .., just use the back ref */ 4122 if (filp->f_pos == 1) { 4123 u64 pino = parent_ino(filp->f_path.dentry); 4124 over = filldir(dirent, "..", 2, 4125 2, pino, DT_DIR); 4126 if (over) 4127 return 0; 4128 filp->f_pos = 2; 4129 } 4130 path = btrfs_alloc_path(); 4131 if (!path) 4132 return -ENOMEM; 4133 4134 path->reada = 1; 4135 4136 if (key_type == BTRFS_DIR_INDEX_KEY) { 4137 INIT_LIST_HEAD(&ins_list); 4138 INIT_LIST_HEAD(&del_list); 4139 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4140 } 4141 4142 btrfs_set_key_type(&key, key_type); 4143 key.offset = filp->f_pos; 4144 key.objectid = btrfs_ino(inode); 4145 4146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4147 if (ret < 0) 4148 goto err; 4149 4150 while (1) { 4151 leaf = path->nodes[0]; 4152 slot = path->slots[0]; 4153 if (slot >= btrfs_header_nritems(leaf)) { 4154 ret = btrfs_next_leaf(root, path); 4155 if (ret < 0) 4156 goto err; 4157 else if (ret > 0) 4158 break; 4159 continue; 4160 } 4161 4162 item = btrfs_item_nr(leaf, slot); 4163 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4164 4165 if (found_key.objectid != key.objectid) 4166 break; 4167 if (btrfs_key_type(&found_key) != key_type) 4168 break; 4169 if (found_key.offset < filp->f_pos) 4170 goto next; 4171 if (key_type == BTRFS_DIR_INDEX_KEY && 4172 btrfs_should_delete_dir_index(&del_list, 4173 found_key.offset)) 4174 goto next; 4175 4176 filp->f_pos = found_key.offset; 4177 is_curr = 1; 4178 4179 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4180 di_cur = 0; 4181 di_total = btrfs_item_size(leaf, item); 4182 4183 while (di_cur < di_total) { 4184 struct btrfs_key location; 4185 4186 if (verify_dir_item(root, leaf, di)) 4187 break; 4188 4189 name_len = btrfs_dir_name_len(leaf, di); 4190 if (name_len <= sizeof(tmp_name)) { 4191 name_ptr = tmp_name; 4192 } else { 4193 name_ptr = kmalloc(name_len, GFP_NOFS); 4194 if (!name_ptr) { 4195 ret = -ENOMEM; 4196 goto err; 4197 } 4198 } 4199 read_extent_buffer(leaf, name_ptr, 4200 (unsigned long)(di + 1), name_len); 4201 4202 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4203 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4204 4205 /* is this a reference to our own snapshot? If so 4206 * skip it 4207 */ 4208 if (location.type == BTRFS_ROOT_ITEM_KEY && 4209 location.objectid == root->root_key.objectid) { 4210 over = 0; 4211 goto skip; 4212 } 4213 over = filldir(dirent, name_ptr, name_len, 4214 found_key.offset, location.objectid, 4215 d_type); 4216 4217 skip: 4218 if (name_ptr != tmp_name) 4219 kfree(name_ptr); 4220 4221 if (over) 4222 goto nopos; 4223 di_len = btrfs_dir_name_len(leaf, di) + 4224 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4225 di_cur += di_len; 4226 di = (struct btrfs_dir_item *)((char *)di + di_len); 4227 } 4228 next: 4229 path->slots[0]++; 4230 } 4231 4232 if (key_type == BTRFS_DIR_INDEX_KEY) { 4233 if (is_curr) 4234 filp->f_pos++; 4235 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4236 &ins_list); 4237 if (ret) 4238 goto nopos; 4239 } 4240 4241 /* Reached end of directory/root. Bump pos past the last item. */ 4242 if (key_type == BTRFS_DIR_INDEX_KEY) 4243 /* 4244 * 32-bit glibc will use getdents64, but then strtol - 4245 * so the last number we can serve is this. 4246 */ 4247 filp->f_pos = 0x7fffffff; 4248 else 4249 filp->f_pos++; 4250 nopos: 4251 ret = 0; 4252 err: 4253 if (key_type == BTRFS_DIR_INDEX_KEY) 4254 btrfs_put_delayed_items(&ins_list, &del_list); 4255 btrfs_free_path(path); 4256 return ret; 4257 } 4258 4259 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4260 { 4261 struct btrfs_root *root = BTRFS_I(inode)->root; 4262 struct btrfs_trans_handle *trans; 4263 int ret = 0; 4264 bool nolock = false; 4265 4266 if (BTRFS_I(inode)->dummy_inode) 4267 return 0; 4268 4269 if (btrfs_fs_closing(root->fs_info) && is_free_space_inode(root, inode)) 4270 nolock = true; 4271 4272 if (wbc->sync_mode == WB_SYNC_ALL) { 4273 if (nolock) 4274 trans = btrfs_join_transaction_nolock(root); 4275 else 4276 trans = btrfs_join_transaction(root); 4277 if (IS_ERR(trans)) 4278 return PTR_ERR(trans); 4279 if (nolock) 4280 ret = btrfs_end_transaction_nolock(trans, root); 4281 else 4282 ret = btrfs_commit_transaction(trans, root); 4283 } 4284 return ret; 4285 } 4286 4287 /* 4288 * This is somewhat expensive, updating the tree every time the 4289 * inode changes. But, it is most likely to find the inode in cache. 4290 * FIXME, needs more benchmarking...there are no reasons other than performance 4291 * to keep or drop this code. 4292 */ 4293 void btrfs_dirty_inode(struct inode *inode, int flags) 4294 { 4295 struct btrfs_root *root = BTRFS_I(inode)->root; 4296 struct btrfs_trans_handle *trans; 4297 int ret; 4298 4299 if (BTRFS_I(inode)->dummy_inode) 4300 return; 4301 4302 trans = btrfs_join_transaction(root); 4303 BUG_ON(IS_ERR(trans)); 4304 4305 ret = btrfs_update_inode(trans, root, inode); 4306 if (ret && ret == -ENOSPC) { 4307 /* whoops, lets try again with the full transaction */ 4308 btrfs_end_transaction(trans, root); 4309 trans = btrfs_start_transaction(root, 1); 4310 if (IS_ERR(trans)) { 4311 printk_ratelimited(KERN_ERR "btrfs: fail to " 4312 "dirty inode %llu error %ld\n", 4313 (unsigned long long)btrfs_ino(inode), 4314 PTR_ERR(trans)); 4315 return; 4316 } 4317 4318 ret = btrfs_update_inode(trans, root, inode); 4319 if (ret) { 4320 printk_ratelimited(KERN_ERR "btrfs: fail to " 4321 "dirty inode %llu error %d\n", 4322 (unsigned long long)btrfs_ino(inode), 4323 ret); 4324 } 4325 } 4326 btrfs_end_transaction(trans, root); 4327 if (BTRFS_I(inode)->delayed_node) 4328 btrfs_balance_delayed_items(root); 4329 } 4330 4331 /* 4332 * find the highest existing sequence number in a directory 4333 * and then set the in-memory index_cnt variable to reflect 4334 * free sequence numbers 4335 */ 4336 static int btrfs_set_inode_index_count(struct inode *inode) 4337 { 4338 struct btrfs_root *root = BTRFS_I(inode)->root; 4339 struct btrfs_key key, found_key; 4340 struct btrfs_path *path; 4341 struct extent_buffer *leaf; 4342 int ret; 4343 4344 key.objectid = btrfs_ino(inode); 4345 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4346 key.offset = (u64)-1; 4347 4348 path = btrfs_alloc_path(); 4349 if (!path) 4350 return -ENOMEM; 4351 4352 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4353 if (ret < 0) 4354 goto out; 4355 /* FIXME: we should be able to handle this */ 4356 if (ret == 0) 4357 goto out; 4358 ret = 0; 4359 4360 /* 4361 * MAGIC NUMBER EXPLANATION: 4362 * since we search a directory based on f_pos we have to start at 2 4363 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4364 * else has to start at 2 4365 */ 4366 if (path->slots[0] == 0) { 4367 BTRFS_I(inode)->index_cnt = 2; 4368 goto out; 4369 } 4370 4371 path->slots[0]--; 4372 4373 leaf = path->nodes[0]; 4374 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4375 4376 if (found_key.objectid != btrfs_ino(inode) || 4377 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4378 BTRFS_I(inode)->index_cnt = 2; 4379 goto out; 4380 } 4381 4382 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4383 out: 4384 btrfs_free_path(path); 4385 return ret; 4386 } 4387 4388 /* 4389 * helper to find a free sequence number in a given directory. This current 4390 * code is very simple, later versions will do smarter things in the btree 4391 */ 4392 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4393 { 4394 int ret = 0; 4395 4396 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4397 ret = btrfs_inode_delayed_dir_index_count(dir); 4398 if (ret) { 4399 ret = btrfs_set_inode_index_count(dir); 4400 if (ret) 4401 return ret; 4402 } 4403 } 4404 4405 *index = BTRFS_I(dir)->index_cnt; 4406 BTRFS_I(dir)->index_cnt++; 4407 4408 return ret; 4409 } 4410 4411 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4412 struct btrfs_root *root, 4413 struct inode *dir, 4414 const char *name, int name_len, 4415 u64 ref_objectid, u64 objectid, int mode, 4416 u64 *index) 4417 { 4418 struct inode *inode; 4419 struct btrfs_inode_item *inode_item; 4420 struct btrfs_key *location; 4421 struct btrfs_path *path; 4422 struct btrfs_inode_ref *ref; 4423 struct btrfs_key key[2]; 4424 u32 sizes[2]; 4425 unsigned long ptr; 4426 int ret; 4427 int owner; 4428 4429 path = btrfs_alloc_path(); 4430 BUG_ON(!path); 4431 4432 inode = new_inode(root->fs_info->sb); 4433 if (!inode) { 4434 btrfs_free_path(path); 4435 return ERR_PTR(-ENOMEM); 4436 } 4437 4438 /* 4439 * we have to initialize this early, so we can reclaim the inode 4440 * number if we fail afterwards in this function. 4441 */ 4442 inode->i_ino = objectid; 4443 4444 if (dir) { 4445 trace_btrfs_inode_request(dir); 4446 4447 ret = btrfs_set_inode_index(dir, index); 4448 if (ret) { 4449 btrfs_free_path(path); 4450 iput(inode); 4451 return ERR_PTR(ret); 4452 } 4453 } 4454 /* 4455 * index_cnt is ignored for everything but a dir, 4456 * btrfs_get_inode_index_count has an explanation for the magic 4457 * number 4458 */ 4459 BTRFS_I(inode)->index_cnt = 2; 4460 BTRFS_I(inode)->root = root; 4461 BTRFS_I(inode)->generation = trans->transid; 4462 inode->i_generation = BTRFS_I(inode)->generation; 4463 btrfs_set_inode_space_info(root, inode); 4464 4465 if (mode & S_IFDIR) 4466 owner = 0; 4467 else 4468 owner = 1; 4469 4470 key[0].objectid = objectid; 4471 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4472 key[0].offset = 0; 4473 4474 key[1].objectid = objectid; 4475 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4476 key[1].offset = ref_objectid; 4477 4478 sizes[0] = sizeof(struct btrfs_inode_item); 4479 sizes[1] = name_len + sizeof(*ref); 4480 4481 path->leave_spinning = 1; 4482 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4483 if (ret != 0) 4484 goto fail; 4485 4486 inode_init_owner(inode, dir, mode); 4487 inode_set_bytes(inode, 0); 4488 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4489 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4490 struct btrfs_inode_item); 4491 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4492 4493 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4494 struct btrfs_inode_ref); 4495 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4496 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4497 ptr = (unsigned long)(ref + 1); 4498 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4499 4500 btrfs_mark_buffer_dirty(path->nodes[0]); 4501 btrfs_free_path(path); 4502 4503 location = &BTRFS_I(inode)->location; 4504 location->objectid = objectid; 4505 location->offset = 0; 4506 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4507 4508 btrfs_inherit_iflags(inode, dir); 4509 4510 if ((mode & S_IFREG)) { 4511 if (btrfs_test_opt(root, NODATASUM)) 4512 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4513 if (btrfs_test_opt(root, NODATACOW) || 4514 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4515 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4516 } 4517 4518 insert_inode_hash(inode); 4519 inode_tree_add(inode); 4520 4521 trace_btrfs_inode_new(inode); 4522 4523 return inode; 4524 fail: 4525 if (dir) 4526 BTRFS_I(dir)->index_cnt--; 4527 btrfs_free_path(path); 4528 iput(inode); 4529 return ERR_PTR(ret); 4530 } 4531 4532 static inline u8 btrfs_inode_type(struct inode *inode) 4533 { 4534 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4535 } 4536 4537 /* 4538 * utility function to add 'inode' into 'parent_inode' with 4539 * a give name and a given sequence number. 4540 * if 'add_backref' is true, also insert a backref from the 4541 * inode to the parent directory. 