1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include <linux/slab.h> 41 #include <linux/ratelimit.h> 42 #include <linux/mount.h> 43 #include <linux/btrfs.h> 44 #include <linux/blkdev.h> 45 #include <linux/posix_acl_xattr.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 63 struct btrfs_iget_args { 64 struct btrfs_key *location; 65 struct btrfs_root *root; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_dir_ro_inode_operations; 71 static const struct inode_operations btrfs_special_inode_operations; 72 static const struct inode_operations btrfs_file_inode_operations; 73 static const struct address_space_operations btrfs_aops; 74 static const struct address_space_operations btrfs_symlink_aops; 75 static const struct file_operations btrfs_dir_file_operations; 76 static struct extent_io_ops btrfs_extent_io_ops; 77 78 static struct kmem_cache *btrfs_inode_cachep; 79 static struct kmem_cache *btrfs_delalloc_work_cachep; 80 struct kmem_cache *btrfs_trans_handle_cachep; 81 struct kmem_cache *btrfs_transaction_cachep; 82 struct kmem_cache *btrfs_path_cachep; 83 struct kmem_cache *btrfs_free_space_cachep; 84 85 #define S_SHIFT 12 86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 94 }; 95 96 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 97 static int btrfs_truncate(struct inode *inode); 98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 99 static noinline int cow_file_range(struct inode *inode, 100 struct page *locked_page, 101 u64 start, u64 end, int *page_started, 102 unsigned long *nr_written, int unlock); 103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 104 u64 len, u64 orig_start, 105 u64 block_start, u64 block_len, 106 u64 orig_block_len, u64 ram_bytes, 107 int type); 108 109 static int btrfs_dirty_inode(struct inode *inode); 110 111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 112 struct inode *inode, struct inode *dir, 113 const struct qstr *qstr) 114 { 115 int err; 116 117 err = btrfs_init_acl(trans, inode, dir); 118 if (!err) 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 120 return err; 121 } 122 123 /* 124 * this does all the hard work for inserting an inline extent into 125 * the btree. The caller should have done a btrfs_drop_extents so that 126 * no overlapping inline items exist in the btree 127 */ 128 static int insert_inline_extent(struct btrfs_trans_handle *trans, 129 struct btrfs_path *path, int extent_inserted, 130 struct btrfs_root *root, struct inode *inode, 131 u64 start, size_t size, size_t compressed_size, 132 int compress_type, 133 struct page **compressed_pages) 134 { 135 struct extent_buffer *leaf; 136 struct page *page = NULL; 137 char *kaddr; 138 unsigned long ptr; 139 struct btrfs_file_extent_item *ei; 140 int err = 0; 141 int ret; 142 size_t cur_size = size; 143 unsigned long offset; 144 145 if (compressed_size && compressed_pages) 146 cur_size = compressed_size; 147 148 inode_add_bytes(inode, size); 149 150 if (!extent_inserted) { 151 struct btrfs_key key; 152 size_t datasize; 153 154 key.objectid = btrfs_ino(inode); 155 key.offset = start; 156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 157 158 datasize = btrfs_file_extent_calc_inline_size(cur_size); 159 path->leave_spinning = 1; 160 ret = btrfs_insert_empty_item(trans, root, path, &key, 161 datasize); 162 if (ret) { 163 err = ret; 164 goto fail; 165 } 166 } 167 leaf = path->nodes[0]; 168 ei = btrfs_item_ptr(leaf, path->slots[0], 169 struct btrfs_file_extent_item); 170 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 172 btrfs_set_file_extent_encryption(leaf, ei, 0); 173 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 174 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 175 ptr = btrfs_file_extent_inline_start(ei); 176 177 if (compress_type != BTRFS_COMPRESS_NONE) { 178 struct page *cpage; 179 int i = 0; 180 while (compressed_size > 0) { 181 cpage = compressed_pages[i]; 182 cur_size = min_t(unsigned long, compressed_size, 183 PAGE_CACHE_SIZE); 184 185 kaddr = kmap_atomic(cpage); 186 write_extent_buffer(leaf, kaddr, ptr, cur_size); 187 kunmap_atomic(kaddr); 188 189 i++; 190 ptr += cur_size; 191 compressed_size -= cur_size; 192 } 193 btrfs_set_file_extent_compression(leaf, ei, 194 compress_type); 195 } else { 196 page = find_get_page(inode->i_mapping, 197 start >> PAGE_CACHE_SHIFT); 198 btrfs_set_file_extent_compression(leaf, ei, 0); 199 kaddr = kmap_atomic(page); 200 offset = start & (PAGE_CACHE_SIZE - 1); 201 write_extent_buffer(leaf, kaddr + offset, ptr, size); 202 kunmap_atomic(kaddr); 203 page_cache_release(page); 204 } 205 btrfs_mark_buffer_dirty(leaf); 206 btrfs_release_path(path); 207 208 /* 209 * we're an inline extent, so nobody can 210 * extend the file past i_size without locking 211 * a page we already have locked. 212 * 213 * We must do any isize and inode updates 214 * before we unlock the pages. Otherwise we 215 * could end up racing with unlink. 216 */ 217 BTRFS_I(inode)->disk_i_size = inode->i_size; 218 ret = btrfs_update_inode(trans, root, inode); 219 220 return ret; 221 fail: 222 return err; 223 } 224 225 226 /* 227 * conditionally insert an inline extent into the file. This 228 * does the checks required to make sure the data is small enough 229 * to fit as an inline extent. 230 */ 231 static noinline int cow_file_range_inline(struct btrfs_root *root, 232 struct inode *inode, u64 start, 233 u64 end, size_t compressed_size, 234 int compress_type, 235 struct page **compressed_pages) 236 { 237 struct btrfs_trans_handle *trans; 238 u64 isize = i_size_read(inode); 239 u64 actual_end = min(end + 1, isize); 240 u64 inline_len = actual_end - start; 241 u64 aligned_end = ALIGN(end, root->sectorsize); 242 u64 data_len = inline_len; 243 int ret; 244 struct btrfs_path *path; 245 int extent_inserted = 0; 246 u32 extent_item_size; 247 248 if (compressed_size) 249 data_len = compressed_size; 250 251 if (start > 0 || 252 actual_end >= PAGE_CACHE_SIZE || 253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 254 (!compressed_size && 255 (actual_end & (root->sectorsize - 1)) == 0) || 256 end + 1 < isize || 257 data_len > root->fs_info->max_inline) { 258 return 1; 259 } 260 261 path = btrfs_alloc_path(); 262 if (!path) 263 return -ENOMEM; 264 265 trans = btrfs_join_transaction(root); 266 if (IS_ERR(trans)) { 267 btrfs_free_path(path); 268 return PTR_ERR(trans); 269 } 270 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 271 272 if (compressed_size && compressed_pages) 273 extent_item_size = btrfs_file_extent_calc_inline_size( 274 compressed_size); 275 else 276 extent_item_size = btrfs_file_extent_calc_inline_size( 277 inline_len); 278 279 ret = __btrfs_drop_extents(trans, root, inode, path, 280 start, aligned_end, NULL, 281 1, 1, extent_item_size, &extent_inserted); 282 if (ret) { 283 btrfs_abort_transaction(trans, root, ret); 284 goto out; 285 } 286 287 if (isize > actual_end) 288 inline_len = min_t(u64, isize, actual_end); 289 ret = insert_inline_extent(trans, path, extent_inserted, 290 root, inode, start, 291 inline_len, compressed_size, 292 compress_type, compressed_pages); 293 if (ret && ret != -ENOSPC) { 294 btrfs_abort_transaction(trans, root, ret); 295 goto out; 296 } else if (ret == -ENOSPC) { 297 ret = 1; 298 goto out; 299 } 300 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 302 btrfs_delalloc_release_metadata(inode, end + 1 - start); 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 304 out: 305 btrfs_free_path(path); 306 btrfs_end_transaction(trans, root); 307 return ret; 308 } 309 310 struct async_extent { 311 u64 start; 312 u64 ram_size; 313 u64 compressed_size; 314 struct page **pages; 315 unsigned long nr_pages; 316 int compress_type; 317 struct list_head list; 318 }; 319 320 struct async_cow { 321 struct inode *inode; 322 struct btrfs_root *root; 323 struct page *locked_page; 324 u64 start; 325 u64 end; 326 struct list_head extents; 327 struct btrfs_work work; 328 }; 329 330 static noinline int add_async_extent(struct async_cow *cow, 331 u64 start, u64 ram_size, 332 u64 compressed_size, 333 struct page **pages, 334 unsigned long nr_pages, 335 int compress_type) 336 { 337 struct async_extent *async_extent; 338 339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 340 BUG_ON(!async_extent); /* -ENOMEM */ 341 async_extent->start = start; 342 async_extent->ram_size = ram_size; 343 async_extent->compressed_size = compressed_size; 344 async_extent->pages = pages; 345 async_extent->nr_pages = nr_pages; 346 async_extent->compress_type = compress_type; 347 list_add_tail(&async_extent->list, &cow->extents); 348 return 0; 349 } 350 351 /* 352 * we create compressed extents in two phases. The first 353 * phase compresses a range of pages that have already been 354 * locked (both pages and state bits are locked). 355 * 356 * This is done inside an ordered work queue, and the compression 357 * is spread across many cpus. The actual IO submission is step 358 * two, and the ordered work queue takes care of making sure that 359 * happens in the same order things were put onto the queue by 360 * writepages and friends. 361 * 362 * If this code finds it can't get good compression, it puts an 363 * entry onto the work queue to write the uncompressed bytes. This 364 * makes sure that both compressed inodes and uncompressed inodes 365 * are written in the same order that the flusher thread sent them 366 * down. 367 */ 368 static noinline int compress_file_range(struct inode *inode, 369 struct page *locked_page, 370 u64 start, u64 end, 371 struct async_cow *async_cow, 372 int *num_added) 373 { 374 struct btrfs_root *root = BTRFS_I(inode)->root; 375 u64 num_bytes; 376 u64 blocksize = root->sectorsize; 377 u64 actual_end; 378 u64 isize = i_size_read(inode); 379 int ret = 0; 380 struct page **pages = NULL; 381 unsigned long nr_pages; 382 unsigned long nr_pages_ret = 0; 383 unsigned long total_compressed = 0; 384 unsigned long total_in = 0; 385 unsigned long max_compressed = 128 * 1024; 386 unsigned long max_uncompressed = 128 * 1024; 387 int i; 388 int will_compress; 389 int compress_type = root->fs_info->compress_type; 390 int redirty = 0; 391 392 /* if this is a small write inside eof, kick off a defrag */ 393 if ((end - start + 1) < 16 * 1024 && 394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 395 btrfs_add_inode_defrag(NULL, inode); 396 397 /* 398 * skip compression for a small file range(<=blocksize) that 399 * isn't an inline extent, since it dosen't save disk space at all. 400 */ 401 if ((end - start + 1) <= blocksize && 402 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 403 goto cleanup_and_bail_uncompressed; 404 405 actual_end = min_t(u64, isize, end + 1); 406 again: 407 will_compress = 0; 408 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 409 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 410 411 /* 412 * we don't want to send crud past the end of i_size through 413 * compression, that's just a waste of CPU time. So, if the 414 * end of the file is before the start of our current 415 * requested range of bytes, we bail out to the uncompressed 416 * cleanup code that can deal with all of this. 417 * 418 * It isn't really the fastest way to fix things, but this is a 419 * very uncommon corner. 420 */ 421 if (actual_end <= start) 422 goto cleanup_and_bail_uncompressed; 423 424 total_compressed = actual_end - start; 425 426 /* we want to make sure that amount of ram required to uncompress 427 * an extent is reasonable, so we limit the total size in ram 428 * of a compressed extent to 128k. This is a crucial number 429 * because it also controls how easily we can spread reads across 430 * cpus for decompression. 431 * 432 * We also want to make sure the amount of IO required to do 433 * a random read is reasonably small, so we limit the size of 434 * a compressed extent to 128k. 435 */ 436 total_compressed = min(total_compressed, max_uncompressed); 437 num_bytes = ALIGN(end - start + 1, blocksize); 438 num_bytes = max(blocksize, num_bytes); 439 total_in = 0; 440 ret = 0; 441 442 /* 443 * we do compression for mount -o compress and when the 444 * inode has not been flagged as nocompress. This flag can 445 * change at any time if we discover bad compression ratios. 446 */ 447 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 448 (btrfs_test_opt(root, COMPRESS) || 449 (BTRFS_I(inode)->force_compress) || 450 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 451 WARN_ON(pages); 452 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 453 if (!pages) { 454 /* just bail out to the uncompressed code */ 455 goto cont; 456 } 457 458 if (BTRFS_I(inode)->force_compress) 459 compress_type = BTRFS_I(inode)->force_compress; 460 461 /* 462 * we need to call clear_page_dirty_for_io on each 463 * page in the range. Otherwise applications with the file 464 * mmap'd can wander in and change the page contents while 465 * we are compressing them. 466 * 467 * If the compression fails for any reason, we set the pages 468 * dirty again later on. 469 */ 470 extent_range_clear_dirty_for_io(inode, start, end); 471 redirty = 1; 472 ret = btrfs_compress_pages(compress_type, 473 inode->i_mapping, start, 474 total_compressed, pages, 475 nr_pages, &nr_pages_ret, 476 &total_in, 477 &total_compressed, 478 max_compressed); 479 480 if (!ret) { 481 unsigned long offset = total_compressed & 482 (PAGE_CACHE_SIZE - 1); 483 struct page *page = pages[nr_pages_ret - 1]; 484 char *kaddr; 485 486 /* zero the tail end of the last page, we might be 487 * sending it down to disk 488 */ 489 if (offset) { 490 kaddr = kmap_atomic(page); 491 memset(kaddr + offset, 0, 492 PAGE_CACHE_SIZE - offset); 493 kunmap_atomic(kaddr); 494 } 495 will_compress = 1; 496 } 497 } 498 cont: 499 if (start == 0) { 500 /* lets try to make an inline extent */ 501 if (ret || total_in < (actual_end - start)) { 502 /* we didn't compress the entire range, try 503 * to make an uncompressed inline extent. 504 */ 505 ret = cow_file_range_inline(root, inode, start, end, 506 0, 0, NULL); 507 } else { 508 /* try making a compressed inline extent */ 509 ret = cow_file_range_inline(root, inode, start, end, 510 total_compressed, 511 compress_type, pages); 512 } 513 if (ret <= 0) { 514 unsigned long clear_flags = EXTENT_DELALLOC | 515 EXTENT_DEFRAG; 516 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 517 518 /* 519 * inline extent creation worked or returned error, 520 * we don't need to create any more async work items. 521 * Unlock and free up our temp pages. 522 */ 523 extent_clear_unlock_delalloc(inode, start, end, NULL, 524 clear_flags, PAGE_UNLOCK | 525 PAGE_CLEAR_DIRTY | 526 PAGE_SET_WRITEBACK | 527 PAGE_END_WRITEBACK); 528 goto free_pages_out; 529 } 530 } 531 532 if (will_compress) { 533 /* 534 * we aren't doing an inline extent round the compressed size 535 * up to a block size boundary so the allocator does sane 536 * things 537 */ 538 total_compressed = ALIGN(total_compressed, blocksize); 539 540 /* 541 * one last check to make sure the compression is really a 542 * win, compare the page count read with the blocks on disk 543 */ 544 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 545 if (total_compressed >= total_in) { 546 will_compress = 0; 547 } else { 548 num_bytes = total_in; 549 } 550 } 551 if (!will_compress && pages) { 552 /* 553 * the compression code ran but failed to make things smaller, 554 * free any pages it allocated and our page pointer array 555 */ 556 for (i = 0; i < nr_pages_ret; i++) { 557 WARN_ON(pages[i]->mapping); 558 page_cache_release(pages[i]); 559 } 560 kfree(pages); 561 pages = NULL; 562 total_compressed = 0; 563 nr_pages_ret = 0; 564 565 /* flag the file so we don't compress in the future */ 566 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 567 !(BTRFS_I(inode)->force_compress)) { 568 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 569 } 570 } 571 if (will_compress) { 572 *num_added += 1; 573 574 /* the async work queues will take care of doing actual 575 * allocation on disk for these compressed pages, 576 * and will submit them to the elevator. 577 */ 578 add_async_extent(async_cow, start, num_bytes, 579 total_compressed, pages, nr_pages_ret, 580 compress_type); 581 582 if (start + num_bytes < end) { 583 start += num_bytes; 584 pages = NULL; 585 cond_resched(); 586 goto again; 587 } 588 } else { 589 cleanup_and_bail_uncompressed: 590 /* 591 * No compression, but we still need to write the pages in 592 * the file we've been given so far. redirty the locked 593 * page if it corresponds to our extent and set things up 594 * for the async work queue to run cow_file_range to do 595 * the normal delalloc dance 596 */ 597 if (page_offset(locked_page) >= start && 598 page_offset(locked_page) <= end) { 599 __set_page_dirty_nobuffers(locked_page); 600 /* unlocked later on in the async handlers */ 601 } 602 if (redirty) 603 extent_range_redirty_for_io(inode, start, end); 604 add_async_extent(async_cow, start, end - start + 1, 605 0, NULL, 0, BTRFS_COMPRESS_NONE); 606 *num_added += 1; 607 } 608 609 out: 610 return ret; 611 612 free_pages_out: 613 for (i = 0; i < nr_pages_ret; i++) { 614 WARN_ON(pages[i]->mapping); 615 page_cache_release(pages[i]); 616 } 617 kfree(pages); 618 619 goto out; 620 } 621 622 /* 623 * phase two of compressed writeback. This is the ordered portion 624 * of the code, which only gets called in the order the work was 625 * queued. We walk all the async extents created by compress_file_range 626 * and send them down to the disk. 627 */ 628 static noinline int submit_compressed_extents(struct inode *inode, 629 struct async_cow *async_cow) 630 { 631 struct async_extent *async_extent; 632 u64 alloc_hint = 0; 633 struct btrfs_key ins; 634 struct extent_map *em; 635 struct btrfs_root *root = BTRFS_I(inode)->root; 636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 637 struct extent_io_tree *io_tree; 638 int ret = 0; 639 640 if (list_empty(&async_cow->extents)) 641 return 0; 642 643 again: 644 while (!list_empty(&async_cow->extents)) { 645 async_extent = list_entry(async_cow->extents.next, 646 struct async_extent, list); 647 list_del(&async_extent->list); 648 649 io_tree = &BTRFS_I(inode)->io_tree; 650 651 retry: 652 /* did the compression code fall back to uncompressed IO? */ 653 if (!async_extent->pages) { 654 int page_started = 0; 655 unsigned long nr_written = 0; 656 657 lock_extent(io_tree, async_extent->start, 658 async_extent->start + 659 async_extent->ram_size - 1); 660 661 /* allocate blocks */ 662 ret = cow_file_range(inode, async_cow->locked_page, 663 async_extent->start, 664 async_extent->start + 665 async_extent->ram_size - 1, 666 &page_started, &nr_written, 0); 667 668 /* JDM XXX */ 669 670 /* 671 * if page_started, cow_file_range inserted an 672 * inline extent and took care of all the unlocking 673 * and IO for us. Otherwise, we need to submit 674 * all those pages down to the drive. 675 */ 676 if (!page_started && !ret) 677 extent_write_locked_range(io_tree, 678 inode, async_extent->start, 679 async_extent->start + 680 async_extent->ram_size - 1, 681 btrfs_get_extent, 682 WB_SYNC_ALL); 683 else if (ret) 684 unlock_page(async_cow->locked_page); 685 kfree(async_extent); 686 cond_resched(); 687 continue; 688 } 689 690 lock_extent(io_tree, async_extent->start, 691 async_extent->start + async_extent->ram_size - 1); 692 693 ret = btrfs_reserve_extent(root, 694 async_extent->compressed_size, 695 async_extent->compressed_size, 696 0, alloc_hint, &ins, 1); 697 if (ret) { 698 int i; 699 700 for (i = 0; i < async_extent->nr_pages; i++) { 701 WARN_ON(async_extent->pages[i]->mapping); 702 page_cache_release(async_extent->pages[i]); 703 } 704 kfree(async_extent->pages); 705 async_extent->nr_pages = 0; 706 async_extent->pages = NULL; 707 708 if (ret == -ENOSPC) { 709 unlock_extent(io_tree, async_extent->start, 710 async_extent->start + 711 async_extent->ram_size - 1); 712 goto retry; 713 } 714 goto out_free; 715 } 716 717 /* 718 * here we're doing allocation and writeback of the 719 * compressed pages 720 */ 721 btrfs_drop_extent_cache(inode, async_extent->start, 722 async_extent->start + 723 async_extent->ram_size - 1, 0); 724 725 em = alloc_extent_map(); 726 if (!em) { 727 ret = -ENOMEM; 728 goto out_free_reserve; 729 } 730 em->start = async_extent->start; 731 em->len = async_extent->ram_size; 732 em->orig_start = em->start; 733 em->mod_start = em->start; 734 em->mod_len = em->len; 735 736 em->block_start = ins.objectid; 737 em->block_len = ins.offset; 738 em->orig_block_len = ins.offset; 739 em->ram_bytes = async_extent->ram_size; 740 em->bdev = root->fs_info->fs_devices->latest_bdev; 741 em->compress_type = async_extent->compress_type; 742 set_bit(EXTENT_FLAG_PINNED, &em->flags); 743 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 744 em->generation = -1; 745 746 while (1) { 747 write_lock(&em_tree->lock); 748 ret = add_extent_mapping(em_tree, em, 1); 749 write_unlock(&em_tree->lock); 750 if (ret != -EEXIST) { 751 free_extent_map(em); 752 break; 753 } 754 btrfs_drop_extent_cache(inode, async_extent->start, 755 async_extent->start + 756 async_extent->ram_size - 1, 0); 757 } 758 759 if (ret) 760 goto out_free_reserve; 761 762 ret = btrfs_add_ordered_extent_compress(inode, 763 async_extent->start, 764 ins.objectid, 765 async_extent->ram_size, 766 ins.offset, 767 BTRFS_ORDERED_COMPRESSED, 768 async_extent->compress_type); 769 if (ret) 770 goto out_free_reserve; 771 772 /* 773 * clear dirty, set writeback and unlock the pages. 774 */ 775 extent_clear_unlock_delalloc(inode, async_extent->start, 776 async_extent->start + 777 async_extent->ram_size - 1, 778 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 779 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 780 PAGE_SET_WRITEBACK); 781 ret = btrfs_submit_compressed_write(inode, 782 async_extent->start, 783 async_extent->ram_size, 784 ins.objectid, 785 ins.offset, async_extent->pages, 786 async_extent->nr_pages); 787 alloc_hint = ins.objectid + ins.offset; 788 kfree(async_extent); 789 if (ret) 790 goto out; 791 cond_resched(); 792 } 793 ret = 0; 794 out: 795 return ret; 796 out_free_reserve: 797 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 798 out_free: 799 extent_clear_unlock_delalloc(inode, async_extent->start, 800 async_extent->start + 801 async_extent->ram_size - 1, 802 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 803 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 804 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 805 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 806 kfree(async_extent); 807 goto again; 808 } 809 810 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 811 u64 num_bytes) 812 { 813 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 814 struct extent_map *em; 815 u64 alloc_hint = 0; 816 817 read_lock(&em_tree->lock); 818 em = search_extent_mapping(em_tree, start, num_bytes); 819 if (em) { 820 /* 821 * if block start isn't an actual block number then find the 822 * first block in this inode and use that as a hint. If that 823 * block is also bogus then just don't worry about it. 824 */ 825 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 826 free_extent_map(em); 827 em = search_extent_mapping(em_tree, 0, 0); 828 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 829 alloc_hint = em->block_start; 830 if (em) 831 free_extent_map(em); 832 } else { 833 alloc_hint = em->block_start; 834 free_extent_map(em); 835 } 836 } 837 read_unlock(&em_tree->lock); 838 839 return alloc_hint; 840 } 841 842 /* 843 * when extent_io.c finds a delayed allocation range in the file, 844 * the call backs end up in this code. The basic idea is to 845 * allocate extents on disk for the range, and create ordered data structs 846 * in ram to track those extents. 847 * 848 * locked_page is the page that writepage had locked already. We use 849 * it to make sure we don't do extra locks or unlocks. 850 * 851 * *page_started is set to one if we unlock locked_page and do everything 852 * required to start IO on it. It may be clean and already done with 853 * IO when we return. 854 */ 855 static noinline int cow_file_range(struct inode *inode, 856 struct page *locked_page, 857 u64 start, u64 end, int *page_started, 858 unsigned long *nr_written, 859 int unlock) 860 { 861 struct btrfs_root *root = BTRFS_I(inode)->root; 862 u64 alloc_hint = 0; 863 u64 num_bytes; 864 unsigned long ram_size; 865 u64 disk_num_bytes; 866 u64 cur_alloc_size; 867 u64 blocksize = root->sectorsize; 868 struct btrfs_key ins; 869 struct extent_map *em; 870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 871 int ret = 0; 872 873 if (btrfs_is_free_space_inode(inode)) { 874 WARN_ON_ONCE(1); 875 ret = -EINVAL; 876 goto out_unlock; 877 } 878 879 num_bytes = ALIGN(end - start + 1, blocksize); 880 num_bytes = max(blocksize, num_bytes); 881 disk_num_bytes = num_bytes; 882 883 /* if this is a small write inside eof, kick off defrag */ 884 if (num_bytes < 64 * 1024 && 885 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 886 btrfs_add_inode_defrag(NULL, inode); 887 888 if (start == 0) { 889 /* lets try to make an inline extent */ 890 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 891 NULL); 892 if (ret == 0) { 893 extent_clear_unlock_delalloc(inode, start, end, NULL, 894 EXTENT_LOCKED | EXTENT_DELALLOC | 895 EXTENT_DEFRAG, PAGE_UNLOCK | 896 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 897 PAGE_END_WRITEBACK); 898 899 *nr_written = *nr_written + 900 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 901 *page_started = 1; 902 goto out; 903 } else if (ret < 0) { 904 goto out_unlock; 905 } 906 } 907 908 BUG_ON(disk_num_bytes > 909 btrfs_super_total_bytes(root->fs_info->super_copy)); 910 911 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 912 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 913 914 while (disk_num_bytes > 0) { 915 unsigned long op; 916 917 cur_alloc_size = disk_num_bytes; 918 ret = btrfs_reserve_extent(root, cur_alloc_size, 919 root->sectorsize, 0, alloc_hint, 920 &ins, 1); 921 if (ret < 0) 922 goto out_unlock; 923 924 em = alloc_extent_map(); 925 if (!em) { 926 ret = -ENOMEM; 927 goto out_reserve; 928 } 929 em->start = start; 930 em->orig_start = em->start; 931 ram_size = ins.offset; 932 em->len = ins.offset; 933 em->mod_start = em->start; 934 em->mod_len = em->len; 935 936 em->block_start = ins.objectid; 937 em->block_len = ins.offset; 938 em->orig_block_len = ins.offset; 939 em->ram_bytes = ram_size; 940 em->bdev = root->fs_info->fs_devices->latest_bdev; 941 set_bit(EXTENT_FLAG_PINNED, &em->flags); 942 em->generation = -1; 943 944 while (1) { 945 write_lock(&em_tree->lock); 946 ret = add_extent_mapping(em_tree, em, 1); 947 write_unlock(&em_tree->lock); 948 if (ret != -EEXIST) { 949 free_extent_map(em); 950 break; 951 } 952 btrfs_drop_extent_cache(inode, start, 953 start + ram_size - 1, 0); 954 } 955 if (ret) 956 goto out_reserve; 957 958 cur_alloc_size = ins.offset; 959 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 960 ram_size, cur_alloc_size, 0); 961 if (ret) 962 goto out_reserve; 963 964 if (root->root_key.objectid == 965 BTRFS_DATA_RELOC_TREE_OBJECTID) { 966 ret = btrfs_reloc_clone_csums(inode, start, 967 cur_alloc_size); 968 if (ret) 969 goto out_reserve; 970 } 971 972 if (disk_num_bytes < cur_alloc_size) 973 break; 974 975 /* we're not doing compressed IO, don't unlock the first 976 * page (which the caller expects to stay locked), don't 977 * clear any dirty bits and don't set any writeback bits 978 * 979 * Do set the Private2 bit so we know this page was properly 980 * setup for writepage 981 */ 982 op = unlock ? PAGE_UNLOCK : 0; 983 op |= PAGE_SET_PRIVATE2; 984 985 extent_clear_unlock_delalloc(inode, start, 986 start + ram_size - 1, locked_page, 987 EXTENT_LOCKED | EXTENT_DELALLOC, 988 op); 989 disk_num_bytes -= cur_alloc_size; 990 num_bytes -= cur_alloc_size; 991 alloc_hint = ins.objectid + ins.offset; 992 start += cur_alloc_size; 993 } 994 out: 995 return ret; 996 997 out_reserve: 998 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 999 out_unlock: 1000 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1001 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1002 EXTENT_DELALLOC | EXTENT_DEFRAG, 1003 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1004 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1005 goto out; 1006 } 1007 1008 /* 1009 * work queue call back to started compression on a file and pages 1010 */ 1011 static noinline void async_cow_start(struct btrfs_work *work) 1012 { 1013 struct async_cow *async_cow; 1014 int num_added = 0; 1015 async_cow = container_of(work, struct async_cow, work); 1016 1017 compress_file_range(async_cow->inode, async_cow->locked_page, 1018 async_cow->start, async_cow->end, async_cow, 1019 &num_added); 1020 if (num_added == 0) { 1021 btrfs_add_delayed_iput(async_cow->inode); 1022 async_cow->inode = NULL; 1023 } 1024 } 1025 1026 /* 1027 * work queue call back to submit previously compressed pages 1028 */ 1029 static noinline void async_cow_submit(struct btrfs_work *work) 1030 { 1031 struct async_cow *async_cow; 1032 struct btrfs_root *root; 1033 unsigned long nr_pages; 1034 1035 async_cow = container_of(work, struct async_cow, work); 1036 1037 root = async_cow->root; 1038 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1039 PAGE_CACHE_SHIFT; 1040 1041 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1042 5 * 1024 * 1024 && 1043 waitqueue_active(&root->fs_info->async_submit_wait)) 1044 wake_up(&root->fs_info->async_submit_wait); 1045 1046 if (async_cow->inode) 1047 submit_compressed_extents(async_cow->inode, async_cow); 1048 } 1049 1050 static noinline void async_cow_free(struct btrfs_work *work) 1051 { 1052 struct async_cow *async_cow; 1053 async_cow = container_of(work, struct async_cow, work); 1054 if (async_cow->inode) 1055 btrfs_add_delayed_iput(async_cow->inode); 1056 kfree(async_cow); 1057 } 1058 1059 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1060 u64 start, u64 end, int *page_started, 1061 unsigned long *nr_written) 1062 { 1063 struct async_cow *async_cow; 1064 struct btrfs_root *root = BTRFS_I(inode)->root; 1065 unsigned long nr_pages; 1066 u64 cur_end; 1067 int limit = 10 * 1024 * 1024; 1068 1069 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1070 1, 0, NULL, GFP_NOFS); 1071 while (start < end) { 1072 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1073 BUG_ON(!async_cow); /* -ENOMEM */ 1074 async_cow->inode = igrab(inode); 1075 async_cow->root = root; 1076 async_cow->locked_page = locked_page; 1077 async_cow->start = start; 1078 1079 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1080 cur_end = end; 1081 else 1082 cur_end = min(end, start + 512 * 1024 - 1); 1083 1084 async_cow->end = cur_end; 1085 INIT_LIST_HEAD(&async_cow->extents); 1086 1087 btrfs_init_work(&async_cow->work, async_cow_start, 1088 async_cow_submit, async_cow_free); 1089 1090 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1091 PAGE_CACHE_SHIFT; 1092 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1093 1094 btrfs_queue_work(root->fs_info->delalloc_workers, 1095 &async_cow->work); 1096 1097 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1098 wait_event(root->fs_info->async_submit_wait, 1099 (atomic_read(&root->fs_info->async_delalloc_pages) < 1100 limit)); 1101 } 1102 1103 while (atomic_read(&root->fs_info->async_submit_draining) && 1104 atomic_read(&root->fs_info->async_delalloc_pages)) { 1105 wait_event(root->fs_info->async_submit_wait, 1106 (atomic_read(&root->fs_info->async_delalloc_pages) == 1107 0)); 1108 } 1109 1110 *nr_written += nr_pages; 1111 start = cur_end + 1; 1112 } 1113 *page_started = 1; 1114 return 0; 1115 } 1116 1117 static noinline int csum_exist_in_range(struct btrfs_root *root, 1118 u64 bytenr, u64 num_bytes) 1119 { 1120 int ret; 1121 struct btrfs_ordered_sum *sums; 1122 LIST_HEAD(list); 1123 1124 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1125 bytenr + num_bytes - 1, &list, 0); 1126 if (ret == 0 && list_empty(&list)) 1127 return 0; 1128 1129 while (!list_empty(&list)) { 1130 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1131 list_del(&sums->list); 1132 kfree(sums); 1133 } 1134 return 1; 1135 } 1136 1137 /* 1138 * when nowcow writeback call back. This checks for snapshots or COW copies 1139 * of the extents that exist in the file, and COWs the file as required. 