1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <asm/unaligned.h> 34 #include "misc.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "ordered-data.h" 41 #include "xattr.h" 42 #include "tree-log.h" 43 #include "volumes.h" 44 #include "compression.h" 45 #include "locking.h" 46 #include "free-space-cache.h" 47 #include "inode-map.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 53 struct btrfs_iget_args { 54 struct btrfs_key *location; 55 struct btrfs_root *root; 56 }; 57 58 struct btrfs_dio_data { 59 u64 reserve; 60 u64 unsubmitted_oe_range_start; 61 u64 unsubmitted_oe_range_end; 62 int overwrite; 63 }; 64 65 static const struct inode_operations btrfs_dir_inode_operations; 66 static const struct inode_operations btrfs_symlink_inode_operations; 67 static const struct inode_operations btrfs_special_inode_operations; 68 static const struct inode_operations btrfs_file_inode_operations; 69 static const struct address_space_operations btrfs_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static const struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 struct kmem_cache *btrfs_trans_handle_cachep; 75 struct kmem_cache *btrfs_path_cachep; 76 struct kmem_cache *btrfs_free_space_cachep; 77 struct kmem_cache *btrfs_free_space_bitmap_cachep; 78 79 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 80 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 81 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 82 static noinline int cow_file_range(struct inode *inode, 83 struct page *locked_page, 84 u64 start, u64 end, int *page_started, 85 unsigned long *nr_written, int unlock); 86 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 87 u64 orig_start, u64 block_start, 88 u64 block_len, u64 orig_block_len, 89 u64 ram_bytes, int compress_type, 90 int type); 91 92 static void __endio_write_update_ordered(struct inode *inode, 93 const u64 offset, const u64 bytes, 94 const bool uptodate); 95 96 /* 97 * Cleanup all submitted ordered extents in specified range to handle errors 98 * from the btrfs_run_delalloc_range() callback. 99 * 100 * NOTE: caller must ensure that when an error happens, it can not call 101 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 102 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 103 * to be released, which we want to happen only when finishing the ordered 104 * extent (btrfs_finish_ordered_io()). 105 */ 106 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 107 struct page *locked_page, 108 u64 offset, u64 bytes) 109 { 110 unsigned long index = offset >> PAGE_SHIFT; 111 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 112 u64 page_start = page_offset(locked_page); 113 u64 page_end = page_start + PAGE_SIZE - 1; 114 115 struct page *page; 116 117 while (index <= end_index) { 118 page = find_get_page(inode->i_mapping, index); 119 index++; 120 if (!page) 121 continue; 122 ClearPagePrivate2(page); 123 put_page(page); 124 } 125 126 /* 127 * In case this page belongs to the delalloc range being instantiated 128 * then skip it, since the first page of a range is going to be 129 * properly cleaned up by the caller of run_delalloc_range 130 */ 131 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 132 offset += PAGE_SIZE; 133 bytes -= PAGE_SIZE; 134 } 135 136 return __endio_write_update_ordered(inode, offset, bytes, false); 137 } 138 139 static int btrfs_dirty_inode(struct inode *inode); 140 141 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 142 void btrfs_test_inode_set_ops(struct inode *inode) 143 { 144 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 145 } 146 #endif 147 148 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 149 struct inode *inode, struct inode *dir, 150 const struct qstr *qstr) 151 { 152 int err; 153 154 err = btrfs_init_acl(trans, inode, dir); 155 if (!err) 156 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 157 return err; 158 } 159 160 /* 161 * this does all the hard work for inserting an inline extent into 162 * the btree. The caller should have done a btrfs_drop_extents so that 163 * no overlapping inline items exist in the btree 164 */ 165 static int insert_inline_extent(struct btrfs_trans_handle *trans, 166 struct btrfs_path *path, int extent_inserted, 167 struct btrfs_root *root, struct inode *inode, 168 u64 start, size_t size, size_t compressed_size, 169 int compress_type, 170 struct page **compressed_pages) 171 { 172 struct extent_buffer *leaf; 173 struct page *page = NULL; 174 char *kaddr; 175 unsigned long ptr; 176 struct btrfs_file_extent_item *ei; 177 int ret; 178 size_t cur_size = size; 179 unsigned long offset; 180 181 ASSERT((compressed_size > 0 && compressed_pages) || 182 (compressed_size == 0 && !compressed_pages)); 183 184 if (compressed_size && compressed_pages) 185 cur_size = compressed_size; 186 187 inode_add_bytes(inode, size); 188 189 if (!extent_inserted) { 190 struct btrfs_key key; 191 size_t datasize; 192 193 key.objectid = btrfs_ino(BTRFS_I(inode)); 194 key.offset = start; 195 key.type = BTRFS_EXTENT_DATA_KEY; 196 197 datasize = btrfs_file_extent_calc_inline_size(cur_size); 198 path->leave_spinning = 1; 199 ret = btrfs_insert_empty_item(trans, root, path, &key, 200 datasize); 201 if (ret) 202 goto fail; 203 } 204 leaf = path->nodes[0]; 205 ei = btrfs_item_ptr(leaf, path->slots[0], 206 struct btrfs_file_extent_item); 207 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 209 btrfs_set_file_extent_encryption(leaf, ei, 0); 210 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 211 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 212 ptr = btrfs_file_extent_inline_start(ei); 213 214 if (compress_type != BTRFS_COMPRESS_NONE) { 215 struct page *cpage; 216 int i = 0; 217 while (compressed_size > 0) { 218 cpage = compressed_pages[i]; 219 cur_size = min_t(unsigned long, compressed_size, 220 PAGE_SIZE); 221 222 kaddr = kmap_atomic(cpage); 223 write_extent_buffer(leaf, kaddr, ptr, cur_size); 224 kunmap_atomic(kaddr); 225 226 i++; 227 ptr += cur_size; 228 compressed_size -= cur_size; 229 } 230 btrfs_set_file_extent_compression(leaf, ei, 231 compress_type); 232 } else { 233 page = find_get_page(inode->i_mapping, 234 start >> PAGE_SHIFT); 235 btrfs_set_file_extent_compression(leaf, ei, 0); 236 kaddr = kmap_atomic(page); 237 offset = offset_in_page(start); 238 write_extent_buffer(leaf, kaddr + offset, ptr, size); 239 kunmap_atomic(kaddr); 240 put_page(page); 241 } 242 btrfs_mark_buffer_dirty(leaf); 243 btrfs_release_path(path); 244 245 /* 246 * We align size to sectorsize for inline extents just for simplicity 247 * sake. 248 */ 249 size = ALIGN(size, root->fs_info->sectorsize); 250 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 251 if (ret) 252 goto fail; 253 254 /* 255 * we're an inline extent, so nobody can 256 * extend the file past i_size without locking 257 * a page we already have locked. 258 * 259 * We must do any isize and inode updates 260 * before we unlock the pages. Otherwise we 261 * could end up racing with unlink. 262 */ 263 BTRFS_I(inode)->disk_i_size = inode->i_size; 264 ret = btrfs_update_inode(trans, root, inode); 265 266 fail: 267 return ret; 268 } 269 270 271 /* 272 * conditionally insert an inline extent into the file. This 273 * does the checks required to make sure the data is small enough 274 * to fit as an inline extent. 275 */ 276 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 277 u64 end, size_t compressed_size, 278 int compress_type, 279 struct page **compressed_pages) 280 { 281 struct btrfs_root *root = BTRFS_I(inode)->root; 282 struct btrfs_fs_info *fs_info = root->fs_info; 283 struct btrfs_trans_handle *trans; 284 u64 isize = i_size_read(inode); 285 u64 actual_end = min(end + 1, isize); 286 u64 inline_len = actual_end - start; 287 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 288 u64 data_len = inline_len; 289 int ret; 290 struct btrfs_path *path; 291 int extent_inserted = 0; 292 u32 extent_item_size; 293 294 if (compressed_size) 295 data_len = compressed_size; 296 297 if (start > 0 || 298 actual_end > fs_info->sectorsize || 299 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 300 (!compressed_size && 301 (actual_end & (fs_info->sectorsize - 1)) == 0) || 302 end + 1 < isize || 303 data_len > fs_info->max_inline) { 304 return 1; 305 } 306 307 path = btrfs_alloc_path(); 308 if (!path) 309 return -ENOMEM; 310 311 trans = btrfs_join_transaction(root); 312 if (IS_ERR(trans)) { 313 btrfs_free_path(path); 314 return PTR_ERR(trans); 315 } 316 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 317 318 if (compressed_size && compressed_pages) 319 extent_item_size = btrfs_file_extent_calc_inline_size( 320 compressed_size); 321 else 322 extent_item_size = btrfs_file_extent_calc_inline_size( 323 inline_len); 324 325 ret = __btrfs_drop_extents(trans, root, inode, path, 326 start, aligned_end, NULL, 327 1, 1, extent_item_size, &extent_inserted); 328 if (ret) { 329 btrfs_abort_transaction(trans, ret); 330 goto out; 331 } 332 333 if (isize > actual_end) 334 inline_len = min_t(u64, isize, actual_end); 335 ret = insert_inline_extent(trans, path, extent_inserted, 336 root, inode, start, 337 inline_len, compressed_size, 338 compress_type, compressed_pages); 339 if (ret && ret != -ENOSPC) { 340 btrfs_abort_transaction(trans, ret); 341 goto out; 342 } else if (ret == -ENOSPC) { 343 ret = 1; 344 goto out; 345 } 346 347 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 348 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 349 out: 350 /* 351 * Don't forget to free the reserved space, as for inlined extent 352 * it won't count as data extent, free them directly here. 353 * And at reserve time, it's always aligned to page size, so 354 * just free one page here. 355 */ 356 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 357 btrfs_free_path(path); 358 btrfs_end_transaction(trans); 359 return ret; 360 } 361 362 struct async_extent { 363 u64 start; 364 u64 ram_size; 365 u64 compressed_size; 366 struct page **pages; 367 unsigned long nr_pages; 368 int compress_type; 369 struct list_head list; 370 }; 371 372 struct async_chunk { 373 struct inode *inode; 374 struct page *locked_page; 375 u64 start; 376 u64 end; 377 unsigned int write_flags; 378 struct list_head extents; 379 struct cgroup_subsys_state *blkcg_css; 380 struct btrfs_work work; 381 atomic_t *pending; 382 }; 383 384 struct async_cow { 385 /* Number of chunks in flight; must be first in the structure */ 386 atomic_t num_chunks; 387 struct async_chunk chunks[]; 388 }; 389 390 static noinline int add_async_extent(struct async_chunk *cow, 391 u64 start, u64 ram_size, 392 u64 compressed_size, 393 struct page **pages, 394 unsigned long nr_pages, 395 int compress_type) 396 { 397 struct async_extent *async_extent; 398 399 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 400 BUG_ON(!async_extent); /* -ENOMEM */ 401 async_extent->start = start; 402 async_extent->ram_size = ram_size; 403 async_extent->compressed_size = compressed_size; 404 async_extent->pages = pages; 405 async_extent->nr_pages = nr_pages; 406 async_extent->compress_type = compress_type; 407 list_add_tail(&async_extent->list, &cow->extents); 408 return 0; 409 } 410 411 /* 412 * Check if the inode has flags compatible with compression 413 */ 414 static inline bool inode_can_compress(struct inode *inode) 415 { 416 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 417 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 418 return false; 419 return true; 420 } 421 422 /* 423 * Check if the inode needs to be submitted to compression, based on mount 424 * options, defragmentation, properties or heuristics. 425 */ 426 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 427 { 428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 429 430 if (!inode_can_compress(inode)) { 431 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 432 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 433 btrfs_ino(BTRFS_I(inode))); 434 return 0; 435 } 436 /* force compress */ 437 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 438 return 1; 439 /* defrag ioctl */ 440 if (BTRFS_I(inode)->defrag_compress) 441 return 1; 442 /* bad compression ratios */ 443 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 444 return 0; 445 if (btrfs_test_opt(fs_info, COMPRESS) || 446 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 447 BTRFS_I(inode)->prop_compress) 448 return btrfs_compress_heuristic(inode, start, end); 449 return 0; 450 } 451 452 static inline void inode_should_defrag(struct btrfs_inode *inode, 453 u64 start, u64 end, u64 num_bytes, u64 small_write) 454 { 455 /* If this is a small write inside eof, kick off a defrag */ 456 if (num_bytes < small_write && 457 (start > 0 || end + 1 < inode->disk_i_size)) 458 btrfs_add_inode_defrag(NULL, inode); 459 } 460 461 /* 462 * we create compressed extents in two phases. The first 463 * phase compresses a range of pages that have already been 464 * locked (both pages and state bits are locked). 465 * 466 * This is done inside an ordered work queue, and the compression 467 * is spread across many cpus. The actual IO submission is step 468 * two, and the ordered work queue takes care of making sure that 469 * happens in the same order things were put onto the queue by 470 * writepages and friends. 471 * 472 * If this code finds it can't get good compression, it puts an 473 * entry onto the work queue to write the uncompressed bytes. This 474 * makes sure that both compressed inodes and uncompressed inodes 475 * are written in the same order that the flusher thread sent them 476 * down. 477 */ 478 static noinline int compress_file_range(struct async_chunk *async_chunk) 479 { 480 struct inode *inode = async_chunk->inode; 481 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 482 u64 blocksize = fs_info->sectorsize; 483 u64 start = async_chunk->start; 484 u64 end = async_chunk->end; 485 u64 actual_end; 486 u64 i_size; 487 int ret = 0; 488 struct page **pages = NULL; 489 unsigned long nr_pages; 490 unsigned long total_compressed = 0; 491 unsigned long total_in = 0; 492 int i; 493 int will_compress; 494 int compress_type = fs_info->compress_type; 495 int compressed_extents = 0; 496 int redirty = 0; 497 498 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 499 SZ_16K); 500 501 /* 502 * We need to save i_size before now because it could change in between 503 * us evaluating the size and assigning it. This is because we lock and 504 * unlock the page in truncate and fallocate, and then modify the i_size 505 * later on. 506 * 507 * The barriers are to emulate READ_ONCE, remove that once i_size_read 508 * does that for us. 509 */ 510 barrier(); 511 i_size = i_size_read(inode); 512 barrier(); 513 actual_end = min_t(u64, i_size, end + 1); 514 again: 515 will_compress = 0; 516 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 517 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 518 nr_pages = min_t(unsigned long, nr_pages, 519 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 520 521 /* 522 * we don't want to send crud past the end of i_size through 523 * compression, that's just a waste of CPU time. So, if the 524 * end of the file is before the start of our current 525 * requested range of bytes, we bail out to the uncompressed 526 * cleanup code that can deal with all of this. 527 * 528 * It isn't really the fastest way to fix things, but this is a 529 * very uncommon corner. 530 */ 531 if (actual_end <= start) 532 goto cleanup_and_bail_uncompressed; 533 534 total_compressed = actual_end - start; 535 536 /* 537 * skip compression for a small file range(<=blocksize) that 538 * isn't an inline extent, since it doesn't save disk space at all. 539 */ 540 if (total_compressed <= blocksize && 541 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 542 goto cleanup_and_bail_uncompressed; 543 544 total_compressed = min_t(unsigned long, total_compressed, 545 BTRFS_MAX_UNCOMPRESSED); 546 total_in = 0; 547 ret = 0; 548 549 /* 550 * we do compression for mount -o compress and when the 551 * inode has not been flagged as nocompress. This flag can 552 * change at any time if we discover bad compression ratios. 553 */ 554 if (inode_need_compress(inode, start, end)) { 555 WARN_ON(pages); 556 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 557 if (!pages) { 558 /* just bail out to the uncompressed code */ 559 nr_pages = 0; 560 goto cont; 561 } 562 563 if (BTRFS_I(inode)->defrag_compress) 564 compress_type = BTRFS_I(inode)->defrag_compress; 565 else if (BTRFS_I(inode)->prop_compress) 566 compress_type = BTRFS_I(inode)->prop_compress; 567 568 /* 569 * we need to call clear_page_dirty_for_io on each 570 * page in the range. Otherwise applications with the file 571 * mmap'd can wander in and change the page contents while 572 * we are compressing them. 573 * 574 * If the compression fails for any reason, we set the pages 575 * dirty again later on. 576 * 577 * Note that the remaining part is redirtied, the start pointer 578 * has moved, the end is the original one. 579 */ 580 if (!redirty) { 581 extent_range_clear_dirty_for_io(inode, start, end); 582 redirty = 1; 583 } 584 585 /* Compression level is applied here and only here */ 586 ret = btrfs_compress_pages( 587 compress_type | (fs_info->compress_level << 4), 588 inode->i_mapping, start, 589 pages, 590 &nr_pages, 591 &total_in, 592 &total_compressed); 593 594 if (!ret) { 595 unsigned long offset = offset_in_page(total_compressed); 596 struct page *page = pages[nr_pages - 1]; 597 char *kaddr; 598 599 /* zero the tail end of the last page, we might be 600 * sending it down to disk 601 */ 602 if (offset) { 603 kaddr = kmap_atomic(page); 604 memset(kaddr + offset, 0, 605 PAGE_SIZE - offset); 606 kunmap_atomic(kaddr); 607 } 608 will_compress = 1; 609 } 610 } 611 cont: 612 if (start == 0) { 613 /* lets try to make an inline extent */ 614 if (ret || total_in < actual_end) { 615 /* we didn't compress the entire range, try 616 * to make an uncompressed inline extent. 617 */ 618 ret = cow_file_range_inline(inode, start, end, 0, 619 BTRFS_COMPRESS_NONE, NULL); 620 } else { 621 /* try making a compressed inline extent */ 622 ret = cow_file_range_inline(inode, start, end, 623 total_compressed, 624 compress_type, pages); 625 } 626 if (ret <= 0) { 627 unsigned long clear_flags = EXTENT_DELALLOC | 628 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 629 EXTENT_DO_ACCOUNTING; 630 unsigned long page_error_op; 631 632 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 633 634 /* 635 * inline extent creation worked or returned error, 636 * we don't need to create any more async work items. 637 * Unlock and free up our temp pages. 638 * 639 * We use DO_ACCOUNTING here because we need the 640 * delalloc_release_metadata to be done _after_ we drop 641 * our outstanding extent for clearing delalloc for this 642 * range. 643 */ 644 extent_clear_unlock_delalloc(inode, start, end, NULL, 645 clear_flags, 646 PAGE_UNLOCK | 647 PAGE_CLEAR_DIRTY | 648 PAGE_SET_WRITEBACK | 649 page_error_op | 650 PAGE_END_WRITEBACK); 651 652 for (i = 0; i < nr_pages; i++) { 653 WARN_ON(pages[i]->mapping); 654 put_page(pages[i]); 655 } 656 kfree(pages); 657 658 return 0; 659 } 660 } 661 662 if (will_compress) { 663 /* 664 * we aren't doing an inline extent round the compressed size 665 * up to a block size boundary so the allocator does sane 666 * things 667 */ 668 total_compressed = ALIGN(total_compressed, blocksize); 669 670 /* 671 * one last check to make sure the compression is really a 672 * win, compare the page count read with the blocks on disk, 673 * compression must free at least one sector size 674 */ 675 total_in = ALIGN(total_in, PAGE_SIZE); 676 if (total_compressed + blocksize <= total_in) { 677 compressed_extents++; 678 679 /* 680 * The async work queues will take care of doing actual 681 * allocation on disk for these compressed pages, and 682 * will submit them to the elevator. 683 */ 684 add_async_extent(async_chunk, start, total_in, 685 total_compressed, pages, nr_pages, 686 compress_type); 687 688 if (start + total_in < end) { 689 start += total_in; 690 pages = NULL; 691 cond_resched(); 692 goto again; 693 } 694 return compressed_extents; 695 } 696 } 697 if (pages) { 698 /* 699 * the compression code ran but failed to make things smaller, 700 * free any pages it allocated and our page pointer array 701 */ 702 for (i = 0; i < nr_pages; i++) { 703 WARN_ON(pages[i]->mapping); 704 put_page(pages[i]); 705 } 706 kfree(pages); 707 pages = NULL; 708 total_compressed = 0; 709 nr_pages = 0; 710 711 /* flag the file so we don't compress in the future */ 712 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 713 !(BTRFS_I(inode)->prop_compress)) { 714 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 715 } 716 } 717 cleanup_and_bail_uncompressed: 718 /* 719 * No compression, but we still need to write the pages in the file 720 * we've been given so far. redirty the locked page if it corresponds 721 * to our extent and set things up for the async work queue to run 722 * cow_file_range to do the normal delalloc dance. 723 */ 724 if (async_chunk->locked_page && 725 (page_offset(async_chunk->locked_page) >= start && 726 page_offset(async_chunk->locked_page)) <= end) { 727 __set_page_dirty_nobuffers(async_chunk->locked_page); 728 /* unlocked later on in the async handlers */ 729 } 730 731 if (redirty) 732 extent_range_redirty_for_io(inode, start, end); 733 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 734 BTRFS_COMPRESS_NONE); 735 compressed_extents++; 736 737 return compressed_extents; 738 } 739 740 static void free_async_extent_pages(struct async_extent *async_extent) 741 { 742 int i; 743 744 if (!async_extent->pages) 745 return; 746 747 for (i = 0; i < async_extent->nr_pages; i++) { 748 WARN_ON(async_extent->pages[i]->mapping); 749 put_page(async_extent->pages[i]); 750 } 751 kfree(async_extent->pages); 752 async_extent->nr_pages = 0; 753 async_extent->pages = NULL; 754 } 755 756 /* 757 * phase two of compressed writeback. This is the ordered portion 758 * of the code, which only gets called in the order the work was 759 * queued. We walk all the async extents created by compress_file_range 760 * and send them down to the disk. 761 */ 762 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 763 { 764 struct inode *inode = async_chunk->inode; 765 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 766 struct async_extent *async_extent; 767 u64 alloc_hint = 0; 768 struct btrfs_key ins; 769 struct extent_map *em; 770 struct btrfs_root *root = BTRFS_I(inode)->root; 771 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 772 int ret = 0; 773 774 again: 775 while (!list_empty(&async_chunk->extents)) { 776 async_extent = list_entry(async_chunk->extents.next, 777 struct async_extent, list); 778 list_del(&async_extent->list); 779 780 retry: 781 lock_extent(io_tree, async_extent->start, 782 async_extent->start + async_extent->ram_size - 1); 783 /* did the compression code fall back to uncompressed IO? */ 784 if (!async_extent->pages) { 785 int page_started = 0; 786 unsigned long nr_written = 0; 787 788 /* allocate blocks */ 789 ret = cow_file_range(inode, async_chunk->locked_page, 790 async_extent->start, 791 async_extent->start + 792 async_extent->ram_size - 1, 793 &page_started, &nr_written, 0); 794 795 /* JDM XXX */ 796 797 /* 798 * if page_started, cow_file_range inserted an 799 * inline extent and took care of all the unlocking 800 * and IO for us. Otherwise, we need to submit 801 * all those pages down to the drive. 802 */ 803 if (!page_started && !ret) 804 extent_write_locked_range(inode, 805 async_extent->start, 806 async_extent->start + 807 async_extent->ram_size - 1, 808 WB_SYNC_ALL); 809 else if (ret && async_chunk->locked_page) 810 unlock_page(async_chunk->locked_page); 811 kfree(async_extent); 812 cond_resched(); 813 continue; 814 } 815 816 ret = btrfs_reserve_extent(root, async_extent->ram_size, 817 async_extent->compressed_size, 818 async_extent->compressed_size, 819 0, alloc_hint, &ins, 1, 1); 820 if (ret) { 821 free_async_extent_pages(async_extent); 822 823 if (ret == -ENOSPC) { 824 unlock_extent(io_tree, async_extent->start, 825 async_extent->start + 826 async_extent->ram_size - 1); 827 828 /* 829 * we need to redirty the pages if we decide to 830 * fallback to uncompressed IO, otherwise we 831 * will not submit these pages down to lower 832 * layers. 833 */ 834 extent_range_redirty_for_io(inode, 835 async_extent->start, 836 async_extent->start + 837 async_extent->ram_size - 1); 838 839 goto retry; 840 } 841 goto out_free; 842 } 843 /* 844 * here we're doing allocation and writeback of the 845 * compressed pages 846 */ 847 em = create_io_em(inode, async_extent->start, 848 async_extent->ram_size, /* len */ 849 async_extent->start, /* orig_start */ 850 ins.objectid, /* block_start */ 851 ins.offset, /* block_len */ 852 ins.offset, /* orig_block_len */ 853 async_extent->ram_size, /* ram_bytes */ 854 async_extent->compress_type, 855 BTRFS_ORDERED_COMPRESSED); 856 if (IS_ERR(em)) 857 /* ret value is not necessary due to void function */ 858 goto out_free_reserve; 859 free_extent_map(em); 860 861 ret = btrfs_add_ordered_extent_compress(inode, 862 async_extent->start, 863 ins.objectid, 864 async_extent->ram_size, 865 ins.offset, 866 BTRFS_ORDERED_COMPRESSED, 867 async_extent->compress_type); 868 if (ret) { 869 btrfs_drop_extent_cache(BTRFS_I(inode), 870 async_extent->start, 871 async_extent->start + 872 async_extent->ram_size - 1, 0); 873 goto out_free_reserve; 874 } 875 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 876 877 /* 878 * clear dirty, set writeback and unlock the pages. 879 */ 880 extent_clear_unlock_delalloc(inode, async_extent->start, 881 async_extent->start + 882 async_extent->ram_size - 1, 883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 884 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 885 PAGE_SET_WRITEBACK); 886 if (btrfs_submit_compressed_write(inode, 887 async_extent->start, 888 async_extent->ram_size, 889 ins.objectid, 890 ins.offset, async_extent->pages, 891 async_extent->nr_pages, 892 async_chunk->write_flags, 893 async_chunk->blkcg_css)) { 894 struct page *p = async_extent->pages[0]; 895 const u64 start = async_extent->start; 896 const u64 end = start + async_extent->ram_size - 1; 897 898 p->mapping = inode->i_mapping; 899 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 900 901 p->mapping = NULL; 902 extent_clear_unlock_delalloc(inode, start, end, 903 NULL, 0, 904 PAGE_END_WRITEBACK | 905 PAGE_SET_ERROR); 906 free_async_extent_pages(async_extent); 907 } 908 alloc_hint = ins.objectid + ins.offset; 909 kfree(async_extent); 910 cond_resched(); 911 } 912 return; 913 out_free_reserve: 914 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 915 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 916 out_free: 917 extent_clear_unlock_delalloc(inode, async_extent->start, 918 async_extent->start + 919 async_extent->ram_size - 1, 920 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 921 EXTENT_DELALLOC_NEW | 922 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 923 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 924 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 925 PAGE_SET_ERROR); 926 free_async_extent_pages(async_extent); 927 kfree(async_extent); 928 goto again; 929 } 930 931 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 932 u64 num_bytes) 933 { 934 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 935 struct extent_map *em; 936 u64 alloc_hint = 0; 937 938 read_lock(&em_tree->lock); 939 em = search_extent_mapping(em_tree, start, num_bytes); 940 if (em) { 941 /* 942 * if block start isn't an actual block number then find the 943 * first block in this inode and use that as a hint. If that 944 * block is also bogus then just don't worry about it. 945 */ 946 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 947 free_extent_map(em); 948 em = search_extent_mapping(em_tree, 0, 0); 949 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 950 alloc_hint = em->block_start; 951 if (em) 952 free_extent_map(em); 953 } else { 954 alloc_hint = em->block_start; 955 free_extent_map(em); 956 } 957 } 958 read_unlock(&em_tree->lock); 959 960 return alloc_hint; 961 } 962 963 /* 964 * when extent_io.c finds a delayed allocation range in the file, 965 * the call backs end up in this code. The basic idea is to 966 * allocate extents on disk for the range, and create ordered data structs 967 * in ram to track those extents. 968 * 969 * locked_page is the page that writepage had locked already. We use 970 * it to make sure we don't do extra locks or unlocks. 971 * 972 * *page_started is set to one if we unlock locked_page and do everything 973 * required to start IO on it. It may be clean and already done with 974 * IO when we return. 975 */ 976 static noinline int cow_file_range(struct inode *inode, 977 struct page *locked_page, 978 u64 start, u64 end, int *page_started, 979 unsigned long *nr_written, int unlock) 980 { 981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 982 struct btrfs_root *root = BTRFS_I(inode)->root; 983 u64 alloc_hint = 0; 984 u64 num_bytes; 985 unsigned long ram_size; 986 u64 cur_alloc_size = 0; 987 u64 blocksize = fs_info->sectorsize; 988 struct btrfs_key ins; 989 struct extent_map *em; 990 unsigned clear_bits; 991 unsigned long page_ops; 992 bool extent_reserved = false; 993 int ret = 0; 994 995 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 996 WARN_ON_ONCE(1); 997 ret = -EINVAL; 998 goto out_unlock; 999 } 1000 1001 num_bytes = ALIGN(end - start + 1, blocksize); 1002 num_bytes = max(blocksize, num_bytes); 1003 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1004 1005 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 1006 1007 if (start == 0) { 1008 /* lets try to make an inline extent */ 1009 ret = cow_file_range_inline(inode, start, end, 0, 1010 BTRFS_COMPRESS_NONE, NULL); 1011 if (ret == 0) { 1012 /* 1013 * We use DO_ACCOUNTING here because we need the 1014 * delalloc_release_metadata to be run _after_ we drop 1015 * our outstanding extent for clearing delalloc for this 1016 * range. 1017 */ 1018 extent_clear_unlock_delalloc(inode, start, end, NULL, 1019 EXTENT_LOCKED | EXTENT_DELALLOC | 1020 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1021 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1022 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1023 PAGE_END_WRITEBACK); 1024 *nr_written = *nr_written + 1025 (end - start + PAGE_SIZE) / PAGE_SIZE; 1026 *page_started = 1; 1027 goto out; 1028 } else if (ret < 0) { 1029 goto out_unlock; 1030 } 1031 } 1032 1033 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1034 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1035 start + num_bytes - 1, 0); 1036 1037 while (num_bytes > 0) { 1038 cur_alloc_size = num_bytes; 1039 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1040 fs_info->sectorsize, 0, alloc_hint, 1041 &ins, 1, 1); 1042 if (ret < 0) 1043 goto out_unlock; 1044 cur_alloc_size = ins.offset; 1045 extent_reserved = true; 1046 1047 ram_size = ins.offset; 1048 em = create_io_em(inode, start, ins.offset, /* len */ 1049 start, /* orig_start */ 1050 ins.objectid, /* block_start */ 1051 ins.offset, /* block_len */ 1052 ins.offset, /* orig_block_len */ 1053 ram_size, /* ram_bytes */ 1054 BTRFS_COMPRESS_NONE, /* compress_type */ 1055 BTRFS_ORDERED_REGULAR /* type */); 1056 if (IS_ERR(em)) { 1057 ret = PTR_ERR(em); 1058 goto out_reserve; 1059 } 1060 free_extent_map(em); 1061 1062 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1063 ram_size, cur_alloc_size, 0); 1064 if (ret) 1065 goto out_drop_extent_cache; 1066 1067 if (root->root_key.objectid == 1068 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1069 ret = btrfs_reloc_clone_csums(inode, start, 1070 cur_alloc_size); 1071 /* 1072 * Only drop cache here, and process as normal. 1073 * 1074 * We must not allow extent_clear_unlock_delalloc() 1075 * at out_unlock label to free meta of this ordered 1076 * extent, as its meta should be freed by 1077 * btrfs_finish_ordered_io(). 1078 * 1079 * So we must continue until @start is increased to 1080 * skip current ordered extent. 1081 */ 1082 if (ret) 1083 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1084 start + ram_size - 1, 0); 1085 } 1086 1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1088 1089 /* we're not doing compressed IO, don't unlock the first 1090 * page (which the caller expects to stay locked), don't 1091 * clear any dirty bits and don't set any writeback bits 1092 * 1093 * Do set the Private2 bit so we know this page was properly 1094 * setup for writepage 1095 */ 1096 page_ops = unlock ? PAGE_UNLOCK : 0; 1097 page_ops |= PAGE_SET_PRIVATE2; 1098 1099 extent_clear_unlock_delalloc(inode, start, 1100 start + ram_size - 1, 1101 locked_page, 1102 EXTENT_LOCKED | EXTENT_DELALLOC, 1103 page_ops); 1104 if (num_bytes < cur_alloc_size) 1105 num_bytes = 0; 1106 else 1107 num_bytes -= cur_alloc_size; 1108 alloc_hint = ins.objectid + ins.offset; 1109 start += cur_alloc_size; 1110 extent_reserved = false; 1111 1112 /* 1113 * btrfs_reloc_clone_csums() error, since start is increased 1114 * extent_clear_unlock_delalloc() at out_unlock label won't 1115 * free metadata of current ordered extent, we're OK to exit. 1116 */ 1117 if (ret) 1118 goto out_unlock; 1119 } 1120 out: 1121 return ret; 1122 1123 out_drop_extent_cache: 1124 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1125 out_reserve: 1126 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1127 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1128 out_unlock: 1129 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1130 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1131 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1132 PAGE_END_WRITEBACK; 1133 /* 1134 * If we reserved an extent for our delalloc range (or a subrange) and 1135 * failed to create the respective ordered extent, then it means that 1136 * when we reserved the extent we decremented the extent's size from 1137 * the data space_info's bytes_may_use counter and incremented the 1138 * space_info's bytes_reserved counter by the same amount. We must make 1139 * sure extent_clear_unlock_delalloc() does not try to decrement again 1140 * the data space_info's bytes_may_use counter, therefore we do not pass 1141 * it the flag EXTENT_CLEAR_DATA_RESV. 1142 */ 1143 if (extent_reserved) { 1144 extent_clear_unlock_delalloc(inode, start, 1145 start + cur_alloc_size, 1146 locked_page, 1147 clear_bits, 1148 page_ops); 1149 start += cur_alloc_size; 1150 if (start >= end) 1151 goto out; 1152 } 1153 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1154 clear_bits | EXTENT_CLEAR_DATA_RESV, 1155 page_ops); 1156 goto out; 1157 } 1158 1159 /* 1160 * work queue call back to started compression on a file and pages 1161 */ 1162 static noinline void async_cow_start(struct btrfs_work *work) 1163 { 1164 struct async_chunk *async_chunk; 1165 int compressed_extents; 1166 1167 async_chunk = container_of(work, struct async_chunk, work); 1168 1169 compressed_extents = compress_file_range(async_chunk); 1170 if (compressed_extents == 0) { 1171 btrfs_add_delayed_iput(async_chunk->inode); 1172 async_chunk->inode = NULL; 1173 } 1174 } 1175 1176 /* 1177 * work queue call back to submit previously compressed pages 1178 */ 1179 static noinline void async_cow_submit(struct btrfs_work *work) 1180 { 1181 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1182 work); 1183 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1184 unsigned long nr_pages; 1185 1186 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1187 PAGE_SHIFT; 1188 1189 /* atomic_sub_return implies a barrier */ 1190 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1191 5 * SZ_1M) 1192 cond_wake_up_nomb(&fs_info->async_submit_wait); 1193 1194 /* 1195 * ->inode could be NULL if async_chunk_start has failed to compress, 1196 * in which case we don't have anything to submit, yet we need to 1197 * always adjust ->async_delalloc_pages as its paired with the init 1198 * happening in cow_file_range_async 1199 */ 1200 if (async_chunk->inode) 1201 submit_compressed_extents(async_chunk); 1202 } 1203 1204 static noinline void async_cow_free(struct btrfs_work *work) 1205 { 1206 struct async_chunk *async_chunk; 1207 1208 async_chunk = container_of(work, struct async_chunk, work); 1209 if (async_chunk->inode) 1210 btrfs_add_delayed_iput(async_chunk->inode); 1211 if (async_chunk->blkcg_css) 1212 css_put(async_chunk->blkcg_css); 1213 /* 1214 * Since the pointer to 'pending' is at the beginning of the array of 1215 * async_chunk's, freeing it ensures the whole array has been freed. 1216 */ 1217 if (atomic_dec_and_test(async_chunk->pending)) 1218 kvfree(async_chunk->pending); 1219 } 1220 1221 static int cow_file_range_async(struct inode *inode, 1222 struct writeback_control *wbc, 1223 struct page *locked_page, 1224 u64 start, u64 end, int *page_started, 1225 unsigned long *nr_written) 1226 { 1227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1228 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1229 struct async_cow *ctx; 1230 struct async_chunk *async_chunk; 1231 unsigned long nr_pages; 1232 u64 cur_end; 1233 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1234 int i; 1235 bool should_compress; 1236 unsigned nofs_flag; 1237 const unsigned int write_flags = wbc_to_write_flags(wbc); 1238 1239 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1240 1241 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1242 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1243 num_chunks = 1; 1244 should_compress = false; 1245 } else { 1246 should_compress = true; 1247 } 1248 1249 nofs_flag = memalloc_nofs_save(); 1250 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1251 memalloc_nofs_restore(nofs_flag); 1252 1253 if (!ctx) { 1254 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1255 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1256 EXTENT_DO_ACCOUNTING; 1257 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1258 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1259 PAGE_SET_ERROR; 1260 1261 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1262 clear_bits, page_ops); 1263 return -ENOMEM; 1264 } 1265 1266 async_chunk = ctx->chunks; 1267 atomic_set(&ctx->num_chunks, num_chunks); 1268 1269 for (i = 0; i < num_chunks; i++) { 1270 if (should_compress) 1271 cur_end = min(end, start + SZ_512K - 1); 1272 else 1273 cur_end = end; 1274 1275 /* 1276 * igrab is called higher up in the call chain, take only the 1277 * lightweight reference for the callback lifetime 1278 */ 1279 ihold(inode); 1280 async_chunk[i].pending = &ctx->num_chunks; 1281 async_chunk[i].inode = inode; 1282 async_chunk[i].start = start; 1283 async_chunk[i].end = cur_end; 1284 async_chunk[i].write_flags = write_flags; 1285 INIT_LIST_HEAD(&async_chunk[i].extents); 1286 1287 /* 1288 * The locked_page comes all the way from writepage and its 1289 * the original page we were actually given. As we spread 1290 * this large delalloc region across multiple async_chunk 1291 * structs, only the first struct needs a pointer to locked_page 1292 * 1293 * This way we don't need racey decisions about who is supposed 1294 * to unlock it. 1295 */ 1296 if (locked_page) { 1297 /* 1298 * Depending on the compressibility, the pages might or 1299 * might not go through async. We want all of them to 1300 * be accounted against wbc once. Let's do it here 1301 * before the paths diverge. wbc accounting is used 1302 * only for foreign writeback detection and doesn't 1303 * need full accuracy. Just account the whole thing 1304 * against the first page. 1305 */ 1306 wbc_account_cgroup_owner(wbc, locked_page, 1307 cur_end - start); 1308 async_chunk[i].locked_page = locked_page; 1309 locked_page = NULL; 1310 } else { 1311 async_chunk[i].locked_page = NULL; 1312 } 1313 1314 if (blkcg_css != blkcg_root_css) { 1315 css_get(blkcg_css); 1316 async_chunk[i].blkcg_css = blkcg_css; 1317 } else { 1318 async_chunk[i].blkcg_css = NULL; 1319 } 1320 1321 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1322 async_cow_submit, async_cow_free); 1323 1324 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1325 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1326 1327 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1328 1329 *nr_written += nr_pages; 1330 start = cur_end + 1; 1331 } 1332 *page_started = 1; 1333 return 0; 1334 } 1335 1336 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1337 u64 bytenr, u64 num_bytes) 1338 { 1339 int ret; 1340 struct btrfs_ordered_sum *sums; 1341 LIST_HEAD(list); 1342 1343 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1344 bytenr + num_bytes - 1, &list, 0); 1345 if (ret == 0 && list_empty(&list)) 1346 return 0; 1347 1348 while (!list_empty(&list)) { 1349 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1350 list_del(&sums->list); 1351 kfree(sums); 1352 } 1353 if (ret < 0) 1354 return ret; 1355 return 1; 1356 } 1357 1358 /* 1359 * when nowcow writeback call back. This checks for snapshots or COW copies 1360 * of the extents that exist in the file, and COWs the file as required. 