xref: /openbmc/linux/fs/btrfs/inode.c (revision 17846485)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 
59 struct btrfs_iget_args {
60 	u64 ino;
61 	struct btrfs_root *root;
62 };
63 
64 struct btrfs_dio_data {
65 	ssize_t submitted;
66 	struct extent_changeset *data_reserved;
67 };
68 
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct file_operations btrfs_dir_file_operations;
75 
76 static struct kmem_cache *btrfs_inode_cachep;
77 struct kmem_cache *btrfs_trans_handle_cachep;
78 struct kmem_cache *btrfs_path_cachep;
79 struct kmem_cache *btrfs_free_space_cachep;
80 struct kmem_cache *btrfs_free_space_bitmap_cachep;
81 
82 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
83 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
84 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
85 static noinline int cow_file_range(struct btrfs_inode *inode,
86 				   struct page *locked_page,
87 				   u64 start, u64 end, int *page_started,
88 				   unsigned long *nr_written, int unlock);
89 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
90 				       u64 len, u64 orig_start, u64 block_start,
91 				       u64 block_len, u64 orig_block_len,
92 				       u64 ram_bytes, int compress_type,
93 				       int type);
94 
95 static void __endio_write_update_ordered(struct btrfs_inode *inode,
96 					 const u64 offset, const u64 bytes,
97 					 const bool uptodate);
98 
99 /*
100  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
101  *
102  * ilock_flags can have the following bit set:
103  *
104  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
105  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
106  *		     return -EAGAIN
107  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
108  */
109 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
110 {
111 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
112 		if (ilock_flags & BTRFS_ILOCK_TRY) {
113 			if (!inode_trylock_shared(inode))
114 				return -EAGAIN;
115 			else
116 				return 0;
117 		}
118 		inode_lock_shared(inode);
119 	} else {
120 		if (ilock_flags & BTRFS_ILOCK_TRY) {
121 			if (!inode_trylock(inode))
122 				return -EAGAIN;
123 			else
124 				return 0;
125 		}
126 		inode_lock(inode);
127 	}
128 	if (ilock_flags & BTRFS_ILOCK_MMAP)
129 		down_write(&BTRFS_I(inode)->i_mmap_lock);
130 	return 0;
131 }
132 
133 /*
134  * btrfs_inode_unlock - unock inode i_rwsem
135  *
136  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
137  * to decide whether the lock acquired is shared or exclusive.
138  */
139 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
140 {
141 	if (ilock_flags & BTRFS_ILOCK_MMAP)
142 		up_write(&BTRFS_I(inode)->i_mmap_lock);
143 	if (ilock_flags & BTRFS_ILOCK_SHARED)
144 		inode_unlock_shared(inode);
145 	else
146 		inode_unlock(inode);
147 }
148 
149 /*
150  * Cleanup all submitted ordered extents in specified range to handle errors
151  * from the btrfs_run_delalloc_range() callback.
152  *
153  * NOTE: caller must ensure that when an error happens, it can not call
154  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
155  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
156  * to be released, which we want to happen only when finishing the ordered
157  * extent (btrfs_finish_ordered_io()).
158  */
159 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
160 						 struct page *locked_page,
161 						 u64 offset, u64 bytes)
162 {
163 	unsigned long index = offset >> PAGE_SHIFT;
164 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
165 	u64 page_start = page_offset(locked_page);
166 	u64 page_end = page_start + PAGE_SIZE - 1;
167 
168 	struct page *page;
169 
170 	while (index <= end_index) {
171 		/*
172 		 * For locked page, we will call end_extent_writepage() on it
173 		 * in run_delalloc_range() for the error handling.  That
174 		 * end_extent_writepage() function will call
175 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
176 		 * run the ordered extent accounting.
177 		 *
178 		 * Here we can't just clear the Ordered bit, or
179 		 * btrfs_mark_ordered_io_finished() would skip the accounting
180 		 * for the page range, and the ordered extent will never finish.
181 		 */
182 		if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
183 			index++;
184 			continue;
185 		}
186 		page = find_get_page(inode->vfs_inode.i_mapping, index);
187 		index++;
188 		if (!page)
189 			continue;
190 
191 		/*
192 		 * Here we just clear all Ordered bits for every page in the
193 		 * range, then __endio_write_update_ordered() will handle
194 		 * the ordered extent accounting for the range.
195 		 */
196 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
197 					       offset, bytes);
198 		put_page(page);
199 	}
200 
201 	/* The locked page covers the full range, nothing needs to be done */
202 	if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
203 		return;
204 	/*
205 	 * In case this page belongs to the delalloc range being instantiated
206 	 * then skip it, since the first page of a range is going to be
207 	 * properly cleaned up by the caller of run_delalloc_range
208 	 */
209 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
210 		bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
211 		offset = page_offset(locked_page) + PAGE_SIZE;
212 	}
213 
214 	return __endio_write_update_ordered(inode, offset, bytes, false);
215 }
216 
217 static int btrfs_dirty_inode(struct inode *inode);
218 
219 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
220 				     struct inode *inode,  struct inode *dir,
221 				     const struct qstr *qstr)
222 {
223 	int err;
224 
225 	err = btrfs_init_acl(trans, inode, dir);
226 	if (!err)
227 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
228 	return err;
229 }
230 
231 /*
232  * this does all the hard work for inserting an inline extent into
233  * the btree.  The caller should have done a btrfs_drop_extents so that
234  * no overlapping inline items exist in the btree
235  */
236 static int insert_inline_extent(struct btrfs_trans_handle *trans,
237 				struct btrfs_path *path, bool extent_inserted,
238 				struct btrfs_root *root, struct inode *inode,
239 				u64 start, size_t size, size_t compressed_size,
240 				int compress_type,
241 				struct page **compressed_pages)
242 {
243 	struct extent_buffer *leaf;
244 	struct page *page = NULL;
245 	char *kaddr;
246 	unsigned long ptr;
247 	struct btrfs_file_extent_item *ei;
248 	int ret;
249 	size_t cur_size = size;
250 	unsigned long offset;
251 
252 	ASSERT((compressed_size > 0 && compressed_pages) ||
253 	       (compressed_size == 0 && !compressed_pages));
254 
255 	if (compressed_size && compressed_pages)
256 		cur_size = compressed_size;
257 
258 	if (!extent_inserted) {
259 		struct btrfs_key key;
260 		size_t datasize;
261 
262 		key.objectid = btrfs_ino(BTRFS_I(inode));
263 		key.offset = start;
264 		key.type = BTRFS_EXTENT_DATA_KEY;
265 
266 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
267 		ret = btrfs_insert_empty_item(trans, root, path, &key,
268 					      datasize);
269 		if (ret)
270 			goto fail;
271 	}
272 	leaf = path->nodes[0];
273 	ei = btrfs_item_ptr(leaf, path->slots[0],
274 			    struct btrfs_file_extent_item);
275 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
276 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
277 	btrfs_set_file_extent_encryption(leaf, ei, 0);
278 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
279 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
280 	ptr = btrfs_file_extent_inline_start(ei);
281 
282 	if (compress_type != BTRFS_COMPRESS_NONE) {
283 		struct page *cpage;
284 		int i = 0;
285 		while (compressed_size > 0) {
286 			cpage = compressed_pages[i];
287 			cur_size = min_t(unsigned long, compressed_size,
288 				       PAGE_SIZE);
289 
290 			kaddr = kmap_atomic(cpage);
291 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
292 			kunmap_atomic(kaddr);
293 
294 			i++;
295 			ptr += cur_size;
296 			compressed_size -= cur_size;
297 		}
298 		btrfs_set_file_extent_compression(leaf, ei,
299 						  compress_type);
300 	} else {
301 		page = find_get_page(inode->i_mapping,
302 				     start >> PAGE_SHIFT);
303 		btrfs_set_file_extent_compression(leaf, ei, 0);
304 		kaddr = kmap_atomic(page);
305 		offset = offset_in_page(start);
306 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
307 		kunmap_atomic(kaddr);
308 		put_page(page);
309 	}
310 	btrfs_mark_buffer_dirty(leaf);
311 	btrfs_release_path(path);
312 
313 	/*
314 	 * We align size to sectorsize for inline extents just for simplicity
315 	 * sake.
316 	 */
317 	size = ALIGN(size, root->fs_info->sectorsize);
318 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
319 	if (ret)
320 		goto fail;
321 
322 	/*
323 	 * we're an inline extent, so nobody can
324 	 * extend the file past i_size without locking
325 	 * a page we already have locked.
326 	 *
327 	 * We must do any isize and inode updates
328 	 * before we unlock the pages.  Otherwise we
329 	 * could end up racing with unlink.
330 	 */
331 	BTRFS_I(inode)->disk_i_size = inode->i_size;
332 fail:
333 	return ret;
334 }
335 
336 
337 /*
338  * conditionally insert an inline extent into the file.  This
339  * does the checks required to make sure the data is small enough
340  * to fit as an inline extent.
341  */
342 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
343 					  u64 end, size_t compressed_size,
344 					  int compress_type,
345 					  struct page **compressed_pages)
346 {
347 	struct btrfs_drop_extents_args drop_args = { 0 };
348 	struct btrfs_root *root = inode->root;
349 	struct btrfs_fs_info *fs_info = root->fs_info;
350 	struct btrfs_trans_handle *trans;
351 	u64 isize = i_size_read(&inode->vfs_inode);
352 	u64 actual_end = min(end + 1, isize);
353 	u64 inline_len = actual_end - start;
354 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
355 	u64 data_len = inline_len;
356 	int ret;
357 	struct btrfs_path *path;
358 
359 	if (compressed_size)
360 		data_len = compressed_size;
361 
362 	if (start > 0 ||
363 	    actual_end > fs_info->sectorsize ||
364 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
365 	    (!compressed_size &&
366 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
367 	    end + 1 < isize ||
368 	    data_len > fs_info->max_inline) {
369 		return 1;
370 	}
371 
372 	path = btrfs_alloc_path();
373 	if (!path)
374 		return -ENOMEM;
375 
376 	trans = btrfs_join_transaction(root);
377 	if (IS_ERR(trans)) {
378 		btrfs_free_path(path);
379 		return PTR_ERR(trans);
380 	}
381 	trans->block_rsv = &inode->block_rsv;
382 
383 	drop_args.path = path;
384 	drop_args.start = start;
385 	drop_args.end = aligned_end;
386 	drop_args.drop_cache = true;
387 	drop_args.replace_extent = true;
388 
389 	if (compressed_size && compressed_pages)
390 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
391 		   compressed_size);
392 	else
393 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
394 		    inline_len);
395 
396 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
397 	if (ret) {
398 		btrfs_abort_transaction(trans, ret);
399 		goto out;
400 	}
401 
402 	if (isize > actual_end)
403 		inline_len = min_t(u64, isize, actual_end);
404 	ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
405 				   root, &inode->vfs_inode, start,
406 				   inline_len, compressed_size,
407 				   compress_type, compressed_pages);
408 	if (ret && ret != -ENOSPC) {
409 		btrfs_abort_transaction(trans, ret);
410 		goto out;
411 	} else if (ret == -ENOSPC) {
412 		ret = 1;
413 		goto out;
414 	}
415 
416 	btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
417 	ret = btrfs_update_inode(trans, root, inode);
418 	if (ret && ret != -ENOSPC) {
419 		btrfs_abort_transaction(trans, ret);
420 		goto out;
421 	} else if (ret == -ENOSPC) {
422 		ret = 1;
423 		goto out;
424 	}
425 
426 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
427 out:
428 	/*
429 	 * Don't forget to free the reserved space, as for inlined extent
430 	 * it won't count as data extent, free them directly here.
431 	 * And at reserve time, it's always aligned to page size, so
432 	 * just free one page here.
433 	 */
434 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
435 	btrfs_free_path(path);
436 	btrfs_end_transaction(trans);
437 	return ret;
438 }
439 
440 struct async_extent {
441 	u64 start;
442 	u64 ram_size;
443 	u64 compressed_size;
444 	struct page **pages;
445 	unsigned long nr_pages;
446 	int compress_type;
447 	struct list_head list;
448 };
449 
450 struct async_chunk {
451 	struct inode *inode;
452 	struct page *locked_page;
453 	u64 start;
454 	u64 end;
455 	unsigned int write_flags;
456 	struct list_head extents;
457 	struct cgroup_subsys_state *blkcg_css;
458 	struct btrfs_work work;
459 	struct async_cow *async_cow;
460 };
461 
462 struct async_cow {
463 	atomic_t num_chunks;
464 	struct async_chunk chunks[];
465 };
466 
467 static noinline int add_async_extent(struct async_chunk *cow,
468 				     u64 start, u64 ram_size,
469 				     u64 compressed_size,
470 				     struct page **pages,
471 				     unsigned long nr_pages,
472 				     int compress_type)
473 {
474 	struct async_extent *async_extent;
475 
476 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
477 	BUG_ON(!async_extent); /* -ENOMEM */
478 	async_extent->start = start;
479 	async_extent->ram_size = ram_size;
480 	async_extent->compressed_size = compressed_size;
481 	async_extent->pages = pages;
482 	async_extent->nr_pages = nr_pages;
483 	async_extent->compress_type = compress_type;
484 	list_add_tail(&async_extent->list, &cow->extents);
485 	return 0;
486 }
487 
488 /*
489  * Check if the inode has flags compatible with compression
490  */
491 static inline bool inode_can_compress(struct btrfs_inode *inode)
492 {
493 	if (inode->flags & BTRFS_INODE_NODATACOW ||
494 	    inode->flags & BTRFS_INODE_NODATASUM)
495 		return false;
496 	return true;
497 }
498 
499 /*
500  * Check if the inode needs to be submitted to compression, based on mount
501  * options, defragmentation, properties or heuristics.
502  */
503 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
504 				      u64 end)
505 {
506 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
507 
508 	if (!inode_can_compress(inode)) {
509 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
510 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
511 			btrfs_ino(inode));
512 		return 0;
513 	}
514 	/*
515 	 * Special check for subpage.
516 	 *
517 	 * We lock the full page then run each delalloc range in the page, thus
518 	 * for the following case, we will hit some subpage specific corner case:
519 	 *
520 	 * 0		32K		64K
521 	 * |	|///////|	|///////|
522 	 *		\- A		\- B
523 	 *
524 	 * In above case, both range A and range B will try to unlock the full
525 	 * page [0, 64K), causing the one finished later will have page
526 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
527 	 *
528 	 * So here we add an artificial limit that subpage compression can only
529 	 * if the range is fully page aligned.
530 	 *
531 	 * In theory we only need to ensure the first page is fully covered, but
532 	 * the tailing partial page will be locked until the full compression
533 	 * finishes, delaying the write of other range.
534 	 *
535 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
536 	 * first to prevent any submitted async extent to unlock the full page.
537 	 * By this, we can ensure for subpage case that only the last async_cow
538 	 * will unlock the full page.
539 	 */
540 	if (fs_info->sectorsize < PAGE_SIZE) {
541 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
542 		    !IS_ALIGNED(end + 1, PAGE_SIZE))
543 			return 0;
544 	}
545 
546 	/* force compress */
547 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
548 		return 1;
549 	/* defrag ioctl */
550 	if (inode->defrag_compress)
551 		return 1;
552 	/* bad compression ratios */
553 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
554 		return 0;
555 	if (btrfs_test_opt(fs_info, COMPRESS) ||
556 	    inode->flags & BTRFS_INODE_COMPRESS ||
557 	    inode->prop_compress)
558 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
559 	return 0;
560 }
561 
562 static inline void inode_should_defrag(struct btrfs_inode *inode,
563 		u64 start, u64 end, u64 num_bytes, u64 small_write)
564 {
565 	/* If this is a small write inside eof, kick off a defrag */
566 	if (num_bytes < small_write &&
567 	    (start > 0 || end + 1 < inode->disk_i_size))
568 		btrfs_add_inode_defrag(NULL, inode);
569 }
570 
571 /*
572  * we create compressed extents in two phases.  The first
573  * phase compresses a range of pages that have already been
574  * locked (both pages and state bits are locked).
575  *
576  * This is done inside an ordered work queue, and the compression
577  * is spread across many cpus.  The actual IO submission is step
578  * two, and the ordered work queue takes care of making sure that
579  * happens in the same order things were put onto the queue by
580  * writepages and friends.
581  *
582  * If this code finds it can't get good compression, it puts an
583  * entry onto the work queue to write the uncompressed bytes.  This
584  * makes sure that both compressed inodes and uncompressed inodes
585  * are written in the same order that the flusher thread sent them
586  * down.
587  */
588 static noinline int compress_file_range(struct async_chunk *async_chunk)
589 {
590 	struct inode *inode = async_chunk->inode;
591 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
592 	u64 blocksize = fs_info->sectorsize;
593 	u64 start = async_chunk->start;
594 	u64 end = async_chunk->end;
595 	u64 actual_end;
596 	u64 i_size;
597 	int ret = 0;
598 	struct page **pages = NULL;
599 	unsigned long nr_pages;
600 	unsigned long total_compressed = 0;
601 	unsigned long total_in = 0;
602 	int i;
603 	int will_compress;
604 	int compress_type = fs_info->compress_type;
605 	int compressed_extents = 0;
606 	int redirty = 0;
607 
608 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
609 			SZ_16K);
610 
611 	/*
612 	 * We need to save i_size before now because it could change in between
613 	 * us evaluating the size and assigning it.  This is because we lock and
614 	 * unlock the page in truncate and fallocate, and then modify the i_size
615 	 * later on.
616 	 *
617 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
618 	 * does that for us.
619 	 */
620 	barrier();
621 	i_size = i_size_read(inode);
622 	barrier();
623 	actual_end = min_t(u64, i_size, end + 1);
624 again:
625 	will_compress = 0;
626 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
627 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
628 	nr_pages = min_t(unsigned long, nr_pages,
629 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
630 
631 	/*
632 	 * we don't want to send crud past the end of i_size through
633 	 * compression, that's just a waste of CPU time.  So, if the
634 	 * end of the file is before the start of our current
635 	 * requested range of bytes, we bail out to the uncompressed
636 	 * cleanup code that can deal with all of this.
637 	 *
638 	 * It isn't really the fastest way to fix things, but this is a
639 	 * very uncommon corner.
640 	 */
641 	if (actual_end <= start)
642 		goto cleanup_and_bail_uncompressed;
643 
644 	total_compressed = actual_end - start;
645 
646 	/*
647 	 * Skip compression for a small file range(<=blocksize) that
648 	 * isn't an inline extent, since it doesn't save disk space at all.
649 	 */
650 	if (total_compressed <= blocksize &&
651 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
652 		goto cleanup_and_bail_uncompressed;
653 
654 	/*
655 	 * For subpage case, we require full page alignment for the sector
656 	 * aligned range.
657 	 * Thus we must also check against @actual_end, not just @end.
658 	 */
659 	if (blocksize < PAGE_SIZE) {
660 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
661 		    !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
662 			goto cleanup_and_bail_uncompressed;
663 	}
664 
665 	total_compressed = min_t(unsigned long, total_compressed,
666 			BTRFS_MAX_UNCOMPRESSED);
667 	total_in = 0;
668 	ret = 0;
669 
670 	/*
671 	 * we do compression for mount -o compress and when the
672 	 * inode has not been flagged as nocompress.  This flag can
673 	 * change at any time if we discover bad compression ratios.
674 	 */
675 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
676 		WARN_ON(pages);
677 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
678 		if (!pages) {
679 			/* just bail out to the uncompressed code */
680 			nr_pages = 0;
681 			goto cont;
682 		}
683 
684 		if (BTRFS_I(inode)->defrag_compress)
685 			compress_type = BTRFS_I(inode)->defrag_compress;
686 		else if (BTRFS_I(inode)->prop_compress)
687 			compress_type = BTRFS_I(inode)->prop_compress;
688 
689 		/*
690 		 * we need to call clear_page_dirty_for_io on each
691 		 * page in the range.  Otherwise applications with the file
692 		 * mmap'd can wander in and change the page contents while
693 		 * we are compressing them.
694 		 *
695 		 * If the compression fails for any reason, we set the pages
696 		 * dirty again later on.
697 		 *
698 		 * Note that the remaining part is redirtied, the start pointer
699 		 * has moved, the end is the original one.
700 		 */
701 		if (!redirty) {
702 			extent_range_clear_dirty_for_io(inode, start, end);
703 			redirty = 1;
704 		}
705 
706 		/* Compression level is applied here and only here */
707 		ret = btrfs_compress_pages(
708 			compress_type | (fs_info->compress_level << 4),
709 					   inode->i_mapping, start,
710 					   pages,
711 					   &nr_pages,
712 					   &total_in,
713 					   &total_compressed);
714 
715 		if (!ret) {
716 			unsigned long offset = offset_in_page(total_compressed);
717 			struct page *page = pages[nr_pages - 1];
718 
719 			/* zero the tail end of the last page, we might be
720 			 * sending it down to disk
721 			 */
722 			if (offset)
723 				memzero_page(page, offset, PAGE_SIZE - offset);
724 			will_compress = 1;
725 		}
726 	}
727 cont:
728 	/*
729 	 * Check cow_file_range() for why we don't even try to create inline
730 	 * extent for subpage case.
731 	 */
732 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
733 		/* lets try to make an inline extent */
734 		if (ret || total_in < actual_end) {
735 			/* we didn't compress the entire range, try
736 			 * to make an uncompressed inline extent.
737 			 */
738 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
739 						    0, BTRFS_COMPRESS_NONE,
740 						    NULL);
741 		} else {
742 			/* try making a compressed inline extent */
743 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
744 						    total_compressed,
745 						    compress_type, pages);
746 		}
747 		if (ret <= 0) {
748 			unsigned long clear_flags = EXTENT_DELALLOC |
749 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
750 				EXTENT_DO_ACCOUNTING;
751 			unsigned long page_error_op;
752 
753 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
754 
755 			/*
756 			 * inline extent creation worked or returned error,
757 			 * we don't need to create any more async work items.
758 			 * Unlock and free up our temp pages.
759 			 *
760 			 * We use DO_ACCOUNTING here because we need the
761 			 * delalloc_release_metadata to be done _after_ we drop
762 			 * our outstanding extent for clearing delalloc for this
763 			 * range.
764 			 */
765 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
766 						     NULL,
767 						     clear_flags,
768 						     PAGE_UNLOCK |
769 						     PAGE_START_WRITEBACK |
770 						     page_error_op |
771 						     PAGE_END_WRITEBACK);
772 
773 			/*
774 			 * Ensure we only free the compressed pages if we have
775 			 * them allocated, as we can still reach here with
776 			 * inode_need_compress() == false.
777 			 */
778 			if (pages) {
779 				for (i = 0; i < nr_pages; i++) {
780 					WARN_ON(pages[i]->mapping);
781 					put_page(pages[i]);
782 				}
783 				kfree(pages);
784 			}
785 			return 0;
786 		}
787 	}
788 
789 	if (will_compress) {
790 		/*
791 		 * we aren't doing an inline extent round the compressed size
792 		 * up to a block size boundary so the allocator does sane
793 		 * things
794 		 */
795 		total_compressed = ALIGN(total_compressed, blocksize);
796 
797 		/*
798 		 * one last check to make sure the compression is really a
799 		 * win, compare the page count read with the blocks on disk,
800 		 * compression must free at least one sector size
801 		 */
802 		total_in = round_up(total_in, fs_info->sectorsize);
803 		if (total_compressed + blocksize <= total_in) {
804 			compressed_extents++;
805 
806 			/*
807 			 * The async work queues will take care of doing actual
808 			 * allocation on disk for these compressed pages, and
809 			 * will submit them to the elevator.
810 			 */
811 			add_async_extent(async_chunk, start, total_in,
812 					total_compressed, pages, nr_pages,
813 					compress_type);
814 
815 			if (start + total_in < end) {
816 				start += total_in;
817 				pages = NULL;
818 				cond_resched();
819 				goto again;
820 			}
821 			return compressed_extents;
822 		}
823 	}
824 	if (pages) {
825 		/*
826 		 * the compression code ran but failed to make things smaller,
827 		 * free any pages it allocated and our page pointer array
828 		 */
829 		for (i = 0; i < nr_pages; i++) {
830 			WARN_ON(pages[i]->mapping);
831 			put_page(pages[i]);
832 		}
833 		kfree(pages);
834 		pages = NULL;
835 		total_compressed = 0;
836 		nr_pages = 0;
837 
838 		/* flag the file so we don't compress in the future */
839 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
840 		    !(BTRFS_I(inode)->prop_compress)) {
841 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
842 		}
843 	}
844 cleanup_and_bail_uncompressed:
845 	/*
846 	 * No compression, but we still need to write the pages in the file
847 	 * we've been given so far.  redirty the locked page if it corresponds
848 	 * to our extent and set things up for the async work queue to run
849 	 * cow_file_range to do the normal delalloc dance.
850 	 */
851 	if (async_chunk->locked_page &&
852 	    (page_offset(async_chunk->locked_page) >= start &&
853 	     page_offset(async_chunk->locked_page)) <= end) {
854 		__set_page_dirty_nobuffers(async_chunk->locked_page);
855 		/* unlocked later on in the async handlers */
856 	}
857 
858 	if (redirty)
859 		extent_range_redirty_for_io(inode, start, end);
860 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
861 			 BTRFS_COMPRESS_NONE);
862 	compressed_extents++;
863 
864 	return compressed_extents;
865 }
866 
867 static void free_async_extent_pages(struct async_extent *async_extent)
868 {
869 	int i;
870 
871 	if (!async_extent->pages)
872 		return;
873 
874 	for (i = 0; i < async_extent->nr_pages; i++) {
875 		WARN_ON(async_extent->pages[i]->mapping);
876 		put_page(async_extent->pages[i]);
877 	}
878 	kfree(async_extent->pages);
879 	async_extent->nr_pages = 0;
880 	async_extent->pages = NULL;
881 }
882 
883 static int submit_uncompressed_range(struct btrfs_inode *inode,
884 				     struct async_extent *async_extent,
885 				     struct page *locked_page)
886 {
887 	u64 start = async_extent->start;
888 	u64 end = async_extent->start + async_extent->ram_size - 1;
889 	unsigned long nr_written = 0;
890 	int page_started = 0;
891 	int ret;
892 
893 	/*
894 	 * Call cow_file_range() to run the delalloc range directly, since we
895 	 * won't go to NOCOW or async path again.
896 	 *
897 	 * Also we call cow_file_range() with @unlock_page == 0, so that we
898 	 * can directly submit them without interruption.
899 	 */
900 	ret = cow_file_range(inode, locked_page, start, end, &page_started,
901 			     &nr_written, 0);
902 	/* Inline extent inserted, page gets unlocked and everything is done */
903 	if (page_started) {
904 		ret = 0;
905 		goto out;
906 	}
907 	if (ret < 0) {
908 		if (locked_page)
909 			unlock_page(locked_page);
910 		goto out;
911 	}
912 
913 	ret = extent_write_locked_range(&inode->vfs_inode, start, end);
914 	/* All pages will be unlocked, including @locked_page */
915 out:
916 	kfree(async_extent);
917 	return ret;
918 }
919 
920 static int submit_one_async_extent(struct btrfs_inode *inode,
921 				   struct async_chunk *async_chunk,
922 				   struct async_extent *async_extent,
923 				   u64 *alloc_hint)
924 {
925 	struct extent_io_tree *io_tree = &inode->io_tree;
926 	struct btrfs_root *root = inode->root;
927 	struct btrfs_fs_info *fs_info = root->fs_info;
928 	struct btrfs_key ins;
929 	struct page *locked_page = NULL;
930 	struct extent_map *em;
931 	int ret = 0;
932 	u64 start = async_extent->start;
933 	u64 end = async_extent->start + async_extent->ram_size - 1;
934 
935 	/*
936 	 * If async_chunk->locked_page is in the async_extent range, we need to
937 	 * handle it.
938 	 */
939 	if (async_chunk->locked_page) {
940 		u64 locked_page_start = page_offset(async_chunk->locked_page);
941 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
942 
943 		if (!(start >= locked_page_end || end <= locked_page_start))
944 			locked_page = async_chunk->locked_page;
945 	}
946 	lock_extent(io_tree, start, end);
947 
948 	/* We have fall back to uncompressed write */
949 	if (!async_extent->pages)
950 		return submit_uncompressed_range(inode, async_extent, locked_page);
951 
952 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
953 				   async_extent->compressed_size,
954 				   async_extent->compressed_size,
955 				   0, *alloc_hint, &ins, 1, 1);
956 	if (ret) {
957 		free_async_extent_pages(async_extent);
958 		/*
959 		 * Here we used to try again by going back to non-compressed
960 		 * path for ENOSPC.  But we can't reserve space even for
961 		 * compressed size, how could it work for uncompressed size
962 		 * which requires larger size?  So here we directly go error
963 		 * path.
964 		 */
965 		goto out_free;
966 	}
967 
968 	/* Here we're doing allocation and writeback of the compressed pages */
969 	em = create_io_em(inode, start,
970 			  async_extent->ram_size,	/* len */
971 			  start,			/* orig_start */
972 			  ins.objectid,			/* block_start */
973 			  ins.offset,			/* block_len */
974 			  ins.offset,			/* orig_block_len */
975 			  async_extent->ram_size,	/* ram_bytes */
976 			  async_extent->compress_type,
977 			  BTRFS_ORDERED_COMPRESSED);
978 	if (IS_ERR(em)) {
979 		ret = PTR_ERR(em);
980 		goto out_free_reserve;
981 	}
982 	free_extent_map(em);
983 
984 	ret = btrfs_add_ordered_extent_compress(inode, start,	/* file_offset */
985 					ins.objectid,		/* disk_bytenr */
986 					async_extent->ram_size, /* num_bytes */
987 					ins.offset,		/* disk_num_bytes */
988 					async_extent->compress_type);
989 	if (ret) {
990 		btrfs_drop_extent_cache(inode, start, end, 0);
991 		goto out_free_reserve;
992 	}
993 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
994 
995 	/* Clear dirty, set writeback and unlock the pages. */
996 	extent_clear_unlock_delalloc(inode, start, end,
997 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
998 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
999 	if (btrfs_submit_compressed_write(inode, start,	/* file_offset */
1000 			    async_extent->ram_size,	/* num_bytes */
1001 			    ins.objectid,		/* disk_bytenr */
1002 			    ins.offset,			/* compressed_len */
1003 			    async_extent->pages,	/* compressed_pages */
1004 			    async_extent->nr_pages,
1005 			    async_chunk->write_flags,
1006 			    async_chunk->blkcg_css)) {
1007 		const u64 start = async_extent->start;
1008 		const u64 end = start + async_extent->ram_size - 1;
1009 
1010 		btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1011 
1012 		extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1013 					     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1014 		free_async_extent_pages(async_extent);
1015 	}
1016 	*alloc_hint = ins.objectid + ins.offset;
1017 	kfree(async_extent);
1018 	return ret;
1019 
1020 out_free_reserve:
1021 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1022 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1023 out_free:
1024 	extent_clear_unlock_delalloc(inode, start, end,
1025 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1026 				     EXTENT_DELALLOC_NEW |
1027 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1028 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1029 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1030 	free_async_extent_pages(async_extent);
1031 	kfree(async_extent);
1032 	return ret;
1033 }
1034 
1035 /*
1036  * Phase two of compressed writeback.  This is the ordered portion of the code,
1037  * which only gets called in the order the work was queued.  We walk all the
1038  * async extents created by compress_file_range and send them down to the disk.
1039  */
1040 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1041 {
1042 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1043 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1044 	struct async_extent *async_extent;
1045 	u64 alloc_hint = 0;
1046 	int ret = 0;
1047 
1048 	while (!list_empty(&async_chunk->extents)) {
1049 		u64 extent_start;
1050 		u64 ram_size;
1051 
1052 		async_extent = list_entry(async_chunk->extents.next,
1053 					  struct async_extent, list);
1054 		list_del(&async_extent->list);
1055 		extent_start = async_extent->start;
1056 		ram_size = async_extent->ram_size;
1057 
1058 		ret = submit_one_async_extent(inode, async_chunk, async_extent,
1059 					      &alloc_hint);
1060 		btrfs_debug(fs_info,
1061 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1062 			    inode->root->root_key.objectid,
1063 			    btrfs_ino(inode), extent_start, ram_size, ret);
1064 	}
1065 }
1066 
1067 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1068 				      u64 num_bytes)
1069 {
1070 	struct extent_map_tree *em_tree = &inode->extent_tree;
1071 	struct extent_map *em;
1072 	u64 alloc_hint = 0;
1073 
1074 	read_lock(&em_tree->lock);
1075 	em = search_extent_mapping(em_tree, start, num_bytes);
1076 	if (em) {
1077 		/*
1078 		 * if block start isn't an actual block number then find the
1079 		 * first block in this inode and use that as a hint.  If that
1080 		 * block is also bogus then just don't worry about it.
1081 		 */
1082 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1083 			free_extent_map(em);
1084 			em = search_extent_mapping(em_tree, 0, 0);
1085 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1086 				alloc_hint = em->block_start;
1087 			if (em)
1088 				free_extent_map(em);
1089 		} else {
1090 			alloc_hint = em->block_start;
1091 			free_extent_map(em);
1092 		}
1093 	}
1094 	read_unlock(&em_tree->lock);
1095 
1096 	return alloc_hint;
1097 }
1098 
1099 /*
1100  * when extent_io.c finds a delayed allocation range in the file,
1101  * the call backs end up in this code.  The basic idea is to
1102  * allocate extents on disk for the range, and create ordered data structs
1103  * in ram to track those extents.
1104  *
1105  * locked_page is the page that writepage had locked already.  We use
1106  * it to make sure we don't do extra locks or unlocks.
1107  *
1108  * *page_started is set to one if we unlock locked_page and do everything
1109  * required to start IO on it.  It may be clean and already done with
1110  * IO when we return.
1111  */
1112 static noinline int cow_file_range(struct btrfs_inode *inode,
1113 				   struct page *locked_page,
1114 				   u64 start, u64 end, int *page_started,
1115 				   unsigned long *nr_written, int unlock)
1116 {
1117 	struct btrfs_root *root = inode->root;
1118 	struct btrfs_fs_info *fs_info = root->fs_info;
1119 	u64 alloc_hint = 0;
1120 	u64 num_bytes;
1121 	unsigned long ram_size;
1122 	u64 cur_alloc_size = 0;
1123 	u64 min_alloc_size;
1124 	u64 blocksize = fs_info->sectorsize;
1125 	struct btrfs_key ins;
1126 	struct extent_map *em;
1127 	unsigned clear_bits;
1128 	unsigned long page_ops;
1129 	bool extent_reserved = false;
1130 	int ret = 0;
1131 
1132 	if (btrfs_is_free_space_inode(inode)) {
1133 		WARN_ON_ONCE(1);
1134 		ret = -EINVAL;
1135 		goto out_unlock;
1136 	}
1137 
1138 	num_bytes = ALIGN(end - start + 1, blocksize);
1139 	num_bytes = max(blocksize,  num_bytes);
1140 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1141 
1142 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1143 
1144 	/*
1145 	 * Due to the page size limit, for subpage we can only trigger the
1146 	 * writeback for the dirty sectors of page, that means data writeback
1147 	 * is doing more writeback than what we want.
1148 	 *
1149 	 * This is especially unexpected for some call sites like fallocate,
1150 	 * where we only increase i_size after everything is done.
1151 	 * This means we can trigger inline extent even if we didn't want to.
1152 	 * So here we skip inline extent creation completely.
1153 	 */
1154 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1155 		/* lets try to make an inline extent */
1156 		ret = cow_file_range_inline(inode, start, end, 0,
1157 					    BTRFS_COMPRESS_NONE, NULL);
1158 		if (ret == 0) {
1159 			/*
1160 			 * We use DO_ACCOUNTING here because we need the
1161 			 * delalloc_release_metadata to be run _after_ we drop
1162 			 * our outstanding extent for clearing delalloc for this
1163 			 * range.
1164 			 */
1165 			extent_clear_unlock_delalloc(inode, start, end,
1166 				     locked_page,
1167 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1168 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1169 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1170 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1171 			*nr_written = *nr_written +
1172 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1173 			*page_started = 1;
1174 			/*
1175 			 * locked_page is locked by the caller of
1176 			 * writepage_delalloc(), not locked by
1177 			 * __process_pages_contig().
1178 			 *
1179 			 * We can't let __process_pages_contig() to unlock it,
1180 			 * as it doesn't have any subpage::writers recorded.
1181 			 *
1182 			 * Here we manually unlock the page, since the caller
1183 			 * can't use page_started to determine if it's an
1184 			 * inline extent or a compressed extent.
1185 			 */
1186 			unlock_page(locked_page);
1187 			goto out;
1188 		} else if (ret < 0) {
1189 			goto out_unlock;
1190 		}
1191 	}
1192 
1193 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1194 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1195 
1196 	/*
1197 	 * Relocation relies on the relocated extents to have exactly the same
1198 	 * size as the original extents. Normally writeback for relocation data
1199 	 * extents follows a NOCOW path because relocation preallocates the
1200 	 * extents. However, due to an operation such as scrub turning a block
1201 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1202 	 * an extent allocated during COW has exactly the requested size and can
1203 	 * not be split into smaller extents, otherwise relocation breaks and
1204 	 * fails during the stage where it updates the bytenr of file extent
1205 	 * items.
1206 	 */
1207 	if (btrfs_is_data_reloc_root(root))
1208 		min_alloc_size = num_bytes;
1209 	else
1210 		min_alloc_size = fs_info->sectorsize;
1211 
1212 	while (num_bytes > 0) {
1213 		cur_alloc_size = num_bytes;
1214 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1215 					   min_alloc_size, 0, alloc_hint,
1216 					   &ins, 1, 1);
1217 		if (ret < 0)
1218 			goto out_unlock;
1219 		cur_alloc_size = ins.offset;
1220 		extent_reserved = true;
1221 
1222 		ram_size = ins.offset;
1223 		em = create_io_em(inode, start, ins.offset, /* len */
1224 				  start, /* orig_start */
1225 				  ins.objectid, /* block_start */
1226 				  ins.offset, /* block_len */
1227 				  ins.offset, /* orig_block_len */
1228 				  ram_size, /* ram_bytes */
1229 				  BTRFS_COMPRESS_NONE, /* compress_type */
1230 				  BTRFS_ORDERED_REGULAR /* type */);
1231 		if (IS_ERR(em)) {
1232 			ret = PTR_ERR(em);
1233 			goto out_reserve;
1234 		}
1235 		free_extent_map(em);
1236 
1237 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1238 					       ram_size, cur_alloc_size,
1239 					       BTRFS_ORDERED_REGULAR);
1240 		if (ret)
1241 			goto out_drop_extent_cache;
1242 
1243 		if (btrfs_is_data_reloc_root(root)) {
1244 			ret = btrfs_reloc_clone_csums(inode, start,
1245 						      cur_alloc_size);
1246 			/*
1247 			 * Only drop cache here, and process as normal.
1248 			 *
1249 			 * We must not allow extent_clear_unlock_delalloc()
1250 			 * at out_unlock label to free meta of this ordered
1251 			 * extent, as its meta should be freed by
1252 			 * btrfs_finish_ordered_io().
1253 			 *
1254 			 * So we must continue until @start is increased to
1255 			 * skip current ordered extent.
1256 			 */
1257 			if (ret)
1258 				btrfs_drop_extent_cache(inode, start,
1259 						start + ram_size - 1, 0);
1260 		}
1261 
1262 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1263 
1264 		/*
1265 		 * We're not doing compressed IO, don't unlock the first page
1266 		 * (which the caller expects to stay locked), don't clear any
1267 		 * dirty bits and don't set any writeback bits
1268 		 *
1269 		 * Do set the Ordered (Private2) bit so we know this page was
1270 		 * properly setup for writepage.
1271 		 */
1272 		page_ops = unlock ? PAGE_UNLOCK : 0;
1273 		page_ops |= PAGE_SET_ORDERED;
1274 
1275 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1276 					     locked_page,
1277 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1278 					     page_ops);
1279 		if (num_bytes < cur_alloc_size)
1280 			num_bytes = 0;
1281 		else
1282 			num_bytes -= cur_alloc_size;
1283 		alloc_hint = ins.objectid + ins.offset;
1284 		start += cur_alloc_size;
1285 		extent_reserved = false;
1286 
1287 		/*
1288 		 * btrfs_reloc_clone_csums() error, since start is increased
1289 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1290 		 * free metadata of current ordered extent, we're OK to exit.
