1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/compat.h> 34 #include <linux/bit_spinlock.h> 35 #include <linux/xattr.h> 36 #include <linux/posix_acl.h> 37 #include <linux/falloc.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/mount.h> 41 #include <linux/btrfs.h> 42 #include <linux/blkdev.h> 43 #include <linux/posix_acl_xattr.h> 44 #include <linux/uio.h> 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "print-tree.h" 50 #include "ordered-data.h" 51 #include "xattr.h" 52 #include "tree-log.h" 53 #include "volumes.h" 54 #include "compression.h" 55 #include "locking.h" 56 #include "free-space-cache.h" 57 #include "inode-map.h" 58 #include "backref.h" 59 #include "hash.h" 60 #include "props.h" 61 #include "qgroup.h" 62 #include "dedupe.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 struct btrfs_dio_data { 70 u64 outstanding_extents; 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 int overwrite; 75 }; 76 77 static const struct inode_operations btrfs_dir_inode_operations; 78 static const struct inode_operations btrfs_symlink_inode_operations; 79 static const struct inode_operations btrfs_dir_ro_inode_operations; 80 static const struct inode_operations btrfs_special_inode_operations; 81 static const struct inode_operations btrfs_file_inode_operations; 82 static const struct address_space_operations btrfs_aops; 83 static const struct address_space_operations btrfs_symlink_aops; 84 static const struct file_operations btrfs_dir_file_operations; 85 static const struct extent_io_ops btrfs_extent_io_ops; 86 87 static struct kmem_cache *btrfs_inode_cachep; 88 struct kmem_cache *btrfs_trans_handle_cachep; 89 struct kmem_cache *btrfs_transaction_cachep; 90 struct kmem_cache *btrfs_path_cachep; 91 struct kmem_cache *btrfs_free_space_cachep; 92 93 #define S_SHIFT 12 94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 102 }; 103 104 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 105 static int btrfs_truncate(struct inode *inode); 106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 107 static noinline int cow_file_range(struct inode *inode, 108 struct page *locked_page, 109 u64 start, u64 end, u64 delalloc_end, 110 int *page_started, unsigned long *nr_written, 111 int unlock, struct btrfs_dedupe_hash *hash); 112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 113 u64 orig_start, u64 block_start, 114 u64 block_len, u64 orig_block_len, 115 u64 ram_bytes, int compress_type, 116 int type); 117 118 static void __endio_write_update_ordered(struct inode *inode, 119 const u64 offset, const u64 bytes, 120 const bool uptodate); 121 122 /* 123 * Cleanup all submitted ordered extents in specified range to handle errors 124 * from the fill_dellaloc() callback. 125 * 126 * NOTE: caller must ensure that when an error happens, it can not call 127 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 128 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 129 * to be released, which we want to happen only when finishing the ordered 130 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 131 * fill_delalloc() callback already does proper cleanup for the first page of 132 * the range, that is, it invokes the callback writepage_end_io_hook() for the 133 * range of the first page. 134 */ 135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 136 const u64 offset, 137 const u64 bytes) 138 { 139 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 140 bytes - PAGE_SIZE, false); 141 } 142 143 static int btrfs_dirty_inode(struct inode *inode); 144 145 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 146 void btrfs_test_inode_set_ops(struct inode *inode) 147 { 148 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 149 } 150 #endif 151 152 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 153 struct inode *inode, struct inode *dir, 154 const struct qstr *qstr) 155 { 156 int err; 157 158 err = btrfs_init_acl(trans, inode, dir); 159 if (!err) 160 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 161 return err; 162 } 163 164 /* 165 * this does all the hard work for inserting an inline extent into 166 * the btree. The caller should have done a btrfs_drop_extents so that 167 * no overlapping inline items exist in the btree 168 */ 169 static int insert_inline_extent(struct btrfs_trans_handle *trans, 170 struct btrfs_path *path, int extent_inserted, 171 struct btrfs_root *root, struct inode *inode, 172 u64 start, size_t size, size_t compressed_size, 173 int compress_type, 174 struct page **compressed_pages) 175 { 176 struct extent_buffer *leaf; 177 struct page *page = NULL; 178 char *kaddr; 179 unsigned long ptr; 180 struct btrfs_file_extent_item *ei; 181 int err = 0; 182 int ret; 183 size_t cur_size = size; 184 unsigned long offset; 185 186 if (compressed_size && compressed_pages) 187 cur_size = compressed_size; 188 189 inode_add_bytes(inode, size); 190 191 if (!extent_inserted) { 192 struct btrfs_key key; 193 size_t datasize; 194 195 key.objectid = btrfs_ino(BTRFS_I(inode)); 196 key.offset = start; 197 key.type = BTRFS_EXTENT_DATA_KEY; 198 199 datasize = btrfs_file_extent_calc_inline_size(cur_size); 200 path->leave_spinning = 1; 201 ret = btrfs_insert_empty_item(trans, root, path, &key, 202 datasize); 203 if (ret) { 204 err = ret; 205 goto fail; 206 } 207 } 208 leaf = path->nodes[0]; 209 ei = btrfs_item_ptr(leaf, path->slots[0], 210 struct btrfs_file_extent_item); 211 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 212 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 213 btrfs_set_file_extent_encryption(leaf, ei, 0); 214 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 215 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 216 ptr = btrfs_file_extent_inline_start(ei); 217 218 if (compress_type != BTRFS_COMPRESS_NONE) { 219 struct page *cpage; 220 int i = 0; 221 while (compressed_size > 0) { 222 cpage = compressed_pages[i]; 223 cur_size = min_t(unsigned long, compressed_size, 224 PAGE_SIZE); 225 226 kaddr = kmap_atomic(cpage); 227 write_extent_buffer(leaf, kaddr, ptr, cur_size); 228 kunmap_atomic(kaddr); 229 230 i++; 231 ptr += cur_size; 232 compressed_size -= cur_size; 233 } 234 btrfs_set_file_extent_compression(leaf, ei, 235 compress_type); 236 } else { 237 page = find_get_page(inode->i_mapping, 238 start >> PAGE_SHIFT); 239 btrfs_set_file_extent_compression(leaf, ei, 0); 240 kaddr = kmap_atomic(page); 241 offset = start & (PAGE_SIZE - 1); 242 write_extent_buffer(leaf, kaddr + offset, ptr, size); 243 kunmap_atomic(kaddr); 244 put_page(page); 245 } 246 btrfs_mark_buffer_dirty(leaf); 247 btrfs_release_path(path); 248 249 /* 250 * we're an inline extent, so nobody can 251 * extend the file past i_size without locking 252 * a page we already have locked. 253 * 254 * We must do any isize and inode updates 255 * before we unlock the pages. Otherwise we 256 * could end up racing with unlink. 257 */ 258 BTRFS_I(inode)->disk_i_size = inode->i_size; 259 ret = btrfs_update_inode(trans, root, inode); 260 261 return ret; 262 fail: 263 return err; 264 } 265 266 267 /* 268 * conditionally insert an inline extent into the file. This 269 * does the checks required to make sure the data is small enough 270 * to fit as an inline extent. 271 */ 272 static noinline int cow_file_range_inline(struct btrfs_root *root, 273 struct inode *inode, u64 start, 274 u64 end, size_t compressed_size, 275 int compress_type, 276 struct page **compressed_pages) 277 { 278 struct btrfs_fs_info *fs_info = root->fs_info; 279 struct btrfs_trans_handle *trans; 280 u64 isize = i_size_read(inode); 281 u64 actual_end = min(end + 1, isize); 282 u64 inline_len = actual_end - start; 283 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 284 u64 data_len = inline_len; 285 int ret; 286 struct btrfs_path *path; 287 int extent_inserted = 0; 288 u32 extent_item_size; 289 290 if (compressed_size) 291 data_len = compressed_size; 292 293 if (start > 0 || 294 actual_end > fs_info->sectorsize || 295 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 296 (!compressed_size && 297 (actual_end & (fs_info->sectorsize - 1)) == 0) || 298 end + 1 < isize || 299 data_len > fs_info->max_inline) { 300 return 1; 301 } 302 303 path = btrfs_alloc_path(); 304 if (!path) 305 return -ENOMEM; 306 307 trans = btrfs_join_transaction(root); 308 if (IS_ERR(trans)) { 309 btrfs_free_path(path); 310 return PTR_ERR(trans); 311 } 312 trans->block_rsv = &fs_info->delalloc_block_rsv; 313 314 if (compressed_size && compressed_pages) 315 extent_item_size = btrfs_file_extent_calc_inline_size( 316 compressed_size); 317 else 318 extent_item_size = btrfs_file_extent_calc_inline_size( 319 inline_len); 320 321 ret = __btrfs_drop_extents(trans, root, inode, path, 322 start, aligned_end, NULL, 323 1, 1, extent_item_size, &extent_inserted); 324 if (ret) { 325 btrfs_abort_transaction(trans, ret); 326 goto out; 327 } 328 329 if (isize > actual_end) 330 inline_len = min_t(u64, isize, actual_end); 331 ret = insert_inline_extent(trans, path, extent_inserted, 332 root, inode, start, 333 inline_len, compressed_size, 334 compress_type, compressed_pages); 335 if (ret && ret != -ENOSPC) { 336 btrfs_abort_transaction(trans, ret); 337 goto out; 338 } else if (ret == -ENOSPC) { 339 ret = 1; 340 goto out; 341 } 342 343 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 344 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start); 345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 346 out: 347 /* 348 * Don't forget to free the reserved space, as for inlined extent 349 * it won't count as data extent, free them directly here. 350 * And at reserve time, it's always aligned to page size, so 351 * just free one page here. 352 */ 353 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 354 btrfs_free_path(path); 355 btrfs_end_transaction(trans); 356 return ret; 357 } 358 359 struct async_extent { 360 u64 start; 361 u64 ram_size; 362 u64 compressed_size; 363 struct page **pages; 364 unsigned long nr_pages; 365 int compress_type; 366 struct list_head list; 367 }; 368 369 struct async_cow { 370 struct inode *inode; 371 struct btrfs_root *root; 372 struct page *locked_page; 373 u64 start; 374 u64 end; 375 struct list_head extents; 376 struct btrfs_work work; 377 }; 378 379 static noinline int add_async_extent(struct async_cow *cow, 380 u64 start, u64 ram_size, 381 u64 compressed_size, 382 struct page **pages, 383 unsigned long nr_pages, 384 int compress_type) 385 { 386 struct async_extent *async_extent; 387 388 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 389 BUG_ON(!async_extent); /* -ENOMEM */ 390 async_extent->start = start; 391 async_extent->ram_size = ram_size; 392 async_extent->compressed_size = compressed_size; 393 async_extent->pages = pages; 394 async_extent->nr_pages = nr_pages; 395 async_extent->compress_type = compress_type; 396 list_add_tail(&async_extent->list, &cow->extents); 397 return 0; 398 } 399 400 static inline int inode_need_compress(struct inode *inode) 401 { 402 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 403 404 /* force compress */ 405 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 406 return 1; 407 /* bad compression ratios */ 408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 409 return 0; 410 if (btrfs_test_opt(fs_info, COMPRESS) || 411 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 412 BTRFS_I(inode)->force_compress) 413 return 1; 414 return 0; 415 } 416 417 static inline void inode_should_defrag(struct btrfs_inode *inode, 418 u64 start, u64 end, u64 num_bytes, u64 small_write) 419 { 420 /* If this is a small write inside eof, kick off a defrag */ 421 if (num_bytes < small_write && 422 (start > 0 || end + 1 < inode->disk_i_size)) 423 btrfs_add_inode_defrag(NULL, inode); 424 } 425 426 /* 427 * we create compressed extents in two phases. The first 428 * phase compresses a range of pages that have already been 429 * locked (both pages and state bits are locked). 430 * 431 * This is done inside an ordered work queue, and the compression 432 * is spread across many cpus. The actual IO submission is step 433 * two, and the ordered work queue takes care of making sure that 434 * happens in the same order things were put onto the queue by 435 * writepages and friends. 436 * 437 * If this code finds it can't get good compression, it puts an 438 * entry onto the work queue to write the uncompressed bytes. This 439 * makes sure that both compressed inodes and uncompressed inodes 440 * are written in the same order that the flusher thread sent them 441 * down. 442 */ 443 static noinline void compress_file_range(struct inode *inode, 444 struct page *locked_page, 445 u64 start, u64 end, 446 struct async_cow *async_cow, 447 int *num_added) 448 { 449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 450 struct btrfs_root *root = BTRFS_I(inode)->root; 451 u64 num_bytes; 452 u64 blocksize = fs_info->sectorsize; 453 u64 actual_end; 454 u64 isize = i_size_read(inode); 455 int ret = 0; 456 struct page **pages = NULL; 457 unsigned long nr_pages; 458 unsigned long total_compressed = 0; 459 unsigned long total_in = 0; 460 int i; 461 int will_compress; 462 int compress_type = fs_info->compress_type; 463 int redirty = 0; 464 465 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 466 SZ_16K); 467 468 actual_end = min_t(u64, isize, end + 1); 469 again: 470 will_compress = 0; 471 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 472 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 473 nr_pages = min_t(unsigned long, nr_pages, 474 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 475 476 /* 477 * we don't want to send crud past the end of i_size through 478 * compression, that's just a waste of CPU time. So, if the 479 * end of the file is before the start of our current 480 * requested range of bytes, we bail out to the uncompressed 481 * cleanup code that can deal with all of this. 482 * 483 * It isn't really the fastest way to fix things, but this is a 484 * very uncommon corner. 485 */ 486 if (actual_end <= start) 487 goto cleanup_and_bail_uncompressed; 488 489 total_compressed = actual_end - start; 490 491 /* 492 * skip compression for a small file range(<=blocksize) that 493 * isn't an inline extent, since it doesn't save disk space at all. 494 */ 495 if (total_compressed <= blocksize && 496 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 497 goto cleanup_and_bail_uncompressed; 498 499 total_compressed = min_t(unsigned long, total_compressed, 500 BTRFS_MAX_UNCOMPRESSED); 501 num_bytes = ALIGN(end - start + 1, blocksize); 502 num_bytes = max(blocksize, num_bytes); 503 total_in = 0; 504 ret = 0; 505 506 /* 507 * we do compression for mount -o compress and when the 508 * inode has not been flagged as nocompress. This flag can 509 * change at any time if we discover bad compression ratios. 510 */ 511 if (inode_need_compress(inode)) { 512 WARN_ON(pages); 513 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 514 if (!pages) { 515 /* just bail out to the uncompressed code */ 516 goto cont; 517 } 518 519 if (BTRFS_I(inode)->force_compress) 520 compress_type = BTRFS_I(inode)->force_compress; 521 522 /* 523 * we need to call clear_page_dirty_for_io on each 524 * page in the range. Otherwise applications with the file 525 * mmap'd can wander in and change the page contents while 526 * we are compressing them. 527 * 528 * If the compression fails for any reason, we set the pages 529 * dirty again later on. 530 */ 531 extent_range_clear_dirty_for_io(inode, start, end); 532 redirty = 1; 533 ret = btrfs_compress_pages(compress_type, 534 inode->i_mapping, start, 535 pages, 536 &nr_pages, 537 &total_in, 538 &total_compressed); 539 540 if (!ret) { 541 unsigned long offset = total_compressed & 542 (PAGE_SIZE - 1); 543 struct page *page = pages[nr_pages - 1]; 544 char *kaddr; 545 546 /* zero the tail end of the last page, we might be 547 * sending it down to disk 548 */ 549 if (offset) { 550 kaddr = kmap_atomic(page); 551 memset(kaddr + offset, 0, 552 PAGE_SIZE - offset); 553 kunmap_atomic(kaddr); 554 } 555 will_compress = 1; 556 } 557 } 558 cont: 559 if (start == 0) { 560 /* lets try to make an inline extent */ 561 if (ret || total_in < (actual_end - start)) { 562 /* we didn't compress the entire range, try 563 * to make an uncompressed inline extent. 564 */ 565 ret = cow_file_range_inline(root, inode, start, end, 566 0, BTRFS_COMPRESS_NONE, NULL); 567 } else { 568 /* try making a compressed inline extent */ 569 ret = cow_file_range_inline(root, inode, start, end, 570 total_compressed, 571 compress_type, pages); 572 } 573 if (ret <= 0) { 574 unsigned long clear_flags = EXTENT_DELALLOC | 575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG; 576 unsigned long page_error_op; 577 578 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 580 581 /* 582 * inline extent creation worked or returned error, 583 * we don't need to create any more async work items. 584 * Unlock and free up our temp pages. 585 */ 586 extent_clear_unlock_delalloc(inode, start, end, end, 587 NULL, clear_flags, 588 PAGE_UNLOCK | 589 PAGE_CLEAR_DIRTY | 590 PAGE_SET_WRITEBACK | 591 page_error_op | 592 PAGE_END_WRITEBACK); 593 if (ret == 0) 594 btrfs_free_reserved_data_space_noquota(inode, 595 start, 596 end - start + 1); 597 goto free_pages_out; 598 } 599 } 600 601 if (will_compress) { 602 /* 603 * we aren't doing an inline extent round the compressed size 604 * up to a block size boundary so the allocator does sane 605 * things 606 */ 607 total_compressed = ALIGN(total_compressed, blocksize); 608 609 /* 610 * one last check to make sure the compression is really a 611 * win, compare the page count read with the blocks on disk 612 */ 613 total_in = ALIGN(total_in, PAGE_SIZE); 614 if (total_compressed >= total_in) { 615 will_compress = 0; 616 } else { 617 num_bytes = total_in; 618 *num_added += 1; 619 620 /* 621 * The async work queues will take care of doing actual 622 * allocation on disk for these compressed pages, and 623 * will submit them to the elevator. 624 */ 625 add_async_extent(async_cow, start, num_bytes, 626 total_compressed, pages, nr_pages, 627 compress_type); 628 629 if (start + num_bytes < end) { 630 start += num_bytes; 631 pages = NULL; 632 cond_resched(); 633 goto again; 634 } 635 return; 636 } 637 } 638 if (pages) { 639 /* 640 * the compression code ran but failed to make things smaller, 641 * free any pages it allocated and our page pointer array 642 */ 643 for (i = 0; i < nr_pages; i++) { 644 WARN_ON(pages[i]->mapping); 645 put_page(pages[i]); 646 } 647 kfree(pages); 648 pages = NULL; 649 total_compressed = 0; 650 nr_pages = 0; 651 652 /* flag the file so we don't compress in the future */ 653 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 654 !(BTRFS_I(inode)->force_compress)) { 655 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 656 } 657 } 658 cleanup_and_bail_uncompressed: 659 /* 660 * No compression, but we still need to write the pages in the file 661 * we've been given so far. redirty the locked page if it corresponds 662 * to our extent and set things up for the async work queue to run 663 * cow_file_range to do the normal delalloc dance. 664 */ 665 if (page_offset(locked_page) >= start && 666 page_offset(locked_page) <= end) 667 __set_page_dirty_nobuffers(locked_page); 668 /* unlocked later on in the async handlers */ 669 670 if (redirty) 671 extent_range_redirty_for_io(inode, start, end); 672 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 673 BTRFS_COMPRESS_NONE); 674 *num_added += 1; 675 676 return; 677 678 free_pages_out: 679 for (i = 0; i < nr_pages; i++) { 680 WARN_ON(pages[i]->mapping); 681 put_page(pages[i]); 682 } 683 kfree(pages); 684 } 685 686 static void free_async_extent_pages(struct async_extent *async_extent) 687 { 688 int i; 689 690 if (!async_extent->pages) 691 return; 692 693 for (i = 0; i < async_extent->nr_pages; i++) { 694 WARN_ON(async_extent->pages[i]->mapping); 695 put_page(async_extent->pages[i]); 696 } 697 kfree(async_extent->pages); 698 async_extent->nr_pages = 0; 699 async_extent->pages = NULL; 700 } 701 702 /* 703 * phase two of compressed writeback. This is the ordered portion 704 * of the code, which only gets called in the order the work was 705 * queued. We walk all the async extents created by compress_file_range 706 * and send them down to the disk. 707 */ 708 static noinline void submit_compressed_extents(struct inode *inode, 709 struct async_cow *async_cow) 710 { 711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 712 struct async_extent *async_extent; 713 u64 alloc_hint = 0; 714 struct btrfs_key ins; 715 struct extent_map *em; 716 struct btrfs_root *root = BTRFS_I(inode)->root; 717 struct extent_io_tree *io_tree; 718 int ret = 0; 719 720 again: 721 while (!list_empty(&async_cow->extents)) { 722 async_extent = list_entry(async_cow->extents.next, 723 struct async_extent, list); 724 list_del(&async_extent->list); 725 726 io_tree = &BTRFS_I(inode)->io_tree; 727 728 retry: 729 /* did the compression code fall back to uncompressed IO? */ 730 if (!async_extent->pages) { 731 int page_started = 0; 732 unsigned long nr_written = 0; 733 734 lock_extent(io_tree, async_extent->start, 735 async_extent->start + 736 async_extent->ram_size - 1); 737 738 /* allocate blocks */ 739 ret = cow_file_range(inode, async_cow->locked_page, 740 async_extent->start, 741 async_extent->start + 742 async_extent->ram_size - 1, 743 async_extent->start + 744 async_extent->ram_size - 1, 745 &page_started, &nr_written, 0, 746 NULL); 747 748 /* JDM XXX */ 749 750 /* 751 * if page_started, cow_file_range inserted an 752 * inline extent and took care of all the unlocking 753 * and IO for us. Otherwise, we need to submit 754 * all those pages down to the drive. 755 */ 756 if (!page_started && !ret) 757 extent_write_locked_range(io_tree, 758 inode, async_extent->start, 759 async_extent->start + 760 async_extent->ram_size - 1, 761 btrfs_get_extent, 762 WB_SYNC_ALL); 763 else if (ret) 764 unlock_page(async_cow->locked_page); 765 kfree(async_extent); 766 cond_resched(); 767 continue; 768 } 769 770 lock_extent(io_tree, async_extent->start, 771 async_extent->start + async_extent->ram_size - 1); 772 773 ret = btrfs_reserve_extent(root, async_extent->ram_size, 774 async_extent->compressed_size, 775 async_extent->compressed_size, 776 0, alloc_hint, &ins, 1, 1); 777 if (ret) { 778 free_async_extent_pages(async_extent); 779 780 if (ret == -ENOSPC) { 781 unlock_extent(io_tree, async_extent->start, 782 async_extent->start + 783 async_extent->ram_size - 1); 784 785 /* 786 * we need to redirty the pages if we decide to 787 * fallback to uncompressed IO, otherwise we 788 * will not submit these pages down to lower 789 * layers. 790 */ 791 extent_range_redirty_for_io(inode, 792 async_extent->start, 793 async_extent->start + 794 async_extent->ram_size - 1); 795 796 goto retry; 797 } 798 goto out_free; 799 } 800 /* 801 * here we're doing allocation and writeback of the 802 * compressed pages 803 */ 804 em = create_io_em(inode, async_extent->start, 805 async_extent->ram_size, /* len */ 806 async_extent->start, /* orig_start */ 807 ins.objectid, /* block_start */ 808 ins.offset, /* block_len */ 809 ins.offset, /* orig_block_len */ 810 async_extent->ram_size, /* ram_bytes */ 811 async_extent->compress_type, 812 BTRFS_ORDERED_COMPRESSED); 813 if (IS_ERR(em)) 814 /* ret value is not necessary due to void function */ 815 goto out_free_reserve; 816 free_extent_map(em); 817 818 ret = btrfs_add_ordered_extent_compress(inode, 819 async_extent->start, 820 ins.objectid, 821 async_extent->ram_size, 822 ins.offset, 823 BTRFS_ORDERED_COMPRESSED, 824 async_extent->compress_type); 825 if (ret) { 826 btrfs_drop_extent_cache(BTRFS_I(inode), 827 async_extent->start, 828 async_extent->start + 829 async_extent->ram_size - 1, 0); 830 goto out_free_reserve; 831 } 832 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 833 834 /* 835 * clear dirty, set writeback and unlock the pages. 836 */ 837 extent_clear_unlock_delalloc(inode, async_extent->start, 838 async_extent->start + 839 async_extent->ram_size - 1, 840 async_extent->start + 841 async_extent->ram_size - 1, 842 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 843 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 844 PAGE_SET_WRITEBACK); 845 ret = btrfs_submit_compressed_write(inode, 846 async_extent->start, 847 async_extent->ram_size, 848 ins.objectid, 849 ins.offset, async_extent->pages, 850 async_extent->nr_pages); 851 if (ret) { 852 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 853 struct page *p = async_extent->pages[0]; 854 const u64 start = async_extent->start; 855 const u64 end = start + async_extent->ram_size - 1; 856 857 p->mapping = inode->i_mapping; 858 tree->ops->writepage_end_io_hook(p, start, end, 859 NULL, 0); 860 p->mapping = NULL; 861 extent_clear_unlock_delalloc(inode, start, end, end, 862 NULL, 0, 863 PAGE_END_WRITEBACK | 864 PAGE_SET_ERROR); 865 free_async_extent_pages(async_extent); 866 } 867 alloc_hint = ins.objectid + ins.offset; 868 kfree(async_extent); 869 cond_resched(); 870 } 871 return; 872 out_free_reserve: 873 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 874 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 875 out_free: 876 extent_clear_unlock_delalloc(inode, async_extent->start, 877 async_extent->start + 878 async_extent->ram_size - 1, 879 async_extent->start + 880 async_extent->ram_size - 1, 881 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 882 EXTENT_DELALLOC_NEW | 883 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 884 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 885 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 886 PAGE_SET_ERROR); 887 free_async_extent_pages(async_extent); 888 kfree(async_extent); 889 goto again; 890 } 891 892 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 893 u64 num_bytes) 894 { 895 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 896 struct extent_map *em; 897 u64 alloc_hint = 0; 898 899 read_lock(&em_tree->lock); 900 em = search_extent_mapping(em_tree, start, num_bytes); 901 if (em) { 902 /* 903 * if block start isn't an actual block number then find the 904 * first block in this inode and use that as a hint. If that 905 * block is also bogus then just don't worry about it. 906 */ 907 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 908 free_extent_map(em); 909 em = search_extent_mapping(em_tree, 0, 0); 910 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 911 alloc_hint = em->block_start; 912 if (em) 913 free_extent_map(em); 914 } else { 915 alloc_hint = em->block_start; 916 free_extent_map(em); 917 } 918 } 919 read_unlock(&em_tree->lock); 920 921 return alloc_hint; 922 } 923 924 /* 925 * when extent_io.c finds a delayed allocation range in the file, 926 * the call backs end up in this code. The basic idea is to 927 * allocate extents on disk for the range, and create ordered data structs 928 * in ram to track those extents. 929 * 930 * locked_page is the page that writepage had locked already. We use 931 * it to make sure we don't do extra locks or unlocks. 932 * 933 * *page_started is set to one if we unlock locked_page and do everything 934 * required to start IO on it. It may be clean and already done with 935 * IO when we return. 936 */ 937 static noinline int cow_file_range(struct inode *inode, 938 struct page *locked_page, 939 u64 start, u64 end, u64 delalloc_end, 940 int *page_started, unsigned long *nr_written, 941 int unlock, struct btrfs_dedupe_hash *hash) 942 { 943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 944 struct btrfs_root *root = BTRFS_I(inode)->root; 945 u64 alloc_hint = 0; 946 u64 num_bytes; 947 unsigned long ram_size; 948 u64 disk_num_bytes; 949 u64 cur_alloc_size = 0; 950 u64 blocksize = fs_info->sectorsize; 951 struct btrfs_key ins; 952 struct extent_map *em; 953 unsigned clear_bits; 954 unsigned long page_ops; 955 bool extent_reserved = false; 956 int ret = 0; 957 958 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 959 WARN_ON_ONCE(1); 960 ret = -EINVAL; 961 goto out_unlock; 962 } 963 964 num_bytes = ALIGN(end - start + 1, blocksize); 965 num_bytes = max(blocksize, num_bytes); 966 disk_num_bytes = num_bytes; 967 968 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 969 970 if (start == 0) { 971 /* lets try to make an inline extent */ 972 ret = cow_file_range_inline(root, inode, start, end, 0, 973 BTRFS_COMPRESS_NONE, NULL); 974 if (ret == 0) { 975 extent_clear_unlock_delalloc(inode, start, end, 976 delalloc_end, NULL, 977 EXTENT_LOCKED | EXTENT_DELALLOC | 978 EXTENT_DELALLOC_NEW | 979 EXTENT_DEFRAG, PAGE_UNLOCK | 980 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 981 PAGE_END_WRITEBACK); 982 btrfs_free_reserved_data_space_noquota(inode, start, 983 end - start + 1); 984 *nr_written = *nr_written + 985 (end - start + PAGE_SIZE) / PAGE_SIZE; 986 *page_started = 1; 987 goto out; 988 } else if (ret < 0) { 989 goto out_unlock; 990 } 991 } 992 993 BUG_ON(disk_num_bytes > 994 btrfs_super_total_bytes(fs_info->super_copy)); 995 996 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 997 btrfs_drop_extent_cache(BTRFS_I(inode), start, 998 start + num_bytes - 1, 0); 999 1000 while (disk_num_bytes > 0) { 1001 cur_alloc_size = disk_num_bytes; 1002 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1003 fs_info->sectorsize, 0, alloc_hint, 1004 &ins, 1, 1); 1005 if (ret < 0) 1006 goto out_unlock; 1007 cur_alloc_size = ins.offset; 1008 extent_reserved = true; 1009 1010 ram_size = ins.offset; 1011 em = create_io_em(inode, start, ins.offset, /* len */ 1012 start, /* orig_start */ 1013 ins.objectid, /* block_start */ 1014 ins.offset, /* block_len */ 1015 ins.offset, /* orig_block_len */ 1016 ram_size, /* ram_bytes */ 1017 BTRFS_COMPRESS_NONE, /* compress_type */ 1018 BTRFS_ORDERED_REGULAR /* type */); 1019 if (IS_ERR(em)) 1020 goto out_reserve; 1021 free_extent_map(em); 1022 1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1024 ram_size, cur_alloc_size, 0); 1025 if (ret) 1026 goto out_drop_extent_cache; 1027 1028 if (root->root_key.objectid == 1029 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1030 ret = btrfs_reloc_clone_csums(inode, start, 1031 cur_alloc_size); 1032 /* 1033 * Only drop cache here, and process as normal. 1034 * 1035 * We must not allow extent_clear_unlock_delalloc() 1036 * at out_unlock label to free meta of this ordered 1037 * extent, as its meta should be freed by 1038 * btrfs_finish_ordered_io(). 1039 * 1040 * So we must continue until @start is increased to 1041 * skip current ordered extent. 1042 */ 1043 if (ret) 1044 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1045 start + ram_size - 1, 0); 1046 } 1047 1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1049 1050 /* we're not doing compressed IO, don't unlock the first 1051 * page (which the caller expects to stay locked), don't 1052 * clear any dirty bits and don't set any writeback bits 1053 * 1054 * Do set the Private2 bit so we know this page was properly 1055 * setup for writepage 1056 */ 1057 page_ops = unlock ? PAGE_UNLOCK : 0; 1058 page_ops |= PAGE_SET_PRIVATE2; 1059 1060 extent_clear_unlock_delalloc(inode, start, 1061 start + ram_size - 1, 1062 delalloc_end, locked_page, 1063 EXTENT_LOCKED | EXTENT_DELALLOC, 1064 page_ops); 1065 if (disk_num_bytes < cur_alloc_size) 1066 disk_num_bytes = 0; 1067 else 1068 disk_num_bytes -= cur_alloc_size; 1069 num_bytes -= cur_alloc_size; 1070 alloc_hint = ins.objectid + ins.offset; 1071 start += cur_alloc_size; 1072 extent_reserved = false; 1073 1074 /* 1075 * btrfs_reloc_clone_csums() error, since start is increased 1076 * extent_clear_unlock_delalloc() at out_unlock label won't 1077 * free metadata of current ordered extent, we're OK to exit. 1078 */ 1079 if (ret) 1080 goto out_unlock; 1081 } 1082 out: 1083 return ret; 1084 1085 out_drop_extent_cache: 1086 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1087 out_reserve: 1088 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1089 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1090 out_unlock: 1091 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1092 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1093 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1094 PAGE_END_WRITEBACK; 1095 /* 1096 * If we reserved an extent for our delalloc range (or a subrange) and 1097 * failed to create the respective ordered extent, then it means that 1098 * when we reserved the extent we decremented the extent's size from 1099 * the data space_info's bytes_may_use counter and incremented the 1100 * space_info's bytes_reserved counter by the same amount. We must make 1101 * sure extent_clear_unlock_delalloc() does not try to decrement again 1102 * the data space_info's bytes_may_use counter, therefore we do not pass 1103 * it the flag EXTENT_CLEAR_DATA_RESV. 1104 */ 1105 if (extent_reserved) { 1106 extent_clear_unlock_delalloc(inode, start, 1107 start + cur_alloc_size, 1108 start + cur_alloc_size, 1109 locked_page, 1110 clear_bits, 1111 page_ops); 1112 start += cur_alloc_size; 1113 if (start >= end) 1114 goto out; 1115 } 1116 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1117 locked_page, 1118 clear_bits | EXTENT_CLEAR_DATA_RESV, 1119 page_ops); 1120 goto out; 1121 } 1122 1123 /* 1124 * work queue call back to started compression on a file and pages 1125 */ 1126 static noinline void async_cow_start(struct btrfs_work *work) 1127 { 1128 struct async_cow *async_cow; 1129 int num_added = 0; 1130 async_cow = container_of(work, struct async_cow, work); 1131 1132 compress_file_range(async_cow->inode, async_cow->locked_page, 1133 async_cow->start, async_cow->end, async_cow, 1134 &num_added); 1135 if (num_added == 0) { 1136 btrfs_add_delayed_iput(async_cow->inode); 1137 async_cow->inode = NULL; 1138 } 1139 } 1140 1141 /* 1142 * work queue call back to submit previously compressed pages 1143 */ 1144 static noinline void async_cow_submit(struct btrfs_work *work) 1145 { 1146 struct btrfs_fs_info *fs_info; 1147 struct async_cow *async_cow; 1148 struct btrfs_root *root; 1149 unsigned long nr_pages; 1150 1151 async_cow = container_of(work, struct async_cow, work); 1152 1153 root = async_cow->root; 1154 fs_info = root->fs_info; 1155 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1156 PAGE_SHIFT; 1157 1158 /* 1159 * atomic_sub_return implies a barrier for waitqueue_active 1160 */ 1161 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1162 5 * SZ_1M && 1163 waitqueue_active(&fs_info->async_submit_wait)) 1164 wake_up(&fs_info->async_submit_wait); 1165 1166 if (async_cow->inode) 1167 submit_compressed_extents(async_cow->inode, async_cow); 1168 } 1169 1170 static noinline void async_cow_free(struct btrfs_work *work) 1171 { 1172 struct async_cow *async_cow; 1173 async_cow = container_of(work, struct async_cow, work); 1174 if (async_cow->inode) 1175 btrfs_add_delayed_iput(async_cow->inode); 1176 kfree(async_cow); 1177 } 1178 1179 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1180 u64 start, u64 end, int *page_started, 1181 unsigned long *nr_written) 1182 { 1183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1184 struct async_cow *async_cow; 1185 struct btrfs_root *root = BTRFS_I(inode)->root; 1186 unsigned long nr_pages; 1187 u64 cur_end; 1188 1189 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1190 1, 0, NULL, GFP_NOFS); 1191 while (start < end) { 1192 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1193 BUG_ON(!async_cow); /* -ENOMEM */ 1194 async_cow->inode = igrab(inode); 1195 async_cow->root = root; 1196 async_cow->locked_page = locked_page; 1197 async_cow->start = start; 1198 1199 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1200 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1201 cur_end = end; 1202 else 1203 cur_end = min(end, start + SZ_512K - 1); 1204 1205 async_cow->end = cur_end; 1206 INIT_LIST_HEAD(&async_cow->extents); 1207 1208 btrfs_init_work(&async_cow->work, 1209 btrfs_delalloc_helper, 1210 async_cow_start, async_cow_submit, 1211 async_cow_free); 1212 1213 nr_pages = (cur_end - start + PAGE_SIZE) >> 1214 PAGE_SHIFT; 1215 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1216 1217 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1218 1219 while (atomic_read(&fs_info->async_submit_draining) && 1220 atomic_read(&fs_info->async_delalloc_pages)) { 1221 wait_event(fs_info->async_submit_wait, 1222 (atomic_read(&fs_info->async_delalloc_pages) == 1223 0)); 1224 } 1225 1226 *nr_written += nr_pages; 1227 start = cur_end + 1; 1228 } 1229 *page_started = 1; 1230 return 0; 1231 } 1232 1233 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1234 u64 bytenr, u64 num_bytes) 1235 { 1236 int ret; 1237 struct btrfs_ordered_sum *sums; 1238 LIST_HEAD(list); 1239 1240 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1241 bytenr + num_bytes - 1, &list, 0); 1242 if (ret == 0 && list_empty(&list)) 1243 return 0; 1244 1245 while (!list_empty(&list)) { 1246 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1247 list_del(&sums->list); 1248 kfree(sums); 1249 } 1250 return 1; 1251 } 1252 1253 /* 1254 * when nowcow writeback call back. This checks for snapshots or COW copies 1255 * of the extents that exist in the file, and COWs the file as required. 1256 * 1257 * If no cow copies or snapshots exist, we write directly to the existing 1258 * blocks on disk 1259 */ 1260 static noinline int run_delalloc_nocow(struct inode *inode, 1261 struct page *locked_page, 1262 u64 start, u64 end, int *page_started, int force, 1263 unsigned long *nr_written) 1264 { 1265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1266 struct btrfs_root *root = BTRFS_I(inode)->root; 1267 struct extent_buffer *leaf; 1268 struct btrfs_path *path; 1269 struct btrfs_file_extent_item *fi; 1270 struct btrfs_key found_key; 1271 struct extent_map *em; 1272 u64 cow_start; 1273 u64 cur_offset; 1274 u64 extent_end; 1275 u64 extent_offset; 1276 u64 disk_bytenr; 1277 u64 num_bytes; 1278 u64 disk_num_bytes; 1279 u64 ram_bytes; 1280 int extent_type; 1281 int ret, err; 1282 int type; 1283 int nocow; 1284 int check_prev = 1; 1285 bool nolock; 1286 u64 ino = btrfs_ino(BTRFS_I(inode)); 1287 1288 path = btrfs_alloc_path(); 1289 if (!path) { 1290 extent_clear_unlock_delalloc(inode, start, end, end, 1291 locked_page, 1292 EXTENT_LOCKED | EXTENT_DELALLOC | 1293 EXTENT_DO_ACCOUNTING | 1294 EXTENT_DEFRAG, PAGE_UNLOCK | 1295 PAGE_CLEAR_DIRTY | 1296 PAGE_SET_WRITEBACK | 1297 PAGE_END_WRITEBACK); 1298 return -ENOMEM; 1299 } 1300 1301 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1302 1303 cow_start = (u64)-1; 1304 cur_offset = start; 1305 while (1) { 1306 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1307 cur_offset, 0); 1308 if (ret < 0) 1309 goto error; 1310 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1311 leaf = path->nodes[0]; 1312 btrfs_item_key_to_cpu(leaf, &found_key, 1313 path->slots[0] - 1); 1314 if (found_key.objectid == ino && 1315 found_key.type == BTRFS_EXTENT_DATA_KEY) 1316 path->slots[0]--; 1317 } 1318 check_prev = 0; 1319 next_slot: 1320 leaf = path->nodes[0]; 1321 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1322 ret = btrfs_next_leaf(root, path); 1323 if (ret < 0) 1324 goto error; 1325 if (ret > 0) 1326 break; 1327 leaf = path->nodes[0]; 1328 } 1329 1330 nocow = 0; 1331 disk_bytenr = 0; 1332 num_bytes = 0; 1333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1334 1335 if (found_key.objectid > ino) 1336 break; 1337 if (WARN_ON_ONCE(found_key.objectid < ino) || 1338 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1339 path->slots[0]++; 1340 goto next_slot; 1341 } 1342 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1343 found_key.offset > end) 1344 break; 1345 1346 if (found_key.offset > cur_offset) { 1347 extent_end = found_key.offset; 1348 extent_type = 0; 1349 goto out_check; 1350 } 1351 1352 fi = btrfs_item_ptr(leaf, path->slots[0], 1353 struct btrfs_file_extent_item); 1354 extent_type = btrfs_file_extent_type(leaf, fi); 1355 1356 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1357 if (extent_type == BTRFS_FILE_EXTENT_REG || 1358 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1360 extent_offset = btrfs_file_extent_offset(leaf, fi); 1361 extent_end = found_key.offset + 1362 btrfs_file_extent_num_bytes(leaf, fi); 1363 disk_num_bytes = 1364 btrfs_file_extent_disk_num_bytes(leaf, fi); 1365 if (extent_end <= start) { 1366 path->slots[0]++; 1367 goto next_slot; 1368 } 1369 if (disk_bytenr == 0) 1370 goto out_check; 1371 if (btrfs_file_extent_compression(leaf, fi) || 1372 btrfs_file_extent_encryption(leaf, fi) || 1373 btrfs_file_extent_other_encoding(leaf, fi)) 1374 goto out_check; 1375 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1376 goto out_check; 1377 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1378 goto out_check; 1379 if (btrfs_cross_ref_exist(root, ino, 1380 found_key.offset - 1381 extent_offset, disk_bytenr)) 1382 goto out_check; 1383 disk_bytenr += extent_offset; 1384 disk_bytenr += cur_offset - found_key.offset; 1385 num_bytes = min(end + 1, extent_end) - cur_offset; 1386 /* 1387 * if there are pending snapshots for this root, 1388 * we fall into common COW way. 1389 */ 1390 if (!nolock) { 1391 err = btrfs_start_write_no_snapshoting(root); 1392 if (!err) 1393 goto out_check; 1394 } 1395 /* 1396 * force cow if csum exists in the range. 