1361 * 1362 * If no cow copies or snapshots exist, we write directly to the existing 1363 * blocks on disk 1364 */ 1365 static noinline int run_delalloc_nocow(struct inode *inode, 1366 struct page *locked_page, 1367 const u64 start, const u64 end, 1368 int *page_started, int force, 1369 unsigned long *nr_written) 1370 { 1371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1372 struct btrfs_root *root = BTRFS_I(inode)->root; 1373 struct btrfs_path *path; 1374 u64 cow_start = (u64)-1; 1375 u64 cur_offset = start; 1376 int ret; 1377 bool check_prev = true; 1378 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 1379 u64 ino = btrfs_ino(BTRFS_I(inode)); 1380 bool nocow = false; 1381 u64 disk_bytenr = 0; 1382 1383 path = btrfs_alloc_path(); 1384 if (!path) { 1385 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1386 EXTENT_LOCKED | EXTENT_DELALLOC | 1387 EXTENT_DO_ACCOUNTING | 1388 EXTENT_DEFRAG, PAGE_UNLOCK | 1389 PAGE_CLEAR_DIRTY | 1390 PAGE_SET_WRITEBACK | 1391 PAGE_END_WRITEBACK); 1392 return -ENOMEM; 1393 } 1394 1395 while (1) { 1396 struct btrfs_key found_key; 1397 struct btrfs_file_extent_item *fi; 1398 struct extent_buffer *leaf; 1399 u64 extent_end; 1400 u64 extent_offset; 1401 u64 num_bytes = 0; 1402 u64 disk_num_bytes; 1403 u64 ram_bytes; 1404 int extent_type; 1405 1406 nocow = false; 1407 1408 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1409 cur_offset, 0); 1410 if (ret < 0) 1411 goto error; 1412 1413 /* 1414 * If there is no extent for our range when doing the initial 1415 * search, then go back to the previous slot as it will be the 1416 * one containing the search offset 1417 */ 1418 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1419 leaf = path->nodes[0]; 1420 btrfs_item_key_to_cpu(leaf, &found_key, 1421 path->slots[0] - 1); 1422 if (found_key.objectid == ino && 1423 found_key.type == BTRFS_EXTENT_DATA_KEY) 1424 path->slots[0]--; 1425 } 1426 check_prev = false; 1427 next_slot: 1428 /* Go to next leaf if we have exhausted the current one */ 1429 leaf = path->nodes[0]; 1430 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1431 ret = btrfs_next_leaf(root, path); 1432 if (ret < 0) { 1433 if (cow_start != (u64)-1) 1434 cur_offset = cow_start; 1435 goto error; 1436 } 1437 if (ret > 0) 1438 break; 1439 leaf = path->nodes[0]; 1440 } 1441 1442 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1443 1444 /* Didn't find anything for our INO */ 1445 if (found_key.objectid > ino) 1446 break; 1447 /* 1448 * Keep searching until we find an EXTENT_ITEM or there are no 1449 * more extents for this inode 1450 */ 1451 if (WARN_ON_ONCE(found_key.objectid < ino) || 1452 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1453 path->slots[0]++; 1454 goto next_slot; 1455 } 1456 1457 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1458 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1459 found_key.offset > end) 1460 break; 1461 1462 /* 1463 * If the found extent starts after requested offset, then 1464 * adjust extent_end to be right before this extent begins 1465 */ 1466 if (found_key.offset > cur_offset) { 1467 extent_end = found_key.offset; 1468 extent_type = 0; 1469 goto out_check; 1470 } 1471 1472 /* 1473 * Found extent which begins before our range and potentially 1474 * intersect it 1475 */ 1476 fi = btrfs_item_ptr(leaf, path->slots[0], 1477 struct btrfs_file_extent_item); 1478 extent_type = btrfs_file_extent_type(leaf, fi); 1479 1480 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1481 if (extent_type == BTRFS_FILE_EXTENT_REG || 1482 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1483 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1484 extent_offset = btrfs_file_extent_offset(leaf, fi); 1485 extent_end = found_key.offset + 1486 btrfs_file_extent_num_bytes(leaf, fi); 1487 disk_num_bytes = 1488 btrfs_file_extent_disk_num_bytes(leaf, fi); 1489 /* 1490 * If the extent we got ends before our current offset, 1491 * skip to the next extent. 1492 */ 1493 if (extent_end <= cur_offset) { 1494 path->slots[0]++; 1495 goto next_slot; 1496 } 1497 /* Skip holes */ 1498 if (disk_bytenr == 0) 1499 goto out_check; 1500 /* Skip compressed/encrypted/encoded extents */ 1501 if (btrfs_file_extent_compression(leaf, fi) || 1502 btrfs_file_extent_encryption(leaf, fi) || 1503 btrfs_file_extent_other_encoding(leaf, fi)) 1504 goto out_check; 1505 /* 1506 * If extent is created before the last volume's snapshot 1507 * this implies the extent is shared, hence we can't do 1508 * nocow. This is the same check as in 1509 * btrfs_cross_ref_exist but without calling 1510 * btrfs_search_slot. 1511 */ 1512 if (!freespace_inode && 1513 btrfs_file_extent_generation(leaf, fi) <= 1514 btrfs_root_last_snapshot(&root->root_item)) 1515 goto out_check; 1516 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1517 goto out_check; 1518 /* If extent is RO, we must COW it */ 1519 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1520 goto out_check; 1521 ret = btrfs_cross_ref_exist(root, ino, 1522 found_key.offset - 1523 extent_offset, disk_bytenr); 1524 if (ret) { 1525 /* 1526 * ret could be -EIO if the above fails to read 1527 * metadata. 1528 */ 1529 if (ret < 0) { 1530 if (cow_start != (u64)-1) 1531 cur_offset = cow_start; 1532 goto error; 1533 } 1534 1535 WARN_ON_ONCE(freespace_inode); 1536 goto out_check; 1537 } 1538 disk_bytenr += extent_offset; 1539 disk_bytenr += cur_offset - found_key.offset; 1540 num_bytes = min(end + 1, extent_end) - cur_offset; 1541 /* 1542 * If there are pending snapshots for this root, we 1543 * fall into common COW way 1544 */ 1545 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1546 goto out_check; 1547 /* 1548 * force cow if csum exists in the range. 1549 * this ensure that csum for a given extent are 1550 * either valid or do not exist. 1551 */ 1552 ret = csum_exist_in_range(fs_info, disk_bytenr, 1553 num_bytes); 1554 if (ret) { 1555 /* 1556 * ret could be -EIO if the above fails to read 1557 * metadata. 1558 */ 1559 if (ret < 0) { 1560 if (cow_start != (u64)-1) 1561 cur_offset = cow_start; 1562 goto error; 1563 } 1564 WARN_ON_ONCE(freespace_inode); 1565 goto out_check; 1566 } 1567 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1568 goto out_check; 1569 nocow = true; 1570 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1571 extent_end = found_key.offset + ram_bytes; 1572 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1573 /* Skip extents outside of our requested range */ 1574 if (extent_end <= start) { 1575 path->slots[0]++; 1576 goto next_slot; 1577 } 1578 } else { 1579 /* If this triggers then we have a memory corruption */ 1580 BUG(); 1581 } 1582 out_check: 1583 /* 1584 * If nocow is false then record the beginning of the range 1585 * that needs to be COWed 1586 */ 1587 if (!nocow) { 1588 if (cow_start == (u64)-1) 1589 cow_start = cur_offset; 1590 cur_offset = extent_end; 1591 if (cur_offset > end) 1592 break; 1593 path->slots[0]++; 1594 goto next_slot; 1595 } 1596 1597 btrfs_release_path(path); 1598 1599 /* 1600 * COW range from cow_start to found_key.offset - 1. As the key 1601 * will contain the beginning of the first extent that can be 1602 * NOCOW, following one which needs to be COW'ed 1603 */ 1604 if (cow_start != (u64)-1) { 1605 ret = cow_file_range(inode, locked_page, 1606 cow_start, found_key.offset - 1, 1607 page_started, nr_written, 1); 1608 if (ret) { 1609 if (nocow) 1610 btrfs_dec_nocow_writers(fs_info, 1611 disk_bytenr); 1612 goto error; 1613 } 1614 cow_start = (u64)-1; 1615 } 1616 1617 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1618 u64 orig_start = found_key.offset - extent_offset; 1619 struct extent_map *em; 1620 1621 em = create_io_em(inode, cur_offset, num_bytes, 1622 orig_start, 1623 disk_bytenr, /* block_start */ 1624 num_bytes, /* block_len */ 1625 disk_num_bytes, /* orig_block_len */ 1626 ram_bytes, BTRFS_COMPRESS_NONE, 1627 BTRFS_ORDERED_PREALLOC); 1628 if (IS_ERR(em)) { 1629 if (nocow) 1630 btrfs_dec_nocow_writers(fs_info, 1631 disk_bytenr); 1632 ret = PTR_ERR(em); 1633 goto error; 1634 } 1635 free_extent_map(em); 1636 ret = btrfs_add_ordered_extent(inode, cur_offset, 1637 disk_bytenr, num_bytes, 1638 num_bytes, 1639 BTRFS_ORDERED_PREALLOC); 1640 if (ret) { 1641 btrfs_drop_extent_cache(BTRFS_I(inode), 1642 cur_offset, 1643 cur_offset + num_bytes - 1, 1644 0); 1645 goto error; 1646 } 1647 } else { 1648 ret = btrfs_add_ordered_extent(inode, cur_offset, 1649 disk_bytenr, num_bytes, 1650 num_bytes, 1651 BTRFS_ORDERED_NOCOW); 1652 if (ret) 1653 goto error; 1654 } 1655 1656 if (nocow) 1657 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1658 nocow = false; 1659 1660 if (root->root_key.objectid == 1661 BTRFS_DATA_RELOC_TREE_OBJECTID) 1662 /* 1663 * Error handled later, as we must prevent 1664 * extent_clear_unlock_delalloc() in error handler 1665 * from freeing metadata of created ordered extent. 1666 */ 1667 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1668 num_bytes); 1669 1670 extent_clear_unlock_delalloc(inode, cur_offset, 1671 cur_offset + num_bytes - 1, 1672 locked_page, EXTENT_LOCKED | 1673 EXTENT_DELALLOC | 1674 EXTENT_CLEAR_DATA_RESV, 1675 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1676 1677 cur_offset = extent_end; 1678 1679 /* 1680 * btrfs_reloc_clone_csums() error, now we're OK to call error 1681 * handler, as metadata for created ordered extent will only 1682 * be freed by btrfs_finish_ordered_io(). 1683 */ 1684 if (ret) 1685 goto error; 1686 if (cur_offset > end) 1687 break; 1688 } 1689 btrfs_release_path(path); 1690 1691 if (cur_offset <= end && cow_start == (u64)-1) 1692 cow_start = cur_offset; 1693 1694 if (cow_start != (u64)-1) { 1695 cur_offset = end; 1696 ret = cow_file_range(inode, locked_page, cow_start, end, 1697 page_started, nr_written, 1); 1698 if (ret) 1699 goto error; 1700 } 1701 1702 error: 1703 if (nocow) 1704 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1705 1706 if (ret && cur_offset < end) 1707 extent_clear_unlock_delalloc(inode, cur_offset, end, 1708 locked_page, EXTENT_LOCKED | 1709 EXTENT_DELALLOC | EXTENT_DEFRAG | 1710 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1711 PAGE_CLEAR_DIRTY | 1712 PAGE_SET_WRITEBACK | 1713 PAGE_END_WRITEBACK); 1714 btrfs_free_path(path); 1715 return ret; 1716 } 1717 1718 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1719 { 1720 1721 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1722 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1723 return 0; 1724 1725 /* 1726 * @defrag_bytes is a hint value, no spinlock held here, 1727 * if is not zero, it means the file is defragging. 1728 * Force cow if given extent needs to be defragged. 1729 */ 1730 if (BTRFS_I(inode)->defrag_bytes && 1731 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1732 EXTENT_DEFRAG, 0, NULL)) 1733 return 1; 1734 1735 return 0; 1736 } 1737 1738 /* 1739 * Function to process delayed allocation (create CoW) for ranges which are 1740 * being touched for the first time. 1741 */ 1742 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1743 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1744 struct writeback_control *wbc) 1745 { 1746 int ret; 1747 int force_cow = need_force_cow(inode, start, end); 1748 1749 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1750 ret = run_delalloc_nocow(inode, locked_page, start, end, 1751 page_started, 1, nr_written); 1752 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1753 ret = run_delalloc_nocow(inode, locked_page, start, end, 1754 page_started, 0, nr_written); 1755 } else if (!inode_can_compress(inode) || 1756 !inode_need_compress(inode, start, end)) { 1757 ret = cow_file_range(inode, locked_page, start, end, 1758 page_started, nr_written, 1); 1759 } else { 1760 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1761 &BTRFS_I(inode)->runtime_flags); 1762 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1763 page_started, nr_written); 1764 } 1765 if (ret) 1766 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1767 end - start + 1); 1768 return ret; 1769 } 1770 1771 void btrfs_split_delalloc_extent(struct inode *inode, 1772 struct extent_state *orig, u64 split) 1773 { 1774 u64 size; 1775 1776 /* not delalloc, ignore it */ 1777 if (!(orig->state & EXTENT_DELALLOC)) 1778 return; 1779 1780 size = orig->end - orig->start + 1; 1781 if (size > BTRFS_MAX_EXTENT_SIZE) { 1782 u32 num_extents; 1783 u64 new_size; 1784 1785 /* 1786 * See the explanation in btrfs_merge_delalloc_extent, the same 1787 * applies here, just in reverse. 1788 */ 1789 new_size = orig->end - split + 1; 1790 num_extents = count_max_extents(new_size); 1791 new_size = split - orig->start; 1792 num_extents += count_max_extents(new_size); 1793 if (count_max_extents(size) >= num_extents) 1794 return; 1795 } 1796 1797 spin_lock(&BTRFS_I(inode)->lock); 1798 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1799 spin_unlock(&BTRFS_I(inode)->lock); 1800 } 1801 1802 /* 1803 * Handle merged delayed allocation extents so we can keep track of new extents 1804 * that are just merged onto old extents, such as when we are doing sequential 1805 * writes, so we can properly account for the metadata space we'll need. 1806 */ 1807 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1808 struct extent_state *other) 1809 { 1810 u64 new_size, old_size; 1811 u32 num_extents; 1812 1813 /* not delalloc, ignore it */ 1814 if (!(other->state & EXTENT_DELALLOC)) 1815 return; 1816 1817 if (new->start > other->start) 1818 new_size = new->end - other->start + 1; 1819 else 1820 new_size = other->end - new->start + 1; 1821 1822 /* we're not bigger than the max, unreserve the space and go */ 1823 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1824 spin_lock(&BTRFS_I(inode)->lock); 1825 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1826 spin_unlock(&BTRFS_I(inode)->lock); 1827 return; 1828 } 1829 1830 /* 1831 * We have to add up either side to figure out how many extents were 1832 * accounted for before we merged into one big extent. If the number of 1833 * extents we accounted for is <= the amount we need for the new range 1834 * then we can return, otherwise drop. Think of it like this 1835 * 1836 * [ 4k][MAX_SIZE] 1837 * 1838 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1839 * need 2 outstanding extents, on one side we have 1 and the other side 1840 * we have 1 so they are == and we can return. But in this case 1841 * 1842 * [MAX_SIZE+4k][MAX_SIZE+4k] 1843 * 1844 * Each range on their own accounts for 2 extents, but merged together 1845 * they are only 3 extents worth of accounting, so we need to drop in 1846 * this case. 1847 */ 1848 old_size = other->end - other->start + 1; 1849 num_extents = count_max_extents(old_size); 1850 old_size = new->end - new->start + 1; 1851 num_extents += count_max_extents(old_size); 1852 if (count_max_extents(new_size) >= num_extents) 1853 return; 1854 1855 spin_lock(&BTRFS_I(inode)->lock); 1856 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1857 spin_unlock(&BTRFS_I(inode)->lock); 1858 } 1859 1860 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1861 struct inode *inode) 1862 { 1863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1864 1865 spin_lock(&root->delalloc_lock); 1866 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1867 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1868 &root->delalloc_inodes); 1869 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1870 &BTRFS_I(inode)->runtime_flags); 1871 root->nr_delalloc_inodes++; 1872 if (root->nr_delalloc_inodes == 1) { 1873 spin_lock(&fs_info->delalloc_root_lock); 1874 BUG_ON(!list_empty(&root->delalloc_root)); 1875 list_add_tail(&root->delalloc_root, 1876 &fs_info->delalloc_roots); 1877 spin_unlock(&fs_info->delalloc_root_lock); 1878 } 1879 } 1880 spin_unlock(&root->delalloc_lock); 1881 } 1882 1883 1884 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1885 struct btrfs_inode *inode) 1886 { 1887 struct btrfs_fs_info *fs_info = root->fs_info; 1888 1889 if (!list_empty(&inode->delalloc_inodes)) { 1890 list_del_init(&inode->delalloc_inodes); 1891 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1892 &inode->runtime_flags); 1893 root->nr_delalloc_inodes--; 1894 if (!root->nr_delalloc_inodes) { 1895 ASSERT(list_empty(&root->delalloc_inodes)); 1896 spin_lock(&fs_info->delalloc_root_lock); 1897 BUG_ON(list_empty(&root->delalloc_root)); 1898 list_del_init(&root->delalloc_root); 1899 spin_unlock(&fs_info->delalloc_root_lock); 1900 } 1901 } 1902 } 1903 1904 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1905 struct btrfs_inode *inode) 1906 { 1907 spin_lock(&root->delalloc_lock); 1908 __btrfs_del_delalloc_inode(root, inode); 1909 spin_unlock(&root->delalloc_lock); 1910 } 1911 1912 /* 1913 * Properly track delayed allocation bytes in the inode and to maintain the 1914 * list of inodes that have pending delalloc work to be done. 1915 */ 1916 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1917 unsigned *bits) 1918 { 1919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1920 1921 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1922 WARN_ON(1); 1923 /* 1924 * set_bit and clear bit hooks normally require _irqsave/restore 1925 * but in this case, we are only testing for the DELALLOC 1926 * bit, which is only set or cleared with irqs on 1927 */ 1928 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1929 struct btrfs_root *root = BTRFS_I(inode)->root; 1930 u64 len = state->end + 1 - state->start; 1931 u32 num_extents = count_max_extents(len); 1932 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1933 1934 spin_lock(&BTRFS_I(inode)->lock); 1935 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1936 spin_unlock(&BTRFS_I(inode)->lock); 1937 1938 /* For sanity tests */ 1939 if (btrfs_is_testing(fs_info)) 1940 return; 1941 1942 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1943 fs_info->delalloc_batch); 1944 spin_lock(&BTRFS_I(inode)->lock); 1945 BTRFS_I(inode)->delalloc_bytes += len; 1946 if (*bits & EXTENT_DEFRAG) 1947 BTRFS_I(inode)->defrag_bytes += len; 1948 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1949 &BTRFS_I(inode)->runtime_flags)) 1950 btrfs_add_delalloc_inodes(root, inode); 1951 spin_unlock(&BTRFS_I(inode)->lock); 1952 } 1953 1954 if (!(state->state & EXTENT_DELALLOC_NEW) && 1955 (*bits & EXTENT_DELALLOC_NEW)) { 1956 spin_lock(&BTRFS_I(inode)->lock); 1957 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1958 state->start; 1959 spin_unlock(&BTRFS_I(inode)->lock); 1960 } 1961 } 1962 1963 /* 1964 * Once a range is no longer delalloc this function ensures that proper 1965 * accounting happens. 1966 */ 1967 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1968 struct extent_state *state, unsigned *bits) 1969 { 1970 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1971 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1972 u64 len = state->end + 1 - state->start; 1973 u32 num_extents = count_max_extents(len); 1974 1975 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1976 spin_lock(&inode->lock); 1977 inode->defrag_bytes -= len; 1978 spin_unlock(&inode->lock); 1979 } 1980 1981 /* 1982 * set_bit and clear bit hooks normally require _irqsave/restore 1983 * but in this case, we are only testing for the DELALLOC 1984 * bit, which is only set or cleared with irqs on 1985 */ 1986 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1987 struct btrfs_root *root = inode->root; 1988 bool do_list = !btrfs_is_free_space_inode(inode); 1989 1990 spin_lock(&inode->lock); 1991 btrfs_mod_outstanding_extents(inode, -num_extents); 1992 spin_unlock(&inode->lock); 1993 1994 /* 1995 * We don't reserve metadata space for space cache inodes so we 1996 * don't need to call delalloc_release_metadata if there is an 1997 * error. 1998 */ 1999 if (*bits & EXTENT_CLEAR_META_RESV && 2000 root != fs_info->tree_root) 2001 btrfs_delalloc_release_metadata(inode, len, false); 2002 2003 /* For sanity tests. */ 2004 if (btrfs_is_testing(fs_info)) 2005 return; 2006 2007 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2008 do_list && !(state->state & EXTENT_NORESERVE) && 2009 (*bits & EXTENT_CLEAR_DATA_RESV)) 2010 btrfs_free_reserved_data_space_noquota( 2011 &inode->vfs_inode, 2012 state->start, len); 2013 2014 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2015 fs_info->delalloc_batch); 2016 spin_lock(&inode->lock); 2017 inode->delalloc_bytes -= len; 2018 if (do_list && inode->delalloc_bytes == 0 && 2019 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2020 &inode->runtime_flags)) 2021 btrfs_del_delalloc_inode(root, inode); 2022 spin_unlock(&inode->lock); 2023 } 2024 2025 if ((state->state & EXTENT_DELALLOC_NEW) && 2026 (*bits & EXTENT_DELALLOC_NEW)) { 2027 spin_lock(&inode->lock); 2028 ASSERT(inode->new_delalloc_bytes >= len); 2029 inode->new_delalloc_bytes -= len; 2030 spin_unlock(&inode->lock); 2031 } 2032 } 2033 2034 /* 2035 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2036 * in a chunk's stripe. This function ensures that bios do not span a 2037 * stripe/chunk 2038 * 2039 * @page - The page we are about to add to the bio 2040 * @size - size we want to add to the bio 2041 * @bio - bio we want to ensure is smaller than a stripe 2042 * @bio_flags - flags of the bio 2043 * 2044 * return 1 if page cannot be added to the bio 2045 * return 0 if page can be added to the bio 2046 * return error otherwise 2047 */ 2048 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2049 unsigned long bio_flags) 2050 { 2051 struct inode *inode = page->mapping->host; 2052 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2053 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2054 u64 length = 0; 2055 u64 map_length; 2056 int ret; 2057 struct btrfs_io_geometry geom; 2058 2059 if (bio_flags & EXTENT_BIO_COMPRESSED) 2060 return 0; 2061 2062 length = bio->bi_iter.bi_size; 2063 map_length = length; 2064 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2065 &geom); 2066 if (ret < 0) 2067 return ret; 2068 2069 if (geom.len < length + size) 2070 return 1; 2071 return 0; 2072 } 2073 2074 /* 2075 * in order to insert checksums into the metadata in large chunks, 2076 * we wait until bio submission time. All the pages in the bio are 2077 * checksummed and sums are attached onto the ordered extent record. 2078 * 2079 * At IO completion time the cums attached on the ordered extent record 2080 * are inserted into the btree 2081 */ 2082 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2083 u64 bio_offset) 2084 { 2085 struct inode *inode = private_data; 2086 blk_status_t ret = 0; 2087 2088 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2089 BUG_ON(ret); /* -ENOMEM */ 2090 return 0; 2091 } 2092 2093 /* 2094 * extent_io.c submission hook. This does the right thing for csum calculation 2095 * on write, or reading the csums from the tree before a read. 2096 * 2097 * Rules about async/sync submit, 2098 * a) read: sync submit 2099 * 2100 * b) write without checksum: sync submit 2101 * 2102 * c) write with checksum: 2103 * c-1) if bio is issued by fsync: sync submit 2104 * (sync_writers != 0) 2105 * 2106 * c-2) if root is reloc root: sync submit 2107 * (only in case of buffered IO) 2108 * 2109 * c-3) otherwise: async submit 2110 */ 2111 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2112 int mirror_num, 2113 unsigned long bio_flags) 2114 2115 { 2116 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2117 struct btrfs_root *root = BTRFS_I(inode)->root; 2118 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2119 blk_status_t ret = 0; 2120 int skip_sum; 2121 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2122 2123 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2124 2125 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2126 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2127 2128 if (bio_op(bio) != REQ_OP_WRITE) { 2129 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2130 if (ret) 2131 goto out; 2132 2133 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2134 ret = btrfs_submit_compressed_read(inode, bio, 2135 mirror_num, 2136 bio_flags); 2137 goto out; 2138 } else if (!skip_sum) { 2139 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2140 if (ret) 2141 goto out; 2142 } 2143 goto mapit; 2144 } else if (async && !skip_sum) { 2145 /* csum items have already been cloned */ 2146 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2147 goto mapit; 2148 /* we're doing a write, do the async checksumming */ 2149 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2150 0, inode, btrfs_submit_bio_start); 2151 goto out; 2152 } else if (!skip_sum) { 2153 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2154 if (ret) 2155 goto out; 2156 } 2157 2158 mapit: 2159 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2160 2161 out: 2162 if (ret) { 2163 bio->bi_status = ret; 2164 bio_endio(bio); 2165 } 2166 return ret; 2167 } 2168 2169 /* 2170 * given a list of ordered sums record them in the inode. This happens 2171 * at IO completion time based on sums calculated at bio submission time. 2172 */ 2173 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2174 struct inode *inode, struct list_head *list) 2175 { 2176 struct btrfs_ordered_sum *sum; 2177 int ret; 2178 2179 list_for_each_entry(sum, list, list) { 2180 trans->adding_csums = true; 2181 ret = btrfs_csum_file_blocks(trans, 2182 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2183 trans->adding_csums = false; 2184 if (ret) 2185 return ret; 2186 } 2187 return 0; 2188 } 2189 2190 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2191 unsigned int extra_bits, 2192 struct extent_state **cached_state) 2193 { 2194 WARN_ON(PAGE_ALIGNED(end)); 2195 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2196 extra_bits, cached_state); 2197 } 2198 2199 /* see btrfs_writepage_start_hook for details on why this is required */ 2200 struct btrfs_writepage_fixup { 2201 struct page *page; 2202 struct inode *inode; 2203 struct btrfs_work work; 2204 }; 2205 2206 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2207 { 2208 struct btrfs_writepage_fixup *fixup; 2209 struct btrfs_ordered_extent *ordered; 2210 struct extent_state *cached_state = NULL; 2211 struct extent_changeset *data_reserved = NULL; 2212 struct page *page; 2213 struct inode *inode; 2214 u64 page_start; 2215 u64 page_end; 2216 int ret = 0; 2217 bool free_delalloc_space = true; 2218 2219 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2220 page = fixup->page; 2221 inode = fixup->inode; 2222 page_start = page_offset(page); 2223 page_end = page_offset(page) + PAGE_SIZE - 1; 2224 2225 /* 2226 * This is similar to page_mkwrite, we need to reserve the space before 2227 * we take the page lock. 2228 */ 2229 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2230 PAGE_SIZE); 2231 again: 2232 lock_page(page); 2233 2234 /* 2235 * Before we queued this fixup, we took a reference on the page. 2236 * page->mapping may go NULL, but it shouldn't be moved to a different 2237 * address space. 2238 */ 2239 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2240 /* 2241 * Unfortunately this is a little tricky, either 2242 * 2243 * 1) We got here and our page had already been dealt with and 2244 * we reserved our space, thus ret == 0, so we need to just 2245 * drop our space reservation and bail. This can happen the 2246 * first time we come into the fixup worker, or could happen 2247 * while waiting for the ordered extent. 2248 * 2) Our page was already dealt with, but we happened to get an 2249 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2250 * this case we obviously don't have anything to release, but 2251 * because the page was already dealt with we don't want to 2252 * mark the page with an error, so make sure we're resetting 2253 * ret to 0. This is why we have this check _before_ the ret 2254 * check, because we do not want to have a surprise ENOSPC 2255 * when the page was already properly dealt with. 2256 */ 2257 if (!ret) { 2258 btrfs_delalloc_release_extents(BTRFS_I(inode), 2259 PAGE_SIZE); 2260 btrfs_delalloc_release_space(inode, data_reserved, 2261 page_start, PAGE_SIZE, 2262 true); 2263 } 2264 ret = 0; 2265 goto out_page; 2266 } 2267 2268 /* 2269 * We can't mess with the page state unless it is locked, so now that 2270 * it is locked bail if we failed to make our space reservation. 2271 */ 2272 if (ret) 2273 goto out_page; 2274 2275 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2276 &cached_state); 2277 2278 /* already ordered? We're done */ 2279 if (PagePrivate2(page)) 2280 goto out_reserved; 2281 2282 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2283 PAGE_SIZE); 2284 if (ordered) { 2285 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2286 page_end, &cached_state); 2287 unlock_page(page); 2288 btrfs_start_ordered_extent(inode, ordered, 1); 2289 btrfs_put_ordered_extent(ordered); 2290 goto again; 2291 } 2292 2293 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2294 &cached_state); 2295 if (ret) 2296 goto out_reserved; 2297 2298 /* 2299 * Everything went as planned, we're now the owner of a dirty page with 2300 * delayed allocation bits set and space reserved for our COW 2301 * destination. 2302 * 2303 * The page was dirty when we started, nothing should have cleaned it. 2304 */ 2305 BUG_ON(!PageDirty(page)); 2306 free_delalloc_space = false; 2307 out_reserved: 2308 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2309 if (free_delalloc_space) 2310 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2311 PAGE_SIZE, true); 2312 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2313 &cached_state); 2314 out_page: 2315 if (ret) { 2316 /* 2317 * We hit ENOSPC or other errors. Update the mapping and page 2318 * to reflect the errors and clean the page. 2319 */ 2320 mapping_set_error(page->mapping, ret); 2321 end_extent_writepage(page, ret, page_start, page_end); 2322 clear_page_dirty_for_io(page); 2323 SetPageError(page); 2324 } 2325 ClearPageChecked(page); 2326 unlock_page(page); 2327 put_page(page); 2328 kfree(fixup); 2329 extent_changeset_free(data_reserved); 2330 /* 2331 * As a precaution, do a delayed iput in case it would be the last iput 2332 * that could need flushing space. Recursing back to fixup worker would 2333 * deadlock. 2334 */ 2335 btrfs_add_delayed_iput(inode); 2336 } 2337 2338 /* 2339 * There are a few paths in the higher layers of the kernel that directly 2340 * set the page dirty bit without asking the filesystem if it is a 2341 * good idea. This causes problems because we want to make sure COW 2342 * properly happens and the data=ordered rules are followed. 2343 * 2344 * In our case any range that doesn't have the ORDERED bit set 2345 * hasn't been properly setup for IO. We kick off an async process 2346 * to fix it up. The async helper will wait for ordered extents, set 2347 * the delalloc bit and make it safe to write the page. 2348 */ 2349 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2350 { 2351 struct inode *inode = page->mapping->host; 2352 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2353 struct btrfs_writepage_fixup *fixup; 2354 2355 /* this page is properly in the ordered list */ 2356 if (TestClearPagePrivate2(page)) 2357 return 0; 2358 2359 /* 2360 * PageChecked is set below when we create a fixup worker for this page, 2361 * don't try to create another one if we're already PageChecked() 2362 * 2363 * The extent_io writepage code will redirty the page if we send back 2364 * EAGAIN. 2365 */ 2366 if (PageChecked(page)) 2367 return -EAGAIN; 2368 2369 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2370 if (!fixup) 2371 return -EAGAIN; 2372 2373 /* 2374 * We are already holding a reference to this inode from 2375 * write_cache_pages. We need to hold it because the space reservation 2376 * takes place outside of the page lock, and we can't trust 2377 * page->mapping outside of the page lock. 2378 */ 2379 ihold(inode); 2380 SetPageChecked(page); 2381 get_page(page); 2382 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2383 fixup->page = page; 2384 fixup->inode = inode; 2385 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2386 2387 return -EAGAIN; 2388 } 2389 2390 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2391 struct inode *inode, u64 file_pos, 2392 u64 disk_bytenr, u64 disk_num_bytes, 2393 u64 num_bytes, u64 ram_bytes, 2394 u8 compression, u8 encryption, 2395 u16 other_encoding, int extent_type) 2396 { 2397 struct btrfs_root *root = BTRFS_I(inode)->root; 2398 struct btrfs_file_extent_item *fi; 2399 struct btrfs_path *path; 2400 struct extent_buffer *leaf; 2401 struct btrfs_key ins; 2402 u64 qg_released; 2403 int extent_inserted = 0; 2404 int ret; 2405 2406 path = btrfs_alloc_path(); 2407 if (!path) 2408 return -ENOMEM; 2409 2410 /* 2411 * we may be replacing one extent in the tree with another. 2412 * The new extent is pinned in the extent map, and we don't want 2413 * to drop it from the cache until it is completely in the btree. 2414 * 2415 * So, tell btrfs_drop_extents to leave this extent in the cache. 2416 * the caller is expected to unpin it and allow it to be merged 2417 * with the others. 2418 */ 2419 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2420 file_pos + num_bytes, NULL, 0, 2421 1, sizeof(*fi), &extent_inserted); 2422 if (ret) 2423 goto out; 2424 2425 if (!extent_inserted) { 2426 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2427 ins.offset = file_pos; 2428 ins.type = BTRFS_EXTENT_DATA_KEY; 2429 2430 path->leave_spinning = 1; 2431 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2432 sizeof(*fi)); 2433 if (ret) 2434 goto out; 2435 } 2436 leaf = path->nodes[0]; 2437 fi = btrfs_item_ptr(leaf, path->slots[0], 2438 struct btrfs_file_extent_item); 2439 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2440 btrfs_set_file_extent_type(leaf, fi, extent_type); 2441 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2442 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2443 btrfs_set_file_extent_offset(leaf, fi, 0); 2444 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2445 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2446 btrfs_set_file_extent_compression(leaf, fi, compression); 2447 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2448 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2449 2450 btrfs_mark_buffer_dirty(leaf); 2451 btrfs_release_path(path); 2452 2453 inode_add_bytes(inode, num_bytes); 2454 2455 ins.objectid = disk_bytenr; 2456 ins.offset = disk_num_bytes; 2457 ins.type = BTRFS_EXTENT_ITEM_KEY; 2458 2459 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), file_pos, 2460 ram_bytes); 2461 if (ret) 2462 goto out; 2463 2464 /* 2465 * Release the reserved range from inode dirty range map, as it is 2466 * already moved into delayed_ref_head 2467 */ 2468 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2469 if (ret < 0) 2470 goto out; 2471 qg_released = ret; 2472 ret = btrfs_alloc_reserved_file_extent(trans, root, 2473 btrfs_ino(BTRFS_I(inode)), 2474 file_pos, qg_released, &ins); 2475 out: 2476 btrfs_free_path(path); 2477 2478 return ret; 2479 } 2480 2481 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2482 u64 start, u64 len) 2483 { 2484 struct btrfs_block_group *cache; 2485 2486 cache = btrfs_lookup_block_group(fs_info, start); 2487 ASSERT(cache); 2488 2489 spin_lock(&cache->lock); 2490 cache->delalloc_bytes -= len; 2491 spin_unlock(&cache->lock); 2492 2493 btrfs_put_block_group(cache); 2494 } 2495 2496 /* as ordered data IO finishes, this gets called so we can finish 2497 * an ordered extent if the range of bytes in the file it covers are 2498 * fully written. 2499 */ 2500 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2501 { 2502 struct inode *inode = ordered_extent->inode; 2503 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2504 struct btrfs_root *root = BTRFS_I(inode)->root; 2505 struct btrfs_trans_handle *trans = NULL; 2506 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2507 struct extent_state *cached_state = NULL; 2508 u64 start, end; 2509 int compress_type = 0; 2510 int ret = 0; 2511 u64 logical_len = ordered_extent->num_bytes; 2512 bool freespace_inode; 2513 bool truncated = false; 2514 bool range_locked = false; 2515 bool clear_new_delalloc_bytes = false; 2516 bool clear_reserved_extent = true; 2517 unsigned int clear_bits; 2518 2519 start = ordered_extent->file_offset; 2520 end = start + ordered_extent->num_bytes - 1; 2521 2522 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2523 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2524 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2525 clear_new_delalloc_bytes = true; 2526 2527 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2528 2529 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2530 ret = -EIO; 2531 goto out; 2532 } 2533 2534 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2535 2536 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2537 truncated = true; 2538 logical_len = ordered_extent->truncated_len; 2539 /* Truncated the entire extent, don't bother adding */ 2540 if (!logical_len) 2541 goto out; 2542 } 2543 2544 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2545 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2546 2547 /* 2548 * For mwrite(mmap + memset to write) case, we still reserve 2549 * space for NOCOW range. 