xref: /openbmc/linux/fs/btrfs/inode.c (revision 151f4e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "ordered-data.h"
39 #include "xattr.h"
40 #include "tree-log.h"
41 #include "volumes.h"
42 #include "compression.h"
43 #include "locking.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "backref.h"
47 #include "props.h"
48 #include "qgroup.h"
49 #include "dedupe.h"
50 
51 struct btrfs_iget_args {
52 	struct btrfs_key *location;
53 	struct btrfs_root *root;
54 };
55 
56 struct btrfs_dio_data {
57 	u64 reserve;
58 	u64 unsubmitted_oe_range_start;
59 	u64 unsubmitted_oe_range_end;
60 	int overwrite;
61 };
62 
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static const struct extent_io_ops btrfs_extent_io_ops;
71 
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75 struct kmem_cache *btrfs_free_space_cachep;
76 
77 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
78 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
79 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
80 static noinline int cow_file_range(struct inode *inode,
81 				   struct page *locked_page,
82 				   u64 start, u64 end, u64 delalloc_end,
83 				   int *page_started, unsigned long *nr_written,
84 				   int unlock, struct btrfs_dedupe_hash *hash);
85 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
86 				       u64 orig_start, u64 block_start,
87 				       u64 block_len, u64 orig_block_len,
88 				       u64 ram_bytes, int compress_type,
89 				       int type);
90 
91 static void __endio_write_update_ordered(struct inode *inode,
92 					 const u64 offset, const u64 bytes,
93 					 const bool uptodate);
94 
95 /*
96  * Cleanup all submitted ordered extents in specified range to handle errors
97  * from the btrfs_run_delalloc_range() callback.
98  *
99  * NOTE: caller must ensure that when an error happens, it can not call
100  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
101  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
102  * to be released, which we want to happen only when finishing the ordered
103  * extent (btrfs_finish_ordered_io()).
104  */
105 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
106 						 struct page *locked_page,
107 						 u64 offset, u64 bytes)
108 {
109 	unsigned long index = offset >> PAGE_SHIFT;
110 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
111 	u64 page_start = page_offset(locked_page);
112 	u64 page_end = page_start + PAGE_SIZE - 1;
113 
114 	struct page *page;
115 
116 	while (index <= end_index) {
117 		page = find_get_page(inode->i_mapping, index);
118 		index++;
119 		if (!page)
120 			continue;
121 		ClearPagePrivate2(page);
122 		put_page(page);
123 	}
124 
125 	/*
126 	 * In case this page belongs to the delalloc range being instantiated
127 	 * then skip it, since the first page of a range is going to be
128 	 * properly cleaned up by the caller of run_delalloc_range
129 	 */
130 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
131 		offset += PAGE_SIZE;
132 		bytes -= PAGE_SIZE;
133 	}
134 
135 	return __endio_write_update_ordered(inode, offset, bytes, false);
136 }
137 
138 static int btrfs_dirty_inode(struct inode *inode);
139 
140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141 void btrfs_test_inode_set_ops(struct inode *inode)
142 {
143 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
144 }
145 #endif
146 
147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148 				     struct inode *inode,  struct inode *dir,
149 				     const struct qstr *qstr)
150 {
151 	int err;
152 
153 	err = btrfs_init_acl(trans, inode, dir);
154 	if (!err)
155 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
156 	return err;
157 }
158 
159 /*
160  * this does all the hard work for inserting an inline extent into
161  * the btree.  The caller should have done a btrfs_drop_extents so that
162  * no overlapping inline items exist in the btree
163  */
164 static int insert_inline_extent(struct btrfs_trans_handle *trans,
165 				struct btrfs_path *path, int extent_inserted,
166 				struct btrfs_root *root, struct inode *inode,
167 				u64 start, size_t size, size_t compressed_size,
168 				int compress_type,
169 				struct page **compressed_pages)
170 {
171 	struct extent_buffer *leaf;
172 	struct page *page = NULL;
173 	char *kaddr;
174 	unsigned long ptr;
175 	struct btrfs_file_extent_item *ei;
176 	int ret;
177 	size_t cur_size = size;
178 	unsigned long offset;
179 
180 	if (compressed_size && compressed_pages)
181 		cur_size = compressed_size;
182 
183 	inode_add_bytes(inode, size);
184 
185 	if (!extent_inserted) {
186 		struct btrfs_key key;
187 		size_t datasize;
188 
189 		key.objectid = btrfs_ino(BTRFS_I(inode));
190 		key.offset = start;
191 		key.type = BTRFS_EXTENT_DATA_KEY;
192 
193 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
194 		path->leave_spinning = 1;
195 		ret = btrfs_insert_empty_item(trans, root, path, &key,
196 					      datasize);
197 		if (ret)
198 			goto fail;
199 	}
200 	leaf = path->nodes[0];
201 	ei = btrfs_item_ptr(leaf, path->slots[0],
202 			    struct btrfs_file_extent_item);
203 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205 	btrfs_set_file_extent_encryption(leaf, ei, 0);
206 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208 	ptr = btrfs_file_extent_inline_start(ei);
209 
210 	if (compress_type != BTRFS_COMPRESS_NONE) {
211 		struct page *cpage;
212 		int i = 0;
213 		while (compressed_size > 0) {
214 			cpage = compressed_pages[i];
215 			cur_size = min_t(unsigned long, compressed_size,
216 				       PAGE_SIZE);
217 
218 			kaddr = kmap_atomic(cpage);
219 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
220 			kunmap_atomic(kaddr);
221 
222 			i++;
223 			ptr += cur_size;
224 			compressed_size -= cur_size;
225 		}
226 		btrfs_set_file_extent_compression(leaf, ei,
227 						  compress_type);
228 	} else {
229 		page = find_get_page(inode->i_mapping,
230 				     start >> PAGE_SHIFT);
231 		btrfs_set_file_extent_compression(leaf, ei, 0);
232 		kaddr = kmap_atomic(page);
233 		offset = offset_in_page(start);
234 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
235 		kunmap_atomic(kaddr);
236 		put_page(page);
237 	}
238 	btrfs_mark_buffer_dirty(leaf);
239 	btrfs_release_path(path);
240 
241 	/*
242 	 * we're an inline extent, so nobody can
243 	 * extend the file past i_size without locking
244 	 * a page we already have locked.
245 	 *
246 	 * We must do any isize and inode updates
247 	 * before we unlock the pages.  Otherwise we
248 	 * could end up racing with unlink.
249 	 */
250 	BTRFS_I(inode)->disk_i_size = inode->i_size;
251 	ret = btrfs_update_inode(trans, root, inode);
252 
253 fail:
254 	return ret;
255 }
256 
257 
258 /*
259  * conditionally insert an inline extent into the file.  This
260  * does the checks required to make sure the data is small enough
261  * to fit as an inline extent.
262  */
263 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
264 					  u64 end, size_t compressed_size,
265 					  int compress_type,
266 					  struct page **compressed_pages)
267 {
268 	struct btrfs_root *root = BTRFS_I(inode)->root;
269 	struct btrfs_fs_info *fs_info = root->fs_info;
270 	struct btrfs_trans_handle *trans;
271 	u64 isize = i_size_read(inode);
272 	u64 actual_end = min(end + 1, isize);
273 	u64 inline_len = actual_end - start;
274 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
275 	u64 data_len = inline_len;
276 	int ret;
277 	struct btrfs_path *path;
278 	int extent_inserted = 0;
279 	u32 extent_item_size;
280 
281 	if (compressed_size)
282 		data_len = compressed_size;
283 
284 	if (start > 0 ||
285 	    actual_end > fs_info->sectorsize ||
286 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
287 	    (!compressed_size &&
288 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
289 	    end + 1 < isize ||
290 	    data_len > fs_info->max_inline) {
291 		return 1;
292 	}
293 
294 	path = btrfs_alloc_path();
295 	if (!path)
296 		return -ENOMEM;
297 
298 	trans = btrfs_join_transaction(root);
299 	if (IS_ERR(trans)) {
300 		btrfs_free_path(path);
301 		return PTR_ERR(trans);
302 	}
303 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
304 
305 	if (compressed_size && compressed_pages)
306 		extent_item_size = btrfs_file_extent_calc_inline_size(
307 		   compressed_size);
308 	else
309 		extent_item_size = btrfs_file_extent_calc_inline_size(
310 		    inline_len);
311 
312 	ret = __btrfs_drop_extents(trans, root, inode, path,
313 				   start, aligned_end, NULL,
314 				   1, 1, extent_item_size, &extent_inserted);
315 	if (ret) {
316 		btrfs_abort_transaction(trans, ret);
317 		goto out;
318 	}
319 
320 	if (isize > actual_end)
321 		inline_len = min_t(u64, isize, actual_end);
322 	ret = insert_inline_extent(trans, path, extent_inserted,
323 				   root, inode, start,
324 				   inline_len, compressed_size,
325 				   compress_type, compressed_pages);
326 	if (ret && ret != -ENOSPC) {
327 		btrfs_abort_transaction(trans, ret);
328 		goto out;
329 	} else if (ret == -ENOSPC) {
330 		ret = 1;
331 		goto out;
332 	}
333 
334 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
335 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
336 out:
337 	/*
338 	 * Don't forget to free the reserved space, as for inlined extent
339 	 * it won't count as data extent, free them directly here.
340 	 * And at reserve time, it's always aligned to page size, so
341 	 * just free one page here.
342 	 */
343 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
344 	btrfs_free_path(path);
345 	btrfs_end_transaction(trans);
346 	return ret;
347 }
348 
349 struct async_extent {
350 	u64 start;
351 	u64 ram_size;
352 	u64 compressed_size;
353 	struct page **pages;
354 	unsigned long nr_pages;
355 	int compress_type;
356 	struct list_head list;
357 };
358 
359 struct async_chunk {
360 	struct inode *inode;
361 	struct page *locked_page;
362 	u64 start;
363 	u64 end;
364 	unsigned int write_flags;
365 	struct list_head extents;
366 	struct btrfs_work work;
367 	atomic_t *pending;
368 };
369 
370 struct async_cow {
371 	/* Number of chunks in flight; must be first in the structure */
372 	atomic_t num_chunks;
373 	struct async_chunk chunks[];
374 };
375 
376 static noinline int add_async_extent(struct async_chunk *cow,
377 				     u64 start, u64 ram_size,
378 				     u64 compressed_size,
379 				     struct page **pages,
380 				     unsigned long nr_pages,
381 				     int compress_type)
382 {
383 	struct async_extent *async_extent;
384 
385 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
386 	BUG_ON(!async_extent); /* -ENOMEM */
387 	async_extent->start = start;
388 	async_extent->ram_size = ram_size;
389 	async_extent->compressed_size = compressed_size;
390 	async_extent->pages = pages;
391 	async_extent->nr_pages = nr_pages;
392 	async_extent->compress_type = compress_type;
393 	list_add_tail(&async_extent->list, &cow->extents);
394 	return 0;
395 }
396 
397 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
398 {
399 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
400 
401 	/* force compress */
402 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
403 		return 1;
404 	/* defrag ioctl */
405 	if (BTRFS_I(inode)->defrag_compress)
406 		return 1;
407 	/* bad compression ratios */
408 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
409 		return 0;
410 	if (btrfs_test_opt(fs_info, COMPRESS) ||
411 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
412 	    BTRFS_I(inode)->prop_compress)
413 		return btrfs_compress_heuristic(inode, start, end);
414 	return 0;
415 }
416 
417 static inline void inode_should_defrag(struct btrfs_inode *inode,
418 		u64 start, u64 end, u64 num_bytes, u64 small_write)
419 {
420 	/* If this is a small write inside eof, kick off a defrag */
421 	if (num_bytes < small_write &&
422 	    (start > 0 || end + 1 < inode->disk_i_size))
423 		btrfs_add_inode_defrag(NULL, inode);
424 }
425 
426 /*
427  * we create compressed extents in two phases.  The first
428  * phase compresses a range of pages that have already been
429  * locked (both pages and state bits are locked).
430  *
431  * This is done inside an ordered work queue, and the compression
432  * is spread across many cpus.  The actual IO submission is step
433  * two, and the ordered work queue takes care of making sure that
434  * happens in the same order things were put onto the queue by
435  * writepages and friends.
436  *
437  * If this code finds it can't get good compression, it puts an
438  * entry onto the work queue to write the uncompressed bytes.  This
439  * makes sure that both compressed inodes and uncompressed inodes
440  * are written in the same order that the flusher thread sent them
441  * down.
442  */
443 static noinline void compress_file_range(struct async_chunk *async_chunk,
444 					 int *num_added)
445 {
446 	struct inode *inode = async_chunk->inode;
447 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
448 	u64 blocksize = fs_info->sectorsize;
449 	u64 start = async_chunk->start;
450 	u64 end = async_chunk->end;
451 	u64 actual_end;
452 	int ret = 0;
453 	struct page **pages = NULL;
454 	unsigned long nr_pages;
455 	unsigned long total_compressed = 0;
456 	unsigned long total_in = 0;
457 	int i;
458 	int will_compress;
459 	int compress_type = fs_info->compress_type;
460 	int redirty = 0;
461 
462 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
463 			SZ_16K);
464 
465 	actual_end = min_t(u64, i_size_read(inode), end + 1);
466 again:
467 	will_compress = 0;
468 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
469 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
470 	nr_pages = min_t(unsigned long, nr_pages,
471 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
472 
473 	/*
474 	 * we don't want to send crud past the end of i_size through
475 	 * compression, that's just a waste of CPU time.  So, if the
476 	 * end of the file is before the start of our current
477 	 * requested range of bytes, we bail out to the uncompressed
478 	 * cleanup code that can deal with all of this.
479 	 *
480 	 * It isn't really the fastest way to fix things, but this is a
481 	 * very uncommon corner.
482 	 */
483 	if (actual_end <= start)
484 		goto cleanup_and_bail_uncompressed;
485 
486 	total_compressed = actual_end - start;
487 
488 	/*
489 	 * skip compression for a small file range(<=blocksize) that
490 	 * isn't an inline extent, since it doesn't save disk space at all.
491 	 */
492 	if (total_compressed <= blocksize &&
493 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
494 		goto cleanup_and_bail_uncompressed;
495 
496 	total_compressed = min_t(unsigned long, total_compressed,
497 			BTRFS_MAX_UNCOMPRESSED);
498 	total_in = 0;
499 	ret = 0;
500 
501 	/*
502 	 * we do compression for mount -o compress and when the
503 	 * inode has not been flagged as nocompress.  This flag can
504 	 * change at any time if we discover bad compression ratios.
505 	 */
506 	if (inode_need_compress(inode, start, end)) {
507 		WARN_ON(pages);
508 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
509 		if (!pages) {
510 			/* just bail out to the uncompressed code */
511 			nr_pages = 0;
512 			goto cont;
513 		}
514 
515 		if (BTRFS_I(inode)->defrag_compress)
516 			compress_type = BTRFS_I(inode)->defrag_compress;
517 		else if (BTRFS_I(inode)->prop_compress)
518 			compress_type = BTRFS_I(inode)->prop_compress;
519 
520 		/*
521 		 * we need to call clear_page_dirty_for_io on each
522 		 * page in the range.  Otherwise applications with the file
523 		 * mmap'd can wander in and change the page contents while
524 		 * we are compressing them.
525 		 *
526 		 * If the compression fails for any reason, we set the pages
527 		 * dirty again later on.
528 		 *
529 		 * Note that the remaining part is redirtied, the start pointer
530 		 * has moved, the end is the original one.
531 		 */
532 		if (!redirty) {
533 			extent_range_clear_dirty_for_io(inode, start, end);
534 			redirty = 1;
535 		}
536 
537 		/* Compression level is applied here and only here */
538 		ret = btrfs_compress_pages(
539 			compress_type | (fs_info->compress_level << 4),
540 					   inode->i_mapping, start,
541 					   pages,
542 					   &nr_pages,
543 					   &total_in,
544 					   &total_compressed);
545 
546 		if (!ret) {
547 			unsigned long offset = offset_in_page(total_compressed);
548 			struct page *page = pages[nr_pages - 1];
549 			char *kaddr;
550 
551 			/* zero the tail end of the last page, we might be
552 			 * sending it down to disk
553 			 */
554 			if (offset) {
555 				kaddr = kmap_atomic(page);
556 				memset(kaddr + offset, 0,
557 				       PAGE_SIZE - offset);
558 				kunmap_atomic(kaddr);
559 			}
560 			will_compress = 1;
561 		}
562 	}
563 cont:
564 	if (start == 0) {
565 		/* lets try to make an inline extent */
566 		if (ret || total_in < actual_end) {
567 			/* we didn't compress the entire range, try
568 			 * to make an uncompressed inline extent.
569 			 */
570 			ret = cow_file_range_inline(inode, start, end, 0,
571 						    BTRFS_COMPRESS_NONE, NULL);
572 		} else {
573 			/* try making a compressed inline extent */
574 			ret = cow_file_range_inline(inode, start, end,
575 						    total_compressed,
576 						    compress_type, pages);
577 		}
578 		if (ret <= 0) {
579 			unsigned long clear_flags = EXTENT_DELALLOC |
580 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
581 				EXTENT_DO_ACCOUNTING;
582 			unsigned long page_error_op;
583 
584 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
585 
586 			/*
587 			 * inline extent creation worked or returned error,
588 			 * we don't need to create any more async work items.
589 			 * Unlock and free up our temp pages.
590 			 *
591 			 * We use DO_ACCOUNTING here because we need the
592 			 * delalloc_release_metadata to be done _after_ we drop
593 			 * our outstanding extent for clearing delalloc for this
594 			 * range.
595 			 */
596 			extent_clear_unlock_delalloc(inode, start, end, end,
597 						     NULL, clear_flags,
598 						     PAGE_UNLOCK |
599 						     PAGE_CLEAR_DIRTY |
600 						     PAGE_SET_WRITEBACK |
601 						     page_error_op |
602 						     PAGE_END_WRITEBACK);
603 			goto free_pages_out;
604 		}
605 	}
606 
607 	if (will_compress) {
608 		/*
609 		 * we aren't doing an inline extent round the compressed size
610 		 * up to a block size boundary so the allocator does sane
611 		 * things
612 		 */
613 		total_compressed = ALIGN(total_compressed, blocksize);
614 
615 		/*
616 		 * one last check to make sure the compression is really a
617 		 * win, compare the page count read with the blocks on disk,
618 		 * compression must free at least one sector size
619 		 */
620 		total_in = ALIGN(total_in, PAGE_SIZE);
621 		if (total_compressed + blocksize <= total_in) {
622 			*num_added += 1;
623 
624 			/*
625 			 * The async work queues will take care of doing actual
626 			 * allocation on disk for these compressed pages, and
627 			 * will submit them to the elevator.
628 			 */
629 			add_async_extent(async_chunk, start, total_in,
630 					total_compressed, pages, nr_pages,
631 					compress_type);
632 
633 			if (start + total_in < end) {
634 				start += total_in;
635 				pages = NULL;
636 				cond_resched();
637 				goto again;
638 			}
639 			return;
640 		}
641 	}
642 	if (pages) {
643 		/*
644 		 * the compression code ran but failed to make things smaller,
645 		 * free any pages it allocated and our page pointer array
646 		 */
647 		for (i = 0; i < nr_pages; i++) {
648 			WARN_ON(pages[i]->mapping);
649 			put_page(pages[i]);
650 		}
651 		kfree(pages);
652 		pages = NULL;
653 		total_compressed = 0;
654 		nr_pages = 0;
655 
656 		/* flag the file so we don't compress in the future */
657 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
658 		    !(BTRFS_I(inode)->prop_compress)) {
659 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
660 		}
661 	}
662 cleanup_and_bail_uncompressed:
663 	/*
664 	 * No compression, but we still need to write the pages in the file
665 	 * we've been given so far.  redirty the locked page if it corresponds
666 	 * to our extent and set things up for the async work queue to run
667 	 * cow_file_range to do the normal delalloc dance.
668 	 */
669 	if (page_offset(async_chunk->locked_page) >= start &&
670 	    page_offset(async_chunk->locked_page) <= end)
671 		__set_page_dirty_nobuffers(async_chunk->locked_page);
672 		/* unlocked later on in the async handlers */
673 
674 	if (redirty)
675 		extent_range_redirty_for_io(inode, start, end);
676 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
677 			 BTRFS_COMPRESS_NONE);
678 	*num_added += 1;
679 
680 	return;
681 
682 free_pages_out:
683 	for (i = 0; i < nr_pages; i++) {
684 		WARN_ON(pages[i]->mapping);
685 		put_page(pages[i]);
686 	}
687 	kfree(pages);
688 }
689 
690 static void free_async_extent_pages(struct async_extent *async_extent)
691 {
692 	int i;
693 
694 	if (!async_extent->pages)
695 		return;
696 
697 	for (i = 0; i < async_extent->nr_pages; i++) {
698 		WARN_ON(async_extent->pages[i]->mapping);
699 		put_page(async_extent->pages[i]);
700 	}
701 	kfree(async_extent->pages);
702 	async_extent->nr_pages = 0;
703 	async_extent->pages = NULL;
704 }
705 
706 /*
707  * phase two of compressed writeback.  This is the ordered portion
708  * of the code, which only gets called in the order the work was
709  * queued.  We walk all the async extents created by compress_file_range
710  * and send them down to the disk.
711  */
712 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
713 {
714 	struct inode *inode = async_chunk->inode;
715 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
716 	struct async_extent *async_extent;
717 	u64 alloc_hint = 0;
718 	struct btrfs_key ins;
719 	struct extent_map *em;
720 	struct btrfs_root *root = BTRFS_I(inode)->root;
721 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
722 	int ret = 0;
723 
724 again:
725 	while (!list_empty(&async_chunk->extents)) {
726 		async_extent = list_entry(async_chunk->extents.next,
727 					  struct async_extent, list);
728 		list_del(&async_extent->list);
729 
730 retry:
731 		lock_extent(io_tree, async_extent->start,
732 			    async_extent->start + async_extent->ram_size - 1);
733 		/* did the compression code fall back to uncompressed IO? */
734 		if (!async_extent->pages) {
735 			int page_started = 0;
736 			unsigned long nr_written = 0;
737 
738 			/* allocate blocks */
739 			ret = cow_file_range(inode, async_chunk->locked_page,
740 					     async_extent->start,
741 					     async_extent->start +
742 					     async_extent->ram_size - 1,
743 					     async_extent->start +
744 					     async_extent->ram_size - 1,
745 					     &page_started, &nr_written, 0,
746 					     NULL);
747 
748 			/* JDM XXX */
749 
750 			/*
751 			 * if page_started, cow_file_range inserted an
752 			 * inline extent and took care of all the unlocking
753 			 * and IO for us.  Otherwise, we need to submit
754 			 * all those pages down to the drive.
755 			 */
756 			if (!page_started && !ret)
757 				extent_write_locked_range(inode,
758 						  async_extent->start,
759 						  async_extent->start +
760 						  async_extent->ram_size - 1,
761 						  WB_SYNC_ALL);
762 			else if (ret)
763 				unlock_page(async_chunk->locked_page);
764 			kfree(async_extent);
765 			cond_resched();
766 			continue;
767 		}
768 
769 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
770 					   async_extent->compressed_size,
771 					   async_extent->compressed_size,
772 					   0, alloc_hint, &ins, 1, 1);
773 		if (ret) {
774 			free_async_extent_pages(async_extent);
775 
776 			if (ret == -ENOSPC) {
777 				unlock_extent(io_tree, async_extent->start,
778 					      async_extent->start +
779 					      async_extent->ram_size - 1);
780 
781 				/*
782 				 * we need to redirty the pages if we decide to
783 				 * fallback to uncompressed IO, otherwise we
784 				 * will not submit these pages down to lower
785 				 * layers.
786 				 */
787 				extent_range_redirty_for_io(inode,
788 						async_extent->start,
789 						async_extent->start +
790 						async_extent->ram_size - 1);
791 
792 				goto retry;
793 			}
794 			goto out_free;
795 		}
796 		/*
797 		 * here we're doing allocation and writeback of the
798 		 * compressed pages
799 		 */
800 		em = create_io_em(inode, async_extent->start,
801 				  async_extent->ram_size, /* len */
802 				  async_extent->start, /* orig_start */
803 				  ins.objectid, /* block_start */
804 				  ins.offset, /* block_len */
805 				  ins.offset, /* orig_block_len */
806 				  async_extent->ram_size, /* ram_bytes */
807 				  async_extent->compress_type,
808 				  BTRFS_ORDERED_COMPRESSED);
809 		if (IS_ERR(em))
810 			/* ret value is not necessary due to void function */
811 			goto out_free_reserve;
812 		free_extent_map(em);
813 
814 		ret = btrfs_add_ordered_extent_compress(inode,
815 						async_extent->start,
816 						ins.objectid,
817 						async_extent->ram_size,
818 						ins.offset,
819 						BTRFS_ORDERED_COMPRESSED,
820 						async_extent->compress_type);
821 		if (ret) {
822 			btrfs_drop_extent_cache(BTRFS_I(inode),
823 						async_extent->start,
824 						async_extent->start +
825 						async_extent->ram_size - 1, 0);
826 			goto out_free_reserve;
827 		}
828 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
829 
830 		/*
831 		 * clear dirty, set writeback and unlock the pages.
832 		 */
833 		extent_clear_unlock_delalloc(inode, async_extent->start,
834 				async_extent->start +
835 				async_extent->ram_size - 1,
836 				async_extent->start +
837 				async_extent->ram_size - 1,
838 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
839 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
840 				PAGE_SET_WRITEBACK);
841 		if (btrfs_submit_compressed_write(inode,
842 				    async_extent->start,
843 				    async_extent->ram_size,
844 				    ins.objectid,
845 				    ins.offset, async_extent->pages,
846 				    async_extent->nr_pages,
847 				    async_chunk->write_flags)) {
848 			struct page *p = async_extent->pages[0];
849 			const u64 start = async_extent->start;
850 			const u64 end = start + async_extent->ram_size - 1;
851 
852 			p->mapping = inode->i_mapping;
853 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
854 
855 			p->mapping = NULL;
856 			extent_clear_unlock_delalloc(inode, start, end, end,
857 						     NULL, 0,
858 						     PAGE_END_WRITEBACK |
859 						     PAGE_SET_ERROR);
860 			free_async_extent_pages(async_extent);
861 		}
862 		alloc_hint = ins.objectid + ins.offset;
863 		kfree(async_extent);
864 		cond_resched();
865 	}
866 	return;
867 out_free_reserve:
868 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
869 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
870 out_free:
871 	extent_clear_unlock_delalloc(inode, async_extent->start,
872 				     async_extent->start +
873 				     async_extent->ram_size - 1,
874 				     async_extent->start +
875 				     async_extent->ram_size - 1,
876 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
877 				     EXTENT_DELALLOC_NEW |
878 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
879 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
880 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
881 				     PAGE_SET_ERROR);
882 	free_async_extent_pages(async_extent);
883 	kfree(async_extent);
884 	goto again;
885 }
886 
887 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
888 				      u64 num_bytes)
889 {
890 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
891 	struct extent_map *em;
892 	u64 alloc_hint = 0;
893 
894 	read_lock(&em_tree->lock);
895 	em = search_extent_mapping(em_tree, start, num_bytes);
896 	if (em) {
897 		/*
898 		 * if block start isn't an actual block number then find the
899 		 * first block in this inode and use that as a hint.  If that
900 		 * block is also bogus then just don't worry about it.
901 		 */
902 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
903 			free_extent_map(em);
904 			em = search_extent_mapping(em_tree, 0, 0);
905 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
906 				alloc_hint = em->block_start;
907 			if (em)
908 				free_extent_map(em);
909 		} else {
910 			alloc_hint = em->block_start;
911 			free_extent_map(em);
912 		}
913 	}
914 	read_unlock(&em_tree->lock);
915 
916 	return alloc_hint;
917 }
918 
919 /*
920  * when extent_io.c finds a delayed allocation range in the file,
921  * the call backs end up in this code.  The basic idea is to
922  * allocate extents on disk for the range, and create ordered data structs
923  * in ram to track those extents.
924  *
925  * locked_page is the page that writepage had locked already.  We use
926  * it to make sure we don't do extra locks or unlocks.
927  *
928  * *page_started is set to one if we unlock locked_page and do everything
929  * required to start IO on it.  It may be clean and already done with
930  * IO when we return.
931  */
932 static noinline int cow_file_range(struct inode *inode,
933 				   struct page *locked_page,
934 				   u64 start, u64 end, u64 delalloc_end,
935 				   int *page_started, unsigned long *nr_written,
936 				   int unlock, struct btrfs_dedupe_hash *hash)
937 {
938 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
939 	struct btrfs_root *root = BTRFS_I(inode)->root;
940 	u64 alloc_hint = 0;
941 	u64 num_bytes;
942 	unsigned long ram_size;
943 	u64 cur_alloc_size = 0;
944 	u64 blocksize = fs_info->sectorsize;
945 	struct btrfs_key ins;
946 	struct extent_map *em;
947 	unsigned clear_bits;
948 	unsigned long page_ops;
949 	bool extent_reserved = false;
950 	int ret = 0;
951 
952 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
953 		WARN_ON_ONCE(1);
954 		ret = -EINVAL;
955 		goto out_unlock;
956 	}
957 
958 	num_bytes = ALIGN(end - start + 1, blocksize);
959 	num_bytes = max(blocksize,  num_bytes);
960 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
961 
962 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
963 
964 	if (start == 0) {
965 		/* lets try to make an inline extent */
966 		ret = cow_file_range_inline(inode, start, end, 0,
967 					    BTRFS_COMPRESS_NONE, NULL);
968 		if (ret == 0) {
969 			/*
970 			 * We use DO_ACCOUNTING here because we need the
971 			 * delalloc_release_metadata to be run _after_ we drop
972 			 * our outstanding extent for clearing delalloc for this
973 			 * range.
