xref: /openbmc/linux/fs/btrfs/inode.c (revision 23c2b932)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 struct btrfs_dio_data {
70 	u64 outstanding_extents;
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 };
75 
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85 
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91 
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
95 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
96 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
97 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
98 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
99 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
100 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
101 };
102 
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 				   struct page *locked_page,
108 				   u64 start, u64 end, int *page_started,
109 				   unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 					   u64 len, u64 orig_start,
112 					   u64 block_start, u64 block_len,
113 					   u64 orig_block_len, u64 ram_bytes,
114 					   int type);
115 
116 static int btrfs_dirty_inode(struct inode *inode);
117 
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124 
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 				     struct inode *inode,  struct inode *dir,
127 				     const struct qstr *qstr)
128 {
129 	int err;
130 
131 	err = btrfs_init_acl(trans, inode, dir);
132 	if (!err)
133 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 	return err;
135 }
136 
137 /*
138  * this does all the hard work for inserting an inline extent into
139  * the btree.  The caller should have done a btrfs_drop_extents so that
140  * no overlapping inline items exist in the btree
141  */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 				struct btrfs_path *path, int extent_inserted,
144 				struct btrfs_root *root, struct inode *inode,
145 				u64 start, size_t size, size_t compressed_size,
146 				int compress_type,
147 				struct page **compressed_pages)
148 {
149 	struct extent_buffer *leaf;
150 	struct page *page = NULL;
151 	char *kaddr;
152 	unsigned long ptr;
153 	struct btrfs_file_extent_item *ei;
154 	int err = 0;
155 	int ret;
156 	size_t cur_size = size;
157 	unsigned long offset;
158 
159 	if (compressed_size && compressed_pages)
160 		cur_size = compressed_size;
161 
162 	inode_add_bytes(inode, size);
163 
164 	if (!extent_inserted) {
165 		struct btrfs_key key;
166 		size_t datasize;
167 
168 		key.objectid = btrfs_ino(inode);
169 		key.offset = start;
170 		key.type = BTRFS_EXTENT_DATA_KEY;
171 
172 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 		path->leave_spinning = 1;
174 		ret = btrfs_insert_empty_item(trans, root, path, &key,
175 					      datasize);
176 		if (ret) {
177 			err = ret;
178 			goto fail;
179 		}
180 	}
181 	leaf = path->nodes[0];
182 	ei = btrfs_item_ptr(leaf, path->slots[0],
183 			    struct btrfs_file_extent_item);
184 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 	btrfs_set_file_extent_encryption(leaf, ei, 0);
187 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 	ptr = btrfs_file_extent_inline_start(ei);
190 
191 	if (compress_type != BTRFS_COMPRESS_NONE) {
192 		struct page *cpage;
193 		int i = 0;
194 		while (compressed_size > 0) {
195 			cpage = compressed_pages[i];
196 			cur_size = min_t(unsigned long, compressed_size,
197 				       PAGE_SIZE);
198 
199 			kaddr = kmap_atomic(cpage);
200 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 			kunmap_atomic(kaddr);
202 
203 			i++;
204 			ptr += cur_size;
205 			compressed_size -= cur_size;
206 		}
207 		btrfs_set_file_extent_compression(leaf, ei,
208 						  compress_type);
209 	} else {
210 		page = find_get_page(inode->i_mapping,
211 				     start >> PAGE_SHIFT);
212 		btrfs_set_file_extent_compression(leaf, ei, 0);
213 		kaddr = kmap_atomic(page);
214 		offset = start & (PAGE_SIZE - 1);
215 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 		kunmap_atomic(kaddr);
217 		put_page(page);
218 	}
219 	btrfs_mark_buffer_dirty(leaf);
220 	btrfs_release_path(path);
221 
222 	/*
223 	 * we're an inline extent, so nobody can
224 	 * extend the file past i_size without locking
225 	 * a page we already have locked.
226 	 *
227 	 * We must do any isize and inode updates
228 	 * before we unlock the pages.  Otherwise we
229 	 * could end up racing with unlink.
230 	 */
231 	BTRFS_I(inode)->disk_i_size = inode->i_size;
232 	ret = btrfs_update_inode(trans, root, inode);
233 
234 	return ret;
235 fail:
236 	return err;
237 }
238 
239 
240 /*
241  * conditionally insert an inline extent into the file.  This
242  * does the checks required to make sure the data is small enough
243  * to fit as an inline extent.
244  */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 					  struct inode *inode, u64 start,
247 					  u64 end, size_t compressed_size,
248 					  int compress_type,
249 					  struct page **compressed_pages)
250 {
251 	struct btrfs_trans_handle *trans;
252 	u64 isize = i_size_read(inode);
253 	u64 actual_end = min(end + 1, isize);
254 	u64 inline_len = actual_end - start;
255 	u64 aligned_end = ALIGN(end, root->sectorsize);
256 	u64 data_len = inline_len;
257 	int ret;
258 	struct btrfs_path *path;
259 	int extent_inserted = 0;
260 	u32 extent_item_size;
261 
262 	if (compressed_size)
263 		data_len = compressed_size;
264 
265 	if (start > 0 ||
266 	    actual_end > root->sectorsize ||
267 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 	    (!compressed_size &&
269 	    (actual_end & (root->sectorsize - 1)) == 0) ||
270 	    end + 1 < isize ||
271 	    data_len > root->fs_info->max_inline) {
272 		return 1;
273 	}
274 
275 	path = btrfs_alloc_path();
276 	if (!path)
277 		return -ENOMEM;
278 
279 	trans = btrfs_join_transaction(root);
280 	if (IS_ERR(trans)) {
281 		btrfs_free_path(path);
282 		return PTR_ERR(trans);
283 	}
284 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285 
286 	if (compressed_size && compressed_pages)
287 		extent_item_size = btrfs_file_extent_calc_inline_size(
288 		   compressed_size);
289 	else
290 		extent_item_size = btrfs_file_extent_calc_inline_size(
291 		    inline_len);
292 
293 	ret = __btrfs_drop_extents(trans, root, inode, path,
294 				   start, aligned_end, NULL,
295 				   1, 1, extent_item_size, &extent_inserted);
296 	if (ret) {
297 		btrfs_abort_transaction(trans, root, ret);
298 		goto out;
299 	}
300 
301 	if (isize > actual_end)
302 		inline_len = min_t(u64, isize, actual_end);
303 	ret = insert_inline_extent(trans, path, extent_inserted,
304 				   root, inode, start,
305 				   inline_len, compressed_size,
306 				   compress_type, compressed_pages);
307 	if (ret && ret != -ENOSPC) {
308 		btrfs_abort_transaction(trans, root, ret);
309 		goto out;
310 	} else if (ret == -ENOSPC) {
311 		ret = 1;
312 		goto out;
313 	}
314 
315 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 	/*
320 	 * Don't forget to free the reserved space, as for inlined extent
321 	 * it won't count as data extent, free them directly here.
322 	 * And at reserve time, it's always aligned to page size, so
323 	 * just free one page here.
324 	 */
325 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
326 	btrfs_free_path(path);
327 	btrfs_end_transaction(trans, root);
328 	return ret;
329 }
330 
331 struct async_extent {
332 	u64 start;
333 	u64 ram_size;
334 	u64 compressed_size;
335 	struct page **pages;
336 	unsigned long nr_pages;
337 	int compress_type;
338 	struct list_head list;
339 };
340 
341 struct async_cow {
342 	struct inode *inode;
343 	struct btrfs_root *root;
344 	struct page *locked_page;
345 	u64 start;
346 	u64 end;
347 	struct list_head extents;
348 	struct btrfs_work work;
349 };
350 
351 static noinline int add_async_extent(struct async_cow *cow,
352 				     u64 start, u64 ram_size,
353 				     u64 compressed_size,
354 				     struct page **pages,
355 				     unsigned long nr_pages,
356 				     int compress_type)
357 {
358 	struct async_extent *async_extent;
359 
360 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 	BUG_ON(!async_extent); /* -ENOMEM */
362 	async_extent->start = start;
363 	async_extent->ram_size = ram_size;
364 	async_extent->compressed_size = compressed_size;
365 	async_extent->pages = pages;
366 	async_extent->nr_pages = nr_pages;
367 	async_extent->compress_type = compress_type;
368 	list_add_tail(&async_extent->list, &cow->extents);
369 	return 0;
370 }
371 
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 	struct btrfs_root *root = BTRFS_I(inode)->root;
375 
376 	/* force compress */
377 	if (btrfs_test_opt(root, FORCE_COMPRESS))
378 		return 1;
379 	/* bad compression ratios */
380 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 		return 0;
382 	if (btrfs_test_opt(root, COMPRESS) ||
383 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 	    BTRFS_I(inode)->force_compress)
385 		return 1;
386 	return 0;
387 }
388 
389 /*
390  * we create compressed extents in two phases.  The first
391  * phase compresses a range of pages that have already been
392  * locked (both pages and state bits are locked).
393  *
394  * This is done inside an ordered work queue, and the compression
395  * is spread across many cpus.  The actual IO submission is step
396  * two, and the ordered work queue takes care of making sure that
397  * happens in the same order things were put onto the queue by
398  * writepages and friends.
399  *
400  * If this code finds it can't get good compression, it puts an
401  * entry onto the work queue to write the uncompressed bytes.  This
402  * makes sure that both compressed inodes and uncompressed inodes
403  * are written in the same order that the flusher thread sent them
404  * down.
405  */
406 static noinline void compress_file_range(struct inode *inode,
407 					struct page *locked_page,
408 					u64 start, u64 end,
409 					struct async_cow *async_cow,
410 					int *num_added)
411 {
412 	struct btrfs_root *root = BTRFS_I(inode)->root;
413 	u64 num_bytes;
414 	u64 blocksize = root->sectorsize;
415 	u64 actual_end;
416 	u64 isize = i_size_read(inode);
417 	int ret = 0;
418 	struct page **pages = NULL;
419 	unsigned long nr_pages;
420 	unsigned long nr_pages_ret = 0;
421 	unsigned long total_compressed = 0;
422 	unsigned long total_in = 0;
423 	unsigned long max_compressed = SZ_128K;
424 	unsigned long max_uncompressed = SZ_128K;
425 	int i;
426 	int will_compress;
427 	int compress_type = root->fs_info->compress_type;
428 	int redirty = 0;
429 
430 	/* if this is a small write inside eof, kick off a defrag */
431 	if ((end - start + 1) < SZ_16K &&
432 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 		btrfs_add_inode_defrag(NULL, inode);
434 
435 	actual_end = min_t(u64, isize, end + 1);
436 again:
437 	will_compress = 0;
438 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 	nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
440 
441 	/*
442 	 * we don't want to send crud past the end of i_size through
443 	 * compression, that's just a waste of CPU time.  So, if the
444 	 * end of the file is before the start of our current
445 	 * requested range of bytes, we bail out to the uncompressed
446 	 * cleanup code that can deal with all of this.
447 	 *
448 	 * It isn't really the fastest way to fix things, but this is a
449 	 * very uncommon corner.
450 	 */
451 	if (actual_end <= start)
452 		goto cleanup_and_bail_uncompressed;
453 
454 	total_compressed = actual_end - start;
455 
456 	/*
457 	 * skip compression for a small file range(<=blocksize) that
458 	 * isn't an inline extent, since it doesn't save disk space at all.
459 	 */
460 	if (total_compressed <= blocksize &&
461 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 		goto cleanup_and_bail_uncompressed;
463 
464 	/* we want to make sure that amount of ram required to uncompress
465 	 * an extent is reasonable, so we limit the total size in ram
466 	 * of a compressed extent to 128k.  This is a crucial number
467 	 * because it also controls how easily we can spread reads across
468 	 * cpus for decompression.
469 	 *
470 	 * We also want to make sure the amount of IO required to do
471 	 * a random read is reasonably small, so we limit the size of
472 	 * a compressed extent to 128k.
473 	 */
474 	total_compressed = min(total_compressed, max_uncompressed);
475 	num_bytes = ALIGN(end - start + 1, blocksize);
476 	num_bytes = max(blocksize,  num_bytes);
477 	total_in = 0;
478 	ret = 0;
479 
480 	/*
481 	 * we do compression for mount -o compress and when the
482 	 * inode has not been flagged as nocompress.  This flag can
483 	 * change at any time if we discover bad compression ratios.
484 	 */
485 	if (inode_need_compress(inode)) {
486 		WARN_ON(pages);
487 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 		if (!pages) {
489 			/* just bail out to the uncompressed code */
490 			goto cont;
491 		}
492 
493 		if (BTRFS_I(inode)->force_compress)
494 			compress_type = BTRFS_I(inode)->force_compress;
495 
496 		/*
497 		 * we need to call clear_page_dirty_for_io on each
498 		 * page in the range.  Otherwise applications with the file
499 		 * mmap'd can wander in and change the page contents while
500 		 * we are compressing them.
501 		 *
502 		 * If the compression fails for any reason, we set the pages
503 		 * dirty again later on.
504 		 */
505 		extent_range_clear_dirty_for_io(inode, start, end);
506 		redirty = 1;
507 		ret = btrfs_compress_pages(compress_type,
508 					   inode->i_mapping, start,
509 					   total_compressed, pages,
510 					   nr_pages, &nr_pages_ret,
511 					   &total_in,
512 					   &total_compressed,
513 					   max_compressed);
514 
515 		if (!ret) {
516 			unsigned long offset = total_compressed &
517 				(PAGE_SIZE - 1);
518 			struct page *page = pages[nr_pages_ret - 1];
519 			char *kaddr;
520 
521 			/* zero the tail end of the last page, we might be
522 			 * sending it down to disk
523 			 */
524 			if (offset) {
525 				kaddr = kmap_atomic(page);
526 				memset(kaddr + offset, 0,
527 				       PAGE_SIZE - offset);
528 				kunmap_atomic(kaddr);
529 			}
530 			will_compress = 1;
531 		}
532 	}
533 cont:
534 	if (start == 0) {
535 		/* lets try to make an inline extent */
536 		if (ret || total_in < (actual_end - start)) {
537 			/* we didn't compress the entire range, try
538 			 * to make an uncompressed inline extent.
539 			 */
540 			ret = cow_file_range_inline(root, inode, start, end,
541 						    0, 0, NULL);
542 		} else {
543 			/* try making a compressed inline extent */
544 			ret = cow_file_range_inline(root, inode, start, end,
545 						    total_compressed,
546 						    compress_type, pages);
547 		}
548 		if (ret <= 0) {
549 			unsigned long clear_flags = EXTENT_DELALLOC |
550 				EXTENT_DEFRAG;
551 			unsigned long page_error_op;
552 
553 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555 
556 			/*
557 			 * inline extent creation worked or returned error,
558 			 * we don't need to create any more async work items.
559 			 * Unlock and free up our temp pages.
560 			 */
561 			extent_clear_unlock_delalloc(inode, start, end, NULL,
562 						     clear_flags, PAGE_UNLOCK |
563 						     PAGE_CLEAR_DIRTY |
564 						     PAGE_SET_WRITEBACK |
565 						     page_error_op |
566 						     PAGE_END_WRITEBACK);
567 			goto free_pages_out;
568 		}
569 	}
570 
571 	if (will_compress) {
572 		/*
573 		 * we aren't doing an inline extent round the compressed size
574 		 * up to a block size boundary so the allocator does sane
575 		 * things
576 		 */
577 		total_compressed = ALIGN(total_compressed, blocksize);
578 
579 		/*
580 		 * one last check to make sure the compression is really a
581 		 * win, compare the page count read with the blocks on disk
582 		 */
583 		total_in = ALIGN(total_in, PAGE_SIZE);
584 		if (total_compressed >= total_in) {
585 			will_compress = 0;
586 		} else {
587 			num_bytes = total_in;
588 		}
589 	}
590 	if (!will_compress && pages) {
591 		/*
592 		 * the compression code ran but failed to make things smaller,
593 		 * free any pages it allocated and our page pointer array
594 		 */
595 		for (i = 0; i < nr_pages_ret; i++) {
596 			WARN_ON(pages[i]->mapping);
597 			put_page(pages[i]);
598 		}
599 		kfree(pages);
600 		pages = NULL;
601 		total_compressed = 0;
602 		nr_pages_ret = 0;
603 
604 		/* flag the file so we don't compress in the future */
605 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 		    !(BTRFS_I(inode)->force_compress)) {
607 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 		}
609 	}
610 	if (will_compress) {
611 		*num_added += 1;
612 
613 		/* the async work queues will take care of doing actual
614 		 * allocation on disk for these compressed pages,
615 		 * and will submit them to the elevator.
616 		 */
617 		add_async_extent(async_cow, start, num_bytes,
618 				 total_compressed, pages, nr_pages_ret,
619 				 compress_type);
620 
621 		if (start + num_bytes < end) {
622 			start += num_bytes;
623 			pages = NULL;
624 			cond_resched();
625 			goto again;
626 		}
627 	} else {
628 cleanup_and_bail_uncompressed:
629 		/*
630 		 * No compression, but we still need to write the pages in
631 		 * the file we've been given so far.  redirty the locked
632 		 * page if it corresponds to our extent and set things up
633 		 * for the async work queue to run cow_file_range to do
634 		 * the normal delalloc dance
635 		 */
636 		if (page_offset(locked_page) >= start &&
637 		    page_offset(locked_page) <= end) {
638 			__set_page_dirty_nobuffers(locked_page);
639 			/* unlocked later on in the async handlers */
640 		}
641 		if (redirty)
642 			extent_range_redirty_for_io(inode, start, end);
643 		add_async_extent(async_cow, start, end - start + 1,
644 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 		*num_added += 1;
646 	}
647 
648 	return;
649 
650 free_pages_out:
651 	for (i = 0; i < nr_pages_ret; i++) {
652 		WARN_ON(pages[i]->mapping);
653 		put_page(pages[i]);
654 	}
655 	kfree(pages);
656 }
657 
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 	int i;
661 
662 	if (!async_extent->pages)
663 		return;
664 
665 	for (i = 0; i < async_extent->nr_pages; i++) {
666 		WARN_ON(async_extent->pages[i]->mapping);
667 		put_page(async_extent->pages[i]);
668 	}
669 	kfree(async_extent->pages);
670 	async_extent->nr_pages = 0;
671 	async_extent->pages = NULL;
672 }
673 
674 /*
675  * phase two of compressed writeback.  This is the ordered portion
676  * of the code, which only gets called in the order the work was
677  * queued.  We walk all the async extents created by compress_file_range
678  * and send them down to the disk.
679  */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 					      struct async_cow *async_cow)
682 {
683 	struct async_extent *async_extent;
684 	u64 alloc_hint = 0;
685 	struct btrfs_key ins;
686 	struct extent_map *em;
687 	struct btrfs_root *root = BTRFS_I(inode)->root;
688 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 	struct extent_io_tree *io_tree;
690 	int ret = 0;
691 
692 again:
693 	while (!list_empty(&async_cow->extents)) {
694 		async_extent = list_entry(async_cow->extents.next,
695 					  struct async_extent, list);
696 		list_del(&async_extent->list);
697 
698 		io_tree = &BTRFS_I(inode)->io_tree;
699 
700 retry:
701 		/* did the compression code fall back to uncompressed IO? */
702 		if (!async_extent->pages) {
703 			int page_started = 0;
704 			unsigned long nr_written = 0;
705 
706 			lock_extent(io_tree, async_extent->start,
707 					 async_extent->start +
708 					 async_extent->ram_size - 1);
709 
710 			/* allocate blocks */
711 			ret = cow_file_range(inode, async_cow->locked_page,
712 					     async_extent->start,
713 					     async_extent->start +
714 					     async_extent->ram_size - 1,
715 					     &page_started, &nr_written, 0);
716 
717 			/* JDM XXX */
718 
719 			/*
720 			 * if page_started, cow_file_range inserted an
721 			 * inline extent and took care of all the unlocking
722 			 * and IO for us.  Otherwise, we need to submit
723 			 * all those pages down to the drive.
724 			 */
725 			if (!page_started && !ret)
726 				extent_write_locked_range(io_tree,
727 						  inode, async_extent->start,
728 						  async_extent->start +
729 						  async_extent->ram_size - 1,
730 						  btrfs_get_extent,
731 						  WB_SYNC_ALL);
732 			else if (ret)
733 				unlock_page(async_cow->locked_page);
734 			kfree(async_extent);
735 			cond_resched();
736 			continue;
737 		}
738 
739 		lock_extent(io_tree, async_extent->start,
740 			    async_extent->start + async_extent->ram_size - 1);
741 
742 		ret = btrfs_reserve_extent(root,
743 					   async_extent->compressed_size,
744 					   async_extent->compressed_size,
745 					   0, alloc_hint, &ins, 1, 1);
746 		if (ret) {
747 			free_async_extent_pages(async_extent);
748 
749 			if (ret == -ENOSPC) {
750 				unlock_extent(io_tree, async_extent->start,
751 					      async_extent->start +
752 					      async_extent->ram_size - 1);
753 
754 				/*
755 				 * we need to redirty the pages if we decide to
756 				 * fallback to uncompressed IO, otherwise we
757 				 * will not submit these pages down to lower
758 				 * layers.
759 				 */
760 				extent_range_redirty_for_io(inode,
761 						async_extent->start,
762 						async_extent->start +
763 						async_extent->ram_size - 1);
764 
765 				goto retry;
766 			}
767 			goto out_free;
768 		}
769 		/*
770 		 * here we're doing allocation and writeback of the
771 		 * compressed pages
772 		 */
773 		btrfs_drop_extent_cache(inode, async_extent->start,
774 					async_extent->start +
775 					async_extent->ram_size - 1, 0);
776 
777 		em = alloc_extent_map();
778 		if (!em) {
779 			ret = -ENOMEM;
780 			goto out_free_reserve;
781 		}
782 		em->start = async_extent->start;
783 		em->len = async_extent->ram_size;
784 		em->orig_start = em->start;
785 		em->mod_start = em->start;
786 		em->mod_len = em->len;
787 
788 		em->block_start = ins.objectid;
789 		em->block_len = ins.offset;
790 		em->orig_block_len = ins.offset;
791 		em->ram_bytes = async_extent->ram_size;
792 		em->bdev = root->fs_info->fs_devices->latest_bdev;
793 		em->compress_type = async_extent->compress_type;
794 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 		em->generation = -1;
797 
798 		while (1) {
799 			write_lock(&em_tree->lock);
800 			ret = add_extent_mapping(em_tree, em, 1);
801 			write_unlock(&em_tree->lock);
802 			if (ret != -EEXIST) {
803 				free_extent_map(em);
804 				break;
805 			}
806 			btrfs_drop_extent_cache(inode, async_extent->start,
807 						async_extent->start +
808 						async_extent->ram_size - 1, 0);
809 		}
810 
811 		if (ret)
812 			goto out_free_reserve;
813 
814 		ret = btrfs_add_ordered_extent_compress(inode,
815 						async_extent->start,
816 						ins.objectid,
817 						async_extent->ram_size,
818 						ins.offset,
819 						BTRFS_ORDERED_COMPRESSED,
820 						async_extent->compress_type);
821 		if (ret) {
822 			btrfs_drop_extent_cache(inode, async_extent->start,
823 						async_extent->start +
824 						async_extent->ram_size - 1, 0);
825 			goto out_free_reserve;
826 		}
827 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
828 
829 		/*
830 		 * clear dirty, set writeback and unlock the pages.
831 		 */
832 		extent_clear_unlock_delalloc(inode, async_extent->start,
833 				async_extent->start +
834 				async_extent->ram_size - 1,
835 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
837 				PAGE_SET_WRITEBACK);
838 		ret = btrfs_submit_compressed_write(inode,
839 				    async_extent->start,
840 				    async_extent->ram_size,
841 				    ins.objectid,
842 				    ins.offset, async_extent->pages,
843 				    async_extent->nr_pages);
844 		if (ret) {
845 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 			struct page *p = async_extent->pages[0];
847 			const u64 start = async_extent->start;
848 			const u64 end = start + async_extent->ram_size - 1;
849 
850 			p->mapping = inode->i_mapping;
851 			tree->ops->writepage_end_io_hook(p, start, end,
852 							 NULL, 0);
853 			p->mapping = NULL;
854 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 						     PAGE_END_WRITEBACK |
856 						     PAGE_SET_ERROR);
857 			free_async_extent_pages(async_extent);
858 		}
859 		alloc_hint = ins.objectid + ins.offset;
860 		kfree(async_extent);
861 		cond_resched();
862 	}
863 	return;
864 out_free_reserve:
865 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
866 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
867 out_free:
868 	extent_clear_unlock_delalloc(inode, async_extent->start,
869 				     async_extent->start +
870 				     async_extent->ram_size - 1,
871 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
872 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
874 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 				     PAGE_SET_ERROR);
876 	free_async_extent_pages(async_extent);
877 	kfree(async_extent);
878 	goto again;
879 }
880 
881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 				      u64 num_bytes)
883 {
884 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 	struct extent_map *em;
886 	u64 alloc_hint = 0;
887 
888 	read_lock(&em_tree->lock);
889 	em = search_extent_mapping(em_tree, start, num_bytes);
890 	if (em) {
891 		/*
892 		 * if block start isn't an actual block number then find the
893 		 * first block in this inode and use that as a hint.  If that
894 		 * block is also bogus then just don't worry about it.
895 		 */
896 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 			free_extent_map(em);
898 			em = search_extent_mapping(em_tree, 0, 0);
899 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 				alloc_hint = em->block_start;
901 			if (em)
902 				free_extent_map(em);
903 		} else {
904 			alloc_hint = em->block_start;
905 			free_extent_map(em);
906 		}
907 	}
908 	read_unlock(&em_tree->lock);
909 
910 	return alloc_hint;
911 }
912 
913 /*
914  * when extent_io.c finds a delayed allocation range in the file,
915  * the call backs end up in this code.  The basic idea is to
916  * allocate extents on disk for the range, and create ordered data structs
917  * in ram to track those extents.
918  *
919  * locked_page is the page that writepage had locked already.  We use
920  * it to make sure we don't do extra locks or unlocks.
921  *
922  * *page_started is set to one if we unlock locked_page and do everything
923  * required to start IO on it.  It may be clean and already done with
924  * IO when we return.
925  */
926 static noinline int cow_file_range(struct inode *inode,
927 				   struct page *locked_page,
928 				   u64 start, u64 end, int *page_started,
929 				   unsigned long *nr_written,
930 				   int unlock)
931 {
932 	struct btrfs_root *root = BTRFS_I(inode)->root;
933 	u64 alloc_hint = 0;
934 	u64 num_bytes;
935 	unsigned long ram_size;
936 	u64 disk_num_bytes;
937 	u64 cur_alloc_size;
938 	u64 blocksize = root->sectorsize;
939 	struct btrfs_key ins;
940 	struct extent_map *em;
941 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 	int ret = 0;
943 
944 	if (btrfs_is_free_space_inode(inode)) {
945 		WARN_ON_ONCE(1);
946 		ret = -EINVAL;
947 		goto out_unlock;
948 	}
949 
950 	num_bytes = ALIGN(end - start + 1, blocksize);
951 	num_bytes = max(blocksize,  num_bytes);
952 	disk_num_bytes = num_bytes;
953 
954 	/* if this is a small write inside eof, kick off defrag */
955 	if (num_bytes < SZ_64K &&
956 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
957 		btrfs_add_inode_defrag(NULL, inode);
958 
959 	if (start == 0) {
960 		/* lets try to make an inline extent */
961 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 					    NULL);
963 		if (ret == 0) {
964 			extent_clear_unlock_delalloc(inode, start, end, NULL,
965 				     EXTENT_LOCKED | EXTENT_DELALLOC |
966 				     EXTENT_DEFRAG, PAGE_UNLOCK |
967 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 				     PAGE_END_WRITEBACK);
969 
970 			*nr_written = *nr_written +
971 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
972 			*page_started = 1;
973 			goto out;
974 		} else if (ret < 0) {
975 			goto out_unlock;
976 		}
977 	}
978 
979 	BUG_ON(disk_num_bytes >
980 	       btrfs_super_total_bytes(root->fs_info->super_copy));
981 
982 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
983 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984 
985 	while (disk_num_bytes > 0) {
986 		unsigned long op;
987 
988 		cur_alloc_size = disk_num_bytes;
989 		ret = btrfs_reserve_extent(root, cur_alloc_size,
990 					   root->sectorsize, 0, alloc_hint,
991 					   &ins, 1, 1);
992 		if (ret < 0)
993 			goto out_unlock;
994 
995 		em = alloc_extent_map();
996 		if (!em) {
997 			ret = -ENOMEM;
998 			goto out_reserve;
999 		}
1000 		em->start = start;
1001 		em->orig_start = em->start;
1002 		ram_size = ins.offset;
1003 		em->len = ins.offset;
1004 		em->mod_start = em->start;
1005 		em->mod_len = em->len;
1006 
1007 		em->block_start = ins.objectid;
1008 		em->block_len = ins.offset;
1009 		em->orig_block_len = ins.offset;
1010 		em->ram_bytes = ram_size;
1011 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1012 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1013 		em->generation = -1;
1014 
1015 		while (1) {
1016 			write_lock(&em_tree->lock);
1017 			ret = add_extent_mapping(em_tree, em, 1);
1018 			write_unlock(&em_tree->lock);
1019 			if (ret != -EEXIST) {
1020 				free_extent_map(em);
1021 				break;
1022 			}
1023 			btrfs_drop_extent_cache(inode, start,
1024 						start + ram_size - 1, 0);
1025 		}
1026 		if (ret)
1027 			goto out_reserve;
1028 
1029 		cur_alloc_size = ins.offset;
1030 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1031 					       ram_size, cur_alloc_size, 0);
1032 		if (ret)
1033 			goto out_drop_extent_cache;
1034 
1035 		if (root->root_key.objectid ==
1036 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 			ret = btrfs_reloc_clone_csums(inode, start,
1038 						      cur_alloc_size);
1039 			if (ret)
1040 				goto out_drop_extent_cache;
1041 		}
1042 
1043 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044 
1045 		if (disk_num_bytes < cur_alloc_size)
1046 			break;
1047 
1048 		/* we're not doing compressed IO, don't unlock the first
1049 		 * page (which the caller expects to stay locked), don't
1050 		 * clear any dirty bits and don't set any writeback bits
1051 		 *
1052 		 * Do set the Private2 bit so we know this page was properly
1053 		 * setup for writepage
1054 		 */
1055 		op = unlock ? PAGE_UNLOCK : 0;
1056 		op |= PAGE_SET_PRIVATE2;
1057 
1058 		extent_clear_unlock_delalloc(inode, start,
1059 					     start + ram_size - 1, locked_page,
1060 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1061 					     op);
1062 		disk_num_bytes -= cur_alloc_size;
1063 		num_bytes -= cur_alloc_size;
1064 		alloc_hint = ins.objectid + ins.offset;
1065 		start += cur_alloc_size;
1066 	}
1067 out:
1068 	return ret;
1069 
1070 out_drop_extent_cache:
1071 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1072 out_reserve:
1073 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1074 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1075 out_unlock:
1076 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1077 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1081 	goto out;
1082 }
1083 
1084 /*
1085  * work queue call back to started compression on a file and pages
1086  */
1087 static noinline void async_cow_start(struct btrfs_work *work)
1088 {
1089 	struct async_cow *async_cow;
1090 	int num_added = 0;
1091 	async_cow = container_of(work, struct async_cow, work);
1092 
1093 	compress_file_range(async_cow->inode, async_cow->locked_page,
1094 			    async_cow->start, async_cow->end, async_cow,
1095 			    &num_added);
1096 	if (num_added == 0) {
1097 		btrfs_add_delayed_iput(async_cow->inode);
1098 		async_cow->inode = NULL;
1099 	}
1100 }
1101 
1102 /*
1103  * work queue call back to submit previously compressed pages
1104  */
1105 static noinline void async_cow_submit(struct btrfs_work *work)
1106 {
1107 	struct async_cow *async_cow;
1108 	struct btrfs_root *root;
1109 	unsigned long nr_pages;
1110 
1111 	async_cow = container_of(work, struct async_cow, work);
1112 
1113 	root = async_cow->root;
1114 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 		PAGE_SHIFT;
1116 
1117 	/*
1118 	 * atomic_sub_return implies a barrier for waitqueue_active
1119 	 */
1120 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1121 	    5 * SZ_1M &&
1122 	    waitqueue_active(&root->fs_info->async_submit_wait))
1123 		wake_up(&root->fs_info->async_submit_wait);
1124 
1125 	if (async_cow->inode)
1126 		submit_compressed_extents(async_cow->inode, async_cow);
1127 }
1128 
1129 static noinline void async_cow_free(struct btrfs_work *work)
1130 {
1131 	struct async_cow *async_cow;
1132 	async_cow = container_of(work, struct async_cow, work);
1133 	if (async_cow->inode)
1134 		btrfs_add_delayed_iput(async_cow->inode);
1135 	kfree(async_cow);
1136 }
1137 
1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 				u64 start, u64 end, int *page_started,
1140 				unsigned long *nr_written)
1141 {
1142 	struct async_cow *async_cow;
1143 	struct btrfs_root *root = BTRFS_I(inode)->root;
1144 	unsigned long nr_pages;
1145 	u64 cur_end;
1146 	int limit = 10 * SZ_1M;
1147 
1148 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 			 1, 0, NULL, GFP_NOFS);
1150 	while (start < end) {
1151 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1152 		BUG_ON(!async_cow); /* -ENOMEM */
1153 		async_cow->inode = igrab(inode);
1154 		async_cow->root = root;
1155 		async_cow->locked_page = locked_page;
1156 		async_cow->start = start;
1157 
1158 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1160 			cur_end = end;
1161 		else
1162 			cur_end = min(end, start + SZ_512K - 1);
1163 
1164 		async_cow->end = cur_end;
1165 		INIT_LIST_HEAD(&async_cow->extents);
1166 
1167 		btrfs_init_work(&async_cow->work,
1168 				btrfs_delalloc_helper,
1169 				async_cow_start, async_cow_submit,
1170 				async_cow_free);
1171 
1172 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 			PAGE_SHIFT;
1174 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175 
1176 		btrfs_queue_work(root->fs_info->delalloc_workers,
1177 				 &async_cow->work);
1178 
1179 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 			wait_event(root->fs_info->async_submit_wait,
1181 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 			    limit));
1183 		}
1184 
1185 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1186 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 			wait_event(root->fs_info->async_submit_wait,
1188 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 			   0));
1190 		}
1191 
1192 		*nr_written += nr_pages;
1193 		start = cur_end + 1;
1194 	}
1195 	*page_started = 1;
1196 	return 0;
1197 }
1198 
1199 static noinline int csum_exist_in_range(struct btrfs_root *root,
1200 					u64 bytenr, u64 num_bytes)
1201 {
1202 	int ret;
1203 	struct btrfs_ordered_sum *sums;
1204 	LIST_HEAD(list);
1205 
1206 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1207 				       bytenr + num_bytes - 1, &list, 0);
1208 	if (ret == 0 && list_empty(&list))
1209 		return 0;
1210 
1211 	while (!list_empty(&list)) {
1212 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 		list_del(&sums->list);
1214 		kfree(sums);
1215 	}
1216 	return 1;
1217 }
1218 
1219 /*
1220  * when nowcow writeback call back.  This checks for snapshots or COW copies
1221  * of the extents that exist in the file, and COWs the file as required.
1222  *
1223  * If no cow copies or snapshots exist, we write directly to the existing
1224  * blocks on disk
1225  */
1226 static noinline int run_delalloc_nocow(struct inode *inode,
1227 				       struct page *locked_page,
1228 			      u64 start, u64 end, int *page_started, int force,
1229 			      unsigned long *nr_written)
1230 {
1231 	struct btrfs_root *root = BTRFS_I(inode)->root;
1232 	struct btrfs_trans_handle *trans;
1233 	struct extent_buffer *leaf;
1234 	struct btrfs_path *path;
1235 	struct btrfs_file_extent_item *fi;
1236 	struct btrfs_key found_key;
1237 	u64 cow_start;
1238 	u64 cur_offset;
1239 	u64 extent_end;
1240 	u64 extent_offset;
1241 	u64 disk_bytenr;
1242 	u64 num_bytes;
1243 	u64 disk_num_bytes;
1244 	u64 ram_bytes;
1245 	int extent_type;
1246 	int ret, err;
1247 	int type;
1248 	int nocow;
1249 	int check_prev = 1;
1250 	bool nolock;
1251 	u64 ino = btrfs_ino(inode);
1252 
1253 	path = btrfs_alloc_path();
1254 	if (!path) {
1255 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1257 					     EXTENT_DO_ACCOUNTING |
1258 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1259 					     PAGE_CLEAR_DIRTY |
1260 					     PAGE_SET_WRITEBACK |
1261 					     PAGE_END_WRITEBACK);
1262 		return -ENOMEM;
1263 	}
1264 
1265 	nolock = btrfs_is_free_space_inode(inode);
1266 
1267 	if (nolock)
1268 		trans = btrfs_join_transaction_nolock(root);
1269 	else
1270 		trans = btrfs_join_transaction(root);
1271 
1272 	if (IS_ERR(trans)) {
1273 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1275 					     EXTENT_DO_ACCOUNTING |
1276 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1277 					     PAGE_CLEAR_DIRTY |
1278 					     PAGE_SET_WRITEBACK |
1279 					     PAGE_END_WRITEBACK);
1280 		btrfs_free_path(path);
1281 		return PTR_ERR(trans);
1282 	}
1283 
1284 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1285 
1286 	cow_start = (u64)-1;
1287 	cur_offset = start;
1288 	while (1) {
1289 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1290 					       cur_offset, 0);
1291 		if (ret < 0)
1292 			goto error;
1293 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 			leaf = path->nodes[0];
1295 			btrfs_item_key_to_cpu(leaf, &found_key,
1296 					      path->slots[0] - 1);
1297 			if (found_key.objectid == ino &&
1298 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 				path->slots[0]--;
1300 		}
1301 		check_prev = 0;
1302 next_slot:
1303 		leaf = path->nodes[0];
1304 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 			ret = btrfs_next_leaf(root, path);
1306 			if (ret < 0)
1307 				goto error;
1308 			if (ret > 0)
1309 				break;
1310 			leaf = path->nodes[0];
1311 		}
1312 
1313 		nocow = 0;
1314 		disk_bytenr = 0;
1315 		num_bytes = 0;
1316 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317 
1318 		if (found_key.objectid > ino)
1319 			break;
1320 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 			path->slots[0]++;
1323 			goto next_slot;
1324 		}
1325 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1326 		    found_key.offset > end)
1327 			break;
1328 
1329 		if (found_key.offset > cur_offset) {
1330 			extent_end = found_key.offset;
1331 			extent_type = 0;
1332 			goto out_check;
1333 		}
1334 
1335 		fi = btrfs_item_ptr(leaf, path->slots[0],
1336 				    struct btrfs_file_extent_item);
1337 		extent_type = btrfs_file_extent_type(leaf, fi);
1338 
1339 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1340 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1342 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1343 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1344 			extent_end = found_key.offset +
1345 				btrfs_file_extent_num_bytes(leaf, fi);
1346 			disk_num_bytes =
1347 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1348 			if (extent_end <= start) {
1349 				path->slots[0]++;
1350 				goto next_slot;
1351 			}
1352 			if (disk_bytenr == 0)
1353 				goto out_check;
1354 			if (btrfs_file_extent_compression(leaf, fi) ||
1355 			    btrfs_file_extent_encryption(leaf, fi) ||
1356 			    btrfs_file_extent_other_encoding(leaf, fi))
1357 				goto out_check;
1358 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 				goto out_check;
1360 			if (btrfs_extent_readonly(root, disk_bytenr))
1361 				goto out_check;
1362 			if (btrfs_cross_ref_exist(trans, root, ino,
1363 						  found_key.offset -
1364 						  extent_offset, disk_bytenr))
1365 				goto out_check;
1366 			disk_bytenr += extent_offset;
1367 			disk_bytenr += cur_offset - found_key.offset;
1368 			num_bytes = min(end + 1, extent_end) - cur_offset;
1369 			/*
1370 			 * if there are pending snapshots for this root,
1371 			 * we fall into common COW way.
1372 			 */
1373 			if (!nolock) {
1374 				err = btrfs_start_write_no_snapshoting(root);
1375 				if (!err)
1376 					goto out_check;
1377 			}
1378 			/*
1379 			 * force cow if csum exists in the range.
1380 			 * this ensure that csum for a given extent are
1381 			 * either valid or do not exist.
