1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 static const struct inode_operations btrfs_dir_inode_operations; 70 static const struct inode_operations btrfs_symlink_inode_operations; 71 static const struct inode_operations btrfs_dir_ro_inode_operations; 72 static const struct inode_operations btrfs_special_inode_operations; 73 static const struct inode_operations btrfs_file_inode_operations; 74 static const struct address_space_operations btrfs_aops; 75 static const struct address_space_operations btrfs_symlink_aops; 76 static const struct file_operations btrfs_dir_file_operations; 77 static struct extent_io_ops btrfs_extent_io_ops; 78 79 static struct kmem_cache *btrfs_inode_cachep; 80 static struct kmem_cache *btrfs_delalloc_work_cachep; 81 struct kmem_cache *btrfs_trans_handle_cachep; 82 struct kmem_cache *btrfs_transaction_cachep; 83 struct kmem_cache *btrfs_path_cachep; 84 struct kmem_cache *btrfs_free_space_cachep; 85 86 #define S_SHIFT 12 87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 95 }; 96 97 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 98 static int btrfs_truncate(struct inode *inode); 99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 100 static noinline int cow_file_range(struct inode *inode, 101 struct page *locked_page, 102 u64 start, u64 end, int *page_started, 103 unsigned long *nr_written, int unlock); 104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 105 u64 len, u64 orig_start, 106 u64 block_start, u64 block_len, 107 u64 orig_block_len, u64 ram_bytes, 108 int type); 109 110 static int btrfs_dirty_inode(struct inode *inode); 111 112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 113 void btrfs_test_inode_set_ops(struct inode *inode) 114 { 115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 116 } 117 #endif 118 119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 120 struct inode *inode, struct inode *dir, 121 const struct qstr *qstr) 122 { 123 int err; 124 125 err = btrfs_init_acl(trans, inode, dir); 126 if (!err) 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 128 return err; 129 } 130 131 /* 132 * this does all the hard work for inserting an inline extent into 133 * the btree. The caller should have done a btrfs_drop_extents so that 134 * no overlapping inline items exist in the btree 135 */ 136 static int insert_inline_extent(struct btrfs_trans_handle *trans, 137 struct btrfs_path *path, int extent_inserted, 138 struct btrfs_root *root, struct inode *inode, 139 u64 start, size_t size, size_t compressed_size, 140 int compress_type, 141 struct page **compressed_pages) 142 { 143 struct extent_buffer *leaf; 144 struct page *page = NULL; 145 char *kaddr; 146 unsigned long ptr; 147 struct btrfs_file_extent_item *ei; 148 int err = 0; 149 int ret; 150 size_t cur_size = size; 151 unsigned long offset; 152 153 if (compressed_size && compressed_pages) 154 cur_size = compressed_size; 155 156 inode_add_bytes(inode, size); 157 158 if (!extent_inserted) { 159 struct btrfs_key key; 160 size_t datasize; 161 162 key.objectid = btrfs_ino(inode); 163 key.offset = start; 164 key.type = BTRFS_EXTENT_DATA_KEY; 165 166 datasize = btrfs_file_extent_calc_inline_size(cur_size); 167 path->leave_spinning = 1; 168 ret = btrfs_insert_empty_item(trans, root, path, &key, 169 datasize); 170 if (ret) { 171 err = ret; 172 goto fail; 173 } 174 } 175 leaf = path->nodes[0]; 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_file_extent_item); 178 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 180 btrfs_set_file_extent_encryption(leaf, ei, 0); 181 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 182 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 183 ptr = btrfs_file_extent_inline_start(ei); 184 185 if (compress_type != BTRFS_COMPRESS_NONE) { 186 struct page *cpage; 187 int i = 0; 188 while (compressed_size > 0) { 189 cpage = compressed_pages[i]; 190 cur_size = min_t(unsigned long, compressed_size, 191 PAGE_CACHE_SIZE); 192 193 kaddr = kmap_atomic(cpage); 194 write_extent_buffer(leaf, kaddr, ptr, cur_size); 195 kunmap_atomic(kaddr); 196 197 i++; 198 ptr += cur_size; 199 compressed_size -= cur_size; 200 } 201 btrfs_set_file_extent_compression(leaf, ei, 202 compress_type); 203 } else { 204 page = find_get_page(inode->i_mapping, 205 start >> PAGE_CACHE_SHIFT); 206 btrfs_set_file_extent_compression(leaf, ei, 0); 207 kaddr = kmap_atomic(page); 208 offset = start & (PAGE_CACHE_SIZE - 1); 209 write_extent_buffer(leaf, kaddr + offset, ptr, size); 210 kunmap_atomic(kaddr); 211 page_cache_release(page); 212 } 213 btrfs_mark_buffer_dirty(leaf); 214 btrfs_release_path(path); 215 216 /* 217 * we're an inline extent, so nobody can 218 * extend the file past i_size without locking 219 * a page we already have locked. 220 * 221 * We must do any isize and inode updates 222 * before we unlock the pages. Otherwise we 223 * could end up racing with unlink. 224 */ 225 BTRFS_I(inode)->disk_i_size = inode->i_size; 226 ret = btrfs_update_inode(trans, root, inode); 227 228 return ret; 229 fail: 230 return err; 231 } 232 233 234 /* 235 * conditionally insert an inline extent into the file. This 236 * does the checks required to make sure the data is small enough 237 * to fit as an inline extent. 238 */ 239 static noinline int cow_file_range_inline(struct btrfs_root *root, 240 struct inode *inode, u64 start, 241 u64 end, size_t compressed_size, 242 int compress_type, 243 struct page **compressed_pages) 244 { 245 struct btrfs_trans_handle *trans; 246 u64 isize = i_size_read(inode); 247 u64 actual_end = min(end + 1, isize); 248 u64 inline_len = actual_end - start; 249 u64 aligned_end = ALIGN(end, root->sectorsize); 250 u64 data_len = inline_len; 251 int ret; 252 struct btrfs_path *path; 253 int extent_inserted = 0; 254 u32 extent_item_size; 255 256 if (compressed_size) 257 data_len = compressed_size; 258 259 if (start > 0 || 260 actual_end > PAGE_CACHE_SIZE || 261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 262 (!compressed_size && 263 (actual_end & (root->sectorsize - 1)) == 0) || 264 end + 1 < isize || 265 data_len > root->fs_info->max_inline) { 266 return 1; 267 } 268 269 path = btrfs_alloc_path(); 270 if (!path) 271 return -ENOMEM; 272 273 trans = btrfs_join_transaction(root); 274 if (IS_ERR(trans)) { 275 btrfs_free_path(path); 276 return PTR_ERR(trans); 277 } 278 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 279 280 if (compressed_size && compressed_pages) 281 extent_item_size = btrfs_file_extent_calc_inline_size( 282 compressed_size); 283 else 284 extent_item_size = btrfs_file_extent_calc_inline_size( 285 inline_len); 286 287 ret = __btrfs_drop_extents(trans, root, inode, path, 288 start, aligned_end, NULL, 289 1, 1, extent_item_size, &extent_inserted); 290 if (ret) { 291 btrfs_abort_transaction(trans, root, ret); 292 goto out; 293 } 294 295 if (isize > actual_end) 296 inline_len = min_t(u64, isize, actual_end); 297 ret = insert_inline_extent(trans, path, extent_inserted, 298 root, inode, start, 299 inline_len, compressed_size, 300 compress_type, compressed_pages); 301 if (ret && ret != -ENOSPC) { 302 btrfs_abort_transaction(trans, root, ret); 303 goto out; 304 } else if (ret == -ENOSPC) { 305 ret = 1; 306 goto out; 307 } 308 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 310 btrfs_delalloc_release_metadata(inode, end + 1 - start); 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 312 out: 313 btrfs_free_path(path); 314 btrfs_end_transaction(trans, root); 315 return ret; 316 } 317 318 struct async_extent { 319 u64 start; 320 u64 ram_size; 321 u64 compressed_size; 322 struct page **pages; 323 unsigned long nr_pages; 324 int compress_type; 325 struct list_head list; 326 }; 327 328 struct async_cow { 329 struct inode *inode; 330 struct btrfs_root *root; 331 struct page *locked_page; 332 u64 start; 333 u64 end; 334 struct list_head extents; 335 struct btrfs_work work; 336 }; 337 338 static noinline int add_async_extent(struct async_cow *cow, 339 u64 start, u64 ram_size, 340 u64 compressed_size, 341 struct page **pages, 342 unsigned long nr_pages, 343 int compress_type) 344 { 345 struct async_extent *async_extent; 346 347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 348 BUG_ON(!async_extent); /* -ENOMEM */ 349 async_extent->start = start; 350 async_extent->ram_size = ram_size; 351 async_extent->compressed_size = compressed_size; 352 async_extent->pages = pages; 353 async_extent->nr_pages = nr_pages; 354 async_extent->compress_type = compress_type; 355 list_add_tail(&async_extent->list, &cow->extents); 356 return 0; 357 } 358 359 static inline int inode_need_compress(struct inode *inode) 360 { 361 struct btrfs_root *root = BTRFS_I(inode)->root; 362 363 /* force compress */ 364 if (btrfs_test_opt(root, FORCE_COMPRESS)) 365 return 1; 366 /* bad compression ratios */ 367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 368 return 0; 369 if (btrfs_test_opt(root, COMPRESS) || 370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 371 BTRFS_I(inode)->force_compress) 372 return 1; 373 return 0; 374 } 375 376 /* 377 * we create compressed extents in two phases. The first 378 * phase compresses a range of pages that have already been 379 * locked (both pages and state bits are locked). 380 * 381 * This is done inside an ordered work queue, and the compression 382 * is spread across many cpus. The actual IO submission is step 383 * two, and the ordered work queue takes care of making sure that 384 * happens in the same order things were put onto the queue by 385 * writepages and friends. 386 * 387 * If this code finds it can't get good compression, it puts an 388 * entry onto the work queue to write the uncompressed bytes. This 389 * makes sure that both compressed inodes and uncompressed inodes 390 * are written in the same order that the flusher thread sent them 391 * down. 392 */ 393 static noinline void compress_file_range(struct inode *inode, 394 struct page *locked_page, 395 u64 start, u64 end, 396 struct async_cow *async_cow, 397 int *num_added) 398 { 399 struct btrfs_root *root = BTRFS_I(inode)->root; 400 u64 num_bytes; 401 u64 blocksize = root->sectorsize; 402 u64 actual_end; 403 u64 isize = i_size_read(inode); 404 int ret = 0; 405 struct page **pages = NULL; 406 unsigned long nr_pages; 407 unsigned long nr_pages_ret = 0; 408 unsigned long total_compressed = 0; 409 unsigned long total_in = 0; 410 unsigned long max_compressed = 128 * 1024; 411 unsigned long max_uncompressed = 128 * 1024; 412 int i; 413 int will_compress; 414 int compress_type = root->fs_info->compress_type; 415 int redirty = 0; 416 417 /* if this is a small write inside eof, kick off a defrag */ 418 if ((end - start + 1) < 16 * 1024 && 419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 420 btrfs_add_inode_defrag(NULL, inode); 421 422 actual_end = min_t(u64, isize, end + 1); 423 again: 424 will_compress = 0; 425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 427 428 /* 429 * we don't want to send crud past the end of i_size through 430 * compression, that's just a waste of CPU time. So, if the 431 * end of the file is before the start of our current 432 * requested range of bytes, we bail out to the uncompressed 433 * cleanup code that can deal with all of this. 434 * 435 * It isn't really the fastest way to fix things, but this is a 436 * very uncommon corner. 437 */ 438 if (actual_end <= start) 439 goto cleanup_and_bail_uncompressed; 440 441 total_compressed = actual_end - start; 442 443 /* 444 * skip compression for a small file range(<=blocksize) that 445 * isn't an inline extent, since it dosen't save disk space at all. 446 */ 447 if (total_compressed <= blocksize && 448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 449 goto cleanup_and_bail_uncompressed; 450 451 /* we want to make sure that amount of ram required to uncompress 452 * an extent is reasonable, so we limit the total size in ram 453 * of a compressed extent to 128k. This is a crucial number 454 * because it also controls how easily we can spread reads across 455 * cpus for decompression. 456 * 457 * We also want to make sure the amount of IO required to do 458 * a random read is reasonably small, so we limit the size of 459 * a compressed extent to 128k. 460 */ 461 total_compressed = min(total_compressed, max_uncompressed); 462 num_bytes = ALIGN(end - start + 1, blocksize); 463 num_bytes = max(blocksize, num_bytes); 464 total_in = 0; 465 ret = 0; 466 467 /* 468 * we do compression for mount -o compress and when the 469 * inode has not been flagged as nocompress. This flag can 470 * change at any time if we discover bad compression ratios. 471 */ 472 if (inode_need_compress(inode)) { 473 WARN_ON(pages); 474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 475 if (!pages) { 476 /* just bail out to the uncompressed code */ 477 goto cont; 478 } 479 480 if (BTRFS_I(inode)->force_compress) 481 compress_type = BTRFS_I(inode)->force_compress; 482 483 /* 484 * we need to call clear_page_dirty_for_io on each 485 * page in the range. Otherwise applications with the file 486 * mmap'd can wander in and change the page contents while 487 * we are compressing them. 488 * 489 * If the compression fails for any reason, we set the pages 490 * dirty again later on. 491 */ 492 extent_range_clear_dirty_for_io(inode, start, end); 493 redirty = 1; 494 ret = btrfs_compress_pages(compress_type, 495 inode->i_mapping, start, 496 total_compressed, pages, 497 nr_pages, &nr_pages_ret, 498 &total_in, 499 &total_compressed, 500 max_compressed); 501 502 if (!ret) { 503 unsigned long offset = total_compressed & 504 (PAGE_CACHE_SIZE - 1); 505 struct page *page = pages[nr_pages_ret - 1]; 506 char *kaddr; 507 508 /* zero the tail end of the last page, we might be 509 * sending it down to disk 510 */ 511 if (offset) { 512 kaddr = kmap_atomic(page); 513 memset(kaddr + offset, 0, 514 PAGE_CACHE_SIZE - offset); 515 kunmap_atomic(kaddr); 516 } 517 will_compress = 1; 518 } 519 } 520 cont: 521 if (start == 0) { 522 /* lets try to make an inline extent */ 523 if (ret || total_in < (actual_end - start)) { 524 /* we didn't compress the entire range, try 525 * to make an uncompressed inline extent. 526 */ 527 ret = cow_file_range_inline(root, inode, start, end, 528 0, 0, NULL); 529 } else { 530 /* try making a compressed inline extent */ 531 ret = cow_file_range_inline(root, inode, start, end, 532 total_compressed, 533 compress_type, pages); 534 } 535 if (ret <= 0) { 536 unsigned long clear_flags = EXTENT_DELALLOC | 537 EXTENT_DEFRAG; 538 unsigned long page_error_op; 539 540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 542 543 /* 544 * inline extent creation worked or returned error, 545 * we don't need to create any more async work items. 546 * Unlock and free up our temp pages. 547 */ 548 extent_clear_unlock_delalloc(inode, start, end, NULL, 549 clear_flags, PAGE_UNLOCK | 550 PAGE_CLEAR_DIRTY | 551 PAGE_SET_WRITEBACK | 552 page_error_op | 553 PAGE_END_WRITEBACK); 554 goto free_pages_out; 555 } 556 } 557 558 if (will_compress) { 559 /* 560 * we aren't doing an inline extent round the compressed size 561 * up to a block size boundary so the allocator does sane 562 * things 563 */ 564 total_compressed = ALIGN(total_compressed, blocksize); 565 566 /* 567 * one last check to make sure the compression is really a 568 * win, compare the page count read with the blocks on disk 569 */ 570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 571 if (total_compressed >= total_in) { 572 will_compress = 0; 573 } else { 574 num_bytes = total_in; 575 } 576 } 577 if (!will_compress && pages) { 578 /* 579 * the compression code ran but failed to make things smaller, 580 * free any pages it allocated and our page pointer array 581 */ 582 for (i = 0; i < nr_pages_ret; i++) { 583 WARN_ON(pages[i]->mapping); 584 page_cache_release(pages[i]); 585 } 586 kfree(pages); 587 pages = NULL; 588 total_compressed = 0; 589 nr_pages_ret = 0; 590 591 /* flag the file so we don't compress in the future */ 592 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 593 !(BTRFS_I(inode)->force_compress)) { 594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 595 } 596 } 597 if (will_compress) { 598 *num_added += 1; 599 600 /* the async work queues will take care of doing actual 601 * allocation on disk for these compressed pages, 602 * and will submit them to the elevator. 603 */ 604 add_async_extent(async_cow, start, num_bytes, 605 total_compressed, pages, nr_pages_ret, 606 compress_type); 607 608 if (start + num_bytes < end) { 609 start += num_bytes; 610 pages = NULL; 611 cond_resched(); 612 goto again; 613 } 614 } else { 615 cleanup_and_bail_uncompressed: 616 /* 617 * No compression, but we still need to write the pages in 618 * the file we've been given so far. redirty the locked 619 * page if it corresponds to our extent and set things up 620 * for the async work queue to run cow_file_range to do 621 * the normal delalloc dance 622 */ 623 if (page_offset(locked_page) >= start && 624 page_offset(locked_page) <= end) { 625 __set_page_dirty_nobuffers(locked_page); 626 /* unlocked later on in the async handlers */ 627 } 628 if (redirty) 629 extent_range_redirty_for_io(inode, start, end); 630 add_async_extent(async_cow, start, end - start + 1, 631 0, NULL, 0, BTRFS_COMPRESS_NONE); 632 *num_added += 1; 633 } 634 635 return; 636 637 free_pages_out: 638 for (i = 0; i < nr_pages_ret; i++) { 639 WARN_ON(pages[i]->mapping); 640 page_cache_release(pages[i]); 641 } 642 kfree(pages); 643 } 644 645 static void free_async_extent_pages(struct async_extent *async_extent) 646 { 647 int i; 648 649 if (!async_extent->pages) 650 return; 651 652 for (i = 0; i < async_extent->nr_pages; i++) { 653 WARN_ON(async_extent->pages[i]->mapping); 654 page_cache_release(async_extent->pages[i]); 655 } 656 kfree(async_extent->pages); 657 async_extent->nr_pages = 0; 658 async_extent->pages = NULL; 659 } 660 661 /* 662 * phase two of compressed writeback. This is the ordered portion 663 * of the code, which only gets called in the order the work was 664 * queued. We walk all the async extents created by compress_file_range 665 * and send them down to the disk. 666 */ 667 static noinline void submit_compressed_extents(struct inode *inode, 668 struct async_cow *async_cow) 669 { 670 struct async_extent *async_extent; 671 u64 alloc_hint = 0; 672 struct btrfs_key ins; 673 struct extent_map *em; 674 struct btrfs_root *root = BTRFS_I(inode)->root; 675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 676 struct extent_io_tree *io_tree; 677 int ret = 0; 678 679 again: 680 while (!list_empty(&async_cow->extents)) { 681 async_extent = list_entry(async_cow->extents.next, 682 struct async_extent, list); 683 list_del(&async_extent->list); 684 685 io_tree = &BTRFS_I(inode)->io_tree; 686 687 retry: 688 /* did the compression code fall back to uncompressed IO? */ 689 if (!async_extent->pages) { 690 int page_started = 0; 691 unsigned long nr_written = 0; 692 693 lock_extent(io_tree, async_extent->start, 694 async_extent->start + 695 async_extent->ram_size - 1); 696 697 /* allocate blocks */ 698 ret = cow_file_range(inode, async_cow->locked_page, 699 async_extent->start, 700 async_extent->start + 701 async_extent->ram_size - 1, 702 &page_started, &nr_written, 0); 703 704 /* JDM XXX */ 705 706 /* 707 * if page_started, cow_file_range inserted an 708 * inline extent and took care of all the unlocking 709 * and IO for us. Otherwise, we need to submit 710 * all those pages down to the drive. 711 */ 712 if (!page_started && !ret) 713 extent_write_locked_range(io_tree, 714 inode, async_extent->start, 715 async_extent->start + 716 async_extent->ram_size - 1, 717 btrfs_get_extent, 718 WB_SYNC_ALL); 719 else if (ret) 720 unlock_page(async_cow->locked_page); 721 kfree(async_extent); 722 cond_resched(); 723 continue; 724 } 725 726 lock_extent(io_tree, async_extent->start, 727 async_extent->start + async_extent->ram_size - 1); 728 729 ret = btrfs_reserve_extent(root, 730 async_extent->compressed_size, 731 async_extent->compressed_size, 732 0, alloc_hint, &ins, 1, 1); 733 if (ret) { 734 free_async_extent_pages(async_extent); 735 736 if (ret == -ENOSPC) { 737 unlock_extent(io_tree, async_extent->start, 738 async_extent->start + 739 async_extent->ram_size - 1); 740 741 /* 742 * we need to redirty the pages if we decide to 743 * fallback to uncompressed IO, otherwise we 744 * will not submit these pages down to lower 745 * layers. 746 */ 747 extent_range_redirty_for_io(inode, 748 async_extent->start, 749 async_extent->start + 750 async_extent->ram_size - 1); 751 752 goto retry; 753 } 754 goto out_free; 755 } 756 /* 757 * here we're doing allocation and writeback of the 758 * compressed pages 759 */ 760 btrfs_drop_extent_cache(inode, async_extent->start, 761 async_extent->start + 762 async_extent->ram_size - 1, 0); 763 764 em = alloc_extent_map(); 765 if (!em) { 766 ret = -ENOMEM; 767 goto out_free_reserve; 768 } 769 em->start = async_extent->start; 770 em->len = async_extent->ram_size; 771 em->orig_start = em->start; 772 em->mod_start = em->start; 773 em->mod_len = em->len; 774 775 em->block_start = ins.objectid; 776 em->block_len = ins.offset; 777 em->orig_block_len = ins.offset; 778 em->ram_bytes = async_extent->ram_size; 779 em->bdev = root->fs_info->fs_devices->latest_bdev; 780 em->compress_type = async_extent->compress_type; 781 set_bit(EXTENT_FLAG_PINNED, &em->flags); 782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 783 em->generation = -1; 784 785 while (1) { 786 write_lock(&em_tree->lock); 787 ret = add_extent_mapping(em_tree, em, 1); 788 write_unlock(&em_tree->lock); 789 if (ret != -EEXIST) { 790 free_extent_map(em); 791 break; 792 } 793 btrfs_drop_extent_cache(inode, async_extent->start, 794 async_extent->start + 795 async_extent->ram_size - 1, 0); 796 } 797 798 if (ret) 799 goto out_free_reserve; 800 801 ret = btrfs_add_ordered_extent_compress(inode, 802 async_extent->start, 803 ins.objectid, 804 async_extent->ram_size, 805 ins.offset, 806 BTRFS_ORDERED_COMPRESSED, 807 async_extent->compress_type); 808 if (ret) { 809 btrfs_drop_extent_cache(inode, async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 0); 812 goto out_free_reserve; 813 } 814 815 /* 816 * clear dirty, set writeback and unlock the pages. 817 */ 818 extent_clear_unlock_delalloc(inode, async_extent->start, 819 async_extent->start + 820 async_extent->ram_size - 1, 821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 823 PAGE_SET_WRITEBACK); 824 ret = btrfs_submit_compressed_write(inode, 825 async_extent->start, 826 async_extent->ram_size, 827 ins.objectid, 828 ins.offset, async_extent->pages, 829 async_extent->nr_pages); 830 if (ret) { 831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 832 struct page *p = async_extent->pages[0]; 833 const u64 start = async_extent->start; 834 const u64 end = start + async_extent->ram_size - 1; 835 836 p->mapping = inode->i_mapping; 837 tree->ops->writepage_end_io_hook(p, start, end, 838 NULL, 0); 839 p->mapping = NULL; 840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 841 PAGE_END_WRITEBACK | 842 PAGE_SET_ERROR); 843 free_async_extent_pages(async_extent); 844 } 845 alloc_hint = ins.objectid + ins.offset; 846 kfree(async_extent); 847 cond_resched(); 848 } 849 return; 850 out_free_reserve: 851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 852 out_free: 853 extent_clear_unlock_delalloc(inode, async_extent->start, 854 async_extent->start + 855 async_extent->ram_size - 1, 856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 860 PAGE_SET_ERROR); 861 free_async_extent_pages(async_extent); 862 kfree(async_extent); 863 goto again; 864 } 865 866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 867 u64 num_bytes) 868 { 869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 870 struct extent_map *em; 871 u64 alloc_hint = 0; 872 873 read_lock(&em_tree->lock); 874 em = search_extent_mapping(em_tree, start, num_bytes); 875 if (em) { 876 /* 877 * if block start isn't an actual block number then find the 878 * first block in this inode and use that as a hint. If that 879 * block is also bogus then just don't worry about it. 880 */ 881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 882 free_extent_map(em); 883 em = search_extent_mapping(em_tree, 0, 0); 884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 885 alloc_hint = em->block_start; 886 if (em) 887 free_extent_map(em); 888 } else { 889 alloc_hint = em->block_start; 890 free_extent_map(em); 891 } 892 } 893 read_unlock(&em_tree->lock); 894 895 return alloc_hint; 896 } 897 898 /* 899 * when extent_io.c finds a delayed allocation range in the file, 900 * the call backs end up in this code. The basic idea is to 901 * allocate extents on disk for the range, and create ordered data structs 902 * in ram to track those extents. 903 * 904 * locked_page is the page that writepage had locked already. We use 905 * it to make sure we don't do extra locks or unlocks. 906 * 907 * *page_started is set to one if we unlock locked_page and do everything 908 * required to start IO on it. It may be clean and already done with 909 * IO when we return. 910 */ 911 static noinline int cow_file_range(struct inode *inode, 912 struct page *locked_page, 913 u64 start, u64 end, int *page_started, 914 unsigned long *nr_written, 915 int unlock) 916 { 917 struct btrfs_root *root = BTRFS_I(inode)->root; 918 u64 alloc_hint = 0; 919 u64 num_bytes; 920 unsigned long ram_size; 921 u64 disk_num_bytes; 922 u64 cur_alloc_size; 923 u64 blocksize = root->sectorsize; 924 struct btrfs_key ins; 925 struct extent_map *em; 926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 927 int ret = 0; 928 929 if (btrfs_is_free_space_inode(inode)) { 930 WARN_ON_ONCE(1); 931 ret = -EINVAL; 932 goto out_unlock; 933 } 934 935 num_bytes = ALIGN(end - start + 1, blocksize); 936 num_bytes = max(blocksize, num_bytes); 937 disk_num_bytes = num_bytes; 938 939 /* if this is a small write inside eof, kick off defrag */ 940 if (num_bytes < 64 * 1024 && 941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 942 btrfs_add_inode_defrag(NULL, inode); 943 944 if (start == 0) { 945 /* lets try to make an inline extent */ 946 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 947 NULL); 948 if (ret == 0) { 949 extent_clear_unlock_delalloc(inode, start, end, NULL, 950 EXTENT_LOCKED | EXTENT_DELALLOC | 951 EXTENT_DEFRAG, PAGE_UNLOCK | 952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 953 PAGE_END_WRITEBACK); 954 955 *nr_written = *nr_written + 956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 957 *page_started = 1; 958 goto out; 959 } else if (ret < 0) { 960 goto out_unlock; 961 } 962 } 963 964 BUG_ON(disk_num_bytes > 965 btrfs_super_total_bytes(root->fs_info->super_copy)); 966 967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 969 970 while (disk_num_bytes > 0) { 971 unsigned long op; 972 973 cur_alloc_size = disk_num_bytes; 974 ret = btrfs_reserve_extent(root, cur_alloc_size, 975 root->sectorsize, 0, alloc_hint, 976 &ins, 1, 1); 977 if (ret < 0) 978 goto out_unlock; 979 980 em = alloc_extent_map(); 981 if (!em) { 982 ret = -ENOMEM; 983 goto out_reserve; 984 } 985 em->start = start; 986 em->orig_start = em->start; 987 ram_size = ins.offset; 988 em->len = ins.offset; 989 em->mod_start = em->start; 990 em->mod_len = em->len; 991 992 em->block_start = ins.objectid; 993 em->block_len = ins.offset; 994 em->orig_block_len = ins.offset; 995 em->ram_bytes = ram_size; 996 em->bdev = root->fs_info->fs_devices->latest_bdev; 997 set_bit(EXTENT_FLAG_PINNED, &em->flags); 998 em->generation = -1; 999 1000 while (1) { 1001 write_lock(&em_tree->lock); 1002 ret = add_extent_mapping(em_tree, em, 1); 1003 write_unlock(&em_tree->lock); 1004 if (ret != -EEXIST) { 1005 free_extent_map(em); 1006 break; 1007 } 1008 btrfs_drop_extent_cache(inode, start, 1009 start + ram_size - 1, 0); 1010 } 1011 if (ret) 1012 goto out_reserve; 1013 1014 cur_alloc_size = ins.offset; 1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1016 ram_size, cur_alloc_size, 0); 1017 if (ret) 1018 goto out_drop_extent_cache; 1019 1020 if (root->root_key.objectid == 1021 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1022 ret = btrfs_reloc_clone_csums(inode, start, 1023 cur_alloc_size); 1024 if (ret) 1025 goto out_drop_extent_cache; 1026 } 1027 1028 if (disk_num_bytes < cur_alloc_size) 1029 break; 1030 1031 /* we're not doing compressed IO, don't unlock the first 1032 * page (which the caller expects to stay locked), don't 1033 * clear any dirty bits and don't set any writeback bits 1034 * 1035 * Do set the Private2 bit so we know this page was properly 1036 * setup for writepage 1037 */ 1038 op = unlock ? PAGE_UNLOCK : 0; 1039 op |= PAGE_SET_PRIVATE2; 1040 1041 extent_clear_unlock_delalloc(inode, start, 1042 start + ram_size - 1, locked_page, 1043 EXTENT_LOCKED | EXTENT_DELALLOC, 1044 op); 1045 disk_num_bytes -= cur_alloc_size; 1046 num_bytes -= cur_alloc_size; 1047 alloc_hint = ins.objectid + ins.offset; 1048 start += cur_alloc_size; 1049 } 1050 out: 1051 return ret; 1052 1053 out_drop_extent_cache: 1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1055 out_reserve: 1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1057 out_unlock: 1058 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1060 EXTENT_DELALLOC | EXTENT_DEFRAG, 1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1063 goto out; 1064 } 1065 1066 /* 1067 * work queue call back to started compression on a file and pages 1068 */ 1069 static noinline void async_cow_start(struct btrfs_work *work) 1070 { 1071 struct async_cow *async_cow; 1072 int num_added = 0; 1073 async_cow = container_of(work, struct async_cow, work); 1074 1075 compress_file_range(async_cow->inode, async_cow->locked_page, 1076 async_cow->start, async_cow->end, async_cow, 1077 &num_added); 1078 if (num_added == 0) { 1079 btrfs_add_delayed_iput(async_cow->inode); 1080 async_cow->inode = NULL; 1081 } 1082 } 1083 1084 /* 1085 * work queue call back to submit previously compressed pages 1086 */ 1087 static noinline void async_cow_submit(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 struct btrfs_root *root; 1091 unsigned long nr_pages; 1092 1093 async_cow = container_of(work, struct async_cow, work); 1094 1095 root = async_cow->root; 1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1097 PAGE_CACHE_SHIFT; 1098 1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1100 5 * 1024 * 1024 && 1101 waitqueue_active(&root->fs_info->async_submit_wait)) 1102 wake_up(&root->fs_info->async_submit_wait); 1103 1104 if (async_cow->inode) 1105 submit_compressed_extents(async_cow->inode, async_cow); 1106 } 1107 1108 static noinline void async_cow_free(struct btrfs_work *work) 1109 { 1110 struct async_cow *async_cow; 1111 async_cow = container_of(work, struct async_cow, work); 1112 if (async_cow->inode) 1113 btrfs_add_delayed_iput(async_cow->inode); 1114 kfree(async_cow); 1115 } 1116 1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1118 u64 start, u64 end, int *page_started, 1119 unsigned long *nr_written) 1120 { 1121 struct async_cow *async_cow; 1122 struct btrfs_root *root = BTRFS_I(inode)->root; 1123 unsigned long nr_pages; 1124 u64 cur_end; 1125 int limit = 10 * 1024 * 1024; 1126 1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1128 1, 0, NULL, GFP_NOFS); 1129 while (start < end) { 1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1131 BUG_ON(!async_cow); /* -ENOMEM */ 1132 async_cow->inode = igrab(inode); 1133 async_cow->root = root; 1134 async_cow->locked_page = locked_page; 1135 async_cow->start = start; 1136 1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1138 !btrfs_test_opt(root, FORCE_COMPRESS)) 1139 cur_end = end; 1140 else 1141 cur_end = min(end, start + 512 * 1024 - 1); 1142 1143 async_cow->end = cur_end; 1144 INIT_LIST_HEAD(&async_cow->extents); 1145 1146 btrfs_init_work(&async_cow->work, 1147 btrfs_delalloc_helper, 1148 async_cow_start, async_cow_submit, 1149 async_cow_free); 1150 1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1152 PAGE_CACHE_SHIFT; 1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1154 1155 btrfs_queue_work(root->fs_info->delalloc_workers, 1156 &async_cow->work); 1157 1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1159 wait_event(root->fs_info->async_submit_wait, 1160 (atomic_read(&root->fs_info->async_delalloc_pages) < 1161 limit)); 1162 } 1163 1164 while (atomic_read(&root->fs_info->async_submit_draining) && 1165 atomic_read(&root->fs_info->async_delalloc_pages)) { 1166 wait_event(root->fs_info->async_submit_wait, 1167 (atomic_read(&root->fs_info->async_delalloc_pages) == 1168 0)); 1169 } 1170 1171 *nr_written += nr_pages; 1172 start = cur_end + 1; 1173 } 1174 *page_started = 1; 1175 return 0; 1176 } 1177 1178 static noinline int csum_exist_in_range(struct btrfs_root *root, 1179 u64 bytenr, u64 num_bytes) 1180 { 1181 int ret; 1182 struct btrfs_ordered_sum *sums; 1183 LIST_HEAD(list); 1184 1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1186 bytenr + num_bytes - 1, &list, 0); 1187 if (ret == 0 && list_empty(&list)) 1188 return 0; 1189 1190 while (!list_empty(&list)) { 1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1192 list_del(&sums->list); 1193 kfree(sums); 1194 } 1195 return 1; 1196 } 1197 1198 /* 1199 * when nowcow writeback call back. This checks for snapshots or COW copies 1200 * of the extents that exist in the file, and COWs the file as required. 1201 * 1202 * If no cow copies or snapshots exist, we write directly to the existing 1203 * blocks on disk 1204 */ 1205 static noinline int run_delalloc_nocow(struct inode *inode, 1206 struct page *locked_page, 1207 u64 start, u64 end, int *page_started, int force, 1208 unsigned long *nr_written) 1209 { 1210 struct btrfs_root *root = BTRFS_I(inode)->root; 1211 struct btrfs_trans_handle *trans; 1212 struct extent_buffer *leaf; 1213 struct btrfs_path *path; 1214 struct btrfs_file_extent_item *fi; 1215 struct btrfs_key found_key; 1216 u64 cow_start; 1217 u64 cur_offset; 1218 u64 extent_end; 1219 u64 extent_offset; 1220 u64 disk_bytenr; 1221 u64 num_bytes; 1222 u64 disk_num_bytes; 1223 u64 ram_bytes; 1224 int extent_type; 1225 int ret, err; 1226 int type; 1227 int nocow; 1228 int check_prev = 1; 1229 bool nolock; 1230 u64 ino = btrfs_ino(inode); 1231 1232 path = btrfs_alloc_path(); 1233 if (!path) { 1234 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1235 EXTENT_LOCKED | EXTENT_DELALLOC | 1236 EXTENT_DO_ACCOUNTING | 1237 EXTENT_DEFRAG, PAGE_UNLOCK | 1238 PAGE_CLEAR_DIRTY | 1239 PAGE_SET_WRITEBACK | 1240 PAGE_END_WRITEBACK); 1241 return -ENOMEM; 1242 } 1243 1244 nolock = btrfs_is_free_space_inode(inode); 1245 1246 if (nolock) 1247 trans = btrfs_join_transaction_nolock(root); 1248 else 1249 trans = btrfs_join_transaction(root); 1250 1251 if (IS_ERR(trans)) { 1252 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1253 EXTENT_LOCKED | EXTENT_DELALLOC | 1254 EXTENT_DO_ACCOUNTING | 1255 EXTENT_DEFRAG, PAGE_UNLOCK | 1256 PAGE_CLEAR_DIRTY | 1257 PAGE_SET_WRITEBACK | 1258 PAGE_END_WRITEBACK); 1259 btrfs_free_path(path); 1260 return PTR_ERR(trans); 1261 } 1262 1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1264 1265 cow_start = (u64)-1; 1266 cur_offset = start; 1267 while (1) { 1268 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1269 cur_offset, 0); 1270 if (ret < 0) 1271 goto error; 1272 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &found_key, 1275 path->slots[0] - 1); 1276 if (found_key.objectid == ino && 1277 found_key.type == BTRFS_EXTENT_DATA_KEY) 1278 path->slots[0]--; 1279 } 1280 check_prev = 0; 1281 next_slot: 1282 leaf = path->nodes[0]; 1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1284 ret = btrfs_next_leaf(root, path); 1285 if (ret < 0) 1286 goto error; 1287 if (ret > 0) 1288 break; 1289 leaf = path->nodes[0]; 1290 } 1291 1292 nocow = 0; 1293 disk_bytenr = 0; 1294 num_bytes = 0; 1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1296 1297 if (found_key.objectid > ino || 1298 found_key.type > BTRFS_EXTENT_DATA_KEY || 1299 found_key.offset > end) 1300 break; 1301 1302 if (found_key.offset > cur_offset) { 1303 extent_end = found_key.offset; 1304 extent_type = 0; 1305 goto out_check; 1306 } 1307 1308 fi = btrfs_item_ptr(leaf, path->slots[0], 1309 struct btrfs_file_extent_item); 1310 extent_type = btrfs_file_extent_type(leaf, fi); 1311 1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1313 if (extent_type == BTRFS_FILE_EXTENT_REG || 1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1316 extent_offset = btrfs_file_extent_offset(leaf, fi); 1317 extent_end = found_key.offset + 1318 btrfs_file_extent_num_bytes(leaf, fi); 1319 disk_num_bytes = 1320 btrfs_file_extent_disk_num_bytes(leaf, fi); 1321 if (extent_end <= start) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (disk_bytenr == 0) 1326 goto out_check; 1327 if (btrfs_file_extent_compression(leaf, fi) || 1328 btrfs_file_extent_encryption(leaf, fi) || 1329 btrfs_file_extent_other_encoding(leaf, fi)) 1330 goto out_check; 1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1332 goto out_check; 1333 if (btrfs_extent_readonly(root, disk_bytenr)) 1334 goto out_check; 1335 if (btrfs_cross_ref_exist(trans, root, ino, 1336 found_key.offset - 1337 extent_offset, disk_bytenr)) 1338 goto out_check; 1339 disk_bytenr += extent_offset; 1340 disk_bytenr += cur_offset - found_key.offset; 1341 num_bytes = min(end + 1, extent_end) - cur_offset; 1342 /* 1343 * if there are pending snapshots for this root, 1344 * we fall into common COW way. 1345 */ 1346 if (!nolock) { 1347 err = btrfs_start_write_no_snapshoting(root); 1348 if (!err) 1349 goto out_check; 1350 } 1351 /* 1352 * force cow if csum exists in the range. 