974 			 */
975 			extent_clear_unlock_delalloc(inode, start, end,
976 				     delalloc_end, NULL,
977 				     EXTENT_LOCKED | EXTENT_DELALLOC |
978 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
979 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
980 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
981 				     PAGE_END_WRITEBACK);
982 			*nr_written = *nr_written +
983 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
984 			*page_started = 1;
985 			goto out;
986 		} else if (ret < 0) {
987 			goto out_unlock;
988 		}
989 	}
990 
991 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
992 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
993 			start + num_bytes - 1, 0);
994 
995 	while (num_bytes > 0) {
996 		cur_alloc_size = num_bytes;
997 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
998 					   fs_info->sectorsize, 0, alloc_hint,
999 					   &ins, 1, 1);
1000 		if (ret < 0)
1001 			goto out_unlock;
1002 		cur_alloc_size = ins.offset;
1003 		extent_reserved = true;
1004 
1005 		ram_size = ins.offset;
1006 		em = create_io_em(inode, start, ins.offset, /* len */
1007 				  start, /* orig_start */
1008 				  ins.objectid, /* block_start */
1009 				  ins.offset, /* block_len */
1010 				  ins.offset, /* orig_block_len */
1011 				  ram_size, /* ram_bytes */
1012 				  BTRFS_COMPRESS_NONE, /* compress_type */
1013 				  BTRFS_ORDERED_REGULAR /* type */);
1014 		if (IS_ERR(em)) {
1015 			ret = PTR_ERR(em);
1016 			goto out_reserve;
1017 		}
1018 		free_extent_map(em);
1019 
1020 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1021 					       ram_size, cur_alloc_size, 0);
1022 		if (ret)
1023 			goto out_drop_extent_cache;
1024 
1025 		if (root->root_key.objectid ==
1026 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1027 			ret = btrfs_reloc_clone_csums(inode, start,
1028 						      cur_alloc_size);
1029 			/*
1030 			 * Only drop cache here, and process as normal.
1031 			 *
1032 			 * We must not allow extent_clear_unlock_delalloc()
1033 			 * at out_unlock label to free meta of this ordered
1034 			 * extent, as its meta should be freed by
1035 			 * btrfs_finish_ordered_io().
1036 			 *
1037 			 * So we must continue until @start is increased to
1038 			 * skip current ordered extent.
1039 			 */
1040 			if (ret)
1041 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1042 						start + ram_size - 1, 0);
1043 		}
1044 
1045 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1046 
1047 		/* we're not doing compressed IO, don't unlock the first
1048 		 * page (which the caller expects to stay locked), don't
1049 		 * clear any dirty bits and don't set any writeback bits
1050 		 *
1051 		 * Do set the Private2 bit so we know this page was properly
1052 		 * setup for writepage
1053 		 */
1054 		page_ops = unlock ? PAGE_UNLOCK : 0;
1055 		page_ops |= PAGE_SET_PRIVATE2;
1056 
1057 		extent_clear_unlock_delalloc(inode, start,
1058 					     start + ram_size - 1,
1059 					     delalloc_end, locked_page,
1060 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1061 					     page_ops);
1062 		if (num_bytes < cur_alloc_size)
1063 			num_bytes = 0;
1064 		else
1065 			num_bytes -= cur_alloc_size;
1066 		alloc_hint = ins.objectid + ins.offset;
1067 		start += cur_alloc_size;
1068 		extent_reserved = false;
1069 
1070 		/*
1071 		 * btrfs_reloc_clone_csums() error, since start is increased
1072 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1073 		 * free metadata of current ordered extent, we're OK to exit.
1074 		 */
1075 		if (ret)
1076 			goto out_unlock;
1077 	}
1078 out:
1079 	return ret;
1080 
1081 out_drop_extent_cache:
1082 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1083 out_reserve:
1084 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1085 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1086 out_unlock:
1087 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1088 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1089 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1090 		PAGE_END_WRITEBACK;
1091 	/*
1092 	 * If we reserved an extent for our delalloc range (or a subrange) and
1093 	 * failed to create the respective ordered extent, then it means that
1094 	 * when we reserved the extent we decremented the extent's size from
1095 	 * the data space_info's bytes_may_use counter and incremented the
1096 	 * space_info's bytes_reserved counter by the same amount. We must make
1097 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1098 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1099 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1100 	 */
1101 	if (extent_reserved) {
1102 		extent_clear_unlock_delalloc(inode, start,
1103 					     start + cur_alloc_size,
1104 					     start + cur_alloc_size,
1105 					     locked_page,
1106 					     clear_bits,
1107 					     page_ops);
1108 		start += cur_alloc_size;
1109 		if (start >= end)
1110 			goto out;
1111 	}
1112 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1113 				     locked_page,
1114 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1115 				     page_ops);
1116 	goto out;
1117 }
1118 
1119 /*
1120  * work queue call back to started compression on a file and pages
1121  */
1122 static noinline void async_cow_start(struct btrfs_work *work)
1123 {
1124 	struct async_chunk *async_chunk;
1125 	int num_added = 0;
1126 
1127 	async_chunk = container_of(work, struct async_chunk, work);
1128 
1129 	compress_file_range(async_chunk, &num_added);
1130 	if (num_added == 0) {
1131 		btrfs_add_delayed_iput(async_chunk->inode);
1132 		async_chunk->inode = NULL;
1133 	}
1134 }
1135 
1136 /*
1137  * work queue call back to submit previously compressed pages
1138  */
1139 static noinline void async_cow_submit(struct btrfs_work *work)
1140 {
1141 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1142 						     work);
1143 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1144 	unsigned long nr_pages;
1145 
1146 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1147 		PAGE_SHIFT;
1148 
1149 	/* atomic_sub_return implies a barrier */
1150 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1151 	    5 * SZ_1M)
1152 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1153 
1154 	/*
1155 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1156 	 * in which case we don't have anything to submit, yet we need to
1157 	 * always adjust ->async_delalloc_pages as its paired with the init
1158 	 * happening in cow_file_range_async
1159 	 */
1160 	if (async_chunk->inode)
1161 		submit_compressed_extents(async_chunk);
1162 }
1163 
1164 static noinline void async_cow_free(struct btrfs_work *work)
1165 {
1166 	struct async_chunk *async_chunk;
1167 
1168 	async_chunk = container_of(work, struct async_chunk, work);
1169 	if (async_chunk->inode)
1170 		btrfs_add_delayed_iput(async_chunk->inode);
1171 	/*
1172 	 * Since the pointer to 'pending' is at the beginning of the array of
1173 	 * async_chunk's, freeing it ensures the whole array has been freed.
1174 	 */
1175 	if (atomic_dec_and_test(async_chunk->pending))
1176 		kvfree(async_chunk->pending);
1177 }
1178 
1179 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1180 				u64 start, u64 end, int *page_started,
1181 				unsigned long *nr_written,
1182 				unsigned int write_flags)
1183 {
1184 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1185 	struct async_cow *ctx;
1186 	struct async_chunk *async_chunk;
1187 	unsigned long nr_pages;
1188 	u64 cur_end;
1189 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1190 	int i;
1191 	bool should_compress;
1192 	unsigned nofs_flag;
1193 
1194 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1195 
1196 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1197 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1198 		num_chunks = 1;
1199 		should_compress = false;
1200 	} else {
1201 		should_compress = true;
1202 	}
1203 
1204 	nofs_flag = memalloc_nofs_save();
1205 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1206 	memalloc_nofs_restore(nofs_flag);
1207 
1208 	if (!ctx) {
1209 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1210 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1211 			EXTENT_DO_ACCOUNTING;
1212 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1213 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1214 			PAGE_SET_ERROR;
1215 
1216 		extent_clear_unlock_delalloc(inode, start, end, 0, locked_page,
1217 					     clear_bits, page_ops);
1218 		return -ENOMEM;
1219 	}
1220 
1221 	async_chunk = ctx->chunks;
1222 	atomic_set(&ctx->num_chunks, num_chunks);
1223 
1224 	for (i = 0; i < num_chunks; i++) {
1225 		if (should_compress)
1226 			cur_end = min(end, start + SZ_512K - 1);
1227 		else
1228 			cur_end = end;
1229 
1230 		/*
1231 		 * igrab is called higher up in the call chain, take only the
1232 		 * lightweight reference for the callback lifetime
1233 		 */
1234 		ihold(inode);
1235 		async_chunk[i].pending = &ctx->num_chunks;
1236 		async_chunk[i].inode = inode;
1237 		async_chunk[i].start = start;
1238 		async_chunk[i].end = cur_end;
1239 		async_chunk[i].locked_page = locked_page;
1240 		async_chunk[i].write_flags = write_flags;
1241 		INIT_LIST_HEAD(&async_chunk[i].extents);
1242 
1243 		btrfs_init_work(&async_chunk[i].work,
1244 				btrfs_delalloc_helper,
1245 				async_cow_start, async_cow_submit,
1246 				async_cow_free);
1247 
1248 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1249 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1250 
1251 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1252 
1253 		*nr_written += nr_pages;
1254 		start = cur_end + 1;
1255 	}
1256 	*page_started = 1;
1257 	return 0;
1258 }
1259 
1260 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1261 					u64 bytenr, u64 num_bytes)
1262 {
1263 	int ret;
1264 	struct btrfs_ordered_sum *sums;
1265 	LIST_HEAD(list);
1266 
1267 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1268 				       bytenr + num_bytes - 1, &list, 0);
1269 	if (ret == 0 && list_empty(&list))
1270 		return 0;
1271 
1272 	while (!list_empty(&list)) {
1273 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1274 		list_del(&sums->list);
1275 		kfree(sums);
1276 	}
1277 	if (ret < 0)
1278 		return ret;
1279 	return 1;
1280 }
1281 
1282 /*
1283  * when nowcow writeback call back.  This checks for snapshots or COW copies
1284  * of the extents that exist in the file, and COWs the file as required.
1285  *
1286  * If no cow copies or snapshots exist, we write directly to the existing
1287  * blocks on disk
1288  */
1289 static noinline int run_delalloc_nocow(struct inode *inode,
1290 				       struct page *locked_page,
1291 			      u64 start, u64 end, int *page_started, int force,
1292 			      unsigned long *nr_written)
1293 {
1294 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1295 	struct btrfs_root *root = BTRFS_I(inode)->root;
1296 	struct extent_buffer *leaf;
1297 	struct btrfs_path *path;
1298 	struct btrfs_file_extent_item *fi;
1299 	struct btrfs_key found_key;
1300 	struct extent_map *em;
1301 	u64 cow_start;
1302 	u64 cur_offset;
1303 	u64 extent_end;
1304 	u64 extent_offset;
1305 	u64 disk_bytenr;
1306 	u64 num_bytes;
1307 	u64 disk_num_bytes;
1308 	u64 ram_bytes;
1309 	int extent_type;
1310 	int ret;
1311 	int type;
1312 	int nocow;
1313 	int check_prev = 1;
1314 	bool nolock;
1315 	u64 ino = btrfs_ino(BTRFS_I(inode));
1316 
1317 	path = btrfs_alloc_path();
1318 	if (!path) {
1319 		extent_clear_unlock_delalloc(inode, start, end, end,
1320 					     locked_page,
1321 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1322 					     EXTENT_DO_ACCOUNTING |
1323 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1324 					     PAGE_CLEAR_DIRTY |
1325 					     PAGE_SET_WRITEBACK |
1326 					     PAGE_END_WRITEBACK);
1327 		return -ENOMEM;
1328 	}
1329 
1330 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1331 
1332 	cow_start = (u64)-1;
1333 	cur_offset = start;
1334 	while (1) {
1335 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1336 					       cur_offset, 0);
1337 		if (ret < 0)
1338 			goto error;
1339 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1340 			leaf = path->nodes[0];
1341 			btrfs_item_key_to_cpu(leaf, &found_key,
1342 					      path->slots[0] - 1);
1343 			if (found_key.objectid == ino &&
1344 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1345 				path->slots[0]--;
1346 		}
1347 		check_prev = 0;
1348 next_slot:
1349 		leaf = path->nodes[0];
1350 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1351 			ret = btrfs_next_leaf(root, path);
1352 			if (ret < 0) {
1353 				if (cow_start != (u64)-1)
1354 					cur_offset = cow_start;
1355 				goto error;
1356 			}
1357 			if (ret > 0)
1358 				break;
1359 			leaf = path->nodes[0];
1360 		}
1361 
1362 		nocow = 0;
1363 		disk_bytenr = 0;
1364 		num_bytes = 0;
1365 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1366 
1367 		if (found_key.objectid > ino)
1368 			break;
1369 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1370 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1371 			path->slots[0]++;
1372 			goto next_slot;
1373 		}
1374 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1375 		    found_key.offset > end)
1376 			break;
1377 
1378 		if (found_key.offset > cur_offset) {
1379 			extent_end = found_key.offset;
1380 			extent_type = 0;
1381 			goto out_check;
1382 		}
1383 
1384 		fi = btrfs_item_ptr(leaf, path->slots[0],
1385 				    struct btrfs_file_extent_item);
1386 		extent_type = btrfs_file_extent_type(leaf, fi);
1387 
1388 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1389 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1390 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1391 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1392 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1393 			extent_end = found_key.offset +
1394 				btrfs_file_extent_num_bytes(leaf, fi);
1395 			disk_num_bytes =
1396 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1397 			if (extent_end <= start) {
1398 				path->slots[0]++;
1399 				goto next_slot;
1400 			}
1401 			if (disk_bytenr == 0)
1402 				goto out_check;
1403 			if (btrfs_file_extent_compression(leaf, fi) ||
1404 			    btrfs_file_extent_encryption(leaf, fi) ||
1405 			    btrfs_file_extent_other_encoding(leaf, fi))
1406 				goto out_check;
1407 			/*
1408 			 * Do the same check as in btrfs_cross_ref_exist but
1409 			 * without the unnecessary search.
1410 			 */
1411 			if (!nolock &&
1412 			    btrfs_file_extent_generation(leaf, fi) <=
1413 			    btrfs_root_last_snapshot(&root->root_item))
1414 				goto out_check;
1415 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1416 				goto out_check;
1417 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1418 				goto out_check;
1419 			ret = btrfs_cross_ref_exist(root, ino,
1420 						    found_key.offset -
1421 						    extent_offset, disk_bytenr);
1422 			if (ret) {
1423 				/*
1424 				 * ret could be -EIO if the above fails to read
1425 				 * metadata.
1426 				 */
1427 				if (ret < 0) {
1428 					if (cow_start != (u64)-1)
1429 						cur_offset = cow_start;
1430 					goto error;
1431 				}
1432 
1433 				WARN_ON_ONCE(nolock);
1434 				goto out_check;
1435 			}
1436 			disk_bytenr += extent_offset;
1437 			disk_bytenr += cur_offset - found_key.offset;
1438 			num_bytes = min(end + 1, extent_end) - cur_offset;
1439 			/*
1440 			 * if there are pending snapshots for this root,
1441 			 * we fall into common COW way.
1442 			 */
1443 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1444 				goto out_check;
1445 			/*
1446 			 * force cow if csum exists in the range.
1447 			 * this ensure that csum for a given extent are
1448 			 * either valid or do not exist.
1449 			 */
1450 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1451 						  num_bytes);
1452 			if (ret) {
1453 				/*
1454 				 * ret could be -EIO if the above fails to read
1455 				 * metadata.
1456 				 */
1457 				if (ret < 0) {
1458 					if (cow_start != (u64)-1)
1459 						cur_offset = cow_start;
1460 					goto error;
1461 				}
1462 				WARN_ON_ONCE(nolock);
1463 				goto out_check;
1464 			}
1465 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1466 				goto out_check;
1467 			nocow = 1;
1468 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1469 			extent_end = found_key.offset +
1470 				btrfs_file_extent_ram_bytes(leaf, fi);
1471 			extent_end = ALIGN(extent_end,
1472 					   fs_info->sectorsize);
1473 		} else {
1474 			BUG();
1475 		}
1476 out_check:
1477 		if (extent_end <= start) {
1478 			path->slots[0]++;
1479 			if (nocow)
1480 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1481 			goto next_slot;
1482 		}
1483 		if (!nocow) {
1484 			if (cow_start == (u64)-1)
1485 				cow_start = cur_offset;
1486 			cur_offset = extent_end;
1487 			if (cur_offset > end)
1488 				break;
1489 			path->slots[0]++;
1490 			goto next_slot;
1491 		}
1492 
1493 		btrfs_release_path(path);
1494 		if (cow_start != (u64)-1) {
1495 			ret = cow_file_range(inode, locked_page,
1496 					     cow_start, found_key.offset - 1,
1497 					     end, page_started, nr_written, 1,
1498 					     NULL);
1499 			if (ret) {
1500 				if (nocow)
1501 					btrfs_dec_nocow_writers(fs_info,
1502 								disk_bytenr);
1503 				goto error;
1504 			}
1505 			cow_start = (u64)-1;
1506 		}
1507 
1508 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1509 			u64 orig_start = found_key.offset - extent_offset;
1510 
1511 			em = create_io_em(inode, cur_offset, num_bytes,
1512 					  orig_start,
1513 					  disk_bytenr, /* block_start */
1514 					  num_bytes, /* block_len */
1515 					  disk_num_bytes, /* orig_block_len */
1516 					  ram_bytes, BTRFS_COMPRESS_NONE,
1517 					  BTRFS_ORDERED_PREALLOC);
1518 			if (IS_ERR(em)) {
1519 				if (nocow)
1520 					btrfs_dec_nocow_writers(fs_info,
1521 								disk_bytenr);
1522 				ret = PTR_ERR(em);
1523 				goto error;
1524 			}
1525 			free_extent_map(em);
1526 		}
1527 
1528 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1529 			type = BTRFS_ORDERED_PREALLOC;
1530 		} else {
1531 			type = BTRFS_ORDERED_NOCOW;
1532 		}
1533 
1534 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1535 					       num_bytes, num_bytes, type);
1536 		if (nocow)
1537 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1538 		BUG_ON(ret); /* -ENOMEM */
1539 
1540 		if (root->root_key.objectid ==
1541 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1542 			/*
1543 			 * Error handled later, as we must prevent
1544 			 * extent_clear_unlock_delalloc() in error handler
1545 			 * from freeing metadata of created ordered extent.
1546 			 */
1547 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1548 						      num_bytes);
1549 
1550 		extent_clear_unlock_delalloc(inode, cur_offset,
1551 					     cur_offset + num_bytes - 1, end,
1552 					     locked_page, EXTENT_LOCKED |
1553 					     EXTENT_DELALLOC |
1554 					     EXTENT_CLEAR_DATA_RESV,
1555 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1556 
1557 		cur_offset = extent_end;
1558 
1559 		/*
1560 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1561 		 * handler, as metadata for created ordered extent will only
1562 		 * be freed by btrfs_finish_ordered_io().
1563 		 */
1564 		if (ret)
1565 			goto error;
1566 		if (cur_offset > end)
1567 			break;
1568 	}
1569 	btrfs_release_path(path);
1570 
1571 	if (cur_offset <= end && cow_start == (u64)-1)
1572 		cow_start = cur_offset;
1573 
1574 	if (cow_start != (u64)-1) {
1575 		cur_offset = end;
1576 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1577 				     page_started, nr_written, 1, NULL);
1578 		if (ret)
1579 			goto error;
1580 	}
1581 
1582 error:
1583 	if (ret && cur_offset < end)
1584 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1585 					     locked_page, EXTENT_LOCKED |
1586 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1587 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1588 					     PAGE_CLEAR_DIRTY |
1589 					     PAGE_SET_WRITEBACK |
1590 					     PAGE_END_WRITEBACK);
1591 	btrfs_free_path(path);
1592 	return ret;
1593 }
1594 
1595 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1596 {
1597 
1598 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1599 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1600 		return 0;
1601 
1602 	/*
1603 	 * @defrag_bytes is a hint value, no spinlock held here,
1604 	 * if is not zero, it means the file is defragging.
1605 	 * Force cow if given extent needs to be defragged.
1606 	 */
1607 	if (BTRFS_I(inode)->defrag_bytes &&
1608 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1609 			   EXTENT_DEFRAG, 0, NULL))
1610 		return 1;
1611 
1612 	return 0;
1613 }
1614 
1615 /*
1616  * Function to process delayed allocation (create CoW) for ranges which are
1617  * being touched for the first time.
1618  */
1619 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1620 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1621 		struct writeback_control *wbc)
1622 {
1623 	int ret;
1624 	int force_cow = need_force_cow(inode, start, end);
1625 	unsigned int write_flags = wbc_to_write_flags(wbc);
1626 
1627 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1628 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1629 					 page_started, 1, nr_written);
1630 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1631 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1632 					 page_started, 0, nr_written);
1633 	} else if (!inode_need_compress(inode, start, end)) {
1634 		ret = cow_file_range(inode, locked_page, start, end, end,
1635 				      page_started, nr_written, 1, NULL);
1636 	} else {
1637 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1638 			&BTRFS_I(inode)->runtime_flags);
1639 		ret = cow_file_range_async(inode, locked_page, start, end,
1640 					   page_started, nr_written,
1641 					   write_flags);
1642 	}
1643 	if (ret)
1644 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1645 					      end - start + 1);
1646 	return ret;
1647 }
1648 
1649 void btrfs_split_delalloc_extent(struct inode *inode,
1650 				 struct extent_state *orig, u64 split)
1651 {
1652 	u64 size;
1653 
1654 	/* not delalloc, ignore it */
1655 	if (!(orig->state & EXTENT_DELALLOC))
1656 		return;
1657 
1658 	size = orig->end - orig->start + 1;
1659 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1660 		u32 num_extents;
1661 		u64 new_size;
1662 
1663 		/*
1664 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1665 		 * applies here, just in reverse.
1666 		 */
1667 		new_size = orig->end - split + 1;
1668 		num_extents = count_max_extents(new_size);
1669 		new_size = split - orig->start;
1670 		num_extents += count_max_extents(new_size);
1671 		if (count_max_extents(size) >= num_extents)
1672 			return;
1673 	}
1674 
1675 	spin_lock(&BTRFS_I(inode)->lock);
1676 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1677 	spin_unlock(&BTRFS_I(inode)->lock);
1678 }
1679 
1680 /*
1681  * Handle merged delayed allocation extents so we can keep track of new extents
1682  * that are just merged onto old extents, such as when we are doing sequential
1683  * writes, so we can properly account for the metadata space we'll need.
1684  */
1685 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1686 				 struct extent_state *other)
1687 {
1688 	u64 new_size, old_size;
1689 	u32 num_extents;
1690 
1691 	/* not delalloc, ignore it */
1692 	if (!(other->state & EXTENT_DELALLOC))
1693 		return;
1694 
1695 	if (new->start > other->start)
1696 		new_size = new->end - other->start + 1;
1697 	else
1698 		new_size = other->end - new->start + 1;
1699 
1700 	/* we're not bigger than the max, unreserve the space and go */
1701 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1702 		spin_lock(&BTRFS_I(inode)->lock);
1703 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1704 		spin_unlock(&BTRFS_I(inode)->lock);
1705 		return;
1706 	}
1707 
1708 	/*
1709 	 * We have to add up either side to figure out how many extents were
1710 	 * accounted for before we merged into one big extent.  If the number of
1711 	 * extents we accounted for is <= the amount we need for the new range
1712 	 * then we can return, otherwise drop.  Think of it like this
1713 	 *
1714 	 * [ 4k][MAX_SIZE]
1715 	 *
1716 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1717 	 * need 2 outstanding extents, on one side we have 1 and the other side
1718 	 * we have 1 so they are == and we can return.  But in this case
1719 	 *
1720 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1721 	 *
1722 	 * Each range on their own accounts for 2 extents, but merged together
1723 	 * they are only 3 extents worth of accounting, so we need to drop in
1724 	 * this case.
1725 	 */
1726 	old_size = other->end - other->start + 1;
1727 	num_extents = count_max_extents(old_size);
1728 	old_size = new->end - new->start + 1;
1729 	num_extents += count_max_extents(old_size);
1730 	if (count_max_extents(new_size) >= num_extents)
1731 		return;
1732 
1733 	spin_lock(&BTRFS_I(inode)->lock);
1734 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1735 	spin_unlock(&BTRFS_I(inode)->lock);
1736 }
1737 
1738 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1739 				      struct inode *inode)
1740 {
1741 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1742 
1743 	spin_lock(&root->delalloc_lock);
1744 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1745 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1746 			      &root->delalloc_inodes);
1747 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1748 			&BTRFS_I(inode)->runtime_flags);
1749 		root->nr_delalloc_inodes++;
1750 		if (root->nr_delalloc_inodes == 1) {
1751 			spin_lock(&fs_info->delalloc_root_lock);
1752 			BUG_ON(!list_empty(&root->delalloc_root));
1753 			list_add_tail(&root->delalloc_root,
1754 				      &fs_info->delalloc_roots);
1755 			spin_unlock(&fs_info->delalloc_root_lock);
1756 		}
1757 	}
1758 	spin_unlock(&root->delalloc_lock);
1759 }
1760 
1761 
1762 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1763 				struct btrfs_inode *inode)
1764 {
1765 	struct btrfs_fs_info *fs_info = root->fs_info;
1766 
1767 	if (!list_empty(&inode->delalloc_inodes)) {
1768 		list_del_init(&inode->delalloc_inodes);
1769 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1770 			  &inode->runtime_flags);
1771 		root->nr_delalloc_inodes--;
1772 		if (!root->nr_delalloc_inodes) {
1773 			ASSERT(list_empty(&root->delalloc_inodes));
1774 			spin_lock(&fs_info->delalloc_root_lock);
1775 			BUG_ON(list_empty(&root->delalloc_root));
1776 			list_del_init(&root->delalloc_root);
1777 			spin_unlock(&fs_info->delalloc_root_lock);
1778 		}
1779 	}
1780 }
1781 
1782 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1783 				     struct btrfs_inode *inode)
1784 {
1785 	spin_lock(&root->delalloc_lock);
1786 	__btrfs_del_delalloc_inode(root, inode);
1787 	spin_unlock(&root->delalloc_lock);
1788 }
1789 
1790 /*
1791  * Properly track delayed allocation bytes in the inode and to maintain the
1792  * list of inodes that have pending delalloc work to be done.
1793  */
1794 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1795 			       unsigned *bits)
1796 {
1797 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1798 
1799 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1800 		WARN_ON(1);
1801 	/*
1802 	 * set_bit and clear bit hooks normally require _irqsave/restore
1803 	 * but in this case, we are only testing for the DELALLOC
1804 	 * bit, which is only set or cleared with irqs on
1805 	 */
1806 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1807 		struct btrfs_root *root = BTRFS_I(inode)->root;
1808 		u64 len = state->end + 1 - state->start;
1809 		u32 num_extents = count_max_extents(len);
1810 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1811 
1812 		spin_lock(&BTRFS_I(inode)->lock);
1813 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1814 		spin_unlock(&BTRFS_I(inode)->lock);
1815 
1816 		/* For sanity tests */
1817 		if (btrfs_is_testing(fs_info))
1818 			return;
1819 
1820 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1821 					 fs_info->delalloc_batch);
1822 		spin_lock(&BTRFS_I(inode)->lock);
1823 		BTRFS_I(inode)->delalloc_bytes += len;
1824 		if (*bits & EXTENT_DEFRAG)
1825 			BTRFS_I(inode)->defrag_bytes += len;
1826 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1827 					 &BTRFS_I(inode)->runtime_flags))
1828 			btrfs_add_delalloc_inodes(root, inode);
1829 		spin_unlock(&BTRFS_I(inode)->lock);
1830 	}
1831 
1832 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1833 	    (*bits & EXTENT_DELALLOC_NEW)) {
1834 		spin_lock(&BTRFS_I(inode)->lock);
1835 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1836 			state->start;
1837 		spin_unlock(&BTRFS_I(inode)->lock);
1838 	}
1839 }
1840 
1841 /*
1842  * Once a range is no longer delalloc this function ensures that proper
1843  * accounting happens.
1844  */
1845 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1846 				 struct extent_state *state, unsigned *bits)
1847 {
1848 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1849 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
1850 	u64 len = state->end + 1 - state->start;
1851 	u32 num_extents = count_max_extents(len);
1852 
1853 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1854 		spin_lock(&inode->lock);
1855 		inode->defrag_bytes -= len;
1856 		spin_unlock(&inode->lock);
1857 	}
1858 
1859 	/*
1860 	 * set_bit and clear bit hooks normally require _irqsave/restore
1861 	 * but in this case, we are only testing for the DELALLOC
1862 	 * bit, which is only set or cleared with irqs on
1863 	 */
1864 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1865 		struct btrfs_root *root = inode->root;
1866 		bool do_list = !btrfs_is_free_space_inode(inode);
1867 
1868 		spin_lock(&inode->lock);
1869 		btrfs_mod_outstanding_extents(inode, -num_extents);
1870 		spin_unlock(&inode->lock);
1871 
1872 		/*
1873 		 * We don't reserve metadata space for space cache inodes so we
1874 		 * don't need to call delalloc_release_metadata if there is an
1875 		 * error.
1876 		 */
1877 		if (*bits & EXTENT_CLEAR_META_RESV &&
1878 		    root != fs_info->tree_root)
1879 			btrfs_delalloc_release_metadata(inode, len, false);
1880 
1881 		/* For sanity tests. */
1882 		if (btrfs_is_testing(fs_info))
1883 			return;
1884 
1885 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1886 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1887 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1888 			btrfs_free_reserved_data_space_noquota(
1889 					&inode->vfs_inode,
1890 					state->start, len);
1891 
1892 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1893 					 fs_info->delalloc_batch);
1894 		spin_lock(&inode->lock);
1895 		inode->delalloc_bytes -= len;
1896 		if (do_list && inode->delalloc_bytes == 0 &&
1897 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1898 					&inode->runtime_flags))
1899 			btrfs_del_delalloc_inode(root, inode);
1900 		spin_unlock(&inode->lock);
1901 	}
1902 
1903 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1904 	    (*bits & EXTENT_DELALLOC_NEW)) {
1905 		spin_lock(&inode->lock);
1906 		ASSERT(inode->new_delalloc_bytes >= len);
1907 		inode->new_delalloc_bytes -= len;
1908 		spin_unlock(&inode->lock);
1909 	}
1910 }
1911 
1912 /*
1913  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1914  * in a chunk's stripe. This function ensures that bios do not span a
1915  * stripe/chunk
1916  *
1917  * @page - The page we are about to add to the bio
1918  * @size - size we want to add to the bio
1919  * @bio - bio we want to ensure is smaller than a stripe
1920  * @bio_flags - flags of the bio
1921  *
1922  * return 1 if page cannot be added to the bio
1923  * return 0 if page can be added to the bio
1924  * return error otherwise
1925  */
1926 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1927 			     unsigned long bio_flags)
1928 {
1929 	struct inode *inode = page->mapping->host;
1930 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1931 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1932 	u64 length = 0;
1933 	u64 map_length;
1934 	int ret;
1935 
1936 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1937 		return 0;
1938 
1939 	length = bio->bi_iter.bi_size;
1940 	map_length = length;
1941 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1942 			      NULL, 0);
1943 	if (ret < 0)
1944 		return ret;
1945 	if (map_length < length + size)
1946 		return 1;
1947 	return 0;
1948 }
1949 
1950 /*
1951  * in order to insert checksums into the metadata in large chunks,
1952  * we wait until bio submission time.   All the pages in the bio are
1953  * checksummed and sums are attached onto the ordered extent record.