1382 			 */
1383 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 				goto out_check;
1385 			if (!btrfs_inc_nocow_writers(root->fs_info,
1386 						     disk_bytenr))
1387 				goto out_check;
1388 			nocow = 1;
1389 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1390 			extent_end = found_key.offset +
1391 				btrfs_file_extent_inline_len(leaf,
1392 						     path->slots[0], fi);
1393 			extent_end = ALIGN(extent_end, root->sectorsize);
1394 		} else {
1395 			BUG_ON(1);
1396 		}
1397 out_check:
1398 		if (extent_end <= start) {
1399 			path->slots[0]++;
1400 			if (!nolock && nocow)
1401 				btrfs_end_write_no_snapshoting(root);
1402 			if (nocow)
1403 				btrfs_dec_nocow_writers(root->fs_info,
1404 							disk_bytenr);
1405 			goto next_slot;
1406 		}
1407 		if (!nocow) {
1408 			if (cow_start == (u64)-1)
1409 				cow_start = cur_offset;
1410 			cur_offset = extent_end;
1411 			if (cur_offset > end)
1412 				break;
1413 			path->slots[0]++;
1414 			goto next_slot;
1415 		}
1416 
1417 		btrfs_release_path(path);
1418 		if (cow_start != (u64)-1) {
1419 			ret = cow_file_range(inode, locked_page,
1420 					     cow_start, found_key.offset - 1,
1421 					     page_started, nr_written, 1);
1422 			if (ret) {
1423 				if (!nolock && nocow)
1424 					btrfs_end_write_no_snapshoting(root);
1425 				if (nocow)
1426 					btrfs_dec_nocow_writers(root->fs_info,
1427 								disk_bytenr);
1428 				goto error;
1429 			}
1430 			cow_start = (u64)-1;
1431 		}
1432 
1433 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1434 			struct extent_map *em;
1435 			struct extent_map_tree *em_tree;
1436 			em_tree = &BTRFS_I(inode)->extent_tree;
1437 			em = alloc_extent_map();
1438 			BUG_ON(!em); /* -ENOMEM */
1439 			em->start = cur_offset;
1440 			em->orig_start = found_key.offset - extent_offset;
1441 			em->len = num_bytes;
1442 			em->block_len = num_bytes;
1443 			em->block_start = disk_bytenr;
1444 			em->orig_block_len = disk_num_bytes;
1445 			em->ram_bytes = ram_bytes;
1446 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1447 			em->mod_start = em->start;
1448 			em->mod_len = em->len;
1449 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1450 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1451 			em->generation = -1;
1452 			while (1) {
1453 				write_lock(&em_tree->lock);
1454 				ret = add_extent_mapping(em_tree, em, 1);
1455 				write_unlock(&em_tree->lock);
1456 				if (ret != -EEXIST) {
1457 					free_extent_map(em);
1458 					break;
1459 				}
1460 				btrfs_drop_extent_cache(inode, em->start,
1461 						em->start + em->len - 1, 0);
1462 			}
1463 			type = BTRFS_ORDERED_PREALLOC;
1464 		} else {
1465 			type = BTRFS_ORDERED_NOCOW;
1466 		}
1467 
1468 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1469 					       num_bytes, num_bytes, type);
1470 		if (nocow)
1471 			btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1472 		BUG_ON(ret); /* -ENOMEM */
1473 
1474 		if (root->root_key.objectid ==
1475 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1476 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1477 						      num_bytes);
1478 			if (ret) {
1479 				if (!nolock && nocow)
1480 					btrfs_end_write_no_snapshoting(root);
1481 				goto error;
1482 			}
1483 		}
1484 
1485 		extent_clear_unlock_delalloc(inode, cur_offset,
1486 					     cur_offset + num_bytes - 1,
1487 					     locked_page, EXTENT_LOCKED |
1488 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1489 					     PAGE_SET_PRIVATE2);
1490 		if (!nolock && nocow)
1491 			btrfs_end_write_no_snapshoting(root);
1492 		cur_offset = extent_end;
1493 		if (cur_offset > end)
1494 			break;
1495 	}
1496 	btrfs_release_path(path);
1497 
1498 	if (cur_offset <= end && cow_start == (u64)-1) {
1499 		cow_start = cur_offset;
1500 		cur_offset = end;
1501 	}
1502 
1503 	if (cow_start != (u64)-1) {
1504 		ret = cow_file_range(inode, locked_page, cow_start, end,
1505 				     page_started, nr_written, 1);
1506 		if (ret)
1507 			goto error;
1508 	}
1509 
1510 error:
1511 	err = btrfs_end_transaction(trans, root);
1512 	if (!ret)
1513 		ret = err;
1514 
1515 	if (ret && cur_offset < end)
1516 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1517 					     locked_page, EXTENT_LOCKED |
1518 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1519 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1520 					     PAGE_CLEAR_DIRTY |
1521 					     PAGE_SET_WRITEBACK |
1522 					     PAGE_END_WRITEBACK);
1523 	btrfs_free_path(path);
1524 	return ret;
1525 }
1526 
1527 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1528 {
1529 
1530 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1531 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1532 		return 0;
1533 
1534 	/*
1535 	 * @defrag_bytes is a hint value, no spinlock held here,
1536 	 * if is not zero, it means the file is defragging.
1537 	 * Force cow if given extent needs to be defragged.
1538 	 */
1539 	if (BTRFS_I(inode)->defrag_bytes &&
1540 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1541 			   EXTENT_DEFRAG, 0, NULL))
1542 		return 1;
1543 
1544 	return 0;
1545 }
1546 
1547 /*
1548  * extent_io.c call back to do delayed allocation processing
1549  */
1550 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1551 			      u64 start, u64 end, int *page_started,
1552 			      unsigned long *nr_written)
1553 {
1554 	int ret;
1555 	int force_cow = need_force_cow(inode, start, end);
1556 
1557 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1558 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1559 					 page_started, 1, nr_written);
1560 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1561 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1562 					 page_started, 0, nr_written);
1563 	} else if (!inode_need_compress(inode)) {
1564 		ret = cow_file_range(inode, locked_page, start, end,
1565 				      page_started, nr_written, 1);
1566 	} else {
1567 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 			&BTRFS_I(inode)->runtime_flags);
1569 		ret = cow_file_range_async(inode, locked_page, start, end,
1570 					   page_started, nr_written);
1571 	}
1572 	return ret;
1573 }
1574 
1575 static void btrfs_split_extent_hook(struct inode *inode,
1576 				    struct extent_state *orig, u64 split)
1577 {
1578 	u64 size;
1579 
1580 	/* not delalloc, ignore it */
1581 	if (!(orig->state & EXTENT_DELALLOC))
1582 		return;
1583 
1584 	size = orig->end - orig->start + 1;
1585 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1586 		u64 num_extents;
1587 		u64 new_size;
1588 
1589 		/*
1590 		 * See the explanation in btrfs_merge_extent_hook, the same
1591 		 * applies here, just in reverse.
1592 		 */
1593 		new_size = orig->end - split + 1;
1594 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1595 					BTRFS_MAX_EXTENT_SIZE);
1596 		new_size = split - orig->start;
1597 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1598 					BTRFS_MAX_EXTENT_SIZE);
1599 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1600 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1601 			return;
1602 	}
1603 
1604 	spin_lock(&BTRFS_I(inode)->lock);
1605 	BTRFS_I(inode)->outstanding_extents++;
1606 	spin_unlock(&BTRFS_I(inode)->lock);
1607 }
1608 
1609 /*
1610  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611  * extents so we can keep track of new extents that are just merged onto old
1612  * extents, such as when we are doing sequential writes, so we can properly
1613  * account for the metadata space we'll need.
1614  */
1615 static void btrfs_merge_extent_hook(struct inode *inode,
1616 				    struct extent_state *new,
1617 				    struct extent_state *other)
1618 {
1619 	u64 new_size, old_size;
1620 	u64 num_extents;
1621 
1622 	/* not delalloc, ignore it */
1623 	if (!(other->state & EXTENT_DELALLOC))
1624 		return;
1625 
1626 	if (new->start > other->start)
1627 		new_size = new->end - other->start + 1;
1628 	else
1629 		new_size = other->end - new->start + 1;
1630 
1631 	/* we're not bigger than the max, unreserve the space and go */
1632 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1633 		spin_lock(&BTRFS_I(inode)->lock);
1634 		BTRFS_I(inode)->outstanding_extents--;
1635 		spin_unlock(&BTRFS_I(inode)->lock);
1636 		return;
1637 	}
1638 
1639 	/*
1640 	 * We have to add up either side to figure out how many extents were
1641 	 * accounted for before we merged into one big extent.  If the number of
1642 	 * extents we accounted for is <= the amount we need for the new range
1643 	 * then we can return, otherwise drop.  Think of it like this
1644 	 *
1645 	 * [ 4k][MAX_SIZE]
1646 	 *
1647 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 	 * need 2 outstanding extents, on one side we have 1 and the other side
1649 	 * we have 1 so they are == and we can return.  But in this case
1650 	 *
1651 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1652 	 *
1653 	 * Each range on their own accounts for 2 extents, but merged together
1654 	 * they are only 3 extents worth of accounting, so we need to drop in
1655 	 * this case.
1656 	 */
1657 	old_size = other->end - other->start + 1;
1658 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1659 				BTRFS_MAX_EXTENT_SIZE);
1660 	old_size = new->end - new->start + 1;
1661 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1662 				 BTRFS_MAX_EXTENT_SIZE);
1663 
1664 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1665 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1666 		return;
1667 
1668 	spin_lock(&BTRFS_I(inode)->lock);
1669 	BTRFS_I(inode)->outstanding_extents--;
1670 	spin_unlock(&BTRFS_I(inode)->lock);
1671 }
1672 
1673 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1674 				      struct inode *inode)
1675 {
1676 	spin_lock(&root->delalloc_lock);
1677 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1678 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1679 			      &root->delalloc_inodes);
1680 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1681 			&BTRFS_I(inode)->runtime_flags);
1682 		root->nr_delalloc_inodes++;
1683 		if (root->nr_delalloc_inodes == 1) {
1684 			spin_lock(&root->fs_info->delalloc_root_lock);
1685 			BUG_ON(!list_empty(&root->delalloc_root));
1686 			list_add_tail(&root->delalloc_root,
1687 				      &root->fs_info->delalloc_roots);
1688 			spin_unlock(&root->fs_info->delalloc_root_lock);
1689 		}
1690 	}
1691 	spin_unlock(&root->delalloc_lock);
1692 }
1693 
1694 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1695 				     struct inode *inode)
1696 {
1697 	spin_lock(&root->delalloc_lock);
1698 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1699 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1700 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 			  &BTRFS_I(inode)->runtime_flags);
1702 		root->nr_delalloc_inodes--;
1703 		if (!root->nr_delalloc_inodes) {
1704 			spin_lock(&root->fs_info->delalloc_root_lock);
1705 			BUG_ON(list_empty(&root->delalloc_root));
1706 			list_del_init(&root->delalloc_root);
1707 			spin_unlock(&root->fs_info->delalloc_root_lock);
1708 		}
1709 	}
1710 	spin_unlock(&root->delalloc_lock);
1711 }
1712 
1713 /*
1714  * extent_io.c set_bit_hook, used to track delayed allocation
1715  * bytes in this file, and to maintain the list of inodes that
1716  * have pending delalloc work to be done.
1717  */
1718 static void btrfs_set_bit_hook(struct inode *inode,
1719 			       struct extent_state *state, unsigned *bits)
1720 {
1721 
1722 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1723 		WARN_ON(1);
1724 	/*
1725 	 * set_bit and clear bit hooks normally require _irqsave/restore
1726 	 * but in this case, we are only testing for the DELALLOC
1727 	 * bit, which is only set or cleared with irqs on
1728 	 */
1729 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1730 		struct btrfs_root *root = BTRFS_I(inode)->root;
1731 		u64 len = state->end + 1 - state->start;
1732 		bool do_list = !btrfs_is_free_space_inode(inode);
1733 
1734 		if (*bits & EXTENT_FIRST_DELALLOC) {
1735 			*bits &= ~EXTENT_FIRST_DELALLOC;
1736 		} else {
1737 			spin_lock(&BTRFS_I(inode)->lock);
1738 			BTRFS_I(inode)->outstanding_extents++;
1739 			spin_unlock(&BTRFS_I(inode)->lock);
1740 		}
1741 
1742 		/* For sanity tests */
1743 		if (btrfs_test_is_dummy_root(root))
1744 			return;
1745 
1746 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1747 				     root->fs_info->delalloc_batch);
1748 		spin_lock(&BTRFS_I(inode)->lock);
1749 		BTRFS_I(inode)->delalloc_bytes += len;
1750 		if (*bits & EXTENT_DEFRAG)
1751 			BTRFS_I(inode)->defrag_bytes += len;
1752 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1753 					 &BTRFS_I(inode)->runtime_flags))
1754 			btrfs_add_delalloc_inodes(root, inode);
1755 		spin_unlock(&BTRFS_I(inode)->lock);
1756 	}
1757 }
1758 
1759 /*
1760  * extent_io.c clear_bit_hook, see set_bit_hook for why
1761  */
1762 static void btrfs_clear_bit_hook(struct inode *inode,
1763 				 struct extent_state *state,
1764 				 unsigned *bits)
1765 {
1766 	u64 len = state->end + 1 - state->start;
1767 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1768 				    BTRFS_MAX_EXTENT_SIZE);
1769 
1770 	spin_lock(&BTRFS_I(inode)->lock);
1771 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1772 		BTRFS_I(inode)->defrag_bytes -= len;
1773 	spin_unlock(&BTRFS_I(inode)->lock);
1774 
1775 	/*
1776 	 * set_bit and clear bit hooks normally require _irqsave/restore
1777 	 * but in this case, we are only testing for the DELALLOC
1778 	 * bit, which is only set or cleared with irqs on
1779 	 */
1780 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1781 		struct btrfs_root *root = BTRFS_I(inode)->root;
1782 		bool do_list = !btrfs_is_free_space_inode(inode);
1783 
1784 		if (*bits & EXTENT_FIRST_DELALLOC) {
1785 			*bits &= ~EXTENT_FIRST_DELALLOC;
1786 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1787 			spin_lock(&BTRFS_I(inode)->lock);
1788 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1789 			spin_unlock(&BTRFS_I(inode)->lock);
1790 		}
1791 
1792 		/*
1793 		 * We don't reserve metadata space for space cache inodes so we
1794 		 * don't need to call dellalloc_release_metadata if there is an
1795 		 * error.
1796 		 */
1797 		if (*bits & EXTENT_DO_ACCOUNTING &&
1798 		    root != root->fs_info->tree_root)
1799 			btrfs_delalloc_release_metadata(inode, len);
1800 
1801 		/* For sanity tests. */
1802 		if (btrfs_test_is_dummy_root(root))
1803 			return;
1804 
1805 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1806 		    && do_list && !(state->state & EXTENT_NORESERVE))
1807 			btrfs_free_reserved_data_space_noquota(inode,
1808 					state->start, len);
1809 
1810 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1811 				     root->fs_info->delalloc_batch);
1812 		spin_lock(&BTRFS_I(inode)->lock);
1813 		BTRFS_I(inode)->delalloc_bytes -= len;
1814 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1815 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1816 			     &BTRFS_I(inode)->runtime_flags))
1817 			btrfs_del_delalloc_inode(root, inode);
1818 		spin_unlock(&BTRFS_I(inode)->lock);
1819 	}
1820 }
1821 
1822 /*
1823  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824  * we don't create bios that span stripes or chunks
1825  */
1826 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1827 			 size_t size, struct bio *bio,
1828 			 unsigned long bio_flags)
1829 {
1830 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1831 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1832 	u64 length = 0;
1833 	u64 map_length;
1834 	int ret;
1835 
1836 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1837 		return 0;
1838 
1839 	length = bio->bi_iter.bi_size;
1840 	map_length = length;
1841 	ret = btrfs_map_block(root->fs_info, rw, logical,
1842 			      &map_length, NULL, 0);
1843 	/* Will always return 0 with map_multi == NULL */
1844 	BUG_ON(ret < 0);
1845 	if (map_length < length + size)
1846 		return 1;
1847 	return 0;
1848 }
1849 
1850 /*
1851  * in order to insert checksums into the metadata in large chunks,
1852  * we wait until bio submission time.   All the pages in the bio are
1853  * checksummed and sums are attached onto the ordered extent record.
1854  *
1855  * At IO completion time the cums attached on the ordered extent record
1856  * are inserted into the btree
1857  */
1858 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1859 				    struct bio *bio, int mirror_num,
1860 				    unsigned long bio_flags,
1861 				    u64 bio_offset)
1862 {
1863 	struct btrfs_root *root = BTRFS_I(inode)->root;
1864 	int ret = 0;
1865 
1866 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1867 	BUG_ON(ret); /* -ENOMEM */
1868 	return 0;
1869 }
1870 
1871 /*
1872  * in order to insert checksums into the metadata in large chunks,
1873  * we wait until bio submission time.   All the pages in the bio are
1874  * checksummed and sums are attached onto the ordered extent record.
1875  *
1876  * At IO completion time the cums attached on the ordered extent record
1877  * are inserted into the btree
1878  */
1879 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1880 			  int mirror_num, unsigned long bio_flags,
1881 			  u64 bio_offset)
1882 {
1883 	struct btrfs_root *root = BTRFS_I(inode)->root;
1884 	int ret;
1885 
1886 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1887 	if (ret) {
1888 		bio->bi_error = ret;
1889 		bio_endio(bio);
1890 	}
1891 	return ret;
1892 }
1893 
1894 /*
1895  * extent_io.c submission hook. This does the right thing for csum calculation
1896  * on write, or reading the csums from the tree before a read
1897  */
1898 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1899 			  int mirror_num, unsigned long bio_flags,
1900 			  u64 bio_offset)
1901 {
1902 	struct btrfs_root *root = BTRFS_I(inode)->root;
1903 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1904 	int ret = 0;
1905 	int skip_sum;
1906 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1907 
1908 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1909 
1910 	if (btrfs_is_free_space_inode(inode))
1911 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1912 
1913 	if (!(rw & REQ_WRITE)) {
1914 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1915 		if (ret)
1916 			goto out;
1917 
1918 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1919 			ret = btrfs_submit_compressed_read(inode, bio,
1920 							   mirror_num,
1921 							   bio_flags);
1922 			goto out;
1923 		} else if (!skip_sum) {
1924 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1925 			if (ret)
1926 				goto out;
1927 		}
1928 		goto mapit;
1929 	} else if (async && !skip_sum) {
1930 		/* csum items have already been cloned */
1931 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1932 			goto mapit;
1933 		/* we're doing a write, do the async checksumming */
1934 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1935 				   inode, rw, bio, mirror_num,
1936 				   bio_flags, bio_offset,
1937 				   __btrfs_submit_bio_start,
1938 				   __btrfs_submit_bio_done);
1939 		goto out;
1940 	} else if (!skip_sum) {
1941 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1942 		if (ret)
1943 			goto out;
1944 	}
1945 
1946 mapit:
1947 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1948 
1949 out:
1950 	if (ret < 0) {
1951 		bio->bi_error = ret;
1952 		bio_endio(bio);
1953 	}
1954 	return ret;
1955 }
1956 
1957 /*
1958  * given a list of ordered sums record them in the inode.  This happens
1959  * at IO completion time based on sums calculated at bio submission time.
1960  */
1961 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1962 			     struct inode *inode, u64 file_offset,
1963 			     struct list_head *list)
1964 {
1965 	struct btrfs_ordered_sum *sum;
1966 
1967 	list_for_each_entry(sum, list, list) {
1968 		trans->adding_csums = 1;
1969 		btrfs_csum_file_blocks(trans,
1970 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1971 		trans->adding_csums = 0;
1972 	}
1973 	return 0;
1974 }
1975 
1976 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1977 			      struct extent_state **cached_state)
1978 {
1979 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1980 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1981 				   cached_state);
1982 }
1983 
1984 /* see btrfs_writepage_start_hook for details on why this is required */
1985 struct btrfs_writepage_fixup {
1986 	struct page *page;
1987 	struct btrfs_work work;
1988 };
1989 
1990 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1991 {
1992 	struct btrfs_writepage_fixup *fixup;
1993 	struct btrfs_ordered_extent *ordered;
1994 	struct extent_state *cached_state = NULL;
1995 	struct page *page;
1996 	struct inode *inode;
1997 	u64 page_start;
1998 	u64 page_end;
1999 	int ret;
2000 
2001 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2002 	page = fixup->page;
2003 again:
2004 	lock_page(page);
2005 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2006 		ClearPageChecked(page);
2007 		goto out_page;
2008 	}
2009 
2010 	inode = page->mapping->host;
2011 	page_start = page_offset(page);
2012 	page_end = page_offset(page) + PAGE_SIZE - 1;
2013 
2014 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2015 			 &cached_state);
2016 
2017 	/* already ordered? We're done */
2018 	if (PagePrivate2(page))
2019 		goto out;
2020 
2021 	ordered = btrfs_lookup_ordered_range(inode, page_start,
2022 					PAGE_SIZE);
2023 	if (ordered) {
2024 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2025 				     page_end, &cached_state, GFP_NOFS);
2026 		unlock_page(page);
2027 		btrfs_start_ordered_extent(inode, ordered, 1);
2028 		btrfs_put_ordered_extent(ordered);
2029 		goto again;
2030 	}
2031 
2032 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2033 					   PAGE_SIZE);
2034 	if (ret) {
2035 		mapping_set_error(page->mapping, ret);
2036 		end_extent_writepage(page, ret, page_start, page_end);
2037 		ClearPageChecked(page);
2038 		goto out;
2039 	 }
2040 
2041 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2042 	ClearPageChecked(page);
2043 	set_page_dirty(page);
2044 out:
2045 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2046 			     &cached_state, GFP_NOFS);
2047 out_page:
2048 	unlock_page(page);
2049 	put_page(page);
2050 	kfree(fixup);
2051 }
2052 
2053 /*
2054  * There are a few paths in the higher layers of the kernel that directly
2055  * set the page dirty bit without asking the filesystem if it is a
2056  * good idea.  This causes problems because we want to make sure COW
2057  * properly happens and the data=ordered rules are followed.
2058  *
2059  * In our case any range that doesn't have the ORDERED bit set
2060  * hasn't been properly setup for IO.  We kick off an async process
2061  * to fix it up.  The async helper will wait for ordered extents, set
2062  * the delalloc bit and make it safe to write the page.
2063  */
2064 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2065 {
2066 	struct inode *inode = page->mapping->host;
2067 	struct btrfs_writepage_fixup *fixup;
2068 	struct btrfs_root *root = BTRFS_I(inode)->root;
2069 
2070 	/* this page is properly in the ordered list */
2071 	if (TestClearPagePrivate2(page))
2072 		return 0;
2073 
2074 	if (PageChecked(page))
2075 		return -EAGAIN;
2076 
2077 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2078 	if (!fixup)
2079 		return -EAGAIN;
2080 
2081 	SetPageChecked(page);
2082 	get_page(page);
2083 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2084 			btrfs_writepage_fixup_worker, NULL, NULL);
2085 	fixup->page = page;
2086 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2087 	return -EBUSY;
2088 }
2089 
2090 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2091 				       struct inode *inode, u64 file_pos,
2092 				       u64 disk_bytenr, u64 disk_num_bytes,
2093 				       u64 num_bytes, u64 ram_bytes,
2094 				       u8 compression, u8 encryption,
2095 				       u16 other_encoding, int extent_type)
2096 {
2097 	struct btrfs_root *root = BTRFS_I(inode)->root;
2098 	struct btrfs_file_extent_item *fi;
2099 	struct btrfs_path *path;
2100 	struct extent_buffer *leaf;
2101 	struct btrfs_key ins;
2102 	int extent_inserted = 0;
2103 	int ret;
2104 
2105 	path = btrfs_alloc_path();
2106 	if (!path)
2107 		return -ENOMEM;
2108 
2109 	/*
2110 	 * we may be replacing one extent in the tree with another.
2111 	 * The new extent is pinned in the extent map, and we don't want
2112 	 * to drop it from the cache until it is completely in the btree.
2113 	 *
2114 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2115 	 * the caller is expected to unpin it and allow it to be merged
2116 	 * with the others.
2117 	 */
2118 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2119 				   file_pos + num_bytes, NULL, 0,
2120 				   1, sizeof(*fi), &extent_inserted);
2121 	if (ret)
2122 		goto out;
2123 
2124 	if (!extent_inserted) {
2125 		ins.objectid = btrfs_ino(inode);
2126 		ins.offset = file_pos;
2127 		ins.type = BTRFS_EXTENT_DATA_KEY;
2128 
2129 		path->leave_spinning = 1;
2130 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2131 					      sizeof(*fi));
2132 		if (ret)
2133 			goto out;
2134 	}
2135 	leaf = path->nodes[0];
2136 	fi = btrfs_item_ptr(leaf, path->slots[0],
2137 			    struct btrfs_file_extent_item);
2138 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2139 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2140 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2141 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2142 	btrfs_set_file_extent_offset(leaf, fi, 0);
2143 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2144 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2145 	btrfs_set_file_extent_compression(leaf, fi, compression);
2146 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2147 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2148 
2149 	btrfs_mark_buffer_dirty(leaf);
2150 	btrfs_release_path(path);
2151 
2152 	inode_add_bytes(inode, num_bytes);
2153 
2154 	ins.objectid = disk_bytenr;
2155 	ins.offset = disk_num_bytes;
2156 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2157 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2158 					root->root_key.objectid,
2159 					btrfs_ino(inode), file_pos,
2160 					ram_bytes, &ins);
2161 	/*
2162 	 * Release the reserved range from inode dirty range map, as it is
2163 	 * already moved into delayed_ref_head
2164 	 */
2165 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2166 out:
2167 	btrfs_free_path(path);
2168 
2169 	return ret;
2170 }
2171 
2172 /* snapshot-aware defrag */
2173 struct sa_defrag_extent_backref {
2174 	struct rb_node node;
2175 	struct old_sa_defrag_extent *old;
2176 	u64 root_id;
2177 	u64 inum;
2178 	u64 file_pos;
2179 	u64 extent_offset;
2180 	u64 num_bytes;
2181 	u64 generation;
2182 };
2183 
2184 struct old_sa_defrag_extent {
2185 	struct list_head list;
2186 	struct new_sa_defrag_extent *new;
2187 
2188 	u64 extent_offset;
2189 	u64 bytenr;
2190 	u64 offset;
2191 	u64 len;
2192 	int count;
2193 };
2194 
2195 struct new_sa_defrag_extent {
2196 	struct rb_root root;
2197 	struct list_head head;
2198 	struct btrfs_path *path;
2199 	struct inode *inode;
2200 	u64 file_pos;
2201 	u64 len;
2202 	u64 bytenr;
2203 	u64 disk_len;
2204 	u8 compress_type;
2205 };
2206 
2207 static int backref_comp(struct sa_defrag_extent_backref *b1,
2208 			struct sa_defrag_extent_backref *b2)
2209 {
2210 	if (b1->root_id < b2->root_id)
2211 		return -1;
2212 	else if (b1->root_id > b2->root_id)
2213 		return 1;
2214 
2215 	if (b1->inum < b2->inum)
2216 		return -1;
2217 	else if (b1->inum > b2->inum)
2218 		return 1;
2219 
2220 	if (b1->file_pos < b2->file_pos)
2221 		return -1;
2222 	else if (b1->file_pos > b2->file_pos)
2223 		return 1;
2224 
2225 	/*
2226 	 * [------------------------------] ===> (a range of space)
2227 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2228 	 * |<---------------------------->| ===> (fs/file tree B)
2229 	 *
2230 	 * A range of space can refer to two file extents in one tree while
2231 	 * refer to only one file extent in another tree.
2232 	 *
2233 	 * So we may process a disk offset more than one time(two extents in A)
2234 	 * and locate at the same extent(one extent in B), then insert two same
2235 	 * backrefs(both refer to the extent in B).
2236 	 */
2237 	return 0;
2238 }
2239 
2240 static void backref_insert(struct rb_root *root,
2241 			   struct sa_defrag_extent_backref *backref)
2242 {
2243 	struct rb_node **p = &root->rb_node;
2244 	struct rb_node *parent = NULL;
2245 	struct sa_defrag_extent_backref *entry;
2246 	int ret;
2247 
2248 	while (*p) {
2249 		parent = *p;
2250 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2251 
2252 		ret = backref_comp(backref, entry);
2253 		if (ret < 0)
2254 			p = &(*p)->rb_left;
2255 		else
2256 			p = &(*p)->rb_right;
2257 	}
2258 
2259 	rb_link_node(&backref->node, parent, p);
2260 	rb_insert_color(&backref->node, root);
2261 }
2262 
2263 /*
2264  * Note the backref might has changed, and in this case we just return 0.
2265  */
2266 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2267 				       void *ctx)
2268 {
2269 	struct btrfs_file_extent_item *extent;
2270 	struct btrfs_fs_info *fs_info;
2271 	struct old_sa_defrag_extent *old = ctx;
2272 	struct new_sa_defrag_extent *new = old->new;
2273 	struct btrfs_path *path = new->path;
2274 	struct btrfs_key key;
2275 	struct btrfs_root *root;
2276 	struct sa_defrag_extent_backref *backref;
2277 	struct extent_buffer *leaf;
2278 	struct inode *inode = new->inode;
2279 	int slot;
2280 	int ret;
2281 	u64 extent_offset;
2282 	u64 num_bytes;
2283 
2284 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2285 	    inum == btrfs_ino(inode))
2286 		return 0;
2287 
2288 	key.objectid = root_id;
2289 	key.type = BTRFS_ROOT_ITEM_KEY;
2290 	key.offset = (u64)-1;
2291 
2292 	fs_info = BTRFS_I(inode)->root->fs_info;
2293 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2294 	if (IS_ERR(root)) {
2295 		if (PTR_ERR(root) == -ENOENT)
2296 			return 0;
2297 		WARN_ON(1);
2298 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2299 			 inum, offset, root_id);
2300 		return PTR_ERR(root);
2301 	}
2302 
2303 	key.objectid = inum;
2304 	key.type = BTRFS_EXTENT_DATA_KEY;
2305 	if (offset > (u64)-1 << 32)
2306 		key.offset = 0;
2307 	else
2308 		key.offset = offset;
2309 
2310 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2311 	if (WARN_ON(ret < 0))
2312 		return ret;
2313 	ret = 0;
2314 
2315 	while (1) {
2316 		cond_resched();
2317 
2318 		leaf = path->nodes[0];
2319 		slot = path->slots[0];
2320 
2321 		if (slot >= btrfs_header_nritems(leaf)) {
2322 			ret = btrfs_next_leaf(root, path);
2323 			if (ret < 0) {
2324 				goto out;
2325 			} else if (ret > 0) {
2326 				ret = 0;
2327 				goto out;
2328 			}
2329 			continue;
2330 		}
2331 
2332 		path->slots[0]++;
2333 
2334 		btrfs_item_key_to_cpu(leaf, &key, slot);
2335 
2336 		if (key.objectid > inum)
2337 			goto out;
2338 
2339 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2340 			continue;
2341 
2342 		extent = btrfs_item_ptr(leaf, slot,
2343 					struct btrfs_file_extent_item);
2344 
2345 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2346 			continue;
2347 
2348 		/*
2349 		 * 'offset' refers to the exact key.offset,
2350 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2351 		 * (key.offset - extent_offset).
2352 		 */
2353 		if (key.offset != offset)
2354 			continue;
2355 
2356 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2357 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2358 
2359 		if (extent_offset >= old->extent_offset + old->offset +
2360 		    old->len || extent_offset + num_bytes <=
2361 		    old->extent_offset + old->offset)
2362 			continue;
2363 		break;
2364 	}
2365 
2366 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2367 	if (!backref) {
2368 		ret = -ENOENT;
2369 		goto out;
2370 	}
2371 
2372 	backref->root_id = root_id;
2373 	backref->inum = inum;
2374 	backref->file_pos = offset;
2375 	backref->num_bytes = num_bytes;
2376 	backref->extent_offset = extent_offset;
2377 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2378 	backref->old = old;
2379 	backref_insert(&new->root, backref);
2380 	old->count++;
2381 out:
2382 	btrfs_release_path(path);
2383 	WARN_ON(ret);
2384 	return ret;
2385 }
2386 
2387 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2388 				   struct new_sa_defrag_extent *new)
2389 {
2390 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2391 	struct old_sa_defrag_extent *old, *tmp;
2392 	int ret;
2393 
2394 	new->path = path;
2395 
2396 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2397 		ret = iterate_inodes_from_logical(old->bytenr +
2398 						  old->extent_offset, fs_info,
2399 						  path, record_one_backref,
2400 						  old);
2401 		if (ret < 0 && ret != -ENOENT)
2402 			return false;
2403 
2404 		/* no backref to be processed for this extent */
2405 		if (!old->count) {
2406 			list_del(&old->list);
2407 			kfree(old);
2408 		}
2409 	}
2410 
2411 	if (list_empty(&new->head))
2412 		return false;
2413 
2414 	return true;
2415 }
2416 
2417 static int relink_is_mergable(struct extent_buffer *leaf,
2418 			      struct btrfs_file_extent_item *fi,
2419 			      struct new_sa_defrag_extent *new)
2420 {
2421 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2422 		return 0;
2423 
2424 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2425 		return 0;
2426 
2427 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2428 		return 0;
2429 
2430 	if (btrfs_file_extent_encryption(leaf, fi) ||
2431 	    btrfs_file_extent_other_encoding(leaf, fi))
2432 		return 0;
2433 
2434 	return 1;
2435 }
2436 
2437 /*
2438  * Note the backref might has changed, and in this case we just return 0.
2439  */
2440 static noinline int relink_extent_backref(struct btrfs_path *path,
2441 				 struct sa_defrag_extent_backref *prev,
2442 				 struct sa_defrag_extent_backref *backref)
2443 {
2444 	struct btrfs_file_extent_item *extent;
2445 	struct btrfs_file_extent_item *item;
2446 	struct btrfs_ordered_extent *ordered;
2447 	struct btrfs_trans_handle *trans;
2448 	struct btrfs_fs_info *fs_info;
2449 	struct btrfs_root *root;
2450 	struct btrfs_key key;
2451 	struct extent_buffer *leaf;
2452 	struct old_sa_defrag_extent *old = backref->old;
2453 	struct new_sa_defrag_extent *new = old->new;
2454 	struct inode *src_inode = new->inode;
2455 	struct inode *inode;
2456 	struct extent_state *cached = NULL;
2457 	int ret = 0;
2458 	u64 start;
2459 	u64 len;
2460 	u64 lock_start;
2461 	u64 lock_end;
2462 	bool merge = false;
2463 	int index;
2464 
2465 	if (prev && prev->root_id == backref->root_id &&
2466 	    prev->inum == backref->inum &&
2467 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2468 		merge = true;
2469 
2470 	/* step 1: get root */
2471 	key.objectid = backref->root_id;
2472 	key.type = BTRFS_ROOT_ITEM_KEY;
2473 	key.offset = (u64)-1;
2474 
2475 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2476 	index = srcu_read_lock(&fs_info->subvol_srcu);
2477 
2478 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2479 	if (IS_ERR(root)) {
2480 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2481 		if (PTR_ERR(root) == -ENOENT)
2482 			return 0;
2483 		return PTR_ERR(root);
2484 	}
2485 
2486 	if (btrfs_root_readonly(root)) {
2487 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 		return 0;
2489 	}
2490 
2491 	/* step 2: get inode */
2492 	key.objectid = backref->inum;
2493 	key.type = BTRFS_INODE_ITEM_KEY;
2494 	key.offset = 0;
2495 
2496 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2497 	if (IS_ERR(inode)) {
2498 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2499 		return 0;
2500 	}
2501 
2502 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2503 
2504 	/* step 3: relink backref */
2505 	lock_start = backref->file_pos;
2506 	lock_end = backref->file_pos + backref->num_bytes - 1;
2507 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2508 			 &cached);
2509 
2510 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2511 	if (ordered) {
2512 		btrfs_put_ordered_extent(ordered);
2513 		goto out_unlock;
2514 	}
2515 
2516 	trans = btrfs_join_transaction(root);
2517 	if (IS_ERR(trans)) {
2518 		ret = PTR_ERR(trans);
2519 		goto out_unlock;
2520 	}
2521 
2522 	key.objectid = backref->inum;
2523 	key.type = BTRFS_EXTENT_DATA_KEY;
2524 	key.offset = backref->file_pos;
2525 
2526 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2527 	if (ret < 0) {
2528 		goto out_free_path;
2529 	} else if (ret > 0) {
2530 		ret = 0;
2531 		goto out_free_path;
2532 	}
2533 
2534 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2535 				struct btrfs_file_extent_item);
2536 
2537 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2538 	    backref->generation)
2539 		goto out_free_path;
2540 
2541 	btrfs_release_path(path);
2542 
2543 	start = backref->file_pos;
2544 	if (backref->extent_offset < old->extent_offset + old->offset)
2545 		start += old->extent_offset + old->offset -
2546 			 backref->extent_offset;
2547 
2548 	len = min(backref->extent_offset + backref->num_bytes,
2549 		  old->extent_offset + old->offset + old->len);
2550 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2551 
2552 	ret = btrfs_drop_extents(trans, root, inode, start,
2553 				 start + len, 1);
2554 	if (ret)
2555 		goto out_free_path;
2556 again:
2557 	key.objectid = btrfs_ino(inode);
2558 	key.type = BTRFS_EXTENT_DATA_KEY;
2559 	key.offset = start;
2560 
2561 	path->leave_spinning = 1;
2562 	if (merge) {
2563 		struct btrfs_file_extent_item *fi;
2564 		u64 extent_len;
2565 		struct btrfs_key found_key;
2566 
2567 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2568 		if (ret < 0)
2569 			goto out_free_path;
2570 
2571 		path->slots[0]--;
2572 		leaf = path->nodes[0];
2573 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2574 
2575 		fi = btrfs_item_ptr(leaf, path->slots[0],
2576 				    struct btrfs_file_extent_item);
2577 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2578 
2579 		if (extent_len + found_key.offset == start &&
2580 		    relink_is_mergable(leaf, fi, new)) {
2581 			btrfs_set_file_extent_num_bytes(leaf, fi,
2582 							extent_len + len);
2583 			btrfs_mark_buffer_dirty(leaf);
2584 			inode_add_bytes(inode, len);
2585 
2586 			ret = 1;
2587 			goto out_free_path;
2588 		} else {
2589 			merge = false;
2590 			btrfs_release_path(path);
2591 			goto again;
2592 		}
2593 	}
2594 
2595 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2596 					sizeof(*extent));
2597 	if (ret) {
2598 		btrfs_abort_transaction(trans, root, ret);
2599 		goto out_free_path;
2600 	}
2601 
2602 	leaf = path->nodes[0];
2603 	item = btrfs_item_ptr(leaf, path->slots[0],
2604 				struct btrfs_file_extent_item);
2605 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2606 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2607 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2608 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2609 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2610 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2611 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2612 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2613 	btrfs_set_file_extent_encryption(leaf, item, 0);
2614 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2615 
2616 	btrfs_mark_buffer_dirty(leaf);
2617 	inode_add_bytes(inode, len);
2618 	btrfs_release_path(path);
2619 
2620 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2621 			new->disk_len, 0,
2622 			backref->root_id, backref->inum,
2623 			new->file_pos);	/* start - extent_offset */
2624 	if (ret) {
2625 		btrfs_abort_transaction(trans, root, ret);
2626 		goto out_free_path;
2627 	}
2628 
2629 	ret = 1;
2630 out_free_path:
2631 	btrfs_release_path(path);
2632 	path->leave_spinning = 0;
2633 	btrfs_end_transaction(trans, root);
2634 out_unlock:
2635 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2636 			     &cached, GFP_NOFS);
2637 	iput(inode);
2638 	return ret;
2639 }
2640 
2641 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2642 {
2643 	struct old_sa_defrag_extent *old, *tmp;
2644 
2645 	if (!new)
2646 		return;
2647 
2648 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2649 		kfree(old);
2650 	}
2651 	kfree(new);
2652 }
2653 
2654 static void relink_file_extents(struct new_sa_defrag_extent *new)
2655 {
2656 	struct btrfs_path *path;
2657 	struct sa_defrag_extent_backref *backref;
2658 	struct sa_defrag_extent_backref *prev = NULL;
2659 	struct inode *inode;
2660 	struct btrfs_root *root;
2661 	struct rb_node *node;
2662 	int ret;
2663 
2664 	inode = new->inode;
2665 	root = BTRFS_I(inode)->root;
2666 
2667 	path = btrfs_alloc_path();
2668 	if (!path)
2669 		return;
2670 
2671 	if (!record_extent_backrefs(path, new)) {
2672 		btrfs_free_path(path);
2673 		goto out;
2674 	}
2675 	btrfs_release_path(path);
2676 
2677 	while (1) {
2678 		node = rb_first(&new->root);
2679 		if (!node)
2680 			break;
2681 		rb_erase(node, &new->root);
2682 
2683 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2684 
2685 		ret = relink_extent_backref(path, prev, backref);
2686 		WARN_ON(ret < 0);
2687 
2688 		kfree(prev);
2689 
2690 		if (ret == 1)
2691 			prev = backref;
2692 		else
2693 			prev = NULL;
2694 		cond_resched();
2695 	}
2696 	kfree(prev);
2697 
2698 	btrfs_free_path(path);
2699 out:
2700 	free_sa_defrag_extent(new);
2701 
2702 	atomic_dec(&root->fs_info->defrag_running);
2703 	wake_up(&root->fs_info->transaction_wait);
2704 }
2705 
2706 static struct new_sa_defrag_extent *
2707 record_old_file_extents(struct inode *inode,
2708 			struct btrfs_ordered_extent *ordered)
2709 {
2710 	struct btrfs_root *root = BTRFS_I(inode)->root;
2711 	struct btrfs_path *path;
2712 	struct btrfs_key key;
2713 	struct old_sa_defrag_extent *old;
2714 	struct new_sa_defrag_extent *new;
2715 	int ret;
2716 
2717 	new = kmalloc(sizeof(*new), GFP_NOFS);
2718 	if (!new)
2719 		return NULL;
2720 
2721 	new->inode = inode;
2722 	new->file_pos = ordered->file_offset;
2723 	new->len = ordered->len;
2724 	new->bytenr = ordered->start;
2725 	new->disk_len = ordered->disk_len;
2726 	new->compress_type = ordered->compress_type;
2727 	new->root = RB_ROOT;
2728 	INIT_LIST_HEAD(&new->head);
2729 
2730 	path = btrfs_alloc_path();
2731 	if (!path)
2732 		goto out_kfree;
2733 
2734 	key.objectid = btrfs_ino(inode);
2735 	key.type = BTRFS_EXTENT_DATA_KEY;
2736 	key.offset = new->file_pos;
2737 
2738 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2739 	if (ret < 0)
2740 		goto out_free_path;
2741 	if (ret > 0 && path->slots[0] > 0)
2742 		path->slots[0]--;
2743 
2744 	/* find out all the old extents for the file range */
2745 	while (1) {
2746 		struct btrfs_file_extent_item *extent;
2747 		struct extent_buffer *l;
2748 		int slot;
2749 		u64 num_bytes;
2750 		u64 offset;
2751 		u64 end;
2752 		u64 disk_bytenr;
2753 		u64 extent_offset;
2754 
2755 		l = path->nodes[0];
2756 		slot = path->slots[0];
2757 
2758 		if (slot >= btrfs_header_nritems(l)) {
2759 			ret = btrfs_next_leaf(root, path);
2760 			if (ret < 0)
2761 				goto out_free_path;
2762 			else if (ret > 0)
2763 				break;
2764 			continue;
2765 		}
2766 
2767 		btrfs_item_key_to_cpu(l, &key, slot);
2768 
2769 		if (key.objectid != btrfs_ino(inode))
2770 			break;
2771 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2772 			break;
2773 		if (key.offset >= new->file_pos + new->len)
2774 			break;
2775 
2776 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2777 
2778 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2779 		if (key.offset + num_bytes < new->file_pos)
2780 			goto next;
2781 
2782 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2783 		if (!disk_bytenr)
2784 			goto next;
2785 
2786 		extent_offset = btrfs_file_extent_offset(l, extent);
2787 
2788 		old = kmalloc(sizeof(*old), GFP_NOFS);
2789 		if (!old)
2790 			goto out_free_path;
2791 
2792 		offset = max(new->file_pos, key.offset);
2793 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2794 
2795 		old->bytenr = disk_bytenr;
2796 		old->extent_offset = extent_offset;
2797 		old->offset = offset - key.offset;
2798 		old->len = end - offset;
2799 		old->new = new;
2800 		old->count = 0;
2801 		list_add_tail(&old->list, &new->head);
2802 next:
2803 		path->slots[0]++;
2804 		cond_resched();
2805 	}
2806 
2807 	btrfs_free_path(path);
2808 	atomic_inc(&root->fs_info->defrag_running);
2809 
2810 	return new;
2811 
2812 out_free_path:
2813 	btrfs_free_path(path);
2814 out_kfree:
2815 	free_sa_defrag_extent(new);
2816 	return NULL;
2817 }
2818 
2819 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2820 					 u64 start, u64 len)
2821 {
2822 	struct btrfs_block_group_cache *cache;
2823 
2824 	cache = btrfs_lookup_block_group(root->fs_info, start);
2825 	ASSERT(cache);
2826 
2827 	spin_lock(&cache->lock);
2828 	cache->delalloc_bytes -= len;
2829 	spin_unlock(&cache->lock);
2830 
2831 	btrfs_put_block_group(cache);
2832 }
2833 
2834 /* as ordered data IO finishes, this gets called so we can finish
2835  * an ordered extent if the range of bytes in the file it covers are
2836  * fully written.
