xref: /openbmc/linux/fs/btrfs/inode.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/buffer_head.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "inode-map.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 struct btrfs_dio_data {
61 	u64 reserve;
62 	u64 unsubmitted_oe_range_start;
63 	u64 unsubmitted_oe_range_end;
64 	int overwrite;
65 };
66 
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
74 
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80 
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct btrfs_inode *inode,
85 				   struct page *locked_page,
86 				   u64 start, u64 end, int *page_started,
87 				   unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 				       u64 len, u64 orig_start, u64 block_start,
90 				       u64 block_len, u64 orig_block_len,
91 				       u64 ram_bytes, int compress_type,
92 				       int type);
93 
94 static void __endio_write_update_ordered(struct btrfs_inode *inode,
95 					 const u64 offset, const u64 bytes,
96 					 const bool uptodate);
97 
98 /*
99  * Cleanup all submitted ordered extents in specified range to handle errors
100  * from the btrfs_run_delalloc_range() callback.
101  *
102  * NOTE: caller must ensure that when an error happens, it can not call
103  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105  * to be released, which we want to happen only when finishing the ordered
106  * extent (btrfs_finish_ordered_io()).
107  */
108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
109 						 struct page *locked_page,
110 						 u64 offset, u64 bytes)
111 {
112 	unsigned long index = offset >> PAGE_SHIFT;
113 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 	u64 page_start = page_offset(locked_page);
115 	u64 page_end = page_start + PAGE_SIZE - 1;
116 
117 	struct page *page;
118 
119 	while (index <= end_index) {
120 		page = find_get_page(inode->vfs_inode.i_mapping, index);
121 		index++;
122 		if (!page)
123 			continue;
124 		ClearPagePrivate2(page);
125 		put_page(page);
126 	}
127 
128 	/*
129 	 * In case this page belongs to the delalloc range being instantiated
130 	 * then skip it, since the first page of a range is going to be
131 	 * properly cleaned up by the caller of run_delalloc_range
132 	 */
133 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 		offset += PAGE_SIZE;
135 		bytes -= PAGE_SIZE;
136 	}
137 
138 	return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140 
141 static int btrfs_dirty_inode(struct inode *inode);
142 
143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
144 void btrfs_test_inode_set_ops(struct inode *inode)
145 {
146 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 }
148 #endif
149 
150 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
151 				     struct inode *inode,  struct inode *dir,
152 				     const struct qstr *qstr)
153 {
154 	int err;
155 
156 	err = btrfs_init_acl(trans, inode, dir);
157 	if (!err)
158 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
159 	return err;
160 }
161 
162 /*
163  * this does all the hard work for inserting an inline extent into
164  * the btree.  The caller should have done a btrfs_drop_extents so that
165  * no overlapping inline items exist in the btree
166  */
167 static int insert_inline_extent(struct btrfs_trans_handle *trans,
168 				struct btrfs_path *path, int extent_inserted,
169 				struct btrfs_root *root, struct inode *inode,
170 				u64 start, size_t size, size_t compressed_size,
171 				int compress_type,
172 				struct page **compressed_pages)
173 {
174 	struct extent_buffer *leaf;
175 	struct page *page = NULL;
176 	char *kaddr;
177 	unsigned long ptr;
178 	struct btrfs_file_extent_item *ei;
179 	int ret;
180 	size_t cur_size = size;
181 	unsigned long offset;
182 
183 	ASSERT((compressed_size > 0 && compressed_pages) ||
184 	       (compressed_size == 0 && !compressed_pages));
185 
186 	if (compressed_size && compressed_pages)
187 		cur_size = compressed_size;
188 
189 	inode_add_bytes(inode, size);
190 
191 	if (!extent_inserted) {
192 		struct btrfs_key key;
193 		size_t datasize;
194 
195 		key.objectid = btrfs_ino(BTRFS_I(inode));
196 		key.offset = start;
197 		key.type = BTRFS_EXTENT_DATA_KEY;
198 
199 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 		path->leave_spinning = 1;
201 		ret = btrfs_insert_empty_item(trans, root, path, &key,
202 					      datasize);
203 		if (ret)
204 			goto fail;
205 	}
206 	leaf = path->nodes[0];
207 	ei = btrfs_item_ptr(leaf, path->slots[0],
208 			    struct btrfs_file_extent_item);
209 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
210 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
211 	btrfs_set_file_extent_encryption(leaf, ei, 0);
212 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
213 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
214 	ptr = btrfs_file_extent_inline_start(ei);
215 
216 	if (compress_type != BTRFS_COMPRESS_NONE) {
217 		struct page *cpage;
218 		int i = 0;
219 		while (compressed_size > 0) {
220 			cpage = compressed_pages[i];
221 			cur_size = min_t(unsigned long, compressed_size,
222 				       PAGE_SIZE);
223 
224 			kaddr = kmap_atomic(cpage);
225 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
226 			kunmap_atomic(kaddr);
227 
228 			i++;
229 			ptr += cur_size;
230 			compressed_size -= cur_size;
231 		}
232 		btrfs_set_file_extent_compression(leaf, ei,
233 						  compress_type);
234 	} else {
235 		page = find_get_page(inode->i_mapping,
236 				     start >> PAGE_SHIFT);
237 		btrfs_set_file_extent_compression(leaf, ei, 0);
238 		kaddr = kmap_atomic(page);
239 		offset = offset_in_page(start);
240 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
241 		kunmap_atomic(kaddr);
242 		put_page(page);
243 	}
244 	btrfs_mark_buffer_dirty(leaf);
245 	btrfs_release_path(path);
246 
247 	/*
248 	 * We align size to sectorsize for inline extents just for simplicity
249 	 * sake.
250 	 */
251 	size = ALIGN(size, root->fs_info->sectorsize);
252 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
253 	if (ret)
254 		goto fail;
255 
256 	/*
257 	 * we're an inline extent, so nobody can
258 	 * extend the file past i_size without locking
259 	 * a page we already have locked.
260 	 *
261 	 * We must do any isize and inode updates
262 	 * before we unlock the pages.  Otherwise we
263 	 * could end up racing with unlink.
264 	 */
265 	BTRFS_I(inode)->disk_i_size = inode->i_size;
266 	ret = btrfs_update_inode(trans, root, inode);
267 
268 fail:
269 	return ret;
270 }
271 
272 
273 /*
274  * conditionally insert an inline extent into the file.  This
275  * does the checks required to make sure the data is small enough
276  * to fit as an inline extent.
277  */
278 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
279 					  u64 end, size_t compressed_size,
280 					  int compress_type,
281 					  struct page **compressed_pages)
282 {
283 	struct btrfs_root *root = inode->root;
284 	struct btrfs_fs_info *fs_info = root->fs_info;
285 	struct btrfs_trans_handle *trans;
286 	u64 isize = i_size_read(&inode->vfs_inode);
287 	u64 actual_end = min(end + 1, isize);
288 	u64 inline_len = actual_end - start;
289 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
290 	u64 data_len = inline_len;
291 	int ret;
292 	struct btrfs_path *path;
293 	int extent_inserted = 0;
294 	u32 extent_item_size;
295 
296 	if (compressed_size)
297 		data_len = compressed_size;
298 
299 	if (start > 0 ||
300 	    actual_end > fs_info->sectorsize ||
301 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
302 	    (!compressed_size &&
303 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
304 	    end + 1 < isize ||
305 	    data_len > fs_info->max_inline) {
306 		return 1;
307 	}
308 
309 	path = btrfs_alloc_path();
310 	if (!path)
311 		return -ENOMEM;
312 
313 	trans = btrfs_join_transaction(root);
314 	if (IS_ERR(trans)) {
315 		btrfs_free_path(path);
316 		return PTR_ERR(trans);
317 	}
318 	trans->block_rsv = &inode->block_rsv;
319 
320 	if (compressed_size && compressed_pages)
321 		extent_item_size = btrfs_file_extent_calc_inline_size(
322 		   compressed_size);
323 	else
324 		extent_item_size = btrfs_file_extent_calc_inline_size(
325 		    inline_len);
326 
327 	ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
328 				   NULL, 1, 1, extent_item_size,
329 				   &extent_inserted);
330 	if (ret) {
331 		btrfs_abort_transaction(trans, ret);
332 		goto out;
333 	}
334 
335 	if (isize > actual_end)
336 		inline_len = min_t(u64, isize, actual_end);
337 	ret = insert_inline_extent(trans, path, extent_inserted,
338 				   root, &inode->vfs_inode, start,
339 				   inline_len, compressed_size,
340 				   compress_type, compressed_pages);
341 	if (ret && ret != -ENOSPC) {
342 		btrfs_abort_transaction(trans, ret);
343 		goto out;
344 	} else if (ret == -ENOSPC) {
345 		ret = 1;
346 		goto out;
347 	}
348 
349 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
350 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
351 out:
352 	/*
353 	 * Don't forget to free the reserved space, as for inlined extent
354 	 * it won't count as data extent, free them directly here.
355 	 * And at reserve time, it's always aligned to page size, so
356 	 * just free one page here.
357 	 */
358 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
359 	btrfs_free_path(path);
360 	btrfs_end_transaction(trans);
361 	return ret;
362 }
363 
364 struct async_extent {
365 	u64 start;
366 	u64 ram_size;
367 	u64 compressed_size;
368 	struct page **pages;
369 	unsigned long nr_pages;
370 	int compress_type;
371 	struct list_head list;
372 };
373 
374 struct async_chunk {
375 	struct inode *inode;
376 	struct page *locked_page;
377 	u64 start;
378 	u64 end;
379 	unsigned int write_flags;
380 	struct list_head extents;
381 	struct cgroup_subsys_state *blkcg_css;
382 	struct btrfs_work work;
383 	atomic_t *pending;
384 };
385 
386 struct async_cow {
387 	/* Number of chunks in flight; must be first in the structure */
388 	atomic_t num_chunks;
389 	struct async_chunk chunks[];
390 };
391 
392 static noinline int add_async_extent(struct async_chunk *cow,
393 				     u64 start, u64 ram_size,
394 				     u64 compressed_size,
395 				     struct page **pages,
396 				     unsigned long nr_pages,
397 				     int compress_type)
398 {
399 	struct async_extent *async_extent;
400 
401 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
402 	BUG_ON(!async_extent); /* -ENOMEM */
403 	async_extent->start = start;
404 	async_extent->ram_size = ram_size;
405 	async_extent->compressed_size = compressed_size;
406 	async_extent->pages = pages;
407 	async_extent->nr_pages = nr_pages;
408 	async_extent->compress_type = compress_type;
409 	list_add_tail(&async_extent->list, &cow->extents);
410 	return 0;
411 }
412 
413 /*
414  * Check if the inode has flags compatible with compression
415  */
416 static inline bool inode_can_compress(struct btrfs_inode *inode)
417 {
418 	if (inode->flags & BTRFS_INODE_NODATACOW ||
419 	    inode->flags & BTRFS_INODE_NODATASUM)
420 		return false;
421 	return true;
422 }
423 
424 /*
425  * Check if the inode needs to be submitted to compression, based on mount
426  * options, defragmentation, properties or heuristics.
427  */
428 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
429 				      u64 end)
430 {
431 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
432 
433 	if (!inode_can_compress(inode)) {
434 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
435 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
436 			btrfs_ino(inode));
437 		return 0;
438 	}
439 	/* force compress */
440 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
441 		return 1;
442 	/* defrag ioctl */
443 	if (inode->defrag_compress)
444 		return 1;
445 	/* bad compression ratios */
446 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
447 		return 0;
448 	if (btrfs_test_opt(fs_info, COMPRESS) ||
449 	    inode->flags & BTRFS_INODE_COMPRESS ||
450 	    inode->prop_compress)
451 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
452 	return 0;
453 }
454 
455 static inline void inode_should_defrag(struct btrfs_inode *inode,
456 		u64 start, u64 end, u64 num_bytes, u64 small_write)
457 {
458 	/* If this is a small write inside eof, kick off a defrag */
459 	if (num_bytes < small_write &&
460 	    (start > 0 || end + 1 < inode->disk_i_size))
461 		btrfs_add_inode_defrag(NULL, inode);
462 }
463 
464 /*
465  * we create compressed extents in two phases.  The first
466  * phase compresses a range of pages that have already been
467  * locked (both pages and state bits are locked).
468  *
469  * This is done inside an ordered work queue, and the compression
470  * is spread across many cpus.  The actual IO submission is step
471  * two, and the ordered work queue takes care of making sure that
472  * happens in the same order things were put onto the queue by
473  * writepages and friends.
474  *
475  * If this code finds it can't get good compression, it puts an
476  * entry onto the work queue to write the uncompressed bytes.  This
477  * makes sure that both compressed inodes and uncompressed inodes
478  * are written in the same order that the flusher thread sent them
479  * down.
480  */
481 static noinline int compress_file_range(struct async_chunk *async_chunk)
482 {
483 	struct inode *inode = async_chunk->inode;
484 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
485 	u64 blocksize = fs_info->sectorsize;
486 	u64 start = async_chunk->start;
487 	u64 end = async_chunk->end;
488 	u64 actual_end;
489 	u64 i_size;
490 	int ret = 0;
491 	struct page **pages = NULL;
492 	unsigned long nr_pages;
493 	unsigned long total_compressed = 0;
494 	unsigned long total_in = 0;
495 	int i;
496 	int will_compress;
497 	int compress_type = fs_info->compress_type;
498 	int compressed_extents = 0;
499 	int redirty = 0;
500 
501 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
502 			SZ_16K);
503 
504 	/*
505 	 * We need to save i_size before now because it could change in between
506 	 * us evaluating the size and assigning it.  This is because we lock and
507 	 * unlock the page in truncate and fallocate, and then modify the i_size
508 	 * later on.
509 	 *
510 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
511 	 * does that for us.
512 	 */
513 	barrier();
514 	i_size = i_size_read(inode);
515 	barrier();
516 	actual_end = min_t(u64, i_size, end + 1);
517 again:
518 	will_compress = 0;
519 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
520 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
521 	nr_pages = min_t(unsigned long, nr_pages,
522 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
523 
524 	/*
525 	 * we don't want to send crud past the end of i_size through
526 	 * compression, that's just a waste of CPU time.  So, if the
527 	 * end of the file is before the start of our current
528 	 * requested range of bytes, we bail out to the uncompressed
529 	 * cleanup code that can deal with all of this.
530 	 *
531 	 * It isn't really the fastest way to fix things, but this is a
532 	 * very uncommon corner.
533 	 */
534 	if (actual_end <= start)
535 		goto cleanup_and_bail_uncompressed;
536 
537 	total_compressed = actual_end - start;
538 
539 	/*
540 	 * skip compression for a small file range(<=blocksize) that
541 	 * isn't an inline extent, since it doesn't save disk space at all.
542 	 */
543 	if (total_compressed <= blocksize &&
544 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
545 		goto cleanup_and_bail_uncompressed;
546 
547 	total_compressed = min_t(unsigned long, total_compressed,
548 			BTRFS_MAX_UNCOMPRESSED);
549 	total_in = 0;
550 	ret = 0;
551 
552 	/*
553 	 * we do compression for mount -o compress and when the
554 	 * inode has not been flagged as nocompress.  This flag can
555 	 * change at any time if we discover bad compression ratios.
556 	 */
557 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
558 		WARN_ON(pages);
559 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560 		if (!pages) {
561 			/* just bail out to the uncompressed code */
562 			nr_pages = 0;
563 			goto cont;
564 		}
565 
566 		if (BTRFS_I(inode)->defrag_compress)
567 			compress_type = BTRFS_I(inode)->defrag_compress;
568 		else if (BTRFS_I(inode)->prop_compress)
569 			compress_type = BTRFS_I(inode)->prop_compress;
570 
571 		/*
572 		 * we need to call clear_page_dirty_for_io on each
573 		 * page in the range.  Otherwise applications with the file
574 		 * mmap'd can wander in and change the page contents while
575 		 * we are compressing them.
576 		 *
577 		 * If the compression fails for any reason, we set the pages
578 		 * dirty again later on.
579 		 *
580 		 * Note that the remaining part is redirtied, the start pointer
581 		 * has moved, the end is the original one.
582 		 */
583 		if (!redirty) {
584 			extent_range_clear_dirty_for_io(inode, start, end);
585 			redirty = 1;
586 		}
587 
588 		/* Compression level is applied here and only here */
589 		ret = btrfs_compress_pages(
590 			compress_type | (fs_info->compress_level << 4),
591 					   inode->i_mapping, start,
592 					   pages,
593 					   &nr_pages,
594 					   &total_in,
595 					   &total_compressed);
596 
597 		if (!ret) {
598 			unsigned long offset = offset_in_page(total_compressed);
599 			struct page *page = pages[nr_pages - 1];
600 			char *kaddr;
601 
602 			/* zero the tail end of the last page, we might be
603 			 * sending it down to disk
604 			 */
605 			if (offset) {
606 				kaddr = kmap_atomic(page);
607 				memset(kaddr + offset, 0,
608 				       PAGE_SIZE - offset);
609 				kunmap_atomic(kaddr);
610 			}
611 			will_compress = 1;
612 		}
613 	}
614 cont:
615 	if (start == 0) {
616 		/* lets try to make an inline extent */
617 		if (ret || total_in < actual_end) {
618 			/* we didn't compress the entire range, try
619 			 * to make an uncompressed inline extent.
620 			 */
621 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
622 						    0, BTRFS_COMPRESS_NONE,
623 						    NULL);
624 		} else {
625 			/* try making a compressed inline extent */
626 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
627 						    total_compressed,
628 						    compress_type, pages);
629 		}
630 		if (ret <= 0) {
631 			unsigned long clear_flags = EXTENT_DELALLOC |
632 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
633 				EXTENT_DO_ACCOUNTING;
634 			unsigned long page_error_op;
635 
636 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
637 
638 			/*
639 			 * inline extent creation worked or returned error,
640 			 * we don't need to create any more async work items.
641 			 * Unlock and free up our temp pages.
642 			 *
643 			 * We use DO_ACCOUNTING here because we need the
644 			 * delalloc_release_metadata to be done _after_ we drop
645 			 * our outstanding extent for clearing delalloc for this
646 			 * range.
647 			 */
648 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
649 						     NULL,
650 						     clear_flags,
651 						     PAGE_UNLOCK |
652 						     PAGE_CLEAR_DIRTY |
653 						     PAGE_SET_WRITEBACK |
654 						     page_error_op |
655 						     PAGE_END_WRITEBACK);
656 
657 			/*
658 			 * Ensure we only free the compressed pages if we have
659 			 * them allocated, as we can still reach here with
660 			 * inode_need_compress() == false.
661 			 */
662 			if (pages) {
663 				for (i = 0; i < nr_pages; i++) {
664 					WARN_ON(pages[i]->mapping);
665 					put_page(pages[i]);
666 				}
667 				kfree(pages);
668 			}
669 			return 0;
670 		}
671 	}
672 
673 	if (will_compress) {
674 		/*
675 		 * we aren't doing an inline extent round the compressed size
676 		 * up to a block size boundary so the allocator does sane
677 		 * things
678 		 */
679 		total_compressed = ALIGN(total_compressed, blocksize);
680 
681 		/*
682 		 * one last check to make sure the compression is really a
683 		 * win, compare the page count read with the blocks on disk,
684 		 * compression must free at least one sector size
685 		 */
686 		total_in = ALIGN(total_in, PAGE_SIZE);
687 		if (total_compressed + blocksize <= total_in) {
688 			compressed_extents++;
689 
690 			/*
691 			 * The async work queues will take care of doing actual
692 			 * allocation on disk for these compressed pages, and
693 			 * will submit them to the elevator.
694 			 */
695 			add_async_extent(async_chunk, start, total_in,
696 					total_compressed, pages, nr_pages,
697 					compress_type);
698 
699 			if (start + total_in < end) {
700 				start += total_in;
701 				pages = NULL;
702 				cond_resched();
703 				goto again;
704 			}
705 			return compressed_extents;
706 		}
707 	}
708 	if (pages) {
709 		/*
710 		 * the compression code ran but failed to make things smaller,
711 		 * free any pages it allocated and our page pointer array
712 		 */
713 		for (i = 0; i < nr_pages; i++) {
714 			WARN_ON(pages[i]->mapping);
715 			put_page(pages[i]);
716 		}
717 		kfree(pages);
718 		pages = NULL;
719 		total_compressed = 0;
720 		nr_pages = 0;
721 
722 		/* flag the file so we don't compress in the future */
723 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
724 		    !(BTRFS_I(inode)->prop_compress)) {
725 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
726 		}
727 	}
728 cleanup_and_bail_uncompressed:
729 	/*
730 	 * No compression, but we still need to write the pages in the file
731 	 * we've been given so far.  redirty the locked page if it corresponds
732 	 * to our extent and set things up for the async work queue to run
733 	 * cow_file_range to do the normal delalloc dance.
734 	 */
735 	if (async_chunk->locked_page &&
736 	    (page_offset(async_chunk->locked_page) >= start &&
737 	     page_offset(async_chunk->locked_page)) <= end) {
738 		__set_page_dirty_nobuffers(async_chunk->locked_page);
739 		/* unlocked later on in the async handlers */
740 	}
741 
742 	if (redirty)
743 		extent_range_redirty_for_io(inode, start, end);
744 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
745 			 BTRFS_COMPRESS_NONE);
746 	compressed_extents++;
747 
748 	return compressed_extents;
749 }
750 
751 static void free_async_extent_pages(struct async_extent *async_extent)
752 {
753 	int i;
754 
755 	if (!async_extent->pages)
756 		return;
757 
758 	for (i = 0; i < async_extent->nr_pages; i++) {
759 		WARN_ON(async_extent->pages[i]->mapping);
760 		put_page(async_extent->pages[i]);
761 	}
762 	kfree(async_extent->pages);
763 	async_extent->nr_pages = 0;
764 	async_extent->pages = NULL;
765 }
766 
767 /*
768  * phase two of compressed writeback.  This is the ordered portion
769  * of the code, which only gets called in the order the work was
770  * queued.  We walk all the async extents created by compress_file_range
771  * and send them down to the disk.
772  */
773 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
774 {
775 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
776 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
777 	struct async_extent *async_extent;
778 	u64 alloc_hint = 0;
779 	struct btrfs_key ins;
780 	struct extent_map *em;
781 	struct btrfs_root *root = inode->root;
782 	struct extent_io_tree *io_tree = &inode->io_tree;
783 	int ret = 0;
784 
785 again:
786 	while (!list_empty(&async_chunk->extents)) {
787 		async_extent = list_entry(async_chunk->extents.next,
788 					  struct async_extent, list);
789 		list_del(&async_extent->list);
790 
791 retry:
792 		lock_extent(io_tree, async_extent->start,
793 			    async_extent->start + async_extent->ram_size - 1);
794 		/* did the compression code fall back to uncompressed IO? */
795 		if (!async_extent->pages) {
796 			int page_started = 0;
797 			unsigned long nr_written = 0;
798 
799 			/* allocate blocks */
800 			ret = cow_file_range(inode, async_chunk->locked_page,
801 					     async_extent->start,
802 					     async_extent->start +
803 					     async_extent->ram_size - 1,
804 					     &page_started, &nr_written, 0);
805 
806 			/* JDM XXX */
807 
808 			/*
809 			 * if page_started, cow_file_range inserted an
810 			 * inline extent and took care of all the unlocking
811 			 * and IO for us.  Otherwise, we need to submit
812 			 * all those pages down to the drive.
813 			 */
814 			if (!page_started && !ret)
815 				extent_write_locked_range(&inode->vfs_inode,
816 						  async_extent->start,
817 						  async_extent->start +
818 						  async_extent->ram_size - 1,
819 						  WB_SYNC_ALL);
820 			else if (ret && async_chunk->locked_page)
821 				unlock_page(async_chunk->locked_page);
822 			kfree(async_extent);
823 			cond_resched();
824 			continue;
825 		}
826 
827 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
828 					   async_extent->compressed_size,
829 					   async_extent->compressed_size,
830 					   0, alloc_hint, &ins, 1, 1);
831 		if (ret) {
832 			free_async_extent_pages(async_extent);
833 
834 			if (ret == -ENOSPC) {
835 				unlock_extent(io_tree, async_extent->start,
836 					      async_extent->start +
837 					      async_extent->ram_size - 1);
838 
839 				/*
840 				 * we need to redirty the pages if we decide to
841 				 * fallback to uncompressed IO, otherwise we
842 				 * will not submit these pages down to lower
843 				 * layers.
844 				 */
845 				extent_range_redirty_for_io(&inode->vfs_inode,
846 						async_extent->start,
847 						async_extent->start +
848 						async_extent->ram_size - 1);
849 
850 				goto retry;
851 			}
852 			goto out_free;
853 		}
854 		/*
855 		 * here we're doing allocation and writeback of the
856 		 * compressed pages
857 		 */
858 		em = create_io_em(inode, async_extent->start,
859 				  async_extent->ram_size, /* len */
860 				  async_extent->start, /* orig_start */
861 				  ins.objectid, /* block_start */
862 				  ins.offset, /* block_len */
863 				  ins.offset, /* orig_block_len */
864 				  async_extent->ram_size, /* ram_bytes */
865 				  async_extent->compress_type,
866 				  BTRFS_ORDERED_COMPRESSED);
867 		if (IS_ERR(em))
868 			/* ret value is not necessary due to void function */
869 			goto out_free_reserve;
870 		free_extent_map(em);
871 
872 		ret = btrfs_add_ordered_extent_compress(inode,
873 						async_extent->start,
874 						ins.objectid,
875 						async_extent->ram_size,
876 						ins.offset,
877 						BTRFS_ORDERED_COMPRESSED,
878 						async_extent->compress_type);
879 		if (ret) {
880 			btrfs_drop_extent_cache(inode, async_extent->start,
881 						async_extent->start +
882 						async_extent->ram_size - 1, 0);
883 			goto out_free_reserve;
884 		}
885 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
886 
887 		/*
888 		 * clear dirty, set writeback and unlock the pages.
889 		 */
890 		extent_clear_unlock_delalloc(inode, async_extent->start,
891 				async_extent->start +
892 				async_extent->ram_size - 1,
893 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
894 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
895 				PAGE_SET_WRITEBACK);
896 		if (btrfs_submit_compressed_write(inode, async_extent->start,
897 				    async_extent->ram_size,
898 				    ins.objectid,
899 				    ins.offset, async_extent->pages,
900 				    async_extent->nr_pages,
901 				    async_chunk->write_flags,
902 				    async_chunk->blkcg_css)) {
903 			struct page *p = async_extent->pages[0];
904 			const u64 start = async_extent->start;
905 			const u64 end = start + async_extent->ram_size - 1;
906 
907 			p->mapping = inode->vfs_inode.i_mapping;
908 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
909 
910 			p->mapping = NULL;
911 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
912 						     PAGE_END_WRITEBACK |
913 						     PAGE_SET_ERROR);
914 			free_async_extent_pages(async_extent);
915 		}
916 		alloc_hint = ins.objectid + ins.offset;
917 		kfree(async_extent);
918 		cond_resched();
919 	}
920 	return;
921 out_free_reserve:
922 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
923 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
924 out_free:
925 	extent_clear_unlock_delalloc(inode, async_extent->start,
926 				     async_extent->start +
927 				     async_extent->ram_size - 1,
928 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
929 				     EXTENT_DELALLOC_NEW |
930 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
931 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
932 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
933 				     PAGE_SET_ERROR);
934 	free_async_extent_pages(async_extent);
935 	kfree(async_extent);
936 	goto again;
937 }
938 
939 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
940 				      u64 num_bytes)
941 {
942 	struct extent_map_tree *em_tree = &inode->extent_tree;
943 	struct extent_map *em;
944 	u64 alloc_hint = 0;
945 
946 	read_lock(&em_tree->lock);
947 	em = search_extent_mapping(em_tree, start, num_bytes);
948 	if (em) {
949 		/*
950 		 * if block start isn't an actual block number then find the
951 		 * first block in this inode and use that as a hint.  If that
952 		 * block is also bogus then just don't worry about it.
953 		 */
954 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
955 			free_extent_map(em);
956 			em = search_extent_mapping(em_tree, 0, 0);
957 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
958 				alloc_hint = em->block_start;
959 			if (em)
960 				free_extent_map(em);
961 		} else {
962 			alloc_hint = em->block_start;
963 			free_extent_map(em);
964 		}
965 	}
966 	read_unlock(&em_tree->lock);
967 
968 	return alloc_hint;
969 }
970 
971 /*
972  * when extent_io.c finds a delayed allocation range in the file,
973  * the call backs end up in this code.  The basic idea is to
974  * allocate extents on disk for the range, and create ordered data structs
975  * in ram to track those extents.
976  *
977  * locked_page is the page that writepage had locked already.  We use
978  * it to make sure we don't do extra locks or unlocks.
979  *
980  * *page_started is set to one if we unlock locked_page and do everything
981  * required to start IO on it.  It may be clean and already done with
982  * IO when we return.
983  */
984 static noinline int cow_file_range(struct btrfs_inode *inode,
985 				   struct page *locked_page,
986 				   u64 start, u64 end, int *page_started,
987 				   unsigned long *nr_written, int unlock)
988 {
989 	struct btrfs_root *root = inode->root;
990 	struct btrfs_fs_info *fs_info = root->fs_info;
991 	u64 alloc_hint = 0;
992 	u64 num_bytes;
993 	unsigned long ram_size;
994 	u64 cur_alloc_size = 0;
995 	u64 min_alloc_size;
996 	u64 blocksize = fs_info->sectorsize;
997 	struct btrfs_key ins;
998 	struct extent_map *em;
999 	unsigned clear_bits;
1000 	unsigned long page_ops;
1001 	bool extent_reserved = false;
1002 	int ret = 0;
1003 
1004 	if (btrfs_is_free_space_inode(inode)) {
1005 		WARN_ON_ONCE(1);
1006 		ret = -EINVAL;
1007 		goto out_unlock;
1008 	}
1009 
1010 	num_bytes = ALIGN(end - start + 1, blocksize);
1011 	num_bytes = max(blocksize,  num_bytes);
1012 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1013 
1014 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1015 
1016 	if (start == 0) {
1017 		/* lets try to make an inline extent */
1018 		ret = cow_file_range_inline(inode, start, end, 0,
1019 					    BTRFS_COMPRESS_NONE, NULL);
1020 		if (ret == 0) {
1021 			/*
1022 			 * We use DO_ACCOUNTING here because we need the
1023 			 * delalloc_release_metadata to be run _after_ we drop
1024 			 * our outstanding extent for clearing delalloc for this
1025 			 * range.
1026 			 */
1027 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1028 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1029 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1030 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1031 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1032 				     PAGE_END_WRITEBACK);
1033 			*nr_written = *nr_written +
1034 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1035 			*page_started = 1;
1036 			goto out;
1037 		} else if (ret < 0) {
1038 			goto out_unlock;
1039 		}
1040 	}
1041 
1042 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1043 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1044 
1045 	/*
1046 	 * Relocation relies on the relocated extents to have exactly the same
1047 	 * size as the original extents. Normally writeback for relocation data
1048 	 * extents follows a NOCOW path because relocation preallocates the
1049 	 * extents. However, due to an operation such as scrub turning a block
1050 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1051 	 * an extent allocated during COW has exactly the requested size and can
1052 	 * not be split into smaller extents, otherwise relocation breaks and
1053 	 * fails during the stage where it updates the bytenr of file extent
1054 	 * items.
1055 	 */
1056 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1057 		min_alloc_size = num_bytes;
1058 	else
1059 		min_alloc_size = fs_info->sectorsize;
1060 
1061 	while (num_bytes > 0) {
1062 		cur_alloc_size = num_bytes;
1063 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1064 					   min_alloc_size, 0, alloc_hint,
1065 					   &ins, 1, 1);
1066 		if (ret < 0)
1067 			goto out_unlock;
1068 		cur_alloc_size = ins.offset;
1069 		extent_reserved = true;
1070 
1071 		ram_size = ins.offset;
1072 		em = create_io_em(inode, start, ins.offset, /* len */
1073 				  start, /* orig_start */
1074 				  ins.objectid, /* block_start */
1075 				  ins.offset, /* block_len */
1076 				  ins.offset, /* orig_block_len */
1077 				  ram_size, /* ram_bytes */
1078 				  BTRFS_COMPRESS_NONE, /* compress_type */
1079 				  BTRFS_ORDERED_REGULAR /* type */);
1080 		if (IS_ERR(em)) {
1081 			ret = PTR_ERR(em);
1082 			goto out_reserve;
1083 		}
1084 		free_extent_map(em);
1085 
1086 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1087 					       ram_size, cur_alloc_size, 0);
1088 		if (ret)
1089 			goto out_drop_extent_cache;
1090 
1091 		if (root->root_key.objectid ==
1092 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1093 			ret = btrfs_reloc_clone_csums(inode, start,
1094 						      cur_alloc_size);
1095 			/*
1096 			 * Only drop cache here, and process as normal.
1097 			 *
1098 			 * We must not allow extent_clear_unlock_delalloc()
1099 			 * at out_unlock label to free meta of this ordered
1100 			 * extent, as its meta should be freed by
1101 			 * btrfs_finish_ordered_io().
1102 			 *
1103 			 * So we must continue until @start is increased to
1104 			 * skip current ordered extent.
1105 			 */
1106 			if (ret)
1107 				btrfs_drop_extent_cache(inode, start,
1108 						start + ram_size - 1, 0);
1109 		}
1110 
1111 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1112 
1113 		/* we're not doing compressed IO, don't unlock the first
1114 		 * page (which the caller expects to stay locked), don't
1115 		 * clear any dirty bits and don't set any writeback bits
1116 		 *
1117 		 * Do set the Private2 bit so we know this page was properly
1118 		 * setup for writepage
1119 		 */
1120 		page_ops = unlock ? PAGE_UNLOCK : 0;
1121 		page_ops |= PAGE_SET_PRIVATE2;
1122 
1123 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1124 					     locked_page,
1125 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1126 					     page_ops);
1127 		if (num_bytes < cur_alloc_size)
1128 			num_bytes = 0;
1129 		else
1130 			num_bytes -= cur_alloc_size;
1131 		alloc_hint = ins.objectid + ins.offset;
1132 		start += cur_alloc_size;
1133 		extent_reserved = false;
1134 
1135 		/*
1136 		 * btrfs_reloc_clone_csums() error, since start is increased
1137 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1138 		 * free metadata of current ordered extent, we're OK to exit.
1139 		 */
1140 		if (ret)
1141 			goto out_unlock;
1142 	}
1143 out:
1144 	return ret;
1145 
1146 out_drop_extent_cache:
1147 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1148 out_reserve:
1149 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1150 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1151 out_unlock:
1152 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1153 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1154 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1155 		PAGE_END_WRITEBACK;
1156 	/*
1157 	 * If we reserved an extent for our delalloc range (or a subrange) and
1158 	 * failed to create the respective ordered extent, then it means that
1159 	 * when we reserved the extent we decremented the extent's size from
1160 	 * the data space_info's bytes_may_use counter and incremented the
1161 	 * space_info's bytes_reserved counter by the same amount. We must make
1162 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1163 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1164 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1165 	 */
1166 	if (extent_reserved) {
1167 		extent_clear_unlock_delalloc(inode, start,
1168 					     start + cur_alloc_size - 1,
1169 					     locked_page,
1170 					     clear_bits,
1171 					     page_ops);
1172 		start += cur_alloc_size;
1173 		if (start >= end)
1174 			goto out;
1175 	}
1176 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1177 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1178 				     page_ops);
1179 	goto out;
1180 }
1181 
1182 /*
1183  * work queue call back to started compression on a file and pages
1184  */
1185 static noinline void async_cow_start(struct btrfs_work *work)
1186 {
1187 	struct async_chunk *async_chunk;
1188 	int compressed_extents;
1189 
1190 	async_chunk = container_of(work, struct async_chunk, work);
1191 
1192 	compressed_extents = compress_file_range(async_chunk);
1193 	if (compressed_extents == 0) {
1194 		btrfs_add_delayed_iput(async_chunk->inode);
1195 		async_chunk->inode = NULL;
1196 	}
1197 }
1198 
1199 /*
1200  * work queue call back to submit previously compressed pages
1201  */
1202 static noinline void async_cow_submit(struct btrfs_work *work)
1203 {
1204 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1205 						     work);
1206 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1207 	unsigned long nr_pages;
1208 
1209 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1210 		PAGE_SHIFT;
1211 
1212 	/* atomic_sub_return implies a barrier */
1213 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1214 	    5 * SZ_1M)
1215 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1216 
1217 	/*
1218 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1219 	 * in which case we don't have anything to submit, yet we need to
1220 	 * always adjust ->async_delalloc_pages as its paired with the init
1221 	 * happening in cow_file_range_async
1222 	 */
1223 	if (async_chunk->inode)
1224 		submit_compressed_extents(async_chunk);
1225 }
1226 
1227 static noinline void async_cow_free(struct btrfs_work *work)
1228 {
1229 	struct async_chunk *async_chunk;
1230 
1231 	async_chunk = container_of(work, struct async_chunk, work);
1232 	if (async_chunk->inode)
1233 		btrfs_add_delayed_iput(async_chunk->inode);
1234 	if (async_chunk->blkcg_css)
1235 		css_put(async_chunk->blkcg_css);
1236 	/*
1237 	 * Since the pointer to 'pending' is at the beginning of the array of
1238 	 * async_chunk's, freeing it ensures the whole array has been freed.
1239 	 */
1240 	if (atomic_dec_and_test(async_chunk->pending))
1241 		kvfree(async_chunk->pending);
1242 }
1243 
1244 static int cow_file_range_async(struct btrfs_inode *inode,
1245 				struct writeback_control *wbc,
1246 				struct page *locked_page,
1247 				u64 start, u64 end, int *page_started,
1248 				unsigned long *nr_written)
1249 {
1250 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1251 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1252 	struct async_cow *ctx;
1253 	struct async_chunk *async_chunk;
1254 	unsigned long nr_pages;
1255 	u64 cur_end;
1256 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1257 	int i;
1258 	bool should_compress;
1259 	unsigned nofs_flag;
1260 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1261 
1262 	unlock_extent(&inode->io_tree, start, end);
1263 
1264 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1265 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1266 		num_chunks = 1;
1267 		should_compress = false;
1268 	} else {
1269 		should_compress = true;
1270 	}
1271 
1272 	nofs_flag = memalloc_nofs_save();
1273 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1274 	memalloc_nofs_restore(nofs_flag);
1275 
1276 	if (!ctx) {
1277 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1278 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1279 			EXTENT_DO_ACCOUNTING;
1280 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1281 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1282 			PAGE_SET_ERROR;
1283 
1284 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1285 					     clear_bits, page_ops);
1286 		return -ENOMEM;
1287 	}
1288 
1289 	async_chunk = ctx->chunks;
1290 	atomic_set(&ctx->num_chunks, num_chunks);
1291 
1292 	for (i = 0; i < num_chunks; i++) {
1293 		if (should_compress)
1294 			cur_end = min(end, start + SZ_512K - 1);
1295 		else
1296 			cur_end = end;
1297 
1298 		/*
1299 		 * igrab is called higher up in the call chain, take only the
1300 		 * lightweight reference for the callback lifetime
1301 		 */
1302 		ihold(&inode->vfs_inode);
1303 		async_chunk[i].pending = &ctx->num_chunks;
1304 		async_chunk[i].inode = &inode->vfs_inode;
1305 		async_chunk[i].start = start;
1306 		async_chunk[i].end = cur_end;
1307 		async_chunk[i].write_flags = write_flags;
1308 		INIT_LIST_HEAD(&async_chunk[i].extents);
1309 
1310 		/*
1311 		 * The locked_page comes all the way from writepage and its
1312 		 * the original page we were actually given.  As we spread
1313 		 * this large delalloc region across multiple async_chunk
1314 		 * structs, only the first struct needs a pointer to locked_page
1315 		 *
1316 		 * This way we don't need racey decisions about who is supposed
1317 		 * to unlock it.
1318 		 */
1319 		if (locked_page) {
1320 			/*
1321 			 * Depending on the compressibility, the pages might or
1322 			 * might not go through async.  We want all of them to
1323 			 * be accounted against wbc once.  Let's do it here
1324 			 * before the paths diverge.  wbc accounting is used
1325 			 * only for foreign writeback detection and doesn't
1326 			 * need full accuracy.  Just account the whole thing
1327 			 * against the first page.