1397 * this ensure that csum for a given extent are 1398 * either valid or do not exist. 1399 */ 1400 if (csum_exist_in_range(fs_info, disk_bytenr, 1401 num_bytes)) { 1402 if (!nolock) 1403 btrfs_end_write_no_snapshoting(root); 1404 goto out_check; 1405 } 1406 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1407 if (!nolock) 1408 btrfs_end_write_no_snapshoting(root); 1409 goto out_check; 1410 } 1411 nocow = 1; 1412 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1413 extent_end = found_key.offset + 1414 btrfs_file_extent_inline_len(leaf, 1415 path->slots[0], fi); 1416 extent_end = ALIGN(extent_end, 1417 fs_info->sectorsize); 1418 } else { 1419 BUG_ON(1); 1420 } 1421 out_check: 1422 if (extent_end <= start) { 1423 path->slots[0]++; 1424 if (!nolock && nocow) 1425 btrfs_end_write_no_snapshoting(root); 1426 if (nocow) 1427 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1428 goto next_slot; 1429 } 1430 if (!nocow) { 1431 if (cow_start == (u64)-1) 1432 cow_start = cur_offset; 1433 cur_offset = extent_end; 1434 if (cur_offset > end) 1435 break; 1436 path->slots[0]++; 1437 goto next_slot; 1438 } 1439 1440 btrfs_release_path(path); 1441 if (cow_start != (u64)-1) { 1442 ret = cow_file_range(inode, locked_page, 1443 cow_start, found_key.offset - 1, 1444 end, page_started, nr_written, 1, 1445 NULL); 1446 if (ret) { 1447 if (!nolock && nocow) 1448 btrfs_end_write_no_snapshoting(root); 1449 if (nocow) 1450 btrfs_dec_nocow_writers(fs_info, 1451 disk_bytenr); 1452 goto error; 1453 } 1454 cow_start = (u64)-1; 1455 } 1456 1457 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1458 u64 orig_start = found_key.offset - extent_offset; 1459 1460 em = create_io_em(inode, cur_offset, num_bytes, 1461 orig_start, 1462 disk_bytenr, /* block_start */ 1463 num_bytes, /* block_len */ 1464 disk_num_bytes, /* orig_block_len */ 1465 ram_bytes, BTRFS_COMPRESS_NONE, 1466 BTRFS_ORDERED_PREALLOC); 1467 if (IS_ERR(em)) { 1468 if (!nolock && nocow) 1469 btrfs_end_write_no_snapshoting(root); 1470 if (nocow) 1471 btrfs_dec_nocow_writers(fs_info, 1472 disk_bytenr); 1473 ret = PTR_ERR(em); 1474 goto error; 1475 } 1476 free_extent_map(em); 1477 } 1478 1479 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1480 type = BTRFS_ORDERED_PREALLOC; 1481 } else { 1482 type = BTRFS_ORDERED_NOCOW; 1483 } 1484 1485 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1486 num_bytes, num_bytes, type); 1487 if (nocow) 1488 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1489 BUG_ON(ret); /* -ENOMEM */ 1490 1491 if (root->root_key.objectid == 1492 BTRFS_DATA_RELOC_TREE_OBJECTID) 1493 /* 1494 * Error handled later, as we must prevent 1495 * extent_clear_unlock_delalloc() in error handler 1496 * from freeing metadata of created ordered extent. 1497 */ 1498 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1499 num_bytes); 1500 1501 extent_clear_unlock_delalloc(inode, cur_offset, 1502 cur_offset + num_bytes - 1, end, 1503 locked_page, EXTENT_LOCKED | 1504 EXTENT_DELALLOC | 1505 EXTENT_CLEAR_DATA_RESV, 1506 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1507 1508 if (!nolock && nocow) 1509 btrfs_end_write_no_snapshoting(root); 1510 cur_offset = extent_end; 1511 1512 /* 1513 * btrfs_reloc_clone_csums() error, now we're OK to call error 1514 * handler, as metadata for created ordered extent will only 1515 * be freed by btrfs_finish_ordered_io(). 1516 */ 1517 if (ret) 1518 goto error; 1519 if (cur_offset > end) 1520 break; 1521 } 1522 btrfs_release_path(path); 1523 1524 if (cur_offset <= end && cow_start == (u64)-1) { 1525 cow_start = cur_offset; 1526 cur_offset = end; 1527 } 1528 1529 if (cow_start != (u64)-1) { 1530 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1531 page_started, nr_written, 1, NULL); 1532 if (ret) 1533 goto error; 1534 } 1535 1536 error: 1537 if (ret && cur_offset < end) 1538 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1539 locked_page, EXTENT_LOCKED | 1540 EXTENT_DELALLOC | EXTENT_DEFRAG | 1541 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1542 PAGE_CLEAR_DIRTY | 1543 PAGE_SET_WRITEBACK | 1544 PAGE_END_WRITEBACK); 1545 btrfs_free_path(path); 1546 return ret; 1547 } 1548 1549 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1550 { 1551 1552 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1553 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1554 return 0; 1555 1556 /* 1557 * @defrag_bytes is a hint value, no spinlock held here, 1558 * if is not zero, it means the file is defragging. 1559 * Force cow if given extent needs to be defragged. 1560 */ 1561 if (BTRFS_I(inode)->defrag_bytes && 1562 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1563 EXTENT_DEFRAG, 0, NULL)) 1564 return 1; 1565 1566 return 0; 1567 } 1568 1569 /* 1570 * extent_io.c call back to do delayed allocation processing 1571 */ 1572 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1573 u64 start, u64 end, int *page_started, 1574 unsigned long *nr_written) 1575 { 1576 int ret; 1577 int force_cow = need_force_cow(inode, start, end); 1578 1579 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1580 ret = run_delalloc_nocow(inode, locked_page, start, end, 1581 page_started, 1, nr_written); 1582 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1583 ret = run_delalloc_nocow(inode, locked_page, start, end, 1584 page_started, 0, nr_written); 1585 } else if (!inode_need_compress(inode)) { 1586 ret = cow_file_range(inode, locked_page, start, end, end, 1587 page_started, nr_written, 1, NULL); 1588 } else { 1589 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1590 &BTRFS_I(inode)->runtime_flags); 1591 ret = cow_file_range_async(inode, locked_page, start, end, 1592 page_started, nr_written); 1593 } 1594 if (ret) 1595 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1596 return ret; 1597 } 1598 1599 static void btrfs_split_extent_hook(struct inode *inode, 1600 struct extent_state *orig, u64 split) 1601 { 1602 u64 size; 1603 1604 /* not delalloc, ignore it */ 1605 if (!(orig->state & EXTENT_DELALLOC)) 1606 return; 1607 1608 size = orig->end - orig->start + 1; 1609 if (size > BTRFS_MAX_EXTENT_SIZE) { 1610 u32 num_extents; 1611 u64 new_size; 1612 1613 /* 1614 * See the explanation in btrfs_merge_extent_hook, the same 1615 * applies here, just in reverse. 1616 */ 1617 new_size = orig->end - split + 1; 1618 num_extents = count_max_extents(new_size); 1619 new_size = split - orig->start; 1620 num_extents += count_max_extents(new_size); 1621 if (count_max_extents(size) >= num_extents) 1622 return; 1623 } 1624 1625 spin_lock(&BTRFS_I(inode)->lock); 1626 BTRFS_I(inode)->outstanding_extents++; 1627 spin_unlock(&BTRFS_I(inode)->lock); 1628 } 1629 1630 /* 1631 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1632 * extents so we can keep track of new extents that are just merged onto old 1633 * extents, such as when we are doing sequential writes, so we can properly 1634 * account for the metadata space we'll need. 1635 */ 1636 static void btrfs_merge_extent_hook(struct inode *inode, 1637 struct extent_state *new, 1638 struct extent_state *other) 1639 { 1640 u64 new_size, old_size; 1641 u32 num_extents; 1642 1643 /* not delalloc, ignore it */ 1644 if (!(other->state & EXTENT_DELALLOC)) 1645 return; 1646 1647 if (new->start > other->start) 1648 new_size = new->end - other->start + 1; 1649 else 1650 new_size = other->end - new->start + 1; 1651 1652 /* we're not bigger than the max, unreserve the space and go */ 1653 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1654 spin_lock(&BTRFS_I(inode)->lock); 1655 BTRFS_I(inode)->outstanding_extents--; 1656 spin_unlock(&BTRFS_I(inode)->lock); 1657 return; 1658 } 1659 1660 /* 1661 * We have to add up either side to figure out how many extents were 1662 * accounted for before we merged into one big extent. If the number of 1663 * extents we accounted for is <= the amount we need for the new range 1664 * then we can return, otherwise drop. Think of it like this 1665 * 1666 * [ 4k][MAX_SIZE] 1667 * 1668 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1669 * need 2 outstanding extents, on one side we have 1 and the other side 1670 * we have 1 so they are == and we can return. But in this case 1671 * 1672 * [MAX_SIZE+4k][MAX_SIZE+4k] 1673 * 1674 * Each range on their own accounts for 2 extents, but merged together 1675 * they are only 3 extents worth of accounting, so we need to drop in 1676 * this case. 1677 */ 1678 old_size = other->end - other->start + 1; 1679 num_extents = count_max_extents(old_size); 1680 old_size = new->end - new->start + 1; 1681 num_extents += count_max_extents(old_size); 1682 if (count_max_extents(new_size) >= num_extents) 1683 return; 1684 1685 spin_lock(&BTRFS_I(inode)->lock); 1686 BTRFS_I(inode)->outstanding_extents--; 1687 spin_unlock(&BTRFS_I(inode)->lock); 1688 } 1689 1690 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1691 struct inode *inode) 1692 { 1693 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1694 1695 spin_lock(&root->delalloc_lock); 1696 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1697 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1698 &root->delalloc_inodes); 1699 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1700 &BTRFS_I(inode)->runtime_flags); 1701 root->nr_delalloc_inodes++; 1702 if (root->nr_delalloc_inodes == 1) { 1703 spin_lock(&fs_info->delalloc_root_lock); 1704 BUG_ON(!list_empty(&root->delalloc_root)); 1705 list_add_tail(&root->delalloc_root, 1706 &fs_info->delalloc_roots); 1707 spin_unlock(&fs_info->delalloc_root_lock); 1708 } 1709 } 1710 spin_unlock(&root->delalloc_lock); 1711 } 1712 1713 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1714 struct btrfs_inode *inode) 1715 { 1716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1717 1718 spin_lock(&root->delalloc_lock); 1719 if (!list_empty(&inode->delalloc_inodes)) { 1720 list_del_init(&inode->delalloc_inodes); 1721 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1722 &inode->runtime_flags); 1723 root->nr_delalloc_inodes--; 1724 if (!root->nr_delalloc_inodes) { 1725 spin_lock(&fs_info->delalloc_root_lock); 1726 BUG_ON(list_empty(&root->delalloc_root)); 1727 list_del_init(&root->delalloc_root); 1728 spin_unlock(&fs_info->delalloc_root_lock); 1729 } 1730 } 1731 spin_unlock(&root->delalloc_lock); 1732 } 1733 1734 /* 1735 * extent_io.c set_bit_hook, used to track delayed allocation 1736 * bytes in this file, and to maintain the list of inodes that 1737 * have pending delalloc work to be done. 1738 */ 1739 static void btrfs_set_bit_hook(struct inode *inode, 1740 struct extent_state *state, unsigned *bits) 1741 { 1742 1743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1744 1745 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1746 WARN_ON(1); 1747 /* 1748 * set_bit and clear bit hooks normally require _irqsave/restore 1749 * but in this case, we are only testing for the DELALLOC 1750 * bit, which is only set or cleared with irqs on 1751 */ 1752 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1753 struct btrfs_root *root = BTRFS_I(inode)->root; 1754 u64 len = state->end + 1 - state->start; 1755 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1756 1757 if (*bits & EXTENT_FIRST_DELALLOC) { 1758 *bits &= ~EXTENT_FIRST_DELALLOC; 1759 } else { 1760 spin_lock(&BTRFS_I(inode)->lock); 1761 BTRFS_I(inode)->outstanding_extents++; 1762 spin_unlock(&BTRFS_I(inode)->lock); 1763 } 1764 1765 /* For sanity tests */ 1766 if (btrfs_is_testing(fs_info)) 1767 return; 1768 1769 __percpu_counter_add(&fs_info->delalloc_bytes, len, 1770 fs_info->delalloc_batch); 1771 spin_lock(&BTRFS_I(inode)->lock); 1772 BTRFS_I(inode)->delalloc_bytes += len; 1773 if (*bits & EXTENT_DEFRAG) 1774 BTRFS_I(inode)->defrag_bytes += len; 1775 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1776 &BTRFS_I(inode)->runtime_flags)) 1777 btrfs_add_delalloc_inodes(root, inode); 1778 spin_unlock(&BTRFS_I(inode)->lock); 1779 } 1780 1781 if (!(state->state & EXTENT_DELALLOC_NEW) && 1782 (*bits & EXTENT_DELALLOC_NEW)) { 1783 spin_lock(&BTRFS_I(inode)->lock); 1784 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1785 state->start; 1786 spin_unlock(&BTRFS_I(inode)->lock); 1787 } 1788 } 1789 1790 /* 1791 * extent_io.c clear_bit_hook, see set_bit_hook for why 1792 */ 1793 static void btrfs_clear_bit_hook(struct btrfs_inode *inode, 1794 struct extent_state *state, 1795 unsigned *bits) 1796 { 1797 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1798 u64 len = state->end + 1 - state->start; 1799 u32 num_extents = count_max_extents(len); 1800 1801 spin_lock(&inode->lock); 1802 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1803 inode->defrag_bytes -= len; 1804 spin_unlock(&inode->lock); 1805 1806 /* 1807 * set_bit and clear bit hooks normally require _irqsave/restore 1808 * but in this case, we are only testing for the DELALLOC 1809 * bit, which is only set or cleared with irqs on 1810 */ 1811 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1812 struct btrfs_root *root = inode->root; 1813 bool do_list = !btrfs_is_free_space_inode(inode); 1814 1815 if (*bits & EXTENT_FIRST_DELALLOC) { 1816 *bits &= ~EXTENT_FIRST_DELALLOC; 1817 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) { 1818 spin_lock(&inode->lock); 1819 inode->outstanding_extents -= num_extents; 1820 spin_unlock(&inode->lock); 1821 } 1822 1823 /* 1824 * We don't reserve metadata space for space cache inodes so we 1825 * don't need to call dellalloc_release_metadata if there is an 1826 * error. 1827 */ 1828 if (*bits & EXTENT_CLEAR_META_RESV && 1829 root != fs_info->tree_root) 1830 btrfs_delalloc_release_metadata(inode, len); 1831 1832 /* For sanity tests. */ 1833 if (btrfs_is_testing(fs_info)) 1834 return; 1835 1836 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1837 do_list && !(state->state & EXTENT_NORESERVE) && 1838 (*bits & EXTENT_CLEAR_DATA_RESV)) 1839 btrfs_free_reserved_data_space_noquota( 1840 &inode->vfs_inode, 1841 state->start, len); 1842 1843 __percpu_counter_add(&fs_info->delalloc_bytes, -len, 1844 fs_info->delalloc_batch); 1845 spin_lock(&inode->lock); 1846 inode->delalloc_bytes -= len; 1847 if (do_list && inode->delalloc_bytes == 0 && 1848 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1849 &inode->runtime_flags)) 1850 btrfs_del_delalloc_inode(root, inode); 1851 spin_unlock(&inode->lock); 1852 } 1853 1854 if ((state->state & EXTENT_DELALLOC_NEW) && 1855 (*bits & EXTENT_DELALLOC_NEW)) { 1856 spin_lock(&inode->lock); 1857 ASSERT(inode->new_delalloc_bytes >= len); 1858 inode->new_delalloc_bytes -= len; 1859 spin_unlock(&inode->lock); 1860 } 1861 } 1862 1863 /* 1864 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1865 * we don't create bios that span stripes or chunks 1866 * 1867 * return 1 if page cannot be merged to bio 1868 * return 0 if page can be merged to bio 1869 * return error otherwise 1870 */ 1871 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1872 size_t size, struct bio *bio, 1873 unsigned long bio_flags) 1874 { 1875 struct inode *inode = page->mapping->host; 1876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1877 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1878 u64 length = 0; 1879 u64 map_length; 1880 int ret; 1881 1882 if (bio_flags & EXTENT_BIO_COMPRESSED) 1883 return 0; 1884 1885 length = bio->bi_iter.bi_size; 1886 map_length = length; 1887 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1888 NULL, 0); 1889 if (ret < 0) 1890 return ret; 1891 if (map_length < length + size) 1892 return 1; 1893 return 0; 1894 } 1895 1896 /* 1897 * in order to insert checksums into the metadata in large chunks, 1898 * we wait until bio submission time. All the pages in the bio are 1899 * checksummed and sums are attached onto the ordered extent record. 1900 * 1901 * At IO completion time the cums attached on the ordered extent record 1902 * are inserted into the btree 1903 */ 1904 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 1905 int mirror_num, unsigned long bio_flags, 1906 u64 bio_offset) 1907 { 1908 int ret = 0; 1909 1910 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1911 BUG_ON(ret); /* -ENOMEM */ 1912 return 0; 1913 } 1914 1915 /* 1916 * in order to insert checksums into the metadata in large chunks, 1917 * we wait until bio submission time. All the pages in the bio are 1918 * checksummed and sums are attached onto the ordered extent record. 1919 * 1920 * At IO completion time the cums attached on the ordered extent record 1921 * are inserted into the btree 1922 */ 1923 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio, 1924 int mirror_num, unsigned long bio_flags, 1925 u64 bio_offset) 1926 { 1927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1928 int ret; 1929 1930 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1931 if (ret) { 1932 bio->bi_error = ret; 1933 bio_endio(bio); 1934 } 1935 return ret; 1936 } 1937 1938 /* 1939 * extent_io.c submission hook. This does the right thing for csum calculation 1940 * on write, or reading the csums from the tree before a read 1941 */ 1942 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 1943 int mirror_num, unsigned long bio_flags, 1944 u64 bio_offset) 1945 { 1946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1947 struct btrfs_root *root = BTRFS_I(inode)->root; 1948 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1949 int ret = 0; 1950 int skip_sum; 1951 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1952 1953 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1954 1955 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1956 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1957 1958 if (bio_op(bio) != REQ_OP_WRITE) { 1959 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1960 if (ret) 1961 goto out; 1962 1963 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1964 ret = btrfs_submit_compressed_read(inode, bio, 1965 mirror_num, 1966 bio_flags); 1967 goto out; 1968 } else if (!skip_sum) { 1969 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 1970 if (ret) 1971 goto out; 1972 } 1973 goto mapit; 1974 } else if (async && !skip_sum) { 1975 /* csum items have already been cloned */ 1976 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1977 goto mapit; 1978 /* we're doing a write, do the async checksumming */ 1979 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 1980 bio_flags, bio_offset, 1981 __btrfs_submit_bio_start, 1982 __btrfs_submit_bio_done); 1983 goto out; 1984 } else if (!skip_sum) { 1985 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1986 if (ret) 1987 goto out; 1988 } 1989 1990 mapit: 1991 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1992 1993 out: 1994 if (ret < 0) { 1995 bio->bi_error = ret; 1996 bio_endio(bio); 1997 } 1998 return ret; 1999 } 2000 2001 /* 2002 * given a list of ordered sums record them in the inode. This happens 2003 * at IO completion time based on sums calculated at bio submission time. 2004 */ 2005 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2006 struct inode *inode, struct list_head *list) 2007 { 2008 struct btrfs_ordered_sum *sum; 2009 2010 list_for_each_entry(sum, list, list) { 2011 trans->adding_csums = 1; 2012 btrfs_csum_file_blocks(trans, 2013 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2014 trans->adding_csums = 0; 2015 } 2016 return 0; 2017 } 2018 2019 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2020 struct extent_state **cached_state, int dedupe) 2021 { 2022 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2023 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2024 cached_state); 2025 } 2026 2027 /* see btrfs_writepage_start_hook for details on why this is required */ 2028 struct btrfs_writepage_fixup { 2029 struct page *page; 2030 struct btrfs_work work; 2031 }; 2032 2033 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2034 { 2035 struct btrfs_writepage_fixup *fixup; 2036 struct btrfs_ordered_extent *ordered; 2037 struct extent_state *cached_state = NULL; 2038 struct page *page; 2039 struct inode *inode; 2040 u64 page_start; 2041 u64 page_end; 2042 int ret; 2043 2044 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2045 page = fixup->page; 2046 again: 2047 lock_page(page); 2048 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2049 ClearPageChecked(page); 2050 goto out_page; 2051 } 2052 2053 inode = page->mapping->host; 2054 page_start = page_offset(page); 2055 page_end = page_offset(page) + PAGE_SIZE - 1; 2056 2057 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2058 &cached_state); 2059 2060 /* already ordered? We're done */ 2061 if (PagePrivate2(page)) 2062 goto out; 2063 2064 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2065 PAGE_SIZE); 2066 if (ordered) { 2067 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2068 page_end, &cached_state, GFP_NOFS); 2069 unlock_page(page); 2070 btrfs_start_ordered_extent(inode, ordered, 1); 2071 btrfs_put_ordered_extent(ordered); 2072 goto again; 2073 } 2074 2075 ret = btrfs_delalloc_reserve_space(inode, page_start, 2076 PAGE_SIZE); 2077 if (ret) { 2078 mapping_set_error(page->mapping, ret); 2079 end_extent_writepage(page, ret, page_start, page_end); 2080 ClearPageChecked(page); 2081 goto out; 2082 } 2083 2084 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state, 2085 0); 2086 ClearPageChecked(page); 2087 set_page_dirty(page); 2088 out: 2089 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2090 &cached_state, GFP_NOFS); 2091 out_page: 2092 unlock_page(page); 2093 put_page(page); 2094 kfree(fixup); 2095 } 2096 2097 /* 2098 * There are a few paths in the higher layers of the kernel that directly 2099 * set the page dirty bit without asking the filesystem if it is a 2100 * good idea. This causes problems because we want to make sure COW 2101 * properly happens and the data=ordered rules are followed. 2102 * 2103 * In our case any range that doesn't have the ORDERED bit set 2104 * hasn't been properly setup for IO. We kick off an async process 2105 * to fix it up. The async helper will wait for ordered extents, set 2106 * the delalloc bit and make it safe to write the page. 2107 */ 2108 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2109 { 2110 struct inode *inode = page->mapping->host; 2111 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2112 struct btrfs_writepage_fixup *fixup; 2113 2114 /* this page is properly in the ordered list */ 2115 if (TestClearPagePrivate2(page)) 2116 return 0; 2117 2118 if (PageChecked(page)) 2119 return -EAGAIN; 2120 2121 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2122 if (!fixup) 2123 return -EAGAIN; 2124 2125 SetPageChecked(page); 2126 get_page(page); 2127 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2128 btrfs_writepage_fixup_worker, NULL, NULL); 2129 fixup->page = page; 2130 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2131 return -EBUSY; 2132 } 2133 2134 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2135 struct inode *inode, u64 file_pos, 2136 u64 disk_bytenr, u64 disk_num_bytes, 2137 u64 num_bytes, u64 ram_bytes, 2138 u8 compression, u8 encryption, 2139 u16 other_encoding, int extent_type) 2140 { 2141 struct btrfs_root *root = BTRFS_I(inode)->root; 2142 struct btrfs_file_extent_item *fi; 2143 struct btrfs_path *path; 2144 struct extent_buffer *leaf; 2145 struct btrfs_key ins; 2146 int extent_inserted = 0; 2147 int ret; 2148 2149 path = btrfs_alloc_path(); 2150 if (!path) 2151 return -ENOMEM; 2152 2153 /* 2154 * we may be replacing one extent in the tree with another. 2155 * The new extent is pinned in the extent map, and we don't want 2156 * to drop it from the cache until it is completely in the btree. 2157 * 2158 * So, tell btrfs_drop_extents to leave this extent in the cache. 2159 * the caller is expected to unpin it and allow it to be merged 2160 * with the others. 2161 */ 2162 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2163 file_pos + num_bytes, NULL, 0, 2164 1, sizeof(*fi), &extent_inserted); 2165 if (ret) 2166 goto out; 2167 2168 if (!extent_inserted) { 2169 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2170 ins.offset = file_pos; 2171 ins.type = BTRFS_EXTENT_DATA_KEY; 2172 2173 path->leave_spinning = 1; 2174 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2175 sizeof(*fi)); 2176 if (ret) 2177 goto out; 2178 } 2179 leaf = path->nodes[0]; 2180 fi = btrfs_item_ptr(leaf, path->slots[0], 2181 struct btrfs_file_extent_item); 2182 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2183 btrfs_set_file_extent_type(leaf, fi, extent_type); 2184 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2185 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2186 btrfs_set_file_extent_offset(leaf, fi, 0); 2187 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2188 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2189 btrfs_set_file_extent_compression(leaf, fi, compression); 2190 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2191 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2192 2193 btrfs_mark_buffer_dirty(leaf); 2194 btrfs_release_path(path); 2195 2196 inode_add_bytes(inode, num_bytes); 2197 2198 ins.objectid = disk_bytenr; 2199 ins.offset = disk_num_bytes; 2200 ins.type = BTRFS_EXTENT_ITEM_KEY; 2201 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid, 2202 btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins); 2203 /* 2204 * Release the reserved range from inode dirty range map, as it is 2205 * already moved into delayed_ref_head 2206 */ 2207 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2208 out: 2209 btrfs_free_path(path); 2210 2211 return ret; 2212 } 2213 2214 /* snapshot-aware defrag */ 2215 struct sa_defrag_extent_backref { 2216 struct rb_node node; 2217 struct old_sa_defrag_extent *old; 2218 u64 root_id; 2219 u64 inum; 2220 u64 file_pos; 2221 u64 extent_offset; 2222 u64 num_bytes; 2223 u64 generation; 2224 }; 2225 2226 struct old_sa_defrag_extent { 2227 struct list_head list; 2228 struct new_sa_defrag_extent *new; 2229 2230 u64 extent_offset; 2231 u64 bytenr; 2232 u64 offset; 2233 u64 len; 2234 int count; 2235 }; 2236 2237 struct new_sa_defrag_extent { 2238 struct rb_root root; 2239 struct list_head head; 2240 struct btrfs_path *path; 2241 struct inode *inode; 2242 u64 file_pos; 2243 u64 len; 2244 u64 bytenr; 2245 u64 disk_len; 2246 u8 compress_type; 2247 }; 2248 2249 static int backref_comp(struct sa_defrag_extent_backref *b1, 2250 struct sa_defrag_extent_backref *b2) 2251 { 2252 if (b1->root_id < b2->root_id) 2253 return -1; 2254 else if (b1->root_id > b2->root_id) 2255 return 1; 2256 2257 if (b1->inum < b2->inum) 2258 return -1; 2259 else if (b1->inum > b2->inum) 2260 return 1; 2261 2262 if (b1->file_pos < b2->file_pos) 2263 return -1; 2264 else if (b1->file_pos > b2->file_pos) 2265 return 1; 2266 2267 /* 2268 * [------------------------------] ===> (a range of space) 2269 * |<--->| |<---->| =============> (fs/file tree A) 2270 * |<---------------------------->| ===> (fs/file tree B) 2271 * 2272 * A range of space can refer to two file extents in one tree while 2273 * refer to only one file extent in another tree. 2274 * 2275 * So we may process a disk offset more than one time(two extents in A) 2276 * and locate at the same extent(one extent in B), then insert two same 2277 * backrefs(both refer to the extent in B). 2278 */ 2279 return 0; 2280 } 2281 2282 static void backref_insert(struct rb_root *root, 2283 struct sa_defrag_extent_backref *backref) 2284 { 2285 struct rb_node **p = &root->rb_node; 2286 struct rb_node *parent = NULL; 2287 struct sa_defrag_extent_backref *entry; 2288 int ret; 2289 2290 while (*p) { 2291 parent = *p; 2292 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2293 2294 ret = backref_comp(backref, entry); 2295 if (ret < 0) 2296 p = &(*p)->rb_left; 2297 else 2298 p = &(*p)->rb_right; 2299 } 2300 2301 rb_link_node(&backref->node, parent, p); 2302 rb_insert_color(&backref->node, root); 2303 } 2304 2305 /* 2306 * Note the backref might has changed, and in this case we just return 0. 2307 */ 2308 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2309 void *ctx) 2310 { 2311 struct btrfs_file_extent_item *extent; 2312 struct old_sa_defrag_extent *old = ctx; 2313 struct new_sa_defrag_extent *new = old->new; 2314 struct btrfs_path *path = new->path; 2315 struct btrfs_key key; 2316 struct btrfs_root *root; 2317 struct sa_defrag_extent_backref *backref; 2318 struct extent_buffer *leaf; 2319 struct inode *inode = new->inode; 2320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2321 int slot; 2322 int ret; 2323 u64 extent_offset; 2324 u64 num_bytes; 2325 2326 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2327 inum == btrfs_ino(BTRFS_I(inode))) 2328 return 0; 2329 2330 key.objectid = root_id; 2331 key.type = BTRFS_ROOT_ITEM_KEY; 2332 key.offset = (u64)-1; 2333 2334 root = btrfs_read_fs_root_no_name(fs_info, &key); 2335 if (IS_ERR(root)) { 2336 if (PTR_ERR(root) == -ENOENT) 2337 return 0; 2338 WARN_ON(1); 2339 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2340 inum, offset, root_id); 2341 return PTR_ERR(root); 2342 } 2343 2344 key.objectid = inum; 2345 key.type = BTRFS_EXTENT_DATA_KEY; 2346 if (offset > (u64)-1 << 32) 2347 key.offset = 0; 2348 else 2349 key.offset = offset; 2350 2351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2352 if (WARN_ON(ret < 0)) 2353 return ret; 2354 ret = 0; 2355 2356 while (1) { 2357 cond_resched(); 2358 2359 leaf = path->nodes[0]; 2360 slot = path->slots[0]; 2361 2362 if (slot >= btrfs_header_nritems(leaf)) { 2363 ret = btrfs_next_leaf(root, path); 2364 if (ret < 0) { 2365 goto out; 2366 } else if (ret > 0) { 2367 ret = 0; 2368 goto out; 2369 } 2370 continue; 2371 } 2372 2373 path->slots[0]++; 2374 2375 btrfs_item_key_to_cpu(leaf, &key, slot); 2376 2377 if (key.objectid > inum) 2378 goto out; 2379 2380 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2381 continue; 2382 2383 extent = btrfs_item_ptr(leaf, slot, 2384 struct btrfs_file_extent_item); 2385 2386 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2387 continue; 2388 2389 /* 2390 * 'offset' refers to the exact key.offset, 2391 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2392 * (key.offset - extent_offset). 2393 */ 2394 if (key.offset != offset) 2395 continue; 2396 2397 extent_offset = btrfs_file_extent_offset(leaf, extent); 2398 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2399 2400 if (extent_offset >= old->extent_offset + old->offset + 2401 old->len || extent_offset + num_bytes <= 2402 old->extent_offset + old->offset) 2403 continue; 2404 break; 2405 } 2406 2407 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2408 if (!backref) { 2409 ret = -ENOENT; 2410 goto out; 2411 } 2412 2413 backref->root_id = root_id; 2414 backref->inum = inum; 2415 backref->file_pos = offset; 2416 backref->num_bytes = num_bytes; 2417 backref->extent_offset = extent_offset; 2418 backref->generation = btrfs_file_extent_generation(leaf, extent); 2419 backref->old = old; 2420 backref_insert(&new->root, backref); 2421 old->count++; 2422 out: 2423 btrfs_release_path(path); 2424 WARN_ON(ret); 2425 return ret; 2426 } 2427 2428 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2429 struct new_sa_defrag_extent *new) 2430 { 2431 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2432 struct old_sa_defrag_extent *old, *tmp; 2433 int ret; 2434 2435 new->path = path; 2436 2437 list_for_each_entry_safe(old, tmp, &new->head, list) { 2438 ret = iterate_inodes_from_logical(old->bytenr + 2439 old->extent_offset, fs_info, 2440 path, record_one_backref, 2441 old); 2442 if (ret < 0 && ret != -ENOENT) 2443 return false; 2444 2445 /* no backref to be processed for this extent */ 2446 if (!old->count) { 2447 list_del(&old->list); 2448 kfree(old); 2449 } 2450 } 2451 2452 if (list_empty(&new->head)) 2453 return false; 2454 2455 return true; 2456 } 2457 2458 static int relink_is_mergable(struct extent_buffer *leaf, 2459 struct btrfs_file_extent_item *fi, 2460 struct new_sa_defrag_extent *new) 2461 { 2462 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2463 return 0; 2464 2465 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2466 return 0; 2467 2468 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2469 return 0; 2470 2471 if (btrfs_file_extent_encryption(leaf, fi) || 2472 btrfs_file_extent_other_encoding(leaf, fi)) 2473 return 0; 2474 2475 return 1; 2476 } 2477 2478 /* 2479 * Note the backref might has changed, and in this case we just return 0. 2480 */ 2481 static noinline int relink_extent_backref(struct btrfs_path *path, 2482 struct sa_defrag_extent_backref *prev, 2483 struct sa_defrag_extent_backref *backref) 2484 { 2485 struct btrfs_file_extent_item *extent; 2486 struct btrfs_file_extent_item *item; 2487 struct btrfs_ordered_extent *ordered; 2488 struct btrfs_trans_handle *trans; 2489 struct btrfs_root *root; 2490 struct btrfs_key key; 2491 struct extent_buffer *leaf; 2492 struct old_sa_defrag_extent *old = backref->old; 2493 struct new_sa_defrag_extent *new = old->new; 2494 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2495 struct inode *inode; 2496 struct extent_state *cached = NULL; 2497 int ret = 0; 2498 u64 start; 2499 u64 len; 2500 u64 lock_start; 2501 u64 lock_end; 2502 bool merge = false; 2503 int index; 2504 2505 if (prev && prev->root_id == backref->root_id && 2506 prev->inum == backref->inum && 2507 prev->file_pos + prev->num_bytes == backref->file_pos) 2508 merge = true; 2509 2510 /* step 1: get root */ 2511 key.objectid = backref->root_id; 2512 key.type = BTRFS_ROOT_ITEM_KEY; 2513 key.offset = (u64)-1; 2514 2515 index = srcu_read_lock(&fs_info->subvol_srcu); 2516 2517 root = btrfs_read_fs_root_no_name(fs_info, &key); 2518 if (IS_ERR(root)) { 2519 srcu_read_unlock(&fs_info->subvol_srcu, index); 2520 if (PTR_ERR(root) == -ENOENT) 2521 return 0; 2522 return PTR_ERR(root); 2523 } 2524 2525 if (btrfs_root_readonly(root)) { 2526 srcu_read_unlock(&fs_info->subvol_srcu, index); 2527 return 0; 2528 } 2529 2530 /* step 2: get inode */ 2531 key.objectid = backref->inum; 2532 key.type = BTRFS_INODE_ITEM_KEY; 2533 key.offset = 0; 2534 2535 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2536 if (IS_ERR(inode)) { 2537 srcu_read_unlock(&fs_info->subvol_srcu, index); 2538 return 0; 2539 } 2540 2541 srcu_read_unlock(&fs_info->subvol_srcu, index); 2542 2543 /* step 3: relink backref */ 2544 lock_start = backref->file_pos; 2545 lock_end = backref->file_pos + backref->num_bytes - 1; 2546 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2547 &cached); 2548 2549 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2550 if (ordered) { 2551 btrfs_put_ordered_extent(ordered); 2552 goto out_unlock; 2553 } 2554 2555 trans = btrfs_join_transaction(root); 2556 if (IS_ERR(trans)) { 2557 ret = PTR_ERR(trans); 2558 goto out_unlock; 2559 } 2560 2561 key.objectid = backref->inum; 2562 key.type = BTRFS_EXTENT_DATA_KEY; 2563 key.offset = backref->file_pos; 2564 2565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2566 if (ret < 0) { 2567 goto out_free_path; 2568 } else if (ret > 0) { 2569 ret = 0; 2570 goto out_free_path; 2571 } 2572 2573 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2574 struct btrfs_file_extent_item); 2575 2576 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2577 backref->generation) 2578 goto out_free_path; 2579 2580 btrfs_release_path(path); 2581 2582 start = backref->file_pos; 2583 if (backref->extent_offset < old->extent_offset + old->offset) 2584 start += old->extent_offset + old->offset - 2585 backref->extent_offset; 2586 2587 len = min(backref->extent_offset + backref->num_bytes, 2588 old->extent_offset + old->offset + old->len); 2589 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2590 2591 ret = btrfs_drop_extents(trans, root, inode, start, 2592 start + len, 1); 2593 if (ret) 2594 goto out_free_path; 2595 again: 2596 key.objectid = btrfs_ino(BTRFS_I(inode)); 2597 key.type = BTRFS_EXTENT_DATA_KEY; 2598 key.offset = start; 2599 2600 path->leave_spinning = 1; 2601 if (merge) { 2602 struct btrfs_file_extent_item *fi; 2603 u64 extent_len; 2604 struct btrfs_key found_key; 2605 2606 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2607 if (ret < 0) 2608 goto out_free_path; 2609 2610 path->slots[0]--; 2611 leaf = path->nodes[0]; 2612 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2613 2614 fi = btrfs_item_ptr(leaf, path->slots[0], 2615 struct btrfs_file_extent_item); 2616 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2617 2618 if (extent_len + found_key.offset == start && 2619 relink_is_mergable(leaf, fi, new)) { 2620 btrfs_set_file_extent_num_bytes(leaf, fi, 2621 extent_len + len); 2622 btrfs_mark_buffer_dirty(leaf); 2623 inode_add_bytes(inode, len); 2624 2625 ret = 1; 2626 goto out_free_path; 2627 } else { 2628 merge = false; 2629 btrfs_release_path(path); 2630 goto again; 2631 } 2632 } 2633 2634 ret = btrfs_insert_empty_item(trans, root, path, &key, 2635 sizeof(*extent)); 2636 if (ret) { 2637 btrfs_abort_transaction(trans, ret); 2638 goto out_free_path; 2639 } 2640 2641 leaf = path->nodes[0]; 2642 item = btrfs_item_ptr(leaf, path->slots[0], 2643 struct btrfs_file_extent_item); 2644 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2645 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2646 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2647 btrfs_set_file_extent_num_bytes(leaf, item, len); 2648 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2649 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2650 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2651 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2652 btrfs_set_file_extent_encryption(leaf, item, 0); 2653 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2654 2655 btrfs_mark_buffer_dirty(leaf); 2656 inode_add_bytes(inode, len); 2657 btrfs_release_path(path); 2658 2659 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr, 2660 new->disk_len, 0, 2661 backref->root_id, backref->inum, 2662 new->file_pos); /* start - extent_offset */ 2663 if (ret) { 2664 btrfs_abort_transaction(trans, ret); 2665 goto out_free_path; 2666 } 2667 2668 ret = 1; 2669 out_free_path: 2670 btrfs_release_path(path); 2671 path->leave_spinning = 0; 2672 btrfs_end_transaction(trans); 2673 out_unlock: 2674 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2675 &cached, GFP_NOFS); 2676 iput(inode); 2677 return ret; 2678 } 2679 2680 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2681 { 2682 struct old_sa_defrag_extent *old, *tmp; 2683 2684 if (!new) 2685 return; 2686 2687 list_for_each_entry_safe(old, tmp, &new->head, list) { 2688 kfree(old); 2689 } 2690 kfree(new); 2691 } 2692 2693 static void relink_file_extents(struct new_sa_defrag_extent *new) 2694 { 2695 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2696 struct btrfs_path *path; 2697 struct sa_defrag_extent_backref *backref; 2698 struct sa_defrag_extent_backref *prev = NULL; 2699 struct inode *inode; 2700 struct btrfs_root *root; 2701 struct rb_node *node; 2702 int ret; 2703 2704 inode = new->inode; 2705 root = BTRFS_I(inode)->root; 2706 2707 path = btrfs_alloc_path(); 2708 if (!path) 2709 return; 2710 2711 if (!record_extent_backrefs(path, new)) { 2712 btrfs_free_path(path); 2713 goto out; 2714 } 2715 btrfs_release_path(path); 2716 2717 while (1) { 2718 node = rb_first(&new->root); 2719 if (!node) 2720 break; 2721 rb_erase(node, &new->root); 2722 2723 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2724 2725 ret = relink_extent_backref(path, prev, backref); 2726 WARN_ON(ret < 0); 2727 2728 kfree(prev); 2729 2730 if (ret == 1) 2731 prev = backref; 2732 else 2733 prev = NULL; 2734 cond_resched(); 2735 } 2736 kfree(prev); 2737 2738 btrfs_free_path(path); 2739 out: 2740 free_sa_defrag_extent(new); 2741 2742 atomic_dec(&fs_info->defrag_running); 2743 wake_up(&fs_info->transaction_wait); 2744 } 2745 2746 static struct new_sa_defrag_extent * 2747 record_old_file_extents(struct inode *inode, 2748 struct btrfs_ordered_extent *ordered) 2749 { 2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2751 struct btrfs_root *root = BTRFS_I(inode)->root; 2752 struct btrfs_path *path; 2753 struct btrfs_key key; 2754 struct old_sa_defrag_extent *old; 2755 struct new_sa_defrag_extent *new; 2756 int ret; 2757 2758 new = kmalloc(sizeof(*new), GFP_NOFS); 2759 if (!new) 2760 return NULL; 2761 2762 new->inode = inode; 2763 new->file_pos = ordered->file_offset; 2764 new->len = ordered->len; 2765 new->bytenr = ordered->start; 2766 new->disk_len = ordered->disk_len; 2767 new->compress_type = ordered->compress_type; 2768 new->root = RB_ROOT; 2769 INIT_LIST_HEAD(&new->head); 2770 2771 path = btrfs_alloc_path(); 2772 if (!path) 2773 goto out_kfree; 2774 2775 key.objectid = btrfs_ino(BTRFS_I(inode)); 2776 key.type = BTRFS_EXTENT_DATA_KEY; 2777 key.offset = new->file_pos; 2778 2779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2780 if (ret < 0) 2781 goto out_free_path; 2782 if (ret > 0 && path->slots[0] > 0) 2783 path->slots[0]--; 2784 2785 /* find out all the old extents for the file range */ 2786 while (1) { 2787 struct btrfs_file_extent_item *extent; 2788 struct extent_buffer *l; 2789 int slot; 2790 u64 num_bytes; 2791 u64 offset; 2792 u64 end; 2793 u64 disk_bytenr; 2794 u64 extent_offset; 2795 2796 l = path->nodes[0]; 2797 slot = path->slots[0]; 2798 2799 if (slot >= btrfs_header_nritems(l)) { 2800 ret = btrfs_next_leaf(root, path); 2801 if (ret < 0) 2802 goto out_free_path; 2803 else if (ret > 0) 2804 break; 2805 continue; 2806 } 2807 2808 btrfs_item_key_to_cpu(l, &key, slot); 2809 2810 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2811 break; 2812 if (key.type != BTRFS_EXTENT_DATA_KEY) 2813 break; 2814 if (key.offset >= new->file_pos + new->len) 2815 break; 2816 2817 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2818 2819 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2820 if (key.offset + num_bytes < new->file_pos) 2821 goto next; 2822 2823 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2824 if (!disk_bytenr) 2825 goto next; 2826 2827 extent_offset = btrfs_file_extent_offset(l, extent); 2828 2829 old = kmalloc(sizeof(*old), GFP_NOFS); 2830 if (!old) 2831 goto out_free_path; 2832 2833 offset = max(new->file_pos, key.offset); 2834 end = min(new->file_pos + new->len, key.offset + num_bytes); 2835 2836 old->bytenr = disk_bytenr; 2837 old->extent_offset = extent_offset; 2838 old->offset = offset - key.offset; 2839 old->len = end - offset; 2840 old->new = new; 2841 old->count = 0; 2842 list_add_tail(&old->list, &new->head); 2843 next: 2844 path->slots[0]++; 2845 cond_resched(); 2846 } 2847 2848 btrfs_free_path(path); 2849 atomic_inc(&fs_info->defrag_running); 2850 2851 return new; 2852 2853 out_free_path: 2854 btrfs_free_path(path); 2855 out_kfree: 2856 free_sa_defrag_extent(new); 2857 return NULL; 2858 } 2859 2860 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2861 u64 start, u64 len) 2862 { 2863 struct btrfs_block_group_cache *cache; 2864 2865 cache = btrfs_lookup_block_group(fs_info, start); 2866 ASSERT(cache); 2867 2868 spin_lock(&cache->lock); 2869 cache->delalloc_bytes -= len; 2870 spin_unlock(&cache->lock); 2871 2872 btrfs_put_block_group(cache); 2873 } 2874 2875 /* as ordered data IO finishes, this gets called so we can finish 2876 * an ordered extent if the range of bytes in the file it covers are 2877 * fully written. 