1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "ordered-data.h" 39 #include "xattr.h" 40 #include "tree-log.h" 41 #include "volumes.h" 42 #include "compression.h" 43 #include "locking.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "backref.h" 47 #include "props.h" 48 #include "qgroup.h" 49 #include "dedupe.h" 50 #include "delalloc-space.h" 51 52 struct btrfs_iget_args { 53 struct btrfs_key *location; 54 struct btrfs_root *root; 55 }; 56 57 struct btrfs_dio_data { 58 u64 reserve; 59 u64 unsubmitted_oe_range_start; 60 u64 unsubmitted_oe_range_end; 61 int overwrite; 62 }; 63 64 static const struct inode_operations btrfs_dir_inode_operations; 65 static const struct inode_operations btrfs_symlink_inode_operations; 66 static const struct inode_operations btrfs_dir_ro_inode_operations; 67 static const struct inode_operations btrfs_special_inode_operations; 68 static const struct inode_operations btrfs_file_inode_operations; 69 static const struct address_space_operations btrfs_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static const struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 struct kmem_cache *btrfs_trans_handle_cachep; 75 struct kmem_cache *btrfs_path_cachep; 76 struct kmem_cache *btrfs_free_space_cachep; 77 78 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 79 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 81 static noinline int cow_file_range(struct inode *inode, 82 struct page *locked_page, 83 u64 start, u64 end, u64 delalloc_end, 84 int *page_started, unsigned long *nr_written, 85 int unlock, struct btrfs_dedupe_hash *hash); 86 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 87 u64 orig_start, u64 block_start, 88 u64 block_len, u64 orig_block_len, 89 u64 ram_bytes, int compress_type, 90 int type); 91 92 static void __endio_write_update_ordered(struct inode *inode, 93 const u64 offset, const u64 bytes, 94 const bool uptodate); 95 96 /* 97 * Cleanup all submitted ordered extents in specified range to handle errors 98 * from the btrfs_run_delalloc_range() callback. 99 * 100 * NOTE: caller must ensure that when an error happens, it can not call 101 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 102 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 103 * to be released, which we want to happen only when finishing the ordered 104 * extent (btrfs_finish_ordered_io()). 105 */ 106 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 107 struct page *locked_page, 108 u64 offset, u64 bytes) 109 { 110 unsigned long index = offset >> PAGE_SHIFT; 111 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 112 u64 page_start = page_offset(locked_page); 113 u64 page_end = page_start + PAGE_SIZE - 1; 114 115 struct page *page; 116 117 while (index <= end_index) { 118 page = find_get_page(inode->i_mapping, index); 119 index++; 120 if (!page) 121 continue; 122 ClearPagePrivate2(page); 123 put_page(page); 124 } 125 126 /* 127 * In case this page belongs to the delalloc range being instantiated 128 * then skip it, since the first page of a range is going to be 129 * properly cleaned up by the caller of run_delalloc_range 130 */ 131 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 132 offset += PAGE_SIZE; 133 bytes -= PAGE_SIZE; 134 } 135 136 return __endio_write_update_ordered(inode, offset, bytes, false); 137 } 138 139 static int btrfs_dirty_inode(struct inode *inode); 140 141 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 142 void btrfs_test_inode_set_ops(struct inode *inode) 143 { 144 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 145 } 146 #endif 147 148 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 149 struct inode *inode, struct inode *dir, 150 const struct qstr *qstr) 151 { 152 int err; 153 154 err = btrfs_init_acl(trans, inode, dir); 155 if (!err) 156 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 157 return err; 158 } 159 160 /* 161 * this does all the hard work for inserting an inline extent into 162 * the btree. The caller should have done a btrfs_drop_extents so that 163 * no overlapping inline items exist in the btree 164 */ 165 static int insert_inline_extent(struct btrfs_trans_handle *trans, 166 struct btrfs_path *path, int extent_inserted, 167 struct btrfs_root *root, struct inode *inode, 168 u64 start, size_t size, size_t compressed_size, 169 int compress_type, 170 struct page **compressed_pages) 171 { 172 struct extent_buffer *leaf; 173 struct page *page = NULL; 174 char *kaddr; 175 unsigned long ptr; 176 struct btrfs_file_extent_item *ei; 177 int ret; 178 size_t cur_size = size; 179 unsigned long offset; 180 181 if (compressed_size && compressed_pages) 182 cur_size = compressed_size; 183 184 inode_add_bytes(inode, size); 185 186 if (!extent_inserted) { 187 struct btrfs_key key; 188 size_t datasize; 189 190 key.objectid = btrfs_ino(BTRFS_I(inode)); 191 key.offset = start; 192 key.type = BTRFS_EXTENT_DATA_KEY; 193 194 datasize = btrfs_file_extent_calc_inline_size(cur_size); 195 path->leave_spinning = 1; 196 ret = btrfs_insert_empty_item(trans, root, path, &key, 197 datasize); 198 if (ret) 199 goto fail; 200 } 201 leaf = path->nodes[0]; 202 ei = btrfs_item_ptr(leaf, path->slots[0], 203 struct btrfs_file_extent_item); 204 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 205 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 206 btrfs_set_file_extent_encryption(leaf, ei, 0); 207 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 208 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 209 ptr = btrfs_file_extent_inline_start(ei); 210 211 if (compress_type != BTRFS_COMPRESS_NONE) { 212 struct page *cpage; 213 int i = 0; 214 while (compressed_size > 0) { 215 cpage = compressed_pages[i]; 216 cur_size = min_t(unsigned long, compressed_size, 217 PAGE_SIZE); 218 219 kaddr = kmap_atomic(cpage); 220 write_extent_buffer(leaf, kaddr, ptr, cur_size); 221 kunmap_atomic(kaddr); 222 223 i++; 224 ptr += cur_size; 225 compressed_size -= cur_size; 226 } 227 btrfs_set_file_extent_compression(leaf, ei, 228 compress_type); 229 } else { 230 page = find_get_page(inode->i_mapping, 231 start >> PAGE_SHIFT); 232 btrfs_set_file_extent_compression(leaf, ei, 0); 233 kaddr = kmap_atomic(page); 234 offset = offset_in_page(start); 235 write_extent_buffer(leaf, kaddr + offset, ptr, size); 236 kunmap_atomic(kaddr); 237 put_page(page); 238 } 239 btrfs_mark_buffer_dirty(leaf); 240 btrfs_release_path(path); 241 242 /* 243 * we're an inline extent, so nobody can 244 * extend the file past i_size without locking 245 * a page we already have locked. 246 * 247 * We must do any isize and inode updates 248 * before we unlock the pages. Otherwise we 249 * could end up racing with unlink. 250 */ 251 BTRFS_I(inode)->disk_i_size = inode->i_size; 252 ret = btrfs_update_inode(trans, root, inode); 253 254 fail: 255 return ret; 256 } 257 258 259 /* 260 * conditionally insert an inline extent into the file. This 261 * does the checks required to make sure the data is small enough 262 * to fit as an inline extent. 263 */ 264 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 265 u64 end, size_t compressed_size, 266 int compress_type, 267 struct page **compressed_pages) 268 { 269 struct btrfs_root *root = BTRFS_I(inode)->root; 270 struct btrfs_fs_info *fs_info = root->fs_info; 271 struct btrfs_trans_handle *trans; 272 u64 isize = i_size_read(inode); 273 u64 actual_end = min(end + 1, isize); 274 u64 inline_len = actual_end - start; 275 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 276 u64 data_len = inline_len; 277 int ret; 278 struct btrfs_path *path; 279 int extent_inserted = 0; 280 u32 extent_item_size; 281 282 if (compressed_size) 283 data_len = compressed_size; 284 285 if (start > 0 || 286 actual_end > fs_info->sectorsize || 287 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 288 (!compressed_size && 289 (actual_end & (fs_info->sectorsize - 1)) == 0) || 290 end + 1 < isize || 291 data_len > fs_info->max_inline) { 292 return 1; 293 } 294 295 path = btrfs_alloc_path(); 296 if (!path) 297 return -ENOMEM; 298 299 trans = btrfs_join_transaction(root); 300 if (IS_ERR(trans)) { 301 btrfs_free_path(path); 302 return PTR_ERR(trans); 303 } 304 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 305 306 if (compressed_size && compressed_pages) 307 extent_item_size = btrfs_file_extent_calc_inline_size( 308 compressed_size); 309 else 310 extent_item_size = btrfs_file_extent_calc_inline_size( 311 inline_len); 312 313 ret = __btrfs_drop_extents(trans, root, inode, path, 314 start, aligned_end, NULL, 315 1, 1, extent_item_size, &extent_inserted); 316 if (ret) { 317 btrfs_abort_transaction(trans, ret); 318 goto out; 319 } 320 321 if (isize > actual_end) 322 inline_len = min_t(u64, isize, actual_end); 323 ret = insert_inline_extent(trans, path, extent_inserted, 324 root, inode, start, 325 inline_len, compressed_size, 326 compress_type, compressed_pages); 327 if (ret && ret != -ENOSPC) { 328 btrfs_abort_transaction(trans, ret); 329 goto out; 330 } else if (ret == -ENOSPC) { 331 ret = 1; 332 goto out; 333 } 334 335 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 336 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 337 out: 338 /* 339 * Don't forget to free the reserved space, as for inlined extent 340 * it won't count as data extent, free them directly here. 341 * And at reserve time, it's always aligned to page size, so 342 * just free one page here. 343 */ 344 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 345 btrfs_free_path(path); 346 btrfs_end_transaction(trans); 347 return ret; 348 } 349 350 struct async_extent { 351 u64 start; 352 u64 ram_size; 353 u64 compressed_size; 354 struct page **pages; 355 unsigned long nr_pages; 356 int compress_type; 357 struct list_head list; 358 }; 359 360 struct async_chunk { 361 struct inode *inode; 362 struct page *locked_page; 363 u64 start; 364 u64 end; 365 unsigned int write_flags; 366 struct list_head extents; 367 struct btrfs_work work; 368 atomic_t *pending; 369 }; 370 371 struct async_cow { 372 /* Number of chunks in flight; must be first in the structure */ 373 atomic_t num_chunks; 374 struct async_chunk chunks[]; 375 }; 376 377 static noinline int add_async_extent(struct async_chunk *cow, 378 u64 start, u64 ram_size, 379 u64 compressed_size, 380 struct page **pages, 381 unsigned long nr_pages, 382 int compress_type) 383 { 384 struct async_extent *async_extent; 385 386 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 387 BUG_ON(!async_extent); /* -ENOMEM */ 388 async_extent->start = start; 389 async_extent->ram_size = ram_size; 390 async_extent->compressed_size = compressed_size; 391 async_extent->pages = pages; 392 async_extent->nr_pages = nr_pages; 393 async_extent->compress_type = compress_type; 394 list_add_tail(&async_extent->list, &cow->extents); 395 return 0; 396 } 397 398 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 399 { 400 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 401 402 /* force compress */ 403 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 404 return 1; 405 /* defrag ioctl */ 406 if (BTRFS_I(inode)->defrag_compress) 407 return 1; 408 /* bad compression ratios */ 409 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 410 return 0; 411 if (btrfs_test_opt(fs_info, COMPRESS) || 412 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 413 BTRFS_I(inode)->prop_compress) 414 return btrfs_compress_heuristic(inode, start, end); 415 return 0; 416 } 417 418 static inline void inode_should_defrag(struct btrfs_inode *inode, 419 u64 start, u64 end, u64 num_bytes, u64 small_write) 420 { 421 /* If this is a small write inside eof, kick off a defrag */ 422 if (num_bytes < small_write && 423 (start > 0 || end + 1 < inode->disk_i_size)) 424 btrfs_add_inode_defrag(NULL, inode); 425 } 426 427 /* 428 * we create compressed extents in two phases. The first 429 * phase compresses a range of pages that have already been 430 * locked (both pages and state bits are locked). 431 * 432 * This is done inside an ordered work queue, and the compression 433 * is spread across many cpus. The actual IO submission is step 434 * two, and the ordered work queue takes care of making sure that 435 * happens in the same order things were put onto the queue by 436 * writepages and friends. 437 * 438 * If this code finds it can't get good compression, it puts an 439 * entry onto the work queue to write the uncompressed bytes. This 440 * makes sure that both compressed inodes and uncompressed inodes 441 * are written in the same order that the flusher thread sent them 442 * down. 443 */ 444 static noinline void compress_file_range(struct async_chunk *async_chunk, 445 int *num_added) 446 { 447 struct inode *inode = async_chunk->inode; 448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 449 u64 blocksize = fs_info->sectorsize; 450 u64 start = async_chunk->start; 451 u64 end = async_chunk->end; 452 u64 actual_end; 453 int ret = 0; 454 struct page **pages = NULL; 455 unsigned long nr_pages; 456 unsigned long total_compressed = 0; 457 unsigned long total_in = 0; 458 int i; 459 int will_compress; 460 int compress_type = fs_info->compress_type; 461 int redirty = 0; 462 463 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 464 SZ_16K); 465 466 actual_end = min_t(u64, i_size_read(inode), end + 1); 467 again: 468 will_compress = 0; 469 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 470 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 471 nr_pages = min_t(unsigned long, nr_pages, 472 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 473 474 /* 475 * we don't want to send crud past the end of i_size through 476 * compression, that's just a waste of CPU time. So, if the 477 * end of the file is before the start of our current 478 * requested range of bytes, we bail out to the uncompressed 479 * cleanup code that can deal with all of this. 480 * 481 * It isn't really the fastest way to fix things, but this is a 482 * very uncommon corner. 483 */ 484 if (actual_end <= start) 485 goto cleanup_and_bail_uncompressed; 486 487 total_compressed = actual_end - start; 488 489 /* 490 * skip compression for a small file range(<=blocksize) that 491 * isn't an inline extent, since it doesn't save disk space at all. 492 */ 493 if (total_compressed <= blocksize && 494 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 495 goto cleanup_and_bail_uncompressed; 496 497 total_compressed = min_t(unsigned long, total_compressed, 498 BTRFS_MAX_UNCOMPRESSED); 499 total_in = 0; 500 ret = 0; 501 502 /* 503 * we do compression for mount -o compress and when the 504 * inode has not been flagged as nocompress. This flag can 505 * change at any time if we discover bad compression ratios. 506 */ 507 if (inode_need_compress(inode, start, end)) { 508 WARN_ON(pages); 509 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 510 if (!pages) { 511 /* just bail out to the uncompressed code */ 512 nr_pages = 0; 513 goto cont; 514 } 515 516 if (BTRFS_I(inode)->defrag_compress) 517 compress_type = BTRFS_I(inode)->defrag_compress; 518 else if (BTRFS_I(inode)->prop_compress) 519 compress_type = BTRFS_I(inode)->prop_compress; 520 521 /* 522 * we need to call clear_page_dirty_for_io on each 523 * page in the range. Otherwise applications with the file 524 * mmap'd can wander in and change the page contents while 525 * we are compressing them. 526 * 527 * If the compression fails for any reason, we set the pages 528 * dirty again later on. 529 * 530 * Note that the remaining part is redirtied, the start pointer 531 * has moved, the end is the original one. 532 */ 533 if (!redirty) { 534 extent_range_clear_dirty_for_io(inode, start, end); 535 redirty = 1; 536 } 537 538 /* Compression level is applied here and only here */ 539 ret = btrfs_compress_pages( 540 compress_type | (fs_info->compress_level << 4), 541 inode->i_mapping, start, 542 pages, 543 &nr_pages, 544 &total_in, 545 &total_compressed); 546 547 if (!ret) { 548 unsigned long offset = offset_in_page(total_compressed); 549 struct page *page = pages[nr_pages - 1]; 550 char *kaddr; 551 552 /* zero the tail end of the last page, we might be 553 * sending it down to disk 554 */ 555 if (offset) { 556 kaddr = kmap_atomic(page); 557 memset(kaddr + offset, 0, 558 PAGE_SIZE - offset); 559 kunmap_atomic(kaddr); 560 } 561 will_compress = 1; 562 } 563 } 564 cont: 565 if (start == 0) { 566 /* lets try to make an inline extent */ 567 if (ret || total_in < actual_end) { 568 /* we didn't compress the entire range, try 569 * to make an uncompressed inline extent. 570 */ 571 ret = cow_file_range_inline(inode, start, end, 0, 572 BTRFS_COMPRESS_NONE, NULL); 573 } else { 574 /* try making a compressed inline extent */ 575 ret = cow_file_range_inline(inode, start, end, 576 total_compressed, 577 compress_type, pages); 578 } 579 if (ret <= 0) { 580 unsigned long clear_flags = EXTENT_DELALLOC | 581 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 582 EXTENT_DO_ACCOUNTING; 583 unsigned long page_error_op; 584 585 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 586 587 /* 588 * inline extent creation worked or returned error, 589 * we don't need to create any more async work items. 590 * Unlock and free up our temp pages. 591 * 592 * We use DO_ACCOUNTING here because we need the 593 * delalloc_release_metadata to be done _after_ we drop 594 * our outstanding extent for clearing delalloc for this 595 * range. 596 */ 597 extent_clear_unlock_delalloc(inode, start, end, end, 598 NULL, clear_flags, 599 PAGE_UNLOCK | 600 PAGE_CLEAR_DIRTY | 601 PAGE_SET_WRITEBACK | 602 page_error_op | 603 PAGE_END_WRITEBACK); 604 goto free_pages_out; 605 } 606 } 607 608 if (will_compress) { 609 /* 610 * we aren't doing an inline extent round the compressed size 611 * up to a block size boundary so the allocator does sane 612 * things 613 */ 614 total_compressed = ALIGN(total_compressed, blocksize); 615 616 /* 617 * one last check to make sure the compression is really a 618 * win, compare the page count read with the blocks on disk, 619 * compression must free at least one sector size 620 */ 621 total_in = ALIGN(total_in, PAGE_SIZE); 622 if (total_compressed + blocksize <= total_in) { 623 *num_added += 1; 624 625 /* 626 * The async work queues will take care of doing actual 627 * allocation on disk for these compressed pages, and 628 * will submit them to the elevator. 629 */ 630 add_async_extent(async_chunk, start, total_in, 631 total_compressed, pages, nr_pages, 632 compress_type); 633 634 if (start + total_in < end) { 635 start += total_in; 636 pages = NULL; 637 cond_resched(); 638 goto again; 639 } 640 return; 641 } 642 } 643 if (pages) { 644 /* 645 * the compression code ran but failed to make things smaller, 646 * free any pages it allocated and our page pointer array 647 */ 648 for (i = 0; i < nr_pages; i++) { 649 WARN_ON(pages[i]->mapping); 650 put_page(pages[i]); 651 } 652 kfree(pages); 653 pages = NULL; 654 total_compressed = 0; 655 nr_pages = 0; 656 657 /* flag the file so we don't compress in the future */ 658 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 659 !(BTRFS_I(inode)->prop_compress)) { 660 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 661 } 662 } 663 cleanup_and_bail_uncompressed: 664 /* 665 * No compression, but we still need to write the pages in the file 666 * we've been given so far. redirty the locked page if it corresponds 667 * to our extent and set things up for the async work queue to run 668 * cow_file_range to do the normal delalloc dance. 669 */ 670 if (page_offset(async_chunk->locked_page) >= start && 671 page_offset(async_chunk->locked_page) <= end) 672 __set_page_dirty_nobuffers(async_chunk->locked_page); 673 /* unlocked later on in the async handlers */ 674 675 if (redirty) 676 extent_range_redirty_for_io(inode, start, end); 677 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 678 BTRFS_COMPRESS_NONE); 679 *num_added += 1; 680 681 return; 682 683 free_pages_out: 684 for (i = 0; i < nr_pages; i++) { 685 WARN_ON(pages[i]->mapping); 686 put_page(pages[i]); 687 } 688 kfree(pages); 689 } 690 691 static void free_async_extent_pages(struct async_extent *async_extent) 692 { 693 int i; 694 695 if (!async_extent->pages) 696 return; 697 698 for (i = 0; i < async_extent->nr_pages; i++) { 699 WARN_ON(async_extent->pages[i]->mapping); 700 put_page(async_extent->pages[i]); 701 } 702 kfree(async_extent->pages); 703 async_extent->nr_pages = 0; 704 async_extent->pages = NULL; 705 } 706 707 /* 708 * phase two of compressed writeback. This is the ordered portion 709 * of the code, which only gets called in the order the work was 710 * queued. We walk all the async extents created by compress_file_range 711 * and send them down to the disk. 712 */ 713 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 714 { 715 struct inode *inode = async_chunk->inode; 716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 717 struct async_extent *async_extent; 718 u64 alloc_hint = 0; 719 struct btrfs_key ins; 720 struct extent_map *em; 721 struct btrfs_root *root = BTRFS_I(inode)->root; 722 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 723 int ret = 0; 724 725 again: 726 while (!list_empty(&async_chunk->extents)) { 727 async_extent = list_entry(async_chunk->extents.next, 728 struct async_extent, list); 729 list_del(&async_extent->list); 730 731 retry: 732 lock_extent(io_tree, async_extent->start, 733 async_extent->start + async_extent->ram_size - 1); 734 /* did the compression code fall back to uncompressed IO? */ 735 if (!async_extent->pages) { 736 int page_started = 0; 737 unsigned long nr_written = 0; 738 739 /* allocate blocks */ 740 ret = cow_file_range(inode, async_chunk->locked_page, 741 async_extent->start, 742 async_extent->start + 743 async_extent->ram_size - 1, 744 async_extent->start + 745 async_extent->ram_size - 1, 746 &page_started, &nr_written, 0, 747 NULL); 748 749 /* JDM XXX */ 750 751 /* 752 * if page_started, cow_file_range inserted an 753 * inline extent and took care of all the unlocking 754 * and IO for us. Otherwise, we need to submit 755 * all those pages down to the drive. 756 */ 757 if (!page_started && !ret) 758 extent_write_locked_range(inode, 759 async_extent->start, 760 async_extent->start + 761 async_extent->ram_size - 1, 762 WB_SYNC_ALL); 763 else if (ret) 764 unlock_page(async_chunk->locked_page); 765 kfree(async_extent); 766 cond_resched(); 767 continue; 768 } 769 770 ret = btrfs_reserve_extent(root, async_extent->ram_size, 771 async_extent->compressed_size, 772 async_extent->compressed_size, 773 0, alloc_hint, &ins, 1, 1); 774 if (ret) { 775 free_async_extent_pages(async_extent); 776 777 if (ret == -ENOSPC) { 778 unlock_extent(io_tree, async_extent->start, 779 async_extent->start + 780 async_extent->ram_size - 1); 781 782 /* 783 * we need to redirty the pages if we decide to 784 * fallback to uncompressed IO, otherwise we 785 * will not submit these pages down to lower 786 * layers. 787 */ 788 extent_range_redirty_for_io(inode, 789 async_extent->start, 790 async_extent->start + 791 async_extent->ram_size - 1); 792 793 goto retry; 794 } 795 goto out_free; 796 } 797 /* 798 * here we're doing allocation and writeback of the 799 * compressed pages 800 */ 801 em = create_io_em(inode, async_extent->start, 802 async_extent->ram_size, /* len */ 803 async_extent->start, /* orig_start */ 804 ins.objectid, /* block_start */ 805 ins.offset, /* block_len */ 806 ins.offset, /* orig_block_len */ 807 async_extent->ram_size, /* ram_bytes */ 808 async_extent->compress_type, 809 BTRFS_ORDERED_COMPRESSED); 810 if (IS_ERR(em)) 811 /* ret value is not necessary due to void function */ 812 goto out_free_reserve; 813 free_extent_map(em); 814 815 ret = btrfs_add_ordered_extent_compress(inode, 816 async_extent->start, 817 ins.objectid, 818 async_extent->ram_size, 819 ins.offset, 820 BTRFS_ORDERED_COMPRESSED, 821 async_extent->compress_type); 822 if (ret) { 823 btrfs_drop_extent_cache(BTRFS_I(inode), 824 async_extent->start, 825 async_extent->start + 826 async_extent->ram_size - 1, 0); 827 goto out_free_reserve; 828 } 829 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 830 831 /* 832 * clear dirty, set writeback and unlock the pages. 833 */ 834 extent_clear_unlock_delalloc(inode, async_extent->start, 835 async_extent->start + 836 async_extent->ram_size - 1, 837 async_extent->start + 838 async_extent->ram_size - 1, 839 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 840 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 841 PAGE_SET_WRITEBACK); 842 if (btrfs_submit_compressed_write(inode, 843 async_extent->start, 844 async_extent->ram_size, 845 ins.objectid, 846 ins.offset, async_extent->pages, 847 async_extent->nr_pages, 848 async_chunk->write_flags)) { 849 struct page *p = async_extent->pages[0]; 850 const u64 start = async_extent->start; 851 const u64 end = start + async_extent->ram_size - 1; 852 853 p->mapping = inode->i_mapping; 854 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 855 856 p->mapping = NULL; 857 extent_clear_unlock_delalloc(inode, start, end, end, 858 NULL, 0, 859 PAGE_END_WRITEBACK | 860 PAGE_SET_ERROR); 861 free_async_extent_pages(async_extent); 862 } 863 alloc_hint = ins.objectid + ins.offset; 864 kfree(async_extent); 865 cond_resched(); 866 } 867 return; 868 out_free_reserve: 869 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 870 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 871 out_free: 872 extent_clear_unlock_delalloc(inode, async_extent->start, 873 async_extent->start + 874 async_extent->ram_size - 1, 875 async_extent->start + 876 async_extent->ram_size - 1, 877 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 878 EXTENT_DELALLOC_NEW | 879 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 880 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 881 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 882 PAGE_SET_ERROR); 883 free_async_extent_pages(async_extent); 884 kfree(async_extent); 885 goto again; 886 } 887 888 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 889 u64 num_bytes) 890 { 891 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 892 struct extent_map *em; 893 u64 alloc_hint = 0; 894 895 read_lock(&em_tree->lock); 896 em = search_extent_mapping(em_tree, start, num_bytes); 897 if (em) { 898 /* 899 * if block start isn't an actual block number then find the 900 * first block in this inode and use that as a hint. If that 901 * block is also bogus then just don't worry about it. 902 */ 903 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 904 free_extent_map(em); 905 em = search_extent_mapping(em_tree, 0, 0); 906 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 907 alloc_hint = em->block_start; 908 if (em) 909 free_extent_map(em); 910 } else { 911 alloc_hint = em->block_start; 912 free_extent_map(em); 913 } 914 } 915 read_unlock(&em_tree->lock); 916 917 return alloc_hint; 918 } 919 920 /* 921 * when extent_io.c finds a delayed allocation range in the file, 922 * the call backs end up in this code. The basic idea is to 923 * allocate extents on disk for the range, and create ordered data structs 924 * in ram to track those extents. 925 * 926 * locked_page is the page that writepage had locked already. We use 927 * it to make sure we don't do extra locks or unlocks. 928 * 929 * *page_started is set to one if we unlock locked_page and do everything 930 * required to start IO on it. It may be clean and already done with 931 * IO when we return. 932 */ 933 static noinline int cow_file_range(struct inode *inode, 934 struct page *locked_page, 935 u64 start, u64 end, u64 delalloc_end, 936 int *page_started, unsigned long *nr_written, 937 int unlock, struct btrfs_dedupe_hash *hash) 938 { 939 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 940 struct btrfs_root *root = BTRFS_I(inode)->root; 941 u64 alloc_hint = 0; 942 u64 num_bytes; 943 unsigned long ram_size; 944 u64 cur_alloc_size = 0; 945 u64 blocksize = fs_info->sectorsize; 946 struct btrfs_key ins; 947 struct extent_map *em; 948 unsigned clear_bits; 949 unsigned long page_ops; 950 bool extent_reserved = false; 951 int ret = 0; 952 953 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 954 WARN_ON_ONCE(1); 955 ret = -EINVAL; 956 goto out_unlock; 957 } 958 959 num_bytes = ALIGN(end - start + 1, blocksize); 960 num_bytes = max(blocksize, num_bytes); 961 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 962 963 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 964 965 if (start == 0) { 966 /* lets try to make an inline extent */ 967 ret = cow_file_range_inline(inode, start, end, 0, 968 BTRFS_COMPRESS_NONE, NULL); 969 if (ret == 0) { 970 /* 971 * We use DO_ACCOUNTING here because we need the 972 * delalloc_release_metadata to be run _after_ we drop 973 * our outstanding extent for clearing delalloc for this 974 * range. 975 */ 976 extent_clear_unlock_delalloc(inode, start, end, 977 delalloc_end, NULL, 978 EXTENT_LOCKED | EXTENT_DELALLOC | 979 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 980 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 981 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 982 PAGE_END_WRITEBACK); 983 *nr_written = *nr_written + 984 (end - start + PAGE_SIZE) / PAGE_SIZE; 985 *page_started = 1; 986 goto out; 987 } else if (ret < 0) { 988 goto out_unlock; 989 } 990 } 991 992 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 993 btrfs_drop_extent_cache(BTRFS_I(inode), start, 994 start + num_bytes - 1, 0); 995 996 while (num_bytes > 0) { 997 cur_alloc_size = num_bytes; 998 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 999 fs_info->sectorsize, 0, alloc_hint, 1000 &ins, 1, 1); 1001 if (ret < 0) 1002 goto out_unlock; 1003 cur_alloc_size = ins.offset; 1004 extent_reserved = true; 1005 1006 ram_size = ins.offset; 1007 em = create_io_em(inode, start, ins.offset, /* len */ 1008 start, /* orig_start */ 1009 ins.objectid, /* block_start */ 1010 ins.offset, /* block_len */ 1011 ins.offset, /* orig_block_len */ 1012 ram_size, /* ram_bytes */ 1013 BTRFS_COMPRESS_NONE, /* compress_type */ 1014 BTRFS_ORDERED_REGULAR /* type */); 1015 if (IS_ERR(em)) { 1016 ret = PTR_ERR(em); 1017 goto out_reserve; 1018 } 1019 free_extent_map(em); 1020 1021 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1022 ram_size, cur_alloc_size, 0); 1023 if (ret) 1024 goto out_drop_extent_cache; 1025 1026 if (root->root_key.objectid == 1027 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1028 ret = btrfs_reloc_clone_csums(inode, start, 1029 cur_alloc_size); 1030 /* 1031 * Only drop cache here, and process as normal. 1032 * 1033 * We must not allow extent_clear_unlock_delalloc() 1034 * at out_unlock label to free meta of this ordered 1035 * extent, as its meta should be freed by 1036 * btrfs_finish_ordered_io(). 1037 * 1038 * So we must continue until @start is increased to 1039 * skip current ordered extent. 1040 */ 1041 if (ret) 1042 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1043 start + ram_size - 1, 0); 1044 } 1045 1046 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1047 1048 /* we're not doing compressed IO, don't unlock the first 1049 * page (which the caller expects to stay locked), don't 1050 * clear any dirty bits and don't set any writeback bits 1051 * 1052 * Do set the Private2 bit so we know this page was properly 1053 * setup for writepage 1054 */ 1055 page_ops = unlock ? PAGE_UNLOCK : 0; 1056 page_ops |= PAGE_SET_PRIVATE2; 1057 1058 extent_clear_unlock_delalloc(inode, start, 1059 start + ram_size - 1, 1060 delalloc_end, locked_page, 1061 EXTENT_LOCKED | EXTENT_DELALLOC, 1062 page_ops); 1063 if (num_bytes < cur_alloc_size) 1064 num_bytes = 0; 1065 else 1066 num_bytes -= cur_alloc_size; 1067 alloc_hint = ins.objectid + ins.offset; 1068 start += cur_alloc_size; 1069 extent_reserved = false; 1070 1071 /* 1072 * btrfs_reloc_clone_csums() error, since start is increased 1073 * extent_clear_unlock_delalloc() at out_unlock label won't 1074 * free metadata of current ordered extent, we're OK to exit. 1075 */ 1076 if (ret) 1077 goto out_unlock; 1078 } 1079 out: 1080 return ret; 1081 1082 out_drop_extent_cache: 1083 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1084 out_reserve: 1085 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1086 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1087 out_unlock: 1088 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1089 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1090 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1091 PAGE_END_WRITEBACK; 1092 /* 1093 * If we reserved an extent for our delalloc range (or a subrange) and 1094 * failed to create the respective ordered extent, then it means that 1095 * when we reserved the extent we decremented the extent's size from 1096 * the data space_info's bytes_may_use counter and incremented the 1097 * space_info's bytes_reserved counter by the same amount. We must make 1098 * sure extent_clear_unlock_delalloc() does not try to decrement again 1099 * the data space_info's bytes_may_use counter, therefore we do not pass 1100 * it the flag EXTENT_CLEAR_DATA_RESV. 1101 */ 1102 if (extent_reserved) { 1103 extent_clear_unlock_delalloc(inode, start, 1104 start + cur_alloc_size, 1105 start + cur_alloc_size, 1106 locked_page, 1107 clear_bits, 1108 page_ops); 1109 start += cur_alloc_size; 1110 if (start >= end) 1111 goto out; 1112 } 1113 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1114 locked_page, 1115 clear_bits | EXTENT_CLEAR_DATA_RESV, 1116 page_ops); 1117 goto out; 1118 } 1119 1120 /* 1121 * work queue call back to started compression on a file and pages 1122 */ 1123 static noinline void async_cow_start(struct btrfs_work *work) 1124 { 1125 struct async_chunk *async_chunk; 1126 int num_added = 0; 1127 1128 async_chunk = container_of(work, struct async_chunk, work); 1129 1130 compress_file_range(async_chunk, &num_added); 1131 if (num_added == 0) { 1132 btrfs_add_delayed_iput(async_chunk->inode); 1133 async_chunk->inode = NULL; 1134 } 1135 } 1136 1137 /* 1138 * work queue call back to submit previously compressed pages 1139 */ 1140 static noinline void async_cow_submit(struct btrfs_work *work) 1141 { 1142 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1143 work); 1144 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1145 unsigned long nr_pages; 1146 1147 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1148 PAGE_SHIFT; 1149 1150 /* atomic_sub_return implies a barrier */ 1151 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1152 5 * SZ_1M) 1153 cond_wake_up_nomb(&fs_info->async_submit_wait); 1154 1155 /* 1156 * ->inode could be NULL if async_chunk_start has failed to compress, 1157 * in which case we don't have anything to submit, yet we need to 1158 * always adjust ->async_delalloc_pages as its paired with the init 1159 * happening in cow_file_range_async 1160 */ 1161 if (async_chunk->inode) 1162 submit_compressed_extents(async_chunk); 1163 } 1164 1165 static noinline void async_cow_free(struct btrfs_work *work) 1166 { 1167 struct async_chunk *async_chunk; 1168 1169 async_chunk = container_of(work, struct async_chunk, work); 1170 if (async_chunk->inode) 1171 btrfs_add_delayed_iput(async_chunk->inode); 1172 /* 1173 * Since the pointer to 'pending' is at the beginning of the array of 1174 * async_chunk's, freeing it ensures the whole array has been freed. 1175 */ 1176 if (atomic_dec_and_test(async_chunk->pending)) 1177 kvfree(async_chunk->pending); 1178 } 1179 1180 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1181 u64 start, u64 end, int *page_started, 1182 unsigned long *nr_written, 1183 unsigned int write_flags) 1184 { 1185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1186 struct async_cow *ctx; 1187 struct async_chunk *async_chunk; 1188 unsigned long nr_pages; 1189 u64 cur_end; 1190 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1191 int i; 1192 bool should_compress; 1193 unsigned nofs_flag; 1194 1195 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1196 1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1199 num_chunks = 1; 1200 should_compress = false; 1201 } else { 1202 should_compress = true; 1203 } 1204 1205 nofs_flag = memalloc_nofs_save(); 1206 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1207 memalloc_nofs_restore(nofs_flag); 1208 1209 if (!ctx) { 1210 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1211 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1212 EXTENT_DO_ACCOUNTING; 1213 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1214 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1215 PAGE_SET_ERROR; 1216 1217 extent_clear_unlock_delalloc(inode, start, end, 0, locked_page, 1218 clear_bits, page_ops); 1219 return -ENOMEM; 1220 } 1221 1222 async_chunk = ctx->chunks; 1223 atomic_set(&ctx->num_chunks, num_chunks); 1224 1225 for (i = 0; i < num_chunks; i++) { 1226 if (should_compress) 1227 cur_end = min(end, start + SZ_512K - 1); 1228 else 1229 cur_end = end; 1230 1231 /* 1232 * igrab is called higher up in the call chain, take only the 1233 * lightweight reference for the callback lifetime 1234 */ 1235 ihold(inode); 1236 async_chunk[i].pending = &ctx->num_chunks; 1237 async_chunk[i].inode = inode; 1238 async_chunk[i].start = start; 1239 async_chunk[i].end = cur_end; 1240 async_chunk[i].locked_page = locked_page; 1241 async_chunk[i].write_flags = write_flags; 1242 INIT_LIST_HEAD(&async_chunk[i].extents); 1243 1244 btrfs_init_work(&async_chunk[i].work, 1245 btrfs_delalloc_helper, 1246 async_cow_start, async_cow_submit, 1247 async_cow_free); 1248 1249 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1250 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1251 1252 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1253 1254 *nr_written += nr_pages; 1255 start = cur_end + 1; 1256 } 1257 *page_started = 1; 1258 return 0; 1259 } 1260 1261 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1262 u64 bytenr, u64 num_bytes) 1263 { 1264 int ret; 1265 struct btrfs_ordered_sum *sums; 1266 LIST_HEAD(list); 1267 1268 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1269 bytenr + num_bytes - 1, &list, 0); 1270 if (ret == 0 && list_empty(&list)) 1271 return 0; 1272 1273 while (!list_empty(&list)) { 1274 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1275 list_del(&sums->list); 1276 kfree(sums); 1277 } 1278 if (ret < 0) 1279 return ret; 1280 return 1; 1281 } 1282 1283 /* 1284 * when nowcow writeback call back. This checks for snapshots or COW copies 1285 * of the extents that exist in the file, and COWs the file as required. 1286 * 1287 * If no cow copies or snapshots exist, we write directly to the existing 1288 * blocks on disk 1289 */ 1290 static noinline int run_delalloc_nocow(struct inode *inode, 1291 struct page *locked_page, 1292 u64 start, u64 end, int *page_started, int force, 1293 unsigned long *nr_written) 1294 { 1295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1296 struct btrfs_root *root = BTRFS_I(inode)->root; 1297 struct extent_buffer *leaf; 1298 struct btrfs_path *path; 1299 struct btrfs_file_extent_item *fi; 1300 struct btrfs_key found_key; 1301 struct extent_map *em; 1302 u64 cow_start; 1303 u64 cur_offset; 1304 u64 extent_end; 1305 u64 extent_offset; 1306 u64 disk_bytenr; 1307 u64 num_bytes; 1308 u64 disk_num_bytes; 1309 u64 ram_bytes; 1310 int extent_type; 1311 int ret; 1312 int type; 1313 int nocow; 1314 int check_prev = 1; 1315 bool nolock; 1316 u64 ino = btrfs_ino(BTRFS_I(inode)); 1317 1318 path = btrfs_alloc_path(); 1319 if (!path) { 1320 extent_clear_unlock_delalloc(inode, start, end, end, 1321 locked_page, 1322 EXTENT_LOCKED | EXTENT_DELALLOC | 1323 EXTENT_DO_ACCOUNTING | 1324 EXTENT_DEFRAG, PAGE_UNLOCK | 1325 PAGE_CLEAR_DIRTY | 1326 PAGE_SET_WRITEBACK | 1327 PAGE_END_WRITEBACK); 1328 return -ENOMEM; 1329 } 1330 1331 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1332 1333 cow_start = (u64)-1; 1334 cur_offset = start; 1335 while (1) { 1336 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1337 cur_offset, 0); 1338 if (ret < 0) 1339 goto error; 1340 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1341 leaf = path->nodes[0]; 1342 btrfs_item_key_to_cpu(leaf, &found_key, 1343 path->slots[0] - 1); 1344 if (found_key.objectid == ino && 1345 found_key.type == BTRFS_EXTENT_DATA_KEY) 1346 path->slots[0]--; 1347 } 1348 check_prev = 0; 1349 next_slot: 1350 leaf = path->nodes[0]; 1351 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1352 ret = btrfs_next_leaf(root, path); 1353 if (ret < 0) { 1354 if (cow_start != (u64)-1) 1355 cur_offset = cow_start; 1356 goto error; 1357 } 1358 if (ret > 0) 1359 break; 1360 leaf = path->nodes[0]; 1361 } 1362 1363 nocow = 0; 1364 disk_bytenr = 0; 1365 num_bytes = 0; 1366 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1367 1368 if (found_key.objectid > ino) 1369 break; 1370 if (WARN_ON_ONCE(found_key.objectid < ino) || 1371 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1372 path->slots[0]++; 1373 goto next_slot; 1374 } 1375 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1376 found_key.offset > end) 1377 break; 1378 1379 if (found_key.offset > cur_offset) { 1380 extent_end = found_key.offset; 1381 extent_type = 0; 1382 goto out_check; 1383 } 1384 1385 fi = btrfs_item_ptr(leaf, path->slots[0], 1386 struct btrfs_file_extent_item); 1387 extent_type = btrfs_file_extent_type(leaf, fi); 1388 1389 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1390 if (extent_type == BTRFS_FILE_EXTENT_REG || 1391 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1392 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1393 extent_offset = btrfs_file_extent_offset(leaf, fi); 1394 extent_end = found_key.offset + 1395 btrfs_file_extent_num_bytes(leaf, fi); 1396 disk_num_bytes = 1397 btrfs_file_extent_disk_num_bytes(leaf, fi); 1398 if (extent_end <= start) { 1399 path->slots[0]++; 1400 goto next_slot; 1401 } 1402 if (disk_bytenr == 0) 1403 goto out_check; 1404 if (btrfs_file_extent_compression(leaf, fi) || 1405 btrfs_file_extent_encryption(leaf, fi) || 1406 btrfs_file_extent_other_encoding(leaf, fi)) 1407 goto out_check; 1408 /* 1409 * Do the same check as in btrfs_cross_ref_exist but 1410 * without the unnecessary search. 