xref: /openbmc/linux/fs/btrfs/inode.c (revision 276e552e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <linux/iomap.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 struct btrfs_dio_data {
61 	u64 reserve;
62 	loff_t length;
63 	ssize_t submitted;
64 	struct extent_changeset *data_reserved;
65 };
66 
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79 
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct btrfs_inode *inode,
84 				   struct page *locked_page,
85 				   u64 start, u64 end, int *page_started,
86 				   unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
88 				       u64 len, u64 orig_start, u64 block_start,
89 				       u64 block_len, u64 orig_block_len,
90 				       u64 ram_bytes, int compress_type,
91 				       int type);
92 
93 static void __endio_write_update_ordered(struct btrfs_inode *inode,
94 					 const u64 offset, const u64 bytes,
95 					 const bool uptodate);
96 
97 /*
98  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
99  *
100  * ilock_flags can have the following bit set:
101  *
102  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
103  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
104  *		     return -EAGAIN
105  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
106  */
107 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
108 {
109 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
110 		if (ilock_flags & BTRFS_ILOCK_TRY) {
111 			if (!inode_trylock_shared(inode))
112 				return -EAGAIN;
113 			else
114 				return 0;
115 		}
116 		inode_lock_shared(inode);
117 	} else {
118 		if (ilock_flags & BTRFS_ILOCK_TRY) {
119 			if (!inode_trylock(inode))
120 				return -EAGAIN;
121 			else
122 				return 0;
123 		}
124 		inode_lock(inode);
125 	}
126 	if (ilock_flags & BTRFS_ILOCK_MMAP)
127 		down_write(&BTRFS_I(inode)->i_mmap_lock);
128 	return 0;
129 }
130 
131 /*
132  * btrfs_inode_unlock - unock inode i_rwsem
133  *
134  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
135  * to decide whether the lock acquired is shared or exclusive.
136  */
137 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
138 {
139 	if (ilock_flags & BTRFS_ILOCK_MMAP)
140 		up_write(&BTRFS_I(inode)->i_mmap_lock);
141 	if (ilock_flags & BTRFS_ILOCK_SHARED)
142 		inode_unlock_shared(inode);
143 	else
144 		inode_unlock(inode);
145 }
146 
147 /*
148  * Cleanup all submitted ordered extents in specified range to handle errors
149  * from the btrfs_run_delalloc_range() callback.
150  *
151  * NOTE: caller must ensure that when an error happens, it can not call
152  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
153  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
154  * to be released, which we want to happen only when finishing the ordered
155  * extent (btrfs_finish_ordered_io()).
156  */
157 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
158 						 struct page *locked_page,
159 						 u64 offset, u64 bytes)
160 {
161 	unsigned long index = offset >> PAGE_SHIFT;
162 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
163 	u64 page_start = page_offset(locked_page);
164 	u64 page_end = page_start + PAGE_SIZE - 1;
165 
166 	struct page *page;
167 
168 	while (index <= end_index) {
169 		page = find_get_page(inode->vfs_inode.i_mapping, index);
170 		index++;
171 		if (!page)
172 			continue;
173 		ClearPagePrivate2(page);
174 		put_page(page);
175 	}
176 
177 	/*
178 	 * In case this page belongs to the delalloc range being instantiated
179 	 * then skip it, since the first page of a range is going to be
180 	 * properly cleaned up by the caller of run_delalloc_range
181 	 */
182 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
183 		offset += PAGE_SIZE;
184 		bytes -= PAGE_SIZE;
185 	}
186 
187 	return __endio_write_update_ordered(inode, offset, bytes, false);
188 }
189 
190 static int btrfs_dirty_inode(struct inode *inode);
191 
192 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
193 				     struct inode *inode,  struct inode *dir,
194 				     const struct qstr *qstr)
195 {
196 	int err;
197 
198 	err = btrfs_init_acl(trans, inode, dir);
199 	if (!err)
200 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
201 	return err;
202 }
203 
204 /*
205  * this does all the hard work for inserting an inline extent into
206  * the btree.  The caller should have done a btrfs_drop_extents so that
207  * no overlapping inline items exist in the btree
208  */
209 static int insert_inline_extent(struct btrfs_trans_handle *trans,
210 				struct btrfs_path *path, bool extent_inserted,
211 				struct btrfs_root *root, struct inode *inode,
212 				u64 start, size_t size, size_t compressed_size,
213 				int compress_type,
214 				struct page **compressed_pages)
215 {
216 	struct extent_buffer *leaf;
217 	struct page *page = NULL;
218 	char *kaddr;
219 	unsigned long ptr;
220 	struct btrfs_file_extent_item *ei;
221 	int ret;
222 	size_t cur_size = size;
223 	unsigned long offset;
224 
225 	ASSERT((compressed_size > 0 && compressed_pages) ||
226 	       (compressed_size == 0 && !compressed_pages));
227 
228 	if (compressed_size && compressed_pages)
229 		cur_size = compressed_size;
230 
231 	if (!extent_inserted) {
232 		struct btrfs_key key;
233 		size_t datasize;
234 
235 		key.objectid = btrfs_ino(BTRFS_I(inode));
236 		key.offset = start;
237 		key.type = BTRFS_EXTENT_DATA_KEY;
238 
239 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
240 		ret = btrfs_insert_empty_item(trans, root, path, &key,
241 					      datasize);
242 		if (ret)
243 			goto fail;
244 	}
245 	leaf = path->nodes[0];
246 	ei = btrfs_item_ptr(leaf, path->slots[0],
247 			    struct btrfs_file_extent_item);
248 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
249 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
250 	btrfs_set_file_extent_encryption(leaf, ei, 0);
251 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
252 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
253 	ptr = btrfs_file_extent_inline_start(ei);
254 
255 	if (compress_type != BTRFS_COMPRESS_NONE) {
256 		struct page *cpage;
257 		int i = 0;
258 		while (compressed_size > 0) {
259 			cpage = compressed_pages[i];
260 			cur_size = min_t(unsigned long, compressed_size,
261 				       PAGE_SIZE);
262 
263 			kaddr = kmap_atomic(cpage);
264 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
265 			kunmap_atomic(kaddr);
266 
267 			i++;
268 			ptr += cur_size;
269 			compressed_size -= cur_size;
270 		}
271 		btrfs_set_file_extent_compression(leaf, ei,
272 						  compress_type);
273 	} else {
274 		page = find_get_page(inode->i_mapping,
275 				     start >> PAGE_SHIFT);
276 		btrfs_set_file_extent_compression(leaf, ei, 0);
277 		kaddr = kmap_atomic(page);
278 		offset = offset_in_page(start);
279 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
280 		kunmap_atomic(kaddr);
281 		put_page(page);
282 	}
283 	btrfs_mark_buffer_dirty(leaf);
284 	btrfs_release_path(path);
285 
286 	/*
287 	 * We align size to sectorsize for inline extents just for simplicity
288 	 * sake.
289 	 */
290 	size = ALIGN(size, root->fs_info->sectorsize);
291 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
292 	if (ret)
293 		goto fail;
294 
295 	/*
296 	 * we're an inline extent, so nobody can
297 	 * extend the file past i_size without locking
298 	 * a page we already have locked.
299 	 *
300 	 * We must do any isize and inode updates
301 	 * before we unlock the pages.  Otherwise we
302 	 * could end up racing with unlink.
303 	 */
304 	BTRFS_I(inode)->disk_i_size = inode->i_size;
305 fail:
306 	return ret;
307 }
308 
309 
310 /*
311  * conditionally insert an inline extent into the file.  This
312  * does the checks required to make sure the data is small enough
313  * to fit as an inline extent.
314  */
315 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
316 					  u64 end, size_t compressed_size,
317 					  int compress_type,
318 					  struct page **compressed_pages)
319 {
320 	struct btrfs_drop_extents_args drop_args = { 0 };
321 	struct btrfs_root *root = inode->root;
322 	struct btrfs_fs_info *fs_info = root->fs_info;
323 	struct btrfs_trans_handle *trans;
324 	u64 isize = i_size_read(&inode->vfs_inode);
325 	u64 actual_end = min(end + 1, isize);
326 	u64 inline_len = actual_end - start;
327 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
328 	u64 data_len = inline_len;
329 	int ret;
330 	struct btrfs_path *path;
331 
332 	if (compressed_size)
333 		data_len = compressed_size;
334 
335 	if (start > 0 ||
336 	    actual_end > fs_info->sectorsize ||
337 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
338 	    (!compressed_size &&
339 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
340 	    end + 1 < isize ||
341 	    data_len > fs_info->max_inline) {
342 		return 1;
343 	}
344 
345 	path = btrfs_alloc_path();
346 	if (!path)
347 		return -ENOMEM;
348 
349 	trans = btrfs_join_transaction(root);
350 	if (IS_ERR(trans)) {
351 		btrfs_free_path(path);
352 		return PTR_ERR(trans);
353 	}
354 	trans->block_rsv = &inode->block_rsv;
355 
356 	drop_args.path = path;
357 	drop_args.start = start;
358 	drop_args.end = aligned_end;
359 	drop_args.drop_cache = true;
360 	drop_args.replace_extent = true;
361 
362 	if (compressed_size && compressed_pages)
363 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
364 		   compressed_size);
365 	else
366 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
367 		    inline_len);
368 
369 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
370 	if (ret) {
371 		btrfs_abort_transaction(trans, ret);
372 		goto out;
373 	}
374 
375 	if (isize > actual_end)
376 		inline_len = min_t(u64, isize, actual_end);
377 	ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
378 				   root, &inode->vfs_inode, start,
379 				   inline_len, compressed_size,
380 				   compress_type, compressed_pages);
381 	if (ret && ret != -ENOSPC) {
382 		btrfs_abort_transaction(trans, ret);
383 		goto out;
384 	} else if (ret == -ENOSPC) {
385 		ret = 1;
386 		goto out;
387 	}
388 
389 	btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
390 	ret = btrfs_update_inode(trans, root, inode);
391 	if (ret && ret != -ENOSPC) {
392 		btrfs_abort_transaction(trans, ret);
393 		goto out;
394 	} else if (ret == -ENOSPC) {
395 		ret = 1;
396 		goto out;
397 	}
398 
399 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
400 out:
401 	/*
402 	 * Don't forget to free the reserved space, as for inlined extent
403 	 * it won't count as data extent, free them directly here.
404 	 * And at reserve time, it's always aligned to page size, so
405 	 * just free one page here.
406 	 */
407 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
408 	btrfs_free_path(path);
409 	btrfs_end_transaction(trans);
410 	return ret;
411 }
412 
413 struct async_extent {
414 	u64 start;
415 	u64 ram_size;
416 	u64 compressed_size;
417 	struct page **pages;
418 	unsigned long nr_pages;
419 	int compress_type;
420 	struct list_head list;
421 };
422 
423 struct async_chunk {
424 	struct inode *inode;
425 	struct page *locked_page;
426 	u64 start;
427 	u64 end;
428 	unsigned int write_flags;
429 	struct list_head extents;
430 	struct cgroup_subsys_state *blkcg_css;
431 	struct btrfs_work work;
432 	atomic_t *pending;
433 };
434 
435 struct async_cow {
436 	/* Number of chunks in flight; must be first in the structure */
437 	atomic_t num_chunks;
438 	struct async_chunk chunks[];
439 };
440 
441 static noinline int add_async_extent(struct async_chunk *cow,
442 				     u64 start, u64 ram_size,
443 				     u64 compressed_size,
444 				     struct page **pages,
445 				     unsigned long nr_pages,
446 				     int compress_type)
447 {
448 	struct async_extent *async_extent;
449 
450 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
451 	BUG_ON(!async_extent); /* -ENOMEM */
452 	async_extent->start = start;
453 	async_extent->ram_size = ram_size;
454 	async_extent->compressed_size = compressed_size;
455 	async_extent->pages = pages;
456 	async_extent->nr_pages = nr_pages;
457 	async_extent->compress_type = compress_type;
458 	list_add_tail(&async_extent->list, &cow->extents);
459 	return 0;
460 }
461 
462 /*
463  * Check if the inode has flags compatible with compression
464  */
465 static inline bool inode_can_compress(struct btrfs_inode *inode)
466 {
467 	if (inode->flags & BTRFS_INODE_NODATACOW ||
468 	    inode->flags & BTRFS_INODE_NODATASUM)
469 		return false;
470 	return true;
471 }
472 
473 /*
474  * Check if the inode needs to be submitted to compression, based on mount
475  * options, defragmentation, properties or heuristics.
476  */
477 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
478 				      u64 end)
479 {
480 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
481 
482 	if (!inode_can_compress(inode)) {
483 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
484 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
485 			btrfs_ino(inode));
486 		return 0;
487 	}
488 	/* force compress */
489 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
490 		return 1;
491 	/* defrag ioctl */
492 	if (inode->defrag_compress)
493 		return 1;
494 	/* bad compression ratios */
495 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
496 		return 0;
497 	if (btrfs_test_opt(fs_info, COMPRESS) ||
498 	    inode->flags & BTRFS_INODE_COMPRESS ||
499 	    inode->prop_compress)
500 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
501 	return 0;
502 }
503 
504 static inline void inode_should_defrag(struct btrfs_inode *inode,
505 		u64 start, u64 end, u64 num_bytes, u64 small_write)
506 {
507 	/* If this is a small write inside eof, kick off a defrag */
508 	if (num_bytes < small_write &&
509 	    (start > 0 || end + 1 < inode->disk_i_size))
510 		btrfs_add_inode_defrag(NULL, inode);
511 }
512 
513 /*
514  * we create compressed extents in two phases.  The first
515  * phase compresses a range of pages that have already been
516  * locked (both pages and state bits are locked).
517  *
518  * This is done inside an ordered work queue, and the compression
519  * is spread across many cpus.  The actual IO submission is step
520  * two, and the ordered work queue takes care of making sure that
521  * happens in the same order things were put onto the queue by
522  * writepages and friends.
523  *
524  * If this code finds it can't get good compression, it puts an
525  * entry onto the work queue to write the uncompressed bytes.  This
526  * makes sure that both compressed inodes and uncompressed inodes
527  * are written in the same order that the flusher thread sent them
528  * down.
529  */
530 static noinline int compress_file_range(struct async_chunk *async_chunk)
531 {
532 	struct inode *inode = async_chunk->inode;
533 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
534 	u64 blocksize = fs_info->sectorsize;
535 	u64 start = async_chunk->start;
536 	u64 end = async_chunk->end;
537 	u64 actual_end;
538 	u64 i_size;
539 	int ret = 0;
540 	struct page **pages = NULL;
541 	unsigned long nr_pages;
542 	unsigned long total_compressed = 0;
543 	unsigned long total_in = 0;
544 	int i;
545 	int will_compress;
546 	int compress_type = fs_info->compress_type;
547 	int compressed_extents = 0;
548 	int redirty = 0;
549 
550 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
551 			SZ_16K);
552 
553 	/*
554 	 * We need to save i_size before now because it could change in between
555 	 * us evaluating the size and assigning it.  This is because we lock and
556 	 * unlock the page in truncate and fallocate, and then modify the i_size
557 	 * later on.
558 	 *
559 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
560 	 * does that for us.
561 	 */
562 	barrier();
563 	i_size = i_size_read(inode);
564 	barrier();
565 	actual_end = min_t(u64, i_size, end + 1);
566 again:
567 	will_compress = 0;
568 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
569 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
570 	nr_pages = min_t(unsigned long, nr_pages,
571 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
572 
573 	/*
574 	 * we don't want to send crud past the end of i_size through
575 	 * compression, that's just a waste of CPU time.  So, if the
576 	 * end of the file is before the start of our current
577 	 * requested range of bytes, we bail out to the uncompressed
578 	 * cleanup code that can deal with all of this.
579 	 *
580 	 * It isn't really the fastest way to fix things, but this is a
581 	 * very uncommon corner.
582 	 */
583 	if (actual_end <= start)
584 		goto cleanup_and_bail_uncompressed;
585 
586 	total_compressed = actual_end - start;
587 
588 	/*
589 	 * skip compression for a small file range(<=blocksize) that
590 	 * isn't an inline extent, since it doesn't save disk space at all.
591 	 */
592 	if (total_compressed <= blocksize &&
593 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
594 		goto cleanup_and_bail_uncompressed;
595 
596 	total_compressed = min_t(unsigned long, total_compressed,
597 			BTRFS_MAX_UNCOMPRESSED);
598 	total_in = 0;
599 	ret = 0;
600 
601 	/*
602 	 * we do compression for mount -o compress and when the
603 	 * inode has not been flagged as nocompress.  This flag can
604 	 * change at any time if we discover bad compression ratios.
605 	 */
606 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
607 		WARN_ON(pages);
608 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
609 		if (!pages) {
610 			/* just bail out to the uncompressed code */
611 			nr_pages = 0;
612 			goto cont;
613 		}
614 
615 		if (BTRFS_I(inode)->defrag_compress)
616 			compress_type = BTRFS_I(inode)->defrag_compress;
617 		else if (BTRFS_I(inode)->prop_compress)
618 			compress_type = BTRFS_I(inode)->prop_compress;
619 
620 		/*
621 		 * we need to call clear_page_dirty_for_io on each
622 		 * page in the range.  Otherwise applications with the file
623 		 * mmap'd can wander in and change the page contents while
624 		 * we are compressing them.
625 		 *
626 		 * If the compression fails for any reason, we set the pages
627 		 * dirty again later on.
628 		 *
629 		 * Note that the remaining part is redirtied, the start pointer
630 		 * has moved, the end is the original one.
631 		 */
632 		if (!redirty) {
633 			extent_range_clear_dirty_for_io(inode, start, end);
634 			redirty = 1;
635 		}
636 
637 		/* Compression level is applied here and only here */
638 		ret = btrfs_compress_pages(
639 			compress_type | (fs_info->compress_level << 4),
640 					   inode->i_mapping, start,
641 					   pages,
642 					   &nr_pages,
643 					   &total_in,
644 					   &total_compressed);
645 
646 		if (!ret) {
647 			unsigned long offset = offset_in_page(total_compressed);
648 			struct page *page = pages[nr_pages - 1];
649 
650 			/* zero the tail end of the last page, we might be
651 			 * sending it down to disk
652 			 */
653 			if (offset)
654 				memzero_page(page, offset, PAGE_SIZE - offset);
655 			will_compress = 1;
656 		}
657 	}
658 cont:
659 	if (start == 0) {
660 		/* lets try to make an inline extent */
661 		if (ret || total_in < actual_end) {
662 			/* we didn't compress the entire range, try
663 			 * to make an uncompressed inline extent.
664 			 */
665 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
666 						    0, BTRFS_COMPRESS_NONE,
667 						    NULL);
668 		} else {
669 			/* try making a compressed inline extent */
670 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
671 						    total_compressed,
672 						    compress_type, pages);
673 		}
674 		if (ret <= 0) {
675 			unsigned long clear_flags = EXTENT_DELALLOC |
676 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
677 				EXTENT_DO_ACCOUNTING;
678 			unsigned long page_error_op;
679 
680 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
681 
682 			/*
683 			 * inline extent creation worked or returned error,
684 			 * we don't need to create any more async work items.
685 			 * Unlock and free up our temp pages.
686 			 *
687 			 * We use DO_ACCOUNTING here because we need the
688 			 * delalloc_release_metadata to be done _after_ we drop
689 			 * our outstanding extent for clearing delalloc for this
690 			 * range.
691 			 */
692 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
693 						     NULL,
694 						     clear_flags,
695 						     PAGE_UNLOCK |
696 						     PAGE_START_WRITEBACK |
697 						     page_error_op |
698 						     PAGE_END_WRITEBACK);
699 
700 			/*
701 			 * Ensure we only free the compressed pages if we have
702 			 * them allocated, as we can still reach here with
703 			 * inode_need_compress() == false.
704 			 */
705 			if (pages) {
706 				for (i = 0; i < nr_pages; i++) {
707 					WARN_ON(pages[i]->mapping);
708 					put_page(pages[i]);
709 				}
710 				kfree(pages);
711 			}
712 			return 0;
713 		}
714 	}
715 
716 	if (will_compress) {
717 		/*
718 		 * we aren't doing an inline extent round the compressed size
719 		 * up to a block size boundary so the allocator does sane
720 		 * things
721 		 */
722 		total_compressed = ALIGN(total_compressed, blocksize);
723 
724 		/*
725 		 * one last check to make sure the compression is really a
726 		 * win, compare the page count read with the blocks on disk,
727 		 * compression must free at least one sector size
728 		 */
729 		total_in = ALIGN(total_in, PAGE_SIZE);
730 		if (total_compressed + blocksize <= total_in) {
731 			compressed_extents++;
732 
733 			/*
734 			 * The async work queues will take care of doing actual
735 			 * allocation on disk for these compressed pages, and
736 			 * will submit them to the elevator.
737 			 */
738 			add_async_extent(async_chunk, start, total_in,
739 					total_compressed, pages, nr_pages,
740 					compress_type);
741 
742 			if (start + total_in < end) {
743 				start += total_in;
744 				pages = NULL;
745 				cond_resched();
746 				goto again;
747 			}
748 			return compressed_extents;
749 		}
750 	}
751 	if (pages) {
752 		/*
753 		 * the compression code ran but failed to make things smaller,
754 		 * free any pages it allocated and our page pointer array
755 		 */
756 		for (i = 0; i < nr_pages; i++) {
757 			WARN_ON(pages[i]->mapping);
758 			put_page(pages[i]);
759 		}
760 		kfree(pages);
761 		pages = NULL;
762 		total_compressed = 0;
763 		nr_pages = 0;
764 
765 		/* flag the file so we don't compress in the future */
766 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
767 		    !(BTRFS_I(inode)->prop_compress)) {
768 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
769 		}
770 	}
771 cleanup_and_bail_uncompressed:
772 	/*
773 	 * No compression, but we still need to write the pages in the file
774 	 * we've been given so far.  redirty the locked page if it corresponds
775 	 * to our extent and set things up for the async work queue to run
776 	 * cow_file_range to do the normal delalloc dance.
777 	 */
778 	if (async_chunk->locked_page &&
779 	    (page_offset(async_chunk->locked_page) >= start &&
780 	     page_offset(async_chunk->locked_page)) <= end) {
781 		__set_page_dirty_nobuffers(async_chunk->locked_page);
782 		/* unlocked later on in the async handlers */
783 	}
784 
785 	if (redirty)
786 		extent_range_redirty_for_io(inode, start, end);
787 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
788 			 BTRFS_COMPRESS_NONE);
789 	compressed_extents++;
790 
791 	return compressed_extents;
792 }
793 
794 static void free_async_extent_pages(struct async_extent *async_extent)
795 {
796 	int i;
797 
798 	if (!async_extent->pages)
799 		return;
800 
801 	for (i = 0; i < async_extent->nr_pages; i++) {
802 		WARN_ON(async_extent->pages[i]->mapping);
803 		put_page(async_extent->pages[i]);
804 	}
805 	kfree(async_extent->pages);
806 	async_extent->nr_pages = 0;
807 	async_extent->pages = NULL;
808 }
809 
810 /*
811  * phase two of compressed writeback.  This is the ordered portion
812  * of the code, which only gets called in the order the work was
813  * queued.  We walk all the async extents created by compress_file_range
814  * and send them down to the disk.
815  */
816 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
817 {
818 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
819 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
820 	struct async_extent *async_extent;
821 	u64 alloc_hint = 0;
822 	struct btrfs_key ins;
823 	struct extent_map *em;
824 	struct btrfs_root *root = inode->root;
825 	struct extent_io_tree *io_tree = &inode->io_tree;
826 	int ret = 0;
827 
828 again:
829 	while (!list_empty(&async_chunk->extents)) {
830 		async_extent = list_entry(async_chunk->extents.next,
831 					  struct async_extent, list);
832 		list_del(&async_extent->list);
833 
834 retry:
835 		lock_extent(io_tree, async_extent->start,
836 			    async_extent->start + async_extent->ram_size - 1);
837 		/* did the compression code fall back to uncompressed IO? */
838 		if (!async_extent->pages) {
839 			int page_started = 0;
840 			unsigned long nr_written = 0;
841 
842 			/* allocate blocks */
843 			ret = cow_file_range(inode, async_chunk->locked_page,
844 					     async_extent->start,
845 					     async_extent->start +
846 					     async_extent->ram_size - 1,
847 					     &page_started, &nr_written, 0);
848 
849 			/* JDM XXX */
850 
851 			/*
852 			 * if page_started, cow_file_range inserted an
853 			 * inline extent and took care of all the unlocking
854 			 * and IO for us.  Otherwise, we need to submit
855 			 * all those pages down to the drive.
856 			 */
857 			if (!page_started && !ret)
858 				extent_write_locked_range(&inode->vfs_inode,
859 						  async_extent->start,
860 						  async_extent->start +
861 						  async_extent->ram_size - 1,
862 						  WB_SYNC_ALL);
863 			else if (ret && async_chunk->locked_page)
864 				unlock_page(async_chunk->locked_page);
865 			kfree(async_extent);
866 			cond_resched();
867 			continue;
868 		}
869 
870 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
871 					   async_extent->compressed_size,
872 					   async_extent->compressed_size,
873 					   0, alloc_hint, &ins, 1, 1);
874 		if (ret) {
875 			free_async_extent_pages(async_extent);
876 
877 			if (ret == -ENOSPC) {
878 				unlock_extent(io_tree, async_extent->start,
879 					      async_extent->start +
880 					      async_extent->ram_size - 1);
881 
882 				/*
883 				 * we need to redirty the pages if we decide to
884 				 * fallback to uncompressed IO, otherwise we
885 				 * will not submit these pages down to lower
886 				 * layers.
887 				 */
888 				extent_range_redirty_for_io(&inode->vfs_inode,
889 						async_extent->start,
890 						async_extent->start +
891 						async_extent->ram_size - 1);
892 
893 				goto retry;
894 			}
895 			goto out_free;
896 		}
897 		/*
898 		 * here we're doing allocation and writeback of the
899 		 * compressed pages
900 		 */
901 		em = create_io_em(inode, async_extent->start,
902 				  async_extent->ram_size, /* len */
903 				  async_extent->start, /* orig_start */
904 				  ins.objectid, /* block_start */
905 				  ins.offset, /* block_len */
906 				  ins.offset, /* orig_block_len */
907 				  async_extent->ram_size, /* ram_bytes */
908 				  async_extent->compress_type,
909 				  BTRFS_ORDERED_COMPRESSED);
910 		if (IS_ERR(em))
911 			/* ret value is not necessary due to void function */
912 			goto out_free_reserve;
913 		free_extent_map(em);
914 
915 		ret = btrfs_add_ordered_extent_compress(inode,
916 						async_extent->start,
917 						ins.objectid,
918 						async_extent->ram_size,
919 						ins.offset,
920 						async_extent->compress_type);
921 		if (ret) {
922 			btrfs_drop_extent_cache(inode, async_extent->start,
923 						async_extent->start +
924 						async_extent->ram_size - 1, 0);
925 			goto out_free_reserve;
926 		}
927 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
928 
929 		/*
930 		 * clear dirty, set writeback and unlock the pages.
931 		 */
932 		extent_clear_unlock_delalloc(inode, async_extent->start,
933 				async_extent->start +
934 				async_extent->ram_size - 1,
935 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
936 				PAGE_UNLOCK | PAGE_START_WRITEBACK);
937 		if (btrfs_submit_compressed_write(inode, async_extent->start,
938 				    async_extent->ram_size,
939 				    ins.objectid,
940 				    ins.offset, async_extent->pages,
941 				    async_extent->nr_pages,
942 				    async_chunk->write_flags,
943 				    async_chunk->blkcg_css)) {
944 			struct page *p = async_extent->pages[0];
945 			const u64 start = async_extent->start;
946 			const u64 end = start + async_extent->ram_size - 1;
947 
948 			p->mapping = inode->vfs_inode.i_mapping;
949 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
950 
951 			p->mapping = NULL;
952 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
953 						     PAGE_END_WRITEBACK |
954 						     PAGE_SET_ERROR);
955 			free_async_extent_pages(async_extent);
956 		}
957 		alloc_hint = ins.objectid + ins.offset;
958 		kfree(async_extent);
959 		cond_resched();
960 	}
961 	return;
962 out_free_reserve:
963 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
964 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
965 out_free:
966 	extent_clear_unlock_delalloc(inode, async_extent->start,
967 				     async_extent->start +
968 				     async_extent->ram_size - 1,
969 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
970 				     EXTENT_DELALLOC_NEW |
971 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
972 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
973 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
974 	free_async_extent_pages(async_extent);
975 	kfree(async_extent);
976 	goto again;
977 }
978 
979 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
980 				      u64 num_bytes)
981 {
982 	struct extent_map_tree *em_tree = &inode->extent_tree;
983 	struct extent_map *em;
984 	u64 alloc_hint = 0;
985 
986 	read_lock(&em_tree->lock);
987 	em = search_extent_mapping(em_tree, start, num_bytes);
988 	if (em) {
989 		/*
990 		 * if block start isn't an actual block number then find the
991 		 * first block in this inode and use that as a hint.  If that
992 		 * block is also bogus then just don't worry about it.
993 		 */
994 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
995 			free_extent_map(em);
996 			em = search_extent_mapping(em_tree, 0, 0);
997 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
998 				alloc_hint = em->block_start;
999 			if (em)
1000 				free_extent_map(em);
1001 		} else {
1002 			alloc_hint = em->block_start;
1003 			free_extent_map(em);
1004 		}
1005 	}
1006 	read_unlock(&em_tree->lock);
1007 
1008 	return alloc_hint;
1009 }
1010 
1011 /*
1012  * when extent_io.c finds a delayed allocation range in the file,
1013  * the call backs end up in this code.  The basic idea is to
1014  * allocate extents on disk for the range, and create ordered data structs
1015  * in ram to track those extents.
1016  *
1017  * locked_page is the page that writepage had locked already.  We use
1018  * it to make sure we don't do extra locks or unlocks.
1019  *
1020  * *page_started is set to one if we unlock locked_page and do everything
1021  * required to start IO on it.  It may be clean and already done with
1022  * IO when we return.
1023  */
1024 static noinline int cow_file_range(struct btrfs_inode *inode,
1025 				   struct page *locked_page,
1026 				   u64 start, u64 end, int *page_started,
1027 				   unsigned long *nr_written, int unlock)
1028 {
1029 	struct btrfs_root *root = inode->root;
1030 	struct btrfs_fs_info *fs_info = root->fs_info;
1031 	u64 alloc_hint = 0;
1032 	u64 num_bytes;
1033 	unsigned long ram_size;
1034 	u64 cur_alloc_size = 0;
1035 	u64 min_alloc_size;
1036 	u64 blocksize = fs_info->sectorsize;
1037 	struct btrfs_key ins;
1038 	struct extent_map *em;
1039 	unsigned clear_bits;
1040 	unsigned long page_ops;
1041 	bool extent_reserved = false;
1042 	int ret = 0;
1043 
1044 	if (btrfs_is_free_space_inode(inode)) {
1045 		WARN_ON_ONCE(1);
1046 		ret = -EINVAL;
1047 		goto out_unlock;
1048 	}
1049 
1050 	num_bytes = ALIGN(end - start + 1, blocksize);
1051 	num_bytes = max(blocksize,  num_bytes);
1052 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1053 
1054 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1055 
1056 	if (start == 0) {
1057 		/* lets try to make an inline extent */
1058 		ret = cow_file_range_inline(inode, start, end, 0,
1059 					    BTRFS_COMPRESS_NONE, NULL);
1060 		if (ret == 0) {
1061 			/*
1062 			 * We use DO_ACCOUNTING here because we need the
1063 			 * delalloc_release_metadata to be run _after_ we drop
1064 			 * our outstanding extent for clearing delalloc for this
1065 			 * range.
1066 			 */
1067 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1068 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1069 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1070 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1071 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1072 			*nr_written = *nr_written +
1073 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1074 			*page_started = 1;
1075 			goto out;
1076 		} else if (ret < 0) {
1077 			goto out_unlock;
1078 		}
1079 	}
1080 
1081 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1082 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1083 
1084 	/*
1085 	 * Relocation relies on the relocated extents to have exactly the same
1086 	 * size as the original extents. Normally writeback for relocation data
1087 	 * extents follows a NOCOW path because relocation preallocates the
1088 	 * extents. However, due to an operation such as scrub turning a block
1089 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1090 	 * an extent allocated during COW has exactly the requested size and can
1091 	 * not be split into smaller extents, otherwise relocation breaks and
1092 	 * fails during the stage where it updates the bytenr of file extent
1093 	 * items.
1094 	 */
1095 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1096 		min_alloc_size = num_bytes;
1097 	else
1098 		min_alloc_size = fs_info->sectorsize;
1099 
1100 	while (num_bytes > 0) {
1101 		cur_alloc_size = num_bytes;
1102 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1103 					   min_alloc_size, 0, alloc_hint,
1104 					   &ins, 1, 1);
1105 		if (ret < 0)
1106 			goto out_unlock;
1107 		cur_alloc_size = ins.offset;
1108 		extent_reserved = true;
1109 
1110 		ram_size = ins.offset;
1111 		em = create_io_em(inode, start, ins.offset, /* len */
1112 				  start, /* orig_start */
1113 				  ins.objectid, /* block_start */
1114 				  ins.offset, /* block_len */
1115 				  ins.offset, /* orig_block_len */
1116 				  ram_size, /* ram_bytes */
1117 				  BTRFS_COMPRESS_NONE, /* compress_type */
1118 				  BTRFS_ORDERED_REGULAR /* type */);
1119 		if (IS_ERR(em)) {
1120 			ret = PTR_ERR(em);
1121 			goto out_reserve;
1122 		}
1123 		free_extent_map(em);
1124 
1125 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1126 					       ram_size, cur_alloc_size,
1127 					       BTRFS_ORDERED_REGULAR);
1128 		if (ret)
1129 			goto out_drop_extent_cache;
1130 
1131 		if (root->root_key.objectid ==
1132 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1133 			ret = btrfs_reloc_clone_csums(inode, start,
1134 						      cur_alloc_size);
1135 			/*
1136 			 * Only drop cache here, and process as normal.
1137 			 *
1138 			 * We must not allow extent_clear_unlock_delalloc()
1139 			 * at out_unlock label to free meta of this ordered
1140 			 * extent, as its meta should be freed by
1141 			 * btrfs_finish_ordered_io().
1142 			 *
1143 			 * So we must continue until @start is increased to
1144 			 * skip current ordered extent.
1145 			 */
1146 			if (ret)
1147 				btrfs_drop_extent_cache(inode, start,
1148 						start + ram_size - 1, 0);
1149 		}
1150 
1151 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1152 
1153 		/* we're not doing compressed IO, don't unlock the first
1154 		 * page (which the caller expects to stay locked), don't
1155 		 * clear any dirty bits and don't set any writeback bits
1156 		 *
1157 		 * Do set the Private2 bit so we know this page was properly
1158 		 * setup for writepage
1159 		 */
1160 		page_ops = unlock ? PAGE_UNLOCK : 0;
1161 		page_ops |= PAGE_SET_PRIVATE2;
1162 
1163 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1164 					     locked_page,
1165 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1166 					     page_ops);
1167 		if (num_bytes < cur_alloc_size)
1168 			num_bytes = 0;
1169 		else
1170 			num_bytes -= cur_alloc_size;
1171 		alloc_hint = ins.objectid + ins.offset;
1172 		start += cur_alloc_size;
1173 		extent_reserved = false;
1174 
1175 		/*
1176 		 * btrfs_reloc_clone_csums() error, since start is increased
1177 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1178 		 * free metadata of current ordered extent, we're OK to exit.
1179 		 */
1180 		if (ret)
1181 			goto out_unlock;
1182 	}
1183 out:
1184 	return ret;
1185 
1186 out_drop_extent_cache:
1187 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1188 out_reserve:
1189 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1190 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1191 out_unlock:
1192 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1193 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1194 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1195 	/*
1196 	 * If we reserved an extent for our delalloc range (or a subrange) and
1197 	 * failed to create the respective ordered extent, then it means that
1198 	 * when we reserved the extent we decremented the extent's size from
1199 	 * the data space_info's bytes_may_use counter and incremented the
1200 	 * space_info's bytes_reserved counter by the same amount. We must make
1201 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1202 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1203 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1204 	 */
1205 	if (extent_reserved) {
1206 		extent_clear_unlock_delalloc(inode, start,
1207 					     start + cur_alloc_size - 1,
1208 					     locked_page,
1209 					     clear_bits,
1210 					     page_ops);
1211 		start += cur_alloc_size;
1212 		if (start >= end)
1213 			goto out;
1214 	}
1215 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1216 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1217 				     page_ops);
1218 	goto out;
1219 }
1220 
1221 /*
1222  * work queue call back to started compression on a file and pages
1223  */
1224 static noinline void async_cow_start(struct btrfs_work *work)
1225 {
1226 	struct async_chunk *async_chunk;
1227 	int compressed_extents;
1228 
1229 	async_chunk = container_of(work, struct async_chunk, work);
1230 
1231 	compressed_extents = compress_file_range(async_chunk);
1232 	if (compressed_extents == 0) {
1233 		btrfs_add_delayed_iput(async_chunk->inode);
1234 		async_chunk->inode = NULL;
1235 	}
1236 }
1237 
1238 /*
1239  * work queue call back to submit previously compressed pages
1240  */
1241 static noinline void async_cow_submit(struct btrfs_work *work)
1242 {
1243 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1244 						     work);
1245 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1246 	unsigned long nr_pages;
1247 
1248 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1249 		PAGE_SHIFT;
1250 
1251 	/* atomic_sub_return implies a barrier */
1252 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1253 	    5 * SZ_1M)
1254 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1255 
1256 	/*
1257 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1258 	 * in which case we don't have anything to submit, yet we need to
1259 	 * always adjust ->async_delalloc_pages as its paired with the init
1260 	 * happening in cow_file_range_async
1261 	 */
1262 	if (async_chunk->inode)
1263 		submit_compressed_extents(async_chunk);
1264 }
1265 
1266 static noinline void async_cow_free(struct btrfs_work *work)
1267 {
1268 	struct async_chunk *async_chunk;
1269 
1270 	async_chunk = container_of(work, struct async_chunk, work);
1271 	if (async_chunk->inode)
1272 		btrfs_add_delayed_iput(async_chunk->inode);
1273 	if (async_chunk->blkcg_css)
1274 		css_put(async_chunk->blkcg_css);
1275 	/*
1276 	 * Since the pointer to 'pending' is at the beginning of the array of
1277 	 * async_chunk's, freeing it ensures the whole array has been freed.
1278 	 */
1279 	if (atomic_dec_and_test(async_chunk->pending))
1280 		kvfree(async_chunk->pending);
1281 }
1282 
1283 static int cow_file_range_async(struct btrfs_inode *inode,
1284 				struct writeback_control *wbc,
1285 				struct page *locked_page,
1286 				u64 start, u64 end, int *page_started,
1287 				unsigned long *nr_written)
1288 {
1289 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1290 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1291 	struct async_cow *ctx;
1292 	struct async_chunk *async_chunk;
1293 	unsigned long nr_pages;
1294 	u64 cur_end;
1295 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1296 	int i;
1297 	bool should_compress;
1298 	unsigned nofs_flag;
1299 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1300 
1301 	unlock_extent(&inode->io_tree, start, end);
1302 
1303 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1304 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1305 		num_chunks = 1;
1306 		should_compress = false;
1307 	} else {
1308 		should_compress = true;
1309 	}
1310 
1311 	nofs_flag = memalloc_nofs_save();
1312 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1313 	memalloc_nofs_restore(nofs_flag);
1314 
1315 	if (!ctx) {
1316 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1317 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1318 			EXTENT_DO_ACCOUNTING;
1319 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1320 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1321 
1322 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1323 					     clear_bits, page_ops);
1324 		return -ENOMEM;
1325 	}
1326 
1327 	async_chunk = ctx->chunks;
1328 	atomic_set(&ctx->num_chunks, num_chunks);
1329 
1330 	for (i = 0; i < num_chunks; i++) {
1331 		if (should_compress)
1332 			cur_end = min(end, start + SZ_512K - 1);
1333 		else
1334 			cur_end = end;
1335 
1336 		/*
1337 		 * igrab is called higher up in the call chain, take only the
1338 		 * lightweight reference for the callback lifetime
1339 		 */
1340 		ihold(&inode->vfs_inode);
1341 		async_chunk[i].pending = &ctx->num_chunks;
1342 		async_chunk[i].inode = &inode->vfs_inode;
1343 		async_chunk[i].start = start;
1344 		async_chunk[i].end = cur_end;
1345 		async_chunk[i].write_flags = write_flags;
1346 		INIT_LIST_HEAD(&async_chunk[i].extents);
1347 
1348 		/*
1349 		 * The locked_page comes all the way from writepage and its
1350 		 * the original page we were actually given.  As we spread
1351 		 * this large delalloc region across multiple async_chunk
1352 		 * structs, only the first struct needs a pointer to locked_page
1353 		 *
1354 		 * This way we don't need racey decisions about who is supposed
1355 		 * to unlock it.
1356 		 */
1357 		if (locked_page) {
1358 			/*
1359 			 * Depending on the compressibility, the pages might or
1360 			 * might not go through async.  We want all of them to
1361 			 * be accounted against wbc once.  Let's do it here
1362 			 * before the paths diverge.  wbc accounting is used
1363 			 * only for foreign writeback detection and doesn't
1364 			 * need full accuracy.  Just account the whole thing
1365 			 * against the first page.