1328 			 */
1329 			wbc_account_cgroup_owner(wbc, locked_page,
1330 						 cur_end - start);
1331 			async_chunk[i].locked_page = locked_page;
1332 			locked_page = NULL;
1333 		} else {
1334 			async_chunk[i].locked_page = NULL;
1335 		}
1336 
1337 		if (blkcg_css != blkcg_root_css) {
1338 			css_get(blkcg_css);
1339 			async_chunk[i].blkcg_css = blkcg_css;
1340 		} else {
1341 			async_chunk[i].blkcg_css = NULL;
1342 		}
1343 
1344 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1345 				async_cow_submit, async_cow_free);
1346 
1347 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1348 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1349 
1350 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1351 
1352 		*nr_written += nr_pages;
1353 		start = cur_end + 1;
1354 	}
1355 	*page_started = 1;
1356 	return 0;
1357 }
1358 
1359 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1360 					u64 bytenr, u64 num_bytes)
1361 {
1362 	int ret;
1363 	struct btrfs_ordered_sum *sums;
1364 	LIST_HEAD(list);
1365 
1366 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1367 				       bytenr + num_bytes - 1, &list, 0);
1368 	if (ret == 0 && list_empty(&list))
1369 		return 0;
1370 
1371 	while (!list_empty(&list)) {
1372 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1373 		list_del(&sums->list);
1374 		kfree(sums);
1375 	}
1376 	if (ret < 0)
1377 		return ret;
1378 	return 1;
1379 }
1380 
1381 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1382 			   const u64 start, const u64 end,
1383 			   int *page_started, unsigned long *nr_written)
1384 {
1385 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1386 	const bool is_reloc_ino = (inode->root->root_key.objectid ==
1387 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1388 	const u64 range_bytes = end + 1 - start;
1389 	struct extent_io_tree *io_tree = &inode->io_tree;
1390 	u64 range_start = start;
1391 	u64 count;
1392 
1393 	/*
1394 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1395 	 * made we had not enough available data space and therefore we did not
1396 	 * reserve data space for it, since we though we could do NOCOW for the
1397 	 * respective file range (either there is prealloc extent or the inode
1398 	 * has the NOCOW bit set).
1399 	 *
1400 	 * However when we need to fallback to COW mode (because for example the
1401 	 * block group for the corresponding extent was turned to RO mode by a
1402 	 * scrub or relocation) we need to do the following:
1403 	 *
1404 	 * 1) We increment the bytes_may_use counter of the data space info.
1405 	 *    If COW succeeds, it allocates a new data extent and after doing
1406 	 *    that it decrements the space info's bytes_may_use counter and
1407 	 *    increments its bytes_reserved counter by the same amount (we do
1408 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1409 	 *    bytes_may_use counter to compensate (when space is reserved at
1410 	 *    buffered write time, the bytes_may_use counter is incremented);
1411 	 *
1412 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1413 	 *    that if the COW path fails for any reason, it decrements (through
1414 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1415 	 *    data space info, which we incremented in the step above.
1416 	 *
1417 	 * If we need to fallback to cow and the inode corresponds to a free
1418 	 * space cache inode or an inode of the data relocation tree, we must
1419 	 * also increment bytes_may_use of the data space_info for the same
1420 	 * reason. Space caches and relocated data extents always get a prealloc
1421 	 * extent for them, however scrub or balance may have set the block
1422 	 * group that contains that extent to RO mode and therefore force COW
1423 	 * when starting writeback.
1424 	 */
1425 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1426 				 EXTENT_NORESERVE, 0);
1427 	if (count > 0 || is_space_ino || is_reloc_ino) {
1428 		u64 bytes = count;
1429 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1430 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1431 
1432 		if (is_space_ino || is_reloc_ino)
1433 			bytes = range_bytes;
1434 
1435 		spin_lock(&sinfo->lock);
1436 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1437 		spin_unlock(&sinfo->lock);
1438 
1439 		if (count > 0)
1440 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1441 					 0, 0, NULL);
1442 	}
1443 
1444 	return cow_file_range(inode, locked_page, start, end, page_started,
1445 			      nr_written, 1);
1446 }
1447 
1448 /*
1449  * when nowcow writeback call back.  This checks for snapshots or COW copies
1450  * of the extents that exist in the file, and COWs the file as required.
1451  *
1452  * If no cow copies or snapshots exist, we write directly to the existing
1453  * blocks on disk
1454  */
1455 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1456 				       struct page *locked_page,
1457 				       const u64 start, const u64 end,
1458 				       int *page_started, int force,
1459 				       unsigned long *nr_written)
1460 {
1461 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1462 	struct btrfs_root *root = inode->root;
1463 	struct btrfs_path *path;
1464 	u64 cow_start = (u64)-1;
1465 	u64 cur_offset = start;
1466 	int ret;
1467 	bool check_prev = true;
1468 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1469 	u64 ino = btrfs_ino(inode);
1470 	bool nocow = false;
1471 	u64 disk_bytenr = 0;
1472 
1473 	path = btrfs_alloc_path();
1474 	if (!path) {
1475 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1476 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1477 					     EXTENT_DO_ACCOUNTING |
1478 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1479 					     PAGE_CLEAR_DIRTY |
1480 					     PAGE_SET_WRITEBACK |
1481 					     PAGE_END_WRITEBACK);
1482 		return -ENOMEM;
1483 	}
1484 
1485 	while (1) {
1486 		struct btrfs_key found_key;
1487 		struct btrfs_file_extent_item *fi;
1488 		struct extent_buffer *leaf;
1489 		u64 extent_end;
1490 		u64 extent_offset;
1491 		u64 num_bytes = 0;
1492 		u64 disk_num_bytes;
1493 		u64 ram_bytes;
1494 		int extent_type;
1495 
1496 		nocow = false;
1497 
1498 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1499 					       cur_offset, 0);
1500 		if (ret < 0)
1501 			goto error;
1502 
1503 		/*
1504 		 * If there is no extent for our range when doing the initial
1505 		 * search, then go back to the previous slot as it will be the
1506 		 * one containing the search offset
1507 		 */
1508 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1509 			leaf = path->nodes[0];
1510 			btrfs_item_key_to_cpu(leaf, &found_key,
1511 					      path->slots[0] - 1);
1512 			if (found_key.objectid == ino &&
1513 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1514 				path->slots[0]--;
1515 		}
1516 		check_prev = false;
1517 next_slot:
1518 		/* Go to next leaf if we have exhausted the current one */
1519 		leaf = path->nodes[0];
1520 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1521 			ret = btrfs_next_leaf(root, path);
1522 			if (ret < 0) {
1523 				if (cow_start != (u64)-1)
1524 					cur_offset = cow_start;
1525 				goto error;
1526 			}
1527 			if (ret > 0)
1528 				break;
1529 			leaf = path->nodes[0];
1530 		}
1531 
1532 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1533 
1534 		/* Didn't find anything for our INO */
1535 		if (found_key.objectid > ino)
1536 			break;
1537 		/*
1538 		 * Keep searching until we find an EXTENT_ITEM or there are no
1539 		 * more extents for this inode
1540 		 */
1541 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1542 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1543 			path->slots[0]++;
1544 			goto next_slot;
1545 		}
1546 
1547 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1548 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1549 		    found_key.offset > end)
1550 			break;
1551 
1552 		/*
1553 		 * If the found extent starts after requested offset, then
1554 		 * adjust extent_end to be right before this extent begins
1555 		 */
1556 		if (found_key.offset > cur_offset) {
1557 			extent_end = found_key.offset;
1558 			extent_type = 0;
1559 			goto out_check;
1560 		}
1561 
1562 		/*
1563 		 * Found extent which begins before our range and potentially
1564 		 * intersect it
1565 		 */
1566 		fi = btrfs_item_ptr(leaf, path->slots[0],
1567 				    struct btrfs_file_extent_item);
1568 		extent_type = btrfs_file_extent_type(leaf, fi);
1569 
1570 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1571 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1572 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1573 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1574 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1575 			extent_end = found_key.offset +
1576 				btrfs_file_extent_num_bytes(leaf, fi);
1577 			disk_num_bytes =
1578 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1579 			/*
1580 			 * If the extent we got ends before our current offset,
1581 			 * skip to the next extent.
1582 			 */
1583 			if (extent_end <= cur_offset) {
1584 				path->slots[0]++;
1585 				goto next_slot;
1586 			}
1587 			/* Skip holes */
1588 			if (disk_bytenr == 0)
1589 				goto out_check;
1590 			/* Skip compressed/encrypted/encoded extents */
1591 			if (btrfs_file_extent_compression(leaf, fi) ||
1592 			    btrfs_file_extent_encryption(leaf, fi) ||
1593 			    btrfs_file_extent_other_encoding(leaf, fi))
1594 				goto out_check;
1595 			/*
1596 			 * If extent is created before the last volume's snapshot
1597 			 * this implies the extent is shared, hence we can't do
1598 			 * nocow. This is the same check as in
1599 			 * btrfs_cross_ref_exist but without calling
1600 			 * btrfs_search_slot.
1601 			 */
1602 			if (!freespace_inode &&
1603 			    btrfs_file_extent_generation(leaf, fi) <=
1604 			    btrfs_root_last_snapshot(&root->root_item))
1605 				goto out_check;
1606 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1607 				goto out_check;
1608 			/* If extent is RO, we must COW it */
1609 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1610 				goto out_check;
1611 			ret = btrfs_cross_ref_exist(root, ino,
1612 						    found_key.offset -
1613 						    extent_offset, disk_bytenr);
1614 			if (ret) {
1615 				/*
1616 				 * ret could be -EIO if the above fails to read
1617 				 * metadata.
1618 				 */
1619 				if (ret < 0) {
1620 					if (cow_start != (u64)-1)
1621 						cur_offset = cow_start;
1622 					goto error;
1623 				}
1624 
1625 				WARN_ON_ONCE(freespace_inode);
1626 				goto out_check;
1627 			}
1628 			disk_bytenr += extent_offset;
1629 			disk_bytenr += cur_offset - found_key.offset;
1630 			num_bytes = min(end + 1, extent_end) - cur_offset;
1631 			/*
1632 			 * If there are pending snapshots for this root, we
1633 			 * fall into common COW way
1634 			 */
1635 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1636 				goto out_check;
1637 			/*
1638 			 * force cow if csum exists in the range.
1639 			 * this ensure that csum for a given extent are
1640 			 * either valid or do not exist.
1641 			 */
1642 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1643 						  num_bytes);
1644 			if (ret) {
1645 				/*
1646 				 * ret could be -EIO if the above fails to read
1647 				 * metadata.
1648 				 */
1649 				if (ret < 0) {
1650 					if (cow_start != (u64)-1)
1651 						cur_offset = cow_start;
1652 					goto error;
1653 				}
1654 				WARN_ON_ONCE(freespace_inode);
1655 				goto out_check;
1656 			}
1657 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1658 				goto out_check;
1659 			nocow = true;
1660 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1661 			extent_end = found_key.offset + ram_bytes;
1662 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1663 			/* Skip extents outside of our requested range */
1664 			if (extent_end <= start) {
1665 				path->slots[0]++;
1666 				goto next_slot;
1667 			}
1668 		} else {
1669 			/* If this triggers then we have a memory corruption */
1670 			BUG();
1671 		}
1672 out_check:
1673 		/*
1674 		 * If nocow is false then record the beginning of the range
1675 		 * that needs to be COWed
1676 		 */
1677 		if (!nocow) {
1678 			if (cow_start == (u64)-1)
1679 				cow_start = cur_offset;
1680 			cur_offset = extent_end;
1681 			if (cur_offset > end)
1682 				break;
1683 			path->slots[0]++;
1684 			goto next_slot;
1685 		}
1686 
1687 		btrfs_release_path(path);
1688 
1689 		/*
1690 		 * COW range from cow_start to found_key.offset - 1. As the key
1691 		 * will contain the beginning of the first extent that can be
1692 		 * NOCOW, following one which needs to be COW'ed
1693 		 */
1694 		if (cow_start != (u64)-1) {
1695 			ret = fallback_to_cow(inode, locked_page,
1696 					      cow_start, found_key.offset - 1,
1697 					      page_started, nr_written);
1698 			if (ret)
1699 				goto error;
1700 			cow_start = (u64)-1;
1701 		}
1702 
1703 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1704 			u64 orig_start = found_key.offset - extent_offset;
1705 			struct extent_map *em;
1706 
1707 			em = create_io_em(inode, cur_offset, num_bytes,
1708 					  orig_start,
1709 					  disk_bytenr, /* block_start */
1710 					  num_bytes, /* block_len */
1711 					  disk_num_bytes, /* orig_block_len */
1712 					  ram_bytes, BTRFS_COMPRESS_NONE,
1713 					  BTRFS_ORDERED_PREALLOC);
1714 			if (IS_ERR(em)) {
1715 				ret = PTR_ERR(em);
1716 				goto error;
1717 			}
1718 			free_extent_map(em);
1719 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1720 						       disk_bytenr, num_bytes,
1721 						       num_bytes,
1722 						       BTRFS_ORDERED_PREALLOC);
1723 			if (ret) {
1724 				btrfs_drop_extent_cache(inode, cur_offset,
1725 							cur_offset + num_bytes - 1,
1726 							0);
1727 				goto error;
1728 			}
1729 		} else {
1730 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1731 						       disk_bytenr, num_bytes,
1732 						       num_bytes,
1733 						       BTRFS_ORDERED_NOCOW);
1734 			if (ret)
1735 				goto error;
1736 		}
1737 
1738 		if (nocow)
1739 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1740 		nocow = false;
1741 
1742 		if (root->root_key.objectid ==
1743 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1744 			/*
1745 			 * Error handled later, as we must prevent
1746 			 * extent_clear_unlock_delalloc() in error handler
1747 			 * from freeing metadata of created ordered extent.
1748 			 */
1749 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1750 						      num_bytes);
1751 
1752 		extent_clear_unlock_delalloc(inode, cur_offset,
1753 					     cur_offset + num_bytes - 1,
1754 					     locked_page, EXTENT_LOCKED |
1755 					     EXTENT_DELALLOC |
1756 					     EXTENT_CLEAR_DATA_RESV,
1757 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1758 
1759 		cur_offset = extent_end;
1760 
1761 		/*
1762 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1763 		 * handler, as metadata for created ordered extent will only
1764 		 * be freed by btrfs_finish_ordered_io().
1765 		 */
1766 		if (ret)
1767 			goto error;
1768 		if (cur_offset > end)
1769 			break;
1770 	}
1771 	btrfs_release_path(path);
1772 
1773 	if (cur_offset <= end && cow_start == (u64)-1)
1774 		cow_start = cur_offset;
1775 
1776 	if (cow_start != (u64)-1) {
1777 		cur_offset = end;
1778 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1779 				      page_started, nr_written);
1780 		if (ret)
1781 			goto error;
1782 	}
1783 
1784 error:
1785 	if (nocow)
1786 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1787 
1788 	if (ret && cur_offset < end)
1789 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1790 					     locked_page, EXTENT_LOCKED |
1791 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1792 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1793 					     PAGE_CLEAR_DIRTY |
1794 					     PAGE_SET_WRITEBACK |
1795 					     PAGE_END_WRITEBACK);
1796 	btrfs_free_path(path);
1797 	return ret;
1798 }
1799 
1800 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1801 {
1802 
1803 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1804 	    !(inode->flags & BTRFS_INODE_PREALLOC))
1805 		return 0;
1806 
1807 	/*
1808 	 * @defrag_bytes is a hint value, no spinlock held here,
1809 	 * if is not zero, it means the file is defragging.
1810 	 * Force cow if given extent needs to be defragged.
1811 	 */
1812 	if (inode->defrag_bytes &&
1813 	    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1814 		return 1;
1815 
1816 	return 0;
1817 }
1818 
1819 /*
1820  * Function to process delayed allocation (create CoW) for ranges which are
1821  * being touched for the first time.
1822  */
1823 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1824 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1825 		struct writeback_control *wbc)
1826 {
1827 	int ret;
1828 	int force_cow = need_force_cow(inode, start, end);
1829 
1830 	if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1831 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1832 					 page_started, 1, nr_written);
1833 	} else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1834 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1835 					 page_started, 0, nr_written);
1836 	} else if (!inode_can_compress(inode) ||
1837 		   !inode_need_compress(inode, start, end)) {
1838 		ret = cow_file_range(inode, locked_page, start, end,
1839 				     page_started, nr_written, 1);
1840 	} else {
1841 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1842 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1843 					   page_started, nr_written);
1844 	}
1845 	if (ret)
1846 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1847 					      end - start + 1);
1848 	return ret;
1849 }
1850 
1851 void btrfs_split_delalloc_extent(struct inode *inode,
1852 				 struct extent_state *orig, u64 split)
1853 {
1854 	u64 size;
1855 
1856 	/* not delalloc, ignore it */
1857 	if (!(orig->state & EXTENT_DELALLOC))
1858 		return;
1859 
1860 	size = orig->end - orig->start + 1;
1861 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1862 		u32 num_extents;
1863 		u64 new_size;
1864 
1865 		/*
1866 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1867 		 * applies here, just in reverse.
1868 		 */
1869 		new_size = orig->end - split + 1;
1870 		num_extents = count_max_extents(new_size);
1871 		new_size = split - orig->start;
1872 		num_extents += count_max_extents(new_size);
1873 		if (count_max_extents(size) >= num_extents)
1874 			return;
1875 	}
1876 
1877 	spin_lock(&BTRFS_I(inode)->lock);
1878 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1879 	spin_unlock(&BTRFS_I(inode)->lock);
1880 }
1881 
1882 /*
1883  * Handle merged delayed allocation extents so we can keep track of new extents
1884  * that are just merged onto old extents, such as when we are doing sequential
1885  * writes, so we can properly account for the metadata space we'll need.
1886  */
1887 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1888 				 struct extent_state *other)
1889 {
1890 	u64 new_size, old_size;
1891 	u32 num_extents;
1892 
1893 	/* not delalloc, ignore it */
1894 	if (!(other->state & EXTENT_DELALLOC))
1895 		return;
1896 
1897 	if (new->start > other->start)
1898 		new_size = new->end - other->start + 1;
1899 	else
1900 		new_size = other->end - new->start + 1;
1901 
1902 	/* we're not bigger than the max, unreserve the space and go */
1903 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1904 		spin_lock(&BTRFS_I(inode)->lock);
1905 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1906 		spin_unlock(&BTRFS_I(inode)->lock);
1907 		return;
1908 	}
1909 
1910 	/*
1911 	 * We have to add up either side to figure out how many extents were
1912 	 * accounted for before we merged into one big extent.  If the number of
1913 	 * extents we accounted for is <= the amount we need for the new range
1914 	 * then we can return, otherwise drop.  Think of it like this
1915 	 *
1916 	 * [ 4k][MAX_SIZE]
1917 	 *
1918 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1919 	 * need 2 outstanding extents, on one side we have 1 and the other side
1920 	 * we have 1 so they are == and we can return.  But in this case
1921 	 *
1922 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1923 	 *
1924 	 * Each range on their own accounts for 2 extents, but merged together
1925 	 * they are only 3 extents worth of accounting, so we need to drop in
1926 	 * this case.
1927 	 */
1928 	old_size = other->end - other->start + 1;
1929 	num_extents = count_max_extents(old_size);
1930 	old_size = new->end - new->start + 1;
1931 	num_extents += count_max_extents(old_size);
1932 	if (count_max_extents(new_size) >= num_extents)
1933 		return;
1934 
1935 	spin_lock(&BTRFS_I(inode)->lock);
1936 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1937 	spin_unlock(&BTRFS_I(inode)->lock);
1938 }
1939 
1940 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1941 				      struct inode *inode)
1942 {
1943 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1944 
1945 	spin_lock(&root->delalloc_lock);
1946 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1947 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1948 			      &root->delalloc_inodes);
1949 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1950 			&BTRFS_I(inode)->runtime_flags);
1951 		root->nr_delalloc_inodes++;
1952 		if (root->nr_delalloc_inodes == 1) {
1953 			spin_lock(&fs_info->delalloc_root_lock);
1954 			BUG_ON(!list_empty(&root->delalloc_root));
1955 			list_add_tail(&root->delalloc_root,
1956 				      &fs_info->delalloc_roots);
1957 			spin_unlock(&fs_info->delalloc_root_lock);
1958 		}
1959 	}
1960 	spin_unlock(&root->delalloc_lock);
1961 }
1962 
1963 
1964 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1965 				struct btrfs_inode *inode)
1966 {
1967 	struct btrfs_fs_info *fs_info = root->fs_info;
1968 
1969 	if (!list_empty(&inode->delalloc_inodes)) {
1970 		list_del_init(&inode->delalloc_inodes);
1971 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1972 			  &inode->runtime_flags);
1973 		root->nr_delalloc_inodes--;
1974 		if (!root->nr_delalloc_inodes) {
1975 			ASSERT(list_empty(&root->delalloc_inodes));
1976 			spin_lock(&fs_info->delalloc_root_lock);
1977 			BUG_ON(list_empty(&root->delalloc_root));
1978 			list_del_init(&root->delalloc_root);
1979 			spin_unlock(&fs_info->delalloc_root_lock);
1980 		}
1981 	}
1982 }
1983 
1984 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1985 				     struct btrfs_inode *inode)
1986 {
1987 	spin_lock(&root->delalloc_lock);
1988 	__btrfs_del_delalloc_inode(root, inode);
1989 	spin_unlock(&root->delalloc_lock);
1990 }
1991 
1992 /*
1993  * Properly track delayed allocation bytes in the inode and to maintain the
1994  * list of inodes that have pending delalloc work to be done.
1995  */
1996 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1997 			       unsigned *bits)
1998 {
1999 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2000 
2001 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2002 		WARN_ON(1);
2003 	/*
2004 	 * set_bit and clear bit hooks normally require _irqsave/restore
2005 	 * but in this case, we are only testing for the DELALLOC
2006 	 * bit, which is only set or cleared with irqs on
2007 	 */
2008 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2009 		struct btrfs_root *root = BTRFS_I(inode)->root;
2010 		u64 len = state->end + 1 - state->start;
2011 		u32 num_extents = count_max_extents(len);
2012 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2013 
2014 		spin_lock(&BTRFS_I(inode)->lock);
2015 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2016 		spin_unlock(&BTRFS_I(inode)->lock);
2017 
2018 		/* For sanity tests */
2019 		if (btrfs_is_testing(fs_info))
2020 			return;
2021 
2022 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2023 					 fs_info->delalloc_batch);
2024 		spin_lock(&BTRFS_I(inode)->lock);
2025 		BTRFS_I(inode)->delalloc_bytes += len;
2026 		if (*bits & EXTENT_DEFRAG)
2027 			BTRFS_I(inode)->defrag_bytes += len;
2028 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2029 					 &BTRFS_I(inode)->runtime_flags))
2030 			btrfs_add_delalloc_inodes(root, inode);
2031 		spin_unlock(&BTRFS_I(inode)->lock);
2032 	}
2033 
2034 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2035 	    (*bits & EXTENT_DELALLOC_NEW)) {
2036 		spin_lock(&BTRFS_I(inode)->lock);
2037 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2038 			state->start;
2039 		spin_unlock(&BTRFS_I(inode)->lock);
2040 	}
2041 }
2042 
2043 /*
2044  * Once a range is no longer delalloc this function ensures that proper
2045  * accounting happens.
2046  */
2047 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2048 				 struct extent_state *state, unsigned *bits)
2049 {
2050 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2051 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2052 	u64 len = state->end + 1 - state->start;
2053 	u32 num_extents = count_max_extents(len);
2054 
2055 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2056 		spin_lock(&inode->lock);
2057 		inode->defrag_bytes -= len;
2058 		spin_unlock(&inode->lock);
2059 	}
2060 
2061 	/*
2062 	 * set_bit and clear bit hooks normally require _irqsave/restore
2063 	 * but in this case, we are only testing for the DELALLOC
2064 	 * bit, which is only set or cleared with irqs on
2065 	 */
2066 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2067 		struct btrfs_root *root = inode->root;
2068 		bool do_list = !btrfs_is_free_space_inode(inode);
2069 
2070 		spin_lock(&inode->lock);
2071 		btrfs_mod_outstanding_extents(inode, -num_extents);
2072 		spin_unlock(&inode->lock);
2073 
2074 		/*
2075 		 * We don't reserve metadata space for space cache inodes so we
2076 		 * don't need to call delalloc_release_metadata if there is an
2077 		 * error.
2078 		 */
2079 		if (*bits & EXTENT_CLEAR_META_RESV &&
2080 		    root != fs_info->tree_root)
2081 			btrfs_delalloc_release_metadata(inode, len, false);
2082 
2083 		/* For sanity tests. */
2084 		if (btrfs_is_testing(fs_info))
2085 			return;
2086 
2087 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2088 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2089 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2090 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2091 
2092 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2093 					 fs_info->delalloc_batch);
2094 		spin_lock(&inode->lock);
2095 		inode->delalloc_bytes -= len;
2096 		if (do_list && inode->delalloc_bytes == 0 &&
2097 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2098 					&inode->runtime_flags))
2099 			btrfs_del_delalloc_inode(root, inode);
2100 		spin_unlock(&inode->lock);
2101 	}
2102 
2103 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2104 	    (*bits & EXTENT_DELALLOC_NEW)) {
2105 		spin_lock(&inode->lock);
2106 		ASSERT(inode->new_delalloc_bytes >= len);
2107 		inode->new_delalloc_bytes -= len;
2108 		spin_unlock(&inode->lock);
2109 	}
2110 }
2111 
2112 /*
2113  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2114  * in a chunk's stripe. This function ensures that bios do not span a
2115  * stripe/chunk
2116  *
2117  * @page - The page we are about to add to the bio
2118  * @size - size we want to add to the bio
2119  * @bio - bio we want to ensure is smaller than a stripe
2120  * @bio_flags - flags of the bio
2121  *
2122  * return 1 if page cannot be added to the bio
2123  * return 0 if page can be added to the bio
2124  * return error otherwise
2125  */
2126 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2127 			     unsigned long bio_flags)
2128 {
2129 	struct inode *inode = page->mapping->host;
2130 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2131 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2132 	u64 length = 0;
2133 	u64 map_length;
2134 	int ret;
2135 	struct btrfs_io_geometry geom;
2136 
2137 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2138 		return 0;
2139 
2140 	length = bio->bi_iter.bi_size;
2141 	map_length = length;
2142 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2143 				    &geom);
2144 	if (ret < 0)
2145 		return ret;
2146 
2147 	if (geom.len < length + size)
2148 		return 1;
2149 	return 0;
2150 }
2151 
2152 /*
2153  * in order to insert checksums into the metadata in large chunks,
2154  * we wait until bio submission time.   All the pages in the bio are
2155  * checksummed and sums are attached onto the ordered extent record.
2156  *
2157  * At IO completion time the cums attached on the ordered extent record
2158  * are inserted into the btree
2159  */
2160 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2161 				    u64 bio_offset)
2162 {
2163 	struct inode *inode = private_data;
2164 	blk_status_t ret = 0;
2165 
2166 	ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2167 	BUG_ON(ret); /* -ENOMEM */
2168 	return 0;
2169 }
2170 
2171 /*
2172  * extent_io.c submission hook. This does the right thing for csum calculation
2173  * on write, or reading the csums from the tree before a read.
2174  *
2175  * Rules about async/sync submit,
2176  * a) read:				sync submit
2177  *
2178  * b) write without checksum:		sync submit
2179  *
2180  * c) write with checksum:
2181  *    c-1) if bio is issued by fsync:	sync submit
2182  *         (sync_writers != 0)
2183  *
2184  *    c-2) if root is reloc root:	sync submit
2185  *         (only in case of buffered IO)
2186  *
2187  *    c-3) otherwise:			async submit
2188  */
2189 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2190 					  int mirror_num,
2191 					  unsigned long bio_flags)
2192 
2193 {
2194 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2195 	struct btrfs_root *root = BTRFS_I(inode)->root;
2196 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2197 	blk_status_t ret = 0;
2198 	int skip_sum;
2199 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2200 
2201 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2202 
2203 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2204 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2205 
2206 	if (bio_op(bio) != REQ_OP_WRITE) {
2207 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2208 		if (ret)
2209 			goto out;
2210 
2211 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2212 			ret = btrfs_submit_compressed_read(inode, bio,
2213 							   mirror_num,
2214 							   bio_flags);
2215 			goto out;
2216 		} else if (!skip_sum) {
2217 			ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2218 			if (ret)
2219 				goto out;
2220 		}
2221 		goto mapit;
2222 	} else if (async && !skip_sum) {
2223 		/* csum items have already been cloned */
2224 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2225 			goto mapit;
2226 		/* we're doing a write, do the async checksumming */
2227 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2228 					  0, inode, btrfs_submit_bio_start);
2229 		goto out;
2230 	} else if (!skip_sum) {
2231 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2232 		if (ret)
2233 			goto out;
2234 	}
2235 
2236 mapit:
2237 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2238 
2239 out:
2240 	if (ret) {
2241 		bio->bi_status = ret;
2242 		bio_endio(bio);
2243 	}
2244 	return ret;
2245 }
2246 
2247 /*
2248  * given a list of ordered sums record them in the inode.  This happens
2249  * at IO completion time based on sums calculated at bio submission time.
2250  */
2251 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2252 			     struct inode *inode, struct list_head *list)
2253 {
2254 	struct btrfs_ordered_sum *sum;
2255 	int ret;
2256 
2257 	list_for_each_entry(sum, list, list) {
2258 		trans->adding_csums = true;
2259 		ret = btrfs_csum_file_blocks(trans,
2260 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2261 		trans->adding_csums = false;
2262 		if (ret)
2263 			return ret;
2264 	}
2265 	return 0;
2266 }
2267 
2268 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2269 			      unsigned int extra_bits,
2270 			      struct extent_state **cached_state)
2271 {
2272 	WARN_ON(PAGE_ALIGNED(end));
2273 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2274 				   cached_state);
2275 }
2276 
2277 /* see btrfs_writepage_start_hook for details on why this is required */
2278 struct btrfs_writepage_fixup {
2279 	struct page *page;
2280 	struct inode *inode;
2281 	struct btrfs_work work;
2282 };
2283 
2284 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2285 {
2286 	struct btrfs_writepage_fixup *fixup;
2287 	struct btrfs_ordered_extent *ordered;
2288 	struct extent_state *cached_state = NULL;
2289 	struct extent_changeset *data_reserved = NULL;
2290 	struct page *page;
2291 	struct btrfs_inode *inode;
2292 	u64 page_start;
2293 	u64 page_end;
2294 	int ret = 0;
2295 	bool free_delalloc_space = true;
2296 
2297 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2298 	page = fixup->page;
2299 	inode = BTRFS_I(fixup->inode);
2300 	page_start = page_offset(page);
2301 	page_end = page_offset(page) + PAGE_SIZE - 1;
2302 
2303 	/*
2304 	 * This is similar to page_mkwrite, we need to reserve the space before
2305 	 * we take the page lock.
2306 	 */
2307 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2308 					   PAGE_SIZE);
2309 again:
2310 	lock_page(page);
2311 
2312 	/*
2313 	 * Before we queued this fixup, we took a reference on the page.
2314 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2315 	 * address space.
2316 	 */
2317 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2318 		/*
2319 		 * Unfortunately this is a little tricky, either
2320 		 *
2321 		 * 1) We got here and our page had already been dealt with and
2322 		 *    we reserved our space, thus ret == 0, so we need to just
2323 		 *    drop our space reservation and bail.  This can happen the
2324 		 *    first time we come into the fixup worker, or could happen
2325 		 *    while waiting for the ordered extent.
2326 		 * 2) Our page was already dealt with, but we happened to get an
2327 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2328 		 *    this case we obviously don't have anything to release, but
2329 		 *    because the page was already dealt with we don't want to
2330 		 *    mark the page with an error, so make sure we're resetting
2331 		 *    ret to 0.  This is why we have this check _before_ the ret
2332 		 *    check, because we do not want to have a surprise ENOSPC
2333 		 *    when the page was already properly dealt with.
2334 		 */
2335 		if (!ret) {
2336 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2337 			btrfs_delalloc_release_space(inode, data_reserved,
2338 						     page_start, PAGE_SIZE,
2339 						     true);
2340 		}
2341 		ret = 0;
2342 		goto out_page;
2343 	}
2344 
2345 	/*
2346 	 * We can't mess with the page state unless it is locked, so now that
2347 	 * it is locked bail if we failed to make our space reservation.
2348 	 */
2349 	if (ret)
2350 		goto out_page;
2351 
2352 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2353 
2354 	/* already ordered? We're done */
2355 	if (PagePrivate2(page))
2356 		goto out_reserved;
2357 
2358 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2359 	if (ordered) {
2360 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2361 				     &cached_state);
2362 		unlock_page(page);
2363 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
2364 		btrfs_put_ordered_extent(ordered);
2365 		goto again;
2366 	}
2367 
2368 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2369 					&cached_state);
2370 	if (ret)
2371 		goto out_reserved;
2372 
2373 	/*
2374 	 * Everything went as planned, we're now the owner of a dirty page with
2375 	 * delayed allocation bits set and space reserved for our COW
2376 	 * destination.
2377 	 *
2378 	 * The page was dirty when we started, nothing should have cleaned it.
2379 	 */
2380 	BUG_ON(!PageDirty(page));
2381 	free_delalloc_space = false;
2382 out_reserved:
2383 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2384 	if (free_delalloc_space)
2385 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2386 					     PAGE_SIZE, true);
2387 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2388 			     &cached_state);
2389 out_page:
2390 	if (ret) {
2391 		/*
2392 		 * We hit ENOSPC or other errors.  Update the mapping and page
2393 		 * to reflect the errors and clean the page.
2394 		 */
2395 		mapping_set_error(page->mapping, ret);
2396 		end_extent_writepage(page, ret, page_start, page_end);
2397 		clear_page_dirty_for_io(page);
2398 		SetPageError(page);
2399 	}
2400 	ClearPageChecked(page);
2401 	unlock_page(page);
2402 	put_page(page);
2403 	kfree(fixup);
2404 	extent_changeset_free(data_reserved);
2405 	/*
2406 	 * As a precaution, do a delayed iput in case it would be the last iput
2407 	 * that could need flushing space. Recursing back to fixup worker would
2408 	 * deadlock.
2409 	 */
2410 	btrfs_add_delayed_iput(&inode->vfs_inode);
2411 }
2412 
2413 /*
2414  * There are a few paths in the higher layers of the kernel that directly
2415  * set the page dirty bit without asking the filesystem if it is a
2416  * good idea.  This causes problems because we want to make sure COW
2417  * properly happens and the data=ordered rules are followed.
2418  *
2419  * In our case any range that doesn't have the ORDERED bit set
2420  * hasn't been properly setup for IO.  We kick off an async process
2421  * to fix it up.  The async helper will wait for ordered extents, set
2422  * the delalloc bit and make it safe to write the page.
2423  */
2424 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2425 {
2426 	struct inode *inode = page->mapping->host;
2427 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2428 	struct btrfs_writepage_fixup *fixup;
2429 
2430 	/* this page is properly in the ordered list */
2431 	if (TestClearPagePrivate2(page))
2432 		return 0;
2433 
2434 	/*
2435 	 * PageChecked is set below when we create a fixup worker for this page,
2436 	 * don't try to create another one if we're already PageChecked()
2437 	 *
2438 	 * The extent_io writepage code will redirty the page if we send back
2439 	 * EAGAIN.
2440 	 */
2441 	if (PageChecked(page))
2442 		return -EAGAIN;
2443 
2444 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2445 	if (!fixup)
2446 		return -EAGAIN;
2447 
2448 	/*
2449 	 * We are already holding a reference to this inode from
2450 	 * write_cache_pages.  We need to hold it because the space reservation
2451 	 * takes place outside of the page lock, and we can't trust
2452 	 * page->mapping outside of the page lock.
2453 	 */
2454 	ihold(inode);
2455 	SetPageChecked(page);
2456 	get_page(page);
2457 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2458 	fixup->page = page;
2459 	fixup->inode = inode;
2460 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2461 
2462 	return -EAGAIN;
2463 }
2464 
2465 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2466 				       struct btrfs_inode *inode, u64 file_pos,
2467 				       struct btrfs_file_extent_item *stack_fi,
2468 				       u64 qgroup_reserved)
2469 {
2470 	struct btrfs_root *root = inode->root;
2471 	struct btrfs_path *path;
2472 	struct extent_buffer *leaf;
2473 	struct btrfs_key ins;
2474 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2475 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2476 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2477 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2478 	int extent_inserted = 0;
2479 	int ret;
2480 
2481 	path = btrfs_alloc_path();
2482 	if (!path)
2483 		return -ENOMEM;
2484 
2485 	/*
2486 	 * we may be replacing one extent in the tree with another.
2487 	 * The new extent is pinned in the extent map, and we don't want
2488 	 * to drop it from the cache until it is completely in the btree.
2489 	 *
2490 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2491 	 * the caller is expected to unpin it and allow it to be merged
2492 	 * with the others.
2493 	 */
2494 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2495 				   file_pos + num_bytes, NULL, 0,
2496 				   1, sizeof(*stack_fi), &extent_inserted);
2497 	if (ret)
2498 		goto out;
2499 
2500 	if (!extent_inserted) {
2501 		ins.objectid = btrfs_ino(inode);
2502 		ins.offset = file_pos;
2503 		ins.type = BTRFS_EXTENT_DATA_KEY;
2504 
2505 		path->leave_spinning = 1;
2506 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2507 					      sizeof(*stack_fi));
2508 		if (ret)
2509 			goto out;
2510 	}
2511 	leaf = path->nodes[0];
2512 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2513 	write_extent_buffer(leaf, stack_fi,
2514 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2515 			sizeof(struct btrfs_file_extent_item));
2516 
2517 	btrfs_mark_buffer_dirty(leaf);
2518 	btrfs_release_path(path);
2519 
2520 	inode_add_bytes(&inode->vfs_inode, num_bytes);
2521 
2522 	ins.objectid = disk_bytenr;
2523 	ins.offset = disk_num_bytes;
2524 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2525 
2526 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2527 	if (ret)
2528 		goto out;
2529 
2530 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2531 					       file_pos, qgroup_reserved, &ins);
2532 out:
2533 	btrfs_free_path(path);
2534 
2535 	return ret;
2536 }
2537 
2538 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2539 					 u64 start, u64 len)
2540 {
2541 	struct btrfs_block_group *cache;
2542 
2543 	cache = btrfs_lookup_block_group(fs_info, start);
2544 	ASSERT(cache);
2545 
2546 	spin_lock(&cache->lock);
2547 	cache->delalloc_bytes -= len;
2548 	spin_unlock(&cache->lock);
2549 
2550 	btrfs_put_block_group(cache);
2551 }
2552 
2553 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2554 					     struct inode *inode,
2555 					     struct btrfs_ordered_extent *oe)
2556 {
2557 	struct btrfs_file_extent_item stack_fi;
2558 	u64 logical_len;
2559 
2560 	memset(&stack_fi, 0, sizeof(stack_fi));
2561 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2562 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2563 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2564 						   oe->disk_num_bytes);
2565 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2566 		logical_len = oe->truncated_len;
2567 	else
2568 		logical_len = oe->num_bytes;
2569 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2570 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2571 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2572 	/* Encryption and other encoding is reserved and all 0 */
2573 
2574 	return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
2575 					   &stack_fi, oe->qgroup_rsv);
2576 }
2577 
2578 /*
2579  * As ordered data IO finishes, this gets called so we can finish
2580  * an ordered extent if the range of bytes in the file it covers are
2581  * fully written.