2550 * As NOCOW won't cause a new delayed ref, just free the space 2551 */ 2552 btrfs_qgroup_free_data(inode, NULL, start, 2553 ordered_extent->num_bytes); 2554 btrfs_inode_safe_disk_i_size_write(inode, 0); 2555 if (freespace_inode) 2556 trans = btrfs_join_transaction_spacecache(root); 2557 else 2558 trans = btrfs_join_transaction(root); 2559 if (IS_ERR(trans)) { 2560 ret = PTR_ERR(trans); 2561 trans = NULL; 2562 goto out; 2563 } 2564 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2565 ret = btrfs_update_inode_fallback(trans, root, inode); 2566 if (ret) /* -ENOMEM or corruption */ 2567 btrfs_abort_transaction(trans, ret); 2568 goto out; 2569 } 2570 2571 range_locked = true; 2572 lock_extent_bits(io_tree, start, end, &cached_state); 2573 2574 if (freespace_inode) 2575 trans = btrfs_join_transaction_spacecache(root); 2576 else 2577 trans = btrfs_join_transaction(root); 2578 if (IS_ERR(trans)) { 2579 ret = PTR_ERR(trans); 2580 trans = NULL; 2581 goto out; 2582 } 2583 2584 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2585 2586 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2587 compress_type = ordered_extent->compress_type; 2588 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2589 BUG_ON(compress_type); 2590 btrfs_qgroup_free_data(inode, NULL, start, 2591 ordered_extent->num_bytes); 2592 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2593 ordered_extent->file_offset, 2594 ordered_extent->file_offset + 2595 logical_len); 2596 } else { 2597 BUG_ON(root == fs_info->tree_root); 2598 ret = insert_reserved_file_extent(trans, inode, start, 2599 ordered_extent->disk_bytenr, 2600 ordered_extent->disk_num_bytes, 2601 logical_len, logical_len, 2602 compress_type, 0, 0, 2603 BTRFS_FILE_EXTENT_REG); 2604 if (!ret) { 2605 clear_reserved_extent = false; 2606 btrfs_release_delalloc_bytes(fs_info, 2607 ordered_extent->disk_bytenr, 2608 ordered_extent->disk_num_bytes); 2609 } 2610 } 2611 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2612 ordered_extent->file_offset, 2613 ordered_extent->num_bytes, trans->transid); 2614 if (ret < 0) { 2615 btrfs_abort_transaction(trans, ret); 2616 goto out; 2617 } 2618 2619 ret = add_pending_csums(trans, inode, &ordered_extent->list); 2620 if (ret) { 2621 btrfs_abort_transaction(trans, ret); 2622 goto out; 2623 } 2624 2625 btrfs_inode_safe_disk_i_size_write(inode, 0); 2626 ret = btrfs_update_inode_fallback(trans, root, inode); 2627 if (ret) { /* -ENOMEM or corruption */ 2628 btrfs_abort_transaction(trans, ret); 2629 goto out; 2630 } 2631 ret = 0; 2632 out: 2633 clear_bits = EXTENT_DEFRAG; 2634 if (range_locked) 2635 clear_bits |= EXTENT_LOCKED; 2636 if (clear_new_delalloc_bytes) 2637 clear_bits |= EXTENT_DELALLOC_NEW; 2638 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2639 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2640 &cached_state); 2641 2642 if (trans) 2643 btrfs_end_transaction(trans); 2644 2645 if (ret || truncated) { 2646 u64 unwritten_start = start; 2647 2648 if (truncated) 2649 unwritten_start += logical_len; 2650 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2651 2652 /* Drop the cache for the part of the extent we didn't write. */ 2653 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2654 2655 /* 2656 * If the ordered extent had an IOERR or something else went 2657 * wrong we need to return the space for this ordered extent 2658 * back to the allocator. We only free the extent in the 2659 * truncated case if we didn't write out the extent at all. 2660 * 2661 * If we made it past insert_reserved_file_extent before we 2662 * errored out then we don't need to do this as the accounting 2663 * has already been done. 2664 */ 2665 if ((ret || !logical_len) && 2666 clear_reserved_extent && 2667 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2668 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2669 /* 2670 * Discard the range before returning it back to the 2671 * free space pool 2672 */ 2673 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2674 btrfs_discard_extent(fs_info, 2675 ordered_extent->disk_bytenr, 2676 ordered_extent->disk_num_bytes, 2677 NULL); 2678 btrfs_free_reserved_extent(fs_info, 2679 ordered_extent->disk_bytenr, 2680 ordered_extent->disk_num_bytes, 1); 2681 } 2682 } 2683 2684 /* 2685 * This needs to be done to make sure anybody waiting knows we are done 2686 * updating everything for this ordered extent. 2687 */ 2688 btrfs_remove_ordered_extent(inode, ordered_extent); 2689 2690 /* once for us */ 2691 btrfs_put_ordered_extent(ordered_extent); 2692 /* once for the tree */ 2693 btrfs_put_ordered_extent(ordered_extent); 2694 2695 return ret; 2696 } 2697 2698 static void finish_ordered_fn(struct btrfs_work *work) 2699 { 2700 struct btrfs_ordered_extent *ordered_extent; 2701 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2702 btrfs_finish_ordered_io(ordered_extent); 2703 } 2704 2705 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2706 u64 end, int uptodate) 2707 { 2708 struct inode *inode = page->mapping->host; 2709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2710 struct btrfs_ordered_extent *ordered_extent = NULL; 2711 struct btrfs_workqueue *wq; 2712 2713 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2714 2715 ClearPagePrivate2(page); 2716 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2717 end - start + 1, uptodate)) 2718 return; 2719 2720 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2721 wq = fs_info->endio_freespace_worker; 2722 else 2723 wq = fs_info->endio_write_workers; 2724 2725 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2726 btrfs_queue_work(wq, &ordered_extent->work); 2727 } 2728 2729 static int __readpage_endio_check(struct inode *inode, 2730 struct btrfs_io_bio *io_bio, 2731 int icsum, struct page *page, 2732 int pgoff, u64 start, size_t len) 2733 { 2734 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2735 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2736 char *kaddr; 2737 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2738 u8 *csum_expected; 2739 u8 csum[BTRFS_CSUM_SIZE]; 2740 2741 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2742 2743 kaddr = kmap_atomic(page); 2744 shash->tfm = fs_info->csum_shash; 2745 2746 crypto_shash_init(shash); 2747 crypto_shash_update(shash, kaddr + pgoff, len); 2748 crypto_shash_final(shash, csum); 2749 2750 if (memcmp(csum, csum_expected, csum_size)) 2751 goto zeroit; 2752 2753 kunmap_atomic(kaddr); 2754 return 0; 2755 zeroit: 2756 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2757 io_bio->mirror_num); 2758 memset(kaddr + pgoff, 1, len); 2759 flush_dcache_page(page); 2760 kunmap_atomic(kaddr); 2761 return -EIO; 2762 } 2763 2764 /* 2765 * when reads are done, we need to check csums to verify the data is correct 2766 * if there's a match, we allow the bio to finish. If not, the code in 2767 * extent_io.c will try to find good copies for us. 2768 */ 2769 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 2770 u64 phy_offset, struct page *page, 2771 u64 start, u64 end, int mirror) 2772 { 2773 size_t offset = start - page_offset(page); 2774 struct inode *inode = page->mapping->host; 2775 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2776 struct btrfs_root *root = BTRFS_I(inode)->root; 2777 2778 if (PageChecked(page)) { 2779 ClearPageChecked(page); 2780 return 0; 2781 } 2782 2783 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2784 return 0; 2785 2786 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2787 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2788 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2789 return 0; 2790 } 2791 2792 phy_offset >>= inode->i_sb->s_blocksize_bits; 2793 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 2794 start, (size_t)(end - start + 1)); 2795 } 2796 2797 /* 2798 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2799 * 2800 * @inode: The inode we want to perform iput on 2801 * 2802 * This function uses the generic vfs_inode::i_count to track whether we should 2803 * just decrement it (in case it's > 1) or if this is the last iput then link 2804 * the inode to the delayed iput machinery. Delayed iputs are processed at 2805 * transaction commit time/superblock commit/cleaner kthread. 2806 */ 2807 void btrfs_add_delayed_iput(struct inode *inode) 2808 { 2809 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2810 struct btrfs_inode *binode = BTRFS_I(inode); 2811 2812 if (atomic_add_unless(&inode->i_count, -1, 1)) 2813 return; 2814 2815 atomic_inc(&fs_info->nr_delayed_iputs); 2816 spin_lock(&fs_info->delayed_iput_lock); 2817 ASSERT(list_empty(&binode->delayed_iput)); 2818 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2819 spin_unlock(&fs_info->delayed_iput_lock); 2820 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2821 wake_up_process(fs_info->cleaner_kthread); 2822 } 2823 2824 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2825 struct btrfs_inode *inode) 2826 { 2827 list_del_init(&inode->delayed_iput); 2828 spin_unlock(&fs_info->delayed_iput_lock); 2829 iput(&inode->vfs_inode); 2830 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2831 wake_up(&fs_info->delayed_iputs_wait); 2832 spin_lock(&fs_info->delayed_iput_lock); 2833 } 2834 2835 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2836 struct btrfs_inode *inode) 2837 { 2838 if (!list_empty(&inode->delayed_iput)) { 2839 spin_lock(&fs_info->delayed_iput_lock); 2840 if (!list_empty(&inode->delayed_iput)) 2841 run_delayed_iput_locked(fs_info, inode); 2842 spin_unlock(&fs_info->delayed_iput_lock); 2843 } 2844 } 2845 2846 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2847 { 2848 2849 spin_lock(&fs_info->delayed_iput_lock); 2850 while (!list_empty(&fs_info->delayed_iputs)) { 2851 struct btrfs_inode *inode; 2852 2853 inode = list_first_entry(&fs_info->delayed_iputs, 2854 struct btrfs_inode, delayed_iput); 2855 run_delayed_iput_locked(fs_info, inode); 2856 } 2857 spin_unlock(&fs_info->delayed_iput_lock); 2858 } 2859 2860 /** 2861 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2862 * @fs_info - the fs_info for this fs 2863 * @return - EINTR if we were killed, 0 if nothing's pending 2864 * 2865 * This will wait on any delayed iputs that are currently running with KILLABLE 2866 * set. Once they are all done running we will return, unless we are killed in 2867 * which case we return EINTR. This helps in user operations like fallocate etc 2868 * that might get blocked on the iputs. 2869 */ 2870 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2871 { 2872 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2873 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2874 if (ret) 2875 return -EINTR; 2876 return 0; 2877 } 2878 2879 /* 2880 * This creates an orphan entry for the given inode in case something goes wrong 2881 * in the middle of an unlink. 2882 */ 2883 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2884 struct btrfs_inode *inode) 2885 { 2886 int ret; 2887 2888 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2889 if (ret && ret != -EEXIST) { 2890 btrfs_abort_transaction(trans, ret); 2891 return ret; 2892 } 2893 2894 return 0; 2895 } 2896 2897 /* 2898 * We have done the delete so we can go ahead and remove the orphan item for 2899 * this particular inode. 2900 */ 2901 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2902 struct btrfs_inode *inode) 2903 { 2904 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2905 } 2906 2907 /* 2908 * this cleans up any orphans that may be left on the list from the last use 2909 * of this root. 2910 */ 2911 int btrfs_orphan_cleanup(struct btrfs_root *root) 2912 { 2913 struct btrfs_fs_info *fs_info = root->fs_info; 2914 struct btrfs_path *path; 2915 struct extent_buffer *leaf; 2916 struct btrfs_key key, found_key; 2917 struct btrfs_trans_handle *trans; 2918 struct inode *inode; 2919 u64 last_objectid = 0; 2920 int ret = 0, nr_unlink = 0; 2921 2922 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2923 return 0; 2924 2925 path = btrfs_alloc_path(); 2926 if (!path) { 2927 ret = -ENOMEM; 2928 goto out; 2929 } 2930 path->reada = READA_BACK; 2931 2932 key.objectid = BTRFS_ORPHAN_OBJECTID; 2933 key.type = BTRFS_ORPHAN_ITEM_KEY; 2934 key.offset = (u64)-1; 2935 2936 while (1) { 2937 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2938 if (ret < 0) 2939 goto out; 2940 2941 /* 2942 * if ret == 0 means we found what we were searching for, which 2943 * is weird, but possible, so only screw with path if we didn't 2944 * find the key and see if we have stuff that matches 2945 */ 2946 if (ret > 0) { 2947 ret = 0; 2948 if (path->slots[0] == 0) 2949 break; 2950 path->slots[0]--; 2951 } 2952 2953 /* pull out the item */ 2954 leaf = path->nodes[0]; 2955 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2956 2957 /* make sure the item matches what we want */ 2958 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2959 break; 2960 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 2961 break; 2962 2963 /* release the path since we're done with it */ 2964 btrfs_release_path(path); 2965 2966 /* 2967 * this is where we are basically btrfs_lookup, without the 2968 * crossing root thing. we store the inode number in the 2969 * offset of the orphan item. 2970 */ 2971 2972 if (found_key.offset == last_objectid) { 2973 btrfs_err(fs_info, 2974 "Error removing orphan entry, stopping orphan cleanup"); 2975 ret = -EINVAL; 2976 goto out; 2977 } 2978 2979 last_objectid = found_key.offset; 2980 2981 found_key.objectid = found_key.offset; 2982 found_key.type = BTRFS_INODE_ITEM_KEY; 2983 found_key.offset = 0; 2984 inode = btrfs_iget(fs_info->sb, &found_key, root); 2985 ret = PTR_ERR_OR_ZERO(inode); 2986 if (ret && ret != -ENOENT) 2987 goto out; 2988 2989 if (ret == -ENOENT && root == fs_info->tree_root) { 2990 struct btrfs_root *dead_root; 2991 struct btrfs_fs_info *fs_info = root->fs_info; 2992 int is_dead_root = 0; 2993 2994 /* 2995 * this is an orphan in the tree root. Currently these 2996 * could come from 2 sources: 2997 * a) a snapshot deletion in progress 2998 * b) a free space cache inode 2999 * We need to distinguish those two, as the snapshot 3000 * orphan must not get deleted. 3001 * find_dead_roots already ran before us, so if this 3002 * is a snapshot deletion, we should find the root 3003 * in the dead_roots list 3004 */ 3005 spin_lock(&fs_info->trans_lock); 3006 list_for_each_entry(dead_root, &fs_info->dead_roots, 3007 root_list) { 3008 if (dead_root->root_key.objectid == 3009 found_key.objectid) { 3010 is_dead_root = 1; 3011 break; 3012 } 3013 } 3014 spin_unlock(&fs_info->trans_lock); 3015 if (is_dead_root) { 3016 /* prevent this orphan from being found again */ 3017 key.offset = found_key.objectid - 1; 3018 continue; 3019 } 3020 3021 } 3022 3023 /* 3024 * If we have an inode with links, there are a couple of 3025 * possibilities. Old kernels (before v3.12) used to create an 3026 * orphan item for truncate indicating that there were possibly 3027 * extent items past i_size that needed to be deleted. In v3.12, 3028 * truncate was changed to update i_size in sync with the extent 3029 * items, but the (useless) orphan item was still created. Since 3030 * v4.18, we don't create the orphan item for truncate at all. 3031 * 3032 * So, this item could mean that we need to do a truncate, but 3033 * only if this filesystem was last used on a pre-v3.12 kernel 3034 * and was not cleanly unmounted. The odds of that are quite 3035 * slim, and it's a pain to do the truncate now, so just delete 3036 * the orphan item. 3037 * 3038 * It's also possible that this orphan item was supposed to be 3039 * deleted but wasn't. The inode number may have been reused, 3040 * but either way, we can delete the orphan item. 3041 */ 3042 if (ret == -ENOENT || inode->i_nlink) { 3043 if (!ret) 3044 iput(inode); 3045 trans = btrfs_start_transaction(root, 1); 3046 if (IS_ERR(trans)) { 3047 ret = PTR_ERR(trans); 3048 goto out; 3049 } 3050 btrfs_debug(fs_info, "auto deleting %Lu", 3051 found_key.objectid); 3052 ret = btrfs_del_orphan_item(trans, root, 3053 found_key.objectid); 3054 btrfs_end_transaction(trans); 3055 if (ret) 3056 goto out; 3057 continue; 3058 } 3059 3060 nr_unlink++; 3061 3062 /* this will do delete_inode and everything for us */ 3063 iput(inode); 3064 } 3065 /* release the path since we're done with it */ 3066 btrfs_release_path(path); 3067 3068 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3069 3070 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3071 trans = btrfs_join_transaction(root); 3072 if (!IS_ERR(trans)) 3073 btrfs_end_transaction(trans); 3074 } 3075 3076 if (nr_unlink) 3077 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3078 3079 out: 3080 if (ret) 3081 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3082 btrfs_free_path(path); 3083 return ret; 3084 } 3085 3086 /* 3087 * very simple check to peek ahead in the leaf looking for xattrs. If we 3088 * don't find any xattrs, we know there can't be any acls. 3089 * 3090 * slot is the slot the inode is in, objectid is the objectid of the inode 3091 */ 3092 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3093 int slot, u64 objectid, 3094 int *first_xattr_slot) 3095 { 3096 u32 nritems = btrfs_header_nritems(leaf); 3097 struct btrfs_key found_key; 3098 static u64 xattr_access = 0; 3099 static u64 xattr_default = 0; 3100 int scanned = 0; 3101 3102 if (!xattr_access) { 3103 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3104 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3105 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3106 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3107 } 3108 3109 slot++; 3110 *first_xattr_slot = -1; 3111 while (slot < nritems) { 3112 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3113 3114 /* we found a different objectid, there must not be acls */ 3115 if (found_key.objectid != objectid) 3116 return 0; 3117 3118 /* we found an xattr, assume we've got an acl */ 3119 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3120 if (*first_xattr_slot == -1) 3121 *first_xattr_slot = slot; 3122 if (found_key.offset == xattr_access || 3123 found_key.offset == xattr_default) 3124 return 1; 3125 } 3126 3127 /* 3128 * we found a key greater than an xattr key, there can't 3129 * be any acls later on 3130 */ 3131 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3132 return 0; 3133 3134 slot++; 3135 scanned++; 3136 3137 /* 3138 * it goes inode, inode backrefs, xattrs, extents, 3139 * so if there are a ton of hard links to an inode there can 3140 * be a lot of backrefs. Don't waste time searching too hard, 3141 * this is just an optimization 3142 */ 3143 if (scanned >= 8) 3144 break; 3145 } 3146 /* we hit the end of the leaf before we found an xattr or 3147 * something larger than an xattr. We have to assume the inode 3148 * has acls 3149 */ 3150 if (*first_xattr_slot == -1) 3151 *first_xattr_slot = slot; 3152 return 1; 3153 } 3154 3155 /* 3156 * read an inode from the btree into the in-memory inode 3157 */ 3158 static int btrfs_read_locked_inode(struct inode *inode, 3159 struct btrfs_path *in_path) 3160 { 3161 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3162 struct btrfs_path *path = in_path; 3163 struct extent_buffer *leaf; 3164 struct btrfs_inode_item *inode_item; 3165 struct btrfs_root *root = BTRFS_I(inode)->root; 3166 struct btrfs_key location; 3167 unsigned long ptr; 3168 int maybe_acls; 3169 u32 rdev; 3170 int ret; 3171 bool filled = false; 3172 int first_xattr_slot; 3173 3174 ret = btrfs_fill_inode(inode, &rdev); 3175 if (!ret) 3176 filled = true; 3177 3178 if (!path) { 3179 path = btrfs_alloc_path(); 3180 if (!path) 3181 return -ENOMEM; 3182 } 3183 3184 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3185 3186 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3187 if (ret) { 3188 if (path != in_path) 3189 btrfs_free_path(path); 3190 return ret; 3191 } 3192 3193 leaf = path->nodes[0]; 3194 3195 if (filled) 3196 goto cache_index; 3197 3198 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3199 struct btrfs_inode_item); 3200 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3201 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3202 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3203 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3204 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3205 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3206 round_up(i_size_read(inode), fs_info->sectorsize)); 3207 3208 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3209 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3210 3211 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3212 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3213 3214 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3215 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3216 3217 BTRFS_I(inode)->i_otime.tv_sec = 3218 btrfs_timespec_sec(leaf, &inode_item->otime); 3219 BTRFS_I(inode)->i_otime.tv_nsec = 3220 btrfs_timespec_nsec(leaf, &inode_item->otime); 3221 3222 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3223 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3224 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3225 3226 inode_set_iversion_queried(inode, 3227 btrfs_inode_sequence(leaf, inode_item)); 3228 inode->i_generation = BTRFS_I(inode)->generation; 3229 inode->i_rdev = 0; 3230 rdev = btrfs_inode_rdev(leaf, inode_item); 3231 3232 BTRFS_I(inode)->index_cnt = (u64)-1; 3233 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3234 3235 cache_index: 3236 /* 3237 * If we were modified in the current generation and evicted from memory 3238 * and then re-read we need to do a full sync since we don't have any 3239 * idea about which extents were modified before we were evicted from 3240 * cache. 3241 * 3242 * This is required for both inode re-read from disk and delayed inode 3243 * in delayed_nodes_tree. 3244 */ 3245 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3246 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3247 &BTRFS_I(inode)->runtime_flags); 3248 3249 /* 3250 * We don't persist the id of the transaction where an unlink operation 3251 * against the inode was last made. So here we assume the inode might 3252 * have been evicted, and therefore the exact value of last_unlink_trans 3253 * lost, and set it to last_trans to avoid metadata inconsistencies 3254 * between the inode and its parent if the inode is fsync'ed and the log 3255 * replayed. For example, in the scenario: 3256 * 3257 * touch mydir/foo 3258 * ln mydir/foo mydir/bar 3259 * sync 3260 * unlink mydir/bar 3261 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3262 * xfs_io -c fsync mydir/foo 3263 * <power failure> 3264 * mount fs, triggers fsync log replay 3265 * 3266 * We must make sure that when we fsync our inode foo we also log its 3267 * parent inode, otherwise after log replay the parent still has the 3268 * dentry with the "bar" name but our inode foo has a link count of 1 3269 * and doesn't have an inode ref with the name "bar" anymore. 3270 * 3271 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3272 * but it guarantees correctness at the expense of occasional full 3273 * transaction commits on fsync if our inode is a directory, or if our 3274 * inode is not a directory, logging its parent unnecessarily. 3275 */ 3276 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3277 3278 path->slots[0]++; 3279 if (inode->i_nlink != 1 || 3280 path->slots[0] >= btrfs_header_nritems(leaf)) 3281 goto cache_acl; 3282 3283 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3284 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3285 goto cache_acl; 3286 3287 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3288 if (location.type == BTRFS_INODE_REF_KEY) { 3289 struct btrfs_inode_ref *ref; 3290 3291 ref = (struct btrfs_inode_ref *)ptr; 3292 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3293 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3294 struct btrfs_inode_extref *extref; 3295 3296 extref = (struct btrfs_inode_extref *)ptr; 3297 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3298 extref); 3299 } 3300 cache_acl: 3301 /* 3302 * try to precache a NULL acl entry for files that don't have 3303 * any xattrs or acls 3304 */ 3305 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3306 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3307 if (first_xattr_slot != -1) { 3308 path->slots[0] = first_xattr_slot; 3309 ret = btrfs_load_inode_props(inode, path); 3310 if (ret) 3311 btrfs_err(fs_info, 3312 "error loading props for ino %llu (root %llu): %d", 3313 btrfs_ino(BTRFS_I(inode)), 3314 root->root_key.objectid, ret); 3315 } 3316 if (path != in_path) 3317 btrfs_free_path(path); 3318 3319 if (!maybe_acls) 3320 cache_no_acl(inode); 3321 3322 switch (inode->i_mode & S_IFMT) { 3323 case S_IFREG: 3324 inode->i_mapping->a_ops = &btrfs_aops; 3325 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3326 inode->i_fop = &btrfs_file_operations; 3327 inode->i_op = &btrfs_file_inode_operations; 3328 break; 3329 case S_IFDIR: 3330 inode->i_fop = &btrfs_dir_file_operations; 3331 inode->i_op = &btrfs_dir_inode_operations; 3332 break; 3333 case S_IFLNK: 3334 inode->i_op = &btrfs_symlink_inode_operations; 3335 inode_nohighmem(inode); 3336 inode->i_mapping->a_ops = &btrfs_aops; 3337 break; 3338 default: 3339 inode->i_op = &btrfs_special_inode_operations; 3340 init_special_inode(inode, inode->i_mode, rdev); 3341 break; 3342 } 3343 3344 btrfs_sync_inode_flags_to_i_flags(inode); 3345 return 0; 3346 } 3347 3348 /* 3349 * given a leaf and an inode, copy the inode fields into the leaf 3350 */ 3351 static void fill_inode_item(struct btrfs_trans_handle *trans, 3352 struct extent_buffer *leaf, 3353 struct btrfs_inode_item *item, 3354 struct inode *inode) 3355 { 3356 struct btrfs_map_token token; 3357 3358 btrfs_init_map_token(&token, leaf); 3359 3360 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3361 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3362 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3363 &token); 3364 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3365 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3366 3367 btrfs_set_token_timespec_sec(leaf, &item->atime, 3368 inode->i_atime.tv_sec, &token); 3369 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3370 inode->i_atime.tv_nsec, &token); 3371 3372 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3373 inode->i_mtime.tv_sec, &token); 3374 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3375 inode->i_mtime.tv_nsec, &token); 3376 3377 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3378 inode->i_ctime.tv_sec, &token); 3379 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3380 inode->i_ctime.tv_nsec, &token); 3381 3382 btrfs_set_token_timespec_sec(leaf, &item->otime, 3383 BTRFS_I(inode)->i_otime.tv_sec, &token); 3384 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3385 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3386 3387 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3388 &token); 3389 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3390 &token); 3391 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3392 &token); 3393 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3394 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3395 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3396 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3397 } 3398 3399 /* 3400 * copy everything in the in-memory inode into the btree. 3401 */ 3402 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3403 struct btrfs_root *root, struct inode *inode) 3404 { 3405 struct btrfs_inode_item *inode_item; 3406 struct btrfs_path *path; 3407 struct extent_buffer *leaf; 3408 int ret; 3409 3410 path = btrfs_alloc_path(); 3411 if (!path) 3412 return -ENOMEM; 3413 3414 path->leave_spinning = 1; 3415 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3416 1); 3417 if (ret) { 3418 if (ret > 0) 3419 ret = -ENOENT; 3420 goto failed; 3421 } 3422 3423 leaf = path->nodes[0]; 3424 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3425 struct btrfs_inode_item); 3426 3427 fill_inode_item(trans, leaf, inode_item, inode); 3428 btrfs_mark_buffer_dirty(leaf); 3429 btrfs_set_inode_last_trans(trans, inode); 3430 ret = 0; 3431 failed: 3432 btrfs_free_path(path); 3433 return ret; 3434 } 3435 3436 /* 3437 * copy everything in the in-memory inode into the btree. 3438 */ 3439 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3440 struct btrfs_root *root, struct inode *inode) 3441 { 3442 struct btrfs_fs_info *fs_info = root->fs_info; 3443 int ret; 3444 3445 /* 3446 * If the inode is a free space inode, we can deadlock during commit 3447 * if we put it into the delayed code. 3448 * 3449 * The data relocation inode should also be directly updated 3450 * without delay 3451 */ 3452 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3453 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3454 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3455 btrfs_update_root_times(trans, root); 3456 3457 ret = btrfs_delayed_update_inode(trans, root, inode); 3458 if (!ret) 3459 btrfs_set_inode_last_trans(trans, inode); 3460 return ret; 3461 } 3462 3463 return btrfs_update_inode_item(trans, root, inode); 3464 } 3465 3466 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3467 struct btrfs_root *root, 3468 struct inode *inode) 3469 { 3470 int ret; 3471 3472 ret = btrfs_update_inode(trans, root, inode); 3473 if (ret == -ENOSPC) 3474 return btrfs_update_inode_item(trans, root, inode); 3475 return ret; 3476 } 3477 3478 /* 3479 * unlink helper that gets used here in inode.c and in the tree logging 3480 * recovery code. It remove a link in a directory with a given name, and 3481 * also drops the back refs in the inode to the directory 3482 */ 3483 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3484 struct btrfs_root *root, 3485 struct btrfs_inode *dir, 3486 struct btrfs_inode *inode, 3487 const char *name, int name_len) 3488 { 3489 struct btrfs_fs_info *fs_info = root->fs_info; 3490 struct btrfs_path *path; 3491 int ret = 0; 3492 struct btrfs_dir_item *di; 3493 u64 index; 3494 u64 ino = btrfs_ino(inode); 3495 u64 dir_ino = btrfs_ino(dir); 3496 3497 path = btrfs_alloc_path(); 3498 if (!path) { 3499 ret = -ENOMEM; 3500 goto out; 3501 } 3502 3503 path->leave_spinning = 1; 3504 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3505 name, name_len, -1); 3506 if (IS_ERR_OR_NULL(di)) { 3507 ret = di ? PTR_ERR(di) : -ENOENT; 3508 goto err; 3509 } 3510 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3511 if (ret) 3512 goto err; 3513 btrfs_release_path(path); 3514 3515 /* 3516 * If we don't have dir index, we have to get it by looking up 3517 * the inode ref, since we get the inode ref, remove it directly, 3518 * it is unnecessary to do delayed deletion. 3519 * 3520 * But if we have dir index, needn't search inode ref to get it. 3521 * Since the inode ref is close to the inode item, it is better 3522 * that we delay to delete it, and just do this deletion when 3523 * we update the inode item. 3524 */ 3525 if (inode->dir_index) { 3526 ret = btrfs_delayed_delete_inode_ref(inode); 3527 if (!ret) { 3528 index = inode->dir_index; 3529 goto skip_backref; 3530 } 3531 } 3532 3533 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3534 dir_ino, &index); 3535 if (ret) { 3536 btrfs_info(fs_info, 3537 "failed to delete reference to %.*s, inode %llu parent %llu", 3538 name_len, name, ino, dir_ino); 3539 btrfs_abort_transaction(trans, ret); 3540 goto err; 3541 } 3542 skip_backref: 3543 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3544 if (ret) { 3545 btrfs_abort_transaction(trans, ret); 3546 goto err; 3547 } 3548 3549 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3550 dir_ino); 3551 if (ret != 0 && ret != -ENOENT) { 3552 btrfs_abort_transaction(trans, ret); 3553 goto err; 3554 } 3555 3556 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3557 index); 3558 if (ret == -ENOENT) 3559 ret = 0; 3560 else if (ret) 3561 btrfs_abort_transaction(trans, ret); 3562 3563 /* 3564 * If we have a pending delayed iput we could end up with the final iput 3565 * being run in btrfs-cleaner context. If we have enough of these built 3566 * up we can end up burning a lot of time in btrfs-cleaner without any 3567 * way to throttle the unlinks. Since we're currently holding a ref on 3568 * the inode we can run the delayed iput here without any issues as the 3569 * final iput won't be done until after we drop the ref we're currently 3570 * holding. 3571 */ 3572 btrfs_run_delayed_iput(fs_info, inode); 3573 err: 3574 btrfs_free_path(path); 3575 if (ret) 3576 goto out; 3577 3578 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3579 inode_inc_iversion(&inode->vfs_inode); 3580 inode_inc_iversion(&dir->vfs_inode); 3581 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3582 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3583 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3584 out: 3585 return ret; 3586 } 3587 3588 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3589 struct btrfs_root *root, 3590 struct btrfs_inode *dir, struct btrfs_inode *inode, 3591 const char *name, int name_len) 3592 { 3593 int ret; 3594 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3595 if (!ret) { 3596 drop_nlink(&inode->vfs_inode); 3597 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3598 } 3599 return ret; 3600 } 3601 3602 /* 3603 * helper to start transaction for unlink and rmdir. 3604 * 3605 * unlink and rmdir are special in btrfs, they do not always free space, so 3606 * if we cannot make our reservations the normal way try and see if there is 3607 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3608 * allow the unlink to occur. 3609 */ 3610 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3611 { 3612 struct btrfs_root *root = BTRFS_I(dir)->root; 3613 3614 /* 3615 * 1 for the possible orphan item 3616 * 1 for the dir item 3617 * 1 for the dir index 3618 * 1 for the inode ref 3619 * 1 for the inode 3620 */ 3621 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 3622 } 3623 3624 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3625 { 3626 struct btrfs_root *root = BTRFS_I(dir)->root; 3627 struct btrfs_trans_handle *trans; 3628 struct inode *inode = d_inode(dentry); 3629 int ret; 3630 3631 trans = __unlink_start_trans(dir); 3632 if (IS_ERR(trans)) 3633 return PTR_ERR(trans); 3634 3635 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3636 0); 3637 3638 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3639 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3640 dentry->d_name.len); 3641 if (ret) 3642 goto out; 3643 3644 if (inode->i_nlink == 0) { 3645 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3646 if (ret) 3647 goto out; 3648 } 3649 3650 out: 3651 btrfs_end_transaction(trans); 3652 btrfs_btree_balance_dirty(root->fs_info); 3653 return ret; 3654 } 3655 3656 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3657 struct inode *dir, struct dentry *dentry) 3658 { 3659 struct btrfs_root *root = BTRFS_I(dir)->root; 3660 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3661 struct btrfs_path *path; 3662 struct extent_buffer *leaf; 3663 struct btrfs_dir_item *di; 3664 struct btrfs_key key; 3665 const char *name = dentry->d_name.name; 3666 int name_len = dentry->d_name.len; 3667 u64 index; 3668 int ret; 3669 u64 objectid; 3670 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3671 3672 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3673 objectid = inode->root->root_key.objectid; 3674 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3675 objectid = inode->location.objectid; 3676 } else { 3677 WARN_ON(1); 3678 return -EINVAL; 3679 } 3680 3681 path = btrfs_alloc_path(); 3682 if (!path) 3683 return -ENOMEM; 3684 3685 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3686 name, name_len, -1); 3687 if (IS_ERR_OR_NULL(di)) { 3688 ret = di ? PTR_ERR(di) : -ENOENT; 3689 goto out; 3690 } 3691 3692 leaf = path->nodes[0]; 3693 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3694 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3695 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3696 if (ret) { 3697 btrfs_abort_transaction(trans, ret); 3698 goto out; 3699 } 3700 btrfs_release_path(path); 3701 3702 /* 3703 * This is a placeholder inode for a subvolume we didn't have a 3704 * reference to at the time of the snapshot creation. In the meantime 3705 * we could have renamed the real subvol link into our snapshot, so 3706 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3707 * Instead simply lookup the dir_index_item for this entry so we can 3708 * remove it. Otherwise we know we have a ref to the root and we can 3709 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3710 */ 3711 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3712 di = btrfs_search_dir_index_item(root, path, dir_ino, 3713 name, name_len); 3714 if (IS_ERR_OR_NULL(di)) { 3715 if (!di) 3716 ret = -ENOENT; 3717 else 3718 ret = PTR_ERR(di); 3719 btrfs_abort_transaction(trans, ret); 3720 goto out; 3721 } 3722 3723 leaf = path->nodes[0]; 3724 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3725 index = key.offset; 3726 btrfs_release_path(path); 3727 } else { 3728 ret = btrfs_del_root_ref(trans, objectid, 3729 root->root_key.objectid, dir_ino, 3730 &index, name, name_len); 3731 if (ret) { 3732 btrfs_abort_transaction(trans, ret); 3733 goto out; 3734 } 3735 } 3736 3737 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3738 if (ret) { 3739 btrfs_abort_transaction(trans, ret); 3740 goto out; 3741 } 3742 3743 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3744 inode_inc_iversion(dir); 3745 dir->i_mtime = dir->i_ctime = current_time(dir); 3746 ret = btrfs_update_inode_fallback(trans, root, dir); 3747 if (ret) 3748 btrfs_abort_transaction(trans, ret); 3749 out: 3750 btrfs_free_path(path); 3751 return ret; 3752 } 3753 3754 /* 3755 * Helper to check if the subvolume references other subvolumes or if it's 3756 * default. 3757 */ 3758 static noinline int may_destroy_subvol(struct btrfs_root *root) 3759 { 3760 struct btrfs_fs_info *fs_info = root->fs_info; 3761 struct btrfs_path *path; 3762 struct btrfs_dir_item *di; 3763 struct btrfs_key key; 3764 u64 dir_id; 3765 int ret; 3766 3767 path = btrfs_alloc_path(); 3768 if (!path) 3769 return -ENOMEM; 3770 3771 /* Make sure this root isn't set as the default subvol */ 3772 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3773 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3774 dir_id, "default", 7, 0); 3775 if (di && !IS_ERR(di)) { 3776 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3777 if (key.objectid == root->root_key.objectid) { 3778 ret = -EPERM; 3779 btrfs_err(fs_info, 3780 "deleting default subvolume %llu is not allowed", 3781 key.objectid); 3782 goto out; 3783 } 3784 btrfs_release_path(path); 3785 } 3786 3787 key.objectid = root->root_key.objectid; 3788 key.type = BTRFS_ROOT_REF_KEY; 3789 key.offset = (u64)-1; 3790 3791 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3792 if (ret < 0) 3793 goto out; 3794 BUG_ON(ret == 0); 3795 3796 ret = 0; 3797 if (path->slots[0] > 0) { 3798 path->slots[0]--; 3799 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3800 if (key.objectid == root->root_key.objectid && 3801 key.type == BTRFS_ROOT_REF_KEY) 3802 ret = -ENOTEMPTY; 3803 } 3804 out: 3805 btrfs_free_path(path); 3806 return ret; 3807 } 3808 3809 /* Delete all dentries for inodes belonging to the root */ 3810 static void btrfs_prune_dentries(struct btrfs_root *root) 3811 { 3812 struct btrfs_fs_info *fs_info = root->fs_info; 3813 struct rb_node *node; 3814 struct rb_node *prev; 3815 struct btrfs_inode *entry; 3816 struct inode *inode; 3817 u64 objectid = 0; 3818 3819 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3820 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3821 3822 spin_lock(&root->inode_lock); 3823 again: 3824 node = root->inode_tree.rb_node; 3825 prev = NULL; 3826 while (node) { 3827 prev = node; 3828 entry = rb_entry(node, struct btrfs_inode, rb_node); 3829 3830 if (objectid < btrfs_ino(entry)) 3831 node = node->rb_left; 3832 else if (objectid > btrfs_ino(entry)) 3833 node = node->rb_right; 3834 else 3835 break; 3836 } 3837 if (!node) { 3838 while (prev) { 3839 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3840 if (objectid <= btrfs_ino(entry)) { 3841 node = prev; 3842 break; 3843 } 3844 prev = rb_next(prev); 3845 } 3846 } 3847 while (node) { 3848 entry = rb_entry(node, struct btrfs_inode, rb_node); 3849 objectid = btrfs_ino(entry) + 1; 3850 inode = igrab(&entry->vfs_inode); 3851 if (inode) { 3852 spin_unlock(&root->inode_lock); 3853 if (atomic_read(&inode->i_count) > 1) 3854 d_prune_aliases(inode); 3855 /* 3856 * btrfs_drop_inode will have it removed from the inode 3857 * cache when its usage count hits zero. 3858 */ 3859 iput(inode); 3860 cond_resched(); 3861 spin_lock(&root->inode_lock); 3862 goto again; 3863 } 3864 3865 if (cond_resched_lock(&root->inode_lock)) 3866 goto again; 3867 3868 node = rb_next(node); 3869 } 3870 spin_unlock(&root->inode_lock); 3871 } 3872 3873 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3874 { 3875 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3876 struct btrfs_root *root = BTRFS_I(dir)->root; 3877 struct inode *inode = d_inode(dentry); 3878 struct btrfs_root *dest = BTRFS_I(inode)->root; 3879 struct btrfs_trans_handle *trans; 3880 struct btrfs_block_rsv block_rsv; 3881 u64 root_flags; 3882 int ret; 3883 int err; 3884 3885 /* 3886 * Don't allow to delete a subvolume with send in progress. This is 3887 * inside the inode lock so the error handling that has to drop the bit 3888 * again is not run concurrently. 