1291 		 */
1292 		if (ret)
1293 			goto out_unlock;
1294 	}
1295 out:
1296 	return ret;
1297 
1298 out_drop_extent_cache:
1299 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1300 out_reserve:
1301 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1302 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1303 out_unlock:
1304 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1305 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1306 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1307 	/*
1308 	 * If we reserved an extent for our delalloc range (or a subrange) and
1309 	 * failed to create the respective ordered extent, then it means that
1310 	 * when we reserved the extent we decremented the extent's size from
1311 	 * the data space_info's bytes_may_use counter and incremented the
1312 	 * space_info's bytes_reserved counter by the same amount. We must make
1313 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1314 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1315 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1316 	 */
1317 	if (extent_reserved) {
1318 		extent_clear_unlock_delalloc(inode, start,
1319 					     start + cur_alloc_size - 1,
1320 					     locked_page,
1321 					     clear_bits,
1322 					     page_ops);
1323 		start += cur_alloc_size;
1324 		if (start >= end)
1325 			goto out;
1326 	}
1327 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1328 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1329 				     page_ops);
1330 	goto out;
1331 }
1332 
1333 /*
1334  * work queue call back to started compression on a file and pages
1335  */
1336 static noinline void async_cow_start(struct btrfs_work *work)
1337 {
1338 	struct async_chunk *async_chunk;
1339 	int compressed_extents;
1340 
1341 	async_chunk = container_of(work, struct async_chunk, work);
1342 
1343 	compressed_extents = compress_file_range(async_chunk);
1344 	if (compressed_extents == 0) {
1345 		btrfs_add_delayed_iput(async_chunk->inode);
1346 		async_chunk->inode = NULL;
1347 	}
1348 }
1349 
1350 /*
1351  * work queue call back to submit previously compressed pages
1352  */
1353 static noinline void async_cow_submit(struct btrfs_work *work)
1354 {
1355 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1356 						     work);
1357 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1358 	unsigned long nr_pages;
1359 
1360 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1361 		PAGE_SHIFT;
1362 
1363 	/*
1364 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1365 	 * in which case we don't have anything to submit, yet we need to
1366 	 * always adjust ->async_delalloc_pages as its paired with the init
1367 	 * happening in cow_file_range_async
1368 	 */
1369 	if (async_chunk->inode)
1370 		submit_compressed_extents(async_chunk);
1371 
1372 	/* atomic_sub_return implies a barrier */
1373 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1374 	    5 * SZ_1M)
1375 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1376 }
1377 
1378 static noinline void async_cow_free(struct btrfs_work *work)
1379 {
1380 	struct async_chunk *async_chunk;
1381 	struct async_cow *async_cow;
1382 
1383 	async_chunk = container_of(work, struct async_chunk, work);
1384 	if (async_chunk->inode)
1385 		btrfs_add_delayed_iput(async_chunk->inode);
1386 	if (async_chunk->blkcg_css)
1387 		css_put(async_chunk->blkcg_css);
1388 
1389 	async_cow = async_chunk->async_cow;
1390 	if (atomic_dec_and_test(&async_cow->num_chunks))
1391 		kvfree(async_cow);
1392 }
1393 
1394 static int cow_file_range_async(struct btrfs_inode *inode,
1395 				struct writeback_control *wbc,
1396 				struct page *locked_page,
1397 				u64 start, u64 end, int *page_started,
1398 				unsigned long *nr_written)
1399 {
1400 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1401 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1402 	struct async_cow *ctx;
1403 	struct async_chunk *async_chunk;
1404 	unsigned long nr_pages;
1405 	u64 cur_end;
1406 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1407 	int i;
1408 	bool should_compress;
1409 	unsigned nofs_flag;
1410 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1411 
1412 	unlock_extent(&inode->io_tree, start, end);
1413 
1414 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1415 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1416 		num_chunks = 1;
1417 		should_compress = false;
1418 	} else {
1419 		should_compress = true;
1420 	}
1421 
1422 	nofs_flag = memalloc_nofs_save();
1423 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1424 	memalloc_nofs_restore(nofs_flag);
1425 
1426 	if (!ctx) {
1427 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1428 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1429 			EXTENT_DO_ACCOUNTING;
1430 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1431 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1432 
1433 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1434 					     clear_bits, page_ops);
1435 		return -ENOMEM;
1436 	}
1437 
1438 	async_chunk = ctx->chunks;
1439 	atomic_set(&ctx->num_chunks, num_chunks);
1440 
1441 	for (i = 0; i < num_chunks; i++) {
1442 		if (should_compress)
1443 			cur_end = min(end, start + SZ_512K - 1);
1444 		else
1445 			cur_end = end;
1446 
1447 		/*
1448 		 * igrab is called higher up in the call chain, take only the
1449 		 * lightweight reference for the callback lifetime
1450 		 */
1451 		ihold(&inode->vfs_inode);
1452 		async_chunk[i].async_cow = ctx;
1453 		async_chunk[i].inode = &inode->vfs_inode;
1454 		async_chunk[i].start = start;
1455 		async_chunk[i].end = cur_end;
1456 		async_chunk[i].write_flags = write_flags;
1457 		INIT_LIST_HEAD(&async_chunk[i].extents);
1458 
1459 		/*
1460 		 * The locked_page comes all the way from writepage and its
1461 		 * the original page we were actually given.  As we spread
1462 		 * this large delalloc region across multiple async_chunk
1463 		 * structs, only the first struct needs a pointer to locked_page
1464 		 *
1465 		 * This way we don't need racey decisions about who is supposed
1466 		 * to unlock it.
1467 		 */
1468 		if (locked_page) {
1469 			/*
1470 			 * Depending on the compressibility, the pages might or
1471 			 * might not go through async.  We want all of them to
1472 			 * be accounted against wbc once.  Let's do it here
1473 			 * before the paths diverge.  wbc accounting is used
1474 			 * only for foreign writeback detection and doesn't
1475 			 * need full accuracy.  Just account the whole thing
1476 			 * against the first page.
1477 			 */
1478 			wbc_account_cgroup_owner(wbc, locked_page,
1479 						 cur_end - start);
1480 			async_chunk[i].locked_page = locked_page;
1481 			locked_page = NULL;
1482 		} else {
1483 			async_chunk[i].locked_page = NULL;
1484 		}
1485 
1486 		if (blkcg_css != blkcg_root_css) {
1487 			css_get(blkcg_css);
1488 			async_chunk[i].blkcg_css = blkcg_css;
1489 		} else {
1490 			async_chunk[i].blkcg_css = NULL;
1491 		}
1492 
1493 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1494 				async_cow_submit, async_cow_free);
1495 
1496 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1497 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1498 
1499 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1500 
1501 		*nr_written += nr_pages;
1502 		start = cur_end + 1;
1503 	}
1504 	*page_started = 1;
1505 	return 0;
1506 }
1507 
1508 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1509 				       struct page *locked_page, u64 start,
1510 				       u64 end, int *page_started,
1511 				       unsigned long *nr_written)
1512 {
1513 	int ret;
1514 
1515 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1516 			     nr_written, 0);
1517 	if (ret)
1518 		return ret;
1519 
1520 	if (*page_started)
1521 		return 0;
1522 
1523 	__set_page_dirty_nobuffers(locked_page);
1524 	account_page_redirty(locked_page);
1525 	extent_write_locked_range(&inode->vfs_inode, start, end);
1526 	*page_started = 1;
1527 
1528 	return 0;
1529 }
1530 
1531 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1532 					u64 bytenr, u64 num_bytes)
1533 {
1534 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1535 	struct btrfs_ordered_sum *sums;
1536 	int ret;
1537 	LIST_HEAD(list);
1538 
1539 	ret = btrfs_lookup_csums_range(csum_root, bytenr,
1540 				       bytenr + num_bytes - 1, &list, 0);
1541 	if (ret == 0 && list_empty(&list))
1542 		return 0;
1543 
1544 	while (!list_empty(&list)) {
1545 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1546 		list_del(&sums->list);
1547 		kfree(sums);
1548 	}
1549 	if (ret < 0)
1550 		return ret;
1551 	return 1;
1552 }
1553 
1554 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1555 			   const u64 start, const u64 end,
1556 			   int *page_started, unsigned long *nr_written)
1557 {
1558 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1559 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1560 	const u64 range_bytes = end + 1 - start;
1561 	struct extent_io_tree *io_tree = &inode->io_tree;
1562 	u64 range_start = start;
1563 	u64 count;
1564 
1565 	/*
1566 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1567 	 * made we had not enough available data space and therefore we did not
1568 	 * reserve data space for it, since we though we could do NOCOW for the
1569 	 * respective file range (either there is prealloc extent or the inode
1570 	 * has the NOCOW bit set).
1571 	 *
1572 	 * However when we need to fallback to COW mode (because for example the
1573 	 * block group for the corresponding extent was turned to RO mode by a
1574 	 * scrub or relocation) we need to do the following:
1575 	 *
1576 	 * 1) We increment the bytes_may_use counter of the data space info.
1577 	 *    If COW succeeds, it allocates a new data extent and after doing
1578 	 *    that it decrements the space info's bytes_may_use counter and
1579 	 *    increments its bytes_reserved counter by the same amount (we do
1580 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1581 	 *    bytes_may_use counter to compensate (when space is reserved at
1582 	 *    buffered write time, the bytes_may_use counter is incremented);
1583 	 *
1584 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1585 	 *    that if the COW path fails for any reason, it decrements (through
1586 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1587 	 *    data space info, which we incremented in the step above.
1588 	 *
1589 	 * If we need to fallback to cow and the inode corresponds to a free
1590 	 * space cache inode or an inode of the data relocation tree, we must
1591 	 * also increment bytes_may_use of the data space_info for the same
1592 	 * reason. Space caches and relocated data extents always get a prealloc
1593 	 * extent for them, however scrub or balance may have set the block
1594 	 * group that contains that extent to RO mode and therefore force COW
1595 	 * when starting writeback.
1596 	 */
1597 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1598 				 EXTENT_NORESERVE, 0);
1599 	if (count > 0 || is_space_ino || is_reloc_ino) {
1600 		u64 bytes = count;
1601 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1602 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1603 
1604 		if (is_space_ino || is_reloc_ino)
1605 			bytes = range_bytes;
1606 
1607 		spin_lock(&sinfo->lock);
1608 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1609 		spin_unlock(&sinfo->lock);
1610 
1611 		if (count > 0)
1612 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1613 					 0, 0, NULL);
1614 	}
1615 
1616 	return cow_file_range(inode, locked_page, start, end, page_started,
1617 			      nr_written, 1);
1618 }
1619 
1620 /*
1621  * when nowcow writeback call back.  This checks for snapshots or COW copies
1622  * of the extents that exist in the file, and COWs the file as required.
1623  *
1624  * If no cow copies or snapshots exist, we write directly to the existing
1625  * blocks on disk
1626  */
1627 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1628 				       struct page *locked_page,
1629 				       const u64 start, const u64 end,
1630 				       int *page_started,
1631 				       unsigned long *nr_written)
1632 {
1633 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1634 	struct btrfs_root *root = inode->root;
1635 	struct btrfs_path *path;
1636 	u64 cow_start = (u64)-1;
1637 	u64 cur_offset = start;
1638 	int ret;
1639 	bool check_prev = true;
1640 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1641 	u64 ino = btrfs_ino(inode);
1642 	bool nocow = false;
1643 	u64 disk_bytenr = 0;
1644 	const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1645 
1646 	path = btrfs_alloc_path();
1647 	if (!path) {
1648 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1649 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1650 					     EXTENT_DO_ACCOUNTING |
1651 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1652 					     PAGE_START_WRITEBACK |
1653 					     PAGE_END_WRITEBACK);
1654 		return -ENOMEM;
1655 	}
1656 
1657 	while (1) {
1658 		struct btrfs_key found_key;
1659 		struct btrfs_file_extent_item *fi;
1660 		struct extent_buffer *leaf;
1661 		u64 extent_end;
1662 		u64 extent_offset;
1663 		u64 num_bytes = 0;
1664 		u64 disk_num_bytes;
1665 		u64 ram_bytes;
1666 		int extent_type;
1667 
1668 		nocow = false;
1669 
1670 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1671 					       cur_offset, 0);
1672 		if (ret < 0)
1673 			goto error;
1674 
1675 		/*
1676 		 * If there is no extent for our range when doing the initial
1677 		 * search, then go back to the previous slot as it will be the
1678 		 * one containing the search offset
1679 		 */
1680 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1681 			leaf = path->nodes[0];
1682 			btrfs_item_key_to_cpu(leaf, &found_key,
1683 					      path->slots[0] - 1);
1684 			if (found_key.objectid == ino &&
1685 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1686 				path->slots[0]--;
1687 		}
1688 		check_prev = false;
1689 next_slot:
1690 		/* Go to next leaf if we have exhausted the current one */
1691 		leaf = path->nodes[0];
1692 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1693 			ret = btrfs_next_leaf(root, path);
1694 			if (ret < 0) {
1695 				if (cow_start != (u64)-1)
1696 					cur_offset = cow_start;
1697 				goto error;
1698 			}
1699 			if (ret > 0)
1700 				break;
1701 			leaf = path->nodes[0];
1702 		}
1703 
1704 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1705 
1706 		/* Didn't find anything for our INO */
1707 		if (found_key.objectid > ino)
1708 			break;
1709 		/*
1710 		 * Keep searching until we find an EXTENT_ITEM or there are no
1711 		 * more extents for this inode
1712 		 */
1713 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1714 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1715 			path->slots[0]++;
1716 			goto next_slot;
1717 		}
1718 
1719 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1720 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1721 		    found_key.offset > end)
1722 			break;
1723 
1724 		/*
1725 		 * If the found extent starts after requested offset, then
1726 		 * adjust extent_end to be right before this extent begins
1727 		 */
1728 		if (found_key.offset > cur_offset) {
1729 			extent_end = found_key.offset;
1730 			extent_type = 0;
1731 			goto out_check;
1732 		}
1733 
1734 		/*
1735 		 * Found extent which begins before our range and potentially
1736 		 * intersect it
1737 		 */
1738 		fi = btrfs_item_ptr(leaf, path->slots[0],
1739 				    struct btrfs_file_extent_item);
1740 		extent_type = btrfs_file_extent_type(leaf, fi);
1741 
1742 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1743 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1744 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1745 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1746 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1747 			extent_end = found_key.offset +
1748 				btrfs_file_extent_num_bytes(leaf, fi);
1749 			disk_num_bytes =
1750 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1751 			/*
1752 			 * If the extent we got ends before our current offset,
1753 			 * skip to the next extent.
1754 			 */
1755 			if (extent_end <= cur_offset) {
1756 				path->slots[0]++;
1757 				goto next_slot;
1758 			}
1759 			/* Skip holes */
1760 			if (disk_bytenr == 0)
1761 				goto out_check;
1762 			/* Skip compressed/encrypted/encoded extents */
1763 			if (btrfs_file_extent_compression(leaf, fi) ||
1764 			    btrfs_file_extent_encryption(leaf, fi) ||
1765 			    btrfs_file_extent_other_encoding(leaf, fi))
1766 				goto out_check;
1767 			/*
1768 			 * If extent is created before the last volume's snapshot
1769 			 * this implies the extent is shared, hence we can't do
1770 			 * nocow. This is the same check as in
1771 			 * btrfs_cross_ref_exist but without calling
1772 			 * btrfs_search_slot.
1773 			 */
1774 			if (!freespace_inode &&
1775 			    btrfs_file_extent_generation(leaf, fi) <=
1776 			    btrfs_root_last_snapshot(&root->root_item))
1777 				goto out_check;
1778 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1779 				goto out_check;
1780 
1781 			/*
1782 			 * The following checks can be expensive, as they need to
1783 			 * take other locks and do btree or rbtree searches, so
1784 			 * release the path to avoid blocking other tasks for too
1785 			 * long.
1786 			 */
1787 			btrfs_release_path(path);
1788 
1789 			ret = btrfs_cross_ref_exist(root, ino,
1790 						    found_key.offset -
1791 						    extent_offset, disk_bytenr, false);
1792 			if (ret) {
1793 				/*
1794 				 * ret could be -EIO if the above fails to read
1795 				 * metadata.
1796 				 */
1797 				if (ret < 0) {
1798 					if (cow_start != (u64)-1)
1799 						cur_offset = cow_start;
1800 					goto error;
1801 				}
1802 
1803 				WARN_ON_ONCE(freespace_inode);
1804 				goto out_check;
1805 			}
1806 			disk_bytenr += extent_offset;
1807 			disk_bytenr += cur_offset - found_key.offset;
1808 			num_bytes = min(end + 1, extent_end) - cur_offset;
1809 			/*
1810 			 * If there are pending snapshots for this root, we
1811 			 * fall into common COW way
1812 			 */
1813 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1814 				goto out_check;
1815 			/*
1816 			 * force cow if csum exists in the range.
1817 			 * this ensure that csum for a given extent are
1818 			 * either valid or do not exist.
1819 			 */
1820 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1821 						  num_bytes);
1822 			if (ret) {
1823 				/*
1824 				 * ret could be -EIO if the above fails to read
1825 				 * metadata.
1826 				 */
1827 				if (ret < 0) {
1828 					if (cow_start != (u64)-1)
1829 						cur_offset = cow_start;
1830 					goto error;
1831 				}
1832 				WARN_ON_ONCE(freespace_inode);
1833 				goto out_check;
1834 			}
1835 			/* If the extent's block group is RO, we must COW */
1836 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1837 				goto out_check;
1838 			nocow = true;
1839 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1840 			extent_end = found_key.offset + ram_bytes;
1841 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1842 			/* Skip extents outside of our requested range */
1843 			if (extent_end <= start) {
1844 				path->slots[0]++;
1845 				goto next_slot;
1846 			}
1847 		} else {
1848 			/* If this triggers then we have a memory corruption */
1849 			BUG();
1850 		}
1851 out_check:
1852 		/*
1853 		 * If nocow is false then record the beginning of the range
1854 		 * that needs to be COWed
1855 		 */
1856 		if (!nocow) {
1857 			if (cow_start == (u64)-1)
1858 				cow_start = cur_offset;
1859 			cur_offset = extent_end;
1860 			if (cur_offset > end)
1861 				break;
1862 			if (!path->nodes[0])
1863 				continue;
1864 			path->slots[0]++;
1865 			goto next_slot;
1866 		}
1867 
1868 		/*
1869 		 * COW range from cow_start to found_key.offset - 1. As the key
1870 		 * will contain the beginning of the first extent that can be
1871 		 * NOCOW, following one which needs to be COW'ed
1872 		 */
1873 		if (cow_start != (u64)-1) {
1874 			ret = fallback_to_cow(inode, locked_page,
1875 					      cow_start, found_key.offset - 1,
1876 					      page_started, nr_written);
1877 			if (ret)
1878 				goto error;
1879 			cow_start = (u64)-1;
1880 		}
1881 
1882 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1883 			u64 orig_start = found_key.offset - extent_offset;
1884 			struct extent_map *em;
1885 
1886 			em = create_io_em(inode, cur_offset, num_bytes,
1887 					  orig_start,
1888 					  disk_bytenr, /* block_start */
1889 					  num_bytes, /* block_len */
1890 					  disk_num_bytes, /* orig_block_len */
1891 					  ram_bytes, BTRFS_COMPRESS_NONE,
1892 					  BTRFS_ORDERED_PREALLOC);
1893 			if (IS_ERR(em)) {
1894 				ret = PTR_ERR(em);
1895 				goto error;
1896 			}
1897 			free_extent_map(em);
1898 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1899 						       disk_bytenr, num_bytes,
1900 						       num_bytes,
1901 						       BTRFS_ORDERED_PREALLOC);
1902 			if (ret) {
1903 				btrfs_drop_extent_cache(inode, cur_offset,
1904 							cur_offset + num_bytes - 1,
1905 							0);
1906 				goto error;
1907 			}
1908 		} else {
1909 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1910 						       disk_bytenr, num_bytes,
1911 						       num_bytes,
1912 						       BTRFS_ORDERED_NOCOW);
1913 			if (ret)
1914 				goto error;
1915 		}
1916 
1917 		if (nocow)
1918 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1919 		nocow = false;
1920 
1921 		if (btrfs_is_data_reloc_root(root))
1922 			/*
1923 			 * Error handled later, as we must prevent
1924 			 * extent_clear_unlock_delalloc() in error handler
1925 			 * from freeing metadata of created ordered extent.
1926 			 */
1927 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1928 						      num_bytes);
1929 
1930 		extent_clear_unlock_delalloc(inode, cur_offset,
1931 					     cur_offset + num_bytes - 1,
1932 					     locked_page, EXTENT_LOCKED |
1933 					     EXTENT_DELALLOC |
1934 					     EXTENT_CLEAR_DATA_RESV,
1935 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
1936 
1937 		cur_offset = extent_end;
1938 
1939 		/*
1940 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1941 		 * handler, as metadata for created ordered extent will only
1942 		 * be freed by btrfs_finish_ordered_io().
1943 		 */
1944 		if (ret)
1945 			goto error;
1946 		if (cur_offset > end)
1947 			break;
1948 	}
1949 	btrfs_release_path(path);
1950 
1951 	if (cur_offset <= end && cow_start == (u64)-1)
1952 		cow_start = cur_offset;
1953 
1954 	if (cow_start != (u64)-1) {
1955 		cur_offset = end;
1956 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1957 				      page_started, nr_written);
1958 		if (ret)
1959 			goto error;
1960 	}
1961 
1962 error:
1963 	if (nocow)
1964 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1965 
1966 	if (ret && cur_offset < end)
1967 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1968 					     locked_page, EXTENT_LOCKED |
1969 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1970 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1971 					     PAGE_START_WRITEBACK |
1972 					     PAGE_END_WRITEBACK);
1973 	btrfs_free_path(path);
1974 	return ret;
1975 }
1976 
1977 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1978 {
1979 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1980 		if (inode->defrag_bytes &&
1981 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1982 				   0, NULL))
1983 			return false;
1984 		return true;
1985 	}
1986 	return false;
1987 }
1988 
1989 /*
1990  * Function to process delayed allocation (create CoW) for ranges which are
1991  * being touched for the first time.
1992  */
1993 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1994 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1995 		struct writeback_control *wbc)
1996 {
1997 	int ret;
1998 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1999 
2000 	/*
2001 	 * The range must cover part of the @locked_page, or the returned
2002 	 * @page_started can confuse the caller.
2003 	 */
2004 	ASSERT(!(end <= page_offset(locked_page) ||
2005 		 start >= page_offset(locked_page) + PAGE_SIZE));
2006 
2007 	if (should_nocow(inode, start, end)) {
2008 		/*
2009 		 * Normally on a zoned device we're only doing COW writes, but
2010 		 * in case of relocation on a zoned filesystem we have taken
2011 		 * precaution, that we're only writing sequentially. It's safe
2012 		 * to use run_delalloc_nocow() here, like for  regular
2013 		 * preallocated inodes.
2014 		 */
2015 		ASSERT(!zoned ||
2016 		       (zoned && btrfs_is_data_reloc_root(inode->root)));
2017 		ret = run_delalloc_nocow(inode, locked_page, start, end,
2018 					 page_started, nr_written);
2019 	} else if (!inode_can_compress(inode) ||
2020 		   !inode_need_compress(inode, start, end)) {
2021 		if (zoned)
2022 			ret = run_delalloc_zoned(inode, locked_page, start, end,
2023 						 page_started, nr_written);
2024 		else
2025 			ret = cow_file_range(inode, locked_page, start, end,
2026 					     page_started, nr_written, 1);
2027 	} else {
2028 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2029 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2030 					   page_started, nr_written);
2031 	}
2032 	ASSERT(ret <= 0);
2033 	if (ret)
2034 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2035 					      end - start + 1);
2036 	return ret;
2037 }
2038 
2039 void btrfs_split_delalloc_extent(struct inode *inode,
2040 				 struct extent_state *orig, u64 split)
2041 {
2042 	u64 size;
2043 
2044 	/* not delalloc, ignore it */
2045 	if (!(orig->state & EXTENT_DELALLOC))
2046 		return;
2047 
2048 	size = orig->end - orig->start + 1;
2049 	if (size > BTRFS_MAX_EXTENT_SIZE) {
2050 		u32 num_extents;
2051 		u64 new_size;
2052 
2053 		/*
2054 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2055 		 * applies here, just in reverse.
2056 		 */
2057 		new_size = orig->end - split + 1;
2058 		num_extents = count_max_extents(new_size);
2059 		new_size = split - orig->start;
2060 		num_extents += count_max_extents(new_size);
2061 		if (count_max_extents(size) >= num_extents)
2062 			return;
2063 	}
2064 
2065 	spin_lock(&BTRFS_I(inode)->lock);
2066 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2067 	spin_unlock(&BTRFS_I(inode)->lock);
2068 }
2069 
2070 /*
2071  * Handle merged delayed allocation extents so we can keep track of new extents
2072  * that are just merged onto old extents, such as when we are doing sequential
2073  * writes, so we can properly account for the metadata space we'll need.
2074  */
2075 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2076 				 struct extent_state *other)
2077 {
2078 	u64 new_size, old_size;
2079 	u32 num_extents;
2080 
2081 	/* not delalloc, ignore it */
2082 	if (!(other->state & EXTENT_DELALLOC))
2083 		return;
2084 
2085 	if (new->start > other->start)
2086 		new_size = new->end - other->start + 1;
2087 	else
2088 		new_size = other->end - new->start + 1;
2089 
2090 	/* we're not bigger than the max, unreserve the space and go */
2091 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2092 		spin_lock(&BTRFS_I(inode)->lock);
2093 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2094 		spin_unlock(&BTRFS_I(inode)->lock);
2095 		return;
2096 	}
2097 
2098 	/*
2099 	 * We have to add up either side to figure out how many extents were
2100 	 * accounted for before we merged into one big extent.  If the number of
2101 	 * extents we accounted for is <= the amount we need for the new range
2102 	 * then we can return, otherwise drop.  Think of it like this
2103 	 *
2104 	 * [ 4k][MAX_SIZE]
2105 	 *
2106 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2107 	 * need 2 outstanding extents, on one side we have 1 and the other side
2108 	 * we have 1 so they are == and we can return.  But in this case
2109 	 *
2110 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2111 	 *
2112 	 * Each range on their own accounts for 2 extents, but merged together
2113 	 * they are only 3 extents worth of accounting, so we need to drop in
2114 	 * this case.
2115 	 */
2116 	old_size = other->end - other->start + 1;
2117 	num_extents = count_max_extents(old_size);
2118 	old_size = new->end - new->start + 1;
2119 	num_extents += count_max_extents(old_size);
2120 	if (count_max_extents(new_size) >= num_extents)
2121 		return;
2122 
2123 	spin_lock(&BTRFS_I(inode)->lock);
2124 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2125 	spin_unlock(&BTRFS_I(inode)->lock);
2126 }
2127 
2128 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2129 				      struct inode *inode)
2130 {
2131 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2132 
2133 	spin_lock(&root->delalloc_lock);
2134 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2135 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2136 			      &root->delalloc_inodes);
2137 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2138 			&BTRFS_I(inode)->runtime_flags);
2139 		root->nr_delalloc_inodes++;
2140 		if (root->nr_delalloc_inodes == 1) {
2141 			spin_lock(&fs_info->delalloc_root_lock);
2142 			BUG_ON(!list_empty(&root->delalloc_root));
2143 			list_add_tail(&root->delalloc_root,
2144 				      &fs_info->delalloc_roots);
2145 			spin_unlock(&fs_info->delalloc_root_lock);
2146 		}
2147 	}
2148 	spin_unlock(&root->delalloc_lock);
2149 }
2150 
2151 
2152 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2153 				struct btrfs_inode *inode)
2154 {
2155 	struct btrfs_fs_info *fs_info = root->fs_info;
2156 
2157 	if (!list_empty(&inode->delalloc_inodes)) {
2158 		list_del_init(&inode->delalloc_inodes);
2159 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2160 			  &inode->runtime_flags);
2161 		root->nr_delalloc_inodes--;
2162 		if (!root->nr_delalloc_inodes) {
2163 			ASSERT(list_empty(&root->delalloc_inodes));
2164 			spin_lock(&fs_info->delalloc_root_lock);
2165 			BUG_ON(list_empty(&root->delalloc_root));
2166 			list_del_init(&root->delalloc_root);
2167 			spin_unlock(&fs_info->delalloc_root_lock);
2168 		}
2169 	}
2170 }
2171 
2172 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2173 				     struct btrfs_inode *inode)
2174 {
2175 	spin_lock(&root->delalloc_lock);
2176 	__btrfs_del_delalloc_inode(root, inode);
2177 	spin_unlock(&root->delalloc_lock);
2178 }
2179 
2180 /*
2181  * Properly track delayed allocation bytes in the inode and to maintain the
2182  * list of inodes that have pending delalloc work to be done.
2183  */
2184 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2185 			       unsigned *bits)
2186 {
2187 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2188 
2189 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2190 		WARN_ON(1);
2191 	/*
2192 	 * set_bit and clear bit hooks normally require _irqsave/restore
2193 	 * but in this case, we are only testing for the DELALLOC
2194 	 * bit, which is only set or cleared with irqs on
2195 	 */
2196 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2197 		struct btrfs_root *root = BTRFS_I(inode)->root;
2198 		u64 len = state->end + 1 - state->start;
2199 		u32 num_extents = count_max_extents(len);
2200 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2201 
2202 		spin_lock(&BTRFS_I(inode)->lock);
2203 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2204 		spin_unlock(&BTRFS_I(inode)->lock);
2205 
2206 		/* For sanity tests */
2207 		if (btrfs_is_testing(fs_info))
2208 			return;
2209 
2210 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2211 					 fs_info->delalloc_batch);
2212 		spin_lock(&BTRFS_I(inode)->lock);
2213 		BTRFS_I(inode)->delalloc_bytes += len;
2214 		if (*bits & EXTENT_DEFRAG)
2215 			BTRFS_I(inode)->defrag_bytes += len;
2216 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2217 					 &BTRFS_I(inode)->runtime_flags))
2218 			btrfs_add_delalloc_inodes(root, inode);
2219 		spin_unlock(&BTRFS_I(inode)->lock);
2220 	}
2221 
2222 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2223 	    (*bits & EXTENT_DELALLOC_NEW)) {
2224 		spin_lock(&BTRFS_I(inode)->lock);
2225 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2226 			state->start;
2227 		spin_unlock(&BTRFS_I(inode)->lock);
2228 	}
2229 }
2230 
2231 /*
2232  * Once a range is no longer delalloc this function ensures that proper
2233  * accounting happens.
2234  */
2235 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2236 				 struct extent_state *state, unsigned *bits)
2237 {
2238 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2239 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2240 	u64 len = state->end + 1 - state->start;
2241 	u32 num_extents = count_max_extents(len);
2242 
2243 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2244 		spin_lock(&inode->lock);
2245 		inode->defrag_bytes -= len;
2246 		spin_unlock(&inode->lock);
2247 	}
2248 
2249 	/*
2250 	 * set_bit and clear bit hooks normally require _irqsave/restore
2251 	 * but in this case, we are only testing for the DELALLOC
2252 	 * bit, which is only set or cleared with irqs on
2253 	 */
2254 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2255 		struct btrfs_root *root = inode->root;
2256 		bool do_list = !btrfs_is_free_space_inode(inode);
2257 
2258 		spin_lock(&inode->lock);
2259 		btrfs_mod_outstanding_extents(inode, -num_extents);
2260 		spin_unlock(&inode->lock);
2261 
2262 		/*
2263 		 * We don't reserve metadata space for space cache inodes so we
2264 		 * don't need to call delalloc_release_metadata if there is an
2265 		 * error.
2266 		 */
2267 		if (*bits & EXTENT_CLEAR_META_RESV &&
2268 		    root != fs_info->tree_root)
2269 			btrfs_delalloc_release_metadata(inode, len, false);
2270 
2271 		/* For sanity tests. */
2272 		if (btrfs_is_testing(fs_info))
2273 			return;
2274 
2275 		if (!btrfs_is_data_reloc_root(root) &&
2276 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2277 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2278 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2279 
2280 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2281 					 fs_info->delalloc_batch);
2282 		spin_lock(&inode->lock);
2283 		inode->delalloc_bytes -= len;
2284 		if (do_list && inode->delalloc_bytes == 0 &&
2285 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2286 					&inode->runtime_flags))
2287 			btrfs_del_delalloc_inode(root, inode);
2288 		spin_unlock(&inode->lock);
2289 	}
2290 
2291 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2292 	    (*bits & EXTENT_DELALLOC_NEW)) {
2293 		spin_lock(&inode->lock);
2294 		ASSERT(inode->new_delalloc_bytes >= len);
2295 		inode->new_delalloc_bytes -= len;
2296 		if (*bits & EXTENT_ADD_INODE_BYTES)
2297 			inode_add_bytes(&inode->vfs_inode, len);
2298 		spin_unlock(&inode->lock);
2299 	}
2300 }
2301 
2302 /*
2303  * in order to insert checksums into the metadata in large chunks,
2304  * we wait until bio submission time.   All the pages in the bio are
2305  * checksummed and sums are attached onto the ordered extent record.
2306  *
2307  * At IO completion time the cums attached on the ordered extent record
2308  * are inserted into the btree
2309  */
2310 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2311 					   u64 dio_file_offset)
2312 {
2313 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2314 }
2315 
2316 /*
2317  * Split an extent_map at [start, start + len]
2318  *
2319  * This function is intended to be used only for extract_ordered_extent().
2320  */
2321 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2322 			  u64 pre, u64 post)
2323 {
2324 	struct extent_map_tree *em_tree = &inode->extent_tree;
2325 	struct extent_map *em;
2326 	struct extent_map *split_pre = NULL;
2327 	struct extent_map *split_mid = NULL;
2328 	struct extent_map *split_post = NULL;
2329 	int ret = 0;
2330 	unsigned long flags;
2331 
2332 	/* Sanity check */
2333 	if (pre == 0 && post == 0)
2334 		return 0;
2335 
2336 	split_pre = alloc_extent_map();
2337 	if (pre)
2338 		split_mid = alloc_extent_map();
2339 	if (post)
2340 		split_post = alloc_extent_map();
2341 	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2342 		ret = -ENOMEM;
2343 		goto out;
2344 	}
2345 
2346 	ASSERT(pre + post < len);
2347 
2348 	lock_extent(&inode->io_tree, start, start + len - 1);
2349 	write_lock(&em_tree->lock);
2350 	em = lookup_extent_mapping(em_tree, start, len);
2351 	if (!em) {
2352 		ret = -EIO;
2353 		goto out_unlock;
2354 	}
2355 
2356 	ASSERT(em->len == len);
2357 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2358 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2359 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2360 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2361 	ASSERT(!list_empty(&em->list));
2362 
2363 	flags = em->flags;
2364 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2365 
2366 	/* First, replace the em with a new extent_map starting from * em->start */
2367 	split_pre->start = em->start;
2368 	split_pre->len = (pre ? pre : em->len - post);
2369 	split_pre->orig_start = split_pre->start;
2370 	split_pre->block_start = em->block_start;
2371 	split_pre->block_len = split_pre->len;
2372 	split_pre->orig_block_len = split_pre->block_len;
2373 	split_pre->ram_bytes = split_pre->len;
2374 	split_pre->flags = flags;
2375 	split_pre->compress_type = em->compress_type;
2376 	split_pre->generation = em->generation;
2377 
2378 	replace_extent_mapping(em_tree, em, split_pre, 1);
2379 
2380 	/*
2381 	 * Now we only have an extent_map at:
2382 	 *     [em->start, em->start + pre] if pre != 0
2383 	 *     [em->start, em->start + em->len - post] if pre == 0
2384 	 */
2385 
2386 	if (pre) {
2387 		/* Insert the middle extent_map */
2388 		split_mid->start = em->start + pre;
2389 		split_mid->len = em->len - pre - post;
2390 		split_mid->orig_start = split_mid->start;
2391 		split_mid->block_start = em->block_start + pre;
2392 		split_mid->block_len = split_mid->len;
2393 		split_mid->orig_block_len = split_mid->block_len;
2394 		split_mid->ram_bytes = split_mid->len;
2395 		split_mid->flags = flags;
2396 		split_mid->compress_type = em->compress_type;
2397 		split_mid->generation = em->generation;
2398 		add_extent_mapping(em_tree, split_mid, 1);
2399 	}
2400 
2401 	if (post) {
2402 		split_post->start = em->start + em->len - post;
2403 		split_post->len = post;
2404 		split_post->orig_start = split_post->start;
2405 		split_post->block_start = em->block_start + em->len - post;
2406 		split_post->block_len = split_post->len;
2407 		split_post->orig_block_len = split_post->block_len;
2408 		split_post->ram_bytes = split_post->len;
2409 		split_post->flags = flags;
2410 		split_post->compress_type = em->compress_type;
2411 		split_post->generation = em->generation;
2412 		add_extent_mapping(em_tree, split_post, 1);
2413 	}
2414 
2415 	/* Once for us */
2416 	free_extent_map(em);
2417 	/* Once for the tree */
2418 	free_extent_map(em);
2419 
2420 out_unlock:
2421 	write_unlock(&em_tree->lock);
2422 	unlock_extent(&inode->io_tree, start, start + len - 1);
2423 out:
2424 	free_extent_map(split_pre);
2425 	free_extent_map(split_mid);
2426 	free_extent_map(split_post);
2427 
2428 	return ret;
2429 }
2430 
2431 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2432 					   struct bio *bio, loff_t file_offset)
2433 {
2434 	struct btrfs_ordered_extent *ordered;
2435 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2436 	u64 file_len;
2437 	u64 len = bio->bi_iter.bi_size;
2438 	u64 end = start + len;
2439 	u64 ordered_end;
2440 	u64 pre, post;
2441 	int ret = 0;
2442 
2443 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2444 	if (WARN_ON_ONCE(!ordered))
2445 		return BLK_STS_IOERR;
2446 
2447 	/* No need to split */
2448 	if (ordered->disk_num_bytes == len)
2449 		goto out;
2450 
2451 	/* We cannot split once end_bio'd ordered extent */
2452 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2453 		ret = -EINVAL;
2454 		goto out;
2455 	}
2456 
2457 	/* We cannot split a compressed ordered extent */
2458 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2459 		ret = -EINVAL;
2460 		goto out;
2461 	}
2462 
2463 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2464 	/* bio must be in one ordered extent */
2465 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2466 		ret = -EINVAL;
2467 		goto out;
2468 	}
2469 
2470 	/* Checksum list should be empty */
2471 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2472 		ret = -EINVAL;
2473 		goto out;
2474 	}
2475 
2476 	file_len = ordered->num_bytes;
2477 	pre = start - ordered->disk_bytenr;
2478 	post = ordered_end - end;
2479 
2480 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2481 	if (ret)
2482 		goto out;
2483 	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2484 
2485 out:
2486 	btrfs_put_ordered_extent(ordered);
2487 
2488 	return errno_to_blk_status(ret);
2489 }
2490 
2491 /*
2492  * extent_io.c submission hook. This does the right thing for csum calculation
2493  * on write, or reading the csums from the tree before a read.
2494  *
2495  * Rules about async/sync submit,
2496  * a) read:				sync submit
2497  *
2498  * b) write without checksum:		sync submit
2499  *
2500  * c) write with checksum:
2501  *    c-1) if bio is issued by fsync:	sync submit
2502  *         (sync_writers != 0)
2503  *
2504  *    c-2) if root is reloc root:	sync submit
2505  *         (only in case of buffered IO)
2506  *
2507  *    c-3) otherwise:			async submit
2508  */
2509 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2510 				   int mirror_num, unsigned long bio_flags)
2511 
2512 {
2513 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2514 	struct btrfs_root *root = BTRFS_I(inode)->root;
2515 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2516 	blk_status_t ret = 0;
2517 	int skip_sum;
2518 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2519 
2520 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2521 		test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2522 
2523 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2524 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2525 
2526 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2527 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2528 		loff_t file_offset = page_offset(page);
2529 
2530 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2531 		if (ret)
2532 			goto out;
2533 	}
2534 
2535 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2536 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2537 		if (ret)
2538 			goto out;
2539 
2540 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2541 			ret = btrfs_submit_compressed_read(inode, bio,
2542 							   mirror_num,
2543 							   bio_flags);
2544 			goto out;
2545 		} else {
2546 			/*
2547 			 * Lookup bio sums does extra checks around whether we
2548 			 * need to csum or not, which is why we ignore skip_sum
2549 			 * here.
2550 			 */
2551 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2552 			if (ret)
2553 				goto out;
2554 		}
2555 		goto mapit;
2556 	} else if (async && !skip_sum) {
2557 		/* csum items have already been cloned */
2558 		if (btrfs_is_data_reloc_root(root))
2559 			goto mapit;
2560 		/* we're doing a write, do the async checksumming */
2561 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2562 					  0, btrfs_submit_bio_start);
2563 		goto out;
2564 	} else if (!skip_sum) {
2565 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2566 		if (ret)
2567 			goto out;
2568 	}
2569 
2570 mapit:
2571 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2572 
2573 out:
2574 	if (ret) {
2575 		bio->bi_status = ret;
2576 		bio_endio(bio);
2577 	}
2578 	return ret;
2579 }
2580 
2581 /*
2582  * given a list of ordered sums record them in the inode.  This happens
2583  * at IO completion time based on sums calculated at bio submission time.
2584  */
2585 static int add_pending_csums(struct btrfs_trans_handle *trans,
2586 			     struct list_head *list)
2587 {
2588 	struct btrfs_ordered_sum *sum;
2589 	struct btrfs_root *csum_root = NULL;
2590 	int ret;
2591 
2592 	list_for_each_entry(sum, list, list) {
2593 		trans->adding_csums = true;
2594 		if (!csum_root)
2595 			csum_root = btrfs_csum_root(trans->fs_info,
2596 						    sum->bytenr);
2597 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2598 		trans->adding_csums = false;
2599 		if (ret)
2600 			return ret;
2601 	}
2602 	return 0;
2603 }
2604 
2605 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2606 					 const u64 start,
2607 					 const u64 len,
2608 					 struct extent_state **cached_state)
2609 {
2610 	u64 search_start = start;
2611 	const u64 end = start + len - 1;
2612 
2613 	while (search_start < end) {
2614 		const u64 search_len = end - search_start + 1;
2615 		struct extent_map *em;
2616 		u64 em_len;
2617 		int ret = 0;
2618 
2619 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2620 		if (IS_ERR(em))
2621 			return PTR_ERR(em);
2622 
2623 		if (em->block_start != EXTENT_MAP_HOLE)
2624 			goto next;
2625 
2626 		em_len = em->len;
2627 		if (em->start < search_start)
2628 			em_len -= search_start - em->start;
2629 		if (em_len > search_len)
2630 			em_len = search_len;
2631 
2632 		ret = set_extent_bit(&inode->io_tree, search_start,
2633 				     search_start + em_len - 1,
2634 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2635 				     GFP_NOFS, NULL);
2636 next:
2637 		search_start = extent_map_end(em);
2638 		free_extent_map(em);
2639 		if (ret)
2640 			return ret;
2641 	}
2642 	return 0;
2643 }
2644 
2645 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2646 			      unsigned int extra_bits,
2647 			      struct extent_state **cached_state)
2648 {
2649 	WARN_ON(PAGE_ALIGNED(end));
2650 
2651 	if (start >= i_size_read(&inode->vfs_inode) &&
2652 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2653 		/*
2654 		 * There can't be any extents following eof in this case so just
2655 		 * set the delalloc new bit for the range directly.
2656 		 */
2657 		extra_bits |= EXTENT_DELALLOC_NEW;
2658 	} else {
2659 		int ret;
2660 
2661 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2662 						    end + 1 - start,
2663 						    cached_state);
2664 		if (ret)
2665 			return ret;
2666 	}
2667 
2668 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2669 				   cached_state);
2670 }
2671 
2672 /* see btrfs_writepage_start_hook for details on why this is required */
2673 struct btrfs_writepage_fixup {
2674 	struct page *page;
2675 	struct inode *inode;
2676 	struct btrfs_work work;
2677 };
2678 
2679 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2680 {
2681 	struct btrfs_writepage_fixup *fixup;
2682 	struct btrfs_ordered_extent *ordered;
2683 	struct extent_state *cached_state = NULL;
2684 	struct extent_changeset *data_reserved = NULL;
2685 	struct page *page;
2686 	struct btrfs_inode *inode;
2687 	u64 page_start;
2688 	u64 page_end;
2689 	int ret = 0;
2690 	bool free_delalloc_space = true;
2691 
2692 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2693 	page = fixup->page;
2694 	inode = BTRFS_I(fixup->inode);
2695 	page_start = page_offset(page);
2696 	page_end = page_offset(page) + PAGE_SIZE - 1;
2697 
2698 	/*
2699 	 * This is similar to page_mkwrite, we need to reserve the space before
2700 	 * we take the page lock.