1140 * 1141 * If no cow copies or snapshots exist, we write directly to the existing 1142 * blocks on disk 1143 */ 1144 static noinline int run_delalloc_nocow(struct inode *inode, 1145 struct page *locked_page, 1146 u64 start, u64 end, int *page_started, int force, 1147 unsigned long *nr_written) 1148 { 1149 struct btrfs_root *root = BTRFS_I(inode)->root; 1150 struct btrfs_trans_handle *trans; 1151 struct extent_buffer *leaf; 1152 struct btrfs_path *path; 1153 struct btrfs_file_extent_item *fi; 1154 struct btrfs_key found_key; 1155 u64 cow_start; 1156 u64 cur_offset; 1157 u64 extent_end; 1158 u64 extent_offset; 1159 u64 disk_bytenr; 1160 u64 num_bytes; 1161 u64 disk_num_bytes; 1162 u64 ram_bytes; 1163 int extent_type; 1164 int ret, err; 1165 int type; 1166 int nocow; 1167 int check_prev = 1; 1168 bool nolock; 1169 u64 ino = btrfs_ino(inode); 1170 1171 path = btrfs_alloc_path(); 1172 if (!path) { 1173 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1174 EXTENT_LOCKED | EXTENT_DELALLOC | 1175 EXTENT_DO_ACCOUNTING | 1176 EXTENT_DEFRAG, PAGE_UNLOCK | 1177 PAGE_CLEAR_DIRTY | 1178 PAGE_SET_WRITEBACK | 1179 PAGE_END_WRITEBACK); 1180 return -ENOMEM; 1181 } 1182 1183 nolock = btrfs_is_free_space_inode(inode); 1184 1185 if (nolock) 1186 trans = btrfs_join_transaction_nolock(root); 1187 else 1188 trans = btrfs_join_transaction(root); 1189 1190 if (IS_ERR(trans)) { 1191 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1192 EXTENT_LOCKED | EXTENT_DELALLOC | 1193 EXTENT_DO_ACCOUNTING | 1194 EXTENT_DEFRAG, PAGE_UNLOCK | 1195 PAGE_CLEAR_DIRTY | 1196 PAGE_SET_WRITEBACK | 1197 PAGE_END_WRITEBACK); 1198 btrfs_free_path(path); 1199 return PTR_ERR(trans); 1200 } 1201 1202 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1203 1204 cow_start = (u64)-1; 1205 cur_offset = start; 1206 while (1) { 1207 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1208 cur_offset, 0); 1209 if (ret < 0) 1210 goto error; 1211 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1212 leaf = path->nodes[0]; 1213 btrfs_item_key_to_cpu(leaf, &found_key, 1214 path->slots[0] - 1); 1215 if (found_key.objectid == ino && 1216 found_key.type == BTRFS_EXTENT_DATA_KEY) 1217 path->slots[0]--; 1218 } 1219 check_prev = 0; 1220 next_slot: 1221 leaf = path->nodes[0]; 1222 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1223 ret = btrfs_next_leaf(root, path); 1224 if (ret < 0) 1225 goto error; 1226 if (ret > 0) 1227 break; 1228 leaf = path->nodes[0]; 1229 } 1230 1231 nocow = 0; 1232 disk_bytenr = 0; 1233 num_bytes = 0; 1234 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1235 1236 if (found_key.objectid > ino || 1237 found_key.type > BTRFS_EXTENT_DATA_KEY || 1238 found_key.offset > end) 1239 break; 1240 1241 if (found_key.offset > cur_offset) { 1242 extent_end = found_key.offset; 1243 extent_type = 0; 1244 goto out_check; 1245 } 1246 1247 fi = btrfs_item_ptr(leaf, path->slots[0], 1248 struct btrfs_file_extent_item); 1249 extent_type = btrfs_file_extent_type(leaf, fi); 1250 1251 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1252 if (extent_type == BTRFS_FILE_EXTENT_REG || 1253 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1254 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1255 extent_offset = btrfs_file_extent_offset(leaf, fi); 1256 extent_end = found_key.offset + 1257 btrfs_file_extent_num_bytes(leaf, fi); 1258 disk_num_bytes = 1259 btrfs_file_extent_disk_num_bytes(leaf, fi); 1260 if (extent_end <= start) { 1261 path->slots[0]++; 1262 goto next_slot; 1263 } 1264 if (disk_bytenr == 0) 1265 goto out_check; 1266 if (btrfs_file_extent_compression(leaf, fi) || 1267 btrfs_file_extent_encryption(leaf, fi) || 1268 btrfs_file_extent_other_encoding(leaf, fi)) 1269 goto out_check; 1270 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1271 goto out_check; 1272 if (btrfs_extent_readonly(root, disk_bytenr)) 1273 goto out_check; 1274 if (btrfs_cross_ref_exist(trans, root, ino, 1275 found_key.offset - 1276 extent_offset, disk_bytenr)) 1277 goto out_check; 1278 disk_bytenr += extent_offset; 1279 disk_bytenr += cur_offset - found_key.offset; 1280 num_bytes = min(end + 1, extent_end) - cur_offset; 1281 /* 1282 * if there are pending snapshots for this root, 1283 * we fall into common COW way. 1284 */ 1285 if (!nolock) { 1286 err = btrfs_start_nocow_write(root); 1287 if (!err) 1288 goto out_check; 1289 } 1290 /* 1291 * force cow if csum exists in the range. 1292 * this ensure that csum for a given extent are 1293 * either valid or do not exist. 1294 */ 1295 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1296 goto out_check; 1297 nocow = 1; 1298 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1299 extent_end = found_key.offset + 1300 btrfs_file_extent_inline_len(leaf, 1301 path->slots[0], fi); 1302 extent_end = ALIGN(extent_end, root->sectorsize); 1303 } else { 1304 BUG_ON(1); 1305 } 1306 out_check: 1307 if (extent_end <= start) { 1308 path->slots[0]++; 1309 if (!nolock && nocow) 1310 btrfs_end_nocow_write(root); 1311 goto next_slot; 1312 } 1313 if (!nocow) { 1314 if (cow_start == (u64)-1) 1315 cow_start = cur_offset; 1316 cur_offset = extent_end; 1317 if (cur_offset > end) 1318 break; 1319 path->slots[0]++; 1320 goto next_slot; 1321 } 1322 1323 btrfs_release_path(path); 1324 if (cow_start != (u64)-1) { 1325 ret = cow_file_range(inode, locked_page, 1326 cow_start, found_key.offset - 1, 1327 page_started, nr_written, 1); 1328 if (ret) { 1329 if (!nolock && nocow) 1330 btrfs_end_nocow_write(root); 1331 goto error; 1332 } 1333 cow_start = (u64)-1; 1334 } 1335 1336 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1337 struct extent_map *em; 1338 struct extent_map_tree *em_tree; 1339 em_tree = &BTRFS_I(inode)->extent_tree; 1340 em = alloc_extent_map(); 1341 BUG_ON(!em); /* -ENOMEM */ 1342 em->start = cur_offset; 1343 em->orig_start = found_key.offset - extent_offset; 1344 em->len = num_bytes; 1345 em->block_len = num_bytes; 1346 em->block_start = disk_bytenr; 1347 em->orig_block_len = disk_num_bytes; 1348 em->ram_bytes = ram_bytes; 1349 em->bdev = root->fs_info->fs_devices->latest_bdev; 1350 em->mod_start = em->start; 1351 em->mod_len = em->len; 1352 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1353 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1354 em->generation = -1; 1355 while (1) { 1356 write_lock(&em_tree->lock); 1357 ret = add_extent_mapping(em_tree, em, 1); 1358 write_unlock(&em_tree->lock); 1359 if (ret != -EEXIST) { 1360 free_extent_map(em); 1361 break; 1362 } 1363 btrfs_drop_extent_cache(inode, em->start, 1364 em->start + em->len - 1, 0); 1365 } 1366 type = BTRFS_ORDERED_PREALLOC; 1367 } else { 1368 type = BTRFS_ORDERED_NOCOW; 1369 } 1370 1371 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1372 num_bytes, num_bytes, type); 1373 BUG_ON(ret); /* -ENOMEM */ 1374 1375 if (root->root_key.objectid == 1376 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1377 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1378 num_bytes); 1379 if (ret) { 1380 if (!nolock && nocow) 1381 btrfs_end_nocow_write(root); 1382 goto error; 1383 } 1384 } 1385 1386 extent_clear_unlock_delalloc(inode, cur_offset, 1387 cur_offset + num_bytes - 1, 1388 locked_page, EXTENT_LOCKED | 1389 EXTENT_DELALLOC, PAGE_UNLOCK | 1390 PAGE_SET_PRIVATE2); 1391 if (!nolock && nocow) 1392 btrfs_end_nocow_write(root); 1393 cur_offset = extent_end; 1394 if (cur_offset > end) 1395 break; 1396 } 1397 btrfs_release_path(path); 1398 1399 if (cur_offset <= end && cow_start == (u64)-1) { 1400 cow_start = cur_offset; 1401 cur_offset = end; 1402 } 1403 1404 if (cow_start != (u64)-1) { 1405 ret = cow_file_range(inode, locked_page, cow_start, end, 1406 page_started, nr_written, 1); 1407 if (ret) 1408 goto error; 1409 } 1410 1411 error: 1412 err = btrfs_end_transaction(trans, root); 1413 if (!ret) 1414 ret = err; 1415 1416 if (ret && cur_offset < end) 1417 extent_clear_unlock_delalloc(inode, cur_offset, end, 1418 locked_page, EXTENT_LOCKED | 1419 EXTENT_DELALLOC | EXTENT_DEFRAG | 1420 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1421 PAGE_CLEAR_DIRTY | 1422 PAGE_SET_WRITEBACK | 1423 PAGE_END_WRITEBACK); 1424 btrfs_free_path(path); 1425 return ret; 1426 } 1427 1428 /* 1429 * extent_io.c call back to do delayed allocation processing 1430 */ 1431 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1432 u64 start, u64 end, int *page_started, 1433 unsigned long *nr_written) 1434 { 1435 int ret; 1436 struct btrfs_root *root = BTRFS_I(inode)->root; 1437 1438 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1439 ret = run_delalloc_nocow(inode, locked_page, start, end, 1440 page_started, 1, nr_written); 1441 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1442 ret = run_delalloc_nocow(inode, locked_page, start, end, 1443 page_started, 0, nr_written); 1444 } else if (!btrfs_test_opt(root, COMPRESS) && 1445 !(BTRFS_I(inode)->force_compress) && 1446 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1447 ret = cow_file_range(inode, locked_page, start, end, 1448 page_started, nr_written, 1); 1449 } else { 1450 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1451 &BTRFS_I(inode)->runtime_flags); 1452 ret = cow_file_range_async(inode, locked_page, start, end, 1453 page_started, nr_written); 1454 } 1455 return ret; 1456 } 1457 1458 static void btrfs_split_extent_hook(struct inode *inode, 1459 struct extent_state *orig, u64 split) 1460 { 1461 /* not delalloc, ignore it */ 1462 if (!(orig->state & EXTENT_DELALLOC)) 1463 return; 1464 1465 spin_lock(&BTRFS_I(inode)->lock); 1466 BTRFS_I(inode)->outstanding_extents++; 1467 spin_unlock(&BTRFS_I(inode)->lock); 1468 } 1469 1470 /* 1471 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1472 * extents so we can keep track of new extents that are just merged onto old 1473 * extents, such as when we are doing sequential writes, so we can properly 1474 * account for the metadata space we'll need. 1475 */ 1476 static void btrfs_merge_extent_hook(struct inode *inode, 1477 struct extent_state *new, 1478 struct extent_state *other) 1479 { 1480 /* not delalloc, ignore it */ 1481 if (!(other->state & EXTENT_DELALLOC)) 1482 return; 1483 1484 spin_lock(&BTRFS_I(inode)->lock); 1485 BTRFS_I(inode)->outstanding_extents--; 1486 spin_unlock(&BTRFS_I(inode)->lock); 1487 } 1488 1489 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1490 struct inode *inode) 1491 { 1492 spin_lock(&root->delalloc_lock); 1493 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1494 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1495 &root->delalloc_inodes); 1496 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1497 &BTRFS_I(inode)->runtime_flags); 1498 root->nr_delalloc_inodes++; 1499 if (root->nr_delalloc_inodes == 1) { 1500 spin_lock(&root->fs_info->delalloc_root_lock); 1501 BUG_ON(!list_empty(&root->delalloc_root)); 1502 list_add_tail(&root->delalloc_root, 1503 &root->fs_info->delalloc_roots); 1504 spin_unlock(&root->fs_info->delalloc_root_lock); 1505 } 1506 } 1507 spin_unlock(&root->delalloc_lock); 1508 } 1509 1510 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1511 struct inode *inode) 1512 { 1513 spin_lock(&root->delalloc_lock); 1514 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1515 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1516 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1517 &BTRFS_I(inode)->runtime_flags); 1518 root->nr_delalloc_inodes--; 1519 if (!root->nr_delalloc_inodes) { 1520 spin_lock(&root->fs_info->delalloc_root_lock); 1521 BUG_ON(list_empty(&root->delalloc_root)); 1522 list_del_init(&root->delalloc_root); 1523 spin_unlock(&root->fs_info->delalloc_root_lock); 1524 } 1525 } 1526 spin_unlock(&root->delalloc_lock); 1527 } 1528 1529 /* 1530 * extent_io.c set_bit_hook, used to track delayed allocation 1531 * bytes in this file, and to maintain the list of inodes that 1532 * have pending delalloc work to be done. 1533 */ 1534 static void btrfs_set_bit_hook(struct inode *inode, 1535 struct extent_state *state, unsigned long *bits) 1536 { 1537 1538 /* 1539 * set_bit and clear bit hooks normally require _irqsave/restore 1540 * but in this case, we are only testing for the DELALLOC 1541 * bit, which is only set or cleared with irqs on 1542 */ 1543 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1544 struct btrfs_root *root = BTRFS_I(inode)->root; 1545 u64 len = state->end + 1 - state->start; 1546 bool do_list = !btrfs_is_free_space_inode(inode); 1547 1548 if (*bits & EXTENT_FIRST_DELALLOC) { 1549 *bits &= ~EXTENT_FIRST_DELALLOC; 1550 } else { 1551 spin_lock(&BTRFS_I(inode)->lock); 1552 BTRFS_I(inode)->outstanding_extents++; 1553 spin_unlock(&BTRFS_I(inode)->lock); 1554 } 1555 1556 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1557 root->fs_info->delalloc_batch); 1558 spin_lock(&BTRFS_I(inode)->lock); 1559 BTRFS_I(inode)->delalloc_bytes += len; 1560 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1561 &BTRFS_I(inode)->runtime_flags)) 1562 btrfs_add_delalloc_inodes(root, inode); 1563 spin_unlock(&BTRFS_I(inode)->lock); 1564 } 1565 } 1566 1567 /* 1568 * extent_io.c clear_bit_hook, see set_bit_hook for why 1569 */ 1570 static void btrfs_clear_bit_hook(struct inode *inode, 1571 struct extent_state *state, 1572 unsigned long *bits) 1573 { 1574 /* 1575 * set_bit and clear bit hooks normally require _irqsave/restore 1576 * but in this case, we are only testing for the DELALLOC 1577 * bit, which is only set or cleared with irqs on 1578 */ 1579 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1580 struct btrfs_root *root = BTRFS_I(inode)->root; 1581 u64 len = state->end + 1 - state->start; 1582 bool do_list = !btrfs_is_free_space_inode(inode); 1583 1584 if (*bits & EXTENT_FIRST_DELALLOC) { 1585 *bits &= ~EXTENT_FIRST_DELALLOC; 1586 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1587 spin_lock(&BTRFS_I(inode)->lock); 1588 BTRFS_I(inode)->outstanding_extents--; 1589 spin_unlock(&BTRFS_I(inode)->lock); 1590 } 1591 1592 /* 1593 * We don't reserve metadata space for space cache inodes so we 1594 * don't need to call dellalloc_release_metadata if there is an 1595 * error. 1596 */ 1597 if (*bits & EXTENT_DO_ACCOUNTING && 1598 root != root->fs_info->tree_root) 1599 btrfs_delalloc_release_metadata(inode, len); 1600 1601 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1602 && do_list && !(state->state & EXTENT_NORESERVE)) 1603 btrfs_free_reserved_data_space(inode, len); 1604 1605 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1606 root->fs_info->delalloc_batch); 1607 spin_lock(&BTRFS_I(inode)->lock); 1608 BTRFS_I(inode)->delalloc_bytes -= len; 1609 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1610 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1611 &BTRFS_I(inode)->runtime_flags)) 1612 btrfs_del_delalloc_inode(root, inode); 1613 spin_unlock(&BTRFS_I(inode)->lock); 1614 } 1615 } 1616 1617 /* 1618 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1619 * we don't create bios that span stripes or chunks 1620 */ 1621 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1622 size_t size, struct bio *bio, 1623 unsigned long bio_flags) 1624 { 1625 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1626 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1627 u64 length = 0; 1628 u64 map_length; 1629 int ret; 1630 1631 if (bio_flags & EXTENT_BIO_COMPRESSED) 1632 return 0; 1633 1634 length = bio->bi_iter.bi_size; 1635 map_length = length; 1636 ret = btrfs_map_block(root->fs_info, rw, logical, 1637 &map_length, NULL, 0); 1638 /* Will always return 0 with map_multi == NULL */ 1639 BUG_ON(ret < 0); 1640 if (map_length < length + size) 1641 return 1; 1642 return 0; 1643 } 1644 1645 /* 1646 * in order to insert checksums into the metadata in large chunks, 1647 * we wait until bio submission time. All the pages in the bio are 1648 * checksummed and sums are attached onto the ordered extent record. 1649 * 1650 * At IO completion time the cums attached on the ordered extent record 1651 * are inserted into the btree 1652 */ 1653 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1654 struct bio *bio, int mirror_num, 1655 unsigned long bio_flags, 1656 u64 bio_offset) 1657 { 1658 struct btrfs_root *root = BTRFS_I(inode)->root; 1659 int ret = 0; 1660 1661 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1662 BUG_ON(ret); /* -ENOMEM */ 1663 return 0; 1664 } 1665 1666 /* 1667 * in order to insert checksums into the metadata in large chunks, 1668 * we wait until bio submission time. All the pages in the bio are 1669 * checksummed and sums are attached onto the ordered extent record. 1670 * 1671 * At IO completion time the cums attached on the ordered extent record 1672 * are inserted into the btree 1673 */ 1674 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1675 int mirror_num, unsigned long bio_flags, 1676 u64 bio_offset) 1677 { 1678 struct btrfs_root *root = BTRFS_I(inode)->root; 1679 int ret; 1680 1681 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1682 if (ret) 1683 bio_endio(bio, ret); 1684 return ret; 1685 } 1686 1687 /* 1688 * extent_io.c submission hook. This does the right thing for csum calculation 1689 * on write, or reading the csums from the tree before a read 1690 */ 1691 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1692 int mirror_num, unsigned long bio_flags, 1693 u64 bio_offset) 1694 { 1695 struct btrfs_root *root = BTRFS_I(inode)->root; 1696 int ret = 0; 1697 int skip_sum; 1698 int metadata = 0; 1699 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1700 1701 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1702 1703 if (btrfs_is_free_space_inode(inode)) 1704 metadata = 2; 1705 1706 if (!(rw & REQ_WRITE)) { 1707 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1708 if (ret) 1709 goto out; 1710 1711 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1712 ret = btrfs_submit_compressed_read(inode, bio, 1713 mirror_num, 1714 bio_flags); 1715 goto out; 1716 } else if (!skip_sum) { 1717 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1718 if (ret) 1719 goto out; 1720 } 1721 goto mapit; 1722 } else if (async && !skip_sum) { 1723 /* csum items have already been cloned */ 1724 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1725 goto mapit; 1726 /* we're doing a write, do the async checksumming */ 1727 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1728 inode, rw, bio, mirror_num, 1729 bio_flags, bio_offset, 1730 __btrfs_submit_bio_start, 1731 __btrfs_submit_bio_done); 1732 goto out; 1733 } else if (!skip_sum) { 1734 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1735 if (ret) 1736 goto out; 1737 } 1738 1739 mapit: 1740 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1741 1742 out: 1743 if (ret < 0) 1744 bio_endio(bio, ret); 1745 return ret; 1746 } 1747 1748 /* 1749 * given a list of ordered sums record them in the inode. This happens 1750 * at IO completion time based on sums calculated at bio submission time. 1751 */ 1752 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1753 struct inode *inode, u64 file_offset, 1754 struct list_head *list) 1755 { 1756 struct btrfs_ordered_sum *sum; 1757 1758 list_for_each_entry(sum, list, list) { 1759 trans->adding_csums = 1; 1760 btrfs_csum_file_blocks(trans, 1761 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1762 trans->adding_csums = 0; 1763 } 1764 return 0; 1765 } 1766 1767 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1768 struct extent_state **cached_state) 1769 { 1770 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1771 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1772 cached_state, GFP_NOFS); 1773 } 1774 1775 /* see btrfs_writepage_start_hook for details on why this is required */ 1776 struct btrfs_writepage_fixup { 1777 struct page *page; 1778 struct btrfs_work work; 1779 }; 1780 1781 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1782 { 1783 struct btrfs_writepage_fixup *fixup; 1784 struct btrfs_ordered_extent *ordered; 1785 struct extent_state *cached_state = NULL; 1786 struct page *page; 1787 struct inode *inode; 1788 u64 page_start; 1789 u64 page_end; 1790 int ret; 1791 1792 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1793 page = fixup->page; 1794 again: 1795 lock_page(page); 1796 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1797 ClearPageChecked(page); 1798 goto out_page; 1799 } 1800 1801 inode = page->mapping->host; 1802 page_start = page_offset(page); 1803 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1804 1805 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1806 &cached_state); 1807 1808 /* already ordered? We're done */ 1809 if (PagePrivate2(page)) 1810 goto out; 1811 1812 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1813 if (ordered) { 1814 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1815 page_end, &cached_state, GFP_NOFS); 1816 unlock_page(page); 1817 btrfs_start_ordered_extent(inode, ordered, 1); 1818 btrfs_put_ordered_extent(ordered); 1819 goto again; 1820 } 1821 1822 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1823 if (ret) { 1824 mapping_set_error(page->mapping, ret); 1825 end_extent_writepage(page, ret, page_start, page_end); 1826 ClearPageChecked(page); 1827 goto out; 1828 } 1829 1830 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1831 ClearPageChecked(page); 1832 set_page_dirty(page); 1833 out: 1834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1835 &cached_state, GFP_NOFS); 1836 out_page: 1837 unlock_page(page); 1838 page_cache_release(page); 1839 kfree(fixup); 1840 } 1841 1842 /* 1843 * There are a few paths in the higher layers of the kernel that directly 1844 * set the page dirty bit without asking the filesystem if it is a 1845 * good idea. This causes problems because we want to make sure COW 1846 * properly happens and the data=ordered rules are followed. 1847 * 1848 * In our case any range that doesn't have the ORDERED bit set 1849 * hasn't been properly setup for IO. We kick off an async process 1850 * to fix it up. The async helper will wait for ordered extents, set 1851 * the delalloc bit and make it safe to write the page. 1852 */ 1853 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1854 { 1855 struct inode *inode = page->mapping->host; 1856 struct btrfs_writepage_fixup *fixup; 1857 struct btrfs_root *root = BTRFS_I(inode)->root; 1858 1859 /* this page is properly in the ordered list */ 1860 if (TestClearPagePrivate2(page)) 1861 return 0; 1862 1863 if (PageChecked(page)) 1864 return -EAGAIN; 1865 1866 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1867 if (!fixup) 1868 return -EAGAIN; 1869 1870 SetPageChecked(page); 1871 page_cache_get(page); 1872 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 1873 fixup->page = page; 1874 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 1875 return -EBUSY; 1876 } 1877 1878 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1879 struct inode *inode, u64 file_pos, 1880 u64 disk_bytenr, u64 disk_num_bytes, 1881 u64 num_bytes, u64 ram_bytes, 1882 u8 compression, u8 encryption, 1883 u16 other_encoding, int extent_type) 1884 { 1885 struct btrfs_root *root = BTRFS_I(inode)->root; 1886 struct btrfs_file_extent_item *fi; 1887 struct btrfs_path *path; 1888 struct extent_buffer *leaf; 1889 struct btrfs_key ins; 1890 int extent_inserted = 0; 1891 int ret; 1892 1893 path = btrfs_alloc_path(); 1894 if (!path) 1895 return -ENOMEM; 1896 1897 /* 1898 * we may be replacing one extent in the tree with another. 1899 * The new extent is pinned in the extent map, and we don't want 1900 * to drop it from the cache until it is completely in the btree. 1901 * 1902 * So, tell btrfs_drop_extents to leave this extent in the cache. 1903 * the caller is expected to unpin it and allow it to be merged 1904 * with the others. 1905 */ 1906 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 1907 file_pos + num_bytes, NULL, 0, 1908 1, sizeof(*fi), &extent_inserted); 1909 if (ret) 1910 goto out; 1911 1912 if (!extent_inserted) { 1913 ins.objectid = btrfs_ino(inode); 1914 ins.offset = file_pos; 1915 ins.type = BTRFS_EXTENT_DATA_KEY; 1916 1917 path->leave_spinning = 1; 1918 ret = btrfs_insert_empty_item(trans, root, path, &ins, 1919 sizeof(*fi)); 1920 if (ret) 1921 goto out; 1922 } 1923 leaf = path->nodes[0]; 1924 fi = btrfs_item_ptr(leaf, path->slots[0], 1925 struct btrfs_file_extent_item); 1926 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1927 btrfs_set_file_extent_type(leaf, fi, extent_type); 1928 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1929 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1930 btrfs_set_file_extent_offset(leaf, fi, 0); 1931 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1932 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1933 btrfs_set_file_extent_compression(leaf, fi, compression); 1934 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1935 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1936 1937 btrfs_mark_buffer_dirty(leaf); 1938 btrfs_release_path(path); 1939 1940 inode_add_bytes(inode, num_bytes); 1941 1942 ins.objectid = disk_bytenr; 1943 ins.offset = disk_num_bytes; 1944 ins.type = BTRFS_EXTENT_ITEM_KEY; 1945 ret = btrfs_alloc_reserved_file_extent(trans, root, 1946 root->root_key.objectid, 1947 btrfs_ino(inode), file_pos, &ins); 1948 out: 1949 btrfs_free_path(path); 1950 1951 return ret; 1952 } 1953 1954 /* snapshot-aware defrag */ 1955 struct sa_defrag_extent_backref { 1956 struct rb_node node; 1957 struct old_sa_defrag_extent *old; 1958 u64 root_id; 1959 u64 inum; 1960 u64 file_pos; 1961 u64 extent_offset; 1962 u64 num_bytes; 1963 u64 generation; 1964 }; 1965 1966 struct old_sa_defrag_extent { 1967 struct list_head list; 1968 struct new_sa_defrag_extent *new; 1969 1970 u64 extent_offset; 1971 u64 bytenr; 1972 u64 offset; 1973 u64 len; 1974 int count; 1975 }; 1976 1977 struct new_sa_defrag_extent { 1978 struct rb_root root; 1979 struct list_head head; 1980 struct btrfs_path *path; 1981 struct inode *inode; 1982 u64 file_pos; 1983 u64 len; 1984 u64 bytenr; 1985 u64 disk_len; 1986 u8 compress_type; 1987 }; 1988 1989 static int backref_comp(struct sa_defrag_extent_backref *b1, 1990 struct sa_defrag_extent_backref *b2) 1991 { 1992 if (b1->root_id < b2->root_id) 1993 return -1; 1994 else if (b1->root_id > b2->root_id) 1995 return 1; 1996 1997 if (b1->inum < b2->inum) 1998 return -1; 1999 else if (b1->inum > b2->inum) 2000 return 1; 2001 2002 if (b1->file_pos < b2->file_pos) 2003 return -1; 2004 else if (b1->file_pos > b2->file_pos) 2005 return 1; 2006 2007 /* 2008 * [------------------------------] ===> (a range of space) 2009 * |<--->| |<---->| =============> (fs/file tree A) 2010 * |<---------------------------->| ===> (fs/file tree B) 2011 * 2012 * A range of space can refer to two file extents in one tree while 2013 * refer to only one file extent in another tree. 2014 * 2015 * So we may process a disk offset more than one time(two extents in A) 2016 * and locate at the same extent(one extent in B), then insert two same 2017 * backrefs(both refer to the extent in B). 2018 */ 2019 return 0; 2020 } 2021 2022 static void backref_insert(struct rb_root *root, 2023 struct sa_defrag_extent_backref *backref) 2024 { 2025 struct rb_node **p = &root->rb_node; 2026 struct rb_node *parent = NULL; 2027 struct sa_defrag_extent_backref *entry; 2028 int ret; 2029 2030 while (*p) { 2031 parent = *p; 2032 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2033 2034 ret = backref_comp(backref, entry); 2035 if (ret < 0) 2036 p = &(*p)->rb_left; 2037 else 2038 p = &(*p)->rb_right; 2039 } 2040 2041 rb_link_node(&backref->node, parent, p); 2042 rb_insert_color(&backref->node, root); 2043 } 2044 2045 /* 2046 * Note the backref might has changed, and in this case we just return 0. 2047 */ 2048 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2049 void *ctx) 2050 { 2051 struct btrfs_file_extent_item *extent; 2052 struct btrfs_fs_info *fs_info; 2053 struct old_sa_defrag_extent *old = ctx; 2054 struct new_sa_defrag_extent *new = old->new; 2055 struct btrfs_path *path = new->path; 2056 struct btrfs_key key; 2057 struct btrfs_root *root; 2058 struct sa_defrag_extent_backref *backref; 2059 struct extent_buffer *leaf; 2060 struct inode *inode = new->inode; 2061 int slot; 2062 int ret; 2063 u64 extent_offset; 2064 u64 num_bytes; 2065 2066 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2067 inum == btrfs_ino(inode)) 2068 return 0; 2069 2070 key.objectid = root_id; 2071 key.type = BTRFS_ROOT_ITEM_KEY; 2072 key.offset = (u64)-1; 2073 2074 fs_info = BTRFS_I(inode)->root->fs_info; 2075 root = btrfs_read_fs_root_no_name(fs_info, &key); 2076 if (IS_ERR(root)) { 2077 if (PTR_ERR(root) == -ENOENT) 2078 return 0; 2079 WARN_ON(1); 2080 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2081 inum, offset, root_id); 2082 return PTR_ERR(root); 2083 } 2084 2085 key.objectid = inum; 2086 key.type = BTRFS_EXTENT_DATA_KEY; 2087 if (offset > (u64)-1 << 32) 2088 key.offset = 0; 2089 else 2090 key.offset = offset; 2091 2092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2093 if (WARN_ON(ret < 0)) 2094 return ret; 2095 ret = 0; 2096 2097 while (1) { 2098 cond_resched(); 2099 2100 leaf = path->nodes[0]; 2101 slot = path->slots[0]; 2102 2103 if (slot >= btrfs_header_nritems(leaf)) { 2104 ret = btrfs_next_leaf(root, path); 2105 if (ret < 0) { 2106 goto out; 2107 } else if (ret > 0) { 2108 ret = 0; 2109 goto out; 2110 } 2111 continue; 2112 } 2113 2114 path->slots[0]++; 2115 2116 btrfs_item_key_to_cpu(leaf, &key, slot); 2117 2118 if (key.objectid > inum) 2119 goto out; 2120 2121 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2122 continue; 2123 2124 extent = btrfs_item_ptr(leaf, slot, 2125 struct btrfs_file_extent_item); 2126 2127 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2128 continue; 2129 2130 /* 2131 * 'offset' refers to the exact key.offset, 2132 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2133 * (key.offset - extent_offset). 2134 */ 2135 if (key.offset != offset) 2136 continue; 2137 2138 extent_offset = btrfs_file_extent_offset(leaf, extent); 2139 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2140 2141 if (extent_offset >= old->extent_offset + old->offset + 2142 old->len || extent_offset + num_bytes <= 2143 old->extent_offset + old->offset) 2144 continue; 2145 break; 2146 } 2147 2148 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2149 if (!backref) { 2150 ret = -ENOENT; 2151 goto out; 2152 } 2153 2154 backref->root_id = root_id; 2155 backref->inum = inum; 2156 backref->file_pos = offset; 2157 backref->num_bytes = num_bytes; 2158 backref->extent_offset = extent_offset; 2159 backref->generation = btrfs_file_extent_generation(leaf, extent); 2160 backref->old = old; 2161 backref_insert(&new->root, backref); 2162 old->count++; 2163 out: 2164 btrfs_release_path(path); 2165 WARN_ON(ret); 2166 return ret; 2167 } 2168 2169 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2170 struct new_sa_defrag_extent *new) 2171 { 2172 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2173 struct old_sa_defrag_extent *old, *tmp; 2174 int ret; 2175 2176 new->path = path; 2177 2178 list_for_each_entry_safe(old, tmp, &new->head, list) { 2179 ret = iterate_inodes_from_logical(old->bytenr + 2180 old->extent_offset, fs_info, 2181 path, record_one_backref, 2182 old); 2183 if (ret < 0 && ret != -ENOENT) 2184 return false; 2185 2186 /* no backref to be processed for this extent */ 2187 if (!old->count) { 2188 list_del(&old->list); 2189 kfree(old); 2190 } 2191 } 2192 2193 if (list_empty(&new->head)) 2194 return false; 2195 2196 return true; 2197 } 2198 2199 static int relink_is_mergable(struct extent_buffer *leaf, 2200 struct btrfs_file_extent_item *fi, 2201 struct new_sa_defrag_extent *new) 2202 { 2203 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2204 return 0; 2205 2206 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2207 return 0; 2208 2209 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2210 return 0; 2211 2212 if (btrfs_file_extent_encryption(leaf, fi) || 2213 btrfs_file_extent_other_encoding(leaf, fi)) 2214 return 0; 2215 2216 return 1; 2217 } 2218 2219 /* 2220 * Note the backref might has changed, and in this case we just return 0. 