2878 */ 2879 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2880 { 2881 struct inode *inode = ordered_extent->inode; 2882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2883 struct btrfs_root *root = BTRFS_I(inode)->root; 2884 struct btrfs_trans_handle *trans = NULL; 2885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2886 struct extent_state *cached_state = NULL; 2887 struct new_sa_defrag_extent *new = NULL; 2888 int compress_type = 0; 2889 int ret = 0; 2890 u64 logical_len = ordered_extent->len; 2891 bool nolock; 2892 bool truncated = false; 2893 bool range_locked = false; 2894 bool clear_new_delalloc_bytes = false; 2895 2896 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2897 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2898 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2899 clear_new_delalloc_bytes = true; 2900 2901 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2902 2903 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2904 ret = -EIO; 2905 goto out; 2906 } 2907 2908 btrfs_free_io_failure_record(BTRFS_I(inode), 2909 ordered_extent->file_offset, 2910 ordered_extent->file_offset + 2911 ordered_extent->len - 1); 2912 2913 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2914 truncated = true; 2915 logical_len = ordered_extent->truncated_len; 2916 /* Truncated the entire extent, don't bother adding */ 2917 if (!logical_len) 2918 goto out; 2919 } 2920 2921 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2922 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2923 2924 /* 2925 * For mwrite(mmap + memset to write) case, we still reserve 2926 * space for NOCOW range. 2927 * As NOCOW won't cause a new delayed ref, just free the space 2928 */ 2929 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2930 ordered_extent->len); 2931 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2932 if (nolock) 2933 trans = btrfs_join_transaction_nolock(root); 2934 else 2935 trans = btrfs_join_transaction(root); 2936 if (IS_ERR(trans)) { 2937 ret = PTR_ERR(trans); 2938 trans = NULL; 2939 goto out; 2940 } 2941 trans->block_rsv = &fs_info->delalloc_block_rsv; 2942 ret = btrfs_update_inode_fallback(trans, root, inode); 2943 if (ret) /* -ENOMEM or corruption */ 2944 btrfs_abort_transaction(trans, ret); 2945 goto out; 2946 } 2947 2948 range_locked = true; 2949 lock_extent_bits(io_tree, ordered_extent->file_offset, 2950 ordered_extent->file_offset + ordered_extent->len - 1, 2951 &cached_state); 2952 2953 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2954 ordered_extent->file_offset + ordered_extent->len - 1, 2955 EXTENT_DEFRAG, 1, cached_state); 2956 if (ret) { 2957 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2958 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2959 /* the inode is shared */ 2960 new = record_old_file_extents(inode, ordered_extent); 2961 2962 clear_extent_bit(io_tree, ordered_extent->file_offset, 2963 ordered_extent->file_offset + ordered_extent->len - 1, 2964 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2965 } 2966 2967 if (nolock) 2968 trans = btrfs_join_transaction_nolock(root); 2969 else 2970 trans = btrfs_join_transaction(root); 2971 if (IS_ERR(trans)) { 2972 ret = PTR_ERR(trans); 2973 trans = NULL; 2974 goto out; 2975 } 2976 2977 trans->block_rsv = &fs_info->delalloc_block_rsv; 2978 2979 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2980 compress_type = ordered_extent->compress_type; 2981 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2982 BUG_ON(compress_type); 2983 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2984 ordered_extent->file_offset, 2985 ordered_extent->file_offset + 2986 logical_len); 2987 } else { 2988 BUG_ON(root == fs_info->tree_root); 2989 ret = insert_reserved_file_extent(trans, inode, 2990 ordered_extent->file_offset, 2991 ordered_extent->start, 2992 ordered_extent->disk_len, 2993 logical_len, logical_len, 2994 compress_type, 0, 0, 2995 BTRFS_FILE_EXTENT_REG); 2996 if (!ret) 2997 btrfs_release_delalloc_bytes(fs_info, 2998 ordered_extent->start, 2999 ordered_extent->disk_len); 3000 } 3001 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3002 ordered_extent->file_offset, ordered_extent->len, 3003 trans->transid); 3004 if (ret < 0) { 3005 btrfs_abort_transaction(trans, ret); 3006 goto out; 3007 } 3008 3009 add_pending_csums(trans, inode, &ordered_extent->list); 3010 3011 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3012 ret = btrfs_update_inode_fallback(trans, root, inode); 3013 if (ret) { /* -ENOMEM or corruption */ 3014 btrfs_abort_transaction(trans, ret); 3015 goto out; 3016 } 3017 ret = 0; 3018 out: 3019 if (range_locked || clear_new_delalloc_bytes) { 3020 unsigned int clear_bits = 0; 3021 3022 if (range_locked) 3023 clear_bits |= EXTENT_LOCKED; 3024 if (clear_new_delalloc_bytes) 3025 clear_bits |= EXTENT_DELALLOC_NEW; 3026 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3027 ordered_extent->file_offset, 3028 ordered_extent->file_offset + 3029 ordered_extent->len - 1, 3030 clear_bits, 3031 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3032 0, &cached_state, GFP_NOFS); 3033 } 3034 3035 if (root != fs_info->tree_root) 3036 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3037 ordered_extent->len); 3038 if (trans) 3039 btrfs_end_transaction(trans); 3040 3041 if (ret || truncated) { 3042 u64 start, end; 3043 3044 if (truncated) 3045 start = ordered_extent->file_offset + logical_len; 3046 else 3047 start = ordered_extent->file_offset; 3048 end = ordered_extent->file_offset + ordered_extent->len - 1; 3049 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 3050 3051 /* Drop the cache for the part of the extent we didn't write. */ 3052 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3053 3054 /* 3055 * If the ordered extent had an IOERR or something else went 3056 * wrong we need to return the space for this ordered extent 3057 * back to the allocator. We only free the extent in the 3058 * truncated case if we didn't write out the extent at all. 3059 */ 3060 if ((ret || !logical_len) && 3061 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3062 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3063 btrfs_free_reserved_extent(fs_info, 3064 ordered_extent->start, 3065 ordered_extent->disk_len, 1); 3066 } 3067 3068 3069 /* 3070 * This needs to be done to make sure anybody waiting knows we are done 3071 * updating everything for this ordered extent. 3072 */ 3073 btrfs_remove_ordered_extent(inode, ordered_extent); 3074 3075 /* for snapshot-aware defrag */ 3076 if (new) { 3077 if (ret) { 3078 free_sa_defrag_extent(new); 3079 atomic_dec(&fs_info->defrag_running); 3080 } else { 3081 relink_file_extents(new); 3082 } 3083 } 3084 3085 /* once for us */ 3086 btrfs_put_ordered_extent(ordered_extent); 3087 /* once for the tree */ 3088 btrfs_put_ordered_extent(ordered_extent); 3089 3090 return ret; 3091 } 3092 3093 static void finish_ordered_fn(struct btrfs_work *work) 3094 { 3095 struct btrfs_ordered_extent *ordered_extent; 3096 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3097 btrfs_finish_ordered_io(ordered_extent); 3098 } 3099 3100 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3101 struct extent_state *state, int uptodate) 3102 { 3103 struct inode *inode = page->mapping->host; 3104 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3105 struct btrfs_ordered_extent *ordered_extent = NULL; 3106 struct btrfs_workqueue *wq; 3107 btrfs_work_func_t func; 3108 3109 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3110 3111 ClearPagePrivate2(page); 3112 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3113 end - start + 1, uptodate)) 3114 return; 3115 3116 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3117 wq = fs_info->endio_freespace_worker; 3118 func = btrfs_freespace_write_helper; 3119 } else { 3120 wq = fs_info->endio_write_workers; 3121 func = btrfs_endio_write_helper; 3122 } 3123 3124 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3125 NULL); 3126 btrfs_queue_work(wq, &ordered_extent->work); 3127 } 3128 3129 static int __readpage_endio_check(struct inode *inode, 3130 struct btrfs_io_bio *io_bio, 3131 int icsum, struct page *page, 3132 int pgoff, u64 start, size_t len) 3133 { 3134 char *kaddr; 3135 u32 csum_expected; 3136 u32 csum = ~(u32)0; 3137 3138 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3139 3140 kaddr = kmap_atomic(page); 3141 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3142 btrfs_csum_final(csum, (u8 *)&csum); 3143 if (csum != csum_expected) 3144 goto zeroit; 3145 3146 kunmap_atomic(kaddr); 3147 return 0; 3148 zeroit: 3149 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3150 io_bio->mirror_num); 3151 memset(kaddr + pgoff, 1, len); 3152 flush_dcache_page(page); 3153 kunmap_atomic(kaddr); 3154 if (csum_expected == 0) 3155 return 0; 3156 return -EIO; 3157 } 3158 3159 /* 3160 * when reads are done, we need to check csums to verify the data is correct 3161 * if there's a match, we allow the bio to finish. If not, the code in 3162 * extent_io.c will try to find good copies for us. 3163 */ 3164 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3165 u64 phy_offset, struct page *page, 3166 u64 start, u64 end, int mirror) 3167 { 3168 size_t offset = start - page_offset(page); 3169 struct inode *inode = page->mapping->host; 3170 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3171 struct btrfs_root *root = BTRFS_I(inode)->root; 3172 3173 if (PageChecked(page)) { 3174 ClearPageChecked(page); 3175 return 0; 3176 } 3177 3178 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3179 return 0; 3180 3181 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3182 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3183 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3184 return 0; 3185 } 3186 3187 phy_offset >>= inode->i_sb->s_blocksize_bits; 3188 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3189 start, (size_t)(end - start + 1)); 3190 } 3191 3192 void btrfs_add_delayed_iput(struct inode *inode) 3193 { 3194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3195 struct btrfs_inode *binode = BTRFS_I(inode); 3196 3197 if (atomic_add_unless(&inode->i_count, -1, 1)) 3198 return; 3199 3200 spin_lock(&fs_info->delayed_iput_lock); 3201 if (binode->delayed_iput_count == 0) { 3202 ASSERT(list_empty(&binode->delayed_iput)); 3203 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3204 } else { 3205 binode->delayed_iput_count++; 3206 } 3207 spin_unlock(&fs_info->delayed_iput_lock); 3208 } 3209 3210 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3211 { 3212 3213 spin_lock(&fs_info->delayed_iput_lock); 3214 while (!list_empty(&fs_info->delayed_iputs)) { 3215 struct btrfs_inode *inode; 3216 3217 inode = list_first_entry(&fs_info->delayed_iputs, 3218 struct btrfs_inode, delayed_iput); 3219 if (inode->delayed_iput_count) { 3220 inode->delayed_iput_count--; 3221 list_move_tail(&inode->delayed_iput, 3222 &fs_info->delayed_iputs); 3223 } else { 3224 list_del_init(&inode->delayed_iput); 3225 } 3226 spin_unlock(&fs_info->delayed_iput_lock); 3227 iput(&inode->vfs_inode); 3228 spin_lock(&fs_info->delayed_iput_lock); 3229 } 3230 spin_unlock(&fs_info->delayed_iput_lock); 3231 } 3232 3233 /* 3234 * This is called in transaction commit time. If there are no orphan 3235 * files in the subvolume, it removes orphan item and frees block_rsv 3236 * structure. 3237 */ 3238 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3239 struct btrfs_root *root) 3240 { 3241 struct btrfs_fs_info *fs_info = root->fs_info; 3242 struct btrfs_block_rsv *block_rsv; 3243 int ret; 3244 3245 if (atomic_read(&root->orphan_inodes) || 3246 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3247 return; 3248 3249 spin_lock(&root->orphan_lock); 3250 if (atomic_read(&root->orphan_inodes)) { 3251 spin_unlock(&root->orphan_lock); 3252 return; 3253 } 3254 3255 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3256 spin_unlock(&root->orphan_lock); 3257 return; 3258 } 3259 3260 block_rsv = root->orphan_block_rsv; 3261 root->orphan_block_rsv = NULL; 3262 spin_unlock(&root->orphan_lock); 3263 3264 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3265 btrfs_root_refs(&root->root_item) > 0) { 3266 ret = btrfs_del_orphan_item(trans, fs_info->tree_root, 3267 root->root_key.objectid); 3268 if (ret) 3269 btrfs_abort_transaction(trans, ret); 3270 else 3271 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3272 &root->state); 3273 } 3274 3275 if (block_rsv) { 3276 WARN_ON(block_rsv->size > 0); 3277 btrfs_free_block_rsv(fs_info, block_rsv); 3278 } 3279 } 3280 3281 /* 3282 * This creates an orphan entry for the given inode in case something goes 3283 * wrong in the middle of an unlink/truncate. 3284 * 3285 * NOTE: caller of this function should reserve 5 units of metadata for 3286 * this function. 3287 */ 3288 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3289 struct btrfs_inode *inode) 3290 { 3291 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 3292 struct btrfs_root *root = inode->root; 3293 struct btrfs_block_rsv *block_rsv = NULL; 3294 int reserve = 0; 3295 int insert = 0; 3296 int ret; 3297 3298 if (!root->orphan_block_rsv) { 3299 block_rsv = btrfs_alloc_block_rsv(fs_info, 3300 BTRFS_BLOCK_RSV_TEMP); 3301 if (!block_rsv) 3302 return -ENOMEM; 3303 } 3304 3305 spin_lock(&root->orphan_lock); 3306 if (!root->orphan_block_rsv) { 3307 root->orphan_block_rsv = block_rsv; 3308 } else if (block_rsv) { 3309 btrfs_free_block_rsv(fs_info, block_rsv); 3310 block_rsv = NULL; 3311 } 3312 3313 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3314 &inode->runtime_flags)) { 3315 #if 0 3316 /* 3317 * For proper ENOSPC handling, we should do orphan 3318 * cleanup when mounting. But this introduces backward 3319 * compatibility issue. 3320 */ 3321 if (!xchg(&root->orphan_item_inserted, 1)) 3322 insert = 2; 3323 else 3324 insert = 1; 3325 #endif 3326 insert = 1; 3327 atomic_inc(&root->orphan_inodes); 3328 } 3329 3330 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3331 &inode->runtime_flags)) 3332 reserve = 1; 3333 spin_unlock(&root->orphan_lock); 3334 3335 /* grab metadata reservation from transaction handle */ 3336 if (reserve) { 3337 ret = btrfs_orphan_reserve_metadata(trans, inode); 3338 ASSERT(!ret); 3339 if (ret) { 3340 atomic_dec(&root->orphan_inodes); 3341 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3342 &inode->runtime_flags); 3343 if (insert) 3344 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3345 &inode->runtime_flags); 3346 return ret; 3347 } 3348 } 3349 3350 /* insert an orphan item to track this unlinked/truncated file */ 3351 if (insert >= 1) { 3352 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3353 if (ret) { 3354 atomic_dec(&root->orphan_inodes); 3355 if (reserve) { 3356 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3357 &inode->runtime_flags); 3358 btrfs_orphan_release_metadata(inode); 3359 } 3360 if (ret != -EEXIST) { 3361 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3362 &inode->runtime_flags); 3363 btrfs_abort_transaction(trans, ret); 3364 return ret; 3365 } 3366 } 3367 ret = 0; 3368 } 3369 3370 /* insert an orphan item to track subvolume contains orphan files */ 3371 if (insert >= 2) { 3372 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root, 3373 root->root_key.objectid); 3374 if (ret && ret != -EEXIST) { 3375 btrfs_abort_transaction(trans, ret); 3376 return ret; 3377 } 3378 } 3379 return 0; 3380 } 3381 3382 /* 3383 * We have done the truncate/delete so we can go ahead and remove the orphan 3384 * item for this particular inode. 3385 */ 3386 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3387 struct btrfs_inode *inode) 3388 { 3389 struct btrfs_root *root = inode->root; 3390 int delete_item = 0; 3391 int release_rsv = 0; 3392 int ret = 0; 3393 3394 spin_lock(&root->orphan_lock); 3395 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3396 &inode->runtime_flags)) 3397 delete_item = 1; 3398 3399 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3400 &inode->runtime_flags)) 3401 release_rsv = 1; 3402 spin_unlock(&root->orphan_lock); 3403 3404 if (delete_item) { 3405 atomic_dec(&root->orphan_inodes); 3406 if (trans) 3407 ret = btrfs_del_orphan_item(trans, root, 3408 btrfs_ino(inode)); 3409 } 3410 3411 if (release_rsv) 3412 btrfs_orphan_release_metadata(inode); 3413 3414 return ret; 3415 } 3416 3417 /* 3418 * this cleans up any orphans that may be left on the list from the last use 3419 * of this root. 3420 */ 3421 int btrfs_orphan_cleanup(struct btrfs_root *root) 3422 { 3423 struct btrfs_fs_info *fs_info = root->fs_info; 3424 struct btrfs_path *path; 3425 struct extent_buffer *leaf; 3426 struct btrfs_key key, found_key; 3427 struct btrfs_trans_handle *trans; 3428 struct inode *inode; 3429 u64 last_objectid = 0; 3430 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3431 3432 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3433 return 0; 3434 3435 path = btrfs_alloc_path(); 3436 if (!path) { 3437 ret = -ENOMEM; 3438 goto out; 3439 } 3440 path->reada = READA_BACK; 3441 3442 key.objectid = BTRFS_ORPHAN_OBJECTID; 3443 key.type = BTRFS_ORPHAN_ITEM_KEY; 3444 key.offset = (u64)-1; 3445 3446 while (1) { 3447 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3448 if (ret < 0) 3449 goto out; 3450 3451 /* 3452 * if ret == 0 means we found what we were searching for, which 3453 * is weird, but possible, so only screw with path if we didn't 3454 * find the key and see if we have stuff that matches 3455 */ 3456 if (ret > 0) { 3457 ret = 0; 3458 if (path->slots[0] == 0) 3459 break; 3460 path->slots[0]--; 3461 } 3462 3463 /* pull out the item */ 3464 leaf = path->nodes[0]; 3465 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3466 3467 /* make sure the item matches what we want */ 3468 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3469 break; 3470 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3471 break; 3472 3473 /* release the path since we're done with it */ 3474 btrfs_release_path(path); 3475 3476 /* 3477 * this is where we are basically btrfs_lookup, without the 3478 * crossing root thing. we store the inode number in the 3479 * offset of the orphan item. 3480 */ 3481 3482 if (found_key.offset == last_objectid) { 3483 btrfs_err(fs_info, 3484 "Error removing orphan entry, stopping orphan cleanup"); 3485 ret = -EINVAL; 3486 goto out; 3487 } 3488 3489 last_objectid = found_key.offset; 3490 3491 found_key.objectid = found_key.offset; 3492 found_key.type = BTRFS_INODE_ITEM_KEY; 3493 found_key.offset = 0; 3494 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3495 ret = PTR_ERR_OR_ZERO(inode); 3496 if (ret && ret != -ENOENT) 3497 goto out; 3498 3499 if (ret == -ENOENT && root == fs_info->tree_root) { 3500 struct btrfs_root *dead_root; 3501 struct btrfs_fs_info *fs_info = root->fs_info; 3502 int is_dead_root = 0; 3503 3504 /* 3505 * this is an orphan in the tree root. Currently these 3506 * could come from 2 sources: 3507 * a) a snapshot deletion in progress 3508 * b) a free space cache inode 3509 * We need to distinguish those two, as the snapshot 3510 * orphan must not get deleted. 3511 * find_dead_roots already ran before us, so if this 3512 * is a snapshot deletion, we should find the root 3513 * in the dead_roots list 3514 */ 3515 spin_lock(&fs_info->trans_lock); 3516 list_for_each_entry(dead_root, &fs_info->dead_roots, 3517 root_list) { 3518 if (dead_root->root_key.objectid == 3519 found_key.objectid) { 3520 is_dead_root = 1; 3521 break; 3522 } 3523 } 3524 spin_unlock(&fs_info->trans_lock); 3525 if (is_dead_root) { 3526 /* prevent this orphan from being found again */ 3527 key.offset = found_key.objectid - 1; 3528 continue; 3529 } 3530 } 3531 /* 3532 * Inode is already gone but the orphan item is still there, 3533 * kill the orphan item. 3534 */ 3535 if (ret == -ENOENT) { 3536 trans = btrfs_start_transaction(root, 1); 3537 if (IS_ERR(trans)) { 3538 ret = PTR_ERR(trans); 3539 goto out; 3540 } 3541 btrfs_debug(fs_info, "auto deleting %Lu", 3542 found_key.objectid); 3543 ret = btrfs_del_orphan_item(trans, root, 3544 found_key.objectid); 3545 btrfs_end_transaction(trans); 3546 if (ret) 3547 goto out; 3548 continue; 3549 } 3550 3551 /* 3552 * add this inode to the orphan list so btrfs_orphan_del does 3553 * the proper thing when we hit it 3554 */ 3555 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3556 &BTRFS_I(inode)->runtime_flags); 3557 atomic_inc(&root->orphan_inodes); 3558 3559 /* if we have links, this was a truncate, lets do that */ 3560 if (inode->i_nlink) { 3561 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3562 iput(inode); 3563 continue; 3564 } 3565 nr_truncate++; 3566 3567 /* 1 for the orphan item deletion. */ 3568 trans = btrfs_start_transaction(root, 1); 3569 if (IS_ERR(trans)) { 3570 iput(inode); 3571 ret = PTR_ERR(trans); 3572 goto out; 3573 } 3574 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3575 btrfs_end_transaction(trans); 3576 if (ret) { 3577 iput(inode); 3578 goto out; 3579 } 3580 3581 ret = btrfs_truncate(inode); 3582 if (ret) 3583 btrfs_orphan_del(NULL, BTRFS_I(inode)); 3584 } else { 3585 nr_unlink++; 3586 } 3587 3588 /* this will do delete_inode and everything for us */ 3589 iput(inode); 3590 if (ret) 3591 goto out; 3592 } 3593 /* release the path since we're done with it */ 3594 btrfs_release_path(path); 3595 3596 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3597 3598 if (root->orphan_block_rsv) 3599 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, 3600 (u64)-1); 3601 3602 if (root->orphan_block_rsv || 3603 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3604 trans = btrfs_join_transaction(root); 3605 if (!IS_ERR(trans)) 3606 btrfs_end_transaction(trans); 3607 } 3608 3609 if (nr_unlink) 3610 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3611 if (nr_truncate) 3612 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate); 3613 3614 out: 3615 if (ret) 3616 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3617 btrfs_free_path(path); 3618 return ret; 3619 } 3620 3621 /* 3622 * very simple check to peek ahead in the leaf looking for xattrs. If we 3623 * don't find any xattrs, we know there can't be any acls. 3624 * 3625 * slot is the slot the inode is in, objectid is the objectid of the inode 3626 */ 3627 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3628 int slot, u64 objectid, 3629 int *first_xattr_slot) 3630 { 3631 u32 nritems = btrfs_header_nritems(leaf); 3632 struct btrfs_key found_key; 3633 static u64 xattr_access = 0; 3634 static u64 xattr_default = 0; 3635 int scanned = 0; 3636 3637 if (!xattr_access) { 3638 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3639 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3640 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3641 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3642 } 3643 3644 slot++; 3645 *first_xattr_slot = -1; 3646 while (slot < nritems) { 3647 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3648 3649 /* we found a different objectid, there must not be acls */ 3650 if (found_key.objectid != objectid) 3651 return 0; 3652 3653 /* we found an xattr, assume we've got an acl */ 3654 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3655 if (*first_xattr_slot == -1) 3656 *first_xattr_slot = slot; 3657 if (found_key.offset == xattr_access || 3658 found_key.offset == xattr_default) 3659 return 1; 3660 } 3661 3662 /* 3663 * we found a key greater than an xattr key, there can't 3664 * be any acls later on 3665 */ 3666 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3667 return 0; 3668 3669 slot++; 3670 scanned++; 3671 3672 /* 3673 * it goes inode, inode backrefs, xattrs, extents, 3674 * so if there are a ton of hard links to an inode there can 3675 * be a lot of backrefs. Don't waste time searching too hard, 3676 * this is just an optimization 3677 */ 3678 if (scanned >= 8) 3679 break; 3680 } 3681 /* we hit the end of the leaf before we found an xattr or 3682 * something larger than an xattr. We have to assume the inode 3683 * has acls 3684 */ 3685 if (*first_xattr_slot == -1) 3686 *first_xattr_slot = slot; 3687 return 1; 3688 } 3689 3690 /* 3691 * read an inode from the btree into the in-memory inode 3692 */ 3693 static int btrfs_read_locked_inode(struct inode *inode) 3694 { 3695 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3696 struct btrfs_path *path; 3697 struct extent_buffer *leaf; 3698 struct btrfs_inode_item *inode_item; 3699 struct btrfs_root *root = BTRFS_I(inode)->root; 3700 struct btrfs_key location; 3701 unsigned long ptr; 3702 int maybe_acls; 3703 u32 rdev; 3704 int ret; 3705 bool filled = false; 3706 int first_xattr_slot; 3707 3708 ret = btrfs_fill_inode(inode, &rdev); 3709 if (!ret) 3710 filled = true; 3711 3712 path = btrfs_alloc_path(); 3713 if (!path) { 3714 ret = -ENOMEM; 3715 goto make_bad; 3716 } 3717 3718 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3719 3720 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3721 if (ret) { 3722 if (ret > 0) 3723 ret = -ENOENT; 3724 goto make_bad; 3725 } 3726 3727 leaf = path->nodes[0]; 3728 3729 if (filled) 3730 goto cache_index; 3731 3732 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3733 struct btrfs_inode_item); 3734 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3735 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3736 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3737 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3738 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3739 3740 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3741 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3742 3743 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3744 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3745 3746 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3747 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3748 3749 BTRFS_I(inode)->i_otime.tv_sec = 3750 btrfs_timespec_sec(leaf, &inode_item->otime); 3751 BTRFS_I(inode)->i_otime.tv_nsec = 3752 btrfs_timespec_nsec(leaf, &inode_item->otime); 3753 3754 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3755 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3756 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3757 3758 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3759 inode->i_generation = BTRFS_I(inode)->generation; 3760 inode->i_rdev = 0; 3761 rdev = btrfs_inode_rdev(leaf, inode_item); 3762 3763 BTRFS_I(inode)->index_cnt = (u64)-1; 3764 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3765 3766 cache_index: 3767 /* 3768 * If we were modified in the current generation and evicted from memory 3769 * and then re-read we need to do a full sync since we don't have any 3770 * idea about which extents were modified before we were evicted from 3771 * cache. 3772 * 3773 * This is required for both inode re-read from disk and delayed inode 3774 * in delayed_nodes_tree. 3775 */ 3776 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3777 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3778 &BTRFS_I(inode)->runtime_flags); 3779 3780 /* 3781 * We don't persist the id of the transaction where an unlink operation 3782 * against the inode was last made. So here we assume the inode might 3783 * have been evicted, and therefore the exact value of last_unlink_trans 3784 * lost, and set it to last_trans to avoid metadata inconsistencies 3785 * between the inode and its parent if the inode is fsync'ed and the log 3786 * replayed. For example, in the scenario: 3787 * 3788 * touch mydir/foo 3789 * ln mydir/foo mydir/bar 3790 * sync 3791 * unlink mydir/bar 3792 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3793 * xfs_io -c fsync mydir/foo 3794 * <power failure> 3795 * mount fs, triggers fsync log replay 3796 * 3797 * We must make sure that when we fsync our inode foo we also log its 3798 * parent inode, otherwise after log replay the parent still has the 3799 * dentry with the "bar" name but our inode foo has a link count of 1 3800 * and doesn't have an inode ref with the name "bar" anymore. 3801 * 3802 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3803 * but it guarantees correctness at the expense of occasional full 3804 * transaction commits on fsync if our inode is a directory, or if our 3805 * inode is not a directory, logging its parent unnecessarily. 3806 */ 3807 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3808 3809 path->slots[0]++; 3810 if (inode->i_nlink != 1 || 3811 path->slots[0] >= btrfs_header_nritems(leaf)) 3812 goto cache_acl; 3813 3814 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3815 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3816 goto cache_acl; 3817 3818 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3819 if (location.type == BTRFS_INODE_REF_KEY) { 3820 struct btrfs_inode_ref *ref; 3821 3822 ref = (struct btrfs_inode_ref *)ptr; 3823 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3824 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3825 struct btrfs_inode_extref *extref; 3826 3827 extref = (struct btrfs_inode_extref *)ptr; 3828 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3829 extref); 3830 } 3831 cache_acl: 3832 /* 3833 * try to precache a NULL acl entry for files that don't have 3834 * any xattrs or acls 3835 */ 3836 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3837 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3838 if (first_xattr_slot != -1) { 3839 path->slots[0] = first_xattr_slot; 3840 ret = btrfs_load_inode_props(inode, path); 3841 if (ret) 3842 btrfs_err(fs_info, 3843 "error loading props for ino %llu (root %llu): %d", 3844 btrfs_ino(BTRFS_I(inode)), 3845 root->root_key.objectid, ret); 3846 } 3847 btrfs_free_path(path); 3848 3849 if (!maybe_acls) 3850 cache_no_acl(inode); 3851 3852 switch (inode->i_mode & S_IFMT) { 3853 case S_IFREG: 3854 inode->i_mapping->a_ops = &btrfs_aops; 3855 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3856 inode->i_fop = &btrfs_file_operations; 3857 inode->i_op = &btrfs_file_inode_operations; 3858 break; 3859 case S_IFDIR: 3860 inode->i_fop = &btrfs_dir_file_operations; 3861 inode->i_op = &btrfs_dir_inode_operations; 3862 break; 3863 case S_IFLNK: 3864 inode->i_op = &btrfs_symlink_inode_operations; 3865 inode_nohighmem(inode); 3866 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3867 break; 3868 default: 3869 inode->i_op = &btrfs_special_inode_operations; 3870 init_special_inode(inode, inode->i_mode, rdev); 3871 break; 3872 } 3873 3874 btrfs_update_iflags(inode); 3875 return 0; 3876 3877 make_bad: 3878 btrfs_free_path(path); 3879 make_bad_inode(inode); 3880 return ret; 3881 } 3882 3883 /* 3884 * given a leaf and an inode, copy the inode fields into the leaf 3885 */ 3886 static void fill_inode_item(struct btrfs_trans_handle *trans, 3887 struct extent_buffer *leaf, 3888 struct btrfs_inode_item *item, 3889 struct inode *inode) 3890 { 3891 struct btrfs_map_token token; 3892 3893 btrfs_init_map_token(&token); 3894 3895 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3896 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3897 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3898 &token); 3899 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3900 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3901 3902 btrfs_set_token_timespec_sec(leaf, &item->atime, 3903 inode->i_atime.tv_sec, &token); 3904 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3905 inode->i_atime.tv_nsec, &token); 3906 3907 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3908 inode->i_mtime.tv_sec, &token); 3909 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3910 inode->i_mtime.tv_nsec, &token); 3911 3912 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3913 inode->i_ctime.tv_sec, &token); 3914 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3915 inode->i_ctime.tv_nsec, &token); 3916 3917 btrfs_set_token_timespec_sec(leaf, &item->otime, 3918 BTRFS_I(inode)->i_otime.tv_sec, &token); 3919 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3920 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3921 3922 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3923 &token); 3924 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3925 &token); 3926 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3927 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3928 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3929 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3930 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3931 } 3932 3933 /* 3934 * copy everything in the in-memory inode into the btree. 3935 */ 3936 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3937 struct btrfs_root *root, struct inode *inode) 3938 { 3939 struct btrfs_inode_item *inode_item; 3940 struct btrfs_path *path; 3941 struct extent_buffer *leaf; 3942 int ret; 3943 3944 path = btrfs_alloc_path(); 3945 if (!path) 3946 return -ENOMEM; 3947 3948 path->leave_spinning = 1; 3949 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3950 1); 3951 if (ret) { 3952 if (ret > 0) 3953 ret = -ENOENT; 3954 goto failed; 3955 } 3956 3957 leaf = path->nodes[0]; 3958 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3959 struct btrfs_inode_item); 3960 3961 fill_inode_item(trans, leaf, inode_item, inode); 3962 btrfs_mark_buffer_dirty(leaf); 3963 btrfs_set_inode_last_trans(trans, inode); 3964 ret = 0; 3965 failed: 3966 btrfs_free_path(path); 3967 return ret; 3968 } 3969 3970 /* 3971 * copy everything in the in-memory inode into the btree. 3972 */ 3973 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3974 struct btrfs_root *root, struct inode *inode) 3975 { 3976 struct btrfs_fs_info *fs_info = root->fs_info; 3977 int ret; 3978 3979 /* 3980 * If the inode is a free space inode, we can deadlock during commit 3981 * if we put it into the delayed code. 3982 * 3983 * The data relocation inode should also be directly updated 3984 * without delay 3985 */ 3986 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3987 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3988 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3989 btrfs_update_root_times(trans, root); 3990 3991 ret = btrfs_delayed_update_inode(trans, root, inode); 3992 if (!ret) 3993 btrfs_set_inode_last_trans(trans, inode); 3994 return ret; 3995 } 3996 3997 return btrfs_update_inode_item(trans, root, inode); 3998 } 3999 4000 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4001 struct btrfs_root *root, 4002 struct inode *inode) 4003 { 4004 int ret; 4005 4006 ret = btrfs_update_inode(trans, root, inode); 4007 if (ret == -ENOSPC) 4008 return btrfs_update_inode_item(trans, root, inode); 4009 return ret; 4010 } 4011 4012 /* 4013 * unlink helper that gets used here in inode.c and in the tree logging 4014 * recovery code. It remove a link in a directory with a given name, and 4015 * also drops the back refs in the inode to the directory 4016 */ 4017 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4018 struct btrfs_root *root, 4019 struct btrfs_inode *dir, 4020 struct btrfs_inode *inode, 4021 const char *name, int name_len) 4022 { 4023 struct btrfs_fs_info *fs_info = root->fs_info; 4024 struct btrfs_path *path; 4025 int ret = 0; 4026 struct extent_buffer *leaf; 4027 struct btrfs_dir_item *di; 4028 struct btrfs_key key; 4029 u64 index; 4030 u64 ino = btrfs_ino(inode); 4031 u64 dir_ino = btrfs_ino(dir); 4032 4033 path = btrfs_alloc_path(); 4034 if (!path) { 4035 ret = -ENOMEM; 4036 goto out; 4037 } 4038 4039 path->leave_spinning = 1; 4040 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4041 name, name_len, -1); 4042 if (IS_ERR(di)) { 4043 ret = PTR_ERR(di); 4044 goto err; 4045 } 4046 if (!di) { 4047 ret = -ENOENT; 4048 goto err; 4049 } 4050 leaf = path->nodes[0]; 4051 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4052 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4053 if (ret) 4054 goto err; 4055 btrfs_release_path(path); 4056 4057 /* 4058 * If we don't have dir index, we have to get it by looking up 4059 * the inode ref, since we get the inode ref, remove it directly, 4060 * it is unnecessary to do delayed deletion. 