1954  *
1955  * At IO completion time the cums attached on the ordered extent record
1956  * are inserted into the btree
1957  */
1958 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1959 				    u64 bio_offset)
1960 {
1961 	struct inode *inode = private_data;
1962 	blk_status_t ret = 0;
1963 
1964 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1965 	BUG_ON(ret); /* -ENOMEM */
1966 	return 0;
1967 }
1968 
1969 /*
1970  * extent_io.c submission hook. This does the right thing for csum calculation
1971  * on write, or reading the csums from the tree before a read.
1972  *
1973  * Rules about async/sync submit,
1974  * a) read:				sync submit
1975  *
1976  * b) write without checksum:		sync submit
1977  *
1978  * c) write with checksum:
1979  *    c-1) if bio is issued by fsync:	sync submit
1980  *         (sync_writers != 0)
1981  *
1982  *    c-2) if root is reloc root:	sync submit
1983  *         (only in case of buffered IO)
1984  *
1985  *    c-3) otherwise:			async submit
1986  */
1987 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1988 					  int mirror_num,
1989 					  unsigned long bio_flags)
1990 
1991 {
1992 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1993 	struct btrfs_root *root = BTRFS_I(inode)->root;
1994 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1995 	blk_status_t ret = 0;
1996 	int skip_sum;
1997 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1998 
1999 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2000 
2001 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2002 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2003 
2004 	if (bio_op(bio) != REQ_OP_WRITE) {
2005 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2006 		if (ret)
2007 			goto out;
2008 
2009 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2010 			ret = btrfs_submit_compressed_read(inode, bio,
2011 							   mirror_num,
2012 							   bio_flags);
2013 			goto out;
2014 		} else if (!skip_sum) {
2015 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2016 			if (ret)
2017 				goto out;
2018 		}
2019 		goto mapit;
2020 	} else if (async && !skip_sum) {
2021 		/* csum items have already been cloned */
2022 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2023 			goto mapit;
2024 		/* we're doing a write, do the async checksumming */
2025 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2026 					  0, inode, btrfs_submit_bio_start);
2027 		goto out;
2028 	} else if (!skip_sum) {
2029 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2030 		if (ret)
2031 			goto out;
2032 	}
2033 
2034 mapit:
2035 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2036 
2037 out:
2038 	if (ret) {
2039 		bio->bi_status = ret;
2040 		bio_endio(bio);
2041 	}
2042 	return ret;
2043 }
2044 
2045 /*
2046  * given a list of ordered sums record them in the inode.  This happens
2047  * at IO completion time based on sums calculated at bio submission time.
2048  */
2049 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2050 			     struct inode *inode, struct list_head *list)
2051 {
2052 	struct btrfs_ordered_sum *sum;
2053 	int ret;
2054 
2055 	list_for_each_entry(sum, list, list) {
2056 		trans->adding_csums = true;
2057 		ret = btrfs_csum_file_blocks(trans,
2058 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2059 		trans->adding_csums = false;
2060 		if (ret)
2061 			return ret;
2062 	}
2063 	return 0;
2064 }
2065 
2066 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2067 			      unsigned int extra_bits,
2068 			      struct extent_state **cached_state, int dedupe)
2069 {
2070 	WARN_ON(PAGE_ALIGNED(end));
2071 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2072 				   extra_bits, cached_state);
2073 }
2074 
2075 /* see btrfs_writepage_start_hook for details on why this is required */
2076 struct btrfs_writepage_fixup {
2077 	struct page *page;
2078 	struct btrfs_work work;
2079 };
2080 
2081 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2082 {
2083 	struct btrfs_writepage_fixup *fixup;
2084 	struct btrfs_ordered_extent *ordered;
2085 	struct extent_state *cached_state = NULL;
2086 	struct extent_changeset *data_reserved = NULL;
2087 	struct page *page;
2088 	struct inode *inode;
2089 	u64 page_start;
2090 	u64 page_end;
2091 	int ret;
2092 
2093 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2094 	page = fixup->page;
2095 again:
2096 	lock_page(page);
2097 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2098 		ClearPageChecked(page);
2099 		goto out_page;
2100 	}
2101 
2102 	inode = page->mapping->host;
2103 	page_start = page_offset(page);
2104 	page_end = page_offset(page) + PAGE_SIZE - 1;
2105 
2106 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2107 			 &cached_state);
2108 
2109 	/* already ordered? We're done */
2110 	if (PagePrivate2(page))
2111 		goto out;
2112 
2113 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2114 					PAGE_SIZE);
2115 	if (ordered) {
2116 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2117 				     page_end, &cached_state);
2118 		unlock_page(page);
2119 		btrfs_start_ordered_extent(inode, ordered, 1);
2120 		btrfs_put_ordered_extent(ordered);
2121 		goto again;
2122 	}
2123 
2124 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2125 					   PAGE_SIZE);
2126 	if (ret) {
2127 		mapping_set_error(page->mapping, ret);
2128 		end_extent_writepage(page, ret, page_start, page_end);
2129 		ClearPageChecked(page);
2130 		goto out;
2131 	 }
2132 
2133 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2134 					&cached_state, 0);
2135 	if (ret) {
2136 		mapping_set_error(page->mapping, ret);
2137 		end_extent_writepage(page, ret, page_start, page_end);
2138 		ClearPageChecked(page);
2139 		goto out;
2140 	}
2141 
2142 	ClearPageChecked(page);
2143 	set_page_dirty(page);
2144 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2145 out:
2146 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2147 			     &cached_state);
2148 out_page:
2149 	unlock_page(page);
2150 	put_page(page);
2151 	kfree(fixup);
2152 	extent_changeset_free(data_reserved);
2153 }
2154 
2155 /*
2156  * There are a few paths in the higher layers of the kernel that directly
2157  * set the page dirty bit without asking the filesystem if it is a
2158  * good idea.  This causes problems because we want to make sure COW
2159  * properly happens and the data=ordered rules are followed.
2160  *
2161  * In our case any range that doesn't have the ORDERED bit set
2162  * hasn't been properly setup for IO.  We kick off an async process
2163  * to fix it up.  The async helper will wait for ordered extents, set
2164  * the delalloc bit and make it safe to write the page.
2165  */
2166 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2167 {
2168 	struct inode *inode = page->mapping->host;
2169 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2170 	struct btrfs_writepage_fixup *fixup;
2171 
2172 	/* this page is properly in the ordered list */
2173 	if (TestClearPagePrivate2(page))
2174 		return 0;
2175 
2176 	if (PageChecked(page))
2177 		return -EAGAIN;
2178 
2179 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2180 	if (!fixup)
2181 		return -EAGAIN;
2182 
2183 	SetPageChecked(page);
2184 	get_page(page);
2185 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2186 			btrfs_writepage_fixup_worker, NULL, NULL);
2187 	fixup->page = page;
2188 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2189 	return -EBUSY;
2190 }
2191 
2192 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2193 				       struct inode *inode, u64 file_pos,
2194 				       u64 disk_bytenr, u64 disk_num_bytes,
2195 				       u64 num_bytes, u64 ram_bytes,
2196 				       u8 compression, u8 encryption,
2197 				       u16 other_encoding, int extent_type)
2198 {
2199 	struct btrfs_root *root = BTRFS_I(inode)->root;
2200 	struct btrfs_file_extent_item *fi;
2201 	struct btrfs_path *path;
2202 	struct extent_buffer *leaf;
2203 	struct btrfs_key ins;
2204 	u64 qg_released;
2205 	int extent_inserted = 0;
2206 	int ret;
2207 
2208 	path = btrfs_alloc_path();
2209 	if (!path)
2210 		return -ENOMEM;
2211 
2212 	/*
2213 	 * we may be replacing one extent in the tree with another.
2214 	 * The new extent is pinned in the extent map, and we don't want
2215 	 * to drop it from the cache until it is completely in the btree.
2216 	 *
2217 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2218 	 * the caller is expected to unpin it and allow it to be merged
2219 	 * with the others.
2220 	 */
2221 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2222 				   file_pos + num_bytes, NULL, 0,
2223 				   1, sizeof(*fi), &extent_inserted);
2224 	if (ret)
2225 		goto out;
2226 
2227 	if (!extent_inserted) {
2228 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2229 		ins.offset = file_pos;
2230 		ins.type = BTRFS_EXTENT_DATA_KEY;
2231 
2232 		path->leave_spinning = 1;
2233 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2234 					      sizeof(*fi));
2235 		if (ret)
2236 			goto out;
2237 	}
2238 	leaf = path->nodes[0];
2239 	fi = btrfs_item_ptr(leaf, path->slots[0],
2240 			    struct btrfs_file_extent_item);
2241 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2242 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2243 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2244 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2245 	btrfs_set_file_extent_offset(leaf, fi, 0);
2246 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2247 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2248 	btrfs_set_file_extent_compression(leaf, fi, compression);
2249 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2250 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2251 
2252 	btrfs_mark_buffer_dirty(leaf);
2253 	btrfs_release_path(path);
2254 
2255 	inode_add_bytes(inode, num_bytes);
2256 
2257 	ins.objectid = disk_bytenr;
2258 	ins.offset = disk_num_bytes;
2259 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2260 
2261 	/*
2262 	 * Release the reserved range from inode dirty range map, as it is
2263 	 * already moved into delayed_ref_head
2264 	 */
2265 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2266 	if (ret < 0)
2267 		goto out;
2268 	qg_released = ret;
2269 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2270 					       btrfs_ino(BTRFS_I(inode)),
2271 					       file_pos, qg_released, &ins);
2272 out:
2273 	btrfs_free_path(path);
2274 
2275 	return ret;
2276 }
2277 
2278 /* snapshot-aware defrag */
2279 struct sa_defrag_extent_backref {
2280 	struct rb_node node;
2281 	struct old_sa_defrag_extent *old;
2282 	u64 root_id;
2283 	u64 inum;
2284 	u64 file_pos;
2285 	u64 extent_offset;
2286 	u64 num_bytes;
2287 	u64 generation;
2288 };
2289 
2290 struct old_sa_defrag_extent {
2291 	struct list_head list;
2292 	struct new_sa_defrag_extent *new;
2293 
2294 	u64 extent_offset;
2295 	u64 bytenr;
2296 	u64 offset;
2297 	u64 len;
2298 	int count;
2299 };
2300 
2301 struct new_sa_defrag_extent {
2302 	struct rb_root root;
2303 	struct list_head head;
2304 	struct btrfs_path *path;
2305 	struct inode *inode;
2306 	u64 file_pos;
2307 	u64 len;
2308 	u64 bytenr;
2309 	u64 disk_len;
2310 	u8 compress_type;
2311 };
2312 
2313 static int backref_comp(struct sa_defrag_extent_backref *b1,
2314 			struct sa_defrag_extent_backref *b2)
2315 {
2316 	if (b1->root_id < b2->root_id)
2317 		return -1;
2318 	else if (b1->root_id > b2->root_id)
2319 		return 1;
2320 
2321 	if (b1->inum < b2->inum)
2322 		return -1;
2323 	else if (b1->inum > b2->inum)
2324 		return 1;
2325 
2326 	if (b1->file_pos < b2->file_pos)
2327 		return -1;
2328 	else if (b1->file_pos > b2->file_pos)
2329 		return 1;
2330 
2331 	/*
2332 	 * [------------------------------] ===> (a range of space)
2333 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2334 	 * |<---------------------------->| ===> (fs/file tree B)
2335 	 *
2336 	 * A range of space can refer to two file extents in one tree while
2337 	 * refer to only one file extent in another tree.
2338 	 *
2339 	 * So we may process a disk offset more than one time(two extents in A)
2340 	 * and locate at the same extent(one extent in B), then insert two same
2341 	 * backrefs(both refer to the extent in B).
2342 	 */
2343 	return 0;
2344 }
2345 
2346 static void backref_insert(struct rb_root *root,
2347 			   struct sa_defrag_extent_backref *backref)
2348 {
2349 	struct rb_node **p = &root->rb_node;
2350 	struct rb_node *parent = NULL;
2351 	struct sa_defrag_extent_backref *entry;
2352 	int ret;
2353 
2354 	while (*p) {
2355 		parent = *p;
2356 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2357 
2358 		ret = backref_comp(backref, entry);
2359 		if (ret < 0)
2360 			p = &(*p)->rb_left;
2361 		else
2362 			p = &(*p)->rb_right;
2363 	}
2364 
2365 	rb_link_node(&backref->node, parent, p);
2366 	rb_insert_color(&backref->node, root);
2367 }
2368 
2369 /*
2370  * Note the backref might has changed, and in this case we just return 0.
2371  */
2372 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2373 				       void *ctx)
2374 {
2375 	struct btrfs_file_extent_item *extent;
2376 	struct old_sa_defrag_extent *old = ctx;
2377 	struct new_sa_defrag_extent *new = old->new;
2378 	struct btrfs_path *path = new->path;
2379 	struct btrfs_key key;
2380 	struct btrfs_root *root;
2381 	struct sa_defrag_extent_backref *backref;
2382 	struct extent_buffer *leaf;
2383 	struct inode *inode = new->inode;
2384 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2385 	int slot;
2386 	int ret;
2387 	u64 extent_offset;
2388 	u64 num_bytes;
2389 
2390 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2391 	    inum == btrfs_ino(BTRFS_I(inode)))
2392 		return 0;
2393 
2394 	key.objectid = root_id;
2395 	key.type = BTRFS_ROOT_ITEM_KEY;
2396 	key.offset = (u64)-1;
2397 
2398 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2399 	if (IS_ERR(root)) {
2400 		if (PTR_ERR(root) == -ENOENT)
2401 			return 0;
2402 		WARN_ON(1);
2403 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2404 			 inum, offset, root_id);
2405 		return PTR_ERR(root);
2406 	}
2407 
2408 	key.objectid = inum;
2409 	key.type = BTRFS_EXTENT_DATA_KEY;
2410 	if (offset > (u64)-1 << 32)
2411 		key.offset = 0;
2412 	else
2413 		key.offset = offset;
2414 
2415 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2416 	if (WARN_ON(ret < 0))
2417 		return ret;
2418 	ret = 0;
2419 
2420 	while (1) {
2421 		cond_resched();
2422 
2423 		leaf = path->nodes[0];
2424 		slot = path->slots[0];
2425 
2426 		if (slot >= btrfs_header_nritems(leaf)) {
2427 			ret = btrfs_next_leaf(root, path);
2428 			if (ret < 0) {
2429 				goto out;
2430 			} else if (ret > 0) {
2431 				ret = 0;
2432 				goto out;
2433 			}
2434 			continue;
2435 		}
2436 
2437 		path->slots[0]++;
2438 
2439 		btrfs_item_key_to_cpu(leaf, &key, slot);
2440 
2441 		if (key.objectid > inum)
2442 			goto out;
2443 
2444 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2445 			continue;
2446 
2447 		extent = btrfs_item_ptr(leaf, slot,
2448 					struct btrfs_file_extent_item);
2449 
2450 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2451 			continue;
2452 
2453 		/*
2454 		 * 'offset' refers to the exact key.offset,
2455 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2456 		 * (key.offset - extent_offset).
2457 		 */
2458 		if (key.offset != offset)
2459 			continue;
2460 
2461 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2462 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2463 
2464 		if (extent_offset >= old->extent_offset + old->offset +
2465 		    old->len || extent_offset + num_bytes <=
2466 		    old->extent_offset + old->offset)
2467 			continue;
2468 		break;
2469 	}
2470 
2471 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2472 	if (!backref) {
2473 		ret = -ENOENT;
2474 		goto out;
2475 	}
2476 
2477 	backref->root_id = root_id;
2478 	backref->inum = inum;
2479 	backref->file_pos = offset;
2480 	backref->num_bytes = num_bytes;
2481 	backref->extent_offset = extent_offset;
2482 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2483 	backref->old = old;
2484 	backref_insert(&new->root, backref);
2485 	old->count++;
2486 out:
2487 	btrfs_release_path(path);
2488 	WARN_ON(ret);
2489 	return ret;
2490 }
2491 
2492 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2493 				   struct new_sa_defrag_extent *new)
2494 {
2495 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2496 	struct old_sa_defrag_extent *old, *tmp;
2497 	int ret;
2498 
2499 	new->path = path;
2500 
2501 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2502 		ret = iterate_inodes_from_logical(old->bytenr +
2503 						  old->extent_offset, fs_info,
2504 						  path, record_one_backref,
2505 						  old, false);
2506 		if (ret < 0 && ret != -ENOENT)
2507 			return false;
2508 
2509 		/* no backref to be processed for this extent */
2510 		if (!old->count) {
2511 			list_del(&old->list);
2512 			kfree(old);
2513 		}
2514 	}
2515 
2516 	if (list_empty(&new->head))
2517 		return false;
2518 
2519 	return true;
2520 }
2521 
2522 static int relink_is_mergable(struct extent_buffer *leaf,
2523 			      struct btrfs_file_extent_item *fi,
2524 			      struct new_sa_defrag_extent *new)
2525 {
2526 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2527 		return 0;
2528 
2529 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2530 		return 0;
2531 
2532 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2533 		return 0;
2534 
2535 	if (btrfs_file_extent_encryption(leaf, fi) ||
2536 	    btrfs_file_extent_other_encoding(leaf, fi))
2537 		return 0;
2538 
2539 	return 1;
2540 }
2541 
2542 /*
2543  * Note the backref might has changed, and in this case we just return 0.
2544  */
2545 static noinline int relink_extent_backref(struct btrfs_path *path,
2546 				 struct sa_defrag_extent_backref *prev,
2547 				 struct sa_defrag_extent_backref *backref)
2548 {
2549 	struct btrfs_file_extent_item *extent;
2550 	struct btrfs_file_extent_item *item;
2551 	struct btrfs_ordered_extent *ordered;
2552 	struct btrfs_trans_handle *trans;
2553 	struct btrfs_ref ref = { 0 };
2554 	struct btrfs_root *root;
2555 	struct btrfs_key key;
2556 	struct extent_buffer *leaf;
2557 	struct old_sa_defrag_extent *old = backref->old;
2558 	struct new_sa_defrag_extent *new = old->new;
2559 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2560 	struct inode *inode;
2561 	struct extent_state *cached = NULL;
2562 	int ret = 0;
2563 	u64 start;
2564 	u64 len;
2565 	u64 lock_start;
2566 	u64 lock_end;
2567 	bool merge = false;
2568 	int index;
2569 
2570 	if (prev && prev->root_id == backref->root_id &&
2571 	    prev->inum == backref->inum &&
2572 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2573 		merge = true;
2574 
2575 	/* step 1: get root */
2576 	key.objectid = backref->root_id;
2577 	key.type = BTRFS_ROOT_ITEM_KEY;
2578 	key.offset = (u64)-1;
2579 
2580 	index = srcu_read_lock(&fs_info->subvol_srcu);
2581 
2582 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2583 	if (IS_ERR(root)) {
2584 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2585 		if (PTR_ERR(root) == -ENOENT)
2586 			return 0;
2587 		return PTR_ERR(root);
2588 	}
2589 
2590 	if (btrfs_root_readonly(root)) {
2591 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2592 		return 0;
2593 	}
2594 
2595 	/* step 2: get inode */
2596 	key.objectid = backref->inum;
2597 	key.type = BTRFS_INODE_ITEM_KEY;
2598 	key.offset = 0;
2599 
2600 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2601 	if (IS_ERR(inode)) {
2602 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2603 		return 0;
2604 	}
2605 
2606 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2607 
2608 	/* step 3: relink backref */
2609 	lock_start = backref->file_pos;
2610 	lock_end = backref->file_pos + backref->num_bytes - 1;
2611 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2612 			 &cached);
2613 
2614 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2615 	if (ordered) {
2616 		btrfs_put_ordered_extent(ordered);
2617 		goto out_unlock;
2618 	}
2619 
2620 	trans = btrfs_join_transaction(root);
2621 	if (IS_ERR(trans)) {
2622 		ret = PTR_ERR(trans);
2623 		goto out_unlock;
2624 	}
2625 
2626 	key.objectid = backref->inum;
2627 	key.type = BTRFS_EXTENT_DATA_KEY;
2628 	key.offset = backref->file_pos;
2629 
2630 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2631 	if (ret < 0) {
2632 		goto out_free_path;
2633 	} else if (ret > 0) {
2634 		ret = 0;
2635 		goto out_free_path;
2636 	}
2637 
2638 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2639 				struct btrfs_file_extent_item);
2640 
2641 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2642 	    backref->generation)
2643 		goto out_free_path;
2644 
2645 	btrfs_release_path(path);
2646 
2647 	start = backref->file_pos;
2648 	if (backref->extent_offset < old->extent_offset + old->offset)
2649 		start += old->extent_offset + old->offset -
2650 			 backref->extent_offset;
2651 
2652 	len = min(backref->extent_offset + backref->num_bytes,
2653 		  old->extent_offset + old->offset + old->len);
2654 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2655 
2656 	ret = btrfs_drop_extents(trans, root, inode, start,
2657 				 start + len, 1);
2658 	if (ret)
2659 		goto out_free_path;
2660 again:
2661 	key.objectid = btrfs_ino(BTRFS_I(inode));
2662 	key.type = BTRFS_EXTENT_DATA_KEY;
2663 	key.offset = start;
2664 
2665 	path->leave_spinning = 1;
2666 	if (merge) {
2667 		struct btrfs_file_extent_item *fi;
2668 		u64 extent_len;
2669 		struct btrfs_key found_key;
2670 
2671 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2672 		if (ret < 0)
2673 			goto out_free_path;
2674 
2675 		path->slots[0]--;
2676 		leaf = path->nodes[0];
2677 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2678 
2679 		fi = btrfs_item_ptr(leaf, path->slots[0],
2680 				    struct btrfs_file_extent_item);
2681 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2682 
2683 		if (extent_len + found_key.offset == start &&
2684 		    relink_is_mergable(leaf, fi, new)) {
2685 			btrfs_set_file_extent_num_bytes(leaf, fi,
2686 							extent_len + len);
2687 			btrfs_mark_buffer_dirty(leaf);
2688 			inode_add_bytes(inode, len);
2689 
2690 			ret = 1;
2691 			goto out_free_path;
2692 		} else {
2693 			merge = false;
2694 			btrfs_release_path(path);
2695 			goto again;
2696 		}
2697 	}
2698 
2699 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2700 					sizeof(*extent));
2701 	if (ret) {
2702 		btrfs_abort_transaction(trans, ret);
2703 		goto out_free_path;
2704 	}
2705 
2706 	leaf = path->nodes[0];
2707 	item = btrfs_item_ptr(leaf, path->slots[0],
2708 				struct btrfs_file_extent_item);
2709 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2710 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2711 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2712 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2713 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2714 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2715 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2716 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2717 	btrfs_set_file_extent_encryption(leaf, item, 0);
2718 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2719 
2720 	btrfs_mark_buffer_dirty(leaf);
2721 	inode_add_bytes(inode, len);
2722 	btrfs_release_path(path);
2723 
2724 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2725 			       new->disk_len, 0);
2726 	btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2727 			    new->file_pos);  /* start - extent_offset */
2728 	ret = btrfs_inc_extent_ref(trans, &ref);
2729 	if (ret) {
2730 		btrfs_abort_transaction(trans, ret);
2731 		goto out_free_path;
2732 	}
2733 
2734 	ret = 1;
2735 out_free_path:
2736 	btrfs_release_path(path);
2737 	path->leave_spinning = 0;
2738 	btrfs_end_transaction(trans);
2739 out_unlock:
2740 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2741 			     &cached);
2742 	iput(inode);
2743 	return ret;
2744 }
2745 
2746 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2747 {
2748 	struct old_sa_defrag_extent *old, *tmp;
2749 
2750 	if (!new)
2751 		return;
2752 
2753 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2754 		kfree(old);
2755 	}
2756 	kfree(new);
2757 }
2758 
2759 static void relink_file_extents(struct new_sa_defrag_extent *new)
2760 {
2761 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2762 	struct btrfs_path *path;
2763 	struct sa_defrag_extent_backref *backref;
2764 	struct sa_defrag_extent_backref *prev = NULL;
2765 	struct rb_node *node;
2766 	int ret;
2767 
2768 	path = btrfs_alloc_path();
2769 	if (!path)
2770 		return;
2771 
2772 	if (!record_extent_backrefs(path, new)) {
2773 		btrfs_free_path(path);
2774 		goto out;
2775 	}
2776 	btrfs_release_path(path);
2777 
2778 	while (1) {
2779 		node = rb_first(&new->root);
2780 		if (!node)
2781 			break;
2782 		rb_erase(node, &new->root);
2783 
2784 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2785 
2786 		ret = relink_extent_backref(path, prev, backref);
2787 		WARN_ON(ret < 0);
2788 
2789 		kfree(prev);
2790 
2791 		if (ret == 1)
2792 			prev = backref;
2793 		else
2794 			prev = NULL;
2795 		cond_resched();
2796 	}
2797 	kfree(prev);
2798 
2799 	btrfs_free_path(path);
2800 out:
2801 	free_sa_defrag_extent(new);
2802 
2803 	atomic_dec(&fs_info->defrag_running);
2804 	wake_up(&fs_info->transaction_wait);
2805 }
2806 
2807 static struct new_sa_defrag_extent *
2808 record_old_file_extents(struct inode *inode,
2809 			struct btrfs_ordered_extent *ordered)
2810 {
2811 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2812 	struct btrfs_root *root = BTRFS_I(inode)->root;
2813 	struct btrfs_path *path;
2814 	struct btrfs_key key;
2815 	struct old_sa_defrag_extent *old;
2816 	struct new_sa_defrag_extent *new;
2817 	int ret;
2818 
2819 	new = kmalloc(sizeof(*new), GFP_NOFS);
2820 	if (!new)
2821 		return NULL;
2822 
2823 	new->inode = inode;
2824 	new->file_pos = ordered->file_offset;
2825 	new->len = ordered->len;
2826 	new->bytenr = ordered->start;
2827 	new->disk_len = ordered->disk_len;
2828 	new->compress_type = ordered->compress_type;
2829 	new->root = RB_ROOT;
2830 	INIT_LIST_HEAD(&new->head);
2831 
2832 	path = btrfs_alloc_path();
2833 	if (!path)
2834 		goto out_kfree;
2835 
2836 	key.objectid = btrfs_ino(BTRFS_I(inode));
2837 	key.type = BTRFS_EXTENT_DATA_KEY;
2838 	key.offset = new->file_pos;
2839 
2840 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2841 	if (ret < 0)
2842 		goto out_free_path;
2843 	if (ret > 0 && path->slots[0] > 0)
2844 		path->slots[0]--;
2845 
2846 	/* find out all the old extents for the file range */
2847 	while (1) {
2848 		struct btrfs_file_extent_item *extent;
2849 		struct extent_buffer *l;
2850 		int slot;
2851 		u64 num_bytes;
2852 		u64 offset;
2853 		u64 end;
2854 		u64 disk_bytenr;
2855 		u64 extent_offset;
2856 
2857 		l = path->nodes[0];
2858 		slot = path->slots[0];
2859 
2860 		if (slot >= btrfs_header_nritems(l)) {
2861 			ret = btrfs_next_leaf(root, path);
2862 			if (ret < 0)
2863 				goto out_free_path;
2864 			else if (ret > 0)
2865 				break;
2866 			continue;
2867 		}
2868 
2869 		btrfs_item_key_to_cpu(l, &key, slot);
2870 
2871 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2872 			break;
2873 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2874 			break;
2875 		if (key.offset >= new->file_pos + new->len)
2876 			break;
2877 
2878 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2879 
2880 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2881 		if (key.offset + num_bytes < new->file_pos)
2882 			goto next;
2883 
2884 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2885 		if (!disk_bytenr)
2886 			goto next;
2887 
2888 		extent_offset = btrfs_file_extent_offset(l, extent);
2889 
2890 		old = kmalloc(sizeof(*old), GFP_NOFS);
2891 		if (!old)
2892 			goto out_free_path;
2893 
2894 		offset = max(new->file_pos, key.offset);
2895 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2896 
2897 		old->bytenr = disk_bytenr;
2898 		old->extent_offset = extent_offset;
2899 		old->offset = offset - key.offset;
2900 		old->len = end - offset;
2901 		old->new = new;
2902 		old->count = 0;
2903 		list_add_tail(&old->list, &new->head);
2904 next:
2905 		path->slots[0]++;
2906 		cond_resched();
2907 	}
2908 
2909 	btrfs_free_path(path);
2910 	atomic_inc(&fs_info->defrag_running);
2911 
2912 	return new;
2913 
2914 out_free_path:
2915 	btrfs_free_path(path);
2916 out_kfree:
2917 	free_sa_defrag_extent(new);
2918 	return NULL;
2919 }
2920 
2921 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2922 					 u64 start, u64 len)
2923 {
2924 	struct btrfs_block_group_cache *cache;
2925 
2926 	cache = btrfs_lookup_block_group(fs_info, start);
2927 	ASSERT(cache);
2928 
2929 	spin_lock(&cache->lock);
2930 	cache->delalloc_bytes -= len;
2931 	spin_unlock(&cache->lock);
2932 
2933 	btrfs_put_block_group(cache);
2934 }
2935 
2936 /* as ordered data IO finishes, this gets called so we can finish
2937  * an ordered extent if the range of bytes in the file it covers are
2938  * fully written.