2221 */ 2222 static noinline int relink_extent_backref(struct btrfs_path *path, 2223 struct sa_defrag_extent_backref *prev, 2224 struct sa_defrag_extent_backref *backref) 2225 { 2226 struct btrfs_file_extent_item *extent; 2227 struct btrfs_file_extent_item *item; 2228 struct btrfs_ordered_extent *ordered; 2229 struct btrfs_trans_handle *trans; 2230 struct btrfs_fs_info *fs_info; 2231 struct btrfs_root *root; 2232 struct btrfs_key key; 2233 struct extent_buffer *leaf; 2234 struct old_sa_defrag_extent *old = backref->old; 2235 struct new_sa_defrag_extent *new = old->new; 2236 struct inode *src_inode = new->inode; 2237 struct inode *inode; 2238 struct extent_state *cached = NULL; 2239 int ret = 0; 2240 u64 start; 2241 u64 len; 2242 u64 lock_start; 2243 u64 lock_end; 2244 bool merge = false; 2245 int index; 2246 2247 if (prev && prev->root_id == backref->root_id && 2248 prev->inum == backref->inum && 2249 prev->file_pos + prev->num_bytes == backref->file_pos) 2250 merge = true; 2251 2252 /* step 1: get root */ 2253 key.objectid = backref->root_id; 2254 key.type = BTRFS_ROOT_ITEM_KEY; 2255 key.offset = (u64)-1; 2256 2257 fs_info = BTRFS_I(src_inode)->root->fs_info; 2258 index = srcu_read_lock(&fs_info->subvol_srcu); 2259 2260 root = btrfs_read_fs_root_no_name(fs_info, &key); 2261 if (IS_ERR(root)) { 2262 srcu_read_unlock(&fs_info->subvol_srcu, index); 2263 if (PTR_ERR(root) == -ENOENT) 2264 return 0; 2265 return PTR_ERR(root); 2266 } 2267 2268 if (btrfs_root_readonly(root)) { 2269 srcu_read_unlock(&fs_info->subvol_srcu, index); 2270 return 0; 2271 } 2272 2273 /* step 2: get inode */ 2274 key.objectid = backref->inum; 2275 key.type = BTRFS_INODE_ITEM_KEY; 2276 key.offset = 0; 2277 2278 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2279 if (IS_ERR(inode)) { 2280 srcu_read_unlock(&fs_info->subvol_srcu, index); 2281 return 0; 2282 } 2283 2284 srcu_read_unlock(&fs_info->subvol_srcu, index); 2285 2286 /* step 3: relink backref */ 2287 lock_start = backref->file_pos; 2288 lock_end = backref->file_pos + backref->num_bytes - 1; 2289 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2290 0, &cached); 2291 2292 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2293 if (ordered) { 2294 btrfs_put_ordered_extent(ordered); 2295 goto out_unlock; 2296 } 2297 2298 trans = btrfs_join_transaction(root); 2299 if (IS_ERR(trans)) { 2300 ret = PTR_ERR(trans); 2301 goto out_unlock; 2302 } 2303 2304 key.objectid = backref->inum; 2305 key.type = BTRFS_EXTENT_DATA_KEY; 2306 key.offset = backref->file_pos; 2307 2308 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2309 if (ret < 0) { 2310 goto out_free_path; 2311 } else if (ret > 0) { 2312 ret = 0; 2313 goto out_free_path; 2314 } 2315 2316 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2317 struct btrfs_file_extent_item); 2318 2319 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2320 backref->generation) 2321 goto out_free_path; 2322 2323 btrfs_release_path(path); 2324 2325 start = backref->file_pos; 2326 if (backref->extent_offset < old->extent_offset + old->offset) 2327 start += old->extent_offset + old->offset - 2328 backref->extent_offset; 2329 2330 len = min(backref->extent_offset + backref->num_bytes, 2331 old->extent_offset + old->offset + old->len); 2332 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2333 2334 ret = btrfs_drop_extents(trans, root, inode, start, 2335 start + len, 1); 2336 if (ret) 2337 goto out_free_path; 2338 again: 2339 key.objectid = btrfs_ino(inode); 2340 key.type = BTRFS_EXTENT_DATA_KEY; 2341 key.offset = start; 2342 2343 path->leave_spinning = 1; 2344 if (merge) { 2345 struct btrfs_file_extent_item *fi; 2346 u64 extent_len; 2347 struct btrfs_key found_key; 2348 2349 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2350 if (ret < 0) 2351 goto out_free_path; 2352 2353 path->slots[0]--; 2354 leaf = path->nodes[0]; 2355 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2356 2357 fi = btrfs_item_ptr(leaf, path->slots[0], 2358 struct btrfs_file_extent_item); 2359 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2360 2361 if (extent_len + found_key.offset == start && 2362 relink_is_mergable(leaf, fi, new)) { 2363 btrfs_set_file_extent_num_bytes(leaf, fi, 2364 extent_len + len); 2365 btrfs_mark_buffer_dirty(leaf); 2366 inode_add_bytes(inode, len); 2367 2368 ret = 1; 2369 goto out_free_path; 2370 } else { 2371 merge = false; 2372 btrfs_release_path(path); 2373 goto again; 2374 } 2375 } 2376 2377 ret = btrfs_insert_empty_item(trans, root, path, &key, 2378 sizeof(*extent)); 2379 if (ret) { 2380 btrfs_abort_transaction(trans, root, ret); 2381 goto out_free_path; 2382 } 2383 2384 leaf = path->nodes[0]; 2385 item = btrfs_item_ptr(leaf, path->slots[0], 2386 struct btrfs_file_extent_item); 2387 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2388 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2389 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2390 btrfs_set_file_extent_num_bytes(leaf, item, len); 2391 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2392 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2393 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2394 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2395 btrfs_set_file_extent_encryption(leaf, item, 0); 2396 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2397 2398 btrfs_mark_buffer_dirty(leaf); 2399 inode_add_bytes(inode, len); 2400 btrfs_release_path(path); 2401 2402 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2403 new->disk_len, 0, 2404 backref->root_id, backref->inum, 2405 new->file_pos, 0); /* start - extent_offset */ 2406 if (ret) { 2407 btrfs_abort_transaction(trans, root, ret); 2408 goto out_free_path; 2409 } 2410 2411 ret = 1; 2412 out_free_path: 2413 btrfs_release_path(path); 2414 path->leave_spinning = 0; 2415 btrfs_end_transaction(trans, root); 2416 out_unlock: 2417 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2418 &cached, GFP_NOFS); 2419 iput(inode); 2420 return ret; 2421 } 2422 2423 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2424 { 2425 struct old_sa_defrag_extent *old, *tmp; 2426 2427 if (!new) 2428 return; 2429 2430 list_for_each_entry_safe(old, tmp, &new->head, list) { 2431 list_del(&old->list); 2432 kfree(old); 2433 } 2434 kfree(new); 2435 } 2436 2437 static void relink_file_extents(struct new_sa_defrag_extent *new) 2438 { 2439 struct btrfs_path *path; 2440 struct sa_defrag_extent_backref *backref; 2441 struct sa_defrag_extent_backref *prev = NULL; 2442 struct inode *inode; 2443 struct btrfs_root *root; 2444 struct rb_node *node; 2445 int ret; 2446 2447 inode = new->inode; 2448 root = BTRFS_I(inode)->root; 2449 2450 path = btrfs_alloc_path(); 2451 if (!path) 2452 return; 2453 2454 if (!record_extent_backrefs(path, new)) { 2455 btrfs_free_path(path); 2456 goto out; 2457 } 2458 btrfs_release_path(path); 2459 2460 while (1) { 2461 node = rb_first(&new->root); 2462 if (!node) 2463 break; 2464 rb_erase(node, &new->root); 2465 2466 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2467 2468 ret = relink_extent_backref(path, prev, backref); 2469 WARN_ON(ret < 0); 2470 2471 kfree(prev); 2472 2473 if (ret == 1) 2474 prev = backref; 2475 else 2476 prev = NULL; 2477 cond_resched(); 2478 } 2479 kfree(prev); 2480 2481 btrfs_free_path(path); 2482 out: 2483 free_sa_defrag_extent(new); 2484 2485 atomic_dec(&root->fs_info->defrag_running); 2486 wake_up(&root->fs_info->transaction_wait); 2487 } 2488 2489 static struct new_sa_defrag_extent * 2490 record_old_file_extents(struct inode *inode, 2491 struct btrfs_ordered_extent *ordered) 2492 { 2493 struct btrfs_root *root = BTRFS_I(inode)->root; 2494 struct btrfs_path *path; 2495 struct btrfs_key key; 2496 struct old_sa_defrag_extent *old; 2497 struct new_sa_defrag_extent *new; 2498 int ret; 2499 2500 new = kmalloc(sizeof(*new), GFP_NOFS); 2501 if (!new) 2502 return NULL; 2503 2504 new->inode = inode; 2505 new->file_pos = ordered->file_offset; 2506 new->len = ordered->len; 2507 new->bytenr = ordered->start; 2508 new->disk_len = ordered->disk_len; 2509 new->compress_type = ordered->compress_type; 2510 new->root = RB_ROOT; 2511 INIT_LIST_HEAD(&new->head); 2512 2513 path = btrfs_alloc_path(); 2514 if (!path) 2515 goto out_kfree; 2516 2517 key.objectid = btrfs_ino(inode); 2518 key.type = BTRFS_EXTENT_DATA_KEY; 2519 key.offset = new->file_pos; 2520 2521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2522 if (ret < 0) 2523 goto out_free_path; 2524 if (ret > 0 && path->slots[0] > 0) 2525 path->slots[0]--; 2526 2527 /* find out all the old extents for the file range */ 2528 while (1) { 2529 struct btrfs_file_extent_item *extent; 2530 struct extent_buffer *l; 2531 int slot; 2532 u64 num_bytes; 2533 u64 offset; 2534 u64 end; 2535 u64 disk_bytenr; 2536 u64 extent_offset; 2537 2538 l = path->nodes[0]; 2539 slot = path->slots[0]; 2540 2541 if (slot >= btrfs_header_nritems(l)) { 2542 ret = btrfs_next_leaf(root, path); 2543 if (ret < 0) 2544 goto out_free_path; 2545 else if (ret > 0) 2546 break; 2547 continue; 2548 } 2549 2550 btrfs_item_key_to_cpu(l, &key, slot); 2551 2552 if (key.objectid != btrfs_ino(inode)) 2553 break; 2554 if (key.type != BTRFS_EXTENT_DATA_KEY) 2555 break; 2556 if (key.offset >= new->file_pos + new->len) 2557 break; 2558 2559 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2560 2561 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2562 if (key.offset + num_bytes < new->file_pos) 2563 goto next; 2564 2565 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2566 if (!disk_bytenr) 2567 goto next; 2568 2569 extent_offset = btrfs_file_extent_offset(l, extent); 2570 2571 old = kmalloc(sizeof(*old), GFP_NOFS); 2572 if (!old) 2573 goto out_free_path; 2574 2575 offset = max(new->file_pos, key.offset); 2576 end = min(new->file_pos + new->len, key.offset + num_bytes); 2577 2578 old->bytenr = disk_bytenr; 2579 old->extent_offset = extent_offset; 2580 old->offset = offset - key.offset; 2581 old->len = end - offset; 2582 old->new = new; 2583 old->count = 0; 2584 list_add_tail(&old->list, &new->head); 2585 next: 2586 path->slots[0]++; 2587 cond_resched(); 2588 } 2589 2590 btrfs_free_path(path); 2591 atomic_inc(&root->fs_info->defrag_running); 2592 2593 return new; 2594 2595 out_free_path: 2596 btrfs_free_path(path); 2597 out_kfree: 2598 free_sa_defrag_extent(new); 2599 return NULL; 2600 } 2601 2602 /* as ordered data IO finishes, this gets called so we can finish 2603 * an ordered extent if the range of bytes in the file it covers are 2604 * fully written. 2605 */ 2606 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2607 { 2608 struct inode *inode = ordered_extent->inode; 2609 struct btrfs_root *root = BTRFS_I(inode)->root; 2610 struct btrfs_trans_handle *trans = NULL; 2611 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2612 struct extent_state *cached_state = NULL; 2613 struct new_sa_defrag_extent *new = NULL; 2614 int compress_type = 0; 2615 int ret = 0; 2616 u64 logical_len = ordered_extent->len; 2617 bool nolock; 2618 bool truncated = false; 2619 2620 nolock = btrfs_is_free_space_inode(inode); 2621 2622 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2623 ret = -EIO; 2624 goto out; 2625 } 2626 2627 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2628 truncated = true; 2629 logical_len = ordered_extent->truncated_len; 2630 /* Truncated the entire extent, don't bother adding */ 2631 if (!logical_len) 2632 goto out; 2633 } 2634 2635 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2636 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2637 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2638 if (nolock) 2639 trans = btrfs_join_transaction_nolock(root); 2640 else 2641 trans = btrfs_join_transaction(root); 2642 if (IS_ERR(trans)) { 2643 ret = PTR_ERR(trans); 2644 trans = NULL; 2645 goto out; 2646 } 2647 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2648 ret = btrfs_update_inode_fallback(trans, root, inode); 2649 if (ret) /* -ENOMEM or corruption */ 2650 btrfs_abort_transaction(trans, root, ret); 2651 goto out; 2652 } 2653 2654 lock_extent_bits(io_tree, ordered_extent->file_offset, 2655 ordered_extent->file_offset + ordered_extent->len - 1, 2656 0, &cached_state); 2657 2658 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2659 ordered_extent->file_offset + ordered_extent->len - 1, 2660 EXTENT_DEFRAG, 1, cached_state); 2661 if (ret) { 2662 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2663 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2664 /* the inode is shared */ 2665 new = record_old_file_extents(inode, ordered_extent); 2666 2667 clear_extent_bit(io_tree, ordered_extent->file_offset, 2668 ordered_extent->file_offset + ordered_extent->len - 1, 2669 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2670 } 2671 2672 if (nolock) 2673 trans = btrfs_join_transaction_nolock(root); 2674 else 2675 trans = btrfs_join_transaction(root); 2676 if (IS_ERR(trans)) { 2677 ret = PTR_ERR(trans); 2678 trans = NULL; 2679 goto out_unlock; 2680 } 2681 2682 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2683 2684 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2685 compress_type = ordered_extent->compress_type; 2686 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2687 BUG_ON(compress_type); 2688 ret = btrfs_mark_extent_written(trans, inode, 2689 ordered_extent->file_offset, 2690 ordered_extent->file_offset + 2691 logical_len); 2692 } else { 2693 BUG_ON(root == root->fs_info->tree_root); 2694 ret = insert_reserved_file_extent(trans, inode, 2695 ordered_extent->file_offset, 2696 ordered_extent->start, 2697 ordered_extent->disk_len, 2698 logical_len, logical_len, 2699 compress_type, 0, 0, 2700 BTRFS_FILE_EXTENT_REG); 2701 } 2702 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2703 ordered_extent->file_offset, ordered_extent->len, 2704 trans->transid); 2705 if (ret < 0) { 2706 btrfs_abort_transaction(trans, root, ret); 2707 goto out_unlock; 2708 } 2709 2710 add_pending_csums(trans, inode, ordered_extent->file_offset, 2711 &ordered_extent->list); 2712 2713 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2714 ret = btrfs_update_inode_fallback(trans, root, inode); 2715 if (ret) { /* -ENOMEM or corruption */ 2716 btrfs_abort_transaction(trans, root, ret); 2717 goto out_unlock; 2718 } 2719 ret = 0; 2720 out_unlock: 2721 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2722 ordered_extent->file_offset + 2723 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2724 out: 2725 if (root != root->fs_info->tree_root) 2726 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2727 if (trans) 2728 btrfs_end_transaction(trans, root); 2729 2730 if (ret || truncated) { 2731 u64 start, end; 2732 2733 if (truncated) 2734 start = ordered_extent->file_offset + logical_len; 2735 else 2736 start = ordered_extent->file_offset; 2737 end = ordered_extent->file_offset + ordered_extent->len - 1; 2738 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2739 2740 /* Drop the cache for the part of the extent we didn't write. */ 2741 btrfs_drop_extent_cache(inode, start, end, 0); 2742 2743 /* 2744 * If the ordered extent had an IOERR or something else went 2745 * wrong we need to return the space for this ordered extent 2746 * back to the allocator. We only free the extent in the 2747 * truncated case if we didn't write out the extent at all. 2748 */ 2749 if ((ret || !logical_len) && 2750 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2751 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2752 btrfs_free_reserved_extent(root, ordered_extent->start, 2753 ordered_extent->disk_len); 2754 } 2755 2756 2757 /* 2758 * This needs to be done to make sure anybody waiting knows we are done 2759 * updating everything for this ordered extent. 2760 */ 2761 btrfs_remove_ordered_extent(inode, ordered_extent); 2762 2763 /* for snapshot-aware defrag */ 2764 if (new) { 2765 if (ret) { 2766 free_sa_defrag_extent(new); 2767 atomic_dec(&root->fs_info->defrag_running); 2768 } else { 2769 relink_file_extents(new); 2770 } 2771 } 2772 2773 /* once for us */ 2774 btrfs_put_ordered_extent(ordered_extent); 2775 /* once for the tree */ 2776 btrfs_put_ordered_extent(ordered_extent); 2777 2778 return ret; 2779 } 2780 2781 static void finish_ordered_fn(struct btrfs_work *work) 2782 { 2783 struct btrfs_ordered_extent *ordered_extent; 2784 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2785 btrfs_finish_ordered_io(ordered_extent); 2786 } 2787 2788 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2789 struct extent_state *state, int uptodate) 2790 { 2791 struct inode *inode = page->mapping->host; 2792 struct btrfs_root *root = BTRFS_I(inode)->root; 2793 struct btrfs_ordered_extent *ordered_extent = NULL; 2794 struct btrfs_workqueue *workers; 2795 2796 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2797 2798 ClearPagePrivate2(page); 2799 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2800 end - start + 1, uptodate)) 2801 return 0; 2802 2803 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2804 2805 if (btrfs_is_free_space_inode(inode)) 2806 workers = root->fs_info->endio_freespace_worker; 2807 else 2808 workers = root->fs_info->endio_write_workers; 2809 btrfs_queue_work(workers, &ordered_extent->work); 2810 2811 return 0; 2812 } 2813 2814 /* 2815 * when reads are done, we need to check csums to verify the data is correct 2816 * if there's a match, we allow the bio to finish. If not, the code in 2817 * extent_io.c will try to find good copies for us. 2818 */ 2819 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2820 u64 phy_offset, struct page *page, 2821 u64 start, u64 end, int mirror) 2822 { 2823 size_t offset = start - page_offset(page); 2824 struct inode *inode = page->mapping->host; 2825 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2826 char *kaddr; 2827 struct btrfs_root *root = BTRFS_I(inode)->root; 2828 u32 csum_expected; 2829 u32 csum = ~(u32)0; 2830 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 2831 DEFAULT_RATELIMIT_BURST); 2832 2833 if (PageChecked(page)) { 2834 ClearPageChecked(page); 2835 goto good; 2836 } 2837 2838 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2839 goto good; 2840 2841 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2842 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2843 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2844 GFP_NOFS); 2845 return 0; 2846 } 2847 2848 phy_offset >>= inode->i_sb->s_blocksize_bits; 2849 csum_expected = *(((u32 *)io_bio->csum) + phy_offset); 2850 2851 kaddr = kmap_atomic(page); 2852 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1); 2853 btrfs_csum_final(csum, (char *)&csum); 2854 if (csum != csum_expected) 2855 goto zeroit; 2856 2857 kunmap_atomic(kaddr); 2858 good: 2859 return 0; 2860 2861 zeroit: 2862 if (__ratelimit(&_rs)) 2863 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 2864 btrfs_ino(page->mapping->host), start, csum, csum_expected); 2865 memset(kaddr + offset, 1, end - start + 1); 2866 flush_dcache_page(page); 2867 kunmap_atomic(kaddr); 2868 if (csum_expected == 0) 2869 return 0; 2870 return -EIO; 2871 } 2872 2873 struct delayed_iput { 2874 struct list_head list; 2875 struct inode *inode; 2876 }; 2877 2878 /* JDM: If this is fs-wide, why can't we add a pointer to 2879 * btrfs_inode instead and avoid the allocation? */ 2880 void btrfs_add_delayed_iput(struct inode *inode) 2881 { 2882 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2883 struct delayed_iput *delayed; 2884 2885 if (atomic_add_unless(&inode->i_count, -1, 1)) 2886 return; 2887 2888 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2889 delayed->inode = inode; 2890 2891 spin_lock(&fs_info->delayed_iput_lock); 2892 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2893 spin_unlock(&fs_info->delayed_iput_lock); 2894 } 2895 2896 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2897 { 2898 LIST_HEAD(list); 2899 struct btrfs_fs_info *fs_info = root->fs_info; 2900 struct delayed_iput *delayed; 2901 int empty; 2902 2903 spin_lock(&fs_info->delayed_iput_lock); 2904 empty = list_empty(&fs_info->delayed_iputs); 2905 spin_unlock(&fs_info->delayed_iput_lock); 2906 if (empty) 2907 return; 2908 2909 spin_lock(&fs_info->delayed_iput_lock); 2910 list_splice_init(&fs_info->delayed_iputs, &list); 2911 spin_unlock(&fs_info->delayed_iput_lock); 2912 2913 while (!list_empty(&list)) { 2914 delayed = list_entry(list.next, struct delayed_iput, list); 2915 list_del(&delayed->list); 2916 iput(delayed->inode); 2917 kfree(delayed); 2918 } 2919 } 2920 2921 /* 2922 * This is called in transaction commit time. If there are no orphan 2923 * files in the subvolume, it removes orphan item and frees block_rsv 2924 * structure. 2925 */ 2926 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2927 struct btrfs_root *root) 2928 { 2929 struct btrfs_block_rsv *block_rsv; 2930 int ret; 2931 2932 if (atomic_read(&root->orphan_inodes) || 2933 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2934 return; 2935 2936 spin_lock(&root->orphan_lock); 2937 if (atomic_read(&root->orphan_inodes)) { 2938 spin_unlock(&root->orphan_lock); 2939 return; 2940 } 2941 2942 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2943 spin_unlock(&root->orphan_lock); 2944 return; 2945 } 2946 2947 block_rsv = root->orphan_block_rsv; 2948 root->orphan_block_rsv = NULL; 2949 spin_unlock(&root->orphan_lock); 2950 2951 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 2952 btrfs_root_refs(&root->root_item) > 0) { 2953 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2954 root->root_key.objectid); 2955 if (ret) 2956 btrfs_abort_transaction(trans, root, ret); 2957 else 2958 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 2959 &root->state); 2960 } 2961 2962 if (block_rsv) { 2963 WARN_ON(block_rsv->size > 0); 2964 btrfs_free_block_rsv(root, block_rsv); 2965 } 2966 } 2967 2968 /* 2969 * This creates an orphan entry for the given inode in case something goes 2970 * wrong in the middle of an unlink/truncate. 2971 * 2972 * NOTE: caller of this function should reserve 5 units of metadata for 2973 * this function. 2974 */ 2975 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2976 { 2977 struct btrfs_root *root = BTRFS_I(inode)->root; 2978 struct btrfs_block_rsv *block_rsv = NULL; 2979 int reserve = 0; 2980 int insert = 0; 2981 int ret; 2982 2983 if (!root->orphan_block_rsv) { 2984 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2985 if (!block_rsv) 2986 return -ENOMEM; 2987 } 2988 2989 spin_lock(&root->orphan_lock); 2990 if (!root->orphan_block_rsv) { 2991 root->orphan_block_rsv = block_rsv; 2992 } else if (block_rsv) { 2993 btrfs_free_block_rsv(root, block_rsv); 2994 block_rsv = NULL; 2995 } 2996 2997 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2998 &BTRFS_I(inode)->runtime_flags)) { 2999 #if 0 3000 /* 3001 * For proper ENOSPC handling, we should do orphan 3002 * cleanup when mounting. But this introduces backward 3003 * compatibility issue. 3004 */ 3005 if (!xchg(&root->orphan_item_inserted, 1)) 3006 insert = 2; 3007 else 3008 insert = 1; 3009 #endif 3010 insert = 1; 3011 atomic_inc(&root->orphan_inodes); 3012 } 3013 3014 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3015 &BTRFS_I(inode)->runtime_flags)) 3016 reserve = 1; 3017 spin_unlock(&root->orphan_lock); 3018 3019 /* grab metadata reservation from transaction handle */ 3020 if (reserve) { 3021 ret = btrfs_orphan_reserve_metadata(trans, inode); 3022 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3023 } 3024 3025 /* insert an orphan item to track this unlinked/truncated file */ 3026 if (insert >= 1) { 3027 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3028 if (ret) { 3029 atomic_dec(&root->orphan_inodes); 3030 if (reserve) { 3031 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3032 &BTRFS_I(inode)->runtime_flags); 3033 btrfs_orphan_release_metadata(inode); 3034 } 3035 if (ret != -EEXIST) { 3036 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3037 &BTRFS_I(inode)->runtime_flags); 3038 btrfs_abort_transaction(trans, root, ret); 3039 return ret; 3040 } 3041 } 3042 ret = 0; 3043 } 3044 3045 /* insert an orphan item to track subvolume contains orphan files */ 3046 if (insert >= 2) { 3047 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3048 root->root_key.objectid); 3049 if (ret && ret != -EEXIST) { 3050 btrfs_abort_transaction(trans, root, ret); 3051 return ret; 3052 } 3053 } 3054 return 0; 3055 } 3056 3057 /* 3058 * We have done the truncate/delete so we can go ahead and remove the orphan 3059 * item for this particular inode. 3060 */ 3061 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3062 struct inode *inode) 3063 { 3064 struct btrfs_root *root = BTRFS_I(inode)->root; 3065 int delete_item = 0; 3066 int release_rsv = 0; 3067 int ret = 0; 3068 3069 spin_lock(&root->orphan_lock); 3070 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3071 &BTRFS_I(inode)->runtime_flags)) 3072 delete_item = 1; 3073 3074 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3075 &BTRFS_I(inode)->runtime_flags)) 3076 release_rsv = 1; 3077 spin_unlock(&root->orphan_lock); 3078 3079 if (delete_item) { 3080 atomic_dec(&root->orphan_inodes); 3081 if (trans) 3082 ret = btrfs_del_orphan_item(trans, root, 3083 btrfs_ino(inode)); 3084 } 3085 3086 if (release_rsv) 3087 btrfs_orphan_release_metadata(inode); 3088 3089 return ret; 3090 } 3091 3092 /* 3093 * this cleans up any orphans that may be left on the list from the last use 3094 * of this root. 3095 */ 3096 int btrfs_orphan_cleanup(struct btrfs_root *root) 3097 { 3098 struct btrfs_path *path; 3099 struct extent_buffer *leaf; 3100 struct btrfs_key key, found_key; 3101 struct btrfs_trans_handle *trans; 3102 struct inode *inode; 3103 u64 last_objectid = 0; 3104 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3105 3106 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3107 return 0; 3108 3109 path = btrfs_alloc_path(); 3110 if (!path) { 3111 ret = -ENOMEM; 3112 goto out; 3113 } 3114 path->reada = -1; 3115 3116 key.objectid = BTRFS_ORPHAN_OBJECTID; 3117 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3118 key.offset = (u64)-1; 3119 3120 while (1) { 3121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3122 if (ret < 0) 3123 goto out; 3124 3125 /* 3126 * if ret == 0 means we found what we were searching for, which 3127 * is weird, but possible, so only screw with path if we didn't 3128 * find the key and see if we have stuff that matches 3129 */ 3130 if (ret > 0) { 3131 ret = 0; 3132 if (path->slots[0] == 0) 3133 break; 3134 path->slots[0]--; 3135 } 3136 3137 /* pull out the item */ 3138 leaf = path->nodes[0]; 3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3140 3141 /* make sure the item matches what we want */ 3142 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3143 break; 3144 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3145 break; 3146 3147 /* release the path since we're done with it */ 3148 btrfs_release_path(path); 3149 3150 /* 3151 * this is where we are basically btrfs_lookup, without the 3152 * crossing root thing. we store the inode number in the 3153 * offset of the orphan item. 3154 */ 3155 3156 if (found_key.offset == last_objectid) { 3157 btrfs_err(root->fs_info, 3158 "Error removing orphan entry, stopping orphan cleanup"); 3159 ret = -EINVAL; 3160 goto out; 3161 } 3162 3163 last_objectid = found_key.offset; 3164 3165 found_key.objectid = found_key.offset; 3166 found_key.type = BTRFS_INODE_ITEM_KEY; 3167 found_key.offset = 0; 3168 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3169 ret = PTR_ERR_OR_ZERO(inode); 3170 if (ret && ret != -ESTALE) 3171 goto out; 3172 3173 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3174 struct btrfs_root *dead_root; 3175 struct btrfs_fs_info *fs_info = root->fs_info; 3176 int is_dead_root = 0; 3177 3178 /* 3179 * this is an orphan in the tree root. Currently these 3180 * could come from 2 sources: 3181 * a) a snapshot deletion in progress 3182 * b) a free space cache inode 3183 * We need to distinguish those two, as the snapshot 3184 * orphan must not get deleted. 3185 * find_dead_roots already ran before us, so if this 3186 * is a snapshot deletion, we should find the root 3187 * in the dead_roots list 3188 */ 3189 spin_lock(&fs_info->trans_lock); 3190 list_for_each_entry(dead_root, &fs_info->dead_roots, 3191 root_list) { 3192 if (dead_root->root_key.objectid == 3193 found_key.objectid) { 3194 is_dead_root = 1; 3195 break; 3196 } 3197 } 3198 spin_unlock(&fs_info->trans_lock); 3199 if (is_dead_root) { 3200 /* prevent this orphan from being found again */ 3201 key.offset = found_key.objectid - 1; 3202 continue; 3203 } 3204 } 3205 /* 3206 * Inode is already gone but the orphan item is still there, 3207 * kill the orphan item. 3208 */ 3209 if (ret == -ESTALE) { 3210 trans = btrfs_start_transaction(root, 1); 3211 if (IS_ERR(trans)) { 3212 ret = PTR_ERR(trans); 3213 goto out; 3214 } 3215 btrfs_debug(root->fs_info, "auto deleting %Lu", 3216 found_key.objectid); 3217 ret = btrfs_del_orphan_item(trans, root, 3218 found_key.objectid); 3219 btrfs_end_transaction(trans, root); 3220 if (ret) 3221 goto out; 3222 continue; 3223 } 3224 3225 /* 3226 * add this inode to the orphan list so btrfs_orphan_del does 3227 * the proper thing when we hit it 3228 */ 3229 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3230 &BTRFS_I(inode)->runtime_flags); 3231 atomic_inc(&root->orphan_inodes); 3232 3233 /* if we have links, this was a truncate, lets do that */ 3234 if (inode->i_nlink) { 3235 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3236 iput(inode); 3237 continue; 3238 } 3239 nr_truncate++; 3240 3241 /* 1 for the orphan item deletion. */ 3242 trans = btrfs_start_transaction(root, 1); 3243 if (IS_ERR(trans)) { 3244 iput(inode); 3245 ret = PTR_ERR(trans); 3246 goto out; 3247 } 3248 ret = btrfs_orphan_add(trans, inode); 3249 btrfs_end_transaction(trans, root); 3250 if (ret) { 3251 iput(inode); 3252 goto out; 3253 } 3254 3255 ret = btrfs_truncate(inode); 3256 if (ret) 3257 btrfs_orphan_del(NULL, inode); 3258 } else { 3259 nr_unlink++; 3260 } 3261 3262 /* this will do delete_inode and everything for us */ 3263 iput(inode); 3264 if (ret) 3265 goto out; 3266 } 3267 /* release the path since we're done with it */ 3268 btrfs_release_path(path); 3269 3270 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3271 3272 if (root->orphan_block_rsv) 3273 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3274 (u64)-1); 3275 3276 if (root->orphan_block_rsv || 3277 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3278 trans = btrfs_join_transaction(root); 3279 if (!IS_ERR(trans)) 3280 btrfs_end_transaction(trans, root); 3281 } 3282 3283 if (nr_unlink) 3284 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3285 if (nr_truncate) 3286 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3287 3288 out: 3289 if (ret) 3290 btrfs_crit(root->fs_info, 3291 "could not do orphan cleanup %d", ret); 3292 btrfs_free_path(path); 3293 return ret; 3294 } 3295 3296 /* 3297 * very simple check to peek ahead in the leaf looking for xattrs. If we 3298 * don't find any xattrs, we know there can't be any acls. 3299 * 3300 * slot is the slot the inode is in, objectid is the objectid of the inode 3301 */ 3302 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3303 int slot, u64 objectid, 3304 int *first_xattr_slot) 3305 { 3306 u32 nritems = btrfs_header_nritems(leaf); 3307 struct btrfs_key found_key; 3308 static u64 xattr_access = 0; 3309 static u64 xattr_default = 0; 3310 int scanned = 0; 3311 3312 if (!xattr_access) { 3313 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3314 strlen(POSIX_ACL_XATTR_ACCESS)); 3315 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3316 strlen(POSIX_ACL_XATTR_DEFAULT)); 3317 } 3318 3319 slot++; 3320 *first_xattr_slot = -1; 3321 while (slot < nritems) { 3322 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3323 3324 /* we found a different objectid, there must not be acls */ 3325 if (found_key.objectid != objectid) 3326 return 0; 3327 3328 /* we found an xattr, assume we've got an acl */ 3329 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3330 if (*first_xattr_slot == -1) 3331 *first_xattr_slot = slot; 3332 if (found_key.offset == xattr_access || 3333 found_key.offset == xattr_default) 3334 return 1; 3335 } 3336 3337 /* 3338 * we found a key greater than an xattr key, there can't 3339 * be any acls later on 3340 */ 3341 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3342 return 0; 3343 3344 slot++; 3345 scanned++; 3346 3347 /* 3348 * it goes inode, inode backrefs, xattrs, extents, 3349 * so if there are a ton of hard links to an inode there can 3350 * be a lot of backrefs. Don't waste time searching too hard, 3351 * this is just an optimization 3352 */ 3353 if (scanned >= 8) 3354 break; 3355 } 3356 /* we hit the end of the leaf before we found an xattr or 3357 * something larger than an xattr. We have to assume the inode 3358 * has acls 3359 */ 3360 if (*first_xattr_slot == -1) 3361 *first_xattr_slot = slot; 3362 return 1; 3363 } 3364 3365 /* 3366 * read an inode from the btree into the in-memory inode 3367 */ 3368 static void btrfs_read_locked_inode(struct inode *inode) 3369 { 3370 struct btrfs_path *path; 3371 struct extent_buffer *leaf; 3372 struct btrfs_inode_item *inode_item; 3373 struct btrfs_timespec *tspec; 3374 struct btrfs_root *root = BTRFS_I(inode)->root; 3375 struct btrfs_key location; 3376 unsigned long ptr; 3377 int maybe_acls; 3378 u32 rdev; 3379 int ret; 3380 bool filled = false; 3381 int first_xattr_slot; 3382 3383 ret = btrfs_fill_inode(inode, &rdev); 3384 if (!ret) 3385 filled = true; 3386 3387 path = btrfs_alloc_path(); 3388 if (!path) 3389 goto make_bad; 3390 3391 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3392 3393 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3394 if (ret) 3395 goto make_bad; 3396 3397 leaf = path->nodes[0]; 3398 3399 if (filled) 3400 goto cache_index; 3401 3402 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3403 struct btrfs_inode_item); 3404 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3405 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3406 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3407 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3408 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3409 3410 tspec = btrfs_inode_atime(inode_item); 3411 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3412 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3413 3414 tspec = btrfs_inode_mtime(inode_item); 3415 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3416 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3417 3418 tspec = btrfs_inode_ctime(inode_item); 3419 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3420 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3421 3422 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3423 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3424 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3425 3426 /* 3427 * If we were modified in the current generation and evicted from memory 3428 * and then re-read we need to do a full sync since we don't have any 3429 * idea about which extents were modified before we were evicted from 3430 * cache. 