4061 * 4062 * But if we have dir index, needn't search inode ref to get it. 4063 * Since the inode ref is close to the inode item, it is better 4064 * that we delay to delete it, and just do this deletion when 4065 * we update the inode item. 4066 */ 4067 if (inode->dir_index) { 4068 ret = btrfs_delayed_delete_inode_ref(inode); 4069 if (!ret) { 4070 index = inode->dir_index; 4071 goto skip_backref; 4072 } 4073 } 4074 4075 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4076 dir_ino, &index); 4077 if (ret) { 4078 btrfs_info(fs_info, 4079 "failed to delete reference to %.*s, inode %llu parent %llu", 4080 name_len, name, ino, dir_ino); 4081 btrfs_abort_transaction(trans, ret); 4082 goto err; 4083 } 4084 skip_backref: 4085 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 4086 if (ret) { 4087 btrfs_abort_transaction(trans, ret); 4088 goto err; 4089 } 4090 4091 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4092 dir_ino); 4093 if (ret != 0 && ret != -ENOENT) { 4094 btrfs_abort_transaction(trans, ret); 4095 goto err; 4096 } 4097 4098 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4099 index); 4100 if (ret == -ENOENT) 4101 ret = 0; 4102 else if (ret) 4103 btrfs_abort_transaction(trans, ret); 4104 err: 4105 btrfs_free_path(path); 4106 if (ret) 4107 goto out; 4108 4109 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4110 inode_inc_iversion(&inode->vfs_inode); 4111 inode_inc_iversion(&dir->vfs_inode); 4112 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4113 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4114 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4115 out: 4116 return ret; 4117 } 4118 4119 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4120 struct btrfs_root *root, 4121 struct btrfs_inode *dir, struct btrfs_inode *inode, 4122 const char *name, int name_len) 4123 { 4124 int ret; 4125 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4126 if (!ret) { 4127 drop_nlink(&inode->vfs_inode); 4128 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4129 } 4130 return ret; 4131 } 4132 4133 /* 4134 * helper to start transaction for unlink and rmdir. 4135 * 4136 * unlink and rmdir are special in btrfs, they do not always free space, so 4137 * if we cannot make our reservations the normal way try and see if there is 4138 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4139 * allow the unlink to occur. 4140 */ 4141 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4142 { 4143 struct btrfs_root *root = BTRFS_I(dir)->root; 4144 4145 /* 4146 * 1 for the possible orphan item 4147 * 1 for the dir item 4148 * 1 for the dir index 4149 * 1 for the inode ref 4150 * 1 for the inode 4151 */ 4152 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4153 } 4154 4155 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4156 { 4157 struct btrfs_root *root = BTRFS_I(dir)->root; 4158 struct btrfs_trans_handle *trans; 4159 struct inode *inode = d_inode(dentry); 4160 int ret; 4161 4162 trans = __unlink_start_trans(dir); 4163 if (IS_ERR(trans)) 4164 return PTR_ERR(trans); 4165 4166 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4167 0); 4168 4169 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4170 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4171 dentry->d_name.len); 4172 if (ret) 4173 goto out; 4174 4175 if (inode->i_nlink == 0) { 4176 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4177 if (ret) 4178 goto out; 4179 } 4180 4181 out: 4182 btrfs_end_transaction(trans); 4183 btrfs_btree_balance_dirty(root->fs_info); 4184 return ret; 4185 } 4186 4187 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4188 struct btrfs_root *root, 4189 struct inode *dir, u64 objectid, 4190 const char *name, int name_len) 4191 { 4192 struct btrfs_fs_info *fs_info = root->fs_info; 4193 struct btrfs_path *path; 4194 struct extent_buffer *leaf; 4195 struct btrfs_dir_item *di; 4196 struct btrfs_key key; 4197 u64 index; 4198 int ret; 4199 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4200 4201 path = btrfs_alloc_path(); 4202 if (!path) 4203 return -ENOMEM; 4204 4205 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4206 name, name_len, -1); 4207 if (IS_ERR_OR_NULL(di)) { 4208 if (!di) 4209 ret = -ENOENT; 4210 else 4211 ret = PTR_ERR(di); 4212 goto out; 4213 } 4214 4215 leaf = path->nodes[0]; 4216 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4217 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4218 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4219 if (ret) { 4220 btrfs_abort_transaction(trans, ret); 4221 goto out; 4222 } 4223 btrfs_release_path(path); 4224 4225 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4226 root->root_key.objectid, dir_ino, 4227 &index, name, name_len); 4228 if (ret < 0) { 4229 if (ret != -ENOENT) { 4230 btrfs_abort_transaction(trans, ret); 4231 goto out; 4232 } 4233 di = btrfs_search_dir_index_item(root, path, dir_ino, 4234 name, name_len); 4235 if (IS_ERR_OR_NULL(di)) { 4236 if (!di) 4237 ret = -ENOENT; 4238 else 4239 ret = PTR_ERR(di); 4240 btrfs_abort_transaction(trans, ret); 4241 goto out; 4242 } 4243 4244 leaf = path->nodes[0]; 4245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4246 btrfs_release_path(path); 4247 index = key.offset; 4248 } 4249 btrfs_release_path(path); 4250 4251 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4252 if (ret) { 4253 btrfs_abort_transaction(trans, ret); 4254 goto out; 4255 } 4256 4257 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4258 inode_inc_iversion(dir); 4259 dir->i_mtime = dir->i_ctime = current_time(dir); 4260 ret = btrfs_update_inode_fallback(trans, root, dir); 4261 if (ret) 4262 btrfs_abort_transaction(trans, ret); 4263 out: 4264 btrfs_free_path(path); 4265 return ret; 4266 } 4267 4268 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4269 { 4270 struct inode *inode = d_inode(dentry); 4271 int err = 0; 4272 struct btrfs_root *root = BTRFS_I(dir)->root; 4273 struct btrfs_trans_handle *trans; 4274 u64 last_unlink_trans; 4275 4276 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4277 return -ENOTEMPTY; 4278 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4279 return -EPERM; 4280 4281 trans = __unlink_start_trans(dir); 4282 if (IS_ERR(trans)) 4283 return PTR_ERR(trans); 4284 4285 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4286 err = btrfs_unlink_subvol(trans, root, dir, 4287 BTRFS_I(inode)->location.objectid, 4288 dentry->d_name.name, 4289 dentry->d_name.len); 4290 goto out; 4291 } 4292 4293 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4294 if (err) 4295 goto out; 4296 4297 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4298 4299 /* now the directory is empty */ 4300 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4301 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4302 dentry->d_name.len); 4303 if (!err) { 4304 btrfs_i_size_write(BTRFS_I(inode), 0); 4305 /* 4306 * Propagate the last_unlink_trans value of the deleted dir to 4307 * its parent directory. This is to prevent an unrecoverable 4308 * log tree in the case we do something like this: 4309 * 1) create dir foo 4310 * 2) create snapshot under dir foo 4311 * 3) delete the snapshot 4312 * 4) rmdir foo 4313 * 5) mkdir foo 4314 * 6) fsync foo or some file inside foo 4315 */ 4316 if (last_unlink_trans >= trans->transid) 4317 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4318 } 4319 out: 4320 btrfs_end_transaction(trans); 4321 btrfs_btree_balance_dirty(root->fs_info); 4322 4323 return err; 4324 } 4325 4326 static int truncate_space_check(struct btrfs_trans_handle *trans, 4327 struct btrfs_root *root, 4328 u64 bytes_deleted) 4329 { 4330 struct btrfs_fs_info *fs_info = root->fs_info; 4331 int ret; 4332 4333 /* 4334 * This is only used to apply pressure to the enospc system, we don't 4335 * intend to use this reservation at all. 4336 */ 4337 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4338 bytes_deleted *= fs_info->nodesize; 4339 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4340 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4341 if (!ret) { 4342 trace_btrfs_space_reservation(fs_info, "transaction", 4343 trans->transid, 4344 bytes_deleted, 1); 4345 trans->bytes_reserved += bytes_deleted; 4346 } 4347 return ret; 4348 4349 } 4350 4351 static int truncate_inline_extent(struct inode *inode, 4352 struct btrfs_path *path, 4353 struct btrfs_key *found_key, 4354 const u64 item_end, 4355 const u64 new_size) 4356 { 4357 struct extent_buffer *leaf = path->nodes[0]; 4358 int slot = path->slots[0]; 4359 struct btrfs_file_extent_item *fi; 4360 u32 size = (u32)(new_size - found_key->offset); 4361 struct btrfs_root *root = BTRFS_I(inode)->root; 4362 4363 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4364 4365 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4366 loff_t offset = new_size; 4367 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4368 4369 /* 4370 * Zero out the remaining of the last page of our inline extent, 4371 * instead of directly truncating our inline extent here - that 4372 * would be much more complex (decompressing all the data, then 4373 * compressing the truncated data, which might be bigger than 4374 * the size of the inline extent, resize the extent, etc). 4375 * We release the path because to get the page we might need to 4376 * read the extent item from disk (data not in the page cache). 4377 */ 4378 btrfs_release_path(path); 4379 return btrfs_truncate_block(inode, offset, page_end - offset, 4380 0); 4381 } 4382 4383 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4384 size = btrfs_file_extent_calc_inline_size(size); 4385 btrfs_truncate_item(root->fs_info, path, size, 1); 4386 4387 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4388 inode_sub_bytes(inode, item_end + 1 - new_size); 4389 4390 return 0; 4391 } 4392 4393 /* 4394 * this can truncate away extent items, csum items and directory items. 4395 * It starts at a high offset and removes keys until it can't find 4396 * any higher than new_size 4397 * 4398 * csum items that cross the new i_size are truncated to the new size 4399 * as well. 4400 * 4401 * min_type is the minimum key type to truncate down to. If set to 0, this 4402 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4403 */ 4404 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4405 struct btrfs_root *root, 4406 struct inode *inode, 4407 u64 new_size, u32 min_type) 4408 { 4409 struct btrfs_fs_info *fs_info = root->fs_info; 4410 struct btrfs_path *path; 4411 struct extent_buffer *leaf; 4412 struct btrfs_file_extent_item *fi; 4413 struct btrfs_key key; 4414 struct btrfs_key found_key; 4415 u64 extent_start = 0; 4416 u64 extent_num_bytes = 0; 4417 u64 extent_offset = 0; 4418 u64 item_end = 0; 4419 u64 last_size = new_size; 4420 u32 found_type = (u8)-1; 4421 int found_extent; 4422 int del_item; 4423 int pending_del_nr = 0; 4424 int pending_del_slot = 0; 4425 int extent_type = -1; 4426 int ret; 4427 int err = 0; 4428 u64 ino = btrfs_ino(BTRFS_I(inode)); 4429 u64 bytes_deleted = 0; 4430 bool be_nice = 0; 4431 bool should_throttle = 0; 4432 bool should_end = 0; 4433 4434 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4435 4436 /* 4437 * for non-free space inodes and ref cows, we want to back off from 4438 * time to time 4439 */ 4440 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4441 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4442 be_nice = 1; 4443 4444 path = btrfs_alloc_path(); 4445 if (!path) 4446 return -ENOMEM; 4447 path->reada = READA_BACK; 4448 4449 /* 4450 * We want to drop from the next block forward in case this new size is 4451 * not block aligned since we will be keeping the last block of the 4452 * extent just the way it is. 4453 */ 4454 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4455 root == fs_info->tree_root) 4456 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4457 fs_info->sectorsize), 4458 (u64)-1, 0); 4459 4460 /* 4461 * This function is also used to drop the items in the log tree before 4462 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4463 * it is used to drop the loged items. So we shouldn't kill the delayed 4464 * items. 4465 */ 4466 if (min_type == 0 && root == BTRFS_I(inode)->root) 4467 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4468 4469 key.objectid = ino; 4470 key.offset = (u64)-1; 4471 key.type = (u8)-1; 4472 4473 search_again: 4474 /* 4475 * with a 16K leaf size and 128MB extents, you can actually queue 4476 * up a huge file in a single leaf. Most of the time that 4477 * bytes_deleted is > 0, it will be huge by the time we get here 4478 */ 4479 if (be_nice && bytes_deleted > SZ_32M) { 4480 if (btrfs_should_end_transaction(trans)) { 4481 err = -EAGAIN; 4482 goto error; 4483 } 4484 } 4485 4486 4487 path->leave_spinning = 1; 4488 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4489 if (ret < 0) { 4490 err = ret; 4491 goto out; 4492 } 4493 4494 if (ret > 0) { 4495 /* there are no items in the tree for us to truncate, we're 4496 * done 4497 */ 4498 if (path->slots[0] == 0) 4499 goto out; 4500 path->slots[0]--; 4501 } 4502 4503 while (1) { 4504 fi = NULL; 4505 leaf = path->nodes[0]; 4506 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4507 found_type = found_key.type; 4508 4509 if (found_key.objectid != ino) 4510 break; 4511 4512 if (found_type < min_type) 4513 break; 4514 4515 item_end = found_key.offset; 4516 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4517 fi = btrfs_item_ptr(leaf, path->slots[0], 4518 struct btrfs_file_extent_item); 4519 extent_type = btrfs_file_extent_type(leaf, fi); 4520 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4521 item_end += 4522 btrfs_file_extent_num_bytes(leaf, fi); 4523 4524 trace_btrfs_truncate_show_fi_regular( 4525 BTRFS_I(inode), leaf, fi, 4526 found_key.offset); 4527 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4528 item_end += btrfs_file_extent_inline_len(leaf, 4529 path->slots[0], fi); 4530 4531 trace_btrfs_truncate_show_fi_inline( 4532 BTRFS_I(inode), leaf, fi, path->slots[0], 4533 found_key.offset); 4534 } 4535 item_end--; 4536 } 4537 if (found_type > min_type) { 4538 del_item = 1; 4539 } else { 4540 if (item_end < new_size) 4541 break; 4542 if (found_key.offset >= new_size) 4543 del_item = 1; 4544 else 4545 del_item = 0; 4546 } 4547 found_extent = 0; 4548 /* FIXME, shrink the extent if the ref count is only 1 */ 4549 if (found_type != BTRFS_EXTENT_DATA_KEY) 4550 goto delete; 4551 4552 if (del_item) 4553 last_size = found_key.offset; 4554 else 4555 last_size = new_size; 4556 4557 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4558 u64 num_dec; 4559 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4560 if (!del_item) { 4561 u64 orig_num_bytes = 4562 btrfs_file_extent_num_bytes(leaf, fi); 4563 extent_num_bytes = ALIGN(new_size - 4564 found_key.offset, 4565 fs_info->sectorsize); 4566 btrfs_set_file_extent_num_bytes(leaf, fi, 4567 extent_num_bytes); 4568 num_dec = (orig_num_bytes - 4569 extent_num_bytes); 4570 if (test_bit(BTRFS_ROOT_REF_COWS, 4571 &root->state) && 4572 extent_start != 0) 4573 inode_sub_bytes(inode, num_dec); 4574 btrfs_mark_buffer_dirty(leaf); 4575 } else { 4576 extent_num_bytes = 4577 btrfs_file_extent_disk_num_bytes(leaf, 4578 fi); 4579 extent_offset = found_key.offset - 4580 btrfs_file_extent_offset(leaf, fi); 4581 4582 /* FIXME blocksize != 4096 */ 4583 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4584 if (extent_start != 0) { 4585 found_extent = 1; 4586 if (test_bit(BTRFS_ROOT_REF_COWS, 4587 &root->state)) 4588 inode_sub_bytes(inode, num_dec); 4589 } 4590 } 4591 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4592 /* 4593 * we can't truncate inline items that have had 4594 * special encodings 4595 */ 4596 if (!del_item && 4597 btrfs_file_extent_encryption(leaf, fi) == 0 && 4598 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4599 4600 /* 4601 * Need to release path in order to truncate a 4602 * compressed extent. So delete any accumulated 4603 * extent items so far. 4604 */ 4605 if (btrfs_file_extent_compression(leaf, fi) != 4606 BTRFS_COMPRESS_NONE && pending_del_nr) { 4607 err = btrfs_del_items(trans, root, path, 4608 pending_del_slot, 4609 pending_del_nr); 4610 if (err) { 4611 btrfs_abort_transaction(trans, 4612 err); 4613 goto error; 4614 } 4615 pending_del_nr = 0; 4616 } 4617 4618 err = truncate_inline_extent(inode, path, 4619 &found_key, 4620 item_end, 4621 new_size); 4622 if (err) { 4623 btrfs_abort_transaction(trans, err); 4624 goto error; 4625 } 4626 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4627 &root->state)) { 4628 inode_sub_bytes(inode, item_end + 1 - new_size); 4629 } 4630 } 4631 delete: 4632 if (del_item) { 4633 if (!pending_del_nr) { 4634 /* no pending yet, add ourselves */ 4635 pending_del_slot = path->slots[0]; 4636 pending_del_nr = 1; 4637 } else if (pending_del_nr && 4638 path->slots[0] + 1 == pending_del_slot) { 4639 /* hop on the pending chunk */ 4640 pending_del_nr++; 4641 pending_del_slot = path->slots[0]; 4642 } else { 4643 BUG(); 4644 } 4645 } else { 4646 break; 4647 } 4648 should_throttle = 0; 4649 4650 if (found_extent && 4651 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4652 root == fs_info->tree_root)) { 4653 btrfs_set_path_blocking(path); 4654 bytes_deleted += extent_num_bytes; 4655 ret = btrfs_free_extent(trans, fs_info, extent_start, 4656 extent_num_bytes, 0, 4657 btrfs_header_owner(leaf), 4658 ino, extent_offset); 4659 BUG_ON(ret); 4660 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4661 btrfs_async_run_delayed_refs(fs_info, 4662 trans->delayed_ref_updates * 2, 4663 trans->transid, 0); 4664 if (be_nice) { 4665 if (truncate_space_check(trans, root, 4666 extent_num_bytes)) { 4667 should_end = 1; 4668 } 4669 if (btrfs_should_throttle_delayed_refs(trans, 4670 fs_info)) 4671 should_throttle = 1; 4672 } 4673 } 4674 4675 if (found_type == BTRFS_INODE_ITEM_KEY) 4676 break; 4677 4678 if (path->slots[0] == 0 || 4679 path->slots[0] != pending_del_slot || 4680 should_throttle || should_end) { 4681 if (pending_del_nr) { 4682 ret = btrfs_del_items(trans, root, path, 4683 pending_del_slot, 4684 pending_del_nr); 4685 if (ret) { 4686 btrfs_abort_transaction(trans, ret); 4687 goto error; 4688 } 4689 pending_del_nr = 0; 4690 } 4691 btrfs_release_path(path); 4692 if (should_throttle) { 4693 unsigned long updates = trans->delayed_ref_updates; 4694 if (updates) { 4695 trans->delayed_ref_updates = 0; 4696 ret = btrfs_run_delayed_refs(trans, 4697 fs_info, 4698 updates * 2); 4699 if (ret && !err) 4700 err = ret; 4701 } 4702 } 4703 /* 4704 * if we failed to refill our space rsv, bail out 4705 * and let the transaction restart 4706 */ 4707 if (should_end) { 4708 err = -EAGAIN; 4709 goto error; 4710 } 4711 goto search_again; 4712 } else { 4713 path->slots[0]--; 4714 } 4715 } 4716 out: 4717 if (pending_del_nr) { 4718 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4719 pending_del_nr); 4720 if (ret) 4721 btrfs_abort_transaction(trans, ret); 4722 } 4723 error: 4724 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4725 ASSERT(last_size >= new_size); 4726 if (!err && last_size > new_size) 4727 last_size = new_size; 4728 btrfs_ordered_update_i_size(inode, last_size, NULL); 4729 } 4730 4731 btrfs_free_path(path); 4732 4733 if (be_nice && bytes_deleted > SZ_32M) { 4734 unsigned long updates = trans->delayed_ref_updates; 4735 if (updates) { 4736 trans->delayed_ref_updates = 0; 4737 ret = btrfs_run_delayed_refs(trans, fs_info, 4738 updates * 2); 4739 if (ret && !err) 4740 err = ret; 4741 } 4742 } 4743 return err; 4744 } 4745 4746 /* 4747 * btrfs_truncate_block - read, zero a chunk and write a block 4748 * @inode - inode that we're zeroing 4749 * @from - the offset to start zeroing 4750 * @len - the length to zero, 0 to zero the entire range respective to the 4751 * offset 4752 * @front - zero up to the offset instead of from the offset on 4753 * 4754 * This will find the block for the "from" offset and cow the block and zero the 4755 * part we want to zero. This is used with truncate and hole punching. 4756 */ 4757 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4758 int front) 4759 { 4760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4761 struct address_space *mapping = inode->i_mapping; 4762 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4763 struct btrfs_ordered_extent *ordered; 4764 struct extent_state *cached_state = NULL; 4765 char *kaddr; 4766 u32 blocksize = fs_info->sectorsize; 4767 pgoff_t index = from >> PAGE_SHIFT; 4768 unsigned offset = from & (blocksize - 1); 4769 struct page *page; 4770 gfp_t mask = btrfs_alloc_write_mask(mapping); 4771 int ret = 0; 4772 u64 block_start; 4773 u64 block_end; 4774 4775 if ((offset & (blocksize - 1)) == 0 && 4776 (!len || ((len & (blocksize - 1)) == 0))) 4777 goto out; 4778 4779 ret = btrfs_delalloc_reserve_space(inode, 4780 round_down(from, blocksize), blocksize); 4781 if (ret) 4782 goto out; 4783 4784 again: 4785 page = find_or_create_page(mapping, index, mask); 4786 if (!page) { 4787 btrfs_delalloc_release_space(inode, 4788 round_down(from, blocksize), 4789 blocksize); 4790 ret = -ENOMEM; 4791 goto out; 4792 } 4793 4794 block_start = round_down(from, blocksize); 4795 block_end = block_start + blocksize - 1; 4796 4797 if (!PageUptodate(page)) { 4798 ret = btrfs_readpage(NULL, page); 4799 lock_page(page); 4800 if (page->mapping != mapping) { 4801 unlock_page(page); 4802 put_page(page); 4803 goto again; 4804 } 4805 if (!PageUptodate(page)) { 4806 ret = -EIO; 4807 goto out_unlock; 4808 } 4809 } 4810 wait_on_page_writeback(page); 4811 4812 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4813 set_page_extent_mapped(page); 4814 4815 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4816 if (ordered) { 4817 unlock_extent_cached(io_tree, block_start, block_end, 4818 &cached_state, GFP_NOFS); 4819 unlock_page(page); 4820 put_page(page); 4821 btrfs_start_ordered_extent(inode, ordered, 1); 4822 btrfs_put_ordered_extent(ordered); 4823 goto again; 4824 } 4825 4826 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4827 EXTENT_DIRTY | EXTENT_DELALLOC | 4828 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4829 0, 0, &cached_state, GFP_NOFS); 4830 4831 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4832 &cached_state, 0); 4833 if (ret) { 4834 unlock_extent_cached(io_tree, block_start, block_end, 4835 &cached_state, GFP_NOFS); 4836 goto out_unlock; 4837 } 4838 4839 if (offset != blocksize) { 4840 if (!len) 4841 len = blocksize - offset; 4842 kaddr = kmap(page); 4843 if (front) 4844 memset(kaddr + (block_start - page_offset(page)), 4845 0, offset); 4846 else 4847 memset(kaddr + (block_start - page_offset(page)) + offset, 4848 0, len); 4849 flush_dcache_page(page); 4850 kunmap(page); 4851 } 4852 ClearPageChecked(page); 4853 set_page_dirty(page); 4854 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4855 GFP_NOFS); 4856 4857 out_unlock: 4858 if (ret) 4859 btrfs_delalloc_release_space(inode, block_start, 4860 blocksize); 4861 unlock_page(page); 4862 put_page(page); 4863 out: 4864 return ret; 4865 } 4866 4867 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4868 u64 offset, u64 len) 4869 { 4870 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4871 struct btrfs_trans_handle *trans; 4872 int ret; 4873 4874 /* 4875 * Still need to make sure the inode looks like it's been updated so 4876 * that any holes get logged if we fsync. 4877 */ 4878 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4879 BTRFS_I(inode)->last_trans = fs_info->generation; 4880 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4881 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4882 return 0; 4883 } 4884 4885 /* 4886 * 1 - for the one we're dropping 4887 * 1 - for the one we're adding 4888 * 1 - for updating the inode. 4889 */ 4890 trans = btrfs_start_transaction(root, 3); 4891 if (IS_ERR(trans)) 4892 return PTR_ERR(trans); 4893 4894 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4895 if (ret) { 4896 btrfs_abort_transaction(trans, ret); 4897 btrfs_end_transaction(trans); 4898 return ret; 4899 } 4900 4901 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4902 offset, 0, 0, len, 0, len, 0, 0, 0); 4903 if (ret) 4904 btrfs_abort_transaction(trans, ret); 4905 else 4906 btrfs_update_inode(trans, root, inode); 4907 btrfs_end_transaction(trans); 4908 return ret; 4909 } 4910 4911 /* 4912 * This function puts in dummy file extents for the area we're creating a hole 4913 * for. So if we are truncating this file to a larger size we need to insert 4914 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4915 * the range between oldsize and size 4916 */ 4917 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4918 { 4919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4920 struct btrfs_root *root = BTRFS_I(inode)->root; 4921 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4922 struct extent_map *em = NULL; 4923 struct extent_state *cached_state = NULL; 4924 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4925 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4926 u64 block_end = ALIGN(size, fs_info->sectorsize); 4927 u64 last_byte; 4928 u64 cur_offset; 4929 u64 hole_size; 4930 int err = 0; 4931 4932 /* 4933 * If our size started in the middle of a block we need to zero out the 4934 * rest of the block before we expand the i_size, otherwise we could 4935 * expose stale data. 4936 */ 4937 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4938 if (err) 4939 return err; 4940 4941 if (size <= hole_start) 4942 return 0; 4943 4944 while (1) { 4945 struct btrfs_ordered_extent *ordered; 4946 4947 lock_extent_bits(io_tree, hole_start, block_end - 1, 4948 &cached_state); 4949 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 4950 block_end - hole_start); 4951 if (!ordered) 4952 break; 4953 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4954 &cached_state, GFP_NOFS); 4955 btrfs_start_ordered_extent(inode, ordered, 1); 4956 btrfs_put_ordered_extent(ordered); 4957 } 4958 4959 cur_offset = hole_start; 4960 while (1) { 4961 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4962 block_end - cur_offset, 0); 4963 if (IS_ERR(em)) { 4964 err = PTR_ERR(em); 4965 em = NULL; 4966 break; 4967 } 4968 last_byte = min(extent_map_end(em), block_end); 4969 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4970 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4971 struct extent_map *hole_em; 4972 hole_size = last_byte - cur_offset; 4973 4974 err = maybe_insert_hole(root, inode, cur_offset, 4975 hole_size); 4976 if (err) 4977 break; 4978 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4979 cur_offset + hole_size - 1, 0); 4980 hole_em = alloc_extent_map(); 4981 if (!hole_em) { 4982 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4983 &BTRFS_I(inode)->runtime_flags); 4984 goto next; 4985 } 4986 hole_em->start = cur_offset; 4987 hole_em->len = hole_size; 4988 hole_em->orig_start = cur_offset; 4989 4990 hole_em->block_start = EXTENT_MAP_HOLE; 4991 hole_em->block_len = 0; 4992 hole_em->orig_block_len = 0; 4993 hole_em->ram_bytes = hole_size; 4994 hole_em->bdev = fs_info->fs_devices->latest_bdev; 4995 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4996 hole_em->generation = fs_info->generation; 4997 4998 while (1) { 4999 write_lock(&em_tree->lock); 5000 err = add_extent_mapping(em_tree, hole_em, 1); 5001 write_unlock(&em_tree->lock); 5002 if (err != -EEXIST) 5003 break; 5004 btrfs_drop_extent_cache(BTRFS_I(inode), 5005 cur_offset, 5006 cur_offset + 5007 hole_size - 1, 0); 5008 } 5009 free_extent_map(hole_em); 5010 } 5011 next: 5012 free_extent_map(em); 5013 em = NULL; 5014 cur_offset = last_byte; 5015 if (cur_offset >= block_end) 5016 break; 5017 } 5018 free_extent_map(em); 5019 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 5020 GFP_NOFS); 5021 return err; 5022 } 5023 5024 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5025 { 5026 struct btrfs_root *root = BTRFS_I(inode)->root; 5027 struct btrfs_trans_handle *trans; 5028 loff_t oldsize = i_size_read(inode); 5029 loff_t newsize = attr->ia_size; 5030 int mask = attr->ia_valid; 5031 int ret; 5032 5033 /* 5034 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5035 * special case where we need to update the times despite not having 5036 * these flags set. For all other operations the VFS set these flags 5037 * explicitly if it wants a timestamp update. 5038 */ 5039 if (newsize != oldsize) { 5040 inode_inc_iversion(inode); 5041 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5042 inode->i_ctime = inode->i_mtime = 5043 current_time(inode); 5044 } 5045 5046 if (newsize > oldsize) { 5047 /* 5048 * Don't do an expanding truncate while snapshoting is ongoing. 5049 * This is to ensure the snapshot captures a fully consistent 5050 * state of this file - if the snapshot captures this expanding 5051 * truncation, it must capture all writes that happened before 5052 * this truncation. 5053 */ 5054 btrfs_wait_for_snapshot_creation(root); 5055 ret = btrfs_cont_expand(inode, oldsize, newsize); 5056 if (ret) { 5057 btrfs_end_write_no_snapshoting(root); 5058 return ret; 5059 } 5060 5061 trans = btrfs_start_transaction(root, 1); 5062 if (IS_ERR(trans)) { 5063 btrfs_end_write_no_snapshoting(root); 5064 return PTR_ERR(trans); 5065 } 5066 5067 i_size_write(inode, newsize); 5068 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5069 pagecache_isize_extended(inode, oldsize, newsize); 5070 ret = btrfs_update_inode(trans, root, inode); 5071 btrfs_end_write_no_snapshoting(root); 5072 btrfs_end_transaction(trans); 5073 } else { 5074 5075 /* 5076 * We're truncating a file that used to have good data down to 5077 * zero. Make sure it gets into the ordered flush list so that 5078 * any new writes get down to disk quickly. 5079 */ 5080 if (newsize == 0) 5081 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5082 &BTRFS_I(inode)->runtime_flags); 5083 5084 /* 5085 * 1 for the orphan item we're going to add 5086 * 1 for the orphan item deletion. 5087 */ 5088 trans = btrfs_start_transaction(root, 2); 5089 if (IS_ERR(trans)) 5090 return PTR_ERR(trans); 5091 5092 /* 5093 * We need to do this in case we fail at _any_ point during the 5094 * actual truncate. Once we do the truncate_setsize we could 5095 * invalidate pages which forces any outstanding ordered io to 5096 * be instantly completed which will give us extents that need 5097 * to be truncated. If we fail to get an orphan inode down we 5098 * could have left over extents that were never meant to live, 5099 * so we need to guarantee from this point on that everything 5100 * will be consistent. 5101 */ 5102 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 5103 btrfs_end_transaction(trans); 5104 if (ret) 5105 return ret; 5106 5107 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 5108 truncate_setsize(inode, newsize); 5109 5110 /* Disable nonlocked read DIO to avoid the end less truncate */ 5111 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5112 inode_dio_wait(inode); 5113 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5114 5115 ret = btrfs_truncate(inode); 5116 if (ret && inode->i_nlink) { 5117 int err; 5118 5119 /* To get a stable disk_i_size */ 5120 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5121 if (err) { 5122 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5123 return err; 5124 } 5125 5126 /* 5127 * failed to truncate, disk_i_size is only adjusted down 5128 * as we remove extents, so it should represent the true 5129 * size of the inode, so reset the in memory size and 5130 * delete our orphan entry. 5131 */ 5132 trans = btrfs_join_transaction(root); 5133 if (IS_ERR(trans)) { 5134 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5135 return ret; 5136 } 5137 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5138 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 5139 if (err) 5140 btrfs_abort_transaction(trans, err); 5141 btrfs_end_transaction(trans); 5142 } 5143 } 5144 5145 return ret; 5146 } 5147 5148 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5149 { 5150 struct inode *inode = d_inode(dentry); 5151 struct btrfs_root *root = BTRFS_I(inode)->root; 5152 int err; 5153 5154 if (btrfs_root_readonly(root)) 5155 return -EROFS; 5156 5157 err = setattr_prepare(dentry, attr); 5158 if (err) 5159 return err; 5160 5161 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5162 err = btrfs_setsize(inode, attr); 5163 if (err) 5164 return err; 5165 } 5166 5167 if (attr->ia_valid) { 5168 setattr_copy(inode, attr); 5169 inode_inc_iversion(inode); 5170 err = btrfs_dirty_inode(inode); 5171 5172 if (!err && attr->ia_valid & ATTR_MODE) 5173 err = posix_acl_chmod(inode, inode->i_mode); 5174 } 5175 5176 return err; 5177 } 5178 5179 /* 5180 * While truncating the inode pages during eviction, we get the VFS calling 5181 * btrfs_invalidatepage() against each page of the inode. This is slow because 5182 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5183 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5184 * extent_state structures over and over, wasting lots of time. 5185 * 5186 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5187 * those expensive operations on a per page basis and do only the ordered io 5188 * finishing, while we release here the extent_map and extent_state structures, 5189 * without the excessive merging and splitting. 5190 */ 5191 static void evict_inode_truncate_pages(struct inode *inode) 5192 { 5193 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5194 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5195 struct rb_node *node; 5196 5197 ASSERT(inode->i_state & I_FREEING); 5198 truncate_inode_pages_final(&inode->i_data); 5199 5200 write_lock(&map_tree->lock); 5201 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5202 struct extent_map *em; 5203 5204 node = rb_first(&map_tree->map); 5205 em = rb_entry(node, struct extent_map, rb_node); 5206 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5207 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5208 remove_extent_mapping(map_tree, em); 5209 free_extent_map(em); 5210 if (need_resched()) { 5211 write_unlock(&map_tree->lock); 5212 cond_resched(); 5213 write_lock(&map_tree->lock); 5214 } 5215 } 5216 write_unlock(&map_tree->lock); 5217 5218 /* 5219 * Keep looping until we have no more ranges in the io tree. 5220 * We can have ongoing bios started by readpages (called from readahead) 5221 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5222 * still in progress (unlocked the pages in the bio but did not yet 5223 * unlocked the ranges in the io tree). Therefore this means some 5224 * ranges can still be locked and eviction started because before 5225 * submitting those bios, which are executed by a separate task (work 5226 * queue kthread), inode references (inode->i_count) were not taken 5227 * (which would be dropped in the end io callback of each bio). 5228 * Therefore here we effectively end up waiting for those bios and 5229 * anyone else holding locked ranges without having bumped the inode's 5230 * reference count - if we don't do it, when they access the inode's 5231 * io_tree to unlock a range it may be too late, leading to an 5232 * use-after-free issue. 5233 */ 5234 spin_lock(&io_tree->lock); 5235 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5236 struct extent_state *state; 5237 struct extent_state *cached_state = NULL; 5238 u64 start; 5239 u64 end; 5240 5241 node = rb_first(&io_tree->state); 5242 state = rb_entry(node, struct extent_state, rb_node); 5243 start = state->start; 5244 end = state->end; 5245 spin_unlock(&io_tree->lock); 5246 5247 lock_extent_bits(io_tree, start, end, &cached_state); 5248 5249 /* 5250 * If still has DELALLOC flag, the extent didn't reach disk, 5251 * and its reserved space won't be freed by delayed_ref. 5252 * So we need to free its reserved space here. 5253 * (Refer to comment in btrfs_invalidatepage, case 2) 5254 * 5255 * Note, end is the bytenr of last byte, so we need + 1 here. 5256 */ 5257 if (state->state & EXTENT_DELALLOC) 5258 btrfs_qgroup_free_data(inode, start, end - start + 1); 5259 5260 clear_extent_bit(io_tree, start, end, 5261 EXTENT_LOCKED | EXTENT_DIRTY | 5262 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5263 EXTENT_DEFRAG, 1, 1, 5264 &cached_state, GFP_NOFS); 5265 5266 cond_resched(); 5267 spin_lock(&io_tree->lock); 5268 } 5269 spin_unlock(&io_tree->lock); 5270 } 5271 5272 void btrfs_evict_inode(struct inode *inode) 5273 { 5274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5275 struct btrfs_trans_handle *trans; 5276 struct btrfs_root *root = BTRFS_I(inode)->root; 5277 struct btrfs_block_rsv *rsv, *global_rsv; 5278 int steal_from_global = 0; 5279 u64 min_size; 5280 int ret; 5281 5282 trace_btrfs_inode_evict(inode); 5283 5284 if (!root) { 5285 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5286 return; 5287 } 5288 5289 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5290 5291 evict_inode_truncate_pages(inode); 5292 5293 if (inode->i_nlink && 5294 ((btrfs_root_refs(&root->root_item) != 0 && 5295 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5296 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5297 goto no_delete; 5298 5299 if (is_bad_inode(inode)) { 5300 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5301 goto no_delete; 5302 } 5303 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5304 if (!special_file(inode->i_mode)) 5305 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5306 5307 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5308 5309 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 5310 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5311 &BTRFS_I(inode)->runtime_flags)); 5312 goto no_delete; 5313 } 5314 5315 if (inode->i_nlink > 0) { 5316 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5317 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5318 goto no_delete; 5319 } 5320 5321 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5322 if (ret) { 5323 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5324 goto no_delete; 5325 } 5326 5327 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5328 if (!rsv) { 5329 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5330 goto no_delete; 5331 } 5332 rsv->size = min_size; 5333 rsv->failfast = 1; 5334 global_rsv = &fs_info->global_block_rsv; 5335 5336 btrfs_i_size_write(BTRFS_I(inode), 0); 5337 5338 /* 5339 * This is a bit simpler than btrfs_truncate since we've already 5340 * reserved our space for our orphan item in the unlink, so we just 5341 * need to reserve some slack space in case we add bytes and update 5342 * inode item when doing the truncate. 5343 */ 5344 while (1) { 5345 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5346 BTRFS_RESERVE_FLUSH_LIMIT); 5347 5348 /* 5349 * Try and steal from the global reserve since we will 5350 * likely not use this space anyway, we want to try as 5351 * hard as possible to get this to work. 5352 */ 5353 if (ret) 5354 steal_from_global++; 5355 else 5356 steal_from_global = 0; 5357 ret = 0; 5358 5359 /* 5360 * steal_from_global == 0: we reserved stuff, hooray! 