2701 	 */
2702 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2703 					   PAGE_SIZE);
2704 again:
2705 	lock_page(page);
2706 
2707 	/*
2708 	 * Before we queued this fixup, we took a reference on the page.
2709 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2710 	 * address space.
2711 	 */
2712 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2713 		/*
2714 		 * Unfortunately this is a little tricky, either
2715 		 *
2716 		 * 1) We got here and our page had already been dealt with and
2717 		 *    we reserved our space, thus ret == 0, so we need to just
2718 		 *    drop our space reservation and bail.  This can happen the
2719 		 *    first time we come into the fixup worker, or could happen
2720 		 *    while waiting for the ordered extent.
2721 		 * 2) Our page was already dealt with, but we happened to get an
2722 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2723 		 *    this case we obviously don't have anything to release, but
2724 		 *    because the page was already dealt with we don't want to
2725 		 *    mark the page with an error, so make sure we're resetting
2726 		 *    ret to 0.  This is why we have this check _before_ the ret
2727 		 *    check, because we do not want to have a surprise ENOSPC
2728 		 *    when the page was already properly dealt with.
2729 		 */
2730 		if (!ret) {
2731 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2732 			btrfs_delalloc_release_space(inode, data_reserved,
2733 						     page_start, PAGE_SIZE,
2734 						     true);
2735 		}
2736 		ret = 0;
2737 		goto out_page;
2738 	}
2739 
2740 	/*
2741 	 * We can't mess with the page state unless it is locked, so now that
2742 	 * it is locked bail if we failed to make our space reservation.
2743 	 */
2744 	if (ret)
2745 		goto out_page;
2746 
2747 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2748 
2749 	/* already ordered? We're done */
2750 	if (PageOrdered(page))
2751 		goto out_reserved;
2752 
2753 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2754 	if (ordered) {
2755 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2756 				     &cached_state);
2757 		unlock_page(page);
2758 		btrfs_start_ordered_extent(ordered, 1);
2759 		btrfs_put_ordered_extent(ordered);
2760 		goto again;
2761 	}
2762 
2763 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2764 					&cached_state);
2765 	if (ret)
2766 		goto out_reserved;
2767 
2768 	/*
2769 	 * Everything went as planned, we're now the owner of a dirty page with
2770 	 * delayed allocation bits set and space reserved for our COW
2771 	 * destination.
2772 	 *
2773 	 * The page was dirty when we started, nothing should have cleaned it.
2774 	 */
2775 	BUG_ON(!PageDirty(page));
2776 	free_delalloc_space = false;
2777 out_reserved:
2778 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2779 	if (free_delalloc_space)
2780 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2781 					     PAGE_SIZE, true);
2782 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2783 			     &cached_state);
2784 out_page:
2785 	if (ret) {
2786 		/*
2787 		 * We hit ENOSPC or other errors.  Update the mapping and page
2788 		 * to reflect the errors and clean the page.
2789 		 */
2790 		mapping_set_error(page->mapping, ret);
2791 		end_extent_writepage(page, ret, page_start, page_end);
2792 		clear_page_dirty_for_io(page);
2793 		SetPageError(page);
2794 	}
2795 	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2796 	unlock_page(page);
2797 	put_page(page);
2798 	kfree(fixup);
2799 	extent_changeset_free(data_reserved);
2800 	/*
2801 	 * As a precaution, do a delayed iput in case it would be the last iput
2802 	 * that could need flushing space. Recursing back to fixup worker would
2803 	 * deadlock.
2804 	 */
2805 	btrfs_add_delayed_iput(&inode->vfs_inode);
2806 }
2807 
2808 /*
2809  * There are a few paths in the higher layers of the kernel that directly
2810  * set the page dirty bit without asking the filesystem if it is a
2811  * good idea.  This causes problems because we want to make sure COW
2812  * properly happens and the data=ordered rules are followed.
2813  *
2814  * In our case any range that doesn't have the ORDERED bit set
2815  * hasn't been properly setup for IO.  We kick off an async process
2816  * to fix it up.  The async helper will wait for ordered extents, set
2817  * the delalloc bit and make it safe to write the page.
2818  */
2819 int btrfs_writepage_cow_fixup(struct page *page)
2820 {
2821 	struct inode *inode = page->mapping->host;
2822 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2823 	struct btrfs_writepage_fixup *fixup;
2824 
2825 	/* This page has ordered extent covering it already */
2826 	if (PageOrdered(page))
2827 		return 0;
2828 
2829 	/*
2830 	 * PageChecked is set below when we create a fixup worker for this page,
2831 	 * don't try to create another one if we're already PageChecked()
2832 	 *
2833 	 * The extent_io writepage code will redirty the page if we send back
2834 	 * EAGAIN.
2835 	 */
2836 	if (PageChecked(page))
2837 		return -EAGAIN;
2838 
2839 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2840 	if (!fixup)
2841 		return -EAGAIN;
2842 
2843 	/*
2844 	 * We are already holding a reference to this inode from
2845 	 * write_cache_pages.  We need to hold it because the space reservation
2846 	 * takes place outside of the page lock, and we can't trust
2847 	 * page->mapping outside of the page lock.
2848 	 */
2849 	ihold(inode);
2850 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2851 	get_page(page);
2852 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2853 	fixup->page = page;
2854 	fixup->inode = inode;
2855 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2856 
2857 	return -EAGAIN;
2858 }
2859 
2860 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2861 				       struct btrfs_inode *inode, u64 file_pos,
2862 				       struct btrfs_file_extent_item *stack_fi,
2863 				       const bool update_inode_bytes,
2864 				       u64 qgroup_reserved)
2865 {
2866 	struct btrfs_root *root = inode->root;
2867 	const u64 sectorsize = root->fs_info->sectorsize;
2868 	struct btrfs_path *path;
2869 	struct extent_buffer *leaf;
2870 	struct btrfs_key ins;
2871 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2872 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2873 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2874 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2875 	struct btrfs_drop_extents_args drop_args = { 0 };
2876 	int ret;
2877 
2878 	path = btrfs_alloc_path();
2879 	if (!path)
2880 		return -ENOMEM;
2881 
2882 	/*
2883 	 * we may be replacing one extent in the tree with another.
2884 	 * The new extent is pinned in the extent map, and we don't want
2885 	 * to drop it from the cache until it is completely in the btree.
2886 	 *
2887 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2888 	 * the caller is expected to unpin it and allow it to be merged
2889 	 * with the others.
2890 	 */
2891 	drop_args.path = path;
2892 	drop_args.start = file_pos;
2893 	drop_args.end = file_pos + num_bytes;
2894 	drop_args.replace_extent = true;
2895 	drop_args.extent_item_size = sizeof(*stack_fi);
2896 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2897 	if (ret)
2898 		goto out;
2899 
2900 	if (!drop_args.extent_inserted) {
2901 		ins.objectid = btrfs_ino(inode);
2902 		ins.offset = file_pos;
2903 		ins.type = BTRFS_EXTENT_DATA_KEY;
2904 
2905 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2906 					      sizeof(*stack_fi));
2907 		if (ret)
2908 			goto out;
2909 	}
2910 	leaf = path->nodes[0];
2911 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2912 	write_extent_buffer(leaf, stack_fi,
2913 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2914 			sizeof(struct btrfs_file_extent_item));
2915 
2916 	btrfs_mark_buffer_dirty(leaf);
2917 	btrfs_release_path(path);
2918 
2919 	/*
2920 	 * If we dropped an inline extent here, we know the range where it is
2921 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2922 	 * number of bytes only for that range containing the inline extent.
2923 	 * The remaining of the range will be processed when clearning the
2924 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2925 	 */
2926 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2927 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2928 
2929 		inline_size = drop_args.bytes_found - inline_size;
2930 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2931 		drop_args.bytes_found -= inline_size;
2932 		num_bytes -= sectorsize;
2933 	}
2934 
2935 	if (update_inode_bytes)
2936 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2937 
2938 	ins.objectid = disk_bytenr;
2939 	ins.offset = disk_num_bytes;
2940 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2941 
2942 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2943 	if (ret)
2944 		goto out;
2945 
2946 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2947 					       file_pos, qgroup_reserved, &ins);
2948 out:
2949 	btrfs_free_path(path);
2950 
2951 	return ret;
2952 }
2953 
2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2955 					 u64 start, u64 len)
2956 {
2957 	struct btrfs_block_group *cache;
2958 
2959 	cache = btrfs_lookup_block_group(fs_info, start);
2960 	ASSERT(cache);
2961 
2962 	spin_lock(&cache->lock);
2963 	cache->delalloc_bytes -= len;
2964 	spin_unlock(&cache->lock);
2965 
2966 	btrfs_put_block_group(cache);
2967 }
2968 
2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2970 					     struct btrfs_ordered_extent *oe)
2971 {
2972 	struct btrfs_file_extent_item stack_fi;
2973 	u64 logical_len;
2974 	bool update_inode_bytes;
2975 
2976 	memset(&stack_fi, 0, sizeof(stack_fi));
2977 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2978 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2979 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2980 						   oe->disk_num_bytes);
2981 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2982 		logical_len = oe->truncated_len;
2983 	else
2984 		logical_len = oe->num_bytes;
2985 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2986 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2987 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2988 	/* Encryption and other encoding is reserved and all 0 */
2989 
2990 	/*
2991 	 * For delalloc, when completing an ordered extent we update the inode's
2992 	 * bytes when clearing the range in the inode's io tree, so pass false
2993 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2994 	 * except if the ordered extent was truncated.
2995 	 */
2996 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2997 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2998 
2999 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3000 					   oe->file_offset, &stack_fi,
3001 					   update_inode_bytes, oe->qgroup_rsv);
3002 }
3003 
3004 /*
3005  * As ordered data IO finishes, this gets called so we can finish
3006  * an ordered extent if the range of bytes in the file it covers are
3007  * fully written.
3008  */
3009 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3010 {
3011 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3012 	struct btrfs_root *root = inode->root;
3013 	struct btrfs_fs_info *fs_info = root->fs_info;
3014 	struct btrfs_trans_handle *trans = NULL;
3015 	struct extent_io_tree *io_tree = &inode->io_tree;
3016 	struct extent_state *cached_state = NULL;
3017 	u64 start, end;
3018 	int compress_type = 0;
3019 	int ret = 0;
3020 	u64 logical_len = ordered_extent->num_bytes;
3021 	bool freespace_inode;
3022 	bool truncated = false;
3023 	bool clear_reserved_extent = true;
3024 	unsigned int clear_bits = EXTENT_DEFRAG;
3025 
3026 	start = ordered_extent->file_offset;
3027 	end = start + ordered_extent->num_bytes - 1;
3028 
3029 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3030 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3031 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3032 		clear_bits |= EXTENT_DELALLOC_NEW;
3033 
3034 	freespace_inode = btrfs_is_free_space_inode(inode);
3035 
3036 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3037 		ret = -EIO;
3038 		goto out;
3039 	}
3040 
3041 	/* A valid bdev implies a write on a sequential zone */
3042 	if (ordered_extent->bdev) {
3043 		btrfs_rewrite_logical_zoned(ordered_extent);
3044 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3045 					ordered_extent->disk_num_bytes);
3046 	}
3047 
3048 	btrfs_free_io_failure_record(inode, start, end);
3049 
3050 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3051 		truncated = true;
3052 		logical_len = ordered_extent->truncated_len;
3053 		/* Truncated the entire extent, don't bother adding */
3054 		if (!logical_len)
3055 			goto out;
3056 	}
3057 
3058 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3059 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3060 
3061 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3062 		if (freespace_inode)
3063 			trans = btrfs_join_transaction_spacecache(root);
3064 		else
3065 			trans = btrfs_join_transaction(root);
3066 		if (IS_ERR(trans)) {
3067 			ret = PTR_ERR(trans);
3068 			trans = NULL;
3069 			goto out;
3070 		}
3071 		trans->block_rsv = &inode->block_rsv;
3072 		ret = btrfs_update_inode_fallback(trans, root, inode);
3073 		if (ret) /* -ENOMEM or corruption */
3074 			btrfs_abort_transaction(trans, ret);
3075 		goto out;
3076 	}
3077 
3078 	clear_bits |= EXTENT_LOCKED;
3079 	lock_extent_bits(io_tree, start, end, &cached_state);
3080 
3081 	if (freespace_inode)
3082 		trans = btrfs_join_transaction_spacecache(root);
3083 	else
3084 		trans = btrfs_join_transaction(root);
3085 	if (IS_ERR(trans)) {
3086 		ret = PTR_ERR(trans);
3087 		trans = NULL;
3088 		goto out;
3089 	}
3090 
3091 	trans->block_rsv = &inode->block_rsv;
3092 
3093 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3094 		compress_type = ordered_extent->compress_type;
3095 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3096 		BUG_ON(compress_type);
3097 		ret = btrfs_mark_extent_written(trans, inode,
3098 						ordered_extent->file_offset,
3099 						ordered_extent->file_offset +
3100 						logical_len);
3101 	} else {
3102 		BUG_ON(root == fs_info->tree_root);
3103 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3104 		if (!ret) {
3105 			clear_reserved_extent = false;
3106 			btrfs_release_delalloc_bytes(fs_info,
3107 						ordered_extent->disk_bytenr,
3108 						ordered_extent->disk_num_bytes);
3109 		}
3110 	}
3111 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3112 			   ordered_extent->num_bytes, trans->transid);
3113 	if (ret < 0) {
3114 		btrfs_abort_transaction(trans, ret);
3115 		goto out;
3116 	}
3117 
3118 	ret = add_pending_csums(trans, &ordered_extent->list);
3119 	if (ret) {
3120 		btrfs_abort_transaction(trans, ret);
3121 		goto out;
3122 	}
3123 
3124 	/*
3125 	 * If this is a new delalloc range, clear its new delalloc flag to
3126 	 * update the inode's number of bytes. This needs to be done first
3127 	 * before updating the inode item.
3128 	 */
3129 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3130 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3131 		clear_extent_bit(&inode->io_tree, start, end,
3132 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3133 				 0, 0, &cached_state);
3134 
3135 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3136 	ret = btrfs_update_inode_fallback(trans, root, inode);
3137 	if (ret) { /* -ENOMEM or corruption */
3138 		btrfs_abort_transaction(trans, ret);
3139 		goto out;
3140 	}
3141 	ret = 0;
3142 out:
3143 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3144 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3145 			 &cached_state);
3146 
3147 	if (trans)
3148 		btrfs_end_transaction(trans);
3149 
3150 	if (ret || truncated) {
3151 		u64 unwritten_start = start;
3152 
3153 		/*
3154 		 * If we failed to finish this ordered extent for any reason we
3155 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3156 		 * extent, and mark the inode with the error if it wasn't
3157 		 * already set.  Any error during writeback would have already
3158 		 * set the mapping error, so we need to set it if we're the ones
3159 		 * marking this ordered extent as failed.
3160 		 */
3161 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3162 					     &ordered_extent->flags))
3163 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3164 
3165 		if (truncated)
3166 			unwritten_start += logical_len;
3167 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3168 
3169 		/* Drop the cache for the part of the extent we didn't write. */
3170 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3171 
3172 		/*
3173 		 * If the ordered extent had an IOERR or something else went
3174 		 * wrong we need to return the space for this ordered extent
3175 		 * back to the allocator.  We only free the extent in the
3176 		 * truncated case if we didn't write out the extent at all.
3177 		 *
3178 		 * If we made it past insert_reserved_file_extent before we
3179 		 * errored out then we don't need to do this as the accounting
3180 		 * has already been done.
3181 		 */
3182 		if ((ret || !logical_len) &&
3183 		    clear_reserved_extent &&
3184 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3185 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3186 			/*
3187 			 * Discard the range before returning it back to the
3188 			 * free space pool
3189 			 */
3190 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3191 				btrfs_discard_extent(fs_info,
3192 						ordered_extent->disk_bytenr,
3193 						ordered_extent->disk_num_bytes,
3194 						NULL);
3195 			btrfs_free_reserved_extent(fs_info,
3196 					ordered_extent->disk_bytenr,
3197 					ordered_extent->disk_num_bytes, 1);
3198 		}
3199 	}
3200 
3201 	/*
3202 	 * This needs to be done to make sure anybody waiting knows we are done
3203 	 * updating everything for this ordered extent.
3204 	 */
3205 	btrfs_remove_ordered_extent(inode, ordered_extent);
3206 
3207 	/* once for us */
3208 	btrfs_put_ordered_extent(ordered_extent);
3209 	/* once for the tree */
3210 	btrfs_put_ordered_extent(ordered_extent);
3211 
3212 	return ret;
3213 }
3214 
3215 static void finish_ordered_fn(struct btrfs_work *work)
3216 {
3217 	struct btrfs_ordered_extent *ordered_extent;
3218 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3219 	btrfs_finish_ordered_io(ordered_extent);
3220 }
3221 
3222 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3223 					  struct page *page, u64 start,
3224 					  u64 end, bool uptodate)
3225 {
3226 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3227 
3228 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3229 				       finish_ordered_fn, uptodate);
3230 }
3231 
3232 /*
3233  * check_data_csum - verify checksum of one sector of uncompressed data
3234  * @inode:	inode
3235  * @io_bio:	btrfs_io_bio which contains the csum
3236  * @bio_offset:	offset to the beginning of the bio (in bytes)
3237  * @page:	page where is the data to be verified
3238  * @pgoff:	offset inside the page
3239  * @start:	logical offset in the file
3240  *
3241  * The length of such check is always one sector size.
3242  */
3243 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3244 			   u32 bio_offset, struct page *page, u32 pgoff,
3245 			   u64 start)
3246 {
3247 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3248 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3249 	char *kaddr;
3250 	u32 len = fs_info->sectorsize;
3251 	const u32 csum_size = fs_info->csum_size;
3252 	unsigned int offset_sectors;
3253 	u8 *csum_expected;
3254 	u8 csum[BTRFS_CSUM_SIZE];
3255 
3256 	ASSERT(pgoff + len <= PAGE_SIZE);
3257 
3258 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3259 	csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
3260 
3261 	kaddr = kmap_atomic(page);
3262 	shash->tfm = fs_info->csum_shash;
3263 
3264 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3265 
3266 	if (memcmp(csum, csum_expected, csum_size))
3267 		goto zeroit;
3268 
3269 	kunmap_atomic(kaddr);
3270 	return 0;
3271 zeroit:
3272 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3273 				    bbio->mirror_num);
3274 	if (bbio->device)
3275 		btrfs_dev_stat_inc_and_print(bbio->device,
3276 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3277 	memset(kaddr + pgoff, 1, len);
3278 	flush_dcache_page(page);
3279 	kunmap_atomic(kaddr);
3280 	return -EIO;
3281 }
3282 
3283 /*
3284  * When reads are done, we need to check csums to verify the data is correct.
3285  * if there's a match, we allow the bio to finish.  If not, the code in
3286  * extent_io.c will try to find good copies for us.
3287  *
3288  * @bio_offset:	offset to the beginning of the bio (in bytes)
3289  * @start:	file offset of the range start
3290  * @end:	file offset of the range end (inclusive)
3291  *
3292  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3293  * csum match.
3294  */
3295 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3296 				    u32 bio_offset, struct page *page,
3297 				    u64 start, u64 end)
3298 {
3299 	struct inode *inode = page->mapping->host;
3300 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3301 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3302 	struct btrfs_root *root = BTRFS_I(inode)->root;
3303 	const u32 sectorsize = root->fs_info->sectorsize;
3304 	u32 pg_off;
3305 	unsigned int result = 0;
3306 
3307 	if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
3308 		btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
3309 		return 0;
3310 	}
3311 
3312 	/*
3313 	 * This only happens for NODATASUM or compressed read.
3314 	 * Normally this should be covered by above check for compressed read
3315 	 * or the next check for NODATASUM.  Just do a quicker exit here.
3316 	 */
3317 	if (bbio->csum == NULL)
3318 		return 0;
3319 
3320 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3321 		return 0;
3322 
3323 	if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3324 		return 0;
3325 
3326 	ASSERT(page_offset(page) <= start &&
3327 	       end <= page_offset(page) + PAGE_SIZE - 1);
3328 	for (pg_off = offset_in_page(start);
3329 	     pg_off < offset_in_page(end);
3330 	     pg_off += sectorsize, bio_offset += sectorsize) {
3331 		u64 file_offset = pg_off + page_offset(page);
3332 		int ret;
3333 
3334 		if (btrfs_is_data_reloc_root(root) &&
3335 		    test_range_bit(io_tree, file_offset,
3336 				   file_offset + sectorsize - 1,
3337 				   EXTENT_NODATASUM, 1, NULL)) {
3338 			/* Skip the range without csum for data reloc inode */
3339 			clear_extent_bits(io_tree, file_offset,
3340 					  file_offset + sectorsize - 1,
3341 					  EXTENT_NODATASUM);
3342 			continue;
3343 		}
3344 		ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
3345 				      page_offset(page) + pg_off);
3346 		if (ret < 0) {
3347 			const int nr_bit = (pg_off - offset_in_page(start)) >>
3348 				     root->fs_info->sectorsize_bits;
3349 
3350 			result |= (1U << nr_bit);
3351 		}
3352 	}
3353 	return result;
3354 }
3355 
3356 /*
3357  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3358  *
3359  * @inode: The inode we want to perform iput on
3360  *
3361  * This function uses the generic vfs_inode::i_count to track whether we should
3362  * just decrement it (in case it's > 1) or if this is the last iput then link
3363  * the inode to the delayed iput machinery. Delayed iputs are processed at
3364  * transaction commit time/superblock commit/cleaner kthread.
3365  */
3366 void btrfs_add_delayed_iput(struct inode *inode)
3367 {
3368 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3369 	struct btrfs_inode *binode = BTRFS_I(inode);
3370 
3371 	if (atomic_add_unless(&inode->i_count, -1, 1))
3372 		return;
3373 
3374 	atomic_inc(&fs_info->nr_delayed_iputs);
3375 	spin_lock(&fs_info->delayed_iput_lock);
3376 	ASSERT(list_empty(&binode->delayed_iput));
3377 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3378 	spin_unlock(&fs_info->delayed_iput_lock);
3379 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3380 		wake_up_process(fs_info->cleaner_kthread);
3381 }
3382 
3383 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3384 				    struct btrfs_inode *inode)
3385 {
3386 	list_del_init(&inode->delayed_iput);
3387 	spin_unlock(&fs_info->delayed_iput_lock);
3388 	iput(&inode->vfs_inode);
3389 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3390 		wake_up(&fs_info->delayed_iputs_wait);
3391 	spin_lock(&fs_info->delayed_iput_lock);
3392 }
3393 
3394 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3395 				   struct btrfs_inode *inode)
3396 {
3397 	if (!list_empty(&inode->delayed_iput)) {
3398 		spin_lock(&fs_info->delayed_iput_lock);
3399 		if (!list_empty(&inode->delayed_iput))
3400 			run_delayed_iput_locked(fs_info, inode);
3401 		spin_unlock(&fs_info->delayed_iput_lock);
3402 	}
3403 }
3404 
3405 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3406 {
3407 
3408 	spin_lock(&fs_info->delayed_iput_lock);
3409 	while (!list_empty(&fs_info->delayed_iputs)) {
3410 		struct btrfs_inode *inode;
3411 
3412 		inode = list_first_entry(&fs_info->delayed_iputs,
3413 				struct btrfs_inode, delayed_iput);
3414 		run_delayed_iput_locked(fs_info, inode);
3415 		cond_resched_lock(&fs_info->delayed_iput_lock);
3416 	}
3417 	spin_unlock(&fs_info->delayed_iput_lock);
3418 }
3419 
3420 /**
3421  * Wait for flushing all delayed iputs
3422  *
3423  * @fs_info:  the filesystem
3424  *
3425  * This will wait on any delayed iputs that are currently running with KILLABLE
3426  * set.  Once they are all done running we will return, unless we are killed in
3427  * which case we return EINTR. This helps in user operations like fallocate etc
3428  * that might get blocked on the iputs.
3429  *
3430  * Return EINTR if we were killed, 0 if nothing's pending
3431  */
3432 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3433 {
3434 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3435 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3436 	if (ret)
3437 		return -EINTR;
3438 	return 0;
3439 }
3440 
3441 /*
3442  * This creates an orphan entry for the given inode in case something goes wrong
3443  * in the middle of an unlink.
3444  */
3445 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3446 		     struct btrfs_inode *inode)
3447 {
3448 	int ret;
3449 
3450 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3451 	if (ret && ret != -EEXIST) {
3452 		btrfs_abort_transaction(trans, ret);
3453 		return ret;
3454 	}
3455 
3456 	return 0;
3457 }
3458 
3459 /*
3460  * We have done the delete so we can go ahead and remove the orphan item for
3461  * this particular inode.
3462  */
3463 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3464 			    struct btrfs_inode *inode)
3465 {
3466 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3467 }
3468 
3469 /*
3470  * this cleans up any orphans that may be left on the list from the last use
3471  * of this root.
3472  */
3473 int btrfs_orphan_cleanup(struct btrfs_root *root)
3474 {
3475 	struct btrfs_fs_info *fs_info = root->fs_info;
3476 	struct btrfs_path *path;
3477 	struct extent_buffer *leaf;
3478 	struct btrfs_key key, found_key;
3479 	struct btrfs_trans_handle *trans;
3480 	struct inode *inode;
3481 	u64 last_objectid = 0;
3482 	int ret = 0, nr_unlink = 0;
3483 
3484 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3485 		return 0;
3486 
3487 	path = btrfs_alloc_path();
3488 	if (!path) {
3489 		ret = -ENOMEM;
3490 		goto out;
3491 	}
3492 	path->reada = READA_BACK;
3493 
3494 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3495 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3496 	key.offset = (u64)-1;
3497 
3498 	while (1) {
3499 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3500 		if (ret < 0)
3501 			goto out;
3502 
3503 		/*
3504 		 * if ret == 0 means we found what we were searching for, which
3505 		 * is weird, but possible, so only screw with path if we didn't
3506 		 * find the key and see if we have stuff that matches
3507 		 */
3508 		if (ret > 0) {
3509 			ret = 0;
3510 			if (path->slots[0] == 0)
3511 				break;
3512 			path->slots[0]--;
3513 		}
3514 
3515 		/* pull out the item */
3516 		leaf = path->nodes[0];
3517 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3518 
3519 		/* make sure the item matches what we want */
3520 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3521 			break;
3522 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3523 			break;
3524 
3525 		/* release the path since we're done with it */
3526 		btrfs_release_path(path);
3527 
3528 		/*
3529 		 * this is where we are basically btrfs_lookup, without the
3530 		 * crossing root thing.  we store the inode number in the
3531 		 * offset of the orphan item.
3532 		 */
3533 
3534 		if (found_key.offset == last_objectid) {
3535 			btrfs_err(fs_info,
3536 				  "Error removing orphan entry, stopping orphan cleanup");
3537 			ret = -EINVAL;
3538 			goto out;
3539 		}
3540 
3541 		last_objectid = found_key.offset;
3542 
3543 		found_key.objectid = found_key.offset;
3544 		found_key.type = BTRFS_INODE_ITEM_KEY;
3545 		found_key.offset = 0;
3546 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3547 		ret = PTR_ERR_OR_ZERO(inode);
3548 		if (ret && ret != -ENOENT)
3549 			goto out;
3550 
3551 		if (ret == -ENOENT && root == fs_info->tree_root) {
3552 			struct btrfs_root *dead_root;
3553 			int is_dead_root = 0;
3554 
3555 			/*
3556 			 * This is an orphan in the tree root. Currently these
3557 			 * could come from 2 sources:
3558 			 *  a) a root (snapshot/subvolume) deletion in progress
3559 			 *  b) a free space cache inode
3560 			 * We need to distinguish those two, as the orphan item
3561 			 * for a root must not get deleted before the deletion
3562 			 * of the snapshot/subvolume's tree completes.
3563 			 *
3564 			 * btrfs_find_orphan_roots() ran before us, which has
3565 			 * found all deleted roots and loaded them into
3566 			 * fs_info->fs_roots_radix. So here we can find if an
3567 			 * orphan item corresponds to a deleted root by looking
3568 			 * up the root from that radix tree.
3569 			 */
3570 
3571 			spin_lock(&fs_info->fs_roots_radix_lock);
3572 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3573 							 (unsigned long)found_key.objectid);
3574 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3575 				is_dead_root = 1;
3576 			spin_unlock(&fs_info->fs_roots_radix_lock);
3577 
3578 			if (is_dead_root) {
3579 				/* prevent this orphan from being found again */
3580 				key.offset = found_key.objectid - 1;
3581 				continue;
3582 			}
3583 
3584 		}
3585 
3586 		/*
3587 		 * If we have an inode with links, there are a couple of
3588 		 * possibilities:
3589 		 *
3590 		 * 1. We were halfway through creating fsverity metadata for the
3591 		 * file. In that case, the orphan item represents incomplete
3592 		 * fsverity metadata which must be cleaned up with
3593 		 * btrfs_drop_verity_items and deleting the orphan item.
3594 
3595 		 * 2. Old kernels (before v3.12) used to create an
3596 		 * orphan item for truncate indicating that there were possibly
3597 		 * extent items past i_size that needed to be deleted. In v3.12,
3598 		 * truncate was changed to update i_size in sync with the extent
3599 		 * items, but the (useless) orphan item was still created. Since
3600 		 * v4.18, we don't create the orphan item for truncate at all.
3601 		 *
3602 		 * So, this item could mean that we need to do a truncate, but
3603 		 * only if this filesystem was last used on a pre-v3.12 kernel
3604 		 * and was not cleanly unmounted. The odds of that are quite
3605 		 * slim, and it's a pain to do the truncate now, so just delete
3606 		 * the orphan item.
3607 		 *
3608 		 * It's also possible that this orphan item was supposed to be
3609 		 * deleted but wasn't. The inode number may have been reused,
3610 		 * but either way, we can delete the orphan item.
3611 		 */
3612 		if (ret == -ENOENT || inode->i_nlink) {
3613 			if (!ret) {
3614 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3615 				iput(inode);
3616 				if (ret)
3617 					goto out;
3618 			}
3619 			trans = btrfs_start_transaction(root, 1);
3620 			if (IS_ERR(trans)) {
3621 				ret = PTR_ERR(trans);
3622 				goto out;
3623 			}
3624 			btrfs_debug(fs_info, "auto deleting %Lu",
3625 				    found_key.objectid);
3626 			ret = btrfs_del_orphan_item(trans, root,
3627 						    found_key.objectid);
3628 			btrfs_end_transaction(trans);
3629 			if (ret)
3630 				goto out;
3631 			continue;
3632 		}
3633 
3634 		nr_unlink++;
3635 
3636 		/* this will do delete_inode and everything for us */
3637 		iput(inode);
3638 	}
3639 	/* release the path since we're done with it */
3640 	btrfs_release_path(path);
3641 
3642 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3643 		trans = btrfs_join_transaction(root);
3644 		if (!IS_ERR(trans))
3645 			btrfs_end_transaction(trans);
3646 	}
3647 
3648 	if (nr_unlink)
3649 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3650 
3651 out:
3652 	if (ret)
3653 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3654 	btrfs_free_path(path);
3655 	return ret;
3656 }
3657 
3658 /*
3659  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3660  * don't find any xattrs, we know there can't be any acls.
3661  *
3662  * slot is the slot the inode is in, objectid is the objectid of the inode
3663  */
3664 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3665 					  int slot, u64 objectid,
3666 					  int *first_xattr_slot)
3667 {
3668 	u32 nritems = btrfs_header_nritems(leaf);
3669 	struct btrfs_key found_key;
3670 	static u64 xattr_access = 0;
3671 	static u64 xattr_default = 0;
3672 	int scanned = 0;
3673 
3674 	if (!xattr_access) {
3675 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3676 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3677 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3678 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3679 	}
3680 
3681 	slot++;
3682 	*first_xattr_slot = -1;
3683 	while (slot < nritems) {
3684 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3685 
3686 		/* we found a different objectid, there must not be acls */
3687 		if (found_key.objectid != objectid)
3688 			return 0;
3689 
3690 		/* we found an xattr, assume we've got an acl */
3691 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3692 			if (*first_xattr_slot == -1)
3693 				*first_xattr_slot = slot;
3694 			if (found_key.offset == xattr_access ||
3695 			    found_key.offset == xattr_default)
3696 				return 1;
3697 		}
3698 
3699 		/*
3700 		 * we found a key greater than an xattr key, there can't
3701 		 * be any acls later on
3702 		 */
3703 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3704 			return 0;
3705 
3706 		slot++;
3707 		scanned++;
3708 
3709 		/*
3710 		 * it goes inode, inode backrefs, xattrs, extents,
3711 		 * so if there are a ton of hard links to an inode there can
3712 		 * be a lot of backrefs.  Don't waste time searching too hard,
3713 		 * this is just an optimization
3714 		 */
3715 		if (scanned >= 8)
3716 			break;
3717 	}
3718 	/* we hit the end of the leaf before we found an xattr or
3719 	 * something larger than an xattr.  We have to assume the inode
3720 	 * has acls
3721 	 */
3722 	if (*first_xattr_slot == -1)
3723 		*first_xattr_slot = slot;
3724 	return 1;
3725 }
3726 
3727 /*
3728  * read an inode from the btree into the in-memory inode
3729  */
3730 static int btrfs_read_locked_inode(struct inode *inode,
3731 				   struct btrfs_path *in_path)
3732 {
3733 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3734 	struct btrfs_path *path = in_path;
3735 	struct extent_buffer *leaf;
3736 	struct btrfs_inode_item *inode_item;
3737 	struct btrfs_root *root = BTRFS_I(inode)->root;
3738 	struct btrfs_key location;
3739 	unsigned long ptr;
3740 	int maybe_acls;
3741 	u32 rdev;
3742 	int ret;
3743 	bool filled = false;
3744 	int first_xattr_slot;
3745 
3746 	ret = btrfs_fill_inode(inode, &rdev);
3747 	if (!ret)
3748 		filled = true;
3749 
3750 	if (!path) {
3751 		path = btrfs_alloc_path();
3752 		if (!path)
3753 			return -ENOMEM;
3754 	}
3755 
3756 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3757 
3758 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3759 	if (ret) {
3760 		if (path != in_path)
3761 			btrfs_free_path(path);
3762 		return ret;
3763 	}
3764 
3765 	leaf = path->nodes[0];
3766 
3767 	if (filled)
3768 		goto cache_index;
3769 
3770 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3771 				    struct btrfs_inode_item);
3772 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3773 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3774 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3775 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3776 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3777 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3778 			round_up(i_size_read(inode), fs_info->sectorsize));
3779 
3780 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3781 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3782 
3783 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3784 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3785 
3786 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3787 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3788 
3789 	BTRFS_I(inode)->i_otime.tv_sec =
3790 		btrfs_timespec_sec(leaf, &inode_item->otime);
3791 	BTRFS_I(inode)->i_otime.tv_nsec =
3792 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3793 
3794 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3795 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3796 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3797 
3798 	inode_set_iversion_queried(inode,
3799 				   btrfs_inode_sequence(leaf, inode_item));
3800 	inode->i_generation = BTRFS_I(inode)->generation;
3801 	inode->i_rdev = 0;
3802 	rdev = btrfs_inode_rdev(leaf, inode_item);
3803 
3804 	BTRFS_I(inode)->index_cnt = (u64)-1;
3805 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3806 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3807 
3808 cache_index:
3809 	/*
3810 	 * If we were modified in the current generation and evicted from memory
3811 	 * and then re-read we need to do a full sync since we don't have any
3812 	 * idea about which extents were modified before we were evicted from
3813 	 * cache.
3814 	 *
3815 	 * This is required for both inode re-read from disk and delayed inode
3816 	 * in delayed_nodes_tree.
3817 	 */
3818 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3819 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3820 			&BTRFS_I(inode)->runtime_flags);
3821 
3822 	/*
3823 	 * We don't persist the id of the transaction where an unlink operation
3824 	 * against the inode was last made. So here we assume the inode might
3825 	 * have been evicted, and therefore the exact value of last_unlink_trans
3826 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3827 	 * between the inode and its parent if the inode is fsync'ed and the log
3828 	 * replayed. For example, in the scenario:
3829 	 *
3830 	 * touch mydir/foo
3831 	 * ln mydir/foo mydir/bar
3832 	 * sync
3833 	 * unlink mydir/bar
3834 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3835 	 * xfs_io -c fsync mydir/foo
3836 	 * <power failure>
3837 	 * mount fs, triggers fsync log replay
3838 	 *
3839 	 * We must make sure that when we fsync our inode foo we also log its
3840 	 * parent inode, otherwise after log replay the parent still has the
3841 	 * dentry with the "bar" name but our inode foo has a link count of 1
3842 	 * and doesn't have an inode ref with the name "bar" anymore.
3843 	 *
3844 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3845 	 * but it guarantees correctness at the expense of occasional full
3846 	 * transaction commits on fsync if our inode is a directory, or if our
3847 	 * inode is not a directory, logging its parent unnecessarily.
3848 	 */
3849 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3850 
3851 	/*
3852 	 * Same logic as for last_unlink_trans. We don't persist the generation
3853 	 * of the last transaction where this inode was used for a reflink
3854 	 * operation, so after eviction and reloading the inode we must be
3855 	 * pessimistic and assume the last transaction that modified the inode.
3856 	 */
3857 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3858 
3859 	path->slots[0]++;
3860 	if (inode->i_nlink != 1 ||
3861 	    path->slots[0] >= btrfs_header_nritems(leaf))
3862 		goto cache_acl;
3863 
3864 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3865 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3866 		goto cache_acl;
3867 
3868 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3869 	if (location.type == BTRFS_INODE_REF_KEY) {
3870 		struct btrfs_inode_ref *ref;
3871 
3872 		ref = (struct btrfs_inode_ref *)ptr;
3873 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3874 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3875 		struct btrfs_inode_extref *extref;
3876 
3877 		extref = (struct btrfs_inode_extref *)ptr;
3878 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3879 								     extref);
3880 	}
3881 cache_acl:
3882 	/*
3883 	 * try to precache a NULL acl entry for files that don't have
3884 	 * any xattrs or acls
3885 	 */
3886 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3887 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3888 	if (first_xattr_slot != -1) {
3889 		path->slots[0] = first_xattr_slot;
3890 		ret = btrfs_load_inode_props(inode, path);
3891 		if (ret)
3892 			btrfs_err(fs_info,
3893 				  "error loading props for ino %llu (root %llu): %d",
3894 				  btrfs_ino(BTRFS_I(inode)),
3895 				  root->root_key.objectid, ret);
3896 	}
3897 	if (path != in_path)
3898 		btrfs_free_path(path);
3899 
3900 	if (!maybe_acls)
3901 		cache_no_acl(inode);
3902 
3903 	switch (inode->i_mode & S_IFMT) {
3904 	case S_IFREG:
3905 		inode->i_mapping->a_ops = &btrfs_aops;
3906 		inode->i_fop = &btrfs_file_operations;
3907 		inode->i_op = &btrfs_file_inode_operations;
3908 		break;
3909 	case S_IFDIR:
3910 		inode->i_fop = &btrfs_dir_file_operations;
3911 		inode->i_op = &btrfs_dir_inode_operations;
3912 		break;
3913 	case S_IFLNK:
3914 		inode->i_op = &btrfs_symlink_inode_operations;
3915 		inode_nohighmem(inode);
3916 		inode->i_mapping->a_ops = &btrfs_aops;
3917 		break;
3918 	default:
3919 		inode->i_op = &btrfs_special_inode_operations;
3920 		init_special_inode(inode, inode->i_mode, rdev);
3921 		break;
3922 	}
3923 
3924 	btrfs_sync_inode_flags_to_i_flags(inode);
3925 	return 0;
3926 }
3927 
3928 /*
3929  * given a leaf and an inode, copy the inode fields into the leaf
3930  */
3931 static void fill_inode_item(struct btrfs_trans_handle *trans,
3932 			    struct extent_buffer *leaf,
3933 			    struct btrfs_inode_item *item,
3934 			    struct inode *inode)
3935 {
3936 	struct btrfs_map_token token;
3937 	u64 flags;
3938 
3939 	btrfs_init_map_token(&token, leaf);
3940 
3941 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3942 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3943 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3944 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3945 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3946 
3947 	btrfs_set_token_timespec_sec(&token, &item->atime,
3948 				     inode->i_atime.tv_sec);
3949 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3950 				      inode->i_atime.tv_nsec);
3951 
3952 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3953 				     inode->i_mtime.tv_sec);
3954 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3955 				      inode->i_mtime.tv_nsec);
3956 
3957 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3958 				     inode->i_ctime.tv_sec);
3959 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3960 				      inode->i_ctime.tv_nsec);
3961 
3962 	btrfs_set_token_timespec_sec(&token, &item->otime,
3963 				     BTRFS_I(inode)->i_otime.tv_sec);
3964 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3965 				      BTRFS_I(inode)->i_otime.tv_nsec);
3966 
3967 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3968 	btrfs_set_token_inode_generation(&token, item,
3969 					 BTRFS_I(inode)->generation);
3970 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3971 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3972 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3973 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3974 					  BTRFS_I(inode)->ro_flags);
3975 	btrfs_set_token_inode_flags(&token, item, flags);
3976 	btrfs_set_token_inode_block_group(&token, item, 0);
3977 }
3978 
3979 /*
3980  * copy everything in the in-memory inode into the btree.
3981  */
3982 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3983 				struct btrfs_root *root,
3984 				struct btrfs_inode *inode)
3985 {
3986 	struct btrfs_inode_item *inode_item;
3987 	struct btrfs_path *path;
3988 	struct extent_buffer *leaf;
3989 	int ret;
3990 
3991 	path = btrfs_alloc_path();
3992 	if (!path)
3993 		return -ENOMEM;
3994 
3995 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3996 	if (ret) {
3997 		if (ret > 0)
3998 			ret = -ENOENT;
3999 		goto failed;
4000 	}
4001 
4002 	leaf = path->nodes[0];
4003 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4004 				    struct btrfs_inode_item);
4005 
4006 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4007 	btrfs_mark_buffer_dirty(leaf);
4008 	btrfs_set_inode_last_trans(trans, inode);
4009 	ret = 0;
4010 failed:
4011 	btrfs_free_path(path);
4012 	return ret;
4013 }
4014 
4015 /*
4016  * copy everything in the in-memory inode into the btree.