2837  */
2838 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2839 {
2840 	struct inode *inode = ordered_extent->inode;
2841 	struct btrfs_root *root = BTRFS_I(inode)->root;
2842 	struct btrfs_trans_handle *trans = NULL;
2843 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2844 	struct extent_state *cached_state = NULL;
2845 	struct new_sa_defrag_extent *new = NULL;
2846 	int compress_type = 0;
2847 	int ret = 0;
2848 	u64 logical_len = ordered_extent->len;
2849 	bool nolock;
2850 	bool truncated = false;
2851 
2852 	nolock = btrfs_is_free_space_inode(inode);
2853 
2854 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2855 		ret = -EIO;
2856 		goto out;
2857 	}
2858 
2859 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2860 				     ordered_extent->file_offset +
2861 				     ordered_extent->len - 1);
2862 
2863 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2864 		truncated = true;
2865 		logical_len = ordered_extent->truncated_len;
2866 		/* Truncated the entire extent, don't bother adding */
2867 		if (!logical_len)
2868 			goto out;
2869 	}
2870 
2871 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2872 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2873 
2874 		/*
2875 		 * For mwrite(mmap + memset to write) case, we still reserve
2876 		 * space for NOCOW range.
2877 		 * As NOCOW won't cause a new delayed ref, just free the space
2878 		 */
2879 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2880 				       ordered_extent->len);
2881 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2882 		if (nolock)
2883 			trans = btrfs_join_transaction_nolock(root);
2884 		else
2885 			trans = btrfs_join_transaction(root);
2886 		if (IS_ERR(trans)) {
2887 			ret = PTR_ERR(trans);
2888 			trans = NULL;
2889 			goto out;
2890 		}
2891 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2892 		ret = btrfs_update_inode_fallback(trans, root, inode);
2893 		if (ret) /* -ENOMEM or corruption */
2894 			btrfs_abort_transaction(trans, root, ret);
2895 		goto out;
2896 	}
2897 
2898 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2899 			 ordered_extent->file_offset + ordered_extent->len - 1,
2900 			 &cached_state);
2901 
2902 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2903 			ordered_extent->file_offset + ordered_extent->len - 1,
2904 			EXTENT_DEFRAG, 1, cached_state);
2905 	if (ret) {
2906 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2907 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2908 			/* the inode is shared */
2909 			new = record_old_file_extents(inode, ordered_extent);
2910 
2911 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2912 			ordered_extent->file_offset + ordered_extent->len - 1,
2913 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2914 	}
2915 
2916 	if (nolock)
2917 		trans = btrfs_join_transaction_nolock(root);
2918 	else
2919 		trans = btrfs_join_transaction(root);
2920 	if (IS_ERR(trans)) {
2921 		ret = PTR_ERR(trans);
2922 		trans = NULL;
2923 		goto out_unlock;
2924 	}
2925 
2926 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2927 
2928 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2929 		compress_type = ordered_extent->compress_type;
2930 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2931 		BUG_ON(compress_type);
2932 		ret = btrfs_mark_extent_written(trans, inode,
2933 						ordered_extent->file_offset,
2934 						ordered_extent->file_offset +
2935 						logical_len);
2936 	} else {
2937 		BUG_ON(root == root->fs_info->tree_root);
2938 		ret = insert_reserved_file_extent(trans, inode,
2939 						ordered_extent->file_offset,
2940 						ordered_extent->start,
2941 						ordered_extent->disk_len,
2942 						logical_len, logical_len,
2943 						compress_type, 0, 0,
2944 						BTRFS_FILE_EXTENT_REG);
2945 		if (!ret)
2946 			btrfs_release_delalloc_bytes(root,
2947 						     ordered_extent->start,
2948 						     ordered_extent->disk_len);
2949 	}
2950 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2951 			   ordered_extent->file_offset, ordered_extent->len,
2952 			   trans->transid);
2953 	if (ret < 0) {
2954 		btrfs_abort_transaction(trans, root, ret);
2955 		goto out_unlock;
2956 	}
2957 
2958 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2959 			  &ordered_extent->list);
2960 
2961 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2962 	ret = btrfs_update_inode_fallback(trans, root, inode);
2963 	if (ret) { /* -ENOMEM or corruption */
2964 		btrfs_abort_transaction(trans, root, ret);
2965 		goto out_unlock;
2966 	}
2967 	ret = 0;
2968 out_unlock:
2969 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2970 			     ordered_extent->file_offset +
2971 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2972 out:
2973 	if (root != root->fs_info->tree_root)
2974 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2975 	if (trans)
2976 		btrfs_end_transaction(trans, root);
2977 
2978 	if (ret || truncated) {
2979 		u64 start, end;
2980 
2981 		if (truncated)
2982 			start = ordered_extent->file_offset + logical_len;
2983 		else
2984 			start = ordered_extent->file_offset;
2985 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2986 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2987 
2988 		/* Drop the cache for the part of the extent we didn't write. */
2989 		btrfs_drop_extent_cache(inode, start, end, 0);
2990 
2991 		/*
2992 		 * If the ordered extent had an IOERR or something else went
2993 		 * wrong we need to return the space for this ordered extent
2994 		 * back to the allocator.  We only free the extent in the
2995 		 * truncated case if we didn't write out the extent at all.
2996 		 */
2997 		if ((ret || !logical_len) &&
2998 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2999 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3000 			btrfs_free_reserved_extent(root, ordered_extent->start,
3001 						   ordered_extent->disk_len, 1);
3002 	}
3003 
3004 
3005 	/*
3006 	 * This needs to be done to make sure anybody waiting knows we are done
3007 	 * updating everything for this ordered extent.
3008 	 */
3009 	btrfs_remove_ordered_extent(inode, ordered_extent);
3010 
3011 	/* for snapshot-aware defrag */
3012 	if (new) {
3013 		if (ret) {
3014 			free_sa_defrag_extent(new);
3015 			atomic_dec(&root->fs_info->defrag_running);
3016 		} else {
3017 			relink_file_extents(new);
3018 		}
3019 	}
3020 
3021 	/* once for us */
3022 	btrfs_put_ordered_extent(ordered_extent);
3023 	/* once for the tree */
3024 	btrfs_put_ordered_extent(ordered_extent);
3025 
3026 	return ret;
3027 }
3028 
3029 static void finish_ordered_fn(struct btrfs_work *work)
3030 {
3031 	struct btrfs_ordered_extent *ordered_extent;
3032 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3033 	btrfs_finish_ordered_io(ordered_extent);
3034 }
3035 
3036 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3037 				struct extent_state *state, int uptodate)
3038 {
3039 	struct inode *inode = page->mapping->host;
3040 	struct btrfs_root *root = BTRFS_I(inode)->root;
3041 	struct btrfs_ordered_extent *ordered_extent = NULL;
3042 	struct btrfs_workqueue *wq;
3043 	btrfs_work_func_t func;
3044 
3045 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3046 
3047 	ClearPagePrivate2(page);
3048 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3049 					    end - start + 1, uptodate))
3050 		return 0;
3051 
3052 	if (btrfs_is_free_space_inode(inode)) {
3053 		wq = root->fs_info->endio_freespace_worker;
3054 		func = btrfs_freespace_write_helper;
3055 	} else {
3056 		wq = root->fs_info->endio_write_workers;
3057 		func = btrfs_endio_write_helper;
3058 	}
3059 
3060 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3061 			NULL);
3062 	btrfs_queue_work(wq, &ordered_extent->work);
3063 
3064 	return 0;
3065 }
3066 
3067 static int __readpage_endio_check(struct inode *inode,
3068 				  struct btrfs_io_bio *io_bio,
3069 				  int icsum, struct page *page,
3070 				  int pgoff, u64 start, size_t len)
3071 {
3072 	char *kaddr;
3073 	u32 csum_expected;
3074 	u32 csum = ~(u32)0;
3075 
3076 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3077 
3078 	kaddr = kmap_atomic(page);
3079 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3080 	btrfs_csum_final(csum, (char *)&csum);
3081 	if (csum != csum_expected)
3082 		goto zeroit;
3083 
3084 	kunmap_atomic(kaddr);
3085 	return 0;
3086 zeroit:
3087 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3088 		"csum failed ino %llu off %llu csum %u expected csum %u",
3089 			   btrfs_ino(inode), start, csum, csum_expected);
3090 	memset(kaddr + pgoff, 1, len);
3091 	flush_dcache_page(page);
3092 	kunmap_atomic(kaddr);
3093 	if (csum_expected == 0)
3094 		return 0;
3095 	return -EIO;
3096 }
3097 
3098 /*
3099  * when reads are done, we need to check csums to verify the data is correct
3100  * if there's a match, we allow the bio to finish.  If not, the code in
3101  * extent_io.c will try to find good copies for us.
3102  */
3103 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3104 				      u64 phy_offset, struct page *page,
3105 				      u64 start, u64 end, int mirror)
3106 {
3107 	size_t offset = start - page_offset(page);
3108 	struct inode *inode = page->mapping->host;
3109 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3110 	struct btrfs_root *root = BTRFS_I(inode)->root;
3111 
3112 	if (PageChecked(page)) {
3113 		ClearPageChecked(page);
3114 		return 0;
3115 	}
3116 
3117 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3118 		return 0;
3119 
3120 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3121 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3122 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3123 		return 0;
3124 	}
3125 
3126 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3127 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3128 				      start, (size_t)(end - start + 1));
3129 }
3130 
3131 void btrfs_add_delayed_iput(struct inode *inode)
3132 {
3133 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3134 	struct btrfs_inode *binode = BTRFS_I(inode);
3135 
3136 	if (atomic_add_unless(&inode->i_count, -1, 1))
3137 		return;
3138 
3139 	spin_lock(&fs_info->delayed_iput_lock);
3140 	if (binode->delayed_iput_count == 0) {
3141 		ASSERT(list_empty(&binode->delayed_iput));
3142 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3143 	} else {
3144 		binode->delayed_iput_count++;
3145 	}
3146 	spin_unlock(&fs_info->delayed_iput_lock);
3147 }
3148 
3149 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3150 {
3151 	struct btrfs_fs_info *fs_info = root->fs_info;
3152 
3153 	spin_lock(&fs_info->delayed_iput_lock);
3154 	while (!list_empty(&fs_info->delayed_iputs)) {
3155 		struct btrfs_inode *inode;
3156 
3157 		inode = list_first_entry(&fs_info->delayed_iputs,
3158 				struct btrfs_inode, delayed_iput);
3159 		if (inode->delayed_iput_count) {
3160 			inode->delayed_iput_count--;
3161 			list_move_tail(&inode->delayed_iput,
3162 					&fs_info->delayed_iputs);
3163 		} else {
3164 			list_del_init(&inode->delayed_iput);
3165 		}
3166 		spin_unlock(&fs_info->delayed_iput_lock);
3167 		iput(&inode->vfs_inode);
3168 		spin_lock(&fs_info->delayed_iput_lock);
3169 	}
3170 	spin_unlock(&fs_info->delayed_iput_lock);
3171 }
3172 
3173 /*
3174  * This is called in transaction commit time. If there are no orphan
3175  * files in the subvolume, it removes orphan item and frees block_rsv
3176  * structure.
3177  */
3178 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3179 			      struct btrfs_root *root)
3180 {
3181 	struct btrfs_block_rsv *block_rsv;
3182 	int ret;
3183 
3184 	if (atomic_read(&root->orphan_inodes) ||
3185 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3186 		return;
3187 
3188 	spin_lock(&root->orphan_lock);
3189 	if (atomic_read(&root->orphan_inodes)) {
3190 		spin_unlock(&root->orphan_lock);
3191 		return;
3192 	}
3193 
3194 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3195 		spin_unlock(&root->orphan_lock);
3196 		return;
3197 	}
3198 
3199 	block_rsv = root->orphan_block_rsv;
3200 	root->orphan_block_rsv = NULL;
3201 	spin_unlock(&root->orphan_lock);
3202 
3203 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3204 	    btrfs_root_refs(&root->root_item) > 0) {
3205 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3206 					    root->root_key.objectid);
3207 		if (ret)
3208 			btrfs_abort_transaction(trans, root, ret);
3209 		else
3210 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3211 				  &root->state);
3212 	}
3213 
3214 	if (block_rsv) {
3215 		WARN_ON(block_rsv->size > 0);
3216 		btrfs_free_block_rsv(root, block_rsv);
3217 	}
3218 }
3219 
3220 /*
3221  * This creates an orphan entry for the given inode in case something goes
3222  * wrong in the middle of an unlink/truncate.
3223  *
3224  * NOTE: caller of this function should reserve 5 units of metadata for
3225  *	 this function.
3226  */
3227 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3228 {
3229 	struct btrfs_root *root = BTRFS_I(inode)->root;
3230 	struct btrfs_block_rsv *block_rsv = NULL;
3231 	int reserve = 0;
3232 	int insert = 0;
3233 	int ret;
3234 
3235 	if (!root->orphan_block_rsv) {
3236 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3237 		if (!block_rsv)
3238 			return -ENOMEM;
3239 	}
3240 
3241 	spin_lock(&root->orphan_lock);
3242 	if (!root->orphan_block_rsv) {
3243 		root->orphan_block_rsv = block_rsv;
3244 	} else if (block_rsv) {
3245 		btrfs_free_block_rsv(root, block_rsv);
3246 		block_rsv = NULL;
3247 	}
3248 
3249 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3250 			      &BTRFS_I(inode)->runtime_flags)) {
3251 #if 0
3252 		/*
3253 		 * For proper ENOSPC handling, we should do orphan
3254 		 * cleanup when mounting. But this introduces backward
3255 		 * compatibility issue.
3256 		 */
3257 		if (!xchg(&root->orphan_item_inserted, 1))
3258 			insert = 2;
3259 		else
3260 			insert = 1;
3261 #endif
3262 		insert = 1;
3263 		atomic_inc(&root->orphan_inodes);
3264 	}
3265 
3266 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3267 			      &BTRFS_I(inode)->runtime_flags))
3268 		reserve = 1;
3269 	spin_unlock(&root->orphan_lock);
3270 
3271 	/* grab metadata reservation from transaction handle */
3272 	if (reserve) {
3273 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3274 		ASSERT(!ret);
3275 		if (ret) {
3276 			atomic_dec(&root->orphan_inodes);
3277 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3278 				  &BTRFS_I(inode)->runtime_flags);
3279 			if (insert)
3280 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3281 					  &BTRFS_I(inode)->runtime_flags);
3282 			return ret;
3283 		}
3284 	}
3285 
3286 	/* insert an orphan item to track this unlinked/truncated file */
3287 	if (insert >= 1) {
3288 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3289 		if (ret) {
3290 			atomic_dec(&root->orphan_inodes);
3291 			if (reserve) {
3292 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3293 					  &BTRFS_I(inode)->runtime_flags);
3294 				btrfs_orphan_release_metadata(inode);
3295 			}
3296 			if (ret != -EEXIST) {
3297 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3298 					  &BTRFS_I(inode)->runtime_flags);
3299 				btrfs_abort_transaction(trans, root, ret);
3300 				return ret;
3301 			}
3302 		}
3303 		ret = 0;
3304 	}
3305 
3306 	/* insert an orphan item to track subvolume contains orphan files */
3307 	if (insert >= 2) {
3308 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3309 					       root->root_key.objectid);
3310 		if (ret && ret != -EEXIST) {
3311 			btrfs_abort_transaction(trans, root, ret);
3312 			return ret;
3313 		}
3314 	}
3315 	return 0;
3316 }
3317 
3318 /*
3319  * We have done the truncate/delete so we can go ahead and remove the orphan
3320  * item for this particular inode.
3321  */
3322 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3323 			    struct inode *inode)
3324 {
3325 	struct btrfs_root *root = BTRFS_I(inode)->root;
3326 	int delete_item = 0;
3327 	int release_rsv = 0;
3328 	int ret = 0;
3329 
3330 	spin_lock(&root->orphan_lock);
3331 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3332 			       &BTRFS_I(inode)->runtime_flags))
3333 		delete_item = 1;
3334 
3335 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3336 			       &BTRFS_I(inode)->runtime_flags))
3337 		release_rsv = 1;
3338 	spin_unlock(&root->orphan_lock);
3339 
3340 	if (delete_item) {
3341 		atomic_dec(&root->orphan_inodes);
3342 		if (trans)
3343 			ret = btrfs_del_orphan_item(trans, root,
3344 						    btrfs_ino(inode));
3345 	}
3346 
3347 	if (release_rsv)
3348 		btrfs_orphan_release_metadata(inode);
3349 
3350 	return ret;
3351 }
3352 
3353 /*
3354  * this cleans up any orphans that may be left on the list from the last use
3355  * of this root.
3356  */
3357 int btrfs_orphan_cleanup(struct btrfs_root *root)
3358 {
3359 	struct btrfs_path *path;
3360 	struct extent_buffer *leaf;
3361 	struct btrfs_key key, found_key;
3362 	struct btrfs_trans_handle *trans;
3363 	struct inode *inode;
3364 	u64 last_objectid = 0;
3365 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3366 
3367 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3368 		return 0;
3369 
3370 	path = btrfs_alloc_path();
3371 	if (!path) {
3372 		ret = -ENOMEM;
3373 		goto out;
3374 	}
3375 	path->reada = READA_BACK;
3376 
3377 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3378 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3379 	key.offset = (u64)-1;
3380 
3381 	while (1) {
3382 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3383 		if (ret < 0)
3384 			goto out;
3385 
3386 		/*
3387 		 * if ret == 0 means we found what we were searching for, which
3388 		 * is weird, but possible, so only screw with path if we didn't
3389 		 * find the key and see if we have stuff that matches
3390 		 */
3391 		if (ret > 0) {
3392 			ret = 0;
3393 			if (path->slots[0] == 0)
3394 				break;
3395 			path->slots[0]--;
3396 		}
3397 
3398 		/* pull out the item */
3399 		leaf = path->nodes[0];
3400 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3401 
3402 		/* make sure the item matches what we want */
3403 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3404 			break;
3405 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3406 			break;
3407 
3408 		/* release the path since we're done with it */
3409 		btrfs_release_path(path);
3410 
3411 		/*
3412 		 * this is where we are basically btrfs_lookup, without the
3413 		 * crossing root thing.  we store the inode number in the
3414 		 * offset of the orphan item.
3415 		 */
3416 
3417 		if (found_key.offset == last_objectid) {
3418 			btrfs_err(root->fs_info,
3419 				"Error removing orphan entry, stopping orphan cleanup");
3420 			ret = -EINVAL;
3421 			goto out;
3422 		}
3423 
3424 		last_objectid = found_key.offset;
3425 
3426 		found_key.objectid = found_key.offset;
3427 		found_key.type = BTRFS_INODE_ITEM_KEY;
3428 		found_key.offset = 0;
3429 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3430 		ret = PTR_ERR_OR_ZERO(inode);
3431 		if (ret && ret != -ESTALE)
3432 			goto out;
3433 
3434 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3435 			struct btrfs_root *dead_root;
3436 			struct btrfs_fs_info *fs_info = root->fs_info;
3437 			int is_dead_root = 0;
3438 
3439 			/*
3440 			 * this is an orphan in the tree root. Currently these
3441 			 * could come from 2 sources:
3442 			 *  a) a snapshot deletion in progress
3443 			 *  b) a free space cache inode
3444 			 * We need to distinguish those two, as the snapshot
3445 			 * orphan must not get deleted.
3446 			 * find_dead_roots already ran before us, so if this
3447 			 * is a snapshot deletion, we should find the root
3448 			 * in the dead_roots list
3449 			 */
3450 			spin_lock(&fs_info->trans_lock);
3451 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3452 					    root_list) {
3453 				if (dead_root->root_key.objectid ==
3454 				    found_key.objectid) {
3455 					is_dead_root = 1;
3456 					break;
3457 				}
3458 			}
3459 			spin_unlock(&fs_info->trans_lock);
3460 			if (is_dead_root) {
3461 				/* prevent this orphan from being found again */
3462 				key.offset = found_key.objectid - 1;
3463 				continue;
3464 			}
3465 		}
3466 		/*
3467 		 * Inode is already gone but the orphan item is still there,
3468 		 * kill the orphan item.
3469 		 */
3470 		if (ret == -ESTALE) {
3471 			trans = btrfs_start_transaction(root, 1);
3472 			if (IS_ERR(trans)) {
3473 				ret = PTR_ERR(trans);
3474 				goto out;
3475 			}
3476 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3477 				found_key.objectid);
3478 			ret = btrfs_del_orphan_item(trans, root,
3479 						    found_key.objectid);
3480 			btrfs_end_transaction(trans, root);
3481 			if (ret)
3482 				goto out;
3483 			continue;
3484 		}
3485 
3486 		/*
3487 		 * add this inode to the orphan list so btrfs_orphan_del does
3488 		 * the proper thing when we hit it
3489 		 */
3490 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3491 			&BTRFS_I(inode)->runtime_flags);
3492 		atomic_inc(&root->orphan_inodes);
3493 
3494 		/* if we have links, this was a truncate, lets do that */
3495 		if (inode->i_nlink) {
3496 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3497 				iput(inode);
3498 				continue;
3499 			}
3500 			nr_truncate++;
3501 
3502 			/* 1 for the orphan item deletion. */
3503 			trans = btrfs_start_transaction(root, 1);
3504 			if (IS_ERR(trans)) {
3505 				iput(inode);
3506 				ret = PTR_ERR(trans);
3507 				goto out;
3508 			}
3509 			ret = btrfs_orphan_add(trans, inode);
3510 			btrfs_end_transaction(trans, root);
3511 			if (ret) {
3512 				iput(inode);
3513 				goto out;
3514 			}
3515 
3516 			ret = btrfs_truncate(inode);
3517 			if (ret)
3518 				btrfs_orphan_del(NULL, inode);
3519 		} else {
3520 			nr_unlink++;
3521 		}
3522 
3523 		/* this will do delete_inode and everything for us */
3524 		iput(inode);
3525 		if (ret)
3526 			goto out;
3527 	}
3528 	/* release the path since we're done with it */
3529 	btrfs_release_path(path);
3530 
3531 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3532 
3533 	if (root->orphan_block_rsv)
3534 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3535 					(u64)-1);
3536 
3537 	if (root->orphan_block_rsv ||
3538 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3539 		trans = btrfs_join_transaction(root);
3540 		if (!IS_ERR(trans))
3541 			btrfs_end_transaction(trans, root);
3542 	}
3543 
3544 	if (nr_unlink)
3545 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3546 	if (nr_truncate)
3547 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3548 
3549 out:
3550 	if (ret)
3551 		btrfs_err(root->fs_info,
3552 			"could not do orphan cleanup %d", ret);
3553 	btrfs_free_path(path);
3554 	return ret;
3555 }
3556 
3557 /*
3558  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3559  * don't find any xattrs, we know there can't be any acls.
3560  *
3561  * slot is the slot the inode is in, objectid is the objectid of the inode
3562  */
3563 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3564 					  int slot, u64 objectid,
3565 					  int *first_xattr_slot)
3566 {
3567 	u32 nritems = btrfs_header_nritems(leaf);
3568 	struct btrfs_key found_key;
3569 	static u64 xattr_access = 0;
3570 	static u64 xattr_default = 0;
3571 	int scanned = 0;
3572 
3573 	if (!xattr_access) {
3574 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3575 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3576 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3577 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3578 	}
3579 
3580 	slot++;
3581 	*first_xattr_slot = -1;
3582 	while (slot < nritems) {
3583 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3584 
3585 		/* we found a different objectid, there must not be acls */
3586 		if (found_key.objectid != objectid)
3587 			return 0;
3588 
3589 		/* we found an xattr, assume we've got an acl */
3590 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3591 			if (*first_xattr_slot == -1)
3592 				*first_xattr_slot = slot;
3593 			if (found_key.offset == xattr_access ||
3594 			    found_key.offset == xattr_default)
3595 				return 1;
3596 		}
3597 
3598 		/*
3599 		 * we found a key greater than an xattr key, there can't
3600 		 * be any acls later on
3601 		 */
3602 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3603 			return 0;
3604 
3605 		slot++;
3606 		scanned++;
3607 
3608 		/*
3609 		 * it goes inode, inode backrefs, xattrs, extents,
3610 		 * so if there are a ton of hard links to an inode there can
3611 		 * be a lot of backrefs.  Don't waste time searching too hard,
3612 		 * this is just an optimization
3613 		 */
3614 		if (scanned >= 8)
3615 			break;
3616 	}
3617 	/* we hit the end of the leaf before we found an xattr or
3618 	 * something larger than an xattr.  We have to assume the inode
3619 	 * has acls
3620 	 */
3621 	if (*first_xattr_slot == -1)
3622 		*first_xattr_slot = slot;
3623 	return 1;
3624 }
3625 
3626 /*
3627  * read an inode from the btree into the in-memory inode
3628  */
3629 static void btrfs_read_locked_inode(struct inode *inode)
3630 {
3631 	struct btrfs_path *path;
3632 	struct extent_buffer *leaf;
3633 	struct btrfs_inode_item *inode_item;
3634 	struct btrfs_root *root = BTRFS_I(inode)->root;
3635 	struct btrfs_key location;
3636 	unsigned long ptr;
3637 	int maybe_acls;
3638 	u32 rdev;
3639 	int ret;
3640 	bool filled = false;
3641 	int first_xattr_slot;
3642 
3643 	ret = btrfs_fill_inode(inode, &rdev);
3644 	if (!ret)
3645 		filled = true;
3646 
3647 	path = btrfs_alloc_path();
3648 	if (!path)
3649 		goto make_bad;
3650 
3651 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3652 
3653 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3654 	if (ret)
3655 		goto make_bad;
3656 
3657 	leaf = path->nodes[0];
3658 
3659 	if (filled)
3660 		goto cache_index;
3661 
3662 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3663 				    struct btrfs_inode_item);
3664 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3665 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3666 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3667 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3668 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3669 
3670 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3671 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3672 
3673 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3674 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3675 
3676 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3677 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3678 
3679 	BTRFS_I(inode)->i_otime.tv_sec =
3680 		btrfs_timespec_sec(leaf, &inode_item->otime);
3681 	BTRFS_I(inode)->i_otime.tv_nsec =
3682 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3683 
3684 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3685 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3686 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3687 
3688 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3689 	inode->i_generation = BTRFS_I(inode)->generation;
3690 	inode->i_rdev = 0;
3691 	rdev = btrfs_inode_rdev(leaf, inode_item);
3692 
3693 	BTRFS_I(inode)->index_cnt = (u64)-1;
3694 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3695 
3696 cache_index:
3697 	/*
3698 	 * If we were modified in the current generation and evicted from memory
3699 	 * and then re-read we need to do a full sync since we don't have any
3700 	 * idea about which extents were modified before we were evicted from
3701 	 * cache.
3702 	 *
3703 	 * This is required for both inode re-read from disk and delayed inode
3704 	 * in delayed_nodes_tree.
3705 	 */
3706 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3707 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3708 			&BTRFS_I(inode)->runtime_flags);
3709 
3710 	/*
3711 	 * We don't persist the id of the transaction where an unlink operation
3712 	 * against the inode was last made. So here we assume the inode might
3713 	 * have been evicted, and therefore the exact value of last_unlink_trans
3714 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3715 	 * between the inode and its parent if the inode is fsync'ed and the log
3716 	 * replayed. For example, in the scenario:
3717 	 *
3718 	 * touch mydir/foo
3719 	 * ln mydir/foo mydir/bar
3720 	 * sync
3721 	 * unlink mydir/bar
3722 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3723 	 * xfs_io -c fsync mydir/foo
3724 	 * <power failure>
3725 	 * mount fs, triggers fsync log replay
3726 	 *
3727 	 * We must make sure that when we fsync our inode foo we also log its
3728 	 * parent inode, otherwise after log replay the parent still has the
3729 	 * dentry with the "bar" name but our inode foo has a link count of 1
3730 	 * and doesn't have an inode ref with the name "bar" anymore.
3731 	 *
3732 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3733 	 * but it guarantees correctness at the expense of occasional full
3734 	 * transaction commits on fsync if our inode is a directory, or if our
3735 	 * inode is not a directory, logging its parent unnecessarily.
3736 	 */
3737 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3738 
3739 	path->slots[0]++;
3740 	if (inode->i_nlink != 1 ||
3741 	    path->slots[0] >= btrfs_header_nritems(leaf))
3742 		goto cache_acl;
3743 
3744 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3745 	if (location.objectid != btrfs_ino(inode))
3746 		goto cache_acl;
3747 
3748 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3749 	if (location.type == BTRFS_INODE_REF_KEY) {
3750 		struct btrfs_inode_ref *ref;
3751 
3752 		ref = (struct btrfs_inode_ref *)ptr;
3753 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3754 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3755 		struct btrfs_inode_extref *extref;
3756 
3757 		extref = (struct btrfs_inode_extref *)ptr;
3758 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3759 								     extref);
3760 	}
3761 cache_acl:
3762 	/*
3763 	 * try to precache a NULL acl entry for files that don't have
3764 	 * any xattrs or acls
3765 	 */
3766 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3767 					   btrfs_ino(inode), &first_xattr_slot);
3768 	if (first_xattr_slot != -1) {
3769 		path->slots[0] = first_xattr_slot;
3770 		ret = btrfs_load_inode_props(inode, path);
3771 		if (ret)
3772 			btrfs_err(root->fs_info,
3773 				  "error loading props for ino %llu (root %llu): %d",
3774 				  btrfs_ino(inode),
3775 				  root->root_key.objectid, ret);
3776 	}
3777 	btrfs_free_path(path);
3778 
3779 	if (!maybe_acls)
3780 		cache_no_acl(inode);
3781 
3782 	switch (inode->i_mode & S_IFMT) {
3783 	case S_IFREG:
3784 		inode->i_mapping->a_ops = &btrfs_aops;
3785 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3786 		inode->i_fop = &btrfs_file_operations;
3787 		inode->i_op = &btrfs_file_inode_operations;
3788 		break;
3789 	case S_IFDIR:
3790 		inode->i_fop = &btrfs_dir_file_operations;
3791 		if (root == root->fs_info->tree_root)
3792 			inode->i_op = &btrfs_dir_ro_inode_operations;
3793 		else
3794 			inode->i_op = &btrfs_dir_inode_operations;
3795 		break;
3796 	case S_IFLNK:
3797 		inode->i_op = &btrfs_symlink_inode_operations;
3798 		inode_nohighmem(inode);
3799 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3800 		break;
3801 	default:
3802 		inode->i_op = &btrfs_special_inode_operations;
3803 		init_special_inode(inode, inode->i_mode, rdev);
3804 		break;
3805 	}
3806 
3807 	btrfs_update_iflags(inode);
3808 	return;
3809 
3810 make_bad:
3811 	btrfs_free_path(path);
3812 	make_bad_inode(inode);
3813 }
3814 
3815 /*
3816  * given a leaf and an inode, copy the inode fields into the leaf
3817  */
3818 static void fill_inode_item(struct btrfs_trans_handle *trans,
3819 			    struct extent_buffer *leaf,
3820 			    struct btrfs_inode_item *item,
3821 			    struct inode *inode)
3822 {
3823 	struct btrfs_map_token token;
3824 
3825 	btrfs_init_map_token(&token);
3826 
3827 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3828 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3829 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3830 				   &token);
3831 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3832 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3833 
3834 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3835 				     inode->i_atime.tv_sec, &token);
3836 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3837 				      inode->i_atime.tv_nsec, &token);
3838 
3839 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3840 				     inode->i_mtime.tv_sec, &token);
3841 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3842 				      inode->i_mtime.tv_nsec, &token);
3843 
3844 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3845 				     inode->i_ctime.tv_sec, &token);
3846 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3847 				      inode->i_ctime.tv_nsec, &token);
3848 
3849 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3850 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3851 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3852 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3853 
3854 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3855 				     &token);
3856 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3857 					 &token);
3858 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3859 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3860 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3861 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3862 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3863 }
3864 
3865 /*
3866  * copy everything in the in-memory inode into the btree.
3867  */
3868 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3869 				struct btrfs_root *root, struct inode *inode)
3870 {
3871 	struct btrfs_inode_item *inode_item;
3872 	struct btrfs_path *path;
3873 	struct extent_buffer *leaf;
3874 	int ret;
3875 
3876 	path = btrfs_alloc_path();
3877 	if (!path)
3878 		return -ENOMEM;
3879 
3880 	path->leave_spinning = 1;
3881 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3882 				 1);
3883 	if (ret) {
3884 		if (ret > 0)
3885 			ret = -ENOENT;
3886 		goto failed;
3887 	}
3888 
3889 	leaf = path->nodes[0];
3890 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3891 				    struct btrfs_inode_item);
3892 
3893 	fill_inode_item(trans, leaf, inode_item, inode);
3894 	btrfs_mark_buffer_dirty(leaf);
3895 	btrfs_set_inode_last_trans(trans, inode);
3896 	ret = 0;
3897 failed:
3898 	btrfs_free_path(path);
3899 	return ret;
3900 }
3901 
3902 /*
3903  * copy everything in the in-memory inode into the btree.
3904  */
3905 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3906 				struct btrfs_root *root, struct inode *inode)
3907 {
3908 	int ret;
3909 
3910 	/*
3911 	 * If the inode is a free space inode, we can deadlock during commit
3912 	 * if we put it into the delayed code.
3913 	 *
3914 	 * The data relocation inode should also be directly updated
3915 	 * without delay
3916 	 */
3917 	if (!btrfs_is_free_space_inode(inode)
3918 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3919 	    && !root->fs_info->log_root_recovering) {
3920 		btrfs_update_root_times(trans, root);
3921 
3922 		ret = btrfs_delayed_update_inode(trans, root, inode);
3923 		if (!ret)
3924 			btrfs_set_inode_last_trans(trans, inode);
3925 		return ret;
3926 	}
3927 
3928 	return btrfs_update_inode_item(trans, root, inode);
3929 }
3930 
3931 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3932 					 struct btrfs_root *root,
3933 					 struct inode *inode)
3934 {
3935 	int ret;
3936 
3937 	ret = btrfs_update_inode(trans, root, inode);
3938 	if (ret == -ENOSPC)
3939 		return btrfs_update_inode_item(trans, root, inode);
3940 	return ret;
3941 }
3942 
3943 /*
3944  * unlink helper that gets used here in inode.c and in the tree logging
3945  * recovery code.  It remove a link in a directory with a given name, and
3946  * also drops the back refs in the inode to the directory
3947  */
3948 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3949 				struct btrfs_root *root,
3950 				struct inode *dir, struct inode *inode,
3951 				const char *name, int name_len)
3952 {
3953 	struct btrfs_path *path;
3954 	int ret = 0;
3955 	struct extent_buffer *leaf;
3956 	struct btrfs_dir_item *di;
3957 	struct btrfs_key key;
3958 	u64 index;
3959 	u64 ino = btrfs_ino(inode);
3960 	u64 dir_ino = btrfs_ino(dir);
3961 
3962 	path = btrfs_alloc_path();
3963 	if (!path) {
3964 		ret = -ENOMEM;
3965 		goto out;
3966 	}
3967 
3968 	path->leave_spinning = 1;
3969 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3970 				    name, name_len, -1);
3971 	if (IS_ERR(di)) {
3972 		ret = PTR_ERR(di);
3973 		goto err;
3974 	}
3975 	if (!di) {
3976 		ret = -ENOENT;
3977 		goto err;
3978 	}
3979 	leaf = path->nodes[0];
3980 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3981 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3982 	if (ret)
3983 		goto err;
3984 	btrfs_release_path(path);
3985 
3986 	/*
3987 	 * If we don't have dir index, we have to get it by looking up
3988 	 * the inode ref, since we get the inode ref, remove it directly,
3989 	 * it is unnecessary to do delayed deletion.
3990 	 *
3991 	 * But if we have dir index, needn't search inode ref to get it.
3992 	 * Since the inode ref is close to the inode item, it is better
3993 	 * that we delay to delete it, and just do this deletion when
3994 	 * we update the inode item.
3995 	 */
3996 	if (BTRFS_I(inode)->dir_index) {
3997 		ret = btrfs_delayed_delete_inode_ref(inode);
3998 		if (!ret) {
3999 			index = BTRFS_I(inode)->dir_index;
4000 			goto skip_backref;
4001 		}
4002 	}
4003 
4004 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4005 				  dir_ino, &index);
4006 	if (ret) {
4007 		btrfs_info(root->fs_info,
4008 			"failed to delete reference to %.*s, inode %llu parent %llu",
4009 			name_len, name, ino, dir_ino);
4010 		btrfs_abort_transaction(trans, root, ret);
4011 		goto err;
4012 	}
4013 skip_backref:
4014 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4015 	if (ret) {
4016 		btrfs_abort_transaction(trans, root, ret);
4017 		goto err;
4018 	}
4019 
4020 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4021 					 inode, dir_ino);
4022 	if (ret != 0 && ret != -ENOENT) {
4023 		btrfs_abort_transaction(trans, root, ret);
4024 		goto err;
4025 	}
4026 
4027 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4028 					   dir, index);
4029 	if (ret == -ENOENT)
4030 		ret = 0;
4031 	else if (ret)
4032 		btrfs_abort_transaction(trans, root, ret);
4033 err:
4034 	btrfs_free_path(path);
4035 	if (ret)
4036 		goto out;
4037 
4038 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4039 	inode_inc_iversion(inode);
4040 	inode_inc_iversion(dir);
4041 	inode->i_ctime = dir->i_mtime =
4042 		dir->i_ctime = current_fs_time(inode->i_sb);
4043 	ret = btrfs_update_inode(trans, root, dir);
4044 out:
4045 	return ret;
4046 }
4047 
4048 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4049 		       struct btrfs_root *root,
4050 		       struct inode *dir, struct inode *inode,
4051 		       const char *name, int name_len)
4052 {
4053 	int ret;
4054 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4055 	if (!ret) {
4056 		drop_nlink(inode);
4057 		ret = btrfs_update_inode(trans, root, inode);
4058 	}
4059 	return ret;
4060 }
4061 
4062 /*
4063  * helper to start transaction for unlink and rmdir.
4064  *
4065  * unlink and rmdir are special in btrfs, they do not always free space, so
4066  * if we cannot make our reservations the normal way try and see if there is
4067  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4068  * allow the unlink to occur.