1366 			 */
1367 			wbc_account_cgroup_owner(wbc, locked_page,
1368 						 cur_end - start);
1369 			async_chunk[i].locked_page = locked_page;
1370 			locked_page = NULL;
1371 		} else {
1372 			async_chunk[i].locked_page = NULL;
1373 		}
1374 
1375 		if (blkcg_css != blkcg_root_css) {
1376 			css_get(blkcg_css);
1377 			async_chunk[i].blkcg_css = blkcg_css;
1378 		} else {
1379 			async_chunk[i].blkcg_css = NULL;
1380 		}
1381 
1382 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1383 				async_cow_submit, async_cow_free);
1384 
1385 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1386 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1387 
1388 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1389 
1390 		*nr_written += nr_pages;
1391 		start = cur_end + 1;
1392 	}
1393 	*page_started = 1;
1394 	return 0;
1395 }
1396 
1397 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1398 				       struct page *locked_page, u64 start,
1399 				       u64 end, int *page_started,
1400 				       unsigned long *nr_written)
1401 {
1402 	int ret;
1403 
1404 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1405 			     nr_written, 0);
1406 	if (ret)
1407 		return ret;
1408 
1409 	if (*page_started)
1410 		return 0;
1411 
1412 	__set_page_dirty_nobuffers(locked_page);
1413 	account_page_redirty(locked_page);
1414 	extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL);
1415 	*page_started = 1;
1416 
1417 	return 0;
1418 }
1419 
1420 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1421 					u64 bytenr, u64 num_bytes)
1422 {
1423 	int ret;
1424 	struct btrfs_ordered_sum *sums;
1425 	LIST_HEAD(list);
1426 
1427 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1428 				       bytenr + num_bytes - 1, &list, 0);
1429 	if (ret == 0 && list_empty(&list))
1430 		return 0;
1431 
1432 	while (!list_empty(&list)) {
1433 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1434 		list_del(&sums->list);
1435 		kfree(sums);
1436 	}
1437 	if (ret < 0)
1438 		return ret;
1439 	return 1;
1440 }
1441 
1442 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1443 			   const u64 start, const u64 end,
1444 			   int *page_started, unsigned long *nr_written)
1445 {
1446 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1447 	const bool is_reloc_ino = (inode->root->root_key.objectid ==
1448 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1449 	const u64 range_bytes = end + 1 - start;
1450 	struct extent_io_tree *io_tree = &inode->io_tree;
1451 	u64 range_start = start;
1452 	u64 count;
1453 
1454 	/*
1455 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1456 	 * made we had not enough available data space and therefore we did not
1457 	 * reserve data space for it, since we though we could do NOCOW for the
1458 	 * respective file range (either there is prealloc extent or the inode
1459 	 * has the NOCOW bit set).
1460 	 *
1461 	 * However when we need to fallback to COW mode (because for example the
1462 	 * block group for the corresponding extent was turned to RO mode by a
1463 	 * scrub or relocation) we need to do the following:
1464 	 *
1465 	 * 1) We increment the bytes_may_use counter of the data space info.
1466 	 *    If COW succeeds, it allocates a new data extent and after doing
1467 	 *    that it decrements the space info's bytes_may_use counter and
1468 	 *    increments its bytes_reserved counter by the same amount (we do
1469 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1470 	 *    bytes_may_use counter to compensate (when space is reserved at
1471 	 *    buffered write time, the bytes_may_use counter is incremented);
1472 	 *
1473 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1474 	 *    that if the COW path fails for any reason, it decrements (through
1475 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1476 	 *    data space info, which we incremented in the step above.
1477 	 *
1478 	 * If we need to fallback to cow and the inode corresponds to a free
1479 	 * space cache inode or an inode of the data relocation tree, we must
1480 	 * also increment bytes_may_use of the data space_info for the same
1481 	 * reason. Space caches and relocated data extents always get a prealloc
1482 	 * extent for them, however scrub or balance may have set the block
1483 	 * group that contains that extent to RO mode and therefore force COW
1484 	 * when starting writeback.
1485 	 */
1486 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1487 				 EXTENT_NORESERVE, 0);
1488 	if (count > 0 || is_space_ino || is_reloc_ino) {
1489 		u64 bytes = count;
1490 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1491 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1492 
1493 		if (is_space_ino || is_reloc_ino)
1494 			bytes = range_bytes;
1495 
1496 		spin_lock(&sinfo->lock);
1497 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1498 		spin_unlock(&sinfo->lock);
1499 
1500 		if (count > 0)
1501 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1502 					 0, 0, NULL);
1503 	}
1504 
1505 	return cow_file_range(inode, locked_page, start, end, page_started,
1506 			      nr_written, 1);
1507 }
1508 
1509 /*
1510  * when nowcow writeback call back.  This checks for snapshots or COW copies
1511  * of the extents that exist in the file, and COWs the file as required.
1512  *
1513  * If no cow copies or snapshots exist, we write directly to the existing
1514  * blocks on disk
1515  */
1516 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1517 				       struct page *locked_page,
1518 				       const u64 start, const u64 end,
1519 				       int *page_started,
1520 				       unsigned long *nr_written)
1521 {
1522 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1523 	struct btrfs_root *root = inode->root;
1524 	struct btrfs_path *path;
1525 	u64 cow_start = (u64)-1;
1526 	u64 cur_offset = start;
1527 	int ret;
1528 	bool check_prev = true;
1529 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1530 	u64 ino = btrfs_ino(inode);
1531 	bool nocow = false;
1532 	u64 disk_bytenr = 0;
1533 	const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1534 
1535 	path = btrfs_alloc_path();
1536 	if (!path) {
1537 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1538 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1539 					     EXTENT_DO_ACCOUNTING |
1540 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1541 					     PAGE_START_WRITEBACK |
1542 					     PAGE_END_WRITEBACK);
1543 		return -ENOMEM;
1544 	}
1545 
1546 	while (1) {
1547 		struct btrfs_key found_key;
1548 		struct btrfs_file_extent_item *fi;
1549 		struct extent_buffer *leaf;
1550 		u64 extent_end;
1551 		u64 extent_offset;
1552 		u64 num_bytes = 0;
1553 		u64 disk_num_bytes;
1554 		u64 ram_bytes;
1555 		int extent_type;
1556 
1557 		nocow = false;
1558 
1559 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1560 					       cur_offset, 0);
1561 		if (ret < 0)
1562 			goto error;
1563 
1564 		/*
1565 		 * If there is no extent for our range when doing the initial
1566 		 * search, then go back to the previous slot as it will be the
1567 		 * one containing the search offset
1568 		 */
1569 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1570 			leaf = path->nodes[0];
1571 			btrfs_item_key_to_cpu(leaf, &found_key,
1572 					      path->slots[0] - 1);
1573 			if (found_key.objectid == ino &&
1574 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1575 				path->slots[0]--;
1576 		}
1577 		check_prev = false;
1578 next_slot:
1579 		/* Go to next leaf if we have exhausted the current one */
1580 		leaf = path->nodes[0];
1581 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1582 			ret = btrfs_next_leaf(root, path);
1583 			if (ret < 0) {
1584 				if (cow_start != (u64)-1)
1585 					cur_offset = cow_start;
1586 				goto error;
1587 			}
1588 			if (ret > 0)
1589 				break;
1590 			leaf = path->nodes[0];
1591 		}
1592 
1593 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1594 
1595 		/* Didn't find anything for our INO */
1596 		if (found_key.objectid > ino)
1597 			break;
1598 		/*
1599 		 * Keep searching until we find an EXTENT_ITEM or there are no
1600 		 * more extents for this inode
1601 		 */
1602 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1603 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1604 			path->slots[0]++;
1605 			goto next_slot;
1606 		}
1607 
1608 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1609 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1610 		    found_key.offset > end)
1611 			break;
1612 
1613 		/*
1614 		 * If the found extent starts after requested offset, then
1615 		 * adjust extent_end to be right before this extent begins
1616 		 */
1617 		if (found_key.offset > cur_offset) {
1618 			extent_end = found_key.offset;
1619 			extent_type = 0;
1620 			goto out_check;
1621 		}
1622 
1623 		/*
1624 		 * Found extent which begins before our range and potentially
1625 		 * intersect it
1626 		 */
1627 		fi = btrfs_item_ptr(leaf, path->slots[0],
1628 				    struct btrfs_file_extent_item);
1629 		extent_type = btrfs_file_extent_type(leaf, fi);
1630 
1631 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1632 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1633 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1634 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1635 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1636 			extent_end = found_key.offset +
1637 				btrfs_file_extent_num_bytes(leaf, fi);
1638 			disk_num_bytes =
1639 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1640 			/*
1641 			 * If the extent we got ends before our current offset,
1642 			 * skip to the next extent.
1643 			 */
1644 			if (extent_end <= cur_offset) {
1645 				path->slots[0]++;
1646 				goto next_slot;
1647 			}
1648 			/* Skip holes */
1649 			if (disk_bytenr == 0)
1650 				goto out_check;
1651 			/* Skip compressed/encrypted/encoded extents */
1652 			if (btrfs_file_extent_compression(leaf, fi) ||
1653 			    btrfs_file_extent_encryption(leaf, fi) ||
1654 			    btrfs_file_extent_other_encoding(leaf, fi))
1655 				goto out_check;
1656 			/*
1657 			 * If extent is created before the last volume's snapshot
1658 			 * this implies the extent is shared, hence we can't do
1659 			 * nocow. This is the same check as in
1660 			 * btrfs_cross_ref_exist but without calling
1661 			 * btrfs_search_slot.
1662 			 */
1663 			if (!freespace_inode &&
1664 			    btrfs_file_extent_generation(leaf, fi) <=
1665 			    btrfs_root_last_snapshot(&root->root_item))
1666 				goto out_check;
1667 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1668 				goto out_check;
1669 
1670 			/*
1671 			 * The following checks can be expensive, as they need to
1672 			 * take other locks and do btree or rbtree searches, so
1673 			 * release the path to avoid blocking other tasks for too
1674 			 * long.
1675 			 */
1676 			btrfs_release_path(path);
1677 
1678 			ret = btrfs_cross_ref_exist(root, ino,
1679 						    found_key.offset -
1680 						    extent_offset, disk_bytenr, false);
1681 			if (ret) {
1682 				/*
1683 				 * ret could be -EIO if the above fails to read
1684 				 * metadata.
1685 				 */
1686 				if (ret < 0) {
1687 					if (cow_start != (u64)-1)
1688 						cur_offset = cow_start;
1689 					goto error;
1690 				}
1691 
1692 				WARN_ON_ONCE(freespace_inode);
1693 				goto out_check;
1694 			}
1695 			disk_bytenr += extent_offset;
1696 			disk_bytenr += cur_offset - found_key.offset;
1697 			num_bytes = min(end + 1, extent_end) - cur_offset;
1698 			/*
1699 			 * If there are pending snapshots for this root, we
1700 			 * fall into common COW way
1701 			 */
1702 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1703 				goto out_check;
1704 			/*
1705 			 * force cow if csum exists in the range.
1706 			 * this ensure that csum for a given extent are
1707 			 * either valid or do not exist.
1708 			 */
1709 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1710 						  num_bytes);
1711 			if (ret) {
1712 				/*
1713 				 * ret could be -EIO if the above fails to read
1714 				 * metadata.
1715 				 */
1716 				if (ret < 0) {
1717 					if (cow_start != (u64)-1)
1718 						cur_offset = cow_start;
1719 					goto error;
1720 				}
1721 				WARN_ON_ONCE(freespace_inode);
1722 				goto out_check;
1723 			}
1724 			/* If the extent's block group is RO, we must COW */
1725 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1726 				goto out_check;
1727 			nocow = true;
1728 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1729 			extent_end = found_key.offset + ram_bytes;
1730 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1731 			/* Skip extents outside of our requested range */
1732 			if (extent_end <= start) {
1733 				path->slots[0]++;
1734 				goto next_slot;
1735 			}
1736 		} else {
1737 			/* If this triggers then we have a memory corruption */
1738 			BUG();
1739 		}
1740 out_check:
1741 		/*
1742 		 * If nocow is false then record the beginning of the range
1743 		 * that needs to be COWed
1744 		 */
1745 		if (!nocow) {
1746 			if (cow_start == (u64)-1)
1747 				cow_start = cur_offset;
1748 			cur_offset = extent_end;
1749 			if (cur_offset > end)
1750 				break;
1751 			if (!path->nodes[0])
1752 				continue;
1753 			path->slots[0]++;
1754 			goto next_slot;
1755 		}
1756 
1757 		/*
1758 		 * COW range from cow_start to found_key.offset - 1. As the key
1759 		 * will contain the beginning of the first extent that can be
1760 		 * NOCOW, following one which needs to be COW'ed
1761 		 */
1762 		if (cow_start != (u64)-1) {
1763 			ret = fallback_to_cow(inode, locked_page,
1764 					      cow_start, found_key.offset - 1,
1765 					      page_started, nr_written);
1766 			if (ret)
1767 				goto error;
1768 			cow_start = (u64)-1;
1769 		}
1770 
1771 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1772 			u64 orig_start = found_key.offset - extent_offset;
1773 			struct extent_map *em;
1774 
1775 			em = create_io_em(inode, cur_offset, num_bytes,
1776 					  orig_start,
1777 					  disk_bytenr, /* block_start */
1778 					  num_bytes, /* block_len */
1779 					  disk_num_bytes, /* orig_block_len */
1780 					  ram_bytes, BTRFS_COMPRESS_NONE,
1781 					  BTRFS_ORDERED_PREALLOC);
1782 			if (IS_ERR(em)) {
1783 				ret = PTR_ERR(em);
1784 				goto error;
1785 			}
1786 			free_extent_map(em);
1787 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1788 						       disk_bytenr, num_bytes,
1789 						       num_bytes,
1790 						       BTRFS_ORDERED_PREALLOC);
1791 			if (ret) {
1792 				btrfs_drop_extent_cache(inode, cur_offset,
1793 							cur_offset + num_bytes - 1,
1794 							0);
1795 				goto error;
1796 			}
1797 		} else {
1798 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1799 						       disk_bytenr, num_bytes,
1800 						       num_bytes,
1801 						       BTRFS_ORDERED_NOCOW);
1802 			if (ret)
1803 				goto error;
1804 		}
1805 
1806 		if (nocow)
1807 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1808 		nocow = false;
1809 
1810 		if (root->root_key.objectid ==
1811 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1812 			/*
1813 			 * Error handled later, as we must prevent
1814 			 * extent_clear_unlock_delalloc() in error handler
1815 			 * from freeing metadata of created ordered extent.
1816 			 */
1817 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1818 						      num_bytes);
1819 
1820 		extent_clear_unlock_delalloc(inode, cur_offset,
1821 					     cur_offset + num_bytes - 1,
1822 					     locked_page, EXTENT_LOCKED |
1823 					     EXTENT_DELALLOC |
1824 					     EXTENT_CLEAR_DATA_RESV,
1825 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1826 
1827 		cur_offset = extent_end;
1828 
1829 		/*
1830 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1831 		 * handler, as metadata for created ordered extent will only
1832 		 * be freed by btrfs_finish_ordered_io().
1833 		 */
1834 		if (ret)
1835 			goto error;
1836 		if (cur_offset > end)
1837 			break;
1838 	}
1839 	btrfs_release_path(path);
1840 
1841 	if (cur_offset <= end && cow_start == (u64)-1)
1842 		cow_start = cur_offset;
1843 
1844 	if (cow_start != (u64)-1) {
1845 		cur_offset = end;
1846 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1847 				      page_started, nr_written);
1848 		if (ret)
1849 			goto error;
1850 	}
1851 
1852 error:
1853 	if (nocow)
1854 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1855 
1856 	if (ret && cur_offset < end)
1857 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1858 					     locked_page, EXTENT_LOCKED |
1859 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1860 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1861 					     PAGE_START_WRITEBACK |
1862 					     PAGE_END_WRITEBACK);
1863 	btrfs_free_path(path);
1864 	return ret;
1865 }
1866 
1867 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1868 {
1869 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1870 		if (inode->defrag_bytes &&
1871 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1872 				   0, NULL))
1873 			return false;
1874 		return true;
1875 	}
1876 	return false;
1877 }
1878 
1879 /*
1880  * Function to process delayed allocation (create CoW) for ranges which are
1881  * being touched for the first time.
1882  */
1883 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1884 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1885 		struct writeback_control *wbc)
1886 {
1887 	int ret;
1888 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1889 
1890 	if (should_nocow(inode, start, end)) {
1891 		ASSERT(!zoned);
1892 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1893 					 page_started, nr_written);
1894 	} else if (!inode_can_compress(inode) ||
1895 		   !inode_need_compress(inode, start, end)) {
1896 		if (zoned)
1897 			ret = run_delalloc_zoned(inode, locked_page, start, end,
1898 						 page_started, nr_written);
1899 		else
1900 			ret = cow_file_range(inode, locked_page, start, end,
1901 					     page_started, nr_written, 1);
1902 	} else {
1903 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1904 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1905 					   page_started, nr_written);
1906 	}
1907 	if (ret)
1908 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1909 					      end - start + 1);
1910 	return ret;
1911 }
1912 
1913 void btrfs_split_delalloc_extent(struct inode *inode,
1914 				 struct extent_state *orig, u64 split)
1915 {
1916 	u64 size;
1917 
1918 	/* not delalloc, ignore it */
1919 	if (!(orig->state & EXTENT_DELALLOC))
1920 		return;
1921 
1922 	size = orig->end - orig->start + 1;
1923 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1924 		u32 num_extents;
1925 		u64 new_size;
1926 
1927 		/*
1928 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1929 		 * applies here, just in reverse.
1930 		 */
1931 		new_size = orig->end - split + 1;
1932 		num_extents = count_max_extents(new_size);
1933 		new_size = split - orig->start;
1934 		num_extents += count_max_extents(new_size);
1935 		if (count_max_extents(size) >= num_extents)
1936 			return;
1937 	}
1938 
1939 	spin_lock(&BTRFS_I(inode)->lock);
1940 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1941 	spin_unlock(&BTRFS_I(inode)->lock);
1942 }
1943 
1944 /*
1945  * Handle merged delayed allocation extents so we can keep track of new extents
1946  * that are just merged onto old extents, such as when we are doing sequential
1947  * writes, so we can properly account for the metadata space we'll need.
1948  */
1949 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1950 				 struct extent_state *other)
1951 {
1952 	u64 new_size, old_size;
1953 	u32 num_extents;
1954 
1955 	/* not delalloc, ignore it */
1956 	if (!(other->state & EXTENT_DELALLOC))
1957 		return;
1958 
1959 	if (new->start > other->start)
1960 		new_size = new->end - other->start + 1;
1961 	else
1962 		new_size = other->end - new->start + 1;
1963 
1964 	/* we're not bigger than the max, unreserve the space and go */
1965 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1966 		spin_lock(&BTRFS_I(inode)->lock);
1967 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1968 		spin_unlock(&BTRFS_I(inode)->lock);
1969 		return;
1970 	}
1971 
1972 	/*
1973 	 * We have to add up either side to figure out how many extents were
1974 	 * accounted for before we merged into one big extent.  If the number of
1975 	 * extents we accounted for is <= the amount we need for the new range
1976 	 * then we can return, otherwise drop.  Think of it like this
1977 	 *
1978 	 * [ 4k][MAX_SIZE]
1979 	 *
1980 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1981 	 * need 2 outstanding extents, on one side we have 1 and the other side
1982 	 * we have 1 so they are == and we can return.  But in this case
1983 	 *
1984 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1985 	 *
1986 	 * Each range on their own accounts for 2 extents, but merged together
1987 	 * they are only 3 extents worth of accounting, so we need to drop in
1988 	 * this case.
1989 	 */
1990 	old_size = other->end - other->start + 1;
1991 	num_extents = count_max_extents(old_size);
1992 	old_size = new->end - new->start + 1;
1993 	num_extents += count_max_extents(old_size);
1994 	if (count_max_extents(new_size) >= num_extents)
1995 		return;
1996 
1997 	spin_lock(&BTRFS_I(inode)->lock);
1998 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1999 	spin_unlock(&BTRFS_I(inode)->lock);
2000 }
2001 
2002 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2003 				      struct inode *inode)
2004 {
2005 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2006 
2007 	spin_lock(&root->delalloc_lock);
2008 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2009 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2010 			      &root->delalloc_inodes);
2011 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2012 			&BTRFS_I(inode)->runtime_flags);
2013 		root->nr_delalloc_inodes++;
2014 		if (root->nr_delalloc_inodes == 1) {
2015 			spin_lock(&fs_info->delalloc_root_lock);
2016 			BUG_ON(!list_empty(&root->delalloc_root));
2017 			list_add_tail(&root->delalloc_root,
2018 				      &fs_info->delalloc_roots);
2019 			spin_unlock(&fs_info->delalloc_root_lock);
2020 		}
2021 	}
2022 	spin_unlock(&root->delalloc_lock);
2023 }
2024 
2025 
2026 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2027 				struct btrfs_inode *inode)
2028 {
2029 	struct btrfs_fs_info *fs_info = root->fs_info;
2030 
2031 	if (!list_empty(&inode->delalloc_inodes)) {
2032 		list_del_init(&inode->delalloc_inodes);
2033 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2034 			  &inode->runtime_flags);
2035 		root->nr_delalloc_inodes--;
2036 		if (!root->nr_delalloc_inodes) {
2037 			ASSERT(list_empty(&root->delalloc_inodes));
2038 			spin_lock(&fs_info->delalloc_root_lock);
2039 			BUG_ON(list_empty(&root->delalloc_root));
2040 			list_del_init(&root->delalloc_root);
2041 			spin_unlock(&fs_info->delalloc_root_lock);
2042 		}
2043 	}
2044 }
2045 
2046 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2047 				     struct btrfs_inode *inode)
2048 {
2049 	spin_lock(&root->delalloc_lock);
2050 	__btrfs_del_delalloc_inode(root, inode);
2051 	spin_unlock(&root->delalloc_lock);
2052 }
2053 
2054 /*
2055  * Properly track delayed allocation bytes in the inode and to maintain the
2056  * list of inodes that have pending delalloc work to be done.
2057  */
2058 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2059 			       unsigned *bits)
2060 {
2061 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2062 
2063 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2064 		WARN_ON(1);
2065 	/*
2066 	 * set_bit and clear bit hooks normally require _irqsave/restore
2067 	 * but in this case, we are only testing for the DELALLOC
2068 	 * bit, which is only set or cleared with irqs on
2069 	 */
2070 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2071 		struct btrfs_root *root = BTRFS_I(inode)->root;
2072 		u64 len = state->end + 1 - state->start;
2073 		u32 num_extents = count_max_extents(len);
2074 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2075 
2076 		spin_lock(&BTRFS_I(inode)->lock);
2077 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2078 		spin_unlock(&BTRFS_I(inode)->lock);
2079 
2080 		/* For sanity tests */
2081 		if (btrfs_is_testing(fs_info))
2082 			return;
2083 
2084 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2085 					 fs_info->delalloc_batch);
2086 		spin_lock(&BTRFS_I(inode)->lock);
2087 		BTRFS_I(inode)->delalloc_bytes += len;
2088 		if (*bits & EXTENT_DEFRAG)
2089 			BTRFS_I(inode)->defrag_bytes += len;
2090 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2091 					 &BTRFS_I(inode)->runtime_flags))
2092 			btrfs_add_delalloc_inodes(root, inode);
2093 		spin_unlock(&BTRFS_I(inode)->lock);
2094 	}
2095 
2096 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2097 	    (*bits & EXTENT_DELALLOC_NEW)) {
2098 		spin_lock(&BTRFS_I(inode)->lock);
2099 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2100 			state->start;
2101 		spin_unlock(&BTRFS_I(inode)->lock);
2102 	}
2103 }
2104 
2105 /*
2106  * Once a range is no longer delalloc this function ensures that proper
2107  * accounting happens.
2108  */
2109 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2110 				 struct extent_state *state, unsigned *bits)
2111 {
2112 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2113 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2114 	u64 len = state->end + 1 - state->start;
2115 	u32 num_extents = count_max_extents(len);
2116 
2117 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2118 		spin_lock(&inode->lock);
2119 		inode->defrag_bytes -= len;
2120 		spin_unlock(&inode->lock);
2121 	}
2122 
2123 	/*
2124 	 * set_bit and clear bit hooks normally require _irqsave/restore
2125 	 * but in this case, we are only testing for the DELALLOC
2126 	 * bit, which is only set or cleared with irqs on
2127 	 */
2128 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2129 		struct btrfs_root *root = inode->root;
2130 		bool do_list = !btrfs_is_free_space_inode(inode);
2131 
2132 		spin_lock(&inode->lock);
2133 		btrfs_mod_outstanding_extents(inode, -num_extents);
2134 		spin_unlock(&inode->lock);
2135 
2136 		/*
2137 		 * We don't reserve metadata space for space cache inodes so we
2138 		 * don't need to call delalloc_release_metadata if there is an
2139 		 * error.
2140 		 */
2141 		if (*bits & EXTENT_CLEAR_META_RESV &&
2142 		    root != fs_info->tree_root)
2143 			btrfs_delalloc_release_metadata(inode, len, false);
2144 
2145 		/* For sanity tests. */
2146 		if (btrfs_is_testing(fs_info))
2147 			return;
2148 
2149 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2150 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2151 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2152 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2153 
2154 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2155 					 fs_info->delalloc_batch);
2156 		spin_lock(&inode->lock);
2157 		inode->delalloc_bytes -= len;
2158 		if (do_list && inode->delalloc_bytes == 0 &&
2159 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2160 					&inode->runtime_flags))
2161 			btrfs_del_delalloc_inode(root, inode);
2162 		spin_unlock(&inode->lock);
2163 	}
2164 
2165 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2166 	    (*bits & EXTENT_DELALLOC_NEW)) {
2167 		spin_lock(&inode->lock);
2168 		ASSERT(inode->new_delalloc_bytes >= len);
2169 		inode->new_delalloc_bytes -= len;
2170 		if (*bits & EXTENT_ADD_INODE_BYTES)
2171 			inode_add_bytes(&inode->vfs_inode, len);
2172 		spin_unlock(&inode->lock);
2173 	}
2174 }
2175 
2176 /*
2177  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2178  * in a chunk's stripe. This function ensures that bios do not span a
2179  * stripe/chunk
2180  *
2181  * @page - The page we are about to add to the bio
2182  * @size - size we want to add to the bio
2183  * @bio - bio we want to ensure is smaller than a stripe
2184  * @bio_flags - flags of the bio
2185  *
2186  * return 1 if page cannot be added to the bio
2187  * return 0 if page can be added to the bio
2188  * return error otherwise
2189  */
2190 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2191 			     unsigned long bio_flags)
2192 {
2193 	struct inode *inode = page->mapping->host;
2194 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2195 	u64 logical = bio->bi_iter.bi_sector << 9;
2196 	struct extent_map *em;
2197 	u64 length = 0;
2198 	u64 map_length;
2199 	int ret = 0;
2200 	struct btrfs_io_geometry geom;
2201 
2202 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2203 		return 0;
2204 
2205 	length = bio->bi_iter.bi_size;
2206 	map_length = length;
2207 	em = btrfs_get_chunk_map(fs_info, logical, map_length);
2208 	if (IS_ERR(em))
2209 		return PTR_ERR(em);
2210 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical,
2211 				    map_length, &geom);
2212 	if (ret < 0)
2213 		goto out;
2214 
2215 	if (geom.len < length + size)
2216 		ret = 1;
2217 out:
2218 	free_extent_map(em);
2219 	return ret;
2220 }
2221 
2222 /*
2223  * in order to insert checksums into the metadata in large chunks,
2224  * we wait until bio submission time.   All the pages in the bio are
2225  * checksummed and sums are attached onto the ordered extent record.
2226  *
2227  * At IO completion time the cums attached on the ordered extent record
2228  * are inserted into the btree
2229  */
2230 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2231 					   u64 dio_file_offset)
2232 {
2233 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2234 }
2235 
2236 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio,
2237 				      unsigned int size)
2238 {
2239 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2240 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2241 	struct btrfs_ordered_extent *ordered;
2242 	u64 len = bio->bi_iter.bi_size + size;
2243 	bool ret = true;
2244 
2245 	ASSERT(btrfs_is_zoned(fs_info));
2246 	ASSERT(fs_info->max_zone_append_size > 0);
2247 	ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND);
2248 
2249 	/* Ordered extent not yet created, so we're good */
2250 	ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
2251 	if (!ordered)
2252 		return ret;
2253 
2254 	if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len >
2255 	    ordered->disk_bytenr + ordered->disk_num_bytes)
2256 		ret = false;
2257 
2258 	btrfs_put_ordered_extent(ordered);
2259 
2260 	return ret;
2261 }
2262 
2263 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2264 					   struct bio *bio, loff_t file_offset)
2265 {
2266 	struct btrfs_ordered_extent *ordered;
2267 	struct extent_map *em = NULL, *em_new = NULL;
2268 	struct extent_map_tree *em_tree = &inode->extent_tree;
2269 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2270 	u64 len = bio->bi_iter.bi_size;
2271 	u64 end = start + len;
2272 	u64 ordered_end;
2273 	u64 pre, post;
2274 	int ret = 0;
2275 
2276 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2277 	if (WARN_ON_ONCE(!ordered))
2278 		return BLK_STS_IOERR;
2279 
2280 	/* No need to split */
2281 	if (ordered->disk_num_bytes == len)
2282 		goto out;
2283 
2284 	/* We cannot split once end_bio'd ordered extent */
2285 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2286 		ret = -EINVAL;
2287 		goto out;
2288 	}
2289 
2290 	/* We cannot split a compressed ordered extent */
2291 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2292 		ret = -EINVAL;
2293 		goto out;
2294 	}
2295 
2296 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2297 	/* bio must be in one ordered extent */
2298 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2299 		ret = -EINVAL;
2300 		goto out;
2301 	}
2302 
2303 	/* Checksum list should be empty */
2304 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2305 		ret = -EINVAL;
2306 		goto out;
2307 	}
2308 
2309 	pre = start - ordered->disk_bytenr;
2310 	post = ordered_end - end;
2311 
2312 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2313 	if (ret)
2314 		goto out;
2315 
2316 	read_lock(&em_tree->lock);
2317 	em = lookup_extent_mapping(em_tree, ordered->file_offset, len);
2318 	if (!em) {
2319 		read_unlock(&em_tree->lock);
2320 		ret = -EIO;
2321 		goto out;
2322 	}
2323 	read_unlock(&em_tree->lock);
2324 
2325 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2326 	/*
2327 	 * We cannot reuse em_new here but have to create a new one, as
2328 	 * unpin_extent_cache() expects the start of the extent map to be the
2329 	 * logical offset of the file, which does not hold true anymore after
2330 	 * splitting.
2331 	 */
2332 	em_new = create_io_em(inode, em->start + pre, len,
2333 			      em->start + pre, em->block_start + pre, len,
2334 			      len, len, BTRFS_COMPRESS_NONE,
2335 			      BTRFS_ORDERED_REGULAR);
2336 	if (IS_ERR(em_new)) {
2337 		ret = PTR_ERR(em_new);
2338 		goto out;
2339 	}
2340 	free_extent_map(em_new);
2341 
2342 out:
2343 	free_extent_map(em);
2344 	btrfs_put_ordered_extent(ordered);
2345 
2346 	return errno_to_blk_status(ret);
2347 }
2348 
2349 /*
2350  * extent_io.c submission hook. This does the right thing for csum calculation
2351  * on write, or reading the csums from the tree before a read.
2352  *
2353  * Rules about async/sync submit,
2354  * a) read:				sync submit
2355  *
2356  * b) write without checksum:		sync submit
2357  *
2358  * c) write with checksum:
2359  *    c-1) if bio is issued by fsync:	sync submit
2360  *         (sync_writers != 0)
2361  *
2362  *    c-2) if root is reloc root:	sync submit
2363  *         (only in case of buffered IO)
2364  *
2365  *    c-3) otherwise:			async submit
2366  */
2367 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2368 				   int mirror_num, unsigned long bio_flags)
2369 
2370 {
2371 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2372 	struct btrfs_root *root = BTRFS_I(inode)->root;
2373 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2374 	blk_status_t ret = 0;
2375 	int skip_sum;
2376 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2377 
2378 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2379 		   !fs_info->csum_root;
2380 
2381 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2382 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2383 
2384 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2385 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2386 		loff_t file_offset = page_offset(page);
2387 
2388 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2389 		if (ret)
2390 			goto out;
2391 	}
2392 
2393 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2394 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2395 		if (ret)
2396 			goto out;
2397 
2398 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2399 			ret = btrfs_submit_compressed_read(inode, bio,
2400 							   mirror_num,
2401 							   bio_flags);
2402 			goto out;
2403 		} else {
2404 			/*
2405 			 * Lookup bio sums does extra checks around whether we
2406 			 * need to csum or not, which is why we ignore skip_sum
2407 			 * here.
2408 			 */
2409 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2410 			if (ret)
2411 				goto out;
2412 		}
2413 		goto mapit;
2414 	} else if (async && !skip_sum) {
2415 		/* csum items have already been cloned */
2416 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2417 			goto mapit;
2418 		/* we're doing a write, do the async checksumming */
2419 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2420 					  0, btrfs_submit_bio_start);
2421 		goto out;
2422 	} else if (!skip_sum) {
2423 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2424 		if (ret)
2425 			goto out;
2426 	}
2427 
2428 mapit:
2429 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2430 
2431 out:
2432 	if (ret) {
2433 		bio->bi_status = ret;
2434 		bio_endio(bio);
2435 	}
2436 	return ret;
2437 }
2438 
2439 /*
2440  * given a list of ordered sums record them in the inode.  This happens
2441  * at IO completion time based on sums calculated at bio submission time.
2442  */
2443 static int add_pending_csums(struct btrfs_trans_handle *trans,
2444 			     struct list_head *list)
2445 {
2446 	struct btrfs_ordered_sum *sum;
2447 	int ret;
2448 
2449 	list_for_each_entry(sum, list, list) {
2450 		trans->adding_csums = true;
2451 		ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2452 		trans->adding_csums = false;
2453 		if (ret)
2454 			return ret;
2455 	}
2456 	return 0;
2457 }
2458 
2459 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2460 					 const u64 start,
2461 					 const u64 len,
2462 					 struct extent_state **cached_state)
2463 {
2464 	u64 search_start = start;
2465 	const u64 end = start + len - 1;
2466 
2467 	while (search_start < end) {
2468 		const u64 search_len = end - search_start + 1;
2469 		struct extent_map *em;
2470 		u64 em_len;
2471 		int ret = 0;
2472 
2473 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2474 		if (IS_ERR(em))
2475 			return PTR_ERR(em);
2476 
2477 		if (em->block_start != EXTENT_MAP_HOLE)
2478 			goto next;
2479 
2480 		em_len = em->len;
2481 		if (em->start < search_start)
2482 			em_len -= search_start - em->start;
2483 		if (em_len > search_len)
2484 			em_len = search_len;
2485 
2486 		ret = set_extent_bit(&inode->io_tree, search_start,
2487 				     search_start + em_len - 1,
2488 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2489 				     GFP_NOFS, NULL);
2490 next:
2491 		search_start = extent_map_end(em);
2492 		free_extent_map(em);
2493 		if (ret)
2494 			return ret;
2495 	}
2496 	return 0;
2497 }
2498 
2499 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2500 			      unsigned int extra_bits,
2501 			      struct extent_state **cached_state)
2502 {
2503 	WARN_ON(PAGE_ALIGNED(end));
2504 
2505 	if (start >= i_size_read(&inode->vfs_inode) &&
2506 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2507 		/*
2508 		 * There can't be any extents following eof in this case so just
2509 		 * set the delalloc new bit for the range directly.
2510 		 */
2511 		extra_bits |= EXTENT_DELALLOC_NEW;
2512 	} else {
2513 		int ret;
2514 
2515 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2516 						    end + 1 - start,
2517 						    cached_state);
2518 		if (ret)
2519 			return ret;
2520 	}
2521 
2522 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2523 				   cached_state);
2524 }
2525 
2526 /* see btrfs_writepage_start_hook for details on why this is required */
2527 struct btrfs_writepage_fixup {
2528 	struct page *page;
2529 	struct inode *inode;
2530 	struct btrfs_work work;
2531 };
2532 
2533 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2534 {
2535 	struct btrfs_writepage_fixup *fixup;
2536 	struct btrfs_ordered_extent *ordered;
2537 	struct extent_state *cached_state = NULL;
2538 	struct extent_changeset *data_reserved = NULL;
2539 	struct page *page;
2540 	struct btrfs_inode *inode;
2541 	u64 page_start;
2542 	u64 page_end;
2543 	int ret = 0;
2544 	bool free_delalloc_space = true;
2545 
2546 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2547 	page = fixup->page;
2548 	inode = BTRFS_I(fixup->inode);
2549 	page_start = page_offset(page);
2550 	page_end = page_offset(page) + PAGE_SIZE - 1;
2551 
2552 	/*
2553 	 * This is similar to page_mkwrite, we need to reserve the space before
2554 	 * we take the page lock.
2555 	 */
2556 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2557 					   PAGE_SIZE);
2558 again:
2559 	lock_page(page);
2560 
2561 	/*
2562 	 * Before we queued this fixup, we took a reference on the page.
2563 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2564 	 * address space.
2565 	 */
2566 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2567 		/*
2568 		 * Unfortunately this is a little tricky, either
2569 		 *
2570 		 * 1) We got here and our page had already been dealt with and
2571 		 *    we reserved our space, thus ret == 0, so we need to just
2572 		 *    drop our space reservation and bail.  This can happen the
2573 		 *    first time we come into the fixup worker, or could happen
2574 		 *    while waiting for the ordered extent.
2575 		 * 2) Our page was already dealt with, but we happened to get an
2576 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2577 		 *    this case we obviously don't have anything to release, but
2578 		 *    because the page was already dealt with we don't want to
2579 		 *    mark the page with an error, so make sure we're resetting
2580 		 *    ret to 0.  This is why we have this check _before_ the ret
2581 		 *    check, because we do not want to have a surprise ENOSPC
2582 		 *    when the page was already properly dealt with.
2583 		 */
2584 		if (!ret) {
2585 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2586 			btrfs_delalloc_release_space(inode, data_reserved,
2587 						     page_start, PAGE_SIZE,
2588 						     true);
2589 		}
2590 		ret = 0;
2591 		goto out_page;
2592 	}
2593 
2594 	/*
2595 	 * We can't mess with the page state unless it is locked, so now that
2596 	 * it is locked bail if we failed to make our space reservation.
2597 	 */
2598 	if (ret)
2599 		goto out_page;
2600 
2601 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2602 
2603 	/* already ordered? We're done */
2604 	if (PagePrivate2(page))
2605 		goto out_reserved;
2606 
2607 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2608 	if (ordered) {
2609 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2610 				     &cached_state);
2611 		unlock_page(page);
2612 		btrfs_start_ordered_extent(ordered, 1);
2613 		btrfs_put_ordered_extent(ordered);
2614 		goto again;
2615 	}
2616 
2617 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2618 					&cached_state);
2619 	if (ret)
2620 		goto out_reserved;
2621 
2622 	/*
2623 	 * Everything went as planned, we're now the owner of a dirty page with
2624 	 * delayed allocation bits set and space reserved for our COW
2625 	 * destination.
2626 	 *
2627 	 * The page was dirty when we started, nothing should have cleaned it.
2628 	 */
2629 	BUG_ON(!PageDirty(page));
2630 	free_delalloc_space = false;
2631 out_reserved:
2632 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2633 	if (free_delalloc_space)
2634 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2635 					     PAGE_SIZE, true);
2636 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2637 			     &cached_state);
2638 out_page:
2639 	if (ret) {
2640 		/*
2641 		 * We hit ENOSPC or other errors.  Update the mapping and page
2642 		 * to reflect the errors and clean the page.
2643 		 */
2644 		mapping_set_error(page->mapping, ret);
2645 		end_extent_writepage(page, ret, page_start, page_end);
2646 		clear_page_dirty_for_io(page);
2647 		SetPageError(page);
2648 	}
2649 	ClearPageChecked(page);
2650 	unlock_page(page);
2651 	put_page(page);
2652 	kfree(fixup);
2653 	extent_changeset_free(data_reserved);
2654 	/*
2655 	 * As a precaution, do a delayed iput in case it would be the last iput
2656 	 * that could need flushing space. Recursing back to fixup worker would
2657 	 * deadlock.
2658 	 */
2659 	btrfs_add_delayed_iput(&inode->vfs_inode);
2660 }
2661 
2662 /*
2663  * There are a few paths in the higher layers of the kernel that directly
2664  * set the page dirty bit without asking the filesystem if it is a
2665  * good idea.  This causes problems because we want to make sure COW
2666  * properly happens and the data=ordered rules are followed.
2667  *
2668  * In our case any range that doesn't have the ORDERED bit set
2669  * hasn't been properly setup for IO.  We kick off an async process
2670  * to fix it up.  The async helper will wait for ordered extents, set
2671  * the delalloc bit and make it safe to write the page.
2672  */
2673 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2674 {
2675 	struct inode *inode = page->mapping->host;
2676 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2677 	struct btrfs_writepage_fixup *fixup;
2678 
2679 	/* this page is properly in the ordered list */
2680 	if (TestClearPagePrivate2(page))
2681 		return 0;
2682 
2683 	/*
2684 	 * PageChecked is set below when we create a fixup worker for this page,
2685 	 * don't try to create another one if we're already PageChecked()
2686 	 *
2687 	 * The extent_io writepage code will redirty the page if we send back
2688 	 * EAGAIN.
2689 	 */
2690 	if (PageChecked(page))
2691 		return -EAGAIN;
2692 
2693 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2694 	if (!fixup)
2695 		return -EAGAIN;
2696 
2697 	/*
2698 	 * We are already holding a reference to this inode from
2699 	 * write_cache_pages.  We need to hold it because the space reservation
2700 	 * takes place outside of the page lock, and we can't trust
2701 	 * page->mapping outside of the page lock.
2702 	 */
2703 	ihold(inode);
2704 	SetPageChecked(page);
2705 	get_page(page);
2706 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2707 	fixup->page = page;
2708 	fixup->inode = inode;
2709 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2710 
2711 	return -EAGAIN;
2712 }
2713 
2714 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2715 				       struct btrfs_inode *inode, u64 file_pos,
2716 				       struct btrfs_file_extent_item *stack_fi,
2717 				       const bool update_inode_bytes,
2718 				       u64 qgroup_reserved)
2719 {
2720 	struct btrfs_root *root = inode->root;
2721 	const u64 sectorsize = root->fs_info->sectorsize;
2722 	struct btrfs_path *path;
2723 	struct extent_buffer *leaf;
2724 	struct btrfs_key ins;
2725 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2726 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2727 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2728 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2729 	struct btrfs_drop_extents_args drop_args = { 0 };
2730 	int ret;
2731 
2732 	path = btrfs_alloc_path();
2733 	if (!path)
2734 		return -ENOMEM;
2735 
2736 	/*
2737 	 * we may be replacing one extent in the tree with another.