3431 */ 3432 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3433 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3434 &BTRFS_I(inode)->runtime_flags); 3435 3436 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3437 inode->i_generation = BTRFS_I(inode)->generation; 3438 inode->i_rdev = 0; 3439 rdev = btrfs_inode_rdev(leaf, inode_item); 3440 3441 BTRFS_I(inode)->index_cnt = (u64)-1; 3442 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3443 3444 cache_index: 3445 path->slots[0]++; 3446 if (inode->i_nlink != 1 || 3447 path->slots[0] >= btrfs_header_nritems(leaf)) 3448 goto cache_acl; 3449 3450 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3451 if (location.objectid != btrfs_ino(inode)) 3452 goto cache_acl; 3453 3454 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3455 if (location.type == BTRFS_INODE_REF_KEY) { 3456 struct btrfs_inode_ref *ref; 3457 3458 ref = (struct btrfs_inode_ref *)ptr; 3459 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3460 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3461 struct btrfs_inode_extref *extref; 3462 3463 extref = (struct btrfs_inode_extref *)ptr; 3464 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3465 extref); 3466 } 3467 cache_acl: 3468 /* 3469 * try to precache a NULL acl entry for files that don't have 3470 * any xattrs or acls 3471 */ 3472 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3473 btrfs_ino(inode), &first_xattr_slot); 3474 if (first_xattr_slot != -1) { 3475 path->slots[0] = first_xattr_slot; 3476 ret = btrfs_load_inode_props(inode, path); 3477 if (ret) 3478 btrfs_err(root->fs_info, 3479 "error loading props for ino %llu (root %llu): %d", 3480 btrfs_ino(inode), 3481 root->root_key.objectid, ret); 3482 } 3483 btrfs_free_path(path); 3484 3485 if (!maybe_acls) 3486 cache_no_acl(inode); 3487 3488 switch (inode->i_mode & S_IFMT) { 3489 case S_IFREG: 3490 inode->i_mapping->a_ops = &btrfs_aops; 3491 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3492 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3493 inode->i_fop = &btrfs_file_operations; 3494 inode->i_op = &btrfs_file_inode_operations; 3495 break; 3496 case S_IFDIR: 3497 inode->i_fop = &btrfs_dir_file_operations; 3498 if (root == root->fs_info->tree_root) 3499 inode->i_op = &btrfs_dir_ro_inode_operations; 3500 else 3501 inode->i_op = &btrfs_dir_inode_operations; 3502 break; 3503 case S_IFLNK: 3504 inode->i_op = &btrfs_symlink_inode_operations; 3505 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3506 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3507 break; 3508 default: 3509 inode->i_op = &btrfs_special_inode_operations; 3510 init_special_inode(inode, inode->i_mode, rdev); 3511 break; 3512 } 3513 3514 btrfs_update_iflags(inode); 3515 return; 3516 3517 make_bad: 3518 btrfs_free_path(path); 3519 make_bad_inode(inode); 3520 } 3521 3522 /* 3523 * given a leaf and an inode, copy the inode fields into the leaf 3524 */ 3525 static void fill_inode_item(struct btrfs_trans_handle *trans, 3526 struct extent_buffer *leaf, 3527 struct btrfs_inode_item *item, 3528 struct inode *inode) 3529 { 3530 struct btrfs_map_token token; 3531 3532 btrfs_init_map_token(&token); 3533 3534 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3535 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3536 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3537 &token); 3538 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3539 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3540 3541 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3542 inode->i_atime.tv_sec, &token); 3543 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3544 inode->i_atime.tv_nsec, &token); 3545 3546 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3547 inode->i_mtime.tv_sec, &token); 3548 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3549 inode->i_mtime.tv_nsec, &token); 3550 3551 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3552 inode->i_ctime.tv_sec, &token); 3553 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3554 inode->i_ctime.tv_nsec, &token); 3555 3556 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3557 &token); 3558 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3559 &token); 3560 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3561 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3562 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3563 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3564 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3565 } 3566 3567 /* 3568 * copy everything in the in-memory inode into the btree. 3569 */ 3570 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3571 struct btrfs_root *root, struct inode *inode) 3572 { 3573 struct btrfs_inode_item *inode_item; 3574 struct btrfs_path *path; 3575 struct extent_buffer *leaf; 3576 int ret; 3577 3578 path = btrfs_alloc_path(); 3579 if (!path) 3580 return -ENOMEM; 3581 3582 path->leave_spinning = 1; 3583 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3584 1); 3585 if (ret) { 3586 if (ret > 0) 3587 ret = -ENOENT; 3588 goto failed; 3589 } 3590 3591 leaf = path->nodes[0]; 3592 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3593 struct btrfs_inode_item); 3594 3595 fill_inode_item(trans, leaf, inode_item, inode); 3596 btrfs_mark_buffer_dirty(leaf); 3597 btrfs_set_inode_last_trans(trans, inode); 3598 ret = 0; 3599 failed: 3600 btrfs_free_path(path); 3601 return ret; 3602 } 3603 3604 /* 3605 * copy everything in the in-memory inode into the btree. 3606 */ 3607 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3608 struct btrfs_root *root, struct inode *inode) 3609 { 3610 int ret; 3611 3612 /* 3613 * If the inode is a free space inode, we can deadlock during commit 3614 * if we put it into the delayed code. 3615 * 3616 * The data relocation inode should also be directly updated 3617 * without delay 3618 */ 3619 if (!btrfs_is_free_space_inode(inode) 3620 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3621 btrfs_update_root_times(trans, root); 3622 3623 ret = btrfs_delayed_update_inode(trans, root, inode); 3624 if (!ret) 3625 btrfs_set_inode_last_trans(trans, inode); 3626 return ret; 3627 } 3628 3629 return btrfs_update_inode_item(trans, root, inode); 3630 } 3631 3632 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3633 struct btrfs_root *root, 3634 struct inode *inode) 3635 { 3636 int ret; 3637 3638 ret = btrfs_update_inode(trans, root, inode); 3639 if (ret == -ENOSPC) 3640 return btrfs_update_inode_item(trans, root, inode); 3641 return ret; 3642 } 3643 3644 /* 3645 * unlink helper that gets used here in inode.c and in the tree logging 3646 * recovery code. It remove a link in a directory with a given name, and 3647 * also drops the back refs in the inode to the directory 3648 */ 3649 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3650 struct btrfs_root *root, 3651 struct inode *dir, struct inode *inode, 3652 const char *name, int name_len) 3653 { 3654 struct btrfs_path *path; 3655 int ret = 0; 3656 struct extent_buffer *leaf; 3657 struct btrfs_dir_item *di; 3658 struct btrfs_key key; 3659 u64 index; 3660 u64 ino = btrfs_ino(inode); 3661 u64 dir_ino = btrfs_ino(dir); 3662 3663 path = btrfs_alloc_path(); 3664 if (!path) { 3665 ret = -ENOMEM; 3666 goto out; 3667 } 3668 3669 path->leave_spinning = 1; 3670 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3671 name, name_len, -1); 3672 if (IS_ERR(di)) { 3673 ret = PTR_ERR(di); 3674 goto err; 3675 } 3676 if (!di) { 3677 ret = -ENOENT; 3678 goto err; 3679 } 3680 leaf = path->nodes[0]; 3681 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3682 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3683 if (ret) 3684 goto err; 3685 btrfs_release_path(path); 3686 3687 /* 3688 * If we don't have dir index, we have to get it by looking up 3689 * the inode ref, since we get the inode ref, remove it directly, 3690 * it is unnecessary to do delayed deletion. 3691 * 3692 * But if we have dir index, needn't search inode ref to get it. 3693 * Since the inode ref is close to the inode item, it is better 3694 * that we delay to delete it, and just do this deletion when 3695 * we update the inode item. 3696 */ 3697 if (BTRFS_I(inode)->dir_index) { 3698 ret = btrfs_delayed_delete_inode_ref(inode); 3699 if (!ret) { 3700 index = BTRFS_I(inode)->dir_index; 3701 goto skip_backref; 3702 } 3703 } 3704 3705 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3706 dir_ino, &index); 3707 if (ret) { 3708 btrfs_info(root->fs_info, 3709 "failed to delete reference to %.*s, inode %llu parent %llu", 3710 name_len, name, ino, dir_ino); 3711 btrfs_abort_transaction(trans, root, ret); 3712 goto err; 3713 } 3714 skip_backref: 3715 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3716 if (ret) { 3717 btrfs_abort_transaction(trans, root, ret); 3718 goto err; 3719 } 3720 3721 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3722 inode, dir_ino); 3723 if (ret != 0 && ret != -ENOENT) { 3724 btrfs_abort_transaction(trans, root, ret); 3725 goto err; 3726 } 3727 3728 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3729 dir, index); 3730 if (ret == -ENOENT) 3731 ret = 0; 3732 else if (ret) 3733 btrfs_abort_transaction(trans, root, ret); 3734 err: 3735 btrfs_free_path(path); 3736 if (ret) 3737 goto out; 3738 3739 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3740 inode_inc_iversion(inode); 3741 inode_inc_iversion(dir); 3742 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3743 ret = btrfs_update_inode(trans, root, dir); 3744 out: 3745 return ret; 3746 } 3747 3748 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3749 struct btrfs_root *root, 3750 struct inode *dir, struct inode *inode, 3751 const char *name, int name_len) 3752 { 3753 int ret; 3754 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3755 if (!ret) { 3756 drop_nlink(inode); 3757 ret = btrfs_update_inode(trans, root, inode); 3758 } 3759 return ret; 3760 } 3761 3762 /* 3763 * helper to start transaction for unlink and rmdir. 3764 * 3765 * unlink and rmdir are special in btrfs, they do not always free space, so 3766 * if we cannot make our reservations the normal way try and see if there is 3767 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3768 * allow the unlink to occur. 3769 */ 3770 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3771 { 3772 struct btrfs_trans_handle *trans; 3773 struct btrfs_root *root = BTRFS_I(dir)->root; 3774 int ret; 3775 3776 /* 3777 * 1 for the possible orphan item 3778 * 1 for the dir item 3779 * 1 for the dir index 3780 * 1 for the inode ref 3781 * 1 for the inode 3782 */ 3783 trans = btrfs_start_transaction(root, 5); 3784 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3785 return trans; 3786 3787 if (PTR_ERR(trans) == -ENOSPC) { 3788 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 3789 3790 trans = btrfs_start_transaction(root, 0); 3791 if (IS_ERR(trans)) 3792 return trans; 3793 ret = btrfs_cond_migrate_bytes(root->fs_info, 3794 &root->fs_info->trans_block_rsv, 3795 num_bytes, 5); 3796 if (ret) { 3797 btrfs_end_transaction(trans, root); 3798 return ERR_PTR(ret); 3799 } 3800 trans->block_rsv = &root->fs_info->trans_block_rsv; 3801 trans->bytes_reserved = num_bytes; 3802 } 3803 return trans; 3804 } 3805 3806 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3807 { 3808 struct btrfs_root *root = BTRFS_I(dir)->root; 3809 struct btrfs_trans_handle *trans; 3810 struct inode *inode = dentry->d_inode; 3811 int ret; 3812 3813 trans = __unlink_start_trans(dir); 3814 if (IS_ERR(trans)) 3815 return PTR_ERR(trans); 3816 3817 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3818 3819 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3820 dentry->d_name.name, dentry->d_name.len); 3821 if (ret) 3822 goto out; 3823 3824 if (inode->i_nlink == 0) { 3825 ret = btrfs_orphan_add(trans, inode); 3826 if (ret) 3827 goto out; 3828 } 3829 3830 out: 3831 btrfs_end_transaction(trans, root); 3832 btrfs_btree_balance_dirty(root); 3833 return ret; 3834 } 3835 3836 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3837 struct btrfs_root *root, 3838 struct inode *dir, u64 objectid, 3839 const char *name, int name_len) 3840 { 3841 struct btrfs_path *path; 3842 struct extent_buffer *leaf; 3843 struct btrfs_dir_item *di; 3844 struct btrfs_key key; 3845 u64 index; 3846 int ret; 3847 u64 dir_ino = btrfs_ino(dir); 3848 3849 path = btrfs_alloc_path(); 3850 if (!path) 3851 return -ENOMEM; 3852 3853 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3854 name, name_len, -1); 3855 if (IS_ERR_OR_NULL(di)) { 3856 if (!di) 3857 ret = -ENOENT; 3858 else 3859 ret = PTR_ERR(di); 3860 goto out; 3861 } 3862 3863 leaf = path->nodes[0]; 3864 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3865 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3866 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3867 if (ret) { 3868 btrfs_abort_transaction(trans, root, ret); 3869 goto out; 3870 } 3871 btrfs_release_path(path); 3872 3873 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3874 objectid, root->root_key.objectid, 3875 dir_ino, &index, name, name_len); 3876 if (ret < 0) { 3877 if (ret != -ENOENT) { 3878 btrfs_abort_transaction(trans, root, ret); 3879 goto out; 3880 } 3881 di = btrfs_search_dir_index_item(root, path, dir_ino, 3882 name, name_len); 3883 if (IS_ERR_OR_NULL(di)) { 3884 if (!di) 3885 ret = -ENOENT; 3886 else 3887 ret = PTR_ERR(di); 3888 btrfs_abort_transaction(trans, root, ret); 3889 goto out; 3890 } 3891 3892 leaf = path->nodes[0]; 3893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3894 btrfs_release_path(path); 3895 index = key.offset; 3896 } 3897 btrfs_release_path(path); 3898 3899 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3900 if (ret) { 3901 btrfs_abort_transaction(trans, root, ret); 3902 goto out; 3903 } 3904 3905 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3906 inode_inc_iversion(dir); 3907 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3908 ret = btrfs_update_inode_fallback(trans, root, dir); 3909 if (ret) 3910 btrfs_abort_transaction(trans, root, ret); 3911 out: 3912 btrfs_free_path(path); 3913 return ret; 3914 } 3915 3916 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3917 { 3918 struct inode *inode = dentry->d_inode; 3919 int err = 0; 3920 struct btrfs_root *root = BTRFS_I(dir)->root; 3921 struct btrfs_trans_handle *trans; 3922 3923 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3924 return -ENOTEMPTY; 3925 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3926 return -EPERM; 3927 3928 trans = __unlink_start_trans(dir); 3929 if (IS_ERR(trans)) 3930 return PTR_ERR(trans); 3931 3932 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3933 err = btrfs_unlink_subvol(trans, root, dir, 3934 BTRFS_I(inode)->location.objectid, 3935 dentry->d_name.name, 3936 dentry->d_name.len); 3937 goto out; 3938 } 3939 3940 err = btrfs_orphan_add(trans, inode); 3941 if (err) 3942 goto out; 3943 3944 /* now the directory is empty */ 3945 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3946 dentry->d_name.name, dentry->d_name.len); 3947 if (!err) 3948 btrfs_i_size_write(inode, 0); 3949 out: 3950 btrfs_end_transaction(trans, root); 3951 btrfs_btree_balance_dirty(root); 3952 3953 return err; 3954 } 3955 3956 /* 3957 * this can truncate away extent items, csum items and directory items. 3958 * It starts at a high offset and removes keys until it can't find 3959 * any higher than new_size 3960 * 3961 * csum items that cross the new i_size are truncated to the new size 3962 * as well. 3963 * 3964 * min_type is the minimum key type to truncate down to. If set to 0, this 3965 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3966 */ 3967 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3968 struct btrfs_root *root, 3969 struct inode *inode, 3970 u64 new_size, u32 min_type) 3971 { 3972 struct btrfs_path *path; 3973 struct extent_buffer *leaf; 3974 struct btrfs_file_extent_item *fi; 3975 struct btrfs_key key; 3976 struct btrfs_key found_key; 3977 u64 extent_start = 0; 3978 u64 extent_num_bytes = 0; 3979 u64 extent_offset = 0; 3980 u64 item_end = 0; 3981 u64 last_size = (u64)-1; 3982 u32 found_type = (u8)-1; 3983 int found_extent; 3984 int del_item; 3985 int pending_del_nr = 0; 3986 int pending_del_slot = 0; 3987 int extent_type = -1; 3988 int ret; 3989 int err = 0; 3990 u64 ino = btrfs_ino(inode); 3991 3992 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3993 3994 path = btrfs_alloc_path(); 3995 if (!path) 3996 return -ENOMEM; 3997 path->reada = -1; 3998 3999 /* 4000 * We want to drop from the next block forward in case this new size is 4001 * not block aligned since we will be keeping the last block of the 4002 * extent just the way it is. 4003 */ 4004 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4005 root == root->fs_info->tree_root) 4006 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4007 root->sectorsize), (u64)-1, 0); 4008 4009 /* 4010 * This function is also used to drop the items in the log tree before 4011 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4012 * it is used to drop the loged items. So we shouldn't kill the delayed 4013 * items. 4014 */ 4015 if (min_type == 0 && root == BTRFS_I(inode)->root) 4016 btrfs_kill_delayed_inode_items(inode); 4017 4018 key.objectid = ino; 4019 key.offset = (u64)-1; 4020 key.type = (u8)-1; 4021 4022 search_again: 4023 path->leave_spinning = 1; 4024 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4025 if (ret < 0) { 4026 err = ret; 4027 goto out; 4028 } 4029 4030 if (ret > 0) { 4031 /* there are no items in the tree for us to truncate, we're 4032 * done 4033 */ 4034 if (path->slots[0] == 0) 4035 goto out; 4036 path->slots[0]--; 4037 } 4038 4039 while (1) { 4040 fi = NULL; 4041 leaf = path->nodes[0]; 4042 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4043 found_type = btrfs_key_type(&found_key); 4044 4045 if (found_key.objectid != ino) 4046 break; 4047 4048 if (found_type < min_type) 4049 break; 4050 4051 item_end = found_key.offset; 4052 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4053 fi = btrfs_item_ptr(leaf, path->slots[0], 4054 struct btrfs_file_extent_item); 4055 extent_type = btrfs_file_extent_type(leaf, fi); 4056 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4057 item_end += 4058 btrfs_file_extent_num_bytes(leaf, fi); 4059 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4060 item_end += btrfs_file_extent_inline_len(leaf, 4061 path->slots[0], fi); 4062 } 4063 item_end--; 4064 } 4065 if (found_type > min_type) { 4066 del_item = 1; 4067 } else { 4068 if (item_end < new_size) 4069 break; 4070 if (found_key.offset >= new_size) 4071 del_item = 1; 4072 else 4073 del_item = 0; 4074 } 4075 found_extent = 0; 4076 /* FIXME, shrink the extent if the ref count is only 1 */ 4077 if (found_type != BTRFS_EXTENT_DATA_KEY) 4078 goto delete; 4079 4080 if (del_item) 4081 last_size = found_key.offset; 4082 else 4083 last_size = new_size; 4084 4085 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4086 u64 num_dec; 4087 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4088 if (!del_item) { 4089 u64 orig_num_bytes = 4090 btrfs_file_extent_num_bytes(leaf, fi); 4091 extent_num_bytes = ALIGN(new_size - 4092 found_key.offset, 4093 root->sectorsize); 4094 btrfs_set_file_extent_num_bytes(leaf, fi, 4095 extent_num_bytes); 4096 num_dec = (orig_num_bytes - 4097 extent_num_bytes); 4098 if (test_bit(BTRFS_ROOT_REF_COWS, 4099 &root->state) && 4100 extent_start != 0) 4101 inode_sub_bytes(inode, num_dec); 4102 btrfs_mark_buffer_dirty(leaf); 4103 } else { 4104 extent_num_bytes = 4105 btrfs_file_extent_disk_num_bytes(leaf, 4106 fi); 4107 extent_offset = found_key.offset - 4108 btrfs_file_extent_offset(leaf, fi); 4109 4110 /* FIXME blocksize != 4096 */ 4111 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4112 if (extent_start != 0) { 4113 found_extent = 1; 4114 if (test_bit(BTRFS_ROOT_REF_COWS, 4115 &root->state)) 4116 inode_sub_bytes(inode, num_dec); 4117 } 4118 } 4119 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4120 /* 4121 * we can't truncate inline items that have had 4122 * special encodings 4123 */ 4124 if (!del_item && 4125 btrfs_file_extent_compression(leaf, fi) == 0 && 4126 btrfs_file_extent_encryption(leaf, fi) == 0 && 4127 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4128 u32 size = new_size - found_key.offset; 4129 4130 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4131 inode_sub_bytes(inode, item_end + 1 - 4132 new_size); 4133 4134 /* 4135 * update the ram bytes to properly reflect 4136 * the new size of our item 4137 */ 4138 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4139 size = 4140 btrfs_file_extent_calc_inline_size(size); 4141 btrfs_truncate_item(root, path, size, 1); 4142 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4143 &root->state)) { 4144 inode_sub_bytes(inode, item_end + 1 - 4145 found_key.offset); 4146 } 4147 } 4148 delete: 4149 if (del_item) { 4150 if (!pending_del_nr) { 4151 /* no pending yet, add ourselves */ 4152 pending_del_slot = path->slots[0]; 4153 pending_del_nr = 1; 4154 } else if (pending_del_nr && 4155 path->slots[0] + 1 == pending_del_slot) { 4156 /* hop on the pending chunk */ 4157 pending_del_nr++; 4158 pending_del_slot = path->slots[0]; 4159 } else { 4160 BUG(); 4161 } 4162 } else { 4163 break; 4164 } 4165 if (found_extent && 4166 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4167 root == root->fs_info->tree_root)) { 4168 btrfs_set_path_blocking(path); 4169 ret = btrfs_free_extent(trans, root, extent_start, 4170 extent_num_bytes, 0, 4171 btrfs_header_owner(leaf), 4172 ino, extent_offset, 0); 4173 BUG_ON(ret); 4174 } 4175 4176 if (found_type == BTRFS_INODE_ITEM_KEY) 4177 break; 4178 4179 if (path->slots[0] == 0 || 4180 path->slots[0] != pending_del_slot) { 4181 if (pending_del_nr) { 4182 ret = btrfs_del_items(trans, root, path, 4183 pending_del_slot, 4184 pending_del_nr); 4185 if (ret) { 4186 btrfs_abort_transaction(trans, 4187 root, ret); 4188 goto error; 4189 } 4190 pending_del_nr = 0; 4191 } 4192 btrfs_release_path(path); 4193 goto search_again; 4194 } else { 4195 path->slots[0]--; 4196 } 4197 } 4198 out: 4199 if (pending_del_nr) { 4200 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4201 pending_del_nr); 4202 if (ret) 4203 btrfs_abort_transaction(trans, root, ret); 4204 } 4205 error: 4206 if (last_size != (u64)-1) 4207 btrfs_ordered_update_i_size(inode, last_size, NULL); 4208 btrfs_free_path(path); 4209 return err; 4210 } 4211 4212 /* 4213 * btrfs_truncate_page - read, zero a chunk and write a page 4214 * @inode - inode that we're zeroing 4215 * @from - the offset to start zeroing 4216 * @len - the length to zero, 0 to zero the entire range respective to the 4217 * offset 4218 * @front - zero up to the offset instead of from the offset on 4219 * 4220 * This will find the page for the "from" offset and cow the page and zero the 4221 * part we want to zero. This is used with truncate and hole punching. 4222 */ 4223 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4224 int front) 4225 { 4226 struct address_space *mapping = inode->i_mapping; 4227 struct btrfs_root *root = BTRFS_I(inode)->root; 4228 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4229 struct btrfs_ordered_extent *ordered; 4230 struct extent_state *cached_state = NULL; 4231 char *kaddr; 4232 u32 blocksize = root->sectorsize; 4233 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4234 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4235 struct page *page; 4236 gfp_t mask = btrfs_alloc_write_mask(mapping); 4237 int ret = 0; 4238 u64 page_start; 4239 u64 page_end; 4240 4241 if ((offset & (blocksize - 1)) == 0 && 4242 (!len || ((len & (blocksize - 1)) == 0))) 4243 goto out; 4244 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4245 if (ret) 4246 goto out; 4247 4248 again: 4249 page = find_or_create_page(mapping, index, mask); 4250 if (!page) { 4251 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4252 ret = -ENOMEM; 4253 goto out; 4254 } 4255 4256 page_start = page_offset(page); 4257 page_end = page_start + PAGE_CACHE_SIZE - 1; 4258 4259 if (!PageUptodate(page)) { 4260 ret = btrfs_readpage(NULL, page); 4261 lock_page(page); 4262 if (page->mapping != mapping) { 4263 unlock_page(page); 4264 page_cache_release(page); 4265 goto again; 4266 } 4267 if (!PageUptodate(page)) { 4268 ret = -EIO; 4269 goto out_unlock; 4270 } 4271 } 4272 wait_on_page_writeback(page); 4273 4274 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4275 set_page_extent_mapped(page); 4276 4277 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4278 if (ordered) { 4279 unlock_extent_cached(io_tree, page_start, page_end, 4280 &cached_state, GFP_NOFS); 4281 unlock_page(page); 4282 page_cache_release(page); 4283 btrfs_start_ordered_extent(inode, ordered, 1); 4284 btrfs_put_ordered_extent(ordered); 4285 goto again; 4286 } 4287 4288 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4289 EXTENT_DIRTY | EXTENT_DELALLOC | 4290 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4291 0, 0, &cached_state, GFP_NOFS); 4292 4293 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4294 &cached_state); 4295 if (ret) { 4296 unlock_extent_cached(io_tree, page_start, page_end, 4297 &cached_state, GFP_NOFS); 4298 goto out_unlock; 4299 } 4300 4301 if (offset != PAGE_CACHE_SIZE) { 4302 if (!len) 4303 len = PAGE_CACHE_SIZE - offset; 4304 kaddr = kmap(page); 4305 if (front) 4306 memset(kaddr, 0, offset); 4307 else 4308 memset(kaddr + offset, 0, len); 4309 flush_dcache_page(page); 4310 kunmap(page); 4311 } 4312 ClearPageChecked(page); 4313 set_page_dirty(page); 4314 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4315 GFP_NOFS); 4316 4317 out_unlock: 4318 if (ret) 4319 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4320 unlock_page(page); 4321 page_cache_release(page); 4322 out: 4323 return ret; 4324 } 4325 4326 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4327 u64 offset, u64 len) 4328 { 4329 struct btrfs_trans_handle *trans; 4330 int ret; 4331 4332 /* 4333 * Still need to make sure the inode looks like it's been updated so 4334 * that any holes get logged if we fsync. 4335 */ 4336 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4337 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4338 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4339 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4340 return 0; 4341 } 4342 4343 /* 4344 * 1 - for the one we're dropping 4345 * 1 - for the one we're adding 4346 * 1 - for updating the inode. 4347 */ 4348 trans = btrfs_start_transaction(root, 3); 4349 if (IS_ERR(trans)) 4350 return PTR_ERR(trans); 4351 4352 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4353 if (ret) { 4354 btrfs_abort_transaction(trans, root, ret); 4355 btrfs_end_transaction(trans, root); 4356 return ret; 4357 } 4358 4359 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4360 0, 0, len, 0, len, 0, 0, 0); 4361 if (ret) 4362 btrfs_abort_transaction(trans, root, ret); 4363 else 4364 btrfs_update_inode(trans, root, inode); 4365 btrfs_end_transaction(trans, root); 4366 return ret; 4367 } 4368 4369 /* 4370 * This function puts in dummy file extents for the area we're creating a hole 4371 * for. So if we are truncating this file to a larger size we need to insert 4372 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4373 * the range between oldsize and size 4374 */ 4375 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4376 { 4377 struct btrfs_root *root = BTRFS_I(inode)->root; 4378 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4379 struct extent_map *em = NULL; 4380 struct extent_state *cached_state = NULL; 4381 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4382 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4383 u64 block_end = ALIGN(size, root->sectorsize); 4384 u64 last_byte; 4385 u64 cur_offset; 4386 u64 hole_size; 4387 int err = 0; 4388 4389 /* 4390 * If our size started in the middle of a page we need to zero out the 4391 * rest of the page before we expand the i_size, otherwise we could 4392 * expose stale data. 4393 */ 4394 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4395 if (err) 4396 return err; 4397 4398 if (size <= hole_start) 4399 return 0; 4400 4401 while (1) { 4402 struct btrfs_ordered_extent *ordered; 4403 4404 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4405 &cached_state); 4406 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4407 block_end - hole_start); 4408 if (!ordered) 4409 break; 4410 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4411 &cached_state, GFP_NOFS); 4412 btrfs_start_ordered_extent(inode, ordered, 1); 4413 btrfs_put_ordered_extent(ordered); 4414 } 4415 4416 cur_offset = hole_start; 4417 while (1) { 4418 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4419 block_end - cur_offset, 0); 4420 if (IS_ERR(em)) { 4421 err = PTR_ERR(em); 4422 em = NULL; 4423 break; 4424 } 4425 last_byte = min(extent_map_end(em), block_end); 4426 last_byte = ALIGN(last_byte , root->sectorsize); 4427 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4428 struct extent_map *hole_em; 4429 hole_size = last_byte - cur_offset; 4430 4431 err = maybe_insert_hole(root, inode, cur_offset, 4432 hole_size); 4433 if (err) 4434 break; 4435 btrfs_drop_extent_cache(inode, cur_offset, 4436 cur_offset + hole_size - 1, 0); 4437 hole_em = alloc_extent_map(); 4438 if (!hole_em) { 4439 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4440 &BTRFS_I(inode)->runtime_flags); 4441 goto next; 4442 } 4443 hole_em->start = cur_offset; 4444 hole_em->len = hole_size; 4445 hole_em->orig_start = cur_offset; 4446 4447 hole_em->block_start = EXTENT_MAP_HOLE; 4448 hole_em->block_len = 0; 4449 hole_em->orig_block_len = 0; 4450 hole_em->ram_bytes = hole_size; 4451 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4452 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4453 hole_em->generation = root->fs_info->generation; 4454 4455 while (1) { 4456 write_lock(&em_tree->lock); 4457 err = add_extent_mapping(em_tree, hole_em, 1); 4458 write_unlock(&em_tree->lock); 4459 if (err != -EEXIST) 4460 break; 4461 btrfs_drop_extent_cache(inode, cur_offset, 4462 cur_offset + 4463 hole_size - 1, 0); 4464 } 4465 free_extent_map(hole_em); 4466 } 4467 next: 4468 free_extent_map(em); 4469 em = NULL; 4470 cur_offset = last_byte; 4471 if (cur_offset >= block_end) 4472 break; 4473 } 4474 free_extent_map(em); 4475 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4476 GFP_NOFS); 4477 return err; 4478 } 4479 4480 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4481 { 4482 struct btrfs_root *root = BTRFS_I(inode)->root; 4483 struct btrfs_trans_handle *trans; 4484 loff_t oldsize = i_size_read(inode); 4485 loff_t newsize = attr->ia_size; 4486 int mask = attr->ia_valid; 4487 int ret; 4488 4489 /* 4490 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4491 * special case where we need to update the times despite not having 4492 * these flags set. For all other operations the VFS set these flags 4493 * explicitly if it wants a timestamp update. 4494 */ 4495 if (newsize != oldsize) { 4496 inode_inc_iversion(inode); 4497 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4498 inode->i_ctime = inode->i_mtime = 4499 current_fs_time(inode->i_sb); 4500 } 4501 4502 if (newsize > oldsize) { 4503 truncate_pagecache(inode, newsize); 4504 ret = btrfs_cont_expand(inode, oldsize, newsize); 4505 if (ret) 4506 return ret; 4507 4508 trans = btrfs_start_transaction(root, 1); 4509 if (IS_ERR(trans)) 4510 return PTR_ERR(trans); 4511 4512 i_size_write(inode, newsize); 4513 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4514 ret = btrfs_update_inode(trans, root, inode); 4515 btrfs_end_transaction(trans, root); 4516 } else { 4517 4518 /* 4519 * We're truncating a file that used to have good data down to 4520 * zero. Make sure it gets into the ordered flush list so that 4521 * any new writes get down to disk quickly. 4522 */ 4523 if (newsize == 0) 4524 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4525 &BTRFS_I(inode)->runtime_flags); 4526 4527 /* 4528 * 1 for the orphan item we're going to add 4529 * 1 for the orphan item deletion. 4530 */ 4531 trans = btrfs_start_transaction(root, 2); 4532 if (IS_ERR(trans)) 4533 return PTR_ERR(trans); 4534 4535 /* 4536 * We need to do this in case we fail at _any_ point during the 4537 * actual truncate. Once we do the truncate_setsize we could 4538 * invalidate pages which forces any outstanding ordered io to 4539 * be instantly completed which will give us extents that need 4540 * to be truncated. If we fail to get an orphan inode down we 4541 * could have left over extents that were never meant to live, 4542 * so we need to garuntee from this point on that everything 4543 * will be consistent. 4544 */ 4545 ret = btrfs_orphan_add(trans, inode); 4546 btrfs_end_transaction(trans, root); 4547 if (ret) 4548 return ret; 4549 4550 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4551 truncate_setsize(inode, newsize); 4552 4553 /* Disable nonlocked read DIO to avoid the end less truncate */ 4554 btrfs_inode_block_unlocked_dio(inode); 4555 inode_dio_wait(inode); 4556 btrfs_inode_resume_unlocked_dio(inode); 4557 4558 ret = btrfs_truncate(inode); 4559 if (ret && inode->i_nlink) { 4560 int err; 4561 4562 /* 4563 * failed to truncate, disk_i_size is only adjusted down 4564 * as we remove extents, so it should represent the true 4565 * size of the inode, so reset the in memory size and 4566 * delete our orphan entry. 