xref: /openbmc/linux/fs/btrfs/inode.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
78 
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85 
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
89 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
90 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
91 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
92 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
93 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
94 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
95 };
96 
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 				   struct page *locked_page,
102 				   u64 start, u64 end, int *page_started,
103 				   unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 					   u64 len, u64 orig_start,
106 					   u64 block_start, u64 block_len,
107 					   u64 orig_block_len, u64 ram_bytes,
108 					   int type);
109 
110 static int btrfs_dirty_inode(struct inode *inode);
111 
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode *inode)
114 {
115 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116 }
117 #endif
118 
119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 				     struct inode *inode,  struct inode *dir,
121 				     const struct qstr *qstr)
122 {
123 	int err;
124 
125 	err = btrfs_init_acl(trans, inode, dir);
126 	if (!err)
127 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 	return err;
129 }
130 
131 /*
132  * this does all the hard work for inserting an inline extent into
133  * the btree.  The caller should have done a btrfs_drop_extents so that
134  * no overlapping inline items exist in the btree
135  */
136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 				struct btrfs_path *path, int extent_inserted,
138 				struct btrfs_root *root, struct inode *inode,
139 				u64 start, size_t size, size_t compressed_size,
140 				int compress_type,
141 				struct page **compressed_pages)
142 {
143 	struct extent_buffer *leaf;
144 	struct page *page = NULL;
145 	char *kaddr;
146 	unsigned long ptr;
147 	struct btrfs_file_extent_item *ei;
148 	int err = 0;
149 	int ret;
150 	size_t cur_size = size;
151 	unsigned long offset;
152 
153 	if (compressed_size && compressed_pages)
154 		cur_size = compressed_size;
155 
156 	inode_add_bytes(inode, size);
157 
158 	if (!extent_inserted) {
159 		struct btrfs_key key;
160 		size_t datasize;
161 
162 		key.objectid = btrfs_ino(inode);
163 		key.offset = start;
164 		key.type = BTRFS_EXTENT_DATA_KEY;
165 
166 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 		path->leave_spinning = 1;
168 		ret = btrfs_insert_empty_item(trans, root, path, &key,
169 					      datasize);
170 		if (ret) {
171 			err = ret;
172 			goto fail;
173 		}
174 	}
175 	leaf = path->nodes[0];
176 	ei = btrfs_item_ptr(leaf, path->slots[0],
177 			    struct btrfs_file_extent_item);
178 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 	btrfs_set_file_extent_encryption(leaf, ei, 0);
181 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 	ptr = btrfs_file_extent_inline_start(ei);
184 
185 	if (compress_type != BTRFS_COMPRESS_NONE) {
186 		struct page *cpage;
187 		int i = 0;
188 		while (compressed_size > 0) {
189 			cpage = compressed_pages[i];
190 			cur_size = min_t(unsigned long, compressed_size,
191 				       PAGE_CACHE_SIZE);
192 
193 			kaddr = kmap_atomic(cpage);
194 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 			kunmap_atomic(kaddr);
196 
197 			i++;
198 			ptr += cur_size;
199 			compressed_size -= cur_size;
200 		}
201 		btrfs_set_file_extent_compression(leaf, ei,
202 						  compress_type);
203 	} else {
204 		page = find_get_page(inode->i_mapping,
205 				     start >> PAGE_CACHE_SHIFT);
206 		btrfs_set_file_extent_compression(leaf, ei, 0);
207 		kaddr = kmap_atomic(page);
208 		offset = start & (PAGE_CACHE_SIZE - 1);
209 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 		kunmap_atomic(kaddr);
211 		page_cache_release(page);
212 	}
213 	btrfs_mark_buffer_dirty(leaf);
214 	btrfs_release_path(path);
215 
216 	/*
217 	 * we're an inline extent, so nobody can
218 	 * extend the file past i_size without locking
219 	 * a page we already have locked.
220 	 *
221 	 * We must do any isize and inode updates
222 	 * before we unlock the pages.  Otherwise we
223 	 * could end up racing with unlink.
224 	 */
225 	BTRFS_I(inode)->disk_i_size = inode->i_size;
226 	ret = btrfs_update_inode(trans, root, inode);
227 
228 	return ret;
229 fail:
230 	return err;
231 }
232 
233 
234 /*
235  * conditionally insert an inline extent into the file.  This
236  * does the checks required to make sure the data is small enough
237  * to fit as an inline extent.
238  */
239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 					  struct inode *inode, u64 start,
241 					  u64 end, size_t compressed_size,
242 					  int compress_type,
243 					  struct page **compressed_pages)
244 {
245 	struct btrfs_trans_handle *trans;
246 	u64 isize = i_size_read(inode);
247 	u64 actual_end = min(end + 1, isize);
248 	u64 inline_len = actual_end - start;
249 	u64 aligned_end = ALIGN(end, root->sectorsize);
250 	u64 data_len = inline_len;
251 	int ret;
252 	struct btrfs_path *path;
253 	int extent_inserted = 0;
254 	u32 extent_item_size;
255 
256 	if (compressed_size)
257 		data_len = compressed_size;
258 
259 	if (start > 0 ||
260 	    actual_end > PAGE_CACHE_SIZE ||
261 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 	    (!compressed_size &&
263 	    (actual_end & (root->sectorsize - 1)) == 0) ||
264 	    end + 1 < isize ||
265 	    data_len > root->fs_info->max_inline) {
266 		return 1;
267 	}
268 
269 	path = btrfs_alloc_path();
270 	if (!path)
271 		return -ENOMEM;
272 
273 	trans = btrfs_join_transaction(root);
274 	if (IS_ERR(trans)) {
275 		btrfs_free_path(path);
276 		return PTR_ERR(trans);
277 	}
278 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279 
280 	if (compressed_size && compressed_pages)
281 		extent_item_size = btrfs_file_extent_calc_inline_size(
282 		   compressed_size);
283 	else
284 		extent_item_size = btrfs_file_extent_calc_inline_size(
285 		    inline_len);
286 
287 	ret = __btrfs_drop_extents(trans, root, inode, path,
288 				   start, aligned_end, NULL,
289 				   1, 1, extent_item_size, &extent_inserted);
290 	if (ret) {
291 		btrfs_abort_transaction(trans, root, ret);
292 		goto out;
293 	}
294 
295 	if (isize > actual_end)
296 		inline_len = min_t(u64, isize, actual_end);
297 	ret = insert_inline_extent(trans, path, extent_inserted,
298 				   root, inode, start,
299 				   inline_len, compressed_size,
300 				   compress_type, compressed_pages);
301 	if (ret && ret != -ENOSPC) {
302 		btrfs_abort_transaction(trans, root, ret);
303 		goto out;
304 	} else if (ret == -ENOSPC) {
305 		ret = 1;
306 		goto out;
307 	}
308 
309 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 	btrfs_free_path(path);
314 	btrfs_end_transaction(trans, root);
315 	return ret;
316 }
317 
318 struct async_extent {
319 	u64 start;
320 	u64 ram_size;
321 	u64 compressed_size;
322 	struct page **pages;
323 	unsigned long nr_pages;
324 	int compress_type;
325 	struct list_head list;
326 };
327 
328 struct async_cow {
329 	struct inode *inode;
330 	struct btrfs_root *root;
331 	struct page *locked_page;
332 	u64 start;
333 	u64 end;
334 	struct list_head extents;
335 	struct btrfs_work work;
336 };
337 
338 static noinline int add_async_extent(struct async_cow *cow,
339 				     u64 start, u64 ram_size,
340 				     u64 compressed_size,
341 				     struct page **pages,
342 				     unsigned long nr_pages,
343 				     int compress_type)
344 {
345 	struct async_extent *async_extent;
346 
347 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
348 	BUG_ON(!async_extent); /* -ENOMEM */
349 	async_extent->start = start;
350 	async_extent->ram_size = ram_size;
351 	async_extent->compressed_size = compressed_size;
352 	async_extent->pages = pages;
353 	async_extent->nr_pages = nr_pages;
354 	async_extent->compress_type = compress_type;
355 	list_add_tail(&async_extent->list, &cow->extents);
356 	return 0;
357 }
358 
359 static inline int inode_need_compress(struct inode *inode)
360 {
361 	struct btrfs_root *root = BTRFS_I(inode)->root;
362 
363 	/* force compress */
364 	if (btrfs_test_opt(root, FORCE_COMPRESS))
365 		return 1;
366 	/* bad compression ratios */
367 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
368 		return 0;
369 	if (btrfs_test_opt(root, COMPRESS) ||
370 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
371 	    BTRFS_I(inode)->force_compress)
372 		return 1;
373 	return 0;
374 }
375 
376 /*
377  * we create compressed extents in two phases.  The first
378  * phase compresses a range of pages that have already been
379  * locked (both pages and state bits are locked).
380  *
381  * This is done inside an ordered work queue, and the compression
382  * is spread across many cpus.  The actual IO submission is step
383  * two, and the ordered work queue takes care of making sure that
384  * happens in the same order things were put onto the queue by
385  * writepages and friends.
386  *
387  * If this code finds it can't get good compression, it puts an
388  * entry onto the work queue to write the uncompressed bytes.  This
389  * makes sure that both compressed inodes and uncompressed inodes
390  * are written in the same order that the flusher thread sent them
391  * down.
392  */
393 static noinline void compress_file_range(struct inode *inode,
394 					struct page *locked_page,
395 					u64 start, u64 end,
396 					struct async_cow *async_cow,
397 					int *num_added)
398 {
399 	struct btrfs_root *root = BTRFS_I(inode)->root;
400 	u64 num_bytes;
401 	u64 blocksize = root->sectorsize;
402 	u64 actual_end;
403 	u64 isize = i_size_read(inode);
404 	int ret = 0;
405 	struct page **pages = NULL;
406 	unsigned long nr_pages;
407 	unsigned long nr_pages_ret = 0;
408 	unsigned long total_compressed = 0;
409 	unsigned long total_in = 0;
410 	unsigned long max_compressed = 128 * 1024;
411 	unsigned long max_uncompressed = 128 * 1024;
412 	int i;
413 	int will_compress;
414 	int compress_type = root->fs_info->compress_type;
415 	int redirty = 0;
416 
417 	/* if this is a small write inside eof, kick off a defrag */
418 	if ((end - start + 1) < 16 * 1024 &&
419 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420 		btrfs_add_inode_defrag(NULL, inode);
421 
422 	actual_end = min_t(u64, isize, end + 1);
423 again:
424 	will_compress = 0;
425 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
427 
428 	/*
429 	 * we don't want to send crud past the end of i_size through
430 	 * compression, that's just a waste of CPU time.  So, if the
431 	 * end of the file is before the start of our current
432 	 * requested range of bytes, we bail out to the uncompressed
433 	 * cleanup code that can deal with all of this.
434 	 *
435 	 * It isn't really the fastest way to fix things, but this is a
436 	 * very uncommon corner.
437 	 */
438 	if (actual_end <= start)
439 		goto cleanup_and_bail_uncompressed;
440 
441 	total_compressed = actual_end - start;
442 
443 	/*
444 	 * skip compression for a small file range(<=blocksize) that
445 	 * isn't an inline extent, since it dosen't save disk space at all.
446 	 */
447 	if (total_compressed <= blocksize &&
448 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
449 		goto cleanup_and_bail_uncompressed;
450 
451 	/* we want to make sure that amount of ram required to uncompress
452 	 * an extent is reasonable, so we limit the total size in ram
453 	 * of a compressed extent to 128k.  This is a crucial number
454 	 * because it also controls how easily we can spread reads across
455 	 * cpus for decompression.
456 	 *
457 	 * We also want to make sure the amount of IO required to do
458 	 * a random read is reasonably small, so we limit the size of
459 	 * a compressed extent to 128k.
460 	 */
461 	total_compressed = min(total_compressed, max_uncompressed);
462 	num_bytes = ALIGN(end - start + 1, blocksize);
463 	num_bytes = max(blocksize,  num_bytes);
464 	total_in = 0;
465 	ret = 0;
466 
467 	/*
468 	 * we do compression for mount -o compress and when the
469 	 * inode has not been flagged as nocompress.  This flag can
470 	 * change at any time if we discover bad compression ratios.
471 	 */
472 	if (inode_need_compress(inode)) {
473 		WARN_ON(pages);
474 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
475 		if (!pages) {
476 			/* just bail out to the uncompressed code */
477 			goto cont;
478 		}
479 
480 		if (BTRFS_I(inode)->force_compress)
481 			compress_type = BTRFS_I(inode)->force_compress;
482 
483 		/*
484 		 * we need to call clear_page_dirty_for_io on each
485 		 * page in the range.  Otherwise applications with the file
486 		 * mmap'd can wander in and change the page contents while
487 		 * we are compressing them.
488 		 *
489 		 * If the compression fails for any reason, we set the pages
490 		 * dirty again later on.
491 		 */
492 		extent_range_clear_dirty_for_io(inode, start, end);
493 		redirty = 1;
494 		ret = btrfs_compress_pages(compress_type,
495 					   inode->i_mapping, start,
496 					   total_compressed, pages,
497 					   nr_pages, &nr_pages_ret,
498 					   &total_in,
499 					   &total_compressed,
500 					   max_compressed);
501 
502 		if (!ret) {
503 			unsigned long offset = total_compressed &
504 				(PAGE_CACHE_SIZE - 1);
505 			struct page *page = pages[nr_pages_ret - 1];
506 			char *kaddr;
507 
508 			/* zero the tail end of the last page, we might be
509 			 * sending it down to disk
510 			 */
511 			if (offset) {
512 				kaddr = kmap_atomic(page);
513 				memset(kaddr + offset, 0,
514 				       PAGE_CACHE_SIZE - offset);
515 				kunmap_atomic(kaddr);
516 			}
517 			will_compress = 1;
518 		}
519 	}
520 cont:
521 	if (start == 0) {
522 		/* lets try to make an inline extent */
523 		if (ret || total_in < (actual_end - start)) {
524 			/* we didn't compress the entire range, try
525 			 * to make an uncompressed inline extent.
526 			 */
527 			ret = cow_file_range_inline(root, inode, start, end,
528 						    0, 0, NULL);
529 		} else {
530 			/* try making a compressed inline extent */
531 			ret = cow_file_range_inline(root, inode, start, end,
532 						    total_compressed,
533 						    compress_type, pages);
534 		}
535 		if (ret <= 0) {
536 			unsigned long clear_flags = EXTENT_DELALLOC |
537 				EXTENT_DEFRAG;
538 			unsigned long page_error_op;
539 
540 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
541 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
542 
543 			/*
544 			 * inline extent creation worked or returned error,
545 			 * we don't need to create any more async work items.
546 			 * Unlock and free up our temp pages.
547 			 */
548 			extent_clear_unlock_delalloc(inode, start, end, NULL,
549 						     clear_flags, PAGE_UNLOCK |
550 						     PAGE_CLEAR_DIRTY |
551 						     PAGE_SET_WRITEBACK |
552 						     page_error_op |
553 						     PAGE_END_WRITEBACK);
554 			goto free_pages_out;
555 		}
556 	}
557 
558 	if (will_compress) {
559 		/*
560 		 * we aren't doing an inline extent round the compressed size
561 		 * up to a block size boundary so the allocator does sane
562 		 * things
563 		 */
564 		total_compressed = ALIGN(total_compressed, blocksize);
565 
566 		/*
567 		 * one last check to make sure the compression is really a
568 		 * win, compare the page count read with the blocks on disk
569 		 */
570 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
571 		if (total_compressed >= total_in) {
572 			will_compress = 0;
573 		} else {
574 			num_bytes = total_in;
575 		}
576 	}
577 	if (!will_compress && pages) {
578 		/*
579 		 * the compression code ran but failed to make things smaller,
580 		 * free any pages it allocated and our page pointer array
581 		 */
582 		for (i = 0; i < nr_pages_ret; i++) {
583 			WARN_ON(pages[i]->mapping);
584 			page_cache_release(pages[i]);
585 		}
586 		kfree(pages);
587 		pages = NULL;
588 		total_compressed = 0;
589 		nr_pages_ret = 0;
590 
591 		/* flag the file so we don't compress in the future */
592 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
593 		    !(BTRFS_I(inode)->force_compress)) {
594 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
595 		}
596 	}
597 	if (will_compress) {
598 		*num_added += 1;
599 
600 		/* the async work queues will take care of doing actual
601 		 * allocation on disk for these compressed pages,
602 		 * and will submit them to the elevator.
603 		 */
604 		add_async_extent(async_cow, start, num_bytes,
605 				 total_compressed, pages, nr_pages_ret,
606 				 compress_type);
607 
608 		if (start + num_bytes < end) {
609 			start += num_bytes;
610 			pages = NULL;
611 			cond_resched();
612 			goto again;
613 		}
614 	} else {
615 cleanup_and_bail_uncompressed:
616 		/*
617 		 * No compression, but we still need to write the pages in
618 		 * the file we've been given so far.  redirty the locked
619 		 * page if it corresponds to our extent and set things up
620 		 * for the async work queue to run cow_file_range to do
621 		 * the normal delalloc dance
622 		 */
623 		if (page_offset(locked_page) >= start &&
624 		    page_offset(locked_page) <= end) {
625 			__set_page_dirty_nobuffers(locked_page);
626 			/* unlocked later on in the async handlers */
627 		}
628 		if (redirty)
629 			extent_range_redirty_for_io(inode, start, end);
630 		add_async_extent(async_cow, start, end - start + 1,
631 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
632 		*num_added += 1;
633 	}
634 
635 	return;
636 
637 free_pages_out:
638 	for (i = 0; i < nr_pages_ret; i++) {
639 		WARN_ON(pages[i]->mapping);
640 		page_cache_release(pages[i]);
641 	}
642 	kfree(pages);
643 }
644 
645 static void free_async_extent_pages(struct async_extent *async_extent)
646 {
647 	int i;
648 
649 	if (!async_extent->pages)
650 		return;
651 
652 	for (i = 0; i < async_extent->nr_pages; i++) {
653 		WARN_ON(async_extent->pages[i]->mapping);
654 		page_cache_release(async_extent->pages[i]);
655 	}
656 	kfree(async_extent->pages);
657 	async_extent->nr_pages = 0;
658 	async_extent->pages = NULL;
659 }
660 
661 /*
662  * phase two of compressed writeback.  This is the ordered portion
663  * of the code, which only gets called in the order the work was
664  * queued.  We walk all the async extents created by compress_file_range
665  * and send them down to the disk.
666  */
667 static noinline void submit_compressed_extents(struct inode *inode,
668 					      struct async_cow *async_cow)
669 {
670 	struct async_extent *async_extent;
671 	u64 alloc_hint = 0;
672 	struct btrfs_key ins;
673 	struct extent_map *em;
674 	struct btrfs_root *root = BTRFS_I(inode)->root;
675 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676 	struct extent_io_tree *io_tree;
677 	int ret = 0;
678 
679 again:
680 	while (!list_empty(&async_cow->extents)) {
681 		async_extent = list_entry(async_cow->extents.next,
682 					  struct async_extent, list);
683 		list_del(&async_extent->list);
684 
685 		io_tree = &BTRFS_I(inode)->io_tree;
686 
687 retry:
688 		/* did the compression code fall back to uncompressed IO? */
689 		if (!async_extent->pages) {
690 			int page_started = 0;
691 			unsigned long nr_written = 0;
692 
693 			lock_extent(io_tree, async_extent->start,
694 					 async_extent->start +
695 					 async_extent->ram_size - 1);
696 
697 			/* allocate blocks */
698 			ret = cow_file_range(inode, async_cow->locked_page,
699 					     async_extent->start,
700 					     async_extent->start +
701 					     async_extent->ram_size - 1,
702 					     &page_started, &nr_written, 0);
703 
704 			/* JDM XXX */
705 
706 			/*
707 			 * if page_started, cow_file_range inserted an
708 			 * inline extent and took care of all the unlocking
709 			 * and IO for us.  Otherwise, we need to submit
710 			 * all those pages down to the drive.
711 			 */
712 			if (!page_started && !ret)
713 				extent_write_locked_range(io_tree,
714 						  inode, async_extent->start,
715 						  async_extent->start +
716 						  async_extent->ram_size - 1,
717 						  btrfs_get_extent,
718 						  WB_SYNC_ALL);
719 			else if (ret)
720 				unlock_page(async_cow->locked_page);
721 			kfree(async_extent);
722 			cond_resched();
723 			continue;
724 		}
725 
726 		lock_extent(io_tree, async_extent->start,
727 			    async_extent->start + async_extent->ram_size - 1);
728 
729 		ret = btrfs_reserve_extent(root,
730 					   async_extent->compressed_size,
731 					   async_extent->compressed_size,
732 					   0, alloc_hint, &ins, 1, 1);
733 		if (ret) {
734 			free_async_extent_pages(async_extent);
735 
736 			if (ret == -ENOSPC) {
737 				unlock_extent(io_tree, async_extent->start,
738 					      async_extent->start +
739 					      async_extent->ram_size - 1);
740 
741 				/*
742 				 * we need to redirty the pages if we decide to
743 				 * fallback to uncompressed IO, otherwise we
744 				 * will not submit these pages down to lower
745 				 * layers.
746 				 */
747 				extent_range_redirty_for_io(inode,
748 						async_extent->start,
749 						async_extent->start +
750 						async_extent->ram_size - 1);
751 
752 				goto retry;
753 			}
754 			goto out_free;
755 		}
756 		/*
757 		 * here we're doing allocation and writeback of the
758 		 * compressed pages
759 		 */
760 		btrfs_drop_extent_cache(inode, async_extent->start,
761 					async_extent->start +
762 					async_extent->ram_size - 1, 0);
763 
764 		em = alloc_extent_map();
765 		if (!em) {
766 			ret = -ENOMEM;
767 			goto out_free_reserve;
768 		}
769 		em->start = async_extent->start;
770 		em->len = async_extent->ram_size;
771 		em->orig_start = em->start;
772 		em->mod_start = em->start;
773 		em->mod_len = em->len;
774 
775 		em->block_start = ins.objectid;
776 		em->block_len = ins.offset;
777 		em->orig_block_len = ins.offset;
778 		em->ram_bytes = async_extent->ram_size;
779 		em->bdev = root->fs_info->fs_devices->latest_bdev;
780 		em->compress_type = async_extent->compress_type;
781 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
783 		em->generation = -1;
784 
785 		while (1) {
786 			write_lock(&em_tree->lock);
787 			ret = add_extent_mapping(em_tree, em, 1);
788 			write_unlock(&em_tree->lock);
789 			if (ret != -EEXIST) {
790 				free_extent_map(em);
791 				break;
792 			}
793 			btrfs_drop_extent_cache(inode, async_extent->start,
794 						async_extent->start +
795 						async_extent->ram_size - 1, 0);
796 		}
797 
798 		if (ret)
799 			goto out_free_reserve;
800 
801 		ret = btrfs_add_ordered_extent_compress(inode,
802 						async_extent->start,
803 						ins.objectid,
804 						async_extent->ram_size,
805 						ins.offset,
806 						BTRFS_ORDERED_COMPRESSED,
807 						async_extent->compress_type);
808 		if (ret) {
809 			btrfs_drop_extent_cache(inode, async_extent->start,
810 						async_extent->start +
811 						async_extent->ram_size - 1, 0);
812 			goto out_free_reserve;
813 		}
814 
815 		/*
816 		 * clear dirty, set writeback and unlock the pages.
817 		 */
818 		extent_clear_unlock_delalloc(inode, async_extent->start,
819 				async_extent->start +
820 				async_extent->ram_size - 1,
821 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
823 				PAGE_SET_WRITEBACK);
824 		ret = btrfs_submit_compressed_write(inode,
825 				    async_extent->start,
826 				    async_extent->ram_size,
827 				    ins.objectid,
828 				    ins.offset, async_extent->pages,
829 				    async_extent->nr_pages);
830 		if (ret) {
831 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 			struct page *p = async_extent->pages[0];
833 			const u64 start = async_extent->start;
834 			const u64 end = start + async_extent->ram_size - 1;
835 
836 			p->mapping = inode->i_mapping;
837 			tree->ops->writepage_end_io_hook(p, start, end,
838 							 NULL, 0);
839 			p->mapping = NULL;
840 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841 						     PAGE_END_WRITEBACK |
842 						     PAGE_SET_ERROR);
843 			free_async_extent_pages(async_extent);
844 		}
845 		alloc_hint = ins.objectid + ins.offset;
846 		kfree(async_extent);
847 		cond_resched();
848 	}
849 	return;
850 out_free_reserve:
851 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
852 out_free:
853 	extent_clear_unlock_delalloc(inode, async_extent->start,
854 				     async_extent->start +
855 				     async_extent->ram_size - 1,
856 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
857 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
859 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860 				     PAGE_SET_ERROR);
861 	free_async_extent_pages(async_extent);
862 	kfree(async_extent);
863 	goto again;
864 }
865 
866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 				      u64 num_bytes)
868 {
869 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 	struct extent_map *em;
871 	u64 alloc_hint = 0;
872 
873 	read_lock(&em_tree->lock);
874 	em = search_extent_mapping(em_tree, start, num_bytes);
875 	if (em) {
876 		/*
877 		 * if block start isn't an actual block number then find the
878 		 * first block in this inode and use that as a hint.  If that
879 		 * block is also bogus then just don't worry about it.
880 		 */
881 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882 			free_extent_map(em);
883 			em = search_extent_mapping(em_tree, 0, 0);
884 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 				alloc_hint = em->block_start;
886 			if (em)
887 				free_extent_map(em);
888 		} else {
889 			alloc_hint = em->block_start;
890 			free_extent_map(em);
891 		}
892 	}
893 	read_unlock(&em_tree->lock);
894 
895 	return alloc_hint;
896 }
897 
898 /*
899  * when extent_io.c finds a delayed allocation range in the file,
900  * the call backs end up in this code.  The basic idea is to
901  * allocate extents on disk for the range, and create ordered data structs
902  * in ram to track those extents.
903  *
904  * locked_page is the page that writepage had locked already.  We use
905  * it to make sure we don't do extra locks or unlocks.
906  *
907  * *page_started is set to one if we unlock locked_page and do everything
908  * required to start IO on it.  It may be clean and already done with
909  * IO when we return.
910  */
911 static noinline int cow_file_range(struct inode *inode,
912 				   struct page *locked_page,
913 				   u64 start, u64 end, int *page_started,
914 				   unsigned long *nr_written,
915 				   int unlock)
916 {
917 	struct btrfs_root *root = BTRFS_I(inode)->root;
918 	u64 alloc_hint = 0;
919 	u64 num_bytes;
920 	unsigned long ram_size;
921 	u64 disk_num_bytes;
922 	u64 cur_alloc_size;
923 	u64 blocksize = root->sectorsize;
924 	struct btrfs_key ins;
925 	struct extent_map *em;
926 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 	int ret = 0;
928 
929 	if (btrfs_is_free_space_inode(inode)) {
930 		WARN_ON_ONCE(1);
931 		ret = -EINVAL;
932 		goto out_unlock;
933 	}
934 
935 	num_bytes = ALIGN(end - start + 1, blocksize);
936 	num_bytes = max(blocksize,  num_bytes);
937 	disk_num_bytes = num_bytes;
938 
939 	/* if this is a small write inside eof, kick off defrag */
940 	if (num_bytes < 64 * 1024 &&
941 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
942 		btrfs_add_inode_defrag(NULL, inode);
943 
944 	if (start == 0) {
945 		/* lets try to make an inline extent */
946 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947 					    NULL);
948 		if (ret == 0) {
949 			extent_clear_unlock_delalloc(inode, start, end, NULL,
950 				     EXTENT_LOCKED | EXTENT_DELALLOC |
951 				     EXTENT_DEFRAG, PAGE_UNLOCK |
952 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953 				     PAGE_END_WRITEBACK);
954 
955 			*nr_written = *nr_written +
956 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957 			*page_started = 1;
958 			goto out;
959 		} else if (ret < 0) {
960 			goto out_unlock;
961 		}
962 	}
963 
964 	BUG_ON(disk_num_bytes >
965 	       btrfs_super_total_bytes(root->fs_info->super_copy));
966 
967 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
968 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
969 
970 	while (disk_num_bytes > 0) {
971 		unsigned long op;
972 
973 		cur_alloc_size = disk_num_bytes;
974 		ret = btrfs_reserve_extent(root, cur_alloc_size,
975 					   root->sectorsize, 0, alloc_hint,
976 					   &ins, 1, 1);
977 		if (ret < 0)
978 			goto out_unlock;
979 
980 		em = alloc_extent_map();
981 		if (!em) {
982 			ret = -ENOMEM;
983 			goto out_reserve;
984 		}
985 		em->start = start;
986 		em->orig_start = em->start;
987 		ram_size = ins.offset;
988 		em->len = ins.offset;
989 		em->mod_start = em->start;
990 		em->mod_len = em->len;
991 
992 		em->block_start = ins.objectid;
993 		em->block_len = ins.offset;
994 		em->orig_block_len = ins.offset;
995 		em->ram_bytes = ram_size;
996 		em->bdev = root->fs_info->fs_devices->latest_bdev;
997 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
998 		em->generation = -1;
999 
1000 		while (1) {
1001 			write_lock(&em_tree->lock);
1002 			ret = add_extent_mapping(em_tree, em, 1);
1003 			write_unlock(&em_tree->lock);
1004 			if (ret != -EEXIST) {
1005 				free_extent_map(em);
1006 				break;
1007 			}
1008 			btrfs_drop_extent_cache(inode, start,
1009 						start + ram_size - 1, 0);
1010 		}
1011 		if (ret)
1012 			goto out_reserve;
1013 
1014 		cur_alloc_size = ins.offset;
1015 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016 					       ram_size, cur_alloc_size, 0);
1017 		if (ret)
1018 			goto out_drop_extent_cache;
1019 
1020 		if (root->root_key.objectid ==
1021 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 			ret = btrfs_reloc_clone_csums(inode, start,
1023 						      cur_alloc_size);
1024 			if (ret)
1025 				goto out_drop_extent_cache;
1026 		}
1027 
1028 		if (disk_num_bytes < cur_alloc_size)
1029 			break;
1030 
1031 		/* we're not doing compressed IO, don't unlock the first
1032 		 * page (which the caller expects to stay locked), don't
1033 		 * clear any dirty bits and don't set any writeback bits
1034 		 *
1035 		 * Do set the Private2 bit so we know this page was properly
1036 		 * setup for writepage
1037 		 */
1038 		op = unlock ? PAGE_UNLOCK : 0;
1039 		op |= PAGE_SET_PRIVATE2;
1040 
1041 		extent_clear_unlock_delalloc(inode, start,
1042 					     start + ram_size - 1, locked_page,
1043 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1044 					     op);
1045 		disk_num_bytes -= cur_alloc_size;
1046 		num_bytes -= cur_alloc_size;
1047 		alloc_hint = ins.objectid + ins.offset;
1048 		start += cur_alloc_size;
1049 	}
1050 out:
1051 	return ret;
1052 
1053 out_drop_extent_cache:
1054 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1055 out_reserve:
1056 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1057 out_unlock:
1058 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1063 	goto out;
1064 }
1065 
1066 /*
1067  * work queue call back to started compression on a file and pages
1068  */
1069 static noinline void async_cow_start(struct btrfs_work *work)
1070 {
1071 	struct async_cow *async_cow;
1072 	int num_added = 0;
1073 	async_cow = container_of(work, struct async_cow, work);
1074 
1075 	compress_file_range(async_cow->inode, async_cow->locked_page,
1076 			    async_cow->start, async_cow->end, async_cow,
1077 			    &num_added);
1078 	if (num_added == 0) {
1079 		btrfs_add_delayed_iput(async_cow->inode);
1080 		async_cow->inode = NULL;
1081 	}
1082 }
1083 
1084 /*
1085  * work queue call back to submit previously compressed pages
1086  */
1087 static noinline void async_cow_submit(struct btrfs_work *work)
1088 {
1089 	struct async_cow *async_cow;
1090 	struct btrfs_root *root;
1091 	unsigned long nr_pages;
1092 
1093 	async_cow = container_of(work, struct async_cow, work);
1094 
1095 	root = async_cow->root;
1096 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097 		PAGE_CACHE_SHIFT;
1098 
1099 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1100 	    5 * 1024 * 1024 &&
1101 	    waitqueue_active(&root->fs_info->async_submit_wait))
1102 		wake_up(&root->fs_info->async_submit_wait);
1103 
1104 	if (async_cow->inode)
1105 		submit_compressed_extents(async_cow->inode, async_cow);
1106 }
1107 
1108 static noinline void async_cow_free(struct btrfs_work *work)
1109 {
1110 	struct async_cow *async_cow;
1111 	async_cow = container_of(work, struct async_cow, work);
1112 	if (async_cow->inode)
1113 		btrfs_add_delayed_iput(async_cow->inode);
1114 	kfree(async_cow);
1115 }
1116 
1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118 				u64 start, u64 end, int *page_started,
1119 				unsigned long *nr_written)
1120 {
1121 	struct async_cow *async_cow;
1122 	struct btrfs_root *root = BTRFS_I(inode)->root;
1123 	unsigned long nr_pages;
1124 	u64 cur_end;
1125 	int limit = 10 * 1024 * 1024;
1126 
1127 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128 			 1, 0, NULL, GFP_NOFS);
1129 	while (start < end) {
1130 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131 		BUG_ON(!async_cow); /* -ENOMEM */
1132 		async_cow->inode = igrab(inode);
1133 		async_cow->root = root;
1134 		async_cow->locked_page = locked_page;
1135 		async_cow->start = start;
1136 
1137 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1139 			cur_end = end;
1140 		else
1141 			cur_end = min(end, start + 512 * 1024 - 1);
1142 
1143 		async_cow->end = cur_end;
1144 		INIT_LIST_HEAD(&async_cow->extents);
1145 
1146 		btrfs_init_work(&async_cow->work,
1147 				btrfs_delalloc_helper,
1148 				async_cow_start, async_cow_submit,
1149 				async_cow_free);
1150 
1151 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152 			PAGE_CACHE_SHIFT;
1153 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1154 
1155 		btrfs_queue_work(root->fs_info->delalloc_workers,
1156 				 &async_cow->work);
1157 
1158 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159 			wait_event(root->fs_info->async_submit_wait,
1160 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1161 			    limit));
1162 		}
1163 
1164 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1165 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1166 			wait_event(root->fs_info->async_submit_wait,
1167 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168 			   0));
1169 		}
1170 
1171 		*nr_written += nr_pages;
1172 		start = cur_end + 1;
1173 	}
1174 	*page_started = 1;
1175 	return 0;
1176 }
1177 
1178 static noinline int csum_exist_in_range(struct btrfs_root *root,
1179 					u64 bytenr, u64 num_bytes)
1180 {
1181 	int ret;
1182 	struct btrfs_ordered_sum *sums;
1183 	LIST_HEAD(list);
1184 
1185 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186 				       bytenr + num_bytes - 1, &list, 0);
1187 	if (ret == 0 && list_empty(&list))
1188 		return 0;
1189 
1190 	while (!list_empty(&list)) {
1191 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192 		list_del(&sums->list);
1193 		kfree(sums);
1194 	}
1195 	return 1;
1196 }
1197 
1198 /*
1199  * when nowcow writeback call back.  This checks for snapshots or COW copies
1200  * of the extents that exist in the file, and COWs the file as required.
1201  *
1202  * If no cow copies or snapshots exist, we write directly to the existing
1203  * blocks on disk
1204  */
1205 static noinline int run_delalloc_nocow(struct inode *inode,
1206 				       struct page *locked_page,
1207 			      u64 start, u64 end, int *page_started, int force,
1208 			      unsigned long *nr_written)
1209 {
1210 	struct btrfs_root *root = BTRFS_I(inode)->root;
1211 	struct btrfs_trans_handle *trans;
1212 	struct extent_buffer *leaf;
1213 	struct btrfs_path *path;
1214 	struct btrfs_file_extent_item *fi;
1215 	struct btrfs_key found_key;
1216 	u64 cow_start;
1217 	u64 cur_offset;
1218 	u64 extent_end;
1219 	u64 extent_offset;
1220 	u64 disk_bytenr;
1221 	u64 num_bytes;
1222 	u64 disk_num_bytes;
1223 	u64 ram_bytes;
1224 	int extent_type;
1225 	int ret, err;
1226 	int type;
1227 	int nocow;
1228 	int check_prev = 1;
1229 	bool nolock;
1230 	u64 ino = btrfs_ino(inode);
1231 
1232 	path = btrfs_alloc_path();
1233 	if (!path) {
1234 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1236 					     EXTENT_DO_ACCOUNTING |
1237 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1238 					     PAGE_CLEAR_DIRTY |
1239 					     PAGE_SET_WRITEBACK |
1240 					     PAGE_END_WRITEBACK);
1241 		return -ENOMEM;
1242 	}
1243 
1244 	nolock = btrfs_is_free_space_inode(inode);
1245 
1246 	if (nolock)
1247 		trans = btrfs_join_transaction_nolock(root);
1248 	else
1249 		trans = btrfs_join_transaction(root);
1250 
1251 	if (IS_ERR(trans)) {
1252 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1254 					     EXTENT_DO_ACCOUNTING |
1255 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1256 					     PAGE_CLEAR_DIRTY |
1257 					     PAGE_SET_WRITEBACK |
1258 					     PAGE_END_WRITEBACK);
1259 		btrfs_free_path(path);
1260 		return PTR_ERR(trans);
1261 	}
1262 
1263 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1264 
1265 	cow_start = (u64)-1;
1266 	cur_offset = start;
1267 	while (1) {
1268 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1269 					       cur_offset, 0);
1270 		if (ret < 0)
1271 			goto error;
1272 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273 			leaf = path->nodes[0];
1274 			btrfs_item_key_to_cpu(leaf, &found_key,
1275 					      path->slots[0] - 1);
1276 			if (found_key.objectid == ino &&
1277 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1278 				path->slots[0]--;
1279 		}
1280 		check_prev = 0;
1281 next_slot:
1282 		leaf = path->nodes[0];
1283 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284 			ret = btrfs_next_leaf(root, path);
1285 			if (ret < 0)
1286 				goto error;
1287 			if (ret > 0)
1288 				break;
1289 			leaf = path->nodes[0];
1290 		}
1291 
1292 		nocow = 0;
1293 		disk_bytenr = 0;
1294 		num_bytes = 0;
1295 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296 
1297 		if (found_key.objectid > ino ||
1298 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1299 		    found_key.offset > end)
1300 			break;
1301 
1302 		if (found_key.offset > cur_offset) {
1303 			extent_end = found_key.offset;
1304 			extent_type = 0;
1305 			goto out_check;
1306 		}
1307 
1308 		fi = btrfs_item_ptr(leaf, path->slots[0],
1309 				    struct btrfs_file_extent_item);
1310 		extent_type = btrfs_file_extent_type(leaf, fi);
1311 
1312 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1313 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1314 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1315 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1316 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1317 			extent_end = found_key.offset +
1318 				btrfs_file_extent_num_bytes(leaf, fi);
1319 			disk_num_bytes =
1320 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1321 			if (extent_end <= start) {
1322 				path->slots[0]++;
1323 				goto next_slot;
1324 			}
1325 			if (disk_bytenr == 0)
1326 				goto out_check;
1327 			if (btrfs_file_extent_compression(leaf, fi) ||
1328 			    btrfs_file_extent_encryption(leaf, fi) ||
1329 			    btrfs_file_extent_other_encoding(leaf, fi))
1330 				goto out_check;
1331 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1332 				goto out_check;
1333 			if (btrfs_extent_readonly(root, disk_bytenr))
1334 				goto out_check;
1335 			if (btrfs_cross_ref_exist(trans, root, ino,
1336 						  found_key.offset -
1337 						  extent_offset, disk_bytenr))
1338 				goto out_check;
1339 			disk_bytenr += extent_offset;
1340 			disk_bytenr += cur_offset - found_key.offset;
1341 			num_bytes = min(end + 1, extent_end) - cur_offset;
1342 			/*
1343 			 * if there are pending snapshots for this root,
1344 			 * we fall into common COW way.