2939  */
2940 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2941 {
2942 	struct inode *inode = ordered_extent->inode;
2943 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2944 	struct btrfs_root *root = BTRFS_I(inode)->root;
2945 	struct btrfs_trans_handle *trans = NULL;
2946 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2947 	struct extent_state *cached_state = NULL;
2948 	struct new_sa_defrag_extent *new = NULL;
2949 	int compress_type = 0;
2950 	int ret = 0;
2951 	u64 logical_len = ordered_extent->len;
2952 	bool nolock;
2953 	bool truncated = false;
2954 	bool range_locked = false;
2955 	bool clear_new_delalloc_bytes = false;
2956 	bool clear_reserved_extent = true;
2957 
2958 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2959 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2960 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2961 		clear_new_delalloc_bytes = true;
2962 
2963 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2964 
2965 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2966 		ret = -EIO;
2967 		goto out;
2968 	}
2969 
2970 	btrfs_free_io_failure_record(BTRFS_I(inode),
2971 			ordered_extent->file_offset,
2972 			ordered_extent->file_offset +
2973 			ordered_extent->len - 1);
2974 
2975 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2976 		truncated = true;
2977 		logical_len = ordered_extent->truncated_len;
2978 		/* Truncated the entire extent, don't bother adding */
2979 		if (!logical_len)
2980 			goto out;
2981 	}
2982 
2983 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2984 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2985 
2986 		/*
2987 		 * For mwrite(mmap + memset to write) case, we still reserve
2988 		 * space for NOCOW range.
2989 		 * As NOCOW won't cause a new delayed ref, just free the space
2990 		 */
2991 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2992 				       ordered_extent->len);
2993 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2994 		if (nolock)
2995 			trans = btrfs_join_transaction_nolock(root);
2996 		else
2997 			trans = btrfs_join_transaction(root);
2998 		if (IS_ERR(trans)) {
2999 			ret = PTR_ERR(trans);
3000 			trans = NULL;
3001 			goto out;
3002 		}
3003 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3004 		ret = btrfs_update_inode_fallback(trans, root, inode);
3005 		if (ret) /* -ENOMEM or corruption */
3006 			btrfs_abort_transaction(trans, ret);
3007 		goto out;
3008 	}
3009 
3010 	range_locked = true;
3011 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3012 			 ordered_extent->file_offset + ordered_extent->len - 1,
3013 			 &cached_state);
3014 
3015 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3016 			ordered_extent->file_offset + ordered_extent->len - 1,
3017 			EXTENT_DEFRAG, 0, cached_state);
3018 	if (ret) {
3019 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3020 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3021 			/* the inode is shared */
3022 			new = record_old_file_extents(inode, ordered_extent);
3023 
3024 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3025 			ordered_extent->file_offset + ordered_extent->len - 1,
3026 			EXTENT_DEFRAG, 0, 0, &cached_state);
3027 	}
3028 
3029 	if (nolock)
3030 		trans = btrfs_join_transaction_nolock(root);
3031 	else
3032 		trans = btrfs_join_transaction(root);
3033 	if (IS_ERR(trans)) {
3034 		ret = PTR_ERR(trans);
3035 		trans = NULL;
3036 		goto out;
3037 	}
3038 
3039 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3040 
3041 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3042 		compress_type = ordered_extent->compress_type;
3043 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3044 		BUG_ON(compress_type);
3045 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3046 				       ordered_extent->len);
3047 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3048 						ordered_extent->file_offset,
3049 						ordered_extent->file_offset +
3050 						logical_len);
3051 	} else {
3052 		BUG_ON(root == fs_info->tree_root);
3053 		ret = insert_reserved_file_extent(trans, inode,
3054 						ordered_extent->file_offset,
3055 						ordered_extent->start,
3056 						ordered_extent->disk_len,
3057 						logical_len, logical_len,
3058 						compress_type, 0, 0,
3059 						BTRFS_FILE_EXTENT_REG);
3060 		if (!ret) {
3061 			clear_reserved_extent = false;
3062 			btrfs_release_delalloc_bytes(fs_info,
3063 						     ordered_extent->start,
3064 						     ordered_extent->disk_len);
3065 		}
3066 	}
3067 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3068 			   ordered_extent->file_offset, ordered_extent->len,
3069 			   trans->transid);
3070 	if (ret < 0) {
3071 		btrfs_abort_transaction(trans, ret);
3072 		goto out;
3073 	}
3074 
3075 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3076 	if (ret) {
3077 		btrfs_abort_transaction(trans, ret);
3078 		goto out;
3079 	}
3080 
3081 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3082 	ret = btrfs_update_inode_fallback(trans, root, inode);
3083 	if (ret) { /* -ENOMEM or corruption */
3084 		btrfs_abort_transaction(trans, ret);
3085 		goto out;
3086 	}
3087 	ret = 0;
3088 out:
3089 	if (range_locked || clear_new_delalloc_bytes) {
3090 		unsigned int clear_bits = 0;
3091 
3092 		if (range_locked)
3093 			clear_bits |= EXTENT_LOCKED;
3094 		if (clear_new_delalloc_bytes)
3095 			clear_bits |= EXTENT_DELALLOC_NEW;
3096 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3097 				 ordered_extent->file_offset,
3098 				 ordered_extent->file_offset +
3099 				 ordered_extent->len - 1,
3100 				 clear_bits,
3101 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3102 				 0, &cached_state);
3103 	}
3104 
3105 	if (trans)
3106 		btrfs_end_transaction(trans);
3107 
3108 	if (ret || truncated) {
3109 		u64 start, end;
3110 
3111 		if (truncated)
3112 			start = ordered_extent->file_offset + logical_len;
3113 		else
3114 			start = ordered_extent->file_offset;
3115 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3116 		clear_extent_uptodate(io_tree, start, end, NULL);
3117 
3118 		/* Drop the cache for the part of the extent we didn't write. */
3119 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3120 
3121 		/*
3122 		 * If the ordered extent had an IOERR or something else went
3123 		 * wrong we need to return the space for this ordered extent
3124 		 * back to the allocator.  We only free the extent in the
3125 		 * truncated case if we didn't write out the extent at all.
3126 		 *
3127 		 * If we made it past insert_reserved_file_extent before we
3128 		 * errored out then we don't need to do this as the accounting
3129 		 * has already been done.
3130 		 */
3131 		if ((ret || !logical_len) &&
3132 		    clear_reserved_extent &&
3133 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3134 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3135 			btrfs_free_reserved_extent(fs_info,
3136 						   ordered_extent->start,
3137 						   ordered_extent->disk_len, 1);
3138 	}
3139 
3140 
3141 	/*
3142 	 * This needs to be done to make sure anybody waiting knows we are done
3143 	 * updating everything for this ordered extent.
3144 	 */
3145 	btrfs_remove_ordered_extent(inode, ordered_extent);
3146 
3147 	/* for snapshot-aware defrag */
3148 	if (new) {
3149 		if (ret) {
3150 			free_sa_defrag_extent(new);
3151 			atomic_dec(&fs_info->defrag_running);
3152 		} else {
3153 			relink_file_extents(new);
3154 		}
3155 	}
3156 
3157 	/* once for us */
3158 	btrfs_put_ordered_extent(ordered_extent);
3159 	/* once for the tree */
3160 	btrfs_put_ordered_extent(ordered_extent);
3161 
3162 	return ret;
3163 }
3164 
3165 static void finish_ordered_fn(struct btrfs_work *work)
3166 {
3167 	struct btrfs_ordered_extent *ordered_extent;
3168 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3169 	btrfs_finish_ordered_io(ordered_extent);
3170 }
3171 
3172 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3173 					  u64 end, int uptodate)
3174 {
3175 	struct inode *inode = page->mapping->host;
3176 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3177 	struct btrfs_ordered_extent *ordered_extent = NULL;
3178 	struct btrfs_workqueue *wq;
3179 	btrfs_work_func_t func;
3180 
3181 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3182 
3183 	ClearPagePrivate2(page);
3184 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3185 					    end - start + 1, uptodate))
3186 		return;
3187 
3188 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3189 		wq = fs_info->endio_freespace_worker;
3190 		func = btrfs_freespace_write_helper;
3191 	} else {
3192 		wq = fs_info->endio_write_workers;
3193 		func = btrfs_endio_write_helper;
3194 	}
3195 
3196 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3197 			NULL);
3198 	btrfs_queue_work(wq, &ordered_extent->work);
3199 }
3200 
3201 static int __readpage_endio_check(struct inode *inode,
3202 				  struct btrfs_io_bio *io_bio,
3203 				  int icsum, struct page *page,
3204 				  int pgoff, u64 start, size_t len)
3205 {
3206 	char *kaddr;
3207 	u32 csum_expected;
3208 	u32 csum = ~(u32)0;
3209 
3210 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3211 
3212 	kaddr = kmap_atomic(page);
3213 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3214 	btrfs_csum_final(csum, (u8 *)&csum);
3215 	if (csum != csum_expected)
3216 		goto zeroit;
3217 
3218 	kunmap_atomic(kaddr);
3219 	return 0;
3220 zeroit:
3221 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3222 				    io_bio->mirror_num);
3223 	memset(kaddr + pgoff, 1, len);
3224 	flush_dcache_page(page);
3225 	kunmap_atomic(kaddr);
3226 	return -EIO;
3227 }
3228 
3229 /*
3230  * when reads are done, we need to check csums to verify the data is correct
3231  * if there's a match, we allow the bio to finish.  If not, the code in
3232  * extent_io.c will try to find good copies for us.
3233  */
3234 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3235 				      u64 phy_offset, struct page *page,
3236 				      u64 start, u64 end, int mirror)
3237 {
3238 	size_t offset = start - page_offset(page);
3239 	struct inode *inode = page->mapping->host;
3240 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3241 	struct btrfs_root *root = BTRFS_I(inode)->root;
3242 
3243 	if (PageChecked(page)) {
3244 		ClearPageChecked(page);
3245 		return 0;
3246 	}
3247 
3248 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3249 		return 0;
3250 
3251 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3252 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3253 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3254 		return 0;
3255 	}
3256 
3257 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3258 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3259 				      start, (size_t)(end - start + 1));
3260 }
3261 
3262 /*
3263  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3264  *
3265  * @inode: The inode we want to perform iput on
3266  *
3267  * This function uses the generic vfs_inode::i_count to track whether we should
3268  * just decrement it (in case it's > 1) or if this is the last iput then link
3269  * the inode to the delayed iput machinery. Delayed iputs are processed at
3270  * transaction commit time/superblock commit/cleaner kthread.
3271  */
3272 void btrfs_add_delayed_iput(struct inode *inode)
3273 {
3274 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3275 	struct btrfs_inode *binode = BTRFS_I(inode);
3276 
3277 	if (atomic_add_unless(&inode->i_count, -1, 1))
3278 		return;
3279 
3280 	atomic_inc(&fs_info->nr_delayed_iputs);
3281 	spin_lock(&fs_info->delayed_iput_lock);
3282 	ASSERT(list_empty(&binode->delayed_iput));
3283 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3284 	spin_unlock(&fs_info->delayed_iput_lock);
3285 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3286 		wake_up_process(fs_info->cleaner_kthread);
3287 }
3288 
3289 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3290 {
3291 
3292 	spin_lock(&fs_info->delayed_iput_lock);
3293 	while (!list_empty(&fs_info->delayed_iputs)) {
3294 		struct btrfs_inode *inode;
3295 
3296 		inode = list_first_entry(&fs_info->delayed_iputs,
3297 				struct btrfs_inode, delayed_iput);
3298 		list_del_init(&inode->delayed_iput);
3299 		spin_unlock(&fs_info->delayed_iput_lock);
3300 		iput(&inode->vfs_inode);
3301 		if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3302 			wake_up(&fs_info->delayed_iputs_wait);
3303 		spin_lock(&fs_info->delayed_iput_lock);
3304 	}
3305 	spin_unlock(&fs_info->delayed_iput_lock);
3306 }
3307 
3308 /**
3309  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3310  * @fs_info - the fs_info for this fs
3311  * @return - EINTR if we were killed, 0 if nothing's pending
3312  *
3313  * This will wait on any delayed iputs that are currently running with KILLABLE
3314  * set.  Once they are all done running we will return, unless we are killed in
3315  * which case we return EINTR. This helps in user operations like fallocate etc
3316  * that might get blocked on the iputs.
3317  */
3318 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3319 {
3320 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3321 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3322 	if (ret)
3323 		return -EINTR;
3324 	return 0;
3325 }
3326 
3327 /*
3328  * This creates an orphan entry for the given inode in case something goes wrong
3329  * in the middle of an unlink.
3330  */
3331 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3332 		     struct btrfs_inode *inode)
3333 {
3334 	int ret;
3335 
3336 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3337 	if (ret && ret != -EEXIST) {
3338 		btrfs_abort_transaction(trans, ret);
3339 		return ret;
3340 	}
3341 
3342 	return 0;
3343 }
3344 
3345 /*
3346  * We have done the delete so we can go ahead and remove the orphan item for
3347  * this particular inode.
3348  */
3349 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3350 			    struct btrfs_inode *inode)
3351 {
3352 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3353 }
3354 
3355 /*
3356  * this cleans up any orphans that may be left on the list from the last use
3357  * of this root.
3358  */
3359 int btrfs_orphan_cleanup(struct btrfs_root *root)
3360 {
3361 	struct btrfs_fs_info *fs_info = root->fs_info;
3362 	struct btrfs_path *path;
3363 	struct extent_buffer *leaf;
3364 	struct btrfs_key key, found_key;
3365 	struct btrfs_trans_handle *trans;
3366 	struct inode *inode;
3367 	u64 last_objectid = 0;
3368 	int ret = 0, nr_unlink = 0;
3369 
3370 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3371 		return 0;
3372 
3373 	path = btrfs_alloc_path();
3374 	if (!path) {
3375 		ret = -ENOMEM;
3376 		goto out;
3377 	}
3378 	path->reada = READA_BACK;
3379 
3380 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3381 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3382 	key.offset = (u64)-1;
3383 
3384 	while (1) {
3385 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3386 		if (ret < 0)
3387 			goto out;
3388 
3389 		/*
3390 		 * if ret == 0 means we found what we were searching for, which
3391 		 * is weird, but possible, so only screw with path if we didn't
3392 		 * find the key and see if we have stuff that matches
3393 		 */
3394 		if (ret > 0) {
3395 			ret = 0;
3396 			if (path->slots[0] == 0)
3397 				break;
3398 			path->slots[0]--;
3399 		}
3400 
3401 		/* pull out the item */
3402 		leaf = path->nodes[0];
3403 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3404 
3405 		/* make sure the item matches what we want */
3406 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3407 			break;
3408 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3409 			break;
3410 
3411 		/* release the path since we're done with it */
3412 		btrfs_release_path(path);
3413 
3414 		/*
3415 		 * this is where we are basically btrfs_lookup, without the
3416 		 * crossing root thing.  we store the inode number in the
3417 		 * offset of the orphan item.
3418 		 */
3419 
3420 		if (found_key.offset == last_objectid) {
3421 			btrfs_err(fs_info,
3422 				  "Error removing orphan entry, stopping orphan cleanup");
3423 			ret = -EINVAL;
3424 			goto out;
3425 		}
3426 
3427 		last_objectid = found_key.offset;
3428 
3429 		found_key.objectid = found_key.offset;
3430 		found_key.type = BTRFS_INODE_ITEM_KEY;
3431 		found_key.offset = 0;
3432 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3433 		ret = PTR_ERR_OR_ZERO(inode);
3434 		if (ret && ret != -ENOENT)
3435 			goto out;
3436 
3437 		if (ret == -ENOENT && root == fs_info->tree_root) {
3438 			struct btrfs_root *dead_root;
3439 			struct btrfs_fs_info *fs_info = root->fs_info;
3440 			int is_dead_root = 0;
3441 
3442 			/*
3443 			 * this is an orphan in the tree root. Currently these
3444 			 * could come from 2 sources:
3445 			 *  a) a snapshot deletion in progress
3446 			 *  b) a free space cache inode
3447 			 * We need to distinguish those two, as the snapshot
3448 			 * orphan must not get deleted.
3449 			 * find_dead_roots already ran before us, so if this
3450 			 * is a snapshot deletion, we should find the root
3451 			 * in the dead_roots list
3452 			 */
3453 			spin_lock(&fs_info->trans_lock);
3454 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3455 					    root_list) {
3456 				if (dead_root->root_key.objectid ==
3457 				    found_key.objectid) {
3458 					is_dead_root = 1;
3459 					break;
3460 				}
3461 			}
3462 			spin_unlock(&fs_info->trans_lock);
3463 			if (is_dead_root) {
3464 				/* prevent this orphan from being found again */
3465 				key.offset = found_key.objectid - 1;
3466 				continue;
3467 			}
3468 
3469 		}
3470 
3471 		/*
3472 		 * If we have an inode with links, there are a couple of
3473 		 * possibilities. Old kernels (before v3.12) used to create an
3474 		 * orphan item for truncate indicating that there were possibly
3475 		 * extent items past i_size that needed to be deleted. In v3.12,
3476 		 * truncate was changed to update i_size in sync with the extent
3477 		 * items, but the (useless) orphan item was still created. Since
3478 		 * v4.18, we don't create the orphan item for truncate at all.
3479 		 *
3480 		 * So, this item could mean that we need to do a truncate, but
3481 		 * only if this filesystem was last used on a pre-v3.12 kernel
3482 		 * and was not cleanly unmounted. The odds of that are quite
3483 		 * slim, and it's a pain to do the truncate now, so just delete
3484 		 * the orphan item.
3485 		 *
3486 		 * It's also possible that this orphan item was supposed to be
3487 		 * deleted but wasn't. The inode number may have been reused,
3488 		 * but either way, we can delete the orphan item.
3489 		 */
3490 		if (ret == -ENOENT || inode->i_nlink) {
3491 			if (!ret)
3492 				iput(inode);
3493 			trans = btrfs_start_transaction(root, 1);
3494 			if (IS_ERR(trans)) {
3495 				ret = PTR_ERR(trans);
3496 				goto out;
3497 			}
3498 			btrfs_debug(fs_info, "auto deleting %Lu",
3499 				    found_key.objectid);
3500 			ret = btrfs_del_orphan_item(trans, root,
3501 						    found_key.objectid);
3502 			btrfs_end_transaction(trans);
3503 			if (ret)
3504 				goto out;
3505 			continue;
3506 		}
3507 
3508 		nr_unlink++;
3509 
3510 		/* this will do delete_inode and everything for us */
3511 		iput(inode);
3512 	}
3513 	/* release the path since we're done with it */
3514 	btrfs_release_path(path);
3515 
3516 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3517 
3518 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3519 		trans = btrfs_join_transaction(root);
3520 		if (!IS_ERR(trans))
3521 			btrfs_end_transaction(trans);
3522 	}
3523 
3524 	if (nr_unlink)
3525 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3526 
3527 out:
3528 	if (ret)
3529 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3530 	btrfs_free_path(path);
3531 	return ret;
3532 }
3533 
3534 /*
3535  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3536  * don't find any xattrs, we know there can't be any acls.
3537  *
3538  * slot is the slot the inode is in, objectid is the objectid of the inode
3539  */
3540 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3541 					  int slot, u64 objectid,
3542 					  int *first_xattr_slot)
3543 {
3544 	u32 nritems = btrfs_header_nritems(leaf);
3545 	struct btrfs_key found_key;
3546 	static u64 xattr_access = 0;
3547 	static u64 xattr_default = 0;
3548 	int scanned = 0;
3549 
3550 	if (!xattr_access) {
3551 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3552 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3553 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3554 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3555 	}
3556 
3557 	slot++;
3558 	*first_xattr_slot = -1;
3559 	while (slot < nritems) {
3560 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3561 
3562 		/* we found a different objectid, there must not be acls */
3563 		if (found_key.objectid != objectid)
3564 			return 0;
3565 
3566 		/* we found an xattr, assume we've got an acl */
3567 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3568 			if (*first_xattr_slot == -1)
3569 				*first_xattr_slot = slot;
3570 			if (found_key.offset == xattr_access ||
3571 			    found_key.offset == xattr_default)
3572 				return 1;
3573 		}
3574 
3575 		/*
3576 		 * we found a key greater than an xattr key, there can't
3577 		 * be any acls later on
3578 		 */
3579 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3580 			return 0;
3581 
3582 		slot++;
3583 		scanned++;
3584 
3585 		/*
3586 		 * it goes inode, inode backrefs, xattrs, extents,
3587 		 * so if there are a ton of hard links to an inode there can
3588 		 * be a lot of backrefs.  Don't waste time searching too hard,
3589 		 * this is just an optimization
3590 		 */
3591 		if (scanned >= 8)
3592 			break;
3593 	}
3594 	/* we hit the end of the leaf before we found an xattr or
3595 	 * something larger than an xattr.  We have to assume the inode
3596 	 * has acls
3597 	 */
3598 	if (*first_xattr_slot == -1)
3599 		*first_xattr_slot = slot;
3600 	return 1;
3601 }
3602 
3603 /*
3604  * read an inode from the btree into the in-memory inode
3605  */
3606 static int btrfs_read_locked_inode(struct inode *inode,
3607 				   struct btrfs_path *in_path)
3608 {
3609 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3610 	struct btrfs_path *path = in_path;
3611 	struct extent_buffer *leaf;
3612 	struct btrfs_inode_item *inode_item;
3613 	struct btrfs_root *root = BTRFS_I(inode)->root;
3614 	struct btrfs_key location;
3615 	unsigned long ptr;
3616 	int maybe_acls;
3617 	u32 rdev;
3618 	int ret;
3619 	bool filled = false;
3620 	int first_xattr_slot;
3621 
3622 	ret = btrfs_fill_inode(inode, &rdev);
3623 	if (!ret)
3624 		filled = true;
3625 
3626 	if (!path) {
3627 		path = btrfs_alloc_path();
3628 		if (!path)
3629 			return -ENOMEM;
3630 	}
3631 
3632 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3633 
3634 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3635 	if (ret) {
3636 		if (path != in_path)
3637 			btrfs_free_path(path);
3638 		return ret;
3639 	}
3640 
3641 	leaf = path->nodes[0];
3642 
3643 	if (filled)
3644 		goto cache_index;
3645 
3646 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3647 				    struct btrfs_inode_item);
3648 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3649 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3650 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3651 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3652 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3653 
3654 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3655 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3656 
3657 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3658 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3659 
3660 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3661 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3662 
3663 	BTRFS_I(inode)->i_otime.tv_sec =
3664 		btrfs_timespec_sec(leaf, &inode_item->otime);
3665 	BTRFS_I(inode)->i_otime.tv_nsec =
3666 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3667 
3668 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3669 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3670 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3671 
3672 	inode_set_iversion_queried(inode,
3673 				   btrfs_inode_sequence(leaf, inode_item));
3674 	inode->i_generation = BTRFS_I(inode)->generation;
3675 	inode->i_rdev = 0;
3676 	rdev = btrfs_inode_rdev(leaf, inode_item);
3677 
3678 	BTRFS_I(inode)->index_cnt = (u64)-1;
3679 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3680 
3681 cache_index:
3682 	/*
3683 	 * If we were modified in the current generation and evicted from memory
3684 	 * and then re-read we need to do a full sync since we don't have any
3685 	 * idea about which extents were modified before we were evicted from
3686 	 * cache.
3687 	 *
3688 	 * This is required for both inode re-read from disk and delayed inode
3689 	 * in delayed_nodes_tree.
3690 	 */
3691 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3692 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3693 			&BTRFS_I(inode)->runtime_flags);
3694 
3695 	/*
3696 	 * We don't persist the id of the transaction where an unlink operation
3697 	 * against the inode was last made. So here we assume the inode might
3698 	 * have been evicted, and therefore the exact value of last_unlink_trans
3699 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3700 	 * between the inode and its parent if the inode is fsync'ed and the log
3701 	 * replayed. For example, in the scenario:
3702 	 *
3703 	 * touch mydir/foo
3704 	 * ln mydir/foo mydir/bar
3705 	 * sync
3706 	 * unlink mydir/bar
3707 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3708 	 * xfs_io -c fsync mydir/foo
3709 	 * <power failure>
3710 	 * mount fs, triggers fsync log replay
3711 	 *
3712 	 * We must make sure that when we fsync our inode foo we also log its
3713 	 * parent inode, otherwise after log replay the parent still has the
3714 	 * dentry with the "bar" name but our inode foo has a link count of 1
3715 	 * and doesn't have an inode ref with the name "bar" anymore.
3716 	 *
3717 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3718 	 * but it guarantees correctness at the expense of occasional full
3719 	 * transaction commits on fsync if our inode is a directory, or if our
3720 	 * inode is not a directory, logging its parent unnecessarily.
3721 	 */
3722 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3723 
3724 	path->slots[0]++;
3725 	if (inode->i_nlink != 1 ||
3726 	    path->slots[0] >= btrfs_header_nritems(leaf))
3727 		goto cache_acl;
3728 
3729 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3730 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3731 		goto cache_acl;
3732 
3733 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3734 	if (location.type == BTRFS_INODE_REF_KEY) {
3735 		struct btrfs_inode_ref *ref;
3736 
3737 		ref = (struct btrfs_inode_ref *)ptr;
3738 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3739 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3740 		struct btrfs_inode_extref *extref;
3741 
3742 		extref = (struct btrfs_inode_extref *)ptr;
3743 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3744 								     extref);
3745 	}
3746 cache_acl:
3747 	/*
3748 	 * try to precache a NULL acl entry for files that don't have
3749 	 * any xattrs or acls
3750 	 */
3751 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3752 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3753 	if (first_xattr_slot != -1) {
3754 		path->slots[0] = first_xattr_slot;
3755 		ret = btrfs_load_inode_props(inode, path);
3756 		if (ret)
3757 			btrfs_err(fs_info,
3758 				  "error loading props for ino %llu (root %llu): %d",
3759 				  btrfs_ino(BTRFS_I(inode)),
3760 				  root->root_key.objectid, ret);
3761 	}
3762 	if (path != in_path)
3763 		btrfs_free_path(path);
3764 
3765 	if (!maybe_acls)
3766 		cache_no_acl(inode);
3767 
3768 	switch (inode->i_mode & S_IFMT) {
3769 	case S_IFREG:
3770 		inode->i_mapping->a_ops = &btrfs_aops;
3771 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3772 		inode->i_fop = &btrfs_file_operations;
3773 		inode->i_op = &btrfs_file_inode_operations;
3774 		break;
3775 	case S_IFDIR:
3776 		inode->i_fop = &btrfs_dir_file_operations;
3777 		inode->i_op = &btrfs_dir_inode_operations;
3778 		break;
3779 	case S_IFLNK:
3780 		inode->i_op = &btrfs_symlink_inode_operations;
3781 		inode_nohighmem(inode);
3782 		inode->i_mapping->a_ops = &btrfs_aops;
3783 		break;
3784 	default:
3785 		inode->i_op = &btrfs_special_inode_operations;
3786 		init_special_inode(inode, inode->i_mode, rdev);
3787 		break;
3788 	}
3789 
3790 	btrfs_sync_inode_flags_to_i_flags(inode);
3791 	return 0;
3792 }
3793 
3794 /*
3795  * given a leaf and an inode, copy the inode fields into the leaf
3796  */
3797 static void fill_inode_item(struct btrfs_trans_handle *trans,
3798 			    struct extent_buffer *leaf,
3799 			    struct btrfs_inode_item *item,
3800 			    struct inode *inode)
3801 {
3802 	struct btrfs_map_token token;
3803 
3804 	btrfs_init_map_token(&token);
3805 
3806 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3807 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3808 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3809 				   &token);
3810 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3811 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3812 
3813 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3814 				     inode->i_atime.tv_sec, &token);
3815 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3816 				      inode->i_atime.tv_nsec, &token);
3817 
3818 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3819 				     inode->i_mtime.tv_sec, &token);
3820 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3821 				      inode->i_mtime.tv_nsec, &token);
3822 
3823 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3824 				     inode->i_ctime.tv_sec, &token);
3825 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3826 				      inode->i_ctime.tv_nsec, &token);
3827 
3828 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3829 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3830 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3831 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3832 
3833 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3834 				     &token);
3835 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3836 					 &token);
3837 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3838 				       &token);
3839 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3840 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3841 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3842 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3843 }
3844 
3845 /*
3846  * copy everything in the in-memory inode into the btree.
3847  */
3848 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3849 				struct btrfs_root *root, struct inode *inode)
3850 {
3851 	struct btrfs_inode_item *inode_item;
3852 	struct btrfs_path *path;
3853 	struct extent_buffer *leaf;
3854 	int ret;
3855 
3856 	path = btrfs_alloc_path();
3857 	if (!path)
3858 		return -ENOMEM;
3859 
3860 	path->leave_spinning = 1;
3861 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3862 				 1);
3863 	if (ret) {
3864 		if (ret > 0)
3865 			ret = -ENOENT;
3866 		goto failed;
3867 	}
3868 
3869 	leaf = path->nodes[0];
3870 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3871 				    struct btrfs_inode_item);
3872 
3873 	fill_inode_item(trans, leaf, inode_item, inode);
3874 	btrfs_mark_buffer_dirty(leaf);
3875 	btrfs_set_inode_last_trans(trans, inode);
3876 	ret = 0;
3877 failed:
3878 	btrfs_free_path(path);
3879 	return ret;
3880 }
3881 
3882 /*
3883  * copy everything in the in-memory inode into the btree.
3884  */
3885 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3886 				struct btrfs_root *root, struct inode *inode)
3887 {
3888 	struct btrfs_fs_info *fs_info = root->fs_info;
3889 	int ret;
3890 
3891 	/*
3892 	 * If the inode is a free space inode, we can deadlock during commit
3893 	 * if we put it into the delayed code.