1353 * this ensure that csum for a given extent are 1354 * either valid or do not exist. 1355 */ 1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1357 goto out_check; 1358 nocow = 1; 1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1360 extent_end = found_key.offset + 1361 btrfs_file_extent_inline_len(leaf, 1362 path->slots[0], fi); 1363 extent_end = ALIGN(extent_end, root->sectorsize); 1364 } else { 1365 BUG_ON(1); 1366 } 1367 out_check: 1368 if (extent_end <= start) { 1369 path->slots[0]++; 1370 if (!nolock && nocow) 1371 btrfs_end_write_no_snapshoting(root); 1372 goto next_slot; 1373 } 1374 if (!nocow) { 1375 if (cow_start == (u64)-1) 1376 cow_start = cur_offset; 1377 cur_offset = extent_end; 1378 if (cur_offset > end) 1379 break; 1380 path->slots[0]++; 1381 goto next_slot; 1382 } 1383 1384 btrfs_release_path(path); 1385 if (cow_start != (u64)-1) { 1386 ret = cow_file_range(inode, locked_page, 1387 cow_start, found_key.offset - 1, 1388 page_started, nr_written, 1); 1389 if (ret) { 1390 if (!nolock && nocow) 1391 btrfs_end_write_no_snapshoting(root); 1392 goto error; 1393 } 1394 cow_start = (u64)-1; 1395 } 1396 1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1398 struct extent_map *em; 1399 struct extent_map_tree *em_tree; 1400 em_tree = &BTRFS_I(inode)->extent_tree; 1401 em = alloc_extent_map(); 1402 BUG_ON(!em); /* -ENOMEM */ 1403 em->start = cur_offset; 1404 em->orig_start = found_key.offset - extent_offset; 1405 em->len = num_bytes; 1406 em->block_len = num_bytes; 1407 em->block_start = disk_bytenr; 1408 em->orig_block_len = disk_num_bytes; 1409 em->ram_bytes = ram_bytes; 1410 em->bdev = root->fs_info->fs_devices->latest_bdev; 1411 em->mod_start = em->start; 1412 em->mod_len = em->len; 1413 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1414 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1415 em->generation = -1; 1416 while (1) { 1417 write_lock(&em_tree->lock); 1418 ret = add_extent_mapping(em_tree, em, 1); 1419 write_unlock(&em_tree->lock); 1420 if (ret != -EEXIST) { 1421 free_extent_map(em); 1422 break; 1423 } 1424 btrfs_drop_extent_cache(inode, em->start, 1425 em->start + em->len - 1, 0); 1426 } 1427 type = BTRFS_ORDERED_PREALLOC; 1428 } else { 1429 type = BTRFS_ORDERED_NOCOW; 1430 } 1431 1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1433 num_bytes, num_bytes, type); 1434 BUG_ON(ret); /* -ENOMEM */ 1435 1436 if (root->root_key.objectid == 1437 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1438 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1439 num_bytes); 1440 if (ret) { 1441 if (!nolock && nocow) 1442 btrfs_end_write_no_snapshoting(root); 1443 goto error; 1444 } 1445 } 1446 1447 extent_clear_unlock_delalloc(inode, cur_offset, 1448 cur_offset + num_bytes - 1, 1449 locked_page, EXTENT_LOCKED | 1450 EXTENT_DELALLOC, PAGE_UNLOCK | 1451 PAGE_SET_PRIVATE2); 1452 if (!nolock && nocow) 1453 btrfs_end_write_no_snapshoting(root); 1454 cur_offset = extent_end; 1455 if (cur_offset > end) 1456 break; 1457 } 1458 btrfs_release_path(path); 1459 1460 if (cur_offset <= end && cow_start == (u64)-1) { 1461 cow_start = cur_offset; 1462 cur_offset = end; 1463 } 1464 1465 if (cow_start != (u64)-1) { 1466 ret = cow_file_range(inode, locked_page, cow_start, end, 1467 page_started, nr_written, 1); 1468 if (ret) 1469 goto error; 1470 } 1471 1472 error: 1473 err = btrfs_end_transaction(trans, root); 1474 if (!ret) 1475 ret = err; 1476 1477 if (ret && cur_offset < end) 1478 extent_clear_unlock_delalloc(inode, cur_offset, end, 1479 locked_page, EXTENT_LOCKED | 1480 EXTENT_DELALLOC | EXTENT_DEFRAG | 1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1482 PAGE_CLEAR_DIRTY | 1483 PAGE_SET_WRITEBACK | 1484 PAGE_END_WRITEBACK); 1485 btrfs_free_path(path); 1486 return ret; 1487 } 1488 1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1490 { 1491 1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1494 return 0; 1495 1496 /* 1497 * @defrag_bytes is a hint value, no spinlock held here, 1498 * if is not zero, it means the file is defragging. 1499 * Force cow if given extent needs to be defragged. 1500 */ 1501 if (BTRFS_I(inode)->defrag_bytes && 1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1503 EXTENT_DEFRAG, 0, NULL)) 1504 return 1; 1505 1506 return 0; 1507 } 1508 1509 /* 1510 * extent_io.c call back to do delayed allocation processing 1511 */ 1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1513 u64 start, u64 end, int *page_started, 1514 unsigned long *nr_written) 1515 { 1516 int ret; 1517 int force_cow = need_force_cow(inode, start, end); 1518 1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1520 ret = run_delalloc_nocow(inode, locked_page, start, end, 1521 page_started, 1, nr_written); 1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1523 ret = run_delalloc_nocow(inode, locked_page, start, end, 1524 page_started, 0, nr_written); 1525 } else if (!inode_need_compress(inode)) { 1526 ret = cow_file_range(inode, locked_page, start, end, 1527 page_started, nr_written, 1); 1528 } else { 1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1530 &BTRFS_I(inode)->runtime_flags); 1531 ret = cow_file_range_async(inode, locked_page, start, end, 1532 page_started, nr_written); 1533 } 1534 return ret; 1535 } 1536 1537 static void btrfs_split_extent_hook(struct inode *inode, 1538 struct extent_state *orig, u64 split) 1539 { 1540 u64 size; 1541 1542 /* not delalloc, ignore it */ 1543 if (!(orig->state & EXTENT_DELALLOC)) 1544 return; 1545 1546 size = orig->end - orig->start + 1; 1547 if (size > BTRFS_MAX_EXTENT_SIZE) { 1548 u64 num_extents; 1549 u64 new_size; 1550 1551 /* 1552 * See the explanation in btrfs_merge_extent_hook, the same 1553 * applies here, just in reverse. 1554 */ 1555 new_size = orig->end - split + 1; 1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1557 BTRFS_MAX_EXTENT_SIZE); 1558 new_size = split - orig->start; 1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1560 BTRFS_MAX_EXTENT_SIZE); 1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1563 return; 1564 } 1565 1566 spin_lock(&BTRFS_I(inode)->lock); 1567 BTRFS_I(inode)->outstanding_extents++; 1568 spin_unlock(&BTRFS_I(inode)->lock); 1569 } 1570 1571 /* 1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1573 * extents so we can keep track of new extents that are just merged onto old 1574 * extents, such as when we are doing sequential writes, so we can properly 1575 * account for the metadata space we'll need. 1576 */ 1577 static void btrfs_merge_extent_hook(struct inode *inode, 1578 struct extent_state *new, 1579 struct extent_state *other) 1580 { 1581 u64 new_size, old_size; 1582 u64 num_extents; 1583 1584 /* not delalloc, ignore it */ 1585 if (!(other->state & EXTENT_DELALLOC)) 1586 return; 1587 1588 if (new->start > other->start) 1589 new_size = new->end - other->start + 1; 1590 else 1591 new_size = other->end - new->start + 1; 1592 1593 /* we're not bigger than the max, unreserve the space and go */ 1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1595 spin_lock(&BTRFS_I(inode)->lock); 1596 BTRFS_I(inode)->outstanding_extents--; 1597 spin_unlock(&BTRFS_I(inode)->lock); 1598 return; 1599 } 1600 1601 /* 1602 * We have to add up either side to figure out how many extents were 1603 * accounted for before we merged into one big extent. If the number of 1604 * extents we accounted for is <= the amount we need for the new range 1605 * then we can return, otherwise drop. Think of it like this 1606 * 1607 * [ 4k][MAX_SIZE] 1608 * 1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1610 * need 2 outstanding extents, on one side we have 1 and the other side 1611 * we have 1 so they are == and we can return. But in this case 1612 * 1613 * [MAX_SIZE+4k][MAX_SIZE+4k] 1614 * 1615 * Each range on their own accounts for 2 extents, but merged together 1616 * they are only 3 extents worth of accounting, so we need to drop in 1617 * this case. 1618 */ 1619 old_size = other->end - other->start + 1; 1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1621 BTRFS_MAX_EXTENT_SIZE); 1622 old_size = new->end - new->start + 1; 1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1624 BTRFS_MAX_EXTENT_SIZE); 1625 1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1628 return; 1629 1630 spin_lock(&BTRFS_I(inode)->lock); 1631 BTRFS_I(inode)->outstanding_extents--; 1632 spin_unlock(&BTRFS_I(inode)->lock); 1633 } 1634 1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1636 struct inode *inode) 1637 { 1638 spin_lock(&root->delalloc_lock); 1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1641 &root->delalloc_inodes); 1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1643 &BTRFS_I(inode)->runtime_flags); 1644 root->nr_delalloc_inodes++; 1645 if (root->nr_delalloc_inodes == 1) { 1646 spin_lock(&root->fs_info->delalloc_root_lock); 1647 BUG_ON(!list_empty(&root->delalloc_root)); 1648 list_add_tail(&root->delalloc_root, 1649 &root->fs_info->delalloc_roots); 1650 spin_unlock(&root->fs_info->delalloc_root_lock); 1651 } 1652 } 1653 spin_unlock(&root->delalloc_lock); 1654 } 1655 1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1657 struct inode *inode) 1658 { 1659 spin_lock(&root->delalloc_lock); 1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1663 &BTRFS_I(inode)->runtime_flags); 1664 root->nr_delalloc_inodes--; 1665 if (!root->nr_delalloc_inodes) { 1666 spin_lock(&root->fs_info->delalloc_root_lock); 1667 BUG_ON(list_empty(&root->delalloc_root)); 1668 list_del_init(&root->delalloc_root); 1669 spin_unlock(&root->fs_info->delalloc_root_lock); 1670 } 1671 } 1672 spin_unlock(&root->delalloc_lock); 1673 } 1674 1675 /* 1676 * extent_io.c set_bit_hook, used to track delayed allocation 1677 * bytes in this file, and to maintain the list of inodes that 1678 * have pending delalloc work to be done. 1679 */ 1680 static void btrfs_set_bit_hook(struct inode *inode, 1681 struct extent_state *state, unsigned *bits) 1682 { 1683 1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1685 WARN_ON(1); 1686 /* 1687 * set_bit and clear bit hooks normally require _irqsave/restore 1688 * but in this case, we are only testing for the DELALLOC 1689 * bit, which is only set or cleared with irqs on 1690 */ 1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1692 struct btrfs_root *root = BTRFS_I(inode)->root; 1693 u64 len = state->end + 1 - state->start; 1694 bool do_list = !btrfs_is_free_space_inode(inode); 1695 1696 if (*bits & EXTENT_FIRST_DELALLOC) { 1697 *bits &= ~EXTENT_FIRST_DELALLOC; 1698 } else { 1699 spin_lock(&BTRFS_I(inode)->lock); 1700 BTRFS_I(inode)->outstanding_extents++; 1701 spin_unlock(&BTRFS_I(inode)->lock); 1702 } 1703 1704 /* For sanity tests */ 1705 if (btrfs_test_is_dummy_root(root)) 1706 return; 1707 1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1709 root->fs_info->delalloc_batch); 1710 spin_lock(&BTRFS_I(inode)->lock); 1711 BTRFS_I(inode)->delalloc_bytes += len; 1712 if (*bits & EXTENT_DEFRAG) 1713 BTRFS_I(inode)->defrag_bytes += len; 1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1715 &BTRFS_I(inode)->runtime_flags)) 1716 btrfs_add_delalloc_inodes(root, inode); 1717 spin_unlock(&BTRFS_I(inode)->lock); 1718 } 1719 } 1720 1721 /* 1722 * extent_io.c clear_bit_hook, see set_bit_hook for why 1723 */ 1724 static void btrfs_clear_bit_hook(struct inode *inode, 1725 struct extent_state *state, 1726 unsigned *bits) 1727 { 1728 u64 len = state->end + 1 - state->start; 1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1730 BTRFS_MAX_EXTENT_SIZE); 1731 1732 spin_lock(&BTRFS_I(inode)->lock); 1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1734 BTRFS_I(inode)->defrag_bytes -= len; 1735 spin_unlock(&BTRFS_I(inode)->lock); 1736 1737 /* 1738 * set_bit and clear bit hooks normally require _irqsave/restore 1739 * but in this case, we are only testing for the DELALLOC 1740 * bit, which is only set or cleared with irqs on 1741 */ 1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1743 struct btrfs_root *root = BTRFS_I(inode)->root; 1744 bool do_list = !btrfs_is_free_space_inode(inode); 1745 1746 if (*bits & EXTENT_FIRST_DELALLOC) { 1747 *bits &= ~EXTENT_FIRST_DELALLOC; 1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1749 spin_lock(&BTRFS_I(inode)->lock); 1750 BTRFS_I(inode)->outstanding_extents -= num_extents; 1751 spin_unlock(&BTRFS_I(inode)->lock); 1752 } 1753 1754 /* 1755 * We don't reserve metadata space for space cache inodes so we 1756 * don't need to call dellalloc_release_metadata if there is an 1757 * error. 1758 */ 1759 if (*bits & EXTENT_DO_ACCOUNTING && 1760 root != root->fs_info->tree_root) 1761 btrfs_delalloc_release_metadata(inode, len); 1762 1763 /* For sanity tests. */ 1764 if (btrfs_test_is_dummy_root(root)) 1765 return; 1766 1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1768 && do_list && !(state->state & EXTENT_NORESERVE)) 1769 btrfs_free_reserved_data_space(inode, len); 1770 1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1772 root->fs_info->delalloc_batch); 1773 spin_lock(&BTRFS_I(inode)->lock); 1774 BTRFS_I(inode)->delalloc_bytes -= len; 1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1777 &BTRFS_I(inode)->runtime_flags)) 1778 btrfs_del_delalloc_inode(root, inode); 1779 spin_unlock(&BTRFS_I(inode)->lock); 1780 } 1781 } 1782 1783 /* 1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1785 * we don't create bios that span stripes or chunks 1786 */ 1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1788 size_t size, struct bio *bio, 1789 unsigned long bio_flags) 1790 { 1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1793 u64 length = 0; 1794 u64 map_length; 1795 int ret; 1796 1797 if (bio_flags & EXTENT_BIO_COMPRESSED) 1798 return 0; 1799 1800 length = bio->bi_iter.bi_size; 1801 map_length = length; 1802 ret = btrfs_map_block(root->fs_info, rw, logical, 1803 &map_length, NULL, 0); 1804 /* Will always return 0 with map_multi == NULL */ 1805 BUG_ON(ret < 0); 1806 if (map_length < length + size) 1807 return 1; 1808 return 0; 1809 } 1810 1811 /* 1812 * in order to insert checksums into the metadata in large chunks, 1813 * we wait until bio submission time. All the pages in the bio are 1814 * checksummed and sums are attached onto the ordered extent record. 1815 * 1816 * At IO completion time the cums attached on the ordered extent record 1817 * are inserted into the btree 1818 */ 1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1820 struct bio *bio, int mirror_num, 1821 unsigned long bio_flags, 1822 u64 bio_offset) 1823 { 1824 struct btrfs_root *root = BTRFS_I(inode)->root; 1825 int ret = 0; 1826 1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1828 BUG_ON(ret); /* -ENOMEM */ 1829 return 0; 1830 } 1831 1832 /* 1833 * in order to insert checksums into the metadata in large chunks, 1834 * we wait until bio submission time. All the pages in the bio are 1835 * checksummed and sums are attached onto the ordered extent record. 1836 * 1837 * At IO completion time the cums attached on the ordered extent record 1838 * are inserted into the btree 1839 */ 1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1841 int mirror_num, unsigned long bio_flags, 1842 u64 bio_offset) 1843 { 1844 struct btrfs_root *root = BTRFS_I(inode)->root; 1845 int ret; 1846 1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1848 if (ret) 1849 bio_endio(bio, ret); 1850 return ret; 1851 } 1852 1853 /* 1854 * extent_io.c submission hook. This does the right thing for csum calculation 1855 * on write, or reading the csums from the tree before a read 1856 */ 1857 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1858 int mirror_num, unsigned long bio_flags, 1859 u64 bio_offset) 1860 { 1861 struct btrfs_root *root = BTRFS_I(inode)->root; 1862 int ret = 0; 1863 int skip_sum; 1864 int metadata = 0; 1865 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1866 1867 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1868 1869 if (btrfs_is_free_space_inode(inode)) 1870 metadata = 2; 1871 1872 if (!(rw & REQ_WRITE)) { 1873 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1874 if (ret) 1875 goto out; 1876 1877 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1878 ret = btrfs_submit_compressed_read(inode, bio, 1879 mirror_num, 1880 bio_flags); 1881 goto out; 1882 } else if (!skip_sum) { 1883 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1884 if (ret) 1885 goto out; 1886 } 1887 goto mapit; 1888 } else if (async && !skip_sum) { 1889 /* csum items have already been cloned */ 1890 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1891 goto mapit; 1892 /* we're doing a write, do the async checksumming */ 1893 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1894 inode, rw, bio, mirror_num, 1895 bio_flags, bio_offset, 1896 __btrfs_submit_bio_start, 1897 __btrfs_submit_bio_done); 1898 goto out; 1899 } else if (!skip_sum) { 1900 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1901 if (ret) 1902 goto out; 1903 } 1904 1905 mapit: 1906 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1907 1908 out: 1909 if (ret < 0) 1910 bio_endio(bio, ret); 1911 return ret; 1912 } 1913 1914 /* 1915 * given a list of ordered sums record them in the inode. This happens 1916 * at IO completion time based on sums calculated at bio submission time. 1917 */ 1918 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1919 struct inode *inode, u64 file_offset, 1920 struct list_head *list) 1921 { 1922 struct btrfs_ordered_sum *sum; 1923 1924 list_for_each_entry(sum, list, list) { 1925 trans->adding_csums = 1; 1926 btrfs_csum_file_blocks(trans, 1927 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1928 trans->adding_csums = 0; 1929 } 1930 return 0; 1931 } 1932 1933 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1934 struct extent_state **cached_state) 1935 { 1936 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1937 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1938 cached_state, GFP_NOFS); 1939 } 1940 1941 /* see btrfs_writepage_start_hook for details on why this is required */ 1942 struct btrfs_writepage_fixup { 1943 struct page *page; 1944 struct btrfs_work work; 1945 }; 1946 1947 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1948 { 1949 struct btrfs_writepage_fixup *fixup; 1950 struct btrfs_ordered_extent *ordered; 1951 struct extent_state *cached_state = NULL; 1952 struct page *page; 1953 struct inode *inode; 1954 u64 page_start; 1955 u64 page_end; 1956 int ret; 1957 1958 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1959 page = fixup->page; 1960 again: 1961 lock_page(page); 1962 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1963 ClearPageChecked(page); 1964 goto out_page; 1965 } 1966 1967 inode = page->mapping->host; 1968 page_start = page_offset(page); 1969 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1970 1971 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1972 &cached_state); 1973 1974 /* already ordered? We're done */ 1975 if (PagePrivate2(page)) 1976 goto out; 1977 1978 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1979 if (ordered) { 1980 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1981 page_end, &cached_state, GFP_NOFS); 1982 unlock_page(page); 1983 btrfs_start_ordered_extent(inode, ordered, 1); 1984 btrfs_put_ordered_extent(ordered); 1985 goto again; 1986 } 1987 1988 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1989 if (ret) { 1990 mapping_set_error(page->mapping, ret); 1991 end_extent_writepage(page, ret, page_start, page_end); 1992 ClearPageChecked(page); 1993 goto out; 1994 } 1995 1996 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1997 ClearPageChecked(page); 1998 set_page_dirty(page); 1999 out: 2000 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2001 &cached_state, GFP_NOFS); 2002 out_page: 2003 unlock_page(page); 2004 page_cache_release(page); 2005 kfree(fixup); 2006 } 2007 2008 /* 2009 * There are a few paths in the higher layers of the kernel that directly 2010 * set the page dirty bit without asking the filesystem if it is a 2011 * good idea. This causes problems because we want to make sure COW 2012 * properly happens and the data=ordered rules are followed. 2013 * 2014 * In our case any range that doesn't have the ORDERED bit set 2015 * hasn't been properly setup for IO. We kick off an async process 2016 * to fix it up. The async helper will wait for ordered extents, set 2017 * the delalloc bit and make it safe to write the page. 2018 */ 2019 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2020 { 2021 struct inode *inode = page->mapping->host; 2022 struct btrfs_writepage_fixup *fixup; 2023 struct btrfs_root *root = BTRFS_I(inode)->root; 2024 2025 /* this page is properly in the ordered list */ 2026 if (TestClearPagePrivate2(page)) 2027 return 0; 2028 2029 if (PageChecked(page)) 2030 return -EAGAIN; 2031 2032 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2033 if (!fixup) 2034 return -EAGAIN; 2035 2036 SetPageChecked(page); 2037 page_cache_get(page); 2038 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2039 btrfs_writepage_fixup_worker, NULL, NULL); 2040 fixup->page = page; 2041 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2042 return -EBUSY; 2043 } 2044 2045 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2046 struct inode *inode, u64 file_pos, 2047 u64 disk_bytenr, u64 disk_num_bytes, 2048 u64 num_bytes, u64 ram_bytes, 2049 u8 compression, u8 encryption, 2050 u16 other_encoding, int extent_type) 2051 { 2052 struct btrfs_root *root = BTRFS_I(inode)->root; 2053 struct btrfs_file_extent_item *fi; 2054 struct btrfs_path *path; 2055 struct extent_buffer *leaf; 2056 struct btrfs_key ins; 2057 int extent_inserted = 0; 2058 int ret; 2059 2060 path = btrfs_alloc_path(); 2061 if (!path) 2062 return -ENOMEM; 2063 2064 /* 2065 * we may be replacing one extent in the tree with another. 2066 * The new extent is pinned in the extent map, and we don't want 2067 * to drop it from the cache until it is completely in the btree. 2068 * 2069 * So, tell btrfs_drop_extents to leave this extent in the cache. 2070 * the caller is expected to unpin it and allow it to be merged 2071 * with the others. 2072 */ 2073 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2074 file_pos + num_bytes, NULL, 0, 2075 1, sizeof(*fi), &extent_inserted); 2076 if (ret) 2077 goto out; 2078 2079 if (!extent_inserted) { 2080 ins.objectid = btrfs_ino(inode); 2081 ins.offset = file_pos; 2082 ins.type = BTRFS_EXTENT_DATA_KEY; 2083 2084 path->leave_spinning = 1; 2085 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2086 sizeof(*fi)); 2087 if (ret) 2088 goto out; 2089 } 2090 leaf = path->nodes[0]; 2091 fi = btrfs_item_ptr(leaf, path->slots[0], 2092 struct btrfs_file_extent_item); 2093 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2094 btrfs_set_file_extent_type(leaf, fi, extent_type); 2095 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2096 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2097 btrfs_set_file_extent_offset(leaf, fi, 0); 2098 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2099 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2100 btrfs_set_file_extent_compression(leaf, fi, compression); 2101 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2102 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2103 2104 btrfs_mark_buffer_dirty(leaf); 2105 btrfs_release_path(path); 2106 2107 inode_add_bytes(inode, num_bytes); 2108 2109 ins.objectid = disk_bytenr; 2110 ins.offset = disk_num_bytes; 2111 ins.type = BTRFS_EXTENT_ITEM_KEY; 2112 ret = btrfs_alloc_reserved_file_extent(trans, root, 2113 root->root_key.objectid, 2114 btrfs_ino(inode), file_pos, &ins); 2115 out: 2116 btrfs_free_path(path); 2117 2118 return ret; 2119 } 2120 2121 /* snapshot-aware defrag */ 2122 struct sa_defrag_extent_backref { 2123 struct rb_node node; 2124 struct old_sa_defrag_extent *old; 2125 u64 root_id; 2126 u64 inum; 2127 u64 file_pos; 2128 u64 extent_offset; 2129 u64 num_bytes; 2130 u64 generation; 2131 }; 2132 2133 struct old_sa_defrag_extent { 2134 struct list_head list; 2135 struct new_sa_defrag_extent *new; 2136 2137 u64 extent_offset; 2138 u64 bytenr; 2139 u64 offset; 2140 u64 len; 2141 int count; 2142 }; 2143 2144 struct new_sa_defrag_extent { 2145 struct rb_root root; 2146 struct list_head head; 2147 struct btrfs_path *path; 2148 struct inode *inode; 2149 u64 file_pos; 2150 u64 len; 2151 u64 bytenr; 2152 u64 disk_len; 2153 u8 compress_type; 2154 }; 2155 2156 static int backref_comp(struct sa_defrag_extent_backref *b1, 2157 struct sa_defrag_extent_backref *b2) 2158 { 2159 if (b1->root_id < b2->root_id) 2160 return -1; 2161 else if (b1->root_id > b2->root_id) 2162 return 1; 2163 2164 if (b1->inum < b2->inum) 2165 return -1; 2166 else if (b1->inum > b2->inum) 2167 return 1; 2168 2169 if (b1->file_pos < b2->file_pos) 2170 return -1; 2171 else if (b1->file_pos > b2->file_pos) 2172 return 1; 2173 2174 /* 2175 * [------------------------------] ===> (a range of space) 2176 * |<--->| |<---->| =============> (fs/file tree A) 2177 * |<---------------------------->| ===> (fs/file tree B) 2178 * 2179 * A range of space can refer to two file extents in one tree while 2180 * refer to only one file extent in another tree. 2181 * 2182 * So we may process a disk offset more than one time(two extents in A) 2183 * and locate at the same extent(one extent in B), then insert two same 2184 * backrefs(both refer to the extent in B). 2185 */ 2186 return 0; 2187 } 2188 2189 static void backref_insert(struct rb_root *root, 2190 struct sa_defrag_extent_backref *backref) 2191 { 2192 struct rb_node **p = &root->rb_node; 2193 struct rb_node *parent = NULL; 2194 struct sa_defrag_extent_backref *entry; 2195 int ret; 2196 2197 while (*p) { 2198 parent = *p; 2199 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2200 2201 ret = backref_comp(backref, entry); 2202 if (ret < 0) 2203 p = &(*p)->rb_left; 2204 else 2205 p = &(*p)->rb_right; 2206 } 2207 2208 rb_link_node(&backref->node, parent, p); 2209 rb_insert_color(&backref->node, root); 2210 } 2211 2212 /* 2213 * Note the backref might has changed, and in this case we just return 0. 2214 */ 2215 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2216 void *ctx) 2217 { 2218 struct btrfs_file_extent_item *extent; 2219 struct btrfs_fs_info *fs_info; 2220 struct old_sa_defrag_extent *old = ctx; 2221 struct new_sa_defrag_extent *new = old->new; 2222 struct btrfs_path *path = new->path; 2223 struct btrfs_key key; 2224 struct btrfs_root *root; 2225 struct sa_defrag_extent_backref *backref; 2226 struct extent_buffer *leaf; 2227 struct inode *inode = new->inode; 2228 int slot; 2229 int ret; 2230 u64 extent_offset; 2231 u64 num_bytes; 2232 2233 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2234 inum == btrfs_ino(inode)) 2235 return 0; 2236 2237 key.objectid = root_id; 2238 key.type = BTRFS_ROOT_ITEM_KEY; 2239 key.offset = (u64)-1; 2240 2241 fs_info = BTRFS_I(inode)->root->fs_info; 2242 root = btrfs_read_fs_root_no_name(fs_info, &key); 2243 if (IS_ERR(root)) { 2244 if (PTR_ERR(root) == -ENOENT) 2245 return 0; 2246 WARN_ON(1); 2247 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2248 inum, offset, root_id); 2249 return PTR_ERR(root); 2250 } 2251 2252 key.objectid = inum; 2253 key.type = BTRFS_EXTENT_DATA_KEY; 2254 if (offset > (u64)-1 << 32) 2255 key.offset = 0; 2256 else 2257 key.offset = offset; 2258 2259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2260 if (WARN_ON(ret < 0)) 2261 return ret; 2262 ret = 0; 2263 2264 while (1) { 2265 cond_resched(); 2266 2267 leaf = path->nodes[0]; 2268 slot = path->slots[0]; 2269 2270 if (slot >= btrfs_header_nritems(leaf)) { 2271 ret = btrfs_next_leaf(root, path); 2272 if (ret < 0) { 2273 goto out; 2274 } else if (ret > 0) { 2275 ret = 0; 2276 goto out; 2277 } 2278 continue; 2279 } 2280 2281 path->slots[0]++; 2282 2283 btrfs_item_key_to_cpu(leaf, &key, slot); 2284 2285 if (key.objectid > inum) 2286 goto out; 2287 2288 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2289 continue; 2290 2291 extent = btrfs_item_ptr(leaf, slot, 2292 struct btrfs_file_extent_item); 2293 2294 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2295 continue; 2296 2297 /* 2298 * 'offset' refers to the exact key.offset, 2299 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2300 * (key.offset - extent_offset). 2301 */ 2302 if (key.offset != offset) 2303 continue; 2304 2305 extent_offset = btrfs_file_extent_offset(leaf, extent); 2306 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2307 2308 if (extent_offset >= old->extent_offset + old->offset + 2309 old->len || extent_offset + num_bytes <= 2310 old->extent_offset + old->offset) 2311 continue; 2312 break; 2313 } 2314 2315 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2316 if (!backref) { 2317 ret = -ENOENT; 2318 goto out; 2319 } 2320 2321 backref->root_id = root_id; 2322 backref->inum = inum; 2323 backref->file_pos = offset; 2324 backref->num_bytes = num_bytes; 2325 backref->extent_offset = extent_offset; 2326 backref->generation = btrfs_file_extent_generation(leaf, extent); 2327 backref->old = old; 2328 backref_insert(&new->root, backref); 2329 old->count++; 2330 out: 2331 btrfs_release_path(path); 2332 WARN_ON(ret); 2333 return ret; 2334 } 2335 2336 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2337 struct new_sa_defrag_extent *new) 2338 { 2339 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2340 struct old_sa_defrag_extent *old, *tmp; 2341 int ret; 2342 2343 new->path = path; 2344 2345 list_for_each_entry_safe(old, tmp, &new->head, list) { 2346 ret = iterate_inodes_from_logical(old->bytenr + 2347 old->extent_offset, fs_info, 2348 path, record_one_backref, 2349 old); 2350 if (ret < 0 && ret != -ENOENT) 2351 return false; 2352 2353 /* no backref to be processed for this extent */ 2354 if (!old->count) { 2355 list_del(&old->list); 2356 kfree(old); 2357 } 2358 } 2359 2360 if (list_empty(&new->head)) 2361 return false; 2362 2363 return true; 2364 } 2365 2366 static int relink_is_mergable(struct extent_buffer *leaf, 2367 struct btrfs_file_extent_item *fi, 2368 struct new_sa_defrag_extent *new) 2369 { 2370 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2371 return 0; 2372 2373 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2374 return 0; 2375 2376 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2377 return 0; 2378 2379 if (btrfs_file_extent_encryption(leaf, fi) || 2380 btrfs_file_extent_other_encoding(leaf, fi)) 2381 return 0; 2382 2383 return 1; 2384 } 2385 2386 /* 2387 * Note the backref might has changed, and in this case we just return 0. 