3889 */ 3890 spin_lock(&dest->root_item_lock); 3891 if (dest->send_in_progress) { 3892 spin_unlock(&dest->root_item_lock); 3893 btrfs_warn(fs_info, 3894 "attempt to delete subvolume %llu during send", 3895 dest->root_key.objectid); 3896 return -EPERM; 3897 } 3898 root_flags = btrfs_root_flags(&dest->root_item); 3899 btrfs_set_root_flags(&dest->root_item, 3900 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3901 spin_unlock(&dest->root_item_lock); 3902 3903 down_write(&fs_info->subvol_sem); 3904 3905 err = may_destroy_subvol(dest); 3906 if (err) 3907 goto out_up_write; 3908 3909 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3910 /* 3911 * One for dir inode, 3912 * two for dir entries, 3913 * two for root ref/backref. 3914 */ 3915 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3916 if (err) 3917 goto out_up_write; 3918 3919 trans = btrfs_start_transaction(root, 0); 3920 if (IS_ERR(trans)) { 3921 err = PTR_ERR(trans); 3922 goto out_release; 3923 } 3924 trans->block_rsv = &block_rsv; 3925 trans->bytes_reserved = block_rsv.size; 3926 3927 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 3928 3929 ret = btrfs_unlink_subvol(trans, dir, dentry); 3930 if (ret) { 3931 err = ret; 3932 btrfs_abort_transaction(trans, ret); 3933 goto out_end_trans; 3934 } 3935 3936 btrfs_record_root_in_trans(trans, dest); 3937 3938 memset(&dest->root_item.drop_progress, 0, 3939 sizeof(dest->root_item.drop_progress)); 3940 dest->root_item.drop_level = 0; 3941 btrfs_set_root_refs(&dest->root_item, 0); 3942 3943 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 3944 ret = btrfs_insert_orphan_item(trans, 3945 fs_info->tree_root, 3946 dest->root_key.objectid); 3947 if (ret) { 3948 btrfs_abort_transaction(trans, ret); 3949 err = ret; 3950 goto out_end_trans; 3951 } 3952 } 3953 3954 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 3955 BTRFS_UUID_KEY_SUBVOL, 3956 dest->root_key.objectid); 3957 if (ret && ret != -ENOENT) { 3958 btrfs_abort_transaction(trans, ret); 3959 err = ret; 3960 goto out_end_trans; 3961 } 3962 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 3963 ret = btrfs_uuid_tree_remove(trans, 3964 dest->root_item.received_uuid, 3965 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3966 dest->root_key.objectid); 3967 if (ret && ret != -ENOENT) { 3968 btrfs_abort_transaction(trans, ret); 3969 err = ret; 3970 goto out_end_trans; 3971 } 3972 } 3973 3974 out_end_trans: 3975 trans->block_rsv = NULL; 3976 trans->bytes_reserved = 0; 3977 ret = btrfs_end_transaction(trans); 3978 if (ret && !err) 3979 err = ret; 3980 inode->i_flags |= S_DEAD; 3981 out_release: 3982 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 3983 out_up_write: 3984 up_write(&fs_info->subvol_sem); 3985 if (err) { 3986 spin_lock(&dest->root_item_lock); 3987 root_flags = btrfs_root_flags(&dest->root_item); 3988 btrfs_set_root_flags(&dest->root_item, 3989 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 3990 spin_unlock(&dest->root_item_lock); 3991 } else { 3992 d_invalidate(dentry); 3993 btrfs_prune_dentries(dest); 3994 ASSERT(dest->send_in_progress == 0); 3995 3996 /* the last ref */ 3997 if (dest->ino_cache_inode) { 3998 iput(dest->ino_cache_inode); 3999 dest->ino_cache_inode = NULL; 4000 } 4001 } 4002 4003 return err; 4004 } 4005 4006 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4007 { 4008 struct inode *inode = d_inode(dentry); 4009 int err = 0; 4010 struct btrfs_root *root = BTRFS_I(dir)->root; 4011 struct btrfs_trans_handle *trans; 4012 u64 last_unlink_trans; 4013 4014 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4015 return -ENOTEMPTY; 4016 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4017 return btrfs_delete_subvolume(dir, dentry); 4018 4019 trans = __unlink_start_trans(dir); 4020 if (IS_ERR(trans)) 4021 return PTR_ERR(trans); 4022 4023 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4024 err = btrfs_unlink_subvol(trans, dir, dentry); 4025 goto out; 4026 } 4027 4028 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4029 if (err) 4030 goto out; 4031 4032 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4033 4034 /* now the directory is empty */ 4035 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4036 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4037 dentry->d_name.len); 4038 if (!err) { 4039 btrfs_i_size_write(BTRFS_I(inode), 0); 4040 /* 4041 * Propagate the last_unlink_trans value of the deleted dir to 4042 * its parent directory. This is to prevent an unrecoverable 4043 * log tree in the case we do something like this: 4044 * 1) create dir foo 4045 * 2) create snapshot under dir foo 4046 * 3) delete the snapshot 4047 * 4) rmdir foo 4048 * 5) mkdir foo 4049 * 6) fsync foo or some file inside foo 4050 */ 4051 if (last_unlink_trans >= trans->transid) 4052 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4053 } 4054 out: 4055 btrfs_end_transaction(trans); 4056 btrfs_btree_balance_dirty(root->fs_info); 4057 4058 return err; 4059 } 4060 4061 /* 4062 * Return this if we need to call truncate_block for the last bit of the 4063 * truncate. 4064 */ 4065 #define NEED_TRUNCATE_BLOCK 1 4066 4067 /* 4068 * this can truncate away extent items, csum items and directory items. 4069 * It starts at a high offset and removes keys until it can't find 4070 * any higher than new_size 4071 * 4072 * csum items that cross the new i_size are truncated to the new size 4073 * as well. 4074 * 4075 * min_type is the minimum key type to truncate down to. If set to 0, this 4076 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4077 */ 4078 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4079 struct btrfs_root *root, 4080 struct inode *inode, 4081 u64 new_size, u32 min_type) 4082 { 4083 struct btrfs_fs_info *fs_info = root->fs_info; 4084 struct btrfs_path *path; 4085 struct extent_buffer *leaf; 4086 struct btrfs_file_extent_item *fi; 4087 struct btrfs_key key; 4088 struct btrfs_key found_key; 4089 u64 extent_start = 0; 4090 u64 extent_num_bytes = 0; 4091 u64 extent_offset = 0; 4092 u64 item_end = 0; 4093 u64 last_size = new_size; 4094 u32 found_type = (u8)-1; 4095 int found_extent; 4096 int del_item; 4097 int pending_del_nr = 0; 4098 int pending_del_slot = 0; 4099 int extent_type = -1; 4100 int ret; 4101 u64 ino = btrfs_ino(BTRFS_I(inode)); 4102 u64 bytes_deleted = 0; 4103 bool be_nice = false; 4104 bool should_throttle = false; 4105 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4106 struct extent_state *cached_state = NULL; 4107 4108 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4109 4110 /* 4111 * for non-free space inodes and ref cows, we want to back off from 4112 * time to time 4113 */ 4114 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4115 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4116 be_nice = true; 4117 4118 path = btrfs_alloc_path(); 4119 if (!path) 4120 return -ENOMEM; 4121 path->reada = READA_BACK; 4122 4123 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4124 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 4125 &cached_state); 4126 4127 /* 4128 * We want to drop from the next block forward in case this new size is 4129 * not block aligned since we will be keeping the last block of the 4130 * extent just the way it is. 4131 */ 4132 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4133 root == fs_info->tree_root) 4134 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4135 fs_info->sectorsize), 4136 (u64)-1, 0); 4137 4138 /* 4139 * This function is also used to drop the items in the log tree before 4140 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4141 * it is used to drop the logged items. So we shouldn't kill the delayed 4142 * items. 4143 */ 4144 if (min_type == 0 && root == BTRFS_I(inode)->root) 4145 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4146 4147 key.objectid = ino; 4148 key.offset = (u64)-1; 4149 key.type = (u8)-1; 4150 4151 search_again: 4152 /* 4153 * with a 16K leaf size and 128MB extents, you can actually queue 4154 * up a huge file in a single leaf. Most of the time that 4155 * bytes_deleted is > 0, it will be huge by the time we get here 4156 */ 4157 if (be_nice && bytes_deleted > SZ_32M && 4158 btrfs_should_end_transaction(trans)) { 4159 ret = -EAGAIN; 4160 goto out; 4161 } 4162 4163 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4164 if (ret < 0) 4165 goto out; 4166 4167 if (ret > 0) { 4168 ret = 0; 4169 /* there are no items in the tree for us to truncate, we're 4170 * done 4171 */ 4172 if (path->slots[0] == 0) 4173 goto out; 4174 path->slots[0]--; 4175 } 4176 4177 while (1) { 4178 u64 clear_start = 0, clear_len = 0; 4179 4180 fi = NULL; 4181 leaf = path->nodes[0]; 4182 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4183 found_type = found_key.type; 4184 4185 if (found_key.objectid != ino) 4186 break; 4187 4188 if (found_type < min_type) 4189 break; 4190 4191 item_end = found_key.offset; 4192 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4193 fi = btrfs_item_ptr(leaf, path->slots[0], 4194 struct btrfs_file_extent_item); 4195 extent_type = btrfs_file_extent_type(leaf, fi); 4196 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4197 item_end += 4198 btrfs_file_extent_num_bytes(leaf, fi); 4199 4200 trace_btrfs_truncate_show_fi_regular( 4201 BTRFS_I(inode), leaf, fi, 4202 found_key.offset); 4203 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4204 item_end += btrfs_file_extent_ram_bytes(leaf, 4205 fi); 4206 4207 trace_btrfs_truncate_show_fi_inline( 4208 BTRFS_I(inode), leaf, fi, path->slots[0], 4209 found_key.offset); 4210 } 4211 item_end--; 4212 } 4213 if (found_type > min_type) { 4214 del_item = 1; 4215 } else { 4216 if (item_end < new_size) 4217 break; 4218 if (found_key.offset >= new_size) 4219 del_item = 1; 4220 else 4221 del_item = 0; 4222 } 4223 found_extent = 0; 4224 /* FIXME, shrink the extent if the ref count is only 1 */ 4225 if (found_type != BTRFS_EXTENT_DATA_KEY) 4226 goto delete; 4227 4228 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4229 u64 num_dec; 4230 4231 clear_start = found_key.offset; 4232 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4233 if (!del_item) { 4234 u64 orig_num_bytes = 4235 btrfs_file_extent_num_bytes(leaf, fi); 4236 extent_num_bytes = ALIGN(new_size - 4237 found_key.offset, 4238 fs_info->sectorsize); 4239 clear_start = ALIGN(new_size, fs_info->sectorsize); 4240 btrfs_set_file_extent_num_bytes(leaf, fi, 4241 extent_num_bytes); 4242 num_dec = (orig_num_bytes - 4243 extent_num_bytes); 4244 if (test_bit(BTRFS_ROOT_REF_COWS, 4245 &root->state) && 4246 extent_start != 0) 4247 inode_sub_bytes(inode, num_dec); 4248 btrfs_mark_buffer_dirty(leaf); 4249 } else { 4250 extent_num_bytes = 4251 btrfs_file_extent_disk_num_bytes(leaf, 4252 fi); 4253 extent_offset = found_key.offset - 4254 btrfs_file_extent_offset(leaf, fi); 4255 4256 /* FIXME blocksize != 4096 */ 4257 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4258 if (extent_start != 0) { 4259 found_extent = 1; 4260 if (test_bit(BTRFS_ROOT_REF_COWS, 4261 &root->state)) 4262 inode_sub_bytes(inode, num_dec); 4263 } 4264 } 4265 clear_len = num_dec; 4266 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4267 /* 4268 * we can't truncate inline items that have had 4269 * special encodings 4270 */ 4271 if (!del_item && 4272 btrfs_file_extent_encryption(leaf, fi) == 0 && 4273 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4274 btrfs_file_extent_compression(leaf, fi) == 0) { 4275 u32 size = (u32)(new_size - found_key.offset); 4276 4277 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4278 size = btrfs_file_extent_calc_inline_size(size); 4279 btrfs_truncate_item(path, size, 1); 4280 } else if (!del_item) { 4281 /* 4282 * We have to bail so the last_size is set to 4283 * just before this extent. 4284 */ 4285 ret = NEED_TRUNCATE_BLOCK; 4286 break; 4287 } else { 4288 /* 4289 * Inline extents are special, we just treat 4290 * them as a full sector worth in the file 4291 * extent tree just for simplicity sake. 4292 */ 4293 clear_len = fs_info->sectorsize; 4294 } 4295 4296 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4297 inode_sub_bytes(inode, item_end + 1 - new_size); 4298 } 4299 delete: 4300 /* 4301 * We use btrfs_truncate_inode_items() to clean up log trees for 4302 * multiple fsyncs, and in this case we don't want to clear the 4303 * file extent range because it's just the log. 4304 */ 4305 if (root == BTRFS_I(inode)->root) { 4306 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 4307 clear_start, clear_len); 4308 if (ret) { 4309 btrfs_abort_transaction(trans, ret); 4310 break; 4311 } 4312 } 4313 4314 if (del_item) 4315 last_size = found_key.offset; 4316 else 4317 last_size = new_size; 4318 if (del_item) { 4319 if (!pending_del_nr) { 4320 /* no pending yet, add ourselves */ 4321 pending_del_slot = path->slots[0]; 4322 pending_del_nr = 1; 4323 } else if (pending_del_nr && 4324 path->slots[0] + 1 == pending_del_slot) { 4325 /* hop on the pending chunk */ 4326 pending_del_nr++; 4327 pending_del_slot = path->slots[0]; 4328 } else { 4329 BUG(); 4330 } 4331 } else { 4332 break; 4333 } 4334 should_throttle = false; 4335 4336 if (found_extent && 4337 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4338 root == fs_info->tree_root)) { 4339 struct btrfs_ref ref = { 0 }; 4340 4341 bytes_deleted += extent_num_bytes; 4342 4343 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4344 extent_start, extent_num_bytes, 0); 4345 ref.real_root = root->root_key.objectid; 4346 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4347 ino, extent_offset); 4348 ret = btrfs_free_extent(trans, &ref); 4349 if (ret) { 4350 btrfs_abort_transaction(trans, ret); 4351 break; 4352 } 4353 if (be_nice) { 4354 if (btrfs_should_throttle_delayed_refs(trans)) 4355 should_throttle = true; 4356 } 4357 } 4358 4359 if (found_type == BTRFS_INODE_ITEM_KEY) 4360 break; 4361 4362 if (path->slots[0] == 0 || 4363 path->slots[0] != pending_del_slot || 4364 should_throttle) { 4365 if (pending_del_nr) { 4366 ret = btrfs_del_items(trans, root, path, 4367 pending_del_slot, 4368 pending_del_nr); 4369 if (ret) { 4370 btrfs_abort_transaction(trans, ret); 4371 break; 4372 } 4373 pending_del_nr = 0; 4374 } 4375 btrfs_release_path(path); 4376 4377 /* 4378 * We can generate a lot of delayed refs, so we need to 4379 * throttle every once and a while and make sure we're 4380 * adding enough space to keep up with the work we are 4381 * generating. Since we hold a transaction here we 4382 * can't flush, and we don't want to FLUSH_LIMIT because 4383 * we could have generated too many delayed refs to 4384 * actually allocate, so just bail if we're short and 4385 * let the normal reservation dance happen higher up. 4386 */ 4387 if (should_throttle) { 4388 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4389 BTRFS_RESERVE_NO_FLUSH); 4390 if (ret) { 4391 ret = -EAGAIN; 4392 break; 4393 } 4394 } 4395 goto search_again; 4396 } else { 4397 path->slots[0]--; 4398 } 4399 } 4400 out: 4401 if (ret >= 0 && pending_del_nr) { 4402 int err; 4403 4404 err = btrfs_del_items(trans, root, path, pending_del_slot, 4405 pending_del_nr); 4406 if (err) { 4407 btrfs_abort_transaction(trans, err); 4408 ret = err; 4409 } 4410 } 4411 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4412 ASSERT(last_size >= new_size); 4413 if (!ret && last_size > new_size) 4414 last_size = new_size; 4415 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4416 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 4417 (u64)-1, &cached_state); 4418 } 4419 4420 btrfs_free_path(path); 4421 return ret; 4422 } 4423 4424 /* 4425 * btrfs_truncate_block - read, zero a chunk and write a block 4426 * @inode - inode that we're zeroing 4427 * @from - the offset to start zeroing 4428 * @len - the length to zero, 0 to zero the entire range respective to the 4429 * offset 4430 * @front - zero up to the offset instead of from the offset on 4431 * 4432 * This will find the block for the "from" offset and cow the block and zero the 4433 * part we want to zero. This is used with truncate and hole punching. 4434 */ 4435 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4436 int front) 4437 { 4438 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4439 struct address_space *mapping = inode->i_mapping; 4440 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4441 struct btrfs_ordered_extent *ordered; 4442 struct extent_state *cached_state = NULL; 4443 struct extent_changeset *data_reserved = NULL; 4444 char *kaddr; 4445 u32 blocksize = fs_info->sectorsize; 4446 pgoff_t index = from >> PAGE_SHIFT; 4447 unsigned offset = from & (blocksize - 1); 4448 struct page *page; 4449 gfp_t mask = btrfs_alloc_write_mask(mapping); 4450 int ret = 0; 4451 u64 block_start; 4452 u64 block_end; 4453 4454 if (IS_ALIGNED(offset, blocksize) && 4455 (!len || IS_ALIGNED(len, blocksize))) 4456 goto out; 4457 4458 block_start = round_down(from, blocksize); 4459 block_end = block_start + blocksize - 1; 4460 4461 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4462 block_start, blocksize); 4463 if (ret) 4464 goto out; 4465 4466 again: 4467 page = find_or_create_page(mapping, index, mask); 4468 if (!page) { 4469 btrfs_delalloc_release_space(inode, data_reserved, 4470 block_start, blocksize, true); 4471 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4472 ret = -ENOMEM; 4473 goto out; 4474 } 4475 4476 if (!PageUptodate(page)) { 4477 ret = btrfs_readpage(NULL, page); 4478 lock_page(page); 4479 if (page->mapping != mapping) { 4480 unlock_page(page); 4481 put_page(page); 4482 goto again; 4483 } 4484 if (!PageUptodate(page)) { 4485 ret = -EIO; 4486 goto out_unlock; 4487 } 4488 } 4489 wait_on_page_writeback(page); 4490 4491 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4492 set_page_extent_mapped(page); 4493 4494 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4495 if (ordered) { 4496 unlock_extent_cached(io_tree, block_start, block_end, 4497 &cached_state); 4498 unlock_page(page); 4499 put_page(page); 4500 btrfs_start_ordered_extent(inode, ordered, 1); 4501 btrfs_put_ordered_extent(ordered); 4502 goto again; 4503 } 4504 4505 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4506 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4507 0, 0, &cached_state); 4508 4509 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4510 &cached_state); 4511 if (ret) { 4512 unlock_extent_cached(io_tree, block_start, block_end, 4513 &cached_state); 4514 goto out_unlock; 4515 } 4516 4517 if (offset != blocksize) { 4518 if (!len) 4519 len = blocksize - offset; 4520 kaddr = kmap(page); 4521 if (front) 4522 memset(kaddr + (block_start - page_offset(page)), 4523 0, offset); 4524 else 4525 memset(kaddr + (block_start - page_offset(page)) + offset, 4526 0, len); 4527 flush_dcache_page(page); 4528 kunmap(page); 4529 } 4530 ClearPageChecked(page); 4531 set_page_dirty(page); 4532 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4533 4534 out_unlock: 4535 if (ret) 4536 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4537 blocksize, true); 4538 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4539 unlock_page(page); 4540 put_page(page); 4541 out: 4542 extent_changeset_free(data_reserved); 4543 return ret; 4544 } 4545 4546 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4547 u64 offset, u64 len) 4548 { 4549 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4550 struct btrfs_trans_handle *trans; 4551 int ret; 4552 4553 /* 4554 * Still need to make sure the inode looks like it's been updated so 4555 * that any holes get logged if we fsync. 4556 */ 4557 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4558 BTRFS_I(inode)->last_trans = fs_info->generation; 4559 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4560 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4561 return 0; 4562 } 4563 4564 /* 4565 * 1 - for the one we're dropping 4566 * 1 - for the one we're adding 4567 * 1 - for updating the inode. 4568 */ 4569 trans = btrfs_start_transaction(root, 3); 4570 if (IS_ERR(trans)) 4571 return PTR_ERR(trans); 4572 4573 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4574 if (ret) { 4575 btrfs_abort_transaction(trans, ret); 4576 btrfs_end_transaction(trans); 4577 return ret; 4578 } 4579 4580 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4581 offset, 0, 0, len, 0, len, 0, 0, 0); 4582 if (ret) 4583 btrfs_abort_transaction(trans, ret); 4584 else 4585 btrfs_update_inode(trans, root, inode); 4586 btrfs_end_transaction(trans); 4587 return ret; 4588 } 4589 4590 /* 4591 * This function puts in dummy file extents for the area we're creating a hole 4592 * for. So if we are truncating this file to a larger size we need to insert 4593 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4594 * the range between oldsize and size 4595 */ 4596 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4597 { 4598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4599 struct btrfs_root *root = BTRFS_I(inode)->root; 4600 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4601 struct extent_map *em = NULL; 4602 struct extent_state *cached_state = NULL; 4603 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4604 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4605 u64 block_end = ALIGN(size, fs_info->sectorsize); 4606 u64 last_byte; 4607 u64 cur_offset; 4608 u64 hole_size; 4609 int err = 0; 4610 4611 /* 4612 * If our size started in the middle of a block we need to zero out the 4613 * rest of the block before we expand the i_size, otherwise we could 4614 * expose stale data. 4615 */ 4616 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4617 if (err) 4618 return err; 4619 4620 if (size <= hole_start) 4621 return 0; 4622 4623 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start, 4624 block_end - 1, &cached_state); 4625 cur_offset = hole_start; 4626 while (1) { 4627 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4628 block_end - cur_offset); 4629 if (IS_ERR(em)) { 4630 err = PTR_ERR(em); 4631 em = NULL; 4632 break; 4633 } 4634 last_byte = min(extent_map_end(em), block_end); 4635 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4636 hole_size = last_byte - cur_offset; 4637 4638 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4639 struct extent_map *hole_em; 4640 4641 err = maybe_insert_hole(root, inode, cur_offset, 4642 hole_size); 4643 if (err) 4644 break; 4645 4646 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4647 cur_offset, hole_size); 4648 if (err) 4649 break; 4650 4651 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4652 cur_offset + hole_size - 1, 0); 4653 hole_em = alloc_extent_map(); 4654 if (!hole_em) { 4655 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4656 &BTRFS_I(inode)->runtime_flags); 4657 goto next; 4658 } 4659 hole_em->start = cur_offset; 4660 hole_em->len = hole_size; 4661 hole_em->orig_start = cur_offset; 4662 4663 hole_em->block_start = EXTENT_MAP_HOLE; 4664 hole_em->block_len = 0; 4665 hole_em->orig_block_len = 0; 4666 hole_em->ram_bytes = hole_size; 4667 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4668 hole_em->generation = fs_info->generation; 4669 4670 while (1) { 4671 write_lock(&em_tree->lock); 4672 err = add_extent_mapping(em_tree, hole_em, 1); 4673 write_unlock(&em_tree->lock); 4674 if (err != -EEXIST) 4675 break; 4676 btrfs_drop_extent_cache(BTRFS_I(inode), 4677 cur_offset, 4678 cur_offset + 4679 hole_size - 1, 0); 4680 } 4681 free_extent_map(hole_em); 4682 } else { 4683 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4684 cur_offset, hole_size); 4685 if (err) 4686 break; 4687 } 4688 next: 4689 free_extent_map(em); 4690 em = NULL; 4691 cur_offset = last_byte; 4692 if (cur_offset >= block_end) 4693 break; 4694 } 4695 free_extent_map(em); 4696 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4697 return err; 4698 } 4699 4700 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4701 { 4702 struct btrfs_root *root = BTRFS_I(inode)->root; 4703 struct btrfs_trans_handle *trans; 4704 loff_t oldsize = i_size_read(inode); 4705 loff_t newsize = attr->ia_size; 4706 int mask = attr->ia_valid; 4707 int ret; 4708 4709 /* 4710 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4711 * special case where we need to update the times despite not having 4712 * these flags set. For all other operations the VFS set these flags 4713 * explicitly if it wants a timestamp update. 4714 */ 4715 if (newsize != oldsize) { 4716 inode_inc_iversion(inode); 4717 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4718 inode->i_ctime = inode->i_mtime = 4719 current_time(inode); 4720 } 4721 4722 if (newsize > oldsize) { 4723 /* 4724 * Don't do an expanding truncate while snapshotting is ongoing. 4725 * This is to ensure the snapshot captures a fully consistent 4726 * state of this file - if the snapshot captures this expanding 4727 * truncation, it must capture all writes that happened before 4728 * this truncation. 4729 */ 4730 btrfs_drew_write_lock(&root->snapshot_lock); 4731 ret = btrfs_cont_expand(inode, oldsize, newsize); 4732 if (ret) { 4733 btrfs_drew_write_unlock(&root->snapshot_lock); 4734 return ret; 4735 } 4736 4737 trans = btrfs_start_transaction(root, 1); 4738 if (IS_ERR(trans)) { 4739 btrfs_drew_write_unlock(&root->snapshot_lock); 4740 return PTR_ERR(trans); 4741 } 4742 4743 i_size_write(inode, newsize); 4744 btrfs_inode_safe_disk_i_size_write(inode, 0); 4745 pagecache_isize_extended(inode, oldsize, newsize); 4746 ret = btrfs_update_inode(trans, root, inode); 4747 btrfs_drew_write_unlock(&root->snapshot_lock); 4748 btrfs_end_transaction(trans); 4749 } else { 4750 4751 /* 4752 * We're truncating a file that used to have good data down to 4753 * zero. Make sure it gets into the ordered flush list so that 4754 * any new writes get down to disk quickly. 4755 */ 4756 if (newsize == 0) 4757 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4758 &BTRFS_I(inode)->runtime_flags); 4759 4760 truncate_setsize(inode, newsize); 4761 4762 /* Disable nonlocked read DIO to avoid the endless truncate */ 4763 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 4764 inode_dio_wait(inode); 4765 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 4766 4767 ret = btrfs_truncate(inode, newsize == oldsize); 4768 if (ret && inode->i_nlink) { 4769 int err; 4770 4771 /* 4772 * Truncate failed, so fix up the in-memory size. We 4773 * adjusted disk_i_size down as we removed extents, so 4774 * wait for disk_i_size to be stable and then update the 4775 * in-memory size to match. 4776 */ 4777 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4778 if (err) 4779 return err; 4780 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4781 } 4782 } 4783 4784 return ret; 4785 } 4786 4787 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4788 { 4789 struct inode *inode = d_inode(dentry); 4790 struct btrfs_root *root = BTRFS_I(inode)->root; 4791 int err; 4792 4793 if (btrfs_root_readonly(root)) 4794 return -EROFS; 4795 4796 err = setattr_prepare(dentry, attr); 4797 if (err) 4798 return err; 4799 4800 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4801 err = btrfs_setsize(inode, attr); 4802 if (err) 4803 return err; 4804 } 4805 4806 if (attr->ia_valid) { 4807 setattr_copy(inode, attr); 4808 inode_inc_iversion(inode); 4809 err = btrfs_dirty_inode(inode); 4810 4811 if (!err && attr->ia_valid & ATTR_MODE) 4812 err = posix_acl_chmod(inode, inode->i_mode); 4813 } 4814 4815 return err; 4816 } 4817 4818 /* 4819 * While truncating the inode pages during eviction, we get the VFS calling 4820 * btrfs_invalidatepage() against each page of the inode. This is slow because 4821 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4822 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4823 * extent_state structures over and over, wasting lots of time. 4824 * 4825 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4826 * those expensive operations on a per page basis and do only the ordered io 4827 * finishing, while we release here the extent_map and extent_state structures, 4828 * without the excessive merging and splitting. 4829 */ 4830 static void evict_inode_truncate_pages(struct inode *inode) 4831 { 4832 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4833 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4834 struct rb_node *node; 4835 4836 ASSERT(inode->i_state & I_FREEING); 4837 truncate_inode_pages_final(&inode->i_data); 4838 4839 write_lock(&map_tree->lock); 4840 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4841 struct extent_map *em; 4842 4843 node = rb_first_cached(&map_tree->map); 4844 em = rb_entry(node, struct extent_map, rb_node); 4845 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4846 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4847 remove_extent_mapping(map_tree, em); 4848 free_extent_map(em); 4849 if (need_resched()) { 4850 write_unlock(&map_tree->lock); 4851 cond_resched(); 4852 write_lock(&map_tree->lock); 4853 } 4854 } 4855 write_unlock(&map_tree->lock); 4856 4857 /* 4858 * Keep looping until we have no more ranges in the io tree. 4859 * We can have ongoing bios started by readpages (called from readahead) 4860 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 4861 * still in progress (unlocked the pages in the bio but did not yet 4862 * unlocked the ranges in the io tree). Therefore this means some 4863 * ranges can still be locked and eviction started because before 4864 * submitting those bios, which are executed by a separate task (work 4865 * queue kthread), inode references (inode->i_count) were not taken 4866 * (which would be dropped in the end io callback of each bio). 4867 * Therefore here we effectively end up waiting for those bios and 4868 * anyone else holding locked ranges without having bumped the inode's 4869 * reference count - if we don't do it, when they access the inode's 4870 * io_tree to unlock a range it may be too late, leading to an 4871 * use-after-free issue. 4872 */ 4873 spin_lock(&io_tree->lock); 4874 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4875 struct extent_state *state; 4876 struct extent_state *cached_state = NULL; 4877 u64 start; 4878 u64 end; 4879 unsigned state_flags; 4880 4881 node = rb_first(&io_tree->state); 4882 state = rb_entry(node, struct extent_state, rb_node); 4883 start = state->start; 4884 end = state->end; 4885 state_flags = state->state; 4886 spin_unlock(&io_tree->lock); 4887 4888 lock_extent_bits(io_tree, start, end, &cached_state); 4889 4890 /* 4891 * If still has DELALLOC flag, the extent didn't reach disk, 4892 * and its reserved space won't be freed by delayed_ref. 4893 * So we need to free its reserved space here. 4894 * (Refer to comment in btrfs_invalidatepage, case 2) 4895 * 4896 * Note, end is the bytenr of last byte, so we need + 1 here. 4897 */ 4898 if (state_flags & EXTENT_DELALLOC) 4899 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 4900 4901 clear_extent_bit(io_tree, start, end, 4902 EXTENT_LOCKED | EXTENT_DELALLOC | 4903 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 4904 &cached_state); 4905 4906 cond_resched(); 4907 spin_lock(&io_tree->lock); 4908 } 4909 spin_unlock(&io_tree->lock); 4910 } 4911 4912 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 4913 struct btrfs_block_rsv *rsv) 4914 { 4915 struct btrfs_fs_info *fs_info = root->fs_info; 4916 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4917 struct btrfs_trans_handle *trans; 4918 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 4919 int ret; 4920 4921 /* 4922 * Eviction should be taking place at some place safe because of our 4923 * delayed iputs. However the normal flushing code will run delayed 4924 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 4925 * 4926 * We reserve the delayed_refs_extra here again because we can't use 4927 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 4928 * above. We reserve our extra bit here because we generate a ton of 4929 * delayed refs activity by truncating. 4930 * 4931 * If we cannot make our reservation we'll attempt to steal from the 4932 * global reserve, because we really want to be able to free up space. 4933 */ 4934 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 4935 BTRFS_RESERVE_FLUSH_EVICT); 4936 if (ret) { 4937 /* 4938 * Try to steal from the global reserve if there is space for 4939 * it. 4940 */ 4941 if (btrfs_check_space_for_delayed_refs(fs_info) || 4942 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 4943 btrfs_warn(fs_info, 4944 "could not allocate space for delete; will truncate on mount"); 4945 return ERR_PTR(-ENOSPC); 4946 } 4947 delayed_refs_extra = 0; 4948 } 4949 4950 trans = btrfs_join_transaction(root); 4951 if (IS_ERR(trans)) 4952 return trans; 4953 4954 if (delayed_refs_extra) { 4955 trans->block_rsv = &fs_info->trans_block_rsv; 4956 trans->bytes_reserved = delayed_refs_extra; 4957 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 4958 delayed_refs_extra, 1); 4959 } 4960 return trans; 4961 } 4962 4963 void btrfs_evict_inode(struct inode *inode) 4964 { 4965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4966 struct btrfs_trans_handle *trans; 4967 struct btrfs_root *root = BTRFS_I(inode)->root; 4968 struct btrfs_block_rsv *rsv; 4969 int ret; 4970 4971 trace_btrfs_inode_evict(inode); 4972 4973 if (!root) { 4974 clear_inode(inode); 4975 return; 4976 } 4977 4978 evict_inode_truncate_pages(inode); 4979 4980 if (inode->i_nlink && 4981 ((btrfs_root_refs(&root->root_item) != 0 && 4982 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 4983 btrfs_is_free_space_inode(BTRFS_I(inode)))) 4984 goto no_delete; 4985 4986 if (is_bad_inode(inode)) 4987 goto no_delete; 4988 4989 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 4990 4991 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 4992 goto no_delete; 4993 4994 if (inode->i_nlink > 0) { 4995 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 4996 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 4997 goto no_delete; 4998 } 4999 5000 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5001 if (ret) 5002 goto no_delete; 5003 5004 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5005 if (!rsv) 5006 goto no_delete; 5007 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5008 rsv->failfast = 1; 5009 5010 btrfs_i_size_write(BTRFS_I(inode), 0); 5011 5012 while (1) { 5013 trans = evict_refill_and_join(root, rsv); 5014 if (IS_ERR(trans)) 5015 goto free_rsv; 5016 5017 trans->block_rsv = rsv; 5018 5019 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5020 trans->block_rsv = &fs_info->trans_block_rsv; 5021 btrfs_end_transaction(trans); 5022 btrfs_btree_balance_dirty(fs_info); 5023 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5024 goto free_rsv; 5025 else if (!ret) 5026 break; 5027 } 5028 5029 /* 5030 * Errors here aren't a big deal, it just means we leave orphan items in 5031 * the tree. They will be cleaned up on the next mount. If the inode 5032 * number gets reused, cleanup deletes the orphan item without doing 5033 * anything, and unlink reuses the existing orphan item. 5034 * 5035 * If it turns out that we are dropping too many of these, we might want 5036 * to add a mechanism for retrying these after a commit. 5037 */ 5038 trans = evict_refill_and_join(root, rsv); 5039 if (!IS_ERR(trans)) { 5040 trans->block_rsv = rsv; 5041 btrfs_orphan_del(trans, BTRFS_I(inode)); 5042 trans->block_rsv = &fs_info->trans_block_rsv; 5043 btrfs_end_transaction(trans); 5044 } 5045 5046 if (!(root == fs_info->tree_root || 5047 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5048 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5049 5050 free_rsv: 5051 btrfs_free_block_rsv(fs_info, rsv); 5052 no_delete: 5053 /* 5054 * If we didn't successfully delete, the orphan item will still be in 5055 * the tree and we'll retry on the next mount. Again, we might also want 5056 * to retry these periodically in the future. 5057 */ 5058 btrfs_remove_delayed_node(BTRFS_I(inode)); 5059 clear_inode(inode); 5060 } 5061 5062 /* 5063 * Return the key found in the dir entry in the location pointer, fill @type 5064 * with BTRFS_FT_*, and return 0. 5065 * 5066 * If no dir entries were found, returns -ENOENT. 5067 * If found a corrupted location in dir entry, returns -EUCLEAN. 5068 */ 5069 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5070 struct btrfs_key *location, u8 *type) 5071 { 5072 const char *name = dentry->d_name.name; 5073 int namelen = dentry->d_name.len; 5074 struct btrfs_dir_item *di; 5075 struct btrfs_path *path; 5076 struct btrfs_root *root = BTRFS_I(dir)->root; 5077 int ret = 0; 5078 5079 path = btrfs_alloc_path(); 5080 if (!path) 5081 return -ENOMEM; 5082 5083 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5084 name, namelen, 0); 5085 if (IS_ERR_OR_NULL(di)) { 5086 ret = di ? PTR_ERR(di) : -ENOENT; 5087 goto out; 5088 } 5089 5090 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5091 if (location->type != BTRFS_INODE_ITEM_KEY && 5092 location->type != BTRFS_ROOT_ITEM_KEY) { 5093 ret = -EUCLEAN; 5094 btrfs_warn(root->fs_info, 5095 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5096 __func__, name, btrfs_ino(BTRFS_I(dir)), 5097 location->objectid, location->type, location->offset); 5098 } 5099 if (!ret) 5100 *type = btrfs_dir_type(path->nodes[0], di); 5101 out: 5102 btrfs_free_path(path); 5103 return ret; 5104 } 5105 5106 /* 5107 * when we hit a tree root in a directory, the btrfs part of the inode 5108 * needs to be changed to reflect the root directory of the tree root. This 5109 * is kind of like crossing a mount point. 5110 */ 5111 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5112 struct inode *dir, 5113 struct dentry *dentry, 5114 struct btrfs_key *location, 5115 struct btrfs_root **sub_root) 5116 { 5117 struct btrfs_path *path; 5118 struct btrfs_root *new_root; 5119 struct btrfs_root_ref *ref; 5120 struct extent_buffer *leaf; 5121 struct btrfs_key key; 5122 int ret; 5123 int err = 0; 5124 5125 path = btrfs_alloc_path(); 5126 if (!path) { 5127 err = -ENOMEM; 5128 goto out; 5129 } 5130 5131 err = -ENOENT; 5132 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5133 key.type = BTRFS_ROOT_REF_KEY; 5134 key.offset = location->objectid; 5135 5136 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5137 if (ret) { 5138 if (ret < 0) 5139 err = ret; 5140 goto out; 5141 } 5142 5143 leaf = path->nodes[0]; 5144 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5145 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5146 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5147 goto out; 5148 5149 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5150 (unsigned long)(ref + 1), 5151 dentry->d_name.len); 5152 if (ret) 5153 goto out; 5154 5155 btrfs_release_path(path); 5156 5157 new_root = btrfs_get_fs_root(fs_info, location, true); 5158 if (IS_ERR(new_root)) { 5159 err = PTR_ERR(new_root); 5160 goto out; 5161 } 5162 5163 *sub_root = new_root; 5164 location->objectid = btrfs_root_dirid(&new_root->root_item); 5165 location->type = BTRFS_INODE_ITEM_KEY; 5166 location->offset = 0; 5167 err = 0; 5168 out: 5169 btrfs_free_path(path); 5170 return err; 5171 } 5172 5173 static void inode_tree_add(struct inode *inode) 5174 { 5175 struct btrfs_root *root = BTRFS_I(inode)->root; 5176 struct btrfs_inode *entry; 5177 struct rb_node **p; 5178 struct rb_node *parent; 5179 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5180 u64 ino = btrfs_ino(BTRFS_I(inode)); 5181 5182 if (inode_unhashed(inode)) 5183 return; 5184 parent = NULL; 5185 spin_lock(&root->inode_lock); 5186 p = &root->inode_tree.rb_node; 5187 while (*p) { 5188 parent = *p; 5189 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5190 5191 if (ino < btrfs_ino(entry)) 5192 p = &parent->rb_left; 5193 else if (ino > btrfs_ino(entry)) 5194 p = &parent->rb_right; 5195 else { 5196 WARN_ON(!