4542 */ 4543 int btrfs_add_link(struct btrfs_trans_handle *trans, 4544 struct inode *parent_inode, struct inode *inode, 4545 const char *name, int name_len, int add_backref, u64 index) 4546 { 4547 int ret = 0; 4548 struct btrfs_key key; 4549 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4550 u64 ino = btrfs_ino(inode); 4551 u64 parent_ino = btrfs_ino(parent_inode); 4552 4553 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4554 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4555 } else { 4556 key.objectid = ino; 4557 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4558 key.offset = 0; 4559 } 4560 4561 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4562 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4563 key.objectid, root->root_key.objectid, 4564 parent_ino, index, name, name_len); 4565 } else if (add_backref) { 4566 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4567 parent_ino, index); 4568 } 4569 4570 if (ret == 0) { 4571 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4572 parent_inode, &key, 4573 btrfs_inode_type(inode), index); 4574 BUG_ON(ret); 4575 4576 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4577 name_len * 2); 4578 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4579 ret = btrfs_update_inode(trans, root, parent_inode); 4580 } 4581 return ret; 4582 } 4583 4584 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4585 struct inode *dir, struct dentry *dentry, 4586 struct inode *inode, int backref, u64 index) 4587 { 4588 int err = btrfs_add_link(trans, dir, inode, 4589 dentry->d_name.name, dentry->d_name.len, 4590 backref, index); 4591 if (!err) { 4592 d_instantiate(dentry, inode); 4593 return 0; 4594 } 4595 if (err > 0) 4596 err = -EEXIST; 4597 return err; 4598 } 4599 4600 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4601 int mode, dev_t rdev) 4602 { 4603 struct btrfs_trans_handle *trans; 4604 struct btrfs_root *root = BTRFS_I(dir)->root; 4605 struct inode *inode = NULL; 4606 int err; 4607 int drop_inode = 0; 4608 u64 objectid; 4609 unsigned long nr = 0; 4610 u64 index = 0; 4611 4612 if (!new_valid_dev(rdev)) 4613 return -EINVAL; 4614 4615 /* 4616 * 2 for inode item and ref 4617 * 2 for dir items 4618 * 1 for xattr if selinux is on 4619 */ 4620 trans = btrfs_start_transaction(root, 5); 4621 if (IS_ERR(trans)) 4622 return PTR_ERR(trans); 4623 4624 err = btrfs_find_free_ino(root, &objectid); 4625 if (err) 4626 goto out_unlock; 4627 4628 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4629 dentry->d_name.len, btrfs_ino(dir), objectid, 4630 mode, &index); 4631 if (IS_ERR(inode)) { 4632 err = PTR_ERR(inode); 4633 goto out_unlock; 4634 } 4635 4636 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4637 if (err) { 4638 drop_inode = 1; 4639 goto out_unlock; 4640 } 4641 4642 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4643 if (err) 4644 drop_inode = 1; 4645 else { 4646 inode->i_op = &btrfs_special_inode_operations; 4647 init_special_inode(inode, inode->i_mode, rdev); 4648 btrfs_update_inode(trans, root, inode); 4649 } 4650 out_unlock: 4651 nr = trans->blocks_used; 4652 btrfs_end_transaction_throttle(trans, root); 4653 btrfs_btree_balance_dirty(root, nr); 4654 if (drop_inode) { 4655 inode_dec_link_count(inode); 4656 iput(inode); 4657 } 4658 return err; 4659 } 4660 4661 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4662 int mode, struct nameidata *nd) 4663 { 4664 struct btrfs_trans_handle *trans; 4665 struct btrfs_root *root = BTRFS_I(dir)->root; 4666 struct inode *inode = NULL; 4667 int drop_inode = 0; 4668 int err; 4669 unsigned long nr = 0; 4670 u64 objectid; 4671 u64 index = 0; 4672 4673 /* 4674 * 2 for inode item and ref 4675 * 2 for dir items 4676 * 1 for xattr if selinux is on 4677 */ 4678 trans = btrfs_start_transaction(root, 5); 4679 if (IS_ERR(trans)) 4680 return PTR_ERR(trans); 4681 4682 err = btrfs_find_free_ino(root, &objectid); 4683 if (err) 4684 goto out_unlock; 4685 4686 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4687 dentry->d_name.len, btrfs_ino(dir), objectid, 4688 mode, &index); 4689 if (IS_ERR(inode)) { 4690 err = PTR_ERR(inode); 4691 goto out_unlock; 4692 } 4693 4694 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4695 if (err) { 4696 drop_inode = 1; 4697 goto out_unlock; 4698 } 4699 4700 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4701 if (err) 4702 drop_inode = 1; 4703 else { 4704 inode->i_mapping->a_ops = &btrfs_aops; 4705 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4706 inode->i_fop = &btrfs_file_operations; 4707 inode->i_op = &btrfs_file_inode_operations; 4708 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4709 } 4710 out_unlock: 4711 nr = trans->blocks_used; 4712 btrfs_end_transaction_throttle(trans, root); 4713 if (drop_inode) { 4714 inode_dec_link_count(inode); 4715 iput(inode); 4716 } 4717 btrfs_btree_balance_dirty(root, nr); 4718 return err; 4719 } 4720 4721 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4722 struct dentry *dentry) 4723 { 4724 struct btrfs_trans_handle *trans; 4725 struct btrfs_root *root = BTRFS_I(dir)->root; 4726 struct inode *inode = old_dentry->d_inode; 4727 u64 index; 4728 unsigned long nr = 0; 4729 int err; 4730 int drop_inode = 0; 4731 4732 /* do not allow sys_link's with other subvols of the same device */ 4733 if (root->objectid != BTRFS_I(inode)->root->objectid) 4734 return -EXDEV; 4735 4736 if (inode->i_nlink == ~0U) 4737 return -EMLINK; 4738 4739 err = btrfs_set_inode_index(dir, &index); 4740 if (err) 4741 goto fail; 4742 4743 /* 4744 * 2 items for inode and inode ref 4745 * 2 items for dir items 4746 * 1 item for parent inode 4747 */ 4748 trans = btrfs_start_transaction(root, 5); 4749 if (IS_ERR(trans)) { 4750 err = PTR_ERR(trans); 4751 goto fail; 4752 } 4753 4754 btrfs_inc_nlink(inode); 4755 inode->i_ctime = CURRENT_TIME; 4756 ihold(inode); 4757 4758 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4759 4760 if (err) { 4761 drop_inode = 1; 4762 } else { 4763 struct dentry *parent = dget_parent(dentry); 4764 err = btrfs_update_inode(trans, root, inode); 4765 BUG_ON(err); 4766 btrfs_log_new_name(trans, inode, NULL, parent); 4767 dput(parent); 4768 } 4769 4770 nr = trans->blocks_used; 4771 btrfs_end_transaction_throttle(trans, root); 4772 fail: 4773 if (drop_inode) { 4774 inode_dec_link_count(inode); 4775 iput(inode); 4776 } 4777 btrfs_btree_balance_dirty(root, nr); 4778 return err; 4779 } 4780 4781 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4782 { 4783 struct inode *inode = NULL; 4784 struct btrfs_trans_handle *trans; 4785 struct btrfs_root *root = BTRFS_I(dir)->root; 4786 int err = 0; 4787 int drop_on_err = 0; 4788 u64 objectid = 0; 4789 u64 index = 0; 4790 unsigned long nr = 1; 4791 4792 /* 4793 * 2 items for inode and ref 4794 * 2 items for dir items 4795 * 1 for xattr if selinux is on 4796 */ 4797 trans = btrfs_start_transaction(root, 5); 4798 if (IS_ERR(trans)) 4799 return PTR_ERR(trans); 4800 4801 err = btrfs_find_free_ino(root, &objectid); 4802 if (err) 4803 goto out_fail; 4804 4805 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4806 dentry->d_name.len, btrfs_ino(dir), objectid, 4807 S_IFDIR | mode, &index); 4808 if (IS_ERR(inode)) { 4809 err = PTR_ERR(inode); 4810 goto out_fail; 4811 } 4812 4813 drop_on_err = 1; 4814 4815 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4816 if (err) 4817 goto out_fail; 4818 4819 inode->i_op = &btrfs_dir_inode_operations; 4820 inode->i_fop = &btrfs_dir_file_operations; 4821 4822 btrfs_i_size_write(inode, 0); 4823 err = btrfs_update_inode(trans, root, inode); 4824 if (err) 4825 goto out_fail; 4826 4827 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4828 dentry->d_name.len, 0, index); 4829 if (err) 4830 goto out_fail; 4831 4832 d_instantiate(dentry, inode); 4833 drop_on_err = 0; 4834 4835 out_fail: 4836 nr = trans->blocks_used; 4837 btrfs_end_transaction_throttle(trans, root); 4838 if (drop_on_err) 4839 iput(inode); 4840 btrfs_btree_balance_dirty(root, nr); 4841 return err; 4842 } 4843 4844 /* helper for btfs_get_extent. Given an existing extent in the tree, 4845 * and an extent that you want to insert, deal with overlap and insert 4846 * the new extent into the tree. 4847 */ 4848 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4849 struct extent_map *existing, 4850 struct extent_map *em, 4851 u64 map_start, u64 map_len) 4852 { 4853 u64 start_diff; 4854 4855 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4856 start_diff = map_start - em->start; 4857 em->start = map_start; 4858 em->len = map_len; 4859 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4860 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4861 em->block_start += start_diff; 4862 em->block_len -= start_diff; 4863 } 4864 return add_extent_mapping(em_tree, em); 4865 } 4866 4867 static noinline int uncompress_inline(struct btrfs_path *path, 4868 struct inode *inode, struct page *page, 4869 size_t pg_offset, u64 extent_offset, 4870 struct btrfs_file_extent_item *item) 4871 { 4872 int ret; 4873 struct extent_buffer *leaf = path->nodes[0]; 4874 char *tmp; 4875 size_t max_size; 4876 unsigned long inline_size; 4877 unsigned long ptr; 4878 int compress_type; 4879 4880 WARN_ON(pg_offset != 0); 4881 compress_type = btrfs_file_extent_compression(leaf, item); 4882 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4883 inline_size = btrfs_file_extent_inline_item_len(leaf, 4884 btrfs_item_nr(leaf, path->slots[0])); 4885 tmp = kmalloc(inline_size, GFP_NOFS); 4886 if (!tmp) 4887 return -ENOMEM; 4888 ptr = btrfs_file_extent_inline_start(item); 4889 4890 read_extent_buffer(leaf, tmp, ptr, inline_size); 4891 4892 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4893 ret = btrfs_decompress(compress_type, tmp, page, 4894 extent_offset, inline_size, max_size); 4895 if (ret) { 4896 char *kaddr = kmap_atomic(page, KM_USER0); 4897 unsigned long copy_size = min_t(u64, 4898 PAGE_CACHE_SIZE - pg_offset, 4899 max_size - extent_offset); 4900 memset(kaddr + pg_offset, 0, copy_size); 4901 kunmap_atomic(kaddr, KM_USER0); 4902 } 4903 kfree(tmp); 4904 return 0; 4905 } 4906 4907 /* 4908 * a bit scary, this does extent mapping from logical file offset to the disk. 4909 * the ugly parts come from merging extents from the disk with the in-ram 4910 * representation. This gets more complex because of the data=ordered code, 4911 * where the in-ram extents might be locked pending data=ordered completion. 4912 * 4913 * This also copies inline extents directly into the page. 4914 */ 4915 4916 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4917 size_t pg_offset, u64 start, u64 len, 4918 int create) 4919 { 4920 int ret; 4921 int err = 0; 4922 u64 bytenr; 4923 u64 extent_start = 0; 4924 u64 extent_end = 0; 4925 u64 objectid = btrfs_ino(inode); 4926 u32 found_type; 4927 struct btrfs_path *path = NULL; 4928 struct btrfs_root *root = BTRFS_I(inode)->root; 4929 struct btrfs_file_extent_item *item; 4930 struct extent_buffer *leaf; 4931 struct btrfs_key found_key; 4932 struct extent_map *em = NULL; 4933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4934 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4935 struct btrfs_trans_handle *trans = NULL; 4936 int compress_type; 4937 4938 again: 4939 read_lock(&em_tree->lock); 4940 em = lookup_extent_mapping(em_tree, start, len); 4941 if (em) 4942 em->bdev = root->fs_info->fs_devices->latest_bdev; 4943 read_unlock(&em_tree->lock); 4944 4945 if (em) { 4946 if (em->start > start || em->start + em->len <= start) 4947 free_extent_map(em); 4948 else if (em->block_start == EXTENT_MAP_INLINE && page) 4949 free_extent_map(em); 4950 else 4951 goto out; 4952 } 4953 em = alloc_extent_map(); 4954 if (!em) { 4955 err = -ENOMEM; 4956 goto out; 4957 } 4958 em->bdev = root->fs_info->fs_devices->latest_bdev; 4959 em->start = EXTENT_MAP_HOLE; 4960 em->orig_start = EXTENT_MAP_HOLE; 4961 em->len = (u64)-1; 4962 em->block_len = (u64)-1; 4963 4964 if (!path) { 4965 path = btrfs_alloc_path(); 4966 if (!path) { 4967 err = -ENOMEM; 4968 goto out; 4969 } 4970 /* 4971 * Chances are we'll be called again, so go ahead and do 4972 * readahead 4973 */ 4974 path->reada = 1; 4975 } 4976 4977 ret = btrfs_lookup_file_extent(trans, root, path, 4978 objectid, start, trans != NULL); 4979 if (ret < 0) { 4980 err = ret; 4981 goto out; 4982 } 4983 4984 if (ret != 0) { 4985 if (path->slots[0] == 0) 4986 goto not_found; 4987 path->slots[0]--; 4988 } 4989 4990 leaf = path->nodes[0]; 4991 item = btrfs_item_ptr(leaf, path->slots[0], 4992 struct btrfs_file_extent_item); 4993 /* are we inside the extent that was found? */ 4994 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4995 found_type = btrfs_key_type(&found_key); 4996 if (found_key.objectid != objectid || 4997 found_type != BTRFS_EXTENT_DATA_KEY) { 4998 goto not_found; 4999 } 5000 5001 found_type = btrfs_file_extent_type(leaf, item); 5002 extent_start = found_key.offset; 5003 compress_type = btrfs_file_extent_compression(leaf, item); 5004 if (found_type == BTRFS_FILE_EXTENT_REG || 5005 