2738 	 * The new extent is pinned in the extent map, and we don't want
2739 	 * to drop it from the cache until it is completely in the btree.
2740 	 *
2741 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2742 	 * the caller is expected to unpin it and allow it to be merged
2743 	 * with the others.
2744 	 */
2745 	drop_args.path = path;
2746 	drop_args.start = file_pos;
2747 	drop_args.end = file_pos + num_bytes;
2748 	drop_args.replace_extent = true;
2749 	drop_args.extent_item_size = sizeof(*stack_fi);
2750 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2751 	if (ret)
2752 		goto out;
2753 
2754 	if (!drop_args.extent_inserted) {
2755 		ins.objectid = btrfs_ino(inode);
2756 		ins.offset = file_pos;
2757 		ins.type = BTRFS_EXTENT_DATA_KEY;
2758 
2759 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2760 					      sizeof(*stack_fi));
2761 		if (ret)
2762 			goto out;
2763 	}
2764 	leaf = path->nodes[0];
2765 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2766 	write_extent_buffer(leaf, stack_fi,
2767 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2768 			sizeof(struct btrfs_file_extent_item));
2769 
2770 	btrfs_mark_buffer_dirty(leaf);
2771 	btrfs_release_path(path);
2772 
2773 	/*
2774 	 * If we dropped an inline extent here, we know the range where it is
2775 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2776 	 * number of bytes only for that range contaning the inline extent.
2777 	 * The remaining of the range will be processed when clearning the
2778 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2779 	 */
2780 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2781 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2782 
2783 		inline_size = drop_args.bytes_found - inline_size;
2784 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2785 		drop_args.bytes_found -= inline_size;
2786 		num_bytes -= sectorsize;
2787 	}
2788 
2789 	if (update_inode_bytes)
2790 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2791 
2792 	ins.objectid = disk_bytenr;
2793 	ins.offset = disk_num_bytes;
2794 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2795 
2796 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2797 	if (ret)
2798 		goto out;
2799 
2800 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2801 					       file_pos, qgroup_reserved, &ins);
2802 out:
2803 	btrfs_free_path(path);
2804 
2805 	return ret;
2806 }
2807 
2808 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2809 					 u64 start, u64 len)
2810 {
2811 	struct btrfs_block_group *cache;
2812 
2813 	cache = btrfs_lookup_block_group(fs_info, start);
2814 	ASSERT(cache);
2815 
2816 	spin_lock(&cache->lock);
2817 	cache->delalloc_bytes -= len;
2818 	spin_unlock(&cache->lock);
2819 
2820 	btrfs_put_block_group(cache);
2821 }
2822 
2823 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2824 					     struct btrfs_ordered_extent *oe)
2825 {
2826 	struct btrfs_file_extent_item stack_fi;
2827 	u64 logical_len;
2828 	bool update_inode_bytes;
2829 
2830 	memset(&stack_fi, 0, sizeof(stack_fi));
2831 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2832 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2833 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2834 						   oe->disk_num_bytes);
2835 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2836 		logical_len = oe->truncated_len;
2837 	else
2838 		logical_len = oe->num_bytes;
2839 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2840 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2841 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2842 	/* Encryption and other encoding is reserved and all 0 */
2843 
2844 	/*
2845 	 * For delalloc, when completing an ordered extent we update the inode's
2846 	 * bytes when clearing the range in the inode's io tree, so pass false
2847 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2848 	 * except if the ordered extent was truncated.
2849 	 */
2850 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2851 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2852 
2853 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2854 					   oe->file_offset, &stack_fi,
2855 					   update_inode_bytes, oe->qgroup_rsv);
2856 }
2857 
2858 /*
2859  * As ordered data IO finishes, this gets called so we can finish
2860  * an ordered extent if the range of bytes in the file it covers are
2861  * fully written.
2862  */
2863 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2864 {
2865 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
2866 	struct btrfs_root *root = inode->root;
2867 	struct btrfs_fs_info *fs_info = root->fs_info;
2868 	struct btrfs_trans_handle *trans = NULL;
2869 	struct extent_io_tree *io_tree = &inode->io_tree;
2870 	struct extent_state *cached_state = NULL;
2871 	u64 start, end;
2872 	int compress_type = 0;
2873 	int ret = 0;
2874 	u64 logical_len = ordered_extent->num_bytes;
2875 	bool freespace_inode;
2876 	bool truncated = false;
2877 	bool clear_reserved_extent = true;
2878 	unsigned int clear_bits = EXTENT_DEFRAG;
2879 
2880 	start = ordered_extent->file_offset;
2881 	end = start + ordered_extent->num_bytes - 1;
2882 
2883 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2884 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2885 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2886 		clear_bits |= EXTENT_DELALLOC_NEW;
2887 
2888 	freespace_inode = btrfs_is_free_space_inode(inode);
2889 
2890 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2891 		ret = -EIO;
2892 		goto out;
2893 	}
2894 
2895 	if (ordered_extent->disk)
2896 		btrfs_rewrite_logical_zoned(ordered_extent);
2897 
2898 	btrfs_free_io_failure_record(inode, start, end);
2899 
2900 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2901 		truncated = true;
2902 		logical_len = ordered_extent->truncated_len;
2903 		/* Truncated the entire extent, don't bother adding */
2904 		if (!logical_len)
2905 			goto out;
2906 	}
2907 
2908 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2909 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2910 
2911 		btrfs_inode_safe_disk_i_size_write(inode, 0);
2912 		if (freespace_inode)
2913 			trans = btrfs_join_transaction_spacecache(root);
2914 		else
2915 			trans = btrfs_join_transaction(root);
2916 		if (IS_ERR(trans)) {
2917 			ret = PTR_ERR(trans);
2918 			trans = NULL;
2919 			goto out;
2920 		}
2921 		trans->block_rsv = &inode->block_rsv;
2922 		ret = btrfs_update_inode_fallback(trans, root, inode);
2923 		if (ret) /* -ENOMEM or corruption */
2924 			btrfs_abort_transaction(trans, ret);
2925 		goto out;
2926 	}
2927 
2928 	clear_bits |= EXTENT_LOCKED;
2929 	lock_extent_bits(io_tree, start, end, &cached_state);
2930 
2931 	if (freespace_inode)
2932 		trans = btrfs_join_transaction_spacecache(root);
2933 	else
2934 		trans = btrfs_join_transaction(root);
2935 	if (IS_ERR(trans)) {
2936 		ret = PTR_ERR(trans);
2937 		trans = NULL;
2938 		goto out;
2939 	}
2940 
2941 	trans->block_rsv = &inode->block_rsv;
2942 
2943 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2944 		compress_type = ordered_extent->compress_type;
2945 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2946 		BUG_ON(compress_type);
2947 		ret = btrfs_mark_extent_written(trans, inode,
2948 						ordered_extent->file_offset,
2949 						ordered_extent->file_offset +
2950 						logical_len);
2951 	} else {
2952 		BUG_ON(root == fs_info->tree_root);
2953 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
2954 		if (!ret) {
2955 			clear_reserved_extent = false;
2956 			btrfs_release_delalloc_bytes(fs_info,
2957 						ordered_extent->disk_bytenr,
2958 						ordered_extent->disk_num_bytes);
2959 		}
2960 	}
2961 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
2962 			   ordered_extent->num_bytes, trans->transid);
2963 	if (ret < 0) {
2964 		btrfs_abort_transaction(trans, ret);
2965 		goto out;
2966 	}
2967 
2968 	ret = add_pending_csums(trans, &ordered_extent->list);
2969 	if (ret) {
2970 		btrfs_abort_transaction(trans, ret);
2971 		goto out;
2972 	}
2973 
2974 	/*
2975 	 * If this is a new delalloc range, clear its new delalloc flag to
2976 	 * update the inode's number of bytes. This needs to be done first
2977 	 * before updating the inode item.
2978 	 */
2979 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
2980 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
2981 		clear_extent_bit(&inode->io_tree, start, end,
2982 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
2983 				 0, 0, &cached_state);
2984 
2985 	btrfs_inode_safe_disk_i_size_write(inode, 0);
2986 	ret = btrfs_update_inode_fallback(trans, root, inode);
2987 	if (ret) { /* -ENOMEM or corruption */
2988 		btrfs_abort_transaction(trans, ret);
2989 		goto out;
2990 	}
2991 	ret = 0;
2992 out:
2993 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
2994 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2995 			 &cached_state);
2996 
2997 	if (trans)
2998 		btrfs_end_transaction(trans);
2999 
3000 	if (ret || truncated) {
3001 		u64 unwritten_start = start;
3002 
3003 		if (truncated)
3004 			unwritten_start += logical_len;
3005 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3006 
3007 		/* Drop the cache for the part of the extent we didn't write. */
3008 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3009 
3010 		/*
3011 		 * If the ordered extent had an IOERR or something else went
3012 		 * wrong we need to return the space for this ordered extent
3013 		 * back to the allocator.  We only free the extent in the
3014 		 * truncated case if we didn't write out the extent at all.
3015 		 *
3016 		 * If we made it past insert_reserved_file_extent before we
3017 		 * errored out then we don't need to do this as the accounting
3018 		 * has already been done.
3019 		 */
3020 		if ((ret || !logical_len) &&
3021 		    clear_reserved_extent &&
3022 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3023 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3024 			/*
3025 			 * Discard the range before returning it back to the
3026 			 * free space pool
3027 			 */
3028 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3029 				btrfs_discard_extent(fs_info,
3030 						ordered_extent->disk_bytenr,
3031 						ordered_extent->disk_num_bytes,
3032 						NULL);
3033 			btrfs_free_reserved_extent(fs_info,
3034 					ordered_extent->disk_bytenr,
3035 					ordered_extent->disk_num_bytes, 1);
3036 		}
3037 	}
3038 
3039 	/*
3040 	 * This needs to be done to make sure anybody waiting knows we are done
3041 	 * updating everything for this ordered extent.
3042 	 */
3043 	btrfs_remove_ordered_extent(inode, ordered_extent);
3044 
3045 	/* once for us */
3046 	btrfs_put_ordered_extent(ordered_extent);
3047 	/* once for the tree */
3048 	btrfs_put_ordered_extent(ordered_extent);
3049 
3050 	return ret;
3051 }
3052 
3053 static void finish_ordered_fn(struct btrfs_work *work)
3054 {
3055 	struct btrfs_ordered_extent *ordered_extent;
3056 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3057 	btrfs_finish_ordered_io(ordered_extent);
3058 }
3059 
3060 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3061 					  u64 end, int uptodate)
3062 {
3063 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3064 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3065 	struct btrfs_ordered_extent *ordered_extent = NULL;
3066 	struct btrfs_workqueue *wq;
3067 
3068 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3069 
3070 	ClearPagePrivate2(page);
3071 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3072 					    end - start + 1, uptodate))
3073 		return;
3074 
3075 	if (btrfs_is_free_space_inode(inode))
3076 		wq = fs_info->endio_freespace_worker;
3077 	else
3078 		wq = fs_info->endio_write_workers;
3079 
3080 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3081 	btrfs_queue_work(wq, &ordered_extent->work);
3082 }
3083 
3084 /*
3085  * check_data_csum - verify checksum of one sector of uncompressed data
3086  * @inode:	inode
3087  * @io_bio:	btrfs_io_bio which contains the csum
3088  * @bio_offset:	offset to the beginning of the bio (in bytes)
3089  * @page:	page where is the data to be verified
3090  * @pgoff:	offset inside the page
3091  * @start:	logical offset in the file
3092  *
3093  * The length of such check is always one sector size.
3094  */
3095 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
3096 			   u32 bio_offset, struct page *page, u32 pgoff,
3097 			   u64 start)
3098 {
3099 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3100 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3101 	char *kaddr;
3102 	u32 len = fs_info->sectorsize;
3103 	const u32 csum_size = fs_info->csum_size;
3104 	unsigned int offset_sectors;
3105 	u8 *csum_expected;
3106 	u8 csum[BTRFS_CSUM_SIZE];
3107 
3108 	ASSERT(pgoff + len <= PAGE_SIZE);
3109 
3110 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3111 	csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size;
3112 
3113 	kaddr = kmap_atomic(page);
3114 	shash->tfm = fs_info->csum_shash;
3115 
3116 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3117 
3118 	if (memcmp(csum, csum_expected, csum_size))
3119 		goto zeroit;
3120 
3121 	kunmap_atomic(kaddr);
3122 	return 0;
3123 zeroit:
3124 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3125 				    io_bio->mirror_num);
3126 	if (io_bio->device)
3127 		btrfs_dev_stat_inc_and_print(io_bio->device,
3128 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3129 	memset(kaddr + pgoff, 1, len);
3130 	flush_dcache_page(page);
3131 	kunmap_atomic(kaddr);
3132 	return -EIO;
3133 }
3134 
3135 /*
3136  * When reads are done, we need to check csums to verify the data is correct.
3137  * if there's a match, we allow the bio to finish.  If not, the code in
3138  * extent_io.c will try to find good copies for us.
3139  *
3140  * @bio_offset:	offset to the beginning of the bio (in bytes)
3141  * @start:	file offset of the range start
3142  * @end:	file offset of the range end (inclusive)
3143  */
3144 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset,
3145 			   struct page *page, u64 start, u64 end)
3146 {
3147 	struct inode *inode = page->mapping->host;
3148 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3149 	struct btrfs_root *root = BTRFS_I(inode)->root;
3150 	const u32 sectorsize = root->fs_info->sectorsize;
3151 	u32 pg_off;
3152 
3153 	if (PageChecked(page)) {
3154 		ClearPageChecked(page);
3155 		return 0;
3156 	}
3157 
3158 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3159 		return 0;
3160 
3161 	if (!root->fs_info->csum_root)
3162 		return 0;
3163 
3164 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3165 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3166 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3167 		return 0;
3168 	}
3169 
3170 	ASSERT(page_offset(page) <= start &&
3171 	       end <= page_offset(page) + PAGE_SIZE - 1);
3172 	for (pg_off = offset_in_page(start);
3173 	     pg_off < offset_in_page(end);
3174 	     pg_off += sectorsize, bio_offset += sectorsize) {
3175 		int ret;
3176 
3177 		ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off,
3178 				      page_offset(page) + pg_off);
3179 		if (ret < 0)
3180 			return -EIO;
3181 	}
3182 	return 0;
3183 }
3184 
3185 /*
3186  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3187  *
3188  * @inode: The inode we want to perform iput on
3189  *
3190  * This function uses the generic vfs_inode::i_count to track whether we should
3191  * just decrement it (in case it's > 1) or if this is the last iput then link
3192  * the inode to the delayed iput machinery. Delayed iputs are processed at
3193  * transaction commit time/superblock commit/cleaner kthread.
3194  */
3195 void btrfs_add_delayed_iput(struct inode *inode)
3196 {
3197 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3198 	struct btrfs_inode *binode = BTRFS_I(inode);
3199 
3200 	if (atomic_add_unless(&inode->i_count, -1, 1))
3201 		return;
3202 
3203 	atomic_inc(&fs_info->nr_delayed_iputs);
3204 	spin_lock(&fs_info->delayed_iput_lock);
3205 	ASSERT(list_empty(&binode->delayed_iput));
3206 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3207 	spin_unlock(&fs_info->delayed_iput_lock);
3208 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3209 		wake_up_process(fs_info->cleaner_kthread);
3210 }
3211 
3212 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3213 				    struct btrfs_inode *inode)
3214 {
3215 	list_del_init(&inode->delayed_iput);
3216 	spin_unlock(&fs_info->delayed_iput_lock);
3217 	iput(&inode->vfs_inode);
3218 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3219 		wake_up(&fs_info->delayed_iputs_wait);
3220 	spin_lock(&fs_info->delayed_iput_lock);
3221 }
3222 
3223 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3224 				   struct btrfs_inode *inode)
3225 {
3226 	if (!list_empty(&inode->delayed_iput)) {
3227 		spin_lock(&fs_info->delayed_iput_lock);
3228 		if (!list_empty(&inode->delayed_iput))
3229 			run_delayed_iput_locked(fs_info, inode);
3230 		spin_unlock(&fs_info->delayed_iput_lock);
3231 	}
3232 }
3233 
3234 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3235 {
3236 
3237 	spin_lock(&fs_info->delayed_iput_lock);
3238 	while (!list_empty(&fs_info->delayed_iputs)) {
3239 		struct btrfs_inode *inode;
3240 
3241 		inode = list_first_entry(&fs_info->delayed_iputs,
3242 				struct btrfs_inode, delayed_iput);
3243 		run_delayed_iput_locked(fs_info, inode);
3244 	}
3245 	spin_unlock(&fs_info->delayed_iput_lock);
3246 }
3247 
3248 /**
3249  * Wait for flushing all delayed iputs
3250  *
3251  * @fs_info:  the filesystem
3252  *
3253  * This will wait on any delayed iputs that are currently running with KILLABLE
3254  * set.  Once they are all done running we will return, unless we are killed in
3255  * which case we return EINTR. This helps in user operations like fallocate etc
3256  * that might get blocked on the iputs.
3257  *
3258  * Return EINTR if we were killed, 0 if nothing's pending
3259  */
3260 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3261 {
3262 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3263 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3264 	if (ret)
3265 		return -EINTR;
3266 	return 0;
3267 }
3268 
3269 /*
3270  * This creates an orphan entry for the given inode in case something goes wrong
3271  * in the middle of an unlink.
3272  */
3273 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3274 		     struct btrfs_inode *inode)
3275 {
3276 	int ret;
3277 
3278 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3279 	if (ret && ret != -EEXIST) {
3280 		btrfs_abort_transaction(trans, ret);
3281 		return ret;
3282 	}
3283 
3284 	return 0;
3285 }
3286 
3287 /*
3288  * We have done the delete so we can go ahead and remove the orphan item for
3289  * this particular inode.
3290  */
3291 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3292 			    struct btrfs_inode *inode)
3293 {
3294 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3295 }
3296 
3297 /*
3298  * this cleans up any orphans that may be left on the list from the last use
3299  * of this root.
3300  */
3301 int btrfs_orphan_cleanup(struct btrfs_root *root)
3302 {
3303 	struct btrfs_fs_info *fs_info = root->fs_info;
3304 	struct btrfs_path *path;
3305 	struct extent_buffer *leaf;
3306 	struct btrfs_key key, found_key;
3307 	struct btrfs_trans_handle *trans;
3308 	struct inode *inode;
3309 	u64 last_objectid = 0;
3310 	int ret = 0, nr_unlink = 0;
3311 
3312 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3313 		return 0;
3314 
3315 	path = btrfs_alloc_path();
3316 	if (!path) {
3317 		ret = -ENOMEM;
3318 		goto out;
3319 	}
3320 	path->reada = READA_BACK;
3321 
3322 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3323 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3324 	key.offset = (u64)-1;
3325 
3326 	while (1) {
3327 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3328 		if (ret < 0)
3329 			goto out;
3330 
3331 		/*
3332 		 * if ret == 0 means we found what we were searching for, which
3333 		 * is weird, but possible, so only screw with path if we didn't
3334 		 * find the key and see if we have stuff that matches
3335 		 */
3336 		if (ret > 0) {
3337 			ret = 0;
3338 			if (path->slots[0] == 0)
3339 				break;
3340 			path->slots[0]--;
3341 		}
3342 
3343 		/* pull out the item */
3344 		leaf = path->nodes[0];
3345 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3346 
3347 		/* make sure the item matches what we want */
3348 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3349 			break;
3350 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3351 			break;
3352 
3353 		/* release the path since we're done with it */
3354 		btrfs_release_path(path);
3355 
3356 		/*
3357 		 * this is where we are basically btrfs_lookup, without the
3358 		 * crossing root thing.  we store the inode number in the
3359 		 * offset of the orphan item.
3360 		 */
3361 
3362 		if (found_key.offset == last_objectid) {
3363 			btrfs_err(fs_info,
3364 				  "Error removing orphan entry, stopping orphan cleanup");
3365 			ret = -EINVAL;
3366 			goto out;
3367 		}
3368 
3369 		last_objectid = found_key.offset;
3370 
3371 		found_key.objectid = found_key.offset;
3372 		found_key.type = BTRFS_INODE_ITEM_KEY;
3373 		found_key.offset = 0;
3374 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3375 		ret = PTR_ERR_OR_ZERO(inode);
3376 		if (ret && ret != -ENOENT)
3377 			goto out;
3378 
3379 		if (ret == -ENOENT && root == fs_info->tree_root) {
3380 			struct btrfs_root *dead_root;
3381 			int is_dead_root = 0;
3382 
3383 			/*
3384 			 * This is an orphan in the tree root. Currently these
3385 			 * could come from 2 sources:
3386 			 *  a) a root (snapshot/subvolume) deletion in progress
3387 			 *  b) a free space cache inode
3388 			 * We need to distinguish those two, as the orphan item
3389 			 * for a root must not get deleted before the deletion
3390 			 * of the snapshot/subvolume's tree completes.
3391 			 *
3392 			 * btrfs_find_orphan_roots() ran before us, which has
3393 			 * found all deleted roots and loaded them into
3394 			 * fs_info->fs_roots_radix. So here we can find if an
3395 			 * orphan item corresponds to a deleted root by looking
3396 			 * up the root from that radix tree.
3397 			 */
3398 
3399 			spin_lock(&fs_info->fs_roots_radix_lock);
3400 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3401 							 (unsigned long)found_key.objectid);
3402 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3403 				is_dead_root = 1;
3404 			spin_unlock(&fs_info->fs_roots_radix_lock);
3405 
3406 			if (is_dead_root) {
3407 				/* prevent this orphan from being found again */
3408 				key.offset = found_key.objectid - 1;
3409 				continue;
3410 			}
3411 
3412 		}
3413 
3414 		/*
3415 		 * If we have an inode with links, there are a couple of
3416 		 * possibilities. Old kernels (before v3.12) used to create an
3417 		 * orphan item for truncate indicating that there were possibly
3418 		 * extent items past i_size that needed to be deleted. In v3.12,
3419 		 * truncate was changed to update i_size in sync with the extent
3420 		 * items, but the (useless) orphan item was still created. Since
3421 		 * v4.18, we don't create the orphan item for truncate at all.
3422 		 *
3423 		 * So, this item could mean that we need to do a truncate, but
3424 		 * only if this filesystem was last used on a pre-v3.12 kernel
3425 		 * and was not cleanly unmounted. The odds of that are quite
3426 		 * slim, and it's a pain to do the truncate now, so just delete
3427 		 * the orphan item.
3428 		 *
3429 		 * It's also possible that this orphan item was supposed to be
3430 		 * deleted but wasn't. The inode number may have been reused,
3431 		 * but either way, we can delete the orphan item.
3432 		 */
3433 		if (ret == -ENOENT || inode->i_nlink) {
3434 			if (!ret)
3435 				iput(inode);
3436 			trans = btrfs_start_transaction(root, 1);
3437 			if (IS_ERR(trans)) {
3438 				ret = PTR_ERR(trans);
3439 				goto out;
3440 			}
3441 			btrfs_debug(fs_info, "auto deleting %Lu",
3442 				    found_key.objectid);
3443 			ret = btrfs_del_orphan_item(trans, root,
3444 						    found_key.objectid);
3445 			btrfs_end_transaction(trans);
3446 			if (ret)
3447 				goto out;
3448 			continue;
3449 		}
3450 
3451 		nr_unlink++;
3452 
3453 		/* this will do delete_inode and everything for us */
3454 		iput(inode);
3455 	}
3456 	/* release the path since we're done with it */
3457 	btrfs_release_path(path);
3458 
3459 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3460 
3461 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3462 		trans = btrfs_join_transaction(root);
3463 		if (!IS_ERR(trans))
3464 			btrfs_end_transaction(trans);
3465 	}
3466 
3467 	if (nr_unlink)
3468 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3469 
3470 out:
3471 	if (ret)
3472 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3473 	btrfs_free_path(path);
3474 	return ret;
3475 }
3476 
3477 /*
3478  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3479  * don't find any xattrs, we know there can't be any acls.
3480  *
3481  * slot is the slot the inode is in, objectid is the objectid of the inode
3482  */
3483 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3484 					  int slot, u64 objectid,
3485 					  int *first_xattr_slot)
3486 {
3487 	u32 nritems = btrfs_header_nritems(leaf);
3488 	struct btrfs_key found_key;
3489 	static u64 xattr_access = 0;
3490 	static u64 xattr_default = 0;
3491 	int scanned = 0;
3492 
3493 	if (!xattr_access) {
3494 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3495 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3496 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3497 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3498 	}
3499 
3500 	slot++;
3501 	*first_xattr_slot = -1;
3502 	while (slot < nritems) {
3503 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3504 
3505 		/* we found a different objectid, there must not be acls */
3506 		if (found_key.objectid != objectid)
3507 			return 0;
3508 
3509 		/* we found an xattr, assume we've got an acl */
3510 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3511 			if (*first_xattr_slot == -1)
3512 				*first_xattr_slot = slot;
3513 			if (found_key.offset == xattr_access ||
3514 			    found_key.offset == xattr_default)
3515 				return 1;
3516 		}
3517 
3518 		/*
3519 		 * we found a key greater than an xattr key, there can't
3520 		 * be any acls later on
3521 		 */
3522 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3523 			return 0;
3524 
3525 		slot++;
3526 		scanned++;
3527 
3528 		/*
3529 		 * it goes inode, inode backrefs, xattrs, extents,
3530 		 * so if there are a ton of hard links to an inode there can
3531 		 * be a lot of backrefs.  Don't waste time searching too hard,
3532 		 * this is just an optimization
3533 		 */
3534 		if (scanned >= 8)
3535 			break;
3536 	}
3537 	/* we hit the end of the leaf before we found an xattr or
3538 	 * something larger than an xattr.  We have to assume the inode
3539 	 * has acls
3540 	 */
3541 	if (*first_xattr_slot == -1)
3542 		*first_xattr_slot = slot;
3543 	return 1;
3544 }
3545 
3546 /*
3547  * read an inode from the btree into the in-memory inode
3548  */
3549 static int btrfs_read_locked_inode(struct inode *inode,
3550 				   struct btrfs_path *in_path)
3551 {
3552 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3553 	struct btrfs_path *path = in_path;
3554 	struct extent_buffer *leaf;
3555 	struct btrfs_inode_item *inode_item;
3556 	struct btrfs_root *root = BTRFS_I(inode)->root;
3557 	struct btrfs_key location;
3558 	unsigned long ptr;
3559 	int maybe_acls;
3560 	u32 rdev;
3561 	int ret;
3562 	bool filled = false;
3563 	int first_xattr_slot;
3564 
3565 	ret = btrfs_fill_inode(inode, &rdev);
3566 	if (!ret)
3567 		filled = true;
3568 
3569 	if (!path) {
3570 		path = btrfs_alloc_path();
3571 		if (!path)
3572 			return -ENOMEM;
3573 	}
3574 
3575 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3576 
3577 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3578 	if (ret) {
3579 		if (path != in_path)
3580 			btrfs_free_path(path);
3581 		return ret;
3582 	}
3583 
3584 	leaf = path->nodes[0];
3585 
3586 	if (filled)
3587 		goto cache_index;
3588 
3589 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3590 				    struct btrfs_inode_item);
3591 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3592 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3593 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3594 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3595 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3596 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3597 			round_up(i_size_read(inode), fs_info->sectorsize));
3598 
3599 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3600 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3601 
3602 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3603 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3604 
3605 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3606 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3607 
3608 	BTRFS_I(inode)->i_otime.tv_sec =
3609 		btrfs_timespec_sec(leaf, &inode_item->otime);
3610 	BTRFS_I(inode)->i_otime.tv_nsec =
3611 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3612 
3613 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3614 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3615 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3616 
3617 	inode_set_iversion_queried(inode,
3618 				   btrfs_inode_sequence(leaf, inode_item));
3619 	inode->i_generation = BTRFS_I(inode)->generation;
3620 	inode->i_rdev = 0;
3621 	rdev = btrfs_inode_rdev(leaf, inode_item);
3622 
3623 	BTRFS_I(inode)->index_cnt = (u64)-1;
3624 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3625 
3626 cache_index:
3627 	/*
3628 	 * If we were modified in the current generation and evicted from memory
3629 	 * and then re-read we need to do a full sync since we don't have any
3630 	 * idea about which extents were modified before we were evicted from
3631 	 * cache.
3632 	 *
3633 	 * This is required for both inode re-read from disk and delayed inode
3634 	 * in delayed_nodes_tree.
3635 	 */
3636 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3637 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3638 			&BTRFS_I(inode)->runtime_flags);
3639 
3640 	/*
3641 	 * We don't persist the id of the transaction where an unlink operation
3642 	 * against the inode was last made. So here we assume the inode might
3643 	 * have been evicted, and therefore the exact value of last_unlink_trans
3644 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3645 	 * between the inode and its parent if the inode is fsync'ed and the log
3646 	 * replayed. For example, in the scenario:
3647 	 *
3648 	 * touch mydir/foo
3649 	 * ln mydir/foo mydir/bar
3650 	 * sync
3651 	 * unlink mydir/bar
3652 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3653 	 * xfs_io -c fsync mydir/foo
3654 	 * <power failure>
3655 	 * mount fs, triggers fsync log replay
3656 	 *
3657 	 * We must make sure that when we fsync our inode foo we also log its
3658 	 * parent inode, otherwise after log replay the parent still has the
3659 	 * dentry with the "bar" name but our inode foo has a link count of 1
3660 	 * and doesn't have an inode ref with the name "bar" anymore.
3661 	 *
3662 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3663 	 * but it guarantees correctness at the expense of occasional full
3664 	 * transaction commits on fsync if our inode is a directory, or if our
3665 	 * inode is not a directory, logging its parent unnecessarily.
3666 	 */
3667 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3668 
3669 	/*
3670 	 * Same logic as for last_unlink_trans. We don't persist the generation
3671 	 * of the last transaction where this inode was used for a reflink
3672 	 * operation, so after eviction and reloading the inode we must be
3673 	 * pessimistic and assume the last transaction that modified the inode.
3674 	 */
3675 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3676 
3677 	path->slots[0]++;
3678 	if (inode->i_nlink != 1 ||
3679 	    path->slots[0] >= btrfs_header_nritems(leaf))
3680 		goto cache_acl;
3681 
3682 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3683 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3684 		goto cache_acl;
3685 
3686 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3687 	if (location.type == BTRFS_INODE_REF_KEY) {
3688 		struct btrfs_inode_ref *ref;
3689 
3690 		ref = (struct btrfs_inode_ref *)ptr;
3691 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3692 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3693 		struct btrfs_inode_extref *extref;
3694 
3695 		extref = (struct btrfs_inode_extref *)ptr;
3696 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3697 								     extref);
3698 	}
3699 cache_acl:
3700 	/*
3701 	 * try to precache a NULL acl entry for files that don't have
3702 	 * any xattrs or acls
3703 	 */
3704 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3705 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3706 	if (first_xattr_slot != -1) {
3707 		path->slots[0] = first_xattr_slot;
3708 		ret = btrfs_load_inode_props(inode, path);
3709 		if (ret)
3710 			btrfs_err(fs_info,
3711 				  "error loading props for ino %llu (root %llu): %d",
3712 				  btrfs_ino(BTRFS_I(inode)),
3713 				  root->root_key.objectid, ret);
3714 	}
3715 	if (path != in_path)
3716 		btrfs_free_path(path);
3717 
3718 	if (!maybe_acls)
3719 		cache_no_acl(inode);
3720 
3721 	switch (inode->i_mode & S_IFMT) {
3722 	case S_IFREG:
3723 		inode->i_mapping->a_ops = &btrfs_aops;
3724 		inode->i_fop = &btrfs_file_operations;
3725 		inode->i_op = &btrfs_file_inode_operations;
3726 		break;
3727 	case S_IFDIR:
3728 		inode->i_fop = &btrfs_dir_file_operations;
3729 		inode->i_op = &btrfs_dir_inode_operations;
3730 		break;
3731 	case S_IFLNK:
3732 		inode->i_op = &btrfs_symlink_inode_operations;
3733 		inode_nohighmem(inode);
3734 		inode->i_mapping->a_ops = &btrfs_aops;
3735 		break;
3736 	default:
3737 		inode->i_op = &btrfs_special_inode_operations;
3738 		init_special_inode(inode, inode->i_mode, rdev);
3739 		break;
3740 	}
3741 
3742 	btrfs_sync_inode_flags_to_i_flags(inode);
3743 	return 0;
3744 }
3745 
3746 /*
3747  * given a leaf and an inode, copy the inode fields into the leaf
3748  */
3749 static void fill_inode_item(struct btrfs_trans_handle *trans,
3750 			    struct extent_buffer *leaf,
3751 			    struct btrfs_inode_item *item,
3752 			    struct inode *inode)
3753 {
3754 	struct btrfs_map_token token;
3755 
3756 	btrfs_init_map_token(&token, leaf);
3757 
3758 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3759 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3760 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3761 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3762 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3763 
3764 	btrfs_set_token_timespec_sec(&token, &item->atime,
3765 				     inode->i_atime.tv_sec);
3766 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3767 				      inode->i_atime.tv_nsec);
3768 
3769 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3770 				     inode->i_mtime.tv_sec);
3771 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3772 				      inode->i_mtime.tv_nsec);
3773 
3774 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3775 				     inode->i_ctime.tv_sec);
3776 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3777 				      inode->i_ctime.tv_nsec);
3778 
3779 	btrfs_set_token_timespec_sec(&token, &item->otime,
3780 				     BTRFS_I(inode)->i_otime.tv_sec);
3781 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3782 				      BTRFS_I(inode)->i_otime.tv_nsec);
3783 
3784 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3785 	btrfs_set_token_inode_generation(&token, item,
3786 					 BTRFS_I(inode)->generation);
3787 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3788 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3789 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3790 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3791 	btrfs_set_token_inode_block_group(&token, item, 0);
3792 }
3793 
3794 /*
3795  * copy everything in the in-memory inode into the btree.
3796  */
3797 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3798 				struct btrfs_root *root,
3799 				struct btrfs_inode *inode)
3800 {
3801 	struct btrfs_inode_item *inode_item;
3802 	struct btrfs_path *path;
3803 	struct extent_buffer *leaf;
3804 	int ret;
3805 
3806 	path = btrfs_alloc_path();
3807 	if (!path)
3808 		return -ENOMEM;
3809 
3810 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3811 	if (ret) {
3812 		if (ret > 0)
3813 			ret = -ENOENT;
3814 		goto failed;
3815 	}
3816 
3817 	leaf = path->nodes[0];
3818 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3819 				    struct btrfs_inode_item);
3820 
3821 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3822 	btrfs_mark_buffer_dirty(leaf);
3823 	btrfs_set_inode_last_trans(trans, inode);
3824 	ret = 0;
3825 failed:
3826 	btrfs_free_path(path);
3827 	return ret;
3828 }
3829 
3830 /*
3831  * copy everything in the in-memory inode into the btree.
3832  */
3833 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3834 				struct btrfs_root *root,
3835 				struct btrfs_inode *inode)
3836 {
3837 	struct btrfs_fs_info *fs_info = root->fs_info;
3838 	int ret;
3839 
3840 	/*
3841 	 * If the inode is a free space inode, we can deadlock during commit
3842 	 * if we put it into the delayed code.
3843 	 *
3844 	 * The data relocation inode should also be directly updated
3845 	 * without delay
3846 	 */
3847 	if (!btrfs_is_free_space_inode(inode)
3848 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3849 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3850 		btrfs_update_root_times(trans, root);
3851 
3852 		ret = btrfs_delayed_update_inode(trans, root, inode);
3853 		if (!ret)
3854 			btrfs_set_inode_last_trans(trans, inode);
3855 		return ret;
3856 	}
3857 
3858 	return btrfs_update_inode_item(trans, root, inode);
3859 }
3860 
3861 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3862 				struct btrfs_root *root, struct btrfs_inode *inode)
3863 {
3864 	int ret;
3865 
3866 	ret = btrfs_update_inode(trans, root, inode);
3867 	if (ret == -ENOSPC)
3868 		return btrfs_update_inode_item(trans, root, inode);
3869 	return ret;
3870 }
3871 
3872 /*
3873  * unlink helper that gets used here in inode.c and in the tree logging
3874  * recovery code.  It remove a link in a directory with a given name, and
3875  * also drops the back refs in the inode to the directory
3876  */
3877 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3878 				struct btrfs_root *root,
3879 				struct btrfs_inode *dir,
3880 				struct btrfs_inode *inode,
3881 				const char *name, int name_len)
3882 {
3883 	struct btrfs_fs_info *fs_info = root->fs_info;
3884 	struct btrfs_path *path;
3885 	int ret = 0;
3886 	struct btrfs_dir_item *di;
3887 	u64 index;
3888 	u64 ino = btrfs_ino(inode);
3889 	u64 dir_ino = btrfs_ino(dir);
3890 
3891 	path = btrfs_alloc_path();
3892 	if (!path) {
3893 		ret = -ENOMEM;
3894 		goto out;
3895 	}
3896 
3897 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3898 				    name, name_len, -1);
3899 	if (IS_ERR_OR_NULL(di)) {
3900 		ret = di ? PTR_ERR(di) : -ENOENT;
3901 		goto err;
3902 	}
3903 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3904 	if (ret)
3905 		goto err;
3906 	btrfs_release_path(path);
3907 
3908 	/*
3909 	 * If we don't have dir index, we have to get it by looking up
3910 	 * the inode ref, since we get the inode ref, remove it directly,
3911 	 * it is unnecessary to do delayed deletion.
3912 	 *
3913 	 * But if we have dir index, needn't search inode ref to get it.
3914 	 * Since the inode ref is close to the inode item, it is better
3915 	 * that we delay to delete it, and just do this deletion when
3916 	 * we update the inode item.
3917 	 */
3918 	if (inode->dir_index) {
3919 		ret = btrfs_delayed_delete_inode_ref(inode);
3920 		if (!ret) {
3921 			index = inode->dir_index;
3922 			goto skip_backref;
3923 		}
3924 	}
3925 
3926 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3927 				  dir_ino, &index);
3928 	if (ret) {
3929 		btrfs_info(fs_info,
3930 			"failed to delete reference to %.*s, inode %llu parent %llu",
3931 			name_len, name, ino, dir_ino);
3932 		btrfs_abort_transaction(trans, ret);
3933 		goto err;
3934 	}
3935 skip_backref:
3936 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3937 	if (ret) {
3938 		btrfs_abort_transaction(trans, ret);
3939 		goto err;
3940 	}
3941 
3942 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3943 			dir_ino);
3944 	if (ret != 0 && ret != -ENOENT) {
3945 		btrfs_abort_transaction(trans, ret);
3946 		goto err;
3947 	}
3948 
3949 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3950 			index);
3951 	if (ret == -ENOENT)
3952 		ret = 0;
3953 	else if (ret)
3954 		btrfs_abort_transaction(trans, ret);
3955 
3956 	/*
3957 	 * If we have a pending delayed iput we could end up with the final iput
3958 	 * being run in btrfs-cleaner context.  If we have enough of these built
3959 	 * up we can end up burning a lot of time in btrfs-cleaner without any
3960 	 * way to throttle the unlinks.  Since we're currently holding a ref on
3961 	 * the inode we can run the delayed iput here without any issues as the
3962 	 * final iput won't be done until after we drop the ref we're currently
3963 	 * holding.
3964 	 */
3965 	btrfs_run_delayed_iput(fs_info, inode);
3966 err:
3967 	btrfs_free_path(path);
3968 	if (ret)
3969 		goto out;
3970 
3971 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3972 	inode_inc_iversion(&inode->vfs_inode);
3973 	inode_inc_iversion(&dir->vfs_inode);
3974 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3975 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3976 	ret = btrfs_update_inode(trans, root, dir);
3977 out:
3978 	return ret;
3979 }
3980 
3981 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3982 		       struct btrfs_root *root,
3983 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3984 		       const char *name, int name_len)
3985 {
3986 	int ret;
3987 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3988 	if (!ret) {
3989 		drop_nlink(&inode->vfs_inode);
3990 		ret = btrfs_update_inode(trans, root, inode);
3991 	}
3992 	return ret;
3993 }
3994 
3995 /*
3996  * helper to start transaction for unlink and rmdir.
3997  *
3998  * unlink and rmdir are special in btrfs, they do not always free space, so
3999  * if we cannot make our reservations the normal way try and see if there is
4000  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4001  * allow the unlink to occur.