(entry->vfs_inode.i_state & 5197 (I_WILL_FREE | I_FREEING))); 5198 rb_replace_node(parent, new, &root->inode_tree); 5199 RB_CLEAR_NODE(parent); 5200 spin_unlock(&root->inode_lock); 5201 return; 5202 } 5203 } 5204 rb_link_node(new, parent, p); 5205 rb_insert_color(new, &root->inode_tree); 5206 spin_unlock(&root->inode_lock); 5207 } 5208 5209 static void inode_tree_del(struct inode *inode) 5210 { 5211 struct btrfs_root *root = BTRFS_I(inode)->root; 5212 int empty = 0; 5213 5214 spin_lock(&root->inode_lock); 5215 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5216 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5217 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5218 empty = RB_EMPTY_ROOT(&root->inode_tree); 5219 } 5220 spin_unlock(&root->inode_lock); 5221 5222 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5223 spin_lock(&root->inode_lock); 5224 empty = RB_EMPTY_ROOT(&root->inode_tree); 5225 spin_unlock(&root->inode_lock); 5226 if (empty) 5227 btrfs_add_dead_root(root); 5228 } 5229 } 5230 5231 5232 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5233 { 5234 struct btrfs_iget_args *args = p; 5235 inode->i_ino = args->location->objectid; 5236 memcpy(&BTRFS_I(inode)->location, args->location, 5237 sizeof(*args->location)); 5238 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5239 BUG_ON(args->root && !BTRFS_I(inode)->root); 5240 return 0; 5241 } 5242 5243 static int btrfs_find_actor(struct inode *inode, void *opaque) 5244 { 5245 struct btrfs_iget_args *args = opaque; 5246 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5247 args->root == BTRFS_I(inode)->root; 5248 } 5249 5250 static struct inode *btrfs_iget_locked(struct super_block *s, 5251 struct btrfs_key *location, 5252 struct btrfs_root *root) 5253 { 5254 struct inode *inode; 5255 struct btrfs_iget_args args; 5256 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5257 5258 args.location = location; 5259 args.root = root; 5260 5261 inode = iget5_locked(s, hashval, btrfs_find_actor, 5262 btrfs_init_locked_inode, 5263 (void *)&args); 5264 return inode; 5265 } 5266 5267 /* 5268 * Get an inode object given its location and corresponding root. 5269 * Path can be preallocated to prevent recursing back to iget through 5270 * allocator. NULL is also valid but may require an additional allocation 5271 * later. 5272 */ 5273 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5274 struct btrfs_root *root, struct btrfs_path *path) 5275 { 5276 struct inode *inode; 5277 5278 inode = btrfs_iget_locked(s, location, root); 5279 if (!inode) 5280 return ERR_PTR(-ENOMEM); 5281 5282 if (inode->i_state & I_NEW) { 5283 int ret; 5284 5285 ret = btrfs_read_locked_inode(inode, path); 5286 if (!ret) { 5287 inode_tree_add(inode); 5288 unlock_new_inode(inode); 5289 } else { 5290 iget_failed(inode); 5291 /* 5292 * ret > 0 can come from btrfs_search_slot called by 5293 * btrfs_read_locked_inode, this means the inode item 5294 * was not found. 5295 */ 5296 if (ret > 0) 5297 ret = -ENOENT; 5298 inode = ERR_PTR(ret); 5299 } 5300 } 5301 5302 return inode; 5303 } 5304 5305 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5306 struct btrfs_root *root) 5307 { 5308 return btrfs_iget_path(s, location, root, NULL); 5309 } 5310 5311 static struct inode *new_simple_dir(struct super_block *s, 5312 struct btrfs_key *key, 5313 struct btrfs_root *root) 5314 { 5315 struct inode *inode = new_inode(s); 5316 5317 if (!inode) 5318 return ERR_PTR(-ENOMEM); 5319 5320 BTRFS_I(inode)->root = btrfs_grab_root(root); 5321 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5322 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5323 5324 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5325 /* 5326 * We only need lookup, the rest is read-only and there's no inode 5327 * associated with the dentry 5328 */ 5329 inode->i_op = &simple_dir_inode_operations; 5330 inode->i_opflags &= ~IOP_XATTR; 5331 inode->i_fop = &simple_dir_operations; 5332 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5333 inode->i_mtime = current_time(inode); 5334 inode->i_atime = inode->i_mtime; 5335 inode->i_ctime = inode->i_mtime; 5336 BTRFS_I(inode)->i_otime = inode->i_mtime; 5337 5338 return inode; 5339 } 5340 5341 static inline u8 btrfs_inode_type(struct inode *inode) 5342 { 5343 /* 5344 * Compile-time asserts that generic FT_* types still match 5345 * BTRFS_FT_* types 5346 */ 5347 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5348 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5349 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5350 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5351 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5352 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5353 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5354 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5355 5356 return fs_umode_to_ftype(inode->i_mode); 5357 } 5358 5359 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5360 { 5361 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5362 struct inode *inode; 5363 struct btrfs_root *root = BTRFS_I(dir)->root; 5364 struct btrfs_root *sub_root = root; 5365 struct btrfs_key location; 5366 u8 di_type = 0; 5367 int ret = 0; 5368 5369 if (dentry->d_name.len > BTRFS_NAME_LEN) 5370 return ERR_PTR(-ENAMETOOLONG); 5371 5372 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5373 if (ret < 0) 5374 return ERR_PTR(ret); 5375 5376 if (location.type == BTRFS_INODE_ITEM_KEY) { 5377 inode = btrfs_iget(dir->i_sb, &location, root); 5378 if (IS_ERR(inode)) 5379 return inode; 5380 5381 /* Do extra check against inode mode with di_type */ 5382 if (btrfs_inode_type(inode) != di_type) { 5383 btrfs_crit(fs_info, 5384 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5385 inode->i_mode, btrfs_inode_type(inode), 5386 di_type); 5387 iput(inode); 5388 return ERR_PTR(-EUCLEAN); 5389 } 5390 return inode; 5391 } 5392 5393 ret = fixup_tree_root_location(fs_info, dir, dentry, 5394 &location, &sub_root); 5395 if (ret < 0) { 5396 if (ret != -ENOENT) 5397 inode = ERR_PTR(ret); 5398 else 5399 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5400 } else { 5401 inode = btrfs_iget(dir->i_sb, &location, sub_root); 5402 } 5403 if (root != sub_root) 5404 btrfs_put_root(sub_root); 5405 5406 if (!IS_ERR(inode) && root != sub_root) { 5407 down_read(&fs_info->cleanup_work_sem); 5408 if (!sb_rdonly(inode->i_sb)) 5409 ret = btrfs_orphan_cleanup(sub_root); 5410 up_read(&fs_info->cleanup_work_sem); 5411 if (ret) { 5412 iput(inode); 5413 inode = ERR_PTR(ret); 5414 } 5415 } 5416 5417 return inode; 5418 } 5419 5420 static int btrfs_dentry_delete(const struct dentry *dentry) 5421 { 5422 struct btrfs_root *root; 5423 struct inode *inode = d_inode(dentry); 5424 5425 if (!inode && !IS_ROOT(dentry)) 5426 inode = d_inode(dentry->d_parent); 5427 5428 if (inode) { 5429 root = BTRFS_I(inode)->root; 5430 if (btrfs_root_refs(&root->root_item) == 0) 5431 return 1; 5432 5433 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5434 return 1; 5435 } 5436 return 0; 5437 } 5438 5439 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5440 unsigned int flags) 5441 { 5442 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5443 5444 if (inode == ERR_PTR(-ENOENT)) 5445 inode = NULL; 5446 return d_splice_alias(inode, dentry); 5447 } 5448 5449 /* 5450 * All this infrastructure exists because dir_emit can fault, and we are holding 5451 * the tree lock when doing readdir. For now just allocate a buffer and copy 5452 * our information into that, and then dir_emit from the buffer. This is 5453 * similar to what NFS does, only we don't keep the buffer around in pagecache 5454 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5455 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5456 * tree lock. 5457 */ 5458 static int btrfs_opendir(struct inode *inode, struct file *file) 5459 { 5460 struct btrfs_file_private *private; 5461 5462 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5463 if (!private) 5464 return -ENOMEM; 5465 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5466 if (!private->filldir_buf) { 5467 kfree(private); 5468 return -ENOMEM; 5469 } 5470 file->private_data = private; 5471 return 0; 5472 } 5473 5474 struct dir_entry { 5475 u64 ino; 5476 u64 offset; 5477 unsigned type; 5478 int name_len; 5479 }; 5480 5481 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5482 { 5483 while (entries--) { 5484 struct dir_entry *entry = addr; 5485 char *name = (char *)(entry + 1); 5486 5487 ctx->pos = get_unaligned(&entry->offset); 5488 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5489 get_unaligned(&entry->ino), 5490 get_unaligned(&entry->type))) 5491 return 1; 5492 addr += sizeof(struct dir_entry) + 5493 get_unaligned(&entry->name_len); 5494 ctx->pos++; 5495 } 5496 return 0; 5497 } 5498 5499 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5500 { 5501 struct inode *inode = file_inode(file); 5502 struct btrfs_root *root = BTRFS_I(inode)->root; 5503 struct btrfs_file_private *private = file->private_data; 5504 struct btrfs_dir_item *di; 5505 struct btrfs_key key; 5506 struct btrfs_key found_key; 5507 struct btrfs_path *path; 5508 void *addr; 5509 struct list_head ins_list; 5510 struct list_head del_list; 5511 int ret; 5512 struct extent_buffer *leaf; 5513 int slot; 5514 char *name_ptr; 5515 int name_len; 5516 int entries = 0; 5517 int total_len = 0; 5518 bool put = false; 5519 struct btrfs_key location; 5520 5521 if (!dir_emit_dots(file, ctx)) 5522 return 0; 5523 5524 path = btrfs_alloc_path(); 5525 if (!path) 5526 return -ENOMEM; 5527 5528 addr = private->filldir_buf; 5529 path->reada = READA_FORWARD; 5530 5531 INIT_LIST_HEAD(&ins_list); 5532 INIT_LIST_HEAD(&del_list); 5533 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5534 5535 again: 5536 key.type = BTRFS_DIR_INDEX_KEY; 5537 key.offset = ctx->pos; 5538 key.objectid = btrfs_ino(BTRFS_I(inode)); 5539 5540 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5541 if (ret < 0) 5542 goto err; 5543 5544 while (1) { 5545 struct dir_entry *entry; 5546 5547 leaf = path->nodes[0]; 5548 slot = path->slots[0]; 5549 if (slot >= btrfs_header_nritems(leaf)) { 5550 ret = btrfs_next_leaf(root, path); 5551 if (ret < 0) 5552 goto err; 5553 else if (ret > 0) 5554 break; 5555 continue; 5556 } 5557 5558 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5559 5560 if (found_key.objectid != key.objectid) 5561 break; 5562 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5563 break; 5564 if (found_key.offset < ctx->pos) 5565 goto next; 5566 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5567 goto next; 5568 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5569 name_len = btrfs_dir_name_len(leaf, di); 5570 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5571 PAGE_SIZE) { 5572 btrfs_release_path(path); 5573 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5574 if (ret) 5575 goto nopos; 5576 addr = private->filldir_buf; 5577 entries = 0; 5578 total_len = 0; 5579 goto again; 5580 } 5581 5582 entry = addr; 5583 put_unaligned(name_len, &entry->name_len); 5584 name_ptr = (char *)(entry + 1); 5585 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5586 name_len); 5587 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5588 &entry->type); 5589 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5590 put_unaligned(location.objectid, &entry->ino); 5591 put_unaligned(found_key.offset, &entry->offset); 5592 entries++; 5593 addr += sizeof(struct dir_entry) + name_len; 5594 total_len += sizeof(struct dir_entry) + name_len; 5595 next: 5596 path->slots[0]++; 5597 } 5598 btrfs_release_path(path); 5599 5600 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5601 if (ret) 5602 goto nopos; 5603 5604 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5605 if (ret) 5606 goto nopos; 5607 5608 /* 5609 * Stop new entries from being returned after we return the last 5610 * entry. 5611 * 5612 * New directory entries are assigned a strictly increasing 5613 * offset. This means that new entries created during readdir 5614 * are *guaranteed* to be seen in the future by that readdir. 5615 * This has broken buggy programs which operate on names as 5616 * they're returned by readdir. Until we re-use freed offsets 5617 * we have this hack to stop new entries from being returned 5618 * under the assumption that they'll never reach this huge 5619 * offset. 5620 * 5621 * This is being careful not to overflow 32bit loff_t unless the 5622 * last entry requires it because doing so has broken 32bit apps 5623 * in the past. 5624 */ 5625 if (ctx->pos >= INT_MAX) 5626 ctx->pos = LLONG_MAX; 5627 else 5628 ctx->pos = INT_MAX; 5629 nopos: 5630 ret = 0; 5631 err: 5632 if (put) 5633 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5634 btrfs_free_path(path); 5635 return ret; 5636 } 5637 5638 /* 5639 * This is somewhat expensive, updating the tree every time the 5640 * inode changes. But, it is most likely to find the inode in cache. 5641 * FIXME, needs more benchmarking...there are no reasons other than performance 5642 * to keep or drop this code. 5643 */ 5644 static int btrfs_dirty_inode(struct inode *inode) 5645 { 5646 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5647 struct btrfs_root *root = BTRFS_I(inode)->root; 5648 struct btrfs_trans_handle *trans; 5649 int ret; 5650 5651 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5652 return 0; 5653 5654 trans = btrfs_join_transaction(root); 5655 if (IS_ERR(trans)) 5656 return PTR_ERR(trans); 5657 5658 ret = btrfs_update_inode(trans, root, inode); 5659 if (ret && ret == -ENOSPC) { 5660 /* whoops, lets try again with the full transaction */ 5661 btrfs_end_transaction(trans); 5662 trans = btrfs_start_transaction(root, 1); 5663 if (IS_ERR(trans)) 5664 return PTR_ERR(trans); 5665 5666 ret = btrfs_update_inode(trans, root, inode); 5667 } 5668 btrfs_end_transaction(trans); 5669 if (BTRFS_I(inode)->delayed_node) 5670 btrfs_balance_delayed_items(fs_info); 5671 5672 return ret; 5673 } 5674 5675 /* 5676 * This is a copy of file_update_time. We need this so we can return error on 5677 * ENOSPC for updating the inode in the case of file write and mmap writes. 5678 */ 5679 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5680 int flags) 5681 { 5682 struct btrfs_root *root = BTRFS_I(inode)->root; 5683 bool dirty = flags & ~S_VERSION; 5684 5685 if (btrfs_root_readonly(root)) 5686 return -EROFS; 5687 5688 if (flags & S_VERSION) 5689 dirty |= inode_maybe_inc_iversion(inode, dirty); 5690 if (flags & S_CTIME) 5691 inode->i_ctime = *now; 5692 if (flags & S_MTIME) 5693 inode->i_mtime = *now; 5694 if (flags & S_ATIME) 5695 inode->i_atime = *now; 5696 return dirty ? btrfs_dirty_inode(inode) : 0; 5697 } 5698 5699 /* 5700 * find the highest existing sequence number in a directory 5701 * and then set the in-memory index_cnt variable to reflect 5702 * free sequence numbers 5703 */ 5704 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5705 { 5706 struct btrfs_root *root = inode->root; 5707 struct btrfs_key key, found_key; 5708 struct btrfs_path *path; 5709 struct extent_buffer *leaf; 5710 int ret; 5711 5712 key.objectid = btrfs_ino(inode); 5713 key.type = BTRFS_DIR_INDEX_KEY; 5714 key.offset = (u64)-1; 5715 5716 path = btrfs_alloc_path(); 5717 if (!path) 5718 return -ENOMEM; 5719 5720 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5721 if (ret < 0) 5722 goto out; 5723 /* FIXME: we should be able to handle this */ 5724 if (ret == 0) 5725 goto out; 5726 ret = 0; 5727 5728 /* 5729 * MAGIC NUMBER EXPLANATION: 5730 * since we search a directory based on f_pos we have to start at 2 5731 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5732 * else has to start at 2 5733 */ 5734 if (path->slots[0] == 0) { 5735 inode->index_cnt = 2; 5736 goto out; 5737 } 5738 5739 path->slots[0]--; 5740 5741 leaf = path->nodes[0]; 5742 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5743 5744 if (found_key.objectid != btrfs_ino(inode) || 5745 found_key.type != BTRFS_DIR_INDEX_KEY) { 5746 inode->index_cnt = 2; 5747 goto out; 5748 } 5749 5750 inode->index_cnt = found_key.offset + 1; 5751 out: 5752 btrfs_free_path(path); 5753 return ret; 5754 } 5755 5756 /* 5757 * helper to find a free sequence number in a given directory. This current 5758 * code is very simple, later versions will do smarter things in the btree 5759 */ 5760 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5761 { 5762 int ret = 0; 5763 5764 if (dir->index_cnt == (u64)-1) { 5765 ret = btrfs_inode_delayed_dir_index_count(dir); 5766 if (ret) { 5767 ret = btrfs_set_inode_index_count(dir); 5768 if (ret) 5769 return ret; 5770 } 5771 } 5772 5773 *index = dir->index_cnt; 5774 dir->index_cnt++; 5775 5776 return ret; 5777 } 5778 5779 static int btrfs_insert_inode_locked(struct inode *inode) 5780 { 5781 struct btrfs_iget_args args; 5782 args.location = &BTRFS_I(inode)->location; 5783 args.root = BTRFS_I(inode)->root; 5784 5785 return insert_inode_locked4(inode, 5786 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5787 btrfs_find_actor, &args); 5788 } 5789 5790 /* 5791 * Inherit flags from the parent inode. 5792 * 5793 * Currently only the compression flags and the cow flags are inherited. 5794 */ 5795 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5796 { 5797 unsigned int flags; 5798 5799 if (!dir) 5800 return; 5801 5802 flags = BTRFS_I(dir)->flags; 5803 5804 if (flags & BTRFS_INODE_NOCOMPRESS) { 5805 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5806 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5807 } else if (flags & BTRFS_INODE_COMPRESS) { 5808 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5809 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5810 } 5811 5812 if (flags & BTRFS_INODE_NODATACOW) { 5813 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5814 if (S_ISREG(inode->i_mode)) 5815 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5816 } 5817 5818 btrfs_sync_inode_flags_to_i_flags(inode); 5819 } 5820 5821 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5822 struct btrfs_root *root, 5823 struct inode *dir, 5824 const char *name, int name_len, 5825 u64 ref_objectid, u64 objectid, 5826 umode_t mode, u64 *index) 5827 { 5828 struct btrfs_fs_info *fs_info = root->fs_info; 5829 struct inode *inode; 5830 struct btrfs_inode_item *inode_item; 5831 struct btrfs_key *location; 5832 struct btrfs_path *path; 5833 struct btrfs_inode_ref *ref; 5834 struct btrfs_key key[2]; 5835 u32 sizes[2]; 5836 int nitems = name ? 2 : 1; 5837 unsigned long ptr; 5838 unsigned int nofs_flag; 5839 int ret; 5840 5841 path = btrfs_alloc_path(); 5842 if (!path) 5843 return ERR_PTR(-ENOMEM); 5844 5845 nofs_flag = memalloc_nofs_save(); 5846 inode = new_inode(fs_info->sb); 5847 memalloc_nofs_restore(nofs_flag); 5848 if (!inode) { 5849 btrfs_free_path(path); 5850 return ERR_PTR(-ENOMEM); 5851 } 5852 5853 /* 5854 * O_TMPFILE, set link count to 0, so that after this point, 5855 * we fill in an inode item with the correct link count. 5856 */ 5857 if (!name) 5858 set_nlink(inode, 0); 5859 5860 /* 5861 * we have to initialize this early, so we can reclaim the inode 5862 * number if we fail afterwards in this function. 5863 */ 5864 inode->i_ino = objectid; 5865 5866 if (dir && name) { 5867 trace_btrfs_inode_request(dir); 5868 5869 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5870 if (ret) { 5871 btrfs_free_path(path); 5872 iput(inode); 5873 return ERR_PTR(ret); 5874 } 5875 } else if (dir) { 5876 *index = 0; 5877 } 5878 /* 5879 * index_cnt is ignored for everything but a dir, 5880 * btrfs_set_inode_index_count has an explanation for the magic 5881 * number 5882 */ 5883 BTRFS_I(inode)->index_cnt = 2; 5884 BTRFS_I(inode)->dir_index = *index; 5885 BTRFS_I(inode)->root = btrfs_grab_root(root); 5886 BTRFS_I(inode)->generation = trans->transid; 5887 inode->i_generation = BTRFS_I(inode)->generation; 5888 5889 /* 5890 * We could have gotten an inode number from somebody who was fsynced 5891 * and then removed in this same transaction, so let's just set full 5892 * sync since it will be a full sync anyway and this will blow away the 5893 * old info in the log. 5894 */ 5895 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5896 5897 key[0].objectid = objectid; 5898 key[0].type = BTRFS_INODE_ITEM_KEY; 5899 key[0].offset = 0; 5900 5901 sizes[0] = sizeof(struct btrfs_inode_item); 5902 5903 if (name) { 5904 /* 5905 * Start new inodes with an inode_ref. This is slightly more 5906 * efficient for small numbers of hard links since they will 5907 * be packed into one item. Extended refs will kick in if we 5908 * add more hard links than can fit in the ref item. 5909 */ 5910 key[1].objectid = objectid; 5911 key[1].type = BTRFS_INODE_REF_KEY; 5912 key[1].offset = ref_objectid; 5913 5914 sizes[1] = name_len + sizeof(*ref); 5915 } 5916 5917 location = &BTRFS_I(inode)->location; 5918 location->objectid = objectid; 5919 location->offset = 0; 5920 location->type = BTRFS_INODE_ITEM_KEY; 5921 5922 ret = btrfs_insert_inode_locked(inode); 5923 if (ret < 0) { 5924 iput(inode); 5925 goto fail; 5926 } 5927 5928 path->leave_spinning = 1; 5929 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 5930 if (ret != 0) 5931 goto fail_unlock; 5932 5933 inode_init_owner(inode, dir, mode); 5934 inode_set_bytes(inode, 0); 5935 5936 inode->i_mtime = current_time(inode); 5937 inode->i_atime = inode->i_mtime; 5938 inode->i_ctime = inode->i_mtime; 5939 BTRFS_I(inode)->i_otime = inode->i_mtime; 5940 5941 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5942 struct btrfs_inode_item); 5943 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 5944 sizeof(*inode_item)); 5945 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5946 5947 if (name) { 5948 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5949 struct btrfs_inode_ref); 5950 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5951 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5952 ptr = (unsigned long)(ref + 1); 5953 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5954 } 5955 5956 btrfs_mark_buffer_dirty(path->nodes[0]); 5957 btrfs_free_path(path); 5958 5959 btrfs_inherit_iflags(inode, dir); 5960 5961 if (S_ISREG(mode)) { 5962 if (btrfs_test_opt(fs_info, NODATASUM)) 5963 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5964 if (btrfs_test_opt(fs_info, NODATACOW)) 5965 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5966 BTRFS_INODE_NODATASUM; 5967 } 5968 5969 inode_tree_add(inode); 5970 5971 trace_btrfs_inode_new(inode); 5972 btrfs_set_inode_last_trans(trans, inode); 5973 5974 btrfs_update_root_times(trans, root); 5975 5976 ret = btrfs_inode_inherit_props(trans, inode, dir); 5977 if (ret) 5978 btrfs_err(fs_info, 5979 "error inheriting props for ino %llu (root %llu): %d", 5980 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 5981 5982 return inode; 5983 5984 fail_unlock: 5985 discard_new_inode(inode); 5986 fail: 5987 if (dir && name) 5988 BTRFS_I(dir)->index_cnt--; 5989 btrfs_free_path(path); 5990 return ERR_PTR(ret); 5991 } 5992 5993 /* 5994 * utility function to add 'inode' into 'parent_inode' with 5995 * a give name and a given sequence number. 5996 * if 'add_backref' is true, also insert a backref from the 5997 * inode to the parent directory. 5998 */ 5999 int btrfs_add_link(struct btrfs_trans_handle *trans, 6000 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6001 const char *name, int name_len, int add_backref, u64 index) 6002 { 6003 int ret = 0; 6004 struct btrfs_key key; 6005 struct btrfs_root *root = parent_inode->root; 6006 u64 ino = btrfs_ino(inode); 6007 u64 parent_ino = btrfs_ino(parent_inode); 6008 6009 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6010 memcpy(&key, &inode->root->root_key, sizeof(key)); 6011 } else { 6012 key.objectid = ino; 6013 key.type = BTRFS_INODE_ITEM_KEY; 6014 key.offset = 0; 6015 } 6016 6017 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6018 ret = btrfs_add_root_ref(trans, key.objectid, 6019 root->root_key.objectid, parent_ino, 6020 index, name, name_len); 6021 } else if (add_backref) { 6022 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6023 parent_ino, index); 6024 } 6025 6026 /* Nothing to clean up yet */ 6027 if (ret) 6028 return ret; 6029 6030 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6031 btrfs_inode_type(&inode->vfs_inode), index); 6032 if (ret == -EEXIST || ret == -EOVERFLOW) 6033 goto fail_dir_item; 6034 else if (ret) { 6035 btrfs_abort_transaction(trans, ret); 6036 return ret; 6037 } 6038 6039 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6040 name_len * 2); 6041 inode_inc_iversion(&parent_inode->vfs_inode); 6042 /* 6043 * If we are replaying a log tree, we do not want to update the mtime 6044 * and ctime of the parent directory with the current time, since the 6045 * log replay procedure is responsible for setting them to their correct 6046 * values (the ones it had when the fsync was done). 6047 */ 6048 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6049 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6050 6051 parent_inode->vfs_inode.i_mtime = now; 6052 parent_inode->vfs_inode.i_ctime = now; 6053 } 6054 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6055 if (ret) 6056 btrfs_abort_transaction(trans, ret); 6057 return ret; 6058 6059 fail_dir_item: 6060 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6061 u64 local_index; 6062 int err; 6063 err = btrfs_del_root_ref(trans, key.objectid, 6064 root->root_key.objectid, parent_ino, 6065 &local_index, name, name_len); 6066 if (err) 6067 btrfs_abort_transaction(trans, err); 6068 } else if (add_backref) { 6069 u64 local_index; 6070 int err; 6071 6072 err = btrfs_del_inode_ref(trans, root, name, name_len, 6073 ino, parent_ino, &local_index); 6074 if (err) 6075 btrfs_abort_transaction(trans, err); 6076 } 6077 6078 /* Return the original error code */ 6079 return ret; 6080 } 6081 6082 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6083 struct btrfs_inode *dir, struct dentry *dentry, 6084 struct btrfs_inode *inode, int backref, u64 index) 6085 { 6086 int err = btrfs_add_link(trans, dir, inode, 6087 dentry->d_name.name, dentry->d_name.len, 6088 backref, index); 6089 if (err > 0) 6090 err = -EEXIST; 6091 return err; 6092 } 6093 6094 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6095 umode_t mode, dev_t rdev) 6096 { 6097 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6098 struct btrfs_trans_handle *trans; 6099 struct btrfs_root *root = BTRFS_I(dir)->root; 6100 struct inode *inode = NULL; 6101 int err; 6102 u64 objectid; 6103 u64 index = 0; 6104 6105 /* 6106 * 2 for inode item and ref 6107 * 2 for dir items 6108 * 1 for xattr if selinux is on 6109 */ 6110 trans = btrfs_start_transaction(root, 5); 6111 if (IS_ERR(trans)) 6112 return PTR_ERR(trans); 6113 6114 err = btrfs_find_free_ino(root, &objectid); 6115 if (err) 6116 goto out_unlock; 6117 6118 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6119 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6120 mode, &index); 6121 if (IS_ERR(inode)) { 6122 err = PTR_ERR(inode); 6123 inode = NULL; 6124 goto out_unlock; 6125 } 6126 6127 /* 6128 * If the active LSM wants to access the inode during 6129 * d_instantiate it needs these. Smack checks to see 6130 * if the filesystem supports xattrs by looking at the 6131 * ops vector. 6132 */ 6133 inode->i_op = &btrfs_special_inode_operations; 6134 init_special_inode(inode, inode->i_mode, rdev); 6135 6136 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6137 if (err) 6138 goto out_unlock; 6139 6140 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6141 0, index); 6142 if (err) 6143 goto out_unlock; 6144 6145 btrfs_update_inode(trans, root, inode); 6146 d_instantiate_new(dentry, inode); 6147 6148 out_unlock: 6149 btrfs_end_transaction(trans); 6150 btrfs_btree_balance_dirty(fs_info); 6151 if (err && inode) { 6152 inode_dec_link_count(inode); 6153 discard_new_inode(inode); 6154 } 6155 return err; 6156 } 6157 6158 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6159 umode_t mode, bool excl) 6160 { 6161 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6162 struct btrfs_trans_handle *trans; 6163 struct btrfs_root *root = BTRFS_I(dir)->root; 6164 struct inode *inode = NULL; 6165 int err; 6166 u64 objectid; 6167 u64 index = 0; 6168 6169 /* 6170 * 2 for inode item and ref 6171 * 2 for dir items 6172 * 1 for xattr if selinux is on 6173 */ 6174 trans = btrfs_start_transaction(root, 5); 6175 if (IS_ERR(trans)) 6176 return PTR_ERR(trans); 6177 6178 err = btrfs_find_free_ino(root, &objectid); 6179 if (err) 6180 goto out_unlock; 6181 6182 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6183 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6184 mode, &index); 6185 if (IS_ERR(inode)) { 6186 err = PTR_ERR(inode); 6187 inode = NULL; 6188 goto out_unlock; 6189 } 6190 /* 6191 * If the active LSM wants to access the inode during 6192 * d_instantiate it needs these. Smack checks to see 6193 * if the filesystem supports xattrs by looking at the 6194 * ops vector. 6195 */ 6196 inode->i_fop = &btrfs_file_operations; 6197 inode->i_op = &btrfs_file_inode_operations; 6198 inode->i_mapping->a_ops = &btrfs_aops; 6199 6200 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6201 if (err) 6202 goto out_unlock; 6203 6204 err = btrfs_update_inode(trans, root, inode); 6205 if (err) 6206 goto out_unlock; 6207 6208 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6209 0, index); 6210 if (err) 6211 goto out_unlock; 6212 6213 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6214 d_instantiate_new(dentry, inode); 6215 6216 out_unlock: 6217 btrfs_end_transaction(trans); 6218 if (err && inode) { 6219 inode_dec_link_count(inode); 6220 discard_new_inode(inode); 6221 } 6222 btrfs_btree_balance_dirty(fs_info); 6223 return err; 6224 } 6225 6226 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6227 struct dentry *dentry) 6228 { 6229 struct btrfs_trans_handle *trans = NULL; 6230 struct btrfs_root *root = BTRFS_I(dir)->root; 6231 struct inode *inode = d_inode(old_dentry); 6232 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6233 u64 index; 6234 int err; 6235 int drop_inode = 0; 6236 6237 /* do not allow sys_link's with other subvols of the same device */ 6238 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6239 return -EXDEV; 6240 6241 if (inode->i_nlink >= BTRFS_LINK_MAX) 6242 return -EMLINK; 6243 6244 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6245 if (err) 6246 goto fail; 6247 6248 /* 6249 * 2 items for inode and inode ref 6250 * 2 items for dir items 6251 * 1 item for parent inode 6252 * 1 item for orphan item deletion if O_TMPFILE 6253 */ 6254 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6255 if (IS_ERR(trans)) { 6256 err = PTR_ERR(trans); 6257 trans = NULL; 6258 goto fail; 6259 } 6260 6261 /* There are several dir indexes for this inode, clear the cache. */ 6262 BTRFS_I(inode)->dir_index = 0ULL; 6263 inc_nlink(inode); 6264 inode_inc_iversion(inode); 6265 inode->i_ctime = current_time(inode); 6266 ihold(inode); 6267 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6268 6269 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6270 1, index); 6271 6272 if (err) { 6273 drop_inode = 1; 6274 } else { 6275 struct dentry *parent = dentry->d_parent; 6276 int ret; 6277 6278 err = btrfs_update_inode(trans, root, inode); 6279 if (err) 6280 goto fail; 6281 if (inode->i_nlink == 1) { 6282 /* 6283 * If new hard link count is 1, it's a file created 6284 * with open(2) O_TMPFILE flag. 6285 */ 6286 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6287 if (err) 6288 goto fail; 6289 } 6290 d_instantiate(dentry, inode); 6291 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6292 true, NULL); 6293 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6294 err = btrfs_commit_transaction(trans); 6295 trans = NULL; 6296 } 6297 } 6298 6299 fail: 6300 if (trans) 6301 btrfs_end_transaction(trans); 6302 if (drop_inode) { 6303 inode_dec_link_count(inode); 6304 iput(inode); 6305 } 6306 btrfs_btree_balance_dirty(fs_info); 6307 return err; 6308 } 6309 6310 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6311 { 6312 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6313 struct inode *inode = NULL; 6314 struct btrfs_trans_handle *trans; 6315 struct btrfs_root *root = BTRFS_I(dir)->root; 6316 int err = 0; 6317 u64 objectid = 0; 6318 u64 index = 0; 6319 6320 /* 6321 * 2 items for inode and ref 6322 * 2 items for dir items 6323 * 1 for xattr if selinux is on 6324 */ 6325 trans = btrfs_start_transaction(root, 5); 6326 if (IS_ERR(trans)) 6327 return PTR_ERR(trans); 6328 6329 err = btrfs_find_free_ino(root, &objectid); 6330 if (err) 6331 goto out_fail; 6332 6333 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6334 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6335 S_IFDIR | mode, &index); 6336 if (IS_ERR(inode)) { 6337 err = PTR_ERR(inode); 6338 inode = NULL; 6339 goto out_fail; 6340 } 6341 6342 /* these must be set before we unlock the inode */ 6343 inode->i_op = &btrfs_dir_inode_operations; 6344 inode->i_fop = &btrfs_dir_file_operations; 6345 6346 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6347 if (err) 6348 goto out_fail; 6349 6350 btrfs_i_size_write(BTRFS_I(inode), 0); 6351 err = btrfs_update_inode(trans, root, inode); 6352 if (err) 6353 goto out_fail; 6354 6355 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6356 dentry->d_name.name, 6357 dentry->d_name.len, 0, index); 6358 if (err) 6359 goto out_fail; 6360 6361 d_instantiate_new(dentry, inode); 6362 6363 out_fail: 6364 btrfs_end_transaction(trans); 6365 if (err && inode) { 6366 inode_dec_link_count(inode); 6367 discard_new_inode(inode); 6368 } 6369 btrfs_btree_balance_dirty(fs_info); 6370 return err; 6371 } 6372 6373 static noinline int uncompress_inline(struct btrfs_path *path, 6374 struct page *page, 6375 size_t pg_offset, u64 extent_offset, 6376 struct btrfs_file_extent_item *item) 6377 { 6378 int ret; 6379 struct extent_buffer *leaf = path->nodes[0]; 6380 char *tmp; 6381 size_t max_size; 6382 unsigned long inline_size; 6383 unsigned long ptr; 6384 int compress_type; 6385 6386 WARN_ON(pg_offset != 0); 6387 compress_type = btrfs_file_extent_compression(leaf, item); 6388 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6389 inline_size = btrfs_file_extent_inline_item_len(leaf, 6390 btrfs_item_nr(path->slots[0])); 6391 tmp = kmalloc(inline_size, GFP_NOFS); 6392 if (!tmp) 6393 return -ENOMEM; 6394 ptr = btrfs_file_extent_inline_start(item); 6395 6396 read_extent_buffer(leaf, tmp, ptr, inline_size); 6397 6398 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6399 ret = btrfs_decompress(compress_type, tmp, page, 6400 extent_offset, inline_size, max_size); 6401 6402 /* 6403 * decompression code contains a memset to fill in any space between the end 6404 * of the uncompressed data and the end of max_size in case the decompressed 6405 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6406 * the end of an inline extent and the beginning of the next block, so we 6407 * cover that region here. 6408 */ 6409 6410 if (max_size + pg_offset < PAGE_SIZE) { 6411 char *map = kmap(page); 6412 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6413 kunmap(page); 6414 } 6415 kfree(tmp); 6416 return ret; 6417 } 6418 6419 /** 6420 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6421 * @inode: file to search in 6422 * @page: page to read extent data into if the extent is inline 6423 * @pg_offset: offset into @page to copy to 6424 * @start: file offset 6425 * @len: length of range starting at @start 6426 * 6427 * This returns the first &struct extent_map which overlaps with the given 6428 * range, reading it from the B-tree and caching it if necessary. Note that 6429 * there may be more extents which overlap the given range after the returned 6430 * extent_map. 6431 * 6432 * If @page is not NULL and the extent is inline, this also reads the extent 6433 * data directly into the page and marks the extent up to date in the io_tree. 6434 * 6435 * Return: ERR_PTR on error, non-NULL extent_map on success. 6436 */ 6437 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6438 struct page *page, size_t pg_offset, 6439 u64 start, u64 len) 6440 { 6441 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6442 int ret; 6443 int err = 0; 6444 u64 extent_start = 0; 6445 u64 extent_end = 0; 6446 u64 objectid = btrfs_ino(inode); 6447 int extent_type = -1; 6448 struct btrfs_path *path = NULL; 6449 struct btrfs_root *root = inode->root; 6450 struct btrfs_file_extent_item *item; 6451 struct extent_buffer *leaf; 6452 struct btrfs_key found_key; 6453 struct extent_map *em = NULL; 6454 struct extent_map_tree *em_tree = &inode->extent_tree; 6455 struct extent_io_tree *io_tree = &inode->io_tree; 6456 6457 read_lock(&em_tree->lock); 6458 em = lookup_extent_mapping(em_tree, start, len); 6459 read_unlock(&em_tree->lock); 6460 6461 if (em) { 6462 if (em->start > start || em->start + em->len <= start) 6463 free_extent_map(em); 6464 else if (em->block_start == EXTENT_MAP_INLINE && page) 6465 free_extent_map(em); 6466 else 6467 goto out; 6468 } 6469 em = alloc_extent_map(); 6470 if (!em) { 6471 err = -ENOMEM; 6472 goto out; 6473 } 6474 em->start = EXTENT_MAP_HOLE; 6475 em->orig_start = EXTENT_MAP_HOLE; 6476 em->len = (u64)-1; 6477 em->block_len = (u64)-1; 6478 6479 path = btrfs_alloc_path(); 6480 if (!path) { 6481 err = -ENOMEM; 6482 goto out; 6483 } 6484 6485 /* Chances are we'll be called again, so go ahead and do readahead */ 6486 path->reada = READA_FORWARD; 6487 6488 /* 6489 * Unless we're going to uncompress the inline extent, no sleep would 6490 * happen. 6491 */ 6492 path->leave_spinning = 1; 6493 6494 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6495 if (ret < 0) { 6496 err = ret; 6497 goto out; 6498 } else if (ret > 0) { 6499 if (path->slots[0] == 0) 6500 goto not_found; 6501 path->slots[0]--; 6502 } 6503 6504 leaf = path->nodes[0]; 6505 item = btrfs_item_ptr(leaf, path->slots[0], 6506 struct btrfs_file_extent_item); 6507 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6508 if (found_key.objectid != objectid || 6509 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6510 /* 6511 * If we backup past the first extent we want to move forward 6512 * and see if there is an extent in front of us, otherwise we'll 6513 * say there is a hole for our whole search range which can 6514 * cause problems. 