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5006 extent_end = extent_start + 5007 btrfs_file_extent_num_bytes(leaf, item); 5008 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5009 size_t size; 5010 size = btrfs_file_extent_inline_len(leaf, item); 5011 extent_end = (extent_start + size + root->sectorsize - 1) & 5012 ~((u64)root->sectorsize - 1); 5013 } 5014 5015 if (start >= extent_end) { 5016 path->slots[0]++; 5017 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5018 ret = btrfs_next_leaf(root, path); 5019 if (ret < 0) { 5020 err = ret; 5021 goto out; 5022 } 5023 if (ret > 0) 5024 goto not_found; 5025 leaf = path->nodes[0]; 5026 } 5027 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5028 if (found_key.objectid != objectid || 5029 found_key.type != BTRFS_EXTENT_DATA_KEY) 5030 goto not_found; 5031 if (start + len <= found_key.offset) 5032 goto not_found; 5033 em->start = start; 5034 em->len = found_key.offset - start; 5035 goto not_found_em; 5036 } 5037 5038 if (found_type == BTRFS_FILE_EXTENT_REG || 5039 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5040 em->start = extent_start; 5041 em->len = extent_end - extent_start; 5042 em->orig_start = extent_start - 5043 btrfs_file_extent_offset(leaf, item); 5044 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5045 if (bytenr == 0) { 5046 em->block_start = EXTENT_MAP_HOLE; 5047 goto insert; 5048 } 5049 if (compress_type != BTRFS_COMPRESS_NONE) { 5050 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5051 em->compress_type = compress_type; 5052 em->block_start = bytenr; 5053 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5054 item); 5055 } else { 5056 bytenr += btrfs_file_extent_offset(leaf, item); 5057 em->block_start = bytenr; 5058 em->block_len = em->len; 5059 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5060 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5061 } 5062 goto insert; 5063 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5064 unsigned long ptr; 5065 char *map; 5066 size_t size; 5067 size_t extent_offset; 5068 size_t copy_size; 5069 5070 em->block_start = EXTENT_MAP_INLINE; 5071 if (!page || create) { 5072 em->start = extent_start; 5073 em->len = extent_end - extent_start; 5074 goto out; 5075 } 5076 5077 size = btrfs_file_extent_inline_len(leaf, item); 5078 extent_offset = page_offset(page) + pg_offset - extent_start; 5079 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5080 size - extent_offset); 5081 em->start = extent_start + extent_offset; 5082 em->len = (copy_size + root->sectorsize - 1) & 5083 ~((u64)root->sectorsize - 1); 5084 em->orig_start = EXTENT_MAP_INLINE; 5085 if (compress_type) { 5086 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5087 em->compress_type = compress_type; 5088 } 5089 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5090 if (create == 0 && !PageUptodate(page)) { 5091 if (btrfs_file_extent_compression(leaf, item) != 5092 BTRFS_COMPRESS_NONE) { 5093 ret = uncompress_inline(path, inode, page, 5094 pg_offset, 5095 extent_offset, item); 5096 BUG_ON(ret); 5097 } else { 5098 map = kmap(page); 5099 read_extent_buffer(leaf, map + pg_offset, ptr, 5100 copy_size); 5101 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5102 memset(map + pg_offset + copy_size, 0, 5103 PAGE_CACHE_SIZE - pg_offset - 5104 copy_size); 5105 } 5106 kunmap(page); 5107 } 5108 flush_dcache_page(page); 5109 } else if (create && PageUptodate(page)) { 5110 WARN_ON(1); 5111 if (!trans) { 5112 kunmap(page); 5113 free_extent_map(em); 5114 em = NULL; 5115 5116 btrfs_release_path(path); 5117 trans = btrfs_join_transaction(root); 5118 5119 if (IS_ERR(trans)) 5120 return ERR_CAST(trans); 5121 goto again; 5122 } 5123 map = kmap(page); 5124 write_extent_buffer(leaf, map + pg_offset, ptr, 5125 copy_size); 5126 kunmap(page); 5127 btrfs_mark_buffer_dirty(leaf); 5128 } 5129 set_extent_uptodate(io_tree, em->start, 5130 extent_map_end(em) - 1, NULL, GFP_NOFS); 5131 goto insert; 5132 } else { 5133 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5134 WARN_ON(1); 5135 } 5136 not_found: 5137 em->start = start; 5138 em->len = len; 5139 not_found_em: 5140 em->block_start = EXTENT_MAP_HOLE; 5141 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5142 insert: 5143 btrfs_release_path(path); 5144 if (em->start > start || extent_map_end(em) <= start) { 5145 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5146 "[%llu %llu]\n", (unsigned long long)em->start, 5147 (unsigned long long)em->len, 5148 (unsigned long long)start, 5149 (unsigned long long)len); 5150 err = -EIO; 5151 goto out; 5152 } 5153 5154 err = 0; 5155 write_lock(&em_tree->lock); 5156 ret = add_extent_mapping(em_tree, em); 5157 /* it is possible that someone inserted the extent into the tree 5158 * while we had the lock dropped. It is also possible that 5159 * an overlapping map exists in the tree 5160 */ 5161 if (ret == -EEXIST) { 5162 struct extent_map *existing; 5163 5164 ret = 0; 5165 5166 existing = lookup_extent_mapping(em_tree, start, len); 5167 if (existing && (existing->start > start || 5168 existing->start + existing->len <= start)) { 5169 free_extent_map(existing); 5170 existing = NULL; 5171 } 5172 if (!existing) { 5173 existing = lookup_extent_mapping(em_tree, em->start, 5174 em->len); 5175 if (existing) { 5176 err = merge_extent_mapping(em_tree, existing, 5177 em, start, 5178 root->sectorsize); 5179 free_extent_map(existing); 5180 if (err) { 5181 free_extent_map(em); 5182 em = NULL; 5183 } 5184 } else { 5185 err = -EIO; 5186 free_extent_map(em); 5187 em = NULL; 5188 } 5189 } else { 5190 free_extent_map(em); 5191 em = existing; 5192 err = 0; 5193 } 5194 } 5195 write_unlock(&em_tree->lock); 5196 out: 5197 5198 trace_btrfs_get_extent(root, em); 5199 5200 if (path) 5201 btrfs_free_path(path); 5202 if (trans) { 5203 ret = btrfs_end_transaction(trans, root); 5204 if (!err) 5205 err = ret; 5206 } 5207 if (err) { 5208 free_extent_map(em); 5209 return ERR_PTR(err); 5210 } 5211 return em; 5212 } 5213 5214 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5215 size_t pg_offset, u64 start, u64 len, 5216 int create) 5217 { 5218 struct extent_map *em; 5219 struct extent_map *hole_em = NULL; 5220 u64 range_start = start; 5221 u64 end; 5222 u64 found; 5223 u64 found_end; 5224 int err = 0; 5225 5226 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5227 if (IS_ERR(em)) 5228 return em; 5229 if (em) { 5230 /* 5231 * if our em maps to a hole, there might 5232 * actually be delalloc bytes behind it 5233 */ 5234 if (em->block_start != EXTENT_MAP_HOLE) 5235 return em; 5236 else 5237 hole_em = em; 5238 } 5239 5240 /* check to see if we've wrapped (len == -1 or similar) */ 5241 end = start + len; 5242 if (end < start) 5243 end = (u64)-1; 5244 else 5245 end -= 1; 5246 5247 em = NULL; 5248 5249 /* ok, we didn't find anything, lets look for delalloc */ 5250 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5251 end, len, EXTENT_DELALLOC, 1); 5252 found_end = range_start + found; 5253 if (found_end < range_start) 5254 found_end = (u64)-1; 5255 5256 /* 5257 * we didn't find anything useful, return 5258 * the original results from get_extent() 5259 */ 5260 if (range_start > end || found_end <= start) { 5261 em = hole_em; 5262 hole_em = NULL; 5263 goto out; 5264 } 5265 5266 /* adjust the range_start to make sure it doesn't 5267 * go backwards from the start they passed in 5268 */ 5269 range_start = max(start,range_start); 5270 found = found_end - range_start; 5271 5272 if (found > 0) { 5273 u64 hole_start = start; 5274 u64 hole_len = len; 5275 5276 em = alloc_extent_map(); 5277 if (!em) { 5278 err = -ENOMEM; 5279 goto out; 5280 } 5281 /* 5282 * when btrfs_get_extent can't find anything it 5283 * returns one huge hole 5284 * 5285 * make sure what it found really fits our range, and 5286 * adjust to make sure it is based on the start from 5287 * the caller 5288 */ 5289 if (hole_em) { 5290 u64 calc_end = extent_map_end(hole_em); 5291 5292 if (calc_end <= start || (hole_em->start > end)) { 5293 free_extent_map(hole_em); 5294 hole_em = NULL; 5295 } else { 5296 hole_start = max(hole_em->start, start); 5297 hole_len = calc_end - hole_start; 5298 } 5299 } 5300 em->bdev = NULL; 5301 if (hole_em && range_start > hole_start) { 5302 /* our hole starts before our delalloc, so we 5303 * have to return just the parts of the hole 5304 * that go until the delalloc starts 5305 */ 5306 em->len = min(hole_len, 5307 range_start - hole_start); 5308 em->start = hole_start; 5309 em->orig_start = hole_start; 5310 /* 5311 * don't adjust block start at all, 5312 * it is fixed at EXTENT_MAP_HOLE 5313 */ 5314 em->block_start = hole_em->block_start; 5315 em->block_len = hole_len; 5316 } else { 5317 em->start = range_start; 5318 em->len = found; 5319 em->orig_start = range_start; 5320 em->block_start = EXTENT_MAP_DELALLOC; 5321 em->block_len = found; 5322 } 5323 } else if (hole_em) { 5324 return hole_em; 5325 } 5326 out: 5327 5328 free_extent_map(hole_em); 5329 if (err) { 5330 free_extent_map(em); 5331 return ERR_PTR(err); 5332 } 5333 return em; 5334 } 5335 5336 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5337 struct extent_map *em, 5338 u64 start, u64 len) 5339 { 5340 struct btrfs_root *root = BTRFS_I(inode)->root; 5341 struct btrfs_trans_handle *trans; 5342 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5343 struct btrfs_key ins; 5344 u64 alloc_hint; 5345 int ret; 5346 bool insert = false; 5347 5348 /* 5349 * Ok if the extent map we looked up is a hole and is for the exact 5350 * range we want, there is no reason to allocate a new one, however if 5351 * it is not right then we need to free this one and drop the cache for 5352 * our range. 5353 */ 5354 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5355 em->len != len) { 5356 free_extent_map(em); 5357 em = NULL; 5358 insert = true; 5359 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5360 } 5361 5362 trans = btrfs_join_transaction(root); 5363 if (IS_ERR(trans)) 5364 return ERR_CAST(trans); 5365 5366 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5367 btrfs_add_inode_defrag(trans, inode); 5368 5369 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5370 5371 alloc_hint = get_extent_allocation_hint(inode, start, len); 5372 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5373 alloc_hint, (u64)-1, &ins, 1); 5374 if (ret) { 5375 em = ERR_PTR(ret); 5376 goto out; 5377 } 5378 5379 if (!em) { 5380 em = alloc_extent_map(); 5381 if (!em) { 5382 em = ERR_PTR(-ENOMEM); 5383 goto out; 5384 } 5385 } 5386 5387 em->start = start; 5388 em->orig_start = em->start; 5389 em->len = ins.offset; 5390 5391 em->block_start = ins.objectid; 5392 em->block_len = ins.offset; 5393 em->bdev = root->fs_info->fs_devices->latest_bdev; 5394 5395 /* 5396 * We need to do this because if we're using the original em we searched 5397 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5398 */ 5399 em->flags = 0; 5400 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5401 5402 while (insert) { 5403 write_lock(&em_tree->lock); 5404 ret = add_extent_mapping(em_tree, em); 5405 write_unlock(&em_tree->lock); 5406 if (ret != -EEXIST) 5407 break; 5408 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5409 } 5410 5411 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5412 ins.offset, ins.offset, 0); 5413 if (ret) { 5414 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5415 em = ERR_PTR(ret); 5416 } 5417 out: 5418 btrfs_end_transaction(trans, root); 5419 return em; 5420 } 5421 5422 /* 5423 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5424 * block must be cow'd 5425 */ 5426 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5427 struct inode *inode, u64 offset, u64 len) 5428 { 5429 struct btrfs_path *path; 5430 int ret; 5431 struct extent_buffer *leaf; 5432 struct btrfs_root *root = BTRFS_I(inode)->root; 5433 struct btrfs_file_extent_item *fi; 5434 struct btrfs_key key; 5435 u64 disk_bytenr; 5436 u64 backref_offset; 5437 u64 extent_end; 5438 u64 num_bytes; 5439 int slot; 5440 int found_type; 5441 5442 path = btrfs_alloc_path(); 5443 if (!path) 5444 return -ENOMEM; 5445 5446 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5447 offset, 0); 5448 if (ret < 0) 5449 goto out; 5450 5451 slot = path->slots[0]; 5452 if (ret == 1) { 5453 if (slot == 0) { 5454 /* can't find the item, must cow */ 5455 ret = 0; 5456 goto out; 5457 } 5458 slot--; 5459 } 5460 ret = 0; 5461 leaf = path->nodes[0]; 5462 btrfs_item_key_to_cpu(leaf, &key, slot); 5463 if (key.objectid != btrfs_ino(inode) || 5464 key.type != BTRFS_EXTENT_DATA_KEY) { 5465 /* not our file or wrong item type, must cow */ 5466 goto out; 5467 } 5468 5469 if (key.offset > offset) { 5470 /* Wrong offset, must cow */ 5471 goto out; 5472 } 5473 5474 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5475 found_type = btrfs_file_extent_type(leaf, fi); 5476 if (found_type != BTRFS_FILE_EXTENT_REG && 5477 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5478 /* not a regular extent, must cow */ 5479 goto out; 5480 } 5481 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5482 backref_offset = btrfs_file_extent_offset(leaf, fi); 5483 5484 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5485 if (extent_end < offset + len) { 5486 /* extent doesn't include our full range, must cow */ 5487 goto out; 5488 } 5489 5490 if (btrfs_extent_readonly(root, disk_bytenr)) 5491 goto out; 5492 5493 /* 5494 * look for other files referencing this extent, if we 5495 * find any we must cow 5496 */ 5497 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5498 key.offset - backref_offset, disk_bytenr)) 5499 goto out; 5500 5501 /* 5502 * adjust disk_bytenr and num_bytes to cover just the bytes 5503 * in this extent we are about to write. If there 5504 * are any csums in that range we have to cow in order 5505 * to keep the csums correct 5506 */ 5507 disk_bytenr += backref_offset; 5508 disk_bytenr += offset - key.offset; 5509 num_bytes = min(offset + len, extent_end) - offset; 5510 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5511 goto out; 5512 /* 5513 * all of the above have passed, it is safe to overwrite this extent 5514 * without cow 5515 */ 5516 ret = 1; 5517 out: 5518 btrfs_free_path(path); 5519 return ret; 5520 } 5521 5522 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5523 struct buffer_head *bh_result, int create) 5524 { 5525 struct extent_map *em; 5526 struct btrfs_root *root = BTRFS_I(inode)->root; 5527 u64 start = iblock << inode->i_blkbits; 5528 u64 len = bh_result->b_size; 5529 struct btrfs_trans_handle *trans; 5530 5531 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5532 if (IS_ERR(em)) 5533 return PTR_ERR(em); 5534 5535 /* 5536 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5537 * io. INLINE is special, and we could probably kludge it in here, but 5538 * it's still buffered so for safety lets just fall back to the generic 5539 * buffered path. 5540 * 5541 * For COMPRESSED we _have_ to read the entire extent in so we can 5542 * decompress it, so there will be buffering required no matter what we 5543 * do, so go ahead and fallback to buffered. 5544 * 5545 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5546 * to buffered IO. Don't blame me, this is the price we pay for using 5547 * the generic code. 5548 */ 5549 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5550 em->block_start == EXTENT_MAP_INLINE) { 5551 free_extent_map(em); 5552 return -ENOTBLK; 5553 } 5554 5555 /* Just a good old fashioned hole, return */ 5556 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5557 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5558 free_extent_map(em); 5559 /* DIO will do one hole at a time, so just unlock a sector */ 5560 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5561 start + root->sectorsize - 1, GFP_NOFS); 5562 return 0; 5563 } 5564 5565 /* 5566 * We don't allocate a new extent in the following cases 5567 * 5568 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5569 * existing extent. 5570 * 2) The extent is marked as PREALLOC. We're good to go here and can 5571 * just use the extent. 5572 * 5573 */ 5574 if (!create) { 5575 len = em->len - (start - em->start); 5576 goto map; 5577 } 5578 5579 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5580 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5581 em->block_start != EXTENT_MAP_HOLE)) { 5582 int type; 5583 int ret; 5584 u64 block_start; 5585 5586 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5587 type = BTRFS_ORDERED_PREALLOC; 5588 else 5589 type = BTRFS_ORDERED_NOCOW; 5590 len = min(len, em->len - (start - em->start)); 5591 block_start = em->block_start + (start - em->start); 5592 5593 /* 5594 * we're not going to log anything, but we do need 5595 * to make sure the current transaction stays open 5596 * while we look for nocow cross refs 5597 */ 5598 trans = btrfs_join_transaction(root); 5599 if (IS_ERR(trans)) 5600 goto must_cow; 5601 5602 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5603 ret = btrfs_add_ordered_extent_dio(inode, start, 5604 block_start, len, len, type); 5605 btrfs_end_transaction(trans, root); 5606 if (ret) { 5607 free_extent_map(em); 5608 return ret; 5609 } 5610 goto unlock; 5611 } 5612 btrfs_end_transaction(trans, root); 5613 } 5614 must_cow: 5615 /* 5616 * this will cow the extent, reset the len in case we changed 5617 * it above 5618 */ 5619 len = bh_result->b_size; 5620 em = btrfs_new_extent_direct(inode, em, start, len); 5621 if (IS_ERR(em)) 5622 return PTR_ERR(em); 5623 len = min(len, em->len - (start - em->start)); 5624 unlock: 5625 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5626 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5627 0, NULL, GFP_NOFS); 5628 map: 5629 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5630 inode->i_blkbits; 5631 bh_result->b_size = len; 5632 bh_result->b_bdev = em->bdev; 5633 set_buffer_mapped(bh_result); 5634 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5635 set_buffer_new(bh_result); 5636 5637 free_extent_map(em); 5638 5639 return 0; 5640 } 5641 5642 struct btrfs_dio_private { 5643 struct inode *inode; 5644 u64 logical_offset; 5645 u64 disk_bytenr; 5646 u64 bytes; 5647 u32 *csums; 5648 void *private; 5649 5650 /* number of bios pending for this dio */ 5651 atomic_t pending_bios; 5652 5653 /* IO errors */ 5654 int errors; 5655 5656 struct bio *orig_bio; 5657 }; 5658 5659 static void btrfs_endio_direct_read(struct bio *bio, int err) 5660 { 5661 struct btrfs_dio_private *dip = bio->bi_private; 5662 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5663 struct bio_vec *bvec = bio->bi_io_vec; 5664 struct inode *inode = dip->inode; 5665 struct btrfs_root *root = BTRFS_I(inode)->root; 5666 u64 start; 5667 u32 *private = dip->csums; 5668 5669 start = dip->logical_offset; 5670 do { 5671 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5672 struct page *page = bvec->bv_page; 5673 char *kaddr; 5674 u32 csum = ~(u32)0; 5675 unsigned long flags; 5676 5677 local_irq_save(flags); 5678 kaddr = kmap_atomic(page, KM_IRQ0); 5679 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5680 csum, bvec->bv_len); 5681 btrfs_csum_final(csum, (char *)&csum); 5682 kunmap_atomic(kaddr, KM_IRQ0); 5683 local_irq_restore(flags); 5684 5685 flush_dcache_page(bvec->bv_page); 5686 if (csum != *private) { 5687 printk(KERN_ERR "btrfs csum failed ino %llu off" 5688 " %llu csum %u private %u\n", 5689 (unsigned long long)btrfs_ino(inode), 5690 (unsigned long long)start, 5691 csum, *private); 5692 err = -EIO; 5693 } 5694 } 5695 5696 start += bvec->bv_len; 5697 private++; 5698 bvec++; 5699 } while (bvec <= bvec_end); 5700 5701 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5702 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5703 bio->bi_private = dip->private; 5704 5705 kfree(dip->csums); 5706 kfree(dip); 5707 5708 /* If we had a csum failure make sure to clear the uptodate flag */ 5709 if (err) 5710 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5711 dio_end_io(bio, err); 5712 } 5713 5714 static void btrfs_endio_direct_write(struct bio *bio, int err) 5715 { 5716 struct btrfs_dio_private *dip = bio->bi_private; 5717 struct inode *inode = dip->inode; 5718 struct btrfs_root *root = BTRFS_I(inode)->root; 5719 struct btrfs_trans_handle *trans; 5720 struct btrfs_ordered_extent *ordered = NULL; 5721 struct extent_state *cached_state = NULL; 5722 u64 ordered_offset = dip->logical_offset; 5723 u64 ordered_bytes = dip->bytes; 5724 int ret; 5725 5726 if (err) 5727 goto out_done; 5728 again: 5729 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5730 &ordered_offset, 5731 ordered_bytes); 5732 if (!ret) 5733 goto out_test; 5734 5735 BUG_ON(!ordered); 5736 5737 trans = btrfs_join_transaction(root); 5738 if (IS_ERR(trans)) { 5739 err = -ENOMEM; 5740 goto out; 5741 } 5742 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5743 5744 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5745 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5746 if (!ret) 5747 ret = btrfs_update_inode(trans, root, inode); 5748 err = ret; 5749 goto out; 5750 } 5751 5752 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5753 ordered->file_offset + ordered->len - 1, 0, 5754 &cached_state, GFP_NOFS); 5755 5756 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5757 ret = btrfs_mark_extent_written(trans, inode, 5758 ordered->file_offset, 5759 ordered->file_offset + 5760 ordered->len); 5761 if (ret) { 5762 err = ret; 5763 goto out_unlock; 5764 } 5765 } else { 5766 ret = insert_reserved_file_extent(trans, inode, 5767 ordered->file_offset, 5768 ordered->start, 5769 ordered->disk_len, 5770 ordered->len, 5771 ordered->len, 5772 0, 0, 0, 5773 BTRFS_FILE_EXTENT_REG); 5774 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5775 ordered->file_offset, ordered->len); 5776 if (ret) { 5777 err = ret; 5778 WARN_ON(1); 5779 goto out_unlock; 5780 } 5781 } 5782 5783 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5784 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5785 if (!ret) 5786 btrfs_update_inode(trans, root, inode); 5787 ret = 0; 5788 out_unlock: 5789 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5790 ordered->file_offset + ordered->len - 1, 5791 &cached_state, GFP_NOFS); 5792 out: 5793 btrfs_delalloc_release_metadata(inode, ordered->len); 5794 btrfs_end_transaction(trans, root); 5795 ordered_offset = ordered->file_offset + ordered->len; 5796 btrfs_put_ordered_extent(ordered); 5797 btrfs_put_ordered_extent(ordered); 5798 5799 out_test: 5800 /* 5801 * our bio might span multiple ordered extents. If we haven't 5802 * completed the accounting for the whole dio, go back and try again 5803 */ 5804 if (ordered_offset < dip->logical_offset + dip->bytes) { 5805 ordered_bytes = dip->logical_offset + dip->bytes - 5806 ordered_offset; 5807 goto again; 5808 } 5809 out_done: 5810 bio->bi_private = dip->private; 5811 5812 kfree(dip->csums); 5813 kfree(dip); 5814 5815 /* If we had an error make sure to clear the uptodate flag */ 5816 if (err) 5817 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5818 dio_end_io(bio, err); 5819 } 5820 5821 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5822 struct bio *bio, int mirror_num, 5823 unsigned long bio_flags, u64 offset) 5824 { 5825 int ret; 5826 struct btrfs_root *root = BTRFS_I(inode)->root; 5827 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5828 BUG_ON(ret); 5829 return 0; 5830 } 5831 5832 static void btrfs_end_dio_bio(struct bio *bio, int err) 5833 { 5834 struct btrfs_dio_private *dip = bio->bi_private; 5835 5836 if (err) { 5837 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 5838 "sector %#Lx len %u err no %d\n", 5839 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 5840 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5841 dip->errors = 1; 5842 5843 /* 5844 * before atomic variable goto zero, we must make sure 5845 * dip->errors is perceived to be set. 5846 */ 5847 smp_mb__before_atomic_dec(); 5848 } 5849 5850 /* if there are more bios still pending for this dio, just exit */ 5851 if (!atomic_dec_and_test(&dip->pending_bios)) 5852 goto out; 5853 5854 if (dip->errors) 5855 bio_io_error(dip->orig_bio); 5856 else { 5857 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5858 bio_endio(dip->orig_bio, 0); 5859 } 5860 out: 5861 bio_put(bio); 5862 } 5863 5864 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5865 u64 first_sector, gfp_t gfp_flags) 5866 { 5867 int nr_vecs = bio_get_nr_vecs(bdev); 5868 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5869 } 5870 5871 