4567 */ 4568 trans = btrfs_join_transaction(root); 4569 if (IS_ERR(trans)) { 4570 btrfs_orphan_del(NULL, inode); 4571 return ret; 4572 } 4573 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4574 err = btrfs_orphan_del(trans, inode); 4575 if (err) 4576 btrfs_abort_transaction(trans, root, err); 4577 btrfs_end_transaction(trans, root); 4578 } 4579 } 4580 4581 return ret; 4582 } 4583 4584 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4585 { 4586 struct inode *inode = dentry->d_inode; 4587 struct btrfs_root *root = BTRFS_I(inode)->root; 4588 int err; 4589 4590 if (btrfs_root_readonly(root)) 4591 return -EROFS; 4592 4593 err = inode_change_ok(inode, attr); 4594 if (err) 4595 return err; 4596 4597 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4598 err = btrfs_setsize(inode, attr); 4599 if (err) 4600 return err; 4601 } 4602 4603 if (attr->ia_valid) { 4604 setattr_copy(inode, attr); 4605 inode_inc_iversion(inode); 4606 err = btrfs_dirty_inode(inode); 4607 4608 if (!err && attr->ia_valid & ATTR_MODE) 4609 err = posix_acl_chmod(inode, inode->i_mode); 4610 } 4611 4612 return err; 4613 } 4614 4615 /* 4616 * While truncating the inode pages during eviction, we get the VFS calling 4617 * btrfs_invalidatepage() against each page of the inode. This is slow because 4618 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4619 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4620 * extent_state structures over and over, wasting lots of time. 4621 * 4622 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4623 * those expensive operations on a per page basis and do only the ordered io 4624 * finishing, while we release here the extent_map and extent_state structures, 4625 * without the excessive merging and splitting. 4626 */ 4627 static void evict_inode_truncate_pages(struct inode *inode) 4628 { 4629 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4630 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4631 struct rb_node *node; 4632 4633 ASSERT(inode->i_state & I_FREEING); 4634 truncate_inode_pages_final(&inode->i_data); 4635 4636 write_lock(&map_tree->lock); 4637 while (!RB_EMPTY_ROOT(&map_tree->map)) { 4638 struct extent_map *em; 4639 4640 node = rb_first(&map_tree->map); 4641 em = rb_entry(node, struct extent_map, rb_node); 4642 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4643 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4644 remove_extent_mapping(map_tree, em); 4645 free_extent_map(em); 4646 } 4647 write_unlock(&map_tree->lock); 4648 4649 spin_lock(&io_tree->lock); 4650 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4651 struct extent_state *state; 4652 struct extent_state *cached_state = NULL; 4653 4654 node = rb_first(&io_tree->state); 4655 state = rb_entry(node, struct extent_state, rb_node); 4656 atomic_inc(&state->refs); 4657 spin_unlock(&io_tree->lock); 4658 4659 lock_extent_bits(io_tree, state->start, state->end, 4660 0, &cached_state); 4661 clear_extent_bit(io_tree, state->start, state->end, 4662 EXTENT_LOCKED | EXTENT_DIRTY | 4663 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 4664 EXTENT_DEFRAG, 1, 1, 4665 &cached_state, GFP_NOFS); 4666 free_extent_state(state); 4667 4668 spin_lock(&io_tree->lock); 4669 } 4670 spin_unlock(&io_tree->lock); 4671 } 4672 4673 void btrfs_evict_inode(struct inode *inode) 4674 { 4675 struct btrfs_trans_handle *trans; 4676 struct btrfs_root *root = BTRFS_I(inode)->root; 4677 struct btrfs_block_rsv *rsv, *global_rsv; 4678 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4679 int ret; 4680 4681 trace_btrfs_inode_evict(inode); 4682 4683 evict_inode_truncate_pages(inode); 4684 4685 if (inode->i_nlink && 4686 ((btrfs_root_refs(&root->root_item) != 0 && 4687 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4688 btrfs_is_free_space_inode(inode))) 4689 goto no_delete; 4690 4691 if (is_bad_inode(inode)) { 4692 btrfs_orphan_del(NULL, inode); 4693 goto no_delete; 4694 } 4695 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4696 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4697 4698 if (root->fs_info->log_root_recovering) { 4699 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4700 &BTRFS_I(inode)->runtime_flags)); 4701 goto no_delete; 4702 } 4703 4704 if (inode->i_nlink > 0) { 4705 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4706 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4707 goto no_delete; 4708 } 4709 4710 ret = btrfs_commit_inode_delayed_inode(inode); 4711 if (ret) { 4712 btrfs_orphan_del(NULL, inode); 4713 goto no_delete; 4714 } 4715 4716 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4717 if (!rsv) { 4718 btrfs_orphan_del(NULL, inode); 4719 goto no_delete; 4720 } 4721 rsv->size = min_size; 4722 rsv->failfast = 1; 4723 global_rsv = &root->fs_info->global_block_rsv; 4724 4725 btrfs_i_size_write(inode, 0); 4726 4727 /* 4728 * This is a bit simpler than btrfs_truncate since we've already 4729 * reserved our space for our orphan item in the unlink, so we just 4730 * need to reserve some slack space in case we add bytes and update 4731 * inode item when doing the truncate. 4732 */ 4733 while (1) { 4734 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4735 BTRFS_RESERVE_FLUSH_LIMIT); 4736 4737 /* 4738 * Try and steal from the global reserve since we will 4739 * likely not use this space anyway, we want to try as 4740 * hard as possible to get this to work. 4741 */ 4742 if (ret) 4743 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4744 4745 if (ret) { 4746 btrfs_warn(root->fs_info, 4747 "Could not get space for a delete, will truncate on mount %d", 4748 ret); 4749 btrfs_orphan_del(NULL, inode); 4750 btrfs_free_block_rsv(root, rsv); 4751 goto no_delete; 4752 } 4753 4754 trans = btrfs_join_transaction(root); 4755 if (IS_ERR(trans)) { 4756 btrfs_orphan_del(NULL, inode); 4757 btrfs_free_block_rsv(root, rsv); 4758 goto no_delete; 4759 } 4760 4761 trans->block_rsv = rsv; 4762 4763 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4764 if (ret != -ENOSPC) 4765 break; 4766 4767 trans->block_rsv = &root->fs_info->trans_block_rsv; 4768 btrfs_end_transaction(trans, root); 4769 trans = NULL; 4770 btrfs_btree_balance_dirty(root); 4771 } 4772 4773 btrfs_free_block_rsv(root, rsv); 4774 4775 /* 4776 * Errors here aren't a big deal, it just means we leave orphan items 4777 * in the tree. They will be cleaned up on the next mount. 4778 */ 4779 if (ret == 0) { 4780 trans->block_rsv = root->orphan_block_rsv; 4781 btrfs_orphan_del(trans, inode); 4782 } else { 4783 btrfs_orphan_del(NULL, inode); 4784 } 4785 4786 trans->block_rsv = &root->fs_info->trans_block_rsv; 4787 if (!(root == root->fs_info->tree_root || 4788 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4789 btrfs_return_ino(root, btrfs_ino(inode)); 4790 4791 btrfs_end_transaction(trans, root); 4792 btrfs_btree_balance_dirty(root); 4793 no_delete: 4794 btrfs_remove_delayed_node(inode); 4795 clear_inode(inode); 4796 return; 4797 } 4798 4799 /* 4800 * this returns the key found in the dir entry in the location pointer. 4801 * If no dir entries were found, location->objectid is 0. 4802 */ 4803 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4804 struct btrfs_key *location) 4805 { 4806 const char *name = dentry->d_name.name; 4807 int namelen = dentry->d_name.len; 4808 struct btrfs_dir_item *di; 4809 struct btrfs_path *path; 4810 struct btrfs_root *root = BTRFS_I(dir)->root; 4811 int ret = 0; 4812 4813 path = btrfs_alloc_path(); 4814 if (!path) 4815 return -ENOMEM; 4816 4817 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4818 namelen, 0); 4819 if (IS_ERR(di)) 4820 ret = PTR_ERR(di); 4821 4822 if (IS_ERR_OR_NULL(di)) 4823 goto out_err; 4824 4825 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4826 out: 4827 btrfs_free_path(path); 4828 return ret; 4829 out_err: 4830 location->objectid = 0; 4831 goto out; 4832 } 4833 4834 /* 4835 * when we hit a tree root in a directory, the btrfs part of the inode 4836 * needs to be changed to reflect the root directory of the tree root. This 4837 * is kind of like crossing a mount point. 4838 */ 4839 static int fixup_tree_root_location(struct btrfs_root *root, 4840 struct inode *dir, 4841 struct dentry *dentry, 4842 struct btrfs_key *location, 4843 struct btrfs_root **sub_root) 4844 { 4845 struct btrfs_path *path; 4846 struct btrfs_root *new_root; 4847 struct btrfs_root_ref *ref; 4848 struct extent_buffer *leaf; 4849 int ret; 4850 int err = 0; 4851 4852 path = btrfs_alloc_path(); 4853 if (!path) { 4854 err = -ENOMEM; 4855 goto out; 4856 } 4857 4858 err = -ENOENT; 4859 ret = btrfs_find_item(root->fs_info->tree_root, path, 4860 BTRFS_I(dir)->root->root_key.objectid, 4861 location->objectid, BTRFS_ROOT_REF_KEY, NULL); 4862 if (ret) { 4863 if (ret < 0) 4864 err = ret; 4865 goto out; 4866 } 4867 4868 leaf = path->nodes[0]; 4869 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4870 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4871 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4872 goto out; 4873 4874 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4875 (unsigned long)(ref + 1), 4876 dentry->d_name.len); 4877 if (ret) 4878 goto out; 4879 4880 btrfs_release_path(path); 4881 4882 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4883 if (IS_ERR(new_root)) { 4884 err = PTR_ERR(new_root); 4885 goto out; 4886 } 4887 4888 *sub_root = new_root; 4889 location->objectid = btrfs_root_dirid(&new_root->root_item); 4890 location->type = BTRFS_INODE_ITEM_KEY; 4891 location->offset = 0; 4892 err = 0; 4893 out: 4894 btrfs_free_path(path); 4895 return err; 4896 } 4897 4898 static void inode_tree_add(struct inode *inode) 4899 { 4900 struct btrfs_root *root = BTRFS_I(inode)->root; 4901 struct btrfs_inode *entry; 4902 struct rb_node **p; 4903 struct rb_node *parent; 4904 struct rb_node *new = &BTRFS_I(inode)->rb_node; 4905 u64 ino = btrfs_ino(inode); 4906 4907 if (inode_unhashed(inode)) 4908 return; 4909 parent = NULL; 4910 spin_lock(&root->inode_lock); 4911 p = &root->inode_tree.rb_node; 4912 while (*p) { 4913 parent = *p; 4914 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4915 4916 if (ino < btrfs_ino(&entry->vfs_inode)) 4917 p = &parent->rb_left; 4918 else if (ino > btrfs_ino(&entry->vfs_inode)) 4919 p = &parent->rb_right; 4920 else { 4921 WARN_ON(!(entry->vfs_inode.i_state & 4922 (I_WILL_FREE | I_FREEING))); 4923 rb_replace_node(parent, new, &root->inode_tree); 4924 RB_CLEAR_NODE(parent); 4925 spin_unlock(&root->inode_lock); 4926 return; 4927 } 4928 } 4929 rb_link_node(new, parent, p); 4930 rb_insert_color(new, &root->inode_tree); 4931 spin_unlock(&root->inode_lock); 4932 } 4933 4934 static void inode_tree_del(struct inode *inode) 4935 { 4936 struct btrfs_root *root = BTRFS_I(inode)->root; 4937 int empty = 0; 4938 4939 spin_lock(&root->inode_lock); 4940 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4941 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4942 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4943 empty = RB_EMPTY_ROOT(&root->inode_tree); 4944 } 4945 spin_unlock(&root->inode_lock); 4946 4947 if (empty && btrfs_root_refs(&root->root_item) == 0) { 4948 synchronize_srcu(&root->fs_info->subvol_srcu); 4949 spin_lock(&root->inode_lock); 4950 empty = RB_EMPTY_ROOT(&root->inode_tree); 4951 spin_unlock(&root->inode_lock); 4952 if (empty) 4953 btrfs_add_dead_root(root); 4954 } 4955 } 4956 4957 void btrfs_invalidate_inodes(struct btrfs_root *root) 4958 { 4959 struct rb_node *node; 4960 struct rb_node *prev; 4961 struct btrfs_inode *entry; 4962 struct inode *inode; 4963 u64 objectid = 0; 4964 4965 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 4966 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4967 4968 spin_lock(&root->inode_lock); 4969 again: 4970 node = root->inode_tree.rb_node; 4971 prev = NULL; 4972 while (node) { 4973 prev = node; 4974 entry = rb_entry(node, struct btrfs_inode, rb_node); 4975 4976 if (objectid < btrfs_ino(&entry->vfs_inode)) 4977 node = node->rb_left; 4978 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4979 node = node->rb_right; 4980 else 4981 break; 4982 } 4983 if (!node) { 4984 while (prev) { 4985 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4986 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4987 node = prev; 4988 break; 4989 } 4990 prev = rb_next(prev); 4991 } 4992 } 4993 while (node) { 4994 entry = rb_entry(node, struct btrfs_inode, rb_node); 4995 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4996 inode = igrab(&entry->vfs_inode); 4997 if (inode) { 4998 spin_unlock(&root->inode_lock); 4999 if (atomic_read(&inode->i_count) > 1) 5000 d_prune_aliases(inode); 5001 /* 5002 * btrfs_drop_inode will have it removed from 5003 * the inode cache when its usage count 5004 * hits zero. 5005 */ 5006 iput(inode); 5007 cond_resched(); 5008 spin_lock(&root->inode_lock); 5009 goto again; 5010 } 5011 5012 if (cond_resched_lock(&root->inode_lock)) 5013 goto again; 5014 5015 node = rb_next(node); 5016 } 5017 spin_unlock(&root->inode_lock); 5018 } 5019 5020 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5021 { 5022 struct btrfs_iget_args *args = p; 5023 inode->i_ino = args->location->objectid; 5024 memcpy(&BTRFS_I(inode)->location, args->location, 5025 sizeof(*args->location)); 5026 BTRFS_I(inode)->root = args->root; 5027 return 0; 5028 } 5029 5030 static int btrfs_find_actor(struct inode *inode, void *opaque) 5031 { 5032 struct btrfs_iget_args *args = opaque; 5033 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5034 args->root == BTRFS_I(inode)->root; 5035 } 5036 5037 static struct inode *btrfs_iget_locked(struct super_block *s, 5038 struct btrfs_key *location, 5039 struct btrfs_root *root) 5040 { 5041 struct inode *inode; 5042 struct btrfs_iget_args args; 5043 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5044 5045 args.location = location; 5046 args.root = root; 5047 5048 inode = iget5_locked(s, hashval, btrfs_find_actor, 5049 btrfs_init_locked_inode, 5050 (void *)&args); 5051 return inode; 5052 } 5053 5054 /* Get an inode object given its location and corresponding root. 5055 * Returns in *is_new if the inode was read from disk 5056 */ 5057 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5058 struct btrfs_root *root, int *new) 5059 { 5060 struct inode *inode; 5061 5062 inode = btrfs_iget_locked(s, location, root); 5063 if (!inode) 5064 return ERR_PTR(-ENOMEM); 5065 5066 if (inode->i_state & I_NEW) { 5067 btrfs_read_locked_inode(inode); 5068 if (!is_bad_inode(inode)) { 5069 inode_tree_add(inode); 5070 unlock_new_inode(inode); 5071 if (new) 5072 *new = 1; 5073 } else { 5074 unlock_new_inode(inode); 5075 iput(inode); 5076 inode = ERR_PTR(-ESTALE); 5077 } 5078 } 5079 5080 return inode; 5081 } 5082 5083 static struct inode *new_simple_dir(struct super_block *s, 5084 struct btrfs_key *key, 5085 struct btrfs_root *root) 5086 { 5087 struct inode *inode = new_inode(s); 5088 5089 if (!inode) 5090 return ERR_PTR(-ENOMEM); 5091 5092 BTRFS_I(inode)->root = root; 5093 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5094 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5095 5096 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5097 inode->i_op = &btrfs_dir_ro_inode_operations; 5098 inode->i_fop = &simple_dir_operations; 5099 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5100 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5101 5102 return inode; 5103 } 5104 5105 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5106 { 5107 struct inode *inode; 5108 struct btrfs_root *root = BTRFS_I(dir)->root; 5109 struct btrfs_root *sub_root = root; 5110 struct btrfs_key location; 5111 int index; 5112 int ret = 0; 5113 5114 if (dentry->d_name.len > BTRFS_NAME_LEN) 5115 return ERR_PTR(-ENAMETOOLONG); 5116 5117 ret = btrfs_inode_by_name(dir, dentry, &location); 5118 if (ret < 0) 5119 return ERR_PTR(ret); 5120 5121 if (location.objectid == 0) 5122 return ERR_PTR(-ENOENT); 5123 5124 if (location.type == BTRFS_INODE_ITEM_KEY) { 5125 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5126 return inode; 5127 } 5128 5129 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5130 5131 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5132 ret = fixup_tree_root_location(root, dir, dentry, 5133 &location, &sub_root); 5134 if (ret < 0) { 5135 if (ret != -ENOENT) 5136 inode = ERR_PTR(ret); 5137 else 5138 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5139 } else { 5140 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5141 } 5142 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5143 5144 if (!IS_ERR(inode) && root != sub_root) { 5145 down_read(&root->fs_info->cleanup_work_sem); 5146 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5147 ret = btrfs_orphan_cleanup(sub_root); 5148 up_read(&root->fs_info->cleanup_work_sem); 5149 if (ret) { 5150 iput(inode); 5151 inode = ERR_PTR(ret); 5152 } 5153 } 5154 5155 return inode; 5156 } 5157 5158 static int btrfs_dentry_delete(const struct dentry *dentry) 5159 { 5160 struct btrfs_root *root; 5161 struct inode *inode = dentry->d_inode; 5162 5163 if (!inode && !IS_ROOT(dentry)) 5164 inode = dentry->d_parent->d_inode; 5165 5166 if (inode) { 5167 root = BTRFS_I(inode)->root; 5168 if (btrfs_root_refs(&root->root_item) == 0) 5169 return 1; 5170 5171 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5172 return 1; 5173 } 5174 return 0; 5175 } 5176 5177 static void btrfs_dentry_release(struct dentry *dentry) 5178 { 5179 kfree(dentry->d_fsdata); 5180 } 5181 5182 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5183 unsigned int flags) 5184 { 5185 struct inode *inode; 5186 5187 inode = btrfs_lookup_dentry(dir, dentry); 5188 if (IS_ERR(inode)) { 5189 if (PTR_ERR(inode) == -ENOENT) 5190 inode = NULL; 5191 else 5192 return ERR_CAST(inode); 5193 } 5194 5195 return d_materialise_unique(dentry, inode); 5196 } 5197 5198 unsigned char btrfs_filetype_table[] = { 5199 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5200 }; 5201 5202 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5203 { 5204 struct inode *inode = file_inode(file); 5205 struct btrfs_root *root = BTRFS_I(inode)->root; 5206 struct btrfs_item *item; 5207 struct btrfs_dir_item *di; 5208 struct btrfs_key key; 5209 struct btrfs_key found_key; 5210 struct btrfs_path *path; 5211 struct list_head ins_list; 5212 struct list_head del_list; 5213 int ret; 5214 struct extent_buffer *leaf; 5215 int slot; 5216 unsigned char d_type; 5217 int over = 0; 5218 u32 di_cur; 5219 u32 di_total; 5220 u32 di_len; 5221 int key_type = BTRFS_DIR_INDEX_KEY; 5222 char tmp_name[32]; 5223 char *name_ptr; 5224 int name_len; 5225 int is_curr = 0; /* ctx->pos points to the current index? */ 5226 5227 /* FIXME, use a real flag for deciding about the key type */ 5228 if (root->fs_info->tree_root == root) 5229 key_type = BTRFS_DIR_ITEM_KEY; 5230 5231 if (!dir_emit_dots(file, ctx)) 5232 return 0; 5233 5234 path = btrfs_alloc_path(); 5235 if (!path) 5236 return -ENOMEM; 5237 5238 path->reada = 1; 5239 5240 if (key_type == BTRFS_DIR_INDEX_KEY) { 5241 INIT_LIST_HEAD(&ins_list); 5242 INIT_LIST_HEAD(&del_list); 5243 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5244 } 5245 5246 btrfs_set_key_type(&key, key_type); 5247 key.offset = ctx->pos; 5248 key.objectid = btrfs_ino(inode); 5249 5250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5251 if (ret < 0) 5252 goto err; 5253 5254 while (1) { 5255 leaf = path->nodes[0]; 5256 slot = path->slots[0]; 5257 if (slot >= btrfs_header_nritems(leaf)) { 5258 ret = btrfs_next_leaf(root, path); 5259 if (ret < 0) 5260 goto err; 5261 else if (ret > 0) 5262 break; 5263 continue; 5264 } 5265 5266 item = btrfs_item_nr(slot); 5267 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5268 5269 if (found_key.objectid != key.objectid) 5270 break; 5271 if (btrfs_key_type(&found_key) != key_type) 5272 break; 5273 if (found_key.offset < ctx->pos) 5274 goto next; 5275 if (key_type == BTRFS_DIR_INDEX_KEY && 5276 btrfs_should_delete_dir_index(&del_list, 5277 found_key.offset)) 5278 goto next; 5279 5280 ctx->pos = found_key.offset; 5281 is_curr = 1; 5282 5283 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5284 di_cur = 0; 5285 di_total = btrfs_item_size(leaf, item); 5286 5287 while (di_cur < di_total) { 5288 struct btrfs_key location; 5289 5290 if (verify_dir_item(root, leaf, di)) 5291 break; 5292 5293 name_len = btrfs_dir_name_len(leaf, di); 5294 if (name_len <= sizeof(tmp_name)) { 5295 name_ptr = tmp_name; 5296 } else { 5297 name_ptr = kmalloc(name_len, GFP_NOFS); 5298 if (!name_ptr) { 5299 ret = -ENOMEM; 5300 goto err; 5301 } 5302 } 5303 read_extent_buffer(leaf, name_ptr, 5304 (unsigned long)(di + 1), name_len); 5305 5306 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5307 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5308 5309 5310 /* is this a reference to our own snapshot? If so 5311 * skip it. 5312 * 5313 * In contrast to old kernels, we insert the snapshot's 5314 * dir item and dir index after it has been created, so 5315 * we won't find a reference to our own snapshot. We 5316 * still keep the following code for backward 5317 * compatibility. 5318 */ 5319 if (location.type == BTRFS_ROOT_ITEM_KEY && 5320 location.objectid == root->root_key.objectid) { 5321 over = 0; 5322 goto skip; 5323 } 5324 over = !dir_emit(ctx, name_ptr, name_len, 5325 location.objectid, d_type); 5326 5327 skip: 5328 if (name_ptr != tmp_name) 5329 kfree(name_ptr); 5330 5331 if (over) 5332 goto nopos; 5333 di_len = btrfs_dir_name_len(leaf, di) + 5334 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5335 di_cur += di_len; 5336 di = (struct btrfs_dir_item *)((char *)di + di_len); 5337 } 5338 next: 5339 path->slots[0]++; 5340 } 5341 5342 if (key_type == BTRFS_DIR_INDEX_KEY) { 5343 if (is_curr) 5344 ctx->pos++; 5345 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5346 if (ret) 5347 goto nopos; 5348 } 5349 5350 /* Reached end of directory/root. Bump pos past the last item. */ 5351 ctx->pos++; 5352 5353 /* 5354 * Stop new entries from being returned after we return the last 5355 * entry. 5356 * 5357 * New directory entries are assigned a strictly increasing 5358 * offset. This means that new entries created during readdir 5359 * are *guaranteed* to be seen in the future by that readdir. 5360 * This has broken buggy programs which operate on names as 5361 * they're returned by readdir. Until we re-use freed offsets 5362 * we have this hack to stop new entries from being returned 5363 * under the assumption that they'll never reach this huge 5364 * offset. 5365 * 5366 * This is being careful not to overflow 32bit loff_t unless the 5367 * last entry requires it because doing so has broken 32bit apps 5368 * in the past. 5369 */ 5370 if (key_type == BTRFS_DIR_INDEX_KEY) { 5371 if (ctx->pos >= INT_MAX) 5372 ctx->pos = LLONG_MAX; 5373 else 5374 ctx->pos = INT_MAX; 5375 } 5376 nopos: 5377 ret = 0; 5378 err: 5379 if (key_type == BTRFS_DIR_INDEX_KEY) 5380 btrfs_put_delayed_items(&ins_list, &del_list); 5381 btrfs_free_path(path); 5382 return ret; 5383 } 5384 5385 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5386 { 5387 struct btrfs_root *root = BTRFS_I(inode)->root; 5388 struct btrfs_trans_handle *trans; 5389 int ret = 0; 5390 bool nolock = false; 5391 5392 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5393 return 0; 5394 5395 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5396 nolock = true; 5397 5398 if (wbc->sync_mode == WB_SYNC_ALL) { 5399 if (nolock) 5400 trans = btrfs_join_transaction_nolock(root); 5401 else 5402 trans = btrfs_join_transaction(root); 5403 if (IS_ERR(trans)) 5404 return PTR_ERR(trans); 5405 ret = btrfs_commit_transaction(trans, root); 5406 } 5407 return ret; 5408 } 5409 5410 /* 5411 * This is somewhat expensive, updating the tree every time the 5412 * inode changes. But, it is most likely to find the inode in cache. 5413 * FIXME, needs more benchmarking...there are no reasons other than performance 5414 * to keep or drop this code. 5415 */ 5416 static int btrfs_dirty_inode(struct inode *inode) 5417 { 5418 struct btrfs_root *root = BTRFS_I(inode)->root; 5419 struct btrfs_trans_handle *trans; 5420 int ret; 5421 5422 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5423 return 0; 5424 5425 trans = btrfs_join_transaction(root); 5426 if (IS_ERR(trans)) 5427 return PTR_ERR(trans); 5428 5429 ret = btrfs_update_inode(trans, root, inode); 5430 if (ret && ret == -ENOSPC) { 5431 /* whoops, lets try again with the full transaction */ 5432 btrfs_end_transaction(trans, root); 5433 trans = btrfs_start_transaction(root, 1); 5434 if (IS_ERR(trans)) 5435 return PTR_ERR(trans); 5436 5437 ret = btrfs_update_inode(trans, root, inode); 5438 } 5439 btrfs_end_transaction(trans, root); 5440 if (BTRFS_I(inode)->delayed_node) 5441 btrfs_balance_delayed_items(root); 5442 5443 return ret; 5444 } 5445 5446 /* 5447 * This is a copy of file_update_time. We need this so we can return error on 5448 * ENOSPC for updating the inode in the case of file write and mmap writes. 5449 */ 5450 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5451 int flags) 5452 { 5453 struct btrfs_root *root = BTRFS_I(inode)->root; 5454 5455 if (btrfs_root_readonly(root)) 5456 return -EROFS; 5457 5458 if (flags & S_VERSION) 5459 inode_inc_iversion(inode); 5460 if (flags & S_CTIME) 5461 inode->i_ctime = *now; 5462 if (flags & S_MTIME) 5463 inode->i_mtime = *now; 5464 if (flags & S_ATIME) 5465 inode->i_atime = *now; 5466 return btrfs_dirty_inode(inode); 5467 } 5468 5469 /* 5470 * find the highest existing sequence number in a directory 5471 * and then set the in-memory index_cnt variable to reflect 5472 * free sequence numbers 5473 */ 5474 static int btrfs_set_inode_index_count(struct inode *inode) 5475 { 5476 struct btrfs_root *root = BTRFS_I(inode)->root; 5477 struct btrfs_key key, found_key; 5478 struct btrfs_path *path; 5479 struct extent_buffer *leaf; 5480 int ret; 5481 5482 key.objectid = btrfs_ino(inode); 5483 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5484 key.offset = (u64)-1; 5485 5486 path = btrfs_alloc_path(); 5487 if (!path) 5488 return -ENOMEM; 5489 5490 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5491 if (ret < 0) 5492 goto out; 5493 /* FIXME: we should be able to handle this */ 5494 if (ret == 0) 5495 goto out; 5496 ret = 0; 5497 5498 /* 5499 * MAGIC NUMBER EXPLANATION: 5500 * since we search a directory based on f_pos we have to start at 2 5501 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5502 * else has to start at 2 5503 */ 5504 if (path->slots[0] == 0) { 5505 BTRFS_I(inode)->index_cnt = 2; 5506 goto out; 5507 } 5508 5509 path->slots[0]--; 5510 5511 leaf = path->nodes[0]; 5512 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5513 5514 if (found_key.objectid != btrfs_ino(inode) || 5515 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5516 BTRFS_I(inode)->index_cnt = 2; 5517 goto out; 5518 } 5519 5520 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5521 out: 5522 btrfs_free_path(path); 5523 return ret; 5524 } 5525 5526 /* 5527 * helper to find a free sequence number in a given directory. This current 5528 * code is very simple, later versions will do smarter things in the btree 5529 */ 5530 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5531 { 5532 int ret = 0; 5533 5534 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5535 ret = btrfs_inode_delayed_dir_index_count(dir); 5536 if (ret) { 5537 ret = btrfs_set_inode_index_count(dir); 5538 if (ret) 5539 return ret; 5540 } 5541 } 5542 5543 *index = BTRFS_I(dir)->index_cnt; 5544 BTRFS_I(dir)->index_cnt++; 5545 5546 return ret; 5547 } 5548 5549 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5550 struct btrfs_root *root, 5551 struct inode *dir, 5552 const char *name, int name_len, 5553 u64 ref_objectid, u64 objectid, 5554 umode_t mode, u64 *index) 5555 { 5556 struct inode *inode; 5557 struct btrfs_inode_item *inode_item; 5558 struct btrfs_key *location; 5559 struct btrfs_path *path; 5560 struct btrfs_inode_ref *ref; 5561 struct btrfs_key key[2]; 5562 u32 sizes[2]; 5563 int nitems = name ? 2 : 1; 5564 unsigned long ptr; 5565 int ret; 5566 5567 path = btrfs_alloc_path(); 5568 if (!path) 5569 return ERR_PTR(-ENOMEM); 5570 5571 inode = new_inode(root->fs_info->sb); 5572 if (!inode) { 5573 btrfs_free_path(path); 5574 return ERR_PTR(-ENOMEM); 5575 } 5576 5577 /* 5578 * we have to initialize this early, so we can reclaim the inode 5579 * number if we fail afterwards in this function. 5580 */ 5581 inode->i_ino = objectid; 5582 5583 if (dir && name) { 5584 trace_btrfs_inode_request(dir); 5585 5586 ret = btrfs_set_inode_index(dir, index); 5587 if (ret) { 5588 btrfs_free_path(path); 5589 iput(inode); 5590 return ERR_PTR(ret); 5591 } 5592 } else if (dir) { 5593 *index = 0; 5594 } 5595 /* 5596 * index_cnt is ignored for everything but a dir, 5597 * btrfs_get_inode_index_count has an explanation for the magic 5598 * number 5599 */ 5600 BTRFS_I(inode)->index_cnt = 2; 5601 BTRFS_I(inode)->dir_index = *index; 5602 BTRFS_I(inode)->root = root; 5603 BTRFS_I(inode)->generation = trans->transid; 5604 inode->i_generation = BTRFS_I(inode)->generation; 5605 5606 /* 5607 * We could have gotten an inode number from somebody who was fsynced 5608 * and then removed in this same transaction, so let's just set full 5609 * sync since it will be a full sync anyway and this will blow away the 5610 * old info in the log. 5611 */ 5612 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5613 5614 key[0].objectid = objectid; 5615 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5616 key[0].offset = 0; 5617 5618 sizes[0] = sizeof(struct btrfs_inode_item); 5619 5620 if (name) { 5621 /* 5622 * Start new inodes with an inode_ref. This is slightly more 5623 * efficient for small numbers of hard links since they will 5624 * be packed into one item. Extended refs will kick in if we 5625 * add more hard links than can fit in the ref item. 5626 */ 5627 key[1].objectid = objectid; 5628 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5629 key[1].offset = ref_objectid; 5630 5631 sizes[1] = name_len + sizeof(*ref); 5632 } 5633 5634 path->leave_spinning = 1; 5635 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5636 if (ret != 0) 5637 goto fail; 5638 5639 inode_init_owner(inode, dir, mode); 5640 inode_set_bytes(inode, 0); 5641 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5642 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5643 struct btrfs_inode_item); 5644 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5645 sizeof(*inode_item)); 5646 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5647 5648 if (name) { 5649 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5650 struct btrfs_inode_ref); 5651 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5652 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5653 ptr = (unsigned long)(ref + 1); 5654 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5655 } 5656 5657 btrfs_mark_buffer_dirty(path->nodes[0]); 5658 btrfs_free_path(path); 5659 5660 location = &BTRFS_I(inode)->location; 5661 location->objectid = objectid; 5662 location->offset = 0; 5663 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5664 5665 btrfs_inherit_iflags(inode, dir); 5666 5667 if (S_ISREG(mode)) { 5668 if (btrfs_test_opt(root, NODATASUM)) 5669 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5670 if (btrfs_test_opt(root, NODATACOW)) 5671 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5672 BTRFS_INODE_NODATASUM; 5673 } 5674 5675 btrfs_insert_inode_hash(inode); 5676 inode_tree_add(inode); 5677 5678 trace_btrfs_inode_new(inode); 5679 btrfs_set_inode_last_trans(trans, inode); 5680 5681 btrfs_update_root_times(trans, root); 5682 5683 ret = btrfs_inode_inherit_props(trans, inode, dir); 5684 if (ret) 5685 btrfs_err(root->fs_info, 5686 "error inheriting props for ino %llu (root %llu): %d", 5687 btrfs_ino(inode), root->root_key.objectid, ret); 5688 5689 return inode; 5690 fail: 5691 if (dir && name) 5692 BTRFS_I(dir)->index_cnt--; 5693 btrfs_free_path(path); 5694 iput(inode); 5695 return ERR_PTR(ret); 5696 } 5697 5698 static inline u8 btrfs_inode_type(struct inode *inode) 5699 { 5700 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5701 } 5702 5703 /* 5704 * utility function to add 'inode' into 'parent_inode' with 5705 * a give name and a given sequence number. 5706 * if 'add_backref' is true, also insert a backref from the 5707 * inode to the parent directory. 