2388 */ 2389 static noinline int relink_extent_backref(struct btrfs_path *path, 2390 struct sa_defrag_extent_backref *prev, 2391 struct sa_defrag_extent_backref *backref) 2392 { 2393 struct btrfs_file_extent_item *extent; 2394 struct btrfs_file_extent_item *item; 2395 struct btrfs_ordered_extent *ordered; 2396 struct btrfs_trans_handle *trans; 2397 struct btrfs_fs_info *fs_info; 2398 struct btrfs_root *root; 2399 struct btrfs_key key; 2400 struct extent_buffer *leaf; 2401 struct old_sa_defrag_extent *old = backref->old; 2402 struct new_sa_defrag_extent *new = old->new; 2403 struct inode *src_inode = new->inode; 2404 struct inode *inode; 2405 struct extent_state *cached = NULL; 2406 int ret = 0; 2407 u64 start; 2408 u64 len; 2409 u64 lock_start; 2410 u64 lock_end; 2411 bool merge = false; 2412 int index; 2413 2414 if (prev && prev->root_id == backref->root_id && 2415 prev->inum == backref->inum && 2416 prev->file_pos + prev->num_bytes == backref->file_pos) 2417 merge = true; 2418 2419 /* step 1: get root */ 2420 key.objectid = backref->root_id; 2421 key.type = BTRFS_ROOT_ITEM_KEY; 2422 key.offset = (u64)-1; 2423 2424 fs_info = BTRFS_I(src_inode)->root->fs_info; 2425 index = srcu_read_lock(&fs_info->subvol_srcu); 2426 2427 root = btrfs_read_fs_root_no_name(fs_info, &key); 2428 if (IS_ERR(root)) { 2429 srcu_read_unlock(&fs_info->subvol_srcu, index); 2430 if (PTR_ERR(root) == -ENOENT) 2431 return 0; 2432 return PTR_ERR(root); 2433 } 2434 2435 if (btrfs_root_readonly(root)) { 2436 srcu_read_unlock(&fs_info->subvol_srcu, index); 2437 return 0; 2438 } 2439 2440 /* step 2: get inode */ 2441 key.objectid = backref->inum; 2442 key.type = BTRFS_INODE_ITEM_KEY; 2443 key.offset = 0; 2444 2445 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2446 if (IS_ERR(inode)) { 2447 srcu_read_unlock(&fs_info->subvol_srcu, index); 2448 return 0; 2449 } 2450 2451 srcu_read_unlock(&fs_info->subvol_srcu, index); 2452 2453 /* step 3: relink backref */ 2454 lock_start = backref->file_pos; 2455 lock_end = backref->file_pos + backref->num_bytes - 1; 2456 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2457 0, &cached); 2458 2459 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2460 if (ordered) { 2461 btrfs_put_ordered_extent(ordered); 2462 goto out_unlock; 2463 } 2464 2465 trans = btrfs_join_transaction(root); 2466 if (IS_ERR(trans)) { 2467 ret = PTR_ERR(trans); 2468 goto out_unlock; 2469 } 2470 2471 key.objectid = backref->inum; 2472 key.type = BTRFS_EXTENT_DATA_KEY; 2473 key.offset = backref->file_pos; 2474 2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2476 if (ret < 0) { 2477 goto out_free_path; 2478 } else if (ret > 0) { 2479 ret = 0; 2480 goto out_free_path; 2481 } 2482 2483 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2484 struct btrfs_file_extent_item); 2485 2486 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2487 backref->generation) 2488 goto out_free_path; 2489 2490 btrfs_release_path(path); 2491 2492 start = backref->file_pos; 2493 if (backref->extent_offset < old->extent_offset + old->offset) 2494 start += old->extent_offset + old->offset - 2495 backref->extent_offset; 2496 2497 len = min(backref->extent_offset + backref->num_bytes, 2498 old->extent_offset + old->offset + old->len); 2499 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2500 2501 ret = btrfs_drop_extents(trans, root, inode, start, 2502 start + len, 1); 2503 if (ret) 2504 goto out_free_path; 2505 again: 2506 key.objectid = btrfs_ino(inode); 2507 key.type = BTRFS_EXTENT_DATA_KEY; 2508 key.offset = start; 2509 2510 path->leave_spinning = 1; 2511 if (merge) { 2512 struct btrfs_file_extent_item *fi; 2513 u64 extent_len; 2514 struct btrfs_key found_key; 2515 2516 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2517 if (ret < 0) 2518 goto out_free_path; 2519 2520 path->slots[0]--; 2521 leaf = path->nodes[0]; 2522 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2523 2524 fi = btrfs_item_ptr(leaf, path->slots[0], 2525 struct btrfs_file_extent_item); 2526 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2527 2528 if (extent_len + found_key.offset == start && 2529 relink_is_mergable(leaf, fi, new)) { 2530 btrfs_set_file_extent_num_bytes(leaf, fi, 2531 extent_len + len); 2532 btrfs_mark_buffer_dirty(leaf); 2533 inode_add_bytes(inode, len); 2534 2535 ret = 1; 2536 goto out_free_path; 2537 } else { 2538 merge = false; 2539 btrfs_release_path(path); 2540 goto again; 2541 } 2542 } 2543 2544 ret = btrfs_insert_empty_item(trans, root, path, &key, 2545 sizeof(*extent)); 2546 if (ret) { 2547 btrfs_abort_transaction(trans, root, ret); 2548 goto out_free_path; 2549 } 2550 2551 leaf = path->nodes[0]; 2552 item = btrfs_item_ptr(leaf, path->slots[0], 2553 struct btrfs_file_extent_item); 2554 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2555 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2556 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2557 btrfs_set_file_extent_num_bytes(leaf, item, len); 2558 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2559 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2560 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2561 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2562 btrfs_set_file_extent_encryption(leaf, item, 0); 2563 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2564 2565 btrfs_mark_buffer_dirty(leaf); 2566 inode_add_bytes(inode, len); 2567 btrfs_release_path(path); 2568 2569 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2570 new->disk_len, 0, 2571 backref->root_id, backref->inum, 2572 new->file_pos, 0); /* start - extent_offset */ 2573 if (ret) { 2574 btrfs_abort_transaction(trans, root, ret); 2575 goto out_free_path; 2576 } 2577 2578 ret = 1; 2579 out_free_path: 2580 btrfs_release_path(path); 2581 path->leave_spinning = 0; 2582 btrfs_end_transaction(trans, root); 2583 out_unlock: 2584 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2585 &cached, GFP_NOFS); 2586 iput(inode); 2587 return ret; 2588 } 2589 2590 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2591 { 2592 struct old_sa_defrag_extent *old, *tmp; 2593 2594 if (!new) 2595 return; 2596 2597 list_for_each_entry_safe(old, tmp, &new->head, list) { 2598 list_del(&old->list); 2599 kfree(old); 2600 } 2601 kfree(new); 2602 } 2603 2604 static void relink_file_extents(struct new_sa_defrag_extent *new) 2605 { 2606 struct btrfs_path *path; 2607 struct sa_defrag_extent_backref *backref; 2608 struct sa_defrag_extent_backref *prev = NULL; 2609 struct inode *inode; 2610 struct btrfs_root *root; 2611 struct rb_node *node; 2612 int ret; 2613 2614 inode = new->inode; 2615 root = BTRFS_I(inode)->root; 2616 2617 path = btrfs_alloc_path(); 2618 if (!path) 2619 return; 2620 2621 if (!record_extent_backrefs(path, new)) { 2622 btrfs_free_path(path); 2623 goto out; 2624 } 2625 btrfs_release_path(path); 2626 2627 while (1) { 2628 node = rb_first(&new->root); 2629 if (!node) 2630 break; 2631 rb_erase(node, &new->root); 2632 2633 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2634 2635 ret = relink_extent_backref(path, prev, backref); 2636 WARN_ON(ret < 0); 2637 2638 kfree(prev); 2639 2640 if (ret == 1) 2641 prev = backref; 2642 else 2643 prev = NULL; 2644 cond_resched(); 2645 } 2646 kfree(prev); 2647 2648 btrfs_free_path(path); 2649 out: 2650 free_sa_defrag_extent(new); 2651 2652 atomic_dec(&root->fs_info->defrag_running); 2653 wake_up(&root->fs_info->transaction_wait); 2654 } 2655 2656 static struct new_sa_defrag_extent * 2657 record_old_file_extents(struct inode *inode, 2658 struct btrfs_ordered_extent *ordered) 2659 { 2660 struct btrfs_root *root = BTRFS_I(inode)->root; 2661 struct btrfs_path *path; 2662 struct btrfs_key key; 2663 struct old_sa_defrag_extent *old; 2664 struct new_sa_defrag_extent *new; 2665 int ret; 2666 2667 new = kmalloc(sizeof(*new), GFP_NOFS); 2668 if (!new) 2669 return NULL; 2670 2671 new->inode = inode; 2672 new->file_pos = ordered->file_offset; 2673 new->len = ordered->len; 2674 new->bytenr = ordered->start; 2675 new->disk_len = ordered->disk_len; 2676 new->compress_type = ordered->compress_type; 2677 new->root = RB_ROOT; 2678 INIT_LIST_HEAD(&new->head); 2679 2680 path = btrfs_alloc_path(); 2681 if (!path) 2682 goto out_kfree; 2683 2684 key.objectid = btrfs_ino(inode); 2685 key.type = BTRFS_EXTENT_DATA_KEY; 2686 key.offset = new->file_pos; 2687 2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2689 if (ret < 0) 2690 goto out_free_path; 2691 if (ret > 0 && path->slots[0] > 0) 2692 path->slots[0]--; 2693 2694 /* find out all the old extents for the file range */ 2695 while (1) { 2696 struct btrfs_file_extent_item *extent; 2697 struct extent_buffer *l; 2698 int slot; 2699 u64 num_bytes; 2700 u64 offset; 2701 u64 end; 2702 u64 disk_bytenr; 2703 u64 extent_offset; 2704 2705 l = path->nodes[0]; 2706 slot = path->slots[0]; 2707 2708 if (slot >= btrfs_header_nritems(l)) { 2709 ret = btrfs_next_leaf(root, path); 2710 if (ret < 0) 2711 goto out_free_path; 2712 else if (ret > 0) 2713 break; 2714 continue; 2715 } 2716 2717 btrfs_item_key_to_cpu(l, &key, slot); 2718 2719 if (key.objectid != btrfs_ino(inode)) 2720 break; 2721 if (key.type != BTRFS_EXTENT_DATA_KEY) 2722 break; 2723 if (key.offset >= new->file_pos + new->len) 2724 break; 2725 2726 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2727 2728 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2729 if (key.offset + num_bytes < new->file_pos) 2730 goto next; 2731 2732 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2733 if (!disk_bytenr) 2734 goto next; 2735 2736 extent_offset = btrfs_file_extent_offset(l, extent); 2737 2738 old = kmalloc(sizeof(*old), GFP_NOFS); 2739 if (!old) 2740 goto out_free_path; 2741 2742 offset = max(new->file_pos, key.offset); 2743 end = min(new->file_pos + new->len, key.offset + num_bytes); 2744 2745 old->bytenr = disk_bytenr; 2746 old->extent_offset = extent_offset; 2747 old->offset = offset - key.offset; 2748 old->len = end - offset; 2749 old->new = new; 2750 old->count = 0; 2751 list_add_tail(&old->list, &new->head); 2752 next: 2753 path->slots[0]++; 2754 cond_resched(); 2755 } 2756 2757 btrfs_free_path(path); 2758 atomic_inc(&root->fs_info->defrag_running); 2759 2760 return new; 2761 2762 out_free_path: 2763 btrfs_free_path(path); 2764 out_kfree: 2765 free_sa_defrag_extent(new); 2766 return NULL; 2767 } 2768 2769 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2770 u64 start, u64 len) 2771 { 2772 struct btrfs_block_group_cache *cache; 2773 2774 cache = btrfs_lookup_block_group(root->fs_info, start); 2775 ASSERT(cache); 2776 2777 spin_lock(&cache->lock); 2778 cache->delalloc_bytes -= len; 2779 spin_unlock(&cache->lock); 2780 2781 btrfs_put_block_group(cache); 2782 } 2783 2784 /* as ordered data IO finishes, this gets called so we can finish 2785 * an ordered extent if the range of bytes in the file it covers are 2786 * fully written. 2787 */ 2788 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2789 { 2790 struct inode *inode = ordered_extent->inode; 2791 struct btrfs_root *root = BTRFS_I(inode)->root; 2792 struct btrfs_trans_handle *trans = NULL; 2793 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2794 struct extent_state *cached_state = NULL; 2795 struct new_sa_defrag_extent *new = NULL; 2796 int compress_type = 0; 2797 int ret = 0; 2798 u64 logical_len = ordered_extent->len; 2799 bool nolock; 2800 bool truncated = false; 2801 2802 nolock = btrfs_is_free_space_inode(inode); 2803 2804 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2805 ret = -EIO; 2806 goto out; 2807 } 2808 2809 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2810 ordered_extent->file_offset + 2811 ordered_extent->len - 1); 2812 2813 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2814 truncated = true; 2815 logical_len = ordered_extent->truncated_len; 2816 /* Truncated the entire extent, don't bother adding */ 2817 if (!logical_len) 2818 goto out; 2819 } 2820 2821 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2822 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2823 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2824 if (nolock) 2825 trans = btrfs_join_transaction_nolock(root); 2826 else 2827 trans = btrfs_join_transaction(root); 2828 if (IS_ERR(trans)) { 2829 ret = PTR_ERR(trans); 2830 trans = NULL; 2831 goto out; 2832 } 2833 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2834 ret = btrfs_update_inode_fallback(trans, root, inode); 2835 if (ret) /* -ENOMEM or corruption */ 2836 btrfs_abort_transaction(trans, root, ret); 2837 goto out; 2838 } 2839 2840 lock_extent_bits(io_tree, ordered_extent->file_offset, 2841 ordered_extent->file_offset + ordered_extent->len - 1, 2842 0, &cached_state); 2843 2844 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2845 ordered_extent->file_offset + ordered_extent->len - 1, 2846 EXTENT_DEFRAG, 1, cached_state); 2847 if (ret) { 2848 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2849 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2850 /* the inode is shared */ 2851 new = record_old_file_extents(inode, ordered_extent); 2852 2853 clear_extent_bit(io_tree, ordered_extent->file_offset, 2854 ordered_extent->file_offset + ordered_extent->len - 1, 2855 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2856 } 2857 2858 if (nolock) 2859 trans = btrfs_join_transaction_nolock(root); 2860 else 2861 trans = btrfs_join_transaction(root); 2862 if (IS_ERR(trans)) { 2863 ret = PTR_ERR(trans); 2864 trans = NULL; 2865 goto out_unlock; 2866 } 2867 2868 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2869 2870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2871 compress_type = ordered_extent->compress_type; 2872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2873 BUG_ON(compress_type); 2874 ret = btrfs_mark_extent_written(trans, inode, 2875 ordered_extent->file_offset, 2876 ordered_extent->file_offset + 2877 logical_len); 2878 } else { 2879 BUG_ON(root == root->fs_info->tree_root); 2880 ret = insert_reserved_file_extent(trans, inode, 2881 ordered_extent->file_offset, 2882 ordered_extent->start, 2883 ordered_extent->disk_len, 2884 logical_len, logical_len, 2885 compress_type, 0, 0, 2886 BTRFS_FILE_EXTENT_REG); 2887 if (!ret) 2888 btrfs_release_delalloc_bytes(root, 2889 ordered_extent->start, 2890 ordered_extent->disk_len); 2891 } 2892 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2893 ordered_extent->file_offset, ordered_extent->len, 2894 trans->transid); 2895 if (ret < 0) { 2896 btrfs_abort_transaction(trans, root, ret); 2897 goto out_unlock; 2898 } 2899 2900 add_pending_csums(trans, inode, ordered_extent->file_offset, 2901 &ordered_extent->list); 2902 2903 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2904 ret = btrfs_update_inode_fallback(trans, root, inode); 2905 if (ret) { /* -ENOMEM or corruption */ 2906 btrfs_abort_transaction(trans, root, ret); 2907 goto out_unlock; 2908 } 2909 ret = 0; 2910 out_unlock: 2911 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2912 ordered_extent->file_offset + 2913 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2914 out: 2915 if (root != root->fs_info->tree_root) 2916 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2917 if (trans) 2918 btrfs_end_transaction(trans, root); 2919 2920 if (ret || truncated) { 2921 u64 start, end; 2922 2923 if (truncated) 2924 start = ordered_extent->file_offset + logical_len; 2925 else 2926 start = ordered_extent->file_offset; 2927 end = ordered_extent->file_offset + ordered_extent->len - 1; 2928 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2929 2930 /* Drop the cache for the part of the extent we didn't write. */ 2931 btrfs_drop_extent_cache(inode, start, end, 0); 2932 2933 /* 2934 * If the ordered extent had an IOERR or something else went 2935 * wrong we need to return the space for this ordered extent 2936 * back to the allocator. We only free the extent in the 2937 * truncated case if we didn't write out the extent at all. 2938 */ 2939 if ((ret || !logical_len) && 2940 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2941 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2942 btrfs_free_reserved_extent(root, ordered_extent->start, 2943 ordered_extent->disk_len, 1); 2944 } 2945 2946 2947 /* 2948 * This needs to be done to make sure anybody waiting knows we are done 2949 * updating everything for this ordered extent. 2950 */ 2951 btrfs_remove_ordered_extent(inode, ordered_extent); 2952 2953 /* for snapshot-aware defrag */ 2954 if (new) { 2955 if (ret) { 2956 free_sa_defrag_extent(new); 2957 atomic_dec(&root->fs_info->defrag_running); 2958 } else { 2959 relink_file_extents(new); 2960 } 2961 } 2962 2963 /* once for us */ 2964 btrfs_put_ordered_extent(ordered_extent); 2965 /* once for the tree */ 2966 btrfs_put_ordered_extent(ordered_extent); 2967 2968 return ret; 2969 } 2970 2971 static void finish_ordered_fn(struct btrfs_work *work) 2972 { 2973 struct btrfs_ordered_extent *ordered_extent; 2974 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2975 btrfs_finish_ordered_io(ordered_extent); 2976 } 2977 2978 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2979 struct extent_state *state, int uptodate) 2980 { 2981 struct inode *inode = page->mapping->host; 2982 struct btrfs_root *root = BTRFS_I(inode)->root; 2983 struct btrfs_ordered_extent *ordered_extent = NULL; 2984 struct btrfs_workqueue *wq; 2985 btrfs_work_func_t func; 2986 2987 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2988 2989 ClearPagePrivate2(page); 2990 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2991 end - start + 1, uptodate)) 2992 return 0; 2993 2994 if (btrfs_is_free_space_inode(inode)) { 2995 wq = root->fs_info->endio_freespace_worker; 2996 func = btrfs_freespace_write_helper; 2997 } else { 2998 wq = root->fs_info->endio_write_workers; 2999 func = btrfs_endio_write_helper; 3000 } 3001 3002 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3003 NULL); 3004 btrfs_queue_work(wq, &ordered_extent->work); 3005 3006 return 0; 3007 } 3008 3009 static int __readpage_endio_check(struct inode *inode, 3010 struct btrfs_io_bio *io_bio, 3011 int icsum, struct page *page, 3012 int pgoff, u64 start, size_t len) 3013 { 3014 char *kaddr; 3015 u32 csum_expected; 3016 u32 csum = ~(u32)0; 3017 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 3018 DEFAULT_RATELIMIT_BURST); 3019 3020 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3021 3022 kaddr = kmap_atomic(page); 3023 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3024 btrfs_csum_final(csum, (char *)&csum); 3025 if (csum != csum_expected) 3026 goto zeroit; 3027 3028 kunmap_atomic(kaddr); 3029 return 0; 3030 zeroit: 3031 if (__ratelimit(&_rs)) 3032 btrfs_warn(BTRFS_I(inode)->root->fs_info, 3033 "csum failed ino %llu off %llu csum %u expected csum %u", 3034 btrfs_ino(inode), start, csum, csum_expected); 3035 memset(kaddr + pgoff, 1, len); 3036 flush_dcache_page(page); 3037 kunmap_atomic(kaddr); 3038 if (csum_expected == 0) 3039 return 0; 3040 return -EIO; 3041 } 3042 3043 /* 3044 * when reads are done, we need to check csums to verify the data is correct 3045 * if there's a match, we allow the bio to finish. If not, the code in 3046 * extent_io.c will try to find good copies for us. 3047 */ 3048 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3049 u64 phy_offset, struct page *page, 3050 u64 start, u64 end, int mirror) 3051 { 3052 size_t offset = start - page_offset(page); 3053 struct inode *inode = page->mapping->host; 3054 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3055 struct btrfs_root *root = BTRFS_I(inode)->root; 3056 3057 if (PageChecked(page)) { 3058 ClearPageChecked(page); 3059 return 0; 3060 } 3061 3062 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3063 return 0; 3064 3065 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3066 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3067 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3068 GFP_NOFS); 3069 return 0; 3070 } 3071 3072 phy_offset >>= inode->i_sb->s_blocksize_bits; 3073 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3074 start, (size_t)(end - start + 1)); 3075 } 3076 3077 struct delayed_iput { 3078 struct list_head list; 3079 struct inode *inode; 3080 }; 3081 3082 /* JDM: If this is fs-wide, why can't we add a pointer to 3083 * btrfs_inode instead and avoid the allocation? */ 3084 void btrfs_add_delayed_iput(struct inode *inode) 3085 { 3086 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3087 struct delayed_iput *delayed; 3088 3089 if (atomic_add_unless(&inode->i_count, -1, 1)) 3090 return; 3091 3092 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 3093 delayed->inode = inode; 3094 3095 spin_lock(&fs_info->delayed_iput_lock); 3096 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 3097 spin_unlock(&fs_info->delayed_iput_lock); 3098 } 3099 3100 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3101 { 3102 LIST_HEAD(list); 3103 struct btrfs_fs_info *fs_info = root->fs_info; 3104 struct delayed_iput *delayed; 3105 int empty; 3106 3107 spin_lock(&fs_info->delayed_iput_lock); 3108 empty = list_empty(&fs_info->delayed_iputs); 3109 spin_unlock(&fs_info->delayed_iput_lock); 3110 if (empty) 3111 return; 3112 3113 down_read(&fs_info->delayed_iput_sem); 3114 3115 spin_lock(&fs_info->delayed_iput_lock); 3116 list_splice_init(&fs_info->delayed_iputs, &list); 3117 spin_unlock(&fs_info->delayed_iput_lock); 3118 3119 while (!list_empty(&list)) { 3120 delayed = list_entry(list.next, struct delayed_iput, list); 3121 list_del(&delayed->list); 3122 iput(delayed->inode); 3123 kfree(delayed); 3124 } 3125 3126 up_read(&root->fs_info->delayed_iput_sem); 3127 } 3128 3129 /* 3130 * This is called in transaction commit time. If there are no orphan 3131 * files in the subvolume, it removes orphan item and frees block_rsv 3132 * structure. 3133 */ 3134 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3135 struct btrfs_root *root) 3136 { 3137 struct btrfs_block_rsv *block_rsv; 3138 int ret; 3139 3140 if (atomic_read(&root->orphan_inodes) || 3141 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3142 return; 3143 3144 spin_lock(&root->orphan_lock); 3145 if (atomic_read(&root->orphan_inodes)) { 3146 spin_unlock(&root->orphan_lock); 3147 return; 3148 } 3149 3150 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3151 spin_unlock(&root->orphan_lock); 3152 return; 3153 } 3154 3155 block_rsv = root->orphan_block_rsv; 3156 root->orphan_block_rsv = NULL; 3157 spin_unlock(&root->orphan_lock); 3158 3159 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3160 btrfs_root_refs(&root->root_item) > 0) { 3161 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3162 root->root_key.objectid); 3163 if (ret) 3164 btrfs_abort_transaction(trans, root, ret); 3165 else 3166 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3167 &root->state); 3168 } 3169 3170 if (block_rsv) { 3171 WARN_ON(block_rsv->size > 0); 3172 btrfs_free_block_rsv(root, block_rsv); 3173 } 3174 } 3175 3176 /* 3177 * This creates an orphan entry for the given inode in case something goes 3178 * wrong in the middle of an unlink/truncate. 3179 * 3180 * NOTE: caller of this function should reserve 5 units of metadata for 3181 * this function. 3182 */ 3183 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3184 { 3185 struct btrfs_root *root = BTRFS_I(inode)->root; 3186 struct btrfs_block_rsv *block_rsv = NULL; 3187 int reserve = 0; 3188 int insert = 0; 3189 int ret; 3190 3191 if (!root->orphan_block_rsv) { 3192 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3193 if (!block_rsv) 3194 return -ENOMEM; 3195 } 3196 3197 spin_lock(&root->orphan_lock); 3198 if (!root->orphan_block_rsv) { 3199 root->orphan_block_rsv = block_rsv; 3200 } else if (block_rsv) { 3201 btrfs_free_block_rsv(root, block_rsv); 3202 block_rsv = NULL; 3203 } 3204 3205 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3206 &BTRFS_I(inode)->runtime_flags)) { 3207 #if 0 3208 /* 3209 * For proper ENOSPC handling, we should do orphan 3210 * cleanup when mounting. But this introduces backward 3211 * compatibility issue. 3212 */ 3213 if (!xchg(&root->orphan_item_inserted, 1)) 3214 insert = 2; 3215 else 3216 insert = 1; 3217 #endif 3218 insert = 1; 3219 atomic_inc(&root->orphan_inodes); 3220 } 3221 3222 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3223 &BTRFS_I(inode)->runtime_flags)) 3224 reserve = 1; 3225 spin_unlock(&root->orphan_lock); 3226 3227 /* grab metadata reservation from transaction handle */ 3228 if (reserve) { 3229 ret = btrfs_orphan_reserve_metadata(trans, inode); 3230 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3231 } 3232 3233 /* insert an orphan item to track this unlinked/truncated file */ 3234 if (insert >= 1) { 3235 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3236 if (ret) { 3237 atomic_dec(&root->orphan_inodes); 3238 if (reserve) { 3239 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3240 &BTRFS_I(inode)->runtime_flags); 3241 btrfs_orphan_release_metadata(inode); 3242 } 3243 if (ret != -EEXIST) { 3244 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3245 &BTRFS_I(inode)->runtime_flags); 3246 btrfs_abort_transaction(trans, root, ret); 3247 return ret; 3248 } 3249 } 3250 ret = 0; 3251 } 3252 3253 /* insert an orphan item to track subvolume contains orphan files */ 3254 if (insert >= 2) { 3255 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3256 root->root_key.objectid); 3257 if (ret && ret != -EEXIST) { 3258 btrfs_abort_transaction(trans, root, ret); 3259 return ret; 3260 } 3261 } 3262 return 0; 3263 } 3264 3265 /* 3266 * We have done the truncate/delete so we can go ahead and remove the orphan 3267 * item for this particular inode. 3268 */ 3269 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3270 struct inode *inode) 3271 { 3272 struct btrfs_root *root = BTRFS_I(inode)->root; 3273 int delete_item = 0; 3274 int release_rsv = 0; 3275 int ret = 0; 3276 3277 spin_lock(&root->orphan_lock); 3278 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3279 &BTRFS_I(inode)->runtime_flags)) 3280 delete_item = 1; 3281 3282 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3283 &BTRFS_I(inode)->runtime_flags)) 3284 release_rsv = 1; 3285 spin_unlock(&root->orphan_lock); 3286 3287 if (delete_item) { 3288 atomic_dec(&root->orphan_inodes); 3289 if (trans) 3290 ret = btrfs_del_orphan_item(trans, root, 3291 btrfs_ino(inode)); 3292 } 3293 3294 if (release_rsv) 3295 btrfs_orphan_release_metadata(inode); 3296 3297 return ret; 3298 } 3299 3300 /* 3301 * this cleans up any orphans that may be left on the list from the last use 3302 * of this root. 3303 */ 3304 int btrfs_orphan_cleanup(struct btrfs_root *root) 3305 { 3306 struct btrfs_path *path; 3307 struct extent_buffer *leaf; 3308 struct btrfs_key key, found_key; 3309 struct btrfs_trans_handle *trans; 3310 struct inode *inode; 3311 u64 last_objectid = 0; 3312 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3313 3314 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3315 return 0; 3316 3317 path = btrfs_alloc_path(); 3318 if (!path) { 3319 ret = -ENOMEM; 3320 goto out; 3321 } 3322 path->reada = -1; 3323 3324 key.objectid = BTRFS_ORPHAN_OBJECTID; 3325 key.type = BTRFS_ORPHAN_ITEM_KEY; 3326 key.offset = (u64)-1; 3327 3328 while (1) { 3329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3330 if (ret < 0) 3331 goto out; 3332 3333 /* 3334 * if ret == 0 means we found what we were searching for, which 3335 * is weird, but possible, so only screw with path if we didn't 3336 * find the key and see if we have stuff that matches 3337 */ 3338 if (ret > 0) { 3339 ret = 0; 3340 if (path->slots[0] == 0) 3341 break; 3342 path->slots[0]--; 3343 } 3344 3345 /* pull out the item */ 3346 leaf = path->nodes[0]; 3347 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3348 3349 /* make sure the item matches what we want */ 3350 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3351 break; 3352 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3353 break; 3354 3355 /* release the path since we're done with it */ 3356 btrfs_release_path(path); 3357 3358 /* 3359 * this is where we are basically btrfs_lookup, without the 3360 * crossing root thing. we store the inode number in the 3361 * offset of the orphan item. 3362 */ 3363 3364 if (found_key.offset == last_objectid) { 3365 btrfs_err(root->fs_info, 3366 "Error removing orphan entry, stopping orphan cleanup"); 3367 ret = -EINVAL; 3368 goto out; 3369 } 3370 3371 last_objectid = found_key.offset; 3372 3373 found_key.objectid = found_key.offset; 3374 found_key.type = BTRFS_INODE_ITEM_KEY; 3375 found_key.offset = 0; 3376 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3377 ret = PTR_ERR_OR_ZERO(inode); 3378 if (ret && ret != -ESTALE) 3379 goto out; 3380 3381 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3382 struct btrfs_root *dead_root; 3383 struct btrfs_fs_info *fs_info = root->fs_info; 3384 int is_dead_root = 0; 3385 3386 /* 3387 * this is an orphan in the tree root. Currently these 3388 * could come from 2 sources: 3389 * a) a snapshot deletion in progress 3390 * b) a free space cache inode 3391 * We need to distinguish those two, as the snapshot 3392 * orphan must not get deleted. 3393 * find_dead_roots already ran before us, so if this 3394 * is a snapshot deletion, we should find the root 3395 * in the dead_roots list 3396 */ 3397 spin_lock(&fs_info->trans_lock); 3398 list_for_each_entry(dead_root, &fs_info->dead_roots, 3399 root_list) { 3400 if (dead_root->root_key.objectid == 3401 found_key.objectid) { 3402 is_dead_root = 1; 3403 break; 3404 } 3405 } 3406 spin_unlock(&fs_info->trans_lock); 3407 if (is_dead_root) { 3408 /* prevent this orphan from being found again */ 3409 key.offset = found_key.objectid - 1; 3410 continue; 3411 } 3412 } 3413 /* 3414 * Inode is already gone but the orphan item is still there, 3415 * kill the orphan item. 3416 */ 3417 if (ret == -ESTALE) { 3418 trans = btrfs_start_transaction(root, 1); 3419 if (IS_ERR(trans)) { 3420 ret = PTR_ERR(trans); 3421 goto out; 3422 } 3423 btrfs_debug(root->fs_info, "auto deleting %Lu", 3424 found_key.objectid); 3425 ret = btrfs_del_orphan_item(trans, root, 3426 found_key.objectid); 3427 btrfs_end_transaction(trans, root); 3428 if (ret) 3429 goto out; 3430 continue; 3431 } 3432 3433 /* 3434 * add this inode to the orphan list so btrfs_orphan_del does 3435 * the proper thing when we hit it 3436 */ 3437 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3438 &BTRFS_I(inode)->runtime_flags); 3439 atomic_inc(&root->orphan_inodes); 3440 3441 /* if we have links, this was a truncate, lets do that */ 3442 if (inode->i_nlink) { 3443 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3444 iput(inode); 3445 continue; 3446 } 3447 nr_truncate++; 3448 3449 /* 1 for the orphan item deletion. */ 3450 trans = btrfs_start_transaction(root, 1); 3451 if (IS_ERR(trans)) { 3452 iput(inode); 3453 ret = PTR_ERR(trans); 3454 goto out; 3455 } 3456 ret = btrfs_orphan_add(trans, inode); 3457 btrfs_end_transaction(trans, root); 3458 if (ret) { 3459 iput(inode); 3460 goto out; 3461 } 3462 3463 ret = btrfs_truncate(inode); 3464 if (ret) 3465 btrfs_orphan_del(NULL, inode); 3466 } else { 3467 nr_unlink++; 3468 } 3469 3470 /* this will do delete_inode and everything for us */ 3471 iput(inode); 3472 if (ret) 3473 goto out; 3474 } 3475 /* release the path since we're done with it */ 3476 btrfs_release_path(path); 3477 3478 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3479 3480 if (root->orphan_block_rsv) 3481 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3482 (u64)-1); 3483 3484 if (root->orphan_block_rsv || 3485 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3486 trans = btrfs_join_transaction(root); 3487 if (!IS_ERR(trans)) 3488 btrfs_end_transaction(trans, root); 3489 } 3490 3491 if (nr_unlink) 3492 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3493 if (nr_truncate) 3494 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3495 3496 out: 3497 if (ret) 3498 btrfs_err(root->fs_info, 3499 "could not do orphan cleanup %d", ret); 3500 btrfs_free_path(path); 3501 return ret; 3502 } 3503 3504 /* 3505 * very simple check to peek ahead in the leaf looking for xattrs. If we 3506 * don't find any xattrs, we know there can't be any acls. 3507 * 3508 * slot is the slot the inode is in, objectid is the objectid of the inode 3509 */ 3510 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3511 int slot, u64 objectid, 3512 int *first_xattr_slot) 3513 { 3514 u32 nritems = btrfs_header_nritems(leaf); 3515 struct btrfs_key found_key; 3516 static u64 xattr_access = 0; 3517 static u64 xattr_default = 0; 3518 int scanned = 0; 3519 3520 if (!xattr_access) { 3521 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3522 strlen(POSIX_ACL_XATTR_ACCESS)); 3523 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3524 strlen(POSIX_ACL_XATTR_DEFAULT)); 3525 } 3526 3527 slot++; 3528 *first_xattr_slot = -1; 3529 while (slot < nritems) { 3530 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3531 3532 /* we found a different objectid, there must not be acls */ 3533 if (found_key.objectid != objectid) 3534 return 0; 3535 3536 /* we found an xattr, assume we've got an acl */ 3537 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3538 if (*first_xattr_slot == -1) 3539 *first_xattr_slot = slot; 3540 if (found_key.offset == xattr_access || 3541 found_key.offset == xattr_default) 3542 return 1; 3543 } 3544 3545 /* 3546 * we found a key greater than an xattr key, there can't 3547 * be any acls later on 3548 */ 3549 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3550 return 0; 3551 3552 slot++; 3553 scanned++; 3554 3555 /* 3556 * it goes inode, inode backrefs, xattrs, extents, 3557 * so if there are a ton of hard links to an inode there can 3558 * be a lot of backrefs. Don't waste time searching too hard, 3559 * this is just an optimization 3560 */ 3561 if (scanned >= 8) 3562 break; 3563 } 3564 /* we hit the end of the leaf before we found an xattr or 3565 * something larger than an xattr. We have to assume the inode 3566 * has acls 3567 */ 3568 if (*first_xattr_slot == -1) 3569 *first_xattr_slot = slot; 3570 return 1; 3571 } 3572 3573 /* 3574 * read an inode from the btree into the in-memory inode 3575 */ 3576 static void btrfs_read_locked_inode(struct inode *inode) 3577 { 3578 struct btrfs_path *path; 3579 struct extent_buffer *leaf; 3580 struct btrfs_inode_item *inode_item; 3581 struct btrfs_root *root = BTRFS_I(inode)->root; 3582 struct btrfs_key location; 3583 unsigned long ptr; 3584 int maybe_acls; 3585 u32 rdev; 3586 int ret; 3587 bool filled = false; 3588 int first_xattr_slot; 3589 3590 ret = btrfs_fill_inode(inode, &rdev); 3591 if (!ret) 3592 filled = true; 3593 3594 path = btrfs_alloc_path(); 3595 if (!path) 3596 goto make_bad; 3597 3598 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3599 3600 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3601 if (ret) 3602 goto make_bad; 3603 3604 leaf = path->nodes[0]; 3605 3606 if (filled) 3607 goto cache_index; 3608 3609 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3610 struct btrfs_inode_item); 3611 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3612 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3613 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3614 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3615 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3616 3617 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3618 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3619 3620 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3621 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3622 3623 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3624 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3625 3626 BTRFS_I(inode)->i_otime.tv_sec = 3627 btrfs_timespec_sec(leaf, &inode_item->otime); 3628 BTRFS_I(inode)->i_otime.tv_nsec = 3629 btrfs_timespec_nsec(leaf, &inode_item->otime); 3630 3631 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3632 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3633 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3634 3635 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3636 inode->i_generation = BTRFS_I(inode)->generation; 3637 inode->i_rdev = 0; 3638 rdev = btrfs_inode_rdev(leaf, inode_item); 3639 3640 BTRFS_I(inode)->index_cnt = (u64)-1; 3641 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3642 3643 cache_index: 3644 /* 3645 * If we were modified in the current generation and evicted from memory 3646 * and then re-read we need to do a full sync since we don't have any 3647 * idea about which extents were modified before we were evicted from 3648 * cache. 3649 * 3650 * This is required for both inode re-read from disk and delayed inode 3651 * in delayed_nodes_tree. 3652 */ 3653 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3654 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3655 &BTRFS_I(inode)->runtime_flags); 3656 3657 path->slots[0]++; 3658 if (inode->i_nlink != 1 || 3659 path->slots[0] >= btrfs_header_nritems(leaf)) 3660 goto cache_acl; 3661 3662 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3663 if (location.objectid != btrfs_ino(inode)) 3664 goto cache_acl; 3665 3666 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3667 if (location.type == BTRFS_INODE_REF_KEY) { 3668 struct btrfs_inode_ref *ref; 3669 3670 ref = (struct btrfs_inode_ref *)ptr; 3671 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3672 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3673 struct btrfs_inode_extref *extref; 3674 3675 extref = (struct btrfs_inode_extref *)ptr; 3676 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3677 extref); 3678 } 3679 cache_acl: 3680 /* 3681 * try to precache a NULL acl entry for files that don't have 3682 * any xattrs or acls 3683 */ 3684 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3685 btrfs_ino(inode), &first_xattr_slot); 3686 if (first_xattr_slot != -1) { 3687 path->slots[0] = first_xattr_slot; 3688 ret = btrfs_load_inode_props(inode, path); 3689 if (ret) 3690 btrfs_err(root->fs_info, 3691 "error loading props for ino %llu (root %llu): %d", 3692 btrfs_ino(inode), 3693 root->root_key.objectid, ret); 3694 } 3695 btrfs_free_path(path); 3696 3697 if (!maybe_acls) 3698 cache_no_acl(inode); 3699 3700 switch (inode->i_mode & S_IFMT) { 3701 case S_IFREG: 3702 inode->i_mapping->a_ops = &btrfs_aops; 3703 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3704 inode->i_fop = &btrfs_file_operations; 3705 inode->i_op = &btrfs_file_inode_operations; 3706 break; 3707 case S_IFDIR: 3708 inode->i_fop = &btrfs_dir_file_operations; 3709 if (root == root->fs_info->tree_root) 3710 inode->i_op = &btrfs_dir_ro_inode_operations; 3711 else 3712 inode->i_op = &btrfs_dir_inode_operations; 3713 break; 3714 case S_IFLNK: 3715 inode->i_op = &btrfs_symlink_inode_operations; 3716 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3717 break; 3718 default: 3719 inode->i_op = &btrfs_special_inode_operations; 3720 init_special_inode(inode, inode->i_mode, rdev); 3721 break; 3722 } 3723 3724 btrfs_update_iflags(inode); 3725 return; 3726 3727 make_bad: 3728 btrfs_free_path(path); 3729 make_bad_inode(inode); 3730 } 3731 3732 /* 3733 * given a leaf and an inode, copy the inode fields into the leaf 3734 */ 3735 static void fill_inode_item(struct btrfs_trans_handle *trans, 3736 struct extent_buffer *leaf, 3737 struct btrfs_inode_item *item, 3738 struct inode *inode) 3739 { 3740 struct btrfs_map_token token; 3741 3742 btrfs_init_map_token(&token); 3743 3744 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3745 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3746 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3747 &token); 3748 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3749 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3750 3751 btrfs_set_token_timespec_sec(leaf, &item->atime, 3752 inode->i_atime.tv_sec, &token); 3753 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3754 inode->i_atime.tv_nsec, &token); 3755 3756 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3757 inode->i_mtime.tv_sec, &token); 3758 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3759 inode->i_mtime.tv_nsec, &token); 3760 3761 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3762 inode->i_ctime.tv_sec, &token); 3763 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3764 inode->i_ctime.tv_nsec, &token); 3765 3766 btrfs_set_token_timespec_sec(leaf, &item->otime, 3767 BTRFS_I(inode)->i_otime.tv_sec, &token); 3768 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3769 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3770 3771 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3772 &token); 3773 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3774 &token); 3775 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3776 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3777 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3778 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3779 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3780 } 3781 3782 /* 3783 * copy everything in the in-memory inode into the btree. 