4017  */
4018 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4019 				struct btrfs_root *root,
4020 				struct btrfs_inode *inode)
4021 {
4022 	struct btrfs_fs_info *fs_info = root->fs_info;
4023 	int ret;
4024 
4025 	/*
4026 	 * If the inode is a free space inode, we can deadlock during commit
4027 	 * if we put it into the delayed code.
4028 	 *
4029 	 * The data relocation inode should also be directly updated
4030 	 * without delay
4031 	 */
4032 	if (!btrfs_is_free_space_inode(inode)
4033 	    && !btrfs_is_data_reloc_root(root)
4034 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4035 		btrfs_update_root_times(trans, root);
4036 
4037 		ret = btrfs_delayed_update_inode(trans, root, inode);
4038 		if (!ret)
4039 			btrfs_set_inode_last_trans(trans, inode);
4040 		return ret;
4041 	}
4042 
4043 	return btrfs_update_inode_item(trans, root, inode);
4044 }
4045 
4046 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4047 				struct btrfs_root *root, struct btrfs_inode *inode)
4048 {
4049 	int ret;
4050 
4051 	ret = btrfs_update_inode(trans, root, inode);
4052 	if (ret == -ENOSPC)
4053 		return btrfs_update_inode_item(trans, root, inode);
4054 	return ret;
4055 }
4056 
4057 /*
4058  * unlink helper that gets used here in inode.c and in the tree logging
4059  * recovery code.  It remove a link in a directory with a given name, and
4060  * also drops the back refs in the inode to the directory
4061  */
4062 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4063 				struct btrfs_inode *dir,
4064 				struct btrfs_inode *inode,
4065 				const char *name, int name_len)
4066 {
4067 	struct btrfs_root *root = dir->root;
4068 	struct btrfs_fs_info *fs_info = root->fs_info;
4069 	struct btrfs_path *path;
4070 	int ret = 0;
4071 	struct btrfs_dir_item *di;
4072 	u64 index;
4073 	u64 ino = btrfs_ino(inode);
4074 	u64 dir_ino = btrfs_ino(dir);
4075 
4076 	path = btrfs_alloc_path();
4077 	if (!path) {
4078 		ret = -ENOMEM;
4079 		goto out;
4080 	}
4081 
4082 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4083 				    name, name_len, -1);
4084 	if (IS_ERR_OR_NULL(di)) {
4085 		ret = di ? PTR_ERR(di) : -ENOENT;
4086 		goto err;
4087 	}
4088 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4089 	if (ret)
4090 		goto err;
4091 	btrfs_release_path(path);
4092 
4093 	/*
4094 	 * If we don't have dir index, we have to get it by looking up
4095 	 * the inode ref, since we get the inode ref, remove it directly,
4096 	 * it is unnecessary to do delayed deletion.
4097 	 *
4098 	 * But if we have dir index, needn't search inode ref to get it.
4099 	 * Since the inode ref is close to the inode item, it is better
4100 	 * that we delay to delete it, and just do this deletion when
4101 	 * we update the inode item.
4102 	 */
4103 	if (inode->dir_index) {
4104 		ret = btrfs_delayed_delete_inode_ref(inode);
4105 		if (!ret) {
4106 			index = inode->dir_index;
4107 			goto skip_backref;
4108 		}
4109 	}
4110 
4111 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4112 				  dir_ino, &index);
4113 	if (ret) {
4114 		btrfs_info(fs_info,
4115 			"failed to delete reference to %.*s, inode %llu parent %llu",
4116 			name_len, name, ino, dir_ino);
4117 		btrfs_abort_transaction(trans, ret);
4118 		goto err;
4119 	}
4120 skip_backref:
4121 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4122 	if (ret) {
4123 		btrfs_abort_transaction(trans, ret);
4124 		goto err;
4125 	}
4126 
4127 	btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4128 				   dir_ino);
4129 	btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, index);
4130 
4131 	/*
4132 	 * If we have a pending delayed iput we could end up with the final iput
4133 	 * being run in btrfs-cleaner context.  If we have enough of these built
4134 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4135 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4136 	 * the inode we can run the delayed iput here without any issues as the
4137 	 * final iput won't be done until after we drop the ref we're currently
4138 	 * holding.
4139 	 */
4140 	btrfs_run_delayed_iput(fs_info, inode);
4141 err:
4142 	btrfs_free_path(path);
4143 	if (ret)
4144 		goto out;
4145 
4146 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4147 	inode_inc_iversion(&inode->vfs_inode);
4148 	inode_inc_iversion(&dir->vfs_inode);
4149 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4150 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4151 	ret = btrfs_update_inode(trans, root, dir);
4152 out:
4153 	return ret;
4154 }
4155 
4156 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4157 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4158 		       const char *name, int name_len)
4159 {
4160 	int ret;
4161 	ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len);
4162 	if (!ret) {
4163 		drop_nlink(&inode->vfs_inode);
4164 		ret = btrfs_update_inode(trans, inode->root, inode);
4165 	}
4166 	return ret;
4167 }
4168 
4169 /*
4170  * helper to start transaction for unlink and rmdir.
4171  *
4172  * unlink and rmdir are special in btrfs, they do not always free space, so
4173  * if we cannot make our reservations the normal way try and see if there is
4174  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4175  * allow the unlink to occur.
4176  */
4177 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4178 {
4179 	struct btrfs_root *root = BTRFS_I(dir)->root;
4180 
4181 	/*
4182 	 * 1 for the possible orphan item
4183 	 * 1 for the dir item
4184 	 * 1 for the dir index
4185 	 * 1 for the inode ref
4186 	 * 1 for the inode
4187 	 */
4188 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
4189 }
4190 
4191 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4192 {
4193 	struct btrfs_trans_handle *trans;
4194 	struct inode *inode = d_inode(dentry);
4195 	int ret;
4196 
4197 	trans = __unlink_start_trans(dir);
4198 	if (IS_ERR(trans))
4199 		return PTR_ERR(trans);
4200 
4201 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4202 			0);
4203 
4204 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4205 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4206 			dentry->d_name.len);
4207 	if (ret)
4208 		goto out;
4209 
4210 	if (inode->i_nlink == 0) {
4211 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4212 		if (ret)
4213 			goto out;
4214 	}
4215 
4216 out:
4217 	btrfs_end_transaction(trans);
4218 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4219 	return ret;
4220 }
4221 
4222 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4223 			       struct inode *dir, struct dentry *dentry)
4224 {
4225 	struct btrfs_root *root = BTRFS_I(dir)->root;
4226 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4227 	struct btrfs_path *path;
4228 	struct extent_buffer *leaf;
4229 	struct btrfs_dir_item *di;
4230 	struct btrfs_key key;
4231 	const char *name = dentry->d_name.name;
4232 	int name_len = dentry->d_name.len;
4233 	u64 index;
4234 	int ret;
4235 	u64 objectid;
4236 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4237 
4238 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4239 		objectid = inode->root->root_key.objectid;
4240 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4241 		objectid = inode->location.objectid;
4242 	} else {
4243 		WARN_ON(1);
4244 		return -EINVAL;
4245 	}
4246 
4247 	path = btrfs_alloc_path();
4248 	if (!path)
4249 		return -ENOMEM;
4250 
4251 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4252 				   name, name_len, -1);
4253 	if (IS_ERR_OR_NULL(di)) {
4254 		ret = di ? PTR_ERR(di) : -ENOENT;
4255 		goto out;
4256 	}
4257 
4258 	leaf = path->nodes[0];
4259 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4260 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4261 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4262 	if (ret) {
4263 		btrfs_abort_transaction(trans, ret);
4264 		goto out;
4265 	}
4266 	btrfs_release_path(path);
4267 
4268 	/*
4269 	 * This is a placeholder inode for a subvolume we didn't have a
4270 	 * reference to at the time of the snapshot creation.  In the meantime
4271 	 * we could have renamed the real subvol link into our snapshot, so
4272 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4273 	 * Instead simply lookup the dir_index_item for this entry so we can
4274 	 * remove it.  Otherwise we know we have a ref to the root and we can
4275 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4276 	 */
4277 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4278 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4279 						 name, name_len);
4280 		if (IS_ERR_OR_NULL(di)) {
4281 			if (!di)
4282 				ret = -ENOENT;
4283 			else
4284 				ret = PTR_ERR(di);
4285 			btrfs_abort_transaction(trans, ret);
4286 			goto out;
4287 		}
4288 
4289 		leaf = path->nodes[0];
4290 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4291 		index = key.offset;
4292 		btrfs_release_path(path);
4293 	} else {
4294 		ret = btrfs_del_root_ref(trans, objectid,
4295 					 root->root_key.objectid, dir_ino,
4296 					 &index, name, name_len);
4297 		if (ret) {
4298 			btrfs_abort_transaction(trans, ret);
4299 			goto out;
4300 		}
4301 	}
4302 
4303 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4304 	if (ret) {
4305 		btrfs_abort_transaction(trans, ret);
4306 		goto out;
4307 	}
4308 
4309 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4310 	inode_inc_iversion(dir);
4311 	dir->i_mtime = dir->i_ctime = current_time(dir);
4312 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4313 	if (ret)
4314 		btrfs_abort_transaction(trans, ret);
4315 out:
4316 	btrfs_free_path(path);
4317 	return ret;
4318 }
4319 
4320 /*
4321  * Helper to check if the subvolume references other subvolumes or if it's
4322  * default.
4323  */
4324 static noinline int may_destroy_subvol(struct btrfs_root *root)
4325 {
4326 	struct btrfs_fs_info *fs_info = root->fs_info;
4327 	struct btrfs_path *path;
4328 	struct btrfs_dir_item *di;
4329 	struct btrfs_key key;
4330 	u64 dir_id;
4331 	int ret;
4332 
4333 	path = btrfs_alloc_path();
4334 	if (!path)
4335 		return -ENOMEM;
4336 
4337 	/* Make sure this root isn't set as the default subvol */
4338 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4339 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4340 				   dir_id, "default", 7, 0);
4341 	if (di && !IS_ERR(di)) {
4342 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4343 		if (key.objectid == root->root_key.objectid) {
4344 			ret = -EPERM;
4345 			btrfs_err(fs_info,
4346 				  "deleting default subvolume %llu is not allowed",
4347 				  key.objectid);
4348 			goto out;
4349 		}
4350 		btrfs_release_path(path);
4351 	}
4352 
4353 	key.objectid = root->root_key.objectid;
4354 	key.type = BTRFS_ROOT_REF_KEY;
4355 	key.offset = (u64)-1;
4356 
4357 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4358 	if (ret < 0)
4359 		goto out;
4360 	BUG_ON(ret == 0);
4361 
4362 	ret = 0;
4363 	if (path->slots[0] > 0) {
4364 		path->slots[0]--;
4365 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4366 		if (key.objectid == root->root_key.objectid &&
4367 		    key.type == BTRFS_ROOT_REF_KEY)
4368 			ret = -ENOTEMPTY;
4369 	}
4370 out:
4371 	btrfs_free_path(path);
4372 	return ret;
4373 }
4374 
4375 /* Delete all dentries for inodes belonging to the root */
4376 static void btrfs_prune_dentries(struct btrfs_root *root)
4377 {
4378 	struct btrfs_fs_info *fs_info = root->fs_info;
4379 	struct rb_node *node;
4380 	struct rb_node *prev;
4381 	struct btrfs_inode *entry;
4382 	struct inode *inode;
4383 	u64 objectid = 0;
4384 
4385 	if (!BTRFS_FS_ERROR(fs_info))
4386 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4387 
4388 	spin_lock(&root->inode_lock);
4389 again:
4390 	node = root->inode_tree.rb_node;
4391 	prev = NULL;
4392 	while (node) {
4393 		prev = node;
4394 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4395 
4396 		if (objectid < btrfs_ino(entry))
4397 			node = node->rb_left;
4398 		else if (objectid > btrfs_ino(entry))
4399 			node = node->rb_right;
4400 		else
4401 			break;
4402 	}
4403 	if (!node) {
4404 		while (prev) {
4405 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4406 			if (objectid <= btrfs_ino(entry)) {
4407 				node = prev;
4408 				break;
4409 			}
4410 			prev = rb_next(prev);
4411 		}
4412 	}
4413 	while (node) {
4414 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4415 		objectid = btrfs_ino(entry) + 1;
4416 		inode = igrab(&entry->vfs_inode);
4417 		if (inode) {
4418 			spin_unlock(&root->inode_lock);
4419 			if (atomic_read(&inode->i_count) > 1)
4420 				d_prune_aliases(inode);
4421 			/*
4422 			 * btrfs_drop_inode will have it removed from the inode
4423 			 * cache when its usage count hits zero.
4424 			 */
4425 			iput(inode);
4426 			cond_resched();
4427 			spin_lock(&root->inode_lock);
4428 			goto again;
4429 		}
4430 
4431 		if (cond_resched_lock(&root->inode_lock))
4432 			goto again;
4433 
4434 		node = rb_next(node);
4435 	}
4436 	spin_unlock(&root->inode_lock);
4437 }
4438 
4439 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4440 {
4441 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4442 	struct btrfs_root *root = BTRFS_I(dir)->root;
4443 	struct inode *inode = d_inode(dentry);
4444 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4445 	struct btrfs_trans_handle *trans;
4446 	struct btrfs_block_rsv block_rsv;
4447 	u64 root_flags;
4448 	int ret;
4449 
4450 	/*
4451 	 * Don't allow to delete a subvolume with send in progress. This is
4452 	 * inside the inode lock so the error handling that has to drop the bit
4453 	 * again is not run concurrently.
4454 	 */
4455 	spin_lock(&dest->root_item_lock);
4456 	if (dest->send_in_progress) {
4457 		spin_unlock(&dest->root_item_lock);
4458 		btrfs_warn(fs_info,
4459 			   "attempt to delete subvolume %llu during send",
4460 			   dest->root_key.objectid);
4461 		return -EPERM;
4462 	}
4463 	root_flags = btrfs_root_flags(&dest->root_item);
4464 	btrfs_set_root_flags(&dest->root_item,
4465 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4466 	spin_unlock(&dest->root_item_lock);
4467 
4468 	down_write(&fs_info->subvol_sem);
4469 
4470 	ret = may_destroy_subvol(dest);
4471 	if (ret)
4472 		goto out_up_write;
4473 
4474 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4475 	/*
4476 	 * One for dir inode,
4477 	 * two for dir entries,
4478 	 * two for root ref/backref.
4479 	 */
4480 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4481 	if (ret)
4482 		goto out_up_write;
4483 
4484 	trans = btrfs_start_transaction(root, 0);
4485 	if (IS_ERR(trans)) {
4486 		ret = PTR_ERR(trans);
4487 		goto out_release;
4488 	}
4489 	trans->block_rsv = &block_rsv;
4490 	trans->bytes_reserved = block_rsv.size;
4491 
4492 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4493 
4494 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4495 	if (ret) {
4496 		btrfs_abort_transaction(trans, ret);
4497 		goto out_end_trans;
4498 	}
4499 
4500 	ret = btrfs_record_root_in_trans(trans, dest);
4501 	if (ret) {
4502 		btrfs_abort_transaction(trans, ret);
4503 		goto out_end_trans;
4504 	}
4505 
4506 	memset(&dest->root_item.drop_progress, 0,
4507 		sizeof(dest->root_item.drop_progress));
4508 	btrfs_set_root_drop_level(&dest->root_item, 0);
4509 	btrfs_set_root_refs(&dest->root_item, 0);
4510 
4511 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4512 		ret = btrfs_insert_orphan_item(trans,
4513 					fs_info->tree_root,
4514 					dest->root_key.objectid);
4515 		if (ret) {
4516 			btrfs_abort_transaction(trans, ret);
4517 			goto out_end_trans;
4518 		}
4519 	}
4520 
4521 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4522 				  BTRFS_UUID_KEY_SUBVOL,
4523 				  dest->root_key.objectid);
4524 	if (ret && ret != -ENOENT) {
4525 		btrfs_abort_transaction(trans, ret);
4526 		goto out_end_trans;
4527 	}
4528 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4529 		ret = btrfs_uuid_tree_remove(trans,
4530 					  dest->root_item.received_uuid,
4531 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4532 					  dest->root_key.objectid);
4533 		if (ret && ret != -ENOENT) {
4534 			btrfs_abort_transaction(trans, ret);
4535 			goto out_end_trans;
4536 		}
4537 	}
4538 
4539 	free_anon_bdev(dest->anon_dev);
4540 	dest->anon_dev = 0;
4541 out_end_trans:
4542 	trans->block_rsv = NULL;
4543 	trans->bytes_reserved = 0;
4544 	ret = btrfs_end_transaction(trans);
4545 	inode->i_flags |= S_DEAD;
4546 out_release:
4547 	btrfs_subvolume_release_metadata(root, &block_rsv);
4548 out_up_write:
4549 	up_write(&fs_info->subvol_sem);
4550 	if (ret) {
4551 		spin_lock(&dest->root_item_lock);
4552 		root_flags = btrfs_root_flags(&dest->root_item);
4553 		btrfs_set_root_flags(&dest->root_item,
4554 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4555 		spin_unlock(&dest->root_item_lock);
4556 	} else {
4557 		d_invalidate(dentry);
4558 		btrfs_prune_dentries(dest);
4559 		ASSERT(dest->send_in_progress == 0);
4560 	}
4561 
4562 	return ret;
4563 }
4564 
4565 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4566 {
4567 	struct inode *inode = d_inode(dentry);
4568 	int err = 0;
4569 	struct btrfs_trans_handle *trans;
4570 	u64 last_unlink_trans;
4571 
4572 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4573 		return -ENOTEMPTY;
4574 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4575 		return btrfs_delete_subvolume(dir, dentry);
4576 
4577 	trans = __unlink_start_trans(dir);
4578 	if (IS_ERR(trans))
4579 		return PTR_ERR(trans);
4580 
4581 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4582 		err = btrfs_unlink_subvol(trans, dir, dentry);
4583 		goto out;
4584 	}
4585 
4586 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4587 	if (err)
4588 		goto out;
4589 
4590 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4591 
4592 	/* now the directory is empty */
4593 	err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4594 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4595 			dentry->d_name.len);
4596 	if (!err) {
4597 		btrfs_i_size_write(BTRFS_I(inode), 0);
4598 		/*
4599 		 * Propagate the last_unlink_trans value of the deleted dir to
4600 		 * its parent directory. This is to prevent an unrecoverable
4601 		 * log tree in the case we do something like this:
4602 		 * 1) create dir foo
4603 		 * 2) create snapshot under dir foo
4604 		 * 3) delete the snapshot
4605 		 * 4) rmdir foo
4606 		 * 5) mkdir foo
4607 		 * 6) fsync foo or some file inside foo
4608 		 */
4609 		if (last_unlink_trans >= trans->transid)
4610 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4611 	}
4612 out:
4613 	btrfs_end_transaction(trans);
4614 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4615 
4616 	return err;
4617 }
4618 
4619 /*
4620  * btrfs_truncate_block - read, zero a chunk and write a block
4621  * @inode - inode that we're zeroing
4622  * @from - the offset to start zeroing
4623  * @len - the length to zero, 0 to zero the entire range respective to the
4624  *	offset
4625  * @front - zero up to the offset instead of from the offset on
4626  *
4627  * This will find the block for the "from" offset and cow the block and zero the
4628  * part we want to zero.  This is used with truncate and hole punching.
4629  */
4630 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4631 			 int front)
4632 {
4633 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4634 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4635 	struct extent_io_tree *io_tree = &inode->io_tree;
4636 	struct btrfs_ordered_extent *ordered;
4637 	struct extent_state *cached_state = NULL;
4638 	struct extent_changeset *data_reserved = NULL;
4639 	bool only_release_metadata = false;
4640 	u32 blocksize = fs_info->sectorsize;
4641 	pgoff_t index = from >> PAGE_SHIFT;
4642 	unsigned offset = from & (blocksize - 1);
4643 	struct page *page;
4644 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4645 	size_t write_bytes = blocksize;
4646 	int ret = 0;
4647 	u64 block_start;
4648 	u64 block_end;
4649 
4650 	if (IS_ALIGNED(offset, blocksize) &&
4651 	    (!len || IS_ALIGNED(len, blocksize)))
4652 		goto out;
4653 
4654 	block_start = round_down(from, blocksize);
4655 	block_end = block_start + blocksize - 1;
4656 
4657 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4658 					  blocksize);
4659 	if (ret < 0) {
4660 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4661 			/* For nocow case, no need to reserve data space */
4662 			only_release_metadata = true;
4663 		} else {
4664 			goto out;
4665 		}
4666 	}
4667 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
4668 	if (ret < 0) {
4669 		if (!only_release_metadata)
4670 			btrfs_free_reserved_data_space(inode, data_reserved,
4671 						       block_start, blocksize);
4672 		goto out;
4673 	}
4674 again:
4675 	page = find_or_create_page(mapping, index, mask);
4676 	if (!page) {
4677 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4678 					     blocksize, true);
4679 		btrfs_delalloc_release_extents(inode, blocksize);
4680 		ret = -ENOMEM;
4681 		goto out;
4682 	}
4683 	ret = set_page_extent_mapped(page);
4684 	if (ret < 0)
4685 		goto out_unlock;
4686 
4687 	if (!PageUptodate(page)) {
4688 		ret = btrfs_readpage(NULL, page);
4689 		lock_page(page);
4690 		if (page->mapping != mapping) {
4691 			unlock_page(page);
4692 			put_page(page);
4693 			goto again;
4694 		}
4695 		if (!PageUptodate(page)) {
4696 			ret = -EIO;
4697 			goto out_unlock;
4698 		}
4699 	}
4700 	wait_on_page_writeback(page);
4701 
4702 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4703 
4704 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4705 	if (ordered) {
4706 		unlock_extent_cached(io_tree, block_start, block_end,
4707 				     &cached_state);
4708 		unlock_page(page);
4709 		put_page(page);
4710 		btrfs_start_ordered_extent(ordered, 1);
4711 		btrfs_put_ordered_extent(ordered);
4712 		goto again;
4713 	}
4714 
4715 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4716 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4717 			 0, 0, &cached_state);
4718 
4719 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4720 					&cached_state);
4721 	if (ret) {
4722 		unlock_extent_cached(io_tree, block_start, block_end,
4723 				     &cached_state);
4724 		goto out_unlock;
4725 	}
4726 
4727 	if (offset != blocksize) {
4728 		if (!len)
4729 			len = blocksize - offset;
4730 		if (front)
4731 			memzero_page(page, (block_start - page_offset(page)),
4732 				     offset);
4733 		else
4734 			memzero_page(page, (block_start - page_offset(page)) + offset,
4735 				     len);
4736 		flush_dcache_page(page);
4737 	}
4738 	btrfs_page_clear_checked(fs_info, page, block_start,
4739 				 block_end + 1 - block_start);
4740 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4741 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4742 
4743 	if (only_release_metadata)
4744 		set_extent_bit(&inode->io_tree, block_start, block_end,
4745 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4746 
4747 out_unlock:
4748 	if (ret) {
4749 		if (only_release_metadata)
4750 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4751 		else
4752 			btrfs_delalloc_release_space(inode, data_reserved,
4753 					block_start, blocksize, true);
4754 	}
4755 	btrfs_delalloc_release_extents(inode, blocksize);
4756 	unlock_page(page);
4757 	put_page(page);
4758 out:
4759 	if (only_release_metadata)
4760 		btrfs_check_nocow_unlock(inode);
4761 	extent_changeset_free(data_reserved);
4762 	return ret;
4763 }
4764 
4765 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4766 			     u64 offset, u64 len)
4767 {
4768 	struct btrfs_fs_info *fs_info = root->fs_info;
4769 	struct btrfs_trans_handle *trans;
4770 	struct btrfs_drop_extents_args drop_args = { 0 };
4771 	int ret;
4772 
4773 	/*
4774 	 * If NO_HOLES is enabled, we don't need to do anything.
4775 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4776 	 * or btrfs_update_inode() will be called, which guarantee that the next
4777 	 * fsync will know this inode was changed and needs to be logged.
4778 	 */
4779 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4780 		return 0;
4781 
4782 	/*
4783 	 * 1 - for the one we're dropping
4784 	 * 1 - for the one we're adding
4785 	 * 1 - for updating the inode.
4786 	 */
4787 	trans = btrfs_start_transaction(root, 3);
4788 	if (IS_ERR(trans))
4789 		return PTR_ERR(trans);
4790 
4791 	drop_args.start = offset;
4792 	drop_args.end = offset + len;
4793 	drop_args.drop_cache = true;
4794 
4795 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4796 	if (ret) {
4797 		btrfs_abort_transaction(trans, ret);
4798 		btrfs_end_transaction(trans);
4799 		return ret;
4800 	}
4801 
4802 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4803 			offset, 0, 0, len, 0, len, 0, 0, 0);
4804 	if (ret) {
4805 		btrfs_abort_transaction(trans, ret);
4806 	} else {
4807 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4808 		btrfs_update_inode(trans, root, inode);
4809 	}
4810 	btrfs_end_transaction(trans);
4811 	return ret;
4812 }
4813 
4814 /*
4815  * This function puts in dummy file extents for the area we're creating a hole
4816  * for.  So if we are truncating this file to a larger size we need to insert
4817  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4818  * the range between oldsize and size
4819  */
4820 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4821 {
4822 	struct btrfs_root *root = inode->root;
4823 	struct btrfs_fs_info *fs_info = root->fs_info;
4824 	struct extent_io_tree *io_tree = &inode->io_tree;
4825 	struct extent_map *em = NULL;
4826 	struct extent_state *cached_state = NULL;
4827 	struct extent_map_tree *em_tree = &inode->extent_tree;
4828 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4829 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4830 	u64 last_byte;
4831 	u64 cur_offset;
4832 	u64 hole_size;
4833 	int err = 0;
4834 
4835 	/*
4836 	 * If our size started in the middle of a block we need to zero out the
4837 	 * rest of the block before we expand the i_size, otherwise we could
4838 	 * expose stale data.
4839 	 */
4840 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4841 	if (err)
4842 		return err;
4843 
4844 	if (size <= hole_start)
4845 		return 0;
4846 
4847 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4848 					   &cached_state);
4849 	cur_offset = hole_start;
4850 	while (1) {
4851 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4852 				      block_end - cur_offset);
4853 		if (IS_ERR(em)) {
4854 			err = PTR_ERR(em);
4855 			em = NULL;
4856 			break;
4857 		}
4858 		last_byte = min(extent_map_end(em), block_end);
4859 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4860 		hole_size = last_byte - cur_offset;
4861 
4862 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4863 			struct extent_map *hole_em;
4864 
4865 			err = maybe_insert_hole(root, inode, cur_offset,
4866 						hole_size);
4867 			if (err)
4868 				break;
4869 
4870 			err = btrfs_inode_set_file_extent_range(inode,
4871 							cur_offset, hole_size);
4872 			if (err)
4873 				break;
4874 
4875 			btrfs_drop_extent_cache(inode, cur_offset,
4876 						cur_offset + hole_size - 1, 0);
4877 			hole_em = alloc_extent_map();
4878 			if (!hole_em) {
4879 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4880 					&inode->runtime_flags);
4881 				goto next;
4882 			}
4883 			hole_em->start = cur_offset;
4884 			hole_em->len = hole_size;
4885 			hole_em->orig_start = cur_offset;
4886 
4887 			hole_em->block_start = EXTENT_MAP_HOLE;
4888 			hole_em->block_len = 0;
4889 			hole_em->orig_block_len = 0;
4890 			hole_em->ram_bytes = hole_size;
4891 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4892 			hole_em->generation = fs_info->generation;
4893 
4894 			while (1) {
4895 				write_lock(&em_tree->lock);
4896 				err = add_extent_mapping(em_tree, hole_em, 1);
4897 				write_unlock(&em_tree->lock);
4898 				if (err != -EEXIST)
4899 					break;
4900 				btrfs_drop_extent_cache(inode, cur_offset,
4901 							cur_offset +
4902 							hole_size - 1, 0);
4903 			}
4904 			free_extent_map(hole_em);
4905 		} else {
4906 			err = btrfs_inode_set_file_extent_range(inode,
4907 							cur_offset, hole_size);
4908 			if (err)
4909 				break;
4910 		}
4911 next:
4912 		free_extent_map(em);
4913 		em = NULL;
4914 		cur_offset = last_byte;
4915 		if (cur_offset >= block_end)
4916 			break;
4917 	}
4918 	free_extent_map(em);
4919 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4920 	return err;
4921 }
4922 
4923 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4924 {
4925 	struct btrfs_root *root = BTRFS_I(inode)->root;
4926 	struct btrfs_trans_handle *trans;
4927 	loff_t oldsize = i_size_read(inode);
4928 	loff_t newsize = attr->ia_size;
4929 	int mask = attr->ia_valid;
4930 	int ret;
4931 
4932 	/*
4933 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4934 	 * special case where we need to update the times despite not having
4935 	 * these flags set.  For all other operations the VFS set these flags
4936 	 * explicitly if it wants a timestamp update.
4937 	 */
4938 	if (newsize != oldsize) {
4939 		inode_inc_iversion(inode);
4940 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4941 			inode->i_ctime = inode->i_mtime =
4942 				current_time(inode);
4943 	}
4944 
4945 	if (newsize > oldsize) {
4946 		/*
4947 		 * Don't do an expanding truncate while snapshotting is ongoing.
4948 		 * This is to ensure the snapshot captures a fully consistent
4949 		 * state of this file - if the snapshot captures this expanding
4950 		 * truncation, it must capture all writes that happened before
4951 		 * this truncation.
4952 		 */
4953 		btrfs_drew_write_lock(&root->snapshot_lock);
4954 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4955 		if (ret) {
4956 			btrfs_drew_write_unlock(&root->snapshot_lock);
4957 			return ret;
4958 		}
4959 
4960 		trans = btrfs_start_transaction(root, 1);
4961 		if (IS_ERR(trans)) {
4962 			btrfs_drew_write_unlock(&root->snapshot_lock);
4963 			return PTR_ERR(trans);
4964 		}
4965 
4966 		i_size_write(inode, newsize);
4967 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
4968 		pagecache_isize_extended(inode, oldsize, newsize);
4969 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
4970 		btrfs_drew_write_unlock(&root->snapshot_lock);
4971 		btrfs_end_transaction(trans);
4972 	} else {
4973 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4974 
4975 		if (btrfs_is_zoned(fs_info)) {
4976 			ret = btrfs_wait_ordered_range(inode,
4977 					ALIGN(newsize, fs_info->sectorsize),
4978 					(u64)-1);
4979 			if (ret)
4980 				return ret;
4981 		}
4982 
4983 		/*
4984 		 * We're truncating a file that used to have good data down to
4985 		 * zero. Make sure any new writes to the file get on disk
4986 		 * on close.
4987 		 */
4988 		if (newsize == 0)
4989 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
4990 				&BTRFS_I(inode)->runtime_flags);
4991 
4992 		truncate_setsize(inode, newsize);
4993 
4994 		inode_dio_wait(inode);
4995 
4996 		ret = btrfs_truncate(inode, newsize == oldsize);
4997 		if (ret && inode->i_nlink) {
4998 			int err;
4999 
5000 			/*
5001 			 * Truncate failed, so fix up the in-memory size. We
5002 			 * adjusted disk_i_size down as we removed extents, so
5003 			 * wait for disk_i_size to be stable and then update the
5004 			 * in-memory size to match.
5005 			 */
5006 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5007 			if (err)
5008 				return err;
5009 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5010 		}
5011 	}
5012 
5013 	return ret;
5014 }
5015 
5016 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5017 			 struct iattr *attr)
5018 {
5019 	struct inode *inode = d_inode(dentry);
5020 	struct btrfs_root *root = BTRFS_I(inode)->root;
5021 	int err;
5022 
5023 	if (btrfs_root_readonly(root))
5024 		return -EROFS;
5025 
5026 	err = setattr_prepare(mnt_userns, dentry, attr);
5027 	if (err)
5028 		return err;
5029 
5030 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5031 		err = btrfs_setsize(inode, attr);
5032 		if (err)
5033 			return err;
5034 	}
5035 
5036 	if (attr->ia_valid) {
5037 		setattr_copy(mnt_userns, inode, attr);
5038 		inode_inc_iversion(inode);
5039 		err = btrfs_dirty_inode(inode);
5040 
5041 		if (!err && attr->ia_valid & ATTR_MODE)
5042 			err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5043 	}
5044 
5045 	return err;
5046 }
5047 
5048 /*
5049  * While truncating the inode pages during eviction, we get the VFS calling
5050  * btrfs_invalidatepage() against each page of the inode. This is slow because
5051  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5052  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5053  * extent_state structures over and over, wasting lots of time.
5054  *
5055  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5056  * those expensive operations on a per page basis and do only the ordered io
5057  * finishing, while we release here the extent_map and extent_state structures,
5058  * without the excessive merging and splitting.
5059  */
5060 static void evict_inode_truncate_pages(struct inode *inode)
5061 {
5062 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5063 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5064 	struct rb_node *node;
5065 
5066 	ASSERT(inode->i_state & I_FREEING);
5067 	truncate_inode_pages_final(&inode->i_data);
5068 
5069 	write_lock(&map_tree->lock);
5070 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5071 		struct extent_map *em;
5072 
5073 		node = rb_first_cached(&map_tree->map);
5074 		em = rb_entry(node, struct extent_map, rb_node);
5075 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5076 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5077 		remove_extent_mapping(map_tree, em);
5078 		free_extent_map(em);
5079 		if (need_resched()) {
5080 			write_unlock(&map_tree->lock);
5081 			cond_resched();
5082 			write_lock(&map_tree->lock);
5083 		}
5084 	}
5085 	write_unlock(&map_tree->lock);
5086 
5087 	/*
5088 	 * Keep looping until we have no more ranges in the io tree.
5089 	 * We can have ongoing bios started by readahead that have
5090 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5091 	 * still in progress (unlocked the pages in the bio but did not yet
5092 	 * unlocked the ranges in the io tree). Therefore this means some
5093 	 * ranges can still be locked and eviction started because before
5094 	 * submitting those bios, which are executed by a separate task (work
5095 	 * queue kthread), inode references (inode->i_count) were not taken
5096 	 * (which would be dropped in the end io callback of each bio).
5097 	 * Therefore here we effectively end up waiting for those bios and
5098 	 * anyone else holding locked ranges without having bumped the inode's
5099 	 * reference count - if we don't do it, when they access the inode's
5100 	 * io_tree to unlock a range it may be too late, leading to an
5101 	 * use-after-free issue.
5102 	 */
5103 	spin_lock(&io_tree->lock);
5104 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5105 		struct extent_state *state;
5106 		struct extent_state *cached_state = NULL;
5107 		u64 start;
5108 		u64 end;
5109 		unsigned state_flags;
5110 
5111 		node = rb_first(&io_tree->state);
5112 		state = rb_entry(node, struct extent_state, rb_node);
5113 		start = state->start;
5114 		end = state->end;
5115 		state_flags = state->state;
5116 		spin_unlock(&io_tree->lock);
5117 
5118 		lock_extent_bits(io_tree, start, end, &cached_state);
5119 
5120 		/*
5121 		 * If still has DELALLOC flag, the extent didn't reach disk,
5122 		 * and its reserved space won't be freed by delayed_ref.
5123 		 * So we need to free its reserved space here.
5124 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5125 		 *
5126 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5127 		 */
5128 		if (state_flags & EXTENT_DELALLOC)
5129 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5130 					       end - start + 1);
5131 
5132 		clear_extent_bit(io_tree, start, end,
5133 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5134 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5135 				 &cached_state);
5136 
5137 		cond_resched();
5138 		spin_lock(&io_tree->lock);
5139 	}
5140 	spin_unlock(&io_tree->lock);
5141 }
5142 
5143 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5144 							struct btrfs_block_rsv *rsv)
5145 {
5146 	struct btrfs_fs_info *fs_info = root->fs_info;
5147 	struct btrfs_trans_handle *trans;
5148 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5149 	int ret;
5150 
5151 	/*
5152 	 * Eviction should be taking place at some place safe because of our
5153 	 * delayed iputs.  However the normal flushing code will run delayed
5154 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5155 	 *
5156 	 * We reserve the delayed_refs_extra here again because we can't use
5157 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5158 	 * above.  We reserve our extra bit here because we generate a ton of
5159 	 * delayed refs activity by truncating.
5160 	 *
5161 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5162 	 * if we fail to make this reservation we can re-try without the
5163 	 * delayed_refs_extra so we can make some forward progress.
5164 	 */
5165 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5166 				     BTRFS_RESERVE_FLUSH_EVICT);
5167 	if (ret) {
5168 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5169 					     BTRFS_RESERVE_FLUSH_EVICT);
5170 		if (ret) {
5171 			btrfs_warn(fs_info,
5172 				   "could not allocate space for delete; will truncate on mount");
5173 			return ERR_PTR(-ENOSPC);
5174 		}
5175 		delayed_refs_extra = 0;
5176 	}
5177 
5178 	trans = btrfs_join_transaction(root);
5179 	if (IS_ERR(trans))
5180 		return trans;
5181 
5182 	if (delayed_refs_extra) {
5183 		trans->block_rsv = &fs_info->trans_block_rsv;
5184 		trans->bytes_reserved = delayed_refs_extra;
5185 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5186 					delayed_refs_extra, 1);
5187 	}
5188 	return trans;
5189 }
5190 
5191 void btrfs_evict_inode(struct inode *inode)
5192 {
5193 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5194 	struct btrfs_trans_handle *trans;
5195 	struct btrfs_root *root = BTRFS_I(inode)->root;
5196 	struct btrfs_block_rsv *rsv;
5197 	int ret;
5198 
5199 	trace_btrfs_inode_evict(inode);
5200 
5201 	if (!root) {
5202 		fsverity_cleanup_inode(inode);
5203 		clear_inode(inode);
5204 		return;
5205 	}
5206 
5207 	evict_inode_truncate_pages(inode);
5208 
5209 	if (inode->i_nlink &&
5210 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5211 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5212 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5213 		goto no_delete;
5214 
5215 	if (is_bad_inode(inode))
5216 		goto no_delete;
5217 
5218 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5219 
5220 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5221 		goto no_delete;
5222 
5223 	if (inode->i_nlink > 0) {
5224 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5225 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5226 		goto no_delete;
5227 	}
5228 
5229 	/*
5230 	 * This makes sure the inode item in tree is uptodate and the space for
5231 	 * the inode update is released.
5232 	 */
5233 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5234 	if (ret)
5235 		goto no_delete;
5236 
5237 	/*
5238 	 * This drops any pending insert or delete operations we have for this
5239 	 * inode.  We could have a delayed dir index deletion queued up, but
5240 	 * we're removing the inode completely so that'll be taken care of in
5241 	 * the truncate.
5242 	 */
5243 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5244 
5245 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5246 	if (!rsv)
5247 		goto no_delete;
5248 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5249 	rsv->failfast = 1;
5250 
5251 	btrfs_i_size_write(BTRFS_I(inode), 0);
5252 
5253 	while (1) {
5254 		struct btrfs_truncate_control control = {
5255 			.inode = BTRFS_I(inode),
5256 			.ino = btrfs_ino(BTRFS_I(inode)),
5257 			.new_size = 0,
5258 			.min_type = 0,
5259 		};
5260 
5261 		trans = evict_refill_and_join(root, rsv);
5262 		if (IS_ERR(trans))
5263 			goto free_rsv;
5264 
5265 		trans->block_rsv = rsv;
5266 
5267 		ret = btrfs_truncate_inode_items(trans, root, &control);
5268 		trans->block_rsv = &fs_info->trans_block_rsv;
5269 		btrfs_end_transaction(trans);
5270 		btrfs_btree_balance_dirty(fs_info);
5271 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5272 			goto free_rsv;
5273 		else if (!ret)
5274 			break;
5275 	}
5276 
5277 	/*
5278 	 * Errors here aren't a big deal, it just means we leave orphan items in
5279 	 * the tree. They will be cleaned up on the next mount. If the inode
5280 	 * number gets reused, cleanup deletes the orphan item without doing
5281 	 * anything, and unlink reuses the existing orphan item.
5282 	 *
5283 	 * If it turns out that we are dropping too many of these, we might want
5284 	 * to add a mechanism for retrying these after a commit.
5285 	 */
5286 	trans = evict_refill_and_join(root, rsv);
5287 	if (!IS_ERR(trans)) {
5288 		trans->block_rsv = rsv;
5289 		btrfs_orphan_del(trans, BTRFS_I(inode));
5290 		trans->block_rsv = &fs_info->trans_block_rsv;
5291 		btrfs_end_transaction(trans);
5292 	}
5293 
5294 free_rsv:
5295 	btrfs_free_block_rsv(fs_info, rsv);
5296 no_delete:
5297 	/*
5298 	 * If we didn't successfully delete, the orphan item will still be in
5299 	 * the tree and we'll retry on the next mount. Again, we might also want
5300 	 * to retry these periodically in the future.
5301 	 */
5302 	btrfs_remove_delayed_node(BTRFS_I(inode));
5303 	fsverity_cleanup_inode(inode);
5304 	clear_inode(inode);
5305 }
5306 
5307 /*
5308  * Return the key found in the dir entry in the location pointer, fill @type
5309  * with BTRFS_FT_*, and return 0.
5310  *
5311  * If no dir entries were found, returns -ENOENT.
5312  * If found a corrupted location in dir entry, returns -EUCLEAN.
5313  */
5314 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5315 			       struct btrfs_key *location, u8 *type)
5316 {
5317 	const char *name = dentry->d_name.name;
5318 	int namelen = dentry->d_name.len;
5319 	struct btrfs_dir_item *di;
5320 	struct btrfs_path *path;
5321 	struct btrfs_root *root = BTRFS_I(dir)->root;
5322 	int ret = 0;
5323 
5324 	path = btrfs_alloc_path();
5325 	if (!path)
5326 		return -ENOMEM;
5327 
5328 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5329 			name, namelen, 0);
5330 	if (IS_ERR_OR_NULL(di)) {
5331 		ret = di ? PTR_ERR(di) : -ENOENT;
5332 		goto out;
5333 	}
5334 
5335 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5336 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5337 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5338 		ret = -EUCLEAN;
5339 		btrfs_warn(root->fs_info,
5340 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5341 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5342 			   location->objectid, location->type, location->offset);
5343 	}
5344 	if (!ret)
5345 		*type = btrfs_dir_type(path->nodes[0], di);
5346 out:
5347 	btrfs_free_path(path);
5348 	return ret;
5349 }
5350 
5351 /*
5352  * when we hit a tree root in a directory, the btrfs part of the inode
5353  * needs to be changed to reflect the root directory of the tree root.  This
5354  * is kind of like crossing a mount point.