4069  */
4070 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4071 {
4072 	struct btrfs_root *root = BTRFS_I(dir)->root;
4073 
4074 	/*
4075 	 * 1 for the possible orphan item
4076 	 * 1 for the dir item
4077 	 * 1 for the dir index
4078 	 * 1 for the inode ref
4079 	 * 1 for the inode
4080 	 */
4081 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4082 }
4083 
4084 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4085 {
4086 	struct btrfs_root *root = BTRFS_I(dir)->root;
4087 	struct btrfs_trans_handle *trans;
4088 	struct inode *inode = d_inode(dentry);
4089 	int ret;
4090 
4091 	trans = __unlink_start_trans(dir);
4092 	if (IS_ERR(trans))
4093 		return PTR_ERR(trans);
4094 
4095 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4096 
4097 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4098 				 dentry->d_name.name, dentry->d_name.len);
4099 	if (ret)
4100 		goto out;
4101 
4102 	if (inode->i_nlink == 0) {
4103 		ret = btrfs_orphan_add(trans, inode);
4104 		if (ret)
4105 			goto out;
4106 	}
4107 
4108 out:
4109 	btrfs_end_transaction(trans, root);
4110 	btrfs_btree_balance_dirty(root);
4111 	return ret;
4112 }
4113 
4114 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4115 			struct btrfs_root *root,
4116 			struct inode *dir, u64 objectid,
4117 			const char *name, int name_len)
4118 {
4119 	struct btrfs_path *path;
4120 	struct extent_buffer *leaf;
4121 	struct btrfs_dir_item *di;
4122 	struct btrfs_key key;
4123 	u64 index;
4124 	int ret;
4125 	u64 dir_ino = btrfs_ino(dir);
4126 
4127 	path = btrfs_alloc_path();
4128 	if (!path)
4129 		return -ENOMEM;
4130 
4131 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4132 				   name, name_len, -1);
4133 	if (IS_ERR_OR_NULL(di)) {
4134 		if (!di)
4135 			ret = -ENOENT;
4136 		else
4137 			ret = PTR_ERR(di);
4138 		goto out;
4139 	}
4140 
4141 	leaf = path->nodes[0];
4142 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4143 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4144 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4145 	if (ret) {
4146 		btrfs_abort_transaction(trans, root, ret);
4147 		goto out;
4148 	}
4149 	btrfs_release_path(path);
4150 
4151 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4152 				 objectid, root->root_key.objectid,
4153 				 dir_ino, &index, name, name_len);
4154 	if (ret < 0) {
4155 		if (ret != -ENOENT) {
4156 			btrfs_abort_transaction(trans, root, ret);
4157 			goto out;
4158 		}
4159 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4160 						 name, name_len);
4161 		if (IS_ERR_OR_NULL(di)) {
4162 			if (!di)
4163 				ret = -ENOENT;
4164 			else
4165 				ret = PTR_ERR(di);
4166 			btrfs_abort_transaction(trans, root, ret);
4167 			goto out;
4168 		}
4169 
4170 		leaf = path->nodes[0];
4171 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4172 		btrfs_release_path(path);
4173 		index = key.offset;
4174 	}
4175 	btrfs_release_path(path);
4176 
4177 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4178 	if (ret) {
4179 		btrfs_abort_transaction(trans, root, ret);
4180 		goto out;
4181 	}
4182 
4183 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4184 	inode_inc_iversion(dir);
4185 	dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4186 	ret = btrfs_update_inode_fallback(trans, root, dir);
4187 	if (ret)
4188 		btrfs_abort_transaction(trans, root, ret);
4189 out:
4190 	btrfs_free_path(path);
4191 	return ret;
4192 }
4193 
4194 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4195 {
4196 	struct inode *inode = d_inode(dentry);
4197 	int err = 0;
4198 	struct btrfs_root *root = BTRFS_I(dir)->root;
4199 	struct btrfs_trans_handle *trans;
4200 
4201 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4202 		return -ENOTEMPTY;
4203 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4204 		return -EPERM;
4205 
4206 	trans = __unlink_start_trans(dir);
4207 	if (IS_ERR(trans))
4208 		return PTR_ERR(trans);
4209 
4210 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4211 		err = btrfs_unlink_subvol(trans, root, dir,
4212 					  BTRFS_I(inode)->location.objectid,
4213 					  dentry->d_name.name,
4214 					  dentry->d_name.len);
4215 		goto out;
4216 	}
4217 
4218 	err = btrfs_orphan_add(trans, inode);
4219 	if (err)
4220 		goto out;
4221 
4222 	/* now the directory is empty */
4223 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4224 				 dentry->d_name.name, dentry->d_name.len);
4225 	if (!err)
4226 		btrfs_i_size_write(inode, 0);
4227 out:
4228 	btrfs_end_transaction(trans, root);
4229 	btrfs_btree_balance_dirty(root);
4230 
4231 	return err;
4232 }
4233 
4234 static int truncate_space_check(struct btrfs_trans_handle *trans,
4235 				struct btrfs_root *root,
4236 				u64 bytes_deleted)
4237 {
4238 	int ret;
4239 
4240 	/*
4241 	 * This is only used to apply pressure to the enospc system, we don't
4242 	 * intend to use this reservation at all.
4243 	 */
4244 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4245 	bytes_deleted *= root->nodesize;
4246 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4247 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4248 	if (!ret) {
4249 		trace_btrfs_space_reservation(root->fs_info, "transaction",
4250 					      trans->transid,
4251 					      bytes_deleted, 1);
4252 		trans->bytes_reserved += bytes_deleted;
4253 	}
4254 	return ret;
4255 
4256 }
4257 
4258 static int truncate_inline_extent(struct inode *inode,
4259 				  struct btrfs_path *path,
4260 				  struct btrfs_key *found_key,
4261 				  const u64 item_end,
4262 				  const u64 new_size)
4263 {
4264 	struct extent_buffer *leaf = path->nodes[0];
4265 	int slot = path->slots[0];
4266 	struct btrfs_file_extent_item *fi;
4267 	u32 size = (u32)(new_size - found_key->offset);
4268 	struct btrfs_root *root = BTRFS_I(inode)->root;
4269 
4270 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4271 
4272 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4273 		loff_t offset = new_size;
4274 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4275 
4276 		/*
4277 		 * Zero out the remaining of the last page of our inline extent,
4278 		 * instead of directly truncating our inline extent here - that
4279 		 * would be much more complex (decompressing all the data, then
4280 		 * compressing the truncated data, which might be bigger than
4281 		 * the size of the inline extent, resize the extent, etc).
4282 		 * We release the path because to get the page we might need to
4283 		 * read the extent item from disk (data not in the page cache).
4284 		 */
4285 		btrfs_release_path(path);
4286 		return btrfs_truncate_block(inode, offset, page_end - offset,
4287 					0);
4288 	}
4289 
4290 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4291 	size = btrfs_file_extent_calc_inline_size(size);
4292 	btrfs_truncate_item(root, path, size, 1);
4293 
4294 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4295 		inode_sub_bytes(inode, item_end + 1 - new_size);
4296 
4297 	return 0;
4298 }
4299 
4300 /*
4301  * this can truncate away extent items, csum items and directory items.
4302  * It starts at a high offset and removes keys until it can't find
4303  * any higher than new_size
4304  *
4305  * csum items that cross the new i_size are truncated to the new size
4306  * as well.
4307  *
4308  * min_type is the minimum key type to truncate down to.  If set to 0, this
4309  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4310  */
4311 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4312 			       struct btrfs_root *root,
4313 			       struct inode *inode,
4314 			       u64 new_size, u32 min_type)
4315 {
4316 	struct btrfs_path *path;
4317 	struct extent_buffer *leaf;
4318 	struct btrfs_file_extent_item *fi;
4319 	struct btrfs_key key;
4320 	struct btrfs_key found_key;
4321 	u64 extent_start = 0;
4322 	u64 extent_num_bytes = 0;
4323 	u64 extent_offset = 0;
4324 	u64 item_end = 0;
4325 	u64 last_size = new_size;
4326 	u32 found_type = (u8)-1;
4327 	int found_extent;
4328 	int del_item;
4329 	int pending_del_nr = 0;
4330 	int pending_del_slot = 0;
4331 	int extent_type = -1;
4332 	int ret;
4333 	int err = 0;
4334 	u64 ino = btrfs_ino(inode);
4335 	u64 bytes_deleted = 0;
4336 	bool be_nice = 0;
4337 	bool should_throttle = 0;
4338 	bool should_end = 0;
4339 
4340 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4341 
4342 	/*
4343 	 * for non-free space inodes and ref cows, we want to back off from
4344 	 * time to time
4345 	 */
4346 	if (!btrfs_is_free_space_inode(inode) &&
4347 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4348 		be_nice = 1;
4349 
4350 	path = btrfs_alloc_path();
4351 	if (!path)
4352 		return -ENOMEM;
4353 	path->reada = READA_BACK;
4354 
4355 	/*
4356 	 * We want to drop from the next block forward in case this new size is
4357 	 * not block aligned since we will be keeping the last block of the
4358 	 * extent just the way it is.
4359 	 */
4360 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4361 	    root == root->fs_info->tree_root)
4362 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4363 					root->sectorsize), (u64)-1, 0);
4364 
4365 	/*
4366 	 * This function is also used to drop the items in the log tree before
4367 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4368 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4369 	 * items.
4370 	 */
4371 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4372 		btrfs_kill_delayed_inode_items(inode);
4373 
4374 	key.objectid = ino;
4375 	key.offset = (u64)-1;
4376 	key.type = (u8)-1;
4377 
4378 search_again:
4379 	/*
4380 	 * with a 16K leaf size and 128MB extents, you can actually queue
4381 	 * up a huge file in a single leaf.  Most of the time that
4382 	 * bytes_deleted is > 0, it will be huge by the time we get here
4383 	 */
4384 	if (be_nice && bytes_deleted > SZ_32M) {
4385 		if (btrfs_should_end_transaction(trans, root)) {
4386 			err = -EAGAIN;
4387 			goto error;
4388 		}
4389 	}
4390 
4391 
4392 	path->leave_spinning = 1;
4393 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4394 	if (ret < 0) {
4395 		err = ret;
4396 		goto out;
4397 	}
4398 
4399 	if (ret > 0) {
4400 		/* there are no items in the tree for us to truncate, we're
4401 		 * done
4402 		 */
4403 		if (path->slots[0] == 0)
4404 			goto out;
4405 		path->slots[0]--;
4406 	}
4407 
4408 	while (1) {
4409 		fi = NULL;
4410 		leaf = path->nodes[0];
4411 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4412 		found_type = found_key.type;
4413 
4414 		if (found_key.objectid != ino)
4415 			break;
4416 
4417 		if (found_type < min_type)
4418 			break;
4419 
4420 		item_end = found_key.offset;
4421 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4422 			fi = btrfs_item_ptr(leaf, path->slots[0],
4423 					    struct btrfs_file_extent_item);
4424 			extent_type = btrfs_file_extent_type(leaf, fi);
4425 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4426 				item_end +=
4427 				    btrfs_file_extent_num_bytes(leaf, fi);
4428 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4429 				item_end += btrfs_file_extent_inline_len(leaf,
4430 							 path->slots[0], fi);
4431 			}
4432 			item_end--;
4433 		}
4434 		if (found_type > min_type) {
4435 			del_item = 1;
4436 		} else {
4437 			if (item_end < new_size)
4438 				break;
4439 			if (found_key.offset >= new_size)
4440 				del_item = 1;
4441 			else
4442 				del_item = 0;
4443 		}
4444 		found_extent = 0;
4445 		/* FIXME, shrink the extent if the ref count is only 1 */
4446 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4447 			goto delete;
4448 
4449 		if (del_item)
4450 			last_size = found_key.offset;
4451 		else
4452 			last_size = new_size;
4453 
4454 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4455 			u64 num_dec;
4456 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4457 			if (!del_item) {
4458 				u64 orig_num_bytes =
4459 					btrfs_file_extent_num_bytes(leaf, fi);
4460 				extent_num_bytes = ALIGN(new_size -
4461 						found_key.offset,
4462 						root->sectorsize);
4463 				btrfs_set_file_extent_num_bytes(leaf, fi,
4464 							 extent_num_bytes);
4465 				num_dec = (orig_num_bytes -
4466 					   extent_num_bytes);
4467 				if (test_bit(BTRFS_ROOT_REF_COWS,
4468 					     &root->state) &&
4469 				    extent_start != 0)
4470 					inode_sub_bytes(inode, num_dec);
4471 				btrfs_mark_buffer_dirty(leaf);
4472 			} else {
4473 				extent_num_bytes =
4474 					btrfs_file_extent_disk_num_bytes(leaf,
4475 									 fi);
4476 				extent_offset = found_key.offset -
4477 					btrfs_file_extent_offset(leaf, fi);
4478 
4479 				/* FIXME blocksize != 4096 */
4480 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4481 				if (extent_start != 0) {
4482 					found_extent = 1;
4483 					if (test_bit(BTRFS_ROOT_REF_COWS,
4484 						     &root->state))
4485 						inode_sub_bytes(inode, num_dec);
4486 				}
4487 			}
4488 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4489 			/*
4490 			 * we can't truncate inline items that have had
4491 			 * special encodings
4492 			 */
4493 			if (!del_item &&
4494 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4495 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4496 
4497 				/*
4498 				 * Need to release path in order to truncate a
4499 				 * compressed extent. So delete any accumulated
4500 				 * extent items so far.
4501 				 */
4502 				if (btrfs_file_extent_compression(leaf, fi) !=
4503 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4504 					err = btrfs_del_items(trans, root, path,
4505 							      pending_del_slot,
4506 							      pending_del_nr);
4507 					if (err) {
4508 						btrfs_abort_transaction(trans,
4509 									root,
4510 									err);
4511 						goto error;
4512 					}
4513 					pending_del_nr = 0;
4514 				}
4515 
4516 				err = truncate_inline_extent(inode, path,
4517 							     &found_key,
4518 							     item_end,
4519 							     new_size);
4520 				if (err) {
4521 					btrfs_abort_transaction(trans,
4522 								root, err);
4523 					goto error;
4524 				}
4525 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4526 					    &root->state)) {
4527 				inode_sub_bytes(inode, item_end + 1 - new_size);
4528 			}
4529 		}
4530 delete:
4531 		if (del_item) {
4532 			if (!pending_del_nr) {
4533 				/* no pending yet, add ourselves */
4534 				pending_del_slot = path->slots[0];
4535 				pending_del_nr = 1;
4536 			} else if (pending_del_nr &&
4537 				   path->slots[0] + 1 == pending_del_slot) {
4538 				/* hop on the pending chunk */
4539 				pending_del_nr++;
4540 				pending_del_slot = path->slots[0];
4541 			} else {
4542 				BUG();
4543 			}
4544 		} else {
4545 			break;
4546 		}
4547 		should_throttle = 0;
4548 
4549 		if (found_extent &&
4550 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4551 		     root == root->fs_info->tree_root)) {
4552 			btrfs_set_path_blocking(path);
4553 			bytes_deleted += extent_num_bytes;
4554 			ret = btrfs_free_extent(trans, root, extent_start,
4555 						extent_num_bytes, 0,
4556 						btrfs_header_owner(leaf),
4557 						ino, extent_offset);
4558 			BUG_ON(ret);
4559 			if (btrfs_should_throttle_delayed_refs(trans, root))
4560 				btrfs_async_run_delayed_refs(root,
4561 							     trans->transid,
4562 					trans->delayed_ref_updates * 2, 0);
4563 			if (be_nice) {
4564 				if (truncate_space_check(trans, root,
4565 							 extent_num_bytes)) {
4566 					should_end = 1;
4567 				}
4568 				if (btrfs_should_throttle_delayed_refs(trans,
4569 								       root)) {
4570 					should_throttle = 1;
4571 				}
4572 			}
4573 		}
4574 
4575 		if (found_type == BTRFS_INODE_ITEM_KEY)
4576 			break;
4577 
4578 		if (path->slots[0] == 0 ||
4579 		    path->slots[0] != pending_del_slot ||
4580 		    should_throttle || should_end) {
4581 			if (pending_del_nr) {
4582 				ret = btrfs_del_items(trans, root, path,
4583 						pending_del_slot,
4584 						pending_del_nr);
4585 				if (ret) {
4586 					btrfs_abort_transaction(trans,
4587 								root, ret);
4588 					goto error;
4589 				}
4590 				pending_del_nr = 0;
4591 			}
4592 			btrfs_release_path(path);
4593 			if (should_throttle) {
4594 				unsigned long updates = trans->delayed_ref_updates;
4595 				if (updates) {
4596 					trans->delayed_ref_updates = 0;
4597 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4598 					if (ret && !err)
4599 						err = ret;
4600 				}
4601 			}
4602 			/*
4603 			 * if we failed to refill our space rsv, bail out
4604 			 * and let the transaction restart
4605 			 */
4606 			if (should_end) {
4607 				err = -EAGAIN;
4608 				goto error;
4609 			}
4610 			goto search_again;
4611 		} else {
4612 			path->slots[0]--;
4613 		}
4614 	}
4615 out:
4616 	if (pending_del_nr) {
4617 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4618 				      pending_del_nr);
4619 		if (ret)
4620 			btrfs_abort_transaction(trans, root, ret);
4621 	}
4622 error:
4623 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4624 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4625 
4626 	btrfs_free_path(path);
4627 
4628 	if (be_nice && bytes_deleted > SZ_32M) {
4629 		unsigned long updates = trans->delayed_ref_updates;
4630 		if (updates) {
4631 			trans->delayed_ref_updates = 0;
4632 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4633 			if (ret && !err)
4634 				err = ret;
4635 		}
4636 	}
4637 	return err;
4638 }
4639 
4640 /*
4641  * btrfs_truncate_block - read, zero a chunk and write a block
4642  * @inode - inode that we're zeroing
4643  * @from - the offset to start zeroing
4644  * @len - the length to zero, 0 to zero the entire range respective to the
4645  *	offset
4646  * @front - zero up to the offset instead of from the offset on
4647  *
4648  * This will find the block for the "from" offset and cow the block and zero the
4649  * part we want to zero.  This is used with truncate and hole punching.
4650  */
4651 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4652 			int front)
4653 {
4654 	struct address_space *mapping = inode->i_mapping;
4655 	struct btrfs_root *root = BTRFS_I(inode)->root;
4656 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4657 	struct btrfs_ordered_extent *ordered;
4658 	struct extent_state *cached_state = NULL;
4659 	char *kaddr;
4660 	u32 blocksize = root->sectorsize;
4661 	pgoff_t index = from >> PAGE_SHIFT;
4662 	unsigned offset = from & (blocksize - 1);
4663 	struct page *page;
4664 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4665 	int ret = 0;
4666 	u64 block_start;
4667 	u64 block_end;
4668 
4669 	if ((offset & (blocksize - 1)) == 0 &&
4670 	    (!len || ((len & (blocksize - 1)) == 0)))
4671 		goto out;
4672 
4673 	ret = btrfs_delalloc_reserve_space(inode,
4674 			round_down(from, blocksize), blocksize);
4675 	if (ret)
4676 		goto out;
4677 
4678 again:
4679 	page = find_or_create_page(mapping, index, mask);
4680 	if (!page) {
4681 		btrfs_delalloc_release_space(inode,
4682 				round_down(from, blocksize),
4683 				blocksize);
4684 		ret = -ENOMEM;
4685 		goto out;
4686 	}
4687 
4688 	block_start = round_down(from, blocksize);
4689 	block_end = block_start + blocksize - 1;
4690 
4691 	if (!PageUptodate(page)) {
4692 		ret = btrfs_readpage(NULL, page);
4693 		lock_page(page);
4694 		if (page->mapping != mapping) {
4695 			unlock_page(page);
4696 			put_page(page);
4697 			goto again;
4698 		}
4699 		if (!PageUptodate(page)) {
4700 			ret = -EIO;
4701 			goto out_unlock;
4702 		}
4703 	}
4704 	wait_on_page_writeback(page);
4705 
4706 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4707 	set_page_extent_mapped(page);
4708 
4709 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4710 	if (ordered) {
4711 		unlock_extent_cached(io_tree, block_start, block_end,
4712 				     &cached_state, GFP_NOFS);
4713 		unlock_page(page);
4714 		put_page(page);
4715 		btrfs_start_ordered_extent(inode, ordered, 1);
4716 		btrfs_put_ordered_extent(ordered);
4717 		goto again;
4718 	}
4719 
4720 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4721 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4722 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4723 			  0, 0, &cached_state, GFP_NOFS);
4724 
4725 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4726 					&cached_state);
4727 	if (ret) {
4728 		unlock_extent_cached(io_tree, block_start, block_end,
4729 				     &cached_state, GFP_NOFS);
4730 		goto out_unlock;
4731 	}
4732 
4733 	if (offset != blocksize) {
4734 		if (!len)
4735 			len = blocksize - offset;
4736 		kaddr = kmap(page);
4737 		if (front)
4738 			memset(kaddr + (block_start - page_offset(page)),
4739 				0, offset);
4740 		else
4741 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4742 				0, len);
4743 		flush_dcache_page(page);
4744 		kunmap(page);
4745 	}
4746 	ClearPageChecked(page);
4747 	set_page_dirty(page);
4748 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4749 			     GFP_NOFS);
4750 
4751 out_unlock:
4752 	if (ret)
4753 		btrfs_delalloc_release_space(inode, block_start,
4754 					     blocksize);
4755 	unlock_page(page);
4756 	put_page(page);
4757 out:
4758 	return ret;
4759 }
4760 
4761 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4762 			     u64 offset, u64 len)
4763 {
4764 	struct btrfs_trans_handle *trans;
4765 	int ret;
4766 
4767 	/*
4768 	 * Still need to make sure the inode looks like it's been updated so
4769 	 * that any holes get logged if we fsync.
4770 	 */
4771 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4772 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4773 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4774 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4775 		return 0;
4776 	}
4777 
4778 	/*
4779 	 * 1 - for the one we're dropping
4780 	 * 1 - for the one we're adding
4781 	 * 1 - for updating the inode.
4782 	 */
4783 	trans = btrfs_start_transaction(root, 3);
4784 	if (IS_ERR(trans))
4785 		return PTR_ERR(trans);
4786 
4787 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4788 	if (ret) {
4789 		btrfs_abort_transaction(trans, root, ret);
4790 		btrfs_end_transaction(trans, root);
4791 		return ret;
4792 	}
4793 
4794 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4795 				       0, 0, len, 0, len, 0, 0, 0);
4796 	if (ret)
4797 		btrfs_abort_transaction(trans, root, ret);
4798 	else
4799 		btrfs_update_inode(trans, root, inode);
4800 	btrfs_end_transaction(trans, root);
4801 	return ret;
4802 }
4803 
4804 /*
4805  * This function puts in dummy file extents for the area we're creating a hole
4806  * for.  So if we are truncating this file to a larger size we need to insert
4807  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4808  * the range between oldsize and size
4809  */
4810 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4811 {
4812 	struct btrfs_root *root = BTRFS_I(inode)->root;
4813 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4814 	struct extent_map *em = NULL;
4815 	struct extent_state *cached_state = NULL;
4816 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4817 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4818 	u64 block_end = ALIGN(size, root->sectorsize);
4819 	u64 last_byte;
4820 	u64 cur_offset;
4821 	u64 hole_size;
4822 	int err = 0;
4823 
4824 	/*
4825 	 * If our size started in the middle of a block we need to zero out the
4826 	 * rest of the block before we expand the i_size, otherwise we could
4827 	 * expose stale data.
4828 	 */
4829 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4830 	if (err)
4831 		return err;
4832 
4833 	if (size <= hole_start)
4834 		return 0;
4835 
4836 	while (1) {
4837 		struct btrfs_ordered_extent *ordered;
4838 
4839 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4840 				 &cached_state);
4841 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4842 						     block_end - hole_start);
4843 		if (!ordered)
4844 			break;
4845 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4846 				     &cached_state, GFP_NOFS);
4847 		btrfs_start_ordered_extent(inode, ordered, 1);
4848 		btrfs_put_ordered_extent(ordered);
4849 	}
4850 
4851 	cur_offset = hole_start;
4852 	while (1) {
4853 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4854 				block_end - cur_offset, 0);
4855 		if (IS_ERR(em)) {
4856 			err = PTR_ERR(em);
4857 			em = NULL;
4858 			break;
4859 		}
4860 		last_byte = min(extent_map_end(em), block_end);
4861 		last_byte = ALIGN(last_byte , root->sectorsize);
4862 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4863 			struct extent_map *hole_em;
4864 			hole_size = last_byte - cur_offset;
4865 
4866 			err = maybe_insert_hole(root, inode, cur_offset,
4867 						hole_size);
4868 			if (err)
4869 				break;
4870 			btrfs_drop_extent_cache(inode, cur_offset,
4871 						cur_offset + hole_size - 1, 0);
4872 			hole_em = alloc_extent_map();
4873 			if (!hole_em) {
4874 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4875 					&BTRFS_I(inode)->runtime_flags);
4876 				goto next;
4877 			}
4878 			hole_em->start = cur_offset;
4879 			hole_em->len = hole_size;
4880 			hole_em->orig_start = cur_offset;
4881 
4882 			hole_em->block_start = EXTENT_MAP_HOLE;
4883 			hole_em->block_len = 0;
4884 			hole_em->orig_block_len = 0;
4885 			hole_em->ram_bytes = hole_size;
4886 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4887 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4888 			hole_em->generation = root->fs_info->generation;
4889 
4890 			while (1) {
4891 				write_lock(&em_tree->lock);
4892 				err = add_extent_mapping(em_tree, hole_em, 1);
4893 				write_unlock(&em_tree->lock);
4894 				if (err != -EEXIST)
4895 					break;
4896 				btrfs_drop_extent_cache(inode, cur_offset,
4897 							cur_offset +
4898 							hole_size - 1, 0);
4899 			}
4900 			free_extent_map(hole_em);
4901 		}
4902 next:
4903 		free_extent_map(em);
4904 		em = NULL;
4905 		cur_offset = last_byte;
4906 		if (cur_offset >= block_end)
4907 			break;
4908 	}
4909 	free_extent_map(em);
4910 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4911 			     GFP_NOFS);
4912 	return err;
4913 }
4914 
4915 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4916 {
4917 	struct btrfs_root *root = BTRFS_I(inode)->root;
4918 	struct btrfs_trans_handle *trans;
4919 	loff_t oldsize = i_size_read(inode);
4920 	loff_t newsize = attr->ia_size;
4921 	int mask = attr->ia_valid;
4922 	int ret;
4923 
4924 	/*
4925 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4926 	 * special case where we need to update the times despite not having
4927 	 * these flags set.  For all other operations the VFS set these flags
4928 	 * explicitly if it wants a timestamp update.
4929 	 */
4930 	if (newsize != oldsize) {
4931 		inode_inc_iversion(inode);
4932 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4933 			inode->i_ctime = inode->i_mtime =
4934 				current_fs_time(inode->i_sb);
4935 	}
4936 
4937 	if (newsize > oldsize) {
4938 		/*
4939 		 * Don't do an expanding truncate while snapshoting is ongoing.
4940 		 * This is to ensure the snapshot captures a fully consistent
4941 		 * state of this file - if the snapshot captures this expanding
4942 		 * truncation, it must capture all writes that happened before
4943 		 * this truncation.
4944 		 */
4945 		btrfs_wait_for_snapshot_creation(root);
4946 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4947 		if (ret) {
4948 			btrfs_end_write_no_snapshoting(root);
4949 			return ret;
4950 		}
4951 
4952 		trans = btrfs_start_transaction(root, 1);
4953 		if (IS_ERR(trans)) {
4954 			btrfs_end_write_no_snapshoting(root);
4955 			return PTR_ERR(trans);
4956 		}
4957 
4958 		i_size_write(inode, newsize);
4959 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4960 		pagecache_isize_extended(inode, oldsize, newsize);
4961 		ret = btrfs_update_inode(trans, root, inode);
4962 		btrfs_end_write_no_snapshoting(root);
4963 		btrfs_end_transaction(trans, root);
4964 	} else {
4965 
4966 		/*
4967 		 * We're truncating a file that used to have good data down to
4968 		 * zero. Make sure it gets into the ordered flush list so that
4969 		 * any new writes get down to disk quickly.
4970 		 */
4971 		if (newsize == 0)
4972 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4973 				&BTRFS_I(inode)->runtime_flags);
4974 
4975 		/*
4976 		 * 1 for the orphan item we're going to add
4977 		 * 1 for the orphan item deletion.
4978 		 */
4979 		trans = btrfs_start_transaction(root, 2);
4980 		if (IS_ERR(trans))
4981 			return PTR_ERR(trans);
4982 
4983 		/*
4984 		 * We need to do this in case we fail at _any_ point during the
4985 		 * actual truncate.  Once we do the truncate_setsize we could
4986 		 * invalidate pages which forces any outstanding ordered io to
4987 		 * be instantly completed which will give us extents that need
4988 		 * to be truncated.  If we fail to get an orphan inode down we
4989 		 * could have left over extents that were never meant to live,
4990 		 * so we need to guarantee from this point on that everything
4991 		 * will be consistent.
4992 		 */
4993 		ret = btrfs_orphan_add(trans, inode);
4994 		btrfs_end_transaction(trans, root);
4995 		if (ret)
4996 			return ret;
4997 
4998 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4999 		truncate_setsize(inode, newsize);
5000 
5001 		/* Disable nonlocked read DIO to avoid the end less truncate */
5002 		btrfs_inode_block_unlocked_dio(inode);
5003 		inode_dio_wait(inode);
5004 		btrfs_inode_resume_unlocked_dio(inode);
5005 
5006 		ret = btrfs_truncate(inode);
5007 		if (ret && inode->i_nlink) {
5008 			int err;
5009 
5010 			/*
5011 			 * failed to truncate, disk_i_size is only adjusted down
5012 			 * as we remove extents, so it should represent the true
5013 			 * size of the inode, so reset the in memory size and
5014 			 * delete our orphan entry.
5015 			 */
5016 			trans = btrfs_join_transaction(root);
5017 			if (IS_ERR(trans)) {
5018 				btrfs_orphan_del(NULL, inode);
5019 				return ret;
5020 			}
5021 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5022 			err = btrfs_orphan_del(trans, inode);
5023 			if (err)
5024 				btrfs_abort_transaction(trans, root, err);
5025 			btrfs_end_transaction(trans, root);
5026 		}
5027 	}
5028 
5029 	return ret;
5030 }
5031 
5032 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5033 {
5034 	struct inode *inode = d_inode(dentry);
5035 	struct btrfs_root *root = BTRFS_I(inode)->root;
5036 	int err;
5037 
5038 	if (btrfs_root_readonly(root))
5039 		return -EROFS;
5040 
5041 	err = inode_change_ok(inode, attr);
5042 	if (err)
5043 		return err;
5044 
5045 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5046 		err = btrfs_setsize(inode, attr);
5047 		if (err)
5048 			return err;
5049 	}
5050 
5051 	if (attr->ia_valid) {
5052 		setattr_copy(inode, attr);
5053 		inode_inc_iversion(inode);
5054 		err = btrfs_dirty_inode(inode);
5055 
5056 		if (!err && attr->ia_valid & ATTR_MODE)
5057 			err = posix_acl_chmod(inode, inode->i_mode);
5058 	}
5059 
5060 	return err;
5061 }
5062 
5063 /*
5064  * While truncating the inode pages during eviction, we get the VFS calling
5065  * btrfs_invalidatepage() against each page of the inode. This is slow because
5066  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5067  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5068  * extent_state structures over and over, wasting lots of time.
5069  *
5070  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5071  * those expensive operations on a per page basis and do only the ordered io
5072  * finishing, while we release here the extent_map and extent_state structures,
5073  * without the excessive merging and splitting.
5074  */
5075 static void evict_inode_truncate_pages(struct inode *inode)
5076 {
5077 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5078 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5079 	struct rb_node *node;
5080 
5081 	ASSERT(inode->i_state & I_FREEING);
5082 	truncate_inode_pages_final(&inode->i_data);
5083 
5084 	write_lock(&map_tree->lock);
5085 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5086 		struct extent_map *em;
5087 
5088 		node = rb_first(&map_tree->map);
5089 		em = rb_entry(node, struct extent_map, rb_node);
5090 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5091 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5092 		remove_extent_mapping(map_tree, em);
5093 		free_extent_map(em);
5094 		if (need_resched()) {
5095 			write_unlock(&map_tree->lock);
5096 			cond_resched();
5097 			write_lock(&map_tree->lock);
5098 		}
5099 	}
5100 	write_unlock(&map_tree->lock);
5101 
5102 	/*
5103 	 * Keep looping until we have no more ranges in the io tree.
5104 	 * We can have ongoing bios started by readpages (called from readahead)
5105 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5106 	 * still in progress (unlocked the pages in the bio but did not yet
5107 	 * unlocked the ranges in the io tree). Therefore this means some
5108 	 * ranges can still be locked and eviction started because before
5109 	 * submitting those bios, which are executed by a separate task (work
5110 	 * queue kthread), inode references (inode->i_count) were not taken
5111 	 * (which would be dropped in the end io callback of each bio).
5112 	 * Therefore here we effectively end up waiting for those bios and
5113 	 * anyone else holding locked ranges without having bumped the inode's
5114 	 * reference count - if we don't do it, when they access the inode's
5115 	 * io_tree to unlock a range it may be too late, leading to an
5116 	 * use-after-free issue.
5117 	 */
5118 	spin_lock(&io_tree->lock);
5119 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5120 		struct extent_state *state;
5121 		struct extent_state *cached_state = NULL;
5122 		u64 start;
5123 		u64 end;
5124 
5125 		node = rb_first(&io_tree->state);
5126 		state = rb_entry(node, struct extent_state, rb_node);
5127 		start = state->start;
5128 		end = state->end;
5129 		spin_unlock(&io_tree->lock);
5130 
5131 		lock_extent_bits(io_tree, start, end, &cached_state);
5132 
5133 		/*
5134 		 * If still has DELALLOC flag, the extent didn't reach disk,
5135 		 * and its reserved space won't be freed by delayed_ref.
5136 		 * So we need to free its reserved space here.
5137 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5138 		 *
5139 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5140 		 */
5141 		if (state->state & EXTENT_DELALLOC)
5142 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5143 
5144 		clear_extent_bit(io_tree, start, end,
5145 				 EXTENT_LOCKED | EXTENT_DIRTY |
5146 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5147 				 EXTENT_DEFRAG, 1, 1,
5148 				 &cached_state, GFP_NOFS);
5149 
5150 		cond_resched();
5151 		spin_lock(&io_tree->lock);
5152 	}
5153 	spin_unlock(&io_tree->lock);
5154 }
5155 
5156 void btrfs_evict_inode(struct inode *inode)
5157 {
5158 	struct btrfs_trans_handle *trans;
5159 	struct btrfs_root *root = BTRFS_I(inode)->root;
5160 	struct btrfs_block_rsv *rsv, *global_rsv;
5161 	int steal_from_global = 0;
5162 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5163 	int ret;
5164 
5165 	trace_btrfs_inode_evict(inode);
5166 
5167 	evict_inode_truncate_pages(inode);
5168 
5169 	if (inode->i_nlink &&
5170 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5171 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5172 	     btrfs_is_free_space_inode(inode)))
5173 		goto no_delete;
5174 
5175 	if (is_bad_inode(inode)) {
5176 		btrfs_orphan_del(NULL, inode);
5177 		goto no_delete;
5178 	}
5179 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5180 	if (!special_file(inode->i_mode))
5181 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5182 
5183 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5184 
5185 	if (root->fs_info->log_root_recovering) {
5186 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5187 				 &BTRFS_I(inode)->runtime_flags));
5188 		goto no_delete;
5189 	}
5190 
5191 	if (inode->i_nlink > 0) {
5192 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5193 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5194 		goto no_delete;
5195 	}
5196 
5197 	ret = btrfs_commit_inode_delayed_inode(inode);
5198 	if (ret) {
5199 		btrfs_orphan_del(NULL, inode);
5200 		goto no_delete;
5201 	}
5202 
5203 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5204 	if (!rsv) {
5205 		btrfs_orphan_del(NULL, inode);
5206 		goto no_delete;
5207 	}
5208 	rsv->size = min_size;
5209 	rsv->failfast = 1;
5210 	global_rsv = &root->fs_info->global_block_rsv;
5211 
5212 	btrfs_i_size_write(inode, 0);
5213 
5214 	/*
5215 	 * This is a bit simpler than btrfs_truncate since we've already
5216 	 * reserved our space for our orphan item in the unlink, so we just
5217 	 * need to reserve some slack space in case we add bytes and update
5218 	 * inode item when doing the truncate.
5219 	 */
5220 	while (1) {
5221 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5222 					     BTRFS_RESERVE_FLUSH_LIMIT);
5223 
5224 		/*
5225 		 * Try and steal from the global reserve since we will
5226 		 * likely not use this space anyway, we want to try as
5227 		 * hard as possible to get this to work.
5228 		 */
5229 		if (ret)
5230 			steal_from_global++;
5231 		else
5232 			steal_from_global = 0;
5233 		ret = 0;
5234 
5235 		/*
5236 		 * steal_from_global == 0: we reserved stuff, hooray!
5237 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5238 		 * steal_from_global == 2: we've committed, still not a lot of
5239 		 * room but maybe we'll have room in the global reserve this
5240 		 * time.
5241 		 * steal_from_global == 3: abandon all hope!
5242 		 */
5243 		if (steal_from_global > 2) {
5244 			btrfs_warn(root->fs_info,
5245 				"Could not get space for a delete, will truncate on mount %d",
5246 				ret);
5247 			btrfs_orphan_del(NULL, inode);
5248 			btrfs_free_block_rsv(root, rsv);
5249 			goto no_delete;
5250 		}
5251 
5252 		trans = btrfs_join_transaction(root);
5253 		if (IS_ERR(trans)) {
5254 			btrfs_orphan_del(NULL, inode);
5255 			btrfs_free_block_rsv(root, rsv);
5256 			goto no_delete;
5257 		}
5258 
5259 		/*
5260 		 * We can't just steal from the global reserve, we need to make
5261 		 * sure there is room to do it, if not we need to commit and try
5262 		 * again.
5263 		 */
5264 		if (steal_from_global) {
5265 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5266 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5267 							      min_size);
5268 			else
5269 				ret = -ENOSPC;
5270 		}
5271 
5272 		/*
5273 		 * Couldn't steal from the global reserve, we have too much
5274 		 * pending stuff built up, commit the transaction and try it
5275 		 * again.
5276 		 */
5277 		if (ret) {
5278 			ret = btrfs_commit_transaction(trans, root);
5279 			if (ret) {
5280 				btrfs_orphan_del(NULL, inode);
5281 				btrfs_free_block_rsv(root, rsv);
5282 				goto no_delete;
5283 			}
5284 			continue;
5285 		} else {
5286 			steal_from_global = 0;
5287 		}
5288 
5289 		trans->block_rsv = rsv;
5290 
5291 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5292 		if (ret != -ENOSPC && ret != -EAGAIN)
5293 			break;
5294 
5295 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5296 		btrfs_end_transaction(trans, root);
5297 		trans = NULL;
5298 		btrfs_btree_balance_dirty(root);
5299 	}
5300 
5301 	btrfs_free_block_rsv(root, rsv);
5302 
5303 	/*
5304 	 * Errors here aren't a big deal, it just means we leave orphan items
5305 	 * in the tree.  They will be cleaned up on the next mount.
5306 	 */
5307 	if (ret == 0) {
5308 		trans->block_rsv = root->orphan_block_rsv;
5309 		btrfs_orphan_del(trans, inode);
5310 	} else {
5311 		btrfs_orphan_del(NULL, inode);
5312 	}
5313 
5314 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5315 	if (!(root == root->fs_info->tree_root ||
5316 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5317 		btrfs_return_ino(root, btrfs_ino(inode));
5318 
5319 	btrfs_end_transaction(trans, root);
5320 	btrfs_btree_balance_dirty(root);
5321 no_delete:
5322 	btrfs_remove_delayed_node(inode);
5323 	clear_inode(inode);
5324 }
5325 
5326 /*
5327  * this returns the key found in the dir entry in the location pointer.
5328  * If no dir entries were found, location->objectid is 0.
5329  */
5330 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5331 			       struct btrfs_key *location)
5332 {
5333 	const char *name = dentry->d_name.name;
5334 	int namelen = dentry->d_name.len;
5335 	struct btrfs_dir_item *di;
5336 	struct btrfs_path *path;
5337 	struct btrfs_root *root = BTRFS_I(dir)->root;
5338 	int ret = 0;
5339 
5340 	path = btrfs_alloc_path();
5341 	if (!path)
5342 		return -ENOMEM;
5343 
5344 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5345 				    namelen, 0);
5346 	if (IS_ERR(di))
5347 		ret = PTR_ERR(di);
5348 
5349 	if (IS_ERR_OR_NULL(di))
5350 		goto out_err;
5351 
5352 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5353 out:
5354 	btrfs_free_path(path);
5355 	return ret;
5356 out_err:
5357 	location->objectid = 0;
5358 	goto out;
5359 }
5360 
5361 /*
5362  * when we hit a tree root in a directory, the btrfs part of the inode
5363  * needs to be changed to reflect the root directory of the tree root.  This
5364  * is kind of like crossing a mount point.