2582  */
2583 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2584 {
2585 	struct inode *inode = ordered_extent->inode;
2586 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2587 	struct btrfs_root *root = BTRFS_I(inode)->root;
2588 	struct btrfs_trans_handle *trans = NULL;
2589 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2590 	struct extent_state *cached_state = NULL;
2591 	u64 start, end;
2592 	int compress_type = 0;
2593 	int ret = 0;
2594 	u64 logical_len = ordered_extent->num_bytes;
2595 	bool freespace_inode;
2596 	bool truncated = false;
2597 	bool range_locked = false;
2598 	bool clear_new_delalloc_bytes = false;
2599 	bool clear_reserved_extent = true;
2600 	unsigned int clear_bits;
2601 
2602 	start = ordered_extent->file_offset;
2603 	end = start + ordered_extent->num_bytes - 1;
2604 
2605 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2606 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2607 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2608 		clear_new_delalloc_bytes = true;
2609 
2610 	freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2611 
2612 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2613 		ret = -EIO;
2614 		goto out;
2615 	}
2616 
2617 	btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2618 
2619 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2620 		truncated = true;
2621 		logical_len = ordered_extent->truncated_len;
2622 		/* Truncated the entire extent, don't bother adding */
2623 		if (!logical_len)
2624 			goto out;
2625 	}
2626 
2627 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2628 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2629 
2630 		btrfs_inode_safe_disk_i_size_write(inode, 0);
2631 		if (freespace_inode)
2632 			trans = btrfs_join_transaction_spacecache(root);
2633 		else
2634 			trans = btrfs_join_transaction(root);
2635 		if (IS_ERR(trans)) {
2636 			ret = PTR_ERR(trans);
2637 			trans = NULL;
2638 			goto out;
2639 		}
2640 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2641 		ret = btrfs_update_inode_fallback(trans, root, inode);
2642 		if (ret) /* -ENOMEM or corruption */
2643 			btrfs_abort_transaction(trans, ret);
2644 		goto out;
2645 	}
2646 
2647 	range_locked = true;
2648 	lock_extent_bits(io_tree, start, end, &cached_state);
2649 
2650 	if (freespace_inode)
2651 		trans = btrfs_join_transaction_spacecache(root);
2652 	else
2653 		trans = btrfs_join_transaction(root);
2654 	if (IS_ERR(trans)) {
2655 		ret = PTR_ERR(trans);
2656 		trans = NULL;
2657 		goto out;
2658 	}
2659 
2660 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2661 
2662 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2663 		compress_type = ordered_extent->compress_type;
2664 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2665 		BUG_ON(compress_type);
2666 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2667 						ordered_extent->file_offset,
2668 						ordered_extent->file_offset +
2669 						logical_len);
2670 	} else {
2671 		BUG_ON(root == fs_info->tree_root);
2672 		ret = insert_ordered_extent_file_extent(trans, inode,
2673 							ordered_extent);
2674 		if (!ret) {
2675 			clear_reserved_extent = false;
2676 			btrfs_release_delalloc_bytes(fs_info,
2677 						ordered_extent->disk_bytenr,
2678 						ordered_extent->disk_num_bytes);
2679 		}
2680 	}
2681 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2682 			   ordered_extent->file_offset,
2683 			   ordered_extent->num_bytes, trans->transid);
2684 	if (ret < 0) {
2685 		btrfs_abort_transaction(trans, ret);
2686 		goto out;
2687 	}
2688 
2689 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
2690 	if (ret) {
2691 		btrfs_abort_transaction(trans, ret);
2692 		goto out;
2693 	}
2694 
2695 	btrfs_inode_safe_disk_i_size_write(inode, 0);
2696 	ret = btrfs_update_inode_fallback(trans, root, inode);
2697 	if (ret) { /* -ENOMEM or corruption */
2698 		btrfs_abort_transaction(trans, ret);
2699 		goto out;
2700 	}
2701 	ret = 0;
2702 out:
2703 	clear_bits = EXTENT_DEFRAG;
2704 	if (range_locked)
2705 		clear_bits |= EXTENT_LOCKED;
2706 	if (clear_new_delalloc_bytes)
2707 		clear_bits |= EXTENT_DELALLOC_NEW;
2708 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2709 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2710 			 &cached_state);
2711 
2712 	if (trans)
2713 		btrfs_end_transaction(trans);
2714 
2715 	if (ret || truncated) {
2716 		u64 unwritten_start = start;
2717 
2718 		if (truncated)
2719 			unwritten_start += logical_len;
2720 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2721 
2722 		/* Drop the cache for the part of the extent we didn't write. */
2723 		btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2724 
2725 		/*
2726 		 * If the ordered extent had an IOERR or something else went
2727 		 * wrong we need to return the space for this ordered extent
2728 		 * back to the allocator.  We only free the extent in the
2729 		 * truncated case if we didn't write out the extent at all.
2730 		 *
2731 		 * If we made it past insert_reserved_file_extent before we
2732 		 * errored out then we don't need to do this as the accounting
2733 		 * has already been done.
2734 		 */
2735 		if ((ret || !logical_len) &&
2736 		    clear_reserved_extent &&
2737 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2738 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2739 			/*
2740 			 * Discard the range before returning it back to the
2741 			 * free space pool
2742 			 */
2743 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2744 				btrfs_discard_extent(fs_info,
2745 						ordered_extent->disk_bytenr,
2746 						ordered_extent->disk_num_bytes,
2747 						NULL);
2748 			btrfs_free_reserved_extent(fs_info,
2749 					ordered_extent->disk_bytenr,
2750 					ordered_extent->disk_num_bytes, 1);
2751 		}
2752 	}
2753 
2754 	/*
2755 	 * This needs to be done to make sure anybody waiting knows we are done
2756 	 * updating everything for this ordered extent.
2757 	 */
2758 	btrfs_remove_ordered_extent(inode, ordered_extent);
2759 
2760 	/* once for us */
2761 	btrfs_put_ordered_extent(ordered_extent);
2762 	/* once for the tree */
2763 	btrfs_put_ordered_extent(ordered_extent);
2764 
2765 	return ret;
2766 }
2767 
2768 static void finish_ordered_fn(struct btrfs_work *work)
2769 {
2770 	struct btrfs_ordered_extent *ordered_extent;
2771 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2772 	btrfs_finish_ordered_io(ordered_extent);
2773 }
2774 
2775 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2776 					  u64 end, int uptodate)
2777 {
2778 	struct inode *inode = page->mapping->host;
2779 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2780 	struct btrfs_ordered_extent *ordered_extent = NULL;
2781 	struct btrfs_workqueue *wq;
2782 
2783 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2784 
2785 	ClearPagePrivate2(page);
2786 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2787 					    end - start + 1, uptodate))
2788 		return;
2789 
2790 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2791 		wq = fs_info->endio_freespace_worker;
2792 	else
2793 		wq = fs_info->endio_write_workers;
2794 
2795 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2796 	btrfs_queue_work(wq, &ordered_extent->work);
2797 }
2798 
2799 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2800 			   int icsum, struct page *page, int pgoff, u64 start,
2801 			   size_t len)
2802 {
2803 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2804 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2805 	char *kaddr;
2806 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2807 	u8 *csum_expected;
2808 	u8 csum[BTRFS_CSUM_SIZE];
2809 
2810 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2811 
2812 	kaddr = kmap_atomic(page);
2813 	shash->tfm = fs_info->csum_shash;
2814 
2815 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2816 
2817 	if (memcmp(csum, csum_expected, csum_size))
2818 		goto zeroit;
2819 
2820 	kunmap_atomic(kaddr);
2821 	return 0;
2822 zeroit:
2823 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2824 				    io_bio->mirror_num);
2825 	if (io_bio->device)
2826 		btrfs_dev_stat_inc_and_print(io_bio->device,
2827 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
2828 	memset(kaddr + pgoff, 1, len);
2829 	flush_dcache_page(page);
2830 	kunmap_atomic(kaddr);
2831 	return -EIO;
2832 }
2833 
2834 /*
2835  * when reads are done, we need to check csums to verify the data is correct
2836  * if there's a match, we allow the bio to finish.  If not, the code in
2837  * extent_io.c will try to find good copies for us.
2838  */
2839 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2840 				      u64 phy_offset, struct page *page,
2841 				      u64 start, u64 end, int mirror)
2842 {
2843 	size_t offset = start - page_offset(page);
2844 	struct inode *inode = page->mapping->host;
2845 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2846 	struct btrfs_root *root = BTRFS_I(inode)->root;
2847 
2848 	if (PageChecked(page)) {
2849 		ClearPageChecked(page);
2850 		return 0;
2851 	}
2852 
2853 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2854 		return 0;
2855 
2856 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2857 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2858 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2859 		return 0;
2860 	}
2861 
2862 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2863 	return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2864 			       (size_t)(end - start + 1));
2865 }
2866 
2867 /*
2868  * btrfs_add_delayed_iput - perform a delayed iput on @inode
2869  *
2870  * @inode: The inode we want to perform iput on
2871  *
2872  * This function uses the generic vfs_inode::i_count to track whether we should
2873  * just decrement it (in case it's > 1) or if this is the last iput then link
2874  * the inode to the delayed iput machinery. Delayed iputs are processed at
2875  * transaction commit time/superblock commit/cleaner kthread.
2876  */
2877 void btrfs_add_delayed_iput(struct inode *inode)
2878 {
2879 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2880 	struct btrfs_inode *binode = BTRFS_I(inode);
2881 
2882 	if (atomic_add_unless(&inode->i_count, -1, 1))
2883 		return;
2884 
2885 	atomic_inc(&fs_info->nr_delayed_iputs);
2886 	spin_lock(&fs_info->delayed_iput_lock);
2887 	ASSERT(list_empty(&binode->delayed_iput));
2888 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2889 	spin_unlock(&fs_info->delayed_iput_lock);
2890 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2891 		wake_up_process(fs_info->cleaner_kthread);
2892 }
2893 
2894 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2895 				    struct btrfs_inode *inode)
2896 {
2897 	list_del_init(&inode->delayed_iput);
2898 	spin_unlock(&fs_info->delayed_iput_lock);
2899 	iput(&inode->vfs_inode);
2900 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2901 		wake_up(&fs_info->delayed_iputs_wait);
2902 	spin_lock(&fs_info->delayed_iput_lock);
2903 }
2904 
2905 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2906 				   struct btrfs_inode *inode)
2907 {
2908 	if (!list_empty(&inode->delayed_iput)) {
2909 		spin_lock(&fs_info->delayed_iput_lock);
2910 		if (!list_empty(&inode->delayed_iput))
2911 			run_delayed_iput_locked(fs_info, inode);
2912 		spin_unlock(&fs_info->delayed_iput_lock);
2913 	}
2914 }
2915 
2916 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2917 {
2918 
2919 	spin_lock(&fs_info->delayed_iput_lock);
2920 	while (!list_empty(&fs_info->delayed_iputs)) {
2921 		struct btrfs_inode *inode;
2922 
2923 		inode = list_first_entry(&fs_info->delayed_iputs,
2924 				struct btrfs_inode, delayed_iput);
2925 		run_delayed_iput_locked(fs_info, inode);
2926 	}
2927 	spin_unlock(&fs_info->delayed_iput_lock);
2928 }
2929 
2930 /**
2931  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2932  * @fs_info - the fs_info for this fs
2933  * @return - EINTR if we were killed, 0 if nothing's pending
2934  *
2935  * This will wait on any delayed iputs that are currently running with KILLABLE
2936  * set.  Once they are all done running we will return, unless we are killed in
2937  * which case we return EINTR. This helps in user operations like fallocate etc
2938  * that might get blocked on the iputs.
2939  */
2940 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2941 {
2942 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2943 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
2944 	if (ret)
2945 		return -EINTR;
2946 	return 0;
2947 }
2948 
2949 /*
2950  * This creates an orphan entry for the given inode in case something goes wrong
2951  * in the middle of an unlink.
2952  */
2953 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
2954 		     struct btrfs_inode *inode)
2955 {
2956 	int ret;
2957 
2958 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2959 	if (ret && ret != -EEXIST) {
2960 		btrfs_abort_transaction(trans, ret);
2961 		return ret;
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 /*
2968  * We have done the delete so we can go ahead and remove the orphan item for
2969  * this particular inode.
2970  */
2971 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2972 			    struct btrfs_inode *inode)
2973 {
2974 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
2975 }
2976 
2977 /*
2978  * this cleans up any orphans that may be left on the list from the last use
2979  * of this root.
2980  */
2981 int btrfs_orphan_cleanup(struct btrfs_root *root)
2982 {
2983 	struct btrfs_fs_info *fs_info = root->fs_info;
2984 	struct btrfs_path *path;
2985 	struct extent_buffer *leaf;
2986 	struct btrfs_key key, found_key;
2987 	struct btrfs_trans_handle *trans;
2988 	struct inode *inode;
2989 	u64 last_objectid = 0;
2990 	int ret = 0, nr_unlink = 0;
2991 
2992 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2993 		return 0;
2994 
2995 	path = btrfs_alloc_path();
2996 	if (!path) {
2997 		ret = -ENOMEM;
2998 		goto out;
2999 	}
3000 	path->reada = READA_BACK;
3001 
3002 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3003 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3004 	key.offset = (u64)-1;
3005 
3006 	while (1) {
3007 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3008 		if (ret < 0)
3009 			goto out;
3010 
3011 		/*
3012 		 * if ret == 0 means we found what we were searching for, which
3013 		 * is weird, but possible, so only screw with path if we didn't
3014 		 * find the key and see if we have stuff that matches
3015 		 */
3016 		if (ret > 0) {
3017 			ret = 0;
3018 			if (path->slots[0] == 0)
3019 				break;
3020 			path->slots[0]--;
3021 		}
3022 
3023 		/* pull out the item */
3024 		leaf = path->nodes[0];
3025 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3026 
3027 		/* make sure the item matches what we want */
3028 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3029 			break;
3030 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3031 			break;
3032 
3033 		/* release the path since we're done with it */
3034 		btrfs_release_path(path);
3035 
3036 		/*
3037 		 * this is where we are basically btrfs_lookup, without the
3038 		 * crossing root thing.  we store the inode number in the
3039 		 * offset of the orphan item.
3040 		 */
3041 
3042 		if (found_key.offset == last_objectid) {
3043 			btrfs_err(fs_info,
3044 				  "Error removing orphan entry, stopping orphan cleanup");
3045 			ret = -EINVAL;
3046 			goto out;
3047 		}
3048 
3049 		last_objectid = found_key.offset;
3050 
3051 		found_key.objectid = found_key.offset;
3052 		found_key.type = BTRFS_INODE_ITEM_KEY;
3053 		found_key.offset = 0;
3054 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3055 		ret = PTR_ERR_OR_ZERO(inode);
3056 		if (ret && ret != -ENOENT)
3057 			goto out;
3058 
3059 		if (ret == -ENOENT && root == fs_info->tree_root) {
3060 			struct btrfs_root *dead_root;
3061 			struct btrfs_fs_info *fs_info = root->fs_info;
3062 			int is_dead_root = 0;
3063 
3064 			/*
3065 			 * this is an orphan in the tree root. Currently these
3066 			 * could come from 2 sources:
3067 			 *  a) a snapshot deletion in progress
3068 			 *  b) a free space cache inode
3069 			 * We need to distinguish those two, as the snapshot
3070 			 * orphan must not get deleted.
3071 			 * find_dead_roots already ran before us, so if this
3072 			 * is a snapshot deletion, we should find the root
3073 			 * in the fs_roots radix tree.
3074 			 */
3075 
3076 			spin_lock(&fs_info->fs_roots_radix_lock);
3077 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3078 							 (unsigned long)found_key.objectid);
3079 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3080 				is_dead_root = 1;
3081 			spin_unlock(&fs_info->fs_roots_radix_lock);
3082 
3083 			if (is_dead_root) {
3084 				/* prevent this orphan from being found again */
3085 				key.offset = found_key.objectid - 1;
3086 				continue;
3087 			}
3088 
3089 		}
3090 
3091 		/*
3092 		 * If we have an inode with links, there are a couple of
3093 		 * possibilities. Old kernels (before v3.12) used to create an
3094 		 * orphan item for truncate indicating that there were possibly
3095 		 * extent items past i_size that needed to be deleted. In v3.12,
3096 		 * truncate was changed to update i_size in sync with the extent
3097 		 * items, but the (useless) orphan item was still created. Since
3098 		 * v4.18, we don't create the orphan item for truncate at all.
3099 		 *
3100 		 * So, this item could mean that we need to do a truncate, but
3101 		 * only if this filesystem was last used on a pre-v3.12 kernel
3102 		 * and was not cleanly unmounted. The odds of that are quite
3103 		 * slim, and it's a pain to do the truncate now, so just delete
3104 		 * the orphan item.
3105 		 *
3106 		 * It's also possible that this orphan item was supposed to be
3107 		 * deleted but wasn't. The inode number may have been reused,
3108 		 * but either way, we can delete the orphan item.
3109 		 */
3110 		if (ret == -ENOENT || inode->i_nlink) {
3111 			if (!ret)
3112 				iput(inode);
3113 			trans = btrfs_start_transaction(root, 1);
3114 			if (IS_ERR(trans)) {
3115 				ret = PTR_ERR(trans);
3116 				goto out;
3117 			}
3118 			btrfs_debug(fs_info, "auto deleting %Lu",
3119 				    found_key.objectid);
3120 			ret = btrfs_del_orphan_item(trans, root,
3121 						    found_key.objectid);
3122 			btrfs_end_transaction(trans);
3123 			if (ret)
3124 				goto out;
3125 			continue;
3126 		}
3127 
3128 		nr_unlink++;
3129 
3130 		/* this will do delete_inode and everything for us */
3131 		iput(inode);
3132 	}
3133 	/* release the path since we're done with it */
3134 	btrfs_release_path(path);
3135 
3136 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3137 
3138 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3139 		trans = btrfs_join_transaction(root);
3140 		if (!IS_ERR(trans))
3141 			btrfs_end_transaction(trans);
3142 	}
3143 
3144 	if (nr_unlink)
3145 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3146 
3147 out:
3148 	if (ret)
3149 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3150 	btrfs_free_path(path);
3151 	return ret;
3152 }
3153 
3154 /*
3155  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3156  * don't find any xattrs, we know there can't be any acls.
3157  *
3158  * slot is the slot the inode is in, objectid is the objectid of the inode
3159  */
3160 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3161 					  int slot, u64 objectid,
3162 					  int *first_xattr_slot)
3163 {
3164 	u32 nritems = btrfs_header_nritems(leaf);
3165 	struct btrfs_key found_key;
3166 	static u64 xattr_access = 0;
3167 	static u64 xattr_default = 0;
3168 	int scanned = 0;
3169 
3170 	if (!xattr_access) {
3171 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3172 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3173 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3174 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3175 	}
3176 
3177 	slot++;
3178 	*first_xattr_slot = -1;
3179 	while (slot < nritems) {
3180 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3181 
3182 		/* we found a different objectid, there must not be acls */
3183 		if (found_key.objectid != objectid)
3184 			return 0;
3185 
3186 		/* we found an xattr, assume we've got an acl */
3187 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3188 			if (*first_xattr_slot == -1)
3189 				*first_xattr_slot = slot;
3190 			if (found_key.offset == xattr_access ||
3191 			    found_key.offset == xattr_default)
3192 				return 1;
3193 		}
3194 
3195 		/*
3196 		 * we found a key greater than an xattr key, there can't
3197 		 * be any acls later on
3198 		 */
3199 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3200 			return 0;
3201 
3202 		slot++;
3203 		scanned++;
3204 
3205 		/*
3206 		 * it goes inode, inode backrefs, xattrs, extents,
3207 		 * so if there are a ton of hard links to an inode there can
3208 		 * be a lot of backrefs.  Don't waste time searching too hard,
3209 		 * this is just an optimization
3210 		 */
3211 		if (scanned >= 8)
3212 			break;
3213 	}
3214 	/* we hit the end of the leaf before we found an xattr or
3215 	 * something larger than an xattr.  We have to assume the inode
3216 	 * has acls
3217 	 */
3218 	if (*first_xattr_slot == -1)
3219 		*first_xattr_slot = slot;
3220 	return 1;
3221 }
3222 
3223 /*
3224  * read an inode from the btree into the in-memory inode
3225  */
3226 static int btrfs_read_locked_inode(struct inode *inode,
3227 				   struct btrfs_path *in_path)
3228 {
3229 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3230 	struct btrfs_path *path = in_path;
3231 	struct extent_buffer *leaf;
3232 	struct btrfs_inode_item *inode_item;
3233 	struct btrfs_root *root = BTRFS_I(inode)->root;
3234 	struct btrfs_key location;
3235 	unsigned long ptr;
3236 	int maybe_acls;
3237 	u32 rdev;
3238 	int ret;
3239 	bool filled = false;
3240 	int first_xattr_slot;
3241 
3242 	ret = btrfs_fill_inode(inode, &rdev);
3243 	if (!ret)
3244 		filled = true;
3245 
3246 	if (!path) {
3247 		path = btrfs_alloc_path();
3248 		if (!path)
3249 			return -ENOMEM;
3250 	}
3251 
3252 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3253 
3254 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3255 	if (ret) {
3256 		if (path != in_path)
3257 			btrfs_free_path(path);
3258 		return ret;
3259 	}
3260 
3261 	leaf = path->nodes[0];
3262 
3263 	if (filled)
3264 		goto cache_index;
3265 
3266 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3267 				    struct btrfs_inode_item);
3268 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3269 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3270 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3271 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3272 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3273 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3274 			round_up(i_size_read(inode), fs_info->sectorsize));
3275 
3276 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3277 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3278 
3279 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3280 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3281 
3282 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3283 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3284 
3285 	BTRFS_I(inode)->i_otime.tv_sec =
3286 		btrfs_timespec_sec(leaf, &inode_item->otime);
3287 	BTRFS_I(inode)->i_otime.tv_nsec =
3288 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3289 
3290 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3291 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3292 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3293 
3294 	inode_set_iversion_queried(inode,
3295 				   btrfs_inode_sequence(leaf, inode_item));
3296 	inode->i_generation = BTRFS_I(inode)->generation;
3297 	inode->i_rdev = 0;
3298 	rdev = btrfs_inode_rdev(leaf, inode_item);
3299 
3300 	BTRFS_I(inode)->index_cnt = (u64)-1;
3301 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3302 
3303 cache_index:
3304 	/*
3305 	 * If we were modified in the current generation and evicted from memory
3306 	 * and then re-read we need to do a full sync since we don't have any
3307 	 * idea about which extents were modified before we were evicted from
3308 	 * cache.
3309 	 *
3310 	 * This is required for both inode re-read from disk and delayed inode
3311 	 * in delayed_nodes_tree.
3312 	 */
3313 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3314 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3315 			&BTRFS_I(inode)->runtime_flags);
3316 
3317 	/*
3318 	 * We don't persist the id of the transaction where an unlink operation
3319 	 * against the inode was last made. So here we assume the inode might
3320 	 * have been evicted, and therefore the exact value of last_unlink_trans
3321 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3322 	 * between the inode and its parent if the inode is fsync'ed and the log
3323 	 * replayed. For example, in the scenario:
3324 	 *
3325 	 * touch mydir/foo
3326 	 * ln mydir/foo mydir/bar
3327 	 * sync
3328 	 * unlink mydir/bar
3329 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3330 	 * xfs_io -c fsync mydir/foo
3331 	 * <power failure>
3332 	 * mount fs, triggers fsync log replay
3333 	 *
3334 	 * We must make sure that when we fsync our inode foo we also log its
3335 	 * parent inode, otherwise after log replay the parent still has the
3336 	 * dentry with the "bar" name but our inode foo has a link count of 1
3337 	 * and doesn't have an inode ref with the name "bar" anymore.
3338 	 *
3339 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3340 	 * but it guarantees correctness at the expense of occasional full
3341 	 * transaction commits on fsync if our inode is a directory, or if our
3342 	 * inode is not a directory, logging its parent unnecessarily.
3343 	 */
3344 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3345 
3346 	/*
3347 	 * Same logic as for last_unlink_trans. We don't persist the generation
3348 	 * of the last transaction where this inode was used for a reflink
3349 	 * operation, so after eviction and reloading the inode we must be
3350 	 * pessimistic and assume the last transaction that modified the inode.
3351 	 */
3352 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3353 
3354 	path->slots[0]++;
3355 	if (inode->i_nlink != 1 ||
3356 	    path->slots[0] >= btrfs_header_nritems(leaf))
3357 		goto cache_acl;
3358 
3359 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3360 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3361 		goto cache_acl;
3362 
3363 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3364 	if (location.type == BTRFS_INODE_REF_KEY) {
3365 		struct btrfs_inode_ref *ref;
3366 
3367 		ref = (struct btrfs_inode_ref *)ptr;
3368 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3369 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3370 		struct btrfs_inode_extref *extref;
3371 
3372 		extref = (struct btrfs_inode_extref *)ptr;
3373 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3374 								     extref);
3375 	}
3376 cache_acl:
3377 	/*
3378 	 * try to precache a NULL acl entry for files that don't have
3379 	 * any xattrs or acls
3380 	 */
3381 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3382 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3383 	if (first_xattr_slot != -1) {
3384 		path->slots[0] = first_xattr_slot;
3385 		ret = btrfs_load_inode_props(inode, path);
3386 		if (ret)
3387 			btrfs_err(fs_info,
3388 				  "error loading props for ino %llu (root %llu): %d",
3389 				  btrfs_ino(BTRFS_I(inode)),
3390 				  root->root_key.objectid, ret);
3391 	}
3392 	if (path != in_path)
3393 		btrfs_free_path(path);
3394 
3395 	if (!maybe_acls)
3396 		cache_no_acl(inode);
3397 
3398 	switch (inode->i_mode & S_IFMT) {
3399 	case S_IFREG:
3400 		inode->i_mapping->a_ops = &btrfs_aops;
3401 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3402 		inode->i_fop = &btrfs_file_operations;
3403 		inode->i_op = &btrfs_file_inode_operations;
3404 		break;
3405 	case S_IFDIR:
3406 		inode->i_fop = &btrfs_dir_file_operations;
3407 		inode->i_op = &btrfs_dir_inode_operations;
3408 		break;
3409 	case S_IFLNK:
3410 		inode->i_op = &btrfs_symlink_inode_operations;
3411 		inode_nohighmem(inode);
3412 		inode->i_mapping->a_ops = &btrfs_aops;
3413 		break;
3414 	default:
3415 		inode->i_op = &btrfs_special_inode_operations;
3416 		init_special_inode(inode, inode->i_mode, rdev);
3417 		break;
3418 	}
3419 
3420 	btrfs_sync_inode_flags_to_i_flags(inode);
3421 	return 0;
3422 }
3423 
3424 /*
3425  * given a leaf and an inode, copy the inode fields into the leaf
3426  */
3427 static void fill_inode_item(struct btrfs_trans_handle *trans,
3428 			    struct extent_buffer *leaf,
3429 			    struct btrfs_inode_item *item,
3430 			    struct inode *inode)
3431 {
3432 	struct btrfs_map_token token;
3433 
3434 	btrfs_init_map_token(&token, leaf);
3435 
3436 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3437 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3438 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3439 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3440 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3441 
3442 	btrfs_set_token_timespec_sec(&token, &item->atime,
3443 				     inode->i_atime.tv_sec);
3444 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3445 				      inode->i_atime.tv_nsec);
3446 
3447 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3448 				     inode->i_mtime.tv_sec);
3449 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3450 				      inode->i_mtime.tv_nsec);
3451 
3452 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3453 				     inode->i_ctime.tv_sec);
3454 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3455 				      inode->i_ctime.tv_nsec);
3456 
3457 	btrfs_set_token_timespec_sec(&token, &item->otime,
3458 				     BTRFS_I(inode)->i_otime.tv_sec);
3459 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3460 				      BTRFS_I(inode)->i_otime.tv_nsec);
3461 
3462 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3463 	btrfs_set_token_inode_generation(&token, item,
3464 					 BTRFS_I(inode)->generation);
3465 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3466 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3467 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3468 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3469 	btrfs_set_token_inode_block_group(&token, item, 0);
3470 }
3471 
3472 /*
3473  * copy everything in the in-memory inode into the btree.
3474  */
3475 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3476 				struct btrfs_root *root, struct inode *inode)
3477 {
3478 	struct btrfs_inode_item *inode_item;
3479 	struct btrfs_path *path;
3480 	struct extent_buffer *leaf;
3481 	int ret;
3482 
3483 	path = btrfs_alloc_path();
3484 	if (!path)
3485 		return -ENOMEM;
3486 
3487 	path->leave_spinning = 1;
3488 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3489 				 1);
3490 	if (ret) {
3491 		if (ret > 0)
3492 			ret = -ENOENT;
3493 		goto failed;
3494 	}
3495 
3496 	leaf = path->nodes[0];
3497 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3498 				    struct btrfs_inode_item);
3499 
3500 	fill_inode_item(trans, leaf, inode_item, inode);
3501 	btrfs_mark_buffer_dirty(leaf);
3502 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3503 	ret = 0;
3504 failed:
3505 	btrfs_free_path(path);
3506 	return ret;
3507 }
3508 
3509 /*
3510  * copy everything in the in-memory inode into the btree.
3511  */
3512 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3513 				struct btrfs_root *root, struct inode *inode)
3514 {
3515 	struct btrfs_fs_info *fs_info = root->fs_info;
3516 	int ret;
3517 
3518 	/*
3519 	 * If the inode is a free space inode, we can deadlock during commit
3520 	 * if we put it into the delayed code.
3521 	 *
3522 	 * The data relocation inode should also be directly updated
3523 	 * without delay
3524 	 */
3525 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3526 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3527 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3528 		btrfs_update_root_times(trans, root);
3529 
3530 		ret = btrfs_delayed_update_inode(trans, root, inode);
3531 		if (!ret)
3532 			btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3533 		return ret;
3534 	}
3535 
3536 	return btrfs_update_inode_item(trans, root, inode);
3537 }
3538 
3539 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3540 					 struct btrfs_root *root,
3541 					 struct inode *inode)
3542 {
3543 	int ret;
3544 
3545 	ret = btrfs_update_inode(trans, root, inode);
3546 	if (ret == -ENOSPC)
3547 		return btrfs_update_inode_item(trans, root, inode);
3548 	return ret;
3549 }
3550 
3551 /*
3552  * unlink helper that gets used here in inode.c and in the tree logging
3553  * recovery code.  It remove a link in a directory with a given name, and
3554  * also drops the back refs in the inode to the directory
3555  */
3556 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3557 				struct btrfs_root *root,
3558 				struct btrfs_inode *dir,
3559 				struct btrfs_inode *inode,
3560 				const char *name, int name_len)
3561 {
3562 	struct btrfs_fs_info *fs_info = root->fs_info;
3563 	struct btrfs_path *path;
3564 	int ret = 0;
3565 	struct btrfs_dir_item *di;
3566 	u64 index;
3567 	u64 ino = btrfs_ino(inode);
3568 	u64 dir_ino = btrfs_ino(dir);
3569 
3570 	path = btrfs_alloc_path();
3571 	if (!path) {
3572 		ret = -ENOMEM;
3573 		goto out;
3574 	}
3575 
3576 	path->leave_spinning = 1;
3577 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3578 				    name, name_len, -1);
3579 	if (IS_ERR_OR_NULL(di)) {
3580 		ret = di ? PTR_ERR(di) : -ENOENT;
3581 		goto err;
3582 	}
3583 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3584 	if (ret)
3585 		goto err;
3586 	btrfs_release_path(path);
3587 
3588 	/*
3589 	 * If we don't have dir index, we have to get it by looking up
3590 	 * the inode ref, since we get the inode ref, remove it directly,
3591 	 * it is unnecessary to do delayed deletion.
3592 	 *
3593 	 * But if we have dir index, needn't search inode ref to get it.
3594 	 * Since the inode ref is close to the inode item, it is better
3595 	 * that we delay to delete it, and just do this deletion when
3596 	 * we update the inode item.
3597 	 */
3598 	if (inode->dir_index) {
3599 		ret = btrfs_delayed_delete_inode_ref(inode);
3600 		if (!ret) {
3601 			index = inode->dir_index;
3602 			goto skip_backref;
3603 		}
3604 	}
3605 
3606 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3607 				  dir_ino, &index);
3608 	if (ret) {
3609 		btrfs_info(fs_info,
3610 			"failed to delete reference to %.*s, inode %llu parent %llu",
3611 			name_len, name, ino, dir_ino);
3612 		btrfs_abort_transaction(trans, ret);
3613 		goto err;
3614 	}
3615 skip_backref:
3616 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3617 	if (ret) {
3618 		btrfs_abort_transaction(trans, ret);
3619 		goto err;
3620 	}
3621 
3622 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3623 			dir_ino);
3624 	if (ret != 0 && ret != -ENOENT) {
3625 		btrfs_abort_transaction(trans, ret);
3626 		goto err;
3627 	}
3628 
3629 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3630 			index);
3631 	if (ret == -ENOENT)
3632 		ret = 0;
3633 	else if (ret)
3634 		btrfs_abort_transaction(trans, ret);
3635 
3636 	/*
3637 	 * If we have a pending delayed iput we could end up with the final iput
3638 	 * being run in btrfs-cleaner context.  If we have enough of these built
3639 	 * up we can end up burning a lot of time in btrfs-cleaner without any
3640 	 * way to throttle the unlinks.  Since we're currently holding a ref on
3641 	 * the inode we can run the delayed iput here without any issues as the
3642 	 * final iput won't be done until after we drop the ref we're currently
3643 	 * holding.
3644 	 */
3645 	btrfs_run_delayed_iput(fs_info, inode);
3646 err:
3647 	btrfs_free_path(path);
3648 	if (ret)
3649 		goto out;
3650 
3651 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3652 	inode_inc_iversion(&inode->vfs_inode);
3653 	inode_inc_iversion(&dir->vfs_inode);
3654 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3655 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3656 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3657 out:
3658 	return ret;
3659 }
3660 
3661 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3662 		       struct btrfs_root *root,
3663 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3664 		       const char *name, int name_len)
3665 {
3666 	int ret;
3667 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3668 	if (!ret) {
3669 		drop_nlink(&inode->vfs_inode);
3670 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3671 	}
3672 	return ret;
3673 }
3674 
3675 /*
3676  * helper to start transaction for unlink and rmdir.
3677  *
3678  * unlink and rmdir are special in btrfs, they do not always free space, so
3679  * if we cannot make our reservations the normal way try and see if there is
3680  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3681  * allow the unlink to occur.
3682  */
3683 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3684 {
3685 	struct btrfs_root *root = BTRFS_I(dir)->root;
3686 
3687 	/*
3688 	 * 1 for the possible orphan item
3689 	 * 1 for the dir item
3690 	 * 1 for the dir index
3691 	 * 1 for the inode ref
3692 	 * 1 for the inode
3693 	 */
3694 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
3695 }
3696 
3697 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3698 {
3699 	struct btrfs_root *root = BTRFS_I(dir)->root;
3700 	struct btrfs_trans_handle *trans;
3701 	struct inode *inode = d_inode(dentry);
3702 	int ret;
3703 
3704 	trans = __unlink_start_trans(dir);
3705 	if (IS_ERR(trans))
3706 		return PTR_ERR(trans);
3707 
3708 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3709 			0);
3710 
3711 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3712 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3713 			dentry->d_name.len);
3714 	if (ret)
3715 		goto out;
3716 
3717 	if (inode->i_nlink == 0) {
3718 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3719 		if (ret)
3720 			goto out;
3721 	}
3722 
3723 out:
3724 	btrfs_end_transaction(trans);
3725 	btrfs_btree_balance_dirty(root->fs_info);
3726 	return ret;
3727 }
3728 
3729 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3730 			       struct inode *dir, struct dentry *dentry)
3731 {
3732 	struct btrfs_root *root = BTRFS_I(dir)->root;
3733 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3734 	struct btrfs_path *path;
3735 	struct extent_buffer *leaf;
3736 	struct btrfs_dir_item *di;
3737 	struct btrfs_key key;
3738 	const char *name = dentry->d_name.name;
3739 	int name_len = dentry->d_name.len;
3740 	u64 index;
3741 	int ret;
3742 	u64 objectid;
3743 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3744 
3745 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3746 		objectid = inode->root->root_key.objectid;
3747 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3748 		objectid = inode->location.objectid;
3749 	} else {
3750 		WARN_ON(1);
3751 		return -EINVAL;
3752 	}
3753 
3754 	path = btrfs_alloc_path();
3755 	if (!path)
3756 		return -ENOMEM;
3757 
3758 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3759 				   name, name_len, -1);
3760 	if (IS_ERR_OR_NULL(di)) {
3761 		ret = di ? PTR_ERR(di) : -ENOENT;
3762 		goto out;
3763 	}
3764 
3765 	leaf = path->nodes[0];
3766 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3767 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3768 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3769 	if (ret) {
3770 		btrfs_abort_transaction(trans, ret);
3771 		goto out;
3772 	}
3773 	btrfs_release_path(path);
3774 
3775 	/*
3776 	 * This is a placeholder inode for a subvolume we didn't have a
3777 	 * reference to at the time of the snapshot creation.  In the meantime
3778 	 * we could have renamed the real subvol link into our snapshot, so
3779 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3780 	 * Instead simply lookup the dir_index_item for this entry so we can
3781 	 * remove it.  Otherwise we know we have a ref to the root and we can
3782 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3783 	 */
3784 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3785 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3786 						 name, name_len);
3787 		if (IS_ERR_OR_NULL(di)) {
3788 			if (!di)
3789 				ret = -ENOENT;
3790 			else
3791 				ret = PTR_ERR(di);
3792 			btrfs_abort_transaction(trans, ret);
3793 			goto out;
3794 		}
3795 
3796 		leaf = path->nodes[0];
3797 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3798 		index = key.offset;
3799 		btrfs_release_path(path);
3800 	} else {
3801 		ret = btrfs_del_root_ref(trans, objectid,
3802 					 root->root_key.objectid, dir_ino,
3803 					 &index, name, name_len);
3804 		if (ret) {
3805 			btrfs_abort_transaction(trans, ret);
3806 			goto out;
3807 		}
3808 	}
3809 
3810 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3811 	if (ret) {
3812 		btrfs_abort_transaction(trans, ret);
3813 		goto out;
3814 	}
3815 
3816 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3817 	inode_inc_iversion(dir);
3818 	dir->i_mtime = dir->i_ctime = current_time(dir);
3819 	ret = btrfs_update_inode_fallback(trans, root, dir);
3820 	if (ret)
3821 		btrfs_abort_transaction(trans, ret);
3822 out:
3823 	btrfs_free_path(path);
3824 	return ret;
3825 }
3826 
3827 /*
3828  * Helper to check if the subvolume references other subvolumes or if it's
3829  * default.
3830  */
3831 static noinline int may_destroy_subvol(struct btrfs_root *root)
3832 {
3833 	struct btrfs_fs_info *fs_info = root->fs_info;
3834 	struct btrfs_path *path;
3835 	struct btrfs_dir_item *di;
3836 	struct btrfs_key key;
3837 	u64 dir_id;
3838 	int ret;
3839 
3840 	path = btrfs_alloc_path();
3841 	if (!path)
3842 		return -ENOMEM;
3843 
3844 	/* Make sure this root isn't set as the default subvol */
3845 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3846 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3847 				   dir_id, "default", 7, 0);
3848 	if (di && !IS_ERR(di)) {
3849 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3850 		if (key.objectid == root->root_key.objectid) {
3851 			ret = -EPERM;
3852 			btrfs_err(fs_info,
3853 				  "deleting default subvolume %llu is not allowed",
3854 				  key.objectid);
3855 			goto out;
3856 		}
3857 		btrfs_release_path(path);
3858 	}
3859 
3860 	key.objectid = root->root_key.objectid;
3861 	key.type = BTRFS_ROOT_REF_KEY;
3862 	key.offset = (u64)-1;
3863 
3864 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3865 	if (ret < 0)
3866 		goto out;
3867 	BUG_ON(ret == 0);
3868 
3869 	ret = 0;
3870 	if (path->slots[0] > 0) {
3871 		path->slots[0]--;
3872 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3873 		if (key.objectid == root->root_key.objectid &&
3874 		    key.type == BTRFS_ROOT_REF_KEY)
3875 			ret = -ENOTEMPTY;
3876 	}
3877 out:
3878 	btrfs_free_path(path);
3879 	return ret;
3880 }
3881 
3882 /* Delete all dentries for inodes belonging to the root */
3883 static void btrfs_prune_dentries(struct btrfs_root *root)
3884 {
3885 	struct btrfs_fs_info *fs_info = root->fs_info;
3886 	struct rb_node *node;
3887 	struct rb_node *prev;
3888 	struct btrfs_inode *entry;
3889 	struct inode *inode;
3890 	u64 objectid = 0;
3891 
3892 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3893 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3894 
3895 	spin_lock(&root->inode_lock);
3896 again:
3897 	node = root->inode_tree.rb_node;
3898 	prev = NULL;
3899 	while (node) {
3900 		prev = node;
3901 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3902 
3903 		if (objectid < btrfs_ino(entry))
3904 			node = node->rb_left;
3905 		else if (objectid > btrfs_ino(entry))
3906 			node = node->rb_right;
3907 		else
3908 			break;
3909 	}
3910 	if (!node) {
3911 		while (prev) {
3912 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3913 			if (objectid <= btrfs_ino(entry)) {
3914 				node = prev;
3915 				break;
3916 			}
3917 			prev = rb_next(prev);
3918 		}
3919 	}
3920 	while (node) {
3921 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3922 		objectid = btrfs_ino(entry) + 1;
3923 		inode = igrab(&entry->vfs_inode);
3924 		if (inode) {
3925 			spin_unlock(&root->inode_lock);
3926 			if (atomic_read(&inode->i_count) > 1)
3927 				d_prune_aliases(inode);
3928 			/*
3929 			 * btrfs_drop_inode will have it removed from the inode
3930 			 * cache when its usage count hits zero.