1345 			 */
1346 			if (!nolock) {
1347 				err = btrfs_start_write_no_snapshoting(root);
1348 				if (!err)
1349 					goto out_check;
1350 			}
1351 			/*
1352 			 * force cow if csum exists in the range.
1353 			 * this ensure that csum for a given extent are
1354 			 * either valid or do not exist.
1355 			 */
1356 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1357 				goto out_check;
1358 			nocow = 1;
1359 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1360 			extent_end = found_key.offset +
1361 				btrfs_file_extent_inline_len(leaf,
1362 						     path->slots[0], fi);
1363 			extent_end = ALIGN(extent_end, root->sectorsize);
1364 		} else {
1365 			BUG_ON(1);
1366 		}
1367 out_check:
1368 		if (extent_end <= start) {
1369 			path->slots[0]++;
1370 			if (!nolock && nocow)
1371 				btrfs_end_write_no_snapshoting(root);
1372 			goto next_slot;
1373 		}
1374 		if (!nocow) {
1375 			if (cow_start == (u64)-1)
1376 				cow_start = cur_offset;
1377 			cur_offset = extent_end;
1378 			if (cur_offset > end)
1379 				break;
1380 			path->slots[0]++;
1381 			goto next_slot;
1382 		}
1383 
1384 		btrfs_release_path(path);
1385 		if (cow_start != (u64)-1) {
1386 			ret = cow_file_range(inode, locked_page,
1387 					     cow_start, found_key.offset - 1,
1388 					     page_started, nr_written, 1);
1389 			if (ret) {
1390 				if (!nolock && nocow)
1391 					btrfs_end_write_no_snapshoting(root);
1392 				goto error;
1393 			}
1394 			cow_start = (u64)-1;
1395 		}
1396 
1397 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1398 			struct extent_map *em;
1399 			struct extent_map_tree *em_tree;
1400 			em_tree = &BTRFS_I(inode)->extent_tree;
1401 			em = alloc_extent_map();
1402 			BUG_ON(!em); /* -ENOMEM */
1403 			em->start = cur_offset;
1404 			em->orig_start = found_key.offset - extent_offset;
1405 			em->len = num_bytes;
1406 			em->block_len = num_bytes;
1407 			em->block_start = disk_bytenr;
1408 			em->orig_block_len = disk_num_bytes;
1409 			em->ram_bytes = ram_bytes;
1410 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1411 			em->mod_start = em->start;
1412 			em->mod_len = em->len;
1413 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1414 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1415 			em->generation = -1;
1416 			while (1) {
1417 				write_lock(&em_tree->lock);
1418 				ret = add_extent_mapping(em_tree, em, 1);
1419 				write_unlock(&em_tree->lock);
1420 				if (ret != -EEXIST) {
1421 					free_extent_map(em);
1422 					break;
1423 				}
1424 				btrfs_drop_extent_cache(inode, em->start,
1425 						em->start + em->len - 1, 0);
1426 			}
1427 			type = BTRFS_ORDERED_PREALLOC;
1428 		} else {
1429 			type = BTRFS_ORDERED_NOCOW;
1430 		}
1431 
1432 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1433 					       num_bytes, num_bytes, type);
1434 		BUG_ON(ret); /* -ENOMEM */
1435 
1436 		if (root->root_key.objectid ==
1437 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1439 						      num_bytes);
1440 			if (ret) {
1441 				if (!nolock && nocow)
1442 					btrfs_end_write_no_snapshoting(root);
1443 				goto error;
1444 			}
1445 		}
1446 
1447 		extent_clear_unlock_delalloc(inode, cur_offset,
1448 					     cur_offset + num_bytes - 1,
1449 					     locked_page, EXTENT_LOCKED |
1450 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1451 					     PAGE_SET_PRIVATE2);
1452 		if (!nolock && nocow)
1453 			btrfs_end_write_no_snapshoting(root);
1454 		cur_offset = extent_end;
1455 		if (cur_offset > end)
1456 			break;
1457 	}
1458 	btrfs_release_path(path);
1459 
1460 	if (cur_offset <= end && cow_start == (u64)-1) {
1461 		cow_start = cur_offset;
1462 		cur_offset = end;
1463 	}
1464 
1465 	if (cow_start != (u64)-1) {
1466 		ret = cow_file_range(inode, locked_page, cow_start, end,
1467 				     page_started, nr_written, 1);
1468 		if (ret)
1469 			goto error;
1470 	}
1471 
1472 error:
1473 	err = btrfs_end_transaction(trans, root);
1474 	if (!ret)
1475 		ret = err;
1476 
1477 	if (ret && cur_offset < end)
1478 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1479 					     locked_page, EXTENT_LOCKED |
1480 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1481 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1482 					     PAGE_CLEAR_DIRTY |
1483 					     PAGE_SET_WRITEBACK |
1484 					     PAGE_END_WRITEBACK);
1485 	btrfs_free_path(path);
1486 	return ret;
1487 }
1488 
1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1490 {
1491 
1492 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1493 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1494 		return 0;
1495 
1496 	/*
1497 	 * @defrag_bytes is a hint value, no spinlock held here,
1498 	 * if is not zero, it means the file is defragging.
1499 	 * Force cow if given extent needs to be defragged.
1500 	 */
1501 	if (BTRFS_I(inode)->defrag_bytes &&
1502 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1503 			   EXTENT_DEFRAG, 0, NULL))
1504 		return 1;
1505 
1506 	return 0;
1507 }
1508 
1509 /*
1510  * extent_io.c call back to do delayed allocation processing
1511  */
1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1513 			      u64 start, u64 end, int *page_started,
1514 			      unsigned long *nr_written)
1515 {
1516 	int ret;
1517 	int force_cow = need_force_cow(inode, start, end);
1518 
1519 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1520 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1521 					 page_started, 1, nr_written);
1522 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1523 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1524 					 page_started, 0, nr_written);
1525 	} else if (!inode_need_compress(inode)) {
1526 		ret = cow_file_range(inode, locked_page, start, end,
1527 				      page_started, nr_written, 1);
1528 	} else {
1529 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1530 			&BTRFS_I(inode)->runtime_flags);
1531 		ret = cow_file_range_async(inode, locked_page, start, end,
1532 					   page_started, nr_written);
1533 	}
1534 	return ret;
1535 }
1536 
1537 static void btrfs_split_extent_hook(struct inode *inode,
1538 				    struct extent_state *orig, u64 split)
1539 {
1540 	u64 size;
1541 
1542 	/* not delalloc, ignore it */
1543 	if (!(orig->state & EXTENT_DELALLOC))
1544 		return;
1545 
1546 	size = orig->end - orig->start + 1;
1547 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1548 		u64 num_extents;
1549 		u64 new_size;
1550 
1551 		/*
1552 		 * See the explanation in btrfs_merge_extent_hook, the same
1553 		 * applies here, just in reverse.
1554 		 */
1555 		new_size = orig->end - split + 1;
1556 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1557 					BTRFS_MAX_EXTENT_SIZE);
1558 		new_size = split - orig->start;
1559 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1560 					BTRFS_MAX_EXTENT_SIZE);
1561 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1562 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1563 			return;
1564 	}
1565 
1566 	spin_lock(&BTRFS_I(inode)->lock);
1567 	BTRFS_I(inode)->outstanding_extents++;
1568 	spin_unlock(&BTRFS_I(inode)->lock);
1569 }
1570 
1571 /*
1572  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573  * extents so we can keep track of new extents that are just merged onto old
1574  * extents, such as when we are doing sequential writes, so we can properly
1575  * account for the metadata space we'll need.
1576  */
1577 static void btrfs_merge_extent_hook(struct inode *inode,
1578 				    struct extent_state *new,
1579 				    struct extent_state *other)
1580 {
1581 	u64 new_size, old_size;
1582 	u64 num_extents;
1583 
1584 	/* not delalloc, ignore it */
1585 	if (!(other->state & EXTENT_DELALLOC))
1586 		return;
1587 
1588 	if (new->start > other->start)
1589 		new_size = new->end - other->start + 1;
1590 	else
1591 		new_size = other->end - new->start + 1;
1592 
1593 	/* we're not bigger than the max, unreserve the space and go */
1594 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1595 		spin_lock(&BTRFS_I(inode)->lock);
1596 		BTRFS_I(inode)->outstanding_extents--;
1597 		spin_unlock(&BTRFS_I(inode)->lock);
1598 		return;
1599 	}
1600 
1601 	/*
1602 	 * We have to add up either side to figure out how many extents were
1603 	 * accounted for before we merged into one big extent.  If the number of
1604 	 * extents we accounted for is <= the amount we need for the new range
1605 	 * then we can return, otherwise drop.  Think of it like this
1606 	 *
1607 	 * [ 4k][MAX_SIZE]
1608 	 *
1609 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610 	 * need 2 outstanding extents, on one side we have 1 and the other side
1611 	 * we have 1 so they are == and we can return.  But in this case
1612 	 *
1613 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1614 	 *
1615 	 * Each range on their own accounts for 2 extents, but merged together
1616 	 * they are only 3 extents worth of accounting, so we need to drop in
1617 	 * this case.
1618 	 */
1619 	old_size = other->end - other->start + 1;
1620 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621 				BTRFS_MAX_EXTENT_SIZE);
1622 	old_size = new->end - new->start + 1;
1623 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 				 BTRFS_MAX_EXTENT_SIZE);
1625 
1626 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1628 		return;
1629 
1630 	spin_lock(&BTRFS_I(inode)->lock);
1631 	BTRFS_I(inode)->outstanding_extents--;
1632 	spin_unlock(&BTRFS_I(inode)->lock);
1633 }
1634 
1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1636 				      struct inode *inode)
1637 {
1638 	spin_lock(&root->delalloc_lock);
1639 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1640 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1641 			      &root->delalloc_inodes);
1642 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643 			&BTRFS_I(inode)->runtime_flags);
1644 		root->nr_delalloc_inodes++;
1645 		if (root->nr_delalloc_inodes == 1) {
1646 			spin_lock(&root->fs_info->delalloc_root_lock);
1647 			BUG_ON(!list_empty(&root->delalloc_root));
1648 			list_add_tail(&root->delalloc_root,
1649 				      &root->fs_info->delalloc_roots);
1650 			spin_unlock(&root->fs_info->delalloc_root_lock);
1651 		}
1652 	}
1653 	spin_unlock(&root->delalloc_lock);
1654 }
1655 
1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1657 				     struct inode *inode)
1658 {
1659 	spin_lock(&root->delalloc_lock);
1660 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1661 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1662 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1663 			  &BTRFS_I(inode)->runtime_flags);
1664 		root->nr_delalloc_inodes--;
1665 		if (!root->nr_delalloc_inodes) {
1666 			spin_lock(&root->fs_info->delalloc_root_lock);
1667 			BUG_ON(list_empty(&root->delalloc_root));
1668 			list_del_init(&root->delalloc_root);
1669 			spin_unlock(&root->fs_info->delalloc_root_lock);
1670 		}
1671 	}
1672 	spin_unlock(&root->delalloc_lock);
1673 }
1674 
1675 /*
1676  * extent_io.c set_bit_hook, used to track delayed allocation
1677  * bytes in this file, and to maintain the list of inodes that
1678  * have pending delalloc work to be done.
1679  */
1680 static void btrfs_set_bit_hook(struct inode *inode,
1681 			       struct extent_state *state, unsigned *bits)
1682 {
1683 
1684 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1685 		WARN_ON(1);
1686 	/*
1687 	 * set_bit and clear bit hooks normally require _irqsave/restore
1688 	 * but in this case, we are only testing for the DELALLOC
1689 	 * bit, which is only set or cleared with irqs on
1690 	 */
1691 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1692 		struct btrfs_root *root = BTRFS_I(inode)->root;
1693 		u64 len = state->end + 1 - state->start;
1694 		bool do_list = !btrfs_is_free_space_inode(inode);
1695 
1696 		if (*bits & EXTENT_FIRST_DELALLOC) {
1697 			*bits &= ~EXTENT_FIRST_DELALLOC;
1698 		} else {
1699 			spin_lock(&BTRFS_I(inode)->lock);
1700 			BTRFS_I(inode)->outstanding_extents++;
1701 			spin_unlock(&BTRFS_I(inode)->lock);
1702 		}
1703 
1704 		/* For sanity tests */
1705 		if (btrfs_test_is_dummy_root(root))
1706 			return;
1707 
1708 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1709 				     root->fs_info->delalloc_batch);
1710 		spin_lock(&BTRFS_I(inode)->lock);
1711 		BTRFS_I(inode)->delalloc_bytes += len;
1712 		if (*bits & EXTENT_DEFRAG)
1713 			BTRFS_I(inode)->defrag_bytes += len;
1714 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 					 &BTRFS_I(inode)->runtime_flags))
1716 			btrfs_add_delalloc_inodes(root, inode);
1717 		spin_unlock(&BTRFS_I(inode)->lock);
1718 	}
1719 }
1720 
1721 /*
1722  * extent_io.c clear_bit_hook, see set_bit_hook for why
1723  */
1724 static void btrfs_clear_bit_hook(struct inode *inode,
1725 				 struct extent_state *state,
1726 				 unsigned *bits)
1727 {
1728 	u64 len = state->end + 1 - state->start;
1729 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1730 				    BTRFS_MAX_EXTENT_SIZE);
1731 
1732 	spin_lock(&BTRFS_I(inode)->lock);
1733 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1734 		BTRFS_I(inode)->defrag_bytes -= len;
1735 	spin_unlock(&BTRFS_I(inode)->lock);
1736 
1737 	/*
1738 	 * set_bit and clear bit hooks normally require _irqsave/restore
1739 	 * but in this case, we are only testing for the DELALLOC
1740 	 * bit, which is only set or cleared with irqs on
1741 	 */
1742 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1743 		struct btrfs_root *root = BTRFS_I(inode)->root;
1744 		bool do_list = !btrfs_is_free_space_inode(inode);
1745 
1746 		if (*bits & EXTENT_FIRST_DELALLOC) {
1747 			*bits &= ~EXTENT_FIRST_DELALLOC;
1748 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1749 			spin_lock(&BTRFS_I(inode)->lock);
1750 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1751 			spin_unlock(&BTRFS_I(inode)->lock);
1752 		}
1753 
1754 		/*
1755 		 * We don't reserve metadata space for space cache inodes so we
1756 		 * don't need to call dellalloc_release_metadata if there is an
1757 		 * error.
1758 		 */
1759 		if (*bits & EXTENT_DO_ACCOUNTING &&
1760 		    root != root->fs_info->tree_root)
1761 			btrfs_delalloc_release_metadata(inode, len);
1762 
1763 		/* For sanity tests. */
1764 		if (btrfs_test_is_dummy_root(root))
1765 			return;
1766 
1767 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1768 		    && do_list && !(state->state & EXTENT_NORESERVE))
1769 			btrfs_free_reserved_data_space(inode, len);
1770 
1771 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1772 				     root->fs_info->delalloc_batch);
1773 		spin_lock(&BTRFS_I(inode)->lock);
1774 		BTRFS_I(inode)->delalloc_bytes -= len;
1775 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1776 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1777 			     &BTRFS_I(inode)->runtime_flags))
1778 			btrfs_del_delalloc_inode(root, inode);
1779 		spin_unlock(&BTRFS_I(inode)->lock);
1780 	}
1781 }
1782 
1783 /*
1784  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785  * we don't create bios that span stripes or chunks
1786  */
1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1788 			 size_t size, struct bio *bio,
1789 			 unsigned long bio_flags)
1790 {
1791 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1792 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1793 	u64 length = 0;
1794 	u64 map_length;
1795 	int ret;
1796 
1797 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1798 		return 0;
1799 
1800 	length = bio->bi_iter.bi_size;
1801 	map_length = length;
1802 	ret = btrfs_map_block(root->fs_info, rw, logical,
1803 			      &map_length, NULL, 0);
1804 	/* Will always return 0 with map_multi == NULL */
1805 	BUG_ON(ret < 0);
1806 	if (map_length < length + size)
1807 		return 1;
1808 	return 0;
1809 }
1810 
1811 /*
1812  * in order to insert checksums into the metadata in large chunks,
1813  * we wait until bio submission time.   All the pages in the bio are
1814  * checksummed and sums are attached onto the ordered extent record.
1815  *
1816  * At IO completion time the cums attached on the ordered extent record
1817  * are inserted into the btree
1818  */
1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1820 				    struct bio *bio, int mirror_num,
1821 				    unsigned long bio_flags,
1822 				    u64 bio_offset)
1823 {
1824 	struct btrfs_root *root = BTRFS_I(inode)->root;
1825 	int ret = 0;
1826 
1827 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1828 	BUG_ON(ret); /* -ENOMEM */
1829 	return 0;
1830 }
1831 
1832 /*
1833  * in order to insert checksums into the metadata in large chunks,
1834  * we wait until bio submission time.   All the pages in the bio are
1835  * checksummed and sums are attached onto the ordered extent record.
1836  *
1837  * At IO completion time the cums attached on the ordered extent record
1838  * are inserted into the btree
1839  */
1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1841 			  int mirror_num, unsigned long bio_flags,
1842 			  u64 bio_offset)
1843 {
1844 	struct btrfs_root *root = BTRFS_I(inode)->root;
1845 	int ret;
1846 
1847 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1848 	if (ret)
1849 		bio_endio(bio, ret);
1850 	return ret;
1851 }
1852 
1853 /*
1854  * extent_io.c submission hook. This does the right thing for csum calculation
1855  * on write, or reading the csums from the tree before a read
1856  */
1857 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1858 			  int mirror_num, unsigned long bio_flags,
1859 			  u64 bio_offset)
1860 {
1861 	struct btrfs_root *root = BTRFS_I(inode)->root;
1862 	int ret = 0;
1863 	int skip_sum;
1864 	int metadata = 0;
1865 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1866 
1867 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1868 
1869 	if (btrfs_is_free_space_inode(inode))
1870 		metadata = 2;
1871 
1872 	if (!(rw & REQ_WRITE)) {
1873 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1874 		if (ret)
1875 			goto out;
1876 
1877 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1878 			ret = btrfs_submit_compressed_read(inode, bio,
1879 							   mirror_num,
1880 							   bio_flags);
1881 			goto out;
1882 		} else if (!skip_sum) {
1883 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1884 			if (ret)
1885 				goto out;
1886 		}
1887 		goto mapit;
1888 	} else if (async && !skip_sum) {
1889 		/* csum items have already been cloned */
1890 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1891 			goto mapit;
1892 		/* we're doing a write, do the async checksumming */
1893 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1894 				   inode, rw, bio, mirror_num,
1895 				   bio_flags, bio_offset,
1896 				   __btrfs_submit_bio_start,
1897 				   __btrfs_submit_bio_done);
1898 		goto out;
1899 	} else if (!skip_sum) {
1900 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1901 		if (ret)
1902 			goto out;
1903 	}
1904 
1905 mapit:
1906 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1907 
1908 out:
1909 	if (ret < 0)
1910 		bio_endio(bio, ret);
1911 	return ret;
1912 }
1913 
1914 /*
1915  * given a list of ordered sums record them in the inode.  This happens
1916  * at IO completion time based on sums calculated at bio submission time.
1917  */
1918 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1919 			     struct inode *inode, u64 file_offset,
1920 			     struct list_head *list)
1921 {
1922 	struct btrfs_ordered_sum *sum;
1923 
1924 	list_for_each_entry(sum, list, list) {
1925 		trans->adding_csums = 1;
1926 		btrfs_csum_file_blocks(trans,
1927 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1928 		trans->adding_csums = 0;
1929 	}
1930 	return 0;
1931 }
1932 
1933 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1934 			      struct extent_state **cached_state)
1935 {
1936 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1937 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1938 				   cached_state, GFP_NOFS);
1939 }
1940 
1941 /* see btrfs_writepage_start_hook for details on why this is required */
1942 struct btrfs_writepage_fixup {
1943 	struct page *page;
1944 	struct btrfs_work work;
1945 };
1946 
1947 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1948 {
1949 	struct btrfs_writepage_fixup *fixup;
1950 	struct btrfs_ordered_extent *ordered;
1951 	struct extent_state *cached_state = NULL;
1952 	struct page *page;
1953 	struct inode *inode;
1954 	u64 page_start;
1955 	u64 page_end;
1956 	int ret;
1957 
1958 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1959 	page = fixup->page;
1960 again:
1961 	lock_page(page);
1962 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1963 		ClearPageChecked(page);
1964 		goto out_page;
1965 	}
1966 
1967 	inode = page->mapping->host;
1968 	page_start = page_offset(page);
1969 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1970 
1971 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1972 			 &cached_state);
1973 
1974 	/* already ordered? We're done */
1975 	if (PagePrivate2(page))
1976 		goto out;
1977 
1978 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1979 	if (ordered) {
1980 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1981 				     page_end, &cached_state, GFP_NOFS);
1982 		unlock_page(page);
1983 		btrfs_start_ordered_extent(inode, ordered, 1);
1984 		btrfs_put_ordered_extent(ordered);
1985 		goto again;
1986 	}
1987 
1988 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1989 	if (ret) {
1990 		mapping_set_error(page->mapping, ret);
1991 		end_extent_writepage(page, ret, page_start, page_end);
1992 		ClearPageChecked(page);
1993 		goto out;
1994 	 }
1995 
1996 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1997 	ClearPageChecked(page);
1998 	set_page_dirty(page);
1999 out:
2000 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2001 			     &cached_state, GFP_NOFS);
2002 out_page:
2003 	unlock_page(page);
2004 	page_cache_release(page);
2005 	kfree(fixup);
2006 }
2007 
2008 /*
2009  * There are a few paths in the higher layers of the kernel that directly
2010  * set the page dirty bit without asking the filesystem if it is a
2011  * good idea.  This causes problems because we want to make sure COW
2012  * properly happens and the data=ordered rules are followed.
2013  *
2014  * In our case any range that doesn't have the ORDERED bit set
2015  * hasn't been properly setup for IO.  We kick off an async process
2016  * to fix it up.  The async helper will wait for ordered extents, set
2017  * the delalloc bit and make it safe to write the page.
2018  */
2019 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2020 {
2021 	struct inode *inode = page->mapping->host;
2022 	struct btrfs_writepage_fixup *fixup;
2023 	struct btrfs_root *root = BTRFS_I(inode)->root;
2024 
2025 	/* this page is properly in the ordered list */
2026 	if (TestClearPagePrivate2(page))
2027 		return 0;
2028 
2029 	if (PageChecked(page))
2030 		return -EAGAIN;
2031 
2032 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2033 	if (!fixup)
2034 		return -EAGAIN;
2035 
2036 	SetPageChecked(page);
2037 	page_cache_get(page);
2038 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2039 			btrfs_writepage_fixup_worker, NULL, NULL);
2040 	fixup->page = page;
2041 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2042 	return -EBUSY;
2043 }
2044 
2045 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2046 				       struct inode *inode, u64 file_pos,
2047 				       u64 disk_bytenr, u64 disk_num_bytes,
2048 				       u64 num_bytes, u64 ram_bytes,
2049 				       u8 compression, u8 encryption,
2050 				       u16 other_encoding, int extent_type)
2051 {
2052 	struct btrfs_root *root = BTRFS_I(inode)->root;
2053 	struct btrfs_file_extent_item *fi;
2054 	struct btrfs_path *path;
2055 	struct extent_buffer *leaf;
2056 	struct btrfs_key ins;
2057 	int extent_inserted = 0;
2058 	int ret;
2059 
2060 	path = btrfs_alloc_path();
2061 	if (!path)
2062 		return -ENOMEM;
2063 
2064 	/*
2065 	 * we may be replacing one extent in the tree with another.
2066 	 * The new extent is pinned in the extent map, and we don't want
2067 	 * to drop it from the cache until it is completely in the btree.
2068 	 *
2069 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2070 	 * the caller is expected to unpin it and allow it to be merged
2071 	 * with the others.
2072 	 */
2073 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2074 				   file_pos + num_bytes, NULL, 0,
2075 				   1, sizeof(*fi), &extent_inserted);
2076 	if (ret)
2077 		goto out;
2078 
2079 	if (!extent_inserted) {
2080 		ins.objectid = btrfs_ino(inode);
2081 		ins.offset = file_pos;
2082 		ins.type = BTRFS_EXTENT_DATA_KEY;
2083 
2084 		path->leave_spinning = 1;
2085 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2086 					      sizeof(*fi));
2087 		if (ret)
2088 			goto out;
2089 	}
2090 	leaf = path->nodes[0];
2091 	fi = btrfs_item_ptr(leaf, path->slots[0],
2092 			    struct btrfs_file_extent_item);
2093 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2094 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2095 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2096 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2097 	btrfs_set_file_extent_offset(leaf, fi, 0);
2098 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2099 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2100 	btrfs_set_file_extent_compression(leaf, fi, compression);
2101 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2102 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2103 
2104 	btrfs_mark_buffer_dirty(leaf);
2105 	btrfs_release_path(path);
2106 
2107 	inode_add_bytes(inode, num_bytes);
2108 
2109 	ins.objectid = disk_bytenr;
2110 	ins.offset = disk_num_bytes;
2111 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2112 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2113 					root->root_key.objectid,
2114 					btrfs_ino(inode), file_pos, &ins);
2115 out:
2116 	btrfs_free_path(path);
2117 
2118 	return ret;
2119 }
2120 
2121 /* snapshot-aware defrag */
2122 struct sa_defrag_extent_backref {
2123 	struct rb_node node;
2124 	struct old_sa_defrag_extent *old;
2125 	u64 root_id;
2126 	u64 inum;
2127 	u64 file_pos;
2128 	u64 extent_offset;
2129 	u64 num_bytes;
2130 	u64 generation;
2131 };
2132 
2133 struct old_sa_defrag_extent {
2134 	struct list_head list;
2135 	struct new_sa_defrag_extent *new;
2136 
2137 	u64 extent_offset;
2138 	u64 bytenr;
2139 	u64 offset;
2140 	u64 len;
2141 	int count;
2142 };
2143 
2144 struct new_sa_defrag_extent {
2145 	struct rb_root root;
2146 	struct list_head head;
2147 	struct btrfs_path *path;
2148 	struct inode *inode;
2149 	u64 file_pos;
2150 	u64 len;
2151 	u64 bytenr;
2152 	u64 disk_len;
2153 	u8 compress_type;
2154 };
2155 
2156 static int backref_comp(struct sa_defrag_extent_backref *b1,
2157 			struct sa_defrag_extent_backref *b2)
2158 {
2159 	if (b1->root_id < b2->root_id)
2160 		return -1;
2161 	else if (b1->root_id > b2->root_id)
2162 		return 1;
2163 
2164 	if (b1->inum < b2->inum)
2165 		return -1;
2166 	else if (b1->inum > b2->inum)
2167 		return 1;
2168 
2169 	if (b1->file_pos < b2->file_pos)
2170 		return -1;
2171 	else if (b1->file_pos > b2->file_pos)
2172 		return 1;
2173 
2174 	/*
2175 	 * [------------------------------] ===> (a range of space)
2176 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2177 	 * |<---------------------------->| ===> (fs/file tree B)
2178 	 *
2179 	 * A range of space can refer to two file extents in one tree while
2180 	 * refer to only one file extent in another tree.
2181 	 *
2182 	 * So we may process a disk offset more than one time(two extents in A)
2183 	 * and locate at the same extent(one extent in B), then insert two same
2184 	 * backrefs(both refer to the extent in B).
2185 	 */
2186 	return 0;
2187 }
2188 
2189 static void backref_insert(struct rb_root *root,
2190 			   struct sa_defrag_extent_backref *backref)
2191 {
2192 	struct rb_node **p = &root->rb_node;
2193 	struct rb_node *parent = NULL;
2194 	struct sa_defrag_extent_backref *entry;
2195 	int ret;
2196 
2197 	while (*p) {
2198 		parent = *p;
2199 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2200 
2201 		ret = backref_comp(backref, entry);
2202 		if (ret < 0)
2203 			p = &(*p)->rb_left;
2204 		else
2205 			p = &(*p)->rb_right;
2206 	}
2207 
2208 	rb_link_node(&backref->node, parent, p);
2209 	rb_insert_color(&backref->node, root);
2210 }
2211 
2212 /*
2213  * Note the backref might has changed, and in this case we just return 0.
2214  */
2215 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2216 				       void *ctx)
2217 {
2218 	struct btrfs_file_extent_item *extent;
2219 	struct btrfs_fs_info *fs_info;
2220 	struct old_sa_defrag_extent *old = ctx;
2221 	struct new_sa_defrag_extent *new = old->new;
2222 	struct btrfs_path *path = new->path;
2223 	struct btrfs_key key;
2224 	struct btrfs_root *root;
2225 	struct sa_defrag_extent_backref *backref;
2226 	struct extent_buffer *leaf;
2227 	struct inode *inode = new->inode;
2228 	int slot;
2229 	int ret;
2230 	u64 extent_offset;
2231 	u64 num_bytes;
2232 
2233 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2234 	    inum == btrfs_ino(inode))
2235 		return 0;
2236 
2237 	key.objectid = root_id;
2238 	key.type = BTRFS_ROOT_ITEM_KEY;
2239 	key.offset = (u64)-1;
2240 
2241 	fs_info = BTRFS_I(inode)->root->fs_info;
2242 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2243 	if (IS_ERR(root)) {
2244 		if (PTR_ERR(root) == -ENOENT)
2245 			return 0;
2246 		WARN_ON(1);
2247 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2248 			 inum, offset, root_id);
2249 		return PTR_ERR(root);
2250 	}
2251 
2252 	key.objectid = inum;
2253 	key.type = BTRFS_EXTENT_DATA_KEY;
2254 	if (offset > (u64)-1 << 32)
2255 		key.offset = 0;
2256 	else
2257 		key.offset = offset;
2258 
2259 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2260 	if (WARN_ON(ret < 0))
2261 		return ret;
2262 	ret = 0;
2263 
2264 	while (1) {
2265 		cond_resched();
2266 
2267 		leaf = path->nodes[0];
2268 		slot = path->slots[0];
2269 
2270 		if (slot >= btrfs_header_nritems(leaf)) {
2271 			ret = btrfs_next_leaf(root, path);
2272 			if (ret < 0) {
2273 				goto out;
2274 			} else if (ret > 0) {
2275 				ret = 0;
2276 				goto out;
2277 			}
2278 			continue;
2279 		}
2280 
2281 		path->slots[0]++;
2282 
2283 		btrfs_item_key_to_cpu(leaf, &key, slot);
2284 
2285 		if (key.objectid > inum)
2286 			goto out;
2287 
2288 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2289 			continue;
2290 
2291 		extent = btrfs_item_ptr(leaf, slot,
2292 					struct btrfs_file_extent_item);
2293 
2294 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2295 			continue;
2296 
2297 		/*
2298 		 * 'offset' refers to the exact key.offset,
2299 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2300 		 * (key.offset - extent_offset).
2301 		 */
2302 		if (key.offset != offset)
2303 			continue;
2304 
2305 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2306 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2307 
2308 		if (extent_offset >= old->extent_offset + old->offset +
2309 		    old->len || extent_offset + num_bytes <=
2310 		    old->extent_offset + old->offset)
2311 			continue;
2312 		break;
2313 	}
2314 
2315 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2316 	if (!backref) {
2317 		ret = -ENOENT;
2318 		goto out;
2319 	}
2320 
2321 	backref->root_id = root_id;
2322 	backref->inum = inum;
2323 	backref->file_pos = offset;
2324 	backref->num_bytes = num_bytes;
2325 	backref->extent_offset = extent_offset;
2326 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2327 	backref->old = old;
2328 	backref_insert(&new->root, backref);
2329 	old->count++;
2330 out:
2331 	btrfs_release_path(path);
2332 	WARN_ON(ret);
2333 	return ret;
2334 }
2335 
2336 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2337 				   struct new_sa_defrag_extent *new)
2338 {
2339 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2340 	struct old_sa_defrag_extent *old, *tmp;
2341 	int ret;
2342 
2343 	new->path = path;
2344 
2345 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2346 		ret = iterate_inodes_from_logical(old->bytenr +
2347 						  old->extent_offset, fs_info,
2348 						  path, record_one_backref,
2349 						  old);
2350 		if (ret < 0 && ret != -ENOENT)
2351 			return false;
2352 
2353 		/* no backref to be processed for this extent */
2354 		if (!old->count) {
2355 			list_del(&old->list);
2356 			kfree(old);
2357 		}
2358 	}
2359 
2360 	if (list_empty(&new->head))
2361 		return false;
2362 
2363 	return true;
2364 }
2365 
2366 static int relink_is_mergable(struct extent_buffer *leaf,
2367 			      struct btrfs_file_extent_item *fi,
2368 			      struct new_sa_defrag_extent *new)
2369 {
2370 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2371 		return 0;
2372 
2373 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2374 		return 0;
2375 
2376 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2377 		return 0;
2378 
2379 	if (btrfs_file_extent_encryption(leaf, fi) ||
2380 	    btrfs_file_extent_other_encoding(leaf, fi))
2381 		return 0;
2382 
2383 	return 1;
2384 }
2385 
2386 /*
2387  * Note the backref might has changed, and in this case we just return 0.