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5872 int rw, u64 file_offset, int skip_sum, 5873 u32 *csums, int async_submit) 5874 { 5875 int write = rw & REQ_WRITE; 5876 struct btrfs_root *root = BTRFS_I(inode)->root; 5877 int ret; 5878 5879 bio_get(bio); 5880 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5881 if (ret) 5882 goto err; 5883 5884 if (skip_sum) 5885 goto map; 5886 5887 if (write && async_submit) { 5888 ret = btrfs_wq_submit_bio(root->fs_info, 5889 inode, rw, bio, 0, 0, 5890 file_offset, 5891 __btrfs_submit_bio_start_direct_io, 5892 __btrfs_submit_bio_done); 5893 goto err; 5894 } else if (write) { 5895 /* 5896 * If we aren't doing async submit, calculate the csum of the 5897 * bio now. 5898 */ 5899 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 5900 if (ret) 5901 goto err; 5902 } else if (!skip_sum) { 5903 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, 5904 file_offset, csums); 5905 if (ret) 5906 goto err; 5907 } 5908 5909 map: 5910 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 5911 err: 5912 bio_put(bio); 5913 return ret; 5914 } 5915 5916 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5917 int skip_sum) 5918 { 5919 struct inode *inode = dip->inode; 5920 struct btrfs_root *root = BTRFS_I(inode)->root; 5921 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5922 struct bio *bio; 5923 struct bio *orig_bio = dip->orig_bio; 5924 struct bio_vec *bvec = orig_bio->bi_io_vec; 5925 u64 start_sector = orig_bio->bi_sector; 5926 u64 file_offset = dip->logical_offset; 5927 u64 submit_len = 0; 5928 u64 map_length; 5929 int nr_pages = 0; 5930 u32 *csums = dip->csums; 5931 int ret = 0; 5932 int async_submit = 0; 5933 int write = rw & REQ_WRITE; 5934 5935 map_length = orig_bio->bi_size; 5936 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5937 &map_length, NULL, 0); 5938 if (ret) { 5939 bio_put(orig_bio); 5940 return -EIO; 5941 } 5942 5943 if (map_length >= orig_bio->bi_size) { 5944 bio = orig_bio; 5945 goto submit; 5946 } 5947 5948 async_submit = 1; 5949 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5950 if (!bio) 5951 return -ENOMEM; 5952 bio->bi_private = dip; 5953 bio->bi_end_io = btrfs_end_dio_bio; 5954 atomic_inc(&dip->pending_bios); 5955 5956 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5957 if (unlikely(map_length < submit_len + bvec->bv_len || 5958 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5959 bvec->bv_offset) < bvec->bv_len)) { 5960 /* 5961 * inc the count before we submit the bio so 5962 * we know the end IO handler won't happen before 5963 * we inc the count. Otherwise, the dip might get freed 5964 * before we're done setting it up 5965 */ 5966 atomic_inc(&dip->pending_bios); 5967 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5968 file_offset, skip_sum, 5969 csums, async_submit); 5970 if (ret) { 5971 bio_put(bio); 5972 atomic_dec(&dip->pending_bios); 5973 goto out_err; 5974 } 5975 5976 /* Write's use the ordered csums */ 5977 if (!write && !skip_sum) 5978 csums = csums + nr_pages; 5979 start_sector += submit_len >> 9; 5980 file_offset += submit_len; 5981 5982 submit_len = 0; 5983 nr_pages = 0; 5984 5985 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 5986 start_sector, GFP_NOFS); 5987 if (!bio) 5988 goto out_err; 5989 bio->bi_private = dip; 5990 bio->bi_end_io = btrfs_end_dio_bio; 5991 5992 map_length = orig_bio->bi_size; 5993 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5994 &map_length, NULL, 0); 5995 if (ret) { 5996 bio_put(bio); 5997 goto out_err; 5998 } 5999 } else { 6000 submit_len += bvec->bv_len; 6001 nr_pages ++; 6002 bvec++; 6003 } 6004 } 6005 6006 submit: 6007 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6008 csums, async_submit); 6009 if (!ret) 6010 return 0; 6011 6012 bio_put(bio); 6013 out_err: 6014 dip->errors = 1; 6015 /* 6016 * before atomic variable goto zero, we must 6017 * make sure dip->errors is perceived to be set. 6018 */ 6019 smp_mb__before_atomic_dec(); 6020 if (atomic_dec_and_test(&dip->pending_bios)) 6021 bio_io_error(dip->orig_bio); 6022 6023 /* bio_end_io() will handle error, so we needn't return it */ 6024 return 0; 6025 } 6026 6027 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6028 loff_t file_offset) 6029 { 6030 struct btrfs_root *root = BTRFS_I(inode)->root; 6031 struct btrfs_dio_private *dip; 6032 struct bio_vec *bvec = bio->bi_io_vec; 6033 int skip_sum; 6034 int write = rw & REQ_WRITE; 6035 int ret = 0; 6036 6037 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6038 6039 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6040 if (!dip) { 6041 ret = -ENOMEM; 6042 goto free_ordered; 6043 } 6044 dip->csums = NULL; 6045 6046 /* Write's use the ordered csum stuff, so we don't need dip->csums */ 6047 if (!write && !skip_sum) { 6048 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6049 if (!dip->csums) { 6050 kfree(dip); 6051 ret = -ENOMEM; 6052 goto free_ordered; 6053 } 6054 } 6055 6056 dip->private = bio->bi_private; 6057 dip->inode = inode; 6058 dip->logical_offset = file_offset; 6059 6060 dip->bytes = 0; 6061 do { 6062 dip->bytes += bvec->bv_len; 6063 bvec++; 6064 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6065 6066 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6067 bio->bi_private = dip; 6068 dip->errors = 0; 6069 dip->orig_bio = bio; 6070 atomic_set(&dip->pending_bios, 0); 6071 6072 if (write) 6073 bio->bi_end_io = btrfs_endio_direct_write; 6074 else 6075 bio->bi_end_io = btrfs_endio_direct_read; 6076 6077 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6078 if (!ret) 6079 return; 6080 free_ordered: 6081 /* 6082 * If this is a write, we need to clean up the reserved space and kill 6083 * the ordered extent. 6084 */ 6085 if (write) { 6086 struct btrfs_ordered_extent *ordered; 6087 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6088 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6089 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6090 btrfs_free_reserved_extent(root, ordered->start, 6091 ordered->disk_len); 6092 btrfs_put_ordered_extent(ordered); 6093 btrfs_put_ordered_extent(ordered); 6094 } 6095 bio_endio(bio, ret); 6096 } 6097 6098 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6099 const struct iovec *iov, loff_t offset, 6100 unsigned long nr_segs) 6101 { 6102 int seg; 6103 int i; 6104 size_t size; 6105 unsigned long addr; 6106 unsigned blocksize_mask = root->sectorsize - 1; 6107 ssize_t retval = -EINVAL; 6108 loff_t end = offset; 6109 6110 if (offset & blocksize_mask) 6111 goto out; 6112 6113 /* Check the memory alignment. Blocks cannot straddle pages */ 6114 for (seg = 0; seg < nr_segs; seg++) { 6115 addr = (unsigned long)iov[seg].iov_base; 6116 size = iov[seg].iov_len; 6117 end += size; 6118 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6119 goto out; 6120 6121 /* If this is a write we don't need to check anymore */ 6122 if (rw & WRITE) 6123 continue; 6124 6125 /* 6126 * Check to make sure we don't have duplicate iov_base's in this 6127 * iovec, if so return EINVAL, otherwise we'll get csum errors 6128 * when reading back. 6129 */ 6130 for (i = seg + 1; i < nr_segs; i++) { 6131 if (iov[seg].iov_base == iov[i].iov_base) 6132 goto out; 6133 } 6134 } 6135 retval = 0; 6136 out: 6137 return retval; 6138 } 6139 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6140 const struct iovec *iov, loff_t offset, 6141 unsigned long nr_segs) 6142 { 6143 struct file *file = iocb->ki_filp; 6144 struct inode *inode = file->f_mapping->host; 6145 struct btrfs_ordered_extent *ordered; 6146 struct extent_state *cached_state = NULL; 6147 u64 lockstart, lockend; 6148 ssize_t ret; 6149 int writing = rw & WRITE; 6150 int write_bits = 0; 6151 size_t count = iov_length(iov, nr_segs); 6152 6153 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6154 offset, nr_segs)) { 6155 return 0; 6156 } 6157 6158 lockstart = offset; 6159 lockend = offset + count - 1; 6160 6161 if (writing) { 6162 ret = btrfs_delalloc_reserve_space(inode, count); 6163 if (ret) 6164 goto out; 6165 } 6166 6167 while (1) { 6168 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6169 0, &cached_state, GFP_NOFS); 6170 /* 6171 * We're concerned with the entire range that we're going to be 6172 * doing DIO to, so we need to make sure theres no ordered 6173 * extents in this range. 6174 */ 6175 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6176 lockend - lockstart + 1); 6177 if (!ordered) 6178 break; 6179 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6180 &cached_state, GFP_NOFS); 6181 btrfs_start_ordered_extent(inode, ordered, 1); 6182 btrfs_put_ordered_extent(ordered); 6183 cond_resched(); 6184 } 6185 6186 /* 6187 * we don't use btrfs_set_extent_delalloc because we don't want 6188 * the dirty or uptodate bits 6189 */ 6190 if (writing) { 6191 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6192 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6193 EXTENT_DELALLOC, 0, NULL, &cached_state, 6194 GFP_NOFS); 6195 if (ret) { 6196 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6197 lockend, EXTENT_LOCKED | write_bits, 6198 1, 0, &cached_state, GFP_NOFS); 6199 goto out; 6200 } 6201 } 6202 6203 free_extent_state(cached_state); 6204 cached_state = NULL; 6205 6206 ret = __blockdev_direct_IO(rw, iocb, inode, 6207 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6208 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6209 btrfs_submit_direct, 0); 6210 6211 if (ret < 0 && ret != -EIOCBQUEUED) { 6212 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6213 offset + iov_length(iov, nr_segs) - 1, 6214 EXTENT_LOCKED | write_bits, 1, 0, 6215 &cached_state, GFP_NOFS); 6216 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6217 /* 6218 * We're falling back to buffered, unlock the section we didn't 6219 * do IO on. 6220 */ 6221 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6222 offset + iov_length(iov, nr_segs) - 1, 6223 EXTENT_LOCKED | write_bits, 1, 0, 6224 &cached_state, GFP_NOFS); 6225 } 6226 out: 6227 free_extent_state(cached_state); 6228 return ret; 6229 } 6230 6231 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6232 __u64 start, __u64 len) 6233 { 6234 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6235 } 6236 6237 int btrfs_readpage(struct file *file, struct page *page) 6238 { 6239 struct extent_io_tree *tree; 6240 tree = &BTRFS_I(page->mapping->host)->io_tree; 6241 return extent_read_full_page(tree, page, btrfs_get_extent); 6242 } 6243 6244 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6245 { 6246 struct extent_io_tree *tree; 6247 6248 6249 if (current->flags & PF_MEMALLOC) { 6250 redirty_page_for_writepage(wbc, page); 6251 unlock_page(page); 6252 return 0; 6253 } 6254 tree = &BTRFS_I(page->mapping->host)->io_tree; 6255 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6256 } 6257 6258 int btrfs_writepages(struct address_space *mapping, 6259 struct writeback_control *wbc) 6260 { 6261 struct extent_io_tree *tree; 6262 6263 tree = &BTRFS_I(mapping->host)->io_tree; 6264 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6265 } 6266 6267 static int 6268 btrfs_readpages(struct file *file, struct address_space *mapping, 6269 struct list_head *pages, unsigned nr_pages) 6270 { 6271 struct extent_io_tree *tree; 6272 tree = &BTRFS_I(mapping->host)->io_tree; 6273 return extent_readpages(tree, mapping, pages, nr_pages, 6274 btrfs_get_extent); 6275 } 6276 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6277 { 6278 struct extent_io_tree *tree; 6279 struct extent_map_tree *map; 6280 int ret; 6281 6282 tree = &BTRFS_I(page->mapping->host)->io_tree; 6283 map = &BTRFS_I(page->mapping->host)->extent_tree; 6284 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6285 if (ret == 1) { 6286 ClearPagePrivate(page); 6287 set_page_private(page, 0); 6288 page_cache_release(page); 6289 } 6290 return ret; 6291 } 6292 6293 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6294 { 6295 if (PageWriteback(page) || PageDirty(page)) 6296 return 0; 6297 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6298 } 6299 6300 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6301 { 6302 struct extent_io_tree *tree; 6303 struct btrfs_ordered_extent *ordered; 6304 struct extent_state *cached_state = NULL; 6305 u64 page_start = page_offset(page); 6306 