4002  */
4003 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4004 {
4005 	struct btrfs_root *root = BTRFS_I(dir)->root;
4006 
4007 	/*
4008 	 * 1 for the possible orphan item
4009 	 * 1 for the dir item
4010 	 * 1 for the dir index
4011 	 * 1 for the inode ref
4012 	 * 1 for the inode
4013 	 */
4014 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
4015 }
4016 
4017 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4018 {
4019 	struct btrfs_root *root = BTRFS_I(dir)->root;
4020 	struct btrfs_trans_handle *trans;
4021 	struct inode *inode = d_inode(dentry);
4022 	int ret;
4023 
4024 	trans = __unlink_start_trans(dir);
4025 	if (IS_ERR(trans))
4026 		return PTR_ERR(trans);
4027 
4028 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4029 			0);
4030 
4031 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4032 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4033 			dentry->d_name.len);
4034 	if (ret)
4035 		goto out;
4036 
4037 	if (inode->i_nlink == 0) {
4038 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4039 		if (ret)
4040 			goto out;
4041 	}
4042 
4043 out:
4044 	btrfs_end_transaction(trans);
4045 	btrfs_btree_balance_dirty(root->fs_info);
4046 	return ret;
4047 }
4048 
4049 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4050 			       struct inode *dir, struct dentry *dentry)
4051 {
4052 	struct btrfs_root *root = BTRFS_I(dir)->root;
4053 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4054 	struct btrfs_path *path;
4055 	struct extent_buffer *leaf;
4056 	struct btrfs_dir_item *di;
4057 	struct btrfs_key key;
4058 	const char *name = dentry->d_name.name;
4059 	int name_len = dentry->d_name.len;
4060 	u64 index;
4061 	int ret;
4062 	u64 objectid;
4063 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4064 
4065 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4066 		objectid = inode->root->root_key.objectid;
4067 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4068 		objectid = inode->location.objectid;
4069 	} else {
4070 		WARN_ON(1);
4071 		return -EINVAL;
4072 	}
4073 
4074 	path = btrfs_alloc_path();
4075 	if (!path)
4076 		return -ENOMEM;
4077 
4078 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4079 				   name, name_len, -1);
4080 	if (IS_ERR_OR_NULL(di)) {
4081 		ret = di ? PTR_ERR(di) : -ENOENT;
4082 		goto out;
4083 	}
4084 
4085 	leaf = path->nodes[0];
4086 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4087 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4088 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4089 	if (ret) {
4090 		btrfs_abort_transaction(trans, ret);
4091 		goto out;
4092 	}
4093 	btrfs_release_path(path);
4094 
4095 	/*
4096 	 * This is a placeholder inode for a subvolume we didn't have a
4097 	 * reference to at the time of the snapshot creation.  In the meantime
4098 	 * we could have renamed the real subvol link into our snapshot, so
4099 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4100 	 * Instead simply lookup the dir_index_item for this entry so we can
4101 	 * remove it.  Otherwise we know we have a ref to the root and we can
4102 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4103 	 */
4104 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4105 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4106 						 name, name_len);
4107 		if (IS_ERR_OR_NULL(di)) {
4108 			if (!di)
4109 				ret = -ENOENT;
4110 			else
4111 				ret = PTR_ERR(di);
4112 			btrfs_abort_transaction(trans, ret);
4113 			goto out;
4114 		}
4115 
4116 		leaf = path->nodes[0];
4117 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4118 		index = key.offset;
4119 		btrfs_release_path(path);
4120 	} else {
4121 		ret = btrfs_del_root_ref(trans, objectid,
4122 					 root->root_key.objectid, dir_ino,
4123 					 &index, name, name_len);
4124 		if (ret) {
4125 			btrfs_abort_transaction(trans, ret);
4126 			goto out;
4127 		}
4128 	}
4129 
4130 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4131 	if (ret) {
4132 		btrfs_abort_transaction(trans, ret);
4133 		goto out;
4134 	}
4135 
4136 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4137 	inode_inc_iversion(dir);
4138 	dir->i_mtime = dir->i_ctime = current_time(dir);
4139 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4140 	if (ret)
4141 		btrfs_abort_transaction(trans, ret);
4142 out:
4143 	btrfs_free_path(path);
4144 	return ret;
4145 }
4146 
4147 /*
4148  * Helper to check if the subvolume references other subvolumes or if it's
4149  * default.
4150  */
4151 static noinline int may_destroy_subvol(struct btrfs_root *root)
4152 {
4153 	struct btrfs_fs_info *fs_info = root->fs_info;
4154 	struct btrfs_path *path;
4155 	struct btrfs_dir_item *di;
4156 	struct btrfs_key key;
4157 	u64 dir_id;
4158 	int ret;
4159 
4160 	path = btrfs_alloc_path();
4161 	if (!path)
4162 		return -ENOMEM;
4163 
4164 	/* Make sure this root isn't set as the default subvol */
4165 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4166 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4167 				   dir_id, "default", 7, 0);
4168 	if (di && !IS_ERR(di)) {
4169 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4170 		if (key.objectid == root->root_key.objectid) {
4171 			ret = -EPERM;
4172 			btrfs_err(fs_info,
4173 				  "deleting default subvolume %llu is not allowed",
4174 				  key.objectid);
4175 			goto out;
4176 		}
4177 		btrfs_release_path(path);
4178 	}
4179 
4180 	key.objectid = root->root_key.objectid;
4181 	key.type = BTRFS_ROOT_REF_KEY;
4182 	key.offset = (u64)-1;
4183 
4184 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4185 	if (ret < 0)
4186 		goto out;
4187 	BUG_ON(ret == 0);
4188 
4189 	ret = 0;
4190 	if (path->slots[0] > 0) {
4191 		path->slots[0]--;
4192 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4193 		if (key.objectid == root->root_key.objectid &&
4194 		    key.type == BTRFS_ROOT_REF_KEY)
4195 			ret = -ENOTEMPTY;
4196 	}
4197 out:
4198 	btrfs_free_path(path);
4199 	return ret;
4200 }
4201 
4202 /* Delete all dentries for inodes belonging to the root */
4203 static void btrfs_prune_dentries(struct btrfs_root *root)
4204 {
4205 	struct btrfs_fs_info *fs_info = root->fs_info;
4206 	struct rb_node *node;
4207 	struct rb_node *prev;
4208 	struct btrfs_inode *entry;
4209 	struct inode *inode;
4210 	u64 objectid = 0;
4211 
4212 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4213 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4214 
4215 	spin_lock(&root->inode_lock);
4216 again:
4217 	node = root->inode_tree.rb_node;
4218 	prev = NULL;
4219 	while (node) {
4220 		prev = node;
4221 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4222 
4223 		if (objectid < btrfs_ino(entry))
4224 			node = node->rb_left;
4225 		else if (objectid > btrfs_ino(entry))
4226 			node = node->rb_right;
4227 		else
4228 			break;
4229 	}
4230 	if (!node) {
4231 		while (prev) {
4232 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4233 			if (objectid <= btrfs_ino(entry)) {
4234 				node = prev;
4235 				break;
4236 			}
4237 			prev = rb_next(prev);
4238 		}
4239 	}
4240 	while (node) {
4241 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4242 		objectid = btrfs_ino(entry) + 1;
4243 		inode = igrab(&entry->vfs_inode);
4244 		if (inode) {
4245 			spin_unlock(&root->inode_lock);
4246 			if (atomic_read(&inode->i_count) > 1)
4247 				d_prune_aliases(inode);
4248 			/*
4249 			 * btrfs_drop_inode will have it removed from the inode
4250 			 * cache when its usage count hits zero.
4251 			 */
4252 			iput(inode);
4253 			cond_resched();
4254 			spin_lock(&root->inode_lock);
4255 			goto again;
4256 		}
4257 
4258 		if (cond_resched_lock(&root->inode_lock))
4259 			goto again;
4260 
4261 		node = rb_next(node);
4262 	}
4263 	spin_unlock(&root->inode_lock);
4264 }
4265 
4266 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4267 {
4268 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4269 	struct btrfs_root *root = BTRFS_I(dir)->root;
4270 	struct inode *inode = d_inode(dentry);
4271 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4272 	struct btrfs_trans_handle *trans;
4273 	struct btrfs_block_rsv block_rsv;
4274 	u64 root_flags;
4275 	int ret;
4276 
4277 	/*
4278 	 * Don't allow to delete a subvolume with send in progress. This is
4279 	 * inside the inode lock so the error handling that has to drop the bit
4280 	 * again is not run concurrently.
4281 	 */
4282 	spin_lock(&dest->root_item_lock);
4283 	if (dest->send_in_progress) {
4284 		spin_unlock(&dest->root_item_lock);
4285 		btrfs_warn(fs_info,
4286 			   "attempt to delete subvolume %llu during send",
4287 			   dest->root_key.objectid);
4288 		return -EPERM;
4289 	}
4290 	root_flags = btrfs_root_flags(&dest->root_item);
4291 	btrfs_set_root_flags(&dest->root_item,
4292 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4293 	spin_unlock(&dest->root_item_lock);
4294 
4295 	down_write(&fs_info->subvol_sem);
4296 
4297 	ret = may_destroy_subvol(dest);
4298 	if (ret)
4299 		goto out_up_write;
4300 
4301 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4302 	/*
4303 	 * One for dir inode,
4304 	 * two for dir entries,
4305 	 * two for root ref/backref.
4306 	 */
4307 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4308 	if (ret)
4309 		goto out_up_write;
4310 
4311 	trans = btrfs_start_transaction(root, 0);
4312 	if (IS_ERR(trans)) {
4313 		ret = PTR_ERR(trans);
4314 		goto out_release;
4315 	}
4316 	trans->block_rsv = &block_rsv;
4317 	trans->bytes_reserved = block_rsv.size;
4318 
4319 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4320 
4321 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4322 	if (ret) {
4323 		btrfs_abort_transaction(trans, ret);
4324 		goto out_end_trans;
4325 	}
4326 
4327 	ret = btrfs_record_root_in_trans(trans, dest);
4328 	if (ret) {
4329 		btrfs_abort_transaction(trans, ret);
4330 		goto out_end_trans;
4331 	}
4332 
4333 	memset(&dest->root_item.drop_progress, 0,
4334 		sizeof(dest->root_item.drop_progress));
4335 	btrfs_set_root_drop_level(&dest->root_item, 0);
4336 	btrfs_set_root_refs(&dest->root_item, 0);
4337 
4338 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4339 		ret = btrfs_insert_orphan_item(trans,
4340 					fs_info->tree_root,
4341 					dest->root_key.objectid);
4342 		if (ret) {
4343 			btrfs_abort_transaction(trans, ret);
4344 			goto out_end_trans;
4345 		}
4346 	}
4347 
4348 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4349 				  BTRFS_UUID_KEY_SUBVOL,
4350 				  dest->root_key.objectid);
4351 	if (ret && ret != -ENOENT) {
4352 		btrfs_abort_transaction(trans, ret);
4353 		goto out_end_trans;
4354 	}
4355 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4356 		ret = btrfs_uuid_tree_remove(trans,
4357 					  dest->root_item.received_uuid,
4358 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4359 					  dest->root_key.objectid);
4360 		if (ret && ret != -ENOENT) {
4361 			btrfs_abort_transaction(trans, ret);
4362 			goto out_end_trans;
4363 		}
4364 	}
4365 
4366 	free_anon_bdev(dest->anon_dev);
4367 	dest->anon_dev = 0;
4368 out_end_trans:
4369 	trans->block_rsv = NULL;
4370 	trans->bytes_reserved = 0;
4371 	ret = btrfs_end_transaction(trans);
4372 	inode->i_flags |= S_DEAD;
4373 out_release:
4374 	btrfs_subvolume_release_metadata(root, &block_rsv);
4375 out_up_write:
4376 	up_write(&fs_info->subvol_sem);
4377 	if (ret) {
4378 		spin_lock(&dest->root_item_lock);
4379 		root_flags = btrfs_root_flags(&dest->root_item);
4380 		btrfs_set_root_flags(&dest->root_item,
4381 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4382 		spin_unlock(&dest->root_item_lock);
4383 	} else {
4384 		d_invalidate(dentry);
4385 		btrfs_prune_dentries(dest);
4386 		ASSERT(dest->send_in_progress == 0);
4387 	}
4388 
4389 	return ret;
4390 }
4391 
4392 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4393 {
4394 	struct inode *inode = d_inode(dentry);
4395 	int err = 0;
4396 	struct btrfs_root *root = BTRFS_I(dir)->root;
4397 	struct btrfs_trans_handle *trans;
4398 	u64 last_unlink_trans;
4399 
4400 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4401 		return -ENOTEMPTY;
4402 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4403 		return btrfs_delete_subvolume(dir, dentry);
4404 
4405 	trans = __unlink_start_trans(dir);
4406 	if (IS_ERR(trans))
4407 		return PTR_ERR(trans);
4408 
4409 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4410 		err = btrfs_unlink_subvol(trans, dir, dentry);
4411 		goto out;
4412 	}
4413 
4414 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4415 	if (err)
4416 		goto out;
4417 
4418 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4419 
4420 	/* now the directory is empty */
4421 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4422 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4423 			dentry->d_name.len);
4424 	if (!err) {
4425 		btrfs_i_size_write(BTRFS_I(inode), 0);
4426 		/*
4427 		 * Propagate the last_unlink_trans value of the deleted dir to
4428 		 * its parent directory. This is to prevent an unrecoverable
4429 		 * log tree in the case we do something like this:
4430 		 * 1) create dir foo
4431 		 * 2) create snapshot under dir foo
4432 		 * 3) delete the snapshot
4433 		 * 4) rmdir foo
4434 		 * 5) mkdir foo
4435 		 * 6) fsync foo or some file inside foo
4436 		 */
4437 		if (last_unlink_trans >= trans->transid)
4438 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4439 	}
4440 out:
4441 	btrfs_end_transaction(trans);
4442 	btrfs_btree_balance_dirty(root->fs_info);
4443 
4444 	return err;
4445 }
4446 
4447 /*
4448  * Return this if we need to call truncate_block for the last bit of the
4449  * truncate.
4450  */
4451 #define NEED_TRUNCATE_BLOCK 1
4452 
4453 /*
4454  * this can truncate away extent items, csum items and directory items.
4455  * It starts at a high offset and removes keys until it can't find
4456  * any higher than new_size
4457  *
4458  * csum items that cross the new i_size are truncated to the new size
4459  * as well.
4460  *
4461  * min_type is the minimum key type to truncate down to.  If set to 0, this
4462  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4463  */
4464 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4465 			       struct btrfs_root *root,
4466 			       struct btrfs_inode *inode,
4467 			       u64 new_size, u32 min_type)
4468 {
4469 	struct btrfs_fs_info *fs_info = root->fs_info;
4470 	struct btrfs_path *path;
4471 	struct extent_buffer *leaf;
4472 	struct btrfs_file_extent_item *fi;
4473 	struct btrfs_key key;
4474 	struct btrfs_key found_key;
4475 	u64 extent_start = 0;
4476 	u64 extent_num_bytes = 0;
4477 	u64 extent_offset = 0;
4478 	u64 item_end = 0;
4479 	u64 last_size = new_size;
4480 	u32 found_type = (u8)-1;
4481 	int found_extent;
4482 	int del_item;
4483 	int pending_del_nr = 0;
4484 	int pending_del_slot = 0;
4485 	int extent_type = -1;
4486 	int ret;
4487 	u64 ino = btrfs_ino(inode);
4488 	u64 bytes_deleted = 0;
4489 	bool be_nice = false;
4490 	bool should_throttle = false;
4491 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4492 	struct extent_state *cached_state = NULL;
4493 
4494 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4495 
4496 	/*
4497 	 * For non-free space inodes and non-shareable roots, we want to back
4498 	 * off from time to time.  This means all inodes in subvolume roots,
4499 	 * reloc roots, and data reloc roots.
4500 	 */
4501 	if (!btrfs_is_free_space_inode(inode) &&
4502 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4503 		be_nice = true;
4504 
4505 	path = btrfs_alloc_path();
4506 	if (!path)
4507 		return -ENOMEM;
4508 	path->reada = READA_BACK;
4509 
4510 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4511 		lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4512 				 &cached_state);
4513 
4514 		/*
4515 		 * We want to drop from the next block forward in case this
4516 		 * new size is not block aligned since we will be keeping the
4517 		 * last block of the extent just the way it is.
4518 		 */
4519 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4520 					fs_info->sectorsize),
4521 					(u64)-1, 0);
4522 	}
4523 
4524 	/*
4525 	 * This function is also used to drop the items in the log tree before
4526 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4527 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4528 	 * items.
4529 	 */
4530 	if (min_type == 0 && root == inode->root)
4531 		btrfs_kill_delayed_inode_items(inode);
4532 
4533 	key.objectid = ino;
4534 	key.offset = (u64)-1;
4535 	key.type = (u8)-1;
4536 
4537 search_again:
4538 	/*
4539 	 * with a 16K leaf size and 128MB extents, you can actually queue
4540 	 * up a huge file in a single leaf.  Most of the time that
4541 	 * bytes_deleted is > 0, it will be huge by the time we get here
4542 	 */
4543 	if (be_nice && bytes_deleted > SZ_32M &&
4544 	    btrfs_should_end_transaction(trans)) {
4545 		ret = -EAGAIN;
4546 		goto out;
4547 	}
4548 
4549 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4550 	if (ret < 0)
4551 		goto out;
4552 
4553 	if (ret > 0) {
4554 		ret = 0;
4555 		/* there are no items in the tree for us to truncate, we're
4556 		 * done
4557 		 */
4558 		if (path->slots[0] == 0)
4559 			goto out;
4560 		path->slots[0]--;
4561 	}
4562 
4563 	while (1) {
4564 		u64 clear_start = 0, clear_len = 0;
4565 
4566 		fi = NULL;
4567 		leaf = path->nodes[0];
4568 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4569 		found_type = found_key.type;
4570 
4571 		if (found_key.objectid != ino)
4572 			break;
4573 
4574 		if (found_type < min_type)
4575 			break;
4576 
4577 		item_end = found_key.offset;
4578 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4579 			fi = btrfs_item_ptr(leaf, path->slots[0],
4580 					    struct btrfs_file_extent_item);
4581 			extent_type = btrfs_file_extent_type(leaf, fi);
4582 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4583 				item_end +=
4584 				    btrfs_file_extent_num_bytes(leaf, fi);
4585 
4586 				trace_btrfs_truncate_show_fi_regular(
4587 					inode, leaf, fi, found_key.offset);
4588 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4589 				item_end += btrfs_file_extent_ram_bytes(leaf,
4590 									fi);
4591 
4592 				trace_btrfs_truncate_show_fi_inline(
4593 					inode, leaf, fi, path->slots[0],
4594 					found_key.offset);
4595 			}
4596 			item_end--;
4597 		}
4598 		if (found_type > min_type) {
4599 			del_item = 1;
4600 		} else {
4601 			if (item_end < new_size)
4602 				break;
4603 			if (found_key.offset >= new_size)
4604 				del_item = 1;
4605 			else
4606 				del_item = 0;
4607 		}
4608 		found_extent = 0;
4609 		/* FIXME, shrink the extent if the ref count is only 1 */
4610 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4611 			goto delete;
4612 
4613 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4614 			u64 num_dec;
4615 
4616 			clear_start = found_key.offset;
4617 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4618 			if (!del_item) {
4619 				u64 orig_num_bytes =
4620 					btrfs_file_extent_num_bytes(leaf, fi);
4621 				extent_num_bytes = ALIGN(new_size -
4622 						found_key.offset,
4623 						fs_info->sectorsize);
4624 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4625 				btrfs_set_file_extent_num_bytes(leaf, fi,
4626 							 extent_num_bytes);
4627 				num_dec = (orig_num_bytes -
4628 					   extent_num_bytes);
4629 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4630 					     &root->state) &&
4631 				    extent_start != 0)
4632 					inode_sub_bytes(&inode->vfs_inode,
4633 							num_dec);
4634 				btrfs_mark_buffer_dirty(leaf);
4635 			} else {
4636 				extent_num_bytes =
4637 					btrfs_file_extent_disk_num_bytes(leaf,
4638 									 fi);
4639 				extent_offset = found_key.offset -
4640 					btrfs_file_extent_offset(leaf, fi);
4641 
4642 				/* FIXME blocksize != 4096 */
4643 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4644 				if (extent_start != 0) {
4645 					found_extent = 1;
4646 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4647 						     &root->state))
4648 						inode_sub_bytes(&inode->vfs_inode,
4649 								num_dec);
4650 				}
4651 			}
4652 			clear_len = num_dec;
4653 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4654 			/*
4655 			 * we can't truncate inline items that have had
4656 			 * special encodings
4657 			 */
4658 			if (!del_item &&
4659 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4660 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4661 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4662 				u32 size = (u32)(new_size - found_key.offset);
4663 
4664 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4665 				size = btrfs_file_extent_calc_inline_size(size);
4666 				btrfs_truncate_item(path, size, 1);
4667 			} else if (!del_item) {
4668 				/*
4669 				 * We have to bail so the last_size is set to
4670 				 * just before this extent.
4671 				 */
4672 				ret = NEED_TRUNCATE_BLOCK;
4673 				break;
4674 			} else {
4675 				/*
4676 				 * Inline extents are special, we just treat
4677 				 * them as a full sector worth in the file
4678 				 * extent tree just for simplicity sake.
4679 				 */
4680 				clear_len = fs_info->sectorsize;
4681 			}
4682 
4683 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4684 				inode_sub_bytes(&inode->vfs_inode,
4685 						item_end + 1 - new_size);
4686 		}
4687 delete:
4688 		/*
4689 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4690 		 * multiple fsyncs, and in this case we don't want to clear the
4691 		 * file extent range because it's just the log.
4692 		 */
4693 		if (root == inode->root) {
4694 			ret = btrfs_inode_clear_file_extent_range(inode,
4695 						  clear_start, clear_len);
4696 			if (ret) {
4697 				btrfs_abort_transaction(trans, ret);
4698 				break;
4699 			}
4700 		}
4701 
4702 		if (del_item)
4703 			last_size = found_key.offset;
4704 		else
4705 			last_size = new_size;
4706 		if (del_item) {
4707 			if (!pending_del_nr) {
4708 				/* no pending yet, add ourselves */
4709 				pending_del_slot = path->slots[0];
4710 				pending_del_nr = 1;
4711 			} else if (pending_del_nr &&
4712 				   path->slots[0] + 1 == pending_del_slot) {
4713 				/* hop on the pending chunk */
4714 				pending_del_nr++;
4715 				pending_del_slot = path->slots[0];
4716 			} else {
4717 				BUG();
4718 			}
4719 		} else {
4720 			break;
4721 		}
4722 		should_throttle = false;
4723 
4724 		if (found_extent &&
4725 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4726 			struct btrfs_ref ref = { 0 };
4727 
4728 			bytes_deleted += extent_num_bytes;
4729 
4730 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4731 					extent_start, extent_num_bytes, 0);
4732 			ref.real_root = root->root_key.objectid;
4733 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4734 					ino, extent_offset);
4735 			ret = btrfs_free_extent(trans, &ref);
4736 			if (ret) {
4737 				btrfs_abort_transaction(trans, ret);
4738 				break;
4739 			}
4740 			if (be_nice) {
4741 				if (btrfs_should_throttle_delayed_refs(trans))
4742 					should_throttle = true;
4743 			}
4744 		}
4745 
4746 		if (found_type == BTRFS_INODE_ITEM_KEY)
4747 			break;
4748 
4749 		if (path->slots[0] == 0 ||
4750 		    path->slots[0] != pending_del_slot ||
4751 		    should_throttle) {
4752 			if (pending_del_nr) {
4753 				ret = btrfs_del_items(trans, root, path,
4754 						pending_del_slot,
4755 						pending_del_nr);
4756 				if (ret) {
4757 					btrfs_abort_transaction(trans, ret);
4758 					break;
4759 				}
4760 				pending_del_nr = 0;
4761 			}
4762 			btrfs_release_path(path);
4763 
4764 			/*
4765 			 * We can generate a lot of delayed refs, so we need to
4766 			 * throttle every once and a while and make sure we're
4767 			 * adding enough space to keep up with the work we are
4768 			 * generating.  Since we hold a transaction here we
4769 			 * can't flush, and we don't want to FLUSH_LIMIT because
4770 			 * we could have generated too many delayed refs to
4771 			 * actually allocate, so just bail if we're short and
4772 			 * let the normal reservation dance happen higher up.
4773 			 */
4774 			if (should_throttle) {
4775 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4776 							BTRFS_RESERVE_NO_FLUSH);
4777 				if (ret) {
4778 					ret = -EAGAIN;
4779 					break;
4780 				}
4781 			}
4782 			goto search_again;
4783 		} else {
4784 			path->slots[0]--;
4785 		}
4786 	}
4787 out:
4788 	if (ret >= 0 && pending_del_nr) {
4789 		int err;
4790 
4791 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4792 				      pending_del_nr);
4793 		if (err) {
4794 			btrfs_abort_transaction(trans, err);
4795 			ret = err;
4796 		}
4797 	}
4798 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4799 		ASSERT(last_size >= new_size);
4800 		if (!ret && last_size > new_size)
4801 			last_size = new_size;
4802 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4803 		unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4804 				     &cached_state);
4805 	}
4806 
4807 	btrfs_free_path(path);
4808 	return ret;
4809 }
4810 
4811 /*
4812  * btrfs_truncate_block - read, zero a chunk and write a block
4813  * @inode - inode that we're zeroing
4814  * @from - the offset to start zeroing
4815  * @len - the length to zero, 0 to zero the entire range respective to the
4816  *	offset
4817  * @front - zero up to the offset instead of from the offset on
4818  *
4819  * This will find the block for the "from" offset and cow the block and zero the
4820  * part we want to zero.  This is used with truncate and hole punching.
4821  */
4822 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4823 			 int front)
4824 {
4825 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4826 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4827 	struct extent_io_tree *io_tree = &inode->io_tree;
4828 	struct btrfs_ordered_extent *ordered;
4829 	struct extent_state *cached_state = NULL;
4830 	struct extent_changeset *data_reserved = NULL;
4831 	bool only_release_metadata = false;
4832 	u32 blocksize = fs_info->sectorsize;
4833 	pgoff_t index = from >> PAGE_SHIFT;
4834 	unsigned offset = from & (blocksize - 1);
4835 	struct page *page;
4836 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4837 	size_t write_bytes = blocksize;
4838 	int ret = 0;
4839 	u64 block_start;
4840 	u64 block_end;
4841 
4842 	if (IS_ALIGNED(offset, blocksize) &&
4843 	    (!len || IS_ALIGNED(len, blocksize)))
4844 		goto out;
4845 
4846 	block_start = round_down(from, blocksize);
4847 	block_end = block_start + blocksize - 1;
4848 
4849 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4850 					  blocksize);
4851 	if (ret < 0) {
4852 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4853 			/* For nocow case, no need to reserve data space */
4854 			only_release_metadata = true;
4855 		} else {
4856 			goto out;
4857 		}
4858 	}
4859 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
4860 	if (ret < 0) {
4861 		if (!only_release_metadata)
4862 			btrfs_free_reserved_data_space(inode, data_reserved,
4863 						       block_start, blocksize);
4864 		goto out;
4865 	}
4866 again:
4867 	page = find_or_create_page(mapping, index, mask);
4868 	if (!page) {
4869 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4870 					     blocksize, true);
4871 		btrfs_delalloc_release_extents(inode, blocksize);
4872 		ret = -ENOMEM;
4873 		goto out;
4874 	}
4875 	ret = set_page_extent_mapped(page);
4876 	if (ret < 0)
4877 		goto out_unlock;
4878 
4879 	if (!PageUptodate(page)) {
4880 		ret = btrfs_readpage(NULL, page);
4881 		lock_page(page);
4882 		if (page->mapping != mapping) {
4883 			unlock_page(page);
4884 			put_page(page);
4885 			goto again;
4886 		}
4887 		if (!PageUptodate(page)) {
4888 			ret = -EIO;
4889 			goto out_unlock;
4890 		}
4891 	}
4892 	wait_on_page_writeback(page);
4893 
4894 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4895 
4896 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4897 	if (ordered) {
4898 		unlock_extent_cached(io_tree, block_start, block_end,
4899 				     &cached_state);
4900 		unlock_page(page);
4901 		put_page(page);
4902 		btrfs_start_ordered_extent(ordered, 1);
4903 		btrfs_put_ordered_extent(ordered);
4904 		goto again;
4905 	}
4906 
4907 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4908 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4909 			 0, 0, &cached_state);
4910 
4911 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4912 					&cached_state);
4913 	if (ret) {
4914 		unlock_extent_cached(io_tree, block_start, block_end,
4915 				     &cached_state);
4916 		goto out_unlock;
4917 	}
4918 
4919 	if (offset != blocksize) {
4920 		if (!len)
4921 			len = blocksize - offset;
4922 		if (front)
4923 			memzero_page(page, (block_start - page_offset(page)),
4924 				     offset);
4925 		else
4926 			memzero_page(page, (block_start - page_offset(page)) + offset,
4927 				     len);
4928 		flush_dcache_page(page);
4929 	}
4930 	ClearPageChecked(page);
4931 	set_page_dirty(page);
4932 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4933 
4934 	if (only_release_metadata)
4935 		set_extent_bit(&inode->io_tree, block_start, block_end,
4936 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4937 
4938 out_unlock:
4939 	if (ret) {
4940 		if (only_release_metadata)
4941 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4942 		else
4943 			btrfs_delalloc_release_space(inode, data_reserved,
4944 					block_start, blocksize, true);
4945 	}
4946 	btrfs_delalloc_release_extents(inode, blocksize);
4947 	unlock_page(page);
4948 	put_page(page);
4949 out:
4950 	if (only_release_metadata)
4951 		btrfs_check_nocow_unlock(inode);
4952 	extent_changeset_free(data_reserved);
4953 	return ret;
4954 }
4955 
4956 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4957 			     u64 offset, u64 len)
4958 {
4959 	struct btrfs_fs_info *fs_info = root->fs_info;
4960 	struct btrfs_trans_handle *trans;
4961 	struct btrfs_drop_extents_args drop_args = { 0 };
4962 	int ret;
4963 
4964 	/*
4965 	 * Still need to make sure the inode looks like it's been updated so
4966 	 * that any holes get logged if we fsync.
4967 	 */
4968 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4969 		inode->last_trans = fs_info->generation;
4970 		inode->last_sub_trans = root->log_transid;
4971 		inode->last_log_commit = root->last_log_commit;
4972 		return 0;
4973 	}
4974 
4975 	/*
4976 	 * 1 - for the one we're dropping
4977 	 * 1 - for the one we're adding
4978 	 * 1 - for updating the inode.
4979 	 */
4980 	trans = btrfs_start_transaction(root, 3);
4981 	if (IS_ERR(trans))
4982 		return PTR_ERR(trans);
4983 
4984 	drop_args.start = offset;
4985 	drop_args.end = offset + len;
4986 	drop_args.drop_cache = true;
4987 
4988 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4989 	if (ret) {
4990 		btrfs_abort_transaction(trans, ret);
4991 		btrfs_end_transaction(trans);
4992 		return ret;
4993 	}
4994 
4995 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4996 			offset, 0, 0, len, 0, len, 0, 0, 0);
4997 	if (ret) {
4998 		btrfs_abort_transaction(trans, ret);
4999 	} else {
5000 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5001 		btrfs_update_inode(trans, root, inode);
5002 	}
5003 	btrfs_end_transaction(trans);
5004 	return ret;
5005 }
5006 
5007 /*
5008  * This function puts in dummy file extents for the area we're creating a hole
5009  * for.  So if we are truncating this file to a larger size we need to insert
5010  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5011  * the range between oldsize and size
5012  */
5013 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5014 {
5015 	struct btrfs_root *root = inode->root;
5016 	struct btrfs_fs_info *fs_info = root->fs_info;
5017 	struct extent_io_tree *io_tree = &inode->io_tree;
5018 	struct extent_map *em = NULL;
5019 	struct extent_state *cached_state = NULL;
5020 	struct extent_map_tree *em_tree = &inode->extent_tree;
5021 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5022 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5023 	u64 last_byte;
5024 	u64 cur_offset;
5025 	u64 hole_size;
5026 	int err = 0;
5027 
5028 	/*
5029 	 * If our size started in the middle of a block we need to zero out the
5030 	 * rest of the block before we expand the i_size, otherwise we could
5031 	 * expose stale data.
5032 	 */
5033 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5034 	if (err)
5035 		return err;
5036 
5037 	if (size <= hole_start)
5038 		return 0;
5039 
5040 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5041 					   &cached_state);
5042 	cur_offset = hole_start;
5043 	while (1) {
5044 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5045 				      block_end - cur_offset);
5046 		if (IS_ERR(em)) {
5047 			err = PTR_ERR(em);
5048 			em = NULL;
5049 			break;
5050 		}
5051 		last_byte = min(extent_map_end(em), block_end);
5052 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5053 		hole_size = last_byte - cur_offset;
5054 
5055 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5056 			struct extent_map *hole_em;
5057 
5058 			err = maybe_insert_hole(root, inode, cur_offset,
5059 						hole_size);
5060 			if (err)
5061 				break;
5062 
5063 			err = btrfs_inode_set_file_extent_range(inode,
5064 							cur_offset, hole_size);
5065 			if (err)
5066 				break;
5067 
5068 			btrfs_drop_extent_cache(inode, cur_offset,
5069 						cur_offset + hole_size - 1, 0);
5070 			hole_em = alloc_extent_map();
5071 			if (!hole_em) {
5072 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5073 					&inode->runtime_flags);
5074 				goto next;
5075 			}
5076 			hole_em->start = cur_offset;
5077 			hole_em->len = hole_size;
5078 			hole_em->orig_start = cur_offset;
5079 
5080 			hole_em->block_start = EXTENT_MAP_HOLE;
5081 			hole_em->block_len = 0;
5082 			hole_em->orig_block_len = 0;
5083 			hole_em->ram_bytes = hole_size;
5084 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5085 			hole_em->generation = fs_info->generation;
5086 
5087 			while (1) {
5088 				write_lock(&em_tree->lock);
5089 				err = add_extent_mapping(em_tree, hole_em, 1);
5090 				write_unlock(&em_tree->lock);
5091 				if (err != -EEXIST)
5092 					break;
5093 				btrfs_drop_extent_cache(inode, cur_offset,
5094 							cur_offset +
5095 							hole_size - 1, 0);
5096 			}
5097 			free_extent_map(hole_em);
5098 		} else {
5099 			err = btrfs_inode_set_file_extent_range(inode,
5100 							cur_offset, hole_size);
5101 			if (err)
5102 				break;
5103 		}
5104 next:
5105 		free_extent_map(em);
5106 		em = NULL;
5107 		cur_offset = last_byte;
5108 		if (cur_offset >= block_end)
5109 			break;
5110 	}
5111 	free_extent_map(em);
5112 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5113 	return err;
5114 }
5115 
5116 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5117 {
5118 	struct btrfs_root *root = BTRFS_I(inode)->root;
5119 	struct btrfs_trans_handle *trans;
5120 	loff_t oldsize = i_size_read(inode);
5121 	loff_t newsize = attr->ia_size;
5122 	int mask = attr->ia_valid;
5123 	int ret;
5124 
5125 	/*
5126 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5127 	 * special case where we need to update the times despite not having
5128 	 * these flags set.  For all other operations the VFS set these flags
5129 	 * explicitly if it wants a timestamp update.
5130 	 */
5131 	if (newsize != oldsize) {
5132 		inode_inc_iversion(inode);
5133 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5134 			inode->i_ctime = inode->i_mtime =
5135 				current_time(inode);
5136 	}
5137 
5138 	if (newsize > oldsize) {
5139 		/*
5140 		 * Don't do an expanding truncate while snapshotting is ongoing.
5141 		 * This is to ensure the snapshot captures a fully consistent
5142 		 * state of this file - if the snapshot captures this expanding
5143 		 * truncation, it must capture all writes that happened before
5144 		 * this truncation.
5145 		 */
5146 		btrfs_drew_write_lock(&root->snapshot_lock);
5147 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5148 		if (ret) {
5149 			btrfs_drew_write_unlock(&root->snapshot_lock);
5150 			return ret;
5151 		}
5152 
5153 		trans = btrfs_start_transaction(root, 1);
5154 		if (IS_ERR(trans)) {
5155 			btrfs_drew_write_unlock(&root->snapshot_lock);
5156 			return PTR_ERR(trans);
5157 		}
5158 
5159 		i_size_write(inode, newsize);
5160 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5161 		pagecache_isize_extended(inode, oldsize, newsize);
5162 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5163 		btrfs_drew_write_unlock(&root->snapshot_lock);
5164 		btrfs_end_transaction(trans);
5165 	} else {
5166 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5167 
5168 		if (btrfs_is_zoned(fs_info)) {
5169 			ret = btrfs_wait_ordered_range(inode,
5170 					ALIGN(newsize, fs_info->sectorsize),
5171 					(u64)-1);
5172 			if (ret)
5173 				return ret;
5174 		}
5175 
5176 		/*
5177 		 * We're truncating a file that used to have good data down to
5178 		 * zero. Make sure any new writes to the file get on disk
5179 		 * on close.
5180 		 */
5181 		if (newsize == 0)
5182 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5183 				&BTRFS_I(inode)->runtime_flags);
5184 
5185 		truncate_setsize(inode, newsize);
5186 
5187 		inode_dio_wait(inode);
5188 
5189 		ret = btrfs_truncate(inode, newsize == oldsize);
5190 		if (ret && inode->i_nlink) {
5191 			int err;
5192 
5193 			/*
5194 			 * Truncate failed, so fix up the in-memory size. We
5195 			 * adjusted disk_i_size down as we removed extents, so
5196 			 * wait for disk_i_size to be stable and then update the
5197 			 * in-memory size to match.
5198 			 */
5199 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5200 			if (err)
5201 				return err;
5202 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5203 		}
5204 	}
5205 
5206 	return ret;
5207 }
5208 
5209 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5210 			 struct iattr *attr)
5211 {
5212 	struct inode *inode = d_inode(dentry);
5213 	struct btrfs_root *root = BTRFS_I(inode)->root;
5214 	int err;
5215 
5216 	if (btrfs_root_readonly(root))
5217 		return -EROFS;
5218 
5219 	err = setattr_prepare(&init_user_ns, dentry, attr);
5220 	if (err)
5221 		return err;
5222 
5223 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5224 		err = btrfs_setsize(inode, attr);
5225 		if (err)
5226 			return err;
5227 	}
5228 
5229 	if (attr->ia_valid) {
5230 		setattr_copy(&init_user_ns, inode, attr);
5231 		inode_inc_iversion(inode);
5232 		err = btrfs_dirty_inode(inode);
5233 
5234 		if (!err && attr->ia_valid & ATTR_MODE)
5235 			err = posix_acl_chmod(&init_user_ns, inode,
5236 					      inode->i_mode);
5237 	}
5238 
5239 	return err;
5240 }
5241 
5242 /*
5243  * While truncating the inode pages during eviction, we get the VFS calling
5244  * btrfs_invalidatepage() against each page of the inode. This is slow because
5245  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5246  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5247  * extent_state structures over and over, wasting lots of time.
5248  *
5249  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5250  * those expensive operations on a per page basis and do only the ordered io
5251  * finishing, while we release here the extent_map and extent_state structures,
5252  * without the excessive merging and splitting.
5253  */
5254 static void evict_inode_truncate_pages(struct inode *inode)
5255 {
5256 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5257 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5258 	struct rb_node *node;
5259 
5260 	ASSERT(inode->i_state & I_FREEING);
5261 	truncate_inode_pages_final(&inode->i_data);
5262 
5263 	write_lock(&map_tree->lock);
5264 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5265 		struct extent_map *em;
5266 
5267 		node = rb_first_cached(&map_tree->map);
5268 		em = rb_entry(node, struct extent_map, rb_node);
5269 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5270 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5271 		remove_extent_mapping(map_tree, em);
5272 		free_extent_map(em);
5273 		if (need_resched()) {
5274 			write_unlock(&map_tree->lock);
5275 			cond_resched();
5276 			write_lock(&map_tree->lock);
5277 		}
5278 	}
5279 	write_unlock(&map_tree->lock);
5280 
5281 	/*
5282 	 * Keep looping until we have no more ranges in the io tree.
5283 	 * We can have ongoing bios started by readahead that have
5284 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5285 	 * still in progress (unlocked the pages in the bio but did not yet
5286 	 * unlocked the ranges in the io tree). Therefore this means some
5287 	 * ranges can still be locked and eviction started because before
5288 	 * submitting those bios, which are executed by a separate task (work
5289 	 * queue kthread), inode references (inode->i_count) were not taken
5290 	 * (which would be dropped in the end io callback of each bio).
5291 	 * Therefore here we effectively end up waiting for those bios and
5292 	 * anyone else holding locked ranges without having bumped the inode's
5293 	 * reference count - if we don't do it, when they access the inode's
5294 	 * io_tree to unlock a range it may be too late, leading to an
5295 	 * use-after-free issue.
5296 	 */
5297 	spin_lock(&io_tree->lock);
5298 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5299 		struct extent_state *state;
5300 		struct extent_state *cached_state = NULL;
5301 		u64 start;
5302 		u64 end;
5303 		unsigned state_flags;
5304 
5305 		node = rb_first(&io_tree->state);
5306 		state = rb_entry(node, struct extent_state, rb_node);
5307 		start = state->start;
5308 		end = state->end;
5309 		state_flags = state->state;
5310 		spin_unlock(&io_tree->lock);
5311 
5312 		lock_extent_bits(io_tree, start, end, &cached_state);
5313 
5314 		/*
5315 		 * If still has DELALLOC flag, the extent didn't reach disk,
5316 		 * and its reserved space won't be freed by delayed_ref.
5317 		 * So we need to free its reserved space here.
5318 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5319 		 *
5320 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5321 		 */
5322 		if (state_flags & EXTENT_DELALLOC)
5323 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5324 					       end - start + 1);
5325 
5326 		clear_extent_bit(io_tree, start, end,
5327 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5328 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5329 				 &cached_state);
5330 
5331 		cond_resched();
5332 		spin_lock(&io_tree->lock);
5333 	}
5334 	spin_unlock(&io_tree->lock);
5335 }
5336 
5337 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5338 							struct btrfs_block_rsv *rsv)
5339 {
5340 	struct btrfs_fs_info *fs_info = root->fs_info;
5341 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5342 	struct btrfs_trans_handle *trans;
5343 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5344 	int ret;
5345 
5346 	/*
5347 	 * Eviction should be taking place at some place safe because of our
5348 	 * delayed iputs.  However the normal flushing code will run delayed
5349 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5350 	 *
5351 	 * We reserve the delayed_refs_extra here again because we can't use
5352 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5353 	 * above.  We reserve our extra bit here because we generate a ton of
5354 	 * delayed refs activity by truncating.
5355 	 *
5356 	 * If we cannot make our reservation we'll attempt to steal from the
5357 	 * global reserve, because we really want to be able to free up space.
5358 	 */
5359 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5360 				     BTRFS_RESERVE_FLUSH_EVICT);
5361 	if (ret) {
5362 		/*
5363 		 * Try to steal from the global reserve if there is space for
5364 		 * it.