3784 */ 3785 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3786 struct btrfs_root *root, struct inode *inode) 3787 { 3788 struct btrfs_inode_item *inode_item; 3789 struct btrfs_path *path; 3790 struct extent_buffer *leaf; 3791 int ret; 3792 3793 path = btrfs_alloc_path(); 3794 if (!path) 3795 return -ENOMEM; 3796 3797 path->leave_spinning = 1; 3798 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3799 1); 3800 if (ret) { 3801 if (ret > 0) 3802 ret = -ENOENT; 3803 goto failed; 3804 } 3805 3806 leaf = path->nodes[0]; 3807 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3808 struct btrfs_inode_item); 3809 3810 fill_inode_item(trans, leaf, inode_item, inode); 3811 btrfs_mark_buffer_dirty(leaf); 3812 btrfs_set_inode_last_trans(trans, inode); 3813 ret = 0; 3814 failed: 3815 btrfs_free_path(path); 3816 return ret; 3817 } 3818 3819 /* 3820 * copy everything in the in-memory inode into the btree. 3821 */ 3822 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3823 struct btrfs_root *root, struct inode *inode) 3824 { 3825 int ret; 3826 3827 /* 3828 * If the inode is a free space inode, we can deadlock during commit 3829 * if we put it into the delayed code. 3830 * 3831 * The data relocation inode should also be directly updated 3832 * without delay 3833 */ 3834 if (!btrfs_is_free_space_inode(inode) 3835 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3836 && !root->fs_info->log_root_recovering) { 3837 btrfs_update_root_times(trans, root); 3838 3839 ret = btrfs_delayed_update_inode(trans, root, inode); 3840 if (!ret) 3841 btrfs_set_inode_last_trans(trans, inode); 3842 return ret; 3843 } 3844 3845 return btrfs_update_inode_item(trans, root, inode); 3846 } 3847 3848 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3849 struct btrfs_root *root, 3850 struct inode *inode) 3851 { 3852 int ret; 3853 3854 ret = btrfs_update_inode(trans, root, inode); 3855 if (ret == -ENOSPC) 3856 return btrfs_update_inode_item(trans, root, inode); 3857 return ret; 3858 } 3859 3860 /* 3861 * unlink helper that gets used here in inode.c and in the tree logging 3862 * recovery code. It remove a link in a directory with a given name, and 3863 * also drops the back refs in the inode to the directory 3864 */ 3865 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3866 struct btrfs_root *root, 3867 struct inode *dir, struct inode *inode, 3868 const char *name, int name_len) 3869 { 3870 struct btrfs_path *path; 3871 int ret = 0; 3872 struct extent_buffer *leaf; 3873 struct btrfs_dir_item *di; 3874 struct btrfs_key key; 3875 u64 index; 3876 u64 ino = btrfs_ino(inode); 3877 u64 dir_ino = btrfs_ino(dir); 3878 3879 path = btrfs_alloc_path(); 3880 if (!path) { 3881 ret = -ENOMEM; 3882 goto out; 3883 } 3884 3885 path->leave_spinning = 1; 3886 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3887 name, name_len, -1); 3888 if (IS_ERR(di)) { 3889 ret = PTR_ERR(di); 3890 goto err; 3891 } 3892 if (!di) { 3893 ret = -ENOENT; 3894 goto err; 3895 } 3896 leaf = path->nodes[0]; 3897 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3898 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3899 if (ret) 3900 goto err; 3901 btrfs_release_path(path); 3902 3903 /* 3904 * If we don't have dir index, we have to get it by looking up 3905 * the inode ref, since we get the inode ref, remove it directly, 3906 * it is unnecessary to do delayed deletion. 3907 * 3908 * But if we have dir index, needn't search inode ref to get it. 3909 * Since the inode ref is close to the inode item, it is better 3910 * that we delay to delete it, and just do this deletion when 3911 * we update the inode item. 3912 */ 3913 if (BTRFS_I(inode)->dir_index) { 3914 ret = btrfs_delayed_delete_inode_ref(inode); 3915 if (!ret) { 3916 index = BTRFS_I(inode)->dir_index; 3917 goto skip_backref; 3918 } 3919 } 3920 3921 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3922 dir_ino, &index); 3923 if (ret) { 3924 btrfs_info(root->fs_info, 3925 "failed to delete reference to %.*s, inode %llu parent %llu", 3926 name_len, name, ino, dir_ino); 3927 btrfs_abort_transaction(trans, root, ret); 3928 goto err; 3929 } 3930 skip_backref: 3931 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3932 if (ret) { 3933 btrfs_abort_transaction(trans, root, ret); 3934 goto err; 3935 } 3936 3937 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3938 inode, dir_ino); 3939 if (ret != 0 && ret != -ENOENT) { 3940 btrfs_abort_transaction(trans, root, ret); 3941 goto err; 3942 } 3943 3944 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3945 dir, index); 3946 if (ret == -ENOENT) 3947 ret = 0; 3948 else if (ret) 3949 btrfs_abort_transaction(trans, root, ret); 3950 err: 3951 btrfs_free_path(path); 3952 if (ret) 3953 goto out; 3954 3955 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3956 inode_inc_iversion(inode); 3957 inode_inc_iversion(dir); 3958 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3959 ret = btrfs_update_inode(trans, root, dir); 3960 out: 3961 return ret; 3962 } 3963 3964 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3965 struct btrfs_root *root, 3966 struct inode *dir, struct inode *inode, 3967 const char *name, int name_len) 3968 { 3969 int ret; 3970 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3971 if (!ret) { 3972 drop_nlink(inode); 3973 ret = btrfs_update_inode(trans, root, inode); 3974 } 3975 return ret; 3976 } 3977 3978 /* 3979 * helper to start transaction for unlink and rmdir. 3980 * 3981 * unlink and rmdir are special in btrfs, they do not always free space, so 3982 * if we cannot make our reservations the normal way try and see if there is 3983 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3984 * allow the unlink to occur. 3985 */ 3986 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3987 { 3988 struct btrfs_trans_handle *trans; 3989 struct btrfs_root *root = BTRFS_I(dir)->root; 3990 int ret; 3991 3992 /* 3993 * 1 for the possible orphan item 3994 * 1 for the dir item 3995 * 1 for the dir index 3996 * 1 for the inode ref 3997 * 1 for the inode 3998 */ 3999 trans = btrfs_start_transaction(root, 5); 4000 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 4001 return trans; 4002 4003 if (PTR_ERR(trans) == -ENOSPC) { 4004 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4005 4006 trans = btrfs_start_transaction(root, 0); 4007 if (IS_ERR(trans)) 4008 return trans; 4009 ret = btrfs_cond_migrate_bytes(root->fs_info, 4010 &root->fs_info->trans_block_rsv, 4011 num_bytes, 5); 4012 if (ret) { 4013 btrfs_end_transaction(trans, root); 4014 return ERR_PTR(ret); 4015 } 4016 trans->block_rsv = &root->fs_info->trans_block_rsv; 4017 trans->bytes_reserved = num_bytes; 4018 } 4019 return trans; 4020 } 4021 4022 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4023 { 4024 struct btrfs_root *root = BTRFS_I(dir)->root; 4025 struct btrfs_trans_handle *trans; 4026 struct inode *inode = d_inode(dentry); 4027 int ret; 4028 4029 trans = __unlink_start_trans(dir); 4030 if (IS_ERR(trans)) 4031 return PTR_ERR(trans); 4032 4033 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4034 4035 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4036 dentry->d_name.name, dentry->d_name.len); 4037 if (ret) 4038 goto out; 4039 4040 if (inode->i_nlink == 0) { 4041 ret = btrfs_orphan_add(trans, inode); 4042 if (ret) 4043 goto out; 4044 } 4045 4046 out: 4047 btrfs_end_transaction(trans, root); 4048 btrfs_btree_balance_dirty(root); 4049 return ret; 4050 } 4051 4052 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4053 struct btrfs_root *root, 4054 struct inode *dir, u64 objectid, 4055 const char *name, int name_len) 4056 { 4057 struct btrfs_path *path; 4058 struct extent_buffer *leaf; 4059 struct btrfs_dir_item *di; 4060 struct btrfs_key key; 4061 u64 index; 4062 int ret; 4063 u64 dir_ino = btrfs_ino(dir); 4064 4065 path = btrfs_alloc_path(); 4066 if (!path) 4067 return -ENOMEM; 4068 4069 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4070 name, name_len, -1); 4071 if (IS_ERR_OR_NULL(di)) { 4072 if (!di) 4073 ret = -ENOENT; 4074 else 4075 ret = PTR_ERR(di); 4076 goto out; 4077 } 4078 4079 leaf = path->nodes[0]; 4080 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4081 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4082 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4083 if (ret) { 4084 btrfs_abort_transaction(trans, root, ret); 4085 goto out; 4086 } 4087 btrfs_release_path(path); 4088 4089 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4090 objectid, root->root_key.objectid, 4091 dir_ino, &index, name, name_len); 4092 if (ret < 0) { 4093 if (ret != -ENOENT) { 4094 btrfs_abort_transaction(trans, root, ret); 4095 goto out; 4096 } 4097 di = btrfs_search_dir_index_item(root, path, dir_ino, 4098 name, name_len); 4099 if (IS_ERR_OR_NULL(di)) { 4100 if (!di) 4101 ret = -ENOENT; 4102 else 4103 ret = PTR_ERR(di); 4104 btrfs_abort_transaction(trans, root, ret); 4105 goto out; 4106 } 4107 4108 leaf = path->nodes[0]; 4109 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4110 btrfs_release_path(path); 4111 index = key.offset; 4112 } 4113 btrfs_release_path(path); 4114 4115 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4116 if (ret) { 4117 btrfs_abort_transaction(trans, root, ret); 4118 goto out; 4119 } 4120 4121 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4122 inode_inc_iversion(dir); 4123 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 4124 ret = btrfs_update_inode_fallback(trans, root, dir); 4125 if (ret) 4126 btrfs_abort_transaction(trans, root, ret); 4127 out: 4128 btrfs_free_path(path); 4129 return ret; 4130 } 4131 4132 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4133 { 4134 struct inode *inode = d_inode(dentry); 4135 int err = 0; 4136 struct btrfs_root *root = BTRFS_I(dir)->root; 4137 struct btrfs_trans_handle *trans; 4138 4139 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4140 return -ENOTEMPTY; 4141 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4142 return -EPERM; 4143 4144 trans = __unlink_start_trans(dir); 4145 if (IS_ERR(trans)) 4146 return PTR_ERR(trans); 4147 4148 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4149 err = btrfs_unlink_subvol(trans, root, dir, 4150 BTRFS_I(inode)->location.objectid, 4151 dentry->d_name.name, 4152 dentry->d_name.len); 4153 goto out; 4154 } 4155 4156 err = btrfs_orphan_add(trans, inode); 4157 if (err) 4158 goto out; 4159 4160 /* now the directory is empty */ 4161 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4162 dentry->d_name.name, dentry->d_name.len); 4163 if (!err) 4164 btrfs_i_size_write(inode, 0); 4165 out: 4166 btrfs_end_transaction(trans, root); 4167 btrfs_btree_balance_dirty(root); 4168 4169 return err; 4170 } 4171 4172 static int truncate_space_check(struct btrfs_trans_handle *trans, 4173 struct btrfs_root *root, 4174 u64 bytes_deleted) 4175 { 4176 int ret; 4177 4178 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4179 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4180 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4181 if (!ret) 4182 trans->bytes_reserved += bytes_deleted; 4183 return ret; 4184 4185 } 4186 4187 /* 4188 * this can truncate away extent items, csum items and directory items. 4189 * It starts at a high offset and removes keys until it can't find 4190 * any higher than new_size 4191 * 4192 * csum items that cross the new i_size are truncated to the new size 4193 * as well. 4194 * 4195 * min_type is the minimum key type to truncate down to. If set to 0, this 4196 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4197 */ 4198 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4199 struct btrfs_root *root, 4200 struct inode *inode, 4201 u64 new_size, u32 min_type) 4202 { 4203 struct btrfs_path *path; 4204 struct extent_buffer *leaf; 4205 struct btrfs_file_extent_item *fi; 4206 struct btrfs_key key; 4207 struct btrfs_key found_key; 4208 u64 extent_start = 0; 4209 u64 extent_num_bytes = 0; 4210 u64 extent_offset = 0; 4211 u64 item_end = 0; 4212 u64 last_size = (u64)-1; 4213 u32 found_type = (u8)-1; 4214 int found_extent; 4215 int del_item; 4216 int pending_del_nr = 0; 4217 int pending_del_slot = 0; 4218 int extent_type = -1; 4219 int ret; 4220 int err = 0; 4221 u64 ino = btrfs_ino(inode); 4222 u64 bytes_deleted = 0; 4223 bool be_nice = 0; 4224 bool should_throttle = 0; 4225 bool should_end = 0; 4226 4227 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4228 4229 /* 4230 * for non-free space inodes and ref cows, we want to back off from 4231 * time to time 4232 */ 4233 if (!btrfs_is_free_space_inode(inode) && 4234 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4235 be_nice = 1; 4236 4237 path = btrfs_alloc_path(); 4238 if (!path) 4239 return -ENOMEM; 4240 path->reada = -1; 4241 4242 /* 4243 * We want to drop from the next block forward in case this new size is 4244 * not block aligned since we will be keeping the last block of the 4245 * extent just the way it is. 4246 */ 4247 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4248 root == root->fs_info->tree_root) 4249 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4250 root->sectorsize), (u64)-1, 0); 4251 4252 /* 4253 * This function is also used to drop the items in the log tree before 4254 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4255 * it is used to drop the loged items. So we shouldn't kill the delayed 4256 * items. 4257 */ 4258 if (min_type == 0 && root == BTRFS_I(inode)->root) 4259 btrfs_kill_delayed_inode_items(inode); 4260 4261 key.objectid = ino; 4262 key.offset = (u64)-1; 4263 key.type = (u8)-1; 4264 4265 search_again: 4266 /* 4267 * with a 16K leaf size and 128MB extents, you can actually queue 4268 * up a huge file in a single leaf. Most of the time that 4269 * bytes_deleted is > 0, it will be huge by the time we get here 4270 */ 4271 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4272 if (btrfs_should_end_transaction(trans, root)) { 4273 err = -EAGAIN; 4274 goto error; 4275 } 4276 } 4277 4278 4279 path->leave_spinning = 1; 4280 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4281 if (ret < 0) { 4282 err = ret; 4283 goto out; 4284 } 4285 4286 if (ret > 0) { 4287 /* there are no items in the tree for us to truncate, we're 4288 * done 4289 */ 4290 if (path->slots[0] == 0) 4291 goto out; 4292 path->slots[0]--; 4293 } 4294 4295 while (1) { 4296 fi = NULL; 4297 leaf = path->nodes[0]; 4298 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4299 found_type = found_key.type; 4300 4301 if (found_key.objectid != ino) 4302 break; 4303 4304 if (found_type < min_type) 4305 break; 4306 4307 item_end = found_key.offset; 4308 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4309 fi = btrfs_item_ptr(leaf, path->slots[0], 4310 struct btrfs_file_extent_item); 4311 extent_type = btrfs_file_extent_type(leaf, fi); 4312 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4313 item_end += 4314 btrfs_file_extent_num_bytes(leaf, fi); 4315 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4316 item_end += btrfs_file_extent_inline_len(leaf, 4317 path->slots[0], fi); 4318 } 4319 item_end--; 4320 } 4321 if (found_type > min_type) { 4322 del_item = 1; 4323 } else { 4324 if (item_end < new_size) 4325 break; 4326 if (found_key.offset >= new_size) 4327 del_item = 1; 4328 else 4329 del_item = 0; 4330 } 4331 found_extent = 0; 4332 /* FIXME, shrink the extent if the ref count is only 1 */ 4333 if (found_type != BTRFS_EXTENT_DATA_KEY) 4334 goto delete; 4335 4336 if (del_item) 4337 last_size = found_key.offset; 4338 else 4339 last_size = new_size; 4340 4341 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4342 u64 num_dec; 4343 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4344 if (!del_item) { 4345 u64 orig_num_bytes = 4346 btrfs_file_extent_num_bytes(leaf, fi); 4347 extent_num_bytes = ALIGN(new_size - 4348 found_key.offset, 4349 root->sectorsize); 4350 btrfs_set_file_extent_num_bytes(leaf, fi, 4351 extent_num_bytes); 4352 num_dec = (orig_num_bytes - 4353 extent_num_bytes); 4354 if (test_bit(BTRFS_ROOT_REF_COWS, 4355 &root->state) && 4356 extent_start != 0) 4357 inode_sub_bytes(inode, num_dec); 4358 btrfs_mark_buffer_dirty(leaf); 4359 } else { 4360 extent_num_bytes = 4361 btrfs_file_extent_disk_num_bytes(leaf, 4362 fi); 4363 extent_offset = found_key.offset - 4364 btrfs_file_extent_offset(leaf, fi); 4365 4366 /* FIXME blocksize != 4096 */ 4367 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4368 if (extent_start != 0) { 4369 found_extent = 1; 4370 if (test_bit(BTRFS_ROOT_REF_COWS, 4371 &root->state)) 4372 inode_sub_bytes(inode, num_dec); 4373 } 4374 } 4375 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4376 /* 4377 * we can't truncate inline items that have had 4378 * special encodings 4379 */ 4380 if (!del_item && 4381 btrfs_file_extent_compression(leaf, fi) == 0 && 4382 btrfs_file_extent_encryption(leaf, fi) == 0 && 4383 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4384 u32 size = new_size - found_key.offset; 4385 4386 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4387 inode_sub_bytes(inode, item_end + 1 - 4388 new_size); 4389 4390 /* 4391 * update the ram bytes to properly reflect 4392 * the new size of our item 4393 */ 4394 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4395 size = 4396 btrfs_file_extent_calc_inline_size(size); 4397 btrfs_truncate_item(root, path, size, 1); 4398 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4399 &root->state)) { 4400 inode_sub_bytes(inode, item_end + 1 - 4401 found_key.offset); 4402 } 4403 } 4404 delete: 4405 if (del_item) { 4406 if (!pending_del_nr) { 4407 /* no pending yet, add ourselves */ 4408 pending_del_slot = path->slots[0]; 4409 pending_del_nr = 1; 4410 } else if (pending_del_nr && 4411 path->slots[0] + 1 == pending_del_slot) { 4412 /* hop on the pending chunk */ 4413 pending_del_nr++; 4414 pending_del_slot = path->slots[0]; 4415 } else { 4416 BUG(); 4417 } 4418 } else { 4419 break; 4420 } 4421 should_throttle = 0; 4422 4423 if (found_extent && 4424 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4425 root == root->fs_info->tree_root)) { 4426 btrfs_set_path_blocking(path); 4427 bytes_deleted += extent_num_bytes; 4428 ret = btrfs_free_extent(trans, root, extent_start, 4429 extent_num_bytes, 0, 4430 btrfs_header_owner(leaf), 4431 ino, extent_offset, 0); 4432 BUG_ON(ret); 4433 if (btrfs_should_throttle_delayed_refs(trans, root)) 4434 btrfs_async_run_delayed_refs(root, 4435 trans->delayed_ref_updates * 2, 0); 4436 if (be_nice) { 4437 if (truncate_space_check(trans, root, 4438 extent_num_bytes)) { 4439 should_end = 1; 4440 } 4441 if (btrfs_should_throttle_delayed_refs(trans, 4442 root)) { 4443 should_throttle = 1; 4444 } 4445 } 4446 } 4447 4448 if (found_type == BTRFS_INODE_ITEM_KEY) 4449 break; 4450 4451 if (path->slots[0] == 0 || 4452 path->slots[0] != pending_del_slot || 4453 should_throttle || should_end) { 4454 if (pending_del_nr) { 4455 ret = btrfs_del_items(trans, root, path, 4456 pending_del_slot, 4457 pending_del_nr); 4458 if (ret) { 4459 btrfs_abort_transaction(trans, 4460 root, ret); 4461 goto error; 4462 } 4463 pending_del_nr = 0; 4464 } 4465 btrfs_release_path(path); 4466 if (should_throttle) { 4467 unsigned long updates = trans->delayed_ref_updates; 4468 if (updates) { 4469 trans->delayed_ref_updates = 0; 4470 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4471 if (ret && !err) 4472 err = ret; 4473 } 4474 } 4475 /* 4476 * if we failed to refill our space rsv, bail out 4477 * and let the transaction restart 4478 */ 4479 if (should_end) { 4480 err = -EAGAIN; 4481 goto error; 4482 } 4483 goto search_again; 4484 } else { 4485 path->slots[0]--; 4486 } 4487 } 4488 out: 4489 if (pending_del_nr) { 4490 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4491 pending_del_nr); 4492 if (ret) 4493 btrfs_abort_transaction(trans, root, ret); 4494 } 4495 error: 4496 if (last_size != (u64)-1 && 4497 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4498 btrfs_ordered_update_i_size(inode, last_size, NULL); 4499 4500 btrfs_free_path(path); 4501 4502 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4503 unsigned long updates = trans->delayed_ref_updates; 4504 if (updates) { 4505 trans->delayed_ref_updates = 0; 4506 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4507 if (ret && !err) 4508 err = ret; 4509 } 4510 } 4511 return err; 4512 } 4513 4514 /* 4515 * btrfs_truncate_page - read, zero a chunk and write a page 4516 * @inode - inode that we're zeroing 4517 * @from - the offset to start zeroing 4518 * @len - the length to zero, 0 to zero the entire range respective to the 4519 * offset 4520 * @front - zero up to the offset instead of from the offset on 4521 * 4522 * This will find the page for the "from" offset and cow the page and zero the 4523 * part we want to zero. This is used with truncate and hole punching. 4524 */ 4525 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4526 int front) 4527 { 4528 struct address_space *mapping = inode->i_mapping; 4529 struct btrfs_root *root = BTRFS_I(inode)->root; 4530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4531 struct btrfs_ordered_extent *ordered; 4532 struct extent_state *cached_state = NULL; 4533 char *kaddr; 4534 u32 blocksize = root->sectorsize; 4535 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4536 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4537 struct page *page; 4538 gfp_t mask = btrfs_alloc_write_mask(mapping); 4539 int ret = 0; 4540 u64 page_start; 4541 u64 page_end; 4542 4543 if ((offset & (blocksize - 1)) == 0 && 4544 (!len || ((len & (blocksize - 1)) == 0))) 4545 goto out; 4546 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4547 if (ret) 4548 goto out; 4549 4550 again: 4551 page = find_or_create_page(mapping, index, mask); 4552 if (!page) { 4553 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4554 ret = -ENOMEM; 4555 goto out; 4556 } 4557 4558 page_start = page_offset(page); 4559 page_end = page_start + PAGE_CACHE_SIZE - 1; 4560 4561 if (!PageUptodate(page)) { 4562 ret = btrfs_readpage(NULL, page); 4563 lock_page(page); 4564 if (page->mapping != mapping) { 4565 unlock_page(page); 4566 page_cache_release(page); 4567 goto again; 4568 } 4569 if (!PageUptodate(page)) { 4570 ret = -EIO; 4571 goto out_unlock; 4572 } 4573 } 4574 wait_on_page_writeback(page); 4575 4576 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4577 set_page_extent_mapped(page); 4578 4579 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4580 if (ordered) { 4581 unlock_extent_cached(io_tree, page_start, page_end, 4582 &cached_state, GFP_NOFS); 4583 unlock_page(page); 4584 page_cache_release(page); 4585 btrfs_start_ordered_extent(inode, ordered, 1); 4586 btrfs_put_ordered_extent(ordered); 4587 goto again; 4588 } 4589 4590 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4591 EXTENT_DIRTY | EXTENT_DELALLOC | 4592 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4593 0, 0, &cached_state, GFP_NOFS); 4594 4595 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4596 &cached_state); 4597 if (ret) { 4598 unlock_extent_cached(io_tree, page_start, page_end, 4599 &cached_state, GFP_NOFS); 4600 goto out_unlock; 4601 } 4602 4603 if (offset != PAGE_CACHE_SIZE) { 4604 if (!len) 4605 len = PAGE_CACHE_SIZE - offset; 4606 kaddr = kmap(page); 4607 if (front) 4608 memset(kaddr, 0, offset); 4609 else 4610 memset(kaddr + offset, 0, len); 4611 flush_dcache_page(page); 4612 kunmap(page); 4613 } 4614 ClearPageChecked(page); 4615 set_page_dirty(page); 4616 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4617 GFP_NOFS); 4618 4619 out_unlock: 4620 if (ret) 4621 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4622 unlock_page(page); 4623 page_cache_release(page); 4624 out: 4625 return ret; 4626 } 4627 4628 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4629 u64 offset, u64 len) 4630 { 4631 struct btrfs_trans_handle *trans; 4632 int ret; 4633 4634 /* 4635 * Still need to make sure the inode looks like it's been updated so 4636 * that any holes get logged if we fsync. 4637 */ 4638 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4639 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4640 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4641 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4642 return 0; 4643 } 4644 4645 /* 4646 * 1 - for the one we're dropping 4647 * 1 - for the one we're adding 4648 * 1 - for updating the inode. 4649 */ 4650 trans = btrfs_start_transaction(root, 3); 4651 if (IS_ERR(trans)) 4652 return PTR_ERR(trans); 4653 4654 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4655 if (ret) { 4656 btrfs_abort_transaction(trans, root, ret); 4657 btrfs_end_transaction(trans, root); 4658 return ret; 4659 } 4660 4661 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4662 0, 0, len, 0, len, 0, 0, 0); 4663 if (ret) 4664 btrfs_abort_transaction(trans, root, ret); 4665 else 4666 btrfs_update_inode(trans, root, inode); 4667 btrfs_end_transaction(trans, root); 4668 return ret; 4669 } 4670 4671 /* 4672 * This function puts in dummy file extents for the area we're creating a hole 4673 * for. So if we are truncating this file to a larger size we need to insert 4674 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4675 * the range between oldsize and size 4676 */ 4677 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4678 { 4679 struct btrfs_root *root = BTRFS_I(inode)->root; 4680 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4681 struct extent_map *em = NULL; 4682 struct extent_state *cached_state = NULL; 4683 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4684 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4685 u64 block_end = ALIGN(size, root->sectorsize); 4686 u64 last_byte; 4687 u64 cur_offset; 4688 u64 hole_size; 4689 int err = 0; 4690 4691 /* 4692 * If our size started in the middle of a page we need to zero out the 4693 * rest of the page before we expand the i_size, otherwise we could 4694 * expose stale data. 4695 */ 4696 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4697 if (err) 4698 return err; 4699 4700 if (size <= hole_start) 4701 return 0; 4702 4703 while (1) { 4704 struct btrfs_ordered_extent *ordered; 4705 4706 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4707 &cached_state); 4708 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4709 block_end - hole_start); 4710 if (!ordered) 4711 break; 4712 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4713 &cached_state, GFP_NOFS); 4714 btrfs_start_ordered_extent(inode, ordered, 1); 4715 btrfs_put_ordered_extent(ordered); 4716 } 4717 4718 cur_offset = hole_start; 4719 while (1) { 4720 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4721 block_end - cur_offset, 0); 4722 if (IS_ERR(em)) { 4723 err = PTR_ERR(em); 4724 em = NULL; 4725 break; 4726 } 4727 last_byte = min(extent_map_end(em), block_end); 4728 last_byte = ALIGN(last_byte , root->sectorsize); 4729 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4730 struct extent_map *hole_em; 4731 hole_size = last_byte - cur_offset; 4732 4733 err = maybe_insert_hole(root, inode, cur_offset, 4734 hole_size); 4735 if (err) 4736 break; 4737 btrfs_drop_extent_cache(inode, cur_offset, 4738 cur_offset + hole_size - 1, 0); 4739 hole_em = alloc_extent_map(); 4740 if (!hole_em) { 4741 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4742 &BTRFS_I(inode)->runtime_flags); 4743 goto next; 4744 } 4745 hole_em->start = cur_offset; 4746 hole_em->len = hole_size; 4747 hole_em->orig_start = cur_offset; 4748 4749 hole_em->block_start = EXTENT_MAP_HOLE; 4750 hole_em->block_len = 0; 4751 hole_em->orig_block_len = 0; 4752 hole_em->ram_bytes = hole_size; 4753 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4754 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4755 hole_em->generation = root->fs_info->generation; 4756 4757 while (1) { 4758 write_lock(&em_tree->lock); 4759 err = add_extent_mapping(em_tree, hole_em, 1); 4760 write_unlock(&em_tree->lock); 4761 if (err != -EEXIST) 4762 break; 4763 btrfs_drop_extent_cache(inode, cur_offset, 4764 cur_offset + 4765 hole_size - 1, 0); 4766 } 4767 free_extent_map(hole_em); 4768 } 4769 next: 4770 free_extent_map(em); 4771 em = NULL; 4772 cur_offset = last_byte; 4773 if (cur_offset >= block_end) 4774 break; 4775 } 4776 free_extent_map(em); 4777 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4778 GFP_NOFS); 4779 return err; 4780 } 4781 4782 static int wait_snapshoting_atomic_t(atomic_t *a) 4783 { 4784 schedule(); 4785 return 0; 4786 } 4787 4788 static void wait_for_snapshot_creation(struct btrfs_root *root) 4789 { 4790 while (true) { 4791 int ret; 4792 4793 ret = btrfs_start_write_no_snapshoting(root); 4794 if (ret) 4795 break; 4796 wait_on_atomic_t(&root->will_be_snapshoted, 4797 wait_snapshoting_atomic_t, 4798 TASK_UNINTERRUPTIBLE); 4799 } 4800 } 4801 4802 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4803 { 4804 struct btrfs_root *root = BTRFS_I(inode)->root; 4805 struct btrfs_trans_handle *trans; 4806 loff_t oldsize = i_size_read(inode); 4807 loff_t newsize = attr->ia_size; 4808 int mask = attr->ia_valid; 4809 int ret; 4810 4811 /* 4812 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4813 * special case where we need to update the times despite not having 4814 * these flags set. For all other operations the VFS set these flags 4815 * explicitly if it wants a timestamp update. 4816 */ 4817 if (newsize != oldsize) { 4818 inode_inc_iversion(inode); 4819 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4820 inode->i_ctime = inode->i_mtime = 4821 current_fs_time(inode->i_sb); 4822 } 4823 4824 if (newsize > oldsize) { 4825 truncate_pagecache(inode, newsize); 4826 /* 4827 * Don't do an expanding truncate while snapshoting is ongoing. 4828 * This is to ensure the snapshot captures a fully consistent 4829 * state of this file - if the snapshot captures this expanding 4830 * truncation, it must capture all writes that happened before 4831 * this truncation. 4832 */ 4833 wait_for_snapshot_creation(root); 4834 ret = btrfs_cont_expand(inode, oldsize, newsize); 4835 if (ret) { 4836 btrfs_end_write_no_snapshoting(root); 4837 return ret; 4838 } 4839 4840 trans = btrfs_start_transaction(root, 1); 4841 if (IS_ERR(trans)) { 4842 btrfs_end_write_no_snapshoting(root); 4843 return PTR_ERR(trans); 4844 } 4845 4846 i_size_write(inode, newsize); 4847 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4848 ret = btrfs_update_inode(trans, root, inode); 4849 btrfs_end_write_no_snapshoting(root); 4850 btrfs_end_transaction(trans, root); 4851 } else { 4852 4853 /* 4854 * We're truncating a file that used to have good data down to 4855 * zero. Make sure it gets into the ordered flush list so that 4856 * any new writes get down to disk quickly. 4857 */ 4858 if (newsize == 0) 4859 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4860 &BTRFS_I(inode)->runtime_flags); 4861 4862 /* 4863 * 1 for the orphan item we're going to add 4864 * 1 for the orphan item deletion. 4865 */ 4866 trans = btrfs_start_transaction(root, 2); 4867 if (IS_ERR(trans)) 4868 return PTR_ERR(trans); 4869 4870 /* 4871 * We need to do this in case we fail at _any_ point during the 4872 * actual truncate. Once we do the truncate_setsize we could 4873 * invalidate pages which forces any outstanding ordered io to 4874 * be instantly completed which will give us extents that need 4875 * to be truncated. If we fail to get an orphan inode down we 4876 * could have left over extents that were never meant to live, 4877 * so we need to garuntee from this point on that everything 4878 * will be consistent. 4879 */ 4880 ret = btrfs_orphan_add(trans, inode); 4881 btrfs_end_transaction(trans, root); 4882 if (ret) 4883 return ret; 4884 4885 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4886 truncate_setsize(inode, newsize); 4887 4888 /* Disable nonlocked read DIO to avoid the end less truncate */ 4889 btrfs_inode_block_unlocked_dio(inode); 4890 inode_dio_wait(inode); 4891 btrfs_inode_resume_unlocked_dio(inode); 4892 4893 ret = btrfs_truncate(inode); 4894 if (ret && inode->i_nlink) { 4895 int err; 4896 4897 /* 4898 * failed to truncate, disk_i_size is only adjusted down 4899 * as we remove extents, so it should represent the true 4900 * size of the inode, so reset the in memory size and 4901 * delete our orphan entry. 4902 */ 4903 trans = btrfs_join_transaction(root); 4904 if (IS_ERR(trans)) { 4905 btrfs_orphan_del(NULL, inode); 4906 return ret; 4907 } 4908 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4909 err = btrfs_orphan_del(trans, inode); 4910 if (err) 4911 btrfs_abort_transaction(trans, root, err); 4912 btrfs_end_transaction(trans, root); 4913 } 4914 } 4915 4916 return ret; 4917 } 4918 4919 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4920 { 4921 struct inode *inode = d_inode(dentry); 4922 struct btrfs_root *root = BTRFS_I(inode)->root; 4923 int err; 4924 4925 if (btrfs_root_readonly(root)) 4926 return -EROFS; 4927 4928 err = inode_change_ok(inode, attr); 4929 if (err) 4930 return err; 4931 4932 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4933 err = btrfs_setsize(inode, attr); 4934 if (err) 4935 return err; 4936 } 4937 4938 if (attr->ia_valid) { 4939 setattr_copy(inode, attr); 4940 inode_inc_iversion(inode); 4941 err = btrfs_dirty_inode(inode); 4942 4943 if (!err && attr->ia_valid & ATTR_MODE) 4944 err = posix_acl_chmod(inode, inode->i_mode); 4945 } 4946 4947 return err; 4948 } 4949 4950 /* 4951 * While truncating the inode pages during eviction, we get the VFS calling 4952 * btrfs_invalidatepage() against each page of the inode. This is slow because 4953 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4954 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4955 * extent_state structures over and over, wasting lots of time. 4956 * 4957 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4958 * those expensive operations on a per page basis and do only the ordered io 4959 * finishing, while we release here the extent_map and extent_state structures, 4960 * without the excessive merging and splitting. 