5361 * steal_from_global == 1: we didn't reserve stuff, boo! 5362 * steal_from_global == 2: we've committed, still not a lot of 5363 * room but maybe we'll have room in the global reserve this 5364 * time. 5365 * steal_from_global == 3: abandon all hope! 5366 */ 5367 if (steal_from_global > 2) { 5368 btrfs_warn(fs_info, 5369 "Could not get space for a delete, will truncate on mount %d", 5370 ret); 5371 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5372 btrfs_free_block_rsv(fs_info, rsv); 5373 goto no_delete; 5374 } 5375 5376 trans = btrfs_join_transaction(root); 5377 if (IS_ERR(trans)) { 5378 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5379 btrfs_free_block_rsv(fs_info, rsv); 5380 goto no_delete; 5381 } 5382 5383 /* 5384 * We can't just steal from the global reserve, we need to make 5385 * sure there is room to do it, if not we need to commit and try 5386 * again. 5387 */ 5388 if (steal_from_global) { 5389 if (!btrfs_check_space_for_delayed_refs(trans, fs_info)) 5390 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5391 min_size, 0); 5392 else 5393 ret = -ENOSPC; 5394 } 5395 5396 /* 5397 * Couldn't steal from the global reserve, we have too much 5398 * pending stuff built up, commit the transaction and try it 5399 * again. 5400 */ 5401 if (ret) { 5402 ret = btrfs_commit_transaction(trans); 5403 if (ret) { 5404 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5405 btrfs_free_block_rsv(fs_info, rsv); 5406 goto no_delete; 5407 } 5408 continue; 5409 } else { 5410 steal_from_global = 0; 5411 } 5412 5413 trans->block_rsv = rsv; 5414 5415 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5416 if (ret != -ENOSPC && ret != -EAGAIN) 5417 break; 5418 5419 trans->block_rsv = &fs_info->trans_block_rsv; 5420 btrfs_end_transaction(trans); 5421 trans = NULL; 5422 btrfs_btree_balance_dirty(fs_info); 5423 } 5424 5425 btrfs_free_block_rsv(fs_info, rsv); 5426 5427 /* 5428 * Errors here aren't a big deal, it just means we leave orphan items 5429 * in the tree. They will be cleaned up on the next mount. 5430 */ 5431 if (ret == 0) { 5432 trans->block_rsv = root->orphan_block_rsv; 5433 btrfs_orphan_del(trans, BTRFS_I(inode)); 5434 } else { 5435 btrfs_orphan_del(NULL, BTRFS_I(inode)); 5436 } 5437 5438 trans->block_rsv = &fs_info->trans_block_rsv; 5439 if (!(root == fs_info->tree_root || 5440 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5441 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5442 5443 btrfs_end_transaction(trans); 5444 btrfs_btree_balance_dirty(fs_info); 5445 no_delete: 5446 btrfs_remove_delayed_node(BTRFS_I(inode)); 5447 clear_inode(inode); 5448 } 5449 5450 /* 5451 * this returns the key found in the dir entry in the location pointer. 5452 * If no dir entries were found, location->objectid is 0. 5453 */ 5454 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5455 struct btrfs_key *location) 5456 { 5457 const char *name = dentry->d_name.name; 5458 int namelen = dentry->d_name.len; 5459 struct btrfs_dir_item *di; 5460 struct btrfs_path *path; 5461 struct btrfs_root *root = BTRFS_I(dir)->root; 5462 int ret = 0; 5463 5464 path = btrfs_alloc_path(); 5465 if (!path) 5466 return -ENOMEM; 5467 5468 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5469 name, namelen, 0); 5470 if (IS_ERR(di)) 5471 ret = PTR_ERR(di); 5472 5473 if (IS_ERR_OR_NULL(di)) 5474 goto out_err; 5475 5476 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5477 out: 5478 btrfs_free_path(path); 5479 return ret; 5480 out_err: 5481 location->objectid = 0; 5482 goto out; 5483 } 5484 5485 /* 5486 * when we hit a tree root in a directory, the btrfs part of the inode 5487 * needs to be changed to reflect the root directory of the tree root. This 5488 * is kind of like crossing a mount point. 5489 */ 5490 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5491 struct inode *dir, 5492 struct dentry *dentry, 5493 struct btrfs_key *location, 5494 struct btrfs_root **sub_root) 5495 { 5496 struct btrfs_path *path; 5497 struct btrfs_root *new_root; 5498 struct btrfs_root_ref *ref; 5499 struct extent_buffer *leaf; 5500 struct btrfs_key key; 5501 int ret; 5502 int err = 0; 5503 5504 path = btrfs_alloc_path(); 5505 if (!path) { 5506 err = -ENOMEM; 5507 goto out; 5508 } 5509 5510 err = -ENOENT; 5511 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5512 key.type = BTRFS_ROOT_REF_KEY; 5513 key.offset = location->objectid; 5514 5515 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5516 if (ret) { 5517 if (ret < 0) 5518 err = ret; 5519 goto out; 5520 } 5521 5522 leaf = path->nodes[0]; 5523 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5524 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5525 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5526 goto out; 5527 5528 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5529 (unsigned long)(ref + 1), 5530 dentry->d_name.len); 5531 if (ret) 5532 goto out; 5533 5534 btrfs_release_path(path); 5535 5536 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5537 if (IS_ERR(new_root)) { 5538 err = PTR_ERR(new_root); 5539 goto out; 5540 } 5541 5542 *sub_root = new_root; 5543 location->objectid = btrfs_root_dirid(&new_root->root_item); 5544 location->type = BTRFS_INODE_ITEM_KEY; 5545 location->offset = 0; 5546 err = 0; 5547 out: 5548 btrfs_free_path(path); 5549 return err; 5550 } 5551 5552 static void inode_tree_add(struct inode *inode) 5553 { 5554 struct btrfs_root *root = BTRFS_I(inode)->root; 5555 struct btrfs_inode *entry; 5556 struct rb_node **p; 5557 struct rb_node *parent; 5558 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5559 u64 ino = btrfs_ino(BTRFS_I(inode)); 5560 5561 if (inode_unhashed(inode)) 5562 return; 5563 parent = NULL; 5564 spin_lock(&root->inode_lock); 5565 p = &root->inode_tree.rb_node; 5566 while (*p) { 5567 parent = *p; 5568 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5569 5570 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5571 p = &parent->rb_left; 5572 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5573 p = &parent->rb_right; 5574 else { 5575 WARN_ON(!(entry->vfs_inode.i_state & 5576 (I_WILL_FREE | I_FREEING))); 5577 rb_replace_node(parent, new, &root->inode_tree); 5578 RB_CLEAR_NODE(parent); 5579 spin_unlock(&root->inode_lock); 5580 return; 5581 } 5582 } 5583 rb_link_node(new, parent, p); 5584 rb_insert_color(new, &root->inode_tree); 5585 spin_unlock(&root->inode_lock); 5586 } 5587 5588 static void inode_tree_del(struct inode *inode) 5589 { 5590 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5591 struct btrfs_root *root = BTRFS_I(inode)->root; 5592 int empty = 0; 5593 5594 spin_lock(&root->inode_lock); 5595 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5596 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5597 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5598 empty = RB_EMPTY_ROOT(&root->inode_tree); 5599 } 5600 spin_unlock(&root->inode_lock); 5601 5602 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5603 synchronize_srcu(&fs_info->subvol_srcu); 5604 spin_lock(&root->inode_lock); 5605 empty = RB_EMPTY_ROOT(&root->inode_tree); 5606 spin_unlock(&root->inode_lock); 5607 if (empty) 5608 btrfs_add_dead_root(root); 5609 } 5610 } 5611 5612 void btrfs_invalidate_inodes(struct btrfs_root *root) 5613 { 5614 struct btrfs_fs_info *fs_info = root->fs_info; 5615 struct rb_node *node; 5616 struct rb_node *prev; 5617 struct btrfs_inode *entry; 5618 struct inode *inode; 5619 u64 objectid = 0; 5620 5621 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 5622 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5623 5624 spin_lock(&root->inode_lock); 5625 again: 5626 node = root->inode_tree.rb_node; 5627 prev = NULL; 5628 while (node) { 5629 prev = node; 5630 entry = rb_entry(node, struct btrfs_inode, rb_node); 5631 5632 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5633 node = node->rb_left; 5634 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5635 node = node->rb_right; 5636 else 5637 break; 5638 } 5639 if (!node) { 5640 while (prev) { 5641 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5642 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 5643 node = prev; 5644 break; 5645 } 5646 prev = rb_next(prev); 5647 } 5648 } 5649 while (node) { 5650 entry = rb_entry(node, struct btrfs_inode, rb_node); 5651 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 5652 inode = igrab(&entry->vfs_inode); 5653 if (inode) { 5654 spin_unlock(&root->inode_lock); 5655 if (atomic_read(&inode->i_count) > 1) 5656 d_prune_aliases(inode); 5657 /* 5658 * btrfs_drop_inode will have it removed from 5659 * the inode cache when its usage count 5660 * hits zero. 5661 */ 5662 iput(inode); 5663 cond_resched(); 5664 spin_lock(&root->inode_lock); 5665 goto again; 5666 } 5667 5668 if (cond_resched_lock(&root->inode_lock)) 5669 goto again; 5670 5671 node = rb_next(node); 5672 } 5673 spin_unlock(&root->inode_lock); 5674 } 5675 5676 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5677 { 5678 struct btrfs_iget_args *args = p; 5679 inode->i_ino = args->location->objectid; 5680 memcpy(&BTRFS_I(inode)->location, args->location, 5681 sizeof(*args->location)); 5682 BTRFS_I(inode)->root = args->root; 5683 return 0; 5684 } 5685 5686 static int btrfs_find_actor(struct inode *inode, void *opaque) 5687 { 5688 struct btrfs_iget_args *args = opaque; 5689 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5690 args->root == BTRFS_I(inode)->root; 5691 } 5692 5693 static struct inode *btrfs_iget_locked(struct super_block *s, 5694 struct btrfs_key *location, 5695 struct btrfs_root *root) 5696 { 5697 struct inode *inode; 5698 struct btrfs_iget_args args; 5699 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5700 5701 args.location = location; 5702 args.root = root; 5703 5704 inode = iget5_locked(s, hashval, btrfs_find_actor, 5705 btrfs_init_locked_inode, 5706 (void *)&args); 5707 return inode; 5708 } 5709 5710 /* Get an inode object given its location and corresponding root. 5711 * Returns in *is_new if the inode was read from disk 5712 */ 5713 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5714 struct btrfs_root *root, int *new) 5715 { 5716 struct inode *inode; 5717 5718 inode = btrfs_iget_locked(s, location, root); 5719 if (!inode) 5720 return ERR_PTR(-ENOMEM); 5721 5722 if (inode->i_state & I_NEW) { 5723 int ret; 5724 5725 ret = btrfs_read_locked_inode(inode); 5726 if (!is_bad_inode(inode)) { 5727 inode_tree_add(inode); 5728 unlock_new_inode(inode); 5729 if (new) 5730 *new = 1; 5731 } else { 5732 unlock_new_inode(inode); 5733 iput(inode); 5734 ASSERT(ret < 0); 5735 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5736 } 5737 } 5738 5739 return inode; 5740 } 5741 5742 static struct inode *new_simple_dir(struct super_block *s, 5743 struct btrfs_key *key, 5744 struct btrfs_root *root) 5745 { 5746 struct inode *inode = new_inode(s); 5747 5748 if (!inode) 5749 return ERR_PTR(-ENOMEM); 5750 5751 BTRFS_I(inode)->root = root; 5752 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5753 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5754 5755 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5756 inode->i_op = &btrfs_dir_ro_inode_operations; 5757 inode->i_opflags &= ~IOP_XATTR; 5758 inode->i_fop = &simple_dir_operations; 5759 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5760 inode->i_mtime = current_time(inode); 5761 inode->i_atime = inode->i_mtime; 5762 inode->i_ctime = inode->i_mtime; 5763 BTRFS_I(inode)->i_otime = inode->i_mtime; 5764 5765 return inode; 5766 } 5767 5768 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5769 { 5770 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5771 struct inode *inode; 5772 struct btrfs_root *root = BTRFS_I(dir)->root; 5773 struct btrfs_root *sub_root = root; 5774 struct btrfs_key location; 5775 int index; 5776 int ret = 0; 5777 5778 if (dentry->d_name.len > BTRFS_NAME_LEN) 5779 return ERR_PTR(-ENAMETOOLONG); 5780 5781 ret = btrfs_inode_by_name(dir, dentry, &location); 5782 if (ret < 0) 5783 return ERR_PTR(ret); 5784 5785 if (location.objectid == 0) 5786 return ERR_PTR(-ENOENT); 5787 5788 if (location.type == BTRFS_INODE_ITEM_KEY) { 5789 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5790 return inode; 5791 } 5792 5793 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5794 5795 index = srcu_read_lock(&fs_info->subvol_srcu); 5796 ret = fixup_tree_root_location(fs_info, dir, dentry, 5797 &location, &sub_root); 5798 if (ret < 0) { 5799 if (ret != -ENOENT) 5800 inode = ERR_PTR(ret); 5801 else 5802 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5803 } else { 5804 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5805 } 5806 srcu_read_unlock(&fs_info->subvol_srcu, index); 5807 5808 if (!IS_ERR(inode) && root != sub_root) { 5809 down_read(&fs_info->cleanup_work_sem); 5810 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5811 ret = btrfs_orphan_cleanup(sub_root); 5812 up_read(&fs_info->cleanup_work_sem); 5813 if (ret) { 5814 iput(inode); 5815 inode = ERR_PTR(ret); 5816 } 5817 } 5818 5819 return inode; 5820 } 5821 5822 static int btrfs_dentry_delete(const struct dentry *dentry) 5823 { 5824 struct btrfs_root *root; 5825 struct inode *inode = d_inode(dentry); 5826 5827 if (!inode && !IS_ROOT(dentry)) 5828 inode = d_inode(dentry->d_parent); 5829 5830 if (inode) { 5831 root = BTRFS_I(inode)->root; 5832 if (btrfs_root_refs(&root->root_item) == 0) 5833 return 1; 5834 5835 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5836 return 1; 5837 } 5838 return 0; 5839 } 5840 5841 static void btrfs_dentry_release(struct dentry *dentry) 5842 { 5843 kfree(dentry->d_fsdata); 5844 } 5845 5846 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5847 unsigned int flags) 5848 { 5849 struct inode *inode; 5850 5851 inode = btrfs_lookup_dentry(dir, dentry); 5852 if (IS_ERR(inode)) { 5853 if (PTR_ERR(inode) == -ENOENT) 5854 inode = NULL; 5855 else 5856 return ERR_CAST(inode); 5857 } 5858 5859 return d_splice_alias(inode, dentry); 5860 } 5861 5862 unsigned char btrfs_filetype_table[] = { 5863 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5864 }; 5865 5866 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5867 { 5868 struct inode *inode = file_inode(file); 5869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5870 struct btrfs_root *root = BTRFS_I(inode)->root; 5871 struct btrfs_item *item; 5872 struct btrfs_dir_item *di; 5873 struct btrfs_key key; 5874 struct btrfs_key found_key; 5875 struct btrfs_path *path; 5876 struct list_head ins_list; 5877 struct list_head del_list; 5878 int ret; 5879 struct extent_buffer *leaf; 5880 int slot; 5881 unsigned char d_type; 5882 int over = 0; 5883 char tmp_name[32]; 5884 char *name_ptr; 5885 int name_len; 5886 bool put = false; 5887 struct btrfs_key location; 5888 5889 if (!dir_emit_dots(file, ctx)) 5890 return 0; 5891 5892 path = btrfs_alloc_path(); 5893 if (!path) 5894 return -ENOMEM; 5895 5896 path->reada = READA_FORWARD; 5897 5898 INIT_LIST_HEAD(&ins_list); 5899 INIT_LIST_HEAD(&del_list); 5900 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5901 5902 key.type = BTRFS_DIR_INDEX_KEY; 5903 key.offset = ctx->pos; 5904 key.objectid = btrfs_ino(BTRFS_I(inode)); 5905 5906 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5907 if (ret < 0) 5908 goto err; 5909 5910 while (1) { 5911 leaf = path->nodes[0]; 5912 slot = path->slots[0]; 5913 if (slot >= btrfs_header_nritems(leaf)) { 5914 ret = btrfs_next_leaf(root, path); 5915 if (ret < 0) 5916 goto err; 5917 else if (ret > 0) 5918 break; 5919 continue; 5920 } 5921 5922 item = btrfs_item_nr(slot); 5923 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5924 5925 if (found_key.objectid != key.objectid) 5926 break; 5927 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5928 break; 5929 if (found_key.offset < ctx->pos) 5930 goto next; 5931 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5932 goto next; 5933 5934 ctx->pos = found_key.offset; 5935 5936 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5937 if (verify_dir_item(fs_info, leaf, di)) 5938 goto next; 5939 5940 name_len = btrfs_dir_name_len(leaf, di); 5941 if (name_len <= sizeof(tmp_name)) { 5942 name_ptr = tmp_name; 5943 } else { 5944 name_ptr = kmalloc(name_len, GFP_KERNEL); 5945 if (!name_ptr) { 5946 ret = -ENOMEM; 5947 goto err; 5948 } 5949 } 5950 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5951 name_len); 5952 5953 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5954 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5955 5956 over = !dir_emit(ctx, name_ptr, name_len, location.objectid, 5957 d_type); 5958 5959 if (name_ptr != tmp_name) 5960 kfree(name_ptr); 5961 5962 if (over) 5963 goto nopos; 5964 ctx->pos++; 5965 next: 5966 path->slots[0]++; 5967 } 5968 5969 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5970 if (ret) 5971 goto nopos; 5972 5973 /* 5974 * Stop new entries from being returned after we return the last 5975 * entry. 5976 * 5977 * New directory entries are assigned a strictly increasing 5978 * offset. This means that new entries created during readdir 5979 * are *guaranteed* to be seen in the future by that readdir. 5980 * This has broken buggy programs which operate on names as 5981 * they're returned by readdir. Until we re-use freed offsets 5982 * we have this hack to stop new entries from being returned 5983 * under the assumption that they'll never reach this huge 5984 * offset. 5985 * 5986 * This is being careful not to overflow 32bit loff_t unless the 5987 * last entry requires it because doing so has broken 32bit apps 5988 * in the past. 5989 */ 5990 if (ctx->pos >= INT_MAX) 5991 ctx->pos = LLONG_MAX; 5992 else 5993 ctx->pos = INT_MAX; 5994 nopos: 5995 ret = 0; 5996 err: 5997 if (put) 5998 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5999 btrfs_free_path(path); 6000 return ret; 6001 } 6002 6003 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6004 { 6005 struct btrfs_root *root = BTRFS_I(inode)->root; 6006 struct btrfs_trans_handle *trans; 6007 int ret = 0; 6008 bool nolock = false; 6009 6010 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6011 return 0; 6012 6013 if (btrfs_fs_closing(root->fs_info) && 6014 btrfs_is_free_space_inode(BTRFS_I(inode))) 6015 nolock = true; 6016 6017 if (wbc->sync_mode == WB_SYNC_ALL) { 6018 if (nolock) 6019 trans = btrfs_join_transaction_nolock(root); 6020 else 6021 trans = btrfs_join_transaction(root); 6022 if (IS_ERR(trans)) 6023 return PTR_ERR(trans); 6024 ret = btrfs_commit_transaction(trans); 6025 } 6026 return ret; 6027 } 6028 6029 /* 6030 * This is somewhat expensive, updating the tree every time the 6031 * inode changes. But, it is most likely to find the inode in cache. 6032 * FIXME, needs more benchmarking...there are no reasons other than performance 6033 * to keep or drop this code. 6034 */ 6035 static int btrfs_dirty_inode(struct inode *inode) 6036 { 6037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6038 struct btrfs_root *root = BTRFS_I(inode)->root; 6039 struct btrfs_trans_handle *trans; 6040 int ret; 6041 6042 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6043 return 0; 6044 6045 trans = btrfs_join_transaction(root); 6046 if (IS_ERR(trans)) 6047 return PTR_ERR(trans); 6048 6049 ret = btrfs_update_inode(trans, root, inode); 6050 if (ret && ret == -ENOSPC) { 6051 /* whoops, lets try again with the full transaction */ 6052 btrfs_end_transaction(trans); 6053 trans = btrfs_start_transaction(root, 1); 6054 if (IS_ERR(trans)) 6055 return PTR_ERR(trans); 6056 6057 ret = btrfs_update_inode(trans, root, inode); 6058 } 6059 btrfs_end_transaction(trans); 6060 if (BTRFS_I(inode)->delayed_node) 6061 btrfs_balance_delayed_items(fs_info); 6062 6063 return ret; 6064 } 6065 6066 /* 6067 * This is a copy of file_update_time. We need this so we can return error on 6068 * ENOSPC for updating the inode in the case of file write and mmap writes. 6069 */ 6070 static int btrfs_update_time(struct inode *inode, struct timespec *now, 6071 int flags) 6072 { 6073 struct btrfs_root *root = BTRFS_I(inode)->root; 6074 6075 if (btrfs_root_readonly(root)) 6076 return -EROFS; 6077 6078 if (flags & S_VERSION) 6079 inode_inc_iversion(inode); 6080 if (flags & S_CTIME) 6081 inode->i_ctime = *now; 6082 if (flags & S_MTIME) 6083 inode->i_mtime = *now; 6084 if (flags & S_ATIME) 6085 inode->i_atime = *now; 6086 return btrfs_dirty_inode(inode); 6087 } 6088 6089 /* 6090 * find the highest existing sequence number in a directory 6091 * and then set the in-memory index_cnt variable to reflect 6092 * free sequence numbers 6093 */ 6094 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6095 { 6096 struct btrfs_root *root = inode->root; 6097 struct btrfs_key key, found_key; 6098 struct btrfs_path *path; 6099 struct extent_buffer *leaf; 6100 int ret; 6101 6102 key.objectid = btrfs_ino(inode); 6103 key.type = BTRFS_DIR_INDEX_KEY; 6104 key.offset = (u64)-1; 6105 6106 path = btrfs_alloc_path(); 6107 if (!path) 6108 return -ENOMEM; 6109 6110 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6111 if (ret < 0) 6112 goto out; 6113 /* FIXME: we should be able to handle this */ 6114 if (ret == 0) 6115 goto out; 6116 ret = 0; 6117 6118 /* 6119 * MAGIC NUMBER EXPLANATION: 6120 * since we search a directory based on f_pos we have to start at 2 6121 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6122 * else has to start at 2 6123 */ 6124 if (path->slots[0] == 0) { 6125 inode->index_cnt = 2; 6126 goto out; 6127 } 6128 6129 path->slots[0]--; 6130 6131 leaf = path->nodes[0]; 6132 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6133 6134 if (found_key.objectid != btrfs_ino(inode) || 6135 found_key.type != BTRFS_DIR_INDEX_KEY) { 6136 inode->index_cnt = 2; 6137 goto out; 6138 } 6139 6140 inode->index_cnt = found_key.offset + 1; 6141 out: 6142 btrfs_free_path(path); 6143 return ret; 6144 } 6145 6146 /* 6147 * helper to find a free sequence number in a given directory. This current 6148 * code is very simple, later versions will do smarter things in the btree 6149 */ 6150 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6151 { 6152 int ret = 0; 6153 6154 if (dir->index_cnt == (u64)-1) { 6155 ret = btrfs_inode_delayed_dir_index_count(dir); 6156 if (ret) { 6157 ret = btrfs_set_inode_index_count(dir); 6158 if (ret) 6159 return ret; 6160 } 6161 } 6162 6163 *index = dir->index_cnt; 6164 dir->index_cnt++; 6165 6166 return ret; 6167 } 6168 6169 static int btrfs_insert_inode_locked(struct inode *inode) 6170 { 6171 struct btrfs_iget_args args; 6172 args.location = &BTRFS_I(inode)->location; 6173 args.root = BTRFS_I(inode)->root; 6174 6175 return insert_inode_locked4(inode, 6176 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6177 btrfs_find_actor, &args); 6178 } 6179 6180 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6181 struct btrfs_root *root, 6182 struct inode *dir, 6183 const char *name, int name_len, 6184 u64 ref_objectid, u64 objectid, 6185 umode_t mode, u64 *index) 6186 { 6187 struct btrfs_fs_info *fs_info = root->fs_info; 6188 struct inode *inode; 6189 struct btrfs_inode_item *inode_item; 6190 struct btrfs_key *location; 6191 struct btrfs_path *path; 6192 struct btrfs_inode_ref *ref; 6193 struct btrfs_key key[2]; 6194 u32 sizes[2]; 6195 int nitems = name ? 2 : 1; 6196 unsigned long ptr; 6197 int ret; 6198 6199 path = btrfs_alloc_path(); 6200 if (!path) 6201 return ERR_PTR(-ENOMEM); 6202 6203 inode = new_inode(fs_info->sb); 6204 if (!inode) { 6205 btrfs_free_path(path); 6206 return ERR_PTR(-ENOMEM); 6207 } 6208 6209 /* 6210 * O_TMPFILE, set link count to 0, so that after this point, 6211 * we fill in an inode item with the correct link count. 6212 */ 6213 if (!name) 6214 set_nlink(inode, 0); 6215 6216 /* 6217 * we have to initialize this early, so we can reclaim the inode 6218 * number if we fail afterwards in this function. 6219 */ 6220 inode->i_ino = objectid; 6221 6222 if (dir && name) { 6223 trace_btrfs_inode_request(dir); 6224 6225 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6226 if (ret) { 6227 btrfs_free_path(path); 6228 iput(inode); 6229 return ERR_PTR(ret); 6230 } 6231 } else if (dir) { 6232 *index = 0; 6233 } 6234 /* 6235 * index_cnt is ignored for everything but a dir, 6236 * btrfs_get_inode_index_count has an explanation for the magic 6237 * number 6238 */ 6239 BTRFS_I(inode)->index_cnt = 2; 6240 BTRFS_I(inode)->dir_index = *index; 6241 BTRFS_I(inode)->root = root; 6242 BTRFS_I(inode)->generation = trans->transid; 6243 inode->i_generation = BTRFS_I(inode)->generation; 6244 6245 /* 6246 * We could have gotten an inode number from somebody who was fsynced 6247 * and then removed in this same transaction, so let's just set full 6248 * sync since it will be a full sync anyway and this will blow away the 6249 * old info in the log. 6250 */ 6251 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6252 6253 key[0].objectid = objectid; 6254 key[0].type = BTRFS_INODE_ITEM_KEY; 6255 key[0].offset = 0; 6256 6257 sizes[0] = sizeof(struct btrfs_inode_item); 6258 6259 if (name) { 6260 /* 6261 * Start new inodes with an inode_ref. This is slightly more 6262 * efficient for small numbers of hard links since they will 6263 * be packed into one item. Extended refs will kick in if we 6264 * add more hard links than can fit in the ref item. 6265 */ 6266 key[1].objectid = objectid; 6267 key[1].type = BTRFS_INODE_REF_KEY; 6268 key[1].offset = ref_objectid; 6269 6270 sizes[1] = name_len + sizeof(*ref); 6271 } 6272 6273 location = &BTRFS_I(inode)->location; 6274 location->objectid = objectid; 6275 location->offset = 0; 6276 location->type = BTRFS_INODE_ITEM_KEY; 6277 6278 ret = btrfs_insert_inode_locked(inode); 6279 if (ret < 0) 6280 goto fail; 6281 6282 path->leave_spinning = 1; 6283 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6284 if (ret != 0) 6285 goto fail_unlock; 6286 6287 inode_init_owner(inode, dir, mode); 6288 inode_set_bytes(inode, 0); 6289 6290 inode->i_mtime = current_time(inode); 6291 inode->i_atime = inode->i_mtime; 6292 inode->i_ctime = inode->i_mtime; 6293 BTRFS_I(inode)->i_otime = inode->i_mtime; 6294 6295 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6296 struct btrfs_inode_item); 6297 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6298 sizeof(*inode_item)); 6299 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6300 6301 if (name) { 6302 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6303 struct btrfs_inode_ref); 6304 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6305 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6306 ptr = (unsigned long)(ref + 1); 6307 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6308 } 6309 6310 btrfs_mark_buffer_dirty(path->nodes[0]); 6311 btrfs_free_path(path); 6312 6313 btrfs_inherit_iflags(inode, dir); 6314 6315 if (S_ISREG(mode)) { 6316 if (btrfs_test_opt(fs_info, NODATASUM)) 6317 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6318 if (btrfs_test_opt(fs_info, NODATACOW)) 6319 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6320 BTRFS_INODE_NODATASUM; 6321 } 6322 6323 inode_tree_add(inode); 6324 6325 trace_btrfs_inode_new(inode); 6326 btrfs_set_inode_last_trans(trans, inode); 6327 6328 btrfs_update_root_times(trans, root); 6329 6330 ret = btrfs_inode_inherit_props(trans, inode, dir); 6331 if (ret) 6332 btrfs_err(fs_info, 6333 "error inheriting props for ino %llu (root %llu): %d", 6334 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6335 6336 return inode; 6337 6338 fail_unlock: 6339 unlock_new_inode(inode); 6340 fail: 6341 if (dir && name) 6342 BTRFS_I(dir)->index_cnt--; 6343 btrfs_free_path(path); 6344 iput(inode); 6345 return ERR_PTR(ret); 6346 } 6347 6348 static inline u8 btrfs_inode_type(struct inode *inode) 6349 { 6350 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6351 } 6352 6353 /* 6354 * utility function to add 'inode' into 'parent_inode' with 6355 * a give name and a given sequence number. 6356 * if 'add_backref' is true, also insert a backref from the 6357 * inode to the parent directory. 6358 */ 6359 int btrfs_add_link(struct btrfs_trans_handle *trans, 6360 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6361 const char *name, int name_len, int add_backref, u64 index) 6362 { 6363 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6364 int ret = 0; 6365 struct btrfs_key key; 6366 struct btrfs_root *root = parent_inode->root; 6367 u64 ino = btrfs_ino(inode); 6368 u64 parent_ino = btrfs_ino(parent_inode); 6369 6370 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6371 memcpy(&key, &inode->root->root_key, sizeof(key)); 6372 } else { 6373 key.objectid = ino; 6374 key.type = BTRFS_INODE_ITEM_KEY; 6375 key.offset = 0; 6376 } 6377 6378 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6379 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6380 root->root_key.objectid, parent_ino, 6381 index, name, name_len); 6382 } else if (add_backref) { 6383 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6384 parent_ino, index); 6385 } 6386 6387 /* Nothing to clean up yet */ 6388 if (ret) 6389 return ret; 6390 6391 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6392 parent_inode, &key, 6393 btrfs_inode_type(&inode->vfs_inode), index); 6394 if (ret == -EEXIST || ret == -EOVERFLOW) 6395 goto fail_dir_item; 6396 else if (ret) { 6397 btrfs_abort_transaction(trans, ret); 6398 return ret; 6399 } 6400 6401 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6402 name_len * 2); 6403 inode_inc_iversion(&parent_inode->vfs_inode); 6404 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6405 current_time(&parent_inode->vfs_inode); 6406 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6407 if (ret) 6408 btrfs_abort_transaction(trans, ret); 6409 return ret; 6410 6411 fail_dir_item: 6412 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6413 u64 local_index; 6414 int err; 6415 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6416 root->root_key.objectid, parent_ino, 6417 &local_index, name, name_len); 6418 6419 } else if (add_backref) { 6420 u64 local_index; 6421 int err; 6422 6423 err = btrfs_del_inode_ref(trans, root, name, name_len, 6424 ino, parent_ino, &local_index); 6425 } 6426 return ret; 6427 } 6428 6429 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6430 struct btrfs_inode *dir, struct dentry *dentry, 6431 struct btrfs_inode *inode, int backref, u64 index) 6432 { 6433 int err = btrfs_add_link(trans, dir, inode, 6434 dentry->d_name.name, dentry->d_name.len, 6435 backref, index); 6436 if (err > 0) 6437 err = -EEXIST; 6438 return err; 6439 } 6440 6441 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6442 umode_t mode, dev_t rdev) 6443 { 6444 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6445 struct btrfs_trans_handle *trans; 6446 struct btrfs_root *root = BTRFS_I(dir)->root; 6447 struct inode *inode = NULL; 6448 int err; 6449 int drop_inode = 0; 6450 u64 objectid; 6451 u64 index = 0; 6452 6453 /* 6454 * 2 for inode item and ref 6455 * 2 for dir items 6456 * 1 for xattr if selinux is on 6457 */ 6458 trans = btrfs_start_transaction(root, 5); 6459 if (IS_ERR(trans)) 6460 return PTR_ERR(trans); 6461 6462 err = btrfs_find_free_ino(root, &objectid); 6463 if (err) 6464 goto out_unlock; 6465 6466 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6467 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6468 mode, &index); 6469 if (IS_ERR(inode)) { 6470 err = PTR_ERR(inode); 6471 goto out_unlock; 6472 } 6473 6474 /* 6475 * If the active LSM wants to access the inode during 6476 * d_instantiate it needs these. Smack checks to see 6477 * if the filesystem supports xattrs by looking at the 6478 * ops vector. 6479 */ 6480 inode->i_op = &btrfs_special_inode_operations; 6481 init_special_inode(inode, inode->i_mode, rdev); 6482 6483 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6484 if (err) 6485 goto out_unlock_inode; 6486 6487 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6488 0, index); 6489 if (err) { 6490 goto out_unlock_inode; 6491 } else { 6492 btrfs_update_inode(trans, root, inode); 6493 unlock_new_inode(inode); 6494 d_instantiate(dentry, inode); 6495 } 6496 6497 out_unlock: 6498 btrfs_end_transaction(trans); 6499 btrfs_balance_delayed_items(fs_info); 6500 btrfs_btree_balance_dirty(fs_info); 6501 if (drop_inode) { 6502 inode_dec_link_count(inode); 6503 iput(inode); 6504 } 6505 return err; 6506 6507 out_unlock_inode: 6508 drop_inode = 1; 6509 unlock_new_inode(inode); 6510 goto out_unlock; 6511 6512 } 6513 6514 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6515 umode_t mode, bool excl) 6516 { 6517 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6518 struct btrfs_trans_handle *trans; 6519 struct btrfs_root *root = BTRFS_I(dir)->root; 6520 struct inode *inode = NULL; 6521 int drop_inode_on_err = 0; 6522 int err; 6523 u64 objectid; 6524 u64 index = 0; 6525 6526 /* 6527 * 2 for inode item and ref 6528 * 2 for dir items 6529 * 1 for xattr if selinux is on 6530 */ 6531 trans = btrfs_start_transaction(root, 5); 6532 if (IS_ERR(trans)) 6533 return PTR_ERR(trans); 6534 6535 err = btrfs_find_free_ino(root, &objectid); 6536 if (err) 6537 goto out_unlock; 6538 6539 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6540 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6541 mode, &index); 6542 if (IS_ERR(inode)) { 6543 err = PTR_ERR(inode); 6544 goto out_unlock; 6545 } 6546 drop_inode_on_err = 1; 6547 /* 6548 * If the active LSM wants to access the inode during 6549 * d_instantiate it needs these. Smack checks to see 6550 * if the filesystem supports xattrs by looking at the 6551 * ops vector. 6552 */ 6553 inode->i_fop = &btrfs_file_operations; 6554 inode->i_op = &btrfs_file_inode_operations; 6555 inode->i_mapping->a_ops = &btrfs_aops; 6556 6557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6558 if (err) 6559 goto out_unlock_inode; 6560 6561 err = btrfs_update_inode(trans, root, inode); 6562 if (err) 6563 goto out_unlock_inode; 6564 6565 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6566 0, index); 6567 if (err) 6568 goto out_unlock_inode; 6569 6570 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6571 unlock_new_inode(inode); 6572 d_instantiate(dentry, inode); 6573 6574 out_unlock: 6575 btrfs_end_transaction(trans); 6576 if (err && drop_inode_on_err) { 6577 inode_dec_link_count(inode); 6578 iput(inode); 6579 } 6580 btrfs_balance_delayed_items(fs_info); 6581 btrfs_btree_balance_dirty(fs_info); 6582 return err; 6583 6584 out_unlock_inode: 6585 unlock_new_inode(inode); 6586 goto out_unlock; 6587 6588 } 6589 6590 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6591 struct dentry *dentry) 6592 { 6593 struct btrfs_trans_handle *trans = NULL; 6594 struct btrfs_root *root = BTRFS_I(dir)->root; 6595 struct inode *inode = d_inode(old_dentry); 6596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6597 u64 index; 6598 int err; 6599 int drop_inode = 0; 6600 6601 /* do not allow sys_link's with other subvols of the same device */ 6602 if (root->objectid != BTRFS_I(inode)->root->objectid) 6603 return -EXDEV; 6604 6605 if (inode->i_nlink >= BTRFS_LINK_MAX) 6606 return -EMLINK; 6607 6608 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6609 if (err) 6610 goto fail; 6611 6612 /* 6613 * 2 items for inode and inode ref 6614 * 2 items for dir items 6615 * 1 item for parent inode 6616 */ 6617 trans = btrfs_start_transaction(root, 5); 6618 if (IS_ERR(trans)) { 6619 err = PTR_ERR(trans); 6620 trans = NULL; 6621 goto fail; 6622 } 6623 6624 /* There are several dir indexes for this inode, clear the cache. */ 6625 BTRFS_I(inode)->dir_index = 0ULL; 6626 inc_nlink(inode); 6627 inode_inc_iversion(inode); 6628 inode->i_ctime = current_time(inode); 6629 ihold(inode); 6630 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6631 6632 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6633 1, index); 6634 6635 if (err) { 6636 drop_inode = 1; 6637 } else { 6638 struct dentry *parent = dentry->d_parent; 6639 err = btrfs_update_inode(trans, root, inode); 6640 if (err) 6641 goto fail; 6642 if (inode->i_nlink == 1) { 6643 /* 6644 * If new hard link count is 1, it's a file created 6645 * with open(2) O_TMPFILE flag. 6646 */ 6647 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6648 if (err) 6649 goto fail; 6650 } 6651 d_instantiate(dentry, inode); 6652 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6653 } 6654 6655 btrfs_balance_delayed_items(fs_info); 6656 fail: 6657 if (trans) 6658 btrfs_end_transaction(trans); 6659 if (drop_inode) { 6660 inode_dec_link_count(inode); 6661 iput(inode); 6662 } 6663 btrfs_btree_balance_dirty(fs_info); 6664 return err; 6665 } 6666 6667 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6668 { 6669 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6670 struct inode *inode = NULL; 6671 struct btrfs_trans_handle *trans; 6672 struct btrfs_root *root = BTRFS_I(dir)->root; 6673 int err = 0; 6674 int drop_on_err = 0; 6675 u64 objectid = 0; 6676 u64 index = 0; 6677 6678 /* 6679 * 2 items for inode and ref 6680 * 2 items for dir items 6681 * 1 for xattr if selinux is on 6682 */ 6683 trans = btrfs_start_transaction(root, 5); 6684 if (IS_ERR(trans)) 6685 return PTR_ERR(trans); 6686 6687 err = btrfs_find_free_ino(root, &objectid); 6688 if (err) 6689 goto out_fail; 6690 6691 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6692 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6693 S_IFDIR | mode, &index); 6694 if (IS_ERR(inode)) { 6695 err = PTR_ERR(inode); 6696 goto out_fail; 6697 } 6698 6699 drop_on_err = 1; 6700 /* these must be set before we unlock the inode */ 6701 inode->i_op = &btrfs_dir_inode_operations; 6702 inode->i_fop = &btrfs_dir_file_operations; 6703 6704 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6705 if (err) 6706 goto out_fail_inode; 6707 6708 btrfs_i_size_write(BTRFS_I(inode), 0); 6709 err = btrfs_update_inode(trans, root, inode); 6710 if (err) 6711 goto out_fail_inode; 6712 6713 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6714 dentry->d_name.name, 6715 dentry->d_name.len, 0, index); 6716 if (err) 6717 goto out_fail_inode; 6718 6719 d_instantiate(dentry, inode); 6720 /* 6721 * mkdir is special. We're unlocking after we call d_instantiate 6722 * to avoid a race with nfsd calling d_instantiate. 