5365 		 */
5366 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5367 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5368 			btrfs_warn(fs_info,
5369 				   "could not allocate space for delete; will truncate on mount");
5370 			return ERR_PTR(-ENOSPC);
5371 		}
5372 		delayed_refs_extra = 0;
5373 	}
5374 
5375 	trans = btrfs_join_transaction(root);
5376 	if (IS_ERR(trans))
5377 		return trans;
5378 
5379 	if (delayed_refs_extra) {
5380 		trans->block_rsv = &fs_info->trans_block_rsv;
5381 		trans->bytes_reserved = delayed_refs_extra;
5382 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5383 					delayed_refs_extra, 1);
5384 	}
5385 	return trans;
5386 }
5387 
5388 void btrfs_evict_inode(struct inode *inode)
5389 {
5390 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5391 	struct btrfs_trans_handle *trans;
5392 	struct btrfs_root *root = BTRFS_I(inode)->root;
5393 	struct btrfs_block_rsv *rsv;
5394 	int ret;
5395 
5396 	trace_btrfs_inode_evict(inode);
5397 
5398 	if (!root) {
5399 		clear_inode(inode);
5400 		return;
5401 	}
5402 
5403 	evict_inode_truncate_pages(inode);
5404 
5405 	if (inode->i_nlink &&
5406 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5407 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5408 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5409 		goto no_delete;
5410 
5411 	if (is_bad_inode(inode))
5412 		goto no_delete;
5413 
5414 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5415 
5416 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5417 		goto no_delete;
5418 
5419 	if (inode->i_nlink > 0) {
5420 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5421 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5422 		goto no_delete;
5423 	}
5424 
5425 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5426 	if (ret)
5427 		goto no_delete;
5428 
5429 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5430 	if (!rsv)
5431 		goto no_delete;
5432 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5433 	rsv->failfast = 1;
5434 
5435 	btrfs_i_size_write(BTRFS_I(inode), 0);
5436 
5437 	while (1) {
5438 		trans = evict_refill_and_join(root, rsv);
5439 		if (IS_ERR(trans))
5440 			goto free_rsv;
5441 
5442 		trans->block_rsv = rsv;
5443 
5444 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5445 						 0, 0);
5446 		trans->block_rsv = &fs_info->trans_block_rsv;
5447 		btrfs_end_transaction(trans);
5448 		btrfs_btree_balance_dirty(fs_info);
5449 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5450 			goto free_rsv;
5451 		else if (!ret)
5452 			break;
5453 	}
5454 
5455 	/*
5456 	 * Errors here aren't a big deal, it just means we leave orphan items in
5457 	 * the tree. They will be cleaned up on the next mount. If the inode
5458 	 * number gets reused, cleanup deletes the orphan item without doing
5459 	 * anything, and unlink reuses the existing orphan item.
5460 	 *
5461 	 * If it turns out that we are dropping too many of these, we might want
5462 	 * to add a mechanism for retrying these after a commit.
5463 	 */
5464 	trans = evict_refill_and_join(root, rsv);
5465 	if (!IS_ERR(trans)) {
5466 		trans->block_rsv = rsv;
5467 		btrfs_orphan_del(trans, BTRFS_I(inode));
5468 		trans->block_rsv = &fs_info->trans_block_rsv;
5469 		btrfs_end_transaction(trans);
5470 	}
5471 
5472 free_rsv:
5473 	btrfs_free_block_rsv(fs_info, rsv);
5474 no_delete:
5475 	/*
5476 	 * If we didn't successfully delete, the orphan item will still be in
5477 	 * the tree and we'll retry on the next mount. Again, we might also want
5478 	 * to retry these periodically in the future.
5479 	 */
5480 	btrfs_remove_delayed_node(BTRFS_I(inode));
5481 	clear_inode(inode);
5482 }
5483 
5484 /*
5485  * Return the key found in the dir entry in the location pointer, fill @type
5486  * with BTRFS_FT_*, and return 0.
5487  *
5488  * If no dir entries were found, returns -ENOENT.
5489  * If found a corrupted location in dir entry, returns -EUCLEAN.
5490  */
5491 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5492 			       struct btrfs_key *location, u8 *type)
5493 {
5494 	const char *name = dentry->d_name.name;
5495 	int namelen = dentry->d_name.len;
5496 	struct btrfs_dir_item *di;
5497 	struct btrfs_path *path;
5498 	struct btrfs_root *root = BTRFS_I(dir)->root;
5499 	int ret = 0;
5500 
5501 	path = btrfs_alloc_path();
5502 	if (!path)
5503 		return -ENOMEM;
5504 
5505 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5506 			name, namelen, 0);
5507 	if (IS_ERR_OR_NULL(di)) {
5508 		ret = di ? PTR_ERR(di) : -ENOENT;
5509 		goto out;
5510 	}
5511 
5512 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5513 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5514 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5515 		ret = -EUCLEAN;
5516 		btrfs_warn(root->fs_info,
5517 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5518 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5519 			   location->objectid, location->type, location->offset);
5520 	}
5521 	if (!ret)
5522 		*type = btrfs_dir_type(path->nodes[0], di);
5523 out:
5524 	btrfs_free_path(path);
5525 	return ret;
5526 }
5527 
5528 /*
5529  * when we hit a tree root in a directory, the btrfs part of the inode
5530  * needs to be changed to reflect the root directory of the tree root.  This
5531  * is kind of like crossing a mount point.
5532  */
5533 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5534 				    struct inode *dir,
5535 				    struct dentry *dentry,
5536 				    struct btrfs_key *location,
5537 				    struct btrfs_root **sub_root)
5538 {
5539 	struct btrfs_path *path;
5540 	struct btrfs_root *new_root;
5541 	struct btrfs_root_ref *ref;
5542 	struct extent_buffer *leaf;
5543 	struct btrfs_key key;
5544 	int ret;
5545 	int err = 0;
5546 
5547 	path = btrfs_alloc_path();
5548 	if (!path) {
5549 		err = -ENOMEM;
5550 		goto out;
5551 	}
5552 
5553 	err = -ENOENT;
5554 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5555 	key.type = BTRFS_ROOT_REF_KEY;
5556 	key.offset = location->objectid;
5557 
5558 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5559 	if (ret) {
5560 		if (ret < 0)
5561 			err = ret;
5562 		goto out;
5563 	}
5564 
5565 	leaf = path->nodes[0];
5566 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5567 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5568 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5569 		goto out;
5570 
5571 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5572 				   (unsigned long)(ref + 1),
5573 				   dentry->d_name.len);
5574 	if (ret)
5575 		goto out;
5576 
5577 	btrfs_release_path(path);
5578 
5579 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5580 	if (IS_ERR(new_root)) {
5581 		err = PTR_ERR(new_root);
5582 		goto out;
5583 	}
5584 
5585 	*sub_root = new_root;
5586 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5587 	location->type = BTRFS_INODE_ITEM_KEY;
5588 	location->offset = 0;
5589 	err = 0;
5590 out:
5591 	btrfs_free_path(path);
5592 	return err;
5593 }
5594 
5595 static void inode_tree_add(struct inode *inode)
5596 {
5597 	struct btrfs_root *root = BTRFS_I(inode)->root;
5598 	struct btrfs_inode *entry;
5599 	struct rb_node **p;
5600 	struct rb_node *parent;
5601 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5602 	u64 ino = btrfs_ino(BTRFS_I(inode));
5603 
5604 	if (inode_unhashed(inode))
5605 		return;
5606 	parent = NULL;
5607 	spin_lock(&root->inode_lock);
5608 	p = &root->inode_tree.rb_node;
5609 	while (*p) {
5610 		parent = *p;
5611 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5612 
5613 		if (ino < btrfs_ino(entry))
5614 			p = &parent->rb_left;
5615 		else if (ino > btrfs_ino(entry))
5616 			p = &parent->rb_right;
5617 		else {
5618 			WARN_ON(!(entry->vfs_inode.i_state &
5619 				  (I_WILL_FREE | I_FREEING)));
5620 			rb_replace_node(parent, new, &root->inode_tree);
5621 			RB_CLEAR_NODE(parent);
5622 			spin_unlock(&root->inode_lock);
5623 			return;
5624 		}
5625 	}
5626 	rb_link_node(new, parent, p);
5627 	rb_insert_color(new, &root->inode_tree);
5628 	spin_unlock(&root->inode_lock);
5629 }
5630 
5631 static void inode_tree_del(struct btrfs_inode *inode)
5632 {
5633 	struct btrfs_root *root = inode->root;
5634 	int empty = 0;
5635 
5636 	spin_lock(&root->inode_lock);
5637 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5638 		rb_erase(&inode->rb_node, &root->inode_tree);
5639 		RB_CLEAR_NODE(&inode->rb_node);
5640 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5641 	}
5642 	spin_unlock(&root->inode_lock);
5643 
5644 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5645 		spin_lock(&root->inode_lock);
5646 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5647 		spin_unlock(&root->inode_lock);
5648 		if (empty)
5649 			btrfs_add_dead_root(root);
5650 	}
5651 }
5652 
5653 
5654 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5655 {
5656 	struct btrfs_iget_args *args = p;
5657 
5658 	inode->i_ino = args->ino;
5659 	BTRFS_I(inode)->location.objectid = args->ino;
5660 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5661 	BTRFS_I(inode)->location.offset = 0;
5662 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5663 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5664 	return 0;
5665 }
5666 
5667 static int btrfs_find_actor(struct inode *inode, void *opaque)
5668 {
5669 	struct btrfs_iget_args *args = opaque;
5670 
5671 	return args->ino == BTRFS_I(inode)->location.objectid &&
5672 		args->root == BTRFS_I(inode)->root;
5673 }
5674 
5675 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5676 				       struct btrfs_root *root)
5677 {
5678 	struct inode *inode;
5679 	struct btrfs_iget_args args;
5680 	unsigned long hashval = btrfs_inode_hash(ino, root);
5681 
5682 	args.ino = ino;
5683 	args.root = root;
5684 
5685 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5686 			     btrfs_init_locked_inode,
5687 			     (void *)&args);
5688 	return inode;
5689 }
5690 
5691 /*
5692  * Get an inode object given its inode number and corresponding root.
5693  * Path can be preallocated to prevent recursing back to iget through
5694  * allocator. NULL is also valid but may require an additional allocation
5695  * later.
5696  */
5697 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5698 			      struct btrfs_root *root, struct btrfs_path *path)
5699 {
5700 	struct inode *inode;
5701 
5702 	inode = btrfs_iget_locked(s, ino, root);
5703 	if (!inode)
5704 		return ERR_PTR(-ENOMEM);
5705 
5706 	if (inode->i_state & I_NEW) {
5707 		int ret;
5708 
5709 		ret = btrfs_read_locked_inode(inode, path);
5710 		if (!ret) {
5711 			inode_tree_add(inode);
5712 			unlock_new_inode(inode);
5713 		} else {
5714 			iget_failed(inode);
5715 			/*
5716 			 * ret > 0 can come from btrfs_search_slot called by
5717 			 * btrfs_read_locked_inode, this means the inode item
5718 			 * was not found.
5719 			 */
5720 			if (ret > 0)
5721 				ret = -ENOENT;
5722 			inode = ERR_PTR(ret);
5723 		}
5724 	}
5725 
5726 	return inode;
5727 }
5728 
5729 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5730 {
5731 	return btrfs_iget_path(s, ino, root, NULL);
5732 }
5733 
5734 static struct inode *new_simple_dir(struct super_block *s,
5735 				    struct btrfs_key *key,
5736 				    struct btrfs_root *root)
5737 {
5738 	struct inode *inode = new_inode(s);
5739 
5740 	if (!inode)
5741 		return ERR_PTR(-ENOMEM);
5742 
5743 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5744 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5745 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5746 
5747 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5748 	/*
5749 	 * We only need lookup, the rest is read-only and there's no inode
5750 	 * associated with the dentry
5751 	 */
5752 	inode->i_op = &simple_dir_inode_operations;
5753 	inode->i_opflags &= ~IOP_XATTR;
5754 	inode->i_fop = &simple_dir_operations;
5755 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5756 	inode->i_mtime = current_time(inode);
5757 	inode->i_atime = inode->i_mtime;
5758 	inode->i_ctime = inode->i_mtime;
5759 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5760 
5761 	return inode;
5762 }
5763 
5764 static inline u8 btrfs_inode_type(struct inode *inode)
5765 {
5766 	/*
5767 	 * Compile-time asserts that generic FT_* types still match
5768 	 * BTRFS_FT_* types
5769 	 */
5770 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5771 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5772 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5773 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5774 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5775 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5776 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5777 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5778 
5779 	return fs_umode_to_ftype(inode->i_mode);
5780 }
5781 
5782 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5783 {
5784 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5785 	struct inode *inode;
5786 	struct btrfs_root *root = BTRFS_I(dir)->root;
5787 	struct btrfs_root *sub_root = root;
5788 	struct btrfs_key location;
5789 	u8 di_type = 0;
5790 	int ret = 0;
5791 
5792 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5793 		return ERR_PTR(-ENAMETOOLONG);
5794 
5795 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5796 	if (ret < 0)
5797 		return ERR_PTR(ret);
5798 
5799 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5800 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5801 		if (IS_ERR(inode))
5802 			return inode;
5803 
5804 		/* Do extra check against inode mode with di_type */
5805 		if (btrfs_inode_type(inode) != di_type) {
5806 			btrfs_crit(fs_info,
5807 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5808 				  inode->i_mode, btrfs_inode_type(inode),
5809 				  di_type);
5810 			iput(inode);
5811 			return ERR_PTR(-EUCLEAN);
5812 		}
5813 		return inode;
5814 	}
5815 
5816 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5817 				       &location, &sub_root);
5818 	if (ret < 0) {
5819 		if (ret != -ENOENT)
5820 			inode = ERR_PTR(ret);
5821 		else
5822 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5823 	} else {
5824 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5825 	}
5826 	if (root != sub_root)
5827 		btrfs_put_root(sub_root);
5828 
5829 	if (!IS_ERR(inode) && root != sub_root) {
5830 		down_read(&fs_info->cleanup_work_sem);
5831 		if (!sb_rdonly(inode->i_sb))
5832 			ret = btrfs_orphan_cleanup(sub_root);
5833 		up_read(&fs_info->cleanup_work_sem);
5834 		if (ret) {
5835 			iput(inode);
5836 			inode = ERR_PTR(ret);
5837 		}
5838 	}
5839 
5840 	return inode;
5841 }
5842 
5843 static int btrfs_dentry_delete(const struct dentry *dentry)
5844 {
5845 	struct btrfs_root *root;
5846 	struct inode *inode = d_inode(dentry);
5847 
5848 	if (!inode && !IS_ROOT(dentry))
5849 		inode = d_inode(dentry->d_parent);
5850 
5851 	if (inode) {
5852 		root = BTRFS_I(inode)->root;
5853 		if (btrfs_root_refs(&root->root_item) == 0)
5854 			return 1;
5855 
5856 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5857 			return 1;
5858 	}
5859 	return 0;
5860 }
5861 
5862 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5863 				   unsigned int flags)
5864 {
5865 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5866 
5867 	if (inode == ERR_PTR(-ENOENT))
5868 		inode = NULL;
5869 	return d_splice_alias(inode, dentry);
5870 }
5871 
5872 /*
5873  * All this infrastructure exists because dir_emit can fault, and we are holding
5874  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5875  * our information into that, and then dir_emit from the buffer.  This is
5876  * similar to what NFS does, only we don't keep the buffer around in pagecache
5877  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5878  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5879  * tree lock.
5880  */
5881 static int btrfs_opendir(struct inode *inode, struct file *file)
5882 {
5883 	struct btrfs_file_private *private;
5884 
5885 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5886 	if (!private)
5887 		return -ENOMEM;
5888 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5889 	if (!private->filldir_buf) {
5890 		kfree(private);
5891 		return -ENOMEM;
5892 	}
5893 	file->private_data = private;
5894 	return 0;
5895 }
5896 
5897 struct dir_entry {
5898 	u64 ino;
5899 	u64 offset;
5900 	unsigned type;
5901 	int name_len;
5902 };
5903 
5904 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5905 {
5906 	while (entries--) {
5907 		struct dir_entry *entry = addr;
5908 		char *name = (char *)(entry + 1);
5909 
5910 		ctx->pos = get_unaligned(&entry->offset);
5911 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5912 					 get_unaligned(&entry->ino),
5913 					 get_unaligned(&entry->type)))
5914 			return 1;
5915 		addr += sizeof(struct dir_entry) +
5916 			get_unaligned(&entry->name_len);
5917 		ctx->pos++;
5918 	}
5919 	return 0;
5920 }
5921 
5922 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5923 {
5924 	struct inode *inode = file_inode(file);
5925 	struct btrfs_root *root = BTRFS_I(inode)->root;
5926 	struct btrfs_file_private *private = file->private_data;
5927 	struct btrfs_dir_item *di;
5928 	struct btrfs_key key;
5929 	struct btrfs_key found_key;
5930 	struct btrfs_path *path;
5931 	void *addr;
5932 	struct list_head ins_list;
5933 	struct list_head del_list;
5934 	int ret;
5935 	struct extent_buffer *leaf;
5936 	int slot;
5937 	char *name_ptr;
5938 	int name_len;
5939 	int entries = 0;
5940 	int total_len = 0;
5941 	bool put = false;
5942 	struct btrfs_key location;
5943 
5944 	if (!dir_emit_dots(file, ctx))
5945 		return 0;
5946 
5947 	path = btrfs_alloc_path();
5948 	if (!path)
5949 		return -ENOMEM;
5950 
5951 	addr = private->filldir_buf;
5952 	path->reada = READA_FORWARD;
5953 
5954 	INIT_LIST_HEAD(&ins_list);
5955 	INIT_LIST_HEAD(&del_list);
5956 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5957 
5958 again:
5959 	key.type = BTRFS_DIR_INDEX_KEY;
5960 	key.offset = ctx->pos;
5961 	key.objectid = btrfs_ino(BTRFS_I(inode));
5962 
5963 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5964 	if (ret < 0)
5965 		goto err;
5966 
5967 	while (1) {
5968 		struct dir_entry *entry;
5969 
5970 		leaf = path->nodes[0];
5971 		slot = path->slots[0];
5972 		if (slot >= btrfs_header_nritems(leaf)) {
5973 			ret = btrfs_next_leaf(root, path);
5974 			if (ret < 0)
5975 				goto err;
5976 			else if (ret > 0)
5977 				break;
5978 			continue;
5979 		}
5980 
5981 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5982 
5983 		if (found_key.objectid != key.objectid)
5984 			break;
5985 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5986 			break;
5987 		if (found_key.offset < ctx->pos)
5988 			goto next;
5989 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5990 			goto next;
5991 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5992 		name_len = btrfs_dir_name_len(leaf, di);
5993 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5994 		    PAGE_SIZE) {
5995 			btrfs_release_path(path);
5996 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5997 			if (ret)
5998 				goto nopos;
5999 			addr = private->filldir_buf;
6000 			entries = 0;
6001 			total_len = 0;
6002 			goto again;
6003 		}
6004 
6005 		entry = addr;
6006 		put_unaligned(name_len, &entry->name_len);
6007 		name_ptr = (char *)(entry + 1);
6008 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6009 				   name_len);
6010 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6011 				&entry->type);
6012 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6013 		put_unaligned(location.objectid, &entry->ino);
6014 		put_unaligned(found_key.offset, &entry->offset);
6015 		entries++;
6016 		addr += sizeof(struct dir_entry) + name_len;
6017 		total_len += sizeof(struct dir_entry) + name_len;
6018 next:
6019 		path->slots[0]++;
6020 	}
6021 	btrfs_release_path(path);
6022 
6023 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6024 	if (ret)
6025 		goto nopos;
6026 
6027 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6028 	if (ret)
6029 		goto nopos;
6030 
6031 	/*
6032 	 * Stop new entries from being returned after we return the last
6033 	 * entry.
6034 	 *
6035 	 * New directory entries are assigned a strictly increasing
6036 	 * offset.  This means that new entries created during readdir
6037 	 * are *guaranteed* to be seen in the future by that readdir.
6038 	 * This has broken buggy programs which operate on names as
6039 	 * they're returned by readdir.  Until we re-use freed offsets
6040 	 * we have this hack to stop new entries from being returned
6041 	 * under the assumption that they'll never reach this huge
6042 	 * offset.
6043 	 *
6044 	 * This is being careful not to overflow 32bit loff_t unless the
6045 	 * last entry requires it because doing so has broken 32bit apps
6046 	 * in the past.
6047 	 */
6048 	if (ctx->pos >= INT_MAX)
6049 		ctx->pos = LLONG_MAX;
6050 	else
6051 		ctx->pos = INT_MAX;
6052 nopos:
6053 	ret = 0;
6054 err:
6055 	if (put)
6056 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6057 	btrfs_free_path(path);
6058 	return ret;
6059 }
6060 
6061 /*
6062  * This is somewhat expensive, updating the tree every time the
6063  * inode changes.  But, it is most likely to find the inode in cache.
6064  * FIXME, needs more benchmarking...there are no reasons other than performance
6065  * to keep or drop this code.
6066  */
6067 static int btrfs_dirty_inode(struct inode *inode)
6068 {
6069 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6070 	struct btrfs_root *root = BTRFS_I(inode)->root;
6071 	struct btrfs_trans_handle *trans;
6072 	int ret;
6073 
6074 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6075 		return 0;
6076 
6077 	trans = btrfs_join_transaction(root);
6078 	if (IS_ERR(trans))
6079 		return PTR_ERR(trans);
6080 
6081 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6082 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6083 		/* whoops, lets try again with the full transaction */
6084 		btrfs_end_transaction(trans);
6085 		trans = btrfs_start_transaction(root, 1);
6086 		if (IS_ERR(trans))
6087 			return PTR_ERR(trans);
6088 
6089 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6090 	}
6091 	btrfs_end_transaction(trans);
6092 	if (BTRFS_I(inode)->delayed_node)
6093 		btrfs_balance_delayed_items(fs_info);
6094 
6095 	return ret;
6096 }
6097 
6098 /*
6099  * This is a copy of file_update_time.  We need this so we can return error on
6100  * ENOSPC for updating the inode in the case of file write and mmap writes.
6101  */
6102 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6103 			     int flags)
6104 {
6105 	struct btrfs_root *root = BTRFS_I(inode)->root;
6106 	bool dirty = flags & ~S_VERSION;
6107 
6108 	if (btrfs_root_readonly(root))
6109 		return -EROFS;
6110 
6111 	if (flags & S_VERSION)
6112 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6113 	if (flags & S_CTIME)
6114 		inode->i_ctime = *now;
6115 	if (flags & S_MTIME)
6116 		inode->i_mtime = *now;
6117 	if (flags & S_ATIME)
6118 		inode->i_atime = *now;
6119 	return dirty ? btrfs_dirty_inode(inode) : 0;
6120 }
6121 
6122 /*
6123  * find the highest existing sequence number in a directory
6124  * and then set the in-memory index_cnt variable to reflect
6125  * free sequence numbers
6126  */
6127 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6128 {
6129 	struct btrfs_root *root = inode->root;
6130 	struct btrfs_key key, found_key;
6131 	struct btrfs_path *path;
6132 	struct extent_buffer *leaf;
6133 	int ret;
6134 
6135 	key.objectid = btrfs_ino(inode);
6136 	key.type = BTRFS_DIR_INDEX_KEY;
6137 	key.offset = (u64)-1;
6138 
6139 	path = btrfs_alloc_path();
6140 	if (!path)
6141 		return -ENOMEM;
6142 
6143 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6144 	if (ret < 0)
6145 		goto out;
6146 	/* FIXME: we should be able to handle this */
6147 	if (ret == 0)
6148 		goto out;
6149 	ret = 0;
6150 
6151 	/*
6152 	 * MAGIC NUMBER EXPLANATION:
6153 	 * since we search a directory based on f_pos we have to start at 2
6154 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6155 	 * else has to start at 2
6156 	 */
6157 	if (path->slots[0] == 0) {
6158 		inode->index_cnt = 2;
6159 		goto out;
6160 	}
6161 
6162 	path->slots[0]--;
6163 
6164 	leaf = path->nodes[0];
6165 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6166 
6167 	if (found_key.objectid != btrfs_ino(inode) ||
6168 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6169 		inode->index_cnt = 2;
6170 		goto out;
6171 	}
6172 
6173 	inode->index_cnt = found_key.offset + 1;
6174 out:
6175 	btrfs_free_path(path);
6176 	return ret;
6177 }
6178 
6179 /*
6180  * helper to find a free sequence number in a given directory.  This current
6181  * code is very simple, later versions will do smarter things in the btree
6182  */
6183 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6184 {
6185 	int ret = 0;
6186 
6187 	if (dir->index_cnt == (u64)-1) {
6188 		ret = btrfs_inode_delayed_dir_index_count(dir);
6189 		if (ret) {
6190 			ret = btrfs_set_inode_index_count(dir);
6191 			if (ret)
6192 				return ret;
6193 		}
6194 	}
6195 
6196 	*index = dir->index_cnt;
6197 	dir->index_cnt++;
6198 
6199 	return ret;
6200 }
6201 
6202 static int btrfs_insert_inode_locked(struct inode *inode)
6203 {
6204 	struct btrfs_iget_args args;
6205 
6206 	args.ino = BTRFS_I(inode)->location.objectid;
6207 	args.root = BTRFS_I(inode)->root;
6208 
6209 	return insert_inode_locked4(inode,
6210 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6211 		   btrfs_find_actor, &args);
6212 }
6213 
6214 /*
6215  * Inherit flags from the parent inode.
6216  *
6217  * Currently only the compression flags and the cow flags are inherited.
6218  */
6219 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6220 {
6221 	unsigned int flags;
6222 
6223 	if (!dir)
6224 		return;
6225 
6226 	flags = BTRFS_I(dir)->flags;
6227 
6228 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6229 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6230 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6231 	} else if (flags & BTRFS_INODE_COMPRESS) {
6232 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6233 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6234 	}
6235 
6236 	if (flags & BTRFS_INODE_NODATACOW) {
6237 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6238 		if (S_ISREG(inode->i_mode))
6239 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6240 	}
6241 
6242 	btrfs_sync_inode_flags_to_i_flags(inode);
6243 }
6244 
6245 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6246 				     struct btrfs_root *root,
6247 				     struct inode *dir,
6248 				     const char *name, int name_len,
6249 				     u64 ref_objectid, u64 objectid,
6250 				     umode_t mode, u64 *index)
6251 {
6252 	struct btrfs_fs_info *fs_info = root->fs_info;
6253 	struct inode *inode;
6254 	struct btrfs_inode_item *inode_item;
6255 	struct btrfs_key *location;
6256 	struct btrfs_path *path;
6257 	struct btrfs_inode_ref *ref;
6258 	struct btrfs_key key[2];
6259 	u32 sizes[2];
6260 	int nitems = name ? 2 : 1;
6261 	unsigned long ptr;
6262 	unsigned int nofs_flag;
6263 	int ret;
6264 
6265 	path = btrfs_alloc_path();
6266 	if (!path)
6267 		return ERR_PTR(-ENOMEM);
6268 
6269 	nofs_flag = memalloc_nofs_save();
6270 	inode = new_inode(fs_info->sb);
6271 	memalloc_nofs_restore(nofs_flag);
6272 	if (!inode) {
6273 		btrfs_free_path(path);
6274 		return ERR_PTR(-ENOMEM);
6275 	}
6276 
6277 	/*
6278 	 * O_TMPFILE, set link count to 0, so that after this point,
6279 	 * we fill in an inode item with the correct link count.
6280 	 */
6281 	if (!name)
6282 		set_nlink(inode, 0);
6283 
6284 	/*
6285 	 * we have to initialize this early, so we can reclaim the inode
6286 	 * number if we fail afterwards in this function.
6287 	 */
6288 	inode->i_ino = objectid;
6289 
6290 	if (dir && name) {
6291 		trace_btrfs_inode_request(dir);
6292 
6293 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6294 		if (ret) {
6295 			btrfs_free_path(path);
6296 			iput(inode);
6297 			return ERR_PTR(ret);
6298 		}
6299 	} else if (dir) {
6300 		*index = 0;
6301 	}
6302 	/*
6303 	 * index_cnt is ignored for everything but a dir,
6304 	 * btrfs_set_inode_index_count has an explanation for the magic
6305 	 * number
6306 	 */
6307 	BTRFS_I(inode)->index_cnt = 2;
6308 	BTRFS_I(inode)->dir_index = *index;
6309 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6310 	BTRFS_I(inode)->generation = trans->transid;
6311 	inode->i_generation = BTRFS_I(inode)->generation;
6312 
6313 	/*
6314 	 * We could have gotten an inode number from somebody who was fsynced
6315 	 * and then removed in this same transaction, so let's just set full
6316 	 * sync since it will be a full sync anyway and this will blow away the
6317 	 * old info in the log.
6318 	 */
6319 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6320 
6321 	key[0].objectid = objectid;
6322 	key[0].type = BTRFS_INODE_ITEM_KEY;
6323 	key[0].offset = 0;
6324 
6325 	sizes[0] = sizeof(struct btrfs_inode_item);
6326 
6327 	if (name) {
6328 		/*
6329 		 * Start new inodes with an inode_ref. This is slightly more
6330 		 * efficient for small numbers of hard links since they will
6331 		 * be packed into one item. Extended refs will kick in if we
6332 		 * add more hard links than can fit in the ref item.
6333 		 */
6334 		key[1].objectid = objectid;
6335 		key[1].type = BTRFS_INODE_REF_KEY;
6336 		key[1].offset = ref_objectid;
6337 
6338 		sizes[1] = name_len + sizeof(*ref);
6339 	}
6340 
6341 	location = &BTRFS_I(inode)->location;
6342 	location->objectid = objectid;
6343 	location->offset = 0;
6344 	location->type = BTRFS_INODE_ITEM_KEY;
6345 
6346 	ret = btrfs_insert_inode_locked(inode);
6347 	if (ret < 0) {
6348 		iput(inode);
6349 		goto fail;
6350 	}
6351 
6352 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6353 	if (ret != 0)
6354 		goto fail_unlock;
6355 
6356 	inode_init_owner(&init_user_ns, inode, dir, mode);
6357 	inode_set_bytes(inode, 0);
6358 
6359 	inode->i_mtime = current_time(inode);
6360 	inode->i_atime = inode->i_mtime;
6361 	inode->i_ctime = inode->i_mtime;
6362 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6363 
6364 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6365 				  struct btrfs_inode_item);
6366 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6367 			     sizeof(*inode_item));
6368 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6369 
6370 	if (name) {
6371 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6372 				     struct btrfs_inode_ref);
6373 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6374 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6375 		ptr = (unsigned long)(ref + 1);
6376 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6377 	}
6378 
6379 	btrfs_mark_buffer_dirty(path->nodes[0]);
6380 	btrfs_free_path(path);
6381 
6382 	btrfs_inherit_iflags(inode, dir);
6383 
6384 	if (S_ISREG(mode)) {
6385 		if (btrfs_test_opt(fs_info, NODATASUM))
6386 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6387 		if (btrfs_test_opt(fs_info, NODATACOW))
6388 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6389 				BTRFS_INODE_NODATASUM;
6390 	}
6391 
6392 	inode_tree_add(inode);
6393 
6394 	trace_btrfs_inode_new(inode);
6395 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6396 
6397 	btrfs_update_root_times(trans, root);
6398 
6399 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6400 	if (ret)
6401 		btrfs_err(fs_info,
6402 			  "error inheriting props for ino %llu (root %llu): %d",
6403 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6404 
6405 	return inode;
6406 
6407 fail_unlock:
6408 	discard_new_inode(inode);
6409 fail:
6410 	if (dir && name)
6411 		BTRFS_I(dir)->index_cnt--;
6412 	btrfs_free_path(path);
6413 	return ERR_PTR(ret);
6414 }
6415 
6416 /*
6417  * utility function to add 'inode' into 'parent_inode' with
6418  * a give name and a given sequence number.
6419  * if 'add_backref' is true, also insert a backref from the
6420  * inode to the parent directory.
6421  */
6422 int btrfs_add_link(struct btrfs_trans_handle *trans,
6423 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6424 		   const char *name, int name_len, int add_backref, u64 index)
6425 {
6426 	int ret = 0;
6427 	struct btrfs_key key;
6428 	struct btrfs_root *root = parent_inode->root;
6429 	u64 ino = btrfs_ino(inode);
6430 	u64 parent_ino = btrfs_ino(parent_inode);
6431 
6432 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6433 		memcpy(&key, &inode->root->root_key, sizeof(key));
6434 	} else {
6435 		key.objectid = ino;
6436 		key.type = BTRFS_INODE_ITEM_KEY;
6437 		key.offset = 0;
6438 	}
6439 
6440 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6441 		ret = btrfs_add_root_ref(trans, key.objectid,
6442 					 root->root_key.objectid, parent_ino,
6443 					 index, name, name_len);
6444 	} else if (add_backref) {
6445 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6446 					     parent_ino, index);
6447 	}
6448 
6449 	/* Nothing to clean up yet */
6450 	if (ret)
6451 		return ret;
6452 
6453 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6454 				    btrfs_inode_type(&inode->vfs_inode), index);
6455 	if (ret == -EEXIST || ret == -EOVERFLOW)
6456 		goto fail_dir_item;
6457 	else if (ret) {
6458 		btrfs_abort_transaction(trans, ret);
6459 		return ret;
6460 	}
6461 
6462 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6463 			   name_len * 2);
6464 	inode_inc_iversion(&parent_inode->vfs_inode);
6465 	/*
6466 	 * If we are replaying a log tree, we do not want to update the mtime
6467 	 * and ctime of the parent directory with the current time, since the
6468 	 * log replay procedure is responsible for setting them to their correct
6469 	 * values (the ones it had when the fsync was done).
6470 	 */
6471 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6472 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6473 
6474 		parent_inode->vfs_inode.i_mtime = now;
6475 		parent_inode->vfs_inode.i_ctime = now;
6476 	}
6477 	ret = btrfs_update_inode(trans, root, parent_inode);
6478 	if (ret)
6479 		btrfs_abort_transaction(trans, ret);
6480 	return ret;
6481 
6482 fail_dir_item:
6483 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6484 		u64 local_index;
6485 		int err;
6486 		err = btrfs_del_root_ref(trans, key.objectid,
6487 					 root->root_key.objectid, parent_ino,
6488 					 &local_index, name, name_len);
6489 		if (err)
6490 			btrfs_abort_transaction(trans, err);
6491 	} else if (add_backref) {
6492 		u64 local_index;
6493 		int err;
6494 
6495 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6496 					  ino, parent_ino, &local_index);
6497 		if (err)
6498 			btrfs_abort_transaction(trans, err);
6499 	}
6500 
6501 	/* Return the original error code */
6502 	return ret;
6503 }
6504 
6505 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6506 			    struct btrfs_inode *dir, struct dentry *dentry,
6507 			    struct btrfs_inode *inode, int backref, u64 index)
6508 {
6509 	int err = btrfs_add_link(trans, dir, inode,
6510 				 dentry->d_name.name, dentry->d_name.len,
6511 				 backref, index);
6512 	if (err > 0)
6513 		err = -EEXIST;
6514 	return err;
6515 }
6516 
6517 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6518 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6519 {
6520 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6521 	struct btrfs_trans_handle *trans;
6522 	struct btrfs_root *root = BTRFS_I(dir)->root;
6523 	struct inode *inode = NULL;
6524 	int err;
6525 	u64 objectid;
6526 	u64 index = 0;
6527 
6528 	/*
6529 	 * 2 for inode item and ref
6530 	 * 2 for dir items
6531 	 * 1 for xattr if selinux is on
6532 	 */
6533 	trans = btrfs_start_transaction(root, 5);
6534 	if (IS_ERR(trans))
6535 		return PTR_ERR(trans);
6536 
6537 	err = btrfs_get_free_objectid(root, &objectid);
6538 	if (err)
6539 		goto out_unlock;
6540 
6541 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6542 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6543 			mode, &index);
6544 	if (IS_ERR(inode)) {
6545 		err = PTR_ERR(inode);
6546 		inode = NULL;
6547 		goto out_unlock;
6548 	}
6549 
6550 	/*
6551 	* If the active LSM wants to access the inode during
6552 	* d_instantiate it needs these. Smack checks to see
6553 	* if the filesystem supports xattrs by looking at the
6554 	* ops vector.
6555 	*/
6556 	inode->i_op = &btrfs_special_inode_operations;
6557 	init_special_inode(inode, inode->i_mode, rdev);
6558 
6559 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6560 	if (err)
6561 		goto out_unlock;
6562 
6563 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6564 			0, index);
6565 	if (err)
6566 		goto out_unlock;
6567 
6568 	btrfs_update_inode(trans, root, BTRFS_I(inode));
6569 	d_instantiate_new(dentry, inode);
6570 
6571 out_unlock:
6572 	btrfs_end_transaction(trans);
6573 	btrfs_btree_balance_dirty(fs_info);
6574 	if (err && inode) {
6575 		inode_dec_link_count(inode);
6576 		discard_new_inode(inode);
6577 	}
6578 	return err;
6579 }
6580 
6581 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6582 			struct dentry *dentry, umode_t mode, bool excl)
6583 {
6584 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6585 	struct btrfs_trans_handle *trans;
6586 	struct btrfs_root *root = BTRFS_I(dir)->root;
6587 	struct inode *inode = NULL;
6588 	int err;
6589 	u64 objectid;
6590 	u64 index = 0;
6591 
6592 	/*
6593 	 * 2 for inode item and ref
6594 	 * 2 for dir items
6595 	 * 1 for xattr if selinux is on
6596 	 */
6597 	trans = btrfs_start_transaction(root, 5);
6598 	if (IS_ERR(trans))
6599 		return PTR_ERR(trans);
6600 
6601 	err = btrfs_get_free_objectid(root, &objectid);
6602 	if (err)
6603 		goto out_unlock;
6604 
6605 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6606 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6607 			mode, &index);
6608 	if (IS_ERR(inode)) {
6609 		err = PTR_ERR(inode);
6610 		inode = NULL;
6611 		goto out_unlock;
6612 	}
6613 	/*
6614 	* If the active LSM wants to access the inode during
6615 	* d_instantiate it needs these. Smack checks to see
6616 	* if the filesystem supports xattrs by looking at the
6617 	* ops vector.
6618 	*/
6619 	inode->i_fop = &btrfs_file_operations;
6620 	inode->i_op = &btrfs_file_inode_operations;
6621 	inode->i_mapping->a_ops = &btrfs_aops;
6622 
6623 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6624 	if (err)
6625 		goto out_unlock;
6626 
6627 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6628 	if (err)
6629 		goto out_unlock;
6630 
6631 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6632 			0, index);
6633 	if (err)
6634 		goto out_unlock;
6635 
6636 	d_instantiate_new(dentry, inode);
6637 
6638 out_unlock:
6639 	btrfs_end_transaction(trans);
6640 	if (err && inode) {
6641 		inode_dec_link_count(inode);
6642 		discard_new_inode(inode);
6643 	}
6644 	btrfs_btree_balance_dirty(fs_info);
6645 	return err;
6646 }
6647 
6648 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6649 		      struct dentry *dentry)
6650 {
6651 	struct btrfs_trans_handle *trans = NULL;
6652 	struct btrfs_root *root = BTRFS_I(dir)->root;
6653 	struct inode *inode = d_inode(old_dentry);
6654 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6655 	u64 index;
6656 	int err;
6657 	int drop_inode = 0;
6658 
6659 	/* do not allow sys_link's with other subvols of the same device */
6660 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6661 		return -EXDEV;
6662 
6663 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6664 		return -EMLINK;
6665 
6666 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6667 	if (err)
6668 		goto fail;
6669 
6670 	/*
6671 	 * 2 items for inode and inode ref
6672 	 * 2 items for dir items
6673 	 * 1 item for parent inode
6674 	 * 1 item for orphan item deletion if O_TMPFILE
6675 	 */
6676 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6677 	if (IS_ERR(trans)) {
6678 		err = PTR_ERR(trans);
6679 		trans = NULL;
6680 		goto fail;
6681 	}
6682 
6683 	/* There are several dir indexes for this inode, clear the cache. */
6684 	BTRFS_I(inode)->dir_index = 0ULL;
6685 	inc_nlink(inode);
6686 	inode_inc_iversion(inode);
6687 	inode->i_ctime = current_time(inode);
6688 	ihold(inode);
6689 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6690 
6691 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6692 			1, index);
6693 
6694 	if (err) {
6695 		drop_inode = 1;
6696 	} else {
6697 		struct dentry *parent = dentry->d_parent;
6698 
6699 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6700 		if (err)
6701 			goto fail;
6702 		if (inode->i_nlink == 1) {
6703 			/*
6704 			 * If new hard link count is 1, it's a file created
6705 			 * with open(2) O_TMPFILE flag.