3894 	 *
3895 	 * The data relocation inode should also be directly updated
3896 	 * without delay
3897 	 */
3898 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3899 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3900 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3901 		btrfs_update_root_times(trans, root);
3902 
3903 		ret = btrfs_delayed_update_inode(trans, root, inode);
3904 		if (!ret)
3905 			btrfs_set_inode_last_trans(trans, inode);
3906 		return ret;
3907 	}
3908 
3909 	return btrfs_update_inode_item(trans, root, inode);
3910 }
3911 
3912 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3913 					 struct btrfs_root *root,
3914 					 struct inode *inode)
3915 {
3916 	int ret;
3917 
3918 	ret = btrfs_update_inode(trans, root, inode);
3919 	if (ret == -ENOSPC)
3920 		return btrfs_update_inode_item(trans, root, inode);
3921 	return ret;
3922 }
3923 
3924 /*
3925  * unlink helper that gets used here in inode.c and in the tree logging
3926  * recovery code.  It remove a link in a directory with a given name, and
3927  * also drops the back refs in the inode to the directory
3928  */
3929 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3930 				struct btrfs_root *root,
3931 				struct btrfs_inode *dir,
3932 				struct btrfs_inode *inode,
3933 				const char *name, int name_len)
3934 {
3935 	struct btrfs_fs_info *fs_info = root->fs_info;
3936 	struct btrfs_path *path;
3937 	int ret = 0;
3938 	struct extent_buffer *leaf;
3939 	struct btrfs_dir_item *di;
3940 	struct btrfs_key key;
3941 	u64 index;
3942 	u64 ino = btrfs_ino(inode);
3943 	u64 dir_ino = btrfs_ino(dir);
3944 
3945 	path = btrfs_alloc_path();
3946 	if (!path) {
3947 		ret = -ENOMEM;
3948 		goto out;
3949 	}
3950 
3951 	path->leave_spinning = 1;
3952 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3953 				    name, name_len, -1);
3954 	if (IS_ERR_OR_NULL(di)) {
3955 		ret = di ? PTR_ERR(di) : -ENOENT;
3956 		goto err;
3957 	}
3958 	leaf = path->nodes[0];
3959 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3960 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3961 	if (ret)
3962 		goto err;
3963 	btrfs_release_path(path);
3964 
3965 	/*
3966 	 * If we don't have dir index, we have to get it by looking up
3967 	 * the inode ref, since we get the inode ref, remove it directly,
3968 	 * it is unnecessary to do delayed deletion.
3969 	 *
3970 	 * But if we have dir index, needn't search inode ref to get it.
3971 	 * Since the inode ref is close to the inode item, it is better
3972 	 * that we delay to delete it, and just do this deletion when
3973 	 * we update the inode item.
3974 	 */
3975 	if (inode->dir_index) {
3976 		ret = btrfs_delayed_delete_inode_ref(inode);
3977 		if (!ret) {
3978 			index = inode->dir_index;
3979 			goto skip_backref;
3980 		}
3981 	}
3982 
3983 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3984 				  dir_ino, &index);
3985 	if (ret) {
3986 		btrfs_info(fs_info,
3987 			"failed to delete reference to %.*s, inode %llu parent %llu",
3988 			name_len, name, ino, dir_ino);
3989 		btrfs_abort_transaction(trans, ret);
3990 		goto err;
3991 	}
3992 skip_backref:
3993 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3994 	if (ret) {
3995 		btrfs_abort_transaction(trans, ret);
3996 		goto err;
3997 	}
3998 
3999 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4000 			dir_ino);
4001 	if (ret != 0 && ret != -ENOENT) {
4002 		btrfs_abort_transaction(trans, ret);
4003 		goto err;
4004 	}
4005 
4006 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4007 			index);
4008 	if (ret == -ENOENT)
4009 		ret = 0;
4010 	else if (ret)
4011 		btrfs_abort_transaction(trans, ret);
4012 err:
4013 	btrfs_free_path(path);
4014 	if (ret)
4015 		goto out;
4016 
4017 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4018 	inode_inc_iversion(&inode->vfs_inode);
4019 	inode_inc_iversion(&dir->vfs_inode);
4020 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4021 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4022 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4023 out:
4024 	return ret;
4025 }
4026 
4027 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4028 		       struct btrfs_root *root,
4029 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4030 		       const char *name, int name_len)
4031 {
4032 	int ret;
4033 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4034 	if (!ret) {
4035 		drop_nlink(&inode->vfs_inode);
4036 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4037 	}
4038 	return ret;
4039 }
4040 
4041 /*
4042  * helper to start transaction for unlink and rmdir.
4043  *
4044  * unlink and rmdir are special in btrfs, they do not always free space, so
4045  * if we cannot make our reservations the normal way try and see if there is
4046  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4047  * allow the unlink to occur.
4048  */
4049 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4050 {
4051 	struct btrfs_root *root = BTRFS_I(dir)->root;
4052 
4053 	/*
4054 	 * 1 for the possible orphan item
4055 	 * 1 for the dir item
4056 	 * 1 for the dir index
4057 	 * 1 for the inode ref
4058 	 * 1 for the inode
4059 	 */
4060 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4061 }
4062 
4063 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4064 {
4065 	struct btrfs_root *root = BTRFS_I(dir)->root;
4066 	struct btrfs_trans_handle *trans;
4067 	struct inode *inode = d_inode(dentry);
4068 	int ret;
4069 
4070 	trans = __unlink_start_trans(dir);
4071 	if (IS_ERR(trans))
4072 		return PTR_ERR(trans);
4073 
4074 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4075 			0);
4076 
4077 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4078 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4079 			dentry->d_name.len);
4080 	if (ret)
4081 		goto out;
4082 
4083 	if (inode->i_nlink == 0) {
4084 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4085 		if (ret)
4086 			goto out;
4087 	}
4088 
4089 out:
4090 	btrfs_end_transaction(trans);
4091 	btrfs_btree_balance_dirty(root->fs_info);
4092 	return ret;
4093 }
4094 
4095 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4096 			       struct inode *dir, u64 objectid,
4097 			       const char *name, int name_len)
4098 {
4099 	struct btrfs_root *root = BTRFS_I(dir)->root;
4100 	struct btrfs_path *path;
4101 	struct extent_buffer *leaf;
4102 	struct btrfs_dir_item *di;
4103 	struct btrfs_key key;
4104 	u64 index;
4105 	int ret;
4106 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4107 
4108 	path = btrfs_alloc_path();
4109 	if (!path)
4110 		return -ENOMEM;
4111 
4112 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4113 				   name, name_len, -1);
4114 	if (IS_ERR_OR_NULL(di)) {
4115 		ret = di ? PTR_ERR(di) : -ENOENT;
4116 		goto out;
4117 	}
4118 
4119 	leaf = path->nodes[0];
4120 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4121 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4122 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4123 	if (ret) {
4124 		btrfs_abort_transaction(trans, ret);
4125 		goto out;
4126 	}
4127 	btrfs_release_path(path);
4128 
4129 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4130 				 dir_ino, &index, name, name_len);
4131 	if (ret < 0) {
4132 		if (ret != -ENOENT) {
4133 			btrfs_abort_transaction(trans, ret);
4134 			goto out;
4135 		}
4136 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4137 						 name, name_len);
4138 		if (IS_ERR_OR_NULL(di)) {
4139 			if (!di)
4140 				ret = -ENOENT;
4141 			else
4142 				ret = PTR_ERR(di);
4143 			btrfs_abort_transaction(trans, ret);
4144 			goto out;
4145 		}
4146 
4147 		leaf = path->nodes[0];
4148 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4149 		index = key.offset;
4150 	}
4151 	btrfs_release_path(path);
4152 
4153 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4154 	if (ret) {
4155 		btrfs_abort_transaction(trans, ret);
4156 		goto out;
4157 	}
4158 
4159 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4160 	inode_inc_iversion(dir);
4161 	dir->i_mtime = dir->i_ctime = current_time(dir);
4162 	ret = btrfs_update_inode_fallback(trans, root, dir);
4163 	if (ret)
4164 		btrfs_abort_transaction(trans, ret);
4165 out:
4166 	btrfs_free_path(path);
4167 	return ret;
4168 }
4169 
4170 /*
4171  * Helper to check if the subvolume references other subvolumes or if it's
4172  * default.
4173  */
4174 static noinline int may_destroy_subvol(struct btrfs_root *root)
4175 {
4176 	struct btrfs_fs_info *fs_info = root->fs_info;
4177 	struct btrfs_path *path;
4178 	struct btrfs_dir_item *di;
4179 	struct btrfs_key key;
4180 	u64 dir_id;
4181 	int ret;
4182 
4183 	path = btrfs_alloc_path();
4184 	if (!path)
4185 		return -ENOMEM;
4186 
4187 	/* Make sure this root isn't set as the default subvol */
4188 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4189 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4190 				   dir_id, "default", 7, 0);
4191 	if (di && !IS_ERR(di)) {
4192 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4193 		if (key.objectid == root->root_key.objectid) {
4194 			ret = -EPERM;
4195 			btrfs_err(fs_info,
4196 				  "deleting default subvolume %llu is not allowed",
4197 				  key.objectid);
4198 			goto out;
4199 		}
4200 		btrfs_release_path(path);
4201 	}
4202 
4203 	key.objectid = root->root_key.objectid;
4204 	key.type = BTRFS_ROOT_REF_KEY;
4205 	key.offset = (u64)-1;
4206 
4207 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4208 	if (ret < 0)
4209 		goto out;
4210 	BUG_ON(ret == 0);
4211 
4212 	ret = 0;
4213 	if (path->slots[0] > 0) {
4214 		path->slots[0]--;
4215 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4216 		if (key.objectid == root->root_key.objectid &&
4217 		    key.type == BTRFS_ROOT_REF_KEY)
4218 			ret = -ENOTEMPTY;
4219 	}
4220 out:
4221 	btrfs_free_path(path);
4222 	return ret;
4223 }
4224 
4225 /* Delete all dentries for inodes belonging to the root */
4226 static void btrfs_prune_dentries(struct btrfs_root *root)
4227 {
4228 	struct btrfs_fs_info *fs_info = root->fs_info;
4229 	struct rb_node *node;
4230 	struct rb_node *prev;
4231 	struct btrfs_inode *entry;
4232 	struct inode *inode;
4233 	u64 objectid = 0;
4234 
4235 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4236 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4237 
4238 	spin_lock(&root->inode_lock);
4239 again:
4240 	node = root->inode_tree.rb_node;
4241 	prev = NULL;
4242 	while (node) {
4243 		prev = node;
4244 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4245 
4246 		if (objectid < btrfs_ino(entry))
4247 			node = node->rb_left;
4248 		else if (objectid > btrfs_ino(entry))
4249 			node = node->rb_right;
4250 		else
4251 			break;
4252 	}
4253 	if (!node) {
4254 		while (prev) {
4255 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4256 			if (objectid <= btrfs_ino(entry)) {
4257 				node = prev;
4258 				break;
4259 			}
4260 			prev = rb_next(prev);
4261 		}
4262 	}
4263 	while (node) {
4264 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4265 		objectid = btrfs_ino(entry) + 1;
4266 		inode = igrab(&entry->vfs_inode);
4267 		if (inode) {
4268 			spin_unlock(&root->inode_lock);
4269 			if (atomic_read(&inode->i_count) > 1)
4270 				d_prune_aliases(inode);
4271 			/*
4272 			 * btrfs_drop_inode will have it removed from the inode
4273 			 * cache when its usage count hits zero.
4274 			 */
4275 			iput(inode);
4276 			cond_resched();
4277 			spin_lock(&root->inode_lock);
4278 			goto again;
4279 		}
4280 
4281 		if (cond_resched_lock(&root->inode_lock))
4282 			goto again;
4283 
4284 		node = rb_next(node);
4285 	}
4286 	spin_unlock(&root->inode_lock);
4287 }
4288 
4289 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4290 {
4291 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4292 	struct btrfs_root *root = BTRFS_I(dir)->root;
4293 	struct inode *inode = d_inode(dentry);
4294 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4295 	struct btrfs_trans_handle *trans;
4296 	struct btrfs_block_rsv block_rsv;
4297 	u64 root_flags;
4298 	int ret;
4299 	int err;
4300 
4301 	/*
4302 	 * Don't allow to delete a subvolume with send in progress. This is
4303 	 * inside the inode lock so the error handling that has to drop the bit
4304 	 * again is not run concurrently.
4305 	 */
4306 	spin_lock(&dest->root_item_lock);
4307 	if (dest->send_in_progress) {
4308 		spin_unlock(&dest->root_item_lock);
4309 		btrfs_warn(fs_info,
4310 			   "attempt to delete subvolume %llu during send",
4311 			   dest->root_key.objectid);
4312 		return -EPERM;
4313 	}
4314 	root_flags = btrfs_root_flags(&dest->root_item);
4315 	btrfs_set_root_flags(&dest->root_item,
4316 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4317 	spin_unlock(&dest->root_item_lock);
4318 
4319 	down_write(&fs_info->subvol_sem);
4320 
4321 	err = may_destroy_subvol(dest);
4322 	if (err)
4323 		goto out_up_write;
4324 
4325 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4326 	/*
4327 	 * One for dir inode,
4328 	 * two for dir entries,
4329 	 * two for root ref/backref.
4330 	 */
4331 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4332 	if (err)
4333 		goto out_up_write;
4334 
4335 	trans = btrfs_start_transaction(root, 0);
4336 	if (IS_ERR(trans)) {
4337 		err = PTR_ERR(trans);
4338 		goto out_release;
4339 	}
4340 	trans->block_rsv = &block_rsv;
4341 	trans->bytes_reserved = block_rsv.size;
4342 
4343 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4344 
4345 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4346 				  dentry->d_name.name, dentry->d_name.len);
4347 	if (ret) {
4348 		err = ret;
4349 		btrfs_abort_transaction(trans, ret);
4350 		goto out_end_trans;
4351 	}
4352 
4353 	btrfs_record_root_in_trans(trans, dest);
4354 
4355 	memset(&dest->root_item.drop_progress, 0,
4356 		sizeof(dest->root_item.drop_progress));
4357 	dest->root_item.drop_level = 0;
4358 	btrfs_set_root_refs(&dest->root_item, 0);
4359 
4360 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4361 		ret = btrfs_insert_orphan_item(trans,
4362 					fs_info->tree_root,
4363 					dest->root_key.objectid);
4364 		if (ret) {
4365 			btrfs_abort_transaction(trans, ret);
4366 			err = ret;
4367 			goto out_end_trans;
4368 		}
4369 	}
4370 
4371 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4372 				  BTRFS_UUID_KEY_SUBVOL,
4373 				  dest->root_key.objectid);
4374 	if (ret && ret != -ENOENT) {
4375 		btrfs_abort_transaction(trans, ret);
4376 		err = ret;
4377 		goto out_end_trans;
4378 	}
4379 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4380 		ret = btrfs_uuid_tree_remove(trans,
4381 					  dest->root_item.received_uuid,
4382 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4383 					  dest->root_key.objectid);
4384 		if (ret && ret != -ENOENT) {
4385 			btrfs_abort_transaction(trans, ret);
4386 			err = ret;
4387 			goto out_end_trans;
4388 		}
4389 	}
4390 
4391 out_end_trans:
4392 	trans->block_rsv = NULL;
4393 	trans->bytes_reserved = 0;
4394 	ret = btrfs_end_transaction(trans);
4395 	if (ret && !err)
4396 		err = ret;
4397 	inode->i_flags |= S_DEAD;
4398 out_release:
4399 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4400 out_up_write:
4401 	up_write(&fs_info->subvol_sem);
4402 	if (err) {
4403 		spin_lock(&dest->root_item_lock);
4404 		root_flags = btrfs_root_flags(&dest->root_item);
4405 		btrfs_set_root_flags(&dest->root_item,
4406 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4407 		spin_unlock(&dest->root_item_lock);
4408 	} else {
4409 		d_invalidate(dentry);
4410 		btrfs_prune_dentries(dest);
4411 		ASSERT(dest->send_in_progress == 0);
4412 
4413 		/* the last ref */
4414 		if (dest->ino_cache_inode) {
4415 			iput(dest->ino_cache_inode);
4416 			dest->ino_cache_inode = NULL;
4417 		}
4418 	}
4419 
4420 	return err;
4421 }
4422 
4423 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4424 {
4425 	struct inode *inode = d_inode(dentry);
4426 	int err = 0;
4427 	struct btrfs_root *root = BTRFS_I(dir)->root;
4428 	struct btrfs_trans_handle *trans;
4429 	u64 last_unlink_trans;
4430 
4431 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4432 		return -ENOTEMPTY;
4433 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4434 		return btrfs_delete_subvolume(dir, dentry);
4435 
4436 	trans = __unlink_start_trans(dir);
4437 	if (IS_ERR(trans))
4438 		return PTR_ERR(trans);
4439 
4440 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4441 		err = btrfs_unlink_subvol(trans, dir,
4442 					  BTRFS_I(inode)->location.objectid,
4443 					  dentry->d_name.name,
4444 					  dentry->d_name.len);
4445 		goto out;
4446 	}
4447 
4448 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4449 	if (err)
4450 		goto out;
4451 
4452 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4453 
4454 	/* now the directory is empty */
4455 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4456 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4457 			dentry->d_name.len);
4458 	if (!err) {
4459 		btrfs_i_size_write(BTRFS_I(inode), 0);
4460 		/*
4461 		 * Propagate the last_unlink_trans value of the deleted dir to
4462 		 * its parent directory. This is to prevent an unrecoverable
4463 		 * log tree in the case we do something like this:
4464 		 * 1) create dir foo
4465 		 * 2) create snapshot under dir foo
4466 		 * 3) delete the snapshot
4467 		 * 4) rmdir foo
4468 		 * 5) mkdir foo
4469 		 * 6) fsync foo or some file inside foo
4470 		 */
4471 		if (last_unlink_trans >= trans->transid)
4472 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4473 	}
4474 out:
4475 	btrfs_end_transaction(trans);
4476 	btrfs_btree_balance_dirty(root->fs_info);
4477 
4478 	return err;
4479 }
4480 
4481 /*
4482  * Return this if we need to call truncate_block for the last bit of the
4483  * truncate.
4484  */
4485 #define NEED_TRUNCATE_BLOCK 1
4486 
4487 /*
4488  * this can truncate away extent items, csum items and directory items.
4489  * It starts at a high offset and removes keys until it can't find
4490  * any higher than new_size
4491  *
4492  * csum items that cross the new i_size are truncated to the new size
4493  * as well.
4494  *
4495  * min_type is the minimum key type to truncate down to.  If set to 0, this
4496  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4497  */
4498 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4499 			       struct btrfs_root *root,
4500 			       struct inode *inode,
4501 			       u64 new_size, u32 min_type)
4502 {
4503 	struct btrfs_fs_info *fs_info = root->fs_info;
4504 	struct btrfs_path *path;
4505 	struct extent_buffer *leaf;
4506 	struct btrfs_file_extent_item *fi;
4507 	struct btrfs_key key;
4508 	struct btrfs_key found_key;
4509 	u64 extent_start = 0;
4510 	u64 extent_num_bytes = 0;
4511 	u64 extent_offset = 0;
4512 	u64 item_end = 0;
4513 	u64 last_size = new_size;
4514 	u32 found_type = (u8)-1;
4515 	int found_extent;
4516 	int del_item;
4517 	int pending_del_nr = 0;
4518 	int pending_del_slot = 0;
4519 	int extent_type = -1;
4520 	int ret;
4521 	u64 ino = btrfs_ino(BTRFS_I(inode));
4522 	u64 bytes_deleted = 0;
4523 	bool be_nice = false;
4524 	bool should_throttle = false;
4525 
4526 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4527 
4528 	/*
4529 	 * for non-free space inodes and ref cows, we want to back off from
4530 	 * time to time
4531 	 */
4532 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4533 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4534 		be_nice = true;
4535 
4536 	path = btrfs_alloc_path();
4537 	if (!path)
4538 		return -ENOMEM;
4539 	path->reada = READA_BACK;
4540 
4541 	/*
4542 	 * We want to drop from the next block forward in case this new size is
4543 	 * not block aligned since we will be keeping the last block of the
4544 	 * extent just the way it is.
4545 	 */
4546 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4547 	    root == fs_info->tree_root)
4548 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4549 					fs_info->sectorsize),
4550 					(u64)-1, 0);
4551 
4552 	/*
4553 	 * This function is also used to drop the items in the log tree before
4554 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4555 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4556 	 * items.
4557 	 */
4558 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4559 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4560 
4561 	key.objectid = ino;
4562 	key.offset = (u64)-1;
4563 	key.type = (u8)-1;
4564 
4565 search_again:
4566 	/*
4567 	 * with a 16K leaf size and 128MB extents, you can actually queue
4568 	 * up a huge file in a single leaf.  Most of the time that
4569 	 * bytes_deleted is > 0, it will be huge by the time we get here
4570 	 */
4571 	if (be_nice && bytes_deleted > SZ_32M &&
4572 	    btrfs_should_end_transaction(trans)) {
4573 		ret = -EAGAIN;
4574 		goto out;
4575 	}
4576 
4577 	path->leave_spinning = 1;
4578 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4579 	if (ret < 0)
4580 		goto out;
4581 
4582 	if (ret > 0) {
4583 		ret = 0;
4584 		/* there are no items in the tree for us to truncate, we're
4585 		 * done
4586 		 */
4587 		if (path->slots[0] == 0)
4588 			goto out;
4589 		path->slots[0]--;
4590 	}
4591 
4592 	while (1) {
4593 		fi = NULL;
4594 		leaf = path->nodes[0];
4595 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4596 		found_type = found_key.type;
4597 
4598 		if (found_key.objectid != ino)
4599 			break;
4600 
4601 		if (found_type < min_type)
4602 			break;
4603 
4604 		item_end = found_key.offset;
4605 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4606 			fi = btrfs_item_ptr(leaf, path->slots[0],
4607 					    struct btrfs_file_extent_item);
4608 			extent_type = btrfs_file_extent_type(leaf, fi);
4609 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4610 				item_end +=
4611 				    btrfs_file_extent_num_bytes(leaf, fi);
4612 
4613 				trace_btrfs_truncate_show_fi_regular(
4614 					BTRFS_I(inode), leaf, fi,
4615 					found_key.offset);
4616 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4617 				item_end += btrfs_file_extent_ram_bytes(leaf,
4618 									fi);
4619 
4620 				trace_btrfs_truncate_show_fi_inline(
4621 					BTRFS_I(inode), leaf, fi, path->slots[0],
4622 					found_key.offset);
4623 			}
4624 			item_end--;
4625 		}
4626 		if (found_type > min_type) {
4627 			del_item = 1;
4628 		} else {
4629 			if (item_end < new_size)
4630 				break;
4631 			if (found_key.offset >= new_size)
4632 				del_item = 1;
4633 			else
4634 				del_item = 0;
4635 		}
4636 		found_extent = 0;
4637 		/* FIXME, shrink the extent if the ref count is only 1 */
4638 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4639 			goto delete;
4640 
4641 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4642 			u64 num_dec;
4643 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4644 			if (!del_item) {
4645 				u64 orig_num_bytes =
4646 					btrfs_file_extent_num_bytes(leaf, fi);
4647 				extent_num_bytes = ALIGN(new_size -
4648 						found_key.offset,
4649 						fs_info->sectorsize);
4650 				btrfs_set_file_extent_num_bytes(leaf, fi,
4651 							 extent_num_bytes);
4652 				num_dec = (orig_num_bytes -
4653 					   extent_num_bytes);
4654 				if (test_bit(BTRFS_ROOT_REF_COWS,
4655 					     &root->state) &&
4656 				    extent_start != 0)
4657 					inode_sub_bytes(inode, num_dec);
4658 				btrfs_mark_buffer_dirty(leaf);
4659 			} else {
4660 				extent_num_bytes =
4661 					btrfs_file_extent_disk_num_bytes(leaf,
4662 									 fi);
4663 				extent_offset = found_key.offset -
4664 					btrfs_file_extent_offset(leaf, fi);
4665 
4666 				/* FIXME blocksize != 4096 */
4667 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4668 				if (extent_start != 0) {
4669 					found_extent = 1;
4670 					if (test_bit(BTRFS_ROOT_REF_COWS,
4671 						     &root->state))
4672 						inode_sub_bytes(inode, num_dec);
4673 				}
4674 			}
4675 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4676 			/*
4677 			 * we can't truncate inline items that have had
4678 			 * special encodings
4679 			 */
4680 			if (!del_item &&
4681 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4682 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4683 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4684 				u32 size = (u32)(new_size - found_key.offset);
4685 
4686 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4687 				size = btrfs_file_extent_calc_inline_size(size);
4688 				btrfs_truncate_item(path, size, 1);
4689 			} else if (!del_item) {
4690 				/*
4691 				 * We have to bail so the last_size is set to
4692 				 * just before this extent.
4693 				 */
4694 				ret = NEED_TRUNCATE_BLOCK;
4695 				break;
4696 			}
4697 
4698 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4699 				inode_sub_bytes(inode, item_end + 1 - new_size);
4700 		}
4701 delete:
4702 		if (del_item)
4703 			last_size = found_key.offset;
4704 		else
4705 			last_size = new_size;
4706 		if (del_item) {
4707 			if (!pending_del_nr) {
4708 				/* no pending yet, add ourselves */
4709 				pending_del_slot = path->slots[0];
4710 				pending_del_nr = 1;
4711 			} else if (pending_del_nr &&
4712 				   path->slots[0] + 1 == pending_del_slot) {
4713 				/* hop on the pending chunk */
4714 				pending_del_nr++;
4715 				pending_del_slot = path->slots[0];
4716 			} else {
4717 				BUG();
4718 			}
4719 		} else {
4720 			break;
4721 		}
4722 		should_throttle = false;
4723 
4724 		if (found_extent &&
4725 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4726 		     root == fs_info->tree_root)) {
4727 			struct btrfs_ref ref = { 0 };
4728 
4729 			btrfs_set_path_blocking(path);
4730 			bytes_deleted += extent_num_bytes;
4731 
4732 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4733 					extent_start, extent_num_bytes, 0);
4734 			ref.real_root = root->root_key.objectid;
4735 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4736 					ino, extent_offset);
4737 			ret = btrfs_free_extent(trans, &ref);
4738 			if (ret) {
4739 				btrfs_abort_transaction(trans, ret);
4740 				break;
4741 			}
4742 			if (be_nice) {
4743 				if (btrfs_should_throttle_delayed_refs(trans))
4744 					should_throttle = true;
4745 			}
4746 		}
4747 
4748 		if (found_type == BTRFS_INODE_ITEM_KEY)
4749 			break;
4750 
4751 		if (path->slots[0] == 0 ||
4752 		    path->slots[0] != pending_del_slot ||
4753 		    should_throttle) {
4754 			if (pending_del_nr) {
4755 				ret = btrfs_del_items(trans, root, path,
4756 						pending_del_slot,
4757 						pending_del_nr);
4758 				if (ret) {
4759 					btrfs_abort_transaction(trans, ret);
4760 					break;
4761 				}
4762 				pending_del_nr = 0;
4763 			}
4764 			btrfs_release_path(path);
4765 
4766 			/*
4767 			 * We can generate a lot of delayed refs, so we need to
4768 			 * throttle every once and a while and make sure we're
4769 			 * adding enough space to keep up with the work we are
4770 			 * generating.  Since we hold a transaction here we
4771 			 * can't flush, and we don't want to FLUSH_LIMIT because
4772 			 * we could have generated too many delayed refs to
4773 			 * actually allocate, so just bail if we're short and
4774 			 * let the normal reservation dance happen higher up.
4775 			 */
4776 			if (should_throttle) {
4777 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4778 							BTRFS_RESERVE_NO_FLUSH);
4779 				if (ret) {
4780 					ret = -EAGAIN;
4781 					break;
4782 				}
4783 			}
4784 			goto search_again;
4785 		} else {
4786 			path->slots[0]--;
4787 		}
4788 	}
4789 out:
4790 	if (ret >= 0 && pending_del_nr) {
4791 		int err;
4792 
4793 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4794 				      pending_del_nr);
4795 		if (err) {
4796 			btrfs_abort_transaction(trans, err);
4797 			ret = err;
4798 		}
4799 	}
4800 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4801 		ASSERT(last_size >= new_size);
4802 		if (!ret && last_size > new_size)
4803 			last_size = new_size;
4804 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4805 	}
4806 
4807 	btrfs_free_path(path);
4808 	return ret;
4809 }
4810 
4811 /*
4812  * btrfs_truncate_block - read, zero a chunk and write a block
4813  * @inode - inode that we're zeroing
4814  * @from - the offset to start zeroing
4815  * @len - the length to zero, 0 to zero the entire range respective to the
4816  *	offset
4817  * @front - zero up to the offset instead of from the offset on
4818  *
4819  * This will find the block for the "from" offset and cow the block and zero the
4820  * part we want to zero.  This is used with truncate and hole punching.
4821  */
4822 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4823 			int front)
4824 {
4825 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4826 	struct address_space *mapping = inode->i_mapping;
4827 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4828 	struct btrfs_ordered_extent *ordered;
4829 	struct extent_state *cached_state = NULL;
4830 	struct extent_changeset *data_reserved = NULL;
4831 	char *kaddr;
4832 	u32 blocksize = fs_info->sectorsize;
4833 	pgoff_t index = from >> PAGE_SHIFT;
4834 	unsigned offset = from & (blocksize - 1);
4835 	struct page *page;
4836 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4837 	int ret = 0;
4838 	u64 block_start;
4839 	u64 block_end;
4840 
4841 	if (IS_ALIGNED(offset, blocksize) &&
4842 	    (!len || IS_ALIGNED(len, blocksize)))
4843 		goto out;
4844 
4845 	block_start = round_down(from, blocksize);
4846 	block_end = block_start + blocksize - 1;
4847 
4848 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4849 					   block_start, blocksize);
4850 	if (ret)
4851 		goto out;
4852 
4853 again:
4854 	page = find_or_create_page(mapping, index, mask);
4855 	if (!page) {
4856 		btrfs_delalloc_release_space(inode, data_reserved,
4857 					     block_start, blocksize, true);
4858 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4859 		ret = -ENOMEM;
4860 		goto out;
4861 	}
4862 
4863 	if (!PageUptodate(page)) {
4864 		ret = btrfs_readpage(NULL, page);
4865 		lock_page(page);
4866 		if (page->mapping != mapping) {
4867 			unlock_page(page);
4868 			put_page(page);
4869 			goto again;
4870 		}
4871 		if (!PageUptodate(page)) {
4872 			ret = -EIO;
4873 			goto out_unlock;
4874 		}
4875 	}
4876 	wait_on_page_writeback(page);
4877 
4878 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4879 	set_page_extent_mapped(page);
4880 
4881 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4882 	if (ordered) {
4883 		unlock_extent_cached(io_tree, block_start, block_end,
4884 				     &cached_state);
4885 		unlock_page(page);
4886 		put_page(page);
4887 		btrfs_start_ordered_extent(inode, ordered, 1);
4888 		btrfs_put_ordered_extent(ordered);
4889 		goto again;
4890 	}
4891 
4892 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4893 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4894 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4895 			  0, 0, &cached_state);
4896 
4897 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4898 					&cached_state, 0);
4899 	if (ret) {
4900 		unlock_extent_cached(io_tree, block_start, block_end,
4901 				     &cached_state);
4902 		goto out_unlock;
4903 	}
4904 
4905 	if (offset != blocksize) {
4906 		if (!len)
4907 			len = blocksize - offset;
4908 		kaddr = kmap(page);
4909 		if (front)
4910 			memset(kaddr + (block_start - page_offset(page)),
4911 				0, offset);
4912 		else
4913 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4914 				0, len);
4915 		flush_dcache_page(page);
4916 		kunmap(page);
4917 	}
4918 	ClearPageChecked(page);
4919 	set_page_dirty(page);
4920 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4921 
4922 out_unlock:
4923 	if (ret)
4924 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4925 					     blocksize, true);
4926 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4927 	unlock_page(page);
4928 	put_page(page);
4929 out:
4930 	extent_changeset_free(data_reserved);
4931 	return ret;
4932 }
4933 
4934 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4935 			     u64 offset, u64 len)
4936 {
4937 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4938 	struct btrfs_trans_handle *trans;
4939 	int ret;
4940 
4941 	/*
4942 	 * Still need to make sure the inode looks like it's been updated so
4943 	 * that any holes get logged if we fsync.