3931 			 */
3932 			iput(inode);
3933 			cond_resched();
3934 			spin_lock(&root->inode_lock);
3935 			goto again;
3936 		}
3937 
3938 		if (cond_resched_lock(&root->inode_lock))
3939 			goto again;
3940 
3941 		node = rb_next(node);
3942 	}
3943 	spin_unlock(&root->inode_lock);
3944 }
3945 
3946 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3947 {
3948 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3949 	struct btrfs_root *root = BTRFS_I(dir)->root;
3950 	struct inode *inode = d_inode(dentry);
3951 	struct btrfs_root *dest = BTRFS_I(inode)->root;
3952 	struct btrfs_trans_handle *trans;
3953 	struct btrfs_block_rsv block_rsv;
3954 	u64 root_flags;
3955 	int ret;
3956 	int err;
3957 
3958 	/*
3959 	 * Don't allow to delete a subvolume with send in progress. This is
3960 	 * inside the inode lock so the error handling that has to drop the bit
3961 	 * again is not run concurrently.
3962 	 */
3963 	spin_lock(&dest->root_item_lock);
3964 	if (dest->send_in_progress) {
3965 		spin_unlock(&dest->root_item_lock);
3966 		btrfs_warn(fs_info,
3967 			   "attempt to delete subvolume %llu during send",
3968 			   dest->root_key.objectid);
3969 		return -EPERM;
3970 	}
3971 	root_flags = btrfs_root_flags(&dest->root_item);
3972 	btrfs_set_root_flags(&dest->root_item,
3973 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3974 	spin_unlock(&dest->root_item_lock);
3975 
3976 	down_write(&fs_info->subvol_sem);
3977 
3978 	err = may_destroy_subvol(dest);
3979 	if (err)
3980 		goto out_up_write;
3981 
3982 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3983 	/*
3984 	 * One for dir inode,
3985 	 * two for dir entries,
3986 	 * two for root ref/backref.
3987 	 */
3988 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
3989 	if (err)
3990 		goto out_up_write;
3991 
3992 	trans = btrfs_start_transaction(root, 0);
3993 	if (IS_ERR(trans)) {
3994 		err = PTR_ERR(trans);
3995 		goto out_release;
3996 	}
3997 	trans->block_rsv = &block_rsv;
3998 	trans->bytes_reserved = block_rsv.size;
3999 
4000 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4001 
4002 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4003 	if (ret) {
4004 		err = ret;
4005 		btrfs_abort_transaction(trans, ret);
4006 		goto out_end_trans;
4007 	}
4008 
4009 	btrfs_record_root_in_trans(trans, dest);
4010 
4011 	memset(&dest->root_item.drop_progress, 0,
4012 		sizeof(dest->root_item.drop_progress));
4013 	dest->root_item.drop_level = 0;
4014 	btrfs_set_root_refs(&dest->root_item, 0);
4015 
4016 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4017 		ret = btrfs_insert_orphan_item(trans,
4018 					fs_info->tree_root,
4019 					dest->root_key.objectid);
4020 		if (ret) {
4021 			btrfs_abort_transaction(trans, ret);
4022 			err = ret;
4023 			goto out_end_trans;
4024 		}
4025 	}
4026 
4027 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4028 				  BTRFS_UUID_KEY_SUBVOL,
4029 				  dest->root_key.objectid);
4030 	if (ret && ret != -ENOENT) {
4031 		btrfs_abort_transaction(trans, ret);
4032 		err = ret;
4033 		goto out_end_trans;
4034 	}
4035 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4036 		ret = btrfs_uuid_tree_remove(trans,
4037 					  dest->root_item.received_uuid,
4038 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4039 					  dest->root_key.objectid);
4040 		if (ret && ret != -ENOENT) {
4041 			btrfs_abort_transaction(trans, ret);
4042 			err = ret;
4043 			goto out_end_trans;
4044 		}
4045 	}
4046 
4047 	free_anon_bdev(dest->anon_dev);
4048 	dest->anon_dev = 0;
4049 out_end_trans:
4050 	trans->block_rsv = NULL;
4051 	trans->bytes_reserved = 0;
4052 	ret = btrfs_end_transaction(trans);
4053 	if (ret && !err)
4054 		err = ret;
4055 	inode->i_flags |= S_DEAD;
4056 out_release:
4057 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4058 out_up_write:
4059 	up_write(&fs_info->subvol_sem);
4060 	if (err) {
4061 		spin_lock(&dest->root_item_lock);
4062 		root_flags = btrfs_root_flags(&dest->root_item);
4063 		btrfs_set_root_flags(&dest->root_item,
4064 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4065 		spin_unlock(&dest->root_item_lock);
4066 	} else {
4067 		d_invalidate(dentry);
4068 		btrfs_prune_dentries(dest);
4069 		ASSERT(dest->send_in_progress == 0);
4070 
4071 		/* the last ref */
4072 		if (dest->ino_cache_inode) {
4073 			iput(dest->ino_cache_inode);
4074 			dest->ino_cache_inode = NULL;
4075 		}
4076 	}
4077 
4078 	return err;
4079 }
4080 
4081 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4082 {
4083 	struct inode *inode = d_inode(dentry);
4084 	int err = 0;
4085 	struct btrfs_root *root = BTRFS_I(dir)->root;
4086 	struct btrfs_trans_handle *trans;
4087 	u64 last_unlink_trans;
4088 
4089 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4090 		return -ENOTEMPTY;
4091 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4092 		return btrfs_delete_subvolume(dir, dentry);
4093 
4094 	trans = __unlink_start_trans(dir);
4095 	if (IS_ERR(trans))
4096 		return PTR_ERR(trans);
4097 
4098 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4099 		err = btrfs_unlink_subvol(trans, dir, dentry);
4100 		goto out;
4101 	}
4102 
4103 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4104 	if (err)
4105 		goto out;
4106 
4107 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4108 
4109 	/* now the directory is empty */
4110 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4111 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4112 			dentry->d_name.len);
4113 	if (!err) {
4114 		btrfs_i_size_write(BTRFS_I(inode), 0);
4115 		/*
4116 		 * Propagate the last_unlink_trans value of the deleted dir to
4117 		 * its parent directory. This is to prevent an unrecoverable
4118 		 * log tree in the case we do something like this:
4119 		 * 1) create dir foo
4120 		 * 2) create snapshot under dir foo
4121 		 * 3) delete the snapshot
4122 		 * 4) rmdir foo
4123 		 * 5) mkdir foo
4124 		 * 6) fsync foo or some file inside foo
4125 		 */
4126 		if (last_unlink_trans >= trans->transid)
4127 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4128 	}
4129 out:
4130 	btrfs_end_transaction(trans);
4131 	btrfs_btree_balance_dirty(root->fs_info);
4132 
4133 	return err;
4134 }
4135 
4136 /*
4137  * Return this if we need to call truncate_block for the last bit of the
4138  * truncate.
4139  */
4140 #define NEED_TRUNCATE_BLOCK 1
4141 
4142 /*
4143  * this can truncate away extent items, csum items and directory items.
4144  * It starts at a high offset and removes keys until it can't find
4145  * any higher than new_size
4146  *
4147  * csum items that cross the new i_size are truncated to the new size
4148  * as well.
4149  *
4150  * min_type is the minimum key type to truncate down to.  If set to 0, this
4151  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4152  */
4153 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4154 			       struct btrfs_root *root,
4155 			       struct inode *inode,
4156 			       u64 new_size, u32 min_type)
4157 {
4158 	struct btrfs_fs_info *fs_info = root->fs_info;
4159 	struct btrfs_path *path;
4160 	struct extent_buffer *leaf;
4161 	struct btrfs_file_extent_item *fi;
4162 	struct btrfs_key key;
4163 	struct btrfs_key found_key;
4164 	u64 extent_start = 0;
4165 	u64 extent_num_bytes = 0;
4166 	u64 extent_offset = 0;
4167 	u64 item_end = 0;
4168 	u64 last_size = new_size;
4169 	u32 found_type = (u8)-1;
4170 	int found_extent;
4171 	int del_item;
4172 	int pending_del_nr = 0;
4173 	int pending_del_slot = 0;
4174 	int extent_type = -1;
4175 	int ret;
4176 	u64 ino = btrfs_ino(BTRFS_I(inode));
4177 	u64 bytes_deleted = 0;
4178 	bool be_nice = false;
4179 	bool should_throttle = false;
4180 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4181 	struct extent_state *cached_state = NULL;
4182 
4183 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4184 
4185 	/*
4186 	 * For non-free space inodes and non-shareable roots, we want to back
4187 	 * off from time to time.  This means all inodes in subvolume roots,
4188 	 * reloc roots, and data reloc roots.
4189 	 */
4190 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4191 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4192 		be_nice = true;
4193 
4194 	path = btrfs_alloc_path();
4195 	if (!path)
4196 		return -ENOMEM;
4197 	path->reada = READA_BACK;
4198 
4199 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4200 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4201 				 &cached_state);
4202 
4203 		/*
4204 		 * We want to drop from the next block forward in case this
4205 		 * new size is not block aligned since we will be keeping the
4206 		 * last block of the extent just the way it is.
4207 		 */
4208 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4209 					fs_info->sectorsize),
4210 					(u64)-1, 0);
4211 	}
4212 
4213 	/*
4214 	 * This function is also used to drop the items in the log tree before
4215 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4216 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4217 	 * items.
4218 	 */
4219 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4220 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4221 
4222 	key.objectid = ino;
4223 	key.offset = (u64)-1;
4224 	key.type = (u8)-1;
4225 
4226 search_again:
4227 	/*
4228 	 * with a 16K leaf size and 128MB extents, you can actually queue
4229 	 * up a huge file in a single leaf.  Most of the time that
4230 	 * bytes_deleted is > 0, it will be huge by the time we get here
4231 	 */
4232 	if (be_nice && bytes_deleted > SZ_32M &&
4233 	    btrfs_should_end_transaction(trans)) {
4234 		ret = -EAGAIN;
4235 		goto out;
4236 	}
4237 
4238 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4239 	if (ret < 0)
4240 		goto out;
4241 
4242 	if (ret > 0) {
4243 		ret = 0;
4244 		/* there are no items in the tree for us to truncate, we're
4245 		 * done
4246 		 */
4247 		if (path->slots[0] == 0)
4248 			goto out;
4249 		path->slots[0]--;
4250 	}
4251 
4252 	while (1) {
4253 		u64 clear_start = 0, clear_len = 0;
4254 
4255 		fi = NULL;
4256 		leaf = path->nodes[0];
4257 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4258 		found_type = found_key.type;
4259 
4260 		if (found_key.objectid != ino)
4261 			break;
4262 
4263 		if (found_type < min_type)
4264 			break;
4265 
4266 		item_end = found_key.offset;
4267 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4268 			fi = btrfs_item_ptr(leaf, path->slots[0],
4269 					    struct btrfs_file_extent_item);
4270 			extent_type = btrfs_file_extent_type(leaf, fi);
4271 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4272 				item_end +=
4273 				    btrfs_file_extent_num_bytes(leaf, fi);
4274 
4275 				trace_btrfs_truncate_show_fi_regular(
4276 					BTRFS_I(inode), leaf, fi,
4277 					found_key.offset);
4278 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4279 				item_end += btrfs_file_extent_ram_bytes(leaf,
4280 									fi);
4281 
4282 				trace_btrfs_truncate_show_fi_inline(
4283 					BTRFS_I(inode), leaf, fi, path->slots[0],
4284 					found_key.offset);
4285 			}
4286 			item_end--;
4287 		}
4288 		if (found_type > min_type) {
4289 			del_item = 1;
4290 		} else {
4291 			if (item_end < new_size)
4292 				break;
4293 			if (found_key.offset >= new_size)
4294 				del_item = 1;
4295 			else
4296 				del_item = 0;
4297 		}
4298 		found_extent = 0;
4299 		/* FIXME, shrink the extent if the ref count is only 1 */
4300 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4301 			goto delete;
4302 
4303 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4304 			u64 num_dec;
4305 
4306 			clear_start = found_key.offset;
4307 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4308 			if (!del_item) {
4309 				u64 orig_num_bytes =
4310 					btrfs_file_extent_num_bytes(leaf, fi);
4311 				extent_num_bytes = ALIGN(new_size -
4312 						found_key.offset,
4313 						fs_info->sectorsize);
4314 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4315 				btrfs_set_file_extent_num_bytes(leaf, fi,
4316 							 extent_num_bytes);
4317 				num_dec = (orig_num_bytes -
4318 					   extent_num_bytes);
4319 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4320 					     &root->state) &&
4321 				    extent_start != 0)
4322 					inode_sub_bytes(inode, num_dec);
4323 				btrfs_mark_buffer_dirty(leaf);
4324 			} else {
4325 				extent_num_bytes =
4326 					btrfs_file_extent_disk_num_bytes(leaf,
4327 									 fi);
4328 				extent_offset = found_key.offset -
4329 					btrfs_file_extent_offset(leaf, fi);
4330 
4331 				/* FIXME blocksize != 4096 */
4332 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4333 				if (extent_start != 0) {
4334 					found_extent = 1;
4335 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4336 						     &root->state))
4337 						inode_sub_bytes(inode, num_dec);
4338 				}
4339 			}
4340 			clear_len = num_dec;
4341 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4342 			/*
4343 			 * we can't truncate inline items that have had
4344 			 * special encodings
4345 			 */
4346 			if (!del_item &&
4347 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4348 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4349 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4350 				u32 size = (u32)(new_size - found_key.offset);
4351 
4352 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4353 				size = btrfs_file_extent_calc_inline_size(size);
4354 				btrfs_truncate_item(path, size, 1);
4355 			} else if (!del_item) {
4356 				/*
4357 				 * We have to bail so the last_size is set to
4358 				 * just before this extent.
4359 				 */
4360 				ret = NEED_TRUNCATE_BLOCK;
4361 				break;
4362 			} else {
4363 				/*
4364 				 * Inline extents are special, we just treat
4365 				 * them as a full sector worth in the file
4366 				 * extent tree just for simplicity sake.
4367 				 */
4368 				clear_len = fs_info->sectorsize;
4369 			}
4370 
4371 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4372 				inode_sub_bytes(inode, item_end + 1 - new_size);
4373 		}
4374 delete:
4375 		/*
4376 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4377 		 * multiple fsyncs, and in this case we don't want to clear the
4378 		 * file extent range because it's just the log.
4379 		 */
4380 		if (root == BTRFS_I(inode)->root) {
4381 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4382 						  clear_start, clear_len);
4383 			if (ret) {
4384 				btrfs_abort_transaction(trans, ret);
4385 				break;
4386 			}
4387 		}
4388 
4389 		if (del_item)
4390 			last_size = found_key.offset;
4391 		else
4392 			last_size = new_size;
4393 		if (del_item) {
4394 			if (!pending_del_nr) {
4395 				/* no pending yet, add ourselves */
4396 				pending_del_slot = path->slots[0];
4397 				pending_del_nr = 1;
4398 			} else if (pending_del_nr &&
4399 				   path->slots[0] + 1 == pending_del_slot) {
4400 				/* hop on the pending chunk */
4401 				pending_del_nr++;
4402 				pending_del_slot = path->slots[0];
4403 			} else {
4404 				BUG();
4405 			}
4406 		} else {
4407 			break;
4408 		}
4409 		should_throttle = false;
4410 
4411 		if (found_extent &&
4412 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4413 			struct btrfs_ref ref = { 0 };
4414 
4415 			bytes_deleted += extent_num_bytes;
4416 
4417 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4418 					extent_start, extent_num_bytes, 0);
4419 			ref.real_root = root->root_key.objectid;
4420 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4421 					ino, extent_offset);
4422 			ret = btrfs_free_extent(trans, &ref);
4423 			if (ret) {
4424 				btrfs_abort_transaction(trans, ret);
4425 				break;
4426 			}
4427 			if (be_nice) {
4428 				if (btrfs_should_throttle_delayed_refs(trans))
4429 					should_throttle = true;
4430 			}
4431 		}
4432 
4433 		if (found_type == BTRFS_INODE_ITEM_KEY)
4434 			break;
4435 
4436 		if (path->slots[0] == 0 ||
4437 		    path->slots[0] != pending_del_slot ||
4438 		    should_throttle) {
4439 			if (pending_del_nr) {
4440 				ret = btrfs_del_items(trans, root, path,
4441 						pending_del_slot,
4442 						pending_del_nr);
4443 				if (ret) {
4444 					btrfs_abort_transaction(trans, ret);
4445 					break;
4446 				}
4447 				pending_del_nr = 0;
4448 			}
4449 			btrfs_release_path(path);
4450 
4451 			/*
4452 			 * We can generate a lot of delayed refs, so we need to
4453 			 * throttle every once and a while and make sure we're
4454 			 * adding enough space to keep up with the work we are
4455 			 * generating.  Since we hold a transaction here we
4456 			 * can't flush, and we don't want to FLUSH_LIMIT because
4457 			 * we could have generated too many delayed refs to
4458 			 * actually allocate, so just bail if we're short and
4459 			 * let the normal reservation dance happen higher up.
4460 			 */
4461 			if (should_throttle) {
4462 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4463 							BTRFS_RESERVE_NO_FLUSH);
4464 				if (ret) {
4465 					ret = -EAGAIN;
4466 					break;
4467 				}
4468 			}
4469 			goto search_again;
4470 		} else {
4471 			path->slots[0]--;
4472 		}
4473 	}
4474 out:
4475 	if (ret >= 0 && pending_del_nr) {
4476 		int err;
4477 
4478 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4479 				      pending_del_nr);
4480 		if (err) {
4481 			btrfs_abort_transaction(trans, err);
4482 			ret = err;
4483 		}
4484 	}
4485 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4486 		ASSERT(last_size >= new_size);
4487 		if (!ret && last_size > new_size)
4488 			last_size = new_size;
4489 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4490 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4491 				     (u64)-1, &cached_state);
4492 	}
4493 
4494 	btrfs_free_path(path);
4495 	return ret;
4496 }
4497 
4498 /*
4499  * btrfs_truncate_block - read, zero a chunk and write a block
4500  * @inode - inode that we're zeroing
4501  * @from - the offset to start zeroing
4502  * @len - the length to zero, 0 to zero the entire range respective to the
4503  *	offset
4504  * @front - zero up to the offset instead of from the offset on
4505  *
4506  * This will find the block for the "from" offset and cow the block and zero the
4507  * part we want to zero.  This is used with truncate and hole punching.
4508  */
4509 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4510 			int front)
4511 {
4512 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4513 	struct address_space *mapping = inode->i_mapping;
4514 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4515 	struct btrfs_ordered_extent *ordered;
4516 	struct extent_state *cached_state = NULL;
4517 	struct extent_changeset *data_reserved = NULL;
4518 	char *kaddr;
4519 	bool only_release_metadata = false;
4520 	u32 blocksize = fs_info->sectorsize;
4521 	pgoff_t index = from >> PAGE_SHIFT;
4522 	unsigned offset = from & (blocksize - 1);
4523 	struct page *page;
4524 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4525 	size_t write_bytes = blocksize;
4526 	int ret = 0;
4527 	u64 block_start;
4528 	u64 block_end;
4529 
4530 	if (IS_ALIGNED(offset, blocksize) &&
4531 	    (!len || IS_ALIGNED(len, blocksize)))
4532 		goto out;
4533 
4534 	block_start = round_down(from, blocksize);
4535 	block_end = block_start + blocksize - 1;
4536 
4537 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4538 					  block_start, blocksize);
4539 	if (ret < 0) {
4540 		if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4541 					   &write_bytes) > 0) {
4542 			/* For nocow case, no need to reserve data space */
4543 			only_release_metadata = true;
4544 		} else {
4545 			goto out;
4546 		}
4547 	}
4548 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4549 	if (ret < 0) {
4550 		if (!only_release_metadata)
4551 			btrfs_free_reserved_data_space(BTRFS_I(inode),
4552 					data_reserved, block_start, blocksize);
4553 		goto out;
4554 	}
4555 again:
4556 	page = find_or_create_page(mapping, index, mask);
4557 	if (!page) {
4558 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4559 					     block_start, blocksize, true);
4560 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4561 		ret = -ENOMEM;
4562 		goto out;
4563 	}
4564 
4565 	if (!PageUptodate(page)) {
4566 		ret = btrfs_readpage(NULL, page);
4567 		lock_page(page);
4568 		if (page->mapping != mapping) {
4569 			unlock_page(page);
4570 			put_page(page);
4571 			goto again;
4572 		}
4573 		if (!PageUptodate(page)) {
4574 			ret = -EIO;
4575 			goto out_unlock;
4576 		}
4577 	}
4578 	wait_on_page_writeback(page);
4579 
4580 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4581 	set_page_extent_mapped(page);
4582 
4583 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4584 	if (ordered) {
4585 		unlock_extent_cached(io_tree, block_start, block_end,
4586 				     &cached_state);
4587 		unlock_page(page);
4588 		put_page(page);
4589 		btrfs_start_ordered_extent(inode, ordered, 1);
4590 		btrfs_put_ordered_extent(ordered);
4591 		goto again;
4592 	}
4593 
4594 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4595 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4596 			 0, 0, &cached_state);
4597 
4598 	ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4599 					&cached_state);
4600 	if (ret) {
4601 		unlock_extent_cached(io_tree, block_start, block_end,
4602 				     &cached_state);
4603 		goto out_unlock;
4604 	}
4605 
4606 	if (offset != blocksize) {
4607 		if (!len)
4608 			len = blocksize - offset;
4609 		kaddr = kmap(page);
4610 		if (front)
4611 			memset(kaddr + (block_start - page_offset(page)),
4612 				0, offset);
4613 		else
4614 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4615 				0, len);
4616 		flush_dcache_page(page);
4617 		kunmap(page);
4618 	}
4619 	ClearPageChecked(page);
4620 	set_page_dirty(page);
4621 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4622 
4623 	if (only_release_metadata)
4624 		set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4625 				block_end, EXTENT_NORESERVE, NULL, NULL,
4626 				GFP_NOFS);
4627 
4628 out_unlock:
4629 	if (ret) {
4630 		if (only_release_metadata)
4631 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
4632 					blocksize, true);
4633 		else
4634 			btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4635 					block_start, blocksize, true);
4636 	}
4637 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4638 	unlock_page(page);
4639 	put_page(page);
4640 out:
4641 	if (only_release_metadata)
4642 		btrfs_check_nocow_unlock(BTRFS_I(inode));
4643 	extent_changeset_free(data_reserved);
4644 	return ret;
4645 }
4646 
4647 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4648 			     u64 offset, u64 len)
4649 {
4650 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4651 	struct btrfs_trans_handle *trans;
4652 	int ret;
4653 
4654 	/*
4655 	 * Still need to make sure the inode looks like it's been updated so
4656 	 * that any holes get logged if we fsync.
4657 	 */
4658 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4659 		BTRFS_I(inode)->last_trans = fs_info->generation;
4660 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4661 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4662 		return 0;
4663 	}
4664 
4665 	/*
4666 	 * 1 - for the one we're dropping
4667 	 * 1 - for the one we're adding
4668 	 * 1 - for updating the inode.
4669 	 */
4670 	trans = btrfs_start_transaction(root, 3);
4671 	if (IS_ERR(trans))
4672 		return PTR_ERR(trans);
4673 
4674 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4675 	if (ret) {
4676 		btrfs_abort_transaction(trans, ret);
4677 		btrfs_end_transaction(trans);
4678 		return ret;
4679 	}
4680 
4681 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4682 			offset, 0, 0, len, 0, len, 0, 0, 0);
4683 	if (ret)
4684 		btrfs_abort_transaction(trans, ret);
4685 	else
4686 		btrfs_update_inode(trans, root, inode);
4687 	btrfs_end_transaction(trans);
4688 	return ret;
4689 }
4690 
4691 /*
4692  * This function puts in dummy file extents for the area we're creating a hole
4693  * for.  So if we are truncating this file to a larger size we need to insert
4694  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4695  * the range between oldsize and size
4696  */
4697 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4698 {
4699 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4700 	struct btrfs_root *root = BTRFS_I(inode)->root;
4701 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4702 	struct extent_map *em = NULL;
4703 	struct extent_state *cached_state = NULL;
4704 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4705 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4706 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4707 	u64 last_byte;
4708 	u64 cur_offset;
4709 	u64 hole_size;
4710 	int err = 0;
4711 
4712 	/*
4713 	 * If our size started in the middle of a block we need to zero out the
4714 	 * rest of the block before we expand the i_size, otherwise we could
4715 	 * expose stale data.
4716 	 */
4717 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4718 	if (err)
4719 		return err;
4720 
4721 	if (size <= hole_start)
4722 		return 0;
4723 
4724 	btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4725 					   block_end - 1, &cached_state);
4726 	cur_offset = hole_start;
4727 	while (1) {
4728 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4729 				      block_end - cur_offset);
4730 		if (IS_ERR(em)) {
4731 			err = PTR_ERR(em);
4732 			em = NULL;
4733 			break;
4734 		}
4735 		last_byte = min(extent_map_end(em), block_end);
4736 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4737 		hole_size = last_byte - cur_offset;
4738 
4739 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4740 			struct extent_map *hole_em;
4741 
4742 			err = maybe_insert_hole(root, inode, cur_offset,
4743 						hole_size);
4744 			if (err)
4745 				break;
4746 
4747 			err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4748 							cur_offset, hole_size);
4749 			if (err)
4750 				break;
4751 
4752 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4753 						cur_offset + hole_size - 1, 0);
4754 			hole_em = alloc_extent_map();
4755 			if (!hole_em) {
4756 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4757 					&BTRFS_I(inode)->runtime_flags);
4758 				goto next;
4759 			}
4760 			hole_em->start = cur_offset;
4761 			hole_em->len = hole_size;
4762 			hole_em->orig_start = cur_offset;
4763 
4764 			hole_em->block_start = EXTENT_MAP_HOLE;
4765 			hole_em->block_len = 0;
4766 			hole_em->orig_block_len = 0;
4767 			hole_em->ram_bytes = hole_size;
4768 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4769 			hole_em->generation = fs_info->generation;
4770 
4771 			while (1) {
4772 				write_lock(&em_tree->lock);
4773 				err = add_extent_mapping(em_tree, hole_em, 1);
4774 				write_unlock(&em_tree->lock);
4775 				if (err != -EEXIST)
4776 					break;
4777 				btrfs_drop_extent_cache(BTRFS_I(inode),
4778 							cur_offset,
4779 							cur_offset +
4780 							hole_size - 1, 0);
4781 			}
4782 			free_extent_map(hole_em);
4783 		} else {
4784 			err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4785 							cur_offset, hole_size);
4786 			if (err)
4787 				break;
4788 		}
4789 next:
4790 		free_extent_map(em);
4791 		em = NULL;
4792 		cur_offset = last_byte;
4793 		if (cur_offset >= block_end)
4794 			break;
4795 	}
4796 	free_extent_map(em);
4797 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4798 	return err;
4799 }
4800 
4801 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4802 {
4803 	struct btrfs_root *root = BTRFS_I(inode)->root;
4804 	struct btrfs_trans_handle *trans;
4805 	loff_t oldsize = i_size_read(inode);
4806 	loff_t newsize = attr->ia_size;
4807 	int mask = attr->ia_valid;
4808 	int ret;
4809 
4810 	/*
4811 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4812 	 * special case where we need to update the times despite not having
4813 	 * these flags set.  For all other operations the VFS set these flags
4814 	 * explicitly if it wants a timestamp update.
4815 	 */
4816 	if (newsize != oldsize) {
4817 		inode_inc_iversion(inode);
4818 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4819 			inode->i_ctime = inode->i_mtime =
4820 				current_time(inode);
4821 	}
4822 
4823 	if (newsize > oldsize) {
4824 		/*
4825 		 * Don't do an expanding truncate while snapshotting is ongoing.
4826 		 * This is to ensure the snapshot captures a fully consistent
4827 		 * state of this file - if the snapshot captures this expanding
4828 		 * truncation, it must capture all writes that happened before
4829 		 * this truncation.
4830 		 */
4831 		btrfs_drew_write_lock(&root->snapshot_lock);
4832 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4833 		if (ret) {
4834 			btrfs_drew_write_unlock(&root->snapshot_lock);
4835 			return ret;
4836 		}
4837 
4838 		trans = btrfs_start_transaction(root, 1);
4839 		if (IS_ERR(trans)) {
4840 			btrfs_drew_write_unlock(&root->snapshot_lock);
4841 			return PTR_ERR(trans);
4842 		}
4843 
4844 		i_size_write(inode, newsize);
4845 		btrfs_inode_safe_disk_i_size_write(inode, 0);
4846 		pagecache_isize_extended(inode, oldsize, newsize);
4847 		ret = btrfs_update_inode(trans, root, inode);
4848 		btrfs_drew_write_unlock(&root->snapshot_lock);
4849 		btrfs_end_transaction(trans);
4850 	} else {
4851 
4852 		/*
4853 		 * We're truncating a file that used to have good data down to
4854 		 * zero. Make sure it gets into the ordered flush list so that
4855 		 * any new writes get down to disk quickly.
4856 		 */
4857 		if (newsize == 0)
4858 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4859 				&BTRFS_I(inode)->runtime_flags);
4860 
4861 		truncate_setsize(inode, newsize);
4862 
4863 		/* Disable nonlocked read DIO to avoid the endless truncate */
4864 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
4865 		inode_dio_wait(inode);
4866 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
4867 
4868 		ret = btrfs_truncate(inode, newsize == oldsize);
4869 		if (ret && inode->i_nlink) {
4870 			int err;
4871 
4872 			/*
4873 			 * Truncate failed, so fix up the in-memory size. We
4874 			 * adjusted disk_i_size down as we removed extents, so
4875 			 * wait for disk_i_size to be stable and then update the
4876 			 * in-memory size to match.
4877 			 */
4878 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4879 			if (err)
4880 				return err;
4881 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4882 		}
4883 	}
4884 
4885 	return ret;
4886 }
4887 
4888 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4889 {
4890 	struct inode *inode = d_inode(dentry);
4891 	struct btrfs_root *root = BTRFS_I(inode)->root;
4892 	int err;
4893 
4894 	if (btrfs_root_readonly(root))
4895 		return -EROFS;
4896 
4897 	err = setattr_prepare(dentry, attr);
4898 	if (err)
4899 		return err;
4900 
4901 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4902 		err = btrfs_setsize(inode, attr);
4903 		if (err)
4904 			return err;
4905 	}
4906 
4907 	if (attr->ia_valid) {
4908 		setattr_copy(inode, attr);
4909 		inode_inc_iversion(inode);
4910 		err = btrfs_dirty_inode(inode);
4911 
4912 		if (!err && attr->ia_valid & ATTR_MODE)
4913 			err = posix_acl_chmod(inode, inode->i_mode);
4914 	}
4915 
4916 	return err;
4917 }
4918 
4919 /*
4920  * While truncating the inode pages during eviction, we get the VFS calling
4921  * btrfs_invalidatepage() against each page of the inode. This is slow because
4922  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4923  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4924  * extent_state structures over and over, wasting lots of time.
4925  *
4926  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4927  * those expensive operations on a per page basis and do only the ordered io
4928  * finishing, while we release here the extent_map and extent_state structures,
4929  * without the excessive merging and splitting.
4930  */
4931 static void evict_inode_truncate_pages(struct inode *inode)
4932 {
4933 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4934 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4935 	struct rb_node *node;
4936 
4937 	ASSERT(inode->i_state & I_FREEING);
4938 	truncate_inode_pages_final(&inode->i_data);
4939 
4940 	write_lock(&map_tree->lock);
4941 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4942 		struct extent_map *em;
4943 
4944 		node = rb_first_cached(&map_tree->map);
4945 		em = rb_entry(node, struct extent_map, rb_node);
4946 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4947 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4948 		remove_extent_mapping(map_tree, em);
4949 		free_extent_map(em);
4950 		if (need_resched()) {
4951 			write_unlock(&map_tree->lock);
4952 			cond_resched();
4953 			write_lock(&map_tree->lock);
4954 		}
4955 	}
4956 	write_unlock(&map_tree->lock);
4957 
4958 	/*
4959 	 * Keep looping until we have no more ranges in the io tree.
4960 	 * We can have ongoing bios started by readahead that have
4961 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
4962 	 * still in progress (unlocked the pages in the bio but did not yet
4963 	 * unlocked the ranges in the io tree). Therefore this means some
4964 	 * ranges can still be locked and eviction started because before
4965 	 * submitting those bios, which are executed by a separate task (work
4966 	 * queue kthread), inode references (inode->i_count) were not taken
4967 	 * (which would be dropped in the end io callback of each bio).
4968 	 * Therefore here we effectively end up waiting for those bios and
4969 	 * anyone else holding locked ranges without having bumped the inode's
4970 	 * reference count - if we don't do it, when they access the inode's
4971 	 * io_tree to unlock a range it may be too late, leading to an
4972 	 * use-after-free issue.
4973 	 */
4974 	spin_lock(&io_tree->lock);
4975 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
4976 		struct extent_state *state;
4977 		struct extent_state *cached_state = NULL;
4978 		u64 start;
4979 		u64 end;
4980 		unsigned state_flags;
4981 
4982 		node = rb_first(&io_tree->state);
4983 		state = rb_entry(node, struct extent_state, rb_node);
4984 		start = state->start;
4985 		end = state->end;
4986 		state_flags = state->state;
4987 		spin_unlock(&io_tree->lock);
4988 
4989 		lock_extent_bits(io_tree, start, end, &cached_state);
4990 
4991 		/*
4992 		 * If still has DELALLOC flag, the extent didn't reach disk,
4993 		 * and its reserved space won't be freed by delayed_ref.
4994 		 * So we need to free its reserved space here.
4995 		 * (Refer to comment in btrfs_invalidatepage, case 2)
4996 		 *
4997 		 * Note, end is the bytenr of last byte, so we need + 1 here.
4998 		 */
4999 		if (state_flags & EXTENT_DELALLOC)
5000 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5001 					       end - start + 1);
5002 
5003 		clear_extent_bit(io_tree, start, end,
5004 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5005 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5006 				 &cached_state);
5007 
5008 		cond_resched();
5009 		spin_lock(&io_tree->lock);
5010 	}
5011 	spin_unlock(&io_tree->lock);
5012 }
5013 
5014 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5015 							struct btrfs_block_rsv *rsv)
5016 {
5017 	struct btrfs_fs_info *fs_info = root->fs_info;
5018 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5019 	struct btrfs_trans_handle *trans;
5020 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5021 	int ret;
5022 
5023 	/*
5024 	 * Eviction should be taking place at some place safe because of our
5025 	 * delayed iputs.  However the normal flushing code will run delayed
5026 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5027 	 *
5028 	 * We reserve the delayed_refs_extra here again because we can't use
5029 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5030 	 * above.  We reserve our extra bit here because we generate a ton of
5031 	 * delayed refs activity by truncating.
5032 	 *
5033 	 * If we cannot make our reservation we'll attempt to steal from the
5034 	 * global reserve, because we really want to be able to free up space.
5035 	 */
5036 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5037 				     BTRFS_RESERVE_FLUSH_EVICT);
5038 	if (ret) {
5039 		/*
5040 		 * Try to steal from the global reserve if there is space for
5041 		 * it.
5042 		 */
5043 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5044 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5045 			btrfs_warn(fs_info,
5046 				   "could not allocate space for delete; will truncate on mount");
5047 			return ERR_PTR(-ENOSPC);
5048 		}
5049 		delayed_refs_extra = 0;
5050 	}
5051 
5052 	trans = btrfs_join_transaction(root);
5053 	if (IS_ERR(trans))
5054 		return trans;
5055 
5056 	if (delayed_refs_extra) {
5057 		trans->block_rsv = &fs_info->trans_block_rsv;
5058 		trans->bytes_reserved = delayed_refs_extra;
5059 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5060 					delayed_refs_extra, 1);
5061 	}
5062 	return trans;
5063 }
5064 
5065 void btrfs_evict_inode(struct inode *inode)
5066 {
5067 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5068 	struct btrfs_trans_handle *trans;
5069 	struct btrfs_root *root = BTRFS_I(inode)->root;
5070 	struct btrfs_block_rsv *rsv;
5071 	int ret;
5072 
5073 	trace_btrfs_inode_evict(inode);
5074 
5075 	if (!root) {
5076 		clear_inode(inode);
5077 		return;
5078 	}
5079 
5080 	evict_inode_truncate_pages(inode);
5081 
5082 	if (inode->i_nlink &&
5083 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5084 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5085 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5086 		goto no_delete;
5087 
5088 	if (is_bad_inode(inode))
5089 		goto no_delete;
5090 
5091 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5092 
5093 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5094 		goto no_delete;
5095 
5096 	if (inode->i_nlink > 0) {
5097 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5098 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5099 		goto no_delete;
5100 	}
5101 
5102 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5103 	if (ret)
5104 		goto no_delete;
5105 
5106 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5107 	if (!rsv)
5108 		goto no_delete;
5109 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5110 	rsv->failfast = 1;
5111 
5112 	btrfs_i_size_write(BTRFS_I(inode), 0);
5113 
5114 	while (1) {
5115 		trans = evict_refill_and_join(root, rsv);
5116 		if (IS_ERR(trans))
5117 			goto free_rsv;
5118 
5119 		trans->block_rsv = rsv;
5120 
5121 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5122 		trans->block_rsv = &fs_info->trans_block_rsv;
5123 		btrfs_end_transaction(trans);
5124 		btrfs_btree_balance_dirty(fs_info);
5125 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5126 			goto free_rsv;
5127 		else if (!ret)
5128 			break;
5129 	}
5130 
5131 	/*
5132 	 * Errors here aren't a big deal, it just means we leave orphan items in
5133 	 * the tree. They will be cleaned up on the next mount. If the inode
5134 	 * number gets reused, cleanup deletes the orphan item without doing
5135 	 * anything, and unlink reuses the existing orphan item.
5136 	 *
5137 	 * If it turns out that we are dropping too many of these, we might want
5138 	 * to add a mechanism for retrying these after a commit.
5139 	 */
5140 	trans = evict_refill_and_join(root, rsv);
5141 	if (!IS_ERR(trans)) {
5142 		trans->block_rsv = rsv;
5143 		btrfs_orphan_del(trans, BTRFS_I(inode));
5144 		trans->block_rsv = &fs_info->trans_block_rsv;
5145 		btrfs_end_transaction(trans);
5146 	}
5147 
5148 	if (!(root == fs_info->tree_root ||
5149 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5150 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5151 
5152 free_rsv:
5153 	btrfs_free_block_rsv(fs_info, rsv);
5154 no_delete:
5155 	/*
5156 	 * If we didn't successfully delete, the orphan item will still be in
5157 	 * the tree and we'll retry on the next mount. Again, we might also want
5158 	 * to retry these periodically in the future.
5159 	 */
5160 	btrfs_remove_delayed_node(BTRFS_I(inode));
5161 	clear_inode(inode);
5162 }
5163 
5164 /*
5165  * Return the key found in the dir entry in the location pointer, fill @type
5166  * with BTRFS_FT_*, and return 0.
5167  *
5168  * If no dir entries were found, returns -ENOENT.
5169  * If found a corrupted location in dir entry, returns -EUCLEAN.
5170  */
5171 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5172 			       struct btrfs_key *location, u8 *type)
5173 {
5174 	const char *name = dentry->d_name.name;
5175 	int namelen = dentry->d_name.len;
5176 	struct btrfs_dir_item *di;
5177 	struct btrfs_path *path;
5178 	struct btrfs_root *root = BTRFS_I(dir)->root;
5179 	int ret = 0;
5180 
5181 	path = btrfs_alloc_path();
5182 	if (!path)
5183 		return -ENOMEM;
5184 
5185 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5186 			name, namelen, 0);
5187 	if (IS_ERR_OR_NULL(di)) {
5188 		ret = di ? PTR_ERR(di) : -ENOENT;
5189 		goto out;
5190 	}
5191 
5192 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5193 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5194 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5195 		ret = -EUCLEAN;
5196 		btrfs_warn(root->fs_info,
5197 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5198 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5199 			   location->objectid, location->type, location->offset);
5200 	}
5201 	if (!ret)
5202 		*type = btrfs_dir_type(path->nodes[0], di);
5203 out:
5204 	btrfs_free_path(path);
5205 	return ret;
5206 }
5207 
5208 /*
5209  * when we hit a tree root in a directory, the btrfs part of the inode
5210  * needs to be changed to reflect the root directory of the tree root.  This
5211  * is kind of like crossing a mount point.