5365  */
5366 static int fixup_tree_root_location(struct btrfs_root *root,
5367 				    struct inode *dir,
5368 				    struct dentry *dentry,
5369 				    struct btrfs_key *location,
5370 				    struct btrfs_root **sub_root)
5371 {
5372 	struct btrfs_path *path;
5373 	struct btrfs_root *new_root;
5374 	struct btrfs_root_ref *ref;
5375 	struct extent_buffer *leaf;
5376 	struct btrfs_key key;
5377 	int ret;
5378 	int err = 0;
5379 
5380 	path = btrfs_alloc_path();
5381 	if (!path) {
5382 		err = -ENOMEM;
5383 		goto out;
5384 	}
5385 
5386 	err = -ENOENT;
5387 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5388 	key.type = BTRFS_ROOT_REF_KEY;
5389 	key.offset = location->objectid;
5390 
5391 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5392 				0, 0);
5393 	if (ret) {
5394 		if (ret < 0)
5395 			err = ret;
5396 		goto out;
5397 	}
5398 
5399 	leaf = path->nodes[0];
5400 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5401 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5402 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5403 		goto out;
5404 
5405 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5406 				   (unsigned long)(ref + 1),
5407 				   dentry->d_name.len);
5408 	if (ret)
5409 		goto out;
5410 
5411 	btrfs_release_path(path);
5412 
5413 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5414 	if (IS_ERR(new_root)) {
5415 		err = PTR_ERR(new_root);
5416 		goto out;
5417 	}
5418 
5419 	*sub_root = new_root;
5420 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5421 	location->type = BTRFS_INODE_ITEM_KEY;
5422 	location->offset = 0;
5423 	err = 0;
5424 out:
5425 	btrfs_free_path(path);
5426 	return err;
5427 }
5428 
5429 static void inode_tree_add(struct inode *inode)
5430 {
5431 	struct btrfs_root *root = BTRFS_I(inode)->root;
5432 	struct btrfs_inode *entry;
5433 	struct rb_node **p;
5434 	struct rb_node *parent;
5435 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5436 	u64 ino = btrfs_ino(inode);
5437 
5438 	if (inode_unhashed(inode))
5439 		return;
5440 	parent = NULL;
5441 	spin_lock(&root->inode_lock);
5442 	p = &root->inode_tree.rb_node;
5443 	while (*p) {
5444 		parent = *p;
5445 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5446 
5447 		if (ino < btrfs_ino(&entry->vfs_inode))
5448 			p = &parent->rb_left;
5449 		else if (ino > btrfs_ino(&entry->vfs_inode))
5450 			p = &parent->rb_right;
5451 		else {
5452 			WARN_ON(!(entry->vfs_inode.i_state &
5453 				  (I_WILL_FREE | I_FREEING)));
5454 			rb_replace_node(parent, new, &root->inode_tree);
5455 			RB_CLEAR_NODE(parent);
5456 			spin_unlock(&root->inode_lock);
5457 			return;
5458 		}
5459 	}
5460 	rb_link_node(new, parent, p);
5461 	rb_insert_color(new, &root->inode_tree);
5462 	spin_unlock(&root->inode_lock);
5463 }
5464 
5465 static void inode_tree_del(struct inode *inode)
5466 {
5467 	struct btrfs_root *root = BTRFS_I(inode)->root;
5468 	int empty = 0;
5469 
5470 	spin_lock(&root->inode_lock);
5471 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5472 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5473 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5474 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5475 	}
5476 	spin_unlock(&root->inode_lock);
5477 
5478 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5479 		synchronize_srcu(&root->fs_info->subvol_srcu);
5480 		spin_lock(&root->inode_lock);
5481 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5482 		spin_unlock(&root->inode_lock);
5483 		if (empty)
5484 			btrfs_add_dead_root(root);
5485 	}
5486 }
5487 
5488 void btrfs_invalidate_inodes(struct btrfs_root *root)
5489 {
5490 	struct rb_node *node;
5491 	struct rb_node *prev;
5492 	struct btrfs_inode *entry;
5493 	struct inode *inode;
5494 	u64 objectid = 0;
5495 
5496 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5497 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5498 
5499 	spin_lock(&root->inode_lock);
5500 again:
5501 	node = root->inode_tree.rb_node;
5502 	prev = NULL;
5503 	while (node) {
5504 		prev = node;
5505 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5506 
5507 		if (objectid < btrfs_ino(&entry->vfs_inode))
5508 			node = node->rb_left;
5509 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5510 			node = node->rb_right;
5511 		else
5512 			break;
5513 	}
5514 	if (!node) {
5515 		while (prev) {
5516 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5517 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5518 				node = prev;
5519 				break;
5520 			}
5521 			prev = rb_next(prev);
5522 		}
5523 	}
5524 	while (node) {
5525 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5526 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5527 		inode = igrab(&entry->vfs_inode);
5528 		if (inode) {
5529 			spin_unlock(&root->inode_lock);
5530 			if (atomic_read(&inode->i_count) > 1)
5531 				d_prune_aliases(inode);
5532 			/*
5533 			 * btrfs_drop_inode will have it removed from
5534 			 * the inode cache when its usage count
5535 			 * hits zero.
5536 			 */
5537 			iput(inode);
5538 			cond_resched();
5539 			spin_lock(&root->inode_lock);
5540 			goto again;
5541 		}
5542 
5543 		if (cond_resched_lock(&root->inode_lock))
5544 			goto again;
5545 
5546 		node = rb_next(node);
5547 	}
5548 	spin_unlock(&root->inode_lock);
5549 }
5550 
5551 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5552 {
5553 	struct btrfs_iget_args *args = p;
5554 	inode->i_ino = args->location->objectid;
5555 	memcpy(&BTRFS_I(inode)->location, args->location,
5556 	       sizeof(*args->location));
5557 	BTRFS_I(inode)->root = args->root;
5558 	return 0;
5559 }
5560 
5561 static int btrfs_find_actor(struct inode *inode, void *opaque)
5562 {
5563 	struct btrfs_iget_args *args = opaque;
5564 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5565 		args->root == BTRFS_I(inode)->root;
5566 }
5567 
5568 static struct inode *btrfs_iget_locked(struct super_block *s,
5569 				       struct btrfs_key *location,
5570 				       struct btrfs_root *root)
5571 {
5572 	struct inode *inode;
5573 	struct btrfs_iget_args args;
5574 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5575 
5576 	args.location = location;
5577 	args.root = root;
5578 
5579 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5580 			     btrfs_init_locked_inode,
5581 			     (void *)&args);
5582 	return inode;
5583 }
5584 
5585 /* Get an inode object given its location and corresponding root.
5586  * Returns in *is_new if the inode was read from disk
5587  */
5588 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5589 			 struct btrfs_root *root, int *new)
5590 {
5591 	struct inode *inode;
5592 
5593 	inode = btrfs_iget_locked(s, location, root);
5594 	if (!inode)
5595 		return ERR_PTR(-ENOMEM);
5596 
5597 	if (inode->i_state & I_NEW) {
5598 		btrfs_read_locked_inode(inode);
5599 		if (!is_bad_inode(inode)) {
5600 			inode_tree_add(inode);
5601 			unlock_new_inode(inode);
5602 			if (new)
5603 				*new = 1;
5604 		} else {
5605 			unlock_new_inode(inode);
5606 			iput(inode);
5607 			inode = ERR_PTR(-ESTALE);
5608 		}
5609 	}
5610 
5611 	return inode;
5612 }
5613 
5614 static struct inode *new_simple_dir(struct super_block *s,
5615 				    struct btrfs_key *key,
5616 				    struct btrfs_root *root)
5617 {
5618 	struct inode *inode = new_inode(s);
5619 
5620 	if (!inode)
5621 		return ERR_PTR(-ENOMEM);
5622 
5623 	BTRFS_I(inode)->root = root;
5624 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5625 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5626 
5627 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5628 	inode->i_op = &btrfs_dir_ro_inode_operations;
5629 	inode->i_fop = &simple_dir_operations;
5630 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5631 	inode->i_mtime = current_fs_time(inode->i_sb);
5632 	inode->i_atime = inode->i_mtime;
5633 	inode->i_ctime = inode->i_mtime;
5634 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5635 
5636 	return inode;
5637 }
5638 
5639 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5640 {
5641 	struct inode *inode;
5642 	struct btrfs_root *root = BTRFS_I(dir)->root;
5643 	struct btrfs_root *sub_root = root;
5644 	struct btrfs_key location;
5645 	int index;
5646 	int ret = 0;
5647 
5648 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5649 		return ERR_PTR(-ENAMETOOLONG);
5650 
5651 	ret = btrfs_inode_by_name(dir, dentry, &location);
5652 	if (ret < 0)
5653 		return ERR_PTR(ret);
5654 
5655 	if (location.objectid == 0)
5656 		return ERR_PTR(-ENOENT);
5657 
5658 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5659 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5660 		return inode;
5661 	}
5662 
5663 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5664 
5665 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5666 	ret = fixup_tree_root_location(root, dir, dentry,
5667 				       &location, &sub_root);
5668 	if (ret < 0) {
5669 		if (ret != -ENOENT)
5670 			inode = ERR_PTR(ret);
5671 		else
5672 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5673 	} else {
5674 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5675 	}
5676 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5677 
5678 	if (!IS_ERR(inode) && root != sub_root) {
5679 		down_read(&root->fs_info->cleanup_work_sem);
5680 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5681 			ret = btrfs_orphan_cleanup(sub_root);
5682 		up_read(&root->fs_info->cleanup_work_sem);
5683 		if (ret) {
5684 			iput(inode);
5685 			inode = ERR_PTR(ret);
5686 		}
5687 	}
5688 
5689 	return inode;
5690 }
5691 
5692 static int btrfs_dentry_delete(const struct dentry *dentry)
5693 {
5694 	struct btrfs_root *root;
5695 	struct inode *inode = d_inode(dentry);
5696 
5697 	if (!inode && !IS_ROOT(dentry))
5698 		inode = d_inode(dentry->d_parent);
5699 
5700 	if (inode) {
5701 		root = BTRFS_I(inode)->root;
5702 		if (btrfs_root_refs(&root->root_item) == 0)
5703 			return 1;
5704 
5705 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5706 			return 1;
5707 	}
5708 	return 0;
5709 }
5710 
5711 static void btrfs_dentry_release(struct dentry *dentry)
5712 {
5713 	kfree(dentry->d_fsdata);
5714 }
5715 
5716 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5717 				   unsigned int flags)
5718 {
5719 	struct inode *inode;
5720 
5721 	inode = btrfs_lookup_dentry(dir, dentry);
5722 	if (IS_ERR(inode)) {
5723 		if (PTR_ERR(inode) == -ENOENT)
5724 			inode = NULL;
5725 		else
5726 			return ERR_CAST(inode);
5727 	}
5728 
5729 	return d_splice_alias(inode, dentry);
5730 }
5731 
5732 unsigned char btrfs_filetype_table[] = {
5733 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5734 };
5735 
5736 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5737 {
5738 	struct inode *inode = file_inode(file);
5739 	struct btrfs_root *root = BTRFS_I(inode)->root;
5740 	struct btrfs_item *item;
5741 	struct btrfs_dir_item *di;
5742 	struct btrfs_key key;
5743 	struct btrfs_key found_key;
5744 	struct btrfs_path *path;
5745 	struct list_head ins_list;
5746 	struct list_head del_list;
5747 	int ret;
5748 	struct extent_buffer *leaf;
5749 	int slot;
5750 	unsigned char d_type;
5751 	int over = 0;
5752 	u32 di_cur;
5753 	u32 di_total;
5754 	u32 di_len;
5755 	int key_type = BTRFS_DIR_INDEX_KEY;
5756 	char tmp_name[32];
5757 	char *name_ptr;
5758 	int name_len;
5759 	int is_curr = 0;	/* ctx->pos points to the current index? */
5760 	bool emitted;
5761 	bool put = false;
5762 
5763 	/* FIXME, use a real flag for deciding about the key type */
5764 	if (root->fs_info->tree_root == root)
5765 		key_type = BTRFS_DIR_ITEM_KEY;
5766 
5767 	if (!dir_emit_dots(file, ctx))
5768 		return 0;
5769 
5770 	path = btrfs_alloc_path();
5771 	if (!path)
5772 		return -ENOMEM;
5773 
5774 	path->reada = READA_FORWARD;
5775 
5776 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5777 		INIT_LIST_HEAD(&ins_list);
5778 		INIT_LIST_HEAD(&del_list);
5779 		put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5780 						      &del_list);
5781 	}
5782 
5783 	key.type = key_type;
5784 	key.offset = ctx->pos;
5785 	key.objectid = btrfs_ino(inode);
5786 
5787 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5788 	if (ret < 0)
5789 		goto err;
5790 
5791 	emitted = false;
5792 	while (1) {
5793 		leaf = path->nodes[0];
5794 		slot = path->slots[0];
5795 		if (slot >= btrfs_header_nritems(leaf)) {
5796 			ret = btrfs_next_leaf(root, path);
5797 			if (ret < 0)
5798 				goto err;
5799 			else if (ret > 0)
5800 				break;
5801 			continue;
5802 		}
5803 
5804 		item = btrfs_item_nr(slot);
5805 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5806 
5807 		if (found_key.objectid != key.objectid)
5808 			break;
5809 		if (found_key.type != key_type)
5810 			break;
5811 		if (found_key.offset < ctx->pos)
5812 			goto next;
5813 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5814 		    btrfs_should_delete_dir_index(&del_list,
5815 						  found_key.offset))
5816 			goto next;
5817 
5818 		ctx->pos = found_key.offset;
5819 		is_curr = 1;
5820 
5821 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5822 		di_cur = 0;
5823 		di_total = btrfs_item_size(leaf, item);
5824 
5825 		while (di_cur < di_total) {
5826 			struct btrfs_key location;
5827 
5828 			if (verify_dir_item(root, leaf, di))
5829 				break;
5830 
5831 			name_len = btrfs_dir_name_len(leaf, di);
5832 			if (name_len <= sizeof(tmp_name)) {
5833 				name_ptr = tmp_name;
5834 			} else {
5835 				name_ptr = kmalloc(name_len, GFP_KERNEL);
5836 				if (!name_ptr) {
5837 					ret = -ENOMEM;
5838 					goto err;
5839 				}
5840 			}
5841 			read_extent_buffer(leaf, name_ptr,
5842 					   (unsigned long)(di + 1), name_len);
5843 
5844 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5845 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5846 
5847 
5848 			/* is this a reference to our own snapshot? If so
5849 			 * skip it.
5850 			 *
5851 			 * In contrast to old kernels, we insert the snapshot's
5852 			 * dir item and dir index after it has been created, so
5853 			 * we won't find a reference to our own snapshot. We
5854 			 * still keep the following code for backward
5855 			 * compatibility.
5856 			 */
5857 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5858 			    location.objectid == root->root_key.objectid) {
5859 				over = 0;
5860 				goto skip;
5861 			}
5862 			over = !dir_emit(ctx, name_ptr, name_len,
5863 				       location.objectid, d_type);
5864 
5865 skip:
5866 			if (name_ptr != tmp_name)
5867 				kfree(name_ptr);
5868 
5869 			if (over)
5870 				goto nopos;
5871 			emitted = true;
5872 			di_len = btrfs_dir_name_len(leaf, di) +
5873 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5874 			di_cur += di_len;
5875 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5876 		}
5877 next:
5878 		path->slots[0]++;
5879 	}
5880 
5881 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5882 		if (is_curr)
5883 			ctx->pos++;
5884 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5885 		if (ret)
5886 			goto nopos;
5887 	}
5888 
5889 	/*
5890 	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5891 	 * it was was set to the termination value in previous call. We assume
5892 	 * that "." and ".." were emitted if we reach this point and set the
5893 	 * termination value as well for an empty directory.
5894 	 */
5895 	if (ctx->pos > 2 && !emitted)
5896 		goto nopos;
5897 
5898 	/* Reached end of directory/root. Bump pos past the last item. */
5899 	ctx->pos++;
5900 
5901 	/*
5902 	 * Stop new entries from being returned after we return the last
5903 	 * entry.
5904 	 *
5905 	 * New directory entries are assigned a strictly increasing
5906 	 * offset.  This means that new entries created during readdir
5907 	 * are *guaranteed* to be seen in the future by that readdir.
5908 	 * This has broken buggy programs which operate on names as
5909 	 * they're returned by readdir.  Until we re-use freed offsets
5910 	 * we have this hack to stop new entries from being returned
5911 	 * under the assumption that they'll never reach this huge
5912 	 * offset.
5913 	 *
5914 	 * This is being careful not to overflow 32bit loff_t unless the
5915 	 * last entry requires it because doing so has broken 32bit apps
5916 	 * in the past.
5917 	 */
5918 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5919 		if (ctx->pos >= INT_MAX)
5920 			ctx->pos = LLONG_MAX;
5921 		else
5922 			ctx->pos = INT_MAX;
5923 	}
5924 nopos:
5925 	ret = 0;
5926 err:
5927 	if (put)
5928 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5929 	btrfs_free_path(path);
5930 	return ret;
5931 }
5932 
5933 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5934 {
5935 	struct btrfs_root *root = BTRFS_I(inode)->root;
5936 	struct btrfs_trans_handle *trans;
5937 	int ret = 0;
5938 	bool nolock = false;
5939 
5940 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5941 		return 0;
5942 
5943 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5944 		nolock = true;
5945 
5946 	if (wbc->sync_mode == WB_SYNC_ALL) {
5947 		if (nolock)
5948 			trans = btrfs_join_transaction_nolock(root);
5949 		else
5950 			trans = btrfs_join_transaction(root);
5951 		if (IS_ERR(trans))
5952 			return PTR_ERR(trans);
5953 		ret = btrfs_commit_transaction(trans, root);
5954 	}
5955 	return ret;
5956 }
5957 
5958 /*
5959  * This is somewhat expensive, updating the tree every time the
5960  * inode changes.  But, it is most likely to find the inode in cache.
5961  * FIXME, needs more benchmarking...there are no reasons other than performance
5962  * to keep or drop this code.
5963  */
5964 static int btrfs_dirty_inode(struct inode *inode)
5965 {
5966 	struct btrfs_root *root = BTRFS_I(inode)->root;
5967 	struct btrfs_trans_handle *trans;
5968 	int ret;
5969 
5970 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5971 		return 0;
5972 
5973 	trans = btrfs_join_transaction(root);
5974 	if (IS_ERR(trans))
5975 		return PTR_ERR(trans);
5976 
5977 	ret = btrfs_update_inode(trans, root, inode);
5978 	if (ret && ret == -ENOSPC) {
5979 		/* whoops, lets try again with the full transaction */
5980 		btrfs_end_transaction(trans, root);
5981 		trans = btrfs_start_transaction(root, 1);
5982 		if (IS_ERR(trans))
5983 			return PTR_ERR(trans);
5984 
5985 		ret = btrfs_update_inode(trans, root, inode);
5986 	}
5987 	btrfs_end_transaction(trans, root);
5988 	if (BTRFS_I(inode)->delayed_node)
5989 		btrfs_balance_delayed_items(root);
5990 
5991 	return ret;
5992 }
5993 
5994 /*
5995  * This is a copy of file_update_time.  We need this so we can return error on
5996  * ENOSPC for updating the inode in the case of file write and mmap writes.
5997  */
5998 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5999 			     int flags)
6000 {
6001 	struct btrfs_root *root = BTRFS_I(inode)->root;
6002 
6003 	if (btrfs_root_readonly(root))
6004 		return -EROFS;
6005 
6006 	if (flags & S_VERSION)
6007 		inode_inc_iversion(inode);
6008 	if (flags & S_CTIME)
6009 		inode->i_ctime = *now;
6010 	if (flags & S_MTIME)
6011 		inode->i_mtime = *now;
6012 	if (flags & S_ATIME)
6013 		inode->i_atime = *now;
6014 	return btrfs_dirty_inode(inode);
6015 }
6016 
6017 /*
6018  * find the highest existing sequence number in a directory
6019  * and then set the in-memory index_cnt variable to reflect
6020  * free sequence numbers
6021  */
6022 static int btrfs_set_inode_index_count(struct inode *inode)
6023 {
6024 	struct btrfs_root *root = BTRFS_I(inode)->root;
6025 	struct btrfs_key key, found_key;
6026 	struct btrfs_path *path;
6027 	struct extent_buffer *leaf;
6028 	int ret;
6029 
6030 	key.objectid = btrfs_ino(inode);
6031 	key.type = BTRFS_DIR_INDEX_KEY;
6032 	key.offset = (u64)-1;
6033 
6034 	path = btrfs_alloc_path();
6035 	if (!path)
6036 		return -ENOMEM;
6037 
6038 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6039 	if (ret < 0)
6040 		goto out;
6041 	/* FIXME: we should be able to handle this */
6042 	if (ret == 0)
6043 		goto out;
6044 	ret = 0;
6045 
6046 	/*
6047 	 * MAGIC NUMBER EXPLANATION:
6048 	 * since we search a directory based on f_pos we have to start at 2
6049 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6050 	 * else has to start at 2
6051 	 */
6052 	if (path->slots[0] == 0) {
6053 		BTRFS_I(inode)->index_cnt = 2;
6054 		goto out;
6055 	}
6056 
6057 	path->slots[0]--;
6058 
6059 	leaf = path->nodes[0];
6060 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6061 
6062 	if (found_key.objectid != btrfs_ino(inode) ||
6063 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6064 		BTRFS_I(inode)->index_cnt = 2;
6065 		goto out;
6066 	}
6067 
6068 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6069 out:
6070 	btrfs_free_path(path);
6071 	return ret;
6072 }
6073 
6074 /*
6075  * helper to find a free sequence number in a given directory.  This current
6076  * code is very simple, later versions will do smarter things in the btree
6077  */
6078 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6079 {
6080 	int ret = 0;
6081 
6082 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6083 		ret = btrfs_inode_delayed_dir_index_count(dir);
6084 		if (ret) {
6085 			ret = btrfs_set_inode_index_count(dir);
6086 			if (ret)
6087 				return ret;
6088 		}
6089 	}
6090 
6091 	*index = BTRFS_I(dir)->index_cnt;
6092 	BTRFS_I(dir)->index_cnt++;
6093 
6094 	return ret;
6095 }
6096 
6097 static int btrfs_insert_inode_locked(struct inode *inode)
6098 {
6099 	struct btrfs_iget_args args;
6100 	args.location = &BTRFS_I(inode)->location;
6101 	args.root = BTRFS_I(inode)->root;
6102 
6103 	return insert_inode_locked4(inode,
6104 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6105 		   btrfs_find_actor, &args);
6106 }
6107 
6108 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6109 				     struct btrfs_root *root,
6110 				     struct inode *dir,
6111 				     const char *name, int name_len,
6112 				     u64 ref_objectid, u64 objectid,
6113 				     umode_t mode, u64 *index)
6114 {
6115 	struct inode *inode;
6116 	struct btrfs_inode_item *inode_item;
6117 	struct btrfs_key *location;
6118 	struct btrfs_path *path;
6119 	struct btrfs_inode_ref *ref;
6120 	struct btrfs_key key[2];
6121 	u32 sizes[2];
6122 	int nitems = name ? 2 : 1;
6123 	unsigned long ptr;
6124 	int ret;
6125 
6126 	path = btrfs_alloc_path();
6127 	if (!path)
6128 		return ERR_PTR(-ENOMEM);
6129 
6130 	inode = new_inode(root->fs_info->sb);
6131 	if (!inode) {
6132 		btrfs_free_path(path);
6133 		return ERR_PTR(-ENOMEM);
6134 	}
6135 
6136 	/*
6137 	 * O_TMPFILE, set link count to 0, so that after this point,
6138 	 * we fill in an inode item with the correct link count.
6139 	 */
6140 	if (!name)
6141 		set_nlink(inode, 0);
6142 
6143 	/*
6144 	 * we have to initialize this early, so we can reclaim the inode
6145 	 * number if we fail afterwards in this function.
6146 	 */
6147 	inode->i_ino = objectid;
6148 
6149 	if (dir && name) {
6150 		trace_btrfs_inode_request(dir);
6151 
6152 		ret = btrfs_set_inode_index(dir, index);
6153 		if (ret) {
6154 			btrfs_free_path(path);
6155 			iput(inode);
6156 			return ERR_PTR(ret);
6157 		}
6158 	} else if (dir) {
6159 		*index = 0;
6160 	}
6161 	/*
6162 	 * index_cnt is ignored for everything but a dir,
6163 	 * btrfs_get_inode_index_count has an explanation for the magic
6164 	 * number
6165 	 */
6166 	BTRFS_I(inode)->index_cnt = 2;
6167 	BTRFS_I(inode)->dir_index = *index;
6168 	BTRFS_I(inode)->root = root;
6169 	BTRFS_I(inode)->generation = trans->transid;
6170 	inode->i_generation = BTRFS_I(inode)->generation;
6171 
6172 	/*
6173 	 * We could have gotten an inode number from somebody who was fsynced
6174 	 * and then removed in this same transaction, so let's just set full
6175 	 * sync since it will be a full sync anyway and this will blow away the
6176 	 * old info in the log.
6177 	 */
6178 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6179 
6180 	key[0].objectid = objectid;
6181 	key[0].type = BTRFS_INODE_ITEM_KEY;
6182 	key[0].offset = 0;
6183 
6184 	sizes[0] = sizeof(struct btrfs_inode_item);
6185 
6186 	if (name) {
6187 		/*
6188 		 * Start new inodes with an inode_ref. This is slightly more
6189 		 * efficient for small numbers of hard links since they will
6190 		 * be packed into one item. Extended refs will kick in if we
6191 		 * add more hard links than can fit in the ref item.
6192 		 */
6193 		key[1].objectid = objectid;
6194 		key[1].type = BTRFS_INODE_REF_KEY;
6195 		key[1].offset = ref_objectid;
6196 
6197 		sizes[1] = name_len + sizeof(*ref);
6198 	}
6199 
6200 	location = &BTRFS_I(inode)->location;
6201 	location->objectid = objectid;
6202 	location->offset = 0;
6203 	location->type = BTRFS_INODE_ITEM_KEY;
6204 
6205 	ret = btrfs_insert_inode_locked(inode);
6206 	if (ret < 0)
6207 		goto fail;
6208 
6209 	path->leave_spinning = 1;
6210 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6211 	if (ret != 0)
6212 		goto fail_unlock;
6213 
6214 	inode_init_owner(inode, dir, mode);
6215 	inode_set_bytes(inode, 0);
6216 
6217 	inode->i_mtime = current_fs_time(inode->i_sb);
6218 	inode->i_atime = inode->i_mtime;
6219 	inode->i_ctime = inode->i_mtime;
6220 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6221 
6222 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6223 				  struct btrfs_inode_item);
6224 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6225 			     sizeof(*inode_item));
6226 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6227 
6228 	if (name) {
6229 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6230 				     struct btrfs_inode_ref);
6231 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6232 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6233 		ptr = (unsigned long)(ref + 1);
6234 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6235 	}
6236 
6237 	btrfs_mark_buffer_dirty(path->nodes[0]);
6238 	btrfs_free_path(path);
6239 
6240 	btrfs_inherit_iflags(inode, dir);
6241 
6242 	if (S_ISREG(mode)) {
6243 		if (btrfs_test_opt(root, NODATASUM))
6244 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6245 		if (btrfs_test_opt(root, NODATACOW))
6246 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6247 				BTRFS_INODE_NODATASUM;
6248 	}
6249 
6250 	inode_tree_add(inode);
6251 
6252 	trace_btrfs_inode_new(inode);
6253 	btrfs_set_inode_last_trans(trans, inode);
6254 
6255 	btrfs_update_root_times(trans, root);
6256 
6257 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6258 	if (ret)
6259 		btrfs_err(root->fs_info,
6260 			  "error inheriting props for ino %llu (root %llu): %d",
6261 			  btrfs_ino(inode), root->root_key.objectid, ret);
6262 
6263 	return inode;
6264 
6265 fail_unlock:
6266 	unlock_new_inode(inode);
6267 fail:
6268 	if (dir && name)
6269 		BTRFS_I(dir)->index_cnt--;
6270 	btrfs_free_path(path);
6271 	iput(inode);
6272 	return ERR_PTR(ret);
6273 }
6274 
6275 static inline u8 btrfs_inode_type(struct inode *inode)
6276 {
6277 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6278 }
6279 
6280 /*
6281  * utility function to add 'inode' into 'parent_inode' with
6282  * a give name and a given sequence number.
6283  * if 'add_backref' is true, also insert a backref from the
6284  * inode to the parent directory.
6285  */
6286 int btrfs_add_link(struct btrfs_trans_handle *trans,
6287 		   struct inode *parent_inode, struct inode *inode,
6288 		   const char *name, int name_len, int add_backref, u64 index)
6289 {
6290 	int ret = 0;
6291 	struct btrfs_key key;
6292 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6293 	u64 ino = btrfs_ino(inode);
6294 	u64 parent_ino = btrfs_ino(parent_inode);
6295 
6296 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6297 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6298 	} else {
6299 		key.objectid = ino;
6300 		key.type = BTRFS_INODE_ITEM_KEY;
6301 		key.offset = 0;
6302 	}
6303 
6304 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6305 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6306 					 key.objectid, root->root_key.objectid,
6307 					 parent_ino, index, name, name_len);
6308 	} else if (add_backref) {
6309 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6310 					     parent_ino, index);
6311 	}
6312 
6313 	/* Nothing to clean up yet */
6314 	if (ret)
6315 		return ret;
6316 
6317 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6318 				    parent_inode, &key,
6319 				    btrfs_inode_type(inode), index);
6320 	if (ret == -EEXIST || ret == -EOVERFLOW)
6321 		goto fail_dir_item;
6322 	else if (ret) {
6323 		btrfs_abort_transaction(trans, root, ret);
6324 		return ret;
6325 	}
6326 
6327 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6328 			   name_len * 2);
6329 	inode_inc_iversion(parent_inode);
6330 	parent_inode->i_mtime = parent_inode->i_ctime =
6331 		current_fs_time(parent_inode->i_sb);
6332 	ret = btrfs_update_inode(trans, root, parent_inode);
6333 	if (ret)
6334 		btrfs_abort_transaction(trans, root, ret);
6335 	return ret;
6336 
6337 fail_dir_item:
6338 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6339 		u64 local_index;
6340 		int err;
6341 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6342 				 key.objectid, root->root_key.objectid,
6343 				 parent_ino, &local_index, name, name_len);
6344 
6345 	} else if (add_backref) {
6346 		u64 local_index;
6347 		int err;
6348 
6349 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6350 					  ino, parent_ino, &local_index);
6351 	}
6352 	return ret;
6353 }
6354 
6355 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6356 			    struct inode *dir, struct dentry *dentry,
6357 			    struct inode *inode, int backref, u64 index)
6358 {
6359 	int err = btrfs_add_link(trans, dir, inode,
6360 				 dentry->d_name.name, dentry->d_name.len,
6361 				 backref, index);
6362 	if (err > 0)
6363 		err = -EEXIST;
6364 	return err;
6365 }
6366 
6367 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6368 			umode_t mode, dev_t rdev)
6369 {
6370 	struct btrfs_trans_handle *trans;
6371 	struct btrfs_root *root = BTRFS_I(dir)->root;
6372 	struct inode *inode = NULL;
6373 	int err;
6374 	int drop_inode = 0;
6375 	u64 objectid;
6376 	u64 index = 0;
6377 
6378 	/*
6379 	 * 2 for inode item and ref
6380 	 * 2 for dir items
6381 	 * 1 for xattr if selinux is on
6382 	 */
6383 	trans = btrfs_start_transaction(root, 5);
6384 	if (IS_ERR(trans))
6385 		return PTR_ERR(trans);
6386 
6387 	err = btrfs_find_free_ino(root, &objectid);
6388 	if (err)
6389 		goto out_unlock;
6390 
6391 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6392 				dentry->d_name.len, btrfs_ino(dir), objectid,
6393 				mode, &index);
6394 	if (IS_ERR(inode)) {
6395 		err = PTR_ERR(inode);
6396 		goto out_unlock;
6397 	}
6398 
6399 	/*
6400 	* If the active LSM wants to access the inode during
6401 	* d_instantiate it needs these. Smack checks to see
6402 	* if the filesystem supports xattrs by looking at the
6403 	* ops vector.
6404 	*/
6405 	inode->i_op = &btrfs_special_inode_operations;
6406 	init_special_inode(inode, inode->i_mode, rdev);
6407 
6408 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6409 	if (err)
6410 		goto out_unlock_inode;
6411 
6412 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6413 	if (err) {
6414 		goto out_unlock_inode;
6415 	} else {
6416 		btrfs_update_inode(trans, root, inode);
6417 		unlock_new_inode(inode);
6418 		d_instantiate(dentry, inode);
6419 	}
6420 
6421 out_unlock:
6422 	btrfs_end_transaction(trans, root);
6423 	btrfs_balance_delayed_items(root);
6424 	btrfs_btree_balance_dirty(root);
6425 	if (drop_inode) {
6426 		inode_dec_link_count(inode);
6427 		iput(inode);
6428 	}
6429 	return err;
6430 
6431 out_unlock_inode:
6432 	drop_inode = 1;
6433 	unlock_new_inode(inode);
6434 	goto out_unlock;
6435 
6436 }
6437 
6438 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6439 			umode_t mode, bool excl)
6440 {
6441 	struct btrfs_trans_handle *trans;
6442 	struct btrfs_root *root = BTRFS_I(dir)->root;
6443 	struct inode *inode = NULL;
6444 	int drop_inode_on_err = 0;
6445 	int err;
6446 	u64 objectid;
6447 	u64 index = 0;
6448 
6449 	/*
6450 	 * 2 for inode item and ref
6451 	 * 2 for dir items
6452 	 * 1 for xattr if selinux is on
6453 	 */
6454 	trans = btrfs_start_transaction(root, 5);
6455 	if (IS_ERR(trans))
6456 		return PTR_ERR(trans);
6457 
6458 	err = btrfs_find_free_ino(root, &objectid);
6459 	if (err)
6460 		goto out_unlock;
6461 
6462 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6463 				dentry->d_name.len, btrfs_ino(dir), objectid,
6464 				mode, &index);
6465 	if (IS_ERR(inode)) {
6466 		err = PTR_ERR(inode);
6467 		goto out_unlock;
6468 	}
6469 	drop_inode_on_err = 1;
6470 	/*
6471 	* If the active LSM wants to access the inode during
6472 	* d_instantiate it needs these. Smack checks to see
6473 	* if the filesystem supports xattrs by looking at the
6474 	* ops vector.
6475 	*/
6476 	inode->i_fop = &btrfs_file_operations;
6477 	inode->i_op = &btrfs_file_inode_operations;
6478 	inode->i_mapping->a_ops = &btrfs_aops;
6479 
6480 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6481 	if (err)
6482 		goto out_unlock_inode;
6483 
6484 	err = btrfs_update_inode(trans, root, inode);
6485 	if (err)
6486 		goto out_unlock_inode;
6487 
6488 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6489 	if (err)
6490 		goto out_unlock_inode;
6491 
6492 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6493 	unlock_new_inode(inode);
6494 	d_instantiate(dentry, inode);
6495 
6496 out_unlock:
6497 	btrfs_end_transaction(trans, root);
6498 	if (err && drop_inode_on_err) {
6499 		inode_dec_link_count(inode);
6500 		iput(inode);
6501 	}
6502 	btrfs_balance_delayed_items(root);
6503 	btrfs_btree_balance_dirty(root);
6504 	return err;
6505 
6506 out_unlock_inode:
6507 	unlock_new_inode(inode);
6508 	goto out_unlock;
6509 
6510 }
6511 
6512 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6513 		      struct dentry *dentry)
6514 {
6515 	struct btrfs_trans_handle *trans = NULL;
6516 	struct btrfs_root *root = BTRFS_I(dir)->root;
6517 	struct inode *inode = d_inode(old_dentry);
6518 	u64 index;
6519 	int err;
6520 	int drop_inode = 0;
6521 
6522 	/* do not allow sys_link's with other subvols of the same device */
6523 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6524 		return -EXDEV;
6525 
6526 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6527 		return -EMLINK;
6528 
6529 	err = btrfs_set_inode_index(dir, &index);
6530 	if (err)
6531 		goto fail;
6532 
6533 	/*
6534 	 * 2 items for inode and inode ref
6535 	 * 2 items for dir items
6536 	 * 1 item for parent inode
6537 	 */
6538 	trans = btrfs_start_transaction(root, 5);
6539 	if (IS_ERR(trans)) {
6540 		err = PTR_ERR(trans);
6541 		trans = NULL;
6542 		goto fail;
6543 	}
6544 
6545 	/* There are several dir indexes for this inode, clear the cache. */
6546 	BTRFS_I(inode)->dir_index = 0ULL;
6547 	inc_nlink(inode);
6548 	inode_inc_iversion(inode);
6549 	inode->i_ctime = current_fs_time(inode->i_sb);
6550 	ihold(inode);
6551 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6552 
6553 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6554 
6555 	if (err) {
6556 		drop_inode = 1;
6557 	} else {
6558 		struct dentry *parent = dentry->d_parent;
6559 		err = btrfs_update_inode(trans, root, inode);
6560 		if (err)
6561 			goto fail;
6562 		if (inode->i_nlink == 1) {
6563 			/*
6564 			 * If new hard link count is 1, it's a file created
6565 			 * with open(2) O_TMPFILE flag.
6566 			 */
6567 			err = btrfs_orphan_del(trans, inode);
6568 			if (err)
6569 				goto fail;
6570 		}
6571 		d_instantiate(dentry, inode);
6572 		btrfs_log_new_name(trans, inode, NULL, parent);
6573 	}
6574 
6575 	btrfs_balance_delayed_items(root);
6576 fail:
6577 	if (trans)
6578 		btrfs_end_transaction(trans, root);
6579 	if (drop_inode) {
6580 		inode_dec_link_count(inode);
6581 		iput(inode);
6582 	}
6583 	btrfs_btree_balance_dirty(root);
6584 	return err;
6585 }
6586 
6587 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6588 {
6589 	struct inode *inode = NULL;
6590 	struct btrfs_trans_handle *trans;
6591 	struct btrfs_root *root = BTRFS_I(dir)->root;
6592 	int err = 0;
6593 	int drop_on_err = 0;
6594 	u64 objectid = 0;
6595 	u64 index = 0;
6596 
6597 	/*
6598 	 * 2 items for inode and ref
6599 	 * 2 items for dir items
6600 	 * 1 for xattr if selinux is on
6601 	 */
6602 	trans = btrfs_start_transaction(root, 5);
6603 	if (IS_ERR(trans))
6604 		return PTR_ERR(trans);
6605 
6606 	err = btrfs_find_free_ino(root, &objectid);
6607 	if (err)
6608 		goto out_fail;
6609 
6610 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6611 				dentry->d_name.len, btrfs_ino(dir), objectid,
6612 				S_IFDIR | mode, &index);
6613 	if (IS_ERR(inode)) {
6614 		err = PTR_ERR(inode);
6615 		goto out_fail;
6616 	}
6617 
6618 	drop_on_err = 1;
6619 	/* these must be set before we unlock the inode */
6620 	inode->i_op = &btrfs_dir_inode_operations;
6621 	inode->i_fop = &btrfs_dir_file_operations;
6622 
6623 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6624 	if (err)
6625 		goto out_fail_inode;
6626 
6627 	btrfs_i_size_write(inode, 0);
6628 	err = btrfs_update_inode(trans, root, inode);
6629 	if (err)
6630 		goto out_fail_inode;
6631 
6632 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6633 			     dentry->d_name.len, 0, index);
6634 	if (err)
6635 		goto out_fail_inode;
6636 
6637 	d_instantiate(dentry, inode);
6638 	/*
6639 	 * mkdir is special.  We're unlocking after we call d_instantiate
6640 	 * to avoid a race with nfsd calling d_instantiate.
6641 	 */
6642 	unlock_new_inode(inode);
6643 	drop_on_err = 0;
6644 
6645 out_fail:
6646 	btrfs_end_transaction(trans, root);
6647 	if (drop_on_err) {
6648 		inode_dec_link_count(inode);
6649 		iput(inode);
6650 	}
6651 	btrfs_balance_delayed_items(root);
6652 	btrfs_btree_balance_dirty(root);
6653 	return err;
6654 
6655 out_fail_inode:
6656 	unlock_new_inode(inode);
6657 	goto out_fail;
6658 }
6659 
6660 /* Find next extent map of a given extent map, caller needs to ensure locks */
6661 static struct extent_map *next_extent_map(struct extent_map *em)
6662 {
6663 	struct rb_node *next;
6664 
6665 	next = rb_next(&em->rb_node);
6666 	if (!next)
6667 		return NULL;
6668 	return container_of(next, struct extent_map, rb_node);
6669 }
6670 
6671 static struct extent_map *prev_extent_map(struct extent_map *em)
6672 {
6673 	struct rb_node *prev;
6674 
6675 	prev = rb_prev(&em->rb_node);
6676 	if (!prev)
6677 		return NULL;
6678 	return container_of(prev, struct extent_map, rb_node);
6679 }
6680 
6681 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6682  * the existing extent is the nearest extent to map_start,
6683  * and an extent that you want to insert, deal with overlap and insert
6684  * the best fitted new extent into the tree.
6685  */
6686 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6687 				struct extent_map *existing,
6688 				struct extent_map *em,
6689 				u64 map_start)
6690 {
6691 	struct extent_map *prev;
6692 	struct extent_map *next;
6693 	u64 start;
6694 	u64 end;
6695 	u64 start_diff;
6696 
6697 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6698 
6699 	if (existing->start > map_start) {
6700 		next = existing;
6701 		prev = prev_extent_map(next);
6702 	} else {
6703 		prev = existing;
6704 		next = next_extent_map(prev);
6705 	}
6706 
6707 	start = prev ? extent_map_end(prev) : em->start;
6708 	start = max_t(u64, start, em->start);
6709 	end = next ? next->start : extent_map_end(em);
6710 	end = min_t(u64, end, extent_map_end(em));
6711 	start_diff = start - em->start;
6712 	em->start = start;
6713 	em->len = end - start;
6714 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6715 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6716 		em->block_start += start_diff;
6717 		em->block_len -= start_diff;
6718 	}
6719 	return add_extent_mapping(em_tree, em, 0);
6720 }
6721 
6722 static noinline int uncompress_inline(struct btrfs_path *path,
6723 				      struct page *page,
6724 				      size_t pg_offset, u64 extent_offset,
6725 				      struct btrfs_file_extent_item *item)
6726 {
6727 	int ret;
6728 	struct extent_buffer *leaf = path->nodes[0];
6729 	char *tmp;
6730 	size_t max_size;
6731 	unsigned long inline_size;
6732 	unsigned long ptr;
6733 	int compress_type;
6734 
6735 	WARN_ON(pg_offset != 0);
6736 	compress_type = btrfs_file_extent_compression(leaf, item);
6737 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6738 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6739 					btrfs_item_nr(path->slots[0]));
6740 	tmp = kmalloc(inline_size, GFP_NOFS);
6741 	if (!tmp)
6742 		return -ENOMEM;
6743 	ptr = btrfs_file_extent_inline_start(item);
6744 
6745 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6746 
6747 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6748 	ret = btrfs_decompress(compress_type, tmp, page,
6749 			       extent_offset, inline_size, max_size);
6750 	kfree(tmp);
6751 	return ret;
6752 }
6753 
6754 /*
6755  * a bit scary, this does extent mapping from logical file offset to the disk.