4944 	 */
4945 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4946 		BTRFS_I(inode)->last_trans = fs_info->generation;
4947 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4948 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4949 		return 0;
4950 	}
4951 
4952 	/*
4953 	 * 1 - for the one we're dropping
4954 	 * 1 - for the one we're adding
4955 	 * 1 - for updating the inode.
4956 	 */
4957 	trans = btrfs_start_transaction(root, 3);
4958 	if (IS_ERR(trans))
4959 		return PTR_ERR(trans);
4960 
4961 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4962 	if (ret) {
4963 		btrfs_abort_transaction(trans, ret);
4964 		btrfs_end_transaction(trans);
4965 		return ret;
4966 	}
4967 
4968 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4969 			offset, 0, 0, len, 0, len, 0, 0, 0);
4970 	if (ret)
4971 		btrfs_abort_transaction(trans, ret);
4972 	else
4973 		btrfs_update_inode(trans, root, inode);
4974 	btrfs_end_transaction(trans);
4975 	return ret;
4976 }
4977 
4978 /*
4979  * This function puts in dummy file extents for the area we're creating a hole
4980  * for.  So if we are truncating this file to a larger size we need to insert
4981  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4982  * the range between oldsize and size
4983  */
4984 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4985 {
4986 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4987 	struct btrfs_root *root = BTRFS_I(inode)->root;
4988 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4989 	struct extent_map *em = NULL;
4990 	struct extent_state *cached_state = NULL;
4991 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4992 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4993 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4994 	u64 last_byte;
4995 	u64 cur_offset;
4996 	u64 hole_size;
4997 	int err = 0;
4998 
4999 	/*
5000 	 * If our size started in the middle of a block we need to zero out the
5001 	 * rest of the block before we expand the i_size, otherwise we could
5002 	 * expose stale data.
5003 	 */
5004 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5005 	if (err)
5006 		return err;
5007 
5008 	if (size <= hole_start)
5009 		return 0;
5010 
5011 	while (1) {
5012 		struct btrfs_ordered_extent *ordered;
5013 
5014 		lock_extent_bits(io_tree, hole_start, block_end - 1,
5015 				 &cached_state);
5016 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5017 						     block_end - hole_start);
5018 		if (!ordered)
5019 			break;
5020 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
5021 				     &cached_state);
5022 		btrfs_start_ordered_extent(inode, ordered, 1);
5023 		btrfs_put_ordered_extent(ordered);
5024 	}
5025 
5026 	cur_offset = hole_start;
5027 	while (1) {
5028 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5029 				block_end - cur_offset, 0);
5030 		if (IS_ERR(em)) {
5031 			err = PTR_ERR(em);
5032 			em = NULL;
5033 			break;
5034 		}
5035 		last_byte = min(extent_map_end(em), block_end);
5036 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5037 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5038 			struct extent_map *hole_em;
5039 			hole_size = last_byte - cur_offset;
5040 
5041 			err = maybe_insert_hole(root, inode, cur_offset,
5042 						hole_size);
5043 			if (err)
5044 				break;
5045 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5046 						cur_offset + hole_size - 1, 0);
5047 			hole_em = alloc_extent_map();
5048 			if (!hole_em) {
5049 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5050 					&BTRFS_I(inode)->runtime_flags);
5051 				goto next;
5052 			}
5053 			hole_em->start = cur_offset;
5054 			hole_em->len = hole_size;
5055 			hole_em->orig_start = cur_offset;
5056 
5057 			hole_em->block_start = EXTENT_MAP_HOLE;
5058 			hole_em->block_len = 0;
5059 			hole_em->orig_block_len = 0;
5060 			hole_em->ram_bytes = hole_size;
5061 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5062 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5063 			hole_em->generation = fs_info->generation;
5064 
5065 			while (1) {
5066 				write_lock(&em_tree->lock);
5067 				err = add_extent_mapping(em_tree, hole_em, 1);
5068 				write_unlock(&em_tree->lock);
5069 				if (err != -EEXIST)
5070 					break;
5071 				btrfs_drop_extent_cache(BTRFS_I(inode),
5072 							cur_offset,
5073 							cur_offset +
5074 							hole_size - 1, 0);
5075 			}
5076 			free_extent_map(hole_em);
5077 		}
5078 next:
5079 		free_extent_map(em);
5080 		em = NULL;
5081 		cur_offset = last_byte;
5082 		if (cur_offset >= block_end)
5083 			break;
5084 	}
5085 	free_extent_map(em);
5086 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5087 	return err;
5088 }
5089 
5090 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5091 {
5092 	struct btrfs_root *root = BTRFS_I(inode)->root;
5093 	struct btrfs_trans_handle *trans;
5094 	loff_t oldsize = i_size_read(inode);
5095 	loff_t newsize = attr->ia_size;
5096 	int mask = attr->ia_valid;
5097 	int ret;
5098 
5099 	/*
5100 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5101 	 * special case where we need to update the times despite not having
5102 	 * these flags set.  For all other operations the VFS set these flags
5103 	 * explicitly if it wants a timestamp update.
5104 	 */
5105 	if (newsize != oldsize) {
5106 		inode_inc_iversion(inode);
5107 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5108 			inode->i_ctime = inode->i_mtime =
5109 				current_time(inode);
5110 	}
5111 
5112 	if (newsize > oldsize) {
5113 		/*
5114 		 * Don't do an expanding truncate while snapshotting is ongoing.
5115 		 * This is to ensure the snapshot captures a fully consistent
5116 		 * state of this file - if the snapshot captures this expanding
5117 		 * truncation, it must capture all writes that happened before
5118 		 * this truncation.
5119 		 */
5120 		btrfs_wait_for_snapshot_creation(root);
5121 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5122 		if (ret) {
5123 			btrfs_end_write_no_snapshotting(root);
5124 			return ret;
5125 		}
5126 
5127 		trans = btrfs_start_transaction(root, 1);
5128 		if (IS_ERR(trans)) {
5129 			btrfs_end_write_no_snapshotting(root);
5130 			return PTR_ERR(trans);
5131 		}
5132 
5133 		i_size_write(inode, newsize);
5134 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5135 		pagecache_isize_extended(inode, oldsize, newsize);
5136 		ret = btrfs_update_inode(trans, root, inode);
5137 		btrfs_end_write_no_snapshotting(root);
5138 		btrfs_end_transaction(trans);
5139 	} else {
5140 
5141 		/*
5142 		 * We're truncating a file that used to have good data down to
5143 		 * zero. Make sure it gets into the ordered flush list so that
5144 		 * any new writes get down to disk quickly.
5145 		 */
5146 		if (newsize == 0)
5147 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5148 				&BTRFS_I(inode)->runtime_flags);
5149 
5150 		truncate_setsize(inode, newsize);
5151 
5152 		/* Disable nonlocked read DIO to avoid the endless truncate */
5153 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5154 		inode_dio_wait(inode);
5155 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5156 
5157 		ret = btrfs_truncate(inode, newsize == oldsize);
5158 		if (ret && inode->i_nlink) {
5159 			int err;
5160 
5161 			/*
5162 			 * Truncate failed, so fix up the in-memory size. We
5163 			 * adjusted disk_i_size down as we removed extents, so
5164 			 * wait for disk_i_size to be stable and then update the
5165 			 * in-memory size to match.
5166 			 */
5167 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5168 			if (err)
5169 				return err;
5170 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5171 		}
5172 	}
5173 
5174 	return ret;
5175 }
5176 
5177 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5178 {
5179 	struct inode *inode = d_inode(dentry);
5180 	struct btrfs_root *root = BTRFS_I(inode)->root;
5181 	int err;
5182 
5183 	if (btrfs_root_readonly(root))
5184 		return -EROFS;
5185 
5186 	err = setattr_prepare(dentry, attr);
5187 	if (err)
5188 		return err;
5189 
5190 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5191 		err = btrfs_setsize(inode, attr);
5192 		if (err)
5193 			return err;
5194 	}
5195 
5196 	if (attr->ia_valid) {
5197 		setattr_copy(inode, attr);
5198 		inode_inc_iversion(inode);
5199 		err = btrfs_dirty_inode(inode);
5200 
5201 		if (!err && attr->ia_valid & ATTR_MODE)
5202 			err = posix_acl_chmod(inode, inode->i_mode);
5203 	}
5204 
5205 	return err;
5206 }
5207 
5208 /*
5209  * While truncating the inode pages during eviction, we get the VFS calling
5210  * btrfs_invalidatepage() against each page of the inode. This is slow because
5211  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5212  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5213  * extent_state structures over and over, wasting lots of time.
5214  *
5215  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5216  * those expensive operations on a per page basis and do only the ordered io
5217  * finishing, while we release here the extent_map and extent_state structures,
5218  * without the excessive merging and splitting.
5219  */
5220 static void evict_inode_truncate_pages(struct inode *inode)
5221 {
5222 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5223 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5224 	struct rb_node *node;
5225 
5226 	ASSERT(inode->i_state & I_FREEING);
5227 	truncate_inode_pages_final(&inode->i_data);
5228 
5229 	write_lock(&map_tree->lock);
5230 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5231 		struct extent_map *em;
5232 
5233 		node = rb_first_cached(&map_tree->map);
5234 		em = rb_entry(node, struct extent_map, rb_node);
5235 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5236 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5237 		remove_extent_mapping(map_tree, em);
5238 		free_extent_map(em);
5239 		if (need_resched()) {
5240 			write_unlock(&map_tree->lock);
5241 			cond_resched();
5242 			write_lock(&map_tree->lock);
5243 		}
5244 	}
5245 	write_unlock(&map_tree->lock);
5246 
5247 	/*
5248 	 * Keep looping until we have no more ranges in the io tree.
5249 	 * We can have ongoing bios started by readpages (called from readahead)
5250 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5251 	 * still in progress (unlocked the pages in the bio but did not yet
5252 	 * unlocked the ranges in the io tree). Therefore this means some
5253 	 * ranges can still be locked and eviction started because before
5254 	 * submitting those bios, which are executed by a separate task (work
5255 	 * queue kthread), inode references (inode->i_count) were not taken
5256 	 * (which would be dropped in the end io callback of each bio).
5257 	 * Therefore here we effectively end up waiting for those bios and
5258 	 * anyone else holding locked ranges without having bumped the inode's
5259 	 * reference count - if we don't do it, when they access the inode's
5260 	 * io_tree to unlock a range it may be too late, leading to an
5261 	 * use-after-free issue.
5262 	 */
5263 	spin_lock(&io_tree->lock);
5264 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5265 		struct extent_state *state;
5266 		struct extent_state *cached_state = NULL;
5267 		u64 start;
5268 		u64 end;
5269 		unsigned state_flags;
5270 
5271 		node = rb_first(&io_tree->state);
5272 		state = rb_entry(node, struct extent_state, rb_node);
5273 		start = state->start;
5274 		end = state->end;
5275 		state_flags = state->state;
5276 		spin_unlock(&io_tree->lock);
5277 
5278 		lock_extent_bits(io_tree, start, end, &cached_state);
5279 
5280 		/*
5281 		 * If still has DELALLOC flag, the extent didn't reach disk,
5282 		 * and its reserved space won't be freed by delayed_ref.
5283 		 * So we need to free its reserved space here.
5284 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5285 		 *
5286 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5287 		 */
5288 		if (state_flags & EXTENT_DELALLOC)
5289 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5290 
5291 		clear_extent_bit(io_tree, start, end,
5292 				 EXTENT_LOCKED | EXTENT_DIRTY |
5293 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5294 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5295 
5296 		cond_resched();
5297 		spin_lock(&io_tree->lock);
5298 	}
5299 	spin_unlock(&io_tree->lock);
5300 }
5301 
5302 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5303 							struct btrfs_block_rsv *rsv)
5304 {
5305 	struct btrfs_fs_info *fs_info = root->fs_info;
5306 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5307 	u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1);
5308 	int failures = 0;
5309 
5310 	for (;;) {
5311 		struct btrfs_trans_handle *trans;
5312 		int ret;
5313 
5314 		ret = btrfs_block_rsv_refill(root, rsv,
5315 					     rsv->size + delayed_refs_extra,
5316 					     BTRFS_RESERVE_FLUSH_LIMIT);
5317 
5318 		if (ret && ++failures > 2) {
5319 			btrfs_warn(fs_info,
5320 				   "could not allocate space for a delete; will truncate on mount");
5321 			return ERR_PTR(-ENOSPC);
5322 		}
5323 
5324 		/*
5325 		 * Evict can generate a large amount of delayed refs without
5326 		 * having a way to add space back since we exhaust our temporary
5327 		 * block rsv.  We aren't allowed to do FLUSH_ALL in this case
5328 		 * because we could deadlock with so many things in the flushing
5329 		 * code, so we have to try and hold some extra space to
5330 		 * compensate for our delayed ref generation.  If we can't get
5331 		 * that space then we need see if we can steal our minimum from
5332 		 * the global reserve.  We will be ratelimited by the amount of
5333 		 * space we have for the delayed refs rsv, so we'll end up
5334 		 * committing and trying again.
5335 		 */
5336 		trans = btrfs_join_transaction(root);
5337 		if (IS_ERR(trans) || !ret) {
5338 			if (!IS_ERR(trans)) {
5339 				trans->block_rsv = &fs_info->trans_block_rsv;
5340 				trans->bytes_reserved = delayed_refs_extra;
5341 				btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5342 							delayed_refs_extra, 1);
5343 			}
5344 			return trans;
5345 		}
5346 
5347 		/*
5348 		 * Try to steal from the global reserve if there is space for
5349 		 * it.
5350 		 */
5351 		if (!btrfs_check_space_for_delayed_refs(fs_info) &&
5352 		    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0))
5353 			return trans;
5354 
5355 		/* If not, commit and try again. */
5356 		ret = btrfs_commit_transaction(trans);
5357 		if (ret)
5358 			return ERR_PTR(ret);
5359 	}
5360 }
5361 
5362 void btrfs_evict_inode(struct inode *inode)
5363 {
5364 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5365 	struct btrfs_trans_handle *trans;
5366 	struct btrfs_root *root = BTRFS_I(inode)->root;
5367 	struct btrfs_block_rsv *rsv;
5368 	int ret;
5369 
5370 	trace_btrfs_inode_evict(inode);
5371 
5372 	if (!root) {
5373 		clear_inode(inode);
5374 		return;
5375 	}
5376 
5377 	evict_inode_truncate_pages(inode);
5378 
5379 	if (inode->i_nlink &&
5380 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5381 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5382 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5383 		goto no_delete;
5384 
5385 	if (is_bad_inode(inode))
5386 		goto no_delete;
5387 
5388 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5389 
5390 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5391 		goto no_delete;
5392 
5393 	if (inode->i_nlink > 0) {
5394 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5395 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5396 		goto no_delete;
5397 	}
5398 
5399 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5400 	if (ret)
5401 		goto no_delete;
5402 
5403 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5404 	if (!rsv)
5405 		goto no_delete;
5406 	rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5407 	rsv->failfast = 1;
5408 
5409 	btrfs_i_size_write(BTRFS_I(inode), 0);
5410 
5411 	while (1) {
5412 		trans = evict_refill_and_join(root, rsv);
5413 		if (IS_ERR(trans))
5414 			goto free_rsv;
5415 
5416 		trans->block_rsv = rsv;
5417 
5418 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5419 		trans->block_rsv = &fs_info->trans_block_rsv;
5420 		btrfs_end_transaction(trans);
5421 		btrfs_btree_balance_dirty(fs_info);
5422 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5423 			goto free_rsv;
5424 		else if (!ret)
5425 			break;
5426 	}
5427 
5428 	/*
5429 	 * Errors here aren't a big deal, it just means we leave orphan items in
5430 	 * the tree. They will be cleaned up on the next mount. If the inode
5431 	 * number gets reused, cleanup deletes the orphan item without doing
5432 	 * anything, and unlink reuses the existing orphan item.
5433 	 *
5434 	 * If it turns out that we are dropping too many of these, we might want
5435 	 * to add a mechanism for retrying these after a commit.
5436 	 */
5437 	trans = evict_refill_and_join(root, rsv);
5438 	if (!IS_ERR(trans)) {
5439 		trans->block_rsv = rsv;
5440 		btrfs_orphan_del(trans, BTRFS_I(inode));
5441 		trans->block_rsv = &fs_info->trans_block_rsv;
5442 		btrfs_end_transaction(trans);
5443 	}
5444 
5445 	if (!(root == fs_info->tree_root ||
5446 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5447 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5448 
5449 free_rsv:
5450 	btrfs_free_block_rsv(fs_info, rsv);
5451 no_delete:
5452 	/*
5453 	 * If we didn't successfully delete, the orphan item will still be in
5454 	 * the tree and we'll retry on the next mount. Again, we might also want
5455 	 * to retry these periodically in the future.
5456 	 */
5457 	btrfs_remove_delayed_node(BTRFS_I(inode));
5458 	clear_inode(inode);
5459 }
5460 
5461 /*
5462  * Return the key found in the dir entry in the location pointer, fill @type
5463  * with BTRFS_FT_*, and return 0.
5464  *
5465  * If no dir entries were found, returns -ENOENT.
5466  * If found a corrupted location in dir entry, returns -EUCLEAN.
5467  */
5468 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5469 			       struct btrfs_key *location, u8 *type)
5470 {
5471 	const char *name = dentry->d_name.name;
5472 	int namelen = dentry->d_name.len;
5473 	struct btrfs_dir_item *di;
5474 	struct btrfs_path *path;
5475 	struct btrfs_root *root = BTRFS_I(dir)->root;
5476 	int ret = 0;
5477 
5478 	path = btrfs_alloc_path();
5479 	if (!path)
5480 		return -ENOMEM;
5481 
5482 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5483 			name, namelen, 0);
5484 	if (IS_ERR_OR_NULL(di)) {
5485 		ret = di ? PTR_ERR(di) : -ENOENT;
5486 		goto out;
5487 	}
5488 
5489 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5490 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5491 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5492 		ret = -EUCLEAN;
5493 		btrfs_warn(root->fs_info,
5494 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5495 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5496 			   location->objectid, location->type, location->offset);
5497 	}
5498 	if (!ret)
5499 		*type = btrfs_dir_type(path->nodes[0], di);
5500 out:
5501 	btrfs_free_path(path);
5502 	return ret;
5503 }
5504 
5505 /*
5506  * when we hit a tree root in a directory, the btrfs part of the inode
5507  * needs to be changed to reflect the root directory of the tree root.  This
5508  * is kind of like crossing a mount point.
5509  */
5510 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5511 				    struct inode *dir,
5512 				    struct dentry *dentry,
5513 				    struct btrfs_key *location,
5514 				    struct btrfs_root **sub_root)
5515 {
5516 	struct btrfs_path *path;
5517 	struct btrfs_root *new_root;
5518 	struct btrfs_root_ref *ref;
5519 	struct extent_buffer *leaf;
5520 	struct btrfs_key key;
5521 	int ret;
5522 	int err = 0;
5523 
5524 	path = btrfs_alloc_path();
5525 	if (!path) {
5526 		err = -ENOMEM;
5527 		goto out;
5528 	}
5529 
5530 	err = -ENOENT;
5531 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5532 	key.type = BTRFS_ROOT_REF_KEY;
5533 	key.offset = location->objectid;
5534 
5535 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5536 	if (ret) {
5537 		if (ret < 0)
5538 			err = ret;
5539 		goto out;
5540 	}
5541 
5542 	leaf = path->nodes[0];
5543 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5544 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5545 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5546 		goto out;
5547 
5548 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5549 				   (unsigned long)(ref + 1),
5550 				   dentry->d_name.len);
5551 	if (ret)
5552 		goto out;
5553 
5554 	btrfs_release_path(path);
5555 
5556 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5557 	if (IS_ERR(new_root)) {
5558 		err = PTR_ERR(new_root);
5559 		goto out;
5560 	}
5561 
5562 	*sub_root = new_root;
5563 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5564 	location->type = BTRFS_INODE_ITEM_KEY;
5565 	location->offset = 0;
5566 	err = 0;
5567 out:
5568 	btrfs_free_path(path);
5569 	return err;
5570 }
5571 
5572 static void inode_tree_add(struct inode *inode)
5573 {
5574 	struct btrfs_root *root = BTRFS_I(inode)->root;
5575 	struct btrfs_inode *entry;
5576 	struct rb_node **p;
5577 	struct rb_node *parent;
5578 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5579 	u64 ino = btrfs_ino(BTRFS_I(inode));
5580 
5581 	if (inode_unhashed(inode))
5582 		return;
5583 	parent = NULL;
5584 	spin_lock(&root->inode_lock);
5585 	p = &root->inode_tree.rb_node;
5586 	while (*p) {
5587 		parent = *p;
5588 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5589 
5590 		if (ino < btrfs_ino(entry))
5591 			p = &parent->rb_left;
5592 		else if (ino > btrfs_ino(entry))
5593 			p = &parent->rb_right;
5594 		else {
5595 			WARN_ON(!(entry->vfs_inode.i_state &
5596 				  (I_WILL_FREE | I_FREEING)));
5597 			rb_replace_node(parent, new, &root->inode_tree);
5598 			RB_CLEAR_NODE(parent);
5599 			spin_unlock(&root->inode_lock);
5600 			return;
5601 		}
5602 	}
5603 	rb_link_node(new, parent, p);
5604 	rb_insert_color(new, &root->inode_tree);
5605 	spin_unlock(&root->inode_lock);
5606 }
5607 
5608 static void inode_tree_del(struct inode *inode)
5609 {
5610 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5611 	struct btrfs_root *root = BTRFS_I(inode)->root;
5612 	int empty = 0;
5613 
5614 	spin_lock(&root->inode_lock);
5615 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5616 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5617 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5618 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5619 	}
5620 	spin_unlock(&root->inode_lock);
5621 
5622 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5623 		synchronize_srcu(&fs_info->subvol_srcu);
5624 		spin_lock(&root->inode_lock);
5625 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5626 		spin_unlock(&root->inode_lock);
5627 		if (empty)
5628 			btrfs_add_dead_root(root);
5629 	}
5630 }
5631 
5632 
5633 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5634 {
5635 	struct btrfs_iget_args *args = p;
5636 	inode->i_ino = args->location->objectid;
5637 	memcpy(&BTRFS_I(inode)->location, args->location,
5638 	       sizeof(*args->location));
5639 	BTRFS_I(inode)->root = args->root;
5640 	return 0;
5641 }
5642 
5643 static int btrfs_find_actor(struct inode *inode, void *opaque)
5644 {
5645 	struct btrfs_iget_args *args = opaque;
5646 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5647 		args->root == BTRFS_I(inode)->root;
5648 }
5649 
5650 static struct inode *btrfs_iget_locked(struct super_block *s,
5651 				       struct btrfs_key *location,
5652 				       struct btrfs_root *root)
5653 {
5654 	struct inode *inode;
5655 	struct btrfs_iget_args args;
5656 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5657 
5658 	args.location = location;
5659 	args.root = root;
5660 
5661 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5662 			     btrfs_init_locked_inode,
5663 			     (void *)&args);
5664 	return inode;
5665 }
5666 
5667 /* Get an inode object given its location and corresponding root.
5668  * Returns in *is_new if the inode was read from disk
5669  */
5670 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5671 			      struct btrfs_root *root, int *new,
5672 			      struct btrfs_path *path)
5673 {
5674 	struct inode *inode;
5675 
5676 	inode = btrfs_iget_locked(s, location, root);
5677 	if (!inode)
5678 		return ERR_PTR(-ENOMEM);
5679 
5680 	if (inode->i_state & I_NEW) {
5681 		int ret;
5682 
5683 		ret = btrfs_read_locked_inode(inode, path);
5684 		if (!ret) {
5685 			inode_tree_add(inode);
5686 			unlock_new_inode(inode);
5687 			if (new)
5688 				*new = 1;
5689 		} else {
5690 			iget_failed(inode);
5691 			/*
5692 			 * ret > 0 can come from btrfs_search_slot called by
5693 			 * btrfs_read_locked_inode, this means the inode item
5694 			 * was not found.
5695 			 */
5696 			if (ret > 0)
5697 				ret = -ENOENT;
5698 			inode = ERR_PTR(ret);
5699 		}
5700 	}
5701 
5702 	return inode;
5703 }
5704 
5705 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5706 			 struct btrfs_root *root, int *new)
5707 {
5708 	return btrfs_iget_path(s, location, root, new, NULL);
5709 }
5710 
5711 static struct inode *new_simple_dir(struct super_block *s,
5712 				    struct btrfs_key *key,
5713 				    struct btrfs_root *root)
5714 {
5715 	struct inode *inode = new_inode(s);
5716 
5717 	if (!inode)
5718 		return ERR_PTR(-ENOMEM);
5719 
5720 	BTRFS_I(inode)->root = root;
5721 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5722 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5723 
5724 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5725 	inode->i_op = &btrfs_dir_ro_inode_operations;
5726 	inode->i_opflags &= ~IOP_XATTR;
5727 	inode->i_fop = &simple_dir_operations;
5728 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5729 	inode->i_mtime = current_time(inode);
5730 	inode->i_atime = inode->i_mtime;
5731 	inode->i_ctime = inode->i_mtime;
5732 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5733 
5734 	return inode;
5735 }
5736 
5737 static inline u8 btrfs_inode_type(struct inode *inode)
5738 {
5739 	/*
5740 	 * Compile-time asserts that generic FT_* types still match
5741 	 * BTRFS_FT_* types
5742 	 */
5743 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5744 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5745 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5746 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5747 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5748 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5749 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5750 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5751 
5752 	return fs_umode_to_ftype(inode->i_mode);
5753 }
5754 
5755 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5756 {
5757 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5758 	struct inode *inode;
5759 	struct btrfs_root *root = BTRFS_I(dir)->root;
5760 	struct btrfs_root *sub_root = root;
5761 	struct btrfs_key location;
5762 	u8 di_type = 0;
5763 	int index;
5764 	int ret = 0;
5765 
5766 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5767 		return ERR_PTR(-ENAMETOOLONG);
5768 
5769 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5770 	if (ret < 0)
5771 		return ERR_PTR(ret);
5772 
5773 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5774 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5775 		if (IS_ERR(inode))
5776 			return inode;
5777 
5778 		/* Do extra check against inode mode with di_type */
5779 		if (btrfs_inode_type(inode) != di_type) {
5780 			btrfs_crit(fs_info,
5781 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5782 				  inode->i_mode, btrfs_inode_type(inode),
5783 				  di_type);
5784 			iput(inode);
5785 			return ERR_PTR(-EUCLEAN);
5786 		}
5787 		return inode;
5788 	}
5789 
5790 	index = srcu_read_lock(&fs_info->subvol_srcu);
5791 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5792 				       &location, &sub_root);
5793 	if (ret < 0) {
5794 		if (ret != -ENOENT)
5795 			inode = ERR_PTR(ret);
5796 		else
5797 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5798 	} else {
5799 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5800 	}
5801 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5802 
5803 	if (!IS_ERR(inode) && root != sub_root) {
5804 		down_read(&fs_info->cleanup_work_sem);
5805 		if (!sb_rdonly(inode->i_sb))
5806 			ret = btrfs_orphan_cleanup(sub_root);
5807 		up_read(&fs_info->cleanup_work_sem);
5808 		if (ret) {
5809 			iput(inode);
5810 			inode = ERR_PTR(ret);
5811 		}
5812 	}
5813 
5814 	return inode;
5815 }
5816 
5817 static int btrfs_dentry_delete(const struct dentry *dentry)
5818 {
5819 	struct btrfs_root *root;
5820 	struct inode *inode = d_inode(dentry);
5821 
5822 	if (!inode && !IS_ROOT(dentry))
5823 		inode = d_inode(dentry->d_parent);
5824 
5825 	if (inode) {
5826 		root = BTRFS_I(inode)->root;
5827 		if (btrfs_root_refs(&root->root_item) == 0)
5828 			return 1;
5829 
5830 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5831 			return 1;
5832 	}
5833 	return 0;
5834 }
5835 
5836 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5837 				   unsigned int flags)
5838 {
5839 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5840 
5841 	if (inode == ERR_PTR(-ENOENT))
5842 		inode = NULL;
5843 	return d_splice_alias(inode, dentry);
5844 }
5845 
5846 /*
5847  * All this infrastructure exists because dir_emit can fault, and we are holding
5848  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5849  * our information into that, and then dir_emit from the buffer.  This is
5850  * similar to what NFS does, only we don't keep the buffer around in pagecache
5851  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5852  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5853  * tree lock.
