xref: /openbmc/linux/fs/btrfs/inode.c (revision 28f65c11)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56 
57 struct btrfs_iget_args {
58 	u64 ino;
59 	struct btrfs_root *root;
60 };
61 
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71 
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77 
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
81 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
82 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
83 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
84 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
85 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
86 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
87 };
88 
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 				   struct page *locked_page,
94 				   u64 start, u64 end, int *page_started,
95 				   unsigned long *nr_written, int unlock);
96 
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98 				     struct inode *inode,  struct inode *dir,
99 				     const struct qstr *qstr)
100 {
101 	int err;
102 
103 	err = btrfs_init_acl(trans, inode, dir);
104 	if (!err)
105 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106 	return err;
107 }
108 
109 /*
110  * this does all the hard work for inserting an inline extent into
111  * the btree.  The caller should have done a btrfs_drop_extents so that
112  * no overlapping inline items exist in the btree
113  */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115 				struct btrfs_root *root, struct inode *inode,
116 				u64 start, size_t size, size_t compressed_size,
117 				int compress_type,
118 				struct page **compressed_pages)
119 {
120 	struct btrfs_key key;
121 	struct btrfs_path *path;
122 	struct extent_buffer *leaf;
123 	struct page *page = NULL;
124 	char *kaddr;
125 	unsigned long ptr;
126 	struct btrfs_file_extent_item *ei;
127 	int err = 0;
128 	int ret;
129 	size_t cur_size = size;
130 	size_t datasize;
131 	unsigned long offset;
132 
133 	if (compressed_size && compressed_pages)
134 		cur_size = compressed_size;
135 
136 	path = btrfs_alloc_path();
137 	if (!path)
138 		return -ENOMEM;
139 
140 	path->leave_spinning = 1;
141 
142 	key.objectid = btrfs_ino(inode);
143 	key.offset = start;
144 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
146 
147 	inode_add_bytes(inode, size);
148 	ret = btrfs_insert_empty_item(trans, root, path, &key,
149 				      datasize);
150 	BUG_ON(ret);
151 	if (ret) {
152 		err = ret;
153 		goto fail;
154 	}
155 	leaf = path->nodes[0];
156 	ei = btrfs_item_ptr(leaf, path->slots[0],
157 			    struct btrfs_file_extent_item);
158 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 	btrfs_set_file_extent_encryption(leaf, ei, 0);
161 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 	ptr = btrfs_file_extent_inline_start(ei);
164 
165 	if (compress_type != BTRFS_COMPRESS_NONE) {
166 		struct page *cpage;
167 		int i = 0;
168 		while (compressed_size > 0) {
169 			cpage = compressed_pages[i];
170 			cur_size = min_t(unsigned long, compressed_size,
171 				       PAGE_CACHE_SIZE);
172 
173 			kaddr = kmap_atomic(cpage, KM_USER0);
174 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 			kunmap_atomic(kaddr, KM_USER0);
176 
177 			i++;
178 			ptr += cur_size;
179 			compressed_size -= cur_size;
180 		}
181 		btrfs_set_file_extent_compression(leaf, ei,
182 						  compress_type);
183 	} else {
184 		page = find_get_page(inode->i_mapping,
185 				     start >> PAGE_CACHE_SHIFT);
186 		btrfs_set_file_extent_compression(leaf, ei, 0);
187 		kaddr = kmap_atomic(page, KM_USER0);
188 		offset = start & (PAGE_CACHE_SIZE - 1);
189 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 		kunmap_atomic(kaddr, KM_USER0);
191 		page_cache_release(page);
192 	}
193 	btrfs_mark_buffer_dirty(leaf);
194 	btrfs_free_path(path);
195 
196 	/*
197 	 * we're an inline extent, so nobody can
198 	 * extend the file past i_size without locking
199 	 * a page we already have locked.
200 	 *
201 	 * We must do any isize and inode updates
202 	 * before we unlock the pages.  Otherwise we
203 	 * could end up racing with unlink.
204 	 */
205 	BTRFS_I(inode)->disk_i_size = inode->i_size;
206 	btrfs_update_inode(trans, root, inode);
207 
208 	return 0;
209 fail:
210 	btrfs_free_path(path);
211 	return err;
212 }
213 
214 
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 				 struct btrfs_root *root,
222 				 struct inode *inode, u64 start, u64 end,
223 				 size_t compressed_size, int compress_type,
224 				 struct page **compressed_pages)
225 {
226 	u64 isize = i_size_read(inode);
227 	u64 actual_end = min(end + 1, isize);
228 	u64 inline_len = actual_end - start;
229 	u64 aligned_end = (end + root->sectorsize - 1) &
230 			~((u64)root->sectorsize - 1);
231 	u64 hint_byte;
232 	u64 data_len = inline_len;
233 	int ret;
234 
235 	if (compressed_size)
236 		data_len = compressed_size;
237 
238 	if (start > 0 ||
239 	    actual_end >= PAGE_CACHE_SIZE ||
240 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 	    (!compressed_size &&
242 	    (actual_end & (root->sectorsize - 1)) == 0) ||
243 	    end + 1 < isize ||
244 	    data_len > root->fs_info->max_inline) {
245 		return 1;
246 	}
247 
248 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 				 &hint_byte, 1);
250 	BUG_ON(ret);
251 
252 	if (isize > actual_end)
253 		inline_len = min_t(u64, isize, actual_end);
254 	ret = insert_inline_extent(trans, root, inode, start,
255 				   inline_len, compressed_size,
256 				   compress_type, compressed_pages);
257 	BUG_ON(ret);
258 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 	return 0;
261 }
262 
263 struct async_extent {
264 	u64 start;
265 	u64 ram_size;
266 	u64 compressed_size;
267 	struct page **pages;
268 	unsigned long nr_pages;
269 	int compress_type;
270 	struct list_head list;
271 };
272 
273 struct async_cow {
274 	struct inode *inode;
275 	struct btrfs_root *root;
276 	struct page *locked_page;
277 	u64 start;
278 	u64 end;
279 	struct list_head extents;
280 	struct btrfs_work work;
281 };
282 
283 static noinline int add_async_extent(struct async_cow *cow,
284 				     u64 start, u64 ram_size,
285 				     u64 compressed_size,
286 				     struct page **pages,
287 				     unsigned long nr_pages,
288 				     int compress_type)
289 {
290 	struct async_extent *async_extent;
291 
292 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 	BUG_ON(!async_extent);
294 	async_extent->start = start;
295 	async_extent->ram_size = ram_size;
296 	async_extent->compressed_size = compressed_size;
297 	async_extent->pages = pages;
298 	async_extent->nr_pages = nr_pages;
299 	async_extent->compress_type = compress_type;
300 	list_add_tail(&async_extent->list, &cow->extents);
301 	return 0;
302 }
303 
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321 					struct page *locked_page,
322 					u64 start, u64 end,
323 					struct async_cow *async_cow,
324 					int *num_added)
325 {
326 	struct btrfs_root *root = BTRFS_I(inode)->root;
327 	struct btrfs_trans_handle *trans;
328 	u64 num_bytes;
329 	u64 blocksize = root->sectorsize;
330 	u64 actual_end;
331 	u64 isize = i_size_read(inode);
332 	int ret = 0;
333 	struct page **pages = NULL;
334 	unsigned long nr_pages;
335 	unsigned long nr_pages_ret = 0;
336 	unsigned long total_compressed = 0;
337 	unsigned long total_in = 0;
338 	unsigned long max_compressed = 128 * 1024;
339 	unsigned long max_uncompressed = 128 * 1024;
340 	int i;
341 	int will_compress;
342 	int compress_type = root->fs_info->compress_type;
343 
344 	/* if this is a small write inside eof, kick off a defragbot */
345 	if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 		btrfs_add_inode_defrag(NULL, inode);
347 
348 	actual_end = min_t(u64, isize, end + 1);
349 again:
350 	will_compress = 0;
351 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353 
354 	/*
355 	 * we don't want to send crud past the end of i_size through
356 	 * compression, that's just a waste of CPU time.  So, if the
357 	 * end of the file is before the start of our current
358 	 * requested range of bytes, we bail out to the uncompressed
359 	 * cleanup code that can deal with all of this.
360 	 *
361 	 * It isn't really the fastest way to fix things, but this is a
362 	 * very uncommon corner.
363 	 */
364 	if (actual_end <= start)
365 		goto cleanup_and_bail_uncompressed;
366 
367 	total_compressed = actual_end - start;
368 
369 	/* we want to make sure that amount of ram required to uncompress
370 	 * an extent is reasonable, so we limit the total size in ram
371 	 * of a compressed extent to 128k.  This is a crucial number
372 	 * because it also controls how easily we can spread reads across
373 	 * cpus for decompression.
374 	 *
375 	 * We also want to make sure the amount of IO required to do
376 	 * a random read is reasonably small, so we limit the size of
377 	 * a compressed extent to 128k.
378 	 */
379 	total_compressed = min(total_compressed, max_uncompressed);
380 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381 	num_bytes = max(blocksize,  num_bytes);
382 	total_in = 0;
383 	ret = 0;
384 
385 	/*
386 	 * we do compression for mount -o compress and when the
387 	 * inode has not been flagged as nocompress.  This flag can
388 	 * change at any time if we discover bad compression ratios.
389 	 */
390 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391 	    (btrfs_test_opt(root, COMPRESS) ||
392 	     (BTRFS_I(inode)->force_compress) ||
393 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394 		WARN_ON(pages);
395 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396 		BUG_ON(!pages);
397 
398 		if (BTRFS_I(inode)->force_compress)
399 			compress_type = BTRFS_I(inode)->force_compress;
400 
401 		ret = btrfs_compress_pages(compress_type,
402 					   inode->i_mapping, start,
403 					   total_compressed, pages,
404 					   nr_pages, &nr_pages_ret,
405 					   &total_in,
406 					   &total_compressed,
407 					   max_compressed);
408 
409 		if (!ret) {
410 			unsigned long offset = total_compressed &
411 				(PAGE_CACHE_SIZE - 1);
412 			struct page *page = pages[nr_pages_ret - 1];
413 			char *kaddr;
414 
415 			/* zero the tail end of the last page, we might be
416 			 * sending it down to disk
417 			 */
418 			if (offset) {
419 				kaddr = kmap_atomic(page, KM_USER0);
420 				memset(kaddr + offset, 0,
421 				       PAGE_CACHE_SIZE - offset);
422 				kunmap_atomic(kaddr, KM_USER0);
423 			}
424 			will_compress = 1;
425 		}
426 	}
427 	if (start == 0) {
428 		trans = btrfs_join_transaction(root);
429 		BUG_ON(IS_ERR(trans));
430 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
431 
432 		/* lets try to make an inline extent */
433 		if (ret || total_in < (actual_end - start)) {
434 			/* we didn't compress the entire range, try
435 			 * to make an uncompressed inline extent.
436 			 */
437 			ret = cow_file_range_inline(trans, root, inode,
438 						    start, end, 0, 0, NULL);
439 		} else {
440 			/* try making a compressed inline extent */
441 			ret = cow_file_range_inline(trans, root, inode,
442 						    start, end,
443 						    total_compressed,
444 						    compress_type, pages);
445 		}
446 		if (ret == 0) {
447 			/*
448 			 * inline extent creation worked, we don't need
449 			 * to create any more async work items.  Unlock
450 			 * and free up our temp pages.
451 			 */
452 			extent_clear_unlock_delalloc(inode,
453 			     &BTRFS_I(inode)->io_tree,
454 			     start, end, NULL,
455 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456 			     EXTENT_CLEAR_DELALLOC |
457 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
458 
459 			btrfs_end_transaction(trans, root);
460 			goto free_pages_out;
461 		}
462 		btrfs_end_transaction(trans, root);
463 	}
464 
465 	if (will_compress) {
466 		/*
467 		 * we aren't doing an inline extent round the compressed size
468 		 * up to a block size boundary so the allocator does sane
469 		 * things
470 		 */
471 		total_compressed = (total_compressed + blocksize - 1) &
472 			~(blocksize - 1);
473 
474 		/*
475 		 * one last check to make sure the compression is really a
476 		 * win, compare the page count read with the blocks on disk
477 		 */
478 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 			~(PAGE_CACHE_SIZE - 1);
480 		if (total_compressed >= total_in) {
481 			will_compress = 0;
482 		} else {
483 			num_bytes = total_in;
484 		}
485 	}
486 	if (!will_compress && pages) {
487 		/*
488 		 * the compression code ran but failed to make things smaller,
489 		 * free any pages it allocated and our page pointer array
490 		 */
491 		for (i = 0; i < nr_pages_ret; i++) {
492 			WARN_ON(pages[i]->mapping);
493 			page_cache_release(pages[i]);
494 		}
495 		kfree(pages);
496 		pages = NULL;
497 		total_compressed = 0;
498 		nr_pages_ret = 0;
499 
500 		/* flag the file so we don't compress in the future */
501 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 		    !(BTRFS_I(inode)->force_compress)) {
503 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
504 		}
505 	}
506 	if (will_compress) {
507 		*num_added += 1;
508 
509 		/* the async work queues will take care of doing actual
510 		 * allocation on disk for these compressed pages,
511 		 * and will submit them to the elevator.
512 		 */
513 		add_async_extent(async_cow, start, num_bytes,
514 				 total_compressed, pages, nr_pages_ret,
515 				 compress_type);
516 
517 		if (start + num_bytes < end) {
518 			start += num_bytes;
519 			pages = NULL;
520 			cond_resched();
521 			goto again;
522 		}
523 	} else {
524 cleanup_and_bail_uncompressed:
525 		/*
526 		 * No compression, but we still need to write the pages in
527 		 * the file we've been given so far.  redirty the locked
528 		 * page if it corresponds to our extent and set things up
529 		 * for the async work queue to run cow_file_range to do
530 		 * the normal delalloc dance
531 		 */
532 		if (page_offset(locked_page) >= start &&
533 		    page_offset(locked_page) <= end) {
534 			__set_page_dirty_nobuffers(locked_page);
535 			/* unlocked later on in the async handlers */
536 		}
537 		add_async_extent(async_cow, start, end - start + 1,
538 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
539 		*num_added += 1;
540 	}
541 
542 out:
543 	return 0;
544 
545 free_pages_out:
546 	for (i = 0; i < nr_pages_ret; i++) {
547 		WARN_ON(pages[i]->mapping);
548 		page_cache_release(pages[i]);
549 	}
550 	kfree(pages);
551 
552 	goto out;
553 }
554 
555 /*
556  * phase two of compressed writeback.  This is the ordered portion
557  * of the code, which only gets called in the order the work was
558  * queued.  We walk all the async extents created by compress_file_range
559  * and send them down to the disk.
560  */
561 static noinline int submit_compressed_extents(struct inode *inode,
562 					      struct async_cow *async_cow)
563 {
564 	struct async_extent *async_extent;
565 	u64 alloc_hint = 0;
566 	struct btrfs_trans_handle *trans;
567 	struct btrfs_key ins;
568 	struct extent_map *em;
569 	struct btrfs_root *root = BTRFS_I(inode)->root;
570 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 	struct extent_io_tree *io_tree;
572 	int ret = 0;
573 
574 	if (list_empty(&async_cow->extents))
575 		return 0;
576 
577 
578 	while (!list_empty(&async_cow->extents)) {
579 		async_extent = list_entry(async_cow->extents.next,
580 					  struct async_extent, list);
581 		list_del(&async_extent->list);
582 
583 		io_tree = &BTRFS_I(inode)->io_tree;
584 
585 retry:
586 		/* did the compression code fall back to uncompressed IO? */
587 		if (!async_extent->pages) {
588 			int page_started = 0;
589 			unsigned long nr_written = 0;
590 
591 			lock_extent(io_tree, async_extent->start,
592 					 async_extent->start +
593 					 async_extent->ram_size - 1, GFP_NOFS);
594 
595 			/* allocate blocks */
596 			ret = cow_file_range(inode, async_cow->locked_page,
597 					     async_extent->start,
598 					     async_extent->start +
599 					     async_extent->ram_size - 1,
600 					     &page_started, &nr_written, 0);
601 
602 			/*
603 			 * if page_started, cow_file_range inserted an
604 			 * inline extent and took care of all the unlocking
605 			 * and IO for us.  Otherwise, we need to submit
606 			 * all those pages down to the drive.
607 			 */
608 			if (!page_started && !ret)
609 				extent_write_locked_range(io_tree,
610 						  inode, async_extent->start,
611 						  async_extent->start +
612 						  async_extent->ram_size - 1,
613 						  btrfs_get_extent,
614 						  WB_SYNC_ALL);
615 			kfree(async_extent);
616 			cond_resched();
617 			continue;
618 		}
619 
620 		lock_extent(io_tree, async_extent->start,
621 			    async_extent->start + async_extent->ram_size - 1,
622 			    GFP_NOFS);
623 
624 		trans = btrfs_join_transaction(root);
625 		BUG_ON(IS_ERR(trans));
626 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627 		ret = btrfs_reserve_extent(trans, root,
628 					   async_extent->compressed_size,
629 					   async_extent->compressed_size,
630 					   0, alloc_hint,
631 					   (u64)-1, &ins, 1);
632 		btrfs_end_transaction(trans, root);
633 
634 		if (ret) {
635 			int i;
636 			for (i = 0; i < async_extent->nr_pages; i++) {
637 				WARN_ON(async_extent->pages[i]->mapping);
638 				page_cache_release(async_extent->pages[i]);
639 			}
640 			kfree(async_extent->pages);
641 			async_extent->nr_pages = 0;
642 			async_extent->pages = NULL;
643 			unlock_extent(io_tree, async_extent->start,
644 				      async_extent->start +
645 				      async_extent->ram_size - 1, GFP_NOFS);
646 			goto retry;
647 		}
648 
649 		/*
650 		 * here we're doing allocation and writeback of the
651 		 * compressed pages
652 		 */
653 		btrfs_drop_extent_cache(inode, async_extent->start,
654 					async_extent->start +
655 					async_extent->ram_size - 1, 0);
656 
657 		em = alloc_extent_map();
658 		BUG_ON(!em);
659 		em->start = async_extent->start;
660 		em->len = async_extent->ram_size;
661 		em->orig_start = em->start;
662 
663 		em->block_start = ins.objectid;
664 		em->block_len = ins.offset;
665 		em->bdev = root->fs_info->fs_devices->latest_bdev;
666 		em->compress_type = async_extent->compress_type;
667 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669 
670 		while (1) {
671 			write_lock(&em_tree->lock);
672 			ret = add_extent_mapping(em_tree, em);
673 			write_unlock(&em_tree->lock);
674 			if (ret != -EEXIST) {
675 				free_extent_map(em);
676 				break;
677 			}
678 			btrfs_drop_extent_cache(inode, async_extent->start,
679 						async_extent->start +
680 						async_extent->ram_size - 1, 0);
681 		}
682 
683 		ret = btrfs_add_ordered_extent_compress(inode,
684 						async_extent->start,
685 						ins.objectid,
686 						async_extent->ram_size,
687 						ins.offset,
688 						BTRFS_ORDERED_COMPRESSED,
689 						async_extent->compress_type);
690 		BUG_ON(ret);
691 
692 		/*
693 		 * clear dirty, set writeback and unlock the pages.
694 		 */
695 		extent_clear_unlock_delalloc(inode,
696 				&BTRFS_I(inode)->io_tree,
697 				async_extent->start,
698 				async_extent->start +
699 				async_extent->ram_size - 1,
700 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 				EXTENT_CLEAR_UNLOCK |
702 				EXTENT_CLEAR_DELALLOC |
703 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
704 
705 		ret = btrfs_submit_compressed_write(inode,
706 				    async_extent->start,
707 				    async_extent->ram_size,
708 				    ins.objectid,
709 				    ins.offset, async_extent->pages,
710 				    async_extent->nr_pages);
711 
712 		BUG_ON(ret);
713 		alloc_hint = ins.objectid + ins.offset;
714 		kfree(async_extent);
715 		cond_resched();
716 	}
717 
718 	return 0;
719 }
720 
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 				      u64 num_bytes)
723 {
724 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 	struct extent_map *em;
726 	u64 alloc_hint = 0;
727 
728 	read_lock(&em_tree->lock);
729 	em = search_extent_mapping(em_tree, start, num_bytes);
730 	if (em) {
731 		/*
732 		 * if block start isn't an actual block number then find the
733 		 * first block in this inode and use that as a hint.  If that
734 		 * block is also bogus then just don't worry about it.
735 		 */
736 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 			free_extent_map(em);
738 			em = search_extent_mapping(em_tree, 0, 0);
739 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 				alloc_hint = em->block_start;
741 			if (em)
742 				free_extent_map(em);
743 		} else {
744 			alloc_hint = em->block_start;
745 			free_extent_map(em);
746 		}
747 	}
748 	read_unlock(&em_tree->lock);
749 
750 	return alloc_hint;
751 }
752 
753 static inline bool is_free_space_inode(struct btrfs_root *root,
754 				       struct inode *inode)
755 {
756 	if (root == root->fs_info->tree_root ||
757 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
758 		return true;
759 	return false;
760 }
761 
762 /*
763  * when extent_io.c finds a delayed allocation range in the file,
764  * the call backs end up in this code.  The basic idea is to
765  * allocate extents on disk for the range, and create ordered data structs
766  * in ram to track those extents.
767  *
768  * locked_page is the page that writepage had locked already.  We use
769  * it to make sure we don't do extra locks or unlocks.
770  *
771  * *page_started is set to one if we unlock locked_page and do everything
772  * required to start IO on it.  It may be clean and already done with
773  * IO when we return.
774  */
775 static noinline int cow_file_range(struct inode *inode,
776 				   struct page *locked_page,
777 				   u64 start, u64 end, int *page_started,
778 				   unsigned long *nr_written,
779 				   int unlock)
780 {
781 	struct btrfs_root *root = BTRFS_I(inode)->root;
782 	struct btrfs_trans_handle *trans;
783 	u64 alloc_hint = 0;
784 	u64 num_bytes;
785 	unsigned long ram_size;
786 	u64 disk_num_bytes;
787 	u64 cur_alloc_size;
788 	u64 blocksize = root->sectorsize;
789 	struct btrfs_key ins;
790 	struct extent_map *em;
791 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
792 	int ret = 0;
793 
794 	BUG_ON(is_free_space_inode(root, inode));
795 	trans = btrfs_join_transaction(root);
796 	BUG_ON(IS_ERR(trans));
797 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
798 
799 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
800 	num_bytes = max(blocksize,  num_bytes);
801 	disk_num_bytes = num_bytes;
802 	ret = 0;
803 
804 	/* if this is a small write inside eof, kick off defrag */
805 	if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
806 		btrfs_add_inode_defrag(trans, inode);
807 
808 	if (start == 0) {
809 		/* lets try to make an inline extent */
810 		ret = cow_file_range_inline(trans, root, inode,
811 					    start, end, 0, 0, NULL);
812 		if (ret == 0) {
813 			extent_clear_unlock_delalloc(inode,
814 				     &BTRFS_I(inode)->io_tree,
815 				     start, end, NULL,
816 				     EXTENT_CLEAR_UNLOCK_PAGE |
817 				     EXTENT_CLEAR_UNLOCK |
818 				     EXTENT_CLEAR_DELALLOC |
819 				     EXTENT_CLEAR_DIRTY |
820 				     EXTENT_SET_WRITEBACK |
821 				     EXTENT_END_WRITEBACK);
822 
823 			*nr_written = *nr_written +
824 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
825 			*page_started = 1;
826 			ret = 0;
827 			goto out;
828 		}
829 	}
830 
831 	BUG_ON(disk_num_bytes >
832 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
833 
834 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
835 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
836 
837 	while (disk_num_bytes > 0) {
838 		unsigned long op;
839 
840 		cur_alloc_size = disk_num_bytes;
841 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
842 					   root->sectorsize, 0, alloc_hint,
843 					   (u64)-1, &ins, 1);
844 		BUG_ON(ret);
845 
846 		em = alloc_extent_map();
847 		BUG_ON(!em);
848 		em->start = start;
849 		em->orig_start = em->start;
850 		ram_size = ins.offset;
851 		em->len = ins.offset;
852 
853 		em->block_start = ins.objectid;
854 		em->block_len = ins.offset;
855 		em->bdev = root->fs_info->fs_devices->latest_bdev;
856 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
857 
858 		while (1) {
859 			write_lock(&em_tree->lock);
860 			ret = add_extent_mapping(em_tree, em);
861 			write_unlock(&em_tree->lock);
862 			if (ret != -EEXIST) {
863 				free_extent_map(em);
864 				break;
865 			}
866 			btrfs_drop_extent_cache(inode, start,
867 						start + ram_size - 1, 0);
868 		}
869 
870 		cur_alloc_size = ins.offset;
871 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
872 					       ram_size, cur_alloc_size, 0);
873 		BUG_ON(ret);
874 
875 		if (root->root_key.objectid ==
876 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
877 			ret = btrfs_reloc_clone_csums(inode, start,
878 						      cur_alloc_size);
879 			BUG_ON(ret);
880 		}
881 
882 		if (disk_num_bytes < cur_alloc_size)
883 			break;
884 
885 		/* we're not doing compressed IO, don't unlock the first
886 		 * page (which the caller expects to stay locked), don't
887 		 * clear any dirty bits and don't set any writeback bits
888 		 *
889 		 * Do set the Private2 bit so we know this page was properly
890 		 * setup for writepage
891 		 */
892 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
893 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
894 			EXTENT_SET_PRIVATE2;
895 
896 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
897 					     start, start + ram_size - 1,
898 					     locked_page, op);
899 		disk_num_bytes -= cur_alloc_size;
900 		num_bytes -= cur_alloc_size;
901 		alloc_hint = ins.objectid + ins.offset;
902 		start += cur_alloc_size;
903 	}
904 out:
905 	ret = 0;
906 	btrfs_end_transaction(trans, root);
907 
908 	return ret;
909 }
910 
911 /*
912  * work queue call back to started compression on a file and pages
913  */
914 static noinline void async_cow_start(struct btrfs_work *work)
915 {
916 	struct async_cow *async_cow;
917 	int num_added = 0;
918 	async_cow = container_of(work, struct async_cow, work);
919 
920 	compress_file_range(async_cow->inode, async_cow->locked_page,
921 			    async_cow->start, async_cow->end, async_cow,
922 			    &num_added);
923 	if (num_added == 0)
924 		async_cow->inode = NULL;
925 }
926 
927 /*
928  * work queue call back to submit previously compressed pages
929  */
930 static noinline void async_cow_submit(struct btrfs_work *work)
931 {
932 	struct async_cow *async_cow;
933 	struct btrfs_root *root;
934 	unsigned long nr_pages;
935 
936 	async_cow = container_of(work, struct async_cow, work);
937 
938 	root = async_cow->root;
939 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
940 		PAGE_CACHE_SHIFT;
941 
942 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
943 
944 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
945 	    5 * 1042 * 1024 &&
946 	    waitqueue_active(&root->fs_info->async_submit_wait))
947 		wake_up(&root->fs_info->async_submit_wait);
948 
949 	if (async_cow->inode)
950 		submit_compressed_extents(async_cow->inode, async_cow);
951 }
952 
953 static noinline void async_cow_free(struct btrfs_work *work)
954 {
955 	struct async_cow *async_cow;
956 	async_cow = container_of(work, struct async_cow, work);
957 	kfree(async_cow);
958 }
959 
960 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
961 				u64 start, u64 end, int *page_started,
962 				unsigned long *nr_written)
963 {
964 	struct async_cow *async_cow;
965 	struct btrfs_root *root = BTRFS_I(inode)->root;
966 	unsigned long nr_pages;
967 	u64 cur_end;
968 	int limit = 10 * 1024 * 1042;
969 
970 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
971 			 1, 0, NULL, GFP_NOFS);
972 	while (start < end) {
973 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
974 		BUG_ON(!async_cow);
975 		async_cow->inode = inode;
976 		async_cow->root = root;
977 		async_cow->locked_page = locked_page;
978 		async_cow->start = start;
979 
980 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
981 			cur_end = end;
982 		else
983 			cur_end = min(end, start + 512 * 1024 - 1);
984 
985 		async_cow->end = cur_end;
986 		INIT_LIST_HEAD(&async_cow->extents);
987 
988 		async_cow->work.func = async_cow_start;
989 		async_cow->work.ordered_func = async_cow_submit;
990 		async_cow->work.ordered_free = async_cow_free;
991 		async_cow->work.flags = 0;
992 
993 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
994 			PAGE_CACHE_SHIFT;
995 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
996 
997 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
998 				   &async_cow->work);
999 
1000 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1001 			wait_event(root->fs_info->async_submit_wait,
1002 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1003 			    limit));
1004 		}
1005 
1006 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1007 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1008 			wait_event(root->fs_info->async_submit_wait,
1009 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1010 			   0));
1011 		}
1012 
1013 		*nr_written += nr_pages;
1014 		start = cur_end + 1;
1015 	}
1016 	*page_started = 1;
1017 	return 0;
1018 }
1019 
1020 static noinline int csum_exist_in_range(struct btrfs_root *root,
1021 					u64 bytenr, u64 num_bytes)
1022 {
1023 	int ret;
1024 	struct btrfs_ordered_sum *sums;
1025 	LIST_HEAD(list);
1026 
1027 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1028 				       bytenr + num_bytes - 1, &list, 0);
1029 	if (ret == 0 && list_empty(&list))
1030 		return 0;
1031 
1032 	while (!list_empty(&list)) {
1033 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1034 		list_del(&sums->list);
1035 		kfree(sums);
1036 	}
1037 	return 1;
1038 }
1039 
1040 /*
1041  * when nowcow writeback call back.  This checks for snapshots or COW copies
1042  * of the extents that exist in the file, and COWs the file as required.