5355  */
5356 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5357 				    struct inode *dir,
5358 				    struct dentry *dentry,
5359 				    struct btrfs_key *location,
5360 				    struct btrfs_root **sub_root)
5361 {
5362 	struct btrfs_path *path;
5363 	struct btrfs_root *new_root;
5364 	struct btrfs_root_ref *ref;
5365 	struct extent_buffer *leaf;
5366 	struct btrfs_key key;
5367 	int ret;
5368 	int err = 0;
5369 
5370 	path = btrfs_alloc_path();
5371 	if (!path) {
5372 		err = -ENOMEM;
5373 		goto out;
5374 	}
5375 
5376 	err = -ENOENT;
5377 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5378 	key.type = BTRFS_ROOT_REF_KEY;
5379 	key.offset = location->objectid;
5380 
5381 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5382 	if (ret) {
5383 		if (ret < 0)
5384 			err = ret;
5385 		goto out;
5386 	}
5387 
5388 	leaf = path->nodes[0];
5389 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5390 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5391 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5392 		goto out;
5393 
5394 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5395 				   (unsigned long)(ref + 1),
5396 				   dentry->d_name.len);
5397 	if (ret)
5398 		goto out;
5399 
5400 	btrfs_release_path(path);
5401 
5402 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5403 	if (IS_ERR(new_root)) {
5404 		err = PTR_ERR(new_root);
5405 		goto out;
5406 	}
5407 
5408 	*sub_root = new_root;
5409 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5410 	location->type = BTRFS_INODE_ITEM_KEY;
5411 	location->offset = 0;
5412 	err = 0;
5413 out:
5414 	btrfs_free_path(path);
5415 	return err;
5416 }
5417 
5418 static void inode_tree_add(struct inode *inode)
5419 {
5420 	struct btrfs_root *root = BTRFS_I(inode)->root;
5421 	struct btrfs_inode *entry;
5422 	struct rb_node **p;
5423 	struct rb_node *parent;
5424 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5425 	u64 ino = btrfs_ino(BTRFS_I(inode));
5426 
5427 	if (inode_unhashed(inode))
5428 		return;
5429 	parent = NULL;
5430 	spin_lock(&root->inode_lock);
5431 	p = &root->inode_tree.rb_node;
5432 	while (*p) {
5433 		parent = *p;
5434 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5435 
5436 		if (ino < btrfs_ino(entry))
5437 			p = &parent->rb_left;
5438 		else if (ino > btrfs_ino(entry))
5439 			p = &parent->rb_right;
5440 		else {
5441 			WARN_ON(!(entry->vfs_inode.i_state &
5442 				  (I_WILL_FREE | I_FREEING)));
5443 			rb_replace_node(parent, new, &root->inode_tree);
5444 			RB_CLEAR_NODE(parent);
5445 			spin_unlock(&root->inode_lock);
5446 			return;
5447 		}
5448 	}
5449 	rb_link_node(new, parent, p);
5450 	rb_insert_color(new, &root->inode_tree);
5451 	spin_unlock(&root->inode_lock);
5452 }
5453 
5454 static void inode_tree_del(struct btrfs_inode *inode)
5455 {
5456 	struct btrfs_root *root = inode->root;
5457 	int empty = 0;
5458 
5459 	spin_lock(&root->inode_lock);
5460 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5461 		rb_erase(&inode->rb_node, &root->inode_tree);
5462 		RB_CLEAR_NODE(&inode->rb_node);
5463 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5464 	}
5465 	spin_unlock(&root->inode_lock);
5466 
5467 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5468 		spin_lock(&root->inode_lock);
5469 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5470 		spin_unlock(&root->inode_lock);
5471 		if (empty)
5472 			btrfs_add_dead_root(root);
5473 	}
5474 }
5475 
5476 
5477 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5478 {
5479 	struct btrfs_iget_args *args = p;
5480 
5481 	inode->i_ino = args->ino;
5482 	BTRFS_I(inode)->location.objectid = args->ino;
5483 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5484 	BTRFS_I(inode)->location.offset = 0;
5485 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5486 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5487 	return 0;
5488 }
5489 
5490 static int btrfs_find_actor(struct inode *inode, void *opaque)
5491 {
5492 	struct btrfs_iget_args *args = opaque;
5493 
5494 	return args->ino == BTRFS_I(inode)->location.objectid &&
5495 		args->root == BTRFS_I(inode)->root;
5496 }
5497 
5498 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5499 				       struct btrfs_root *root)
5500 {
5501 	struct inode *inode;
5502 	struct btrfs_iget_args args;
5503 	unsigned long hashval = btrfs_inode_hash(ino, root);
5504 
5505 	args.ino = ino;
5506 	args.root = root;
5507 
5508 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5509 			     btrfs_init_locked_inode,
5510 			     (void *)&args);
5511 	return inode;
5512 }
5513 
5514 /*
5515  * Get an inode object given its inode number and corresponding root.
5516  * Path can be preallocated to prevent recursing back to iget through
5517  * allocator. NULL is also valid but may require an additional allocation
5518  * later.
5519  */
5520 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5521 			      struct btrfs_root *root, struct btrfs_path *path)
5522 {
5523 	struct inode *inode;
5524 
5525 	inode = btrfs_iget_locked(s, ino, root);
5526 	if (!inode)
5527 		return ERR_PTR(-ENOMEM);
5528 
5529 	if (inode->i_state & I_NEW) {
5530 		int ret;
5531 
5532 		ret = btrfs_read_locked_inode(inode, path);
5533 		if (!ret) {
5534 			inode_tree_add(inode);
5535 			unlock_new_inode(inode);
5536 		} else {
5537 			iget_failed(inode);
5538 			/*
5539 			 * ret > 0 can come from btrfs_search_slot called by
5540 			 * btrfs_read_locked_inode, this means the inode item
5541 			 * was not found.
5542 			 */
5543 			if (ret > 0)
5544 				ret = -ENOENT;
5545 			inode = ERR_PTR(ret);
5546 		}
5547 	}
5548 
5549 	return inode;
5550 }
5551 
5552 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5553 {
5554 	return btrfs_iget_path(s, ino, root, NULL);
5555 }
5556 
5557 static struct inode *new_simple_dir(struct super_block *s,
5558 				    struct btrfs_key *key,
5559 				    struct btrfs_root *root)
5560 {
5561 	struct inode *inode = new_inode(s);
5562 
5563 	if (!inode)
5564 		return ERR_PTR(-ENOMEM);
5565 
5566 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5567 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5568 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5569 
5570 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5571 	/*
5572 	 * We only need lookup, the rest is read-only and there's no inode
5573 	 * associated with the dentry
5574 	 */
5575 	inode->i_op = &simple_dir_inode_operations;
5576 	inode->i_opflags &= ~IOP_XATTR;
5577 	inode->i_fop = &simple_dir_operations;
5578 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5579 	inode->i_mtime = current_time(inode);
5580 	inode->i_atime = inode->i_mtime;
5581 	inode->i_ctime = inode->i_mtime;
5582 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5583 
5584 	return inode;
5585 }
5586 
5587 static inline u8 btrfs_inode_type(struct inode *inode)
5588 {
5589 	/*
5590 	 * Compile-time asserts that generic FT_* types still match
5591 	 * BTRFS_FT_* types
5592 	 */
5593 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5594 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5595 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5596 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5597 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5598 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5599 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5600 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5601 
5602 	return fs_umode_to_ftype(inode->i_mode);
5603 }
5604 
5605 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5606 {
5607 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5608 	struct inode *inode;
5609 	struct btrfs_root *root = BTRFS_I(dir)->root;
5610 	struct btrfs_root *sub_root = root;
5611 	struct btrfs_key location;
5612 	u8 di_type = 0;
5613 	int ret = 0;
5614 
5615 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5616 		return ERR_PTR(-ENAMETOOLONG);
5617 
5618 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5619 	if (ret < 0)
5620 		return ERR_PTR(ret);
5621 
5622 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5623 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5624 		if (IS_ERR(inode))
5625 			return inode;
5626 
5627 		/* Do extra check against inode mode with di_type */
5628 		if (btrfs_inode_type(inode) != di_type) {
5629 			btrfs_crit(fs_info,
5630 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5631 				  inode->i_mode, btrfs_inode_type(inode),
5632 				  di_type);
5633 			iput(inode);
5634 			return ERR_PTR(-EUCLEAN);
5635 		}
5636 		return inode;
5637 	}
5638 
5639 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5640 				       &location, &sub_root);
5641 	if (ret < 0) {
5642 		if (ret != -ENOENT)
5643 			inode = ERR_PTR(ret);
5644 		else
5645 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5646 	} else {
5647 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5648 	}
5649 	if (root != sub_root)
5650 		btrfs_put_root(sub_root);
5651 
5652 	if (!IS_ERR(inode) && root != sub_root) {
5653 		down_read(&fs_info->cleanup_work_sem);
5654 		if (!sb_rdonly(inode->i_sb))
5655 			ret = btrfs_orphan_cleanup(sub_root);
5656 		up_read(&fs_info->cleanup_work_sem);
5657 		if (ret) {
5658 			iput(inode);
5659 			inode = ERR_PTR(ret);
5660 		}
5661 	}
5662 
5663 	return inode;
5664 }
5665 
5666 static int btrfs_dentry_delete(const struct dentry *dentry)
5667 {
5668 	struct btrfs_root *root;
5669 	struct inode *inode = d_inode(dentry);
5670 
5671 	if (!inode && !IS_ROOT(dentry))
5672 		inode = d_inode(dentry->d_parent);
5673 
5674 	if (inode) {
5675 		root = BTRFS_I(inode)->root;
5676 		if (btrfs_root_refs(&root->root_item) == 0)
5677 			return 1;
5678 
5679 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5680 			return 1;
5681 	}
5682 	return 0;
5683 }
5684 
5685 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5686 				   unsigned int flags)
5687 {
5688 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5689 
5690 	if (inode == ERR_PTR(-ENOENT))
5691 		inode = NULL;
5692 	return d_splice_alias(inode, dentry);
5693 }
5694 
5695 /*
5696  * All this infrastructure exists because dir_emit can fault, and we are holding
5697  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5698  * our information into that, and then dir_emit from the buffer.  This is
5699  * similar to what NFS does, only we don't keep the buffer around in pagecache
5700  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5701  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5702  * tree lock.
5703  */
5704 static int btrfs_opendir(struct inode *inode, struct file *file)
5705 {
5706 	struct btrfs_file_private *private;
5707 
5708 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5709 	if (!private)
5710 		return -ENOMEM;
5711 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5712 	if (!private->filldir_buf) {
5713 		kfree(private);
5714 		return -ENOMEM;
5715 	}
5716 	file->private_data = private;
5717 	return 0;
5718 }
5719 
5720 struct dir_entry {
5721 	u64 ino;
5722 	u64 offset;
5723 	unsigned type;
5724 	int name_len;
5725 };
5726 
5727 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5728 {
5729 	while (entries--) {
5730 		struct dir_entry *entry = addr;
5731 		char *name = (char *)(entry + 1);
5732 
5733 		ctx->pos = get_unaligned(&entry->offset);
5734 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5735 					 get_unaligned(&entry->ino),
5736 					 get_unaligned(&entry->type)))
5737 			return 1;
5738 		addr += sizeof(struct dir_entry) +
5739 			get_unaligned(&entry->name_len);
5740 		ctx->pos++;
5741 	}
5742 	return 0;
5743 }
5744 
5745 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5746 {
5747 	struct inode *inode = file_inode(file);
5748 	struct btrfs_root *root = BTRFS_I(inode)->root;
5749 	struct btrfs_file_private *private = file->private_data;
5750 	struct btrfs_dir_item *di;
5751 	struct btrfs_key key;
5752 	struct btrfs_key found_key;
5753 	struct btrfs_path *path;
5754 	void *addr;
5755 	struct list_head ins_list;
5756 	struct list_head del_list;
5757 	int ret;
5758 	struct extent_buffer *leaf;
5759 	int slot;
5760 	char *name_ptr;
5761 	int name_len;
5762 	int entries = 0;
5763 	int total_len = 0;
5764 	bool put = false;
5765 	struct btrfs_key location;
5766 
5767 	if (!dir_emit_dots(file, ctx))
5768 		return 0;
5769 
5770 	path = btrfs_alloc_path();
5771 	if (!path)
5772 		return -ENOMEM;
5773 
5774 	addr = private->filldir_buf;
5775 	path->reada = READA_FORWARD;
5776 
5777 	INIT_LIST_HEAD(&ins_list);
5778 	INIT_LIST_HEAD(&del_list);
5779 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5780 
5781 again:
5782 	key.type = BTRFS_DIR_INDEX_KEY;
5783 	key.offset = ctx->pos;
5784 	key.objectid = btrfs_ino(BTRFS_I(inode));
5785 
5786 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5787 	if (ret < 0)
5788 		goto err;
5789 
5790 	while (1) {
5791 		struct dir_entry *entry;
5792 
5793 		leaf = path->nodes[0];
5794 		slot = path->slots[0];
5795 		if (slot >= btrfs_header_nritems(leaf)) {
5796 			ret = btrfs_next_leaf(root, path);
5797 			if (ret < 0)
5798 				goto err;
5799 			else if (ret > 0)
5800 				break;
5801 			continue;
5802 		}
5803 
5804 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5805 
5806 		if (found_key.objectid != key.objectid)
5807 			break;
5808 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5809 			break;
5810 		if (found_key.offset < ctx->pos)
5811 			goto next;
5812 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5813 			goto next;
5814 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5815 		name_len = btrfs_dir_name_len(leaf, di);
5816 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5817 		    PAGE_SIZE) {
5818 			btrfs_release_path(path);
5819 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5820 			if (ret)
5821 				goto nopos;
5822 			addr = private->filldir_buf;
5823 			entries = 0;
5824 			total_len = 0;
5825 			goto again;
5826 		}
5827 
5828 		entry = addr;
5829 		put_unaligned(name_len, &entry->name_len);
5830 		name_ptr = (char *)(entry + 1);
5831 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5832 				   name_len);
5833 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5834 				&entry->type);
5835 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5836 		put_unaligned(location.objectid, &entry->ino);
5837 		put_unaligned(found_key.offset, &entry->offset);
5838 		entries++;
5839 		addr += sizeof(struct dir_entry) + name_len;
5840 		total_len += sizeof(struct dir_entry) + name_len;
5841 next:
5842 		path->slots[0]++;
5843 	}
5844 	btrfs_release_path(path);
5845 
5846 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5847 	if (ret)
5848 		goto nopos;
5849 
5850 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5851 	if (ret)
5852 		goto nopos;
5853 
5854 	/*
5855 	 * Stop new entries from being returned after we return the last
5856 	 * entry.
5857 	 *
5858 	 * New directory entries are assigned a strictly increasing
5859 	 * offset.  This means that new entries created during readdir
5860 	 * are *guaranteed* to be seen in the future by that readdir.
5861 	 * This has broken buggy programs which operate on names as
5862 	 * they're returned by readdir.  Until we re-use freed offsets
5863 	 * we have this hack to stop new entries from being returned
5864 	 * under the assumption that they'll never reach this huge
5865 	 * offset.
5866 	 *
5867 	 * This is being careful not to overflow 32bit loff_t unless the
5868 	 * last entry requires it because doing so has broken 32bit apps
5869 	 * in the past.
5870 	 */
5871 	if (ctx->pos >= INT_MAX)
5872 		ctx->pos = LLONG_MAX;
5873 	else
5874 		ctx->pos = INT_MAX;
5875 nopos:
5876 	ret = 0;
5877 err:
5878 	if (put)
5879 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5880 	btrfs_free_path(path);
5881 	return ret;
5882 }
5883 
5884 /*
5885  * This is somewhat expensive, updating the tree every time the
5886  * inode changes.  But, it is most likely to find the inode in cache.
5887  * FIXME, needs more benchmarking...there are no reasons other than performance
5888  * to keep or drop this code.
5889  */
5890 static int btrfs_dirty_inode(struct inode *inode)
5891 {
5892 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5893 	struct btrfs_root *root = BTRFS_I(inode)->root;
5894 	struct btrfs_trans_handle *trans;
5895 	int ret;
5896 
5897 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5898 		return 0;
5899 
5900 	trans = btrfs_join_transaction(root);
5901 	if (IS_ERR(trans))
5902 		return PTR_ERR(trans);
5903 
5904 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5905 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5906 		/* whoops, lets try again with the full transaction */
5907 		btrfs_end_transaction(trans);
5908 		trans = btrfs_start_transaction(root, 1);
5909 		if (IS_ERR(trans))
5910 			return PTR_ERR(trans);
5911 
5912 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5913 	}
5914 	btrfs_end_transaction(trans);
5915 	if (BTRFS_I(inode)->delayed_node)
5916 		btrfs_balance_delayed_items(fs_info);
5917 
5918 	return ret;
5919 }
5920 
5921 /*
5922  * This is a copy of file_update_time.  We need this so we can return error on
5923  * ENOSPC for updating the inode in the case of file write and mmap writes.
5924  */
5925 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5926 			     int flags)
5927 {
5928 	struct btrfs_root *root = BTRFS_I(inode)->root;
5929 	bool dirty = flags & ~S_VERSION;
5930 
5931 	if (btrfs_root_readonly(root))
5932 		return -EROFS;
5933 
5934 	if (flags & S_VERSION)
5935 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5936 	if (flags & S_CTIME)
5937 		inode->i_ctime = *now;
5938 	if (flags & S_MTIME)
5939 		inode->i_mtime = *now;
5940 	if (flags & S_ATIME)
5941 		inode->i_atime = *now;
5942 	return dirty ? btrfs_dirty_inode(inode) : 0;
5943 }
5944 
5945 /*
5946  * find the highest existing sequence number in a directory
5947  * and then set the in-memory index_cnt variable to reflect
5948  * free sequence numbers
5949  */
5950 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5951 {
5952 	struct btrfs_root *root = inode->root;
5953 	struct btrfs_key key, found_key;
5954 	struct btrfs_path *path;
5955 	struct extent_buffer *leaf;
5956 	int ret;
5957 
5958 	key.objectid = btrfs_ino(inode);
5959 	key.type = BTRFS_DIR_INDEX_KEY;
5960 	key.offset = (u64)-1;
5961 
5962 	path = btrfs_alloc_path();
5963 	if (!path)
5964 		return -ENOMEM;
5965 
5966 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5967 	if (ret < 0)
5968 		goto out;
5969 	/* FIXME: we should be able to handle this */
5970 	if (ret == 0)
5971 		goto out;
5972 	ret = 0;
5973 
5974 	/*
5975 	 * MAGIC NUMBER EXPLANATION:
5976 	 * since we search a directory based on f_pos we have to start at 2
5977 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5978 	 * else has to start at 2
5979 	 */
5980 	if (path->slots[0] == 0) {
5981 		inode->index_cnt = 2;
5982 		goto out;
5983 	}
5984 
5985 	path->slots[0]--;
5986 
5987 	leaf = path->nodes[0];
5988 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5989 
5990 	if (found_key.objectid != btrfs_ino(inode) ||
5991 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5992 		inode->index_cnt = 2;
5993 		goto out;
5994 	}
5995 
5996 	inode->index_cnt = found_key.offset + 1;
5997 out:
5998 	btrfs_free_path(path);
5999 	return ret;
6000 }
6001 
6002 /*
6003  * helper to find a free sequence number in a given directory.  This current
6004  * code is very simple, later versions will do smarter things in the btree
6005  */
6006 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6007 {
6008 	int ret = 0;
6009 
6010 	if (dir->index_cnt == (u64)-1) {
6011 		ret = btrfs_inode_delayed_dir_index_count(dir);
6012 		if (ret) {
6013 			ret = btrfs_set_inode_index_count(dir);
6014 			if (ret)
6015 				return ret;
6016 		}
6017 	}
6018 
6019 	*index = dir->index_cnt;
6020 	dir->index_cnt++;
6021 
6022 	return ret;
6023 }
6024 
6025 static int btrfs_insert_inode_locked(struct inode *inode)
6026 {
6027 	struct btrfs_iget_args args;
6028 
6029 	args.ino = BTRFS_I(inode)->location.objectid;
6030 	args.root = BTRFS_I(inode)->root;
6031 
6032 	return insert_inode_locked4(inode,
6033 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6034 		   btrfs_find_actor, &args);
6035 }
6036 
6037 /*
6038  * Inherit flags from the parent inode.
6039  *
6040  * Currently only the compression flags and the cow flags are inherited.
6041  */
6042 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6043 {
6044 	unsigned int flags;
6045 
6046 	if (!dir)
6047 		return;
6048 
6049 	flags = BTRFS_I(dir)->flags;
6050 
6051 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6052 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6053 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6054 	} else if (flags & BTRFS_INODE_COMPRESS) {
6055 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6056 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6057 	}
6058 
6059 	if (flags & BTRFS_INODE_NODATACOW) {
6060 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6061 		if (S_ISREG(inode->i_mode))
6062 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6063 	}
6064 
6065 	btrfs_sync_inode_flags_to_i_flags(inode);
6066 }
6067 
6068 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6069 				     struct btrfs_root *root,
6070 				     struct user_namespace *mnt_userns,
6071 				     struct inode *dir,
6072 				     const char *name, int name_len,
6073 				     u64 ref_objectid, u64 objectid,
6074 				     umode_t mode, u64 *index)
6075 {
6076 	struct btrfs_fs_info *fs_info = root->fs_info;
6077 	struct inode *inode;
6078 	struct btrfs_inode_item *inode_item;
6079 	struct btrfs_key *location;
6080 	struct btrfs_path *path;
6081 	struct btrfs_inode_ref *ref;
6082 	struct btrfs_key key[2];
6083 	u32 sizes[2];
6084 	struct btrfs_item_batch batch;
6085 	unsigned long ptr;
6086 	unsigned int nofs_flag;
6087 	int ret;
6088 
6089 	path = btrfs_alloc_path();
6090 	if (!path)
6091 		return ERR_PTR(-ENOMEM);
6092 
6093 	nofs_flag = memalloc_nofs_save();
6094 	inode = new_inode(fs_info->sb);
6095 	memalloc_nofs_restore(nofs_flag);
6096 	if (!inode) {
6097 		btrfs_free_path(path);
6098 		return ERR_PTR(-ENOMEM);
6099 	}
6100 
6101 	/*
6102 	 * O_TMPFILE, set link count to 0, so that after this point,
6103 	 * we fill in an inode item with the correct link count.
6104 	 */
6105 	if (!name)
6106 		set_nlink(inode, 0);
6107 
6108 	/*
6109 	 * we have to initialize this early, so we can reclaim the inode
6110 	 * number if we fail afterwards in this function.
6111 	 */
6112 	inode->i_ino = objectid;
6113 
6114 	if (dir && name) {
6115 		trace_btrfs_inode_request(dir);
6116 
6117 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6118 		if (ret) {
6119 			btrfs_free_path(path);
6120 			iput(inode);
6121 			return ERR_PTR(ret);
6122 		}
6123 	} else if (dir) {
6124 		*index = 0;
6125 	}
6126 	/*
6127 	 * index_cnt is ignored for everything but a dir,
6128 	 * btrfs_set_inode_index_count has an explanation for the magic
6129 	 * number
6130 	 */
6131 	BTRFS_I(inode)->index_cnt = 2;
6132 	BTRFS_I(inode)->dir_index = *index;
6133 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6134 	BTRFS_I(inode)->generation = trans->transid;
6135 	inode->i_generation = BTRFS_I(inode)->generation;
6136 
6137 	/*
6138 	 * We could have gotten an inode number from somebody who was fsynced
6139 	 * and then removed in this same transaction, so let's just set full
6140 	 * sync since it will be a full sync anyway and this will blow away the
6141 	 * old info in the log.
6142 	 */
6143 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6144 
6145 	key[0].objectid = objectid;
6146 	key[0].type = BTRFS_INODE_ITEM_KEY;
6147 	key[0].offset = 0;
6148 
6149 	sizes[0] = sizeof(struct btrfs_inode_item);
6150 
6151 	if (name) {
6152 		/*
6153 		 * Start new inodes with an inode_ref. This is slightly more
6154 		 * efficient for small numbers of hard links since they will
6155 		 * be packed into one item. Extended refs will kick in if we
6156 		 * add more hard links than can fit in the ref item.
6157 		 */
6158 		key[1].objectid = objectid;
6159 		key[1].type = BTRFS_INODE_REF_KEY;
6160 		key[1].offset = ref_objectid;
6161 
6162 		sizes[1] = name_len + sizeof(*ref);
6163 	}
6164 
6165 	location = &BTRFS_I(inode)->location;
6166 	location->objectid = objectid;
6167 	location->offset = 0;
6168 	location->type = BTRFS_INODE_ITEM_KEY;
6169 
6170 	ret = btrfs_insert_inode_locked(inode);
6171 	if (ret < 0) {
6172 		iput(inode);
6173 		goto fail;
6174 	}
6175 
6176 	batch.keys = &key[0];
6177 	batch.data_sizes = &sizes[0];
6178 	batch.total_data_size = sizes[0] + (name ? sizes[1] : 0);
6179 	batch.nr = name ? 2 : 1;
6180 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6181 	if (ret != 0)
6182 		goto fail_unlock;
6183 
6184 	inode_init_owner(mnt_userns, inode, dir, mode);
6185 	inode_set_bytes(inode, 0);
6186 
6187 	inode->i_mtime = current_time(inode);
6188 	inode->i_atime = inode->i_mtime;
6189 	inode->i_ctime = inode->i_mtime;
6190 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6191 
6192 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6193 				  struct btrfs_inode_item);
6194 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6195 			     sizeof(*inode_item));
6196 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6197 
6198 	if (name) {
6199 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6200 				     struct btrfs_inode_ref);
6201 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6202 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6203 		ptr = (unsigned long)(ref + 1);
6204 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6205 	}
6206 
6207 	btrfs_mark_buffer_dirty(path->nodes[0]);
6208 	btrfs_free_path(path);
6209 
6210 	btrfs_inherit_iflags(inode, dir);
6211 
6212 	if (S_ISREG(mode)) {
6213 		if (btrfs_test_opt(fs_info, NODATASUM))
6214 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6215 		if (btrfs_test_opt(fs_info, NODATACOW))
6216 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6217 				BTRFS_INODE_NODATASUM;
6218 	}
6219 
6220 	inode_tree_add(inode);
6221 
6222 	trace_btrfs_inode_new(inode);
6223 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6224 
6225 	btrfs_update_root_times(trans, root);
6226 
6227 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6228 	if (ret)
6229 		btrfs_err(fs_info,
6230 			  "error inheriting props for ino %llu (root %llu): %d",
6231 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6232 
6233 	return inode;
6234 
6235 fail_unlock:
6236 	discard_new_inode(inode);
6237 fail:
6238 	if (dir && name)
6239 		BTRFS_I(dir)->index_cnt--;
6240 	btrfs_free_path(path);
6241 	return ERR_PTR(ret);
6242 }
6243 
6244 /*
6245  * utility function to add 'inode' into 'parent_inode' with
6246  * a give name and a given sequence number.
6247  * if 'add_backref' is true, also insert a backref from the
6248  * inode to the parent directory.
6249  */
6250 int btrfs_add_link(struct btrfs_trans_handle *trans,
6251 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6252 		   const char *name, int name_len, int add_backref, u64 index)
6253 {
6254 	int ret = 0;
6255 	struct btrfs_key key;
6256 	struct btrfs_root *root = parent_inode->root;
6257 	u64 ino = btrfs_ino(inode);
6258 	u64 parent_ino = btrfs_ino(parent_inode);
6259 
6260 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6261 		memcpy(&key, &inode->root->root_key, sizeof(key));
6262 	} else {
6263 		key.objectid = ino;
6264 		key.type = BTRFS_INODE_ITEM_KEY;
6265 		key.offset = 0;
6266 	}
6267 
6268 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6269 		ret = btrfs_add_root_ref(trans, key.objectid,
6270 					 root->root_key.objectid, parent_ino,
6271 					 index, name, name_len);
6272 	} else if (add_backref) {
6273 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6274 					     parent_ino, index);
6275 	}
6276 
6277 	/* Nothing to clean up yet */
6278 	if (ret)
6279 		return ret;
6280 
6281 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6282 				    btrfs_inode_type(&inode->vfs_inode), index);
6283 	if (ret == -EEXIST || ret == -EOVERFLOW)
6284 		goto fail_dir_item;
6285 	else if (ret) {
6286 		btrfs_abort_transaction(trans, ret);
6287 		return ret;
6288 	}
6289 
6290 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6291 			   name_len * 2);
6292 	inode_inc_iversion(&parent_inode->vfs_inode);
6293 	/*
6294 	 * If we are replaying a log tree, we do not want to update the mtime
6295 	 * and ctime of the parent directory with the current time, since the
6296 	 * log replay procedure is responsible for setting them to their correct
6297 	 * values (the ones it had when the fsync was done).
6298 	 */
6299 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6300 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6301 
6302 		parent_inode->vfs_inode.i_mtime = now;
6303 		parent_inode->vfs_inode.i_ctime = now;
6304 	}
6305 	ret = btrfs_update_inode(trans, root, parent_inode);
6306 	if (ret)
6307 		btrfs_abort_transaction(trans, ret);
6308 	return ret;
6309 
6310 fail_dir_item:
6311 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6312 		u64 local_index;
6313 		int err;
6314 		err = btrfs_del_root_ref(trans, key.objectid,
6315 					 root->root_key.objectid, parent_ino,
6316 					 &local_index, name, name_len);
6317 		if (err)
6318 			btrfs_abort_transaction(trans, err);
6319 	} else if (add_backref) {
6320 		u64 local_index;
6321 		int err;
6322 
6323 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6324 					  ino, parent_ino, &local_index);
6325 		if (err)
6326 			btrfs_abort_transaction(trans, err);
6327 	}
6328 
6329 	/* Return the original error code */
6330 	return ret;
6331 }
6332 
6333 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6334 			    struct btrfs_inode *dir, struct dentry *dentry,
6335 			    struct btrfs_inode *inode, int backref, u64 index)
6336 {
6337 	int err = btrfs_add_link(trans, dir, inode,
6338 				 dentry->d_name.name, dentry->d_name.len,
6339 				 backref, index);
6340 	if (err > 0)
6341 		err = -EEXIST;
6342 	return err;
6343 }
6344 
6345 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6346 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6347 {
6348 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6349 	struct btrfs_trans_handle *trans;
6350 	struct btrfs_root *root = BTRFS_I(dir)->root;
6351 	struct inode *inode = NULL;
6352 	int err;
6353 	u64 objectid;
6354 	u64 index = 0;
6355 
6356 	/*
6357 	 * 2 for inode item and ref
6358 	 * 2 for dir items
6359 	 * 1 for xattr if selinux is on
6360 	 */
6361 	trans = btrfs_start_transaction(root, 5);
6362 	if (IS_ERR(trans))
6363 		return PTR_ERR(trans);
6364 
6365 	err = btrfs_get_free_objectid(root, &objectid);
6366 	if (err)
6367 		goto out_unlock;
6368 
6369 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6370 			dentry->d_name.name, dentry->d_name.len,
6371 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6372 	if (IS_ERR(inode)) {
6373 		err = PTR_ERR(inode);
6374 		inode = NULL;
6375 		goto out_unlock;
6376 	}
6377 
6378 	/*
6379 	* If the active LSM wants to access the inode during
6380 	* d_instantiate it needs these. Smack checks to see
6381 	* if the filesystem supports xattrs by looking at the
6382 	* ops vector.
6383 	*/
6384 	inode->i_op = &btrfs_special_inode_operations;
6385 	init_special_inode(inode, inode->i_mode, rdev);
6386 
6387 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6388 	if (err)
6389 		goto out_unlock;
6390 
6391 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6392 			0, index);
6393 	if (err)
6394 		goto out_unlock;
6395 
6396 	btrfs_update_inode(trans, root, BTRFS_I(inode));
6397 	d_instantiate_new(dentry, inode);
6398 
6399 out_unlock:
6400 	btrfs_end_transaction(trans);
6401 	btrfs_btree_balance_dirty(fs_info);
6402 	if (err && inode) {
6403 		inode_dec_link_count(inode);
6404 		discard_new_inode(inode);
6405 	}
6406 	return err;
6407 }
6408 
6409 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6410 			struct dentry *dentry, umode_t mode, bool excl)
6411 {
6412 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6413 	struct btrfs_trans_handle *trans;
6414 	struct btrfs_root *root = BTRFS_I(dir)->root;
6415 	struct inode *inode = NULL;
6416 	int err;
6417 	u64 objectid;
6418 	u64 index = 0;
6419 
6420 	/*
6421 	 * 2 for inode item and ref
6422 	 * 2 for dir items
6423 	 * 1 for xattr if selinux is on
6424 	 */
6425 	trans = btrfs_start_transaction(root, 5);
6426 	if (IS_ERR(trans))
6427 		return PTR_ERR(trans);
6428 
6429 	err = btrfs_get_free_objectid(root, &objectid);
6430 	if (err)
6431 		goto out_unlock;
6432 
6433 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6434 			dentry->d_name.name, dentry->d_name.len,
6435 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6436 	if (IS_ERR(inode)) {
6437 		err = PTR_ERR(inode);
6438 		inode = NULL;
6439 		goto out_unlock;
6440 	}
6441 	/*
6442 	* If the active LSM wants to access the inode during
6443 	* d_instantiate it needs these. Smack checks to see
6444 	* if the filesystem supports xattrs by looking at the
6445 	* ops vector.
6446 	*/
6447 	inode->i_fop = &btrfs_file_operations;
6448 	inode->i_op = &btrfs_file_inode_operations;
6449 	inode->i_mapping->a_ops = &btrfs_aops;
6450 
6451 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6452 	if (err)
6453 		goto out_unlock;
6454 
6455 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6456 	if (err)
6457 		goto out_unlock;
6458 
6459 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6460 			0, index);
6461 	if (err)
6462 		goto out_unlock;
6463 
6464 	d_instantiate_new(dentry, inode);
6465 
6466 out_unlock:
6467 	btrfs_end_transaction(trans);
6468 	if (err && inode) {
6469 		inode_dec_link_count(inode);
6470 		discard_new_inode(inode);
6471 	}
6472 	btrfs_btree_balance_dirty(fs_info);
6473 	return err;
6474 }
6475 
6476 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6477 		      struct dentry *dentry)
6478 {
6479 	struct btrfs_trans_handle *trans = NULL;
6480 	struct btrfs_root *root = BTRFS_I(dir)->root;
6481 	struct inode *inode = d_inode(old_dentry);
6482 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6483 	u64 index;
6484 	int err;
6485 	int drop_inode = 0;
6486 
6487 	/* do not allow sys_link's with other subvols of the same device */
6488 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6489 		return -EXDEV;
6490 
6491 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6492 		return -EMLINK;
6493 
6494 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6495 	if (err)
6496 		goto fail;
6497 
6498 	/*
6499 	 * 2 items for inode and inode ref
6500 	 * 2 items for dir items
6501 	 * 1 item for parent inode
6502 	 * 1 item for orphan item deletion if O_TMPFILE
6503 	 */
6504 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6505 	if (IS_ERR(trans)) {
6506 		err = PTR_ERR(trans);
6507 		trans = NULL;
6508 		goto fail;
6509 	}
6510 
6511 	/* There are several dir indexes for this inode, clear the cache. */
6512 	BTRFS_I(inode)->dir_index = 0ULL;
6513 	inc_nlink(inode);
6514 	inode_inc_iversion(inode);
6515 	inode->i_ctime = current_time(inode);
6516 	ihold(inode);
6517 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6518 
6519 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6520 			1, index);
6521 
6522 	if (err) {
6523 		drop_inode = 1;
6524 	} else {
6525 		struct dentry *parent = dentry->d_parent;
6526 
6527 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6528 		if (err)
6529 			goto fail;
6530 		if (inode->i_nlink == 1) {
6531 			/*
6532 			 * If new hard link count is 1, it's a file created
6533 			 * with open(2) O_TMPFILE flag.
6534 			 */
6535 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6536 			if (err)
6537 				goto fail;
6538 		}
6539 		d_instantiate(dentry, inode);
6540 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6541 	}
6542 
6543 fail:
6544 	if (trans)
6545 		btrfs_end_transaction(trans);
6546 	if (drop_inode) {
6547 		inode_dec_link_count(inode);
6548 		iput(inode);
6549 	}
6550 	btrfs_btree_balance_dirty(fs_info);
6551 	return err;
6552 }
6553 
6554 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6555 		       struct dentry *dentry, umode_t mode)
6556 {
6557 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6558 	struct inode *inode = NULL;
6559 	struct btrfs_trans_handle *trans;
6560 	struct btrfs_root *root = BTRFS_I(dir)->root;
6561 	int err = 0;
6562 	u64 objectid = 0;
6563 	u64 index = 0;
6564 
6565 	/*
6566 	 * 2 items for inode and ref
6567 	 * 2 items for dir items
6568 	 * 1 for xattr if selinux is on
6569 	 */
6570 	trans = btrfs_start_transaction(root, 5);
6571 	if (IS_ERR(trans))
6572 		return PTR_ERR(trans);
6573 
6574 	err = btrfs_get_free_objectid(root, &objectid);
6575 	if (err)
6576 		goto out_fail;
6577 
6578 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6579 			dentry->d_name.name, dentry->d_name.len,
6580 			btrfs_ino(BTRFS_I(dir)), objectid,
6581 			S_IFDIR | mode, &index);
6582 	if (IS_ERR(inode)) {
6583 		err = PTR_ERR(inode);
6584 		inode = NULL;
6585 		goto out_fail;
6586 	}
6587 
6588 	/* these must be set before we unlock the inode */
6589 	inode->i_op = &btrfs_dir_inode_operations;
6590 	inode->i_fop = &btrfs_dir_file_operations;
6591 
6592 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6593 	if (err)
6594 		goto out_fail;
6595 
6596 	btrfs_i_size_write(BTRFS_I(inode), 0);
6597 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6598 	if (err)
6599 		goto out_fail;
6600 
6601 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6602 			dentry->d_name.name,
6603 			dentry->d_name.len, 0, index);
6604 	if (err)
6605 		goto out_fail;
6606 
6607 	d_instantiate_new(dentry, inode);
6608 
6609 out_fail:
6610 	btrfs_end_transaction(trans);
6611 	if (err && inode) {
6612 		inode_dec_link_count(inode);
6613 		discard_new_inode(inode);
6614 	}
6615 	btrfs_btree_balance_dirty(fs_info);
6616 	return err;
6617 }
6618 
6619 static noinline int uncompress_inline(struct btrfs_path *path,
6620 				      struct page *page,
6621 				      size_t pg_offset, u64 extent_offset,
6622 				      struct btrfs_file_extent_item *item)
6623 {
6624 	int ret;
6625 	struct extent_buffer *leaf = path->nodes[0];
6626 	char *tmp;
6627 	size_t max_size;
6628 	unsigned long inline_size;
6629 	unsigned long ptr;
6630 	int compress_type;
6631 
6632 	WARN_ON(pg_offset != 0);
6633 	compress_type = btrfs_file_extent_compression(leaf, item);
6634 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6635 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6636 	tmp = kmalloc(inline_size, GFP_NOFS);
6637 	if (!tmp)
6638 		return -ENOMEM;
6639 	ptr = btrfs_file_extent_inline_start(item);
6640 
6641 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6642 
6643 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6644 	ret = btrfs_decompress(compress_type, tmp, page,
6645 			       extent_offset, inline_size, max_size);
6646 
6647 	/*
6648 	 * decompression code contains a memset to fill in any space between the end
6649 	 * of the uncompressed data and the end of max_size in case the decompressed
6650 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6651 	 * the end of an inline extent and the beginning of the next block, so we
6652 	 * cover that region here.
6653 	 */
6654 
6655 	if (max_size + pg_offset < PAGE_SIZE)
6656 		memzero_page(page,  pg_offset + max_size,
6657 			     PAGE_SIZE - max_size - pg_offset);
6658 	kfree(tmp);
6659 	return ret;
6660 }
6661 
6662 /**
6663  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6664  * @inode:	file to search in
6665  * @page:	page to read extent data into if the extent is inline
6666  * @pg_offset:	offset into @page to copy to
6667  * @start:	file offset
6668  * @len:	length of range starting at @start
6669  *
6670  * This returns the first &struct extent_map which overlaps with the given
6671  * range, reading it from the B-tree and caching it if necessary. Note that
6672  * there may be more extents which overlap the given range after the returned
6673  * extent_map.
6674  *
6675  * If @page is not NULL and the extent is inline, this also reads the extent
6676  * data directly into the page and marks the extent up to date in the io_tree.
6677  *
6678  * Return: ERR_PTR on error, non-NULL extent_map on success.
6679  */
6680 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6681 				    struct page *page, size_t pg_offset,
6682 				    u64 start, u64 len)
6683 {
6684 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6685 	int ret = 0;
6686 	u64 extent_start = 0;
6687 	u64 extent_end = 0;
6688 	u64 objectid = btrfs_ino(inode);
6689 	int extent_type = -1;
6690 	struct btrfs_path *path = NULL;
6691 	struct btrfs_root *root = inode->root;
6692 	struct btrfs_file_extent_item *item;
6693 	struct extent_buffer *leaf;
6694 	struct btrfs_key found_key;
6695 	struct extent_map *em = NULL;
6696 	struct extent_map_tree *em_tree = &inode->extent_tree;
6697 	struct extent_io_tree *io_tree = &inode->io_tree;
6698 
6699 	read_lock(&em_tree->lock);
6700 	em = lookup_extent_mapping(em_tree, start, len);
6701 	read_unlock(&em_tree->lock);
6702 
6703 	if (em) {
6704 		if (em->start > start || em->start + em->len <= start)
6705 			free_extent_map(em);
6706 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6707 			free_extent_map(em);
6708 		else
6709 			goto out;
6710 	}
6711 	em = alloc_extent_map();
6712 	if (!em) {
6713 		ret = -ENOMEM;
6714 		goto out;
6715 	}
6716 	em->start = EXTENT_MAP_HOLE;
6717 	em->orig_start = EXTENT_MAP_HOLE;
6718 	em->len = (u64)-1;
6719 	em->block_len = (u64)-1;
6720 
6721 	path = btrfs_alloc_path();
6722 	if (!path) {
6723 		ret = -ENOMEM;
6724 		goto out;
6725 	}
6726 
6727 	/* Chances are we'll be called again, so go ahead and do readahead */
6728 	path->reada = READA_FORWARD;
6729 
6730 	/*
6731 	 * The same explanation in load_free_space_cache applies here as well,
6732 	 * we only read when we're loading the free space cache, and at that
6733 	 * point the commit_root has everything we need.