1411 */ 1412 if (!nolock && 1413 btrfs_file_extent_generation(leaf, fi) <= 1414 btrfs_root_last_snapshot(&root->root_item)) 1415 goto out_check; 1416 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1417 goto out_check; 1418 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1419 goto out_check; 1420 ret = btrfs_cross_ref_exist(root, ino, 1421 found_key.offset - 1422 extent_offset, disk_bytenr); 1423 if (ret) { 1424 /* 1425 * ret could be -EIO if the above fails to read 1426 * metadata. 1427 */ 1428 if (ret < 0) { 1429 if (cow_start != (u64)-1) 1430 cur_offset = cow_start; 1431 goto error; 1432 } 1433 1434 WARN_ON_ONCE(nolock); 1435 goto out_check; 1436 } 1437 disk_bytenr += extent_offset; 1438 disk_bytenr += cur_offset - found_key.offset; 1439 num_bytes = min(end + 1, extent_end) - cur_offset; 1440 /* 1441 * if there are pending snapshots for this root, 1442 * we fall into common COW way. 1443 */ 1444 if (!nolock && atomic_read(&root->snapshot_force_cow)) 1445 goto out_check; 1446 /* 1447 * force cow if csum exists in the range. 1448 * this ensure that csum for a given extent are 1449 * either valid or do not exist. 1450 */ 1451 ret = csum_exist_in_range(fs_info, disk_bytenr, 1452 num_bytes); 1453 if (ret) { 1454 /* 1455 * ret could be -EIO if the above fails to read 1456 * metadata. 1457 */ 1458 if (ret < 0) { 1459 if (cow_start != (u64)-1) 1460 cur_offset = cow_start; 1461 goto error; 1462 } 1463 WARN_ON_ONCE(nolock); 1464 goto out_check; 1465 } 1466 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1467 goto out_check; 1468 nocow = 1; 1469 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1470 extent_end = found_key.offset + 1471 btrfs_file_extent_ram_bytes(leaf, fi); 1472 extent_end = ALIGN(extent_end, 1473 fs_info->sectorsize); 1474 } else { 1475 BUG(); 1476 } 1477 out_check: 1478 if (extent_end <= start) { 1479 path->slots[0]++; 1480 if (nocow) 1481 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1482 goto next_slot; 1483 } 1484 if (!nocow) { 1485 if (cow_start == (u64)-1) 1486 cow_start = cur_offset; 1487 cur_offset = extent_end; 1488 if (cur_offset > end) 1489 break; 1490 path->slots[0]++; 1491 goto next_slot; 1492 } 1493 1494 btrfs_release_path(path); 1495 if (cow_start != (u64)-1) { 1496 ret = cow_file_range(inode, locked_page, 1497 cow_start, found_key.offset - 1, 1498 end, page_started, nr_written, 1, 1499 NULL); 1500 if (ret) { 1501 if (nocow) 1502 btrfs_dec_nocow_writers(fs_info, 1503 disk_bytenr); 1504 goto error; 1505 } 1506 cow_start = (u64)-1; 1507 } 1508 1509 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1510 u64 orig_start = found_key.offset - extent_offset; 1511 1512 em = create_io_em(inode, cur_offset, num_bytes, 1513 orig_start, 1514 disk_bytenr, /* block_start */ 1515 num_bytes, /* block_len */ 1516 disk_num_bytes, /* orig_block_len */ 1517 ram_bytes, BTRFS_COMPRESS_NONE, 1518 BTRFS_ORDERED_PREALLOC); 1519 if (IS_ERR(em)) { 1520 if (nocow) 1521 btrfs_dec_nocow_writers(fs_info, 1522 disk_bytenr); 1523 ret = PTR_ERR(em); 1524 goto error; 1525 } 1526 free_extent_map(em); 1527 } 1528 1529 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1530 type = BTRFS_ORDERED_PREALLOC; 1531 } else { 1532 type = BTRFS_ORDERED_NOCOW; 1533 } 1534 1535 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1536 num_bytes, num_bytes, type); 1537 if (nocow) 1538 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1539 BUG_ON(ret); /* -ENOMEM */ 1540 1541 if (root->root_key.objectid == 1542 BTRFS_DATA_RELOC_TREE_OBJECTID) 1543 /* 1544 * Error handled later, as we must prevent 1545 * extent_clear_unlock_delalloc() in error handler 1546 * from freeing metadata of created ordered extent. 1547 */ 1548 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1549 num_bytes); 1550 1551 extent_clear_unlock_delalloc(inode, cur_offset, 1552 cur_offset + num_bytes - 1, end, 1553 locked_page, EXTENT_LOCKED | 1554 EXTENT_DELALLOC | 1555 EXTENT_CLEAR_DATA_RESV, 1556 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1557 1558 cur_offset = extent_end; 1559 1560 /* 1561 * btrfs_reloc_clone_csums() error, now we're OK to call error 1562 * handler, as metadata for created ordered extent will only 1563 * be freed by btrfs_finish_ordered_io(). 1564 */ 1565 if (ret) 1566 goto error; 1567 if (cur_offset > end) 1568 break; 1569 } 1570 btrfs_release_path(path); 1571 1572 if (cur_offset <= end && cow_start == (u64)-1) 1573 cow_start = cur_offset; 1574 1575 if (cow_start != (u64)-1) { 1576 cur_offset = end; 1577 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1578 page_started, nr_written, 1, NULL); 1579 if (ret) 1580 goto error; 1581 } 1582 1583 error: 1584 if (ret && cur_offset < end) 1585 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1586 locked_page, EXTENT_LOCKED | 1587 EXTENT_DELALLOC | EXTENT_DEFRAG | 1588 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1589 PAGE_CLEAR_DIRTY | 1590 PAGE_SET_WRITEBACK | 1591 PAGE_END_WRITEBACK); 1592 btrfs_free_path(path); 1593 return ret; 1594 } 1595 1596 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1597 { 1598 1599 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1600 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1601 return 0; 1602 1603 /* 1604 * @defrag_bytes is a hint value, no spinlock held here, 1605 * if is not zero, it means the file is defragging. 1606 * Force cow if given extent needs to be defragged. 1607 */ 1608 if (BTRFS_I(inode)->defrag_bytes && 1609 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1610 EXTENT_DEFRAG, 0, NULL)) 1611 return 1; 1612 1613 return 0; 1614 } 1615 1616 /* 1617 * Function to process delayed allocation (create CoW) for ranges which are 1618 * being touched for the first time. 1619 */ 1620 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1621 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1622 struct writeback_control *wbc) 1623 { 1624 int ret; 1625 int force_cow = need_force_cow(inode, start, end); 1626 unsigned int write_flags = wbc_to_write_flags(wbc); 1627 1628 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1629 ret = run_delalloc_nocow(inode, locked_page, start, end, 1630 page_started, 1, nr_written); 1631 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1632 ret = run_delalloc_nocow(inode, locked_page, start, end, 1633 page_started, 0, nr_written); 1634 } else if (!inode_need_compress(inode, start, end)) { 1635 ret = cow_file_range(inode, locked_page, start, end, end, 1636 page_started, nr_written, 1, NULL); 1637 } else { 1638 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1639 &BTRFS_I(inode)->runtime_flags); 1640 ret = cow_file_range_async(inode, locked_page, start, end, 1641 page_started, nr_written, 1642 write_flags); 1643 } 1644 if (ret) 1645 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1646 end - start + 1); 1647 return ret; 1648 } 1649 1650 void btrfs_split_delalloc_extent(struct inode *inode, 1651 struct extent_state *orig, u64 split) 1652 { 1653 u64 size; 1654 1655 /* not delalloc, ignore it */ 1656 if (!(orig->state & EXTENT_DELALLOC)) 1657 return; 1658 1659 size = orig->end - orig->start + 1; 1660 if (size > BTRFS_MAX_EXTENT_SIZE) { 1661 u32 num_extents; 1662 u64 new_size; 1663 1664 /* 1665 * See the explanation in btrfs_merge_delalloc_extent, the same 1666 * applies here, just in reverse. 1667 */ 1668 new_size = orig->end - split + 1; 1669 num_extents = count_max_extents(new_size); 1670 new_size = split - orig->start; 1671 num_extents += count_max_extents(new_size); 1672 if (count_max_extents(size) >= num_extents) 1673 return; 1674 } 1675 1676 spin_lock(&BTRFS_I(inode)->lock); 1677 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1678 spin_unlock(&BTRFS_I(inode)->lock); 1679 } 1680 1681 /* 1682 * Handle merged delayed allocation extents so we can keep track of new extents 1683 * that are just merged onto old extents, such as when we are doing sequential 1684 * writes, so we can properly account for the metadata space we'll need. 1685 */ 1686 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1687 struct extent_state *other) 1688 { 1689 u64 new_size, old_size; 1690 u32 num_extents; 1691 1692 /* not delalloc, ignore it */ 1693 if (!(other->state & EXTENT_DELALLOC)) 1694 return; 1695 1696 if (new->start > other->start) 1697 new_size = new->end - other->start + 1; 1698 else 1699 new_size = other->end - new->start + 1; 1700 1701 /* we're not bigger than the max, unreserve the space and go */ 1702 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1703 spin_lock(&BTRFS_I(inode)->lock); 1704 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1705 spin_unlock(&BTRFS_I(inode)->lock); 1706 return; 1707 } 1708 1709 /* 1710 * We have to add up either side to figure out how many extents were 1711 * accounted for before we merged into one big extent. If the number of 1712 * extents we accounted for is <= the amount we need for the new range 1713 * then we can return, otherwise drop. Think of it like this 1714 * 1715 * [ 4k][MAX_SIZE] 1716 * 1717 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1718 * need 2 outstanding extents, on one side we have 1 and the other side 1719 * we have 1 so they are == and we can return. But in this case 1720 * 1721 * [MAX_SIZE+4k][MAX_SIZE+4k] 1722 * 1723 * Each range on their own accounts for 2 extents, but merged together 1724 * they are only 3 extents worth of accounting, so we need to drop in 1725 * this case. 1726 */ 1727 old_size = other->end - other->start + 1; 1728 num_extents = count_max_extents(old_size); 1729 old_size = new->end - new->start + 1; 1730 num_extents += count_max_extents(old_size); 1731 if (count_max_extents(new_size) >= num_extents) 1732 return; 1733 1734 spin_lock(&BTRFS_I(inode)->lock); 1735 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1736 spin_unlock(&BTRFS_I(inode)->lock); 1737 } 1738 1739 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1740 struct inode *inode) 1741 { 1742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1743 1744 spin_lock(&root->delalloc_lock); 1745 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1746 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1747 &root->delalloc_inodes); 1748 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1749 &BTRFS_I(inode)->runtime_flags); 1750 root->nr_delalloc_inodes++; 1751 if (root->nr_delalloc_inodes == 1) { 1752 spin_lock(&fs_info->delalloc_root_lock); 1753 BUG_ON(!list_empty(&root->delalloc_root)); 1754 list_add_tail(&root->delalloc_root, 1755 &fs_info->delalloc_roots); 1756 spin_unlock(&fs_info->delalloc_root_lock); 1757 } 1758 } 1759 spin_unlock(&root->delalloc_lock); 1760 } 1761 1762 1763 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1764 struct btrfs_inode *inode) 1765 { 1766 struct btrfs_fs_info *fs_info = root->fs_info; 1767 1768 if (!list_empty(&inode->delalloc_inodes)) { 1769 list_del_init(&inode->delalloc_inodes); 1770 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1771 &inode->runtime_flags); 1772 root->nr_delalloc_inodes--; 1773 if (!root->nr_delalloc_inodes) { 1774 ASSERT(list_empty(&root->delalloc_inodes)); 1775 spin_lock(&fs_info->delalloc_root_lock); 1776 BUG_ON(list_empty(&root->delalloc_root)); 1777 list_del_init(&root->delalloc_root); 1778 spin_unlock(&fs_info->delalloc_root_lock); 1779 } 1780 } 1781 } 1782 1783 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1784 struct btrfs_inode *inode) 1785 { 1786 spin_lock(&root->delalloc_lock); 1787 __btrfs_del_delalloc_inode(root, inode); 1788 spin_unlock(&root->delalloc_lock); 1789 } 1790 1791 /* 1792 * Properly track delayed allocation bytes in the inode and to maintain the 1793 * list of inodes that have pending delalloc work to be done. 1794 */ 1795 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1796 unsigned *bits) 1797 { 1798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1799 1800 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1801 WARN_ON(1); 1802 /* 1803 * set_bit and clear bit hooks normally require _irqsave/restore 1804 * but in this case, we are only testing for the DELALLOC 1805 * bit, which is only set or cleared with irqs on 1806 */ 1807 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1808 struct btrfs_root *root = BTRFS_I(inode)->root; 1809 u64 len = state->end + 1 - state->start; 1810 u32 num_extents = count_max_extents(len); 1811 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1812 1813 spin_lock(&BTRFS_I(inode)->lock); 1814 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1815 spin_unlock(&BTRFS_I(inode)->lock); 1816 1817 /* For sanity tests */ 1818 if (btrfs_is_testing(fs_info)) 1819 return; 1820 1821 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1822 fs_info->delalloc_batch); 1823 spin_lock(&BTRFS_I(inode)->lock); 1824 BTRFS_I(inode)->delalloc_bytes += len; 1825 if (*bits & EXTENT_DEFRAG) 1826 BTRFS_I(inode)->defrag_bytes += len; 1827 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1828 &BTRFS_I(inode)->runtime_flags)) 1829 btrfs_add_delalloc_inodes(root, inode); 1830 spin_unlock(&BTRFS_I(inode)->lock); 1831 } 1832 1833 if (!(state->state & EXTENT_DELALLOC_NEW) && 1834 (*bits & EXTENT_DELALLOC_NEW)) { 1835 spin_lock(&BTRFS_I(inode)->lock); 1836 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1837 state->start; 1838 spin_unlock(&BTRFS_I(inode)->lock); 1839 } 1840 } 1841 1842 /* 1843 * Once a range is no longer delalloc this function ensures that proper 1844 * accounting happens. 1845 */ 1846 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1847 struct extent_state *state, unsigned *bits) 1848 { 1849 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1850 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1851 u64 len = state->end + 1 - state->start; 1852 u32 num_extents = count_max_extents(len); 1853 1854 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1855 spin_lock(&inode->lock); 1856 inode->defrag_bytes -= len; 1857 spin_unlock(&inode->lock); 1858 } 1859 1860 /* 1861 * set_bit and clear bit hooks normally require _irqsave/restore 1862 * but in this case, we are only testing for the DELALLOC 1863 * bit, which is only set or cleared with irqs on 1864 */ 1865 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1866 struct btrfs_root *root = inode->root; 1867 bool do_list = !btrfs_is_free_space_inode(inode); 1868 1869 spin_lock(&inode->lock); 1870 btrfs_mod_outstanding_extents(inode, -num_extents); 1871 spin_unlock(&inode->lock); 1872 1873 /* 1874 * We don't reserve metadata space for space cache inodes so we 1875 * don't need to call delalloc_release_metadata if there is an 1876 * error. 1877 */ 1878 if (*bits & EXTENT_CLEAR_META_RESV && 1879 root != fs_info->tree_root) 1880 btrfs_delalloc_release_metadata(inode, len, false); 1881 1882 /* For sanity tests. */ 1883 if (btrfs_is_testing(fs_info)) 1884 return; 1885 1886 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1887 do_list && !(state->state & EXTENT_NORESERVE) && 1888 (*bits & EXTENT_CLEAR_DATA_RESV)) 1889 btrfs_free_reserved_data_space_noquota( 1890 &inode->vfs_inode, 1891 state->start, len); 1892 1893 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1894 fs_info->delalloc_batch); 1895 spin_lock(&inode->lock); 1896 inode->delalloc_bytes -= len; 1897 if (do_list && inode->delalloc_bytes == 0 && 1898 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1899 &inode->runtime_flags)) 1900 btrfs_del_delalloc_inode(root, inode); 1901 spin_unlock(&inode->lock); 1902 } 1903 1904 if ((state->state & EXTENT_DELALLOC_NEW) && 1905 (*bits & EXTENT_DELALLOC_NEW)) { 1906 spin_lock(&inode->lock); 1907 ASSERT(inode->new_delalloc_bytes >= len); 1908 inode->new_delalloc_bytes -= len; 1909 spin_unlock(&inode->lock); 1910 } 1911 } 1912 1913 /* 1914 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 1915 * in a chunk's stripe. This function ensures that bios do not span a 1916 * stripe/chunk 1917 * 1918 * @page - The page we are about to add to the bio 1919 * @size - size we want to add to the bio 1920 * @bio - bio we want to ensure is smaller than a stripe 1921 * @bio_flags - flags of the bio 1922 * 1923 * return 1 if page cannot be added to the bio 1924 * return 0 if page can be added to the bio 1925 * return error otherwise 1926 */ 1927 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 1928 unsigned long bio_flags) 1929 { 1930 struct inode *inode = page->mapping->host; 1931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1932 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1933 u64 length = 0; 1934 u64 map_length; 1935 int ret; 1936 struct btrfs_io_geometry geom; 1937 1938 if (bio_flags & EXTENT_BIO_COMPRESSED) 1939 return 0; 1940 1941 length = bio->bi_iter.bi_size; 1942 map_length = length; 1943 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 1944 &geom); 1945 if (ret < 0) 1946 return ret; 1947 1948 if (geom.len < length + size) 1949 return 1; 1950 return 0; 1951 } 1952 1953 /* 1954 * in order to insert checksums into the metadata in large chunks, 1955 * we wait until bio submission time. All the pages in the bio are 1956 * checksummed and sums are attached onto the ordered extent record. 1957 * 1958 * At IO completion time the cums attached on the ordered extent record 1959 * are inserted into the btree 1960 */ 1961 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1962 u64 bio_offset) 1963 { 1964 struct inode *inode = private_data; 1965 blk_status_t ret = 0; 1966 1967 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1968 BUG_ON(ret); /* -ENOMEM */ 1969 return 0; 1970 } 1971 1972 /* 1973 * extent_io.c submission hook. This does the right thing for csum calculation 1974 * on write, or reading the csums from the tree before a read. 1975 * 1976 * Rules about async/sync submit, 1977 * a) read: sync submit 1978 * 1979 * b) write without checksum: sync submit 1980 * 1981 * c) write with checksum: 1982 * c-1) if bio is issued by fsync: sync submit 1983 * (sync_writers != 0) 1984 * 1985 * c-2) if root is reloc root: sync submit 1986 * (only in case of buffered IO) 1987 * 1988 * c-3) otherwise: async submit 1989 */ 1990 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 1991 int mirror_num, 1992 unsigned long bio_flags) 1993 1994 { 1995 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1996 struct btrfs_root *root = BTRFS_I(inode)->root; 1997 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1998 blk_status_t ret = 0; 1999 int skip_sum; 2000 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2001 2002 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2003 2004 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2005 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2006 2007 if (bio_op(bio) != REQ_OP_WRITE) { 2008 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2009 if (ret) 2010 goto out; 2011 2012 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2013 ret = btrfs_submit_compressed_read(inode, bio, 2014 mirror_num, 2015 bio_flags); 2016 goto out; 2017 } else if (!skip_sum) { 2018 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2019 if (ret) 2020 goto out; 2021 } 2022 goto mapit; 2023 } else if (async && !skip_sum) { 2024 /* csum items have already been cloned */ 2025 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2026 goto mapit; 2027 /* we're doing a write, do the async checksumming */ 2028 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2029 0, inode, btrfs_submit_bio_start); 2030 goto out; 2031 } else if (!skip_sum) { 2032 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2033 if (ret) 2034 goto out; 2035 } 2036 2037 mapit: 2038 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2039 2040 out: 2041 if (ret) { 2042 bio->bi_status = ret; 2043 bio_endio(bio); 2044 } 2045 return ret; 2046 } 2047 2048 /* 2049 * given a list of ordered sums record them in the inode. This happens 2050 * at IO completion time based on sums calculated at bio submission time. 2051 */ 2052 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2053 struct inode *inode, struct list_head *list) 2054 { 2055 struct btrfs_ordered_sum *sum; 2056 int ret; 2057 2058 list_for_each_entry(sum, list, list) { 2059 trans->adding_csums = true; 2060 ret = btrfs_csum_file_blocks(trans, 2061 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2062 trans->adding_csums = false; 2063 if (ret) 2064 return ret; 2065 } 2066 return 0; 2067 } 2068 2069 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2070 unsigned int extra_bits, 2071 struct extent_state **cached_state, int dedupe) 2072 { 2073 WARN_ON(PAGE_ALIGNED(end)); 2074 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2075 extra_bits, cached_state); 2076 } 2077 2078 /* see btrfs_writepage_start_hook for details on why this is required */ 2079 struct btrfs_writepage_fixup { 2080 struct page *page; 2081 struct btrfs_work work; 2082 }; 2083 2084 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2085 { 2086 struct btrfs_writepage_fixup *fixup; 2087 struct btrfs_ordered_extent *ordered; 2088 struct extent_state *cached_state = NULL; 2089 struct extent_changeset *data_reserved = NULL; 2090 struct page *page; 2091 struct inode *inode; 2092 u64 page_start; 2093 u64 page_end; 2094 int ret; 2095 2096 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2097 page = fixup->page; 2098 again: 2099 lock_page(page); 2100 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2101 ClearPageChecked(page); 2102 goto out_page; 2103 } 2104 2105 inode = page->mapping->host; 2106 page_start = page_offset(page); 2107 page_end = page_offset(page) + PAGE_SIZE - 1; 2108 2109 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2110 &cached_state); 2111 2112 /* already ordered? We're done */ 2113 if (PagePrivate2(page)) 2114 goto out; 2115 2116 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2117 PAGE_SIZE); 2118 if (ordered) { 2119 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2120 page_end, &cached_state); 2121 unlock_page(page); 2122 btrfs_start_ordered_extent(inode, ordered, 1); 2123 btrfs_put_ordered_extent(ordered); 2124 goto again; 2125 } 2126 2127 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2128 PAGE_SIZE); 2129 if (ret) { 2130 mapping_set_error(page->mapping, ret); 2131 end_extent_writepage(page, ret, page_start, page_end); 2132 ClearPageChecked(page); 2133 goto out; 2134 } 2135 2136 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2137 &cached_state, 0); 2138 if (ret) { 2139 mapping_set_error(page->mapping, ret); 2140 end_extent_writepage(page, ret, page_start, page_end); 2141 ClearPageChecked(page); 2142 goto out; 2143 } 2144 2145 ClearPageChecked(page); 2146 set_page_dirty(page); 2147 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2148 out: 2149 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2150 &cached_state); 2151 out_page: 2152 unlock_page(page); 2153 put_page(page); 2154 kfree(fixup); 2155 extent_changeset_free(data_reserved); 2156 } 2157 2158 /* 2159 * There are a few paths in the higher layers of the kernel that directly 2160 * set the page dirty bit without asking the filesystem if it is a 2161 * good idea. This causes problems because we want to make sure COW 2162 * properly happens and the data=ordered rules are followed. 2163 * 2164 * In our case any range that doesn't have the ORDERED bit set 2165 * hasn't been properly setup for IO. We kick off an async process 2166 * to fix it up. The async helper will wait for ordered extents, set 2167 * the delalloc bit and make it safe to write the page. 2168 */ 2169 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2170 { 2171 struct inode *inode = page->mapping->host; 2172 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2173 struct btrfs_writepage_fixup *fixup; 2174 2175 /* this page is properly in the ordered list */ 2176 if (TestClearPagePrivate2(page)) 2177 return 0; 2178 2179 if (PageChecked(page)) 2180 return -EAGAIN; 2181 2182 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2183 if (!fixup) 2184 return -EAGAIN; 2185 2186 SetPageChecked(page); 2187 get_page(page); 2188 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2189 btrfs_writepage_fixup_worker, NULL, NULL); 2190 fixup->page = page; 2191 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2192 return -EBUSY; 2193 } 2194 2195 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2196 struct inode *inode, u64 file_pos, 2197 u64 disk_bytenr, u64 disk_num_bytes, 2198 u64 num_bytes, u64 ram_bytes, 2199 u8 compression, u8 encryption, 2200 u16 other_encoding, int extent_type) 2201 { 2202 struct btrfs_root *root = BTRFS_I(inode)->root; 2203 struct btrfs_file_extent_item *fi; 2204 struct btrfs_path *path; 2205 struct extent_buffer *leaf; 2206 struct btrfs_key ins; 2207 u64 qg_released; 2208 int extent_inserted = 0; 2209 int ret; 2210 2211 path = btrfs_alloc_path(); 2212 if (!path) 2213 return -ENOMEM; 2214 2215 /* 2216 * we may be replacing one extent in the tree with another. 2217 * The new extent is pinned in the extent map, and we don't want 2218 * to drop it from the cache until it is completely in the btree. 2219 * 2220 * So, tell btrfs_drop_extents to leave this extent in the cache. 2221 * the caller is expected to unpin it and allow it to be merged 2222 * with the others. 2223 */ 2224 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2225 file_pos + num_bytes, NULL, 0, 2226 1, sizeof(*fi), &extent_inserted); 2227 if (ret) 2228 goto out; 2229 2230 if (!extent_inserted) { 2231 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2232 ins.offset = file_pos; 2233 ins.type = BTRFS_EXTENT_DATA_KEY; 2234 2235 path->leave_spinning = 1; 2236 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2237 sizeof(*fi)); 2238 if (ret) 2239 goto out; 2240 } 2241 leaf = path->nodes[0]; 2242 fi = btrfs_item_ptr(leaf, path->slots[0], 2243 struct btrfs_file_extent_item); 2244 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2245 btrfs_set_file_extent_type(leaf, fi, extent_type); 2246 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2247 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2248 btrfs_set_file_extent_offset(leaf, fi, 0); 2249 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2250 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2251 btrfs_set_file_extent_compression(leaf, fi, compression); 2252 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2253 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2254 2255 btrfs_mark_buffer_dirty(leaf); 2256 btrfs_release_path(path); 2257 2258 inode_add_bytes(inode, num_bytes); 2259 2260 ins.objectid = disk_bytenr; 2261 ins.offset = disk_num_bytes; 2262 ins.type = BTRFS_EXTENT_ITEM_KEY; 2263 2264 /* 2265 * Release the reserved range from inode dirty range map, as it is 2266 * already moved into delayed_ref_head 2267 */ 2268 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2269 if (ret < 0) 2270 goto out; 2271 qg_released = ret; 2272 ret = btrfs_alloc_reserved_file_extent(trans, root, 2273 btrfs_ino(BTRFS_I(inode)), 2274 file_pos, qg_released, &ins); 2275 out: 2276 btrfs_free_path(path); 2277 2278 return ret; 2279 } 2280 2281 /* snapshot-aware defrag */ 2282 struct sa_defrag_extent_backref { 2283 struct rb_node node; 2284 struct old_sa_defrag_extent *old; 2285 u64 root_id; 2286 u64 inum; 2287 u64 file_pos; 2288 u64 extent_offset; 2289 u64 num_bytes; 2290 u64 generation; 2291 }; 2292 2293 struct old_sa_defrag_extent { 2294 struct list_head list; 2295 struct new_sa_defrag_extent *new; 2296 2297 u64 extent_offset; 2298 u64 bytenr; 2299 u64 offset; 2300 u64 len; 2301 int count; 2302 }; 2303 2304 struct new_sa_defrag_extent { 2305 struct rb_root root; 2306 struct list_head head; 2307 struct btrfs_path *path; 2308 struct inode *inode; 2309 u64 file_pos; 2310 u64 len; 2311 u64 bytenr; 2312 u64 disk_len; 2313 u8 compress_type; 2314 }; 2315 2316 static int backref_comp(struct sa_defrag_extent_backref *b1, 2317 struct sa_defrag_extent_backref *b2) 2318 { 2319 if (b1->root_id < b2->root_id) 2320 return -1; 2321 else if (b1->root_id > b2->root_id) 2322 return 1; 2323 2324 if (b1->inum < b2->inum) 2325 return -1; 2326 else if (b1->inum > b2->inum) 2327 return 1; 2328 2329 if (b1->file_pos < b2->file_pos) 2330 return -1; 2331 else if (b1->file_pos > b2->file_pos) 2332 return 1; 2333 2334 /* 2335 * [------------------------------] ===> (a range of space) 2336 * |<--->| |<---->| =============> (fs/file tree A) 2337 * |<---------------------------->| ===> (fs/file tree B) 2338 * 2339 * A range of space can refer to two file extents in one tree while 2340 * refer to only one file extent in another tree. 2341 * 2342 * So we may process a disk offset more than one time(two extents in A) 2343 * and locate at the same extent(one extent in B), then insert two same 2344 * backrefs(both refer to the extent in B). 2345 */ 2346 return 0; 2347 } 2348 2349 static void backref_insert(struct rb_root *root, 2350 struct sa_defrag_extent_backref *backref) 2351 { 2352 struct rb_node **p = &root->rb_node; 2353 struct rb_node *parent = NULL; 2354 struct sa_defrag_extent_backref *entry; 2355 int ret; 2356 2357 while (*p) { 2358 parent = *p; 2359 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2360 2361 ret = backref_comp(backref, entry); 2362 if (ret < 0) 2363 p = &(*p)->rb_left; 2364 else 2365 p = &(*p)->rb_right; 2366 } 2367 2368 rb_link_node(&backref->node, parent, p); 2369 rb_insert_color(&backref->node, root); 2370 } 2371 2372 /* 2373 * Note the backref might has changed, and in this case we just return 0. 2374 */ 2375 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2376 void *ctx) 2377 { 2378 struct btrfs_file_extent_item *extent; 2379 struct old_sa_defrag_extent *old = ctx; 2380 struct new_sa_defrag_extent *new = old->new; 2381 struct btrfs_path *path = new->path; 2382 struct btrfs_key key; 2383 struct btrfs_root *root; 2384 struct sa_defrag_extent_backref *backref; 2385 struct extent_buffer *leaf; 2386 struct inode *inode = new->inode; 2387 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2388 int slot; 2389 int ret; 2390 u64 extent_offset; 2391 u64 num_bytes; 2392 2393 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2394 inum == btrfs_ino(BTRFS_I(inode))) 2395 return 0; 2396 2397 key.objectid = root_id; 2398 key.type = BTRFS_ROOT_ITEM_KEY; 2399 key.offset = (u64)-1; 2400 2401 root = btrfs_read_fs_root_no_name(fs_info, &key); 2402 if (IS_ERR(root)) { 2403 if (PTR_ERR(root) == -ENOENT) 2404 return 0; 2405 WARN_ON(1); 2406 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2407 inum, offset, root_id); 2408 return PTR_ERR(root); 2409 } 2410 2411 key.objectid = inum; 2412 key.type = BTRFS_EXTENT_DATA_KEY; 2413 if (offset > (u64)-1 << 32) 2414 key.offset = 0; 2415 else 2416 key.offset = offset; 2417 2418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2419 if (WARN_ON(ret < 0)) 2420 return ret; 2421 ret = 0; 2422 2423 while (1) { 2424 cond_resched(); 2425 2426 leaf = path->nodes[0]; 2427 slot = path->slots[0]; 2428 2429 if (slot >= btrfs_header_nritems(leaf)) { 2430 ret = btrfs_next_leaf(root, path); 2431 if (ret < 0) { 2432 goto out; 2433 } else if (ret > 0) { 2434 ret = 0; 2435 goto out; 2436 } 2437 continue; 2438 } 2439 2440 path->slots[0]++; 2441 2442 btrfs_item_key_to_cpu(leaf, &key, slot); 2443 2444 if (key.objectid > inum) 2445 goto out; 2446 2447 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2448 continue; 2449 2450 extent = btrfs_item_ptr(leaf, slot, 2451 struct btrfs_file_extent_item); 2452 2453 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2454 continue; 2455 2456 /* 2457 * 'offset' refers to the exact key.offset, 2458 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2459 * (key.offset - extent_offset). 2460 */ 2461 if (key.offset != offset) 2462 continue; 2463 2464 extent_offset = btrfs_file_extent_offset(leaf, extent); 2465 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2466 2467 if (extent_offset >= old->extent_offset + old->offset + 2468 old->len || extent_offset + num_bytes <= 2469 old->extent_offset + old->offset) 2470 continue; 2471 break; 2472 } 2473 2474 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2475 if (!backref) { 2476 ret = -ENOENT; 2477 goto out; 2478 } 2479 2480 backref->root_id = root_id; 2481 backref->inum = inum; 2482 backref->file_pos = offset; 2483 backref->num_bytes = num_bytes; 2484 backref->extent_offset = extent_offset; 2485 backref->generation = btrfs_file_extent_generation(leaf, extent); 2486 backref->old = old; 2487 backref_insert(&new->root, backref); 2488 old->count++; 2489 out: 2490 btrfs_release_path(path); 2491 WARN_ON(ret); 2492 return ret; 2493 } 2494 2495 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2496 struct new_sa_defrag_extent *new) 2497 { 2498 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2499 struct old_sa_defrag_extent *old, *tmp; 2500 int ret; 2501 2502 new->path = path; 2503 2504 list_for_each_entry_safe(old, tmp, &new->head, list) { 2505 ret = iterate_inodes_from_logical(old->bytenr + 2506 old->extent_offset, fs_info, 2507 path, record_one_backref, 2508 old, false); 2509 if (ret < 0 && ret != -ENOENT) 2510 return false; 2511 2512 /* no backref to be processed for this extent */ 2513 if (!old->count) { 2514 list_del(&old->list); 2515 kfree(old); 2516 } 2517 } 2518 2519 if (list_empty(&new->head)) 2520 return false; 2521 2522 return true; 2523 } 2524 2525 static int relink_is_mergable(struct extent_buffer *leaf, 2526 struct btrfs_file_extent_item *fi, 2527 struct new_sa_defrag_extent *new) 2528 { 2529 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2530 return 0; 2531 2532 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2533 return 0; 2534 2535 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2536 return 0; 2537 2538 if (btrfs_file_extent_encryption(leaf, fi) || 2539 btrfs_file_extent_other_encoding(leaf, fi)) 2540 return 0; 2541 2542 return 1; 2543 } 2544 2545 /* 2546 * Note the backref might has changed, and in this case we just return 0. 2547 */ 2548 static noinline int relink_extent_backref(struct btrfs_path *path, 2549 struct sa_defrag_extent_backref *prev, 2550 struct sa_defrag_extent_backref *backref) 2551 { 2552 struct btrfs_file_extent_item *extent; 2553 struct btrfs_file_extent_item *item; 2554 struct btrfs_ordered_extent *ordered; 2555 struct btrfs_trans_handle *trans; 2556 struct btrfs_ref ref = { 0 }; 2557 struct btrfs_root *root; 2558 struct btrfs_key key; 2559 struct extent_buffer *leaf; 2560 struct old_sa_defrag_extent *old = backref->old; 2561 struct new_sa_defrag_extent *new = old->new; 2562 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2563 struct inode *inode; 2564 struct extent_state *cached = NULL; 2565 int ret = 0; 2566 u64 start; 2567 u64 len; 2568 u64 lock_start; 2569 u64 lock_end; 2570 bool merge = false; 2571 int index; 2572 2573 if (prev && prev->root_id == backref->root_id && 2574 prev->inum == backref->inum && 2575 prev->file_pos + prev->num_bytes == backref->file_pos) 2576 merge = true; 2577 2578 /* step 1: get root */ 2579 key.objectid = backref->root_id; 2580 key.type = BTRFS_ROOT_ITEM_KEY; 2581 key.offset = (u64)-1; 2582 2583 index = srcu_read_lock(&fs_info->subvol_srcu); 2584 2585 root = btrfs_read_fs_root_no_name(fs_info, &key); 2586 if (IS_ERR(root)) { 2587 srcu_read_unlock(&fs_info->subvol_srcu, index); 2588 if (PTR_ERR(root) == -ENOENT) 2589 return 0; 2590 return PTR_ERR(root); 2591 } 2592 2593 if (btrfs_root_readonly(root)) { 2594 srcu_read_unlock(&fs_info->subvol_srcu, index); 2595 return 0; 2596 } 2597 2598 /* step 2: get inode */ 2599 key.objectid = backref->inum; 2600 key.type = BTRFS_INODE_ITEM_KEY; 2601 key.offset = 0; 2602 2603 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2604 if (IS_ERR(inode)) { 2605 srcu_read_unlock(&fs_info->subvol_srcu, index); 2606 return 0; 2607 } 2608 2609 srcu_read_unlock(&fs_info->subvol_srcu, index); 2610 2611 /* step 3: relink backref */ 2612 lock_start = backref->file_pos; 2613 lock_end = backref->file_pos + backref->num_bytes - 1; 2614 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2615 &cached); 2616 2617 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2618 if (ordered) { 2619 btrfs_put_ordered_extent(ordered); 2620 goto out_unlock; 2621 } 2622 2623 trans = btrfs_join_transaction(root); 2624 if (IS_ERR(trans)) { 2625 ret = PTR_ERR(trans); 2626 goto out_unlock; 2627 } 2628 2629 key.objectid = backref->inum; 2630 key.type = BTRFS_EXTENT_DATA_KEY; 2631 key.offset = backref->file_pos; 2632 2633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2634 if (ret < 0) { 2635 goto out_free_path; 2636 } else if (ret > 0) { 2637 ret = 0; 2638 goto out_free_path; 2639 } 2640 2641 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2642 struct btrfs_file_extent_item); 2643 2644 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2645 backref->generation) 2646 goto out_free_path; 2647 2648 btrfs_release_path(path); 2649 2650 start = backref->file_pos; 2651 if (backref->extent_offset < old->extent_offset + old->offset) 2652 start += old->extent_offset + old->offset - 2653 backref->extent_offset; 2654 2655 len = min(backref->extent_offset + backref->num_bytes, 2656 old->extent_offset + old->offset + old->len); 2657 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2658 2659 ret = btrfs_drop_extents(trans, root, inode, start, 2660 start + len, 1); 2661 if (ret) 2662 goto out_free_path; 2663 again: 2664 key.objectid = btrfs_ino(BTRFS_I(inode)); 2665 key.type = BTRFS_EXTENT_DATA_KEY; 2666 key.offset = start; 2667 2668 path->leave_spinning = 1; 2669 if (merge) { 2670 struct btrfs_file_extent_item *fi; 2671 u64 extent_len; 2672 struct btrfs_key found_key; 2673 2674 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2675 if (ret < 0) 2676 goto out_free_path; 2677 2678 path->slots[0]--; 2679 leaf = path->nodes[0]; 2680 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2681 2682 fi = btrfs_item_ptr(leaf, path->slots[0], 2683 struct btrfs_file_extent_item); 2684 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2685 2686 if (extent_len + found_key.offset == start && 2687 relink_is_mergable(leaf, fi, new)) { 2688 btrfs_set_file_extent_num_bytes(leaf, fi, 2689 extent_len + len); 2690 btrfs_mark_buffer_dirty(leaf); 2691 inode_add_bytes(inode, len); 2692 2693 ret = 1; 2694 goto out_free_path; 2695 } else { 2696 merge = false; 2697 btrfs_release_path(path); 2698 goto again; 2699 } 2700 } 2701 2702 ret = btrfs_insert_empty_item(trans, root, path, &key, 2703 sizeof(*extent)); 2704 if (ret) { 2705 btrfs_abort_transaction(trans, ret); 2706 goto out_free_path; 2707 } 2708 2709 leaf = path->nodes[0]; 2710 item = btrfs_item_ptr(leaf, path->slots[0], 2711 struct btrfs_file_extent_item); 2712 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2713 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2714 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2715 btrfs_set_file_extent_num_bytes(leaf, item, len); 2716 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2717 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2718 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2719 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2720 btrfs_set_file_extent_encryption(leaf, item, 0); 2721 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2722 2723 btrfs_mark_buffer_dirty(leaf); 2724 inode_add_bytes(inode, len); 2725 btrfs_release_path(path); 2726 2727 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr, 2728 new->disk_len, 0); 2729 btrfs_init_data_ref(&ref, backref->root_id, backref->inum, 2730 new->file_pos); /* start - extent_offset */ 2731 ret = btrfs_inc_extent_ref(trans, &ref); 2732 if (ret) { 2733 btrfs_abort_transaction(trans, ret); 2734 goto out_free_path; 2735 } 2736 2737 ret = 1; 2738 out_free_path: 2739 btrfs_release_path(path); 2740 path->leave_spinning = 0; 2741 btrfs_end_transaction(trans); 2742 out_unlock: 2743 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2744 &cached); 2745 iput(inode); 2746 return ret; 2747 } 2748 2749 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2750 { 2751 struct old_sa_defrag_extent *old, *tmp; 2752 2753 if (!new) 2754 return; 2755 2756 list_for_each_entry_safe(old, tmp, &new->head, list) { 2757 kfree(old); 2758 } 2759 kfree(new); 2760 } 2761 2762 static void relink_file_extents(struct new_sa_defrag_extent *new) 2763 { 2764 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2765 struct btrfs_path *path; 2766 struct sa_defrag_extent_backref *backref; 2767 struct sa_defrag_extent_backref *prev = NULL; 2768 struct rb_node *node; 2769 int ret; 2770 2771 path = btrfs_alloc_path(); 2772 if (!path) 2773 return; 2774 2775 if (!record_extent_backrefs(path, new)) { 2776 btrfs_free_path(path); 2777 goto out; 2778 } 2779 btrfs_release_path(path); 2780 2781 while (1) { 2782 node = rb_first(&new->root); 2783 if (!node) 2784 break; 2785 rb_erase(node, &new->root); 2786 2787 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2788 2789 ret = relink_extent_backref(path, prev, backref); 2790 WARN_ON(ret < 0); 2791 2792 kfree(prev); 2793 2794 if (ret == 1) 2795 prev = backref; 2796 else 2797 prev = NULL; 2798 cond_resched(); 2799 } 2800 kfree(prev); 2801 2802 btrfs_free_path(path); 2803 out: 2804 free_sa_defrag_extent(new); 2805 2806 atomic_dec(&fs_info->defrag_running); 2807 wake_up(&fs_info->transaction_wait); 2808 } 2809 2810 static struct new_sa_defrag_extent * 2811 record_old_file_extents(struct inode *inode, 2812 struct btrfs_ordered_extent *ordered) 2813 { 2814 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2815 struct btrfs_root *root = BTRFS_I(inode)->root; 2816 struct btrfs_path *path; 2817 struct btrfs_key key; 2818 struct old_sa_defrag_extent *old; 2819 struct new_sa_defrag_extent *new; 2820 int ret; 2821 2822 new = kmalloc(sizeof(*new), GFP_NOFS); 2823 if (!new) 2824 return NULL; 2825 2826 new->inode = inode; 2827 new->file_pos = ordered->file_offset; 2828 new->len = ordered->len; 2829 new->bytenr = ordered->start; 2830 new->disk_len = ordered->disk_len; 2831 new->compress_type = ordered->compress_type; 2832 new->root = RB_ROOT; 2833 INIT_LIST_HEAD(&new->head); 2834 2835 path = btrfs_alloc_path(); 2836 if (!path) 2837 goto out_kfree; 2838 2839 key.objectid = btrfs_ino(BTRFS_I(inode)); 2840 key.type = BTRFS_EXTENT_DATA_KEY; 2841 key.offset = new->file_pos; 2842 2843 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2844 if (ret < 0) 2845 goto out_free_path; 2846 if (ret > 0 && path->slots[0] > 0) 2847 path->slots[0]--; 2848 2849 /* find out all the old extents for the file range */ 2850 while (1) { 2851 struct btrfs_file_extent_item *extent; 2852 struct extent_buffer *l; 2853 int slot; 2854 u64 num_bytes; 2855 u64 offset; 2856 u64 end; 2857 u64 disk_bytenr; 2858 u64 extent_offset; 2859 2860 l = path->nodes[0]; 2861 slot = path->slots[0]; 2862 2863 if (slot >= btrfs_header_nritems(l)) { 2864 ret = btrfs_next_leaf(root, path); 2865 if (ret < 0) 2866 goto out_free_path; 2867 else if (ret > 0) 2868 break; 2869 continue; 2870 } 2871 2872 btrfs_item_key_to_cpu(l, &key, slot); 2873 2874 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2875 break; 2876 if (key.type != BTRFS_EXTENT_DATA_KEY) 2877 break; 2878 if (key.offset >= new->file_pos + new->len) 2879 break; 2880 2881 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2882 2883 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2884 if (key.offset + num_bytes < new->file_pos) 2885 goto next; 2886 2887 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2888 if (!disk_bytenr) 2889 goto next; 2890 2891 extent_offset = btrfs_file_extent_offset(l, extent); 2892 2893 old = kmalloc(sizeof(*old), GFP_NOFS); 2894 if (!old) 2895 goto out_free_path; 2896 2897 offset = max(new->file_pos, key.offset); 2898 end = min(new->file_pos + new->len, key.offset + num_bytes); 2899 2900 old->bytenr = disk_bytenr; 2901 old->extent_offset = extent_offset; 2902 old->offset = offset - key.offset; 2903 old->len = end - offset; 2904 old->new = new; 2905 old->count = 0; 2906 list_add_tail(&old->list, &new->head); 2907 next: 2908 path->slots[0]++; 2909 cond_resched(); 2910 } 2911 2912 btrfs_free_path(path); 2913 atomic_inc(&fs_info->defrag_running); 2914 2915 return new; 2916 2917 out_free_path: 2918 btrfs_free_path(path); 2919 out_kfree: 2920 free_sa_defrag_extent(new); 2921 return NULL; 2922 } 2923 2924 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2925 u64 start, u64 len) 2926 { 2927 struct btrfs_block_group_cache *cache; 2928 2929 cache = btrfs_lookup_block_group(fs_info, start); 2930 ASSERT(cache); 2931 2932 spin_lock(&cache->lock); 2933 cache->delalloc_bytes -= len; 2934 spin_unlock(&cache->lock); 2935 2936 btrfs_put_block_group(cache); 2937 } 2938 2939 /* as ordered data IO finishes, this gets called so we can finish 2940 * an ordered extent if the range of bytes in the file it covers are 2941 * fully written. 