6515 */ 6516 extent_end = start; 6517 goto next; 6518 } 6519 6520 extent_type = btrfs_file_extent_type(leaf, item); 6521 extent_start = found_key.offset; 6522 extent_end = btrfs_file_extent_end(path); 6523 if (extent_type == BTRFS_FILE_EXTENT_REG || 6524 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6525 /* Only regular file could have regular/prealloc extent */ 6526 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6527 ret = -EUCLEAN; 6528 btrfs_crit(fs_info, 6529 "regular/prealloc extent found for non-regular inode %llu", 6530 btrfs_ino(inode)); 6531 goto out; 6532 } 6533 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6534 extent_start); 6535 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6536 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6537 path->slots[0], 6538 extent_start); 6539 } 6540 next: 6541 if (start >= extent_end) { 6542 path->slots[0]++; 6543 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6544 ret = btrfs_next_leaf(root, path); 6545 if (ret < 0) { 6546 err = ret; 6547 goto out; 6548 } else if (ret > 0) { 6549 goto not_found; 6550 } 6551 leaf = path->nodes[0]; 6552 } 6553 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6554 if (found_key.objectid != objectid || 6555 found_key.type != BTRFS_EXTENT_DATA_KEY) 6556 goto not_found; 6557 if (start + len <= found_key.offset) 6558 goto not_found; 6559 if (start > found_key.offset) 6560 goto next; 6561 6562 /* New extent overlaps with existing one */ 6563 em->start = start; 6564 em->orig_start = start; 6565 em->len = found_key.offset - start; 6566 em->block_start = EXTENT_MAP_HOLE; 6567 goto insert; 6568 } 6569 6570 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6571 6572 if (extent_type == BTRFS_FILE_EXTENT_REG || 6573 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6574 goto insert; 6575 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6576 unsigned long ptr; 6577 char *map; 6578 size_t size; 6579 size_t extent_offset; 6580 size_t copy_size; 6581 6582 if (!page) 6583 goto out; 6584 6585 size = btrfs_file_extent_ram_bytes(leaf, item); 6586 extent_offset = page_offset(page) + pg_offset - extent_start; 6587 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6588 size - extent_offset); 6589 em->start = extent_start + extent_offset; 6590 em->len = ALIGN(copy_size, fs_info->sectorsize); 6591 em->orig_block_len = em->len; 6592 em->orig_start = em->start; 6593 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6594 6595 btrfs_set_path_blocking(path); 6596 if (!PageUptodate(page)) { 6597 if (btrfs_file_extent_compression(leaf, item) != 6598 BTRFS_COMPRESS_NONE) { 6599 ret = uncompress_inline(path, page, pg_offset, 6600 extent_offset, item); 6601 if (ret) { 6602 err = ret; 6603 goto out; 6604 } 6605 } else { 6606 map = kmap(page); 6607 read_extent_buffer(leaf, map + pg_offset, ptr, 6608 copy_size); 6609 if (pg_offset + copy_size < PAGE_SIZE) { 6610 memset(map + pg_offset + copy_size, 0, 6611 PAGE_SIZE - pg_offset - 6612 copy_size); 6613 } 6614 kunmap(page); 6615 } 6616 flush_dcache_page(page); 6617 } 6618 set_extent_uptodate(io_tree, em->start, 6619 extent_map_end(em) - 1, NULL, GFP_NOFS); 6620 goto insert; 6621 } 6622 not_found: 6623 em->start = start; 6624 em->orig_start = start; 6625 em->len = len; 6626 em->block_start = EXTENT_MAP_HOLE; 6627 insert: 6628 btrfs_release_path(path); 6629 if (em->start > start || extent_map_end(em) <= start) { 6630 btrfs_err(fs_info, 6631 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6632 em->start, em->len, start, len); 6633 err = -EIO; 6634 goto out; 6635 } 6636 6637 err = 0; 6638 write_lock(&em_tree->lock); 6639 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6640 write_unlock(&em_tree->lock); 6641 out: 6642 btrfs_free_path(path); 6643 6644 trace_btrfs_get_extent(root, inode, em); 6645 6646 if (err) { 6647 free_extent_map(em); 6648 return ERR_PTR(err); 6649 } 6650 BUG_ON(!em); /* Error is always set */ 6651 return em; 6652 } 6653 6654 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6655 u64 start, u64 len) 6656 { 6657 struct extent_map *em; 6658 struct extent_map *hole_em = NULL; 6659 u64 delalloc_start = start; 6660 u64 end; 6661 u64 delalloc_len; 6662 u64 delalloc_end; 6663 int err = 0; 6664 6665 em = btrfs_get_extent(inode, NULL, 0, start, len); 6666 if (IS_ERR(em)) 6667 return em; 6668 /* 6669 * If our em maps to: 6670 * - a hole or 6671 * - a pre-alloc extent, 6672 * there might actually be delalloc bytes behind it. 6673 */ 6674 if (em->block_start != EXTENT_MAP_HOLE && 6675 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6676 return em; 6677 else 6678 hole_em = em; 6679 6680 /* check to see if we've wrapped (len == -1 or similar) */ 6681 end = start + len; 6682 if (end < start) 6683 end = (u64)-1; 6684 else 6685 end -= 1; 6686 6687 em = NULL; 6688 6689 /* ok, we didn't find anything, lets look for delalloc */ 6690 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6691 end, len, EXTENT_DELALLOC, 1); 6692 delalloc_end = delalloc_start + delalloc_len; 6693 if (delalloc_end < delalloc_start) 6694 delalloc_end = (u64)-1; 6695 6696 /* 6697 * We didn't find anything useful, return the original results from 6698 * get_extent() 6699 */ 6700 if (delalloc_start > end || delalloc_end <= start) { 6701 em = hole_em; 6702 hole_em = NULL; 6703 goto out; 6704 } 6705 6706 /* 6707 * Adjust the delalloc_start to make sure it doesn't go backwards from 6708 * the start they passed in 6709 */ 6710 delalloc_start = max(start, delalloc_start); 6711 delalloc_len = delalloc_end - delalloc_start; 6712 6713 if (delalloc_len > 0) { 6714 u64 hole_start; 6715 u64 hole_len; 6716 const u64 hole_end = extent_map_end(hole_em); 6717 6718 em = alloc_extent_map(); 6719 if (!em) { 6720 err = -ENOMEM; 6721 goto out; 6722 } 6723 6724 ASSERT(hole_em); 6725 /* 6726 * When btrfs_get_extent can't find anything it returns one 6727 * huge hole 6728 * 6729 * Make sure what it found really fits our range, and adjust to 6730 * make sure it is based on the start from the caller 6731 */ 6732 if (hole_end <= start || hole_em->start > end) { 6733 free_extent_map(hole_em); 6734 hole_em = NULL; 6735 } else { 6736 hole_start = max(hole_em->start, start); 6737 hole_len = hole_end - hole_start; 6738 } 6739 6740 if (hole_em && delalloc_start > hole_start) { 6741 /* 6742 * Our hole starts before our delalloc, so we have to 6743 * return just the parts of the hole that go until the 6744 * delalloc starts 6745 */ 6746 em->len = min(hole_len, delalloc_start - hole_start); 6747 em->start = hole_start; 6748 em->orig_start = hole_start; 6749 /* 6750 * Don't adjust block start at all, it is fixed at 6751 * EXTENT_MAP_HOLE 6752 */ 6753 em->block_start = hole_em->block_start; 6754 em->block_len = hole_len; 6755 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6756 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6757 } else { 6758 /* 6759 * Hole is out of passed range or it starts after 6760 * delalloc range 6761 */ 6762 em->start = delalloc_start; 6763 em->len = delalloc_len; 6764 em->orig_start = delalloc_start; 6765 em->block_start = EXTENT_MAP_DELALLOC; 6766 em->block_len = delalloc_len; 6767 } 6768 } else { 6769 return hole_em; 6770 } 6771 out: 6772 6773 free_extent_map(hole_em); 6774 if (err) { 6775 free_extent_map(em); 6776 return ERR_PTR(err); 6777 } 6778 return em; 6779 } 6780 6781 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 6782 const u64 start, 6783 const u64 len, 6784 const u64 orig_start, 6785 const u64 block_start, 6786 const u64 block_len, 6787 const u64 orig_block_len, 6788 const u64 ram_bytes, 6789 const int type) 6790 { 6791 struct extent_map *em = NULL; 6792 int ret; 6793 6794 if (type != BTRFS_ORDERED_NOCOW) { 6795 em = create_io_em(inode, start, len, orig_start, 6796 block_start, block_len, orig_block_len, 6797 ram_bytes, 6798 BTRFS_COMPRESS_NONE, /* compress_type */ 6799 type); 6800 if (IS_ERR(em)) 6801 goto out; 6802 } 6803 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 6804 len, block_len, type); 6805 if (ret) { 6806 if (em) { 6807 free_extent_map(em); 6808 btrfs_drop_extent_cache(BTRFS_I(inode), start, 6809 start + len - 1, 0); 6810 } 6811 em = ERR_PTR(ret); 6812 } 6813 out: 6814 6815 return em; 6816 } 6817 6818 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6819 u64 start, u64 len) 6820 { 6821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6822 struct btrfs_root *root = BTRFS_I(inode)->root; 6823 struct extent_map *em; 6824 struct btrfs_key ins; 6825 u64 alloc_hint; 6826 int ret; 6827 6828 alloc_hint = get_extent_allocation_hint(inode, start, len); 6829 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6830 0, alloc_hint, &ins, 1, 1); 6831 if (ret) 6832 return ERR_PTR(ret); 6833 6834 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6835 ins.objectid, ins.offset, ins.offset, 6836 ins.offset, BTRFS_ORDERED_REGULAR); 6837 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6838 if (IS_ERR(em)) 6839 btrfs_free_reserved_extent(fs_info, ins.objectid, 6840 ins.offset, 1); 6841 6842 return em; 6843 } 6844 6845 /* 6846 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6847 * block must be cow'd 6848 */ 6849 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6850 u64 *orig_start, u64 *orig_block_len, 6851 u64 *ram_bytes) 6852 { 6853 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6854 struct btrfs_path *path; 6855 int ret; 6856 struct extent_buffer *leaf; 6857 struct btrfs_root *root = BTRFS_I(inode)->root; 6858 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6859 struct btrfs_file_extent_item *fi; 6860 struct btrfs_key key; 6861 u64 disk_bytenr; 6862 u64 backref_offset; 6863 u64 extent_end; 6864 u64 num_bytes; 6865 int slot; 6866 int found_type; 6867 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6868 6869 path = btrfs_alloc_path(); 6870 if (!path) 6871 return -ENOMEM; 6872 6873 ret = btrfs_lookup_file_extent(NULL, root, path, 6874 btrfs_ino(BTRFS_I(inode)), offset, 0); 6875 if (ret < 0) 6876 goto out; 6877 6878 slot = path->slots[0]; 6879 if (ret == 1) { 6880 if (slot == 0) { 6881 /* can't find the item, must cow */ 6882 ret = 0; 6883 goto out; 6884 } 6885 slot--; 6886 } 6887 ret = 0; 6888 leaf = path->nodes[0]; 6889 btrfs_item_key_to_cpu(leaf, &key, slot); 6890 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 6891 key.type != BTRFS_EXTENT_DATA_KEY) { 6892 /* not our file or wrong item type, must cow */ 6893 goto out; 6894 } 6895 6896 if (key.offset > offset) { 6897 /* Wrong offset, must cow */ 6898 goto out; 6899 } 6900 6901 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6902 found_type = btrfs_file_extent_type(leaf, fi); 6903 if (found_type != BTRFS_FILE_EXTENT_REG && 6904 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6905 /* not a regular extent, must cow */ 6906 goto out; 6907 } 6908 6909 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 6910 goto out; 6911 6912 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6913 if (extent_end <= offset) 6914 goto out; 6915 6916 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6917 if (disk_bytenr == 0) 6918 goto out; 6919 6920 if (btrfs_file_extent_compression(leaf, fi) || 6921 btrfs_file_extent_encryption(leaf, fi) || 6922 btrfs_file_extent_other_encoding(leaf, fi)) 6923 goto out; 6924 6925 /* 6926 * Do the same check as in btrfs_cross_ref_exist but without the 6927 * unnecessary search. 6928 */ 6929 if (btrfs_file_extent_generation(leaf, fi) <= 6930 btrfs_root_last_snapshot(&root->root_item)) 6931 goto out; 6932 6933 backref_offset = btrfs_file_extent_offset(leaf, fi); 6934 6935 if (orig_start) { 6936 *orig_start = key.offset - backref_offset; 6937 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 6938 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 6939 } 6940 6941 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 6942 goto out; 6943 6944 num_bytes = min(offset + *len, extent_end) - offset; 6945 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6946 u64 range_end; 6947 6948 range_end = round_up(offset + num_bytes, 6949 root->fs_info->sectorsize) - 1; 6950 ret = test_range_bit(io_tree, offset, range_end, 6951 EXTENT_DELALLOC, 0, NULL); 6952 if (ret) { 6953 ret = -EAGAIN; 6954 goto out; 6955 } 6956 } 6957 6958 btrfs_release_path(path); 6959 6960 /* 6961 * look for other files referencing this extent, if we 6962 * find any we must cow 6963 */ 6964 6965 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 6966 key.offset - backref_offset, disk_bytenr); 6967 if (ret) { 6968 ret = 0; 6969 goto out; 6970 } 6971 6972 /* 6973 * adjust disk_bytenr and num_bytes to cover just the bytes 6974 * in this extent we are about to write. If there 6975 * are any csums in that range we have to cow in order 6976 * to keep the csums correct 6977 */ 6978 disk_bytenr += backref_offset; 6979 disk_bytenr += offset - key.offset; 6980 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 6981 goto out; 6982 /* 6983 * all of the above have passed, it is safe to overwrite this extent 6984 * without cow 6985 */ 6986 *len = num_bytes; 6987 ret = 1; 6988 out: 6989 btrfs_free_path(path); 6990 return ret; 6991 } 6992 6993 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6994 struct extent_state **cached_state, int writing) 6995 { 6996 struct btrfs_ordered_extent *ordered; 6997 int ret = 0; 6998 6999 while (1) { 7000 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7001 cached_state); 7002 /* 7003 * We're concerned with the entire range that we're going to be 7004 * doing DIO to, so we need to make sure there's no ordered 7005 * extents in this range. 7006 */ 7007 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7008 lockend - lockstart + 1); 7009 7010 /* 7011 * We need to make sure there are no buffered pages in this 7012 * range either, we could have raced between the invalidate in 7013 * generic_file_direct_write and locking the extent. The 7014 * invalidate needs to happen so that reads after a write do not 7015 * get stale data. 7016 */ 7017 if (!ordered && 7018 (!writing || !filemap_range_has_page(inode->i_mapping, 7019 lockstart, lockend))) 7020 break; 7021 7022 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7023 cached_state); 7024 7025 if (ordered) { 7026 /* 7027 * If we are doing a DIO read and the ordered extent we 7028 * found is for a buffered write, we can not wait for it 7029 * to complete and retry, because if we do so we can 7030 * deadlock with concurrent buffered writes on page 7031 * locks. This happens only if our DIO read covers more 7032 * than one extent map, if at this point has already 7033 * created an ordered extent for a previous extent map 7034 * and locked its range in the inode's io tree, and a 7035 * concurrent write against that previous extent map's 7036 * range and this range started (we unlock the ranges 7037 * in the io tree only when the bios complete and 7038 * buffered writes always lock pages before attempting 7039 * to lock range in the io tree). 7040 */ 7041 if (writing || 7042 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7043 btrfs_start_ordered_extent(inode, ordered, 1); 7044 else 7045 ret = -ENOTBLK; 7046 btrfs_put_ordered_extent(ordered); 7047 } else { 7048 /* 7049 * We could trigger writeback for this range (and wait 7050 * for it to complete) and then invalidate the pages for 7051 * this range (through invalidate_inode_pages2_range()), 7052 * but that can lead us to a deadlock with a concurrent 7053 * call to readpages() (a buffered read or a defrag call 7054 * triggered a readahead) on a page lock due to an 7055 * ordered dio extent we created before but did not have 7056 * yet a corresponding bio submitted (whence it can not 7057 * complete), which makes readpages() wait for that 7058 * ordered extent to complete while holding a lock on 7059 * that page. 7060 */ 7061 ret = -ENOTBLK; 7062 } 7063 7064 if (ret) 7065 break; 7066 7067 cond_resched(); 7068 } 7069 7070 return ret; 7071 } 7072 7073 /* The callers of this must take lock_extent() */ 7074 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7075 u64 orig_start, u64 block_start, 7076 u64 block_len, u64 orig_block_len, 7077 u64 ram_bytes, int compress_type, 7078 int type) 7079 { 7080 struct extent_map_tree *em_tree; 7081 struct extent_map *em; 7082 int ret; 7083 7084 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7085 type == BTRFS_ORDERED_COMPRESSED || 7086 type == BTRFS_ORDERED_NOCOW || 7087 type == BTRFS_ORDERED_REGULAR); 7088 7089 em_tree = &BTRFS_I(inode)->extent_tree; 7090 em = alloc_extent_map(); 7091 if (!em) 7092 return ERR_PTR(-ENOMEM); 7093 7094 em->start = start; 7095 em->orig_start = orig_start; 7096 em->len = len; 7097 em->block_len = block_len; 7098 em->block_start = block_start; 7099 em->orig_block_len = orig_block_len; 7100 em->ram_bytes = ram_bytes; 7101 em->generation = -1; 7102 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7103 if (type == BTRFS_ORDERED_PREALLOC) { 7104 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7105 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7106 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7107 em->compress_type = compress_type; 7108 } 7109 7110 do { 7111 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7112 em->start + em->len - 1, 0); 7113 write_lock(&em_tree->lock); 7114 ret = add_extent_mapping(em_tree, em, 1); 7115 write_unlock(&em_tree->lock); 7116 /* 7117 * The caller has taken lock_extent(), who could race with us 7118 * to add em? 7119 */ 7120 } while (ret == -EEXIST); 7121 7122 if (ret) { 7123 free_extent_map(em); 7124 return ERR_PTR(ret); 7125 } 7126 7127 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7128 return em; 7129 } 7130 7131 7132 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7133 struct buffer_head *bh_result, 7134 struct inode *inode, 7135 u64 start, u64 len) 7136 { 7137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7138 7139 if (em->block_start == EXTENT_MAP_HOLE || 7140 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7141 return -ENOENT; 7142 7143 len = min(len, em->len - (start - em->start)); 7144 7145 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7146 inode->i_blkbits; 7147 bh_result->b_size = len; 7148 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7149 set_buffer_mapped(bh_result); 7150 7151 return 0; 7152 } 7153 7154 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7155 struct buffer_head *bh_result, 7156 struct inode *inode, 7157 struct btrfs_dio_data *dio_data, 7158 u64 start, u64 len) 7159 { 7160 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7161 struct extent_map *em = *map; 7162 int ret = 0; 7163 7164 /* 7165 * We don't allocate a new extent in the following cases 7166 * 7167 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7168 * existing extent. 7169 * 2) The extent is marked as PREALLOC. We're good to go here and can 7170 * just use the extent. 7171 * 7172 */ 7173 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7174 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7175 em->block_start != EXTENT_MAP_HOLE)) { 7176 int type; 7177 u64 block_start, orig_start, orig_block_len, ram_bytes; 7178 7179 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7180 type = BTRFS_ORDERED_PREALLOC; 7181 else 7182 type = BTRFS_ORDERED_NOCOW; 7183 len = min(len, em->len - (start - em->start)); 7184 block_start = em->block_start + (start - em->start); 7185 7186 if (can_nocow_extent(inode, start, &len, &orig_start, 7187 &orig_block_len, &ram_bytes) == 1 && 7188 btrfs_inc_nocow_writers(fs_info, block_start)) { 7189 struct extent_map *em2; 7190 7191 em2 = btrfs_create_dio_extent(inode, start, len, 7192 orig_start, block_start, 7193 len, orig_block_len, 7194 ram_bytes, type); 7195 btrfs_dec_nocow_writers(fs_info, block_start); 7196 if (type == BTRFS_ORDERED_PREALLOC) { 7197 free_extent_map(em); 7198 *map = em = em2; 7199 } 7200 7201 if (em2 && IS_ERR(em2)) { 7202 ret = PTR_ERR(em2); 7203 goto out; 7204 } 7205 /* 7206 * For inode marked NODATACOW or extent marked PREALLOC, 7207 * use the existing or preallocated extent, so does not 7208 * need to adjust btrfs_space_info's bytes_may_use. 7209 */ 7210 btrfs_free_reserved_data_space_noquota(inode, start, 7211 len); 7212 goto skip_cow; 7213 } 7214 } 7215 7216 /* this will cow the extent */ 7217 len = bh_result->b_size; 7218 free_extent_map(em); 7219 *map = em = btrfs_new_extent_direct(inode, start, len); 7220 if (IS_ERR(em)) { 7221 ret = PTR_ERR(em); 7222 goto out; 7223 } 7224 7225 len = min(len, em->len - (start - em->start)); 7226 7227 skip_cow: 7228 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7229 inode->i_blkbits; 7230 bh_result->b_size = len; 7231 bh_result->b_bdev = fs_info->fs_devices->latest_bdev; 7232 set_buffer_mapped(bh_result); 7233 7234 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7235 set_buffer_new(bh_result); 7236 7237 /* 7238 * Need to update the i_size under the extent lock so buffered 7239 * readers will get the updated i_size when we unlock. 7240 */ 7241 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7242 i_size_write(inode, start + len); 7243 7244 WARN_ON(dio_data->reserve < len); 7245 dio_data->reserve -= len; 7246 dio_data->unsubmitted_oe_range_end = start + len; 7247 current->journal_info = dio_data; 7248 out: 7249 return ret; 7250 } 7251 7252 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7253 struct buffer_head *bh_result, int create) 7254 { 7255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7256 struct extent_map *em; 7257 struct extent_state *cached_state = NULL; 7258 struct btrfs_dio_data *dio_data = NULL; 7259 u64 start = iblock << inode->i_blkbits; 7260 u64 lockstart, lockend; 7261 u64 len = bh_result->b_size; 7262 int ret = 0; 7263 7264 if (!create) 7265 len = min_t(u64, len, fs_info->sectorsize); 7266 7267 lockstart = start; 7268 lockend = start + len - 1; 7269 7270 if (current->journal_info) { 7271 /* 7272 * Need to pull our outstanding extents and set journal_info to NULL so 7273 * that anything that needs to check if there's a transaction doesn't get 7274 * confused. 7275 */ 7276 dio_data = current->journal_info; 7277 current->journal_info = NULL; 7278 } 7279 7280 /* 7281 * If this errors out it's because we couldn't invalidate pagecache for 7282 * this range and we need to fallback to buffered. 7283 */ 7284 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7285 create)) { 7286 ret = -ENOTBLK; 7287 goto err; 7288 } 7289 7290 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7291 if (IS_ERR(em)) { 7292 ret = PTR_ERR(em); 7293 goto unlock_err; 7294 } 7295 7296 /* 7297 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7298 * io. INLINE is special, and we could probably kludge it in here, but 7299 * it's still buffered so for safety lets just fall back to the generic 7300 * buffered path. 7301 * 7302 * For COMPRESSED we _have_ to read the entire extent in so we can 7303 * decompress it, so there will be buffering required no matter what we 7304 * do, so go ahead and fallback to buffered. 7305 * 7306 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7307 * to buffered IO. Don't blame me, this is the price we pay for using 7308 * the generic code. 7309 */ 7310 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7311 em->block_start == EXTENT_MAP_INLINE) { 7312 free_extent_map(em); 7313 ret = -ENOTBLK; 7314 goto unlock_err; 7315 } 7316 7317 if (create) { 7318 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7319 dio_data, start, len); 7320 if (ret < 0) 7321 goto unlock_err; 7322 7323 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, 7324 lockend, &cached_state); 7325 } else { 7326 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7327 start, len); 7328 /* Can be negative only if we read from a hole */ 7329 if (ret < 0) { 7330 ret = 0; 7331 free_extent_map(em); 7332 goto unlock_err; 7333 } 7334 /* 7335 * We need to unlock only the end area that we aren't using. 7336 * The rest is going to be unlocked by the endio routine. 7337 */ 7338 lockstart = start + bh_result->b_size; 7339 if (lockstart < lockend) { 7340 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7341 lockstart, lockend, &cached_state); 7342 } else { 7343 free_extent_state(cached_state); 7344 } 7345 } 7346 7347 free_extent_map(em); 7348 7349 return 0; 7350 7351 unlock_err: 7352 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7353 &cached_state); 7354 err: 7355 if (dio_data) 7356 current->journal_info = dio_data; 7357 return ret; 7358 } 7359 7360 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7361 struct bio *bio, 7362 int mirror_num) 7363 { 7364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7365 blk_status_t ret; 7366 7367 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7368 7369 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7370 if (ret) 7371 return ret; 7372 7373 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7374 7375 return ret; 7376 } 7377 7378 static int btrfs_check_dio_repairable(struct inode *inode, 7379 struct bio *failed_bio, 7380 struct io_failure_record *failrec, 7381 int failed_mirror) 7382 { 7383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7384 int num_copies; 7385 7386 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7387 if (num_copies == 1) { 7388 /* 7389 * we only have a single copy of the data, so don't bother with 7390 * all the retry and error correction code that follows. no 7391 * matter what the error is, it is very likely to persist. 7392 */ 7393 btrfs_debug(fs_info, 7394 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7395 num_copies, failrec->this_mirror, failed_mirror); 7396 return 0; 7397 } 7398 7399 failrec->failed_mirror = failed_mirror; 7400 failrec->this_mirror++; 7401 if (failrec->this_mirror == failed_mirror) 7402 failrec->this_mirror++; 7403 7404 if (failrec->this_mirror > num_copies) { 7405 btrfs_debug(fs_info, 7406 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7407 num_copies, failrec->this_mirror, failed_mirror); 7408 return 0; 7409 } 7410 7411 return 1; 7412 } 7413 7414 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7415 struct page *page, unsigned int pgoff, 7416 u64 start, u64 end, int failed_mirror, 7417 bio_end_io_t *repair_endio, void *repair_arg) 7418 { 7419 struct io_failure_record *failrec; 7420 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7421 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7422 struct bio *bio; 7423 int isector; 7424 unsigned int read_mode = 0; 7425 int segs; 7426 int ret; 7427 blk_status_t status; 7428 struct bio_vec bvec; 7429 7430 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7431 7432 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7433 if (ret) 7434 return errno_to_blk_status(ret); 7435 7436 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7437 failed_mirror); 7438 if (!ret) { 7439 free_io_failure(failure_tree, io_tree, failrec); 7440 return BLK_STS_IOERR; 7441 } 7442 7443 segs = bio_segments(failed_bio); 7444 bio_get_first_bvec(failed_bio, &bvec); 7445 if (segs > 1 || 7446 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7447 read_mode |= REQ_FAILFAST_DEV; 7448 7449 isector = start - btrfs_io_bio(failed_bio)->logical; 7450 isector >>= inode->i_sb->s_blocksize_bits; 7451 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7452 pgoff, isector, repair_endio, repair_arg); 7453 bio->bi_opf = REQ_OP_READ | read_mode; 7454 7455 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7456 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7457 read_mode, failrec->this_mirror, failrec->in_validation); 7458 7459 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7460 if (status) { 7461 free_io_failure(failure_tree, io_tree, failrec); 7462 bio_put(bio); 7463 } 7464 7465 return status; 7466 } 7467 7468 struct btrfs_retry_complete { 7469 struct completion done; 7470 struct inode *inode; 7471 u64 start; 7472 int uptodate; 7473 }; 7474 7475 static void btrfs_retry_endio_nocsum(struct bio *bio) 7476 { 7477 struct btrfs_retry_complete *done = bio->bi_private; 7478 struct inode *inode = done->inode; 7479 struct bio_vec *bvec; 7480 struct extent_io_tree *io_tree, *failure_tree; 7481 struct bvec_iter_all iter_all; 7482 7483 if (bio->bi_status) 7484 goto end; 7485 7486 ASSERT(bio->bi_vcnt == 1); 7487 io_tree = &BTRFS_I(inode)->io_tree; 7488 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7489 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7490 7491 done->uptodate = 1; 7492 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7493 bio_for_each_segment_all(bvec, bio, iter_all) 7494 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7495 io_tree, done->start, bvec->bv_page, 7496 btrfs_ino(BTRFS_I(inode)), 0); 7497 end: 7498 complete(&done->done); 7499 bio_put(bio); 7500 } 7501 7502 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7503 struct btrfs_io_bio *io_bio) 7504 { 7505 struct btrfs_fs_info *fs_info; 7506 struct bio_vec bvec; 7507 struct bvec_iter iter; 7508 struct btrfs_retry_complete done; 7509 u64 start; 7510 unsigned int pgoff; 7511 u32 sectorsize; 7512 int nr_sectors; 7513 blk_status_t ret; 7514 blk_status_t err = BLK_STS_OK; 7515 7516 fs_info = BTRFS_I(inode)->root->fs_info; 7517 sectorsize = fs_info->sectorsize; 7518 7519 start = io_bio->logical; 7520 done.inode = inode; 7521 io_bio->bio.bi_iter = io_bio->iter; 7522 7523 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7524 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7525 pgoff = bvec.bv_offset; 7526 7527 next_block_or_try_again: 7528 done.uptodate = 0; 7529 done.start = start; 7530 init_completion(&done.done); 7531 7532 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7533 pgoff, start, start + sectorsize - 1, 7534 io_bio->mirror_num, 7535 btrfs_retry_endio_nocsum, &done); 7536 if (ret) { 7537 err = ret; 7538 goto next; 7539 } 7540 7541 wait_for_completion_io(&done.done); 7542 7543 if (!done.uptodate) { 7544 /* We might have another mirror, so try again */ 7545 goto next_block_or_try_again; 7546 } 7547 7548 next: 7549 start += sectorsize; 7550 7551 nr_sectors--; 7552 if (nr_sectors) { 7553 pgoff += sectorsize; 7554 ASSERT(pgoff < PAGE_SIZE); 7555 goto next_block_or_try_again; 7556 } 7557 } 7558 7559 return err; 7560 } 7561 7562 static void btrfs_retry_endio(struct bio *bio) 7563 { 7564 struct btrfs_retry_complete *done = bio->bi_private; 7565 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7566 struct extent_io_tree *io_tree, *failure_tree; 7567 struct inode *inode = done->inode; 7568 struct bio_vec *bvec; 7569 int uptodate; 7570 int ret; 7571 int i = 0; 7572 struct bvec_iter_all iter_all; 7573 7574 if (bio->bi_status) 7575 goto end; 7576 7577 uptodate = 1; 7578 7579 ASSERT(bio->bi_vcnt == 1); 7580 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7581 7582 io_tree = &BTRFS_I(inode)->io_tree; 7583 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7584 7585 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7586 bio_for_each_segment_all(bvec, bio, iter_all) { 7587 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7588 bvec->bv_offset, done->start, 7589 bvec->bv_len); 7590 if (!ret) 7591 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7592 failure_tree, io_tree, done->start, 7593 bvec->bv_page, 7594 btrfs_ino(BTRFS_I(inode)), 7595 bvec->bv_offset); 7596 else 7597 uptodate = 0; 7598 i++; 7599 } 7600 7601 done->uptodate = uptodate; 7602 end: 7603 complete(&done->done); 7604 bio_put(bio); 7605 } 7606 7607 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7608 struct btrfs_io_bio *io_bio, blk_status_t err) 7609 { 7610 struct btrfs_fs_info *fs_info; 7611 struct bio_vec bvec; 7612 struct bvec_iter iter; 7613 struct btrfs_retry_complete done; 7614 u64 start; 7615 u64 offset = 0; 7616 u32 sectorsize; 7617 int nr_sectors; 7618 unsigned int pgoff; 7619 int csum_pos; 7620 bool uptodate = (err == 0); 7621 int ret; 7622 blk_status_t status; 7623 7624 fs_info = BTRFS_I(inode)->root->fs_info; 7625 sectorsize = fs_info->sectorsize; 7626 7627 err = BLK_STS_OK; 7628 start = io_bio->logical; 7629 done.inode = inode; 7630 io_bio->bio.bi_iter = io_bio->iter; 7631 7632 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7633 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7634 7635 pgoff = bvec.bv_offset; 7636 next_block: 7637 if (uptodate) { 7638 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7639 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7640 bvec.bv_page, pgoff, start, sectorsize); 7641 if (likely(!ret)) 7642 goto next; 7643 } 7644 try_again: 7645 done.uptodate = 0; 7646 done.start = start; 7647 init_completion(&done.done); 7648 7649 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7650 pgoff, start, start + sectorsize - 1, 7651 io_bio->mirror_num, btrfs_retry_endio, 7652 &done); 7653 if (status) { 7654 err = status; 7655 goto next; 7656 } 7657 7658 wait_for_completion_io(&done.done); 7659 7660 if (!done.uptodate) { 7661 /* We might have another mirror, so try again */ 7662 goto try_again; 7663 } 7664 next: 7665 offset += sectorsize; 7666 start += sectorsize; 7667 7668 ASSERT(nr_sectors); 7669 7670 nr_sectors--; 7671 if (nr_sectors) { 7672 pgoff += sectorsize; 7673 ASSERT(pgoff < PAGE_SIZE); 7674 goto next_block; 7675 } 7676 } 7677 7678 return err; 7679 } 7680 7681 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 7682 struct btrfs_io_bio *io_bio, blk_status_t err) 7683 { 7684 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7685 7686 if (skip_csum) { 7687 if (unlikely(err)) 7688 return __btrfs_correct_data_nocsum(inode, io_bio); 7689 else 7690 return BLK_STS_OK; 7691 } else { 7692 return __btrfs_subio_endio_read(inode, io_bio, err); 7693 } 7694 } 7695 7696 static void btrfs_endio_direct_read(struct bio *bio) 7697 { 7698 struct btrfs_dio_private *dip = bio->bi_private; 7699 struct inode *inode = dip->inode; 7700 struct bio *dio_bio; 7701 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7702 blk_status_t err = bio->bi_status; 7703 7704 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7705 err = btrfs_subio_endio_read(inode, io_bio, err); 7706 7707 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7708 dip->logical_offset + dip->bytes - 1); 7709 dio_bio = dip->dio_bio; 7710 7711 kfree(dip); 7712 7713 dio_bio->bi_status = err; 7714 dio_end_io(dio_bio); 7715 btrfs_io_bio_free_csum(io_bio); 7716 bio_put(bio); 7717 } 7718 7719 static void __endio_write_update_ordered(struct inode *inode, 7720 const u64 offset, const u64 bytes, 7721 const bool uptodate) 7722 { 7723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7724 struct btrfs_ordered_extent *ordered = NULL; 7725 struct btrfs_workqueue *wq; 7726 u64 ordered_offset = offset; 7727 u64 ordered_bytes = bytes; 7728 u64 last_offset; 7729 7730 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 7731 wq = fs_info->endio_freespace_worker; 7732 else 7733 wq = fs_info->endio_write_workers; 7734 7735 while (ordered_offset < offset + bytes) { 7736 last_offset = ordered_offset; 7737 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7738 &ordered_offset, 7739 ordered_bytes, 7740 uptodate)) { 7741 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7742 NULL); 7743 btrfs_queue_work(wq, &ordered->work); 7744 } 7745 /* 7746 * If btrfs_dec_test_ordered_pending does not find any ordered 7747 * extent in the range, we can exit. 7748 */ 7749 if (ordered_offset == last_offset) 7750 return; 7751 /* 7752 * Our bio might span multiple ordered extents. In this case 7753 * we keep going until we have accounted the whole dio. 7754 */ 7755 if (ordered_offset < offset + bytes) { 7756 ordered_bytes = offset + bytes - ordered_offset; 7757 ordered = NULL; 7758 } 7759 } 7760 } 7761 7762 static void btrfs_endio_direct_write(struct bio *bio) 7763 { 7764 struct btrfs_dio_private *dip = bio->bi_private; 7765 struct bio *dio_bio = dip->dio_bio; 7766 7767 __endio_write_update_ordered(dip->inode, dip->logical_offset, 7768 dip->bytes, !bio->bi_status); 7769 7770 kfree(dip); 7771 7772 dio_bio->bi_status = bio->bi_status; 7773 dio_end_io(dio_bio); 7774 bio_put(bio); 7775 } 7776 7777 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7778 struct bio *bio, u64 offset) 7779 { 7780 struct inode *inode = private_data; 7781 blk_status_t ret; 7782 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 7783 BUG_ON(ret); /* -ENOMEM */ 7784 return 0; 7785 } 7786 7787 static void btrfs_end_dio_bio(struct bio *bio) 7788 { 7789 struct btrfs_dio_private *dip = bio->bi_private; 7790 blk_status_t err = bio->bi_status; 7791 7792 if (err) 7793 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7794 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7795 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7796 bio->bi_opf, 7797 (unsigned long long)bio->bi_iter.bi_sector, 7798 bio->bi_iter.bi_size, err); 7799 7800 if (dip->subio_endio) 7801 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7802 7803 if (err) { 7804 /* 7805 * We want to perceive the errors flag being set before 7806 * decrementing the reference count. We don't need a barrier 7807 * since atomic operations with a return value are fully 7808 * ordered as per atomic_t.txt 7809 */ 7810 dip->errors = 1; 7811 } 7812 7813 /* if there are more bios still pending for this dio, just exit */ 7814 if (!atomic_dec_and_test(&dip->pending_bios)) 7815 goto out; 7816 7817 if (dip->errors) { 7818 bio_io_error(dip->orig_bio); 7819 } else { 7820 dip->dio_bio->bi_status = BLK_STS_OK; 7821 bio_endio(dip->orig_bio); 7822 } 7823 out: 7824 bio_put(bio); 7825 } 7826 7827 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 7828 struct btrfs_dio_private *dip, 7829 struct bio *bio, 7830 u64 file_offset) 7831 { 7832 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7833 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7834 u16 csum_size; 7835 blk_status_t ret; 7836 7837 /* 7838 * We load all the csum data we need when we submit 7839 * the first bio to reduce the csum tree search and 7840 * contention. 7841 */ 7842 if (dip->logical_offset == file_offset) { 7843 ret = btrfs_lookup_bio_sums(inode, dip->orig_bio, file_offset, 7844 NULL); 7845 if (ret) 7846 return ret; 7847 } 7848 7849 if (bio == dip->orig_bio) 7850 return 0; 7851 7852 file_offset -= dip->logical_offset; 7853 file_offset >>= inode->i_sb->s_blocksize_bits; 7854 csum_size = btrfs_super_csum_size(btrfs_sb(inode->i_sb)->super_copy); 7855 io_bio->csum = orig_io_bio->csum + csum_size * file_offset; 7856 7857 return 0; 7858 } 7859 7860 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7861 struct inode *inode, u64 file_offset, int async_submit) 7862 { 7863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7864 struct btrfs_dio_private *dip = bio->bi_private; 7865 bool write = bio_op(bio) == REQ_OP_WRITE; 7866 blk_status_t ret; 7867 7868 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7869 if (async_submit) 7870 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7871 7872 if (!write) { 7873 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7874 if (ret) 7875 goto err; 7876 } 7877 7878 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7879 goto map; 7880 7881 if (write && async_submit) { 7882 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7883 file_offset, inode, 7884 btrfs_submit_bio_start_direct_io); 7885 goto err; 7886 } else if (write) { 7887 /* 7888 * If we aren't doing async submit, calculate the csum of the 7889 * bio now. 7890 */ 7891 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 7892 if (ret) 7893 goto err; 7894 } else { 7895 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 7896 file_offset); 7897 if (ret) 7898 goto err; 7899 } 7900 map: 7901 ret = btrfs_map_bio(fs_info, bio, 0); 7902 err: 7903 return ret; 7904 } 7905 7906 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 7907 { 7908 struct inode *inode = dip->inode; 7909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7910 struct bio *bio; 7911 struct bio *orig_bio = dip->orig_bio; 7912 u64 start_sector = orig_bio->bi_iter.bi_sector; 7913 u64 file_offset = dip->logical_offset; 7914 int async_submit = 0; 7915 u64 submit_len; 7916 int clone_offset = 0; 7917 int clone_len; 7918 int ret; 7919 blk_status_t status; 7920 struct btrfs_io_geometry geom; 7921 7922 submit_len = orig_bio->bi_iter.bi_size; 7923 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 7924 start_sector << 9, submit_len, &geom); 7925 if (ret) 7926 return -EIO; 7927 7928 if (geom.len >= submit_len) { 7929 bio = orig_bio; 7930 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 7931 goto submit; 7932 } 7933 7934 /* async crcs make it difficult to collect full stripe writes. */ 7935 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 7936 async_submit = 0; 7937 else 7938 async_submit = 1; 7939 7940 /* bio split */ 7941 ASSERT(geom.len <= INT_MAX); 7942 atomic_inc(&dip->pending_bios); 7943 do { 7944 clone_len = min_t(int, submit_len, geom.len); 7945 7946 /* 7947 * This will never fail as it's passing GPF_NOFS and 7948 * the allocation is backed by btrfs_bioset. 7949 */ 7950 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 7951 clone_len); 7952 bio->bi_private = dip; 7953 bio->bi_end_io = btrfs_end_dio_bio; 7954 btrfs_io_bio(bio)->logical = file_offset; 7955 7956 ASSERT(submit_len >= clone_len); 7957 submit_len -= clone_len; 7958 if (submit_len == 0) 7959 break; 7960 7961 /* 7962 * Increase the count before we submit the bio so we know 7963 * the end IO handler won't happen before we increase the 7964 * count. Otherwise, the dip might get freed before we're 7965 * done setting it up. 7966 */ 7967 atomic_inc(&dip->pending_bios); 7968 7969 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7970 async_submit); 7971 if (status) { 7972 bio_put(bio); 7973 atomic_dec(&dip->pending_bios); 7974 goto out_err; 7975 } 7976 7977 clone_offset += clone_len; 7978 start_sector += clone_len >> 9; 7979 file_offset += clone_len; 7980 7981 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 7982 start_sector << 9, submit_len, &geom); 7983 if (ret) 7984 goto out_err; 7985 } while (submit_len > 0); 7986 7987 submit: 7988 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 7989 if (!status) 7990 return 0; 7991 7992 bio_put(bio); 7993 out_err: 7994 dip->errors = 1; 7995 /* 7996 * Before atomic variable goto zero, we must make sure dip->errors is 7997 * perceived to be set. This ordering is ensured by the fact that an 7998 * atomic operations with a return value are fully ordered as per 7999 * atomic_t.txt 8000 */ 8001 if (atomic_dec_and_test(&dip->pending_bios)) 8002 bio_io_error(dip->orig_bio); 8003 8004 /* bio_end_io() will handle error, so we needn't return it */ 8005 return 0; 8006 } 8007 8008 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8009 loff_t file_offset) 8010 { 8011 struct btrfs_dio_private *dip = NULL; 8012 struct bio *bio = NULL; 8013 struct btrfs_io_bio *io_bio; 8014 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8015 int ret = 0; 8016 8017 bio = btrfs_bio_clone(dio_bio); 8018 8019 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8020 if (!dip) { 8021 ret = -ENOMEM; 8022 goto free_ordered; 8023 } 8024 8025 dip->private = dio_bio->bi_private; 8026 dip->inode = inode; 8027 dip->logical_offset = file_offset; 8028 dip->bytes = dio_bio->bi_iter.bi_size; 8029 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8030 bio->bi_private = dip; 8031 dip->orig_bio = bio; 8032 dip->dio_bio = dio_bio; 8033 atomic_set(&dip->pending_bios, 0); 8034 io_bio = btrfs_io_bio(bio); 8035 io_bio->logical = file_offset; 8036 8037 if (write) { 8038 bio->bi_end_io = btrfs_endio_direct_write; 8039 } else { 8040 bio->bi_end_io = btrfs_endio_direct_read; 8041 dip->subio_endio = btrfs_subio_endio_read; 8042 } 8043 8044 /* 8045 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8046 * even if we fail to submit a bio, because in such case we do the 8047 * corresponding error handling below and it must not be done a second 8048 * time by btrfs_direct_IO(). 