1043  *
1044  * If no cow copies or snapshots exist, we write directly to the existing
1045  * blocks on disk
1046  */
1047 static noinline int run_delalloc_nocow(struct inode *inode,
1048 				       struct page *locked_page,
1049 			      u64 start, u64 end, int *page_started, int force,
1050 			      unsigned long *nr_written)
1051 {
1052 	struct btrfs_root *root = BTRFS_I(inode)->root;
1053 	struct btrfs_trans_handle *trans;
1054 	struct extent_buffer *leaf;
1055 	struct btrfs_path *path;
1056 	struct btrfs_file_extent_item *fi;
1057 	struct btrfs_key found_key;
1058 	u64 cow_start;
1059 	u64 cur_offset;
1060 	u64 extent_end;
1061 	u64 extent_offset;
1062 	u64 disk_bytenr;
1063 	u64 num_bytes;
1064 	int extent_type;
1065 	int ret;
1066 	int type;
1067 	int nocow;
1068 	int check_prev = 1;
1069 	bool nolock;
1070 	u64 ino = btrfs_ino(inode);
1071 
1072 	path = btrfs_alloc_path();
1073 	BUG_ON(!path);
1074 
1075 	nolock = is_free_space_inode(root, inode);
1076 
1077 	if (nolock)
1078 		trans = btrfs_join_transaction_nolock(root);
1079 	else
1080 		trans = btrfs_join_transaction(root);
1081 
1082 	BUG_ON(IS_ERR(trans));
1083 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1084 
1085 	cow_start = (u64)-1;
1086 	cur_offset = start;
1087 	while (1) {
1088 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1089 					       cur_offset, 0);
1090 		BUG_ON(ret < 0);
1091 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1092 			leaf = path->nodes[0];
1093 			btrfs_item_key_to_cpu(leaf, &found_key,
1094 					      path->slots[0] - 1);
1095 			if (found_key.objectid == ino &&
1096 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1097 				path->slots[0]--;
1098 		}
1099 		check_prev = 0;
1100 next_slot:
1101 		leaf = path->nodes[0];
1102 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1103 			ret = btrfs_next_leaf(root, path);
1104 			if (ret < 0)
1105 				BUG_ON(1);
1106 			if (ret > 0)
1107 				break;
1108 			leaf = path->nodes[0];
1109 		}
1110 
1111 		nocow = 0;
1112 		disk_bytenr = 0;
1113 		num_bytes = 0;
1114 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115 
1116 		if (found_key.objectid > ino ||
1117 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1118 		    found_key.offset > end)
1119 			break;
1120 
1121 		if (found_key.offset > cur_offset) {
1122 			extent_end = found_key.offset;
1123 			extent_type = 0;
1124 			goto out_check;
1125 		}
1126 
1127 		fi = btrfs_item_ptr(leaf, path->slots[0],
1128 				    struct btrfs_file_extent_item);
1129 		extent_type = btrfs_file_extent_type(leaf, fi);
1130 
1131 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1132 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1133 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1135 			extent_end = found_key.offset +
1136 				btrfs_file_extent_num_bytes(leaf, fi);
1137 			if (extent_end <= start) {
1138 				path->slots[0]++;
1139 				goto next_slot;
1140 			}
1141 			if (disk_bytenr == 0)
1142 				goto out_check;
1143 			if (btrfs_file_extent_compression(leaf, fi) ||
1144 			    btrfs_file_extent_encryption(leaf, fi) ||
1145 			    btrfs_file_extent_other_encoding(leaf, fi))
1146 				goto out_check;
1147 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1148 				goto out_check;
1149 			if (btrfs_extent_readonly(root, disk_bytenr))
1150 				goto out_check;
1151 			if (btrfs_cross_ref_exist(trans, root, ino,
1152 						  found_key.offset -
1153 						  extent_offset, disk_bytenr))
1154 				goto out_check;
1155 			disk_bytenr += extent_offset;
1156 			disk_bytenr += cur_offset - found_key.offset;
1157 			num_bytes = min(end + 1, extent_end) - cur_offset;
1158 			/*
1159 			 * force cow if csum exists in the range.
1160 			 * this ensure that csum for a given extent are
1161 			 * either valid or do not exist.
1162 			 */
1163 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1164 				goto out_check;
1165 			nocow = 1;
1166 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1167 			extent_end = found_key.offset +
1168 				btrfs_file_extent_inline_len(leaf, fi);
1169 			extent_end = ALIGN(extent_end, root->sectorsize);
1170 		} else {
1171 			BUG_ON(1);
1172 		}
1173 out_check:
1174 		if (extent_end <= start) {
1175 			path->slots[0]++;
1176 			goto next_slot;
1177 		}
1178 		if (!nocow) {
1179 			if (cow_start == (u64)-1)
1180 				cow_start = cur_offset;
1181 			cur_offset = extent_end;
1182 			if (cur_offset > end)
1183 				break;
1184 			path->slots[0]++;
1185 			goto next_slot;
1186 		}
1187 
1188 		btrfs_release_path(path);
1189 		if (cow_start != (u64)-1) {
1190 			ret = cow_file_range(inode, locked_page, cow_start,
1191 					found_key.offset - 1, page_started,
1192 					nr_written, 1);
1193 			BUG_ON(ret);
1194 			cow_start = (u64)-1;
1195 		}
1196 
1197 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1198 			struct extent_map *em;
1199 			struct extent_map_tree *em_tree;
1200 			em_tree = &BTRFS_I(inode)->extent_tree;
1201 			em = alloc_extent_map();
1202 			BUG_ON(!em);
1203 			em->start = cur_offset;
1204 			em->orig_start = em->start;
1205 			em->len = num_bytes;
1206 			em->block_len = num_bytes;
1207 			em->block_start = disk_bytenr;
1208 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1209 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1210 			while (1) {
1211 				write_lock(&em_tree->lock);
1212 				ret = add_extent_mapping(em_tree, em);
1213 				write_unlock(&em_tree->lock);
1214 				if (ret != -EEXIST) {
1215 					free_extent_map(em);
1216 					break;
1217 				}
1218 				btrfs_drop_extent_cache(inode, em->start,
1219 						em->start + em->len - 1, 0);
1220 			}
1221 			type = BTRFS_ORDERED_PREALLOC;
1222 		} else {
1223 			type = BTRFS_ORDERED_NOCOW;
1224 		}
1225 
1226 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1227 					       num_bytes, num_bytes, type);
1228 		BUG_ON(ret);
1229 
1230 		if (root->root_key.objectid ==
1231 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1232 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1233 						      num_bytes);
1234 			BUG_ON(ret);
1235 		}
1236 
1237 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1238 				cur_offset, cur_offset + num_bytes - 1,
1239 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1240 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1241 				EXTENT_SET_PRIVATE2);
1242 		cur_offset = extent_end;
1243 		if (cur_offset > end)
1244 			break;
1245 	}
1246 	btrfs_release_path(path);
1247 
1248 	if (cur_offset <= end && cow_start == (u64)-1)
1249 		cow_start = cur_offset;
1250 	if (cow_start != (u64)-1) {
1251 		ret = cow_file_range(inode, locked_page, cow_start, end,
1252 				     page_started, nr_written, 1);
1253 		BUG_ON(ret);
1254 	}
1255 
1256 	if (nolock) {
1257 		ret = btrfs_end_transaction_nolock(trans, root);
1258 		BUG_ON(ret);
1259 	} else {
1260 		ret = btrfs_end_transaction(trans, root);
1261 		BUG_ON(ret);
1262 	}
1263 	btrfs_free_path(path);
1264 	return 0;
1265 }
1266 
1267 /*
1268  * extent_io.c call back to do delayed allocation processing
1269  */
1270 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1271 			      u64 start, u64 end, int *page_started,
1272 			      unsigned long *nr_written)
1273 {
1274 	int ret;
1275 	struct btrfs_root *root = BTRFS_I(inode)->root;
1276 
1277 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1278 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1279 					 page_started, 1, nr_written);
1280 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1281 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1282 					 page_started, 0, nr_written);
1283 	else if (!btrfs_test_opt(root, COMPRESS) &&
1284 		 !(BTRFS_I(inode)->force_compress) &&
1285 		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1286 		ret = cow_file_range(inode, locked_page, start, end,
1287 				      page_started, nr_written, 1);
1288 	else
1289 		ret = cow_file_range_async(inode, locked_page, start, end,
1290 					   page_started, nr_written);
1291 	return ret;
1292 }
1293 
1294 static int btrfs_split_extent_hook(struct inode *inode,
1295 				   struct extent_state *orig, u64 split)
1296 {
1297 	/* not delalloc, ignore it */
1298 	if (!(orig->state & EXTENT_DELALLOC))
1299 		return 0;
1300 
1301 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1302 	return 0;
1303 }
1304 
1305 /*
1306  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307  * extents so we can keep track of new extents that are just merged onto old
1308  * extents, such as when we are doing sequential writes, so we can properly
1309  * account for the metadata space we'll need.
1310  */
1311 static int btrfs_merge_extent_hook(struct inode *inode,
1312 				   struct extent_state *new,
1313 				   struct extent_state *other)
1314 {
1315 	/* not delalloc, ignore it */
1316 	if (!(other->state & EXTENT_DELALLOC))
1317 		return 0;
1318 
1319 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1320 	return 0;
1321 }
1322 
1323 /*
1324  * extent_io.c set_bit_hook, used to track delayed allocation
1325  * bytes in this file, and to maintain the list of inodes that
1326  * have pending delalloc work to be done.
1327  */
1328 static int btrfs_set_bit_hook(struct inode *inode,
1329 			      struct extent_state *state, int *bits)
1330 {
1331 
1332 	/*
1333 	 * set_bit and clear bit hooks normally require _irqsave/restore
1334 	 * but in this case, we are only testing for the DELALLOC
1335 	 * bit, which is only set or cleared with irqs on
1336 	 */
1337 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1338 		struct btrfs_root *root = BTRFS_I(inode)->root;
1339 		u64 len = state->end + 1 - state->start;
1340 		bool do_list = !is_free_space_inode(root, inode);
1341 
1342 		if (*bits & EXTENT_FIRST_DELALLOC)
1343 			*bits &= ~EXTENT_FIRST_DELALLOC;
1344 		else
1345 			atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1346 
1347 		spin_lock(&root->fs_info->delalloc_lock);
1348 		BTRFS_I(inode)->delalloc_bytes += len;
1349 		root->fs_info->delalloc_bytes += len;
1350 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1351 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1352 				      &root->fs_info->delalloc_inodes);
1353 		}
1354 		spin_unlock(&root->fs_info->delalloc_lock);
1355 	}
1356 	return 0;
1357 }
1358 
1359 /*
1360  * extent_io.c clear_bit_hook, see set_bit_hook for why
1361  */
1362 static int btrfs_clear_bit_hook(struct inode *inode,
1363 				struct extent_state *state, int *bits)
1364 {
1365 	/*
1366 	 * set_bit and clear bit hooks normally require _irqsave/restore
1367 	 * but in this case, we are only testing for the DELALLOC
1368 	 * bit, which is only set or cleared with irqs on
1369 	 */
1370 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1371 		struct btrfs_root *root = BTRFS_I(inode)->root;
1372 		u64 len = state->end + 1 - state->start;
1373 		bool do_list = !is_free_space_inode(root, inode);
1374 
1375 		if (*bits & EXTENT_FIRST_DELALLOC)
1376 			*bits &= ~EXTENT_FIRST_DELALLOC;
1377 		else if (!(*bits & EXTENT_DO_ACCOUNTING))
1378 			atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1379 
1380 		if (*bits & EXTENT_DO_ACCOUNTING)
1381 			btrfs_delalloc_release_metadata(inode, len);
1382 
1383 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1384 		    && do_list)
1385 			btrfs_free_reserved_data_space(inode, len);
1386 
1387 		spin_lock(&root->fs_info->delalloc_lock);
1388 		root->fs_info->delalloc_bytes -= len;
1389 		BTRFS_I(inode)->delalloc_bytes -= len;
1390 
1391 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1392 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1393 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1394 		}
1395 		spin_unlock(&root->fs_info->delalloc_lock);
1396 	}
1397 	return 0;
1398 }
1399 
1400 /*
1401  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1402  * we don't create bios that span stripes or chunks
1403  */
1404 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1405 			 size_t size, struct bio *bio,
1406 			 unsigned long bio_flags)
1407 {
1408 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1409 	struct btrfs_mapping_tree *map_tree;
1410 	u64 logical = (u64)bio->bi_sector << 9;
1411 	u64 length = 0;
1412 	u64 map_length;
1413 	int ret;
1414 
1415 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1416 		return 0;
1417 
1418 	length = bio->bi_size;
1419 	map_tree = &root->fs_info->mapping_tree;
1420 	map_length = length;
1421 	ret = btrfs_map_block(map_tree, READ, logical,
1422 			      &map_length, NULL, 0);
1423 
1424 	if (map_length < length + size)
1425 		return 1;
1426 	return ret;
1427 }
1428 
1429 /*
1430  * in order to insert checksums into the metadata in large chunks,
1431  * we wait until bio submission time.   All the pages in the bio are
1432  * checksummed and sums are attached onto the ordered extent record.
1433  *
1434  * At IO completion time the cums attached on the ordered extent record
1435  * are inserted into the btree
1436  */
1437 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1438 				    struct bio *bio, int mirror_num,
1439 				    unsigned long bio_flags,
1440 				    u64 bio_offset)
1441 {
1442 	struct btrfs_root *root = BTRFS_I(inode)->root;
1443 	int ret = 0;
1444 
1445 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1446 	BUG_ON(ret);
1447 	return 0;
1448 }
1449 
1450 /*
1451  * in order to insert checksums into the metadata in large chunks,
1452  * we wait until bio submission time.   All the pages in the bio are
1453  * checksummed and sums are attached onto the ordered extent record.
1454  *
1455  * At IO completion time the cums attached on the ordered extent record
1456  * are inserted into the btree
1457  */
1458 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1459 			  int mirror_num, unsigned long bio_flags,
1460 			  u64 bio_offset)
1461 {
1462 	struct btrfs_root *root = BTRFS_I(inode)->root;
1463 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1464 }
1465 
1466 /*
1467  * extent_io.c submission hook. This does the right thing for csum calculation
1468  * on write, or reading the csums from the tree before a read
1469  */
1470 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1471 			  int mirror_num, unsigned long bio_flags,
1472 			  u64 bio_offset)
1473 {
1474 	struct btrfs_root *root = BTRFS_I(inode)->root;
1475 	int ret = 0;
1476 	int skip_sum;
1477 
1478 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1479 
1480 	if (is_free_space_inode(root, inode))
1481 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1482 	else
1483 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1484 	BUG_ON(ret);
1485 
1486 	if (!(rw & REQ_WRITE)) {
1487 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1488 			return btrfs_submit_compressed_read(inode, bio,
1489 						    mirror_num, bio_flags);
1490 		} else if (!skip_sum) {
1491 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1492 			if (ret)
1493 				return ret;
1494 		}
1495 		goto mapit;
1496 	} else if (!skip_sum) {
1497 		/* csum items have already been cloned */
1498 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1499 			goto mapit;
1500 		/* we're doing a write, do the async checksumming */
1501 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1502 				   inode, rw, bio, mirror_num,
1503 				   bio_flags, bio_offset,
1504 				   __btrfs_submit_bio_start,
1505 				   __btrfs_submit_bio_done);
1506 	}
1507 
1508 mapit:
1509 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1510 }
1511 
1512 /*
1513  * given a list of ordered sums record them in the inode.  This happens
1514  * at IO completion time based on sums calculated at bio submission time.
1515  */
1516 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1517 			     struct inode *inode, u64 file_offset,
1518 			     struct list_head *list)
1519 {
1520 	struct btrfs_ordered_sum *sum;
1521 
1522 	list_for_each_entry(sum, list, list) {
1523 		btrfs_csum_file_blocks(trans,
1524 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1525 	}
1526 	return 0;
1527 }
1528 
1529 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1530 			      struct extent_state **cached_state)
1531 {
1532 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1533 		WARN_ON(1);
1534 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1535 				   cached_state, GFP_NOFS);
1536 }
1537 
1538 /* see btrfs_writepage_start_hook for details on why this is required */
1539 struct btrfs_writepage_fixup {
1540 	struct page *page;
1541 	struct btrfs_work work;
1542 };
1543 
1544 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1545 {
1546 	struct btrfs_writepage_fixup *fixup;
1547 	struct btrfs_ordered_extent *ordered;
1548 	struct extent_state *cached_state = NULL;
1549 	struct page *page;
1550 	struct inode *inode;
1551 	u64 page_start;
1552 	u64 page_end;
1553 
1554 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1555 	page = fixup->page;
1556 again:
1557 	lock_page(page);
1558 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1559 		ClearPageChecked(page);
1560 		goto out_page;
1561 	}
1562 
1563 	inode = page->mapping->host;
1564 	page_start = page_offset(page);
1565 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1566 
1567 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1568 			 &cached_state, GFP_NOFS);
1569 
1570 	/* already ordered? We're done */
1571 	if (PagePrivate2(page))
1572 		goto out;
1573 
1574 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1575 	if (ordered) {
1576 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1577 				     page_end, &cached_state, GFP_NOFS);
1578 		unlock_page(page);
1579 		btrfs_start_ordered_extent(inode, ordered, 1);
1580 		goto again;
1581 	}
1582 
1583 	BUG();
1584 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1585 	ClearPageChecked(page);
1586 out:
1587 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1588 			     &cached_state, GFP_NOFS);
1589 out_page:
1590 	unlock_page(page);
1591 	page_cache_release(page);
1592 	kfree(fixup);
1593 }
1594 
1595 /*
1596  * There are a few paths in the higher layers of the kernel that directly
1597  * set the page dirty bit without asking the filesystem if it is a
1598  * good idea.  This causes problems because we want to make sure COW
1599  * properly happens and the data=ordered rules are followed.
1600  *
1601  * In our case any range that doesn't have the ORDERED bit set
1602  * hasn't been properly setup for IO.  We kick off an async process
1603  * to fix it up.  The async helper will wait for ordered extents, set
1604  * the delalloc bit and make it safe to write the page.
1605  */
1606 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1607 {
1608 	struct inode *inode = page->mapping->host;
1609 	struct btrfs_writepage_fixup *fixup;
1610 	struct btrfs_root *root = BTRFS_I(inode)->root;
1611 
1612 	/* this page is properly in the ordered list */
1613 	if (TestClearPagePrivate2(page))
1614 		return 0;
1615 
1616 	if (PageChecked(page))
1617 		return -EAGAIN;
1618 
1619 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1620 	if (!fixup)
1621 		return -EAGAIN;
1622 
1623 	SetPageChecked(page);
1624 	page_cache_get(page);
1625 	fixup->work.func = btrfs_writepage_fixup_worker;
1626 	fixup->page = page;
1627 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1628 	return -EAGAIN;
1629 }
1630 
1631 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1632 				       struct inode *inode, u64 file_pos,
1633 				       u64 disk_bytenr, u64 disk_num_bytes,
1634 				       u64 num_bytes, u64 ram_bytes,
1635 				       u8 compression, u8 encryption,
1636 				       u16 other_encoding, int extent_type)
1637 {
1638 	struct btrfs_root *root = BTRFS_I(inode)->root;
1639 	struct btrfs_file_extent_item *fi;
1640 	struct btrfs_path *path;
1641 	struct extent_buffer *leaf;
1642 	struct btrfs_key ins;
1643 	u64 hint;
1644 	int ret;
1645 
1646 	path = btrfs_alloc_path();
1647 	BUG_ON(!path);
1648 
1649 	path->leave_spinning = 1;
1650 
1651 	/*
1652 	 * we may be replacing one extent in the tree with another.
1653 	 * The new extent is pinned in the extent map, and we don't want
1654 	 * to drop it from the cache until it is completely in the btree.
1655 	 *
1656 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1657 	 * the caller is expected to unpin it and allow it to be merged
1658 	 * with the others.
1659 	 */
1660 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1661 				 &hint, 0);
1662 	BUG_ON(ret);
1663 
1664 	ins.objectid = btrfs_ino(inode);
1665 	ins.offset = file_pos;
1666 	ins.type = BTRFS_EXTENT_DATA_KEY;
1667 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1668 	BUG_ON(ret);
1669 	leaf = path->nodes[0];
1670 	fi = btrfs_item_ptr(leaf, path->slots[0],
1671 			    struct btrfs_file_extent_item);
1672 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1673 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1674 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1675 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1676 	btrfs_set_file_extent_offset(leaf, fi, 0);
1677 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1678 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1679 	btrfs_set_file_extent_compression(leaf, fi, compression);
1680 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1681 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1682 
1683 	btrfs_unlock_up_safe(path, 1);
1684 	btrfs_set_lock_blocking(leaf);
1685 
1686 	btrfs_mark_buffer_dirty(leaf);
1687 
1688 	inode_add_bytes(inode, num_bytes);
1689 
1690 	ins.objectid = disk_bytenr;
1691 	ins.offset = disk_num_bytes;
1692 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1693 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1694 					root->root_key.objectid,
1695 					btrfs_ino(inode), file_pos, &ins);
1696 	BUG_ON(ret);
1697 	btrfs_free_path(path);
1698 
1699 	return 0;
1700 }
1701 
1702 /*
1703  * helper function for btrfs_finish_ordered_io, this
1704  * just reads in some of the csum leaves to prime them into ram
1705  * before we start the transaction.  It limits the amount of btree
1706  * reads required while inside the transaction.
1707  */
1708 /* as ordered data IO finishes, this gets called so we can finish
1709  * an ordered extent if the range of bytes in the file it covers are
1710  * fully written.
1711  */
1712 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1713 {
1714 	struct btrfs_root *root = BTRFS_I(inode)->root;
1715 	struct btrfs_trans_handle *trans = NULL;
1716 	struct btrfs_ordered_extent *ordered_extent = NULL;
1717 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1718 	struct extent_state *cached_state = NULL;
1719 	int compress_type = 0;
1720 	int ret;
1721 	bool nolock;
1722 
1723 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1724 					     end - start + 1);
1725 	if (!ret)
1726 		return 0;
1727 	BUG_ON(!ordered_extent);
1728 
1729 	nolock = is_free_space_inode(root, inode);
1730 
1731 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1732 		BUG_ON(!list_empty(&ordered_extent->list));
1733 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1734 		if (!ret) {
1735 			if (nolock)
1736 				trans = btrfs_join_transaction_nolock(root);
1737 			else
1738 				trans = btrfs_join_transaction(root);
1739 			BUG_ON(IS_ERR(trans));
1740 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741 			ret = btrfs_update_inode(trans, root, inode);
1742 			BUG_ON(ret);
1743 		}
1744 		goto out;
1745 	}
1746 
1747 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1748 			 ordered_extent->file_offset + ordered_extent->len - 1,
1749 			 0, &cached_state, GFP_NOFS);
1750 
1751 	if (nolock)
1752 		trans = btrfs_join_transaction_nolock(root);
1753 	else
1754 		trans = btrfs_join_transaction(root);
1755 	BUG_ON(IS_ERR(trans));
1756 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1757 
1758 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1759 		compress_type = ordered_extent->compress_type;
1760 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1761 		BUG_ON(compress_type);
1762 		ret = btrfs_mark_extent_written(trans, inode,
1763 						ordered_extent->file_offset,
1764 						ordered_extent->file_offset +
1765 						ordered_extent->len);
1766 		BUG_ON(ret);
1767 	} else {
1768 		BUG_ON(root == root->fs_info->tree_root);
1769 		ret = insert_reserved_file_extent(trans, inode,
1770 						ordered_extent->file_offset,
1771 						ordered_extent->start,
1772 						ordered_extent->disk_len,
1773 						ordered_extent->len,
1774 						ordered_extent->len,
1775 						compress_type, 0, 0,
1776 						BTRFS_FILE_EXTENT_REG);
1777 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1778 				   ordered_extent->file_offset,
1779 				   ordered_extent->len);
1780 		BUG_ON(ret);
1781 	}
1782 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1783 			     ordered_extent->file_offset +
1784 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1785 
1786 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1787 			  &ordered_extent->list);
1788 
1789 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1790 	if (!ret) {
1791 		ret = btrfs_update_inode(trans, root, inode);
1792 		BUG_ON(ret);
1793 	}
1794 	ret = 0;
1795 out:
1796 	if (nolock) {
1797 		if (trans)
1798 			btrfs_end_transaction_nolock(trans, root);
1799 	} else {
1800 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1801 		if (trans)
1802 			btrfs_end_transaction(trans, root);
1803 	}
1804 
1805 	/* once for us */
1806 	btrfs_put_ordered_extent(ordered_extent);
1807 	/* once for the tree */
1808 	btrfs_put_ordered_extent(ordered_extent);
1809 
1810 	return 0;
1811 }
1812 
1813 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1814 				struct extent_state *state, int uptodate)
1815 {
1816 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1817 
1818 	ClearPagePrivate2(page);
1819 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1820 }
1821 
1822 /*
1823  * When IO fails, either with EIO or csum verification fails, we
1824  * try other mirrors that might have a good copy of the data.  This
1825  * io_failure_record is used to record state as we go through all the
1826  * mirrors.  If another mirror has good data, the page is set up to date
1827  * and things continue.  If a good mirror can't be found, the original
1828  * bio end_io callback is called to indicate things have failed.