6706 			 */
6707 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6708 			if (err)
6709 				goto fail;
6710 		}
6711 		d_instantiate(dentry, inode);
6712 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6713 	}
6714 
6715 fail:
6716 	if (trans)
6717 		btrfs_end_transaction(trans);
6718 	if (drop_inode) {
6719 		inode_dec_link_count(inode);
6720 		iput(inode);
6721 	}
6722 	btrfs_btree_balance_dirty(fs_info);
6723 	return err;
6724 }
6725 
6726 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6727 		       struct dentry *dentry, umode_t mode)
6728 {
6729 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6730 	struct inode *inode = NULL;
6731 	struct btrfs_trans_handle *trans;
6732 	struct btrfs_root *root = BTRFS_I(dir)->root;
6733 	int err = 0;
6734 	u64 objectid = 0;
6735 	u64 index = 0;
6736 
6737 	/*
6738 	 * 2 items for inode and ref
6739 	 * 2 items for dir items
6740 	 * 1 for xattr if selinux is on
6741 	 */
6742 	trans = btrfs_start_transaction(root, 5);
6743 	if (IS_ERR(trans))
6744 		return PTR_ERR(trans);
6745 
6746 	err = btrfs_get_free_objectid(root, &objectid);
6747 	if (err)
6748 		goto out_fail;
6749 
6750 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6751 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6752 			S_IFDIR | mode, &index);
6753 	if (IS_ERR(inode)) {
6754 		err = PTR_ERR(inode);
6755 		inode = NULL;
6756 		goto out_fail;
6757 	}
6758 
6759 	/* these must be set before we unlock the inode */
6760 	inode->i_op = &btrfs_dir_inode_operations;
6761 	inode->i_fop = &btrfs_dir_file_operations;
6762 
6763 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6764 	if (err)
6765 		goto out_fail;
6766 
6767 	btrfs_i_size_write(BTRFS_I(inode), 0);
6768 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6769 	if (err)
6770 		goto out_fail;
6771 
6772 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6773 			dentry->d_name.name,
6774 			dentry->d_name.len, 0, index);
6775 	if (err)
6776 		goto out_fail;
6777 
6778 	d_instantiate_new(dentry, inode);
6779 
6780 out_fail:
6781 	btrfs_end_transaction(trans);
6782 	if (err && inode) {
6783 		inode_dec_link_count(inode);
6784 		discard_new_inode(inode);
6785 	}
6786 	btrfs_btree_balance_dirty(fs_info);
6787 	return err;
6788 }
6789 
6790 static noinline int uncompress_inline(struct btrfs_path *path,
6791 				      struct page *page,
6792 				      size_t pg_offset, u64 extent_offset,
6793 				      struct btrfs_file_extent_item *item)
6794 {
6795 	int ret;
6796 	struct extent_buffer *leaf = path->nodes[0];
6797 	char *tmp;
6798 	size_t max_size;
6799 	unsigned long inline_size;
6800 	unsigned long ptr;
6801 	int compress_type;
6802 
6803 	WARN_ON(pg_offset != 0);
6804 	compress_type = btrfs_file_extent_compression(leaf, item);
6805 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6806 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6807 					btrfs_item_nr(path->slots[0]));
6808 	tmp = kmalloc(inline_size, GFP_NOFS);
6809 	if (!tmp)
6810 		return -ENOMEM;
6811 	ptr = btrfs_file_extent_inline_start(item);
6812 
6813 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6814 
6815 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6816 	ret = btrfs_decompress(compress_type, tmp, page,
6817 			       extent_offset, inline_size, max_size);
6818 
6819 	/*
6820 	 * decompression code contains a memset to fill in any space between the end
6821 	 * of the uncompressed data and the end of max_size in case the decompressed
6822 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6823 	 * the end of an inline extent and the beginning of the next block, so we
6824 	 * cover that region here.
6825 	 */
6826 
6827 	if (max_size + pg_offset < PAGE_SIZE)
6828 		memzero_page(page,  pg_offset + max_size,
6829 			     PAGE_SIZE - max_size - pg_offset);
6830 	kfree(tmp);
6831 	return ret;
6832 }
6833 
6834 /**
6835  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6836  * @inode:	file to search in
6837  * @page:	page to read extent data into if the extent is inline
6838  * @pg_offset:	offset into @page to copy to
6839  * @start:	file offset
6840  * @len:	length of range starting at @start
6841  *
6842  * This returns the first &struct extent_map which overlaps with the given
6843  * range, reading it from the B-tree and caching it if necessary. Note that
6844  * there may be more extents which overlap the given range after the returned
6845  * extent_map.
6846  *
6847  * If @page is not NULL and the extent is inline, this also reads the extent
6848  * data directly into the page and marks the extent up to date in the io_tree.
6849  *
6850  * Return: ERR_PTR on error, non-NULL extent_map on success.
6851  */
6852 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6853 				    struct page *page, size_t pg_offset,
6854 				    u64 start, u64 len)
6855 {
6856 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6857 	int ret = 0;
6858 	u64 extent_start = 0;
6859 	u64 extent_end = 0;
6860 	u64 objectid = btrfs_ino(inode);
6861 	int extent_type = -1;
6862 	struct btrfs_path *path = NULL;
6863 	struct btrfs_root *root = inode->root;
6864 	struct btrfs_file_extent_item *item;
6865 	struct extent_buffer *leaf;
6866 	struct btrfs_key found_key;
6867 	struct extent_map *em = NULL;
6868 	struct extent_map_tree *em_tree = &inode->extent_tree;
6869 	struct extent_io_tree *io_tree = &inode->io_tree;
6870 
6871 	read_lock(&em_tree->lock);
6872 	em = lookup_extent_mapping(em_tree, start, len);
6873 	read_unlock(&em_tree->lock);
6874 
6875 	if (em) {
6876 		if (em->start > start || em->start + em->len <= start)
6877 			free_extent_map(em);
6878 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6879 			free_extent_map(em);
6880 		else
6881 			goto out;
6882 	}
6883 	em = alloc_extent_map();
6884 	if (!em) {
6885 		ret = -ENOMEM;
6886 		goto out;
6887 	}
6888 	em->start = EXTENT_MAP_HOLE;
6889 	em->orig_start = EXTENT_MAP_HOLE;
6890 	em->len = (u64)-1;
6891 	em->block_len = (u64)-1;
6892 
6893 	path = btrfs_alloc_path();
6894 	if (!path) {
6895 		ret = -ENOMEM;
6896 		goto out;
6897 	}
6898 
6899 	/* Chances are we'll be called again, so go ahead and do readahead */
6900 	path->reada = READA_FORWARD;
6901 
6902 	/*
6903 	 * The same explanation in load_free_space_cache applies here as well,
6904 	 * we only read when we're loading the free space cache, and at that
6905 	 * point the commit_root has everything we need.
6906 	 */
6907 	if (btrfs_is_free_space_inode(inode)) {
6908 		path->search_commit_root = 1;
6909 		path->skip_locking = 1;
6910 	}
6911 
6912 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6913 	if (ret < 0) {
6914 		goto out;
6915 	} else if (ret > 0) {
6916 		if (path->slots[0] == 0)
6917 			goto not_found;
6918 		path->slots[0]--;
6919 		ret = 0;
6920 	}
6921 
6922 	leaf = path->nodes[0];
6923 	item = btrfs_item_ptr(leaf, path->slots[0],
6924 			      struct btrfs_file_extent_item);
6925 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6926 	if (found_key.objectid != objectid ||
6927 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6928 		/*
6929 		 * If we backup past the first extent we want to move forward
6930 		 * and see if there is an extent in front of us, otherwise we'll
6931 		 * say there is a hole for our whole search range which can
6932 		 * cause problems.
6933 		 */
6934 		extent_end = start;
6935 		goto next;
6936 	}
6937 
6938 	extent_type = btrfs_file_extent_type(leaf, item);
6939 	extent_start = found_key.offset;
6940 	extent_end = btrfs_file_extent_end(path);
6941 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6942 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6943 		/* Only regular file could have regular/prealloc extent */
6944 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6945 			ret = -EUCLEAN;
6946 			btrfs_crit(fs_info,
6947 		"regular/prealloc extent found for non-regular inode %llu",
6948 				   btrfs_ino(inode));
6949 			goto out;
6950 		}
6951 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6952 						       extent_start);
6953 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6954 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6955 						      path->slots[0],
6956 						      extent_start);
6957 	}
6958 next:
6959 	if (start >= extent_end) {
6960 		path->slots[0]++;
6961 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6962 			ret = btrfs_next_leaf(root, path);
6963 			if (ret < 0)
6964 				goto out;
6965 			else if (ret > 0)
6966 				goto not_found;
6967 
6968 			leaf = path->nodes[0];
6969 		}
6970 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6971 		if (found_key.objectid != objectid ||
6972 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6973 			goto not_found;
6974 		if (start + len <= found_key.offset)
6975 			goto not_found;
6976 		if (start > found_key.offset)
6977 			goto next;
6978 
6979 		/* New extent overlaps with existing one */
6980 		em->start = start;
6981 		em->orig_start = start;
6982 		em->len = found_key.offset - start;
6983 		em->block_start = EXTENT_MAP_HOLE;
6984 		goto insert;
6985 	}
6986 
6987 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6988 
6989 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6990 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6991 		goto insert;
6992 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6993 		unsigned long ptr;
6994 		char *map;
6995 		size_t size;
6996 		size_t extent_offset;
6997 		size_t copy_size;
6998 
6999 		if (!page)
7000 			goto out;
7001 
7002 		size = btrfs_file_extent_ram_bytes(leaf, item);
7003 		extent_offset = page_offset(page) + pg_offset - extent_start;
7004 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7005 				  size - extent_offset);
7006 		em->start = extent_start + extent_offset;
7007 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7008 		em->orig_block_len = em->len;
7009 		em->orig_start = em->start;
7010 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7011 
7012 		if (!PageUptodate(page)) {
7013 			if (btrfs_file_extent_compression(leaf, item) !=
7014 			    BTRFS_COMPRESS_NONE) {
7015 				ret = uncompress_inline(path, page, pg_offset,
7016 							extent_offset, item);
7017 				if (ret)
7018 					goto out;
7019 			} else {
7020 				map = kmap_local_page(page);
7021 				read_extent_buffer(leaf, map + pg_offset, ptr,
7022 						   copy_size);
7023 				if (pg_offset + copy_size < PAGE_SIZE) {
7024 					memset(map + pg_offset + copy_size, 0,
7025 					       PAGE_SIZE - pg_offset -
7026 					       copy_size);
7027 				}
7028 				kunmap_local(map);
7029 			}
7030 			flush_dcache_page(page);
7031 		}
7032 		set_extent_uptodate(io_tree, em->start,
7033 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7034 		goto insert;
7035 	}
7036 not_found:
7037 	em->start = start;
7038 	em->orig_start = start;
7039 	em->len = len;
7040 	em->block_start = EXTENT_MAP_HOLE;
7041 insert:
7042 	ret = 0;
7043 	btrfs_release_path(path);
7044 	if (em->start > start || extent_map_end(em) <= start) {
7045 		btrfs_err(fs_info,
7046 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7047 			  em->start, em->len, start, len);
7048 		ret = -EIO;
7049 		goto out;
7050 	}
7051 
7052 	write_lock(&em_tree->lock);
7053 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7054 	write_unlock(&em_tree->lock);
7055 out:
7056 	btrfs_free_path(path);
7057 
7058 	trace_btrfs_get_extent(root, inode, em);
7059 
7060 	if (ret) {
7061 		free_extent_map(em);
7062 		return ERR_PTR(ret);
7063 	}
7064 	return em;
7065 }
7066 
7067 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7068 					   u64 start, u64 len)
7069 {
7070 	struct extent_map *em;
7071 	struct extent_map *hole_em = NULL;
7072 	u64 delalloc_start = start;
7073 	u64 end;
7074 	u64 delalloc_len;
7075 	u64 delalloc_end;
7076 	int err = 0;
7077 
7078 	em = btrfs_get_extent(inode, NULL, 0, start, len);
7079 	if (IS_ERR(em))
7080 		return em;
7081 	/*
7082 	 * If our em maps to:
7083 	 * - a hole or
7084 	 * - a pre-alloc extent,
7085 	 * there might actually be delalloc bytes behind it.
7086 	 */
7087 	if (em->block_start != EXTENT_MAP_HOLE &&
7088 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7089 		return em;
7090 	else
7091 		hole_em = em;
7092 
7093 	/* check to see if we've wrapped (len == -1 or similar) */
7094 	end = start + len;
7095 	if (end < start)
7096 		end = (u64)-1;
7097 	else
7098 		end -= 1;
7099 
7100 	em = NULL;
7101 
7102 	/* ok, we didn't find anything, lets look for delalloc */
7103 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7104 				 end, len, EXTENT_DELALLOC, 1);
7105 	delalloc_end = delalloc_start + delalloc_len;
7106 	if (delalloc_end < delalloc_start)
7107 		delalloc_end = (u64)-1;
7108 
7109 	/*
7110 	 * We didn't find anything useful, return the original results from
7111 	 * get_extent()
7112 	 */
7113 	if (delalloc_start > end || delalloc_end <= start) {
7114 		em = hole_em;
7115 		hole_em = NULL;
7116 		goto out;
7117 	}
7118 
7119 	/*
7120 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7121 	 * the start they passed in
7122 	 */
7123 	delalloc_start = max(start, delalloc_start);
7124 	delalloc_len = delalloc_end - delalloc_start;
7125 
7126 	if (delalloc_len > 0) {
7127 		u64 hole_start;
7128 		u64 hole_len;
7129 		const u64 hole_end = extent_map_end(hole_em);
7130 
7131 		em = alloc_extent_map();
7132 		if (!em) {
7133 			err = -ENOMEM;
7134 			goto out;
7135 		}
7136 
7137 		ASSERT(hole_em);
7138 		/*
7139 		 * When btrfs_get_extent can't find anything it returns one
7140 		 * huge hole
7141 		 *
7142 		 * Make sure what it found really fits our range, and adjust to
7143 		 * make sure it is based on the start from the caller
7144 		 */
7145 		if (hole_end <= start || hole_em->start > end) {
7146 		       free_extent_map(hole_em);
7147 		       hole_em = NULL;
7148 		} else {
7149 		       hole_start = max(hole_em->start, start);
7150 		       hole_len = hole_end - hole_start;
7151 		}
7152 
7153 		if (hole_em && delalloc_start > hole_start) {
7154 			/*
7155 			 * Our hole starts before our delalloc, so we have to
7156 			 * return just the parts of the hole that go until the
7157 			 * delalloc starts
7158 			 */
7159 			em->len = min(hole_len, delalloc_start - hole_start);
7160 			em->start = hole_start;
7161 			em->orig_start = hole_start;
7162 			/*
7163 			 * Don't adjust block start at all, it is fixed at
7164 			 * EXTENT_MAP_HOLE
7165 			 */
7166 			em->block_start = hole_em->block_start;
7167 			em->block_len = hole_len;
7168 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7169 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7170 		} else {
7171 			/*
7172 			 * Hole is out of passed range or it starts after
7173 			 * delalloc range
7174 			 */
7175 			em->start = delalloc_start;
7176 			em->len = delalloc_len;
7177 			em->orig_start = delalloc_start;
7178 			em->block_start = EXTENT_MAP_DELALLOC;
7179 			em->block_len = delalloc_len;
7180 		}
7181 	} else {
7182 		return hole_em;
7183 	}
7184 out:
7185 
7186 	free_extent_map(hole_em);
7187 	if (err) {
7188 		free_extent_map(em);
7189 		return ERR_PTR(err);
7190 	}
7191 	return em;
7192 }
7193 
7194 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7195 						  const u64 start,
7196 						  const u64 len,
7197 						  const u64 orig_start,
7198 						  const u64 block_start,
7199 						  const u64 block_len,
7200 						  const u64 orig_block_len,
7201 						  const u64 ram_bytes,
7202 						  const int type)
7203 {
7204 	struct extent_map *em = NULL;
7205 	int ret;
7206 
7207 	if (type != BTRFS_ORDERED_NOCOW) {
7208 		em = create_io_em(inode, start, len, orig_start, block_start,
7209 				  block_len, orig_block_len, ram_bytes,
7210 				  BTRFS_COMPRESS_NONE, /* compress_type */
7211 				  type);
7212 		if (IS_ERR(em))
7213 			goto out;
7214 	}
7215 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7216 					   block_len, type);
7217 	if (ret) {
7218 		if (em) {
7219 			free_extent_map(em);
7220 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7221 		}
7222 		em = ERR_PTR(ret);
7223 	}
7224  out:
7225 
7226 	return em;
7227 }
7228 
7229 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7230 						  u64 start, u64 len)
7231 {
7232 	struct btrfs_root *root = inode->root;
7233 	struct btrfs_fs_info *fs_info = root->fs_info;
7234 	struct extent_map *em;
7235 	struct btrfs_key ins;
7236 	u64 alloc_hint;
7237 	int ret;
7238 
7239 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7240 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7241 				   0, alloc_hint, &ins, 1, 1);
7242 	if (ret)
7243 		return ERR_PTR(ret);
7244 
7245 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7246 				     ins.objectid, ins.offset, ins.offset,
7247 				     ins.offset, BTRFS_ORDERED_REGULAR);
7248 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7249 	if (IS_ERR(em))
7250 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7251 					   1);
7252 
7253 	return em;
7254 }
7255 
7256 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7257 {
7258 	struct btrfs_block_group *block_group;
7259 	bool readonly = false;
7260 
7261 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7262 	if (!block_group || block_group->ro)
7263 		readonly = true;
7264 	if (block_group)
7265 		btrfs_put_block_group(block_group);
7266 	return readonly;
7267 }
7268 
7269 /*
7270  * Check if we can do nocow write into the range [@offset, @offset + @len)
7271  *
7272  * @offset:	File offset
7273  * @len:	The length to write, will be updated to the nocow writeable
7274  *		range
7275  * @orig_start:	(optional) Return the original file offset of the file extent
7276  * @orig_len:	(optional) Return the original on-disk length of the file extent
7277  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7278  * @strict:	if true, omit optimizations that might force us into unnecessary
7279  *		cow. e.g., don't trust generation number.
7280  *
7281  * Return:
7282  * >0	and update @len if we can do nocow write
7283  *  0	if we can't do nocow write
7284  * <0	if error happened
7285  *
7286  * NOTE: This only checks the file extents, caller is responsible to wait for
7287  *	 any ordered extents.
7288  */
7289 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7290 			      u64 *orig_start, u64 *orig_block_len,
7291 			      u64 *ram_bytes, bool strict)
7292 {
7293 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7294 	struct btrfs_path *path;
7295 	int ret;
7296 	struct extent_buffer *leaf;
7297 	struct btrfs_root *root = BTRFS_I(inode)->root;
7298 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7299 	struct btrfs_file_extent_item *fi;
7300 	struct btrfs_key key;
7301 	u64 disk_bytenr;
7302 	u64 backref_offset;
7303 	u64 extent_end;
7304 	u64 num_bytes;
7305 	int slot;
7306 	int found_type;
7307 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7308 
7309 	path = btrfs_alloc_path();
7310 	if (!path)
7311 		return -ENOMEM;
7312 
7313 	ret = btrfs_lookup_file_extent(NULL, root, path,
7314 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7315 	if (ret < 0)
7316 		goto out;
7317 
7318 	slot = path->slots[0];
7319 	if (ret == 1) {
7320 		if (slot == 0) {
7321 			/* can't find the item, must cow */
7322 			ret = 0;
7323 			goto out;
7324 		}
7325 		slot--;
7326 	}
7327 	ret = 0;
7328 	leaf = path->nodes[0];
7329 	btrfs_item_key_to_cpu(leaf, &key, slot);
7330 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7331 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7332 		/* not our file or wrong item type, must cow */
7333 		goto out;
7334 	}
7335 
7336 	if (key.offset > offset) {
7337 		/* Wrong offset, must cow */
7338 		goto out;
7339 	}
7340 
7341 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7342 	found_type = btrfs_file_extent_type(leaf, fi);
7343 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7344 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7345 		/* not a regular extent, must cow */
7346 		goto out;
7347 	}
7348 
7349 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7350 		goto out;
7351 
7352 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7353 	if (extent_end <= offset)
7354 		goto out;
7355 
7356 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7357 	if (disk_bytenr == 0)
7358 		goto out;
7359 
7360 	if (btrfs_file_extent_compression(leaf, fi) ||
7361 	    btrfs_file_extent_encryption(leaf, fi) ||
7362 	    btrfs_file_extent_other_encoding(leaf, fi))
7363 		goto out;
7364 
7365 	/*
7366 	 * Do the same check as in btrfs_cross_ref_exist but without the
7367 	 * unnecessary search.
7368 	 */
7369 	if (!strict &&
7370 	    (btrfs_file_extent_generation(leaf, fi) <=
7371 	     btrfs_root_last_snapshot(&root->root_item)))
7372 		goto out;
7373 
7374 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7375 
7376 	if (orig_start) {
7377 		*orig_start = key.offset - backref_offset;
7378 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7379 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7380 	}
7381 
7382 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7383 		goto out;
7384 
7385 	num_bytes = min(offset + *len, extent_end) - offset;
7386 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7387 		u64 range_end;
7388 
7389 		range_end = round_up(offset + num_bytes,
7390 				     root->fs_info->sectorsize) - 1;
7391 		ret = test_range_bit(io_tree, offset, range_end,
7392 				     EXTENT_DELALLOC, 0, NULL);
7393 		if (ret) {
7394 			ret = -EAGAIN;
7395 			goto out;
7396 		}
7397 	}
7398 
7399 	btrfs_release_path(path);
7400 
7401 	/*
7402 	 * look for other files referencing this extent, if we
7403 	 * find any we must cow
7404 	 */
7405 
7406 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7407 				    key.offset - backref_offset, disk_bytenr,
7408 				    strict);
7409 	if (ret) {
7410 		ret = 0;
7411 		goto out;
7412 	}
7413 
7414 	/*
7415 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7416 	 * in this extent we are about to write.  If there
7417 	 * are any csums in that range we have to cow in order
7418 	 * to keep the csums correct
7419 	 */
7420 	disk_bytenr += backref_offset;
7421 	disk_bytenr += offset - key.offset;
7422 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7423 		goto out;
7424 	/*
7425 	 * all of the above have passed, it is safe to overwrite this extent
7426 	 * without cow
7427 	 */
7428 	*len = num_bytes;
7429 	ret = 1;
7430 out:
7431 	btrfs_free_path(path);
7432 	return ret;
7433 }
7434 
7435 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7436 			      struct extent_state **cached_state, bool writing)
7437 {
7438 	struct btrfs_ordered_extent *ordered;
7439 	int ret = 0;
7440 
7441 	while (1) {
7442 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7443 				 cached_state);
7444 		/*
7445 		 * We're concerned with the entire range that we're going to be
7446 		 * doing DIO to, so we need to make sure there's no ordered
7447 		 * extents in this range.
7448 		 */
7449 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7450 						     lockend - lockstart + 1);
7451 
7452 		/*
7453 		 * We need to make sure there are no buffered pages in this
7454 		 * range either, we could have raced between the invalidate in
7455 		 * generic_file_direct_write and locking the extent.  The
7456 		 * invalidate needs to happen so that reads after a write do not
7457 		 * get stale data.
7458 		 */
7459 		if (!ordered &&
7460 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7461 							 lockstart, lockend)))
7462 			break;
7463 
7464 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7465 				     cached_state);
7466 
7467 		if (ordered) {
7468 			/*
7469 			 * If we are doing a DIO read and the ordered extent we
7470 			 * found is for a buffered write, we can not wait for it
7471 			 * to complete and retry, because if we do so we can
7472 			 * deadlock with concurrent buffered writes on page
7473 			 * locks. This happens only if our DIO read covers more
7474 			 * than one extent map, if at this point has already
7475 			 * created an ordered extent for a previous extent map
7476 			 * and locked its range in the inode's io tree, and a
7477 			 * concurrent write against that previous extent map's
7478 			 * range and this range started (we unlock the ranges
7479 			 * in the io tree only when the bios complete and
7480 			 * buffered writes always lock pages before attempting
7481 			 * to lock range in the io tree).
7482 			 */
7483 			if (writing ||
7484 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7485 				btrfs_start_ordered_extent(ordered, 1);
7486 			else
7487 				ret = -ENOTBLK;
7488 			btrfs_put_ordered_extent(ordered);
7489 		} else {
7490 			/*
7491 			 * We could trigger writeback for this range (and wait
7492 			 * for it to complete) and then invalidate the pages for
7493 			 * this range (through invalidate_inode_pages2_range()),
7494 			 * but that can lead us to a deadlock with a concurrent
7495 			 * call to readahead (a buffered read or a defrag call
7496 			 * triggered a readahead) on a page lock due to an
7497 			 * ordered dio extent we created before but did not have
7498 			 * yet a corresponding bio submitted (whence it can not
7499 			 * complete), which makes readahead wait for that
7500 			 * ordered extent to complete while holding a lock on
7501 			 * that page.
7502 			 */
7503 			ret = -ENOTBLK;
7504 		}
7505 
7506 		if (ret)
7507 			break;
7508 
7509 		cond_resched();
7510 	}
7511 
7512 	return ret;
7513 }
7514 
7515 /* The callers of this must take lock_extent() */
7516 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7517 				       u64 len, u64 orig_start, u64 block_start,
7518 				       u64 block_len, u64 orig_block_len,
7519 				       u64 ram_bytes, int compress_type,
7520 				       int type)
7521 {
7522 	struct extent_map_tree *em_tree;
7523 	struct extent_map *em;
7524 	int ret;
7525 
7526 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7527 	       type == BTRFS_ORDERED_COMPRESSED ||
7528 	       type == BTRFS_ORDERED_NOCOW ||
7529 	       type == BTRFS_ORDERED_REGULAR);
7530 
7531 	em_tree = &inode->extent_tree;
7532 	em = alloc_extent_map();
7533 	if (!em)
7534 		return ERR_PTR(-ENOMEM);
7535 
7536 	em->start = start;
7537 	em->orig_start = orig_start;
7538 	em->len = len;
7539 	em->block_len = block_len;
7540 	em->block_start = block_start;
7541 	em->orig_block_len = orig_block_len;
7542 	em->ram_bytes = ram_bytes;
7543 	em->generation = -1;
7544 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7545 	if (type == BTRFS_ORDERED_PREALLOC) {
7546 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7547 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7548 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7549 		em->compress_type = compress_type;
7550 	}
7551 
7552 	do {
7553 		btrfs_drop_extent_cache(inode, em->start,
7554 					em->start + em->len - 1, 0);
7555 		write_lock(&em_tree->lock);
7556 		ret = add_extent_mapping(em_tree, em, 1);
7557 		write_unlock(&em_tree->lock);
7558 		/*
7559 		 * The caller has taken lock_extent(), who could race with us
7560 		 * to add em?
7561 		 */
7562 	} while (ret == -EEXIST);
7563 
7564 	if (ret) {
7565 		free_extent_map(em);
7566 		return ERR_PTR(ret);
7567 	}
7568 
7569 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7570 	return em;
7571 }
7572 
7573 
7574 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7575 					 struct inode *inode,
7576 					 struct btrfs_dio_data *dio_data,
7577 					 u64 start, u64 len)
7578 {
7579 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7580 	struct extent_map *em = *map;
7581 	int ret = 0;
7582 
7583 	/*
7584 	 * We don't allocate a new extent in the following cases
7585 	 *
7586 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7587 	 * existing extent.
7588 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7589 	 * just use the extent.
7590 	 *
7591 	 */
7592 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7593 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7594 	     em->block_start != EXTENT_MAP_HOLE)) {
7595 		int type;
7596 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7597 
7598 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7599 			type = BTRFS_ORDERED_PREALLOC;
7600 		else
7601 			type = BTRFS_ORDERED_NOCOW;
7602 		len = min(len, em->len - (start - em->start));
7603 		block_start = em->block_start + (start - em->start);
7604 
7605 		if (can_nocow_extent(inode, start, &len, &orig_start,
7606 				     &orig_block_len, &ram_bytes, false) == 1 &&
7607 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7608 			struct extent_map *em2;
7609 
7610 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7611 						      orig_start, block_start,
7612 						      len, orig_block_len,
7613 						      ram_bytes, type);
7614 			btrfs_dec_nocow_writers(fs_info, block_start);
7615 			if (type == BTRFS_ORDERED_PREALLOC) {
7616 				free_extent_map(em);
7617 				*map = em = em2;
7618 			}
7619 
7620 			if (em2 && IS_ERR(em2)) {
7621 				ret = PTR_ERR(em2);
7622 				goto out;
7623 			}
7624 			/*
7625 			 * For inode marked NODATACOW or extent marked PREALLOC,
7626 			 * use the existing or preallocated extent, so does not
7627 			 * need to adjust btrfs_space_info's bytes_may_use.
7628 			 */
7629 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7630 			goto skip_cow;
7631 		}
7632 	}
7633 
7634 	/* this will cow the extent */
7635 	free_extent_map(em);
7636 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7637 	if (IS_ERR(em)) {
7638 		ret = PTR_ERR(em);
7639 		goto out;
7640 	}
7641 
7642 	len = min(len, em->len - (start - em->start));
7643 
7644 skip_cow:
7645 	/*
7646 	 * Need to update the i_size under the extent lock so buffered
7647 	 * readers will get the updated i_size when we unlock.
7648 	 */
7649 	if (start + len > i_size_read(inode))
7650 		i_size_write(inode, start + len);
7651 
7652 	dio_data->reserve -= len;
7653 out:
7654 	return ret;
7655 }
7656 
7657 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7658 		loff_t length, unsigned int flags, struct iomap *iomap,
7659 		struct iomap *srcmap)
7660 {
7661 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7662 	struct extent_map *em;
7663 	struct extent_state *cached_state = NULL;
7664 	struct btrfs_dio_data *dio_data = NULL;
7665 	u64 lockstart, lockend;
7666 	const bool write = !!(flags & IOMAP_WRITE);
7667 	int ret = 0;
7668 	u64 len = length;
7669 	bool unlock_extents = false;
7670 
7671 	if (!write)
7672 		len = min_t(u64, len, fs_info->sectorsize);
7673 
7674 	lockstart = start;
7675 	lockend = start + len - 1;
7676 
7677 	/*
7678 	 * The generic stuff only does filemap_write_and_wait_range, which
7679 	 * isn't enough if we've written compressed pages to this area, so we
7680 	 * need to flush the dirty pages again to make absolutely sure that any
7681 	 * outstanding dirty pages are on disk.
7682 	 */
7683 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7684 		     &BTRFS_I(inode)->runtime_flags)) {
7685 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7686 					       start + length - 1);
7687 		if (ret)
7688 			return ret;
7689 	}
7690 
7691 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7692 	if (!dio_data)
7693 		return -ENOMEM;
7694 
7695 	dio_data->length = length;
7696 	if (write) {
7697 		dio_data->reserve = round_up(length, fs_info->sectorsize);
7698 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7699 				&dio_data->data_reserved,
7700 				start, dio_data->reserve);
7701 		if (ret) {
7702 			extent_changeset_free(dio_data->data_reserved);
7703 			kfree(dio_data);
7704 			return ret;
7705 		}
7706 	}
7707 	iomap->private = dio_data;
7708 
7709 
7710 	/*
7711 	 * If this errors out it's because we couldn't invalidate pagecache for
7712 	 * this range and we need to fallback to buffered.
7713 	 */
7714 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7715 		ret = -ENOTBLK;
7716 		goto err;
7717 	}
7718 
7719 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7720 	if (IS_ERR(em)) {
7721 		ret = PTR_ERR(em);
7722 		goto unlock_err;
7723 	}
7724 
7725 	/*
7726 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7727 	 * io.  INLINE is special, and we could probably kludge it in here, but
7728 	 * it's still buffered so for safety lets just fall back to the generic
7729 	 * buffered path.
7730 	 *
7731 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7732 	 * decompress it, so there will be buffering required no matter what we
7733 	 * do, so go ahead and fallback to buffered.
7734 	 *
7735 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7736 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7737 	 * the generic code.
7738 	 */
7739 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7740 	    em->block_start == EXTENT_MAP_INLINE) {
7741 		free_extent_map(em);
7742 		ret = -ENOTBLK;
7743 		goto unlock_err;
7744 	}
7745 
7746 	len = min(len, em->len - (start - em->start));
7747 	if (write) {
7748 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7749 						    start, len);
7750 		if (ret < 0)
7751 			goto unlock_err;
7752 		unlock_extents = true;
7753 		/* Recalc len in case the new em is smaller than requested */
7754 		len = min(len, em->len - (start - em->start));
7755 	} else {
7756 		/*
7757 		 * We need to unlock only the end area that we aren't using.
7758 		 * The rest is going to be unlocked by the endio routine.
7759 		 */
7760 		lockstart = start + len;
7761 		if (lockstart < lockend)
7762 			unlock_extents = true;
7763 	}
7764 
7765 	if (unlock_extents)
7766 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7767 				     lockstart, lockend, &cached_state);
7768 	else
7769 		free_extent_state(cached_state);
7770 
7771 	/*
7772 	 * Translate extent map information to iomap.
7773 	 * We trim the extents (and move the addr) even though iomap code does
7774 	 * that, since we have locked only the parts we are performing I/O in.
7775 	 */
7776 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7777 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7778 		iomap->addr = IOMAP_NULL_ADDR;
7779 		iomap->type = IOMAP_HOLE;
7780 	} else {
7781 		iomap->addr = em->block_start + (start - em->start);
7782 		iomap->type = IOMAP_MAPPED;
7783 	}
7784 	iomap->offset = start;
7785 	iomap->bdev = fs_info->fs_devices->latest_bdev;
7786 	iomap->length = len;
7787 
7788 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em))
7789 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7790 
7791 	free_extent_map(em);
7792 
7793 	return 0;
7794 
7795 unlock_err:
7796 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7797 			     &cached_state);
7798 err:
7799 	if (dio_data) {
7800 		btrfs_delalloc_release_space(BTRFS_I(inode),
7801 				dio_data->data_reserved, start,
7802 				dio_data->reserve, true);
7803 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7804 		extent_changeset_free(dio_data->data_reserved);
7805 		kfree(dio_data);
7806 	}
7807 	return ret;
7808 }
7809 
7810 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7811 		ssize_t written, unsigned int flags, struct iomap *iomap)
7812 {
7813 	int ret = 0;
7814 	struct btrfs_dio_data *dio_data = iomap->private;
7815 	size_t submitted = dio_data->submitted;
7816 	const bool write = !!(flags & IOMAP_WRITE);
7817 
7818 	if (!write && (iomap->type == IOMAP_HOLE)) {
7819 		/* If reading from a hole, unlock and return */
7820 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7821 		goto out;
7822 	}
7823 
7824 	if (submitted < length) {
7825 		pos += submitted;
7826 		length -= submitted;
7827 		if (write)
7828 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7829 					length, false);
7830 		else
7831 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7832 				      pos + length - 1);
7833 		ret = -ENOTBLK;
7834 	}
7835 
7836 	if (write) {
7837 		if (dio_data->reserve)
7838 			btrfs_delalloc_release_space(BTRFS_I(inode),
7839 					dio_data->data_reserved, pos,
7840 					dio_data->reserve, true);
7841 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
7842 		extent_changeset_free(dio_data->data_reserved);
7843 	}
7844 out:
7845 	kfree(dio_data);
7846 	iomap->private = NULL;
7847 
7848 	return ret;
7849 }
7850 
7851 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7852 {
7853 	/*
7854 	 * This implies a barrier so that stores to dio_bio->bi_status before
7855 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7856 	 */
7857 	if (!refcount_dec_and_test(&dip->refs))
7858 		return;
7859 
7860 	if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7861 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7862 					     dip->logical_offset,
7863 					     dip->bytes,
7864 					     !dip->dio_bio->bi_status);
7865 	} else {
7866 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7867 			      dip->logical_offset,
7868 			      dip->logical_offset + dip->bytes - 1);
7869 	}
7870 
7871 	bio_endio(dip->dio_bio);
7872 	kfree(dip);
7873 }
7874 
7875 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7876 					  int mirror_num,
7877 					  unsigned long bio_flags)
7878 {
7879 	struct btrfs_dio_private *dip = bio->bi_private;
7880 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7881 	blk_status_t ret;
7882 
7883 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7884 
7885 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7886 	if (ret)
7887 		return ret;
7888 
7889 	refcount_inc(&dip->refs);
7890 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7891 	if (ret)
7892 		refcount_dec(&dip->refs);
7893 	return ret;
7894 }
7895 
7896 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7897 					     struct btrfs_io_bio *io_bio,
7898 					     const bool uptodate)
7899 {
7900 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7901 	const u32 sectorsize = fs_info->sectorsize;
7902 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7903 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7904 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7905 	struct bio_vec bvec;
7906 	struct bvec_iter iter;
7907 	u64 start = io_bio->logical;
7908 	u32 bio_offset = 0;
7909 	blk_status_t err = BLK_STS_OK;
7910 
7911 	__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7912 		unsigned int i, nr_sectors, pgoff;
7913 
7914 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7915 		pgoff = bvec.bv_offset;
7916 		for (i = 0; i < nr_sectors; i++) {
7917 			ASSERT(pgoff < PAGE_SIZE);
7918 			if (uptodate &&
7919 			    (!csum || !check_data_csum(inode, io_bio,
7920 						       bio_offset, bvec.bv_page,
7921 						       pgoff, start))) {
7922 				clean_io_failure(fs_info, failure_tree, io_tree,
7923 						 start, bvec.bv_page,
7924 						 btrfs_ino(BTRFS_I(inode)),
7925 						 pgoff);
7926 			} else {
7927 				blk_status_t status;
7928 
7929 				ASSERT((start - io_bio->logical) < UINT_MAX);
7930 				status = btrfs_submit_read_repair(inode,
7931 							&io_bio->bio,
7932 							start - io_bio->logical,
7933 							bvec.bv_page, pgoff,
7934 							start,
7935 							start + sectorsize - 1,
7936 							io_bio->mirror_num,
7937 							submit_dio_repair_bio);
7938 				if (status)
7939 					err = status;
7940 			}
7941 			start += sectorsize;
7942 			ASSERT(bio_offset + sectorsize > bio_offset);
7943 			bio_offset += sectorsize;
7944 			pgoff += sectorsize;
7945 		}
7946 	}
7947 	return err;
7948 }
7949 
7950 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7951 					 const u64 offset, const u64 bytes,
7952 					 const bool uptodate)
7953 {
7954 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7955 	struct btrfs_ordered_extent *ordered = NULL;
7956 	struct btrfs_workqueue *wq;
7957 	u64 ordered_offset = offset;
7958 	u64 ordered_bytes = bytes;
7959 	u64 last_offset;
7960 
7961 	if (btrfs_is_free_space_inode(inode))
7962 		wq = fs_info->endio_freespace_worker;
7963 	else
7964 		wq = fs_info->endio_write_workers;
7965 
7966 	while (ordered_offset < offset + bytes) {
7967 		last_offset = ordered_offset;
7968 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7969 							 &ordered_offset,
7970 							 ordered_bytes,
7971 							 uptodate)) {
7972 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7973 					NULL);
7974 			btrfs_queue_work(wq, &ordered->work);
7975 		}
7976 
7977 		/* No ordered extent found in the range, exit */
7978 		if (ordered_offset == last_offset)
7979 			return;
7980 		/*
7981 		 * Our bio might span multiple ordered extents. In this case
7982 		 * we keep going until we have accounted the whole dio.
7983 		 */
7984 		if (ordered_offset < offset + bytes) {
7985 			ordered_bytes = offset + bytes - ordered_offset;
7986 			ordered = NULL;
7987 		}
7988 	}
7989 }
7990 
7991 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7992 						     struct bio *bio,
7993 						     u64 dio_file_offset)
7994 {
7995 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
7996 }
7997 
7998 static void btrfs_end_dio_bio(struct bio *bio)
7999 {
8000 	struct btrfs_dio_private *dip = bio->bi_private;
8001 	blk_status_t err = bio->bi_status;
8002 
8003 	if (err)
8004 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8005 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8006 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8007 			   bio->bi_opf, bio->bi_iter.bi_sector,
8008 			   bio->bi_iter.bi_size, err);
8009 
8010 	if (bio_op(bio) == REQ_OP_READ) {
8011 		err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
8012 					       !err);
8013 	}
8014 
8015 	if (err)
8016 		dip->dio_bio->bi_status = err;
8017 
8018 	btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio);
8019 
8020 	bio_put(bio);
8021 	btrfs_dio_private_put(dip);
8022 }
8023 
8024 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8025 		struct inode *inode, u64 file_offset, int async_submit)
8026 {
8027 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8028 	struct btrfs_dio_private *dip = bio->bi_private;
8029 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8030 	blk_status_t ret;
8031 
8032 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8033 	if (async_submit)
8034 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8035 
8036 	if (!write) {
8037 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8038 		if (ret)
8039 			goto err;
8040 	}
8041 
8042 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8043 		goto map;
8044 
8045 	if (write && async_submit) {
8046 		ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8047 					  btrfs_submit_bio_start_direct_io);
8048 		goto err;
8049 	} else if (write) {
8050 		/*
8051 		 * If we aren't doing async submit, calculate the csum of the
8052 		 * bio now.
8053 		 */
8054 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8055 		if (ret)
8056 			goto err;
8057 	} else {
8058 		u64 csum_offset;
8059 
8060 		csum_offset = file_offset - dip->logical_offset;
8061 		csum_offset >>= fs_info->sectorsize_bits;
8062 		csum_offset *= fs_info->csum_size;
8063 		btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
8064 	}
8065 map:
8066 	ret = btrfs_map_bio(fs_info, bio, 0);
8067 err:
8068 	return ret;
8069 }
8070 
8071 /*
8072  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8073  * or ordered extents whether or not we submit any bios.
8074  */
8075 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8076 							  struct inode *inode,
8077 							  loff_t file_offset)
8078 {
8079 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8080 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8081 	size_t dip_size;
8082 	struct btrfs_dio_private *dip;
8083 
8084 	dip_size = sizeof(*dip);
8085 	if (!write && csum) {
8086 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8087 		size_t nblocks;
8088 
8089 		nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8090 		dip_size += fs_info->csum_size * nblocks;
8091 	}
8092 
8093 	dip = kzalloc(dip_size, GFP_NOFS);
8094 	if (!dip)
8095 		return NULL;
8096 
8097 	dip->inode = inode;
8098 	dip->logical_offset = file_offset;
8099 	dip->bytes = dio_bio->bi_iter.bi_size;
8100 	dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8101 	dip->dio_bio = dio_bio;
8102 	refcount_set(&dip->refs, 1);
8103 	return dip;
8104 }
8105 
8106 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap,
8107 		struct bio *dio_bio, loff_t file_offset)
8108 {
8109 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8110 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8111 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8112 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
8113 	struct btrfs_dio_private *dip;
8114 	struct bio *bio;
8115 	u64 start_sector;
8116 	int async_submit = 0;
8117 	u64 submit_len;
8118 	int clone_offset = 0;
8119 	int clone_len;
8120 	u64 logical;
8121 	int ret;
8122 	blk_status_t status;
8123 	struct btrfs_io_geometry geom;
8124 	struct btrfs_dio_data *dio_data = iomap->private;
8125 	struct extent_map *em = NULL;
8126 
8127 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8128 	if (!dip) {
8129 		if (!write) {
8130 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8131 				file_offset + dio_bio->bi_iter.bi_size - 1);
8132 		}
8133 		dio_bio->bi_status = BLK_STS_RESOURCE;
8134 		bio_endio(dio_bio);
8135 		return BLK_QC_T_NONE;
8136 	}
8137 
8138 	if (!write) {
8139 		/*
8140 		 * Load the csums up front to reduce csum tree searches and
8141 		 * contention when submitting bios.