5708 */ 5709 int btrfs_add_link(struct btrfs_trans_handle *trans, 5710 struct inode *parent_inode, struct inode *inode, 5711 const char *name, int name_len, int add_backref, u64 index) 5712 { 5713 int ret = 0; 5714 struct btrfs_key key; 5715 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5716 u64 ino = btrfs_ino(inode); 5717 u64 parent_ino = btrfs_ino(parent_inode); 5718 5719 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5720 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5721 } else { 5722 key.objectid = ino; 5723 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5724 key.offset = 0; 5725 } 5726 5727 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5728 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5729 key.objectid, root->root_key.objectid, 5730 parent_ino, index, name, name_len); 5731 } else if (add_backref) { 5732 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5733 parent_ino, index); 5734 } 5735 5736 /* Nothing to clean up yet */ 5737 if (ret) 5738 return ret; 5739 5740 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5741 parent_inode, &key, 5742 btrfs_inode_type(inode), index); 5743 if (ret == -EEXIST || ret == -EOVERFLOW) 5744 goto fail_dir_item; 5745 else if (ret) { 5746 btrfs_abort_transaction(trans, root, ret); 5747 return ret; 5748 } 5749 5750 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5751 name_len * 2); 5752 inode_inc_iversion(parent_inode); 5753 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5754 ret = btrfs_update_inode(trans, root, parent_inode); 5755 if (ret) 5756 btrfs_abort_transaction(trans, root, ret); 5757 return ret; 5758 5759 fail_dir_item: 5760 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5761 u64 local_index; 5762 int err; 5763 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5764 key.objectid, root->root_key.objectid, 5765 parent_ino, &local_index, name, name_len); 5766 5767 } else if (add_backref) { 5768 u64 local_index; 5769 int err; 5770 5771 err = btrfs_del_inode_ref(trans, root, name, name_len, 5772 ino, parent_ino, &local_index); 5773 } 5774 return ret; 5775 } 5776 5777 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5778 struct inode *dir, struct dentry *dentry, 5779 struct inode *inode, int backref, u64 index) 5780 { 5781 int err = btrfs_add_link(trans, dir, inode, 5782 dentry->d_name.name, dentry->d_name.len, 5783 backref, index); 5784 if (err > 0) 5785 err = -EEXIST; 5786 return err; 5787 } 5788 5789 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5790 umode_t mode, dev_t rdev) 5791 { 5792 struct btrfs_trans_handle *trans; 5793 struct btrfs_root *root = BTRFS_I(dir)->root; 5794 struct inode *inode = NULL; 5795 int err; 5796 int drop_inode = 0; 5797 u64 objectid; 5798 u64 index = 0; 5799 5800 if (!new_valid_dev(rdev)) 5801 return -EINVAL; 5802 5803 /* 5804 * 2 for inode item and ref 5805 * 2 for dir items 5806 * 1 for xattr if selinux is on 5807 */ 5808 trans = btrfs_start_transaction(root, 5); 5809 if (IS_ERR(trans)) 5810 return PTR_ERR(trans); 5811 5812 err = btrfs_find_free_ino(root, &objectid); 5813 if (err) 5814 goto out_unlock; 5815 5816 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5817 dentry->d_name.len, btrfs_ino(dir), objectid, 5818 mode, &index); 5819 if (IS_ERR(inode)) { 5820 err = PTR_ERR(inode); 5821 goto out_unlock; 5822 } 5823 5824 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5825 if (err) { 5826 drop_inode = 1; 5827 goto out_unlock; 5828 } 5829 5830 /* 5831 * If the active LSM wants to access the inode during 5832 * d_instantiate it needs these. Smack checks to see 5833 * if the filesystem supports xattrs by looking at the 5834 * ops vector. 5835 */ 5836 5837 inode->i_op = &btrfs_special_inode_operations; 5838 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5839 if (err) 5840 drop_inode = 1; 5841 else { 5842 init_special_inode(inode, inode->i_mode, rdev); 5843 btrfs_update_inode(trans, root, inode); 5844 d_instantiate(dentry, inode); 5845 } 5846 out_unlock: 5847 btrfs_end_transaction(trans, root); 5848 btrfs_balance_delayed_items(root); 5849 btrfs_btree_balance_dirty(root); 5850 if (drop_inode) { 5851 inode_dec_link_count(inode); 5852 iput(inode); 5853 } 5854 return err; 5855 } 5856 5857 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5858 umode_t mode, bool excl) 5859 { 5860 struct btrfs_trans_handle *trans; 5861 struct btrfs_root *root = BTRFS_I(dir)->root; 5862 struct inode *inode = NULL; 5863 int drop_inode_on_err = 0; 5864 int err; 5865 u64 objectid; 5866 u64 index = 0; 5867 5868 /* 5869 * 2 for inode item and ref 5870 * 2 for dir items 5871 * 1 for xattr if selinux is on 5872 */ 5873 trans = btrfs_start_transaction(root, 5); 5874 if (IS_ERR(trans)) 5875 return PTR_ERR(trans); 5876 5877 err = btrfs_find_free_ino(root, &objectid); 5878 if (err) 5879 goto out_unlock; 5880 5881 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5882 dentry->d_name.len, btrfs_ino(dir), objectid, 5883 mode, &index); 5884 if (IS_ERR(inode)) { 5885 err = PTR_ERR(inode); 5886 goto out_unlock; 5887 } 5888 drop_inode_on_err = 1; 5889 5890 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5891 if (err) 5892 goto out_unlock; 5893 5894 err = btrfs_update_inode(trans, root, inode); 5895 if (err) 5896 goto out_unlock; 5897 5898 /* 5899 * If the active LSM wants to access the inode during 5900 * d_instantiate it needs these. Smack checks to see 5901 * if the filesystem supports xattrs by looking at the 5902 * ops vector. 5903 */ 5904 inode->i_fop = &btrfs_file_operations; 5905 inode->i_op = &btrfs_file_inode_operations; 5906 5907 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5908 if (err) 5909 goto out_unlock; 5910 5911 inode->i_mapping->a_ops = &btrfs_aops; 5912 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5913 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5914 d_instantiate(dentry, inode); 5915 5916 out_unlock: 5917 btrfs_end_transaction(trans, root); 5918 if (err && drop_inode_on_err) { 5919 inode_dec_link_count(inode); 5920 iput(inode); 5921 } 5922 btrfs_balance_delayed_items(root); 5923 btrfs_btree_balance_dirty(root); 5924 return err; 5925 } 5926 5927 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5928 struct dentry *dentry) 5929 { 5930 struct btrfs_trans_handle *trans; 5931 struct btrfs_root *root = BTRFS_I(dir)->root; 5932 struct inode *inode = old_dentry->d_inode; 5933 u64 index; 5934 int err; 5935 int drop_inode = 0; 5936 5937 /* do not allow sys_link's with other subvols of the same device */ 5938 if (root->objectid != BTRFS_I(inode)->root->objectid) 5939 return -EXDEV; 5940 5941 if (inode->i_nlink >= BTRFS_LINK_MAX) 5942 return -EMLINK; 5943 5944 err = btrfs_set_inode_index(dir, &index); 5945 if (err) 5946 goto fail; 5947 5948 /* 5949 * 2 items for inode and inode ref 5950 * 2 items for dir items 5951 * 1 item for parent inode 5952 */ 5953 trans = btrfs_start_transaction(root, 5); 5954 if (IS_ERR(trans)) { 5955 err = PTR_ERR(trans); 5956 goto fail; 5957 } 5958 5959 /* There are several dir indexes for this inode, clear the cache. */ 5960 BTRFS_I(inode)->dir_index = 0ULL; 5961 inc_nlink(inode); 5962 inode_inc_iversion(inode); 5963 inode->i_ctime = CURRENT_TIME; 5964 ihold(inode); 5965 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5966 5967 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5968 5969 if (err) { 5970 drop_inode = 1; 5971 } else { 5972 struct dentry *parent = dentry->d_parent; 5973 err = btrfs_update_inode(trans, root, inode); 5974 if (err) 5975 goto fail; 5976 if (inode->i_nlink == 1) { 5977 /* 5978 * If new hard link count is 1, it's a file created 5979 * with open(2) O_TMPFILE flag. 5980 */ 5981 err = btrfs_orphan_del(trans, inode); 5982 if (err) 5983 goto fail; 5984 } 5985 d_instantiate(dentry, inode); 5986 btrfs_log_new_name(trans, inode, NULL, parent); 5987 } 5988 5989 btrfs_end_transaction(trans, root); 5990 btrfs_balance_delayed_items(root); 5991 fail: 5992 if (drop_inode) { 5993 inode_dec_link_count(inode); 5994 iput(inode); 5995 } 5996 btrfs_btree_balance_dirty(root); 5997 return err; 5998 } 5999 6000 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6001 { 6002 struct inode *inode = NULL; 6003 struct btrfs_trans_handle *trans; 6004 struct btrfs_root *root = BTRFS_I(dir)->root; 6005 int err = 0; 6006 int drop_on_err = 0; 6007 u64 objectid = 0; 6008 u64 index = 0; 6009 6010 /* 6011 * 2 items for inode and ref 6012 * 2 items for dir items 6013 * 1 for xattr if selinux is on 6014 */ 6015 trans = btrfs_start_transaction(root, 5); 6016 if (IS_ERR(trans)) 6017 return PTR_ERR(trans); 6018 6019 err = btrfs_find_free_ino(root, &objectid); 6020 if (err) 6021 goto out_fail; 6022 6023 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6024 dentry->d_name.len, btrfs_ino(dir), objectid, 6025 S_IFDIR | mode, &index); 6026 if (IS_ERR(inode)) { 6027 err = PTR_ERR(inode); 6028 goto out_fail; 6029 } 6030 6031 drop_on_err = 1; 6032 6033 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6034 if (err) 6035 goto out_fail; 6036 6037 inode->i_op = &btrfs_dir_inode_operations; 6038 inode->i_fop = &btrfs_dir_file_operations; 6039 6040 btrfs_i_size_write(inode, 0); 6041 err = btrfs_update_inode(trans, root, inode); 6042 if (err) 6043 goto out_fail; 6044 6045 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6046 dentry->d_name.len, 0, index); 6047 if (err) 6048 goto out_fail; 6049 6050 d_instantiate(dentry, inode); 6051 drop_on_err = 0; 6052 6053 out_fail: 6054 btrfs_end_transaction(trans, root); 6055 if (drop_on_err) 6056 iput(inode); 6057 btrfs_balance_delayed_items(root); 6058 btrfs_btree_balance_dirty(root); 6059 return err; 6060 } 6061 6062 /* helper for btfs_get_extent. Given an existing extent in the tree, 6063 * and an extent that you want to insert, deal with overlap and insert 6064 * the new extent into the tree. 6065 */ 6066 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6067 struct extent_map *existing, 6068 struct extent_map *em, 6069 u64 map_start, u64 map_len) 6070 { 6071 u64 start_diff; 6072 6073 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6074 start_diff = map_start - em->start; 6075 em->start = map_start; 6076 em->len = map_len; 6077 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6078 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6079 em->block_start += start_diff; 6080 em->block_len -= start_diff; 6081 } 6082 return add_extent_mapping(em_tree, em, 0); 6083 } 6084 6085 static noinline int uncompress_inline(struct btrfs_path *path, 6086 struct inode *inode, struct page *page, 6087 size_t pg_offset, u64 extent_offset, 6088 struct btrfs_file_extent_item *item) 6089 { 6090 int ret; 6091 struct extent_buffer *leaf = path->nodes[0]; 6092 char *tmp; 6093 size_t max_size; 6094 unsigned long inline_size; 6095 unsigned long ptr; 6096 int compress_type; 6097 6098 WARN_ON(pg_offset != 0); 6099 compress_type = btrfs_file_extent_compression(leaf, item); 6100 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6101 inline_size = btrfs_file_extent_inline_item_len(leaf, 6102 btrfs_item_nr(path->slots[0])); 6103 tmp = kmalloc(inline_size, GFP_NOFS); 6104 if (!tmp) 6105 return -ENOMEM; 6106 ptr = btrfs_file_extent_inline_start(item); 6107 6108 read_extent_buffer(leaf, tmp, ptr, inline_size); 6109 6110 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6111 ret = btrfs_decompress(compress_type, tmp, page, 6112 extent_offset, inline_size, max_size); 6113 kfree(tmp); 6114 return ret; 6115 } 6116 6117 /* 6118 * a bit scary, this does extent mapping from logical file offset to the disk. 6119 * the ugly parts come from merging extents from the disk with the in-ram 6120 * representation. This gets more complex because of the data=ordered code, 6121 * where the in-ram extents might be locked pending data=ordered completion. 6122 * 6123 * This also copies inline extents directly into the page. 6124 */ 6125 6126 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6127 size_t pg_offset, u64 start, u64 len, 6128 int create) 6129 { 6130 int ret; 6131 int err = 0; 6132 u64 extent_start = 0; 6133 u64 extent_end = 0; 6134 u64 objectid = btrfs_ino(inode); 6135 u32 found_type; 6136 struct btrfs_path *path = NULL; 6137 struct btrfs_root *root = BTRFS_I(inode)->root; 6138 struct btrfs_file_extent_item *item; 6139 struct extent_buffer *leaf; 6140 struct btrfs_key found_key; 6141 struct extent_map *em = NULL; 6142 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6143 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6144 struct btrfs_trans_handle *trans = NULL; 6145 const bool new_inline = !page || create; 6146 6147 again: 6148 read_lock(&em_tree->lock); 6149 em = lookup_extent_mapping(em_tree, start, len); 6150 if (em) 6151 em->bdev = root->fs_info->fs_devices->latest_bdev; 6152 read_unlock(&em_tree->lock); 6153 6154 if (em) { 6155 if (em->start > start || em->start + em->len <= start) 6156 free_extent_map(em); 6157 else if (em->block_start == EXTENT_MAP_INLINE && page) 6158 free_extent_map(em); 6159 else 6160 goto out; 6161 } 6162 em = alloc_extent_map(); 6163 if (!em) { 6164 err = -ENOMEM; 6165 goto out; 6166 } 6167 em->bdev = root->fs_info->fs_devices->latest_bdev; 6168 em->start = EXTENT_MAP_HOLE; 6169 em->orig_start = EXTENT_MAP_HOLE; 6170 em->len = (u64)-1; 6171 em->block_len = (u64)-1; 6172 6173 if (!path) { 6174 path = btrfs_alloc_path(); 6175 if (!path) { 6176 err = -ENOMEM; 6177 goto out; 6178 } 6179 /* 6180 * Chances are we'll be called again, so go ahead and do 6181 * readahead 6182 */ 6183 path->reada = 1; 6184 } 6185 6186 ret = btrfs_lookup_file_extent(trans, root, path, 6187 objectid, start, trans != NULL); 6188 if (ret < 0) { 6189 err = ret; 6190 goto out; 6191 } 6192 6193 if (ret != 0) { 6194 if (path->slots[0] == 0) 6195 goto not_found; 6196 path->slots[0]--; 6197 } 6198 6199 leaf = path->nodes[0]; 6200 item = btrfs_item_ptr(leaf, path->slots[0], 6201 struct btrfs_file_extent_item); 6202 /* are we inside the extent that was found? */ 6203 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6204 found_type = btrfs_key_type(&found_key); 6205 if (found_key.objectid != objectid || 6206 found_type != BTRFS_EXTENT_DATA_KEY) { 6207 /* 6208 * If we backup past the first extent we want to move forward 6209 * and see if there is an extent in front of us, otherwise we'll 6210 * say there is a hole for our whole search range which can 6211 * cause problems. 6212 */ 6213 extent_end = start; 6214 goto next; 6215 } 6216 6217 found_type = btrfs_file_extent_type(leaf, item); 6218 extent_start = found_key.offset; 6219 if (found_type == BTRFS_FILE_EXTENT_REG || 6220 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6221 extent_end = extent_start + 6222 btrfs_file_extent_num_bytes(leaf, item); 6223 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6224 size_t size; 6225 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6226 extent_end = ALIGN(extent_start + size, root->sectorsize); 6227 } 6228 next: 6229 if (start >= extent_end) { 6230 path->slots[0]++; 6231 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6232 ret = btrfs_next_leaf(root, path); 6233 if (ret < 0) { 6234 err = ret; 6235 goto out; 6236 } 6237 if (ret > 0) 6238 goto not_found; 6239 leaf = path->nodes[0]; 6240 } 6241 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6242 if (found_key.objectid != objectid || 6243 found_key.type != BTRFS_EXTENT_DATA_KEY) 6244 goto not_found; 6245 if (start + len <= found_key.offset) 6246 goto not_found; 6247 em->start = start; 6248 em->orig_start = start; 6249 em->len = found_key.offset - start; 6250 goto not_found_em; 6251 } 6252 6253 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6254 6255 if (found_type == BTRFS_FILE_EXTENT_REG || 6256 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6257 goto insert; 6258 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6259 unsigned long ptr; 6260 char *map; 6261 size_t size; 6262 size_t extent_offset; 6263 size_t copy_size; 6264 6265 if (new_inline) 6266 goto out; 6267 6268 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6269 extent_offset = page_offset(page) + pg_offset - extent_start; 6270 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6271 size - extent_offset); 6272 em->start = extent_start + extent_offset; 6273 em->len = ALIGN(copy_size, root->sectorsize); 6274 em->orig_block_len = em->len; 6275 em->orig_start = em->start; 6276 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6277 if (create == 0 && !PageUptodate(page)) { 6278 if (btrfs_file_extent_compression(leaf, item) != 6279 BTRFS_COMPRESS_NONE) { 6280 ret = uncompress_inline(path, inode, page, 6281 pg_offset, 6282 extent_offset, item); 6283 if (ret) { 6284 err = ret; 6285 goto out; 6286 } 6287 } else { 6288 map = kmap(page); 6289 read_extent_buffer(leaf, map + pg_offset, ptr, 6290 copy_size); 6291 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6292 memset(map + pg_offset + copy_size, 0, 6293 PAGE_CACHE_SIZE - pg_offset - 6294 copy_size); 6295 } 6296 kunmap(page); 6297 } 6298 flush_dcache_page(page); 6299 } else if (create && PageUptodate(page)) { 6300 BUG(); 6301 if (!trans) { 6302 kunmap(page); 6303 free_extent_map(em); 6304 em = NULL; 6305 6306 btrfs_release_path(path); 6307 trans = btrfs_join_transaction(root); 6308 6309 if (IS_ERR(trans)) 6310 return ERR_CAST(trans); 6311 goto again; 6312 } 6313 map = kmap(page); 6314 write_extent_buffer(leaf, map + pg_offset, ptr, 6315 copy_size); 6316 kunmap(page); 6317 btrfs_mark_buffer_dirty(leaf); 6318 } 6319 set_extent_uptodate(io_tree, em->start, 6320 extent_map_end(em) - 1, NULL, GFP_NOFS); 6321 goto insert; 6322 } 6323 not_found: 6324 em->start = start; 6325 em->orig_start = start; 6326 em->len = len; 6327 not_found_em: 6328 em->block_start = EXTENT_MAP_HOLE; 6329 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6330 insert: 6331 btrfs_release_path(path); 6332 if (em->start > start || extent_map_end(em) <= start) { 6333 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6334 em->start, em->len, start, len); 6335 err = -EIO; 6336 goto out; 6337 } 6338 6339 err = 0; 6340 write_lock(&em_tree->lock); 6341 ret = add_extent_mapping(em_tree, em, 0); 6342 /* it is possible that someone inserted the extent into the tree 6343 * while we had the lock dropped. It is also possible that 6344 * an overlapping map exists in the tree 6345 */ 6346 if (ret == -EEXIST) { 6347 struct extent_map *existing; 6348 6349 ret = 0; 6350 6351 existing = lookup_extent_mapping(em_tree, start, len); 6352 if (existing && (existing->start > start || 6353 existing->start + existing->len <= start)) { 6354 free_extent_map(existing); 6355 existing = NULL; 6356 } 6357 if (!existing) { 6358 existing = lookup_extent_mapping(em_tree, em->start, 6359 em->len); 6360 if (existing) { 6361 err = merge_extent_mapping(em_tree, existing, 6362 em, start, 6363 root->sectorsize); 6364 free_extent_map(existing); 6365 if (err) { 6366 free_extent_map(em); 6367 em = NULL; 6368 } 6369 } else { 6370 err = -EIO; 6371 free_extent_map(em); 6372 em = NULL; 6373 } 6374 } else { 6375 free_extent_map(em); 6376 em = existing; 6377 err = 0; 6378 } 6379 } 6380 write_unlock(&em_tree->lock); 6381 out: 6382 6383 trace_btrfs_get_extent(root, em); 6384 6385 if (path) 6386 btrfs_free_path(path); 6387 if (trans) { 6388 ret = btrfs_end_transaction(trans, root); 6389 if (!err) 6390 err = ret; 6391 } 6392 if (err) { 6393 free_extent_map(em); 6394 return ERR_PTR(err); 6395 } 6396 BUG_ON(!em); /* Error is always set */ 6397 return em; 6398 } 6399 6400 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6401 size_t pg_offset, u64 start, u64 len, 6402 int create) 6403 { 6404 struct extent_map *em; 6405 struct extent_map *hole_em = NULL; 6406 u64 range_start = start; 6407 u64 end; 6408 u64 found; 6409 u64 found_end; 6410 int err = 0; 6411 6412 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6413 if (IS_ERR(em)) 6414 return em; 6415 if (em) { 6416 /* 6417 * if our em maps to 6418 * - a hole or 6419 * - a pre-alloc extent, 6420 * there might actually be delalloc bytes behind it. 6421 */ 6422 if (em->block_start != EXTENT_MAP_HOLE && 6423 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6424 return em; 6425 else 6426 hole_em = em; 6427 } 6428 6429 /* check to see if we've wrapped (len == -1 or similar) */ 6430 end = start + len; 6431 if (end < start) 6432 end = (u64)-1; 6433 else 6434 end -= 1; 6435 6436 em = NULL; 6437 6438 /* ok, we didn't find anything, lets look for delalloc */ 6439 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6440 end, len, EXTENT_DELALLOC, 1); 6441 found_end = range_start + found; 6442 if (found_end < range_start) 6443 found_end = (u64)-1; 6444 6445 /* 6446 * we didn't find anything useful, return 6447 * the original results from get_extent() 6448 */ 6449 if (range_start > end || found_end <= start) { 6450 em = hole_em; 6451 hole_em = NULL; 6452 goto out; 6453 } 6454 6455 /* adjust the range_start to make sure it doesn't 6456 * go backwards from the start they passed in 6457 */ 6458 range_start = max(start, range_start); 6459 found = found_end - range_start; 6460 6461 if (found > 0) { 6462 u64 hole_start = start; 6463 u64 hole_len = len; 6464 6465 em = alloc_extent_map(); 6466 if (!em) { 6467 err = -ENOMEM; 6468 goto out; 6469 } 6470 /* 6471 * when btrfs_get_extent can't find anything it 6472 * returns one huge hole 6473 * 6474 * make sure what it found really fits our range, and 6475 * adjust to make sure it is based on the start from 6476 * the caller 6477 */ 6478 if (hole_em) { 6479 u64 calc_end = extent_map_end(hole_em); 6480 6481 if (calc_end <= start || (hole_em->start > end)) { 6482 free_extent_map(hole_em); 6483 hole_em = NULL; 6484 } else { 6485 hole_start = max(hole_em->start, start); 6486 hole_len = calc_end - hole_start; 6487 } 6488 } 6489 em->bdev = NULL; 6490 if (hole_em && range_start > hole_start) { 6491 /* our hole starts before our delalloc, so we 6492 * have to return just the parts of the hole 6493 * that go until the delalloc starts 6494 */ 6495 em->len = min(hole_len, 6496 range_start - hole_start); 6497 em->start = hole_start; 6498 em->orig_start = hole_start; 6499 /* 6500 * don't adjust block start at all, 6501 * it is fixed at EXTENT_MAP_HOLE 6502 */ 6503 em->block_start = hole_em->block_start; 6504 em->block_len = hole_len; 6505 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6506 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6507 } else { 6508 em->start = range_start; 6509 em->len = found; 6510 em->orig_start = range_start; 6511 em->block_start = EXTENT_MAP_DELALLOC; 6512 em->block_len = found; 6513 } 6514 } else if (hole_em) { 6515 return hole_em; 6516 } 6517 out: 6518 6519 free_extent_map(hole_em); 6520 if (err) { 6521 free_extent_map(em); 6522 return ERR_PTR(err); 6523 } 6524 return em; 6525 } 6526 6527 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6528 u64 start, u64 len) 6529 { 6530 struct btrfs_root *root = BTRFS_I(inode)->root; 6531 struct extent_map *em; 6532 struct btrfs_key ins; 6533 u64 alloc_hint; 6534 int ret; 6535 6536 alloc_hint = get_extent_allocation_hint(inode, start, len); 6537 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 6538 alloc_hint, &ins, 1); 6539 if (ret) 6540 return ERR_PTR(ret); 6541 6542 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6543 ins.offset, ins.offset, ins.offset, 0); 6544 if (IS_ERR(em)) { 6545 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6546 return em; 6547 } 6548 6549 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6550 ins.offset, ins.offset, 0); 6551 if (ret) { 6552 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6553 free_extent_map(em); 6554 return ERR_PTR(ret); 6555 } 6556 6557 return em; 6558 } 6559 6560 /* 6561 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6562 * block must be cow'd 6563 */ 6564 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6565 u64 *orig_start, u64 *orig_block_len, 6566 u64 *ram_bytes) 6567 { 6568 struct btrfs_trans_handle *trans; 6569 struct btrfs_path *path; 6570 int ret; 6571 struct extent_buffer *leaf; 6572 struct btrfs_root *root = BTRFS_I(inode)->root; 6573 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6574 struct btrfs_file_extent_item *fi; 6575 struct btrfs_key key; 6576 u64 disk_bytenr; 6577 u64 backref_offset; 6578 u64 extent_end; 6579 u64 num_bytes; 6580 int slot; 6581 int found_type; 6582 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6583 6584 path = btrfs_alloc_path(); 6585 if (!path) 6586 return -ENOMEM; 6587 6588 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 6589 offset, 0); 6590 if (ret < 0) 6591 goto out; 6592 6593 slot = path->slots[0]; 6594 if (ret == 1) { 6595 if (slot == 0) { 6596 /* can't find the item, must cow */ 6597 ret = 0; 6598 goto out; 6599 } 6600 slot--; 6601 } 6602 ret = 0; 6603 leaf = path->nodes[0]; 6604 btrfs_item_key_to_cpu(leaf, &key, slot); 6605 if (key.objectid != btrfs_ino(inode) || 6606 key.type != BTRFS_EXTENT_DATA_KEY) { 6607 /* not our file or wrong item type, must cow */ 6608 goto out; 6609 } 6610 6611 if (key.offset > offset) { 6612 /* Wrong offset, must cow */ 6613 goto out; 6614 } 6615 6616 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6617 found_type = btrfs_file_extent_type(leaf, fi); 6618 if (found_type != BTRFS_FILE_EXTENT_REG && 6619 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6620 /* not a regular extent, must cow */ 6621 goto out; 6622 } 6623 6624 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6625 goto out; 6626 6627 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6628 if (extent_end <= offset) 6629 goto out; 6630 6631 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6632 if (disk_bytenr == 0) 6633 goto out; 6634 6635 if (btrfs_file_extent_compression(leaf, fi) || 6636 btrfs_file_extent_encryption(leaf, fi) || 6637 btrfs_file_extent_other_encoding(leaf, fi)) 6638 goto out; 6639 6640 backref_offset = btrfs_file_extent_offset(leaf, fi); 6641 6642 if (orig_start) { 6643 *orig_start = key.offset - backref_offset; 6644 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6645 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6646 } 6647 6648 if (btrfs_extent_readonly(root, disk_bytenr)) 6649 goto out; 6650 6651 num_bytes = min(offset + *len, extent_end) - offset; 6652 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6653 u64 range_end; 6654 6655 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 6656 ret = test_range_bit(io_tree, offset, range_end, 6657 EXTENT_DELALLOC, 0, NULL); 6658 if (ret) { 6659 ret = -EAGAIN; 6660 goto out; 6661 } 6662 } 6663 6664 btrfs_release_path(path); 6665 6666 /* 6667 * look for other files referencing this extent, if we 6668 * find any we must cow 6669 */ 6670 trans = btrfs_join_transaction(root); 6671 if (IS_ERR(trans)) { 6672 ret = 0; 6673 goto out; 6674 } 6675 6676 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6677 key.offset - backref_offset, disk_bytenr); 6678 btrfs_end_transaction(trans, root); 6679 if (ret) { 6680 ret = 0; 6681 goto out; 6682 } 6683 6684 /* 6685 * adjust disk_bytenr and num_bytes to cover just the bytes 6686 * in this extent we are about to write. If there 6687 * are any csums in that range we have to cow in order 6688 * to keep the csums correct 6689 */ 6690 disk_bytenr += backref_offset; 6691 disk_bytenr += offset - key.offset; 6692 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6693 goto out; 6694 /* 6695 * all of the above have passed, it is safe to overwrite this extent 6696 * without cow 6697 */ 6698 *len = num_bytes; 6699 ret = 1; 6700 out: 6701 btrfs_free_path(path); 6702 return ret; 6703 } 6704 6705 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 6706 { 6707 struct radix_tree_root *root = &inode->i_mapping->page_tree; 6708 int found = false; 6709 void **pagep = NULL; 6710 struct page *page = NULL; 6711 int start_idx; 6712 int end_idx; 6713 6714 start_idx = start >> PAGE_CACHE_SHIFT; 6715 6716 /* 6717 * end is the last byte in the last page. end == start is legal 6718 */ 6719 end_idx = end >> PAGE_CACHE_SHIFT; 6720 6721 rcu_read_lock(); 6722 6723 /* Most of the code in this while loop is lifted from 6724 * find_get_page. It's been modified to begin searching from a 6725 * page and return just the first page found in that range. If the 6726 * found idx is less than or equal to the end idx then we know that 6727 * a page exists. If no pages are found or if those pages are 6728 * outside of the range then we're fine (yay!) */ 6729 while (page == NULL && 6730 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 6731 page = radix_tree_deref_slot(pagep); 6732 if (unlikely(!page)) 6733 break; 6734 6735 if (radix_tree_exception(page)) { 6736 if (radix_tree_deref_retry(page)) { 6737 page = NULL; 6738 continue; 6739 } 6740 /* 6741 * Otherwise, shmem/tmpfs must be storing a swap entry 6742 * here as an exceptional entry: so return it without 6743 * attempting to raise page count. 6744 */ 6745 page = NULL; 6746 break; /* TODO: Is this relevant for this use case? */ 6747 } 6748 6749 if (!page_cache_get_speculative(page)) { 6750 page = NULL; 6751 continue; 6752 } 6753 6754 /* 6755 * Has the page moved? 6756 * This is part of the lockless pagecache protocol. See 6757 * include/linux/pagemap.h for details. 6758 */ 6759 if (unlikely(page != *pagep)) { 6760 page_cache_release(page); 6761 page = NULL; 6762 } 6763 } 6764 6765 if (page) { 6766 if (page->index <= end_idx) 6767 found = true; 6768 page_cache_release(page); 6769 } 6770 6771 rcu_read_unlock(); 6772 return found; 6773 } 6774 6775 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6776 struct extent_state **cached_state, int writing) 6777 { 6778 struct btrfs_ordered_extent *ordered; 6779 int ret = 0; 6780 6781 while (1) { 6782 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6783 0, cached_state); 6784 /* 6785 * We're concerned with the entire range that we're going to be 6786 * doing DIO to, so we need to make sure theres no ordered 6787 * extents in this range. 6788 */ 6789 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6790 lockend - lockstart + 1); 6791 6792 /* 6793 * We need to make sure there are no buffered pages in this 6794 * range either, we could have raced between the invalidate in 6795 * generic_file_direct_write and locking the extent. The 6796 * invalidate needs to happen so that reads after a write do not 6797 * get stale data. 6798 */ 6799 if (!ordered && 6800 (!writing || 6801 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 6802 break; 6803 6804 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6805 cached_state, GFP_NOFS); 6806 6807 if (ordered) { 6808 btrfs_start_ordered_extent(inode, ordered, 1); 6809 btrfs_put_ordered_extent(ordered); 6810 } else { 6811 /* Screw you mmap */ 6812 ret = filemap_write_and_wait_range(inode->i_mapping, 6813 lockstart, 6814 lockend); 6815 if (ret) 6816 break; 6817 6818 /* 6819 * If we found a page that couldn't be invalidated just 6820 * fall back to buffered. 6821 */ 6822 ret = invalidate_inode_pages2_range(inode->i_mapping, 6823 lockstart >> PAGE_CACHE_SHIFT, 6824 lockend >> PAGE_CACHE_SHIFT); 6825 if (ret) 6826 break; 6827 } 6828 6829 cond_resched(); 6830 } 6831 6832 return ret; 6833 } 6834 6835 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6836 u64 len, u64 orig_start, 6837 u64 block_start, u64 block_len, 6838 u64 orig_block_len, u64 ram_bytes, 6839 int type) 6840 { 6841 struct extent_map_tree *em_tree; 6842 struct extent_map *em; 6843 struct btrfs_root *root = BTRFS_I(inode)->root; 6844 int ret; 6845 6846 em_tree = &BTRFS_I(inode)->extent_tree; 6847 em = alloc_extent_map(); 6848 if (!em) 6849 return ERR_PTR(-ENOMEM); 6850 6851 em->start = start; 6852 em->orig_start = orig_start; 6853 em->mod_start = start; 6854 em->mod_len = len; 6855 em->len = len; 6856 em->block_len = block_len; 6857 em->block_start = block_start; 6858 em->bdev = root->fs_info->fs_devices->latest_bdev; 6859 em->orig_block_len = orig_block_len; 6860 em->ram_bytes = ram_bytes; 6861 em->generation = -1; 6862 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6863 if (type == BTRFS_ORDERED_PREALLOC) 6864 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6865 6866 do { 6867 btrfs_drop_extent_cache(inode, em->start, 6868 em->start + em->len - 1, 0); 6869 write_lock(&em_tree->lock); 6870 ret = add_extent_mapping(em_tree, em, 1); 6871 write_unlock(&em_tree->lock); 6872 } while (ret == -EEXIST); 6873 6874 if (ret) { 6875 free_extent_map(em); 6876 return ERR_PTR(ret); 6877 } 6878 6879 return em; 6880 } 6881 6882 6883 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6884 struct buffer_head *bh_result, int create) 6885 { 6886 struct extent_map *em; 6887 struct btrfs_root *root = BTRFS_I(inode)->root; 6888 struct extent_state *cached_state = NULL; 6889 u64 start = iblock << inode->i_blkbits; 6890 u64 lockstart, lockend; 6891 u64 len = bh_result->b_size; 6892 int unlock_bits = EXTENT_LOCKED; 6893 int ret = 0; 6894 6895 if (create) 6896 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6897 else 6898 len = min_t(u64, len, root->sectorsize); 6899 6900 lockstart = start; 6901 lockend = start + len - 1; 6902 6903 /* 6904 * If this errors out it's because we couldn't invalidate pagecache for 6905 * this range and we need to fallback to buffered. 6906 */ 6907 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6908 return -ENOTBLK; 6909 6910 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6911 if (IS_ERR(em)) { 6912 ret = PTR_ERR(em); 6913 goto unlock_err; 6914 } 6915 6916 /* 6917 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6918 * io. INLINE is special, and we could probably kludge it in here, but 6919 * it's still buffered so for safety lets just fall back to the generic 6920 * buffered path. 6921 * 6922 * For COMPRESSED we _have_ to read the entire extent in so we can 6923 * decompress it, so there will be buffering required no matter what we 6924 * do, so go ahead and fallback to buffered. 