2942 */ 2943 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2944 { 2945 struct inode *inode = ordered_extent->inode; 2946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2947 struct btrfs_root *root = BTRFS_I(inode)->root; 2948 struct btrfs_trans_handle *trans = NULL; 2949 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2950 struct extent_state *cached_state = NULL; 2951 struct new_sa_defrag_extent *new = NULL; 2952 int compress_type = 0; 2953 int ret = 0; 2954 u64 logical_len = ordered_extent->len; 2955 bool nolock; 2956 bool truncated = false; 2957 bool range_locked = false; 2958 bool clear_new_delalloc_bytes = false; 2959 bool clear_reserved_extent = true; 2960 2961 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2962 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2963 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2964 clear_new_delalloc_bytes = true; 2965 2966 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2967 2968 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2969 ret = -EIO; 2970 goto out; 2971 } 2972 2973 btrfs_free_io_failure_record(BTRFS_I(inode), 2974 ordered_extent->file_offset, 2975 ordered_extent->file_offset + 2976 ordered_extent->len - 1); 2977 2978 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2979 truncated = true; 2980 logical_len = ordered_extent->truncated_len; 2981 /* Truncated the entire extent, don't bother adding */ 2982 if (!logical_len) 2983 goto out; 2984 } 2985 2986 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2987 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2988 2989 /* 2990 * For mwrite(mmap + memset to write) case, we still reserve 2991 * space for NOCOW range. 2992 * As NOCOW won't cause a new delayed ref, just free the space 2993 */ 2994 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2995 ordered_extent->len); 2996 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2997 if (nolock) 2998 trans = btrfs_join_transaction_nolock(root); 2999 else 3000 trans = btrfs_join_transaction(root); 3001 if (IS_ERR(trans)) { 3002 ret = PTR_ERR(trans); 3003 trans = NULL; 3004 goto out; 3005 } 3006 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3007 ret = btrfs_update_inode_fallback(trans, root, inode); 3008 if (ret) /* -ENOMEM or corruption */ 3009 btrfs_abort_transaction(trans, ret); 3010 goto out; 3011 } 3012 3013 range_locked = true; 3014 lock_extent_bits(io_tree, ordered_extent->file_offset, 3015 ordered_extent->file_offset + ordered_extent->len - 1, 3016 &cached_state); 3017 3018 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3019 ordered_extent->file_offset + ordered_extent->len - 1, 3020 EXTENT_DEFRAG, 0, cached_state); 3021 if (ret) { 3022 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3023 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3024 /* the inode is shared */ 3025 new = record_old_file_extents(inode, ordered_extent); 3026 3027 clear_extent_bit(io_tree, ordered_extent->file_offset, 3028 ordered_extent->file_offset + ordered_extent->len - 1, 3029 EXTENT_DEFRAG, 0, 0, &cached_state); 3030 } 3031 3032 if (nolock) 3033 trans = btrfs_join_transaction_nolock(root); 3034 else 3035 trans = btrfs_join_transaction(root); 3036 if (IS_ERR(trans)) { 3037 ret = PTR_ERR(trans); 3038 trans = NULL; 3039 goto out; 3040 } 3041 3042 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3043 3044 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3045 compress_type = ordered_extent->compress_type; 3046 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3047 BUG_ON(compress_type); 3048 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3049 ordered_extent->len); 3050 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3051 ordered_extent->file_offset, 3052 ordered_extent->file_offset + 3053 logical_len); 3054 } else { 3055 BUG_ON(root == fs_info->tree_root); 3056 ret = insert_reserved_file_extent(trans, inode, 3057 ordered_extent->file_offset, 3058 ordered_extent->start, 3059 ordered_extent->disk_len, 3060 logical_len, logical_len, 3061 compress_type, 0, 0, 3062 BTRFS_FILE_EXTENT_REG); 3063 if (!ret) { 3064 clear_reserved_extent = false; 3065 btrfs_release_delalloc_bytes(fs_info, 3066 ordered_extent->start, 3067 ordered_extent->disk_len); 3068 } 3069 } 3070 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3071 ordered_extent->file_offset, ordered_extent->len, 3072 trans->transid); 3073 if (ret < 0) { 3074 btrfs_abort_transaction(trans, ret); 3075 goto out; 3076 } 3077 3078 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3079 if (ret) { 3080 btrfs_abort_transaction(trans, ret); 3081 goto out; 3082 } 3083 3084 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3085 ret = btrfs_update_inode_fallback(trans, root, inode); 3086 if (ret) { /* -ENOMEM or corruption */ 3087 btrfs_abort_transaction(trans, ret); 3088 goto out; 3089 } 3090 ret = 0; 3091 out: 3092 if (range_locked || clear_new_delalloc_bytes) { 3093 unsigned int clear_bits = 0; 3094 3095 if (range_locked) 3096 clear_bits |= EXTENT_LOCKED; 3097 if (clear_new_delalloc_bytes) 3098 clear_bits |= EXTENT_DELALLOC_NEW; 3099 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3100 ordered_extent->file_offset, 3101 ordered_extent->file_offset + 3102 ordered_extent->len - 1, 3103 clear_bits, 3104 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3105 0, &cached_state); 3106 } 3107 3108 if (trans) 3109 btrfs_end_transaction(trans); 3110 3111 if (ret || truncated) { 3112 u64 start, end; 3113 3114 if (truncated) 3115 start = ordered_extent->file_offset + logical_len; 3116 else 3117 start = ordered_extent->file_offset; 3118 end = ordered_extent->file_offset + ordered_extent->len - 1; 3119 clear_extent_uptodate(io_tree, start, end, NULL); 3120 3121 /* Drop the cache for the part of the extent we didn't write. */ 3122 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3123 3124 /* 3125 * If the ordered extent had an IOERR or something else went 3126 * wrong we need to return the space for this ordered extent 3127 * back to the allocator. We only free the extent in the 3128 * truncated case if we didn't write out the extent at all. 3129 * 3130 * If we made it past insert_reserved_file_extent before we 3131 * errored out then we don't need to do this as the accounting 3132 * has already been done. 3133 */ 3134 if ((ret || !logical_len) && 3135 clear_reserved_extent && 3136 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3137 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3138 btrfs_free_reserved_extent(fs_info, 3139 ordered_extent->start, 3140 ordered_extent->disk_len, 1); 3141 } 3142 3143 3144 /* 3145 * This needs to be done to make sure anybody waiting knows we are done 3146 * updating everything for this ordered extent. 3147 */ 3148 btrfs_remove_ordered_extent(inode, ordered_extent); 3149 3150 /* for snapshot-aware defrag */ 3151 if (new) { 3152 if (ret) { 3153 free_sa_defrag_extent(new); 3154 atomic_dec(&fs_info->defrag_running); 3155 } else { 3156 relink_file_extents(new); 3157 } 3158 } 3159 3160 /* once for us */ 3161 btrfs_put_ordered_extent(ordered_extent); 3162 /* once for the tree */ 3163 btrfs_put_ordered_extent(ordered_extent); 3164 3165 return ret; 3166 } 3167 3168 static void finish_ordered_fn(struct btrfs_work *work) 3169 { 3170 struct btrfs_ordered_extent *ordered_extent; 3171 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3172 btrfs_finish_ordered_io(ordered_extent); 3173 } 3174 3175 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3176 u64 end, int uptodate) 3177 { 3178 struct inode *inode = page->mapping->host; 3179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3180 struct btrfs_ordered_extent *ordered_extent = NULL; 3181 struct btrfs_workqueue *wq; 3182 btrfs_work_func_t func; 3183 3184 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3185 3186 ClearPagePrivate2(page); 3187 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3188 end - start + 1, uptodate)) 3189 return; 3190 3191 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3192 wq = fs_info->endio_freespace_worker; 3193 func = btrfs_freespace_write_helper; 3194 } else { 3195 wq = fs_info->endio_write_workers; 3196 func = btrfs_endio_write_helper; 3197 } 3198 3199 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3200 NULL); 3201 btrfs_queue_work(wq, &ordered_extent->work); 3202 } 3203 3204 static int __readpage_endio_check(struct inode *inode, 3205 struct btrfs_io_bio *io_bio, 3206 int icsum, struct page *page, 3207 int pgoff, u64 start, size_t len) 3208 { 3209 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3210 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3211 char *kaddr; 3212 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 3213 u8 *csum_expected; 3214 u8 csum[BTRFS_CSUM_SIZE]; 3215 3216 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 3217 3218 kaddr = kmap_atomic(page); 3219 shash->tfm = fs_info->csum_shash; 3220 3221 crypto_shash_init(shash); 3222 crypto_shash_update(shash, kaddr + pgoff, len); 3223 crypto_shash_final(shash, csum); 3224 3225 if (memcmp(csum, csum_expected, csum_size)) 3226 goto zeroit; 3227 3228 kunmap_atomic(kaddr); 3229 return 0; 3230 zeroit: 3231 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3232 io_bio->mirror_num); 3233 memset(kaddr + pgoff, 1, len); 3234 flush_dcache_page(page); 3235 kunmap_atomic(kaddr); 3236 return -EIO; 3237 } 3238 3239 /* 3240 * when reads are done, we need to check csums to verify the data is correct 3241 * if there's a match, we allow the bio to finish. If not, the code in 3242 * extent_io.c will try to find good copies for us. 3243 */ 3244 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3245 u64 phy_offset, struct page *page, 3246 u64 start, u64 end, int mirror) 3247 { 3248 size_t offset = start - page_offset(page); 3249 struct inode *inode = page->mapping->host; 3250 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3251 struct btrfs_root *root = BTRFS_I(inode)->root; 3252 3253 if (PageChecked(page)) { 3254 ClearPageChecked(page); 3255 return 0; 3256 } 3257 3258 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3259 return 0; 3260 3261 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3262 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3263 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3264 return 0; 3265 } 3266 3267 phy_offset >>= inode->i_sb->s_blocksize_bits; 3268 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3269 start, (size_t)(end - start + 1)); 3270 } 3271 3272 /* 3273 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3274 * 3275 * @inode: The inode we want to perform iput on 3276 * 3277 * This function uses the generic vfs_inode::i_count to track whether we should 3278 * just decrement it (in case it's > 1) or if this is the last iput then link 3279 * the inode to the delayed iput machinery. Delayed iputs are processed at 3280 * transaction commit time/superblock commit/cleaner kthread. 3281 */ 3282 void btrfs_add_delayed_iput(struct inode *inode) 3283 { 3284 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3285 struct btrfs_inode *binode = BTRFS_I(inode); 3286 3287 if (atomic_add_unless(&inode->i_count, -1, 1)) 3288 return; 3289 3290 atomic_inc(&fs_info->nr_delayed_iputs); 3291 spin_lock(&fs_info->delayed_iput_lock); 3292 ASSERT(list_empty(&binode->delayed_iput)); 3293 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3294 spin_unlock(&fs_info->delayed_iput_lock); 3295 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3296 wake_up_process(fs_info->cleaner_kthread); 3297 } 3298 3299 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3300 struct btrfs_inode *inode) 3301 { 3302 list_del_init(&inode->delayed_iput); 3303 spin_unlock(&fs_info->delayed_iput_lock); 3304 iput(&inode->vfs_inode); 3305 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3306 wake_up(&fs_info->delayed_iputs_wait); 3307 spin_lock(&fs_info->delayed_iput_lock); 3308 } 3309 3310 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3311 struct btrfs_inode *inode) 3312 { 3313 if (!list_empty(&inode->delayed_iput)) { 3314 spin_lock(&fs_info->delayed_iput_lock); 3315 if (!list_empty(&inode->delayed_iput)) 3316 run_delayed_iput_locked(fs_info, inode); 3317 spin_unlock(&fs_info->delayed_iput_lock); 3318 } 3319 } 3320 3321 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3322 { 3323 3324 spin_lock(&fs_info->delayed_iput_lock); 3325 while (!list_empty(&fs_info->delayed_iputs)) { 3326 struct btrfs_inode *inode; 3327 3328 inode = list_first_entry(&fs_info->delayed_iputs, 3329 struct btrfs_inode, delayed_iput); 3330 run_delayed_iput_locked(fs_info, inode); 3331 } 3332 spin_unlock(&fs_info->delayed_iput_lock); 3333 } 3334 3335 /** 3336 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 3337 * @fs_info - the fs_info for this fs 3338 * @return - EINTR if we were killed, 0 if nothing's pending 3339 * 3340 * This will wait on any delayed iputs that are currently running with KILLABLE 3341 * set. Once they are all done running we will return, unless we are killed in 3342 * which case we return EINTR. This helps in user operations like fallocate etc 3343 * that might get blocked on the iputs. 3344 */ 3345 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3346 { 3347 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3348 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3349 if (ret) 3350 return -EINTR; 3351 return 0; 3352 } 3353 3354 /* 3355 * This creates an orphan entry for the given inode in case something goes wrong 3356 * in the middle of an unlink. 3357 */ 3358 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3359 struct btrfs_inode *inode) 3360 { 3361 int ret; 3362 3363 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3364 if (ret && ret != -EEXIST) { 3365 btrfs_abort_transaction(trans, ret); 3366 return ret; 3367 } 3368 3369 return 0; 3370 } 3371 3372 /* 3373 * We have done the delete so we can go ahead and remove the orphan item for 3374 * this particular inode. 3375 */ 3376 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3377 struct btrfs_inode *inode) 3378 { 3379 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3380 } 3381 3382 /* 3383 * this cleans up any orphans that may be left on the list from the last use 3384 * of this root. 3385 */ 3386 int btrfs_orphan_cleanup(struct btrfs_root *root) 3387 { 3388 struct btrfs_fs_info *fs_info = root->fs_info; 3389 struct btrfs_path *path; 3390 struct extent_buffer *leaf; 3391 struct btrfs_key key, found_key; 3392 struct btrfs_trans_handle *trans; 3393 struct inode *inode; 3394 u64 last_objectid = 0; 3395 int ret = 0, nr_unlink = 0; 3396 3397 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3398 return 0; 3399 3400 path = btrfs_alloc_path(); 3401 if (!path) { 3402 ret = -ENOMEM; 3403 goto out; 3404 } 3405 path->reada = READA_BACK; 3406 3407 key.objectid = BTRFS_ORPHAN_OBJECTID; 3408 key.type = BTRFS_ORPHAN_ITEM_KEY; 3409 key.offset = (u64)-1; 3410 3411 while (1) { 3412 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3413 if (ret < 0) 3414 goto out; 3415 3416 /* 3417 * if ret == 0 means we found what we were searching for, which 3418 * is weird, but possible, so only screw with path if we didn't 3419 * find the key and see if we have stuff that matches 3420 */ 3421 if (ret > 0) { 3422 ret = 0; 3423 if (path->slots[0] == 0) 3424 break; 3425 path->slots[0]--; 3426 } 3427 3428 /* pull out the item */ 3429 leaf = path->nodes[0]; 3430 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3431 3432 /* make sure the item matches what we want */ 3433 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3434 break; 3435 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3436 break; 3437 3438 /* release the path since we're done with it */ 3439 btrfs_release_path(path); 3440 3441 /* 3442 * this is where we are basically btrfs_lookup, without the 3443 * crossing root thing. we store the inode number in the 3444 * offset of the orphan item. 3445 */ 3446 3447 if (found_key.offset == last_objectid) { 3448 btrfs_err(fs_info, 3449 "Error removing orphan entry, stopping orphan cleanup"); 3450 ret = -EINVAL; 3451 goto out; 3452 } 3453 3454 last_objectid = found_key.offset; 3455 3456 found_key.objectid = found_key.offset; 3457 found_key.type = BTRFS_INODE_ITEM_KEY; 3458 found_key.offset = 0; 3459 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3460 ret = PTR_ERR_OR_ZERO(inode); 3461 if (ret && ret != -ENOENT) 3462 goto out; 3463 3464 if (ret == -ENOENT && root == fs_info->tree_root) { 3465 struct btrfs_root *dead_root; 3466 struct btrfs_fs_info *fs_info = root->fs_info; 3467 int is_dead_root = 0; 3468 3469 /* 3470 * this is an orphan in the tree root. Currently these 3471 * could come from 2 sources: 3472 * a) a snapshot deletion in progress 3473 * b) a free space cache inode 3474 * We need to distinguish those two, as the snapshot 3475 * orphan must not get deleted. 3476 * find_dead_roots already ran before us, so if this 3477 * is a snapshot deletion, we should find the root 3478 * in the dead_roots list 3479 */ 3480 spin_lock(&fs_info->trans_lock); 3481 list_for_each_entry(dead_root, &fs_info->dead_roots, 3482 root_list) { 3483 if (dead_root->root_key.objectid == 3484 found_key.objectid) { 3485 is_dead_root = 1; 3486 break; 3487 } 3488 } 3489 spin_unlock(&fs_info->trans_lock); 3490 if (is_dead_root) { 3491 /* prevent this orphan from being found again */ 3492 key.offset = found_key.objectid - 1; 3493 continue; 3494 } 3495 3496 } 3497 3498 /* 3499 * If we have an inode with links, there are a couple of 3500 * possibilities. Old kernels (before v3.12) used to create an 3501 * orphan item for truncate indicating that there were possibly 3502 * extent items past i_size that needed to be deleted. In v3.12, 3503 * truncate was changed to update i_size in sync with the extent 3504 * items, but the (useless) orphan item was still created. Since 3505 * v4.18, we don't create the orphan item for truncate at all. 3506 * 3507 * So, this item could mean that we need to do a truncate, but 3508 * only if this filesystem was last used on a pre-v3.12 kernel 3509 * and was not cleanly unmounted. The odds of that are quite 3510 * slim, and it's a pain to do the truncate now, so just delete 3511 * the orphan item. 3512 * 3513 * It's also possible that this orphan item was supposed to be 3514 * deleted but wasn't. The inode number may have been reused, 3515 * but either way, we can delete the orphan item. 3516 */ 3517 if (ret == -ENOENT || inode->i_nlink) { 3518 if (!ret) 3519 iput(inode); 3520 trans = btrfs_start_transaction(root, 1); 3521 if (IS_ERR(trans)) { 3522 ret = PTR_ERR(trans); 3523 goto out; 3524 } 3525 btrfs_debug(fs_info, "auto deleting %Lu", 3526 found_key.objectid); 3527 ret = btrfs_del_orphan_item(trans, root, 3528 found_key.objectid); 3529 btrfs_end_transaction(trans); 3530 if (ret) 3531 goto out; 3532 continue; 3533 } 3534 3535 nr_unlink++; 3536 3537 /* this will do delete_inode and everything for us */ 3538 iput(inode); 3539 } 3540 /* release the path since we're done with it */ 3541 btrfs_release_path(path); 3542 3543 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3544 3545 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3546 trans = btrfs_join_transaction(root); 3547 if (!IS_ERR(trans)) 3548 btrfs_end_transaction(trans); 3549 } 3550 3551 if (nr_unlink) 3552 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3553 3554 out: 3555 if (ret) 3556 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3557 btrfs_free_path(path); 3558 return ret; 3559 } 3560 3561 /* 3562 * very simple check to peek ahead in the leaf looking for xattrs. If we 3563 * don't find any xattrs, we know there can't be any acls. 3564 * 3565 * slot is the slot the inode is in, objectid is the objectid of the inode 3566 */ 3567 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3568 int slot, u64 objectid, 3569 int *first_xattr_slot) 3570 { 3571 u32 nritems = btrfs_header_nritems(leaf); 3572 struct btrfs_key found_key; 3573 static u64 xattr_access = 0; 3574 static u64 xattr_default = 0; 3575 int scanned = 0; 3576 3577 if (!xattr_access) { 3578 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3579 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3580 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3581 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3582 } 3583 3584 slot++; 3585 *first_xattr_slot = -1; 3586 while (slot < nritems) { 3587 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3588 3589 /* we found a different objectid, there must not be acls */ 3590 if (found_key.objectid != objectid) 3591 return 0; 3592 3593 /* we found an xattr, assume we've got an acl */ 3594 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3595 if (*first_xattr_slot == -1) 3596 *first_xattr_slot = slot; 3597 if (found_key.offset == xattr_access || 3598 found_key.offset == xattr_default) 3599 return 1; 3600 } 3601 3602 /* 3603 * we found a key greater than an xattr key, there can't 3604 * be any acls later on 3605 */ 3606 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3607 return 0; 3608 3609 slot++; 3610 scanned++; 3611 3612 /* 3613 * it goes inode, inode backrefs, xattrs, extents, 3614 * so if there are a ton of hard links to an inode there can 3615 * be a lot of backrefs. Don't waste time searching too hard, 3616 * this is just an optimization 3617 */ 3618 if (scanned >= 8) 3619 break; 3620 } 3621 /* we hit the end of the leaf before we found an xattr or 3622 * something larger than an xattr. We have to assume the inode 3623 * has acls 3624 */ 3625 if (*first_xattr_slot == -1) 3626 *first_xattr_slot = slot; 3627 return 1; 3628 } 3629 3630 /* 3631 * read an inode from the btree into the in-memory inode 3632 */ 3633 static int btrfs_read_locked_inode(struct inode *inode, 3634 struct btrfs_path *in_path) 3635 { 3636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3637 struct btrfs_path *path = in_path; 3638 struct extent_buffer *leaf; 3639 struct btrfs_inode_item *inode_item; 3640 struct btrfs_root *root = BTRFS_I(inode)->root; 3641 struct btrfs_key location; 3642 unsigned long ptr; 3643 int maybe_acls; 3644 u32 rdev; 3645 int ret; 3646 bool filled = false; 3647 int first_xattr_slot; 3648 3649 ret = btrfs_fill_inode(inode, &rdev); 3650 if (!ret) 3651 filled = true; 3652 3653 if (!path) { 3654 path = btrfs_alloc_path(); 3655 if (!path) 3656 return -ENOMEM; 3657 } 3658 3659 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3660 3661 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3662 if (ret) { 3663 if (path != in_path) 3664 btrfs_free_path(path); 3665 return ret; 3666 } 3667 3668 leaf = path->nodes[0]; 3669 3670 if (filled) 3671 goto cache_index; 3672 3673 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3674 struct btrfs_inode_item); 3675 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3676 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3677 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3678 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3679 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3680 3681 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3682 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3683 3684 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3685 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3686 3687 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3688 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3689 3690 BTRFS_I(inode)->i_otime.tv_sec = 3691 btrfs_timespec_sec(leaf, &inode_item->otime); 3692 BTRFS_I(inode)->i_otime.tv_nsec = 3693 btrfs_timespec_nsec(leaf, &inode_item->otime); 3694 3695 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3696 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3697 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3698 3699 inode_set_iversion_queried(inode, 3700 btrfs_inode_sequence(leaf, inode_item)); 3701 inode->i_generation = BTRFS_I(inode)->generation; 3702 inode->i_rdev = 0; 3703 rdev = btrfs_inode_rdev(leaf, inode_item); 3704 3705 BTRFS_I(inode)->index_cnt = (u64)-1; 3706 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3707 3708 cache_index: 3709 /* 3710 * If we were modified in the current generation and evicted from memory 3711 * and then re-read we need to do a full sync since we don't have any 3712 * idea about which extents were modified before we were evicted from 3713 * cache. 3714 * 3715 * This is required for both inode re-read from disk and delayed inode 3716 * in delayed_nodes_tree. 3717 */ 3718 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3719 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3720 &BTRFS_I(inode)->runtime_flags); 3721 3722 /* 3723 * We don't persist the id of the transaction where an unlink operation 3724 * against the inode was last made. So here we assume the inode might 3725 * have been evicted, and therefore the exact value of last_unlink_trans 3726 * lost, and set it to last_trans to avoid metadata inconsistencies 3727 * between the inode and its parent if the inode is fsync'ed and the log 3728 * replayed. For example, in the scenario: 3729 * 3730 * touch mydir/foo 3731 * ln mydir/foo mydir/bar 3732 * sync 3733 * unlink mydir/bar 3734 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3735 * xfs_io -c fsync mydir/foo 3736 * <power failure> 3737 * mount fs, triggers fsync log replay 3738 * 3739 * We must make sure that when we fsync our inode foo we also log its 3740 * parent inode, otherwise after log replay the parent still has the 3741 * dentry with the "bar" name but our inode foo has a link count of 1 3742 * and doesn't have an inode ref with the name "bar" anymore. 3743 * 3744 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3745 * but it guarantees correctness at the expense of occasional full 3746 * transaction commits on fsync if our inode is a directory, or if our 3747 * inode is not a directory, logging its parent unnecessarily. 3748 */ 3749 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3750 3751 path->slots[0]++; 3752 if (inode->i_nlink != 1 || 3753 path->slots[0] >= btrfs_header_nritems(leaf)) 3754 goto cache_acl; 3755 3756 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3757 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3758 goto cache_acl; 3759 3760 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3761 if (location.type == BTRFS_INODE_REF_KEY) { 3762 struct btrfs_inode_ref *ref; 3763 3764 ref = (struct btrfs_inode_ref *)ptr; 3765 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3766 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3767 struct btrfs_inode_extref *extref; 3768 3769 extref = (struct btrfs_inode_extref *)ptr; 3770 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3771 extref); 3772 } 3773 cache_acl: 3774 /* 3775 * try to precache a NULL acl entry for files that don't have 3776 * any xattrs or acls 3777 */ 3778 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3779 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3780 if (first_xattr_slot != -1) { 3781 path->slots[0] = first_xattr_slot; 3782 ret = btrfs_load_inode_props(inode, path); 3783 if (ret) 3784 btrfs_err(fs_info, 3785 "error loading props for ino %llu (root %llu): %d", 3786 btrfs_ino(BTRFS_I(inode)), 3787 root->root_key.objectid, ret); 3788 } 3789 if (path != in_path) 3790 btrfs_free_path(path); 3791 3792 if (!maybe_acls) 3793 cache_no_acl(inode); 3794 3795 switch (inode->i_mode & S_IFMT) { 3796 case S_IFREG: 3797 inode->i_mapping->a_ops = &btrfs_aops; 3798 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3799 inode->i_fop = &btrfs_file_operations; 3800 inode->i_op = &btrfs_file_inode_operations; 3801 break; 3802 case S_IFDIR: 3803 inode->i_fop = &btrfs_dir_file_operations; 3804 inode->i_op = &btrfs_dir_inode_operations; 3805 break; 3806 case S_IFLNK: 3807 inode->i_op = &btrfs_symlink_inode_operations; 3808 inode_nohighmem(inode); 3809 inode->i_mapping->a_ops = &btrfs_aops; 3810 break; 3811 default: 3812 inode->i_op = &btrfs_special_inode_operations; 3813 init_special_inode(inode, inode->i_mode, rdev); 3814 break; 3815 } 3816 3817 btrfs_sync_inode_flags_to_i_flags(inode); 3818 return 0; 3819 } 3820 3821 /* 3822 * given a leaf and an inode, copy the inode fields into the leaf 3823 */ 3824 static void fill_inode_item(struct btrfs_trans_handle *trans, 3825 struct extent_buffer *leaf, 3826 struct btrfs_inode_item *item, 3827 struct inode *inode) 3828 { 3829 struct btrfs_map_token token; 3830 3831 btrfs_init_map_token(&token); 3832 3833 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3834 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3835 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3836 &token); 3837 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3838 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3839 3840 btrfs_set_token_timespec_sec(leaf, &item->atime, 3841 inode->i_atime.tv_sec, &token); 3842 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3843 inode->i_atime.tv_nsec, &token); 3844 3845 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3846 inode->i_mtime.tv_sec, &token); 3847 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3848 inode->i_mtime.tv_nsec, &token); 3849 3850 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3851 inode->i_ctime.tv_sec, &token); 3852 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3853 inode->i_ctime.tv_nsec, &token); 3854 3855 btrfs_set_token_timespec_sec(leaf, &item->otime, 3856 BTRFS_I(inode)->i_otime.tv_sec, &token); 3857 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3858 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3859 3860 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3861 &token); 3862 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3863 &token); 3864 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3865 &token); 3866 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3867 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3868 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3869 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3870 } 3871 3872 /* 3873 * copy everything in the in-memory inode into the btree. 3874 */ 3875 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3876 struct btrfs_root *root, struct inode *inode) 3877 { 3878 struct btrfs_inode_item *inode_item; 3879 struct btrfs_path *path; 3880 struct extent_buffer *leaf; 3881 int ret; 3882 3883 path = btrfs_alloc_path(); 3884 if (!path) 3885 return -ENOMEM; 3886 3887 path->leave_spinning = 1; 3888 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3889 1); 3890 if (ret) { 3891 if (ret > 0) 3892 ret = -ENOENT; 3893 goto failed; 3894 } 3895 3896 leaf = path->nodes[0]; 3897 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3898 struct btrfs_inode_item); 3899 3900 fill_inode_item(trans, leaf, inode_item, inode); 3901 btrfs_mark_buffer_dirty(leaf); 3902 btrfs_set_inode_last_trans(trans, inode); 3903 ret = 0; 3904 failed: 3905 btrfs_free_path(path); 3906 return ret; 3907 } 3908 3909 /* 3910 * copy everything in the in-memory inode into the btree. 3911 */ 3912 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3913 struct btrfs_root *root, struct inode *inode) 3914 { 3915 struct btrfs_fs_info *fs_info = root->fs_info; 3916 int ret; 3917 3918 /* 3919 * If the inode is a free space inode, we can deadlock during commit 3920 * if we put it into the delayed code. 3921 * 3922 * The data relocation inode should also be directly updated 3923 * without delay 3924 */ 3925 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3926 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3927 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3928 btrfs_update_root_times(trans, root); 3929 3930 ret = btrfs_delayed_update_inode(trans, root, inode); 3931 if (!ret) 3932 btrfs_set_inode_last_trans(trans, inode); 3933 return ret; 3934 } 3935 3936 return btrfs_update_inode_item(trans, root, inode); 3937 } 3938 3939 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3940 struct btrfs_root *root, 3941 struct inode *inode) 3942 { 3943 int ret; 3944 3945 ret = btrfs_update_inode(trans, root, inode); 3946 if (ret == -ENOSPC) 3947 return btrfs_update_inode_item(trans, root, inode); 3948 return ret; 3949 } 3950 3951 /* 3952 * unlink helper that gets used here in inode.c and in the tree logging 3953 * recovery code. It remove a link in a directory with a given name, and 3954 * also drops the back refs in the inode to the directory 3955 */ 3956 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3957 struct btrfs_root *root, 3958 struct btrfs_inode *dir, 3959 struct btrfs_inode *inode, 3960 const char *name, int name_len) 3961 { 3962 struct btrfs_fs_info *fs_info = root->fs_info; 3963 struct btrfs_path *path; 3964 int ret = 0; 3965 struct btrfs_dir_item *di; 3966 u64 index; 3967 u64 ino = btrfs_ino(inode); 3968 u64 dir_ino = btrfs_ino(dir); 3969 3970 path = btrfs_alloc_path(); 3971 if (!path) { 3972 ret = -ENOMEM; 3973 goto out; 3974 } 3975 3976 path->leave_spinning = 1; 3977 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3978 name, name_len, -1); 3979 if (IS_ERR_OR_NULL(di)) { 3980 ret = di ? PTR_ERR(di) : -ENOENT; 3981 goto err; 3982 } 3983 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3984 if (ret) 3985 goto err; 3986 btrfs_release_path(path); 3987 3988 /* 3989 * If we don't have dir index, we have to get it by looking up 3990 * the inode ref, since we get the inode ref, remove it directly, 3991 * it is unnecessary to do delayed deletion. 3992 * 3993 * But if we have dir index, needn't search inode ref to get it. 3994 * Since the inode ref is close to the inode item, it is better 3995 * that we delay to delete it, and just do this deletion when 3996 * we update the inode item. 3997 */ 3998 if (inode->dir_index) { 3999 ret = btrfs_delayed_delete_inode_ref(inode); 4000 if (!ret) { 4001 index = inode->dir_index; 4002 goto skip_backref; 4003 } 4004 } 4005 4006 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4007 dir_ino, &index); 4008 if (ret) { 4009 btrfs_info(fs_info, 4010 "failed to delete reference to %.*s, inode %llu parent %llu", 4011 name_len, name, ino, dir_ino); 4012 btrfs_abort_transaction(trans, ret); 4013 goto err; 4014 } 4015 skip_backref: 4016 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4017 if (ret) { 4018 btrfs_abort_transaction(trans, ret); 4019 goto err; 4020 } 4021 4022 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4023 dir_ino); 4024 if (ret != 0 && ret != -ENOENT) { 4025 btrfs_abort_transaction(trans, ret); 4026 goto err; 4027 } 4028 4029 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4030 index); 4031 if (ret == -ENOENT) 4032 ret = 0; 4033 else if (ret) 4034 btrfs_abort_transaction(trans, ret); 4035 4036 /* 4037 * If we have a pending delayed iput we could end up with the final iput 4038 * being run in btrfs-cleaner context. If we have enough of these built 4039 * up we can end up burning a lot of time in btrfs-cleaner without any 4040 * way to throttle the unlinks. Since we're currently holding a ref on 4041 * the inode we can run the delayed iput here without any issues as the 4042 * final iput won't be done until after we drop the ref we're currently 4043 * holding. 4044 */ 4045 btrfs_run_delayed_iput(fs_info, inode); 4046 err: 4047 btrfs_free_path(path); 4048 if (ret) 4049 goto out; 4050 4051 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4052 inode_inc_iversion(&inode->vfs_inode); 4053 inode_inc_iversion(&dir->vfs_inode); 4054 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4055 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4056 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4057 out: 4058 return ret; 4059 } 4060 4061 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4062 struct btrfs_root *root, 4063 struct btrfs_inode *dir, struct btrfs_inode *inode, 4064 const char *name, int name_len) 4065 { 4066 int ret; 4067 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4068 if (!ret) { 4069 drop_nlink(&inode->vfs_inode); 4070 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4071 } 4072 return ret; 4073 } 4074 4075 /* 4076 * helper to start transaction for unlink and rmdir. 4077 * 4078 * unlink and rmdir are special in btrfs, they do not always free space, so 4079 * if we cannot make our reservations the normal way try and see if there is 4080 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4081 * allow the unlink to occur. 