8142 		 *
8143 		 * If we have csums disabled this will do nothing.
8144 		 */
8145 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8146 		if (status != BLK_STS_OK)
8147 			goto out_err;
8148 	}
8149 
8150 	start_sector = dio_bio->bi_iter.bi_sector;
8151 	submit_len = dio_bio->bi_iter.bi_size;
8152 
8153 	do {
8154 		logical = start_sector << 9;
8155 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8156 		if (IS_ERR(em)) {
8157 			status = errno_to_blk_status(PTR_ERR(em));
8158 			em = NULL;
8159 			goto out_err_em;
8160 		}
8161 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8162 					    logical, submit_len, &geom);
8163 		if (ret) {
8164 			status = errno_to_blk_status(ret);
8165 			goto out_err_em;
8166 		}
8167 		ASSERT(geom.len <= INT_MAX);
8168 
8169 		clone_len = min_t(int, submit_len, geom.len);
8170 
8171 		/*
8172 		 * This will never fail as it's passing GPF_NOFS and
8173 		 * the allocation is backed by btrfs_bioset.
8174 		 */
8175 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8176 		bio->bi_private = dip;
8177 		bio->bi_end_io = btrfs_end_dio_bio;
8178 		btrfs_io_bio(bio)->logical = file_offset;
8179 
8180 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8181 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8182 							file_offset);
8183 			if (status) {
8184 				bio_put(bio);
8185 				goto out_err;
8186 			}
8187 		}
8188 
8189 		ASSERT(submit_len >= clone_len);
8190 		submit_len -= clone_len;
8191 
8192 		/*
8193 		 * Increase the count before we submit the bio so we know
8194 		 * the end IO handler won't happen before we increase the
8195 		 * count. Otherwise, the dip might get freed before we're
8196 		 * done setting it up.
8197 		 *
8198 		 * We transfer the initial reference to the last bio, so we
8199 		 * don't need to increment the reference count for the last one.
8200 		 */
8201 		if (submit_len > 0) {
8202 			refcount_inc(&dip->refs);
8203 			/*
8204 			 * If we are submitting more than one bio, submit them
8205 			 * all asynchronously. The exception is RAID 5 or 6, as
8206 			 * asynchronous checksums make it difficult to collect
8207 			 * full stripe writes.
8208 			 */
8209 			if (!raid56)
8210 				async_submit = 1;
8211 		}
8212 
8213 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8214 						async_submit);
8215 		if (status) {
8216 			bio_put(bio);
8217 			if (submit_len > 0)
8218 				refcount_dec(&dip->refs);
8219 			goto out_err_em;
8220 		}
8221 
8222 		dio_data->submitted += clone_len;
8223 		clone_offset += clone_len;
8224 		start_sector += clone_len >> 9;
8225 		file_offset += clone_len;
8226 
8227 		free_extent_map(em);
8228 	} while (submit_len > 0);
8229 	return BLK_QC_T_NONE;
8230 
8231 out_err_em:
8232 	free_extent_map(em);
8233 out_err:
8234 	dip->dio_bio->bi_status = status;
8235 	btrfs_dio_private_put(dip);
8236 
8237 	return BLK_QC_T_NONE;
8238 }
8239 
8240 const struct iomap_ops btrfs_dio_iomap_ops = {
8241 	.iomap_begin            = btrfs_dio_iomap_begin,
8242 	.iomap_end              = btrfs_dio_iomap_end,
8243 };
8244 
8245 const struct iomap_dio_ops btrfs_dio_ops = {
8246 	.submit_io		= btrfs_submit_direct,
8247 };
8248 
8249 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8250 			u64 start, u64 len)
8251 {
8252 	int	ret;
8253 
8254 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8255 	if (ret)
8256 		return ret;
8257 
8258 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8259 }
8260 
8261 int btrfs_readpage(struct file *file, struct page *page)
8262 {
8263 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8264 	u64 start = page_offset(page);
8265 	u64 end = start + PAGE_SIZE - 1;
8266 	unsigned long bio_flags = 0;
8267 	struct bio *bio = NULL;
8268 	int ret;
8269 
8270 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8271 
8272 	ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL);
8273 	if (bio)
8274 		ret = submit_one_bio(bio, 0, bio_flags);
8275 	return ret;
8276 }
8277 
8278 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8279 {
8280 	struct inode *inode = page->mapping->host;
8281 	int ret;
8282 
8283 	if (current->flags & PF_MEMALLOC) {
8284 		redirty_page_for_writepage(wbc, page);
8285 		unlock_page(page);
8286 		return 0;
8287 	}
8288 
8289 	/*
8290 	 * If we are under memory pressure we will call this directly from the
8291 	 * VM, we need to make sure we have the inode referenced for the ordered
8292 	 * extent.  If not just return like we didn't do anything.
8293 	 */
8294 	if (!igrab(inode)) {
8295 		redirty_page_for_writepage(wbc, page);
8296 		return AOP_WRITEPAGE_ACTIVATE;
8297 	}
8298 	ret = extent_write_full_page(page, wbc);
8299 	btrfs_add_delayed_iput(inode);
8300 	return ret;
8301 }
8302 
8303 static int btrfs_writepages(struct address_space *mapping,
8304 			    struct writeback_control *wbc)
8305 {
8306 	return extent_writepages(mapping, wbc);
8307 }
8308 
8309 static void btrfs_readahead(struct readahead_control *rac)
8310 {
8311 	extent_readahead(rac);
8312 }
8313 
8314 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8315 {
8316 	int ret = try_release_extent_mapping(page, gfp_flags);
8317 	if (ret == 1)
8318 		clear_page_extent_mapped(page);
8319 	return ret;
8320 }
8321 
8322 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8323 {
8324 	if (PageWriteback(page) || PageDirty(page))
8325 		return 0;
8326 	return __btrfs_releasepage(page, gfp_flags);
8327 }
8328 
8329 #ifdef CONFIG_MIGRATION
8330 static int btrfs_migratepage(struct address_space *mapping,
8331 			     struct page *newpage, struct page *page,
8332 			     enum migrate_mode mode)
8333 {
8334 	int ret;
8335 
8336 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8337 	if (ret != MIGRATEPAGE_SUCCESS)
8338 		return ret;
8339 
8340 	if (page_has_private(page))
8341 		attach_page_private(newpage, detach_page_private(page));
8342 
8343 	if (PagePrivate2(page)) {
8344 		ClearPagePrivate2(page);
8345 		SetPagePrivate2(newpage);
8346 	}
8347 
8348 	if (mode != MIGRATE_SYNC_NO_COPY)
8349 		migrate_page_copy(newpage, page);
8350 	else
8351 		migrate_page_states(newpage, page);
8352 	return MIGRATEPAGE_SUCCESS;
8353 }
8354 #endif
8355 
8356 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8357 				 unsigned int length)
8358 {
8359 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8360 	struct extent_io_tree *tree = &inode->io_tree;
8361 	struct btrfs_ordered_extent *ordered;
8362 	struct extent_state *cached_state = NULL;
8363 	u64 page_start = page_offset(page);
8364 	u64 page_end = page_start + PAGE_SIZE - 1;
8365 	u64 start;
8366 	u64 end;
8367 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8368 	bool found_ordered = false;
8369 	bool completed_ordered = false;
8370 
8371 	/*
8372 	 * we have the page locked, so new writeback can't start,
8373 	 * and the dirty bit won't be cleared while we are here.
8374 	 *
8375 	 * Wait for IO on this page so that we can safely clear
8376 	 * the PagePrivate2 bit and do ordered accounting
8377 	 */
8378 	wait_on_page_writeback(page);
8379 
8380 	if (offset) {
8381 		btrfs_releasepage(page, GFP_NOFS);
8382 		return;
8383 	}
8384 
8385 	if (!inode_evicting)
8386 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8387 
8388 	start = page_start;
8389 again:
8390 	ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1);
8391 	if (ordered) {
8392 		found_ordered = true;
8393 		end = min(page_end,
8394 			  ordered->file_offset + ordered->num_bytes - 1);
8395 		/*
8396 		 * IO on this page will never be started, so we need to account
8397 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8398 		 * here, must leave that up for the ordered extent completion.
8399 		 */
8400 		if (!inode_evicting)
8401 			clear_extent_bit(tree, start, end,
8402 					 EXTENT_DELALLOC |
8403 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8404 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8405 		/*
8406 		 * whoever cleared the private bit is responsible
8407 		 * for the finish_ordered_io
8408 		 */
8409 		if (TestClearPagePrivate2(page)) {
8410 			spin_lock_irq(&inode->ordered_tree.lock);
8411 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8412 			ordered->truncated_len = min(ordered->truncated_len,
8413 						     start - ordered->file_offset);
8414 			spin_unlock_irq(&inode->ordered_tree.lock);
8415 
8416 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8417 							   start,
8418 							   end - start + 1, 1)) {
8419 				btrfs_finish_ordered_io(ordered);
8420 				completed_ordered = true;
8421 			}
8422 		}
8423 		btrfs_put_ordered_extent(ordered);
8424 		if (!inode_evicting) {
8425 			cached_state = NULL;
8426 			lock_extent_bits(tree, start, end,
8427 					 &cached_state);
8428 		}
8429 
8430 		start = end + 1;
8431 		if (start < page_end)
8432 			goto again;
8433 	}
8434 
8435 	/*
8436 	 * Qgroup reserved space handler
8437 	 * Page here will be either
8438 	 * 1) Already written to disk or ordered extent already submitted
8439 	 *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8440 	 *    Qgroup will be handled by its qgroup_record then.
8441 	 *    btrfs_qgroup_free_data() call will do nothing here.
8442 	 *
8443 	 * 2) Not written to disk yet
8444 	 *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8445 	 *    bit of its io_tree, and free the qgroup reserved data space.
8446 	 *    Since the IO will never happen for this page.
8447 	 */
8448 	btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8449 	if (!inode_evicting) {
8450 		bool delete = true;
8451 
8452 		/*
8453 		 * If there's an ordered extent for this range and we have not
8454 		 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set
8455 		 * in the range for the ordered extent completion. We must also
8456 		 * not delete the range, otherwise we would lose that bit (and
8457 		 * any other bits set in the range). Make sure EXTENT_UPTODATE
8458 		 * is cleared if we don't delete, otherwise it can lead to
8459 		 * corruptions if the i_size is extented later.
8460 		 */
8461 		if (found_ordered && !completed_ordered)
8462 			delete = false;
8463 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8464 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8465 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8466 				 delete, &cached_state);
8467 
8468 		__btrfs_releasepage(page, GFP_NOFS);
8469 	}
8470 
8471 	ClearPageChecked(page);
8472 	clear_page_extent_mapped(page);
8473 }
8474 
8475 /*
8476  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8477  * called from a page fault handler when a page is first dirtied. Hence we must
8478  * be careful to check for EOF conditions here. We set the page up correctly
8479  * for a written page which means we get ENOSPC checking when writing into
8480  * holes and correct delalloc and unwritten extent mapping on filesystems that
8481  * support these features.
8482  *
8483  * We are not allowed to take the i_mutex here so we have to play games to
8484  * protect against truncate races as the page could now be beyond EOF.  Because
8485  * truncate_setsize() writes the inode size before removing pages, once we have
8486  * the page lock we can determine safely if the page is beyond EOF. If it is not
8487  * beyond EOF, then the page is guaranteed safe against truncation until we
8488  * unlock the page.
8489  */
8490 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8491 {
8492 	struct page *page = vmf->page;
8493 	struct inode *inode = file_inode(vmf->vma->vm_file);
8494 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8495 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8496 	struct btrfs_ordered_extent *ordered;
8497 	struct extent_state *cached_state = NULL;
8498 	struct extent_changeset *data_reserved = NULL;
8499 	unsigned long zero_start;
8500 	loff_t size;
8501 	vm_fault_t ret;
8502 	int ret2;
8503 	int reserved = 0;
8504 	u64 reserved_space;
8505 	u64 page_start;
8506 	u64 page_end;
8507 	u64 end;
8508 
8509 	reserved_space = PAGE_SIZE;
8510 
8511 	sb_start_pagefault(inode->i_sb);
8512 	page_start = page_offset(page);
8513 	page_end = page_start + PAGE_SIZE - 1;
8514 	end = page_end;
8515 
8516 	/*
8517 	 * Reserving delalloc space after obtaining the page lock can lead to
8518 	 * deadlock. For example, if a dirty page is locked by this function
8519 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8520 	 * dirty page write out, then the btrfs_writepage() function could
8521 	 * end up waiting indefinitely to get a lock on the page currently
8522 	 * being processed by btrfs_page_mkwrite() function.
8523 	 */
8524 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8525 					    page_start, reserved_space);
8526 	if (!ret2) {
8527 		ret2 = file_update_time(vmf->vma->vm_file);
8528 		reserved = 1;
8529 	}
8530 	if (ret2) {
8531 		ret = vmf_error(ret2);
8532 		if (reserved)
8533 			goto out;
8534 		goto out_noreserve;
8535 	}
8536 
8537 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8538 again:
8539 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8540 	lock_page(page);
8541 	size = i_size_read(inode);
8542 
8543 	if ((page->mapping != inode->i_mapping) ||
8544 	    (page_start >= size)) {
8545 		/* page got truncated out from underneath us */
8546 		goto out_unlock;
8547 	}
8548 	wait_on_page_writeback(page);
8549 
8550 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8551 	ret2 = set_page_extent_mapped(page);
8552 	if (ret2 < 0) {
8553 		ret = vmf_error(ret2);
8554 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8555 		goto out_unlock;
8556 	}
8557 
8558 	/*
8559 	 * we can't set the delalloc bits if there are pending ordered
8560 	 * extents.  Drop our locks and wait for them to finish
8561 	 */
8562 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8563 			PAGE_SIZE);
8564 	if (ordered) {
8565 		unlock_extent_cached(io_tree, page_start, page_end,
8566 				     &cached_state);
8567 		unlock_page(page);
8568 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8569 		btrfs_start_ordered_extent(ordered, 1);
8570 		btrfs_put_ordered_extent(ordered);
8571 		goto again;
8572 	}
8573 
8574 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8575 		reserved_space = round_up(size - page_start,
8576 					  fs_info->sectorsize);
8577 		if (reserved_space < PAGE_SIZE) {
8578 			end = page_start + reserved_space - 1;
8579 			btrfs_delalloc_release_space(BTRFS_I(inode),
8580 					data_reserved, page_start,
8581 					PAGE_SIZE - reserved_space, true);
8582 		}
8583 	}
8584 
8585 	/*
8586 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8587 	 * faulted in, but write(2) could also dirty a page and set delalloc
8588 	 * bits, thus in this case for space account reason, we still need to
8589 	 * clear any delalloc bits within this page range since we have to
8590 	 * reserve data&meta space before lock_page() (see above comments).
8591 	 */
8592 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8593 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8594 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8595 
8596 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8597 					&cached_state);
8598 	if (ret2) {
8599 		unlock_extent_cached(io_tree, page_start, page_end,
8600 				     &cached_state);
8601 		ret = VM_FAULT_SIGBUS;
8602 		goto out_unlock;
8603 	}
8604 
8605 	/* page is wholly or partially inside EOF */
8606 	if (page_start + PAGE_SIZE > size)
8607 		zero_start = offset_in_page(size);
8608 	else
8609 		zero_start = PAGE_SIZE;
8610 
8611 	if (zero_start != PAGE_SIZE) {
8612 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8613 		flush_dcache_page(page);
8614 	}
8615 	ClearPageChecked(page);
8616 	set_page_dirty(page);
8617 	SetPageUptodate(page);
8618 
8619 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8620 
8621 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8622 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8623 
8624 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8625 	sb_end_pagefault(inode->i_sb);
8626 	extent_changeset_free(data_reserved);
8627 	return VM_FAULT_LOCKED;
8628 
8629 out_unlock:
8630 	unlock_page(page);
8631 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8632 out:
8633 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8634 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8635 				     reserved_space, (ret != 0));
8636 out_noreserve:
8637 	sb_end_pagefault(inode->i_sb);
8638 	extent_changeset_free(data_reserved);
8639 	return ret;
8640 }
8641 
8642 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8643 {
8644 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8645 	struct btrfs_root *root = BTRFS_I(inode)->root;
8646 	struct btrfs_block_rsv *rsv;
8647 	int ret;
8648 	struct btrfs_trans_handle *trans;
8649 	u64 mask = fs_info->sectorsize - 1;
8650 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8651 
8652 	if (!skip_writeback) {
8653 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8654 					       (u64)-1);
8655 		if (ret)
8656 			return ret;
8657 	}
8658 
8659 	/*
8660 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8661 	 * things going on here:
8662 	 *
8663 	 * 1) We need to reserve space to update our inode.
8664 	 *
8665 	 * 2) We need to have something to cache all the space that is going to
8666 	 * be free'd up by the truncate operation, but also have some slack
8667 	 * space reserved in case it uses space during the truncate (thank you
8668 	 * very much snapshotting).
8669 	 *
8670 	 * And we need these to be separate.  The fact is we can use a lot of
8671 	 * space doing the truncate, and we have no earthly idea how much space
8672 	 * we will use, so we need the truncate reservation to be separate so it
8673 	 * doesn't end up using space reserved for updating the inode.  We also
8674 	 * need to be able to stop the transaction and start a new one, which
8675 	 * means we need to be able to update the inode several times, and we
8676 	 * have no idea of knowing how many times that will be, so we can't just
8677 	 * reserve 1 item for the entirety of the operation, so that has to be
8678 	 * done separately as well.
8679 	 *
8680 	 * So that leaves us with
8681 	 *
8682 	 * 1) rsv - for the truncate reservation, which we will steal from the
8683 	 * transaction reservation.
8684 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8685 	 * updating the inode.
8686 	 */
8687 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8688 	if (!rsv)
8689 		return -ENOMEM;
8690 	rsv->size = min_size;
8691 	rsv->failfast = 1;
8692 
8693 	/*
8694 	 * 1 for the truncate slack space
8695 	 * 1 for updating the inode.
8696 	 */
8697 	trans = btrfs_start_transaction(root, 2);
8698 	if (IS_ERR(trans)) {
8699 		ret = PTR_ERR(trans);
8700 		goto out;
8701 	}
8702 
8703 	/* Migrate the slack space for the truncate to our reserve */
8704 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8705 				      min_size, false);
8706 	BUG_ON(ret);
8707 
8708 	/*
8709 	 * So if we truncate and then write and fsync we normally would just
8710 	 * write the extents that changed, which is a problem if we need to
8711 	 * first truncate that entire inode.  So set this flag so we write out
8712 	 * all of the extents in the inode to the sync log so we're completely
8713 	 * safe.
8714 	 */
8715 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8716 	trans->block_rsv = rsv;
8717 
8718 	while (1) {
8719 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8720 						 inode->i_size,
8721 						 BTRFS_EXTENT_DATA_KEY);
8722 		trans->block_rsv = &fs_info->trans_block_rsv;
8723 		if (ret != -ENOSPC && ret != -EAGAIN)
8724 			break;
8725 
8726 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8727 		if (ret)
8728 			break;
8729 
8730 		btrfs_end_transaction(trans);
8731 		btrfs_btree_balance_dirty(fs_info);
8732 
8733 		trans = btrfs_start_transaction(root, 2);
8734 		if (IS_ERR(trans)) {
8735 			ret = PTR_ERR(trans);
8736 			trans = NULL;
8737 			break;
8738 		}
8739 
8740 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8741 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8742 					      rsv, min_size, false);
8743 		BUG_ON(ret);	/* shouldn't happen */
8744 		trans->block_rsv = rsv;
8745 	}
8746 
8747 	/*
8748 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8749 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8750 	 * we've truncated everything except the last little bit, and can do
8751 	 * btrfs_truncate_block and then update the disk_i_size.
8752 	 */
8753 	if (ret == NEED_TRUNCATE_BLOCK) {
8754 		btrfs_end_transaction(trans);
8755 		btrfs_btree_balance_dirty(fs_info);
8756 
8757 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8758 		if (ret)
8759 			goto out;
8760 		trans = btrfs_start_transaction(root, 1);
8761 		if (IS_ERR(trans)) {
8762 			ret = PTR_ERR(trans);
8763 			goto out;
8764 		}
8765 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8766 	}
8767 
8768 	if (trans) {
8769 		int ret2;
8770 
8771 		trans->block_rsv = &fs_info->trans_block_rsv;
8772 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8773 		if (ret2 && !ret)
8774 			ret = ret2;
8775 
8776 		ret2 = btrfs_end_transaction(trans);
8777 		if (ret2 && !ret)
8778 			ret = ret2;
8779 		btrfs_btree_balance_dirty(fs_info);
8780 	}
8781 out:
8782 	btrfs_free_block_rsv(fs_info, rsv);
8783 
8784 	return ret;
8785 }
8786 
8787 /*
8788  * create a new subvolume directory/inode (helper for the ioctl).
8789  */
8790 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8791 			     struct btrfs_root *new_root,
8792 			     struct btrfs_root *parent_root)
8793 {
8794 	struct inode *inode;
8795 	int err;
8796 	u64 index = 0;
8797 	u64 ino;
8798 
8799 	err = btrfs_get_free_objectid(new_root, &ino);
8800 	if (err < 0)
8801 		return err;
8802 
8803 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino,
8804 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8805 				&index);
8806 	if (IS_ERR(inode))
8807 		return PTR_ERR(inode);
8808 	inode->i_op = &btrfs_dir_inode_operations;
8809 	inode->i_fop = &btrfs_dir_file_operations;
8810 
8811 	set_nlink(inode, 1);
8812 	btrfs_i_size_write(BTRFS_I(inode), 0);
8813 	unlock_new_inode(inode);
8814 
8815 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8816 	if (err)
8817 		btrfs_err(new_root->fs_info,
8818 			  "error inheriting subvolume %llu properties: %d",
8819 			  new_root->root_key.objectid, err);
8820 
8821 	err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8822 
8823 	iput(inode);
8824 	return err;
8825 }
8826 
8827 struct inode *btrfs_alloc_inode(struct super_block *sb)
8828 {
8829 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8830 	struct btrfs_inode *ei;
8831 	struct inode *inode;
8832 
8833 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8834 	if (!ei)
8835 		return NULL;
8836 
8837 	ei->root = NULL;
8838 	ei->generation = 0;
8839 	ei->last_trans = 0;
8840 	ei->last_sub_trans = 0;
8841 	ei->logged_trans = 0;
8842 	ei->delalloc_bytes = 0;
8843 	ei->new_delalloc_bytes = 0;
8844 	ei->defrag_bytes = 0;
8845 	ei->disk_i_size = 0;
8846 	ei->flags = 0;
8847 	ei->csum_bytes = 0;
8848 	ei->index_cnt = (u64)-1;
8849 	ei->dir_index = 0;
8850 	ei->last_unlink_trans = 0;
8851 	ei->last_reflink_trans = 0;
8852 	ei->last_log_commit = 0;
8853 
8854 	spin_lock_init(&ei->lock);
8855 	ei->outstanding_extents = 0;
8856 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8857 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8858 					      BTRFS_BLOCK_RSV_DELALLOC);
8859 	ei->runtime_flags = 0;
8860 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8861 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8862 
8863 	ei->delayed_node = NULL;
8864 
8865 	ei->i_otime.tv_sec = 0;
8866 	ei->i_otime.tv_nsec = 0;
8867 
8868 	inode = &ei->vfs_inode;
8869 	extent_map_tree_init(&ei->extent_tree);
8870 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8871 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8872 			    IO_TREE_INODE_IO_FAILURE, inode);
8873 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8874 			    IO_TREE_INODE_FILE_EXTENT, inode);
8875 	ei->io_tree.track_uptodate = true;
8876 	ei->io_failure_tree.track_uptodate = true;
8877 	atomic_set(&ei->sync_writers, 0);
8878 	mutex_init(&ei->log_mutex);
8879 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8880 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8881 	INIT_LIST_HEAD(&ei->delayed_iput);
8882 	RB_CLEAR_NODE(&ei->rb_node);
8883 	init_rwsem(&ei->i_mmap_lock);
8884 
8885 	return inode;
8886 }
8887 
8888 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8889 void btrfs_test_destroy_inode(struct inode *inode)
8890 {
8891 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8892 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8893 }
8894 #endif
8895 
8896 void btrfs_free_inode(struct inode *inode)
8897 {
8898 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8899 }
8900 
8901 void btrfs_destroy_inode(struct inode *vfs_inode)
8902 {
8903 	struct btrfs_ordered_extent *ordered;
8904 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8905 	struct btrfs_root *root = inode->root;
8906 
8907 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8908 	WARN_ON(vfs_inode->i_data.nrpages);
8909 	WARN_ON(inode->block_rsv.reserved);
8910 	WARN_ON(inode->block_rsv.size);
8911 	WARN_ON(inode->outstanding_extents);
8912 	WARN_ON(inode->delalloc_bytes);
8913 	WARN_ON(inode->new_delalloc_bytes);
8914 	WARN_ON(inode->csum_bytes);
8915 	WARN_ON(inode->defrag_bytes);
8916 
8917 	/*
8918 	 * This can happen where we create an inode, but somebody else also
8919 	 * created the same inode and we need to destroy the one we already
8920 	 * created.
8921 	 */
8922 	if (!root)
8923 		return;
8924 
8925 	while (1) {
8926 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8927 		if (!ordered)
8928 			break;
8929 		else {
8930 			btrfs_err(root->fs_info,
8931 				  "found ordered extent %llu %llu on inode cleanup",
8932 				  ordered->file_offset, ordered->num_bytes);
8933 			btrfs_remove_ordered_extent(inode, ordered);
8934 			btrfs_put_ordered_extent(ordered);
8935 			btrfs_put_ordered_extent(ordered);
8936 		}
8937 	}
8938 	btrfs_qgroup_check_reserved_leak(inode);
8939 	inode_tree_del(inode);
8940 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8941 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8942 	btrfs_put_root(inode->root);
8943 }
8944 
8945 int btrfs_drop_inode(struct inode *inode)
8946 {
8947 	struct btrfs_root *root = BTRFS_I(inode)->root;
8948 
8949 	if (root == NULL)
8950 		return 1;
8951 
8952 	/* the snap/subvol tree is on deleting */
8953 	if (btrfs_root_refs(&root->root_item) == 0)
8954 		return 1;
8955 	else
8956 		return generic_drop_inode(inode);
8957 }
8958 
8959 static void init_once(void *foo)
8960 {
8961 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8962 
8963 	inode_init_once(&ei->vfs_inode);
8964 }
8965 
8966 void __cold btrfs_destroy_cachep(void)
8967 {
8968 	/*
8969 	 * Make sure all delayed rcu free inodes are flushed before we
8970 	 * destroy cache.
8971 	 */
8972 	rcu_barrier();
8973 	kmem_cache_destroy(btrfs_inode_cachep);
8974 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8975 	kmem_cache_destroy(btrfs_path_cachep);
8976 	kmem_cache_destroy(btrfs_free_space_cachep);
8977 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8978 }
8979 
8980 int __init btrfs_init_cachep(void)
8981 {
8982 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8983 			sizeof(struct btrfs_inode), 0,
8984 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8985 			init_once);
8986 	if (!btrfs_inode_cachep)
8987 		goto fail;
8988 
8989 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8990 			sizeof(struct btrfs_trans_handle), 0,
8991 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8992 	if (!btrfs_trans_handle_cachep)
8993 		goto fail;
8994 
8995 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8996 			sizeof(struct btrfs_path), 0,
8997 			SLAB_MEM_SPREAD, NULL);
8998 	if (!btrfs_path_cachep)
8999 		goto fail;
9000 
9001 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9002 			sizeof(struct btrfs_free_space), 0,
9003 			SLAB_MEM_SPREAD, NULL);
9004 	if (!btrfs_free_space_cachep)
9005 		goto fail;
9006 
9007 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9008 							PAGE_SIZE, PAGE_SIZE,
9009 							SLAB_MEM_SPREAD, NULL);
9010 	if (!btrfs_free_space_bitmap_cachep)
9011 		goto fail;
9012 
9013 	return 0;
9014 fail:
9015 	btrfs_destroy_cachep();
9016 	return -ENOMEM;
9017 }
9018 
9019 static int btrfs_getattr(struct user_namespace *mnt_userns,
9020 			 const struct path *path, struct kstat *stat,
9021 			 u32 request_mask, unsigned int flags)
9022 {
9023 	u64 delalloc_bytes;
9024 	u64 inode_bytes;
9025 	struct inode *inode = d_inode(path->dentry);
9026 	u32 blocksize = inode->i_sb->s_blocksize;
9027 	u32 bi_flags = BTRFS_I(inode)->flags;
9028 
9029 	stat->result_mask |= STATX_BTIME;
9030 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9031 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9032 	if (bi_flags & BTRFS_INODE_APPEND)
9033 		stat->attributes |= STATX_ATTR_APPEND;
9034 	if (bi_flags & BTRFS_INODE_COMPRESS)
9035 		stat->attributes |= STATX_ATTR_COMPRESSED;
9036 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9037 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9038 	if (bi_flags & BTRFS_INODE_NODUMP)
9039 		stat->attributes |= STATX_ATTR_NODUMP;
9040 
9041 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9042 				  STATX_ATTR_COMPRESSED |
9043 				  STATX_ATTR_IMMUTABLE |
9044 				  STATX_ATTR_NODUMP);
9045 
9046 	generic_fillattr(&init_user_ns, inode, stat);
9047 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9048 
9049 	spin_lock(&BTRFS_I(inode)->lock);
9050 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9051 	inode_bytes = inode_get_bytes(inode);
9052 	spin_unlock(&BTRFS_I(inode)->lock);
9053 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9054 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9055 	return 0;
9056 }
9057 
9058 static int btrfs_rename_exchange(struct inode *old_dir,
9059 			      struct dentry *old_dentry,
9060 			      struct inode *new_dir,
9061 			      struct dentry *new_dentry)
9062 {
9063 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9064 	struct btrfs_trans_handle *trans;
9065 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9066 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9067 	struct inode *new_inode = new_dentry->d_inode;
9068 	struct inode *old_inode = old_dentry->d_inode;
9069 	struct timespec64 ctime = current_time(old_inode);
9070 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9071 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9072 	u64 old_idx = 0;
9073 	u64 new_idx = 0;
9074 	int ret;
9075 	int ret2;
9076 	bool root_log_pinned = false;
9077 	bool dest_log_pinned = false;
9078 
9079 	/* we only allow rename subvolume link between subvolumes */
9080 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9081 		return -EXDEV;
9082 
9083 	/* close the race window with snapshot create/destroy ioctl */
9084 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9085 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9086 		down_read(&fs_info->subvol_sem);
9087 
9088 	/*
9089 	 * We want to reserve the absolute worst case amount of items.  So if
9090 	 * both inodes are subvols and we need to unlink them then that would
9091 	 * require 4 item modifications, but if they are both normal inodes it
9092 	 * would require 5 item modifications, so we'll assume their normal
9093 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9094 	 * should cover the worst case number of items we'll modify.
9095 	 */
9096 	trans = btrfs_start_transaction(root, 12);
9097 	if (IS_ERR(trans)) {
9098 		ret = PTR_ERR(trans);
9099 		goto out_notrans;
9100 	}
9101 
9102 	if (dest != root) {
9103 		ret = btrfs_record_root_in_trans(trans, dest);
9104 		if (ret)
9105 			goto out_fail;
9106 	}
9107 
9108 	/*
9109 	 * We need to find a free sequence number both in the source and
9110 	 * in the destination directory for the exchange.
9111 	 */
9112 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9113 	if (ret)
9114 		goto out_fail;
9115 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9116 	if (ret)
9117 		goto out_fail;
9118 
9119 	BTRFS_I(old_inode)->dir_index = 0ULL;
9120 	BTRFS_I(new_inode)->dir_index = 0ULL;
9121 
9122 	/* Reference for the source. */
9123 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9124 		/* force full log commit if subvolume involved. */
9125 		btrfs_set_log_full_commit(trans);
9126 	} else {
9127 		btrfs_pin_log_trans(root);
9128 		root_log_pinned = true;
9129 		ret = btrfs_insert_inode_ref(trans, dest,
9130 					     new_dentry->d_name.name,
9131 					     new_dentry->d_name.len,
9132 					     old_ino,
9133 					     btrfs_ino(BTRFS_I(new_dir)),
9134 					     old_idx);
9135 		if (ret)
9136 			goto out_fail;
9137 	}
9138 
9139 	/* And now for the dest. */
9140 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9141 		/* force full log commit if subvolume involved. */
9142 		btrfs_set_log_full_commit(trans);
9143 	} else {
9144 		btrfs_pin_log_trans(dest);
9145 		dest_log_pinned = true;
9146 		ret = btrfs_insert_inode_ref(trans, root,
9147 					     old_dentry->d_name.name,
9148 					     old_dentry->d_name.len,
9149 					     new_ino,
9150 					     btrfs_ino(BTRFS_I(old_dir)),
9151 					     new_idx);
9152 		if (ret)
9153 			goto out_fail;
9154 	}
9155 
9156 	/* Update inode version and ctime/mtime. */
9157 	inode_inc_iversion(old_dir);
9158 	inode_inc_iversion(new_dir);
9159 	inode_inc_iversion(old_inode);
9160 	inode_inc_iversion(new_inode);
9161 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9162 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9163 	old_inode->i_ctime = ctime;
9164 	new_inode->i_ctime = ctime;
9165 
9166 	if (old_dentry->d_parent != new_dentry->d_parent) {
9167 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9168 				BTRFS_I(old_inode), 1);
9169 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9170 				BTRFS_I(new_inode), 1);
9171 	}
9172 
9173 	/* src is a subvolume */
9174 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9175 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9176 	} else { /* src is an inode */
9177 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9178 					   BTRFS_I(old_dentry->d_inode),
9179 					   old_dentry->d_name.name,
9180 					   old_dentry->d_name.len);
9181 		if (!ret)
9182 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9183 	}
9184 	if (ret) {
9185 		btrfs_abort_transaction(trans, ret);
9186 		goto out_fail;
9187 	}
9188 
9189 	/* dest is a subvolume */
9190 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9191 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9192 	} else { /* dest is an inode */
9193 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9194 					   BTRFS_I(new_dentry->d_inode),
9195 					   new_dentry->d_name.name,
9196 					   new_dentry->d_name.len);
9197 		if (!ret)
9198 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9199 	}
9200 	if (ret) {
9201 		btrfs_abort_transaction(trans, ret);
9202 		goto out_fail;
9203 	}
9204 
9205 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9206 			     new_dentry->d_name.name,
9207 			     new_dentry->d_name.len, 0, old_idx);
9208 	if (ret) {
9209 		btrfs_abort_transaction(trans, ret);
9210 		goto out_fail;
9211 	}
9212 
9213 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9214 			     old_dentry->d_name.name,
9215 			     old_dentry->d_name.len, 0, new_idx);
9216 	if (ret) {
9217 		btrfs_abort_transaction(trans, ret);
9218 		goto out_fail;
9219 	}
9220 
9221 	if (old_inode->i_nlink == 1)
9222 		BTRFS_I(old_inode)->dir_index = old_idx;
9223 	if (new_inode->i_nlink == 1)
9224 		BTRFS_I(new_inode)->dir_index = new_idx;
9225 
9226 	if (root_log_pinned) {
9227 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9228 				   new_dentry->d_parent);
9229 		btrfs_end_log_trans(root);
9230 		root_log_pinned = false;
9231 	}
9232 	if (dest_log_pinned) {
9233 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9234 				   old_dentry->d_parent);
9235 		btrfs_end_log_trans(dest);
9236 		dest_log_pinned = false;
9237 	}
9238 out_fail:
9239 	/*
9240 	 * If we have pinned a log and an error happened, we unpin tasks
9241 	 * trying to sync the log and force them to fallback to a transaction
9242 	 * commit if the log currently contains any of the inodes involved in
9243 	 * this rename operation (to ensure we do not persist a log with an
9244 	 * inconsistent state for any of these inodes or leading to any
9245 	 * inconsistencies when replayed). If the transaction was aborted, the
9246 	 * abortion reason is propagated to userspace when attempting to commit
9247 	 * the transaction. If the log does not contain any of these inodes, we
9248 	 * allow the tasks to sync it.
9249 	 */
9250 	if (ret && (root_log_pinned || dest_log_pinned)) {
9251 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9252 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9253 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9254 		    (new_inode &&
9255 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9256 			btrfs_set_log_full_commit(trans);
9257 
9258 		if (root_log_pinned) {
9259 			btrfs_end_log_trans(root);
9260 			root_log_pinned = false;
9261 		}
9262 		if (dest_log_pinned) {
9263 			btrfs_end_log_trans(dest);
9264 			dest_log_pinned = false;
9265 		}
9266 	}
9267 	ret2 = btrfs_end_transaction(trans);
9268 	ret = ret ? ret : ret2;
9269 out_notrans:
9270 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9271 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9272 		up_read(&fs_info->subvol_sem);
9273 
9274 	return ret;
9275 }
9276 
9277 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9278 				     struct btrfs_root *root,
9279 				     struct inode *dir,
9280 				     struct dentry *dentry)
9281 {
9282 	int ret;
9283 	struct inode *inode;
9284 	u64 objectid;
9285 	u64 index;
9286 
9287 	ret = btrfs_get_free_objectid(root, &objectid);
9288 	if (ret)
9289 		return ret;
9290 
9291 	inode = btrfs_new_inode(trans, root, dir,
9292 				dentry->d_name.name,
9293 				dentry->d_name.len,
9294 				btrfs_ino(BTRFS_I(dir)),
9295 				objectid,
9296 				S_IFCHR | WHITEOUT_MODE,
9297 				&index);
9298 
9299 	if (IS_ERR(inode)) {
9300 		ret = PTR_ERR(inode);
9301 		return ret;
9302 	}
9303 
9304 	inode->i_op = &btrfs_special_inode_operations;
9305 	init_special_inode(inode, inode->i_mode,
9306 		WHITEOUT_DEV);
9307 
9308 	ret = btrfs_init_inode_security(trans, inode, dir,
9309 				&dentry->d_name);
9310 	if (ret)
9311 		goto out;
9312 
9313 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9314 				BTRFS_I(inode), 0, index);
9315 	if (ret)
9316 		goto out;
9317 
9318 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9319 out:
9320 	unlock_new_inode(inode);
9321 	if (ret)
9322 		inode_dec_link_count(inode);
9323 	iput(inode);
9324 
9325 	return ret;
9326 }
9327 
9328 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9329 			   struct inode *new_dir, struct dentry *new_dentry,
9330 			   unsigned int flags)
9331 {
9332 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9333 	struct btrfs_trans_handle *trans;
9334 	unsigned int trans_num_items;
9335 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9336 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9337 	struct inode *new_inode = d_inode(new_dentry);
9338 	struct inode *old_inode = d_inode(old_dentry);
9339 	u64 index = 0;
9340 	int ret;
9341 	int ret2;
9342 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9343 	bool log_pinned = false;
9344 
9345 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9346 		return -EPERM;
9347 
9348 	/* we only allow rename subvolume link between subvolumes */
9349 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9350 		return -EXDEV;
9351 
9352 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9353 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9354 		return -ENOTEMPTY;
9355 
9356 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9357 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9358 		return -ENOTEMPTY;
9359 
9360 
9361 	/* check for collisions, even if the  name isn't there */
9362 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9363 			     new_dentry->d_name.name,
9364 			     new_dentry->d_name.len);
9365 
9366 	if (ret) {
9367 		if (ret == -EEXIST) {
9368 			/* we shouldn't get
9369 			 * eexist without a new_inode */
9370 			if (WARN_ON(!new_inode)) {
9371 				return ret;
9372 			}
9373 		} else {
9374 			/* maybe -EOVERFLOW */
9375 			return ret;
9376 		}
9377 	}
9378 	ret = 0;
9379 
9380 	/*
9381 	 * we're using rename to replace one file with another.  Start IO on it
9382 	 * now so  we don't add too much work to the end of the transaction
9383 	 */
9384 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9385 		filemap_flush(old_inode->i_mapping);
9386 
9387 	/* close the racy window with snapshot create/destroy ioctl */
9388 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9389 		down_read(&fs_info->subvol_sem);
9390 	/*
9391 	 * We want to reserve the absolute worst case amount of items.  So if
9392 	 * both inodes are subvols and we need to unlink them then that would
9393 	 * require 4 item modifications, but if they are both normal inodes it
9394 	 * would require 5 item modifications, so we'll assume they are normal
9395 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9396 	 * should cover the worst case number of items we'll modify.
9397 	 * If our rename has the whiteout flag, we need more 5 units for the
9398 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9399 	 * when selinux is enabled).