2388  */
2389 static noinline int relink_extent_backref(struct btrfs_path *path,
2390 				 struct sa_defrag_extent_backref *prev,
2391 				 struct sa_defrag_extent_backref *backref)
2392 {
2393 	struct btrfs_file_extent_item *extent;
2394 	struct btrfs_file_extent_item *item;
2395 	struct btrfs_ordered_extent *ordered;
2396 	struct btrfs_trans_handle *trans;
2397 	struct btrfs_fs_info *fs_info;
2398 	struct btrfs_root *root;
2399 	struct btrfs_key key;
2400 	struct extent_buffer *leaf;
2401 	struct old_sa_defrag_extent *old = backref->old;
2402 	struct new_sa_defrag_extent *new = old->new;
2403 	struct inode *src_inode = new->inode;
2404 	struct inode *inode;
2405 	struct extent_state *cached = NULL;
2406 	int ret = 0;
2407 	u64 start;
2408 	u64 len;
2409 	u64 lock_start;
2410 	u64 lock_end;
2411 	bool merge = false;
2412 	int index;
2413 
2414 	if (prev && prev->root_id == backref->root_id &&
2415 	    prev->inum == backref->inum &&
2416 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2417 		merge = true;
2418 
2419 	/* step 1: get root */
2420 	key.objectid = backref->root_id;
2421 	key.type = BTRFS_ROOT_ITEM_KEY;
2422 	key.offset = (u64)-1;
2423 
2424 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2425 	index = srcu_read_lock(&fs_info->subvol_srcu);
2426 
2427 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2428 	if (IS_ERR(root)) {
2429 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2430 		if (PTR_ERR(root) == -ENOENT)
2431 			return 0;
2432 		return PTR_ERR(root);
2433 	}
2434 
2435 	if (btrfs_root_readonly(root)) {
2436 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2437 		return 0;
2438 	}
2439 
2440 	/* step 2: get inode */
2441 	key.objectid = backref->inum;
2442 	key.type = BTRFS_INODE_ITEM_KEY;
2443 	key.offset = 0;
2444 
2445 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2446 	if (IS_ERR(inode)) {
2447 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2448 		return 0;
2449 	}
2450 
2451 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2452 
2453 	/* step 3: relink backref */
2454 	lock_start = backref->file_pos;
2455 	lock_end = backref->file_pos + backref->num_bytes - 1;
2456 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2457 			 0, &cached);
2458 
2459 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2460 	if (ordered) {
2461 		btrfs_put_ordered_extent(ordered);
2462 		goto out_unlock;
2463 	}
2464 
2465 	trans = btrfs_join_transaction(root);
2466 	if (IS_ERR(trans)) {
2467 		ret = PTR_ERR(trans);
2468 		goto out_unlock;
2469 	}
2470 
2471 	key.objectid = backref->inum;
2472 	key.type = BTRFS_EXTENT_DATA_KEY;
2473 	key.offset = backref->file_pos;
2474 
2475 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2476 	if (ret < 0) {
2477 		goto out_free_path;
2478 	} else if (ret > 0) {
2479 		ret = 0;
2480 		goto out_free_path;
2481 	}
2482 
2483 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2484 				struct btrfs_file_extent_item);
2485 
2486 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2487 	    backref->generation)
2488 		goto out_free_path;
2489 
2490 	btrfs_release_path(path);
2491 
2492 	start = backref->file_pos;
2493 	if (backref->extent_offset < old->extent_offset + old->offset)
2494 		start += old->extent_offset + old->offset -
2495 			 backref->extent_offset;
2496 
2497 	len = min(backref->extent_offset + backref->num_bytes,
2498 		  old->extent_offset + old->offset + old->len);
2499 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2500 
2501 	ret = btrfs_drop_extents(trans, root, inode, start,
2502 				 start + len, 1);
2503 	if (ret)
2504 		goto out_free_path;
2505 again:
2506 	key.objectid = btrfs_ino(inode);
2507 	key.type = BTRFS_EXTENT_DATA_KEY;
2508 	key.offset = start;
2509 
2510 	path->leave_spinning = 1;
2511 	if (merge) {
2512 		struct btrfs_file_extent_item *fi;
2513 		u64 extent_len;
2514 		struct btrfs_key found_key;
2515 
2516 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2517 		if (ret < 0)
2518 			goto out_free_path;
2519 
2520 		path->slots[0]--;
2521 		leaf = path->nodes[0];
2522 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2523 
2524 		fi = btrfs_item_ptr(leaf, path->slots[0],
2525 				    struct btrfs_file_extent_item);
2526 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2527 
2528 		if (extent_len + found_key.offset == start &&
2529 		    relink_is_mergable(leaf, fi, new)) {
2530 			btrfs_set_file_extent_num_bytes(leaf, fi,
2531 							extent_len + len);
2532 			btrfs_mark_buffer_dirty(leaf);
2533 			inode_add_bytes(inode, len);
2534 
2535 			ret = 1;
2536 			goto out_free_path;
2537 		} else {
2538 			merge = false;
2539 			btrfs_release_path(path);
2540 			goto again;
2541 		}
2542 	}
2543 
2544 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2545 					sizeof(*extent));
2546 	if (ret) {
2547 		btrfs_abort_transaction(trans, root, ret);
2548 		goto out_free_path;
2549 	}
2550 
2551 	leaf = path->nodes[0];
2552 	item = btrfs_item_ptr(leaf, path->slots[0],
2553 				struct btrfs_file_extent_item);
2554 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2555 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2556 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2557 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2558 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2559 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2560 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2561 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2562 	btrfs_set_file_extent_encryption(leaf, item, 0);
2563 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2564 
2565 	btrfs_mark_buffer_dirty(leaf);
2566 	inode_add_bytes(inode, len);
2567 	btrfs_release_path(path);
2568 
2569 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2570 			new->disk_len, 0,
2571 			backref->root_id, backref->inum,
2572 			new->file_pos, 0);	/* start - extent_offset */
2573 	if (ret) {
2574 		btrfs_abort_transaction(trans, root, ret);
2575 		goto out_free_path;
2576 	}
2577 
2578 	ret = 1;
2579 out_free_path:
2580 	btrfs_release_path(path);
2581 	path->leave_spinning = 0;
2582 	btrfs_end_transaction(trans, root);
2583 out_unlock:
2584 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2585 			     &cached, GFP_NOFS);
2586 	iput(inode);
2587 	return ret;
2588 }
2589 
2590 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2591 {
2592 	struct old_sa_defrag_extent *old, *tmp;
2593 
2594 	if (!new)
2595 		return;
2596 
2597 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2598 		list_del(&old->list);
2599 		kfree(old);
2600 	}
2601 	kfree(new);
2602 }
2603 
2604 static void relink_file_extents(struct new_sa_defrag_extent *new)
2605 {
2606 	struct btrfs_path *path;
2607 	struct sa_defrag_extent_backref *backref;
2608 	struct sa_defrag_extent_backref *prev = NULL;
2609 	struct inode *inode;
2610 	struct btrfs_root *root;
2611 	struct rb_node *node;
2612 	int ret;
2613 
2614 	inode = new->inode;
2615 	root = BTRFS_I(inode)->root;
2616 
2617 	path = btrfs_alloc_path();
2618 	if (!path)
2619 		return;
2620 
2621 	if (!record_extent_backrefs(path, new)) {
2622 		btrfs_free_path(path);
2623 		goto out;
2624 	}
2625 	btrfs_release_path(path);
2626 
2627 	while (1) {
2628 		node = rb_first(&new->root);
2629 		if (!node)
2630 			break;
2631 		rb_erase(node, &new->root);
2632 
2633 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2634 
2635 		ret = relink_extent_backref(path, prev, backref);
2636 		WARN_ON(ret < 0);
2637 
2638 		kfree(prev);
2639 
2640 		if (ret == 1)
2641 			prev = backref;
2642 		else
2643 			prev = NULL;
2644 		cond_resched();
2645 	}
2646 	kfree(prev);
2647 
2648 	btrfs_free_path(path);
2649 out:
2650 	free_sa_defrag_extent(new);
2651 
2652 	atomic_dec(&root->fs_info->defrag_running);
2653 	wake_up(&root->fs_info->transaction_wait);
2654 }
2655 
2656 static struct new_sa_defrag_extent *
2657 record_old_file_extents(struct inode *inode,
2658 			struct btrfs_ordered_extent *ordered)
2659 {
2660 	struct btrfs_root *root = BTRFS_I(inode)->root;
2661 	struct btrfs_path *path;
2662 	struct btrfs_key key;
2663 	struct old_sa_defrag_extent *old;
2664 	struct new_sa_defrag_extent *new;
2665 	int ret;
2666 
2667 	new = kmalloc(sizeof(*new), GFP_NOFS);
2668 	if (!new)
2669 		return NULL;
2670 
2671 	new->inode = inode;
2672 	new->file_pos = ordered->file_offset;
2673 	new->len = ordered->len;
2674 	new->bytenr = ordered->start;
2675 	new->disk_len = ordered->disk_len;
2676 	new->compress_type = ordered->compress_type;
2677 	new->root = RB_ROOT;
2678 	INIT_LIST_HEAD(&new->head);
2679 
2680 	path = btrfs_alloc_path();
2681 	if (!path)
2682 		goto out_kfree;
2683 
2684 	key.objectid = btrfs_ino(inode);
2685 	key.type = BTRFS_EXTENT_DATA_KEY;
2686 	key.offset = new->file_pos;
2687 
2688 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2689 	if (ret < 0)
2690 		goto out_free_path;
2691 	if (ret > 0 && path->slots[0] > 0)
2692 		path->slots[0]--;
2693 
2694 	/* find out all the old extents for the file range */
2695 	while (1) {
2696 		struct btrfs_file_extent_item *extent;
2697 		struct extent_buffer *l;
2698 		int slot;
2699 		u64 num_bytes;
2700 		u64 offset;
2701 		u64 end;
2702 		u64 disk_bytenr;
2703 		u64 extent_offset;
2704 
2705 		l = path->nodes[0];
2706 		slot = path->slots[0];
2707 
2708 		if (slot >= btrfs_header_nritems(l)) {
2709 			ret = btrfs_next_leaf(root, path);
2710 			if (ret < 0)
2711 				goto out_free_path;
2712 			else if (ret > 0)
2713 				break;
2714 			continue;
2715 		}
2716 
2717 		btrfs_item_key_to_cpu(l, &key, slot);
2718 
2719 		if (key.objectid != btrfs_ino(inode))
2720 			break;
2721 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2722 			break;
2723 		if (key.offset >= new->file_pos + new->len)
2724 			break;
2725 
2726 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2727 
2728 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2729 		if (key.offset + num_bytes < new->file_pos)
2730 			goto next;
2731 
2732 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2733 		if (!disk_bytenr)
2734 			goto next;
2735 
2736 		extent_offset = btrfs_file_extent_offset(l, extent);
2737 
2738 		old = kmalloc(sizeof(*old), GFP_NOFS);
2739 		if (!old)
2740 			goto out_free_path;
2741 
2742 		offset = max(new->file_pos, key.offset);
2743 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2744 
2745 		old->bytenr = disk_bytenr;
2746 		old->extent_offset = extent_offset;
2747 		old->offset = offset - key.offset;
2748 		old->len = end - offset;
2749 		old->new = new;
2750 		old->count = 0;
2751 		list_add_tail(&old->list, &new->head);
2752 next:
2753 		path->slots[0]++;
2754 		cond_resched();
2755 	}
2756 
2757 	btrfs_free_path(path);
2758 	atomic_inc(&root->fs_info->defrag_running);
2759 
2760 	return new;
2761 
2762 out_free_path:
2763 	btrfs_free_path(path);
2764 out_kfree:
2765 	free_sa_defrag_extent(new);
2766 	return NULL;
2767 }
2768 
2769 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2770 					 u64 start, u64 len)
2771 {
2772 	struct btrfs_block_group_cache *cache;
2773 
2774 	cache = btrfs_lookup_block_group(root->fs_info, start);
2775 	ASSERT(cache);
2776 
2777 	spin_lock(&cache->lock);
2778 	cache->delalloc_bytes -= len;
2779 	spin_unlock(&cache->lock);
2780 
2781 	btrfs_put_block_group(cache);
2782 }
2783 
2784 /* as ordered data IO finishes, this gets called so we can finish
2785  * an ordered extent if the range of bytes in the file it covers are
2786  * fully written.
2787  */
2788 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2789 {
2790 	struct inode *inode = ordered_extent->inode;
2791 	struct btrfs_root *root = BTRFS_I(inode)->root;
2792 	struct btrfs_trans_handle *trans = NULL;
2793 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2794 	struct extent_state *cached_state = NULL;
2795 	struct new_sa_defrag_extent *new = NULL;
2796 	int compress_type = 0;
2797 	int ret = 0;
2798 	u64 logical_len = ordered_extent->len;
2799 	bool nolock;
2800 	bool truncated = false;
2801 
2802 	nolock = btrfs_is_free_space_inode(inode);
2803 
2804 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2805 		ret = -EIO;
2806 		goto out;
2807 	}
2808 
2809 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2810 				     ordered_extent->file_offset +
2811 				     ordered_extent->len - 1);
2812 
2813 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2814 		truncated = true;
2815 		logical_len = ordered_extent->truncated_len;
2816 		/* Truncated the entire extent, don't bother adding */
2817 		if (!logical_len)
2818 			goto out;
2819 	}
2820 
2821 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2822 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2823 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2824 		if (nolock)
2825 			trans = btrfs_join_transaction_nolock(root);
2826 		else
2827 			trans = btrfs_join_transaction(root);
2828 		if (IS_ERR(trans)) {
2829 			ret = PTR_ERR(trans);
2830 			trans = NULL;
2831 			goto out;
2832 		}
2833 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2834 		ret = btrfs_update_inode_fallback(trans, root, inode);
2835 		if (ret) /* -ENOMEM or corruption */
2836 			btrfs_abort_transaction(trans, root, ret);
2837 		goto out;
2838 	}
2839 
2840 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2841 			 ordered_extent->file_offset + ordered_extent->len - 1,
2842 			 0, &cached_state);
2843 
2844 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2845 			ordered_extent->file_offset + ordered_extent->len - 1,
2846 			EXTENT_DEFRAG, 1, cached_state);
2847 	if (ret) {
2848 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2849 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2850 			/* the inode is shared */
2851 			new = record_old_file_extents(inode, ordered_extent);
2852 
2853 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2854 			ordered_extent->file_offset + ordered_extent->len - 1,
2855 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2856 	}
2857 
2858 	if (nolock)
2859 		trans = btrfs_join_transaction_nolock(root);
2860 	else
2861 		trans = btrfs_join_transaction(root);
2862 	if (IS_ERR(trans)) {
2863 		ret = PTR_ERR(trans);
2864 		trans = NULL;
2865 		goto out_unlock;
2866 	}
2867 
2868 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869 
2870 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2871 		compress_type = ordered_extent->compress_type;
2872 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2873 		BUG_ON(compress_type);
2874 		ret = btrfs_mark_extent_written(trans, inode,
2875 						ordered_extent->file_offset,
2876 						ordered_extent->file_offset +
2877 						logical_len);
2878 	} else {
2879 		BUG_ON(root == root->fs_info->tree_root);
2880 		ret = insert_reserved_file_extent(trans, inode,
2881 						ordered_extent->file_offset,
2882 						ordered_extent->start,
2883 						ordered_extent->disk_len,
2884 						logical_len, logical_len,
2885 						compress_type, 0, 0,
2886 						BTRFS_FILE_EXTENT_REG);
2887 		if (!ret)
2888 			btrfs_release_delalloc_bytes(root,
2889 						     ordered_extent->start,
2890 						     ordered_extent->disk_len);
2891 	}
2892 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2893 			   ordered_extent->file_offset, ordered_extent->len,
2894 			   trans->transid);
2895 	if (ret < 0) {
2896 		btrfs_abort_transaction(trans, root, ret);
2897 		goto out_unlock;
2898 	}
2899 
2900 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2901 			  &ordered_extent->list);
2902 
2903 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2904 	ret = btrfs_update_inode_fallback(trans, root, inode);
2905 	if (ret) { /* -ENOMEM or corruption */
2906 		btrfs_abort_transaction(trans, root, ret);
2907 		goto out_unlock;
2908 	}
2909 	ret = 0;
2910 out_unlock:
2911 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2912 			     ordered_extent->file_offset +
2913 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2914 out:
2915 	if (root != root->fs_info->tree_root)
2916 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2917 	if (trans)
2918 		btrfs_end_transaction(trans, root);
2919 
2920 	if (ret || truncated) {
2921 		u64 start, end;
2922 
2923 		if (truncated)
2924 			start = ordered_extent->file_offset + logical_len;
2925 		else
2926 			start = ordered_extent->file_offset;
2927 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2928 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2929 
2930 		/* Drop the cache for the part of the extent we didn't write. */
2931 		btrfs_drop_extent_cache(inode, start, end, 0);
2932 
2933 		/*
2934 		 * If the ordered extent had an IOERR or something else went
2935 		 * wrong we need to return the space for this ordered extent
2936 		 * back to the allocator.  We only free the extent in the
2937 		 * truncated case if we didn't write out the extent at all.
2938 		 */
2939 		if ((ret || !logical_len) &&
2940 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2941 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2942 			btrfs_free_reserved_extent(root, ordered_extent->start,
2943 						   ordered_extent->disk_len, 1);
2944 	}
2945 
2946 
2947 	/*
2948 	 * This needs to be done to make sure anybody waiting knows we are done
2949 	 * updating everything for this ordered extent.
2950 	 */
2951 	btrfs_remove_ordered_extent(inode, ordered_extent);
2952 
2953 	/* for snapshot-aware defrag */
2954 	if (new) {
2955 		if (ret) {
2956 			free_sa_defrag_extent(new);
2957 			atomic_dec(&root->fs_info->defrag_running);
2958 		} else {
2959 			relink_file_extents(new);
2960 		}
2961 	}
2962 
2963 	/* once for us */
2964 	btrfs_put_ordered_extent(ordered_extent);
2965 	/* once for the tree */
2966 	btrfs_put_ordered_extent(ordered_extent);
2967 
2968 	return ret;
2969 }
2970 
2971 static void finish_ordered_fn(struct btrfs_work *work)
2972 {
2973 	struct btrfs_ordered_extent *ordered_extent;
2974 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2975 	btrfs_finish_ordered_io(ordered_extent);
2976 }
2977 
2978 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2979 				struct extent_state *state, int uptodate)
2980 {
2981 	struct inode *inode = page->mapping->host;
2982 	struct btrfs_root *root = BTRFS_I(inode)->root;
2983 	struct btrfs_ordered_extent *ordered_extent = NULL;
2984 	struct btrfs_workqueue *wq;
2985 	btrfs_work_func_t func;
2986 
2987 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2988 
2989 	ClearPagePrivate2(page);
2990 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2991 					    end - start + 1, uptodate))
2992 		return 0;
2993 
2994 	if (btrfs_is_free_space_inode(inode)) {
2995 		wq = root->fs_info->endio_freespace_worker;
2996 		func = btrfs_freespace_write_helper;
2997 	} else {
2998 		wq = root->fs_info->endio_write_workers;
2999 		func = btrfs_endio_write_helper;
3000 	}
3001 
3002 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3003 			NULL);
3004 	btrfs_queue_work(wq, &ordered_extent->work);
3005 
3006 	return 0;
3007 }
3008 
3009 static int __readpage_endio_check(struct inode *inode,
3010 				  struct btrfs_io_bio *io_bio,
3011 				  int icsum, struct page *page,
3012 				  int pgoff, u64 start, size_t len)
3013 {
3014 	char *kaddr;
3015 	u32 csum_expected;
3016 	u32 csum = ~(u32)0;
3017 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3018 				      DEFAULT_RATELIMIT_BURST);
3019 
3020 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3021 
3022 	kaddr = kmap_atomic(page);
3023 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3024 	btrfs_csum_final(csum, (char *)&csum);
3025 	if (csum != csum_expected)
3026 		goto zeroit;
3027 
3028 	kunmap_atomic(kaddr);
3029 	return 0;
3030 zeroit:
3031 	if (__ratelimit(&_rs))
3032 		btrfs_warn(BTRFS_I(inode)->root->fs_info,
3033 			   "csum failed ino %llu off %llu csum %u expected csum %u",
3034 			   btrfs_ino(inode), start, csum, csum_expected);
3035 	memset(kaddr + pgoff, 1, len);
3036 	flush_dcache_page(page);
3037 	kunmap_atomic(kaddr);
3038 	if (csum_expected == 0)
3039 		return 0;
3040 	return -EIO;
3041 }
3042 
3043 /*
3044  * when reads are done, we need to check csums to verify the data is correct
3045  * if there's a match, we allow the bio to finish.  If not, the code in
3046  * extent_io.c will try to find good copies for us.
3047  */
3048 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3049 				      u64 phy_offset, struct page *page,
3050 				      u64 start, u64 end, int mirror)
3051 {
3052 	size_t offset = start - page_offset(page);
3053 	struct inode *inode = page->mapping->host;
3054 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3055 	struct btrfs_root *root = BTRFS_I(inode)->root;
3056 
3057 	if (PageChecked(page)) {
3058 		ClearPageChecked(page);
3059 		return 0;
3060 	}
3061 
3062 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3063 		return 0;
3064 
3065 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3066 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3067 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3068 				  GFP_NOFS);
3069 		return 0;
3070 	}
3071 
3072 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3073 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3074 				      start, (size_t)(end - start + 1));
3075 }
3076 
3077 struct delayed_iput {
3078 	struct list_head list;
3079 	struct inode *inode;
3080 };
3081 
3082 /* JDM: If this is fs-wide, why can't we add a pointer to
3083  * btrfs_inode instead and avoid the allocation? */
3084 void btrfs_add_delayed_iput(struct inode *inode)
3085 {
3086 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3087 	struct delayed_iput *delayed;
3088 
3089 	if (atomic_add_unless(&inode->i_count, -1, 1))
3090 		return;
3091 
3092 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3093 	delayed->inode = inode;
3094 
3095 	spin_lock(&fs_info->delayed_iput_lock);
3096 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3097 	spin_unlock(&fs_info->delayed_iput_lock);
3098 }
3099 
3100 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3101 {
3102 	LIST_HEAD(list);
3103 	struct btrfs_fs_info *fs_info = root->fs_info;
3104 	struct delayed_iput *delayed;
3105 	int empty;
3106 
3107 	spin_lock(&fs_info->delayed_iput_lock);
3108 	empty = list_empty(&fs_info->delayed_iputs);
3109 	spin_unlock(&fs_info->delayed_iput_lock);
3110 	if (empty)
3111 		return;
3112 
3113 	down_read(&fs_info->delayed_iput_sem);
3114 
3115 	spin_lock(&fs_info->delayed_iput_lock);
3116 	list_splice_init(&fs_info->delayed_iputs, &list);
3117 	spin_unlock(&fs_info->delayed_iput_lock);
3118 
3119 	while (!list_empty(&list)) {
3120 		delayed = list_entry(list.next, struct delayed_iput, list);
3121 		list_del(&delayed->list);
3122 		iput(delayed->inode);
3123 		kfree(delayed);
3124 	}
3125 
3126 	up_read(&root->fs_info->delayed_iput_sem);
3127 }
3128 
3129 /*
3130  * This is called in transaction commit time. If there are no orphan
3131  * files in the subvolume, it removes orphan item and frees block_rsv
3132  * structure.
3133  */
3134 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3135 			      struct btrfs_root *root)
3136 {
3137 	struct btrfs_block_rsv *block_rsv;
3138 	int ret;
3139 
3140 	if (atomic_read(&root->orphan_inodes) ||
3141 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3142 		return;
3143 
3144 	spin_lock(&root->orphan_lock);
3145 	if (atomic_read(&root->orphan_inodes)) {
3146 		spin_unlock(&root->orphan_lock);
3147 		return;
3148 	}
3149 
3150 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3151 		spin_unlock(&root->orphan_lock);
3152 		return;
3153 	}
3154 
3155 	block_rsv = root->orphan_block_rsv;
3156 	root->orphan_block_rsv = NULL;
3157 	spin_unlock(&root->orphan_lock);
3158 
3159 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3160 	    btrfs_root_refs(&root->root_item) > 0) {
3161 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3162 					    root->root_key.objectid);
3163 		if (ret)
3164 			btrfs_abort_transaction(trans, root, ret);
3165 		else
3166 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3167 				  &root->state);
3168 	}
3169 
3170 	if (block_rsv) {
3171 		WARN_ON(block_rsv->size > 0);
3172 		btrfs_free_block_rsv(root, block_rsv);
3173 	}
3174 }
3175 
3176 /*
3177  * This creates an orphan entry for the given inode in case something goes
3178  * wrong in the middle of an unlink/truncate.
3179  *
3180  * NOTE: caller of this function should reserve 5 units of metadata for
3181  *	 this function.
3182  */
3183 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3184 {
3185 	struct btrfs_root *root = BTRFS_I(inode)->root;
3186 	struct btrfs_block_rsv *block_rsv = NULL;
3187 	int reserve = 0;
3188 	int insert = 0;
3189 	int ret;
3190 
3191 	if (!root->orphan_block_rsv) {
3192 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3193 		if (!block_rsv)
3194 			return -ENOMEM;
3195 	}
3196 
3197 	spin_lock(&root->orphan_lock);
3198 	if (!root->orphan_block_rsv) {
3199 		root->orphan_block_rsv = block_rsv;
3200 	} else if (block_rsv) {
3201 		btrfs_free_block_rsv(root, block_rsv);
3202 		block_rsv = NULL;
3203 	}
3204 
3205 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3206 			      &BTRFS_I(inode)->runtime_flags)) {
3207 #if 0
3208 		/*
3209 		 * For proper ENOSPC handling, we should do orphan
3210 		 * cleanup when mounting. But this introduces backward
3211 		 * compatibility issue.
3212 		 */
3213 		if (!xchg(&root->orphan_item_inserted, 1))
3214 			insert = 2;
3215 		else
3216 			insert = 1;
3217 #endif
3218 		insert = 1;
3219 		atomic_inc(&root->orphan_inodes);
3220 	}
3221 
3222 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3223 			      &BTRFS_I(inode)->runtime_flags))
3224 		reserve = 1;
3225 	spin_unlock(&root->orphan_lock);
3226 
3227 	/* grab metadata reservation from transaction handle */
3228 	if (reserve) {
3229 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3230 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3231 	}
3232 
3233 	/* insert an orphan item to track this unlinked/truncated file */
3234 	if (insert >= 1) {
3235 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3236 		if (ret) {
3237 			atomic_dec(&root->orphan_inodes);
3238 			if (reserve) {
3239 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3240 					  &BTRFS_I(inode)->runtime_flags);
3241 				btrfs_orphan_release_metadata(inode);
3242 			}
3243 			if (ret != -EEXIST) {
3244 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3245 					  &BTRFS_I(inode)->runtime_flags);
3246 				btrfs_abort_transaction(trans, root, ret);
3247 				return ret;
3248 			}
3249 		}
3250 		ret = 0;
3251 	}
3252 
3253 	/* insert an orphan item to track subvolume contains orphan files */
3254 	if (insert >= 2) {
3255 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3256 					       root->root_key.objectid);
3257 		if (ret && ret != -EEXIST) {
3258 			btrfs_abort_transaction(trans, root, ret);
3259 			return ret;
3260 		}
3261 	}
3262 	return 0;
3263 }
3264 
3265 /*
3266  * We have done the truncate/delete so we can go ahead and remove the orphan
3267  * item for this particular inode.
3268  */
3269 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3270 			    struct inode *inode)
3271 {
3272 	struct btrfs_root *root = BTRFS_I(inode)->root;
3273 	int delete_item = 0;
3274 	int release_rsv = 0;
3275 	int ret = 0;
3276 
3277 	spin_lock(&root->orphan_lock);
3278 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3279 			       &BTRFS_I(inode)->runtime_flags))
3280 		delete_item = 1;
3281 
3282 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3283 			       &BTRFS_I(inode)->runtime_flags))
3284 		release_rsv = 1;
3285 	spin_unlock(&root->orphan_lock);
3286 
3287 	if (delete_item) {
3288 		atomic_dec(&root->orphan_inodes);
3289 		if (trans)
3290 			ret = btrfs_del_orphan_item(trans, root,
3291 						    btrfs_ino(inode));
3292 	}
3293 
3294 	if (release_rsv)
3295 		btrfs_orphan_release_metadata(inode);
3296 
3297 	return ret;
3298 }
3299 
3300 /*
3301  * this cleans up any orphans that may be left on the list from the last use
3302  * of this root.
3303  */
3304 int btrfs_orphan_cleanup(struct btrfs_root *root)
3305 {
3306 	struct btrfs_path *path;
3307 	struct extent_buffer *leaf;
3308 	struct btrfs_key key, found_key;
3309 	struct btrfs_trans_handle *trans;
3310 	struct inode *inode;
3311 	u64 last_objectid = 0;
3312 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3313 
3314 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3315 		return 0;
3316 
3317 	path = btrfs_alloc_path();
3318 	if (!path) {
3319 		ret = -ENOMEM;
3320 		goto out;
3321 	}
3322 	path->reada = -1;
3323 
3324 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3325 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3326 	key.offset = (u64)-1;
3327 
3328 	while (1) {
3329 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3330 		if (ret < 0)
3331 			goto out;
3332 
3333 		/*
3334 		 * if ret == 0 means we found what we were searching for, which
3335 		 * is weird, but possible, so only screw with path if we didn't
3336 		 * find the key and see if we have stuff that matches
3337 		 */
3338 		if (ret > 0) {
3339 			ret = 0;
3340 			if (path->slots[0] == 0)
3341 				break;
3342 			path->slots[0]--;
3343 		}
3344 
3345 		/* pull out the item */
3346 		leaf = path->nodes[0];
3347 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3348 
3349 		/* make sure the item matches what we want */
3350 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3351 			break;
3352 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3353 			break;
3354 
3355 		/* release the path since we're done with it */
3356 		btrfs_release_path(path);
3357 
3358 		/*
3359 		 * this is where we are basically btrfs_lookup, without the
3360 		 * crossing root thing.  we store the inode number in the
3361 		 * offset of the orphan item.
3362 		 */
3363 
3364 		if (found_key.offset == last_objectid) {
3365 			btrfs_err(root->fs_info,
3366 				"Error removing orphan entry, stopping orphan cleanup");
3367 			ret = -EINVAL;
3368 			goto out;
3369 		}
3370 
3371 		last_objectid = found_key.offset;
3372 
3373 		found_key.objectid = found_key.offset;
3374 		found_key.type = BTRFS_INODE_ITEM_KEY;
3375 		found_key.offset = 0;
3376 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3377 		ret = PTR_ERR_OR_ZERO(inode);
3378 		if (ret && ret != -ESTALE)
3379 			goto out;
3380 
3381 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3382 			struct btrfs_root *dead_root;
3383 			struct btrfs_fs_info *fs_info = root->fs_info;
3384 			int is_dead_root = 0;
3385 
3386 			/*
3387 			 * this is an orphan in the tree root. Currently these
3388 			 * could come from 2 sources:
3389 			 *  a) a snapshot deletion in progress
3390 			 *  b) a free space cache inode
3391 			 * We need to distinguish those two, as the snapshot
3392 			 * orphan must not get deleted.
3393 			 * find_dead_roots already ran before us, so if this
3394 			 * is a snapshot deletion, we should find the root
3395 			 * in the dead_roots list
3396 			 */
3397 			spin_lock(&fs_info->trans_lock);
3398 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3399 					    root_list) {
3400 				if (dead_root->root_key.objectid ==
3401 				    found_key.objectid) {
3402 					is_dead_root = 1;
3403 					break;
3404 				}
3405 			}
3406 			spin_unlock(&fs_info->trans_lock);
3407 			if (is_dead_root) {
3408 				/* prevent this orphan from being found again */
3409 				key.offset = found_key.objectid - 1;
3410 				continue;
3411 			}
3412 		}
3413 		/*
3414 		 * Inode is already gone but the orphan item is still there,
3415 		 * kill the orphan item.
3416 		 */
3417 		if (ret == -ESTALE) {
3418 			trans = btrfs_start_transaction(root, 1);
3419 			if (IS_ERR(trans)) {
3420 				ret = PTR_ERR(trans);
3421 				goto out;
3422 			}
3423 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3424 				found_key.objectid);
3425 			ret = btrfs_del_orphan_item(trans, root,
3426 						    found_key.objectid);
3427 			btrfs_end_transaction(trans, root);
3428 			if (ret)
3429 				goto out;
3430 			continue;
3431 		}
3432 
3433 		/*
3434 		 * add this inode to the orphan list so btrfs_orphan_del does
3435 		 * the proper thing when we hit it
3436 		 */
3437 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3438 			&BTRFS_I(inode)->runtime_flags);
3439 		atomic_inc(&root->orphan_inodes);
3440 
3441 		/* if we have links, this was a truncate, lets do that */
3442 		if (inode->i_nlink) {
3443 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3444 				iput(inode);
3445 				continue;
3446 			}
3447 			nr_truncate++;
3448 
3449 			/* 1 for the orphan item deletion. */
3450 			trans = btrfs_start_transaction(root, 1);
3451 			if (IS_ERR(trans)) {
3452 				iput(inode);
3453 				ret = PTR_ERR(trans);
3454 				goto out;
3455 			}
3456 			ret = btrfs_orphan_add(trans, inode);
3457 			btrfs_end_transaction(trans, root);
3458 			if (ret) {
3459 				iput(inode);
3460 				goto out;
3461 			}
3462 
3463 			ret = btrfs_truncate(inode);
3464 			if (ret)
3465 				btrfs_orphan_del(NULL, inode);
3466 		} else {
3467 			nr_unlink++;
3468 		}
3469 
3470 		/* this will do delete_inode and everything for us */
3471 		iput(inode);
3472 		if (ret)
3473 			goto out;
3474 	}
3475 	/* release the path since we're done with it */
3476 	btrfs_release_path(path);
3477 
3478 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3479 
3480 	if (root->orphan_block_rsv)
3481 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3482 					(u64)-1);
3483 
3484 	if (root->orphan_block_rsv ||
3485 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3486 		trans = btrfs_join_transaction(root);
3487 		if (!IS_ERR(trans))
3488 			btrfs_end_transaction(trans, root);
3489 	}
3490 
3491 	if (nr_unlink)
3492 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3493 	if (nr_truncate)
3494 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3495 
3496 out:
3497 	if (ret)
3498 		btrfs_err(root->fs_info,
3499 			"could not do orphan cleanup %d", ret);
3500 	btrfs_free_path(path);
3501 	return ret;
3502 }
3503 
3504 /*
3505  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3506  * don't find any xattrs, we know there can't be any acls.
3507  *
3508  * slot is the slot the inode is in, objectid is the objectid of the inode
3509  */
3510 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3511 					  int slot, u64 objectid,
3512 					  int *first_xattr_slot)
3513 {
3514 	u32 nritems = btrfs_header_nritems(leaf);
3515 	struct btrfs_key found_key;
3516 	static u64 xattr_access = 0;
3517 	static u64 xattr_default = 0;
3518 	int scanned = 0;
3519 
3520 	if (!xattr_access) {
3521 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3522 					strlen(POSIX_ACL_XATTR_ACCESS));
3523 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3524 					strlen(POSIX_ACL_XATTR_DEFAULT));
3525 	}
3526 
3527 	slot++;
3528 	*first_xattr_slot = -1;
3529 	while (slot < nritems) {
3530 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3531 
3532 		/* we found a different objectid, there must not be acls */
3533 		if (found_key.objectid != objectid)
3534 			return 0;
3535 
3536 		/* we found an xattr, assume we've got an acl */
3537 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3538 			if (*first_xattr_slot == -1)
3539 				*first_xattr_slot = slot;
3540 			if (found_key.offset == xattr_access ||
3541 			    found_key.offset == xattr_default)
3542 				return 1;
3543 		}
3544 
3545 		/*
3546 		 * we found a key greater than an xattr key, there can't
3547 		 * be any acls later on
3548 		 */
3549 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3550 			return 0;
3551 
3552 		slot++;
3553 		scanned++;
3554 
3555 		/*
3556 		 * it goes inode, inode backrefs, xattrs, extents,
3557 		 * so if there are a ton of hard links to an inode there can
3558 		 * be a lot of backrefs.  Don't waste time searching too hard,
3559 		 * this is just an optimization
3560 		 */
3561 		if (scanned >= 8)
3562 			break;
3563 	}
3564 	/* we hit the end of the leaf before we found an xattr or
3565 	 * something larger than an xattr.  We have to assume the inode
3566 	 * has acls
3567 	 */
3568 	if (*first_xattr_slot == -1)
3569 		*first_xattr_slot = slot;
3570 	return 1;
3571 }
3572 
3573 /*
3574  * read an inode from the btree into the in-memory inode
3575  */
3576 static void btrfs_read_locked_inode(struct inode *inode)
3577 {
3578 	struct btrfs_path *path;
3579 	struct extent_buffer *leaf;
3580 	struct btrfs_inode_item *inode_item;
3581 	struct btrfs_root *root = BTRFS_I(inode)->root;
3582 	struct btrfs_key location;
3583 	unsigned long ptr;
3584 	int maybe_acls;
3585 	u32 rdev;
3586 	int ret;
3587 	bool filled = false;
3588 	int first_xattr_slot;
3589 
3590 	ret = btrfs_fill_inode(inode, &rdev);
3591 	if (!ret)
3592 		filled = true;
3593 
3594 	path = btrfs_alloc_path();
3595 	if (!path)
3596 		goto make_bad;
3597 
3598 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3599 
3600 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3601 	if (ret)
3602 		goto make_bad;
3603 
3604 	leaf = path->nodes[0];
3605 
3606 	if (filled)
3607 		goto cache_index;
3608 
3609 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3610 				    struct btrfs_inode_item);
3611 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3612 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3613 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3614 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3615 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3616 
3617 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3618 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3619 
3620 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3621 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3622 
3623 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3624 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3625 
3626 	BTRFS_I(inode)->i_otime.tv_sec =
3627 		btrfs_timespec_sec(leaf, &inode_item->otime);
3628 	BTRFS_I(inode)->i_otime.tv_nsec =
3629 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3630 
3631 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3632 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3633 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3634 
3635 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3636 	inode->i_generation = BTRFS_I(inode)->generation;
3637 	inode->i_rdev = 0;
3638 	rdev = btrfs_inode_rdev(leaf, inode_item);
3639 
3640 	BTRFS_I(inode)->index_cnt = (u64)-1;
3641 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3642 
3643 cache_index:
3644 	/*
3645 	 * If we were modified in the current generation and evicted from memory
3646 	 * and then re-read we need to do a full sync since we don't have any
3647 	 * idea about which extents were modified before we were evicted from
3648 	 * cache.
3649 	 *
3650 	 * This is required for both inode re-read from disk and delayed inode
3651 	 * in delayed_nodes_tree.
3652 	 */
3653 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3654 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3655 			&BTRFS_I(inode)->runtime_flags);
3656 
3657 	path->slots[0]++;
3658 	if (inode->i_nlink != 1 ||
3659 	    path->slots[0] >= btrfs_header_nritems(leaf))
3660 		goto cache_acl;
3661 
3662 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3663 	if (location.objectid != btrfs_ino(inode))
3664 		goto cache_acl;
3665 
3666 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3667 	if (location.type == BTRFS_INODE_REF_KEY) {
3668 		struct btrfs_inode_ref *ref;
3669 
3670 		ref = (struct btrfs_inode_ref *)ptr;
3671 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3672 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3673 		struct btrfs_inode_extref *extref;
3674 
3675 		extref = (struct btrfs_inode_extref *)ptr;
3676 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3677 								     extref);
3678 	}
3679 cache_acl:
3680 	/*
3681 	 * try to precache a NULL acl entry for files that don't have
3682 	 * any xattrs or acls
3683 	 */
3684 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3685 					   btrfs_ino(inode), &first_xattr_slot);
3686 	if (first_xattr_slot != -1) {
3687 		path->slots[0] = first_xattr_slot;
3688 		ret = btrfs_load_inode_props(inode, path);
3689 		if (ret)
3690 			btrfs_err(root->fs_info,
3691 				  "error loading props for ino %llu (root %llu): %d",
3692 				  btrfs_ino(inode),
3693 				  root->root_key.objectid, ret);
3694 	}
3695 	btrfs_free_path(path);
3696 
3697 	if (!maybe_acls)
3698 		cache_no_acl(inode);
3699 
3700 	switch (inode->i_mode & S_IFMT) {
3701 	case S_IFREG:
3702 		inode->i_mapping->a_ops = &btrfs_aops;
3703 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3704 		inode->i_fop = &btrfs_file_operations;
3705 		inode->i_op = &btrfs_file_inode_operations;
3706 		break;
3707 	case S_IFDIR:
3708 		inode->i_fop = &btrfs_dir_file_operations;
3709 		if (root == root->fs_info->tree_root)
3710 			inode->i_op = &btrfs_dir_ro_inode_operations;
3711 		else
3712 			inode->i_op = &btrfs_dir_inode_operations;
3713 		break;
3714 	case S_IFLNK:
3715 		inode->i_op = &btrfs_symlink_inode_operations;
3716 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3717 		break;
3718 	default:
3719 		inode->i_op = &btrfs_special_inode_operations;
3720 		init_special_inode(inode, inode->i_mode, rdev);
3721 		break;
3722 	}
3723 
3724 	btrfs_update_iflags(inode);
3725 	return;
3726 
3727 make_bad:
3728 	btrfs_free_path(path);
3729 	make_bad_inode(inode);
3730 }
3731 
3732 /*
3733  * given a leaf and an inode, copy the inode fields into the leaf
3734  */
3735 static void fill_inode_item(struct btrfs_trans_handle *trans,
3736 			    struct extent_buffer *leaf,
3737 			    struct btrfs_inode_item *item,
3738 			    struct inode *inode)
3739 {
3740 	struct btrfs_map_token token;
3741 
3742 	btrfs_init_map_token(&token);
3743 
3744 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3745 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3746 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3747 				   &token);
3748 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3749 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3750 
3751 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3752 				     inode->i_atime.tv_sec, &token);
3753 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3754 				      inode->i_atime.tv_nsec, &token);
3755 
3756 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3757 				     inode->i_mtime.tv_sec, &token);
3758 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3759 				      inode->i_mtime.tv_nsec, &token);
3760 
3761 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3762 				     inode->i_ctime.tv_sec, &token);
3763 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3764 				      inode->i_ctime.tv_nsec, &token);
3765 
3766 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3767 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3768 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3769 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3770 
3771 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3772 				     &token);
3773 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3774 					 &token);
3775 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3776 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3777 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3778 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3779 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3780 }
3781 
3782 /*
3783  * copy everything in the in-memory inode into the btree.
3784  */
3785 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3786 				struct btrfs_root *root, struct inode *inode)
3787 {
3788 	struct btrfs_inode_item *inode_item;
3789 	struct btrfs_path *path;
3790 	struct extent_buffer *leaf;
3791 	int ret;
3792 
3793 	path = btrfs_alloc_path();
3794 	if (!path)
3795 		return -ENOMEM;
3796 
3797 	path->leave_spinning = 1;
3798 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3799 				 1);
3800 	if (ret) {
3801 		if (ret > 0)
3802 			ret = -ENOENT;
3803 		goto failed;
3804 	}
3805 
3806 	leaf = path->nodes[0];
3807 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3808 				    struct btrfs_inode_item);
3809 
3810 	fill_inode_item(trans, leaf, inode_item, inode);
3811 	btrfs_mark_buffer_dirty(leaf);
3812 	btrfs_set_inode_last_trans(trans, inode);
3813 	ret = 0;
3814 failed:
3815 	btrfs_free_path(path);
3816 	return ret;
3817 }
3818 
3819 /*
3820  * copy everything in the in-memory inode into the btree.