6925 * 6926 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6927 * to buffered IO. Don't blame me, this is the price we pay for using 6928 * the generic code. 6929 */ 6930 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6931 em->block_start == EXTENT_MAP_INLINE) { 6932 free_extent_map(em); 6933 ret = -ENOTBLK; 6934 goto unlock_err; 6935 } 6936 6937 /* Just a good old fashioned hole, return */ 6938 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6939 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6940 free_extent_map(em); 6941 goto unlock_err; 6942 } 6943 6944 /* 6945 * We don't allocate a new extent in the following cases 6946 * 6947 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6948 * existing extent. 6949 * 2) The extent is marked as PREALLOC. We're good to go here and can 6950 * just use the extent. 6951 * 6952 */ 6953 if (!create) { 6954 len = min(len, em->len - (start - em->start)); 6955 lockstart = start + len; 6956 goto unlock; 6957 } 6958 6959 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6960 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6961 em->block_start != EXTENT_MAP_HOLE)) { 6962 int type; 6963 int ret; 6964 u64 block_start, orig_start, orig_block_len, ram_bytes; 6965 6966 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6967 type = BTRFS_ORDERED_PREALLOC; 6968 else 6969 type = BTRFS_ORDERED_NOCOW; 6970 len = min(len, em->len - (start - em->start)); 6971 block_start = em->block_start + (start - em->start); 6972 6973 if (can_nocow_extent(inode, start, &len, &orig_start, 6974 &orig_block_len, &ram_bytes) == 1) { 6975 if (type == BTRFS_ORDERED_PREALLOC) { 6976 free_extent_map(em); 6977 em = create_pinned_em(inode, start, len, 6978 orig_start, 6979 block_start, len, 6980 orig_block_len, 6981 ram_bytes, type); 6982 if (IS_ERR(em)) 6983 goto unlock_err; 6984 } 6985 6986 ret = btrfs_add_ordered_extent_dio(inode, start, 6987 block_start, len, len, type); 6988 if (ret) { 6989 free_extent_map(em); 6990 goto unlock_err; 6991 } 6992 goto unlock; 6993 } 6994 } 6995 6996 /* 6997 * this will cow the extent, reset the len in case we changed 6998 * it above 6999 */ 7000 len = bh_result->b_size; 7001 free_extent_map(em); 7002 em = btrfs_new_extent_direct(inode, start, len); 7003 if (IS_ERR(em)) { 7004 ret = PTR_ERR(em); 7005 goto unlock_err; 7006 } 7007 len = min(len, em->len - (start - em->start)); 7008 unlock: 7009 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7010 inode->i_blkbits; 7011 bh_result->b_size = len; 7012 bh_result->b_bdev = em->bdev; 7013 set_buffer_mapped(bh_result); 7014 if (create) { 7015 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7016 set_buffer_new(bh_result); 7017 7018 /* 7019 * Need to update the i_size under the extent lock so buffered 7020 * readers will get the updated i_size when we unlock. 7021 */ 7022 if (start + len > i_size_read(inode)) 7023 i_size_write(inode, start + len); 7024 7025 spin_lock(&BTRFS_I(inode)->lock); 7026 BTRFS_I(inode)->outstanding_extents++; 7027 spin_unlock(&BTRFS_I(inode)->lock); 7028 7029 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7030 lockstart + len - 1, EXTENT_DELALLOC, NULL, 7031 &cached_state, GFP_NOFS); 7032 BUG_ON(ret); 7033 } 7034 7035 /* 7036 * In the case of write we need to clear and unlock the entire range, 7037 * in the case of read we need to unlock only the end area that we 7038 * aren't using if there is any left over space. 7039 */ 7040 if (lockstart < lockend) { 7041 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7042 lockend, unlock_bits, 1, 0, 7043 &cached_state, GFP_NOFS); 7044 } else { 7045 free_extent_state(cached_state); 7046 } 7047 7048 free_extent_map(em); 7049 7050 return 0; 7051 7052 unlock_err: 7053 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7054 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7055 return ret; 7056 } 7057 7058 static void btrfs_endio_direct_read(struct bio *bio, int err) 7059 { 7060 struct btrfs_dio_private *dip = bio->bi_private; 7061 struct bio_vec *bvec; 7062 struct inode *inode = dip->inode; 7063 struct btrfs_root *root = BTRFS_I(inode)->root; 7064 struct bio *dio_bio; 7065 u32 *csums = (u32 *)dip->csum; 7066 u64 start; 7067 int i; 7068 7069 start = dip->logical_offset; 7070 bio_for_each_segment_all(bvec, bio, i) { 7071 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 7072 struct page *page = bvec->bv_page; 7073 char *kaddr; 7074 u32 csum = ~(u32)0; 7075 unsigned long flags; 7076 7077 local_irq_save(flags); 7078 kaddr = kmap_atomic(page); 7079 csum = btrfs_csum_data(kaddr + bvec->bv_offset, 7080 csum, bvec->bv_len); 7081 btrfs_csum_final(csum, (char *)&csum); 7082 kunmap_atomic(kaddr); 7083 local_irq_restore(flags); 7084 7085 flush_dcache_page(bvec->bv_page); 7086 if (csum != csums[i]) { 7087 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u", 7088 btrfs_ino(inode), start, csum, 7089 csums[i]); 7090 err = -EIO; 7091 } 7092 } 7093 7094 start += bvec->bv_len; 7095 } 7096 7097 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7098 dip->logical_offset + dip->bytes - 1); 7099 dio_bio = dip->dio_bio; 7100 7101 kfree(dip); 7102 7103 /* If we had a csum failure make sure to clear the uptodate flag */ 7104 if (err) 7105 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7106 dio_end_io(dio_bio, err); 7107 bio_put(bio); 7108 } 7109 7110 static void btrfs_endio_direct_write(struct bio *bio, int err) 7111 { 7112 struct btrfs_dio_private *dip = bio->bi_private; 7113 struct inode *inode = dip->inode; 7114 struct btrfs_root *root = BTRFS_I(inode)->root; 7115 struct btrfs_ordered_extent *ordered = NULL; 7116 u64 ordered_offset = dip->logical_offset; 7117 u64 ordered_bytes = dip->bytes; 7118 struct bio *dio_bio; 7119 int ret; 7120 7121 if (err) 7122 goto out_done; 7123 again: 7124 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7125 &ordered_offset, 7126 ordered_bytes, !err); 7127 if (!ret) 7128 goto out_test; 7129 7130 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL); 7131 btrfs_queue_work(root->fs_info->endio_write_workers, 7132 &ordered->work); 7133 out_test: 7134 /* 7135 * our bio might span multiple ordered extents. If we haven't 7136 * completed the accounting for the whole dio, go back and try again 7137 */ 7138 if (ordered_offset < dip->logical_offset + dip->bytes) { 7139 ordered_bytes = dip->logical_offset + dip->bytes - 7140 ordered_offset; 7141 ordered = NULL; 7142 goto again; 7143 } 7144 out_done: 7145 dio_bio = dip->dio_bio; 7146 7147 kfree(dip); 7148 7149 /* If we had an error make sure to clear the uptodate flag */ 7150 if (err) 7151 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7152 dio_end_io(dio_bio, err); 7153 bio_put(bio); 7154 } 7155 7156 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7157 struct bio *bio, int mirror_num, 7158 unsigned long bio_flags, u64 offset) 7159 { 7160 int ret; 7161 struct btrfs_root *root = BTRFS_I(inode)->root; 7162 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7163 BUG_ON(ret); /* -ENOMEM */ 7164 return 0; 7165 } 7166 7167 static void btrfs_end_dio_bio(struct bio *bio, int err) 7168 { 7169 struct btrfs_dio_private *dip = bio->bi_private; 7170 7171 if (err) { 7172 btrfs_err(BTRFS_I(dip->inode)->root->fs_info, 7173 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7174 btrfs_ino(dip->inode), bio->bi_rw, 7175 (unsigned long long)bio->bi_iter.bi_sector, 7176 bio->bi_iter.bi_size, err); 7177 dip->errors = 1; 7178 7179 /* 7180 * before atomic variable goto zero, we must make sure 7181 * dip->errors is perceived to be set. 7182 */ 7183 smp_mb__before_atomic(); 7184 } 7185 7186 /* if there are more bios still pending for this dio, just exit */ 7187 if (!atomic_dec_and_test(&dip->pending_bios)) 7188 goto out; 7189 7190 if (dip->errors) { 7191 bio_io_error(dip->orig_bio); 7192 } else { 7193 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7194 bio_endio(dip->orig_bio, 0); 7195 } 7196 out: 7197 bio_put(bio); 7198 } 7199 7200 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7201 u64 first_sector, gfp_t gfp_flags) 7202 { 7203 int nr_vecs = bio_get_nr_vecs(bdev); 7204 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7205 } 7206 7207 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7208 int rw, u64 file_offset, int skip_sum, 7209 int async_submit) 7210 { 7211 struct btrfs_dio_private *dip = bio->bi_private; 7212 int write = rw & REQ_WRITE; 7213 struct btrfs_root *root = BTRFS_I(inode)->root; 7214 int ret; 7215 7216 if (async_submit) 7217 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7218 7219 bio_get(bio); 7220 7221 if (!write) { 7222 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 7223 if (ret) 7224 goto err; 7225 } 7226 7227 if (skip_sum) 7228 goto map; 7229 7230 if (write && async_submit) { 7231 ret = btrfs_wq_submit_bio(root->fs_info, 7232 inode, rw, bio, 0, 0, 7233 file_offset, 7234 __btrfs_submit_bio_start_direct_io, 7235 __btrfs_submit_bio_done); 7236 goto err; 7237 } else if (write) { 7238 /* 7239 * If we aren't doing async submit, calculate the csum of the 7240 * bio now. 7241 */ 7242 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7243 if (ret) 7244 goto err; 7245 } else if (!skip_sum) { 7246 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio, 7247 file_offset); 7248 if (ret) 7249 goto err; 7250 } 7251 7252 map: 7253 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7254 err: 7255 bio_put(bio); 7256 return ret; 7257 } 7258 7259 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7260 int skip_sum) 7261 { 7262 struct inode *inode = dip->inode; 7263 struct btrfs_root *root = BTRFS_I(inode)->root; 7264 struct bio *bio; 7265 struct bio *orig_bio = dip->orig_bio; 7266 struct bio_vec *bvec = orig_bio->bi_io_vec; 7267 u64 start_sector = orig_bio->bi_iter.bi_sector; 7268 u64 file_offset = dip->logical_offset; 7269 u64 submit_len = 0; 7270 u64 map_length; 7271 int nr_pages = 0; 7272 int ret = 0; 7273 int async_submit = 0; 7274 7275 map_length = orig_bio->bi_iter.bi_size; 7276 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7277 &map_length, NULL, 0); 7278 if (ret) { 7279 bio_put(orig_bio); 7280 return -EIO; 7281 } 7282 7283 if (map_length >= orig_bio->bi_iter.bi_size) { 7284 bio = orig_bio; 7285 goto submit; 7286 } 7287 7288 /* async crcs make it difficult to collect full stripe writes. */ 7289 if (btrfs_get_alloc_profile(root, 1) & 7290 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 7291 async_submit = 0; 7292 else 7293 async_submit = 1; 7294 7295 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7296 if (!bio) 7297 return -ENOMEM; 7298 bio->bi_private = dip; 7299 bio->bi_end_io = btrfs_end_dio_bio; 7300 atomic_inc(&dip->pending_bios); 7301 7302 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7303 if (unlikely(map_length < submit_len + bvec->bv_len || 7304 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7305 bvec->bv_offset) < bvec->bv_len)) { 7306 /* 7307 * inc the count before we submit the bio so 7308 * we know the end IO handler won't happen before 7309 * we inc the count. Otherwise, the dip might get freed 7310 * before we're done setting it up 7311 */ 7312 atomic_inc(&dip->pending_bios); 7313 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7314 file_offset, skip_sum, 7315 async_submit); 7316 if (ret) { 7317 bio_put(bio); 7318 atomic_dec(&dip->pending_bios); 7319 goto out_err; 7320 } 7321 7322 start_sector += submit_len >> 9; 7323 file_offset += submit_len; 7324 7325 submit_len = 0; 7326 nr_pages = 0; 7327 7328 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7329 start_sector, GFP_NOFS); 7330 if (!bio) 7331 goto out_err; 7332 bio->bi_private = dip; 7333 bio->bi_end_io = btrfs_end_dio_bio; 7334 7335 map_length = orig_bio->bi_iter.bi_size; 7336 ret = btrfs_map_block(root->fs_info, rw, 7337 start_sector << 9, 7338 &map_length, NULL, 0); 7339 if (ret) { 7340 bio_put(bio); 7341 goto out_err; 7342 } 7343 } else { 7344 submit_len += bvec->bv_len; 7345 nr_pages++; 7346 bvec++; 7347 } 7348 } 7349 7350 submit: 7351 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7352 async_submit); 7353 if (!ret) 7354 return 0; 7355 7356 bio_put(bio); 7357 out_err: 7358 dip->errors = 1; 7359 /* 7360 * before atomic variable goto zero, we must 7361 * make sure dip->errors is perceived to be set. 7362 */ 7363 smp_mb__before_atomic(); 7364 if (atomic_dec_and_test(&dip->pending_bios)) 7365 bio_io_error(dip->orig_bio); 7366 7367 /* bio_end_io() will handle error, so we needn't return it */ 7368 return 0; 7369 } 7370 7371 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 7372 struct inode *inode, loff_t file_offset) 7373 { 7374 struct btrfs_root *root = BTRFS_I(inode)->root; 7375 struct btrfs_dio_private *dip; 7376 struct bio *io_bio; 7377 int skip_sum; 7378 int sum_len; 7379 int write = rw & REQ_WRITE; 7380 int ret = 0; 7381 u16 csum_size; 7382 7383 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7384 7385 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 7386 if (!io_bio) { 7387 ret = -ENOMEM; 7388 goto free_ordered; 7389 } 7390 7391 if (!skip_sum && !write) { 7392 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 7393 sum_len = dio_bio->bi_iter.bi_size >> 7394 inode->i_sb->s_blocksize_bits; 7395 sum_len *= csum_size; 7396 } else { 7397 sum_len = 0; 7398 } 7399 7400 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS); 7401 if (!dip) { 7402 ret = -ENOMEM; 7403 goto free_io_bio; 7404 } 7405 7406 dip->private = dio_bio->bi_private; 7407 dip->inode = inode; 7408 dip->logical_offset = file_offset; 7409 dip->bytes = dio_bio->bi_iter.bi_size; 7410 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7411 io_bio->bi_private = dip; 7412 dip->errors = 0; 7413 dip->orig_bio = io_bio; 7414 dip->dio_bio = dio_bio; 7415 atomic_set(&dip->pending_bios, 0); 7416 7417 if (write) 7418 io_bio->bi_end_io = btrfs_endio_direct_write; 7419 else 7420 io_bio->bi_end_io = btrfs_endio_direct_read; 7421 7422 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7423 if (!ret) 7424 return; 7425 7426 free_io_bio: 7427 bio_put(io_bio); 7428 7429 free_ordered: 7430 /* 7431 * If this is a write, we need to clean up the reserved space and kill 7432 * the ordered extent. 7433 */ 7434 if (write) { 7435 struct btrfs_ordered_extent *ordered; 7436 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7437 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7438 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7439 btrfs_free_reserved_extent(root, ordered->start, 7440 ordered->disk_len); 7441 btrfs_put_ordered_extent(ordered); 7442 btrfs_put_ordered_extent(ordered); 7443 } 7444 bio_endio(dio_bio, ret); 7445 } 7446 7447 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7448 const struct iov_iter *iter, loff_t offset) 7449 { 7450 int seg; 7451 int i; 7452 unsigned blocksize_mask = root->sectorsize - 1; 7453 ssize_t retval = -EINVAL; 7454 7455 if (offset & blocksize_mask) 7456 goto out; 7457 7458 if (iov_iter_alignment(iter) & blocksize_mask) 7459 goto out; 7460 7461 /* If this is a write we don't need to check anymore */ 7462 if (rw & WRITE) 7463 return 0; 7464 /* 7465 * Check to make sure we don't have duplicate iov_base's in this 7466 * iovec, if so return EINVAL, otherwise we'll get csum errors 7467 * when reading back. 7468 */ 7469 for (seg = 0; seg < iter->nr_segs; seg++) { 7470 for (i = seg + 1; i < iter->nr_segs; i++) { 7471 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 7472 goto out; 7473 } 7474 } 7475 retval = 0; 7476 out: 7477 return retval; 7478 } 7479 7480 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7481 struct iov_iter *iter, loff_t offset) 7482 { 7483 struct file *file = iocb->ki_filp; 7484 struct inode *inode = file->f_mapping->host; 7485 size_t count = 0; 7486 int flags = 0; 7487 bool wakeup = true; 7488 bool relock = false; 7489 ssize_t ret; 7490 7491 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset)) 7492 return 0; 7493 7494 atomic_inc(&inode->i_dio_count); 7495 smp_mb__after_atomic(); 7496 7497 /* 7498 * The generic stuff only does filemap_write_and_wait_range, which 7499 * isn't enough if we've written compressed pages to this area, so 7500 * we need to flush the dirty pages again to make absolutely sure 7501 * that any outstanding dirty pages are on disk. 7502 */ 7503 count = iov_iter_count(iter); 7504 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7505 &BTRFS_I(inode)->runtime_flags)) 7506 filemap_fdatawrite_range(inode->i_mapping, offset, count); 7507 7508 if (rw & WRITE) { 7509 /* 7510 * If the write DIO is beyond the EOF, we need update 7511 * the isize, but it is protected by i_mutex. So we can 7512 * not unlock the i_mutex at this case. 7513 */ 7514 if (offset + count <= inode->i_size) { 7515 mutex_unlock(&inode->i_mutex); 7516 relock = true; 7517 } 7518 ret = btrfs_delalloc_reserve_space(inode, count); 7519 if (ret) 7520 goto out; 7521 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7522 &BTRFS_I(inode)->runtime_flags))) { 7523 inode_dio_done(inode); 7524 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7525 wakeup = false; 7526 } 7527 7528 ret = __blockdev_direct_IO(rw, iocb, inode, 7529 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7530 iter, offset, btrfs_get_blocks_direct, NULL, 7531 btrfs_submit_direct, flags); 7532 if (rw & WRITE) { 7533 if (ret < 0 && ret != -EIOCBQUEUED) 7534 btrfs_delalloc_release_space(inode, count); 7535 else if (ret >= 0 && (size_t)ret < count) 7536 btrfs_delalloc_release_space(inode, 7537 count - (size_t)ret); 7538 else 7539 btrfs_delalloc_release_metadata(inode, 0); 7540 } 7541 out: 7542 if (wakeup) 7543 inode_dio_done(inode); 7544 if (relock) 7545 mutex_lock(&inode->i_mutex); 7546 7547 return ret; 7548 } 7549 7550 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7551 7552 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7553 __u64 start, __u64 len) 7554 { 7555 int ret; 7556 7557 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7558 if (ret) 7559 return ret; 7560 7561 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7562 } 7563 7564 int btrfs_readpage(struct file *file, struct page *page) 7565 { 7566 struct extent_io_tree *tree; 7567 tree = &BTRFS_I(page->mapping->host)->io_tree; 7568 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7569 } 7570 7571 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7572 { 7573 struct extent_io_tree *tree; 7574 7575 7576 if (current->flags & PF_MEMALLOC) { 7577 redirty_page_for_writepage(wbc, page); 7578 unlock_page(page); 7579 return 0; 7580 } 7581 tree = &BTRFS_I(page->mapping->host)->io_tree; 7582 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7583 } 7584 7585 static int btrfs_writepages(struct address_space *mapping, 7586 struct writeback_control *wbc) 7587 { 7588 struct extent_io_tree *tree; 7589 7590 tree = &BTRFS_I(mapping->host)->io_tree; 7591 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7592 } 7593 7594 static int 7595 btrfs_readpages(struct file *file, struct address_space *mapping, 7596 struct list_head *pages, unsigned nr_pages) 7597 { 7598 struct extent_io_tree *tree; 7599 tree = &BTRFS_I(mapping->host)->io_tree; 7600 return extent_readpages(tree, mapping, pages, nr_pages, 7601 btrfs_get_extent); 7602 } 7603 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7604 { 7605 struct extent_io_tree *tree; 7606 struct extent_map_tree *map; 7607 int ret; 7608 7609 tree = &BTRFS_I(page->mapping->host)->io_tree; 7610 map = &BTRFS_I(page->mapping->host)->extent_tree; 7611 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7612 if (ret == 1) { 7613 ClearPagePrivate(page); 7614 set_page_private(page, 0); 7615 page_cache_release(page); 7616 } 7617 return ret; 7618 } 7619 7620 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7621 { 7622 if (PageWriteback(page) || PageDirty(page)) 7623 return 0; 7624 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7625 } 7626 7627 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 7628 unsigned int length) 7629 { 7630 struct inode *inode = page->mapping->host; 7631 struct extent_io_tree *tree; 7632 struct btrfs_ordered_extent *ordered; 7633 struct extent_state *cached_state = NULL; 7634 u64 page_start = page_offset(page); 7635 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7636 int inode_evicting = inode->i_state & I_FREEING; 7637 7638 /* 7639 * we have the page locked, so new writeback can't start, 7640 * and the dirty bit won't be cleared while we are here. 7641 * 7642 * Wait for IO on this page so that we can safely clear 7643 * the PagePrivate2 bit and do ordered accounting 7644 */ 7645 wait_on_page_writeback(page); 7646 7647 tree = &BTRFS_I(inode)->io_tree; 7648 if (offset) { 7649 btrfs_releasepage(page, GFP_NOFS); 7650 return; 7651 } 7652 7653 if (!inode_evicting) 7654 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7655 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7656 if (ordered) { 7657 /* 7658 * IO on this page will never be started, so we need 7659 * to account for any ordered extents now 7660 */ 7661 if (!inode_evicting) 7662 clear_extent_bit(tree, page_start, page_end, 7663 EXTENT_DIRTY | EXTENT_DELALLOC | 7664 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7665 EXTENT_DEFRAG, 1, 0, &cached_state, 7666 GFP_NOFS); 7667 /* 7668 * whoever cleared the private bit is responsible 7669 * for the finish_ordered_io 7670 */ 7671 if (TestClearPagePrivate2(page)) { 7672 struct btrfs_ordered_inode_tree *tree; 7673 u64 new_len; 7674 7675 tree = &BTRFS_I(inode)->ordered_tree; 7676 7677 spin_lock_irq(&tree->lock); 7678 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7679 new_len = page_start - ordered->file_offset; 7680 if (new_len < ordered->truncated_len) 7681 ordered->truncated_len = new_len; 7682 spin_unlock_irq(&tree->lock); 7683 7684 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7685 page_start, 7686 PAGE_CACHE_SIZE, 1)) 7687 btrfs_finish_ordered_io(ordered); 7688 } 7689 btrfs_put_ordered_extent(ordered); 7690 if (!inode_evicting) { 7691 cached_state = NULL; 7692 lock_extent_bits(tree, page_start, page_end, 0, 7693 &cached_state); 7694 } 7695 } 7696 7697 if (!inode_evicting) { 7698 clear_extent_bit(tree, page_start, page_end, 7699 EXTENT_LOCKED | EXTENT_DIRTY | 7700 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7701 EXTENT_DEFRAG, 1, 1, 7702 &cached_state, GFP_NOFS); 7703 7704 __btrfs_releasepage(page, GFP_NOFS); 7705 } 7706 7707 ClearPageChecked(page); 7708 if (PagePrivate(page)) { 7709 ClearPagePrivate(page); 7710 set_page_private(page, 0); 7711 page_cache_release(page); 7712 } 7713 } 7714 7715 /* 7716 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7717 * called from a page fault handler when a page is first dirtied. Hence we must 7718 * be careful to check for EOF conditions here. We set the page up correctly 7719 * for a written page which means we get ENOSPC checking when writing into 7720 * holes and correct delalloc and unwritten extent mapping on filesystems that 7721 * support these features. 7722 * 7723 * We are not allowed to take the i_mutex here so we have to play games to 7724 * protect against truncate races as the page could now be beyond EOF. Because 7725 * vmtruncate() writes the inode size before removing pages, once we have the 7726 * page lock we can determine safely if the page is beyond EOF. If it is not 7727 * beyond EOF, then the page is guaranteed safe against truncation until we 7728 * unlock the page. 7729 */ 7730 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7731 { 7732 struct page *page = vmf->page; 7733 struct inode *inode = file_inode(vma->vm_file); 7734 struct btrfs_root *root = BTRFS_I(inode)->root; 7735 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7736 struct btrfs_ordered_extent *ordered; 7737 struct extent_state *cached_state = NULL; 7738 char *kaddr; 7739 unsigned long zero_start; 7740 loff_t size; 7741 int ret; 7742 int reserved = 0; 7743 u64 page_start; 7744 u64 page_end; 7745 7746 sb_start_pagefault(inode->i_sb); 7747 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7748 if (!ret) { 7749 ret = file_update_time(vma->vm_file); 7750 reserved = 1; 7751 } 7752 if (ret) { 7753 if (ret == -ENOMEM) 7754 ret = VM_FAULT_OOM; 7755 else /* -ENOSPC, -EIO, etc */ 7756 ret = VM_FAULT_SIGBUS; 7757 if (reserved) 7758 goto out; 7759 goto out_noreserve; 7760 } 7761 7762 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7763 again: 7764 lock_page(page); 7765 size = i_size_read(inode); 7766 page_start = page_offset(page); 7767 page_end = page_start + PAGE_CACHE_SIZE - 1; 7768 7769 if ((page->mapping != inode->i_mapping) || 7770 (page_start >= size)) { 7771 /* page got truncated out from underneath us */ 7772 goto out_unlock; 7773 } 7774 wait_on_page_writeback(page); 7775 7776 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7777 set_page_extent_mapped(page); 7778 7779 /* 7780 * we can't set the delalloc bits if there are pending ordered 7781 * extents. Drop our locks and wait for them to finish 7782 */ 7783 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7784 if (ordered) { 7785 unlock_extent_cached(io_tree, page_start, page_end, 7786 &cached_state, GFP_NOFS); 7787 unlock_page(page); 7788 btrfs_start_ordered_extent(inode, ordered, 1); 7789 btrfs_put_ordered_extent(ordered); 7790 goto again; 7791 } 7792 7793 /* 7794 * XXX - page_mkwrite gets called every time the page is dirtied, even 7795 * if it was already dirty, so for space accounting reasons we need to 7796 * clear any delalloc bits for the range we are fixing to save. There 7797 * is probably a better way to do this, but for now keep consistent with 7798 * prepare_pages in the normal write path. 7799 */ 7800 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7801 EXTENT_DIRTY | EXTENT_DELALLOC | 7802 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7803 0, 0, &cached_state, GFP_NOFS); 7804 7805 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7806 &cached_state); 7807 if (ret) { 7808 unlock_extent_cached(io_tree, page_start, page_end, 7809 &cached_state, GFP_NOFS); 7810 ret = VM_FAULT_SIGBUS; 7811 goto out_unlock; 7812 } 7813 ret = 0; 7814 7815 /* page is wholly or partially inside EOF */ 7816 if (page_start + PAGE_CACHE_SIZE > size) 7817 zero_start = size & ~PAGE_CACHE_MASK; 7818 else 7819 zero_start = PAGE_CACHE_SIZE; 7820 7821 if (zero_start != PAGE_CACHE_SIZE) { 7822 kaddr = kmap(page); 7823 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7824 flush_dcache_page(page); 7825 kunmap(page); 7826 } 7827 ClearPageChecked(page); 7828 set_page_dirty(page); 7829 SetPageUptodate(page); 7830 7831 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7832 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7833 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7834 7835 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7836 7837 out_unlock: 7838 if (!ret) { 7839 sb_end_pagefault(inode->i_sb); 7840 return VM_FAULT_LOCKED; 7841 } 7842 unlock_page(page); 7843 out: 7844 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7845 out_noreserve: 7846 sb_end_pagefault(inode->i_sb); 7847 return ret; 7848 } 7849 7850 static int btrfs_truncate(struct inode *inode) 7851 { 7852 struct btrfs_root *root = BTRFS_I(inode)->root; 7853 struct btrfs_block_rsv *rsv; 7854 int ret = 0; 7855 int err = 0; 7856 struct btrfs_trans_handle *trans; 7857 u64 mask = root->sectorsize - 1; 7858 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7859 7860 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 7861 (u64)-1); 7862 if (ret) 7863 return ret; 7864 7865 /* 7866 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7867 * 3 things going on here 7868 * 7869 * 1) We need to reserve space for our orphan item and the space to 7870 * delete our orphan item. Lord knows we don't want to have a dangling 7871 * orphan item because we didn't reserve space to remove it. 7872 * 7873 * 2) We need to reserve space to update our inode. 7874 * 7875 * 3) We need to have something to cache all the space that is going to 7876 * be free'd up by the truncate operation, but also have some slack 7877 * space reserved in case it uses space during the truncate (thank you 7878 * very much snapshotting). 7879 * 7880 * And we need these to all be seperate. The fact is we can use alot of 7881 * space doing the truncate, and we have no earthly idea how much space 7882 * we will use, so we need the truncate reservation to be seperate so it 7883 * doesn't end up using space reserved for updating the inode or 7884 * removing the orphan item. We also need to be able to stop the 7885 * transaction and start a new one, which means we need to be able to 7886 * update the inode several times, and we have no idea of knowing how 7887 * many times that will be, so we can't just reserve 1 item for the 7888 * entirety of the opration, so that has to be done seperately as well. 7889 * Then there is the orphan item, which does indeed need to be held on 7890 * to for the whole operation, and we need nobody to touch this reserved 7891 * space except the orphan code. 7892 * 7893 * So that leaves us with 7894 * 7895 * 1) root->orphan_block_rsv - for the orphan deletion. 7896 * 2) rsv - for the truncate reservation, which we will steal from the 7897 * transaction reservation. 7898 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7899 * updating the inode. 7900 */ 7901 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7902 if (!rsv) 7903 return -ENOMEM; 7904 rsv->size = min_size; 7905 rsv->failfast = 1; 7906 7907 /* 7908 * 1 for the truncate slack space 7909 * 1 for updating the inode. 7910 */ 7911 trans = btrfs_start_transaction(root, 2); 7912 if (IS_ERR(trans)) { 7913 err = PTR_ERR(trans); 7914 goto out; 7915 } 7916 7917 /* Migrate the slack space for the truncate to our reserve */ 7918 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7919 min_size); 7920 BUG_ON(ret); 7921 7922 /* 7923 * setattr is responsible for setting the ordered_data_close flag, 7924 * but that is only tested during the last file release. That 7925 * could happen well after the next commit, leaving a great big 7926 * window where new writes may get lost if someone chooses to write 7927 * to this file after truncating to zero 7928 * 7929 * The inode doesn't have any dirty data here, and so if we commit 7930 * this is a noop. If someone immediately starts writing to the inode 7931 * it is very likely we'll catch some of their writes in this 7932 * transaction, and the commit will find this file on the ordered 7933 * data list with good things to send down. 7934 * 7935 * This is a best effort solution, there is still a window where 7936 * using truncate to replace the contents of the file will 7937 * end up with a zero length file after a crash. 7938 */ 7939 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7940 &BTRFS_I(inode)->runtime_flags)) 7941 btrfs_add_ordered_operation(trans, root, inode); 7942 7943 /* 7944 * So if we truncate and then write and fsync we normally would just 7945 * write the extents that changed, which is a problem if we need to 7946 * first truncate that entire inode. So set this flag so we write out 7947 * all of the extents in the inode to the sync log so we're completely 7948 * safe. 7949 */ 7950 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7951 trans->block_rsv = rsv; 7952 7953 while (1) { 7954 ret = btrfs_truncate_inode_items(trans, root, inode, 7955 inode->i_size, 7956 BTRFS_EXTENT_DATA_KEY); 7957 if (ret != -ENOSPC) { 7958 err = ret; 7959 break; 7960 } 7961 7962 trans->block_rsv = &root->fs_info->trans_block_rsv; 7963 ret = btrfs_update_inode(trans, root, inode); 7964 if (ret) { 7965 err = ret; 7966 break; 7967 } 7968 7969 btrfs_end_transaction(trans, root); 7970 btrfs_btree_balance_dirty(root); 7971 7972 trans = btrfs_start_transaction(root, 2); 7973 if (IS_ERR(trans)) { 7974 ret = err = PTR_ERR(trans); 7975 trans = NULL; 7976 break; 7977 } 7978 7979 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7980 rsv, min_size); 7981 BUG_ON(ret); /* shouldn't happen */ 7982 trans->block_rsv = rsv; 7983 } 7984 7985 if (ret == 0 && inode->i_nlink > 0) { 7986 trans->block_rsv = root->orphan_block_rsv; 7987 ret = btrfs_orphan_del(trans, inode); 7988 if (ret) 7989 err = ret; 7990 } 7991 7992 if (trans) { 7993 trans->block_rsv = &root->fs_info->trans_block_rsv; 7994 ret = btrfs_update_inode(trans, root, inode); 7995 if (ret && !err) 7996 err = ret; 7997 7998 ret = btrfs_end_transaction(trans, root); 7999 btrfs_btree_balance_dirty(root); 8000 } 8001 8002 out: 8003 btrfs_free_block_rsv(root, rsv); 8004 8005 if (ret && !err) 8006 err = ret; 8007 8008 return err; 8009 } 8010 8011 /* 8012 * create a new subvolume directory/inode (helper for the ioctl). 