4082 */ 4083 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4084 { 4085 struct btrfs_root *root = BTRFS_I(dir)->root; 4086 4087 /* 4088 * 1 for the possible orphan item 4089 * 1 for the dir item 4090 * 1 for the dir index 4091 * 1 for the inode ref 4092 * 1 for the inode 4093 */ 4094 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4095 } 4096 4097 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4098 { 4099 struct btrfs_root *root = BTRFS_I(dir)->root; 4100 struct btrfs_trans_handle *trans; 4101 struct inode *inode = d_inode(dentry); 4102 int ret; 4103 4104 trans = __unlink_start_trans(dir); 4105 if (IS_ERR(trans)) 4106 return PTR_ERR(trans); 4107 4108 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4109 0); 4110 4111 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4112 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4113 dentry->d_name.len); 4114 if (ret) 4115 goto out; 4116 4117 if (inode->i_nlink == 0) { 4118 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4119 if (ret) 4120 goto out; 4121 } 4122 4123 out: 4124 btrfs_end_transaction(trans); 4125 btrfs_btree_balance_dirty(root->fs_info); 4126 return ret; 4127 } 4128 4129 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4130 struct inode *dir, u64 objectid, 4131 const char *name, int name_len) 4132 { 4133 struct btrfs_root *root = BTRFS_I(dir)->root; 4134 struct btrfs_path *path; 4135 struct extent_buffer *leaf; 4136 struct btrfs_dir_item *di; 4137 struct btrfs_key key; 4138 u64 index; 4139 int ret; 4140 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4141 4142 path = btrfs_alloc_path(); 4143 if (!path) 4144 return -ENOMEM; 4145 4146 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4147 name, name_len, -1); 4148 if (IS_ERR_OR_NULL(di)) { 4149 ret = di ? PTR_ERR(di) : -ENOENT; 4150 goto out; 4151 } 4152 4153 leaf = path->nodes[0]; 4154 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4155 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4156 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4157 if (ret) { 4158 btrfs_abort_transaction(trans, ret); 4159 goto out; 4160 } 4161 btrfs_release_path(path); 4162 4163 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4164 dir_ino, &index, name, name_len); 4165 if (ret < 0) { 4166 if (ret != -ENOENT) { 4167 btrfs_abort_transaction(trans, ret); 4168 goto out; 4169 } 4170 di = btrfs_search_dir_index_item(root, path, dir_ino, 4171 name, name_len); 4172 if (IS_ERR_OR_NULL(di)) { 4173 if (!di) 4174 ret = -ENOENT; 4175 else 4176 ret = PTR_ERR(di); 4177 btrfs_abort_transaction(trans, ret); 4178 goto out; 4179 } 4180 4181 leaf = path->nodes[0]; 4182 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4183 index = key.offset; 4184 } 4185 btrfs_release_path(path); 4186 4187 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4188 if (ret) { 4189 btrfs_abort_transaction(trans, ret); 4190 goto out; 4191 } 4192 4193 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4194 inode_inc_iversion(dir); 4195 dir->i_mtime = dir->i_ctime = current_time(dir); 4196 ret = btrfs_update_inode_fallback(trans, root, dir); 4197 if (ret) 4198 btrfs_abort_transaction(trans, ret); 4199 out: 4200 btrfs_free_path(path); 4201 return ret; 4202 } 4203 4204 /* 4205 * Helper to check if the subvolume references other subvolumes or if it's 4206 * default. 4207 */ 4208 static noinline int may_destroy_subvol(struct btrfs_root *root) 4209 { 4210 struct btrfs_fs_info *fs_info = root->fs_info; 4211 struct btrfs_path *path; 4212 struct btrfs_dir_item *di; 4213 struct btrfs_key key; 4214 u64 dir_id; 4215 int ret; 4216 4217 path = btrfs_alloc_path(); 4218 if (!path) 4219 return -ENOMEM; 4220 4221 /* Make sure this root isn't set as the default subvol */ 4222 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4223 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4224 dir_id, "default", 7, 0); 4225 if (di && !IS_ERR(di)) { 4226 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4227 if (key.objectid == root->root_key.objectid) { 4228 ret = -EPERM; 4229 btrfs_err(fs_info, 4230 "deleting default subvolume %llu is not allowed", 4231 key.objectid); 4232 goto out; 4233 } 4234 btrfs_release_path(path); 4235 } 4236 4237 key.objectid = root->root_key.objectid; 4238 key.type = BTRFS_ROOT_REF_KEY; 4239 key.offset = (u64)-1; 4240 4241 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4242 if (ret < 0) 4243 goto out; 4244 BUG_ON(ret == 0); 4245 4246 ret = 0; 4247 if (path->slots[0] > 0) { 4248 path->slots[0]--; 4249 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4250 if (key.objectid == root->root_key.objectid && 4251 key.type == BTRFS_ROOT_REF_KEY) 4252 ret = -ENOTEMPTY; 4253 } 4254 out: 4255 btrfs_free_path(path); 4256 return ret; 4257 } 4258 4259 /* Delete all dentries for inodes belonging to the root */ 4260 static void btrfs_prune_dentries(struct btrfs_root *root) 4261 { 4262 struct btrfs_fs_info *fs_info = root->fs_info; 4263 struct rb_node *node; 4264 struct rb_node *prev; 4265 struct btrfs_inode *entry; 4266 struct inode *inode; 4267 u64 objectid = 0; 4268 4269 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4270 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4271 4272 spin_lock(&root->inode_lock); 4273 again: 4274 node = root->inode_tree.rb_node; 4275 prev = NULL; 4276 while (node) { 4277 prev = node; 4278 entry = rb_entry(node, struct btrfs_inode, rb_node); 4279 4280 if (objectid < btrfs_ino(entry)) 4281 node = node->rb_left; 4282 else if (objectid > btrfs_ino(entry)) 4283 node = node->rb_right; 4284 else 4285 break; 4286 } 4287 if (!node) { 4288 while (prev) { 4289 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4290 if (objectid <= btrfs_ino(entry)) { 4291 node = prev; 4292 break; 4293 } 4294 prev = rb_next(prev); 4295 } 4296 } 4297 while (node) { 4298 entry = rb_entry(node, struct btrfs_inode, rb_node); 4299 objectid = btrfs_ino(entry) + 1; 4300 inode = igrab(&entry->vfs_inode); 4301 if (inode) { 4302 spin_unlock(&root->inode_lock); 4303 if (atomic_read(&inode->i_count) > 1) 4304 d_prune_aliases(inode); 4305 /* 4306 * btrfs_drop_inode will have it removed from the inode 4307 * cache when its usage count hits zero. 4308 */ 4309 iput(inode); 4310 cond_resched(); 4311 spin_lock(&root->inode_lock); 4312 goto again; 4313 } 4314 4315 if (cond_resched_lock(&root->inode_lock)) 4316 goto again; 4317 4318 node = rb_next(node); 4319 } 4320 spin_unlock(&root->inode_lock); 4321 } 4322 4323 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4324 { 4325 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4326 struct btrfs_root *root = BTRFS_I(dir)->root; 4327 struct inode *inode = d_inode(dentry); 4328 struct btrfs_root *dest = BTRFS_I(inode)->root; 4329 struct btrfs_trans_handle *trans; 4330 struct btrfs_block_rsv block_rsv; 4331 u64 root_flags; 4332 int ret; 4333 int err; 4334 4335 /* 4336 * Don't allow to delete a subvolume with send in progress. This is 4337 * inside the inode lock so the error handling that has to drop the bit 4338 * again is not run concurrently. 4339 */ 4340 spin_lock(&dest->root_item_lock); 4341 if (dest->send_in_progress) { 4342 spin_unlock(&dest->root_item_lock); 4343 btrfs_warn(fs_info, 4344 "attempt to delete subvolume %llu during send", 4345 dest->root_key.objectid); 4346 return -EPERM; 4347 } 4348 root_flags = btrfs_root_flags(&dest->root_item); 4349 btrfs_set_root_flags(&dest->root_item, 4350 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4351 spin_unlock(&dest->root_item_lock); 4352 4353 down_write(&fs_info->subvol_sem); 4354 4355 err = may_destroy_subvol(dest); 4356 if (err) 4357 goto out_up_write; 4358 4359 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4360 /* 4361 * One for dir inode, 4362 * two for dir entries, 4363 * two for root ref/backref. 4364 */ 4365 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4366 if (err) 4367 goto out_up_write; 4368 4369 trans = btrfs_start_transaction(root, 0); 4370 if (IS_ERR(trans)) { 4371 err = PTR_ERR(trans); 4372 goto out_release; 4373 } 4374 trans->block_rsv = &block_rsv; 4375 trans->bytes_reserved = block_rsv.size; 4376 4377 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4378 4379 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4380 dentry->d_name.name, dentry->d_name.len); 4381 if (ret) { 4382 err = ret; 4383 btrfs_abort_transaction(trans, ret); 4384 goto out_end_trans; 4385 } 4386 4387 btrfs_record_root_in_trans(trans, dest); 4388 4389 memset(&dest->root_item.drop_progress, 0, 4390 sizeof(dest->root_item.drop_progress)); 4391 dest->root_item.drop_level = 0; 4392 btrfs_set_root_refs(&dest->root_item, 0); 4393 4394 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4395 ret = btrfs_insert_orphan_item(trans, 4396 fs_info->tree_root, 4397 dest->root_key.objectid); 4398 if (ret) { 4399 btrfs_abort_transaction(trans, ret); 4400 err = ret; 4401 goto out_end_trans; 4402 } 4403 } 4404 4405 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4406 BTRFS_UUID_KEY_SUBVOL, 4407 dest->root_key.objectid); 4408 if (ret && ret != -ENOENT) { 4409 btrfs_abort_transaction(trans, ret); 4410 err = ret; 4411 goto out_end_trans; 4412 } 4413 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4414 ret = btrfs_uuid_tree_remove(trans, 4415 dest->root_item.received_uuid, 4416 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4417 dest->root_key.objectid); 4418 if (ret && ret != -ENOENT) { 4419 btrfs_abort_transaction(trans, ret); 4420 err = ret; 4421 goto out_end_trans; 4422 } 4423 } 4424 4425 out_end_trans: 4426 trans->block_rsv = NULL; 4427 trans->bytes_reserved = 0; 4428 ret = btrfs_end_transaction(trans); 4429 if (ret && !err) 4430 err = ret; 4431 inode->i_flags |= S_DEAD; 4432 out_release: 4433 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4434 out_up_write: 4435 up_write(&fs_info->subvol_sem); 4436 if (err) { 4437 spin_lock(&dest->root_item_lock); 4438 root_flags = btrfs_root_flags(&dest->root_item); 4439 btrfs_set_root_flags(&dest->root_item, 4440 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4441 spin_unlock(&dest->root_item_lock); 4442 } else { 4443 d_invalidate(dentry); 4444 btrfs_prune_dentries(dest); 4445 ASSERT(dest->send_in_progress == 0); 4446 4447 /* the last ref */ 4448 if (dest->ino_cache_inode) { 4449 iput(dest->ino_cache_inode); 4450 dest->ino_cache_inode = NULL; 4451 } 4452 } 4453 4454 return err; 4455 } 4456 4457 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4458 { 4459 struct inode *inode = d_inode(dentry); 4460 int err = 0; 4461 struct btrfs_root *root = BTRFS_I(dir)->root; 4462 struct btrfs_trans_handle *trans; 4463 u64 last_unlink_trans; 4464 4465 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4466 return -ENOTEMPTY; 4467 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4468 return btrfs_delete_subvolume(dir, dentry); 4469 4470 trans = __unlink_start_trans(dir); 4471 if (IS_ERR(trans)) 4472 return PTR_ERR(trans); 4473 4474 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4475 err = btrfs_unlink_subvol(trans, dir, 4476 BTRFS_I(inode)->location.objectid, 4477 dentry->d_name.name, 4478 dentry->d_name.len); 4479 goto out; 4480 } 4481 4482 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4483 if (err) 4484 goto out; 4485 4486 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4487 4488 /* now the directory is empty */ 4489 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4490 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4491 dentry->d_name.len); 4492 if (!err) { 4493 btrfs_i_size_write(BTRFS_I(inode), 0); 4494 /* 4495 * Propagate the last_unlink_trans value of the deleted dir to 4496 * its parent directory. This is to prevent an unrecoverable 4497 * log tree in the case we do something like this: 4498 * 1) create dir foo 4499 * 2) create snapshot under dir foo 4500 * 3) delete the snapshot 4501 * 4) rmdir foo 4502 * 5) mkdir foo 4503 * 6) fsync foo or some file inside foo 4504 */ 4505 if (last_unlink_trans >= trans->transid) 4506 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4507 } 4508 out: 4509 btrfs_end_transaction(trans); 4510 btrfs_btree_balance_dirty(root->fs_info); 4511 4512 return err; 4513 } 4514 4515 /* 4516 * Return this if we need to call truncate_block for the last bit of the 4517 * truncate. 4518 */ 4519 #define NEED_TRUNCATE_BLOCK 1 4520 4521 /* 4522 * this can truncate away extent items, csum items and directory items. 4523 * It starts at a high offset and removes keys until it can't find 4524 * any higher than new_size 4525 * 4526 * csum items that cross the new i_size are truncated to the new size 4527 * as well. 4528 * 4529 * min_type is the minimum key type to truncate down to. If set to 0, this 4530 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4531 */ 4532 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4533 struct btrfs_root *root, 4534 struct inode *inode, 4535 u64 new_size, u32 min_type) 4536 { 4537 struct btrfs_fs_info *fs_info = root->fs_info; 4538 struct btrfs_path *path; 4539 struct extent_buffer *leaf; 4540 struct btrfs_file_extent_item *fi; 4541 struct btrfs_key key; 4542 struct btrfs_key found_key; 4543 u64 extent_start = 0; 4544 u64 extent_num_bytes = 0; 4545 u64 extent_offset = 0; 4546 u64 item_end = 0; 4547 u64 last_size = new_size; 4548 u32 found_type = (u8)-1; 4549 int found_extent; 4550 int del_item; 4551 int pending_del_nr = 0; 4552 int pending_del_slot = 0; 4553 int extent_type = -1; 4554 int ret; 4555 u64 ino = btrfs_ino(BTRFS_I(inode)); 4556 u64 bytes_deleted = 0; 4557 bool be_nice = false; 4558 bool should_throttle = false; 4559 4560 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4561 4562 /* 4563 * for non-free space inodes and ref cows, we want to back off from 4564 * time to time 4565 */ 4566 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4567 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4568 be_nice = true; 4569 4570 path = btrfs_alloc_path(); 4571 if (!path) 4572 return -ENOMEM; 4573 path->reada = READA_BACK; 4574 4575 /* 4576 * We want to drop from the next block forward in case this new size is 4577 * not block aligned since we will be keeping the last block of the 4578 * extent just the way it is. 4579 */ 4580 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4581 root == fs_info->tree_root) 4582 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4583 fs_info->sectorsize), 4584 (u64)-1, 0); 4585 4586 /* 4587 * This function is also used to drop the items in the log tree before 4588 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4589 * it is used to drop the logged items. So we shouldn't kill the delayed 4590 * items. 4591 */ 4592 if (min_type == 0 && root == BTRFS_I(inode)->root) 4593 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4594 4595 key.objectid = ino; 4596 key.offset = (u64)-1; 4597 key.type = (u8)-1; 4598 4599 search_again: 4600 /* 4601 * with a 16K leaf size and 128MB extents, you can actually queue 4602 * up a huge file in a single leaf. Most of the time that 4603 * bytes_deleted is > 0, it will be huge by the time we get here 4604 */ 4605 if (be_nice && bytes_deleted > SZ_32M && 4606 btrfs_should_end_transaction(trans)) { 4607 ret = -EAGAIN; 4608 goto out; 4609 } 4610 4611 path->leave_spinning = 1; 4612 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4613 if (ret < 0) 4614 goto out; 4615 4616 if (ret > 0) { 4617 ret = 0; 4618 /* there are no items in the tree for us to truncate, we're 4619 * done 4620 */ 4621 if (path->slots[0] == 0) 4622 goto out; 4623 path->slots[0]--; 4624 } 4625 4626 while (1) { 4627 fi = NULL; 4628 leaf = path->nodes[0]; 4629 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4630 found_type = found_key.type; 4631 4632 if (found_key.objectid != ino) 4633 break; 4634 4635 if (found_type < min_type) 4636 break; 4637 4638 item_end = found_key.offset; 4639 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4640 fi = btrfs_item_ptr(leaf, path->slots[0], 4641 struct btrfs_file_extent_item); 4642 extent_type = btrfs_file_extent_type(leaf, fi); 4643 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4644 item_end += 4645 btrfs_file_extent_num_bytes(leaf, fi); 4646 4647 trace_btrfs_truncate_show_fi_regular( 4648 BTRFS_I(inode), leaf, fi, 4649 found_key.offset); 4650 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4651 item_end += btrfs_file_extent_ram_bytes(leaf, 4652 fi); 4653 4654 trace_btrfs_truncate_show_fi_inline( 4655 BTRFS_I(inode), leaf, fi, path->slots[0], 4656 found_key.offset); 4657 } 4658 item_end--; 4659 } 4660 if (found_type > min_type) { 4661 del_item = 1; 4662 } else { 4663 if (item_end < new_size) 4664 break; 4665 if (found_key.offset >= new_size) 4666 del_item = 1; 4667 else 4668 del_item = 0; 4669 } 4670 found_extent = 0; 4671 /* FIXME, shrink the extent if the ref count is only 1 */ 4672 if (found_type != BTRFS_EXTENT_DATA_KEY) 4673 goto delete; 4674 4675 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4676 u64 num_dec; 4677 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4678 if (!del_item) { 4679 u64 orig_num_bytes = 4680 btrfs_file_extent_num_bytes(leaf, fi); 4681 extent_num_bytes = ALIGN(new_size - 4682 found_key.offset, 4683 fs_info->sectorsize); 4684 btrfs_set_file_extent_num_bytes(leaf, fi, 4685 extent_num_bytes); 4686 num_dec = (orig_num_bytes - 4687 extent_num_bytes); 4688 if (test_bit(BTRFS_ROOT_REF_COWS, 4689 &root->state) && 4690 extent_start != 0) 4691 inode_sub_bytes(inode, num_dec); 4692 btrfs_mark_buffer_dirty(leaf); 4693 } else { 4694 extent_num_bytes = 4695 btrfs_file_extent_disk_num_bytes(leaf, 4696 fi); 4697 extent_offset = found_key.offset - 4698 btrfs_file_extent_offset(leaf, fi); 4699 4700 /* FIXME blocksize != 4096 */ 4701 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4702 if (extent_start != 0) { 4703 found_extent = 1; 4704 if (test_bit(BTRFS_ROOT_REF_COWS, 4705 &root->state)) 4706 inode_sub_bytes(inode, num_dec); 4707 } 4708 } 4709 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4710 /* 4711 * we can't truncate inline items that have had 4712 * special encodings 4713 */ 4714 if (!del_item && 4715 btrfs_file_extent_encryption(leaf, fi) == 0 && 4716 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4717 btrfs_file_extent_compression(leaf, fi) == 0) { 4718 u32 size = (u32)(new_size - found_key.offset); 4719 4720 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4721 size = btrfs_file_extent_calc_inline_size(size); 4722 btrfs_truncate_item(path, size, 1); 4723 } else if (!del_item) { 4724 /* 4725 * We have to bail so the last_size is set to 4726 * just before this extent. 4727 */ 4728 ret = NEED_TRUNCATE_BLOCK; 4729 break; 4730 } 4731 4732 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4733 inode_sub_bytes(inode, item_end + 1 - new_size); 4734 } 4735 delete: 4736 if (del_item) 4737 last_size = found_key.offset; 4738 else 4739 last_size = new_size; 4740 if (del_item) { 4741 if (!pending_del_nr) { 4742 /* no pending yet, add ourselves */ 4743 pending_del_slot = path->slots[0]; 4744 pending_del_nr = 1; 4745 } else if (pending_del_nr && 4746 path->slots[0] + 1 == pending_del_slot) { 4747 /* hop on the pending chunk */ 4748 pending_del_nr++; 4749 pending_del_slot = path->slots[0]; 4750 } else { 4751 BUG(); 4752 } 4753 } else { 4754 break; 4755 } 4756 should_throttle = false; 4757 4758 if (found_extent && 4759 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4760 root == fs_info->tree_root)) { 4761 struct btrfs_ref ref = { 0 }; 4762 4763 btrfs_set_path_blocking(path); 4764 bytes_deleted += extent_num_bytes; 4765 4766 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4767 extent_start, extent_num_bytes, 0); 4768 ref.real_root = root->root_key.objectid; 4769 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4770 ino, extent_offset); 4771 ret = btrfs_free_extent(trans, &ref); 4772 if (ret) { 4773 btrfs_abort_transaction(trans, ret); 4774 break; 4775 } 4776 if (be_nice) { 4777 if (btrfs_should_throttle_delayed_refs(trans)) 4778 should_throttle = true; 4779 } 4780 } 4781 4782 if (found_type == BTRFS_INODE_ITEM_KEY) 4783 break; 4784 4785 if (path->slots[0] == 0 || 4786 path->slots[0] != pending_del_slot || 4787 should_throttle) { 4788 if (pending_del_nr) { 4789 ret = btrfs_del_items(trans, root, path, 4790 pending_del_slot, 4791 pending_del_nr); 4792 if (ret) { 4793 btrfs_abort_transaction(trans, ret); 4794 break; 4795 } 4796 pending_del_nr = 0; 4797 } 4798 btrfs_release_path(path); 4799 4800 /* 4801 * We can generate a lot of delayed refs, so we need to 4802 * throttle every once and a while and make sure we're 4803 * adding enough space to keep up with the work we are 4804 * generating. Since we hold a transaction here we 4805 * can't flush, and we don't want to FLUSH_LIMIT because 4806 * we could have generated too many delayed refs to 4807 * actually allocate, so just bail if we're short and 4808 * let the normal reservation dance happen higher up. 4809 */ 4810 if (should_throttle) { 4811 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4812 BTRFS_RESERVE_NO_FLUSH); 4813 if (ret) { 4814 ret = -EAGAIN; 4815 break; 4816 } 4817 } 4818 goto search_again; 4819 } else { 4820 path->slots[0]--; 4821 } 4822 } 4823 out: 4824 if (ret >= 0 && pending_del_nr) { 4825 int err; 4826 4827 err = btrfs_del_items(trans, root, path, pending_del_slot, 4828 pending_del_nr); 4829 if (err) { 4830 btrfs_abort_transaction(trans, err); 4831 ret = err; 4832 } 4833 } 4834 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4835 ASSERT(last_size >= new_size); 4836 if (!ret && last_size > new_size) 4837 last_size = new_size; 4838 btrfs_ordered_update_i_size(inode, last_size, NULL); 4839 } 4840 4841 btrfs_free_path(path); 4842 return ret; 4843 } 4844 4845 /* 4846 * btrfs_truncate_block - read, zero a chunk and write a block 4847 * @inode - inode that we're zeroing 4848 * @from - the offset to start zeroing 4849 * @len - the length to zero, 0 to zero the entire range respective to the 4850 * offset 4851 * @front - zero up to the offset instead of from the offset on 4852 * 4853 * This will find the block for the "from" offset and cow the block and zero the 4854 * part we want to zero. This is used with truncate and hole punching. 4855 */ 4856 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4857 int front) 4858 { 4859 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4860 struct address_space *mapping = inode->i_mapping; 4861 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4862 struct btrfs_ordered_extent *ordered; 4863 struct extent_state *cached_state = NULL; 4864 struct extent_changeset *data_reserved = NULL; 4865 char *kaddr; 4866 u32 blocksize = fs_info->sectorsize; 4867 pgoff_t index = from >> PAGE_SHIFT; 4868 unsigned offset = from & (blocksize - 1); 4869 struct page *page; 4870 gfp_t mask = btrfs_alloc_write_mask(mapping); 4871 int ret = 0; 4872 u64 block_start; 4873 u64 block_end; 4874 4875 if (IS_ALIGNED(offset, blocksize) && 4876 (!len || IS_ALIGNED(len, blocksize))) 4877 goto out; 4878 4879 block_start = round_down(from, blocksize); 4880 block_end = block_start + blocksize - 1; 4881 4882 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4883 block_start, blocksize); 4884 if (ret) 4885 goto out; 4886 4887 again: 4888 page = find_or_create_page(mapping, index, mask); 4889 if (!page) { 4890 btrfs_delalloc_release_space(inode, data_reserved, 4891 block_start, blocksize, true); 4892 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4893 ret = -ENOMEM; 4894 goto out; 4895 } 4896 4897 if (!PageUptodate(page)) { 4898 ret = btrfs_readpage(NULL, page); 4899 lock_page(page); 4900 if (page->mapping != mapping) { 4901 unlock_page(page); 4902 put_page(page); 4903 goto again; 4904 } 4905 if (!PageUptodate(page)) { 4906 ret = -EIO; 4907 goto out_unlock; 4908 } 4909 } 4910 wait_on_page_writeback(page); 4911 4912 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4913 set_page_extent_mapped(page); 4914 4915 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4916 if (ordered) { 4917 unlock_extent_cached(io_tree, block_start, block_end, 4918 &cached_state); 4919 unlock_page(page); 4920 put_page(page); 4921 btrfs_start_ordered_extent(inode, ordered, 1); 4922 btrfs_put_ordered_extent(ordered); 4923 goto again; 4924 } 4925 4926 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4927 EXTENT_DIRTY | EXTENT_DELALLOC | 4928 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4929 0, 0, &cached_state); 4930 4931 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4932 &cached_state, 0); 4933 if (ret) { 4934 unlock_extent_cached(io_tree, block_start, block_end, 4935 &cached_state); 4936 goto out_unlock; 4937 } 4938 4939 if (offset != blocksize) { 4940 if (!len) 4941 len = blocksize - offset; 4942 kaddr = kmap(page); 4943 if (front) 4944 memset(kaddr + (block_start - page_offset(page)), 4945 0, offset); 4946 else 4947 memset(kaddr + (block_start - page_offset(page)) + offset, 4948 0, len); 4949 flush_dcache_page(page); 4950 kunmap(page); 4951 } 4952 ClearPageChecked(page); 4953 set_page_dirty(page); 4954 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4955 4956 out_unlock: 4957 if (ret) 4958 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4959 blocksize, true); 4960 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4961 unlock_page(page); 4962 put_page(page); 4963 out: 4964 extent_changeset_free(data_reserved); 4965 return ret; 4966 } 4967 4968 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4969 u64 offset, u64 len) 4970 { 4971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4972 struct btrfs_trans_handle *trans; 4973 int ret; 4974 4975 /* 4976 * Still need to make sure the inode looks like it's been updated so 4977 * that any holes get logged if we fsync. 4978 */ 4979 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4980 BTRFS_I(inode)->last_trans = fs_info->generation; 4981 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4982 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4983 return 0; 4984 } 4985 4986 /* 4987 * 1 - for the one we're dropping 4988 * 1 - for the one we're adding 4989 * 1 - for updating the inode. 4990 */ 4991 trans = btrfs_start_transaction(root, 3); 4992 if (IS_ERR(trans)) 4993 return PTR_ERR(trans); 4994 4995 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4996 if (ret) { 4997 btrfs_abort_transaction(trans, ret); 4998 btrfs_end_transaction(trans); 4999 return ret; 5000 } 5001 5002 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 5003 offset, 0, 0, len, 0, len, 0, 0, 0); 5004 if (ret) 5005 btrfs_abort_transaction(trans, ret); 5006 else 5007 btrfs_update_inode(trans, root, inode); 5008 btrfs_end_transaction(trans); 5009 return ret; 5010 } 5011 5012 /* 5013 * This function puts in dummy file extents for the area we're creating a hole 5014 * for. So if we are truncating this file to a larger size we need to insert 5015 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5016 * the range between oldsize and size 5017 */ 5018 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 5019 { 5020 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5021 struct btrfs_root *root = BTRFS_I(inode)->root; 5022 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5023 struct extent_map *em = NULL; 5024 struct extent_state *cached_state = NULL; 5025 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5026 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5027 u64 block_end = ALIGN(size, fs_info->sectorsize); 5028 u64 last_byte; 5029 u64 cur_offset; 5030 u64 hole_size; 5031 int err = 0; 5032 5033 /* 5034 * If our size started in the middle of a block we need to zero out the 5035 * rest of the block before we expand the i_size, otherwise we could 5036 * expose stale data. 5037 */ 5038 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5039 if (err) 5040 return err; 5041 5042 if (size <= hole_start) 5043 return 0; 5044 5045 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start, 5046 block_end - 1, &cached_state); 5047 cur_offset = hole_start; 5048 while (1) { 5049 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5050 block_end - cur_offset, 0); 5051 if (IS_ERR(em)) { 5052 err = PTR_ERR(em); 5053 em = NULL; 5054 break; 5055 } 5056 last_byte = min(extent_map_end(em), block_end); 5057 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5058 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5059 struct extent_map *hole_em; 5060 hole_size = last_byte - cur_offset; 5061 5062 err = maybe_insert_hole(root, inode, cur_offset, 5063 hole_size); 5064 if (err) 5065 break; 5066 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5067 cur_offset + hole_size - 1, 0); 5068 hole_em = alloc_extent_map(); 5069 if (!hole_em) { 5070 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5071 &BTRFS_I(inode)->runtime_flags); 5072 goto next; 5073 } 5074 hole_em->start = cur_offset; 5075 hole_em->len = hole_size; 5076 hole_em->orig_start = cur_offset; 5077 5078 hole_em->block_start = EXTENT_MAP_HOLE; 5079 hole_em->block_len = 0; 5080 hole_em->orig_block_len = 0; 5081 hole_em->ram_bytes = hole_size; 5082 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5083 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5084 hole_em->generation = fs_info->generation; 5085 5086 while (1) { 5087 write_lock(&em_tree->lock); 5088 err = add_extent_mapping(em_tree, hole_em, 1); 5089 write_unlock(&em_tree->lock); 5090 if (err != -EEXIST) 5091 break; 5092 btrfs_drop_extent_cache(BTRFS_I(inode), 5093 cur_offset, 5094 cur_offset + 5095 hole_size - 1, 0); 5096 } 5097 free_extent_map(hole_em); 5098 } 5099 next: 5100 free_extent_map(em); 5101 em = NULL; 5102 cur_offset = last_byte; 5103 if (cur_offset >= block_end) 5104 break; 5105 } 5106 free_extent_map(em); 5107 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5108 return err; 5109 } 5110 5111 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5112 { 5113 struct btrfs_root *root = BTRFS_I(inode)->root; 5114 struct btrfs_trans_handle *trans; 5115 loff_t oldsize = i_size_read(inode); 5116 loff_t newsize = attr->ia_size; 5117 int mask = attr->ia_valid; 5118 int ret; 5119 5120 /* 5121 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5122 * special case where we need to update the times despite not having 5123 * these flags set. For all other operations the VFS set these flags 5124 * explicitly if it wants a timestamp update. 5125 */ 5126 if (newsize != oldsize) { 5127 inode_inc_iversion(inode); 5128 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5129 inode->i_ctime = inode->i_mtime = 5130 current_time(inode); 5131 } 5132 5133 if (newsize > oldsize) { 5134 /* 5135 * Don't do an expanding truncate while snapshotting is ongoing. 5136 * This is to ensure the snapshot captures a fully consistent 5137 * state of this file - if the snapshot captures this expanding 5138 * truncation, it must capture all writes that happened before 5139 * this truncation. 5140 */ 5141 btrfs_wait_for_snapshot_creation(root); 5142 ret = btrfs_cont_expand(inode, oldsize, newsize); 5143 if (ret) { 5144 btrfs_end_write_no_snapshotting(root); 5145 return ret; 5146 } 5147 5148 trans = btrfs_start_transaction(root, 1); 5149 if (IS_ERR(trans)) { 5150 btrfs_end_write_no_snapshotting(root); 5151 return PTR_ERR(trans); 5152 } 5153 5154 i_size_write(inode, newsize); 5155 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5156 pagecache_isize_extended(inode, oldsize, newsize); 5157 ret = btrfs_update_inode(trans, root, inode); 5158 btrfs_end_write_no_snapshotting(root); 5159 btrfs_end_transaction(trans); 5160 } else { 5161 5162 /* 5163 * We're truncating a file that used to have good data down to 5164 * zero. Make sure it gets into the ordered flush list so that 5165 * any new writes get down to disk quickly. 5166 */ 5167 if (newsize == 0) 5168 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5169 &BTRFS_I(inode)->runtime_flags); 5170 5171 truncate_setsize(inode, newsize); 5172 5173 /* Disable nonlocked read DIO to avoid the endless truncate */ 5174 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5175 inode_dio_wait(inode); 5176 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5177 5178 ret = btrfs_truncate(inode, newsize == oldsize); 5179 if (ret && inode->i_nlink) { 5180 int err; 5181 5182 /* 5183 * Truncate failed, so fix up the in-memory size. We 5184 * adjusted disk_i_size down as we removed extents, so 5185 * wait for disk_i_size to be stable and then update the 5186 * in-memory size to match. 5187 */ 5188 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5189 if (err) 5190 return err; 5191 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5192 } 5193 } 5194 5195 return ret; 5196 } 5197 5198 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5199 { 5200 struct inode *inode = d_inode(dentry); 5201 struct btrfs_root *root = BTRFS_I(inode)->root; 5202 int err; 5203 5204 if (btrfs_root_readonly(root)) 5205 return -EROFS; 5206 5207 err = setattr_prepare(dentry, attr); 5208 if (err) 5209 return err; 5210 5211 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5212 err = btrfs_setsize(inode, attr); 5213 if (err) 5214 return err; 5215 } 5216 5217 if (attr->ia_valid) { 5218 setattr_copy(inode, attr); 5219 inode_inc_iversion(inode); 5220 err = btrfs_dirty_inode(inode); 5221 5222 if (!err && attr->ia_valid & ATTR_MODE) 5223 err = posix_acl_chmod(inode, inode->i_mode); 5224 } 5225 5226 return err; 5227 } 5228 5229 /* 5230 * While truncating the inode pages during eviction, we get the VFS calling 5231 * btrfs_invalidatepage() against each page of the inode. This is slow because 5232 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5233 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5234 * extent_state structures over and over, wasting lots of time. 5235 * 5236 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5237 * those expensive operations on a per page basis and do only the ordered io 5238 * finishing, while we release here the extent_map and extent_state structures, 5239 * without the excessive merging and splitting. 5240 */ 5241 static void evict_inode_truncate_pages(struct inode *inode) 5242 { 5243 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5244 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5245 struct rb_node *node; 5246 5247 ASSERT(inode->i_state & I_FREEING); 5248 truncate_inode_pages_final(&inode->i_data); 5249 5250 write_lock(&map_tree->lock); 5251 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5252 struct extent_map *em; 5253 5254 node = rb_first_cached(&map_tree->map); 5255 em = rb_entry(node, struct extent_map, rb_node); 5256 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5257 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5258 remove_extent_mapping(map_tree, em); 5259 free_extent_map(em); 5260 if (need_resched()) { 5261 write_unlock(&map_tree->lock); 5262 cond_resched(); 5263 write_lock(&map_tree->lock); 5264 } 5265 } 5266 write_unlock(&map_tree->lock); 5267 5268 /* 5269 * Keep looping until we have no more ranges in the io tree. 5270 * We can have ongoing bios started by readpages (called from readahead) 5271 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5272 * still in progress (unlocked the pages in the bio but did not yet 5273 * unlocked the ranges in the io tree). Therefore this means some 5274 * ranges can still be locked and eviction started because before 5275 * submitting those bios, which are executed by a separate task (work 5276 * queue kthread), inode references (inode->i_count) were not taken 5277 * (which would be dropped in the end io callback of each bio). 5278 * Therefore here we effectively end up waiting for those bios and 5279 * anyone else holding locked ranges without having bumped the inode's 5280 * reference count - if we don't do it, when they access the inode's 5281 * io_tree to unlock a range it may be too late, leading to an 5282 * use-after-free issue. 5283 */ 5284 spin_lock(&io_tree->lock); 5285 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5286 struct extent_state *state; 5287 struct extent_state *cached_state = NULL; 5288 u64 start; 5289 u64 end; 5290 unsigned state_flags; 5291 5292 node = rb_first(&io_tree->state); 5293 state = rb_entry(node, struct extent_state, rb_node); 5294 start = state->start; 5295 end = state->end; 5296 state_flags = state->state; 5297 spin_unlock(&io_tree->lock); 5298 5299 lock_extent_bits(io_tree, start, end, &cached_state); 5300 5301 /* 5302 * If still has DELALLOC flag, the extent didn't reach disk, 5303 * and its reserved space won't be freed by delayed_ref. 5304 * So we need to free its reserved space here. 5305 * (Refer to comment in btrfs_invalidatepage, case 2) 5306 * 5307 * Note, end is the bytenr of last byte, so we need + 1 here. 5308 */ 5309 if (state_flags & EXTENT_DELALLOC) 5310 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5311 5312 clear_extent_bit(io_tree, start, end, 5313 EXTENT_LOCKED | EXTENT_DIRTY | 5314 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5315 EXTENT_DEFRAG, 1, 1, &cached_state); 5316 5317 cond_resched(); 5318 spin_lock(&io_tree->lock); 5319 } 5320 spin_unlock(&io_tree->lock); 5321 } 5322 5323 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5324 struct btrfs_block_rsv *rsv) 5325 { 5326 struct btrfs_fs_info *fs_info = root->fs_info; 5327 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5328 u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1); 5329 int failures = 0; 5330 5331 for (;;) { 5332 struct btrfs_trans_handle *trans; 5333 int ret; 5334 5335 ret = btrfs_block_rsv_refill(root, rsv, 5336 rsv->size + delayed_refs_extra, 5337 BTRFS_RESERVE_FLUSH_LIMIT); 5338 5339 if (ret && ++failures > 2) { 5340 btrfs_warn(fs_info, 5341 "could not allocate space for a delete; will truncate on mount"); 5342 return ERR_PTR(-ENOSPC); 5343 } 5344 5345 /* 5346 * Evict can generate a large amount of delayed refs without 5347 * having a way to add space back since we exhaust our temporary 5348 * block rsv. We aren't allowed to do FLUSH_ALL in this case 5349 * because we could deadlock with so many things in the flushing 5350 * code, so we have to try and hold some extra space to 5351 * compensate for our delayed ref generation. If we can't get 5352 * that space then we need see if we can steal our minimum from 5353 * the global reserve. We will be ratelimited by the amount of 5354 * space we have for the delayed refs rsv, so we'll end up 5355 * committing and trying again. 5356 */ 5357 trans = btrfs_join_transaction(root); 5358 if (IS_ERR(trans) || !ret) { 5359 if (!IS_ERR(trans)) { 5360 trans->block_rsv = &fs_info->trans_block_rsv; 5361 trans->bytes_reserved = delayed_refs_extra; 5362 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5363 delayed_refs_extra, 1); 5364 } 5365 return trans; 5366 } 5367 5368 /* 5369 * Try to steal from the global reserve if there is space for 5370 * it. 5371 */ 5372 if (!btrfs_check_space_for_delayed_refs(fs_info) && 5373 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) 5374 return trans; 5375 5376 /* If not, commit and try again. */ 5377 ret = btrfs_commit_transaction(trans); 5378 if (ret) 5379 return ERR_PTR(ret); 5380 } 5381 } 5382 5383 void btrfs_evict_inode(struct inode *inode) 5384 { 5385 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5386 struct btrfs_trans_handle *trans; 5387 struct btrfs_root *root = BTRFS_I(inode)->root; 5388 struct btrfs_block_rsv *rsv; 5389 int ret; 5390 5391 trace_btrfs_inode_evict(inode); 5392 5393 if (!root) { 5394 clear_inode(inode); 5395 return; 5396 } 5397 5398 evict_inode_truncate_pages(inode); 5399 5400 if (inode->i_nlink && 5401 ((btrfs_root_refs(&root->root_item) != 0 && 5402 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5403 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5404 goto no_delete; 5405 5406 if (is_bad_inode(inode)) 5407 goto no_delete; 5408 5409 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5410 5411 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5412 goto no_delete; 5413 5414 if (inode->i_nlink > 0) { 5415 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5416 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5417 goto no_delete; 5418 } 5419 5420 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5421 if (ret) 5422 goto no_delete; 5423 5424 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5425 if (!rsv) 5426 goto no_delete; 5427 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5428 rsv->failfast = 1; 5429 5430 btrfs_i_size_write(BTRFS_I(inode), 0); 5431 5432 while (1) { 5433 trans = evict_refill_and_join(root, rsv); 5434 if (IS_ERR(trans)) 5435 goto free_rsv; 5436 5437 trans->block_rsv = rsv; 5438 5439 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5440 trans->block_rsv = &fs_info->trans_block_rsv; 5441 btrfs_end_transaction(trans); 5442 btrfs_btree_balance_dirty(fs_info); 5443 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5444 goto free_rsv; 5445 else if (!ret) 5446 break; 5447 } 5448 5449 /* 5450 * Errors here aren't a big deal, it just means we leave orphan items in 5451 * the tree. They will be cleaned up on the next mount. If the inode 5452 * number gets reused, cleanup deletes the orphan item without doing 5453 * anything, and unlink reuses the existing orphan item. 5454 * 5455 * If it turns out that we are dropping too many of these, we might want 5456 * to add a mechanism for retrying these after a commit. 5457 */ 5458 trans = evict_refill_and_join(root, rsv); 5459 if (!IS_ERR(trans)) { 5460 trans->block_rsv = rsv; 5461 btrfs_orphan_del(trans, BTRFS_I(inode)); 5462 trans->block_rsv = &fs_info->trans_block_rsv; 5463 btrfs_end_transaction(trans); 5464 } 5465 5466 if (!