4961 */ 4962 static void evict_inode_truncate_pages(struct inode *inode) 4963 { 4964 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4965 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4966 struct rb_node *node; 4967 4968 ASSERT(inode->i_state & I_FREEING); 4969 truncate_inode_pages_final(&inode->i_data); 4970 4971 write_lock(&map_tree->lock); 4972 while (!RB_EMPTY_ROOT(&map_tree->map)) { 4973 struct extent_map *em; 4974 4975 node = rb_first(&map_tree->map); 4976 em = rb_entry(node, struct extent_map, rb_node); 4977 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4978 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4979 remove_extent_mapping(map_tree, em); 4980 free_extent_map(em); 4981 if (need_resched()) { 4982 write_unlock(&map_tree->lock); 4983 cond_resched(); 4984 write_lock(&map_tree->lock); 4985 } 4986 } 4987 write_unlock(&map_tree->lock); 4988 4989 /* 4990 * Keep looping until we have no more ranges in the io tree. 4991 * We can have ongoing bios started by readpages (called from readahead) 4992 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 4993 * still in progress (unlocked the pages in the bio but did not yet 4994 * unlocked the ranges in the io tree). Therefore this means some 4995 * ranges can still be locked and eviction started because before 4996 * submitting those bios, which are executed by a separate task (work 4997 * queue kthread), inode references (inode->i_count) were not taken 4998 * (which would be dropped in the end io callback of each bio). 4999 * Therefore here we effectively end up waiting for those bios and 5000 * anyone else holding locked ranges without having bumped the inode's 5001 * reference count - if we don't do it, when they access the inode's 5002 * io_tree to unlock a range it may be too late, leading to an 5003 * use-after-free issue. 5004 */ 5005 spin_lock(&io_tree->lock); 5006 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5007 struct extent_state *state; 5008 struct extent_state *cached_state = NULL; 5009 u64 start; 5010 u64 end; 5011 5012 node = rb_first(&io_tree->state); 5013 state = rb_entry(node, struct extent_state, rb_node); 5014 start = state->start; 5015 end = state->end; 5016 spin_unlock(&io_tree->lock); 5017 5018 lock_extent_bits(io_tree, start, end, 0, &cached_state); 5019 clear_extent_bit(io_tree, start, end, 5020 EXTENT_LOCKED | EXTENT_DIRTY | 5021 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5022 EXTENT_DEFRAG, 1, 1, 5023 &cached_state, GFP_NOFS); 5024 5025 cond_resched(); 5026 spin_lock(&io_tree->lock); 5027 } 5028 spin_unlock(&io_tree->lock); 5029 } 5030 5031 void btrfs_evict_inode(struct inode *inode) 5032 { 5033 struct btrfs_trans_handle *trans; 5034 struct btrfs_root *root = BTRFS_I(inode)->root; 5035 struct btrfs_block_rsv *rsv, *global_rsv; 5036 int steal_from_global = 0; 5037 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5038 int ret; 5039 5040 trace_btrfs_inode_evict(inode); 5041 5042 evict_inode_truncate_pages(inode); 5043 5044 if (inode->i_nlink && 5045 ((btrfs_root_refs(&root->root_item) != 0 && 5046 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5047 btrfs_is_free_space_inode(inode))) 5048 goto no_delete; 5049 5050 if (is_bad_inode(inode)) { 5051 btrfs_orphan_del(NULL, inode); 5052 goto no_delete; 5053 } 5054 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5055 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5056 5057 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5058 5059 if (root->fs_info->log_root_recovering) { 5060 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5061 &BTRFS_I(inode)->runtime_flags)); 5062 goto no_delete; 5063 } 5064 5065 if (inode->i_nlink > 0) { 5066 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5067 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5068 goto no_delete; 5069 } 5070 5071 ret = btrfs_commit_inode_delayed_inode(inode); 5072 if (ret) { 5073 btrfs_orphan_del(NULL, inode); 5074 goto no_delete; 5075 } 5076 5077 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5078 if (!rsv) { 5079 btrfs_orphan_del(NULL, inode); 5080 goto no_delete; 5081 } 5082 rsv->size = min_size; 5083 rsv->failfast = 1; 5084 global_rsv = &root->fs_info->global_block_rsv; 5085 5086 btrfs_i_size_write(inode, 0); 5087 5088 /* 5089 * This is a bit simpler than btrfs_truncate since we've already 5090 * reserved our space for our orphan item in the unlink, so we just 5091 * need to reserve some slack space in case we add bytes and update 5092 * inode item when doing the truncate. 5093 */ 5094 while (1) { 5095 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5096 BTRFS_RESERVE_FLUSH_LIMIT); 5097 5098 /* 5099 * Try and steal from the global reserve since we will 5100 * likely not use this space anyway, we want to try as 5101 * hard as possible to get this to work. 5102 */ 5103 if (ret) 5104 steal_from_global++; 5105 else 5106 steal_from_global = 0; 5107 ret = 0; 5108 5109 /* 5110 * steal_from_global == 0: we reserved stuff, hooray! 5111 * steal_from_global == 1: we didn't reserve stuff, boo! 5112 * steal_from_global == 2: we've committed, still not a lot of 5113 * room but maybe we'll have room in the global reserve this 5114 * time. 5115 * steal_from_global == 3: abandon all hope! 5116 */ 5117 if (steal_from_global > 2) { 5118 btrfs_warn(root->fs_info, 5119 "Could not get space for a delete, will truncate on mount %d", 5120 ret); 5121 btrfs_orphan_del(NULL, inode); 5122 btrfs_free_block_rsv(root, rsv); 5123 goto no_delete; 5124 } 5125 5126 trans = btrfs_join_transaction(root); 5127 if (IS_ERR(trans)) { 5128 btrfs_orphan_del(NULL, inode); 5129 btrfs_free_block_rsv(root, rsv); 5130 goto no_delete; 5131 } 5132 5133 /* 5134 * We can't just steal from the global reserve, we need tomake 5135 * sure there is room to do it, if not we need to commit and try 5136 * again. 5137 */ 5138 if (steal_from_global) { 5139 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5140 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5141 min_size); 5142 else 5143 ret = -ENOSPC; 5144 } 5145 5146 /* 5147 * Couldn't steal from the global reserve, we have too much 5148 * pending stuff built up, commit the transaction and try it 5149 * again. 5150 */ 5151 if (ret) { 5152 ret = btrfs_commit_transaction(trans, root); 5153 if (ret) { 5154 btrfs_orphan_del(NULL, inode); 5155 btrfs_free_block_rsv(root, rsv); 5156 goto no_delete; 5157 } 5158 continue; 5159 } else { 5160 steal_from_global = 0; 5161 } 5162 5163 trans->block_rsv = rsv; 5164 5165 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5166 if (ret != -ENOSPC && ret != -EAGAIN) 5167 break; 5168 5169 trans->block_rsv = &root->fs_info->trans_block_rsv; 5170 btrfs_end_transaction(trans, root); 5171 trans = NULL; 5172 btrfs_btree_balance_dirty(root); 5173 } 5174 5175 btrfs_free_block_rsv(root, rsv); 5176 5177 /* 5178 * Errors here aren't a big deal, it just means we leave orphan items 5179 * in the tree. They will be cleaned up on the next mount. 5180 */ 5181 if (ret == 0) { 5182 trans->block_rsv = root->orphan_block_rsv; 5183 btrfs_orphan_del(trans, inode); 5184 } else { 5185 btrfs_orphan_del(NULL, inode); 5186 } 5187 5188 trans->block_rsv = &root->fs_info->trans_block_rsv; 5189 if (!(root == root->fs_info->tree_root || 5190 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5191 btrfs_return_ino(root, btrfs_ino(inode)); 5192 5193 btrfs_end_transaction(trans, root); 5194 btrfs_btree_balance_dirty(root); 5195 no_delete: 5196 btrfs_remove_delayed_node(inode); 5197 clear_inode(inode); 5198 return; 5199 } 5200 5201 /* 5202 * this returns the key found in the dir entry in the location pointer. 5203 * If no dir entries were found, location->objectid is 0. 5204 */ 5205 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5206 struct btrfs_key *location) 5207 { 5208 const char *name = dentry->d_name.name; 5209 int namelen = dentry->d_name.len; 5210 struct btrfs_dir_item *di; 5211 struct btrfs_path *path; 5212 struct btrfs_root *root = BTRFS_I(dir)->root; 5213 int ret = 0; 5214 5215 path = btrfs_alloc_path(); 5216 if (!path) 5217 return -ENOMEM; 5218 5219 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5220 namelen, 0); 5221 if (IS_ERR(di)) 5222 ret = PTR_ERR(di); 5223 5224 if (IS_ERR_OR_NULL(di)) 5225 goto out_err; 5226 5227 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5228 out: 5229 btrfs_free_path(path); 5230 return ret; 5231 out_err: 5232 location->objectid = 0; 5233 goto out; 5234 } 5235 5236 /* 5237 * when we hit a tree root in a directory, the btrfs part of the inode 5238 * needs to be changed to reflect the root directory of the tree root. This 5239 * is kind of like crossing a mount point. 5240 */ 5241 static int fixup_tree_root_location(struct btrfs_root *root, 5242 struct inode *dir, 5243 struct dentry *dentry, 5244 struct btrfs_key *location, 5245 struct btrfs_root **sub_root) 5246 { 5247 struct btrfs_path *path; 5248 struct btrfs_root *new_root; 5249 struct btrfs_root_ref *ref; 5250 struct extent_buffer *leaf; 5251 struct btrfs_key key; 5252 int ret; 5253 int err = 0; 5254 5255 path = btrfs_alloc_path(); 5256 if (!path) { 5257 err = -ENOMEM; 5258 goto out; 5259 } 5260 5261 err = -ENOENT; 5262 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5263 key.type = BTRFS_ROOT_REF_KEY; 5264 key.offset = location->objectid; 5265 5266 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5267 0, 0); 5268 if (ret) { 5269 if (ret < 0) 5270 err = ret; 5271 goto out; 5272 } 5273 5274 leaf = path->nodes[0]; 5275 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5276 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5277 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5278 goto out; 5279 5280 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5281 (unsigned long)(ref + 1), 5282 dentry->d_name.len); 5283 if (ret) 5284 goto out; 5285 5286 btrfs_release_path(path); 5287 5288 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5289 if (IS_ERR(new_root)) { 5290 err = PTR_ERR(new_root); 5291 goto out; 5292 } 5293 5294 *sub_root = new_root; 5295 location->objectid = btrfs_root_dirid(&new_root->root_item); 5296 location->type = BTRFS_INODE_ITEM_KEY; 5297 location->offset = 0; 5298 err = 0; 5299 out: 5300 btrfs_free_path(path); 5301 return err; 5302 } 5303 5304 static void inode_tree_add(struct inode *inode) 5305 { 5306 struct btrfs_root *root = BTRFS_I(inode)->root; 5307 struct btrfs_inode *entry; 5308 struct rb_node **p; 5309 struct rb_node *parent; 5310 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5311 u64 ino = btrfs_ino(inode); 5312 5313 if (inode_unhashed(inode)) 5314 return; 5315 parent = NULL; 5316 spin_lock(&root->inode_lock); 5317 p = &root->inode_tree.rb_node; 5318 while (*p) { 5319 parent = *p; 5320 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5321 5322 if (ino < btrfs_ino(&entry->vfs_inode)) 5323 p = &parent->rb_left; 5324 else if (ino > btrfs_ino(&entry->vfs_inode)) 5325 p = &parent->rb_right; 5326 else { 5327 WARN_ON(!(entry->vfs_inode.i_state & 5328 (I_WILL_FREE | I_FREEING))); 5329 rb_replace_node(parent, new, &root->inode_tree); 5330 RB_CLEAR_NODE(parent); 5331 spin_unlock(&root->inode_lock); 5332 return; 5333 } 5334 } 5335 rb_link_node(new, parent, p); 5336 rb_insert_color(new, &root->inode_tree); 5337 spin_unlock(&root->inode_lock); 5338 } 5339 5340 static void inode_tree_del(struct inode *inode) 5341 { 5342 struct btrfs_root *root = BTRFS_I(inode)->root; 5343 int empty = 0; 5344 5345 spin_lock(&root->inode_lock); 5346 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5347 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5348 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5349 empty = RB_EMPTY_ROOT(&root->inode_tree); 5350 } 5351 spin_unlock(&root->inode_lock); 5352 5353 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5354 synchronize_srcu(&root->fs_info->subvol_srcu); 5355 spin_lock(&root->inode_lock); 5356 empty = RB_EMPTY_ROOT(&root->inode_tree); 5357 spin_unlock(&root->inode_lock); 5358 if (empty) 5359 btrfs_add_dead_root(root); 5360 } 5361 } 5362 5363 void btrfs_invalidate_inodes(struct btrfs_root *root) 5364 { 5365 struct rb_node *node; 5366 struct rb_node *prev; 5367 struct btrfs_inode *entry; 5368 struct inode *inode; 5369 u64 objectid = 0; 5370 5371 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5372 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5373 5374 spin_lock(&root->inode_lock); 5375 again: 5376 node = root->inode_tree.rb_node; 5377 prev = NULL; 5378 while (node) { 5379 prev = node; 5380 entry = rb_entry(node, struct btrfs_inode, rb_node); 5381 5382 if (objectid < btrfs_ino(&entry->vfs_inode)) 5383 node = node->rb_left; 5384 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5385 node = node->rb_right; 5386 else 5387 break; 5388 } 5389 if (!node) { 5390 while (prev) { 5391 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5392 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5393 node = prev; 5394 break; 5395 } 5396 prev = rb_next(prev); 5397 } 5398 } 5399 while (node) { 5400 entry = rb_entry(node, struct btrfs_inode, rb_node); 5401 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5402 inode = igrab(&entry->vfs_inode); 5403 if (inode) { 5404 spin_unlock(&root->inode_lock); 5405 if (atomic_read(&inode->i_count) > 1) 5406 d_prune_aliases(inode); 5407 /* 5408 * btrfs_drop_inode will have it removed from 5409 * the inode cache when its usage count 5410 * hits zero. 5411 */ 5412 iput(inode); 5413 cond_resched(); 5414 spin_lock(&root->inode_lock); 5415 goto again; 5416 } 5417 5418 if (cond_resched_lock(&root->inode_lock)) 5419 goto again; 5420 5421 node = rb_next(node); 5422 } 5423 spin_unlock(&root->inode_lock); 5424 } 5425 5426 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5427 { 5428 struct btrfs_iget_args *args = p; 5429 inode->i_ino = args->location->objectid; 5430 memcpy(&BTRFS_I(inode)->location, args->location, 5431 sizeof(*args->location)); 5432 BTRFS_I(inode)->root = args->root; 5433 return 0; 5434 } 5435 5436 static int btrfs_find_actor(struct inode *inode, void *opaque) 5437 { 5438 struct btrfs_iget_args *args = opaque; 5439 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5440 args->root == BTRFS_I(inode)->root; 5441 } 5442 5443 static struct inode *btrfs_iget_locked(struct super_block *s, 5444 struct btrfs_key *location, 5445 struct btrfs_root *root) 5446 { 5447 struct inode *inode; 5448 struct btrfs_iget_args args; 5449 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5450 5451 args.location = location; 5452 args.root = root; 5453 5454 inode = iget5_locked(s, hashval, btrfs_find_actor, 5455 btrfs_init_locked_inode, 5456 (void *)&args); 5457 return inode; 5458 } 5459 5460 /* Get an inode object given its location and corresponding root. 5461 * Returns in *is_new if the inode was read from disk 5462 */ 5463 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5464 struct btrfs_root *root, int *new) 5465 { 5466 struct inode *inode; 5467 5468 inode = btrfs_iget_locked(s, location, root); 5469 if (!inode) 5470 return ERR_PTR(-ENOMEM); 5471 5472 if (inode->i_state & I_NEW) { 5473 btrfs_read_locked_inode(inode); 5474 if (!is_bad_inode(inode)) { 5475 inode_tree_add(inode); 5476 unlock_new_inode(inode); 5477 if (new) 5478 *new = 1; 5479 } else { 5480 unlock_new_inode(inode); 5481 iput(inode); 5482 inode = ERR_PTR(-ESTALE); 5483 } 5484 } 5485 5486 return inode; 5487 } 5488 5489 static struct inode *new_simple_dir(struct super_block *s, 5490 struct btrfs_key *key, 5491 struct btrfs_root *root) 5492 { 5493 struct inode *inode = new_inode(s); 5494 5495 if (!inode) 5496 return ERR_PTR(-ENOMEM); 5497 5498 BTRFS_I(inode)->root = root; 5499 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5500 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5501 5502 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5503 inode->i_op = &btrfs_dir_ro_inode_operations; 5504 inode->i_fop = &simple_dir_operations; 5505 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5506 inode->i_mtime = CURRENT_TIME; 5507 inode->i_atime = inode->i_mtime; 5508 inode->i_ctime = inode->i_mtime; 5509 BTRFS_I(inode)->i_otime = inode->i_mtime; 5510 5511 return inode; 5512 } 5513 5514 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5515 { 5516 struct inode *inode; 5517 struct btrfs_root *root = BTRFS_I(dir)->root; 5518 struct btrfs_root *sub_root = root; 5519 struct btrfs_key location; 5520 int index; 5521 int ret = 0; 5522 5523 if (dentry->d_name.len > BTRFS_NAME_LEN) 5524 return ERR_PTR(-ENAMETOOLONG); 5525 5526 ret = btrfs_inode_by_name(dir, dentry, &location); 5527 if (ret < 0) 5528 return ERR_PTR(ret); 5529 5530 if (location.objectid == 0) 5531 return ERR_PTR(-ENOENT); 5532 5533 if (location.type == BTRFS_INODE_ITEM_KEY) { 5534 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5535 return inode; 5536 } 5537 5538 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5539 5540 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5541 ret = fixup_tree_root_location(root, dir, dentry, 5542 &location, &sub_root); 5543 if (ret < 0) { 5544 if (ret != -ENOENT) 5545 inode = ERR_PTR(ret); 5546 else 5547 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5548 } else { 5549 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5550 } 5551 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5552 5553 if (!IS_ERR(inode) && root != sub_root) { 5554 down_read(&root->fs_info->cleanup_work_sem); 5555 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5556 ret = btrfs_orphan_cleanup(sub_root); 5557 up_read(&root->fs_info->cleanup_work_sem); 5558 if (ret) { 5559 iput(inode); 5560 inode = ERR_PTR(ret); 5561 } 5562 } 5563 5564 return inode; 5565 } 5566 5567 static int btrfs_dentry_delete(const struct dentry *dentry) 5568 { 5569 struct btrfs_root *root; 5570 struct inode *inode = d_inode(dentry); 5571 5572 if (!inode && !IS_ROOT(dentry)) 5573 inode = d_inode(dentry->d_parent); 5574 5575 if (inode) { 5576 root = BTRFS_I(inode)->root; 5577 if (btrfs_root_refs(&root->root_item) == 0) 5578 return 1; 5579 5580 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5581 return 1; 5582 } 5583 return 0; 5584 } 5585 5586 static void btrfs_dentry_release(struct dentry *dentry) 5587 { 5588 kfree(dentry->d_fsdata); 5589 } 5590 5591 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5592 unsigned int flags) 5593 { 5594 struct inode *inode; 5595 5596 inode = btrfs_lookup_dentry(dir, dentry); 5597 if (IS_ERR(inode)) { 5598 if (PTR_ERR(inode) == -ENOENT) 5599 inode = NULL; 5600 else 5601 return ERR_CAST(inode); 5602 } 5603 5604 return d_splice_alias(inode, dentry); 5605 } 5606 5607 unsigned char btrfs_filetype_table[] = { 5608 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5609 }; 5610 5611 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5612 { 5613 struct inode *inode = file_inode(file); 5614 struct btrfs_root *root = BTRFS_I(inode)->root; 5615 struct btrfs_item *item; 5616 struct btrfs_dir_item *di; 5617 struct btrfs_key key; 5618 struct btrfs_key found_key; 5619 struct btrfs_path *path; 5620 struct list_head ins_list; 5621 struct list_head del_list; 5622 int ret; 5623 struct extent_buffer *leaf; 5624 int slot; 5625 unsigned char d_type; 5626 int over = 0; 5627 u32 di_cur; 5628 u32 di_total; 5629 u32 di_len; 5630 int key_type = BTRFS_DIR_INDEX_KEY; 5631 char tmp_name[32]; 5632 char *name_ptr; 5633 int name_len; 5634 int is_curr = 0; /* ctx->pos points to the current index? */ 5635 5636 /* FIXME, use a real flag for deciding about the key type */ 5637 if (root->fs_info->tree_root == root) 5638 key_type = BTRFS_DIR_ITEM_KEY; 5639 5640 if (!dir_emit_dots(file, ctx)) 5641 return 0; 5642 5643 path = btrfs_alloc_path(); 5644 if (!path) 5645 return -ENOMEM; 5646 5647 path->reada = 1; 5648 5649 if (key_type == BTRFS_DIR_INDEX_KEY) { 5650 INIT_LIST_HEAD(&ins_list); 5651 INIT_LIST_HEAD(&del_list); 5652 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5653 } 5654 5655 key.type = key_type; 5656 key.offset = ctx->pos; 5657 key.objectid = btrfs_ino(inode); 5658 5659 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5660 if (ret < 0) 5661 goto err; 5662 5663 while (1) { 5664 leaf = path->nodes[0]; 5665 slot = path->slots[0]; 5666 if (slot >= btrfs_header_nritems(leaf)) { 5667 ret = btrfs_next_leaf(root, path); 5668 if (ret < 0) 5669 goto err; 5670 else if (ret > 0) 5671 break; 5672 continue; 5673 } 5674 5675 item = btrfs_item_nr(slot); 5676 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5677 5678 if (found_key.objectid != key.objectid) 5679 break; 5680 if (found_key.type != key_type) 5681 break; 5682 if (found_key.offset < ctx->pos) 5683 goto next; 5684 if (key_type == BTRFS_DIR_INDEX_KEY && 5685 btrfs_should_delete_dir_index(&del_list, 5686 found_key.offset)) 5687 goto next; 5688 5689 ctx->pos = found_key.offset; 5690 is_curr = 1; 5691 5692 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5693 di_cur = 0; 5694 di_total = btrfs_item_size(leaf, item); 5695 5696 while (di_cur < di_total) { 5697 struct btrfs_key location; 5698 5699 if (verify_dir_item(root, leaf, di)) 5700 break; 5701 5702 name_len = btrfs_dir_name_len(leaf, di); 5703 if (name_len <= sizeof(tmp_name)) { 5704 name_ptr = tmp_name; 5705 } else { 5706 name_ptr = kmalloc(name_len, GFP_NOFS); 5707 if (!name_ptr) { 5708 ret = -ENOMEM; 5709 goto err; 5710 } 5711 } 5712 read_extent_buffer(leaf, name_ptr, 5713 (unsigned long)(di + 1), name_len); 5714 5715 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5716 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5717 5718 5719 /* is this a reference to our own snapshot? If so 5720 * skip it. 5721 * 5722 * In contrast to old kernels, we insert the snapshot's 5723 * dir item and dir index after it has been created, so 5724 * we won't find a reference to our own snapshot. We 5725 * still keep the following code for backward 5726 * compatibility. 5727 */ 5728 if (location.type == BTRFS_ROOT_ITEM_KEY && 5729 location.objectid == root->root_key.objectid) { 5730 over = 0; 5731 goto skip; 5732 } 5733 over = !dir_emit(ctx, name_ptr, name_len, 5734 location.objectid, d_type); 5735 5736 skip: 5737 if (name_ptr != tmp_name) 5738 kfree(name_ptr); 5739 5740 if (over) 5741 goto nopos; 5742 di_len = btrfs_dir_name_len(leaf, di) + 5743 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5744 di_cur += di_len; 5745 di = (struct btrfs_dir_item *)((char *)di + di_len); 5746 } 5747 next: 5748 path->slots[0]++; 5749 } 5750 5751 if (key_type == BTRFS_DIR_INDEX_KEY) { 5752 if (is_curr) 5753 ctx->pos++; 5754 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5755 if (ret) 5756 goto nopos; 5757 } 5758 5759 /* Reached end of directory/root. Bump pos past the last item. */ 5760 ctx->pos++; 5761 5762 /* 5763 * Stop new entries from being returned after we return the last 5764 * entry. 5765 * 5766 * New directory entries are assigned a strictly increasing 5767 * offset. This means that new entries created during readdir 5768 * are *guaranteed* to be seen in the future by that readdir. 5769 * This has broken buggy programs which operate on names as 5770 * they're returned by readdir. Until we re-use freed offsets 5771 * we have this hack to stop new entries from being returned 5772 * under the assumption that they'll never reach this huge 5773 * offset. 5774 * 5775 * This is being careful not to overflow 32bit loff_t unless the 5776 * last entry requires it because doing so has broken 32bit apps 5777 * in the past. 5778 */ 5779 if (key_type == BTRFS_DIR_INDEX_KEY) { 5780 if (ctx->pos >= INT_MAX) 5781 ctx->pos = LLONG_MAX; 5782 else 5783 ctx->pos = INT_MAX; 5784 } 5785 nopos: 5786 ret = 0; 5787 err: 5788 if (key_type == BTRFS_DIR_INDEX_KEY) 5789 btrfs_put_delayed_items(&ins_list, &del_list); 5790 btrfs_free_path(path); 5791 return ret; 5792 } 5793 5794 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5795 { 5796 struct btrfs_root *root = BTRFS_I(inode)->root; 5797 struct btrfs_trans_handle *trans; 5798 int ret = 0; 5799 bool nolock = false; 5800 5801 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5802 return 0; 5803 5804 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5805 nolock = true; 5806 5807 if (wbc->sync_mode == WB_SYNC_ALL) { 5808 if (nolock) 5809 trans = btrfs_join_transaction_nolock(root); 5810 else 5811 trans = btrfs_join_transaction(root); 5812 if (IS_ERR(trans)) 5813 return PTR_ERR(trans); 5814 ret = btrfs_commit_transaction(trans, root); 5815 } 5816 return ret; 5817 } 5818 5819 /* 5820 * This is somewhat expensive, updating the tree every time the 5821 * inode changes. But, it is most likely to find the inode in cache. 5822 * FIXME, needs more benchmarking...there are no reasons other than performance 5823 * to keep or drop this code. 5824 */ 5825 static int btrfs_dirty_inode(struct inode *inode) 5826 { 5827 struct btrfs_root *root = BTRFS_I(inode)->root; 5828 struct btrfs_trans_handle *trans; 5829 int ret; 5830 5831 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5832 return 0; 5833 5834 trans = btrfs_join_transaction(root); 5835 if (IS_ERR(trans)) 5836 return PTR_ERR(trans); 5837 5838 ret = btrfs_update_inode(trans, root, inode); 5839 if (ret && ret == -ENOSPC) { 5840 /* whoops, lets try again with the full transaction */ 5841 btrfs_end_transaction(trans, root); 5842 trans = btrfs_start_transaction(root, 1); 5843 if (IS_ERR(trans)) 5844 return PTR_ERR(trans); 5845 5846 ret = btrfs_update_inode(trans, root, inode); 5847 } 5848 btrfs_end_transaction(trans, root); 5849 if (BTRFS_I(inode)->delayed_node) 5850 btrfs_balance_delayed_items(root); 5851 5852 return ret; 5853 } 5854 5855 /* 5856 * This is a copy of file_update_time. We need this so we can return error on 5857 * ENOSPC for updating the inode in the case of file write and mmap writes. 5858 */ 5859 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5860 int flags) 5861 { 5862 struct btrfs_root *root = BTRFS_I(inode)->root; 5863 5864 if (btrfs_root_readonly(root)) 5865 return -EROFS; 5866 5867 if (flags & S_VERSION) 5868 inode_inc_iversion(inode); 5869 if (flags & S_CTIME) 5870 inode->i_ctime = *now; 5871 if (flags & S_MTIME) 5872 inode->i_mtime = *now; 5873 if (flags & S_ATIME) 5874 inode->i_atime = *now; 5875 return btrfs_dirty_inode(inode); 5876 } 5877 5878 /* 5879 * find the highest existing sequence number in a directory 5880 * and then set the in-memory index_cnt variable to reflect 5881 * free sequence numbers 5882 */ 5883 static int btrfs_set_inode_index_count(struct inode *inode) 5884 { 5885 struct btrfs_root *root = BTRFS_I(inode)->root; 5886 struct btrfs_key key, found_key; 5887 struct btrfs_path *path; 5888 struct extent_buffer *leaf; 5889 int ret; 5890 5891 key.objectid = btrfs_ino(inode); 5892 key.type = BTRFS_DIR_INDEX_KEY; 5893 key.offset = (u64)-1; 5894 5895 path = btrfs_alloc_path(); 5896 if (!path) 5897 return -ENOMEM; 5898 5899 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5900 if (ret < 0) 5901 goto out; 5902 /* FIXME: we should be able to handle this */ 5903 if (ret == 0) 5904 goto out; 5905 ret = 0; 5906 5907 /* 5908 * MAGIC NUMBER EXPLANATION: 5909 * since we search a directory based on f_pos we have to start at 2 5910 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5911 * else has to start at 2 5912 */ 5913 if (path->slots[0] == 0) { 5914 BTRFS_I(inode)->index_cnt = 2; 5915 goto out; 5916 } 5917 5918 path->slots[0]--; 5919 5920 leaf = path->nodes[0]; 5921 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5922 5923 if (found_key.objectid != btrfs_ino(inode) || 5924 found_key.type != BTRFS_DIR_INDEX_KEY) { 5925 BTRFS_I(inode)->index_cnt = 2; 5926 goto out; 5927 } 5928 5929 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5930 out: 5931 btrfs_free_path(path); 5932 return ret; 5933 } 5934 5935 /* 5936 * helper to find a free sequence number in a given directory. This current 5937 * code is very simple, later versions will do smarter things in the btree 5938 */ 5939 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5940 { 5941 int ret = 0; 5942 5943 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5944 ret = btrfs_inode_delayed_dir_index_count(dir); 5945 if (ret) { 5946 ret = btrfs_set_inode_index_count(dir); 5947 if (ret) 5948 return ret; 5949 } 5950 } 5951 5952 *index = BTRFS_I(dir)->index_cnt; 5953 BTRFS_I(dir)->index_cnt++; 5954 5955 return ret; 5956 } 5957 5958 static int btrfs_insert_inode_locked(struct inode *inode) 5959 { 5960 struct btrfs_iget_args args; 5961 args.location = &BTRFS_I(inode)->location; 5962 args.root = BTRFS_I(inode)->root; 5963 5964 return insert_inode_locked4(inode, 5965 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5966 btrfs_find_actor, &args); 5967 } 5968 5969 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5970 struct btrfs_root *root, 5971 struct inode *dir, 5972 const char *name, int name_len, 5973 u64 ref_objectid, u64 objectid, 5974 umode_t mode, u64 *index) 5975 { 5976 struct inode *inode; 5977 struct btrfs_inode_item *inode_item; 5978 struct btrfs_key *location; 5979 struct btrfs_path *path; 5980 struct btrfs_inode_ref *ref; 5981 struct btrfs_key key[2]; 5982 u32 sizes[2]; 5983 int nitems = name ? 2 : 1; 5984 unsigned long ptr; 5985 int ret; 5986 5987 path = btrfs_alloc_path(); 5988 if (!path) 5989 return ERR_PTR(-ENOMEM); 5990 5991 inode = new_inode(root->fs_info->sb); 5992 if (!inode) { 5993 btrfs_free_path(path); 5994 return ERR_PTR(-ENOMEM); 5995 } 5996 5997 /* 5998 * O_TMPFILE, set link count to 0, so that after this point, 5999 * we fill in an inode item with the correct link count. 6000 */ 6001 if (!name) 6002 set_nlink(inode, 0); 6003 6004 /* 6005 * we have to initialize this early, so we can reclaim the inode 6006 * number if we fail afterwards in this function. 6007 */ 6008 inode->i_ino = objectid; 6009 6010 if (dir && name) { 6011 trace_btrfs_inode_request(dir); 6012 6013 ret = btrfs_set_inode_index(dir, index); 6014 if (ret) { 6015 btrfs_free_path(path); 6016 iput(inode); 6017 return ERR_PTR(ret); 6018 } 6019 } else if (dir) { 6020 *index = 0; 6021 } 6022 /* 6023 * index_cnt is ignored for everything but a dir, 6024 * btrfs_get_inode_index_count has an explanation for the magic 6025 * number 6026 */ 6027 BTRFS_I(inode)->index_cnt = 2; 6028 BTRFS_I(inode)->dir_index = *index; 6029 BTRFS_I(inode)->root = root; 6030 BTRFS_I(inode)->generation = trans->transid; 6031 inode->i_generation = BTRFS_I(inode)->generation; 6032 6033 /* 6034 * We could have gotten an inode number from somebody who was fsynced 6035 * and then removed in this same transaction, so let's just set full 6036 * sync since it will be a full sync anyway and this will blow away the 6037 * old info in the log. 6038 */ 6039 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6040 6041 key[0].objectid = objectid; 6042 key[0].type = BTRFS_INODE_ITEM_KEY; 6043 key[0].offset = 0; 6044 6045 sizes[0] = sizeof(struct btrfs_inode_item); 6046 6047 if (name) { 6048 /* 6049 * Start new inodes with an inode_ref. This is slightly more 6050 * efficient for small numbers of hard links since they will 6051 * be packed into one item. Extended refs will kick in if we 6052 * add more hard links than can fit in the ref item. 6053 */ 6054 key[1].objectid = objectid; 6055 key[1].type = BTRFS_INODE_REF_KEY; 6056 key[1].offset = ref_objectid; 6057 6058 sizes[1] = name_len + sizeof(*ref); 6059 } 6060 6061 location = &BTRFS_I(inode)->location; 6062 location->objectid = objectid; 6063 location->offset = 0; 6064 location->type = BTRFS_INODE_ITEM_KEY; 6065 6066 ret = btrfs_insert_inode_locked(inode); 6067 if (ret < 0) 6068 goto fail; 6069 6070 path->leave_spinning = 1; 6071 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6072 if (ret != 0) 6073 goto fail_unlock; 6074 6075 inode_init_owner(inode, dir, mode); 6076 inode_set_bytes(inode, 0); 6077 6078 inode->i_mtime = CURRENT_TIME; 6079 inode->i_atime = inode->i_mtime; 6080 inode->i_ctime = inode->i_mtime; 6081 BTRFS_I(inode)->i_otime = inode->i_mtime; 6082 6083 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6084 struct btrfs_inode_item); 6085 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6086 sizeof(*inode_item)); 6087 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6088 6089 if (name) { 6090 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6091 struct btrfs_inode_ref); 6092 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6093 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6094 ptr = (unsigned long)(ref + 1); 6095 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6096 } 6097 6098 btrfs_mark_buffer_dirty(path->nodes[0]); 6099 btrfs_free_path(path); 6100 6101 btrfs_inherit_iflags(inode, dir); 6102 6103 if (S_ISREG(mode)) { 6104 if (btrfs_test_opt(root, NODATASUM)) 6105 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6106 if (btrfs_test_opt(root, NODATACOW)) 6107 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6108 BTRFS_INODE_NODATASUM; 6109 } 6110 6111 inode_tree_add(inode); 6112 6113 trace_btrfs_inode_new(inode); 6114 btrfs_set_inode_last_trans(trans, inode); 6115 6116 btrfs_update_root_times(trans, root); 6117 6118 ret = btrfs_inode_inherit_props(trans, inode, dir); 6119 if (ret) 6120 btrfs_err(root->fs_info, 6121 "error inheriting props for ino %llu (root %llu): %d", 6122 btrfs_ino(inode), root->root_key.objectid, ret); 6123 6124 return inode; 6125 6126 fail_unlock: 6127 unlock_new_inode(inode); 6128 fail: 6129 if (dir && name) 6130 BTRFS_I(dir)->index_cnt--; 6131 btrfs_free_path(path); 6132 iput(inode); 6133 return ERR_PTR(ret); 6134 } 6135 6136 static inline u8 btrfs_inode_type(struct inode *inode) 6137 { 6138 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6139 } 6140 6141 /* 6142 * utility function to add 'inode' into 'parent_inode' with 6143 * a give name and a given sequence number. 6144 * if 'add_backref' is true, also insert a backref from the 6145 * inode to the parent directory. 6146 */ 6147 int btrfs_add_link(struct btrfs_trans_handle *trans, 6148 struct inode *parent_inode, struct inode *inode, 6149 const char *name, int name_len, int add_backref, u64 index) 6150 { 6151 int ret = 0; 6152 struct btrfs_key key; 6153 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6154 u64 ino = btrfs_ino(inode); 6155 u64 parent_ino = btrfs_ino(parent_inode); 6156 6157 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6158 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6159 } else { 6160 key.objectid = ino; 6161 key.type = BTRFS_INODE_ITEM_KEY; 6162 key.offset = 0; 6163 } 6164 6165 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6166 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6167 key.objectid, root->root_key.objectid, 6168 parent_ino, index, name, name_len); 6169 } else if (add_backref) { 6170 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6171 parent_ino, index); 6172 } 6173 6174 /* Nothing to clean up yet */ 6175 if (ret) 6176 return ret; 6177 6178 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6179 parent_inode, &key, 6180 btrfs_inode_type(inode), index); 6181 if (ret == -EEXIST || ret == -EOVERFLOW) 6182 goto fail_dir_item; 6183 else if (ret) { 6184 btrfs_abort_transaction(trans, root, ret); 6185 return ret; 6186 } 6187 6188 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6189 name_len * 2); 6190 inode_inc_iversion(parent_inode); 6191 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 6192 ret = btrfs_update_inode(trans, root, parent_inode); 6193 if (ret) 6194 btrfs_abort_transaction(trans, root, ret); 6195 return ret; 6196 6197 fail_dir_item: 6198 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6199 u64 local_index; 6200 int err; 6201 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6202 key.objectid, root->root_key.objectid, 6203 parent_ino, &local_index, name, name_len); 6204 6205 } else if (add_backref) { 6206 u64 local_index; 6207 int err; 6208 6209 err = btrfs_del_inode_ref(trans, root, name, name_len, 6210 ino, parent_ino, &local_index); 6211 } 6212 return ret; 6213 } 6214 6215 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6216 struct inode *dir, struct dentry *dentry, 6217 struct inode *inode, int backref, u64 index) 6218 { 6219 int err = btrfs_add_link(trans, dir, inode, 6220 dentry->d_name.name, dentry->d_name.len, 6221 backref, index); 6222 if (err > 0) 6223 err = -EEXIST; 6224 return err; 6225 } 6226 6227 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6228 umode_t mode, dev_t rdev) 6229 { 6230 struct btrfs_trans_handle *trans; 6231 struct btrfs_root *root = BTRFS_I(dir)->root; 6232 struct inode *inode = NULL; 6233 int err; 6234 int drop_inode = 0; 6235 u64 objectid; 6236 u64 index = 0; 6237 6238 if (!new_valid_dev(rdev)) 6239 return -EINVAL; 6240 6241 /* 6242 * 2 for inode item and ref 6243 * 2 for dir items 6244 * 1 for xattr if selinux is on 6245 */ 6246 trans = btrfs_start_transaction(root, 5); 6247 if (IS_ERR(trans)) 6248 return PTR_ERR(trans); 6249 6250 err = btrfs_find_free_ino(root, &objectid); 6251 if (err) 6252 goto out_unlock; 6253 6254 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6255 dentry->d_name.len, btrfs_ino(dir), objectid, 6256 mode, &index); 6257 if (IS_ERR(inode)) { 6258 err = PTR_ERR(inode); 6259 goto out_unlock; 6260 } 6261 6262 /* 6263 * If the active LSM wants to access the inode during 6264 * d_instantiate it needs these. Smack checks to see 6265 * if the filesystem supports xattrs by looking at the 6266 * ops vector. 