6723 */ 6724 unlock_new_inode(inode); 6725 drop_on_err = 0; 6726 6727 out_fail: 6728 btrfs_end_transaction(trans); 6729 if (drop_on_err) { 6730 inode_dec_link_count(inode); 6731 iput(inode); 6732 } 6733 btrfs_balance_delayed_items(fs_info); 6734 btrfs_btree_balance_dirty(fs_info); 6735 return err; 6736 6737 out_fail_inode: 6738 unlock_new_inode(inode); 6739 goto out_fail; 6740 } 6741 6742 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6743 static struct extent_map *next_extent_map(struct extent_map *em) 6744 { 6745 struct rb_node *next; 6746 6747 next = rb_next(&em->rb_node); 6748 if (!next) 6749 return NULL; 6750 return container_of(next, struct extent_map, rb_node); 6751 } 6752 6753 static struct extent_map *prev_extent_map(struct extent_map *em) 6754 { 6755 struct rb_node *prev; 6756 6757 prev = rb_prev(&em->rb_node); 6758 if (!prev) 6759 return NULL; 6760 return container_of(prev, struct extent_map, rb_node); 6761 } 6762 6763 /* helper for btfs_get_extent. Given an existing extent in the tree, 6764 * the existing extent is the nearest extent to map_start, 6765 * and an extent that you want to insert, deal with overlap and insert 6766 * the best fitted new extent into the tree. 6767 */ 6768 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6769 struct extent_map *existing, 6770 struct extent_map *em, 6771 u64 map_start) 6772 { 6773 struct extent_map *prev; 6774 struct extent_map *next; 6775 u64 start; 6776 u64 end; 6777 u64 start_diff; 6778 6779 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6780 6781 if (existing->start > map_start) { 6782 next = existing; 6783 prev = prev_extent_map(next); 6784 } else { 6785 prev = existing; 6786 next = next_extent_map(prev); 6787 } 6788 6789 start = prev ? extent_map_end(prev) : em->start; 6790 start = max_t(u64, start, em->start); 6791 end = next ? next->start : extent_map_end(em); 6792 end = min_t(u64, end, extent_map_end(em)); 6793 start_diff = start - em->start; 6794 em->start = start; 6795 em->len = end - start; 6796 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6797 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6798 em->block_start += start_diff; 6799 em->block_len -= start_diff; 6800 } 6801 return add_extent_mapping(em_tree, em, 0); 6802 } 6803 6804 static noinline int uncompress_inline(struct btrfs_path *path, 6805 struct page *page, 6806 size_t pg_offset, u64 extent_offset, 6807 struct btrfs_file_extent_item *item) 6808 { 6809 int ret; 6810 struct extent_buffer *leaf = path->nodes[0]; 6811 char *tmp; 6812 size_t max_size; 6813 unsigned long inline_size; 6814 unsigned long ptr; 6815 int compress_type; 6816 6817 WARN_ON(pg_offset != 0); 6818 compress_type = btrfs_file_extent_compression(leaf, item); 6819 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6820 inline_size = btrfs_file_extent_inline_item_len(leaf, 6821 btrfs_item_nr(path->slots[0])); 6822 tmp = kmalloc(inline_size, GFP_NOFS); 6823 if (!tmp) 6824 return -ENOMEM; 6825 ptr = btrfs_file_extent_inline_start(item); 6826 6827 read_extent_buffer(leaf, tmp, ptr, inline_size); 6828 6829 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6830 ret = btrfs_decompress(compress_type, tmp, page, 6831 extent_offset, inline_size, max_size); 6832 6833 /* 6834 * decompression code contains a memset to fill in any space between the end 6835 * of the uncompressed data and the end of max_size in case the decompressed 6836 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6837 * the end of an inline extent and the beginning of the next block, so we 6838 * cover that region here. 6839 */ 6840 6841 if (max_size + pg_offset < PAGE_SIZE) { 6842 char *map = kmap(page); 6843 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6844 kunmap(page); 6845 } 6846 kfree(tmp); 6847 return ret; 6848 } 6849 6850 /* 6851 * a bit scary, this does extent mapping from logical file offset to the disk. 6852 * the ugly parts come from merging extents from the disk with the in-ram 6853 * representation. This gets more complex because of the data=ordered code, 6854 * where the in-ram extents might be locked pending data=ordered completion. 6855 * 6856 * This also copies inline extents directly into the page. 6857 */ 6858 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6859 struct page *page, 6860 size_t pg_offset, u64 start, u64 len, 6861 int create) 6862 { 6863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6864 int ret; 6865 int err = 0; 6866 u64 extent_start = 0; 6867 u64 extent_end = 0; 6868 u64 objectid = btrfs_ino(inode); 6869 u32 found_type; 6870 struct btrfs_path *path = NULL; 6871 struct btrfs_root *root = inode->root; 6872 struct btrfs_file_extent_item *item; 6873 struct extent_buffer *leaf; 6874 struct btrfs_key found_key; 6875 struct extent_map *em = NULL; 6876 struct extent_map_tree *em_tree = &inode->extent_tree; 6877 struct extent_io_tree *io_tree = &inode->io_tree; 6878 struct btrfs_trans_handle *trans = NULL; 6879 const bool new_inline = !page || create; 6880 6881 again: 6882 read_lock(&em_tree->lock); 6883 em = lookup_extent_mapping(em_tree, start, len); 6884 if (em) 6885 em->bdev = fs_info->fs_devices->latest_bdev; 6886 read_unlock(&em_tree->lock); 6887 6888 if (em) { 6889 if (em->start > start || em->start + em->len <= start) 6890 free_extent_map(em); 6891 else if (em->block_start == EXTENT_MAP_INLINE && page) 6892 free_extent_map(em); 6893 else 6894 goto out; 6895 } 6896 em = alloc_extent_map(); 6897 if (!em) { 6898 err = -ENOMEM; 6899 goto out; 6900 } 6901 em->bdev = fs_info->fs_devices->latest_bdev; 6902 em->start = EXTENT_MAP_HOLE; 6903 em->orig_start = EXTENT_MAP_HOLE; 6904 em->len = (u64)-1; 6905 em->block_len = (u64)-1; 6906 6907 if (!path) { 6908 path = btrfs_alloc_path(); 6909 if (!path) { 6910 err = -ENOMEM; 6911 goto out; 6912 } 6913 /* 6914 * Chances are we'll be called again, so go ahead and do 6915 * readahead 6916 */ 6917 path->reada = READA_FORWARD; 6918 } 6919 6920 ret = btrfs_lookup_file_extent(trans, root, path, 6921 objectid, start, trans != NULL); 6922 if (ret < 0) { 6923 err = ret; 6924 goto out; 6925 } 6926 6927 if (ret != 0) { 6928 if (path->slots[0] == 0) 6929 goto not_found; 6930 path->slots[0]--; 6931 } 6932 6933 leaf = path->nodes[0]; 6934 item = btrfs_item_ptr(leaf, path->slots[0], 6935 struct btrfs_file_extent_item); 6936 /* are we inside the extent that was found? */ 6937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6938 found_type = found_key.type; 6939 if (found_key.objectid != objectid || 6940 found_type != BTRFS_EXTENT_DATA_KEY) { 6941 /* 6942 * If we backup past the first extent we want to move forward 6943 * and see if there is an extent in front of us, otherwise we'll 6944 * say there is a hole for our whole search range which can 6945 * cause problems. 6946 */ 6947 extent_end = start; 6948 goto next; 6949 } 6950 6951 found_type = btrfs_file_extent_type(leaf, item); 6952 extent_start = found_key.offset; 6953 if (found_type == BTRFS_FILE_EXTENT_REG || 6954 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6955 extent_end = extent_start + 6956 btrfs_file_extent_num_bytes(leaf, item); 6957 6958 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6959 extent_start); 6960 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6961 size_t size; 6962 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6963 extent_end = ALIGN(extent_start + size, 6964 fs_info->sectorsize); 6965 6966 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6967 path->slots[0], 6968 extent_start); 6969 } 6970 next: 6971 if (start >= extent_end) { 6972 path->slots[0]++; 6973 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6974 ret = btrfs_next_leaf(root, path); 6975 if (ret < 0) { 6976 err = ret; 6977 goto out; 6978 } 6979 if (ret > 0) 6980 goto not_found; 6981 leaf = path->nodes[0]; 6982 } 6983 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6984 if (found_key.objectid != objectid || 6985 found_key.type != BTRFS_EXTENT_DATA_KEY) 6986 goto not_found; 6987 if (start + len <= found_key.offset) 6988 goto not_found; 6989 if (start > found_key.offset) 6990 goto next; 6991 em->start = start; 6992 em->orig_start = start; 6993 em->len = found_key.offset - start; 6994 goto not_found_em; 6995 } 6996 6997 btrfs_extent_item_to_extent_map(inode, path, item, 6998 new_inline, em); 6999 7000 if (found_type == BTRFS_FILE_EXTENT_REG || 7001 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7002 goto insert; 7003 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 7004 unsigned long ptr; 7005 char *map; 7006 size_t size; 7007 size_t extent_offset; 7008 size_t copy_size; 7009 7010 if (new_inline) 7011 goto out; 7012 7013 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 7014 extent_offset = page_offset(page) + pg_offset - extent_start; 7015 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7016 size - extent_offset); 7017 em->start = extent_start + extent_offset; 7018 em->len = ALIGN(copy_size, fs_info->sectorsize); 7019 em->orig_block_len = em->len; 7020 em->orig_start = em->start; 7021 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7022 if (create == 0 && !PageUptodate(page)) { 7023 if (btrfs_file_extent_compression(leaf, item) != 7024 BTRFS_COMPRESS_NONE) { 7025 ret = uncompress_inline(path, page, pg_offset, 7026 extent_offset, item); 7027 if (ret) { 7028 err = ret; 7029 goto out; 7030 } 7031 } else { 7032 map = kmap(page); 7033 read_extent_buffer(leaf, map + pg_offset, ptr, 7034 copy_size); 7035 if (pg_offset + copy_size < PAGE_SIZE) { 7036 memset(map + pg_offset + copy_size, 0, 7037 PAGE_SIZE - pg_offset - 7038 copy_size); 7039 } 7040 kunmap(page); 7041 } 7042 flush_dcache_page(page); 7043 } else if (create && PageUptodate(page)) { 7044 BUG(); 7045 if (!trans) { 7046 kunmap(page); 7047 free_extent_map(em); 7048 em = NULL; 7049 7050 btrfs_release_path(path); 7051 trans = btrfs_join_transaction(root); 7052 7053 if (IS_ERR(trans)) 7054 return ERR_CAST(trans); 7055 goto again; 7056 } 7057 map = kmap(page); 7058 write_extent_buffer(leaf, map + pg_offset, ptr, 7059 copy_size); 7060 kunmap(page); 7061 btrfs_mark_buffer_dirty(leaf); 7062 } 7063 set_extent_uptodate(io_tree, em->start, 7064 extent_map_end(em) - 1, NULL, GFP_NOFS); 7065 goto insert; 7066 } 7067 not_found: 7068 em->start = start; 7069 em->orig_start = start; 7070 em->len = len; 7071 not_found_em: 7072 em->block_start = EXTENT_MAP_HOLE; 7073 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 7074 insert: 7075 btrfs_release_path(path); 7076 if (em->start > start || extent_map_end(em) <= start) { 7077 btrfs_err(fs_info, 7078 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7079 em->start, em->len, start, len); 7080 err = -EIO; 7081 goto out; 7082 } 7083 7084 err = 0; 7085 write_lock(&em_tree->lock); 7086 ret = add_extent_mapping(em_tree, em, 0); 7087 /* it is possible that someone inserted the extent into the tree 7088 * while we had the lock dropped. It is also possible that 7089 * an overlapping map exists in the tree 7090 */ 7091 if (ret == -EEXIST) { 7092 struct extent_map *existing; 7093 7094 ret = 0; 7095 7096 existing = search_extent_mapping(em_tree, start, len); 7097 /* 7098 * existing will always be non-NULL, since there must be 7099 * extent causing the -EEXIST. 7100 */ 7101 if (existing->start == em->start && 7102 extent_map_end(existing) >= extent_map_end(em) && 7103 em->block_start == existing->block_start) { 7104 /* 7105 * The existing extent map already encompasses the 7106 * entire extent map we tried to add. 7107 */ 7108 free_extent_map(em); 7109 em = existing; 7110 err = 0; 7111 7112 } else if (start >= extent_map_end(existing) || 7113 start <= existing->start) { 7114 /* 7115 * The existing extent map is the one nearest to 7116 * the [start, start + len) range which overlaps 7117 */ 7118 err = merge_extent_mapping(em_tree, existing, 7119 em, start); 7120 free_extent_map(existing); 7121 if (err) { 7122 free_extent_map(em); 7123 em = NULL; 7124 } 7125 } else { 7126 free_extent_map(em); 7127 em = existing; 7128 err = 0; 7129 } 7130 } 7131 write_unlock(&em_tree->lock); 7132 out: 7133 7134 trace_btrfs_get_extent(root, inode, em); 7135 7136 btrfs_free_path(path); 7137 if (trans) { 7138 ret = btrfs_end_transaction(trans); 7139 if (!err) 7140 err = ret; 7141 } 7142 if (err) { 7143 free_extent_map(em); 7144 return ERR_PTR(err); 7145 } 7146 BUG_ON(!em); /* Error is always set */ 7147 return em; 7148 } 7149 7150 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7151 struct page *page, 7152 size_t pg_offset, u64 start, u64 len, 7153 int create) 7154 { 7155 struct extent_map *em; 7156 struct extent_map *hole_em = NULL; 7157 u64 range_start = start; 7158 u64 end; 7159 u64 found; 7160 u64 found_end; 7161 int err = 0; 7162 7163 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7164 if (IS_ERR(em)) 7165 return em; 7166 /* 7167 * If our em maps to: 7168 * - a hole or 7169 * - a pre-alloc extent, 7170 * there might actually be delalloc bytes behind it. 7171 */ 7172 if (em->block_start != EXTENT_MAP_HOLE && 7173 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7174 return em; 7175 else 7176 hole_em = em; 7177 7178 /* check to see if we've wrapped (len == -1 or similar) */ 7179 end = start + len; 7180 if (end < start) 7181 end = (u64)-1; 7182 else 7183 end -= 1; 7184 7185 em = NULL; 7186 7187 /* ok, we didn't find anything, lets look for delalloc */ 7188 found = count_range_bits(&inode->io_tree, &range_start, 7189 end, len, EXTENT_DELALLOC, 1); 7190 found_end = range_start + found; 7191 if (found_end < range_start) 7192 found_end = (u64)-1; 7193 7194 /* 7195 * we didn't find anything useful, return 7196 * the original results from get_extent() 7197 */ 7198 if (range_start > end || found_end <= start) { 7199 em = hole_em; 7200 hole_em = NULL; 7201 goto out; 7202 } 7203 7204 /* adjust the range_start to make sure it doesn't 7205 * go backwards from the start they passed in 7206 */ 7207 range_start = max(start, range_start); 7208 found = found_end - range_start; 7209 7210 if (found > 0) { 7211 u64 hole_start = start; 7212 u64 hole_len = len; 7213 7214 em = alloc_extent_map(); 7215 if (!em) { 7216 err = -ENOMEM; 7217 goto out; 7218 } 7219 /* 7220 * when btrfs_get_extent can't find anything it 7221 * returns one huge hole 7222 * 7223 * make sure what it found really fits our range, and 7224 * adjust to make sure it is based on the start from 7225 * the caller 7226 */ 7227 if (hole_em) { 7228 u64 calc_end = extent_map_end(hole_em); 7229 7230 if (calc_end <= start || (hole_em->start > end)) { 7231 free_extent_map(hole_em); 7232 hole_em = NULL; 7233 } else { 7234 hole_start = max(hole_em->start, start); 7235 hole_len = calc_end - hole_start; 7236 } 7237 } 7238 em->bdev = NULL; 7239 if (hole_em && range_start > hole_start) { 7240 /* our hole starts before our delalloc, so we 7241 * have to return just the parts of the hole 7242 * that go until the delalloc starts 7243 */ 7244 em->len = min(hole_len, 7245 range_start - hole_start); 7246 em->start = hole_start; 7247 em->orig_start = hole_start; 7248 /* 7249 * don't adjust block start at all, 7250 * it is fixed at EXTENT_MAP_HOLE 7251 */ 7252 em->block_start = hole_em->block_start; 7253 em->block_len = hole_len; 7254 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7255 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7256 } else { 7257 em->start = range_start; 7258 em->len = found; 7259 em->orig_start = range_start; 7260 em->block_start = EXTENT_MAP_DELALLOC; 7261 em->block_len = found; 7262 } 7263 } else if (hole_em) { 7264 return hole_em; 7265 } 7266 out: 7267 7268 free_extent_map(hole_em); 7269 if (err) { 7270 free_extent_map(em); 7271 return ERR_PTR(err); 7272 } 7273 return em; 7274 } 7275 7276 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7277 const u64 start, 7278 const u64 len, 7279 const u64 orig_start, 7280 const u64 block_start, 7281 const u64 block_len, 7282 const u64 orig_block_len, 7283 const u64 ram_bytes, 7284 const int type) 7285 { 7286 struct extent_map *em = NULL; 7287 int ret; 7288 7289 if (type != BTRFS_ORDERED_NOCOW) { 7290 em = create_io_em(inode, start, len, orig_start, 7291 block_start, block_len, orig_block_len, 7292 ram_bytes, 7293 BTRFS_COMPRESS_NONE, /* compress_type */ 7294 type); 7295 if (IS_ERR(em)) 7296 goto out; 7297 } 7298 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7299 len, block_len, type); 7300 if (ret) { 7301 if (em) { 7302 free_extent_map(em); 7303 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7304 start + len - 1, 0); 7305 } 7306 em = ERR_PTR(ret); 7307 } 7308 out: 7309 7310 return em; 7311 } 7312 7313 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7314 u64 start, u64 len) 7315 { 7316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7317 struct btrfs_root *root = BTRFS_I(inode)->root; 7318 struct extent_map *em; 7319 struct btrfs_key ins; 7320 u64 alloc_hint; 7321 int ret; 7322 7323 alloc_hint = get_extent_allocation_hint(inode, start, len); 7324 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7325 0, alloc_hint, &ins, 1, 1); 7326 if (ret) 7327 return ERR_PTR(ret); 7328 7329 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7330 ins.objectid, ins.offset, ins.offset, 7331 ins.offset, BTRFS_ORDERED_REGULAR); 7332 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7333 if (IS_ERR(em)) 7334 btrfs_free_reserved_extent(fs_info, ins.objectid, 7335 ins.offset, 1); 7336 7337 return em; 7338 } 7339 7340 /* 7341 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7342 * block must be cow'd 7343 */ 7344 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7345 u64 *orig_start, u64 *orig_block_len, 7346 u64 *ram_bytes) 7347 { 7348 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7349 struct btrfs_path *path; 7350 int ret; 7351 struct extent_buffer *leaf; 7352 struct btrfs_root *root = BTRFS_I(inode)->root; 7353 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7354 struct btrfs_file_extent_item *fi; 7355 struct btrfs_key key; 7356 u64 disk_bytenr; 7357 u64 backref_offset; 7358 u64 extent_end; 7359 u64 num_bytes; 7360 int slot; 7361 int found_type; 7362 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7363 7364 path = btrfs_alloc_path(); 7365 if (!path) 7366 return -ENOMEM; 7367 7368 ret = btrfs_lookup_file_extent(NULL, root, path, 7369 btrfs_ino(BTRFS_I(inode)), offset, 0); 7370 if (ret < 0) 7371 goto out; 7372 7373 slot = path->slots[0]; 7374 if (ret == 1) { 7375 if (slot == 0) { 7376 /* can't find the item, must cow */ 7377 ret = 0; 7378 goto out; 7379 } 7380 slot--; 7381 } 7382 ret = 0; 7383 leaf = path->nodes[0]; 7384 btrfs_item_key_to_cpu(leaf, &key, slot); 7385 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7386 key.type != BTRFS_EXTENT_DATA_KEY) { 7387 /* not our file or wrong item type, must cow */ 7388 goto out; 7389 } 7390 7391 if (key.offset > offset) { 7392 /* Wrong offset, must cow */ 7393 goto out; 7394 } 7395 7396 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7397 found_type = btrfs_file_extent_type(leaf, fi); 7398 if (found_type != BTRFS_FILE_EXTENT_REG && 7399 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7400 /* not a regular extent, must cow */ 7401 goto out; 7402 } 7403 7404 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7405 goto out; 7406 7407 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7408 if (extent_end <= offset) 7409 goto out; 7410 7411 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7412 if (disk_bytenr == 0) 7413 goto out; 7414 7415 if (btrfs_file_extent_compression(leaf, fi) || 7416 btrfs_file_extent_encryption(leaf, fi) || 7417 btrfs_file_extent_other_encoding(leaf, fi)) 7418 goto out; 7419 7420 backref_offset = btrfs_file_extent_offset(leaf, fi); 7421 7422 if (orig_start) { 7423 *orig_start = key.offset - backref_offset; 7424 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7425 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7426 } 7427 7428 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7429 goto out; 7430 7431 num_bytes = min(offset + *len, extent_end) - offset; 7432 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7433 u64 range_end; 7434 7435 range_end = round_up(offset + num_bytes, 7436 root->fs_info->sectorsize) - 1; 7437 ret = test_range_bit(io_tree, offset, range_end, 7438 EXTENT_DELALLOC, 0, NULL); 7439 if (ret) { 7440 ret = -EAGAIN; 7441 goto out; 7442 } 7443 } 7444 7445 btrfs_release_path(path); 7446 7447 /* 7448 * look for other files referencing this extent, if we 7449 * find any we must cow 7450 */ 7451 7452 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7453 key.offset - backref_offset, disk_bytenr); 7454 if (ret) { 7455 ret = 0; 7456 goto out; 7457 } 7458 7459 /* 7460 * adjust disk_bytenr and num_bytes to cover just the bytes 7461 * in this extent we are about to write. If there 7462 * are any csums in that range we have to cow in order 7463 * to keep the csums correct 7464 */ 7465 disk_bytenr += backref_offset; 7466 disk_bytenr += offset - key.offset; 7467 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7468 goto out; 7469 /* 7470 * all of the above have passed, it is safe to overwrite this extent 7471 * without cow 7472 */ 7473 *len = num_bytes; 7474 ret = 1; 7475 out: 7476 btrfs_free_path(path); 7477 return ret; 7478 } 7479 7480 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7481 { 7482 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7483 int found = false; 7484 void **pagep = NULL; 7485 struct page *page = NULL; 7486 int start_idx; 7487 int end_idx; 7488 7489 start_idx = start >> PAGE_SHIFT; 7490 7491 /* 7492 * end is the last byte in the last page. end == start is legal 7493 */ 7494 end_idx = end >> PAGE_SHIFT; 7495 7496 rcu_read_lock(); 7497 7498 /* Most of the code in this while loop is lifted from 7499 * find_get_page. It's been modified to begin searching from a 7500 * page and return just the first page found in that range. If the 7501 * found idx is less than or equal to the end idx then we know that 7502 * a page exists. If no pages are found or if those pages are 7503 * outside of the range then we're fine (yay!) */ 7504 while (page == NULL && 7505 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7506 page = radix_tree_deref_slot(pagep); 7507 if (unlikely(!page)) 7508 break; 7509 7510 if (radix_tree_exception(page)) { 7511 if (radix_tree_deref_retry(page)) { 7512 page = NULL; 7513 continue; 7514 } 7515 /* 7516 * Otherwise, shmem/tmpfs must be storing a swap entry 7517 * here as an exceptional entry: so return it without 7518 * attempting to raise page count. 7519 */ 7520 page = NULL; 7521 break; /* TODO: Is this relevant for this use case? */ 7522 } 7523 7524 if (!page_cache_get_speculative(page)) { 7525 page = NULL; 7526 continue; 7527 } 7528 7529 /* 7530 * Has the page moved? 7531 * This is part of the lockless pagecache protocol. See 7532 * include/linux/pagemap.h for details. 7533 */ 7534 if (unlikely(page != *pagep)) { 7535 put_page(page); 7536 page = NULL; 7537 } 7538 } 7539 7540 if (page) { 7541 if (page->index <= end_idx) 7542 found = true; 7543 put_page(page); 7544 } 7545 7546 rcu_read_unlock(); 7547 return found; 7548 } 7549 7550 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7551 struct extent_state **cached_state, int writing) 7552 { 7553 struct btrfs_ordered_extent *ordered; 7554 int ret = 0; 7555 7556 while (1) { 7557 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7558 cached_state); 7559 /* 7560 * We're concerned with the entire range that we're going to be 7561 * doing DIO to, so we need to make sure there's no ordered 7562 * extents in this range. 7563 */ 7564 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7565 lockend - lockstart + 1); 7566 7567 /* 7568 * We need to make sure there are no buffered pages in this 7569 * range either, we could have raced between the invalidate in 7570 * generic_file_direct_write and locking the extent. The 7571 * invalidate needs to happen so that reads after a write do not 7572 * get stale data. 7573 */ 7574 if (!ordered && 7575 (!writing || 7576 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7577 break; 7578 7579 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7580 cached_state, GFP_NOFS); 7581 7582 if (ordered) { 7583 /* 7584 * If we are doing a DIO read and the ordered extent we 7585 * found is for a buffered write, we can not wait for it 7586 * to complete and retry, because if we do so we can 7587 * deadlock with concurrent buffered writes on page 7588 * locks. This happens only if our DIO read covers more 7589 * than one extent map, if at this point has already 7590 * created an ordered extent for a previous extent map 7591 * and locked its range in the inode's io tree, and a 7592 * concurrent write against that previous extent map's 7593 * range and this range started (we unlock the ranges 7594 * in the io tree only when the bios complete and 7595 * buffered writes always lock pages before attempting 7596 * to lock range in the io tree). 7597 */ 7598 if (writing || 7599 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7600 btrfs_start_ordered_extent(inode, ordered, 1); 7601 else 7602 ret = -ENOTBLK; 7603 btrfs_put_ordered_extent(ordered); 7604 } else { 7605 /* 7606 * We could trigger writeback for this range (and wait 7607 * for it to complete) and then invalidate the pages for 7608 * this range (through invalidate_inode_pages2_range()), 7609 * but that can lead us to a deadlock with a concurrent 7610 * call to readpages() (a buffered read or a defrag call 7611 * triggered a readahead) on a page lock due to an 7612 * ordered dio extent we created before but did not have 7613 * yet a corresponding bio submitted (whence it can not 7614 * complete), which makes readpages() wait for that 7615 * ordered extent to complete while holding a lock on 7616 * that page. 7617 */ 7618 ret = -ENOTBLK; 7619 } 7620 7621 if (ret) 7622 break; 7623 7624 cond_resched(); 7625 } 7626 7627 return ret; 7628 } 7629 7630 /* The callers of this must take lock_extent() */ 7631 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7632 u64 orig_start, u64 block_start, 7633 u64 block_len, u64 orig_block_len, 7634 u64 ram_bytes, int compress_type, 7635 int type) 7636 { 7637 struct extent_map_tree *em_tree; 7638 struct extent_map *em; 7639 struct btrfs_root *root = BTRFS_I(inode)->root; 7640 int ret; 7641 7642 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7643 type == BTRFS_ORDERED_COMPRESSED || 7644 type == BTRFS_ORDERED_NOCOW || 7645 type == BTRFS_ORDERED_REGULAR); 7646 7647 em_tree = &BTRFS_I(inode)->extent_tree; 7648 em = alloc_extent_map(); 7649 if (!em) 7650 return ERR_PTR(-ENOMEM); 7651 7652 em->start = start; 7653 em->orig_start = orig_start; 7654 em->len = len; 7655 em->block_len = block_len; 7656 em->block_start = block_start; 7657 em->bdev = root->fs_info->fs_devices->latest_bdev; 7658 em->orig_block_len = orig_block_len; 7659 em->ram_bytes = ram_bytes; 7660 em->generation = -1; 7661 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7662 if (type == BTRFS_ORDERED_PREALLOC) { 7663 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7664 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7665 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7666 em->compress_type = compress_type; 7667 } 7668 7669 do { 7670 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7671 em->start + em->len - 1, 0); 7672 write_lock(&em_tree->lock); 7673 ret = add_extent_mapping(em_tree, em, 1); 7674 write_unlock(&em_tree->lock); 7675 /* 7676 * The caller has taken lock_extent(), who could race with us 7677 * to add em? 7678 */ 7679 } while (ret == -EEXIST); 7680 7681 if (ret) { 7682 free_extent_map(em); 7683 return ERR_PTR(ret); 7684 } 7685 7686 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7687 return em; 7688 } 7689 7690 static void adjust_dio_outstanding_extents(struct inode *inode, 7691 struct btrfs_dio_data *dio_data, 7692 const u64 len) 7693 { 7694 unsigned num_extents = count_max_extents(len); 7695 7696 /* 7697 * If we have an outstanding_extents count still set then we're 7698 * within our reservation, otherwise we need to adjust our inode 7699 * counter appropriately. 7700 */ 7701 if (dio_data->outstanding_extents >= num_extents) { 7702 dio_data->outstanding_extents -= num_extents; 7703 } else { 7704 /* 7705 * If dio write length has been split due to no large enough 7706 * contiguous space, we need to compensate our inode counter 7707 * appropriately. 7708 */ 7709 u64 num_needed = num_extents - dio_data->outstanding_extents; 7710 7711 spin_lock(&BTRFS_I(inode)->lock); 7712 BTRFS_I(inode)->outstanding_extents += num_needed; 7713 spin_unlock(&BTRFS_I(inode)->lock); 7714 } 7715 } 7716 7717 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7718 struct buffer_head *bh_result, int create) 7719 { 7720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7721 struct extent_map *em; 7722 struct extent_state *cached_state = NULL; 7723 struct btrfs_dio_data *dio_data = NULL; 7724 u64 start = iblock << inode->i_blkbits; 7725 u64 lockstart, lockend; 7726 u64 len = bh_result->b_size; 7727 int unlock_bits = EXTENT_LOCKED; 7728 int ret = 0; 7729 7730 if (create) 7731 unlock_bits |= EXTENT_DIRTY; 7732 else 7733 len = min_t(u64, len, fs_info->sectorsize); 7734 7735 lockstart = start; 7736 lockend = start + len - 1; 7737 7738 if (current->journal_info) { 7739 /* 7740 * Need to pull our outstanding extents and set journal_info to NULL so 7741 * that anything that needs to check if there's a transaction doesn't get 7742 * confused. 7743 */ 7744 dio_data = current->journal_info; 7745 current->journal_info = NULL; 7746 } 7747 7748 /* 7749 * If this errors out it's because we couldn't invalidate pagecache for 7750 * this range and we need to fallback to buffered. 7751 */ 7752 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7753 create)) { 7754 ret = -ENOTBLK; 7755 goto err; 7756 } 7757 7758 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7759 if (IS_ERR(em)) { 7760 ret = PTR_ERR(em); 7761 goto unlock_err; 7762 } 7763 7764 /* 7765 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7766 * io. INLINE is special, and we could probably kludge it in here, but 7767 * it's still buffered so for safety lets just fall back to the generic 7768 * buffered path. 7769 * 7770 * For COMPRESSED we _have_ to read the entire extent in so we can 7771 * decompress it, so there will be buffering required no matter what we 7772 * do, so go ahead and fallback to buffered. 7773 * 7774 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7775 * to buffered IO. Don't blame me, this is the price we pay for using 7776 * the generic code. 7777 */ 7778 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7779 em->block_start == EXTENT_MAP_INLINE) { 7780 free_extent_map(em); 7781 ret = -ENOTBLK; 7782 goto unlock_err; 7783 } 7784 7785 /* Just a good old fashioned hole, return */ 7786 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7787 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7788 free_extent_map(em); 7789 goto unlock_err; 7790 } 7791 7792 /* 7793 * We don't allocate a new extent in the following cases 7794 * 7795 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7796 * existing extent. 7797 * 2) The extent is marked as PREALLOC. We're good to go here and can 7798 * just use the extent. 7799 * 7800 */ 7801 if (!create) { 7802 len = min(len, em->len - (start - em->start)); 7803 lockstart = start + len; 7804 goto unlock; 7805 } 7806 7807 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7808 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7809 em->block_start != EXTENT_MAP_HOLE)) { 7810 int type; 7811 u64 block_start, orig_start, orig_block_len, ram_bytes; 7812 7813 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7814 type = BTRFS_ORDERED_PREALLOC; 7815 else 7816 type = BTRFS_ORDERED_NOCOW; 7817 len = min(len, em->len - (start - em->start)); 7818 block_start = em->block_start + (start - em->start); 7819 7820 if (can_nocow_extent(inode, start, &len, &orig_start, 7821 &orig_block_len, &ram_bytes) == 1 && 7822 btrfs_inc_nocow_writers(fs_info, block_start)) { 7823 struct extent_map *em2; 7824 7825 em2 = btrfs_create_dio_extent(inode, start, len, 7826 orig_start, block_start, 7827 len, orig_block_len, 7828 ram_bytes, type); 7829 btrfs_dec_nocow_writers(fs_info, block_start); 7830 if (type == BTRFS_ORDERED_PREALLOC) { 7831 free_extent_map(em); 7832 em = em2; 7833 } 7834 if (em2 && IS_ERR(em2)) { 7835 ret = PTR_ERR(em2); 7836 goto unlock_err; 7837 } 7838 /* 7839 * For inode marked NODATACOW or extent marked PREALLOC, 7840 * use the existing or preallocated extent, so does not 7841 * need to adjust btrfs_space_info's bytes_may_use. 7842 */ 7843 btrfs_free_reserved_data_space_noquota(inode, 7844 start, len); 7845 goto unlock; 7846 } 7847 } 7848 7849 /* 7850 * this will cow the extent, reset the len in case we changed 7851 * it above 7852 */ 7853 len = bh_result->b_size; 7854 free_extent_map(em); 7855 em = btrfs_new_extent_direct(inode, start, len); 7856 if (IS_ERR(em)) { 7857 ret = PTR_ERR(em); 7858 goto unlock_err; 7859 } 7860 len = min(len, em->len - (start - em->start)); 7861 unlock: 7862 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7863 inode->i_blkbits; 7864 bh_result->b_size = len; 7865 bh_result->b_bdev = em->bdev; 7866 set_buffer_mapped(bh_result); 7867 if (create) { 7868 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7869 set_buffer_new(bh_result); 7870 7871 /* 7872 * Need to update the i_size under the extent lock so buffered 7873 * readers will get the updated i_size when we unlock. 7874 */ 7875 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7876 i_size_write(inode, start + len); 7877 7878 adjust_dio_outstanding_extents(inode, dio_data, len); 7879 WARN_ON(dio_data->reserve < len); 7880 dio_data->reserve -= len; 7881 dio_data->unsubmitted_oe_range_end = start + len; 7882 current->journal_info = dio_data; 7883 } 7884 7885 /* 7886 * In the case of write we need to clear and unlock the entire range, 7887 * in the case of read we need to unlock only the end area that we 7888 * aren't using if there is any left over space. 7889 */ 7890 if (lockstart < lockend) { 7891 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7892 lockend, unlock_bits, 1, 0, 7893 &cached_state, GFP_NOFS); 7894 } else { 7895 free_extent_state(cached_state); 7896 } 7897 7898 free_extent_map(em); 7899 7900 return 0; 7901 7902 unlock_err: 7903 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7904 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7905 err: 7906 if (dio_data) 7907 current->journal_info = dio_data; 7908 /* 7909 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7910 * write less data then expected, so that we don't underflow our inode's 7911 * outstanding extents counter. 7912 */ 7913 if (create && dio_data) 7914 adjust_dio_outstanding_extents(inode, dio_data, len); 7915 7916 return ret; 7917 } 7918 7919 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7920 int mirror_num) 7921 { 7922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7923 int ret; 7924 7925 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7926 7927 bio_get(bio); 7928 7929 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7930 if (ret) 7931 goto err; 7932 7933 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7934 err: 7935 bio_put(bio); 7936 return ret; 7937 } 7938 7939 static int btrfs_check_dio_repairable(struct inode *inode, 7940 struct bio *failed_bio, 7941 struct io_failure_record *failrec, 7942 int failed_mirror) 7943 { 7944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7945 int num_copies; 7946 7947 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7948 if (num_copies == 1) { 7949 /* 7950 * we only have a single copy of the data, so don't bother with 7951 * all the retry and error correction code that follows. no 7952 * matter what the error is, it is very likely to persist. 7953 */ 7954 btrfs_debug(fs_info, 7955 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7956 num_copies, failrec->this_mirror, failed_mirror); 7957 return 0; 7958 } 7959 7960 failrec->failed_mirror = failed_mirror; 7961 failrec->this_mirror++; 7962 if (failrec->this_mirror == failed_mirror) 7963 failrec->this_mirror++; 7964 7965 if (failrec->this_mirror > num_copies) { 7966 btrfs_debug(fs_info, 7967 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7968 num_copies, failrec->this_mirror, failed_mirror); 7969 return 0; 7970 } 7971 7972 return 1; 7973 } 7974 7975 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7976 struct page *page, unsigned int pgoff, 7977 u64 start, u64 end, int failed_mirror, 7978 bio_end_io_t *repair_endio, void *repair_arg) 7979 { 7980 struct io_failure_record *failrec; 7981 struct bio *bio; 7982 int isector; 7983 int read_mode = 0; 7984 int ret; 7985 7986 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7987 7988 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7989 if (ret) 7990 return ret; 7991 7992 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7993 failed_mirror); 7994 if (!ret) { 7995 free_io_failure(BTRFS_I(inode), failrec); 7996 return -EIO; 7997 } 7998 7999 if ((failed_bio->bi_vcnt > 1) 8000 || (failed_bio->bi_io_vec->bv_len 8001 > btrfs_inode_sectorsize(inode))) 8002 read_mode |= REQ_FAILFAST_DEV; 8003 8004 isector = start - btrfs_io_bio(failed_bio)->logical; 8005 isector >>= inode->i_sb->s_blocksize_bits; 8006 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 8007 pgoff, isector, repair_endio, repair_arg); 8008 if (!bio) { 8009 free_io_failure(BTRFS_I(inode), failrec); 8010 return -EIO; 8011 } 8012 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 8013 8014 btrfs_debug(BTRFS_I(inode)->root->fs_info, 8015 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 8016 read_mode, failrec->this_mirror, failrec->in_validation); 8017 8018 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 8019 if (ret) { 8020 free_io_failure(BTRFS_I(inode), failrec); 8021 bio_put(bio); 8022 } 8023 8024 return ret; 8025 } 8026 8027 struct btrfs_retry_complete { 8028 struct completion done; 8029 struct inode *inode; 8030 u64 start; 8031 int uptodate; 8032 }; 8033 8034 static void btrfs_retry_endio_nocsum(struct bio *bio) 8035 { 8036 struct btrfs_retry_complete *done = bio->bi_private; 8037 struct bio_vec *bvec; 8038 int i; 8039 8040 if (bio->bi_error) 8041 goto end; 8042 8043 ASSERT(bio->bi_vcnt == 1); 8044 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode)); 8045 8046 done->uptodate = 1; 8047 bio_for_each_segment_all(bvec, bio, i) 8048 clean_io_failure(BTRFS_I(done->inode), done->start, 8049 bvec->bv_page, 0); 8050 end: 8051 complete(&done->done); 8052 bio_put(bio); 8053 } 8054 8055 static int __btrfs_correct_data_nocsum(struct inode *inode, 8056 struct btrfs_io_bio *io_bio) 8057 { 8058 struct btrfs_fs_info *fs_info; 8059 struct bio_vec *bvec; 8060 struct btrfs_retry_complete done; 8061 u64 start; 8062 unsigned int pgoff; 8063 u32 sectorsize; 8064 int nr_sectors; 8065 int i; 8066 int ret; 8067 8068 fs_info = BTRFS_I(inode)->root->fs_info; 8069 sectorsize = fs_info->sectorsize; 8070 8071 start = io_bio->logical; 8072 done.inode = inode; 8073 8074 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8075 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8076 pgoff = bvec->bv_offset; 8077 8078 next_block_or_try_again: 8079 done.uptodate = 0; 8080 done.start = start; 8081 init_completion(&done.done); 8082 8083 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8084 pgoff, start, start + sectorsize - 1, 8085 io_bio->mirror_num, 8086 btrfs_retry_endio_nocsum, &done); 8087 if (ret) 8088 return ret; 8089 8090 wait_for_completion(&done.done); 8091 8092 if (!done.uptodate) { 8093 /* We might have another mirror, so try again */ 8094 goto next_block_or_try_again; 8095 } 8096 8097 start += sectorsize; 8098 8099 nr_sectors--; 8100 if (nr_sectors) { 8101 pgoff += sectorsize; 8102 ASSERT(pgoff < PAGE_SIZE); 8103 goto next_block_or_try_again; 8104 } 8105 } 8106 8107 return 0; 8108 } 8109 8110 static void btrfs_retry_endio(struct bio *bio) 8111 { 8112 struct btrfs_retry_complete *done = bio->bi_private; 8113 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8114 struct bio_vec *bvec; 8115 int uptodate; 8116 int ret; 8117 int i; 8118 8119 if (bio->bi_error) 8120 goto end; 8121 8122 uptodate = 1; 8123 8124 ASSERT(bio->bi_vcnt == 1); 8125 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode)); 8126 8127 bio_for_each_segment_all(bvec, bio, i) { 8128 ret = __readpage_endio_check(done->inode, io_bio, i, 8129 bvec->bv_page, bvec->bv_offset, 8130 done->start, bvec->bv_len); 8131 if (!ret) 8132 clean_io_failure(BTRFS_I(done->inode), done->start, 8133 bvec->bv_page, bvec->bv_offset); 8134 else 8135 uptodate = 0; 8136 } 8137 8138 done->uptodate = uptodate; 8139 end: 8140 complete(&done->done); 8141 bio_put(bio); 8142 } 8143 8144 static int __btrfs_subio_endio_read(struct inode *inode, 8145 struct btrfs_io_bio *io_bio, int err) 8146 { 8147 struct btrfs_fs_info *fs_info; 8148 struct bio_vec *bvec; 8149 struct btrfs_retry_complete done; 8150 u64 start; 8151 u64 offset = 0; 8152 u32 sectorsize; 8153 int nr_sectors; 8154 unsigned int pgoff; 8155 int csum_pos; 8156 int i; 8157 int ret; 8158 8159 fs_info = BTRFS_I(inode)->root->fs_info; 8160 sectorsize = fs_info->sectorsize; 8161 8162 err = 0; 8163 start = io_bio->logical; 8164 done.inode = inode; 8165 8166 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8167 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8168 8169 pgoff = bvec->bv_offset; 8170 next_block: 8171 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8172 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8173 bvec->bv_page, pgoff, start, 8174 sectorsize); 8175 if (likely(!ret)) 8176 goto next; 8177 try_again: 8178 done.uptodate = 0; 8179 done.start = start; 8180 init_completion(&done.done); 8181 8182 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8183 pgoff, start, start + sectorsize - 1, 8184 io_bio->mirror_num, 8185 btrfs_retry_endio, &done); 8186 if (ret) { 8187 err = ret; 8188 goto next; 8189 } 8190 8191 wait_for_completion(&done.done); 8192 8193 if (!done.uptodate) { 8194 /* We might have another mirror, so try again */ 8195 goto try_again; 8196 } 8197 next: 8198 offset += sectorsize; 8199 start += sectorsize; 8200 8201 ASSERT(nr_sectors); 8202 8203 nr_sectors--; 8204 if (nr_sectors) { 8205 pgoff += sectorsize; 8206 ASSERT(pgoff < PAGE_SIZE); 8207 goto next_block; 8208 } 8209 } 8210 8211 return err; 8212 } 8213 8214 static int btrfs_subio_endio_read(struct inode *inode, 8215 struct btrfs_io_bio *io_bio, int err) 8216 { 8217 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8218 8219 if (skip_csum) { 8220 if (unlikely(err)) 8221 return __btrfs_correct_data_nocsum(inode, io_bio); 8222 else 8223 return 0; 8224 } else { 8225 return __btrfs_subio_endio_read(inode, io_bio, err); 8226 } 8227 } 8228 8229 static void btrfs_endio_direct_read(struct bio *bio) 8230 { 8231 struct btrfs_dio_private *dip = bio->bi_private; 8232 struct inode *inode = dip->inode; 8233 struct bio *dio_bio; 8234 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8235 int err = bio->bi_error; 8236 8237 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8238 err = btrfs_subio_endio_read(inode, io_bio, err); 8239 8240 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8241 dip->logical_offset + dip->bytes - 1); 8242 dio_bio = dip->dio_bio; 8243 8244 kfree(dip); 8245 8246 dio_bio->bi_error = bio->bi_error; 8247 dio_end_io(dio_bio, bio->bi_error); 8248 8249 if (io_bio->end_io) 8250 io_bio->end_io(io_bio, err); 8251 bio_put(bio); 8252 } 8253 8254 static void __endio_write_update_ordered(struct inode *inode, 8255 const u64 offset, const u64 bytes, 8256 const bool uptodate) 8257 { 8258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8259 struct btrfs_ordered_extent *ordered = NULL; 8260 struct btrfs_workqueue *wq; 8261 btrfs_work_func_t func; 8262 u64 ordered_offset = offset; 8263 u64 ordered_bytes = bytes; 8264 int ret; 8265 8266 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8267 wq = fs_info->endio_freespace_worker; 8268 func = btrfs_freespace_write_helper; 8269 } else { 8270 wq = fs_info->endio_write_workers; 8271 func = btrfs_endio_write_helper; 8272 } 8273 8274 again: 8275 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8276 &ordered_offset, 8277 ordered_bytes, 8278 uptodate); 8279 if (!ret) 8280 goto out_test; 8281 8282 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL); 8283 btrfs_queue_work(wq, &ordered->work); 8284 out_test: 8285 /* 8286 * our bio might span multiple ordered extents. If we haven't 8287 * completed the accounting for the whole dio, go back and try again 8288 */ 8289 if (ordered_offset < offset + bytes) { 8290 ordered_bytes = offset + bytes - ordered_offset; 8291 ordered = NULL; 8292 goto again; 8293 } 8294 } 8295 8296 static void btrfs_endio_direct_write(struct bio *bio) 8297 { 8298 struct btrfs_dio_private *dip = bio->bi_private; 8299 struct bio *dio_bio = dip->dio_bio; 8300 8301 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8302 dip->bytes, !bio->bi_error); 8303 8304 kfree(dip); 8305 8306 dio_bio->bi_error = bio->bi_error; 8307 dio_end_io(dio_bio, bio->bi_error); 8308 bio_put(bio); 8309 } 8310 8311 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, 8312 struct bio *bio, int mirror_num, 8313 unsigned long bio_flags, u64 offset) 8314 { 8315 int ret; 8316 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8317 BUG_ON(ret); /* -ENOMEM */ 8318 return 0; 8319 } 8320 8321 static void btrfs_end_dio_bio(struct bio *bio) 8322 { 8323 struct btrfs_dio_private *dip = bio->bi_private; 8324 int err = bio->bi_error; 8325 8326 if (err) 8327 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8328 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8329 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8330 bio->bi_opf, 8331 (unsigned long long)bio->bi_iter.bi_sector, 8332 bio->bi_iter.bi_size, err); 8333 8334 if (dip->subio_endio) 8335 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8336 8337 if (err) { 8338 dip->errors = 1; 8339 8340 /* 8341 * before atomic variable goto zero, we must make sure 8342 * dip->errors is perceived to be set. 8343 */ 8344 smp_mb__before_atomic(); 8345 } 8346 8347 /* if there are more bios still pending for this dio, just exit */ 8348 if (!atomic_dec_and_test(&dip->pending_bios)) 8349 goto out; 8350 8351 if (dip->errors) { 8352 bio_io_error(dip->orig_bio); 8353 } else { 8354 dip->dio_bio->bi_error = 0; 8355 bio_endio(dip->orig_bio); 8356 } 8357 out: 8358 bio_put(bio); 8359 } 8360 8361 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8362 u64 first_sector, gfp_t gfp_flags) 8363 { 8364 struct bio *bio; 8365 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8366 if (bio) 8367 bio_associate_current(bio); 8368 return bio; 8369 } 8370 8371 static inline int btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8372 struct btrfs_dio_private *dip, 8373 struct bio *bio, 8374 u64 file_offset) 8375 { 8376 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8377 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8378 int ret; 8379 8380 /* 8381 * We load all the csum data we need when we submit 8382 * the first bio to reduce the csum tree search and 8383 * contention. 