6756  * the ugly parts come from merging extents from the disk with the in-ram
6757  * representation.  This gets more complex because of the data=ordered code,
6758  * where the in-ram extents might be locked pending data=ordered completion.
6759  *
6760  * This also copies inline extents directly into the page.
6761  */
6762 
6763 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6764 				    size_t pg_offset, u64 start, u64 len,
6765 				    int create)
6766 {
6767 	int ret;
6768 	int err = 0;
6769 	u64 extent_start = 0;
6770 	u64 extent_end = 0;
6771 	u64 objectid = btrfs_ino(inode);
6772 	u32 found_type;
6773 	struct btrfs_path *path = NULL;
6774 	struct btrfs_root *root = BTRFS_I(inode)->root;
6775 	struct btrfs_file_extent_item *item;
6776 	struct extent_buffer *leaf;
6777 	struct btrfs_key found_key;
6778 	struct extent_map *em = NULL;
6779 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6780 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6781 	struct btrfs_trans_handle *trans = NULL;
6782 	const bool new_inline = !page || create;
6783 
6784 again:
6785 	read_lock(&em_tree->lock);
6786 	em = lookup_extent_mapping(em_tree, start, len);
6787 	if (em)
6788 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6789 	read_unlock(&em_tree->lock);
6790 
6791 	if (em) {
6792 		if (em->start > start || em->start + em->len <= start)
6793 			free_extent_map(em);
6794 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6795 			free_extent_map(em);
6796 		else
6797 			goto out;
6798 	}
6799 	em = alloc_extent_map();
6800 	if (!em) {
6801 		err = -ENOMEM;
6802 		goto out;
6803 	}
6804 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6805 	em->start = EXTENT_MAP_HOLE;
6806 	em->orig_start = EXTENT_MAP_HOLE;
6807 	em->len = (u64)-1;
6808 	em->block_len = (u64)-1;
6809 
6810 	if (!path) {
6811 		path = btrfs_alloc_path();
6812 		if (!path) {
6813 			err = -ENOMEM;
6814 			goto out;
6815 		}
6816 		/*
6817 		 * Chances are we'll be called again, so go ahead and do
6818 		 * readahead
6819 		 */
6820 		path->reada = READA_FORWARD;
6821 	}
6822 
6823 	ret = btrfs_lookup_file_extent(trans, root, path,
6824 				       objectid, start, trans != NULL);
6825 	if (ret < 0) {
6826 		err = ret;
6827 		goto out;
6828 	}
6829 
6830 	if (ret != 0) {
6831 		if (path->slots[0] == 0)
6832 			goto not_found;
6833 		path->slots[0]--;
6834 	}
6835 
6836 	leaf = path->nodes[0];
6837 	item = btrfs_item_ptr(leaf, path->slots[0],
6838 			      struct btrfs_file_extent_item);
6839 	/* are we inside the extent that was found? */
6840 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6841 	found_type = found_key.type;
6842 	if (found_key.objectid != objectid ||
6843 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6844 		/*
6845 		 * If we backup past the first extent we want to move forward
6846 		 * and see if there is an extent in front of us, otherwise we'll
6847 		 * say there is a hole for our whole search range which can
6848 		 * cause problems.
6849 		 */
6850 		extent_end = start;
6851 		goto next;
6852 	}
6853 
6854 	found_type = btrfs_file_extent_type(leaf, item);
6855 	extent_start = found_key.offset;
6856 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6857 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6858 		extent_end = extent_start +
6859 		       btrfs_file_extent_num_bytes(leaf, item);
6860 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6861 		size_t size;
6862 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6863 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6864 	}
6865 next:
6866 	if (start >= extent_end) {
6867 		path->slots[0]++;
6868 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6869 			ret = btrfs_next_leaf(root, path);
6870 			if (ret < 0) {
6871 				err = ret;
6872 				goto out;
6873 			}
6874 			if (ret > 0)
6875 				goto not_found;
6876 			leaf = path->nodes[0];
6877 		}
6878 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6879 		if (found_key.objectid != objectid ||
6880 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6881 			goto not_found;
6882 		if (start + len <= found_key.offset)
6883 			goto not_found;
6884 		if (start > found_key.offset)
6885 			goto next;
6886 		em->start = start;
6887 		em->orig_start = start;
6888 		em->len = found_key.offset - start;
6889 		goto not_found_em;
6890 	}
6891 
6892 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6893 
6894 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6895 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6896 		goto insert;
6897 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6898 		unsigned long ptr;
6899 		char *map;
6900 		size_t size;
6901 		size_t extent_offset;
6902 		size_t copy_size;
6903 
6904 		if (new_inline)
6905 			goto out;
6906 
6907 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6908 		extent_offset = page_offset(page) + pg_offset - extent_start;
6909 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6910 				  size - extent_offset);
6911 		em->start = extent_start + extent_offset;
6912 		em->len = ALIGN(copy_size, root->sectorsize);
6913 		em->orig_block_len = em->len;
6914 		em->orig_start = em->start;
6915 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6916 		if (create == 0 && !PageUptodate(page)) {
6917 			if (btrfs_file_extent_compression(leaf, item) !=
6918 			    BTRFS_COMPRESS_NONE) {
6919 				ret = uncompress_inline(path, page, pg_offset,
6920 							extent_offset, item);
6921 				if (ret) {
6922 					err = ret;
6923 					goto out;
6924 				}
6925 			} else {
6926 				map = kmap(page);
6927 				read_extent_buffer(leaf, map + pg_offset, ptr,
6928 						   copy_size);
6929 				if (pg_offset + copy_size < PAGE_SIZE) {
6930 					memset(map + pg_offset + copy_size, 0,
6931 					       PAGE_SIZE - pg_offset -
6932 					       copy_size);
6933 				}
6934 				kunmap(page);
6935 			}
6936 			flush_dcache_page(page);
6937 		} else if (create && PageUptodate(page)) {
6938 			BUG();
6939 			if (!trans) {
6940 				kunmap(page);
6941 				free_extent_map(em);
6942 				em = NULL;
6943 
6944 				btrfs_release_path(path);
6945 				trans = btrfs_join_transaction(root);
6946 
6947 				if (IS_ERR(trans))
6948 					return ERR_CAST(trans);
6949 				goto again;
6950 			}
6951 			map = kmap(page);
6952 			write_extent_buffer(leaf, map + pg_offset, ptr,
6953 					    copy_size);
6954 			kunmap(page);
6955 			btrfs_mark_buffer_dirty(leaf);
6956 		}
6957 		set_extent_uptodate(io_tree, em->start,
6958 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6959 		goto insert;
6960 	}
6961 not_found:
6962 	em->start = start;
6963 	em->orig_start = start;
6964 	em->len = len;
6965 not_found_em:
6966 	em->block_start = EXTENT_MAP_HOLE;
6967 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6968 insert:
6969 	btrfs_release_path(path);
6970 	if (em->start > start || extent_map_end(em) <= start) {
6971 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6972 			em->start, em->len, start, len);
6973 		err = -EIO;
6974 		goto out;
6975 	}
6976 
6977 	err = 0;
6978 	write_lock(&em_tree->lock);
6979 	ret = add_extent_mapping(em_tree, em, 0);
6980 	/* it is possible that someone inserted the extent into the tree
6981 	 * while we had the lock dropped.  It is also possible that
6982 	 * an overlapping map exists in the tree
6983 	 */
6984 	if (ret == -EEXIST) {
6985 		struct extent_map *existing;
6986 
6987 		ret = 0;
6988 
6989 		existing = search_extent_mapping(em_tree, start, len);
6990 		/*
6991 		 * existing will always be non-NULL, since there must be
6992 		 * extent causing the -EEXIST.
6993 		 */
6994 		if (existing->start == em->start &&
6995 		    extent_map_end(existing) == extent_map_end(em) &&
6996 		    em->block_start == existing->block_start) {
6997 			/*
6998 			 * these two extents are the same, it happens
6999 			 * with inlines especially
7000 			 */
7001 			free_extent_map(em);
7002 			em = existing;
7003 			err = 0;
7004 
7005 		} else if (start >= extent_map_end(existing) ||
7006 		    start <= existing->start) {
7007 			/*
7008 			 * The existing extent map is the one nearest to
7009 			 * the [start, start + len) range which overlaps
7010 			 */
7011 			err = merge_extent_mapping(em_tree, existing,
7012 						   em, start);
7013 			free_extent_map(existing);
7014 			if (err) {
7015 				free_extent_map(em);
7016 				em = NULL;
7017 			}
7018 		} else {
7019 			free_extent_map(em);
7020 			em = existing;
7021 			err = 0;
7022 		}
7023 	}
7024 	write_unlock(&em_tree->lock);
7025 out:
7026 
7027 	trace_btrfs_get_extent(root, em);
7028 
7029 	btrfs_free_path(path);
7030 	if (trans) {
7031 		ret = btrfs_end_transaction(trans, root);
7032 		if (!err)
7033 			err = ret;
7034 	}
7035 	if (err) {
7036 		free_extent_map(em);
7037 		return ERR_PTR(err);
7038 	}
7039 	BUG_ON(!em); /* Error is always set */
7040 	return em;
7041 }
7042 
7043 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7044 					   size_t pg_offset, u64 start, u64 len,
7045 					   int create)
7046 {
7047 	struct extent_map *em;
7048 	struct extent_map *hole_em = NULL;
7049 	u64 range_start = start;
7050 	u64 end;
7051 	u64 found;
7052 	u64 found_end;
7053 	int err = 0;
7054 
7055 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7056 	if (IS_ERR(em))
7057 		return em;
7058 	if (em) {
7059 		/*
7060 		 * if our em maps to
7061 		 * -  a hole or
7062 		 * -  a pre-alloc extent,
7063 		 * there might actually be delalloc bytes behind it.
7064 		 */
7065 		if (em->block_start != EXTENT_MAP_HOLE &&
7066 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7067 			return em;
7068 		else
7069 			hole_em = em;
7070 	}
7071 
7072 	/* check to see if we've wrapped (len == -1 or similar) */
7073 	end = start + len;
7074 	if (end < start)
7075 		end = (u64)-1;
7076 	else
7077 		end -= 1;
7078 
7079 	em = NULL;
7080 
7081 	/* ok, we didn't find anything, lets look for delalloc */
7082 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7083 				 end, len, EXTENT_DELALLOC, 1);
7084 	found_end = range_start + found;
7085 	if (found_end < range_start)
7086 		found_end = (u64)-1;
7087 
7088 	/*
7089 	 * we didn't find anything useful, return
7090 	 * the original results from get_extent()
7091 	 */
7092 	if (range_start > end || found_end <= start) {
7093 		em = hole_em;
7094 		hole_em = NULL;
7095 		goto out;
7096 	}
7097 
7098 	/* adjust the range_start to make sure it doesn't
7099 	 * go backwards from the start they passed in
7100 	 */
7101 	range_start = max(start, range_start);
7102 	found = found_end - range_start;
7103 
7104 	if (found > 0) {
7105 		u64 hole_start = start;
7106 		u64 hole_len = len;
7107 
7108 		em = alloc_extent_map();
7109 		if (!em) {
7110 			err = -ENOMEM;
7111 			goto out;
7112 		}
7113 		/*
7114 		 * when btrfs_get_extent can't find anything it
7115 		 * returns one huge hole
7116 		 *
7117 		 * make sure what it found really fits our range, and
7118 		 * adjust to make sure it is based on the start from
7119 		 * the caller
7120 		 */
7121 		if (hole_em) {
7122 			u64 calc_end = extent_map_end(hole_em);
7123 
7124 			if (calc_end <= start || (hole_em->start > end)) {
7125 				free_extent_map(hole_em);
7126 				hole_em = NULL;
7127 			} else {
7128 				hole_start = max(hole_em->start, start);
7129 				hole_len = calc_end - hole_start;
7130 			}
7131 		}
7132 		em->bdev = NULL;
7133 		if (hole_em && range_start > hole_start) {
7134 			/* our hole starts before our delalloc, so we
7135 			 * have to return just the parts of the hole
7136 			 * that go until  the delalloc starts
7137 			 */
7138 			em->len = min(hole_len,
7139 				      range_start - hole_start);
7140 			em->start = hole_start;
7141 			em->orig_start = hole_start;
7142 			/*
7143 			 * don't adjust block start at all,
7144 			 * it is fixed at EXTENT_MAP_HOLE
7145 			 */
7146 			em->block_start = hole_em->block_start;
7147 			em->block_len = hole_len;
7148 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7149 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7150 		} else {
7151 			em->start = range_start;
7152 			em->len = found;
7153 			em->orig_start = range_start;
7154 			em->block_start = EXTENT_MAP_DELALLOC;
7155 			em->block_len = found;
7156 		}
7157 	} else if (hole_em) {
7158 		return hole_em;
7159 	}
7160 out:
7161 
7162 	free_extent_map(hole_em);
7163 	if (err) {
7164 		free_extent_map(em);
7165 		return ERR_PTR(err);
7166 	}
7167 	return em;
7168 }
7169 
7170 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7171 						  const u64 start,
7172 						  const u64 len,
7173 						  const u64 orig_start,
7174 						  const u64 block_start,
7175 						  const u64 block_len,
7176 						  const u64 orig_block_len,
7177 						  const u64 ram_bytes,
7178 						  const int type)
7179 {
7180 	struct extent_map *em = NULL;
7181 	int ret;
7182 
7183 	down_read(&BTRFS_I(inode)->dio_sem);
7184 	if (type != BTRFS_ORDERED_NOCOW) {
7185 		em = create_pinned_em(inode, start, len, orig_start,
7186 				      block_start, block_len, orig_block_len,
7187 				      ram_bytes, type);
7188 		if (IS_ERR(em))
7189 			goto out;
7190 	}
7191 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7192 					   len, block_len, type);
7193 	if (ret) {
7194 		if (em) {
7195 			free_extent_map(em);
7196 			btrfs_drop_extent_cache(inode, start,
7197 						start + len - 1, 0);
7198 		}
7199 		em = ERR_PTR(ret);
7200 	}
7201  out:
7202 	up_read(&BTRFS_I(inode)->dio_sem);
7203 
7204 	return em;
7205 }
7206 
7207 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7208 						  u64 start, u64 len)
7209 {
7210 	struct btrfs_root *root = BTRFS_I(inode)->root;
7211 	struct extent_map *em;
7212 	struct btrfs_key ins;
7213 	u64 alloc_hint;
7214 	int ret;
7215 
7216 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7217 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7218 				   alloc_hint, &ins, 1, 1);
7219 	if (ret)
7220 		return ERR_PTR(ret);
7221 
7222 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7223 				     ins.objectid, ins.offset, ins.offset,
7224 				     ins.offset, 0);
7225 	btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7226 	if (IS_ERR(em))
7227 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7228 
7229 	return em;
7230 }
7231 
7232 /*
7233  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7234  * block must be cow'd
7235  */
7236 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7237 			      u64 *orig_start, u64 *orig_block_len,
7238 			      u64 *ram_bytes)
7239 {
7240 	struct btrfs_trans_handle *trans;
7241 	struct btrfs_path *path;
7242 	int ret;
7243 	struct extent_buffer *leaf;
7244 	struct btrfs_root *root = BTRFS_I(inode)->root;
7245 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7246 	struct btrfs_file_extent_item *fi;
7247 	struct btrfs_key key;
7248 	u64 disk_bytenr;
7249 	u64 backref_offset;
7250 	u64 extent_end;
7251 	u64 num_bytes;
7252 	int slot;
7253 	int found_type;
7254 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7255 
7256 	path = btrfs_alloc_path();
7257 	if (!path)
7258 		return -ENOMEM;
7259 
7260 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7261 				       offset, 0);
7262 	if (ret < 0)
7263 		goto out;
7264 
7265 	slot = path->slots[0];
7266 	if (ret == 1) {
7267 		if (slot == 0) {
7268 			/* can't find the item, must cow */
7269 			ret = 0;
7270 			goto out;
7271 		}
7272 		slot--;
7273 	}
7274 	ret = 0;
7275 	leaf = path->nodes[0];
7276 	btrfs_item_key_to_cpu(leaf, &key, slot);
7277 	if (key.objectid != btrfs_ino(inode) ||
7278 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7279 		/* not our file or wrong item type, must cow */
7280 		goto out;
7281 	}
7282 
7283 	if (key.offset > offset) {
7284 		/* Wrong offset, must cow */
7285 		goto out;
7286 	}
7287 
7288 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7289 	found_type = btrfs_file_extent_type(leaf, fi);
7290 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7291 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7292 		/* not a regular extent, must cow */
7293 		goto out;
7294 	}
7295 
7296 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7297 		goto out;
7298 
7299 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7300 	if (extent_end <= offset)
7301 		goto out;
7302 
7303 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7304 	if (disk_bytenr == 0)
7305 		goto out;
7306 
7307 	if (btrfs_file_extent_compression(leaf, fi) ||
7308 	    btrfs_file_extent_encryption(leaf, fi) ||
7309 	    btrfs_file_extent_other_encoding(leaf, fi))
7310 		goto out;
7311 
7312 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7313 
7314 	if (orig_start) {
7315 		*orig_start = key.offset - backref_offset;
7316 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7317 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7318 	}
7319 
7320 	if (btrfs_extent_readonly(root, disk_bytenr))
7321 		goto out;
7322 
7323 	num_bytes = min(offset + *len, extent_end) - offset;
7324 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7325 		u64 range_end;
7326 
7327 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7328 		ret = test_range_bit(io_tree, offset, range_end,
7329 				     EXTENT_DELALLOC, 0, NULL);
7330 		if (ret) {
7331 			ret = -EAGAIN;
7332 			goto out;
7333 		}
7334 	}
7335 
7336 	btrfs_release_path(path);
7337 
7338 	/*
7339 	 * look for other files referencing this extent, if we
7340 	 * find any we must cow
7341 	 */
7342 	trans = btrfs_join_transaction(root);
7343 	if (IS_ERR(trans)) {
7344 		ret = 0;
7345 		goto out;
7346 	}
7347 
7348 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7349 				    key.offset - backref_offset, disk_bytenr);
7350 	btrfs_end_transaction(trans, root);
7351 	if (ret) {
7352 		ret = 0;
7353 		goto out;
7354 	}
7355 
7356 	/*
7357 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7358 	 * in this extent we are about to write.  If there
7359 	 * are any csums in that range we have to cow in order
7360 	 * to keep the csums correct
7361 	 */
7362 	disk_bytenr += backref_offset;
7363 	disk_bytenr += offset - key.offset;
7364 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7365 				goto out;
7366 	/*
7367 	 * all of the above have passed, it is safe to overwrite this extent
7368 	 * without cow
7369 	 */
7370 	*len = num_bytes;
7371 	ret = 1;
7372 out:
7373 	btrfs_free_path(path);
7374 	return ret;
7375 }
7376 
7377 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7378 {
7379 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7380 	int found = false;
7381 	void **pagep = NULL;
7382 	struct page *page = NULL;
7383 	int start_idx;
7384 	int end_idx;
7385 
7386 	start_idx = start >> PAGE_SHIFT;
7387 
7388 	/*
7389 	 * end is the last byte in the last page.  end == start is legal
7390 	 */
7391 	end_idx = end >> PAGE_SHIFT;
7392 
7393 	rcu_read_lock();
7394 
7395 	/* Most of the code in this while loop is lifted from
7396 	 * find_get_page.  It's been modified to begin searching from a
7397 	 * page and return just the first page found in that range.  If the
7398 	 * found idx is less than or equal to the end idx then we know that
7399 	 * a page exists.  If no pages are found or if those pages are
7400 	 * outside of the range then we're fine (yay!) */
7401 	while (page == NULL &&
7402 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7403 		page = radix_tree_deref_slot(pagep);
7404 		if (unlikely(!page))
7405 			break;
7406 
7407 		if (radix_tree_exception(page)) {
7408 			if (radix_tree_deref_retry(page)) {
7409 				page = NULL;
7410 				continue;
7411 			}
7412 			/*
7413 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7414 			 * here as an exceptional entry: so return it without
7415 			 * attempting to raise page count.
7416 			 */
7417 			page = NULL;
7418 			break; /* TODO: Is this relevant for this use case? */
7419 		}
7420 
7421 		if (!page_cache_get_speculative(page)) {
7422 			page = NULL;
7423 			continue;
7424 		}
7425 
7426 		/*
7427 		 * Has the page moved?
7428 		 * This is part of the lockless pagecache protocol. See
7429 		 * include/linux/pagemap.h for details.
7430 		 */
7431 		if (unlikely(page != *pagep)) {
7432 			put_page(page);
7433 			page = NULL;
7434 		}
7435 	}
7436 
7437 	if (page) {
7438 		if (page->index <= end_idx)
7439 			found = true;
7440 		put_page(page);
7441 	}
7442 
7443 	rcu_read_unlock();
7444 	return found;
7445 }
7446 
7447 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7448 			      struct extent_state **cached_state, int writing)
7449 {
7450 	struct btrfs_ordered_extent *ordered;
7451 	int ret = 0;
7452 
7453 	while (1) {
7454 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7455 				 cached_state);
7456 		/*
7457 		 * We're concerned with the entire range that we're going to be
7458 		 * doing DIO to, so we need to make sure there's no ordered
7459 		 * extents in this range.
7460 		 */
7461 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7462 						     lockend - lockstart + 1);
7463 
7464 		/*
7465 		 * We need to make sure there are no buffered pages in this
7466 		 * range either, we could have raced between the invalidate in
7467 		 * generic_file_direct_write and locking the extent.  The
7468 		 * invalidate needs to happen so that reads after a write do not
7469 		 * get stale data.
7470 		 */
7471 		if (!ordered &&
7472 		    (!writing ||
7473 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7474 			break;
7475 
7476 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7477 				     cached_state, GFP_NOFS);
7478 
7479 		if (ordered) {
7480 			/*
7481 			 * If we are doing a DIO read and the ordered extent we
7482 			 * found is for a buffered write, we can not wait for it
7483 			 * to complete and retry, because if we do so we can
7484 			 * deadlock with concurrent buffered writes on page
7485 			 * locks. This happens only if our DIO read covers more
7486 			 * than one extent map, if at this point has already
7487 			 * created an ordered extent for a previous extent map
7488 			 * and locked its range in the inode's io tree, and a
7489 			 * concurrent write against that previous extent map's
7490 			 * range and this range started (we unlock the ranges
7491 			 * in the io tree only when the bios complete and
7492 			 * buffered writes always lock pages before attempting
7493 			 * to lock range in the io tree).
7494 			 */
7495 			if (writing ||
7496 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7497 				btrfs_start_ordered_extent(inode, ordered, 1);
7498 			else
7499 				ret = -ENOTBLK;
7500 			btrfs_put_ordered_extent(ordered);
7501 		} else {
7502 			/*
7503 			 * We could trigger writeback for this range (and wait
7504 			 * for it to complete) and then invalidate the pages for
7505 			 * this range (through invalidate_inode_pages2_range()),
7506 			 * but that can lead us to a deadlock with a concurrent
7507 			 * call to readpages() (a buffered read or a defrag call
7508 			 * triggered a readahead) on a page lock due to an
7509 			 * ordered dio extent we created before but did not have
7510 			 * yet a corresponding bio submitted (whence it can not
7511 			 * complete), which makes readpages() wait for that
7512 			 * ordered extent to complete while holding a lock on
7513 			 * that page.
7514 			 */
7515 			ret = -ENOTBLK;
7516 		}
7517 
7518 		if (ret)
7519 			break;
7520 
7521 		cond_resched();
7522 	}
7523 
7524 	return ret;
7525 }
7526 
7527 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7528 					   u64 len, u64 orig_start,
7529 					   u64 block_start, u64 block_len,
7530 					   u64 orig_block_len, u64 ram_bytes,
7531 					   int type)
7532 {
7533 	struct extent_map_tree *em_tree;
7534 	struct extent_map *em;
7535 	struct btrfs_root *root = BTRFS_I(inode)->root;
7536 	int ret;
7537 
7538 	em_tree = &BTRFS_I(inode)->extent_tree;
7539 	em = alloc_extent_map();
7540 	if (!em)
7541 		return ERR_PTR(-ENOMEM);
7542 
7543 	em->start = start;
7544 	em->orig_start = orig_start;
7545 	em->mod_start = start;
7546 	em->mod_len = len;
7547 	em->len = len;
7548 	em->block_len = block_len;
7549 	em->block_start = block_start;
7550 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7551 	em->orig_block_len = orig_block_len;
7552 	em->ram_bytes = ram_bytes;
7553 	em->generation = -1;
7554 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7555 	if (type == BTRFS_ORDERED_PREALLOC)
7556 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7557 
7558 	do {
7559 		btrfs_drop_extent_cache(inode, em->start,
7560 				em->start + em->len - 1, 0);
7561 		write_lock(&em_tree->lock);
7562 		ret = add_extent_mapping(em_tree, em, 1);
7563 		write_unlock(&em_tree->lock);
7564 	} while (ret == -EEXIST);
7565 
7566 	if (ret) {
7567 		free_extent_map(em);
7568 		return ERR_PTR(ret);
7569 	}
7570 
7571 	return em;
7572 }
7573 
7574 static void adjust_dio_outstanding_extents(struct inode *inode,
7575 					   struct btrfs_dio_data *dio_data,
7576 					   const u64 len)
7577 {
7578 	unsigned num_extents;
7579 
7580 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7581 					   BTRFS_MAX_EXTENT_SIZE);
7582 	/*
7583 	 * If we have an outstanding_extents count still set then we're
7584 	 * within our reservation, otherwise we need to adjust our inode
7585 	 * counter appropriately.
7586 	 */
7587 	if (dio_data->outstanding_extents) {
7588 		dio_data->outstanding_extents -= num_extents;
7589 	} else {
7590 		spin_lock(&BTRFS_I(inode)->lock);
7591 		BTRFS_I(inode)->outstanding_extents += num_extents;
7592 		spin_unlock(&BTRFS_I(inode)->lock);
7593 	}
7594 }
7595 
7596 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7597 				   struct buffer_head *bh_result, int create)
7598 {
7599 	struct extent_map *em;
7600 	struct btrfs_root *root = BTRFS_I(inode)->root;
7601 	struct extent_state *cached_state = NULL;
7602 	struct btrfs_dio_data *dio_data = NULL;
7603 	u64 start = iblock << inode->i_blkbits;
7604 	u64 lockstart, lockend;
7605 	u64 len = bh_result->b_size;
7606 	int unlock_bits = EXTENT_LOCKED;
7607 	int ret = 0;
7608 
7609 	if (create)
7610 		unlock_bits |= EXTENT_DIRTY;
7611 	else
7612 		len = min_t(u64, len, root->sectorsize);
7613 
7614 	lockstart = start;
7615 	lockend = start + len - 1;
7616 
7617 	if (current->journal_info) {
7618 		/*
7619 		 * Need to pull our outstanding extents and set journal_info to NULL so
7620 		 * that anything that needs to check if there's a transaction doesn't get
7621 		 * confused.
7622 		 */
7623 		dio_data = current->journal_info;
7624 		current->journal_info = NULL;
7625 	}
7626 
7627 	/*
7628 	 * If this errors out it's because we couldn't invalidate pagecache for
7629 	 * this range and we need to fallback to buffered.
7630 	 */
7631 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7632 			       create)) {
7633 		ret = -ENOTBLK;
7634 		goto err;
7635 	}
7636 
7637 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7638 	if (IS_ERR(em)) {
7639 		ret = PTR_ERR(em);
7640 		goto unlock_err;
7641 	}
7642 
7643 	/*
7644 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7645 	 * io.  INLINE is special, and we could probably kludge it in here, but
7646 	 * it's still buffered so for safety lets just fall back to the generic
7647 	 * buffered path.
7648 	 *
7649 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7650 	 * decompress it, so there will be buffering required no matter what we
7651 	 * do, so go ahead and fallback to buffered.
7652 	 *
7653 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7654 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7655 	 * the generic code.
7656 	 */
7657 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7658 	    em->block_start == EXTENT_MAP_INLINE) {
7659 		free_extent_map(em);
7660 		ret = -ENOTBLK;
7661 		goto unlock_err;
7662 	}
7663 
7664 	/* Just a good old fashioned hole, return */
7665 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7666 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7667 		free_extent_map(em);
7668 		goto unlock_err;
7669 	}
7670 
7671 	/*
7672 	 * We don't allocate a new extent in the following cases
7673 	 *
7674 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7675 	 * existing extent.
7676 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7677 	 * just use the extent.
7678 	 *
7679 	 */
7680 	if (!create) {
7681 		len = min(len, em->len - (start - em->start));
7682 		lockstart = start + len;
7683 		goto unlock;
7684 	}
7685 
7686 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7687 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7688 	     em->block_start != EXTENT_MAP_HOLE)) {
7689 		int type;
7690 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7691 
7692 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7693 			type = BTRFS_ORDERED_PREALLOC;
7694 		else
7695 			type = BTRFS_ORDERED_NOCOW;
7696 		len = min(len, em->len - (start - em->start));
7697 		block_start = em->block_start + (start - em->start);
7698 
7699 		if (can_nocow_extent(inode, start, &len, &orig_start,
7700 				     &orig_block_len, &ram_bytes) == 1 &&
7701 		    btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7702 			struct extent_map *em2;
7703 
7704 			em2 = btrfs_create_dio_extent(inode, start, len,
7705 						      orig_start, block_start,
7706 						      len, orig_block_len,
7707 						      ram_bytes, type);
7708 			btrfs_dec_nocow_writers(root->fs_info, block_start);
7709 			if (type == BTRFS_ORDERED_PREALLOC) {
7710 				free_extent_map(em);
7711 				em = em2;
7712 			}
7713 			if (em2 && IS_ERR(em2)) {
7714 				ret = PTR_ERR(em2);
7715 				goto unlock_err;
7716 			}
7717 			goto unlock;
7718 		}
7719 	}
7720 
7721 	/*
7722 	 * this will cow the extent, reset the len in case we changed
7723 	 * it above
7724 	 */
7725 	len = bh_result->b_size;
7726 	free_extent_map(em);
7727 	em = btrfs_new_extent_direct(inode, start, len);
7728 	if (IS_ERR(em)) {
7729 		ret = PTR_ERR(em);
7730 		goto unlock_err;
7731 	}
7732 	len = min(len, em->len - (start - em->start));
7733 unlock:
7734 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7735 		inode->i_blkbits;
7736 	bh_result->b_size = len;
7737 	bh_result->b_bdev = em->bdev;
7738 	set_buffer_mapped(bh_result);
7739 	if (create) {
7740 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7741 			set_buffer_new(bh_result);
7742 
7743 		/*
7744 		 * Need to update the i_size under the extent lock so buffered
7745 		 * readers will get the updated i_size when we unlock.
7746 		 */
7747 		if (start + len > i_size_read(inode))
7748 			i_size_write(inode, start + len);
7749 
7750 		adjust_dio_outstanding_extents(inode, dio_data, len);
7751 		btrfs_free_reserved_data_space(inode, start, len);
7752 		WARN_ON(dio_data->reserve < len);
7753 		dio_data->reserve -= len;
7754 		dio_data->unsubmitted_oe_range_end = start + len;
7755 		current->journal_info = dio_data;
7756 	}
7757 
7758 	/*
7759 	 * In the case of write we need to clear and unlock the entire range,
7760 	 * in the case of read we need to unlock only the end area that we
7761 	 * aren't using if there is any left over space.
7762 	 */
7763 	if (lockstart < lockend) {
7764 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7765 				 lockend, unlock_bits, 1, 0,
7766 				 &cached_state, GFP_NOFS);
7767 	} else {
7768 		free_extent_state(cached_state);
7769 	}
7770 
7771 	free_extent_map(em);
7772 
7773 	return 0;
7774 
7775 unlock_err:
7776 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7777 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7778 err:
7779 	if (dio_data)
7780 		current->journal_info = dio_data;
7781 	/*
7782 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7783 	 * write less data then expected, so that we don't underflow our inode's
7784 	 * outstanding extents counter.
7785 	 */
7786 	if (create && dio_data)
7787 		adjust_dio_outstanding_extents(inode, dio_data, len);
7788 
7789 	return ret;
7790 }
7791 
7792 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7793 					int rw, int mirror_num)
7794 {
7795 	struct btrfs_root *root = BTRFS_I(inode)->root;
7796 	int ret;
7797 
7798 	BUG_ON(rw & REQ_WRITE);
7799 
7800 	bio_get(bio);
7801 
7802 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7803 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7804 	if (ret)
7805 		goto err;
7806 
7807 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7808 err:
7809 	bio_put(bio);
7810 	return ret;
7811 }
7812 
7813 static int btrfs_check_dio_repairable(struct inode *inode,
7814 				      struct bio *failed_bio,
7815 				      struct io_failure_record *failrec,
7816 				      int failed_mirror)
7817 {
7818 	int num_copies;
7819 
7820 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7821 				      failrec->logical, failrec->len);
7822 	if (num_copies == 1) {
7823 		/*
7824 		 * we only have a single copy of the data, so don't bother with
7825 		 * all the retry and error correction code that follows. no
7826 		 * matter what the error is, it is very likely to persist.
7827 		 */
7828 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7829 			 num_copies, failrec->this_mirror, failed_mirror);
7830 		return 0;
7831 	}
7832 
7833 	failrec->failed_mirror = failed_mirror;
7834 	failrec->this_mirror++;
7835 	if (failrec->this_mirror == failed_mirror)
7836 		failrec->this_mirror++;
7837 
7838 	if (failrec->this_mirror > num_copies) {
7839 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7840 			 num_copies, failrec->this_mirror, failed_mirror);
7841 		return 0;
7842 	}
7843 
7844 	return 1;
7845 }
7846 
7847 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7848 			struct page *page, unsigned int pgoff,
7849 			u64 start, u64 end, int failed_mirror,
7850 			bio_end_io_t *repair_endio, void *repair_arg)
7851 {
7852 	struct io_failure_record *failrec;
7853 	struct bio *bio;
7854 	int isector;
7855 	int read_mode;
7856 	int ret;
7857 
7858 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7859 
7860 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7861 	if (ret)
7862 		return ret;
7863 
7864 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7865 					 failed_mirror);
7866 	if (!ret) {
7867 		free_io_failure(inode, failrec);
7868 		return -EIO;
7869 	}
7870 
7871 	if ((failed_bio->bi_vcnt > 1)
7872 		|| (failed_bio->bi_io_vec->bv_len
7873 			> BTRFS_I(inode)->root->sectorsize))
7874 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7875 	else
7876 		read_mode = READ_SYNC;
7877 
7878 	isector = start - btrfs_io_bio(failed_bio)->logical;
7879 	isector >>= inode->i_sb->s_blocksize_bits;
7880 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7881 				pgoff, isector, repair_endio, repair_arg);
7882 	if (!bio) {
7883 		free_io_failure(inode, failrec);
7884 		return -EIO;
7885 	}
7886 
7887 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7888 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7889 		    read_mode, failrec->this_mirror, failrec->in_validation);
7890 
7891 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7892 				    failrec->this_mirror);
7893 	if (ret) {
7894 		free_io_failure(inode, failrec);
7895 		bio_put(bio);
7896 	}
7897 
7898 	return ret;
7899 }
7900 
7901 struct btrfs_retry_complete {
7902 	struct completion done;
7903 	struct inode *inode;
7904 	u64 start;
7905 	int uptodate;
7906 };
7907 
7908 static void btrfs_retry_endio_nocsum(struct bio *bio)
7909 {
7910 	struct btrfs_retry_complete *done = bio->bi_private;
7911 	struct inode *inode;
7912 	struct bio_vec *bvec;
7913 	int i;
7914 
7915 	if (bio->bi_error)
7916 		goto end;
7917 
7918 	ASSERT(bio->bi_vcnt == 1);
7919 	inode = bio->bi_io_vec->bv_page->mapping->host;
7920 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7921 
7922 	done->uptodate = 1;
7923 	bio_for_each_segment_all(bvec, bio, i)
7924 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7925 end:
7926 	complete(&done->done);
7927 	bio_put(bio);
7928 }
7929 
7930 static int __btrfs_correct_data_nocsum(struct inode *inode,
7931 				       struct btrfs_io_bio *io_bio)
7932 {
7933 	struct btrfs_fs_info *fs_info;
7934 	struct bio_vec *bvec;
7935 	struct btrfs_retry_complete done;
7936 	u64 start;
7937 	unsigned int pgoff;
7938 	u32 sectorsize;
7939 	int nr_sectors;
7940 	int i;
7941 	int ret;
7942 
7943 	fs_info = BTRFS_I(inode)->root->fs_info;
7944 	sectorsize = BTRFS_I(inode)->root->sectorsize;
7945 
7946 	start = io_bio->logical;
7947 	done.inode = inode;
7948 
7949 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7950 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7951 		pgoff = bvec->bv_offset;
7952 
7953 next_block_or_try_again:
7954 		done.uptodate = 0;
7955 		done.start = start;
7956 		init_completion(&done.done);
7957 
7958 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7959 				pgoff, start, start + sectorsize - 1,
7960 				io_bio->mirror_num,
7961 				btrfs_retry_endio_nocsum, &done);
7962 		if (ret)
7963 			return ret;
7964 
7965 		wait_for_completion(&done.done);
7966 
7967 		if (!done.uptodate) {
7968 			/* We might have another mirror, so try again */
7969 			goto next_block_or_try_again;
7970 		}
7971 
7972 		start += sectorsize;
7973 
7974 		if (nr_sectors--) {
7975 			pgoff += sectorsize;
7976 			goto next_block_or_try_again;
7977 		}
7978 	}
7979 
7980 	return 0;
7981 }
7982 
7983 static void btrfs_retry_endio(struct bio *bio)
7984 {
7985 	struct btrfs_retry_complete *done = bio->bi_private;
7986 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7987 	struct inode *inode;
7988 	struct bio_vec *bvec;
7989 	u64 start;
7990 	int uptodate;
7991 	int ret;
7992 	int i;
7993 
7994 	if (bio->bi_error)
7995 		goto end;
7996 
7997 	uptodate = 1;
7998 
7999 	start = done->start;
8000 
8001 	ASSERT(bio->bi_vcnt == 1);
8002 	inode = bio->bi_io_vec->bv_page->mapping->host;
8003 	ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8004 
8005 	bio_for_each_segment_all(bvec, bio, i) {
8006 		ret = __readpage_endio_check(done->inode, io_bio, i,
8007 					bvec->bv_page, bvec->bv_offset,
8008 					done->start, bvec->bv_len);
8009 		if (!ret)
8010 			clean_io_failure(done->inode, done->start,
8011 					bvec->bv_page, bvec->bv_offset);
8012 		else
8013 			uptodate = 0;
8014 	}
8015 
8016 	done->uptodate = uptodate;
8017 end:
8018 	complete(&done->done);
8019 	bio_put(bio);
8020 }
8021 
8022 static int __btrfs_subio_endio_read(struct inode *inode,
8023 				    struct btrfs_io_bio *io_bio, int err)
8024 {
8025 	struct btrfs_fs_info *fs_info;
8026 	struct bio_vec *bvec;
8027 	struct btrfs_retry_complete done;
8028 	u64 start;
8029 	u64 offset = 0;
8030 	u32 sectorsize;
8031 	int nr_sectors;
8032 	unsigned int pgoff;
8033 	int csum_pos;
8034 	int i;
8035 	int ret;
8036 
8037 	fs_info = BTRFS_I(inode)->root->fs_info;
8038 	sectorsize = BTRFS_I(inode)->root->sectorsize;
8039 
8040 	err = 0;
8041 	start = io_bio->logical;
8042 	done.inode = inode;
8043 
8044 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8045 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8046 
8047 		pgoff = bvec->bv_offset;
8048 next_block:
8049 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8050 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8051 					bvec->bv_page, pgoff, start,
8052 					sectorsize);
8053 		if (likely(!ret))
8054 			goto next;
8055 try_again:
8056 		done.uptodate = 0;
8057 		done.start = start;
8058 		init_completion(&done.done);
8059 
8060 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8061 				pgoff, start, start + sectorsize - 1,
8062 				io_bio->mirror_num,
8063 				btrfs_retry_endio, &done);
8064 		if (ret) {
8065 			err = ret;
8066 			goto next;
8067 		}
8068 
8069 		wait_for_completion(&done.done);
8070 
8071 		if (!done.uptodate) {
8072 			/* We might have another mirror, so try again */
8073 			goto try_again;
8074 		}
8075 next:
8076 		offset += sectorsize;
8077 		start += sectorsize;
8078 
8079 		ASSERT(nr_sectors);
8080 
8081 		if (--nr_sectors) {
8082 			pgoff += sectorsize;
8083 			goto next_block;
8084 		}
8085 	}
8086 
8087 	return err;
8088 }
8089 
8090 static int btrfs_subio_endio_read(struct inode *inode,
8091 				  struct btrfs_io_bio *io_bio, int err)
8092 {
8093 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8094 
8095 	if (skip_csum) {
8096 		if (unlikely(err))
8097 			return __btrfs_correct_data_nocsum(inode, io_bio);
8098 		else
8099 			return 0;
8100 	} else {
8101 		return __btrfs_subio_endio_read(inode, io_bio, err);
8102 	}
8103 }
8104 
8105 static void btrfs_endio_direct_read(struct bio *bio)
8106 {
8107 	struct btrfs_dio_private *dip = bio->bi_private;
8108 	struct inode *inode = dip->inode;
8109 	struct bio *dio_bio;
8110 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8111 	int err = bio->bi_error;
8112 
8113 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8114 		err = btrfs_subio_endio_read(inode, io_bio, err);
8115 
8116 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8117 		      dip->logical_offset + dip->bytes - 1);
8118 	dio_bio = dip->dio_bio;
8119 
8120 	kfree(dip);
8121 
8122 	dio_bio->bi_error = bio->bi_error;
8123 	dio_end_io(dio_bio, bio->bi_error);
8124 
8125 	if (io_bio->end_io)
8126 		io_bio->end_io(io_bio, err);
8127 	bio_put(bio);
8128 }
8129 
8130 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8131 						    const u64 offset,
8132 						    const u64 bytes,
8133 						    const int uptodate)
8134 {
8135 	struct btrfs_root *root = BTRFS_I(inode)->root;
8136 	struct btrfs_ordered_extent *ordered = NULL;
8137 	u64 ordered_offset = offset;
8138 	u64 ordered_bytes = bytes;
8139 	int ret;
8140 
8141 again:
8142 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8143 						   &ordered_offset,
8144 						   ordered_bytes,
8145 						   uptodate);
8146 	if (!ret)
8147 		goto out_test;
8148 
8149 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8150 			finish_ordered_fn, NULL, NULL);
8151 	btrfs_queue_work(root->fs_info->endio_write_workers,
8152 			 &ordered->work);
8153 out_test:
8154 	/*
8155 	 * our bio might span multiple ordered extents.  If we haven't
8156 	 * completed the accounting for the whole dio, go back and try again
8157 	 */
8158 	if (ordered_offset < offset + bytes) {
8159 		ordered_bytes = offset + bytes - ordered_offset;
8160 		ordered = NULL;
8161 		goto again;
8162 	}
8163 }
8164 
8165 static void btrfs_endio_direct_write(struct bio *bio)
8166 {
8167 	struct btrfs_dio_private *dip = bio->bi_private;
8168 	struct bio *dio_bio = dip->dio_bio;
8169 
8170 	btrfs_endio_direct_write_update_ordered(dip->inode,
8171 						dip->logical_offset,
8172 						dip->bytes,
8173 						!bio->bi_error);
8174 
8175 	kfree(dip);
8176 
8177 	dio_bio->bi_error = bio->bi_error;
8178 	dio_end_io(dio_bio, bio->bi_error);
8179 	bio_put(bio);
8180 }
8181 
8182 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8183 				    struct bio *bio, int mirror_num,
8184 				    unsigned long bio_flags, u64 offset)
8185 {
8186 	int ret;
8187 	struct btrfs_root *root = BTRFS_I(inode)->root;
8188 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8189 	BUG_ON(ret); /* -ENOMEM */
8190 	return 0;
8191 }
8192 
8193 static void btrfs_end_dio_bio(struct bio *bio)
8194 {
8195 	struct btrfs_dio_private *dip = bio->bi_private;
8196 	int err = bio->bi_error;
8197 
8198 	if (err)
8199 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8200 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8201 			   btrfs_ino(dip->inode), bio->bi_rw,
8202 			   (unsigned long long)bio->bi_iter.bi_sector,
8203 			   bio->bi_iter.bi_size, err);
8204 
8205 	if (dip->subio_endio)
8206 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8207 
8208 	if (err) {
8209 		dip->errors = 1;
8210 
8211 		/*
8212 		 * before atomic variable goto zero, we must make sure
8213 		 * dip->errors is perceived to be set.