6267 */ 6268 inode->i_op = &btrfs_special_inode_operations; 6269 init_special_inode(inode, inode->i_mode, rdev); 6270 6271 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6272 if (err) 6273 goto out_unlock_inode; 6274 6275 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6276 if (err) { 6277 goto out_unlock_inode; 6278 } else { 6279 btrfs_update_inode(trans, root, inode); 6280 unlock_new_inode(inode); 6281 d_instantiate(dentry, inode); 6282 } 6283 6284 out_unlock: 6285 btrfs_end_transaction(trans, root); 6286 btrfs_balance_delayed_items(root); 6287 btrfs_btree_balance_dirty(root); 6288 if (drop_inode) { 6289 inode_dec_link_count(inode); 6290 iput(inode); 6291 } 6292 return err; 6293 6294 out_unlock_inode: 6295 drop_inode = 1; 6296 unlock_new_inode(inode); 6297 goto out_unlock; 6298 6299 } 6300 6301 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6302 umode_t mode, bool excl) 6303 { 6304 struct btrfs_trans_handle *trans; 6305 struct btrfs_root *root = BTRFS_I(dir)->root; 6306 struct inode *inode = NULL; 6307 int drop_inode_on_err = 0; 6308 int err; 6309 u64 objectid; 6310 u64 index = 0; 6311 6312 /* 6313 * 2 for inode item and ref 6314 * 2 for dir items 6315 * 1 for xattr if selinux is on 6316 */ 6317 trans = btrfs_start_transaction(root, 5); 6318 if (IS_ERR(trans)) 6319 return PTR_ERR(trans); 6320 6321 err = btrfs_find_free_ino(root, &objectid); 6322 if (err) 6323 goto out_unlock; 6324 6325 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6326 dentry->d_name.len, btrfs_ino(dir), objectid, 6327 mode, &index); 6328 if (IS_ERR(inode)) { 6329 err = PTR_ERR(inode); 6330 goto out_unlock; 6331 } 6332 drop_inode_on_err = 1; 6333 /* 6334 * If the active LSM wants to access the inode during 6335 * d_instantiate it needs these. Smack checks to see 6336 * if the filesystem supports xattrs by looking at the 6337 * ops vector. 6338 */ 6339 inode->i_fop = &btrfs_file_operations; 6340 inode->i_op = &btrfs_file_inode_operations; 6341 inode->i_mapping->a_ops = &btrfs_aops; 6342 6343 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6344 if (err) 6345 goto out_unlock_inode; 6346 6347 err = btrfs_update_inode(trans, root, inode); 6348 if (err) 6349 goto out_unlock_inode; 6350 6351 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6352 if (err) 6353 goto out_unlock_inode; 6354 6355 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6356 unlock_new_inode(inode); 6357 d_instantiate(dentry, inode); 6358 6359 out_unlock: 6360 btrfs_end_transaction(trans, root); 6361 if (err && drop_inode_on_err) { 6362 inode_dec_link_count(inode); 6363 iput(inode); 6364 } 6365 btrfs_balance_delayed_items(root); 6366 btrfs_btree_balance_dirty(root); 6367 return err; 6368 6369 out_unlock_inode: 6370 unlock_new_inode(inode); 6371 goto out_unlock; 6372 6373 } 6374 6375 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6376 struct dentry *dentry) 6377 { 6378 struct btrfs_trans_handle *trans; 6379 struct btrfs_root *root = BTRFS_I(dir)->root; 6380 struct inode *inode = d_inode(old_dentry); 6381 u64 index; 6382 int err; 6383 int drop_inode = 0; 6384 6385 /* do not allow sys_link's with other subvols of the same device */ 6386 if (root->objectid != BTRFS_I(inode)->root->objectid) 6387 return -EXDEV; 6388 6389 if (inode->i_nlink >= BTRFS_LINK_MAX) 6390 return -EMLINK; 6391 6392 err = btrfs_set_inode_index(dir, &index); 6393 if (err) 6394 goto fail; 6395 6396 /* 6397 * 2 items for inode and inode ref 6398 * 2 items for dir items 6399 * 1 item for parent inode 6400 */ 6401 trans = btrfs_start_transaction(root, 5); 6402 if (IS_ERR(trans)) { 6403 err = PTR_ERR(trans); 6404 goto fail; 6405 } 6406 6407 /* There are several dir indexes for this inode, clear the cache. */ 6408 BTRFS_I(inode)->dir_index = 0ULL; 6409 inc_nlink(inode); 6410 inode_inc_iversion(inode); 6411 inode->i_ctime = CURRENT_TIME; 6412 ihold(inode); 6413 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6414 6415 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6416 6417 if (err) { 6418 drop_inode = 1; 6419 } else { 6420 struct dentry *parent = dentry->d_parent; 6421 err = btrfs_update_inode(trans, root, inode); 6422 if (err) 6423 goto fail; 6424 if (inode->i_nlink == 1) { 6425 /* 6426 * If new hard link count is 1, it's a file created 6427 * with open(2) O_TMPFILE flag. 6428 */ 6429 err = btrfs_orphan_del(trans, inode); 6430 if (err) 6431 goto fail; 6432 } 6433 d_instantiate(dentry, inode); 6434 btrfs_log_new_name(trans, inode, NULL, parent); 6435 } 6436 6437 btrfs_end_transaction(trans, root); 6438 btrfs_balance_delayed_items(root); 6439 fail: 6440 if (drop_inode) { 6441 inode_dec_link_count(inode); 6442 iput(inode); 6443 } 6444 btrfs_btree_balance_dirty(root); 6445 return err; 6446 } 6447 6448 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6449 { 6450 struct inode *inode = NULL; 6451 struct btrfs_trans_handle *trans; 6452 struct btrfs_root *root = BTRFS_I(dir)->root; 6453 int err = 0; 6454 int drop_on_err = 0; 6455 u64 objectid = 0; 6456 u64 index = 0; 6457 6458 /* 6459 * 2 items for inode and ref 6460 * 2 items for dir items 6461 * 1 for xattr if selinux is on 6462 */ 6463 trans = btrfs_start_transaction(root, 5); 6464 if (IS_ERR(trans)) 6465 return PTR_ERR(trans); 6466 6467 err = btrfs_find_free_ino(root, &objectid); 6468 if (err) 6469 goto out_fail; 6470 6471 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6472 dentry->d_name.len, btrfs_ino(dir), objectid, 6473 S_IFDIR | mode, &index); 6474 if (IS_ERR(inode)) { 6475 err = PTR_ERR(inode); 6476 goto out_fail; 6477 } 6478 6479 drop_on_err = 1; 6480 /* these must be set before we unlock the inode */ 6481 inode->i_op = &btrfs_dir_inode_operations; 6482 inode->i_fop = &btrfs_dir_file_operations; 6483 6484 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6485 if (err) 6486 goto out_fail_inode; 6487 6488 btrfs_i_size_write(inode, 0); 6489 err = btrfs_update_inode(trans, root, inode); 6490 if (err) 6491 goto out_fail_inode; 6492 6493 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6494 dentry->d_name.len, 0, index); 6495 if (err) 6496 goto out_fail_inode; 6497 6498 d_instantiate(dentry, inode); 6499 /* 6500 * mkdir is special. We're unlocking after we call d_instantiate 6501 * to avoid a race with nfsd calling d_instantiate. 6502 */ 6503 unlock_new_inode(inode); 6504 drop_on_err = 0; 6505 6506 out_fail: 6507 btrfs_end_transaction(trans, root); 6508 if (drop_on_err) { 6509 inode_dec_link_count(inode); 6510 iput(inode); 6511 } 6512 btrfs_balance_delayed_items(root); 6513 btrfs_btree_balance_dirty(root); 6514 return err; 6515 6516 out_fail_inode: 6517 unlock_new_inode(inode); 6518 goto out_fail; 6519 } 6520 6521 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6522 static struct extent_map *next_extent_map(struct extent_map *em) 6523 { 6524 struct rb_node *next; 6525 6526 next = rb_next(&em->rb_node); 6527 if (!next) 6528 return NULL; 6529 return container_of(next, struct extent_map, rb_node); 6530 } 6531 6532 static struct extent_map *prev_extent_map(struct extent_map *em) 6533 { 6534 struct rb_node *prev; 6535 6536 prev = rb_prev(&em->rb_node); 6537 if (!prev) 6538 return NULL; 6539 return container_of(prev, struct extent_map, rb_node); 6540 } 6541 6542 /* helper for btfs_get_extent. Given an existing extent in the tree, 6543 * the existing extent is the nearest extent to map_start, 6544 * and an extent that you want to insert, deal with overlap and insert 6545 * the best fitted new extent into the tree. 6546 */ 6547 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6548 struct extent_map *existing, 6549 struct extent_map *em, 6550 u64 map_start) 6551 { 6552 struct extent_map *prev; 6553 struct extent_map *next; 6554 u64 start; 6555 u64 end; 6556 u64 start_diff; 6557 6558 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6559 6560 if (existing->start > map_start) { 6561 next = existing; 6562 prev = prev_extent_map(next); 6563 } else { 6564 prev = existing; 6565 next = next_extent_map(prev); 6566 } 6567 6568 start = prev ? extent_map_end(prev) : em->start; 6569 start = max_t(u64, start, em->start); 6570 end = next ? next->start : extent_map_end(em); 6571 end = min_t(u64, end, extent_map_end(em)); 6572 start_diff = start - em->start; 6573 em->start = start; 6574 em->len = end - start; 6575 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6576 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6577 em->block_start += start_diff; 6578 em->block_len -= start_diff; 6579 } 6580 return add_extent_mapping(em_tree, em, 0); 6581 } 6582 6583 static noinline int uncompress_inline(struct btrfs_path *path, 6584 struct inode *inode, struct page *page, 6585 size_t pg_offset, u64 extent_offset, 6586 struct btrfs_file_extent_item *item) 6587 { 6588 int ret; 6589 struct extent_buffer *leaf = path->nodes[0]; 6590 char *tmp; 6591 size_t max_size; 6592 unsigned long inline_size; 6593 unsigned long ptr; 6594 int compress_type; 6595 6596 WARN_ON(pg_offset != 0); 6597 compress_type = btrfs_file_extent_compression(leaf, item); 6598 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6599 inline_size = btrfs_file_extent_inline_item_len(leaf, 6600 btrfs_item_nr(path->slots[0])); 6601 tmp = kmalloc(inline_size, GFP_NOFS); 6602 if (!tmp) 6603 return -ENOMEM; 6604 ptr = btrfs_file_extent_inline_start(item); 6605 6606 read_extent_buffer(leaf, tmp, ptr, inline_size); 6607 6608 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6609 ret = btrfs_decompress(compress_type, tmp, page, 6610 extent_offset, inline_size, max_size); 6611 kfree(tmp); 6612 return ret; 6613 } 6614 6615 /* 6616 * a bit scary, this does extent mapping from logical file offset to the disk. 6617 * the ugly parts come from merging extents from the disk with the in-ram 6618 * representation. This gets more complex because of the data=ordered code, 6619 * where the in-ram extents might be locked pending data=ordered completion. 6620 * 6621 * This also copies inline extents directly into the page. 6622 */ 6623 6624 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6625 size_t pg_offset, u64 start, u64 len, 6626 int create) 6627 { 6628 int ret; 6629 int err = 0; 6630 u64 extent_start = 0; 6631 u64 extent_end = 0; 6632 u64 objectid = btrfs_ino(inode); 6633 u32 found_type; 6634 struct btrfs_path *path = NULL; 6635 struct btrfs_root *root = BTRFS_I(inode)->root; 6636 struct btrfs_file_extent_item *item; 6637 struct extent_buffer *leaf; 6638 struct btrfs_key found_key; 6639 struct extent_map *em = NULL; 6640 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6641 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6642 struct btrfs_trans_handle *trans = NULL; 6643 const bool new_inline = !page || create; 6644 6645 again: 6646 read_lock(&em_tree->lock); 6647 em = lookup_extent_mapping(em_tree, start, len); 6648 if (em) 6649 em->bdev = root->fs_info->fs_devices->latest_bdev; 6650 read_unlock(&em_tree->lock); 6651 6652 if (em) { 6653 if (em->start > start || em->start + em->len <= start) 6654 free_extent_map(em); 6655 else if (em->block_start == EXTENT_MAP_INLINE && page) 6656 free_extent_map(em); 6657 else 6658 goto out; 6659 } 6660 em = alloc_extent_map(); 6661 if (!em) { 6662 err = -ENOMEM; 6663 goto out; 6664 } 6665 em->bdev = root->fs_info->fs_devices->latest_bdev; 6666 em->start = EXTENT_MAP_HOLE; 6667 em->orig_start = EXTENT_MAP_HOLE; 6668 em->len = (u64)-1; 6669 em->block_len = (u64)-1; 6670 6671 if (!path) { 6672 path = btrfs_alloc_path(); 6673 if (!path) { 6674 err = -ENOMEM; 6675 goto out; 6676 } 6677 /* 6678 * Chances are we'll be called again, so go ahead and do 6679 * readahead 6680 */ 6681 path->reada = 1; 6682 } 6683 6684 ret = btrfs_lookup_file_extent(trans, root, path, 6685 objectid, start, trans != NULL); 6686 if (ret < 0) { 6687 err = ret; 6688 goto out; 6689 } 6690 6691 if (ret != 0) { 6692 if (path->slots[0] == 0) 6693 goto not_found; 6694 path->slots[0]--; 6695 } 6696 6697 leaf = path->nodes[0]; 6698 item = btrfs_item_ptr(leaf, path->slots[0], 6699 struct btrfs_file_extent_item); 6700 /* are we inside the extent that was found? */ 6701 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6702 found_type = found_key.type; 6703 if (found_key.objectid != objectid || 6704 found_type != BTRFS_EXTENT_DATA_KEY) { 6705 /* 6706 * If we backup past the first extent we want to move forward 6707 * and see if there is an extent in front of us, otherwise we'll 6708 * say there is a hole for our whole search range which can 6709 * cause problems. 6710 */ 6711 extent_end = start; 6712 goto next; 6713 } 6714 6715 found_type = btrfs_file_extent_type(leaf, item); 6716 extent_start = found_key.offset; 6717 if (found_type == BTRFS_FILE_EXTENT_REG || 6718 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6719 extent_end = extent_start + 6720 btrfs_file_extent_num_bytes(leaf, item); 6721 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6722 size_t size; 6723 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6724 extent_end = ALIGN(extent_start + size, root->sectorsize); 6725 } 6726 next: 6727 if (start >= extent_end) { 6728 path->slots[0]++; 6729 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6730 ret = btrfs_next_leaf(root, path); 6731 if (ret < 0) { 6732 err = ret; 6733 goto out; 6734 } 6735 if (ret > 0) 6736 goto not_found; 6737 leaf = path->nodes[0]; 6738 } 6739 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6740 if (found_key.objectid != objectid || 6741 found_key.type != BTRFS_EXTENT_DATA_KEY) 6742 goto not_found; 6743 if (start + len <= found_key.offset) 6744 goto not_found; 6745 if (start > found_key.offset) 6746 goto next; 6747 em->start = start; 6748 em->orig_start = start; 6749 em->len = found_key.offset - start; 6750 goto not_found_em; 6751 } 6752 6753 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6754 6755 if (found_type == BTRFS_FILE_EXTENT_REG || 6756 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6757 goto insert; 6758 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6759 unsigned long ptr; 6760 char *map; 6761 size_t size; 6762 size_t extent_offset; 6763 size_t copy_size; 6764 6765 if (new_inline) 6766 goto out; 6767 6768 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6769 extent_offset = page_offset(page) + pg_offset - extent_start; 6770 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6771 size - extent_offset); 6772 em->start = extent_start + extent_offset; 6773 em->len = ALIGN(copy_size, root->sectorsize); 6774 em->orig_block_len = em->len; 6775 em->orig_start = em->start; 6776 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6777 if (create == 0 && !PageUptodate(page)) { 6778 if (btrfs_file_extent_compression(leaf, item) != 6779 BTRFS_COMPRESS_NONE) { 6780 ret = uncompress_inline(path, inode, page, 6781 pg_offset, 6782 extent_offset, item); 6783 if (ret) { 6784 err = ret; 6785 goto out; 6786 } 6787 } else { 6788 map = kmap(page); 6789 read_extent_buffer(leaf, map + pg_offset, ptr, 6790 copy_size); 6791 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6792 memset(map + pg_offset + copy_size, 0, 6793 PAGE_CACHE_SIZE - pg_offset - 6794 copy_size); 6795 } 6796 kunmap(page); 6797 } 6798 flush_dcache_page(page); 6799 } else if (create && PageUptodate(page)) { 6800 BUG(); 6801 if (!trans) { 6802 kunmap(page); 6803 free_extent_map(em); 6804 em = NULL; 6805 6806 btrfs_release_path(path); 6807 trans = btrfs_join_transaction(root); 6808 6809 if (IS_ERR(trans)) 6810 return ERR_CAST(trans); 6811 goto again; 6812 } 6813 map = kmap(page); 6814 write_extent_buffer(leaf, map + pg_offset, ptr, 6815 copy_size); 6816 kunmap(page); 6817 btrfs_mark_buffer_dirty(leaf); 6818 } 6819 set_extent_uptodate(io_tree, em->start, 6820 extent_map_end(em) - 1, NULL, GFP_NOFS); 6821 goto insert; 6822 } 6823 not_found: 6824 em->start = start; 6825 em->orig_start = start; 6826 em->len = len; 6827 not_found_em: 6828 em->block_start = EXTENT_MAP_HOLE; 6829 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6830 insert: 6831 btrfs_release_path(path); 6832 if (em->start > start || extent_map_end(em) <= start) { 6833 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6834 em->start, em->len, start, len); 6835 err = -EIO; 6836 goto out; 6837 } 6838 6839 err = 0; 6840 write_lock(&em_tree->lock); 6841 ret = add_extent_mapping(em_tree, em, 0); 6842 /* it is possible that someone inserted the extent into the tree 6843 * while we had the lock dropped. It is also possible that 6844 * an overlapping map exists in the tree 6845 */ 6846 if (ret == -EEXIST) { 6847 struct extent_map *existing; 6848 6849 ret = 0; 6850 6851 existing = search_extent_mapping(em_tree, start, len); 6852 /* 6853 * existing will always be non-NULL, since there must be 6854 * extent causing the -EEXIST. 6855 */ 6856 if (start >= extent_map_end(existing) || 6857 start <= existing->start) { 6858 /* 6859 * The existing extent map is the one nearest to 6860 * the [start, start + len) range which overlaps 6861 */ 6862 err = merge_extent_mapping(em_tree, existing, 6863 em, start); 6864 free_extent_map(existing); 6865 if (err) { 6866 free_extent_map(em); 6867 em = NULL; 6868 } 6869 } else { 6870 free_extent_map(em); 6871 em = existing; 6872 err = 0; 6873 } 6874 } 6875 write_unlock(&em_tree->lock); 6876 out: 6877 6878 trace_btrfs_get_extent(root, em); 6879 6880 if (path) 6881 btrfs_free_path(path); 6882 if (trans) { 6883 ret = btrfs_end_transaction(trans, root); 6884 if (!err) 6885 err = ret; 6886 } 6887 if (err) { 6888 free_extent_map(em); 6889 return ERR_PTR(err); 6890 } 6891 BUG_ON(!em); /* Error is always set */ 6892 return em; 6893 } 6894 6895 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6896 size_t pg_offset, u64 start, u64 len, 6897 int create) 6898 { 6899 struct extent_map *em; 6900 struct extent_map *hole_em = NULL; 6901 u64 range_start = start; 6902 u64 end; 6903 u64 found; 6904 u64 found_end; 6905 int err = 0; 6906 6907 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6908 if (IS_ERR(em)) 6909 return em; 6910 if (em) { 6911 /* 6912 * if our em maps to 6913 * - a hole or 6914 * - a pre-alloc extent, 6915 * there might actually be delalloc bytes behind it. 6916 */ 6917 if (em->block_start != EXTENT_MAP_HOLE && 6918 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6919 return em; 6920 else 6921 hole_em = em; 6922 } 6923 6924 /* check to see if we've wrapped (len == -1 or similar) */ 6925 end = start + len; 6926 if (end < start) 6927 end = (u64)-1; 6928 else 6929 end -= 1; 6930 6931 em = NULL; 6932 6933 /* ok, we didn't find anything, lets look for delalloc */ 6934 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6935 end, len, EXTENT_DELALLOC, 1); 6936 found_end = range_start + found; 6937 if (found_end < range_start) 6938 found_end = (u64)-1; 6939 6940 /* 6941 * we didn't find anything useful, return 6942 * the original results from get_extent() 6943 */ 6944 if (range_start > end || found_end <= start) { 6945 em = hole_em; 6946 hole_em = NULL; 6947 goto out; 6948 } 6949 6950 /* adjust the range_start to make sure it doesn't 6951 * go backwards from the start they passed in 6952 */ 6953 range_start = max(start, range_start); 6954 found = found_end - range_start; 6955 6956 if (found > 0) { 6957 u64 hole_start = start; 6958 u64 hole_len = len; 6959 6960 em = alloc_extent_map(); 6961 if (!em) { 6962 err = -ENOMEM; 6963 goto out; 6964 } 6965 /* 6966 * when btrfs_get_extent can't find anything it 6967 * returns one huge hole 6968 * 6969 * make sure what it found really fits our range, and 6970 * adjust to make sure it is based on the start from 6971 * the caller 6972 */ 6973 if (hole_em) { 6974 u64 calc_end = extent_map_end(hole_em); 6975 6976 if (calc_end <= start || (hole_em->start > end)) { 6977 free_extent_map(hole_em); 6978 hole_em = NULL; 6979 } else { 6980 hole_start = max(hole_em->start, start); 6981 hole_len = calc_end - hole_start; 6982 } 6983 } 6984 em->bdev = NULL; 6985 if (hole_em && range_start > hole_start) { 6986 /* our hole starts before our delalloc, so we 6987 * have to return just the parts of the hole 6988 * that go until the delalloc starts 6989 */ 6990 em->len = min(hole_len, 6991 range_start - hole_start); 6992 em->start = hole_start; 6993 em->orig_start = hole_start; 6994 /* 6995 * don't adjust block start at all, 6996 * it is fixed at EXTENT_MAP_HOLE 6997 */ 6998 em->block_start = hole_em->block_start; 6999 em->block_len = hole_len; 7000 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7001 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7002 } else { 7003 em->start = range_start; 7004 em->len = found; 7005 em->orig_start = range_start; 7006 em->block_start = EXTENT_MAP_DELALLOC; 7007 em->block_len = found; 7008 } 7009 } else if (hole_em) { 7010 return hole_em; 7011 } 7012 out: 7013 7014 free_extent_map(hole_em); 7015 if (err) { 7016 free_extent_map(em); 7017 return ERR_PTR(err); 7018 } 7019 return em; 7020 } 7021 7022 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7023 u64 start, u64 len) 7024 { 7025 struct btrfs_root *root = BTRFS_I(inode)->root; 7026 struct extent_map *em; 7027 struct btrfs_key ins; 7028 u64 alloc_hint; 7029 int ret; 7030 7031 alloc_hint = get_extent_allocation_hint(inode, start, len); 7032 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7033 alloc_hint, &ins, 1, 1); 7034 if (ret) 7035 return ERR_PTR(ret); 7036 7037 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 7038 ins.offset, ins.offset, ins.offset, 0); 7039 if (IS_ERR(em)) { 7040 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7041 return em; 7042 } 7043 7044 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 7045 ins.offset, ins.offset, 0); 7046 if (ret) { 7047 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7048 free_extent_map(em); 7049 return ERR_PTR(ret); 7050 } 7051 7052 return em; 7053 } 7054 7055 /* 7056 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7057 * block must be cow'd 7058 */ 7059 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7060 u64 *orig_start, u64 *orig_block_len, 7061 u64 *ram_bytes) 7062 { 7063 struct btrfs_trans_handle *trans; 7064 struct btrfs_path *path; 7065 int ret; 7066 struct extent_buffer *leaf; 7067 struct btrfs_root *root = BTRFS_I(inode)->root; 7068 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7069 struct btrfs_file_extent_item *fi; 7070 struct btrfs_key key; 7071 u64 disk_bytenr; 7072 u64 backref_offset; 7073 u64 extent_end; 7074 u64 num_bytes; 7075 int slot; 7076 int found_type; 7077 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7078 7079 path = btrfs_alloc_path(); 7080 if (!path) 7081 return -ENOMEM; 7082 7083 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7084 offset, 0); 7085 if (ret < 0) 7086 goto out; 7087 7088 slot = path->slots[0]; 7089 if (ret == 1) { 7090 if (slot == 0) { 7091 /* can't find the item, must cow */ 7092 ret = 0; 7093 goto out; 7094 } 7095 slot--; 7096 } 7097 ret = 0; 7098 leaf = path->nodes[0]; 7099 btrfs_item_key_to_cpu(leaf, &key, slot); 7100 if (key.objectid != btrfs_ino(inode) || 7101 key.type != BTRFS_EXTENT_DATA_KEY) { 7102 /* not our file or wrong item type, must cow */ 7103 goto out; 7104 } 7105 7106 if (key.offset > offset) { 7107 /* Wrong offset, must cow */ 7108 goto out; 7109 } 7110 7111 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7112 found_type = btrfs_file_extent_type(leaf, fi); 7113 if (found_type != BTRFS_FILE_EXTENT_REG && 7114 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7115 /* not a regular extent, must cow */ 7116 goto out; 7117 } 7118 7119 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7120 goto out; 7121 7122 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7123 if (extent_end <= offset) 7124 goto out; 7125 7126 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7127 if (disk_bytenr == 0) 7128 goto out; 7129 7130 if (btrfs_file_extent_compression(leaf, fi) || 7131 btrfs_file_extent_encryption(leaf, fi) || 7132 btrfs_file_extent_other_encoding(leaf, fi)) 7133 goto out; 7134 7135 backref_offset = btrfs_file_extent_offset(leaf, fi); 7136 7137 if (orig_start) { 7138 *orig_start = key.offset - backref_offset; 7139 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7140 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7141 } 7142 7143 if (btrfs_extent_readonly(root, disk_bytenr)) 7144 goto out; 7145 7146 num_bytes = min(offset + *len, extent_end) - offset; 7147 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7148 u64 range_end; 7149 7150 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7151 ret = test_range_bit(io_tree, offset, range_end, 7152 EXTENT_DELALLOC, 0, NULL); 7153 if (ret) { 7154 ret = -EAGAIN; 7155 goto out; 7156 } 7157 } 7158 7159 btrfs_release_path(path); 7160 7161 /* 7162 * look for other files referencing this extent, if we 7163 * find any we must cow 7164 */ 7165 trans = btrfs_join_transaction(root); 7166 if (IS_ERR(trans)) { 7167 ret = 0; 7168 goto out; 7169 } 7170 7171 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7172 key.offset - backref_offset, disk_bytenr); 7173 btrfs_end_transaction(trans, root); 7174 if (ret) { 7175 ret = 0; 7176 goto out; 7177 } 7178 7179 /* 7180 * adjust disk_bytenr and num_bytes to cover just the bytes 7181 * in this extent we are about to write. If there 7182 * are any csums in that range we have to cow in order 7183 * to keep the csums correct 7184 */ 7185 disk_bytenr += backref_offset; 7186 disk_bytenr += offset - key.offset; 7187 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7188 goto out; 7189 /* 7190 * all of the above have passed, it is safe to overwrite this extent 7191 * without cow 7192 */ 7193 *len = num_bytes; 7194 ret = 1; 7195 out: 7196 btrfs_free_path(path); 7197 return ret; 7198 } 7199 7200 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7201 { 7202 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7203 int found = false; 7204 void **pagep = NULL; 7205 struct page *page = NULL; 7206 int start_idx; 7207 int end_idx; 7208 7209 start_idx = start >> PAGE_CACHE_SHIFT; 7210 7211 /* 7212 * end is the last byte in the last page. end == start is legal 7213 */ 7214 end_idx = end >> PAGE_CACHE_SHIFT; 7215 7216 rcu_read_lock(); 7217 7218 /* Most of the code in this while loop is lifted from 7219 * find_get_page. It's been modified to begin searching from a 7220 * page and return just the first page found in that range. If the 7221 * found idx is less than or equal to the end idx then we know that 7222 * a page exists. If no pages are found or if those pages are 7223 * outside of the range then we're fine (yay!) */ 7224 while (page == NULL && 7225 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7226 page = radix_tree_deref_slot(pagep); 7227 if (unlikely(!page)) 7228 break; 7229 7230 if (radix_tree_exception(page)) { 7231 if (radix_tree_deref_retry(page)) { 7232 page = NULL; 7233 continue; 7234 } 7235 /* 7236 * Otherwise, shmem/tmpfs must be storing a swap entry 7237 * here as an exceptional entry: so return it without 7238 * attempting to raise page count. 7239 */ 7240 page = NULL; 7241 break; /* TODO: Is this relevant for this use case? */ 7242 } 7243 7244 if (!page_cache_get_speculative(page)) { 7245 page = NULL; 7246 continue; 7247 } 7248 7249 /* 7250 * Has the page moved? 7251 * This is part of the lockless pagecache protocol. See 7252 * include/linux/pagemap.h for details. 7253 */ 7254 if (unlikely(page != *pagep)) { 7255 page_cache_release(page); 7256 page = NULL; 7257 } 7258 } 7259 7260 if (page) { 7261 if (page->index <= end_idx) 7262 found = true; 7263 page_cache_release(page); 7264 } 7265 7266 rcu_read_unlock(); 7267 return found; 7268 } 7269 7270 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7271 struct extent_state **cached_state, int writing) 7272 { 7273 struct btrfs_ordered_extent *ordered; 7274 int ret = 0; 7275 7276 while (1) { 7277 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7278 0, cached_state); 7279 /* 7280 * We're concerned with the entire range that we're going to be 7281 * doing DIO to, so we need to make sure theres no ordered 7282 * extents in this range. 7283 */ 7284 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7285 lockend - lockstart + 1); 7286 7287 /* 7288 * We need to make sure there are no buffered pages in this 7289 * range either, we could have raced between the invalidate in 7290 * generic_file_direct_write and locking the extent. The 7291 * invalidate needs to happen so that reads after a write do not 7292 * get stale data. 7293 */ 7294 if (!ordered && 7295 (!writing || 7296 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7297 break; 7298 7299 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7300 cached_state, GFP_NOFS); 7301 7302 if (ordered) { 7303 btrfs_start_ordered_extent(inode, ordered, 1); 7304 btrfs_put_ordered_extent(ordered); 7305 } else { 7306 /* Screw you mmap */ 7307 ret = btrfs_fdatawrite_range(inode, lockstart, lockend); 7308 if (ret) 7309 break; 7310 ret = filemap_fdatawait_range(inode->i_mapping, 7311 lockstart, 7312 lockend); 7313 if (ret) 7314 break; 7315 7316 /* 7317 * If we found a page that couldn't be invalidated just 7318 * fall back to buffered. 7319 */ 7320 ret = invalidate_inode_pages2_range(inode->i_mapping, 7321 lockstart >> PAGE_CACHE_SHIFT, 7322 lockend >> PAGE_CACHE_SHIFT); 7323 if (ret) 7324 break; 7325 } 7326 7327 cond_resched(); 7328 } 7329 7330 return ret; 7331 } 7332 7333 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7334 u64 len, u64 orig_start, 7335 u64 block_start, u64 block_len, 7336 u64 orig_block_len, u64 ram_bytes, 7337 int type) 7338 { 7339 struct extent_map_tree *em_tree; 7340 struct extent_map *em; 7341 struct btrfs_root *root = BTRFS_I(inode)->root; 7342 int ret; 7343 7344 em_tree = &BTRFS_I(inode)->extent_tree; 7345 em = alloc_extent_map(); 7346 if (!em) 7347 return ERR_PTR(-ENOMEM); 7348 7349 em->start = start; 7350 em->orig_start = orig_start; 7351 em->mod_start = start; 7352 em->mod_len = len; 7353 em->len = len; 7354 em->block_len = block_len; 7355 em->block_start = block_start; 7356 em->bdev = root->fs_info->fs_devices->latest_bdev; 7357 em->orig_block_len = orig_block_len; 7358 em->ram_bytes = ram_bytes; 7359 em->generation = -1; 7360 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7361 if (type == BTRFS_ORDERED_PREALLOC) 7362 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7363 7364 do { 7365 btrfs_drop_extent_cache(inode, em->start, 7366 em->start + em->len - 1, 0); 7367 write_lock(&em_tree->lock); 7368 ret = add_extent_mapping(em_tree, em, 1); 7369 write_unlock(&em_tree->lock); 7370 } while (ret == -EEXIST); 7371 7372 if (ret) { 7373 free_extent_map(em); 7374 return ERR_PTR(ret); 7375 } 7376 7377 return em; 7378 } 7379 7380 7381 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7382 struct buffer_head *bh_result, int create) 7383 { 7384 struct extent_map *em; 7385 struct btrfs_root *root = BTRFS_I(inode)->root; 7386 struct extent_state *cached_state = NULL; 7387 u64 start = iblock << inode->i_blkbits; 7388 u64 lockstart, lockend; 7389 u64 len = bh_result->b_size; 7390 u64 *outstanding_extents = NULL; 7391 int unlock_bits = EXTENT_LOCKED; 7392 int ret = 0; 7393 7394 if (create) 7395 unlock_bits |= EXTENT_DIRTY; 7396 else 7397 len = min_t(u64, len, root->sectorsize); 7398 7399 lockstart = start; 7400 lockend = start + len - 1; 7401 7402 if (current->journal_info) { 7403 /* 7404 * Need to pull our outstanding extents and set journal_info to NULL so 7405 * that anything that needs to check if there's a transction doesn't get 7406 * confused. 7407 */ 7408 outstanding_extents = current->journal_info; 7409 current->journal_info = NULL; 7410 } 7411 7412 /* 7413 * If this errors out it's because we couldn't invalidate pagecache for 7414 * this range and we need to fallback to buffered. 7415 */ 7416 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 7417 return -ENOTBLK; 7418 7419 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7420 if (IS_ERR(em)) { 7421 ret = PTR_ERR(em); 7422 goto unlock_err; 7423 } 7424 7425 /* 7426 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7427 * io. INLINE is special, and we could probably kludge it in here, but 7428 * it's still buffered so for safety lets just fall back to the generic 7429 * buffered path. 7430 * 7431 * For COMPRESSED we _have_ to read the entire extent in so we can 7432 * decompress it, so there will be buffering required no matter what we 7433 * do, so go ahead and fallback to buffered. 7434 * 7435 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7436 * to buffered IO. Don't blame me, this is the price we pay for using 7437 * the generic code. 7438 */ 7439 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7440 em->block_start == EXTENT_MAP_INLINE) { 7441 free_extent_map(em); 7442 ret = -ENOTBLK; 7443 goto unlock_err; 7444 } 7445 7446 /* Just a good old fashioned hole, return */ 7447 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7448 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7449 free_extent_map(em); 7450 goto unlock_err; 7451 } 7452 7453 /* 7454 * We don't allocate a new extent in the following cases 7455 * 7456 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7457 * existing extent. 7458 * 2) The extent is marked as PREALLOC. We're good to go here and can 7459 * just use the extent. 7460 * 7461 */ 7462 if (!create) { 7463 len = min(len, em->len - (start - em->start)); 7464 lockstart = start + len; 7465 goto unlock; 7466 } 7467 7468 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7469 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7470 em->block_start != EXTENT_MAP_HOLE)) { 7471 int type; 7472 u64 block_start, orig_start, orig_block_len, ram_bytes; 7473 7474 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7475 type = BTRFS_ORDERED_PREALLOC; 7476 else 7477 type = BTRFS_ORDERED_NOCOW; 7478 len = min(len, em->len - (start - em->start)); 7479 block_start = em->block_start + (start - em->start); 7480 7481 if (can_nocow_extent(inode, start, &len, &orig_start, 7482 &orig_block_len, &ram_bytes) == 1) { 7483 if (type == BTRFS_ORDERED_PREALLOC) { 7484 free_extent_map(em); 7485 em = create_pinned_em(inode, start, len, 7486 orig_start, 7487 block_start, len, 7488 orig_block_len, 7489 ram_bytes, type); 7490 if (IS_ERR(em)) { 7491 ret = PTR_ERR(em); 7492 goto unlock_err; 7493 } 7494 } 7495 7496 ret = btrfs_add_ordered_extent_dio(inode, start, 7497 block_start, len, len, type); 7498 if (ret) { 7499 free_extent_map(em); 7500 goto unlock_err; 7501 } 7502 goto unlock; 7503 } 7504 } 7505 7506 /* 7507 * this will cow the extent, reset the len in case we changed 7508 * it above 7509 */ 7510 len = bh_result->b_size; 7511 free_extent_map(em); 7512 em = btrfs_new_extent_direct(inode, start, len); 7513 if (IS_ERR(em)) { 7514 ret = PTR_ERR(em); 7515 goto unlock_err; 7516 } 7517 len = min(len, em->len - (start - em->start)); 7518 unlock: 7519 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7520 inode->i_blkbits; 7521 bh_result->b_size = len; 7522 bh_result->b_bdev = em->bdev; 7523 set_buffer_mapped(bh_result); 7524 if (create) { 7525 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7526 set_buffer_new(bh_result); 7527 7528 /* 7529 * Need to update the i_size under the extent lock so buffered 7530 * readers will get the updated i_size when we unlock. 7531 */ 7532 if (start + len > i_size_read(inode)) 7533 i_size_write(inode, start + len); 7534 7535 /* 7536 * If we have an outstanding_extents count still set then we're 7537 * within our reservation, otherwise we need to adjust our inode 7538 * counter appropriately. 