8013 */ 8014 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8015 struct btrfs_root *new_root, 8016 struct btrfs_root *parent_root, 8017 u64 new_dirid) 8018 { 8019 struct inode *inode; 8020 int err; 8021 u64 index = 0; 8022 8023 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8024 new_dirid, new_dirid, 8025 S_IFDIR | (~current_umask() & S_IRWXUGO), 8026 &index); 8027 if (IS_ERR(inode)) 8028 return PTR_ERR(inode); 8029 inode->i_op = &btrfs_dir_inode_operations; 8030 inode->i_fop = &btrfs_dir_file_operations; 8031 8032 set_nlink(inode, 1); 8033 btrfs_i_size_write(inode, 0); 8034 8035 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8036 if (err) 8037 btrfs_err(new_root->fs_info, 8038 "error inheriting subvolume %llu properties: %d", 8039 new_root->root_key.objectid, err); 8040 8041 err = btrfs_update_inode(trans, new_root, inode); 8042 8043 iput(inode); 8044 return err; 8045 } 8046 8047 struct inode *btrfs_alloc_inode(struct super_block *sb) 8048 { 8049 struct btrfs_inode *ei; 8050 struct inode *inode; 8051 8052 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8053 if (!ei) 8054 return NULL; 8055 8056 ei->root = NULL; 8057 ei->generation = 0; 8058 ei->last_trans = 0; 8059 ei->last_sub_trans = 0; 8060 ei->logged_trans = 0; 8061 ei->delalloc_bytes = 0; 8062 ei->disk_i_size = 0; 8063 ei->flags = 0; 8064 ei->csum_bytes = 0; 8065 ei->index_cnt = (u64)-1; 8066 ei->dir_index = 0; 8067 ei->last_unlink_trans = 0; 8068 ei->last_log_commit = 0; 8069 8070 spin_lock_init(&ei->lock); 8071 ei->outstanding_extents = 0; 8072 ei->reserved_extents = 0; 8073 8074 ei->runtime_flags = 0; 8075 ei->force_compress = BTRFS_COMPRESS_NONE; 8076 8077 ei->delayed_node = NULL; 8078 8079 inode = &ei->vfs_inode; 8080 extent_map_tree_init(&ei->extent_tree); 8081 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8082 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8083 ei->io_tree.track_uptodate = 1; 8084 ei->io_failure_tree.track_uptodate = 1; 8085 atomic_set(&ei->sync_writers, 0); 8086 mutex_init(&ei->log_mutex); 8087 mutex_init(&ei->delalloc_mutex); 8088 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8089 INIT_LIST_HEAD(&ei->delalloc_inodes); 8090 INIT_LIST_HEAD(&ei->ordered_operations); 8091 RB_CLEAR_NODE(&ei->rb_node); 8092 8093 return inode; 8094 } 8095 8096 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8097 void btrfs_test_destroy_inode(struct inode *inode) 8098 { 8099 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8100 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8101 } 8102 #endif 8103 8104 static void btrfs_i_callback(struct rcu_head *head) 8105 { 8106 struct inode *inode = container_of(head, struct inode, i_rcu); 8107 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8108 } 8109 8110 void btrfs_destroy_inode(struct inode *inode) 8111 { 8112 struct btrfs_ordered_extent *ordered; 8113 struct btrfs_root *root = BTRFS_I(inode)->root; 8114 8115 WARN_ON(!hlist_empty(&inode->i_dentry)); 8116 WARN_ON(inode->i_data.nrpages); 8117 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8118 WARN_ON(BTRFS_I(inode)->reserved_extents); 8119 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8120 WARN_ON(BTRFS_I(inode)->csum_bytes); 8121 8122 /* 8123 * This can happen where we create an inode, but somebody else also 8124 * created the same inode and we need to destroy the one we already 8125 * created. 8126 */ 8127 if (!root) 8128 goto free; 8129 8130 /* 8131 * Make sure we're properly removed from the ordered operation 8132 * lists. 8133 */ 8134 smp_mb(); 8135 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 8136 spin_lock(&root->fs_info->ordered_root_lock); 8137 list_del_init(&BTRFS_I(inode)->ordered_operations); 8138 spin_unlock(&root->fs_info->ordered_root_lock); 8139 } 8140 8141 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8142 &BTRFS_I(inode)->runtime_flags)) { 8143 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8144 btrfs_ino(inode)); 8145 atomic_dec(&root->orphan_inodes); 8146 } 8147 8148 while (1) { 8149 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8150 if (!ordered) 8151 break; 8152 else { 8153 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8154 ordered->file_offset, ordered->len); 8155 btrfs_remove_ordered_extent(inode, ordered); 8156 btrfs_put_ordered_extent(ordered); 8157 btrfs_put_ordered_extent(ordered); 8158 } 8159 } 8160 inode_tree_del(inode); 8161 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8162 free: 8163 call_rcu(&inode->i_rcu, btrfs_i_callback); 8164 } 8165 8166 int btrfs_drop_inode(struct inode *inode) 8167 { 8168 struct btrfs_root *root = BTRFS_I(inode)->root; 8169 8170 if (root == NULL) 8171 return 1; 8172 8173 /* the snap/subvol tree is on deleting */ 8174 if (btrfs_root_refs(&root->root_item) == 0) 8175 return 1; 8176 else 8177 return generic_drop_inode(inode); 8178 } 8179 8180 static void init_once(void *foo) 8181 { 8182 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8183 8184 inode_init_once(&ei->vfs_inode); 8185 } 8186 8187 void btrfs_destroy_cachep(void) 8188 { 8189 /* 8190 * Make sure all delayed rcu free inodes are flushed before we 8191 * destroy cache. 8192 */ 8193 rcu_barrier(); 8194 if (btrfs_inode_cachep) 8195 kmem_cache_destroy(btrfs_inode_cachep); 8196 if (btrfs_trans_handle_cachep) 8197 kmem_cache_destroy(btrfs_trans_handle_cachep); 8198 if (btrfs_transaction_cachep) 8199 kmem_cache_destroy(btrfs_transaction_cachep); 8200 if (btrfs_path_cachep) 8201 kmem_cache_destroy(btrfs_path_cachep); 8202 if (btrfs_free_space_cachep) 8203 kmem_cache_destroy(btrfs_free_space_cachep); 8204 if (btrfs_delalloc_work_cachep) 8205 kmem_cache_destroy(btrfs_delalloc_work_cachep); 8206 } 8207 8208 int btrfs_init_cachep(void) 8209 { 8210 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8211 sizeof(struct btrfs_inode), 0, 8212 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 8213 if (!btrfs_inode_cachep) 8214 goto fail; 8215 8216 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8217 sizeof(struct btrfs_trans_handle), 0, 8218 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8219 if (!btrfs_trans_handle_cachep) 8220 goto fail; 8221 8222 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8223 sizeof(struct btrfs_transaction), 0, 8224 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8225 if (!btrfs_transaction_cachep) 8226 goto fail; 8227 8228 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8229 sizeof(struct btrfs_path), 0, 8230 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8231 if (!btrfs_path_cachep) 8232 goto fail; 8233 8234 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8235 sizeof(struct btrfs_free_space), 0, 8236 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8237 if (!btrfs_free_space_cachep) 8238 goto fail; 8239 8240 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8241 sizeof(struct btrfs_delalloc_work), 0, 8242 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8243 NULL); 8244 if (!btrfs_delalloc_work_cachep) 8245 goto fail; 8246 8247 return 0; 8248 fail: 8249 btrfs_destroy_cachep(); 8250 return -ENOMEM; 8251 } 8252 8253 static int btrfs_getattr(struct vfsmount *mnt, 8254 struct dentry *dentry, struct kstat *stat) 8255 { 8256 u64 delalloc_bytes; 8257 struct inode *inode = dentry->d_inode; 8258 u32 blocksize = inode->i_sb->s_blocksize; 8259 8260 generic_fillattr(inode, stat); 8261 stat->dev = BTRFS_I(inode)->root->anon_dev; 8262 stat->blksize = PAGE_CACHE_SIZE; 8263 8264 spin_lock(&BTRFS_I(inode)->lock); 8265 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8266 spin_unlock(&BTRFS_I(inode)->lock); 8267 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8268 ALIGN(delalloc_bytes, blocksize)) >> 9; 8269 return 0; 8270 } 8271 8272 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8273 struct inode *new_dir, struct dentry *new_dentry) 8274 { 8275 struct btrfs_trans_handle *trans; 8276 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8277 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8278 struct inode *new_inode = new_dentry->d_inode; 8279 struct inode *old_inode = old_dentry->d_inode; 8280 struct timespec ctime = CURRENT_TIME; 8281 u64 index = 0; 8282 u64 root_objectid; 8283 int ret; 8284 u64 old_ino = btrfs_ino(old_inode); 8285 8286 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8287 return -EPERM; 8288 8289 /* we only allow rename subvolume link between subvolumes */ 8290 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8291 return -EXDEV; 8292 8293 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8294 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8295 return -ENOTEMPTY; 8296 8297 if (S_ISDIR(old_inode->i_mode) && new_inode && 8298 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8299 return -ENOTEMPTY; 8300 8301 8302 /* check for collisions, even if the name isn't there */ 8303 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 8304 new_dentry->d_name.name, 8305 new_dentry->d_name.len); 8306 8307 if (ret) { 8308 if (ret == -EEXIST) { 8309 /* we shouldn't get 8310 * eexist without a new_inode */ 8311 if (WARN_ON(!new_inode)) { 8312 return ret; 8313 } 8314 } else { 8315 /* maybe -EOVERFLOW */ 8316 return ret; 8317 } 8318 } 8319 ret = 0; 8320 8321 /* 8322 * we're using rename to replace one file with another. 8323 * and the replacement file is large. Start IO on it now so 8324 * we don't add too much work to the end of the transaction 8325 */ 8326 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 8327 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 8328 filemap_flush(old_inode->i_mapping); 8329 8330 /* close the racy window with snapshot create/destroy ioctl */ 8331 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8332 down_read(&root->fs_info->subvol_sem); 8333 /* 8334 * We want to reserve the absolute worst case amount of items. So if 8335 * both inodes are subvols and we need to unlink them then that would 8336 * require 4 item modifications, but if they are both normal inodes it 8337 * would require 5 item modifications, so we'll assume their normal 8338 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8339 * should cover the worst case number of items we'll modify. 8340 */ 8341 trans = btrfs_start_transaction(root, 11); 8342 if (IS_ERR(trans)) { 8343 ret = PTR_ERR(trans); 8344 goto out_notrans; 8345 } 8346 8347 if (dest != root) 8348 btrfs_record_root_in_trans(trans, dest); 8349 8350 ret = btrfs_set_inode_index(new_dir, &index); 8351 if (ret) 8352 goto out_fail; 8353 8354 BTRFS_I(old_inode)->dir_index = 0ULL; 8355 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8356 /* force full log commit if subvolume involved. */ 8357 btrfs_set_log_full_commit(root->fs_info, trans); 8358 } else { 8359 ret = btrfs_insert_inode_ref(trans, dest, 8360 new_dentry->d_name.name, 8361 new_dentry->d_name.len, 8362 old_ino, 8363 btrfs_ino(new_dir), index); 8364 if (ret) 8365 goto out_fail; 8366 /* 8367 * this is an ugly little race, but the rename is required 8368 * to make sure that if we crash, the inode is either at the 8369 * old name or the new one. pinning the log transaction lets 8370 * us make sure we don't allow a log commit to come in after 8371 * we unlink the name but before we add the new name back in. 8372 */ 8373 btrfs_pin_log_trans(root); 8374 } 8375 /* 8376 * make sure the inode gets flushed if it is replacing 8377 * something. 8378 */ 8379 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8380 btrfs_add_ordered_operation(trans, root, old_inode); 8381 8382 inode_inc_iversion(old_dir); 8383 inode_inc_iversion(new_dir); 8384 inode_inc_iversion(old_inode); 8385 old_dir->i_ctime = old_dir->i_mtime = ctime; 8386 new_dir->i_ctime = new_dir->i_mtime = ctime; 8387 old_inode->i_ctime = ctime; 8388 8389 if (old_dentry->d_parent != new_dentry->d_parent) 8390 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8391 8392 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8393 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8394 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8395 old_dentry->d_name.name, 8396 old_dentry->d_name.len); 8397 } else { 8398 ret = __btrfs_unlink_inode(trans, root, old_dir, 8399 old_dentry->d_inode, 8400 old_dentry->d_name.name, 8401 old_dentry->d_name.len); 8402 if (!ret) 8403 ret = btrfs_update_inode(trans, root, old_inode); 8404 } 8405 if (ret) { 8406 btrfs_abort_transaction(trans, root, ret); 8407 goto out_fail; 8408 } 8409 8410 if (new_inode) { 8411 inode_inc_iversion(new_inode); 8412 new_inode->i_ctime = CURRENT_TIME; 8413 if (unlikely(btrfs_ino(new_inode) == 8414 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8415 root_objectid = BTRFS_I(new_inode)->location.objectid; 8416 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8417 root_objectid, 8418 new_dentry->d_name.name, 8419 new_dentry->d_name.len); 8420 BUG_ON(new_inode->i_nlink == 0); 8421 } else { 8422 ret = btrfs_unlink_inode(trans, dest, new_dir, 8423 new_dentry->d_inode, 8424 new_dentry->d_name.name, 8425 new_dentry->d_name.len); 8426 } 8427 if (!ret && new_inode->i_nlink == 0) 8428 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8429 if (ret) { 8430 btrfs_abort_transaction(trans, root, ret); 8431 goto out_fail; 8432 } 8433 } 8434 8435 ret = btrfs_add_link(trans, new_dir, old_inode, 8436 new_dentry->d_name.name, 8437 new_dentry->d_name.len, 0, index); 8438 if (ret) { 8439 btrfs_abort_transaction(trans, root, ret); 8440 goto out_fail; 8441 } 8442 8443 if (old_inode->i_nlink == 1) 8444 BTRFS_I(old_inode)->dir_index = index; 8445 8446 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8447 struct dentry *parent = new_dentry->d_parent; 8448 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8449 btrfs_end_log_trans(root); 8450 } 8451 out_fail: 8452 btrfs_end_transaction(trans, root); 8453 out_notrans: 8454 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8455 up_read(&root->fs_info->subvol_sem); 8456 8457 return ret; 8458 } 8459 8460 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8461 { 8462 struct btrfs_delalloc_work *delalloc_work; 8463 struct inode *inode; 8464 8465 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8466 work); 8467 inode = delalloc_work->inode; 8468 if (delalloc_work->wait) { 8469 btrfs_wait_ordered_range(inode, 0, (u64)-1); 8470 } else { 8471 filemap_flush(inode->i_mapping); 8472 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8473 &BTRFS_I(inode)->runtime_flags)) 8474 filemap_flush(inode->i_mapping); 8475 } 8476 8477 if (delalloc_work->delay_iput) 8478 btrfs_add_delayed_iput(inode); 8479 else 8480 iput(inode); 8481 complete(&delalloc_work->completion); 8482 } 8483 8484 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8485 int wait, int delay_iput) 8486 { 8487 struct btrfs_delalloc_work *work; 8488 8489 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8490 if (!work) 8491 return NULL; 8492 8493 init_completion(&work->completion); 8494 INIT_LIST_HEAD(&work->list); 8495 work->inode = inode; 8496 work->wait = wait; 8497 work->delay_iput = delay_iput; 8498 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 8499 8500 return work; 8501 } 8502 8503 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8504 { 8505 wait_for_completion(&work->completion); 8506 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8507 } 8508 8509 /* 8510 * some fairly slow code that needs optimization. This walks the list 8511 * of all the inodes with pending delalloc and forces them to disk. 8512 */ 8513 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 8514 int nr) 8515 { 8516 struct btrfs_inode *binode; 8517 struct inode *inode; 8518 struct btrfs_delalloc_work *work, *next; 8519 struct list_head works; 8520 struct list_head splice; 8521 int ret = 0; 8522 8523 INIT_LIST_HEAD(&works); 8524 INIT_LIST_HEAD(&splice); 8525 8526 mutex_lock(&root->delalloc_mutex); 8527 spin_lock(&root->delalloc_lock); 8528 list_splice_init(&root->delalloc_inodes, &splice); 8529 while (!list_empty(&splice)) { 8530 binode = list_entry(splice.next, struct btrfs_inode, 8531 delalloc_inodes); 8532 8533 list_move_tail(&binode->delalloc_inodes, 8534 &root->delalloc_inodes); 8535 inode = igrab(&binode->vfs_inode); 8536 if (!inode) { 8537 cond_resched_lock(&root->delalloc_lock); 8538 continue; 8539 } 8540 spin_unlock(&root->delalloc_lock); 8541 8542 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8543 if (unlikely(!work)) { 8544 if (delay_iput) 8545 btrfs_add_delayed_iput(inode); 8546 else 8547 iput(inode); 8548 ret = -ENOMEM; 8549 goto out; 8550 } 8551 list_add_tail(&work->list, &works); 8552 btrfs_queue_work(root->fs_info->flush_workers, 8553 &work->work); 8554 ret++; 8555 if (nr != -1 && ret >= nr) 8556 goto out; 8557 cond_resched(); 8558 spin_lock(&root->delalloc_lock); 8559 } 8560 spin_unlock(&root->delalloc_lock); 8561 8562 out: 8563 list_for_each_entry_safe(work, next, &works, list) { 8564 list_del_init(&work->list); 8565 btrfs_wait_and_free_delalloc_work(work); 8566 } 8567 8568 if (!list_empty_careful(&splice)) { 8569 spin_lock(&root->delalloc_lock); 8570 list_splice_tail(&splice, &root->delalloc_inodes); 8571 spin_unlock(&root->delalloc_lock); 8572 } 8573 mutex_unlock(&root->delalloc_mutex); 8574 return ret; 8575 } 8576 8577 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8578 { 8579 int ret; 8580 8581 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 8582 return -EROFS; 8583 8584 ret = __start_delalloc_inodes(root, delay_iput, -1); 8585 if (ret > 0) 8586 ret = 0; 8587 /* 8588 * the filemap_flush will queue IO into the worker threads, but 8589 * we have to make sure the IO is actually started and that 8590 * ordered extents get created before we return 8591 */ 8592 atomic_inc(&root->fs_info->async_submit_draining); 8593 while (atomic_read(&root->fs_info->nr_async_submits) || 8594 atomic_read(&root->fs_info->async_delalloc_pages)) { 8595 wait_event(root->fs_info->async_submit_wait, 8596 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8597 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8598 } 8599 atomic_dec(&root->fs_info->async_submit_draining); 8600 return ret; 8601 } 8602 8603 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 8604 int nr) 8605 { 8606 struct btrfs_root *root; 8607 struct list_head splice; 8608 int ret; 8609 8610 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 8611 return -EROFS; 8612 8613 INIT_LIST_HEAD(&splice); 8614 8615 mutex_lock(&fs_info->delalloc_root_mutex); 8616 spin_lock(&fs_info->delalloc_root_lock); 8617 list_splice_init(&fs_info->delalloc_roots, &splice); 8618 while (!list_empty(&splice) && nr) { 8619 root = list_first_entry(&splice, struct btrfs_root, 8620 delalloc_root); 8621 root = btrfs_grab_fs_root(root); 8622 BUG_ON(!root); 8623 list_move_tail(&root->delalloc_root, 8624 &fs_info->delalloc_roots); 8625 spin_unlock(&fs_info->delalloc_root_lock); 8626 8627 ret = __start_delalloc_inodes(root, delay_iput, nr); 8628 btrfs_put_fs_root(root); 8629 if (ret < 0) 8630 goto out; 8631 8632 if (nr != -1) { 8633 nr -= ret; 8634 WARN_ON(nr < 0); 8635 } 8636 spin_lock(&fs_info->delalloc_root_lock); 8637 } 8638 spin_unlock(&fs_info->delalloc_root_lock); 8639 8640 ret = 0; 8641 atomic_inc(&fs_info->async_submit_draining); 8642 while (atomic_read(&fs_info->nr_async_submits) || 8643 atomic_read(&fs_info->async_delalloc_pages)) { 8644 wait_event(fs_info->async_submit_wait, 8645 (atomic_read(&fs_info->nr_async_submits) == 0 && 8646 atomic_read(&fs_info->async_delalloc_pages) == 0)); 8647 } 8648 atomic_dec(&fs_info->async_submit_draining); 8649 out: 8650 if (!list_empty_careful(&splice)) { 8651 spin_lock(&fs_info->delalloc_root_lock); 8652 list_splice_tail(&splice, &fs_info->delalloc_roots); 8653 spin_unlock(&fs_info->delalloc_root_lock); 8654 } 8655 mutex_unlock(&fs_info->delalloc_root_mutex); 8656 return ret; 8657 } 8658 8659 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8660 const char *symname) 8661 { 8662 struct btrfs_trans_handle *trans; 8663 struct btrfs_root *root = BTRFS_I(dir)->root; 8664 struct btrfs_path *path; 8665 struct btrfs_key key; 8666 struct inode *inode = NULL; 8667 int err; 8668 int drop_inode = 0; 8669 u64 objectid; 8670 u64 index = 0; 8671 int name_len; 8672 int datasize; 8673 unsigned long ptr; 8674 struct btrfs_file_extent_item *ei; 8675 struct extent_buffer *leaf; 8676 8677 name_len = strlen(symname); 8678 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8679 return -ENAMETOOLONG; 8680 8681 /* 8682 * 2 items for inode item and ref 8683 * 2 items for dir items 8684 * 1 item for xattr if selinux is on 8685 */ 8686 trans = btrfs_start_transaction(root, 5); 8687 if (IS_ERR(trans)) 8688 return PTR_ERR(trans); 8689 8690 err = btrfs_find_free_ino(root, &objectid); 8691 if (err) 8692 goto out_unlock; 8693 8694 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8695 dentry->d_name.len, btrfs_ino(dir), objectid, 8696 S_IFLNK|S_IRWXUGO, &index); 8697 if (IS_ERR(inode)) { 8698 err = PTR_ERR(inode); 8699 goto out_unlock; 8700 } 8701 8702 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8703 if (err) { 8704 drop_inode = 1; 8705 goto out_unlock; 8706 } 8707 8708 /* 8709 * If the active LSM wants to access the inode during 8710 * d_instantiate it needs these. Smack checks to see 8711 * if the filesystem supports xattrs by looking at the 8712 * ops vector. 8713 */ 8714 inode->i_fop = &btrfs_file_operations; 8715 inode->i_op = &btrfs_file_inode_operations; 8716 8717 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8718 if (err) 8719 drop_inode = 1; 8720 else { 8721 inode->i_mapping->a_ops = &btrfs_aops; 8722 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8723 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8724 } 8725 if (drop_inode) 8726 goto out_unlock; 8727 8728 path = btrfs_alloc_path(); 8729 if (!path) { 8730 err = -ENOMEM; 8731 drop_inode = 1; 8732 goto out_unlock; 8733 } 8734 key.objectid = btrfs_ino(inode); 8735 key.offset = 0; 8736 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8737 datasize = btrfs_file_extent_calc_inline_size(name_len); 8738 err = btrfs_insert_empty_item(trans, root, path, &key, 8739 datasize); 8740 if (err) { 8741 drop_inode = 1; 8742 btrfs_free_path(path); 8743 goto out_unlock; 8744 } 8745 leaf = path->nodes[0]; 8746 ei = btrfs_item_ptr(leaf, path->slots[0], 8747 struct btrfs_file_extent_item); 8748 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8749 btrfs_set_file_extent_type(leaf, ei, 8750 BTRFS_FILE_EXTENT_INLINE); 8751 btrfs_set_file_extent_encryption(leaf, ei, 0); 8752 btrfs_set_file_extent_compression(leaf, ei, 0); 8753 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8754 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8755 8756 ptr = btrfs_file_extent_inline_start(ei); 8757 write_extent_buffer(leaf, symname, ptr, name_len); 8758 btrfs_mark_buffer_dirty(leaf); 8759 btrfs_free_path(path); 8760 8761 inode->i_op = &btrfs_symlink_inode_operations; 8762 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8763 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8764 inode_set_bytes(inode, name_len); 8765 btrfs_i_size_write(inode, name_len); 8766 err = btrfs_update_inode(trans, root, inode); 8767 if (err) 8768 drop_inode = 1; 8769 8770 out_unlock: 8771 if (!err) 8772 d_instantiate(dentry, inode); 8773 btrfs_end_transaction(trans, root); 8774 if (drop_inode) { 8775 inode_dec_link_count(inode); 8776 iput(inode); 8777 } 8778 btrfs_btree_balance_dirty(root); 8779 return err; 8780 } 8781 8782 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8783 u64 start, u64 num_bytes, u64 min_size, 8784 loff_t actual_len, u64 *alloc_hint, 8785 struct btrfs_trans_handle *trans) 8786 { 8787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8788 struct extent_map *em; 8789 struct btrfs_root *root = BTRFS_I(inode)->root; 8790 struct btrfs_key ins; 8791 u64 cur_offset = start; 8792 u64 i_size; 8793 u64 cur_bytes; 8794 int ret = 0; 8795 bool own_trans = true; 8796 8797 if (trans) 8798 own_trans = false; 8799 while (num_bytes > 0) { 8800 if (own_trans) { 8801 trans = btrfs_start_transaction(root, 3); 8802 if (IS_ERR(trans)) { 8803 ret = PTR_ERR(trans); 8804 break; 8805 } 8806 } 8807 8808 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8809 cur_bytes = max(cur_bytes, min_size); 8810 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 8811 *alloc_hint, &ins, 1); 8812 if (ret) { 8813 if (own_trans) 8814 btrfs_end_transaction(trans, root); 8815 break; 8816 } 8817 8818 ret = insert_reserved_file_extent(trans, inode, 8819 cur_offset, ins.objectid, 8820 ins.offset, ins.offset, 8821 ins.offset, 0, 0, 0, 8822 BTRFS_FILE_EXTENT_PREALLOC); 8823 if (ret) { 8824 btrfs_free_reserved_extent(root, ins.objectid, 8825 ins.offset); 8826 btrfs_abort_transaction(trans, root, ret); 8827 if (own_trans) 8828 btrfs_end_transaction(trans, root); 8829 break; 8830 } 8831 btrfs_drop_extent_cache(inode, cur_offset, 8832 cur_offset + ins.offset -1, 0); 8833 8834 em = alloc_extent_map(); 8835 if (!em) { 8836 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8837 &BTRFS_I(inode)->runtime_flags); 8838 goto next; 8839 } 8840 8841 em->start = cur_offset; 8842 em->orig_start = cur_offset; 8843 em->len = ins.offset; 8844 em->block_start = ins.objectid; 8845 em->block_len = ins.offset; 8846 em->orig_block_len = ins.offset; 8847 em->ram_bytes = ins.offset; 8848 em->bdev = root->fs_info->fs_devices->latest_bdev; 8849 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8850 em->generation = trans->transid; 8851 8852 while (1) { 8853 write_lock(&em_tree->lock); 8854 ret = add_extent_mapping(em_tree, em, 1); 8855 write_unlock(&em_tree->lock); 8856 if (ret != -EEXIST) 8857 break; 8858 btrfs_drop_extent_cache(inode, cur_offset, 8859 cur_offset + ins.offset - 1, 8860 0); 8861 } 8862 free_extent_map(em); 8863 next: 8864 num_bytes -= ins.offset; 8865 cur_offset += ins.offset; 8866 *alloc_hint = ins.objectid + ins.offset; 8867 8868 inode_inc_iversion(inode); 8869 inode->i_ctime = CURRENT_TIME; 8870 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8871 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8872 (actual_len > inode->i_size) && 8873 (cur_offset > inode->i_size)) { 8874 if (cur_offset > actual_len) 8875 i_size = actual_len; 8876 else 8877 i_size = cur_offset; 8878 i_size_write(inode, i_size); 8879 btrfs_ordered_update_i_size(inode, i_size, NULL); 8880 } 8881 8882 ret = btrfs_update_inode(trans, root, inode); 8883 8884 if (ret) { 8885 btrfs_abort_transaction(trans, root, ret); 8886 if (own_trans) 8887 btrfs_end_transaction(trans, root); 8888 break; 8889 } 8890 8891 if (own_trans) 8892 btrfs_end_transaction(trans, root); 8893 } 8894 return ret; 8895 } 8896 8897 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8898 u64 start, u64 num_bytes, u64 min_size, 8899 loff_t actual_len, u64 *alloc_hint) 8900 { 8901 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8902 min_size, actual_len, alloc_hint, 8903 NULL); 8904 } 8905 8906 int btrfs_prealloc_file_range_trans(struct inode *inode, 8907 struct btrfs_trans_handle *trans, int mode, 8908 u64 start, u64 num_bytes, u64 min_size, 8909 loff_t actual_len, u64 *alloc_hint) 8910 { 8911 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8912 min_size, actual_len, alloc_hint, trans); 8913 } 8914 8915 static int btrfs_set_page_dirty(struct page *page) 8916 { 8917 return __set_page_dirty_nobuffers(page); 8918 } 8919 8920 static int btrfs_permission(struct inode *inode, int mask) 8921 { 8922 struct btrfs_root *root = BTRFS_I(inode)->root; 8923 umode_t mode = inode->i_mode; 8924 8925 if (mask & MAY_WRITE && 8926 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8927 if (btrfs_root_readonly(root)) 8928 return -EROFS; 8929 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8930 return -EACCES; 8931 } 8932 return generic_permission(inode, mask); 8933 } 8934 8935 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 8936 { 8937 struct btrfs_trans_handle *trans; 8938 struct btrfs_root *root = BTRFS_I(dir)->root; 8939 struct inode *inode = NULL; 8940 u64 objectid; 8941 u64 index; 8942 int ret = 0; 8943 8944 /* 8945 * 5 units required for adding orphan entry 8946 */ 8947 trans = btrfs_start_transaction(root, 5); 8948 if (IS_ERR(trans)) 8949 return PTR_ERR(trans); 8950 8951 ret = btrfs_find_free_ino(root, &objectid); 8952 if (ret) 8953 goto out; 8954 8955 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 8956 btrfs_ino(dir), objectid, mode, &index); 8957 if (IS_ERR(inode)) { 8958 ret = PTR_ERR(inode); 8959 inode = NULL; 8960 goto out; 8961 } 8962 8963 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 8964 if (ret) 8965 goto out; 8966 8967 ret = btrfs_update_inode(trans, root, inode); 8968 if (ret) 8969 goto out; 8970 8971 inode->i_fop = &btrfs_file_operations; 8972 inode->i_op = &btrfs_file_inode_operations; 8973 8974 inode->i_mapping->a_ops = &btrfs_aops; 8975 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8976 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8977 8978 ret = btrfs_orphan_add(trans, inode); 8979 if (ret) 8980 goto out; 8981 8982 d_tmpfile(dentry, inode); 8983 mark_inode_dirty(inode); 8984 8985 out: 8986 btrfs_end_transaction(trans, root); 8987 if (ret) 8988 iput(inode); 8989 btrfs_balance_delayed_items(root); 8990 btrfs_btree_balance_dirty(root); 8991 8992 return ret; 8993 } 8994 8995 static const struct inode_operations btrfs_dir_inode_operations = { 8996 .getattr = btrfs_getattr, 8997 .lookup = btrfs_lookup, 8998 .create = btrfs_create, 8999 .unlink = btrfs_unlink, 9000 .link = btrfs_link, 9001 .mkdir = btrfs_mkdir, 9002 .rmdir = btrfs_rmdir, 9003 .rename = btrfs_rename, 9004 .symlink = btrfs_symlink, 9005 .setattr = btrfs_setattr, 9006 .mknod = btrfs_mknod, 9007 .setxattr = btrfs_setxattr, 9008 .getxattr = btrfs_getxattr, 9009 .listxattr = btrfs_listxattr, 9010 .removexattr = btrfs_removexattr, 9011 .permission = btrfs_permission, 9012 .get_acl = btrfs_get_acl, 9013 .set_acl = btrfs_set_acl, 9014 .update_time = btrfs_update_time, 9015 .tmpfile = btrfs_tmpfile, 9016 }; 9017 static const struct inode_operations btrfs_dir_ro_inode_operations = { 9018 .lookup = btrfs_lookup, 9019 .permission = btrfs_permission, 9020 .get_acl = btrfs_get_acl, 9021 .set_acl = btrfs_set_acl, 9022 .update_time = btrfs_update_time, 9023 }; 9024 9025 static const struct file_operations btrfs_dir_file_operations = { 9026 .llseek = generic_file_llseek, 9027 .read = generic_read_dir, 9028 .iterate = btrfs_real_readdir, 9029 .unlocked_ioctl = btrfs_ioctl, 9030 #ifdef CONFIG_COMPAT 9031 .compat_ioctl = btrfs_ioctl, 9032 #endif 9033 .release = btrfs_release_file, 9034 .fsync = btrfs_sync_file, 9035 }; 9036 9037 static struct extent_io_ops btrfs_extent_io_ops = { 9038 .fill_delalloc = run_delalloc_range, 9039 .submit_bio_hook = btrfs_submit_bio_hook, 9040 .merge_bio_hook = btrfs_merge_bio_hook, 9041 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 9042 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 9043 .writepage_start_hook = btrfs_writepage_start_hook, 9044 .set_bit_hook = btrfs_set_bit_hook, 9045 .clear_bit_hook = btrfs_clear_bit_hook, 9046 .merge_extent_hook = btrfs_merge_extent_hook, 9047 .split_extent_hook = btrfs_split_extent_hook, 9048 }; 9049 9050 /* 9051 * btrfs doesn't support the bmap operation because swapfiles 9052 * use bmap to make a mapping of extents in the file. They assume 9053 * these extents won't change over the life of the file and they 9054 * use the bmap result to do IO directly to the drive. 9055 * 9056 * the btrfs bmap call would return logical addresses that aren't 9057 * suitable for IO and they also will change frequently as COW 9058 * operations happen. So, swapfile + btrfs == corruption. 9059 * 9060 * For now we're avoiding this by dropping bmap. 9061 */ 9062 static const struct address_space_operations btrfs_aops = { 9063 .readpage = btrfs_readpage, 9064 .writepage = btrfs_writepage, 9065 .writepages = btrfs_writepages, 9066 .readpages = btrfs_readpages, 9067 .direct_IO = btrfs_direct_IO, 9068 .invalidatepage = btrfs_invalidatepage, 9069 .releasepage = btrfs_releasepage, 9070 .set_page_dirty = btrfs_set_page_dirty, 9071 .error_remove_page = generic_error_remove_page, 9072 }; 9073 9074 static const struct address_space_operations btrfs_symlink_aops = { 9075 .readpage = btrfs_readpage, 9076 .writepage = btrfs_writepage, 9077 .invalidatepage = btrfs_invalidatepage, 9078 .releasepage = btrfs_releasepage, 9079 }; 9080 9081 static const struct inode_operations btrfs_file_inode_operations = { 9082 .getattr = btrfs_getattr, 9083 .setattr = btrfs_setattr, 9084 .setxattr = btrfs_setxattr, 9085 .getxattr = btrfs_getxattr, 9086 .listxattr = btrfs_listxattr, 9087 .removexattr = btrfs_removexattr, 9088 .permission = btrfs_permission, 9089 .fiemap = btrfs_fiemap, 9090 .get_acl = btrfs_get_acl, 9091 .set_acl = btrfs_set_acl, 9092 .update_time = btrfs_update_time, 9093 }; 9094 static const struct inode_operations btrfs_special_inode_operations = { 9095 .getattr = btrfs_getattr, 9096 .setattr = btrfs_setattr, 9097 .permission = btrfs_permission, 9098 .setxattr = btrfs_setxattr, 9099 .getxattr = btrfs_getxattr, 9100 .listxattr = btrfs_listxattr, 9101 .removexattr = btrfs_removexattr, 9102 .get_acl = btrfs_get_acl, 9103 .set_acl = btrfs_set_acl, 9104 .update_time = btrfs_update_time, 9105 }; 9106 static const struct inode_operations btrfs_symlink_inode_operations = { 9107 .readlink = generic_readlink, 9108 .follow_link = page_follow_link_light, 9109 .put_link = page_put_link, 9110 .getattr = btrfs_getattr, 9111 .setattr = btrfs_setattr, 9112 .permission = btrfs_permission, 9113 .setxattr = btrfs_setxattr, 9114 .getxattr = btrfs_getxattr, 9115 .listxattr = btrfs_listxattr, 9116 .removexattr = btrfs_removexattr, 9117 .update_time = btrfs_update_time, 9118 }; 9119 9120 const struct dentry_operations btrfs_dentry_operations = { 9121 .d_delete = btrfs_dentry_delete, 9122 .d_release = btrfs_dentry_release, 9123 }; 9124