(root == fs_info->tree_root || 5467 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5468 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5469 5470 free_rsv: 5471 btrfs_free_block_rsv(fs_info, rsv); 5472 no_delete: 5473 /* 5474 * If we didn't successfully delete, the orphan item will still be in 5475 * the tree and we'll retry on the next mount. Again, we might also want 5476 * to retry these periodically in the future. 5477 */ 5478 btrfs_remove_delayed_node(BTRFS_I(inode)); 5479 clear_inode(inode); 5480 } 5481 5482 /* 5483 * Return the key found in the dir entry in the location pointer, fill @type 5484 * with BTRFS_FT_*, and return 0. 5485 * 5486 * If no dir entries were found, returns -ENOENT. 5487 * If found a corrupted location in dir entry, returns -EUCLEAN. 5488 */ 5489 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5490 struct btrfs_key *location, u8 *type) 5491 { 5492 const char *name = dentry->d_name.name; 5493 int namelen = dentry->d_name.len; 5494 struct btrfs_dir_item *di; 5495 struct btrfs_path *path; 5496 struct btrfs_root *root = BTRFS_I(dir)->root; 5497 int ret = 0; 5498 5499 path = btrfs_alloc_path(); 5500 if (!path) 5501 return -ENOMEM; 5502 5503 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5504 name, namelen, 0); 5505 if (IS_ERR_OR_NULL(di)) { 5506 ret = di ? PTR_ERR(di) : -ENOENT; 5507 goto out; 5508 } 5509 5510 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5511 if (location->type != BTRFS_INODE_ITEM_KEY && 5512 location->type != BTRFS_ROOT_ITEM_KEY) { 5513 ret = -EUCLEAN; 5514 btrfs_warn(root->fs_info, 5515 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5516 __func__, name, btrfs_ino(BTRFS_I(dir)), 5517 location->objectid, location->type, location->offset); 5518 } 5519 if (!ret) 5520 *type = btrfs_dir_type(path->nodes[0], di); 5521 out: 5522 btrfs_free_path(path); 5523 return ret; 5524 } 5525 5526 /* 5527 * when we hit a tree root in a directory, the btrfs part of the inode 5528 * needs to be changed to reflect the root directory of the tree root. This 5529 * is kind of like crossing a mount point. 5530 */ 5531 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5532 struct inode *dir, 5533 struct dentry *dentry, 5534 struct btrfs_key *location, 5535 struct btrfs_root **sub_root) 5536 { 5537 struct btrfs_path *path; 5538 struct btrfs_root *new_root; 5539 struct btrfs_root_ref *ref; 5540 struct extent_buffer *leaf; 5541 struct btrfs_key key; 5542 int ret; 5543 int err = 0; 5544 5545 path = btrfs_alloc_path(); 5546 if (!path) { 5547 err = -ENOMEM; 5548 goto out; 5549 } 5550 5551 err = -ENOENT; 5552 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5553 key.type = BTRFS_ROOT_REF_KEY; 5554 key.offset = location->objectid; 5555 5556 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5557 if (ret) { 5558 if (ret < 0) 5559 err = ret; 5560 goto out; 5561 } 5562 5563 leaf = path->nodes[0]; 5564 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5565 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5566 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5567 goto out; 5568 5569 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5570 (unsigned long)(ref + 1), 5571 dentry->d_name.len); 5572 if (ret) 5573 goto out; 5574 5575 btrfs_release_path(path); 5576 5577 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5578 if (IS_ERR(new_root)) { 5579 err = PTR_ERR(new_root); 5580 goto out; 5581 } 5582 5583 *sub_root = new_root; 5584 location->objectid = btrfs_root_dirid(&new_root->root_item); 5585 location->type = BTRFS_INODE_ITEM_KEY; 5586 location->offset = 0; 5587 err = 0; 5588 out: 5589 btrfs_free_path(path); 5590 return err; 5591 } 5592 5593 static void inode_tree_add(struct inode *inode) 5594 { 5595 struct btrfs_root *root = BTRFS_I(inode)->root; 5596 struct btrfs_inode *entry; 5597 struct rb_node **p; 5598 struct rb_node *parent; 5599 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5600 u64 ino = btrfs_ino(BTRFS_I(inode)); 5601 5602 if (inode_unhashed(inode)) 5603 return; 5604 parent = NULL; 5605 spin_lock(&root->inode_lock); 5606 p = &root->inode_tree.rb_node; 5607 while (*p) { 5608 parent = *p; 5609 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5610 5611 if (ino < btrfs_ino(entry)) 5612 p = &parent->rb_left; 5613 else if (ino > btrfs_ino(entry)) 5614 p = &parent->rb_right; 5615 else { 5616 WARN_ON(!(entry->vfs_inode.i_state & 5617 (I_WILL_FREE | I_FREEING))); 5618 rb_replace_node(parent, new, &root->inode_tree); 5619 RB_CLEAR_NODE(parent); 5620 spin_unlock(&root->inode_lock); 5621 return; 5622 } 5623 } 5624 rb_link_node(new, parent, p); 5625 rb_insert_color(new, &root->inode_tree); 5626 spin_unlock(&root->inode_lock); 5627 } 5628 5629 static void inode_tree_del(struct inode *inode) 5630 { 5631 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5632 struct btrfs_root *root = BTRFS_I(inode)->root; 5633 int empty = 0; 5634 5635 spin_lock(&root->inode_lock); 5636 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5637 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5638 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5639 empty = RB_EMPTY_ROOT(&root->inode_tree); 5640 } 5641 spin_unlock(&root->inode_lock); 5642 5643 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5644 synchronize_srcu(&fs_info->subvol_srcu); 5645 spin_lock(&root->inode_lock); 5646 empty = RB_EMPTY_ROOT(&root->inode_tree); 5647 spin_unlock(&root->inode_lock); 5648 if (empty) 5649 btrfs_add_dead_root(root); 5650 } 5651 } 5652 5653 5654 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5655 { 5656 struct btrfs_iget_args *args = p; 5657 inode->i_ino = args->location->objectid; 5658 memcpy(&BTRFS_I(inode)->location, args->location, 5659 sizeof(*args->location)); 5660 BTRFS_I(inode)->root = args->root; 5661 return 0; 5662 } 5663 5664 static int btrfs_find_actor(struct inode *inode, void *opaque) 5665 { 5666 struct btrfs_iget_args *args = opaque; 5667 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5668 args->root == BTRFS_I(inode)->root; 5669 } 5670 5671 static struct inode *btrfs_iget_locked(struct super_block *s, 5672 struct btrfs_key *location, 5673 struct btrfs_root *root) 5674 { 5675 struct inode *inode; 5676 struct btrfs_iget_args args; 5677 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5678 5679 args.location = location; 5680 args.root = root; 5681 5682 inode = iget5_locked(s, hashval, btrfs_find_actor, 5683 btrfs_init_locked_inode, 5684 (void *)&args); 5685 return inode; 5686 } 5687 5688 /* Get an inode object given its location and corresponding root. 5689 * Returns in *is_new if the inode was read from disk 5690 */ 5691 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5692 struct btrfs_root *root, int *new, 5693 struct btrfs_path *path) 5694 { 5695 struct inode *inode; 5696 5697 inode = btrfs_iget_locked(s, location, root); 5698 if (!inode) 5699 return ERR_PTR(-ENOMEM); 5700 5701 if (inode->i_state & I_NEW) { 5702 int ret; 5703 5704 ret = btrfs_read_locked_inode(inode, path); 5705 if (!ret) { 5706 inode_tree_add(inode); 5707 unlock_new_inode(inode); 5708 if (new) 5709 *new = 1; 5710 } else { 5711 iget_failed(inode); 5712 /* 5713 * ret > 0 can come from btrfs_search_slot called by 5714 * btrfs_read_locked_inode, this means the inode item 5715 * was not found. 5716 */ 5717 if (ret > 0) 5718 ret = -ENOENT; 5719 inode = ERR_PTR(ret); 5720 } 5721 } 5722 5723 return inode; 5724 } 5725 5726 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5727 struct btrfs_root *root, int *new) 5728 { 5729 return btrfs_iget_path(s, location, root, new, NULL); 5730 } 5731 5732 static struct inode *new_simple_dir(struct super_block *s, 5733 struct btrfs_key *key, 5734 struct btrfs_root *root) 5735 { 5736 struct inode *inode = new_inode(s); 5737 5738 if (!inode) 5739 return ERR_PTR(-ENOMEM); 5740 5741 BTRFS_I(inode)->root = root; 5742 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5743 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5744 5745 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5746 inode->i_op = &btrfs_dir_ro_inode_operations; 5747 inode->i_opflags &= ~IOP_XATTR; 5748 inode->i_fop = &simple_dir_operations; 5749 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5750 inode->i_mtime = current_time(inode); 5751 inode->i_atime = inode->i_mtime; 5752 inode->i_ctime = inode->i_mtime; 5753 BTRFS_I(inode)->i_otime = inode->i_mtime; 5754 5755 return inode; 5756 } 5757 5758 static inline u8 btrfs_inode_type(struct inode *inode) 5759 { 5760 /* 5761 * Compile-time asserts that generic FT_* types still match 5762 * BTRFS_FT_* types 5763 */ 5764 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5765 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5766 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5767 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5768 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5769 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5770 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5771 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5772 5773 return fs_umode_to_ftype(inode->i_mode); 5774 } 5775 5776 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5777 { 5778 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5779 struct inode *inode; 5780 struct btrfs_root *root = BTRFS_I(dir)->root; 5781 struct btrfs_root *sub_root = root; 5782 struct btrfs_key location; 5783 u8 di_type = 0; 5784 int index; 5785 int ret = 0; 5786 5787 if (dentry->d_name.len > BTRFS_NAME_LEN) 5788 return ERR_PTR(-ENAMETOOLONG); 5789 5790 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5791 if (ret < 0) 5792 return ERR_PTR(ret); 5793 5794 if (location.type == BTRFS_INODE_ITEM_KEY) { 5795 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5796 if (IS_ERR(inode)) 5797 return inode; 5798 5799 /* Do extra check against inode mode with di_type */ 5800 if (btrfs_inode_type(inode) != di_type) { 5801 btrfs_crit(fs_info, 5802 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5803 inode->i_mode, btrfs_inode_type(inode), 5804 di_type); 5805 iput(inode); 5806 return ERR_PTR(-EUCLEAN); 5807 } 5808 return inode; 5809 } 5810 5811 index = srcu_read_lock(&fs_info->subvol_srcu); 5812 ret = fixup_tree_root_location(fs_info, dir, dentry, 5813 &location, &sub_root); 5814 if (ret < 0) { 5815 if (ret != -ENOENT) 5816 inode = ERR_PTR(ret); 5817 else 5818 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5819 } else { 5820 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5821 } 5822 srcu_read_unlock(&fs_info->subvol_srcu, index); 5823 5824 if (!IS_ERR(inode) && root != sub_root) { 5825 down_read(&fs_info->cleanup_work_sem); 5826 if (!sb_rdonly(inode->i_sb)) 5827 ret = btrfs_orphan_cleanup(sub_root); 5828 up_read(&fs_info->cleanup_work_sem); 5829 if (ret) { 5830 iput(inode); 5831 inode = ERR_PTR(ret); 5832 } 5833 } 5834 5835 return inode; 5836 } 5837 5838 static int btrfs_dentry_delete(const struct dentry *dentry) 5839 { 5840 struct btrfs_root *root; 5841 struct inode *inode = d_inode(dentry); 5842 5843 if (!inode && !IS_ROOT(dentry)) 5844 inode = d_inode(dentry->d_parent); 5845 5846 if (inode) { 5847 root = BTRFS_I(inode)->root; 5848 if (btrfs_root_refs(&root->root_item) == 0) 5849 return 1; 5850 5851 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5852 return 1; 5853 } 5854 return 0; 5855 } 5856 5857 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5858 unsigned int flags) 5859 { 5860 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5861 5862 if (inode == ERR_PTR(-ENOENT)) 5863 inode = NULL; 5864 return d_splice_alias(inode, dentry); 5865 } 5866 5867 /* 5868 * All this infrastructure exists because dir_emit can fault, and we are holding 5869 * the tree lock when doing readdir. For now just allocate a buffer and copy 5870 * our information into that, and then dir_emit from the buffer. This is 5871 * similar to what NFS does, only we don't keep the buffer around in pagecache 5872 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5873 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5874 * tree lock. 5875 */ 5876 static int btrfs_opendir(struct inode *inode, struct file *file) 5877 { 5878 struct btrfs_file_private *private; 5879 5880 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5881 if (!private) 5882 return -ENOMEM; 5883 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5884 if (!private->filldir_buf) { 5885 kfree(private); 5886 return -ENOMEM; 5887 } 5888 file->private_data = private; 5889 return 0; 5890 } 5891 5892 struct dir_entry { 5893 u64 ino; 5894 u64 offset; 5895 unsigned type; 5896 int name_len; 5897 }; 5898 5899 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5900 { 5901 while (entries--) { 5902 struct dir_entry *entry = addr; 5903 char *name = (char *)(entry + 1); 5904 5905 ctx->pos = get_unaligned(&entry->offset); 5906 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5907 get_unaligned(&entry->ino), 5908 get_unaligned(&entry->type))) 5909 return 1; 5910 addr += sizeof(struct dir_entry) + 5911 get_unaligned(&entry->name_len); 5912 ctx->pos++; 5913 } 5914 return 0; 5915 } 5916 5917 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5918 { 5919 struct inode *inode = file_inode(file); 5920 struct btrfs_root *root = BTRFS_I(inode)->root; 5921 struct btrfs_file_private *private = file->private_data; 5922 struct btrfs_dir_item *di; 5923 struct btrfs_key key; 5924 struct btrfs_key found_key; 5925 struct btrfs_path *path; 5926 void *addr; 5927 struct list_head ins_list; 5928 struct list_head del_list; 5929 int ret; 5930 struct extent_buffer *leaf; 5931 int slot; 5932 char *name_ptr; 5933 int name_len; 5934 int entries = 0; 5935 int total_len = 0; 5936 bool put = false; 5937 struct btrfs_key location; 5938 5939 if (!dir_emit_dots(file, ctx)) 5940 return 0; 5941 5942 path = btrfs_alloc_path(); 5943 if (!path) 5944 return -ENOMEM; 5945 5946 addr = private->filldir_buf; 5947 path->reada = READA_FORWARD; 5948 5949 INIT_LIST_HEAD(&ins_list); 5950 INIT_LIST_HEAD(&del_list); 5951 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5952 5953 again: 5954 key.type = BTRFS_DIR_INDEX_KEY; 5955 key.offset = ctx->pos; 5956 key.objectid = btrfs_ino(BTRFS_I(inode)); 5957 5958 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5959 if (ret < 0) 5960 goto err; 5961 5962 while (1) { 5963 struct dir_entry *entry; 5964 5965 leaf = path->nodes[0]; 5966 slot = path->slots[0]; 5967 if (slot >= btrfs_header_nritems(leaf)) { 5968 ret = btrfs_next_leaf(root, path); 5969 if (ret < 0) 5970 goto err; 5971 else if (ret > 0) 5972 break; 5973 continue; 5974 } 5975 5976 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5977 5978 if (found_key.objectid != key.objectid) 5979 break; 5980 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5981 break; 5982 if (found_key.offset < ctx->pos) 5983 goto next; 5984 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5985 goto next; 5986 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5987 name_len = btrfs_dir_name_len(leaf, di); 5988 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5989 PAGE_SIZE) { 5990 btrfs_release_path(path); 5991 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5992 if (ret) 5993 goto nopos; 5994 addr = private->filldir_buf; 5995 entries = 0; 5996 total_len = 0; 5997 goto again; 5998 } 5999 6000 entry = addr; 6001 put_unaligned(name_len, &entry->name_len); 6002 name_ptr = (char *)(entry + 1); 6003 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6004 name_len); 6005 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6006 &entry->type); 6007 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6008 put_unaligned(location.objectid, &entry->ino); 6009 put_unaligned(found_key.offset, &entry->offset); 6010 entries++; 6011 addr += sizeof(struct dir_entry) + name_len; 6012 total_len += sizeof(struct dir_entry) + name_len; 6013 next: 6014 path->slots[0]++; 6015 } 6016 btrfs_release_path(path); 6017 6018 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6019 if (ret) 6020 goto nopos; 6021 6022 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6023 if (ret) 6024 goto nopos; 6025 6026 /* 6027 * Stop new entries from being returned after we return the last 6028 * entry. 6029 * 6030 * New directory entries are assigned a strictly increasing 6031 * offset. This means that new entries created during readdir 6032 * are *guaranteed* to be seen in the future by that readdir. 6033 * This has broken buggy programs which operate on names as 6034 * they're returned by readdir. Until we re-use freed offsets 6035 * we have this hack to stop new entries from being returned 6036 * under the assumption that they'll never reach this huge 6037 * offset. 6038 * 6039 * This is being careful not to overflow 32bit loff_t unless the 6040 * last entry requires it because doing so has broken 32bit apps 6041 * in the past. 6042 */ 6043 if (ctx->pos >= INT_MAX) 6044 ctx->pos = LLONG_MAX; 6045 else 6046 ctx->pos = INT_MAX; 6047 nopos: 6048 ret = 0; 6049 err: 6050 if (put) 6051 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6052 btrfs_free_path(path); 6053 return ret; 6054 } 6055 6056 /* 6057 * This is somewhat expensive, updating the tree every time the 6058 * inode changes. But, it is most likely to find the inode in cache. 6059 * FIXME, needs more benchmarking...there are no reasons other than performance 6060 * to keep or drop this code. 6061 */ 6062 static int btrfs_dirty_inode(struct inode *inode) 6063 { 6064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6065 struct btrfs_root *root = BTRFS_I(inode)->root; 6066 struct btrfs_trans_handle *trans; 6067 int ret; 6068 6069 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6070 return 0; 6071 6072 trans = btrfs_join_transaction(root); 6073 if (IS_ERR(trans)) 6074 return PTR_ERR(trans); 6075 6076 ret = btrfs_update_inode(trans, root, inode); 6077 if (ret && ret == -ENOSPC) { 6078 /* whoops, lets try again with the full transaction */ 6079 btrfs_end_transaction(trans); 6080 trans = btrfs_start_transaction(root, 1); 6081 if (IS_ERR(trans)) 6082 return PTR_ERR(trans); 6083 6084 ret = btrfs_update_inode(trans, root, inode); 6085 } 6086 btrfs_end_transaction(trans); 6087 if (BTRFS_I(inode)->delayed_node) 6088 btrfs_balance_delayed_items(fs_info); 6089 6090 return ret; 6091 } 6092 6093 /* 6094 * This is a copy of file_update_time. We need this so we can return error on 6095 * ENOSPC for updating the inode in the case of file write and mmap writes. 6096 */ 6097 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6098 int flags) 6099 { 6100 struct btrfs_root *root = BTRFS_I(inode)->root; 6101 bool dirty = flags & ~S_VERSION; 6102 6103 if (btrfs_root_readonly(root)) 6104 return -EROFS; 6105 6106 if (flags & S_VERSION) 6107 dirty |= inode_maybe_inc_iversion(inode, dirty); 6108 if (flags & S_CTIME) 6109 inode->i_ctime = *now; 6110 if (flags & S_MTIME) 6111 inode->i_mtime = *now; 6112 if (flags & S_ATIME) 6113 inode->i_atime = *now; 6114 return dirty ? btrfs_dirty_inode(inode) : 0; 6115 } 6116 6117 /* 6118 * find the highest existing sequence number in a directory 6119 * and then set the in-memory index_cnt variable to reflect 6120 * free sequence numbers 6121 */ 6122 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6123 { 6124 struct btrfs_root *root = inode->root; 6125 struct btrfs_key key, found_key; 6126 struct btrfs_path *path; 6127 struct extent_buffer *leaf; 6128 int ret; 6129 6130 key.objectid = btrfs_ino(inode); 6131 key.type = BTRFS_DIR_INDEX_KEY; 6132 key.offset = (u64)-1; 6133 6134 path = btrfs_alloc_path(); 6135 if (!path) 6136 return -ENOMEM; 6137 6138 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6139 if (ret < 0) 6140 goto out; 6141 /* FIXME: we should be able to handle this */ 6142 if (ret == 0) 6143 goto out; 6144 ret = 0; 6145 6146 /* 6147 * MAGIC NUMBER EXPLANATION: 6148 * since we search a directory based on f_pos we have to start at 2 6149 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6150 * else has to start at 2 6151 */ 6152 if (path->slots[0] == 0) { 6153 inode->index_cnt = 2; 6154 goto out; 6155 } 6156 6157 path->slots[0]--; 6158 6159 leaf = path->nodes[0]; 6160 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6161 6162 if (found_key.objectid != btrfs_ino(inode) || 6163 found_key.type != BTRFS_DIR_INDEX_KEY) { 6164 inode->index_cnt = 2; 6165 goto out; 6166 } 6167 6168 inode->index_cnt = found_key.offset + 1; 6169 out: 6170 btrfs_free_path(path); 6171 return ret; 6172 } 6173 6174 /* 6175 * helper to find a free sequence number in a given directory. This current 6176 * code is very simple, later versions will do smarter things in the btree 6177 */ 6178 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6179 { 6180 int ret = 0; 6181 6182 if (dir->index_cnt == (u64)-1) { 6183 ret = btrfs_inode_delayed_dir_index_count(dir); 6184 if (ret) { 6185 ret = btrfs_set_inode_index_count(dir); 6186 if (ret) 6187 return ret; 6188 } 6189 } 6190 6191 *index = dir->index_cnt; 6192 dir->index_cnt++; 6193 6194 return ret; 6195 } 6196 6197 static int btrfs_insert_inode_locked(struct inode *inode) 6198 { 6199 struct btrfs_iget_args args; 6200 args.location = &BTRFS_I(inode)->location; 6201 args.root = BTRFS_I(inode)->root; 6202 6203 return insert_inode_locked4(inode, 6204 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6205 btrfs_find_actor, &args); 6206 } 6207 6208 /* 6209 * Inherit flags from the parent inode. 6210 * 6211 * Currently only the compression flags and the cow flags are inherited. 6212 */ 6213 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6214 { 6215 unsigned int flags; 6216 6217 if (!dir) 6218 return; 6219 6220 flags = BTRFS_I(dir)->flags; 6221 6222 if (flags & BTRFS_INODE_NOCOMPRESS) { 6223 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6224 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6225 } else if (flags & BTRFS_INODE_COMPRESS) { 6226 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6227 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6228 } 6229 6230 if (flags & BTRFS_INODE_NODATACOW) { 6231 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6232 if (S_ISREG(inode->i_mode)) 6233 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6234 } 6235 6236 btrfs_sync_inode_flags_to_i_flags(inode); 6237 } 6238 6239 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6240 struct btrfs_root *root, 6241 struct inode *dir, 6242 const char *name, int name_len, 6243 u64 ref_objectid, u64 objectid, 6244 umode_t mode, u64 *index) 6245 { 6246 struct btrfs_fs_info *fs_info = root->fs_info; 6247 struct inode *inode; 6248 struct btrfs_inode_item *inode_item; 6249 struct btrfs_key *location; 6250 struct btrfs_path *path; 6251 struct btrfs_inode_ref *ref; 6252 struct btrfs_key key[2]; 6253 u32 sizes[2]; 6254 int nitems = name ? 2 : 1; 6255 unsigned long ptr; 6256 int ret; 6257 6258 path = btrfs_alloc_path(); 6259 if (!path) 6260 return ERR_PTR(-ENOMEM); 6261 6262 inode = new_inode(fs_info->sb); 6263 if (!inode) { 6264 btrfs_free_path(path); 6265 return ERR_PTR(-ENOMEM); 6266 } 6267 6268 /* 6269 * O_TMPFILE, set link count to 0, so that after this point, 6270 * we fill in an inode item with the correct link count. 6271 */ 6272 if (!name) 6273 set_nlink(inode, 0); 6274 6275 /* 6276 * we have to initialize this early, so we can reclaim the inode 6277 * number if we fail afterwards in this function. 6278 */ 6279 inode->i_ino = objectid; 6280 6281 if (dir && name) { 6282 trace_btrfs_inode_request(dir); 6283 6284 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6285 if (ret) { 6286 btrfs_free_path(path); 6287 iput(inode); 6288 return ERR_PTR(ret); 6289 } 6290 } else if (dir) { 6291 *index = 0; 6292 } 6293 /* 6294 * index_cnt is ignored for everything but a dir, 6295 * btrfs_set_inode_index_count has an explanation for the magic 6296 * number 6297 */ 6298 BTRFS_I(inode)->index_cnt = 2; 6299 BTRFS_I(inode)->dir_index = *index; 6300 BTRFS_I(inode)->root = root; 6301 BTRFS_I(inode)->generation = trans->transid; 6302 inode->i_generation = BTRFS_I(inode)->generation; 6303 6304 /* 6305 * We could have gotten an inode number from somebody who was fsynced 6306 * and then removed in this same transaction, so let's just set full 6307 * sync since it will be a full sync anyway and this will blow away the 6308 * old info in the log. 6309 */ 6310 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6311 6312 key[0].objectid = objectid; 6313 key[0].type = BTRFS_INODE_ITEM_KEY; 6314 key[0].offset = 0; 6315 6316 sizes[0] = sizeof(struct btrfs_inode_item); 6317 6318 if (name) { 6319 /* 6320 * Start new inodes with an inode_ref. This is slightly more 6321 * efficient for small numbers of hard links since they will 6322 * be packed into one item. Extended refs will kick in if we 6323 * add more hard links than can fit in the ref item. 6324 */ 6325 key[1].objectid = objectid; 6326 key[1].type = BTRFS_INODE_REF_KEY; 6327 key[1].offset = ref_objectid; 6328 6329 sizes[1] = name_len + sizeof(*ref); 6330 } 6331 6332 location = &BTRFS_I(inode)->location; 6333 location->objectid = objectid; 6334 location->offset = 0; 6335 location->type = BTRFS_INODE_ITEM_KEY; 6336 6337 ret = btrfs_insert_inode_locked(inode); 6338 if (ret < 0) { 6339 iput(inode); 6340 goto fail; 6341 } 6342 6343 path->leave_spinning = 1; 6344 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6345 if (ret != 0) 6346 goto fail_unlock; 6347 6348 inode_init_owner(inode, dir, mode); 6349 inode_set_bytes(inode, 0); 6350 6351 inode->i_mtime = current_time(inode); 6352 inode->i_atime = inode->i_mtime; 6353 inode->i_ctime = inode->i_mtime; 6354 BTRFS_I(inode)->i_otime = inode->i_mtime; 6355 6356 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6357 struct btrfs_inode_item); 6358 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6359 sizeof(*inode_item)); 6360 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6361 6362 if (name) { 6363 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6364 struct btrfs_inode_ref); 6365 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6366 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6367 ptr = (unsigned long)(ref + 1); 6368 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6369 } 6370 6371 btrfs_mark_buffer_dirty(path->nodes[0]); 6372 btrfs_free_path(path); 6373 6374 btrfs_inherit_iflags(inode, dir); 6375 6376 if (S_ISREG(mode)) { 6377 if (btrfs_test_opt(fs_info, NODATASUM)) 6378 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6379 if (btrfs_test_opt(fs_info, NODATACOW)) 6380 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6381 BTRFS_INODE_NODATASUM; 6382 } 6383 6384 inode_tree_add(inode); 6385 6386 trace_btrfs_inode_new(inode); 6387 btrfs_set_inode_last_trans(trans, inode); 6388 6389 btrfs_update_root_times(trans, root); 6390 6391 ret = btrfs_inode_inherit_props(trans, inode, dir); 6392 if (ret) 6393 btrfs_err(fs_info, 6394 "error inheriting props for ino %llu (root %llu): %d", 6395 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6396 6397 return inode; 6398 6399 fail_unlock: 6400 discard_new_inode(inode); 6401 fail: 6402 if (dir && name) 6403 BTRFS_I(dir)->index_cnt--; 6404 btrfs_free_path(path); 6405 return ERR_PTR(ret); 6406 } 6407 6408 /* 6409 * utility function to add 'inode' into 'parent_inode' with 6410 * a give name and a given sequence number. 6411 * if 'add_backref' is true, also insert a backref from the 6412 * inode to the parent directory. 6413 */ 6414 int btrfs_add_link(struct btrfs_trans_handle *trans, 6415 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6416 const char *name, int name_len, int add_backref, u64 index) 6417 { 6418 int ret = 0; 6419 struct btrfs_key key; 6420 struct btrfs_root *root = parent_inode->root; 6421 u64 ino = btrfs_ino(inode); 6422 u64 parent_ino = btrfs_ino(parent_inode); 6423 6424 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6425 memcpy(&key, &inode->root->root_key, sizeof(key)); 6426 } else { 6427 key.objectid = ino; 6428 key.type = BTRFS_INODE_ITEM_KEY; 6429 key.offset = 0; 6430 } 6431 6432 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6433 ret = btrfs_add_root_ref(trans, key.objectid, 6434 root->root_key.objectid, parent_ino, 6435 index, name, name_len); 6436 } else if (add_backref) { 6437 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6438 parent_ino, index); 6439 } 6440 6441 /* Nothing to clean up yet */ 6442 if (ret) 6443 return ret; 6444 6445 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6446 btrfs_inode_type(&inode->vfs_inode), index); 6447 if (ret == -EEXIST || ret == -EOVERFLOW) 6448 goto fail_dir_item; 6449 else if (ret) { 6450 btrfs_abort_transaction(trans, ret); 6451 return ret; 6452 } 6453 6454 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6455 name_len * 2); 6456 inode_inc_iversion(&parent_inode->vfs_inode); 6457 /* 6458 * If we are replaying a log tree, we do not want to update the mtime 6459 * and ctime of the parent directory with the current time, since the 6460 * log replay procedure is responsible for setting them to their correct 6461 * values (the ones it had when the fsync was done). 6462 */ 6463 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6464 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6465 6466 parent_inode->vfs_inode.i_mtime = now; 6467 parent_inode->vfs_inode.i_ctime = now; 6468 } 6469 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6470 if (ret) 6471 btrfs_abort_transaction(trans, ret); 6472 return ret; 6473 6474 fail_dir_item: 6475 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6476 u64 local_index; 6477 int err; 6478 err = btrfs_del_root_ref(trans, key.objectid, 6479 root->root_key.objectid, parent_ino, 6480 &local_index, name, name_len); 6481 if (err) 6482 btrfs_abort_transaction(trans, err); 6483 } else if (add_backref) { 6484 u64 local_index; 6485 int err; 6486 6487 err = btrfs_del_inode_ref(trans, root, name, name_len, 6488 ino, parent_ino, &local_index); 6489 if (err) 6490 btrfs_abort_transaction(trans, err); 6491 } 6492 6493 /* Return the original error code */ 6494 return ret; 6495 } 6496 6497 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6498 struct btrfs_inode *dir, struct dentry *dentry, 6499 struct btrfs_inode *inode, int backref, u64 index) 6500 { 6501 int err = btrfs_add_link(trans, dir, inode, 6502 dentry->d_name.name, dentry->d_name.len, 6503 backref, index); 6504 if (err > 0) 6505 err = -EEXIST; 6506 return err; 6507 } 6508 6509 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6510 umode_t mode, dev_t rdev) 6511 { 6512 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6513 struct btrfs_trans_handle *trans; 6514 struct btrfs_root *root = BTRFS_I(dir)->root; 6515 struct inode *inode = NULL; 6516 int err; 6517 u64 objectid; 6518 u64 index = 0; 6519 6520 /* 6521 * 2 for inode item and ref 6522 * 2 for dir items 6523 * 1 for xattr if selinux is on 6524 */ 6525 trans = btrfs_start_transaction(root, 5); 6526 if (IS_ERR(trans)) 6527 return PTR_ERR(trans); 6528 6529 err = btrfs_find_free_ino(root, &objectid); 6530 if (err) 6531 goto out_unlock; 6532 6533 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6534 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6535 mode, &index); 6536 if (IS_ERR(inode)) { 6537 err = PTR_ERR(inode); 6538 inode = NULL; 6539 goto out_unlock; 6540 } 6541 6542 /* 6543 * If the active LSM wants to access the inode during 6544 * d_instantiate it needs these. Smack checks to see 6545 * if the filesystem supports xattrs by looking at the 6546 * ops vector. 6547 */ 6548 inode->i_op = &btrfs_special_inode_operations; 6549 init_special_inode(inode, inode->i_mode, rdev); 6550 6551 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6552 if (err) 6553 goto out_unlock; 6554 6555 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6556 0, index); 6557 if (err) 6558 goto out_unlock; 6559 6560 btrfs_update_inode(trans, root, inode); 6561 d_instantiate_new(dentry, inode); 6562 6563 out_unlock: 6564 btrfs_end_transaction(trans); 6565 btrfs_btree_balance_dirty(fs_info); 6566 if (err && inode) { 6567 inode_dec_link_count(inode); 6568 discard_new_inode(inode); 6569 } 6570 return err; 6571 } 6572 6573 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6574 umode_t mode, bool excl) 6575 { 6576 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6577 struct btrfs_trans_handle *trans; 6578 struct btrfs_root *root = BTRFS_I(dir)->root; 6579 struct inode *inode = NULL; 6580 int err; 6581 u64 objectid; 6582 u64 index = 0; 6583 6584 /* 6585 * 2 for inode item and ref 6586 * 2 for dir items 6587 * 1 for xattr if selinux is on 6588 */ 6589 trans = btrfs_start_transaction(root, 5); 6590 if (IS_ERR(trans)) 6591 return PTR_ERR(trans); 6592 6593 err = btrfs_find_free_ino(root, &objectid); 6594 if (err) 6595 goto out_unlock; 6596 6597 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6598 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6599 mode, &index); 6600 if (IS_ERR(inode)) { 6601 err = PTR_ERR(inode); 6602 inode = NULL; 6603 goto out_unlock; 6604 } 6605 /* 6606 * If the active LSM wants to access the inode during 6607 * d_instantiate it needs these. Smack checks to see 6608 * if the filesystem supports xattrs by looking at the 6609 * ops vector. 6610 */ 6611 inode->i_fop = &btrfs_file_operations; 6612 inode->i_op = &btrfs_file_inode_operations; 6613 inode->i_mapping->a_ops = &btrfs_aops; 6614 6615 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6616 if (err) 6617 goto out_unlock; 6618 6619 err = btrfs_update_inode(trans, root, inode); 6620 if (err) 6621 goto out_unlock; 6622 6623 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6624 0, index); 6625 if (err) 6626 goto out_unlock; 6627 6628 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6629 d_instantiate_new(dentry, inode); 6630 6631 out_unlock: 6632 btrfs_end_transaction(trans); 6633 if (err && inode) { 6634 inode_dec_link_count(inode); 6635 discard_new_inode(inode); 6636 } 6637 btrfs_btree_balance_dirty(fs_info); 6638 return err; 6639 } 6640 6641 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6642 struct dentry *dentry) 6643 { 6644 struct btrfs_trans_handle *trans = NULL; 6645 struct btrfs_root *root = BTRFS_I(dir)->root; 6646 struct inode *inode = d_inode(old_dentry); 6647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6648 u64 index; 6649 int err; 6650 int drop_inode = 0; 6651 6652 /* do not allow sys_link's with other subvols of the same device */ 6653 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6654 return -EXDEV; 6655 6656 if (inode->i_nlink >= BTRFS_LINK_MAX) 6657 return -EMLINK; 6658 6659 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6660 if (err) 6661 goto fail; 6662 6663 /* 6664 * 2 items for inode and inode ref 6665 * 2 items for dir items 6666 * 1 item for parent inode 6667 * 1 item for orphan item deletion if O_TMPFILE 6668 */ 6669 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6670 if (IS_ERR(trans)) { 6671 err = PTR_ERR(trans); 6672 trans = NULL; 6673 goto fail; 6674 } 6675 6676 /* There are several dir indexes for this inode, clear the cache. */ 6677 BTRFS_I(inode)->dir_index = 0ULL; 6678 inc_nlink(inode); 6679 inode_inc_iversion(inode); 6680 inode->i_ctime = current_time(inode); 6681 ihold(inode); 6682 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6683 6684 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6685 1, index); 6686 6687 if (err) { 6688 drop_inode = 1; 6689 } else { 6690 struct dentry *parent = dentry->d_parent; 6691 int ret; 6692 6693 err = btrfs_update_inode(trans, root, inode); 6694 if (err) 6695 goto fail; 6696 if (inode->i_nlink == 1) { 6697 /* 6698 * If new hard link count is 1, it's a file created 6699 * with open(2) O_TMPFILE flag. 6700 */ 6701 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6702 if (err) 6703 goto fail; 6704 } 6705 d_instantiate(dentry, inode); 6706 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6707 true, NULL); 6708 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6709 err = btrfs_commit_transaction(trans); 6710 trans = NULL; 6711 } 6712 } 6713 6714 fail: 6715 if (trans) 6716 btrfs_end_transaction(trans); 6717 if (drop_inode) { 6718 inode_dec_link_count(inode); 6719 iput(inode); 6720 } 6721 btrfs_btree_balance_dirty(fs_info); 6722 return err; 6723 } 6724 6725 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6726 { 6727 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6728 struct inode *inode = NULL; 6729 struct btrfs_trans_handle *trans; 6730 struct btrfs_root *root = BTRFS_I(dir)->root; 6731 int err = 0; 6732 u64 objectid = 0; 6733 u64 index = 0; 6734 6735 /* 6736 * 2 items for inode and ref 6737 * 2 items for dir items 6738 * 1 for xattr if selinux is on 6739 */ 6740 trans = btrfs_start_transaction(root, 5); 6741 if (IS_ERR(trans)) 6742 return PTR_ERR(trans); 6743 6744 err = btrfs_find_free_ino(root, &objectid); 6745 if (err) 6746 goto out_fail; 6747 6748 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6749 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6750 S_IFDIR | mode, &index); 6751 if (IS_ERR(inode)) { 6752 err = PTR_ERR(inode); 6753 inode = NULL; 6754 goto out_fail; 6755 } 6756 6757 /* these must be set before we unlock the inode */ 6758 inode->i_op = &btrfs_dir_inode_operations; 6759 inode->i_fop = &btrfs_dir_file_operations; 6760 6761 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6762 if (err) 6763 goto out_fail; 6764 6765 btrfs_i_size_write(BTRFS_I(inode), 0); 6766 err = btrfs_update_inode(trans, root, inode); 6767 if (err) 6768 goto out_fail; 6769 6770 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6771 dentry->d_name.name, 6772 dentry->d_name.len, 0, index); 6773 if (err) 6774 goto out_fail; 6775 6776 d_instantiate_new(dentry, inode); 6777 6778 out_fail: 6779 btrfs_end_transaction(trans); 6780 if (err && inode) { 6781 inode_dec_link_count(inode); 6782 discard_new_inode(inode); 6783 } 6784 btrfs_btree_balance_dirty(fs_info); 6785 return err; 6786 } 6787 6788 static noinline int uncompress_inline(struct btrfs_path *path, 6789 struct page *page, 6790 size_t pg_offset, u64 extent_offset, 6791 struct btrfs_file_extent_item *item) 6792 { 6793 int ret; 6794 struct extent_buffer *leaf = path->nodes[0]; 6795 char *tmp; 6796 size_t max_size; 6797 unsigned long inline_size; 6798 unsigned long ptr; 6799 int compress_type; 6800 6801 WARN_ON(pg_offset != 0); 6802 compress_type = btrfs_file_extent_compression(leaf, item); 6803 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6804 inline_size = btrfs_file_extent_inline_item_len(leaf, 6805 btrfs_item_nr(path->slots[0])); 6806 tmp = kmalloc(inline_size, GFP_NOFS); 6807 if (!tmp) 6808 return -ENOMEM; 6809 ptr = btrfs_file_extent_inline_start(item); 6810 6811 read_extent_buffer(leaf, tmp, ptr, inline_size); 6812 6813 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6814 ret = btrfs_decompress(compress_type, tmp, page, 6815 extent_offset, inline_size, max_size); 6816 6817 /* 6818 * decompression code contains a memset to fill in any space between the end 6819 * of the uncompressed data and the end of max_size in case the decompressed 6820 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6821 * the end of an inline extent and the beginning of the next block, so we 6822 * cover that region here. 6823 */ 6824 6825 if (max_size + pg_offset < PAGE_SIZE) { 6826 char *map = kmap(page); 6827 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6828 kunmap(page); 6829 } 6830 kfree(tmp); 6831 return ret; 6832 } 6833 6834 /* 6835 * a bit scary, this does extent mapping from logical file offset to the disk. 6836 * the ugly parts come from merging extents from the disk with the in-ram 6837 * representation. This gets more complex because of the data=ordered code, 6838 * where the in-ram extents might be locked pending data=ordered completion. 6839 * 6840 * This also copies inline extents directly into the page. 6841 */ 6842 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6843 struct page *page, 6844 size_t pg_offset, u64 start, u64 len, 6845 int create) 6846 { 6847 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6848 int ret; 6849 int err = 0; 6850 u64 extent_start = 0; 6851 u64 extent_end = 0; 6852 u64 objectid = btrfs_ino(inode); 6853 int extent_type = -1; 6854 struct btrfs_path *path = NULL; 6855 struct btrfs_root *root = inode->root; 6856 struct btrfs_file_extent_item *item; 6857 struct extent_buffer *leaf; 6858 struct btrfs_key found_key; 6859 struct extent_map *em = NULL; 6860 struct extent_map_tree *em_tree = &inode->extent_tree; 6861 struct extent_io_tree *io_tree = &inode->io_tree; 6862 const bool new_inline = !page || create; 6863 6864 read_lock(&em_tree->lock); 6865 em = lookup_extent_mapping(em_tree, start, len); 6866 if (em) 6867 em->bdev = fs_info->fs_devices->latest_bdev; 6868 read_unlock(&em_tree->lock); 6869 6870 if (em) { 6871 if (em->start > start || em->start + em->len <= start) 6872 free_extent_map(em); 6873 else if (em->block_start == EXTENT_MAP_INLINE && page) 6874 free_extent_map(em); 6875 else 6876 goto out; 6877 } 6878 em = alloc_extent_map(); 6879 if (!em) { 6880 err = -ENOMEM; 6881 goto out; 6882 } 6883 em->bdev = fs_info->fs_devices->latest_bdev; 6884 em->start = EXTENT_MAP_HOLE; 6885 em->orig_start = EXTENT_MAP_HOLE; 6886 em->len = (u64)-1; 6887 em->block_len = (u64)-1; 6888 6889 path = btrfs_alloc_path(); 6890 if (!path) { 6891 err = -ENOMEM; 6892 goto out; 6893 } 6894 6895 /* Chances are we'll be called again, so go ahead and do readahead */ 6896 path->reada = READA_FORWARD; 6897 6898 /* 6899 * Unless we're going to uncompress the inline extent, no sleep would 6900 * happen. 