6734 	 */
6735 	if (btrfs_is_free_space_inode(inode)) {
6736 		path->search_commit_root = 1;
6737 		path->skip_locking = 1;
6738 	}
6739 
6740 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6741 	if (ret < 0) {
6742 		goto out;
6743 	} else if (ret > 0) {
6744 		if (path->slots[0] == 0)
6745 			goto not_found;
6746 		path->slots[0]--;
6747 		ret = 0;
6748 	}
6749 
6750 	leaf = path->nodes[0];
6751 	item = btrfs_item_ptr(leaf, path->slots[0],
6752 			      struct btrfs_file_extent_item);
6753 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6754 	if (found_key.objectid != objectid ||
6755 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6756 		/*
6757 		 * If we backup past the first extent we want to move forward
6758 		 * and see if there is an extent in front of us, otherwise we'll
6759 		 * say there is a hole for our whole search range which can
6760 		 * cause problems.
6761 		 */
6762 		extent_end = start;
6763 		goto next;
6764 	}
6765 
6766 	extent_type = btrfs_file_extent_type(leaf, item);
6767 	extent_start = found_key.offset;
6768 	extent_end = btrfs_file_extent_end(path);
6769 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6770 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6771 		/* Only regular file could have regular/prealloc extent */
6772 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6773 			ret = -EUCLEAN;
6774 			btrfs_crit(fs_info,
6775 		"regular/prealloc extent found for non-regular inode %llu",
6776 				   btrfs_ino(inode));
6777 			goto out;
6778 		}
6779 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6780 						       extent_start);
6781 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6782 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6783 						      path->slots[0],
6784 						      extent_start);
6785 	}
6786 next:
6787 	if (start >= extent_end) {
6788 		path->slots[0]++;
6789 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6790 			ret = btrfs_next_leaf(root, path);
6791 			if (ret < 0)
6792 				goto out;
6793 			else if (ret > 0)
6794 				goto not_found;
6795 
6796 			leaf = path->nodes[0];
6797 		}
6798 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6799 		if (found_key.objectid != objectid ||
6800 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6801 			goto not_found;
6802 		if (start + len <= found_key.offset)
6803 			goto not_found;
6804 		if (start > found_key.offset)
6805 			goto next;
6806 
6807 		/* New extent overlaps with existing one */
6808 		em->start = start;
6809 		em->orig_start = start;
6810 		em->len = found_key.offset - start;
6811 		em->block_start = EXTENT_MAP_HOLE;
6812 		goto insert;
6813 	}
6814 
6815 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6816 
6817 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6818 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6819 		goto insert;
6820 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6821 		unsigned long ptr;
6822 		char *map;
6823 		size_t size;
6824 		size_t extent_offset;
6825 		size_t copy_size;
6826 
6827 		if (!page)
6828 			goto out;
6829 
6830 		size = btrfs_file_extent_ram_bytes(leaf, item);
6831 		extent_offset = page_offset(page) + pg_offset - extent_start;
6832 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6833 				  size - extent_offset);
6834 		em->start = extent_start + extent_offset;
6835 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6836 		em->orig_block_len = em->len;
6837 		em->orig_start = em->start;
6838 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6839 
6840 		if (!PageUptodate(page)) {
6841 			if (btrfs_file_extent_compression(leaf, item) !=
6842 			    BTRFS_COMPRESS_NONE) {
6843 				ret = uncompress_inline(path, page, pg_offset,
6844 							extent_offset, item);
6845 				if (ret)
6846 					goto out;
6847 			} else {
6848 				map = kmap_local_page(page);
6849 				read_extent_buffer(leaf, map + pg_offset, ptr,
6850 						   copy_size);
6851 				if (pg_offset + copy_size < PAGE_SIZE) {
6852 					memset(map + pg_offset + copy_size, 0,
6853 					       PAGE_SIZE - pg_offset -
6854 					       copy_size);
6855 				}
6856 				kunmap_local(map);
6857 			}
6858 			flush_dcache_page(page);
6859 		}
6860 		set_extent_uptodate(io_tree, em->start,
6861 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6862 		goto insert;
6863 	}
6864 not_found:
6865 	em->start = start;
6866 	em->orig_start = start;
6867 	em->len = len;
6868 	em->block_start = EXTENT_MAP_HOLE;
6869 insert:
6870 	ret = 0;
6871 	btrfs_release_path(path);
6872 	if (em->start > start || extent_map_end(em) <= start) {
6873 		btrfs_err(fs_info,
6874 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6875 			  em->start, em->len, start, len);
6876 		ret = -EIO;
6877 		goto out;
6878 	}
6879 
6880 	write_lock(&em_tree->lock);
6881 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6882 	write_unlock(&em_tree->lock);
6883 out:
6884 	btrfs_free_path(path);
6885 
6886 	trace_btrfs_get_extent(root, inode, em);
6887 
6888 	if (ret) {
6889 		free_extent_map(em);
6890 		return ERR_PTR(ret);
6891 	}
6892 	return em;
6893 }
6894 
6895 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6896 					   u64 start, u64 len)
6897 {
6898 	struct extent_map *em;
6899 	struct extent_map *hole_em = NULL;
6900 	u64 delalloc_start = start;
6901 	u64 end;
6902 	u64 delalloc_len;
6903 	u64 delalloc_end;
6904 	int err = 0;
6905 
6906 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6907 	if (IS_ERR(em))
6908 		return em;
6909 	/*
6910 	 * If our em maps to:
6911 	 * - a hole or
6912 	 * - a pre-alloc extent,
6913 	 * there might actually be delalloc bytes behind it.
6914 	 */
6915 	if (em->block_start != EXTENT_MAP_HOLE &&
6916 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6917 		return em;
6918 	else
6919 		hole_em = em;
6920 
6921 	/* check to see if we've wrapped (len == -1 or similar) */
6922 	end = start + len;
6923 	if (end < start)
6924 		end = (u64)-1;
6925 	else
6926 		end -= 1;
6927 
6928 	em = NULL;
6929 
6930 	/* ok, we didn't find anything, lets look for delalloc */
6931 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6932 				 end, len, EXTENT_DELALLOC, 1);
6933 	delalloc_end = delalloc_start + delalloc_len;
6934 	if (delalloc_end < delalloc_start)
6935 		delalloc_end = (u64)-1;
6936 
6937 	/*
6938 	 * We didn't find anything useful, return the original results from
6939 	 * get_extent()
6940 	 */
6941 	if (delalloc_start > end || delalloc_end <= start) {
6942 		em = hole_em;
6943 		hole_em = NULL;
6944 		goto out;
6945 	}
6946 
6947 	/*
6948 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
6949 	 * the start they passed in
6950 	 */
6951 	delalloc_start = max(start, delalloc_start);
6952 	delalloc_len = delalloc_end - delalloc_start;
6953 
6954 	if (delalloc_len > 0) {
6955 		u64 hole_start;
6956 		u64 hole_len;
6957 		const u64 hole_end = extent_map_end(hole_em);
6958 
6959 		em = alloc_extent_map();
6960 		if (!em) {
6961 			err = -ENOMEM;
6962 			goto out;
6963 		}
6964 
6965 		ASSERT(hole_em);
6966 		/*
6967 		 * When btrfs_get_extent can't find anything it returns one
6968 		 * huge hole
6969 		 *
6970 		 * Make sure what it found really fits our range, and adjust to
6971 		 * make sure it is based on the start from the caller
6972 		 */
6973 		if (hole_end <= start || hole_em->start > end) {
6974 		       free_extent_map(hole_em);
6975 		       hole_em = NULL;
6976 		} else {
6977 		       hole_start = max(hole_em->start, start);
6978 		       hole_len = hole_end - hole_start;
6979 		}
6980 
6981 		if (hole_em && delalloc_start > hole_start) {
6982 			/*
6983 			 * Our hole starts before our delalloc, so we have to
6984 			 * return just the parts of the hole that go until the
6985 			 * delalloc starts
6986 			 */
6987 			em->len = min(hole_len, delalloc_start - hole_start);
6988 			em->start = hole_start;
6989 			em->orig_start = hole_start;
6990 			/*
6991 			 * Don't adjust block start at all, it is fixed at
6992 			 * EXTENT_MAP_HOLE
6993 			 */
6994 			em->block_start = hole_em->block_start;
6995 			em->block_len = hole_len;
6996 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6997 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6998 		} else {
6999 			/*
7000 			 * Hole is out of passed range or it starts after
7001 			 * delalloc range
7002 			 */
7003 			em->start = delalloc_start;
7004 			em->len = delalloc_len;
7005 			em->orig_start = delalloc_start;
7006 			em->block_start = EXTENT_MAP_DELALLOC;
7007 			em->block_len = delalloc_len;
7008 		}
7009 	} else {
7010 		return hole_em;
7011 	}
7012 out:
7013 
7014 	free_extent_map(hole_em);
7015 	if (err) {
7016 		free_extent_map(em);
7017 		return ERR_PTR(err);
7018 	}
7019 	return em;
7020 }
7021 
7022 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7023 						  const u64 start,
7024 						  const u64 len,
7025 						  const u64 orig_start,
7026 						  const u64 block_start,
7027 						  const u64 block_len,
7028 						  const u64 orig_block_len,
7029 						  const u64 ram_bytes,
7030 						  const int type)
7031 {
7032 	struct extent_map *em = NULL;
7033 	int ret;
7034 
7035 	if (type != BTRFS_ORDERED_NOCOW) {
7036 		em = create_io_em(inode, start, len, orig_start, block_start,
7037 				  block_len, orig_block_len, ram_bytes,
7038 				  BTRFS_COMPRESS_NONE, /* compress_type */
7039 				  type);
7040 		if (IS_ERR(em))
7041 			goto out;
7042 	}
7043 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7044 					   block_len, type);
7045 	if (ret) {
7046 		if (em) {
7047 			free_extent_map(em);
7048 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7049 		}
7050 		em = ERR_PTR(ret);
7051 	}
7052  out:
7053 
7054 	return em;
7055 }
7056 
7057 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7058 						  u64 start, u64 len)
7059 {
7060 	struct btrfs_root *root = inode->root;
7061 	struct btrfs_fs_info *fs_info = root->fs_info;
7062 	struct extent_map *em;
7063 	struct btrfs_key ins;
7064 	u64 alloc_hint;
7065 	int ret;
7066 
7067 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7068 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7069 				   0, alloc_hint, &ins, 1, 1);
7070 	if (ret)
7071 		return ERR_PTR(ret);
7072 
7073 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7074 				     ins.objectid, ins.offset, ins.offset,
7075 				     ins.offset, BTRFS_ORDERED_REGULAR);
7076 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7077 	if (IS_ERR(em))
7078 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7079 					   1);
7080 
7081 	return em;
7082 }
7083 
7084 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7085 {
7086 	struct btrfs_block_group *block_group;
7087 	bool readonly = false;
7088 
7089 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7090 	if (!block_group || block_group->ro)
7091 		readonly = true;
7092 	if (block_group)
7093 		btrfs_put_block_group(block_group);
7094 	return readonly;
7095 }
7096 
7097 /*
7098  * Check if we can do nocow write into the range [@offset, @offset + @len)
7099  *
7100  * @offset:	File offset
7101  * @len:	The length to write, will be updated to the nocow writeable
7102  *		range
7103  * @orig_start:	(optional) Return the original file offset of the file extent
7104  * @orig_len:	(optional) Return the original on-disk length of the file extent
7105  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7106  * @strict:	if true, omit optimizations that might force us into unnecessary
7107  *		cow. e.g., don't trust generation number.
7108  *
7109  * Return:
7110  * >0	and update @len if we can do nocow write
7111  *  0	if we can't do nocow write
7112  * <0	if error happened
7113  *
7114  * NOTE: This only checks the file extents, caller is responsible to wait for
7115  *	 any ordered extents.
7116  */
7117 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7118 			      u64 *orig_start, u64 *orig_block_len,
7119 			      u64 *ram_bytes, bool strict)
7120 {
7121 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7122 	struct btrfs_path *path;
7123 	int ret;
7124 	struct extent_buffer *leaf;
7125 	struct btrfs_root *root = BTRFS_I(inode)->root;
7126 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7127 	struct btrfs_file_extent_item *fi;
7128 	struct btrfs_key key;
7129 	u64 disk_bytenr;
7130 	u64 backref_offset;
7131 	u64 extent_end;
7132 	u64 num_bytes;
7133 	int slot;
7134 	int found_type;
7135 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7136 
7137 	path = btrfs_alloc_path();
7138 	if (!path)
7139 		return -ENOMEM;
7140 
7141 	ret = btrfs_lookup_file_extent(NULL, root, path,
7142 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7143 	if (ret < 0)
7144 		goto out;
7145 
7146 	slot = path->slots[0];
7147 	if (ret == 1) {
7148 		if (slot == 0) {
7149 			/* can't find the item, must cow */
7150 			ret = 0;
7151 			goto out;
7152 		}
7153 		slot--;
7154 	}
7155 	ret = 0;
7156 	leaf = path->nodes[0];
7157 	btrfs_item_key_to_cpu(leaf, &key, slot);
7158 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7159 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7160 		/* not our file or wrong item type, must cow */
7161 		goto out;
7162 	}
7163 
7164 	if (key.offset > offset) {
7165 		/* Wrong offset, must cow */
7166 		goto out;
7167 	}
7168 
7169 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7170 	found_type = btrfs_file_extent_type(leaf, fi);
7171 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7172 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7173 		/* not a regular extent, must cow */
7174 		goto out;
7175 	}
7176 
7177 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7178 		goto out;
7179 
7180 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7181 	if (extent_end <= offset)
7182 		goto out;
7183 
7184 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7185 	if (disk_bytenr == 0)
7186 		goto out;
7187 
7188 	if (btrfs_file_extent_compression(leaf, fi) ||
7189 	    btrfs_file_extent_encryption(leaf, fi) ||
7190 	    btrfs_file_extent_other_encoding(leaf, fi))
7191 		goto out;
7192 
7193 	/*
7194 	 * Do the same check as in btrfs_cross_ref_exist but without the
7195 	 * unnecessary search.
7196 	 */
7197 	if (!strict &&
7198 	    (btrfs_file_extent_generation(leaf, fi) <=
7199 	     btrfs_root_last_snapshot(&root->root_item)))
7200 		goto out;
7201 
7202 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7203 
7204 	if (orig_start) {
7205 		*orig_start = key.offset - backref_offset;
7206 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7207 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7208 	}
7209 
7210 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7211 		goto out;
7212 
7213 	num_bytes = min(offset + *len, extent_end) - offset;
7214 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7215 		u64 range_end;
7216 
7217 		range_end = round_up(offset + num_bytes,
7218 				     root->fs_info->sectorsize) - 1;
7219 		ret = test_range_bit(io_tree, offset, range_end,
7220 				     EXTENT_DELALLOC, 0, NULL);
7221 		if (ret) {
7222 			ret = -EAGAIN;
7223 			goto out;
7224 		}
7225 	}
7226 
7227 	btrfs_release_path(path);
7228 
7229 	/*
7230 	 * look for other files referencing this extent, if we
7231 	 * find any we must cow
7232 	 */
7233 
7234 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7235 				    key.offset - backref_offset, disk_bytenr,
7236 				    strict);
7237 	if (ret) {
7238 		ret = 0;
7239 		goto out;
7240 	}
7241 
7242 	/*
7243 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7244 	 * in this extent we are about to write.  If there
7245 	 * are any csums in that range we have to cow in order
7246 	 * to keep the csums correct
7247 	 */
7248 	disk_bytenr += backref_offset;
7249 	disk_bytenr += offset - key.offset;
7250 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7251 		goto out;
7252 	/*
7253 	 * all of the above have passed, it is safe to overwrite this extent
7254 	 * without cow
7255 	 */
7256 	*len = num_bytes;
7257 	ret = 1;
7258 out:
7259 	btrfs_free_path(path);
7260 	return ret;
7261 }
7262 
7263 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7264 			      struct extent_state **cached_state, bool writing)
7265 {
7266 	struct btrfs_ordered_extent *ordered;
7267 	int ret = 0;
7268 
7269 	while (1) {
7270 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7271 				 cached_state);
7272 		/*
7273 		 * We're concerned with the entire range that we're going to be
7274 		 * doing DIO to, so we need to make sure there's no ordered
7275 		 * extents in this range.
7276 		 */
7277 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7278 						     lockend - lockstart + 1);
7279 
7280 		/*
7281 		 * We need to make sure there are no buffered pages in this
7282 		 * range either, we could have raced between the invalidate in
7283 		 * generic_file_direct_write and locking the extent.  The
7284 		 * invalidate needs to happen so that reads after a write do not
7285 		 * get stale data.
7286 		 */
7287 		if (!ordered &&
7288 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7289 							 lockstart, lockend)))
7290 			break;
7291 
7292 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7293 				     cached_state);
7294 
7295 		if (ordered) {
7296 			/*
7297 			 * If we are doing a DIO read and the ordered extent we
7298 			 * found is for a buffered write, we can not wait for it
7299 			 * to complete and retry, because if we do so we can
7300 			 * deadlock with concurrent buffered writes on page
7301 			 * locks. This happens only if our DIO read covers more
7302 			 * than one extent map, if at this point has already
7303 			 * created an ordered extent for a previous extent map
7304 			 * and locked its range in the inode's io tree, and a
7305 			 * concurrent write against that previous extent map's
7306 			 * range and this range started (we unlock the ranges
7307 			 * in the io tree only when the bios complete and
7308 			 * buffered writes always lock pages before attempting
7309 			 * to lock range in the io tree).
7310 			 */
7311 			if (writing ||
7312 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7313 				btrfs_start_ordered_extent(ordered, 1);
7314 			else
7315 				ret = -ENOTBLK;
7316 			btrfs_put_ordered_extent(ordered);
7317 		} else {
7318 			/*
7319 			 * We could trigger writeback for this range (and wait
7320 			 * for it to complete) and then invalidate the pages for
7321 			 * this range (through invalidate_inode_pages2_range()),
7322 			 * but that can lead us to a deadlock with a concurrent
7323 			 * call to readahead (a buffered read or a defrag call
7324 			 * triggered a readahead) on a page lock due to an
7325 			 * ordered dio extent we created before but did not have
7326 			 * yet a corresponding bio submitted (whence it can not
7327 			 * complete), which makes readahead wait for that
7328 			 * ordered extent to complete while holding a lock on
7329 			 * that page.
7330 			 */
7331 			ret = -ENOTBLK;
7332 		}
7333 
7334 		if (ret)
7335 			break;
7336 
7337 		cond_resched();
7338 	}
7339 
7340 	return ret;
7341 }
7342 
7343 /* The callers of this must take lock_extent() */
7344 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7345 				       u64 len, u64 orig_start, u64 block_start,
7346 				       u64 block_len, u64 orig_block_len,
7347 				       u64 ram_bytes, int compress_type,
7348 				       int type)
7349 {
7350 	struct extent_map_tree *em_tree;
7351 	struct extent_map *em;
7352 	int ret;
7353 
7354 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7355 	       type == BTRFS_ORDERED_COMPRESSED ||
7356 	       type == BTRFS_ORDERED_NOCOW ||
7357 	       type == BTRFS_ORDERED_REGULAR);
7358 
7359 	em_tree = &inode->extent_tree;
7360 	em = alloc_extent_map();
7361 	if (!em)
7362 		return ERR_PTR(-ENOMEM);
7363 
7364 	em->start = start;
7365 	em->orig_start = orig_start;
7366 	em->len = len;
7367 	em->block_len = block_len;
7368 	em->block_start = block_start;
7369 	em->orig_block_len = orig_block_len;
7370 	em->ram_bytes = ram_bytes;
7371 	em->generation = -1;
7372 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7373 	if (type == BTRFS_ORDERED_PREALLOC) {
7374 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7375 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7376 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7377 		em->compress_type = compress_type;
7378 	}
7379 
7380 	do {
7381 		btrfs_drop_extent_cache(inode, em->start,
7382 					em->start + em->len - 1, 0);
7383 		write_lock(&em_tree->lock);
7384 		ret = add_extent_mapping(em_tree, em, 1);
7385 		write_unlock(&em_tree->lock);
7386 		/*
7387 		 * The caller has taken lock_extent(), who could race with us
7388 		 * to add em?
7389 		 */
7390 	} while (ret == -EEXIST);
7391 
7392 	if (ret) {
7393 		free_extent_map(em);
7394 		return ERR_PTR(ret);
7395 	}
7396 
7397 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7398 	return em;
7399 }
7400 
7401 
7402 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7403 					 struct inode *inode,
7404 					 struct btrfs_dio_data *dio_data,
7405 					 u64 start, u64 len)
7406 {
7407 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7408 	struct extent_map *em = *map;
7409 	int type;
7410 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7411 	bool can_nocow = false;
7412 	bool space_reserved = false;
7413 	int ret = 0;
7414 
7415 	/*
7416 	 * We don't allocate a new extent in the following cases
7417 	 *
7418 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7419 	 * existing extent.
7420 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7421 	 * just use the extent.
7422 	 *
7423 	 */
7424 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7425 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7426 	     em->block_start != EXTENT_MAP_HOLE)) {
7427 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7428 			type = BTRFS_ORDERED_PREALLOC;
7429 		else
7430 			type = BTRFS_ORDERED_NOCOW;
7431 		len = min(len, em->len - (start - em->start));
7432 		block_start = em->block_start + (start - em->start);
7433 
7434 		if (can_nocow_extent(inode, start, &len, &orig_start,
7435 				     &orig_block_len, &ram_bytes, false) == 1 &&
7436 		    btrfs_inc_nocow_writers(fs_info, block_start))
7437 			can_nocow = true;
7438 	}
7439 
7440 	if (can_nocow) {
7441 		struct extent_map *em2;
7442 
7443 		/* We can NOCOW, so only need to reserve metadata space. */
7444 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
7445 		if (ret < 0) {
7446 			/* Our caller expects us to free the input extent map. */
7447 			free_extent_map(em);
7448 			*map = NULL;
7449 			btrfs_dec_nocow_writers(fs_info, block_start);
7450 			goto out;
7451 		}
7452 		space_reserved = true;
7453 
7454 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7455 					      orig_start, block_start,
7456 					      len, orig_block_len,
7457 					      ram_bytes, type);
7458 		btrfs_dec_nocow_writers(fs_info, block_start);
7459 		if (type == BTRFS_ORDERED_PREALLOC) {
7460 			free_extent_map(em);
7461 			*map = em = em2;
7462 		}
7463 
7464 		if (IS_ERR(em2)) {
7465 			ret = PTR_ERR(em2);
7466 			goto out;
7467 		}
7468 	} else {
7469 		const u64 prev_len = len;
7470 
7471 		/* Our caller expects us to free the input extent map. */
7472 		free_extent_map(em);
7473 		*map = NULL;
7474 
7475 		/* We have to COW, so need to reserve metadata and data space. */
7476 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7477 						   &dio_data->data_reserved,
7478 						   start, len);
7479 		if (ret < 0)
7480 			goto out;
7481 		space_reserved = true;
7482 
7483 		em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7484 		if (IS_ERR(em)) {
7485 			ret = PTR_ERR(em);
7486 			goto out;
7487 		}
7488 		*map = em;
7489 		len = min(len, em->len - (start - em->start));
7490 		if (len < prev_len)
7491 			btrfs_delalloc_release_space(BTRFS_I(inode),
7492 						     dio_data->data_reserved,
7493 						     start + len, prev_len - len,
7494 						     true);
7495 	}
7496 
7497 	/*
7498 	 * We have created our ordered extent, so we can now release our reservation
7499 	 * for an outstanding extent.
7500 	 */
7501 	btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7502 
7503 	/*
7504 	 * Need to update the i_size under the extent lock so buffered
7505 	 * readers will get the updated i_size when we unlock.
7506 	 */
7507 	if (start + len > i_size_read(inode))
7508 		i_size_write(inode, start + len);
7509 out:
7510 	if (ret && space_reserved) {
7511 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7512 		if (can_nocow) {
7513 			btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7514 		} else {
7515 			btrfs_delalloc_release_space(BTRFS_I(inode),
7516 						     dio_data->data_reserved,
7517 						     start, len, true);
7518 			extent_changeset_free(dio_data->data_reserved);
7519 			dio_data->data_reserved = NULL;
7520 		}
7521 	}
7522 	return ret;
7523 }
7524 
7525 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7526 		loff_t length, unsigned int flags, struct iomap *iomap,
7527 		struct iomap *srcmap)
7528 {
7529 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7530 	struct extent_map *em;
7531 	struct extent_state *cached_state = NULL;
7532 	struct btrfs_dio_data *dio_data = NULL;
7533 	u64 lockstart, lockend;
7534 	const bool write = !!(flags & IOMAP_WRITE);
7535 	int ret = 0;
7536 	u64 len = length;
7537 	bool unlock_extents = false;
7538 
7539 	if (!write)
7540 		len = min_t(u64, len, fs_info->sectorsize);
7541 
7542 	lockstart = start;
7543 	lockend = start + len - 1;
7544 
7545 	/*
7546 	 * The generic stuff only does filemap_write_and_wait_range, which
7547 	 * isn't enough if we've written compressed pages to this area, so we
7548 	 * need to flush the dirty pages again to make absolutely sure that any
7549 	 * outstanding dirty pages are on disk.
7550 	 */
7551 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7552 		     &BTRFS_I(inode)->runtime_flags)) {
7553 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7554 					       start + length - 1);
7555 		if (ret)
7556 			return ret;
7557 	}
7558 
7559 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7560 	if (!dio_data)
7561 		return -ENOMEM;
7562 
7563 	iomap->private = dio_data;
7564 
7565 
7566 	/*
7567 	 * If this errors out it's because we couldn't invalidate pagecache for
7568 	 * this range and we need to fallback to buffered.
7569 	 */
7570 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7571 		ret = -ENOTBLK;
7572 		goto err;
7573 	}
7574 
7575 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7576 	if (IS_ERR(em)) {
7577 		ret = PTR_ERR(em);
7578 		goto unlock_err;
7579 	}
7580 
7581 	/*
7582 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7583 	 * io.  INLINE is special, and we could probably kludge it in here, but
7584 	 * it's still buffered so for safety lets just fall back to the generic
7585 	 * buffered path.
7586 	 *
7587 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7588 	 * decompress it, so there will be buffering required no matter what we
7589 	 * do, so go ahead and fallback to buffered.
7590 	 *
7591 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7592 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7593 	 * the generic code.
7594 	 */
7595 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7596 	    em->block_start == EXTENT_MAP_INLINE) {
7597 		free_extent_map(em);
7598 		ret = -ENOTBLK;
7599 		goto unlock_err;
7600 	}
7601 
7602 	len = min(len, em->len - (start - em->start));
7603 	if (write) {
7604 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7605 						    start, len);
7606 		if (ret < 0)
7607 			goto unlock_err;
7608 		unlock_extents = true;
7609 		/* Recalc len in case the new em is smaller than requested */
7610 		len = min(len, em->len - (start - em->start));
7611 	} else {
7612 		/*
7613 		 * We need to unlock only the end area that we aren't using.
7614 		 * The rest is going to be unlocked by the endio routine.
7615 		 */
7616 		lockstart = start + len;
7617 		if (lockstart < lockend)
7618 			unlock_extents = true;
7619 	}
7620 
7621 	if (unlock_extents)
7622 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7623 				     lockstart, lockend, &cached_state);
7624 	else
7625 		free_extent_state(cached_state);
7626 
7627 	/*
7628 	 * Translate extent map information to iomap.
7629 	 * We trim the extents (and move the addr) even though iomap code does
7630 	 * that, since we have locked only the parts we are performing I/O in.
7631 	 */
7632 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7633 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7634 		iomap->addr = IOMAP_NULL_ADDR;
7635 		iomap->type = IOMAP_HOLE;
7636 	} else {
7637 		iomap->addr = em->block_start + (start - em->start);
7638 		iomap->type = IOMAP_MAPPED;
7639 	}
7640 	iomap->offset = start;
7641 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7642 	iomap->length = len;
7643 
7644 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7645 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7646 
7647 	free_extent_map(em);
7648 
7649 	return 0;
7650 
7651 unlock_err:
7652 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7653 			     &cached_state);
7654 err:
7655 	kfree(dio_data);
7656 
7657 	return ret;
7658 }
7659 
7660 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7661 		ssize_t written, unsigned int flags, struct iomap *iomap)
7662 {
7663 	int ret = 0;
7664 	struct btrfs_dio_data *dio_data = iomap->private;
7665 	size_t submitted = dio_data->submitted;
7666 	const bool write = !!(flags & IOMAP_WRITE);
7667 
7668 	if (!write && (iomap->type == IOMAP_HOLE)) {
7669 		/* If reading from a hole, unlock and return */
7670 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7671 		goto out;
7672 	}
7673 
7674 	if (submitted < length) {
7675 		pos += submitted;
7676 		length -= submitted;
7677 		if (write)
7678 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7679 					length, false);
7680 		else
7681 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7682 				      pos + length - 1);
7683 		ret = -ENOTBLK;
7684 	}
7685 
7686 	if (write)
7687 		extent_changeset_free(dio_data->data_reserved);
7688 out:
7689 	kfree(dio_data);
7690 	iomap->private = NULL;
7691 
7692 	return ret;
7693 }
7694 
7695 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7696 {
7697 	/*
7698 	 * This implies a barrier so that stores to dio_bio->bi_status before
7699 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7700 	 */
7701 	if (!refcount_dec_and_test(&dip->refs))
7702 		return;
7703 
7704 	if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7705 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7706 					     dip->file_offset,
7707 					     dip->bytes,
7708 					     !dip->dio_bio->bi_status);
7709 	} else {
7710 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7711 			      dip->file_offset,
7712 			      dip->file_offset + dip->bytes - 1);
7713 	}
7714 
7715 	bio_endio(dip->dio_bio);
7716 	kfree(dip);
7717 }
7718 
7719 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7720 					  int mirror_num,
7721 					  unsigned long bio_flags)
7722 {
7723 	struct btrfs_dio_private *dip = bio->bi_private;
7724 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7725 	blk_status_t ret;
7726 
7727 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7728 
7729 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7730 	if (ret)
7731 		return ret;
7732 
7733 	refcount_inc(&dip->refs);
7734 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7735 	if (ret)
7736 		refcount_dec(&dip->refs);
7737 	return ret;
7738 }
7739 
7740 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7741 					     struct btrfs_bio *bbio,
7742 					     const bool uptodate)
7743 {
7744 	struct inode *inode = dip->inode;
7745 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7746 	const u32 sectorsize = fs_info->sectorsize;
7747 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7748 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7749 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7750 	struct bio_vec bvec;
7751 	struct bvec_iter iter;
7752 	const u64 orig_file_offset = dip->file_offset;
7753 	u64 start = orig_file_offset;
7754 	u32 bio_offset = 0;
7755 	blk_status_t err = BLK_STS_OK;
7756 
7757 	__bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
7758 		unsigned int i, nr_sectors, pgoff;
7759 
7760 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7761 		pgoff = bvec.bv_offset;
7762 		for (i = 0; i < nr_sectors; i++) {
7763 			ASSERT(pgoff < PAGE_SIZE);
7764 			if (uptodate &&
7765 			    (!csum || !check_data_csum(inode, bbio,
7766 						       bio_offset, bvec.bv_page,
7767 						       pgoff, start))) {
7768 				clean_io_failure(fs_info, failure_tree, io_tree,
7769 						 start, bvec.bv_page,
7770 						 btrfs_ino(BTRFS_I(inode)),
7771 						 pgoff);
7772 			} else {
7773 				int ret;
7774 
7775 				ASSERT((start - orig_file_offset) < UINT_MAX);
7776 				ret = btrfs_repair_one_sector(inode,
7777 						&bbio->bio,
7778 						start - orig_file_offset,
7779 						bvec.bv_page, pgoff,
7780 						start, bbio->mirror_num,
7781 						submit_dio_repair_bio);
7782 				if (ret)
7783 					err = errno_to_blk_status(ret);
7784 			}
7785 			start += sectorsize;
7786 			ASSERT(bio_offset + sectorsize > bio_offset);
7787 			bio_offset += sectorsize;
7788 			pgoff += sectorsize;
7789 		}
7790 	}
7791 	return err;
7792 }
7793 
7794 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7795 					 const u64 offset, const u64 bytes,
7796 					 const bool uptodate)
7797 {
7798 	btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
7799 				       finish_ordered_fn, uptodate);
7800 }
7801 
7802 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7803 						     struct bio *bio,
7804 						     u64 dio_file_offset)
7805 {
7806 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
7807 }
7808 
7809 static void btrfs_end_dio_bio(struct bio *bio)
7810 {
7811 	struct btrfs_dio_private *dip = bio->bi_private;
7812 	blk_status_t err = bio->bi_status;
7813 
7814 	if (err)
7815 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7816 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7817 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7818 			   bio->bi_opf, bio->bi_iter.bi_sector,
7819 			   bio->bi_iter.bi_size, err);
7820 
7821 	if (bio_op(bio) == REQ_OP_READ)
7822 		err = btrfs_check_read_dio_bio(dip, btrfs_bio(bio), !err);
7823 
7824 	if (err)
7825 		dip->dio_bio->bi_status = err;
7826 
7827 	btrfs_record_physical_zoned(dip->inode, dip->file_offset, bio);
7828 
7829 	bio_put(bio);
7830 	btrfs_dio_private_put(dip);
7831 }
7832 
7833 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7834 		struct inode *inode, u64 file_offset, int async_submit)
7835 {
7836 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7837 	struct btrfs_dio_private *dip = bio->bi_private;
7838 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
7839 	blk_status_t ret;
7840 
7841 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7842 	if (async_submit)
7843 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7844 
7845 	if (!write) {
7846 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7847 		if (ret)
7848 			goto err;
7849 	}
7850 
7851 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7852 		goto map;
7853 
7854 	if (write && async_submit) {
7855 		ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
7856 					  btrfs_submit_bio_start_direct_io);
7857 		goto err;
7858 	} else if (write) {
7859 		/*
7860 		 * If we aren't doing async submit, calculate the csum of the
7861 		 * bio now.
7862 		 */
7863 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7864 		if (ret)
7865 			goto err;
7866 	} else {
7867 		u64 csum_offset;
7868 
7869 		csum_offset = file_offset - dip->file_offset;
7870 		csum_offset >>= fs_info->sectorsize_bits;
7871 		csum_offset *= fs_info->csum_size;
7872 		btrfs_bio(bio)->csum = dip->csums + csum_offset;
7873 	}
7874 map:
7875 	ret = btrfs_map_bio(fs_info, bio, 0);
7876 err:
7877 	return ret;
7878 }
7879 
7880 /*
7881  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7882  * or ordered extents whether or not we submit any bios.
7883  */
7884 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7885 							  struct inode *inode,
7886 							  loff_t file_offset)
7887 {
7888 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
7889 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7890 	size_t dip_size;
7891 	struct btrfs_dio_private *dip;
7892 
7893 	dip_size = sizeof(*dip);
7894 	if (!write && csum) {
7895 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7896 		size_t nblocks;
7897 
7898 		nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
7899 		dip_size += fs_info->csum_size * nblocks;
7900 	}
7901 
7902 	dip = kzalloc(dip_size, GFP_NOFS);
7903 	if (!dip)
7904 		return NULL;
7905 
7906 	dip->inode = inode;
7907 	dip->file_offset = file_offset;
7908 	dip->bytes = dio_bio->bi_iter.bi_size;
7909 	dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
7910 	dip->dio_bio = dio_bio;
7911 	refcount_set(&dip->refs, 1);
7912 	return dip;
7913 }
7914 
7915 static void btrfs_submit_direct(const struct iomap_iter *iter,
7916 		struct bio *dio_bio, loff_t file_offset)
7917 {
7918 	struct inode *inode = iter->inode;
7919 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
7920 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7921 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7922 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
7923 	struct btrfs_dio_private *dip;
7924 	struct bio *bio;
7925 	u64 start_sector;
7926 	int async_submit = 0;
7927 	u64 submit_len;
7928 	u64 clone_offset = 0;
7929 	u64 clone_len;
7930 	u64 logical;
7931 	int ret;
7932 	blk_status_t status;
7933 	struct btrfs_io_geometry geom;
7934 	struct btrfs_dio_data *dio_data = iter->iomap.private;
7935 	struct extent_map *em = NULL;
7936 
7937 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7938 	if (!dip) {
7939 		if (!write) {
7940 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7941 				file_offset + dio_bio->bi_iter.bi_size - 1);
7942 		}
7943 		dio_bio->bi_status = BLK_STS_RESOURCE;
7944 		bio_endio(dio_bio);
7945 		return;
7946 	}
7947 
7948 	if (!write) {
7949 		/*
7950 		 * Load the csums up front to reduce csum tree searches and
7951 		 * contention when submitting bios.
7952 		 *
7953 		 * If we have csums disabled this will do nothing.
7954 		 */
7955 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
7956 		if (status != BLK_STS_OK)
7957 			goto out_err;
7958 	}
7959 
7960 	start_sector = dio_bio->bi_iter.bi_sector;
7961 	submit_len = dio_bio->bi_iter.bi_size;
7962 
7963 	do {
7964 		logical = start_sector << 9;
7965 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
7966 		if (IS_ERR(em)) {
7967 			status = errno_to_blk_status(PTR_ERR(em));
7968 			em = NULL;
7969 			goto out_err_em;
7970 		}
7971 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
7972 					    logical, &geom);
7973 		if (ret) {
7974 			status = errno_to_blk_status(ret);
7975 			goto out_err_em;
7976 		}
7977 
7978 		clone_len = min(submit_len, geom.len);
7979 		ASSERT(clone_len <= UINT_MAX);
7980 
7981 		/*
7982 		 * This will never fail as it's passing GPF_NOFS and
7983 		 * the allocation is backed by btrfs_bioset.
7984 		 */
7985 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7986 		bio->bi_private = dip;
7987 		bio->bi_end_io = btrfs_end_dio_bio;
7988 
7989 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
7990 			status = extract_ordered_extent(BTRFS_I(inode), bio,
7991 							file_offset);
7992 			if (status) {
7993 				bio_put(bio);
7994 				goto out_err;
7995 			}
7996 		}
7997 
7998 		ASSERT(submit_len >= clone_len);
7999 		submit_len -= clone_len;
8000 
8001 		/*
8002 		 * Increase the count before we submit the bio so we know
8003 		 * the end IO handler won't happen before we increase the
8004 		 * count. Otherwise, the dip might get freed before we're
8005 		 * done setting it up.
8006 		 *
8007 		 * We transfer the initial reference to the last bio, so we
8008 		 * don't need to increment the reference count for the last one.
8009 		 */
8010 		if (submit_len > 0) {
8011 			refcount_inc(&dip->refs);
8012 			/*
8013 			 * If we are submitting more than one bio, submit them
8014 			 * all asynchronously. The exception is RAID 5 or 6, as
8015 			 * asynchronous checksums make it difficult to collect
8016 			 * full stripe writes.
8017 			 */
8018 			if (!raid56)
8019 				async_submit = 1;
8020 		}
8021 
8022 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8023 						async_submit);
8024 		if (status) {
8025 			bio_put(bio);
8026 			if (submit_len > 0)
8027 				refcount_dec(&dip->refs);
8028 			goto out_err_em;
8029 		}
8030 
8031 		dio_data->submitted += clone_len;
8032 		clone_offset += clone_len;
8033 		start_sector += clone_len >> 9;
8034 		file_offset += clone_len;
8035 
8036 		free_extent_map(em);
8037 	} while (submit_len > 0);
8038 	return;
8039 
8040 out_err_em:
8041 	free_extent_map(em);
8042 out_err:
8043 	dip->dio_bio->bi_status = status;
8044 	btrfs_dio_private_put(dip);
8045 }
8046 
8047 const struct iomap_ops btrfs_dio_iomap_ops = {
8048 	.iomap_begin            = btrfs_dio_iomap_begin,
8049 	.iomap_end              = btrfs_dio_iomap_end,
8050 };
8051 
8052 const struct iomap_dio_ops btrfs_dio_ops = {
8053 	.submit_io		= btrfs_submit_direct,
8054 };
8055 
8056 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8057 			u64 start, u64 len)
8058 {
8059 	int	ret;
8060 
8061 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8062 	if (ret)
8063 		return ret;
8064 
8065 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8066 }
8067 
8068 int btrfs_readpage(struct file *file, struct page *page)
8069 {
8070 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8071 	u64 start = page_offset(page);
8072 	u64 end = start + PAGE_SIZE - 1;
8073 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
8074 	int ret;
8075 
8076 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8077 
8078 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
8079 	if (bio_ctrl.bio)
8080 		ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
8081 	return ret;
8082 }
8083 
8084 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8085 {
8086 	struct inode *inode = page->mapping->host;
8087 	int ret;
8088 
8089 	if (current->flags & PF_MEMALLOC) {
8090 		redirty_page_for_writepage(wbc, page);
8091 		unlock_page(page);
8092 		return 0;
8093 	}
8094 
8095 	/*
8096 	 * If we are under memory pressure we will call this directly from the
8097 	 * VM, we need to make sure we have the inode referenced for the ordered
8098 	 * extent.  If not just return like we didn't do anything.
8099 	 */
8100 	if (!igrab(inode)) {
8101 		redirty_page_for_writepage(wbc, page);
8102 		return AOP_WRITEPAGE_ACTIVATE;
8103 	}
8104 	ret = extent_write_full_page(page, wbc);
8105 	btrfs_add_delayed_iput(inode);
8106 	return ret;
8107 }
8108 
8109 static int btrfs_writepages(struct address_space *mapping,
8110 			    struct writeback_control *wbc)
8111 {
8112 	return extent_writepages(mapping, wbc);
8113 }
8114 
8115 static void btrfs_readahead(struct readahead_control *rac)
8116 {
8117 	extent_readahead(rac);
8118 }
8119 
8120 /*
8121  * For releasepage() and invalidatepage() we have a race window where
8122  * end_page_writeback() is called but the subpage spinlock is not yet released.
8123  * If we continue to release/invalidate the page, we could cause use-after-free
8124  * for subpage spinlock.  So this function is to spin and wait for subpage
8125  * spinlock.