3821  */
3822 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3823 				struct btrfs_root *root, struct inode *inode)
3824 {
3825 	int ret;
3826 
3827 	/*
3828 	 * If the inode is a free space inode, we can deadlock during commit
3829 	 * if we put it into the delayed code.
3830 	 *
3831 	 * The data relocation inode should also be directly updated
3832 	 * without delay
3833 	 */
3834 	if (!btrfs_is_free_space_inode(inode)
3835 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3836 	    && !root->fs_info->log_root_recovering) {
3837 		btrfs_update_root_times(trans, root);
3838 
3839 		ret = btrfs_delayed_update_inode(trans, root, inode);
3840 		if (!ret)
3841 			btrfs_set_inode_last_trans(trans, inode);
3842 		return ret;
3843 	}
3844 
3845 	return btrfs_update_inode_item(trans, root, inode);
3846 }
3847 
3848 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3849 					 struct btrfs_root *root,
3850 					 struct inode *inode)
3851 {
3852 	int ret;
3853 
3854 	ret = btrfs_update_inode(trans, root, inode);
3855 	if (ret == -ENOSPC)
3856 		return btrfs_update_inode_item(trans, root, inode);
3857 	return ret;
3858 }
3859 
3860 /*
3861  * unlink helper that gets used here in inode.c and in the tree logging
3862  * recovery code.  It remove a link in a directory with a given name, and
3863  * also drops the back refs in the inode to the directory
3864  */
3865 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3866 				struct btrfs_root *root,
3867 				struct inode *dir, struct inode *inode,
3868 				const char *name, int name_len)
3869 {
3870 	struct btrfs_path *path;
3871 	int ret = 0;
3872 	struct extent_buffer *leaf;
3873 	struct btrfs_dir_item *di;
3874 	struct btrfs_key key;
3875 	u64 index;
3876 	u64 ino = btrfs_ino(inode);
3877 	u64 dir_ino = btrfs_ino(dir);
3878 
3879 	path = btrfs_alloc_path();
3880 	if (!path) {
3881 		ret = -ENOMEM;
3882 		goto out;
3883 	}
3884 
3885 	path->leave_spinning = 1;
3886 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3887 				    name, name_len, -1);
3888 	if (IS_ERR(di)) {
3889 		ret = PTR_ERR(di);
3890 		goto err;
3891 	}
3892 	if (!di) {
3893 		ret = -ENOENT;
3894 		goto err;
3895 	}
3896 	leaf = path->nodes[0];
3897 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3898 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3899 	if (ret)
3900 		goto err;
3901 	btrfs_release_path(path);
3902 
3903 	/*
3904 	 * If we don't have dir index, we have to get it by looking up
3905 	 * the inode ref, since we get the inode ref, remove it directly,
3906 	 * it is unnecessary to do delayed deletion.
3907 	 *
3908 	 * But if we have dir index, needn't search inode ref to get it.
3909 	 * Since the inode ref is close to the inode item, it is better
3910 	 * that we delay to delete it, and just do this deletion when
3911 	 * we update the inode item.
3912 	 */
3913 	if (BTRFS_I(inode)->dir_index) {
3914 		ret = btrfs_delayed_delete_inode_ref(inode);
3915 		if (!ret) {
3916 			index = BTRFS_I(inode)->dir_index;
3917 			goto skip_backref;
3918 		}
3919 	}
3920 
3921 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3922 				  dir_ino, &index);
3923 	if (ret) {
3924 		btrfs_info(root->fs_info,
3925 			"failed to delete reference to %.*s, inode %llu parent %llu",
3926 			name_len, name, ino, dir_ino);
3927 		btrfs_abort_transaction(trans, root, ret);
3928 		goto err;
3929 	}
3930 skip_backref:
3931 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3932 	if (ret) {
3933 		btrfs_abort_transaction(trans, root, ret);
3934 		goto err;
3935 	}
3936 
3937 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3938 					 inode, dir_ino);
3939 	if (ret != 0 && ret != -ENOENT) {
3940 		btrfs_abort_transaction(trans, root, ret);
3941 		goto err;
3942 	}
3943 
3944 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3945 					   dir, index);
3946 	if (ret == -ENOENT)
3947 		ret = 0;
3948 	else if (ret)
3949 		btrfs_abort_transaction(trans, root, ret);
3950 err:
3951 	btrfs_free_path(path);
3952 	if (ret)
3953 		goto out;
3954 
3955 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3956 	inode_inc_iversion(inode);
3957 	inode_inc_iversion(dir);
3958 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3959 	ret = btrfs_update_inode(trans, root, dir);
3960 out:
3961 	return ret;
3962 }
3963 
3964 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3965 		       struct btrfs_root *root,
3966 		       struct inode *dir, struct inode *inode,
3967 		       const char *name, int name_len)
3968 {
3969 	int ret;
3970 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3971 	if (!ret) {
3972 		drop_nlink(inode);
3973 		ret = btrfs_update_inode(trans, root, inode);
3974 	}
3975 	return ret;
3976 }
3977 
3978 /*
3979  * helper to start transaction for unlink and rmdir.
3980  *
3981  * unlink and rmdir are special in btrfs, they do not always free space, so
3982  * if we cannot make our reservations the normal way try and see if there is
3983  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3984  * allow the unlink to occur.
3985  */
3986 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3987 {
3988 	struct btrfs_trans_handle *trans;
3989 	struct btrfs_root *root = BTRFS_I(dir)->root;
3990 	int ret;
3991 
3992 	/*
3993 	 * 1 for the possible orphan item
3994 	 * 1 for the dir item
3995 	 * 1 for the dir index
3996 	 * 1 for the inode ref
3997 	 * 1 for the inode
3998 	 */
3999 	trans = btrfs_start_transaction(root, 5);
4000 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4001 		return trans;
4002 
4003 	if (PTR_ERR(trans) == -ENOSPC) {
4004 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4005 
4006 		trans = btrfs_start_transaction(root, 0);
4007 		if (IS_ERR(trans))
4008 			return trans;
4009 		ret = btrfs_cond_migrate_bytes(root->fs_info,
4010 					       &root->fs_info->trans_block_rsv,
4011 					       num_bytes, 5);
4012 		if (ret) {
4013 			btrfs_end_transaction(trans, root);
4014 			return ERR_PTR(ret);
4015 		}
4016 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4017 		trans->bytes_reserved = num_bytes;
4018 	}
4019 	return trans;
4020 }
4021 
4022 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4023 {
4024 	struct btrfs_root *root = BTRFS_I(dir)->root;
4025 	struct btrfs_trans_handle *trans;
4026 	struct inode *inode = d_inode(dentry);
4027 	int ret;
4028 
4029 	trans = __unlink_start_trans(dir);
4030 	if (IS_ERR(trans))
4031 		return PTR_ERR(trans);
4032 
4033 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4034 
4035 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4036 				 dentry->d_name.name, dentry->d_name.len);
4037 	if (ret)
4038 		goto out;
4039 
4040 	if (inode->i_nlink == 0) {
4041 		ret = btrfs_orphan_add(trans, inode);
4042 		if (ret)
4043 			goto out;
4044 	}
4045 
4046 out:
4047 	btrfs_end_transaction(trans, root);
4048 	btrfs_btree_balance_dirty(root);
4049 	return ret;
4050 }
4051 
4052 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4053 			struct btrfs_root *root,
4054 			struct inode *dir, u64 objectid,
4055 			const char *name, int name_len)
4056 {
4057 	struct btrfs_path *path;
4058 	struct extent_buffer *leaf;
4059 	struct btrfs_dir_item *di;
4060 	struct btrfs_key key;
4061 	u64 index;
4062 	int ret;
4063 	u64 dir_ino = btrfs_ino(dir);
4064 
4065 	path = btrfs_alloc_path();
4066 	if (!path)
4067 		return -ENOMEM;
4068 
4069 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4070 				   name, name_len, -1);
4071 	if (IS_ERR_OR_NULL(di)) {
4072 		if (!di)
4073 			ret = -ENOENT;
4074 		else
4075 			ret = PTR_ERR(di);
4076 		goto out;
4077 	}
4078 
4079 	leaf = path->nodes[0];
4080 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4081 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4082 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4083 	if (ret) {
4084 		btrfs_abort_transaction(trans, root, ret);
4085 		goto out;
4086 	}
4087 	btrfs_release_path(path);
4088 
4089 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4090 				 objectid, root->root_key.objectid,
4091 				 dir_ino, &index, name, name_len);
4092 	if (ret < 0) {
4093 		if (ret != -ENOENT) {
4094 			btrfs_abort_transaction(trans, root, ret);
4095 			goto out;
4096 		}
4097 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4098 						 name, name_len);
4099 		if (IS_ERR_OR_NULL(di)) {
4100 			if (!di)
4101 				ret = -ENOENT;
4102 			else
4103 				ret = PTR_ERR(di);
4104 			btrfs_abort_transaction(trans, root, ret);
4105 			goto out;
4106 		}
4107 
4108 		leaf = path->nodes[0];
4109 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4110 		btrfs_release_path(path);
4111 		index = key.offset;
4112 	}
4113 	btrfs_release_path(path);
4114 
4115 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4116 	if (ret) {
4117 		btrfs_abort_transaction(trans, root, ret);
4118 		goto out;
4119 	}
4120 
4121 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4122 	inode_inc_iversion(dir);
4123 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4124 	ret = btrfs_update_inode_fallback(trans, root, dir);
4125 	if (ret)
4126 		btrfs_abort_transaction(trans, root, ret);
4127 out:
4128 	btrfs_free_path(path);
4129 	return ret;
4130 }
4131 
4132 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4133 {
4134 	struct inode *inode = d_inode(dentry);
4135 	int err = 0;
4136 	struct btrfs_root *root = BTRFS_I(dir)->root;
4137 	struct btrfs_trans_handle *trans;
4138 
4139 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4140 		return -ENOTEMPTY;
4141 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4142 		return -EPERM;
4143 
4144 	trans = __unlink_start_trans(dir);
4145 	if (IS_ERR(trans))
4146 		return PTR_ERR(trans);
4147 
4148 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4149 		err = btrfs_unlink_subvol(trans, root, dir,
4150 					  BTRFS_I(inode)->location.objectid,
4151 					  dentry->d_name.name,
4152 					  dentry->d_name.len);
4153 		goto out;
4154 	}
4155 
4156 	err = btrfs_orphan_add(trans, inode);
4157 	if (err)
4158 		goto out;
4159 
4160 	/* now the directory is empty */
4161 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4162 				 dentry->d_name.name, dentry->d_name.len);
4163 	if (!err)
4164 		btrfs_i_size_write(inode, 0);
4165 out:
4166 	btrfs_end_transaction(trans, root);
4167 	btrfs_btree_balance_dirty(root);
4168 
4169 	return err;
4170 }
4171 
4172 static int truncate_space_check(struct btrfs_trans_handle *trans,
4173 				struct btrfs_root *root,
4174 				u64 bytes_deleted)
4175 {
4176 	int ret;
4177 
4178 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4179 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4180 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4181 	if (!ret)
4182 		trans->bytes_reserved += bytes_deleted;
4183 	return ret;
4184 
4185 }
4186 
4187 /*
4188  * this can truncate away extent items, csum items and directory items.
4189  * It starts at a high offset and removes keys until it can't find
4190  * any higher than new_size
4191  *
4192  * csum items that cross the new i_size are truncated to the new size
4193  * as well.
4194  *
4195  * min_type is the minimum key type to truncate down to.  If set to 0, this
4196  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4197  */
4198 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4199 			       struct btrfs_root *root,
4200 			       struct inode *inode,
4201 			       u64 new_size, u32 min_type)
4202 {
4203 	struct btrfs_path *path;
4204 	struct extent_buffer *leaf;
4205 	struct btrfs_file_extent_item *fi;
4206 	struct btrfs_key key;
4207 	struct btrfs_key found_key;
4208 	u64 extent_start = 0;
4209 	u64 extent_num_bytes = 0;
4210 	u64 extent_offset = 0;
4211 	u64 item_end = 0;
4212 	u64 last_size = (u64)-1;
4213 	u32 found_type = (u8)-1;
4214 	int found_extent;
4215 	int del_item;
4216 	int pending_del_nr = 0;
4217 	int pending_del_slot = 0;
4218 	int extent_type = -1;
4219 	int ret;
4220 	int err = 0;
4221 	u64 ino = btrfs_ino(inode);
4222 	u64 bytes_deleted = 0;
4223 	bool be_nice = 0;
4224 	bool should_throttle = 0;
4225 	bool should_end = 0;
4226 
4227 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4228 
4229 	/*
4230 	 * for non-free space inodes and ref cows, we want to back off from
4231 	 * time to time
4232 	 */
4233 	if (!btrfs_is_free_space_inode(inode) &&
4234 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4235 		be_nice = 1;
4236 
4237 	path = btrfs_alloc_path();
4238 	if (!path)
4239 		return -ENOMEM;
4240 	path->reada = -1;
4241 
4242 	/*
4243 	 * We want to drop from the next block forward in case this new size is
4244 	 * not block aligned since we will be keeping the last block of the
4245 	 * extent just the way it is.
4246 	 */
4247 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4248 	    root == root->fs_info->tree_root)
4249 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4250 					root->sectorsize), (u64)-1, 0);
4251 
4252 	/*
4253 	 * This function is also used to drop the items in the log tree before
4254 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4255 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4256 	 * items.
4257 	 */
4258 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4259 		btrfs_kill_delayed_inode_items(inode);
4260 
4261 	key.objectid = ino;
4262 	key.offset = (u64)-1;
4263 	key.type = (u8)-1;
4264 
4265 search_again:
4266 	/*
4267 	 * with a 16K leaf size and 128MB extents, you can actually queue
4268 	 * up a huge file in a single leaf.  Most of the time that
4269 	 * bytes_deleted is > 0, it will be huge by the time we get here
4270 	 */
4271 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4272 		if (btrfs_should_end_transaction(trans, root)) {
4273 			err = -EAGAIN;
4274 			goto error;
4275 		}
4276 	}
4277 
4278 
4279 	path->leave_spinning = 1;
4280 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4281 	if (ret < 0) {
4282 		err = ret;
4283 		goto out;
4284 	}
4285 
4286 	if (ret > 0) {
4287 		/* there are no items in the tree for us to truncate, we're
4288 		 * done
4289 		 */
4290 		if (path->slots[0] == 0)
4291 			goto out;
4292 		path->slots[0]--;
4293 	}
4294 
4295 	while (1) {
4296 		fi = NULL;
4297 		leaf = path->nodes[0];
4298 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4299 		found_type = found_key.type;
4300 
4301 		if (found_key.objectid != ino)
4302 			break;
4303 
4304 		if (found_type < min_type)
4305 			break;
4306 
4307 		item_end = found_key.offset;
4308 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4309 			fi = btrfs_item_ptr(leaf, path->slots[0],
4310 					    struct btrfs_file_extent_item);
4311 			extent_type = btrfs_file_extent_type(leaf, fi);
4312 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4313 				item_end +=
4314 				    btrfs_file_extent_num_bytes(leaf, fi);
4315 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4316 				item_end += btrfs_file_extent_inline_len(leaf,
4317 							 path->slots[0], fi);
4318 			}
4319 			item_end--;
4320 		}
4321 		if (found_type > min_type) {
4322 			del_item = 1;
4323 		} else {
4324 			if (item_end < new_size)
4325 				break;
4326 			if (found_key.offset >= new_size)
4327 				del_item = 1;
4328 			else
4329 				del_item = 0;
4330 		}
4331 		found_extent = 0;
4332 		/* FIXME, shrink the extent if the ref count is only 1 */
4333 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4334 			goto delete;
4335 
4336 		if (del_item)
4337 			last_size = found_key.offset;
4338 		else
4339 			last_size = new_size;
4340 
4341 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4342 			u64 num_dec;
4343 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4344 			if (!del_item) {
4345 				u64 orig_num_bytes =
4346 					btrfs_file_extent_num_bytes(leaf, fi);
4347 				extent_num_bytes = ALIGN(new_size -
4348 						found_key.offset,
4349 						root->sectorsize);
4350 				btrfs_set_file_extent_num_bytes(leaf, fi,
4351 							 extent_num_bytes);
4352 				num_dec = (orig_num_bytes -
4353 					   extent_num_bytes);
4354 				if (test_bit(BTRFS_ROOT_REF_COWS,
4355 					     &root->state) &&
4356 				    extent_start != 0)
4357 					inode_sub_bytes(inode, num_dec);
4358 				btrfs_mark_buffer_dirty(leaf);
4359 			} else {
4360 				extent_num_bytes =
4361 					btrfs_file_extent_disk_num_bytes(leaf,
4362 									 fi);
4363 				extent_offset = found_key.offset -
4364 					btrfs_file_extent_offset(leaf, fi);
4365 
4366 				/* FIXME blocksize != 4096 */
4367 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4368 				if (extent_start != 0) {
4369 					found_extent = 1;
4370 					if (test_bit(BTRFS_ROOT_REF_COWS,
4371 						     &root->state))
4372 						inode_sub_bytes(inode, num_dec);
4373 				}
4374 			}
4375 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4376 			/*
4377 			 * we can't truncate inline items that have had
4378 			 * special encodings
4379 			 */
4380 			if (!del_item &&
4381 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4382 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4383 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4384 				u32 size = new_size - found_key.offset;
4385 
4386 				if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4387 					inode_sub_bytes(inode, item_end + 1 -
4388 							new_size);
4389 
4390 				/*
4391 				 * update the ram bytes to properly reflect
4392 				 * the new size of our item
4393 				 */
4394 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4395 				size =
4396 				    btrfs_file_extent_calc_inline_size(size);
4397 				btrfs_truncate_item(root, path, size, 1);
4398 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4399 					    &root->state)) {
4400 				inode_sub_bytes(inode, item_end + 1 -
4401 						found_key.offset);
4402 			}
4403 		}
4404 delete:
4405 		if (del_item) {
4406 			if (!pending_del_nr) {
4407 				/* no pending yet, add ourselves */
4408 				pending_del_slot = path->slots[0];
4409 				pending_del_nr = 1;
4410 			} else if (pending_del_nr &&
4411 				   path->slots[0] + 1 == pending_del_slot) {
4412 				/* hop on the pending chunk */
4413 				pending_del_nr++;
4414 				pending_del_slot = path->slots[0];
4415 			} else {
4416 				BUG();
4417 			}
4418 		} else {
4419 			break;
4420 		}
4421 		should_throttle = 0;
4422 
4423 		if (found_extent &&
4424 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4425 		     root == root->fs_info->tree_root)) {
4426 			btrfs_set_path_blocking(path);
4427 			bytes_deleted += extent_num_bytes;
4428 			ret = btrfs_free_extent(trans, root, extent_start,
4429 						extent_num_bytes, 0,
4430 						btrfs_header_owner(leaf),
4431 						ino, extent_offset, 0);
4432 			BUG_ON(ret);
4433 			if (btrfs_should_throttle_delayed_refs(trans, root))
4434 				btrfs_async_run_delayed_refs(root,
4435 					trans->delayed_ref_updates * 2, 0);
4436 			if (be_nice) {
4437 				if (truncate_space_check(trans, root,
4438 							 extent_num_bytes)) {
4439 					should_end = 1;
4440 				}
4441 				if (btrfs_should_throttle_delayed_refs(trans,
4442 								       root)) {
4443 					should_throttle = 1;
4444 				}
4445 			}
4446 		}
4447 
4448 		if (found_type == BTRFS_INODE_ITEM_KEY)
4449 			break;
4450 
4451 		if (path->slots[0] == 0 ||
4452 		    path->slots[0] != pending_del_slot ||
4453 		    should_throttle || should_end) {
4454 			if (pending_del_nr) {
4455 				ret = btrfs_del_items(trans, root, path,
4456 						pending_del_slot,
4457 						pending_del_nr);
4458 				if (ret) {
4459 					btrfs_abort_transaction(trans,
4460 								root, ret);
4461 					goto error;
4462 				}
4463 				pending_del_nr = 0;
4464 			}
4465 			btrfs_release_path(path);
4466 			if (should_throttle) {
4467 				unsigned long updates = trans->delayed_ref_updates;
4468 				if (updates) {
4469 					trans->delayed_ref_updates = 0;
4470 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4471 					if (ret && !err)
4472 						err = ret;
4473 				}
4474 			}
4475 			/*
4476 			 * if we failed to refill our space rsv, bail out
4477 			 * and let the transaction restart
4478 			 */
4479 			if (should_end) {
4480 				err = -EAGAIN;
4481 				goto error;
4482 			}
4483 			goto search_again;
4484 		} else {
4485 			path->slots[0]--;
4486 		}
4487 	}
4488 out:
4489 	if (pending_del_nr) {
4490 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4491 				      pending_del_nr);
4492 		if (ret)
4493 			btrfs_abort_transaction(trans, root, ret);
4494 	}
4495 error:
4496 	if (last_size != (u64)-1 &&
4497 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4498 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4499 
4500 	btrfs_free_path(path);
4501 
4502 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4503 		unsigned long updates = trans->delayed_ref_updates;
4504 		if (updates) {
4505 			trans->delayed_ref_updates = 0;
4506 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4507 			if (ret && !err)
4508 				err = ret;
4509 		}
4510 	}
4511 	return err;
4512 }
4513 
4514 /*
4515  * btrfs_truncate_page - read, zero a chunk and write a page
4516  * @inode - inode that we're zeroing
4517  * @from - the offset to start zeroing
4518  * @len - the length to zero, 0 to zero the entire range respective to the
4519  *	offset
4520  * @front - zero up to the offset instead of from the offset on
4521  *
4522  * This will find the page for the "from" offset and cow the page and zero the
4523  * part we want to zero.  This is used with truncate and hole punching.
4524  */
4525 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4526 			int front)
4527 {
4528 	struct address_space *mapping = inode->i_mapping;
4529 	struct btrfs_root *root = BTRFS_I(inode)->root;
4530 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4531 	struct btrfs_ordered_extent *ordered;
4532 	struct extent_state *cached_state = NULL;
4533 	char *kaddr;
4534 	u32 blocksize = root->sectorsize;
4535 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4536 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4537 	struct page *page;
4538 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4539 	int ret = 0;
4540 	u64 page_start;
4541 	u64 page_end;
4542 
4543 	if ((offset & (blocksize - 1)) == 0 &&
4544 	    (!len || ((len & (blocksize - 1)) == 0)))
4545 		goto out;
4546 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4547 	if (ret)
4548 		goto out;
4549 
4550 again:
4551 	page = find_or_create_page(mapping, index, mask);
4552 	if (!page) {
4553 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4554 		ret = -ENOMEM;
4555 		goto out;
4556 	}
4557 
4558 	page_start = page_offset(page);
4559 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4560 
4561 	if (!PageUptodate(page)) {
4562 		ret = btrfs_readpage(NULL, page);
4563 		lock_page(page);
4564 		if (page->mapping != mapping) {
4565 			unlock_page(page);
4566 			page_cache_release(page);
4567 			goto again;
4568 		}
4569 		if (!PageUptodate(page)) {
4570 			ret = -EIO;
4571 			goto out_unlock;
4572 		}
4573 	}
4574 	wait_on_page_writeback(page);
4575 
4576 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4577 	set_page_extent_mapped(page);
4578 
4579 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4580 	if (ordered) {
4581 		unlock_extent_cached(io_tree, page_start, page_end,
4582 				     &cached_state, GFP_NOFS);
4583 		unlock_page(page);
4584 		page_cache_release(page);
4585 		btrfs_start_ordered_extent(inode, ordered, 1);
4586 		btrfs_put_ordered_extent(ordered);
4587 		goto again;
4588 	}
4589 
4590 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4591 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4592 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4593 			  0, 0, &cached_state, GFP_NOFS);
4594 
4595 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4596 					&cached_state);
4597 	if (ret) {
4598 		unlock_extent_cached(io_tree, page_start, page_end,
4599 				     &cached_state, GFP_NOFS);
4600 		goto out_unlock;
4601 	}
4602 
4603 	if (offset != PAGE_CACHE_SIZE) {
4604 		if (!len)
4605 			len = PAGE_CACHE_SIZE - offset;
4606 		kaddr = kmap(page);
4607 		if (front)
4608 			memset(kaddr, 0, offset);
4609 		else
4610 			memset(kaddr + offset, 0, len);
4611 		flush_dcache_page(page);
4612 		kunmap(page);
4613 	}
4614 	ClearPageChecked(page);
4615 	set_page_dirty(page);
4616 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4617 			     GFP_NOFS);
4618 
4619 out_unlock:
4620 	if (ret)
4621 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4622 	unlock_page(page);
4623 	page_cache_release(page);
4624 out:
4625 	return ret;
4626 }
4627 
4628 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4629 			     u64 offset, u64 len)
4630 {
4631 	struct btrfs_trans_handle *trans;
4632 	int ret;
4633 
4634 	/*
4635 	 * Still need to make sure the inode looks like it's been updated so
4636 	 * that any holes get logged if we fsync.
4637 	 */
4638 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4639 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4640 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4641 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4642 		return 0;
4643 	}
4644 
4645 	/*
4646 	 * 1 - for the one we're dropping
4647 	 * 1 - for the one we're adding
4648 	 * 1 - for updating the inode.
4649 	 */
4650 	trans = btrfs_start_transaction(root, 3);
4651 	if (IS_ERR(trans))
4652 		return PTR_ERR(trans);
4653 
4654 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4655 	if (ret) {
4656 		btrfs_abort_transaction(trans, root, ret);
4657 		btrfs_end_transaction(trans, root);
4658 		return ret;
4659 	}
4660 
4661 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4662 				       0, 0, len, 0, len, 0, 0, 0);
4663 	if (ret)
4664 		btrfs_abort_transaction(trans, root, ret);
4665 	else
4666 		btrfs_update_inode(trans, root, inode);
4667 	btrfs_end_transaction(trans, root);
4668 	return ret;
4669 }
4670 
4671 /*
4672  * This function puts in dummy file extents for the area we're creating a hole
4673  * for.  So if we are truncating this file to a larger size we need to insert
4674  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4675  * the range between oldsize and size
4676  */
4677 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4678 {
4679 	struct btrfs_root *root = BTRFS_I(inode)->root;
4680 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4681 	struct extent_map *em = NULL;
4682 	struct extent_state *cached_state = NULL;
4683 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4684 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4685 	u64 block_end = ALIGN(size, root->sectorsize);
4686 	u64 last_byte;
4687 	u64 cur_offset;
4688 	u64 hole_size;
4689 	int err = 0;
4690 
4691 	/*
4692 	 * If our size started in the middle of a page we need to zero out the
4693 	 * rest of the page before we expand the i_size, otherwise we could
4694 	 * expose stale data.
4695 	 */
4696 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4697 	if (err)
4698 		return err;
4699 
4700 	if (size <= hole_start)
4701 		return 0;
4702 
4703 	while (1) {
4704 		struct btrfs_ordered_extent *ordered;
4705 
4706 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4707 				 &cached_state);
4708 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4709 						     block_end - hole_start);
4710 		if (!ordered)
4711 			break;
4712 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4713 				     &cached_state, GFP_NOFS);
4714 		btrfs_start_ordered_extent(inode, ordered, 1);
4715 		btrfs_put_ordered_extent(ordered);
4716 	}
4717 
4718 	cur_offset = hole_start;
4719 	while (1) {
4720 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4721 				block_end - cur_offset, 0);
4722 		if (IS_ERR(em)) {
4723 			err = PTR_ERR(em);
4724 			em = NULL;
4725 			break;
4726 		}
4727 		last_byte = min(extent_map_end(em), block_end);
4728 		last_byte = ALIGN(last_byte , root->sectorsize);
4729 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4730 			struct extent_map *hole_em;
4731 			hole_size = last_byte - cur_offset;
4732 
4733 			err = maybe_insert_hole(root, inode, cur_offset,
4734 						hole_size);
4735 			if (err)
4736 				break;
4737 			btrfs_drop_extent_cache(inode, cur_offset,
4738 						cur_offset + hole_size - 1, 0);
4739 			hole_em = alloc_extent_map();
4740 			if (!hole_em) {
4741 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4742 					&BTRFS_I(inode)->runtime_flags);
4743 				goto next;
4744 			}
4745 			hole_em->start = cur_offset;
4746 			hole_em->len = hole_size;
4747 			hole_em->orig_start = cur_offset;
4748 
4749 			hole_em->block_start = EXTENT_MAP_HOLE;
4750 			hole_em->block_len = 0;
4751 			hole_em->orig_block_len = 0;
4752 			hole_em->ram_bytes = hole_size;
4753 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4754 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4755 			hole_em->generation = root->fs_info->generation;
4756 
4757 			while (1) {
4758 				write_lock(&em_tree->lock);
4759 				err = add_extent_mapping(em_tree, hole_em, 1);
4760 				write_unlock(&em_tree->lock);
4761 				if (err != -EEXIST)
4762 					break;
4763 				btrfs_drop_extent_cache(inode, cur_offset,
4764 							cur_offset +
4765 							hole_size - 1, 0);
4766 			}
4767 			free_extent_map(hole_em);
4768 		}
4769 next:
4770 		free_extent_map(em);
4771 		em = NULL;
4772 		cur_offset = last_byte;
4773 		if (cur_offset >= block_end)
4774 			break;
4775 	}
4776 	free_extent_map(em);
4777 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4778 			     GFP_NOFS);
4779 	return err;
4780 }
4781 
4782 static int wait_snapshoting_atomic_t(atomic_t *a)
4783 {
4784 	schedule();
4785 	return 0;
4786 }
4787 
4788 static void wait_for_snapshot_creation(struct btrfs_root *root)
4789 {
4790 	while (true) {
4791 		int ret;
4792 
4793 		ret = btrfs_start_write_no_snapshoting(root);
4794 		if (ret)
4795 			break;
4796 		wait_on_atomic_t(&root->will_be_snapshoted,
4797 				 wait_snapshoting_atomic_t,
4798 				 TASK_UNINTERRUPTIBLE);
4799 	}
4800 }
4801 
4802 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4803 {
4804 	struct btrfs_root *root = BTRFS_I(inode)->root;
4805 	struct btrfs_trans_handle *trans;
4806 	loff_t oldsize = i_size_read(inode);
4807 	loff_t newsize = attr->ia_size;
4808 	int mask = attr->ia_valid;
4809 	int ret;
4810 
4811 	/*
4812 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4813 	 * special case where we need to update the times despite not having
4814 	 * these flags set.  For all other operations the VFS set these flags
4815 	 * explicitly if it wants a timestamp update.
4816 	 */
4817 	if (newsize != oldsize) {
4818 		inode_inc_iversion(inode);
4819 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4820 			inode->i_ctime = inode->i_mtime =
4821 				current_fs_time(inode->i_sb);
4822 	}
4823 
4824 	if (newsize > oldsize) {
4825 		truncate_pagecache(inode, newsize);
4826 		/*
4827 		 * Don't do an expanding truncate while snapshoting is ongoing.
4828 		 * This is to ensure the snapshot captures a fully consistent
4829 		 * state of this file - if the snapshot captures this expanding
4830 		 * truncation, it must capture all writes that happened before
4831 		 * this truncation.
4832 		 */
4833 		wait_for_snapshot_creation(root);
4834 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4835 		if (ret) {
4836 			btrfs_end_write_no_snapshoting(root);
4837 			return ret;
4838 		}
4839 
4840 		trans = btrfs_start_transaction(root, 1);
4841 		if (IS_ERR(trans)) {
4842 			btrfs_end_write_no_snapshoting(root);
4843 			return PTR_ERR(trans);
4844 		}
4845 
4846 		i_size_write(inode, newsize);
4847 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4848 		ret = btrfs_update_inode(trans, root, inode);
4849 		btrfs_end_write_no_snapshoting(root);
4850 		btrfs_end_transaction(trans, root);
4851 	} else {
4852 
4853 		/*
4854 		 * We're truncating a file that used to have good data down to
4855 		 * zero. Make sure it gets into the ordered flush list so that
4856 		 * any new writes get down to disk quickly.
4857 		 */
4858 		if (newsize == 0)
4859 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4860 				&BTRFS_I(inode)->runtime_flags);
4861 
4862 		/*
4863 		 * 1 for the orphan item we're going to add
4864 		 * 1 for the orphan item deletion.
4865 		 */
4866 		trans = btrfs_start_transaction(root, 2);
4867 		if (IS_ERR(trans))
4868 			return PTR_ERR(trans);
4869 
4870 		/*
4871 		 * We need to do this in case we fail at _any_ point during the
4872 		 * actual truncate.  Once we do the truncate_setsize we could
4873 		 * invalidate pages which forces any outstanding ordered io to
4874 		 * be instantly completed which will give us extents that need
4875 		 * to be truncated.  If we fail to get an orphan inode down we
4876 		 * could have left over extents that were never meant to live,
4877 		 * so we need to garuntee from this point on that everything
4878 		 * will be consistent.
4879 		 */
4880 		ret = btrfs_orphan_add(trans, inode);
4881 		btrfs_end_transaction(trans, root);
4882 		if (ret)
4883 			return ret;
4884 
4885 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4886 		truncate_setsize(inode, newsize);
4887 
4888 		/* Disable nonlocked read DIO to avoid the end less truncate */
4889 		btrfs_inode_block_unlocked_dio(inode);
4890 		inode_dio_wait(inode);
4891 		btrfs_inode_resume_unlocked_dio(inode);
4892 
4893 		ret = btrfs_truncate(inode);
4894 		if (ret && inode->i_nlink) {
4895 			int err;
4896 
4897 			/*
4898 			 * failed to truncate, disk_i_size is only adjusted down
4899 			 * as we remove extents, so it should represent the true
4900 			 * size of the inode, so reset the in memory size and
4901 			 * delete our orphan entry.
4902 			 */
4903 			trans = btrfs_join_transaction(root);
4904 			if (IS_ERR(trans)) {
4905 				btrfs_orphan_del(NULL, inode);
4906 				return ret;
4907 			}
4908 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4909 			err = btrfs_orphan_del(trans, inode);
4910 			if (err)
4911 				btrfs_abort_transaction(trans, root, err);
4912 			btrfs_end_transaction(trans, root);
4913 		}
4914 	}
4915 
4916 	return ret;
4917 }
4918 
4919 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4920 {
4921 	struct inode *inode = d_inode(dentry);
4922 	struct btrfs_root *root = BTRFS_I(inode)->root;
4923 	int err;
4924 
4925 	if (btrfs_root_readonly(root))
4926 		return -EROFS;
4927 
4928 	err = inode_change_ok(inode, attr);
4929 	if (err)
4930 		return err;
4931 
4932 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4933 		err = btrfs_setsize(inode, attr);
4934 		if (err)
4935 			return err;
4936 	}
4937 
4938 	if (attr->ia_valid) {
4939 		setattr_copy(inode, attr);
4940 		inode_inc_iversion(inode);
4941 		err = btrfs_dirty_inode(inode);
4942 
4943 		if (!err && attr->ia_valid & ATTR_MODE)
4944 			err = posix_acl_chmod(inode, inode->i_mode);
4945 	}
4946 
4947 	return err;
4948 }
4949 
4950 /*
4951  * While truncating the inode pages during eviction, we get the VFS calling
4952  * btrfs_invalidatepage() against each page of the inode. This is slow because
4953  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4954  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4955  * extent_state structures over and over, wasting lots of time.
4956  *
4957  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4958  * those expensive operations on a per page basis and do only the ordered io
4959  * finishing, while we release here the extent_map and extent_state structures,
4960  * without the excessive merging and splitting.
4961  */
4962 static void evict_inode_truncate_pages(struct inode *inode)
4963 {
4964 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4965 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4966 	struct rb_node *node;
4967 
4968 	ASSERT(inode->i_state & I_FREEING);
4969 	truncate_inode_pages_final(&inode->i_data);
4970 
4971 	write_lock(&map_tree->lock);
4972 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
4973 		struct extent_map *em;
4974 
4975 		node = rb_first(&map_tree->map);
4976 		em = rb_entry(node, struct extent_map, rb_node);
4977 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4978 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4979 		remove_extent_mapping(map_tree, em);
4980 		free_extent_map(em);
4981 		if (need_resched()) {
4982 			write_unlock(&map_tree->lock);
4983 			cond_resched();
4984 			write_lock(&map_tree->lock);
4985 		}
4986 	}
4987 	write_unlock(&map_tree->lock);
4988 
4989 	/*
4990 	 * Keep looping until we have no more ranges in the io tree.
4991 	 * We can have ongoing bios started by readpages (called from readahead)
4992 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
4993 	 * still in progress (unlocked the pages in the bio but did not yet
4994 	 * unlocked the ranges in the io tree). Therefore this means some
4995 	 * ranges can still be locked and eviction started because before
4996 	 * submitting those bios, which are executed by a separate task (work
4997 	 * queue kthread), inode references (inode->i_count) were not taken
4998 	 * (which would be dropped in the end io callback of each bio).
4999 	 * Therefore here we effectively end up waiting for those bios and
5000 	 * anyone else holding locked ranges without having bumped the inode's
5001 	 * reference count - if we don't do it, when they access the inode's
5002 	 * io_tree to unlock a range it may be too late, leading to an
5003 	 * use-after-free issue.
5004 	 */
5005 	spin_lock(&io_tree->lock);
5006 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5007 		struct extent_state *state;
5008 		struct extent_state *cached_state = NULL;
5009 		u64 start;
5010 		u64 end;
5011 
5012 		node = rb_first(&io_tree->state);
5013 		state = rb_entry(node, struct extent_state, rb_node);
5014 		start = state->start;
5015 		end = state->end;
5016 		spin_unlock(&io_tree->lock);
5017 
5018 		lock_extent_bits(io_tree, start, end, 0, &cached_state);
5019 		clear_extent_bit(io_tree, start, end,
5020 				 EXTENT_LOCKED | EXTENT_DIRTY |
5021 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5022 				 EXTENT_DEFRAG, 1, 1,
5023 				 &cached_state, GFP_NOFS);
5024 
5025 		cond_resched();
5026 		spin_lock(&io_tree->lock);
5027 	}
5028 	spin_unlock(&io_tree->lock);
5029 }
5030 
5031 void btrfs_evict_inode(struct inode *inode)
5032 {
5033 	struct btrfs_trans_handle *trans;
5034 	struct btrfs_root *root = BTRFS_I(inode)->root;
5035 	struct btrfs_block_rsv *rsv, *global_rsv;
5036 	int steal_from_global = 0;
5037 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5038 	int ret;
5039 
5040 	trace_btrfs_inode_evict(inode);
5041 
5042 	evict_inode_truncate_pages(inode);
5043 
5044 	if (inode->i_nlink &&
5045 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5046 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5047 	     btrfs_is_free_space_inode(inode)))
5048 		goto no_delete;
5049 
5050 	if (is_bad_inode(inode)) {
5051 		btrfs_orphan_del(NULL, inode);
5052 		goto no_delete;
5053 	}
5054 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5055 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
5056 
5057 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5058 
5059 	if (root->fs_info->log_root_recovering) {
5060 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5061 				 &BTRFS_I(inode)->runtime_flags));
5062 		goto no_delete;
5063 	}
5064 
5065 	if (inode->i_nlink > 0) {
5066 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5067 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5068 		goto no_delete;
5069 	}
5070 
5071 	ret = btrfs_commit_inode_delayed_inode(inode);
5072 	if (ret) {
5073 		btrfs_orphan_del(NULL, inode);
5074 		goto no_delete;
5075 	}
5076 
5077 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5078 	if (!rsv) {
5079 		btrfs_orphan_del(NULL, inode);
5080 		goto no_delete;
5081 	}
5082 	rsv->size = min_size;
5083 	rsv->failfast = 1;
5084 	global_rsv = &root->fs_info->global_block_rsv;
5085 
5086 	btrfs_i_size_write(inode, 0);
5087 
5088 	/*
5089 	 * This is a bit simpler than btrfs_truncate since we've already
5090 	 * reserved our space for our orphan item in the unlink, so we just
5091 	 * need to reserve some slack space in case we add bytes and update
5092 	 * inode item when doing the truncate.