8384 */ 8385 if (dip->logical_offset == file_offset) { 8386 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8387 file_offset); 8388 if (ret) 8389 return ret; 8390 } 8391 8392 if (bio == dip->orig_bio) 8393 return 0; 8394 8395 file_offset -= dip->logical_offset; 8396 file_offset >>= inode->i_sb->s_blocksize_bits; 8397 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8398 8399 return 0; 8400 } 8401 8402 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8403 u64 file_offset, int skip_sum, 8404 int async_submit) 8405 { 8406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8407 struct btrfs_dio_private *dip = bio->bi_private; 8408 bool write = bio_op(bio) == REQ_OP_WRITE; 8409 int ret; 8410 8411 if (async_submit) 8412 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8413 8414 bio_get(bio); 8415 8416 if (!write) { 8417 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8418 if (ret) 8419 goto err; 8420 } 8421 8422 if (skip_sum) 8423 goto map; 8424 8425 if (write && async_submit) { 8426 ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0, 8427 file_offset, 8428 __btrfs_submit_bio_start_direct_io, 8429 __btrfs_submit_bio_done); 8430 goto err; 8431 } else if (write) { 8432 /* 8433 * If we aren't doing async submit, calculate the csum of the 8434 * bio now. 8435 */ 8436 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8437 if (ret) 8438 goto err; 8439 } else { 8440 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8441 file_offset); 8442 if (ret) 8443 goto err; 8444 } 8445 map: 8446 ret = btrfs_map_bio(fs_info, bio, 0, async_submit); 8447 err: 8448 bio_put(bio); 8449 return ret; 8450 } 8451 8452 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip, 8453 int skip_sum) 8454 { 8455 struct inode *inode = dip->inode; 8456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8457 struct btrfs_root *root = BTRFS_I(inode)->root; 8458 struct bio *bio; 8459 struct bio *orig_bio = dip->orig_bio; 8460 struct bio_vec *bvec; 8461 u64 start_sector = orig_bio->bi_iter.bi_sector; 8462 u64 file_offset = dip->logical_offset; 8463 u64 submit_len = 0; 8464 u64 map_length; 8465 u32 blocksize = fs_info->sectorsize; 8466 int async_submit = 0; 8467 int nr_sectors; 8468 int ret; 8469 int i, j; 8470 8471 map_length = orig_bio->bi_iter.bi_size; 8472 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8473 &map_length, NULL, 0); 8474 if (ret) 8475 return -EIO; 8476 8477 if (map_length >= orig_bio->bi_iter.bi_size) { 8478 bio = orig_bio; 8479 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8480 goto submit; 8481 } 8482 8483 /* async crcs make it difficult to collect full stripe writes. */ 8484 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8485 async_submit = 0; 8486 else 8487 async_submit = 1; 8488 8489 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8490 if (!bio) 8491 return -ENOMEM; 8492 8493 bio->bi_opf = orig_bio->bi_opf; 8494 bio->bi_private = dip; 8495 bio->bi_end_io = btrfs_end_dio_bio; 8496 btrfs_io_bio(bio)->logical = file_offset; 8497 atomic_inc(&dip->pending_bios); 8498 8499 bio_for_each_segment_all(bvec, orig_bio, j) { 8500 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8501 i = 0; 8502 next_block: 8503 if (unlikely(map_length < submit_len + blocksize || 8504 bio_add_page(bio, bvec->bv_page, blocksize, 8505 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8506 /* 8507 * inc the count before we submit the bio so 8508 * we know the end IO handler won't happen before 8509 * we inc the count. Otherwise, the dip might get freed 8510 * before we're done setting it up 8511 */ 8512 atomic_inc(&dip->pending_bios); 8513 ret = __btrfs_submit_dio_bio(bio, inode, 8514 file_offset, skip_sum, 8515 async_submit); 8516 if (ret) { 8517 bio_put(bio); 8518 atomic_dec(&dip->pending_bios); 8519 goto out_err; 8520 } 8521 8522 start_sector += submit_len >> 9; 8523 file_offset += submit_len; 8524 8525 submit_len = 0; 8526 8527 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8528 start_sector, GFP_NOFS); 8529 if (!bio) 8530 goto out_err; 8531 bio->bi_opf = orig_bio->bi_opf; 8532 bio->bi_private = dip; 8533 bio->bi_end_io = btrfs_end_dio_bio; 8534 btrfs_io_bio(bio)->logical = file_offset; 8535 8536 map_length = orig_bio->bi_iter.bi_size; 8537 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8538 start_sector << 9, 8539 &map_length, NULL, 0); 8540 if (ret) { 8541 bio_put(bio); 8542 goto out_err; 8543 } 8544 8545 goto next_block; 8546 } else { 8547 submit_len += blocksize; 8548 if (--nr_sectors) { 8549 i++; 8550 goto next_block; 8551 } 8552 } 8553 } 8554 8555 submit: 8556 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum, 8557 async_submit); 8558 if (!ret) 8559 return 0; 8560 8561 bio_put(bio); 8562 out_err: 8563 dip->errors = 1; 8564 /* 8565 * before atomic variable goto zero, we must 8566 * make sure dip->errors is perceived to be set. 8567 */ 8568 smp_mb__before_atomic(); 8569 if (atomic_dec_and_test(&dip->pending_bios)) 8570 bio_io_error(dip->orig_bio); 8571 8572 /* bio_end_io() will handle error, so we needn't return it */ 8573 return 0; 8574 } 8575 8576 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8577 loff_t file_offset) 8578 { 8579 struct btrfs_dio_private *dip = NULL; 8580 struct bio *io_bio = NULL; 8581 struct btrfs_io_bio *btrfs_bio; 8582 int skip_sum; 8583 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8584 int ret = 0; 8585 8586 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8587 8588 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8589 if (!io_bio) { 8590 ret = -ENOMEM; 8591 goto free_ordered; 8592 } 8593 8594 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8595 if (!dip) { 8596 ret = -ENOMEM; 8597 goto free_ordered; 8598 } 8599 8600 dip->private = dio_bio->bi_private; 8601 dip->inode = inode; 8602 dip->logical_offset = file_offset; 8603 dip->bytes = dio_bio->bi_iter.bi_size; 8604 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8605 io_bio->bi_private = dip; 8606 dip->orig_bio = io_bio; 8607 dip->dio_bio = dio_bio; 8608 atomic_set(&dip->pending_bios, 0); 8609 btrfs_bio = btrfs_io_bio(io_bio); 8610 btrfs_bio->logical = file_offset; 8611 8612 if (write) { 8613 io_bio->bi_end_io = btrfs_endio_direct_write; 8614 } else { 8615 io_bio->bi_end_io = btrfs_endio_direct_read; 8616 dip->subio_endio = btrfs_subio_endio_read; 8617 } 8618 8619 /* 8620 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8621 * even if we fail to submit a bio, because in such case we do the 8622 * corresponding error handling below and it must not be done a second 8623 * time by btrfs_direct_IO(). 8624 */ 8625 if (write) { 8626 struct btrfs_dio_data *dio_data = current->journal_info; 8627 8628 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8629 dip->bytes; 8630 dio_data->unsubmitted_oe_range_start = 8631 dio_data->unsubmitted_oe_range_end; 8632 } 8633 8634 ret = btrfs_submit_direct_hook(dip, skip_sum); 8635 if (!ret) 8636 return; 8637 8638 if (btrfs_bio->end_io) 8639 btrfs_bio->end_io(btrfs_bio, ret); 8640 8641 free_ordered: 8642 /* 8643 * If we arrived here it means either we failed to submit the dip 8644 * or we either failed to clone the dio_bio or failed to allocate the 8645 * dip. If we cloned the dio_bio and allocated the dip, we can just 8646 * call bio_endio against our io_bio so that we get proper resource 8647 * cleanup if we fail to submit the dip, otherwise, we must do the 8648 * same as btrfs_endio_direct_[write|read] because we can't call these 8649 * callbacks - they require an allocated dip and a clone of dio_bio. 8650 */ 8651 if (io_bio && dip) { 8652 io_bio->bi_error = -EIO; 8653 bio_endio(io_bio); 8654 /* 8655 * The end io callbacks free our dip, do the final put on io_bio 8656 * and all the cleanup and final put for dio_bio (through 8657 * dio_end_io()). 8658 */ 8659 dip = NULL; 8660 io_bio = NULL; 8661 } else { 8662 if (write) 8663 __endio_write_update_ordered(inode, 8664 file_offset, 8665 dio_bio->bi_iter.bi_size, 8666 false); 8667 else 8668 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8669 file_offset + dio_bio->bi_iter.bi_size - 1); 8670 8671 dio_bio->bi_error = -EIO; 8672 /* 8673 * Releases and cleans up our dio_bio, no need to bio_put() 8674 * nor bio_endio()/bio_io_error() against dio_bio. 8675 */ 8676 dio_end_io(dio_bio, ret); 8677 } 8678 if (io_bio) 8679 bio_put(io_bio); 8680 kfree(dip); 8681 } 8682 8683 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8684 struct kiocb *iocb, 8685 const struct iov_iter *iter, loff_t offset) 8686 { 8687 int seg; 8688 int i; 8689 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8690 ssize_t retval = -EINVAL; 8691 8692 if (offset & blocksize_mask) 8693 goto out; 8694 8695 if (iov_iter_alignment(iter) & blocksize_mask) 8696 goto out; 8697 8698 /* If this is a write we don't need to check anymore */ 8699 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8700 return 0; 8701 /* 8702 * Check to make sure we don't have duplicate iov_base's in this 8703 * iovec, if so return EINVAL, otherwise we'll get csum errors 8704 * when reading back. 8705 */ 8706 for (seg = 0; seg < iter->nr_segs; seg++) { 8707 for (i = seg + 1; i < iter->nr_segs; i++) { 8708 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8709 goto out; 8710 } 8711 } 8712 retval = 0; 8713 out: 8714 return retval; 8715 } 8716 8717 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8718 { 8719 struct file *file = iocb->ki_filp; 8720 struct inode *inode = file->f_mapping->host; 8721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8722 struct btrfs_dio_data dio_data = { 0 }; 8723 loff_t offset = iocb->ki_pos; 8724 size_t count = 0; 8725 int flags = 0; 8726 bool wakeup = true; 8727 bool relock = false; 8728 ssize_t ret; 8729 8730 if (check_direct_IO(fs_info, iocb, iter, offset)) 8731 return 0; 8732 8733 inode_dio_begin(inode); 8734 smp_mb__after_atomic(); 8735 8736 /* 8737 * The generic stuff only does filemap_write_and_wait_range, which 8738 * isn't enough if we've written compressed pages to this area, so 8739 * we need to flush the dirty pages again to make absolutely sure 8740 * that any outstanding dirty pages are on disk. 8741 */ 8742 count = iov_iter_count(iter); 8743 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8744 &BTRFS_I(inode)->runtime_flags)) 8745 filemap_fdatawrite_range(inode->i_mapping, offset, 8746 offset + count - 1); 8747 8748 if (iov_iter_rw(iter) == WRITE) { 8749 /* 8750 * If the write DIO is beyond the EOF, we need update 8751 * the isize, but it is protected by i_mutex. So we can 8752 * not unlock the i_mutex at this case. 8753 */ 8754 if (offset + count <= inode->i_size) { 8755 dio_data.overwrite = 1; 8756 inode_unlock(inode); 8757 relock = true; 8758 } 8759 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8760 if (ret) 8761 goto out; 8762 dio_data.outstanding_extents = count_max_extents(count); 8763 8764 /* 8765 * We need to know how many extents we reserved so that we can 8766 * do the accounting properly if we go over the number we 8767 * originally calculated. Abuse current->journal_info for this. 8768 */ 8769 dio_data.reserve = round_up(count, 8770 fs_info->sectorsize); 8771 dio_data.unsubmitted_oe_range_start = (u64)offset; 8772 dio_data.unsubmitted_oe_range_end = (u64)offset; 8773 current->journal_info = &dio_data; 8774 down_read(&BTRFS_I(inode)->dio_sem); 8775 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8776 &BTRFS_I(inode)->runtime_flags)) { 8777 inode_dio_end(inode); 8778 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8779 wakeup = false; 8780 } 8781 8782 ret = __blockdev_direct_IO(iocb, inode, 8783 fs_info->fs_devices->latest_bdev, 8784 iter, btrfs_get_blocks_direct, NULL, 8785 btrfs_submit_direct, flags); 8786 if (iov_iter_rw(iter) == WRITE) { 8787 up_read(&BTRFS_I(inode)->dio_sem); 8788 current->journal_info = NULL; 8789 if (ret < 0 && ret != -EIOCBQUEUED) { 8790 if (dio_data.reserve) 8791 btrfs_delalloc_release_space(inode, offset, 8792 dio_data.reserve); 8793 /* 8794 * On error we might have left some ordered extents 8795 * without submitting corresponding bios for them, so 8796 * cleanup them up to avoid other tasks getting them 8797 * and waiting for them to complete forever. 8798 */ 8799 if (dio_data.unsubmitted_oe_range_start < 8800 dio_data.unsubmitted_oe_range_end) 8801 __endio_write_update_ordered(inode, 8802 dio_data.unsubmitted_oe_range_start, 8803 dio_data.unsubmitted_oe_range_end - 8804 dio_data.unsubmitted_oe_range_start, 8805 false); 8806 } else if (ret >= 0 && (size_t)ret < count) 8807 btrfs_delalloc_release_space(inode, offset, 8808 count - (size_t)ret); 8809 } 8810 out: 8811 if (wakeup) 8812 inode_dio_end(inode); 8813 if (relock) 8814 inode_lock(inode); 8815 8816 return ret; 8817 } 8818 8819 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8820 8821 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8822 __u64 start, __u64 len) 8823 { 8824 int ret; 8825 8826 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8827 if (ret) 8828 return ret; 8829 8830 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8831 } 8832 8833 int btrfs_readpage(struct file *file, struct page *page) 8834 { 8835 struct extent_io_tree *tree; 8836 tree = &BTRFS_I(page->mapping->host)->io_tree; 8837 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8838 } 8839 8840 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8841 { 8842 struct extent_io_tree *tree; 8843 struct inode *inode = page->mapping->host; 8844 int ret; 8845 8846 if (current->flags & PF_MEMALLOC) { 8847 redirty_page_for_writepage(wbc, page); 8848 unlock_page(page); 8849 return 0; 8850 } 8851 8852 /* 8853 * If we are under memory pressure we will call this directly from the 8854 * VM, we need to make sure we have the inode referenced for the ordered 8855 * extent. If not just return like we didn't do anything. 8856 */ 8857 if (!igrab(inode)) { 8858 redirty_page_for_writepage(wbc, page); 8859 return AOP_WRITEPAGE_ACTIVATE; 8860 } 8861 tree = &BTRFS_I(page->mapping->host)->io_tree; 8862 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8863 btrfs_add_delayed_iput(inode); 8864 return ret; 8865 } 8866 8867 static int btrfs_writepages(struct address_space *mapping, 8868 struct writeback_control *wbc) 8869 { 8870 struct extent_io_tree *tree; 8871 8872 tree = &BTRFS_I(mapping->host)->io_tree; 8873 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8874 } 8875 8876 static int 8877 btrfs_readpages(struct file *file, struct address_space *mapping, 8878 struct list_head *pages, unsigned nr_pages) 8879 { 8880 struct extent_io_tree *tree; 8881 tree = &BTRFS_I(mapping->host)->io_tree; 8882 return extent_readpages(tree, mapping, pages, nr_pages, 8883 btrfs_get_extent); 8884 } 8885 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8886 { 8887 struct extent_io_tree *tree; 8888 struct extent_map_tree *map; 8889 int ret; 8890 8891 tree = &BTRFS_I(page->mapping->host)->io_tree; 8892 map = &BTRFS_I(page->mapping->host)->extent_tree; 8893 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8894 if (ret == 1) { 8895 ClearPagePrivate(page); 8896 set_page_private(page, 0); 8897 put_page(page); 8898 } 8899 return ret; 8900 } 8901 8902 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8903 { 8904 if (PageWriteback(page) || PageDirty(page)) 8905 return 0; 8906 return __btrfs_releasepage(page, gfp_flags); 8907 } 8908 8909 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8910 unsigned int length) 8911 { 8912 struct inode *inode = page->mapping->host; 8913 struct extent_io_tree *tree; 8914 struct btrfs_ordered_extent *ordered; 8915 struct extent_state *cached_state = NULL; 8916 u64 page_start = page_offset(page); 8917 u64 page_end = page_start + PAGE_SIZE - 1; 8918 u64 start; 8919 u64 end; 8920 int inode_evicting = inode->i_state & I_FREEING; 8921 8922 /* 8923 * we have the page locked, so new writeback can't start, 8924 * and the dirty bit won't be cleared while we are here. 8925 * 8926 * Wait for IO on this page so that we can safely clear 8927 * the PagePrivate2 bit and do ordered accounting 8928 */ 8929 wait_on_page_writeback(page); 8930 8931 tree = &BTRFS_I(inode)->io_tree; 8932 if (offset) { 8933 btrfs_releasepage(page, GFP_NOFS); 8934 return; 8935 } 8936 8937 if (!inode_evicting) 8938 lock_extent_bits(tree, page_start, page_end, &cached_state); 8939 again: 8940 start = page_start; 8941 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8942 page_end - start + 1); 8943 if (ordered) { 8944 end = min(page_end, ordered->file_offset + ordered->len - 1); 8945 /* 8946 * IO on this page will never be started, so we need 8947 * to account for any ordered extents now 8948 */ 8949 if (!inode_evicting) 8950 clear_extent_bit(tree, start, end, 8951 EXTENT_DIRTY | EXTENT_DELALLOC | 8952 EXTENT_DELALLOC_NEW | 8953 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8954 EXTENT_DEFRAG, 1, 0, &cached_state, 8955 GFP_NOFS); 8956 /* 8957 * whoever cleared the private bit is responsible 8958 * for the finish_ordered_io 8959 */ 8960 if (TestClearPagePrivate2(page)) { 8961 struct btrfs_ordered_inode_tree *tree; 8962 u64 new_len; 8963 8964 tree = &BTRFS_I(inode)->ordered_tree; 8965 8966 spin_lock_irq(&tree->lock); 8967 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8968 new_len = start - ordered->file_offset; 8969 if (new_len < ordered->truncated_len) 8970 ordered->truncated_len = new_len; 8971 spin_unlock_irq(&tree->lock); 8972 8973 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8974 start, 8975 end - start + 1, 1)) 8976 btrfs_finish_ordered_io(ordered); 8977 } 8978 btrfs_put_ordered_extent(ordered); 8979 if (!inode_evicting) { 8980 cached_state = NULL; 8981 lock_extent_bits(tree, start, end, 8982 &cached_state); 8983 } 8984 8985 start = end + 1; 8986 if (start < page_end) 8987 goto again; 8988 } 8989 8990 /* 8991 * Qgroup reserved space handler 8992 * Page here will be either 8993 * 1) Already written to disk 8994 * In this case, its reserved space is released from data rsv map 8995 * and will be freed by delayed_ref handler finally. 8996 * So even we call qgroup_free_data(), it won't decrease reserved 8997 * space. 8998 * 2) Not written to disk 8999 * This means the reserved space should be freed here. However, 9000 * if a truncate invalidates the page (by clearing PageDirty) 9001 * and the page is accounted for while allocating extent 9002 * in btrfs_check_data_free_space() we let delayed_ref to 9003 * free the entire extent. 9004 */ 9005 if (PageDirty(page)) 9006 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 9007 if (!inode_evicting) { 9008 clear_extent_bit(tree, page_start, page_end, 9009 EXTENT_LOCKED | EXTENT_DIRTY | 9010 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 9011 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 9012 &cached_state, GFP_NOFS); 9013 9014 __btrfs_releasepage(page, GFP_NOFS); 9015 } 9016 9017 ClearPageChecked(page); 9018 if (PagePrivate(page)) { 9019 ClearPagePrivate(page); 9020 set_page_private(page, 0); 9021 put_page(page); 9022 } 9023 } 9024 9025 /* 9026 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 9027 * called from a page fault handler when a page is first dirtied. Hence we must 9028 * be careful to check for EOF conditions here. We set the page up correctly 9029 * for a written page which means we get ENOSPC checking when writing into 9030 * holes and correct delalloc and unwritten extent mapping on filesystems that 9031 * support these features. 9032 * 9033 * We are not allowed to take the i_mutex here so we have to play games to 9034 * protect against truncate races as the page could now be beyond EOF. Because 9035 * vmtruncate() writes the inode size before removing pages, once we have the 9036 * page lock we can determine safely if the page is beyond EOF. If it is not 9037 * beyond EOF, then the page is guaranteed safe against truncation until we 9038 * unlock the page. 9039 */ 9040 int btrfs_page_mkwrite(struct vm_fault *vmf) 9041 { 9042 struct page *page = vmf->page; 9043 struct inode *inode = file_inode(vmf->vma->vm_file); 9044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9045 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9046 struct btrfs_ordered_extent *ordered; 9047 struct extent_state *cached_state = NULL; 9048 char *kaddr; 9049 unsigned long zero_start; 9050 loff_t size; 9051 int ret; 9052 int reserved = 0; 9053 u64 reserved_space; 9054 u64 page_start; 9055 u64 page_end; 9056 u64 end; 9057 9058 reserved_space = PAGE_SIZE; 9059 9060 sb_start_pagefault(inode->i_sb); 9061 page_start = page_offset(page); 9062 page_end = page_start + PAGE_SIZE - 1; 9063 end = page_end; 9064 9065 /* 9066 * Reserving delalloc space after obtaining the page lock can lead to 9067 * deadlock. For example, if a dirty page is locked by this function 9068 * and the call to btrfs_delalloc_reserve_space() ends up triggering 9069 * dirty page write out, then the btrfs_writepage() function could 9070 * end up waiting indefinitely to get a lock on the page currently 9071 * being processed by btrfs_page_mkwrite() function. 9072 */ 9073 ret = btrfs_delalloc_reserve_space(inode, page_start, 9074 reserved_space); 9075 if (!ret) { 9076 ret = file_update_time(vmf->vma->vm_file); 9077 reserved = 1; 9078 } 9079 if (ret) { 9080 if (ret == -ENOMEM) 9081 ret = VM_FAULT_OOM; 9082 else /* -ENOSPC, -EIO, etc */ 9083 ret = VM_FAULT_SIGBUS; 9084 if (reserved) 9085 goto out; 9086 goto out_noreserve; 9087 } 9088 9089 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 9090 again: 9091 lock_page(page); 9092 size = i_size_read(inode); 9093 9094 if ((page->mapping != inode->i_mapping) || 9095 (page_start >= size)) { 9096 /* page got truncated out from underneath us */ 9097 goto out_unlock; 9098 } 9099 wait_on_page_writeback(page); 9100 9101 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 9102 set_page_extent_mapped(page); 9103 9104 /* 9105 * we can't set the delalloc bits if there are pending ordered 9106 * extents. Drop our locks and wait for them to finish 9107 */ 9108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 9109 PAGE_SIZE); 9110 if (ordered) { 9111 unlock_extent_cached(io_tree, page_start, page_end, 9112 &cached_state, GFP_NOFS); 9113 unlock_page(page); 9114 btrfs_start_ordered_extent(inode, ordered, 1); 9115 btrfs_put_ordered_extent(ordered); 9116 goto again; 9117 } 9118 9119 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 9120 reserved_space = round_up(size - page_start, 9121 fs_info->sectorsize); 9122 if (reserved_space < PAGE_SIZE) { 9123 end = page_start + reserved_space - 1; 9124 spin_lock(&BTRFS_I(inode)->lock); 9125 BTRFS_I(inode)->outstanding_extents++; 9126 spin_unlock(&BTRFS_I(inode)->lock); 9127 btrfs_delalloc_release_space(inode, page_start, 9128 PAGE_SIZE - reserved_space); 9129 } 9130 } 9131 9132 /* 9133 * page_mkwrite gets called when the page is firstly dirtied after it's 9134 * faulted in, but write(2) could also dirty a page and set delalloc 9135 * bits, thus in this case for space account reason, we still need to 9136 * clear any delalloc bits within this page range since we have to 9137 * reserve data&meta space before lock_page() (see above comments). 9138 */ 9139 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9140 EXTENT_DIRTY | EXTENT_DELALLOC | 9141 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9142 0, 0, &cached_state, GFP_NOFS); 9143 9144 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9145 &cached_state, 0); 9146 if (ret) { 9147 unlock_extent_cached(io_tree, page_start, page_end, 9148 &cached_state, GFP_NOFS); 9149 ret = VM_FAULT_SIGBUS; 9150 goto out_unlock; 9151 } 9152 ret = 0; 9153 9154 /* page is wholly or partially inside EOF */ 9155 if (page_start + PAGE_SIZE > size) 9156 zero_start = size & ~PAGE_MASK; 9157 else 9158 zero_start = PAGE_SIZE; 9159 9160 if (zero_start != PAGE_SIZE) { 9161 kaddr = kmap(page); 9162 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9163 flush_dcache_page(page); 9164 kunmap(page); 9165 } 9166 ClearPageChecked(page); 9167 set_page_dirty(page); 9168 SetPageUptodate(page); 9169 9170 BTRFS_I(inode)->last_trans = fs_info->generation; 9171 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9172 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9173 9174 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9175 9176 out_unlock: 9177 if (!ret) { 9178 sb_end_pagefault(inode->i_sb); 9179 return VM_FAULT_LOCKED; 9180 } 9181 unlock_page(page); 9182 out: 9183 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9184 out_noreserve: 9185 sb_end_pagefault(inode->i_sb); 9186 return ret; 9187 } 9188 9189 static int btrfs_truncate(struct inode *inode) 9190 { 9191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9192 struct btrfs_root *root = BTRFS_I(inode)->root; 9193 struct btrfs_block_rsv *rsv; 9194 int ret = 0; 9195 int err = 0; 9196 struct btrfs_trans_handle *trans; 9197 u64 mask = fs_info->sectorsize - 1; 9198 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9199 9200 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9201 (u64)-1); 9202 if (ret) 9203 return ret; 9204 9205 /* 9206 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9207 * 3 things going on here 9208 * 9209 * 1) We need to reserve space for our orphan item and the space to 9210 * delete our orphan item. Lord knows we don't want to have a dangling 9211 * orphan item because we didn't reserve space to remove it. 9212 * 9213 * 2) We need to reserve space to update our inode. 9214 * 9215 * 3) We need to have something to cache all the space that is going to 9216 * be free'd up by the truncate operation, but also have some slack 9217 * space reserved in case it uses space during the truncate (thank you 9218 * very much snapshotting). 9219 * 9220 * And we need these to all be separate. The fact is we can use a lot of 9221 * space doing the truncate, and we have no earthly idea how much space 9222 * we will use, so we need the truncate reservation to be separate so it 9223 * doesn't end up using space reserved for updating the inode or 9224 * removing the orphan item. We also need to be able to stop the 9225 * transaction and start a new one, which means we need to be able to 9226 * update the inode several times, and we have no idea of knowing how 9227 * many times that will be, so we can't just reserve 1 item for the 9228 * entirety of the operation, so that has to be done separately as well. 9229 * Then there is the orphan item, which does indeed need to be held on 9230 * to for the whole operation, and we need nobody to touch this reserved 9231 * space except the orphan code. 9232 * 9233 * So that leaves us with 9234 * 9235 * 1) root->orphan_block_rsv - for the orphan deletion. 9236 * 2) rsv - for the truncate reservation, which we will steal from the 9237 * transaction reservation. 9238 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9239 * updating the inode. 9240 */ 9241 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9242 if (!rsv) 9243 return -ENOMEM; 9244 rsv->size = min_size; 9245 rsv->failfast = 1; 9246 9247 /* 9248 * 1 for the truncate slack space 9249 * 1 for updating the inode. 9250 */ 9251 trans = btrfs_start_transaction(root, 2); 9252 if (IS_ERR(trans)) { 9253 err = PTR_ERR(trans); 9254 goto out; 9255 } 9256 9257 /* Migrate the slack space for the truncate to our reserve */ 9258 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9259 min_size, 0); 9260 BUG_ON(ret); 9261 9262 /* 9263 * So if we truncate and then write and fsync we normally would just 9264 * write the extents that changed, which is a problem if we need to 9265 * first truncate that entire inode. So set this flag so we write out 9266 * all of the extents in the inode to the sync log so we're completely 9267 * safe. 9268 */ 9269 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9270 trans->block_rsv = rsv; 9271 9272 while (1) { 9273 ret = btrfs_truncate_inode_items(trans, root, inode, 9274 inode->i_size, 9275 BTRFS_EXTENT_DATA_KEY); 9276 if (ret != -ENOSPC && ret != -EAGAIN) { 9277 err = ret; 9278 break; 9279 } 9280 9281 trans->block_rsv = &fs_info->trans_block_rsv; 9282 ret = btrfs_update_inode(trans, root, inode); 9283 if (ret) { 9284 err = ret; 9285 break; 9286 } 9287 9288 btrfs_end_transaction(trans); 9289 btrfs_btree_balance_dirty(fs_info); 9290 9291 trans = btrfs_start_transaction(root, 2); 9292 if (IS_ERR(trans)) { 9293 ret = err = PTR_ERR(trans); 9294 trans = NULL; 9295 break; 9296 } 9297 9298 btrfs_block_rsv_release(fs_info, rsv, -1); 9299 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9300 rsv, min_size, 0); 9301 BUG_ON(ret); /* shouldn't happen */ 9302 trans->block_rsv = rsv; 9303 } 9304 9305 if (ret == 0 && inode->i_nlink > 0) { 9306 trans->block_rsv = root->orphan_block_rsv; 9307 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 9308 if (ret) 9309 err = ret; 9310 } 9311 9312 if (trans) { 9313 trans->block_rsv = &fs_info->trans_block_rsv; 9314 ret = btrfs_update_inode(trans, root, inode); 9315 if (ret && !err) 9316 err = ret; 9317 9318 ret = btrfs_end_transaction(trans); 9319 btrfs_btree_balance_dirty(fs_info); 9320 } 9321 out: 9322 btrfs_free_block_rsv(fs_info, rsv); 9323 9324 if (ret && !err) 9325 err = ret; 9326 9327 return err; 9328 } 9329 9330 /* 9331 * create a new subvolume directory/inode (helper for the ioctl). 9332 */ 9333 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9334 struct btrfs_root *new_root, 9335 struct btrfs_root *parent_root, 9336 u64 new_dirid) 9337 { 9338 struct inode *inode; 9339 int err; 9340 u64 index = 0; 9341 9342 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9343 new_dirid, new_dirid, 9344 S_IFDIR | (~current_umask() & S_IRWXUGO), 9345 &index); 9346 if (IS_ERR(inode)) 9347 return PTR_ERR(inode); 9348 inode->i_op = &btrfs_dir_inode_operations; 9349 inode->i_fop = &btrfs_dir_file_operations; 9350 9351 set_nlink(inode, 1); 9352 btrfs_i_size_write(BTRFS_I(inode), 0); 9353 unlock_new_inode(inode); 9354 9355 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9356 if (err) 9357 btrfs_err(new_root->fs_info, 9358 "error inheriting subvolume %llu properties: %d", 9359 new_root->root_key.objectid, err); 9360 9361 err = btrfs_update_inode(trans, new_root, inode); 9362 9363 iput(inode); 9364 return err; 9365 } 9366 9367 struct inode *btrfs_alloc_inode(struct super_block *sb) 9368 { 9369 struct btrfs_inode *ei; 9370 struct inode *inode; 9371 9372 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9373 if (!ei) 9374 return NULL; 9375 9376 ei->root = NULL; 9377 ei->generation = 0; 9378 ei->last_trans = 0; 9379 ei->last_sub_trans = 0; 9380 ei->logged_trans = 0; 9381 ei->delalloc_bytes = 0; 9382 ei->new_delalloc_bytes = 0; 9383 ei->defrag_bytes = 0; 9384 ei->disk_i_size = 0; 9385 ei->flags = 0; 9386 ei->csum_bytes = 0; 9387 ei->index_cnt = (u64)-1; 9388 ei->dir_index = 0; 9389 ei->last_unlink_trans = 0; 9390 ei->last_log_commit = 0; 9391 ei->delayed_iput_count = 0; 9392 9393 spin_lock_init(&ei->lock); 9394 ei->outstanding_extents = 0; 9395 ei->reserved_extents = 0; 9396 9397 ei->runtime_flags = 0; 9398 ei->force_compress = BTRFS_COMPRESS_NONE; 9399 9400 ei->delayed_node = NULL; 9401 9402 ei->i_otime.tv_sec = 0; 9403 ei->i_otime.tv_nsec = 0; 9404 9405 inode = &ei->vfs_inode; 9406 extent_map_tree_init(&ei->extent_tree); 9407 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9408 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9409 ei->io_tree.track_uptodate = 1; 9410 ei->io_failure_tree.track_uptodate = 1; 9411 atomic_set(&ei->sync_writers, 0); 9412 mutex_init(&ei->log_mutex); 9413 mutex_init(&ei->delalloc_mutex); 9414 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9415 INIT_LIST_HEAD(&ei->delalloc_inodes); 9416 INIT_LIST_HEAD(&ei->delayed_iput); 9417 RB_CLEAR_NODE(&ei->rb_node); 9418 init_rwsem(&ei->dio_sem); 9419 9420 return inode; 9421 } 9422 9423 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9424 void btrfs_test_destroy_inode(struct inode *inode) 9425 { 9426 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9427 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9428 } 9429 #endif 9430 9431 static void btrfs_i_callback(struct rcu_head *head) 9432 { 9433 struct inode *inode = container_of(head, struct inode, i_rcu); 9434 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9435 } 9436 9437 void btrfs_destroy_inode(struct inode *inode) 9438 { 9439 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9440 struct btrfs_ordered_extent *ordered; 9441 struct btrfs_root *root = BTRFS_I(inode)->root; 9442 9443 WARN_ON(!hlist_empty(&inode->i_dentry)); 9444 WARN_ON(inode->i_data.nrpages); 9445 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9446 WARN_ON(BTRFS_I(inode)->reserved_extents); 9447 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9448 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9449 WARN_ON(BTRFS_I(inode)->csum_bytes); 9450 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9451 9452 /* 9453 * This can happen where we create an inode, but somebody else also 9454 * created the same inode and we need to destroy the one we already 9455 * created. 9456 */ 9457 if (!root) 9458 goto free; 9459 9460 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9461 &BTRFS_I(inode)->runtime_flags)) { 9462 btrfs_info(fs_info, "inode %llu still on the orphan list", 9463 btrfs_ino(BTRFS_I(inode))); 9464 atomic_dec(&root->orphan_inodes); 9465 } 9466 9467 while (1) { 9468 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9469 if (!ordered) 9470 break; 9471 else { 9472 btrfs_err(fs_info, 9473 "found ordered extent %llu %llu on inode cleanup", 9474 ordered->file_offset, ordered->len); 9475 btrfs_remove_ordered_extent(inode, ordered); 9476 btrfs_put_ordered_extent(ordered); 9477 btrfs_put_ordered_extent(ordered); 9478 } 9479 } 9480 btrfs_qgroup_check_reserved_leak(inode); 9481 inode_tree_del(inode); 9482 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9483 free: 9484 call_rcu(&inode->i_rcu, btrfs_i_callback); 9485 } 9486 9487 int btrfs_drop_inode(struct inode *inode) 9488 { 9489 struct btrfs_root *root = BTRFS_I(inode)->root; 9490 9491 if (root == NULL) 9492 return 1; 9493 9494 /* the snap/subvol tree is on deleting */ 9495 if (btrfs_root_refs(&root->root_item) == 0) 9496 return 1; 9497 else 9498 return generic_drop_inode(inode); 9499 } 9500 9501 static void init_once(void *foo) 9502 { 9503 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9504 9505 inode_init_once(&ei->vfs_inode); 9506 } 9507 9508 void btrfs_destroy_cachep(void) 9509 { 9510 /* 9511 * Make sure all delayed rcu free inodes are flushed before we 9512 * destroy cache. 