1829  */
1830 struct io_failure_record {
1831 	struct page *page;
1832 	u64 start;
1833 	u64 len;
1834 	u64 logical;
1835 	unsigned long bio_flags;
1836 	int last_mirror;
1837 };
1838 
1839 static int btrfs_io_failed_hook(struct bio *failed_bio,
1840 			 struct page *page, u64 start, u64 end,
1841 			 struct extent_state *state)
1842 {
1843 	struct io_failure_record *failrec = NULL;
1844 	u64 private;
1845 	struct extent_map *em;
1846 	struct inode *inode = page->mapping->host;
1847 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1848 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1849 	struct bio *bio;
1850 	int num_copies;
1851 	int ret;
1852 	int rw;
1853 	u64 logical;
1854 
1855 	ret = get_state_private(failure_tree, start, &private);
1856 	if (ret) {
1857 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1858 		if (!failrec)
1859 			return -ENOMEM;
1860 		failrec->start = start;
1861 		failrec->len = end - start + 1;
1862 		failrec->last_mirror = 0;
1863 		failrec->bio_flags = 0;
1864 
1865 		read_lock(&em_tree->lock);
1866 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1867 		if (em->start > start || em->start + em->len < start) {
1868 			free_extent_map(em);
1869 			em = NULL;
1870 		}
1871 		read_unlock(&em_tree->lock);
1872 
1873 		if (IS_ERR_OR_NULL(em)) {
1874 			kfree(failrec);
1875 			return -EIO;
1876 		}
1877 		logical = start - em->start;
1878 		logical = em->block_start + logical;
1879 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1880 			logical = em->block_start;
1881 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1882 			extent_set_compress_type(&failrec->bio_flags,
1883 						 em->compress_type);
1884 		}
1885 		failrec->logical = logical;
1886 		free_extent_map(em);
1887 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1888 				EXTENT_DIRTY, GFP_NOFS);
1889 		set_state_private(failure_tree, start,
1890 				 (u64)(unsigned long)failrec);
1891 	} else {
1892 		failrec = (struct io_failure_record *)(unsigned long)private;
1893 	}
1894 	num_copies = btrfs_num_copies(
1895 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1896 			      failrec->logical, failrec->len);
1897 	failrec->last_mirror++;
1898 	if (!state) {
1899 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1900 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1901 						    failrec->start,
1902 						    EXTENT_LOCKED);
1903 		if (state && state->start != failrec->start)
1904 			state = NULL;
1905 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1906 	}
1907 	if (!state || failrec->last_mirror > num_copies) {
1908 		set_state_private(failure_tree, failrec->start, 0);
1909 		clear_extent_bits(failure_tree, failrec->start,
1910 				  failrec->start + failrec->len - 1,
1911 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1912 		kfree(failrec);
1913 		return -EIO;
1914 	}
1915 	bio = bio_alloc(GFP_NOFS, 1);
1916 	bio->bi_private = state;
1917 	bio->bi_end_io = failed_bio->bi_end_io;
1918 	bio->bi_sector = failrec->logical >> 9;
1919 	bio->bi_bdev = failed_bio->bi_bdev;
1920 	bio->bi_size = 0;
1921 
1922 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1923 	if (failed_bio->bi_rw & REQ_WRITE)
1924 		rw = WRITE;
1925 	else
1926 		rw = READ;
1927 
1928 	ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1929 						      failrec->last_mirror,
1930 						      failrec->bio_flags, 0);
1931 	return ret;
1932 }
1933 
1934 /*
1935  * each time an IO finishes, we do a fast check in the IO failure tree
1936  * to see if we need to process or clean up an io_failure_record
1937  */
1938 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1939 {
1940 	u64 private;
1941 	u64 private_failure;
1942 	struct io_failure_record *failure;
1943 	int ret;
1944 
1945 	private = 0;
1946 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1947 			     (u64)-1, 1, EXTENT_DIRTY, 0)) {
1948 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1949 					start, &private_failure);
1950 		if (ret == 0) {
1951 			failure = (struct io_failure_record *)(unsigned long)
1952 				   private_failure;
1953 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1954 					  failure->start, 0);
1955 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1956 					  failure->start,
1957 					  failure->start + failure->len - 1,
1958 					  EXTENT_DIRTY | EXTENT_LOCKED,
1959 					  GFP_NOFS);
1960 			kfree(failure);
1961 		}
1962 	}
1963 	return 0;
1964 }
1965 
1966 /*
1967  * when reads are done, we need to check csums to verify the data is correct
1968  * if there's a match, we allow the bio to finish.  If not, we go through
1969  * the io_failure_record routines to find good copies
1970  */
1971 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1972 			       struct extent_state *state)
1973 {
1974 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1975 	struct inode *inode = page->mapping->host;
1976 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1977 	char *kaddr;
1978 	u64 private = ~(u32)0;
1979 	int ret;
1980 	struct btrfs_root *root = BTRFS_I(inode)->root;
1981 	u32 csum = ~(u32)0;
1982 
1983 	if (PageChecked(page)) {
1984 		ClearPageChecked(page);
1985 		goto good;
1986 	}
1987 
1988 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1989 		return 0;
1990 
1991 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1992 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1993 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1994 				  GFP_NOFS);
1995 		return 0;
1996 	}
1997 
1998 	if (state && state->start == start) {
1999 		private = state->private;
2000 		ret = 0;
2001 	} else {
2002 		ret = get_state_private(io_tree, start, &private);
2003 	}
2004 	kaddr = kmap_atomic(page, KM_USER0);
2005 	if (ret)
2006 		goto zeroit;
2007 
2008 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2009 	btrfs_csum_final(csum, (char *)&csum);
2010 	if (csum != private)
2011 		goto zeroit;
2012 
2013 	kunmap_atomic(kaddr, KM_USER0);
2014 good:
2015 	/* if the io failure tree for this inode is non-empty,
2016 	 * check to see if we've recovered from a failed IO
2017 	 */
2018 	btrfs_clean_io_failures(inode, start);
2019 	return 0;
2020 
2021 zeroit:
2022 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2023 		       "private %llu\n",
2024 		       (unsigned long long)btrfs_ino(page->mapping->host),
2025 		       (unsigned long long)start, csum,
2026 		       (unsigned long long)private);
2027 	memset(kaddr + offset, 1, end - start + 1);
2028 	flush_dcache_page(page);
2029 	kunmap_atomic(kaddr, KM_USER0);
2030 	if (private == 0)
2031 		return 0;
2032 	return -EIO;
2033 }
2034 
2035 struct delayed_iput {
2036 	struct list_head list;
2037 	struct inode *inode;
2038 };
2039 
2040 void btrfs_add_delayed_iput(struct inode *inode)
2041 {
2042 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2043 	struct delayed_iput *delayed;
2044 
2045 	if (atomic_add_unless(&inode->i_count, -1, 1))
2046 		return;
2047 
2048 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2049 	delayed->inode = inode;
2050 
2051 	spin_lock(&fs_info->delayed_iput_lock);
2052 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2053 	spin_unlock(&fs_info->delayed_iput_lock);
2054 }
2055 
2056 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2057 {
2058 	LIST_HEAD(list);
2059 	struct btrfs_fs_info *fs_info = root->fs_info;
2060 	struct delayed_iput *delayed;
2061 	int empty;
2062 
2063 	spin_lock(&fs_info->delayed_iput_lock);
2064 	empty = list_empty(&fs_info->delayed_iputs);
2065 	spin_unlock(&fs_info->delayed_iput_lock);
2066 	if (empty)
2067 		return;
2068 
2069 	down_read(&root->fs_info->cleanup_work_sem);
2070 	spin_lock(&fs_info->delayed_iput_lock);
2071 	list_splice_init(&fs_info->delayed_iputs, &list);
2072 	spin_unlock(&fs_info->delayed_iput_lock);
2073 
2074 	while (!list_empty(&list)) {
2075 		delayed = list_entry(list.next, struct delayed_iput, list);
2076 		list_del(&delayed->list);
2077 		iput(delayed->inode);
2078 		kfree(delayed);
2079 	}
2080 	up_read(&root->fs_info->cleanup_work_sem);
2081 }
2082 
2083 /*
2084  * calculate extra metadata reservation when snapshotting a subvolume
2085  * contains orphan files.
2086  */
2087 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2088 				struct btrfs_pending_snapshot *pending,
2089 				u64 *bytes_to_reserve)
2090 {
2091 	struct btrfs_root *root;
2092 	struct btrfs_block_rsv *block_rsv;
2093 	u64 num_bytes;
2094 	int index;
2095 
2096 	root = pending->root;
2097 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2098 		return;
2099 
2100 	block_rsv = root->orphan_block_rsv;
2101 
2102 	/* orphan block reservation for the snapshot */
2103 	num_bytes = block_rsv->size;
2104 
2105 	/*
2106 	 * after the snapshot is created, COWing tree blocks may use more
2107 	 * space than it frees. So we should make sure there is enough
2108 	 * reserved space.
2109 	 */
2110 	index = trans->transid & 0x1;
2111 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2112 		num_bytes += block_rsv->size -
2113 			     (block_rsv->reserved + block_rsv->freed[index]);
2114 	}
2115 
2116 	*bytes_to_reserve += num_bytes;
2117 }
2118 
2119 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2120 				struct btrfs_pending_snapshot *pending)
2121 {
2122 	struct btrfs_root *root = pending->root;
2123 	struct btrfs_root *snap = pending->snap;
2124 	struct btrfs_block_rsv *block_rsv;
2125 	u64 num_bytes;
2126 	int index;
2127 	int ret;
2128 
2129 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2130 		return;
2131 
2132 	/* refill source subvolume's orphan block reservation */
2133 	block_rsv = root->orphan_block_rsv;
2134 	index = trans->transid & 0x1;
2135 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2136 		num_bytes = block_rsv->size -
2137 			    (block_rsv->reserved + block_rsv->freed[index]);
2138 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2139 					      root->orphan_block_rsv,
2140 					      num_bytes);
2141 		BUG_ON(ret);
2142 	}
2143 
2144 	/* setup orphan block reservation for the snapshot */
2145 	block_rsv = btrfs_alloc_block_rsv(snap);
2146 	BUG_ON(!block_rsv);
2147 
2148 	btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2149 	snap->orphan_block_rsv = block_rsv;
2150 
2151 	num_bytes = root->orphan_block_rsv->size;
2152 	ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2153 				      block_rsv, num_bytes);
2154 	BUG_ON(ret);
2155 
2156 #if 0
2157 	/* insert orphan item for the snapshot */
2158 	WARN_ON(!root->orphan_item_inserted);
2159 	ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2160 				       snap->root_key.objectid);
2161 	BUG_ON(ret);
2162 	snap->orphan_item_inserted = 1;
2163 #endif
2164 }
2165 
2166 enum btrfs_orphan_cleanup_state {
2167 	ORPHAN_CLEANUP_STARTED	= 1,
2168 	ORPHAN_CLEANUP_DONE	= 2,
2169 };
2170 
2171 /*
2172  * This is called in transaction commmit time. If there are no orphan
2173  * files in the subvolume, it removes orphan item and frees block_rsv
2174  * structure.
2175  */
2176 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2177 			      struct btrfs_root *root)
2178 {
2179 	int ret;
2180 
2181 	if (!list_empty(&root->orphan_list) ||
2182 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2183 		return;
2184 
2185 	if (root->orphan_item_inserted &&
2186 	    btrfs_root_refs(&root->root_item) > 0) {
2187 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2188 					    root->root_key.objectid);
2189 		BUG_ON(ret);
2190 		root->orphan_item_inserted = 0;
2191 	}
2192 
2193 	if (root->orphan_block_rsv) {
2194 		WARN_ON(root->orphan_block_rsv->size > 0);
2195 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
2196 		root->orphan_block_rsv = NULL;
2197 	}
2198 }
2199 
2200 /*
2201  * This creates an orphan entry for the given inode in case something goes
2202  * wrong in the middle of an unlink/truncate.
2203  *
2204  * NOTE: caller of this function should reserve 5 units of metadata for
2205  *	 this function.
2206  */
2207 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2208 {
2209 	struct btrfs_root *root = BTRFS_I(inode)->root;
2210 	struct btrfs_block_rsv *block_rsv = NULL;
2211 	int reserve = 0;
2212 	int insert = 0;
2213 	int ret;
2214 
2215 	if (!root->orphan_block_rsv) {
2216 		block_rsv = btrfs_alloc_block_rsv(root);
2217 		BUG_ON(!block_rsv);
2218 	}
2219 
2220 	spin_lock(&root->orphan_lock);
2221 	if (!root->orphan_block_rsv) {
2222 		root->orphan_block_rsv = block_rsv;
2223 	} else if (block_rsv) {
2224 		btrfs_free_block_rsv(root, block_rsv);
2225 		block_rsv = NULL;
2226 	}
2227 
2228 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2229 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2230 #if 0
2231 		/*
2232 		 * For proper ENOSPC handling, we should do orphan
2233 		 * cleanup when mounting. But this introduces backward
2234 		 * compatibility issue.
2235 		 */
2236 		if (!xchg(&root->orphan_item_inserted, 1))
2237 			insert = 2;
2238 		else
2239 			insert = 1;
2240 #endif
2241 		insert = 1;
2242 	}
2243 
2244 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2245 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2246 		reserve = 1;
2247 	}
2248 	spin_unlock(&root->orphan_lock);
2249 
2250 	if (block_rsv)
2251 		btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2252 
2253 	/* grab metadata reservation from transaction handle */
2254 	if (reserve) {
2255 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2256 		BUG_ON(ret);
2257 	}
2258 
2259 	/* insert an orphan item to track this unlinked/truncated file */
2260 	if (insert >= 1) {
2261 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2262 		BUG_ON(ret);
2263 	}
2264 
2265 	/* insert an orphan item to track subvolume contains orphan files */
2266 	if (insert >= 2) {
2267 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2268 					       root->root_key.objectid);
2269 		BUG_ON(ret);
2270 	}
2271 	return 0;
2272 }
2273 
2274 /*
2275  * We have done the truncate/delete so we can go ahead and remove the orphan
2276  * item for this particular inode.
2277  */
2278 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2279 {
2280 	struct btrfs_root *root = BTRFS_I(inode)->root;
2281 	int delete_item = 0;
2282 	int release_rsv = 0;
2283 	int ret = 0;
2284 
2285 	spin_lock(&root->orphan_lock);
2286 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2287 		list_del_init(&BTRFS_I(inode)->i_orphan);
2288 		delete_item = 1;
2289 	}
2290 
2291 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2292 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2293 		release_rsv = 1;
2294 	}
2295 	spin_unlock(&root->orphan_lock);
2296 
2297 	if (trans && delete_item) {
2298 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2299 		BUG_ON(ret);
2300 	}
2301 
2302 	if (release_rsv)
2303 		btrfs_orphan_release_metadata(inode);
2304 
2305 	return 0;
2306 }
2307 
2308 /*
2309  * this cleans up any orphans that may be left on the list from the last use
2310  * of this root.
2311  */
2312 int btrfs_orphan_cleanup(struct btrfs_root *root)
2313 {
2314 	struct btrfs_path *path;
2315 	struct extent_buffer *leaf;
2316 	struct btrfs_key key, found_key;
2317 	struct btrfs_trans_handle *trans;
2318 	struct inode *inode;
2319 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2320 
2321 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2322 		return 0;
2323 
2324 	path = btrfs_alloc_path();
2325 	if (!path) {
2326 		ret = -ENOMEM;
2327 		goto out;
2328 	}
2329 	path->reada = -1;
2330 
2331 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2332 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2333 	key.offset = (u64)-1;
2334 
2335 	while (1) {
2336 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2337 		if (ret < 0)
2338 			goto out;
2339 
2340 		/*
2341 		 * if ret == 0 means we found what we were searching for, which
2342 		 * is weird, but possible, so only screw with path if we didn't
2343 		 * find the key and see if we have stuff that matches
2344 		 */
2345 		if (ret > 0) {
2346 			ret = 0;
2347 			if (path->slots[0] == 0)
2348 				break;
2349 			path->slots[0]--;
2350 		}
2351 
2352 		/* pull out the item */
2353 		leaf = path->nodes[0];
2354 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355 
2356 		/* make sure the item matches what we want */
2357 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2358 			break;
2359 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2360 			break;
2361 
2362 		/* release the path since we're done with it */
2363 		btrfs_release_path(path);
2364 
2365 		/*
2366 		 * this is where we are basically btrfs_lookup, without the
2367 		 * crossing root thing.  we store the inode number in the
2368 		 * offset of the orphan item.
2369 		 */
2370 		found_key.objectid = found_key.offset;
2371 		found_key.type = BTRFS_INODE_ITEM_KEY;
2372 		found_key.offset = 0;
2373 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2374 		if (IS_ERR(inode)) {
2375 			ret = PTR_ERR(inode);
2376 			goto out;
2377 		}
2378 
2379 		/*
2380 		 * add this inode to the orphan list so btrfs_orphan_del does
2381 		 * the proper thing when we hit it
2382 		 */
2383 		spin_lock(&root->orphan_lock);
2384 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2385 		spin_unlock(&root->orphan_lock);
2386 
2387 		/*
2388 		 * if this is a bad inode, means we actually succeeded in
2389 		 * removing the inode, but not the orphan record, which means
2390 		 * we need to manually delete the orphan since iput will just
2391 		 * do a destroy_inode
2392 		 */
2393 		if (is_bad_inode(inode)) {
2394 			trans = btrfs_start_transaction(root, 0);
2395 			if (IS_ERR(trans)) {
2396 				ret = PTR_ERR(trans);
2397 				goto out;
2398 			}
2399 			btrfs_orphan_del(trans, inode);
2400 			btrfs_end_transaction(trans, root);
2401 			iput(inode);
2402 			continue;
2403 		}
2404 
2405 		/* if we have links, this was a truncate, lets do that */
2406 		if (inode->i_nlink) {
2407 			if (!S_ISREG(inode->i_mode)) {
2408 				WARN_ON(1);
2409 				iput(inode);
2410 				continue;
2411 			}
2412 			nr_truncate++;
2413 			ret = btrfs_truncate(inode);
2414 		} else {
2415 			nr_unlink++;
2416 		}
2417 
2418 		/* this will do delete_inode and everything for us */
2419 		iput(inode);
2420 		if (ret)
2421 			goto out;
2422 	}
2423 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2424 
2425 	if (root->orphan_block_rsv)
2426 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2427 					(u64)-1);
2428 
2429 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2430 		trans = btrfs_join_transaction(root);
2431 		if (!IS_ERR(trans))
2432 			btrfs_end_transaction(trans, root);
2433 	}
2434 
2435 	if (nr_unlink)
2436 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2437 	if (nr_truncate)
2438 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2439 
2440 out:
2441 	if (ret)
2442 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2443 	btrfs_free_path(path);
2444 	return ret;
2445 }
2446 
2447 /*
2448  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2449  * don't find any xattrs, we know there can't be any acls.
2450  *
2451  * slot is the slot the inode is in, objectid is the objectid of the inode
2452  */
2453 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2454 					  int slot, u64 objectid)
2455 {
2456 	u32 nritems = btrfs_header_nritems(leaf);
2457 	struct btrfs_key found_key;
2458 	int scanned = 0;
2459 
2460 	slot++;
2461 	while (slot < nritems) {
2462 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2463 
2464 		/* we found a different objectid, there must not be acls */
2465 		if (found_key.objectid != objectid)
2466 			return 0;
2467 
2468 		/* we found an xattr, assume we've got an acl */
2469 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2470 			return 1;
2471 
2472 		/*
2473 		 * we found a key greater than an xattr key, there can't
2474 		 * be any acls later on
2475 		 */
2476 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2477 			return 0;
2478 
2479 		slot++;
2480 		scanned++;
2481 
2482 		/*
2483 		 * it goes inode, inode backrefs, xattrs, extents,
2484 		 * so if there are a ton of hard links to an inode there can
2485 		 * be a lot of backrefs.  Don't waste time searching too hard,
2486 		 * this is just an optimization
2487 		 */
2488 		if (scanned >= 8)
2489 			break;
2490 	}
2491 	/* we hit the end of the leaf before we found an xattr or
2492 	 * something larger than an xattr.  We have to assume the inode
2493 	 * has acls
2494 	 */
2495 	return 1;
2496 }
2497 
2498 /*
2499  * read an inode from the btree into the in-memory inode
2500  */
2501 static void btrfs_read_locked_inode(struct inode *inode)
2502 {
2503 	struct btrfs_path *path;
2504 	struct extent_buffer *leaf;
2505 	struct btrfs_inode_item *inode_item;
2506 	struct btrfs_timespec *tspec;
2507 	struct btrfs_root *root = BTRFS_I(inode)->root;
2508 	struct btrfs_key location;
2509 	int maybe_acls;
2510 	u32 rdev;
2511 	int ret;
2512 
2513 	path = btrfs_alloc_path();
2514 	BUG_ON(!path);
2515 	path->leave_spinning = 1;
2516 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2517 
2518 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2519 	if (ret)
2520 		goto make_bad;
2521 
2522 	leaf = path->nodes[0];
2523 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2524 				    struct btrfs_inode_item);
2525 	if (!leaf->map_token)
2526 		map_private_extent_buffer(leaf, (unsigned long)inode_item,
2527 					  sizeof(struct btrfs_inode_item),
2528 					  &leaf->map_token, &leaf->kaddr,
2529 					  &leaf->map_start, &leaf->map_len,
2530 					  KM_USER1);
2531 
2532 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2533 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2534 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2535 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2536 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2537 
2538 	tspec = btrfs_inode_atime(inode_item);
2539 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2540 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2541 
2542 	tspec = btrfs_inode_mtime(inode_item);
2543 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2544 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2545 
2546 	tspec = btrfs_inode_ctime(inode_item);
2547 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2548 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2549 
2550 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2551 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2552 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2553 	inode->i_generation = BTRFS_I(inode)->generation;
2554 	inode->i_rdev = 0;
2555 	rdev = btrfs_inode_rdev(leaf, inode_item);
2556 
2557 	BTRFS_I(inode)->index_cnt = (u64)-1;
2558 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2559 
2560 	/*
2561 	 * try to precache a NULL acl entry for files that don't have
2562 	 * any xattrs or acls
2563 	 */
2564 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2565 					   btrfs_ino(inode));
2566 	if (!maybe_acls)
2567 		cache_no_acl(inode);
2568 
2569 	if (leaf->map_token) {
2570 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2571 		leaf->map_token = NULL;
2572 	}
2573 
2574 	btrfs_free_path(path);
2575 	inode_item = NULL;
2576 
2577 	switch (inode->i_mode & S_IFMT) {
2578 	case S_IFREG:
2579 		inode->i_mapping->a_ops = &btrfs_aops;
2580 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2581 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2582 		inode->i_fop = &btrfs_file_operations;
2583 		inode->i_op = &btrfs_file_inode_operations;
2584 		break;
2585 	case S_IFDIR:
2586 		inode->i_fop = &btrfs_dir_file_operations;
2587 		if (root == root->fs_info->tree_root)
2588 			inode->i_op = &btrfs_dir_ro_inode_operations;
2589 		else
2590 			inode->i_op = &btrfs_dir_inode_operations;
2591 		break;
2592 	case S_IFLNK:
2593 		inode->i_op = &btrfs_symlink_inode_operations;
2594 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2595 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2596 		break;
2597 	default:
2598 		inode->i_op = &btrfs_special_inode_operations;
2599 		init_special_inode(inode, inode->i_mode, rdev);
2600 		break;
2601 	}
2602 
2603 	btrfs_update_iflags(inode);
2604 	return;
2605 
2606 make_bad:
2607 	btrfs_free_path(path);
2608 	make_bad_inode(inode);
2609 }
2610 
2611 /*
2612  * given a leaf and an inode, copy the inode fields into the leaf
2613  */
2614 static void fill_inode_item(struct btrfs_trans_handle *trans,
2615 			    struct extent_buffer *leaf,
2616 			    struct btrfs_inode_item *item,
2617 			    struct inode *inode)
2618 {
2619 	if (!leaf->map_token)
2620 		map_private_extent_buffer(leaf, (unsigned long)item,
2621 					  sizeof(struct btrfs_inode_item),
2622 					  &leaf->map_token, &leaf->kaddr,
2623 					  &leaf->map_start, &leaf->map_len,
2624 					  KM_USER1);
2625 
2626 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2627 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2628 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2629 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2630 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2631 
2632 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2633 			       inode->i_atime.tv_sec);
2634 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2635 				inode->i_atime.tv_nsec);
2636 
2637 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2638 			       inode->i_mtime.tv_sec);
2639 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2640 				inode->i_mtime.tv_nsec);
2641 
2642 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2643 			       inode->i_ctime.tv_sec);
2644 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2645 				inode->i_ctime.tv_nsec);
2646 
2647 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2648 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2649 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2650 	btrfs_set_inode_transid(leaf, item, trans->transid);
2651 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2652 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2653 	btrfs_set_inode_block_group(leaf, item, 0);
2654 
2655 	if (leaf->map_token) {
2656 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2657 		leaf->map_token = NULL;
2658 	}
2659 }
2660 
2661 /*
2662  * copy everything in the in-memory inode into the btree.
2663  */
2664 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2665 				struct btrfs_root *root, struct inode *inode)
2666 {
2667 	struct btrfs_inode_item *inode_item;
2668 	struct btrfs_path *path;
2669 	struct extent_buffer *leaf;
2670 	int ret;
2671 
2672 	/*
2673 	 * If root is tree root, it means this inode is used to
2674 	 * store free space information. And these inodes are updated
2675 	 * when committing the transaction, so they needn't delaye to
2676 	 * be updated, or deadlock will occured.
2677 	 */
2678 	if (!is_free_space_inode(root, inode)) {
2679 		ret = btrfs_delayed_update_inode(trans, root, inode);
2680 		if (!ret)
2681 			btrfs_set_inode_last_trans(trans, inode);
2682 		return ret;
2683 	}
2684 
2685 	path = btrfs_alloc_path();
2686 	if (!path)
2687 		return -ENOMEM;
2688 
2689 	path->leave_spinning = 1;
2690 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2691 				 1);
2692 	if (ret) {
2693 		if (ret > 0)
2694 			ret = -ENOENT;
2695 		goto failed;
2696 	}
2697 
2698 	btrfs_unlock_up_safe(path, 1);
2699 	leaf = path->nodes[0];
2700 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2701 				    struct btrfs_inode_item);
2702 
2703 	fill_inode_item(trans, leaf, inode_item, inode);
2704 	btrfs_mark_buffer_dirty(leaf);
2705 	btrfs_set_inode_last_trans(trans, inode);
2706 	ret = 0;
2707 failed:
2708 	btrfs_free_path(path);
2709 	return ret;
2710 }
2711 
2712 /*
2713  * unlink helper that gets used here in inode.c and in the tree logging
2714  * recovery code.  It remove a link in a directory with a given name, and
2715  * also drops the back refs in the inode to the directory
2716  */
2717 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2718 				struct btrfs_root *root,
2719 				struct inode *dir, struct inode *inode,
2720 				const char *name, int name_len)
2721 {
2722 	struct btrfs_path *path;
2723 	int ret = 0;
2724 	struct extent_buffer *leaf;
2725 	struct btrfs_dir_item *di;
2726 	struct btrfs_key key;
2727 	u64 index;
2728 	u64 ino = btrfs_ino(inode);
2729 	u64 dir_ino = btrfs_ino(dir);
2730 
2731 	path = btrfs_alloc_path();
2732 	if (!path) {
2733 		ret = -ENOMEM;
2734 		goto out;
2735 	}
2736 
2737 	path->leave_spinning = 1;
2738 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2739 				    name, name_len, -1);
2740 	if (IS_ERR(di)) {
2741 		ret = PTR_ERR(di);
2742 		goto err;
2743 	}
2744 	if (!di) {
2745 		ret = -ENOENT;
2746 		goto err;
2747 	}
2748 	leaf = path->nodes[0];
2749 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2750 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2751 	if (ret)
2752 		goto err;
2753 	btrfs_release_path(path);
2754 
2755 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2756 				  dir_ino, &index);
2757 	if (ret) {
2758 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2759 		       "inode %llu parent %llu\n", name_len, name,
2760 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2761 		goto err;
2762 	}
2763 
2764 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2765 	if (ret)
2766 		goto err;
2767 
2768 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2769 					 inode, dir_ino);
2770 	BUG_ON(ret != 0 && ret != -ENOENT);
2771 
2772 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2773 					   dir, index);
2774 	if (ret == -ENOENT)
2775 		ret = 0;
2776 err:
2777 	btrfs_free_path(path);
2778 	if (ret)
2779 		goto out;
2780 
2781 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2782 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2783 	btrfs_update_inode(trans, root, dir);
2784 out:
2785 	return ret;
2786 }
2787 
2788 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2789 		       struct btrfs_root *root,
2790 		       struct inode *dir, struct inode *inode,
2791 		       const char *name, int name_len)
2792 {
2793 	int ret;
2794 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2795 	if (!ret) {
2796 		btrfs_drop_nlink(inode);
2797 		ret = btrfs_update_inode(trans, root, inode);
2798 	}
2799 	return ret;
2800 }
2801 
2802 
2803 /* helper to check if there is any shared block in the path */
2804 static int check_path_shared(struct btrfs_root *root,
2805 			     struct btrfs_path *path)
2806 {
2807 	struct extent_buffer *eb;
2808 	int level;
2809 	u64 refs = 1;
2810 
2811 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2812 		int ret;
2813 
2814 		if (!path->nodes[level])
2815 			break;
2816 		eb = path->nodes[level];
2817 		if (!btrfs_block_can_be_shared(root, eb))
2818 			continue;
2819 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2820 					       &refs, NULL);
2821 		if (refs > 1)
2822 			return 1;
2823 	}
2824 	return 0;
2825 }
2826 
2827 /*
2828  * helper to start transaction for unlink and rmdir.
2829  *
2830  * unlink and rmdir are special in btrfs, they do not always free space.
2831  * so in enospc case, we should make sure they will free space before
2832  * allowing them to use the global metadata reservation.