5093 	 */
5094 	while (1) {
5095 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5096 					     BTRFS_RESERVE_FLUSH_LIMIT);
5097 
5098 		/*
5099 		 * Try and steal from the global reserve since we will
5100 		 * likely not use this space anyway, we want to try as
5101 		 * hard as possible to get this to work.
5102 		 */
5103 		if (ret)
5104 			steal_from_global++;
5105 		else
5106 			steal_from_global = 0;
5107 		ret = 0;
5108 
5109 		/*
5110 		 * steal_from_global == 0: we reserved stuff, hooray!
5111 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5112 		 * steal_from_global == 2: we've committed, still not a lot of
5113 		 * room but maybe we'll have room in the global reserve this
5114 		 * time.
5115 		 * steal_from_global == 3: abandon all hope!
5116 		 */
5117 		if (steal_from_global > 2) {
5118 			btrfs_warn(root->fs_info,
5119 				"Could not get space for a delete, will truncate on mount %d",
5120 				ret);
5121 			btrfs_orphan_del(NULL, inode);
5122 			btrfs_free_block_rsv(root, rsv);
5123 			goto no_delete;
5124 		}
5125 
5126 		trans = btrfs_join_transaction(root);
5127 		if (IS_ERR(trans)) {
5128 			btrfs_orphan_del(NULL, inode);
5129 			btrfs_free_block_rsv(root, rsv);
5130 			goto no_delete;
5131 		}
5132 
5133 		/*
5134 		 * We can't just steal from the global reserve, we need tomake
5135 		 * sure there is room to do it, if not we need to commit and try
5136 		 * again.
5137 		 */
5138 		if (steal_from_global) {
5139 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5140 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5141 							      min_size);
5142 			else
5143 				ret = -ENOSPC;
5144 		}
5145 
5146 		/*
5147 		 * Couldn't steal from the global reserve, we have too much
5148 		 * pending stuff built up, commit the transaction and try it
5149 		 * again.
5150 		 */
5151 		if (ret) {
5152 			ret = btrfs_commit_transaction(trans, root);
5153 			if (ret) {
5154 				btrfs_orphan_del(NULL, inode);
5155 				btrfs_free_block_rsv(root, rsv);
5156 				goto no_delete;
5157 			}
5158 			continue;
5159 		} else {
5160 			steal_from_global = 0;
5161 		}
5162 
5163 		trans->block_rsv = rsv;
5164 
5165 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5166 		if (ret != -ENOSPC && ret != -EAGAIN)
5167 			break;
5168 
5169 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5170 		btrfs_end_transaction(trans, root);
5171 		trans = NULL;
5172 		btrfs_btree_balance_dirty(root);
5173 	}
5174 
5175 	btrfs_free_block_rsv(root, rsv);
5176 
5177 	/*
5178 	 * Errors here aren't a big deal, it just means we leave orphan items
5179 	 * in the tree.  They will be cleaned up on the next mount.
5180 	 */
5181 	if (ret == 0) {
5182 		trans->block_rsv = root->orphan_block_rsv;
5183 		btrfs_orphan_del(trans, inode);
5184 	} else {
5185 		btrfs_orphan_del(NULL, inode);
5186 	}
5187 
5188 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5189 	if (!(root == root->fs_info->tree_root ||
5190 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5191 		btrfs_return_ino(root, btrfs_ino(inode));
5192 
5193 	btrfs_end_transaction(trans, root);
5194 	btrfs_btree_balance_dirty(root);
5195 no_delete:
5196 	btrfs_remove_delayed_node(inode);
5197 	clear_inode(inode);
5198 	return;
5199 }
5200 
5201 /*
5202  * this returns the key found in the dir entry in the location pointer.
5203  * If no dir entries were found, location->objectid is 0.
5204  */
5205 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5206 			       struct btrfs_key *location)
5207 {
5208 	const char *name = dentry->d_name.name;
5209 	int namelen = dentry->d_name.len;
5210 	struct btrfs_dir_item *di;
5211 	struct btrfs_path *path;
5212 	struct btrfs_root *root = BTRFS_I(dir)->root;
5213 	int ret = 0;
5214 
5215 	path = btrfs_alloc_path();
5216 	if (!path)
5217 		return -ENOMEM;
5218 
5219 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5220 				    namelen, 0);
5221 	if (IS_ERR(di))
5222 		ret = PTR_ERR(di);
5223 
5224 	if (IS_ERR_OR_NULL(di))
5225 		goto out_err;
5226 
5227 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5228 out:
5229 	btrfs_free_path(path);
5230 	return ret;
5231 out_err:
5232 	location->objectid = 0;
5233 	goto out;
5234 }
5235 
5236 /*
5237  * when we hit a tree root in a directory, the btrfs part of the inode
5238  * needs to be changed to reflect the root directory of the tree root.  This
5239  * is kind of like crossing a mount point.
5240  */
5241 static int fixup_tree_root_location(struct btrfs_root *root,
5242 				    struct inode *dir,
5243 				    struct dentry *dentry,
5244 				    struct btrfs_key *location,
5245 				    struct btrfs_root **sub_root)
5246 {
5247 	struct btrfs_path *path;
5248 	struct btrfs_root *new_root;
5249 	struct btrfs_root_ref *ref;
5250 	struct extent_buffer *leaf;
5251 	struct btrfs_key key;
5252 	int ret;
5253 	int err = 0;
5254 
5255 	path = btrfs_alloc_path();
5256 	if (!path) {
5257 		err = -ENOMEM;
5258 		goto out;
5259 	}
5260 
5261 	err = -ENOENT;
5262 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5263 	key.type = BTRFS_ROOT_REF_KEY;
5264 	key.offset = location->objectid;
5265 
5266 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5267 				0, 0);
5268 	if (ret) {
5269 		if (ret < 0)
5270 			err = ret;
5271 		goto out;
5272 	}
5273 
5274 	leaf = path->nodes[0];
5275 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5276 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5277 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5278 		goto out;
5279 
5280 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5281 				   (unsigned long)(ref + 1),
5282 				   dentry->d_name.len);
5283 	if (ret)
5284 		goto out;
5285 
5286 	btrfs_release_path(path);
5287 
5288 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5289 	if (IS_ERR(new_root)) {
5290 		err = PTR_ERR(new_root);
5291 		goto out;
5292 	}
5293 
5294 	*sub_root = new_root;
5295 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5296 	location->type = BTRFS_INODE_ITEM_KEY;
5297 	location->offset = 0;
5298 	err = 0;
5299 out:
5300 	btrfs_free_path(path);
5301 	return err;
5302 }
5303 
5304 static void inode_tree_add(struct inode *inode)
5305 {
5306 	struct btrfs_root *root = BTRFS_I(inode)->root;
5307 	struct btrfs_inode *entry;
5308 	struct rb_node **p;
5309 	struct rb_node *parent;
5310 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5311 	u64 ino = btrfs_ino(inode);
5312 
5313 	if (inode_unhashed(inode))
5314 		return;
5315 	parent = NULL;
5316 	spin_lock(&root->inode_lock);
5317 	p = &root->inode_tree.rb_node;
5318 	while (*p) {
5319 		parent = *p;
5320 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5321 
5322 		if (ino < btrfs_ino(&entry->vfs_inode))
5323 			p = &parent->rb_left;
5324 		else if (ino > btrfs_ino(&entry->vfs_inode))
5325 			p = &parent->rb_right;
5326 		else {
5327 			WARN_ON(!(entry->vfs_inode.i_state &
5328 				  (I_WILL_FREE | I_FREEING)));
5329 			rb_replace_node(parent, new, &root->inode_tree);
5330 			RB_CLEAR_NODE(parent);
5331 			spin_unlock(&root->inode_lock);
5332 			return;
5333 		}
5334 	}
5335 	rb_link_node(new, parent, p);
5336 	rb_insert_color(new, &root->inode_tree);
5337 	spin_unlock(&root->inode_lock);
5338 }
5339 
5340 static void inode_tree_del(struct inode *inode)
5341 {
5342 	struct btrfs_root *root = BTRFS_I(inode)->root;
5343 	int empty = 0;
5344 
5345 	spin_lock(&root->inode_lock);
5346 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5347 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5348 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5349 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5350 	}
5351 	spin_unlock(&root->inode_lock);
5352 
5353 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5354 		synchronize_srcu(&root->fs_info->subvol_srcu);
5355 		spin_lock(&root->inode_lock);
5356 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5357 		spin_unlock(&root->inode_lock);
5358 		if (empty)
5359 			btrfs_add_dead_root(root);
5360 	}
5361 }
5362 
5363 void btrfs_invalidate_inodes(struct btrfs_root *root)
5364 {
5365 	struct rb_node *node;
5366 	struct rb_node *prev;
5367 	struct btrfs_inode *entry;
5368 	struct inode *inode;
5369 	u64 objectid = 0;
5370 
5371 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5372 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5373 
5374 	spin_lock(&root->inode_lock);
5375 again:
5376 	node = root->inode_tree.rb_node;
5377 	prev = NULL;
5378 	while (node) {
5379 		prev = node;
5380 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5381 
5382 		if (objectid < btrfs_ino(&entry->vfs_inode))
5383 			node = node->rb_left;
5384 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5385 			node = node->rb_right;
5386 		else
5387 			break;
5388 	}
5389 	if (!node) {
5390 		while (prev) {
5391 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5392 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5393 				node = prev;
5394 				break;
5395 			}
5396 			prev = rb_next(prev);
5397 		}
5398 	}
5399 	while (node) {
5400 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5401 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5402 		inode = igrab(&entry->vfs_inode);
5403 		if (inode) {
5404 			spin_unlock(&root->inode_lock);
5405 			if (atomic_read(&inode->i_count) > 1)
5406 				d_prune_aliases(inode);
5407 			/*
5408 			 * btrfs_drop_inode will have it removed from
5409 			 * the inode cache when its usage count
5410 			 * hits zero.
5411 			 */
5412 			iput(inode);
5413 			cond_resched();
5414 			spin_lock(&root->inode_lock);
5415 			goto again;
5416 		}
5417 
5418 		if (cond_resched_lock(&root->inode_lock))
5419 			goto again;
5420 
5421 		node = rb_next(node);
5422 	}
5423 	spin_unlock(&root->inode_lock);
5424 }
5425 
5426 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5427 {
5428 	struct btrfs_iget_args *args = p;
5429 	inode->i_ino = args->location->objectid;
5430 	memcpy(&BTRFS_I(inode)->location, args->location,
5431 	       sizeof(*args->location));
5432 	BTRFS_I(inode)->root = args->root;
5433 	return 0;
5434 }
5435 
5436 static int btrfs_find_actor(struct inode *inode, void *opaque)
5437 {
5438 	struct btrfs_iget_args *args = opaque;
5439 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5440 		args->root == BTRFS_I(inode)->root;
5441 }
5442 
5443 static struct inode *btrfs_iget_locked(struct super_block *s,
5444 				       struct btrfs_key *location,
5445 				       struct btrfs_root *root)
5446 {
5447 	struct inode *inode;
5448 	struct btrfs_iget_args args;
5449 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5450 
5451 	args.location = location;
5452 	args.root = root;
5453 
5454 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5455 			     btrfs_init_locked_inode,
5456 			     (void *)&args);
5457 	return inode;
5458 }
5459 
5460 /* Get an inode object given its location and corresponding root.
5461  * Returns in *is_new if the inode was read from disk
5462  */
5463 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5464 			 struct btrfs_root *root, int *new)
5465 {
5466 	struct inode *inode;
5467 
5468 	inode = btrfs_iget_locked(s, location, root);
5469 	if (!inode)
5470 		return ERR_PTR(-ENOMEM);
5471 
5472 	if (inode->i_state & I_NEW) {
5473 		btrfs_read_locked_inode(inode);
5474 		if (!is_bad_inode(inode)) {
5475 			inode_tree_add(inode);
5476 			unlock_new_inode(inode);
5477 			if (new)
5478 				*new = 1;
5479 		} else {
5480 			unlock_new_inode(inode);
5481 			iput(inode);
5482 			inode = ERR_PTR(-ESTALE);
5483 		}
5484 	}
5485 
5486 	return inode;
5487 }
5488 
5489 static struct inode *new_simple_dir(struct super_block *s,
5490 				    struct btrfs_key *key,
5491 				    struct btrfs_root *root)
5492 {
5493 	struct inode *inode = new_inode(s);
5494 
5495 	if (!inode)
5496 		return ERR_PTR(-ENOMEM);
5497 
5498 	BTRFS_I(inode)->root = root;
5499 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5500 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5501 
5502 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5503 	inode->i_op = &btrfs_dir_ro_inode_operations;
5504 	inode->i_fop = &simple_dir_operations;
5505 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5506 	inode->i_mtime = CURRENT_TIME;
5507 	inode->i_atime = inode->i_mtime;
5508 	inode->i_ctime = inode->i_mtime;
5509 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5510 
5511 	return inode;
5512 }
5513 
5514 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5515 {
5516 	struct inode *inode;
5517 	struct btrfs_root *root = BTRFS_I(dir)->root;
5518 	struct btrfs_root *sub_root = root;
5519 	struct btrfs_key location;
5520 	int index;
5521 	int ret = 0;
5522 
5523 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5524 		return ERR_PTR(-ENAMETOOLONG);
5525 
5526 	ret = btrfs_inode_by_name(dir, dentry, &location);
5527 	if (ret < 0)
5528 		return ERR_PTR(ret);
5529 
5530 	if (location.objectid == 0)
5531 		return ERR_PTR(-ENOENT);
5532 
5533 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5534 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5535 		return inode;
5536 	}
5537 
5538 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5539 
5540 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5541 	ret = fixup_tree_root_location(root, dir, dentry,
5542 				       &location, &sub_root);
5543 	if (ret < 0) {
5544 		if (ret != -ENOENT)
5545 			inode = ERR_PTR(ret);
5546 		else
5547 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5548 	} else {
5549 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5550 	}
5551 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5552 
5553 	if (!IS_ERR(inode) && root != sub_root) {
5554 		down_read(&root->fs_info->cleanup_work_sem);
5555 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5556 			ret = btrfs_orphan_cleanup(sub_root);
5557 		up_read(&root->fs_info->cleanup_work_sem);
5558 		if (ret) {
5559 			iput(inode);
5560 			inode = ERR_PTR(ret);
5561 		}
5562 	}
5563 
5564 	return inode;
5565 }
5566 
5567 static int btrfs_dentry_delete(const struct dentry *dentry)
5568 {
5569 	struct btrfs_root *root;
5570 	struct inode *inode = d_inode(dentry);
5571 
5572 	if (!inode && !IS_ROOT(dentry))
5573 		inode = d_inode(dentry->d_parent);
5574 
5575 	if (inode) {
5576 		root = BTRFS_I(inode)->root;
5577 		if (btrfs_root_refs(&root->root_item) == 0)
5578 			return 1;
5579 
5580 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5581 			return 1;
5582 	}
5583 	return 0;
5584 }
5585 
5586 static void btrfs_dentry_release(struct dentry *dentry)
5587 {
5588 	kfree(dentry->d_fsdata);
5589 }
5590 
5591 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5592 				   unsigned int flags)
5593 {
5594 	struct inode *inode;
5595 
5596 	inode = btrfs_lookup_dentry(dir, dentry);
5597 	if (IS_ERR(inode)) {
5598 		if (PTR_ERR(inode) == -ENOENT)
5599 			inode = NULL;
5600 		else
5601 			return ERR_CAST(inode);
5602 	}
5603 
5604 	return d_splice_alias(inode, dentry);
5605 }
5606 
5607 unsigned char btrfs_filetype_table[] = {
5608 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5609 };
5610 
5611 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5612 {
5613 	struct inode *inode = file_inode(file);
5614 	struct btrfs_root *root = BTRFS_I(inode)->root;
5615 	struct btrfs_item *item;
5616 	struct btrfs_dir_item *di;
5617 	struct btrfs_key key;
5618 	struct btrfs_key found_key;
5619 	struct btrfs_path *path;
5620 	struct list_head ins_list;
5621 	struct list_head del_list;
5622 	int ret;
5623 	struct extent_buffer *leaf;
5624 	int slot;
5625 	unsigned char d_type;
5626 	int over = 0;
5627 	u32 di_cur;
5628 	u32 di_total;
5629 	u32 di_len;
5630 	int key_type = BTRFS_DIR_INDEX_KEY;
5631 	char tmp_name[32];
5632 	char *name_ptr;
5633 	int name_len;
5634 	int is_curr = 0;	/* ctx->pos points to the current index? */
5635 
5636 	/* FIXME, use a real flag for deciding about the key type */
5637 	if (root->fs_info->tree_root == root)
5638 		key_type = BTRFS_DIR_ITEM_KEY;
5639 
5640 	if (!dir_emit_dots(file, ctx))
5641 		return 0;
5642 
5643 	path = btrfs_alloc_path();
5644 	if (!path)
5645 		return -ENOMEM;
5646 
5647 	path->reada = 1;
5648 
5649 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5650 		INIT_LIST_HEAD(&ins_list);
5651 		INIT_LIST_HEAD(&del_list);
5652 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5653 	}
5654 
5655 	key.type = key_type;
5656 	key.offset = ctx->pos;
5657 	key.objectid = btrfs_ino(inode);
5658 
5659 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5660 	if (ret < 0)
5661 		goto err;
5662 
5663 	while (1) {
5664 		leaf = path->nodes[0];
5665 		slot = path->slots[0];
5666 		if (slot >= btrfs_header_nritems(leaf)) {
5667 			ret = btrfs_next_leaf(root, path);
5668 			if (ret < 0)
5669 				goto err;
5670 			else if (ret > 0)
5671 				break;
5672 			continue;
5673 		}
5674 
5675 		item = btrfs_item_nr(slot);
5676 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5677 
5678 		if (found_key.objectid != key.objectid)
5679 			break;
5680 		if (found_key.type != key_type)
5681 			break;
5682 		if (found_key.offset < ctx->pos)
5683 			goto next;
5684 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5685 		    btrfs_should_delete_dir_index(&del_list,
5686 						  found_key.offset))
5687 			goto next;
5688 
5689 		ctx->pos = found_key.offset;
5690 		is_curr = 1;
5691 
5692 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5693 		di_cur = 0;
5694 		di_total = btrfs_item_size(leaf, item);
5695 
5696 		while (di_cur < di_total) {
5697 			struct btrfs_key location;
5698 
5699 			if (verify_dir_item(root, leaf, di))
5700 				break;
5701 
5702 			name_len = btrfs_dir_name_len(leaf, di);
5703 			if (name_len <= sizeof(tmp_name)) {
5704 				name_ptr = tmp_name;
5705 			} else {
5706 				name_ptr = kmalloc(name_len, GFP_NOFS);
5707 				if (!name_ptr) {
5708 					ret = -ENOMEM;
5709 					goto err;
5710 				}
5711 			}
5712 			read_extent_buffer(leaf, name_ptr,
5713 					   (unsigned long)(di + 1), name_len);
5714 
5715 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5716 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5717 
5718 
5719 			/* is this a reference to our own snapshot? If so
5720 			 * skip it.
5721 			 *
5722 			 * In contrast to old kernels, we insert the snapshot's
5723 			 * dir item and dir index after it has been created, so
5724 			 * we won't find a reference to our own snapshot. We
5725 			 * still keep the following code for backward
5726 			 * compatibility.
5727 			 */
5728 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5729 			    location.objectid == root->root_key.objectid) {
5730 				over = 0;
5731 				goto skip;
5732 			}
5733 			over = !dir_emit(ctx, name_ptr, name_len,
5734 				       location.objectid, d_type);
5735 
5736 skip:
5737 			if (name_ptr != tmp_name)
5738 				kfree(name_ptr);
5739 
5740 			if (over)
5741 				goto nopos;
5742 			di_len = btrfs_dir_name_len(leaf, di) +
5743 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5744 			di_cur += di_len;
5745 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5746 		}
5747 next:
5748 		path->slots[0]++;
5749 	}
5750 
5751 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5752 		if (is_curr)
5753 			ctx->pos++;
5754 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5755 		if (ret)
5756 			goto nopos;
5757 	}
5758 
5759 	/* Reached end of directory/root. Bump pos past the last item. */
5760 	ctx->pos++;
5761 
5762 	/*
5763 	 * Stop new entries from being returned after we return the last
5764 	 * entry.
5765 	 *
5766 	 * New directory entries are assigned a strictly increasing
5767 	 * offset.  This means that new entries created during readdir
5768 	 * are *guaranteed* to be seen in the future by that readdir.
5769 	 * This has broken buggy programs which operate on names as
5770 	 * they're returned by readdir.  Until we re-use freed offsets
5771 	 * we have this hack to stop new entries from being returned
5772 	 * under the assumption that they'll never reach this huge
5773 	 * offset.
5774 	 *
5775 	 * This is being careful not to overflow 32bit loff_t unless the
5776 	 * last entry requires it because doing so has broken 32bit apps
5777 	 * in the past.
5778 	 */
5779 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5780 		if (ctx->pos >= INT_MAX)
5781 			ctx->pos = LLONG_MAX;
5782 		else
5783 			ctx->pos = INT_MAX;
5784 	}
5785 nopos:
5786 	ret = 0;
5787 err:
5788 	if (key_type == BTRFS_DIR_INDEX_KEY)
5789 		btrfs_put_delayed_items(&ins_list, &del_list);
5790 	btrfs_free_path(path);
5791 	return ret;
5792 }
5793 
5794 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5795 {
5796 	struct btrfs_root *root = BTRFS_I(inode)->root;
5797 	struct btrfs_trans_handle *trans;
5798 	int ret = 0;
5799 	bool nolock = false;
5800 
5801 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5802 		return 0;
5803 
5804 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5805 		nolock = true;
5806 
5807 	if (wbc->sync_mode == WB_SYNC_ALL) {
5808 		if (nolock)
5809 			trans = btrfs_join_transaction_nolock(root);
5810 		else
5811 			trans = btrfs_join_transaction(root);
5812 		if (IS_ERR(trans))
5813 			return PTR_ERR(trans);
5814 		ret = btrfs_commit_transaction(trans, root);
5815 	}
5816 	return ret;
5817 }
5818 
5819 /*
5820  * This is somewhat expensive, updating the tree every time the
5821  * inode changes.  But, it is most likely to find the inode in cache.
5822  * FIXME, needs more benchmarking...there are no reasons other than performance
5823  * to keep or drop this code.
5824  */
5825 static int btrfs_dirty_inode(struct inode *inode)
5826 {
5827 	struct btrfs_root *root = BTRFS_I(inode)->root;
5828 	struct btrfs_trans_handle *trans;
5829 	int ret;
5830 
5831 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5832 		return 0;
5833 
5834 	trans = btrfs_join_transaction(root);
5835 	if (IS_ERR(trans))
5836 		return PTR_ERR(trans);
5837 
5838 	ret = btrfs_update_inode(trans, root, inode);
5839 	if (ret && ret == -ENOSPC) {
5840 		/* whoops, lets try again with the full transaction */
5841 		btrfs_end_transaction(trans, root);
5842 		trans = btrfs_start_transaction(root, 1);
5843 		if (IS_ERR(trans))
5844 			return PTR_ERR(trans);
5845 
5846 		ret = btrfs_update_inode(trans, root, inode);
5847 	}
5848 	btrfs_end_transaction(trans, root);
5849 	if (BTRFS_I(inode)->delayed_node)
5850 		btrfs_balance_delayed_items(root);
5851 
5852 	return ret;
5853 }
5854 
5855 /*
5856  * This is a copy of file_update_time.  We need this so we can return error on
5857  * ENOSPC for updating the inode in the case of file write and mmap writes.
5858  */
5859 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5860 			     int flags)
5861 {
5862 	struct btrfs_root *root = BTRFS_I(inode)->root;
5863 
5864 	if (btrfs_root_readonly(root))
5865 		return -EROFS;
5866 
5867 	if (flags & S_VERSION)
5868 		inode_inc_iversion(inode);
5869 	if (flags & S_CTIME)
5870 		inode->i_ctime = *now;
5871 	if (flags & S_MTIME)
5872 		inode->i_mtime = *now;
5873 	if (flags & S_ATIME)
5874 		inode->i_atime = *now;
5875 	return btrfs_dirty_inode(inode);
5876 }
5877 
5878 /*
5879  * find the highest existing sequence number in a directory
5880  * and then set the in-memory index_cnt variable to reflect
5881  * free sequence numbers
5882  */
5883 static int btrfs_set_inode_index_count(struct inode *inode)
5884 {
5885 	struct btrfs_root *root = BTRFS_I(inode)->root;
5886 	struct btrfs_key key, found_key;
5887 	struct btrfs_path *path;
5888 	struct extent_buffer *leaf;
5889 	int ret;
5890 
5891 	key.objectid = btrfs_ino(inode);
5892 	key.type = BTRFS_DIR_INDEX_KEY;
5893 	key.offset = (u64)-1;
5894 
5895 	path = btrfs_alloc_path();
5896 	if (!path)
5897 		return -ENOMEM;
5898 
5899 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5900 	if (ret < 0)
5901 		goto out;
5902 	/* FIXME: we should be able to handle this */
5903 	if (ret == 0)
5904 		goto out;
5905 	ret = 0;
5906 
5907 	/*
5908 	 * MAGIC NUMBER EXPLANATION:
5909 	 * since we search a directory based on f_pos we have to start at 2
5910 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5911 	 * else has to start at 2
5912 	 */
5913 	if (path->slots[0] == 0) {
5914 		BTRFS_I(inode)->index_cnt = 2;
5915 		goto out;
5916 	}
5917 
5918 	path->slots[0]--;
5919 
5920 	leaf = path->nodes[0];
5921 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5922 
5923 	if (found_key.objectid != btrfs_ino(inode) ||
5924 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5925 		BTRFS_I(inode)->index_cnt = 2;
5926 		goto out;
5927 	}
5928 
5929 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5930 out:
5931 	btrfs_free_path(path);
5932 	return ret;
5933 }
5934 
5935 /*
5936  * helper to find a free sequence number in a given directory.  This current
5937  * code is very simple, later versions will do smarter things in the btree
5938  */
5939 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5940 {
5941 	int ret = 0;
5942 
5943 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5944 		ret = btrfs_inode_delayed_dir_index_count(dir);
5945 		if (ret) {
5946 			ret = btrfs_set_inode_index_count(dir);
5947 			if (ret)
5948 				return ret;
5949 		}
5950 	}
5951 
5952 	*index = BTRFS_I(dir)->index_cnt;
5953 	BTRFS_I(dir)->index_cnt++;
5954 
5955 	return ret;
5956 }
5957 
5958 static int btrfs_insert_inode_locked(struct inode *inode)
5959 {
5960 	struct btrfs_iget_args args;
5961 	args.location = &BTRFS_I(inode)->location;
5962 	args.root = BTRFS_I(inode)->root;
5963 
5964 	return insert_inode_locked4(inode,
5965 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5966 		   btrfs_find_actor, &args);
5967 }
5968 
5969 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5970 				     struct btrfs_root *root,
5971 				     struct inode *dir,
5972 				     const char *name, int name_len,
5973 				     u64 ref_objectid, u64 objectid,
5974 				     umode_t mode, u64 *index)
5975 {
5976 	struct inode *inode;
5977 	struct btrfs_inode_item *inode_item;
5978 	struct btrfs_key *location;
5979 	struct btrfs_path *path;
5980 	struct btrfs_inode_ref *ref;
5981 	struct btrfs_key key[2];
5982 	u32 sizes[2];
5983 	int nitems = name ? 2 : 1;
5984 	unsigned long ptr;
5985 	int ret;
5986 
5987 	path = btrfs_alloc_path();
5988 	if (!path)
5989 		return ERR_PTR(-ENOMEM);
5990 
5991 	inode = new_inode(root->fs_info->sb);
5992 	if (!inode) {
5993 		btrfs_free_path(path);
5994 		return ERR_PTR(-ENOMEM);
5995 	}
5996 
5997 	/*
5998 	 * O_TMPFILE, set link count to 0, so that after this point,
5999 	 * we fill in an inode item with the correct link count.
6000 	 */
6001 	if (!name)
6002 		set_nlink(inode, 0);
6003 
6004 	/*
6005 	 * we have to initialize this early, so we can reclaim the inode
6006 	 * number if we fail afterwards in this function.
6007 	 */
6008 	inode->i_ino = objectid;
6009 
6010 	if (dir && name) {
6011 		trace_btrfs_inode_request(dir);
6012 
6013 		ret = btrfs_set_inode_index(dir, index);
6014 		if (ret) {
6015 			btrfs_free_path(path);
6016 			iput(inode);
6017 			return ERR_PTR(ret);
6018 		}
6019 	} else if (dir) {
6020 		*index = 0;
6021 	}
6022 	/*
6023 	 * index_cnt is ignored for everything but a dir,
6024 	 * btrfs_get_inode_index_count has an explanation for the magic
6025 	 * number
6026 	 */
6027 	BTRFS_I(inode)->index_cnt = 2;
6028 	BTRFS_I(inode)->dir_index = *index;
6029 	BTRFS_I(inode)->root = root;
6030 	BTRFS_I(inode)->generation = trans->transid;
6031 	inode->i_generation = BTRFS_I(inode)->generation;
6032 
6033 	/*
6034 	 * We could have gotten an inode number from somebody who was fsynced
6035 	 * and then removed in this same transaction, so let's just set full
6036 	 * sync since it will be a full sync anyway and this will blow away the
6037 	 * old info in the log.
6038 	 */
6039 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6040 
6041 	key[0].objectid = objectid;
6042 	key[0].type = BTRFS_INODE_ITEM_KEY;
6043 	key[0].offset = 0;
6044 
6045 	sizes[0] = sizeof(struct btrfs_inode_item);
6046 
6047 	if (name) {
6048 		/*
6049 		 * Start new inodes with an inode_ref. This is slightly more
6050 		 * efficient for small numbers of hard links since they will
6051 		 * be packed into one item. Extended refs will kick in if we
6052 		 * add more hard links than can fit in the ref item.
6053 		 */
6054 		key[1].objectid = objectid;
6055 		key[1].type = BTRFS_INODE_REF_KEY;
6056 		key[1].offset = ref_objectid;
6057 
6058 		sizes[1] = name_len + sizeof(*ref);
6059 	}
6060 
6061 	location = &BTRFS_I(inode)->location;
6062 	location->objectid = objectid;
6063 	location->offset = 0;
6064 	location->type = BTRFS_INODE_ITEM_KEY;
6065 
6066 	ret = btrfs_insert_inode_locked(inode);
6067 	if (ret < 0)
6068 		goto fail;
6069 
6070 	path->leave_spinning = 1;
6071 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6072 	if (ret != 0)
6073 		goto fail_unlock;
6074 
6075 	inode_init_owner(inode, dir, mode);
6076 	inode_set_bytes(inode, 0);
6077 
6078 	inode->i_mtime = CURRENT_TIME;
6079 	inode->i_atime = inode->i_mtime;
6080 	inode->i_ctime = inode->i_mtime;
6081 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6082 
6083 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6084 				  struct btrfs_inode_item);
6085 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6086 			     sizeof(*inode_item));
6087 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6088 
6089 	if (name) {
6090 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6091 				     struct btrfs_inode_ref);
6092 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6093 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6094 		ptr = (unsigned long)(ref + 1);
6095 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6096 	}
6097 
6098 	btrfs_mark_buffer_dirty(path->nodes[0]);
6099 	btrfs_free_path(path);
6100 
6101 	btrfs_inherit_iflags(inode, dir);
6102 
6103 	if (S_ISREG(mode)) {
6104 		if (btrfs_test_opt(root, NODATASUM))
6105 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6106 		if (btrfs_test_opt(root, NODATACOW))
6107 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6108 				BTRFS_INODE_NODATASUM;
6109 	}
6110 
6111 	inode_tree_add(inode);
6112 
6113 	trace_btrfs_inode_new(inode);
6114 	btrfs_set_inode_last_trans(trans, inode);
6115 
6116 	btrfs_update_root_times(trans, root);
6117 
6118 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6119 	if (ret)
6120 		btrfs_err(root->fs_info,
6121 			  "error inheriting props for ino %llu (root %llu): %d",
6122 			  btrfs_ino(inode), root->root_key.objectid, ret);
6123 
6124 	return inode;
6125 
6126 fail_unlock:
6127 	unlock_new_inode(inode);
6128 fail:
6129 	if (dir && name)
6130 		BTRFS_I(dir)->index_cnt--;
6131 	btrfs_free_path(path);
6132 	iput(inode);
6133 	return ERR_PTR(ret);
6134 }
6135 
6136 static inline u8 btrfs_inode_type(struct inode *inode)
6137 {
6138 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6139 }
6140 
6141 /*
6142  * utility function to add 'inode' into 'parent_inode' with
6143  * a give name and a given sequence number.
6144  * if 'add_backref' is true, also insert a backref from the
6145  * inode to the parent directory.
6146  */
6147 int btrfs_add_link(struct btrfs_trans_handle *trans,
6148 		   struct inode *parent_inode, struct inode *inode,
6149 		   const char *name, int name_len, int add_backref, u64 index)
6150 {
6151 	int ret = 0;
6152 	struct btrfs_key key;
6153 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6154 	u64 ino = btrfs_ino(inode);
6155 	u64 parent_ino = btrfs_ino(parent_inode);
6156 
6157 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6158 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6159 	} else {
6160 		key.objectid = ino;
6161 		key.type = BTRFS_INODE_ITEM_KEY;
6162 		key.offset = 0;
6163 	}
6164 
6165 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6166 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6167 					 key.objectid, root->root_key.objectid,
6168 					 parent_ino, index, name, name_len);
6169 	} else if (add_backref) {
6170 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6171 					     parent_ino, index);
6172 	}
6173 
6174 	/* Nothing to clean up yet */
6175 	if (ret)
6176 		return ret;
6177 
6178 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6179 				    parent_inode, &key,
6180 				    btrfs_inode_type(inode), index);
6181 	if (ret == -EEXIST || ret == -EOVERFLOW)
6182 		goto fail_dir_item;
6183 	else if (ret) {
6184 		btrfs_abort_transaction(trans, root, ret);
6185 		return ret;
6186 	}
6187 
6188 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6189 			   name_len * 2);
6190 	inode_inc_iversion(parent_inode);
6191 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6192 	ret = btrfs_update_inode(trans, root, parent_inode);
6193 	if (ret)
6194 		btrfs_abort_transaction(trans, root, ret);
6195 	return ret;
6196 
6197 fail_dir_item:
6198 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6199 		u64 local_index;
6200 		int err;
6201 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6202 				 key.objectid, root->root_key.objectid,
6203 				 parent_ino, &local_index, name, name_len);
6204 
6205 	} else if (add_backref) {
6206 		u64 local_index;
6207 		int err;
6208 
6209 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6210 					  ino, parent_ino, &local_index);
6211 	}
6212 	return ret;
6213 }
6214 
6215 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6216 			    struct inode *dir, struct dentry *dentry,
6217 			    struct inode *inode, int backref, u64 index)
6218 {
6219 	int err = btrfs_add_link(trans, dir, inode,
6220 				 dentry->d_name.name, dentry->d_name.len,
6221 				 backref, index);
6222 	if (err > 0)
6223 		err = -EEXIST;
6224 	return err;
6225 }
6226 
6227 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6228 			umode_t mode, dev_t rdev)
6229 {
6230 	struct btrfs_trans_handle *trans;
6231 	struct btrfs_root *root = BTRFS_I(dir)->root;
6232 	struct inode *inode = NULL;
6233 	int err;
6234 	int drop_inode = 0;
6235 	u64 objectid;
6236 	u64 index = 0;
6237 
6238 	if (!new_valid_dev(rdev))
6239 		return -EINVAL;
6240 
6241 	/*
6242 	 * 2 for inode item and ref
6243 	 * 2 for dir items
6244 	 * 1 for xattr if selinux is on
6245 	 */
6246 	trans = btrfs_start_transaction(root, 5);
6247 	if (IS_ERR(trans))
6248 		return PTR_ERR(trans);
6249 
6250 	err = btrfs_find_free_ino(root, &objectid);
6251 	if (err)
6252 		goto out_unlock;
6253 
6254 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6255 				dentry->d_name.len, btrfs_ino(dir), objectid,
6256 				mode, &index);
6257 	if (IS_ERR(inode)) {
6258 		err = PTR_ERR(inode);
6259 		goto out_unlock;
6260 	}
6261 
6262 	/*
6263 	* If the active LSM wants to access the inode during
6264 	* d_instantiate it needs these. Smack checks to see
6265 	* if the filesystem supports xattrs by looking at the
6266 	* ops vector.