8126  */
8127 static void wait_subpage_spinlock(struct page *page)
8128 {
8129 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8130 	struct btrfs_subpage *subpage;
8131 
8132 	if (fs_info->sectorsize == PAGE_SIZE)
8133 		return;
8134 
8135 	ASSERT(PagePrivate(page) && page->private);
8136 	subpage = (struct btrfs_subpage *)page->private;
8137 
8138 	/*
8139 	 * This may look insane as we just acquire the spinlock and release it,
8140 	 * without doing anything.  But we just want to make sure no one is
8141 	 * still holding the subpage spinlock.
8142 	 * And since the page is not dirty nor writeback, and we have page
8143 	 * locked, the only possible way to hold a spinlock is from the endio
8144 	 * function to clear page writeback.
8145 	 *
8146 	 * Here we just acquire the spinlock so that all existing callers
8147 	 * should exit and we're safe to release/invalidate the page.
8148 	 */
8149 	spin_lock_irq(&subpage->lock);
8150 	spin_unlock_irq(&subpage->lock);
8151 }
8152 
8153 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8154 {
8155 	int ret = try_release_extent_mapping(page, gfp_flags);
8156 
8157 	if (ret == 1) {
8158 		wait_subpage_spinlock(page);
8159 		clear_page_extent_mapped(page);
8160 	}
8161 	return ret;
8162 }
8163 
8164 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8165 {
8166 	if (PageWriteback(page) || PageDirty(page))
8167 		return 0;
8168 	return __btrfs_releasepage(page, gfp_flags);
8169 }
8170 
8171 #ifdef CONFIG_MIGRATION
8172 static int btrfs_migratepage(struct address_space *mapping,
8173 			     struct page *newpage, struct page *page,
8174 			     enum migrate_mode mode)
8175 {
8176 	int ret;
8177 
8178 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8179 	if (ret != MIGRATEPAGE_SUCCESS)
8180 		return ret;
8181 
8182 	if (page_has_private(page))
8183 		attach_page_private(newpage, detach_page_private(page));
8184 
8185 	if (PageOrdered(page)) {
8186 		ClearPageOrdered(page);
8187 		SetPageOrdered(newpage);
8188 	}
8189 
8190 	if (mode != MIGRATE_SYNC_NO_COPY)
8191 		migrate_page_copy(newpage, page);
8192 	else
8193 		migrate_page_states(newpage, page);
8194 	return MIGRATEPAGE_SUCCESS;
8195 }
8196 #endif
8197 
8198 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8199 				 unsigned int length)
8200 {
8201 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8202 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8203 	struct extent_io_tree *tree = &inode->io_tree;
8204 	struct extent_state *cached_state = NULL;
8205 	u64 page_start = page_offset(page);
8206 	u64 page_end = page_start + PAGE_SIZE - 1;
8207 	u64 cur;
8208 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8209 
8210 	/*
8211 	 * We have page locked so no new ordered extent can be created on this
8212 	 * page, nor bio can be submitted for this page.
8213 	 *
8214 	 * But already submitted bio can still be finished on this page.
8215 	 * Furthermore, endio function won't skip page which has Ordered
8216 	 * (Private2) already cleared, so it's possible for endio and
8217 	 * invalidatepage to do the same ordered extent accounting twice
8218 	 * on one page.
8219 	 *
8220 	 * So here we wait for any submitted bios to finish, so that we won't
8221 	 * do double ordered extent accounting on the same page.
8222 	 */
8223 	wait_on_page_writeback(page);
8224 	wait_subpage_spinlock(page);
8225 
8226 	/*
8227 	 * For subpage case, we have call sites like
8228 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8229 	 * sectorsize.
8230 	 * If the range doesn't cover the full page, we don't need to and
8231 	 * shouldn't clear page extent mapped, as page->private can still
8232 	 * record subpage dirty bits for other part of the range.
8233 	 *
8234 	 * For cases that can invalidate the full even the range doesn't
8235 	 * cover the full page, like invalidating the last page, we're
8236 	 * still safe to wait for ordered extent to finish.
8237 	 */
8238 	if (!(offset == 0 && length == PAGE_SIZE)) {
8239 		btrfs_releasepage(page, GFP_NOFS);
8240 		return;
8241 	}
8242 
8243 	if (!inode_evicting)
8244 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8245 
8246 	cur = page_start;
8247 	while (cur < page_end) {
8248 		struct btrfs_ordered_extent *ordered;
8249 		bool delete_states;
8250 		u64 range_end;
8251 		u32 range_len;
8252 
8253 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8254 							   page_end + 1 - cur);
8255 		if (!ordered) {
8256 			range_end = page_end;
8257 			/*
8258 			 * No ordered extent covering this range, we are safe
8259 			 * to delete all extent states in the range.
8260 			 */
8261 			delete_states = true;
8262 			goto next;
8263 		}
8264 		if (ordered->file_offset > cur) {
8265 			/*
8266 			 * There is a range between [cur, oe->file_offset) not
8267 			 * covered by any ordered extent.
8268 			 * We are safe to delete all extent states, and handle
8269 			 * the ordered extent in the next iteration.
8270 			 */
8271 			range_end = ordered->file_offset - 1;
8272 			delete_states = true;
8273 			goto next;
8274 		}
8275 
8276 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8277 				page_end);
8278 		ASSERT(range_end + 1 - cur < U32_MAX);
8279 		range_len = range_end + 1 - cur;
8280 		if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) {
8281 			/*
8282 			 * If Ordered (Private2) is cleared, it means endio has
8283 			 * already been executed for the range.
8284 			 * We can't delete the extent states as
8285 			 * btrfs_finish_ordered_io() may still use some of them.
8286 			 */
8287 			delete_states = false;
8288 			goto next;
8289 		}
8290 		btrfs_page_clear_ordered(fs_info, page, cur, range_len);
8291 
8292 		/*
8293 		 * IO on this page will never be started, so we need to account
8294 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8295 		 * here, must leave that up for the ordered extent completion.
8296 		 *
8297 		 * This will also unlock the range for incoming
8298 		 * btrfs_finish_ordered_io().
8299 		 */
8300 		if (!inode_evicting)
8301 			clear_extent_bit(tree, cur, range_end,
8302 					 EXTENT_DELALLOC |
8303 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8304 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8305 
8306 		spin_lock_irq(&inode->ordered_tree.lock);
8307 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8308 		ordered->truncated_len = min(ordered->truncated_len,
8309 					     cur - ordered->file_offset);
8310 		spin_unlock_irq(&inode->ordered_tree.lock);
8311 
8312 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8313 						   cur, range_end + 1 - cur)) {
8314 			btrfs_finish_ordered_io(ordered);
8315 			/*
8316 			 * The ordered extent has finished, now we're again
8317 			 * safe to delete all extent states of the range.
8318 			 */
8319 			delete_states = true;
8320 		} else {
8321 			/*
8322 			 * btrfs_finish_ordered_io() will get executed by endio
8323 			 * of other pages, thus we can't delete extent states
8324 			 * anymore
8325 			 */
8326 			delete_states = false;
8327 		}
8328 next:
8329 		if (ordered)
8330 			btrfs_put_ordered_extent(ordered);
8331 		/*
8332 		 * Qgroup reserved space handler
8333 		 * Sector(s) here will be either:
8334 		 *
8335 		 * 1) Already written to disk or bio already finished
8336 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8337 		 *    Qgroup will be handled by its qgroup_record then.
8338 		 *    btrfs_qgroup_free_data() call will do nothing here.
8339 		 *
8340 		 * 2) Not written to disk yet
8341 		 *    Then btrfs_qgroup_free_data() call will clear the
8342 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8343 		 *    reserved data space.
8344 		 *    Since the IO will never happen for this page.
8345 		 */
8346 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8347 		if (!inode_evicting) {
8348 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8349 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8350 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8351 				 delete_states, &cached_state);
8352 		}
8353 		cur = range_end + 1;
8354 	}
8355 	/*
8356 	 * We have iterated through all ordered extents of the page, the page
8357 	 * should not have Ordered (Private2) anymore, or the above iteration
8358 	 * did something wrong.
8359 	 */
8360 	ASSERT(!PageOrdered(page));
8361 	btrfs_page_clear_checked(fs_info, page, page_offset(page), PAGE_SIZE);
8362 	if (!inode_evicting)
8363 		__btrfs_releasepage(page, GFP_NOFS);
8364 	clear_page_extent_mapped(page);
8365 }
8366 
8367 /*
8368  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8369  * called from a page fault handler when a page is first dirtied. Hence we must
8370  * be careful to check for EOF conditions here. We set the page up correctly
8371  * for a written page which means we get ENOSPC checking when writing into
8372  * holes and correct delalloc and unwritten extent mapping on filesystems that
8373  * support these features.
8374  *
8375  * We are not allowed to take the i_mutex here so we have to play games to
8376  * protect against truncate races as the page could now be beyond EOF.  Because
8377  * truncate_setsize() writes the inode size before removing pages, once we have
8378  * the page lock we can determine safely if the page is beyond EOF. If it is not
8379  * beyond EOF, then the page is guaranteed safe against truncation until we
8380  * unlock the page.
8381  */
8382 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8383 {
8384 	struct page *page = vmf->page;
8385 	struct inode *inode = file_inode(vmf->vma->vm_file);
8386 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8387 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8388 	struct btrfs_ordered_extent *ordered;
8389 	struct extent_state *cached_state = NULL;
8390 	struct extent_changeset *data_reserved = NULL;
8391 	unsigned long zero_start;
8392 	loff_t size;
8393 	vm_fault_t ret;
8394 	int ret2;
8395 	int reserved = 0;
8396 	u64 reserved_space;
8397 	u64 page_start;
8398 	u64 page_end;
8399 	u64 end;
8400 
8401 	reserved_space = PAGE_SIZE;
8402 
8403 	sb_start_pagefault(inode->i_sb);
8404 	page_start = page_offset(page);
8405 	page_end = page_start + PAGE_SIZE - 1;
8406 	end = page_end;
8407 
8408 	/*
8409 	 * Reserving delalloc space after obtaining the page lock can lead to
8410 	 * deadlock. For example, if a dirty page is locked by this function
8411 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8412 	 * dirty page write out, then the btrfs_writepage() function could
8413 	 * end up waiting indefinitely to get a lock on the page currently
8414 	 * being processed by btrfs_page_mkwrite() function.
8415 	 */
8416 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8417 					    page_start, reserved_space);
8418 	if (!ret2) {
8419 		ret2 = file_update_time(vmf->vma->vm_file);
8420 		reserved = 1;
8421 	}
8422 	if (ret2) {
8423 		ret = vmf_error(ret2);
8424 		if (reserved)
8425 			goto out;
8426 		goto out_noreserve;
8427 	}
8428 
8429 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8430 again:
8431 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8432 	lock_page(page);
8433 	size = i_size_read(inode);
8434 
8435 	if ((page->mapping != inode->i_mapping) ||
8436 	    (page_start >= size)) {
8437 		/* page got truncated out from underneath us */
8438 		goto out_unlock;
8439 	}
8440 	wait_on_page_writeback(page);
8441 
8442 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8443 	ret2 = set_page_extent_mapped(page);
8444 	if (ret2 < 0) {
8445 		ret = vmf_error(ret2);
8446 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8447 		goto out_unlock;
8448 	}
8449 
8450 	/*
8451 	 * we can't set the delalloc bits if there are pending ordered
8452 	 * extents.  Drop our locks and wait for them to finish
8453 	 */
8454 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8455 			PAGE_SIZE);
8456 	if (ordered) {
8457 		unlock_extent_cached(io_tree, page_start, page_end,
8458 				     &cached_state);
8459 		unlock_page(page);
8460 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8461 		btrfs_start_ordered_extent(ordered, 1);
8462 		btrfs_put_ordered_extent(ordered);
8463 		goto again;
8464 	}
8465 
8466 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8467 		reserved_space = round_up(size - page_start,
8468 					  fs_info->sectorsize);
8469 		if (reserved_space < PAGE_SIZE) {
8470 			end = page_start + reserved_space - 1;
8471 			btrfs_delalloc_release_space(BTRFS_I(inode),
8472 					data_reserved, page_start,
8473 					PAGE_SIZE - reserved_space, true);
8474 		}
8475 	}
8476 
8477 	/*
8478 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8479 	 * faulted in, but write(2) could also dirty a page and set delalloc
8480 	 * bits, thus in this case for space account reason, we still need to
8481 	 * clear any delalloc bits within this page range since we have to
8482 	 * reserve data&meta space before lock_page() (see above comments).
8483 	 */
8484 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8485 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8486 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8487 
8488 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8489 					&cached_state);
8490 	if (ret2) {
8491 		unlock_extent_cached(io_tree, page_start, page_end,
8492 				     &cached_state);
8493 		ret = VM_FAULT_SIGBUS;
8494 		goto out_unlock;
8495 	}
8496 
8497 	/* page is wholly or partially inside EOF */
8498 	if (page_start + PAGE_SIZE > size)
8499 		zero_start = offset_in_page(size);
8500 	else
8501 		zero_start = PAGE_SIZE;
8502 
8503 	if (zero_start != PAGE_SIZE) {
8504 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8505 		flush_dcache_page(page);
8506 	}
8507 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8508 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8509 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8510 
8511 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8512 
8513 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8514 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8515 
8516 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8517 	sb_end_pagefault(inode->i_sb);
8518 	extent_changeset_free(data_reserved);
8519 	return VM_FAULT_LOCKED;
8520 
8521 out_unlock:
8522 	unlock_page(page);
8523 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8524 out:
8525 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8526 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8527 				     reserved_space, (ret != 0));
8528 out_noreserve:
8529 	sb_end_pagefault(inode->i_sb);
8530 	extent_changeset_free(data_reserved);
8531 	return ret;
8532 }
8533 
8534 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8535 {
8536 	struct btrfs_truncate_control control = {
8537 		.inode = BTRFS_I(inode),
8538 		.ino = btrfs_ino(BTRFS_I(inode)),
8539 		.min_type = BTRFS_EXTENT_DATA_KEY,
8540 		.clear_extent_range = true,
8541 	};
8542 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8543 	struct btrfs_root *root = BTRFS_I(inode)->root;
8544 	struct btrfs_block_rsv *rsv;
8545 	int ret;
8546 	struct btrfs_trans_handle *trans;
8547 	u64 mask = fs_info->sectorsize - 1;
8548 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8549 
8550 	if (!skip_writeback) {
8551 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8552 					       (u64)-1);
8553 		if (ret)
8554 			return ret;
8555 	}
8556 
8557 	/*
8558 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8559 	 * things going on here:
8560 	 *
8561 	 * 1) We need to reserve space to update our inode.
8562 	 *
8563 	 * 2) We need to have something to cache all the space that is going to
8564 	 * be free'd up by the truncate operation, but also have some slack
8565 	 * space reserved in case it uses space during the truncate (thank you
8566 	 * very much snapshotting).
8567 	 *
8568 	 * And we need these to be separate.  The fact is we can use a lot of
8569 	 * space doing the truncate, and we have no earthly idea how much space
8570 	 * we will use, so we need the truncate reservation to be separate so it
8571 	 * doesn't end up using space reserved for updating the inode.  We also
8572 	 * need to be able to stop the transaction and start a new one, which
8573 	 * means we need to be able to update the inode several times, and we
8574 	 * have no idea of knowing how many times that will be, so we can't just
8575 	 * reserve 1 item for the entirety of the operation, so that has to be
8576 	 * done separately as well.
8577 	 *
8578 	 * So that leaves us with
8579 	 *
8580 	 * 1) rsv - for the truncate reservation, which we will steal from the
8581 	 * transaction reservation.
8582 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8583 	 * updating the inode.
8584 	 */
8585 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8586 	if (!rsv)
8587 		return -ENOMEM;
8588 	rsv->size = min_size;
8589 	rsv->failfast = 1;
8590 
8591 	/*
8592 	 * 1 for the truncate slack space
8593 	 * 1 for updating the inode.
8594 	 */
8595 	trans = btrfs_start_transaction(root, 2);
8596 	if (IS_ERR(trans)) {
8597 		ret = PTR_ERR(trans);
8598 		goto out;
8599 	}
8600 
8601 	/* Migrate the slack space for the truncate to our reserve */
8602 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8603 				      min_size, false);
8604 	BUG_ON(ret);
8605 
8606 	trans->block_rsv = rsv;
8607 
8608 	while (1) {
8609 		struct extent_state *cached_state = NULL;
8610 		const u64 new_size = inode->i_size;
8611 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8612 
8613 		control.new_size = new_size;
8614 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8615 				 &cached_state);
8616 		/*
8617 		 * We want to drop from the next block forward in case this new
8618 		 * size is not block aligned since we will be keeping the last
8619 		 * block of the extent just the way it is.
8620 		 */
8621 		btrfs_drop_extent_cache(BTRFS_I(inode),
8622 					ALIGN(new_size, fs_info->sectorsize),
8623 					(u64)-1, 0);
8624 
8625 		ret = btrfs_truncate_inode_items(trans, root, &control);
8626 
8627 		inode_sub_bytes(inode, control.sub_bytes);
8628 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8629 
8630 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8631 				     (u64)-1, &cached_state);
8632 
8633 		trans->block_rsv = &fs_info->trans_block_rsv;
8634 		if (ret != -ENOSPC && ret != -EAGAIN)
8635 			break;
8636 
8637 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8638 		if (ret)
8639 			break;
8640 
8641 		btrfs_end_transaction(trans);
8642 		btrfs_btree_balance_dirty(fs_info);
8643 
8644 		trans = btrfs_start_transaction(root, 2);
8645 		if (IS_ERR(trans)) {
8646 			ret = PTR_ERR(trans);
8647 			trans = NULL;
8648 			break;
8649 		}
8650 
8651 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8652 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8653 					      rsv, min_size, false);
8654 		BUG_ON(ret);	/* shouldn't happen */
8655 		trans->block_rsv = rsv;
8656 	}
8657 
8658 	/*
8659 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8660 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8661 	 * know we've truncated everything except the last little bit, and can
8662 	 * do btrfs_truncate_block and then update the disk_i_size.
8663 	 */
8664 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8665 		btrfs_end_transaction(trans);
8666 		btrfs_btree_balance_dirty(fs_info);
8667 
8668 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8669 		if (ret)
8670 			goto out;
8671 		trans = btrfs_start_transaction(root, 1);
8672 		if (IS_ERR(trans)) {
8673 			ret = PTR_ERR(trans);
8674 			goto out;
8675 		}
8676 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8677 	}
8678 
8679 	if (trans) {
8680 		int ret2;
8681 
8682 		trans->block_rsv = &fs_info->trans_block_rsv;
8683 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8684 		if (ret2 && !ret)
8685 			ret = ret2;
8686 
8687 		ret2 = btrfs_end_transaction(trans);
8688 		if (ret2 && !ret)
8689 			ret = ret2;
8690 		btrfs_btree_balance_dirty(fs_info);
8691 	}
8692 out:
8693 	btrfs_free_block_rsv(fs_info, rsv);
8694 	/*
8695 	 * So if we truncate and then write and fsync we normally would just
8696 	 * write the extents that changed, which is a problem if we need to
8697 	 * first truncate that entire inode.  So set this flag so we write out
8698 	 * all of the extents in the inode to the sync log so we're completely
8699 	 * safe.
8700 	 *
8701 	 * If no extents were dropped or trimmed we don't need to force the next
8702 	 * fsync to truncate all the inode's items from the log and re-log them
8703 	 * all. This means the truncate operation did not change the file size,
8704 	 * or changed it to a smaller size but there was only an implicit hole
8705 	 * between the old i_size and the new i_size, and there were no prealloc
8706 	 * extents beyond i_size to drop.
8707 	 */
8708 	if (control.extents_found > 0)
8709 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8710 
8711 	return ret;
8712 }
8713 
8714 /*
8715  * create a new subvolume directory/inode (helper for the ioctl).
8716  */
8717 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8718 			     struct btrfs_root *new_root,
8719 			     struct btrfs_root *parent_root,
8720 			     struct user_namespace *mnt_userns)
8721 {
8722 	struct inode *inode;
8723 	int err;
8724 	u64 index = 0;
8725 	u64 ino;
8726 
8727 	err = btrfs_get_free_objectid(new_root, &ino);
8728 	if (err < 0)
8729 		return err;
8730 
8731 	inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2,
8732 				ino, ino,
8733 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8734 				&index);
8735 	if (IS_ERR(inode))
8736 		return PTR_ERR(inode);
8737 	inode->i_op = &btrfs_dir_inode_operations;
8738 	inode->i_fop = &btrfs_dir_file_operations;
8739 
8740 	set_nlink(inode, 1);
8741 	btrfs_i_size_write(BTRFS_I(inode), 0);
8742 	unlock_new_inode(inode);
8743 
8744 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8745 	if (err)
8746 		btrfs_err(new_root->fs_info,
8747 			  "error inheriting subvolume %llu properties: %d",
8748 			  new_root->root_key.objectid, err);
8749 
8750 	err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8751 
8752 	iput(inode);
8753 	return err;
8754 }
8755 
8756 struct inode *btrfs_alloc_inode(struct super_block *sb)
8757 {
8758 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8759 	struct btrfs_inode *ei;
8760 	struct inode *inode;
8761 
8762 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8763 	if (!ei)
8764 		return NULL;
8765 
8766 	ei->root = NULL;
8767 	ei->generation = 0;
8768 	ei->last_trans = 0;
8769 	ei->last_sub_trans = 0;
8770 	ei->logged_trans = 0;
8771 	ei->delalloc_bytes = 0;
8772 	ei->new_delalloc_bytes = 0;
8773 	ei->defrag_bytes = 0;
8774 	ei->disk_i_size = 0;
8775 	ei->flags = 0;
8776 	ei->ro_flags = 0;
8777 	ei->csum_bytes = 0;
8778 	ei->index_cnt = (u64)-1;
8779 	ei->dir_index = 0;
8780 	ei->last_unlink_trans = 0;
8781 	ei->last_reflink_trans = 0;
8782 	ei->last_log_commit = 0;
8783 
8784 	spin_lock_init(&ei->lock);
8785 	ei->outstanding_extents = 0;
8786 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8787 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8788 					      BTRFS_BLOCK_RSV_DELALLOC);
8789 	ei->runtime_flags = 0;
8790 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8791 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8792 
8793 	ei->delayed_node = NULL;
8794 
8795 	ei->i_otime.tv_sec = 0;
8796 	ei->i_otime.tv_nsec = 0;
8797 
8798 	inode = &ei->vfs_inode;
8799 	extent_map_tree_init(&ei->extent_tree);
8800 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8801 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8802 			    IO_TREE_INODE_IO_FAILURE, inode);
8803 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8804 			    IO_TREE_INODE_FILE_EXTENT, inode);
8805 	ei->io_tree.track_uptodate = true;
8806 	ei->io_failure_tree.track_uptodate = true;
8807 	atomic_set(&ei->sync_writers, 0);
8808 	mutex_init(&ei->log_mutex);
8809 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8810 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8811 	INIT_LIST_HEAD(&ei->delayed_iput);
8812 	RB_CLEAR_NODE(&ei->rb_node);
8813 	init_rwsem(&ei->i_mmap_lock);
8814 
8815 	return inode;
8816 }
8817 
8818 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8819 void btrfs_test_destroy_inode(struct inode *inode)
8820 {
8821 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8822 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8823 }
8824 #endif
8825 
8826 void btrfs_free_inode(struct inode *inode)
8827 {
8828 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8829 }
8830 
8831 void btrfs_destroy_inode(struct inode *vfs_inode)
8832 {
8833 	struct btrfs_ordered_extent *ordered;
8834 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8835 	struct btrfs_root *root = inode->root;
8836 
8837 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8838 	WARN_ON(vfs_inode->i_data.nrpages);
8839 	WARN_ON(inode->block_rsv.reserved);
8840 	WARN_ON(inode->block_rsv.size);
8841 	WARN_ON(inode->outstanding_extents);
8842 	if (!S_ISDIR(vfs_inode->i_mode)) {
8843 		WARN_ON(inode->delalloc_bytes);
8844 		WARN_ON(inode->new_delalloc_bytes);
8845 	}
8846 	WARN_ON(inode->csum_bytes);
8847 	WARN_ON(inode->defrag_bytes);
8848 
8849 	/*
8850 	 * This can happen where we create an inode, but somebody else also
8851 	 * created the same inode and we need to destroy the one we already
8852 	 * created.
8853 	 */
8854 	if (!root)
8855 		return;
8856 
8857 	while (1) {
8858 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8859 		if (!ordered)
8860 			break;
8861 		else {
8862 			btrfs_err(root->fs_info,
8863 				  "found ordered extent %llu %llu on inode cleanup",
8864 				  ordered->file_offset, ordered->num_bytes);
8865 			btrfs_remove_ordered_extent(inode, ordered);
8866 			btrfs_put_ordered_extent(ordered);
8867 			btrfs_put_ordered_extent(ordered);
8868 		}
8869 	}
8870 	btrfs_qgroup_check_reserved_leak(inode);
8871 	inode_tree_del(inode);
8872 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8873 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8874 	btrfs_put_root(inode->root);
8875 }
8876 
8877 int btrfs_drop_inode(struct inode *inode)
8878 {
8879 	struct btrfs_root *root = BTRFS_I(inode)->root;
8880 
8881 	if (root == NULL)
8882 		return 1;
8883 
8884 	/* the snap/subvol tree is on deleting */
8885 	if (btrfs_root_refs(&root->root_item) == 0)
8886 		return 1;
8887 	else
8888 		return generic_drop_inode(inode);
8889 }
8890 
8891 static void init_once(void *foo)
8892 {
8893 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8894 
8895 	inode_init_once(&ei->vfs_inode);
8896 }
8897 
8898 void __cold btrfs_destroy_cachep(void)
8899 {
8900 	/*
8901 	 * Make sure all delayed rcu free inodes are flushed before we
8902 	 * destroy cache.
8903 	 */
8904 	rcu_barrier();
8905 	kmem_cache_destroy(btrfs_inode_cachep);
8906 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8907 	kmem_cache_destroy(btrfs_path_cachep);
8908 	kmem_cache_destroy(btrfs_free_space_cachep);
8909 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8910 }
8911 
8912 int __init btrfs_init_cachep(void)
8913 {
8914 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8915 			sizeof(struct btrfs_inode), 0,
8916 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8917 			init_once);
8918 	if (!btrfs_inode_cachep)
8919 		goto fail;
8920 
8921 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8922 			sizeof(struct btrfs_trans_handle), 0,
8923 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8924 	if (!btrfs_trans_handle_cachep)
8925 		goto fail;
8926 
8927 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8928 			sizeof(struct btrfs_path), 0,
8929 			SLAB_MEM_SPREAD, NULL);
8930 	if (!btrfs_path_cachep)
8931 		goto fail;
8932 
8933 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8934 			sizeof(struct btrfs_free_space), 0,
8935 			SLAB_MEM_SPREAD, NULL);
8936 	if (!btrfs_free_space_cachep)
8937 		goto fail;
8938 
8939 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8940 							PAGE_SIZE, PAGE_SIZE,
8941 							SLAB_MEM_SPREAD, NULL);
8942 	if (!btrfs_free_space_bitmap_cachep)
8943 		goto fail;
8944 
8945 	return 0;
8946 fail:
8947 	btrfs_destroy_cachep();
8948 	return -ENOMEM;
8949 }
8950 
8951 static int btrfs_getattr(struct user_namespace *mnt_userns,
8952 			 const struct path *path, struct kstat *stat,
8953 			 u32 request_mask, unsigned int flags)
8954 {
8955 	u64 delalloc_bytes;
8956 	u64 inode_bytes;
8957 	struct inode *inode = d_inode(path->dentry);
8958 	u32 blocksize = inode->i_sb->s_blocksize;
8959 	u32 bi_flags = BTRFS_I(inode)->flags;
8960 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8961 
8962 	stat->result_mask |= STATX_BTIME;
8963 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8964 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8965 	if (bi_flags & BTRFS_INODE_APPEND)
8966 		stat->attributes |= STATX_ATTR_APPEND;
8967 	if (bi_flags & BTRFS_INODE_COMPRESS)
8968 		stat->attributes |= STATX_ATTR_COMPRESSED;
8969 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8970 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8971 	if (bi_flags & BTRFS_INODE_NODUMP)
8972 		stat->attributes |= STATX_ATTR_NODUMP;
8973 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8974 		stat->attributes |= STATX_ATTR_VERITY;
8975 
8976 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8977 				  STATX_ATTR_COMPRESSED |
8978 				  STATX_ATTR_IMMUTABLE |
8979 				  STATX_ATTR_NODUMP);
8980 
8981 	generic_fillattr(mnt_userns, inode, stat);
8982 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8983 
8984 	spin_lock(&BTRFS_I(inode)->lock);
8985 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8986 	inode_bytes = inode_get_bytes(inode);
8987 	spin_unlock(&BTRFS_I(inode)->lock);
8988 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8989 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8990 	return 0;
8991 }
8992 
8993 static int btrfs_rename_exchange(struct inode *old_dir,
8994 			      struct dentry *old_dentry,
8995 			      struct inode *new_dir,
8996 			      struct dentry *new_dentry)
8997 {
8998 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8999 	struct btrfs_trans_handle *trans;
9000 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9001 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9002 	struct inode *new_inode = new_dentry->d_inode;
9003 	struct inode *old_inode = old_dentry->d_inode;
9004 	struct timespec64 ctime = current_time(old_inode);
9005 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9006 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9007 	u64 old_idx = 0;
9008 	u64 new_idx = 0;
9009 	int ret;
9010 	int ret2;
9011 	bool root_log_pinned = false;
9012 	bool dest_log_pinned = false;
9013 	bool need_abort = false;
9014 
9015 	/*
9016 	 * For non-subvolumes allow exchange only within one subvolume, in the
9017 	 * same inode namespace. Two subvolumes (represented as directory) can
9018 	 * be exchanged as they're a logical link and have a fixed inode number.
9019 	 */
9020 	if (root != dest &&
9021 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9022 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9023 		return -EXDEV;
9024 
9025 	/* close the race window with snapshot create/destroy ioctl */
9026 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9027 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9028 		down_read(&fs_info->subvol_sem);
9029 
9030 	/*
9031 	 * We want to reserve the absolute worst case amount of items.  So if
9032 	 * both inodes are subvols and we need to unlink them then that would
9033 	 * require 4 item modifications, but if they are both normal inodes it
9034 	 * would require 5 item modifications, so we'll assume their normal
9035 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9036 	 * should cover the worst case number of items we'll modify.
9037 	 */
9038 	trans = btrfs_start_transaction(root, 12);
9039 	if (IS_ERR(trans)) {
9040 		ret = PTR_ERR(trans);
9041 		goto out_notrans;
9042 	}
9043 
9044 	if (dest != root) {
9045 		ret = btrfs_record_root_in_trans(trans, dest);
9046 		if (ret)
9047 			goto out_fail;
9048 	}
9049 
9050 	/*
9051 	 * We need to find a free sequence number both in the source and
9052 	 * in the destination directory for the exchange.
9053 	 */
9054 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9055 	if (ret)
9056 		goto out_fail;
9057 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9058 	if (ret)
9059 		goto out_fail;
9060 
9061 	BTRFS_I(old_inode)->dir_index = 0ULL;
9062 	BTRFS_I(new_inode)->dir_index = 0ULL;
9063 
9064 	/* Reference for the source. */
9065 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9066 		/* force full log commit if subvolume involved. */
9067 		btrfs_set_log_full_commit(trans);
9068 	} else {
9069 		ret = btrfs_insert_inode_ref(trans, dest,
9070 					     new_dentry->d_name.name,
9071 					     new_dentry->d_name.len,
9072 					     old_ino,
9073 					     btrfs_ino(BTRFS_I(new_dir)),
9074 					     old_idx);
9075 		if (ret)
9076 			goto out_fail;
9077 		need_abort = true;
9078 	}
9079 
9080 	/* And now for the dest. */
9081 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9082 		/* force full log commit if subvolume involved. */
9083 		btrfs_set_log_full_commit(trans);
9084 	} else {
9085 		ret = btrfs_insert_inode_ref(trans, root,
9086 					     old_dentry->d_name.name,
9087 					     old_dentry->d_name.len,
9088 					     new_ino,
9089 					     btrfs_ino(BTRFS_I(old_dir)),
9090 					     new_idx);
9091 		if (ret) {
9092 			if (need_abort)
9093 				btrfs_abort_transaction(trans, ret);
9094 			goto out_fail;
9095 		}
9096 	}
9097 
9098 	/* Update inode version and ctime/mtime. */
9099 	inode_inc_iversion(old_dir);
9100 	inode_inc_iversion(new_dir);
9101 	inode_inc_iversion(old_inode);
9102 	inode_inc_iversion(new_inode);
9103 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9104 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9105 	old_inode->i_ctime = ctime;
9106 	new_inode->i_ctime = ctime;
9107 
9108 	if (old_dentry->d_parent != new_dentry->d_parent) {
9109 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9110 				BTRFS_I(old_inode), 1);
9111 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9112 				BTRFS_I(new_inode), 1);
9113 	}
9114 
9115 	/*
9116 	 * Now pin the logs of the roots. We do it to ensure that no other task
9117 	 * can sync the logs while we are in progress with the rename, because
9118 	 * that could result in an inconsistency in case any of the inodes that
9119 	 * are part of this rename operation were logged before.
9120 	 *
9121 	 * We pin the logs even if at this precise moment none of the inodes was
9122 	 * logged before. This is because right after we checked for that, some
9123 	 * other task fsyncing some other inode not involved with this rename
9124 	 * operation could log that one of our inodes exists.
9125 	 *
9126 	 * We don't need to pin the logs before the above calls to
9127 	 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9128 	 */
9129 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9130 		btrfs_pin_log_trans(root);
9131 		root_log_pinned = true;
9132 	}
9133 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9134 		btrfs_pin_log_trans(dest);
9135 		dest_log_pinned = true;
9136 	}
9137 
9138 	/* src is a subvolume */
9139 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9140 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9141 	} else { /* src is an inode */
9142 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9143 					   BTRFS_I(old_dentry->d_inode),
9144 					   old_dentry->d_name.name,
9145 					   old_dentry->d_name.len);
9146 		if (!ret)
9147 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9148 	}
9149 	if (ret) {
9150 		btrfs_abort_transaction(trans, ret);
9151 		goto out_fail;
9152 	}
9153 
9154 	/* dest is a subvolume */
9155 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9156 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9157 	} else { /* dest is an inode */
9158 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9159 					   BTRFS_I(new_dentry->d_inode),
9160 					   new_dentry->d_name.name,
9161 					   new_dentry->d_name.len);
9162 		if (!ret)
9163 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9164 	}
9165 	if (ret) {
9166 		btrfs_abort_transaction(trans, ret);
9167 		goto out_fail;
9168 	}
9169 
9170 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9171 			     new_dentry->d_name.name,
9172 			     new_dentry->d_name.len, 0, old_idx);
9173 	if (ret) {
9174 		btrfs_abort_transaction(trans, ret);
9175 		goto out_fail;
9176 	}
9177 
9178 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9179 			     old_dentry->d_name.name,
9180 			     old_dentry->d_name.len, 0, new_idx);
9181 	if (ret) {
9182 		btrfs_abort_transaction(trans, ret);
9183 		goto out_fail;
9184 	}
9185 
9186 	if (old_inode->i_nlink == 1)
9187 		BTRFS_I(old_inode)->dir_index = old_idx;
9188 	if (new_inode->i_nlink == 1)
9189 		BTRFS_I(new_inode)->dir_index = new_idx;
9190 
9191 	if (root_log_pinned) {
9192 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9193 				   new_dentry->d_parent);
9194 		btrfs_end_log_trans(root);
9195 		root_log_pinned = false;
9196 	}
9197 	if (dest_log_pinned) {
9198 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9199 				   old_dentry->d_parent);
9200 		btrfs_end_log_trans(dest);
9201 		dest_log_pinned = false;
9202 	}
9203 out_fail:
9204 	/*
9205 	 * If we have pinned a log and an error happened, we unpin tasks
9206 	 * trying to sync the log and force them to fallback to a transaction
9207 	 * commit if the log currently contains any of the inodes involved in
9208 	 * this rename operation (to ensure we do not persist a log with an
9209 	 * inconsistent state for any of these inodes or leading to any
9210 	 * inconsistencies when replayed). If the transaction was aborted, the
9211 	 * abortion reason is propagated to userspace when attempting to commit
9212 	 * the transaction. If the log does not contain any of these inodes, we
9213 	 * allow the tasks to sync it.
9214 	 */
9215 	if (ret && (root_log_pinned || dest_log_pinned)) {
9216 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9217 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9218 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9219 		    btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))
9220 			btrfs_set_log_full_commit(trans);
9221 
9222 		if (root_log_pinned) {
9223 			btrfs_end_log_trans(root);
9224 			root_log_pinned = false;
9225 		}
9226 		if (dest_log_pinned) {
9227 			btrfs_end_log_trans(dest);
9228 			dest_log_pinned = false;
9229 		}
9230 	}
9231 	ret2 = btrfs_end_transaction(trans);
9232 	ret = ret ? ret : ret2;
9233 out_notrans:
9234 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9235 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9236 		up_read(&fs_info->subvol_sem);
9237 
9238 	return ret;
9239 }
9240 
9241 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9242 				     struct btrfs_root *root,
9243 				     struct user_namespace *mnt_userns,
9244 				     struct inode *dir,
9245 				     struct dentry *dentry)
9246 {
9247 	int ret;
9248 	struct inode *inode;
9249 	u64 objectid;
9250 	u64 index;
9251 
9252 	ret = btrfs_get_free_objectid(root, &objectid);
9253 	if (ret)
9254 		return ret;
9255 
9256 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9257 				dentry->d_name.name,
9258 				dentry->d_name.len,
9259 				btrfs_ino(BTRFS_I(dir)),
9260 				objectid,
9261 				S_IFCHR | WHITEOUT_MODE,
9262 				&index);
9263 
9264 	if (IS_ERR(inode)) {
9265 		ret = PTR_ERR(inode);
9266 		return ret;
9267 	}
9268 
9269 	inode->i_op = &btrfs_special_inode_operations;
9270 	init_special_inode(inode, inode->i_mode,
9271 		WHITEOUT_DEV);
9272 
9273 	ret = btrfs_init_inode_security(trans, inode, dir,
9274 				&dentry->d_name);
9275 	if (ret)
9276 		goto out;
9277 
9278 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9279 				BTRFS_I(inode), 0, index);
9280 	if (ret)
9281 		goto out;
9282 
9283 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9284 out:
9285 	unlock_new_inode(inode);
9286 	if (ret)
9287 		inode_dec_link_count(inode);
9288 	iput(inode);
9289 
9290 	return ret;
9291 }
9292 
9293 static int btrfs_rename(struct user_namespace *mnt_userns,
9294 			struct inode *old_dir, struct dentry *old_dentry,
9295 			struct inode *new_dir, struct dentry *new_dentry,
9296 			unsigned int flags)
9297 {
9298 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9299 	struct btrfs_trans_handle *trans;
9300 	unsigned int trans_num_items;
9301 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9302 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9303 	struct inode *new_inode = d_inode(new_dentry);
9304 	struct inode *old_inode = d_inode(old_dentry);
9305 	u64 index = 0;
9306 	int ret;
9307 	int ret2;
9308 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9309 	bool log_pinned = false;
9310 
9311 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9312 		return -EPERM;
9313 
9314 	/* we only allow rename subvolume link between subvolumes */
9315 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9316 		return -EXDEV;
9317 
9318 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9319 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9320 		return -ENOTEMPTY;
9321 
9322 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9323 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9324 		return -ENOTEMPTY;
9325 
9326 
9327 	/* check for collisions, even if the  name isn't there */
9328 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9329 			     new_dentry->d_name.name,
9330 			     new_dentry->d_name.len);
9331 
9332 	if (ret) {
9333 		if (ret == -EEXIST) {
9334 			/* we shouldn't get
9335 			 * eexist without a new_inode */
9336 			if (WARN_ON(!new_inode)) {
9337 				return ret;
9338 			}
9339 		} else {
9340 			/* maybe -EOVERFLOW */
9341 			return ret;
9342 		}
9343 	}
9344 	ret = 0;
9345 
9346 	/*
9347 	 * we're using rename to replace one file with another.  Start IO on it
9348 	 * now so  we don't add too much work to the end of the transaction
9349 	 */
9350 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9351 		filemap_flush(old_inode->i_mapping);
9352 
9353 	/* close the racy window with snapshot create/destroy ioctl */
9354 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9355 		down_read(&fs_info->subvol_sem);
9356 	/*
9357 	 * We want to reserve the absolute worst case amount of items.  So if
9358 	 * both inodes are subvols and we need to unlink them then that would
9359 	 * require 4 item modifications, but if they are both normal inodes it
9360 	 * would require 5 item modifications, so we'll assume they are normal
9361 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9362 	 * should cover the worst case number of items we'll modify.
9363 	 * If our rename has the whiteout flag, we need more 5 units for the
9364 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9365 	 * when selinux is enabled).
9366 	 */
9367 	trans_num_items = 11;
9368 	if (flags & RENAME_WHITEOUT)
9369 		trans_num_items += 5;
9370 	trans = btrfs_start_transaction(root, trans_num_items);
9371 	if (IS_ERR(trans)) {
9372 		ret = PTR_ERR(trans);
9373 		goto out_notrans;
9374 	}
9375 
9376 	if (dest != root) {
9377 		ret = btrfs_record_root_in_trans(trans, dest);
9378 		if (ret)
9379 			goto out_fail;
9380 	}
9381 
9382 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9383 	if (ret)
9384 		goto out_fail;
9385 
9386 	BTRFS_I(old_inode)->dir_index = 0ULL;
9387 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9388 		/* force full log commit if subvolume involved. */
9389 		btrfs_set_log_full_commit(trans);
9390 	} else {
9391 		ret = btrfs_insert_inode_ref(trans, dest,
9392 					     new_dentry->d_name.name,
9393 					     new_dentry->d_name.len,
9394 					     old_ino,
9395 					     btrfs_ino(BTRFS_I(new_dir)), index);
9396 		if (ret)
9397 			goto out_fail;
9398 	}
9399 
9400 	inode_inc_iversion(old_dir);
9401 	inode_inc_iversion(new_dir);
9402 	inode_inc_iversion(old_inode);
9403 	old_dir->i_ctime = old_dir->i_mtime =
9404 	new_dir->i_ctime = new_dir->i_mtime =
9405 	old_inode->i_ctime = current_time(old_dir);
9406 
9407 	if (old_dentry->d_parent != new_dentry->d_parent)
9408 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9409 				BTRFS_I(old_inode), 1);
9410 
9411 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9412 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9413 	} else {
9414 		/*
9415 		 * Now pin the log. We do it to ensure that no other task can
9416 		 * sync the log while we are in progress with the rename, as
9417 		 * that could result in an inconsistency in case any of the
9418 		 * inodes that are part of this rename operation were logged
9419 		 * before.