8049 */ 8050 if (write) { 8051 struct btrfs_dio_data *dio_data = current->journal_info; 8052 8053 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8054 dip->bytes; 8055 dio_data->unsubmitted_oe_range_start = 8056 dio_data->unsubmitted_oe_range_end; 8057 } 8058 8059 ret = btrfs_submit_direct_hook(dip); 8060 if (!ret) 8061 return; 8062 8063 btrfs_io_bio_free_csum(io_bio); 8064 8065 free_ordered: 8066 /* 8067 * If we arrived here it means either we failed to submit the dip 8068 * or we either failed to clone the dio_bio or failed to allocate the 8069 * dip. If we cloned the dio_bio and allocated the dip, we can just 8070 * call bio_endio against our io_bio so that we get proper resource 8071 * cleanup if we fail to submit the dip, otherwise, we must do the 8072 * same as btrfs_endio_direct_[write|read] because we can't call these 8073 * callbacks - they require an allocated dip and a clone of dio_bio. 8074 */ 8075 if (bio && dip) { 8076 bio_io_error(bio); 8077 /* 8078 * The end io callbacks free our dip, do the final put on bio 8079 * and all the cleanup and final put for dio_bio (through 8080 * dio_end_io()). 8081 */ 8082 dip = NULL; 8083 bio = NULL; 8084 } else { 8085 if (write) 8086 __endio_write_update_ordered(inode, 8087 file_offset, 8088 dio_bio->bi_iter.bi_size, 8089 false); 8090 else 8091 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8092 file_offset + dio_bio->bi_iter.bi_size - 1); 8093 8094 dio_bio->bi_status = BLK_STS_IOERR; 8095 /* 8096 * Releases and cleans up our dio_bio, no need to bio_put() 8097 * nor bio_endio()/bio_io_error() against dio_bio. 8098 */ 8099 dio_end_io(dio_bio); 8100 } 8101 if (bio) 8102 bio_put(bio); 8103 kfree(dip); 8104 } 8105 8106 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8107 const struct iov_iter *iter, loff_t offset) 8108 { 8109 int seg; 8110 int i; 8111 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8112 ssize_t retval = -EINVAL; 8113 8114 if (offset & blocksize_mask) 8115 goto out; 8116 8117 if (iov_iter_alignment(iter) & blocksize_mask) 8118 goto out; 8119 8120 /* If this is a write we don't need to check anymore */ 8121 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8122 return 0; 8123 /* 8124 * Check to make sure we don't have duplicate iov_base's in this 8125 * iovec, if so return EINVAL, otherwise we'll get csum errors 8126 * when reading back. 8127 */ 8128 for (seg = 0; seg < iter->nr_segs; seg++) { 8129 for (i = seg + 1; i < iter->nr_segs; i++) { 8130 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8131 goto out; 8132 } 8133 } 8134 retval = 0; 8135 out: 8136 return retval; 8137 } 8138 8139 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8140 { 8141 struct file *file = iocb->ki_filp; 8142 struct inode *inode = file->f_mapping->host; 8143 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8144 struct btrfs_dio_data dio_data = { 0 }; 8145 struct extent_changeset *data_reserved = NULL; 8146 loff_t offset = iocb->ki_pos; 8147 size_t count = 0; 8148 int flags = 0; 8149 bool wakeup = true; 8150 bool relock = false; 8151 ssize_t ret; 8152 8153 if (check_direct_IO(fs_info, iter, offset)) 8154 return 0; 8155 8156 inode_dio_begin(inode); 8157 8158 /* 8159 * The generic stuff only does filemap_write_and_wait_range, which 8160 * isn't enough if we've written compressed pages to this area, so 8161 * we need to flush the dirty pages again to make absolutely sure 8162 * that any outstanding dirty pages are on disk. 8163 */ 8164 count = iov_iter_count(iter); 8165 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8166 &BTRFS_I(inode)->runtime_flags)) 8167 filemap_fdatawrite_range(inode->i_mapping, offset, 8168 offset + count - 1); 8169 8170 if (iov_iter_rw(iter) == WRITE) { 8171 /* 8172 * If the write DIO is beyond the EOF, we need update 8173 * the isize, but it is protected by i_mutex. So we can 8174 * not unlock the i_mutex at this case. 8175 */ 8176 if (offset + count <= inode->i_size) { 8177 dio_data.overwrite = 1; 8178 inode_unlock(inode); 8179 relock = true; 8180 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8181 ret = -EAGAIN; 8182 goto out; 8183 } 8184 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8185 offset, count); 8186 if (ret) 8187 goto out; 8188 8189 /* 8190 * We need to know how many extents we reserved so that we can 8191 * do the accounting properly if we go over the number we 8192 * originally calculated. Abuse current->journal_info for this. 8193 */ 8194 dio_data.reserve = round_up(count, 8195 fs_info->sectorsize); 8196 dio_data.unsubmitted_oe_range_start = (u64)offset; 8197 dio_data.unsubmitted_oe_range_end = (u64)offset; 8198 current->journal_info = &dio_data; 8199 down_read(&BTRFS_I(inode)->dio_sem); 8200 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8201 &BTRFS_I(inode)->runtime_flags)) { 8202 inode_dio_end(inode); 8203 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8204 wakeup = false; 8205 } 8206 8207 ret = __blockdev_direct_IO(iocb, inode, 8208 fs_info->fs_devices->latest_bdev, 8209 iter, btrfs_get_blocks_direct, NULL, 8210 btrfs_submit_direct, flags); 8211 if (iov_iter_rw(iter) == WRITE) { 8212 up_read(&BTRFS_I(inode)->dio_sem); 8213 current->journal_info = NULL; 8214 if (ret < 0 && ret != -EIOCBQUEUED) { 8215 if (dio_data.reserve) 8216 btrfs_delalloc_release_space(inode, data_reserved, 8217 offset, dio_data.reserve, true); 8218 /* 8219 * On error we might have left some ordered extents 8220 * without submitting corresponding bios for them, so 8221 * cleanup them up to avoid other tasks getting them 8222 * and waiting for them to complete forever. 8223 */ 8224 if (dio_data.unsubmitted_oe_range_start < 8225 dio_data.unsubmitted_oe_range_end) 8226 __endio_write_update_ordered(inode, 8227 dio_data.unsubmitted_oe_range_start, 8228 dio_data.unsubmitted_oe_range_end - 8229 dio_data.unsubmitted_oe_range_start, 8230 false); 8231 } else if (ret >= 0 && (size_t)ret < count) 8232 btrfs_delalloc_release_space(inode, data_reserved, 8233 offset, count - (size_t)ret, true); 8234 btrfs_delalloc_release_extents(BTRFS_I(inode), count); 8235 } 8236 out: 8237 if (wakeup) 8238 inode_dio_end(inode); 8239 if (relock) 8240 inode_lock(inode); 8241 8242 extent_changeset_free(data_reserved); 8243 return ret; 8244 } 8245 8246 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8247 8248 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8249 __u64 start, __u64 len) 8250 { 8251 int ret; 8252 8253 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8254 if (ret) 8255 return ret; 8256 8257 return extent_fiemap(inode, fieinfo, start, len); 8258 } 8259 8260 int btrfs_readpage(struct file *file, struct page *page) 8261 { 8262 return extent_read_full_page(page, btrfs_get_extent, 0); 8263 } 8264 8265 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8266 { 8267 struct inode *inode = page->mapping->host; 8268 int ret; 8269 8270 if (current->flags & PF_MEMALLOC) { 8271 redirty_page_for_writepage(wbc, page); 8272 unlock_page(page); 8273 return 0; 8274 } 8275 8276 /* 8277 * If we are under memory pressure we will call this directly from the 8278 * VM, we need to make sure we have the inode referenced for the ordered 8279 * extent. If not just return like we didn't do anything. 8280 */ 8281 if (!igrab(inode)) { 8282 redirty_page_for_writepage(wbc, page); 8283 return AOP_WRITEPAGE_ACTIVATE; 8284 } 8285 ret = extent_write_full_page(page, wbc); 8286 btrfs_add_delayed_iput(inode); 8287 return ret; 8288 } 8289 8290 static int btrfs_writepages(struct address_space *mapping, 8291 struct writeback_control *wbc) 8292 { 8293 return extent_writepages(mapping, wbc); 8294 } 8295 8296 static int 8297 btrfs_readpages(struct file *file, struct address_space *mapping, 8298 struct list_head *pages, unsigned nr_pages) 8299 { 8300 return extent_readpages(mapping, pages, nr_pages); 8301 } 8302 8303 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8304 { 8305 int ret = try_release_extent_mapping(page, gfp_flags); 8306 if (ret == 1) { 8307 ClearPagePrivate(page); 8308 set_page_private(page, 0); 8309 put_page(page); 8310 } 8311 return ret; 8312 } 8313 8314 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8315 { 8316 if (PageWriteback(page) || PageDirty(page)) 8317 return 0; 8318 return __btrfs_releasepage(page, gfp_flags); 8319 } 8320 8321 #ifdef CONFIG_MIGRATION 8322 static int btrfs_migratepage(struct address_space *mapping, 8323 struct page *newpage, struct page *page, 8324 enum migrate_mode mode) 8325 { 8326 int ret; 8327 8328 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8329 if (ret != MIGRATEPAGE_SUCCESS) 8330 return ret; 8331 8332 if (page_has_private(page)) { 8333 ClearPagePrivate(page); 8334 get_page(newpage); 8335 set_page_private(newpage, page_private(page)); 8336 set_page_private(page, 0); 8337 put_page(page); 8338 SetPagePrivate(newpage); 8339 } 8340 8341 if (PagePrivate2(page)) { 8342 ClearPagePrivate2(page); 8343 SetPagePrivate2(newpage); 8344 } 8345 8346 if (mode != MIGRATE_SYNC_NO_COPY) 8347 migrate_page_copy(newpage, page); 8348 else 8349 migrate_page_states(newpage, page); 8350 return MIGRATEPAGE_SUCCESS; 8351 } 8352 #endif 8353 8354 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8355 unsigned int length) 8356 { 8357 struct inode *inode = page->mapping->host; 8358 struct extent_io_tree *tree; 8359 struct btrfs_ordered_extent *ordered; 8360 struct extent_state *cached_state = NULL; 8361 u64 page_start = page_offset(page); 8362 u64 page_end = page_start + PAGE_SIZE - 1; 8363 u64 start; 8364 u64 end; 8365 int inode_evicting = inode->i_state & I_FREEING; 8366 8367 /* 8368 * we have the page locked, so new writeback can't start, 8369 * and the dirty bit won't be cleared while we are here. 8370 * 8371 * Wait for IO on this page so that we can safely clear 8372 * the PagePrivate2 bit and do ordered accounting 8373 */ 8374 wait_on_page_writeback(page); 8375 8376 tree = &BTRFS_I(inode)->io_tree; 8377 if (offset) { 8378 btrfs_releasepage(page, GFP_NOFS); 8379 return; 8380 } 8381 8382 if (!inode_evicting) 8383 lock_extent_bits(tree, page_start, page_end, &cached_state); 8384 again: 8385 start = page_start; 8386 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8387 page_end - start + 1); 8388 if (ordered) { 8389 end = min(page_end, 8390 ordered->file_offset + ordered->num_bytes - 1); 8391 /* 8392 * IO on this page will never be started, so we need 8393 * to account for any ordered extents now 8394 */ 8395 if (!inode_evicting) 8396 clear_extent_bit(tree, start, end, 8397 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8398 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8399 EXTENT_DEFRAG, 1, 0, &cached_state); 8400 /* 8401 * whoever cleared the private bit is responsible 8402 * for the finish_ordered_io 8403 */ 8404 if (TestClearPagePrivate2(page)) { 8405 struct btrfs_ordered_inode_tree *tree; 8406 u64 new_len; 8407 8408 tree = &BTRFS_I(inode)->ordered_tree; 8409 8410 spin_lock_irq(&tree->lock); 8411 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8412 new_len = start - ordered->file_offset; 8413 if (new_len < ordered->truncated_len) 8414 ordered->truncated_len = new_len; 8415 spin_unlock_irq(&tree->lock); 8416 8417 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8418 start, 8419 end - start + 1, 1)) 8420 btrfs_finish_ordered_io(ordered); 8421 } 8422 btrfs_put_ordered_extent(ordered); 8423 if (!inode_evicting) { 8424 cached_state = NULL; 8425 lock_extent_bits(tree, start, end, 8426 &cached_state); 8427 } 8428 8429 start = end + 1; 8430 if (start < page_end) 8431 goto again; 8432 } 8433 8434 /* 8435 * Qgroup reserved space handler 8436 * Page here will be either 8437 * 1) Already written to disk 8438 * In this case, its reserved space is released from data rsv map 8439 * and will be freed by delayed_ref handler finally. 8440 * So even we call qgroup_free_data(), it won't decrease reserved 8441 * space. 8442 * 2) Not written to disk 8443 * This means the reserved space should be freed here. However, 8444 * if a truncate invalidates the page (by clearing PageDirty) 8445 * and the page is accounted for while allocating extent 8446 * in btrfs_check_data_free_space() we let delayed_ref to 8447 * free the entire extent. 8448 */ 8449 if (PageDirty(page)) 8450 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8451 if (!inode_evicting) { 8452 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8453 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8454 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8455 &cached_state); 8456 8457 __btrfs_releasepage(page, GFP_NOFS); 8458 } 8459 8460 ClearPageChecked(page); 8461 if (PagePrivate(page)) { 8462 ClearPagePrivate(page); 8463 set_page_private(page, 0); 8464 put_page(page); 8465 } 8466 } 8467 8468 /* 8469 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8470 * called from a page fault handler when a page is first dirtied. Hence we must 8471 * be careful to check for EOF conditions here. We set the page up correctly 8472 * for a written page which means we get ENOSPC checking when writing into 8473 * holes and correct delalloc and unwritten extent mapping on filesystems that 8474 * support these features. 8475 * 8476 * We are not allowed to take the i_mutex here so we have to play games to 8477 * protect against truncate races as the page could now be beyond EOF. Because 8478 * truncate_setsize() writes the inode size before removing pages, once we have 8479 * the page lock we can determine safely if the page is beyond EOF. If it is not 8480 * beyond EOF, then the page is guaranteed safe against truncation until we 8481 * unlock the page. 8482 */ 8483 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8484 { 8485 struct page *page = vmf->page; 8486 struct inode *inode = file_inode(vmf->vma->vm_file); 8487 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8488 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8489 struct btrfs_ordered_extent *ordered; 8490 struct extent_state *cached_state = NULL; 8491 struct extent_changeset *data_reserved = NULL; 8492 char *kaddr; 8493 unsigned long zero_start; 8494 loff_t size; 8495 vm_fault_t ret; 8496 int ret2; 8497 int reserved = 0; 8498 u64 reserved_space; 8499 u64 page_start; 8500 u64 page_end; 8501 u64 end; 8502 8503 reserved_space = PAGE_SIZE; 8504 8505 sb_start_pagefault(inode->i_sb); 8506 page_start = page_offset(page); 8507 page_end = page_start + PAGE_SIZE - 1; 8508 end = page_end; 8509 8510 /* 8511 * Reserving delalloc space after obtaining the page lock can lead to 8512 * deadlock. For example, if a dirty page is locked by this function 8513 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8514 * dirty page write out, then the btrfs_writepage() function could 8515 * end up waiting indefinitely to get a lock on the page currently 8516 * being processed by btrfs_page_mkwrite() function. 8517 */ 8518 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8519 reserved_space); 8520 if (!ret2) { 8521 ret2 = file_update_time(vmf->vma->vm_file); 8522 reserved = 1; 8523 } 8524 if (ret2) { 8525 ret = vmf_error(ret2); 8526 if (reserved) 8527 goto out; 8528 goto out_noreserve; 8529 } 8530 8531 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8532 again: 8533 lock_page(page); 8534 size = i_size_read(inode); 8535 8536 if ((page->mapping != inode->i_mapping) || 8537 (page_start >= size)) { 8538 /* page got truncated out from underneath us */ 8539 goto out_unlock; 8540 } 8541 wait_on_page_writeback(page); 8542 8543 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8544 set_page_extent_mapped(page); 8545 8546 /* 8547 * we can't set the delalloc bits if there are pending ordered 8548 * extents. Drop our locks and wait for them to finish 8549 */ 8550 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8551 PAGE_SIZE); 8552 if (ordered) { 8553 unlock_extent_cached(io_tree, page_start, page_end, 8554 &cached_state); 8555 unlock_page(page); 8556 btrfs_start_ordered_extent(inode, ordered, 1); 8557 btrfs_put_ordered_extent(ordered); 8558 goto again; 8559 } 8560 8561 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8562 reserved_space = round_up(size - page_start, 8563 fs_info->sectorsize); 8564 if (reserved_space < PAGE_SIZE) { 8565 end = page_start + reserved_space - 1; 8566 btrfs_delalloc_release_space(inode, data_reserved, 8567 page_start, PAGE_SIZE - reserved_space, 8568 true); 8569 } 8570 } 8571 8572 /* 8573 * page_mkwrite gets called when the page is firstly dirtied after it's 8574 * faulted in, but write(2) could also dirty a page and set delalloc 8575 * bits, thus in this case for space account reason, we still need to 8576 * clear any delalloc bits within this page range since we have to 8577 * reserve data&meta space before lock_page() (see above comments). 8578 */ 8579 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8580 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8581 EXTENT_DEFRAG, 0, 0, &cached_state); 8582 8583 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8584 &cached_state); 8585 if (ret2) { 8586 unlock_extent_cached(io_tree, page_start, page_end, 8587 &cached_state); 8588 ret = VM_FAULT_SIGBUS; 8589 goto out_unlock; 8590 } 8591 8592 /* page is wholly or partially inside EOF */ 8593 if (page_start + PAGE_SIZE > size) 8594 zero_start = offset_in_page(size); 8595 else 8596 zero_start = PAGE_SIZE; 8597 8598 if (zero_start != PAGE_SIZE) { 8599 kaddr = kmap(page); 8600 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8601 flush_dcache_page(page); 8602 kunmap(page); 8603 } 8604 ClearPageChecked(page); 8605 set_page_dirty(page); 8606 SetPageUptodate(page); 8607 8608 BTRFS_I(inode)->last_trans = fs_info->generation; 8609 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8610 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8611 8612 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8613 8614 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8615 sb_end_pagefault(inode->i_sb); 8616 extent_changeset_free(data_reserved); 8617 return VM_FAULT_LOCKED; 8618 8619 out_unlock: 8620 unlock_page(page); 8621 out: 8622 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8623 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8624 reserved_space, (ret != 0)); 8625 out_noreserve: 8626 sb_end_pagefault(inode->i_sb); 8627 extent_changeset_free(data_reserved); 8628 return ret; 8629 } 8630 8631 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8632 { 8633 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8634 struct btrfs_root *root = BTRFS_I(inode)->root; 8635 struct btrfs_block_rsv *rsv; 8636 int ret; 8637 struct btrfs_trans_handle *trans; 8638 u64 mask = fs_info->sectorsize - 1; 8639 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8640 8641 if (!skip_writeback) { 8642 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8643 (u64)-1); 8644 if (ret) 8645 return ret; 8646 } 8647 8648 /* 8649 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8650 * things going on here: 8651 * 8652 * 1) We need to reserve space to update our inode. 8653 * 8654 * 2) We need to have something to cache all the space that is going to 8655 * be free'd up by the truncate operation, but also have some slack 8656 * space reserved in case it uses space during the truncate (thank you 8657 * very much snapshotting). 8658 * 8659 * And we need these to be separate. The fact is we can use a lot of 8660 * space doing the truncate, and we have no earthly idea how much space 8661 * we will use, so we need the truncate reservation to be separate so it 8662 * doesn't end up using space reserved for updating the inode. We also 8663 * need to be able to stop the transaction and start a new one, which 8664 * means we need to be able to update the inode several times, and we 8665 * have no idea of knowing how many times that will be, so we can't just 8666 * reserve 1 item for the entirety of the operation, so that has to be 8667 * done separately as well. 8668 * 8669 * So that leaves us with 8670 * 8671 * 1) rsv - for the truncate reservation, which we will steal from the 8672 * transaction reservation. 8673 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8674 * updating the inode. 8675 */ 8676 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8677 if (!rsv) 8678 return -ENOMEM; 8679 rsv->size = min_size; 8680 rsv->failfast = 1; 8681 8682 /* 8683 * 1 for the truncate slack space 8684 * 1 for updating the inode. 8685 */ 8686 trans = btrfs_start_transaction(root, 2); 8687 if (IS_ERR(trans)) { 8688 ret = PTR_ERR(trans); 8689 goto out; 8690 } 8691 8692 /* Migrate the slack space for the truncate to our reserve */ 8693 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8694 min_size, false); 8695 BUG_ON(ret); 8696 8697 /* 8698 * So if we truncate and then write and fsync we normally would just 8699 * write the extents that changed, which is a problem if we need to 8700 * first truncate that entire inode. So set this flag so we write out 8701 * all of the extents in the inode to the sync log so we're completely 8702 * safe. 8703 */ 8704 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8705 trans->block_rsv = rsv; 8706 8707 while (1) { 8708 ret = btrfs_truncate_inode_items(trans, root, inode, 8709 inode->i_size, 8710 BTRFS_EXTENT_DATA_KEY); 8711 trans->block_rsv = &fs_info->trans_block_rsv; 8712 if (ret != -ENOSPC && ret != -EAGAIN) 8713 break; 8714 8715 ret = btrfs_update_inode(trans, root, inode); 8716 if (ret) 8717 break; 8718 8719 btrfs_end_transaction(trans); 8720 btrfs_btree_balance_dirty(fs_info); 8721 8722 trans = btrfs_start_transaction(root, 2); 8723 if (IS_ERR(trans)) { 8724 ret = PTR_ERR(trans); 8725 trans = NULL; 8726 break; 8727 } 8728 8729 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8730 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8731 rsv, min_size, false); 8732 BUG_ON(ret); /* shouldn't happen */ 8733 trans->block_rsv = rsv; 8734 } 8735 8736 /* 8737 * We can't call btrfs_truncate_block inside a trans handle as we could 8738 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8739 * we've truncated everything except the last little bit, and can do 8740 * btrfs_truncate_block and then update the disk_i_size. 8741 */ 8742 if (ret == NEED_TRUNCATE_BLOCK) { 8743 btrfs_end_transaction(trans); 8744 btrfs_btree_balance_dirty(fs_info); 8745 8746 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8747 if (ret) 8748 goto out; 8749 trans = btrfs_start_transaction(root, 1); 8750 if (IS_ERR(trans)) { 8751 ret = PTR_ERR(trans); 8752 goto out; 8753 } 8754 btrfs_inode_safe_disk_i_size_write(inode, 0); 8755 } 8756 8757 if (trans) { 8758 int ret2; 8759 8760 trans->block_rsv = &fs_info->trans_block_rsv; 8761 ret2 = btrfs_update_inode(trans, root, inode); 8762 if (ret2 && !ret) 8763 ret = ret2; 8764 8765 ret2 = btrfs_end_transaction(trans); 8766 if (ret2 && !ret) 8767 ret = ret2; 8768 btrfs_btree_balance_dirty(fs_info); 8769 } 8770 out: 8771 btrfs_free_block_rsv(fs_info, rsv); 8772 8773 return ret; 8774 } 8775 8776 /* 8777 * create a new subvolume directory/inode (helper for the ioctl). 8778 */ 8779 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8780 struct btrfs_root *new_root, 8781 struct btrfs_root *parent_root, 8782 u64 new_dirid) 8783 { 8784 struct inode *inode; 8785 int err; 8786 u64 index = 0; 8787 8788 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8789 new_dirid, new_dirid, 8790 S_IFDIR | (~current_umask() & S_IRWXUGO), 8791 &index); 8792 if (IS_ERR(inode)) 8793 return PTR_ERR(inode); 8794 inode->i_op = &btrfs_dir_inode_operations; 8795 inode->i_fop = &btrfs_dir_file_operations; 8796 8797 set_nlink(inode, 1); 8798 btrfs_i_size_write(BTRFS_I(inode), 0); 8799 unlock_new_inode(inode); 8800 8801 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8802 if (err) 8803 btrfs_err(new_root->fs_info, 8804 "error inheriting subvolume %llu properties: %d", 8805 new_root->root_key.objectid, err); 8806 8807 err = btrfs_update_inode(trans, new_root, inode); 8808 8809 iput(inode); 8810 return err; 8811 } 8812 8813 struct inode *btrfs_alloc_inode(struct super_block *sb) 8814 { 8815 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8816 struct btrfs_inode *ei; 8817 struct inode *inode; 8818 8819 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8820 if (!ei) 8821 return NULL; 8822 8823 ei->root = NULL; 8824 ei->generation = 0; 8825 ei->last_trans = 0; 8826 ei->last_sub_trans = 0; 8827 ei->logged_trans = 0; 8828 ei->delalloc_bytes = 0; 8829 ei->new_delalloc_bytes = 0; 8830 ei->defrag_bytes = 0; 8831 ei->disk_i_size = 0; 8832 ei->flags = 0; 8833 ei->csum_bytes = 0; 8834 ei->index_cnt = (u64)-1; 8835 ei->dir_index = 0; 8836 ei->last_unlink_trans = 0; 8837 ei->last_log_commit = 0; 8838 8839 spin_lock_init(&ei->lock); 8840 ei->outstanding_extents = 0; 8841 if (sb->s_magic != BTRFS_TEST_MAGIC) 8842 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8843 BTRFS_BLOCK_RSV_DELALLOC); 8844 ei->runtime_flags = 0; 8845 ei->prop_compress = BTRFS_COMPRESS_NONE; 8846 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8847 8848 ei->delayed_node = NULL; 8849 8850 ei->i_otime.tv_sec = 0; 8851 ei->i_otime.tv_nsec = 0; 8852 8853 inode = &ei->vfs_inode; 8854 extent_map_tree_init(&ei->extent_tree); 8855 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8856 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8857 IO_TREE_INODE_IO_FAILURE, inode); 8858 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8859 IO_TREE_INODE_FILE_EXTENT, inode); 8860 ei->io_tree.track_uptodate = true; 8861 ei->io_failure_tree.track_uptodate = true; 8862 atomic_set(&ei->sync_writers, 0); 8863 mutex_init(&ei->log_mutex); 8864 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8865 INIT_LIST_HEAD(&ei->delalloc_inodes); 8866 INIT_LIST_HEAD(&ei->delayed_iput); 8867 RB_CLEAR_NODE(&ei->rb_node); 8868 init_rwsem(&ei->dio_sem); 8869 8870 return inode; 8871 } 8872 8873 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8874 void btrfs_test_destroy_inode(struct inode *inode) 8875 { 8876 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8877 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8878 } 8879 #endif 8880 8881 void btrfs_free_inode(struct inode *inode) 8882 { 8883 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8884 } 8885 8886 void btrfs_destroy_inode(struct inode *inode) 8887 { 8888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8889 struct btrfs_ordered_extent *ordered; 8890 struct btrfs_root *root = BTRFS_I(inode)->root; 8891 8892 WARN_ON(!hlist_empty(&inode->i_dentry)); 8893 WARN_ON(inode->i_data.nrpages); 8894 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 8895 WARN_ON(BTRFS_I(inode)->block_rsv.size); 8896 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8897 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8898 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 8899 WARN_ON(BTRFS_I(inode)->csum_bytes); 8900 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8901 8902 /* 8903 * This can happen where we create an inode, but somebody else also 8904 * created the same inode and we need to destroy the one we already 8905 * created. 8906 */ 8907 if (!root) 8908 return; 8909 8910 while (1) { 8911 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8912 if (!ordered) 8913 break; 8914 else { 8915 btrfs_err(fs_info, 8916 "found ordered extent %llu %llu on inode cleanup", 8917 ordered->file_offset, ordered->num_bytes); 8918 btrfs_remove_ordered_extent(inode, ordered); 8919 btrfs_put_ordered_extent(ordered); 8920 btrfs_put_ordered_extent(ordered); 8921 } 8922 } 8923 btrfs_qgroup_check_reserved_leak(inode); 8924 inode_tree_del(inode); 8925 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8926 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1); 8927 btrfs_put_root(BTRFS_I(inode)->root); 8928 } 8929 8930 int btrfs_drop_inode(struct inode *inode) 8931 { 8932 struct btrfs_root *root = BTRFS_I(inode)->root; 8933 8934 if (root == NULL) 8935 return 1; 8936 8937 /* the snap/subvol tree is on deleting */ 8938 if (btrfs_root_refs(&root->root_item) == 0) 8939 return 1; 8940 else 8941 return generic_drop_inode(inode); 8942 } 8943 8944 static void init_once(void *foo) 8945 { 8946 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8947 8948 inode_init_once(&ei->vfs_inode); 8949 } 8950 8951 void __cold btrfs_destroy_cachep(void) 8952 { 8953 /* 8954 * Make sure all delayed rcu free inodes are flushed before we 8955 * destroy cache. 8956 */ 8957 rcu_barrier(); 8958 kmem_cache_destroy(btrfs_inode_cachep); 8959 kmem_cache_destroy(btrfs_trans_handle_cachep); 8960 kmem_cache_destroy(btrfs_path_cachep); 8961 kmem_cache_destroy(btrfs_free_space_cachep); 8962 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8963 } 8964 8965 int __init btrfs_init_cachep(void) 8966 { 8967 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8968 sizeof(struct btrfs_inode), 0, 8969 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8970 init_once); 8971 if (!btrfs_inode_cachep) 8972 goto fail; 8973 8974 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8975 sizeof(struct btrfs_trans_handle), 0, 8976 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8977 if (!btrfs_trans_handle_cachep) 8978 goto fail; 8979 8980 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8981 sizeof(struct btrfs_path), 0, 8982 SLAB_MEM_SPREAD, NULL); 8983 if (!btrfs_path_cachep) 8984 goto fail; 8985 8986 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8987 sizeof(struct btrfs_free_space), 0, 8988 SLAB_MEM_SPREAD, NULL); 8989 if (!btrfs_free_space_cachep) 8990 goto fail; 8991 8992 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8993 PAGE_SIZE, PAGE_SIZE, 8994 SLAB_RED_ZONE, NULL); 8995 if (!btrfs_free_space_bitmap_cachep) 8996 goto fail; 8997 8998 return 0; 8999 fail: 9000 btrfs_destroy_cachep(); 9001 return -ENOMEM; 9002 } 9003 9004 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9005 u32 request_mask, unsigned int flags) 9006 { 9007 u64 delalloc_bytes; 9008 struct inode *inode = d_inode(path->dentry); 9009 u32 blocksize = inode->i_sb->s_blocksize; 9010 u32 bi_flags = BTRFS_I(inode)->flags; 9011 9012 stat->result_mask |= STATX_BTIME; 9013 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9014 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9015 if (bi_flags & BTRFS_INODE_APPEND) 9016 stat->attributes |= STATX_ATTR_APPEND; 9017 if (bi_flags & BTRFS_INODE_COMPRESS) 9018 stat->attributes |= STATX_ATTR_COMPRESSED; 9019 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9020 stat->attributes |= STATX_ATTR_IMMUTABLE; 9021 if (bi_flags & BTRFS_INODE_NODUMP) 9022 stat->attributes |= STATX_ATTR_NODUMP; 9023 9024 stat->attributes_mask |= (STATX_ATTR_APPEND | 9025 STATX_ATTR_COMPRESSED | 9026 STATX_ATTR_IMMUTABLE | 9027 STATX_ATTR_NODUMP); 9028 9029 generic_fillattr(inode, stat); 9030 stat->dev = BTRFS_I(inode)->root->anon_dev; 9031 9032 spin_lock(&BTRFS_I(inode)->lock); 9033 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9034 spin_unlock(&BTRFS_I(inode)->lock); 9035 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9036 ALIGN(delalloc_bytes, blocksize)) >> 9; 9037 return 0; 9038 } 9039 9040 static int btrfs_rename_exchange(struct inode *old_dir, 9041 struct dentry *old_dentry, 9042 struct inode *new_dir, 9043 struct dentry *new_dentry) 9044 { 9045 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9046 struct btrfs_trans_handle *trans; 9047 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9048 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9049 struct inode *new_inode = new_dentry->d_inode; 9050 struct inode *old_inode = old_dentry->d_inode; 9051 struct timespec64 ctime = current_time(old_inode); 9052 struct dentry *parent; 9053 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9054 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9055 u64 old_idx = 0; 9056 u64 new_idx = 0; 9057 int ret; 9058 bool root_log_pinned = false; 9059 bool dest_log_pinned = false; 9060 struct btrfs_log_ctx ctx_root; 9061 struct btrfs_log_ctx ctx_dest; 9062 bool sync_log_root = false; 9063 bool sync_log_dest = false; 9064 bool commit_transaction = false; 9065 9066 /* we only allow rename subvolume link between subvolumes */ 9067 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9068 return -EXDEV; 9069 9070 btrfs_init_log_ctx(&ctx_root, old_inode); 9071 btrfs_init_log_ctx(&ctx_dest, new_inode); 9072 9073 /* close the race window with snapshot create/destroy ioctl */ 9074 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9075 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9076 down_read(&fs_info->subvol_sem); 9077 9078 /* 9079 * We want to reserve the absolute worst case amount of items. So if 9080 * both inodes are subvols and we need to unlink them then that would 9081 * require 4 item modifications, but if they are both normal inodes it 9082 * would require 5 item modifications, so we'll assume their normal 9083 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9084 * should cover the worst case number of items we'll modify. 9085 */ 9086 trans = btrfs_start_transaction(root, 12); 9087 if (IS_ERR(trans)) { 9088 ret = PTR_ERR(trans); 9089 goto out_notrans; 9090 } 9091 9092 if (dest != root) 9093 btrfs_record_root_in_trans(trans, dest); 9094 9095 /* 9096 * We need to find a free sequence number both in the source and 9097 * in the destination directory for the exchange. 9098 */ 9099 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9100 if (ret) 9101 goto out_fail; 9102 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9103 if (ret) 9104 goto out_fail; 9105 9106 BTRFS_I(old_inode)->dir_index = 0ULL; 9107 BTRFS_I(new_inode)->dir_index = 0ULL; 9108 9109 /* Reference for the source. */ 9110 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9111 /* force full log commit if subvolume involved. */ 9112 btrfs_set_log_full_commit(trans); 9113 } else { 9114 btrfs_pin_log_trans(root); 9115 root_log_pinned = true; 9116 ret = btrfs_insert_inode_ref(trans, dest, 9117 new_dentry->d_name.name, 9118 new_dentry->d_name.len, 9119 old_ino, 9120 btrfs_ino(BTRFS_I(new_dir)), 9121 old_idx); 9122 if (ret) 9123 goto out_fail; 9124 } 9125 9126 /* And now for the dest. */ 9127 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9128 /* force full log commit if subvolume involved. */ 9129 btrfs_set_log_full_commit(trans); 9130 } else { 9131 btrfs_pin_log_trans(dest); 9132 dest_log_pinned = true; 9133 ret = btrfs_insert_inode_ref(trans, root, 9134 old_dentry->d_name.name, 9135 old_dentry->d_name.len, 9136 new_ino, 9137 btrfs_ino(BTRFS_I(old_dir)), 9138 new_idx); 9139 if (ret) 9140 goto out_fail; 9141 } 9142 9143 /* Update inode version and ctime/mtime. */ 9144 inode_inc_iversion(old_dir); 9145 inode_inc_iversion(new_dir); 9146 inode_inc_iversion(old_inode); 9147 inode_inc_iversion(new_inode); 9148 old_dir->i_ctime = old_dir->i_mtime = ctime; 9149 new_dir->i_ctime = new_dir->i_mtime = ctime; 9150 old_inode->i_ctime = ctime; 9151 new_inode->i_ctime = ctime; 9152 9153 if (old_dentry->d_parent != new_dentry->d_parent) { 9154 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9155 BTRFS_I(old_inode), 1); 9156 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9157 BTRFS_I(new_inode), 1); 9158 } 9159 9160 /* src is a subvolume */ 9161 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9162 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9163 } else { /* src is an inode */ 9164 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9165 BTRFS_I(old_dentry->d_inode), 9166 old_dentry->d_name.name, 9167 old_dentry->d_name.len); 9168 if (!ret) 9169 ret = btrfs_update_inode(trans, root, old_inode); 9170 } 9171 if (ret) { 9172 btrfs_abort_transaction(trans, ret); 9173 goto out_fail; 9174 } 9175 9176 /* dest is a subvolume */ 9177 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9178 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9179 } else { /* dest is an inode */ 9180 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9181 BTRFS_I(new_dentry->d_inode), 9182 new_dentry->d_name.name, 9183 new_dentry->d_name.len); 9184 if (!ret) 9185 ret = btrfs_update_inode(trans, dest, new_inode); 9186 } 9187 if (ret) { 9188 btrfs_abort_transaction(trans, ret); 9189 goto out_fail; 9190 } 9191 9192 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9193 new_dentry->d_name.name, 9194 new_dentry->d_name.len, 0, old_idx); 9195 if (ret) { 9196 btrfs_abort_transaction(trans, ret); 9197 goto out_fail; 9198 } 9199 9200 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9201 old_dentry->d_name.name, 9202 old_dentry->d_name.len, 0, new_idx); 9203 if (ret) { 9204 btrfs_abort_transaction(trans, ret); 9205 goto out_fail; 9206 } 9207 9208 if (old_inode->i_nlink == 1) 9209 BTRFS_I(old_inode)->dir_index = old_idx; 9210 if (new_inode->i_nlink == 1) 9211 BTRFS_I(new_inode)->dir_index = new_idx; 9212 9213 if (root_log_pinned) { 9214 parent = new_dentry->d_parent; 9215 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9216 BTRFS_I(old_dir), parent, 9217 false, &ctx_root); 9218 if (ret == BTRFS_NEED_LOG_SYNC) 9219 sync_log_root = true; 9220 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9221 commit_transaction = true; 9222 ret = 0; 9223 btrfs_end_log_trans(root); 9224 root_log_pinned = false; 9225 } 9226 if (dest_log_pinned) { 9227 if (!commit_transaction) { 9228 parent = old_dentry->d_parent; 9229 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9230 BTRFS_I(new_dir), parent, 9231 false, &ctx_dest); 9232 if (ret == BTRFS_NEED_LOG_SYNC) 9233 sync_log_dest = true; 9234 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9235 commit_transaction = true; 9236 ret = 0; 9237 } 9238 btrfs_end_log_trans(dest); 9239 dest_log_pinned = false; 9240 } 9241 out_fail: 9242 /* 9243 * If we have pinned a log and an error happened, we unpin tasks 9244 * trying to sync the log and force them to fallback to a transaction 9245 * commit if the log currently contains any of the inodes involved in 9246 * this rename operation (to ensure we do not persist a log with an 9247 * inconsistent state for any of these inodes or leading to any 9248 * inconsistencies when replayed). If the transaction was aborted, the 9249 * abortion reason is propagated to userspace when attempting to commit 9250 * the transaction. If the log does not contain any of these inodes, we 9251 * allow the tasks to sync it. 9252 */ 9253 if (ret && (root_log_pinned || dest_log_pinned)) { 9254 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9255 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9256 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9257 (new_inode && 9258 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9259 btrfs_set_log_full_commit(trans); 9260 9261 if (root_log_pinned) { 9262 btrfs_end_log_trans(root); 9263 root_log_pinned = false; 9264 } 9265 if (dest_log_pinned) { 9266 btrfs_end_log_trans(dest); 9267 dest_log_pinned = false; 9268 } 9269 } 9270 if (!ret && sync_log_root && !commit_transaction) { 9271 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9272 &ctx_root); 9273 if (ret) 9274 commit_transaction = true; 9275 } 9276 if (!ret && sync_log_dest && !commit_transaction) { 9277 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9278 &ctx_dest); 9279 if (ret) 9280 commit_transaction = true; 9281 } 9282 if (commit_transaction) { 9283 /* 9284 * We may have set commit_transaction when logging the new name 9285 * in the destination root, in which case we left the source 9286 * root context in the list of log contextes. So make sure we 9287 * remove it to avoid invalid memory accesses, since the context 9288 * was allocated in our stack frame. 