6267 	*/
6268 	inode->i_op = &btrfs_special_inode_operations;
6269 	init_special_inode(inode, inode->i_mode, rdev);
6270 
6271 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6272 	if (err)
6273 		goto out_unlock_inode;
6274 
6275 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6276 	if (err) {
6277 		goto out_unlock_inode;
6278 	} else {
6279 		btrfs_update_inode(trans, root, inode);
6280 		unlock_new_inode(inode);
6281 		d_instantiate(dentry, inode);
6282 	}
6283 
6284 out_unlock:
6285 	btrfs_end_transaction(trans, root);
6286 	btrfs_balance_delayed_items(root);
6287 	btrfs_btree_balance_dirty(root);
6288 	if (drop_inode) {
6289 		inode_dec_link_count(inode);
6290 		iput(inode);
6291 	}
6292 	return err;
6293 
6294 out_unlock_inode:
6295 	drop_inode = 1;
6296 	unlock_new_inode(inode);
6297 	goto out_unlock;
6298 
6299 }
6300 
6301 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6302 			umode_t mode, bool excl)
6303 {
6304 	struct btrfs_trans_handle *trans;
6305 	struct btrfs_root *root = BTRFS_I(dir)->root;
6306 	struct inode *inode = NULL;
6307 	int drop_inode_on_err = 0;
6308 	int err;
6309 	u64 objectid;
6310 	u64 index = 0;
6311 
6312 	/*
6313 	 * 2 for inode item and ref
6314 	 * 2 for dir items
6315 	 * 1 for xattr if selinux is on
6316 	 */
6317 	trans = btrfs_start_transaction(root, 5);
6318 	if (IS_ERR(trans))
6319 		return PTR_ERR(trans);
6320 
6321 	err = btrfs_find_free_ino(root, &objectid);
6322 	if (err)
6323 		goto out_unlock;
6324 
6325 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6326 				dentry->d_name.len, btrfs_ino(dir), objectid,
6327 				mode, &index);
6328 	if (IS_ERR(inode)) {
6329 		err = PTR_ERR(inode);
6330 		goto out_unlock;
6331 	}
6332 	drop_inode_on_err = 1;
6333 	/*
6334 	* If the active LSM wants to access the inode during
6335 	* d_instantiate it needs these. Smack checks to see
6336 	* if the filesystem supports xattrs by looking at the
6337 	* ops vector.
6338 	*/
6339 	inode->i_fop = &btrfs_file_operations;
6340 	inode->i_op = &btrfs_file_inode_operations;
6341 	inode->i_mapping->a_ops = &btrfs_aops;
6342 
6343 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6344 	if (err)
6345 		goto out_unlock_inode;
6346 
6347 	err = btrfs_update_inode(trans, root, inode);
6348 	if (err)
6349 		goto out_unlock_inode;
6350 
6351 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6352 	if (err)
6353 		goto out_unlock_inode;
6354 
6355 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6356 	unlock_new_inode(inode);
6357 	d_instantiate(dentry, inode);
6358 
6359 out_unlock:
6360 	btrfs_end_transaction(trans, root);
6361 	if (err && drop_inode_on_err) {
6362 		inode_dec_link_count(inode);
6363 		iput(inode);
6364 	}
6365 	btrfs_balance_delayed_items(root);
6366 	btrfs_btree_balance_dirty(root);
6367 	return err;
6368 
6369 out_unlock_inode:
6370 	unlock_new_inode(inode);
6371 	goto out_unlock;
6372 
6373 }
6374 
6375 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6376 		      struct dentry *dentry)
6377 {
6378 	struct btrfs_trans_handle *trans;
6379 	struct btrfs_root *root = BTRFS_I(dir)->root;
6380 	struct inode *inode = d_inode(old_dentry);
6381 	u64 index;
6382 	int err;
6383 	int drop_inode = 0;
6384 
6385 	/* do not allow sys_link's with other subvols of the same device */
6386 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6387 		return -EXDEV;
6388 
6389 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6390 		return -EMLINK;
6391 
6392 	err = btrfs_set_inode_index(dir, &index);
6393 	if (err)
6394 		goto fail;
6395 
6396 	/*
6397 	 * 2 items for inode and inode ref
6398 	 * 2 items for dir items
6399 	 * 1 item for parent inode
6400 	 */
6401 	trans = btrfs_start_transaction(root, 5);
6402 	if (IS_ERR(trans)) {
6403 		err = PTR_ERR(trans);
6404 		goto fail;
6405 	}
6406 
6407 	/* There are several dir indexes for this inode, clear the cache. */
6408 	BTRFS_I(inode)->dir_index = 0ULL;
6409 	inc_nlink(inode);
6410 	inode_inc_iversion(inode);
6411 	inode->i_ctime = CURRENT_TIME;
6412 	ihold(inode);
6413 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6414 
6415 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6416 
6417 	if (err) {
6418 		drop_inode = 1;
6419 	} else {
6420 		struct dentry *parent = dentry->d_parent;
6421 		err = btrfs_update_inode(trans, root, inode);
6422 		if (err)
6423 			goto fail;
6424 		if (inode->i_nlink == 1) {
6425 			/*
6426 			 * If new hard link count is 1, it's a file created
6427 			 * with open(2) O_TMPFILE flag.
6428 			 */
6429 			err = btrfs_orphan_del(trans, inode);
6430 			if (err)
6431 				goto fail;
6432 		}
6433 		d_instantiate(dentry, inode);
6434 		btrfs_log_new_name(trans, inode, NULL, parent);
6435 	}
6436 
6437 	btrfs_end_transaction(trans, root);
6438 	btrfs_balance_delayed_items(root);
6439 fail:
6440 	if (drop_inode) {
6441 		inode_dec_link_count(inode);
6442 		iput(inode);
6443 	}
6444 	btrfs_btree_balance_dirty(root);
6445 	return err;
6446 }
6447 
6448 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6449 {
6450 	struct inode *inode = NULL;
6451 	struct btrfs_trans_handle *trans;
6452 	struct btrfs_root *root = BTRFS_I(dir)->root;
6453 	int err = 0;
6454 	int drop_on_err = 0;
6455 	u64 objectid = 0;
6456 	u64 index = 0;
6457 
6458 	/*
6459 	 * 2 items for inode and ref
6460 	 * 2 items for dir items
6461 	 * 1 for xattr if selinux is on
6462 	 */
6463 	trans = btrfs_start_transaction(root, 5);
6464 	if (IS_ERR(trans))
6465 		return PTR_ERR(trans);
6466 
6467 	err = btrfs_find_free_ino(root, &objectid);
6468 	if (err)
6469 		goto out_fail;
6470 
6471 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6472 				dentry->d_name.len, btrfs_ino(dir), objectid,
6473 				S_IFDIR | mode, &index);
6474 	if (IS_ERR(inode)) {
6475 		err = PTR_ERR(inode);
6476 		goto out_fail;
6477 	}
6478 
6479 	drop_on_err = 1;
6480 	/* these must be set before we unlock the inode */
6481 	inode->i_op = &btrfs_dir_inode_operations;
6482 	inode->i_fop = &btrfs_dir_file_operations;
6483 
6484 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6485 	if (err)
6486 		goto out_fail_inode;
6487 
6488 	btrfs_i_size_write(inode, 0);
6489 	err = btrfs_update_inode(trans, root, inode);
6490 	if (err)
6491 		goto out_fail_inode;
6492 
6493 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6494 			     dentry->d_name.len, 0, index);
6495 	if (err)
6496 		goto out_fail_inode;
6497 
6498 	d_instantiate(dentry, inode);
6499 	/*
6500 	 * mkdir is special.  We're unlocking after we call d_instantiate
6501 	 * to avoid a race with nfsd calling d_instantiate.
6502 	 */
6503 	unlock_new_inode(inode);
6504 	drop_on_err = 0;
6505 
6506 out_fail:
6507 	btrfs_end_transaction(trans, root);
6508 	if (drop_on_err) {
6509 		inode_dec_link_count(inode);
6510 		iput(inode);
6511 	}
6512 	btrfs_balance_delayed_items(root);
6513 	btrfs_btree_balance_dirty(root);
6514 	return err;
6515 
6516 out_fail_inode:
6517 	unlock_new_inode(inode);
6518 	goto out_fail;
6519 }
6520 
6521 /* Find next extent map of a given extent map, caller needs to ensure locks */
6522 static struct extent_map *next_extent_map(struct extent_map *em)
6523 {
6524 	struct rb_node *next;
6525 
6526 	next = rb_next(&em->rb_node);
6527 	if (!next)
6528 		return NULL;
6529 	return container_of(next, struct extent_map, rb_node);
6530 }
6531 
6532 static struct extent_map *prev_extent_map(struct extent_map *em)
6533 {
6534 	struct rb_node *prev;
6535 
6536 	prev = rb_prev(&em->rb_node);
6537 	if (!prev)
6538 		return NULL;
6539 	return container_of(prev, struct extent_map, rb_node);
6540 }
6541 
6542 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6543  * the existing extent is the nearest extent to map_start,
6544  * and an extent that you want to insert, deal with overlap and insert
6545  * the best fitted new extent into the tree.
6546  */
6547 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6548 				struct extent_map *existing,
6549 				struct extent_map *em,
6550 				u64 map_start)
6551 {
6552 	struct extent_map *prev;
6553 	struct extent_map *next;
6554 	u64 start;
6555 	u64 end;
6556 	u64 start_diff;
6557 
6558 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6559 
6560 	if (existing->start > map_start) {
6561 		next = existing;
6562 		prev = prev_extent_map(next);
6563 	} else {
6564 		prev = existing;
6565 		next = next_extent_map(prev);
6566 	}
6567 
6568 	start = prev ? extent_map_end(prev) : em->start;
6569 	start = max_t(u64, start, em->start);
6570 	end = next ? next->start : extent_map_end(em);
6571 	end = min_t(u64, end, extent_map_end(em));
6572 	start_diff = start - em->start;
6573 	em->start = start;
6574 	em->len = end - start;
6575 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6576 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6577 		em->block_start += start_diff;
6578 		em->block_len -= start_diff;
6579 	}
6580 	return add_extent_mapping(em_tree, em, 0);
6581 }
6582 
6583 static noinline int uncompress_inline(struct btrfs_path *path,
6584 				      struct inode *inode, struct page *page,
6585 				      size_t pg_offset, u64 extent_offset,
6586 				      struct btrfs_file_extent_item *item)
6587 {
6588 	int ret;
6589 	struct extent_buffer *leaf = path->nodes[0];
6590 	char *tmp;
6591 	size_t max_size;
6592 	unsigned long inline_size;
6593 	unsigned long ptr;
6594 	int compress_type;
6595 
6596 	WARN_ON(pg_offset != 0);
6597 	compress_type = btrfs_file_extent_compression(leaf, item);
6598 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6599 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6600 					btrfs_item_nr(path->slots[0]));
6601 	tmp = kmalloc(inline_size, GFP_NOFS);
6602 	if (!tmp)
6603 		return -ENOMEM;
6604 	ptr = btrfs_file_extent_inline_start(item);
6605 
6606 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6607 
6608 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6609 	ret = btrfs_decompress(compress_type, tmp, page,
6610 			       extent_offset, inline_size, max_size);
6611 	kfree(tmp);
6612 	return ret;
6613 }
6614 
6615 /*
6616  * a bit scary, this does extent mapping from logical file offset to the disk.
6617  * the ugly parts come from merging extents from the disk with the in-ram
6618  * representation.  This gets more complex because of the data=ordered code,
6619  * where the in-ram extents might be locked pending data=ordered completion.
6620  *
6621  * This also copies inline extents directly into the page.
6622  */
6623 
6624 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6625 				    size_t pg_offset, u64 start, u64 len,
6626 				    int create)
6627 {
6628 	int ret;
6629 	int err = 0;
6630 	u64 extent_start = 0;
6631 	u64 extent_end = 0;
6632 	u64 objectid = btrfs_ino(inode);
6633 	u32 found_type;
6634 	struct btrfs_path *path = NULL;
6635 	struct btrfs_root *root = BTRFS_I(inode)->root;
6636 	struct btrfs_file_extent_item *item;
6637 	struct extent_buffer *leaf;
6638 	struct btrfs_key found_key;
6639 	struct extent_map *em = NULL;
6640 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6641 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6642 	struct btrfs_trans_handle *trans = NULL;
6643 	const bool new_inline = !page || create;
6644 
6645 again:
6646 	read_lock(&em_tree->lock);
6647 	em = lookup_extent_mapping(em_tree, start, len);
6648 	if (em)
6649 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6650 	read_unlock(&em_tree->lock);
6651 
6652 	if (em) {
6653 		if (em->start > start || em->start + em->len <= start)
6654 			free_extent_map(em);
6655 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6656 			free_extent_map(em);
6657 		else
6658 			goto out;
6659 	}
6660 	em = alloc_extent_map();
6661 	if (!em) {
6662 		err = -ENOMEM;
6663 		goto out;
6664 	}
6665 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6666 	em->start = EXTENT_MAP_HOLE;
6667 	em->orig_start = EXTENT_MAP_HOLE;
6668 	em->len = (u64)-1;
6669 	em->block_len = (u64)-1;
6670 
6671 	if (!path) {
6672 		path = btrfs_alloc_path();
6673 		if (!path) {
6674 			err = -ENOMEM;
6675 			goto out;
6676 		}
6677 		/*
6678 		 * Chances are we'll be called again, so go ahead and do
6679 		 * readahead
6680 		 */
6681 		path->reada = 1;
6682 	}
6683 
6684 	ret = btrfs_lookup_file_extent(trans, root, path,
6685 				       objectid, start, trans != NULL);
6686 	if (ret < 0) {
6687 		err = ret;
6688 		goto out;
6689 	}
6690 
6691 	if (ret != 0) {
6692 		if (path->slots[0] == 0)
6693 			goto not_found;
6694 		path->slots[0]--;
6695 	}
6696 
6697 	leaf = path->nodes[0];
6698 	item = btrfs_item_ptr(leaf, path->slots[0],
6699 			      struct btrfs_file_extent_item);
6700 	/* are we inside the extent that was found? */
6701 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6702 	found_type = found_key.type;
6703 	if (found_key.objectid != objectid ||
6704 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6705 		/*
6706 		 * If we backup past the first extent we want to move forward
6707 		 * and see if there is an extent in front of us, otherwise we'll
6708 		 * say there is a hole for our whole search range which can
6709 		 * cause problems.
6710 		 */
6711 		extent_end = start;
6712 		goto next;
6713 	}
6714 
6715 	found_type = btrfs_file_extent_type(leaf, item);
6716 	extent_start = found_key.offset;
6717 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6718 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6719 		extent_end = extent_start +
6720 		       btrfs_file_extent_num_bytes(leaf, item);
6721 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6722 		size_t size;
6723 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6724 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6725 	}
6726 next:
6727 	if (start >= extent_end) {
6728 		path->slots[0]++;
6729 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6730 			ret = btrfs_next_leaf(root, path);
6731 			if (ret < 0) {
6732 				err = ret;
6733 				goto out;
6734 			}
6735 			if (ret > 0)
6736 				goto not_found;
6737 			leaf = path->nodes[0];
6738 		}
6739 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6740 		if (found_key.objectid != objectid ||
6741 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6742 			goto not_found;
6743 		if (start + len <= found_key.offset)
6744 			goto not_found;
6745 		if (start > found_key.offset)
6746 			goto next;
6747 		em->start = start;
6748 		em->orig_start = start;
6749 		em->len = found_key.offset - start;
6750 		goto not_found_em;
6751 	}
6752 
6753 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6754 
6755 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6756 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6757 		goto insert;
6758 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6759 		unsigned long ptr;
6760 		char *map;
6761 		size_t size;
6762 		size_t extent_offset;
6763 		size_t copy_size;
6764 
6765 		if (new_inline)
6766 			goto out;
6767 
6768 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6769 		extent_offset = page_offset(page) + pg_offset - extent_start;
6770 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6771 				size - extent_offset);
6772 		em->start = extent_start + extent_offset;
6773 		em->len = ALIGN(copy_size, root->sectorsize);
6774 		em->orig_block_len = em->len;
6775 		em->orig_start = em->start;
6776 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6777 		if (create == 0 && !PageUptodate(page)) {
6778 			if (btrfs_file_extent_compression(leaf, item) !=
6779 			    BTRFS_COMPRESS_NONE) {
6780 				ret = uncompress_inline(path, inode, page,
6781 							pg_offset,
6782 							extent_offset, item);
6783 				if (ret) {
6784 					err = ret;
6785 					goto out;
6786 				}
6787 			} else {
6788 				map = kmap(page);
6789 				read_extent_buffer(leaf, map + pg_offset, ptr,
6790 						   copy_size);
6791 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6792 					memset(map + pg_offset + copy_size, 0,
6793 					       PAGE_CACHE_SIZE - pg_offset -
6794 					       copy_size);
6795 				}
6796 				kunmap(page);
6797 			}
6798 			flush_dcache_page(page);
6799 		} else if (create && PageUptodate(page)) {
6800 			BUG();
6801 			if (!trans) {
6802 				kunmap(page);
6803 				free_extent_map(em);
6804 				em = NULL;
6805 
6806 				btrfs_release_path(path);
6807 				trans = btrfs_join_transaction(root);
6808 
6809 				if (IS_ERR(trans))
6810 					return ERR_CAST(trans);
6811 				goto again;
6812 			}
6813 			map = kmap(page);
6814 			write_extent_buffer(leaf, map + pg_offset, ptr,
6815 					    copy_size);
6816 			kunmap(page);
6817 			btrfs_mark_buffer_dirty(leaf);
6818 		}
6819 		set_extent_uptodate(io_tree, em->start,
6820 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6821 		goto insert;
6822 	}
6823 not_found:
6824 	em->start = start;
6825 	em->orig_start = start;
6826 	em->len = len;
6827 not_found_em:
6828 	em->block_start = EXTENT_MAP_HOLE;
6829 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6830 insert:
6831 	btrfs_release_path(path);
6832 	if (em->start > start || extent_map_end(em) <= start) {
6833 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6834 			em->start, em->len, start, len);
6835 		err = -EIO;
6836 		goto out;
6837 	}
6838 
6839 	err = 0;
6840 	write_lock(&em_tree->lock);
6841 	ret = add_extent_mapping(em_tree, em, 0);
6842 	/* it is possible that someone inserted the extent into the tree
6843 	 * while we had the lock dropped.  It is also possible that
6844 	 * an overlapping map exists in the tree
6845 	 */
6846 	if (ret == -EEXIST) {
6847 		struct extent_map *existing;
6848 
6849 		ret = 0;
6850 
6851 		existing = search_extent_mapping(em_tree, start, len);
6852 		/*
6853 		 * existing will always be non-NULL, since there must be
6854 		 * extent causing the -EEXIST.
6855 		 */
6856 		if (start >= extent_map_end(existing) ||
6857 		    start <= existing->start) {
6858 			/*
6859 			 * The existing extent map is the one nearest to
6860 			 * the [start, start + len) range which overlaps
6861 			 */
6862 			err = merge_extent_mapping(em_tree, existing,
6863 						   em, start);
6864 			free_extent_map(existing);
6865 			if (err) {
6866 				free_extent_map(em);
6867 				em = NULL;
6868 			}
6869 		} else {
6870 			free_extent_map(em);
6871 			em = existing;
6872 			err = 0;
6873 		}
6874 	}
6875 	write_unlock(&em_tree->lock);
6876 out:
6877 
6878 	trace_btrfs_get_extent(root, em);
6879 
6880 	if (path)
6881 		btrfs_free_path(path);
6882 	if (trans) {
6883 		ret = btrfs_end_transaction(trans, root);
6884 		if (!err)
6885 			err = ret;
6886 	}
6887 	if (err) {
6888 		free_extent_map(em);
6889 		return ERR_PTR(err);
6890 	}
6891 	BUG_ON(!em); /* Error is always set */
6892 	return em;
6893 }
6894 
6895 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6896 					   size_t pg_offset, u64 start, u64 len,
6897 					   int create)
6898 {
6899 	struct extent_map *em;
6900 	struct extent_map *hole_em = NULL;
6901 	u64 range_start = start;
6902 	u64 end;
6903 	u64 found;
6904 	u64 found_end;
6905 	int err = 0;
6906 
6907 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6908 	if (IS_ERR(em))
6909 		return em;
6910 	if (em) {
6911 		/*
6912 		 * if our em maps to
6913 		 * -  a hole or
6914 		 * -  a pre-alloc extent,
6915 		 * there might actually be delalloc bytes behind it.
6916 		 */
6917 		if (em->block_start != EXTENT_MAP_HOLE &&
6918 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6919 			return em;
6920 		else
6921 			hole_em = em;
6922 	}
6923 
6924 	/* check to see if we've wrapped (len == -1 or similar) */
6925 	end = start + len;
6926 	if (end < start)
6927 		end = (u64)-1;
6928 	else
6929 		end -= 1;
6930 
6931 	em = NULL;
6932 
6933 	/* ok, we didn't find anything, lets look for delalloc */
6934 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6935 				 end, len, EXTENT_DELALLOC, 1);
6936 	found_end = range_start + found;
6937 	if (found_end < range_start)
6938 		found_end = (u64)-1;
6939 
6940 	/*
6941 	 * we didn't find anything useful, return
6942 	 * the original results from get_extent()
6943 	 */
6944 	if (range_start > end || found_end <= start) {
6945 		em = hole_em;
6946 		hole_em = NULL;
6947 		goto out;
6948 	}
6949 
6950 	/* adjust the range_start to make sure it doesn't
6951 	 * go backwards from the start they passed in
6952 	 */
6953 	range_start = max(start, range_start);
6954 	found = found_end - range_start;
6955 
6956 	if (found > 0) {
6957 		u64 hole_start = start;
6958 		u64 hole_len = len;
6959 
6960 		em = alloc_extent_map();
6961 		if (!em) {
6962 			err = -ENOMEM;
6963 			goto out;
6964 		}
6965 		/*
6966 		 * when btrfs_get_extent can't find anything it
6967 		 * returns one huge hole
6968 		 *
6969 		 * make sure what it found really fits our range, and
6970 		 * adjust to make sure it is based on the start from
6971 		 * the caller
6972 		 */
6973 		if (hole_em) {
6974 			u64 calc_end = extent_map_end(hole_em);
6975 
6976 			if (calc_end <= start || (hole_em->start > end)) {
6977 				free_extent_map(hole_em);
6978 				hole_em = NULL;
6979 			} else {
6980 				hole_start = max(hole_em->start, start);
6981 				hole_len = calc_end - hole_start;
6982 			}
6983 		}
6984 		em->bdev = NULL;
6985 		if (hole_em && range_start > hole_start) {
6986 			/* our hole starts before our delalloc, so we
6987 			 * have to return just the parts of the hole
6988 			 * that go until  the delalloc starts
6989 			 */
6990 			em->len = min(hole_len,
6991 				      range_start - hole_start);
6992 			em->start = hole_start;
6993 			em->orig_start = hole_start;
6994 			/*
6995 			 * don't adjust block start at all,
6996 			 * it is fixed at EXTENT_MAP_HOLE
6997 			 */
6998 			em->block_start = hole_em->block_start;
6999 			em->block_len = hole_len;
7000 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7001 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7002 		} else {
7003 			em->start = range_start;
7004 			em->len = found;
7005 			em->orig_start = range_start;
7006 			em->block_start = EXTENT_MAP_DELALLOC;
7007 			em->block_len = found;
7008 		}
7009 	} else if (hole_em) {
7010 		return hole_em;
7011 	}
7012 out:
7013 
7014 	free_extent_map(hole_em);
7015 	if (err) {
7016 		free_extent_map(em);
7017 		return ERR_PTR(err);
7018 	}
7019 	return em;
7020 }
7021 
7022 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7023 						  u64 start, u64 len)
7024 {
7025 	struct btrfs_root *root = BTRFS_I(inode)->root;
7026 	struct extent_map *em;
7027 	struct btrfs_key ins;
7028 	u64 alloc_hint;
7029 	int ret;
7030 
7031 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7032 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7033 				   alloc_hint, &ins, 1, 1);
7034 	if (ret)
7035 		return ERR_PTR(ret);
7036 
7037 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7038 			      ins.offset, ins.offset, ins.offset, 0);
7039 	if (IS_ERR(em)) {
7040 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7041 		return em;
7042 	}
7043 
7044 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7045 					   ins.offset, ins.offset, 0);
7046 	if (ret) {
7047 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7048 		free_extent_map(em);
7049 		return ERR_PTR(ret);
7050 	}
7051 
7052 	return em;
7053 }
7054 
7055 /*
7056  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7057  * block must be cow'd
7058  */
7059 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7060 			      u64 *orig_start, u64 *orig_block_len,
7061 			      u64 *ram_bytes)
7062 {
7063 	struct btrfs_trans_handle *trans;
7064 	struct btrfs_path *path;
7065 	int ret;
7066 	struct extent_buffer *leaf;
7067 	struct btrfs_root *root = BTRFS_I(inode)->root;
7068 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7069 	struct btrfs_file_extent_item *fi;
7070 	struct btrfs_key key;
7071 	u64 disk_bytenr;
7072 	u64 backref_offset;
7073 	u64 extent_end;
7074 	u64 num_bytes;
7075 	int slot;
7076 	int found_type;
7077 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7078 
7079 	path = btrfs_alloc_path();
7080 	if (!path)
7081 		return -ENOMEM;
7082 
7083 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7084 				       offset, 0);
7085 	if (ret < 0)
7086 		goto out;
7087 
7088 	slot = path->slots[0];
7089 	if (ret == 1) {
7090 		if (slot == 0) {
7091 			/* can't find the item, must cow */
7092 			ret = 0;
7093 			goto out;
7094 		}
7095 		slot--;
7096 	}
7097 	ret = 0;
7098 	leaf = path->nodes[0];
7099 	btrfs_item_key_to_cpu(leaf, &key, slot);
7100 	if (key.objectid != btrfs_ino(inode) ||
7101 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7102 		/* not our file or wrong item type, must cow */
7103 		goto out;
7104 	}
7105 
7106 	if (key.offset > offset) {
7107 		/* Wrong offset, must cow */
7108 		goto out;
7109 	}
7110 
7111 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7112 	found_type = btrfs_file_extent_type(leaf, fi);
7113 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7114 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7115 		/* not a regular extent, must cow */
7116 		goto out;
7117 	}
7118 
7119 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7120 		goto out;
7121 
7122 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7123 	if (extent_end <= offset)
7124 		goto out;
7125 
7126 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7127 	if (disk_bytenr == 0)
7128 		goto out;
7129 
7130 	if (btrfs_file_extent_compression(leaf, fi) ||
7131 	    btrfs_file_extent_encryption(leaf, fi) ||
7132 	    btrfs_file_extent_other_encoding(leaf, fi))
7133 		goto out;
7134 
7135 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7136 
7137 	if (orig_start) {
7138 		*orig_start = key.offset - backref_offset;
7139 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7140 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7141 	}
7142 
7143 	if (btrfs_extent_readonly(root, disk_bytenr))
7144 		goto out;
7145 
7146 	num_bytes = min(offset + *len, extent_end) - offset;
7147 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7148 		u64 range_end;
7149 
7150 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7151 		ret = test_range_bit(io_tree, offset, range_end,
7152 				     EXTENT_DELALLOC, 0, NULL);
7153 		if (ret) {
7154 			ret = -EAGAIN;
7155 			goto out;
7156 		}
7157 	}
7158 
7159 	btrfs_release_path(path);
7160 
7161 	/*
7162 	 * look for other files referencing this extent, if we
7163 	 * find any we must cow
7164 	 */
7165 	trans = btrfs_join_transaction(root);
7166 	if (IS_ERR(trans)) {
7167 		ret = 0;
7168 		goto out;
7169 	}
7170 
7171 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7172 				    key.offset - backref_offset, disk_bytenr);
7173 	btrfs_end_transaction(trans, root);
7174 	if (ret) {
7175 		ret = 0;
7176 		goto out;
7177 	}
7178 
7179 	/*
7180 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7181 	 * in this extent we are about to write.  If there
7182 	 * are any csums in that range we have to cow in order
7183 	 * to keep the csums correct
7184 	 */
7185 	disk_bytenr += backref_offset;
7186 	disk_bytenr += offset - key.offset;
7187 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7188 				goto out;
7189 	/*
7190 	 * all of the above have passed, it is safe to overwrite this extent
7191 	 * without cow
7192 	 */
7193 	*len = num_bytes;
7194 	ret = 1;
7195 out:
7196 	btrfs_free_path(path);
7197 	return ret;
7198 }
7199 
7200 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7201 {
7202 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7203 	int found = false;
7204 	void **pagep = NULL;
7205 	struct page *page = NULL;
7206 	int start_idx;
7207 	int end_idx;
7208 
7209 	start_idx = start >> PAGE_CACHE_SHIFT;
7210 
7211 	/*
7212 	 * end is the last byte in the last page.  end == start is legal
7213 	 */
7214 	end_idx = end >> PAGE_CACHE_SHIFT;
7215 
7216 	rcu_read_lock();
7217 
7218 	/* Most of the code in this while loop is lifted from
7219 	 * find_get_page.  It's been modified to begin searching from a
7220 	 * page and return just the first page found in that range.  If the
7221 	 * found idx is less than or equal to the end idx then we know that
7222 	 * a page exists.  If no pages are found or if those pages are
7223 	 * outside of the range then we're fine (yay!) */
7224 	while (page == NULL &&
7225 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7226 		page = radix_tree_deref_slot(pagep);
7227 		if (unlikely(!page))
7228 			break;
7229 
7230 		if (radix_tree_exception(page)) {
7231 			if (radix_tree_deref_retry(page)) {
7232 				page = NULL;
7233 				continue;
7234 			}
7235 			/*
7236 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7237 			 * here as an exceptional entry: so return it without
7238 			 * attempting to raise page count.
7239 			 */
7240 			page = NULL;
7241 			break; /* TODO: Is this relevant for this use case? */
7242 		}
7243 
7244 		if (!page_cache_get_speculative(page)) {
7245 			page = NULL;
7246 			continue;
7247 		}
7248 
7249 		/*
7250 		 * Has the page moved?
7251 		 * This is part of the lockless pagecache protocol. See
7252 		 * include/linux/pagemap.h for details.
7253 		 */
7254 		if (unlikely(page != *pagep)) {
7255 			page_cache_release(page);
7256 			page = NULL;
7257 		}
7258 	}
7259 
7260 	if (page) {
7261 		if (page->index <= end_idx)
7262 			found = true;
7263 		page_cache_release(page);
7264 	}
7265 
7266 	rcu_read_unlock();
7267 	return found;
7268 }
7269 
7270 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7271 			      struct extent_state **cached_state, int writing)
7272 {
7273 	struct btrfs_ordered_extent *ordered;
7274 	int ret = 0;
7275 
7276 	while (1) {
7277 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7278 				 0, cached_state);
7279 		/*
7280 		 * We're concerned with the entire range that we're going to be
7281 		 * doing DIO to, so we need to make sure theres no ordered
7282 		 * extents in this range.
7283 		 */
7284 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7285 						     lockend - lockstart + 1);
7286 
7287 		/*
7288 		 * We need to make sure there are no buffered pages in this
7289 		 * range either, we could have raced between the invalidate in
7290 		 * generic_file_direct_write and locking the extent.  The
7291 		 * invalidate needs to happen so that reads after a write do not
7292 		 * get stale data.
7293 		 */
7294 		if (!ordered &&
7295 		    (!writing ||
7296 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7297 			break;
7298 
7299 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7300 				     cached_state, GFP_NOFS);
7301 
7302 		if (ordered) {
7303 			btrfs_start_ordered_extent(inode, ordered, 1);
7304 			btrfs_put_ordered_extent(ordered);
7305 		} else {
7306 			/* Screw you mmap */
7307 			ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7308 			if (ret)
7309 				break;
7310 			ret = filemap_fdatawait_range(inode->i_mapping,
7311 						      lockstart,
7312 						      lockend);
7313 			if (ret)
7314 				break;
7315 
7316 			/*
7317 			 * If we found a page that couldn't be invalidated just
7318 			 * fall back to buffered.
7319 			 */
7320 			ret = invalidate_inode_pages2_range(inode->i_mapping,
7321 					lockstart >> PAGE_CACHE_SHIFT,
7322 					lockend >> PAGE_CACHE_SHIFT);
7323 			if (ret)
7324 				break;
7325 		}
7326 
7327 		cond_resched();
7328 	}
7329 
7330 	return ret;
7331 }
7332 
7333 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7334 					   u64 len, u64 orig_start,
7335 					   u64 block_start, u64 block_len,
7336 					   u64 orig_block_len, u64 ram_bytes,
7337 					   int type)
7338 {
7339 	struct extent_map_tree *em_tree;
7340 	struct extent_map *em;
7341 	struct btrfs_root *root = BTRFS_I(inode)->root;
7342 	int ret;
7343 
7344 	em_tree = &BTRFS_I(inode)->extent_tree;
7345 	em = alloc_extent_map();
7346 	if (!em)
7347 		return ERR_PTR(-ENOMEM);
7348 
7349 	em->start = start;
7350 	em->orig_start = orig_start;
7351 	em->mod_start = start;
7352 	em->mod_len = len;
7353 	em->len = len;
7354 	em->block_len = block_len;
7355 	em->block_start = block_start;
7356 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7357 	em->orig_block_len = orig_block_len;
7358 	em->ram_bytes = ram_bytes;
7359 	em->generation = -1;
7360 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7361 	if (type == BTRFS_ORDERED_PREALLOC)
7362 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7363 
7364 	do {
7365 		btrfs_drop_extent_cache(inode, em->start,
7366 				em->start + em->len - 1, 0);
7367 		write_lock(&em_tree->lock);
7368 		ret = add_extent_mapping(em_tree, em, 1);
7369 		write_unlock(&em_tree->lock);
7370 	} while (ret == -EEXIST);
7371 
7372 	if (ret) {
7373 		free_extent_map(em);
7374 		return ERR_PTR(ret);
7375 	}
7376 
7377 	return em;
7378 }
7379 
7380 
7381 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7382 				   struct buffer_head *bh_result, int create)
7383 {
7384 	struct extent_map *em;
7385 	struct btrfs_root *root = BTRFS_I(inode)->root;
7386 	struct extent_state *cached_state = NULL;
7387 	u64 start = iblock << inode->i_blkbits;
7388 	u64 lockstart, lockend;
7389 	u64 len = bh_result->b_size;
7390 	u64 *outstanding_extents = NULL;
7391 	int unlock_bits = EXTENT_LOCKED;
7392 	int ret = 0;
7393 
7394 	if (create)
7395 		unlock_bits |= EXTENT_DIRTY;
7396 	else
7397 		len = min_t(u64, len, root->sectorsize);
7398 
7399 	lockstart = start;
7400 	lockend = start + len - 1;
7401 
7402 	if (current->journal_info) {
7403 		/*
7404 		 * Need to pull our outstanding extents and set journal_info to NULL so
7405 		 * that anything that needs to check if there's a transction doesn't get
7406 		 * confused.
7407 		 */
7408 		outstanding_extents = current->journal_info;
7409 		current->journal_info = NULL;
7410 	}
7411 
7412 	/*
7413 	 * If this errors out it's because we couldn't invalidate pagecache for
7414 	 * this range and we need to fallback to buffered.
7415 	 */
7416 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7417 		return -ENOTBLK;
7418 
7419 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7420 	if (IS_ERR(em)) {
7421 		ret = PTR_ERR(em);
7422 		goto unlock_err;
7423 	}
7424 
7425 	/*
7426 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7427 	 * io.  INLINE is special, and we could probably kludge it in here, but
7428 	 * it's still buffered so for safety lets just fall back to the generic
7429 	 * buffered path.
7430 	 *
7431 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7432 	 * decompress it, so there will be buffering required no matter what we
7433 	 * do, so go ahead and fallback to buffered.
7434 	 *
7435 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7436 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7437 	 * the generic code.
7438 	 */
7439 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7440 	    em->block_start == EXTENT_MAP_INLINE) {
7441 		free_extent_map(em);
7442 		ret = -ENOTBLK;
7443 		goto unlock_err;
7444 	}
7445 
7446 	/* Just a good old fashioned hole, return */
7447 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7448 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7449 		free_extent_map(em);
7450 		goto unlock_err;
7451 	}
7452 
7453 	/*
7454 	 * We don't allocate a new extent in the following cases
7455 	 *
7456 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7457 	 * existing extent.
7458 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7459 	 * just use the extent.
7460 	 *
7461 	 */
7462 	if (!create) {
7463 		len = min(len, em->len - (start - em->start));
7464 		lockstart = start + len;
7465 		goto unlock;
7466 	}
7467 
7468 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7469 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7470 	     em->block_start != EXTENT_MAP_HOLE)) {
7471 		int type;
7472 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7473 
7474 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7475 			type = BTRFS_ORDERED_PREALLOC;
7476 		else
7477 			type = BTRFS_ORDERED_NOCOW;
7478 		len = min(len, em->len - (start - em->start));
7479 		block_start = em->block_start + (start - em->start);
7480 
7481 		if (can_nocow_extent(inode, start, &len, &orig_start,
7482 				     &orig_block_len, &ram_bytes) == 1) {
7483 			if (type == BTRFS_ORDERED_PREALLOC) {
7484 				free_extent_map(em);
7485 				em = create_pinned_em(inode, start, len,
7486 						       orig_start,
7487 						       block_start, len,
7488 						       orig_block_len,
7489 						       ram_bytes, type);
7490 				if (IS_ERR(em)) {
7491 					ret = PTR_ERR(em);
7492 					goto unlock_err;
7493 				}
7494 			}
7495 
7496 			ret = btrfs_add_ordered_extent_dio(inode, start,
7497 					   block_start, len, len, type);
7498 			if (ret) {
7499 				free_extent_map(em);
7500 				goto unlock_err;
7501 			}
7502 			goto unlock;
7503 		}
7504 	}
7505 
7506 	/*
7507 	 * this will cow the extent, reset the len in case we changed
7508 	 * it above
7509 	 */
7510 	len = bh_result->b_size;
7511 	free_extent_map(em);
7512 	em = btrfs_new_extent_direct(inode, start, len);
7513 	if (IS_ERR(em)) {
7514 		ret = PTR_ERR(em);
7515 		goto unlock_err;
7516 	}
7517 	len = min(len, em->len - (start - em->start));
7518 unlock:
7519 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7520 		inode->i_blkbits;
7521 	bh_result->b_size = len;
7522 	bh_result->b_bdev = em->bdev;
7523 	set_buffer_mapped(bh_result);
7524 	if (create) {
7525 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7526 			set_buffer_new(bh_result);
7527 
7528 		/*
7529 		 * Need to update the i_size under the extent lock so buffered
7530 		 * readers will get the updated i_size when we unlock.
7531 		 */
7532 		if (start + len > i_size_read(inode))
7533 			i_size_write(inode, start + len);
7534 
7535 		/*
7536 		 * If we have an outstanding_extents count still set then we're
7537 		 * within our reservation, otherwise we need to adjust our inode
7538 		 * counter appropriately.
7539 		 */
7540 		if (*outstanding_extents) {
7541 			(*outstanding_extents)--;
7542 		} else {
7543 			spin_lock(&BTRFS_I(inode)->lock);
7544 			BTRFS_I(inode)->outstanding_extents++;
7545 			spin_unlock(&BTRFS_I(inode)->lock);
7546 		}
7547 
7548 		current->journal_info = outstanding_extents;
7549 		btrfs_free_reserved_data_space(inode, len);
7550 		set_bit(BTRFS_INODE_DIO_READY, &BTRFS_I(inode)->runtime_flags);
7551 	}
7552 
7553 	/*
7554 	 * In the case of write we need to clear and unlock the entire range,
7555 	 * in the case of read we need to unlock only the end area that we
7556 	 * aren't using if there is any left over space.