8214 		 */
8215 		smp_mb__before_atomic();
8216 	}
8217 
8218 	/* if there are more bios still pending for this dio, just exit */
8219 	if (!atomic_dec_and_test(&dip->pending_bios))
8220 		goto out;
8221 
8222 	if (dip->errors) {
8223 		bio_io_error(dip->orig_bio);
8224 	} else {
8225 		dip->dio_bio->bi_error = 0;
8226 		bio_endio(dip->orig_bio);
8227 	}
8228 out:
8229 	bio_put(bio);
8230 }
8231 
8232 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8233 				       u64 first_sector, gfp_t gfp_flags)
8234 {
8235 	struct bio *bio;
8236 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8237 	if (bio)
8238 		bio_associate_current(bio);
8239 	return bio;
8240 }
8241 
8242 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8243 						 struct inode *inode,
8244 						 struct btrfs_dio_private *dip,
8245 						 struct bio *bio,
8246 						 u64 file_offset)
8247 {
8248 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8249 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8250 	int ret;
8251 
8252 	/*
8253 	 * We load all the csum data we need when we submit
8254 	 * the first bio to reduce the csum tree search and
8255 	 * contention.
8256 	 */
8257 	if (dip->logical_offset == file_offset) {
8258 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8259 						file_offset);
8260 		if (ret)
8261 			return ret;
8262 	}
8263 
8264 	if (bio == dip->orig_bio)
8265 		return 0;
8266 
8267 	file_offset -= dip->logical_offset;
8268 	file_offset >>= inode->i_sb->s_blocksize_bits;
8269 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8270 
8271 	return 0;
8272 }
8273 
8274 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8275 					 int rw, u64 file_offset, int skip_sum,
8276 					 int async_submit)
8277 {
8278 	struct btrfs_dio_private *dip = bio->bi_private;
8279 	int write = rw & REQ_WRITE;
8280 	struct btrfs_root *root = BTRFS_I(inode)->root;
8281 	int ret;
8282 
8283 	if (async_submit)
8284 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8285 
8286 	bio_get(bio);
8287 
8288 	if (!write) {
8289 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8290 				BTRFS_WQ_ENDIO_DATA);
8291 		if (ret)
8292 			goto err;
8293 	}
8294 
8295 	if (skip_sum)
8296 		goto map;
8297 
8298 	if (write && async_submit) {
8299 		ret = btrfs_wq_submit_bio(root->fs_info,
8300 				   inode, rw, bio, 0, 0,
8301 				   file_offset,
8302 				   __btrfs_submit_bio_start_direct_io,
8303 				   __btrfs_submit_bio_done);
8304 		goto err;
8305 	} else if (write) {
8306 		/*
8307 		 * If we aren't doing async submit, calculate the csum of the
8308 		 * bio now.
8309 		 */
8310 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8311 		if (ret)
8312 			goto err;
8313 	} else {
8314 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8315 						     file_offset);
8316 		if (ret)
8317 			goto err;
8318 	}
8319 map:
8320 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8321 err:
8322 	bio_put(bio);
8323 	return ret;
8324 }
8325 
8326 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8327 				    int skip_sum)
8328 {
8329 	struct inode *inode = dip->inode;
8330 	struct btrfs_root *root = BTRFS_I(inode)->root;
8331 	struct bio *bio;
8332 	struct bio *orig_bio = dip->orig_bio;
8333 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8334 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8335 	u64 file_offset = dip->logical_offset;
8336 	u64 submit_len = 0;
8337 	u64 map_length;
8338 	u32 blocksize = root->sectorsize;
8339 	int async_submit = 0;
8340 	int nr_sectors;
8341 	int ret;
8342 	int i;
8343 
8344 	map_length = orig_bio->bi_iter.bi_size;
8345 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8346 			      &map_length, NULL, 0);
8347 	if (ret)
8348 		return -EIO;
8349 
8350 	if (map_length >= orig_bio->bi_iter.bi_size) {
8351 		bio = orig_bio;
8352 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8353 		goto submit;
8354 	}
8355 
8356 	/* async crcs make it difficult to collect full stripe writes. */
8357 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8358 		async_submit = 0;
8359 	else
8360 		async_submit = 1;
8361 
8362 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8363 	if (!bio)
8364 		return -ENOMEM;
8365 
8366 	bio->bi_private = dip;
8367 	bio->bi_end_io = btrfs_end_dio_bio;
8368 	btrfs_io_bio(bio)->logical = file_offset;
8369 	atomic_inc(&dip->pending_bios);
8370 
8371 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8372 		nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8373 		i = 0;
8374 next_block:
8375 		if (unlikely(map_length < submit_len + blocksize ||
8376 		    bio_add_page(bio, bvec->bv_page, blocksize,
8377 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8378 			/*
8379 			 * inc the count before we submit the bio so
8380 			 * we know the end IO handler won't happen before
8381 			 * we inc the count. Otherwise, the dip might get freed
8382 			 * before we're done setting it up
8383 			 */
8384 			atomic_inc(&dip->pending_bios);
8385 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8386 						     file_offset, skip_sum,
8387 						     async_submit);
8388 			if (ret) {
8389 				bio_put(bio);
8390 				atomic_dec(&dip->pending_bios);
8391 				goto out_err;
8392 			}
8393 
8394 			start_sector += submit_len >> 9;
8395 			file_offset += submit_len;
8396 
8397 			submit_len = 0;
8398 
8399 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8400 						  start_sector, GFP_NOFS);
8401 			if (!bio)
8402 				goto out_err;
8403 			bio->bi_private = dip;
8404 			bio->bi_end_io = btrfs_end_dio_bio;
8405 			btrfs_io_bio(bio)->logical = file_offset;
8406 
8407 			map_length = orig_bio->bi_iter.bi_size;
8408 			ret = btrfs_map_block(root->fs_info, rw,
8409 					      start_sector << 9,
8410 					      &map_length, NULL, 0);
8411 			if (ret) {
8412 				bio_put(bio);
8413 				goto out_err;
8414 			}
8415 
8416 			goto next_block;
8417 		} else {
8418 			submit_len += blocksize;
8419 			if (--nr_sectors) {
8420 				i++;
8421 				goto next_block;
8422 			}
8423 			bvec++;
8424 		}
8425 	}
8426 
8427 submit:
8428 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8429 				     async_submit);
8430 	if (!ret)
8431 		return 0;
8432 
8433 	bio_put(bio);
8434 out_err:
8435 	dip->errors = 1;
8436 	/*
8437 	 * before atomic variable goto zero, we must
8438 	 * make sure dip->errors is perceived to be set.
8439 	 */
8440 	smp_mb__before_atomic();
8441 	if (atomic_dec_and_test(&dip->pending_bios))
8442 		bio_io_error(dip->orig_bio);
8443 
8444 	/* bio_end_io() will handle error, so we needn't return it */
8445 	return 0;
8446 }
8447 
8448 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8449 				struct inode *inode, loff_t file_offset)
8450 {
8451 	struct btrfs_dio_private *dip = NULL;
8452 	struct bio *io_bio = NULL;
8453 	struct btrfs_io_bio *btrfs_bio;
8454 	int skip_sum;
8455 	int write = rw & REQ_WRITE;
8456 	int ret = 0;
8457 
8458 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8459 
8460 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8461 	if (!io_bio) {
8462 		ret = -ENOMEM;
8463 		goto free_ordered;
8464 	}
8465 
8466 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8467 	if (!dip) {
8468 		ret = -ENOMEM;
8469 		goto free_ordered;
8470 	}
8471 
8472 	dip->private = dio_bio->bi_private;
8473 	dip->inode = inode;
8474 	dip->logical_offset = file_offset;
8475 	dip->bytes = dio_bio->bi_iter.bi_size;
8476 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8477 	io_bio->bi_private = dip;
8478 	dip->orig_bio = io_bio;
8479 	dip->dio_bio = dio_bio;
8480 	atomic_set(&dip->pending_bios, 0);
8481 	btrfs_bio = btrfs_io_bio(io_bio);
8482 	btrfs_bio->logical = file_offset;
8483 
8484 	if (write) {
8485 		io_bio->bi_end_io = btrfs_endio_direct_write;
8486 	} else {
8487 		io_bio->bi_end_io = btrfs_endio_direct_read;
8488 		dip->subio_endio = btrfs_subio_endio_read;
8489 	}
8490 
8491 	/*
8492 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8493 	 * even if we fail to submit a bio, because in such case we do the
8494 	 * corresponding error handling below and it must not be done a second
8495 	 * time by btrfs_direct_IO().
8496 	 */
8497 	if (write) {
8498 		struct btrfs_dio_data *dio_data = current->journal_info;
8499 
8500 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8501 			dip->bytes;
8502 		dio_data->unsubmitted_oe_range_start =
8503 			dio_data->unsubmitted_oe_range_end;
8504 	}
8505 
8506 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8507 	if (!ret)
8508 		return;
8509 
8510 	if (btrfs_bio->end_io)
8511 		btrfs_bio->end_io(btrfs_bio, ret);
8512 
8513 free_ordered:
8514 	/*
8515 	 * If we arrived here it means either we failed to submit the dip
8516 	 * or we either failed to clone the dio_bio or failed to allocate the
8517 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8518 	 * call bio_endio against our io_bio so that we get proper resource
8519 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8520 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8521 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8522 	 */
8523 	if (io_bio && dip) {
8524 		io_bio->bi_error = -EIO;
8525 		bio_endio(io_bio);
8526 		/*
8527 		 * The end io callbacks free our dip, do the final put on io_bio
8528 		 * and all the cleanup and final put for dio_bio (through
8529 		 * dio_end_io()).
8530 		 */
8531 		dip = NULL;
8532 		io_bio = NULL;
8533 	} else {
8534 		if (write)
8535 			btrfs_endio_direct_write_update_ordered(inode,
8536 						file_offset,
8537 						dio_bio->bi_iter.bi_size,
8538 						0);
8539 		else
8540 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8541 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8542 
8543 		dio_bio->bi_error = -EIO;
8544 		/*
8545 		 * Releases and cleans up our dio_bio, no need to bio_put()
8546 		 * nor bio_endio()/bio_io_error() against dio_bio.
8547 		 */
8548 		dio_end_io(dio_bio, ret);
8549 	}
8550 	if (io_bio)
8551 		bio_put(io_bio);
8552 	kfree(dip);
8553 }
8554 
8555 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8556 			const struct iov_iter *iter, loff_t offset)
8557 {
8558 	int seg;
8559 	int i;
8560 	unsigned blocksize_mask = root->sectorsize - 1;
8561 	ssize_t retval = -EINVAL;
8562 
8563 	if (offset & blocksize_mask)
8564 		goto out;
8565 
8566 	if (iov_iter_alignment(iter) & blocksize_mask)
8567 		goto out;
8568 
8569 	/* If this is a write we don't need to check anymore */
8570 	if (iov_iter_rw(iter) == WRITE)
8571 		return 0;
8572 	/*
8573 	 * Check to make sure we don't have duplicate iov_base's in this
8574 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8575 	 * when reading back.
8576 	 */
8577 	for (seg = 0; seg < iter->nr_segs; seg++) {
8578 		for (i = seg + 1; i < iter->nr_segs; i++) {
8579 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8580 				goto out;
8581 		}
8582 	}
8583 	retval = 0;
8584 out:
8585 	return retval;
8586 }
8587 
8588 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8589 {
8590 	struct file *file = iocb->ki_filp;
8591 	struct inode *inode = file->f_mapping->host;
8592 	struct btrfs_root *root = BTRFS_I(inode)->root;
8593 	struct btrfs_dio_data dio_data = { 0 };
8594 	loff_t offset = iocb->ki_pos;
8595 	size_t count = 0;
8596 	int flags = 0;
8597 	bool wakeup = true;
8598 	bool relock = false;
8599 	ssize_t ret;
8600 
8601 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8602 		return 0;
8603 
8604 	inode_dio_begin(inode);
8605 	smp_mb__after_atomic();
8606 
8607 	/*
8608 	 * The generic stuff only does filemap_write_and_wait_range, which
8609 	 * isn't enough if we've written compressed pages to this area, so
8610 	 * we need to flush the dirty pages again to make absolutely sure
8611 	 * that any outstanding dirty pages are on disk.
8612 	 */
8613 	count = iov_iter_count(iter);
8614 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8615 		     &BTRFS_I(inode)->runtime_flags))
8616 		filemap_fdatawrite_range(inode->i_mapping, offset,
8617 					 offset + count - 1);
8618 
8619 	if (iov_iter_rw(iter) == WRITE) {
8620 		/*
8621 		 * If the write DIO is beyond the EOF, we need update
8622 		 * the isize, but it is protected by i_mutex. So we can
8623 		 * not unlock the i_mutex at this case.
8624 		 */
8625 		if (offset + count <= inode->i_size) {
8626 			inode_unlock(inode);
8627 			relock = true;
8628 		}
8629 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8630 		if (ret)
8631 			goto out;
8632 		dio_data.outstanding_extents = div64_u64(count +
8633 						BTRFS_MAX_EXTENT_SIZE - 1,
8634 						BTRFS_MAX_EXTENT_SIZE);
8635 
8636 		/*
8637 		 * We need to know how many extents we reserved so that we can
8638 		 * do the accounting properly if we go over the number we
8639 		 * originally calculated.  Abuse current->journal_info for this.
8640 		 */
8641 		dio_data.reserve = round_up(count, root->sectorsize);
8642 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8643 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8644 		current->journal_info = &dio_data;
8645 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8646 				     &BTRFS_I(inode)->runtime_flags)) {
8647 		inode_dio_end(inode);
8648 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8649 		wakeup = false;
8650 	}
8651 
8652 	ret = __blockdev_direct_IO(iocb, inode,
8653 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8654 				   iter, btrfs_get_blocks_direct, NULL,
8655 				   btrfs_submit_direct, flags);
8656 	if (iov_iter_rw(iter) == WRITE) {
8657 		current->journal_info = NULL;
8658 		if (ret < 0 && ret != -EIOCBQUEUED) {
8659 			if (dio_data.reserve)
8660 				btrfs_delalloc_release_space(inode, offset,
8661 							     dio_data.reserve);
8662 			/*
8663 			 * On error we might have left some ordered extents
8664 			 * without submitting corresponding bios for them, so
8665 			 * cleanup them up to avoid other tasks getting them
8666 			 * and waiting for them to complete forever.
8667 			 */
8668 			if (dio_data.unsubmitted_oe_range_start <
8669 			    dio_data.unsubmitted_oe_range_end)
8670 				btrfs_endio_direct_write_update_ordered(inode,
8671 					dio_data.unsubmitted_oe_range_start,
8672 					dio_data.unsubmitted_oe_range_end -
8673 					dio_data.unsubmitted_oe_range_start,
8674 					0);
8675 		} else if (ret >= 0 && (size_t)ret < count)
8676 			btrfs_delalloc_release_space(inode, offset,
8677 						     count - (size_t)ret);
8678 	}
8679 out:
8680 	if (wakeup)
8681 		inode_dio_end(inode);
8682 	if (relock)
8683 		inode_lock(inode);
8684 
8685 	return ret;
8686 }
8687 
8688 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8689 
8690 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8691 		__u64 start, __u64 len)
8692 {
8693 	int	ret;
8694 
8695 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8696 	if (ret)
8697 		return ret;
8698 
8699 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8700 }
8701 
8702 int btrfs_readpage(struct file *file, struct page *page)
8703 {
8704 	struct extent_io_tree *tree;
8705 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8706 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8707 }
8708 
8709 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8710 {
8711 	struct extent_io_tree *tree;
8712 	struct inode *inode = page->mapping->host;
8713 	int ret;
8714 
8715 	if (current->flags & PF_MEMALLOC) {
8716 		redirty_page_for_writepage(wbc, page);
8717 		unlock_page(page);
8718 		return 0;
8719 	}
8720 
8721 	/*
8722 	 * If we are under memory pressure we will call this directly from the
8723 	 * VM, we need to make sure we have the inode referenced for the ordered
8724 	 * extent.  If not just return like we didn't do anything.
8725 	 */
8726 	if (!igrab(inode)) {
8727 		redirty_page_for_writepage(wbc, page);
8728 		return AOP_WRITEPAGE_ACTIVATE;
8729 	}
8730 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8731 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8732 	btrfs_add_delayed_iput(inode);
8733 	return ret;
8734 }
8735 
8736 static int btrfs_writepages(struct address_space *mapping,
8737 			    struct writeback_control *wbc)
8738 {
8739 	struct extent_io_tree *tree;
8740 
8741 	tree = &BTRFS_I(mapping->host)->io_tree;
8742 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8743 }
8744 
8745 static int
8746 btrfs_readpages(struct file *file, struct address_space *mapping,
8747 		struct list_head *pages, unsigned nr_pages)
8748 {
8749 	struct extent_io_tree *tree;
8750 	tree = &BTRFS_I(mapping->host)->io_tree;
8751 	return extent_readpages(tree, mapping, pages, nr_pages,
8752 				btrfs_get_extent);
8753 }
8754 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8755 {
8756 	struct extent_io_tree *tree;
8757 	struct extent_map_tree *map;
8758 	int ret;
8759 
8760 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8761 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8762 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8763 	if (ret == 1) {
8764 		ClearPagePrivate(page);
8765 		set_page_private(page, 0);
8766 		put_page(page);
8767 	}
8768 	return ret;
8769 }
8770 
8771 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8772 {
8773 	if (PageWriteback(page) || PageDirty(page))
8774 		return 0;
8775 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8776 }
8777 
8778 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8779 				 unsigned int length)
8780 {
8781 	struct inode *inode = page->mapping->host;
8782 	struct extent_io_tree *tree;
8783 	struct btrfs_ordered_extent *ordered;
8784 	struct extent_state *cached_state = NULL;
8785 	u64 page_start = page_offset(page);
8786 	u64 page_end = page_start + PAGE_SIZE - 1;
8787 	u64 start;
8788 	u64 end;
8789 	int inode_evicting = inode->i_state & I_FREEING;
8790 
8791 	/*
8792 	 * we have the page locked, so new writeback can't start,
8793 	 * and the dirty bit won't be cleared while we are here.
8794 	 *
8795 	 * Wait for IO on this page so that we can safely clear
8796 	 * the PagePrivate2 bit and do ordered accounting
8797 	 */
8798 	wait_on_page_writeback(page);
8799 
8800 	tree = &BTRFS_I(inode)->io_tree;
8801 	if (offset) {
8802 		btrfs_releasepage(page, GFP_NOFS);
8803 		return;
8804 	}
8805 
8806 	if (!inode_evicting)
8807 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8808 again:
8809 	start = page_start;
8810 	ordered = btrfs_lookup_ordered_range(inode, start,
8811 					page_end - start + 1);
8812 	if (ordered) {
8813 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8814 		/*
8815 		 * IO on this page will never be started, so we need
8816 		 * to account for any ordered extents now
8817 		 */
8818 		if (!inode_evicting)
8819 			clear_extent_bit(tree, start, end,
8820 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8821 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8822 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8823 					 GFP_NOFS);
8824 		/*
8825 		 * whoever cleared the private bit is responsible
8826 		 * for the finish_ordered_io
8827 		 */
8828 		if (TestClearPagePrivate2(page)) {
8829 			struct btrfs_ordered_inode_tree *tree;
8830 			u64 new_len;
8831 
8832 			tree = &BTRFS_I(inode)->ordered_tree;
8833 
8834 			spin_lock_irq(&tree->lock);
8835 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8836 			new_len = start - ordered->file_offset;
8837 			if (new_len < ordered->truncated_len)
8838 				ordered->truncated_len = new_len;
8839 			spin_unlock_irq(&tree->lock);
8840 
8841 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8842 							   start,
8843 							   end - start + 1, 1))
8844 				btrfs_finish_ordered_io(ordered);
8845 		}
8846 		btrfs_put_ordered_extent(ordered);
8847 		if (!inode_evicting) {
8848 			cached_state = NULL;
8849 			lock_extent_bits(tree, start, end,
8850 					 &cached_state);
8851 		}
8852 
8853 		start = end + 1;
8854 		if (start < page_end)
8855 			goto again;
8856 	}
8857 
8858 	/*
8859 	 * Qgroup reserved space handler
8860 	 * Page here will be either
8861 	 * 1) Already written to disk
8862 	 *    In this case, its reserved space is released from data rsv map
8863 	 *    and will be freed by delayed_ref handler finally.
8864 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8865 	 *    space.
8866 	 * 2) Not written to disk
8867 	 *    This means the reserved space should be freed here.
8868 	 */
8869 	btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8870 	if (!inode_evicting) {
8871 		clear_extent_bit(tree, page_start, page_end,
8872 				 EXTENT_LOCKED | EXTENT_DIRTY |
8873 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8874 				 EXTENT_DEFRAG, 1, 1,
8875 				 &cached_state, GFP_NOFS);
8876 
8877 		__btrfs_releasepage(page, GFP_NOFS);
8878 	}
8879 
8880 	ClearPageChecked(page);
8881 	if (PagePrivate(page)) {
8882 		ClearPagePrivate(page);
8883 		set_page_private(page, 0);
8884 		put_page(page);
8885 	}
8886 }
8887 
8888 /*
8889  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8890  * called from a page fault handler when a page is first dirtied. Hence we must
8891  * be careful to check for EOF conditions here. We set the page up correctly
8892  * for a written page which means we get ENOSPC checking when writing into
8893  * holes and correct delalloc and unwritten extent mapping on filesystems that
8894  * support these features.
8895  *
8896  * We are not allowed to take the i_mutex here so we have to play games to
8897  * protect against truncate races as the page could now be beyond EOF.  Because
8898  * vmtruncate() writes the inode size before removing pages, once we have the
8899  * page lock we can determine safely if the page is beyond EOF. If it is not
8900  * beyond EOF, then the page is guaranteed safe against truncation until we
8901  * unlock the page.
8902  */
8903 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8904 {
8905 	struct page *page = vmf->page;
8906 	struct inode *inode = file_inode(vma->vm_file);
8907 	struct btrfs_root *root = BTRFS_I(inode)->root;
8908 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8909 	struct btrfs_ordered_extent *ordered;
8910 	struct extent_state *cached_state = NULL;
8911 	char *kaddr;
8912 	unsigned long zero_start;
8913 	loff_t size;
8914 	int ret;
8915 	int reserved = 0;
8916 	u64 reserved_space;
8917 	u64 page_start;
8918 	u64 page_end;
8919 	u64 end;
8920 
8921 	reserved_space = PAGE_SIZE;
8922 
8923 	sb_start_pagefault(inode->i_sb);
8924 	page_start = page_offset(page);
8925 	page_end = page_start + PAGE_SIZE - 1;
8926 	end = page_end;
8927 
8928 	/*
8929 	 * Reserving delalloc space after obtaining the page lock can lead to
8930 	 * deadlock. For example, if a dirty page is locked by this function
8931 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8932 	 * dirty page write out, then the btrfs_writepage() function could
8933 	 * end up waiting indefinitely to get a lock on the page currently
8934 	 * being processed by btrfs_page_mkwrite() function.
8935 	 */
8936 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8937 					   reserved_space);
8938 	if (!ret) {
8939 		ret = file_update_time(vma->vm_file);
8940 		reserved = 1;
8941 	}
8942 	if (ret) {
8943 		if (ret == -ENOMEM)
8944 			ret = VM_FAULT_OOM;
8945 		else /* -ENOSPC, -EIO, etc */
8946 			ret = VM_FAULT_SIGBUS;
8947 		if (reserved)
8948 			goto out;
8949 		goto out_noreserve;
8950 	}
8951 
8952 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8953 again:
8954 	lock_page(page);
8955 	size = i_size_read(inode);
8956 
8957 	if ((page->mapping != inode->i_mapping) ||
8958 	    (page_start >= size)) {
8959 		/* page got truncated out from underneath us */
8960 		goto out_unlock;
8961 	}
8962 	wait_on_page_writeback(page);
8963 
8964 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8965 	set_page_extent_mapped(page);
8966 
8967 	/*
8968 	 * we can't set the delalloc bits if there are pending ordered
8969 	 * extents.  Drop our locks and wait for them to finish
8970 	 */
8971 	ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8972 	if (ordered) {
8973 		unlock_extent_cached(io_tree, page_start, page_end,
8974 				     &cached_state, GFP_NOFS);
8975 		unlock_page(page);
8976 		btrfs_start_ordered_extent(inode, ordered, 1);
8977 		btrfs_put_ordered_extent(ordered);
8978 		goto again;
8979 	}
8980 
8981 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8982 		reserved_space = round_up(size - page_start, root->sectorsize);
8983 		if (reserved_space < PAGE_SIZE) {
8984 			end = page_start + reserved_space - 1;
8985 			spin_lock(&BTRFS_I(inode)->lock);
8986 			BTRFS_I(inode)->outstanding_extents++;
8987 			spin_unlock(&BTRFS_I(inode)->lock);
8988 			btrfs_delalloc_release_space(inode, page_start,
8989 						PAGE_SIZE - reserved_space);
8990 		}
8991 	}
8992 
8993 	/*
8994 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8995 	 * if it was already dirty, so for space accounting reasons we need to
8996 	 * clear any delalloc bits for the range we are fixing to save.  There
8997 	 * is probably a better way to do this, but for now keep consistent with
8998 	 * prepare_pages in the normal write path.
8999 	 */
9000 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9001 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9002 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9003 			  0, 0, &cached_state, GFP_NOFS);
9004 
9005 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9006 					&cached_state);
9007 	if (ret) {
9008 		unlock_extent_cached(io_tree, page_start, page_end,
9009 				     &cached_state, GFP_NOFS);
9010 		ret = VM_FAULT_SIGBUS;
9011 		goto out_unlock;
9012 	}
9013 	ret = 0;
9014 
9015 	/* page is wholly or partially inside EOF */
9016 	if (page_start + PAGE_SIZE > size)
9017 		zero_start = size & ~PAGE_MASK;
9018 	else
9019 		zero_start = PAGE_SIZE;
9020 
9021 	if (zero_start != PAGE_SIZE) {
9022 		kaddr = kmap(page);
9023 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9024 		flush_dcache_page(page);
9025 		kunmap(page);
9026 	}
9027 	ClearPageChecked(page);
9028 	set_page_dirty(page);
9029 	SetPageUptodate(page);
9030 
9031 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
9032 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9033 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9034 
9035 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9036 
9037 out_unlock:
9038 	if (!ret) {
9039 		sb_end_pagefault(inode->i_sb);
9040 		return VM_FAULT_LOCKED;
9041 	}
9042 	unlock_page(page);
9043 out:
9044 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9045 out_noreserve:
9046 	sb_end_pagefault(inode->i_sb);
9047 	return ret;
9048 }
9049 
9050 static int btrfs_truncate(struct inode *inode)
9051 {
9052 	struct btrfs_root *root = BTRFS_I(inode)->root;
9053 	struct btrfs_block_rsv *rsv;
9054 	int ret = 0;
9055 	int err = 0;
9056 	struct btrfs_trans_handle *trans;
9057 	u64 mask = root->sectorsize - 1;
9058 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9059 
9060 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9061 				       (u64)-1);
9062 	if (ret)
9063 		return ret;
9064 
9065 	/*
9066 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9067 	 * 3 things going on here
9068 	 *
9069 	 * 1) We need to reserve space for our orphan item and the space to
9070 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9071 	 * orphan item because we didn't reserve space to remove it.
9072 	 *
9073 	 * 2) We need to reserve space to update our inode.
9074 	 *
9075 	 * 3) We need to have something to cache all the space that is going to
9076 	 * be free'd up by the truncate operation, but also have some slack
9077 	 * space reserved in case it uses space during the truncate (thank you
9078 	 * very much snapshotting).
9079 	 *
9080 	 * And we need these to all be separate.  The fact is we can use a lot of
9081 	 * space doing the truncate, and we have no earthly idea how much space
9082 	 * we will use, so we need the truncate reservation to be separate so it
9083 	 * doesn't end up using space reserved for updating the inode or
9084 	 * removing the orphan item.  We also need to be able to stop the
9085 	 * transaction and start a new one, which means we need to be able to
9086 	 * update the inode several times, and we have no idea of knowing how
9087 	 * many times that will be, so we can't just reserve 1 item for the
9088 	 * entirety of the operation, so that has to be done separately as well.
9089 	 * Then there is the orphan item, which does indeed need to be held on
9090 	 * to for the whole operation, and we need nobody to touch this reserved
9091 	 * space except the orphan code.
9092 	 *
9093 	 * So that leaves us with
9094 	 *
9095 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9096 	 * 2) rsv - for the truncate reservation, which we will steal from the
9097 	 * transaction reservation.
9098 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9099 	 * updating the inode.
9100 	 */
9101 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9102 	if (!rsv)
9103 		return -ENOMEM;
9104 	rsv->size = min_size;
9105 	rsv->failfast = 1;
9106 
9107 	/*
9108 	 * 1 for the truncate slack space
9109 	 * 1 for updating the inode.
9110 	 */
9111 	trans = btrfs_start_transaction(root, 2);
9112 	if (IS_ERR(trans)) {
9113 		err = PTR_ERR(trans);
9114 		goto out;
9115 	}
9116 
9117 	/* Migrate the slack space for the truncate to our reserve */
9118 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9119 				      min_size);
9120 	BUG_ON(ret);
9121 
9122 	/*
9123 	 * So if we truncate and then write and fsync we normally would just
9124 	 * write the extents that changed, which is a problem if we need to
9125 	 * first truncate that entire inode.  So set this flag so we write out
9126 	 * all of the extents in the inode to the sync log so we're completely
9127 	 * safe.
9128 	 */
9129 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9130 	trans->block_rsv = rsv;
9131 
9132 	while (1) {
9133 		ret = btrfs_truncate_inode_items(trans, root, inode,
9134 						 inode->i_size,
9135 						 BTRFS_EXTENT_DATA_KEY);
9136 		if (ret != -ENOSPC && ret != -EAGAIN) {
9137 			err = ret;
9138 			break;
9139 		}
9140 
9141 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9142 		ret = btrfs_update_inode(trans, root, inode);
9143 		if (ret) {
9144 			err = ret;
9145 			break;
9146 		}
9147 
9148 		btrfs_end_transaction(trans, root);
9149 		btrfs_btree_balance_dirty(root);
9150 
9151 		trans = btrfs_start_transaction(root, 2);
9152 		if (IS_ERR(trans)) {
9153 			ret = err = PTR_ERR(trans);
9154 			trans = NULL;
9155 			break;
9156 		}
9157 
9158 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9159 					      rsv, min_size);
9160 		BUG_ON(ret);	/* shouldn't happen */
9161 		trans->block_rsv = rsv;
9162 	}
9163 
9164 	if (ret == 0 && inode->i_nlink > 0) {
9165 		trans->block_rsv = root->orphan_block_rsv;
9166 		ret = btrfs_orphan_del(trans, inode);
9167 		if (ret)
9168 			err = ret;
9169 	}
9170 
9171 	if (trans) {
9172 		trans->block_rsv = &root->fs_info->trans_block_rsv;
9173 		ret = btrfs_update_inode(trans, root, inode);
9174 		if (ret && !err)
9175 			err = ret;
9176 
9177 		ret = btrfs_end_transaction(trans, root);
9178 		btrfs_btree_balance_dirty(root);
9179 	}
9180 
9181 out:
9182 	btrfs_free_block_rsv(root, rsv);
9183 
9184 	if (ret && !err)
9185 		err = ret;
9186 
9187 	return err;
9188 }
9189 
9190 /*
9191  * create a new subvolume directory/inode (helper for the ioctl).
9192  */
9193 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9194 			     struct btrfs_root *new_root,
9195 			     struct btrfs_root *parent_root,
9196 			     u64 new_dirid)
9197 {
9198 	struct inode *inode;
9199 	int err;
9200 	u64 index = 0;
9201 
9202 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9203 				new_dirid, new_dirid,
9204 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9205 				&index);
9206 	if (IS_ERR(inode))
9207 		return PTR_ERR(inode);
9208 	inode->i_op = &btrfs_dir_inode_operations;
9209 	inode->i_fop = &btrfs_dir_file_operations;
9210 
9211 	set_nlink(inode, 1);
9212 	btrfs_i_size_write(inode, 0);
9213 	unlock_new_inode(inode);
9214 
9215 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9216 	if (err)
9217 		btrfs_err(new_root->fs_info,
9218 			  "error inheriting subvolume %llu properties: %d",
9219 			  new_root->root_key.objectid, err);
9220 
9221 	err = btrfs_update_inode(trans, new_root, inode);
9222 
9223 	iput(inode);
9224 	return err;
9225 }
9226 
9227 struct inode *btrfs_alloc_inode(struct super_block *sb)
9228 {
9229 	struct btrfs_inode *ei;
9230 	struct inode *inode;
9231 
9232 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9233 	if (!ei)
9234 		return NULL;
9235 
9236 	ei->root = NULL;
9237 	ei->generation = 0;
9238 	ei->last_trans = 0;
9239 	ei->last_sub_trans = 0;
9240 	ei->logged_trans = 0;
9241 	ei->delalloc_bytes = 0;
9242 	ei->defrag_bytes = 0;
9243 	ei->disk_i_size = 0;
9244 	ei->flags = 0;
9245 	ei->csum_bytes = 0;
9246 	ei->index_cnt = (u64)-1;
9247 	ei->dir_index = 0;
9248 	ei->last_unlink_trans = 0;
9249 	ei->last_log_commit = 0;
9250 	ei->delayed_iput_count = 0;
9251 
9252 	spin_lock_init(&ei->lock);
9253 	ei->outstanding_extents = 0;
9254 	ei->reserved_extents = 0;
9255 
9256 	ei->runtime_flags = 0;
9257 	ei->force_compress = BTRFS_COMPRESS_NONE;
9258 
9259 	ei->delayed_node = NULL;
9260 
9261 	ei->i_otime.tv_sec = 0;
9262 	ei->i_otime.tv_nsec = 0;
9263 
9264 	inode = &ei->vfs_inode;
9265 	extent_map_tree_init(&ei->extent_tree);
9266 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9267 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9268 	ei->io_tree.track_uptodate = 1;
9269 	ei->io_failure_tree.track_uptodate = 1;
9270 	atomic_set(&ei->sync_writers, 0);
9271 	mutex_init(&ei->log_mutex);
9272 	mutex_init(&ei->delalloc_mutex);
9273 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9274 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9275 	INIT_LIST_HEAD(&ei->delayed_iput);
9276 	RB_CLEAR_NODE(&ei->rb_node);
9277 	init_rwsem(&ei->dio_sem);
9278 
9279 	return inode;
9280 }
9281 
9282 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9283 void btrfs_test_destroy_inode(struct inode *inode)
9284 {
9285 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9286 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9287 }
9288 #endif
9289 
9290 static void btrfs_i_callback(struct rcu_head *head)
9291 {
9292 	struct inode *inode = container_of(head, struct inode, i_rcu);
9293 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9294 }
9295 
9296 void btrfs_destroy_inode(struct inode *inode)
9297 {
9298 	struct btrfs_ordered_extent *ordered;
9299 	struct btrfs_root *root = BTRFS_I(inode)->root;
9300 
9301 	WARN_ON(!hlist_empty(&inode->i_dentry));
9302 	WARN_ON(inode->i_data.nrpages);
9303 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9304 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9305 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9306 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9307 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9308 
9309 	/*
9310 	 * This can happen where we create an inode, but somebody else also
9311 	 * created the same inode and we need to destroy the one we already
9312 	 * created.
9313 	 */
9314 	if (!root)
9315 		goto free;
9316 
9317 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9318 		     &BTRFS_I(inode)->runtime_flags)) {
9319 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9320 			btrfs_ino(inode));
9321 		atomic_dec(&root->orphan_inodes);
9322 	}
9323 
9324 	while (1) {
9325 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9326 		if (!ordered)
9327 			break;
9328 		else {
9329 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9330 				ordered->file_offset, ordered->len);
9331 			btrfs_remove_ordered_extent(inode, ordered);
9332 			btrfs_put_ordered_extent(ordered);
9333 			btrfs_put_ordered_extent(ordered);
9334 		}
9335 	}
9336 	btrfs_qgroup_check_reserved_leak(inode);
9337 	inode_tree_del(inode);
9338 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9339 free:
9340 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9341 }
9342 
9343 int btrfs_drop_inode(struct inode *inode)
9344 {
9345 	struct btrfs_root *root = BTRFS_I(inode)->root;
9346 
9347 	if (root == NULL)
9348 		return 1;
9349 
9350 	/* the snap/subvol tree is on deleting */
9351 	if (btrfs_root_refs(&root->root_item) == 0)
9352 		return 1;
9353 	else
9354 		return generic_drop_inode(inode);
9355 }
9356 
9357 static void init_once(void *foo)
9358 {
9359 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9360 
9361 	inode_init_once(&ei->vfs_inode);
9362 }
9363 
9364 void btrfs_destroy_cachep(void)
9365 {
9366 	/*
9367 	 * Make sure all delayed rcu free inodes are flushed before we
9368 	 * destroy cache.
9369 	 */
9370 	rcu_barrier();
9371 	kmem_cache_destroy(btrfs_inode_cachep);
9372 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9373 	kmem_cache_destroy(btrfs_transaction_cachep);
9374 	kmem_cache_destroy(btrfs_path_cachep);
9375 	kmem_cache_destroy(btrfs_free_space_cachep);
9376 }
9377 
9378 int btrfs_init_cachep(void)
9379 {
9380 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9381 			sizeof(struct btrfs_inode), 0,
9382 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9383 			init_once);
9384 	if (!btrfs_inode_cachep)
9385 		goto fail;
9386 
9387 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9388 			sizeof(struct btrfs_trans_handle), 0,
9389 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9390 	if (!btrfs_trans_handle_cachep)
9391 		goto fail;
9392 
9393 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9394 			sizeof(struct btrfs_transaction), 0,
9395 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9396 	if (!btrfs_transaction_cachep)
9397 		goto fail;
9398 
9399 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9400 			sizeof(struct btrfs_path), 0,
9401 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9402 	if (!btrfs_path_cachep)
9403 		goto fail;
9404 
9405 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9406 			sizeof(struct btrfs_free_space), 0,
9407 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9408 	if (!btrfs_free_space_cachep)
9409 		goto fail;
9410 
9411 	return 0;
9412 fail:
9413 	btrfs_destroy_cachep();
9414 	return -ENOMEM;
9415 }
9416 
9417 static int btrfs_getattr(struct vfsmount *mnt,
9418 			 struct dentry *dentry, struct kstat *stat)
9419 {
9420 	u64 delalloc_bytes;
9421 	struct inode *inode = d_inode(dentry);
9422 	u32 blocksize = inode->i_sb->s_blocksize;
9423 
9424 	generic_fillattr(inode, stat);
9425 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9426 
9427 	spin_lock(&BTRFS_I(inode)->lock);
9428 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9429 	spin_unlock(&BTRFS_I(inode)->lock);
9430 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9431 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9432 	return 0;
9433 }
9434 
9435 static int btrfs_rename_exchange(struct inode *old_dir,
9436 			      struct dentry *old_dentry,
9437 			      struct inode *new_dir,
9438 			      struct dentry *new_dentry)
9439 {
9440 	struct btrfs_trans_handle *trans;
9441 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9442 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9443 	struct inode *new_inode = new_dentry->d_inode;
9444 	struct inode *old_inode = old_dentry->d_inode;
9445 	struct timespec ctime = CURRENT_TIME;
9446 	struct dentry *parent;
9447 	u64 old_ino = btrfs_ino(old_inode);
9448 	u64 new_ino = btrfs_ino(new_inode);
9449 	u64 old_idx = 0;
9450 	u64 new_idx = 0;
9451 	u64 root_objectid;
9452 	int ret;
9453 	bool root_log_pinned = false;
9454 	bool dest_log_pinned = false;
9455 
9456 	/* we only allow rename subvolume link between subvolumes */
9457 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9458 		return -EXDEV;
9459 
9460 	/* close the race window with snapshot create/destroy ioctl */
9461 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9462 		down_read(&root->fs_info->subvol_sem);
9463 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9464 		down_read(&dest->fs_info->subvol_sem);
9465 
9466 	/*
9467 	 * We want to reserve the absolute worst case amount of items.  So if
9468 	 * both inodes are subvols and we need to unlink them then that would
9469 	 * require 4 item modifications, but if they are both normal inodes it
9470 	 * would require 5 item modifications, so we'll assume their normal
9471 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9472 	 * should cover the worst case number of items we'll modify.