9513 */ 9514 rcu_barrier(); 9515 kmem_cache_destroy(btrfs_inode_cachep); 9516 kmem_cache_destroy(btrfs_trans_handle_cachep); 9517 kmem_cache_destroy(btrfs_transaction_cachep); 9518 kmem_cache_destroy(btrfs_path_cachep); 9519 kmem_cache_destroy(btrfs_free_space_cachep); 9520 } 9521 9522 int btrfs_init_cachep(void) 9523 { 9524 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9525 sizeof(struct btrfs_inode), 0, 9526 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9527 init_once); 9528 if (!btrfs_inode_cachep) 9529 goto fail; 9530 9531 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9532 sizeof(struct btrfs_trans_handle), 0, 9533 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9534 if (!btrfs_trans_handle_cachep) 9535 goto fail; 9536 9537 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9538 sizeof(struct btrfs_transaction), 0, 9539 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9540 if (!btrfs_transaction_cachep) 9541 goto fail; 9542 9543 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9544 sizeof(struct btrfs_path), 0, 9545 SLAB_MEM_SPREAD, NULL); 9546 if (!btrfs_path_cachep) 9547 goto fail; 9548 9549 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9550 sizeof(struct btrfs_free_space), 0, 9551 SLAB_MEM_SPREAD, NULL); 9552 if (!btrfs_free_space_cachep) 9553 goto fail; 9554 9555 return 0; 9556 fail: 9557 btrfs_destroy_cachep(); 9558 return -ENOMEM; 9559 } 9560 9561 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9562 u32 request_mask, unsigned int flags) 9563 { 9564 u64 delalloc_bytes; 9565 struct inode *inode = d_inode(path->dentry); 9566 u32 blocksize = inode->i_sb->s_blocksize; 9567 9568 generic_fillattr(inode, stat); 9569 stat->dev = BTRFS_I(inode)->root->anon_dev; 9570 9571 spin_lock(&BTRFS_I(inode)->lock); 9572 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9573 spin_unlock(&BTRFS_I(inode)->lock); 9574 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9575 ALIGN(delalloc_bytes, blocksize)) >> 9; 9576 return 0; 9577 } 9578 9579 static int btrfs_rename_exchange(struct inode *old_dir, 9580 struct dentry *old_dentry, 9581 struct inode *new_dir, 9582 struct dentry *new_dentry) 9583 { 9584 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9585 struct btrfs_trans_handle *trans; 9586 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9587 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9588 struct inode *new_inode = new_dentry->d_inode; 9589 struct inode *old_inode = old_dentry->d_inode; 9590 struct timespec ctime = current_time(old_inode); 9591 struct dentry *parent; 9592 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9593 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9594 u64 old_idx = 0; 9595 u64 new_idx = 0; 9596 u64 root_objectid; 9597 int ret; 9598 bool root_log_pinned = false; 9599 bool dest_log_pinned = false; 9600 9601 /* we only allow rename subvolume link between subvolumes */ 9602 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9603 return -EXDEV; 9604 9605 /* close the race window with snapshot create/destroy ioctl */ 9606 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9607 down_read(&fs_info->subvol_sem); 9608 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9609 down_read(&fs_info->subvol_sem); 9610 9611 /* 9612 * We want to reserve the absolute worst case amount of items. So if 9613 * both inodes are subvols and we need to unlink them then that would 9614 * require 4 item modifications, but if they are both normal inodes it 9615 * would require 5 item modifications, so we'll assume their normal 9616 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9617 * should cover the worst case number of items we'll modify. 9618 */ 9619 trans = btrfs_start_transaction(root, 12); 9620 if (IS_ERR(trans)) { 9621 ret = PTR_ERR(trans); 9622 goto out_notrans; 9623 } 9624 9625 /* 9626 * We need to find a free sequence number both in the source and 9627 * in the destination directory for the exchange. 9628 */ 9629 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9630 if (ret) 9631 goto out_fail; 9632 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9633 if (ret) 9634 goto out_fail; 9635 9636 BTRFS_I(old_inode)->dir_index = 0ULL; 9637 BTRFS_I(new_inode)->dir_index = 0ULL; 9638 9639 /* Reference for the source. */ 9640 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9641 /* force full log commit if subvolume involved. */ 9642 btrfs_set_log_full_commit(fs_info, trans); 9643 } else { 9644 btrfs_pin_log_trans(root); 9645 root_log_pinned = true; 9646 ret = btrfs_insert_inode_ref(trans, dest, 9647 new_dentry->d_name.name, 9648 new_dentry->d_name.len, 9649 old_ino, 9650 btrfs_ino(BTRFS_I(new_dir)), 9651 old_idx); 9652 if (ret) 9653 goto out_fail; 9654 } 9655 9656 /* And now for the dest. */ 9657 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9658 /* force full log commit if subvolume involved. */ 9659 btrfs_set_log_full_commit(fs_info, trans); 9660 } else { 9661 btrfs_pin_log_trans(dest); 9662 dest_log_pinned = true; 9663 ret = btrfs_insert_inode_ref(trans, root, 9664 old_dentry->d_name.name, 9665 old_dentry->d_name.len, 9666 new_ino, 9667 btrfs_ino(BTRFS_I(old_dir)), 9668 new_idx); 9669 if (ret) 9670 goto out_fail; 9671 } 9672 9673 /* Update inode version and ctime/mtime. */ 9674 inode_inc_iversion(old_dir); 9675 inode_inc_iversion(new_dir); 9676 inode_inc_iversion(old_inode); 9677 inode_inc_iversion(new_inode); 9678 old_dir->i_ctime = old_dir->i_mtime = ctime; 9679 new_dir->i_ctime = new_dir->i_mtime = ctime; 9680 old_inode->i_ctime = ctime; 9681 new_inode->i_ctime = ctime; 9682 9683 if (old_dentry->d_parent != new_dentry->d_parent) { 9684 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9685 BTRFS_I(old_inode), 1); 9686 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9687 BTRFS_I(new_inode), 1); 9688 } 9689 9690 /* src is a subvolume */ 9691 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9692 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9693 ret = btrfs_unlink_subvol(trans, root, old_dir, 9694 root_objectid, 9695 old_dentry->d_name.name, 9696 old_dentry->d_name.len); 9697 } else { /* src is an inode */ 9698 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9699 BTRFS_I(old_dentry->d_inode), 9700 old_dentry->d_name.name, 9701 old_dentry->d_name.len); 9702 if (!ret) 9703 ret = btrfs_update_inode(trans, root, old_inode); 9704 } 9705 if (ret) { 9706 btrfs_abort_transaction(trans, ret); 9707 goto out_fail; 9708 } 9709 9710 /* dest is a subvolume */ 9711 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9712 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9713 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9714 root_objectid, 9715 new_dentry->d_name.name, 9716 new_dentry->d_name.len); 9717 } else { /* dest is an inode */ 9718 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9719 BTRFS_I(new_dentry->d_inode), 9720 new_dentry->d_name.name, 9721 new_dentry->d_name.len); 9722 if (!ret) 9723 ret = btrfs_update_inode(trans, dest, new_inode); 9724 } 9725 if (ret) { 9726 btrfs_abort_transaction(trans, ret); 9727 goto out_fail; 9728 } 9729 9730 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9731 new_dentry->d_name.name, 9732 new_dentry->d_name.len, 0, old_idx); 9733 if (ret) { 9734 btrfs_abort_transaction(trans, ret); 9735 goto out_fail; 9736 } 9737 9738 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9739 old_dentry->d_name.name, 9740 old_dentry->d_name.len, 0, new_idx); 9741 if (ret) { 9742 btrfs_abort_transaction(trans, ret); 9743 goto out_fail; 9744 } 9745 9746 if (old_inode->i_nlink == 1) 9747 BTRFS_I(old_inode)->dir_index = old_idx; 9748 if (new_inode->i_nlink == 1) 9749 BTRFS_I(new_inode)->dir_index = new_idx; 9750 9751 if (root_log_pinned) { 9752 parent = new_dentry->d_parent; 9753 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9754 parent); 9755 btrfs_end_log_trans(root); 9756 root_log_pinned = false; 9757 } 9758 if (dest_log_pinned) { 9759 parent = old_dentry->d_parent; 9760 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9761 parent); 9762 btrfs_end_log_trans(dest); 9763 dest_log_pinned = false; 9764 } 9765 out_fail: 9766 /* 9767 * If we have pinned a log and an error happened, we unpin tasks 9768 * trying to sync the log and force them to fallback to a transaction 9769 * commit if the log currently contains any of the inodes involved in 9770 * this rename operation (to ensure we do not persist a log with an 9771 * inconsistent state for any of these inodes or leading to any 9772 * inconsistencies when replayed). If the transaction was aborted, the 9773 * abortion reason is propagated to userspace when attempting to commit 9774 * the transaction. If the log does not contain any of these inodes, we 9775 * allow the tasks to sync it. 9776 */ 9777 if (ret && (root_log_pinned || dest_log_pinned)) { 9778 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9779 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9780 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9781 (new_inode && 9782 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9783 btrfs_set_log_full_commit(fs_info, trans); 9784 9785 if (root_log_pinned) { 9786 btrfs_end_log_trans(root); 9787 root_log_pinned = false; 9788 } 9789 if (dest_log_pinned) { 9790 btrfs_end_log_trans(dest); 9791 dest_log_pinned = false; 9792 } 9793 } 9794 ret = btrfs_end_transaction(trans); 9795 out_notrans: 9796 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9797 up_read(&fs_info->subvol_sem); 9798 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9799 up_read(&fs_info->subvol_sem); 9800 9801 return ret; 9802 } 9803 9804 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9805 struct btrfs_root *root, 9806 struct inode *dir, 9807 struct dentry *dentry) 9808 { 9809 int ret; 9810 struct inode *inode; 9811 u64 objectid; 9812 u64 index; 9813 9814 ret = btrfs_find_free_ino(root, &objectid); 9815 if (ret) 9816 return ret; 9817 9818 inode = btrfs_new_inode(trans, root, dir, 9819 dentry->d_name.name, 9820 dentry->d_name.len, 9821 btrfs_ino(BTRFS_I(dir)), 9822 objectid, 9823 S_IFCHR | WHITEOUT_MODE, 9824 &index); 9825 9826 if (IS_ERR(inode)) { 9827 ret = PTR_ERR(inode); 9828 return ret; 9829 } 9830 9831 inode->i_op = &btrfs_special_inode_operations; 9832 init_special_inode(inode, inode->i_mode, 9833 WHITEOUT_DEV); 9834 9835 ret = btrfs_init_inode_security(trans, inode, dir, 9836 &dentry->d_name); 9837 if (ret) 9838 goto out; 9839 9840 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9841 BTRFS_I(inode), 0, index); 9842 if (ret) 9843 goto out; 9844 9845 ret = btrfs_update_inode(trans, root, inode); 9846 out: 9847 unlock_new_inode(inode); 9848 if (ret) 9849 inode_dec_link_count(inode); 9850 iput(inode); 9851 9852 return ret; 9853 } 9854 9855 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9856 struct inode *new_dir, struct dentry *new_dentry, 9857 unsigned int flags) 9858 { 9859 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9860 struct btrfs_trans_handle *trans; 9861 unsigned int trans_num_items; 9862 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9863 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9864 struct inode *new_inode = d_inode(new_dentry); 9865 struct inode *old_inode = d_inode(old_dentry); 9866 u64 index = 0; 9867 u64 root_objectid; 9868 int ret; 9869 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9870 bool log_pinned = false; 9871 9872 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9873 return -EPERM; 9874 9875 /* we only allow rename subvolume link between subvolumes */ 9876 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9877 return -EXDEV; 9878 9879 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9880 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9881 return -ENOTEMPTY; 9882 9883 if (S_ISDIR(old_inode->i_mode) && new_inode && 9884 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9885 return -ENOTEMPTY; 9886 9887 9888 /* check for collisions, even if the name isn't there */ 9889 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9890 new_dentry->d_name.name, 9891 new_dentry->d_name.len); 9892 9893 if (ret) { 9894 if (ret == -EEXIST) { 9895 /* we shouldn't get 9896 * eexist without a new_inode */ 9897 if (WARN_ON(!new_inode)) { 9898 return ret; 9899 } 9900 } else { 9901 /* maybe -EOVERFLOW */ 9902 return ret; 9903 } 9904 } 9905 ret = 0; 9906 9907 /* 9908 * we're using rename to replace one file with another. Start IO on it 9909 * now so we don't add too much work to the end of the transaction 9910 */ 9911 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9912 filemap_flush(old_inode->i_mapping); 9913 9914 /* close the racy window with snapshot create/destroy ioctl */ 9915 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9916 down_read(&fs_info->subvol_sem); 9917 /* 9918 * We want to reserve the absolute worst case amount of items. So if 9919 * both inodes are subvols and we need to unlink them then that would 9920 * require 4 item modifications, but if they are both normal inodes it 9921 * would require 5 item modifications, so we'll assume they are normal 9922 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9923 * should cover the worst case number of items we'll modify. 9924 * If our rename has the whiteout flag, we need more 5 units for the 9925 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9926 * when selinux is enabled). 9927 */ 9928 trans_num_items = 11; 9929 if (flags & RENAME_WHITEOUT) 9930 trans_num_items += 5; 9931 trans = btrfs_start_transaction(root, trans_num_items); 9932 if (IS_ERR(trans)) { 9933 ret = PTR_ERR(trans); 9934 goto out_notrans; 9935 } 9936 9937 if (dest != root) 9938 btrfs_record_root_in_trans(trans, dest); 9939 9940 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9941 if (ret) 9942 goto out_fail; 9943 9944 BTRFS_I(old_inode)->dir_index = 0ULL; 9945 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9946 /* force full log commit if subvolume involved. */ 9947 btrfs_set_log_full_commit(fs_info, trans); 9948 } else { 9949 btrfs_pin_log_trans(root); 9950 log_pinned = true; 9951 ret = btrfs_insert_inode_ref(trans, dest, 9952 new_dentry->d_name.name, 9953 new_dentry->d_name.len, 9954 old_ino, 9955 btrfs_ino(BTRFS_I(new_dir)), index); 9956 if (ret) 9957 goto out_fail; 9958 } 9959 9960 inode_inc_iversion(old_dir); 9961 inode_inc_iversion(new_dir); 9962 inode_inc_iversion(old_inode); 9963 old_dir->i_ctime = old_dir->i_mtime = 9964 new_dir->i_ctime = new_dir->i_mtime = 9965 old_inode->i_ctime = current_time(old_dir); 9966 9967 if (old_dentry->d_parent != new_dentry->d_parent) 9968 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9969 BTRFS_I(old_inode), 1); 9970 9971 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9972 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9973 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9974 old_dentry->d_name.name, 9975 old_dentry->d_name.len); 9976 } else { 9977 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9978 BTRFS_I(d_inode(old_dentry)), 9979 old_dentry->d_name.name, 9980 old_dentry->d_name.len); 9981 if (!ret) 9982 ret = btrfs_update_inode(trans, root, old_inode); 9983 } 9984 if (ret) { 9985 btrfs_abort_transaction(trans, ret); 9986 goto out_fail; 9987 } 9988 9989 if (new_inode) { 9990 inode_inc_iversion(new_inode); 9991 new_inode->i_ctime = current_time(new_inode); 9992 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9993 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9994 root_objectid = BTRFS_I(new_inode)->location.objectid; 9995 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9996 root_objectid, 9997 new_dentry->d_name.name, 9998 new_dentry->d_name.len); 9999 BUG_ON(new_inode->i_nlink == 0); 10000 } else { 10001 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 10002 BTRFS_I(d_inode(new_dentry)), 10003 new_dentry->d_name.name, 10004 new_dentry->d_name.len); 10005 } 10006 if (!ret && new_inode->i_nlink == 0) 10007 ret = btrfs_orphan_add(trans, 10008 BTRFS_I(d_inode(new_dentry))); 10009 if (ret) { 10010 btrfs_abort_transaction(trans, ret); 10011 goto out_fail; 10012 } 10013 } 10014 10015 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 10016 new_dentry->d_name.name, 10017 new_dentry->d_name.len, 0, index); 10018 if (ret) { 10019 btrfs_abort_transaction(trans, ret); 10020 goto out_fail; 10021 } 10022 10023 if (old_inode->i_nlink == 1) 10024 BTRFS_I(old_inode)->dir_index = index; 10025 10026 if (log_pinned) { 10027 struct dentry *parent = new_dentry->d_parent; 10028 10029 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 10030 parent); 10031 btrfs_end_log_trans(root); 10032 log_pinned = false; 10033 } 10034 10035 if (flags & RENAME_WHITEOUT) { 10036 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 10037 old_dentry); 10038 10039 if (ret) { 10040 btrfs_abort_transaction(trans, ret); 10041 goto out_fail; 10042 } 10043 } 10044 out_fail: 10045 /* 10046 * If we have pinned the log and an error happened, we unpin tasks 10047 * trying to sync the log and force them to fallback to a transaction 10048 * commit if the log currently contains any of the inodes involved in 10049 * this rename operation (to ensure we do not persist a log with an 10050 * inconsistent state for any of these inodes or leading to any 10051 * inconsistencies when replayed). If the transaction was aborted, the 10052 * abortion reason is propagated to userspace when attempting to commit 10053 * the transaction. If the log does not contain any of these inodes, we 10054 * allow the tasks to sync it. 10055 */ 10056 if (ret && log_pinned) { 10057 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 10058 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 10059 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 10060 (new_inode && 10061 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 10062 btrfs_set_log_full_commit(fs_info, trans); 10063 10064 btrfs_end_log_trans(root); 10065 log_pinned = false; 10066 } 10067 btrfs_end_transaction(trans); 10068 out_notrans: 10069 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10070 up_read(&fs_info->subvol_sem); 10071 10072 return ret; 10073 } 10074 10075 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10076 struct inode *new_dir, struct dentry *new_dentry, 10077 unsigned int flags) 10078 { 10079 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10080 return -EINVAL; 10081 10082 if (flags & RENAME_EXCHANGE) 10083 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10084 new_dentry); 10085 10086 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10087 } 10088 10089 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10090 { 10091 struct btrfs_delalloc_work *delalloc_work; 10092 struct inode *inode; 10093 10094 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10095 work); 10096 inode = delalloc_work->inode; 10097 filemap_flush(inode->i_mapping); 10098 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10099 &BTRFS_I(inode)->runtime_flags)) 10100 filemap_flush(inode->i_mapping); 10101 10102 if (delalloc_work->delay_iput) 10103 btrfs_add_delayed_iput(inode); 10104 else 10105 iput(inode); 10106 complete(&delalloc_work->completion); 10107 } 10108 10109 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 10110 int delay_iput) 10111 { 10112 struct btrfs_delalloc_work *work; 10113 10114 work = kmalloc(sizeof(*work), GFP_NOFS); 10115 if (!work) 10116 return NULL; 10117 10118 init_completion(&work->completion); 10119 INIT_LIST_HEAD(&work->list); 10120 work->inode = inode; 10121 work->delay_iput = delay_iput; 10122 WARN_ON_ONCE(!inode); 10123 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10124 btrfs_run_delalloc_work, NULL, NULL); 10125 10126 return work; 10127 } 10128 10129 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 10130 { 10131 wait_for_completion(&work->completion); 10132 kfree(work); 10133 } 10134 10135 /* 10136 * some fairly slow code that needs optimization. This walks the list 10137 * of all the inodes with pending delalloc and forces them to disk. 10138 */ 10139 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 10140 int nr) 10141 { 10142 struct btrfs_inode *binode; 10143 struct inode *inode; 10144 struct btrfs_delalloc_work *work, *next; 10145 struct list_head works; 10146 struct list_head splice; 10147 int ret = 0; 10148 10149 INIT_LIST_HEAD(&works); 10150 INIT_LIST_HEAD(&splice); 10151 10152 mutex_lock(&root->delalloc_mutex); 10153 spin_lock(&root->delalloc_lock); 10154 list_splice_init(&root->delalloc_inodes, &splice); 10155 while (!list_empty(&splice)) { 10156 binode = list_entry(splice.next, struct btrfs_inode, 10157 delalloc_inodes); 10158 10159 list_move_tail(&binode->delalloc_inodes, 10160 &root->delalloc_inodes); 10161 inode = igrab(&binode->vfs_inode); 10162 if (!inode) { 10163 cond_resched_lock(&root->delalloc_lock); 10164 continue; 10165 } 10166 spin_unlock(&root->delalloc_lock); 10167 10168 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10169 if (!work) { 10170 if (delay_iput) 10171 btrfs_add_delayed_iput(inode); 10172 else 10173 iput(inode); 10174 ret = -ENOMEM; 10175 goto out; 10176 } 10177 list_add_tail(&work->list, &works); 10178 btrfs_queue_work(root->fs_info->flush_workers, 10179 &work->work); 10180 ret++; 10181 if (nr != -1 && ret >= nr) 10182 goto out; 10183 cond_resched(); 10184 spin_lock(&root->delalloc_lock); 10185 } 10186 spin_unlock(&root->delalloc_lock); 10187 10188 out: 10189 list_for_each_entry_safe(work, next, &works, list) { 10190 list_del_init(&work->list); 10191 btrfs_wait_and_free_delalloc_work(work); 10192 } 10193 10194 if (!list_empty_careful(&splice)) { 10195 spin_lock(&root->delalloc_lock); 10196 list_splice_tail(&splice, &root->delalloc_inodes); 10197 spin_unlock(&root->delalloc_lock); 10198 } 10199 mutex_unlock(&root->delalloc_mutex); 10200 return ret; 10201 } 10202 10203 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10204 { 10205 struct btrfs_fs_info *fs_info = root->fs_info; 10206 int ret; 10207 10208 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10209 return -EROFS; 10210 10211 ret = __start_delalloc_inodes(root, delay_iput, -1); 10212 if (ret > 0) 10213 ret = 0; 10214 /* 10215 * the filemap_flush will queue IO into the worker threads, but 10216 * we have to make sure the IO is actually started and that 10217 * ordered extents get created before we return 10218 */ 10219 atomic_inc(&fs_info->async_submit_draining); 10220 while (atomic_read(&fs_info->nr_async_submits) || 10221 atomic_read(&fs_info->async_delalloc_pages)) { 10222 wait_event(fs_info->async_submit_wait, 10223 (atomic_read(&fs_info->nr_async_submits) == 0 && 10224 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10225 } 10226 atomic_dec(&fs_info->async_submit_draining); 10227 return ret; 10228 } 10229 10230 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10231 int nr) 10232 { 10233 struct btrfs_root *root; 10234 struct list_head splice; 10235 int ret; 10236 10237 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10238 return -EROFS; 10239 10240 INIT_LIST_HEAD(&splice); 10241 10242 mutex_lock(&fs_info->delalloc_root_mutex); 10243 spin_lock(&fs_info->delalloc_root_lock); 10244 list_splice_init(&fs_info->delalloc_roots, &splice); 10245 while (!list_empty(&splice) && nr) { 10246 root = list_first_entry(&splice, struct btrfs_root, 10247 delalloc_root); 10248 root = btrfs_grab_fs_root(root); 10249 BUG_ON(!root); 10250 list_move_tail(&root->delalloc_root, 10251 &fs_info->delalloc_roots); 10252 spin_unlock(&fs_info->delalloc_root_lock); 10253 10254 ret = __start_delalloc_inodes(root, delay_iput, nr); 10255 btrfs_put_fs_root(root); 10256 if (ret < 0) 10257 goto out; 10258 10259 if (nr != -1) { 10260 nr -= ret; 10261 WARN_ON(nr < 0); 10262 } 10263 spin_lock(&fs_info->delalloc_root_lock); 10264 } 10265 spin_unlock(&fs_info->delalloc_root_lock); 10266 10267 ret = 0; 10268 atomic_inc(&fs_info->async_submit_draining); 10269 while (atomic_read(&fs_info->nr_async_submits) || 10270 atomic_read(&fs_info->async_delalloc_pages)) { 10271 wait_event(fs_info->async_submit_wait, 10272 (atomic_read(&fs_info->nr_async_submits) == 0 && 10273 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10274 } 10275 atomic_dec(&fs_info->async_submit_draining); 10276 out: 10277 if (!list_empty_careful(&splice)) { 10278 spin_lock(&fs_info->delalloc_root_lock); 10279 list_splice_tail(&splice, &fs_info->delalloc_roots); 10280 spin_unlock(&fs_info->delalloc_root_lock); 10281 } 10282 mutex_unlock(&fs_info->delalloc_root_mutex); 10283 return ret; 10284 } 10285 10286 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10287 const char *symname) 10288 { 10289 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10290 struct btrfs_trans_handle *trans; 10291 struct btrfs_root *root = BTRFS_I(dir)->root; 10292 struct btrfs_path *path; 10293 struct btrfs_key key; 10294 struct inode *inode = NULL; 10295 int err; 10296 int drop_inode = 0; 10297 u64 objectid; 10298 u64 index = 0; 10299 int name_len; 10300 int datasize; 10301 unsigned long ptr; 10302 struct btrfs_file_extent_item *ei; 10303 struct extent_buffer *leaf; 10304 10305 name_len = strlen(symname); 10306 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10307 return -ENAMETOOLONG; 10308 10309 /* 10310 * 2 items for inode item and ref 10311 * 2 items for dir items 10312 * 1 item for updating parent inode item 10313 * 1 item for the inline extent item 10314 * 1 item for xattr if selinux is on 10315 */ 10316 trans = btrfs_start_transaction(root, 7); 10317 if (IS_ERR(trans)) 10318 return PTR_ERR(trans); 10319 10320 err = btrfs_find_free_ino(root, &objectid); 10321 if (err) 10322 goto out_unlock; 10323 10324 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10325 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10326 objectid, S_IFLNK|S_IRWXUGO, &index); 10327 if (IS_ERR(inode)) { 10328 err = PTR_ERR(inode); 10329 goto out_unlock; 10330 } 10331 10332 /* 10333 * If the active LSM wants to access the inode during 10334 * d_instantiate it needs these. Smack checks to see 10335 * if the filesystem supports xattrs by looking at the 10336 * ops vector. 10337 */ 10338 inode->i_fop = &btrfs_file_operations; 10339 inode->i_op = &btrfs_file_inode_operations; 10340 inode->i_mapping->a_ops = &btrfs_aops; 10341 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10342 10343 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10344 if (err) 10345 goto out_unlock_inode; 10346 10347 path = btrfs_alloc_path(); 10348 if (!path) { 10349 err = -ENOMEM; 10350 goto out_unlock_inode; 10351 } 10352 key.objectid = btrfs_ino(BTRFS_I(inode)); 10353 key.offset = 0; 10354 key.type = BTRFS_EXTENT_DATA_KEY; 10355 datasize = btrfs_file_extent_calc_inline_size(name_len); 10356 err = btrfs_insert_empty_item(trans, root, path, &key, 10357 datasize); 10358 if (err) { 10359 btrfs_free_path(path); 10360 goto out_unlock_inode; 10361 } 10362 leaf = path->nodes[0]; 10363 ei = btrfs_item_ptr(leaf, path->slots[0], 10364 struct btrfs_file_extent_item); 10365 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10366 btrfs_set_file_extent_type(leaf, ei, 10367 BTRFS_FILE_EXTENT_INLINE); 10368 btrfs_set_file_extent_encryption(leaf, ei, 0); 10369 btrfs_set_file_extent_compression(leaf, ei, 0); 10370 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10371 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10372 10373 ptr = btrfs_file_extent_inline_start(ei); 10374 write_extent_buffer(leaf, symname, ptr, name_len); 10375 btrfs_mark_buffer_dirty(leaf); 10376 btrfs_free_path(path); 10377 10378 inode->i_op = &btrfs_symlink_inode_operations; 10379 inode_nohighmem(inode); 10380 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10381 inode_set_bytes(inode, name_len); 10382 btrfs_i_size_write(BTRFS_I(inode), name_len); 10383 err = btrfs_update_inode(trans, root, inode); 10384 /* 10385 * Last step, add directory indexes for our symlink inode. This is the 10386 * last step to avoid extra cleanup of these indexes if an error happens 10387 * elsewhere above. 10388 */ 10389 if (!err) 10390 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10391 BTRFS_I(inode), 0, index); 10392 if (err) { 10393 drop_inode = 1; 10394 goto out_unlock_inode; 10395 } 10396 10397 unlock_new_inode(inode); 10398 d_instantiate(dentry, inode); 10399 10400 out_unlock: 10401 btrfs_end_transaction(trans); 10402 if (drop_inode) { 10403 inode_dec_link_count(inode); 10404 iput(inode); 10405 } 10406 btrfs_btree_balance_dirty(fs_info); 10407 return err; 10408 10409 out_unlock_inode: 10410 drop_inode = 1; 10411 unlock_new_inode(inode); 10412 goto out_unlock; 10413 } 10414 10415 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10416 u64 start, u64 num_bytes, u64 min_size, 10417 loff_t actual_len, u64 *alloc_hint, 10418 struct btrfs_trans_handle *trans) 10419 { 10420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10421 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10422 struct extent_map *em; 10423 struct btrfs_root *root = BTRFS_I(inode)->root; 10424 struct btrfs_key ins; 10425 u64 cur_offset = start; 10426 u64 i_size; 10427 u64 cur_bytes; 10428 u64 last_alloc = (u64)-1; 10429 int ret = 0; 10430 bool own_trans = true; 10431 u64 end = start + num_bytes - 1; 10432 10433 if (trans) 10434 own_trans = false; 10435 while (num_bytes > 0) { 10436 if (own_trans) { 10437 trans = btrfs_start_transaction(root, 3); 10438 if (IS_ERR(trans)) { 10439 ret = PTR_ERR(trans); 10440 break; 10441 } 10442 } 10443 10444 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10445 cur_bytes = max(cur_bytes, min_size); 10446 /* 10447 * If we are severely fragmented we could end up with really 10448 * small allocations, so if the allocator is returning small 10449 * chunks lets make its job easier by only searching for those 10450 * sized chunks. 10451 */ 10452 cur_bytes = min(cur_bytes, last_alloc); 10453 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10454 min_size, 0, *alloc_hint, &ins, 1, 0); 10455 if (ret) { 10456 if (own_trans) 10457 btrfs_end_transaction(trans); 10458 break; 10459 } 10460 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10461 10462 last_alloc = ins.offset; 10463 ret = insert_reserved_file_extent(trans, inode, 10464 cur_offset, ins.objectid, 10465 ins.offset, ins.offset, 10466 ins.offset, 0, 0, 0, 10467 BTRFS_FILE_EXTENT_PREALLOC); 10468 if (ret) { 10469 btrfs_free_reserved_extent(fs_info, ins.objectid, 10470 ins.offset, 0); 10471 btrfs_abort_transaction(trans, ret); 10472 if (own_trans) 10473 btrfs_end_transaction(trans); 10474 break; 10475 } 10476 10477 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10478 cur_offset + ins.offset -1, 0); 10479 10480 em = alloc_extent_map(); 10481 if (!em) { 10482 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10483 &BTRFS_I(inode)->runtime_flags); 10484 goto next; 10485 } 10486 10487 em->start = cur_offset; 10488 em->orig_start = cur_offset; 10489 em->len = ins.offset; 10490 em->block_start = ins.objectid; 10491 em->block_len = ins.offset; 10492 em->orig_block_len = ins.offset; 10493 em->ram_bytes = ins.offset; 10494 em->bdev = fs_info->fs_devices->latest_bdev; 10495 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10496 em->generation = trans->transid; 10497 10498 while (1) { 10499 write_lock(&em_tree->lock); 10500 ret = add_extent_mapping(em_tree, em, 1); 10501 write_unlock(&em_tree->lock); 10502 if (ret != -EEXIST) 10503 break; 10504 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10505 cur_offset + ins.offset - 1, 10506 0); 10507 } 10508 free_extent_map(em); 10509 next: 10510 num_bytes -= ins.offset; 10511 cur_offset += ins.offset; 10512 *alloc_hint = ins.objectid + ins.offset; 10513 10514 inode_inc_iversion(inode); 10515 inode->i_ctime = current_time(inode); 10516 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10517 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10518 (actual_len > inode->i_size) && 10519 (cur_offset > inode->i_size)) { 10520 if (cur_offset > actual_len) 10521 i_size = actual_len; 10522 else 10523 i_size = cur_offset; 10524 i_size_write(inode, i_size); 10525 btrfs_ordered_update_i_size(inode, i_size, NULL); 10526 } 10527 10528 ret = btrfs_update_inode(trans, root, inode); 10529 10530 if (ret) { 10531 btrfs_abort_transaction(trans, ret); 10532 if (own_trans) 10533 btrfs_end_transaction(trans); 10534 break; 10535 } 10536 10537 if (own_trans) 10538 btrfs_end_transaction(trans); 10539 } 10540 if (cur_offset < end) 10541 btrfs_free_reserved_data_space(inode, cur_offset, 10542 end - cur_offset + 1); 10543 return ret; 10544 } 10545 10546 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10547 u64 start, u64 num_bytes, u64 min_size, 10548 loff_t actual_len, u64 *alloc_hint) 10549 { 10550 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10551 min_size, actual_len, alloc_hint, 10552 NULL); 10553 } 10554 10555 int btrfs_prealloc_file_range_trans(struct inode *inode, 10556 struct btrfs_trans_handle *trans, int mode, 10557 u64 start, u64 num_bytes, u64 min_size, 10558 loff_t actual_len, u64 *alloc_hint) 10559 { 10560 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10561 min_size, actual_len, alloc_hint, trans); 10562 } 10563 10564 static int btrfs_set_page_dirty(struct page *page) 10565 { 10566 return __set_page_dirty_nobuffers(page); 10567 } 10568 10569 static int btrfs_permission(struct inode *inode, int mask) 10570 { 10571 struct btrfs_root *root = BTRFS_I(inode)->root; 10572 umode_t mode = inode->i_mode; 10573 10574 if (mask & MAY_WRITE && 10575 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10576 if (btrfs_root_readonly(root)) 10577 return -EROFS; 10578 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10579 return -EACCES; 10580 } 10581 return generic_permission(inode, mask); 10582 } 10583 10584 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10585 { 10586 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10587 struct btrfs_trans_handle *trans; 10588 struct btrfs_root *root = BTRFS_I(dir)->root; 10589 struct inode *inode = NULL; 10590 u64 objectid; 10591 u64 index; 10592 int ret = 0; 10593 10594 /* 10595 * 5 units required for adding orphan entry 10596 */ 10597 trans = btrfs_start_transaction(root, 5); 10598 if (IS_ERR(trans)) 10599 return PTR_ERR(trans); 10600 10601 ret = btrfs_find_free_ino(root, &objectid); 10602 if (ret) 10603 goto out; 10604 10605 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10606 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10607 if (IS_ERR(inode)) { 10608 ret = PTR_ERR(inode); 10609 inode = NULL; 10610 goto out; 10611 } 10612 10613 inode->i_fop = &btrfs_file_operations; 10614 inode->i_op = &btrfs_file_inode_operations; 10615 10616 inode->i_mapping->a_ops = &btrfs_aops; 10617 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10618 10619 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10620 if (ret) 10621 goto out_inode; 10622 10623 ret = btrfs_update_inode(trans, root, inode); 10624 if (ret) 10625 goto out_inode; 10626 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10627 if (ret) 10628 goto out_inode; 10629 10630 /* 10631 * We set number of links to 0 in btrfs_new_inode(), and here we set 10632 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10633 * through: 10634 * 10635 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10636 */ 10637 set_nlink(inode, 1); 10638 unlock_new_inode(inode); 10639 d_tmpfile(dentry, inode); 10640 mark_inode_dirty(inode); 10641 10642 out: 10643 btrfs_end_transaction(trans); 10644 if (ret) 10645 iput(inode); 10646 btrfs_balance_delayed_items(fs_info); 10647 btrfs_btree_balance_dirty(fs_info); 10648 return ret; 10649 10650 out_inode: 10651 unlock_new_inode(inode); 10652 goto out; 10653 10654 } 10655 10656 __attribute__((const)) 10657 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10658 { 10659 return -EAGAIN; 10660 } 10661 10662 static const struct inode_operations btrfs_dir_inode_operations = { 10663 .getattr = btrfs_getattr, 10664 .lookup = btrfs_lookup, 10665 .create = btrfs_create, 10666 .unlink = btrfs_unlink, 10667 .link = btrfs_link, 10668 .mkdir = btrfs_mkdir, 10669 .rmdir = btrfs_rmdir, 10670 .rename = btrfs_rename2, 10671 .symlink = btrfs_symlink, 10672 .setattr = btrfs_setattr, 10673 .mknod = btrfs_mknod, 10674 .listxattr = btrfs_listxattr, 10675 .permission = btrfs_permission, 10676 .get_acl = btrfs_get_acl, 10677 .set_acl = btrfs_set_acl, 10678 .update_time = btrfs_update_time, 10679 .tmpfile = btrfs_tmpfile, 10680 }; 10681 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10682 .lookup = btrfs_lookup, 10683 .permission = btrfs_permission, 10684 .update_time = btrfs_update_time, 10685 }; 10686 10687 static const struct file_operations btrfs_dir_file_operations = { 10688 .llseek = generic_file_llseek, 10689 .read = generic_read_dir, 10690 .iterate_shared = btrfs_real_readdir, 10691 .unlocked_ioctl = btrfs_ioctl, 10692 #ifdef CONFIG_COMPAT 10693 .compat_ioctl = btrfs_compat_ioctl, 10694 #endif 10695 .release = btrfs_release_file, 10696 .fsync = btrfs_sync_file, 10697 }; 10698 10699 static const struct extent_io_ops btrfs_extent_io_ops = { 10700 /* mandatory callbacks */ 10701 .submit_bio_hook = btrfs_submit_bio_hook, 10702 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10703 .merge_bio_hook = btrfs_merge_bio_hook, 10704 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10705 10706 /* optional callbacks */ 10707 .fill_delalloc = run_delalloc_range, 10708 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10709 .writepage_start_hook = btrfs_writepage_start_hook, 10710 .set_bit_hook = btrfs_set_bit_hook, 10711 .clear_bit_hook = btrfs_clear_bit_hook, 10712 .merge_extent_hook = btrfs_merge_extent_hook, 10713 .split_extent_hook = btrfs_split_extent_hook, 10714 }; 10715 10716 /* 10717 * btrfs doesn't support the bmap operation because swapfiles 10718 * use bmap to make a mapping of extents in the file. They assume 10719 * these extents won't change over the life of the file and they 10720 * use the bmap result to do IO directly to the drive. 10721 * 10722 * the btrfs bmap call would return logical addresses that aren't 10723 * suitable for IO and they also will change frequently as COW 10724 * operations happen. So, swapfile + btrfs == corruption. 10725 * 10726 * For now we're avoiding this by dropping bmap. 10727 */ 10728 static const struct address_space_operations btrfs_aops = { 10729 .readpage = btrfs_readpage, 10730 .writepage = btrfs_writepage, 10731 .writepages = btrfs_writepages, 10732 .readpages = btrfs_readpages, 10733 .direct_IO = btrfs_direct_IO, 10734 .invalidatepage = btrfs_invalidatepage, 10735 .releasepage = btrfs_releasepage, 10736 .set_page_dirty = btrfs_set_page_dirty, 10737 .error_remove_page = generic_error_remove_page, 10738 }; 10739 10740 static const struct address_space_operations btrfs_symlink_aops = { 10741 .readpage = btrfs_readpage, 10742 .writepage = btrfs_writepage, 10743 .invalidatepage = btrfs_invalidatepage, 10744 .releasepage = btrfs_releasepage, 10745 }; 10746 10747 static const struct inode_operations btrfs_file_inode_operations = { 10748 .getattr = btrfs_getattr, 10749 .setattr = btrfs_setattr, 10750 .listxattr = btrfs_listxattr, 10751 .permission = btrfs_permission, 10752 .fiemap = btrfs_fiemap, 10753 .get_acl = btrfs_get_acl, 10754 .set_acl = btrfs_set_acl, 10755 .update_time = btrfs_update_time, 10756 }; 10757 static const struct inode_operations btrfs_special_inode_operations = { 10758 .getattr = btrfs_getattr, 10759 .setattr = btrfs_setattr, 10760 .permission = btrfs_permission, 10761 .listxattr = btrfs_listxattr, 10762 .get_acl = btrfs_get_acl, 10763 .set_acl = btrfs_set_acl, 10764 .update_time = btrfs_update_time, 10765 }; 10766 static const struct inode_operations btrfs_symlink_inode_operations = { 10767 .get_link = page_get_link, 10768 .getattr = btrfs_getattr, 10769 .setattr = btrfs_setattr, 10770 .permission = btrfs_permission, 10771 .listxattr = btrfs_listxattr, 10772 .update_time = btrfs_update_time, 10773 }; 10774 10775 const struct dentry_operations btrfs_dentry_operations = { 10776 .d_delete = btrfs_dentry_delete, 10777 .d_release = btrfs_dentry_release, 10778 }; 10779