5212  */
5213 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5214 				    struct inode *dir,
5215 				    struct dentry *dentry,
5216 				    struct btrfs_key *location,
5217 				    struct btrfs_root **sub_root)
5218 {
5219 	struct btrfs_path *path;
5220 	struct btrfs_root *new_root;
5221 	struct btrfs_root_ref *ref;
5222 	struct extent_buffer *leaf;
5223 	struct btrfs_key key;
5224 	int ret;
5225 	int err = 0;
5226 
5227 	path = btrfs_alloc_path();
5228 	if (!path) {
5229 		err = -ENOMEM;
5230 		goto out;
5231 	}
5232 
5233 	err = -ENOENT;
5234 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5235 	key.type = BTRFS_ROOT_REF_KEY;
5236 	key.offset = location->objectid;
5237 
5238 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5239 	if (ret) {
5240 		if (ret < 0)
5241 			err = ret;
5242 		goto out;
5243 	}
5244 
5245 	leaf = path->nodes[0];
5246 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5247 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5248 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5249 		goto out;
5250 
5251 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5252 				   (unsigned long)(ref + 1),
5253 				   dentry->d_name.len);
5254 	if (ret)
5255 		goto out;
5256 
5257 	btrfs_release_path(path);
5258 
5259 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5260 	if (IS_ERR(new_root)) {
5261 		err = PTR_ERR(new_root);
5262 		goto out;
5263 	}
5264 
5265 	*sub_root = new_root;
5266 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5267 	location->type = BTRFS_INODE_ITEM_KEY;
5268 	location->offset = 0;
5269 	err = 0;
5270 out:
5271 	btrfs_free_path(path);
5272 	return err;
5273 }
5274 
5275 static void inode_tree_add(struct inode *inode)
5276 {
5277 	struct btrfs_root *root = BTRFS_I(inode)->root;
5278 	struct btrfs_inode *entry;
5279 	struct rb_node **p;
5280 	struct rb_node *parent;
5281 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5282 	u64 ino = btrfs_ino(BTRFS_I(inode));
5283 
5284 	if (inode_unhashed(inode))
5285 		return;
5286 	parent = NULL;
5287 	spin_lock(&root->inode_lock);
5288 	p = &root->inode_tree.rb_node;
5289 	while (*p) {
5290 		parent = *p;
5291 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5292 
5293 		if (ino < btrfs_ino(entry))
5294 			p = &parent->rb_left;
5295 		else if (ino > btrfs_ino(entry))
5296 			p = &parent->rb_right;
5297 		else {
5298 			WARN_ON(!(entry->vfs_inode.i_state &
5299 				  (I_WILL_FREE | I_FREEING)));
5300 			rb_replace_node(parent, new, &root->inode_tree);
5301 			RB_CLEAR_NODE(parent);
5302 			spin_unlock(&root->inode_lock);
5303 			return;
5304 		}
5305 	}
5306 	rb_link_node(new, parent, p);
5307 	rb_insert_color(new, &root->inode_tree);
5308 	spin_unlock(&root->inode_lock);
5309 }
5310 
5311 static void inode_tree_del(struct inode *inode)
5312 {
5313 	struct btrfs_root *root = BTRFS_I(inode)->root;
5314 	int empty = 0;
5315 
5316 	spin_lock(&root->inode_lock);
5317 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5318 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5319 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5320 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5321 	}
5322 	spin_unlock(&root->inode_lock);
5323 
5324 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5325 		spin_lock(&root->inode_lock);
5326 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5327 		spin_unlock(&root->inode_lock);
5328 		if (empty)
5329 			btrfs_add_dead_root(root);
5330 	}
5331 }
5332 
5333 
5334 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5335 {
5336 	struct btrfs_iget_args *args = p;
5337 
5338 	inode->i_ino = args->ino;
5339 	BTRFS_I(inode)->location.objectid = args->ino;
5340 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5341 	BTRFS_I(inode)->location.offset = 0;
5342 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5343 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5344 	return 0;
5345 }
5346 
5347 static int btrfs_find_actor(struct inode *inode, void *opaque)
5348 {
5349 	struct btrfs_iget_args *args = opaque;
5350 
5351 	return args->ino == BTRFS_I(inode)->location.objectid &&
5352 		args->root == BTRFS_I(inode)->root;
5353 }
5354 
5355 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5356 				       struct btrfs_root *root)
5357 {
5358 	struct inode *inode;
5359 	struct btrfs_iget_args args;
5360 	unsigned long hashval = btrfs_inode_hash(ino, root);
5361 
5362 	args.ino = ino;
5363 	args.root = root;
5364 
5365 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5366 			     btrfs_init_locked_inode,
5367 			     (void *)&args);
5368 	return inode;
5369 }
5370 
5371 /*
5372  * Get an inode object given its inode number and corresponding root.
5373  * Path can be preallocated to prevent recursing back to iget through
5374  * allocator. NULL is also valid but may require an additional allocation
5375  * later.
5376  */
5377 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5378 			      struct btrfs_root *root, struct btrfs_path *path)
5379 {
5380 	struct inode *inode;
5381 
5382 	inode = btrfs_iget_locked(s, ino, root);
5383 	if (!inode)
5384 		return ERR_PTR(-ENOMEM);
5385 
5386 	if (inode->i_state & I_NEW) {
5387 		int ret;
5388 
5389 		ret = btrfs_read_locked_inode(inode, path);
5390 		if (!ret) {
5391 			inode_tree_add(inode);
5392 			unlock_new_inode(inode);
5393 		} else {
5394 			iget_failed(inode);
5395 			/*
5396 			 * ret > 0 can come from btrfs_search_slot called by
5397 			 * btrfs_read_locked_inode, this means the inode item
5398 			 * was not found.
5399 			 */
5400 			if (ret > 0)
5401 				ret = -ENOENT;
5402 			inode = ERR_PTR(ret);
5403 		}
5404 	}
5405 
5406 	return inode;
5407 }
5408 
5409 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5410 {
5411 	return btrfs_iget_path(s, ino, root, NULL);
5412 }
5413 
5414 static struct inode *new_simple_dir(struct super_block *s,
5415 				    struct btrfs_key *key,
5416 				    struct btrfs_root *root)
5417 {
5418 	struct inode *inode = new_inode(s);
5419 
5420 	if (!inode)
5421 		return ERR_PTR(-ENOMEM);
5422 
5423 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5424 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5425 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5426 
5427 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5428 	/*
5429 	 * We only need lookup, the rest is read-only and there's no inode
5430 	 * associated with the dentry
5431 	 */
5432 	inode->i_op = &simple_dir_inode_operations;
5433 	inode->i_opflags &= ~IOP_XATTR;
5434 	inode->i_fop = &simple_dir_operations;
5435 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5436 	inode->i_mtime = current_time(inode);
5437 	inode->i_atime = inode->i_mtime;
5438 	inode->i_ctime = inode->i_mtime;
5439 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5440 
5441 	return inode;
5442 }
5443 
5444 static inline u8 btrfs_inode_type(struct inode *inode)
5445 {
5446 	/*
5447 	 * Compile-time asserts that generic FT_* types still match
5448 	 * BTRFS_FT_* types
5449 	 */
5450 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5451 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5452 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5453 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5454 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5455 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5456 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5457 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5458 
5459 	return fs_umode_to_ftype(inode->i_mode);
5460 }
5461 
5462 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5463 {
5464 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5465 	struct inode *inode;
5466 	struct btrfs_root *root = BTRFS_I(dir)->root;
5467 	struct btrfs_root *sub_root = root;
5468 	struct btrfs_key location;
5469 	u8 di_type = 0;
5470 	int ret = 0;
5471 
5472 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5473 		return ERR_PTR(-ENAMETOOLONG);
5474 
5475 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5476 	if (ret < 0)
5477 		return ERR_PTR(ret);
5478 
5479 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5480 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5481 		if (IS_ERR(inode))
5482 			return inode;
5483 
5484 		/* Do extra check against inode mode with di_type */
5485 		if (btrfs_inode_type(inode) != di_type) {
5486 			btrfs_crit(fs_info,
5487 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5488 				  inode->i_mode, btrfs_inode_type(inode),
5489 				  di_type);
5490 			iput(inode);
5491 			return ERR_PTR(-EUCLEAN);
5492 		}
5493 		return inode;
5494 	}
5495 
5496 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5497 				       &location, &sub_root);
5498 	if (ret < 0) {
5499 		if (ret != -ENOENT)
5500 			inode = ERR_PTR(ret);
5501 		else
5502 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5503 	} else {
5504 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5505 	}
5506 	if (root != sub_root)
5507 		btrfs_put_root(sub_root);
5508 
5509 	if (!IS_ERR(inode) && root != sub_root) {
5510 		down_read(&fs_info->cleanup_work_sem);
5511 		if (!sb_rdonly(inode->i_sb))
5512 			ret = btrfs_orphan_cleanup(sub_root);
5513 		up_read(&fs_info->cleanup_work_sem);
5514 		if (ret) {
5515 			iput(inode);
5516 			inode = ERR_PTR(ret);
5517 		}
5518 	}
5519 
5520 	return inode;
5521 }
5522 
5523 static int btrfs_dentry_delete(const struct dentry *dentry)
5524 {
5525 	struct btrfs_root *root;
5526 	struct inode *inode = d_inode(dentry);
5527 
5528 	if (!inode && !IS_ROOT(dentry))
5529 		inode = d_inode(dentry->d_parent);
5530 
5531 	if (inode) {
5532 		root = BTRFS_I(inode)->root;
5533 		if (btrfs_root_refs(&root->root_item) == 0)
5534 			return 1;
5535 
5536 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5537 			return 1;
5538 	}
5539 	return 0;
5540 }
5541 
5542 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5543 				   unsigned int flags)
5544 {
5545 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5546 
5547 	if (inode == ERR_PTR(-ENOENT))
5548 		inode = NULL;
5549 	return d_splice_alias(inode, dentry);
5550 }
5551 
5552 /*
5553  * All this infrastructure exists because dir_emit can fault, and we are holding
5554  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5555  * our information into that, and then dir_emit from the buffer.  This is
5556  * similar to what NFS does, only we don't keep the buffer around in pagecache
5557  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5558  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5559  * tree lock.
5560  */
5561 static int btrfs_opendir(struct inode *inode, struct file *file)
5562 {
5563 	struct btrfs_file_private *private;
5564 
5565 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5566 	if (!private)
5567 		return -ENOMEM;
5568 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5569 	if (!private->filldir_buf) {
5570 		kfree(private);
5571 		return -ENOMEM;
5572 	}
5573 	file->private_data = private;
5574 	return 0;
5575 }
5576 
5577 struct dir_entry {
5578 	u64 ino;
5579 	u64 offset;
5580 	unsigned type;
5581 	int name_len;
5582 };
5583 
5584 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5585 {
5586 	while (entries--) {
5587 		struct dir_entry *entry = addr;
5588 		char *name = (char *)(entry + 1);
5589 
5590 		ctx->pos = get_unaligned(&entry->offset);
5591 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5592 					 get_unaligned(&entry->ino),
5593 					 get_unaligned(&entry->type)))
5594 			return 1;
5595 		addr += sizeof(struct dir_entry) +
5596 			get_unaligned(&entry->name_len);
5597 		ctx->pos++;
5598 	}
5599 	return 0;
5600 }
5601 
5602 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5603 {
5604 	struct inode *inode = file_inode(file);
5605 	struct btrfs_root *root = BTRFS_I(inode)->root;
5606 	struct btrfs_file_private *private = file->private_data;
5607 	struct btrfs_dir_item *di;
5608 	struct btrfs_key key;
5609 	struct btrfs_key found_key;
5610 	struct btrfs_path *path;
5611 	void *addr;
5612 	struct list_head ins_list;
5613 	struct list_head del_list;
5614 	int ret;
5615 	struct extent_buffer *leaf;
5616 	int slot;
5617 	char *name_ptr;
5618 	int name_len;
5619 	int entries = 0;
5620 	int total_len = 0;
5621 	bool put = false;
5622 	struct btrfs_key location;
5623 
5624 	if (!dir_emit_dots(file, ctx))
5625 		return 0;
5626 
5627 	path = btrfs_alloc_path();
5628 	if (!path)
5629 		return -ENOMEM;
5630 
5631 	addr = private->filldir_buf;
5632 	path->reada = READA_FORWARD;
5633 
5634 	INIT_LIST_HEAD(&ins_list);
5635 	INIT_LIST_HEAD(&del_list);
5636 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5637 
5638 again:
5639 	key.type = BTRFS_DIR_INDEX_KEY;
5640 	key.offset = ctx->pos;
5641 	key.objectid = btrfs_ino(BTRFS_I(inode));
5642 
5643 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5644 	if (ret < 0)
5645 		goto err;
5646 
5647 	while (1) {
5648 		struct dir_entry *entry;
5649 
5650 		leaf = path->nodes[0];
5651 		slot = path->slots[0];
5652 		if (slot >= btrfs_header_nritems(leaf)) {
5653 			ret = btrfs_next_leaf(root, path);
5654 			if (ret < 0)
5655 				goto err;
5656 			else if (ret > 0)
5657 				break;
5658 			continue;
5659 		}
5660 
5661 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5662 
5663 		if (found_key.objectid != key.objectid)
5664 			break;
5665 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5666 			break;
5667 		if (found_key.offset < ctx->pos)
5668 			goto next;
5669 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5670 			goto next;
5671 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5672 		name_len = btrfs_dir_name_len(leaf, di);
5673 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5674 		    PAGE_SIZE) {
5675 			btrfs_release_path(path);
5676 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5677 			if (ret)
5678 				goto nopos;
5679 			addr = private->filldir_buf;
5680 			entries = 0;
5681 			total_len = 0;
5682 			goto again;
5683 		}
5684 
5685 		entry = addr;
5686 		put_unaligned(name_len, &entry->name_len);
5687 		name_ptr = (char *)(entry + 1);
5688 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5689 				   name_len);
5690 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5691 				&entry->type);
5692 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5693 		put_unaligned(location.objectid, &entry->ino);
5694 		put_unaligned(found_key.offset, &entry->offset);
5695 		entries++;
5696 		addr += sizeof(struct dir_entry) + name_len;
5697 		total_len += sizeof(struct dir_entry) + name_len;
5698 next:
5699 		path->slots[0]++;
5700 	}
5701 	btrfs_release_path(path);
5702 
5703 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5704 	if (ret)
5705 		goto nopos;
5706 
5707 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5708 	if (ret)
5709 		goto nopos;
5710 
5711 	/*
5712 	 * Stop new entries from being returned after we return the last
5713 	 * entry.
5714 	 *
5715 	 * New directory entries are assigned a strictly increasing
5716 	 * offset.  This means that new entries created during readdir
5717 	 * are *guaranteed* to be seen in the future by that readdir.
5718 	 * This has broken buggy programs which operate on names as
5719 	 * they're returned by readdir.  Until we re-use freed offsets
5720 	 * we have this hack to stop new entries from being returned
5721 	 * under the assumption that they'll never reach this huge
5722 	 * offset.
5723 	 *
5724 	 * This is being careful not to overflow 32bit loff_t unless the
5725 	 * last entry requires it because doing so has broken 32bit apps
5726 	 * in the past.
5727 	 */
5728 	if (ctx->pos >= INT_MAX)
5729 		ctx->pos = LLONG_MAX;
5730 	else
5731 		ctx->pos = INT_MAX;
5732 nopos:
5733 	ret = 0;
5734 err:
5735 	if (put)
5736 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5737 	btrfs_free_path(path);
5738 	return ret;
5739 }
5740 
5741 /*
5742  * This is somewhat expensive, updating the tree every time the
5743  * inode changes.  But, it is most likely to find the inode in cache.
5744  * FIXME, needs more benchmarking...there are no reasons other than performance
5745  * to keep or drop this code.
5746  */
5747 static int btrfs_dirty_inode(struct inode *inode)
5748 {
5749 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5750 	struct btrfs_root *root = BTRFS_I(inode)->root;
5751 	struct btrfs_trans_handle *trans;
5752 	int ret;
5753 
5754 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5755 		return 0;
5756 
5757 	trans = btrfs_join_transaction(root);
5758 	if (IS_ERR(trans))
5759 		return PTR_ERR(trans);
5760 
5761 	ret = btrfs_update_inode(trans, root, inode);
5762 	if (ret && ret == -ENOSPC) {
5763 		/* whoops, lets try again with the full transaction */
5764 		btrfs_end_transaction(trans);
5765 		trans = btrfs_start_transaction(root, 1);
5766 		if (IS_ERR(trans))
5767 			return PTR_ERR(trans);
5768 
5769 		ret = btrfs_update_inode(trans, root, inode);
5770 	}
5771 	btrfs_end_transaction(trans);
5772 	if (BTRFS_I(inode)->delayed_node)
5773 		btrfs_balance_delayed_items(fs_info);
5774 
5775 	return ret;
5776 }
5777 
5778 /*
5779  * This is a copy of file_update_time.  We need this so we can return error on
5780  * ENOSPC for updating the inode in the case of file write and mmap writes.
5781  */
5782 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5783 			     int flags)
5784 {
5785 	struct btrfs_root *root = BTRFS_I(inode)->root;
5786 	bool dirty = flags & ~S_VERSION;
5787 
5788 	if (btrfs_root_readonly(root))
5789 		return -EROFS;
5790 
5791 	if (flags & S_VERSION)
5792 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5793 	if (flags & S_CTIME)
5794 		inode->i_ctime = *now;
5795 	if (flags & S_MTIME)
5796 		inode->i_mtime = *now;
5797 	if (flags & S_ATIME)
5798 		inode->i_atime = *now;
5799 	return dirty ? btrfs_dirty_inode(inode) : 0;
5800 }
5801 
5802 /*
5803  * find the highest existing sequence number in a directory
5804  * and then set the in-memory index_cnt variable to reflect
5805  * free sequence numbers
5806  */
5807 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5808 {
5809 	struct btrfs_root *root = inode->root;
5810 	struct btrfs_key key, found_key;
5811 	struct btrfs_path *path;
5812 	struct extent_buffer *leaf;
5813 	int ret;
5814 
5815 	key.objectid = btrfs_ino(inode);
5816 	key.type = BTRFS_DIR_INDEX_KEY;
5817 	key.offset = (u64)-1;
5818 
5819 	path = btrfs_alloc_path();
5820 	if (!path)
5821 		return -ENOMEM;
5822 
5823 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5824 	if (ret < 0)
5825 		goto out;
5826 	/* FIXME: we should be able to handle this */
5827 	if (ret == 0)
5828 		goto out;
5829 	ret = 0;
5830 
5831 	/*
5832 	 * MAGIC NUMBER EXPLANATION:
5833 	 * since we search a directory based on f_pos we have to start at 2
5834 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5835 	 * else has to start at 2
5836 	 */
5837 	if (path->slots[0] == 0) {
5838 		inode->index_cnt = 2;
5839 		goto out;
5840 	}
5841 
5842 	path->slots[0]--;
5843 
5844 	leaf = path->nodes[0];
5845 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5846 
5847 	if (found_key.objectid != btrfs_ino(inode) ||
5848 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5849 		inode->index_cnt = 2;
5850 		goto out;
5851 	}
5852 
5853 	inode->index_cnt = found_key.offset + 1;
5854 out:
5855 	btrfs_free_path(path);
5856 	return ret;
5857 }
5858 
5859 /*
5860  * helper to find a free sequence number in a given directory.  This current
5861  * code is very simple, later versions will do smarter things in the btree
5862  */
5863 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5864 {
5865 	int ret = 0;
5866 
5867 	if (dir->index_cnt == (u64)-1) {
5868 		ret = btrfs_inode_delayed_dir_index_count(dir);
5869 		if (ret) {
5870 			ret = btrfs_set_inode_index_count(dir);
5871 			if (ret)
5872 				return ret;
5873 		}
5874 	}
5875 
5876 	*index = dir->index_cnt;
5877 	dir->index_cnt++;
5878 
5879 	return ret;
5880 }
5881 
5882 static int btrfs_insert_inode_locked(struct inode *inode)
5883 {
5884 	struct btrfs_iget_args args;
5885 
5886 	args.ino = BTRFS_I(inode)->location.objectid;
5887 	args.root = BTRFS_I(inode)->root;
5888 
5889 	return insert_inode_locked4(inode,
5890 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5891 		   btrfs_find_actor, &args);
5892 }
5893 
5894 /*
5895  * Inherit flags from the parent inode.
5896  *
5897  * Currently only the compression flags and the cow flags are inherited.
5898  */
5899 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5900 {
5901 	unsigned int flags;
5902 
5903 	if (!dir)
5904 		return;
5905 
5906 	flags = BTRFS_I(dir)->flags;
5907 
5908 	if (flags & BTRFS_INODE_NOCOMPRESS) {
5909 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5910 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5911 	} else if (flags & BTRFS_INODE_COMPRESS) {
5912 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5913 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5914 	}
5915 
5916 	if (flags & BTRFS_INODE_NODATACOW) {
5917 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5918 		if (S_ISREG(inode->i_mode))
5919 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5920 	}
5921 
5922 	btrfs_sync_inode_flags_to_i_flags(inode);
5923 }
5924 
5925 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5926 				     struct btrfs_root *root,
5927 				     struct inode *dir,
5928 				     const char *name, int name_len,
5929 				     u64 ref_objectid, u64 objectid,
5930 				     umode_t mode, u64 *index)
5931 {
5932 	struct btrfs_fs_info *fs_info = root->fs_info;
5933 	struct inode *inode;
5934 	struct btrfs_inode_item *inode_item;
5935 	struct btrfs_key *location;
5936 	struct btrfs_path *path;
5937 	struct btrfs_inode_ref *ref;
5938 	struct btrfs_key key[2];
5939 	u32 sizes[2];
5940 	int nitems = name ? 2 : 1;
5941 	unsigned long ptr;
5942 	unsigned int nofs_flag;
5943 	int ret;
5944 
5945 	path = btrfs_alloc_path();
5946 	if (!path)
5947 		return ERR_PTR(-ENOMEM);
5948 
5949 	nofs_flag = memalloc_nofs_save();
5950 	inode = new_inode(fs_info->sb);
5951 	memalloc_nofs_restore(nofs_flag);
5952 	if (!inode) {
5953 		btrfs_free_path(path);
5954 		return ERR_PTR(-ENOMEM);
5955 	}
5956 
5957 	/*
5958 	 * O_TMPFILE, set link count to 0, so that after this point,
5959 	 * we fill in an inode item with the correct link count.
5960 	 */
5961 	if (!name)
5962 		set_nlink(inode, 0);
5963 
5964 	/*
5965 	 * we have to initialize this early, so we can reclaim the inode
5966 	 * number if we fail afterwards in this function.
5967 	 */
5968 	inode->i_ino = objectid;
5969 
5970 	if (dir && name) {
5971 		trace_btrfs_inode_request(dir);
5972 
5973 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
5974 		if (ret) {
5975 			btrfs_free_path(path);
5976 			iput(inode);
5977 			return ERR_PTR(ret);
5978 		}
5979 	} else if (dir) {
5980 		*index = 0;
5981 	}
5982 	/*
5983 	 * index_cnt is ignored for everything but a dir,
5984 	 * btrfs_set_inode_index_count has an explanation for the magic
5985 	 * number
5986 	 */
5987 	BTRFS_I(inode)->index_cnt = 2;
5988 	BTRFS_I(inode)->dir_index = *index;
5989 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5990 	BTRFS_I(inode)->generation = trans->transid;
5991 	inode->i_generation = BTRFS_I(inode)->generation;
5992 
5993 	/*
5994 	 * We could have gotten an inode number from somebody who was fsynced
5995 	 * and then removed in this same transaction, so let's just set full
5996 	 * sync since it will be a full sync anyway and this will blow away the
5997 	 * old info in the log.
5998 	 */
5999 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6000 
6001 	key[0].objectid = objectid;
6002 	key[0].type = BTRFS_INODE_ITEM_KEY;
6003 	key[0].offset = 0;
6004 
6005 	sizes[0] = sizeof(struct btrfs_inode_item);
6006 
6007 	if (name) {
6008 		/*
6009 		 * Start new inodes with an inode_ref. This is slightly more
6010 		 * efficient for small numbers of hard links since they will
6011 		 * be packed into one item. Extended refs will kick in if we
6012 		 * add more hard links than can fit in the ref item.
6013 		 */
6014 		key[1].objectid = objectid;
6015 		key[1].type = BTRFS_INODE_REF_KEY;
6016 		key[1].offset = ref_objectid;
6017 
6018 		sizes[1] = name_len + sizeof(*ref);
6019 	}
6020 
6021 	location = &BTRFS_I(inode)->location;
6022 	location->objectid = objectid;
6023 	location->offset = 0;
6024 	location->type = BTRFS_INODE_ITEM_KEY;
6025 
6026 	ret = btrfs_insert_inode_locked(inode);
6027 	if (ret < 0) {
6028 		iput(inode);
6029 		goto fail;
6030 	}
6031 
6032 	path->leave_spinning = 1;
6033 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6034 	if (ret != 0)
6035 		goto fail_unlock;
6036 
6037 	inode_init_owner(inode, dir, mode);
6038 	inode_set_bytes(inode, 0);
6039 
6040 	inode->i_mtime = current_time(inode);
6041 	inode->i_atime = inode->i_mtime;
6042 	inode->i_ctime = inode->i_mtime;
6043 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6044 
6045 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6046 				  struct btrfs_inode_item);
6047 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6048 			     sizeof(*inode_item));
6049 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6050 
6051 	if (name) {
6052 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6053 				     struct btrfs_inode_ref);
6054 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6055 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6056 		ptr = (unsigned long)(ref + 1);
6057 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6058 	}
6059 
6060 	btrfs_mark_buffer_dirty(path->nodes[0]);
6061 	btrfs_free_path(path);
6062 
6063 	btrfs_inherit_iflags(inode, dir);
6064 
6065 	if (S_ISREG(mode)) {
6066 		if (btrfs_test_opt(fs_info, NODATASUM))
6067 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6068 		if (btrfs_test_opt(fs_info, NODATACOW))
6069 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6070 				BTRFS_INODE_NODATASUM;
6071 	}
6072 
6073 	inode_tree_add(inode);
6074 
6075 	trace_btrfs_inode_new(inode);
6076 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6077 
6078 	btrfs_update_root_times(trans, root);
6079 
6080 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6081 	if (ret)
6082 		btrfs_err(fs_info,
6083 			  "error inheriting props for ino %llu (root %llu): %d",
6084 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6085 
6086 	return inode;
6087 
6088 fail_unlock:
6089 	discard_new_inode(inode);
6090 fail:
6091 	if (dir && name)
6092 		BTRFS_I(dir)->index_cnt--;
6093 	btrfs_free_path(path);
6094 	return ERR_PTR(ret);
6095 }
6096 
6097 /*
6098  * utility function to add 'inode' into 'parent_inode' with
6099  * a give name and a given sequence number.
6100  * if 'add_backref' is true, also insert a backref from the
6101  * inode to the parent directory.
6102  */
6103 int btrfs_add_link(struct btrfs_trans_handle *trans,
6104 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6105 		   const char *name, int name_len, int add_backref, u64 index)
6106 {
6107 	int ret = 0;
6108 	struct btrfs_key key;
6109 	struct btrfs_root *root = parent_inode->root;
6110 	u64 ino = btrfs_ino(inode);
6111 	u64 parent_ino = btrfs_ino(parent_inode);
6112 
6113 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6114 		memcpy(&key, &inode->root->root_key, sizeof(key));
6115 	} else {
6116 		key.objectid = ino;
6117 		key.type = BTRFS_INODE_ITEM_KEY;
6118 		key.offset = 0;
6119 	}
6120 
6121 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6122 		ret = btrfs_add_root_ref(trans, key.objectid,
6123 					 root->root_key.objectid, parent_ino,
6124 					 index, name, name_len);
6125 	} else if (add_backref) {
6126 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6127 					     parent_ino, index);
6128 	}
6129 
6130 	/* Nothing to clean up yet */
6131 	if (ret)
6132 		return ret;
6133 
6134 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6135 				    btrfs_inode_type(&inode->vfs_inode), index);
6136 	if (ret == -EEXIST || ret == -EOVERFLOW)
6137 		goto fail_dir_item;
6138 	else if (ret) {
6139 		btrfs_abort_transaction(trans, ret);
6140 		return ret;
6141 	}
6142 
6143 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6144 			   name_len * 2);
6145 	inode_inc_iversion(&parent_inode->vfs_inode);
6146 	/*
6147 	 * If we are replaying a log tree, we do not want to update the mtime
6148 	 * and ctime of the parent directory with the current time, since the
6149 	 * log replay procedure is responsible for setting them to their correct
6150 	 * values (the ones it had when the fsync was done).
6151 	 */
6152 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6153 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6154 
6155 		parent_inode->vfs_inode.i_mtime = now;
6156 		parent_inode->vfs_inode.i_ctime = now;
6157 	}
6158 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6159 	if (ret)
6160 		btrfs_abort_transaction(trans, ret);
6161 	return ret;
6162 
6163 fail_dir_item:
6164 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6165 		u64 local_index;
6166 		int err;
6167 		err = btrfs_del_root_ref(trans, key.objectid,
6168 					 root->root_key.objectid, parent_ino,
6169 					 &local_index, name, name_len);
6170 		if (err)
6171 			btrfs_abort_transaction(trans, err);
6172 	} else if (add_backref) {
6173 		u64 local_index;
6174 		int err;
6175 
6176 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6177 					  ino, parent_ino, &local_index);
6178 		if (err)
6179 			btrfs_abort_transaction(trans, err);
6180 	}
6181 
6182 	/* Return the original error code */
6183 	return ret;
6184 }
6185 
6186 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6187 			    struct btrfs_inode *dir, struct dentry *dentry,
6188 			    struct btrfs_inode *inode, int backref, u64 index)
6189 {
6190 	int err = btrfs_add_link(trans, dir, inode,
6191 				 dentry->d_name.name, dentry->d_name.len,
6192 				 backref, index);
6193 	if (err > 0)
6194 		err = -EEXIST;
6195 	return err;
6196 }
6197 
6198 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6199 			umode_t mode, dev_t rdev)
6200 {
6201 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6202 	struct btrfs_trans_handle *trans;
6203 	struct btrfs_root *root = BTRFS_I(dir)->root;
6204 	struct inode *inode = NULL;
6205 	int err;
6206 	u64 objectid;
6207 	u64 index = 0;
6208 
6209 	/*
6210 	 * 2 for inode item and ref
6211 	 * 2 for dir items
6212 	 * 1 for xattr if selinux is on
6213 	 */
6214 	trans = btrfs_start_transaction(root, 5);
6215 	if (IS_ERR(trans))
6216 		return PTR_ERR(trans);
6217 
6218 	err = btrfs_find_free_ino(root, &objectid);
6219 	if (err)
6220 		goto out_unlock;
6221 
6222 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6223 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6224 			mode, &index);
6225 	if (IS_ERR(inode)) {
6226 		err = PTR_ERR(inode);
6227 		inode = NULL;
6228 		goto out_unlock;
6229 	}
6230 
6231 	/*
6232 	* If the active LSM wants to access the inode during
6233 	* d_instantiate it needs these. Smack checks to see
6234 	* if the filesystem supports xattrs by looking at the
6235 	* ops vector.
6236 	*/
6237 	inode->i_op = &btrfs_special_inode_operations;
6238 	init_special_inode(inode, inode->i_mode, rdev);
6239 
6240 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6241 	if (err)
6242 		goto out_unlock;
6243 
6244 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6245 			0, index);
6246 	if (err)
6247 		goto out_unlock;
6248 
6249 	btrfs_update_inode(trans, root, inode);
6250 	d_instantiate_new(dentry, inode);
6251 
6252 out_unlock:
6253 	btrfs_end_transaction(trans);
6254 	btrfs_btree_balance_dirty(fs_info);
6255 	if (err && inode) {
6256 		inode_dec_link_count(inode);
6257 		discard_new_inode(inode);
6258 	}
6259 	return err;
6260 }
6261 
6262 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6263 			umode_t mode, bool excl)
6264 {
6265 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6266 	struct btrfs_trans_handle *trans;
6267 	struct btrfs_root *root = BTRFS_I(dir)->root;
6268 	struct inode *inode = NULL;
6269 	int err;
6270 	u64 objectid;
6271 	u64 index = 0;
6272 
6273 	/*
6274 	 * 2 for inode item and ref
6275 	 * 2 for dir items
6276 	 * 1 for xattr if selinux is on
6277 	 */
6278 	trans = btrfs_start_transaction(root, 5);
6279 	if (IS_ERR(trans))
6280 		return PTR_ERR(trans);
6281 
6282 	err = btrfs_find_free_ino(root, &objectid);
6283 	if (err)
6284 		goto out_unlock;
6285 
6286 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6287 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6288 			mode, &index);
6289 	if (IS_ERR(inode)) {
6290 		err = PTR_ERR(inode);
6291 		inode = NULL;
6292 		goto out_unlock;
6293 	}
6294 	/*
6295 	* If the active LSM wants to access the inode during
6296 	* d_instantiate it needs these. Smack checks to see
6297 	* if the filesystem supports xattrs by looking at the
6298 	* ops vector.
6299 	*/
6300 	inode->i_fop = &btrfs_file_operations;
6301 	inode->i_op = &btrfs_file_inode_operations;
6302 	inode->i_mapping->a_ops = &btrfs_aops;
6303 
6304 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6305 	if (err)
6306 		goto out_unlock;
6307 
6308 	err = btrfs_update_inode(trans, root, inode);
6309 	if (err)
6310 		goto out_unlock;
6311 
6312 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6313 			0, index);
6314 	if (err)
6315 		goto out_unlock;
6316 
6317 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6318 	d_instantiate_new(dentry, inode);
6319 
6320 out_unlock:
6321 	btrfs_end_transaction(trans);
6322 	if (err && inode) {
6323 		inode_dec_link_count(inode);
6324 		discard_new_inode(inode);
6325 	}
6326 	btrfs_btree_balance_dirty(fs_info);
6327 	return err;
6328 }
6329 
6330 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6331 		      struct dentry *dentry)
6332 {
6333 	struct btrfs_trans_handle *trans = NULL;
6334 	struct btrfs_root *root = BTRFS_I(dir)->root;
6335 	struct inode *inode = d_inode(old_dentry);
6336 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6337 	u64 index;
6338 	int err;
6339 	int drop_inode = 0;
6340 
6341 	/* do not allow sys_link's with other subvols of the same device */
6342 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6343 		return -EXDEV;
6344 
6345 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6346 		return -EMLINK;
6347 
6348 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6349 	if (err)
6350 		goto fail;
6351 
6352 	/*
6353 	 * 2 items for inode and inode ref
6354 	 * 2 items for dir items
6355 	 * 1 item for parent inode
6356 	 * 1 item for orphan item deletion if O_TMPFILE
6357 	 */
6358 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6359 	if (IS_ERR(trans)) {
6360 		err = PTR_ERR(trans);
6361 		trans = NULL;
6362 		goto fail;
6363 	}
6364 
6365 	/* There are several dir indexes for this inode, clear the cache. */
6366 	BTRFS_I(inode)->dir_index = 0ULL;
6367 	inc_nlink(inode);
6368 	inode_inc_iversion(inode);
6369 	inode->i_ctime = current_time(inode);
6370 	ihold(inode);
6371 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6372 
6373 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6374 			1, index);
6375 
6376 	if (err) {
6377 		drop_inode = 1;
6378 	} else {
6379 		struct dentry *parent = dentry->d_parent;
6380 		int ret;
6381 
6382 		err = btrfs_update_inode(trans, root, inode);
6383 		if (err)
6384 			goto fail;
6385 		if (inode->i_nlink == 1) {
6386 			/*
6387 			 * If new hard link count is 1, it's a file created
6388 			 * with open(2) O_TMPFILE flag.
6389 			 */
6390 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6391 			if (err)
6392 				goto fail;
6393 		}
6394 		d_instantiate(dentry, inode);
6395 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6396 					 true, NULL);
6397 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6398 			err = btrfs_commit_transaction(trans);
6399 			trans = NULL;
6400 		}
6401 	}
6402 
6403 fail:
6404 	if (trans)
6405 		btrfs_end_transaction(trans);
6406 	if (drop_inode) {
6407 		inode_dec_link_count(inode);
6408 		iput(inode);
6409 	}
6410 	btrfs_btree_balance_dirty(fs_info);
6411 	return err;
6412 }
6413 
6414 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6415 {
6416 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6417 	struct inode *inode = NULL;
6418 	struct btrfs_trans_handle *trans;
6419 	struct btrfs_root *root = BTRFS_I(dir)->root;
6420 	int err = 0;
6421 	u64 objectid = 0;
6422 	u64 index = 0;
6423 
6424 	/*
6425 	 * 2 items for inode and ref
6426 	 * 2 items for dir items
6427 	 * 1 for xattr if selinux is on
6428 	 */
6429 	trans = btrfs_start_transaction(root, 5);
6430 	if (IS_ERR(trans))
6431 		return PTR_ERR(trans);
6432 
6433 	err = btrfs_find_free_ino(root, &objectid);
6434 	if (err)
6435 		goto out_fail;
6436 
6437 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6438 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6439 			S_IFDIR | mode, &index);
6440 	if (IS_ERR(inode)) {
6441 		err = PTR_ERR(inode);
6442 		inode = NULL;
6443 		goto out_fail;
6444 	}
6445 
6446 	/* these must be set before we unlock the inode */
6447 	inode->i_op = &btrfs_dir_inode_operations;
6448 	inode->i_fop = &btrfs_dir_file_operations;
6449 
6450 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6451 	if (err)
6452 		goto out_fail;
6453 
6454 	btrfs_i_size_write(BTRFS_I(inode), 0);
6455 	err = btrfs_update_inode(trans, root, inode);
6456 	if (err)
6457 		goto out_fail;
6458 
6459 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6460 			dentry->d_name.name,
6461 			dentry->d_name.len, 0, index);
6462 	if (err)
6463 		goto out_fail;
6464 
6465 	d_instantiate_new(dentry, inode);
6466 
6467 out_fail:
6468 	btrfs_end_transaction(trans);
6469 	if (err && inode) {
6470 		inode_dec_link_count(inode);
6471 		discard_new_inode(inode);
6472 	}
6473 	btrfs_btree_balance_dirty(fs_info);
6474 	return err;
6475 }
6476 
6477 static noinline int uncompress_inline(struct btrfs_path *path,
6478 				      struct page *page,
6479 				      size_t pg_offset, u64 extent_offset,
6480 				      struct btrfs_file_extent_item *item)
6481 {
6482 	int ret;
6483 	struct extent_buffer *leaf = path->nodes[0];
6484 	char *tmp;
6485 	size_t max_size;
6486 	unsigned long inline_size;
6487 	unsigned long ptr;
6488 	int compress_type;
6489 
6490 	WARN_ON(pg_offset != 0);
6491 	compress_type = btrfs_file_extent_compression(leaf, item);
6492 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6493 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6494 					btrfs_item_nr(path->slots[0]));
6495 	tmp = kmalloc(inline_size, GFP_NOFS);
6496 	if (!tmp)
6497 		return -ENOMEM;
6498 	ptr = btrfs_file_extent_inline_start(item);
6499 
6500 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6501 
6502 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6503 	ret = btrfs_decompress(compress_type, tmp, page,
6504 			       extent_offset, inline_size, max_size);
6505 
6506 	/*
6507 	 * decompression code contains a memset to fill in any space between the end
6508 	 * of the uncompressed data and the end of max_size in case the decompressed
6509 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6510 	 * the end of an inline extent and the beginning of the next block, so we
6511 	 * cover that region here.
6512 	 */
6513 
6514 	if (max_size + pg_offset < PAGE_SIZE) {
6515 		char *map = kmap(page);
6516 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6517 		kunmap(page);
6518 	}
6519 	kfree(tmp);
6520 	return ret;
6521 }
6522 
6523 /**
6524  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6525  * @inode:	file to search in
6526  * @page:	page to read extent data into if the extent is inline
6527  * @pg_offset:	offset into @page to copy to
6528  * @start:	file offset
6529  * @len:	length of range starting at @start
6530  *
6531  * This returns the first &struct extent_map which overlaps with the given
6532  * range, reading it from the B-tree and caching it if necessary. Note that
6533  * there may be more extents which overlap the given range after the returned
6534  * extent_map.
6535  *
6536  * If @page is not NULL and the extent is inline, this also reads the extent
6537  * data directly into the page and marks the extent up to date in the io_tree.
6538  *
6539  * Return: ERR_PTR on error, non-NULL extent_map on success.