6901 */ 6902 path->leave_spinning = 1; 6903 6904 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6905 if (ret < 0) { 6906 err = ret; 6907 goto out; 6908 } else if (ret > 0) { 6909 if (path->slots[0] == 0) 6910 goto not_found; 6911 path->slots[0]--; 6912 } 6913 6914 leaf = path->nodes[0]; 6915 item = btrfs_item_ptr(leaf, path->slots[0], 6916 struct btrfs_file_extent_item); 6917 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6918 if (found_key.objectid != objectid || 6919 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6920 /* 6921 * If we backup past the first extent we want to move forward 6922 * and see if there is an extent in front of us, otherwise we'll 6923 * say there is a hole for our whole search range which can 6924 * cause problems. 6925 */ 6926 extent_end = start; 6927 goto next; 6928 } 6929 6930 extent_type = btrfs_file_extent_type(leaf, item); 6931 extent_start = found_key.offset; 6932 if (extent_type == BTRFS_FILE_EXTENT_REG || 6933 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6934 /* Only regular file could have regular/prealloc extent */ 6935 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6936 ret = -EUCLEAN; 6937 btrfs_crit(fs_info, 6938 "regular/prealloc extent found for non-regular inode %llu", 6939 btrfs_ino(inode)); 6940 goto out; 6941 } 6942 extent_end = extent_start + 6943 btrfs_file_extent_num_bytes(leaf, item); 6944 6945 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6946 extent_start); 6947 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6948 size_t size; 6949 6950 size = btrfs_file_extent_ram_bytes(leaf, item); 6951 extent_end = ALIGN(extent_start + size, 6952 fs_info->sectorsize); 6953 6954 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6955 path->slots[0], 6956 extent_start); 6957 } 6958 next: 6959 if (start >= extent_end) { 6960 path->slots[0]++; 6961 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6962 ret = btrfs_next_leaf(root, path); 6963 if (ret < 0) { 6964 err = ret; 6965 goto out; 6966 } else if (ret > 0) { 6967 goto not_found; 6968 } 6969 leaf = path->nodes[0]; 6970 } 6971 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6972 if (found_key.objectid != objectid || 6973 found_key.type != BTRFS_EXTENT_DATA_KEY) 6974 goto not_found; 6975 if (start + len <= found_key.offset) 6976 goto not_found; 6977 if (start > found_key.offset) 6978 goto next; 6979 6980 /* New extent overlaps with existing one */ 6981 em->start = start; 6982 em->orig_start = start; 6983 em->len = found_key.offset - start; 6984 em->block_start = EXTENT_MAP_HOLE; 6985 goto insert; 6986 } 6987 6988 btrfs_extent_item_to_extent_map(inode, path, item, 6989 new_inline, em); 6990 6991 if (extent_type == BTRFS_FILE_EXTENT_REG || 6992 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6993 goto insert; 6994 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6995 unsigned long ptr; 6996 char *map; 6997 size_t size; 6998 size_t extent_offset; 6999 size_t copy_size; 7000 7001 if (new_inline) 7002 goto out; 7003 7004 size = btrfs_file_extent_ram_bytes(leaf, item); 7005 extent_offset = page_offset(page) + pg_offset - extent_start; 7006 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7007 size - extent_offset); 7008 em->start = extent_start + extent_offset; 7009 em->len = ALIGN(copy_size, fs_info->sectorsize); 7010 em->orig_block_len = em->len; 7011 em->orig_start = em->start; 7012 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7013 7014 btrfs_set_path_blocking(path); 7015 if (!PageUptodate(page)) { 7016 if (btrfs_file_extent_compression(leaf, item) != 7017 BTRFS_COMPRESS_NONE) { 7018 ret = uncompress_inline(path, page, pg_offset, 7019 extent_offset, item); 7020 if (ret) { 7021 err = ret; 7022 goto out; 7023 } 7024 } else { 7025 map = kmap(page); 7026 read_extent_buffer(leaf, map + pg_offset, ptr, 7027 copy_size); 7028 if (pg_offset + copy_size < PAGE_SIZE) { 7029 memset(map + pg_offset + copy_size, 0, 7030 PAGE_SIZE - pg_offset - 7031 copy_size); 7032 } 7033 kunmap(page); 7034 } 7035 flush_dcache_page(page); 7036 } 7037 set_extent_uptodate(io_tree, em->start, 7038 extent_map_end(em) - 1, NULL, GFP_NOFS); 7039 goto insert; 7040 } 7041 not_found: 7042 em->start = start; 7043 em->orig_start = start; 7044 em->len = len; 7045 em->block_start = EXTENT_MAP_HOLE; 7046 insert: 7047 btrfs_release_path(path); 7048 if (em->start > start || extent_map_end(em) <= start) { 7049 btrfs_err(fs_info, 7050 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7051 em->start, em->len, start, len); 7052 err = -EIO; 7053 goto out; 7054 } 7055 7056 err = 0; 7057 write_lock(&em_tree->lock); 7058 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7059 write_unlock(&em_tree->lock); 7060 out: 7061 btrfs_free_path(path); 7062 7063 trace_btrfs_get_extent(root, inode, em); 7064 7065 if (err) { 7066 free_extent_map(em); 7067 return ERR_PTR(err); 7068 } 7069 BUG_ON(!em); /* Error is always set */ 7070 return em; 7071 } 7072 7073 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7074 u64 start, u64 len) 7075 { 7076 struct extent_map *em; 7077 struct extent_map *hole_em = NULL; 7078 u64 delalloc_start = start; 7079 u64 end; 7080 u64 delalloc_len; 7081 u64 delalloc_end; 7082 int err = 0; 7083 7084 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7085 if (IS_ERR(em)) 7086 return em; 7087 /* 7088 * If our em maps to: 7089 * - a hole or 7090 * - a pre-alloc extent, 7091 * there might actually be delalloc bytes behind it. 7092 */ 7093 if (em->block_start != EXTENT_MAP_HOLE && 7094 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7095 return em; 7096 else 7097 hole_em = em; 7098 7099 /* check to see if we've wrapped (len == -1 or similar) */ 7100 end = start + len; 7101 if (end < start) 7102 end = (u64)-1; 7103 else 7104 end -= 1; 7105 7106 em = NULL; 7107 7108 /* ok, we didn't find anything, lets look for delalloc */ 7109 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7110 end, len, EXTENT_DELALLOC, 1); 7111 delalloc_end = delalloc_start + delalloc_len; 7112 if (delalloc_end < delalloc_start) 7113 delalloc_end = (u64)-1; 7114 7115 /* 7116 * We didn't find anything useful, return the original results from 7117 * get_extent() 7118 */ 7119 if (delalloc_start > end || delalloc_end <= start) { 7120 em = hole_em; 7121 hole_em = NULL; 7122 goto out; 7123 } 7124 7125 /* 7126 * Adjust the delalloc_start to make sure it doesn't go backwards from 7127 * the start they passed in 7128 */ 7129 delalloc_start = max(start, delalloc_start); 7130 delalloc_len = delalloc_end - delalloc_start; 7131 7132 if (delalloc_len > 0) { 7133 u64 hole_start; 7134 u64 hole_len; 7135 const u64 hole_end = extent_map_end(hole_em); 7136 7137 em = alloc_extent_map(); 7138 if (!em) { 7139 err = -ENOMEM; 7140 goto out; 7141 } 7142 em->bdev = NULL; 7143 7144 ASSERT(hole_em); 7145 /* 7146 * When btrfs_get_extent can't find anything it returns one 7147 * huge hole 7148 * 7149 * Make sure what it found really fits our range, and adjust to 7150 * make sure it is based on the start from the caller 7151 */ 7152 if (hole_end <= start || hole_em->start > end) { 7153 free_extent_map(hole_em); 7154 hole_em = NULL; 7155 } else { 7156 hole_start = max(hole_em->start, start); 7157 hole_len = hole_end - hole_start; 7158 } 7159 7160 if (hole_em && delalloc_start > hole_start) { 7161 /* 7162 * Our hole starts before our delalloc, so we have to 7163 * return just the parts of the hole that go until the 7164 * delalloc starts 7165 */ 7166 em->len = min(hole_len, delalloc_start - hole_start); 7167 em->start = hole_start; 7168 em->orig_start = hole_start; 7169 /* 7170 * Don't adjust block start at all, it is fixed at 7171 * EXTENT_MAP_HOLE 7172 */ 7173 em->block_start = hole_em->block_start; 7174 em->block_len = hole_len; 7175 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7176 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7177 } else { 7178 /* 7179 * Hole is out of passed range or it starts after 7180 * delalloc range 7181 */ 7182 em->start = delalloc_start; 7183 em->len = delalloc_len; 7184 em->orig_start = delalloc_start; 7185 em->block_start = EXTENT_MAP_DELALLOC; 7186 em->block_len = delalloc_len; 7187 } 7188 } else { 7189 return hole_em; 7190 } 7191 out: 7192 7193 free_extent_map(hole_em); 7194 if (err) { 7195 free_extent_map(em); 7196 return ERR_PTR(err); 7197 } 7198 return em; 7199 } 7200 7201 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7202 const u64 start, 7203 const u64 len, 7204 const u64 orig_start, 7205 const u64 block_start, 7206 const u64 block_len, 7207 const u64 orig_block_len, 7208 const u64 ram_bytes, 7209 const int type) 7210 { 7211 struct extent_map *em = NULL; 7212 int ret; 7213 7214 if (type != BTRFS_ORDERED_NOCOW) { 7215 em = create_io_em(inode, start, len, orig_start, 7216 block_start, block_len, orig_block_len, 7217 ram_bytes, 7218 BTRFS_COMPRESS_NONE, /* compress_type */ 7219 type); 7220 if (IS_ERR(em)) 7221 goto out; 7222 } 7223 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7224 len, block_len, type); 7225 if (ret) { 7226 if (em) { 7227 free_extent_map(em); 7228 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7229 start + len - 1, 0); 7230 } 7231 em = ERR_PTR(ret); 7232 } 7233 out: 7234 7235 return em; 7236 } 7237 7238 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7239 u64 start, u64 len) 7240 { 7241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7242 struct btrfs_root *root = BTRFS_I(inode)->root; 7243 struct extent_map *em; 7244 struct btrfs_key ins; 7245 u64 alloc_hint; 7246 int ret; 7247 7248 alloc_hint = get_extent_allocation_hint(inode, start, len); 7249 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7250 0, alloc_hint, &ins, 1, 1); 7251 if (ret) 7252 return ERR_PTR(ret); 7253 7254 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7255 ins.objectid, ins.offset, ins.offset, 7256 ins.offset, BTRFS_ORDERED_REGULAR); 7257 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7258 if (IS_ERR(em)) 7259 btrfs_free_reserved_extent(fs_info, ins.objectid, 7260 ins.offset, 1); 7261 7262 return em; 7263 } 7264 7265 /* 7266 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7267 * block must be cow'd 7268 */ 7269 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7270 u64 *orig_start, u64 *orig_block_len, 7271 u64 *ram_bytes) 7272 { 7273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7274 struct btrfs_path *path; 7275 int ret; 7276 struct extent_buffer *leaf; 7277 struct btrfs_root *root = BTRFS_I(inode)->root; 7278 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7279 struct btrfs_file_extent_item *fi; 7280 struct btrfs_key key; 7281 u64 disk_bytenr; 7282 u64 backref_offset; 7283 u64 extent_end; 7284 u64 num_bytes; 7285 int slot; 7286 int found_type; 7287 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7288 7289 path = btrfs_alloc_path(); 7290 if (!path) 7291 return -ENOMEM; 7292 7293 ret = btrfs_lookup_file_extent(NULL, root, path, 7294 btrfs_ino(BTRFS_I(inode)), offset, 0); 7295 if (ret < 0) 7296 goto out; 7297 7298 slot = path->slots[0]; 7299 if (ret == 1) { 7300 if (slot == 0) { 7301 /* can't find the item, must cow */ 7302 ret = 0; 7303 goto out; 7304 } 7305 slot--; 7306 } 7307 ret = 0; 7308 leaf = path->nodes[0]; 7309 btrfs_item_key_to_cpu(leaf, &key, slot); 7310 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7311 key.type != BTRFS_EXTENT_DATA_KEY) { 7312 /* not our file or wrong item type, must cow */ 7313 goto out; 7314 } 7315 7316 if (key.offset > offset) { 7317 /* Wrong offset, must cow */ 7318 goto out; 7319 } 7320 7321 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7322 found_type = btrfs_file_extent_type(leaf, fi); 7323 if (found_type != BTRFS_FILE_EXTENT_REG && 7324 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7325 /* not a regular extent, must cow */ 7326 goto out; 7327 } 7328 7329 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7330 goto out; 7331 7332 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7333 if (extent_end <= offset) 7334 goto out; 7335 7336 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7337 if (disk_bytenr == 0) 7338 goto out; 7339 7340 if (btrfs_file_extent_compression(leaf, fi) || 7341 btrfs_file_extent_encryption(leaf, fi) || 7342 btrfs_file_extent_other_encoding(leaf, fi)) 7343 goto out; 7344 7345 /* 7346 * Do the same check as in btrfs_cross_ref_exist but without the 7347 * unnecessary search. 7348 */ 7349 if (btrfs_file_extent_generation(leaf, fi) <= 7350 btrfs_root_last_snapshot(&root->root_item)) 7351 goto out; 7352 7353 backref_offset = btrfs_file_extent_offset(leaf, fi); 7354 7355 if (orig_start) { 7356 *orig_start = key.offset - backref_offset; 7357 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7358 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7359 } 7360 7361 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7362 goto out; 7363 7364 num_bytes = min(offset + *len, extent_end) - offset; 7365 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7366 u64 range_end; 7367 7368 range_end = round_up(offset + num_bytes, 7369 root->fs_info->sectorsize) - 1; 7370 ret = test_range_bit(io_tree, offset, range_end, 7371 EXTENT_DELALLOC, 0, NULL); 7372 if (ret) { 7373 ret = -EAGAIN; 7374 goto out; 7375 } 7376 } 7377 7378 btrfs_release_path(path); 7379 7380 /* 7381 * look for other files referencing this extent, if we 7382 * find any we must cow 7383 */ 7384 7385 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7386 key.offset - backref_offset, disk_bytenr); 7387 if (ret) { 7388 ret = 0; 7389 goto out; 7390 } 7391 7392 /* 7393 * adjust disk_bytenr and num_bytes to cover just the bytes 7394 * in this extent we are about to write. If there 7395 * are any csums in that range we have to cow in order 7396 * to keep the csums correct 7397 */ 7398 disk_bytenr += backref_offset; 7399 disk_bytenr += offset - key.offset; 7400 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7401 goto out; 7402 /* 7403 * all of the above have passed, it is safe to overwrite this extent 7404 * without cow 7405 */ 7406 *len = num_bytes; 7407 ret = 1; 7408 out: 7409 btrfs_free_path(path); 7410 return ret; 7411 } 7412 7413 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7414 struct extent_state **cached_state, int writing) 7415 { 7416 struct btrfs_ordered_extent *ordered; 7417 int ret = 0; 7418 7419 while (1) { 7420 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7421 cached_state); 7422 /* 7423 * We're concerned with the entire range that we're going to be 7424 * doing DIO to, so we need to make sure there's no ordered 7425 * extents in this range. 7426 */ 7427 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7428 lockend - lockstart + 1); 7429 7430 /* 7431 * We need to make sure there are no buffered pages in this 7432 * range either, we could have raced between the invalidate in 7433 * generic_file_direct_write and locking the extent. The 7434 * invalidate needs to happen so that reads after a write do not 7435 * get stale data. 7436 */ 7437 if (!ordered && 7438 (!writing || !filemap_range_has_page(inode->i_mapping, 7439 lockstart, lockend))) 7440 break; 7441 7442 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7443 cached_state); 7444 7445 if (ordered) { 7446 /* 7447 * If we are doing a DIO read and the ordered extent we 7448 * found is for a buffered write, we can not wait for it 7449 * to complete and retry, because if we do so we can 7450 * deadlock with concurrent buffered writes on page 7451 * locks. This happens only if our DIO read covers more 7452 * than one extent map, if at this point has already 7453 * created an ordered extent for a previous extent map 7454 * and locked its range in the inode's io tree, and a 7455 * concurrent write against that previous extent map's 7456 * range and this range started (we unlock the ranges 7457 * in the io tree only when the bios complete and 7458 * buffered writes always lock pages before attempting 7459 * to lock range in the io tree). 7460 */ 7461 if (writing || 7462 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7463 btrfs_start_ordered_extent(inode, ordered, 1); 7464 else 7465 ret = -ENOTBLK; 7466 btrfs_put_ordered_extent(ordered); 7467 } else { 7468 /* 7469 * We could trigger writeback for this range (and wait 7470 * for it to complete) and then invalidate the pages for 7471 * this range (through invalidate_inode_pages2_range()), 7472 * but that can lead us to a deadlock with a concurrent 7473 * call to readpages() (a buffered read or a defrag call 7474 * triggered a readahead) on a page lock due to an 7475 * ordered dio extent we created before but did not have 7476 * yet a corresponding bio submitted (whence it can not 7477 * complete), which makes readpages() wait for that 7478 * ordered extent to complete while holding a lock on 7479 * that page. 7480 */ 7481 ret = -ENOTBLK; 7482 } 7483 7484 if (ret) 7485 break; 7486 7487 cond_resched(); 7488 } 7489 7490 return ret; 7491 } 7492 7493 /* The callers of this must take lock_extent() */ 7494 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7495 u64 orig_start, u64 block_start, 7496 u64 block_len, u64 orig_block_len, 7497 u64 ram_bytes, int compress_type, 7498 int type) 7499 { 7500 struct extent_map_tree *em_tree; 7501 struct extent_map *em; 7502 struct btrfs_root *root = BTRFS_I(inode)->root; 7503 int ret; 7504 7505 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7506 type == BTRFS_ORDERED_COMPRESSED || 7507 type == BTRFS_ORDERED_NOCOW || 7508 type == BTRFS_ORDERED_REGULAR); 7509 7510 em_tree = &BTRFS_I(inode)->extent_tree; 7511 em = alloc_extent_map(); 7512 if (!em) 7513 return ERR_PTR(-ENOMEM); 7514 7515 em->start = start; 7516 em->orig_start = orig_start; 7517 em->len = len; 7518 em->block_len = block_len; 7519 em->block_start = block_start; 7520 em->bdev = root->fs_info->fs_devices->latest_bdev; 7521 em->orig_block_len = orig_block_len; 7522 em->ram_bytes = ram_bytes; 7523 em->generation = -1; 7524 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7525 if (type == BTRFS_ORDERED_PREALLOC) { 7526 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7527 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7528 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7529 em->compress_type = compress_type; 7530 } 7531 7532 do { 7533 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7534 em->start + em->len - 1, 0); 7535 write_lock(&em_tree->lock); 7536 ret = add_extent_mapping(em_tree, em, 1); 7537 write_unlock(&em_tree->lock); 7538 /* 7539 * The caller has taken lock_extent(), who could race with us 7540 * to add em? 7541 */ 7542 } while (ret == -EEXIST); 7543 7544 if (ret) { 7545 free_extent_map(em); 7546 return ERR_PTR(ret); 7547 } 7548 7549 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7550 return em; 7551 } 7552 7553 7554 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7555 struct buffer_head *bh_result, 7556 struct inode *inode, 7557 u64 start, u64 len) 7558 { 7559 if (em->block_start == EXTENT_MAP_HOLE || 7560 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7561 return -ENOENT; 7562 7563 len = min(len, em->len - (start - em->start)); 7564 7565 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7566 inode->i_blkbits; 7567 bh_result->b_size = len; 7568 bh_result->b_bdev = em->bdev; 7569 set_buffer_mapped(bh_result); 7570 7571 return 0; 7572 } 7573 7574 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7575 struct buffer_head *bh_result, 7576 struct inode *inode, 7577 struct btrfs_dio_data *dio_data, 7578 u64 start, u64 len) 7579 { 7580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7581 struct extent_map *em = *map; 7582 int ret = 0; 7583 7584 /* 7585 * We don't allocate a new extent in the following cases 7586 * 7587 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7588 * existing extent. 7589 * 2) The extent is marked as PREALLOC. We're good to go here and can 7590 * just use the extent. 7591 * 7592 */ 7593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7594 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7595 em->block_start != EXTENT_MAP_HOLE)) { 7596 int type; 7597 u64 block_start, orig_start, orig_block_len, ram_bytes; 7598 7599 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7600 type = BTRFS_ORDERED_PREALLOC; 7601 else 7602 type = BTRFS_ORDERED_NOCOW; 7603 len = min(len, em->len - (start - em->start)); 7604 block_start = em->block_start + (start - em->start); 7605 7606 if (can_nocow_extent(inode, start, &len, &orig_start, 7607 &orig_block_len, &ram_bytes) == 1 && 7608 btrfs_inc_nocow_writers(fs_info, block_start)) { 7609 struct extent_map *em2; 7610 7611 em2 = btrfs_create_dio_extent(inode, start, len, 7612 orig_start, block_start, 7613 len, orig_block_len, 7614 ram_bytes, type); 7615 btrfs_dec_nocow_writers(fs_info, block_start); 7616 if (type == BTRFS_ORDERED_PREALLOC) { 7617 free_extent_map(em); 7618 *map = em = em2; 7619 } 7620 7621 if (em2 && IS_ERR(em2)) { 7622 ret = PTR_ERR(em2); 7623 goto out; 7624 } 7625 /* 7626 * For inode marked NODATACOW or extent marked PREALLOC, 7627 * use the existing or preallocated extent, so does not 7628 * need to adjust btrfs_space_info's bytes_may_use. 7629 */ 7630 btrfs_free_reserved_data_space_noquota(inode, start, 7631 len); 7632 goto skip_cow; 7633 } 7634 } 7635 7636 /* this will cow the extent */ 7637 len = bh_result->b_size; 7638 free_extent_map(em); 7639 *map = em = btrfs_new_extent_direct(inode, start, len); 7640 if (IS_ERR(em)) { 7641 ret = PTR_ERR(em); 7642 goto out; 7643 } 7644 7645 len = min(len, em->len - (start - em->start)); 7646 7647 skip_cow: 7648 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7649 inode->i_blkbits; 7650 bh_result->b_size = len; 7651 bh_result->b_bdev = em->bdev; 7652 set_buffer_mapped(bh_result); 7653 7654 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7655 set_buffer_new(bh_result); 7656 7657 /* 7658 * Need to update the i_size under the extent lock so buffered 7659 * readers will get the updated i_size when we unlock. 7660 */ 7661 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7662 i_size_write(inode, start + len); 7663 7664 WARN_ON(dio_data->reserve < len); 7665 dio_data->reserve -= len; 7666 dio_data->unsubmitted_oe_range_end = start + len; 7667 current->journal_info = dio_data; 7668 out: 7669 return ret; 7670 } 7671 7672 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7673 struct buffer_head *bh_result, int create) 7674 { 7675 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7676 struct extent_map *em; 7677 struct extent_state *cached_state = NULL; 7678 struct btrfs_dio_data *dio_data = NULL; 7679 u64 start = iblock << inode->i_blkbits; 7680 u64 lockstart, lockend; 7681 u64 len = bh_result->b_size; 7682 int unlock_bits = EXTENT_LOCKED; 7683 int ret = 0; 7684 7685 if (create) 7686 unlock_bits |= EXTENT_DIRTY; 7687 else 7688 len = min_t(u64, len, fs_info->sectorsize); 7689 7690 lockstart = start; 7691 lockend = start + len - 1; 7692 7693 if (current->journal_info) { 7694 /* 7695 * Need to pull our outstanding extents and set journal_info to NULL so 7696 * that anything that needs to check if there's a transaction doesn't get 7697 * confused. 7698 */ 7699 dio_data = current->journal_info; 7700 current->journal_info = NULL; 7701 } 7702 7703 /* 7704 * If this errors out it's because we couldn't invalidate pagecache for 7705 * this range and we need to fallback to buffered. 7706 */ 7707 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7708 create)) { 7709 ret = -ENOTBLK; 7710 goto err; 7711 } 7712 7713 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7714 if (IS_ERR(em)) { 7715 ret = PTR_ERR(em); 7716 goto unlock_err; 7717 } 7718 7719 /* 7720 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7721 * io. INLINE is special, and we could probably kludge it in here, but 7722 * it's still buffered so for safety lets just fall back to the generic 7723 * buffered path. 7724 * 7725 * For COMPRESSED we _have_ to read the entire extent in so we can 7726 * decompress it, so there will be buffering required no matter what we 7727 * do, so go ahead and fallback to buffered. 7728 * 7729 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7730 * to buffered IO. Don't blame me, this is the price we pay for using 7731 * the generic code. 7732 */ 7733 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7734 em->block_start == EXTENT_MAP_INLINE) { 7735 free_extent_map(em); 7736 ret = -ENOTBLK; 7737 goto unlock_err; 7738 } 7739 7740 if (create) { 7741 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7742 dio_data, start, len); 7743 if (ret < 0) 7744 goto unlock_err; 7745 7746 /* clear and unlock the entire range */ 7747 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7748 unlock_bits, 1, 0, &cached_state); 7749 } else { 7750 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7751 start, len); 7752 /* Can be negative only if we read from a hole */ 7753 if (ret < 0) { 7754 ret = 0; 7755 free_extent_map(em); 7756 goto unlock_err; 7757 } 7758 /* 7759 * We need to unlock only the end area that we aren't using. 7760 * The rest is going to be unlocked by the endio routine. 7761 */ 7762 lockstart = start + bh_result->b_size; 7763 if (lockstart < lockend) { 7764 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7765 lockend, unlock_bits, 1, 0, 7766 &cached_state); 7767 } else { 7768 free_extent_state(cached_state); 7769 } 7770 } 7771 7772 free_extent_map(em); 7773 7774 return 0; 7775 7776 unlock_err: 7777 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7778 unlock_bits, 1, 0, &cached_state); 7779 err: 7780 if (dio_data) 7781 current->journal_info = dio_data; 7782 return ret; 7783 } 7784 7785 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7786 struct bio *bio, 7787 int mirror_num) 7788 { 7789 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7790 blk_status_t ret; 7791 7792 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7793 7794 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7795 if (ret) 7796 return ret; 7797 7798 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7799 7800 return ret; 7801 } 7802 7803 static int btrfs_check_dio_repairable(struct inode *inode, 7804 struct bio *failed_bio, 7805 struct io_failure_record *failrec, 7806 int failed_mirror) 7807 { 7808 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7809 int num_copies; 7810 7811 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7812 if (num_copies == 1) { 7813 /* 7814 * we only have a single copy of the data, so don't bother with 7815 * all the retry and error correction code that follows. no 7816 * matter what the error is, it is very likely to persist. 7817 */ 7818 btrfs_debug(fs_info, 7819 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7820 num_copies, failrec->this_mirror, failed_mirror); 7821 return 0; 7822 } 7823 7824 failrec->failed_mirror = failed_mirror; 7825 failrec->this_mirror++; 7826 if (failrec->this_mirror == failed_mirror) 7827 failrec->this_mirror++; 7828 7829 if (failrec->this_mirror > num_copies) { 7830 btrfs_debug(fs_info, 7831 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7832 num_copies, failrec->this_mirror, failed_mirror); 7833 return 0; 7834 } 7835 7836 return 1; 7837 } 7838 7839 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7840 struct page *page, unsigned int pgoff, 7841 u64 start, u64 end, int failed_mirror, 7842 bio_end_io_t *repair_endio, void *repair_arg) 7843 { 7844 struct io_failure_record *failrec; 7845 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7846 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7847 struct bio *bio; 7848 int isector; 7849 unsigned int read_mode = 0; 7850 int segs; 7851 int ret; 7852 blk_status_t status; 7853 struct bio_vec bvec; 7854 7855 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7856 7857 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7858 if (ret) 7859 return errno_to_blk_status(ret); 7860 7861 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7862 failed_mirror); 7863 if (!ret) { 7864 free_io_failure(failure_tree, io_tree, failrec); 7865 return BLK_STS_IOERR; 7866 } 7867 7868 segs = bio_segments(failed_bio); 7869 bio_get_first_bvec(failed_bio, &bvec); 7870 if (segs > 1 || 7871 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7872 read_mode |= REQ_FAILFAST_DEV; 7873 7874 isector = start - btrfs_io_bio(failed_bio)->logical; 7875 isector >>= inode->i_sb->s_blocksize_bits; 7876 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7877 pgoff, isector, repair_endio, repair_arg); 7878 bio->bi_opf = REQ_OP_READ | read_mode; 7879 7880 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7881 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7882 read_mode, failrec->this_mirror, failrec->in_validation); 7883 7884 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7885 if (status) { 7886 free_io_failure(failure_tree, io_tree, failrec); 7887 bio_put(bio); 7888 } 7889 7890 return status; 7891 } 7892 7893 struct btrfs_retry_complete { 7894 struct completion done; 7895 struct inode *inode; 7896 u64 start; 7897 int uptodate; 7898 }; 7899 7900 static void btrfs_retry_endio_nocsum(struct bio *bio) 7901 { 7902 struct btrfs_retry_complete *done = bio->bi_private; 7903 struct inode *inode = done->inode; 7904 struct bio_vec *bvec; 7905 struct extent_io_tree *io_tree, *failure_tree; 7906 struct bvec_iter_all iter_all; 7907 7908 if (bio->bi_status) 7909 goto end; 7910 7911 ASSERT(bio->bi_vcnt == 1); 7912 io_tree = &BTRFS_I(inode)->io_tree; 7913 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7914 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7915 7916 done->uptodate = 1; 7917 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7918 bio_for_each_segment_all(bvec, bio, iter_all) 7919 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7920 io_tree, done->start, bvec->bv_page, 7921 btrfs_ino(BTRFS_I(inode)), 0); 7922 end: 7923 complete(&done->done); 7924 bio_put(bio); 7925 } 7926 7927 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7928 struct btrfs_io_bio *io_bio) 7929 { 7930 struct btrfs_fs_info *fs_info; 7931 struct bio_vec bvec; 7932 struct bvec_iter iter; 7933 struct btrfs_retry_complete done; 7934 u64 start; 7935 unsigned int pgoff; 7936 u32 sectorsize; 7937 int nr_sectors; 7938 blk_status_t ret; 7939 blk_status_t err = BLK_STS_OK; 7940 7941 fs_info = BTRFS_I(inode)->root->fs_info; 7942 sectorsize = fs_info->sectorsize; 7943 7944 start = io_bio->logical; 7945 done.inode = inode; 7946 io_bio->bio.bi_iter = io_bio->iter; 7947 7948 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7949 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7950 pgoff = bvec.bv_offset; 7951 7952 next_block_or_try_again: 7953 done.uptodate = 0; 7954 done.start = start; 7955 init_completion(&done.done); 7956 7957 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7958 pgoff, start, start + sectorsize - 1, 7959 io_bio->mirror_num, 7960 btrfs_retry_endio_nocsum, &done); 7961 if (ret) { 7962 err = ret; 7963 goto next; 7964 } 7965 7966 wait_for_completion_io(&done.done); 7967 7968 if (!done.uptodate) { 7969 /* We might have another mirror, so try again */ 7970 goto next_block_or_try_again; 7971 } 7972 7973 next: 7974 start += sectorsize; 7975 7976 nr_sectors--; 7977 if (nr_sectors) { 7978 pgoff += sectorsize; 7979 ASSERT(pgoff < PAGE_SIZE); 7980 goto next_block_or_try_again; 7981 } 7982 } 7983 7984 return err; 7985 } 7986 7987 static void btrfs_retry_endio(struct bio *bio) 7988 { 7989 struct btrfs_retry_complete *done = bio->bi_private; 7990 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7991 struct extent_io_tree *io_tree, *failure_tree; 7992 struct inode *inode = done->inode; 7993 struct bio_vec *bvec; 7994 int uptodate; 7995 int ret; 7996 int i = 0; 7997 struct bvec_iter_all iter_all; 7998 7999 if (bio->bi_status) 8000 goto end; 8001 8002 uptodate = 1; 8003 8004 ASSERT(bio->bi_vcnt == 1); 8005 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 8006 8007 io_tree = &BTRFS_I(inode)->io_tree; 8008 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8009 8010 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8011 bio_for_each_segment_all(bvec, bio, iter_all) { 8012 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8013 bvec->bv_offset, done->start, 8014 bvec->bv_len); 8015 if (!ret) 8016 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8017 failure_tree, io_tree, done->start, 8018 bvec->bv_page, 8019 btrfs_ino(BTRFS_I(inode)), 8020 bvec->bv_offset); 8021 else 8022 uptodate = 0; 8023 i++; 8024 } 8025 8026 done->uptodate = uptodate; 8027 end: 8028 complete(&done->done); 8029 bio_put(bio); 8030 } 8031 8032 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8033 struct btrfs_io_bio *io_bio, blk_status_t err) 8034 { 8035 struct btrfs_fs_info *fs_info; 8036 struct bio_vec bvec; 8037 struct bvec_iter iter; 8038 struct btrfs_retry_complete done; 8039 u64 start; 8040 u64 offset = 0; 8041 u32 sectorsize; 8042 int nr_sectors; 8043 unsigned int pgoff; 8044 int csum_pos; 8045 bool uptodate = (err == 0); 8046 int ret; 8047 blk_status_t status; 8048 8049 fs_info = BTRFS_I(inode)->root->fs_info; 8050 sectorsize = fs_info->sectorsize; 8051 8052 err = BLK_STS_OK; 8053 start = io_bio->logical; 8054 done.inode = inode; 8055 io_bio->bio.bi_iter = io_bio->iter; 8056 8057 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8058 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8059 8060 pgoff = bvec.bv_offset; 8061 next_block: 8062 if (uptodate) { 8063 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8064 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8065 bvec.bv_page, pgoff, start, sectorsize); 8066 if (likely(!ret)) 8067 goto next; 8068 } 8069 try_again: 8070 done.uptodate = 0; 8071 done.start = start; 8072 init_completion(&done.done); 8073 8074 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8075 pgoff, start, start + sectorsize - 1, 8076 io_bio->mirror_num, btrfs_retry_endio, 8077 &done); 8078 if (status) { 8079 err = status; 8080 goto next; 8081 } 8082 8083 wait_for_completion_io(&done.done); 8084 8085 if (!done.uptodate) { 8086 /* We might have another mirror, so try again */ 8087 goto try_again; 8088 } 8089 next: 8090 offset += sectorsize; 8091 start += sectorsize; 8092 8093 ASSERT(nr_sectors); 8094 8095 nr_sectors--; 8096 if (nr_sectors) { 8097 pgoff += sectorsize; 8098 ASSERT(pgoff < PAGE_SIZE); 8099 goto next_block; 8100 } 8101 } 8102 8103 return err; 8104 } 8105 8106 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8107 struct btrfs_io_bio *io_bio, blk_status_t err) 8108 { 8109 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8110 8111 if (skip_csum) { 8112 if (unlikely(err)) 8113 return __btrfs_correct_data_nocsum(inode, io_bio); 8114 else 8115 return BLK_STS_OK; 8116 } else { 8117 return __btrfs_subio_endio_read(inode, io_bio, err); 8118 } 8119 } 8120 8121 static void btrfs_endio_direct_read(struct bio *bio) 8122 { 8123 struct btrfs_dio_private *dip = bio->bi_private; 8124 struct inode *inode = dip->inode; 8125 struct bio *dio_bio; 8126 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8127 blk_status_t err = bio->bi_status; 8128 8129 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8130 err = btrfs_subio_endio_read(inode, io_bio, err); 8131 8132 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8133 dip->logical_offset + dip->bytes - 1); 8134 dio_bio = dip->dio_bio; 8135 8136 kfree(dip); 8137 8138 dio_bio->bi_status = err; 8139 dio_end_io(dio_bio); 8140 btrfs_io_bio_free_csum(io_bio); 8141 bio_put(bio); 8142 } 8143 8144 static void __endio_write_update_ordered(struct inode *inode, 8145 const u64 offset, const u64 bytes, 8146 const bool uptodate) 8147 { 8148 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8149 struct btrfs_ordered_extent *ordered = NULL; 8150 struct btrfs_workqueue *wq; 8151 btrfs_work_func_t func; 8152 u64 ordered_offset = offset; 8153 u64 ordered_bytes = bytes; 8154 u64 last_offset; 8155 8156 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8157 wq = fs_info->endio_freespace_worker; 8158 func = btrfs_freespace_write_helper; 8159 } else { 8160 wq = fs_info->endio_write_workers; 8161 func = btrfs_endio_write_helper; 8162 } 8163 8164 while (ordered_offset < offset + bytes) { 8165 last_offset = ordered_offset; 8166 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8167 &ordered_offset, 8168 ordered_bytes, 8169 uptodate)) { 8170 btrfs_init_work(&ordered->work, func, 8171 finish_ordered_fn, 8172 NULL, NULL); 8173 btrfs_queue_work(wq, &ordered->work); 8174 } 8175 /* 8176 * If btrfs_dec_test_ordered_pending does not find any ordered 8177 * extent in the range, we can exit. 8178 */ 8179 if (ordered_offset == last_offset) 8180 return; 8181 /* 8182 * Our bio might span multiple ordered extents. In this case 8183 * we keep going until we have accounted the whole dio. 8184 */ 8185 if (ordered_offset < offset + bytes) { 8186 ordered_bytes = offset + bytes - ordered_offset; 8187 ordered = NULL; 8188 } 8189 } 8190 } 8191 8192 static void btrfs_endio_direct_write(struct bio *bio) 8193 { 8194 struct btrfs_dio_private *dip = bio->bi_private; 8195 struct bio *dio_bio = dip->dio_bio; 8196 8197 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8198 dip->bytes, !bio->bi_status); 8199 8200 kfree(dip); 8201 8202 dio_bio->bi_status = bio->bi_status; 8203 dio_end_io(dio_bio); 8204 bio_put(bio); 8205 } 8206 8207 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8208 struct bio *bio, u64 offset) 8209 { 8210 struct inode *inode = private_data; 8211 blk_status_t ret; 8212 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8213 BUG_ON(ret); /* -ENOMEM */ 8214 return 0; 8215 } 8216 8217 static void btrfs_end_dio_bio(struct bio *bio) 8218 { 8219 struct btrfs_dio_private *dip = bio->bi_private; 8220 blk_status_t err = bio->bi_status; 8221 8222 if (err) 8223 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8224 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8225 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8226 bio->bi_opf, 8227 (unsigned long long)bio->bi_iter.bi_sector, 8228 bio->bi_iter.bi_size, err); 8229 8230 if (dip->subio_endio) 8231 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8232 8233 if (err) { 8234 /* 8235 * We want to perceive the errors flag being set before 8236 * decrementing the reference count. We don't need a barrier 8237 * since atomic operations with a return value are fully 8238 * ordered as per atomic_t.txt 8239 */ 8240 dip->errors = 1; 8241 } 8242 8243 /* if there are more bios still pending for this dio, just exit */ 8244 if (!atomic_dec_and_test(&dip->pending_bios)) 8245 goto out; 8246 8247 if (dip->errors) { 8248 bio_io_error(dip->orig_bio); 8249 } else { 8250 dip->dio_bio->bi_status = BLK_STS_OK; 8251 bio_endio(dip->orig_bio); 8252 } 8253 out: 8254 bio_put(bio); 8255 } 8256 8257 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8258 struct btrfs_dio_private *dip, 8259 struct bio *bio, 8260 u64 file_offset) 8261 { 8262 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8263 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8264 blk_status_t ret; 8265 8266 /* 8267 * We load all the csum data we need when we submit 8268 * the first bio to reduce the csum tree search and 8269 * contention. 8270 */ 8271 if (dip->logical_offset == file_offset) { 8272 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8273 file_offset); 8274 if (ret) 8275 return ret; 8276 } 8277 8278 if (bio == dip->orig_bio) 8279 return 0; 8280 8281 file_offset -= dip->logical_offset; 8282 file_offset >>= inode->i_sb->s_blocksize_bits; 8283 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8284 8285 return 0; 8286 } 8287 8288 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8289 struct inode *inode, u64 file_offset, int async_submit) 8290 { 8291 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8292 struct btrfs_dio_private *dip = bio->bi_private; 8293 bool write = bio_op(bio) == REQ_OP_WRITE; 8294 blk_status_t ret; 8295 8296 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8297 if (async_submit) 8298 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8299 8300 if (!write) { 8301 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8302 if (ret) 8303 goto err; 8304 } 8305 8306 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8307 goto map; 8308 8309 if (write && async_submit) { 8310 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8311 file_offset, inode, 8312 btrfs_submit_bio_start_direct_io); 8313 goto err; 8314 } else if (write) { 8315 /* 8316 * If we aren't doing async submit, calculate the csum of the 8317 * bio now. 8318 */ 8319 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8320 if (ret) 8321 goto err; 8322 } else { 8323 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8324 file_offset); 8325 if (ret) 8326 goto err; 8327 } 8328 map: 8329 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8330 err: 8331 return ret; 8332 } 8333 8334 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8335 { 8336 struct inode *inode = dip->inode; 8337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8338 struct bio *bio; 8339 struct bio *orig_bio = dip->orig_bio; 8340 u64 start_sector = orig_bio->bi_iter.bi_sector; 8341 u64 file_offset = dip->logical_offset; 8342 int async_submit = 0; 8343 u64 submit_len; 8344 int clone_offset = 0; 8345 int clone_len; 8346 int ret; 8347 blk_status_t status; 8348 struct btrfs_io_geometry geom; 8349 8350 submit_len = orig_bio->bi_iter.bi_size; 8351 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8352 start_sector << 9, submit_len, &geom); 8353 if (ret) 8354 return -EIO; 8355 8356 if (geom.len >= submit_len) { 8357 bio = orig_bio; 8358 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8359 goto submit; 8360 } 8361 8362 /* async crcs make it difficult to collect full stripe writes. */ 8363 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8364 async_submit = 0; 8365 else 8366 async_submit = 1; 8367 8368 /* bio split */ 8369 ASSERT(geom.len <= INT_MAX); 8370 atomic_inc(&dip->pending_bios); 8371 do { 8372 clone_len = min_t(int, submit_len, geom.len); 8373 8374 /* 8375 * This will never fail as it's passing GPF_NOFS and 8376 * the allocation is backed by btrfs_bioset. 