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6307 6308 6309 /* 6310 * we have the page locked, so new writeback can't start, 6311 * and the dirty bit won't be cleared while we are here. 6312 * 6313 * Wait for IO on this page so that we can safely clear 6314 * the PagePrivate2 bit and do ordered accounting 6315 */ 6316 wait_on_page_writeback(page); 6317 6318 tree = &BTRFS_I(page->mapping->host)->io_tree; 6319 if (offset) { 6320 btrfs_releasepage(page, GFP_NOFS); 6321 return; 6322 } 6323 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6324 GFP_NOFS); 6325 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6326 page_offset(page)); 6327 if (ordered) { 6328 /* 6329 * IO on this page will never be started, so we need 6330 * to account for any ordered extents now 6331 */ 6332 clear_extent_bit(tree, page_start, page_end, 6333 EXTENT_DIRTY | EXTENT_DELALLOC | 6334 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6335 &cached_state, GFP_NOFS); 6336 /* 6337 * whoever cleared the private bit is responsible 6338 * for the finish_ordered_io 6339 */ 6340 if (TestClearPagePrivate2(page)) { 6341 btrfs_finish_ordered_io(page->mapping->host, 6342 page_start, page_end); 6343 } 6344 btrfs_put_ordered_extent(ordered); 6345 cached_state = NULL; 6346 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6347 GFP_NOFS); 6348 } 6349 clear_extent_bit(tree, page_start, page_end, 6350 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6351 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6352 __btrfs_releasepage(page, GFP_NOFS); 6353 6354 ClearPageChecked(page); 6355 if (PagePrivate(page)) { 6356 ClearPagePrivate(page); 6357 set_page_private(page, 0); 6358 page_cache_release(page); 6359 } 6360 } 6361 6362 /* 6363 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6364 * called from a page fault handler when a page is first dirtied. Hence we must 6365 * be careful to check for EOF conditions here. We set the page up correctly 6366 * for a written page which means we get ENOSPC checking when writing into 6367 * holes and correct delalloc and unwritten extent mapping on filesystems that 6368 * support these features. 6369 * 6370 * We are not allowed to take the i_mutex here so we have to play games to 6371 * protect against truncate races as the page could now be beyond EOF. Because 6372 * vmtruncate() writes the inode size before removing pages, once we have the 6373 * page lock we can determine safely if the page is beyond EOF. If it is not 6374 * beyond EOF, then the page is guaranteed safe against truncation until we 6375 * unlock the page. 6376 */ 6377 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6378 { 6379 struct page *page = vmf->page; 6380 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6381 struct btrfs_root *root = BTRFS_I(inode)->root; 6382 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6383 struct btrfs_ordered_extent *ordered; 6384 struct extent_state *cached_state = NULL; 6385 char *kaddr; 6386 unsigned long zero_start; 6387 loff_t size; 6388 int ret; 6389 u64 page_start; 6390 u64 page_end; 6391 6392 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6393 if (ret) { 6394 if (ret == -ENOMEM) 6395 ret = VM_FAULT_OOM; 6396 else /* -ENOSPC, -EIO, etc */ 6397 ret = VM_FAULT_SIGBUS; 6398 goto out; 6399 } 6400 6401 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6402 again: 6403 lock_page(page); 6404 size = i_size_read(inode); 6405 page_start = page_offset(page); 6406 page_end = page_start + PAGE_CACHE_SIZE - 1; 6407 6408 if ((page->mapping != inode->i_mapping) || 6409 (page_start >= size)) { 6410 /* page got truncated out from underneath us */ 6411 goto out_unlock; 6412 } 6413 wait_on_page_writeback(page); 6414 6415 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6416 GFP_NOFS); 6417 set_page_extent_mapped(page); 6418 6419 /* 6420 * we can't set the delalloc bits if there are pending ordered 6421 * extents. Drop our locks and wait for them to finish 6422 */ 6423 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6424 if (ordered) { 6425 unlock_extent_cached(io_tree, page_start, page_end, 6426 &cached_state, GFP_NOFS); 6427 unlock_page(page); 6428 btrfs_start_ordered_extent(inode, ordered, 1); 6429 btrfs_put_ordered_extent(ordered); 6430 goto again; 6431 } 6432 6433 /* 6434 * XXX - page_mkwrite gets called every time the page is dirtied, even 6435 * if it was already dirty, so for space accounting reasons we need to 6436 * clear any delalloc bits for the range we are fixing to save. There 6437 * is probably a better way to do this, but for now keep consistent with 6438 * prepare_pages in the normal write path. 6439 */ 6440 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6441 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6442 0, 0, &cached_state, GFP_NOFS); 6443 6444 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6445 &cached_state); 6446 if (ret) { 6447 unlock_extent_cached(io_tree, page_start, page_end, 6448 &cached_state, GFP_NOFS); 6449 ret = VM_FAULT_SIGBUS; 6450 goto out_unlock; 6451 } 6452 ret = 0; 6453 6454 /* page is wholly or partially inside EOF */ 6455 if (page_start + PAGE_CACHE_SIZE > size) 6456 zero_start = size & ~PAGE_CACHE_MASK; 6457 else 6458 zero_start = PAGE_CACHE_SIZE; 6459 6460 if (zero_start != PAGE_CACHE_SIZE) { 6461 kaddr = kmap(page); 6462 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6463 flush_dcache_page(page); 6464 kunmap(page); 6465 } 6466 ClearPageChecked(page); 6467 set_page_dirty(page); 6468 SetPageUptodate(page); 6469 6470 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6471 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6472 6473 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6474 6475 out_unlock: 6476 if (!ret) 6477 return VM_FAULT_LOCKED; 6478 unlock_page(page); 6479 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6480 out: 6481 return ret; 6482 } 6483 6484 static int btrfs_truncate(struct inode *inode) 6485 { 6486 struct btrfs_root *root = BTRFS_I(inode)->root; 6487 struct btrfs_block_rsv *rsv; 6488 int ret; 6489 int err = 0; 6490 struct btrfs_trans_handle *trans; 6491 unsigned long nr; 6492 u64 mask = root->sectorsize - 1; 6493 6494 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6495 if (ret) 6496 return ret; 6497 6498 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6499 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6500 6501 /* 6502 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6503 * 3 things going on here 6504 * 6505 * 1) We need to reserve space for our orphan item and the space to 6506 * delete our orphan item. Lord knows we don't want to have a dangling 6507 * orphan item because we didn't reserve space to remove it. 6508 * 6509 * 2) We need to reserve space to update our inode. 6510 * 6511 * 3) We need to have something to cache all the space that is going to 6512 * be free'd up by the truncate operation, but also have some slack 6513 * space reserved in case it uses space during the truncate (thank you 6514 * very much snapshotting). 6515 * 6516 * And we need these to all be seperate. The fact is we can use alot of 6517 * space doing the truncate, and we have no earthly idea how much space 6518 * we will use, so we need the truncate reservation to be seperate so it 6519 * doesn't end up using space reserved for updating the inode or 6520 * removing the orphan item. We also need to be able to stop the 6521 * transaction and start a new one, which means we need to be able to 6522 * update the inode several times, and we have no idea of knowing how 6523 * many times that will be, so we can't just reserve 1 item for the 6524 * entirety of the opration, so that has to be done seperately as well. 6525 * Then there is the orphan item, which does indeed need to be held on 6526 * to for the whole operation, and we need nobody to touch this reserved 6527 * space except the orphan code. 6528 * 6529 * So that leaves us with 6530 * 6531 * 1) root->orphan_block_rsv - for the orphan deletion. 6532 * 2) rsv - for the truncate reservation, which we will steal from the 6533 * transaction reservation. 6534 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6535 * updating the inode. 6536 */ 6537 rsv = btrfs_alloc_block_rsv(root); 6538 if (!rsv) 6539 return -ENOMEM; 6540 btrfs_add_durable_block_rsv(root->fs_info, rsv); 6541 6542 trans = btrfs_start_transaction(root, 4); 6543 if (IS_ERR(trans)) { 6544 err = PTR_ERR(trans); 6545 goto out; 6546 } 6547 6548 /* 6549 * Reserve space for the truncate process. Truncate should be adding 6550 * space, but if there are snapshots it may end up using space. 6551 */ 6552 ret = btrfs_truncate_reserve_metadata(trans, root, rsv); 6553 BUG_ON(ret); 6554 6555 ret = btrfs_orphan_add(trans, inode); 6556 if (ret) { 6557 btrfs_end_transaction(trans, root); 6558 goto out; 6559 } 6560 6561 nr = trans->blocks_used; 6562 btrfs_end_transaction(trans, root); 6563 btrfs_btree_balance_dirty(root, nr); 6564 6565 /* 6566 * Ok so we've already migrated our bytes over for the truncate, so here 6567 * just reserve the one slot we need for updating the inode. 6568 */ 6569 trans = btrfs_start_transaction(root, 1); 6570 if (IS_ERR(trans)) { 6571 err = PTR_ERR(trans); 6572 goto out; 6573 } 6574 trans->block_rsv = rsv; 6575 6576 /* 6577 * setattr is responsible for setting the ordered_data_close flag, 6578 * but that is only tested during the last file release. That 6579 * could happen well after the next commit, leaving a great big 6580 * window where new writes may get lost if someone chooses to write 6581 * to this file after truncating to zero 6582 * 6583 * The inode doesn't have any dirty data here, and so if we commit 6584 * this is a noop. If someone immediately starts writing to the inode 6585 * it is very likely we'll catch some of their writes in this 6586 * transaction, and the commit will find this file on the ordered 6587 * data list with good things to send down. 6588 * 6589 * This is a best effort solution, there is still a window where 6590 * using truncate to replace the contents of the file will 6591 * end up with a zero length file after a crash. 6592 */ 6593 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6594 btrfs_add_ordered_operation(trans, root, inode); 6595 6596 while (1) { 6597 if (!trans) { 6598 trans = btrfs_start_transaction(root, 3); 6599 if (IS_ERR(trans)) { 6600 err = PTR_ERR(trans); 6601 goto out; 6602 } 6603 6604 ret = btrfs_truncate_reserve_metadata(trans, root, 6605 rsv); 6606 BUG_ON(ret); 6607 6608 trans->block_rsv = rsv; 6609 } 6610 6611 ret = btrfs_truncate_inode_items(trans, root, inode, 6612 inode->i_size, 6613 BTRFS_EXTENT_DATA_KEY); 6614 if (ret != -EAGAIN) { 6615 err = ret; 6616 break; 6617 } 6618 6619 trans->block_rsv = &root->fs_info->trans_block_rsv; 6620 ret = btrfs_update_inode(trans, root, inode); 6621 if (ret) { 6622 err = ret; 6623 break; 6624 } 6625 6626 nr = trans->blocks_used; 6627 btrfs_end_transaction(trans, root); 6628 trans = NULL; 6629 btrfs_btree_balance_dirty(root, nr); 6630 } 6631 6632 if (ret == 0 && inode->i_nlink > 0) { 6633 trans->block_rsv = root->orphan_block_rsv; 6634 ret = btrfs_orphan_del(trans, inode); 6635 if (ret) 6636 err = ret; 6637 } else if (ret && inode->i_nlink > 0) { 6638 /* 6639 * Failed to do the truncate, remove us from the in memory 6640 * orphan list. 6641 */ 6642 ret = btrfs_orphan_del(NULL, inode); 6643 } 6644 6645 trans->block_rsv = &root->fs_info->trans_block_rsv; 6646 ret = btrfs_update_inode(trans, root, inode); 6647 if (ret && !err) 6648 err = ret; 6649 6650 nr = trans->blocks_used; 6651 ret = btrfs_end_transaction_throttle(trans, root); 6652 btrfs_btree_balance_dirty(root, nr); 6653 6654 out: 6655 btrfs_free_block_rsv(root, rsv); 6656 6657 if (ret && !err) 6658 err = ret; 6659 6660 return err; 6661 } 6662 6663 /* 6664 * create a new subvolume directory/inode (helper for the ioctl). 