2833  */
2834 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2835 						       struct dentry *dentry)
2836 {
2837 	struct btrfs_trans_handle *trans;
2838 	struct btrfs_root *root = BTRFS_I(dir)->root;
2839 	struct btrfs_path *path;
2840 	struct btrfs_inode_ref *ref;
2841 	struct btrfs_dir_item *di;
2842 	struct inode *inode = dentry->d_inode;
2843 	u64 index;
2844 	int check_link = 1;
2845 	int err = -ENOSPC;
2846 	int ret;
2847 	u64 ino = btrfs_ino(inode);
2848 	u64 dir_ino = btrfs_ino(dir);
2849 
2850 	trans = btrfs_start_transaction(root, 10);
2851 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2852 		return trans;
2853 
2854 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2855 		return ERR_PTR(-ENOSPC);
2856 
2857 	/* check if there is someone else holds reference */
2858 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2859 		return ERR_PTR(-ENOSPC);
2860 
2861 	if (atomic_read(&inode->i_count) > 2)
2862 		return ERR_PTR(-ENOSPC);
2863 
2864 	if (xchg(&root->fs_info->enospc_unlink, 1))
2865 		return ERR_PTR(-ENOSPC);
2866 
2867 	path = btrfs_alloc_path();
2868 	if (!path) {
2869 		root->fs_info->enospc_unlink = 0;
2870 		return ERR_PTR(-ENOMEM);
2871 	}
2872 
2873 	trans = btrfs_start_transaction(root, 0);
2874 	if (IS_ERR(trans)) {
2875 		btrfs_free_path(path);
2876 		root->fs_info->enospc_unlink = 0;
2877 		return trans;
2878 	}
2879 
2880 	path->skip_locking = 1;
2881 	path->search_commit_root = 1;
2882 
2883 	ret = btrfs_lookup_inode(trans, root, path,
2884 				&BTRFS_I(dir)->location, 0);
2885 	if (ret < 0) {
2886 		err = ret;
2887 		goto out;
2888 	}
2889 	if (ret == 0) {
2890 		if (check_path_shared(root, path))
2891 			goto out;
2892 	} else {
2893 		check_link = 0;
2894 	}
2895 	btrfs_release_path(path);
2896 
2897 	ret = btrfs_lookup_inode(trans, root, path,
2898 				&BTRFS_I(inode)->location, 0);
2899 	if (ret < 0) {
2900 		err = ret;
2901 		goto out;
2902 	}
2903 	if (ret == 0) {
2904 		if (check_path_shared(root, path))
2905 			goto out;
2906 	} else {
2907 		check_link = 0;
2908 	}
2909 	btrfs_release_path(path);
2910 
2911 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2912 		ret = btrfs_lookup_file_extent(trans, root, path,
2913 					       ino, (u64)-1, 0);
2914 		if (ret < 0) {
2915 			err = ret;
2916 			goto out;
2917 		}
2918 		BUG_ON(ret == 0);
2919 		if (check_path_shared(root, path))
2920 			goto out;
2921 		btrfs_release_path(path);
2922 	}
2923 
2924 	if (!check_link) {
2925 		err = 0;
2926 		goto out;
2927 	}
2928 
2929 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2930 				dentry->d_name.name, dentry->d_name.len, 0);
2931 	if (IS_ERR(di)) {
2932 		err = PTR_ERR(di);
2933 		goto out;
2934 	}
2935 	if (di) {
2936 		if (check_path_shared(root, path))
2937 			goto out;
2938 	} else {
2939 		err = 0;
2940 		goto out;
2941 	}
2942 	btrfs_release_path(path);
2943 
2944 	ref = btrfs_lookup_inode_ref(trans, root, path,
2945 				dentry->d_name.name, dentry->d_name.len,
2946 				ino, dir_ino, 0);
2947 	if (IS_ERR(ref)) {
2948 		err = PTR_ERR(ref);
2949 		goto out;
2950 	}
2951 	BUG_ON(!ref);
2952 	if (check_path_shared(root, path))
2953 		goto out;
2954 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2955 	btrfs_release_path(path);
2956 
2957 	/*
2958 	 * This is a commit root search, if we can lookup inode item and other
2959 	 * relative items in the commit root, it means the transaction of
2960 	 * dir/file creation has been committed, and the dir index item that we
2961 	 * delay to insert has also been inserted into the commit root. So
2962 	 * we needn't worry about the delayed insertion of the dir index item
2963 	 * here.
2964 	 */
2965 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2966 				dentry->d_name.name, dentry->d_name.len, 0);
2967 	if (IS_ERR(di)) {
2968 		err = PTR_ERR(di);
2969 		goto out;
2970 	}
2971 	BUG_ON(ret == -ENOENT);
2972 	if (check_path_shared(root, path))
2973 		goto out;
2974 
2975 	err = 0;
2976 out:
2977 	btrfs_free_path(path);
2978 	if (err) {
2979 		btrfs_end_transaction(trans, root);
2980 		root->fs_info->enospc_unlink = 0;
2981 		return ERR_PTR(err);
2982 	}
2983 
2984 	trans->block_rsv = &root->fs_info->global_block_rsv;
2985 	return trans;
2986 }
2987 
2988 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2989 			       struct btrfs_root *root)
2990 {
2991 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2992 		BUG_ON(!root->fs_info->enospc_unlink);
2993 		root->fs_info->enospc_unlink = 0;
2994 	}
2995 	btrfs_end_transaction_throttle(trans, root);
2996 }
2997 
2998 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2999 {
3000 	struct btrfs_root *root = BTRFS_I(dir)->root;
3001 	struct btrfs_trans_handle *trans;
3002 	struct inode *inode = dentry->d_inode;
3003 	int ret;
3004 	unsigned long nr = 0;
3005 
3006 	trans = __unlink_start_trans(dir, dentry);
3007 	if (IS_ERR(trans))
3008 		return PTR_ERR(trans);
3009 
3010 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3011 
3012 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3013 				 dentry->d_name.name, dentry->d_name.len);
3014 	BUG_ON(ret);
3015 
3016 	if (inode->i_nlink == 0) {
3017 		ret = btrfs_orphan_add(trans, inode);
3018 		BUG_ON(ret);
3019 	}
3020 
3021 	nr = trans->blocks_used;
3022 	__unlink_end_trans(trans, root);
3023 	btrfs_btree_balance_dirty(root, nr);
3024 	return ret;
3025 }
3026 
3027 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3028 			struct btrfs_root *root,
3029 			struct inode *dir, u64 objectid,
3030 			const char *name, int name_len)
3031 {
3032 	struct btrfs_path *path;
3033 	struct extent_buffer *leaf;
3034 	struct btrfs_dir_item *di;
3035 	struct btrfs_key key;
3036 	u64 index;
3037 	int ret;
3038 	u64 dir_ino = btrfs_ino(dir);
3039 
3040 	path = btrfs_alloc_path();
3041 	if (!path)
3042 		return -ENOMEM;
3043 
3044 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3045 				   name, name_len, -1);
3046 	BUG_ON(IS_ERR_OR_NULL(di));
3047 
3048 	leaf = path->nodes[0];
3049 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3050 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3051 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3052 	BUG_ON(ret);
3053 	btrfs_release_path(path);
3054 
3055 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3056 				 objectid, root->root_key.objectid,
3057 				 dir_ino, &index, name, name_len);
3058 	if (ret < 0) {
3059 		BUG_ON(ret != -ENOENT);
3060 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3061 						 name, name_len);
3062 		BUG_ON(IS_ERR_OR_NULL(di));
3063 
3064 		leaf = path->nodes[0];
3065 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3066 		btrfs_release_path(path);
3067 		index = key.offset;
3068 	}
3069 	btrfs_release_path(path);
3070 
3071 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3072 	BUG_ON(ret);
3073 
3074 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3075 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3076 	ret = btrfs_update_inode(trans, root, dir);
3077 	BUG_ON(ret);
3078 
3079 	return 0;
3080 }
3081 
3082 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3083 {
3084 	struct inode *inode = dentry->d_inode;
3085 	int err = 0;
3086 	struct btrfs_root *root = BTRFS_I(dir)->root;
3087 	struct btrfs_trans_handle *trans;
3088 	unsigned long nr = 0;
3089 
3090 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3091 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3092 		return -ENOTEMPTY;
3093 
3094 	trans = __unlink_start_trans(dir, dentry);
3095 	if (IS_ERR(trans))
3096 		return PTR_ERR(trans);
3097 
3098 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3099 		err = btrfs_unlink_subvol(trans, root, dir,
3100 					  BTRFS_I(inode)->location.objectid,
3101 					  dentry->d_name.name,
3102 					  dentry->d_name.len);
3103 		goto out;
3104 	}
3105 
3106 	err = btrfs_orphan_add(trans, inode);
3107 	if (err)
3108 		goto out;
3109 
3110 	/* now the directory is empty */
3111 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3112 				 dentry->d_name.name, dentry->d_name.len);
3113 	if (!err)
3114 		btrfs_i_size_write(inode, 0);
3115 out:
3116 	nr = trans->blocks_used;
3117 	__unlink_end_trans(trans, root);
3118 	btrfs_btree_balance_dirty(root, nr);
3119 
3120 	return err;
3121 }
3122 
3123 /*
3124  * this can truncate away extent items, csum items and directory items.
3125  * It starts at a high offset and removes keys until it can't find
3126  * any higher than new_size
3127  *
3128  * csum items that cross the new i_size are truncated to the new size
3129  * as well.
3130  *
3131  * min_type is the minimum key type to truncate down to.  If set to 0, this
3132  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3133  */
3134 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3135 			       struct btrfs_root *root,
3136 			       struct inode *inode,
3137 			       u64 new_size, u32 min_type)
3138 {
3139 	struct btrfs_path *path;
3140 	struct extent_buffer *leaf;
3141 	struct btrfs_file_extent_item *fi;
3142 	struct btrfs_key key;
3143 	struct btrfs_key found_key;
3144 	u64 extent_start = 0;
3145 	u64 extent_num_bytes = 0;
3146 	u64 extent_offset = 0;
3147 	u64 item_end = 0;
3148 	u64 mask = root->sectorsize - 1;
3149 	u32 found_type = (u8)-1;
3150 	int found_extent;
3151 	int del_item;
3152 	int pending_del_nr = 0;
3153 	int pending_del_slot = 0;
3154 	int extent_type = -1;
3155 	int encoding;
3156 	int ret;
3157 	int err = 0;
3158 	u64 ino = btrfs_ino(inode);
3159 
3160 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3161 
3162 	if (root->ref_cows || root == root->fs_info->tree_root)
3163 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3164 
3165 	/*
3166 	 * This function is also used to drop the items in the log tree before
3167 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3168 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3169 	 * items.
3170 	 */
3171 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3172 		btrfs_kill_delayed_inode_items(inode);
3173 
3174 	path = btrfs_alloc_path();
3175 	BUG_ON(!path);
3176 	path->reada = -1;
3177 
3178 	key.objectid = ino;
3179 	key.offset = (u64)-1;
3180 	key.type = (u8)-1;
3181 
3182 search_again:
3183 	path->leave_spinning = 1;
3184 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3185 	if (ret < 0) {
3186 		err = ret;
3187 		goto out;
3188 	}
3189 
3190 	if (ret > 0) {
3191 		/* there are no items in the tree for us to truncate, we're
3192 		 * done
3193 		 */
3194 		if (path->slots[0] == 0)
3195 			goto out;
3196 		path->slots[0]--;
3197 	}
3198 
3199 	while (1) {
3200 		fi = NULL;
3201 		leaf = path->nodes[0];
3202 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3203 		found_type = btrfs_key_type(&found_key);
3204 		encoding = 0;
3205 
3206 		if (found_key.objectid != ino)
3207 			break;
3208 
3209 		if (found_type < min_type)
3210 			break;
3211 
3212 		item_end = found_key.offset;
3213 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3214 			fi = btrfs_item_ptr(leaf, path->slots[0],
3215 					    struct btrfs_file_extent_item);
3216 			extent_type = btrfs_file_extent_type(leaf, fi);
3217 			encoding = btrfs_file_extent_compression(leaf, fi);
3218 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3219 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3220 
3221 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3222 				item_end +=
3223 				    btrfs_file_extent_num_bytes(leaf, fi);
3224 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3225 				item_end += btrfs_file_extent_inline_len(leaf,
3226 									 fi);
3227 			}
3228 			item_end--;
3229 		}
3230 		if (found_type > min_type) {
3231 			del_item = 1;
3232 		} else {
3233 			if (item_end < new_size)
3234 				break;
3235 			if (found_key.offset >= new_size)
3236 				del_item = 1;
3237 			else
3238 				del_item = 0;
3239 		}
3240 		found_extent = 0;
3241 		/* FIXME, shrink the extent if the ref count is only 1 */
3242 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3243 			goto delete;
3244 
3245 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3246 			u64 num_dec;
3247 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3248 			if (!del_item && !encoding) {
3249 				u64 orig_num_bytes =
3250 					btrfs_file_extent_num_bytes(leaf, fi);
3251 				extent_num_bytes = new_size -
3252 					found_key.offset + root->sectorsize - 1;
3253 				extent_num_bytes = extent_num_bytes &
3254 					~((u64)root->sectorsize - 1);
3255 				btrfs_set_file_extent_num_bytes(leaf, fi,
3256 							 extent_num_bytes);
3257 				num_dec = (orig_num_bytes -
3258 					   extent_num_bytes);
3259 				if (root->ref_cows && extent_start != 0)
3260 					inode_sub_bytes(inode, num_dec);
3261 				btrfs_mark_buffer_dirty(leaf);
3262 			} else {
3263 				extent_num_bytes =
3264 					btrfs_file_extent_disk_num_bytes(leaf,
3265 									 fi);
3266 				extent_offset = found_key.offset -
3267 					btrfs_file_extent_offset(leaf, fi);
3268 
3269 				/* FIXME blocksize != 4096 */
3270 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3271 				if (extent_start != 0) {
3272 					found_extent = 1;
3273 					if (root->ref_cows)
3274 						inode_sub_bytes(inode, num_dec);
3275 				}
3276 			}
3277 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3278 			/*
3279 			 * we can't truncate inline items that have had
3280 			 * special encodings
3281 			 */
3282 			if (!del_item &&
3283 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3284 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3285 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3286 				u32 size = new_size - found_key.offset;
3287 
3288 				if (root->ref_cows) {
3289 					inode_sub_bytes(inode, item_end + 1 -
3290 							new_size);
3291 				}
3292 				size =
3293 				    btrfs_file_extent_calc_inline_size(size);
3294 				ret = btrfs_truncate_item(trans, root, path,
3295 							  size, 1);
3296 			} else if (root->ref_cows) {
3297 				inode_sub_bytes(inode, item_end + 1 -
3298 						found_key.offset);
3299 			}
3300 		}
3301 delete:
3302 		if (del_item) {
3303 			if (!pending_del_nr) {
3304 				/* no pending yet, add ourselves */
3305 				pending_del_slot = path->slots[0];
3306 				pending_del_nr = 1;
3307 			} else if (pending_del_nr &&
3308 				   path->slots[0] + 1 == pending_del_slot) {
3309 				/* hop on the pending chunk */
3310 				pending_del_nr++;
3311 				pending_del_slot = path->slots[0];
3312 			} else {
3313 				BUG();
3314 			}
3315 		} else {
3316 			break;
3317 		}
3318 		if (found_extent && (root->ref_cows ||
3319 				     root == root->fs_info->tree_root)) {
3320 			btrfs_set_path_blocking(path);
3321 			ret = btrfs_free_extent(trans, root, extent_start,
3322 						extent_num_bytes, 0,
3323 						btrfs_header_owner(leaf),
3324 						ino, extent_offset);
3325 			BUG_ON(ret);
3326 		}
3327 
3328 		if (found_type == BTRFS_INODE_ITEM_KEY)
3329 			break;
3330 
3331 		if (path->slots[0] == 0 ||
3332 		    path->slots[0] != pending_del_slot) {
3333 			if (root->ref_cows &&
3334 			    BTRFS_I(inode)->location.objectid !=
3335 						BTRFS_FREE_INO_OBJECTID) {
3336 				err = -EAGAIN;
3337 				goto out;
3338 			}
3339 			if (pending_del_nr) {
3340 				ret = btrfs_del_items(trans, root, path,
3341 						pending_del_slot,
3342 						pending_del_nr);
3343 				BUG_ON(ret);
3344 				pending_del_nr = 0;
3345 			}
3346 			btrfs_release_path(path);
3347 			goto search_again;
3348 		} else {
3349 			path->slots[0]--;
3350 		}
3351 	}
3352 out:
3353 	if (pending_del_nr) {
3354 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3355 				      pending_del_nr);
3356 		BUG_ON(ret);
3357 	}
3358 	btrfs_free_path(path);
3359 	return err;
3360 }
3361 
3362 /*
3363  * taken from block_truncate_page, but does cow as it zeros out
3364  * any bytes left in the last page in the file.
3365  */
3366 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3367 {
3368 	struct inode *inode = mapping->host;
3369 	struct btrfs_root *root = BTRFS_I(inode)->root;
3370 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3371 	struct btrfs_ordered_extent *ordered;
3372 	struct extent_state *cached_state = NULL;
3373 	char *kaddr;
3374 	u32 blocksize = root->sectorsize;
3375 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3376 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3377 	struct page *page;
3378 	int ret = 0;
3379 	u64 page_start;
3380 	u64 page_end;
3381 
3382 	if ((offset & (blocksize - 1)) == 0)
3383 		goto out;
3384 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3385 	if (ret)
3386 		goto out;
3387 
3388 	ret = -ENOMEM;
3389 again:
3390 	page = grab_cache_page(mapping, index);
3391 	if (!page) {
3392 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3393 		goto out;
3394 	}
3395 
3396 	page_start = page_offset(page);
3397 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3398 
3399 	if (!PageUptodate(page)) {
3400 		ret = btrfs_readpage(NULL, page);
3401 		lock_page(page);
3402 		if (page->mapping != mapping) {
3403 			unlock_page(page);
3404 			page_cache_release(page);
3405 			goto again;
3406 		}
3407 		if (!PageUptodate(page)) {
3408 			ret = -EIO;
3409 			goto out_unlock;
3410 		}
3411 	}
3412 	wait_on_page_writeback(page);
3413 
3414 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3415 			 GFP_NOFS);
3416 	set_page_extent_mapped(page);
3417 
3418 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3419 	if (ordered) {
3420 		unlock_extent_cached(io_tree, page_start, page_end,
3421 				     &cached_state, GFP_NOFS);
3422 		unlock_page(page);
3423 		page_cache_release(page);
3424 		btrfs_start_ordered_extent(inode, ordered, 1);
3425 		btrfs_put_ordered_extent(ordered);
3426 		goto again;
3427 	}
3428 
3429 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3430 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3431 			  0, 0, &cached_state, GFP_NOFS);
3432 
3433 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3434 					&cached_state);
3435 	if (ret) {
3436 		unlock_extent_cached(io_tree, page_start, page_end,
3437 				     &cached_state, GFP_NOFS);
3438 		goto out_unlock;
3439 	}
3440 
3441 	ret = 0;
3442 	if (offset != PAGE_CACHE_SIZE) {
3443 		kaddr = kmap(page);
3444 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3445 		flush_dcache_page(page);
3446 		kunmap(page);
3447 	}
3448 	ClearPageChecked(page);
3449 	set_page_dirty(page);
3450 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3451 			     GFP_NOFS);
3452 
3453 out_unlock:
3454 	if (ret)
3455 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3456 	unlock_page(page);
3457 	page_cache_release(page);
3458 out:
3459 	return ret;
3460 }
3461 
3462 /*
3463  * This function puts in dummy file extents for the area we're creating a hole
3464  * for.  So if we are truncating this file to a larger size we need to insert
3465  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3466  * the range between oldsize and size
3467  */
3468 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3469 {
3470 	struct btrfs_trans_handle *trans;
3471 	struct btrfs_root *root = BTRFS_I(inode)->root;
3472 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3473 	struct extent_map *em = NULL;
3474 	struct extent_state *cached_state = NULL;
3475 	u64 mask = root->sectorsize - 1;
3476 	u64 hole_start = (oldsize + mask) & ~mask;
3477 	u64 block_end = (size + mask) & ~mask;
3478 	u64 last_byte;
3479 	u64 cur_offset;
3480 	u64 hole_size;
3481 	int err = 0;
3482 
3483 	if (size <= hole_start)
3484 		return 0;
3485 
3486 	while (1) {
3487 		struct btrfs_ordered_extent *ordered;
3488 		btrfs_wait_ordered_range(inode, hole_start,
3489 					 block_end - hole_start);
3490 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3491 				 &cached_state, GFP_NOFS);
3492 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3493 		if (!ordered)
3494 			break;
3495 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3496 				     &cached_state, GFP_NOFS);
3497 		btrfs_put_ordered_extent(ordered);
3498 	}
3499 
3500 	cur_offset = hole_start;
3501 	while (1) {
3502 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3503 				block_end - cur_offset, 0);
3504 		BUG_ON(IS_ERR_OR_NULL(em));
3505 		last_byte = min(extent_map_end(em), block_end);
3506 		last_byte = (last_byte + mask) & ~mask;
3507 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3508 			u64 hint_byte = 0;
3509 			hole_size = last_byte - cur_offset;
3510 
3511 			trans = btrfs_start_transaction(root, 2);
3512 			if (IS_ERR(trans)) {
3513 				err = PTR_ERR(trans);
3514 				break;
3515 			}
3516 
3517 			err = btrfs_drop_extents(trans, inode, cur_offset,
3518 						 cur_offset + hole_size,
3519 						 &hint_byte, 1);
3520 			if (err)
3521 				break;
3522 
3523 			err = btrfs_insert_file_extent(trans, root,
3524 					btrfs_ino(inode), cur_offset, 0,
3525 					0, hole_size, 0, hole_size,
3526 					0, 0, 0);
3527 			if (err)
3528 				break;
3529 
3530 			btrfs_drop_extent_cache(inode, hole_start,
3531 					last_byte - 1, 0);
3532 
3533 			btrfs_end_transaction(trans, root);
3534 		}
3535 		free_extent_map(em);
3536 		em = NULL;
3537 		cur_offset = last_byte;
3538 		if (cur_offset >= block_end)
3539 			break;
3540 	}
3541 
3542 	free_extent_map(em);
3543 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3544 			     GFP_NOFS);
3545 	return err;
3546 }
3547 
3548 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3549 {
3550 	loff_t oldsize = i_size_read(inode);
3551 	int ret;
3552 
3553 	if (newsize == oldsize)
3554 		return 0;
3555 
3556 	if (newsize > oldsize) {
3557 		i_size_write(inode, newsize);
3558 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3559 		truncate_pagecache(inode, oldsize, newsize);
3560 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3561 		if (ret) {
3562 			btrfs_setsize(inode, oldsize);
3563 			return ret;
3564 		}
3565 
3566 		mark_inode_dirty(inode);
3567 	} else {
3568 
3569 		/*
3570 		 * We're truncating a file that used to have good data down to
3571 		 * zero. Make sure it gets into the ordered flush list so that
3572 		 * any new writes get down to disk quickly.
3573 		 */
3574 		if (newsize == 0)
3575 			BTRFS_I(inode)->ordered_data_close = 1;
3576 
3577 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3578 		truncate_setsize(inode, newsize);
3579 		ret = btrfs_truncate(inode);
3580 	}
3581 
3582 	return ret;
3583 }
3584 
3585 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3586 {
3587 	struct inode *inode = dentry->d_inode;
3588 	struct btrfs_root *root = BTRFS_I(inode)->root;
3589 	int err;
3590 
3591 	if (btrfs_root_readonly(root))
3592 		return -EROFS;
3593 
3594 	err = inode_change_ok(inode, attr);
3595 	if (err)
3596 		return err;
3597 
3598 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3599 		err = btrfs_setsize(inode, attr->ia_size);
3600 		if (err)
3601 			return err;
3602 	}
3603 
3604 	if (attr->ia_valid) {
3605 		setattr_copy(inode, attr);
3606 		mark_inode_dirty(inode);
3607 
3608 		if (attr->ia_valid & ATTR_MODE)
3609 			err = btrfs_acl_chmod(inode);
3610 	}
3611 
3612 	return err;
3613 }
3614 
3615 void btrfs_evict_inode(struct inode *inode)
3616 {
3617 	struct btrfs_trans_handle *trans;
3618 	struct btrfs_root *root = BTRFS_I(inode)->root;
3619 	unsigned long nr;
3620 	int ret;
3621 
3622 	trace_btrfs_inode_evict(inode);
3623 
3624 	truncate_inode_pages(&inode->i_data, 0);
3625 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3626 			       is_free_space_inode(root, inode)))
3627 		goto no_delete;
3628 
3629 	if (is_bad_inode(inode)) {
3630 		btrfs_orphan_del(NULL, inode);
3631 		goto no_delete;
3632 	}
3633 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3634 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3635 
3636 	if (root->fs_info->log_root_recovering) {
3637 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3638 		goto no_delete;
3639 	}
3640 
3641 	if (inode->i_nlink > 0) {
3642 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3643 		goto no_delete;
3644 	}
3645 
3646 	btrfs_i_size_write(inode, 0);
3647 
3648 	while (1) {
3649 		trans = btrfs_start_transaction(root, 0);
3650 		BUG_ON(IS_ERR(trans));
3651 		trans->block_rsv = root->orphan_block_rsv;
3652 
3653 		ret = btrfs_block_rsv_check(trans, root,
3654 					    root->orphan_block_rsv, 0, 5);
3655 		if (ret) {
3656 			BUG_ON(ret != -EAGAIN);
3657 			ret = btrfs_commit_transaction(trans, root);
3658 			BUG_ON(ret);
3659 			continue;
3660 		}
3661 
3662 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3663 		if (ret != -EAGAIN)
3664 			break;
3665 
3666 		nr = trans->blocks_used;
3667 		btrfs_end_transaction(trans, root);
3668 		trans = NULL;
3669 		btrfs_btree_balance_dirty(root, nr);
3670 
3671 	}
3672 
3673 	if (ret == 0) {
3674 		ret = btrfs_orphan_del(trans, inode);
3675 		BUG_ON(ret);
3676 	}
3677 
3678 	if (!(root == root->fs_info->tree_root ||
3679 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3680 		btrfs_return_ino(root, btrfs_ino(inode));
3681 
3682 	nr = trans->blocks_used;
3683 	btrfs_end_transaction(trans, root);
3684 	btrfs_btree_balance_dirty(root, nr);
3685 no_delete:
3686 	end_writeback(inode);
3687 	return;
3688 }
3689 
3690 /*
3691  * this returns the key found in the dir entry in the location pointer.
3692  * If no dir entries were found, location->objectid is 0.
3693  */
3694 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3695 			       struct btrfs_key *location)
3696 {
3697 	const char *name = dentry->d_name.name;
3698 	int namelen = dentry->d_name.len;
3699 	struct btrfs_dir_item *di;
3700 	struct btrfs_path *path;
3701 	struct btrfs_root *root = BTRFS_I(dir)->root;
3702 	int ret = 0;
3703 
3704 	path = btrfs_alloc_path();
3705 	BUG_ON(!path);
3706 
3707 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3708 				    namelen, 0);
3709 	if (IS_ERR(di))
3710 		ret = PTR_ERR(di);
3711 
3712 	if (IS_ERR_OR_NULL(di))
3713 		goto out_err;
3714 
3715 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3716 out:
3717 	btrfs_free_path(path);
3718 	return ret;
3719 out_err:
3720 	location->objectid = 0;
3721 	goto out;
3722 }
3723 
3724 /*
3725  * when we hit a tree root in a directory, the btrfs part of the inode
3726  * needs to be changed to reflect the root directory of the tree root.  This
3727  * is kind of like crossing a mount point.
3728  */
3729 static int fixup_tree_root_location(struct btrfs_root *root,
3730 				    struct inode *dir,
3731 				    struct dentry *dentry,
3732 				    struct btrfs_key *location,
3733 				    struct btrfs_root **sub_root)
3734 {
3735 	struct btrfs_path *path;
3736 	struct btrfs_root *new_root;
3737 	struct btrfs_root_ref *ref;
3738 	struct extent_buffer *leaf;
3739 	int ret;
3740 	int err = 0;
3741 
3742 	path = btrfs_alloc_path();
3743 	if (!path) {
3744 		err = -ENOMEM;
3745 		goto out;
3746 	}
3747 
3748 	err = -ENOENT;
3749 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3750 				  BTRFS_I(dir)->root->root_key.objectid,
3751 				  location->objectid);
3752 	if (ret) {
3753 		if (ret < 0)
3754 			err = ret;
3755 		goto out;
3756 	}
3757 
3758 	leaf = path->nodes[0];
3759 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3760 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3761 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3762 		goto out;
3763 
3764 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3765 				   (unsigned long)(ref + 1),
3766 				   dentry->d_name.len);
3767 	if (ret)
3768 		goto out;
3769 
3770 	btrfs_release_path(path);
3771 
3772 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3773 	if (IS_ERR(new_root)) {
3774 		err = PTR_ERR(new_root);
3775 		goto out;
3776 	}
3777 
3778 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3779 		err = -ENOENT;
3780 		goto out;
3781 	}
3782 
3783 	*sub_root = new_root;
3784 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3785 	location->type = BTRFS_INODE_ITEM_KEY;
3786 	location->offset = 0;
3787 	err = 0;
3788 out:
3789 	btrfs_free_path(path);
3790 	return err;
3791 }
3792 
3793 static void inode_tree_add(struct inode *inode)
3794 {
3795 	struct btrfs_root *root = BTRFS_I(inode)->root;
3796 	struct btrfs_inode *entry;
3797 	struct rb_node **p;
3798 	struct rb_node *parent;
3799 	u64 ino = btrfs_ino(inode);
3800 again:
3801 	p = &root->inode_tree.rb_node;
3802 	parent = NULL;
3803 
3804 	if (inode_unhashed(inode))
3805 		return;
3806 
3807 	spin_lock(&root->inode_lock);
3808 	while (*p) {
3809 		parent = *p;
3810 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3811 
3812 		if (ino < btrfs_ino(&entry->vfs_inode))
3813 			p = &parent->rb_left;
3814 		else if (ino > btrfs_ino(&entry->vfs_inode))
3815 			p = &parent->rb_right;
3816 		else {
3817 			WARN_ON(!(entry->vfs_inode.i_state &
3818 				  (I_WILL_FREE | I_FREEING)));
3819 			rb_erase(parent, &root->inode_tree);
3820 			RB_CLEAR_NODE(parent);
3821 			spin_unlock(&root->inode_lock);
3822 			goto again;
3823 		}
3824 	}
3825 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3826 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3827 	spin_unlock(&root->inode_lock);
3828 }
3829 
3830 static void inode_tree_del(struct inode *inode)
3831 {
3832 	struct btrfs_root *root = BTRFS_I(inode)->root;
3833 	int empty = 0;
3834 
3835 	spin_lock(&root->inode_lock);
3836 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3837 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3838 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3839 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3840 	}
3841 	spin_unlock(&root->inode_lock);
3842 
3843 	/*
3844 	 * Free space cache has inodes in the tree root, but the tree root has a
3845 	 * root_refs of 0, so this could end up dropping the tree root as a
3846 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3847 	 * make sure we don't drop it.