6540  */
6541 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6542 				    struct page *page, size_t pg_offset,
6543 				    u64 start, u64 len)
6544 {
6545 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6546 	int ret;
6547 	int err = 0;
6548 	u64 extent_start = 0;
6549 	u64 extent_end = 0;
6550 	u64 objectid = btrfs_ino(inode);
6551 	int extent_type = -1;
6552 	struct btrfs_path *path = NULL;
6553 	struct btrfs_root *root = inode->root;
6554 	struct btrfs_file_extent_item *item;
6555 	struct extent_buffer *leaf;
6556 	struct btrfs_key found_key;
6557 	struct extent_map *em = NULL;
6558 	struct extent_map_tree *em_tree = &inode->extent_tree;
6559 	struct extent_io_tree *io_tree = &inode->io_tree;
6560 
6561 	read_lock(&em_tree->lock);
6562 	em = lookup_extent_mapping(em_tree, start, len);
6563 	read_unlock(&em_tree->lock);
6564 
6565 	if (em) {
6566 		if (em->start > start || em->start + em->len <= start)
6567 			free_extent_map(em);
6568 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6569 			free_extent_map(em);
6570 		else
6571 			goto out;
6572 	}
6573 	em = alloc_extent_map();
6574 	if (!em) {
6575 		err = -ENOMEM;
6576 		goto out;
6577 	}
6578 	em->start = EXTENT_MAP_HOLE;
6579 	em->orig_start = EXTENT_MAP_HOLE;
6580 	em->len = (u64)-1;
6581 	em->block_len = (u64)-1;
6582 
6583 	path = btrfs_alloc_path();
6584 	if (!path) {
6585 		err = -ENOMEM;
6586 		goto out;
6587 	}
6588 
6589 	/* Chances are we'll be called again, so go ahead and do readahead */
6590 	path->reada = READA_FORWARD;
6591 
6592 	/*
6593 	 * Unless we're going to uncompress the inline extent, no sleep would
6594 	 * happen.
6595 	 */
6596 	path->leave_spinning = 1;
6597 
6598 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6599 	if (ret < 0) {
6600 		err = ret;
6601 		goto out;
6602 	} else if (ret > 0) {
6603 		if (path->slots[0] == 0)
6604 			goto not_found;
6605 		path->slots[0]--;
6606 	}
6607 
6608 	leaf = path->nodes[0];
6609 	item = btrfs_item_ptr(leaf, path->slots[0],
6610 			      struct btrfs_file_extent_item);
6611 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6612 	if (found_key.objectid != objectid ||
6613 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6614 		/*
6615 		 * If we backup past the first extent we want to move forward
6616 		 * and see if there is an extent in front of us, otherwise we'll
6617 		 * say there is a hole for our whole search range which can
6618 		 * cause problems.
6619 		 */
6620 		extent_end = start;
6621 		goto next;
6622 	}
6623 
6624 	extent_type = btrfs_file_extent_type(leaf, item);
6625 	extent_start = found_key.offset;
6626 	extent_end = btrfs_file_extent_end(path);
6627 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6628 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6629 		/* Only regular file could have regular/prealloc extent */
6630 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6631 			err = -EUCLEAN;
6632 			btrfs_crit(fs_info,
6633 		"regular/prealloc extent found for non-regular inode %llu",
6634 				   btrfs_ino(inode));
6635 			goto out;
6636 		}
6637 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6638 						       extent_start);
6639 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6640 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6641 						      path->slots[0],
6642 						      extent_start);
6643 	}
6644 next:
6645 	if (start >= extent_end) {
6646 		path->slots[0]++;
6647 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6648 			ret = btrfs_next_leaf(root, path);
6649 			if (ret < 0) {
6650 				err = ret;
6651 				goto out;
6652 			} else if (ret > 0) {
6653 				goto not_found;
6654 			}
6655 			leaf = path->nodes[0];
6656 		}
6657 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6658 		if (found_key.objectid != objectid ||
6659 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6660 			goto not_found;
6661 		if (start + len <= found_key.offset)
6662 			goto not_found;
6663 		if (start > found_key.offset)
6664 			goto next;
6665 
6666 		/* New extent overlaps with existing one */
6667 		em->start = start;
6668 		em->orig_start = start;
6669 		em->len = found_key.offset - start;
6670 		em->block_start = EXTENT_MAP_HOLE;
6671 		goto insert;
6672 	}
6673 
6674 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6675 
6676 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6677 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6678 		goto insert;
6679 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6680 		unsigned long ptr;
6681 		char *map;
6682 		size_t size;
6683 		size_t extent_offset;
6684 		size_t copy_size;
6685 
6686 		if (!page)
6687 			goto out;
6688 
6689 		size = btrfs_file_extent_ram_bytes(leaf, item);
6690 		extent_offset = page_offset(page) + pg_offset - extent_start;
6691 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6692 				  size - extent_offset);
6693 		em->start = extent_start + extent_offset;
6694 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6695 		em->orig_block_len = em->len;
6696 		em->orig_start = em->start;
6697 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6698 
6699 		btrfs_set_path_blocking(path);
6700 		if (!PageUptodate(page)) {
6701 			if (btrfs_file_extent_compression(leaf, item) !=
6702 			    BTRFS_COMPRESS_NONE) {
6703 				ret = uncompress_inline(path, page, pg_offset,
6704 							extent_offset, item);
6705 				if (ret) {
6706 					err = ret;
6707 					goto out;
6708 				}
6709 			} else {
6710 				map = kmap(page);
6711 				read_extent_buffer(leaf, map + pg_offset, ptr,
6712 						   copy_size);
6713 				if (pg_offset + copy_size < PAGE_SIZE) {
6714 					memset(map + pg_offset + copy_size, 0,
6715 					       PAGE_SIZE - pg_offset -
6716 					       copy_size);
6717 				}
6718 				kunmap(page);
6719 			}
6720 			flush_dcache_page(page);
6721 		}
6722 		set_extent_uptodate(io_tree, em->start,
6723 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6724 		goto insert;
6725 	}
6726 not_found:
6727 	em->start = start;
6728 	em->orig_start = start;
6729 	em->len = len;
6730 	em->block_start = EXTENT_MAP_HOLE;
6731 insert:
6732 	btrfs_release_path(path);
6733 	if (em->start > start || extent_map_end(em) <= start) {
6734 		btrfs_err(fs_info,
6735 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6736 			  em->start, em->len, start, len);
6737 		err = -EIO;
6738 		goto out;
6739 	}
6740 
6741 	err = 0;
6742 	write_lock(&em_tree->lock);
6743 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6744 	write_unlock(&em_tree->lock);
6745 out:
6746 	btrfs_free_path(path);
6747 
6748 	trace_btrfs_get_extent(root, inode, em);
6749 
6750 	if (err) {
6751 		free_extent_map(em);
6752 		return ERR_PTR(err);
6753 	}
6754 	BUG_ON(!em); /* Error is always set */
6755 	return em;
6756 }
6757 
6758 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6759 					   u64 start, u64 len)
6760 {
6761 	struct extent_map *em;
6762 	struct extent_map *hole_em = NULL;
6763 	u64 delalloc_start = start;
6764 	u64 end;
6765 	u64 delalloc_len;
6766 	u64 delalloc_end;
6767 	int err = 0;
6768 
6769 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6770 	if (IS_ERR(em))
6771 		return em;
6772 	/*
6773 	 * If our em maps to:
6774 	 * - a hole or
6775 	 * - a pre-alloc extent,
6776 	 * there might actually be delalloc bytes behind it.
6777 	 */
6778 	if (em->block_start != EXTENT_MAP_HOLE &&
6779 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6780 		return em;
6781 	else
6782 		hole_em = em;
6783 
6784 	/* check to see if we've wrapped (len == -1 or similar) */
6785 	end = start + len;
6786 	if (end < start)
6787 		end = (u64)-1;
6788 	else
6789 		end -= 1;
6790 
6791 	em = NULL;
6792 
6793 	/* ok, we didn't find anything, lets look for delalloc */
6794 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6795 				 end, len, EXTENT_DELALLOC, 1);
6796 	delalloc_end = delalloc_start + delalloc_len;
6797 	if (delalloc_end < delalloc_start)
6798 		delalloc_end = (u64)-1;
6799 
6800 	/*
6801 	 * We didn't find anything useful, return the original results from
6802 	 * get_extent()
6803 	 */
6804 	if (delalloc_start > end || delalloc_end <= start) {
6805 		em = hole_em;
6806 		hole_em = NULL;
6807 		goto out;
6808 	}
6809 
6810 	/*
6811 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
6812 	 * the start they passed in
6813 	 */
6814 	delalloc_start = max(start, delalloc_start);
6815 	delalloc_len = delalloc_end - delalloc_start;
6816 
6817 	if (delalloc_len > 0) {
6818 		u64 hole_start;
6819 		u64 hole_len;
6820 		const u64 hole_end = extent_map_end(hole_em);
6821 
6822 		em = alloc_extent_map();
6823 		if (!em) {
6824 			err = -ENOMEM;
6825 			goto out;
6826 		}
6827 
6828 		ASSERT(hole_em);
6829 		/*
6830 		 * When btrfs_get_extent can't find anything it returns one
6831 		 * huge hole
6832 		 *
6833 		 * Make sure what it found really fits our range, and adjust to
6834 		 * make sure it is based on the start from the caller
6835 		 */
6836 		if (hole_end <= start || hole_em->start > end) {
6837 		       free_extent_map(hole_em);
6838 		       hole_em = NULL;
6839 		} else {
6840 		       hole_start = max(hole_em->start, start);
6841 		       hole_len = hole_end - hole_start;
6842 		}
6843 
6844 		if (hole_em && delalloc_start > hole_start) {
6845 			/*
6846 			 * Our hole starts before our delalloc, so we have to
6847 			 * return just the parts of the hole that go until the
6848 			 * delalloc starts
6849 			 */
6850 			em->len = min(hole_len, delalloc_start - hole_start);
6851 			em->start = hole_start;
6852 			em->orig_start = hole_start;
6853 			/*
6854 			 * Don't adjust block start at all, it is fixed at
6855 			 * EXTENT_MAP_HOLE
6856 			 */
6857 			em->block_start = hole_em->block_start;
6858 			em->block_len = hole_len;
6859 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6860 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6861 		} else {
6862 			/*
6863 			 * Hole is out of passed range or it starts after
6864 			 * delalloc range
6865 			 */
6866 			em->start = delalloc_start;
6867 			em->len = delalloc_len;
6868 			em->orig_start = delalloc_start;
6869 			em->block_start = EXTENT_MAP_DELALLOC;
6870 			em->block_len = delalloc_len;
6871 		}
6872 	} else {
6873 		return hole_em;
6874 	}
6875 out:
6876 
6877 	free_extent_map(hole_em);
6878 	if (err) {
6879 		free_extent_map(em);
6880 		return ERR_PTR(err);
6881 	}
6882 	return em;
6883 }
6884 
6885 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6886 						  const u64 start,
6887 						  const u64 len,
6888 						  const u64 orig_start,
6889 						  const u64 block_start,
6890 						  const u64 block_len,
6891 						  const u64 orig_block_len,
6892 						  const u64 ram_bytes,
6893 						  const int type)
6894 {
6895 	struct extent_map *em = NULL;
6896 	int ret;
6897 
6898 	if (type != BTRFS_ORDERED_NOCOW) {
6899 		em = create_io_em(inode, start, len, orig_start, block_start,
6900 				  block_len, orig_block_len, ram_bytes,
6901 				  BTRFS_COMPRESS_NONE, /* compress_type */
6902 				  type);
6903 		if (IS_ERR(em))
6904 			goto out;
6905 	}
6906 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6907 					   block_len, type);
6908 	if (ret) {
6909 		if (em) {
6910 			free_extent_map(em);
6911 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6912 		}
6913 		em = ERR_PTR(ret);
6914 	}
6915  out:
6916 
6917 	return em;
6918 }
6919 
6920 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6921 						  u64 start, u64 len)
6922 {
6923 	struct btrfs_root *root = inode->root;
6924 	struct btrfs_fs_info *fs_info = root->fs_info;
6925 	struct extent_map *em;
6926 	struct btrfs_key ins;
6927 	u64 alloc_hint;
6928 	int ret;
6929 
6930 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6931 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6932 				   0, alloc_hint, &ins, 1, 1);
6933 	if (ret)
6934 		return ERR_PTR(ret);
6935 
6936 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6937 				     ins.objectid, ins.offset, ins.offset,
6938 				     ins.offset, BTRFS_ORDERED_REGULAR);
6939 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6940 	if (IS_ERR(em))
6941 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6942 					   1);
6943 
6944 	return em;
6945 }
6946 
6947 /*
6948  * Check if we can do nocow write into the range [@offset, @offset + @len)
6949  *
6950  * @offset:	File offset
6951  * @len:	The length to write, will be updated to the nocow writeable
6952  *		range
6953  * @orig_start:	(optional) Return the original file offset of the file extent
6954  * @orig_len:	(optional) Return the original on-disk length of the file extent
6955  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
6956  *
6957  * This function will flush ordered extents in the range to ensure proper
6958  * nocow checks for (nowait == false) case.
6959  *
6960  * Return:
6961  * >0	and update @len if we can do nocow write
6962  *  0	if we can't do nocow write
6963  * <0	if error happened
6964  *
6965  * NOTE: This only checks the file extents, caller is responsible to wait for
6966  *	 any ordered extents.
6967  */
6968 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6969 			      u64 *orig_start, u64 *orig_block_len,
6970 			      u64 *ram_bytes)
6971 {
6972 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6973 	struct btrfs_path *path;
6974 	int ret;
6975 	struct extent_buffer *leaf;
6976 	struct btrfs_root *root = BTRFS_I(inode)->root;
6977 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6978 	struct btrfs_file_extent_item *fi;
6979 	struct btrfs_key key;
6980 	u64 disk_bytenr;
6981 	u64 backref_offset;
6982 	u64 extent_end;
6983 	u64 num_bytes;
6984 	int slot;
6985 	int found_type;
6986 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6987 
6988 	path = btrfs_alloc_path();
6989 	if (!path)
6990 		return -ENOMEM;
6991 
6992 	ret = btrfs_lookup_file_extent(NULL, root, path,
6993 			btrfs_ino(BTRFS_I(inode)), offset, 0);
6994 	if (ret < 0)
6995 		goto out;
6996 
6997 	slot = path->slots[0];
6998 	if (ret == 1) {
6999 		if (slot == 0) {
7000 			/* can't find the item, must cow */
7001 			ret = 0;
7002 			goto out;
7003 		}
7004 		slot--;
7005 	}
7006 	ret = 0;
7007 	leaf = path->nodes[0];
7008 	btrfs_item_key_to_cpu(leaf, &key, slot);
7009 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7010 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7011 		/* not our file or wrong item type, must cow */
7012 		goto out;
7013 	}
7014 
7015 	if (key.offset > offset) {
7016 		/* Wrong offset, must cow */
7017 		goto out;
7018 	}
7019 
7020 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7021 	found_type = btrfs_file_extent_type(leaf, fi);
7022 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7023 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7024 		/* not a regular extent, must cow */
7025 		goto out;
7026 	}
7027 
7028 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7029 		goto out;
7030 
7031 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7032 	if (extent_end <= offset)
7033 		goto out;
7034 
7035 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7036 	if (disk_bytenr == 0)
7037 		goto out;
7038 
7039 	if (btrfs_file_extent_compression(leaf, fi) ||
7040 	    btrfs_file_extent_encryption(leaf, fi) ||
7041 	    btrfs_file_extent_other_encoding(leaf, fi))
7042 		goto out;
7043 
7044 	/*
7045 	 * Do the same check as in btrfs_cross_ref_exist but without the
7046 	 * unnecessary search.
7047 	 */
7048 	if (btrfs_file_extent_generation(leaf, fi) <=
7049 	    btrfs_root_last_snapshot(&root->root_item))
7050 		goto out;
7051 
7052 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7053 
7054 	if (orig_start) {
7055 		*orig_start = key.offset - backref_offset;
7056 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7057 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7058 	}
7059 
7060 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7061 		goto out;
7062 
7063 	num_bytes = min(offset + *len, extent_end) - offset;
7064 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7065 		u64 range_end;
7066 
7067 		range_end = round_up(offset + num_bytes,
7068 				     root->fs_info->sectorsize) - 1;
7069 		ret = test_range_bit(io_tree, offset, range_end,
7070 				     EXTENT_DELALLOC, 0, NULL);
7071 		if (ret) {
7072 			ret = -EAGAIN;
7073 			goto out;
7074 		}
7075 	}
7076 
7077 	btrfs_release_path(path);
7078 
7079 	/*
7080 	 * look for other files referencing this extent, if we
7081 	 * find any we must cow
7082 	 */
7083 
7084 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7085 				    key.offset - backref_offset, disk_bytenr);
7086 	if (ret) {
7087 		ret = 0;
7088 		goto out;
7089 	}
7090 
7091 	/*
7092 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7093 	 * in this extent we are about to write.  If there
7094 	 * are any csums in that range we have to cow in order
7095 	 * to keep the csums correct
7096 	 */
7097 	disk_bytenr += backref_offset;
7098 	disk_bytenr += offset - key.offset;
7099 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7100 		goto out;
7101 	/*
7102 	 * all of the above have passed, it is safe to overwrite this extent
7103 	 * without cow
7104 	 */
7105 	*len = num_bytes;
7106 	ret = 1;
7107 out:
7108 	btrfs_free_path(path);
7109 	return ret;
7110 }
7111 
7112 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7113 			      struct extent_state **cached_state, int writing)
7114 {
7115 	struct btrfs_ordered_extent *ordered;
7116 	int ret = 0;
7117 
7118 	while (1) {
7119 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7120 				 cached_state);
7121 		/*
7122 		 * We're concerned with the entire range that we're going to be
7123 		 * doing DIO to, so we need to make sure there's no ordered
7124 		 * extents in this range.
7125 		 */
7126 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7127 						     lockend - lockstart + 1);
7128 
7129 		/*
7130 		 * We need to make sure there are no buffered pages in this
7131 		 * range either, we could have raced between the invalidate in
7132 		 * generic_file_direct_write and locking the extent.  The
7133 		 * invalidate needs to happen so that reads after a write do not
7134 		 * get stale data.
7135 		 */
7136 		if (!ordered &&
7137 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7138 							 lockstart, lockend)))
7139 			break;
7140 
7141 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7142 				     cached_state);
7143 
7144 		if (ordered) {
7145 			/*
7146 			 * If we are doing a DIO read and the ordered extent we
7147 			 * found is for a buffered write, we can not wait for it
7148 			 * to complete and retry, because if we do so we can
7149 			 * deadlock with concurrent buffered writes on page
7150 			 * locks. This happens only if our DIO read covers more
7151 			 * than one extent map, if at this point has already
7152 			 * created an ordered extent for a previous extent map
7153 			 * and locked its range in the inode's io tree, and a
7154 			 * concurrent write against that previous extent map's
7155 			 * range and this range started (we unlock the ranges
7156 			 * in the io tree only when the bios complete and
7157 			 * buffered writes always lock pages before attempting
7158 			 * to lock range in the io tree).
7159 			 */
7160 			if (writing ||
7161 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7162 				btrfs_start_ordered_extent(inode, ordered, 1);
7163 			else
7164 				ret = -ENOTBLK;
7165 			btrfs_put_ordered_extent(ordered);
7166 		} else {
7167 			/*
7168 			 * We could trigger writeback for this range (and wait
7169 			 * for it to complete) and then invalidate the pages for
7170 			 * this range (through invalidate_inode_pages2_range()),
7171 			 * but that can lead us to a deadlock with a concurrent
7172 			 * call to readahead (a buffered read or a defrag call
7173 			 * triggered a readahead) on a page lock due to an
7174 			 * ordered dio extent we created before but did not have
7175 			 * yet a corresponding bio submitted (whence it can not
7176 			 * complete), which makes readahead wait for that
7177 			 * ordered extent to complete while holding a lock on
7178 			 * that page.
7179 			 */
7180 			ret = -ENOTBLK;
7181 		}
7182 
7183 		if (ret)
7184 			break;
7185 
7186 		cond_resched();
7187 	}
7188 
7189 	return ret;
7190 }
7191 
7192 /* The callers of this must take lock_extent() */
7193 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7194 				       u64 len, u64 orig_start, u64 block_start,
7195 				       u64 block_len, u64 orig_block_len,
7196 				       u64 ram_bytes, int compress_type,
7197 				       int type)
7198 {
7199 	struct extent_map_tree *em_tree;
7200 	struct extent_map *em;
7201 	int ret;
7202 
7203 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7204 	       type == BTRFS_ORDERED_COMPRESSED ||
7205 	       type == BTRFS_ORDERED_NOCOW ||
7206 	       type == BTRFS_ORDERED_REGULAR);
7207 
7208 	em_tree = &inode->extent_tree;
7209 	em = alloc_extent_map();
7210 	if (!em)
7211 		return ERR_PTR(-ENOMEM);
7212 
7213 	em->start = start;
7214 	em->orig_start = orig_start;
7215 	em->len = len;
7216 	em->block_len = block_len;
7217 	em->block_start = block_start;
7218 	em->orig_block_len = orig_block_len;
7219 	em->ram_bytes = ram_bytes;
7220 	em->generation = -1;
7221 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7222 	if (type == BTRFS_ORDERED_PREALLOC) {
7223 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7224 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7225 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7226 		em->compress_type = compress_type;
7227 	}
7228 
7229 	do {
7230 		btrfs_drop_extent_cache(inode, em->start,
7231 					em->start + em->len - 1, 0);
7232 		write_lock(&em_tree->lock);
7233 		ret = add_extent_mapping(em_tree, em, 1);
7234 		write_unlock(&em_tree->lock);
7235 		/*
7236 		 * The caller has taken lock_extent(), who could race with us
7237 		 * to add em?
7238 		 */
7239 	} while (ret == -EEXIST);
7240 
7241 	if (ret) {
7242 		free_extent_map(em);
7243 		return ERR_PTR(ret);
7244 	}
7245 
7246 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7247 	return em;
7248 }
7249 
7250 
7251 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7252 					struct buffer_head *bh_result,
7253 					struct inode *inode,
7254 					u64 start, u64 len)
7255 {
7256 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7257 
7258 	if (em->block_start == EXTENT_MAP_HOLE ||
7259 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7260 		return -ENOENT;
7261 
7262 	len = min(len, em->len - (start - em->start));
7263 
7264 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7265 		inode->i_blkbits;
7266 	bh_result->b_size = len;
7267 	bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7268 	set_buffer_mapped(bh_result);
7269 
7270 	return 0;
7271 }
7272 
7273 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7274 					 struct buffer_head *bh_result,
7275 					 struct inode *inode,
7276 					 struct btrfs_dio_data *dio_data,
7277 					 u64 start, u64 len)
7278 {
7279 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7280 	struct extent_map *em = *map;
7281 	int ret = 0;
7282 
7283 	/*
7284 	 * We don't allocate a new extent in the following cases
7285 	 *
7286 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7287 	 * existing extent.
7288 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7289 	 * just use the extent.
7290 	 *
7291 	 */
7292 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7293 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7294 	     em->block_start != EXTENT_MAP_HOLE)) {
7295 		int type;
7296 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7297 
7298 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7299 			type = BTRFS_ORDERED_PREALLOC;
7300 		else
7301 			type = BTRFS_ORDERED_NOCOW;
7302 		len = min(len, em->len - (start - em->start));
7303 		block_start = em->block_start + (start - em->start);
7304 
7305 		if (can_nocow_extent(inode, start, &len, &orig_start,
7306 				     &orig_block_len, &ram_bytes) == 1 &&
7307 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7308 			struct extent_map *em2;
7309 
7310 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7311 						      orig_start, block_start,
7312 						      len, orig_block_len,
7313 						      ram_bytes, type);
7314 			btrfs_dec_nocow_writers(fs_info, block_start);
7315 			if (type == BTRFS_ORDERED_PREALLOC) {
7316 				free_extent_map(em);
7317 				*map = em = em2;
7318 			}
7319 
7320 			if (em2 && IS_ERR(em2)) {
7321 				ret = PTR_ERR(em2);
7322 				goto out;
7323 			}
7324 			/*
7325 			 * For inode marked NODATACOW or extent marked PREALLOC,
7326 			 * use the existing or preallocated extent, so does not
7327 			 * need to adjust btrfs_space_info's bytes_may_use.
7328 			 */
7329 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7330 			goto skip_cow;
7331 		}
7332 	}
7333 
7334 	/* this will cow the extent */
7335 	len = bh_result->b_size;
7336 	free_extent_map(em);
7337 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7338 	if (IS_ERR(em)) {
7339 		ret = PTR_ERR(em);
7340 		goto out;
7341 	}
7342 
7343 	len = min(len, em->len - (start - em->start));
7344 
7345 skip_cow:
7346 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7347 		inode->i_blkbits;
7348 	bh_result->b_size = len;
7349 	bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7350 	set_buffer_mapped(bh_result);
7351 
7352 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7353 		set_buffer_new(bh_result);
7354 
7355 	/*
7356 	 * Need to update the i_size under the extent lock so buffered
7357 	 * readers will get the updated i_size when we unlock.
7358 	 */
7359 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7360 		i_size_write(inode, start + len);
7361 
7362 	WARN_ON(dio_data->reserve < len);
7363 	dio_data->reserve -= len;
7364 	dio_data->unsubmitted_oe_range_end = start + len;
7365 	current->journal_info = dio_data;
7366 out:
7367 	return ret;
7368 }
7369 
7370 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7371 				   struct buffer_head *bh_result, int create)
7372 {
7373 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7374 	struct extent_map *em;
7375 	struct extent_state *cached_state = NULL;
7376 	struct btrfs_dio_data *dio_data = NULL;
7377 	u64 start = iblock << inode->i_blkbits;
7378 	u64 lockstart, lockend;
7379 	u64 len = bh_result->b_size;
7380 	int ret = 0;
7381 
7382 	if (!create)
7383 		len = min_t(u64, len, fs_info->sectorsize);
7384 
7385 	lockstart = start;
7386 	lockend = start + len - 1;
7387 
7388 	if (current->journal_info) {
7389 		/*
7390 		 * Need to pull our outstanding extents and set journal_info to NULL so
7391 		 * that anything that needs to check if there's a transaction doesn't get
7392 		 * confused.
7393 		 */
7394 		dio_data = current->journal_info;
7395 		current->journal_info = NULL;
7396 	}
7397 
7398 	/*
7399 	 * If this errors out it's because we couldn't invalidate pagecache for
7400 	 * this range and we need to fallback to buffered.
7401 	 */
7402 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7403 			       create)) {
7404 		ret = -ENOTBLK;
7405 		goto err;
7406 	}
7407 
7408 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7409 	if (IS_ERR(em)) {
7410 		ret = PTR_ERR(em);
7411 		goto unlock_err;
7412 	}
7413 
7414 	/*
7415 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7416 	 * io.  INLINE is special, and we could probably kludge it in here, but
7417 	 * it's still buffered so for safety lets just fall back to the generic
7418 	 * buffered path.
7419 	 *
7420 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7421 	 * decompress it, so there will be buffering required no matter what we
7422 	 * do, so go ahead and fallback to buffered.
7423 	 *
7424 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7425 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7426 	 * the generic code.
7427 	 */
7428 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7429 	    em->block_start == EXTENT_MAP_INLINE) {
7430 		free_extent_map(em);
7431 		ret = -ENOTBLK;
7432 		goto unlock_err;
7433 	}
7434 
7435 	if (create) {
7436 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7437 						    dio_data, start, len);
7438 		if (ret < 0)
7439 			goto unlock_err;
7440 
7441 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7442 				     lockend, &cached_state);
7443 	} else {
7444 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7445 						   start, len);
7446 		/* Can be negative only if we read from a hole */
7447 		if (ret < 0) {
7448 			ret = 0;
7449 			free_extent_map(em);
7450 			goto unlock_err;
7451 		}
7452 		/*
7453 		 * We need to unlock only the end area that we aren't using.
7454 		 * The rest is going to be unlocked by the endio routine.
7455 		 */
7456 		lockstart = start + bh_result->b_size;
7457 		if (lockstart < lockend) {
7458 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7459 					     lockstart, lockend, &cached_state);
7460 		} else {
7461 			free_extent_state(cached_state);
7462 		}
7463 	}
7464 
7465 	free_extent_map(em);
7466 
7467 	return 0;
7468 
7469 unlock_err:
7470 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7471 			     &cached_state);
7472 err:
7473 	if (dio_data)
7474 		current->journal_info = dio_data;
7475 	return ret;
7476 }
7477 
7478 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7479 {
7480 	/*
7481 	 * This implies a barrier so that stores to dio_bio->bi_status before
7482 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7483 	 */
7484 	if (!refcount_dec_and_test(&dip->refs))
7485 		return;
7486 
7487 	if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7488 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7489 					     dip->logical_offset,
7490 					     dip->bytes,
7491 					     !dip->dio_bio->bi_status);
7492 	} else {
7493 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7494 			      dip->logical_offset,
7495 			      dip->logical_offset + dip->bytes - 1);
7496 	}
7497 
7498 	dio_end_io(dip->dio_bio);
7499 	kfree(dip);
7500 }
7501 
7502 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7503 					  int mirror_num,
7504 					  unsigned long bio_flags)
7505 {
7506 	struct btrfs_dio_private *dip = bio->bi_private;
7507 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7508 	blk_status_t ret;
7509 
7510 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7511 
7512 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7513 	if (ret)
7514 		return ret;
7515 
7516 	refcount_inc(&dip->refs);
7517 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7518 	if (ret)
7519 		refcount_dec(&dip->refs);
7520 	return ret;
7521 }
7522 
7523 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7524 					     struct btrfs_io_bio *io_bio,
7525 					     const bool uptodate)
7526 {
7527 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7528 	const u32 sectorsize = fs_info->sectorsize;
7529 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7530 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7531 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7532 	struct bio_vec bvec;
7533 	struct bvec_iter iter;
7534 	u64 start = io_bio->logical;
7535 	int icsum = 0;
7536 	blk_status_t err = BLK_STS_OK;
7537 
7538 	__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7539 		unsigned int i, nr_sectors, pgoff;
7540 
7541 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7542 		pgoff = bvec.bv_offset;
7543 		for (i = 0; i < nr_sectors; i++) {
7544 			ASSERT(pgoff < PAGE_SIZE);
7545 			if (uptodate &&
7546 			    (!csum || !check_data_csum(inode, io_bio, icsum,
7547 						       bvec.bv_page, pgoff,
7548 						       start, sectorsize))) {
7549 				clean_io_failure(fs_info, failure_tree, io_tree,
7550 						 start, bvec.bv_page,
7551 						 btrfs_ino(BTRFS_I(inode)),
7552 						 pgoff);
7553 			} else {
7554 				blk_status_t status;
7555 
7556 				status = btrfs_submit_read_repair(inode,
7557 							&io_bio->bio,
7558 							start - io_bio->logical,
7559 							bvec.bv_page, pgoff,
7560 							start,
7561 							start + sectorsize - 1,
7562 							io_bio->mirror_num,
7563 							submit_dio_repair_bio);
7564 				if (status)
7565 					err = status;
7566 			}
7567 			start += sectorsize;
7568 			icsum++;
7569 			pgoff += sectorsize;
7570 		}
7571 	}
7572 	return err;
7573 }
7574 
7575 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7576 					 const u64 offset, const u64 bytes,
7577 					 const bool uptodate)
7578 {
7579 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7580 	struct btrfs_ordered_extent *ordered = NULL;
7581 	struct btrfs_workqueue *wq;
7582 	u64 ordered_offset = offset;
7583 	u64 ordered_bytes = bytes;
7584 	u64 last_offset;
7585 
7586 	if (btrfs_is_free_space_inode(inode))
7587 		wq = fs_info->endio_freespace_worker;
7588 	else
7589 		wq = fs_info->endio_write_workers;
7590 
7591 	while (ordered_offset < offset + bytes) {
7592 		last_offset = ordered_offset;
7593 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7594 							 &ordered_offset,
7595 							 ordered_bytes,
7596 							 uptodate)) {
7597 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7598 					NULL);
7599 			btrfs_queue_work(wq, &ordered->work);
7600 		}
7601 		/*
7602 		 * If btrfs_dec_test_ordered_pending does not find any ordered
7603 		 * extent in the range, we can exit.
7604 		 */
7605 		if (ordered_offset == last_offset)
7606 			return;
7607 		/*
7608 		 * Our bio might span multiple ordered extents. In this case
7609 		 * we keep going until we have accounted the whole dio.
7610 		 */
7611 		if (ordered_offset < offset + bytes) {
7612 			ordered_bytes = offset + bytes - ordered_offset;
7613 			ordered = NULL;
7614 		}
7615 	}
7616 }
7617 
7618 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7619 				    struct bio *bio, u64 offset)
7620 {
7621 	struct inode *inode = private_data;
7622 	blk_status_t ret;
7623 	ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7624 	BUG_ON(ret); /* -ENOMEM */
7625 	return 0;
7626 }
7627 
7628 static void btrfs_end_dio_bio(struct bio *bio)
7629 {
7630 	struct btrfs_dio_private *dip = bio->bi_private;
7631 	blk_status_t err = bio->bi_status;
7632 
7633 	if (err)
7634 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7635 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7636 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7637 			   bio->bi_opf,
7638 			   (unsigned long long)bio->bi_iter.bi_sector,
7639 			   bio->bi_iter.bi_size, err);
7640 
7641 	if (bio_op(bio) == REQ_OP_READ) {
7642 		err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7643 					       !err);
7644 	}
7645 
7646 	if (err)
7647 		dip->dio_bio->bi_status = err;
7648 
7649 	bio_put(bio);
7650 	btrfs_dio_private_put(dip);
7651 }
7652 
7653 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7654 		struct inode *inode, u64 file_offset, int async_submit)
7655 {
7656 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7657 	struct btrfs_dio_private *dip = bio->bi_private;
7658 	bool write = bio_op(bio) == REQ_OP_WRITE;
7659 	blk_status_t ret;
7660 
7661 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7662 	if (async_submit)
7663 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7664 
7665 	if (!write) {
7666 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7667 		if (ret)
7668 			goto err;
7669 	}
7670 
7671 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7672 		goto map;
7673 
7674 	if (write && async_submit) {
7675 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7676 					  file_offset, inode,
7677 					  btrfs_submit_bio_start_direct_io);
7678 		goto err;
7679 	} else if (write) {
7680 		/*
7681 		 * If we aren't doing async submit, calculate the csum of the
7682 		 * bio now.
7683 		 */
7684 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7685 		if (ret)
7686 			goto err;
7687 	} else {
7688 		u64 csum_offset;
7689 
7690 		csum_offset = file_offset - dip->logical_offset;
7691 		csum_offset >>= inode->i_sb->s_blocksize_bits;
7692 		csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7693 		btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7694 	}
7695 map:
7696 	ret = btrfs_map_bio(fs_info, bio, 0);
7697 err:
7698 	return ret;
7699 }
7700 
7701 /*
7702  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7703  * or ordered extents whether or not we submit any bios.
7704  */
7705 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7706 							  struct inode *inode,
7707 							  loff_t file_offset)
7708 {
7709 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7710 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7711 	size_t dip_size;
7712 	struct btrfs_dio_private *dip;
7713 
7714 	dip_size = sizeof(*dip);
7715 	if (!write && csum) {
7716 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7717 		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7718 		size_t nblocks;
7719 
7720 		nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7721 		dip_size += csum_size * nblocks;
7722 	}
7723 
7724 	dip = kzalloc(dip_size, GFP_NOFS);
7725 	if (!dip)
7726 		return NULL;
7727 
7728 	dip->inode = inode;
7729 	dip->logical_offset = file_offset;
7730 	dip->bytes = dio_bio->bi_iter.bi_size;
7731 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7732 	dip->dio_bio = dio_bio;
7733 	refcount_set(&dip->refs, 1);
7734 
7735 	if (write) {
7736 		struct btrfs_dio_data *dio_data = current->journal_info;
7737 
7738 		/*
7739 		 * Setting range start and end to the same value means that
7740 		 * no cleanup will happen in btrfs_direct_IO
7741 		 */
7742 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7743 			dip->bytes;
7744 		dio_data->unsubmitted_oe_range_start =
7745 			dio_data->unsubmitted_oe_range_end;
7746 	}
7747 	return dip;
7748 }
7749 
7750 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7751 				loff_t file_offset)
7752 {
7753 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7754 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7755 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7756 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7757 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
7758 	struct btrfs_dio_private *dip;
7759 	struct bio *bio;
7760 	u64 start_sector;
7761 	int async_submit = 0;
7762 	u64 submit_len;
7763 	int clone_offset = 0;
7764 	int clone_len;
7765 	int ret;
7766 	blk_status_t status;
7767 	struct btrfs_io_geometry geom;
7768 
7769 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7770 	if (!dip) {
7771 		if (!write) {
7772 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7773 				file_offset + dio_bio->bi_iter.bi_size - 1);
7774 		}
7775 		dio_bio->bi_status = BLK_STS_RESOURCE;
7776 		dio_end_io(dio_bio);
7777 		return;
7778 	}
7779 
7780 	if (!write && csum) {
7781 		/*
7782 		 * Load the csums up front to reduce csum tree searches and
7783 		 * contention when submitting bios.
7784 		 */
7785 		status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7786 					       dip->csums);
7787 		if (status != BLK_STS_OK)
7788 			goto out_err;
7789 	}
7790 
7791 	start_sector = dio_bio->bi_iter.bi_sector;
7792 	submit_len = dio_bio->bi_iter.bi_size;
7793 
7794 	do {
7795 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7796 					    start_sector << 9, submit_len,
7797 					    &geom);
7798 		if (ret) {
7799 			status = errno_to_blk_status(ret);
7800 			goto out_err;
7801 		}
7802 		ASSERT(geom.len <= INT_MAX);
7803 
7804 		clone_len = min_t(int, submit_len, geom.len);
7805 
7806 		/*
7807 		 * This will never fail as it's passing GPF_NOFS and
7808 		 * the allocation is backed by btrfs_bioset.
7809 		 */
7810 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7811 		bio->bi_private = dip;
7812 		bio->bi_end_io = btrfs_end_dio_bio;
7813 		btrfs_io_bio(bio)->logical = file_offset;
7814 
7815 		ASSERT(submit_len >= clone_len);
7816 		submit_len -= clone_len;
7817 
7818 		/*
7819 		 * Increase the count before we submit the bio so we know
7820 		 * the end IO handler won't happen before we increase the
7821 		 * count. Otherwise, the dip might get freed before we're
7822 		 * done setting it up.
7823 		 *
7824 		 * We transfer the initial reference to the last bio, so we
7825 		 * don't need to increment the reference count for the last one.
7826 		 */
7827 		if (submit_len > 0) {
7828 			refcount_inc(&dip->refs);
7829 			/*
7830 			 * If we are submitting more than one bio, submit them
7831 			 * all asynchronously. The exception is RAID 5 or 6, as
7832 			 * asynchronous checksums make it difficult to collect
7833 			 * full stripe writes.
7834 			 */
7835 			if (!raid56)
7836 				async_submit = 1;
7837 		}
7838 
7839 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
7840 						async_submit);
7841 		if (status) {
7842 			bio_put(bio);
7843 			if (submit_len > 0)
7844 				refcount_dec(&dip->refs);
7845 			goto out_err;
7846 		}
7847 
7848 		clone_offset += clone_len;
7849 		start_sector += clone_len >> 9;
7850 		file_offset += clone_len;
7851 	} while (submit_len > 0);
7852 	return;
7853 
7854 out_err:
7855 	dip->dio_bio->bi_status = status;
7856 	btrfs_dio_private_put(dip);
7857 }
7858 
7859 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7860 			       const struct iov_iter *iter, loff_t offset)
7861 {
7862 	int seg;
7863 	int i;
7864 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
7865 	ssize_t retval = -EINVAL;
7866 
7867 	if (offset & blocksize_mask)
7868 		goto out;
7869 
7870 	if (iov_iter_alignment(iter) & blocksize_mask)
7871 		goto out;
7872 
7873 	/* If this is a write we don't need to check anymore */
7874 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7875 		return 0;
7876 	/*
7877 	 * Check to make sure we don't have duplicate iov_base's in this
7878 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
7879 	 * when reading back.