8377 */ 8378 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8379 clone_len); 8380 bio->bi_private = dip; 8381 bio->bi_end_io = btrfs_end_dio_bio; 8382 btrfs_io_bio(bio)->logical = file_offset; 8383 8384 ASSERT(submit_len >= clone_len); 8385 submit_len -= clone_len; 8386 if (submit_len == 0) 8387 break; 8388 8389 /* 8390 * Increase the count before we submit the bio so we know 8391 * the end IO handler won't happen before we increase the 8392 * count. Otherwise, the dip might get freed before we're 8393 * done setting it up. 8394 */ 8395 atomic_inc(&dip->pending_bios); 8396 8397 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8398 async_submit); 8399 if (status) { 8400 bio_put(bio); 8401 atomic_dec(&dip->pending_bios); 8402 goto out_err; 8403 } 8404 8405 clone_offset += clone_len; 8406 start_sector += clone_len >> 9; 8407 file_offset += clone_len; 8408 8409 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8410 start_sector << 9, submit_len, &geom); 8411 if (ret) 8412 goto out_err; 8413 } while (submit_len > 0); 8414 8415 submit: 8416 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8417 if (!status) 8418 return 0; 8419 8420 bio_put(bio); 8421 out_err: 8422 dip->errors = 1; 8423 /* 8424 * Before atomic variable goto zero, we must make sure dip->errors is 8425 * perceived to be set. This ordering is ensured by the fact that an 8426 * atomic operations with a return value are fully ordered as per 8427 * atomic_t.txt 8428 */ 8429 if (atomic_dec_and_test(&dip->pending_bios)) 8430 bio_io_error(dip->orig_bio); 8431 8432 /* bio_end_io() will handle error, so we needn't return it */ 8433 return 0; 8434 } 8435 8436 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8437 loff_t file_offset) 8438 { 8439 struct btrfs_dio_private *dip = NULL; 8440 struct bio *bio = NULL; 8441 struct btrfs_io_bio *io_bio; 8442 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8443 int ret = 0; 8444 8445 bio = btrfs_bio_clone(dio_bio); 8446 8447 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8448 if (!dip) { 8449 ret = -ENOMEM; 8450 goto free_ordered; 8451 } 8452 8453 dip->private = dio_bio->bi_private; 8454 dip->inode = inode; 8455 dip->logical_offset = file_offset; 8456 dip->bytes = dio_bio->bi_iter.bi_size; 8457 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8458 bio->bi_private = dip; 8459 dip->orig_bio = bio; 8460 dip->dio_bio = dio_bio; 8461 atomic_set(&dip->pending_bios, 0); 8462 io_bio = btrfs_io_bio(bio); 8463 io_bio->logical = file_offset; 8464 8465 if (write) { 8466 bio->bi_end_io = btrfs_endio_direct_write; 8467 } else { 8468 bio->bi_end_io = btrfs_endio_direct_read; 8469 dip->subio_endio = btrfs_subio_endio_read; 8470 } 8471 8472 /* 8473 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8474 * even if we fail to submit a bio, because in such case we do the 8475 * corresponding error handling below and it must not be done a second 8476 * time by btrfs_direct_IO(). 8477 */ 8478 if (write) { 8479 struct btrfs_dio_data *dio_data = current->journal_info; 8480 8481 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8482 dip->bytes; 8483 dio_data->unsubmitted_oe_range_start = 8484 dio_data->unsubmitted_oe_range_end; 8485 } 8486 8487 ret = btrfs_submit_direct_hook(dip); 8488 if (!ret) 8489 return; 8490 8491 btrfs_io_bio_free_csum(io_bio); 8492 8493 free_ordered: 8494 /* 8495 * If we arrived here it means either we failed to submit the dip 8496 * or we either failed to clone the dio_bio or failed to allocate the 8497 * dip. If we cloned the dio_bio and allocated the dip, we can just 8498 * call bio_endio against our io_bio so that we get proper resource 8499 * cleanup if we fail to submit the dip, otherwise, we must do the 8500 * same as btrfs_endio_direct_[write|read] because we can't call these 8501 * callbacks - they require an allocated dip and a clone of dio_bio. 8502 */ 8503 if (bio && dip) { 8504 bio_io_error(bio); 8505 /* 8506 * The end io callbacks free our dip, do the final put on bio 8507 * and all the cleanup and final put for dio_bio (through 8508 * dio_end_io()). 8509 */ 8510 dip = NULL; 8511 bio = NULL; 8512 } else { 8513 if (write) 8514 __endio_write_update_ordered(inode, 8515 file_offset, 8516 dio_bio->bi_iter.bi_size, 8517 false); 8518 else 8519 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8520 file_offset + dio_bio->bi_iter.bi_size - 1); 8521 8522 dio_bio->bi_status = BLK_STS_IOERR; 8523 /* 8524 * Releases and cleans up our dio_bio, no need to bio_put() 8525 * nor bio_endio()/bio_io_error() against dio_bio. 8526 */ 8527 dio_end_io(dio_bio); 8528 } 8529 if (bio) 8530 bio_put(bio); 8531 kfree(dip); 8532 } 8533 8534 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8535 const struct iov_iter *iter, loff_t offset) 8536 { 8537 int seg; 8538 int i; 8539 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8540 ssize_t retval = -EINVAL; 8541 8542 if (offset & blocksize_mask) 8543 goto out; 8544 8545 if (iov_iter_alignment(iter) & blocksize_mask) 8546 goto out; 8547 8548 /* If this is a write we don't need to check anymore */ 8549 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8550 return 0; 8551 /* 8552 * Check to make sure we don't have duplicate iov_base's in this 8553 * iovec, if so return EINVAL, otherwise we'll get csum errors 8554 * when reading back. 8555 */ 8556 for (seg = 0; seg < iter->nr_segs; seg++) { 8557 for (i = seg + 1; i < iter->nr_segs; i++) { 8558 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8559 goto out; 8560 } 8561 } 8562 retval = 0; 8563 out: 8564 return retval; 8565 } 8566 8567 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8568 { 8569 struct file *file = iocb->ki_filp; 8570 struct inode *inode = file->f_mapping->host; 8571 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8572 struct btrfs_dio_data dio_data = { 0 }; 8573 struct extent_changeset *data_reserved = NULL; 8574 loff_t offset = iocb->ki_pos; 8575 size_t count = 0; 8576 int flags = 0; 8577 bool wakeup = true; 8578 bool relock = false; 8579 ssize_t ret; 8580 8581 if (check_direct_IO(fs_info, iter, offset)) 8582 return 0; 8583 8584 inode_dio_begin(inode); 8585 8586 /* 8587 * The generic stuff only does filemap_write_and_wait_range, which 8588 * isn't enough if we've written compressed pages to this area, so 8589 * we need to flush the dirty pages again to make absolutely sure 8590 * that any outstanding dirty pages are on disk. 8591 */ 8592 count = iov_iter_count(iter); 8593 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8594 &BTRFS_I(inode)->runtime_flags)) 8595 filemap_fdatawrite_range(inode->i_mapping, offset, 8596 offset + count - 1); 8597 8598 if (iov_iter_rw(iter) == WRITE) { 8599 /* 8600 * If the write DIO is beyond the EOF, we need update 8601 * the isize, but it is protected by i_mutex. So we can 8602 * not unlock the i_mutex at this case. 8603 */ 8604 if (offset + count <= inode->i_size) { 8605 dio_data.overwrite = 1; 8606 inode_unlock(inode); 8607 relock = true; 8608 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8609 ret = -EAGAIN; 8610 goto out; 8611 } 8612 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8613 offset, count); 8614 if (ret) 8615 goto out; 8616 8617 /* 8618 * We need to know how many extents we reserved so that we can 8619 * do the accounting properly if we go over the number we 8620 * originally calculated. Abuse current->journal_info for this. 8621 */ 8622 dio_data.reserve = round_up(count, 8623 fs_info->sectorsize); 8624 dio_data.unsubmitted_oe_range_start = (u64)offset; 8625 dio_data.unsubmitted_oe_range_end = (u64)offset; 8626 current->journal_info = &dio_data; 8627 down_read(&BTRFS_I(inode)->dio_sem); 8628 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8629 &BTRFS_I(inode)->runtime_flags)) { 8630 inode_dio_end(inode); 8631 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8632 wakeup = false; 8633 } 8634 8635 ret = __blockdev_direct_IO(iocb, inode, 8636 fs_info->fs_devices->latest_bdev, 8637 iter, btrfs_get_blocks_direct, NULL, 8638 btrfs_submit_direct, flags); 8639 if (iov_iter_rw(iter) == WRITE) { 8640 up_read(&BTRFS_I(inode)->dio_sem); 8641 current->journal_info = NULL; 8642 if (ret < 0 && ret != -EIOCBQUEUED) { 8643 if (dio_data.reserve) 8644 btrfs_delalloc_release_space(inode, data_reserved, 8645 offset, dio_data.reserve, true); 8646 /* 8647 * On error we might have left some ordered extents 8648 * without submitting corresponding bios for them, so 8649 * cleanup them up to avoid other tasks getting them 8650 * and waiting for them to complete forever. 8651 */ 8652 if (dio_data.unsubmitted_oe_range_start < 8653 dio_data.unsubmitted_oe_range_end) 8654 __endio_write_update_ordered(inode, 8655 dio_data.unsubmitted_oe_range_start, 8656 dio_data.unsubmitted_oe_range_end - 8657 dio_data.unsubmitted_oe_range_start, 8658 false); 8659 } else if (ret >= 0 && (size_t)ret < count) 8660 btrfs_delalloc_release_space(inode, data_reserved, 8661 offset, count - (size_t)ret, true); 8662 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8663 } 8664 out: 8665 if (wakeup) 8666 inode_dio_end(inode); 8667 if (relock) 8668 inode_lock(inode); 8669 8670 extent_changeset_free(data_reserved); 8671 return ret; 8672 } 8673 8674 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8675 8676 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8677 __u64 start, __u64 len) 8678 { 8679 int ret; 8680 8681 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8682 if (ret) 8683 return ret; 8684 8685 return extent_fiemap(inode, fieinfo, start, len); 8686 } 8687 8688 int btrfs_readpage(struct file *file, struct page *page) 8689 { 8690 struct extent_io_tree *tree; 8691 tree = &BTRFS_I(page->mapping->host)->io_tree; 8692 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8693 } 8694 8695 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8696 { 8697 struct inode *inode = page->mapping->host; 8698 int ret; 8699 8700 if (current->flags & PF_MEMALLOC) { 8701 redirty_page_for_writepage(wbc, page); 8702 unlock_page(page); 8703 return 0; 8704 } 8705 8706 /* 8707 * If we are under memory pressure we will call this directly from the 8708 * VM, we need to make sure we have the inode referenced for the ordered 8709 * extent. If not just return like we didn't do anything. 8710 */ 8711 if (!igrab(inode)) { 8712 redirty_page_for_writepage(wbc, page); 8713 return AOP_WRITEPAGE_ACTIVATE; 8714 } 8715 ret = extent_write_full_page(page, wbc); 8716 btrfs_add_delayed_iput(inode); 8717 return ret; 8718 } 8719 8720 static int btrfs_writepages(struct address_space *mapping, 8721 struct writeback_control *wbc) 8722 { 8723 return extent_writepages(mapping, wbc); 8724 } 8725 8726 static int 8727 btrfs_readpages(struct file *file, struct address_space *mapping, 8728 struct list_head *pages, unsigned nr_pages) 8729 { 8730 return extent_readpages(mapping, pages, nr_pages); 8731 } 8732 8733 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8734 { 8735 int ret = try_release_extent_mapping(page, gfp_flags); 8736 if (ret == 1) { 8737 ClearPagePrivate(page); 8738 set_page_private(page, 0); 8739 put_page(page); 8740 } 8741 return ret; 8742 } 8743 8744 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8745 { 8746 if (PageWriteback(page) || PageDirty(page)) 8747 return 0; 8748 return __btrfs_releasepage(page, gfp_flags); 8749 } 8750 8751 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8752 unsigned int length) 8753 { 8754 struct inode *inode = page->mapping->host; 8755 struct extent_io_tree *tree; 8756 struct btrfs_ordered_extent *ordered; 8757 struct extent_state *cached_state = NULL; 8758 u64 page_start = page_offset(page); 8759 u64 page_end = page_start + PAGE_SIZE - 1; 8760 u64 start; 8761 u64 end; 8762 int inode_evicting = inode->i_state & I_FREEING; 8763 8764 /* 8765 * we have the page locked, so new writeback can't start, 8766 * and the dirty bit won't be cleared while we are here. 8767 * 8768 * Wait for IO on this page so that we can safely clear 8769 * the PagePrivate2 bit and do ordered accounting 8770 */ 8771 wait_on_page_writeback(page); 8772 8773 tree = &BTRFS_I(inode)->io_tree; 8774 if (offset) { 8775 btrfs_releasepage(page, GFP_NOFS); 8776 return; 8777 } 8778 8779 if (!inode_evicting) 8780 lock_extent_bits(tree, page_start, page_end, &cached_state); 8781 again: 8782 start = page_start; 8783 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8784 page_end - start + 1); 8785 if (ordered) { 8786 end = min(page_end, ordered->file_offset + ordered->len - 1); 8787 /* 8788 * IO on this page will never be started, so we need 8789 * to account for any ordered extents now 8790 */ 8791 if (!inode_evicting) 8792 clear_extent_bit(tree, start, end, 8793 EXTENT_DIRTY | EXTENT_DELALLOC | 8794 EXTENT_DELALLOC_NEW | 8795 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8796 EXTENT_DEFRAG, 1, 0, &cached_state); 8797 /* 8798 * whoever cleared the private bit is responsible 8799 * for the finish_ordered_io 8800 */ 8801 if (TestClearPagePrivate2(page)) { 8802 struct btrfs_ordered_inode_tree *tree; 8803 u64 new_len; 8804 8805 tree = &BTRFS_I(inode)->ordered_tree; 8806 8807 spin_lock_irq(&tree->lock); 8808 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8809 new_len = start - ordered->file_offset; 8810 if (new_len < ordered->truncated_len) 8811 ordered->truncated_len = new_len; 8812 spin_unlock_irq(&tree->lock); 8813 8814 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8815 start, 8816 end - start + 1, 1)) 8817 btrfs_finish_ordered_io(ordered); 8818 } 8819 btrfs_put_ordered_extent(ordered); 8820 if (!inode_evicting) { 8821 cached_state = NULL; 8822 lock_extent_bits(tree, start, end, 8823 &cached_state); 8824 } 8825 8826 start = end + 1; 8827 if (start < page_end) 8828 goto again; 8829 } 8830 8831 /* 8832 * Qgroup reserved space handler 8833 * Page here will be either 8834 * 1) Already written to disk 8835 * In this case, its reserved space is released from data rsv map 8836 * and will be freed by delayed_ref handler finally. 8837 * So even we call qgroup_free_data(), it won't decrease reserved 8838 * space. 8839 * 2) Not written to disk 8840 * This means the reserved space should be freed here. However, 8841 * if a truncate invalidates the page (by clearing PageDirty) 8842 * and the page is accounted for while allocating extent 8843 * in btrfs_check_data_free_space() we let delayed_ref to 8844 * free the entire extent. 8845 */ 8846 if (PageDirty(page)) 8847 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8848 if (!inode_evicting) { 8849 clear_extent_bit(tree, page_start, page_end, 8850 EXTENT_LOCKED | EXTENT_DIRTY | 8851 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8852 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8853 &cached_state); 8854 8855 __btrfs_releasepage(page, GFP_NOFS); 8856 } 8857 8858 ClearPageChecked(page); 8859 if (PagePrivate(page)) { 8860 ClearPagePrivate(page); 8861 set_page_private(page, 0); 8862 put_page(page); 8863 } 8864 } 8865 8866 /* 8867 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8868 * called from a page fault handler when a page is first dirtied. Hence we must 8869 * be careful to check for EOF conditions here. We set the page up correctly 8870 * for a written page which means we get ENOSPC checking when writing into 8871 * holes and correct delalloc and unwritten extent mapping on filesystems that 8872 * support these features. 8873 * 8874 * We are not allowed to take the i_mutex here so we have to play games to 8875 * protect against truncate races as the page could now be beyond EOF. Because 8876 * truncate_setsize() writes the inode size before removing pages, once we have 8877 * the page lock we can determine safely if the page is beyond EOF. If it is not 8878 * beyond EOF, then the page is guaranteed safe against truncation until we 8879 * unlock the page. 8880 */ 8881 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8882 { 8883 struct page *page = vmf->page; 8884 struct inode *inode = file_inode(vmf->vma->vm_file); 8885 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8886 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8887 struct btrfs_ordered_extent *ordered; 8888 struct extent_state *cached_state = NULL; 8889 struct extent_changeset *data_reserved = NULL; 8890 char *kaddr; 8891 unsigned long zero_start; 8892 loff_t size; 8893 vm_fault_t ret; 8894 int ret2; 8895 int reserved = 0; 8896 u64 reserved_space; 8897 u64 page_start; 8898 u64 page_end; 8899 u64 end; 8900 8901 reserved_space = PAGE_SIZE; 8902 8903 sb_start_pagefault(inode->i_sb); 8904 page_start = page_offset(page); 8905 page_end = page_start + PAGE_SIZE - 1; 8906 end = page_end; 8907 8908 /* 8909 * Reserving delalloc space after obtaining the page lock can lead to 8910 * deadlock. For example, if a dirty page is locked by this function 8911 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8912 * dirty page write out, then the btrfs_writepage() function could 8913 * end up waiting indefinitely to get a lock on the page currently 8914 * being processed by btrfs_page_mkwrite() function. 8915 */ 8916 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8917 reserved_space); 8918 if (!ret2) { 8919 ret2 = file_update_time(vmf->vma->vm_file); 8920 reserved = 1; 8921 } 8922 if (ret2) { 8923 ret = vmf_error(ret2); 8924 if (reserved) 8925 goto out; 8926 goto out_noreserve; 8927 } 8928 8929 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8930 again: 8931 lock_page(page); 8932 size = i_size_read(inode); 8933 8934 if ((page->mapping != inode->i_mapping) || 8935 (page_start >= size)) { 8936 /* page got truncated out from underneath us */ 8937 goto out_unlock; 8938 } 8939 wait_on_page_writeback(page); 8940 8941 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8942 set_page_extent_mapped(page); 8943 8944 /* 8945 * we can't set the delalloc bits if there are pending ordered 8946 * extents. Drop our locks and wait for them to finish 8947 */ 8948 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8949 PAGE_SIZE); 8950 if (ordered) { 8951 unlock_extent_cached(io_tree, page_start, page_end, 8952 &cached_state); 8953 unlock_page(page); 8954 btrfs_start_ordered_extent(inode, ordered, 1); 8955 btrfs_put_ordered_extent(ordered); 8956 goto again; 8957 } 8958 8959 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8960 reserved_space = round_up(size - page_start, 8961 fs_info->sectorsize); 8962 if (reserved_space < PAGE_SIZE) { 8963 end = page_start + reserved_space - 1; 8964 btrfs_delalloc_release_space(inode, data_reserved, 8965 page_start, PAGE_SIZE - reserved_space, 8966 true); 8967 } 8968 } 8969 8970 /* 8971 * page_mkwrite gets called when the page is firstly dirtied after it's 8972 * faulted in, but write(2) could also dirty a page and set delalloc 8973 * bits, thus in this case for space account reason, we still need to 8974 * clear any delalloc bits within this page range since we have to 8975 * reserve data&meta space before lock_page() (see above comments). 8976 */ 8977 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8978 EXTENT_DIRTY | EXTENT_DELALLOC | 8979 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8980 0, 0, &cached_state); 8981 8982 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8983 &cached_state, 0); 8984 if (ret2) { 8985 unlock_extent_cached(io_tree, page_start, page_end, 8986 &cached_state); 8987 ret = VM_FAULT_SIGBUS; 8988 goto out_unlock; 8989 } 8990 ret2 = 0; 8991 8992 /* page is wholly or partially inside EOF */ 8993 if (page_start + PAGE_SIZE > size) 8994 zero_start = offset_in_page(size); 8995 else 8996 zero_start = PAGE_SIZE; 8997 8998 if (zero_start != PAGE_SIZE) { 8999 kaddr = kmap(page); 9000 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9001 flush_dcache_page(page); 9002 kunmap(page); 9003 } 9004 ClearPageChecked(page); 9005 set_page_dirty(page); 9006 SetPageUptodate(page); 9007 9008 BTRFS_I(inode)->last_trans = fs_info->generation; 9009 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9010 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9011 9012 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9013 9014 if (!ret2) { 9015 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 9016 sb_end_pagefault(inode->i_sb); 9017 extent_changeset_free(data_reserved); 9018 return VM_FAULT_LOCKED; 9019 } 9020 9021 out_unlock: 9022 unlock_page(page); 9023 out: 9024 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 9025 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9026 reserved_space, (ret != 0)); 9027 out_noreserve: 9028 sb_end_pagefault(inode->i_sb); 9029 extent_changeset_free(data_reserved); 9030 return ret; 9031 } 9032 9033 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 9034 { 9035 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9036 struct btrfs_root *root = BTRFS_I(inode)->root; 9037 struct btrfs_block_rsv *rsv; 9038 int ret; 9039 struct btrfs_trans_handle *trans; 9040 u64 mask = fs_info->sectorsize - 1; 9041 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9042 9043 if (!skip_writeback) { 9044 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9045 (u64)-1); 9046 if (ret) 9047 return ret; 9048 } 9049 9050 /* 9051 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 9052 * things going on here: 9053 * 9054 * 1) We need to reserve space to update our inode. 9055 * 9056 * 2) We need to have something to cache all the space that is going to 9057 * be free'd up by the truncate operation, but also have some slack 9058 * space reserved in case it uses space during the truncate (thank you 9059 * very much snapshotting). 9060 * 9061 * And we need these to be separate. The fact is we can use a lot of 9062 * space doing the truncate, and we have no earthly idea how much space 9063 * we will use, so we need the truncate reservation to be separate so it 9064 * doesn't end up using space reserved for updating the inode. We also 9065 * need to be able to stop the transaction and start a new one, which 9066 * means we need to be able to update the inode several times, and we 9067 * have no idea of knowing how many times that will be, so we can't just 9068 * reserve 1 item for the entirety of the operation, so that has to be 9069 * done separately as well. 9070 * 9071 * So that leaves us with 9072 * 9073 * 1) rsv - for the truncate reservation, which we will steal from the 9074 * transaction reservation. 9075 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 9076 * updating the inode. 9077 */ 9078 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9079 if (!rsv) 9080 return -ENOMEM; 9081 rsv->size = min_size; 9082 rsv->failfast = 1; 9083 9084 /* 9085 * 1 for the truncate slack space 9086 * 1 for updating the inode. 9087 */ 9088 trans = btrfs_start_transaction(root, 2); 9089 if (IS_ERR(trans)) { 9090 ret = PTR_ERR(trans); 9091 goto out; 9092 } 9093 9094 /* Migrate the slack space for the truncate to our reserve */ 9095 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9096 min_size, false); 9097 BUG_ON(ret); 9098 9099 /* 9100 * So if we truncate and then write and fsync we normally would just 9101 * write the extents that changed, which is a problem if we need to 9102 * first truncate that entire inode. So set this flag so we write out 9103 * all of the extents in the inode to the sync log so we're completely 9104 * safe. 9105 */ 9106 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9107 trans->block_rsv = rsv; 9108 9109 while (1) { 9110 ret = btrfs_truncate_inode_items(trans, root, inode, 9111 inode->i_size, 9112 BTRFS_EXTENT_DATA_KEY); 9113 trans->block_rsv = &fs_info->trans_block_rsv; 9114 if (ret != -ENOSPC && ret != -EAGAIN) 9115 break; 9116 9117 ret = btrfs_update_inode(trans, root, inode); 9118 if (ret) 9119 break; 9120 9121 btrfs_end_transaction(trans); 9122 btrfs_btree_balance_dirty(fs_info); 9123 9124 trans = btrfs_start_transaction(root, 2); 9125 if (IS_ERR(trans)) { 9126 ret = PTR_ERR(trans); 9127 trans = NULL; 9128 break; 9129 } 9130 9131 btrfs_block_rsv_release(fs_info, rsv, -1); 9132 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9133 rsv, min_size, false); 9134 BUG_ON(ret); /* shouldn't happen */ 9135 trans->block_rsv = rsv; 9136 } 9137 9138 /* 9139 * We can't call btrfs_truncate_block inside a trans handle as we could 9140 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9141 * we've truncated everything except the last little bit, and can do 9142 * btrfs_truncate_block and then update the disk_i_size. 9143 */ 9144 if (ret == NEED_TRUNCATE_BLOCK) { 9145 btrfs_end_transaction(trans); 9146 btrfs_btree_balance_dirty(fs_info); 9147 9148 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9149 if (ret) 9150 goto out; 9151 trans = btrfs_start_transaction(root, 1); 9152 if (IS_ERR(trans)) { 9153 ret = PTR_ERR(trans); 9154 goto out; 9155 } 9156 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9157 } 9158 9159 if (trans) { 9160 int ret2; 9161 9162 trans->block_rsv = &fs_info->trans_block_rsv; 9163 ret2 = btrfs_update_inode(trans, root, inode); 9164 if (ret2 && !ret) 9165 ret = ret2; 9166 9167 ret2 = btrfs_end_transaction(trans); 9168 if (ret2 && !ret) 9169 ret = ret2; 9170 btrfs_btree_balance_dirty(fs_info); 9171 } 9172 out: 9173 btrfs_free_block_rsv(fs_info, rsv); 9174 9175 return ret; 9176 } 9177 9178 /* 9179 * create a new subvolume directory/inode (helper for the ioctl). 9180 */ 9181 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9182 struct btrfs_root *new_root, 9183 struct btrfs_root *parent_root, 9184 u64 new_dirid) 9185 { 9186 struct inode *inode; 9187 int err; 9188 u64 index = 0; 9189 9190 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9191 new_dirid, new_dirid, 9192 S_IFDIR | (~current_umask() & S_IRWXUGO), 9193 &index); 9194 if (IS_ERR(inode)) 9195 return PTR_ERR(inode); 9196 inode->i_op = &btrfs_dir_inode_operations; 9197 inode->i_fop = &btrfs_dir_file_operations; 9198 9199 set_nlink(inode, 1); 9200 btrfs_i_size_write(BTRFS_I(inode), 0); 9201 unlock_new_inode(inode); 9202 9203 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9204 if (err) 9205 btrfs_err(new_root->fs_info, 9206 "error inheriting subvolume %llu properties: %d", 9207 new_root->root_key.objectid, err); 9208 9209 err = btrfs_update_inode(trans, new_root, inode); 9210 9211 iput(inode); 9212 return err; 9213 } 9214 9215 struct inode *btrfs_alloc_inode(struct super_block *sb) 9216 { 9217 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9218 struct btrfs_inode *ei; 9219 struct inode *inode; 9220 9221 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9222 if (!ei) 9223 return NULL; 9224 9225 ei->root = NULL; 9226 ei->generation = 0; 9227 ei->last_trans = 0; 9228 ei->last_sub_trans = 0; 9229 ei->logged_trans = 0; 9230 ei->delalloc_bytes = 0; 9231 ei->new_delalloc_bytes = 0; 9232 ei->defrag_bytes = 0; 9233 ei->disk_i_size = 0; 9234 ei->flags = 0; 9235 ei->csum_bytes = 0; 9236 ei->index_cnt = (u64)-1; 9237 ei->dir_index = 0; 9238 ei->last_unlink_trans = 0; 9239 ei->last_log_commit = 0; 9240 9241 spin_lock_init(&ei->lock); 9242 ei->outstanding_extents = 0; 9243 if (sb->s_magic != BTRFS_TEST_MAGIC) 9244 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9245 BTRFS_BLOCK_RSV_DELALLOC); 9246 ei->runtime_flags = 0; 9247 ei->prop_compress = BTRFS_COMPRESS_NONE; 9248 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9249 9250 ei->delayed_node = NULL; 9251 9252 ei->i_otime.tv_sec = 0; 9253 ei->i_otime.tv_nsec = 0; 9254 9255 inode = &ei->vfs_inode; 9256 extent_map_tree_init(&ei->extent_tree); 9257 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 9258 extent_io_tree_init(fs_info, &ei->io_failure_tree, 9259 IO_TREE_INODE_IO_FAILURE, inode); 9260 ei->io_tree.track_uptodate = true; 9261 ei->io_failure_tree.track_uptodate = true; 9262 atomic_set(&ei->sync_writers, 0); 9263 mutex_init(&ei->log_mutex); 9264 mutex_init(&ei->delalloc_mutex); 9265 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9266 INIT_LIST_HEAD(&ei->delalloc_inodes); 9267 INIT_LIST_HEAD(&ei->delayed_iput); 9268 RB_CLEAR_NODE(&ei->rb_node); 9269 init_rwsem(&ei->dio_sem); 9270 9271 return inode; 9272 } 9273 9274 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9275 void btrfs_test_destroy_inode(struct inode *inode) 9276 { 9277 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9278 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9279 } 9280 #endif 9281 9282 void btrfs_free_inode(struct inode *inode) 9283 { 9284 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9285 } 9286 9287 void btrfs_destroy_inode(struct inode *inode) 9288 { 9289 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9290 struct btrfs_ordered_extent *ordered; 9291 struct btrfs_root *root = BTRFS_I(inode)->root; 9292 9293 WARN_ON(!hlist_empty(&inode->i_dentry)); 9294 WARN_ON(inode->i_data.nrpages); 9295 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9296 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9297 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9298 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9299 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9300 WARN_ON(BTRFS_I(inode)->csum_bytes); 9301 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9302 9303 /* 9304 * This can happen where we create an inode, but somebody else also 9305 * created the same inode and we need to destroy the one we already 9306 * created. 9307 */ 9308 if (!root) 9309 return; 9310 9311 while (1) { 9312 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9313 if (!ordered) 9314 break; 9315 else { 9316 btrfs_err(fs_info, 9317 "found ordered extent %llu %llu on inode cleanup", 9318 ordered->file_offset, ordered->len); 9319 btrfs_remove_ordered_extent(inode, ordered); 9320 btrfs_put_ordered_extent(ordered); 9321 btrfs_put_ordered_extent(ordered); 9322 } 9323 } 9324 btrfs_qgroup_check_reserved_leak(inode); 9325 inode_tree_del(inode); 9326 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9327 } 9328 9329 int btrfs_drop_inode(struct inode *inode) 9330 { 9331 struct btrfs_root *root = BTRFS_I(inode)->root; 9332 9333 if (root == NULL) 9334 return 1; 9335 9336 /* the snap/subvol tree is on deleting */ 9337 if (btrfs_root_refs(&root->root_item) == 0) 9338 return 1; 9339 else 9340 return generic_drop_inode(inode); 9341 } 9342 9343 static void init_once(void *foo) 9344 { 9345 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9346 9347 inode_init_once(&ei->vfs_inode); 9348 } 9349 9350 void __cold btrfs_destroy_cachep(void) 9351 { 9352 /* 9353 * Make sure all delayed rcu free inodes are flushed before we 9354 * destroy cache. 9355 */ 9356 rcu_barrier(); 9357 kmem_cache_destroy(btrfs_inode_cachep); 9358 kmem_cache_destroy(btrfs_trans_handle_cachep); 9359 kmem_cache_destroy(btrfs_path_cachep); 9360 kmem_cache_destroy(btrfs_free_space_cachep); 9361 } 9362 9363 int __init btrfs_init_cachep(void) 9364 { 9365 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9366 sizeof(struct btrfs_inode), 0, 9367 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9368 init_once); 9369 if (!btrfs_inode_cachep) 9370 goto fail; 9371 9372 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9373 sizeof(struct btrfs_trans_handle), 0, 9374 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9375 if (!btrfs_trans_handle_cachep) 9376 goto fail; 9377 9378 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9379 sizeof(struct btrfs_path), 0, 9380 SLAB_MEM_SPREAD, NULL); 9381 if (!btrfs_path_cachep) 9382 goto fail; 9383 9384 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9385 sizeof(struct btrfs_free_space), 0, 9386 SLAB_MEM_SPREAD, NULL); 9387 if (!btrfs_free_space_cachep) 9388 goto fail; 9389 9390 return 0; 9391 fail: 9392 btrfs_destroy_cachep(); 9393 return -ENOMEM; 9394 } 9395 9396 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9397 u32 request_mask, unsigned int flags) 9398 { 9399 u64 delalloc_bytes; 9400 struct inode *inode = d_inode(path->dentry); 9401 u32 blocksize = inode->i_sb->s_blocksize; 9402 u32 bi_flags = BTRFS_I(inode)->flags; 9403 9404 stat->result_mask |= STATX_BTIME; 9405 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9406 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9407 if (bi_flags & BTRFS_INODE_APPEND) 9408 stat->attributes |= STATX_ATTR_APPEND; 9409 if (bi_flags & BTRFS_INODE_COMPRESS) 9410 stat->attributes |= STATX_ATTR_COMPRESSED; 9411 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9412 stat->attributes |= STATX_ATTR_IMMUTABLE; 9413 if (bi_flags & BTRFS_INODE_NODUMP) 9414 stat->attributes |= STATX_ATTR_NODUMP; 9415 9416 stat->attributes_mask |= (STATX_ATTR_APPEND | 9417 STATX_ATTR_COMPRESSED | 9418 STATX_ATTR_IMMUTABLE | 9419 STATX_ATTR_NODUMP); 9420 9421 generic_fillattr(inode, stat); 9422 stat->dev = BTRFS_I(inode)->root->anon_dev; 9423 9424 spin_lock(&BTRFS_I(inode)->lock); 9425 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9426 spin_unlock(&BTRFS_I(inode)->lock); 9427 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9428 ALIGN(delalloc_bytes, blocksize)) >> 9; 9429 return 0; 9430 } 9431 9432 static int btrfs_rename_exchange(struct inode *old_dir, 9433 struct dentry *old_dentry, 9434 struct inode *new_dir, 9435 struct dentry *new_dentry) 9436 { 9437 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9438 struct btrfs_trans_handle *trans; 9439 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9440 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9441 struct inode *new_inode = new_dentry->d_inode; 9442 struct inode *old_inode = old_dentry->d_inode; 9443 struct timespec64 ctime = current_time(old_inode); 9444 struct dentry *parent; 9445 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9446 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9447 u64 old_idx = 0; 9448 u64 new_idx = 0; 9449 u64 root_objectid; 9450 int ret; 9451 bool root_log_pinned = false; 9452 bool dest_log_pinned = false; 9453 struct btrfs_log_ctx ctx_root; 9454 struct btrfs_log_ctx ctx_dest; 9455 bool sync_log_root = false; 9456 bool sync_log_dest = false; 9457 bool commit_transaction = false; 9458 9459 /* we only allow rename subvolume link between subvolumes */ 9460 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9461 return -EXDEV; 9462 9463 btrfs_init_log_ctx(&ctx_root, old_inode); 9464 btrfs_init_log_ctx(&ctx_dest, new_inode); 9465 9466 /* close the race window with snapshot create/destroy ioctl */ 9467 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9468 down_read(&fs_info->subvol_sem); 9469 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9470 down_read(&fs_info->subvol_sem); 9471 9472 /* 9473 * We want to reserve the absolute worst case amount of items. So if 9474 * both inodes are subvols and we need to unlink them then that would 9475 * require 4 item modifications, but if they are both normal inodes it 9476 * would require 5 item modifications, so we'll assume their normal 9477 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9478 * should cover the worst case number of items we'll modify. 9479 */ 9480 trans = btrfs_start_transaction(root, 12); 9481 if (IS_ERR(trans)) { 9482 ret = PTR_ERR(trans); 9483 goto out_notrans; 9484 } 9485 9486 /* 9487 * We need to find a free sequence number both in the source and 9488 * in the destination directory for the exchange. 