3848 	 */
3849 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3850 	    root != root->fs_info->tree_root) {
3851 		synchronize_srcu(&root->fs_info->subvol_srcu);
3852 		spin_lock(&root->inode_lock);
3853 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3854 		spin_unlock(&root->inode_lock);
3855 		if (empty)
3856 			btrfs_add_dead_root(root);
3857 	}
3858 }
3859 
3860 int btrfs_invalidate_inodes(struct btrfs_root *root)
3861 {
3862 	struct rb_node *node;
3863 	struct rb_node *prev;
3864 	struct btrfs_inode *entry;
3865 	struct inode *inode;
3866 	u64 objectid = 0;
3867 
3868 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3869 
3870 	spin_lock(&root->inode_lock);
3871 again:
3872 	node = root->inode_tree.rb_node;
3873 	prev = NULL;
3874 	while (node) {
3875 		prev = node;
3876 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3877 
3878 		if (objectid < btrfs_ino(&entry->vfs_inode))
3879 			node = node->rb_left;
3880 		else if (objectid > btrfs_ino(&entry->vfs_inode))
3881 			node = node->rb_right;
3882 		else
3883 			break;
3884 	}
3885 	if (!node) {
3886 		while (prev) {
3887 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3888 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3889 				node = prev;
3890 				break;
3891 			}
3892 			prev = rb_next(prev);
3893 		}
3894 	}
3895 	while (node) {
3896 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3897 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
3898 		inode = igrab(&entry->vfs_inode);
3899 		if (inode) {
3900 			spin_unlock(&root->inode_lock);
3901 			if (atomic_read(&inode->i_count) > 1)
3902 				d_prune_aliases(inode);
3903 			/*
3904 			 * btrfs_drop_inode will have it removed from
3905 			 * the inode cache when its usage count
3906 			 * hits zero.
3907 			 */
3908 			iput(inode);
3909 			cond_resched();
3910 			spin_lock(&root->inode_lock);
3911 			goto again;
3912 		}
3913 
3914 		if (cond_resched_lock(&root->inode_lock))
3915 			goto again;
3916 
3917 		node = rb_next(node);
3918 	}
3919 	spin_unlock(&root->inode_lock);
3920 	return 0;
3921 }
3922 
3923 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3924 {
3925 	struct btrfs_iget_args *args = p;
3926 	inode->i_ino = args->ino;
3927 	BTRFS_I(inode)->root = args->root;
3928 	btrfs_set_inode_space_info(args->root, inode);
3929 	return 0;
3930 }
3931 
3932 static int btrfs_find_actor(struct inode *inode, void *opaque)
3933 {
3934 	struct btrfs_iget_args *args = opaque;
3935 	return args->ino == btrfs_ino(inode) &&
3936 		args->root == BTRFS_I(inode)->root;
3937 }
3938 
3939 static struct inode *btrfs_iget_locked(struct super_block *s,
3940 				       u64 objectid,
3941 				       struct btrfs_root *root)
3942 {
3943 	struct inode *inode;
3944 	struct btrfs_iget_args args;
3945 	args.ino = objectid;
3946 	args.root = root;
3947 
3948 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3949 			     btrfs_init_locked_inode,
3950 			     (void *)&args);
3951 	return inode;
3952 }
3953 
3954 /* Get an inode object given its location and corresponding root.
3955  * Returns in *is_new if the inode was read from disk
3956  */
3957 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3958 			 struct btrfs_root *root, int *new)
3959 {
3960 	struct inode *inode;
3961 
3962 	inode = btrfs_iget_locked(s, location->objectid, root);
3963 	if (!inode)
3964 		return ERR_PTR(-ENOMEM);
3965 
3966 	if (inode->i_state & I_NEW) {
3967 		BTRFS_I(inode)->root = root;
3968 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3969 		btrfs_read_locked_inode(inode);
3970 		inode_tree_add(inode);
3971 		unlock_new_inode(inode);
3972 		if (new)
3973 			*new = 1;
3974 	}
3975 
3976 	return inode;
3977 }
3978 
3979 static struct inode *new_simple_dir(struct super_block *s,
3980 				    struct btrfs_key *key,
3981 				    struct btrfs_root *root)
3982 {
3983 	struct inode *inode = new_inode(s);
3984 
3985 	if (!inode)
3986 		return ERR_PTR(-ENOMEM);
3987 
3988 	BTRFS_I(inode)->root = root;
3989 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3990 	BTRFS_I(inode)->dummy_inode = 1;
3991 
3992 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3993 	inode->i_op = &simple_dir_inode_operations;
3994 	inode->i_fop = &simple_dir_operations;
3995 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3996 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3997 
3998 	return inode;
3999 }
4000 
4001 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4002 {
4003 	struct inode *inode;
4004 	struct btrfs_root *root = BTRFS_I(dir)->root;
4005 	struct btrfs_root *sub_root = root;
4006 	struct btrfs_key location;
4007 	int index;
4008 	int ret;
4009 
4010 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4011 		return ERR_PTR(-ENAMETOOLONG);
4012 
4013 	ret = btrfs_inode_by_name(dir, dentry, &location);
4014 
4015 	if (ret < 0)
4016 		return ERR_PTR(ret);
4017 
4018 	if (location.objectid == 0)
4019 		return NULL;
4020 
4021 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4022 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4023 		return inode;
4024 	}
4025 
4026 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4027 
4028 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4029 	ret = fixup_tree_root_location(root, dir, dentry,
4030 				       &location, &sub_root);
4031 	if (ret < 0) {
4032 		if (ret != -ENOENT)
4033 			inode = ERR_PTR(ret);
4034 		else
4035 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4036 	} else {
4037 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4038 	}
4039 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4040 
4041 	if (!IS_ERR(inode) && root != sub_root) {
4042 		down_read(&root->fs_info->cleanup_work_sem);
4043 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4044 			ret = btrfs_orphan_cleanup(sub_root);
4045 		up_read(&root->fs_info->cleanup_work_sem);
4046 		if (ret)
4047 			inode = ERR_PTR(ret);
4048 	}
4049 
4050 	return inode;
4051 }
4052 
4053 static int btrfs_dentry_delete(const struct dentry *dentry)
4054 {
4055 	struct btrfs_root *root;
4056 
4057 	if (!dentry->d_inode && !IS_ROOT(dentry))
4058 		dentry = dentry->d_parent;
4059 
4060 	if (dentry->d_inode) {
4061 		root = BTRFS_I(dentry->d_inode)->root;
4062 		if (btrfs_root_refs(&root->root_item) == 0)
4063 			return 1;
4064 	}
4065 	return 0;
4066 }
4067 
4068 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4069 				   struct nameidata *nd)
4070 {
4071 	struct inode *inode;
4072 
4073 	inode = btrfs_lookup_dentry(dir, dentry);
4074 	if (IS_ERR(inode))
4075 		return ERR_CAST(inode);
4076 
4077 	return d_splice_alias(inode, dentry);
4078 }
4079 
4080 unsigned char btrfs_filetype_table[] = {
4081 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4082 };
4083 
4084 static int btrfs_real_readdir(struct file *filp, void *dirent,
4085 			      filldir_t filldir)
4086 {
4087 	struct inode *inode = filp->f_dentry->d_inode;
4088 	struct btrfs_root *root = BTRFS_I(inode)->root;
4089 	struct btrfs_item *item;
4090 	struct btrfs_dir_item *di;
4091 	struct btrfs_key key;
4092 	struct btrfs_key found_key;
4093 	struct btrfs_path *path;
4094 	struct list_head ins_list;
4095 	struct list_head del_list;
4096 	int ret;
4097 	struct extent_buffer *leaf;
4098 	int slot;
4099 	unsigned char d_type;
4100 	int over = 0;
4101 	u32 di_cur;
4102 	u32 di_total;
4103 	u32 di_len;
4104 	int key_type = BTRFS_DIR_INDEX_KEY;
4105 	char tmp_name[32];
4106 	char *name_ptr;
4107 	int name_len;
4108 	int is_curr = 0;	/* filp->f_pos points to the current index? */
4109 
4110 	/* FIXME, use a real flag for deciding about the key type */
4111 	if (root->fs_info->tree_root == root)
4112 		key_type = BTRFS_DIR_ITEM_KEY;
4113 
4114 	/* special case for "." */
4115 	if (filp->f_pos == 0) {
4116 		over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
4117 		if (over)
4118 			return 0;
4119 		filp->f_pos = 1;
4120 	}
4121 	/* special case for .., just use the back ref */
4122 	if (filp->f_pos == 1) {
4123 		u64 pino = parent_ino(filp->f_path.dentry);
4124 		over = filldir(dirent, "..", 2,
4125 			       2, pino, DT_DIR);
4126 		if (over)
4127 			return 0;
4128 		filp->f_pos = 2;
4129 	}
4130 	path = btrfs_alloc_path();
4131 	if (!path)
4132 		return -ENOMEM;
4133 
4134 	path->reada = 1;
4135 
4136 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4137 		INIT_LIST_HEAD(&ins_list);
4138 		INIT_LIST_HEAD(&del_list);
4139 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4140 	}
4141 
4142 	btrfs_set_key_type(&key, key_type);
4143 	key.offset = filp->f_pos;
4144 	key.objectid = btrfs_ino(inode);
4145 
4146 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4147 	if (ret < 0)
4148 		goto err;
4149 
4150 	while (1) {
4151 		leaf = path->nodes[0];
4152 		slot = path->slots[0];
4153 		if (slot >= btrfs_header_nritems(leaf)) {
4154 			ret = btrfs_next_leaf(root, path);
4155 			if (ret < 0)
4156 				goto err;
4157 			else if (ret > 0)
4158 				break;
4159 			continue;
4160 		}
4161 
4162 		item = btrfs_item_nr(leaf, slot);
4163 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4164 
4165 		if (found_key.objectid != key.objectid)
4166 			break;
4167 		if (btrfs_key_type(&found_key) != key_type)
4168 			break;
4169 		if (found_key.offset < filp->f_pos)
4170 			goto next;
4171 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4172 		    btrfs_should_delete_dir_index(&del_list,
4173 						  found_key.offset))
4174 			goto next;
4175 
4176 		filp->f_pos = found_key.offset;
4177 		is_curr = 1;
4178 
4179 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4180 		di_cur = 0;
4181 		di_total = btrfs_item_size(leaf, item);
4182 
4183 		while (di_cur < di_total) {
4184 			struct btrfs_key location;
4185 
4186 			if (verify_dir_item(root, leaf, di))
4187 				break;
4188 
4189 			name_len = btrfs_dir_name_len(leaf, di);
4190 			if (name_len <= sizeof(tmp_name)) {
4191 				name_ptr = tmp_name;
4192 			} else {
4193 				name_ptr = kmalloc(name_len, GFP_NOFS);
4194 				if (!name_ptr) {
4195 					ret = -ENOMEM;
4196 					goto err;
4197 				}
4198 			}
4199 			read_extent_buffer(leaf, name_ptr,
4200 					   (unsigned long)(di + 1), name_len);
4201 
4202 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4203 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4204 
4205 			/* is this a reference to our own snapshot? If so
4206 			 * skip it
4207 			 */
4208 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4209 			    location.objectid == root->root_key.objectid) {
4210 				over = 0;
4211 				goto skip;
4212 			}
4213 			over = filldir(dirent, name_ptr, name_len,
4214 				       found_key.offset, location.objectid,
4215 				       d_type);
4216 
4217 skip:
4218 			if (name_ptr != tmp_name)
4219 				kfree(name_ptr);
4220 
4221 			if (over)
4222 				goto nopos;
4223 			di_len = btrfs_dir_name_len(leaf, di) +
4224 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4225 			di_cur += di_len;
4226 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4227 		}
4228 next:
4229 		path->slots[0]++;
4230 	}
4231 
4232 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4233 		if (is_curr)
4234 			filp->f_pos++;
4235 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4236 						      &ins_list);
4237 		if (ret)
4238 			goto nopos;
4239 	}
4240 
4241 	/* Reached end of directory/root. Bump pos past the last item. */
4242 	if (key_type == BTRFS_DIR_INDEX_KEY)
4243 		/*
4244 		 * 32-bit glibc will use getdents64, but then strtol -
4245 		 * so the last number we can serve is this.
4246 		 */
4247 		filp->f_pos = 0x7fffffff;
4248 	else
4249 		filp->f_pos++;
4250 nopos:
4251 	ret = 0;
4252 err:
4253 	if (key_type == BTRFS_DIR_INDEX_KEY)
4254 		btrfs_put_delayed_items(&ins_list, &del_list);
4255 	btrfs_free_path(path);
4256 	return ret;
4257 }
4258 
4259 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4260 {
4261 	struct btrfs_root *root = BTRFS_I(inode)->root;
4262 	struct btrfs_trans_handle *trans;
4263 	int ret = 0;
4264 	bool nolock = false;
4265 
4266 	if (BTRFS_I(inode)->dummy_inode)
4267 		return 0;
4268 
4269 	if (btrfs_fs_closing(root->fs_info) && is_free_space_inode(root, inode))
4270 		nolock = true;
4271 
4272 	if (wbc->sync_mode == WB_SYNC_ALL) {
4273 		if (nolock)
4274 			trans = btrfs_join_transaction_nolock(root);
4275 		else
4276 			trans = btrfs_join_transaction(root);
4277 		if (IS_ERR(trans))
4278 			return PTR_ERR(trans);
4279 		if (nolock)
4280 			ret = btrfs_end_transaction_nolock(trans, root);
4281 		else
4282 			ret = btrfs_commit_transaction(trans, root);
4283 	}
4284 	return ret;
4285 }
4286 
4287 /*
4288  * This is somewhat expensive, updating the tree every time the
4289  * inode changes.  But, it is most likely to find the inode in cache.
4290  * FIXME, needs more benchmarking...there are no reasons other than performance
4291  * to keep or drop this code.
4292  */
4293 void btrfs_dirty_inode(struct inode *inode, int flags)
4294 {
4295 	struct btrfs_root *root = BTRFS_I(inode)->root;
4296 	struct btrfs_trans_handle *trans;
4297 	int ret;
4298 
4299 	if (BTRFS_I(inode)->dummy_inode)
4300 		return;
4301 
4302 	trans = btrfs_join_transaction(root);
4303 	BUG_ON(IS_ERR(trans));
4304 
4305 	ret = btrfs_update_inode(trans, root, inode);
4306 	if (ret && ret == -ENOSPC) {
4307 		/* whoops, lets try again with the full transaction */
4308 		btrfs_end_transaction(trans, root);
4309 		trans = btrfs_start_transaction(root, 1);
4310 		if (IS_ERR(trans)) {
4311 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4312 				       "dirty  inode %llu error %ld\n",
4313 				       (unsigned long long)btrfs_ino(inode),
4314 				       PTR_ERR(trans));
4315 			return;
4316 		}
4317 
4318 		ret = btrfs_update_inode(trans, root, inode);
4319 		if (ret) {
4320 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4321 				       "dirty  inode %llu error %d\n",
4322 				       (unsigned long long)btrfs_ino(inode),
4323 				       ret);
4324 		}
4325 	}
4326 	btrfs_end_transaction(trans, root);
4327 	if (BTRFS_I(inode)->delayed_node)
4328 		btrfs_balance_delayed_items(root);
4329 }
4330 
4331 /*
4332  * find the highest existing sequence number in a directory
4333  * and then set the in-memory index_cnt variable to reflect
4334  * free sequence numbers
4335  */
4336 static int btrfs_set_inode_index_count(struct inode *inode)
4337 {
4338 	struct btrfs_root *root = BTRFS_I(inode)->root;
4339 	struct btrfs_key key, found_key;
4340 	struct btrfs_path *path;
4341 	struct extent_buffer *leaf;
4342 	int ret;
4343 
4344 	key.objectid = btrfs_ino(inode);
4345 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4346 	key.offset = (u64)-1;
4347 
4348 	path = btrfs_alloc_path();
4349 	if (!path)
4350 		return -ENOMEM;
4351 
4352 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4353 	if (ret < 0)
4354 		goto out;
4355 	/* FIXME: we should be able to handle this */
4356 	if (ret == 0)
4357 		goto out;
4358 	ret = 0;
4359 
4360 	/*
4361 	 * MAGIC NUMBER EXPLANATION:
4362 	 * since we search a directory based on f_pos we have to start at 2
4363 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4364 	 * else has to start at 2
4365 	 */
4366 	if (path->slots[0] == 0) {
4367 		BTRFS_I(inode)->index_cnt = 2;
4368 		goto out;
4369 	}
4370 
4371 	path->slots[0]--;
4372 
4373 	leaf = path->nodes[0];
4374 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4375 
4376 	if (found_key.objectid != btrfs_ino(inode) ||
4377 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4378 		BTRFS_I(inode)->index_cnt = 2;
4379 		goto out;
4380 	}
4381 
4382 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4383 out:
4384 	btrfs_free_path(path);
4385 	return ret;
4386 }
4387 
4388 /*
4389  * helper to find a free sequence number in a given directory.  This current
4390  * code is very simple, later versions will do smarter things in the btree
4391  */
4392 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4393 {
4394 	int ret = 0;
4395 
4396 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4397 		ret = btrfs_inode_delayed_dir_index_count(dir);
4398 		if (ret) {
4399 			ret = btrfs_set_inode_index_count(dir);
4400 			if (ret)
4401 				return ret;
4402 		}
4403 	}
4404 
4405 	*index = BTRFS_I(dir)->index_cnt;
4406 	BTRFS_I(dir)->index_cnt++;
4407 
4408 	return ret;
4409 }
4410 
4411 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4412 				     struct btrfs_root *root,
4413 				     struct inode *dir,
4414 				     const char *name, int name_len,
4415 				     u64 ref_objectid, u64 objectid, int mode,
4416 				     u64 *index)
4417 {
4418 	struct inode *inode;
4419 	struct btrfs_inode_item *inode_item;
4420 	struct btrfs_key *location;
4421 	struct btrfs_path *path;
4422 	struct btrfs_inode_ref *ref;
4423 	struct btrfs_key key[2];
4424 	u32 sizes[2];
4425 	unsigned long ptr;
4426 	int ret;
4427 	int owner;
4428 
4429 	path = btrfs_alloc_path();
4430 	BUG_ON(!path);
4431 
4432 	inode = new_inode(root->fs_info->sb);
4433 	if (!inode) {
4434 		btrfs_free_path(path);
4435 		return ERR_PTR(-ENOMEM);
4436 	}
4437 
4438 	/*
4439 	 * we have to initialize this early, so we can reclaim the inode
4440 	 * number if we fail afterwards in this function.
4441 	 */
4442 	inode->i_ino = objectid;
4443 
4444 	if (dir) {
4445 		trace_btrfs_inode_request(dir);
4446 
4447 		ret = btrfs_set_inode_index(dir, index);
4448 		if (ret) {
4449 			btrfs_free_path(path);
4450 			iput(inode);
4451 			return ERR_PTR(ret);
4452 		}
4453 	}
4454 	/*
4455 	 * index_cnt is ignored for everything but a dir,
4456 	 * btrfs_get_inode_index_count has an explanation for the magic
4457 	 * number
4458 	 */
4459 	BTRFS_I(inode)->index_cnt = 2;
4460 	BTRFS_I(inode)->root = root;
4461 	BTRFS_I(inode)->generation = trans->transid;
4462 	inode->i_generation = BTRFS_I(inode)->generation;
4463 	btrfs_set_inode_space_info(root, inode);
4464 
4465 	if (mode & S_IFDIR)
4466 		owner = 0;
4467 	else
4468 		owner = 1;
4469 
4470 	key[0].objectid = objectid;
4471 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4472 	key[0].offset = 0;
4473 
4474 	key[1].objectid = objectid;
4475 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4476 	key[1].offset = ref_objectid;
4477 
4478 	sizes[0] = sizeof(struct btrfs_inode_item);
4479 	sizes[1] = name_len + sizeof(*ref);
4480 
4481 	path->leave_spinning = 1;
4482 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4483 	if (ret != 0)
4484 		goto fail;
4485 
4486 	inode_init_owner(inode, dir, mode);
4487 	inode_set_bytes(inode, 0);
4488 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4489 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4490 				  struct btrfs_inode_item);
4491 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4492 
4493 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4494 			     struct btrfs_inode_ref);
4495 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4496 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4497 	ptr = (unsigned long)(ref + 1);
4498 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4499 
4500 	btrfs_mark_buffer_dirty(path->nodes[0]);
4501 	btrfs_free_path(path);
4502 
4503 	location = &BTRFS_I(inode)->location;
4504 	location->objectid = objectid;
4505 	location->offset = 0;
4506 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4507 
4508 	btrfs_inherit_iflags(inode, dir);
4509 
4510 	if ((mode & S_IFREG)) {
4511 		if (btrfs_test_opt(root, NODATASUM))
4512 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4513 		if (btrfs_test_opt(root, NODATACOW) ||
4514 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4515 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4516 	}
4517 
4518 	insert_inode_hash(inode);
4519 	inode_tree_add(inode);
4520 
4521 	trace_btrfs_inode_new(inode);
4522 
4523 	return inode;
4524 fail:
4525 	if (dir)
4526 		BTRFS_I(dir)->index_cnt--;
4527 	btrfs_free_path(path);
4528 	iput(inode);
4529 	return ERR_PTR(ret);
4530 }
4531 
4532 static inline u8 btrfs_inode_type(struct inode *inode)
4533 {
4534 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4535 }
4536 
4537 /*
4538  * utility function to add 'inode' into 'parent_inode' with
4539  * a give name and a given sequence number.
4540  * if 'add_backref' is true, also insert a backref from the
4541  * inode to the parent directory.
4542  */
4543 int btrfs_add_link(struct btrfs_trans_handle *trans,
4544 		   struct inode *parent_inode, struct inode *inode,
4545 		   const char *name, int name_len, int add_backref, u64 index)
4546 {
4547 	int ret = 0;
4548 	struct btrfs_key key;
4549 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4550 	u64 ino = btrfs_ino(inode);
4551 	u64 parent_ino = btrfs_ino(parent_inode);
4552 
4553 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4554 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4555 	} else {
4556 		key.objectid = ino;
4557 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4558 		key.offset = 0;
4559 	}
4560 
4561 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4562 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4563 					 key.objectid, root->root_key.objectid,
4564 					 parent_ino, index, name, name_len);
4565 	} else if (add_backref) {
4566 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4567 					     parent_ino, index);
4568 	}
4569 
4570 	if (ret == 0) {
4571 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4572 					    parent_inode, &key,
4573 					    btrfs_inode_type(inode), index);
4574 		BUG_ON(ret);
4575 
4576 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4577 				   name_len * 2);
4578 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4579 		ret = btrfs_update_inode(trans, root, parent_inode);
4580 	}
4581 	return ret;
4582 }
4583 
4584 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4585 			    struct inode *dir, struct dentry *dentry,
4586 			    struct inode *inode, int backref, u64 index)
4587 {
4588 	int err = btrfs_add_link(trans, dir, inode,
4589 				 dentry->d_name.name, dentry->d_name.len,
4590 				 backref, index);
4591 	if (!err) {
4592 		d_instantiate(dentry, inode);
4593 		return 0;
4594 	}
4595 	if (err > 0)
4596 		err = -EEXIST;
4597 	return err;
4598 }
4599 
4600 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4601 			int mode, dev_t rdev)
4602 {
4603 	struct btrfs_trans_handle *trans;
4604 	struct btrfs_root *root = BTRFS_I(dir)->root;
4605 	struct inode *inode = NULL;
4606 	int err;
4607 	int drop_inode = 0;
4608 	u64 objectid;
4609 	unsigned long nr = 0;
4610 	u64 index = 0;
4611 
4612 	if (!new_valid_dev(rdev))
4613 		return -EINVAL;
4614 
4615 	/*
4616 	 * 2 for inode item and ref
4617 	 * 2 for dir items
4618 	 * 1 for xattr if selinux is on
4619 	 */
4620 	trans = btrfs_start_transaction(root, 5);
4621 	if (IS_ERR(trans))
4622 		return PTR_ERR(trans);
4623 
4624 	err = btrfs_find_free_ino(root, &objectid);
4625 	if (err)
4626 		goto out_unlock;
4627 
4628 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4629 				dentry->d_name.len, btrfs_ino(dir), objectid,
4630 				mode, &index);
4631 	if (IS_ERR(inode)) {
4632 		err = PTR_ERR(inode);
4633 		goto out_unlock;
4634 	}
4635 
4636 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4637 	if (err) {
4638 		drop_inode = 1;
4639 		goto out_unlock;
4640 	}
4641 
4642 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4643 	if (err)
4644 		drop_inode = 1;
4645 	else {
4646 		inode->i_op = &btrfs_special_inode_operations;
4647 		init_special_inode(inode, inode->i_mode, rdev);
4648 		btrfs_update_inode(trans, root, inode);
4649 	}
4650 out_unlock:
4651 	nr = trans->blocks_used;
4652 	btrfs_end_transaction_throttle(trans, root);
4653 	btrfs_btree_balance_dirty(root, nr);
4654 	if (drop_inode) {
4655 		inode_dec_link_count(inode);
4656 		iput(inode);
4657 	}
4658 	return err;
4659 }
4660 
4661 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4662 			int mode, struct nameidata *nd)
4663 {
4664 	struct btrfs_trans_handle *trans;
4665 	struct btrfs_root *root = BTRFS_I(dir)->root;
4666 	struct inode *inode = NULL;
4667 	int drop_inode = 0;
4668 	int err;
4669 	unsigned long nr = 0;
4670 	u64 objectid;
4671 	u64 index = 0;
4672 
4673 	/*
4674 	 * 2 for inode item and ref
4675 	 * 2 for dir items
4676 	 * 1 for xattr if selinux is on
4677 	 */
4678 	trans = btrfs_start_transaction(root, 5);
4679 	if (IS_ERR(trans))
4680 		return PTR_ERR(trans);
4681 
4682 	err = btrfs_find_free_ino(root, &objectid);
4683 	if (err)
4684 		goto out_unlock;
4685 
4686 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4687 				dentry->d_name.len, btrfs_ino(dir), objectid,
4688 				mode, &index);
4689 	if (IS_ERR(inode)) {
4690 		err = PTR_ERR(inode);
4691 		goto out_unlock;
4692 	}
4693 
4694 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4695 	if (err) {
4696 		drop_inode = 1;
4697 		goto out_unlock;
4698 	}
4699 
4700 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4701 	if (err)
4702 		drop_inode = 1;
4703 	else {
4704 		inode->i_mapping->a_ops = &btrfs_aops;
4705 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4706 		inode->i_fop = &btrfs_file_operations;
4707 		inode->i_op = &btrfs_file_inode_operations;
4708 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4709 	}
4710 out_unlock:
4711 	nr = trans->blocks_used;
4712 	btrfs_end_transaction_throttle(trans, root);
4713 	if (drop_inode) {
4714 		inode_dec_link_count(inode);
4715 		iput(inode);
4716 	}
4717 	btrfs_btree_balance_dirty(root, nr);
4718 	return err;
4719 }
4720 
4721 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4722 		      struct dentry *dentry)
4723 {
4724 	struct btrfs_trans_handle *trans;
4725 	struct btrfs_root *root = BTRFS_I(dir)->root;
4726 	struct inode *inode = old_dentry->d_inode;
4727 	u64 index;
4728 	unsigned long nr = 0;
4729 	int err;
4730 	int drop_inode = 0;
4731 
4732 	/* do not allow sys_link's with other subvols of the same device */
4733 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4734 		return -EXDEV;
4735 
4736 	if (inode->i_nlink == ~0U)
4737 		return -EMLINK;
4738 
4739 	err = btrfs_set_inode_index(dir, &index);
4740 	if (err)
4741 		goto fail;
4742 
4743 	/*
4744 	 * 2 items for inode and inode ref
4745 	 * 2 items for dir items
4746 	 * 1 item for parent inode
4747 	 */
4748 	trans = btrfs_start_transaction(root, 5);
4749 	if (IS_ERR(trans)) {
4750 		err = PTR_ERR(trans);
4751 		goto fail;
4752 	}
4753 
4754 	btrfs_inc_nlink(inode);
4755 	inode->i_ctime = CURRENT_TIME;
4756 	ihold(inode);
4757 
4758 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4759 
4760 	if (err) {
4761 		drop_inode = 1;
4762 	} else {
4763 		struct dentry *parent = dget_parent(dentry);
4764 		err = btrfs_update_inode(trans, root, inode);
4765 		BUG_ON(err);
4766 		btrfs_log_new_name(trans, inode, NULL, parent);
4767 		dput(parent);
4768 	}
4769 
4770 	nr = trans->blocks_used;
4771 	btrfs_end_transaction_throttle(trans, root);
4772 fail:
4773 	if (drop_inode) {
4774 		inode_dec_link_count(inode);
4775 		iput(inode);
4776 	}
4777 	btrfs_btree_balance_dirty(root, nr);
4778 	return err;
4779 }
4780 
4781 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4782 {
4783 	struct inode *inode = NULL;
4784 	struct btrfs_trans_handle *trans;
4785 	struct btrfs_root *root = BTRFS_I(dir)->root;
4786 	int err = 0;
4787 	int drop_on_err = 0;
4788 	u64 objectid = 0;
4789 	u64 index = 0;
4790 	unsigned long nr = 1;
4791 
4792 	/*
4793 	 * 2 items for inode and ref
4794 	 * 2 items for dir items
4795 	 * 1 for xattr if selinux is on
4796 	 */
4797 	trans = btrfs_start_transaction(root, 5);
4798 	if (IS_ERR(trans))
4799 		return PTR_ERR(trans);
4800 
4801 	err = btrfs_find_free_ino(root, &objectid);
4802 	if (err)
4803 		goto out_fail;
4804 
4805 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4806 				dentry->d_name.len, btrfs_ino(dir), objectid,
4807 				S_IFDIR | mode, &index);
4808 	if (IS_ERR(inode)) {
4809 		err = PTR_ERR(inode);
4810 		goto out_fail;
4811 	}
4812 
4813 	drop_on_err = 1;
4814 
4815 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4816 	if (err)
4817 		goto out_fail;
4818 
4819 	inode->i_op = &btrfs_dir_inode_operations;
4820 	inode->i_fop = &btrfs_dir_file_operations;
4821 
4822 	btrfs_i_size_write(inode, 0);
4823 	err = btrfs_update_inode(trans, root, inode);
4824 	if (err)
4825 		goto out_fail;
4826 
4827 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4828 			     dentry->d_name.len, 0, index);
4829 	if (err)
4830 		goto out_fail;
4831 
4832 	d_instantiate(dentry, inode);
4833 	drop_on_err = 0;
4834 
4835 out_fail:
4836 	nr = trans->blocks_used;
4837 	btrfs_end_transaction_throttle(trans, root);
4838 	if (drop_on_err)
4839 		iput(inode);
4840 	btrfs_btree_balance_dirty(root, nr);
4841 	return err;
4842 }
4843 
4844 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4845  * and an extent that you want to insert, deal with overlap and insert
4846  * the new extent into the tree.