6665 */ 6666 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6667 struct btrfs_root *new_root, u64 new_dirid) 6668 { 6669 struct inode *inode; 6670 int err; 6671 u64 index = 0; 6672 6673 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6674 new_dirid, S_IFDIR | 0700, &index); 6675 if (IS_ERR(inode)) 6676 return PTR_ERR(inode); 6677 inode->i_op = &btrfs_dir_inode_operations; 6678 inode->i_fop = &btrfs_dir_file_operations; 6679 6680 inode->i_nlink = 1; 6681 btrfs_i_size_write(inode, 0); 6682 6683 err = btrfs_update_inode(trans, new_root, inode); 6684 BUG_ON(err); 6685 6686 iput(inode); 6687 return 0; 6688 } 6689 6690 /* helper function for file defrag and space balancing. This 6691 * forces readahead on a given range of bytes in an inode 6692 */ 6693 unsigned long btrfs_force_ra(struct address_space *mapping, 6694 struct file_ra_state *ra, struct file *file, 6695 pgoff_t offset, pgoff_t last_index) 6696 { 6697 pgoff_t req_size = last_index - offset + 1; 6698 6699 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 6700 return offset + req_size; 6701 } 6702 6703 struct inode *btrfs_alloc_inode(struct super_block *sb) 6704 { 6705 struct btrfs_inode *ei; 6706 struct inode *inode; 6707 6708 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6709 if (!ei) 6710 return NULL; 6711 6712 ei->root = NULL; 6713 ei->space_info = NULL; 6714 ei->generation = 0; 6715 ei->sequence = 0; 6716 ei->last_trans = 0; 6717 ei->last_sub_trans = 0; 6718 ei->logged_trans = 0; 6719 ei->delalloc_bytes = 0; 6720 ei->reserved_bytes = 0; 6721 ei->disk_i_size = 0; 6722 ei->flags = 0; 6723 ei->index_cnt = (u64)-1; 6724 ei->last_unlink_trans = 0; 6725 6726 atomic_set(&ei->outstanding_extents, 0); 6727 atomic_set(&ei->reserved_extents, 0); 6728 6729 ei->ordered_data_close = 0; 6730 ei->orphan_meta_reserved = 0; 6731 ei->dummy_inode = 0; 6732 ei->in_defrag = 0; 6733 ei->force_compress = BTRFS_COMPRESS_NONE; 6734 6735 ei->delayed_node = NULL; 6736 6737 inode = &ei->vfs_inode; 6738 extent_map_tree_init(&ei->extent_tree); 6739 extent_io_tree_init(&ei->io_tree, &inode->i_data); 6740 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 6741 mutex_init(&ei->log_mutex); 6742 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6743 INIT_LIST_HEAD(&ei->i_orphan); 6744 INIT_LIST_HEAD(&ei->delalloc_inodes); 6745 INIT_LIST_HEAD(&ei->ordered_operations); 6746 RB_CLEAR_NODE(&ei->rb_node); 6747 6748 return inode; 6749 } 6750 6751 static void btrfs_i_callback(struct rcu_head *head) 6752 { 6753 struct inode *inode = container_of(head, struct inode, i_rcu); 6754 INIT_LIST_HEAD(&inode->i_dentry); 6755 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6756 } 6757 6758 void btrfs_destroy_inode(struct inode *inode) 6759 { 6760 struct btrfs_ordered_extent *ordered; 6761 struct btrfs_root *root = BTRFS_I(inode)->root; 6762 6763 WARN_ON(!list_empty(&inode->i_dentry)); 6764 WARN_ON(inode->i_data.nrpages); 6765 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents)); 6766 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents)); 6767 6768 /* 6769 * This can happen where we create an inode, but somebody else also 6770 * created the same inode and we need to destroy the one we already 6771 * created. 6772 */ 6773 if (!root) 6774 goto free; 6775 6776 /* 6777 * Make sure we're properly removed from the ordered operation 6778 * lists. 6779 */ 6780 smp_mb(); 6781 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6782 spin_lock(&root->fs_info->ordered_extent_lock); 6783 list_del_init(&BTRFS_I(inode)->ordered_operations); 6784 spin_unlock(&root->fs_info->ordered_extent_lock); 6785 } 6786 6787 spin_lock(&root->orphan_lock); 6788 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6789 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 6790 (unsigned long long)btrfs_ino(inode)); 6791 list_del_init(&BTRFS_I(inode)->i_orphan); 6792 } 6793 spin_unlock(&root->orphan_lock); 6794 6795 while (1) { 6796 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6797 if (!ordered) 6798 break; 6799 else { 6800 printk(KERN_ERR "btrfs found ordered " 6801 "extent %llu %llu on inode cleanup\n", 6802 (unsigned long long)ordered->file_offset, 6803 (unsigned long long)ordered->len); 6804 btrfs_remove_ordered_extent(inode, ordered); 6805 btrfs_put_ordered_extent(ordered); 6806 btrfs_put_ordered_extent(ordered); 6807 } 6808 } 6809 inode_tree_del(inode); 6810 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6811 free: 6812 btrfs_remove_delayed_node(inode); 6813 call_rcu(&inode->i_rcu, btrfs_i_callback); 6814 } 6815 6816 int btrfs_drop_inode(struct inode *inode) 6817 { 6818 struct btrfs_root *root = BTRFS_I(inode)->root; 6819 6820 if (btrfs_root_refs(&root->root_item) == 0 && 6821 !is_free_space_inode(root, inode)) 6822 return 1; 6823 else 6824 return generic_drop_inode(inode); 6825 } 6826 6827 static void init_once(void *foo) 6828 { 6829 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6830 6831 inode_init_once(&ei->vfs_inode); 6832 } 6833 6834 void btrfs_destroy_cachep(void) 6835 { 6836 if (btrfs_inode_cachep) 6837 kmem_cache_destroy(btrfs_inode_cachep); 6838 if (btrfs_trans_handle_cachep) 6839 kmem_cache_destroy(btrfs_trans_handle_cachep); 6840 if (btrfs_transaction_cachep) 6841 kmem_cache_destroy(btrfs_transaction_cachep); 6842 if (btrfs_path_cachep) 6843 kmem_cache_destroy(btrfs_path_cachep); 6844 if (btrfs_free_space_cachep) 6845 kmem_cache_destroy(btrfs_free_space_cachep); 6846 } 6847 6848 int btrfs_init_cachep(void) 6849 { 6850 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6851 sizeof(struct btrfs_inode), 0, 6852 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6853 if (!btrfs_inode_cachep) 6854 goto fail; 6855 6856 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6857 sizeof(struct btrfs_trans_handle), 0, 6858 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6859 if (!btrfs_trans_handle_cachep) 6860 goto fail; 6861 6862 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6863 sizeof(struct btrfs_transaction), 0, 6864 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6865 if (!btrfs_transaction_cachep) 6866 goto fail; 6867 6868 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6869 sizeof(struct btrfs_path), 0, 6870 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6871 if (!btrfs_path_cachep) 6872 goto fail; 6873 6874 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache", 6875 sizeof(struct btrfs_free_space), 0, 6876 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6877 if (!btrfs_free_space_cachep) 6878 goto fail; 6879 6880 return 0; 6881 fail: 6882 btrfs_destroy_cachep(); 6883 return -ENOMEM; 6884 } 6885 6886 static int btrfs_getattr(struct vfsmount *mnt, 6887 struct dentry *dentry, struct kstat *stat) 6888 { 6889 struct inode *inode = dentry->d_inode; 6890 generic_fillattr(inode, stat); 6891 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 6892 stat->blksize = PAGE_CACHE_SIZE; 6893 stat->blocks = (inode_get_bytes(inode) + 6894 BTRFS_I(inode)->delalloc_bytes) >> 9; 6895 return 0; 6896 } 6897 6898 /* 6899 * If a file is moved, it will inherit the cow and compression flags of the new 6900 * directory. 6901 */ 6902 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 6903 { 6904 struct btrfs_inode *b_dir = BTRFS_I(dir); 6905 struct btrfs_inode *b_inode = BTRFS_I(inode); 6906 6907 if (b_dir->flags & BTRFS_INODE_NODATACOW) 6908 b_inode->flags |= BTRFS_INODE_NODATACOW; 6909 else 6910 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 6911 6912 if (b_dir->flags & BTRFS_INODE_COMPRESS) 6913 b_inode->flags |= BTRFS_INODE_COMPRESS; 6914 else 6915 b_inode->flags &= ~BTRFS_INODE_COMPRESS; 6916 } 6917 6918 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6919 struct inode *new_dir, struct dentry *new_dentry) 6920 { 6921 struct btrfs_trans_handle *trans; 6922 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6923 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6924 struct inode *new_inode = new_dentry->d_inode; 6925 struct inode *old_inode = old_dentry->d_inode; 6926 struct timespec ctime = CURRENT_TIME; 6927 u64 index = 0; 6928 u64 root_objectid; 6929 int ret; 6930 u64 old_ino = btrfs_ino(old_inode); 6931 6932 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6933 return -EPERM; 6934 6935 /* we only allow rename subvolume link between subvolumes */ 6936 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6937 return -EXDEV; 6938 6939 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6940 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 6941 return -ENOTEMPTY; 6942 6943 if (S_ISDIR(old_inode->i_mode) && new_inode && 6944 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6945 return -ENOTEMPTY; 6946 /* 6947 * we're using rename to replace one file with another. 6948 * and the replacement file is large. Start IO on it now so 6949 * we don't add too much work to the end of the transaction 6950 */ 6951 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6952 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6953 filemap_flush(old_inode->i_mapping); 6954 6955 /* close the racy window with snapshot create/destroy ioctl */ 6956 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 6957 down_read(&root->fs_info->subvol_sem); 6958 /* 6959 * We want to reserve the absolute worst case amount of items. So if 6960 * both inodes are subvols and we need to unlink them then that would 6961 * require 4 item modifications, but if they are both normal inodes it 6962 * would require 5 item modifications, so we'll assume their normal 6963 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6964 * should cover the worst case number of items we'll modify. 6965 */ 6966 trans = btrfs_start_transaction(root, 20); 6967 if (IS_ERR(trans)) { 6968 ret = PTR_ERR(trans); 6969 goto out_notrans; 6970 } 6971 6972 if (dest != root) 6973 btrfs_record_root_in_trans(trans, dest); 6974 6975 ret = btrfs_set_inode_index(new_dir, &index); 6976 if (ret) 6977 goto out_fail; 6978 6979 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6980 /* force full log commit if subvolume involved. */ 6981 root->fs_info->last_trans_log_full_commit = trans->transid; 6982 } else { 6983 ret = btrfs_insert_inode_ref(trans, dest, 6984 new_dentry->d_name.name, 6985 new_dentry->d_name.len, 6986 old_ino, 6987 btrfs_ino(new_dir), index); 6988 if (ret) 6989 goto out_fail; 6990 /* 6991 * this is an ugly little race, but the rename is required 6992 * to make sure that if we crash, the inode is either at the 6993 * old name or the new one. pinning the log transaction lets 6994 * us make sure we don't allow a log commit to come in after 6995 * we unlink the name but before we add the new name back in. 6996 */ 6997 btrfs_pin_log_trans(root); 6998 } 6999 /* 7000 * make sure the inode gets flushed if it is replacing 7001 * something. 7002 */ 7003 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7004 btrfs_add_ordered_operation(trans, root, old_inode); 7005 7006 old_dir->i_ctime = old_dir->i_mtime = ctime; 7007 new_dir->i_ctime = new_dir->i_mtime = ctime; 7008 old_inode->i_ctime = ctime; 7009 7010 if (old_dentry->d_parent != new_dentry->d_parent) 7011 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7012 7013 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7014 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7015 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7016 old_dentry->d_name.name, 7017 old_dentry->d_name.len); 7018 } else { 7019 ret = __btrfs_unlink_inode(trans, root, old_dir, 7020 old_dentry->d_inode, 7021 old_dentry->d_name.name, 7022 old_dentry->d_name.len); 7023 if (!ret) 7024 ret = btrfs_update_inode(trans, root, old_inode); 7025 } 7026 BUG_ON(ret); 7027 7028 if (new_inode) { 7029 new_inode->i_ctime = CURRENT_TIME; 7030 if (unlikely(btrfs_ino(new_inode) == 7031 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7032 root_objectid = BTRFS_I(new_inode)->location.objectid; 7033 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7034 root_objectid, 7035 new_dentry->d_name.name, 7036 new_dentry->d_name.len); 7037 BUG_ON(new_inode->i_nlink == 0); 7038 } else { 7039 ret = btrfs_unlink_inode(trans, dest, new_dir, 7040 new_dentry->d_inode, 7041 new_dentry->d_name.name, 7042 new_dentry->d_name.len); 7043 } 7044 BUG_ON(ret); 7045 if (new_inode->i_nlink == 0) { 7046 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7047 BUG_ON(ret); 7048 } 7049 } 7050 7051 fixup_inode_flags(new_dir, old_inode); 7052 7053 ret = btrfs_add_link(trans, new_dir, old_inode, 7054 new_dentry->d_name.name, 7055 new_dentry->d_name.len, 0, index); 7056 BUG_ON(ret); 7057 7058 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7059 struct dentry *parent = dget_parent(new_dentry); 7060 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7061 