9420 		 *
9421 		 * We pin the log even if at this precise moment none of the
9422 		 * inodes was logged before. This is because right after we
9423 		 * checked for that, some other task fsyncing some other inode
9424 		 * not involved with this rename operation could log that one of
9425 		 * our inodes exists.
9426 		 *
9427 		 * We don't need to pin the logs before the above call to
9428 		 * btrfs_insert_inode_ref(), since that does not need to change
9429 		 * a log.
9430 		 */
9431 		btrfs_pin_log_trans(root);
9432 		log_pinned = true;
9433 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9434 					BTRFS_I(d_inode(old_dentry)),
9435 					old_dentry->d_name.name,
9436 					old_dentry->d_name.len);
9437 		if (!ret)
9438 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9439 	}
9440 	if (ret) {
9441 		btrfs_abort_transaction(trans, ret);
9442 		goto out_fail;
9443 	}
9444 
9445 	if (new_inode) {
9446 		inode_inc_iversion(new_inode);
9447 		new_inode->i_ctime = current_time(new_inode);
9448 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9449 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9450 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9451 			BUG_ON(new_inode->i_nlink == 0);
9452 		} else {
9453 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9454 						 BTRFS_I(d_inode(new_dentry)),
9455 						 new_dentry->d_name.name,
9456 						 new_dentry->d_name.len);
9457 		}
9458 		if (!ret && new_inode->i_nlink == 0)
9459 			ret = btrfs_orphan_add(trans,
9460 					BTRFS_I(d_inode(new_dentry)));
9461 		if (ret) {
9462 			btrfs_abort_transaction(trans, ret);
9463 			goto out_fail;
9464 		}
9465 	}
9466 
9467 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9468 			     new_dentry->d_name.name,
9469 			     new_dentry->d_name.len, 0, index);
9470 	if (ret) {
9471 		btrfs_abort_transaction(trans, ret);
9472 		goto out_fail;
9473 	}
9474 
9475 	if (old_inode->i_nlink == 1)
9476 		BTRFS_I(old_inode)->dir_index = index;
9477 
9478 	if (log_pinned) {
9479 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9480 				   new_dentry->d_parent);
9481 		btrfs_end_log_trans(root);
9482 		log_pinned = false;
9483 	}
9484 
9485 	if (flags & RENAME_WHITEOUT) {
9486 		ret = btrfs_whiteout_for_rename(trans, root, mnt_userns,
9487 						old_dir, old_dentry);
9488 
9489 		if (ret) {
9490 			btrfs_abort_transaction(trans, ret);
9491 			goto out_fail;
9492 		}
9493 	}
9494 out_fail:
9495 	/*
9496 	 * If we have pinned the log and an error happened, we unpin tasks
9497 	 * trying to sync the log and force them to fallback to a transaction
9498 	 * commit if the log currently contains any of the inodes involved in
9499 	 * this rename operation (to ensure we do not persist a log with an
9500 	 * inconsistent state for any of these inodes or leading to any
9501 	 * inconsistencies when replayed). If the transaction was aborted, the
9502 	 * abortion reason is propagated to userspace when attempting to commit
9503 	 * the transaction. If the log does not contain any of these inodes, we
9504 	 * allow the tasks to sync it.
9505 	 */
9506 	if (ret && log_pinned) {
9507 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9508 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9509 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9510 		    (new_inode &&
9511 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9512 			btrfs_set_log_full_commit(trans);
9513 
9514 		btrfs_end_log_trans(root);
9515 		log_pinned = false;
9516 	}
9517 	ret2 = btrfs_end_transaction(trans);
9518 	ret = ret ? ret : ret2;
9519 out_notrans:
9520 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9521 		up_read(&fs_info->subvol_sem);
9522 
9523 	return ret;
9524 }
9525 
9526 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9527 			 struct dentry *old_dentry, struct inode *new_dir,
9528 			 struct dentry *new_dentry, unsigned int flags)
9529 {
9530 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9531 		return -EINVAL;
9532 
9533 	if (flags & RENAME_EXCHANGE)
9534 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9535 					  new_dentry);
9536 
9537 	return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9538 			    new_dentry, flags);
9539 }
9540 
9541 struct btrfs_delalloc_work {
9542 	struct inode *inode;
9543 	struct completion completion;
9544 	struct list_head list;
9545 	struct btrfs_work work;
9546 };
9547 
9548 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9549 {
9550 	struct btrfs_delalloc_work *delalloc_work;
9551 	struct inode *inode;
9552 
9553 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9554 				     work);
9555 	inode = delalloc_work->inode;
9556 	filemap_flush(inode->i_mapping);
9557 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9558 				&BTRFS_I(inode)->runtime_flags))
9559 		filemap_flush(inode->i_mapping);
9560 
9561 	iput(inode);
9562 	complete(&delalloc_work->completion);
9563 }
9564 
9565 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9566 {
9567 	struct btrfs_delalloc_work *work;
9568 
9569 	work = kmalloc(sizeof(*work), GFP_NOFS);
9570 	if (!work)
9571 		return NULL;
9572 
9573 	init_completion(&work->completion);
9574 	INIT_LIST_HEAD(&work->list);
9575 	work->inode = inode;
9576 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9577 
9578 	return work;
9579 }
9580 
9581 /*
9582  * some fairly slow code that needs optimization. This walks the list
9583  * of all the inodes with pending delalloc and forces them to disk.
9584  */
9585 static int start_delalloc_inodes(struct btrfs_root *root,
9586 				 struct writeback_control *wbc, bool snapshot,
9587 				 bool in_reclaim_context)
9588 {
9589 	struct btrfs_inode *binode;
9590 	struct inode *inode;
9591 	struct btrfs_delalloc_work *work, *next;
9592 	struct list_head works;
9593 	struct list_head splice;
9594 	int ret = 0;
9595 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9596 
9597 	INIT_LIST_HEAD(&works);
9598 	INIT_LIST_HEAD(&splice);
9599 
9600 	mutex_lock(&root->delalloc_mutex);
9601 	spin_lock(&root->delalloc_lock);
9602 	list_splice_init(&root->delalloc_inodes, &splice);
9603 	while (!list_empty(&splice)) {
9604 		binode = list_entry(splice.next, struct btrfs_inode,
9605 				    delalloc_inodes);
9606 
9607 		list_move_tail(&binode->delalloc_inodes,
9608 			       &root->delalloc_inodes);
9609 
9610 		if (in_reclaim_context &&
9611 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9612 			continue;
9613 
9614 		inode = igrab(&binode->vfs_inode);
9615 		if (!inode) {
9616 			cond_resched_lock(&root->delalloc_lock);
9617 			continue;
9618 		}
9619 		spin_unlock(&root->delalloc_lock);
9620 
9621 		if (snapshot)
9622 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9623 				&binode->runtime_flags);
9624 		if (full_flush) {
9625 			work = btrfs_alloc_delalloc_work(inode);
9626 			if (!work) {
9627 				iput(inode);
9628 				ret = -ENOMEM;
9629 				goto out;
9630 			}
9631 			list_add_tail(&work->list, &works);
9632 			btrfs_queue_work(root->fs_info->flush_workers,
9633 					 &work->work);
9634 		} else {
9635 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9636 			btrfs_add_delayed_iput(inode);
9637 			if (ret || wbc->nr_to_write <= 0)
9638 				goto out;
9639 		}
9640 		cond_resched();
9641 		spin_lock(&root->delalloc_lock);
9642 	}
9643 	spin_unlock(&root->delalloc_lock);
9644 
9645 out:
9646 	list_for_each_entry_safe(work, next, &works, list) {
9647 		list_del_init(&work->list);
9648 		wait_for_completion(&work->completion);
9649 		kfree(work);
9650 	}
9651 
9652 	if (!list_empty(&splice)) {
9653 		spin_lock(&root->delalloc_lock);
9654 		list_splice_tail(&splice, &root->delalloc_inodes);
9655 		spin_unlock(&root->delalloc_lock);
9656 	}
9657 	mutex_unlock(&root->delalloc_mutex);
9658 	return ret;
9659 }
9660 
9661 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9662 {
9663 	struct writeback_control wbc = {
9664 		.nr_to_write = LONG_MAX,
9665 		.sync_mode = WB_SYNC_NONE,
9666 		.range_start = 0,
9667 		.range_end = LLONG_MAX,
9668 	};
9669 	struct btrfs_fs_info *fs_info = root->fs_info;
9670 
9671 	if (BTRFS_FS_ERROR(fs_info))
9672 		return -EROFS;
9673 
9674 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9675 }
9676 
9677 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9678 			       bool in_reclaim_context)
9679 {
9680 	struct writeback_control wbc = {
9681 		.nr_to_write = nr,
9682 		.sync_mode = WB_SYNC_NONE,
9683 		.range_start = 0,
9684 		.range_end = LLONG_MAX,
9685 	};
9686 	struct btrfs_root *root;
9687 	struct list_head splice;
9688 	int ret;
9689 
9690 	if (BTRFS_FS_ERROR(fs_info))
9691 		return -EROFS;
9692 
9693 	INIT_LIST_HEAD(&splice);
9694 
9695 	mutex_lock(&fs_info->delalloc_root_mutex);
9696 	spin_lock(&fs_info->delalloc_root_lock);
9697 	list_splice_init(&fs_info->delalloc_roots, &splice);
9698 	while (!list_empty(&splice)) {
9699 		/*
9700 		 * Reset nr_to_write here so we know that we're doing a full
9701 		 * flush.
9702 		 */
9703 		if (nr == LONG_MAX)
9704 			wbc.nr_to_write = LONG_MAX;
9705 
9706 		root = list_first_entry(&splice, struct btrfs_root,
9707 					delalloc_root);
9708 		root = btrfs_grab_root(root);
9709 		BUG_ON(!root);
9710 		list_move_tail(&root->delalloc_root,
9711 			       &fs_info->delalloc_roots);
9712 		spin_unlock(&fs_info->delalloc_root_lock);
9713 
9714 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9715 		btrfs_put_root(root);
9716 		if (ret < 0 || wbc.nr_to_write <= 0)
9717 			goto out;
9718 		spin_lock(&fs_info->delalloc_root_lock);
9719 	}
9720 	spin_unlock(&fs_info->delalloc_root_lock);
9721 
9722 	ret = 0;
9723 out:
9724 	if (!list_empty(&splice)) {
9725 		spin_lock(&fs_info->delalloc_root_lock);
9726 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9727 		spin_unlock(&fs_info->delalloc_root_lock);
9728 	}
9729 	mutex_unlock(&fs_info->delalloc_root_mutex);
9730 	return ret;
9731 }
9732 
9733 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9734 			 struct dentry *dentry, const char *symname)
9735 {
9736 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9737 	struct btrfs_trans_handle *trans;
9738 	struct btrfs_root *root = BTRFS_I(dir)->root;
9739 	struct btrfs_path *path;
9740 	struct btrfs_key key;
9741 	struct inode *inode = NULL;
9742 	int err;
9743 	u64 objectid;
9744 	u64 index = 0;
9745 	int name_len;
9746 	int datasize;
9747 	unsigned long ptr;
9748 	struct btrfs_file_extent_item *ei;
9749 	struct extent_buffer *leaf;
9750 
9751 	name_len = strlen(symname);
9752 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9753 		return -ENAMETOOLONG;
9754 
9755 	/*
9756 	 * 2 items for inode item and ref
9757 	 * 2 items for dir items
9758 	 * 1 item for updating parent inode item
9759 	 * 1 item for the inline extent item
9760 	 * 1 item for xattr if selinux is on
9761 	 */
9762 	trans = btrfs_start_transaction(root, 7);
9763 	if (IS_ERR(trans))
9764 		return PTR_ERR(trans);
9765 
9766 	err = btrfs_get_free_objectid(root, &objectid);
9767 	if (err)
9768 		goto out_unlock;
9769 
9770 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9771 				dentry->d_name.name, dentry->d_name.len,
9772 				btrfs_ino(BTRFS_I(dir)), objectid,
9773 				S_IFLNK | S_IRWXUGO, &index);
9774 	if (IS_ERR(inode)) {
9775 		err = PTR_ERR(inode);
9776 		inode = NULL;
9777 		goto out_unlock;
9778 	}
9779 
9780 	/*
9781 	* If the active LSM wants to access the inode during
9782 	* d_instantiate it needs these. Smack checks to see
9783 	* if the filesystem supports xattrs by looking at the
9784 	* ops vector.
9785 	*/
9786 	inode->i_fop = &btrfs_file_operations;
9787 	inode->i_op = &btrfs_file_inode_operations;
9788 	inode->i_mapping->a_ops = &btrfs_aops;
9789 
9790 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9791 	if (err)
9792 		goto out_unlock;
9793 
9794 	path = btrfs_alloc_path();
9795 	if (!path) {
9796 		err = -ENOMEM;
9797 		goto out_unlock;
9798 	}
9799 	key.objectid = btrfs_ino(BTRFS_I(inode));
9800 	key.offset = 0;
9801 	key.type = BTRFS_EXTENT_DATA_KEY;
9802 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9803 	err = btrfs_insert_empty_item(trans, root, path, &key,
9804 				      datasize);
9805 	if (err) {
9806 		btrfs_free_path(path);
9807 		goto out_unlock;
9808 	}
9809 	leaf = path->nodes[0];
9810 	ei = btrfs_item_ptr(leaf, path->slots[0],
9811 			    struct btrfs_file_extent_item);
9812 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9813 	btrfs_set_file_extent_type(leaf, ei,
9814 				   BTRFS_FILE_EXTENT_INLINE);
9815 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9816 	btrfs_set_file_extent_compression(leaf, ei, 0);
9817 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9818 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9819 
9820 	ptr = btrfs_file_extent_inline_start(ei);
9821 	write_extent_buffer(leaf, symname, ptr, name_len);
9822 	btrfs_mark_buffer_dirty(leaf);
9823 	btrfs_free_path(path);
9824 
9825 	inode->i_op = &btrfs_symlink_inode_operations;
9826 	inode_nohighmem(inode);
9827 	inode_set_bytes(inode, name_len);
9828 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9829 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9830 	/*
9831 	 * Last step, add directory indexes for our symlink inode. This is the
9832 	 * last step to avoid extra cleanup of these indexes if an error happens
9833 	 * elsewhere above.
9834 	 */
9835 	if (!err)
9836 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9837 				BTRFS_I(inode), 0, index);
9838 	if (err)
9839 		goto out_unlock;
9840 
9841 	d_instantiate_new(dentry, inode);
9842 
9843 out_unlock:
9844 	btrfs_end_transaction(trans);
9845 	if (err && inode) {
9846 		inode_dec_link_count(inode);
9847 		discard_new_inode(inode);
9848 	}
9849 	btrfs_btree_balance_dirty(fs_info);
9850 	return err;
9851 }
9852 
9853 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9854 				       struct btrfs_trans_handle *trans_in,
9855 				       struct btrfs_inode *inode,
9856 				       struct btrfs_key *ins,
9857 				       u64 file_offset)
9858 {
9859 	struct btrfs_file_extent_item stack_fi;
9860 	struct btrfs_replace_extent_info extent_info;
9861 	struct btrfs_trans_handle *trans = trans_in;
9862 	struct btrfs_path *path;
9863 	u64 start = ins->objectid;
9864 	u64 len = ins->offset;
9865 	int qgroup_released;
9866 	int ret;
9867 
9868 	memset(&stack_fi, 0, sizeof(stack_fi));
9869 
9870 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9871 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9872 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9873 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9874 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9875 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9876 	/* Encryption and other encoding is reserved and all 0 */
9877 
9878 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9879 	if (qgroup_released < 0)
9880 		return ERR_PTR(qgroup_released);
9881 
9882 	if (trans) {
9883 		ret = insert_reserved_file_extent(trans, inode,
9884 						  file_offset, &stack_fi,
9885 						  true, qgroup_released);
9886 		if (ret)
9887 			goto free_qgroup;
9888 		return trans;
9889 	}
9890 
9891 	extent_info.disk_offset = start;
9892 	extent_info.disk_len = len;
9893 	extent_info.data_offset = 0;
9894 	extent_info.data_len = len;
9895 	extent_info.file_offset = file_offset;
9896 	extent_info.extent_buf = (char *)&stack_fi;
9897 	extent_info.is_new_extent = true;
9898 	extent_info.qgroup_reserved = qgroup_released;
9899 	extent_info.insertions = 0;
9900 
9901 	path = btrfs_alloc_path();
9902 	if (!path) {
9903 		ret = -ENOMEM;
9904 		goto free_qgroup;
9905 	}
9906 
9907 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9908 				     file_offset + len - 1, &extent_info,
9909 				     &trans);
9910 	btrfs_free_path(path);
9911 	if (ret)
9912 		goto free_qgroup;
9913 	return trans;
9914 
9915 free_qgroup:
9916 	/*
9917 	 * We have released qgroup data range at the beginning of the function,
9918 	 * and normally qgroup_released bytes will be freed when committing
9919 	 * transaction.
9920 	 * But if we error out early, we have to free what we have released
9921 	 * or we leak qgroup data reservation.
9922 	 */
9923 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9924 			inode->root->root_key.objectid, qgroup_released,
9925 			BTRFS_QGROUP_RSV_DATA);
9926 	return ERR_PTR(ret);
9927 }
9928 
9929 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9930 				       u64 start, u64 num_bytes, u64 min_size,
9931 				       loff_t actual_len, u64 *alloc_hint,
9932 				       struct btrfs_trans_handle *trans)
9933 {
9934 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9935 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9936 	struct extent_map *em;
9937 	struct btrfs_root *root = BTRFS_I(inode)->root;
9938 	struct btrfs_key ins;
9939 	u64 cur_offset = start;
9940 	u64 clear_offset = start;
9941 	u64 i_size;
9942 	u64 cur_bytes;
9943 	u64 last_alloc = (u64)-1;
9944 	int ret = 0;
9945 	bool own_trans = true;
9946 	u64 end = start + num_bytes - 1;
9947 
9948 	if (trans)
9949 		own_trans = false;
9950 	while (num_bytes > 0) {
9951 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9952 		cur_bytes = max(cur_bytes, min_size);
9953 		/*
9954 		 * If we are severely fragmented we could end up with really
9955 		 * small allocations, so if the allocator is returning small
9956 		 * chunks lets make its job easier by only searching for those
9957 		 * sized chunks.
9958 		 */
9959 		cur_bytes = min(cur_bytes, last_alloc);
9960 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9961 				min_size, 0, *alloc_hint, &ins, 1, 0);
9962 		if (ret)
9963 			break;
9964 
9965 		/*
9966 		 * We've reserved this space, and thus converted it from
9967 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9968 		 * from here on out we will only need to clear our reservation
9969 		 * for the remaining unreserved area, so advance our
9970 		 * clear_offset by our extent size.
9971 		 */
9972 		clear_offset += ins.offset;
9973 
9974 		last_alloc = ins.offset;
9975 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9976 						    &ins, cur_offset);
9977 		/*
9978 		 * Now that we inserted the prealloc extent we can finally
9979 		 * decrement the number of reservations in the block group.
9980 		 * If we did it before, we could race with relocation and have
9981 		 * relocation miss the reserved extent, making it fail later.
9982 		 */
9983 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9984 		if (IS_ERR(trans)) {
9985 			ret = PTR_ERR(trans);
9986 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9987 						   ins.offset, 0);
9988 			break;
9989 		}
9990 
9991 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9992 					cur_offset + ins.offset -1, 0);
9993 
9994 		em = alloc_extent_map();
9995 		if (!em) {
9996 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9997 				&BTRFS_I(inode)->runtime_flags);
9998 			goto next;
9999 		}
10000 
10001 		em->start = cur_offset;
10002 		em->orig_start = cur_offset;
10003 		em->len = ins.offset;
10004 		em->block_start = ins.objectid;
10005 		em->block_len = ins.offset;
10006 		em->orig_block_len = ins.offset;
10007 		em->ram_bytes = ins.offset;
10008 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10009 		em->generation = trans->transid;
10010 
10011 		while (1) {
10012 			write_lock(&em_tree->lock);
10013 			ret = add_extent_mapping(em_tree, em, 1);
10014 			write_unlock(&em_tree->lock);
10015 			if (ret != -EEXIST)
10016 				break;
10017 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10018 						cur_offset + ins.offset - 1,
10019 						0);
10020 		}
10021 		free_extent_map(em);
10022 next:
10023 		num_bytes -= ins.offset;
10024 		cur_offset += ins.offset;
10025 		*alloc_hint = ins.objectid + ins.offset;
10026 
10027 		inode_inc_iversion(inode);
10028 		inode->i_ctime = current_time(inode);
10029 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10030 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10031 		    (actual_len > inode->i_size) &&
10032 		    (cur_offset > inode->i_size)) {
10033 			if (cur_offset > actual_len)
10034 				i_size = actual_len;
10035 			else
10036 				i_size = cur_offset;
10037 			i_size_write(inode, i_size);
10038 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10039 		}
10040 
10041 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10042 
10043 		if (ret) {
10044 			btrfs_abort_transaction(trans, ret);
10045 			if (own_trans)
10046 				btrfs_end_transaction(trans);
10047 			break;
10048 		}
10049 
10050 		if (own_trans) {
10051 			btrfs_end_transaction(trans);
10052 			trans = NULL;
10053 		}
10054 	}
10055 	if (clear_offset < end)
10056 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10057 			end - clear_offset + 1);
10058 	return ret;
10059 }
10060 
10061 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10062 			      u64 start, u64 num_bytes, u64 min_size,
10063 			      loff_t actual_len, u64 *alloc_hint)
10064 {
10065 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10066 					   min_size, actual_len, alloc_hint,
10067 					   NULL);
10068 }
10069 
10070 int btrfs_prealloc_file_range_trans(struct inode *inode,
10071 				    struct btrfs_trans_handle *trans, int mode,
10072 				    u64 start, u64 num_bytes, u64 min_size,
10073 				    loff_t actual_len, u64 *alloc_hint)
10074 {
10075 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10076 					   min_size, actual_len, alloc_hint, trans);
10077 }
10078 
10079 static int btrfs_set_page_dirty(struct page *page)
10080 {
10081 	return __set_page_dirty_nobuffers(page);
10082 }
10083 
10084 static int btrfs_permission(struct user_namespace *mnt_userns,
10085 			    struct inode *inode, int mask)
10086 {
10087 	struct btrfs_root *root = BTRFS_I(inode)->root;
10088 	umode_t mode = inode->i_mode;
10089 
10090 	if (mask & MAY_WRITE &&
10091 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10092 		if (btrfs_root_readonly(root))
10093 			return -EROFS;
10094 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10095 			return -EACCES;
10096 	}
10097 	return generic_permission(mnt_userns, inode, mask);
10098 }
10099 
10100 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10101 			 struct dentry *dentry, umode_t mode)
10102 {
10103 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10104 	struct btrfs_trans_handle *trans;
10105 	struct btrfs_root *root = BTRFS_I(dir)->root;
10106 	struct inode *inode = NULL;
10107 	u64 objectid;
10108 	u64 index;
10109 	int ret = 0;
10110 
10111 	/*
10112 	 * 5 units required for adding orphan entry
10113 	 */
10114 	trans = btrfs_start_transaction(root, 5);
10115 	if (IS_ERR(trans))
10116 		return PTR_ERR(trans);
10117 
10118 	ret = btrfs_get_free_objectid(root, &objectid);
10119 	if (ret)
10120 		goto out;
10121 
10122 	inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0,
10123 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10124 	if (IS_ERR(inode)) {
10125 		ret = PTR_ERR(inode);
10126 		inode = NULL;
10127 		goto out;
10128 	}
10129 
10130 	inode->i_fop = &btrfs_file_operations;
10131 	inode->i_op = &btrfs_file_inode_operations;
10132 
10133 	inode->i_mapping->a_ops = &btrfs_aops;
10134 
10135 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10136 	if (ret)
10137 		goto out;
10138 
10139 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10140 	if (ret)
10141 		goto out;
10142 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10143 	if (ret)
10144 		goto out;
10145 
10146 	/*
10147 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10148 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10149 	 * through:
10150 	 *
10151 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10152 	 */
10153 	set_nlink(inode, 1);
10154 	d_tmpfile(dentry, inode);
10155 	unlock_new_inode(inode);
10156 	mark_inode_dirty(inode);
10157 out:
10158 	btrfs_end_transaction(trans);
10159 	if (ret && inode)
10160 		discard_new_inode(inode);
10161 	btrfs_btree_balance_dirty(fs_info);
10162 	return ret;
10163 }
10164 
10165 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10166 {
10167 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10168 	unsigned long index = start >> PAGE_SHIFT;
10169 	unsigned long end_index = end >> PAGE_SHIFT;
10170 	struct page *page;
10171 	u32 len;
10172 
10173 	ASSERT(end + 1 - start <= U32_MAX);
10174 	len = end + 1 - start;
10175 	while (index <= end_index) {
10176 		page = find_get_page(inode->vfs_inode.i_mapping, index);
10177 		ASSERT(page); /* Pages should be in the extent_io_tree */
10178 
10179 		btrfs_page_set_writeback(fs_info, page, start, len);
10180 		put_page(page);
10181 		index++;
10182 	}
10183 }
10184 
10185 #ifdef CONFIG_SWAP
10186 /*
10187  * Add an entry indicating a block group or device which is pinned by a
10188  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10189  * negative errno on failure.
10190  */
10191 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10192 				  bool is_block_group)
10193 {
10194 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10195 	struct btrfs_swapfile_pin *sp, *entry;
10196 	struct rb_node **p;
10197 	struct rb_node *parent = NULL;
10198 
10199 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10200 	if (!sp)
10201 		return -ENOMEM;
10202 	sp->ptr = ptr;
10203 	sp->inode = inode;
10204 	sp->is_block_group = is_block_group;
10205 	sp->bg_extent_count = 1;
10206 
10207 	spin_lock(&fs_info->swapfile_pins_lock);
10208 	p = &fs_info->swapfile_pins.rb_node;
10209 	while (*p) {
10210 		parent = *p;
10211 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10212 		if (sp->ptr < entry->ptr ||
10213 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10214 			p = &(*p)->rb_left;
10215 		} else if (sp->ptr > entry->ptr ||
10216 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10217 			p = &(*p)->rb_right;
10218 		} else {
10219 			if (is_block_group)
10220 				entry->bg_extent_count++;
10221 			spin_unlock(&fs_info->swapfile_pins_lock);
10222 			kfree(sp);
10223 			return 1;
10224 		}
10225 	}
10226 	rb_link_node(&sp->node, parent, p);
10227 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10228 	spin_unlock(&fs_info->swapfile_pins_lock);
10229 	return 0;
10230 }
10231 
10232 /* Free all of the entries pinned by this swapfile. */
10233 static void btrfs_free_swapfile_pins(struct inode *inode)
10234 {
10235 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10236 	struct btrfs_swapfile_pin *sp;
10237 	struct rb_node *node, *next;
10238 
10239 	spin_lock(&fs_info->swapfile_pins_lock);
10240 	node = rb_first(&fs_info->swapfile_pins);
10241 	while (node) {
10242 		next = rb_next(node);
10243 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10244 		if (sp->inode == inode) {
10245 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10246 			if (sp->is_block_group) {
10247 				btrfs_dec_block_group_swap_extents(sp->ptr,
10248 							   sp->bg_extent_count);
10249 				btrfs_put_block_group(sp->ptr);
10250 			}
10251 			kfree(sp);
10252 		}
10253 		node = next;
10254 	}
10255 	spin_unlock(&fs_info->swapfile_pins_lock);
10256 }
10257 
10258 struct btrfs_swap_info {
10259 	u64 start;
10260 	u64 block_start;
10261 	u64 block_len;
10262 	u64 lowest_ppage;
10263 	u64 highest_ppage;
10264 	unsigned long nr_pages;
10265 	int nr_extents;
10266 };
10267 
10268 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10269 				 struct btrfs_swap_info *bsi)
10270 {
10271 	unsigned long nr_pages;
10272 	unsigned long max_pages;
10273 	u64 first_ppage, first_ppage_reported, next_ppage;
10274 	int ret;
10275 
10276 	/*
10277 	 * Our swapfile may have had its size extended after the swap header was
10278 	 * written. In that case activating the swapfile should not go beyond
10279 	 * the max size set in the swap header.
10280 	 */
10281 	if (bsi->nr_pages >= sis->max)
10282 		return 0;
10283 
10284 	max_pages = sis->max - bsi->nr_pages;
10285 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10286 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10287 				PAGE_SIZE) >> PAGE_SHIFT;
10288 
10289 	if (first_ppage >= next_ppage)
10290 		return 0;
10291 	nr_pages = next_ppage - first_ppage;
10292 	nr_pages = min(nr_pages, max_pages);
10293 
10294 	first_ppage_reported = first_ppage;
10295 	if (bsi->start == 0)
10296 		first_ppage_reported++;
10297 	if (bsi->lowest_ppage > first_ppage_reported)
10298 		bsi->lowest_ppage = first_ppage_reported;
10299 	if (bsi->highest_ppage < (next_ppage - 1))
10300 		bsi->highest_ppage = next_ppage - 1;
10301 
10302 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10303 	if (ret < 0)
10304 		return ret;
10305 	bsi->nr_extents += ret;
10306 	bsi->nr_pages += nr_pages;
10307 	return 0;
10308 }
10309 
10310 static void btrfs_swap_deactivate(struct file *file)
10311 {
10312 	struct inode *inode = file_inode(file);
10313 
10314 	btrfs_free_swapfile_pins(inode);
10315 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10316 }
10317 
10318 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10319 			       sector_t *span)
10320 {
10321 	struct inode *inode = file_inode(file);
10322 	struct btrfs_root *root = BTRFS_I(inode)->root;
10323 	struct btrfs_fs_info *fs_info = root->fs_info;
10324 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10325 	struct extent_state *cached_state = NULL;
10326 	struct extent_map *em = NULL;
10327 	struct btrfs_device *device = NULL;
10328 	struct btrfs_swap_info bsi = {
10329 		.lowest_ppage = (sector_t)-1ULL,
10330 	};
10331 	int ret = 0;
10332 	u64 isize;
10333 	u64 start;
10334 
10335 	/*
10336 	 * If the swap file was just created, make sure delalloc is done. If the
10337 	 * file changes again after this, the user is doing something stupid and
10338 	 * we don't really care.
10339 	 */
10340 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10341 	if (ret)
10342 		return ret;
10343 
10344 	/*
10345 	 * The inode is locked, so these flags won't change after we check them.
10346 	 */
10347 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10348 		btrfs_warn(fs_info, "swapfile must not be compressed");
10349 		return -EINVAL;
10350 	}
10351 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10352 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10353 		return -EINVAL;
10354 	}
10355 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10356 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10357 		return -EINVAL;
10358 	}
10359 
10360 	/*
10361 	 * Balance or device remove/replace/resize can move stuff around from
10362 	 * under us. The exclop protection makes sure they aren't running/won't
10363 	 * run concurrently while we are mapping the swap extents, and
10364 	 * fs_info->swapfile_pins prevents them from running while the swap
10365 	 * file is active and moving the extents. Note that this also prevents
10366 	 * a concurrent device add which isn't actually necessary, but it's not
10367 	 * really worth the trouble to allow it.
10368 	 */
10369 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10370 		btrfs_warn(fs_info,
10371 	   "cannot activate swapfile while exclusive operation is running");
10372 		return -EBUSY;
10373 	}
10374 
10375 	/*
10376 	 * Prevent snapshot creation while we are activating the swap file.
10377 	 * We do not want to race with snapshot creation. If snapshot creation
10378 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10379 	 * completes before the first write into the swap file after it is
10380 	 * activated, than that write would fallback to COW.
10381 	 */
10382 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10383 		btrfs_exclop_finish(fs_info);
10384 		btrfs_warn(fs_info,
10385 	   "cannot activate swapfile because snapshot creation is in progress");
10386 		return -EINVAL;
10387 	}
10388 	/*
10389 	 * Snapshots can create extents which require COW even if NODATACOW is
10390 	 * set. We use this counter to prevent snapshots. We must increment it
10391 	 * before walking the extents because we don't want a concurrent
10392 	 * snapshot to run after we've already checked the extents.
10393 	 */
10394 	atomic_inc(&root->nr_swapfiles);
10395 
10396 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10397 
10398 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10399 	start = 0;
10400 	while (start < isize) {
10401 		u64 logical_block_start, physical_block_start;
10402 		struct btrfs_block_group *bg;
10403 		u64 len = isize - start;
10404 
10405 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10406 		if (IS_ERR(em)) {
10407 			ret = PTR_ERR(em);
10408 			goto out;
10409 		}
10410 
10411 		if (em->block_start == EXTENT_MAP_HOLE) {
10412 			btrfs_warn(fs_info, "swapfile must not have holes");
10413 			ret = -EINVAL;
10414 			goto out;
10415 		}
10416 		if (em->block_start == EXTENT_MAP_INLINE) {
10417 			/*
10418 			 * It's unlikely we'll ever actually find ourselves
10419 			 * here, as a file small enough to fit inline won't be
10420 			 * big enough to store more than the swap header, but in
10421 			 * case something changes in the future, let's catch it
10422 			 * here rather than later.
10423 			 */
10424 			btrfs_warn(fs_info, "swapfile must not be inline");
10425 			ret = -EINVAL;
10426 			goto out;
10427 		}
10428 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10429 			btrfs_warn(fs_info, "swapfile must not be compressed");
10430 			ret = -EINVAL;
10431 			goto out;
10432 		}
10433 
10434 		logical_block_start = em->block_start + (start - em->start);
10435 		len = min(len, em->len - (start - em->start));
10436 		free_extent_map(em);
10437 		em = NULL;
10438 
10439 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10440 		if (ret < 0) {
10441 			goto out;
10442 		} else if (ret) {
10443 			ret = 0;
10444 		} else {
10445 			btrfs_warn(fs_info,
10446 				   "swapfile must not be copy-on-write");
10447 			ret = -EINVAL;
10448 			goto out;
10449 		}
10450 
10451 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10452 		if (IS_ERR(em)) {
10453 			ret = PTR_ERR(em);
10454 			goto out;
10455 		}
10456 
10457 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10458 			btrfs_warn(fs_info,
10459 				   "swapfile must have single data profile");
10460 			ret = -EINVAL;
10461 			goto out;
10462 		}
10463 
10464 		if (device == NULL) {
10465 			device = em->map_lookup->stripes[0].dev;
10466 			ret = btrfs_add_swapfile_pin(inode, device, false);
10467 			if (ret == 1)
10468 				ret = 0;
10469 			else if (ret)
10470 				goto out;
10471 		} else if (device != em->map_lookup->stripes[0].dev) {
10472 			btrfs_warn(fs_info, "swapfile must be on one device");
10473 			ret = -EINVAL;
10474 			goto out;
10475 		}
10476 
10477 		physical_block_start = (em->map_lookup->stripes[0].physical +
10478 					(logical_block_start - em->start));
10479 		len = min(len, em->len - (logical_block_start - em->start));
10480 		free_extent_map(em);
10481 		em = NULL;
10482 
10483 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10484 		if (!bg) {
10485 			btrfs_warn(fs_info,
10486 			   "could not find block group containing swapfile");
10487 			ret = -EINVAL;
10488 			goto out;
10489 		}
10490 
10491 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10492 			btrfs_warn(fs_info,
10493 			   "block group for swapfile at %llu is read-only%s",
10494 			   bg->start,
10495 			   atomic_read(&fs_info->scrubs_running) ?
10496 				       " (scrub running)" : "");
10497 			btrfs_put_block_group(bg);
10498 			ret = -EINVAL;
10499 			goto out;
10500 		}
10501 
10502 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10503 		if (ret) {
10504 			btrfs_put_block_group(bg);
10505 			if (ret == 1)
10506 				ret = 0;
10507 			else
10508 				goto out;
10509 		}
10510 
10511 		if (bsi.block_len &&
10512 		    bsi.block_start + bsi.block_len == physical_block_start) {
10513 			bsi.block_len += len;
10514 		} else {
10515 			if (bsi.block_len) {
10516 				ret = btrfs_add_swap_extent(sis, &bsi);
10517 				if (ret)
10518 					goto out;
10519 			}
10520 			bsi.start = start;
10521 			bsi.block_start = physical_block_start;
10522 			bsi.block_len = len;
10523 		}
10524 
10525 		start += len;
10526 	}
10527 
10528 	if (bsi.block_len)
10529 		ret = btrfs_add_swap_extent(sis, &bsi);
10530 
10531 out:
10532 	if (!IS_ERR_OR_NULL(em))
10533 		free_extent_map(em);
10534 
10535 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10536 
10537 	if (ret)
10538 		btrfs_swap_deactivate(file);
10539 
10540 	btrfs_drew_write_unlock(&root->snapshot_lock);
10541 
10542 	btrfs_exclop_finish(fs_info);
10543 
10544 	if (ret)
10545 		return ret;
10546 
10547 	if (device)
10548 		sis->bdev = device->bdev;
10549 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10550 	sis->max = bsi.nr_pages;
10551 	sis->pages = bsi.nr_pages - 1;
10552 	sis->highest_bit = bsi.nr_pages - 1;
10553 	return bsi.nr_extents;
10554 }
10555 #else
10556 static void btrfs_swap_deactivate(struct file *file)
10557 {
10558 }
10559 
10560 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10561 			       sector_t *span)
10562 {
10563 	return -EOPNOTSUPP;
10564 }
10565 #endif
10566 
10567 /*
10568  * Update the number of bytes used in the VFS' inode. When we replace extents in
10569  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10570  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10571  * always get a correct value.
10572  */
10573 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10574 			      const u64 add_bytes,
10575 			      const u64 del_bytes)
10576 {
10577 	if (add_bytes == del_bytes)
10578 		return;
10579 
10580 	spin_lock(&inode->lock);
10581 	if (del_bytes > 0)
10582 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10583 	if (add_bytes > 0)
10584 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10585 	spin_unlock(&inode->lock);
10586 }
10587 
10588 static const struct inode_operations btrfs_dir_inode_operations = {
10589 	.getattr	= btrfs_getattr,
10590 	.lookup		= btrfs_lookup,
10591 	.create		= btrfs_create,
10592 	.unlink		= btrfs_unlink,
10593 	.link		= btrfs_link,
10594 	.mkdir		= btrfs_mkdir,
10595 	.rmdir		= btrfs_rmdir,
10596 	.rename		= btrfs_rename2,
10597 	.symlink	= btrfs_symlink,
10598 	.setattr	= btrfs_setattr,
10599 	.mknod		= btrfs_mknod,
10600 	.listxattr	= btrfs_listxattr,
10601 	.permission	= btrfs_permission,
10602 	.get_acl	= btrfs_get_acl,
10603 	.set_acl	= btrfs_set_acl,
10604 	.update_time	= btrfs_update_time,
10605 	.tmpfile        = btrfs_tmpfile,
10606 	.fileattr_get	= btrfs_fileattr_get,
10607 	.fileattr_set	= btrfs_fileattr_set,
10608 };
10609 
10610 static const struct file_operations btrfs_dir_file_operations = {
10611 	.llseek		= generic_file_llseek,
10612 	.read		= generic_read_dir,
10613 	.iterate_shared	= btrfs_real_readdir,
10614 	.open		= btrfs_opendir,
10615 	.unlocked_ioctl	= btrfs_ioctl,
10616 #ifdef CONFIG_COMPAT
10617 	.compat_ioctl	= btrfs_compat_ioctl,
10618 #endif
10619 	.release        = btrfs_release_file,
10620 	.fsync		= btrfs_sync_file,
10621 };
10622 
10623 /*
10624  * btrfs doesn't support the bmap operation because swapfiles
10625  * use bmap to make a mapping of extents in the file.  They assume
10626  * these extents won't change over the life of the file and they
10627  * use the bmap result to do IO directly to the drive.
10628  *
10629  * the btrfs bmap call would return logical addresses that aren't
10630  * suitable for IO and they also will change frequently as COW
10631  * operations happen.  So, swapfile + btrfs == corruption.
10632  *
10633  * For now we're avoiding this by dropping bmap.
10634  */
10635 static const struct address_space_operations btrfs_aops = {
10636 	.readpage	= btrfs_readpage,
10637 	.writepage	= btrfs_writepage,
10638 	.writepages	= btrfs_writepages,
10639 	.readahead	= btrfs_readahead,
10640 	.direct_IO	= noop_direct_IO,
10641 	.invalidatepage = btrfs_invalidatepage,
10642 	.releasepage	= btrfs_releasepage,
10643 #ifdef CONFIG_MIGRATION
10644 	.migratepage	= btrfs_migratepage,
10645 #endif
10646 	.set_page_dirty	= btrfs_set_page_dirty,
10647 	.error_remove_page = generic_error_remove_page,
10648 	.swap_activate	= btrfs_swap_activate,
10649 	.swap_deactivate = btrfs_swap_deactivate,
10650 };
10651 
10652 static const struct inode_operations btrfs_file_inode_operations = {
10653 	.getattr	= btrfs_getattr,
10654 	.setattr	= btrfs_setattr,
10655 	.listxattr      = btrfs_listxattr,
10656 	.permission	= btrfs_permission,
10657 	.fiemap		= btrfs_fiemap,
10658 	.get_acl	= btrfs_get_acl,
10659 	.set_acl	= btrfs_set_acl,
10660 	.update_time	= btrfs_update_time,
10661 	.fileattr_get	= btrfs_fileattr_get,
10662 	.fileattr_set	= btrfs_fileattr_set,
10663 };
10664 static const struct inode_operations btrfs_special_inode_operations = {
10665 	.getattr	= btrfs_getattr,
10666 	.setattr	= btrfs_setattr,
10667 	.permission	= btrfs_permission,
10668 	.listxattr	= btrfs_listxattr,
10669 	.get_acl	= btrfs_get_acl,
10670 	.set_acl	= btrfs_set_acl,
10671 	.update_time	= btrfs_update_time,
10672 };
10673 static const struct inode_operations btrfs_symlink_inode_operations = {
10674 	.get_link	= page_get_link,
10675 	.getattr	= btrfs_getattr,
10676 	.setattr	= btrfs_setattr,
10677 	.permission	= btrfs_permission,
10678 	.listxattr	= btrfs_listxattr,
10679 	.update_time	= btrfs_update_time,
10680 };
10681 
10682 const struct dentry_operations btrfs_dentry_operations = {
10683 	.d_delete	= btrfs_dentry_delete,
10684 };
10685