4847  */
4848 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4849 				struct extent_map *existing,
4850 				struct extent_map *em,
4851 				u64 map_start, u64 map_len)
4852 {
4853 	u64 start_diff;
4854 
4855 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4856 	start_diff = map_start - em->start;
4857 	em->start = map_start;
4858 	em->len = map_len;
4859 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4860 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4861 		em->block_start += start_diff;
4862 		em->block_len -= start_diff;
4863 	}
4864 	return add_extent_mapping(em_tree, em);
4865 }
4866 
4867 static noinline int uncompress_inline(struct btrfs_path *path,
4868 				      struct inode *inode, struct page *page,
4869 				      size_t pg_offset, u64 extent_offset,
4870 				      struct btrfs_file_extent_item *item)
4871 {
4872 	int ret;
4873 	struct extent_buffer *leaf = path->nodes[0];
4874 	char *tmp;
4875 	size_t max_size;
4876 	unsigned long inline_size;
4877 	unsigned long ptr;
4878 	int compress_type;
4879 
4880 	WARN_ON(pg_offset != 0);
4881 	compress_type = btrfs_file_extent_compression(leaf, item);
4882 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4883 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4884 					btrfs_item_nr(leaf, path->slots[0]));
4885 	tmp = kmalloc(inline_size, GFP_NOFS);
4886 	if (!tmp)
4887 		return -ENOMEM;
4888 	ptr = btrfs_file_extent_inline_start(item);
4889 
4890 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4891 
4892 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4893 	ret = btrfs_decompress(compress_type, tmp, page,
4894 			       extent_offset, inline_size, max_size);
4895 	if (ret) {
4896 		char *kaddr = kmap_atomic(page, KM_USER0);
4897 		unsigned long copy_size = min_t(u64,
4898 				  PAGE_CACHE_SIZE - pg_offset,
4899 				  max_size - extent_offset);
4900 		memset(kaddr + pg_offset, 0, copy_size);
4901 		kunmap_atomic(kaddr, KM_USER0);
4902 	}
4903 	kfree(tmp);
4904 	return 0;
4905 }
4906 
4907 /*
4908  * a bit scary, this does extent mapping from logical file offset to the disk.
4909  * the ugly parts come from merging extents from the disk with the in-ram
4910  * representation.  This gets more complex because of the data=ordered code,
4911  * where the in-ram extents might be locked pending data=ordered completion.
4912  *
4913  * This also copies inline extents directly into the page.
4914  */
4915 
4916 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4917 				    size_t pg_offset, u64 start, u64 len,
4918 				    int create)
4919 {
4920 	int ret;
4921 	int err = 0;
4922 	u64 bytenr;
4923 	u64 extent_start = 0;
4924 	u64 extent_end = 0;
4925 	u64 objectid = btrfs_ino(inode);
4926 	u32 found_type;
4927 	struct btrfs_path *path = NULL;
4928 	struct btrfs_root *root = BTRFS_I(inode)->root;
4929 	struct btrfs_file_extent_item *item;
4930 	struct extent_buffer *leaf;
4931 	struct btrfs_key found_key;
4932 	struct extent_map *em = NULL;
4933 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4934 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4935 	struct btrfs_trans_handle *trans = NULL;
4936 	int compress_type;
4937 
4938 again:
4939 	read_lock(&em_tree->lock);
4940 	em = lookup_extent_mapping(em_tree, start, len);
4941 	if (em)
4942 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4943 	read_unlock(&em_tree->lock);
4944 
4945 	if (em) {
4946 		if (em->start > start || em->start + em->len <= start)
4947 			free_extent_map(em);
4948 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4949 			free_extent_map(em);
4950 		else
4951 			goto out;
4952 	}
4953 	em = alloc_extent_map();
4954 	if (!em) {
4955 		err = -ENOMEM;
4956 		goto out;
4957 	}
4958 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4959 	em->start = EXTENT_MAP_HOLE;
4960 	em->orig_start = EXTENT_MAP_HOLE;
4961 	em->len = (u64)-1;
4962 	em->block_len = (u64)-1;
4963 
4964 	if (!path) {
4965 		path = btrfs_alloc_path();
4966 		if (!path) {
4967 			err = -ENOMEM;
4968 			goto out;
4969 		}
4970 		/*
4971 		 * Chances are we'll be called again, so go ahead and do
4972 		 * readahead
4973 		 */
4974 		path->reada = 1;
4975 	}
4976 
4977 	ret = btrfs_lookup_file_extent(trans, root, path,
4978 				       objectid, start, trans != NULL);
4979 	if (ret < 0) {
4980 		err = ret;
4981 		goto out;
4982 	}
4983 
4984 	if (ret != 0) {
4985 		if (path->slots[0] == 0)
4986 			goto not_found;
4987 		path->slots[0]--;
4988 	}
4989 
4990 	leaf = path->nodes[0];
4991 	item = btrfs_item_ptr(leaf, path->slots[0],
4992 			      struct btrfs_file_extent_item);
4993 	/* are we inside the extent that was found? */
4994 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4995 	found_type = btrfs_key_type(&found_key);
4996 	if (found_key.objectid != objectid ||
4997 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4998 		goto not_found;
4999 	}
5000 
5001 	found_type = btrfs_file_extent_type(leaf, item);
5002 	extent_start = found_key.offset;
5003 	compress_type = btrfs_file_extent_compression(leaf, item);
5004 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5005 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5006 		extent_end = extent_start +
5007 		       btrfs_file_extent_num_bytes(leaf, item);
5008 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5009 		size_t size;
5010 		size = btrfs_file_extent_inline_len(leaf, item);
5011 		extent_end = (extent_start + size + root->sectorsize - 1) &
5012 			~((u64)root->sectorsize - 1);
5013 	}
5014 
5015 	if (start >= extent_end) {
5016 		path->slots[0]++;
5017 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5018 			ret = btrfs_next_leaf(root, path);
5019 			if (ret < 0) {
5020 				err = ret;
5021 				goto out;
5022 			}
5023 			if (ret > 0)
5024 				goto not_found;
5025 			leaf = path->nodes[0];
5026 		}
5027 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5028 		if (found_key.objectid != objectid ||
5029 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5030 			goto not_found;
5031 		if (start + len <= found_key.offset)
5032 			goto not_found;
5033 		em->start = start;
5034 		em->len = found_key.offset - start;
5035 		goto not_found_em;
5036 	}
5037 
5038 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5039 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5040 		em->start = extent_start;
5041 		em->len = extent_end - extent_start;
5042 		em->orig_start = extent_start -
5043 				 btrfs_file_extent_offset(leaf, item);
5044 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5045 		if (bytenr == 0) {
5046 			em->block_start = EXTENT_MAP_HOLE;
5047 			goto insert;
5048 		}
5049 		if (compress_type != BTRFS_COMPRESS_NONE) {
5050 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5051 			em->compress_type = compress_type;
5052 			em->block_start = bytenr;
5053 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5054 									 item);
5055 		} else {
5056 			bytenr += btrfs_file_extent_offset(leaf, item);
5057 			em->block_start = bytenr;
5058 			em->block_len = em->len;
5059 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5060 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5061 		}
5062 		goto insert;
5063 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5064 		unsigned long ptr;
5065 		char *map;
5066 		size_t size;
5067 		size_t extent_offset;
5068 		size_t copy_size;
5069 
5070 		em->block_start = EXTENT_MAP_INLINE;
5071 		if (!page || create) {
5072 			em->start = extent_start;
5073 			em->len = extent_end - extent_start;
5074 			goto out;
5075 		}
5076 
5077 		size = btrfs_file_extent_inline_len(leaf, item);
5078 		extent_offset = page_offset(page) + pg_offset - extent_start;
5079 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5080 				size - extent_offset);
5081 		em->start = extent_start + extent_offset;
5082 		em->len = (copy_size + root->sectorsize - 1) &
5083 			~((u64)root->sectorsize - 1);
5084 		em->orig_start = EXTENT_MAP_INLINE;
5085 		if (compress_type) {
5086 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5087 			em->compress_type = compress_type;
5088 		}
5089 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5090 		if (create == 0 && !PageUptodate(page)) {
5091 			if (btrfs_file_extent_compression(leaf, item) !=
5092 			    BTRFS_COMPRESS_NONE) {
5093 				ret = uncompress_inline(path, inode, page,
5094 							pg_offset,
5095 							extent_offset, item);
5096 				BUG_ON(ret);
5097 			} else {
5098 				map = kmap(page);
5099 				read_extent_buffer(leaf, map + pg_offset, ptr,
5100 						   copy_size);
5101 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5102 					memset(map + pg_offset + copy_size, 0,
5103 					       PAGE_CACHE_SIZE - pg_offset -
5104 					       copy_size);
5105 				}
5106 				kunmap(page);
5107 			}
5108 			flush_dcache_page(page);
5109 		} else if (create && PageUptodate(page)) {
5110 			WARN_ON(1);
5111 			if (!trans) {
5112 				kunmap(page);
5113 				free_extent_map(em);
5114 				em = NULL;
5115 
5116 				btrfs_release_path(path);
5117 				trans = btrfs_join_transaction(root);
5118 
5119 				if (IS_ERR(trans))
5120 					return ERR_CAST(trans);
5121 				goto again;
5122 			}
5123 			map = kmap(page);
5124 			write_extent_buffer(leaf, map + pg_offset, ptr,
5125 					    copy_size);
5126 			kunmap(page);
5127 			btrfs_mark_buffer_dirty(leaf);
5128 		}
5129 		set_extent_uptodate(io_tree, em->start,
5130 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5131 		goto insert;
5132 	} else {
5133 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5134 		WARN_ON(1);
5135 	}
5136 not_found:
5137 	em->start = start;
5138 	em->len = len;
5139 not_found_em:
5140 	em->block_start = EXTENT_MAP_HOLE;
5141 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5142 insert:
5143 	btrfs_release_path(path);
5144 	if (em->start > start || extent_map_end(em) <= start) {
5145 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5146 		       "[%llu %llu]\n", (unsigned long long)em->start,
5147 		       (unsigned long long)em->len,
5148 		       (unsigned long long)start,
5149 		       (unsigned long long)len);
5150 		err = -EIO;
5151 		goto out;
5152 	}
5153 
5154 	err = 0;
5155 	write_lock(&em_tree->lock);
5156 	ret = add_extent_mapping(em_tree, em);
5157 	/* it is possible that someone inserted the extent into the tree
5158 	 * while we had the lock dropped.  It is also possible that
5159 	 * an overlapping map exists in the tree
5160 	 */
5161 	if (ret == -EEXIST) {
5162 		struct extent_map *existing;
5163 
5164 		ret = 0;
5165 
5166 		existing = lookup_extent_mapping(em_tree, start, len);
5167 		if (existing && (existing->start > start ||
5168 		    existing->start + existing->len <= start)) {
5169 			free_extent_map(existing);
5170 			existing = NULL;
5171 		}
5172 		if (!existing) {
5173 			existing = lookup_extent_mapping(em_tree, em->start,
5174 							 em->len);
5175 			if (existing) {
5176 				err = merge_extent_mapping(em_tree, existing,
5177 							   em, start,
5178 							   root->sectorsize);
5179 				free_extent_map(existing);
5180 				if (err) {
5181 					free_extent_map(em);
5182 					em = NULL;
5183 				}
5184 			} else {
5185 				err = -EIO;
5186 				free_extent_map(em);
5187 				em = NULL;
5188 			}
5189 		} else {
5190 			free_extent_map(em);
5191 			em = existing;
5192 			err = 0;
5193 		}
5194 	}
5195 	write_unlock(&em_tree->lock);
5196 out:
5197 
5198 	trace_btrfs_get_extent(root, em);
5199 
5200 	if (path)
5201 		btrfs_free_path(path);
5202 	if (trans) {
5203 		ret = btrfs_end_transaction(trans, root);
5204 		if (!err)
5205 			err = ret;
5206 	}
5207 	if (err) {
5208 		free_extent_map(em);
5209 		return ERR_PTR(err);
5210 	}
5211 	return em;
5212 }
5213 
5214 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5215 					   size_t pg_offset, u64 start, u64 len,
5216 					   int create)
5217 {
5218 	struct extent_map *em;
5219 	struct extent_map *hole_em = NULL;
5220 	u64 range_start = start;
5221 	u64 end;
5222 	u64 found;
5223 	u64 found_end;
5224 	int err = 0;
5225 
5226 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5227 	if (IS_ERR(em))
5228 		return em;
5229 	if (em) {
5230 		/*
5231 		 * if our em maps to a hole, there might
5232 		 * actually be delalloc bytes behind it
5233 		 */
5234 		if (em->block_start != EXTENT_MAP_HOLE)
5235 			return em;
5236 		else
5237 			hole_em = em;
5238 	}
5239 
5240 	/* check to see if we've wrapped (len == -1 or similar) */
5241 	end = start + len;
5242 	if (end < start)
5243 		end = (u64)-1;
5244 	else
5245 		end -= 1;
5246 
5247 	em = NULL;
5248 
5249 	/* ok, we didn't find anything, lets look for delalloc */
5250 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5251 				 end, len, EXTENT_DELALLOC, 1);
5252 	found_end = range_start + found;
5253 	if (found_end < range_start)
5254 		found_end = (u64)-1;
5255 
5256 	/*
5257 	 * we didn't find anything useful, return
5258 	 * the original results from get_extent()
5259 	 */
5260 	if (range_start > end || found_end <= start) {
5261 		em = hole_em;
5262 		hole_em = NULL;
5263 		goto out;
5264 	}
5265 
5266 	/* adjust the range_start to make sure it doesn't
5267 	 * go backwards from the start they passed in
5268 	 */
5269 	range_start = max(start,range_start);
5270 	found = found_end - range_start;
5271 
5272 	if (found > 0) {
5273 		u64 hole_start = start;
5274 		u64 hole_len = len;
5275 
5276 		em = alloc_extent_map();
5277 		if (!em) {
5278 			err = -ENOMEM;
5279 			goto out;
5280 		}
5281 		/*
5282 		 * when btrfs_get_extent can't find anything it
5283 		 * returns one huge hole
5284 		 *
5285 		 * make sure what it found really fits our range, and
5286 		 * adjust to make sure it is based on the start from
5287 		 * the caller
5288 		 */
5289 		if (hole_em) {
5290 			u64 calc_end = extent_map_end(hole_em);
5291 
5292 			if (calc_end <= start || (hole_em->start > end)) {
5293 				free_extent_map(hole_em);
5294 				hole_em = NULL;
5295 			} else {
5296 				hole_start = max(hole_em->start, start);
5297 				hole_len = calc_end - hole_start;
5298 			}
5299 		}
5300 		em->bdev = NULL;
5301 		if (hole_em && range_start > hole_start) {
5302 			/* our hole starts before our delalloc, so we
5303 			 * have to return just the parts of the hole
5304 			 * that go until  the delalloc starts
5305 			 */
5306 			em->len = min(hole_len,
5307 				      range_start - hole_start);
5308 			em->start = hole_start;
5309 			em->orig_start = hole_start;
5310 			/*
5311 			 * don't adjust block start at all,
5312 			 * it is fixed at EXTENT_MAP_HOLE
5313 			 */
5314 			em->block_start = hole_em->block_start;
5315 			em->block_len = hole_len;
5316 		} else {
5317 			em->start = range_start;
5318 			em->len = found;
5319 			em->orig_start = range_start;
5320 			em->block_start = EXTENT_MAP_DELALLOC;
5321 			em->block_len = found;
5322 		}
5323 	} else if (hole_em) {
5324 		return hole_em;
5325 	}
5326 out:
5327 
5328 	free_extent_map(hole_em);
5329 	if (err) {
5330 		free_extent_map(em);
5331 		return ERR_PTR(err);
5332 	}
5333 	return em;
5334 }
5335 
5336 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5337 						  struct extent_map *em,
5338 						  u64 start, u64 len)
5339 {
5340 	struct btrfs_root *root = BTRFS_I(inode)->root;
5341 	struct btrfs_trans_handle *trans;
5342 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5343 	struct btrfs_key ins;
5344 	u64 alloc_hint;
5345 	int ret;
5346 	bool insert = false;
5347 
5348 	/*
5349 	 * Ok if the extent map we looked up is a hole and is for the exact
5350 	 * range we want, there is no reason to allocate a new one, however if
5351 	 * it is not right then we need to free this one and drop the cache for
5352 	 * our range.
5353 	 */
5354 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5355 	    em->len != len) {
5356 		free_extent_map(em);
5357 		em = NULL;
5358 		insert = true;
5359 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5360 	}
5361 
5362 	trans = btrfs_join_transaction(root);
5363 	if (IS_ERR(trans))
5364 		return ERR_CAST(trans);
5365 
5366 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5367 		btrfs_add_inode_defrag(trans, inode);
5368 
5369 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5370 
5371 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5372 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5373 				   alloc_hint, (u64)-1, &ins, 1);
5374 	if (ret) {
5375 		em = ERR_PTR(ret);
5376 		goto out;
5377 	}
5378 
5379 	if (!em) {
5380 		em = alloc_extent_map();
5381 		if (!em) {
5382 			em = ERR_PTR(-ENOMEM);
5383 			goto out;
5384 		}
5385 	}
5386 
5387 	em->start = start;
5388 	em->orig_start = em->start;
5389 	em->len = ins.offset;
5390 
5391 	em->block_start = ins.objectid;
5392 	em->block_len = ins.offset;
5393 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5394 
5395 	/*
5396 	 * We need to do this because if we're using the original em we searched
5397 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5398 	 */
5399 	em->flags = 0;
5400 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5401 
5402 	while (insert) {
5403 		write_lock(&em_tree->lock);
5404 		ret = add_extent_mapping(em_tree, em);
5405 		write_unlock(&em_tree->lock);
5406 		if (ret != -EEXIST)
5407 			break;
5408 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5409 	}
5410 
5411 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5412 					   ins.offset, ins.offset, 0);
5413 	if (ret) {
5414 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5415 		em = ERR_PTR(ret);
5416 	}
5417 out:
5418 	btrfs_end_transaction(trans, root);
5419 	return em;
5420 }
5421 
5422 /*
5423  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5424  * block must be cow'd
5425  */
5426 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5427 				      struct inode *inode, u64 offset, u64 len)
5428 {
5429 	struct btrfs_path *path;
5430 	int ret;
5431 	struct extent_buffer *leaf;
5432 	struct btrfs_root *root = BTRFS_I(inode)->root;
5433 	struct btrfs_file_extent_item *fi;
5434 	struct btrfs_key key;
5435 	u64 disk_bytenr;
5436 	u64 backref_offset;
5437 	u64 extent_end;
5438 	u64 num_bytes;
5439 	int slot;
5440 	int found_type;
5441 
5442 	path = btrfs_alloc_path();
5443 	if (!path)
5444 		return -ENOMEM;
5445 
5446 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5447 				       offset, 0);
5448 	if (ret < 0)
5449 		goto out;
5450 
5451 	slot = path->slots[0];
5452 	if (ret == 1) {
5453 		if (slot == 0) {
5454 			/* can't find the item, must cow */
5455 			ret = 0;
5456 			goto out;
5457 		}
5458 		slot--;
5459 	}
5460 	ret = 0;
5461 	leaf = path->nodes[0];
5462 	btrfs_item_key_to_cpu(leaf, &key, slot);
5463 	if (key.objectid != btrfs_ino(inode) ||
5464 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5465 		/* not our file or wrong item type, must cow */
5466 		goto out;
5467 	}
5468 
5469 	if (key.offset > offset) {
5470 		/* Wrong offset, must cow */
5471 		goto out;
5472 	}
5473 
5474 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5475 	found_type = btrfs_file_extent_type(leaf, fi);
5476 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5477 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5478 		/* not a regular extent, must cow */
5479 		goto out;
5480 	}
5481 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5482 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5483 
5484 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5485 	if (extent_end < offset + len) {
5486 		/* extent doesn't include our full range, must cow */
5487 		goto out;
5488 	}
5489 
5490 	if (btrfs_extent_readonly(root, disk_bytenr))
5491 		goto out;
5492 
5493 	/*
5494 	 * look for other files referencing this extent, if we
5495 	 * find any we must cow
5496 	 */
5497 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5498 				  key.offset - backref_offset, disk_bytenr))
5499 		goto out;
5500 
5501 	/*
5502 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5503 	 * in this extent we are about to write.  If there
5504 	 * are any csums in that range we have to cow in order
5505 	 * to keep the csums correct
5506 	 */
5507 	disk_bytenr += backref_offset;
5508 	disk_bytenr += offset - key.offset;
5509 	num_bytes = min(offset + len, extent_end) - offset;
5510 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5511 				goto out;
5512 	/*
5513 	 * all of the above have passed, it is safe to overwrite this extent
5514 	 * without cow
5515 	 */
5516 	ret = 1;
5517 out:
5518 	btrfs_free_path(path);
5519 	return ret;
5520 }
5521 
5522 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5523 				   struct buffer_head *bh_result, int create)
5524 {
5525 	struct extent_map *em;
5526 	struct btrfs_root *root = BTRFS_I(inode)->root;
5527 	u64 start = iblock << inode->i_blkbits;
5528 	u64 len = bh_result->b_size;
5529 	struct btrfs_trans_handle *trans;
5530 
5531 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5532 	if (IS_ERR(em))
5533 		return PTR_ERR(em);
5534 
5535 	/*
5536 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5537 	 * io.  INLINE is special, and we could probably kludge it in here, but
5538 	 * it's still buffered so for safety lets just fall back to the generic
5539 	 * buffered path.
5540 	 *
5541 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5542 	 * decompress it, so there will be buffering required no matter what we
5543 	 * do, so go ahead and fallback to buffered.
5544 	 *
5545 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5546 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5547 	 * the generic code.
5548 	 */
5549 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5550 	    em->block_start == EXTENT_MAP_INLINE) {
5551 		free_extent_map(em);
5552 		return -ENOTBLK;
5553 	}
5554 
5555 	/* Just a good old fashioned hole, return */
5556 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5557 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5558 		free_extent_map(em);
5559 		/* DIO will do one hole at a time, so just unlock a sector */
5560 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5561 			      start + root->sectorsize - 1, GFP_NOFS);
5562 		return 0;
5563 	}
5564 
5565 	/*
5566 	 * We don't allocate a new extent in the following cases
5567 	 *
5568 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5569 	 * existing extent.
5570 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5571 	 * just use the extent.