7539 */ 7540 if (*outstanding_extents) { 7541 (*outstanding_extents)--; 7542 } else { 7543 spin_lock(&BTRFS_I(inode)->lock); 7544 BTRFS_I(inode)->outstanding_extents++; 7545 spin_unlock(&BTRFS_I(inode)->lock); 7546 } 7547 7548 current->journal_info = outstanding_extents; 7549 btrfs_free_reserved_data_space(inode, len); 7550 set_bit(BTRFS_INODE_DIO_READY, &BTRFS_I(inode)->runtime_flags); 7551 } 7552 7553 /* 7554 * In the case of write we need to clear and unlock the entire range, 7555 * in the case of read we need to unlock only the end area that we 7556 * aren't using if there is any left over space. 7557 */ 7558 if (lockstart < lockend) { 7559 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7560 lockend, unlock_bits, 1, 0, 7561 &cached_state, GFP_NOFS); 7562 } else { 7563 free_extent_state(cached_state); 7564 } 7565 7566 free_extent_map(em); 7567 7568 return 0; 7569 7570 unlock_err: 7571 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7572 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7573 if (outstanding_extents) 7574 current->journal_info = outstanding_extents; 7575 return ret; 7576 } 7577 7578 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7579 int rw, int mirror_num) 7580 { 7581 struct btrfs_root *root = BTRFS_I(inode)->root; 7582 int ret; 7583 7584 BUG_ON(rw & REQ_WRITE); 7585 7586 bio_get(bio); 7587 7588 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7589 BTRFS_WQ_ENDIO_DIO_REPAIR); 7590 if (ret) 7591 goto err; 7592 7593 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7594 err: 7595 bio_put(bio); 7596 return ret; 7597 } 7598 7599 static int btrfs_check_dio_repairable(struct inode *inode, 7600 struct bio *failed_bio, 7601 struct io_failure_record *failrec, 7602 int failed_mirror) 7603 { 7604 int num_copies; 7605 7606 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7607 failrec->logical, failrec->len); 7608 if (num_copies == 1) { 7609 /* 7610 * we only have a single copy of the data, so don't bother with 7611 * all the retry and error correction code that follows. no 7612 * matter what the error is, it is very likely to persist. 7613 */ 7614 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7615 num_copies, failrec->this_mirror, failed_mirror); 7616 return 0; 7617 } 7618 7619 failrec->failed_mirror = failed_mirror; 7620 failrec->this_mirror++; 7621 if (failrec->this_mirror == failed_mirror) 7622 failrec->this_mirror++; 7623 7624 if (failrec->this_mirror > num_copies) { 7625 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7626 num_copies, failrec->this_mirror, failed_mirror); 7627 return 0; 7628 } 7629 7630 return 1; 7631 } 7632 7633 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7634 struct page *page, u64 start, u64 end, 7635 int failed_mirror, bio_end_io_t *repair_endio, 7636 void *repair_arg) 7637 { 7638 struct io_failure_record *failrec; 7639 struct bio *bio; 7640 int isector; 7641 int read_mode; 7642 int ret; 7643 7644 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7645 7646 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7647 if (ret) 7648 return ret; 7649 7650 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7651 failed_mirror); 7652 if (!ret) { 7653 free_io_failure(inode, failrec); 7654 return -EIO; 7655 } 7656 7657 if (failed_bio->bi_vcnt > 1) 7658 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7659 else 7660 read_mode = READ_SYNC; 7661 7662 isector = start - btrfs_io_bio(failed_bio)->logical; 7663 isector >>= inode->i_sb->s_blocksize_bits; 7664 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7665 0, isector, repair_endio, repair_arg); 7666 if (!bio) { 7667 free_io_failure(inode, failrec); 7668 return -EIO; 7669 } 7670 7671 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7672 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7673 read_mode, failrec->this_mirror, failrec->in_validation); 7674 7675 ret = submit_dio_repair_bio(inode, bio, read_mode, 7676 failrec->this_mirror); 7677 if (ret) { 7678 free_io_failure(inode, failrec); 7679 bio_put(bio); 7680 } 7681 7682 return ret; 7683 } 7684 7685 struct btrfs_retry_complete { 7686 struct completion done; 7687 struct inode *inode; 7688 u64 start; 7689 int uptodate; 7690 }; 7691 7692 static void btrfs_retry_endio_nocsum(struct bio *bio, int err) 7693 { 7694 struct btrfs_retry_complete *done = bio->bi_private; 7695 struct bio_vec *bvec; 7696 int i; 7697 7698 if (err) 7699 goto end; 7700 7701 done->uptodate = 1; 7702 bio_for_each_segment_all(bvec, bio, i) 7703 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7704 end: 7705 complete(&done->done); 7706 bio_put(bio); 7707 } 7708 7709 static int __btrfs_correct_data_nocsum(struct inode *inode, 7710 struct btrfs_io_bio *io_bio) 7711 { 7712 struct bio_vec *bvec; 7713 struct btrfs_retry_complete done; 7714 u64 start; 7715 int i; 7716 int ret; 7717 7718 start = io_bio->logical; 7719 done.inode = inode; 7720 7721 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7722 try_again: 7723 done.uptodate = 0; 7724 done.start = start; 7725 init_completion(&done.done); 7726 7727 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7728 start + bvec->bv_len - 1, 7729 io_bio->mirror_num, 7730 btrfs_retry_endio_nocsum, &done); 7731 if (ret) 7732 return ret; 7733 7734 wait_for_completion(&done.done); 7735 7736 if (!done.uptodate) { 7737 /* We might have another mirror, so try again */ 7738 goto try_again; 7739 } 7740 7741 start += bvec->bv_len; 7742 } 7743 7744 return 0; 7745 } 7746 7747 static void btrfs_retry_endio(struct bio *bio, int err) 7748 { 7749 struct btrfs_retry_complete *done = bio->bi_private; 7750 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7751 struct bio_vec *bvec; 7752 int uptodate; 7753 int ret; 7754 int i; 7755 7756 if (err) 7757 goto end; 7758 7759 uptodate = 1; 7760 bio_for_each_segment_all(bvec, bio, i) { 7761 ret = __readpage_endio_check(done->inode, io_bio, i, 7762 bvec->bv_page, 0, 7763 done->start, bvec->bv_len); 7764 if (!ret) 7765 clean_io_failure(done->inode, done->start, 7766 bvec->bv_page, 0); 7767 else 7768 uptodate = 0; 7769 } 7770 7771 done->uptodate = uptodate; 7772 end: 7773 complete(&done->done); 7774 bio_put(bio); 7775 } 7776 7777 static int __btrfs_subio_endio_read(struct inode *inode, 7778 struct btrfs_io_bio *io_bio, int err) 7779 { 7780 struct bio_vec *bvec; 7781 struct btrfs_retry_complete done; 7782 u64 start; 7783 u64 offset = 0; 7784 int i; 7785 int ret; 7786 7787 err = 0; 7788 start = io_bio->logical; 7789 done.inode = inode; 7790 7791 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7792 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7793 0, start, bvec->bv_len); 7794 if (likely(!ret)) 7795 goto next; 7796 try_again: 7797 done.uptodate = 0; 7798 done.start = start; 7799 init_completion(&done.done); 7800 7801 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7802 start + bvec->bv_len - 1, 7803 io_bio->mirror_num, 7804 btrfs_retry_endio, &done); 7805 if (ret) { 7806 err = ret; 7807 goto next; 7808 } 7809 7810 wait_for_completion(&done.done); 7811 7812 if (!done.uptodate) { 7813 /* We might have another mirror, so try again */ 7814 goto try_again; 7815 } 7816 next: 7817 offset += bvec->bv_len; 7818 start += bvec->bv_len; 7819 } 7820 7821 return err; 7822 } 7823 7824 static int btrfs_subio_endio_read(struct inode *inode, 7825 struct btrfs_io_bio *io_bio, int err) 7826 { 7827 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7828 7829 if (skip_csum) { 7830 if (unlikely(err)) 7831 return __btrfs_correct_data_nocsum(inode, io_bio); 7832 else 7833 return 0; 7834 } else { 7835 return __btrfs_subio_endio_read(inode, io_bio, err); 7836 } 7837 } 7838 7839 static void btrfs_endio_direct_read(struct bio *bio, int err) 7840 { 7841 struct btrfs_dio_private *dip = bio->bi_private; 7842 struct inode *inode = dip->inode; 7843 struct bio *dio_bio; 7844 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7845 7846 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7847 err = btrfs_subio_endio_read(inode, io_bio, err); 7848 7849 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7850 dip->logical_offset + dip->bytes - 1); 7851 dio_bio = dip->dio_bio; 7852 7853 kfree(dip); 7854 7855 /* If we had a csum failure make sure to clear the uptodate flag */ 7856 if (err) 7857 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7858 dio_end_io(dio_bio, err); 7859 7860 if (io_bio->end_io) 7861 io_bio->end_io(io_bio, err); 7862 bio_put(bio); 7863 } 7864 7865 static void btrfs_endio_direct_write(struct bio *bio, int err) 7866 { 7867 struct btrfs_dio_private *dip = bio->bi_private; 7868 struct inode *inode = dip->inode; 7869 struct btrfs_root *root = BTRFS_I(inode)->root; 7870 struct btrfs_ordered_extent *ordered = NULL; 7871 u64 ordered_offset = dip->logical_offset; 7872 u64 ordered_bytes = dip->bytes; 7873 struct bio *dio_bio; 7874 int ret; 7875 7876 again: 7877 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7878 &ordered_offset, 7879 ordered_bytes, !err); 7880 if (!ret) 7881 goto out_test; 7882 7883 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 7884 finish_ordered_fn, NULL, NULL); 7885 btrfs_queue_work(root->fs_info->endio_write_workers, 7886 &ordered->work); 7887 out_test: 7888 /* 7889 * our bio might span multiple ordered extents. If we haven't 7890 * completed the accounting for the whole dio, go back and try again 7891 */ 7892 if (ordered_offset < dip->logical_offset + dip->bytes) { 7893 ordered_bytes = dip->logical_offset + dip->bytes - 7894 ordered_offset; 7895 ordered = NULL; 7896 goto again; 7897 } 7898 dio_bio = dip->dio_bio; 7899 7900 kfree(dip); 7901 7902 /* If we had an error make sure to clear the uptodate flag */ 7903 if (err) 7904 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 7905 dio_end_io(dio_bio, err); 7906 bio_put(bio); 7907 } 7908 7909 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7910 struct bio *bio, int mirror_num, 7911 unsigned long bio_flags, u64 offset) 7912 { 7913 int ret; 7914 struct btrfs_root *root = BTRFS_I(inode)->root; 7915 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7916 BUG_ON(ret); /* -ENOMEM */ 7917 return 0; 7918 } 7919 7920 static void btrfs_end_dio_bio(struct bio *bio, int err) 7921 { 7922 struct btrfs_dio_private *dip = bio->bi_private; 7923 7924 if (err) 7925 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7926 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7927 btrfs_ino(dip->inode), bio->bi_rw, 7928 (unsigned long long)bio->bi_iter.bi_sector, 7929 bio->bi_iter.bi_size, err); 7930 7931 if (dip->subio_endio) 7932 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7933 7934 if (err) { 7935 dip->errors = 1; 7936 7937 /* 7938 * before atomic variable goto zero, we must make sure 7939 * dip->errors is perceived to be set. 7940 */ 7941 smp_mb__before_atomic(); 7942 } 7943 7944 /* if there are more bios still pending for this dio, just exit */ 7945 if (!atomic_dec_and_test(&dip->pending_bios)) 7946 goto out; 7947 7948 if (dip->errors) { 7949 bio_io_error(dip->orig_bio); 7950 } else { 7951 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags); 7952 bio_endio(dip->orig_bio, 0); 7953 } 7954 out: 7955 bio_put(bio); 7956 } 7957 7958 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7959 u64 first_sector, gfp_t gfp_flags) 7960 { 7961 int nr_vecs = bio_get_nr_vecs(bdev); 7962 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7963 } 7964 7965 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 7966 struct inode *inode, 7967 struct btrfs_dio_private *dip, 7968 struct bio *bio, 7969 u64 file_offset) 7970 { 7971 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7972 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7973 int ret; 7974 7975 /* 7976 * We load all the csum data we need when we submit 7977 * the first bio to reduce the csum tree search and 7978 * contention. 7979 */ 7980 if (dip->logical_offset == file_offset) { 7981 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 7982 file_offset); 7983 if (ret) 7984 return ret; 7985 } 7986 7987 if (bio == dip->orig_bio) 7988 return 0; 7989 7990 file_offset -= dip->logical_offset; 7991 file_offset >>= inode->i_sb->s_blocksize_bits; 7992 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 7993 7994 return 0; 7995 } 7996 7997 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7998 int rw, u64 file_offset, int skip_sum, 7999 int async_submit) 8000 { 8001 struct btrfs_dio_private *dip = bio->bi_private; 8002 int write = rw & REQ_WRITE; 8003 struct btrfs_root *root = BTRFS_I(inode)->root; 8004 int ret; 8005 8006 if (async_submit) 8007 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8008 8009 bio_get(bio); 8010 8011 if (!write) { 8012 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8013 BTRFS_WQ_ENDIO_DATA); 8014 if (ret) 8015 goto err; 8016 } 8017 8018 if (skip_sum) 8019 goto map; 8020 8021 if (write && async_submit) { 8022 ret = btrfs_wq_submit_bio(root->fs_info, 8023 inode, rw, bio, 0, 0, 8024 file_offset, 8025 __btrfs_submit_bio_start_direct_io, 8026 __btrfs_submit_bio_done); 8027 goto err; 8028 } else if (write) { 8029 /* 8030 * If we aren't doing async submit, calculate the csum of the 8031 * bio now. 8032 */ 8033 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8034 if (ret) 8035 goto err; 8036 } else { 8037 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8038 file_offset); 8039 if (ret) 8040 goto err; 8041 } 8042 map: 8043 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8044 err: 8045 bio_put(bio); 8046 return ret; 8047 } 8048 8049 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8050 int skip_sum) 8051 { 8052 struct inode *inode = dip->inode; 8053 struct btrfs_root *root = BTRFS_I(inode)->root; 8054 struct bio *bio; 8055 struct bio *orig_bio = dip->orig_bio; 8056 struct bio_vec *bvec = orig_bio->bi_io_vec; 8057 u64 start_sector = orig_bio->bi_iter.bi_sector; 8058 u64 file_offset = dip->logical_offset; 8059 u64 submit_len = 0; 8060 u64 map_length; 8061 int nr_pages = 0; 8062 int ret; 8063 int async_submit = 0; 8064 8065 map_length = orig_bio->bi_iter.bi_size; 8066 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8067 &map_length, NULL, 0); 8068 if (ret) 8069 return -EIO; 8070 8071 if (map_length >= orig_bio->bi_iter.bi_size) { 8072 bio = orig_bio; 8073 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8074 goto submit; 8075 } 8076 8077 /* async crcs make it difficult to collect full stripe writes. */ 8078 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8079 async_submit = 0; 8080 else 8081 async_submit = 1; 8082 8083 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8084 if (!bio) 8085 return -ENOMEM; 8086 8087 bio->bi_private = dip; 8088 bio->bi_end_io = btrfs_end_dio_bio; 8089 btrfs_io_bio(bio)->logical = file_offset; 8090 atomic_inc(&dip->pending_bios); 8091 8092 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8093 if (map_length < submit_len + bvec->bv_len || 8094 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 8095 bvec->bv_offset) < bvec->bv_len) { 8096 /* 8097 * inc the count before we submit the bio so 8098 * we know the end IO handler won't happen before 8099 * we inc the count. Otherwise, the dip might get freed 8100 * before we're done setting it up 8101 */ 8102 atomic_inc(&dip->pending_bios); 8103 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8104 file_offset, skip_sum, 8105 async_submit); 8106 if (ret) { 8107 bio_put(bio); 8108 atomic_dec(&dip->pending_bios); 8109 goto out_err; 8110 } 8111 8112 start_sector += submit_len >> 9; 8113 file_offset += submit_len; 8114 8115 submit_len = 0; 8116 nr_pages = 0; 8117 8118 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8119 start_sector, GFP_NOFS); 8120 if (!bio) 8121 goto out_err; 8122 bio->bi_private = dip; 8123 bio->bi_end_io = btrfs_end_dio_bio; 8124 btrfs_io_bio(bio)->logical = file_offset; 8125 8126 map_length = orig_bio->bi_iter.bi_size; 8127 ret = btrfs_map_block(root->fs_info, rw, 8128 start_sector << 9, 8129 &map_length, NULL, 0); 8130 if (ret) { 8131 bio_put(bio); 8132 goto out_err; 8133 } 8134 } else { 8135 submit_len += bvec->bv_len; 8136 nr_pages++; 8137 bvec++; 8138 } 8139 } 8140 8141 submit: 8142 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8143 async_submit); 8144 if (!ret) 8145 return 0; 8146 8147 bio_put(bio); 8148 out_err: 8149 dip->errors = 1; 8150 /* 8151 * before atomic variable goto zero, we must 8152 * make sure dip->errors is perceived to be set. 8153 */ 8154 smp_mb__before_atomic(); 8155 if (atomic_dec_and_test(&dip->pending_bios)) 8156 bio_io_error(dip->orig_bio); 8157 8158 /* bio_end_io() will handle error, so we needn't return it */ 8159 return 0; 8160 } 8161 8162 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8163 struct inode *inode, loff_t file_offset) 8164 { 8165 struct btrfs_dio_private *dip = NULL; 8166 struct bio *io_bio = NULL; 8167 struct btrfs_io_bio *btrfs_bio; 8168 int skip_sum; 8169 int write = rw & REQ_WRITE; 8170 int ret = 0; 8171 8172 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8173 8174 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8175 if (!io_bio) { 8176 ret = -ENOMEM; 8177 goto free_ordered; 8178 } 8179 8180 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8181 if (!dip) { 8182 ret = -ENOMEM; 8183 goto free_ordered; 8184 } 8185 8186 dip->private = dio_bio->bi_private; 8187 dip->inode = inode; 8188 dip->logical_offset = file_offset; 8189 dip->bytes = dio_bio->bi_iter.bi_size; 8190 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8191 io_bio->bi_private = dip; 8192 dip->orig_bio = io_bio; 8193 dip->dio_bio = dio_bio; 8194 atomic_set(&dip->pending_bios, 0); 8195 btrfs_bio = btrfs_io_bio(io_bio); 8196 btrfs_bio->logical = file_offset; 8197 8198 if (write) { 8199 io_bio->bi_end_io = btrfs_endio_direct_write; 8200 } else { 8201 io_bio->bi_end_io = btrfs_endio_direct_read; 8202 dip->subio_endio = btrfs_subio_endio_read; 8203 } 8204 8205 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8206 if (!ret) 8207 return; 8208 8209 if (btrfs_bio->end_io) 8210 btrfs_bio->end_io(btrfs_bio, ret); 8211 8212 free_ordered: 8213 /* 8214 * If we arrived here it means either we failed to submit the dip 8215 * or we either failed to clone the dio_bio or failed to allocate the 8216 * dip. If we cloned the dio_bio and allocated the dip, we can just 8217 * call bio_endio against our io_bio so that we get proper resource 8218 * cleanup if we fail to submit the dip, otherwise, we must do the 8219 * same as btrfs_endio_direct_[write|read] because we can't call these 8220 * callbacks - they require an allocated dip and a clone of dio_bio. 8221 */ 8222 if (io_bio && dip) { 8223 bio_endio(io_bio, ret); 8224 /* 8225 * The end io callbacks free our dip, do the final put on io_bio 8226 * and all the cleanup and final put for dio_bio (through 8227 * dio_end_io()). 8228 */ 8229 dip = NULL; 8230 io_bio = NULL; 8231 } else { 8232 if (write) { 8233 struct btrfs_ordered_extent *ordered; 8234 8235 ordered = btrfs_lookup_ordered_extent(inode, 8236 file_offset); 8237 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 8238 /* 8239 * Decrements our ref on the ordered extent and removes 8240 * the ordered extent from the inode's ordered tree, 8241 * doing all the proper resource cleanup such as for the 8242 * reserved space and waking up any waiters for this 8243 * ordered extent (through btrfs_remove_ordered_extent). 8244 */ 8245 btrfs_finish_ordered_io(ordered); 8246 } else { 8247 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8248 file_offset + dio_bio->bi_iter.bi_size - 1); 8249 } 8250 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags); 8251 /* 8252 * Releases and cleans up our dio_bio, no need to bio_put() 8253 * nor bio_endio()/bio_io_error() against dio_bio. 8254 */ 8255 dio_end_io(dio_bio, ret); 8256 } 8257 if (io_bio) 8258 bio_put(io_bio); 8259 kfree(dip); 8260 } 8261 8262 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8263 const struct iov_iter *iter, loff_t offset) 8264 { 8265 int seg; 8266 int i; 8267 unsigned blocksize_mask = root->sectorsize - 1; 8268 ssize_t retval = -EINVAL; 8269 8270 if (offset & blocksize_mask) 8271 goto out; 8272 8273 if (iov_iter_alignment(iter) & blocksize_mask) 8274 goto out; 8275 8276 /* If this is a write we don't need to check anymore */ 8277 if (iov_iter_rw(iter) == WRITE) 8278 return 0; 8279 /* 8280 * Check to make sure we don't have duplicate iov_base's in this 8281 * iovec, if so return EINVAL, otherwise we'll get csum errors 8282 * when reading back. 8283 */ 8284 for (seg = 0; seg < iter->nr_segs; seg++) { 8285 for (i = seg + 1; i < iter->nr_segs; i++) { 8286 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8287 goto out; 8288 } 8289 } 8290 retval = 0; 8291 out: 8292 return retval; 8293 } 8294 8295 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 8296 loff_t offset) 8297 { 8298 struct file *file = iocb->ki_filp; 8299 struct inode *inode = file->f_mapping->host; 8300 u64 outstanding_extents = 0; 8301 size_t count = 0; 8302 int flags = 0; 8303 bool wakeup = true; 8304 bool relock = false; 8305 ssize_t ret; 8306 8307 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8308 return 0; 8309 8310 inode_dio_begin(inode); 8311 smp_mb__after_atomic(); 8312 8313 /* 8314 * The generic stuff only does filemap_write_and_wait_range, which 8315 * isn't enough if we've written compressed pages to this area, so 8316 * we need to flush the dirty pages again to make absolutely sure 8317 * that any outstanding dirty pages are on disk. 8318 */ 8319 count = iov_iter_count(iter); 8320 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8321 &BTRFS_I(inode)->runtime_flags)) 8322 filemap_fdatawrite_range(inode->i_mapping, offset, 8323 offset + count - 1); 8324 8325 if (iov_iter_rw(iter) == WRITE) { 8326 /* 8327 * If the write DIO is beyond the EOF, we need update 8328 * the isize, but it is protected by i_mutex. So we can 8329 * not unlock the i_mutex at this case. 8330 */ 8331 if (offset + count <= inode->i_size) { 8332 mutex_unlock(&inode->i_mutex); 8333 relock = true; 8334 } 8335 ret = btrfs_delalloc_reserve_space(inode, count); 8336 if (ret) 8337 goto out; 8338 outstanding_extents = div64_u64(count + 8339 BTRFS_MAX_EXTENT_SIZE - 1, 8340 BTRFS_MAX_EXTENT_SIZE); 8341 8342 /* 8343 * We need to know how many extents we reserved so that we can 8344 * do the accounting properly if we go over the number we 8345 * originally calculated. Abuse current->journal_info for this. 8346 */ 8347 current->journal_info = &outstanding_extents; 8348 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8349 &BTRFS_I(inode)->runtime_flags)) { 8350 inode_dio_end(inode); 8351 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8352 wakeup = false; 8353 } 8354 8355 ret = __blockdev_direct_IO(iocb, inode, 8356 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8357 iter, offset, btrfs_get_blocks_direct, NULL, 8358 btrfs_submit_direct, flags); 8359 if (iov_iter_rw(iter) == WRITE) { 8360 current->journal_info = NULL; 8361 if (ret < 0 && ret != -EIOCBQUEUED) { 8362 /* 8363 * If the error comes from submitting stage, 8364 * btrfs_get_blocsk_direct() has free'd data space, 8365 * and metadata space will be handled by 8366 * finish_ordered_fn, don't do that again to make 8367 * sure bytes_may_use is correct. 8368 */ 8369 if (!test_and_clear_bit(BTRFS_INODE_DIO_READY, 8370 &BTRFS_I(inode)->runtime_flags)) 8371 btrfs_delalloc_release_space(inode, count); 8372 } else if (ret >= 0 && (size_t)ret < count) 8373 btrfs_delalloc_release_space(inode, 8374 count - (size_t)ret); 8375 } 8376 out: 8377 if (wakeup) 8378 inode_dio_end(inode); 8379 if (relock) 8380 mutex_lock(&inode->i_mutex); 8381 8382 return ret; 8383 } 8384 8385 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8386 8387 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8388 __u64 start, __u64 len) 8389 { 8390 int ret; 8391 8392 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8393 if (ret) 8394 return ret; 8395 8396 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8397 } 8398 8399 int btrfs_readpage(struct file *file, struct page *page) 8400 { 8401 struct extent_io_tree *tree; 8402 tree = &BTRFS_I(page->mapping->host)->io_tree; 8403 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8404 } 8405 8406 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8407 { 8408 struct extent_io_tree *tree; 8409 8410 8411 if (current->flags & PF_MEMALLOC) { 8412 redirty_page_for_writepage(wbc, page); 8413 unlock_page(page); 8414 return 0; 8415 } 8416 tree = &BTRFS_I(page->mapping->host)->io_tree; 8417 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8418 } 8419 8420 static int btrfs_writepages(struct address_space *mapping, 8421 struct writeback_control *wbc) 8422 { 8423 struct extent_io_tree *tree; 8424 8425 tree = &BTRFS_I(mapping->host)->io_tree; 8426 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8427 } 8428 8429 static int 8430 btrfs_readpages(struct file *file, struct address_space *mapping, 8431 struct list_head *pages, unsigned nr_pages) 8432 { 8433 struct extent_io_tree *tree; 8434 tree = &BTRFS_I(mapping->host)->io_tree; 8435 return extent_readpages(tree, mapping, pages, nr_pages, 8436 btrfs_get_extent); 8437 } 8438 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8439 { 8440 struct extent_io_tree *tree; 8441 struct extent_map_tree *map; 8442 int ret; 8443 8444 tree = &BTRFS_I(page->mapping->host)->io_tree; 8445 map = &BTRFS_I(page->mapping->host)->extent_tree; 8446 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8447 if (ret == 1) { 8448 ClearPagePrivate(page); 8449 set_page_private(page, 0); 8450 page_cache_release(page); 8451 } 8452 return ret; 8453 } 8454 8455 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8456 { 8457 if (PageWriteback(page) || PageDirty(page)) 8458 return 0; 8459 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8460 } 8461 8462 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8463 unsigned int length) 8464 { 8465 struct inode *inode = page->mapping->host; 8466 struct extent_io_tree *tree; 8467 struct btrfs_ordered_extent *ordered; 8468 struct extent_state *cached_state = NULL; 8469 u64 page_start = page_offset(page); 8470 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 8471 int inode_evicting = inode->i_state & I_FREEING; 8472 8473 /* 8474 * we have the page locked, so new writeback can't start, 8475 * and the dirty bit won't be cleared while we are here. 8476 * 8477 * Wait for IO on this page so that we can safely clear 8478 * the PagePrivate2 bit and do ordered accounting 8479 */ 8480 wait_on_page_writeback(page); 8481 8482 tree = &BTRFS_I(inode)->io_tree; 8483 if (offset) { 8484 btrfs_releasepage(page, GFP_NOFS); 8485 return; 8486 } 8487 8488 if (!inode_evicting) 8489 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 8490 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8491 if (ordered) { 8492 /* 8493 * IO on this page will never be started, so we need 8494 * to account for any ordered extents now 8495 */ 8496 if (!inode_evicting) 8497 clear_extent_bit(tree, page_start, page_end, 8498 EXTENT_DIRTY | EXTENT_DELALLOC | 8499 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8500 EXTENT_DEFRAG, 1, 0, &cached_state, 8501 GFP_NOFS); 8502 /* 8503 * whoever cleared the private bit is responsible 8504 * for the finish_ordered_io 8505 */ 8506 if (TestClearPagePrivate2(page)) { 8507 struct btrfs_ordered_inode_tree *tree; 8508 u64 new_len; 8509 8510 tree = &BTRFS_I(inode)->ordered_tree; 8511 8512 spin_lock_irq(&tree->lock); 8513 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8514 new_len = page_start - ordered->file_offset; 8515 if (new_len < ordered->truncated_len) 8516 ordered->truncated_len = new_len; 8517 spin_unlock_irq(&tree->lock); 8518 8519 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8520 page_start, 8521 PAGE_CACHE_SIZE, 1)) 8522 btrfs_finish_ordered_io(ordered); 8523 } 8524 btrfs_put_ordered_extent(ordered); 8525 if (!inode_evicting) { 8526 cached_state = NULL; 8527 lock_extent_bits(tree, page_start, page_end, 0, 8528 &cached_state); 8529 } 8530 } 8531 8532 if (!inode_evicting) { 8533 clear_extent_bit(tree, page_start, page_end, 8534 EXTENT_LOCKED | EXTENT_DIRTY | 8535 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8536 EXTENT_DEFRAG, 1, 1, 8537 &cached_state, GFP_NOFS); 8538 8539 __btrfs_releasepage(page, GFP_NOFS); 8540 } 8541 8542 ClearPageChecked(page); 8543 if (PagePrivate(page)) { 8544 ClearPagePrivate(page); 8545 set_page_private(page, 0); 8546 page_cache_release(page); 8547 } 8548 } 8549 8550 /* 8551 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8552 * called from a page fault handler when a page is first dirtied. Hence we must 8553 * be careful to check for EOF conditions here. We set the page up correctly 8554 * for a written page which means we get ENOSPC checking when writing into 8555 * holes and correct delalloc and unwritten extent mapping on filesystems that 8556 * support these features. 8557 * 8558 * We are not allowed to take the i_mutex here so we have to play games to 8559 * protect against truncate races as the page could now be beyond EOF. Because 8560 * vmtruncate() writes the inode size before removing pages, once we have the 8561 * page lock we can determine safely if the page is beyond EOF. If it is not 8562 * beyond EOF, then the page is guaranteed safe against truncation until we 8563 * unlock the page. 8564 */ 8565 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8566 { 8567 struct page *page = vmf->page; 8568 struct inode *inode = file_inode(vma->vm_file); 8569 struct btrfs_root *root = BTRFS_I(inode)->root; 8570 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8571 struct btrfs_ordered_extent *ordered; 8572 struct extent_state *cached_state = NULL; 8573 char *kaddr; 8574 unsigned long zero_start; 8575 loff_t size; 8576 int ret; 8577 int reserved = 0; 8578 u64 page_start; 8579 u64 page_end; 8580 8581 sb_start_pagefault(inode->i_sb); 8582 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 8583 if (!ret) { 8584 ret = file_update_time(vma->vm_file); 8585 reserved = 1; 8586 } 8587 if (ret) { 8588 if (ret == -ENOMEM) 8589 ret = VM_FAULT_OOM; 8590 else /* -ENOSPC, -EIO, etc */ 8591 ret = VM_FAULT_SIGBUS; 8592 if (reserved) 8593 goto out; 8594 goto out_noreserve; 8595 } 8596 8597 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8598 again: 8599 lock_page(page); 8600 size = i_size_read(inode); 8601 page_start = page_offset(page); 8602 page_end = page_start + PAGE_CACHE_SIZE - 1; 8603 8604 if ((page->mapping != inode->i_mapping) || 8605 (page_start >= size)) { 8606 /* page got truncated out from underneath us */ 8607 goto out_unlock; 8608 } 8609 wait_on_page_writeback(page); 8610 8611 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 8612 set_page_extent_mapped(page); 8613 8614 /* 8615 * we can't set the delalloc bits if there are pending ordered 8616 * extents. Drop our locks and wait for them to finish 8617 */ 8618 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8619 if (ordered) { 8620 unlock_extent_cached(io_tree, page_start, page_end, 8621 &cached_state, GFP_NOFS); 8622 unlock_page(page); 8623 btrfs_start_ordered_extent(inode, ordered, 1); 8624 btrfs_put_ordered_extent(ordered); 8625 goto again; 8626 } 8627 8628 /* 8629 * XXX - page_mkwrite gets called every time the page is dirtied, even 8630 * if it was already dirty, so for space accounting reasons we need to 8631 * clear any delalloc bits for the range we are fixing to save. There 8632 * is probably a better way to do this, but for now keep consistent with 8633 * prepare_pages in the normal write path. 8634 */ 8635 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 8636 EXTENT_DIRTY | EXTENT_DELALLOC | 8637 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8638 0, 0, &cached_state, GFP_NOFS); 8639 8640 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 8641 &cached_state); 8642 if (ret) { 8643 unlock_extent_cached(io_tree, page_start, page_end, 8644 &cached_state, GFP_NOFS); 8645 ret = VM_FAULT_SIGBUS; 8646 goto out_unlock; 8647 } 8648 ret = 0; 8649 8650 /* page is wholly or partially inside EOF */ 8651 if (page_start + PAGE_CACHE_SIZE > size) 8652 zero_start = size & ~PAGE_CACHE_MASK; 8653 else 8654 zero_start = PAGE_CACHE_SIZE; 8655 8656 if (zero_start != PAGE_CACHE_SIZE) { 8657 kaddr = kmap(page); 8658 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 8659 flush_dcache_page(page); 8660 kunmap(page); 8661 } 8662 ClearPageChecked(page); 8663 set_page_dirty(page); 8664 SetPageUptodate(page); 8665 8666 BTRFS_I(inode)->last_trans = root->fs_info->generation; 8667 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8668 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8669 8670 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 8671 8672 out_unlock: 8673 if (!ret) { 8674 sb_end_pagefault(inode->i_sb); 8675 return VM_FAULT_LOCKED; 8676 } 8677 unlock_page(page); 8678 out: 8679 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 8680 out_noreserve: 8681 sb_end_pagefault(inode->i_sb); 8682 return ret; 8683 } 8684 8685 static int btrfs_truncate(struct inode *inode) 8686 { 8687 struct btrfs_root *root = BTRFS_I(inode)->root; 8688 struct btrfs_block_rsv *rsv; 8689 int ret = 0; 8690 int err = 0; 8691 struct btrfs_trans_handle *trans; 8692 u64 mask = root->sectorsize - 1; 8693 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 8694 8695 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8696 (u64)-1); 8697 if (ret) 8698 return ret; 8699 8700 /* 8701 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 8702 * 3 things going on here 8703 * 8704 * 1) We need to reserve space for our orphan item and the space to 8705 * delete our orphan item. Lord knows we don't want to have a dangling 8706 * orphan item because we didn't reserve space to remove it. 8707 * 8708 * 2) We need to reserve space to update our inode. 8709 * 8710 * 3) We need to have something to cache all the space that is going to 8711 * be free'd up by the truncate operation, but also have some slack 8712 * space reserved in case it uses space during the truncate (thank you 8713 * very much snapshotting). 8714 * 8715 * And we need these to all be seperate. The fact is we can use alot of 8716 * space doing the truncate, and we have no earthly idea how much space 8717 * we will use, so we need the truncate reservation to be seperate so it 8718 * doesn't end up using space reserved for updating the inode or 8719 * removing the orphan item. We also need to be able to stop the 8720 * transaction and start a new one, which means we need to be able to 8721 * update the inode several times, and we have no idea of knowing how 8722 * many times that will be, so we can't just reserve 1 item for the 8723 * entirety of the opration, so that has to be done seperately as well. 8724 * Then there is the orphan item, which does indeed need to be held on 8725 * to for the whole operation, and we need nobody to touch this reserved 8726 * space except the orphan code. 8727 * 8728 * So that leaves us with 8729 * 8730 * 1) root->orphan_block_rsv - for the orphan deletion. 8731 * 2) rsv - for the truncate reservation, which we will steal from the 8732 * transaction reservation. 8733 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 8734 * updating the inode. 8735 */ 8736 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 8737 if (!rsv) 8738 return -ENOMEM; 8739 rsv->size = min_size; 8740 rsv->failfast = 1; 8741 8742 /* 8743 * 1 for the truncate slack space 8744 * 1 for updating the inode. 