5854  */
5855 static int btrfs_opendir(struct inode *inode, struct file *file)
5856 {
5857 	struct btrfs_file_private *private;
5858 
5859 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5860 	if (!private)
5861 		return -ENOMEM;
5862 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5863 	if (!private->filldir_buf) {
5864 		kfree(private);
5865 		return -ENOMEM;
5866 	}
5867 	file->private_data = private;
5868 	return 0;
5869 }
5870 
5871 struct dir_entry {
5872 	u64 ino;
5873 	u64 offset;
5874 	unsigned type;
5875 	int name_len;
5876 };
5877 
5878 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5879 {
5880 	while (entries--) {
5881 		struct dir_entry *entry = addr;
5882 		char *name = (char *)(entry + 1);
5883 
5884 		ctx->pos = get_unaligned(&entry->offset);
5885 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5886 					 get_unaligned(&entry->ino),
5887 					 get_unaligned(&entry->type)))
5888 			return 1;
5889 		addr += sizeof(struct dir_entry) +
5890 			get_unaligned(&entry->name_len);
5891 		ctx->pos++;
5892 	}
5893 	return 0;
5894 }
5895 
5896 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5897 {
5898 	struct inode *inode = file_inode(file);
5899 	struct btrfs_root *root = BTRFS_I(inode)->root;
5900 	struct btrfs_file_private *private = file->private_data;
5901 	struct btrfs_dir_item *di;
5902 	struct btrfs_key key;
5903 	struct btrfs_key found_key;
5904 	struct btrfs_path *path;
5905 	void *addr;
5906 	struct list_head ins_list;
5907 	struct list_head del_list;
5908 	int ret;
5909 	struct extent_buffer *leaf;
5910 	int slot;
5911 	char *name_ptr;
5912 	int name_len;
5913 	int entries = 0;
5914 	int total_len = 0;
5915 	bool put = false;
5916 	struct btrfs_key location;
5917 
5918 	if (!dir_emit_dots(file, ctx))
5919 		return 0;
5920 
5921 	path = btrfs_alloc_path();
5922 	if (!path)
5923 		return -ENOMEM;
5924 
5925 	addr = private->filldir_buf;
5926 	path->reada = READA_FORWARD;
5927 
5928 	INIT_LIST_HEAD(&ins_list);
5929 	INIT_LIST_HEAD(&del_list);
5930 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5931 
5932 again:
5933 	key.type = BTRFS_DIR_INDEX_KEY;
5934 	key.offset = ctx->pos;
5935 	key.objectid = btrfs_ino(BTRFS_I(inode));
5936 
5937 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5938 	if (ret < 0)
5939 		goto err;
5940 
5941 	while (1) {
5942 		struct dir_entry *entry;
5943 
5944 		leaf = path->nodes[0];
5945 		slot = path->slots[0];
5946 		if (slot >= btrfs_header_nritems(leaf)) {
5947 			ret = btrfs_next_leaf(root, path);
5948 			if (ret < 0)
5949 				goto err;
5950 			else if (ret > 0)
5951 				break;
5952 			continue;
5953 		}
5954 
5955 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5956 
5957 		if (found_key.objectid != key.objectid)
5958 			break;
5959 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5960 			break;
5961 		if (found_key.offset < ctx->pos)
5962 			goto next;
5963 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5964 			goto next;
5965 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5966 		name_len = btrfs_dir_name_len(leaf, di);
5967 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5968 		    PAGE_SIZE) {
5969 			btrfs_release_path(path);
5970 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5971 			if (ret)
5972 				goto nopos;
5973 			addr = private->filldir_buf;
5974 			entries = 0;
5975 			total_len = 0;
5976 			goto again;
5977 		}
5978 
5979 		entry = addr;
5980 		put_unaligned(name_len, &entry->name_len);
5981 		name_ptr = (char *)(entry + 1);
5982 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5983 				   name_len);
5984 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5985 				&entry->type);
5986 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5987 		put_unaligned(location.objectid, &entry->ino);
5988 		put_unaligned(found_key.offset, &entry->offset);
5989 		entries++;
5990 		addr += sizeof(struct dir_entry) + name_len;
5991 		total_len += sizeof(struct dir_entry) + name_len;
5992 next:
5993 		path->slots[0]++;
5994 	}
5995 	btrfs_release_path(path);
5996 
5997 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5998 	if (ret)
5999 		goto nopos;
6000 
6001 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6002 	if (ret)
6003 		goto nopos;
6004 
6005 	/*
6006 	 * Stop new entries from being returned after we return the last
6007 	 * entry.
6008 	 *
6009 	 * New directory entries are assigned a strictly increasing
6010 	 * offset.  This means that new entries created during readdir
6011 	 * are *guaranteed* to be seen in the future by that readdir.
6012 	 * This has broken buggy programs which operate on names as
6013 	 * they're returned by readdir.  Until we re-use freed offsets
6014 	 * we have this hack to stop new entries from being returned
6015 	 * under the assumption that they'll never reach this huge
6016 	 * offset.
6017 	 *
6018 	 * This is being careful not to overflow 32bit loff_t unless the
6019 	 * last entry requires it because doing so has broken 32bit apps
6020 	 * in the past.
6021 	 */
6022 	if (ctx->pos >= INT_MAX)
6023 		ctx->pos = LLONG_MAX;
6024 	else
6025 		ctx->pos = INT_MAX;
6026 nopos:
6027 	ret = 0;
6028 err:
6029 	if (put)
6030 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6031 	btrfs_free_path(path);
6032 	return ret;
6033 }
6034 
6035 /*
6036  * This is somewhat expensive, updating the tree every time the
6037  * inode changes.  But, it is most likely to find the inode in cache.
6038  * FIXME, needs more benchmarking...there are no reasons other than performance
6039  * to keep or drop this code.
6040  */
6041 static int btrfs_dirty_inode(struct inode *inode)
6042 {
6043 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6044 	struct btrfs_root *root = BTRFS_I(inode)->root;
6045 	struct btrfs_trans_handle *trans;
6046 	int ret;
6047 
6048 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6049 		return 0;
6050 
6051 	trans = btrfs_join_transaction(root);
6052 	if (IS_ERR(trans))
6053 		return PTR_ERR(trans);
6054 
6055 	ret = btrfs_update_inode(trans, root, inode);
6056 	if (ret && ret == -ENOSPC) {
6057 		/* whoops, lets try again with the full transaction */
6058 		btrfs_end_transaction(trans);
6059 		trans = btrfs_start_transaction(root, 1);
6060 		if (IS_ERR(trans))
6061 			return PTR_ERR(trans);
6062 
6063 		ret = btrfs_update_inode(trans, root, inode);
6064 	}
6065 	btrfs_end_transaction(trans);
6066 	if (BTRFS_I(inode)->delayed_node)
6067 		btrfs_balance_delayed_items(fs_info);
6068 
6069 	return ret;
6070 }
6071 
6072 /*
6073  * This is a copy of file_update_time.  We need this so we can return error on
6074  * ENOSPC for updating the inode in the case of file write and mmap writes.
6075  */
6076 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6077 			     int flags)
6078 {
6079 	struct btrfs_root *root = BTRFS_I(inode)->root;
6080 	bool dirty = flags & ~S_VERSION;
6081 
6082 	if (btrfs_root_readonly(root))
6083 		return -EROFS;
6084 
6085 	if (flags & S_VERSION)
6086 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6087 	if (flags & S_CTIME)
6088 		inode->i_ctime = *now;
6089 	if (flags & S_MTIME)
6090 		inode->i_mtime = *now;
6091 	if (flags & S_ATIME)
6092 		inode->i_atime = *now;
6093 	return dirty ? btrfs_dirty_inode(inode) : 0;
6094 }
6095 
6096 /*
6097  * find the highest existing sequence number in a directory
6098  * and then set the in-memory index_cnt variable to reflect
6099  * free sequence numbers
6100  */
6101 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6102 {
6103 	struct btrfs_root *root = inode->root;
6104 	struct btrfs_key key, found_key;
6105 	struct btrfs_path *path;
6106 	struct extent_buffer *leaf;
6107 	int ret;
6108 
6109 	key.objectid = btrfs_ino(inode);
6110 	key.type = BTRFS_DIR_INDEX_KEY;
6111 	key.offset = (u64)-1;
6112 
6113 	path = btrfs_alloc_path();
6114 	if (!path)
6115 		return -ENOMEM;
6116 
6117 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6118 	if (ret < 0)
6119 		goto out;
6120 	/* FIXME: we should be able to handle this */
6121 	if (ret == 0)
6122 		goto out;
6123 	ret = 0;
6124 
6125 	/*
6126 	 * MAGIC NUMBER EXPLANATION:
6127 	 * since we search a directory based on f_pos we have to start at 2
6128 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6129 	 * else has to start at 2
6130 	 */
6131 	if (path->slots[0] == 0) {
6132 		inode->index_cnt = 2;
6133 		goto out;
6134 	}
6135 
6136 	path->slots[0]--;
6137 
6138 	leaf = path->nodes[0];
6139 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6140 
6141 	if (found_key.objectid != btrfs_ino(inode) ||
6142 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6143 		inode->index_cnt = 2;
6144 		goto out;
6145 	}
6146 
6147 	inode->index_cnt = found_key.offset + 1;
6148 out:
6149 	btrfs_free_path(path);
6150 	return ret;
6151 }
6152 
6153 /*
6154  * helper to find a free sequence number in a given directory.  This current
6155  * code is very simple, later versions will do smarter things in the btree
6156  */
6157 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6158 {
6159 	int ret = 0;
6160 
6161 	if (dir->index_cnt == (u64)-1) {
6162 		ret = btrfs_inode_delayed_dir_index_count(dir);
6163 		if (ret) {
6164 			ret = btrfs_set_inode_index_count(dir);
6165 			if (ret)
6166 				return ret;
6167 		}
6168 	}
6169 
6170 	*index = dir->index_cnt;
6171 	dir->index_cnt++;
6172 
6173 	return ret;
6174 }
6175 
6176 static int btrfs_insert_inode_locked(struct inode *inode)
6177 {
6178 	struct btrfs_iget_args args;
6179 	args.location = &BTRFS_I(inode)->location;
6180 	args.root = BTRFS_I(inode)->root;
6181 
6182 	return insert_inode_locked4(inode,
6183 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6184 		   btrfs_find_actor, &args);
6185 }
6186 
6187 /*
6188  * Inherit flags from the parent inode.
6189  *
6190  * Currently only the compression flags and the cow flags are inherited.
6191  */
6192 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6193 {
6194 	unsigned int flags;
6195 
6196 	if (!dir)
6197 		return;
6198 
6199 	flags = BTRFS_I(dir)->flags;
6200 
6201 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6202 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6203 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6204 	} else if (flags & BTRFS_INODE_COMPRESS) {
6205 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6206 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6207 	}
6208 
6209 	if (flags & BTRFS_INODE_NODATACOW) {
6210 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6211 		if (S_ISREG(inode->i_mode))
6212 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6213 	}
6214 
6215 	btrfs_sync_inode_flags_to_i_flags(inode);
6216 }
6217 
6218 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6219 				     struct btrfs_root *root,
6220 				     struct inode *dir,
6221 				     const char *name, int name_len,
6222 				     u64 ref_objectid, u64 objectid,
6223 				     umode_t mode, u64 *index)
6224 {
6225 	struct btrfs_fs_info *fs_info = root->fs_info;
6226 	struct inode *inode;
6227 	struct btrfs_inode_item *inode_item;
6228 	struct btrfs_key *location;
6229 	struct btrfs_path *path;
6230 	struct btrfs_inode_ref *ref;
6231 	struct btrfs_key key[2];
6232 	u32 sizes[2];
6233 	int nitems = name ? 2 : 1;
6234 	unsigned long ptr;
6235 	int ret;
6236 
6237 	path = btrfs_alloc_path();
6238 	if (!path)
6239 		return ERR_PTR(-ENOMEM);
6240 
6241 	inode = new_inode(fs_info->sb);
6242 	if (!inode) {
6243 		btrfs_free_path(path);
6244 		return ERR_PTR(-ENOMEM);
6245 	}
6246 
6247 	/*
6248 	 * O_TMPFILE, set link count to 0, so that after this point,
6249 	 * we fill in an inode item with the correct link count.
6250 	 */
6251 	if (!name)
6252 		set_nlink(inode, 0);
6253 
6254 	/*
6255 	 * we have to initialize this early, so we can reclaim the inode
6256 	 * number if we fail afterwards in this function.
6257 	 */
6258 	inode->i_ino = objectid;
6259 
6260 	if (dir && name) {
6261 		trace_btrfs_inode_request(dir);
6262 
6263 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6264 		if (ret) {
6265 			btrfs_free_path(path);
6266 			iput(inode);
6267 			return ERR_PTR(ret);
6268 		}
6269 	} else if (dir) {
6270 		*index = 0;
6271 	}
6272 	/*
6273 	 * index_cnt is ignored for everything but a dir,
6274 	 * btrfs_set_inode_index_count has an explanation for the magic
6275 	 * number
6276 	 */
6277 	BTRFS_I(inode)->index_cnt = 2;
6278 	BTRFS_I(inode)->dir_index = *index;
6279 	BTRFS_I(inode)->root = root;
6280 	BTRFS_I(inode)->generation = trans->transid;
6281 	inode->i_generation = BTRFS_I(inode)->generation;
6282 
6283 	/*
6284 	 * We could have gotten an inode number from somebody who was fsynced
6285 	 * and then removed in this same transaction, so let's just set full
6286 	 * sync since it will be a full sync anyway and this will blow away the
6287 	 * old info in the log.
6288 	 */
6289 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6290 
6291 	key[0].objectid = objectid;
6292 	key[0].type = BTRFS_INODE_ITEM_KEY;
6293 	key[0].offset = 0;
6294 
6295 	sizes[0] = sizeof(struct btrfs_inode_item);
6296 
6297 	if (name) {
6298 		/*
6299 		 * Start new inodes with an inode_ref. This is slightly more
6300 		 * efficient for small numbers of hard links since they will
6301 		 * be packed into one item. Extended refs will kick in if we
6302 		 * add more hard links than can fit in the ref item.
6303 		 */
6304 		key[1].objectid = objectid;
6305 		key[1].type = BTRFS_INODE_REF_KEY;
6306 		key[1].offset = ref_objectid;
6307 
6308 		sizes[1] = name_len + sizeof(*ref);
6309 	}
6310 
6311 	location = &BTRFS_I(inode)->location;
6312 	location->objectid = objectid;
6313 	location->offset = 0;
6314 	location->type = BTRFS_INODE_ITEM_KEY;
6315 
6316 	ret = btrfs_insert_inode_locked(inode);
6317 	if (ret < 0) {
6318 		iput(inode);
6319 		goto fail;
6320 	}
6321 
6322 	path->leave_spinning = 1;
6323 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6324 	if (ret != 0)
6325 		goto fail_unlock;
6326 
6327 	inode_init_owner(inode, dir, mode);
6328 	inode_set_bytes(inode, 0);
6329 
6330 	inode->i_mtime = current_time(inode);
6331 	inode->i_atime = inode->i_mtime;
6332 	inode->i_ctime = inode->i_mtime;
6333 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6334 
6335 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6336 				  struct btrfs_inode_item);
6337 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6338 			     sizeof(*inode_item));
6339 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6340 
6341 	if (name) {
6342 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6343 				     struct btrfs_inode_ref);
6344 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6345 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6346 		ptr = (unsigned long)(ref + 1);
6347 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6348 	}
6349 
6350 	btrfs_mark_buffer_dirty(path->nodes[0]);
6351 	btrfs_free_path(path);
6352 
6353 	btrfs_inherit_iflags(inode, dir);
6354 
6355 	if (S_ISREG(mode)) {
6356 		if (btrfs_test_opt(fs_info, NODATASUM))
6357 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6358 		if (btrfs_test_opt(fs_info, NODATACOW))
6359 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6360 				BTRFS_INODE_NODATASUM;
6361 	}
6362 
6363 	inode_tree_add(inode);
6364 
6365 	trace_btrfs_inode_new(inode);
6366 	btrfs_set_inode_last_trans(trans, inode);
6367 
6368 	btrfs_update_root_times(trans, root);
6369 
6370 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6371 	if (ret)
6372 		btrfs_err(fs_info,
6373 			  "error inheriting props for ino %llu (root %llu): %d",
6374 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6375 
6376 	return inode;
6377 
6378 fail_unlock:
6379 	discard_new_inode(inode);
6380 fail:
6381 	if (dir && name)
6382 		BTRFS_I(dir)->index_cnt--;
6383 	btrfs_free_path(path);
6384 	return ERR_PTR(ret);
6385 }
6386 
6387 /*
6388  * utility function to add 'inode' into 'parent_inode' with
6389  * a give name and a given sequence number.
6390  * if 'add_backref' is true, also insert a backref from the
6391  * inode to the parent directory.
6392  */
6393 int btrfs_add_link(struct btrfs_trans_handle *trans,
6394 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6395 		   const char *name, int name_len, int add_backref, u64 index)
6396 {
6397 	int ret = 0;
6398 	struct btrfs_key key;
6399 	struct btrfs_root *root = parent_inode->root;
6400 	u64 ino = btrfs_ino(inode);
6401 	u64 parent_ino = btrfs_ino(parent_inode);
6402 
6403 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6404 		memcpy(&key, &inode->root->root_key, sizeof(key));
6405 	} else {
6406 		key.objectid = ino;
6407 		key.type = BTRFS_INODE_ITEM_KEY;
6408 		key.offset = 0;
6409 	}
6410 
6411 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6412 		ret = btrfs_add_root_ref(trans, key.objectid,
6413 					 root->root_key.objectid, parent_ino,
6414 					 index, name, name_len);
6415 	} else if (add_backref) {
6416 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6417 					     parent_ino, index);
6418 	}
6419 
6420 	/* Nothing to clean up yet */
6421 	if (ret)
6422 		return ret;
6423 
6424 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6425 				    btrfs_inode_type(&inode->vfs_inode), index);
6426 	if (ret == -EEXIST || ret == -EOVERFLOW)
6427 		goto fail_dir_item;
6428 	else if (ret) {
6429 		btrfs_abort_transaction(trans, ret);
6430 		return ret;
6431 	}
6432 
6433 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6434 			   name_len * 2);
6435 	inode_inc_iversion(&parent_inode->vfs_inode);
6436 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6437 		current_time(&parent_inode->vfs_inode);
6438 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6439 	if (ret)
6440 		btrfs_abort_transaction(trans, ret);
6441 	return ret;
6442 
6443 fail_dir_item:
6444 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6445 		u64 local_index;
6446 		int err;
6447 		err = btrfs_del_root_ref(trans, key.objectid,
6448 					 root->root_key.objectid, parent_ino,
6449 					 &local_index, name, name_len);
6450 		if (err)
6451 			btrfs_abort_transaction(trans, err);
6452 	} else if (add_backref) {
6453 		u64 local_index;
6454 		int err;
6455 
6456 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6457 					  ino, parent_ino, &local_index);
6458 		if (err)
6459 			btrfs_abort_transaction(trans, err);
6460 	}
6461 
6462 	/* Return the original error code */
6463 	return ret;
6464 }
6465 
6466 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6467 			    struct btrfs_inode *dir, struct dentry *dentry,
6468 			    struct btrfs_inode *inode, int backref, u64 index)
6469 {
6470 	int err = btrfs_add_link(trans, dir, inode,
6471 				 dentry->d_name.name, dentry->d_name.len,
6472 				 backref, index);
6473 	if (err > 0)
6474 		err = -EEXIST;
6475 	return err;
6476 }
6477 
6478 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6479 			umode_t mode, dev_t rdev)
6480 {
6481 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6482 	struct btrfs_trans_handle *trans;
6483 	struct btrfs_root *root = BTRFS_I(dir)->root;
6484 	struct inode *inode = NULL;
6485 	int err;
6486 	u64 objectid;
6487 	u64 index = 0;
6488 
6489 	/*
6490 	 * 2 for inode item and ref
6491 	 * 2 for dir items
6492 	 * 1 for xattr if selinux is on
6493 	 */
6494 	trans = btrfs_start_transaction(root, 5);
6495 	if (IS_ERR(trans))
6496 		return PTR_ERR(trans);
6497 
6498 	err = btrfs_find_free_ino(root, &objectid);
6499 	if (err)
6500 		goto out_unlock;
6501 
6502 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6503 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6504 			mode, &index);
6505 	if (IS_ERR(inode)) {
6506 		err = PTR_ERR(inode);
6507 		inode = NULL;
6508 		goto out_unlock;
6509 	}
6510 
6511 	/*
6512 	* If the active LSM wants to access the inode during
6513 	* d_instantiate it needs these. Smack checks to see
6514 	* if the filesystem supports xattrs by looking at the
6515 	* ops vector.
6516 	*/
6517 	inode->i_op = &btrfs_special_inode_operations;
6518 	init_special_inode(inode, inode->i_mode, rdev);
6519 
6520 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6521 	if (err)
6522 		goto out_unlock;
6523 
6524 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6525 			0, index);
6526 	if (err)
6527 		goto out_unlock;
6528 
6529 	btrfs_update_inode(trans, root, inode);
6530 	d_instantiate_new(dentry, inode);
6531 
6532 out_unlock:
6533 	btrfs_end_transaction(trans);
6534 	btrfs_btree_balance_dirty(fs_info);
6535 	if (err && inode) {
6536 		inode_dec_link_count(inode);
6537 		discard_new_inode(inode);
6538 	}
6539 	return err;
6540 }
6541 
6542 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6543 			umode_t mode, bool excl)
6544 {
6545 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6546 	struct btrfs_trans_handle *trans;
6547 	struct btrfs_root *root = BTRFS_I(dir)->root;
6548 	struct inode *inode = NULL;
6549 	int err;
6550 	u64 objectid;
6551 	u64 index = 0;
6552 
6553 	/*
6554 	 * 2 for inode item and ref
6555 	 * 2 for dir items
6556 	 * 1 for xattr if selinux is on
6557 	 */
6558 	trans = btrfs_start_transaction(root, 5);
6559 	if (IS_ERR(trans))
6560 		return PTR_ERR(trans);
6561 
6562 	err = btrfs_find_free_ino(root, &objectid);
6563 	if (err)
6564 		goto out_unlock;
6565 
6566 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6567 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6568 			mode, &index);
6569 	if (IS_ERR(inode)) {
6570 		err = PTR_ERR(inode);
6571 		inode = NULL;
6572 		goto out_unlock;
6573 	}
6574 	/*
6575 	* If the active LSM wants to access the inode during
6576 	* d_instantiate it needs these. Smack checks to see
6577 	* if the filesystem supports xattrs by looking at the
6578 	* ops vector.
6579 	*/
6580 	inode->i_fop = &btrfs_file_operations;
6581 	inode->i_op = &btrfs_file_inode_operations;
6582 	inode->i_mapping->a_ops = &btrfs_aops;
6583 
6584 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6585 	if (err)
6586 		goto out_unlock;
6587 
6588 	err = btrfs_update_inode(trans, root, inode);
6589 	if (err)
6590 		goto out_unlock;
6591 
6592 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6593 			0, index);
6594 	if (err)
6595 		goto out_unlock;
6596 
6597 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6598 	d_instantiate_new(dentry, inode);
6599 
6600 out_unlock:
6601 	btrfs_end_transaction(trans);
6602 	if (err && inode) {
6603 		inode_dec_link_count(inode);
6604 		discard_new_inode(inode);
6605 	}
6606 	btrfs_btree_balance_dirty(fs_info);
6607 	return err;
6608 }
6609 
6610 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6611 		      struct dentry *dentry)
6612 {
6613 	struct btrfs_trans_handle *trans = NULL;
6614 	struct btrfs_root *root = BTRFS_I(dir)->root;
6615 	struct inode *inode = d_inode(old_dentry);
6616 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6617 	u64 index;
6618 	int err;
6619 	int drop_inode = 0;
6620 
6621 	/* do not allow sys_link's with other subvols of the same device */
6622 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6623 		return -EXDEV;
6624 
6625 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6626 		return -EMLINK;
6627 
6628 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6629 	if (err)
6630 		goto fail;
6631 
6632 	/*
6633 	 * 2 items for inode and inode ref
6634 	 * 2 items for dir items
6635 	 * 1 item for parent inode
6636 	 * 1 item for orphan item deletion if O_TMPFILE
6637 	 */
6638 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6639 	if (IS_ERR(trans)) {
6640 		err = PTR_ERR(trans);
6641 		trans = NULL;
6642 		goto fail;
6643 	}
6644 
6645 	/* There are several dir indexes for this inode, clear the cache. */
6646 	BTRFS_I(inode)->dir_index = 0ULL;
6647 	inc_nlink(inode);
6648 	inode_inc_iversion(inode);
6649 	inode->i_ctime = current_time(inode);
6650 	ihold(inode);
6651 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6652 
6653 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6654 			1, index);
6655 
6656 	if (err) {
6657 		drop_inode = 1;
6658 	} else {
6659 		struct dentry *parent = dentry->d_parent;
6660 		int ret;
6661 
6662 		err = btrfs_update_inode(trans, root, inode);
6663 		if (err)
6664 			goto fail;
6665 		if (inode->i_nlink == 1) {
6666 			/*
6667 			 * If new hard link count is 1, it's a file created
6668 			 * with open(2) O_TMPFILE flag.
6669 			 */
6670 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6671 			if (err)
6672 				goto fail;
6673 		}
6674 		d_instantiate(dentry, inode);
6675 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6676 					 true, NULL);
6677 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6678 			err = btrfs_commit_transaction(trans);
6679 			trans = NULL;
6680 		}
6681 	}
6682 
6683 fail:
6684 	if (trans)
6685 		btrfs_end_transaction(trans);
6686 	if (drop_inode) {
6687 		inode_dec_link_count(inode);
6688 		iput(inode);
6689 	}
6690 	btrfs_btree_balance_dirty(fs_info);
6691 	return err;
6692 }
6693 
6694 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6695 {
6696 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6697 	struct inode *inode = NULL;
6698 	struct btrfs_trans_handle *trans;
6699 	struct btrfs_root *root = BTRFS_I(dir)->root;
6700 	int err = 0;
6701 	u64 objectid = 0;
6702 	u64 index = 0;
6703 
6704 	/*
6705 	 * 2 items for inode and ref
6706 	 * 2 items for dir items
6707 	 * 1 for xattr if selinux is on
6708 	 */
6709 	trans = btrfs_start_transaction(root, 5);
6710 	if (IS_ERR(trans))
6711 		return PTR_ERR(trans);
6712 
6713 	err = btrfs_find_free_ino(root, &objectid);
6714 	if (err)
6715 		goto out_fail;
6716 
6717 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6718 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6719 			S_IFDIR | mode, &index);
6720 	if (IS_ERR(inode)) {
6721 		err = PTR_ERR(inode);
6722 		inode = NULL;
6723 		goto out_fail;
6724 	}
6725 
6726 	/* these must be set before we unlock the inode */
6727 	inode->i_op = &btrfs_dir_inode_operations;
6728 	inode->i_fop = &btrfs_dir_file_operations;
6729 
6730 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6731 	if (err)
6732 		goto out_fail;
6733 
6734 	btrfs_i_size_write(BTRFS_I(inode), 0);
6735 	err = btrfs_update_inode(trans, root, inode);
6736 	if (err)
6737 		goto out_fail;
6738 
6739 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6740 			dentry->d_name.name,
6741 			dentry->d_name.len, 0, index);
6742 	if (err)
6743 		goto out_fail;
6744 
6745 	d_instantiate_new(dentry, inode);
6746 
6747 out_fail:
6748 	btrfs_end_transaction(trans);
6749 	if (err && inode) {
6750 		inode_dec_link_count(inode);
6751 		discard_new_inode(inode);
6752 	}
6753 	btrfs_btree_balance_dirty(fs_info);
6754 	return err;
6755 }
6756 
6757 static noinline int uncompress_inline(struct btrfs_path *path,
6758 				      struct page *page,
6759 				      size_t pg_offset, u64 extent_offset,
6760 				      struct btrfs_file_extent_item *item)
6761 {
6762 	int ret;
6763 	struct extent_buffer *leaf = path->nodes[0];
6764 	char *tmp;
6765 	size_t max_size;
6766 	unsigned long inline_size;
6767 	unsigned long ptr;
6768 	int compress_type;
6769 
6770 	WARN_ON(pg_offset != 0);
6771 	compress_type = btrfs_file_extent_compression(leaf, item);
6772 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6773 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6774 					btrfs_item_nr(path->slots[0]));
6775 	tmp = kmalloc(inline_size, GFP_NOFS);
6776 	if (!tmp)
6777 		return -ENOMEM;
6778 	ptr = btrfs_file_extent_inline_start(item);
6779 
6780 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6781 
6782 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6783 	ret = btrfs_decompress(compress_type, tmp, page,
6784 			       extent_offset, inline_size, max_size);
6785 
6786 	/*
6787 	 * decompression code contains a memset to fill in any space between the end
6788 	 * of the uncompressed data and the end of max_size in case the decompressed
6789 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6790 	 * the end of an inline extent and the beginning of the next block, so we
6791 	 * cover that region here.
6792 	 */
6793 
6794 	if (max_size + pg_offset < PAGE_SIZE) {
6795 		char *map = kmap(page);
6796 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6797 		kunmap(page);
6798 	}
6799 	kfree(tmp);
6800 	return ret;
6801 }
6802 
6803 /*
6804  * a bit scary, this does extent mapping from logical file offset to the disk.
6805  * the ugly parts come from merging extents from the disk with the in-ram
6806  * representation.  This gets more complex because of the data=ordered code,
6807  * where the in-ram extents might be locked pending data=ordered completion.
6808  *
6809  * This also copies inline extents directly into the page.
6810  */
6811 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6812 				    struct page *page,
6813 				    size_t pg_offset, u64 start, u64 len,
6814 				    int create)
6815 {
6816 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6817 	int ret;
6818 	int err = 0;
6819 	u64 extent_start = 0;
6820 	u64 extent_end = 0;
6821 	u64 objectid = btrfs_ino(inode);
6822 	int extent_type = -1;
6823 	struct btrfs_path *path = NULL;
6824 	struct btrfs_root *root = inode->root;
6825 	struct btrfs_file_extent_item *item;
6826 	struct extent_buffer *leaf;
6827 	struct btrfs_key found_key;
6828 	struct extent_map *em = NULL;
6829 	struct extent_map_tree *em_tree = &inode->extent_tree;
6830 	struct extent_io_tree *io_tree = &inode->io_tree;
6831 	const bool new_inline = !page || create;
6832 
6833 	read_lock(&em_tree->lock);
6834 	em = lookup_extent_mapping(em_tree, start, len);
6835 	if (em)
6836 		em->bdev = fs_info->fs_devices->latest_bdev;
6837 	read_unlock(&em_tree->lock);
6838 
6839 	if (em) {
6840 		if (em->start > start || em->start + em->len <= start)
6841 			free_extent_map(em);
6842 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6843 			free_extent_map(em);
6844 		else
6845 			goto out;
6846 	}
6847 	em = alloc_extent_map();
6848 	if (!em) {
6849 		err = -ENOMEM;
6850 		goto out;
6851 	}
6852 	em->bdev = fs_info->fs_devices->latest_bdev;
6853 	em->start = EXTENT_MAP_HOLE;
6854 	em->orig_start = EXTENT_MAP_HOLE;
6855 	em->len = (u64)-1;
6856 	em->block_len = (u64)-1;
6857 
6858 	path = btrfs_alloc_path();
6859 	if (!path) {
6860 		err = -ENOMEM;
6861 		goto out;
6862 	}
6863 
6864 	/* Chances are we'll be called again, so go ahead and do readahead */
6865 	path->reada = READA_FORWARD;
6866 
6867 	/*
6868 	 * Unless we're going to uncompress the inline extent, no sleep would
6869 	 * happen.