7880 	 */
7881 	for (seg = 0; seg < iter->nr_segs; seg++) {
7882 		for (i = seg + 1; i < iter->nr_segs; i++) {
7883 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7884 				goto out;
7885 		}
7886 	}
7887 	retval = 0;
7888 out:
7889 	return retval;
7890 }
7891 
7892 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
7893 {
7894 	struct file *file = iocb->ki_filp;
7895 	struct inode *inode = file->f_mapping->host;
7896 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7897 	struct btrfs_dio_data dio_data = { 0 };
7898 	struct extent_changeset *data_reserved = NULL;
7899 	loff_t offset = iocb->ki_pos;
7900 	size_t count = 0;
7901 	int flags = 0;
7902 	bool wakeup = true;
7903 	bool relock = false;
7904 	ssize_t ret;
7905 
7906 	if (check_direct_IO(fs_info, iter, offset))
7907 		return 0;
7908 
7909 	inode_dio_begin(inode);
7910 
7911 	/*
7912 	 * The generic stuff only does filemap_write_and_wait_range, which
7913 	 * isn't enough if we've written compressed pages to this area, so
7914 	 * we need to flush the dirty pages again to make absolutely sure
7915 	 * that any outstanding dirty pages are on disk.
7916 	 */
7917 	count = iov_iter_count(iter);
7918 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7919 		     &BTRFS_I(inode)->runtime_flags))
7920 		filemap_fdatawrite_range(inode->i_mapping, offset,
7921 					 offset + count - 1);
7922 
7923 	if (iov_iter_rw(iter) == WRITE) {
7924 		/*
7925 		 * If the write DIO is beyond the EOF, we need update
7926 		 * the isize, but it is protected by i_mutex. So we can
7927 		 * not unlock the i_mutex at this case.
7928 		 */
7929 		if (offset + count <= inode->i_size) {
7930 			dio_data.overwrite = 1;
7931 			inode_unlock(inode);
7932 			relock = true;
7933 		}
7934 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
7935 						   offset, count);
7936 		if (ret)
7937 			goto out;
7938 
7939 		/*
7940 		 * We need to know how many extents we reserved so that we can
7941 		 * do the accounting properly if we go over the number we
7942 		 * originally calculated.  Abuse current->journal_info for this.
7943 		 */
7944 		dio_data.reserve = round_up(count,
7945 					    fs_info->sectorsize);
7946 		dio_data.unsubmitted_oe_range_start = (u64)offset;
7947 		dio_data.unsubmitted_oe_range_end = (u64)offset;
7948 		current->journal_info = &dio_data;
7949 		down_read(&BTRFS_I(inode)->dio_sem);
7950 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7951 				     &BTRFS_I(inode)->runtime_flags)) {
7952 		inode_dio_end(inode);
7953 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
7954 		wakeup = false;
7955 	}
7956 
7957 	ret = __blockdev_direct_IO(iocb, inode,
7958 				   fs_info->fs_devices->latest_bdev,
7959 				   iter, btrfs_get_blocks_direct, NULL,
7960 				   btrfs_submit_direct, flags);
7961 	if (iov_iter_rw(iter) == WRITE) {
7962 		up_read(&BTRFS_I(inode)->dio_sem);
7963 		current->journal_info = NULL;
7964 		if (ret < 0 && ret != -EIOCBQUEUED) {
7965 			if (dio_data.reserve)
7966 				btrfs_delalloc_release_space(BTRFS_I(inode),
7967 					data_reserved, offset, dio_data.reserve,
7968 					true);
7969 			/*
7970 			 * On error we might have left some ordered extents
7971 			 * without submitting corresponding bios for them, so
7972 			 * cleanup them up to avoid other tasks getting them
7973 			 * and waiting for them to complete forever.
7974 			 */
7975 			if (dio_data.unsubmitted_oe_range_start <
7976 			    dio_data.unsubmitted_oe_range_end)
7977 				__endio_write_update_ordered(BTRFS_I(inode),
7978 					dio_data.unsubmitted_oe_range_start,
7979 					dio_data.unsubmitted_oe_range_end -
7980 					dio_data.unsubmitted_oe_range_start,
7981 					false);
7982 		} else if (ret >= 0 && (size_t)ret < count)
7983 			btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
7984 					offset, count - (size_t)ret, true);
7985 		btrfs_delalloc_release_extents(BTRFS_I(inode), count);
7986 	}
7987 out:
7988 	if (wakeup)
7989 		inode_dio_end(inode);
7990 	if (relock)
7991 		inode_lock(inode);
7992 
7993 	extent_changeset_free(data_reserved);
7994 	return ret;
7995 }
7996 
7997 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7998 			u64 start, u64 len)
7999 {
8000 	int	ret;
8001 
8002 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8003 	if (ret)
8004 		return ret;
8005 
8006 	return extent_fiemap(inode, fieinfo, start, len);
8007 }
8008 
8009 int btrfs_readpage(struct file *file, struct page *page)
8010 {
8011 	return extent_read_full_page(page, btrfs_get_extent, 0);
8012 }
8013 
8014 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8015 {
8016 	struct inode *inode = page->mapping->host;
8017 	int ret;
8018 
8019 	if (current->flags & PF_MEMALLOC) {
8020 		redirty_page_for_writepage(wbc, page);
8021 		unlock_page(page);
8022 		return 0;
8023 	}
8024 
8025 	/*
8026 	 * If we are under memory pressure we will call this directly from the
8027 	 * VM, we need to make sure we have the inode referenced for the ordered
8028 	 * extent.  If not just return like we didn't do anything.
8029 	 */
8030 	if (!igrab(inode)) {
8031 		redirty_page_for_writepage(wbc, page);
8032 		return AOP_WRITEPAGE_ACTIVATE;
8033 	}
8034 	ret = extent_write_full_page(page, wbc);
8035 	btrfs_add_delayed_iput(inode);
8036 	return ret;
8037 }
8038 
8039 static int btrfs_writepages(struct address_space *mapping,
8040 			    struct writeback_control *wbc)
8041 {
8042 	return extent_writepages(mapping, wbc);
8043 }
8044 
8045 static void btrfs_readahead(struct readahead_control *rac)
8046 {
8047 	extent_readahead(rac);
8048 }
8049 
8050 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8051 {
8052 	int ret = try_release_extent_mapping(page, gfp_flags);
8053 	if (ret == 1)
8054 		detach_page_private(page);
8055 	return ret;
8056 }
8057 
8058 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8059 {
8060 	if (PageWriteback(page) || PageDirty(page))
8061 		return 0;
8062 	return __btrfs_releasepage(page, gfp_flags);
8063 }
8064 
8065 #ifdef CONFIG_MIGRATION
8066 static int btrfs_migratepage(struct address_space *mapping,
8067 			     struct page *newpage, struct page *page,
8068 			     enum migrate_mode mode)
8069 {
8070 	int ret;
8071 
8072 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8073 	if (ret != MIGRATEPAGE_SUCCESS)
8074 		return ret;
8075 
8076 	if (page_has_private(page))
8077 		attach_page_private(newpage, detach_page_private(page));
8078 
8079 	if (PagePrivate2(page)) {
8080 		ClearPagePrivate2(page);
8081 		SetPagePrivate2(newpage);
8082 	}
8083 
8084 	if (mode != MIGRATE_SYNC_NO_COPY)
8085 		migrate_page_copy(newpage, page);
8086 	else
8087 		migrate_page_states(newpage, page);
8088 	return MIGRATEPAGE_SUCCESS;
8089 }
8090 #endif
8091 
8092 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8093 				 unsigned int length)
8094 {
8095 	struct inode *inode = page->mapping->host;
8096 	struct extent_io_tree *tree;
8097 	struct btrfs_ordered_extent *ordered;
8098 	struct extent_state *cached_state = NULL;
8099 	u64 page_start = page_offset(page);
8100 	u64 page_end = page_start + PAGE_SIZE - 1;
8101 	u64 start;
8102 	u64 end;
8103 	int inode_evicting = inode->i_state & I_FREEING;
8104 
8105 	/*
8106 	 * we have the page locked, so new writeback can't start,
8107 	 * and the dirty bit won't be cleared while we are here.
8108 	 *
8109 	 * Wait for IO on this page so that we can safely clear
8110 	 * the PagePrivate2 bit and do ordered accounting
8111 	 */
8112 	wait_on_page_writeback(page);
8113 
8114 	tree = &BTRFS_I(inode)->io_tree;
8115 	if (offset) {
8116 		btrfs_releasepage(page, GFP_NOFS);
8117 		return;
8118 	}
8119 
8120 	if (!inode_evicting)
8121 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8122 again:
8123 	start = page_start;
8124 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8125 					page_end - start + 1);
8126 	if (ordered) {
8127 		end = min(page_end,
8128 			  ordered->file_offset + ordered->num_bytes - 1);
8129 		/*
8130 		 * IO on this page will never be started, so we need
8131 		 * to account for any ordered extents now
8132 		 */
8133 		if (!inode_evicting)
8134 			clear_extent_bit(tree, start, end,
8135 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8136 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8137 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8138 		/*
8139 		 * whoever cleared the private bit is responsible
8140 		 * for the finish_ordered_io
8141 		 */
8142 		if (TestClearPagePrivate2(page)) {
8143 			struct btrfs_ordered_inode_tree *tree;
8144 			u64 new_len;
8145 
8146 			tree = &BTRFS_I(inode)->ordered_tree;
8147 
8148 			spin_lock_irq(&tree->lock);
8149 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8150 			new_len = start - ordered->file_offset;
8151 			if (new_len < ordered->truncated_len)
8152 				ordered->truncated_len = new_len;
8153 			spin_unlock_irq(&tree->lock);
8154 
8155 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8156 							   start,
8157 							   end - start + 1, 1))
8158 				btrfs_finish_ordered_io(ordered);
8159 		}
8160 		btrfs_put_ordered_extent(ordered);
8161 		if (!inode_evicting) {
8162 			cached_state = NULL;
8163 			lock_extent_bits(tree, start, end,
8164 					 &cached_state);
8165 		}
8166 
8167 		start = end + 1;
8168 		if (start < page_end)
8169 			goto again;
8170 	}
8171 
8172 	/*
8173 	 * Qgroup reserved space handler
8174 	 * Page here will be either
8175 	 * 1) Already written to disk or ordered extent already submitted
8176 	 *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8177 	 *    Qgroup will be handled by its qgroup_record then.
8178 	 *    btrfs_qgroup_free_data() call will do nothing here.
8179 	 *
8180 	 * 2) Not written to disk yet
8181 	 *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8182 	 *    bit of its io_tree, and free the qgroup reserved data space.
8183 	 *    Since the IO will never happen for this page.
8184 	 */
8185 	btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
8186 	if (!inode_evicting) {
8187 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8188 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8189 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8190 				 &cached_state);
8191 
8192 		__btrfs_releasepage(page, GFP_NOFS);
8193 	}
8194 
8195 	ClearPageChecked(page);
8196 	detach_page_private(page);
8197 }
8198 
8199 /*
8200  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8201  * called from a page fault handler when a page is first dirtied. Hence we must
8202  * be careful to check for EOF conditions here. We set the page up correctly
8203  * for a written page which means we get ENOSPC checking when writing into
8204  * holes and correct delalloc and unwritten extent mapping on filesystems that
8205  * support these features.
8206  *
8207  * We are not allowed to take the i_mutex here so we have to play games to
8208  * protect against truncate races as the page could now be beyond EOF.  Because
8209  * truncate_setsize() writes the inode size before removing pages, once we have
8210  * the page lock we can determine safely if the page is beyond EOF. If it is not
8211  * beyond EOF, then the page is guaranteed safe against truncation until we
8212  * unlock the page.
8213  */
8214 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8215 {
8216 	struct page *page = vmf->page;
8217 	struct inode *inode = file_inode(vmf->vma->vm_file);
8218 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8219 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8220 	struct btrfs_ordered_extent *ordered;
8221 	struct extent_state *cached_state = NULL;
8222 	struct extent_changeset *data_reserved = NULL;
8223 	char *kaddr;
8224 	unsigned long zero_start;
8225 	loff_t size;
8226 	vm_fault_t ret;
8227 	int ret2;
8228 	int reserved = 0;
8229 	u64 reserved_space;
8230 	u64 page_start;
8231 	u64 page_end;
8232 	u64 end;
8233 
8234 	reserved_space = PAGE_SIZE;
8235 
8236 	sb_start_pagefault(inode->i_sb);
8237 	page_start = page_offset(page);
8238 	page_end = page_start + PAGE_SIZE - 1;
8239 	end = page_end;
8240 
8241 	/*
8242 	 * Reserving delalloc space after obtaining the page lock can lead to
8243 	 * deadlock. For example, if a dirty page is locked by this function
8244 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8245 	 * dirty page write out, then the btrfs_writepage() function could
8246 	 * end up waiting indefinitely to get a lock on the page currently
8247 	 * being processed by btrfs_page_mkwrite() function.
8248 	 */
8249 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8250 					    page_start, reserved_space);
8251 	if (!ret2) {
8252 		ret2 = file_update_time(vmf->vma->vm_file);
8253 		reserved = 1;
8254 	}
8255 	if (ret2) {
8256 		ret = vmf_error(ret2);
8257 		if (reserved)
8258 			goto out;
8259 		goto out_noreserve;
8260 	}
8261 
8262 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8263 again:
8264 	lock_page(page);
8265 	size = i_size_read(inode);
8266 
8267 	if ((page->mapping != inode->i_mapping) ||
8268 	    (page_start >= size)) {
8269 		/* page got truncated out from underneath us */
8270 		goto out_unlock;
8271 	}
8272 	wait_on_page_writeback(page);
8273 
8274 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8275 	set_page_extent_mapped(page);
8276 
8277 	/*
8278 	 * we can't set the delalloc bits if there are pending ordered
8279 	 * extents.  Drop our locks and wait for them to finish
8280 	 */
8281 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8282 			PAGE_SIZE);
8283 	if (ordered) {
8284 		unlock_extent_cached(io_tree, page_start, page_end,
8285 				     &cached_state);
8286 		unlock_page(page);
8287 		btrfs_start_ordered_extent(inode, ordered, 1);
8288 		btrfs_put_ordered_extent(ordered);
8289 		goto again;
8290 	}
8291 
8292 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8293 		reserved_space = round_up(size - page_start,
8294 					  fs_info->sectorsize);
8295 		if (reserved_space < PAGE_SIZE) {
8296 			end = page_start + reserved_space - 1;
8297 			btrfs_delalloc_release_space(BTRFS_I(inode),
8298 					data_reserved, page_start,
8299 					PAGE_SIZE - reserved_space, true);
8300 		}
8301 	}
8302 
8303 	/*
8304 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8305 	 * faulted in, but write(2) could also dirty a page and set delalloc
8306 	 * bits, thus in this case for space account reason, we still need to
8307 	 * clear any delalloc bits within this page range since we have to
8308 	 * reserve data&meta space before lock_page() (see above comments).
8309 	 */
8310 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8311 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8312 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8313 
8314 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8315 					&cached_state);
8316 	if (ret2) {
8317 		unlock_extent_cached(io_tree, page_start, page_end,
8318 				     &cached_state);
8319 		ret = VM_FAULT_SIGBUS;
8320 		goto out_unlock;
8321 	}
8322 
8323 	/* page is wholly or partially inside EOF */
8324 	if (page_start + PAGE_SIZE > size)
8325 		zero_start = offset_in_page(size);
8326 	else
8327 		zero_start = PAGE_SIZE;
8328 
8329 	if (zero_start != PAGE_SIZE) {
8330 		kaddr = kmap(page);
8331 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8332 		flush_dcache_page(page);
8333 		kunmap(page);
8334 	}
8335 	ClearPageChecked(page);
8336 	set_page_dirty(page);
8337 	SetPageUptodate(page);
8338 
8339 	BTRFS_I(inode)->last_trans = fs_info->generation;
8340 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8341 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8342 
8343 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8344 
8345 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8346 	sb_end_pagefault(inode->i_sb);
8347 	extent_changeset_free(data_reserved);
8348 	return VM_FAULT_LOCKED;
8349 
8350 out_unlock:
8351 	unlock_page(page);
8352 out:
8353 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8354 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8355 				     reserved_space, (ret != 0));
8356 out_noreserve:
8357 	sb_end_pagefault(inode->i_sb);
8358 	extent_changeset_free(data_reserved);
8359 	return ret;
8360 }
8361 
8362 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8363 {
8364 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8365 	struct btrfs_root *root = BTRFS_I(inode)->root;
8366 	struct btrfs_block_rsv *rsv;
8367 	int ret;
8368 	struct btrfs_trans_handle *trans;
8369 	u64 mask = fs_info->sectorsize - 1;
8370 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8371 
8372 	if (!skip_writeback) {
8373 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8374 					       (u64)-1);
8375 		if (ret)
8376 			return ret;
8377 	}
8378 
8379 	/*
8380 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8381 	 * things going on here:
8382 	 *
8383 	 * 1) We need to reserve space to update our inode.
8384 	 *
8385 	 * 2) We need to have something to cache all the space that is going to
8386 	 * be free'd up by the truncate operation, but also have some slack
8387 	 * space reserved in case it uses space during the truncate (thank you
8388 	 * very much snapshotting).
8389 	 *
8390 	 * And we need these to be separate.  The fact is we can use a lot of
8391 	 * space doing the truncate, and we have no earthly idea how much space
8392 	 * we will use, so we need the truncate reservation to be separate so it
8393 	 * doesn't end up using space reserved for updating the inode.  We also
8394 	 * need to be able to stop the transaction and start a new one, which
8395 	 * means we need to be able to update the inode several times, and we
8396 	 * have no idea of knowing how many times that will be, so we can't just
8397 	 * reserve 1 item for the entirety of the operation, so that has to be
8398 	 * done separately as well.
8399 	 *
8400 	 * So that leaves us with
8401 	 *
8402 	 * 1) rsv - for the truncate reservation, which we will steal from the
8403 	 * transaction reservation.
8404 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8405 	 * updating the inode.
8406 	 */
8407 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8408 	if (!rsv)
8409 		return -ENOMEM;
8410 	rsv->size = min_size;
8411 	rsv->failfast = 1;
8412 
8413 	/*
8414 	 * 1 for the truncate slack space
8415 	 * 1 for updating the inode.
8416 	 */
8417 	trans = btrfs_start_transaction(root, 2);
8418 	if (IS_ERR(trans)) {
8419 		ret = PTR_ERR(trans);
8420 		goto out;
8421 	}
8422 
8423 	/* Migrate the slack space for the truncate to our reserve */
8424 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8425 				      min_size, false);
8426 	BUG_ON(ret);
8427 
8428 	/*
8429 	 * So if we truncate and then write and fsync we normally would just
8430 	 * write the extents that changed, which is a problem if we need to
8431 	 * first truncate that entire inode.  So set this flag so we write out
8432 	 * all of the extents in the inode to the sync log so we're completely
8433 	 * safe.
8434 	 */
8435 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8436 	trans->block_rsv = rsv;
8437 
8438 	while (1) {
8439 		ret = btrfs_truncate_inode_items(trans, root, inode,
8440 						 inode->i_size,
8441 						 BTRFS_EXTENT_DATA_KEY);
8442 		trans->block_rsv = &fs_info->trans_block_rsv;
8443 		if (ret != -ENOSPC && ret != -EAGAIN)
8444 			break;
8445 
8446 		ret = btrfs_update_inode(trans, root, inode);
8447 		if (ret)
8448 			break;
8449 
8450 		btrfs_end_transaction(trans);
8451 		btrfs_btree_balance_dirty(fs_info);
8452 
8453 		trans = btrfs_start_transaction(root, 2);
8454 		if (IS_ERR(trans)) {
8455 			ret = PTR_ERR(trans);
8456 			trans = NULL;
8457 			break;
8458 		}
8459 
8460 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8461 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8462 					      rsv, min_size, false);
8463 		BUG_ON(ret);	/* shouldn't happen */
8464 		trans->block_rsv = rsv;
8465 	}
8466 
8467 	/*
8468 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8469 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8470 	 * we've truncated everything except the last little bit, and can do
8471 	 * btrfs_truncate_block and then update the disk_i_size.
8472 	 */
8473 	if (ret == NEED_TRUNCATE_BLOCK) {
8474 		btrfs_end_transaction(trans);
8475 		btrfs_btree_balance_dirty(fs_info);
8476 
8477 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8478 		if (ret)
8479 			goto out;
8480 		trans = btrfs_start_transaction(root, 1);
8481 		if (IS_ERR(trans)) {
8482 			ret = PTR_ERR(trans);
8483 			goto out;
8484 		}
8485 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8486 	}
8487 
8488 	if (trans) {
8489 		int ret2;
8490 
8491 		trans->block_rsv = &fs_info->trans_block_rsv;
8492 		ret2 = btrfs_update_inode(trans, root, inode);
8493 		if (ret2 && !ret)
8494 			ret = ret2;
8495 
8496 		ret2 = btrfs_end_transaction(trans);
8497 		if (ret2 && !ret)
8498 			ret = ret2;
8499 		btrfs_btree_balance_dirty(fs_info);
8500 	}
8501 out:
8502 	btrfs_free_block_rsv(fs_info, rsv);
8503 
8504 	return ret;
8505 }
8506 
8507 /*
8508  * create a new subvolume directory/inode (helper for the ioctl).
8509  */
8510 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8511 			     struct btrfs_root *new_root,
8512 			     struct btrfs_root *parent_root,
8513 			     u64 new_dirid)
8514 {
8515 	struct inode *inode;
8516 	int err;
8517 	u64 index = 0;
8518 
8519 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8520 				new_dirid, new_dirid,
8521 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8522 				&index);
8523 	if (IS_ERR(inode))
8524 		return PTR_ERR(inode);
8525 	inode->i_op = &btrfs_dir_inode_operations;
8526 	inode->i_fop = &btrfs_dir_file_operations;
8527 
8528 	set_nlink(inode, 1);
8529 	btrfs_i_size_write(BTRFS_I(inode), 0);
8530 	unlock_new_inode(inode);
8531 
8532 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8533 	if (err)
8534 		btrfs_err(new_root->fs_info,
8535 			  "error inheriting subvolume %llu properties: %d",
8536 			  new_root->root_key.objectid, err);
8537 
8538 	err = btrfs_update_inode(trans, new_root, inode);
8539 
8540 	iput(inode);
8541 	return err;
8542 }
8543 
8544 struct inode *btrfs_alloc_inode(struct super_block *sb)
8545 {
8546 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8547 	struct btrfs_inode *ei;
8548 	struct inode *inode;
8549 
8550 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8551 	if (!ei)
8552 		return NULL;
8553 
8554 	ei->root = NULL;
8555 	ei->generation = 0;
8556 	ei->last_trans = 0;
8557 	ei->last_sub_trans = 0;
8558 	ei->logged_trans = 0;
8559 	ei->delalloc_bytes = 0;
8560 	ei->new_delalloc_bytes = 0;
8561 	ei->defrag_bytes = 0;
8562 	ei->disk_i_size = 0;
8563 	ei->flags = 0;
8564 	ei->csum_bytes = 0;
8565 	ei->index_cnt = (u64)-1;
8566 	ei->dir_index = 0;
8567 	ei->last_unlink_trans = 0;
8568 	ei->last_reflink_trans = 0;
8569 	ei->last_log_commit = 0;
8570 
8571 	spin_lock_init(&ei->lock);
8572 	ei->outstanding_extents = 0;
8573 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8574 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8575 					      BTRFS_BLOCK_RSV_DELALLOC);
8576 	ei->runtime_flags = 0;
8577 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8578 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8579 
8580 	ei->delayed_node = NULL;
8581 
8582 	ei->i_otime.tv_sec = 0;
8583 	ei->i_otime.tv_nsec = 0;
8584 
8585 	inode = &ei->vfs_inode;
8586 	extent_map_tree_init(&ei->extent_tree);
8587 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8588 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8589 			    IO_TREE_INODE_IO_FAILURE, inode);
8590 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8591 			    IO_TREE_INODE_FILE_EXTENT, inode);
8592 	ei->io_tree.track_uptodate = true;
8593 	ei->io_failure_tree.track_uptodate = true;
8594 	atomic_set(&ei->sync_writers, 0);
8595 	mutex_init(&ei->log_mutex);
8596 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8597 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8598 	INIT_LIST_HEAD(&ei->delayed_iput);
8599 	RB_CLEAR_NODE(&ei->rb_node);
8600 	init_rwsem(&ei->dio_sem);
8601 
8602 	return inode;
8603 }
8604 
8605 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8606 void btrfs_test_destroy_inode(struct inode *inode)
8607 {
8608 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8609 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8610 }
8611 #endif
8612 
8613 void btrfs_free_inode(struct inode *inode)
8614 {
8615 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8616 }
8617 
8618 void btrfs_destroy_inode(struct inode *inode)
8619 {
8620 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8621 	struct btrfs_ordered_extent *ordered;
8622 	struct btrfs_root *root = BTRFS_I(inode)->root;
8623 
8624 	WARN_ON(!hlist_empty(&inode->i_dentry));
8625 	WARN_ON(inode->i_data.nrpages);
8626 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8627 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
8628 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8629 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8630 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
8631 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8632 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
8633 
8634 	/*
8635 	 * This can happen where we create an inode, but somebody else also
8636 	 * created the same inode and we need to destroy the one we already
8637 	 * created.
8638 	 */
8639 	if (!root)
8640 		return;
8641 
8642 	while (1) {
8643 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8644 		if (!ordered)
8645 			break;
8646 		else {
8647 			btrfs_err(fs_info,
8648 				  "found ordered extent %llu %llu on inode cleanup",
8649 				  ordered->file_offset, ordered->num_bytes);
8650 			btrfs_remove_ordered_extent(inode, ordered);
8651 			btrfs_put_ordered_extent(ordered);
8652 			btrfs_put_ordered_extent(ordered);
8653 		}
8654 	}
8655 	btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
8656 	inode_tree_del(inode);
8657 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8658 	btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
8659 	btrfs_put_root(BTRFS_I(inode)->root);
8660 }
8661 
8662 int btrfs_drop_inode(struct inode *inode)
8663 {
8664 	struct btrfs_root *root = BTRFS_I(inode)->root;
8665 
8666 	if (root == NULL)
8667 		return 1;
8668 
8669 	/* the snap/subvol tree is on deleting */
8670 	if (btrfs_root_refs(&root->root_item) == 0)
8671 		return 1;
8672 	else
8673 		return generic_drop_inode(inode);
8674 }
8675 
8676 static void init_once(void *foo)
8677 {
8678 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8679 
8680 	inode_init_once(&ei->vfs_inode);
8681 }
8682 
8683 void __cold btrfs_destroy_cachep(void)
8684 {
8685 	/*
8686 	 * Make sure all delayed rcu free inodes are flushed before we
8687 	 * destroy cache.
8688 	 */
8689 	rcu_barrier();
8690 	kmem_cache_destroy(btrfs_inode_cachep);
8691 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8692 	kmem_cache_destroy(btrfs_path_cachep);
8693 	kmem_cache_destroy(btrfs_free_space_cachep);
8694 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8695 }
8696 
8697 int __init btrfs_init_cachep(void)
8698 {
8699 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8700 			sizeof(struct btrfs_inode), 0,
8701 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8702 			init_once);
8703 	if (!btrfs_inode_cachep)
8704 		goto fail;
8705 
8706 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8707 			sizeof(struct btrfs_trans_handle), 0,
8708 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8709 	if (!btrfs_trans_handle_cachep)
8710 		goto fail;
8711 
8712 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8713 			sizeof(struct btrfs_path), 0,
8714 			SLAB_MEM_SPREAD, NULL);
8715 	if (!btrfs_path_cachep)
8716 		goto fail;
8717 
8718 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8719 			sizeof(struct btrfs_free_space), 0,
8720 			SLAB_MEM_SPREAD, NULL);
8721 	if (!btrfs_free_space_cachep)
8722 		goto fail;
8723 
8724 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8725 							PAGE_SIZE, PAGE_SIZE,
8726 							SLAB_RED_ZONE, NULL);
8727 	if (!btrfs_free_space_bitmap_cachep)
8728 		goto fail;
8729 
8730 	return 0;
8731 fail:
8732 	btrfs_destroy_cachep();
8733 	return -ENOMEM;
8734 }
8735 
8736 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8737 			 u32 request_mask, unsigned int flags)
8738 {
8739 	u64 delalloc_bytes;
8740 	struct inode *inode = d_inode(path->dentry);
8741 	u32 blocksize = inode->i_sb->s_blocksize;
8742 	u32 bi_flags = BTRFS_I(inode)->flags;
8743 
8744 	stat->result_mask |= STATX_BTIME;
8745 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8746 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8747 	if (bi_flags & BTRFS_INODE_APPEND)
8748 		stat->attributes |= STATX_ATTR_APPEND;
8749 	if (bi_flags & BTRFS_INODE_COMPRESS)
8750 		stat->attributes |= STATX_ATTR_COMPRESSED;
8751 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8752 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8753 	if (bi_flags & BTRFS_INODE_NODUMP)
8754 		stat->attributes |= STATX_ATTR_NODUMP;
8755 
8756 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8757 				  STATX_ATTR_COMPRESSED |
8758 				  STATX_ATTR_IMMUTABLE |
8759 				  STATX_ATTR_NODUMP);
8760 
8761 	generic_fillattr(inode, stat);
8762 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8763 
8764 	spin_lock(&BTRFS_I(inode)->lock);
8765 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8766 	spin_unlock(&BTRFS_I(inode)->lock);
8767 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8768 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8769 	return 0;
8770 }
8771 
8772 static int btrfs_rename_exchange(struct inode *old_dir,
8773 			      struct dentry *old_dentry,
8774 			      struct inode *new_dir,
8775 			      struct dentry *new_dentry)
8776 {
8777 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8778 	struct btrfs_trans_handle *trans;
8779 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8780 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8781 	struct inode *new_inode = new_dentry->d_inode;
8782 	struct inode *old_inode = old_dentry->d_inode;
8783 	struct timespec64 ctime = current_time(old_inode);
8784 	struct dentry *parent;
8785 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8786 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8787 	u64 old_idx = 0;
8788 	u64 new_idx = 0;
8789 	int ret;
8790 	bool root_log_pinned = false;
8791 	bool dest_log_pinned = false;
8792 	struct btrfs_log_ctx ctx_root;
8793 	struct btrfs_log_ctx ctx_dest;
8794 	bool sync_log_root = false;
8795 	bool sync_log_dest = false;
8796 	bool commit_transaction = false;
8797 
8798 	/* we only allow rename subvolume link between subvolumes */
8799 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8800 		return -EXDEV;
8801 
8802 	btrfs_init_log_ctx(&ctx_root, old_inode);
8803 	btrfs_init_log_ctx(&ctx_dest, new_inode);
8804 
8805 	/* close the race window with snapshot create/destroy ioctl */
8806 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8807 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8808 		down_read(&fs_info->subvol_sem);
8809 
8810 	/*
8811 	 * We want to reserve the absolute worst case amount of items.  So if
8812 	 * both inodes are subvols and we need to unlink them then that would
8813 	 * require 4 item modifications, but if they are both normal inodes it
8814 	 * would require 5 item modifications, so we'll assume their normal
8815 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8816 	 * should cover the worst case number of items we'll modify.
8817 	 */
8818 	trans = btrfs_start_transaction(root, 12);
8819 	if (IS_ERR(trans)) {
8820 		ret = PTR_ERR(trans);
8821 		goto out_notrans;
8822 	}
8823 
8824 	if (dest != root)
8825 		btrfs_record_root_in_trans(trans, dest);
8826 
8827 	/*
8828 	 * We need to find a free sequence number both in the source and
8829 	 * in the destination directory for the exchange.
8830 	 */
8831 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8832 	if (ret)
8833 		goto out_fail;
8834 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8835 	if (ret)
8836 		goto out_fail;
8837 
8838 	BTRFS_I(old_inode)->dir_index = 0ULL;
8839 	BTRFS_I(new_inode)->dir_index = 0ULL;
8840 
8841 	/* Reference for the source. */
8842 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8843 		/* force full log commit if subvolume involved. */
8844 		btrfs_set_log_full_commit(trans);
8845 	} else {
8846 		btrfs_pin_log_trans(root);
8847 		root_log_pinned = true;
8848 		ret = btrfs_insert_inode_ref(trans, dest,
8849 					     new_dentry->d_name.name,
8850 					     new_dentry->d_name.len,
8851 					     old_ino,
8852 					     btrfs_ino(BTRFS_I(new_dir)),
8853 					     old_idx);
8854 		if (ret)
8855 			goto out_fail;
8856 	}
8857 
8858 	/* And now for the dest. */
8859 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8860 		/* force full log commit if subvolume involved. */
8861 		btrfs_set_log_full_commit(trans);
8862 	} else {
8863 		btrfs_pin_log_trans(dest);
8864 		dest_log_pinned = true;
8865 		ret = btrfs_insert_inode_ref(trans, root,
8866 					     old_dentry->d_name.name,
8867 					     old_dentry->d_name.len,
8868 					     new_ino,
8869 					     btrfs_ino(BTRFS_I(old_dir)),
8870 					     new_idx);
8871 		if (ret)
8872 			goto out_fail;
8873 	}
8874 
8875 	/* Update inode version and ctime/mtime. */
8876 	inode_inc_iversion(old_dir);
8877 	inode_inc_iversion(new_dir);
8878 	inode_inc_iversion(old_inode);
8879 	inode_inc_iversion(new_inode);
8880 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8881 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8882 	old_inode->i_ctime = ctime;
8883 	new_inode->i_ctime = ctime;
8884 
8885 	if (old_dentry->d_parent != new_dentry->d_parent) {
8886 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8887 				BTRFS_I(old_inode), 1);
8888 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8889 				BTRFS_I(new_inode), 1);
8890 	}
8891 
8892 	/* src is a subvolume */
8893 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8894 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
8895 	} else { /* src is an inode */
8896 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8897 					   BTRFS_I(old_dentry->d_inode),
8898 					   old_dentry->d_name.name,
8899 					   old_dentry->d_name.len);
8900 		if (!ret)
8901 			ret = btrfs_update_inode(trans, root, old_inode);
8902 	}
8903 	if (ret) {
8904 		btrfs_abort_transaction(trans, ret);
8905 		goto out_fail;
8906 	}
8907 
8908 	/* dest is a subvolume */
8909 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8910 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
8911 	} else { /* dest is an inode */
8912 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8913 					   BTRFS_I(new_dentry->d_inode),
8914 					   new_dentry->d_name.name,
8915 					   new_dentry->d_name.len);
8916 		if (!ret)
8917 			ret = btrfs_update_inode(trans, dest, new_inode);
8918 	}
8919 	if (ret) {
8920 		btrfs_abort_transaction(trans, ret);
8921 		goto out_fail;
8922 	}
8923 
8924 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8925 			     new_dentry->d_name.name,
8926 			     new_dentry->d_name.len, 0, old_idx);
8927 	if (ret) {
8928 		btrfs_abort_transaction(trans, ret);
8929 		goto out_fail;
8930 	}
8931 
8932 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8933 			     old_dentry->d_name.name,
8934 			     old_dentry->d_name.len, 0, new_idx);
8935 	if (ret) {
8936 		btrfs_abort_transaction(trans, ret);
8937 		goto out_fail;
8938 	}
8939 
8940 	if (old_inode->i_nlink == 1)
8941 		BTRFS_I(old_inode)->dir_index = old_idx;
8942 	if (new_inode->i_nlink == 1)
8943 		BTRFS_I(new_inode)->dir_index = new_idx;
8944 
8945 	if (root_log_pinned) {
8946 		parent = new_dentry->d_parent;
8947 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8948 					 BTRFS_I(old_dir), parent,
8949 					 false, &ctx_root);
8950 		if (ret == BTRFS_NEED_LOG_SYNC)
8951 			sync_log_root = true;
8952 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
8953 			commit_transaction = true;
8954 		ret = 0;
8955 		btrfs_end_log_trans(root);
8956 		root_log_pinned = false;
8957 	}
8958 	if (dest_log_pinned) {
8959 		if (!commit_transaction) {
8960 			parent = old_dentry->d_parent;
8961 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8962 						 BTRFS_I(new_dir), parent,
8963 						 false, &ctx_dest);
8964 			if (ret == BTRFS_NEED_LOG_SYNC)
8965 				sync_log_dest = true;
8966 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
8967 				commit_transaction = true;
8968 			ret = 0;
8969 		}
8970 		btrfs_end_log_trans(dest);
8971 		dest_log_pinned = false;
8972 	}
8973 out_fail:
8974 	/*
8975 	 * If we have pinned a log and an error happened, we unpin tasks
8976 	 * trying to sync the log and force them to fallback to a transaction
8977 	 * commit if the log currently contains any of the inodes involved in
8978 	 * this rename operation (to ensure we do not persist a log with an
8979 	 * inconsistent state for any of these inodes or leading to any
8980 	 * inconsistencies when replayed). If the transaction was aborted, the
8981 	 * abortion reason is propagated to userspace when attempting to commit
8982 	 * the transaction. If the log does not contain any of these inodes, we
8983 	 * allow the tasks to sync it.
8984 	 */
8985 	if (ret && (root_log_pinned || dest_log_pinned)) {
8986 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8987 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8988 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
8989 		    (new_inode &&
8990 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
8991 			btrfs_set_log_full_commit(trans);
8992 
8993 		if (root_log_pinned) {
8994 			btrfs_end_log_trans(root);
8995 			root_log_pinned = false;
8996 		}
8997 		if (dest_log_pinned) {
8998 			btrfs_end_log_trans(dest);
8999 			dest_log_pinned = false;
9000 		}
9001 	}
9002 	if (!ret && sync_log_root && !commit_transaction) {
9003 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9004 				     &ctx_root);
9005 		if (ret)
9006 			commit_transaction = true;
9007 	}
9008 	if (!ret && sync_log_dest && !commit_transaction) {
9009 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9010 				     &ctx_dest);
9011 		if (ret)
9012 			commit_transaction = true;
9013 	}
9014 	if (commit_transaction) {
9015 		/*
9016 		 * We may have set commit_transaction when logging the new name
9017 		 * in the destination root, in which case we left the source
9018 		 * root context in the list of log contextes. So make sure we
9019 		 * remove it to avoid invalid memory accesses, since the context
9020 		 * was allocated in our stack frame.
9021 		 */
9022 		if (sync_log_root) {
9023 			mutex_lock(&root->log_mutex);
9024 			list_del_init(&ctx_root.list);
9025 			mutex_unlock(&root->log_mutex);
9026 		}
9027 		ret = btrfs_commit_transaction(trans);
9028 	} else {
9029 		int ret2;
9030 
9031 		ret2 = btrfs_end_transaction(trans);
9032 		ret = ret ? ret : ret2;
9033 	}
9034 out_notrans:
9035 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9036 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9037 		up_read(&fs_info->subvol_sem);
9038 
9039 	ASSERT(list_empty(&ctx_root.list));
9040 	ASSERT(list_empty(&ctx_dest.list));
9041 
9042 	return ret;
9043 }
9044 
9045 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9046 				     struct btrfs_root *root,
9047 				     struct inode *dir,
9048 				     struct dentry *dentry)
9049 {
9050 	int ret;
9051 	struct inode *inode;
9052 	u64 objectid;
9053 	u64 index;
9054 
9055 	ret = btrfs_find_free_ino(root, &objectid);
9056 	if (ret)
9057 		return ret;
9058 
9059 	inode = btrfs_new_inode(trans, root, dir,
9060 				dentry->d_name.name,
9061 				dentry->d_name.len,
9062 				btrfs_ino(BTRFS_I(dir)),
9063 				objectid,
9064 				S_IFCHR | WHITEOUT_MODE,
9065 				&index);
9066 
9067 	if (IS_ERR(inode)) {
9068 		ret = PTR_ERR(inode);
9069 		return ret;
9070 	}
9071 
9072 	inode->i_op = &btrfs_special_inode_operations;
9073 	init_special_inode(inode, inode->i_mode,
9074 		WHITEOUT_DEV);
9075 
9076 	ret = btrfs_init_inode_security(trans, inode, dir,
9077 				&dentry->d_name);
9078 	if (ret)
9079 		goto out;
9080 
9081 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9082 				BTRFS_I(inode), 0, index);
9083 	if (ret)
9084 		goto out;
9085 
9086 	ret = btrfs_update_inode(trans, root, inode);
9087 out:
9088 	unlock_new_inode(inode);
9089 	if (ret)
9090 		inode_dec_link_count(inode);
9091 	iput(inode);
9092 
9093 	return ret;
9094 }
9095 
9096 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9097 			   struct inode *new_dir, struct dentry *new_dentry,
9098 			   unsigned int flags)
9099 {
9100 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9101 	struct btrfs_trans_handle *trans;
9102 	unsigned int trans_num_items;
9103 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9104 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9105 	struct inode *new_inode = d_inode(new_dentry);
9106 	struct inode *old_inode = d_inode(old_dentry);
9107 	u64 index = 0;
9108 	int ret;
9109 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9110 	bool log_pinned = false;
9111 	struct btrfs_log_ctx ctx;
9112 	bool sync_log = false;
9113 	bool commit_transaction = false;
9114 
9115 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9116 		return -EPERM;
9117 
9118 	/* we only allow rename subvolume link between subvolumes */
9119 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9120 		return -EXDEV;
9121 
9122 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9123 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9124 		return -ENOTEMPTY;
9125 
9126 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9127 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9128 		return -ENOTEMPTY;
9129 
9130 
9131 	/* check for collisions, even if the  name isn't there */
9132 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9133 			     new_dentry->d_name.name,
9134 			     new_dentry->d_name.len);
9135 
9136 	if (ret) {
9137 		if (ret == -EEXIST) {
9138 			/* we shouldn't get
9139 			 * eexist without a new_inode */
9140 			if (WARN_ON(!new_inode)) {
9141 				return ret;
9142 			}
9143 		} else {
9144 			/* maybe -EOVERFLOW */
9145 			return ret;
9146 		}
9147 	}
9148 	ret = 0;
9149 
9150 	/*
9151 	 * we're using rename to replace one file with another.  Start IO on it
9152 	 * now so  we don't add too much work to the end of the transaction
9153 	 */
9154 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9155 		filemap_flush(old_inode->i_mapping);
9156 
9157 	/* close the racy window with snapshot create/destroy ioctl */
9158 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9159 		down_read(&fs_info->subvol_sem);
9160 	/*
9161 	 * We want to reserve the absolute worst case amount of items.  So if
9162 	 * both inodes are subvols and we need to unlink them then that would
9163 	 * require 4 item modifications, but if they are both normal inodes it
9164 	 * would require 5 item modifications, so we'll assume they are normal
9165 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9166 	 * should cover the worst case number of items we'll modify.