5572 	 *
5573 	 */
5574 	if (!create) {
5575 		len = em->len - (start - em->start);
5576 		goto map;
5577 	}
5578 
5579 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5580 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5581 	     em->block_start != EXTENT_MAP_HOLE)) {
5582 		int type;
5583 		int ret;
5584 		u64 block_start;
5585 
5586 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5587 			type = BTRFS_ORDERED_PREALLOC;
5588 		else
5589 			type = BTRFS_ORDERED_NOCOW;
5590 		len = min(len, em->len - (start - em->start));
5591 		block_start = em->block_start + (start - em->start);
5592 
5593 		/*
5594 		 * we're not going to log anything, but we do need
5595 		 * to make sure the current transaction stays open
5596 		 * while we look for nocow cross refs
5597 		 */
5598 		trans = btrfs_join_transaction(root);
5599 		if (IS_ERR(trans))
5600 			goto must_cow;
5601 
5602 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5603 			ret = btrfs_add_ordered_extent_dio(inode, start,
5604 					   block_start, len, len, type);
5605 			btrfs_end_transaction(trans, root);
5606 			if (ret) {
5607 				free_extent_map(em);
5608 				return ret;
5609 			}
5610 			goto unlock;
5611 		}
5612 		btrfs_end_transaction(trans, root);
5613 	}
5614 must_cow:
5615 	/*
5616 	 * this will cow the extent, reset the len in case we changed
5617 	 * it above
5618 	 */
5619 	len = bh_result->b_size;
5620 	em = btrfs_new_extent_direct(inode, em, start, len);
5621 	if (IS_ERR(em))
5622 		return PTR_ERR(em);
5623 	len = min(len, em->len - (start - em->start));
5624 unlock:
5625 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5626 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5627 			  0, NULL, GFP_NOFS);
5628 map:
5629 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5630 		inode->i_blkbits;
5631 	bh_result->b_size = len;
5632 	bh_result->b_bdev = em->bdev;
5633 	set_buffer_mapped(bh_result);
5634 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5635 		set_buffer_new(bh_result);
5636 
5637 	free_extent_map(em);
5638 
5639 	return 0;
5640 }
5641 
5642 struct btrfs_dio_private {
5643 	struct inode *inode;
5644 	u64 logical_offset;
5645 	u64 disk_bytenr;
5646 	u64 bytes;
5647 	u32 *csums;
5648 	void *private;
5649 
5650 	/* number of bios pending for this dio */
5651 	atomic_t pending_bios;
5652 
5653 	/* IO errors */
5654 	int errors;
5655 
5656 	struct bio *orig_bio;
5657 };
5658 
5659 static void btrfs_endio_direct_read(struct bio *bio, int err)
5660 {
5661 	struct btrfs_dio_private *dip = bio->bi_private;
5662 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5663 	struct bio_vec *bvec = bio->bi_io_vec;
5664 	struct inode *inode = dip->inode;
5665 	struct btrfs_root *root = BTRFS_I(inode)->root;
5666 	u64 start;
5667 	u32 *private = dip->csums;
5668 
5669 	start = dip->logical_offset;
5670 	do {
5671 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5672 			struct page *page = bvec->bv_page;
5673 			char *kaddr;
5674 			u32 csum = ~(u32)0;
5675 			unsigned long flags;
5676 
5677 			local_irq_save(flags);
5678 			kaddr = kmap_atomic(page, KM_IRQ0);
5679 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5680 					       csum, bvec->bv_len);
5681 			btrfs_csum_final(csum, (char *)&csum);
5682 			kunmap_atomic(kaddr, KM_IRQ0);
5683 			local_irq_restore(flags);
5684 
5685 			flush_dcache_page(bvec->bv_page);
5686 			if (csum != *private) {
5687 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5688 				      " %llu csum %u private %u\n",
5689 				      (unsigned long long)btrfs_ino(inode),
5690 				      (unsigned long long)start,
5691 				      csum, *private);
5692 				err = -EIO;
5693 			}
5694 		}
5695 
5696 		start += bvec->bv_len;
5697 		private++;
5698 		bvec++;
5699 	} while (bvec <= bvec_end);
5700 
5701 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5702 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5703 	bio->bi_private = dip->private;
5704 
5705 	kfree(dip->csums);
5706 	kfree(dip);
5707 
5708 	/* If we had a csum failure make sure to clear the uptodate flag */
5709 	if (err)
5710 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5711 	dio_end_io(bio, err);
5712 }
5713 
5714 static void btrfs_endio_direct_write(struct bio *bio, int err)
5715 {
5716 	struct btrfs_dio_private *dip = bio->bi_private;
5717 	struct inode *inode = dip->inode;
5718 	struct btrfs_root *root = BTRFS_I(inode)->root;
5719 	struct btrfs_trans_handle *trans;
5720 	struct btrfs_ordered_extent *ordered = NULL;
5721 	struct extent_state *cached_state = NULL;
5722 	u64 ordered_offset = dip->logical_offset;
5723 	u64 ordered_bytes = dip->bytes;
5724 	int ret;
5725 
5726 	if (err)
5727 		goto out_done;
5728 again:
5729 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5730 						   &ordered_offset,
5731 						   ordered_bytes);
5732 	if (!ret)
5733 		goto out_test;
5734 
5735 	BUG_ON(!ordered);
5736 
5737 	trans = btrfs_join_transaction(root);
5738 	if (IS_ERR(trans)) {
5739 		err = -ENOMEM;
5740 		goto out;
5741 	}
5742 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5743 
5744 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5745 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5746 		if (!ret)
5747 			ret = btrfs_update_inode(trans, root, inode);
5748 		err = ret;
5749 		goto out;
5750 	}
5751 
5752 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5753 			 ordered->file_offset + ordered->len - 1, 0,
5754 			 &cached_state, GFP_NOFS);
5755 
5756 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5757 		ret = btrfs_mark_extent_written(trans, inode,
5758 						ordered->file_offset,
5759 						ordered->file_offset +
5760 						ordered->len);
5761 		if (ret) {
5762 			err = ret;
5763 			goto out_unlock;
5764 		}
5765 	} else {
5766 		ret = insert_reserved_file_extent(trans, inode,
5767 						  ordered->file_offset,
5768 						  ordered->start,
5769 						  ordered->disk_len,
5770 						  ordered->len,
5771 						  ordered->len,
5772 						  0, 0, 0,
5773 						  BTRFS_FILE_EXTENT_REG);
5774 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5775 				   ordered->file_offset, ordered->len);
5776 		if (ret) {
5777 			err = ret;
5778 			WARN_ON(1);
5779 			goto out_unlock;
5780 		}
5781 	}
5782 
5783 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5784 	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5785 	if (!ret)
5786 		btrfs_update_inode(trans, root, inode);
5787 	ret = 0;
5788 out_unlock:
5789 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5790 			     ordered->file_offset + ordered->len - 1,
5791 			     &cached_state, GFP_NOFS);
5792 out:
5793 	btrfs_delalloc_release_metadata(inode, ordered->len);
5794 	btrfs_end_transaction(trans, root);
5795 	ordered_offset = ordered->file_offset + ordered->len;
5796 	btrfs_put_ordered_extent(ordered);
5797 	btrfs_put_ordered_extent(ordered);
5798 
5799 out_test:
5800 	/*
5801 	 * our bio might span multiple ordered extents.  If we haven't
5802 	 * completed the accounting for the whole dio, go back and try again
5803 	 */
5804 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5805 		ordered_bytes = dip->logical_offset + dip->bytes -
5806 			ordered_offset;
5807 		goto again;
5808 	}
5809 out_done:
5810 	bio->bi_private = dip->private;
5811 
5812 	kfree(dip->csums);
5813 	kfree(dip);
5814 
5815 	/* If we had an error make sure to clear the uptodate flag */
5816 	if (err)
5817 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5818 	dio_end_io(bio, err);
5819 }
5820 
5821 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5822 				    struct bio *bio, int mirror_num,
5823 				    unsigned long bio_flags, u64 offset)
5824 {
5825 	int ret;
5826 	struct btrfs_root *root = BTRFS_I(inode)->root;
5827 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5828 	BUG_ON(ret);
5829 	return 0;
5830 }
5831 
5832 static void btrfs_end_dio_bio(struct bio *bio, int err)
5833 {
5834 	struct btrfs_dio_private *dip = bio->bi_private;
5835 
5836 	if (err) {
5837 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5838 		      "sector %#Lx len %u err no %d\n",
5839 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5840 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5841 		dip->errors = 1;
5842 
5843 		/*
5844 		 * before atomic variable goto zero, we must make sure
5845 		 * dip->errors is perceived to be set.
5846 		 */
5847 		smp_mb__before_atomic_dec();
5848 	}
5849 
5850 	/* if there are more bios still pending for this dio, just exit */
5851 	if (!atomic_dec_and_test(&dip->pending_bios))
5852 		goto out;
5853 
5854 	if (dip->errors)
5855 		bio_io_error(dip->orig_bio);
5856 	else {
5857 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5858 		bio_endio(dip->orig_bio, 0);
5859 	}
5860 out:
5861 	bio_put(bio);
5862 }
5863 
5864 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5865 				       u64 first_sector, gfp_t gfp_flags)
5866 {
5867 	int nr_vecs = bio_get_nr_vecs(bdev);
5868 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5869 }
5870 
5871 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5872 					 int rw, u64 file_offset, int skip_sum,
5873 					 u32 *csums, int async_submit)
5874 {
5875 	int write = rw & REQ_WRITE;
5876 	struct btrfs_root *root = BTRFS_I(inode)->root;
5877 	int ret;
5878 
5879 	bio_get(bio);
5880 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5881 	if (ret)
5882 		goto err;
5883 
5884 	if (skip_sum)
5885 		goto map;
5886 
5887 	if (write && async_submit) {
5888 		ret = btrfs_wq_submit_bio(root->fs_info,
5889 				   inode, rw, bio, 0, 0,
5890 				   file_offset,
5891 				   __btrfs_submit_bio_start_direct_io,
5892 				   __btrfs_submit_bio_done);
5893 		goto err;
5894 	} else if (write) {
5895 		/*
5896 		 * If we aren't doing async submit, calculate the csum of the
5897 		 * bio now.
5898 		 */
5899 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5900 		if (ret)
5901 			goto err;
5902 	} else if (!skip_sum) {
5903 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5904 					  file_offset, csums);
5905 		if (ret)
5906 			goto err;
5907 	}
5908 
5909 map:
5910 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5911 err:
5912 	bio_put(bio);
5913 	return ret;
5914 }
5915 
5916 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5917 				    int skip_sum)
5918 {
5919 	struct inode *inode = dip->inode;
5920 	struct btrfs_root *root = BTRFS_I(inode)->root;
5921 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5922 	struct bio *bio;
5923 	struct bio *orig_bio = dip->orig_bio;
5924 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5925 	u64 start_sector = orig_bio->bi_sector;
5926 	u64 file_offset = dip->logical_offset;
5927 	u64 submit_len = 0;
5928 	u64 map_length;
5929 	int nr_pages = 0;
5930 	u32 *csums = dip->csums;
5931 	int ret = 0;
5932 	int async_submit = 0;
5933 	int write = rw & REQ_WRITE;
5934 
5935 	map_length = orig_bio->bi_size;
5936 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5937 			      &map_length, NULL, 0);
5938 	if (ret) {
5939 		bio_put(orig_bio);
5940 		return -EIO;
5941 	}
5942 
5943 	if (map_length >= orig_bio->bi_size) {
5944 		bio = orig_bio;
5945 		goto submit;
5946 	}
5947 
5948 	async_submit = 1;
5949 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5950 	if (!bio)
5951 		return -ENOMEM;
5952 	bio->bi_private = dip;
5953 	bio->bi_end_io = btrfs_end_dio_bio;
5954 	atomic_inc(&dip->pending_bios);
5955 
5956 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5957 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5958 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5959 				 bvec->bv_offset) < bvec->bv_len)) {
5960 			/*
5961 			 * inc the count before we submit the bio so
5962 			 * we know the end IO handler won't happen before
5963 			 * we inc the count. Otherwise, the dip might get freed
5964 			 * before we're done setting it up
5965 			 */
5966 			atomic_inc(&dip->pending_bios);
5967 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5968 						     file_offset, skip_sum,
5969 						     csums, async_submit);
5970 			if (ret) {
5971 				bio_put(bio);
5972 				atomic_dec(&dip->pending_bios);
5973 				goto out_err;
5974 			}
5975 
5976 			/* Write's use the ordered csums */
5977 			if (!write && !skip_sum)
5978 				csums = csums + nr_pages;
5979 			start_sector += submit_len >> 9;
5980 			file_offset += submit_len;
5981 
5982 			submit_len = 0;
5983 			nr_pages = 0;
5984 
5985 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5986 						  start_sector, GFP_NOFS);
5987 			if (!bio)
5988 				goto out_err;
5989 			bio->bi_private = dip;
5990 			bio->bi_end_io = btrfs_end_dio_bio;
5991 
5992 			map_length = orig_bio->bi_size;
5993 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5994 					      &map_length, NULL, 0);
5995 			if (ret) {
5996 				bio_put(bio);
5997 				goto out_err;
5998 			}
5999 		} else {
6000 			submit_len += bvec->bv_len;
6001 			nr_pages ++;
6002 			bvec++;
6003 		}
6004 	}
6005 
6006 submit:
6007 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6008 				     csums, async_submit);
6009 	if (!ret)
6010 		return 0;
6011 
6012 	bio_put(bio);
6013 out_err:
6014 	dip->errors = 1;
6015 	/*
6016 	 * before atomic variable goto zero, we must
6017 	 * make sure dip->errors is perceived to be set.
6018 	 */
6019 	smp_mb__before_atomic_dec();
6020 	if (atomic_dec_and_test(&dip->pending_bios))
6021 		bio_io_error(dip->orig_bio);
6022 
6023 	/* bio_end_io() will handle error, so we needn't return it */
6024 	return 0;
6025 }
6026 
6027 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6028 				loff_t file_offset)
6029 {
6030 	struct btrfs_root *root = BTRFS_I(inode)->root;
6031 	struct btrfs_dio_private *dip;
6032 	struct bio_vec *bvec = bio->bi_io_vec;
6033 	int skip_sum;
6034 	int write = rw & REQ_WRITE;
6035 	int ret = 0;
6036 
6037 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6038 
6039 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6040 	if (!dip) {
6041 		ret = -ENOMEM;
6042 		goto free_ordered;
6043 	}
6044 	dip->csums = NULL;
6045 
6046 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
6047 	if (!write && !skip_sum) {
6048 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6049 		if (!dip->csums) {
6050 			kfree(dip);
6051 			ret = -ENOMEM;
6052 			goto free_ordered;
6053 		}
6054 	}
6055 
6056 	dip->private = bio->bi_private;
6057 	dip->inode = inode;
6058 	dip->logical_offset = file_offset;
6059 
6060 	dip->bytes = 0;
6061 	do {
6062 		dip->bytes += bvec->bv_len;
6063 		bvec++;
6064 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6065 
6066 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6067 	bio->bi_private = dip;
6068 	dip->errors = 0;
6069 	dip->orig_bio = bio;
6070 	atomic_set(&dip->pending_bios, 0);
6071 
6072 	if (write)
6073 		bio->bi_end_io = btrfs_endio_direct_write;
6074 	else
6075 		bio->bi_end_io = btrfs_endio_direct_read;
6076 
6077 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6078 	if (!ret)
6079 		return;
6080 free_ordered:
6081 	/*
6082 	 * If this is a write, we need to clean up the reserved space and kill
6083 	 * the ordered extent.
6084 	 */
6085 	if (write) {
6086 		struct btrfs_ordered_extent *ordered;
6087 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6088 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6089 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6090 			btrfs_free_reserved_extent(root, ordered->start,
6091 						   ordered->disk_len);
6092 		btrfs_put_ordered_extent(ordered);
6093 		btrfs_put_ordered_extent(ordered);
6094 	}
6095 	bio_endio(bio, ret);
6096 }
6097 
6098 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6099 			const struct iovec *iov, loff_t offset,
6100 			unsigned long nr_segs)
6101 {
6102 	int seg;
6103 	int i;
6104 	size_t size;
6105 	unsigned long addr;
6106 	unsigned blocksize_mask = root->sectorsize - 1;
6107 	ssize_t retval = -EINVAL;
6108 	loff_t end = offset;
6109 
6110 	if (offset & blocksize_mask)
6111 		goto out;
6112 
6113 	/* Check the memory alignment.  Blocks cannot straddle pages */
6114 	for (seg = 0; seg < nr_segs; seg++) {
6115 		addr = (unsigned long)iov[seg].iov_base;
6116 		size = iov[seg].iov_len;
6117 		end += size;
6118 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6119 			goto out;
6120 
6121 		/* If this is a write we don't need to check anymore */
6122 		if (rw & WRITE)
6123 			continue;
6124 
6125 		/*
6126 		 * Check to make sure we don't have duplicate iov_base's in this
6127 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6128 		 * when reading back.
6129 		 */
6130 		for (i = seg + 1; i < nr_segs; i++) {
6131 			if (iov[seg].iov_base == iov[i].iov_base)
6132 				goto out;
6133 		}
6134 	}
6135 	retval = 0;
6136 out:
6137 	return retval;
6138 }
6139 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6140 			const struct iovec *iov, loff_t offset,
6141 			unsigned long nr_segs)
6142 {
6143 	struct file *file = iocb->ki_filp;
6144 	struct inode *inode = file->f_mapping->host;
6145 	struct btrfs_ordered_extent *ordered;
6146 	struct extent_state *cached_state = NULL;
6147 	u64 lockstart, lockend;
6148 	ssize_t ret;
6149 	int writing = rw & WRITE;
6150 	int write_bits = 0;
6151 	size_t count = iov_length(iov, nr_segs);
6152 
6153 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6154 			    offset, nr_segs)) {
6155 		return 0;
6156 	}
6157 
6158 	lockstart = offset;
6159 	lockend = offset + count - 1;
6160 
6161 	if (writing) {
6162 		ret = btrfs_delalloc_reserve_space(inode, count);
6163 		if (ret)
6164 			goto out;
6165 	}
6166 
6167 	while (1) {
6168 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6169 				 0, &cached_state, GFP_NOFS);
6170 		/*
6171 		 * We're concerned with the entire range that we're going to be
6172 		 * doing DIO to, so we need to make sure theres no ordered
6173 		 * extents in this range.
6174 		 */
6175 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6176 						     lockend - lockstart + 1);
6177 		if (!ordered)
6178 			break;
6179 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6180 				     &cached_state, GFP_NOFS);
6181 		btrfs_start_ordered_extent(inode, ordered, 1);
6182 		btrfs_put_ordered_extent(ordered);
6183 		cond_resched();
6184 	}
6185 
6186 	/*
6187 	 * we don't use btrfs_set_extent_delalloc because we don't want
6188 	 * the dirty or uptodate bits
6189 	 */
6190 	if (writing) {
6191 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6192 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6193 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6194 				     GFP_NOFS);
6195 		if (ret) {
6196 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6197 					 lockend, EXTENT_LOCKED | write_bits,
6198 					 1, 0, &cached_state, GFP_NOFS);
6199 			goto out;
6200 		}
6201 	}
6202 
6203 	free_extent_state(cached_state);
6204 	cached_state = NULL;
6205 
6206 	ret = __blockdev_direct_IO(rw, iocb, inode,
6207 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6208 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6209 		   btrfs_submit_direct, 0);
6210 
6211 	if (ret < 0 && ret != -EIOCBQUEUED) {
6212 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6213 			      offset + iov_length(iov, nr_segs) - 1,
6214 			      EXTENT_LOCKED | write_bits, 1, 0,
6215 			      &cached_state, GFP_NOFS);
6216 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6217 		/*
6218 		 * We're falling back to buffered, unlock the section we didn't
6219 		 * do IO on.
6220 		 */
6221 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6222 			      offset + iov_length(iov, nr_segs) - 1,
6223 			      EXTENT_LOCKED | write_bits, 1, 0,
6224 			      &cached_state, GFP_NOFS);
6225 	}
6226 out:
6227 	free_extent_state(cached_state);
6228 	return ret;
6229 }
6230 
6231 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6232 		__u64 start, __u64 len)
6233 {
6234 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6235 }
6236 
6237 int btrfs_readpage(struct file *file, struct page *page)
6238 {
6239 	struct extent_io_tree *tree;
6240 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6241 	return extent_read_full_page(tree, page, btrfs_get_extent);
6242 }
6243 
6244 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6245 {
6246 	struct extent_io_tree *tree;
6247 
6248 
6249 	if (current->flags & PF_MEMALLOC) {
6250 		redirty_page_for_writepage(wbc, page);
6251 		unlock_page(page);
6252 		return 0;
6253 	}
6254 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6255 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6256 }
6257 
6258 int btrfs_writepages(struct address_space *mapping,
6259 		     struct writeback_control *wbc)
6260 {
6261 	struct extent_io_tree *tree;
6262 
6263 	tree = &BTRFS_I(mapping->host)->io_tree;
6264 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6265 }
6266 
6267 static int
6268 btrfs_readpages(struct file *file, struct address_space *mapping,
6269 		struct list_head *pages, unsigned nr_pages)
6270 {
6271 	struct extent_io_tree *tree;
6272 	tree = &BTRFS_I(mapping->host)->io_tree;
6273 	return extent_readpages(tree, mapping, pages, nr_pages,
6274 				btrfs_get_extent);
6275 }
6276 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6277 {
6278 	struct extent_io_tree *tree;
6279 	struct extent_map_tree *map;
6280 	int ret;
6281 
6282 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6283 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6284 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6285 	if (ret == 1) {
6286 		ClearPagePrivate(page);
6287 		set_page_private(page, 0);
6288 		page_cache_release(page);
6289 	}
6290 	return ret;
6291 }
6292 
6293 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6294 {
6295 	if (PageWriteback(page) || PageDirty(page))
6296 		return 0;
6297 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6298 }
6299 
6300 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6301 {
6302 	struct extent_io_tree *tree;
6303 	struct btrfs_ordered_extent *ordered;
6304 	struct extent_state *cached_state = NULL;
6305 	u64 page_start = page_offset(page);
6306 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6307 
6308 
6309 	/*
6310 	 * we have the page locked, so new writeback can't start,
6311 	 * and the dirty bit won't be cleared while we are here.
6312 	 *
6313 	 * Wait for IO on this page so that we can safely clear
6314 	 * the PagePrivate2 bit and do ordered accounting
6315 	 */
6316 	wait_on_page_writeback(page);
6317 
6318 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6319 	if (offset) {
6320 		btrfs_releasepage(page, GFP_NOFS);
6321 		return;
6322 	}
6323 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6324 			 GFP_NOFS);
6325 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6326 					   page_offset(page));
6327 	if (ordered) {
6328 		/*
6329 		 * IO on this page will never be started, so we need
6330 		 * to account for any ordered extents now
6331 		 */
6332 		clear_extent_bit(tree, page_start, page_end,
6333 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6334 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6335 				 &cached_state, GFP_NOFS);
6336 		/*
6337 		 * whoever cleared the private bit is responsible
6338 		 * for the finish_ordered_io
6339 		 */
6340 		if (TestClearPagePrivate2(page)) {
6341 			btrfs_finish_ordered_io(page->mapping->host,
6342 						page_start, page_end);
6343 		}
6344 		btrfs_put_ordered_extent(ordered);
6345 		cached_state = NULL;
6346 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6347 				 GFP_NOFS);
6348 	}
6349 	clear_extent_bit(tree, page_start, page_end,
6350 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6351 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6352 	__btrfs_releasepage(page, GFP_NOFS);
6353 
6354 	ClearPageChecked(page);
6355 	if (PagePrivate(page)) {
6356 		ClearPagePrivate(page);
6357 		set_page_private(page, 0);
6358 		page_cache_release(page);
6359 	}
6360 }
6361 
6362 /*
6363  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6364  * called from a page fault handler when a page is first dirtied. Hence we must
6365  * be careful to check for EOF conditions here. We set the page up correctly
6366  * for a written page which means we get ENOSPC checking when writing into
6367  * holes and correct delalloc and unwritten extent mapping on filesystems that
6368  * support these features.
6369  *
6370  * We are not allowed to take the i_mutex here so we have to play games to
6371  * protect against truncate races as the page could now be beyond EOF.  Because
6372  * vmtruncate() writes the inode size before removing pages, once we have the
6373  * page lock we can determine safely if the page is beyond EOF. If it is not
6374  * beyond EOF, then the page is guaranteed safe against truncation until we
6375  * unlock the page.
6376  */
6377 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6378 {
6379 	struct page *page = vmf->page;
6380 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6381 	struct btrfs_root *root = BTRFS_I(inode)->root;
6382 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6383 	struct btrfs_ordered_extent *ordered;
6384 	struct extent_state *cached_state = NULL;
6385 	char *kaddr;
6386 	unsigned long zero_start;
6387 	loff_t size;
6388 	int ret;
6389 	u64 page_start;
6390 	u64 page_end;
6391 
6392 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6393 	if (ret) {
6394 		if (ret == -ENOMEM)
6395 			ret = VM_FAULT_OOM;
6396 		else /* -ENOSPC, -EIO, etc */
6397 			ret = VM_FAULT_SIGBUS;
6398 		goto out;
6399 	}
6400 
6401 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6402 again:
6403 	lock_page(page);
6404 	size = i_size_read(inode);
6405 	page_start = page_offset(page);
6406 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6407 
6408 	if ((page->mapping != inode->i_mapping) ||
6409 	    (page_start >= size)) {
6410 		/* page got truncated out from underneath us */
6411 		goto out_unlock;
6412 	}
6413 	wait_on_page_writeback(page);
6414 
6415 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6416 			 GFP_NOFS);
6417 	set_page_extent_mapped(page);
6418 
6419 	/*
6420 	 * we can't set the delalloc bits if there are pending ordered
6421 	 * extents.  Drop our locks and wait for them to finish
6422 	 */
6423 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6424 	if (ordered) {
6425 		unlock_extent_cached(io_tree, page_start, page_end,
6426 				     &cached_state, GFP_NOFS);
6427 		unlock_page(page);
6428 		btrfs_start_ordered_extent(inode, ordered, 1);
6429 		btrfs_put_ordered_extent(ordered);
6430 		goto again;
6431 	}
6432 
6433 	/*
6434 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6435 	 * if it was already dirty, so for space accounting reasons we need to
6436 	 * clear any delalloc bits for the range we are fixing to save.  There
6437 	 * is probably a better way to do this, but for now keep consistent with
6438 	 * prepare_pages in the normal write path.
6439 	 */
6440 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6441 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6442 			  0, 0, &cached_state, GFP_NOFS);
6443 
6444 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6445 					&cached_state);
6446 	if (ret) {
6447 		unlock_extent_cached(io_tree, page_start, page_end,
6448 				     &cached_state, GFP_NOFS);
6449 		ret = VM_FAULT_SIGBUS;
6450 		goto out_unlock;
6451 	}
6452 	ret = 0;
6453 
6454 	/* page is wholly or partially inside EOF */
6455 	if (page_start + PAGE_CACHE_SIZE > size)
6456 		zero_start = size & ~PAGE_CACHE_MASK;
6457 	else
6458 		zero_start = PAGE_CACHE_SIZE;
6459 
6460 	if (zero_start != PAGE_CACHE_SIZE) {
6461 		kaddr = kmap(page);
6462 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6463 		flush_dcache_page(page);
6464 		kunmap(page);
6465 	}
6466 	ClearPageChecked(page);
6467 	set_page_dirty(page);
6468 	SetPageUptodate(page);
6469 
6470 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6471 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6472 
6473 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6474 
6475 out_unlock:
6476 	if (!ret)
6477 		return VM_FAULT_LOCKED;
6478 	unlock_page(page);
6479 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6480 out:
6481 	return ret;
6482 }
6483 
6484 static int btrfs_truncate(struct inode *inode)
6485 {
6486 	struct btrfs_root *root = BTRFS_I(inode)->root;
6487 	struct btrfs_block_rsv *rsv;
6488 	int ret;
6489 	int err = 0;
6490 	struct btrfs_trans_handle *trans;
6491 	unsigned long nr;
6492 	u64 mask = root->sectorsize - 1;
6493 
6494 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6495 	if (ret)
6496 		return ret;
6497 
6498 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6499 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6500 
6501 	/*
6502 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6503 	 * 3 things going on here
6504 	 *
6505 	 * 1) We need to reserve space for our orphan item and the space to
6506 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6507 	 * orphan item because we didn't reserve space to remove it.
6508 	 *
6509 	 * 2) We need to reserve space to update our inode.
6510 	 *
6511 	 * 3) We need to have something to cache all the space that is going to
6512 	 * be free'd up by the truncate operation, but also have some slack
6513 	 * space reserved in case it uses space during the truncate (thank you
6514 	 * very much snapshotting).
6515 	 *
6516 	 * And we need these to all be seperate.  The fact is we can use alot of
6517 	 * space doing the truncate, and we have no earthly idea how much space
6518 	 * we will use, so we need the truncate reservation to be seperate so it
6519 	 * doesn't end up using space reserved for updating the inode or
6520 	 * removing the orphan item.  We also need to be able to stop the
6521 	 * transaction and start a new one, which means we need to be able to
6522 	 * update the inode several times, and we have no idea of knowing how
6523 	 * many times that will be, so we can't just reserve 1 item for the
6524 	 * entirety of the opration, so that has to be done seperately as well.
6525 	 * Then there is the orphan item, which does indeed need to be held on
6526 	 * to for the whole operation, and we need nobody to touch this reserved
6527 	 * space except the orphan code.
6528 	 *
6529 	 * So that leaves us with
6530 	 *
6531 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6532 	 * 2) rsv - for the truncate reservation, which we will steal from the
6533 	 * transaction reservation.
6534 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6535 	 * updating the inode.
6536 	 */
6537 	rsv = btrfs_alloc_block_rsv(root);
6538 	if (!rsv)
6539 		return -ENOMEM;
6540 	btrfs_add_durable_block_rsv(root->fs_info, rsv);
6541 
6542 	trans = btrfs_start_transaction(root, 4);
6543 	if (IS_ERR(trans)) {
6544 		err = PTR_ERR(trans);
6545 		goto out;
6546 	}
6547 
6548 	/*
6549 	 * Reserve space for the truncate process.  Truncate should be adding
6550 	 * space, but if there are snapshots it may end up using space.
6551 	 */
6552 	ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6553 	BUG_ON(ret);
6554 
6555 	ret = btrfs_orphan_add(trans, inode);
6556 	if (ret) {
6557 		btrfs_end_transaction(trans, root);
6558 		goto out;
6559 	}
6560 
6561 	nr = trans->blocks_used;
6562 	btrfs_end_transaction(trans, root);
6563 	btrfs_btree_balance_dirty(root, nr);
6564 
6565 	/*
6566 	 * Ok so we've already migrated our bytes over for the truncate, so here
6567 	 * just reserve the one slot we need for updating the inode.
6568 	 */
6569 	trans = btrfs_start_transaction(root, 1);
6570 	if (IS_ERR(trans)) {
6571 		err = PTR_ERR(trans);
6572 		goto out;
6573 	}
6574 	trans->block_rsv = rsv;
6575 
6576 	/*
6577 	 * setattr is responsible for setting the ordered_data_close flag,
6578 	 * but that is only tested during the last file release.  That
6579 	 * could happen well after the next commit, leaving a great big
6580 	 * window where new writes may get lost if someone chooses to write
6581 	 * to this file after truncating to zero
6582 	 *
6583 	 * The inode doesn't have any dirty data here, and so if we commit
6584 	 * this is a noop.  If someone immediately starts writing to the inode
6585 	 * it is very likely we'll catch some of their writes in this
6586 	 * transaction, and the commit will find this file on the ordered
6587 	 * data list with good things to send down.
6588 	 *
6589 	 * This is a best effort solution, there is still a window where
6590 	 * using truncate to replace the contents of the file will
6591 	 * end up with a zero length file after a crash.
6592 	 */
6593 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6594 		btrfs_add_ordered_operation(trans, root, inode);
6595 
6596 	while (1) {
6597 		if (!trans) {
6598 			trans = btrfs_start_transaction(root, 3);
6599 			if (IS_ERR(trans)) {
6600 				err = PTR_ERR(trans);
6601 				goto out;
6602 			}
6603 
6604 			ret = btrfs_truncate_reserve_metadata(trans, root,
6605 							      rsv);
6606 			BUG_ON(ret);
6607 
6608 			trans->block_rsv = rsv;
6609 		}
6610 
6611 		ret = btrfs_truncate_inode_items(trans, root, inode,
6612 						 inode->i_size,
6613 						 BTRFS_EXTENT_DATA_KEY);
6614 		if (ret != -EAGAIN) {
6615 			err = ret;
6616 			break;
6617 		}
6618 
6619 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6620 		ret = btrfs_update_inode(trans, root, inode);
6621 		if (ret) {
6622 			err = ret;
6623 			break;
6624 		}
6625 
6626 		nr = trans->blocks_used;
6627 		btrfs_end_transaction(trans, root);
6628 		trans = NULL;
6629 		btrfs_btree_balance_dirty(root, nr);
6630 	}
6631 
6632 	if (ret == 0 && inode->i_nlink > 0) {
6633 		trans->block_rsv = root->orphan_block_rsv;
6634 		ret = btrfs_orphan_del(trans, inode);
6635 		if (ret)
6636 			err = ret;
6637 	} else if (ret && inode->i_nlink > 0) {
6638 		/*
6639 		 * Failed to do the truncate, remove us from the in memory
6640 		 * orphan list.