9400 	 */
9401 	trans_num_items = 11;
9402 	if (flags & RENAME_WHITEOUT)
9403 		trans_num_items += 5;
9404 	trans = btrfs_start_transaction(root, trans_num_items);
9405 	if (IS_ERR(trans)) {
9406 		ret = PTR_ERR(trans);
9407 		goto out_notrans;
9408 	}
9409 
9410 	if (dest != root) {
9411 		ret = btrfs_record_root_in_trans(trans, dest);
9412 		if (ret)
9413 			goto out_fail;
9414 	}
9415 
9416 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9417 	if (ret)
9418 		goto out_fail;
9419 
9420 	BTRFS_I(old_inode)->dir_index = 0ULL;
9421 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9422 		/* force full log commit if subvolume involved. */
9423 		btrfs_set_log_full_commit(trans);
9424 	} else {
9425 		btrfs_pin_log_trans(root);
9426 		log_pinned = true;
9427 		ret = btrfs_insert_inode_ref(trans, dest,
9428 					     new_dentry->d_name.name,
9429 					     new_dentry->d_name.len,
9430 					     old_ino,
9431 					     btrfs_ino(BTRFS_I(new_dir)), index);
9432 		if (ret)
9433 			goto out_fail;
9434 	}
9435 
9436 	inode_inc_iversion(old_dir);
9437 	inode_inc_iversion(new_dir);
9438 	inode_inc_iversion(old_inode);
9439 	old_dir->i_ctime = old_dir->i_mtime =
9440 	new_dir->i_ctime = new_dir->i_mtime =
9441 	old_inode->i_ctime = current_time(old_dir);
9442 
9443 	if (old_dentry->d_parent != new_dentry->d_parent)
9444 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9445 				BTRFS_I(old_inode), 1);
9446 
9447 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9448 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9449 	} else {
9450 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9451 					BTRFS_I(d_inode(old_dentry)),
9452 					old_dentry->d_name.name,
9453 					old_dentry->d_name.len);
9454 		if (!ret)
9455 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9456 	}
9457 	if (ret) {
9458 		btrfs_abort_transaction(trans, ret);
9459 		goto out_fail;
9460 	}
9461 
9462 	if (new_inode) {
9463 		inode_inc_iversion(new_inode);
9464 		new_inode->i_ctime = current_time(new_inode);
9465 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9466 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9467 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9468 			BUG_ON(new_inode->i_nlink == 0);
9469 		} else {
9470 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9471 						 BTRFS_I(d_inode(new_dentry)),
9472 						 new_dentry->d_name.name,
9473 						 new_dentry->d_name.len);
9474 		}
9475 		if (!ret && new_inode->i_nlink == 0)
9476 			ret = btrfs_orphan_add(trans,
9477 					BTRFS_I(d_inode(new_dentry)));
9478 		if (ret) {
9479 			btrfs_abort_transaction(trans, ret);
9480 			goto out_fail;
9481 		}
9482 	}
9483 
9484 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9485 			     new_dentry->d_name.name,
9486 			     new_dentry->d_name.len, 0, index);
9487 	if (ret) {
9488 		btrfs_abort_transaction(trans, ret);
9489 		goto out_fail;
9490 	}
9491 
9492 	if (old_inode->i_nlink == 1)
9493 		BTRFS_I(old_inode)->dir_index = index;
9494 
9495 	if (log_pinned) {
9496 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9497 				   new_dentry->d_parent);
9498 		btrfs_end_log_trans(root);
9499 		log_pinned = false;
9500 	}
9501 
9502 	if (flags & RENAME_WHITEOUT) {
9503 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9504 						old_dentry);
9505 
9506 		if (ret) {
9507 			btrfs_abort_transaction(trans, ret);
9508 			goto out_fail;
9509 		}
9510 	}
9511 out_fail:
9512 	/*
9513 	 * If we have pinned the log and an error happened, we unpin tasks
9514 	 * trying to sync the log and force them to fallback to a transaction
9515 	 * commit if the log currently contains any of the inodes involved in
9516 	 * this rename operation (to ensure we do not persist a log with an
9517 	 * inconsistent state for any of these inodes or leading to any
9518 	 * inconsistencies when replayed). If the transaction was aborted, the
9519 	 * abortion reason is propagated to userspace when attempting to commit
9520 	 * the transaction. If the log does not contain any of these inodes, we
9521 	 * allow the tasks to sync it.
9522 	 */
9523 	if (ret && log_pinned) {
9524 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9525 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9526 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9527 		    (new_inode &&
9528 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9529 			btrfs_set_log_full_commit(trans);
9530 
9531 		btrfs_end_log_trans(root);
9532 		log_pinned = false;
9533 	}
9534 	ret2 = btrfs_end_transaction(trans);
9535 	ret = ret ? ret : ret2;
9536 out_notrans:
9537 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9538 		up_read(&fs_info->subvol_sem);
9539 
9540 	return ret;
9541 }
9542 
9543 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9544 			 struct dentry *old_dentry, struct inode *new_dir,
9545 			 struct dentry *new_dentry, unsigned int flags)
9546 {
9547 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9548 		return -EINVAL;
9549 
9550 	if (flags & RENAME_EXCHANGE)
9551 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9552 					  new_dentry);
9553 
9554 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9555 }
9556 
9557 struct btrfs_delalloc_work {
9558 	struct inode *inode;
9559 	struct completion completion;
9560 	struct list_head list;
9561 	struct btrfs_work work;
9562 };
9563 
9564 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9565 {
9566 	struct btrfs_delalloc_work *delalloc_work;
9567 	struct inode *inode;
9568 
9569 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9570 				     work);
9571 	inode = delalloc_work->inode;
9572 	filemap_flush(inode->i_mapping);
9573 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9574 				&BTRFS_I(inode)->runtime_flags))
9575 		filemap_flush(inode->i_mapping);
9576 
9577 	iput(inode);
9578 	complete(&delalloc_work->completion);
9579 }
9580 
9581 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9582 {
9583 	struct btrfs_delalloc_work *work;
9584 
9585 	work = kmalloc(sizeof(*work), GFP_NOFS);
9586 	if (!work)
9587 		return NULL;
9588 
9589 	init_completion(&work->completion);
9590 	INIT_LIST_HEAD(&work->list);
9591 	work->inode = inode;
9592 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9593 
9594 	return work;
9595 }
9596 
9597 /*
9598  * some fairly slow code that needs optimization. This walks the list
9599  * of all the inodes with pending delalloc and forces them to disk.
9600  */
9601 static int start_delalloc_inodes(struct btrfs_root *root,
9602 				 struct writeback_control *wbc, bool snapshot,
9603 				 bool in_reclaim_context)
9604 {
9605 	struct btrfs_inode *binode;
9606 	struct inode *inode;
9607 	struct btrfs_delalloc_work *work, *next;
9608 	struct list_head works;
9609 	struct list_head splice;
9610 	int ret = 0;
9611 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9612 
9613 	INIT_LIST_HEAD(&works);
9614 	INIT_LIST_HEAD(&splice);
9615 
9616 	mutex_lock(&root->delalloc_mutex);
9617 	spin_lock(&root->delalloc_lock);
9618 	list_splice_init(&root->delalloc_inodes, &splice);
9619 	while (!list_empty(&splice)) {
9620 		binode = list_entry(splice.next, struct btrfs_inode,
9621 				    delalloc_inodes);
9622 
9623 		list_move_tail(&binode->delalloc_inodes,
9624 			       &root->delalloc_inodes);
9625 
9626 		if (in_reclaim_context &&
9627 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9628 			continue;
9629 
9630 		inode = igrab(&binode->vfs_inode);
9631 		if (!inode) {
9632 			cond_resched_lock(&root->delalloc_lock);
9633 			continue;
9634 		}
9635 		spin_unlock(&root->delalloc_lock);
9636 
9637 		if (snapshot)
9638 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9639 				&binode->runtime_flags);
9640 		if (full_flush) {
9641 			work = btrfs_alloc_delalloc_work(inode);
9642 			if (!work) {
9643 				iput(inode);
9644 				ret = -ENOMEM;
9645 				goto out;
9646 			}
9647 			list_add_tail(&work->list, &works);
9648 			btrfs_queue_work(root->fs_info->flush_workers,
9649 					 &work->work);
9650 		} else {
9651 			ret = sync_inode(inode, wbc);
9652 			if (!ret &&
9653 			    test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9654 				     &BTRFS_I(inode)->runtime_flags))
9655 				ret = sync_inode(inode, wbc);
9656 			btrfs_add_delayed_iput(inode);
9657 			if (ret || wbc->nr_to_write <= 0)
9658 				goto out;
9659 		}
9660 		cond_resched();
9661 		spin_lock(&root->delalloc_lock);
9662 	}
9663 	spin_unlock(&root->delalloc_lock);
9664 
9665 out:
9666 	list_for_each_entry_safe(work, next, &works, list) {
9667 		list_del_init(&work->list);
9668 		wait_for_completion(&work->completion);
9669 		kfree(work);
9670 	}
9671 
9672 	if (!list_empty(&splice)) {
9673 		spin_lock(&root->delalloc_lock);
9674 		list_splice_tail(&splice, &root->delalloc_inodes);
9675 		spin_unlock(&root->delalloc_lock);
9676 	}
9677 	mutex_unlock(&root->delalloc_mutex);
9678 	return ret;
9679 }
9680 
9681 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9682 {
9683 	struct writeback_control wbc = {
9684 		.nr_to_write = LONG_MAX,
9685 		.sync_mode = WB_SYNC_NONE,
9686 		.range_start = 0,
9687 		.range_end = LLONG_MAX,
9688 	};
9689 	struct btrfs_fs_info *fs_info = root->fs_info;
9690 
9691 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9692 		return -EROFS;
9693 
9694 	return start_delalloc_inodes(root, &wbc, true, false);
9695 }
9696 
9697 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9698 			       bool in_reclaim_context)
9699 {
9700 	struct writeback_control wbc = {
9701 		.nr_to_write = nr,
9702 		.sync_mode = WB_SYNC_NONE,
9703 		.range_start = 0,
9704 		.range_end = LLONG_MAX,
9705 	};
9706 	struct btrfs_root *root;
9707 	struct list_head splice;
9708 	int ret;
9709 
9710 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9711 		return -EROFS;
9712 
9713 	INIT_LIST_HEAD(&splice);
9714 
9715 	mutex_lock(&fs_info->delalloc_root_mutex);
9716 	spin_lock(&fs_info->delalloc_root_lock);
9717 	list_splice_init(&fs_info->delalloc_roots, &splice);
9718 	while (!list_empty(&splice)) {
9719 		/*
9720 		 * Reset nr_to_write here so we know that we're doing a full
9721 		 * flush.
9722 		 */
9723 		if (nr == LONG_MAX)
9724 			wbc.nr_to_write = LONG_MAX;
9725 
9726 		root = list_first_entry(&splice, struct btrfs_root,
9727 					delalloc_root);
9728 		root = btrfs_grab_root(root);
9729 		BUG_ON(!root);
9730 		list_move_tail(&root->delalloc_root,
9731 			       &fs_info->delalloc_roots);
9732 		spin_unlock(&fs_info->delalloc_root_lock);
9733 
9734 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9735 		btrfs_put_root(root);
9736 		if (ret < 0 || wbc.nr_to_write <= 0)
9737 			goto out;
9738 		spin_lock(&fs_info->delalloc_root_lock);
9739 	}
9740 	spin_unlock(&fs_info->delalloc_root_lock);
9741 
9742 	ret = 0;
9743 out:
9744 	if (!list_empty(&splice)) {
9745 		spin_lock(&fs_info->delalloc_root_lock);
9746 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9747 		spin_unlock(&fs_info->delalloc_root_lock);
9748 	}
9749 	mutex_unlock(&fs_info->delalloc_root_mutex);
9750 	return ret;
9751 }
9752 
9753 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9754 			 struct dentry *dentry, const char *symname)
9755 {
9756 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9757 	struct btrfs_trans_handle *trans;
9758 	struct btrfs_root *root = BTRFS_I(dir)->root;
9759 	struct btrfs_path *path;
9760 	struct btrfs_key key;
9761 	struct inode *inode = NULL;
9762 	int err;
9763 	u64 objectid;
9764 	u64 index = 0;
9765 	int name_len;
9766 	int datasize;
9767 	unsigned long ptr;
9768 	struct btrfs_file_extent_item *ei;
9769 	struct extent_buffer *leaf;
9770 
9771 	name_len = strlen(symname);
9772 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9773 		return -ENAMETOOLONG;
9774 
9775 	/*
9776 	 * 2 items for inode item and ref
9777 	 * 2 items for dir items
9778 	 * 1 item for updating parent inode item
9779 	 * 1 item for the inline extent item
9780 	 * 1 item for xattr if selinux is on
9781 	 */
9782 	trans = btrfs_start_transaction(root, 7);
9783 	if (IS_ERR(trans))
9784 		return PTR_ERR(trans);
9785 
9786 	err = btrfs_get_free_objectid(root, &objectid);
9787 	if (err)
9788 		goto out_unlock;
9789 
9790 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9791 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9792 				objectid, S_IFLNK|S_IRWXUGO, &index);
9793 	if (IS_ERR(inode)) {
9794 		err = PTR_ERR(inode);
9795 		inode = NULL;
9796 		goto out_unlock;
9797 	}
9798 
9799 	/*
9800 	* If the active LSM wants to access the inode during
9801 	* d_instantiate it needs these. Smack checks to see
9802 	* if the filesystem supports xattrs by looking at the
9803 	* ops vector.
9804 	*/
9805 	inode->i_fop = &btrfs_file_operations;
9806 	inode->i_op = &btrfs_file_inode_operations;
9807 	inode->i_mapping->a_ops = &btrfs_aops;
9808 
9809 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9810 	if (err)
9811 		goto out_unlock;
9812 
9813 	path = btrfs_alloc_path();
9814 	if (!path) {
9815 		err = -ENOMEM;
9816 		goto out_unlock;
9817 	}
9818 	key.objectid = btrfs_ino(BTRFS_I(inode));
9819 	key.offset = 0;
9820 	key.type = BTRFS_EXTENT_DATA_KEY;
9821 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9822 	err = btrfs_insert_empty_item(trans, root, path, &key,
9823 				      datasize);
9824 	if (err) {
9825 		btrfs_free_path(path);
9826 		goto out_unlock;
9827 	}
9828 	leaf = path->nodes[0];
9829 	ei = btrfs_item_ptr(leaf, path->slots[0],
9830 			    struct btrfs_file_extent_item);
9831 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9832 	btrfs_set_file_extent_type(leaf, ei,
9833 				   BTRFS_FILE_EXTENT_INLINE);
9834 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9835 	btrfs_set_file_extent_compression(leaf, ei, 0);
9836 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9837 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9838 
9839 	ptr = btrfs_file_extent_inline_start(ei);
9840 	write_extent_buffer(leaf, symname, ptr, name_len);
9841 	btrfs_mark_buffer_dirty(leaf);
9842 	btrfs_free_path(path);
9843 
9844 	inode->i_op = &btrfs_symlink_inode_operations;
9845 	inode_nohighmem(inode);
9846 	inode_set_bytes(inode, name_len);
9847 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9848 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9849 	/*
9850 	 * Last step, add directory indexes for our symlink inode. This is the
9851 	 * last step to avoid extra cleanup of these indexes if an error happens
9852 	 * elsewhere above.
9853 	 */
9854 	if (!err)
9855 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9856 				BTRFS_I(inode), 0, index);
9857 	if (err)
9858 		goto out_unlock;
9859 
9860 	d_instantiate_new(dentry, inode);
9861 
9862 out_unlock:
9863 	btrfs_end_transaction(trans);
9864 	if (err && inode) {
9865 		inode_dec_link_count(inode);
9866 		discard_new_inode(inode);
9867 	}
9868 	btrfs_btree_balance_dirty(fs_info);
9869 	return err;
9870 }
9871 
9872 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9873 				       struct btrfs_trans_handle *trans_in,
9874 				       struct btrfs_inode *inode,
9875 				       struct btrfs_key *ins,
9876 				       u64 file_offset)
9877 {
9878 	struct btrfs_file_extent_item stack_fi;
9879 	struct btrfs_replace_extent_info extent_info;
9880 	struct btrfs_trans_handle *trans = trans_in;
9881 	struct btrfs_path *path;
9882 	u64 start = ins->objectid;
9883 	u64 len = ins->offset;
9884 	int qgroup_released;
9885 	int ret;
9886 
9887 	memset(&stack_fi, 0, sizeof(stack_fi));
9888 
9889 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9890 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9891 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9892 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9893 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9894 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9895 	/* Encryption and other encoding is reserved and all 0 */
9896 
9897 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9898 	if (qgroup_released < 0)
9899 		return ERR_PTR(qgroup_released);
9900 
9901 	if (trans) {
9902 		ret = insert_reserved_file_extent(trans, inode,
9903 						  file_offset, &stack_fi,
9904 						  true, qgroup_released);
9905 		if (ret)
9906 			goto free_qgroup;
9907 		return trans;
9908 	}
9909 
9910 	extent_info.disk_offset = start;
9911 	extent_info.disk_len = len;
9912 	extent_info.data_offset = 0;
9913 	extent_info.data_len = len;
9914 	extent_info.file_offset = file_offset;
9915 	extent_info.extent_buf = (char *)&stack_fi;
9916 	extent_info.is_new_extent = true;
9917 	extent_info.qgroup_reserved = qgroup_released;
9918 	extent_info.insertions = 0;
9919 
9920 	path = btrfs_alloc_path();
9921 	if (!path) {
9922 		ret = -ENOMEM;
9923 		goto free_qgroup;
9924 	}
9925 
9926 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9927 				     file_offset + len - 1, &extent_info,
9928 				     &trans);
9929 	btrfs_free_path(path);
9930 	if (ret)
9931 		goto free_qgroup;
9932 	return trans;
9933 
9934 free_qgroup:
9935 	/*
9936 	 * We have released qgroup data range at the beginning of the function,
9937 	 * and normally qgroup_released bytes will be freed when committing
9938 	 * transaction.
9939 	 * But if we error out early, we have to free what we have released
9940 	 * or we leak qgroup data reservation.
9941 	 */
9942 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9943 			inode->root->root_key.objectid, qgroup_released,
9944 			BTRFS_QGROUP_RSV_DATA);
9945 	return ERR_PTR(ret);
9946 }
9947 
9948 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9949 				       u64 start, u64 num_bytes, u64 min_size,
9950 				       loff_t actual_len, u64 *alloc_hint,
9951 				       struct btrfs_trans_handle *trans)
9952 {
9953 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9954 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9955 	struct extent_map *em;
9956 	struct btrfs_root *root = BTRFS_I(inode)->root;
9957 	struct btrfs_key ins;
9958 	u64 cur_offset = start;
9959 	u64 clear_offset = start;
9960 	u64 i_size;
9961 	u64 cur_bytes;
9962 	u64 last_alloc = (u64)-1;
9963 	int ret = 0;
9964 	bool own_trans = true;
9965 	u64 end = start + num_bytes - 1;
9966 
9967 	if (trans)
9968 		own_trans = false;
9969 	while (num_bytes > 0) {
9970 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9971 		cur_bytes = max(cur_bytes, min_size);
9972 		/*
9973 		 * If we are severely fragmented we could end up with really
9974 		 * small allocations, so if the allocator is returning small
9975 		 * chunks lets make its job easier by only searching for those
9976 		 * sized chunks.
9977 		 */
9978 		cur_bytes = min(cur_bytes, last_alloc);
9979 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9980 				min_size, 0, *alloc_hint, &ins, 1, 0);
9981 		if (ret)
9982 			break;
9983 
9984 		/*
9985 		 * We've reserved this space, and thus converted it from
9986 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9987 		 * from here on out we will only need to clear our reservation
9988 		 * for the remaining unreserved area, so advance our
9989 		 * clear_offset by our extent size.
9990 		 */
9991 		clear_offset += ins.offset;
9992 
9993 		last_alloc = ins.offset;
9994 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9995 						    &ins, cur_offset);
9996 		/*
9997 		 * Now that we inserted the prealloc extent we can finally
9998 		 * decrement the number of reservations in the block group.
9999 		 * If we did it before, we could race with relocation and have
10000 		 * relocation miss the reserved extent, making it fail later.
10001 		 */
10002 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10003 		if (IS_ERR(trans)) {
10004 			ret = PTR_ERR(trans);
10005 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10006 						   ins.offset, 0);
10007 			break;
10008 		}
10009 
10010 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10011 					cur_offset + ins.offset -1, 0);
10012 
10013 		em = alloc_extent_map();
10014 		if (!em) {
10015 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10016 				&BTRFS_I(inode)->runtime_flags);
10017 			goto next;
10018 		}
10019 
10020 		em->start = cur_offset;
10021 		em->orig_start = cur_offset;
10022 		em->len = ins.offset;
10023 		em->block_start = ins.objectid;
10024 		em->block_len = ins.offset;
10025 		em->orig_block_len = ins.offset;
10026 		em->ram_bytes = ins.offset;
10027 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10028 		em->generation = trans->transid;
10029 
10030 		while (1) {
10031 			write_lock(&em_tree->lock);
10032 			ret = add_extent_mapping(em_tree, em, 1);
10033 			write_unlock(&em_tree->lock);
10034 			if (ret != -EEXIST)
10035 				break;
10036 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10037 						cur_offset + ins.offset - 1,
10038 						0);
10039 		}
10040 		free_extent_map(em);
10041 next:
10042 		num_bytes -= ins.offset;
10043 		cur_offset += ins.offset;
10044 		*alloc_hint = ins.objectid + ins.offset;
10045 
10046 		inode_inc_iversion(inode);
10047 		inode->i_ctime = current_time(inode);
10048 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10049 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10050 		    (actual_len > inode->i_size) &&
10051 		    (cur_offset > inode->i_size)) {
10052 			if (cur_offset > actual_len)
10053 				i_size = actual_len;
10054 			else
10055 				i_size = cur_offset;
10056 			i_size_write(inode, i_size);
10057 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10058 		}
10059 
10060 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10061 
10062 		if (ret) {
10063 			btrfs_abort_transaction(trans, ret);
10064 			if (own_trans)
10065 				btrfs_end_transaction(trans);
10066 			break;
10067 		}
10068 
10069 		if (own_trans) {
10070 			btrfs_end_transaction(trans);
10071 			trans = NULL;
10072 		}
10073 	}
10074 	if (clear_offset < end)
10075 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10076 			end - clear_offset + 1);
10077 	return ret;
10078 }
10079 
10080 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10081 			      u64 start, u64 num_bytes, u64 min_size,
10082 			      loff_t actual_len, u64 *alloc_hint)
10083 {
10084 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10085 					   min_size, actual_len, alloc_hint,
10086 					   NULL);
10087 }
10088 
10089 int btrfs_prealloc_file_range_trans(struct inode *inode,
10090 				    struct btrfs_trans_handle *trans, int mode,
10091 				    u64 start, u64 num_bytes, u64 min_size,
10092 				    loff_t actual_len, u64 *alloc_hint)
10093 {
10094 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10095 					   min_size, actual_len, alloc_hint, trans);
10096 }
10097 
10098 static int btrfs_set_page_dirty(struct page *page)
10099 {
10100 	return __set_page_dirty_nobuffers(page);
10101 }
10102 
10103 static int btrfs_permission(struct user_namespace *mnt_userns,
10104 			    struct inode *inode, int mask)
10105 {
10106 	struct btrfs_root *root = BTRFS_I(inode)->root;
10107 	umode_t mode = inode->i_mode;
10108 
10109 	if (mask & MAY_WRITE &&
10110 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10111 		if (btrfs_root_readonly(root))
10112 			return -EROFS;
10113 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10114 			return -EACCES;
10115 	}
10116 	return generic_permission(&init_user_ns, inode, mask);
10117 }
10118 
10119 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10120 			 struct dentry *dentry, umode_t mode)
10121 {
10122 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10123 	struct btrfs_trans_handle *trans;
10124 	struct btrfs_root *root = BTRFS_I(dir)->root;
10125 	struct inode *inode = NULL;
10126 	u64 objectid;
10127 	u64 index;
10128 	int ret = 0;
10129 
10130 	/*
10131 	 * 5 units required for adding orphan entry
10132 	 */
10133 	trans = btrfs_start_transaction(root, 5);
10134 	if (IS_ERR(trans))
10135 		return PTR_ERR(trans);
10136 
10137 	ret = btrfs_get_free_objectid(root, &objectid);
10138 	if (ret)
10139 		goto out;
10140 
10141 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10142 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10143 	if (IS_ERR(inode)) {
10144 		ret = PTR_ERR(inode);
10145 		inode = NULL;
10146 		goto out;
10147 	}
10148 
10149 	inode->i_fop = &btrfs_file_operations;
10150 	inode->i_op = &btrfs_file_inode_operations;
10151 
10152 	inode->i_mapping->a_ops = &btrfs_aops;
10153 
10154 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10155 	if (ret)
10156 		goto out;
10157 
10158 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10159 	if (ret)
10160 		goto out;
10161 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10162 	if (ret)
10163 		goto out;
10164 
10165 	/*
10166 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10167 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10168 	 * through:
10169 	 *
10170 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10171 	 */
10172 	set_nlink(inode, 1);
10173 	d_tmpfile(dentry, inode);
10174 	unlock_new_inode(inode);
10175 	mark_inode_dirty(inode);
10176 out:
10177 	btrfs_end_transaction(trans);
10178 	if (ret && inode)
10179 		discard_new_inode(inode);
10180 	btrfs_btree_balance_dirty(fs_info);
10181 	return ret;
10182 }
10183 
10184 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10185 {
10186 	struct inode *inode = tree->private_data;
10187 	unsigned long index = start >> PAGE_SHIFT;
10188 	unsigned long end_index = end >> PAGE_SHIFT;
10189 	struct page *page;
10190 
10191 	while (index <= end_index) {
10192 		page = find_get_page(inode->i_mapping, index);
10193 		ASSERT(page); /* Pages should be in the extent_io_tree */
10194 		set_page_writeback(page);
10195 		put_page(page);
10196 		index++;
10197 	}
10198 }
10199 
10200 #ifdef CONFIG_SWAP
10201 /*
10202  * Add an entry indicating a block group or device which is pinned by a
10203  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10204  * negative errno on failure.
10205  */
10206 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10207 				  bool is_block_group)
10208 {
10209 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10210 	struct btrfs_swapfile_pin *sp, *entry;
10211 	struct rb_node **p;
10212 	struct rb_node *parent = NULL;
10213 
10214 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10215 	if (!sp)
10216 		return -ENOMEM;
10217 	sp->ptr = ptr;
10218 	sp->inode = inode;
10219 	sp->is_block_group = is_block_group;
10220 	sp->bg_extent_count = 1;
10221 
10222 	spin_lock(&fs_info->swapfile_pins_lock);
10223 	p = &fs_info->swapfile_pins.rb_node;
10224 	while (*p) {
10225 		parent = *p;
10226 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10227 		if (sp->ptr < entry->ptr ||
10228 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10229 			p = &(*p)->rb_left;
10230 		} else if (sp->ptr > entry->ptr ||
10231 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10232 			p = &(*p)->rb_right;
10233 		} else {
10234 			if (is_block_group)
10235 				entry->bg_extent_count++;
10236 			spin_unlock(&fs_info->swapfile_pins_lock);
10237 			kfree(sp);
10238 			return 1;
10239 		}
10240 	}
10241 	rb_link_node(&sp->node, parent, p);
10242 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10243 	spin_unlock(&fs_info->swapfile_pins_lock);
10244 	return 0;
10245 }
10246 
10247 /* Free all of the entries pinned by this swapfile. */
10248 static void btrfs_free_swapfile_pins(struct inode *inode)
10249 {
10250 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10251 	struct btrfs_swapfile_pin *sp;
10252 	struct rb_node *node, *next;
10253 
10254 	spin_lock(&fs_info->swapfile_pins_lock);
10255 	node = rb_first(&fs_info->swapfile_pins);
10256 	while (node) {
10257 		next = rb_next(node);
10258 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10259 		if (sp->inode == inode) {
10260 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10261 			if (sp->is_block_group) {
10262 				btrfs_dec_block_group_swap_extents(sp->ptr,
10263 							   sp->bg_extent_count);
10264 				btrfs_put_block_group(sp->ptr);
10265 			}
10266 			kfree(sp);
10267 		}
10268 		node = next;
10269 	}
10270 	spin_unlock(&fs_info->swapfile_pins_lock);
10271 }
10272 
10273 struct btrfs_swap_info {
10274 	u64 start;
10275 	u64 block_start;
10276 	u64 block_len;
10277 	u64 lowest_ppage;
10278 	u64 highest_ppage;
10279 	unsigned long nr_pages;
10280 	int nr_extents;
10281 };
10282 
10283 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10284 				 struct btrfs_swap_info *bsi)
10285 {
10286 	unsigned long nr_pages;
10287 	u64 first_ppage, first_ppage_reported, next_ppage;
10288 	int ret;
10289 
10290 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10291 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10292 				PAGE_SIZE) >> PAGE_SHIFT;
10293 
10294 	if (first_ppage >= next_ppage)
10295 		return 0;
10296 	nr_pages = next_ppage - first_ppage;
10297 
10298 	first_ppage_reported = first_ppage;
10299 	if (bsi->start == 0)
10300 		first_ppage_reported++;
10301 	if (bsi->lowest_ppage > first_ppage_reported)
10302 		bsi->lowest_ppage = first_ppage_reported;
10303 	if (bsi->highest_ppage < (next_ppage - 1))
10304 		bsi->highest_ppage = next_ppage - 1;
10305 
10306 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10307 	if (ret < 0)
10308 		return ret;
10309 	bsi->nr_extents += ret;
10310 	bsi->nr_pages += nr_pages;
10311 	return 0;
10312 }
10313 
10314 static void btrfs_swap_deactivate(struct file *file)
10315 {
10316 	struct inode *inode = file_inode(file);
10317 
10318 	btrfs_free_swapfile_pins(inode);
10319 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10320 }
10321 
10322 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10323 			       sector_t *span)
10324 {
10325 	struct inode *inode = file_inode(file);
10326 	struct btrfs_root *root = BTRFS_I(inode)->root;
10327 	struct btrfs_fs_info *fs_info = root->fs_info;
10328 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10329 	struct extent_state *cached_state = NULL;
10330 	struct extent_map *em = NULL;
10331 	struct btrfs_device *device = NULL;
10332 	struct btrfs_swap_info bsi = {
10333 		.lowest_ppage = (sector_t)-1ULL,
10334 	};
10335 	int ret = 0;
10336 	u64 isize;
10337 	u64 start;
10338 
10339 	/*
10340 	 * If the swap file was just created, make sure delalloc is done. If the
10341 	 * file changes again after this, the user is doing something stupid and
10342 	 * we don't really care.
10343 	 */
10344 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10345 	if (ret)
10346 		return ret;
10347 
10348 	/*
10349 	 * The inode is locked, so these flags won't change after we check them.
10350 	 */
10351 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10352 		btrfs_warn(fs_info, "swapfile must not be compressed");
10353 		return -EINVAL;
10354 	}
10355 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10356 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10357 		return -EINVAL;
10358 	}
10359 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10360 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10361 		return -EINVAL;
10362 	}
10363 
10364 	/*
10365 	 * Balance or device remove/replace/resize can move stuff around from
10366 	 * under us. The exclop protection makes sure they aren't running/won't
10367 	 * run concurrently while we are mapping the swap extents, and
10368 	 * fs_info->swapfile_pins prevents them from running while the swap
10369 	 * file is active and moving the extents. Note that this also prevents
10370 	 * a concurrent device add which isn't actually necessary, but it's not
10371 	 * really worth the trouble to allow it.
10372 	 */
10373 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10374 		btrfs_warn(fs_info,
10375 	   "cannot activate swapfile while exclusive operation is running");
10376 		return -EBUSY;
10377 	}
10378 
10379 	/*
10380 	 * Prevent snapshot creation while we are activating the swap file.
10381 	 * We do not want to race with snapshot creation. If snapshot creation
10382 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10383 	 * completes before the first write into the swap file after it is
10384 	 * activated, than that write would fallback to COW.
10385 	 */
10386 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10387 		btrfs_exclop_finish(fs_info);
10388 		btrfs_warn(fs_info,
10389 	   "cannot activate swapfile because snapshot creation is in progress");
10390 		return -EINVAL;
10391 	}
10392 	/*
10393 	 * Snapshots can create extents which require COW even if NODATACOW is
10394 	 * set. We use this counter to prevent snapshots. We must increment it
10395 	 * before walking the extents because we don't want a concurrent
10396 	 * snapshot to run after we've already checked the extents.
10397 	 */
10398 	atomic_inc(&root->nr_swapfiles);
10399 
10400 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10401 
10402 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10403 	start = 0;
10404 	while (start < isize) {
10405 		u64 logical_block_start, physical_block_start;
10406 		struct btrfs_block_group *bg;
10407 		u64 len = isize - start;
10408 
10409 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10410 		if (IS_ERR(em)) {
10411 			ret = PTR_ERR(em);
10412 			goto out;
10413 		}
10414 
10415 		if (em->block_start == EXTENT_MAP_HOLE) {
10416 			btrfs_warn(fs_info, "swapfile must not have holes");
10417 			ret = -EINVAL;
10418 			goto out;
10419 		}
10420 		if (em->block_start == EXTENT_MAP_INLINE) {
10421 			/*
10422 			 * It's unlikely we'll ever actually find ourselves
10423 			 * here, as a file small enough to fit inline won't be
10424 			 * big enough to store more than the swap header, but in
10425 			 * case something changes in the future, let's catch it
10426 			 * here rather than later.
10427 			 */
10428 			btrfs_warn(fs_info, "swapfile must not be inline");
10429 			ret = -EINVAL;
10430 			goto out;
10431 		}
10432 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10433 			btrfs_warn(fs_info, "swapfile must not be compressed");
10434 			ret = -EINVAL;
10435 			goto out;
10436 		}
10437 
10438 		logical_block_start = em->block_start + (start - em->start);
10439 		len = min(len, em->len - (start - em->start));
10440 		free_extent_map(em);
10441 		em = NULL;
10442 
10443 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10444 		if (ret < 0) {
10445 			goto out;
10446 		} else if (ret) {
10447 			ret = 0;
10448 		} else {
10449 			btrfs_warn(fs_info,
10450 				   "swapfile must not be copy-on-write");
10451 			ret = -EINVAL;
10452 			goto out;
10453 		}
10454 
10455 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10456 		if (IS_ERR(em)) {
10457 			ret = PTR_ERR(em);
10458 			goto out;
10459 		}
10460 
10461 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10462 			btrfs_warn(fs_info,
10463 				   "swapfile must have single data profile");
10464 			ret = -EINVAL;
10465 			goto out;
10466 		}
10467 
10468 		if (device == NULL) {
10469 			device = em->map_lookup->stripes[0].dev;
10470 			ret = btrfs_add_swapfile_pin(inode, device, false);
10471 			if (ret == 1)
10472 				ret = 0;
10473 			else if (ret)
10474 				goto out;
10475 		} else if (device != em->map_lookup->stripes[0].dev) {
10476 			btrfs_warn(fs_info, "swapfile must be on one device");
10477 			ret = -EINVAL;
10478 			goto out;
10479 		}
10480 
10481 		physical_block_start = (em->map_lookup->stripes[0].physical +
10482 					(logical_block_start - em->start));
10483 		len = min(len, em->len - (logical_block_start - em->start));
10484 		free_extent_map(em);
10485 		em = NULL;
10486 
10487 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10488 		if (!bg) {
10489 			btrfs_warn(fs_info,
10490 			   "could not find block group containing swapfile");
10491 			ret = -EINVAL;
10492 			goto out;
10493 		}
10494 
10495 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10496 			btrfs_warn(fs_info,
10497 			   "block group for swapfile at %llu is read-only%s",
10498 			   bg->start,
10499 			   atomic_read(&fs_info->scrubs_running) ?
10500 				       " (scrub running)" : "");
10501 			btrfs_put_block_group(bg);
10502 			ret = -EINVAL;
10503 			goto out;
10504 		}
10505 
10506 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10507 		if (ret) {
10508 			btrfs_put_block_group(bg);
10509 			if (ret == 1)
10510 				ret = 0;
10511 			else
10512 				goto out;
10513 		}
10514 
10515 		if (bsi.block_len &&
10516 		    bsi.block_start + bsi.block_len == physical_block_start) {
10517 			bsi.block_len += len;
10518 		} else {
10519 			if (bsi.block_len) {
10520 				ret = btrfs_add_swap_extent(sis, &bsi);
10521 				if (ret)
10522 					goto out;
10523 			}
10524 			bsi.start = start;
10525 			bsi.block_start = physical_block_start;
10526 			bsi.block_len = len;
10527 		}
10528 
10529 		start += len;
10530 	}
10531 
10532 	if (bsi.block_len)
10533 		ret = btrfs_add_swap_extent(sis, &bsi);
10534 
10535 out:
10536 	if (!IS_ERR_OR_NULL(em))
10537 		free_extent_map(em);
10538 
10539 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10540 
10541 	if (ret)
10542 		btrfs_swap_deactivate(file);
10543 
10544 	btrfs_drew_write_unlock(&root->snapshot_lock);
10545 
10546 	btrfs_exclop_finish(fs_info);
10547 
10548 	if (ret)
10549 		return ret;
10550 
10551 	if (device)
10552 		sis->bdev = device->bdev;
10553 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10554 	sis->max = bsi.nr_pages;
10555 	sis->pages = bsi.nr_pages - 1;
10556 	sis->highest_bit = bsi.nr_pages - 1;
10557 	return bsi.nr_extents;
10558 }
10559 #else
10560 static void btrfs_swap_deactivate(struct file *file)
10561 {
10562 }
10563 
10564 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10565 			       sector_t *span)
10566 {
10567 	return -EOPNOTSUPP;
10568 }
10569 #endif
10570 
10571 /*
10572  * Update the number of bytes used in the VFS' inode. When we replace extents in
10573  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10574  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10575  * always get a correct value.
10576  */
10577 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10578 			      const u64 add_bytes,
10579 			      const u64 del_bytes)
10580 {
10581 	if (add_bytes == del_bytes)
10582 		return;
10583 
10584 	spin_lock(&inode->lock);
10585 	if (del_bytes > 0)
10586 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10587 	if (add_bytes > 0)
10588 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10589 	spin_unlock(&inode->lock);
10590 }
10591 
10592 static const struct inode_operations btrfs_dir_inode_operations = {
10593 	.getattr	= btrfs_getattr,
10594 	.lookup		= btrfs_lookup,
10595 	.create		= btrfs_create,
10596 	.unlink		= btrfs_unlink,
10597 	.link		= btrfs_link,
10598 	.mkdir		= btrfs_mkdir,
10599 	.rmdir		= btrfs_rmdir,
10600 	.rename		= btrfs_rename2,
10601 	.symlink	= btrfs_symlink,
10602 	.setattr	= btrfs_setattr,
10603 	.mknod		= btrfs_mknod,
10604 	.listxattr	= btrfs_listxattr,
10605 	.permission	= btrfs_permission,
10606 	.get_acl	= btrfs_get_acl,
10607 	.set_acl	= btrfs_set_acl,
10608 	.update_time	= btrfs_update_time,
10609 	.tmpfile        = btrfs_tmpfile,
10610 	.fileattr_get	= btrfs_fileattr_get,
10611 	.fileattr_set	= btrfs_fileattr_set,
10612 };
10613 
10614 static const struct file_operations btrfs_dir_file_operations = {
10615 	.llseek		= generic_file_llseek,
10616 	.read		= generic_read_dir,
10617 	.iterate_shared	= btrfs_real_readdir,
10618 	.open		= btrfs_opendir,
10619 	.unlocked_ioctl	= btrfs_ioctl,
10620 #ifdef CONFIG_COMPAT
10621 	.compat_ioctl	= btrfs_compat_ioctl,
10622 #endif
10623 	.release        = btrfs_release_file,
10624 	.fsync		= btrfs_sync_file,
10625 };
10626 
10627 /*
10628  * btrfs doesn't support the bmap operation because swapfiles
10629  * use bmap to make a mapping of extents in the file.  They assume
10630  * these extents won't change over the life of the file and they
10631  * use the bmap result to do IO directly to the drive.
10632  *
10633  * the btrfs bmap call would return logical addresses that aren't
10634  * suitable for IO and they also will change frequently as COW
10635  * operations happen.  So, swapfile + btrfs == corruption.
10636  *
10637  * For now we're avoiding this by dropping bmap.
10638  */
10639 static const struct address_space_operations btrfs_aops = {
10640 	.readpage	= btrfs_readpage,
10641 	.writepage	= btrfs_writepage,
10642 	.writepages	= btrfs_writepages,
10643 	.readahead	= btrfs_readahead,
10644 	.direct_IO	= noop_direct_IO,
10645 	.invalidatepage = btrfs_invalidatepage,
10646 	.releasepage	= btrfs_releasepage,
10647 #ifdef CONFIG_MIGRATION
10648 	.migratepage	= btrfs_migratepage,
10649 #endif
10650 	.set_page_dirty	= btrfs_set_page_dirty,
10651 	.error_remove_page = generic_error_remove_page,
10652 	.swap_activate	= btrfs_swap_activate,
10653 	.swap_deactivate = btrfs_swap_deactivate,
10654 };
10655 
10656 static const struct inode_operations btrfs_file_inode_operations = {
10657 	.getattr	= btrfs_getattr,
10658 	.setattr	= btrfs_setattr,
10659 	.listxattr      = btrfs_listxattr,
10660 	.permission	= btrfs_permission,
10661 	.fiemap		= btrfs_fiemap,
10662 	.get_acl	= btrfs_get_acl,
10663 	.set_acl	= btrfs_set_acl,
10664 	.update_time	= btrfs_update_time,
10665 	.fileattr_get	= btrfs_fileattr_get,
10666 	.fileattr_set	= btrfs_fileattr_set,
10667 };
10668 static const struct inode_operations btrfs_special_inode_operations = {
10669 	.getattr	= btrfs_getattr,
10670 	.setattr	= btrfs_setattr,
10671 	.permission	= btrfs_permission,
10672 	.listxattr	= btrfs_listxattr,
10673 	.get_acl	= btrfs_get_acl,
10674 	.set_acl	= btrfs_set_acl,
10675 	.update_time	= btrfs_update_time,
10676 };
10677 static const struct inode_operations btrfs_symlink_inode_operations = {
10678 	.get_link	= page_get_link,
10679 	.getattr	= btrfs_getattr,
10680 	.setattr	= btrfs_setattr,
10681 	.permission	= btrfs_permission,
10682 	.listxattr	= btrfs_listxattr,
10683 	.update_time	= btrfs_update_time,
10684 };
10685 
10686 const struct dentry_operations btrfs_dentry_operations = {
10687 	.d_delete	= btrfs_dentry_delete,
10688 };
10689