9489 */ 9490 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9491 if (ret) 9492 goto out_fail; 9493 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9494 if (ret) 9495 goto out_fail; 9496 9497 BTRFS_I(old_inode)->dir_index = 0ULL; 9498 BTRFS_I(new_inode)->dir_index = 0ULL; 9499 9500 /* Reference for the source. */ 9501 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9502 /* force full log commit if subvolume involved. */ 9503 btrfs_set_log_full_commit(trans); 9504 } else { 9505 btrfs_pin_log_trans(root); 9506 root_log_pinned = true; 9507 ret = btrfs_insert_inode_ref(trans, dest, 9508 new_dentry->d_name.name, 9509 new_dentry->d_name.len, 9510 old_ino, 9511 btrfs_ino(BTRFS_I(new_dir)), 9512 old_idx); 9513 if (ret) 9514 goto out_fail; 9515 } 9516 9517 /* And now for the dest. */ 9518 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9519 /* force full log commit if subvolume involved. */ 9520 btrfs_set_log_full_commit(trans); 9521 } else { 9522 btrfs_pin_log_trans(dest); 9523 dest_log_pinned = true; 9524 ret = btrfs_insert_inode_ref(trans, root, 9525 old_dentry->d_name.name, 9526 old_dentry->d_name.len, 9527 new_ino, 9528 btrfs_ino(BTRFS_I(old_dir)), 9529 new_idx); 9530 if (ret) 9531 goto out_fail; 9532 } 9533 9534 /* Update inode version and ctime/mtime. */ 9535 inode_inc_iversion(old_dir); 9536 inode_inc_iversion(new_dir); 9537 inode_inc_iversion(old_inode); 9538 inode_inc_iversion(new_inode); 9539 old_dir->i_ctime = old_dir->i_mtime = ctime; 9540 new_dir->i_ctime = new_dir->i_mtime = ctime; 9541 old_inode->i_ctime = ctime; 9542 new_inode->i_ctime = ctime; 9543 9544 if (old_dentry->d_parent != new_dentry->d_parent) { 9545 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9546 BTRFS_I(old_inode), 1); 9547 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9548 BTRFS_I(new_inode), 1); 9549 } 9550 9551 /* src is a subvolume */ 9552 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9553 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9554 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9555 old_dentry->d_name.name, 9556 old_dentry->d_name.len); 9557 } else { /* src is an inode */ 9558 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9559 BTRFS_I(old_dentry->d_inode), 9560 old_dentry->d_name.name, 9561 old_dentry->d_name.len); 9562 if (!ret) 9563 ret = btrfs_update_inode(trans, root, old_inode); 9564 } 9565 if (ret) { 9566 btrfs_abort_transaction(trans, ret); 9567 goto out_fail; 9568 } 9569 9570 /* dest is a subvolume */ 9571 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9572 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9573 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9574 new_dentry->d_name.name, 9575 new_dentry->d_name.len); 9576 } else { /* dest is an inode */ 9577 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9578 BTRFS_I(new_dentry->d_inode), 9579 new_dentry->d_name.name, 9580 new_dentry->d_name.len); 9581 if (!ret) 9582 ret = btrfs_update_inode(trans, dest, new_inode); 9583 } 9584 if (ret) { 9585 btrfs_abort_transaction(trans, ret); 9586 goto out_fail; 9587 } 9588 9589 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9590 new_dentry->d_name.name, 9591 new_dentry->d_name.len, 0, old_idx); 9592 if (ret) { 9593 btrfs_abort_transaction(trans, ret); 9594 goto out_fail; 9595 } 9596 9597 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9598 old_dentry->d_name.name, 9599 old_dentry->d_name.len, 0, new_idx); 9600 if (ret) { 9601 btrfs_abort_transaction(trans, ret); 9602 goto out_fail; 9603 } 9604 9605 if (old_inode->i_nlink == 1) 9606 BTRFS_I(old_inode)->dir_index = old_idx; 9607 if (new_inode->i_nlink == 1) 9608 BTRFS_I(new_inode)->dir_index = new_idx; 9609 9610 if (root_log_pinned) { 9611 parent = new_dentry->d_parent; 9612 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9613 BTRFS_I(old_dir), parent, 9614 false, &ctx_root); 9615 if (ret == BTRFS_NEED_LOG_SYNC) 9616 sync_log_root = true; 9617 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9618 commit_transaction = true; 9619 ret = 0; 9620 btrfs_end_log_trans(root); 9621 root_log_pinned = false; 9622 } 9623 if (dest_log_pinned) { 9624 if (!commit_transaction) { 9625 parent = old_dentry->d_parent; 9626 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9627 BTRFS_I(new_dir), parent, 9628 false, &ctx_dest); 9629 if (ret == BTRFS_NEED_LOG_SYNC) 9630 sync_log_dest = true; 9631 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9632 commit_transaction = true; 9633 ret = 0; 9634 } 9635 btrfs_end_log_trans(dest); 9636 dest_log_pinned = false; 9637 } 9638 out_fail: 9639 /* 9640 * If we have pinned a log and an error happened, we unpin tasks 9641 * trying to sync the log and force them to fallback to a transaction 9642 * commit if the log currently contains any of the inodes involved in 9643 * this rename operation (to ensure we do not persist a log with an 9644 * inconsistent state for any of these inodes or leading to any 9645 * inconsistencies when replayed). If the transaction was aborted, the 9646 * abortion reason is propagated to userspace when attempting to commit 9647 * the transaction. If the log does not contain any of these inodes, we 9648 * allow the tasks to sync it. 9649 */ 9650 if (ret && (root_log_pinned || dest_log_pinned)) { 9651 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9652 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9653 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9654 (new_inode && 9655 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9656 btrfs_set_log_full_commit(trans); 9657 9658 if (root_log_pinned) { 9659 btrfs_end_log_trans(root); 9660 root_log_pinned = false; 9661 } 9662 if (dest_log_pinned) { 9663 btrfs_end_log_trans(dest); 9664 dest_log_pinned = false; 9665 } 9666 } 9667 if (!ret && sync_log_root && !commit_transaction) { 9668 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9669 &ctx_root); 9670 if (ret) 9671 commit_transaction = true; 9672 } 9673 if (!ret && sync_log_dest && !commit_transaction) { 9674 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9675 &ctx_dest); 9676 if (ret) 9677 commit_transaction = true; 9678 } 9679 if (commit_transaction) { 9680 ret = btrfs_commit_transaction(trans); 9681 } else { 9682 int ret2; 9683 9684 ret2 = btrfs_end_transaction(trans); 9685 ret = ret ? ret : ret2; 9686 } 9687 out_notrans: 9688 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9689 up_read(&fs_info->subvol_sem); 9690 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9691 up_read(&fs_info->subvol_sem); 9692 9693 return ret; 9694 } 9695 9696 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9697 struct btrfs_root *root, 9698 struct inode *dir, 9699 struct dentry *dentry) 9700 { 9701 int ret; 9702 struct inode *inode; 9703 u64 objectid; 9704 u64 index; 9705 9706 ret = btrfs_find_free_ino(root, &objectid); 9707 if (ret) 9708 return ret; 9709 9710 inode = btrfs_new_inode(trans, root, dir, 9711 dentry->d_name.name, 9712 dentry->d_name.len, 9713 btrfs_ino(BTRFS_I(dir)), 9714 objectid, 9715 S_IFCHR | WHITEOUT_MODE, 9716 &index); 9717 9718 if (IS_ERR(inode)) { 9719 ret = PTR_ERR(inode); 9720 return ret; 9721 } 9722 9723 inode->i_op = &btrfs_special_inode_operations; 9724 init_special_inode(inode, inode->i_mode, 9725 WHITEOUT_DEV); 9726 9727 ret = btrfs_init_inode_security(trans, inode, dir, 9728 &dentry->d_name); 9729 if (ret) 9730 goto out; 9731 9732 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9733 BTRFS_I(inode), 0, index); 9734 if (ret) 9735 goto out; 9736 9737 ret = btrfs_update_inode(trans, root, inode); 9738 out: 9739 unlock_new_inode(inode); 9740 if (ret) 9741 inode_dec_link_count(inode); 9742 iput(inode); 9743 9744 return ret; 9745 } 9746 9747 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9748 struct inode *new_dir, struct dentry *new_dentry, 9749 unsigned int flags) 9750 { 9751 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9752 struct btrfs_trans_handle *trans; 9753 unsigned int trans_num_items; 9754 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9755 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9756 struct inode *new_inode = d_inode(new_dentry); 9757 struct inode *old_inode = d_inode(old_dentry); 9758 u64 index = 0; 9759 u64 root_objectid; 9760 int ret; 9761 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9762 bool log_pinned = false; 9763 struct btrfs_log_ctx ctx; 9764 bool sync_log = false; 9765 bool commit_transaction = false; 9766 9767 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9768 return -EPERM; 9769 9770 /* we only allow rename subvolume link between subvolumes */ 9771 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9772 return -EXDEV; 9773 9774 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9775 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9776 return -ENOTEMPTY; 9777 9778 if (S_ISDIR(old_inode->i_mode) && new_inode && 9779 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9780 return -ENOTEMPTY; 9781 9782 9783 /* check for collisions, even if the name isn't there */ 9784 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9785 new_dentry->d_name.name, 9786 new_dentry->d_name.len); 9787 9788 if (ret) { 9789 if (ret == -EEXIST) { 9790 /* we shouldn't get 9791 * eexist without a new_inode */ 9792 if (WARN_ON(!new_inode)) { 9793 return ret; 9794 } 9795 } else { 9796 /* maybe -EOVERFLOW */ 9797 return ret; 9798 } 9799 } 9800 ret = 0; 9801 9802 /* 9803 * we're using rename to replace one file with another. Start IO on it 9804 * now so we don't add too much work to the end of the transaction 9805 */ 9806 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9807 filemap_flush(old_inode->i_mapping); 9808 9809 /* close the racy window with snapshot create/destroy ioctl */ 9810 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9811 down_read(&fs_info->subvol_sem); 9812 /* 9813 * We want to reserve the absolute worst case amount of items. So if 9814 * both inodes are subvols and we need to unlink them then that would 9815 * require 4 item modifications, but if they are both normal inodes it 9816 * would require 5 item modifications, so we'll assume they are normal 9817 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9818 * should cover the worst case number of items we'll modify. 9819 * If our rename has the whiteout flag, we need more 5 units for the 9820 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9821 * when selinux is enabled). 9822 */ 9823 trans_num_items = 11; 9824 if (flags & RENAME_WHITEOUT) 9825 trans_num_items += 5; 9826 trans = btrfs_start_transaction(root, trans_num_items); 9827 if (IS_ERR(trans)) { 9828 ret = PTR_ERR(trans); 9829 goto out_notrans; 9830 } 9831 9832 if (dest != root) 9833 btrfs_record_root_in_trans(trans, dest); 9834 9835 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9836 if (ret) 9837 goto out_fail; 9838 9839 BTRFS_I(old_inode)->dir_index = 0ULL; 9840 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9841 /* force full log commit if subvolume involved. */ 9842 btrfs_set_log_full_commit(trans); 9843 } else { 9844 btrfs_pin_log_trans(root); 9845 log_pinned = true; 9846 ret = btrfs_insert_inode_ref(trans, dest, 9847 new_dentry->d_name.name, 9848 new_dentry->d_name.len, 9849 old_ino, 9850 btrfs_ino(BTRFS_I(new_dir)), index); 9851 if (ret) 9852 goto out_fail; 9853 } 9854 9855 inode_inc_iversion(old_dir); 9856 inode_inc_iversion(new_dir); 9857 inode_inc_iversion(old_inode); 9858 old_dir->i_ctime = old_dir->i_mtime = 9859 new_dir->i_ctime = new_dir->i_mtime = 9860 old_inode->i_ctime = current_time(old_dir); 9861 9862 if (old_dentry->d_parent != new_dentry->d_parent) 9863 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9864 BTRFS_I(old_inode), 1); 9865 9866 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9867 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9868 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9869 old_dentry->d_name.name, 9870 old_dentry->d_name.len); 9871 } else { 9872 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9873 BTRFS_I(d_inode(old_dentry)), 9874 old_dentry->d_name.name, 9875 old_dentry->d_name.len); 9876 if (!ret) 9877 ret = btrfs_update_inode(trans, root, old_inode); 9878 } 9879 if (ret) { 9880 btrfs_abort_transaction(trans, ret); 9881 goto out_fail; 9882 } 9883 9884 if (new_inode) { 9885 inode_inc_iversion(new_inode); 9886 new_inode->i_ctime = current_time(new_inode); 9887 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9888 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9889 root_objectid = BTRFS_I(new_inode)->location.objectid; 9890 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9891 new_dentry->d_name.name, 9892 new_dentry->d_name.len); 9893 BUG_ON(new_inode->i_nlink == 0); 9894 } else { 9895 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9896 BTRFS_I(d_inode(new_dentry)), 9897 new_dentry->d_name.name, 9898 new_dentry->d_name.len); 9899 } 9900 if (!ret && new_inode->i_nlink == 0) 9901 ret = btrfs_orphan_add(trans, 9902 BTRFS_I(d_inode(new_dentry))); 9903 if (ret) { 9904 btrfs_abort_transaction(trans, ret); 9905 goto out_fail; 9906 } 9907 } 9908 9909 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9910 new_dentry->d_name.name, 9911 new_dentry->d_name.len, 0, index); 9912 if (ret) { 9913 btrfs_abort_transaction(trans, ret); 9914 goto out_fail; 9915 } 9916 9917 if (old_inode->i_nlink == 1) 9918 BTRFS_I(old_inode)->dir_index = index; 9919 9920 if (log_pinned) { 9921 struct dentry *parent = new_dentry->d_parent; 9922 9923 btrfs_init_log_ctx(&ctx, old_inode); 9924 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9925 BTRFS_I(old_dir), parent, 9926 false, &ctx); 9927 if (ret == BTRFS_NEED_LOG_SYNC) 9928 sync_log = true; 9929 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9930 commit_transaction = true; 9931 ret = 0; 9932 btrfs_end_log_trans(root); 9933 log_pinned = false; 9934 } 9935 9936 if (flags & RENAME_WHITEOUT) { 9937 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9938 old_dentry); 9939 9940 if (ret) { 9941 btrfs_abort_transaction(trans, ret); 9942 goto out_fail; 9943 } 9944 } 9945 out_fail: 9946 /* 9947 * If we have pinned the log and an error happened, we unpin tasks 9948 * trying to sync the log and force them to fallback to a transaction 9949 * commit if the log currently contains any of the inodes involved in 9950 * this rename operation (to ensure we do not persist a log with an 9951 * inconsistent state for any of these inodes or leading to any 9952 * inconsistencies when replayed). If the transaction was aborted, the 9953 * abortion reason is propagated to userspace when attempting to commit 9954 * the transaction. If the log does not contain any of these inodes, we 9955 * allow the tasks to sync it. 9956 */ 9957 if (ret && log_pinned) { 9958 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9959 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9960 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9961 (new_inode && 9962 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9963 btrfs_set_log_full_commit(trans); 9964 9965 btrfs_end_log_trans(root); 9966 log_pinned = false; 9967 } 9968 if (!ret && sync_log) { 9969 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9970 if (ret) 9971 commit_transaction = true; 9972 } 9973 if (commit_transaction) { 9974 ret = btrfs_commit_transaction(trans); 9975 } else { 9976 int ret2; 9977 9978 ret2 = btrfs_end_transaction(trans); 9979 ret = ret ? ret : ret2; 9980 } 9981 out_notrans: 9982 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9983 up_read(&fs_info->subvol_sem); 9984 9985 return ret; 9986 } 9987 9988 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9989 struct inode *new_dir, struct dentry *new_dentry, 9990 unsigned int flags) 9991 { 9992 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9993 return -EINVAL; 9994 9995 if (flags & RENAME_EXCHANGE) 9996 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9997 new_dentry); 9998 9999 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10000 } 10001 10002 struct btrfs_delalloc_work { 10003 struct inode *inode; 10004 struct completion completion; 10005 struct list_head list; 10006 struct btrfs_work work; 10007 }; 10008 10009 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10010 { 10011 struct btrfs_delalloc_work *delalloc_work; 10012 struct inode *inode; 10013 10014 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10015 work); 10016 inode = delalloc_work->inode; 10017 filemap_flush(inode->i_mapping); 10018 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10019 &BTRFS_I(inode)->runtime_flags)) 10020 filemap_flush(inode->i_mapping); 10021 10022 iput(inode); 10023 complete(&delalloc_work->completion); 10024 } 10025 10026 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 10027 { 10028 struct btrfs_delalloc_work *work; 10029 10030 work = kmalloc(sizeof(*work), GFP_NOFS); 10031 if (!work) 10032 return NULL; 10033 10034 init_completion(&work->completion); 10035 INIT_LIST_HEAD(&work->list); 10036 work->inode = inode; 10037 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10038 btrfs_run_delalloc_work, NULL, NULL); 10039 10040 return work; 10041 } 10042 10043 /* 10044 * some fairly slow code that needs optimization. This walks the list 10045 * of all the inodes with pending delalloc and forces them to disk. 10046 */ 10047 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 10048 { 10049 struct btrfs_inode *binode; 10050 struct inode *inode; 10051 struct btrfs_delalloc_work *work, *next; 10052 struct list_head works; 10053 struct list_head splice; 10054 int ret = 0; 10055 10056 INIT_LIST_HEAD(&works); 10057 INIT_LIST_HEAD(&splice); 10058 10059 mutex_lock(&root->delalloc_mutex); 10060 spin_lock(&root->delalloc_lock); 10061 list_splice_init(&root->delalloc_inodes, &splice); 10062 while (!list_empty(&splice)) { 10063 binode = list_entry(splice.next, struct btrfs_inode, 10064 delalloc_inodes); 10065 10066 list_move_tail(&binode->delalloc_inodes, 10067 &root->delalloc_inodes); 10068 inode = igrab(&binode->vfs_inode); 10069 if (!inode) { 10070 cond_resched_lock(&root->delalloc_lock); 10071 continue; 10072 } 10073 spin_unlock(&root->delalloc_lock); 10074 10075 if (snapshot) 10076 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 10077 &binode->runtime_flags); 10078 work = btrfs_alloc_delalloc_work(inode); 10079 if (!work) { 10080 iput(inode); 10081 ret = -ENOMEM; 10082 goto out; 10083 } 10084 list_add_tail(&work->list, &works); 10085 btrfs_queue_work(root->fs_info->flush_workers, 10086 &work->work); 10087 ret++; 10088 if (nr != -1 && ret >= nr) 10089 goto out; 10090 cond_resched(); 10091 spin_lock(&root->delalloc_lock); 10092 } 10093 spin_unlock(&root->delalloc_lock); 10094 10095 out: 10096 list_for_each_entry_safe(work, next, &works, list) { 10097 list_del_init(&work->list); 10098 wait_for_completion(&work->completion); 10099 kfree(work); 10100 } 10101 10102 if (!list_empty(&splice)) { 10103 spin_lock(&root->delalloc_lock); 10104 list_splice_tail(&splice, &root->delalloc_inodes); 10105 spin_unlock(&root->delalloc_lock); 10106 } 10107 mutex_unlock(&root->delalloc_mutex); 10108 return ret; 10109 } 10110 10111 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 10112 { 10113 struct btrfs_fs_info *fs_info = root->fs_info; 10114 int ret; 10115 10116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10117 return -EROFS; 10118 10119 ret = start_delalloc_inodes(root, -1, true); 10120 if (ret > 0) 10121 ret = 0; 10122 return ret; 10123 } 10124 10125 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10126 { 10127 struct btrfs_root *root; 10128 struct list_head splice; 10129 int ret; 10130 10131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10132 return -EROFS; 10133 10134 INIT_LIST_HEAD(&splice); 10135 10136 mutex_lock(&fs_info->delalloc_root_mutex); 10137 spin_lock(&fs_info->delalloc_root_lock); 10138 list_splice_init(&fs_info->delalloc_roots, &splice); 10139 while (!list_empty(&splice) && nr) { 10140 root = list_first_entry(&splice, struct btrfs_root, 10141 delalloc_root); 10142 root = btrfs_grab_fs_root(root); 10143 BUG_ON(!root); 10144 list_move_tail(&root->delalloc_root, 10145 &fs_info->delalloc_roots); 10146 spin_unlock(&fs_info->delalloc_root_lock); 10147 10148 ret = start_delalloc_inodes(root, nr, false); 10149 btrfs_put_fs_root(root); 10150 if (ret < 0) 10151 goto out; 10152 10153 if (nr != -1) { 10154 nr -= ret; 10155 WARN_ON(nr < 0); 10156 } 10157 spin_lock(&fs_info->delalloc_root_lock); 10158 } 10159 spin_unlock(&fs_info->delalloc_root_lock); 10160 10161 ret = 0; 10162 out: 10163 if (!list_empty(&splice)) { 10164 spin_lock(&fs_info->delalloc_root_lock); 10165 list_splice_tail(&splice, &fs_info->delalloc_roots); 10166 spin_unlock(&fs_info->delalloc_root_lock); 10167 } 10168 mutex_unlock(&fs_info->delalloc_root_mutex); 10169 return ret; 10170 } 10171 10172 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10173 const char *symname) 10174 { 10175 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10176 struct btrfs_trans_handle *trans; 10177 struct btrfs_root *root = BTRFS_I(dir)->root; 10178 struct btrfs_path *path; 10179 struct btrfs_key key; 10180 struct inode *inode = NULL; 10181 int err; 10182 u64 objectid; 10183 u64 index = 0; 10184 int name_len; 10185 int datasize; 10186 unsigned long ptr; 10187 struct btrfs_file_extent_item *ei; 10188 struct extent_buffer *leaf; 10189 10190 name_len = strlen(symname); 10191 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10192 return -ENAMETOOLONG; 10193 10194 /* 10195 * 2 items for inode item and ref 10196 * 2 items for dir items 10197 * 1 item for updating parent inode item 10198 * 1 item for the inline extent item 10199 * 1 item for xattr if selinux is on 10200 */ 10201 trans = btrfs_start_transaction(root, 7); 10202 if (IS_ERR(trans)) 10203 return PTR_ERR(trans); 10204 10205 err = btrfs_find_free_ino(root, &objectid); 10206 if (err) 10207 goto out_unlock; 10208 10209 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10210 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10211 objectid, S_IFLNK|S_IRWXUGO, &index); 10212 if (IS_ERR(inode)) { 10213 err = PTR_ERR(inode); 10214 inode = NULL; 10215 goto out_unlock; 10216 } 10217 10218 /* 10219 * If the active LSM wants to access the inode during 10220 * d_instantiate it needs these. Smack checks to see 10221 * if the filesystem supports xattrs by looking at the 10222 * ops vector. 10223 */ 10224 inode->i_fop = &btrfs_file_operations; 10225 inode->i_op = &btrfs_file_inode_operations; 10226 inode->i_mapping->a_ops = &btrfs_aops; 10227 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10228 10229 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10230 if (err) 10231 goto out_unlock; 10232 10233 path = btrfs_alloc_path(); 10234 if (!path) { 10235 err = -ENOMEM; 10236 goto out_unlock; 10237 } 10238 key.objectid = btrfs_ino(BTRFS_I(inode)); 10239 key.offset = 0; 10240 key.type = BTRFS_EXTENT_DATA_KEY; 10241 datasize = btrfs_file_extent_calc_inline_size(name_len); 10242 err = btrfs_insert_empty_item(trans, root, path, &key, 10243 datasize); 10244 if (err) { 10245 btrfs_free_path(path); 10246 goto out_unlock; 10247 } 10248 leaf = path->nodes[0]; 10249 ei = btrfs_item_ptr(leaf, path->slots[0], 10250 struct btrfs_file_extent_item); 10251 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10252 btrfs_set_file_extent_type(leaf, ei, 10253 BTRFS_FILE_EXTENT_INLINE); 10254 btrfs_set_file_extent_encryption(leaf, ei, 0); 10255 btrfs_set_file_extent_compression(leaf, ei, 0); 10256 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10257 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10258 10259 ptr = btrfs_file_extent_inline_start(ei); 10260 write_extent_buffer(leaf, symname, ptr, name_len); 10261 btrfs_mark_buffer_dirty(leaf); 10262 btrfs_free_path(path); 10263 10264 inode->i_op = &btrfs_symlink_inode_operations; 10265 inode_nohighmem(inode); 10266 inode_set_bytes(inode, name_len); 10267 btrfs_i_size_write(BTRFS_I(inode), name_len); 10268 err = btrfs_update_inode(trans, root, inode); 10269 /* 10270 * Last step, add directory indexes for our symlink inode. This is the 10271 * last step to avoid extra cleanup of these indexes if an error happens 10272 * elsewhere above. 10273 */ 10274 if (!err) 10275 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10276 BTRFS_I(inode), 0, index); 10277 if (err) 10278 goto out_unlock; 10279 10280 d_instantiate_new(dentry, inode); 10281 10282 out_unlock: 10283 btrfs_end_transaction(trans); 10284 if (err && inode) { 10285 inode_dec_link_count(inode); 10286 discard_new_inode(inode); 10287 } 10288 btrfs_btree_balance_dirty(fs_info); 10289 return err; 10290 } 10291 10292 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10293 u64 start, u64 num_bytes, u64 min_size, 10294 loff_t actual_len, u64 *alloc_hint, 10295 struct btrfs_trans_handle *trans) 10296 { 10297 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10298 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10299 struct extent_map *em; 10300 struct btrfs_root *root = BTRFS_I(inode)->root; 10301 struct btrfs_key ins; 10302 u64 cur_offset = start; 10303 u64 i_size; 10304 u64 cur_bytes; 10305 u64 last_alloc = (u64)-1; 10306 int ret = 0; 10307 bool own_trans = true; 10308 u64 end = start + num_bytes - 1; 10309 10310 if (trans) 10311 own_trans = false; 10312 while (num_bytes > 0) { 10313 if (own_trans) { 10314 trans = btrfs_start_transaction(root, 3); 10315 if (IS_ERR(trans)) { 10316 ret = PTR_ERR(trans); 10317 break; 10318 } 10319 } 10320 10321 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10322 cur_bytes = max(cur_bytes, min_size); 10323 /* 10324 * If we are severely fragmented we could end up with really 10325 * small allocations, so if the allocator is returning small 10326 * chunks lets make its job easier by only searching for those 10327 * sized chunks. 10328 */ 10329 cur_bytes = min(cur_bytes, last_alloc); 10330 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10331 min_size, 0, *alloc_hint, &ins, 1, 0); 10332 if (ret) { 10333 if (own_trans) 10334 btrfs_end_transaction(trans); 10335 break; 10336 } 10337 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10338 10339 last_alloc = ins.offset; 10340 ret = insert_reserved_file_extent(trans, inode, 10341 cur_offset, ins.objectid, 10342 ins.offset, ins.offset, 10343 ins.offset, 0, 0, 0, 10344 BTRFS_FILE_EXTENT_PREALLOC); 10345 if (ret) { 10346 btrfs_free_reserved_extent(fs_info, ins.objectid, 10347 ins.offset, 0); 10348 btrfs_abort_transaction(trans, ret); 10349 if (own_trans) 10350 btrfs_end_transaction(trans); 10351 break; 10352 } 10353 10354 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10355 cur_offset + ins.offset -1, 0); 10356 10357 em = alloc_extent_map(); 10358 if (!em) { 10359 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10360 &BTRFS_I(inode)->runtime_flags); 10361 goto next; 10362 } 10363 10364 em->start = cur_offset; 10365 em->orig_start = cur_offset; 10366 em->len = ins.offset; 10367 em->block_start = ins.objectid; 10368 em->block_len = ins.offset; 10369 em->orig_block_len = ins.offset; 10370 em->ram_bytes = ins.offset; 10371 em->bdev = fs_info->fs_devices->latest_bdev; 10372 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10373 em->generation = trans->transid; 10374 10375 while (1) { 10376 write_lock(&em_tree->lock); 10377 ret = add_extent_mapping(em_tree, em, 1); 10378 write_unlock(&em_tree->lock); 10379 if (ret != -EEXIST) 10380 break; 10381 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10382 cur_offset + ins.offset - 1, 10383 0); 10384 } 10385 free_extent_map(em); 10386 next: 10387 num_bytes -= ins.offset; 10388 cur_offset += ins.offset; 10389 *alloc_hint = ins.objectid + ins.offset; 10390 10391 inode_inc_iversion(inode); 10392 inode->i_ctime = current_time(inode); 10393 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10394 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10395 (actual_len > inode->i_size) && 10396 (cur_offset > inode->i_size)) { 10397 if (cur_offset > actual_len) 10398 i_size = actual_len; 10399 else 10400 i_size = cur_offset; 10401 i_size_write(inode, i_size); 10402 btrfs_ordered_update_i_size(inode, i_size, NULL); 10403 } 10404 10405 ret = btrfs_update_inode(trans, root, inode); 10406 10407 if (ret) { 10408 btrfs_abort_transaction(trans, ret); 10409 if (own_trans) 10410 btrfs_end_transaction(trans); 10411 break; 10412 } 10413 10414 if (own_trans) 10415 btrfs_end_transaction(trans); 10416 } 10417 if (cur_offset < end) 10418 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10419 end - cur_offset + 1); 10420 return ret; 10421 } 10422 10423 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10424 u64 start, u64 num_bytes, u64 min_size, 10425 loff_t actual_len, u64 *alloc_hint) 10426 { 10427 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10428 min_size, actual_len, alloc_hint, 10429 NULL); 10430 } 10431 10432 int btrfs_prealloc_file_range_trans(struct inode *inode, 10433 struct btrfs_trans_handle *trans, int mode, 10434 u64 start, u64 num_bytes, u64 min_size, 10435 loff_t actual_len, u64 *alloc_hint) 10436 { 10437 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10438 min_size, actual_len, alloc_hint, trans); 10439 } 10440 10441 static int btrfs_set_page_dirty(struct page *page) 10442 { 10443 return __set_page_dirty_nobuffers(page); 10444 } 10445 10446 static int btrfs_permission(struct inode *inode, int mask) 10447 { 10448 struct btrfs_root *root = BTRFS_I(inode)->root; 10449 umode_t mode = inode->i_mode; 10450 10451 if (mask & MAY_WRITE && 10452 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10453 if (btrfs_root_readonly(root)) 10454 return -EROFS; 10455 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10456 return -EACCES; 10457 } 10458 return generic_permission(inode, mask); 10459 } 10460 10461 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10462 { 10463 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10464 struct btrfs_trans_handle *trans; 10465 struct btrfs_root *root = BTRFS_I(dir)->root; 10466 struct inode *inode = NULL; 10467 u64 objectid; 10468 u64 index; 10469 int ret = 0; 10470 10471 /* 10472 * 5 units required for adding orphan entry 10473 */ 10474 trans = btrfs_start_transaction(root, 5); 10475 if (IS_ERR(trans)) 10476 return PTR_ERR(trans); 10477 10478 ret = btrfs_find_free_ino(root, &objectid); 10479 if (ret) 10480 goto out; 10481 10482 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10483 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10484 if (IS_ERR(inode)) { 10485 ret = PTR_ERR(inode); 10486 inode = NULL; 10487 goto out; 10488 } 10489 10490 inode->i_fop = &btrfs_file_operations; 10491 inode->i_op = &btrfs_file_inode_operations; 10492 10493 inode->i_mapping->a_ops = &btrfs_aops; 10494 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10495 10496 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10497 if (ret) 10498 goto out; 10499 10500 ret = btrfs_update_inode(trans, root, inode); 10501 if (ret) 10502 goto out; 10503 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10504 if (ret) 10505 goto out; 10506 10507 /* 10508 * We set number of links to 0 in btrfs_new_inode(), and here we set 10509 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10510 * through: 10511 * 10512 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10513 */ 10514 set_nlink(inode, 1); 10515 d_tmpfile(dentry, inode); 10516 unlock_new_inode(inode); 10517 mark_inode_dirty(inode); 10518 out: 10519 btrfs_end_transaction(trans); 10520 if (ret && inode) 10521 discard_new_inode(inode); 10522 btrfs_btree_balance_dirty(fs_info); 10523 return ret; 10524 } 10525 10526 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10527 { 10528 struct inode *inode = tree->private_data; 10529 unsigned long index = start >> PAGE_SHIFT; 10530 unsigned long end_index = end >> PAGE_SHIFT; 10531 struct page *page; 10532 10533 while (index <= end_index) { 10534 page = find_get_page(inode->i_mapping, index); 10535 ASSERT(page); /* Pages should be in the extent_io_tree */ 10536 set_page_writeback(page); 10537 put_page(page); 10538 index++; 10539 } 10540 } 10541 10542 #ifdef CONFIG_SWAP 10543 /* 10544 * Add an entry indicating a block group or device which is pinned by a 10545 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10546 * negative errno on failure. 10547 */ 10548 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10549 bool is_block_group) 10550 { 10551 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10552 struct btrfs_swapfile_pin *sp, *entry; 10553 struct rb_node **p; 10554 struct rb_node *parent = NULL; 10555 10556 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10557 if (!sp) 10558 return -ENOMEM; 10559 sp->ptr = ptr; 10560 sp->inode = inode; 10561 sp->is_block_group = is_block_group; 10562 10563 spin_lock(&fs_info->swapfile_pins_lock); 10564 p = &fs_info->swapfile_pins.rb_node; 10565 while (*p) { 10566 parent = *p; 10567 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10568 if (sp->ptr < entry->ptr || 10569 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10570 p = &(*p)->rb_left; 10571 } else if (sp->ptr > entry->ptr || 10572 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10573 p = &(*p)->rb_right; 10574 } else { 10575 spin_unlock(&fs_info->swapfile_pins_lock); 10576 kfree(sp); 10577 return 1; 10578 } 10579 } 10580 rb_link_node(&sp->node, parent, p); 10581 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10582 spin_unlock(&fs_info->swapfile_pins_lock); 10583 return 0; 10584 } 10585 10586 /* Free all of the entries pinned by this swapfile. */ 10587 static void btrfs_free_swapfile_pins(struct inode *inode) 10588 { 10589 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10590 struct btrfs_swapfile_pin *sp; 10591 struct rb_node *node, *next; 10592 10593 spin_lock(&fs_info->swapfile_pins_lock); 10594 node = rb_first(&fs_info->swapfile_pins); 10595 while (node) { 10596 next = rb_next(node); 10597 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10598 if (sp->inode == inode) { 10599 rb_erase(&sp->node, &fs_info->swapfile_pins); 10600 if (sp->is_block_group) 10601 btrfs_put_block_group(sp->ptr); 10602 kfree(sp); 10603 } 10604 node = next; 10605 } 10606 spin_unlock(&fs_info->swapfile_pins_lock); 10607 } 10608 10609 struct btrfs_swap_info { 10610 u64 start; 10611 u64 block_start; 10612 u64 block_len; 10613 u64 lowest_ppage; 10614 u64 highest_ppage; 10615 unsigned long nr_pages; 10616 int nr_extents; 10617 }; 10618 10619 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10620 struct btrfs_swap_info *bsi) 10621 { 10622 unsigned long nr_pages; 10623 u64 first_ppage, first_ppage_reported, next_ppage; 10624 int ret; 10625 10626 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10627 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10628 PAGE_SIZE) >> PAGE_SHIFT; 10629 10630 if (first_ppage >= next_ppage) 10631 return 0; 10632 nr_pages = next_ppage - first_ppage; 10633 10634 first_ppage_reported = first_ppage; 10635 if (bsi->start == 0) 10636 first_ppage_reported++; 10637 if (bsi->lowest_ppage > first_ppage_reported) 10638 bsi->lowest_ppage = first_ppage_reported; 10639 if (bsi->highest_ppage < (next_ppage - 1)) 10640 bsi->highest_ppage = next_ppage - 1; 10641 10642 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10643 if (ret < 0) 10644 return ret; 10645 bsi->nr_extents += ret; 10646 bsi->nr_pages += nr_pages; 10647 return 0; 10648 } 10649 10650 static void btrfs_swap_deactivate(struct file *file) 10651 { 10652 struct inode *inode = file_inode(file); 10653 10654 btrfs_free_swapfile_pins(inode); 10655 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10656 } 10657 10658 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10659 sector_t *span) 10660 { 10661 struct inode *inode = file_inode(file); 10662 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10663 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10664 struct extent_state *cached_state = NULL; 10665 struct extent_map *em = NULL; 10666 struct btrfs_device *device = NULL; 10667 struct btrfs_swap_info bsi = { 10668 .lowest_ppage = (sector_t)-1ULL, 10669 }; 10670 int ret = 0; 10671 u64 isize; 10672 u64 start; 10673 10674 /* 10675 * If the swap file was just created, make sure delalloc is done. If the 10676 * file changes again after this, the user is doing something stupid and 10677 * we don't really care. 10678 */ 10679 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10680 if (ret) 10681 return ret; 10682 10683 /* 10684 * The inode is locked, so these flags won't change after we check them. 10685 */ 10686 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10687 btrfs_warn(fs_info, "swapfile must not be compressed"); 10688 return -EINVAL; 10689 } 10690 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10691 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10692 return -EINVAL; 10693 } 10694 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10695 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10696 return -EINVAL; 10697 } 10698 10699 /* 10700 * Balance or device remove/replace/resize can move stuff around from 10701 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10702 * concurrently while we are mapping the swap extents, and 10703 * fs_info->swapfile_pins prevents them from running while the swap file 10704 * is active and moving the extents. Note that this also prevents a 10705 * concurrent device add which isn't actually necessary, but it's not 10706 * really worth the trouble to allow it. 10707 */ 10708 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10709 btrfs_warn(fs_info, 10710 "cannot activate swapfile while exclusive operation is running"); 10711 return -EBUSY; 10712 } 10713 /* 10714 * Snapshots can create extents which require COW even if NODATACOW is 10715 * set. We use this counter to prevent snapshots. We must increment it 10716 * before walking the extents because we don't want a concurrent 10717 * snapshot to run after we've already checked the extents. 10718 */ 10719 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10720 10721 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10722 10723 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10724 start = 0; 10725 while (start < isize) { 10726 u64 logical_block_start, physical_block_start; 10727 struct btrfs_block_group_cache *bg; 10728 u64 len = isize - start; 10729 10730 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 10731 if (IS_ERR(em)) { 10732 ret = PTR_ERR(em); 10733 goto out; 10734 } 10735 10736 if (em->block_start == EXTENT_MAP_HOLE) { 10737 btrfs_warn(fs_info, "swapfile must not have holes"); 10738 ret = -EINVAL; 10739 goto out; 10740 } 10741 if (em->block_start == EXTENT_MAP_INLINE) { 10742 /* 10743 * It's unlikely we'll ever actually find ourselves 10744 * here, as a file small enough to fit inline won't be 10745 * big enough to store more than the swap header, but in 10746 * case something changes in the future, let's catch it 10747 * here rather than later. 10748 */ 10749 btrfs_warn(fs_info, "swapfile must not be inline"); 10750 ret = -EINVAL; 10751 goto out; 10752 } 10753 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10754 btrfs_warn(fs_info, "swapfile must not be compressed"); 10755 ret = -EINVAL; 10756 goto out; 10757 } 10758 10759 logical_block_start = em->block_start + (start - em->start); 10760 len = min(len, em->len - (start - em->start)); 10761 free_extent_map(em); 10762 em = NULL; 10763 10764 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10765 if (ret < 0) { 10766 goto out; 10767 } else if (ret) { 10768 ret = 0; 10769 } else { 10770 btrfs_warn(fs_info, 10771 "swapfile must not be copy-on-write"); 10772 ret = -EINVAL; 10773 goto out; 10774 } 10775 10776 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10777 if (IS_ERR(em)) { 10778 ret = PTR_ERR(em); 10779 goto out; 10780 } 10781 10782 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10783 btrfs_warn(fs_info, 10784 "swapfile must have single data profile"); 10785 ret = -EINVAL; 10786 goto out; 10787 } 10788 10789 if (device == NULL) { 10790 device = em->map_lookup->stripes[0].dev; 10791 ret = btrfs_add_swapfile_pin(inode, device, false); 10792 if (ret == 1) 10793 ret = 0; 10794 else if (ret) 10795 goto out; 10796 } else if (device != em->map_lookup->stripes[0].dev) { 10797 btrfs_warn(fs_info, "swapfile must be on one device"); 10798 ret = -EINVAL; 10799 goto out; 10800 } 10801 10802 physical_block_start = (em->map_lookup->stripes[0].physical + 10803 (logical_block_start - em->start)); 10804 len = min(len, em->len - (logical_block_start - em->start)); 10805 free_extent_map(em); 10806 em = NULL; 10807 10808 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10809 if (!bg) { 10810 btrfs_warn(fs_info, 10811 "could not find block group containing swapfile"); 10812 ret = -EINVAL; 10813 goto out; 10814 } 10815 10816 ret = btrfs_add_swapfile_pin(inode, bg, true); 10817 if (ret) { 10818 btrfs_put_block_group(bg); 10819 if (ret == 1) 10820 ret = 0; 10821 else 10822 goto out; 10823 } 10824 10825 if (bsi.block_len && 10826 bsi.block_start + bsi.block_len == physical_block_start) { 10827 bsi.block_len += len; 10828 } else { 10829 if (bsi.block_len) { 10830 ret = btrfs_add_swap_extent(sis, &bsi); 10831 if (ret) 10832 goto out; 10833 } 10834 bsi.start = start; 10835 bsi.block_start = physical_block_start; 10836 bsi.block_len = len; 10837 } 10838 10839 start += len; 10840 } 10841 10842 if (bsi.block_len) 10843 ret = btrfs_add_swap_extent(sis, &bsi); 10844 10845 out: 10846 if (!IS_ERR_OR_NULL(em)) 10847 free_extent_map(em); 10848 10849 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10850 10851 if (ret) 10852 btrfs_swap_deactivate(file); 10853 10854 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10855 10856 if (ret) 10857 return ret; 10858 10859 if (device) 10860 sis->bdev = device->bdev; 10861 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10862 sis->max = bsi.nr_pages; 10863 sis->pages = bsi.nr_pages - 1; 10864 sis->highest_bit = bsi.nr_pages - 1; 10865 return bsi.nr_extents; 10866 } 10867 #else 10868 static void btrfs_swap_deactivate(struct file *file) 10869 { 10870 } 10871 10872 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10873 sector_t *span) 10874 { 10875 return -EOPNOTSUPP; 10876 } 10877 #endif 10878 10879 static const struct inode_operations btrfs_dir_inode_operations = { 10880 .getattr = btrfs_getattr, 10881 .lookup = btrfs_lookup, 10882 .create = btrfs_create, 10883 .unlink = btrfs_unlink, 10884 .link = btrfs_link, 10885 .mkdir = btrfs_mkdir, 10886 .rmdir = btrfs_rmdir, 10887 .rename = btrfs_rename2, 10888 .symlink = btrfs_symlink, 10889 .setattr = btrfs_setattr, 10890 .mknod = btrfs_mknod, 10891 .listxattr = btrfs_listxattr, 10892 .permission = btrfs_permission, 10893 .get_acl = btrfs_get_acl, 10894 .set_acl = btrfs_set_acl, 10895 .update_time = btrfs_update_time, 10896 .tmpfile = btrfs_tmpfile, 10897 }; 10898 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10899 .lookup = btrfs_lookup, 10900 .permission = btrfs_permission, 10901 .update_time = btrfs_update_time, 10902 }; 10903 10904 static const struct file_operations btrfs_dir_file_operations = { 10905 .llseek = generic_file_llseek, 10906 .read = generic_read_dir, 10907 .iterate_shared = btrfs_real_readdir, 10908 .open = btrfs_opendir, 10909 .unlocked_ioctl = btrfs_ioctl, 10910 #ifdef CONFIG_COMPAT 10911 .compat_ioctl = btrfs_compat_ioctl, 10912 #endif 10913 .release = btrfs_release_file, 10914 .fsync = btrfs_sync_file, 10915 }; 10916 10917 static const struct extent_io_ops btrfs_extent_io_ops = { 10918 /* mandatory callbacks */ 10919 .submit_bio_hook = btrfs_submit_bio_hook, 10920 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10921 }; 10922 10923 /* 10924 * btrfs doesn't support the bmap operation because swapfiles 10925 * use bmap to make a mapping of extents in the file. They assume 10926 * these extents won't change over the life of the file and they 10927 * use the bmap result to do IO directly to the drive. 10928 * 10929 * the btrfs bmap call would return logical addresses that aren't 10930 * suitable for IO and they also will change frequently as COW 10931 * operations happen. So, swapfile + btrfs == corruption. 10932 * 10933 * For now we're avoiding this by dropping bmap. 10934 */ 10935 static const struct address_space_operations btrfs_aops = { 10936 .readpage = btrfs_readpage, 10937 .writepage = btrfs_writepage, 10938 .writepages = btrfs_writepages, 10939 .readpages = btrfs_readpages, 10940 .direct_IO = btrfs_direct_IO, 10941 .invalidatepage = btrfs_invalidatepage, 10942 .releasepage = btrfs_releasepage, 10943 .set_page_dirty = btrfs_set_page_dirty, 10944 .error_remove_page = generic_error_remove_page, 10945 .swap_activate = btrfs_swap_activate, 10946 .swap_deactivate = btrfs_swap_deactivate, 10947 }; 10948 10949 static const struct inode_operations btrfs_file_inode_operations = { 10950 .getattr = btrfs_getattr, 10951 .setattr = btrfs_setattr, 10952 .listxattr = btrfs_listxattr, 10953 .permission = btrfs_permission, 10954 .fiemap = btrfs_fiemap, 10955 .get_acl = btrfs_get_acl, 10956 .set_acl = btrfs_set_acl, 10957 .update_time = btrfs_update_time, 10958 }; 10959 static const struct inode_operations btrfs_special_inode_operations = { 10960 .getattr = btrfs_getattr, 10961 .setattr = btrfs_setattr, 10962 .permission = btrfs_permission, 10963 .listxattr = btrfs_listxattr, 10964 .get_acl = btrfs_get_acl, 10965 .set_acl = btrfs_set_acl, 10966 .update_time = btrfs_update_time, 10967 }; 10968 static const struct inode_operations btrfs_symlink_inode_operations = { 10969 .get_link = page_get_link, 10970 .getattr = btrfs_getattr, 10971 .setattr = btrfs_setattr, 10972 .permission = btrfs_permission, 10973 .listxattr = btrfs_listxattr, 10974 .update_time = btrfs_update_time, 10975 }; 10976 10977 const struct dentry_operations btrfs_dentry_operations = { 10978 .d_delete = btrfs_dentry_delete, 10979 }; 10980