6641 		 */
6642 		ret = btrfs_orphan_del(NULL, inode);
6643 	}
6644 
6645 	trans->block_rsv = &root->fs_info->trans_block_rsv;
6646 	ret = btrfs_update_inode(trans, root, inode);
6647 	if (ret && !err)
6648 		err = ret;
6649 
6650 	nr = trans->blocks_used;
6651 	ret = btrfs_end_transaction_throttle(trans, root);
6652 	btrfs_btree_balance_dirty(root, nr);
6653 
6654 out:
6655 	btrfs_free_block_rsv(root, rsv);
6656 
6657 	if (ret && !err)
6658 		err = ret;
6659 
6660 	return err;
6661 }
6662 
6663 /*
6664  * create a new subvolume directory/inode (helper for the ioctl).
6665  */
6666 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6667 			     struct btrfs_root *new_root, u64 new_dirid)
6668 {
6669 	struct inode *inode;
6670 	int err;
6671 	u64 index = 0;
6672 
6673 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6674 				new_dirid, S_IFDIR | 0700, &index);
6675 	if (IS_ERR(inode))
6676 		return PTR_ERR(inode);
6677 	inode->i_op = &btrfs_dir_inode_operations;
6678 	inode->i_fop = &btrfs_dir_file_operations;
6679 
6680 	inode->i_nlink = 1;
6681 	btrfs_i_size_write(inode, 0);
6682 
6683 	err = btrfs_update_inode(trans, new_root, inode);
6684 	BUG_ON(err);
6685 
6686 	iput(inode);
6687 	return 0;
6688 }
6689 
6690 /* helper function for file defrag and space balancing.  This
6691  * forces readahead on a given range of bytes in an inode
6692  */
6693 unsigned long btrfs_force_ra(struct address_space *mapping,
6694 			      struct file_ra_state *ra, struct file *file,
6695 			      pgoff_t offset, pgoff_t last_index)
6696 {
6697 	pgoff_t req_size = last_index - offset + 1;
6698 
6699 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6700 	return offset + req_size;
6701 }
6702 
6703 struct inode *btrfs_alloc_inode(struct super_block *sb)
6704 {
6705 	struct btrfs_inode *ei;
6706 	struct inode *inode;
6707 
6708 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6709 	if (!ei)
6710 		return NULL;
6711 
6712 	ei->root = NULL;
6713 	ei->space_info = NULL;
6714 	ei->generation = 0;
6715 	ei->sequence = 0;
6716 	ei->last_trans = 0;
6717 	ei->last_sub_trans = 0;
6718 	ei->logged_trans = 0;
6719 	ei->delalloc_bytes = 0;
6720 	ei->reserved_bytes = 0;
6721 	ei->disk_i_size = 0;
6722 	ei->flags = 0;
6723 	ei->index_cnt = (u64)-1;
6724 	ei->last_unlink_trans = 0;
6725 
6726 	atomic_set(&ei->outstanding_extents, 0);
6727 	atomic_set(&ei->reserved_extents, 0);
6728 
6729 	ei->ordered_data_close = 0;
6730 	ei->orphan_meta_reserved = 0;
6731 	ei->dummy_inode = 0;
6732 	ei->in_defrag = 0;
6733 	ei->force_compress = BTRFS_COMPRESS_NONE;
6734 
6735 	ei->delayed_node = NULL;
6736 
6737 	inode = &ei->vfs_inode;
6738 	extent_map_tree_init(&ei->extent_tree);
6739 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6740 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6741 	mutex_init(&ei->log_mutex);
6742 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6743 	INIT_LIST_HEAD(&ei->i_orphan);
6744 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6745 	INIT_LIST_HEAD(&ei->ordered_operations);
6746 	RB_CLEAR_NODE(&ei->rb_node);
6747 
6748 	return inode;
6749 }
6750 
6751 static void btrfs_i_callback(struct rcu_head *head)
6752 {
6753 	struct inode *inode = container_of(head, struct inode, i_rcu);
6754 	INIT_LIST_HEAD(&inode->i_dentry);
6755 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6756 }
6757 
6758 void btrfs_destroy_inode(struct inode *inode)
6759 {
6760 	struct btrfs_ordered_extent *ordered;
6761 	struct btrfs_root *root = BTRFS_I(inode)->root;
6762 
6763 	WARN_ON(!list_empty(&inode->i_dentry));
6764 	WARN_ON(inode->i_data.nrpages);
6765 	WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6766 	WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6767 
6768 	/*
6769 	 * This can happen where we create an inode, but somebody else also
6770 	 * created the same inode and we need to destroy the one we already
6771 	 * created.
6772 	 */
6773 	if (!root)
6774 		goto free;
6775 
6776 	/*
6777 	 * Make sure we're properly removed from the ordered operation
6778 	 * lists.
6779 	 */
6780 	smp_mb();
6781 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6782 		spin_lock(&root->fs_info->ordered_extent_lock);
6783 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6784 		spin_unlock(&root->fs_info->ordered_extent_lock);
6785 	}
6786 
6787 	spin_lock(&root->orphan_lock);
6788 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6789 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6790 		       (unsigned long long)btrfs_ino(inode));
6791 		list_del_init(&BTRFS_I(inode)->i_orphan);
6792 	}
6793 	spin_unlock(&root->orphan_lock);
6794 
6795 	while (1) {
6796 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6797 		if (!ordered)
6798 			break;
6799 		else {
6800 			printk(KERN_ERR "btrfs found ordered "
6801 			       "extent %llu %llu on inode cleanup\n",
6802 			       (unsigned long long)ordered->file_offset,
6803 			       (unsigned long long)ordered->len);
6804 			btrfs_remove_ordered_extent(inode, ordered);
6805 			btrfs_put_ordered_extent(ordered);
6806 			btrfs_put_ordered_extent(ordered);
6807 		}
6808 	}
6809 	inode_tree_del(inode);
6810 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6811 free:
6812 	btrfs_remove_delayed_node(inode);
6813 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6814 }
6815 
6816 int btrfs_drop_inode(struct inode *inode)
6817 {
6818 	struct btrfs_root *root = BTRFS_I(inode)->root;
6819 
6820 	if (btrfs_root_refs(&root->root_item) == 0 &&
6821 	    !is_free_space_inode(root, inode))
6822 		return 1;
6823 	else
6824 		return generic_drop_inode(inode);
6825 }
6826 
6827 static void init_once(void *foo)
6828 {
6829 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6830 
6831 	inode_init_once(&ei->vfs_inode);
6832 }
6833 
6834 void btrfs_destroy_cachep(void)
6835 {
6836 	if (btrfs_inode_cachep)
6837 		kmem_cache_destroy(btrfs_inode_cachep);
6838 	if (btrfs_trans_handle_cachep)
6839 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6840 	if (btrfs_transaction_cachep)
6841 		kmem_cache_destroy(btrfs_transaction_cachep);
6842 	if (btrfs_path_cachep)
6843 		kmem_cache_destroy(btrfs_path_cachep);
6844 	if (btrfs_free_space_cachep)
6845 		kmem_cache_destroy(btrfs_free_space_cachep);
6846 }
6847 
6848 int btrfs_init_cachep(void)
6849 {
6850 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6851 			sizeof(struct btrfs_inode), 0,
6852 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6853 	if (!btrfs_inode_cachep)
6854 		goto fail;
6855 
6856 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6857 			sizeof(struct btrfs_trans_handle), 0,
6858 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6859 	if (!btrfs_trans_handle_cachep)
6860 		goto fail;
6861 
6862 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6863 			sizeof(struct btrfs_transaction), 0,
6864 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6865 	if (!btrfs_transaction_cachep)
6866 		goto fail;
6867 
6868 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6869 			sizeof(struct btrfs_path), 0,
6870 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6871 	if (!btrfs_path_cachep)
6872 		goto fail;
6873 
6874 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6875 			sizeof(struct btrfs_free_space), 0,
6876 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6877 	if (!btrfs_free_space_cachep)
6878 		goto fail;
6879 
6880 	return 0;
6881 fail:
6882 	btrfs_destroy_cachep();
6883 	return -ENOMEM;
6884 }
6885 
6886 static int btrfs_getattr(struct vfsmount *mnt,
6887 			 struct dentry *dentry, struct kstat *stat)
6888 {
6889 	struct inode *inode = dentry->d_inode;
6890 	generic_fillattr(inode, stat);
6891 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6892 	stat->blksize = PAGE_CACHE_SIZE;
6893 	stat->blocks = (inode_get_bytes(inode) +
6894 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6895 	return 0;
6896 }
6897 
6898 /*
6899  * If a file is moved, it will inherit the cow and compression flags of the new
6900  * directory.
6901  */
6902 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6903 {
6904 	struct btrfs_inode *b_dir = BTRFS_I(dir);
6905 	struct btrfs_inode *b_inode = BTRFS_I(inode);
6906 
6907 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
6908 		b_inode->flags |= BTRFS_INODE_NODATACOW;
6909 	else
6910 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6911 
6912 	if (b_dir->flags & BTRFS_INODE_COMPRESS)
6913 		b_inode->flags |= BTRFS_INODE_COMPRESS;
6914 	else
6915 		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6916 }
6917 
6918 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6919 			   struct inode *new_dir, struct dentry *new_dentry)
6920 {
6921 	struct btrfs_trans_handle *trans;
6922 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6923 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6924 	struct inode *new_inode = new_dentry->d_inode;
6925 	struct inode *old_inode = old_dentry->d_inode;
6926 	struct timespec ctime = CURRENT_TIME;
6927 	u64 index = 0;
6928 	u64 root_objectid;
6929 	int ret;
6930 	u64 old_ino = btrfs_ino(old_inode);
6931 
6932 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6933 		return -EPERM;
6934 
6935 	/* we only allow rename subvolume link between subvolumes */
6936 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6937 		return -EXDEV;
6938 
6939 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6940 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6941 		return -ENOTEMPTY;
6942 
6943 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6944 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6945 		return -ENOTEMPTY;
6946 	/*
6947 	 * we're using rename to replace one file with another.
6948 	 * and the replacement file is large.  Start IO on it now so
6949 	 * we don't add too much work to the end of the transaction
6950 	 */
6951 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6952 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6953 		filemap_flush(old_inode->i_mapping);
6954 
6955 	/* close the racy window with snapshot create/destroy ioctl */
6956 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6957 		down_read(&root->fs_info->subvol_sem);
6958 	/*
6959 	 * We want to reserve the absolute worst case amount of items.  So if
6960 	 * both inodes are subvols and we need to unlink them then that would
6961 	 * require 4 item modifications, but if they are both normal inodes it
6962 	 * would require 5 item modifications, so we'll assume their normal
6963 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6964 	 * should cover the worst case number of items we'll modify.
6965 	 */
6966 	trans = btrfs_start_transaction(root, 20);
6967 	if (IS_ERR(trans)) {
6968                 ret = PTR_ERR(trans);
6969                 goto out_notrans;
6970         }
6971 
6972 	if (dest != root)
6973 		btrfs_record_root_in_trans(trans, dest);
6974 
6975 	ret = btrfs_set_inode_index(new_dir, &index);
6976 	if (ret)
6977 		goto out_fail;
6978 
6979 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6980 		/* force full log commit if subvolume involved. */
6981 		root->fs_info->last_trans_log_full_commit = trans->transid;
6982 	} else {
6983 		ret = btrfs_insert_inode_ref(trans, dest,
6984 					     new_dentry->d_name.name,
6985 					     new_dentry->d_name.len,
6986 					     old_ino,
6987 					     btrfs_ino(new_dir), index);
6988 		if (ret)
6989 			goto out_fail;
6990 		/*
6991 		 * this is an ugly little race, but the rename is required
6992 		 * to make sure that if we crash, the inode is either at the
6993 		 * old name or the new one.  pinning the log transaction lets
6994 		 * us make sure we don't allow a log commit to come in after
6995 		 * we unlink the name but before we add the new name back in.
6996 		 */
6997 		btrfs_pin_log_trans(root);
6998 	}
6999 	/*
7000 	 * make sure the inode gets flushed if it is replacing
7001 	 * something.
7002 	 */
7003 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7004 		btrfs_add_ordered_operation(trans, root, old_inode);
7005 
7006 	old_dir->i_ctime = old_dir->i_mtime = ctime;
7007 	new_dir->i_ctime = new_dir->i_mtime = ctime;
7008 	old_inode->i_ctime = ctime;
7009 
7010 	if (old_dentry->d_parent != new_dentry->d_parent)
7011 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7012 
7013 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7014 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7015 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7016 					old_dentry->d_name.name,
7017 					old_dentry->d_name.len);
7018 	} else {
7019 		ret = __btrfs_unlink_inode(trans, root, old_dir,
7020 					old_dentry->d_inode,
7021 					old_dentry->d_name.name,
7022 					old_dentry->d_name.len);
7023 		if (!ret)
7024 			ret = btrfs_update_inode(trans, root, old_inode);
7025 	}
7026 	BUG_ON(ret);
7027 
7028 	if (new_inode) {
7029 		new_inode->i_ctime = CURRENT_TIME;
7030 		if (unlikely(btrfs_ino(new_inode) ==
7031 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7032 			root_objectid = BTRFS_I(new_inode)->location.objectid;
7033 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
7034 						root_objectid,
7035 						new_dentry->d_name.name,
7036 						new_dentry->d_name.len);
7037 			BUG_ON(new_inode->i_nlink == 0);
7038 		} else {
7039 			ret = btrfs_unlink_inode(trans, dest, new_dir,
7040 						 new_dentry->d_inode,
7041 						 new_dentry->d_name.name,
7042 						 new_dentry->d_name.len);
7043 		}
7044 		BUG_ON(ret);
7045 		if (new_inode->i_nlink == 0) {
7046 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7047 			BUG_ON(ret);
7048 		}
7049 	}
7050 
7051 	fixup_inode_flags(new_dir, old_inode);
7052 
7053 	ret = btrfs_add_link(trans, new_dir, old_inode,
7054 			     new_dentry->d_name.name,
7055 			     new_dentry->d_name.len, 0, index);
7056 	BUG_ON(ret);
7057 
7058 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7059 		struct dentry *parent = dget_parent(new_dentry);
7060 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
7061 		dput(parent);
7062 		btrfs_end_log_trans(root);
7063 	}
7064 out_fail:
7065 	btrfs_end_transaction_throttle(trans, root);
7066 out_notrans:
7067 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7068 		up_read(&root->fs_info->subvol_sem);
7069 
7070 	return ret;
7071 }
7072 
7073 /*
7074  * some fairly slow code that needs optimization. This walks the list
7075  * of all the inodes with pending delalloc and forces them to disk.
7076  */
7077 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7078 {
7079 	struct list_head *head = &root->fs_info->delalloc_inodes;
7080 	struct btrfs_inode *binode;
7081 	struct inode *inode;
7082 
7083 	if (root->fs_info->sb->s_flags & MS_RDONLY)
7084 		return -EROFS;
7085 
7086 	spin_lock(&root->fs_info->delalloc_lock);
7087 	while (!list_empty(head)) {
7088 		binode = list_entry(head->next, struct btrfs_inode,
7089 				    delalloc_inodes);
7090 		inode = igrab(&binode->vfs_inode);
7091 		if (!inode)
7092 			list_del_init(&binode->delalloc_inodes);
7093 		spin_unlock(&root->fs_info->delalloc_lock);
7094 		if (inode) {
7095 			filemap_flush(inode->i_mapping);
7096 			if (delay_iput)
7097 				btrfs_add_delayed_iput(inode);
7098 			else
7099 				iput(inode);
7100 		}
7101 		cond_resched();
7102 		spin_lock(&root->fs_info->delalloc_lock);
7103 	}
7104 	spin_unlock(&root->fs_info->delalloc_lock);
7105 
7106 	/* the filemap_flush will queue IO into the worker threads, but
7107 	 * we have to make sure the IO is actually started and that
7108 	 * ordered extents get created before we return
7109 	 */
7110 	atomic_inc(&root->fs_info->async_submit_draining);
7111 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7112 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7113 		wait_event(root->fs_info->async_submit_wait,
7114 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7115 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7116 	}
7117 	atomic_dec(&root->fs_info->async_submit_draining);
7118 	return 0;
7119 }
7120 
7121 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7122 			 const char *symname)
7123 {
7124 	struct btrfs_trans_handle *trans;
7125 	struct btrfs_root *root = BTRFS_I(dir)->root;
7126 	struct btrfs_path *path;
7127 	struct btrfs_key key;
7128 	struct inode *inode = NULL;
7129 	int err;
7130 	int drop_inode = 0;
7131 	u64 objectid;
7132 	u64 index = 0 ;
7133 	int name_len;
7134 	int datasize;
7135 	unsigned long ptr;
7136 	struct btrfs_file_extent_item *ei;
7137 	struct extent_buffer *leaf;
7138 	unsigned long nr = 0;
7139 
7140 	name_len = strlen(symname) + 1;
7141 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7142 		return -ENAMETOOLONG;
7143 
7144 	/*
7145 	 * 2 items for inode item and ref
7146 	 * 2 items for dir items
7147 	 * 1 item for xattr if selinux is on
7148 	 */
7149 	trans = btrfs_start_transaction(root, 5);
7150 	if (IS_ERR(trans))
7151 		return PTR_ERR(trans);
7152 
7153 	err = btrfs_find_free_ino(root, &objectid);
7154 	if (err)
7155 		goto out_unlock;
7156 
7157 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7158 				dentry->d_name.len, btrfs_ino(dir), objectid,
7159 				S_IFLNK|S_IRWXUGO, &index);
7160 	if (IS_ERR(inode)) {
7161 		err = PTR_ERR(inode);
7162 		goto out_unlock;
7163 	}
7164 
7165 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7166 	if (err) {
7167 		drop_inode = 1;
7168 		goto out_unlock;
7169 	}
7170 
7171 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7172 	if (err)
7173 		drop_inode = 1;
7174 	else {
7175 		inode->i_mapping->a_ops = &btrfs_aops;
7176 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7177 		inode->i_fop = &btrfs_file_operations;
7178 		inode->i_op = &btrfs_file_inode_operations;
7179 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7180 	}
7181 	if (drop_inode)
7182 		goto out_unlock;
7183 
7184 	path = btrfs_alloc_path();
7185 	BUG_ON(!path);
7186 	key.objectid = btrfs_ino(inode);
7187 	key.offset = 0;
7188 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7189 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7190 	err = btrfs_insert_empty_item(trans, root, path, &key,
7191 				      datasize);
7192 	if (err) {
7193 		drop_inode = 1;
7194 		btrfs_free_path(path);
7195 		goto out_unlock;
7196 	}
7197 	leaf = path->nodes[0];
7198 	ei = btrfs_item_ptr(leaf, path->slots[0],
7199 			    struct btrfs_file_extent_item);
7200 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7201 	btrfs_set_file_extent_type(leaf, ei,
7202 				   BTRFS_FILE_EXTENT_INLINE);
7203 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7204 	btrfs_set_file_extent_compression(leaf, ei, 0);
7205 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7206 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7207 
7208 	ptr = btrfs_file_extent_inline_start(ei);
7209 	write_extent_buffer(leaf, symname, ptr, name_len);
7210 	btrfs_mark_buffer_dirty(leaf);
7211 	btrfs_free_path(path);
7212 
7213 	inode->i_op = &btrfs_symlink_inode_operations;
7214 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7215 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7216 	inode_set_bytes(inode, name_len);
7217 	btrfs_i_size_write(inode, name_len - 1);
7218 	err = btrfs_update_inode(trans, root, inode);
7219 	if (err)
7220 		drop_inode = 1;
7221 
7222 out_unlock:
7223 	nr = trans->blocks_used;
7224 	btrfs_end_transaction_throttle(trans, root);
7225 	if (drop_inode) {
7226 		inode_dec_link_count(inode);
7227 		iput(inode);
7228 	}
7229 	btrfs_btree_balance_dirty(root, nr);
7230 	return err;
7231 }
7232 
7233 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7234 				       u64 start, u64 num_bytes, u64 min_size,
7235 				       loff_t actual_len, u64 *alloc_hint,
7236 				       struct btrfs_trans_handle *trans)
7237 {
7238 	struct btrfs_root *root = BTRFS_I(inode)->root;
7239 	struct btrfs_key ins;
7240 	u64 cur_offset = start;
7241 	u64 i_size;
7242 	int ret = 0;
7243 	bool own_trans = true;
7244 
7245 	if (trans)
7246 		own_trans = false;
7247 	while (num_bytes > 0) {
7248 		if (own_trans) {
7249 			trans = btrfs_start_transaction(root, 3);
7250 			if (IS_ERR(trans)) {
7251 				ret = PTR_ERR(trans);
7252 				break;
7253 			}
7254 		}
7255 
7256 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7257 					   0, *alloc_hint, (u64)-1, &ins, 1);
7258 		if (ret) {
7259 			if (own_trans)
7260 				btrfs_end_transaction(trans, root);
7261 			break;
7262 		}
7263 
7264 		ret = insert_reserved_file_extent(trans, inode,
7265 						  cur_offset, ins.objectid,
7266 						  ins.offset, ins.offset,
7267 						  ins.offset, 0, 0, 0,
7268 						  BTRFS_FILE_EXTENT_PREALLOC);
7269 		BUG_ON(ret);
7270 		btrfs_drop_extent_cache(inode, cur_offset,
7271 					cur_offset + ins.offset -1, 0);
7272 
7273 		num_bytes -= ins.offset;
7274 		cur_offset += ins.offset;
7275 		*alloc_hint = ins.objectid + ins.offset;
7276 
7277 		inode->i_ctime = CURRENT_TIME;
7278 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7279 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7280 		    (actual_len > inode->i_size) &&
7281 		    (cur_offset > inode->i_size)) {
7282 			if (cur_offset > actual_len)
7283 				i_size = actual_len;
7284 			else
7285 				i_size = cur_offset;
7286 			i_size_write(inode, i_size);
7287 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7288 		}
7289 
7290 		ret = btrfs_update_inode(trans, root, inode);
7291 		BUG_ON(ret);
7292 
7293 		if (own_trans)
7294 			btrfs_end_transaction(trans, root);
7295 	}
7296 	return ret;
7297 }
7298 
7299 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7300 			      u64 start, u64 num_bytes, u64 min_size,
7301 			      loff_t actual_len, u64 *alloc_hint)
7302 {
7303 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7304 					   min_size, actual_len, alloc_hint,
7305 					   NULL);
7306 }
7307 
7308 int btrfs_prealloc_file_range_trans(struct inode *inode,
7309 				    struct btrfs_trans_handle *trans, int mode,
7310 				    u64 start, u64 num_bytes, u64 min_size,
7311 				    loff_t actual_len, u64 *alloc_hint)
7312 {
7313 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7314 					   min_size, actual_len, alloc_hint, trans);
7315 }
7316 
7317 static int btrfs_set_page_dirty(struct page *page)
7318 {
7319 	return __set_page_dirty_nobuffers(page);
7320 }
7321 
7322 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7323 {
7324 	struct btrfs_root *root = BTRFS_I(inode)->root;
7325 
7326 	if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7327 		return -EROFS;
7328 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7329 		return -EACCES;
7330 	return generic_permission(inode, mask, flags, btrfs_check_acl);
7331 }
7332 
7333 static const struct inode_operations btrfs_dir_inode_operations = {
7334 	.getattr	= btrfs_getattr,
7335 	.lookup		= btrfs_lookup,
7336 	.create		= btrfs_create,
7337 	.unlink		= btrfs_unlink,
7338 	.link		= btrfs_link,
7339 	.mkdir		= btrfs_mkdir,
7340 	.rmdir		= btrfs_rmdir,
7341 	.rename		= btrfs_rename,
7342 	.symlink	= btrfs_symlink,
7343 	.setattr	= btrfs_setattr,
7344 	.mknod		= btrfs_mknod,
7345 	.setxattr	= btrfs_setxattr,
7346 	.getxattr	= btrfs_getxattr,
7347 	.listxattr	= btrfs_listxattr,
7348 	.removexattr	= btrfs_removexattr,
7349 	.permission	= btrfs_permission,
7350 };
7351 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7352 	.lookup		= btrfs_lookup,
7353 	.permission	= btrfs_permission,
7354 };
7355 
7356 static const struct file_operations btrfs_dir_file_operations = {
7357 	.llseek		= generic_file_llseek,
7358 	.read		= generic_read_dir,
7359 	.readdir	= btrfs_real_readdir,
7360 	.unlocked_ioctl	= btrfs_ioctl,
7361 #ifdef CONFIG_COMPAT
7362 	.compat_ioctl	= btrfs_ioctl,
7363 #endif
7364 	.release        = btrfs_release_file,
7365 	.fsync		= btrfs_sync_file,
7366 };
7367 
7368 static struct extent_io_ops btrfs_extent_io_ops = {
7369 	.fill_delalloc = run_delalloc_range,
7370 	.submit_bio_hook = btrfs_submit_bio_hook,
7371 	.merge_bio_hook = btrfs_merge_bio_hook,
7372 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7373 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7374 	.writepage_start_hook = btrfs_writepage_start_hook,
7375 	.readpage_io_failed_hook = btrfs_io_failed_hook,
7376 	.set_bit_hook = btrfs_set_bit_hook,
7377 	.clear_bit_hook = btrfs_clear_bit_hook,
7378 	.merge_extent_hook = btrfs_merge_extent_hook,
7379 	.split_extent_hook = btrfs_split_extent_hook,
7380 };
7381 
7382 /*
7383  * btrfs doesn't support the bmap operation because swapfiles
7384  * use bmap to make a mapping of extents in the file.  They assume
7385  * these extents won't change over the life of the file and they
7386  * use the bmap result to do IO directly to the drive.
7387  *
7388  * the btrfs bmap call would return logical addresses that aren't
7389  * suitable for IO and they also will change frequently as COW
7390  * operations happen.  So, swapfile + btrfs == corruption.
7391  *
7392  * For now we're avoiding this by dropping bmap.
7393  */
7394 static const struct address_space_operations btrfs_aops = {
7395 	.readpage	= btrfs_readpage,
7396 	.writepage	= btrfs_writepage,
7397 	.writepages	= btrfs_writepages,
7398 	.readpages	= btrfs_readpages,
7399 	.direct_IO	= btrfs_direct_IO,
7400 	.invalidatepage = btrfs_invalidatepage,
7401 	.releasepage	= btrfs_releasepage,
7402 	.set_page_dirty	= btrfs_set_page_dirty,
7403 	.error_remove_page = generic_error_remove_page,
7404 };
7405 
7406 static const struct address_space_operations btrfs_symlink_aops = {
7407 	.readpage	= btrfs_readpage,
7408 	.writepage	= btrfs_writepage,
7409 	.invalidatepage = btrfs_invalidatepage,
7410 	.releasepage	= btrfs_releasepage,
7411 };
7412 
7413 static const struct inode_operations btrfs_file_inode_operations = {
7414 	.getattr	= btrfs_getattr,
7415 	.setattr	= btrfs_setattr,
7416 	.setxattr	= btrfs_setxattr,
7417 	.getxattr	= btrfs_getxattr,
7418 	.listxattr      = btrfs_listxattr,
7419 	.removexattr	= btrfs_removexattr,
7420 	.permission	= btrfs_permission,
7421 	.fiemap		= btrfs_fiemap,
7422 };
7423 static const struct inode_operations btrfs_special_inode_operations = {
7424 	.getattr	= btrfs_getattr,
7425 	.setattr	= btrfs_setattr,
7426 	.permission	= btrfs_permission,
7427 	.setxattr	= btrfs_setxattr,
7428 	.getxattr	= btrfs_getxattr,
7429 	.listxattr	= btrfs_listxattr,
7430 	.removexattr	= btrfs_removexattr,
7431 };
7432 static const struct inode_operations btrfs_symlink_inode_operations = {
7433 	.readlink	= generic_readlink,
7434 	.follow_link	= page_follow_link_light,
7435 	.put_link	= page_put_link,
7436 	.getattr	= btrfs_getattr,
7437 	.permission	= btrfs_permission,
7438 	.setxattr	= btrfs_setxattr,
7439 	.getxattr	= btrfs_getxattr,
7440 	.listxattr	= btrfs_listxattr,
7441 	.removexattr	= btrfs_removexattr,
7442 };
7443 
7444 const struct dentry_operations btrfs_dentry_operations = {
7445 	.d_delete	= btrfs_dentry_delete,
7446 };
7447