7557 	 */
7558 	if (lockstart < lockend) {
7559 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7560 				 lockend, unlock_bits, 1, 0,
7561 				 &cached_state, GFP_NOFS);
7562 	} else {
7563 		free_extent_state(cached_state);
7564 	}
7565 
7566 	free_extent_map(em);
7567 
7568 	return 0;
7569 
7570 unlock_err:
7571 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7572 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7573 	if (outstanding_extents)
7574 		current->journal_info = outstanding_extents;
7575 	return ret;
7576 }
7577 
7578 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7579 					int rw, int mirror_num)
7580 {
7581 	struct btrfs_root *root = BTRFS_I(inode)->root;
7582 	int ret;
7583 
7584 	BUG_ON(rw & REQ_WRITE);
7585 
7586 	bio_get(bio);
7587 
7588 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7589 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7590 	if (ret)
7591 		goto err;
7592 
7593 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7594 err:
7595 	bio_put(bio);
7596 	return ret;
7597 }
7598 
7599 static int btrfs_check_dio_repairable(struct inode *inode,
7600 				      struct bio *failed_bio,
7601 				      struct io_failure_record *failrec,
7602 				      int failed_mirror)
7603 {
7604 	int num_copies;
7605 
7606 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7607 				      failrec->logical, failrec->len);
7608 	if (num_copies == 1) {
7609 		/*
7610 		 * we only have a single copy of the data, so don't bother with
7611 		 * all the retry and error correction code that follows. no
7612 		 * matter what the error is, it is very likely to persist.
7613 		 */
7614 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7615 			 num_copies, failrec->this_mirror, failed_mirror);
7616 		return 0;
7617 	}
7618 
7619 	failrec->failed_mirror = failed_mirror;
7620 	failrec->this_mirror++;
7621 	if (failrec->this_mirror == failed_mirror)
7622 		failrec->this_mirror++;
7623 
7624 	if (failrec->this_mirror > num_copies) {
7625 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7626 			 num_copies, failrec->this_mirror, failed_mirror);
7627 		return 0;
7628 	}
7629 
7630 	return 1;
7631 }
7632 
7633 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7634 			  struct page *page, u64 start, u64 end,
7635 			  int failed_mirror, bio_end_io_t *repair_endio,
7636 			  void *repair_arg)
7637 {
7638 	struct io_failure_record *failrec;
7639 	struct bio *bio;
7640 	int isector;
7641 	int read_mode;
7642 	int ret;
7643 
7644 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7645 
7646 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7647 	if (ret)
7648 		return ret;
7649 
7650 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7651 					 failed_mirror);
7652 	if (!ret) {
7653 		free_io_failure(inode, failrec);
7654 		return -EIO;
7655 	}
7656 
7657 	if (failed_bio->bi_vcnt > 1)
7658 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7659 	else
7660 		read_mode = READ_SYNC;
7661 
7662 	isector = start - btrfs_io_bio(failed_bio)->logical;
7663 	isector >>= inode->i_sb->s_blocksize_bits;
7664 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7665 				      0, isector, repair_endio, repair_arg);
7666 	if (!bio) {
7667 		free_io_failure(inode, failrec);
7668 		return -EIO;
7669 	}
7670 
7671 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7672 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7673 		    read_mode, failrec->this_mirror, failrec->in_validation);
7674 
7675 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7676 				    failrec->this_mirror);
7677 	if (ret) {
7678 		free_io_failure(inode, failrec);
7679 		bio_put(bio);
7680 	}
7681 
7682 	return ret;
7683 }
7684 
7685 struct btrfs_retry_complete {
7686 	struct completion done;
7687 	struct inode *inode;
7688 	u64 start;
7689 	int uptodate;
7690 };
7691 
7692 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7693 {
7694 	struct btrfs_retry_complete *done = bio->bi_private;
7695 	struct bio_vec *bvec;
7696 	int i;
7697 
7698 	if (err)
7699 		goto end;
7700 
7701 	done->uptodate = 1;
7702 	bio_for_each_segment_all(bvec, bio, i)
7703 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7704 end:
7705 	complete(&done->done);
7706 	bio_put(bio);
7707 }
7708 
7709 static int __btrfs_correct_data_nocsum(struct inode *inode,
7710 				       struct btrfs_io_bio *io_bio)
7711 {
7712 	struct bio_vec *bvec;
7713 	struct btrfs_retry_complete done;
7714 	u64 start;
7715 	int i;
7716 	int ret;
7717 
7718 	start = io_bio->logical;
7719 	done.inode = inode;
7720 
7721 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7722 try_again:
7723 		done.uptodate = 0;
7724 		done.start = start;
7725 		init_completion(&done.done);
7726 
7727 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7728 				     start + bvec->bv_len - 1,
7729 				     io_bio->mirror_num,
7730 				     btrfs_retry_endio_nocsum, &done);
7731 		if (ret)
7732 			return ret;
7733 
7734 		wait_for_completion(&done.done);
7735 
7736 		if (!done.uptodate) {
7737 			/* We might have another mirror, so try again */
7738 			goto try_again;
7739 		}
7740 
7741 		start += bvec->bv_len;
7742 	}
7743 
7744 	return 0;
7745 }
7746 
7747 static void btrfs_retry_endio(struct bio *bio, int err)
7748 {
7749 	struct btrfs_retry_complete *done = bio->bi_private;
7750 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7751 	struct bio_vec *bvec;
7752 	int uptodate;
7753 	int ret;
7754 	int i;
7755 
7756 	if (err)
7757 		goto end;
7758 
7759 	uptodate = 1;
7760 	bio_for_each_segment_all(bvec, bio, i) {
7761 		ret = __readpage_endio_check(done->inode, io_bio, i,
7762 					     bvec->bv_page, 0,
7763 					     done->start, bvec->bv_len);
7764 		if (!ret)
7765 			clean_io_failure(done->inode, done->start,
7766 					 bvec->bv_page, 0);
7767 		else
7768 			uptodate = 0;
7769 	}
7770 
7771 	done->uptodate = uptodate;
7772 end:
7773 	complete(&done->done);
7774 	bio_put(bio);
7775 }
7776 
7777 static int __btrfs_subio_endio_read(struct inode *inode,
7778 				    struct btrfs_io_bio *io_bio, int err)
7779 {
7780 	struct bio_vec *bvec;
7781 	struct btrfs_retry_complete done;
7782 	u64 start;
7783 	u64 offset = 0;
7784 	int i;
7785 	int ret;
7786 
7787 	err = 0;
7788 	start = io_bio->logical;
7789 	done.inode = inode;
7790 
7791 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7792 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7793 					     0, start, bvec->bv_len);
7794 		if (likely(!ret))
7795 			goto next;
7796 try_again:
7797 		done.uptodate = 0;
7798 		done.start = start;
7799 		init_completion(&done.done);
7800 
7801 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7802 				     start + bvec->bv_len - 1,
7803 				     io_bio->mirror_num,
7804 				     btrfs_retry_endio, &done);
7805 		if (ret) {
7806 			err = ret;
7807 			goto next;
7808 		}
7809 
7810 		wait_for_completion(&done.done);
7811 
7812 		if (!done.uptodate) {
7813 			/* We might have another mirror, so try again */
7814 			goto try_again;
7815 		}
7816 next:
7817 		offset += bvec->bv_len;
7818 		start += bvec->bv_len;
7819 	}
7820 
7821 	return err;
7822 }
7823 
7824 static int btrfs_subio_endio_read(struct inode *inode,
7825 				  struct btrfs_io_bio *io_bio, int err)
7826 {
7827 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7828 
7829 	if (skip_csum) {
7830 		if (unlikely(err))
7831 			return __btrfs_correct_data_nocsum(inode, io_bio);
7832 		else
7833 			return 0;
7834 	} else {
7835 		return __btrfs_subio_endio_read(inode, io_bio, err);
7836 	}
7837 }
7838 
7839 static void btrfs_endio_direct_read(struct bio *bio, int err)
7840 {
7841 	struct btrfs_dio_private *dip = bio->bi_private;
7842 	struct inode *inode = dip->inode;
7843 	struct bio *dio_bio;
7844 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7845 
7846 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7847 		err = btrfs_subio_endio_read(inode, io_bio, err);
7848 
7849 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7850 		      dip->logical_offset + dip->bytes - 1);
7851 	dio_bio = dip->dio_bio;
7852 
7853 	kfree(dip);
7854 
7855 	/* If we had a csum failure make sure to clear the uptodate flag */
7856 	if (err)
7857 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7858 	dio_end_io(dio_bio, err);
7859 
7860 	if (io_bio->end_io)
7861 		io_bio->end_io(io_bio, err);
7862 	bio_put(bio);
7863 }
7864 
7865 static void btrfs_endio_direct_write(struct bio *bio, int err)
7866 {
7867 	struct btrfs_dio_private *dip = bio->bi_private;
7868 	struct inode *inode = dip->inode;
7869 	struct btrfs_root *root = BTRFS_I(inode)->root;
7870 	struct btrfs_ordered_extent *ordered = NULL;
7871 	u64 ordered_offset = dip->logical_offset;
7872 	u64 ordered_bytes = dip->bytes;
7873 	struct bio *dio_bio;
7874 	int ret;
7875 
7876 again:
7877 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7878 						   &ordered_offset,
7879 						   ordered_bytes, !err);
7880 	if (!ret)
7881 		goto out_test;
7882 
7883 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7884 			finish_ordered_fn, NULL, NULL);
7885 	btrfs_queue_work(root->fs_info->endio_write_workers,
7886 			 &ordered->work);
7887 out_test:
7888 	/*
7889 	 * our bio might span multiple ordered extents.  If we haven't
7890 	 * completed the accounting for the whole dio, go back and try again
7891 	 */
7892 	if (ordered_offset < dip->logical_offset + dip->bytes) {
7893 		ordered_bytes = dip->logical_offset + dip->bytes -
7894 			ordered_offset;
7895 		ordered = NULL;
7896 		goto again;
7897 	}
7898 	dio_bio = dip->dio_bio;
7899 
7900 	kfree(dip);
7901 
7902 	/* If we had an error make sure to clear the uptodate flag */
7903 	if (err)
7904 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7905 	dio_end_io(dio_bio, err);
7906 	bio_put(bio);
7907 }
7908 
7909 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7910 				    struct bio *bio, int mirror_num,
7911 				    unsigned long bio_flags, u64 offset)
7912 {
7913 	int ret;
7914 	struct btrfs_root *root = BTRFS_I(inode)->root;
7915 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7916 	BUG_ON(ret); /* -ENOMEM */
7917 	return 0;
7918 }
7919 
7920 static void btrfs_end_dio_bio(struct bio *bio, int err)
7921 {
7922 	struct btrfs_dio_private *dip = bio->bi_private;
7923 
7924 	if (err)
7925 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7926 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7927 			   btrfs_ino(dip->inode), bio->bi_rw,
7928 			   (unsigned long long)bio->bi_iter.bi_sector,
7929 			   bio->bi_iter.bi_size, err);
7930 
7931 	if (dip->subio_endio)
7932 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7933 
7934 	if (err) {
7935 		dip->errors = 1;
7936 
7937 		/*
7938 		 * before atomic variable goto zero, we must make sure
7939 		 * dip->errors is perceived to be set.
7940 		 */
7941 		smp_mb__before_atomic();
7942 	}
7943 
7944 	/* if there are more bios still pending for this dio, just exit */
7945 	if (!atomic_dec_and_test(&dip->pending_bios))
7946 		goto out;
7947 
7948 	if (dip->errors) {
7949 		bio_io_error(dip->orig_bio);
7950 	} else {
7951 		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7952 		bio_endio(dip->orig_bio, 0);
7953 	}
7954 out:
7955 	bio_put(bio);
7956 }
7957 
7958 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7959 				       u64 first_sector, gfp_t gfp_flags)
7960 {
7961 	int nr_vecs = bio_get_nr_vecs(bdev);
7962 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7963 }
7964 
7965 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7966 						 struct inode *inode,
7967 						 struct btrfs_dio_private *dip,
7968 						 struct bio *bio,
7969 						 u64 file_offset)
7970 {
7971 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7972 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7973 	int ret;
7974 
7975 	/*
7976 	 * We load all the csum data we need when we submit
7977 	 * the first bio to reduce the csum tree search and
7978 	 * contention.
7979 	 */
7980 	if (dip->logical_offset == file_offset) {
7981 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7982 						file_offset);
7983 		if (ret)
7984 			return ret;
7985 	}
7986 
7987 	if (bio == dip->orig_bio)
7988 		return 0;
7989 
7990 	file_offset -= dip->logical_offset;
7991 	file_offset >>= inode->i_sb->s_blocksize_bits;
7992 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7993 
7994 	return 0;
7995 }
7996 
7997 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7998 					 int rw, u64 file_offset, int skip_sum,
7999 					 int async_submit)
8000 {
8001 	struct btrfs_dio_private *dip = bio->bi_private;
8002 	int write = rw & REQ_WRITE;
8003 	struct btrfs_root *root = BTRFS_I(inode)->root;
8004 	int ret;
8005 
8006 	if (async_submit)
8007 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8008 
8009 	bio_get(bio);
8010 
8011 	if (!write) {
8012 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8013 				BTRFS_WQ_ENDIO_DATA);
8014 		if (ret)
8015 			goto err;
8016 	}
8017 
8018 	if (skip_sum)
8019 		goto map;
8020 
8021 	if (write && async_submit) {
8022 		ret = btrfs_wq_submit_bio(root->fs_info,
8023 				   inode, rw, bio, 0, 0,
8024 				   file_offset,
8025 				   __btrfs_submit_bio_start_direct_io,
8026 				   __btrfs_submit_bio_done);
8027 		goto err;
8028 	} else if (write) {
8029 		/*
8030 		 * If we aren't doing async submit, calculate the csum of the
8031 		 * bio now.
8032 		 */
8033 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8034 		if (ret)
8035 			goto err;
8036 	} else {
8037 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8038 						     file_offset);
8039 		if (ret)
8040 			goto err;
8041 	}
8042 map:
8043 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8044 err:
8045 	bio_put(bio);
8046 	return ret;
8047 }
8048 
8049 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8050 				    int skip_sum)
8051 {
8052 	struct inode *inode = dip->inode;
8053 	struct btrfs_root *root = BTRFS_I(inode)->root;
8054 	struct bio *bio;
8055 	struct bio *orig_bio = dip->orig_bio;
8056 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8057 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8058 	u64 file_offset = dip->logical_offset;
8059 	u64 submit_len = 0;
8060 	u64 map_length;
8061 	int nr_pages = 0;
8062 	int ret;
8063 	int async_submit = 0;
8064 
8065 	map_length = orig_bio->bi_iter.bi_size;
8066 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8067 			      &map_length, NULL, 0);
8068 	if (ret)
8069 		return -EIO;
8070 
8071 	if (map_length >= orig_bio->bi_iter.bi_size) {
8072 		bio = orig_bio;
8073 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8074 		goto submit;
8075 	}
8076 
8077 	/* async crcs make it difficult to collect full stripe writes. */
8078 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8079 		async_submit = 0;
8080 	else
8081 		async_submit = 1;
8082 
8083 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8084 	if (!bio)
8085 		return -ENOMEM;
8086 
8087 	bio->bi_private = dip;
8088 	bio->bi_end_io = btrfs_end_dio_bio;
8089 	btrfs_io_bio(bio)->logical = file_offset;
8090 	atomic_inc(&dip->pending_bios);
8091 
8092 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8093 		if (map_length < submit_len + bvec->bv_len ||
8094 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8095 				 bvec->bv_offset) < bvec->bv_len) {
8096 			/*
8097 			 * inc the count before we submit the bio so
8098 			 * we know the end IO handler won't happen before
8099 			 * we inc the count. Otherwise, the dip might get freed
8100 			 * before we're done setting it up
8101 			 */
8102 			atomic_inc(&dip->pending_bios);
8103 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8104 						     file_offset, skip_sum,
8105 						     async_submit);
8106 			if (ret) {
8107 				bio_put(bio);
8108 				atomic_dec(&dip->pending_bios);
8109 				goto out_err;
8110 			}
8111 
8112 			start_sector += submit_len >> 9;
8113 			file_offset += submit_len;
8114 
8115 			submit_len = 0;
8116 			nr_pages = 0;
8117 
8118 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8119 						  start_sector, GFP_NOFS);
8120 			if (!bio)
8121 				goto out_err;
8122 			bio->bi_private = dip;
8123 			bio->bi_end_io = btrfs_end_dio_bio;
8124 			btrfs_io_bio(bio)->logical = file_offset;
8125 
8126 			map_length = orig_bio->bi_iter.bi_size;
8127 			ret = btrfs_map_block(root->fs_info, rw,
8128 					      start_sector << 9,
8129 					      &map_length, NULL, 0);
8130 			if (ret) {
8131 				bio_put(bio);
8132 				goto out_err;
8133 			}
8134 		} else {
8135 			submit_len += bvec->bv_len;
8136 			nr_pages++;
8137 			bvec++;
8138 		}
8139 	}
8140 
8141 submit:
8142 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8143 				     async_submit);
8144 	if (!ret)
8145 		return 0;
8146 
8147 	bio_put(bio);
8148 out_err:
8149 	dip->errors = 1;
8150 	/*
8151 	 * before atomic variable goto zero, we must
8152 	 * make sure dip->errors is perceived to be set.
8153 	 */
8154 	smp_mb__before_atomic();
8155 	if (atomic_dec_and_test(&dip->pending_bios))
8156 		bio_io_error(dip->orig_bio);
8157 
8158 	/* bio_end_io() will handle error, so we needn't return it */
8159 	return 0;
8160 }
8161 
8162 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8163 				struct inode *inode, loff_t file_offset)
8164 {
8165 	struct btrfs_dio_private *dip = NULL;
8166 	struct bio *io_bio = NULL;
8167 	struct btrfs_io_bio *btrfs_bio;
8168 	int skip_sum;
8169 	int write = rw & REQ_WRITE;
8170 	int ret = 0;
8171 
8172 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8173 
8174 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8175 	if (!io_bio) {
8176 		ret = -ENOMEM;
8177 		goto free_ordered;
8178 	}
8179 
8180 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8181 	if (!dip) {
8182 		ret = -ENOMEM;
8183 		goto free_ordered;
8184 	}
8185 
8186 	dip->private = dio_bio->bi_private;
8187 	dip->inode = inode;
8188 	dip->logical_offset = file_offset;
8189 	dip->bytes = dio_bio->bi_iter.bi_size;
8190 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8191 	io_bio->bi_private = dip;
8192 	dip->orig_bio = io_bio;
8193 	dip->dio_bio = dio_bio;
8194 	atomic_set(&dip->pending_bios, 0);
8195 	btrfs_bio = btrfs_io_bio(io_bio);
8196 	btrfs_bio->logical = file_offset;
8197 
8198 	if (write) {
8199 		io_bio->bi_end_io = btrfs_endio_direct_write;
8200 	} else {
8201 		io_bio->bi_end_io = btrfs_endio_direct_read;
8202 		dip->subio_endio = btrfs_subio_endio_read;
8203 	}
8204 
8205 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8206 	if (!ret)
8207 		return;
8208 
8209 	if (btrfs_bio->end_io)
8210 		btrfs_bio->end_io(btrfs_bio, ret);
8211 
8212 free_ordered:
8213 	/*
8214 	 * If we arrived here it means either we failed to submit the dip
8215 	 * or we either failed to clone the dio_bio or failed to allocate the
8216 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8217 	 * call bio_endio against our io_bio so that we get proper resource
8218 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8219 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8220 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8221 	 */
8222 	if (io_bio && dip) {
8223 		bio_endio(io_bio, ret);
8224 		/*
8225 		 * The end io callbacks free our dip, do the final put on io_bio
8226 		 * and all the cleanup and final put for dio_bio (through
8227 		 * dio_end_io()).
8228 		 */
8229 		dip = NULL;
8230 		io_bio = NULL;
8231 	} else {
8232 		if (write) {
8233 			struct btrfs_ordered_extent *ordered;
8234 
8235 			ordered = btrfs_lookup_ordered_extent(inode,
8236 							      file_offset);
8237 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8238 			/*
8239 			 * Decrements our ref on the ordered extent and removes
8240 			 * the ordered extent from the inode's ordered tree,
8241 			 * doing all the proper resource cleanup such as for the
8242 			 * reserved space and waking up any waiters for this
8243 			 * ordered extent (through btrfs_remove_ordered_extent).
8244 			 */
8245 			btrfs_finish_ordered_io(ordered);
8246 		} else {
8247 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8248 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8249 		}
8250 		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
8251 		/*
8252 		 * Releases and cleans up our dio_bio, no need to bio_put()
8253 		 * nor bio_endio()/bio_io_error() against dio_bio.
8254 		 */
8255 		dio_end_io(dio_bio, ret);
8256 	}
8257 	if (io_bio)
8258 		bio_put(io_bio);
8259 	kfree(dip);
8260 }
8261 
8262 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8263 			const struct iov_iter *iter, loff_t offset)
8264 {
8265 	int seg;
8266 	int i;
8267 	unsigned blocksize_mask = root->sectorsize - 1;
8268 	ssize_t retval = -EINVAL;
8269 
8270 	if (offset & blocksize_mask)
8271 		goto out;
8272 
8273 	if (iov_iter_alignment(iter) & blocksize_mask)
8274 		goto out;
8275 
8276 	/* If this is a write we don't need to check anymore */
8277 	if (iov_iter_rw(iter) == WRITE)
8278 		return 0;
8279 	/*
8280 	 * Check to make sure we don't have duplicate iov_base's in this
8281 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8282 	 * when reading back.
8283 	 */
8284 	for (seg = 0; seg < iter->nr_segs; seg++) {
8285 		for (i = seg + 1; i < iter->nr_segs; i++) {
8286 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8287 				goto out;
8288 		}
8289 	}
8290 	retval = 0;
8291 out:
8292 	return retval;
8293 }
8294 
8295 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8296 			       loff_t offset)
8297 {
8298 	struct file *file = iocb->ki_filp;
8299 	struct inode *inode = file->f_mapping->host;
8300 	u64 outstanding_extents = 0;
8301 	size_t count = 0;
8302 	int flags = 0;
8303 	bool wakeup = true;
8304 	bool relock = false;
8305 	ssize_t ret;
8306 
8307 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8308 		return 0;
8309 
8310 	inode_dio_begin(inode);
8311 	smp_mb__after_atomic();
8312 
8313 	/*
8314 	 * The generic stuff only does filemap_write_and_wait_range, which
8315 	 * isn't enough if we've written compressed pages to this area, so
8316 	 * we need to flush the dirty pages again to make absolutely sure
8317 	 * that any outstanding dirty pages are on disk.
8318 	 */
8319 	count = iov_iter_count(iter);
8320 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8321 		     &BTRFS_I(inode)->runtime_flags))
8322 		filemap_fdatawrite_range(inode->i_mapping, offset,
8323 					 offset + count - 1);
8324 
8325 	if (iov_iter_rw(iter) == WRITE) {
8326 		/*
8327 		 * If the write DIO is beyond the EOF, we need update
8328 		 * the isize, but it is protected by i_mutex. So we can
8329 		 * not unlock the i_mutex at this case.
8330 		 */
8331 		if (offset + count <= inode->i_size) {
8332 			mutex_unlock(&inode->i_mutex);
8333 			relock = true;
8334 		}
8335 		ret = btrfs_delalloc_reserve_space(inode, count);
8336 		if (ret)
8337 			goto out;
8338 		outstanding_extents = div64_u64(count +
8339 						BTRFS_MAX_EXTENT_SIZE - 1,
8340 						BTRFS_MAX_EXTENT_SIZE);
8341 
8342 		/*
8343 		 * We need to know how many extents we reserved so that we can
8344 		 * do the accounting properly if we go over the number we
8345 		 * originally calculated.  Abuse current->journal_info for this.
8346 		 */
8347 		current->journal_info = &outstanding_extents;
8348 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8349 				     &BTRFS_I(inode)->runtime_flags)) {
8350 		inode_dio_end(inode);
8351 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8352 		wakeup = false;
8353 	}
8354 
8355 	ret = __blockdev_direct_IO(iocb, inode,
8356 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8357 				   iter, offset, btrfs_get_blocks_direct, NULL,
8358 				   btrfs_submit_direct, flags);
8359 	if (iov_iter_rw(iter) == WRITE) {
8360 		current->journal_info = NULL;
8361 		if (ret < 0 && ret != -EIOCBQUEUED) {
8362 			/*
8363 			 * If the error comes from submitting stage,
8364 			 * btrfs_get_blocsk_direct() has free'd data space,
8365 			 * and metadata space will be handled by
8366 			 * finish_ordered_fn, don't do that again to make
8367 			 * sure bytes_may_use is correct.
8368 			 */
8369 			if (!test_and_clear_bit(BTRFS_INODE_DIO_READY,
8370 				     &BTRFS_I(inode)->runtime_flags))
8371 				btrfs_delalloc_release_space(inode, count);
8372 		} else if (ret >= 0 && (size_t)ret < count)
8373 			btrfs_delalloc_release_space(inode,
8374 						     count - (size_t)ret);
8375 	}
8376 out:
8377 	if (wakeup)
8378 		inode_dio_end(inode);
8379 	if (relock)
8380 		mutex_lock(&inode->i_mutex);
8381 
8382 	return ret;
8383 }
8384 
8385 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8386 
8387 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8388 		__u64 start, __u64 len)
8389 {
8390 	int	ret;
8391 
8392 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8393 	if (ret)
8394 		return ret;
8395 
8396 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8397 }
8398 
8399 int btrfs_readpage(struct file *file, struct page *page)
8400 {
8401 	struct extent_io_tree *tree;
8402 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8403 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8404 }
8405 
8406 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8407 {
8408 	struct extent_io_tree *tree;
8409 
8410 
8411 	if (current->flags & PF_MEMALLOC) {
8412 		redirty_page_for_writepage(wbc, page);
8413 		unlock_page(page);
8414 		return 0;
8415 	}
8416 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8417 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8418 }
8419 
8420 static int btrfs_writepages(struct address_space *mapping,
8421 			    struct writeback_control *wbc)
8422 {
8423 	struct extent_io_tree *tree;
8424 
8425 	tree = &BTRFS_I(mapping->host)->io_tree;
8426 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8427 }
8428 
8429 static int
8430 btrfs_readpages(struct file *file, struct address_space *mapping,
8431 		struct list_head *pages, unsigned nr_pages)
8432 {
8433 	struct extent_io_tree *tree;
8434 	tree = &BTRFS_I(mapping->host)->io_tree;
8435 	return extent_readpages(tree, mapping, pages, nr_pages,
8436 				btrfs_get_extent);
8437 }
8438 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8439 {
8440 	struct extent_io_tree *tree;
8441 	struct extent_map_tree *map;
8442 	int ret;
8443 
8444 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8445 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8446 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8447 	if (ret == 1) {
8448 		ClearPagePrivate(page);
8449 		set_page_private(page, 0);
8450 		page_cache_release(page);
8451 	}
8452 	return ret;
8453 }
8454 
8455 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8456 {
8457 	if (PageWriteback(page) || PageDirty(page))
8458 		return 0;
8459 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8460 }
8461 
8462 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8463 				 unsigned int length)
8464 {
8465 	struct inode *inode = page->mapping->host;
8466 	struct extent_io_tree *tree;
8467 	struct btrfs_ordered_extent *ordered;
8468 	struct extent_state *cached_state = NULL;
8469 	u64 page_start = page_offset(page);
8470 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8471 	int inode_evicting = inode->i_state & I_FREEING;
8472 
8473 	/*
8474 	 * we have the page locked, so new writeback can't start,
8475 	 * and the dirty bit won't be cleared while we are here.
8476 	 *
8477 	 * Wait for IO on this page so that we can safely clear
8478 	 * the PagePrivate2 bit and do ordered accounting
8479 	 */
8480 	wait_on_page_writeback(page);
8481 
8482 	tree = &BTRFS_I(inode)->io_tree;
8483 	if (offset) {
8484 		btrfs_releasepage(page, GFP_NOFS);
8485 		return;
8486 	}
8487 
8488 	if (!inode_evicting)
8489 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8490 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8491 	if (ordered) {
8492 		/*
8493 		 * IO on this page will never be started, so we need
8494 		 * to account for any ordered extents now
8495 		 */
8496 		if (!inode_evicting)
8497 			clear_extent_bit(tree, page_start, page_end,
8498 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8499 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8500 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8501 					 GFP_NOFS);
8502 		/*
8503 		 * whoever cleared the private bit is responsible
8504 		 * for the finish_ordered_io
8505 		 */
8506 		if (TestClearPagePrivate2(page)) {
8507 			struct btrfs_ordered_inode_tree *tree;
8508 			u64 new_len;
8509 
8510 			tree = &BTRFS_I(inode)->ordered_tree;
8511 
8512 			spin_lock_irq(&tree->lock);
8513 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8514 			new_len = page_start - ordered->file_offset;
8515 			if (new_len < ordered->truncated_len)
8516 				ordered->truncated_len = new_len;
8517 			spin_unlock_irq(&tree->lock);
8518 
8519 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8520 							   page_start,
8521 							   PAGE_CACHE_SIZE, 1))
8522 				btrfs_finish_ordered_io(ordered);
8523 		}
8524 		btrfs_put_ordered_extent(ordered);
8525 		if (!inode_evicting) {
8526 			cached_state = NULL;
8527 			lock_extent_bits(tree, page_start, page_end, 0,
8528 					 &cached_state);
8529 		}
8530 	}
8531 
8532 	if (!inode_evicting) {
8533 		clear_extent_bit(tree, page_start, page_end,
8534 				 EXTENT_LOCKED | EXTENT_DIRTY |
8535 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8536 				 EXTENT_DEFRAG, 1, 1,
8537 				 &cached_state, GFP_NOFS);
8538 
8539 		__btrfs_releasepage(page, GFP_NOFS);
8540 	}
8541 
8542 	ClearPageChecked(page);
8543 	if (PagePrivate(page)) {
8544 		ClearPagePrivate(page);
8545 		set_page_private(page, 0);
8546 		page_cache_release(page);
8547 	}
8548 }
8549 
8550 /*
8551  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8552  * called from a page fault handler when a page is first dirtied. Hence we must
8553  * be careful to check for EOF conditions here. We set the page up correctly
8554  * for a written page which means we get ENOSPC checking when writing into
8555  * holes and correct delalloc and unwritten extent mapping on filesystems that
8556  * support these features.
8557  *
8558  * We are not allowed to take the i_mutex here so we have to play games to
8559  * protect against truncate races as the page could now be beyond EOF.  Because
8560  * vmtruncate() writes the inode size before removing pages, once we have the
8561  * page lock we can determine safely if the page is beyond EOF. If it is not
8562  * beyond EOF, then the page is guaranteed safe against truncation until we
8563  * unlock the page.
8564  */
8565 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8566 {
8567 	struct page *page = vmf->page;
8568 	struct inode *inode = file_inode(vma->vm_file);
8569 	struct btrfs_root *root = BTRFS_I(inode)->root;
8570 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8571 	struct btrfs_ordered_extent *ordered;
8572 	struct extent_state *cached_state = NULL;
8573 	char *kaddr;
8574 	unsigned long zero_start;
8575 	loff_t size;
8576 	int ret;
8577 	int reserved = 0;
8578 	u64 page_start;
8579 	u64 page_end;
8580 
8581 	sb_start_pagefault(inode->i_sb);
8582 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8583 	if (!ret) {
8584 		ret = file_update_time(vma->vm_file);
8585 		reserved = 1;
8586 	}
8587 	if (ret) {
8588 		if (ret == -ENOMEM)
8589 			ret = VM_FAULT_OOM;
8590 		else /* -ENOSPC, -EIO, etc */
8591 			ret = VM_FAULT_SIGBUS;
8592 		if (reserved)
8593 			goto out;
8594 		goto out_noreserve;
8595 	}
8596 
8597 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8598 again:
8599 	lock_page(page);
8600 	size = i_size_read(inode);
8601 	page_start = page_offset(page);
8602 	page_end = page_start + PAGE_CACHE_SIZE - 1;
8603 
8604 	if ((page->mapping != inode->i_mapping) ||
8605 	    (page_start >= size)) {
8606 		/* page got truncated out from underneath us */
8607 		goto out_unlock;
8608 	}
8609 	wait_on_page_writeback(page);
8610 
8611 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8612 	set_page_extent_mapped(page);
8613 
8614 	/*
8615 	 * we can't set the delalloc bits if there are pending ordered
8616 	 * extents.  Drop our locks and wait for them to finish
8617 	 */
8618 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8619 	if (ordered) {
8620 		unlock_extent_cached(io_tree, page_start, page_end,
8621 				     &cached_state, GFP_NOFS);
8622 		unlock_page(page);
8623 		btrfs_start_ordered_extent(inode, ordered, 1);
8624 		btrfs_put_ordered_extent(ordered);
8625 		goto again;
8626 	}
8627 
8628 	/*
8629 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8630 	 * if it was already dirty, so for space accounting reasons we need to
8631 	 * clear any delalloc bits for the range we are fixing to save.  There
8632 	 * is probably a better way to do this, but for now keep consistent with
8633 	 * prepare_pages in the normal write path.
8634 	 */
8635 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8636 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8637 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8638 			  0, 0, &cached_state, GFP_NOFS);
8639 
8640 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8641 					&cached_state);
8642 	if (ret) {
8643 		unlock_extent_cached(io_tree, page_start, page_end,
8644 				     &cached_state, GFP_NOFS);
8645 		ret = VM_FAULT_SIGBUS;
8646 		goto out_unlock;
8647 	}
8648 	ret = 0;
8649 
8650 	/* page is wholly or partially inside EOF */
8651 	if (page_start + PAGE_CACHE_SIZE > size)
8652 		zero_start = size & ~PAGE_CACHE_MASK;
8653 	else
8654 		zero_start = PAGE_CACHE_SIZE;
8655 
8656 	if (zero_start != PAGE_CACHE_SIZE) {
8657 		kaddr = kmap(page);
8658 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8659 		flush_dcache_page(page);
8660 		kunmap(page);
8661 	}
8662 	ClearPageChecked(page);
8663 	set_page_dirty(page);
8664 	SetPageUptodate(page);
8665 
8666 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8667 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8668 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8669 
8670 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8671 
8672 out_unlock:
8673 	if (!ret) {
8674 		sb_end_pagefault(inode->i_sb);
8675 		return VM_FAULT_LOCKED;
8676 	}
8677 	unlock_page(page);
8678 out:
8679 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8680 out_noreserve:
8681 	sb_end_pagefault(inode->i_sb);
8682 	return ret;
8683 }
8684 
8685 static int btrfs_truncate(struct inode *inode)
8686 {
8687 	struct btrfs_root *root = BTRFS_I(inode)->root;
8688 	struct btrfs_block_rsv *rsv;
8689 	int ret = 0;
8690 	int err = 0;
8691 	struct btrfs_trans_handle *trans;
8692 	u64 mask = root->sectorsize - 1;
8693 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8694 
8695 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8696 				       (u64)-1);
8697 	if (ret)
8698 		return ret;
8699 
8700 	/*
8701 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8702 	 * 3 things going on here
8703 	 *
8704 	 * 1) We need to reserve space for our orphan item and the space to
8705 	 * delete our orphan item.  Lord knows we don't want to have a dangling
8706 	 * orphan item because we didn't reserve space to remove it.
8707 	 *
8708 	 * 2) We need to reserve space to update our inode.
8709 	 *
8710 	 * 3) We need to have something to cache all the space that is going to
8711 	 * be free'd up by the truncate operation, but also have some slack
8712 	 * space reserved in case it uses space during the truncate (thank you
8713 	 * very much snapshotting).
8714 	 *
8715 	 * And we need these to all be seperate.  The fact is we can use alot of
8716 	 * space doing the truncate, and we have no earthly idea how much space
8717 	 * we will use, so we need the truncate reservation to be seperate so it
8718 	 * doesn't end up using space reserved for updating the inode or
8719 	 * removing the orphan item.  We also need to be able to stop the
8720 	 * transaction and start a new one, which means we need to be able to
8721 	 * update the inode several times, and we have no idea of knowing how
8722 	 * many times that will be, so we can't just reserve 1 item for the
8723 	 * entirety of the opration, so that has to be done seperately as well.
8724 	 * Then there is the orphan item, which does indeed need to be held on
8725 	 * to for the whole operation, and we need nobody to touch this reserved
8726 	 * space except the orphan code.
8727 	 *
8728 	 * So that leaves us with
8729 	 *
8730 	 * 1) root->orphan_block_rsv - for the orphan deletion.
8731 	 * 2) rsv - for the truncate reservation, which we will steal from the
8732 	 * transaction reservation.
8733 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8734 	 * updating the inode.
8735 	 */
8736 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8737 	if (!rsv)
8738 		return -ENOMEM;
8739 	rsv->size = min_size;
8740 	rsv->failfast = 1;
8741 
8742 	/*
8743 	 * 1 for the truncate slack space
8744 	 * 1 for updating the inode.
8745 	 */
8746 	trans = btrfs_start_transaction(root, 2);
8747 	if (IS_ERR(trans)) {
8748 		err = PTR_ERR(trans);
8749 		goto out;
8750 	}
8751 
8752 	/* Migrate the slack space for the truncate to our reserve */
8753 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8754 				      min_size);
8755 	BUG_ON(ret);
8756 
8757 	/*
8758 	 * So if we truncate and then write and fsync we normally would just
8759 	 * write the extents that changed, which is a problem if we need to
8760 	 * first truncate that entire inode.  So set this flag so we write out
8761 	 * all of the extents in the inode to the sync log so we're completely
8762 	 * safe.
8763 	 */
8764 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8765 	trans->block_rsv = rsv;
8766 
8767 	while (1) {
8768 		ret = btrfs_truncate_inode_items(trans, root, inode,
8769 						 inode->i_size,
8770 						 BTRFS_EXTENT_DATA_KEY);
8771 		if (ret != -ENOSPC && ret != -EAGAIN) {
8772 			err = ret;
8773 			break;
8774 		}
8775 
8776 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8777 		ret = btrfs_update_inode(trans, root, inode);
8778 		if (ret) {
8779 			err = ret;
8780 			break;
8781 		}
8782 
8783 		btrfs_end_transaction(trans, root);
8784 		btrfs_btree_balance_dirty(root);
8785 
8786 		trans = btrfs_start_transaction(root, 2);
8787 		if (IS_ERR(trans)) {
8788 			ret = err = PTR_ERR(trans);
8789 			trans = NULL;
8790 			break;
8791 		}
8792 
8793 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8794 					      rsv, min_size);
8795 		BUG_ON(ret);	/* shouldn't happen */
8796 		trans->block_rsv = rsv;
8797 	}
8798 
8799 	if (ret == 0 && inode->i_nlink > 0) {
8800 		trans->block_rsv = root->orphan_block_rsv;
8801 		ret = btrfs_orphan_del(trans, inode);
8802 		if (ret)
8803 			err = ret;
8804 	}
8805 
8806 	if (trans) {
8807 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8808 		ret = btrfs_update_inode(trans, root, inode);
8809 		if (ret && !err)
8810 			err = ret;
8811 
8812 		ret = btrfs_end_transaction(trans, root);
8813 		btrfs_btree_balance_dirty(root);
8814 	}
8815 
8816 out:
8817 	btrfs_free_block_rsv(root, rsv);
8818 
8819 	if (ret && !err)
8820 		err = ret;
8821 
8822 	return err;
8823 }
8824 
8825 /*
8826  * create a new subvolume directory/inode (helper for the ioctl).