8745 */ 8746 trans = btrfs_start_transaction(root, 2); 8747 if (IS_ERR(trans)) { 8748 err = PTR_ERR(trans); 8749 goto out; 8750 } 8751 8752 /* Migrate the slack space for the truncate to our reserve */ 8753 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 8754 min_size); 8755 BUG_ON(ret); 8756 8757 /* 8758 * So if we truncate and then write and fsync we normally would just 8759 * write the extents that changed, which is a problem if we need to 8760 * first truncate that entire inode. So set this flag so we write out 8761 * all of the extents in the inode to the sync log so we're completely 8762 * safe. 8763 */ 8764 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8765 trans->block_rsv = rsv; 8766 8767 while (1) { 8768 ret = btrfs_truncate_inode_items(trans, root, inode, 8769 inode->i_size, 8770 BTRFS_EXTENT_DATA_KEY); 8771 if (ret != -ENOSPC && ret != -EAGAIN) { 8772 err = ret; 8773 break; 8774 } 8775 8776 trans->block_rsv = &root->fs_info->trans_block_rsv; 8777 ret = btrfs_update_inode(trans, root, inode); 8778 if (ret) { 8779 err = ret; 8780 break; 8781 } 8782 8783 btrfs_end_transaction(trans, root); 8784 btrfs_btree_balance_dirty(root); 8785 8786 trans = btrfs_start_transaction(root, 2); 8787 if (IS_ERR(trans)) { 8788 ret = err = PTR_ERR(trans); 8789 trans = NULL; 8790 break; 8791 } 8792 8793 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 8794 rsv, min_size); 8795 BUG_ON(ret); /* shouldn't happen */ 8796 trans->block_rsv = rsv; 8797 } 8798 8799 if (ret == 0 && inode->i_nlink > 0) { 8800 trans->block_rsv = root->orphan_block_rsv; 8801 ret = btrfs_orphan_del(trans, inode); 8802 if (ret) 8803 err = ret; 8804 } 8805 8806 if (trans) { 8807 trans->block_rsv = &root->fs_info->trans_block_rsv; 8808 ret = btrfs_update_inode(trans, root, inode); 8809 if (ret && !err) 8810 err = ret; 8811 8812 ret = btrfs_end_transaction(trans, root); 8813 btrfs_btree_balance_dirty(root); 8814 } 8815 8816 out: 8817 btrfs_free_block_rsv(root, rsv); 8818 8819 if (ret && !err) 8820 err = ret; 8821 8822 return err; 8823 } 8824 8825 /* 8826 * create a new subvolume directory/inode (helper for the ioctl). 8827 */ 8828 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8829 struct btrfs_root *new_root, 8830 struct btrfs_root *parent_root, 8831 u64 new_dirid) 8832 { 8833 struct inode *inode; 8834 int err; 8835 u64 index = 0; 8836 8837 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8838 new_dirid, new_dirid, 8839 S_IFDIR | (~current_umask() & S_IRWXUGO), 8840 &index); 8841 if (IS_ERR(inode)) 8842 return PTR_ERR(inode); 8843 inode->i_op = &btrfs_dir_inode_operations; 8844 inode->i_fop = &btrfs_dir_file_operations; 8845 8846 set_nlink(inode, 1); 8847 btrfs_i_size_write(inode, 0); 8848 unlock_new_inode(inode); 8849 8850 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8851 if (err) 8852 btrfs_err(new_root->fs_info, 8853 "error inheriting subvolume %llu properties: %d", 8854 new_root->root_key.objectid, err); 8855 8856 err = btrfs_update_inode(trans, new_root, inode); 8857 8858 iput(inode); 8859 return err; 8860 } 8861 8862 struct inode *btrfs_alloc_inode(struct super_block *sb) 8863 { 8864 struct btrfs_inode *ei; 8865 struct inode *inode; 8866 8867 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8868 if (!ei) 8869 return NULL; 8870 8871 ei->root = NULL; 8872 ei->generation = 0; 8873 ei->last_trans = 0; 8874 ei->last_sub_trans = 0; 8875 ei->logged_trans = 0; 8876 ei->delalloc_bytes = 0; 8877 ei->defrag_bytes = 0; 8878 ei->disk_i_size = 0; 8879 ei->flags = 0; 8880 ei->csum_bytes = 0; 8881 ei->index_cnt = (u64)-1; 8882 ei->dir_index = 0; 8883 ei->last_unlink_trans = 0; 8884 ei->last_log_commit = 0; 8885 8886 spin_lock_init(&ei->lock); 8887 ei->outstanding_extents = 0; 8888 ei->reserved_extents = 0; 8889 8890 ei->runtime_flags = 0; 8891 ei->force_compress = BTRFS_COMPRESS_NONE; 8892 8893 ei->delayed_node = NULL; 8894 8895 ei->i_otime.tv_sec = 0; 8896 ei->i_otime.tv_nsec = 0; 8897 8898 inode = &ei->vfs_inode; 8899 extent_map_tree_init(&ei->extent_tree); 8900 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8901 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8902 ei->io_tree.track_uptodate = 1; 8903 ei->io_failure_tree.track_uptodate = 1; 8904 atomic_set(&ei->sync_writers, 0); 8905 mutex_init(&ei->log_mutex); 8906 mutex_init(&ei->delalloc_mutex); 8907 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8908 INIT_LIST_HEAD(&ei->delalloc_inodes); 8909 RB_CLEAR_NODE(&ei->rb_node); 8910 8911 return inode; 8912 } 8913 8914 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8915 void btrfs_test_destroy_inode(struct inode *inode) 8916 { 8917 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8918 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8919 } 8920 #endif 8921 8922 static void btrfs_i_callback(struct rcu_head *head) 8923 { 8924 struct inode *inode = container_of(head, struct inode, i_rcu); 8925 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8926 } 8927 8928 void btrfs_destroy_inode(struct inode *inode) 8929 { 8930 struct btrfs_ordered_extent *ordered; 8931 struct btrfs_root *root = BTRFS_I(inode)->root; 8932 8933 WARN_ON(!hlist_empty(&inode->i_dentry)); 8934 WARN_ON(inode->i_data.nrpages); 8935 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8936 WARN_ON(BTRFS_I(inode)->reserved_extents); 8937 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8938 WARN_ON(BTRFS_I(inode)->csum_bytes); 8939 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8940 8941 /* 8942 * This can happen where we create an inode, but somebody else also 8943 * created the same inode and we need to destroy the one we already 8944 * created. 8945 */ 8946 if (!root) 8947 goto free; 8948 8949 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8950 &BTRFS_I(inode)->runtime_flags)) { 8951 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8952 btrfs_ino(inode)); 8953 atomic_dec(&root->orphan_inodes); 8954 } 8955 8956 while (1) { 8957 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8958 if (!ordered) 8959 break; 8960 else { 8961 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8962 ordered->file_offset, ordered->len); 8963 btrfs_remove_ordered_extent(inode, ordered); 8964 btrfs_put_ordered_extent(ordered); 8965 btrfs_put_ordered_extent(ordered); 8966 } 8967 } 8968 inode_tree_del(inode); 8969 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8970 free: 8971 call_rcu(&inode->i_rcu, btrfs_i_callback); 8972 } 8973 8974 int btrfs_drop_inode(struct inode *inode) 8975 { 8976 struct btrfs_root *root = BTRFS_I(inode)->root; 8977 8978 if (root == NULL) 8979 return 1; 8980 8981 /* the snap/subvol tree is on deleting */ 8982 if (btrfs_root_refs(&root->root_item) == 0) 8983 return 1; 8984 else 8985 return generic_drop_inode(inode); 8986 } 8987 8988 static void init_once(void *foo) 8989 { 8990 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8991 8992 inode_init_once(&ei->vfs_inode); 8993 } 8994 8995 void btrfs_destroy_cachep(void) 8996 { 8997 /* 8998 * Make sure all delayed rcu free inodes are flushed before we 8999 * destroy cache. 9000 */ 9001 rcu_barrier(); 9002 if (btrfs_inode_cachep) 9003 kmem_cache_destroy(btrfs_inode_cachep); 9004 if (btrfs_trans_handle_cachep) 9005 kmem_cache_destroy(btrfs_trans_handle_cachep); 9006 if (btrfs_transaction_cachep) 9007 kmem_cache_destroy(btrfs_transaction_cachep); 9008 if (btrfs_path_cachep) 9009 kmem_cache_destroy(btrfs_path_cachep); 9010 if (btrfs_free_space_cachep) 9011 kmem_cache_destroy(btrfs_free_space_cachep); 9012 if (btrfs_delalloc_work_cachep) 9013 kmem_cache_destroy(btrfs_delalloc_work_cachep); 9014 } 9015 9016 int btrfs_init_cachep(void) 9017 { 9018 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9019 sizeof(struct btrfs_inode), 0, 9020 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 9021 if (!btrfs_inode_cachep) 9022 goto fail; 9023 9024 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9025 sizeof(struct btrfs_trans_handle), 0, 9026 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9027 if (!btrfs_trans_handle_cachep) 9028 goto fail; 9029 9030 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9031 sizeof(struct btrfs_transaction), 0, 9032 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9033 if (!btrfs_transaction_cachep) 9034 goto fail; 9035 9036 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9037 sizeof(struct btrfs_path), 0, 9038 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9039 if (!btrfs_path_cachep) 9040 goto fail; 9041 9042 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9043 sizeof(struct btrfs_free_space), 0, 9044 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9045 if (!btrfs_free_space_cachep) 9046 goto fail; 9047 9048 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 9049 sizeof(struct btrfs_delalloc_work), 0, 9050 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 9051 NULL); 9052 if (!btrfs_delalloc_work_cachep) 9053 goto fail; 9054 9055 return 0; 9056 fail: 9057 btrfs_destroy_cachep(); 9058 return -ENOMEM; 9059 } 9060 9061 static int btrfs_getattr(struct vfsmount *mnt, 9062 struct dentry *dentry, struct kstat *stat) 9063 { 9064 u64 delalloc_bytes; 9065 struct inode *inode = d_inode(dentry); 9066 u32 blocksize = inode->i_sb->s_blocksize; 9067 9068 generic_fillattr(inode, stat); 9069 stat->dev = BTRFS_I(inode)->root->anon_dev; 9070 stat->blksize = PAGE_CACHE_SIZE; 9071 9072 spin_lock(&BTRFS_I(inode)->lock); 9073 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9074 spin_unlock(&BTRFS_I(inode)->lock); 9075 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9076 ALIGN(delalloc_bytes, blocksize)) >> 9; 9077 return 0; 9078 } 9079 9080 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9081 struct inode *new_dir, struct dentry *new_dentry) 9082 { 9083 struct btrfs_trans_handle *trans; 9084 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9085 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9086 struct inode *new_inode = d_inode(new_dentry); 9087 struct inode *old_inode = d_inode(old_dentry); 9088 struct timespec ctime = CURRENT_TIME; 9089 u64 index = 0; 9090 u64 root_objectid; 9091 int ret; 9092 u64 old_ino = btrfs_ino(old_inode); 9093 9094 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9095 return -EPERM; 9096 9097 /* we only allow rename subvolume link between subvolumes */ 9098 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9099 return -EXDEV; 9100 9101 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9102 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9103 return -ENOTEMPTY; 9104 9105 if (S_ISDIR(old_inode->i_mode) && new_inode && 9106 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9107 return -ENOTEMPTY; 9108 9109 9110 /* check for collisions, even if the name isn't there */ 9111 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9112 new_dentry->d_name.name, 9113 new_dentry->d_name.len); 9114 9115 if (ret) { 9116 if (ret == -EEXIST) { 9117 /* we shouldn't get 9118 * eexist without a new_inode */ 9119 if (WARN_ON(!new_inode)) { 9120 return ret; 9121 } 9122 } else { 9123 /* maybe -EOVERFLOW */ 9124 return ret; 9125 } 9126 } 9127 ret = 0; 9128 9129 /* 9130 * we're using rename to replace one file with another. Start IO on it 9131 * now so we don't add too much work to the end of the transaction 9132 */ 9133 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9134 filemap_flush(old_inode->i_mapping); 9135 9136 /* close the racy window with snapshot create/destroy ioctl */ 9137 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9138 down_read(&root->fs_info->subvol_sem); 9139 /* 9140 * We want to reserve the absolute worst case amount of items. So if 9141 * both inodes are subvols and we need to unlink them then that would 9142 * require 4 item modifications, but if they are both normal inodes it 9143 * would require 5 item modifications, so we'll assume their normal 9144 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9145 * should cover the worst case number of items we'll modify. 9146 */ 9147 trans = btrfs_start_transaction(root, 11); 9148 if (IS_ERR(trans)) { 9149 ret = PTR_ERR(trans); 9150 goto out_notrans; 9151 } 9152 9153 if (dest != root) 9154 btrfs_record_root_in_trans(trans, dest); 9155 9156 ret = btrfs_set_inode_index(new_dir, &index); 9157 if (ret) 9158 goto out_fail; 9159 9160 BTRFS_I(old_inode)->dir_index = 0ULL; 9161 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9162 /* force full log commit if subvolume involved. */ 9163 btrfs_set_log_full_commit(root->fs_info, trans); 9164 } else { 9165 ret = btrfs_insert_inode_ref(trans, dest, 9166 new_dentry->d_name.name, 9167 new_dentry->d_name.len, 9168 old_ino, 9169 btrfs_ino(new_dir), index); 9170 if (ret) 9171 goto out_fail; 9172 /* 9173 * this is an ugly little race, but the rename is required 9174 * to make sure that if we crash, the inode is either at the 9175 * old name or the new one. pinning the log transaction lets 9176 * us make sure we don't allow a log commit to come in after 9177 * we unlink the name but before we add the new name back in. 9178 */ 9179 btrfs_pin_log_trans(root); 9180 } 9181 9182 inode_inc_iversion(old_dir); 9183 inode_inc_iversion(new_dir); 9184 inode_inc_iversion(old_inode); 9185 old_dir->i_ctime = old_dir->i_mtime = ctime; 9186 new_dir->i_ctime = new_dir->i_mtime = ctime; 9187 old_inode->i_ctime = ctime; 9188 9189 if (old_dentry->d_parent != new_dentry->d_parent) 9190 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9191 9192 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9193 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9194 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9195 old_dentry->d_name.name, 9196 old_dentry->d_name.len); 9197 } else { 9198 ret = __btrfs_unlink_inode(trans, root, old_dir, 9199 d_inode(old_dentry), 9200 old_dentry->d_name.name, 9201 old_dentry->d_name.len); 9202 if (!ret) 9203 ret = btrfs_update_inode(trans, root, old_inode); 9204 } 9205 if (ret) { 9206 btrfs_abort_transaction(trans, root, ret); 9207 goto out_fail; 9208 } 9209 9210 if (new_inode) { 9211 inode_inc_iversion(new_inode); 9212 new_inode->i_ctime = CURRENT_TIME; 9213 if (unlikely(btrfs_ino(new_inode) == 9214 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9215 root_objectid = BTRFS_I(new_inode)->location.objectid; 9216 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9217 root_objectid, 9218 new_dentry->d_name.name, 9219 new_dentry->d_name.len); 9220 BUG_ON(new_inode->i_nlink == 0); 9221 } else { 9222 ret = btrfs_unlink_inode(trans, dest, new_dir, 9223 d_inode(new_dentry), 9224 new_dentry->d_name.name, 9225 new_dentry->d_name.len); 9226 } 9227 if (!ret && new_inode->i_nlink == 0) 9228 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9229 if (ret) { 9230 btrfs_abort_transaction(trans, root, ret); 9231 goto out_fail; 9232 } 9233 } 9234 9235 ret = btrfs_add_link(trans, new_dir, old_inode, 9236 new_dentry->d_name.name, 9237 new_dentry->d_name.len, 0, index); 9238 if (ret) { 9239 btrfs_abort_transaction(trans, root, ret); 9240 goto out_fail; 9241 } 9242 9243 if (old_inode->i_nlink == 1) 9244 BTRFS_I(old_inode)->dir_index = index; 9245 9246 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9247 struct dentry *parent = new_dentry->d_parent; 9248 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9249 btrfs_end_log_trans(root); 9250 } 9251 out_fail: 9252 btrfs_end_transaction(trans, root); 9253 out_notrans: 9254 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9255 up_read(&root->fs_info->subvol_sem); 9256 9257 return ret; 9258 } 9259 9260 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9261 struct inode *new_dir, struct dentry *new_dentry, 9262 unsigned int flags) 9263 { 9264 if (flags & ~RENAME_NOREPLACE) 9265 return -EINVAL; 9266 9267 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry); 9268 } 9269 9270 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9271 { 9272 struct btrfs_delalloc_work *delalloc_work; 9273 struct inode *inode; 9274 9275 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9276 work); 9277 inode = delalloc_work->inode; 9278 if (delalloc_work->wait) { 9279 btrfs_wait_ordered_range(inode, 0, (u64)-1); 9280 } else { 9281 filemap_flush(inode->i_mapping); 9282 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9283 &BTRFS_I(inode)->runtime_flags)) 9284 filemap_flush(inode->i_mapping); 9285 } 9286 9287 if (delalloc_work->delay_iput) 9288 btrfs_add_delayed_iput(inode); 9289 else 9290 iput(inode); 9291 complete(&delalloc_work->completion); 9292 } 9293 9294 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9295 int wait, int delay_iput) 9296 { 9297 struct btrfs_delalloc_work *work; 9298 9299 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 9300 if (!work) 9301 return NULL; 9302 9303 init_completion(&work->completion); 9304 INIT_LIST_HEAD(&work->list); 9305 work->inode = inode; 9306 work->wait = wait; 9307 work->delay_iput = delay_iput; 9308 WARN_ON_ONCE(!inode); 9309 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9310 btrfs_run_delalloc_work, NULL, NULL); 9311 9312 return work; 9313 } 9314 9315 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9316 { 9317 wait_for_completion(&work->completion); 9318 kmem_cache_free(btrfs_delalloc_work_cachep, work); 9319 } 9320 9321 /* 9322 * some fairly slow code that needs optimization. This walks the list 9323 * of all the inodes with pending delalloc and forces them to disk. 9324 */ 9325 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9326 int nr) 9327 { 9328 struct btrfs_inode *binode; 9329 struct inode *inode; 9330 struct btrfs_delalloc_work *work, *next; 9331 struct list_head works; 9332 struct list_head splice; 9333 int ret = 0; 9334 9335 INIT_LIST_HEAD(&works); 9336 INIT_LIST_HEAD(&splice); 9337 9338 mutex_lock(&root->delalloc_mutex); 9339 spin_lock(&root->delalloc_lock); 9340 list_splice_init(&root->delalloc_inodes, &splice); 9341 while (!list_empty(&splice)) { 9342 binode = list_entry(splice.next, struct btrfs_inode, 9343 delalloc_inodes); 9344 9345 list_move_tail(&binode->delalloc_inodes, 9346 &root->delalloc_inodes); 9347 inode = igrab(&binode->vfs_inode); 9348 if (!inode) { 9349 cond_resched_lock(&root->delalloc_lock); 9350 continue; 9351 } 9352 spin_unlock(&root->delalloc_lock); 9353 9354 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 9355 if (!work) { 9356 if (delay_iput) 9357 btrfs_add_delayed_iput(inode); 9358 else 9359 iput(inode); 9360 ret = -ENOMEM; 9361 goto out; 9362 } 9363 list_add_tail(&work->list, &works); 9364 btrfs_queue_work(root->fs_info->flush_workers, 9365 &work->work); 9366 ret++; 9367 if (nr != -1 && ret >= nr) 9368 goto out; 9369 cond_resched(); 9370 spin_lock(&root->delalloc_lock); 9371 } 9372 spin_unlock(&root->delalloc_lock); 9373 9374 out: 9375 list_for_each_entry_safe(work, next, &works, list) { 9376 list_del_init(&work->list); 9377 btrfs_wait_and_free_delalloc_work(work); 9378 } 9379 9380 if (!list_empty_careful(&splice)) { 9381 spin_lock(&root->delalloc_lock); 9382 list_splice_tail(&splice, &root->delalloc_inodes); 9383 spin_unlock(&root->delalloc_lock); 9384 } 9385 mutex_unlock(&root->delalloc_mutex); 9386 return ret; 9387 } 9388 9389 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 9390 { 9391 int ret; 9392 9393 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 9394 return -EROFS; 9395 9396 ret = __start_delalloc_inodes(root, delay_iput, -1); 9397 if (ret > 0) 9398 ret = 0; 9399 /* 9400 * the filemap_flush will queue IO into the worker threads, but 9401 * we have to make sure the IO is actually started and that 9402 * ordered extents get created before we return 9403 */ 9404 atomic_inc(&root->fs_info->async_submit_draining); 9405 while (atomic_read(&root->fs_info->nr_async_submits) || 9406 atomic_read(&root->fs_info->async_delalloc_pages)) { 9407 wait_event(root->fs_info->async_submit_wait, 9408 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 9409 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 9410 } 9411 atomic_dec(&root->fs_info->async_submit_draining); 9412 return ret; 9413 } 9414 9415 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 9416 int nr) 9417 { 9418 struct btrfs_root *root; 9419 struct list_head splice; 9420 int ret; 9421 9422 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9423 return -EROFS; 9424 9425 INIT_LIST_HEAD(&splice); 9426 9427 mutex_lock(&fs_info->delalloc_root_mutex); 9428 spin_lock(&fs_info->delalloc_root_lock); 9429 list_splice_init(&fs_info->delalloc_roots, &splice); 9430 while (!list_empty(&splice) && nr) { 9431 root = list_first_entry(&splice, struct btrfs_root, 9432 delalloc_root); 9433 root = btrfs_grab_fs_root(root); 9434 BUG_ON(!root); 9435 list_move_tail(&root->delalloc_root, 9436 &fs_info->delalloc_roots); 9437 spin_unlock(&fs_info->delalloc_root_lock); 9438 9439 ret = __start_delalloc_inodes(root, delay_iput, nr); 9440 btrfs_put_fs_root(root); 9441 if (ret < 0) 9442 goto out; 9443 9444 if (nr != -1) { 9445 nr -= ret; 9446 WARN_ON(nr < 0); 9447 } 9448 spin_lock(&fs_info->delalloc_root_lock); 9449 } 9450 spin_unlock(&fs_info->delalloc_root_lock); 9451 9452 ret = 0; 9453 atomic_inc(&fs_info->async_submit_draining); 9454 while (atomic_read(&fs_info->nr_async_submits) || 9455 atomic_read(&fs_info->async_delalloc_pages)) { 9456 wait_event(fs_info->async_submit_wait, 9457 (atomic_read(&fs_info->nr_async_submits) == 0 && 9458 atomic_read(&fs_info->async_delalloc_pages) == 0)); 9459 } 9460 atomic_dec(&fs_info->async_submit_draining); 9461 out: 9462 if (!list_empty_careful(&splice)) { 9463 spin_lock(&fs_info->delalloc_root_lock); 9464 list_splice_tail(&splice, &fs_info->delalloc_roots); 9465 spin_unlock(&fs_info->delalloc_root_lock); 9466 } 9467 mutex_unlock(&fs_info->delalloc_root_mutex); 9468 return ret; 9469 } 9470 9471 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9472 const char *symname) 9473 { 9474 struct btrfs_trans_handle *trans; 9475 struct btrfs_root *root = BTRFS_I(dir)->root; 9476 struct btrfs_path *path; 9477 struct btrfs_key key; 9478 struct inode *inode = NULL; 9479 int err; 9480 int drop_inode = 0; 9481 u64 objectid; 9482 u64 index = 0; 9483 int name_len; 9484 int datasize; 9485 unsigned long ptr; 9486 struct btrfs_file_extent_item *ei; 9487 struct extent_buffer *leaf; 9488 9489 name_len = strlen(symname); 9490 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 9491 return -ENAMETOOLONG; 9492 9493 /* 9494 * 2 items for inode item and ref 9495 * 2 items for dir items 9496 * 1 item for xattr if selinux is on 9497 */ 9498 trans = btrfs_start_transaction(root, 5); 9499 if (IS_ERR(trans)) 9500 return PTR_ERR(trans); 9501 9502 err = btrfs_find_free_ino(root, &objectid); 9503 if (err) 9504 goto out_unlock; 9505 9506 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9507 dentry->d_name.len, btrfs_ino(dir), objectid, 9508 S_IFLNK|S_IRWXUGO, &index); 9509 if (IS_ERR(inode)) { 9510 err = PTR_ERR(inode); 9511 goto out_unlock; 9512 } 9513 9514 /* 9515 * If the active LSM wants to access the inode during 9516 * d_instantiate it needs these. Smack checks to see 9517 * if the filesystem supports xattrs by looking at the 9518 * ops vector. 9519 */ 9520 inode->i_fop = &btrfs_file_operations; 9521 inode->i_op = &btrfs_file_inode_operations; 9522 inode->i_mapping->a_ops = &btrfs_aops; 9523 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9524 9525 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9526 if (err) 9527 goto out_unlock_inode; 9528 9529 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 9530 if (err) 9531 goto out_unlock_inode; 9532 9533 path = btrfs_alloc_path(); 9534 if (!path) { 9535 err = -ENOMEM; 9536 goto out_unlock_inode; 9537 } 9538 key.objectid = btrfs_ino(inode); 9539 key.offset = 0; 9540 key.type = BTRFS_EXTENT_DATA_KEY; 9541 datasize = btrfs_file_extent_calc_inline_size(name_len); 9542 err = btrfs_insert_empty_item(trans, root, path, &key, 9543 datasize); 9544 if (err) { 9545 btrfs_free_path(path); 9546 goto out_unlock_inode; 9547 } 9548 leaf = path->nodes[0]; 9549 ei = btrfs_item_ptr(leaf, path->slots[0], 9550 struct btrfs_file_extent_item); 9551 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9552 btrfs_set_file_extent_type(leaf, ei, 9553 BTRFS_FILE_EXTENT_INLINE); 9554 btrfs_set_file_extent_encryption(leaf, ei, 0); 9555 btrfs_set_file_extent_compression(leaf, ei, 0); 9556 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9557 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9558 9559 ptr = btrfs_file_extent_inline_start(ei); 9560 write_extent_buffer(leaf, symname, ptr, name_len); 9561 btrfs_mark_buffer_dirty(leaf); 9562 btrfs_free_path(path); 9563 9564 inode->i_op = &btrfs_symlink_inode_operations; 9565 inode->i_mapping->a_ops = &btrfs_symlink_aops; 9566 inode_set_bytes(inode, name_len); 9567 btrfs_i_size_write(inode, name_len); 9568 err = btrfs_update_inode(trans, root, inode); 9569 if (err) { 9570 drop_inode = 1; 9571 goto out_unlock_inode; 9572 } 9573 9574 unlock_new_inode(inode); 9575 d_instantiate(dentry, inode); 9576 9577 out_unlock: 9578 btrfs_end_transaction(trans, root); 9579 if (drop_inode) { 9580 inode_dec_link_count(inode); 9581 iput(inode); 9582 } 9583 btrfs_btree_balance_dirty(root); 9584 return err; 9585 9586 out_unlock_inode: 9587 drop_inode = 1; 9588 unlock_new_inode(inode); 9589 goto out_unlock; 9590 } 9591 9592 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9593 u64 start, u64 num_bytes, u64 min_size, 9594 loff_t actual_len, u64 *alloc_hint, 9595 struct btrfs_trans_handle *trans) 9596 { 9597 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9598 struct extent_map *em; 9599 struct btrfs_root *root = BTRFS_I(inode)->root; 9600 struct btrfs_key ins; 9601 u64 cur_offset = start; 9602 u64 i_size; 9603 u64 cur_bytes; 9604 int ret = 0; 9605 bool own_trans = true; 9606 9607 if (trans) 9608 own_trans = false; 9609 while (num_bytes > 0) { 9610 if (own_trans) { 9611 trans = btrfs_start_transaction(root, 3); 9612 if (IS_ERR(trans)) { 9613 ret = PTR_ERR(trans); 9614 break; 9615 } 9616 } 9617 9618 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 9619 cur_bytes = max(cur_bytes, min_size); 9620 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 9621 *alloc_hint, &ins, 1, 0); 9622 if (ret) { 9623 if (own_trans) 9624 btrfs_end_transaction(trans, root); 9625 break; 9626 } 9627 9628 ret = insert_reserved_file_extent(trans, inode, 9629 cur_offset, ins.objectid, 9630 ins.offset, ins.offset, 9631 ins.offset, 0, 0, 0, 9632 BTRFS_FILE_EXTENT_PREALLOC); 9633 if (ret) { 9634 btrfs_free_reserved_extent(root, ins.objectid, 9635 ins.offset, 0); 9636 btrfs_abort_transaction(trans, root, ret); 9637 if (own_trans) 9638 btrfs_end_transaction(trans, root); 9639 break; 9640 } 9641 9642 btrfs_drop_extent_cache(inode, cur_offset, 9643 cur_offset + ins.offset -1, 0); 9644 9645 em = alloc_extent_map(); 9646 if (!em) { 9647 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9648 &BTRFS_I(inode)->runtime_flags); 9649 goto next; 9650 } 9651 9652 em->start = cur_offset; 9653 em->orig_start = cur_offset; 9654 em->len = ins.offset; 9655 em->block_start = ins.objectid; 9656 em->block_len = ins.offset; 9657 em->orig_block_len = ins.offset; 9658 em->ram_bytes = ins.offset; 9659 em->bdev = root->fs_info->fs_devices->latest_bdev; 9660 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9661 em->generation = trans->transid; 9662 9663 while (1) { 9664 write_lock(&em_tree->lock); 9665 ret = add_extent_mapping(em_tree, em, 1); 9666 write_unlock(&em_tree->lock); 9667 if (ret != -EEXIST) 9668 break; 9669 btrfs_drop_extent_cache(inode, cur_offset, 9670 cur_offset + ins.offset - 1, 9671 0); 9672 } 9673 free_extent_map(em); 9674 next: 9675 num_bytes -= ins.offset; 9676 cur_offset += ins.offset; 9677 *alloc_hint = ins.objectid + ins.offset; 9678 9679 inode_inc_iversion(inode); 9680 inode->i_ctime = CURRENT_TIME; 9681 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9682 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9683 (actual_len > inode->i_size) && 9684 (cur_offset > inode->i_size)) { 9685 if (cur_offset > actual_len) 9686 i_size = actual_len; 9687 else 9688 i_size = cur_offset; 9689 i_size_write(inode, i_size); 9690 btrfs_ordered_update_i_size(inode, i_size, NULL); 9691 } 9692 9693 ret = btrfs_update_inode(trans, root, inode); 9694 9695 if (ret) { 9696 btrfs_abort_transaction(trans, root, ret); 9697 if (own_trans) 9698 btrfs_end_transaction(trans, root); 9699 break; 9700 } 9701 9702 if (own_trans) 9703 btrfs_end_transaction(trans, root); 9704 } 9705 return ret; 9706 } 9707 9708 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9709 u64 start, u64 num_bytes, u64 min_size, 9710 loff_t actual_len, u64 *alloc_hint) 9711 { 9712 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9713 min_size, actual_len, alloc_hint, 9714 NULL); 9715 } 9716 9717 int btrfs_prealloc_file_range_trans(struct inode *inode, 9718 struct btrfs_trans_handle *trans, int mode, 9719 u64 start, u64 num_bytes, u64 min_size, 9720 loff_t actual_len, u64 *alloc_hint) 9721 { 9722 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9723 min_size, actual_len, alloc_hint, trans); 9724 } 9725 9726 static int btrfs_set_page_dirty(struct page *page) 9727 { 9728 return __set_page_dirty_nobuffers(page); 9729 } 9730 9731 static int btrfs_permission(struct inode *inode, int mask) 9732 { 9733 struct btrfs_root *root = BTRFS_I(inode)->root; 9734 umode_t mode = inode->i_mode; 9735 9736 if (mask & MAY_WRITE && 9737 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9738 if (btrfs_root_readonly(root)) 9739 return -EROFS; 9740 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9741 return -EACCES; 9742 } 9743 return generic_permission(inode, mask); 9744 } 9745 9746 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9747 { 9748 struct btrfs_trans_handle *trans; 9749 struct btrfs_root *root = BTRFS_I(dir)->root; 9750 struct inode *inode = NULL; 9751 u64 objectid; 9752 u64 index; 9753 int ret = 0; 9754 9755 /* 9756 * 5 units required for adding orphan entry 9757 */ 9758 trans = btrfs_start_transaction(root, 5); 9759 if (IS_ERR(trans)) 9760 return PTR_ERR(trans); 9761 9762 ret = btrfs_find_free_ino(root, &objectid); 9763 if (ret) 9764 goto out; 9765 9766 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9767 btrfs_ino(dir), objectid, mode, &index); 9768 if (IS_ERR(inode)) { 9769 ret = PTR_ERR(inode); 9770 inode = NULL; 9771 goto out; 9772 } 9773 9774 inode->i_fop = &btrfs_file_operations; 9775 inode->i_op = &btrfs_file_inode_operations; 9776 9777 inode->i_mapping->a_ops = &btrfs_aops; 9778 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9779 9780 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9781 if (ret) 9782 goto out_inode; 9783 9784 ret = btrfs_update_inode(trans, root, inode); 9785 if (ret) 9786 goto out_inode; 9787 ret = btrfs_orphan_add(trans, inode); 9788 if (ret) 9789 goto out_inode; 9790 9791 /* 9792 * We set number of links to 0 in btrfs_new_inode(), and here we set 9793 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9794 * through: 9795 * 9796 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9797 */ 9798 set_nlink(inode, 1); 9799 unlock_new_inode(inode); 9800 d_tmpfile(dentry, inode); 9801 mark_inode_dirty(inode); 9802 9803 out: 9804 btrfs_end_transaction(trans, root); 9805 if (ret) 9806 iput(inode); 9807 btrfs_balance_delayed_items(root); 9808 btrfs_btree_balance_dirty(root); 9809 return ret; 9810 9811 out_inode: 9812 unlock_new_inode(inode); 9813 goto out; 9814 9815 } 9816 9817 /* Inspired by filemap_check_errors() */ 9818 int btrfs_inode_check_errors(struct inode *inode) 9819 { 9820 int ret = 0; 9821 9822 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 9823 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 9824 ret = -ENOSPC; 9825 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 9826 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 9827 ret = -EIO; 9828 9829 return ret; 9830 } 9831 9832 static const struct inode_operations btrfs_dir_inode_operations = { 9833 .getattr = btrfs_getattr, 9834 .lookup = btrfs_lookup, 9835 .create = btrfs_create, 9836 .unlink = btrfs_unlink, 9837 .link = btrfs_link, 9838 .mkdir = btrfs_mkdir, 9839 .rmdir = btrfs_rmdir, 9840 .rename2 = btrfs_rename2, 9841 .symlink = btrfs_symlink, 9842 .setattr = btrfs_setattr, 9843 .mknod = btrfs_mknod, 9844 .setxattr = btrfs_setxattr, 9845 .getxattr = btrfs_getxattr, 9846 .listxattr = btrfs_listxattr, 9847 .removexattr = btrfs_removexattr, 9848 .permission = btrfs_permission, 9849 .get_acl = btrfs_get_acl, 9850 .set_acl = btrfs_set_acl, 9851 .update_time = btrfs_update_time, 9852 .tmpfile = btrfs_tmpfile, 9853 }; 9854 static const struct inode_operations btrfs_dir_ro_inode_operations = { 9855 .lookup = btrfs_lookup, 9856 .permission = btrfs_permission, 9857 .get_acl = btrfs_get_acl, 9858 .set_acl = btrfs_set_acl, 9859 .update_time = btrfs_update_time, 9860 }; 9861 9862 static const struct file_operations btrfs_dir_file_operations = { 9863 .llseek = generic_file_llseek, 9864 .read = generic_read_dir, 9865 .iterate = btrfs_real_readdir, 9866 .unlocked_ioctl = btrfs_ioctl, 9867 #ifdef CONFIG_COMPAT 9868 .compat_ioctl = btrfs_ioctl, 9869 #endif 9870 .release = btrfs_release_file, 9871 .fsync = btrfs_sync_file, 9872 }; 9873 9874 static struct extent_io_ops btrfs_extent_io_ops = { 9875 .fill_delalloc = run_delalloc_range, 9876 .submit_bio_hook = btrfs_submit_bio_hook, 9877 .merge_bio_hook = btrfs_merge_bio_hook, 9878 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 9879 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 9880 .writepage_start_hook = btrfs_writepage_start_hook, 9881 .set_bit_hook = btrfs_set_bit_hook, 9882 .clear_bit_hook = btrfs_clear_bit_hook, 9883 .merge_extent_hook = btrfs_merge_extent_hook, 9884 .split_extent_hook = btrfs_split_extent_hook, 9885 }; 9886 9887 /* 9888 * btrfs doesn't support the bmap operation because swapfiles 9889 * use bmap to make a mapping of extents in the file. They assume 9890 * these extents won't change over the life of the file and they 9891 * use the bmap result to do IO directly to the drive. 9892 * 9893 * the btrfs bmap call would return logical addresses that aren't 9894 * suitable for IO and they also will change frequently as COW 9895 * operations happen. So, swapfile + btrfs == corruption. 9896 * 9897 * For now we're avoiding this by dropping bmap. 9898 */ 9899 static const struct address_space_operations btrfs_aops = { 9900 .readpage = btrfs_readpage, 9901 .writepage = btrfs_writepage, 9902 .writepages = btrfs_writepages, 9903 .readpages = btrfs_readpages, 9904 .direct_IO = btrfs_direct_IO, 9905 .invalidatepage = btrfs_invalidatepage, 9906 .releasepage = btrfs_releasepage, 9907 .set_page_dirty = btrfs_set_page_dirty, 9908 .error_remove_page = generic_error_remove_page, 9909 }; 9910 9911 static const struct address_space_operations btrfs_symlink_aops = { 9912 .readpage = btrfs_readpage, 9913 .writepage = btrfs_writepage, 9914 .invalidatepage = btrfs_invalidatepage, 9915 .releasepage = btrfs_releasepage, 9916 }; 9917 9918 static const struct inode_operations btrfs_file_inode_operations = { 9919 .getattr = btrfs_getattr, 9920 .setattr = btrfs_setattr, 9921 .setxattr = btrfs_setxattr, 9922 .getxattr = btrfs_getxattr, 9923 .listxattr = btrfs_listxattr, 9924 .removexattr = btrfs_removexattr, 9925 .permission = btrfs_permission, 9926 .fiemap = btrfs_fiemap, 9927 .get_acl = btrfs_get_acl, 9928 .set_acl = btrfs_set_acl, 9929 .update_time = btrfs_update_time, 9930 }; 9931 static const struct inode_operations btrfs_special_inode_operations = { 9932 .getattr = btrfs_getattr, 9933 .setattr = btrfs_setattr, 9934 .permission = btrfs_permission, 9935 .setxattr = btrfs_setxattr, 9936 .getxattr = btrfs_getxattr, 9937 .listxattr = btrfs_listxattr, 9938 .removexattr = btrfs_removexattr, 9939 .get_acl = btrfs_get_acl, 9940 .set_acl = btrfs_set_acl, 9941 .update_time = btrfs_update_time, 9942 }; 9943 static const struct inode_operations btrfs_symlink_inode_operations = { 9944 .readlink = generic_readlink, 9945 .follow_link = page_follow_link_light, 9946 .put_link = page_put_link, 9947 .getattr = btrfs_getattr, 9948 .setattr = btrfs_setattr, 9949 .permission = btrfs_permission, 9950 .setxattr = btrfs_setxattr, 9951 .getxattr = btrfs_getxattr, 9952 .listxattr = btrfs_listxattr, 9953 .removexattr = btrfs_removexattr, 9954 .update_time = btrfs_update_time, 9955 }; 9956 9957 const struct dentry_operations btrfs_dentry_operations = { 9958 .d_delete = btrfs_dentry_delete, 9959 .d_release = btrfs_dentry_release, 9960 }; 9961