dput(parent); 7062 btrfs_end_log_trans(root); 7063 } 7064 out_fail: 7065 btrfs_end_transaction_throttle(trans, root); 7066 out_notrans: 7067 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7068 up_read(&root->fs_info->subvol_sem); 7069 7070 return ret; 7071 } 7072 7073 /* 7074 * some fairly slow code that needs optimization. This walks the list 7075 * of all the inodes with pending delalloc and forces them to disk. 7076 */ 7077 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7078 { 7079 struct list_head *head = &root->fs_info->delalloc_inodes; 7080 struct btrfs_inode *binode; 7081 struct inode *inode; 7082 7083 if (root->fs_info->sb->s_flags & MS_RDONLY) 7084 return -EROFS; 7085 7086 spin_lock(&root->fs_info->delalloc_lock); 7087 while (!list_empty(head)) { 7088 binode = list_entry(head->next, struct btrfs_inode, 7089 delalloc_inodes); 7090 inode = igrab(&binode->vfs_inode); 7091 if (!inode) 7092 list_del_init(&binode->delalloc_inodes); 7093 spin_unlock(&root->fs_info->delalloc_lock); 7094 if (inode) { 7095 filemap_flush(inode->i_mapping); 7096 if (delay_iput) 7097 btrfs_add_delayed_iput(inode); 7098 else 7099 iput(inode); 7100 } 7101 cond_resched(); 7102 spin_lock(&root->fs_info->delalloc_lock); 7103 } 7104 spin_unlock(&root->fs_info->delalloc_lock); 7105 7106 /* the filemap_flush will queue IO into the worker threads, but 7107 * we have to make sure the IO is actually started and that 7108 * ordered extents get created before we return 7109 */ 7110 atomic_inc(&root->fs_info->async_submit_draining); 7111 while (atomic_read(&root->fs_info->nr_async_submits) || 7112 atomic_read(&root->fs_info->async_delalloc_pages)) { 7113 wait_event(root->fs_info->async_submit_wait, 7114 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7115 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7116 } 7117 atomic_dec(&root->fs_info->async_submit_draining); 7118 return 0; 7119 } 7120 7121 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7122 const char *symname) 7123 { 7124 struct btrfs_trans_handle *trans; 7125 struct btrfs_root *root = BTRFS_I(dir)->root; 7126 struct btrfs_path *path; 7127 struct btrfs_key key; 7128 struct inode *inode = NULL; 7129 int err; 7130 int drop_inode = 0; 7131 u64 objectid; 7132 u64 index = 0 ; 7133 int name_len; 7134 int datasize; 7135 unsigned long ptr; 7136 struct btrfs_file_extent_item *ei; 7137 struct extent_buffer *leaf; 7138 unsigned long nr = 0; 7139 7140 name_len = strlen(symname) + 1; 7141 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7142 return -ENAMETOOLONG; 7143 7144 /* 7145 * 2 items for inode item and ref 7146 * 2 items for dir items 7147 * 1 item for xattr if selinux is on 7148 */ 7149 trans = btrfs_start_transaction(root, 5); 7150 if (IS_ERR(trans)) 7151 return PTR_ERR(trans); 7152 7153 err = btrfs_find_free_ino(root, &objectid); 7154 if (err) 7155 goto out_unlock; 7156 7157 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7158 dentry->d_name.len, btrfs_ino(dir), objectid, 7159 S_IFLNK|S_IRWXUGO, &index); 7160 if (IS_ERR(inode)) { 7161 err = PTR_ERR(inode); 7162 goto out_unlock; 7163 } 7164 7165 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7166 if (err) { 7167 drop_inode = 1; 7168 goto out_unlock; 7169 } 7170 7171 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7172 if (err) 7173 drop_inode = 1; 7174 else { 7175 inode->i_mapping->a_ops = &btrfs_aops; 7176 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7177 inode->i_fop = &btrfs_file_operations; 7178 inode->i_op = &btrfs_file_inode_operations; 7179 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7180 } 7181 if (drop_inode) 7182 goto out_unlock; 7183 7184 path = btrfs_alloc_path(); 7185 BUG_ON(!path); 7186 key.objectid = btrfs_ino(inode); 7187 key.offset = 0; 7188 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7189 datasize = btrfs_file_extent_calc_inline_size(name_len); 7190 err = btrfs_insert_empty_item(trans, root, path, &key, 7191 datasize); 7192 if (err) { 7193 drop_inode = 1; 7194 btrfs_free_path(path); 7195 goto out_unlock; 7196 } 7197 leaf = path->nodes[0]; 7198 ei = btrfs_item_ptr(leaf, path->slots[0], 7199 struct btrfs_file_extent_item); 7200 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7201 btrfs_set_file_extent_type(leaf, ei, 7202 BTRFS_FILE_EXTENT_INLINE); 7203 btrfs_set_file_extent_encryption(leaf, ei, 0); 7204 btrfs_set_file_extent_compression(leaf, ei, 0); 7205 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7206 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7207 7208 ptr = btrfs_file_extent_inline_start(ei); 7209 write_extent_buffer(leaf, symname, ptr, name_len); 7210 btrfs_mark_buffer_dirty(leaf); 7211 btrfs_free_path(path); 7212 7213 inode->i_op = &btrfs_symlink_inode_operations; 7214 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7215 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7216 inode_set_bytes(inode, name_len); 7217 btrfs_i_size_write(inode, name_len - 1); 7218 err = btrfs_update_inode(trans, root, inode); 7219 if (err) 7220 drop_inode = 1; 7221 7222 out_unlock: 7223 nr = trans->blocks_used; 7224 btrfs_end_transaction_throttle(trans, root); 7225 if (drop_inode) { 7226 inode_dec_link_count(inode); 7227 iput(inode); 7228 } 7229 btrfs_btree_balance_dirty(root, nr); 7230 return err; 7231 } 7232 7233 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7234 u64 start, u64 num_bytes, u64 min_size, 7235 loff_t actual_len, u64 *alloc_hint, 7236 struct btrfs_trans_handle *trans) 7237 { 7238 struct btrfs_root *root = BTRFS_I(inode)->root; 7239 struct btrfs_key ins; 7240 u64 cur_offset = start; 7241 u64 i_size; 7242 int ret = 0; 7243 bool own_trans = true; 7244 7245 if (trans) 7246 own_trans = false; 7247 while (num_bytes > 0) { 7248 if (own_trans) { 7249 trans = btrfs_start_transaction(root, 3); 7250 if (IS_ERR(trans)) { 7251 ret = PTR_ERR(trans); 7252 break; 7253 } 7254 } 7255 7256 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7257 0, *alloc_hint, (u64)-1, &ins, 1); 7258 if (ret) { 7259 if (own_trans) 7260 btrfs_end_transaction(trans, root); 7261 break; 7262 } 7263 7264 ret = insert_reserved_file_extent(trans, inode, 7265 cur_offset, ins.objectid, 7266 ins.offset, ins.offset, 7267 ins.offset, 0, 0, 0, 7268 BTRFS_FILE_EXTENT_PREALLOC); 7269 BUG_ON(ret); 7270 btrfs_drop_extent_cache(inode, cur_offset, 7271 cur_offset + ins.offset -1, 0); 7272 7273 num_bytes -= ins.offset; 7274 cur_offset += ins.offset; 7275 *alloc_hint = ins.objectid + ins.offset; 7276 7277 inode->i_ctime = CURRENT_TIME; 7278 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7279 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7280 (actual_len > inode->i_size) && 7281 (cur_offset > inode->i_size)) { 7282 if (cur_offset > actual_len) 7283 i_size = actual_len; 7284 else 7285 i_size = cur_offset; 7286 i_size_write(inode, i_size); 7287 btrfs_ordered_update_i_size(inode, i_size, NULL); 7288 } 7289 7290 ret = btrfs_update_inode(trans, root, inode); 7291 BUG_ON(ret); 7292 7293 if (own_trans) 7294 btrfs_end_transaction(trans, root); 7295 } 7296 return ret; 7297 } 7298 7299 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7300 u64 start, u64 num_bytes, u64 min_size, 7301 loff_t actual_len, u64 *alloc_hint) 7302 { 7303 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7304 min_size, actual_len, alloc_hint, 7305 NULL); 7306 } 7307 7308 int btrfs_prealloc_file_range_trans(struct inode *inode, 7309 struct btrfs_trans_handle *trans, int mode, 7310 u64 start, u64 num_bytes, u64 min_size, 7311 loff_t actual_len, u64 *alloc_hint) 7312 { 7313 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7314 min_size, actual_len, alloc_hint, trans); 7315 } 7316 7317 static int btrfs_set_page_dirty(struct page *page) 7318 { 7319 return __set_page_dirty_nobuffers(page); 7320 } 7321 7322 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags) 7323 { 7324 struct btrfs_root *root = BTRFS_I(inode)->root; 7325 7326 if (btrfs_root_readonly(root) && (mask & MAY_WRITE)) 7327 return -EROFS; 7328 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 7329 return -EACCES; 7330 return generic_permission(inode, mask, flags, btrfs_check_acl); 7331 } 7332 7333 static const struct inode_operations btrfs_dir_inode_operations = { 7334 .getattr = btrfs_getattr, 7335 .lookup = btrfs_lookup, 7336 .create = btrfs_create, 7337 .unlink = btrfs_unlink, 7338 .link = btrfs_link, 7339 .mkdir = btrfs_mkdir, 7340 .rmdir = btrfs_rmdir, 7341 .rename = btrfs_rename, 7342 .symlink = btrfs_symlink, 7343 .setattr = btrfs_setattr, 7344 .mknod = btrfs_mknod, 7345 .setxattr = btrfs_setxattr, 7346 .getxattr = btrfs_getxattr, 7347 .listxattr = btrfs_listxattr, 7348 .removexattr = btrfs_removexattr, 7349 .permission = btrfs_permission, 7350 }; 7351 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7352 .lookup = btrfs_lookup, 7353 .permission = btrfs_permission, 7354 }; 7355 7356 static const struct file_operations btrfs_dir_file_operations = { 7357 .llseek = generic_file_llseek, 7358 .read = generic_read_dir, 7359 .readdir = btrfs_real_readdir, 7360 .unlocked_ioctl = btrfs_ioctl, 7361 #ifdef CONFIG_COMPAT 7362 .compat_ioctl = btrfs_ioctl, 7363 #endif 7364 .release = btrfs_release_file, 7365 .fsync = btrfs_sync_file, 7366 }; 7367 7368 static struct extent_io_ops btrfs_extent_io_ops = { 7369 .fill_delalloc = run_delalloc_range, 7370 .submit_bio_hook = btrfs_submit_bio_hook, 7371 .merge_bio_hook = btrfs_merge_bio_hook, 7372 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7373 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7374 .writepage_start_hook = btrfs_writepage_start_hook, 7375 .readpage_io_failed_hook = btrfs_io_failed_hook, 7376 .set_bit_hook = btrfs_set_bit_hook, 7377 .clear_bit_hook = btrfs_clear_bit_hook, 7378 .merge_extent_hook = btrfs_merge_extent_hook, 7379 .split_extent_hook = btrfs_split_extent_hook, 7380 }; 7381 7382 /* 7383 * btrfs doesn't support the bmap operation because swapfiles 7384 * use bmap to make a mapping of extents in the file. They assume 7385 * these extents won't change over the life of the file and they 7386 * use the bmap result to do IO directly to the drive. 7387 * 7388 * the btrfs bmap call would return logical addresses that aren't 7389 * suitable for IO and they also will change frequently as COW 7390 * operations happen. So, swapfile + btrfs == corruption. 7391 * 7392 * For now we're avoiding this by dropping bmap. 7393 */ 7394 static const struct address_space_operations btrfs_aops = { 7395 .readpage = btrfs_readpage, 7396 .writepage = btrfs_writepage, 7397 .writepages = btrfs_writepages, 7398 .readpages = btrfs_readpages, 7399 .direct_IO = btrfs_direct_IO, 7400 .invalidatepage = btrfs_invalidatepage, 7401 .releasepage = btrfs_releasepage, 7402 .set_page_dirty = btrfs_set_page_dirty, 7403 .error_remove_page = generic_error_remove_page, 7404 }; 7405 7406 static const struct address_space_operations btrfs_symlink_aops = { 7407 .readpage = btrfs_readpage, 7408 .writepage = btrfs_writepage, 7409 .invalidatepage = btrfs_invalidatepage, 7410 .releasepage = btrfs_releasepage, 7411 }; 7412 7413 static const struct inode_operations btrfs_file_inode_operations = { 7414 .getattr = btrfs_getattr, 7415 .setattr = btrfs_setattr, 7416 .setxattr = btrfs_setxattr, 7417 .getxattr = btrfs_getxattr, 7418 .listxattr = btrfs_listxattr, 7419 .removexattr = btrfs_removexattr, 7420 .permission = btrfs_permission, 7421 .fiemap = btrfs_fiemap, 7422 }; 7423 static const struct inode_operations btrfs_special_inode_operations = { 7424 .getattr = btrfs_getattr, 7425 .setattr = btrfs_setattr, 7426 .permission = btrfs_permission, 7427 .setxattr = btrfs_setxattr, 7428 .getxattr = btrfs_getxattr, 7429 .listxattr = btrfs_listxattr, 7430 .removexattr = btrfs_removexattr, 7431 }; 7432 static const struct inode_operations btrfs_symlink_inode_operations = { 7433 .readlink = generic_readlink, 7434 .follow_link = page_follow_link_light, 7435 .put_link = page_put_link, 7436 .getattr = btrfs_getattr, 7437 .permission = btrfs_permission, 7438 .setxattr = btrfs_setxattr, 7439 .getxattr = btrfs_getxattr, 7440 .listxattr = btrfs_listxattr, 7441 .removexattr = btrfs_removexattr, 7442 }; 7443 7444 const struct dentry_operations btrfs_dentry_operations = { 7445 .d_delete = btrfs_dentry_delete, 7446 }; 7447