8827  */
8828 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8829 			     struct btrfs_root *new_root,
8830 			     struct btrfs_root *parent_root,
8831 			     u64 new_dirid)
8832 {
8833 	struct inode *inode;
8834 	int err;
8835 	u64 index = 0;
8836 
8837 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8838 				new_dirid, new_dirid,
8839 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8840 				&index);
8841 	if (IS_ERR(inode))
8842 		return PTR_ERR(inode);
8843 	inode->i_op = &btrfs_dir_inode_operations;
8844 	inode->i_fop = &btrfs_dir_file_operations;
8845 
8846 	set_nlink(inode, 1);
8847 	btrfs_i_size_write(inode, 0);
8848 	unlock_new_inode(inode);
8849 
8850 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8851 	if (err)
8852 		btrfs_err(new_root->fs_info,
8853 			  "error inheriting subvolume %llu properties: %d",
8854 			  new_root->root_key.objectid, err);
8855 
8856 	err = btrfs_update_inode(trans, new_root, inode);
8857 
8858 	iput(inode);
8859 	return err;
8860 }
8861 
8862 struct inode *btrfs_alloc_inode(struct super_block *sb)
8863 {
8864 	struct btrfs_inode *ei;
8865 	struct inode *inode;
8866 
8867 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8868 	if (!ei)
8869 		return NULL;
8870 
8871 	ei->root = NULL;
8872 	ei->generation = 0;
8873 	ei->last_trans = 0;
8874 	ei->last_sub_trans = 0;
8875 	ei->logged_trans = 0;
8876 	ei->delalloc_bytes = 0;
8877 	ei->defrag_bytes = 0;
8878 	ei->disk_i_size = 0;
8879 	ei->flags = 0;
8880 	ei->csum_bytes = 0;
8881 	ei->index_cnt = (u64)-1;
8882 	ei->dir_index = 0;
8883 	ei->last_unlink_trans = 0;
8884 	ei->last_log_commit = 0;
8885 
8886 	spin_lock_init(&ei->lock);
8887 	ei->outstanding_extents = 0;
8888 	ei->reserved_extents = 0;
8889 
8890 	ei->runtime_flags = 0;
8891 	ei->force_compress = BTRFS_COMPRESS_NONE;
8892 
8893 	ei->delayed_node = NULL;
8894 
8895 	ei->i_otime.tv_sec = 0;
8896 	ei->i_otime.tv_nsec = 0;
8897 
8898 	inode = &ei->vfs_inode;
8899 	extent_map_tree_init(&ei->extent_tree);
8900 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
8901 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8902 	ei->io_tree.track_uptodate = 1;
8903 	ei->io_failure_tree.track_uptodate = 1;
8904 	atomic_set(&ei->sync_writers, 0);
8905 	mutex_init(&ei->log_mutex);
8906 	mutex_init(&ei->delalloc_mutex);
8907 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8908 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8909 	RB_CLEAR_NODE(&ei->rb_node);
8910 
8911 	return inode;
8912 }
8913 
8914 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8915 void btrfs_test_destroy_inode(struct inode *inode)
8916 {
8917 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8918 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8919 }
8920 #endif
8921 
8922 static void btrfs_i_callback(struct rcu_head *head)
8923 {
8924 	struct inode *inode = container_of(head, struct inode, i_rcu);
8925 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8926 }
8927 
8928 void btrfs_destroy_inode(struct inode *inode)
8929 {
8930 	struct btrfs_ordered_extent *ordered;
8931 	struct btrfs_root *root = BTRFS_I(inode)->root;
8932 
8933 	WARN_ON(!hlist_empty(&inode->i_dentry));
8934 	WARN_ON(inode->i_data.nrpages);
8935 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8936 	WARN_ON(BTRFS_I(inode)->reserved_extents);
8937 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8938 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8939 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
8940 
8941 	/*
8942 	 * This can happen where we create an inode, but somebody else also
8943 	 * created the same inode and we need to destroy the one we already
8944 	 * created.
8945 	 */
8946 	if (!root)
8947 		goto free;
8948 
8949 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8950 		     &BTRFS_I(inode)->runtime_flags)) {
8951 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8952 			btrfs_ino(inode));
8953 		atomic_dec(&root->orphan_inodes);
8954 	}
8955 
8956 	while (1) {
8957 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8958 		if (!ordered)
8959 			break;
8960 		else {
8961 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8962 				ordered->file_offset, ordered->len);
8963 			btrfs_remove_ordered_extent(inode, ordered);
8964 			btrfs_put_ordered_extent(ordered);
8965 			btrfs_put_ordered_extent(ordered);
8966 		}
8967 	}
8968 	inode_tree_del(inode);
8969 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8970 free:
8971 	call_rcu(&inode->i_rcu, btrfs_i_callback);
8972 }
8973 
8974 int btrfs_drop_inode(struct inode *inode)
8975 {
8976 	struct btrfs_root *root = BTRFS_I(inode)->root;
8977 
8978 	if (root == NULL)
8979 		return 1;
8980 
8981 	/* the snap/subvol tree is on deleting */
8982 	if (btrfs_root_refs(&root->root_item) == 0)
8983 		return 1;
8984 	else
8985 		return generic_drop_inode(inode);
8986 }
8987 
8988 static void init_once(void *foo)
8989 {
8990 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8991 
8992 	inode_init_once(&ei->vfs_inode);
8993 }
8994 
8995 void btrfs_destroy_cachep(void)
8996 {
8997 	/*
8998 	 * Make sure all delayed rcu free inodes are flushed before we
8999 	 * destroy cache.
9000 	 */
9001 	rcu_barrier();
9002 	if (btrfs_inode_cachep)
9003 		kmem_cache_destroy(btrfs_inode_cachep);
9004 	if (btrfs_trans_handle_cachep)
9005 		kmem_cache_destroy(btrfs_trans_handle_cachep);
9006 	if (btrfs_transaction_cachep)
9007 		kmem_cache_destroy(btrfs_transaction_cachep);
9008 	if (btrfs_path_cachep)
9009 		kmem_cache_destroy(btrfs_path_cachep);
9010 	if (btrfs_free_space_cachep)
9011 		kmem_cache_destroy(btrfs_free_space_cachep);
9012 	if (btrfs_delalloc_work_cachep)
9013 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
9014 }
9015 
9016 int btrfs_init_cachep(void)
9017 {
9018 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9019 			sizeof(struct btrfs_inode), 0,
9020 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9021 	if (!btrfs_inode_cachep)
9022 		goto fail;
9023 
9024 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9025 			sizeof(struct btrfs_trans_handle), 0,
9026 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9027 	if (!btrfs_trans_handle_cachep)
9028 		goto fail;
9029 
9030 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9031 			sizeof(struct btrfs_transaction), 0,
9032 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9033 	if (!btrfs_transaction_cachep)
9034 		goto fail;
9035 
9036 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9037 			sizeof(struct btrfs_path), 0,
9038 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9039 	if (!btrfs_path_cachep)
9040 		goto fail;
9041 
9042 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9043 			sizeof(struct btrfs_free_space), 0,
9044 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9045 	if (!btrfs_free_space_cachep)
9046 		goto fail;
9047 
9048 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9049 			sizeof(struct btrfs_delalloc_work), 0,
9050 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9051 			NULL);
9052 	if (!btrfs_delalloc_work_cachep)
9053 		goto fail;
9054 
9055 	return 0;
9056 fail:
9057 	btrfs_destroy_cachep();
9058 	return -ENOMEM;
9059 }
9060 
9061 static int btrfs_getattr(struct vfsmount *mnt,
9062 			 struct dentry *dentry, struct kstat *stat)
9063 {
9064 	u64 delalloc_bytes;
9065 	struct inode *inode = d_inode(dentry);
9066 	u32 blocksize = inode->i_sb->s_blocksize;
9067 
9068 	generic_fillattr(inode, stat);
9069 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9070 	stat->blksize = PAGE_CACHE_SIZE;
9071 
9072 	spin_lock(&BTRFS_I(inode)->lock);
9073 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9074 	spin_unlock(&BTRFS_I(inode)->lock);
9075 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9076 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9077 	return 0;
9078 }
9079 
9080 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9081 			   struct inode *new_dir, struct dentry *new_dentry)
9082 {
9083 	struct btrfs_trans_handle *trans;
9084 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9085 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9086 	struct inode *new_inode = d_inode(new_dentry);
9087 	struct inode *old_inode = d_inode(old_dentry);
9088 	struct timespec ctime = CURRENT_TIME;
9089 	u64 index = 0;
9090 	u64 root_objectid;
9091 	int ret;
9092 	u64 old_ino = btrfs_ino(old_inode);
9093 
9094 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9095 		return -EPERM;
9096 
9097 	/* we only allow rename subvolume link between subvolumes */
9098 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9099 		return -EXDEV;
9100 
9101 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9102 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9103 		return -ENOTEMPTY;
9104 
9105 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9106 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9107 		return -ENOTEMPTY;
9108 
9109 
9110 	/* check for collisions, even if the  name isn't there */
9111 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9112 			     new_dentry->d_name.name,
9113 			     new_dentry->d_name.len);
9114 
9115 	if (ret) {
9116 		if (ret == -EEXIST) {
9117 			/* we shouldn't get
9118 			 * eexist without a new_inode */
9119 			if (WARN_ON(!new_inode)) {
9120 				return ret;
9121 			}
9122 		} else {
9123 			/* maybe -EOVERFLOW */
9124 			return ret;
9125 		}
9126 	}
9127 	ret = 0;
9128 
9129 	/*
9130 	 * we're using rename to replace one file with another.  Start IO on it
9131 	 * now so  we don't add too much work to the end of the transaction
9132 	 */
9133 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9134 		filemap_flush(old_inode->i_mapping);
9135 
9136 	/* close the racy window with snapshot create/destroy ioctl */
9137 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9138 		down_read(&root->fs_info->subvol_sem);
9139 	/*
9140 	 * We want to reserve the absolute worst case amount of items.  So if
9141 	 * both inodes are subvols and we need to unlink them then that would
9142 	 * require 4 item modifications, but if they are both normal inodes it
9143 	 * would require 5 item modifications, so we'll assume their normal
9144 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9145 	 * should cover the worst case number of items we'll modify.
9146 	 */
9147 	trans = btrfs_start_transaction(root, 11);
9148 	if (IS_ERR(trans)) {
9149                 ret = PTR_ERR(trans);
9150                 goto out_notrans;
9151         }
9152 
9153 	if (dest != root)
9154 		btrfs_record_root_in_trans(trans, dest);
9155 
9156 	ret = btrfs_set_inode_index(new_dir, &index);
9157 	if (ret)
9158 		goto out_fail;
9159 
9160 	BTRFS_I(old_inode)->dir_index = 0ULL;
9161 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9162 		/* force full log commit if subvolume involved. */
9163 		btrfs_set_log_full_commit(root->fs_info, trans);
9164 	} else {
9165 		ret = btrfs_insert_inode_ref(trans, dest,
9166 					     new_dentry->d_name.name,
9167 					     new_dentry->d_name.len,
9168 					     old_ino,
9169 					     btrfs_ino(new_dir), index);
9170 		if (ret)
9171 			goto out_fail;
9172 		/*
9173 		 * this is an ugly little race, but the rename is required
9174 		 * to make sure that if we crash, the inode is either at the
9175 		 * old name or the new one.  pinning the log transaction lets
9176 		 * us make sure we don't allow a log commit to come in after
9177 		 * we unlink the name but before we add the new name back in.
9178 		 */
9179 		btrfs_pin_log_trans(root);
9180 	}
9181 
9182 	inode_inc_iversion(old_dir);
9183 	inode_inc_iversion(new_dir);
9184 	inode_inc_iversion(old_inode);
9185 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9186 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9187 	old_inode->i_ctime = ctime;
9188 
9189 	if (old_dentry->d_parent != new_dentry->d_parent)
9190 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9191 
9192 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9193 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9194 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9195 					old_dentry->d_name.name,
9196 					old_dentry->d_name.len);
9197 	} else {
9198 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9199 					d_inode(old_dentry),
9200 					old_dentry->d_name.name,
9201 					old_dentry->d_name.len);
9202 		if (!ret)
9203 			ret = btrfs_update_inode(trans, root, old_inode);
9204 	}
9205 	if (ret) {
9206 		btrfs_abort_transaction(trans, root, ret);
9207 		goto out_fail;
9208 	}
9209 
9210 	if (new_inode) {
9211 		inode_inc_iversion(new_inode);
9212 		new_inode->i_ctime = CURRENT_TIME;
9213 		if (unlikely(btrfs_ino(new_inode) ==
9214 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9215 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9216 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9217 						root_objectid,
9218 						new_dentry->d_name.name,
9219 						new_dentry->d_name.len);
9220 			BUG_ON(new_inode->i_nlink == 0);
9221 		} else {
9222 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9223 						 d_inode(new_dentry),
9224 						 new_dentry->d_name.name,
9225 						 new_dentry->d_name.len);
9226 		}
9227 		if (!ret && new_inode->i_nlink == 0)
9228 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9229 		if (ret) {
9230 			btrfs_abort_transaction(trans, root, ret);
9231 			goto out_fail;
9232 		}
9233 	}
9234 
9235 	ret = btrfs_add_link(trans, new_dir, old_inode,
9236 			     new_dentry->d_name.name,
9237 			     new_dentry->d_name.len, 0, index);
9238 	if (ret) {
9239 		btrfs_abort_transaction(trans, root, ret);
9240 		goto out_fail;
9241 	}
9242 
9243 	if (old_inode->i_nlink == 1)
9244 		BTRFS_I(old_inode)->dir_index = index;
9245 
9246 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9247 		struct dentry *parent = new_dentry->d_parent;
9248 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9249 		btrfs_end_log_trans(root);
9250 	}
9251 out_fail:
9252 	btrfs_end_transaction(trans, root);
9253 out_notrans:
9254 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9255 		up_read(&root->fs_info->subvol_sem);
9256 
9257 	return ret;
9258 }
9259 
9260 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9261 			 struct inode *new_dir, struct dentry *new_dentry,
9262 			 unsigned int flags)
9263 {
9264 	if (flags & ~RENAME_NOREPLACE)
9265 		return -EINVAL;
9266 
9267 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9268 }
9269 
9270 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9271 {
9272 	struct btrfs_delalloc_work *delalloc_work;
9273 	struct inode *inode;
9274 
9275 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9276 				     work);
9277 	inode = delalloc_work->inode;
9278 	if (delalloc_work->wait) {
9279 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
9280 	} else {
9281 		filemap_flush(inode->i_mapping);
9282 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9283 			     &BTRFS_I(inode)->runtime_flags))
9284 			filemap_flush(inode->i_mapping);
9285 	}
9286 
9287 	if (delalloc_work->delay_iput)
9288 		btrfs_add_delayed_iput(inode);
9289 	else
9290 		iput(inode);
9291 	complete(&delalloc_work->completion);
9292 }
9293 
9294 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9295 						    int wait, int delay_iput)
9296 {
9297 	struct btrfs_delalloc_work *work;
9298 
9299 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9300 	if (!work)
9301 		return NULL;
9302 
9303 	init_completion(&work->completion);
9304 	INIT_LIST_HEAD(&work->list);
9305 	work->inode = inode;
9306 	work->wait = wait;
9307 	work->delay_iput = delay_iput;
9308 	WARN_ON_ONCE(!inode);
9309 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9310 			btrfs_run_delalloc_work, NULL, NULL);
9311 
9312 	return work;
9313 }
9314 
9315 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9316 {
9317 	wait_for_completion(&work->completion);
9318 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
9319 }
9320 
9321 /*
9322  * some fairly slow code that needs optimization. This walks the list
9323  * of all the inodes with pending delalloc and forces them to disk.
9324  */
9325 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9326 				   int nr)
9327 {
9328 	struct btrfs_inode *binode;
9329 	struct inode *inode;
9330 	struct btrfs_delalloc_work *work, *next;
9331 	struct list_head works;
9332 	struct list_head splice;
9333 	int ret = 0;
9334 
9335 	INIT_LIST_HEAD(&works);
9336 	INIT_LIST_HEAD(&splice);
9337 
9338 	mutex_lock(&root->delalloc_mutex);
9339 	spin_lock(&root->delalloc_lock);
9340 	list_splice_init(&root->delalloc_inodes, &splice);
9341 	while (!list_empty(&splice)) {
9342 		binode = list_entry(splice.next, struct btrfs_inode,
9343 				    delalloc_inodes);
9344 
9345 		list_move_tail(&binode->delalloc_inodes,
9346 			       &root->delalloc_inodes);
9347 		inode = igrab(&binode->vfs_inode);
9348 		if (!inode) {
9349 			cond_resched_lock(&root->delalloc_lock);
9350 			continue;
9351 		}
9352 		spin_unlock(&root->delalloc_lock);
9353 
9354 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9355 		if (!work) {
9356 			if (delay_iput)
9357 				btrfs_add_delayed_iput(inode);
9358 			else
9359 				iput(inode);
9360 			ret = -ENOMEM;
9361 			goto out;
9362 		}
9363 		list_add_tail(&work->list, &works);
9364 		btrfs_queue_work(root->fs_info->flush_workers,
9365 				 &work->work);
9366 		ret++;
9367 		if (nr != -1 && ret >= nr)
9368 			goto out;
9369 		cond_resched();
9370 		spin_lock(&root->delalloc_lock);
9371 	}
9372 	spin_unlock(&root->delalloc_lock);
9373 
9374 out:
9375 	list_for_each_entry_safe(work, next, &works, list) {
9376 		list_del_init(&work->list);
9377 		btrfs_wait_and_free_delalloc_work(work);
9378 	}
9379 
9380 	if (!list_empty_careful(&splice)) {
9381 		spin_lock(&root->delalloc_lock);
9382 		list_splice_tail(&splice, &root->delalloc_inodes);
9383 		spin_unlock(&root->delalloc_lock);
9384 	}
9385 	mutex_unlock(&root->delalloc_mutex);
9386 	return ret;
9387 }
9388 
9389 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9390 {
9391 	int ret;
9392 
9393 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9394 		return -EROFS;
9395 
9396 	ret = __start_delalloc_inodes(root, delay_iput, -1);
9397 	if (ret > 0)
9398 		ret = 0;
9399 	/*
9400 	 * the filemap_flush will queue IO into the worker threads, but
9401 	 * we have to make sure the IO is actually started and that
9402 	 * ordered extents get created before we return
9403 	 */
9404 	atomic_inc(&root->fs_info->async_submit_draining);
9405 	while (atomic_read(&root->fs_info->nr_async_submits) ||
9406 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9407 		wait_event(root->fs_info->async_submit_wait,
9408 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9409 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9410 	}
9411 	atomic_dec(&root->fs_info->async_submit_draining);
9412 	return ret;
9413 }
9414 
9415 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9416 			       int nr)
9417 {
9418 	struct btrfs_root *root;
9419 	struct list_head splice;
9420 	int ret;
9421 
9422 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9423 		return -EROFS;
9424 
9425 	INIT_LIST_HEAD(&splice);
9426 
9427 	mutex_lock(&fs_info->delalloc_root_mutex);
9428 	spin_lock(&fs_info->delalloc_root_lock);
9429 	list_splice_init(&fs_info->delalloc_roots, &splice);
9430 	while (!list_empty(&splice) && nr) {
9431 		root = list_first_entry(&splice, struct btrfs_root,
9432 					delalloc_root);
9433 		root = btrfs_grab_fs_root(root);
9434 		BUG_ON(!root);
9435 		list_move_tail(&root->delalloc_root,
9436 			       &fs_info->delalloc_roots);
9437 		spin_unlock(&fs_info->delalloc_root_lock);
9438 
9439 		ret = __start_delalloc_inodes(root, delay_iput, nr);
9440 		btrfs_put_fs_root(root);
9441 		if (ret < 0)
9442 			goto out;
9443 
9444 		if (nr != -1) {
9445 			nr -= ret;
9446 			WARN_ON(nr < 0);
9447 		}
9448 		spin_lock(&fs_info->delalloc_root_lock);
9449 	}
9450 	spin_unlock(&fs_info->delalloc_root_lock);
9451 
9452 	ret = 0;
9453 	atomic_inc(&fs_info->async_submit_draining);
9454 	while (atomic_read(&fs_info->nr_async_submits) ||
9455 	      atomic_read(&fs_info->async_delalloc_pages)) {
9456 		wait_event(fs_info->async_submit_wait,
9457 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9458 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9459 	}
9460 	atomic_dec(&fs_info->async_submit_draining);
9461 out:
9462 	if (!list_empty_careful(&splice)) {
9463 		spin_lock(&fs_info->delalloc_root_lock);
9464 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9465 		spin_unlock(&fs_info->delalloc_root_lock);
9466 	}
9467 	mutex_unlock(&fs_info->delalloc_root_mutex);
9468 	return ret;
9469 }
9470 
9471 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9472 			 const char *symname)
9473 {
9474 	struct btrfs_trans_handle *trans;
9475 	struct btrfs_root *root = BTRFS_I(dir)->root;
9476 	struct btrfs_path *path;
9477 	struct btrfs_key key;
9478 	struct inode *inode = NULL;
9479 	int err;
9480 	int drop_inode = 0;
9481 	u64 objectid;
9482 	u64 index = 0;
9483 	int name_len;
9484 	int datasize;
9485 	unsigned long ptr;
9486 	struct btrfs_file_extent_item *ei;
9487 	struct extent_buffer *leaf;
9488 
9489 	name_len = strlen(symname);
9490 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9491 		return -ENAMETOOLONG;
9492 
9493 	/*
9494 	 * 2 items for inode item and ref
9495 	 * 2 items for dir items
9496 	 * 1 item for xattr if selinux is on
9497 	 */
9498 	trans = btrfs_start_transaction(root, 5);
9499 	if (IS_ERR(trans))
9500 		return PTR_ERR(trans);
9501 
9502 	err = btrfs_find_free_ino(root, &objectid);
9503 	if (err)
9504 		goto out_unlock;
9505 
9506 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9507 				dentry->d_name.len, btrfs_ino(dir), objectid,
9508 				S_IFLNK|S_IRWXUGO, &index);
9509 	if (IS_ERR(inode)) {
9510 		err = PTR_ERR(inode);
9511 		goto out_unlock;
9512 	}
9513 
9514 	/*
9515 	* If the active LSM wants to access the inode during
9516 	* d_instantiate it needs these. Smack checks to see
9517 	* if the filesystem supports xattrs by looking at the
9518 	* ops vector.
9519 	*/
9520 	inode->i_fop = &btrfs_file_operations;
9521 	inode->i_op = &btrfs_file_inode_operations;
9522 	inode->i_mapping->a_ops = &btrfs_aops;
9523 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9524 
9525 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9526 	if (err)
9527 		goto out_unlock_inode;
9528 
9529 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9530 	if (err)
9531 		goto out_unlock_inode;
9532 
9533 	path = btrfs_alloc_path();
9534 	if (!path) {
9535 		err = -ENOMEM;
9536 		goto out_unlock_inode;
9537 	}
9538 	key.objectid = btrfs_ino(inode);
9539 	key.offset = 0;
9540 	key.type = BTRFS_EXTENT_DATA_KEY;
9541 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9542 	err = btrfs_insert_empty_item(trans, root, path, &key,
9543 				      datasize);
9544 	if (err) {
9545 		btrfs_free_path(path);
9546 		goto out_unlock_inode;
9547 	}
9548 	leaf = path->nodes[0];
9549 	ei = btrfs_item_ptr(leaf, path->slots[0],
9550 			    struct btrfs_file_extent_item);
9551 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9552 	btrfs_set_file_extent_type(leaf, ei,
9553 				   BTRFS_FILE_EXTENT_INLINE);
9554 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9555 	btrfs_set_file_extent_compression(leaf, ei, 0);
9556 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9557 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9558 
9559 	ptr = btrfs_file_extent_inline_start(ei);
9560 	write_extent_buffer(leaf, symname, ptr, name_len);
9561 	btrfs_mark_buffer_dirty(leaf);
9562 	btrfs_free_path(path);
9563 
9564 	inode->i_op = &btrfs_symlink_inode_operations;
9565 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9566 	inode_set_bytes(inode, name_len);
9567 	btrfs_i_size_write(inode, name_len);
9568 	err = btrfs_update_inode(trans, root, inode);
9569 	if (err) {
9570 		drop_inode = 1;
9571 		goto out_unlock_inode;
9572 	}
9573 
9574 	unlock_new_inode(inode);
9575 	d_instantiate(dentry, inode);
9576 
9577 out_unlock:
9578 	btrfs_end_transaction(trans, root);
9579 	if (drop_inode) {
9580 		inode_dec_link_count(inode);
9581 		iput(inode);
9582 	}
9583 	btrfs_btree_balance_dirty(root);
9584 	return err;
9585 
9586 out_unlock_inode:
9587 	drop_inode = 1;
9588 	unlock_new_inode(inode);
9589 	goto out_unlock;
9590 }
9591 
9592 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9593 				       u64 start, u64 num_bytes, u64 min_size,
9594 				       loff_t actual_len, u64 *alloc_hint,
9595 				       struct btrfs_trans_handle *trans)
9596 {
9597 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9598 	struct extent_map *em;
9599 	struct btrfs_root *root = BTRFS_I(inode)->root;
9600 	struct btrfs_key ins;
9601 	u64 cur_offset = start;
9602 	u64 i_size;
9603 	u64 cur_bytes;
9604 	int ret = 0;
9605 	bool own_trans = true;
9606 
9607 	if (trans)
9608 		own_trans = false;
9609 	while (num_bytes > 0) {
9610 		if (own_trans) {
9611 			trans = btrfs_start_transaction(root, 3);
9612 			if (IS_ERR(trans)) {
9613 				ret = PTR_ERR(trans);
9614 				break;
9615 			}
9616 		}
9617 
9618 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9619 		cur_bytes = max(cur_bytes, min_size);
9620 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9621 					   *alloc_hint, &ins, 1, 0);
9622 		if (ret) {
9623 			if (own_trans)
9624 				btrfs_end_transaction(trans, root);
9625 			break;
9626 		}
9627 
9628 		ret = insert_reserved_file_extent(trans, inode,
9629 						  cur_offset, ins.objectid,
9630 						  ins.offset, ins.offset,
9631 						  ins.offset, 0, 0, 0,
9632 						  BTRFS_FILE_EXTENT_PREALLOC);
9633 		if (ret) {
9634 			btrfs_free_reserved_extent(root, ins.objectid,
9635 						   ins.offset, 0);
9636 			btrfs_abort_transaction(trans, root, ret);
9637 			if (own_trans)
9638 				btrfs_end_transaction(trans, root);
9639 			break;
9640 		}
9641 
9642 		btrfs_drop_extent_cache(inode, cur_offset,
9643 					cur_offset + ins.offset -1, 0);
9644 
9645 		em = alloc_extent_map();
9646 		if (!em) {
9647 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9648 				&BTRFS_I(inode)->runtime_flags);
9649 			goto next;
9650 		}
9651 
9652 		em->start = cur_offset;
9653 		em->orig_start = cur_offset;
9654 		em->len = ins.offset;
9655 		em->block_start = ins.objectid;
9656 		em->block_len = ins.offset;
9657 		em->orig_block_len = ins.offset;
9658 		em->ram_bytes = ins.offset;
9659 		em->bdev = root->fs_info->fs_devices->latest_bdev;
9660 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9661 		em->generation = trans->transid;
9662 
9663 		while (1) {
9664 			write_lock(&em_tree->lock);
9665 			ret = add_extent_mapping(em_tree, em, 1);
9666 			write_unlock(&em_tree->lock);
9667 			if (ret != -EEXIST)
9668 				break;
9669 			btrfs_drop_extent_cache(inode, cur_offset,
9670 						cur_offset + ins.offset - 1,
9671 						0);
9672 		}
9673 		free_extent_map(em);
9674 next:
9675 		num_bytes -= ins.offset;
9676 		cur_offset += ins.offset;
9677 		*alloc_hint = ins.objectid + ins.offset;
9678 
9679 		inode_inc_iversion(inode);
9680 		inode->i_ctime = CURRENT_TIME;
9681 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9682 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9683 		    (actual_len > inode->i_size) &&
9684 		    (cur_offset > inode->i_size)) {
9685 			if (cur_offset > actual_len)
9686 				i_size = actual_len;
9687 			else
9688 				i_size = cur_offset;
9689 			i_size_write(inode, i_size);
9690 			btrfs_ordered_update_i_size(inode, i_size, NULL);
9691 		}
9692 
9693 		ret = btrfs_update_inode(trans, root, inode);
9694 
9695 		if (ret) {
9696 			btrfs_abort_transaction(trans, root, ret);
9697 			if (own_trans)
9698 				btrfs_end_transaction(trans, root);
9699 			break;
9700 		}
9701 
9702 		if (own_trans)
9703 			btrfs_end_transaction(trans, root);
9704 	}
9705 	return ret;
9706 }
9707 
9708 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9709 			      u64 start, u64 num_bytes, u64 min_size,
9710 			      loff_t actual_len, u64 *alloc_hint)
9711 {
9712 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9713 					   min_size, actual_len, alloc_hint,
9714 					   NULL);
9715 }
9716 
9717 int btrfs_prealloc_file_range_trans(struct inode *inode,
9718 				    struct btrfs_trans_handle *trans, int mode,
9719 				    u64 start, u64 num_bytes, u64 min_size,
9720 				    loff_t actual_len, u64 *alloc_hint)
9721 {
9722 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9723 					   min_size, actual_len, alloc_hint, trans);
9724 }
9725 
9726 static int btrfs_set_page_dirty(struct page *page)
9727 {
9728 	return __set_page_dirty_nobuffers(page);
9729 }
9730 
9731 static int btrfs_permission(struct inode *inode, int mask)
9732 {
9733 	struct btrfs_root *root = BTRFS_I(inode)->root;
9734 	umode_t mode = inode->i_mode;
9735 
9736 	if (mask & MAY_WRITE &&
9737 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9738 		if (btrfs_root_readonly(root))
9739 			return -EROFS;
9740 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9741 			return -EACCES;
9742 	}
9743 	return generic_permission(inode, mask);
9744 }
9745 
9746 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9747 {
9748 	struct btrfs_trans_handle *trans;
9749 	struct btrfs_root *root = BTRFS_I(dir)->root;
9750 	struct inode *inode = NULL;
9751 	u64 objectid;
9752 	u64 index;
9753 	int ret = 0;
9754 
9755 	/*
9756 	 * 5 units required for adding orphan entry
9757 	 */
9758 	trans = btrfs_start_transaction(root, 5);
9759 	if (IS_ERR(trans))
9760 		return PTR_ERR(trans);
9761 
9762 	ret = btrfs_find_free_ino(root, &objectid);
9763 	if (ret)
9764 		goto out;
9765 
9766 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9767 				btrfs_ino(dir), objectid, mode, &index);
9768 	if (IS_ERR(inode)) {
9769 		ret = PTR_ERR(inode);
9770 		inode = NULL;
9771 		goto out;
9772 	}
9773 
9774 	inode->i_fop = &btrfs_file_operations;
9775 	inode->i_op = &btrfs_file_inode_operations;
9776 
9777 	inode->i_mapping->a_ops = &btrfs_aops;
9778 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9779 
9780 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9781 	if (ret)
9782 		goto out_inode;
9783 
9784 	ret = btrfs_update_inode(trans, root, inode);
9785 	if (ret)
9786 		goto out_inode;
9787 	ret = btrfs_orphan_add(trans, inode);
9788 	if (ret)
9789 		goto out_inode;
9790 
9791 	/*
9792 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9793 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9794 	 * through:
9795 	 *
9796 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9797 	 */
9798 	set_nlink(inode, 1);
9799 	unlock_new_inode(inode);
9800 	d_tmpfile(dentry, inode);
9801 	mark_inode_dirty(inode);
9802 
9803 out:
9804 	btrfs_end_transaction(trans, root);
9805 	if (ret)
9806 		iput(inode);
9807 	btrfs_balance_delayed_items(root);
9808 	btrfs_btree_balance_dirty(root);
9809 	return ret;
9810 
9811 out_inode:
9812 	unlock_new_inode(inode);
9813 	goto out;
9814 
9815 }
9816 
9817 /* Inspired by filemap_check_errors() */
9818 int btrfs_inode_check_errors(struct inode *inode)
9819 {
9820 	int ret = 0;
9821 
9822 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9823 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9824 		ret = -ENOSPC;
9825 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9826 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9827 		ret = -EIO;
9828 
9829 	return ret;
9830 }
9831 
9832 static const struct inode_operations btrfs_dir_inode_operations = {
9833 	.getattr	= btrfs_getattr,
9834 	.lookup		= btrfs_lookup,
9835 	.create		= btrfs_create,
9836 	.unlink		= btrfs_unlink,
9837 	.link		= btrfs_link,
9838 	.mkdir		= btrfs_mkdir,
9839 	.rmdir		= btrfs_rmdir,
9840 	.rename2	= btrfs_rename2,
9841 	.symlink	= btrfs_symlink,
9842 	.setattr	= btrfs_setattr,
9843 	.mknod		= btrfs_mknod,
9844 	.setxattr	= btrfs_setxattr,
9845 	.getxattr	= btrfs_getxattr,
9846 	.listxattr	= btrfs_listxattr,
9847 	.removexattr	= btrfs_removexattr,
9848 	.permission	= btrfs_permission,
9849 	.get_acl	= btrfs_get_acl,
9850 	.set_acl	= btrfs_set_acl,
9851 	.update_time	= btrfs_update_time,
9852 	.tmpfile        = btrfs_tmpfile,
9853 };
9854 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9855 	.lookup		= btrfs_lookup,
9856 	.permission	= btrfs_permission,
9857 	.get_acl	= btrfs_get_acl,
9858 	.set_acl	= btrfs_set_acl,
9859 	.update_time	= btrfs_update_time,
9860 };
9861 
9862 static const struct file_operations btrfs_dir_file_operations = {
9863 	.llseek		= generic_file_llseek,
9864 	.read		= generic_read_dir,
9865 	.iterate	= btrfs_real_readdir,
9866 	.unlocked_ioctl	= btrfs_ioctl,
9867 #ifdef CONFIG_COMPAT
9868 	.compat_ioctl	= btrfs_ioctl,
9869 #endif
9870 	.release        = btrfs_release_file,
9871 	.fsync		= btrfs_sync_file,
9872 };
9873 
9874 static struct extent_io_ops btrfs_extent_io_ops = {
9875 	.fill_delalloc = run_delalloc_range,
9876 	.submit_bio_hook = btrfs_submit_bio_hook,
9877 	.merge_bio_hook = btrfs_merge_bio_hook,
9878 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
9879 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
9880 	.writepage_start_hook = btrfs_writepage_start_hook,
9881 	.set_bit_hook = btrfs_set_bit_hook,
9882 	.clear_bit_hook = btrfs_clear_bit_hook,
9883 	.merge_extent_hook = btrfs_merge_extent_hook,
9884 	.split_extent_hook = btrfs_split_extent_hook,
9885 };
9886 
9887 /*
9888  * btrfs doesn't support the bmap operation because swapfiles
9889  * use bmap to make a mapping of extents in the file.  They assume
9890  * these extents won't change over the life of the file and they
9891  * use the bmap result to do IO directly to the drive.
9892  *
9893  * the btrfs bmap call would return logical addresses that aren't
9894  * suitable for IO and they also will change frequently as COW
9895  * operations happen.  So, swapfile + btrfs == corruption.
9896  *
9897  * For now we're avoiding this by dropping bmap.
9898  */
9899 static const struct address_space_operations btrfs_aops = {
9900 	.readpage	= btrfs_readpage,
9901 	.writepage	= btrfs_writepage,
9902 	.writepages	= btrfs_writepages,
9903 	.readpages	= btrfs_readpages,
9904 	.direct_IO	= btrfs_direct_IO,
9905 	.invalidatepage = btrfs_invalidatepage,
9906 	.releasepage	= btrfs_releasepage,
9907 	.set_page_dirty	= btrfs_set_page_dirty,
9908 	.error_remove_page = generic_error_remove_page,
9909 };
9910 
9911 static const struct address_space_operations btrfs_symlink_aops = {
9912 	.readpage	= btrfs_readpage,
9913 	.writepage	= btrfs_writepage,
9914 	.invalidatepage = btrfs_invalidatepage,
9915 	.releasepage	= btrfs_releasepage,
9916 };
9917 
9918 static const struct inode_operations btrfs_file_inode_operations = {
9919 	.getattr	= btrfs_getattr,
9920 	.setattr	= btrfs_setattr,
9921 	.setxattr	= btrfs_setxattr,
9922 	.getxattr	= btrfs_getxattr,
9923 	.listxattr      = btrfs_listxattr,
9924 	.removexattr	= btrfs_removexattr,
9925 	.permission	= btrfs_permission,
9926 	.fiemap		= btrfs_fiemap,
9927 	.get_acl	= btrfs_get_acl,
9928 	.set_acl	= btrfs_set_acl,
9929 	.update_time	= btrfs_update_time,
9930 };
9931 static const struct inode_operations btrfs_special_inode_operations = {
9932 	.getattr	= btrfs_getattr,
9933 	.setattr	= btrfs_setattr,
9934 	.permission	= btrfs_permission,
9935 	.setxattr	= btrfs_setxattr,
9936 	.getxattr	= btrfs_getxattr,
9937 	.listxattr	= btrfs_listxattr,
9938 	.removexattr	= btrfs_removexattr,
9939 	.get_acl	= btrfs_get_acl,
9940 	.set_acl	= btrfs_set_acl,
9941 	.update_time	= btrfs_update_time,
9942 };
9943 static const struct inode_operations btrfs_symlink_inode_operations = {
9944 	.readlink	= generic_readlink,
9945 	.follow_link	= page_follow_link_light,
9946 	.put_link	= page_put_link,
9947 	.getattr	= btrfs_getattr,
9948 	.setattr	= btrfs_setattr,
9949 	.permission	= btrfs_permission,
9950 	.setxattr	= btrfs_setxattr,
9951 	.getxattr	= btrfs_getxattr,
9952 	.listxattr	= btrfs_listxattr,
9953 	.removexattr	= btrfs_removexattr,
9954 	.update_time	= btrfs_update_time,
9955 };
9956 
9957 const struct dentry_operations btrfs_dentry_operations = {
9958 	.d_delete	= btrfs_dentry_delete,
9959 	.d_release	= btrfs_dentry_release,
9960 };
9961