9473 	 */
9474 	trans = btrfs_start_transaction(root, 12);
9475 	if (IS_ERR(trans)) {
9476 		ret = PTR_ERR(trans);
9477 		goto out_notrans;
9478 	}
9479 
9480 	/*
9481 	 * We need to find a free sequence number both in the source and
9482 	 * in the destination directory for the exchange.
9483 	 */
9484 	ret = btrfs_set_inode_index(new_dir, &old_idx);
9485 	if (ret)
9486 		goto out_fail;
9487 	ret = btrfs_set_inode_index(old_dir, &new_idx);
9488 	if (ret)
9489 		goto out_fail;
9490 
9491 	BTRFS_I(old_inode)->dir_index = 0ULL;
9492 	BTRFS_I(new_inode)->dir_index = 0ULL;
9493 
9494 	/* Reference for the source. */
9495 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9496 		/* force full log commit if subvolume involved. */
9497 		btrfs_set_log_full_commit(root->fs_info, trans);
9498 	} else {
9499 		btrfs_pin_log_trans(root);
9500 		root_log_pinned = true;
9501 		ret = btrfs_insert_inode_ref(trans, dest,
9502 					     new_dentry->d_name.name,
9503 					     new_dentry->d_name.len,
9504 					     old_ino,
9505 					     btrfs_ino(new_dir), old_idx);
9506 		if (ret)
9507 			goto out_fail;
9508 	}
9509 
9510 	/* And now for the dest. */
9511 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9512 		/* force full log commit if subvolume involved. */
9513 		btrfs_set_log_full_commit(dest->fs_info, trans);
9514 	} else {
9515 		btrfs_pin_log_trans(dest);
9516 		dest_log_pinned = true;
9517 		ret = btrfs_insert_inode_ref(trans, root,
9518 					     old_dentry->d_name.name,
9519 					     old_dentry->d_name.len,
9520 					     new_ino,
9521 					     btrfs_ino(old_dir), new_idx);
9522 		if (ret)
9523 			goto out_fail;
9524 	}
9525 
9526 	/* Update inode version and ctime/mtime. */
9527 	inode_inc_iversion(old_dir);
9528 	inode_inc_iversion(new_dir);
9529 	inode_inc_iversion(old_inode);
9530 	inode_inc_iversion(new_inode);
9531 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9532 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9533 	old_inode->i_ctime = ctime;
9534 	new_inode->i_ctime = ctime;
9535 
9536 	if (old_dentry->d_parent != new_dentry->d_parent) {
9537 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9538 		btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9539 	}
9540 
9541 	/* src is a subvolume */
9542 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9543 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9544 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9545 					  root_objectid,
9546 					  old_dentry->d_name.name,
9547 					  old_dentry->d_name.len);
9548 	} else { /* src is an inode */
9549 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9550 					   old_dentry->d_inode,
9551 					   old_dentry->d_name.name,
9552 					   old_dentry->d_name.len);
9553 		if (!ret)
9554 			ret = btrfs_update_inode(trans, root, old_inode);
9555 	}
9556 	if (ret) {
9557 		btrfs_abort_transaction(trans, root, ret);
9558 		goto out_fail;
9559 	}
9560 
9561 	/* dest is a subvolume */
9562 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9563 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9564 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9565 					  root_objectid,
9566 					  new_dentry->d_name.name,
9567 					  new_dentry->d_name.len);
9568 	} else { /* dest is an inode */
9569 		ret = __btrfs_unlink_inode(trans, dest, new_dir,
9570 					   new_dentry->d_inode,
9571 					   new_dentry->d_name.name,
9572 					   new_dentry->d_name.len);
9573 		if (!ret)
9574 			ret = btrfs_update_inode(trans, dest, new_inode);
9575 	}
9576 	if (ret) {
9577 		btrfs_abort_transaction(trans, root, ret);
9578 		goto out_fail;
9579 	}
9580 
9581 	ret = btrfs_add_link(trans, new_dir, old_inode,
9582 			     new_dentry->d_name.name,
9583 			     new_dentry->d_name.len, 0, old_idx);
9584 	if (ret) {
9585 		btrfs_abort_transaction(trans, root, ret);
9586 		goto out_fail;
9587 	}
9588 
9589 	ret = btrfs_add_link(trans, old_dir, new_inode,
9590 			     old_dentry->d_name.name,
9591 			     old_dentry->d_name.len, 0, new_idx);
9592 	if (ret) {
9593 		btrfs_abort_transaction(trans, root, ret);
9594 		goto out_fail;
9595 	}
9596 
9597 	if (old_inode->i_nlink == 1)
9598 		BTRFS_I(old_inode)->dir_index = old_idx;
9599 	if (new_inode->i_nlink == 1)
9600 		BTRFS_I(new_inode)->dir_index = new_idx;
9601 
9602 	if (root_log_pinned) {
9603 		parent = new_dentry->d_parent;
9604 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9605 		btrfs_end_log_trans(root);
9606 		root_log_pinned = false;
9607 	}
9608 	if (dest_log_pinned) {
9609 		parent = old_dentry->d_parent;
9610 		btrfs_log_new_name(trans, new_inode, new_dir, parent);
9611 		btrfs_end_log_trans(dest);
9612 		dest_log_pinned = false;
9613 	}
9614 out_fail:
9615 	/*
9616 	 * If we have pinned a log and an error happened, we unpin tasks
9617 	 * trying to sync the log and force them to fallback to a transaction
9618 	 * commit if the log currently contains any of the inodes involved in
9619 	 * this rename operation (to ensure we do not persist a log with an
9620 	 * inconsistent state for any of these inodes or leading to any
9621 	 * inconsistencies when replayed). If the transaction was aborted, the
9622 	 * abortion reason is propagated to userspace when attempting to commit
9623 	 * the transaction. If the log does not contain any of these inodes, we
9624 	 * allow the tasks to sync it.
9625 	 */
9626 	if (ret && (root_log_pinned || dest_log_pinned)) {
9627 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9628 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9629 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9630 		    (new_inode &&
9631 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9632 		    btrfs_set_log_full_commit(root->fs_info, trans);
9633 
9634 		if (root_log_pinned) {
9635 			btrfs_end_log_trans(root);
9636 			root_log_pinned = false;
9637 		}
9638 		if (dest_log_pinned) {
9639 			btrfs_end_log_trans(dest);
9640 			dest_log_pinned = false;
9641 		}
9642 	}
9643 	ret = btrfs_end_transaction(trans, root);
9644 out_notrans:
9645 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9646 		up_read(&dest->fs_info->subvol_sem);
9647 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9648 		up_read(&root->fs_info->subvol_sem);
9649 
9650 	return ret;
9651 }
9652 
9653 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9654 				     struct btrfs_root *root,
9655 				     struct inode *dir,
9656 				     struct dentry *dentry)
9657 {
9658 	int ret;
9659 	struct inode *inode;
9660 	u64 objectid;
9661 	u64 index;
9662 
9663 	ret = btrfs_find_free_ino(root, &objectid);
9664 	if (ret)
9665 		return ret;
9666 
9667 	inode = btrfs_new_inode(trans, root, dir,
9668 				dentry->d_name.name,
9669 				dentry->d_name.len,
9670 				btrfs_ino(dir),
9671 				objectid,
9672 				S_IFCHR | WHITEOUT_MODE,
9673 				&index);
9674 
9675 	if (IS_ERR(inode)) {
9676 		ret = PTR_ERR(inode);
9677 		return ret;
9678 	}
9679 
9680 	inode->i_op = &btrfs_special_inode_operations;
9681 	init_special_inode(inode, inode->i_mode,
9682 		WHITEOUT_DEV);
9683 
9684 	ret = btrfs_init_inode_security(trans, inode, dir,
9685 				&dentry->d_name);
9686 	if (ret)
9687 		goto out;
9688 
9689 	ret = btrfs_add_nondir(trans, dir, dentry,
9690 				inode, 0, index);
9691 	if (ret)
9692 		goto out;
9693 
9694 	ret = btrfs_update_inode(trans, root, inode);
9695 out:
9696 	unlock_new_inode(inode);
9697 	if (ret)
9698 		inode_dec_link_count(inode);
9699 	iput(inode);
9700 
9701 	return ret;
9702 }
9703 
9704 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9705 			   struct inode *new_dir, struct dentry *new_dentry,
9706 			   unsigned int flags)
9707 {
9708 	struct btrfs_trans_handle *trans;
9709 	unsigned int trans_num_items;
9710 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9711 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9712 	struct inode *new_inode = d_inode(new_dentry);
9713 	struct inode *old_inode = d_inode(old_dentry);
9714 	u64 index = 0;
9715 	u64 root_objectid;
9716 	int ret;
9717 	u64 old_ino = btrfs_ino(old_inode);
9718 	bool log_pinned = false;
9719 
9720 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9721 		return -EPERM;
9722 
9723 	/* we only allow rename subvolume link between subvolumes */
9724 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9725 		return -EXDEV;
9726 
9727 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9728 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9729 		return -ENOTEMPTY;
9730 
9731 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9732 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9733 		return -ENOTEMPTY;
9734 
9735 
9736 	/* check for collisions, even if the  name isn't there */
9737 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9738 			     new_dentry->d_name.name,
9739 			     new_dentry->d_name.len);
9740 
9741 	if (ret) {
9742 		if (ret == -EEXIST) {
9743 			/* we shouldn't get
9744 			 * eexist without a new_inode */
9745 			if (WARN_ON(!new_inode)) {
9746 				return ret;
9747 			}
9748 		} else {
9749 			/* maybe -EOVERFLOW */
9750 			return ret;
9751 		}
9752 	}
9753 	ret = 0;
9754 
9755 	/*
9756 	 * we're using rename to replace one file with another.  Start IO on it
9757 	 * now so  we don't add too much work to the end of the transaction
9758 	 */
9759 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9760 		filemap_flush(old_inode->i_mapping);
9761 
9762 	/* close the racy window with snapshot create/destroy ioctl */
9763 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9764 		down_read(&root->fs_info->subvol_sem);
9765 	/*
9766 	 * We want to reserve the absolute worst case amount of items.  So if
9767 	 * both inodes are subvols and we need to unlink them then that would
9768 	 * require 4 item modifications, but if they are both normal inodes it
9769 	 * would require 5 item modifications, so we'll assume they are normal
9770 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9771 	 * should cover the worst case number of items we'll modify.
9772 	 * If our rename has the whiteout flag, we need more 5 units for the
9773 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9774 	 * when selinux is enabled).
9775 	 */
9776 	trans_num_items = 11;
9777 	if (flags & RENAME_WHITEOUT)
9778 		trans_num_items += 5;
9779 	trans = btrfs_start_transaction(root, trans_num_items);
9780 	if (IS_ERR(trans)) {
9781 		ret = PTR_ERR(trans);
9782 		goto out_notrans;
9783 	}
9784 
9785 	if (dest != root)
9786 		btrfs_record_root_in_trans(trans, dest);
9787 
9788 	ret = btrfs_set_inode_index(new_dir, &index);
9789 	if (ret)
9790 		goto out_fail;
9791 
9792 	BTRFS_I(old_inode)->dir_index = 0ULL;
9793 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9794 		/* force full log commit if subvolume involved. */
9795 		btrfs_set_log_full_commit(root->fs_info, trans);
9796 	} else {
9797 		btrfs_pin_log_trans(root);
9798 		log_pinned = true;
9799 		ret = btrfs_insert_inode_ref(trans, dest,
9800 					     new_dentry->d_name.name,
9801 					     new_dentry->d_name.len,
9802 					     old_ino,
9803 					     btrfs_ino(new_dir), index);
9804 		if (ret)
9805 			goto out_fail;
9806 	}
9807 
9808 	inode_inc_iversion(old_dir);
9809 	inode_inc_iversion(new_dir);
9810 	inode_inc_iversion(old_inode);
9811 	old_dir->i_ctime = old_dir->i_mtime =
9812 	new_dir->i_ctime = new_dir->i_mtime =
9813 	old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9814 
9815 	if (old_dentry->d_parent != new_dentry->d_parent)
9816 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9817 
9818 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9819 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9820 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9821 					old_dentry->d_name.name,
9822 					old_dentry->d_name.len);
9823 	} else {
9824 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9825 					d_inode(old_dentry),
9826 					old_dentry->d_name.name,
9827 					old_dentry->d_name.len);
9828 		if (!ret)
9829 			ret = btrfs_update_inode(trans, root, old_inode);
9830 	}
9831 	if (ret) {
9832 		btrfs_abort_transaction(trans, root, ret);
9833 		goto out_fail;
9834 	}
9835 
9836 	if (new_inode) {
9837 		inode_inc_iversion(new_inode);
9838 		new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9839 		if (unlikely(btrfs_ino(new_inode) ==
9840 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9841 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9842 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9843 						root_objectid,
9844 						new_dentry->d_name.name,
9845 						new_dentry->d_name.len);
9846 			BUG_ON(new_inode->i_nlink == 0);
9847 		} else {
9848 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9849 						 d_inode(new_dentry),
9850 						 new_dentry->d_name.name,
9851 						 new_dentry->d_name.len);
9852 		}
9853 		if (!ret && new_inode->i_nlink == 0)
9854 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9855 		if (ret) {
9856 			btrfs_abort_transaction(trans, root, ret);
9857 			goto out_fail;
9858 		}
9859 	}
9860 
9861 	ret = btrfs_add_link(trans, new_dir, old_inode,
9862 			     new_dentry->d_name.name,
9863 			     new_dentry->d_name.len, 0, index);
9864 	if (ret) {
9865 		btrfs_abort_transaction(trans, root, ret);
9866 		goto out_fail;
9867 	}
9868 
9869 	if (old_inode->i_nlink == 1)
9870 		BTRFS_I(old_inode)->dir_index = index;
9871 
9872 	if (log_pinned) {
9873 		struct dentry *parent = new_dentry->d_parent;
9874 
9875 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9876 		btrfs_end_log_trans(root);
9877 		log_pinned = false;
9878 	}
9879 
9880 	if (flags & RENAME_WHITEOUT) {
9881 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9882 						old_dentry);
9883 
9884 		if (ret) {
9885 			btrfs_abort_transaction(trans, root, ret);
9886 			goto out_fail;
9887 		}
9888 	}
9889 out_fail:
9890 	/*
9891 	 * If we have pinned the log and an error happened, we unpin tasks
9892 	 * trying to sync the log and force them to fallback to a transaction
9893 	 * commit if the log currently contains any of the inodes involved in
9894 	 * this rename operation (to ensure we do not persist a log with an
9895 	 * inconsistent state for any of these inodes or leading to any
9896 	 * inconsistencies when replayed). If the transaction was aborted, the
9897 	 * abortion reason is propagated to userspace when attempting to commit
9898 	 * the transaction. If the log does not contain any of these inodes, we
9899 	 * allow the tasks to sync it.
9900 	 */
9901 	if (ret && log_pinned) {
9902 		if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9903 		    btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9904 		    btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9905 		    (new_inode &&
9906 		     btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9907 		    btrfs_set_log_full_commit(root->fs_info, trans);
9908 
9909 		btrfs_end_log_trans(root);
9910 		log_pinned = false;
9911 	}
9912 	btrfs_end_transaction(trans, root);
9913 out_notrans:
9914 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9915 		up_read(&root->fs_info->subvol_sem);
9916 
9917 	return ret;
9918 }
9919 
9920 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9921 			 struct inode *new_dir, struct dentry *new_dentry,
9922 			 unsigned int flags)
9923 {
9924 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9925 		return -EINVAL;
9926 
9927 	if (flags & RENAME_EXCHANGE)
9928 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9929 					  new_dentry);
9930 
9931 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9932 }
9933 
9934 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9935 {
9936 	struct btrfs_delalloc_work *delalloc_work;
9937 	struct inode *inode;
9938 
9939 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9940 				     work);
9941 	inode = delalloc_work->inode;
9942 	filemap_flush(inode->i_mapping);
9943 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9944 				&BTRFS_I(inode)->runtime_flags))
9945 		filemap_flush(inode->i_mapping);
9946 
9947 	if (delalloc_work->delay_iput)
9948 		btrfs_add_delayed_iput(inode);
9949 	else
9950 		iput(inode);
9951 	complete(&delalloc_work->completion);
9952 }
9953 
9954 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9955 						    int delay_iput)
9956 {
9957 	struct btrfs_delalloc_work *work;
9958 
9959 	work = kmalloc(sizeof(*work), GFP_NOFS);
9960 	if (!work)
9961 		return NULL;
9962 
9963 	init_completion(&work->completion);
9964 	INIT_LIST_HEAD(&work->list);
9965 	work->inode = inode;
9966 	work->delay_iput = delay_iput;
9967 	WARN_ON_ONCE(!inode);
9968 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9969 			btrfs_run_delalloc_work, NULL, NULL);
9970 
9971 	return work;
9972 }
9973 
9974 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9975 {
9976 	wait_for_completion(&work->completion);
9977 	kfree(work);
9978 }
9979 
9980 /*
9981  * some fairly slow code that needs optimization. This walks the list
9982  * of all the inodes with pending delalloc and forces them to disk.
9983  */
9984 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9985 				   int nr)
9986 {
9987 	struct btrfs_inode *binode;
9988 	struct inode *inode;
9989 	struct btrfs_delalloc_work *work, *next;
9990 	struct list_head works;
9991 	struct list_head splice;
9992 	int ret = 0;
9993 
9994 	INIT_LIST_HEAD(&works);
9995 	INIT_LIST_HEAD(&splice);
9996 
9997 	mutex_lock(&root->delalloc_mutex);
9998 	spin_lock(&root->delalloc_lock);
9999 	list_splice_init(&root->delalloc_inodes, &splice);
10000 	while (!list_empty(&splice)) {
10001 		binode = list_entry(splice.next, struct btrfs_inode,
10002 				    delalloc_inodes);
10003 
10004 		list_move_tail(&binode->delalloc_inodes,
10005 			       &root->delalloc_inodes);
10006 		inode = igrab(&binode->vfs_inode);
10007 		if (!inode) {
10008 			cond_resched_lock(&root->delalloc_lock);
10009 			continue;
10010 		}
10011 		spin_unlock(&root->delalloc_lock);
10012 
10013 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10014 		if (!work) {
10015 			if (delay_iput)
10016 				btrfs_add_delayed_iput(inode);
10017 			else
10018 				iput(inode);
10019 			ret = -ENOMEM;
10020 			goto out;
10021 		}
10022 		list_add_tail(&work->list, &works);
10023 		btrfs_queue_work(root->fs_info->flush_workers,
10024 				 &work->work);
10025 		ret++;
10026 		if (nr != -1 && ret >= nr)
10027 			goto out;
10028 		cond_resched();
10029 		spin_lock(&root->delalloc_lock);
10030 	}
10031 	spin_unlock(&root->delalloc_lock);
10032 
10033 out:
10034 	list_for_each_entry_safe(work, next, &works, list) {
10035 		list_del_init(&work->list);
10036 		btrfs_wait_and_free_delalloc_work(work);
10037 	}
10038 
10039 	if (!list_empty_careful(&splice)) {
10040 		spin_lock(&root->delalloc_lock);
10041 		list_splice_tail(&splice, &root->delalloc_inodes);
10042 		spin_unlock(&root->delalloc_lock);
10043 	}
10044 	mutex_unlock(&root->delalloc_mutex);
10045 	return ret;
10046 }
10047 
10048 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10049 {
10050 	int ret;
10051 
10052 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10053 		return -EROFS;
10054 
10055 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10056 	if (ret > 0)
10057 		ret = 0;
10058 	/*
10059 	 * the filemap_flush will queue IO into the worker threads, but
10060 	 * we have to make sure the IO is actually started and that
10061 	 * ordered extents get created before we return
10062 	 */
10063 	atomic_inc(&root->fs_info->async_submit_draining);
10064 	while (atomic_read(&root->fs_info->nr_async_submits) ||
10065 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
10066 		wait_event(root->fs_info->async_submit_wait,
10067 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10068 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10069 	}
10070 	atomic_dec(&root->fs_info->async_submit_draining);
10071 	return ret;
10072 }
10073 
10074 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10075 			       int nr)
10076 {
10077 	struct btrfs_root *root;
10078 	struct list_head splice;
10079 	int ret;
10080 
10081 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10082 		return -EROFS;
10083 
10084 	INIT_LIST_HEAD(&splice);
10085 
10086 	mutex_lock(&fs_info->delalloc_root_mutex);
10087 	spin_lock(&fs_info->delalloc_root_lock);
10088 	list_splice_init(&fs_info->delalloc_roots, &splice);
10089 	while (!list_empty(&splice) && nr) {
10090 		root = list_first_entry(&splice, struct btrfs_root,
10091 					delalloc_root);
10092 		root = btrfs_grab_fs_root(root);
10093 		BUG_ON(!root);
10094 		list_move_tail(&root->delalloc_root,
10095 			       &fs_info->delalloc_roots);
10096 		spin_unlock(&fs_info->delalloc_root_lock);
10097 
10098 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10099 		btrfs_put_fs_root(root);
10100 		if (ret < 0)
10101 			goto out;
10102 
10103 		if (nr != -1) {
10104 			nr -= ret;
10105 			WARN_ON(nr < 0);
10106 		}
10107 		spin_lock(&fs_info->delalloc_root_lock);
10108 	}
10109 	spin_unlock(&fs_info->delalloc_root_lock);
10110 
10111 	ret = 0;
10112 	atomic_inc(&fs_info->async_submit_draining);
10113 	while (atomic_read(&fs_info->nr_async_submits) ||
10114 	      atomic_read(&fs_info->async_delalloc_pages)) {
10115 		wait_event(fs_info->async_submit_wait,
10116 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10117 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10118 	}
10119 	atomic_dec(&fs_info->async_submit_draining);
10120 out:
10121 	if (!list_empty_careful(&splice)) {
10122 		spin_lock(&fs_info->delalloc_root_lock);
10123 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10124 		spin_unlock(&fs_info->delalloc_root_lock);
10125 	}
10126 	mutex_unlock(&fs_info->delalloc_root_mutex);
10127 	return ret;
10128 }
10129 
10130 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10131 			 const char *symname)
10132 {
10133 	struct btrfs_trans_handle *trans;
10134 	struct btrfs_root *root = BTRFS_I(dir)->root;
10135 	struct btrfs_path *path;
10136 	struct btrfs_key key;
10137 	struct inode *inode = NULL;
10138 	int err;
10139 	int drop_inode = 0;
10140 	u64 objectid;
10141 	u64 index = 0;
10142 	int name_len;
10143 	int datasize;
10144 	unsigned long ptr;
10145 	struct btrfs_file_extent_item *ei;
10146 	struct extent_buffer *leaf;
10147 
10148 	name_len = strlen(symname);
10149 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10150 		return -ENAMETOOLONG;
10151 
10152 	/*
10153 	 * 2 items for inode item and ref
10154 	 * 2 items for dir items
10155 	 * 1 item for updating parent inode item
10156 	 * 1 item for the inline extent item
10157 	 * 1 item for xattr if selinux is on
10158 	 */
10159 	trans = btrfs_start_transaction(root, 7);
10160 	if (IS_ERR(trans))
10161 		return PTR_ERR(trans);
10162 
10163 	err = btrfs_find_free_ino(root, &objectid);
10164 	if (err)
10165 		goto out_unlock;
10166 
10167 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10168 				dentry->d_name.len, btrfs_ino(dir), objectid,
10169 				S_IFLNK|S_IRWXUGO, &index);
10170 	if (IS_ERR(inode)) {
10171 		err = PTR_ERR(inode);
10172 		goto out_unlock;
10173 	}
10174 
10175 	/*
10176 	* If the active LSM wants to access the inode during
10177 	* d_instantiate it needs these. Smack checks to see
10178 	* if the filesystem supports xattrs by looking at the
10179 	* ops vector.
10180 	*/
10181 	inode->i_fop = &btrfs_file_operations;
10182 	inode->i_op = &btrfs_file_inode_operations;
10183 	inode->i_mapping->a_ops = &btrfs_aops;
10184 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10185 
10186 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10187 	if (err)
10188 		goto out_unlock_inode;
10189 
10190 	path = btrfs_alloc_path();
10191 	if (!path) {
10192 		err = -ENOMEM;
10193 		goto out_unlock_inode;
10194 	}
10195 	key.objectid = btrfs_ino(inode);
10196 	key.offset = 0;
10197 	key.type = BTRFS_EXTENT_DATA_KEY;
10198 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10199 	err = btrfs_insert_empty_item(trans, root, path, &key,
10200 				      datasize);
10201 	if (err) {
10202 		btrfs_free_path(path);
10203 		goto out_unlock_inode;
10204 	}
10205 	leaf = path->nodes[0];
10206 	ei = btrfs_item_ptr(leaf, path->slots[0],
10207 			    struct btrfs_file_extent_item);
10208 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10209 	btrfs_set_file_extent_type(leaf, ei,
10210 				   BTRFS_FILE_EXTENT_INLINE);
10211 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10212 	btrfs_set_file_extent_compression(leaf, ei, 0);
10213 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10214 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10215 
10216 	ptr = btrfs_file_extent_inline_start(ei);
10217 	write_extent_buffer(leaf, symname, ptr, name_len);
10218 	btrfs_mark_buffer_dirty(leaf);
10219 	btrfs_free_path(path);
10220 
10221 	inode->i_op = &btrfs_symlink_inode_operations;
10222 	inode_nohighmem(inode);
10223 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10224 	inode_set_bytes(inode, name_len);
10225 	btrfs_i_size_write(inode, name_len);
10226 	err = btrfs_update_inode(trans, root, inode);
10227 	/*
10228 	 * Last step, add directory indexes for our symlink inode. This is the
10229 	 * last step to avoid extra cleanup of these indexes if an error happens
10230 	 * elsewhere above.
10231 	 */
10232 	if (!err)
10233 		err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10234 	if (err) {
10235 		drop_inode = 1;
10236 		goto out_unlock_inode;
10237 	}
10238 
10239 	unlock_new_inode(inode);
10240 	d_instantiate(dentry, inode);
10241 
10242 out_unlock:
10243 	btrfs_end_transaction(trans, root);
10244 	if (drop_inode) {
10245 		inode_dec_link_count(inode);
10246 		iput(inode);
10247 	}
10248 	btrfs_btree_balance_dirty(root);
10249 	return err;
10250 
10251 out_unlock_inode:
10252 	drop_inode = 1;
10253 	unlock_new_inode(inode);
10254 	goto out_unlock;
10255 }
10256 
10257 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10258 				       u64 start, u64 num_bytes, u64 min_size,
10259 				       loff_t actual_len, u64 *alloc_hint,
10260 				       struct btrfs_trans_handle *trans)
10261 {
10262 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10263 	struct extent_map *em;
10264 	struct btrfs_root *root = BTRFS_I(inode)->root;
10265 	struct btrfs_key ins;
10266 	u64 cur_offset = start;
10267 	u64 i_size;
10268 	u64 cur_bytes;
10269 	u64 last_alloc = (u64)-1;
10270 	int ret = 0;
10271 	bool own_trans = true;
10272 
10273 	if (trans)
10274 		own_trans = false;
10275 	while (num_bytes > 0) {
10276 		if (own_trans) {
10277 			trans = btrfs_start_transaction(root, 3);
10278 			if (IS_ERR(trans)) {
10279 				ret = PTR_ERR(trans);
10280 				break;
10281 			}
10282 		}
10283 
10284 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10285 		cur_bytes = max(cur_bytes, min_size);
10286 		/*
10287 		 * If we are severely fragmented we could end up with really
10288 		 * small allocations, so if the allocator is returning small
10289 		 * chunks lets make its job easier by only searching for those
10290 		 * sized chunks.
10291 		 */
10292 		cur_bytes = min(cur_bytes, last_alloc);
10293 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
10294 					   *alloc_hint, &ins, 1, 0);
10295 		if (ret) {
10296 			if (own_trans)
10297 				btrfs_end_transaction(trans, root);
10298 			break;
10299 		}
10300 		btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10301 
10302 		last_alloc = ins.offset;
10303 		ret = insert_reserved_file_extent(trans, inode,
10304 						  cur_offset, ins.objectid,
10305 						  ins.offset, ins.offset,
10306 						  ins.offset, 0, 0, 0,
10307 						  BTRFS_FILE_EXTENT_PREALLOC);
10308 		if (ret) {
10309 			btrfs_free_reserved_extent(root, ins.objectid,
10310 						   ins.offset, 0);
10311 			btrfs_abort_transaction(trans, root, ret);
10312 			if (own_trans)
10313 				btrfs_end_transaction(trans, root);
10314 			break;
10315 		}
10316 
10317 		btrfs_drop_extent_cache(inode, cur_offset,
10318 					cur_offset + ins.offset -1, 0);
10319 
10320 		em = alloc_extent_map();
10321 		if (!em) {
10322 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10323 				&BTRFS_I(inode)->runtime_flags);
10324 			goto next;
10325 		}
10326 
10327 		em->start = cur_offset;
10328 		em->orig_start = cur_offset;
10329 		em->len = ins.offset;
10330 		em->block_start = ins.objectid;
10331 		em->block_len = ins.offset;
10332 		em->orig_block_len = ins.offset;
10333 		em->ram_bytes = ins.offset;
10334 		em->bdev = root->fs_info->fs_devices->latest_bdev;
10335 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10336 		em->generation = trans->transid;
10337 
10338 		while (1) {
10339 			write_lock(&em_tree->lock);
10340 			ret = add_extent_mapping(em_tree, em, 1);
10341 			write_unlock(&em_tree->lock);
10342 			if (ret != -EEXIST)
10343 				break;
10344 			btrfs_drop_extent_cache(inode, cur_offset,
10345 						cur_offset + ins.offset - 1,
10346 						0);
10347 		}
10348 		free_extent_map(em);
10349 next:
10350 		num_bytes -= ins.offset;
10351 		cur_offset += ins.offset;
10352 		*alloc_hint = ins.objectid + ins.offset;
10353 
10354 		inode_inc_iversion(inode);
10355 		inode->i_ctime = current_fs_time(inode->i_sb);
10356 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10357 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10358 		    (actual_len > inode->i_size) &&
10359 		    (cur_offset > inode->i_size)) {
10360 			if (cur_offset > actual_len)
10361 				i_size = actual_len;
10362 			else
10363 				i_size = cur_offset;
10364 			i_size_write(inode, i_size);
10365 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10366 		}
10367 
10368 		ret = btrfs_update_inode(trans, root, inode);
10369 
10370 		if (ret) {
10371 			btrfs_abort_transaction(trans, root, ret);
10372 			if (own_trans)
10373 				btrfs_end_transaction(trans, root);
10374 			break;
10375 		}
10376 
10377 		if (own_trans)
10378 			btrfs_end_transaction(trans, root);
10379 	}
10380 	return ret;
10381 }
10382 
10383 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10384 			      u64 start, u64 num_bytes, u64 min_size,
10385 			      loff_t actual_len, u64 *alloc_hint)
10386 {
10387 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10388 					   min_size, actual_len, alloc_hint,
10389 					   NULL);
10390 }
10391 
10392 int btrfs_prealloc_file_range_trans(struct inode *inode,
10393 				    struct btrfs_trans_handle *trans, int mode,
10394 				    u64 start, u64 num_bytes, u64 min_size,
10395 				    loff_t actual_len, u64 *alloc_hint)
10396 {
10397 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10398 					   min_size, actual_len, alloc_hint, trans);
10399 }
10400 
10401 static int btrfs_set_page_dirty(struct page *page)
10402 {
10403 	return __set_page_dirty_nobuffers(page);
10404 }
10405 
10406 static int btrfs_permission(struct inode *inode, int mask)
10407 {
10408 	struct btrfs_root *root = BTRFS_I(inode)->root;
10409 	umode_t mode = inode->i_mode;
10410 
10411 	if (mask & MAY_WRITE &&
10412 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10413 		if (btrfs_root_readonly(root))
10414 			return -EROFS;
10415 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10416 			return -EACCES;
10417 	}
10418 	return generic_permission(inode, mask);
10419 }
10420 
10421 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10422 {
10423 	struct btrfs_trans_handle *trans;
10424 	struct btrfs_root *root = BTRFS_I(dir)->root;
10425 	struct inode *inode = NULL;
10426 	u64 objectid;
10427 	u64 index;
10428 	int ret = 0;
10429 
10430 	/*
10431 	 * 5 units required for adding orphan entry
10432 	 */
10433 	trans = btrfs_start_transaction(root, 5);
10434 	if (IS_ERR(trans))
10435 		return PTR_ERR(trans);
10436 
10437 	ret = btrfs_find_free_ino(root, &objectid);
10438 	if (ret)
10439 		goto out;
10440 
10441 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10442 				btrfs_ino(dir), objectid, mode, &index);
10443 	if (IS_ERR(inode)) {
10444 		ret = PTR_ERR(inode);
10445 		inode = NULL;
10446 		goto out;
10447 	}
10448 
10449 	inode->i_fop = &btrfs_file_operations;
10450 	inode->i_op = &btrfs_file_inode_operations;
10451 
10452 	inode->i_mapping->a_ops = &btrfs_aops;
10453 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10454 
10455 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10456 	if (ret)
10457 		goto out_inode;
10458 
10459 	ret = btrfs_update_inode(trans, root, inode);
10460 	if (ret)
10461 		goto out_inode;
10462 	ret = btrfs_orphan_add(trans, inode);
10463 	if (ret)
10464 		goto out_inode;
10465 
10466 	/*
10467 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10468 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10469 	 * through:
10470 	 *
10471 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10472 	 */
10473 	set_nlink(inode, 1);
10474 	unlock_new_inode(inode);
10475 	d_tmpfile(dentry, inode);
10476 	mark_inode_dirty(inode);
10477 
10478 out:
10479 	btrfs_end_transaction(trans, root);
10480 	if (ret)
10481 		iput(inode);
10482 	btrfs_balance_delayed_items(root);
10483 	btrfs_btree_balance_dirty(root);
10484 	return ret;
10485 
10486 out_inode:
10487 	unlock_new_inode(inode);
10488 	goto out;
10489 
10490 }
10491 
10492 /* Inspired by filemap_check_errors() */
10493 int btrfs_inode_check_errors(struct inode *inode)
10494 {
10495 	int ret = 0;
10496 
10497 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10498 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10499 		ret = -ENOSPC;
10500 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10501 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10502 		ret = -EIO;
10503 
10504 	return ret;
10505 }
10506 
10507 static const struct inode_operations btrfs_dir_inode_operations = {
10508 	.getattr	= btrfs_getattr,
10509 	.lookup		= btrfs_lookup,
10510 	.create		= btrfs_create,
10511 	.unlink		= btrfs_unlink,
10512 	.link		= btrfs_link,
10513 	.mkdir		= btrfs_mkdir,
10514 	.rmdir		= btrfs_rmdir,
10515 	.rename2	= btrfs_rename2,
10516 	.symlink	= btrfs_symlink,
10517 	.setattr	= btrfs_setattr,
10518 	.mknod		= btrfs_mknod,
10519 	.setxattr	= generic_setxattr,
10520 	.getxattr	= generic_getxattr,
10521 	.listxattr	= btrfs_listxattr,
10522 	.removexattr	= generic_removexattr,
10523 	.permission	= btrfs_permission,
10524 	.get_acl	= btrfs_get_acl,
10525 	.set_acl	= btrfs_set_acl,
10526 	.update_time	= btrfs_update_time,
10527 	.tmpfile        = btrfs_tmpfile,
10528 };
10529 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10530 	.lookup		= btrfs_lookup,
10531 	.permission	= btrfs_permission,
10532 	.get_acl	= btrfs_get_acl,
10533 	.set_acl	= btrfs_set_acl,
10534 	.update_time	= btrfs_update_time,
10535 };
10536 
10537 static const struct file_operations btrfs_dir_file_operations = {
10538 	.llseek		= generic_file_llseek,
10539 	.read		= generic_read_dir,
10540 	.iterate_shared	= btrfs_real_readdir,
10541 	.unlocked_ioctl	= btrfs_ioctl,
10542 #ifdef CONFIG_COMPAT
10543 	.compat_ioctl	= btrfs_compat_ioctl,
10544 #endif
10545 	.release        = btrfs_release_file,
10546 	.fsync		= btrfs_sync_file,
10547 };
10548 
10549 static const struct extent_io_ops btrfs_extent_io_ops = {
10550 	.fill_delalloc = run_delalloc_range,
10551 	.submit_bio_hook = btrfs_submit_bio_hook,
10552 	.merge_bio_hook = btrfs_merge_bio_hook,
10553 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10554 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10555 	.writepage_start_hook = btrfs_writepage_start_hook,
10556 	.set_bit_hook = btrfs_set_bit_hook,
10557 	.clear_bit_hook = btrfs_clear_bit_hook,
10558 	.merge_extent_hook = btrfs_merge_extent_hook,
10559 	.split_extent_hook = btrfs_split_extent_hook,
10560 };
10561 
10562 /*
10563  * btrfs doesn't support the bmap operation because swapfiles
10564  * use bmap to make a mapping of extents in the file.  They assume
10565  * these extents won't change over the life of the file and they
10566  * use the bmap result to do IO directly to the drive.
10567  *
10568  * the btrfs bmap call would return logical addresses that aren't
10569  * suitable for IO and they also will change frequently as COW
10570  * operations happen.  So, swapfile + btrfs == corruption.
10571  *
10572  * For now we're avoiding this by dropping bmap.
10573  */
10574 static const struct address_space_operations btrfs_aops = {
10575 	.readpage	= btrfs_readpage,
10576 	.writepage	= btrfs_writepage,
10577 	.writepages	= btrfs_writepages,
10578 	.readpages	= btrfs_readpages,
10579 	.direct_IO	= btrfs_direct_IO,
10580 	.invalidatepage = btrfs_invalidatepage,
10581 	.releasepage	= btrfs_releasepage,
10582 	.set_page_dirty	= btrfs_set_page_dirty,
10583 	.error_remove_page = generic_error_remove_page,
10584 };
10585 
10586 static const struct address_space_operations btrfs_symlink_aops = {
10587 	.readpage	= btrfs_readpage,
10588 	.writepage	= btrfs_writepage,
10589 	.invalidatepage = btrfs_invalidatepage,
10590 	.releasepage	= btrfs_releasepage,
10591 };
10592 
10593 static const struct inode_operations btrfs_file_inode_operations = {
10594 	.getattr	= btrfs_getattr,
10595 	.setattr	= btrfs_setattr,
10596 	.setxattr	= generic_setxattr,
10597 	.getxattr	= generic_getxattr,
10598 	.listxattr      = btrfs_listxattr,
10599 	.removexattr	= generic_removexattr,
10600 	.permission	= btrfs_permission,
10601 	.fiemap		= btrfs_fiemap,
10602 	.get_acl	= btrfs_get_acl,
10603 	.set_acl	= btrfs_set_acl,
10604 	.update_time	= btrfs_update_time,
10605 };
10606 static const struct inode_operations btrfs_special_inode_operations = {
10607 	.getattr	= btrfs_getattr,
10608 	.setattr	= btrfs_setattr,
10609 	.permission	= btrfs_permission,
10610 	.setxattr	= generic_setxattr,
10611 	.getxattr	= generic_getxattr,
10612 	.listxattr	= btrfs_listxattr,
10613 	.removexattr	= generic_removexattr,
10614 	.get_acl	= btrfs_get_acl,
10615 	.set_acl	= btrfs_set_acl,
10616 	.update_time	= btrfs_update_time,
10617 };
10618 static const struct inode_operations btrfs_symlink_inode_operations = {
10619 	.readlink	= generic_readlink,
10620 	.get_link	= page_get_link,
10621 	.getattr	= btrfs_getattr,
10622 	.setattr	= btrfs_setattr,
10623 	.permission	= btrfs_permission,
10624 	.setxattr	= generic_setxattr,
10625 	.getxattr	= generic_getxattr,
10626 	.listxattr	= btrfs_listxattr,
10627 	.removexattr	= generic_removexattr,
10628 	.update_time	= btrfs_update_time,
10629 };
10630 
10631 const struct dentry_operations btrfs_dentry_operations = {
10632 	.d_delete	= btrfs_dentry_delete,
10633 	.d_release	= btrfs_dentry_release,
10634 };
10635