9167 	 * If our rename has the whiteout flag, we need more 5 units for the
9168 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9169 	 * when selinux is enabled).
9170 	 */
9171 	trans_num_items = 11;
9172 	if (flags & RENAME_WHITEOUT)
9173 		trans_num_items += 5;
9174 	trans = btrfs_start_transaction(root, trans_num_items);
9175 	if (IS_ERR(trans)) {
9176 		ret = PTR_ERR(trans);
9177 		goto out_notrans;
9178 	}
9179 
9180 	if (dest != root)
9181 		btrfs_record_root_in_trans(trans, dest);
9182 
9183 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9184 	if (ret)
9185 		goto out_fail;
9186 
9187 	BTRFS_I(old_inode)->dir_index = 0ULL;
9188 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9189 		/* force full log commit if subvolume involved. */
9190 		btrfs_set_log_full_commit(trans);
9191 	} else {
9192 		btrfs_pin_log_trans(root);
9193 		log_pinned = true;
9194 		ret = btrfs_insert_inode_ref(trans, dest,
9195 					     new_dentry->d_name.name,
9196 					     new_dentry->d_name.len,
9197 					     old_ino,
9198 					     btrfs_ino(BTRFS_I(new_dir)), index);
9199 		if (ret)
9200 			goto out_fail;
9201 	}
9202 
9203 	inode_inc_iversion(old_dir);
9204 	inode_inc_iversion(new_dir);
9205 	inode_inc_iversion(old_inode);
9206 	old_dir->i_ctime = old_dir->i_mtime =
9207 	new_dir->i_ctime = new_dir->i_mtime =
9208 	old_inode->i_ctime = current_time(old_dir);
9209 
9210 	if (old_dentry->d_parent != new_dentry->d_parent)
9211 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9212 				BTRFS_I(old_inode), 1);
9213 
9214 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9215 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9216 	} else {
9217 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9218 					BTRFS_I(d_inode(old_dentry)),
9219 					old_dentry->d_name.name,
9220 					old_dentry->d_name.len);
9221 		if (!ret)
9222 			ret = btrfs_update_inode(trans, root, old_inode);
9223 	}
9224 	if (ret) {
9225 		btrfs_abort_transaction(trans, ret);
9226 		goto out_fail;
9227 	}
9228 
9229 	if (new_inode) {
9230 		inode_inc_iversion(new_inode);
9231 		new_inode->i_ctime = current_time(new_inode);
9232 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9233 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9234 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9235 			BUG_ON(new_inode->i_nlink == 0);
9236 		} else {
9237 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9238 						 BTRFS_I(d_inode(new_dentry)),
9239 						 new_dentry->d_name.name,
9240 						 new_dentry->d_name.len);
9241 		}
9242 		if (!ret && new_inode->i_nlink == 0)
9243 			ret = btrfs_orphan_add(trans,
9244 					BTRFS_I(d_inode(new_dentry)));
9245 		if (ret) {
9246 			btrfs_abort_transaction(trans, ret);
9247 			goto out_fail;
9248 		}
9249 	}
9250 
9251 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9252 			     new_dentry->d_name.name,
9253 			     new_dentry->d_name.len, 0, index);
9254 	if (ret) {
9255 		btrfs_abort_transaction(trans, ret);
9256 		goto out_fail;
9257 	}
9258 
9259 	if (old_inode->i_nlink == 1)
9260 		BTRFS_I(old_inode)->dir_index = index;
9261 
9262 	if (log_pinned) {
9263 		struct dentry *parent = new_dentry->d_parent;
9264 
9265 		btrfs_init_log_ctx(&ctx, old_inode);
9266 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9267 					 BTRFS_I(old_dir), parent,
9268 					 false, &ctx);
9269 		if (ret == BTRFS_NEED_LOG_SYNC)
9270 			sync_log = true;
9271 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9272 			commit_transaction = true;
9273 		ret = 0;
9274 		btrfs_end_log_trans(root);
9275 		log_pinned = false;
9276 	}
9277 
9278 	if (flags & RENAME_WHITEOUT) {
9279 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9280 						old_dentry);
9281 
9282 		if (ret) {
9283 			btrfs_abort_transaction(trans, ret);
9284 			goto out_fail;
9285 		}
9286 	}
9287 out_fail:
9288 	/*
9289 	 * If we have pinned the log and an error happened, we unpin tasks
9290 	 * trying to sync the log and force them to fallback to a transaction
9291 	 * commit if the log currently contains any of the inodes involved in
9292 	 * this rename operation (to ensure we do not persist a log with an
9293 	 * inconsistent state for any of these inodes or leading to any
9294 	 * inconsistencies when replayed). If the transaction was aborted, the
9295 	 * abortion reason is propagated to userspace when attempting to commit
9296 	 * the transaction. If the log does not contain any of these inodes, we
9297 	 * allow the tasks to sync it.
9298 	 */
9299 	if (ret && log_pinned) {
9300 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9301 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9302 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9303 		    (new_inode &&
9304 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9305 			btrfs_set_log_full_commit(trans);
9306 
9307 		btrfs_end_log_trans(root);
9308 		log_pinned = false;
9309 	}
9310 	if (!ret && sync_log) {
9311 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9312 		if (ret)
9313 			commit_transaction = true;
9314 	} else if (sync_log) {
9315 		mutex_lock(&root->log_mutex);
9316 		list_del(&ctx.list);
9317 		mutex_unlock(&root->log_mutex);
9318 	}
9319 	if (commit_transaction) {
9320 		ret = btrfs_commit_transaction(trans);
9321 	} else {
9322 		int ret2;
9323 
9324 		ret2 = btrfs_end_transaction(trans);
9325 		ret = ret ? ret : ret2;
9326 	}
9327 out_notrans:
9328 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9329 		up_read(&fs_info->subvol_sem);
9330 
9331 	return ret;
9332 }
9333 
9334 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9335 			 struct inode *new_dir, struct dentry *new_dentry,
9336 			 unsigned int flags)
9337 {
9338 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9339 		return -EINVAL;
9340 
9341 	if (flags & RENAME_EXCHANGE)
9342 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9343 					  new_dentry);
9344 
9345 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9346 }
9347 
9348 struct btrfs_delalloc_work {
9349 	struct inode *inode;
9350 	struct completion completion;
9351 	struct list_head list;
9352 	struct btrfs_work work;
9353 };
9354 
9355 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9356 {
9357 	struct btrfs_delalloc_work *delalloc_work;
9358 	struct inode *inode;
9359 
9360 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9361 				     work);
9362 	inode = delalloc_work->inode;
9363 	filemap_flush(inode->i_mapping);
9364 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9365 				&BTRFS_I(inode)->runtime_flags))
9366 		filemap_flush(inode->i_mapping);
9367 
9368 	iput(inode);
9369 	complete(&delalloc_work->completion);
9370 }
9371 
9372 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9373 {
9374 	struct btrfs_delalloc_work *work;
9375 
9376 	work = kmalloc(sizeof(*work), GFP_NOFS);
9377 	if (!work)
9378 		return NULL;
9379 
9380 	init_completion(&work->completion);
9381 	INIT_LIST_HEAD(&work->list);
9382 	work->inode = inode;
9383 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9384 
9385 	return work;
9386 }
9387 
9388 /*
9389  * some fairly slow code that needs optimization. This walks the list
9390  * of all the inodes with pending delalloc and forces them to disk.
9391  */
9392 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9393 {
9394 	struct btrfs_inode *binode;
9395 	struct inode *inode;
9396 	struct btrfs_delalloc_work *work, *next;
9397 	struct list_head works;
9398 	struct list_head splice;
9399 	int ret = 0;
9400 
9401 	INIT_LIST_HEAD(&works);
9402 	INIT_LIST_HEAD(&splice);
9403 
9404 	mutex_lock(&root->delalloc_mutex);
9405 	spin_lock(&root->delalloc_lock);
9406 	list_splice_init(&root->delalloc_inodes, &splice);
9407 	while (!list_empty(&splice)) {
9408 		binode = list_entry(splice.next, struct btrfs_inode,
9409 				    delalloc_inodes);
9410 
9411 		list_move_tail(&binode->delalloc_inodes,
9412 			       &root->delalloc_inodes);
9413 		inode = igrab(&binode->vfs_inode);
9414 		if (!inode) {
9415 			cond_resched_lock(&root->delalloc_lock);
9416 			continue;
9417 		}
9418 		spin_unlock(&root->delalloc_lock);
9419 
9420 		if (snapshot)
9421 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9422 				&binode->runtime_flags);
9423 		work = btrfs_alloc_delalloc_work(inode);
9424 		if (!work) {
9425 			iput(inode);
9426 			ret = -ENOMEM;
9427 			goto out;
9428 		}
9429 		list_add_tail(&work->list, &works);
9430 		btrfs_queue_work(root->fs_info->flush_workers,
9431 				 &work->work);
9432 		ret++;
9433 		if (nr != -1 && ret >= nr)
9434 			goto out;
9435 		cond_resched();
9436 		spin_lock(&root->delalloc_lock);
9437 	}
9438 	spin_unlock(&root->delalloc_lock);
9439 
9440 out:
9441 	list_for_each_entry_safe(work, next, &works, list) {
9442 		list_del_init(&work->list);
9443 		wait_for_completion(&work->completion);
9444 		kfree(work);
9445 	}
9446 
9447 	if (!list_empty(&splice)) {
9448 		spin_lock(&root->delalloc_lock);
9449 		list_splice_tail(&splice, &root->delalloc_inodes);
9450 		spin_unlock(&root->delalloc_lock);
9451 	}
9452 	mutex_unlock(&root->delalloc_mutex);
9453 	return ret;
9454 }
9455 
9456 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9457 {
9458 	struct btrfs_fs_info *fs_info = root->fs_info;
9459 	int ret;
9460 
9461 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9462 		return -EROFS;
9463 
9464 	ret = start_delalloc_inodes(root, -1, true);
9465 	if (ret > 0)
9466 		ret = 0;
9467 	return ret;
9468 }
9469 
9470 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
9471 {
9472 	struct btrfs_root *root;
9473 	struct list_head splice;
9474 	int ret;
9475 
9476 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9477 		return -EROFS;
9478 
9479 	INIT_LIST_HEAD(&splice);
9480 
9481 	mutex_lock(&fs_info->delalloc_root_mutex);
9482 	spin_lock(&fs_info->delalloc_root_lock);
9483 	list_splice_init(&fs_info->delalloc_roots, &splice);
9484 	while (!list_empty(&splice) && nr) {
9485 		root = list_first_entry(&splice, struct btrfs_root,
9486 					delalloc_root);
9487 		root = btrfs_grab_root(root);
9488 		BUG_ON(!root);
9489 		list_move_tail(&root->delalloc_root,
9490 			       &fs_info->delalloc_roots);
9491 		spin_unlock(&fs_info->delalloc_root_lock);
9492 
9493 		ret = start_delalloc_inodes(root, nr, false);
9494 		btrfs_put_root(root);
9495 		if (ret < 0)
9496 			goto out;
9497 
9498 		if (nr != -1) {
9499 			nr -= ret;
9500 			WARN_ON(nr < 0);
9501 		}
9502 		spin_lock(&fs_info->delalloc_root_lock);
9503 	}
9504 	spin_unlock(&fs_info->delalloc_root_lock);
9505 
9506 	ret = 0;
9507 out:
9508 	if (!list_empty(&splice)) {
9509 		spin_lock(&fs_info->delalloc_root_lock);
9510 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9511 		spin_unlock(&fs_info->delalloc_root_lock);
9512 	}
9513 	mutex_unlock(&fs_info->delalloc_root_mutex);
9514 	return ret;
9515 }
9516 
9517 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9518 			 const char *symname)
9519 {
9520 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9521 	struct btrfs_trans_handle *trans;
9522 	struct btrfs_root *root = BTRFS_I(dir)->root;
9523 	struct btrfs_path *path;
9524 	struct btrfs_key key;
9525 	struct inode *inode = NULL;
9526 	int err;
9527 	u64 objectid;
9528 	u64 index = 0;
9529 	int name_len;
9530 	int datasize;
9531 	unsigned long ptr;
9532 	struct btrfs_file_extent_item *ei;
9533 	struct extent_buffer *leaf;
9534 
9535 	name_len = strlen(symname);
9536 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9537 		return -ENAMETOOLONG;
9538 
9539 	/*
9540 	 * 2 items for inode item and ref
9541 	 * 2 items for dir items
9542 	 * 1 item for updating parent inode item
9543 	 * 1 item for the inline extent item
9544 	 * 1 item for xattr if selinux is on
9545 	 */
9546 	trans = btrfs_start_transaction(root, 7);
9547 	if (IS_ERR(trans))
9548 		return PTR_ERR(trans);
9549 
9550 	err = btrfs_find_free_ino(root, &objectid);
9551 	if (err)
9552 		goto out_unlock;
9553 
9554 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9555 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9556 				objectid, S_IFLNK|S_IRWXUGO, &index);
9557 	if (IS_ERR(inode)) {
9558 		err = PTR_ERR(inode);
9559 		inode = NULL;
9560 		goto out_unlock;
9561 	}
9562 
9563 	/*
9564 	* If the active LSM wants to access the inode during
9565 	* d_instantiate it needs these. Smack checks to see
9566 	* if the filesystem supports xattrs by looking at the
9567 	* ops vector.
9568 	*/
9569 	inode->i_fop = &btrfs_file_operations;
9570 	inode->i_op = &btrfs_file_inode_operations;
9571 	inode->i_mapping->a_ops = &btrfs_aops;
9572 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9573 
9574 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9575 	if (err)
9576 		goto out_unlock;
9577 
9578 	path = btrfs_alloc_path();
9579 	if (!path) {
9580 		err = -ENOMEM;
9581 		goto out_unlock;
9582 	}
9583 	key.objectid = btrfs_ino(BTRFS_I(inode));
9584 	key.offset = 0;
9585 	key.type = BTRFS_EXTENT_DATA_KEY;
9586 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9587 	err = btrfs_insert_empty_item(trans, root, path, &key,
9588 				      datasize);
9589 	if (err) {
9590 		btrfs_free_path(path);
9591 		goto out_unlock;
9592 	}
9593 	leaf = path->nodes[0];
9594 	ei = btrfs_item_ptr(leaf, path->slots[0],
9595 			    struct btrfs_file_extent_item);
9596 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9597 	btrfs_set_file_extent_type(leaf, ei,
9598 				   BTRFS_FILE_EXTENT_INLINE);
9599 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9600 	btrfs_set_file_extent_compression(leaf, ei, 0);
9601 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9602 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9603 
9604 	ptr = btrfs_file_extent_inline_start(ei);
9605 	write_extent_buffer(leaf, symname, ptr, name_len);
9606 	btrfs_mark_buffer_dirty(leaf);
9607 	btrfs_free_path(path);
9608 
9609 	inode->i_op = &btrfs_symlink_inode_operations;
9610 	inode_nohighmem(inode);
9611 	inode_set_bytes(inode, name_len);
9612 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9613 	err = btrfs_update_inode(trans, root, inode);
9614 	/*
9615 	 * Last step, add directory indexes for our symlink inode. This is the
9616 	 * last step to avoid extra cleanup of these indexes if an error happens
9617 	 * elsewhere above.
9618 	 */
9619 	if (!err)
9620 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9621 				BTRFS_I(inode), 0, index);
9622 	if (err)
9623 		goto out_unlock;
9624 
9625 	d_instantiate_new(dentry, inode);
9626 
9627 out_unlock:
9628 	btrfs_end_transaction(trans);
9629 	if (err && inode) {
9630 		inode_dec_link_count(inode);
9631 		discard_new_inode(inode);
9632 	}
9633 	btrfs_btree_balance_dirty(fs_info);
9634 	return err;
9635 }
9636 
9637 static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9638 				       struct inode *inode, struct btrfs_key *ins,
9639 				       u64 file_offset)
9640 {
9641 	struct btrfs_file_extent_item stack_fi;
9642 	u64 start = ins->objectid;
9643 	u64 len = ins->offset;
9644 	int ret;
9645 
9646 	memset(&stack_fi, 0, sizeof(stack_fi));
9647 
9648 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9649 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9650 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9651 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9652 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9653 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9654 	/* Encryption and other encoding is reserved and all 0 */
9655 
9656 	ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9657 	if (ret < 0)
9658 		return ret;
9659 	return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
9660 					   &stack_fi, ret);
9661 }
9662 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9663 				       u64 start, u64 num_bytes, u64 min_size,
9664 				       loff_t actual_len, u64 *alloc_hint,
9665 				       struct btrfs_trans_handle *trans)
9666 {
9667 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9668 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9669 	struct extent_map *em;
9670 	struct btrfs_root *root = BTRFS_I(inode)->root;
9671 	struct btrfs_key ins;
9672 	u64 cur_offset = start;
9673 	u64 clear_offset = start;
9674 	u64 i_size;
9675 	u64 cur_bytes;
9676 	u64 last_alloc = (u64)-1;
9677 	int ret = 0;
9678 	bool own_trans = true;
9679 	u64 end = start + num_bytes - 1;
9680 
9681 	if (trans)
9682 		own_trans = false;
9683 	while (num_bytes > 0) {
9684 		if (own_trans) {
9685 			trans = btrfs_start_transaction(root, 3);
9686 			if (IS_ERR(trans)) {
9687 				ret = PTR_ERR(trans);
9688 				break;
9689 			}
9690 		}
9691 
9692 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9693 		cur_bytes = max(cur_bytes, min_size);
9694 		/*
9695 		 * If we are severely fragmented we could end up with really
9696 		 * small allocations, so if the allocator is returning small
9697 		 * chunks lets make its job easier by only searching for those
9698 		 * sized chunks.
9699 		 */
9700 		cur_bytes = min(cur_bytes, last_alloc);
9701 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9702 				min_size, 0, *alloc_hint, &ins, 1, 0);
9703 		if (ret) {
9704 			if (own_trans)
9705 				btrfs_end_transaction(trans);
9706 			break;
9707 		}
9708 
9709 		/*
9710 		 * We've reserved this space, and thus converted it from
9711 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9712 		 * from here on out we will only need to clear our reservation
9713 		 * for the remaining unreserved area, so advance our
9714 		 * clear_offset by our extent size.
9715 		 */
9716 		clear_offset += ins.offset;
9717 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9718 
9719 		last_alloc = ins.offset;
9720 		ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9721 		if (ret) {
9722 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9723 						   ins.offset, 0);
9724 			btrfs_abort_transaction(trans, ret);
9725 			if (own_trans)
9726 				btrfs_end_transaction(trans);
9727 			break;
9728 		}
9729 
9730 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9731 					cur_offset + ins.offset -1, 0);
9732 
9733 		em = alloc_extent_map();
9734 		if (!em) {
9735 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9736 				&BTRFS_I(inode)->runtime_flags);
9737 			goto next;
9738 		}
9739 
9740 		em->start = cur_offset;
9741 		em->orig_start = cur_offset;
9742 		em->len = ins.offset;
9743 		em->block_start = ins.objectid;
9744 		em->block_len = ins.offset;
9745 		em->orig_block_len = ins.offset;
9746 		em->ram_bytes = ins.offset;
9747 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9748 		em->generation = trans->transid;
9749 
9750 		while (1) {
9751 			write_lock(&em_tree->lock);
9752 			ret = add_extent_mapping(em_tree, em, 1);
9753 			write_unlock(&em_tree->lock);
9754 			if (ret != -EEXIST)
9755 				break;
9756 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9757 						cur_offset + ins.offset - 1,
9758 						0);
9759 		}
9760 		free_extent_map(em);
9761 next:
9762 		num_bytes -= ins.offset;
9763 		cur_offset += ins.offset;
9764 		*alloc_hint = ins.objectid + ins.offset;
9765 
9766 		inode_inc_iversion(inode);
9767 		inode->i_ctime = current_time(inode);
9768 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9769 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9770 		    (actual_len > inode->i_size) &&
9771 		    (cur_offset > inode->i_size)) {
9772 			if (cur_offset > actual_len)
9773 				i_size = actual_len;
9774 			else
9775 				i_size = cur_offset;
9776 			i_size_write(inode, i_size);
9777 			btrfs_inode_safe_disk_i_size_write(inode, 0);
9778 		}
9779 
9780 		ret = btrfs_update_inode(trans, root, inode);
9781 
9782 		if (ret) {
9783 			btrfs_abort_transaction(trans, ret);
9784 			if (own_trans)
9785 				btrfs_end_transaction(trans);
9786 			break;
9787 		}
9788 
9789 		if (own_trans)
9790 			btrfs_end_transaction(trans);
9791 	}
9792 	if (clear_offset < end)
9793 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9794 			end - clear_offset + 1);
9795 	return ret;
9796 }
9797 
9798 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9799 			      u64 start, u64 num_bytes, u64 min_size,
9800 			      loff_t actual_len, u64 *alloc_hint)
9801 {
9802 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9803 					   min_size, actual_len, alloc_hint,
9804 					   NULL);
9805 }
9806 
9807 int btrfs_prealloc_file_range_trans(struct inode *inode,
9808 				    struct btrfs_trans_handle *trans, int mode,
9809 				    u64 start, u64 num_bytes, u64 min_size,
9810 				    loff_t actual_len, u64 *alloc_hint)
9811 {
9812 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9813 					   min_size, actual_len, alloc_hint, trans);
9814 }
9815 
9816 static int btrfs_set_page_dirty(struct page *page)
9817 {
9818 	return __set_page_dirty_nobuffers(page);
9819 }
9820 
9821 static int btrfs_permission(struct inode *inode, int mask)
9822 {
9823 	struct btrfs_root *root = BTRFS_I(inode)->root;
9824 	umode_t mode = inode->i_mode;
9825 
9826 	if (mask & MAY_WRITE &&
9827 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9828 		if (btrfs_root_readonly(root))
9829 			return -EROFS;
9830 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9831 			return -EACCES;
9832 	}
9833 	return generic_permission(inode, mask);
9834 }
9835 
9836 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9837 {
9838 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9839 	struct btrfs_trans_handle *trans;
9840 	struct btrfs_root *root = BTRFS_I(dir)->root;
9841 	struct inode *inode = NULL;
9842 	u64 objectid;
9843 	u64 index;
9844 	int ret = 0;
9845 
9846 	/*
9847 	 * 5 units required for adding orphan entry
9848 	 */
9849 	trans = btrfs_start_transaction(root, 5);
9850 	if (IS_ERR(trans))
9851 		return PTR_ERR(trans);
9852 
9853 	ret = btrfs_find_free_ino(root, &objectid);
9854 	if (ret)
9855 		goto out;
9856 
9857 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9858 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9859 	if (IS_ERR(inode)) {
9860 		ret = PTR_ERR(inode);
9861 		inode = NULL;
9862 		goto out;
9863 	}
9864 
9865 	inode->i_fop = &btrfs_file_operations;
9866 	inode->i_op = &btrfs_file_inode_operations;
9867 
9868 	inode->i_mapping->a_ops = &btrfs_aops;
9869 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9870 
9871 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9872 	if (ret)
9873 		goto out;
9874 
9875 	ret = btrfs_update_inode(trans, root, inode);
9876 	if (ret)
9877 		goto out;
9878 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9879 	if (ret)
9880 		goto out;
9881 
9882 	/*
9883 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9884 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9885 	 * through:
9886 	 *
9887 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9888 	 */
9889 	set_nlink(inode, 1);
9890 	d_tmpfile(dentry, inode);
9891 	unlock_new_inode(inode);
9892 	mark_inode_dirty(inode);
9893 out:
9894 	btrfs_end_transaction(trans);
9895 	if (ret && inode)
9896 		discard_new_inode(inode);
9897 	btrfs_btree_balance_dirty(fs_info);
9898 	return ret;
9899 }
9900 
9901 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
9902 {
9903 	struct inode *inode = tree->private_data;
9904 	unsigned long index = start >> PAGE_SHIFT;
9905 	unsigned long end_index = end >> PAGE_SHIFT;
9906 	struct page *page;
9907 
9908 	while (index <= end_index) {
9909 		page = find_get_page(inode->i_mapping, index);
9910 		ASSERT(page); /* Pages should be in the extent_io_tree */
9911 		set_page_writeback(page);
9912 		put_page(page);
9913 		index++;
9914 	}
9915 }
9916 
9917 #ifdef CONFIG_SWAP
9918 /*
9919  * Add an entry indicating a block group or device which is pinned by a
9920  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9921  * negative errno on failure.
9922  */
9923 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9924 				  bool is_block_group)
9925 {
9926 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9927 	struct btrfs_swapfile_pin *sp, *entry;
9928 	struct rb_node **p;
9929 	struct rb_node *parent = NULL;
9930 
9931 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9932 	if (!sp)
9933 		return -ENOMEM;
9934 	sp->ptr = ptr;
9935 	sp->inode = inode;
9936 	sp->is_block_group = is_block_group;
9937 
9938 	spin_lock(&fs_info->swapfile_pins_lock);
9939 	p = &fs_info->swapfile_pins.rb_node;
9940 	while (*p) {
9941 		parent = *p;
9942 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9943 		if (sp->ptr < entry->ptr ||
9944 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9945 			p = &(*p)->rb_left;
9946 		} else if (sp->ptr > entry->ptr ||
9947 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9948 			p = &(*p)->rb_right;
9949 		} else {
9950 			spin_unlock(&fs_info->swapfile_pins_lock);
9951 			kfree(sp);
9952 			return 1;
9953 		}
9954 	}
9955 	rb_link_node(&sp->node, parent, p);
9956 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9957 	spin_unlock(&fs_info->swapfile_pins_lock);
9958 	return 0;
9959 }
9960 
9961 /* Free all of the entries pinned by this swapfile. */
9962 static void btrfs_free_swapfile_pins(struct inode *inode)
9963 {
9964 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9965 	struct btrfs_swapfile_pin *sp;
9966 	struct rb_node *node, *next;
9967 
9968 	spin_lock(&fs_info->swapfile_pins_lock);
9969 	node = rb_first(&fs_info->swapfile_pins);
9970 	while (node) {
9971 		next = rb_next(node);
9972 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9973 		if (sp->inode == inode) {
9974 			rb_erase(&sp->node, &fs_info->swapfile_pins);
9975 			if (sp->is_block_group)
9976 				btrfs_put_block_group(sp->ptr);
9977 			kfree(sp);
9978 		}
9979 		node = next;
9980 	}
9981 	spin_unlock(&fs_info->swapfile_pins_lock);
9982 }
9983 
9984 struct btrfs_swap_info {
9985 	u64 start;
9986 	u64 block_start;
9987 	u64 block_len;
9988 	u64 lowest_ppage;
9989 	u64 highest_ppage;
9990 	unsigned long nr_pages;
9991 	int nr_extents;
9992 };
9993 
9994 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9995 				 struct btrfs_swap_info *bsi)
9996 {
9997 	unsigned long nr_pages;
9998 	u64 first_ppage, first_ppage_reported, next_ppage;
9999 	int ret;
10000 
10001 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10002 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10003 				PAGE_SIZE) >> PAGE_SHIFT;
10004 
10005 	if (first_ppage >= next_ppage)
10006 		return 0;
10007 	nr_pages = next_ppage - first_ppage;
10008 
10009 	first_ppage_reported = first_ppage;
10010 	if (bsi->start == 0)
10011 		first_ppage_reported++;
10012 	if (bsi->lowest_ppage > first_ppage_reported)
10013 		bsi->lowest_ppage = first_ppage_reported;
10014 	if (bsi->highest_ppage < (next_ppage - 1))
10015 		bsi->highest_ppage = next_ppage - 1;
10016 
10017 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10018 	if (ret < 0)
10019 		return ret;
10020 	bsi->nr_extents += ret;
10021 	bsi->nr_pages += nr_pages;
10022 	return 0;
10023 }
10024 
10025 static void btrfs_swap_deactivate(struct file *file)
10026 {
10027 	struct inode *inode = file_inode(file);
10028 
10029 	btrfs_free_swapfile_pins(inode);
10030 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10031 }
10032 
10033 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10034 			       sector_t *span)
10035 {
10036 	struct inode *inode = file_inode(file);
10037 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10038 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10039 	struct extent_state *cached_state = NULL;
10040 	struct extent_map *em = NULL;
10041 	struct btrfs_device *device = NULL;
10042 	struct btrfs_swap_info bsi = {
10043 		.lowest_ppage = (sector_t)-1ULL,
10044 	};
10045 	int ret = 0;
10046 	u64 isize;
10047 	u64 start;
10048 
10049 	/*
10050 	 * If the swap file was just created, make sure delalloc is done. If the
10051 	 * file changes again after this, the user is doing something stupid and
10052 	 * we don't really care.
10053 	 */
10054 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10055 	if (ret)
10056 		return ret;
10057 
10058 	/*
10059 	 * The inode is locked, so these flags won't change after we check them.
10060 	 */
10061 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10062 		btrfs_warn(fs_info, "swapfile must not be compressed");
10063 		return -EINVAL;
10064 	}
10065 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10066 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10067 		return -EINVAL;
10068 	}
10069 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10070 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10071 		return -EINVAL;
10072 	}
10073 
10074 	/*
10075 	 * Balance or device remove/replace/resize can move stuff around from
10076 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10077 	 * concurrently while we are mapping the swap extents, and
10078 	 * fs_info->swapfile_pins prevents them from running while the swap file
10079 	 * is active and moving the extents. Note that this also prevents a
10080 	 * concurrent device add which isn't actually necessary, but it's not
10081 	 * really worth the trouble to allow it.
10082 	 */
10083 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10084 		btrfs_warn(fs_info,
10085 	   "cannot activate swapfile while exclusive operation is running");
10086 		return -EBUSY;
10087 	}
10088 	/*
10089 	 * Snapshots can create extents which require COW even if NODATACOW is
10090 	 * set. We use this counter to prevent snapshots. We must increment it
10091 	 * before walking the extents because we don't want a concurrent
10092 	 * snapshot to run after we've already checked the extents.
10093 	 */
10094 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10095 
10096 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10097 
10098 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10099 	start = 0;
10100 	while (start < isize) {
10101 		u64 logical_block_start, physical_block_start;
10102 		struct btrfs_block_group *bg;
10103 		u64 len = isize - start;
10104 
10105 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10106 		if (IS_ERR(em)) {
10107 			ret = PTR_ERR(em);
10108 			goto out;
10109 		}
10110 
10111 		if (em->block_start == EXTENT_MAP_HOLE) {
10112 			btrfs_warn(fs_info, "swapfile must not have holes");
10113 			ret = -EINVAL;
10114 			goto out;
10115 		}
10116 		if (em->block_start == EXTENT_MAP_INLINE) {
10117 			/*
10118 			 * It's unlikely we'll ever actually find ourselves
10119 			 * here, as a file small enough to fit inline won't be
10120 			 * big enough to store more than the swap header, but in
10121 			 * case something changes in the future, let's catch it
10122 			 * here rather than later.
10123 			 */
10124 			btrfs_warn(fs_info, "swapfile must not be inline");
10125 			ret = -EINVAL;
10126 			goto out;
10127 		}
10128 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10129 			btrfs_warn(fs_info, "swapfile must not be compressed");
10130 			ret = -EINVAL;
10131 			goto out;
10132 		}
10133 
10134 		logical_block_start = em->block_start + (start - em->start);
10135 		len = min(len, em->len - (start - em->start));
10136 		free_extent_map(em);
10137 		em = NULL;
10138 
10139 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10140 		if (ret < 0) {
10141 			goto out;
10142 		} else if (ret) {
10143 			ret = 0;
10144 		} else {
10145 			btrfs_warn(fs_info,
10146 				   "swapfile must not be copy-on-write");
10147 			ret = -EINVAL;
10148 			goto out;
10149 		}
10150 
10151 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10152 		if (IS_ERR(em)) {
10153 			ret = PTR_ERR(em);
10154 			goto out;
10155 		}
10156 
10157 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10158 			btrfs_warn(fs_info,
10159 				   "swapfile must have single data profile");
10160 			ret = -EINVAL;
10161 			goto out;
10162 		}
10163 
10164 		if (device == NULL) {
10165 			device = em->map_lookup->stripes[0].dev;
10166 			ret = btrfs_add_swapfile_pin(inode, device, false);
10167 			if (ret == 1)
10168 				ret = 0;
10169 			else if (ret)
10170 				goto out;
10171 		} else if (device != em->map_lookup->stripes[0].dev) {
10172 			btrfs_warn(fs_info, "swapfile must be on one device");
10173 			ret = -EINVAL;
10174 			goto out;
10175 		}
10176 
10177 		physical_block_start = (em->map_lookup->stripes[0].physical +
10178 					(logical_block_start - em->start));
10179 		len = min(len, em->len - (logical_block_start - em->start));
10180 		free_extent_map(em);
10181 		em = NULL;
10182 
10183 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10184 		if (!bg) {
10185 			btrfs_warn(fs_info,
10186 			   "could not find block group containing swapfile");
10187 			ret = -EINVAL;
10188 			goto out;
10189 		}
10190 
10191 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10192 		if (ret) {
10193 			btrfs_put_block_group(bg);
10194 			if (ret == 1)
10195 				ret = 0;
10196 			else
10197 				goto out;
10198 		}
10199 
10200 		if (bsi.block_len &&
10201 		    bsi.block_start + bsi.block_len == physical_block_start) {
10202 			bsi.block_len += len;
10203 		} else {
10204 			if (bsi.block_len) {
10205 				ret = btrfs_add_swap_extent(sis, &bsi);
10206 				if (ret)
10207 					goto out;
10208 			}
10209 			bsi.start = start;
10210 			bsi.block_start = physical_block_start;
10211 			bsi.block_len = len;
10212 		}
10213 
10214 		start += len;
10215 	}
10216 
10217 	if (bsi.block_len)
10218 		ret = btrfs_add_swap_extent(sis, &bsi);
10219 
10220 out:
10221 	if (!IS_ERR_OR_NULL(em))
10222 		free_extent_map(em);
10223 
10224 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10225 
10226 	if (ret)
10227 		btrfs_swap_deactivate(file);
10228 
10229 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10230 
10231 	if (ret)
10232 		return ret;
10233 
10234 	if (device)
10235 		sis->bdev = device->bdev;
10236 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10237 	sis->max = bsi.nr_pages;
10238 	sis->pages = bsi.nr_pages - 1;
10239 	sis->highest_bit = bsi.nr_pages - 1;
10240 	return bsi.nr_extents;
10241 }
10242 #else
10243 static void btrfs_swap_deactivate(struct file *file)
10244 {
10245 }
10246 
10247 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10248 			       sector_t *span)
10249 {
10250 	return -EOPNOTSUPP;
10251 }
10252 #endif
10253 
10254 static const struct inode_operations btrfs_dir_inode_operations = {
10255 	.getattr	= btrfs_getattr,
10256 	.lookup		= btrfs_lookup,
10257 	.create		= btrfs_create,
10258 	.unlink		= btrfs_unlink,
10259 	.link		= btrfs_link,
10260 	.mkdir		= btrfs_mkdir,
10261 	.rmdir		= btrfs_rmdir,
10262 	.rename		= btrfs_rename2,
10263 	.symlink	= btrfs_symlink,
10264 	.setattr	= btrfs_setattr,
10265 	.mknod		= btrfs_mknod,
10266 	.listxattr	= btrfs_listxattr,
10267 	.permission	= btrfs_permission,
10268 	.get_acl	= btrfs_get_acl,
10269 	.set_acl	= btrfs_set_acl,
10270 	.update_time	= btrfs_update_time,
10271 	.tmpfile        = btrfs_tmpfile,
10272 };
10273 
10274 static const struct file_operations btrfs_dir_file_operations = {
10275 	.llseek		= generic_file_llseek,
10276 	.read		= generic_read_dir,
10277 	.iterate_shared	= btrfs_real_readdir,
10278 	.open		= btrfs_opendir,
10279 	.unlocked_ioctl	= btrfs_ioctl,
10280 #ifdef CONFIG_COMPAT
10281 	.compat_ioctl	= btrfs_compat_ioctl,
10282 #endif
10283 	.release        = btrfs_release_file,
10284 	.fsync		= btrfs_sync_file,
10285 };
10286 
10287 static const struct extent_io_ops btrfs_extent_io_ops = {
10288 	/* mandatory callbacks */
10289 	.submit_bio_hook = btrfs_submit_bio_hook,
10290 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10291 };
10292 
10293 /*
10294  * btrfs doesn't support the bmap operation because swapfiles
10295  * use bmap to make a mapping of extents in the file.  They assume
10296  * these extents won't change over the life of the file and they
10297  * use the bmap result to do IO directly to the drive.
10298  *
10299  * the btrfs bmap call would return logical addresses that aren't
10300  * suitable for IO and they also will change frequently as COW
10301  * operations happen.  So, swapfile + btrfs == corruption.
10302  *
10303  * For now we're avoiding this by dropping bmap.
10304  */
10305 static const struct address_space_operations btrfs_aops = {
10306 	.readpage	= btrfs_readpage,
10307 	.writepage	= btrfs_writepage,
10308 	.writepages	= btrfs_writepages,
10309 	.readahead	= btrfs_readahead,
10310 	.direct_IO	= btrfs_direct_IO,
10311 	.invalidatepage = btrfs_invalidatepage,
10312 	.releasepage	= btrfs_releasepage,
10313 #ifdef CONFIG_MIGRATION
10314 	.migratepage	= btrfs_migratepage,
10315 #endif
10316 	.set_page_dirty	= btrfs_set_page_dirty,
10317 	.error_remove_page = generic_error_remove_page,
10318 	.swap_activate	= btrfs_swap_activate,
10319 	.swap_deactivate = btrfs_swap_deactivate,
10320 };
10321 
10322 static const struct inode_operations btrfs_file_inode_operations = {
10323 	.getattr	= btrfs_getattr,
10324 	.setattr	= btrfs_setattr,
10325 	.listxattr      = btrfs_listxattr,
10326 	.permission	= btrfs_permission,
10327 	.fiemap		= btrfs_fiemap,
10328 	.get_acl	= btrfs_get_acl,
10329 	.set_acl	= btrfs_set_acl,
10330 	.update_time	= btrfs_update_time,
10331 };
10332 static const struct inode_operations btrfs_special_inode_operations = {
10333 	.getattr	= btrfs_getattr,
10334 	.setattr	= btrfs_setattr,
10335 	.permission	= btrfs_permission,
10336 	.listxattr	= btrfs_listxattr,
10337 	.get_acl	= btrfs_get_acl,
10338 	.set_acl	= btrfs_set_acl,
10339 	.update_time	= btrfs_update_time,
10340 };
10341 static const struct inode_operations btrfs_symlink_inode_operations = {
10342 	.get_link	= page_get_link,
10343 	.getattr	= btrfs_getattr,
10344 	.setattr	= btrfs_setattr,
10345 	.permission	= btrfs_permission,
10346 	.listxattr	= btrfs_listxattr,
10347 	.update_time	= btrfs_update_time,
10348 };
10349 
10350 const struct dentry_operations btrfs_dentry_operations = {
10351 	.d_delete	= btrfs_dentry_delete,
10352 };
10353