9289 */ 9290 if (sync_log_root) { 9291 mutex_lock(&root->log_mutex); 9292 list_del_init(&ctx_root.list); 9293 mutex_unlock(&root->log_mutex); 9294 } 9295 ret = btrfs_commit_transaction(trans); 9296 } else { 9297 int ret2; 9298 9299 ret2 = btrfs_end_transaction(trans); 9300 ret = ret ? ret : ret2; 9301 } 9302 out_notrans: 9303 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9304 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9305 up_read(&fs_info->subvol_sem); 9306 9307 ASSERT(list_empty(&ctx_root.list)); 9308 ASSERT(list_empty(&ctx_dest.list)); 9309 9310 return ret; 9311 } 9312 9313 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9314 struct btrfs_root *root, 9315 struct inode *dir, 9316 struct dentry *dentry) 9317 { 9318 int ret; 9319 struct inode *inode; 9320 u64 objectid; 9321 u64 index; 9322 9323 ret = btrfs_find_free_ino(root, &objectid); 9324 if (ret) 9325 return ret; 9326 9327 inode = btrfs_new_inode(trans, root, dir, 9328 dentry->d_name.name, 9329 dentry->d_name.len, 9330 btrfs_ino(BTRFS_I(dir)), 9331 objectid, 9332 S_IFCHR | WHITEOUT_MODE, 9333 &index); 9334 9335 if (IS_ERR(inode)) { 9336 ret = PTR_ERR(inode); 9337 return ret; 9338 } 9339 9340 inode->i_op = &btrfs_special_inode_operations; 9341 init_special_inode(inode, inode->i_mode, 9342 WHITEOUT_DEV); 9343 9344 ret = btrfs_init_inode_security(trans, inode, dir, 9345 &dentry->d_name); 9346 if (ret) 9347 goto out; 9348 9349 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9350 BTRFS_I(inode), 0, index); 9351 if (ret) 9352 goto out; 9353 9354 ret = btrfs_update_inode(trans, root, inode); 9355 out: 9356 unlock_new_inode(inode); 9357 if (ret) 9358 inode_dec_link_count(inode); 9359 iput(inode); 9360 9361 return ret; 9362 } 9363 9364 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9365 struct inode *new_dir, struct dentry *new_dentry, 9366 unsigned int flags) 9367 { 9368 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9369 struct btrfs_trans_handle *trans; 9370 unsigned int trans_num_items; 9371 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9372 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9373 struct inode *new_inode = d_inode(new_dentry); 9374 struct inode *old_inode = d_inode(old_dentry); 9375 u64 index = 0; 9376 int ret; 9377 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9378 bool log_pinned = false; 9379 struct btrfs_log_ctx ctx; 9380 bool sync_log = false; 9381 bool commit_transaction = false; 9382 9383 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9384 return -EPERM; 9385 9386 /* we only allow rename subvolume link between subvolumes */ 9387 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9388 return -EXDEV; 9389 9390 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9391 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9392 return -ENOTEMPTY; 9393 9394 if (S_ISDIR(old_inode->i_mode) && new_inode && 9395 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9396 return -ENOTEMPTY; 9397 9398 9399 /* check for collisions, even if the name isn't there */ 9400 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9401 new_dentry->d_name.name, 9402 new_dentry->d_name.len); 9403 9404 if (ret) { 9405 if (ret == -EEXIST) { 9406 /* we shouldn't get 9407 * eexist without a new_inode */ 9408 if (WARN_ON(!new_inode)) { 9409 return ret; 9410 } 9411 } else { 9412 /* maybe -EOVERFLOW */ 9413 return ret; 9414 } 9415 } 9416 ret = 0; 9417 9418 /* 9419 * we're using rename to replace one file with another. Start IO on it 9420 * now so we don't add too much work to the end of the transaction 9421 */ 9422 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9423 filemap_flush(old_inode->i_mapping); 9424 9425 /* close the racy window with snapshot create/destroy ioctl */ 9426 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9427 down_read(&fs_info->subvol_sem); 9428 /* 9429 * We want to reserve the absolute worst case amount of items. So if 9430 * both inodes are subvols and we need to unlink them then that would 9431 * require 4 item modifications, but if they are both normal inodes it 9432 * would require 5 item modifications, so we'll assume they are normal 9433 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9434 * should cover the worst case number of items we'll modify. 9435 * If our rename has the whiteout flag, we need more 5 units for the 9436 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9437 * when selinux is enabled). 9438 */ 9439 trans_num_items = 11; 9440 if (flags & RENAME_WHITEOUT) 9441 trans_num_items += 5; 9442 trans = btrfs_start_transaction(root, trans_num_items); 9443 if (IS_ERR(trans)) { 9444 ret = PTR_ERR(trans); 9445 goto out_notrans; 9446 } 9447 9448 if (dest != root) 9449 btrfs_record_root_in_trans(trans, dest); 9450 9451 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9452 if (ret) 9453 goto out_fail; 9454 9455 BTRFS_I(old_inode)->dir_index = 0ULL; 9456 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9457 /* force full log commit if subvolume involved. */ 9458 btrfs_set_log_full_commit(trans); 9459 } else { 9460 btrfs_pin_log_trans(root); 9461 log_pinned = true; 9462 ret = btrfs_insert_inode_ref(trans, dest, 9463 new_dentry->d_name.name, 9464 new_dentry->d_name.len, 9465 old_ino, 9466 btrfs_ino(BTRFS_I(new_dir)), index); 9467 if (ret) 9468 goto out_fail; 9469 } 9470 9471 inode_inc_iversion(old_dir); 9472 inode_inc_iversion(new_dir); 9473 inode_inc_iversion(old_inode); 9474 old_dir->i_ctime = old_dir->i_mtime = 9475 new_dir->i_ctime = new_dir->i_mtime = 9476 old_inode->i_ctime = current_time(old_dir); 9477 9478 if (old_dentry->d_parent != new_dentry->d_parent) 9479 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9480 BTRFS_I(old_inode), 1); 9481 9482 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9483 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9484 } else { 9485 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9486 BTRFS_I(d_inode(old_dentry)), 9487 old_dentry->d_name.name, 9488 old_dentry->d_name.len); 9489 if (!ret) 9490 ret = btrfs_update_inode(trans, root, old_inode); 9491 } 9492 if (ret) { 9493 btrfs_abort_transaction(trans, ret); 9494 goto out_fail; 9495 } 9496 9497 if (new_inode) { 9498 inode_inc_iversion(new_inode); 9499 new_inode->i_ctime = current_time(new_inode); 9500 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9501 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9502 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9503 BUG_ON(new_inode->i_nlink == 0); 9504 } else { 9505 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9506 BTRFS_I(d_inode(new_dentry)), 9507 new_dentry->d_name.name, 9508 new_dentry->d_name.len); 9509 } 9510 if (!ret && new_inode->i_nlink == 0) 9511 ret = btrfs_orphan_add(trans, 9512 BTRFS_I(d_inode(new_dentry))); 9513 if (ret) { 9514 btrfs_abort_transaction(trans, ret); 9515 goto out_fail; 9516 } 9517 } 9518 9519 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9520 new_dentry->d_name.name, 9521 new_dentry->d_name.len, 0, index); 9522 if (ret) { 9523 btrfs_abort_transaction(trans, ret); 9524 goto out_fail; 9525 } 9526 9527 if (old_inode->i_nlink == 1) 9528 BTRFS_I(old_inode)->dir_index = index; 9529 9530 if (log_pinned) { 9531 struct dentry *parent = new_dentry->d_parent; 9532 9533 btrfs_init_log_ctx(&ctx, old_inode); 9534 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9535 BTRFS_I(old_dir), parent, 9536 false, &ctx); 9537 if (ret == BTRFS_NEED_LOG_SYNC) 9538 sync_log = true; 9539 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9540 commit_transaction = true; 9541 ret = 0; 9542 btrfs_end_log_trans(root); 9543 log_pinned = false; 9544 } 9545 9546 if (flags & RENAME_WHITEOUT) { 9547 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9548 old_dentry); 9549 9550 if (ret) { 9551 btrfs_abort_transaction(trans, ret); 9552 goto out_fail; 9553 } 9554 } 9555 out_fail: 9556 /* 9557 * If we have pinned the log and an error happened, we unpin tasks 9558 * trying to sync the log and force them to fallback to a transaction 9559 * commit if the log currently contains any of the inodes involved in 9560 * this rename operation (to ensure we do not persist a log with an 9561 * inconsistent state for any of these inodes or leading to any 9562 * inconsistencies when replayed). If the transaction was aborted, the 9563 * abortion reason is propagated to userspace when attempting to commit 9564 * the transaction. If the log does not contain any of these inodes, we 9565 * allow the tasks to sync it. 9566 */ 9567 if (ret && log_pinned) { 9568 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9569 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9570 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9571 (new_inode && 9572 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9573 btrfs_set_log_full_commit(trans); 9574 9575 btrfs_end_log_trans(root); 9576 log_pinned = false; 9577 } 9578 if (!ret && sync_log) { 9579 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9580 if (ret) 9581 commit_transaction = true; 9582 } else if (sync_log) { 9583 mutex_lock(&root->log_mutex); 9584 list_del(&ctx.list); 9585 mutex_unlock(&root->log_mutex); 9586 } 9587 if (commit_transaction) { 9588 ret = btrfs_commit_transaction(trans); 9589 } else { 9590 int ret2; 9591 9592 ret2 = btrfs_end_transaction(trans); 9593 ret = ret ? ret : ret2; 9594 } 9595 out_notrans: 9596 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9597 up_read(&fs_info->subvol_sem); 9598 9599 return ret; 9600 } 9601 9602 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9603 struct inode *new_dir, struct dentry *new_dentry, 9604 unsigned int flags) 9605 { 9606 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9607 return -EINVAL; 9608 9609 if (flags & RENAME_EXCHANGE) 9610 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9611 new_dentry); 9612 9613 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9614 } 9615 9616 struct btrfs_delalloc_work { 9617 struct inode *inode; 9618 struct completion completion; 9619 struct list_head list; 9620 struct btrfs_work work; 9621 }; 9622 9623 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9624 { 9625 struct btrfs_delalloc_work *delalloc_work; 9626 struct inode *inode; 9627 9628 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9629 work); 9630 inode = delalloc_work->inode; 9631 filemap_flush(inode->i_mapping); 9632 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9633 &BTRFS_I(inode)->runtime_flags)) 9634 filemap_flush(inode->i_mapping); 9635 9636 iput(inode); 9637 complete(&delalloc_work->completion); 9638 } 9639 9640 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9641 { 9642 struct btrfs_delalloc_work *work; 9643 9644 work = kmalloc(sizeof(*work), GFP_NOFS); 9645 if (!work) 9646 return NULL; 9647 9648 init_completion(&work->completion); 9649 INIT_LIST_HEAD(&work->list); 9650 work->inode = inode; 9651 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9652 9653 return work; 9654 } 9655 9656 /* 9657 * some fairly slow code that needs optimization. This walks the list 9658 * of all the inodes with pending delalloc and forces them to disk. 9659 */ 9660 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 9661 { 9662 struct btrfs_inode *binode; 9663 struct inode *inode; 9664 struct btrfs_delalloc_work *work, *next; 9665 struct list_head works; 9666 struct list_head splice; 9667 int ret = 0; 9668 9669 INIT_LIST_HEAD(&works); 9670 INIT_LIST_HEAD(&splice); 9671 9672 mutex_lock(&root->delalloc_mutex); 9673 spin_lock(&root->delalloc_lock); 9674 list_splice_init(&root->delalloc_inodes, &splice); 9675 while (!list_empty(&splice)) { 9676 binode = list_entry(splice.next, struct btrfs_inode, 9677 delalloc_inodes); 9678 9679 list_move_tail(&binode->delalloc_inodes, 9680 &root->delalloc_inodes); 9681 inode = igrab(&binode->vfs_inode); 9682 if (!inode) { 9683 cond_resched_lock(&root->delalloc_lock); 9684 continue; 9685 } 9686 spin_unlock(&root->delalloc_lock); 9687 9688 if (snapshot) 9689 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9690 &binode->runtime_flags); 9691 work = btrfs_alloc_delalloc_work(inode); 9692 if (!work) { 9693 iput(inode); 9694 ret = -ENOMEM; 9695 goto out; 9696 } 9697 list_add_tail(&work->list, &works); 9698 btrfs_queue_work(root->fs_info->flush_workers, 9699 &work->work); 9700 ret++; 9701 if (nr != -1 && ret >= nr) 9702 goto out; 9703 cond_resched(); 9704 spin_lock(&root->delalloc_lock); 9705 } 9706 spin_unlock(&root->delalloc_lock); 9707 9708 out: 9709 list_for_each_entry_safe(work, next, &works, list) { 9710 list_del_init(&work->list); 9711 wait_for_completion(&work->completion); 9712 kfree(work); 9713 } 9714 9715 if (!list_empty(&splice)) { 9716 spin_lock(&root->delalloc_lock); 9717 list_splice_tail(&splice, &root->delalloc_inodes); 9718 spin_unlock(&root->delalloc_lock); 9719 } 9720 mutex_unlock(&root->delalloc_mutex); 9721 return ret; 9722 } 9723 9724 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9725 { 9726 struct btrfs_fs_info *fs_info = root->fs_info; 9727 int ret; 9728 9729 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9730 return -EROFS; 9731 9732 ret = start_delalloc_inodes(root, -1, true); 9733 if (ret > 0) 9734 ret = 0; 9735 return ret; 9736 } 9737 9738 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 9739 { 9740 struct btrfs_root *root; 9741 struct list_head splice; 9742 int ret; 9743 9744 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9745 return -EROFS; 9746 9747 INIT_LIST_HEAD(&splice); 9748 9749 mutex_lock(&fs_info->delalloc_root_mutex); 9750 spin_lock(&fs_info->delalloc_root_lock); 9751 list_splice_init(&fs_info->delalloc_roots, &splice); 9752 while (!list_empty(&splice) && nr) { 9753 root = list_first_entry(&splice, struct btrfs_root, 9754 delalloc_root); 9755 root = btrfs_grab_root(root); 9756 BUG_ON(!root); 9757 list_move_tail(&root->delalloc_root, 9758 &fs_info->delalloc_roots); 9759 spin_unlock(&fs_info->delalloc_root_lock); 9760 9761 ret = start_delalloc_inodes(root, nr, false); 9762 btrfs_put_root(root); 9763 if (ret < 0) 9764 goto out; 9765 9766 if (nr != -1) { 9767 nr -= ret; 9768 WARN_ON(nr < 0); 9769 } 9770 spin_lock(&fs_info->delalloc_root_lock); 9771 } 9772 spin_unlock(&fs_info->delalloc_root_lock); 9773 9774 ret = 0; 9775 out: 9776 if (!list_empty(&splice)) { 9777 spin_lock(&fs_info->delalloc_root_lock); 9778 list_splice_tail(&splice, &fs_info->delalloc_roots); 9779 spin_unlock(&fs_info->delalloc_root_lock); 9780 } 9781 mutex_unlock(&fs_info->delalloc_root_mutex); 9782 return ret; 9783 } 9784 9785 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9786 const char *symname) 9787 { 9788 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9789 struct btrfs_trans_handle *trans; 9790 struct btrfs_root *root = BTRFS_I(dir)->root; 9791 struct btrfs_path *path; 9792 struct btrfs_key key; 9793 struct inode *inode = NULL; 9794 int err; 9795 u64 objectid; 9796 u64 index = 0; 9797 int name_len; 9798 int datasize; 9799 unsigned long ptr; 9800 struct btrfs_file_extent_item *ei; 9801 struct extent_buffer *leaf; 9802 9803 name_len = strlen(symname); 9804 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9805 return -ENAMETOOLONG; 9806 9807 /* 9808 * 2 items for inode item and ref 9809 * 2 items for dir items 9810 * 1 item for updating parent inode item 9811 * 1 item for the inline extent item 9812 * 1 item for xattr if selinux is on 9813 */ 9814 trans = btrfs_start_transaction(root, 7); 9815 if (IS_ERR(trans)) 9816 return PTR_ERR(trans); 9817 9818 err = btrfs_find_free_ino(root, &objectid); 9819 if (err) 9820 goto out_unlock; 9821 9822 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9823 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9824 objectid, S_IFLNK|S_IRWXUGO, &index); 9825 if (IS_ERR(inode)) { 9826 err = PTR_ERR(inode); 9827 inode = NULL; 9828 goto out_unlock; 9829 } 9830 9831 /* 9832 * If the active LSM wants to access the inode during 9833 * d_instantiate it needs these. Smack checks to see 9834 * if the filesystem supports xattrs by looking at the 9835 * ops vector. 9836 */ 9837 inode->i_fop = &btrfs_file_operations; 9838 inode->i_op = &btrfs_file_inode_operations; 9839 inode->i_mapping->a_ops = &btrfs_aops; 9840 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9841 9842 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9843 if (err) 9844 goto out_unlock; 9845 9846 path = btrfs_alloc_path(); 9847 if (!path) { 9848 err = -ENOMEM; 9849 goto out_unlock; 9850 } 9851 key.objectid = btrfs_ino(BTRFS_I(inode)); 9852 key.offset = 0; 9853 key.type = BTRFS_EXTENT_DATA_KEY; 9854 datasize = btrfs_file_extent_calc_inline_size(name_len); 9855 err = btrfs_insert_empty_item(trans, root, path, &key, 9856 datasize); 9857 if (err) { 9858 btrfs_free_path(path); 9859 goto out_unlock; 9860 } 9861 leaf = path->nodes[0]; 9862 ei = btrfs_item_ptr(leaf, path->slots[0], 9863 struct btrfs_file_extent_item); 9864 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9865 btrfs_set_file_extent_type(leaf, ei, 9866 BTRFS_FILE_EXTENT_INLINE); 9867 btrfs_set_file_extent_encryption(leaf, ei, 0); 9868 btrfs_set_file_extent_compression(leaf, ei, 0); 9869 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9870 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9871 9872 ptr = btrfs_file_extent_inline_start(ei); 9873 write_extent_buffer(leaf, symname, ptr, name_len); 9874 btrfs_mark_buffer_dirty(leaf); 9875 btrfs_free_path(path); 9876 9877 inode->i_op = &btrfs_symlink_inode_operations; 9878 inode_nohighmem(inode); 9879 inode_set_bytes(inode, name_len); 9880 btrfs_i_size_write(BTRFS_I(inode), name_len); 9881 err = btrfs_update_inode(trans, root, inode); 9882 /* 9883 * Last step, add directory indexes for our symlink inode. This is the 9884 * last step to avoid extra cleanup of these indexes if an error happens 9885 * elsewhere above. 9886 */ 9887 if (!err) 9888 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9889 BTRFS_I(inode), 0, index); 9890 if (err) 9891 goto out_unlock; 9892 9893 d_instantiate_new(dentry, inode); 9894 9895 out_unlock: 9896 btrfs_end_transaction(trans); 9897 if (err && inode) { 9898 inode_dec_link_count(inode); 9899 discard_new_inode(inode); 9900 } 9901 btrfs_btree_balance_dirty(fs_info); 9902 return err; 9903 } 9904 9905 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9906 u64 start, u64 num_bytes, u64 min_size, 9907 loff_t actual_len, u64 *alloc_hint, 9908 struct btrfs_trans_handle *trans) 9909 { 9910 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9911 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9912 struct extent_map *em; 9913 struct btrfs_root *root = BTRFS_I(inode)->root; 9914 struct btrfs_key ins; 9915 u64 cur_offset = start; 9916 u64 clear_offset = start; 9917 u64 i_size; 9918 u64 cur_bytes; 9919 u64 last_alloc = (u64)-1; 9920 int ret = 0; 9921 bool own_trans = true; 9922 u64 end = start + num_bytes - 1; 9923 9924 if (trans) 9925 own_trans = false; 9926 while (num_bytes > 0) { 9927 if (own_trans) { 9928 trans = btrfs_start_transaction(root, 3); 9929 if (IS_ERR(trans)) { 9930 ret = PTR_ERR(trans); 9931 break; 9932 } 9933 } 9934 9935 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9936 cur_bytes = max(cur_bytes, min_size); 9937 /* 9938 * If we are severely fragmented we could end up with really 9939 * small allocations, so if the allocator is returning small 9940 * chunks lets make its job easier by only searching for those 9941 * sized chunks. 9942 */ 9943 cur_bytes = min(cur_bytes, last_alloc); 9944 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9945 min_size, 0, *alloc_hint, &ins, 1, 0); 9946 if (ret) { 9947 if (own_trans) 9948 btrfs_end_transaction(trans); 9949 break; 9950 } 9951 9952 /* 9953 * We've reserved this space, and thus converted it from 9954 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9955 * from here on out we will only need to clear our reservation 9956 * for the remaining unreserved area, so advance our 9957 * clear_offset by our extent size. 9958 */ 9959 clear_offset += ins.offset; 9960 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9961 9962 last_alloc = ins.offset; 9963 ret = insert_reserved_file_extent(trans, inode, 9964 cur_offset, ins.objectid, 9965 ins.offset, ins.offset, 9966 ins.offset, 0, 0, 0, 9967 BTRFS_FILE_EXTENT_PREALLOC); 9968 if (ret) { 9969 btrfs_free_reserved_extent(fs_info, ins.objectid, 9970 ins.offset, 0); 9971 btrfs_abort_transaction(trans, ret); 9972 if (own_trans) 9973 btrfs_end_transaction(trans); 9974 break; 9975 } 9976 9977 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9978 cur_offset + ins.offset -1, 0); 9979 9980 em = alloc_extent_map(); 9981 if (!em) { 9982 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9983 &BTRFS_I(inode)->runtime_flags); 9984 goto next; 9985 } 9986 9987 em->start = cur_offset; 9988 em->orig_start = cur_offset; 9989 em->len = ins.offset; 9990 em->block_start = ins.objectid; 9991 em->block_len = ins.offset; 9992 em->orig_block_len = ins.offset; 9993 em->ram_bytes = ins.offset; 9994 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9995 em->generation = trans->transid; 9996 9997 while (1) { 9998 write_lock(&em_tree->lock); 9999 ret = add_extent_mapping(em_tree, em, 1); 10000 write_unlock(&em_tree->lock); 10001 if (ret != -EEXIST) 10002 break; 10003 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10004 cur_offset + ins.offset - 1, 10005 0); 10006 } 10007 free_extent_map(em); 10008 next: 10009 num_bytes -= ins.offset; 10010 cur_offset += ins.offset; 10011 *alloc_hint = ins.objectid + ins.offset; 10012 10013 inode_inc_iversion(inode); 10014 inode->i_ctime = current_time(inode); 10015 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10016 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10017 (actual_len > inode->i_size) && 10018 (cur_offset > inode->i_size)) { 10019 if (cur_offset > actual_len) 10020 i_size = actual_len; 10021 else 10022 i_size = cur_offset; 10023 i_size_write(inode, i_size); 10024 btrfs_inode_safe_disk_i_size_write(inode, 0); 10025 } 10026 10027 ret = btrfs_update_inode(trans, root, inode); 10028 10029 if (ret) { 10030 btrfs_abort_transaction(trans, ret); 10031 if (own_trans) 10032 btrfs_end_transaction(trans); 10033 break; 10034 } 10035 10036 if (own_trans) 10037 btrfs_end_transaction(trans); 10038 } 10039 if (clear_offset < end) 10040 btrfs_free_reserved_data_space(inode, NULL, clear_offset, 10041 end - clear_offset + 1); 10042 return ret; 10043 } 10044 10045 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10046 u64 start, u64 num_bytes, u64 min_size, 10047 loff_t actual_len, u64 *alloc_hint) 10048 { 10049 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10050 min_size, actual_len, alloc_hint, 10051 NULL); 10052 } 10053 10054 int btrfs_prealloc_file_range_trans(struct inode *inode, 10055 struct btrfs_trans_handle *trans, int mode, 10056 u64 start, u64 num_bytes, u64 min_size, 10057 loff_t actual_len, u64 *alloc_hint) 10058 { 10059 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10060 min_size, actual_len, alloc_hint, trans); 10061 } 10062 10063 static int btrfs_set_page_dirty(struct page *page) 10064 { 10065 return __set_page_dirty_nobuffers(page); 10066 } 10067 10068 static int btrfs_permission(struct inode *inode, int mask) 10069 { 10070 struct btrfs_root *root = BTRFS_I(inode)->root; 10071 umode_t mode = inode->i_mode; 10072 10073 if (mask & MAY_WRITE && 10074 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10075 if (btrfs_root_readonly(root)) 10076 return -EROFS; 10077 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10078 return -EACCES; 10079 } 10080 return generic_permission(inode, mask); 10081 } 10082 10083 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10084 { 10085 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10086 struct btrfs_trans_handle *trans; 10087 struct btrfs_root *root = BTRFS_I(dir)->root; 10088 struct inode *inode = NULL; 10089 u64 objectid; 10090 u64 index; 10091 int ret = 0; 10092 10093 /* 10094 * 5 units required for adding orphan entry 10095 */ 10096 trans = btrfs_start_transaction(root, 5); 10097 if (IS_ERR(trans)) 10098 return PTR_ERR(trans); 10099 10100 ret = btrfs_find_free_ino(root, &objectid); 10101 if (ret) 10102 goto out; 10103 10104 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10105 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10106 if (IS_ERR(inode)) { 10107 ret = PTR_ERR(inode); 10108 inode = NULL; 10109 goto out; 10110 } 10111 10112 inode->i_fop = &btrfs_file_operations; 10113 inode->i_op = &btrfs_file_inode_operations; 10114 10115 inode->i_mapping->a_ops = &btrfs_aops; 10116 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10117 10118 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10119 if (ret) 10120 goto out; 10121 10122 ret = btrfs_update_inode(trans, root, inode); 10123 if (ret) 10124 goto out; 10125 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10126 if (ret) 10127 goto out; 10128 10129 /* 10130 * We set number of links to 0 in btrfs_new_inode(), and here we set 10131 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10132 * through: 10133 * 10134 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10135 */ 10136 set_nlink(inode, 1); 10137 d_tmpfile(dentry, inode); 10138 unlock_new_inode(inode); 10139 mark_inode_dirty(inode); 10140 out: 10141 btrfs_end_transaction(trans); 10142 if (ret && inode) 10143 discard_new_inode(inode); 10144 btrfs_btree_balance_dirty(fs_info); 10145 return ret; 10146 } 10147 10148 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10149 { 10150 struct inode *inode = tree->private_data; 10151 unsigned long index = start >> PAGE_SHIFT; 10152 unsigned long end_index = end >> PAGE_SHIFT; 10153 struct page *page; 10154 10155 while (index <= end_index) { 10156 page = find_get_page(inode->i_mapping, index); 10157 ASSERT(page); /* Pages should be in the extent_io_tree */ 10158 set_page_writeback(page); 10159 put_page(page); 10160 index++; 10161 } 10162 } 10163 10164 #ifdef CONFIG_SWAP 10165 /* 10166 * Add an entry indicating a block group or device which is pinned by a 10167 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10168 * negative errno on failure. 10169 */ 10170 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10171 bool is_block_group) 10172 { 10173 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10174 struct btrfs_swapfile_pin *sp, *entry; 10175 struct rb_node **p; 10176 struct rb_node *parent = NULL; 10177 10178 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10179 if (!sp) 10180 return -ENOMEM; 10181 sp->ptr = ptr; 10182 sp->inode = inode; 10183 sp->is_block_group = is_block_group; 10184 10185 spin_lock(&fs_info->swapfile_pins_lock); 10186 p = &fs_info->swapfile_pins.rb_node; 10187 while (*p) { 10188 parent = *p; 10189 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10190 if (sp->ptr < entry->ptr || 10191 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10192 p = &(*p)->rb_left; 10193 } else if (sp->ptr > entry->ptr || 10194 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10195 p = &(*p)->rb_right; 10196 } else { 10197 spin_unlock(&fs_info->swapfile_pins_lock); 10198 kfree(sp); 10199 return 1; 10200 } 10201 } 10202 rb_link_node(&sp->node, parent, p); 10203 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10204 spin_unlock(&fs_info->swapfile_pins_lock); 10205 return 0; 10206 } 10207 10208 /* Free all of the entries pinned by this swapfile. */ 10209 static void btrfs_free_swapfile_pins(struct inode *inode) 10210 { 10211 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10212 struct btrfs_swapfile_pin *sp; 10213 struct rb_node *node, *next; 10214 10215 spin_lock(&fs_info->swapfile_pins_lock); 10216 node = rb_first(&fs_info->swapfile_pins); 10217 while (node) { 10218 next = rb_next(node); 10219 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10220 if (sp->inode == inode) { 10221 rb_erase(&sp->node, &fs_info->swapfile_pins); 10222 if (sp->is_block_group) 10223 btrfs_put_block_group(sp->ptr); 10224 kfree(sp); 10225 } 10226 node = next; 10227 } 10228 spin_unlock(&fs_info->swapfile_pins_lock); 10229 } 10230 10231 struct btrfs_swap_info { 10232 u64 start; 10233 u64 block_start; 10234 u64 block_len; 10235 u64 lowest_ppage; 10236 u64 highest_ppage; 10237 unsigned long nr_pages; 10238 int nr_extents; 10239 }; 10240 10241 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10242 struct btrfs_swap_info *bsi) 10243 { 10244 unsigned long nr_pages; 10245 u64 first_ppage, first_ppage_reported, next_ppage; 10246 int ret; 10247 10248 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10249 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10250 PAGE_SIZE) >> PAGE_SHIFT; 10251 10252 if (first_ppage >= next_ppage) 10253 return 0; 10254 nr_pages = next_ppage - first_ppage; 10255 10256 first_ppage_reported = first_ppage; 10257 if (bsi->start == 0) 10258 first_ppage_reported++; 10259 if (bsi->lowest_ppage > first_ppage_reported) 10260 bsi->lowest_ppage = first_ppage_reported; 10261 if (bsi->highest_ppage < (next_ppage - 1)) 10262 bsi->highest_ppage = next_ppage - 1; 10263 10264 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10265 if (ret < 0) 10266 return ret; 10267 bsi->nr_extents += ret; 10268 bsi->nr_pages += nr_pages; 10269 return 0; 10270 } 10271 10272 static void btrfs_swap_deactivate(struct file *file) 10273 { 10274 struct inode *inode = file_inode(file); 10275 10276 btrfs_free_swapfile_pins(inode); 10277 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10278 } 10279 10280 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10281 sector_t *span) 10282 { 10283 struct inode *inode = file_inode(file); 10284 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10285 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10286 struct extent_state *cached_state = NULL; 10287 struct extent_map *em = NULL; 10288 struct btrfs_device *device = NULL; 10289 struct btrfs_swap_info bsi = { 10290 .lowest_ppage = (sector_t)-1ULL, 10291 }; 10292 int ret = 0; 10293 u64 isize; 10294 u64 start; 10295 10296 /* 10297 * If the swap file was just created, make sure delalloc is done. If the 10298 * file changes again after this, the user is doing something stupid and 10299 * we don't really care. 10300 */ 10301 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10302 if (ret) 10303 return ret; 10304 10305 /* 10306 * The inode is locked, so these flags won't change after we check them. 10307 */ 10308 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10309 btrfs_warn(fs_info, "swapfile must not be compressed"); 10310 return -EINVAL; 10311 } 10312 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10313 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10314 return -EINVAL; 10315 } 10316 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10317 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10318 return -EINVAL; 10319 } 10320 10321 /* 10322 * Balance or device remove/replace/resize can move stuff around from 10323 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10324 * concurrently while we are mapping the swap extents, and 10325 * fs_info->swapfile_pins prevents them from running while the swap file 10326 * is active and moving the extents. Note that this also prevents a 10327 * concurrent device add which isn't actually necessary, but it's not 10328 * really worth the trouble to allow it. 10329 */ 10330 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10331 btrfs_warn(fs_info, 10332 "cannot activate swapfile while exclusive operation is running"); 10333 return -EBUSY; 10334 } 10335 /* 10336 * Snapshots can create extents which require COW even if NODATACOW is 10337 * set. We use this counter to prevent snapshots. We must increment it 10338 * before walking the extents because we don't want a concurrent 10339 * snapshot to run after we've already checked the extents. 10340 */ 10341 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10342 10343 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10344 10345 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10346 start = 0; 10347 while (start < isize) { 10348 u64 logical_block_start, physical_block_start; 10349 struct btrfs_block_group *bg; 10350 u64 len = isize - start; 10351 10352 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10353 if (IS_ERR(em)) { 10354 ret = PTR_ERR(em); 10355 goto out; 10356 } 10357 10358 if (em->block_start == EXTENT_MAP_HOLE) { 10359 btrfs_warn(fs_info, "swapfile must not have holes"); 10360 ret = -EINVAL; 10361 goto out; 10362 } 10363 if (em->block_start == EXTENT_MAP_INLINE) { 10364 /* 10365 * It's unlikely we'll ever actually find ourselves 10366 * here, as a file small enough to fit inline won't be 10367 * big enough to store more than the swap header, but in 10368 * case something changes in the future, let's catch it 10369 * here rather than later. 10370 */ 10371 btrfs_warn(fs_info, "swapfile must not be inline"); 10372 ret = -EINVAL; 10373 goto out; 10374 } 10375 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10376 btrfs_warn(fs_info, "swapfile must not be compressed"); 10377 ret = -EINVAL; 10378 goto out; 10379 } 10380 10381 logical_block_start = em->block_start + (start - em->start); 10382 len = min(len, em->len - (start - em->start)); 10383 free_extent_map(em); 10384 em = NULL; 10385 10386 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10387 if (ret < 0) { 10388 goto out; 10389 } else if (ret) { 10390 ret = 0; 10391 } else { 10392 btrfs_warn(fs_info, 10393 "swapfile must not be copy-on-write"); 10394 ret = -EINVAL; 10395 goto out; 10396 } 10397 10398 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10399 if (IS_ERR(em)) { 10400 ret = PTR_ERR(em); 10401 goto out; 10402 } 10403 10404 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10405 btrfs_warn(fs_info, 10406 "swapfile must have single data profile"); 10407 ret = -EINVAL; 10408 goto out; 10409 } 10410 10411 if (device == NULL) { 10412 device = em->map_lookup->stripes[0].dev; 10413 ret = btrfs_add_swapfile_pin(inode, device, false); 10414 if (ret == 1) 10415 ret = 0; 10416 else if (ret) 10417 goto out; 10418 } else if (device != em->map_lookup->stripes[0].dev) { 10419 btrfs_warn(fs_info, "swapfile must be on one device"); 10420 ret = -EINVAL; 10421 goto out; 10422 } 10423 10424 physical_block_start = (em->map_lookup->stripes[0].physical + 10425 (logical_block_start - em->start)); 10426 len = min(len, em->len - (logical_block_start - em->start)); 10427 free_extent_map(em); 10428 em = NULL; 10429 10430 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10431 if (!bg) { 10432 btrfs_warn(fs_info, 10433 "could not find block group containing swapfile"); 10434 ret = -EINVAL; 10435 goto out; 10436 } 10437 10438 ret = btrfs_add_swapfile_pin(inode, bg, true); 10439 if (ret) { 10440 btrfs_put_block_group(bg); 10441 if (ret == 1) 10442 ret = 0; 10443 else 10444 goto out; 10445 } 10446 10447 if (bsi.block_len && 10448 bsi.block_start + bsi.block_len == physical_block_start) { 10449 bsi.block_len += len; 10450 } else { 10451 if (bsi.block_len) { 10452 ret = btrfs_add_swap_extent(sis, &bsi); 10453 if (ret) 10454 goto out; 10455 } 10456 bsi.start = start; 10457 bsi.block_start = physical_block_start; 10458 bsi.block_len = len; 10459 } 10460 10461 start += len; 10462 } 10463 10464 if (bsi.block_len) 10465 ret = btrfs_add_swap_extent(sis, &bsi); 10466 10467 out: 10468 if (!IS_ERR_OR_NULL(em)) 10469 free_extent_map(em); 10470 10471 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10472 10473 if (ret) 10474 btrfs_swap_deactivate(file); 10475 10476 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10477 10478 if (ret) 10479 return ret; 10480 10481 if (device) 10482 sis->bdev = device->bdev; 10483 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10484 sis->max = bsi.nr_pages; 10485 sis->pages = bsi.nr_pages - 1; 10486 sis->highest_bit = bsi.nr_pages - 1; 10487 return bsi.nr_extents; 10488 } 10489 #else 10490 static void btrfs_swap_deactivate(struct file *file) 10491 { 10492 } 10493 10494 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10495 sector_t *span) 10496 { 10497 return -EOPNOTSUPP; 10498 } 10499 #endif 10500 10501 static const struct inode_operations btrfs_dir_inode_operations = { 10502 .getattr = btrfs_getattr, 10503 .lookup = btrfs_lookup, 10504 .create = btrfs_create, 10505 .unlink = btrfs_unlink, 10506 .link = btrfs_link, 10507 .mkdir = btrfs_mkdir, 10508 .rmdir = btrfs_rmdir, 10509 .rename = btrfs_rename2, 10510 .symlink = btrfs_symlink, 10511 .setattr = btrfs_setattr, 10512 .mknod = btrfs_mknod, 10513 .listxattr = btrfs_listxattr, 10514 .permission = btrfs_permission, 10515 .get_acl = btrfs_get_acl, 10516 .set_acl = btrfs_set_acl, 10517 .update_time = btrfs_update_time, 10518 .tmpfile = btrfs_tmpfile, 10519 }; 10520 10521 static const struct file_operations btrfs_dir_file_operations = { 10522 .llseek = generic_file_llseek, 10523 .read = generic_read_dir, 10524 .iterate_shared = btrfs_real_readdir, 10525 .open = btrfs_opendir, 10526 .unlocked_ioctl = btrfs_ioctl, 10527 #ifdef CONFIG_COMPAT 10528 .compat_ioctl = btrfs_compat_ioctl, 10529 #endif 10530 .release = btrfs_release_file, 10531 .fsync = btrfs_sync_file, 10532 }; 10533 10534 static const struct extent_io_ops btrfs_extent_io_ops = { 10535 /* mandatory callbacks */ 10536 .submit_bio_hook = btrfs_submit_bio_hook, 10537 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10538 }; 10539 10540 /* 10541 * btrfs doesn't support the bmap operation because swapfiles 10542 * use bmap to make a mapping of extents in the file. They assume 10543 * these extents won't change over the life of the file and they 10544 * use the bmap result to do IO directly to the drive. 10545 * 10546 * the btrfs bmap call would return logical addresses that aren't 10547 * suitable for IO and they also will change frequently as COW 10548 * operations happen. So, swapfile + btrfs == corruption. 10549 * 10550 * For now we're avoiding this by dropping bmap. 10551 */ 10552 static const struct address_space_operations btrfs_aops = { 10553 .readpage = btrfs_readpage, 10554 .writepage = btrfs_writepage, 10555 .writepages = btrfs_writepages, 10556 .readpages = btrfs_readpages, 10557 .direct_IO = btrfs_direct_IO, 10558 .invalidatepage = btrfs_invalidatepage, 10559 .releasepage = btrfs_releasepage, 10560 #ifdef CONFIG_MIGRATION 10561 .migratepage = btrfs_migratepage, 10562 #endif 10563 .set_page_dirty = btrfs_set_page_dirty, 10564 .error_remove_page = generic_error_remove_page, 10565 .swap_activate = btrfs_swap_activate, 10566 .swap_deactivate = btrfs_swap_deactivate, 10567 }; 10568 10569 static const struct inode_operations btrfs_file_inode_operations = { 10570 .getattr = btrfs_getattr, 10571 .setattr = btrfs_setattr, 10572 .listxattr = btrfs_listxattr, 10573 .permission = btrfs_permission, 10574 .fiemap = btrfs_fiemap, 10575 .get_acl = btrfs_get_acl, 10576 .set_acl = btrfs_set_acl, 10577 .update_time = btrfs_update_time, 10578 }; 10579 static const struct inode_operations btrfs_special_inode_operations = { 10580 .getattr = btrfs_getattr, 10581 .setattr = btrfs_setattr, 10582 .permission = btrfs_permission, 10583 .listxattr = btrfs_listxattr, 10584 .get_acl = btrfs_get_acl, 10585 .set_acl = btrfs_set_acl, 10586 .update_time = btrfs_update_time, 10587 }; 10588 static const struct inode_operations btrfs_symlink_inode_operations = { 10589 .get_link = page_get_link, 10590 .getattr = btrfs_getattr, 10591 .setattr = btrfs_setattr, 10592 .permission = btrfs_permission, 10593 .listxattr = btrfs_listxattr, 10594 .update_time = btrfs_update_time, 10595 }; 10596 10597 const struct dentry_operations btrfs_dentry_operations = { 10598 .d_delete = btrfs_dentry_delete, 10599 }; 10600