6870 	 */
6871 	path->leave_spinning = 1;
6872 
6873 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6874 	if (ret < 0) {
6875 		err = ret;
6876 		goto out;
6877 	} else if (ret > 0) {
6878 		if (path->slots[0] == 0)
6879 			goto not_found;
6880 		path->slots[0]--;
6881 	}
6882 
6883 	leaf = path->nodes[0];
6884 	item = btrfs_item_ptr(leaf, path->slots[0],
6885 			      struct btrfs_file_extent_item);
6886 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6887 	if (found_key.objectid != objectid ||
6888 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6889 		/*
6890 		 * If we backup past the first extent we want to move forward
6891 		 * and see if there is an extent in front of us, otherwise we'll
6892 		 * say there is a hole for our whole search range which can
6893 		 * cause problems.
6894 		 */
6895 		extent_end = start;
6896 		goto next;
6897 	}
6898 
6899 	extent_type = btrfs_file_extent_type(leaf, item);
6900 	extent_start = found_key.offset;
6901 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6902 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6903 		/* Only regular file could have regular/prealloc extent */
6904 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6905 			ret = -EUCLEAN;
6906 			btrfs_crit(fs_info,
6907 		"regular/prealloc extent found for non-regular inode %llu",
6908 				   btrfs_ino(inode));
6909 			goto out;
6910 		}
6911 		extent_end = extent_start +
6912 		       btrfs_file_extent_num_bytes(leaf, item);
6913 
6914 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6915 						       extent_start);
6916 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6917 		size_t size;
6918 
6919 		size = btrfs_file_extent_ram_bytes(leaf, item);
6920 		extent_end = ALIGN(extent_start + size,
6921 				   fs_info->sectorsize);
6922 
6923 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6924 						      path->slots[0],
6925 						      extent_start);
6926 	}
6927 next:
6928 	if (start >= extent_end) {
6929 		path->slots[0]++;
6930 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6931 			ret = btrfs_next_leaf(root, path);
6932 			if (ret < 0) {
6933 				err = ret;
6934 				goto out;
6935 			} else if (ret > 0) {
6936 				goto not_found;
6937 			}
6938 			leaf = path->nodes[0];
6939 		}
6940 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6941 		if (found_key.objectid != objectid ||
6942 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6943 			goto not_found;
6944 		if (start + len <= found_key.offset)
6945 			goto not_found;
6946 		if (start > found_key.offset)
6947 			goto next;
6948 
6949 		/* New extent overlaps with existing one */
6950 		em->start = start;
6951 		em->orig_start = start;
6952 		em->len = found_key.offset - start;
6953 		em->block_start = EXTENT_MAP_HOLE;
6954 		goto insert;
6955 	}
6956 
6957 	btrfs_extent_item_to_extent_map(inode, path, item,
6958 			new_inline, em);
6959 
6960 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6961 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6962 		goto insert;
6963 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6964 		unsigned long ptr;
6965 		char *map;
6966 		size_t size;
6967 		size_t extent_offset;
6968 		size_t copy_size;
6969 
6970 		if (new_inline)
6971 			goto out;
6972 
6973 		size = btrfs_file_extent_ram_bytes(leaf, item);
6974 		extent_offset = page_offset(page) + pg_offset - extent_start;
6975 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6976 				  size - extent_offset);
6977 		em->start = extent_start + extent_offset;
6978 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6979 		em->orig_block_len = em->len;
6980 		em->orig_start = em->start;
6981 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6982 
6983 		btrfs_set_path_blocking(path);
6984 		if (!PageUptodate(page)) {
6985 			if (btrfs_file_extent_compression(leaf, item) !=
6986 			    BTRFS_COMPRESS_NONE) {
6987 				ret = uncompress_inline(path, page, pg_offset,
6988 							extent_offset, item);
6989 				if (ret) {
6990 					err = ret;
6991 					goto out;
6992 				}
6993 			} else {
6994 				map = kmap(page);
6995 				read_extent_buffer(leaf, map + pg_offset, ptr,
6996 						   copy_size);
6997 				if (pg_offset + copy_size < PAGE_SIZE) {
6998 					memset(map + pg_offset + copy_size, 0,
6999 					       PAGE_SIZE - pg_offset -
7000 					       copy_size);
7001 				}
7002 				kunmap(page);
7003 			}
7004 			flush_dcache_page(page);
7005 		}
7006 		set_extent_uptodate(io_tree, em->start,
7007 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7008 		goto insert;
7009 	}
7010 not_found:
7011 	em->start = start;
7012 	em->orig_start = start;
7013 	em->len = len;
7014 	em->block_start = EXTENT_MAP_HOLE;
7015 insert:
7016 	btrfs_release_path(path);
7017 	if (em->start > start || extent_map_end(em) <= start) {
7018 		btrfs_err(fs_info,
7019 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7020 			  em->start, em->len, start, len);
7021 		err = -EIO;
7022 		goto out;
7023 	}
7024 
7025 	err = 0;
7026 	write_lock(&em_tree->lock);
7027 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7028 	write_unlock(&em_tree->lock);
7029 out:
7030 	btrfs_free_path(path);
7031 
7032 	trace_btrfs_get_extent(root, inode, em);
7033 
7034 	if (err) {
7035 		free_extent_map(em);
7036 		return ERR_PTR(err);
7037 	}
7038 	BUG_ON(!em); /* Error is always set */
7039 	return em;
7040 }
7041 
7042 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7043 					   u64 start, u64 len)
7044 {
7045 	struct extent_map *em;
7046 	struct extent_map *hole_em = NULL;
7047 	u64 delalloc_start = start;
7048 	u64 end;
7049 	u64 delalloc_len;
7050 	u64 delalloc_end;
7051 	int err = 0;
7052 
7053 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7054 	if (IS_ERR(em))
7055 		return em;
7056 	/*
7057 	 * If our em maps to:
7058 	 * - a hole or
7059 	 * - a pre-alloc extent,
7060 	 * there might actually be delalloc bytes behind it.
7061 	 */
7062 	if (em->block_start != EXTENT_MAP_HOLE &&
7063 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7064 		return em;
7065 	else
7066 		hole_em = em;
7067 
7068 	/* check to see if we've wrapped (len == -1 or similar) */
7069 	end = start + len;
7070 	if (end < start)
7071 		end = (u64)-1;
7072 	else
7073 		end -= 1;
7074 
7075 	em = NULL;
7076 
7077 	/* ok, we didn't find anything, lets look for delalloc */
7078 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7079 				 end, len, EXTENT_DELALLOC, 1);
7080 	delalloc_end = delalloc_start + delalloc_len;
7081 	if (delalloc_end < delalloc_start)
7082 		delalloc_end = (u64)-1;
7083 
7084 	/*
7085 	 * We didn't find anything useful, return the original results from
7086 	 * get_extent()
7087 	 */
7088 	if (delalloc_start > end || delalloc_end <= start) {
7089 		em = hole_em;
7090 		hole_em = NULL;
7091 		goto out;
7092 	}
7093 
7094 	/*
7095 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7096 	 * the start they passed in
7097 	 */
7098 	delalloc_start = max(start, delalloc_start);
7099 	delalloc_len = delalloc_end - delalloc_start;
7100 
7101 	if (delalloc_len > 0) {
7102 		u64 hole_start;
7103 		u64 hole_len;
7104 		const u64 hole_end = extent_map_end(hole_em);
7105 
7106 		em = alloc_extent_map();
7107 		if (!em) {
7108 			err = -ENOMEM;
7109 			goto out;
7110 		}
7111 		em->bdev = NULL;
7112 
7113 		ASSERT(hole_em);
7114 		/*
7115 		 * When btrfs_get_extent can't find anything it returns one
7116 		 * huge hole
7117 		 *
7118 		 * Make sure what it found really fits our range, and adjust to
7119 		 * make sure it is based on the start from the caller
7120 		 */
7121 		if (hole_end <= start || hole_em->start > end) {
7122 		       free_extent_map(hole_em);
7123 		       hole_em = NULL;
7124 		} else {
7125 		       hole_start = max(hole_em->start, start);
7126 		       hole_len = hole_end - hole_start;
7127 		}
7128 
7129 		if (hole_em && delalloc_start > hole_start) {
7130 			/*
7131 			 * Our hole starts before our delalloc, so we have to
7132 			 * return just the parts of the hole that go until the
7133 			 * delalloc starts
7134 			 */
7135 			em->len = min(hole_len, delalloc_start - hole_start);
7136 			em->start = hole_start;
7137 			em->orig_start = hole_start;
7138 			/*
7139 			 * Don't adjust block start at all, it is fixed at
7140 			 * EXTENT_MAP_HOLE
7141 			 */
7142 			em->block_start = hole_em->block_start;
7143 			em->block_len = hole_len;
7144 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7145 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7146 		} else {
7147 			/*
7148 			 * Hole is out of passed range or it starts after
7149 			 * delalloc range
7150 			 */
7151 			em->start = delalloc_start;
7152 			em->len = delalloc_len;
7153 			em->orig_start = delalloc_start;
7154 			em->block_start = EXTENT_MAP_DELALLOC;
7155 			em->block_len = delalloc_len;
7156 		}
7157 	} else {
7158 		return hole_em;
7159 	}
7160 out:
7161 
7162 	free_extent_map(hole_em);
7163 	if (err) {
7164 		free_extent_map(em);
7165 		return ERR_PTR(err);
7166 	}
7167 	return em;
7168 }
7169 
7170 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7171 						  const u64 start,
7172 						  const u64 len,
7173 						  const u64 orig_start,
7174 						  const u64 block_start,
7175 						  const u64 block_len,
7176 						  const u64 orig_block_len,
7177 						  const u64 ram_bytes,
7178 						  const int type)
7179 {
7180 	struct extent_map *em = NULL;
7181 	int ret;
7182 
7183 	if (type != BTRFS_ORDERED_NOCOW) {
7184 		em = create_io_em(inode, start, len, orig_start,
7185 				  block_start, block_len, orig_block_len,
7186 				  ram_bytes,
7187 				  BTRFS_COMPRESS_NONE, /* compress_type */
7188 				  type);
7189 		if (IS_ERR(em))
7190 			goto out;
7191 	}
7192 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7193 					   len, block_len, type);
7194 	if (ret) {
7195 		if (em) {
7196 			free_extent_map(em);
7197 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7198 						start + len - 1, 0);
7199 		}
7200 		em = ERR_PTR(ret);
7201 	}
7202  out:
7203 
7204 	return em;
7205 }
7206 
7207 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7208 						  u64 start, u64 len)
7209 {
7210 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7211 	struct btrfs_root *root = BTRFS_I(inode)->root;
7212 	struct extent_map *em;
7213 	struct btrfs_key ins;
7214 	u64 alloc_hint;
7215 	int ret;
7216 
7217 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7218 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7219 				   0, alloc_hint, &ins, 1, 1);
7220 	if (ret)
7221 		return ERR_PTR(ret);
7222 
7223 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7224 				     ins.objectid, ins.offset, ins.offset,
7225 				     ins.offset, BTRFS_ORDERED_REGULAR);
7226 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7227 	if (IS_ERR(em))
7228 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7229 					   ins.offset, 1);
7230 
7231 	return em;
7232 }
7233 
7234 /*
7235  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7236  * block must be cow'd
7237  */
7238 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7239 			      u64 *orig_start, u64 *orig_block_len,
7240 			      u64 *ram_bytes)
7241 {
7242 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7243 	struct btrfs_path *path;
7244 	int ret;
7245 	struct extent_buffer *leaf;
7246 	struct btrfs_root *root = BTRFS_I(inode)->root;
7247 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7248 	struct btrfs_file_extent_item *fi;
7249 	struct btrfs_key key;
7250 	u64 disk_bytenr;
7251 	u64 backref_offset;
7252 	u64 extent_end;
7253 	u64 num_bytes;
7254 	int slot;
7255 	int found_type;
7256 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7257 
7258 	path = btrfs_alloc_path();
7259 	if (!path)
7260 		return -ENOMEM;
7261 
7262 	ret = btrfs_lookup_file_extent(NULL, root, path,
7263 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7264 	if (ret < 0)
7265 		goto out;
7266 
7267 	slot = path->slots[0];
7268 	if (ret == 1) {
7269 		if (slot == 0) {
7270 			/* can't find the item, must cow */
7271 			ret = 0;
7272 			goto out;
7273 		}
7274 		slot--;
7275 	}
7276 	ret = 0;
7277 	leaf = path->nodes[0];
7278 	btrfs_item_key_to_cpu(leaf, &key, slot);
7279 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7280 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7281 		/* not our file or wrong item type, must cow */
7282 		goto out;
7283 	}
7284 
7285 	if (key.offset > offset) {
7286 		/* Wrong offset, must cow */
7287 		goto out;
7288 	}
7289 
7290 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7291 	found_type = btrfs_file_extent_type(leaf, fi);
7292 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7293 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7294 		/* not a regular extent, must cow */
7295 		goto out;
7296 	}
7297 
7298 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7299 		goto out;
7300 
7301 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7302 	if (extent_end <= offset)
7303 		goto out;
7304 
7305 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7306 	if (disk_bytenr == 0)
7307 		goto out;
7308 
7309 	if (btrfs_file_extent_compression(leaf, fi) ||
7310 	    btrfs_file_extent_encryption(leaf, fi) ||
7311 	    btrfs_file_extent_other_encoding(leaf, fi))
7312 		goto out;
7313 
7314 	/*
7315 	 * Do the same check as in btrfs_cross_ref_exist but without the
7316 	 * unnecessary search.
7317 	 */
7318 	if (btrfs_file_extent_generation(leaf, fi) <=
7319 	    btrfs_root_last_snapshot(&root->root_item))
7320 		goto out;
7321 
7322 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7323 
7324 	if (orig_start) {
7325 		*orig_start = key.offset - backref_offset;
7326 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7327 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7328 	}
7329 
7330 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7331 		goto out;
7332 
7333 	num_bytes = min(offset + *len, extent_end) - offset;
7334 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7335 		u64 range_end;
7336 
7337 		range_end = round_up(offset + num_bytes,
7338 				     root->fs_info->sectorsize) - 1;
7339 		ret = test_range_bit(io_tree, offset, range_end,
7340 				     EXTENT_DELALLOC, 0, NULL);
7341 		if (ret) {
7342 			ret = -EAGAIN;
7343 			goto out;
7344 		}
7345 	}
7346 
7347 	btrfs_release_path(path);
7348 
7349 	/*
7350 	 * look for other files referencing this extent, if we
7351 	 * find any we must cow
7352 	 */
7353 
7354 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7355 				    key.offset - backref_offset, disk_bytenr);
7356 	if (ret) {
7357 		ret = 0;
7358 		goto out;
7359 	}
7360 
7361 	/*
7362 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7363 	 * in this extent we are about to write.  If there
7364 	 * are any csums in that range we have to cow in order
7365 	 * to keep the csums correct
7366 	 */
7367 	disk_bytenr += backref_offset;
7368 	disk_bytenr += offset - key.offset;
7369 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7370 		goto out;
7371 	/*
7372 	 * all of the above have passed, it is safe to overwrite this extent
7373 	 * without cow
7374 	 */
7375 	*len = num_bytes;
7376 	ret = 1;
7377 out:
7378 	btrfs_free_path(path);
7379 	return ret;
7380 }
7381 
7382 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7383 			      struct extent_state **cached_state, int writing)
7384 {
7385 	struct btrfs_ordered_extent *ordered;
7386 	int ret = 0;
7387 
7388 	while (1) {
7389 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7390 				 cached_state);
7391 		/*
7392 		 * We're concerned with the entire range that we're going to be
7393 		 * doing DIO to, so we need to make sure there's no ordered
7394 		 * extents in this range.
7395 		 */
7396 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7397 						     lockend - lockstart + 1);
7398 
7399 		/*
7400 		 * We need to make sure there are no buffered pages in this
7401 		 * range either, we could have raced between the invalidate in
7402 		 * generic_file_direct_write and locking the extent.  The
7403 		 * invalidate needs to happen so that reads after a write do not
7404 		 * get stale data.
7405 		 */
7406 		if (!ordered &&
7407 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7408 							 lockstart, lockend)))
7409 			break;
7410 
7411 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7412 				     cached_state);
7413 
7414 		if (ordered) {
7415 			/*
7416 			 * If we are doing a DIO read and the ordered extent we
7417 			 * found is for a buffered write, we can not wait for it
7418 			 * to complete and retry, because if we do so we can
7419 			 * deadlock with concurrent buffered writes on page
7420 			 * locks. This happens only if our DIO read covers more
7421 			 * than one extent map, if at this point has already
7422 			 * created an ordered extent for a previous extent map
7423 			 * and locked its range in the inode's io tree, and a
7424 			 * concurrent write against that previous extent map's
7425 			 * range and this range started (we unlock the ranges
7426 			 * in the io tree only when the bios complete and
7427 			 * buffered writes always lock pages before attempting
7428 			 * to lock range in the io tree).
7429 			 */
7430 			if (writing ||
7431 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7432 				btrfs_start_ordered_extent(inode, ordered, 1);
7433 			else
7434 				ret = -ENOTBLK;
7435 			btrfs_put_ordered_extent(ordered);
7436 		} else {
7437 			/*
7438 			 * We could trigger writeback for this range (and wait
7439 			 * for it to complete) and then invalidate the pages for
7440 			 * this range (through invalidate_inode_pages2_range()),
7441 			 * but that can lead us to a deadlock with a concurrent
7442 			 * call to readpages() (a buffered read or a defrag call
7443 			 * triggered a readahead) on a page lock due to an
7444 			 * ordered dio extent we created before but did not have
7445 			 * yet a corresponding bio submitted (whence it can not
7446 			 * complete), which makes readpages() wait for that
7447 			 * ordered extent to complete while holding a lock on
7448 			 * that page.
7449 			 */
7450 			ret = -ENOTBLK;
7451 		}
7452 
7453 		if (ret)
7454 			break;
7455 
7456 		cond_resched();
7457 	}
7458 
7459 	return ret;
7460 }
7461 
7462 /* The callers of this must take lock_extent() */
7463 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7464 				       u64 orig_start, u64 block_start,
7465 				       u64 block_len, u64 orig_block_len,
7466 				       u64 ram_bytes, int compress_type,
7467 				       int type)
7468 {
7469 	struct extent_map_tree *em_tree;
7470 	struct extent_map *em;
7471 	struct btrfs_root *root = BTRFS_I(inode)->root;
7472 	int ret;
7473 
7474 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7475 	       type == BTRFS_ORDERED_COMPRESSED ||
7476 	       type == BTRFS_ORDERED_NOCOW ||
7477 	       type == BTRFS_ORDERED_REGULAR);
7478 
7479 	em_tree = &BTRFS_I(inode)->extent_tree;
7480 	em = alloc_extent_map();
7481 	if (!em)
7482 		return ERR_PTR(-ENOMEM);
7483 
7484 	em->start = start;
7485 	em->orig_start = orig_start;
7486 	em->len = len;
7487 	em->block_len = block_len;
7488 	em->block_start = block_start;
7489 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7490 	em->orig_block_len = orig_block_len;
7491 	em->ram_bytes = ram_bytes;
7492 	em->generation = -1;
7493 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7494 	if (type == BTRFS_ORDERED_PREALLOC) {
7495 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7496 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7497 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7498 		em->compress_type = compress_type;
7499 	}
7500 
7501 	do {
7502 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7503 				em->start + em->len - 1, 0);
7504 		write_lock(&em_tree->lock);
7505 		ret = add_extent_mapping(em_tree, em, 1);
7506 		write_unlock(&em_tree->lock);
7507 		/*
7508 		 * The caller has taken lock_extent(), who could race with us
7509 		 * to add em?
7510 		 */
7511 	} while (ret == -EEXIST);
7512 
7513 	if (ret) {
7514 		free_extent_map(em);
7515 		return ERR_PTR(ret);
7516 	}
7517 
7518 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7519 	return em;
7520 }
7521 
7522 
7523 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7524 					struct buffer_head *bh_result,
7525 					struct inode *inode,
7526 					u64 start, u64 len)
7527 {
7528 	if (em->block_start == EXTENT_MAP_HOLE ||
7529 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7530 		return -ENOENT;
7531 
7532 	len = min(len, em->len - (start - em->start));
7533 
7534 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7535 		inode->i_blkbits;
7536 	bh_result->b_size = len;
7537 	bh_result->b_bdev = em->bdev;
7538 	set_buffer_mapped(bh_result);
7539 
7540 	return 0;
7541 }
7542 
7543 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7544 					 struct buffer_head *bh_result,
7545 					 struct inode *inode,
7546 					 struct btrfs_dio_data *dio_data,
7547 					 u64 start, u64 len)
7548 {
7549 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7550 	struct extent_map *em = *map;
7551 	int ret = 0;
7552 
7553 	/*
7554 	 * We don't allocate a new extent in the following cases
7555 	 *
7556 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7557 	 * existing extent.
7558 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7559 	 * just use the extent.
7560 	 *
7561 	 */
7562 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7563 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7564 	     em->block_start != EXTENT_MAP_HOLE)) {
7565 		int type;
7566 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7567 
7568 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7569 			type = BTRFS_ORDERED_PREALLOC;
7570 		else
7571 			type = BTRFS_ORDERED_NOCOW;
7572 		len = min(len, em->len - (start - em->start));
7573 		block_start = em->block_start + (start - em->start);
7574 
7575 		if (can_nocow_extent(inode, start, &len, &orig_start,
7576 				     &orig_block_len, &ram_bytes) == 1 &&
7577 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7578 			struct extent_map *em2;
7579 
7580 			em2 = btrfs_create_dio_extent(inode, start, len,
7581 						      orig_start, block_start,
7582 						      len, orig_block_len,
7583 						      ram_bytes, type);
7584 			btrfs_dec_nocow_writers(fs_info, block_start);
7585 			if (type == BTRFS_ORDERED_PREALLOC) {
7586 				free_extent_map(em);
7587 				*map = em = em2;
7588 			}
7589 
7590 			if (em2 && IS_ERR(em2)) {
7591 				ret = PTR_ERR(em2);
7592 				goto out;
7593 			}
7594 			/*
7595 			 * For inode marked NODATACOW or extent marked PREALLOC,
7596 			 * use the existing or preallocated extent, so does not
7597 			 * need to adjust btrfs_space_info's bytes_may_use.
7598 			 */
7599 			btrfs_free_reserved_data_space_noquota(inode, start,
7600 							       len);
7601 			goto skip_cow;
7602 		}
7603 	}
7604 
7605 	/* this will cow the extent */
7606 	len = bh_result->b_size;
7607 	free_extent_map(em);
7608 	*map = em = btrfs_new_extent_direct(inode, start, len);
7609 	if (IS_ERR(em)) {
7610 		ret = PTR_ERR(em);
7611 		goto out;
7612 	}
7613 
7614 	len = min(len, em->len - (start - em->start));
7615 
7616 skip_cow:
7617 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7618 		inode->i_blkbits;
7619 	bh_result->b_size = len;
7620 	bh_result->b_bdev = em->bdev;
7621 	set_buffer_mapped(bh_result);
7622 
7623 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7624 		set_buffer_new(bh_result);
7625 
7626 	/*
7627 	 * Need to update the i_size under the extent lock so buffered
7628 	 * readers will get the updated i_size when we unlock.
7629 	 */
7630 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7631 		i_size_write(inode, start + len);
7632 
7633 	WARN_ON(dio_data->reserve < len);
7634 	dio_data->reserve -= len;
7635 	dio_data->unsubmitted_oe_range_end = start + len;
7636 	current->journal_info = dio_data;
7637 out:
7638 	return ret;
7639 }
7640 
7641 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7642 				   struct buffer_head *bh_result, int create)
7643 {
7644 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7645 	struct extent_map *em;
7646 	struct extent_state *cached_state = NULL;
7647 	struct btrfs_dio_data *dio_data = NULL;
7648 	u64 start = iblock << inode->i_blkbits;
7649 	u64 lockstart, lockend;
7650 	u64 len = bh_result->b_size;
7651 	int unlock_bits = EXTENT_LOCKED;
7652 	int ret = 0;
7653 
7654 	if (create)
7655 		unlock_bits |= EXTENT_DIRTY;
7656 	else
7657 		len = min_t(u64, len, fs_info->sectorsize);
7658 
7659 	lockstart = start;
7660 	lockend = start + len - 1;
7661 
7662 	if (current->journal_info) {
7663 		/*
7664 		 * Need to pull our outstanding extents and set journal_info to NULL so
7665 		 * that anything that needs to check if there's a transaction doesn't get
7666 		 * confused.
7667 		 */
7668 		dio_data = current->journal_info;
7669 		current->journal_info = NULL;
7670 	}
7671 
7672 	/*
7673 	 * If this errors out it's because we couldn't invalidate pagecache for
7674 	 * this range and we need to fallback to buffered.
7675 	 */
7676 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7677 			       create)) {
7678 		ret = -ENOTBLK;
7679 		goto err;
7680 	}
7681 
7682 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7683 	if (IS_ERR(em)) {
7684 		ret = PTR_ERR(em);
7685 		goto unlock_err;
7686 	}
7687 
7688 	/*
7689 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7690 	 * io.  INLINE is special, and we could probably kludge it in here, but
7691 	 * it's still buffered so for safety lets just fall back to the generic
7692 	 * buffered path.
7693 	 *
7694 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7695 	 * decompress it, so there will be buffering required no matter what we
7696 	 * do, so go ahead and fallback to buffered.
7697 	 *
7698 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7699 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7700 	 * the generic code.
7701 	 */
7702 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7703 	    em->block_start == EXTENT_MAP_INLINE) {
7704 		free_extent_map(em);
7705 		ret = -ENOTBLK;
7706 		goto unlock_err;
7707 	}
7708 
7709 	if (create) {
7710 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7711 						    dio_data, start, len);
7712 		if (ret < 0)
7713 			goto unlock_err;
7714 
7715 		/* clear and unlock the entire range */
7716 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7717 				 unlock_bits, 1, 0, &cached_state);
7718 	} else {
7719 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7720 						   start, len);
7721 		/* Can be negative only if we read from a hole */
7722 		if (ret < 0) {
7723 			ret = 0;
7724 			free_extent_map(em);
7725 			goto unlock_err;
7726 		}
7727 		/*
7728 		 * We need to unlock only the end area that we aren't using.
7729 		 * The rest is going to be unlocked by the endio routine.
7730 		 */
7731 		lockstart = start + bh_result->b_size;
7732 		if (lockstart < lockend) {
7733 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7734 					 lockend, unlock_bits, 1, 0,
7735 					 &cached_state);
7736 		} else {
7737 			free_extent_state(cached_state);
7738 		}
7739 	}
7740 
7741 	free_extent_map(em);
7742 
7743 	return 0;
7744 
7745 unlock_err:
7746 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7747 			 unlock_bits, 1, 0, &cached_state);
7748 err:
7749 	if (dio_data)
7750 		current->journal_info = dio_data;
7751 	return ret;
7752 }
7753 
7754 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7755 						 struct bio *bio,
7756 						 int mirror_num)
7757 {
7758 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7759 	blk_status_t ret;
7760 
7761 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7762 
7763 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7764 	if (ret)
7765 		return ret;
7766 
7767 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7768 
7769 	return ret;
7770 }
7771 
7772 static int btrfs_check_dio_repairable(struct inode *inode,
7773 				      struct bio *failed_bio,
7774 				      struct io_failure_record *failrec,
7775 				      int failed_mirror)
7776 {
7777 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7778 	int num_copies;
7779 
7780 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7781 	if (num_copies == 1) {
7782 		/*
7783 		 * we only have a single copy of the data, so don't bother with
7784 		 * all the retry and error correction code that follows. no
7785 		 * matter what the error is, it is very likely to persist.
7786 		 */
7787 		btrfs_debug(fs_info,
7788 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7789 			num_copies, failrec->this_mirror, failed_mirror);
7790 		return 0;
7791 	}
7792 
7793 	failrec->failed_mirror = failed_mirror;
7794 	failrec->this_mirror++;
7795 	if (failrec->this_mirror == failed_mirror)
7796 		failrec->this_mirror++;
7797 
7798 	if (failrec->this_mirror > num_copies) {
7799 		btrfs_debug(fs_info,
7800 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7801 			num_copies, failrec->this_mirror, failed_mirror);
7802 		return 0;
7803 	}
7804 
7805 	return 1;
7806 }
7807 
7808 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7809 				   struct page *page, unsigned int pgoff,
7810 				   u64 start, u64 end, int failed_mirror,
7811 				   bio_end_io_t *repair_endio, void *repair_arg)
7812 {
7813 	struct io_failure_record *failrec;
7814 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7815 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7816 	struct bio *bio;
7817 	int isector;
7818 	unsigned int read_mode = 0;
7819 	int segs;
7820 	int ret;
7821 	blk_status_t status;
7822 	struct bio_vec bvec;
7823 
7824 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7825 
7826 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7827 	if (ret)
7828 		return errno_to_blk_status(ret);
7829 
7830 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7831 					 failed_mirror);
7832 	if (!ret) {
7833 		free_io_failure(failure_tree, io_tree, failrec);
7834 		return BLK_STS_IOERR;
7835 	}
7836 
7837 	segs = bio_segments(failed_bio);
7838 	bio_get_first_bvec(failed_bio, &bvec);
7839 	if (segs > 1 ||
7840 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7841 		read_mode |= REQ_FAILFAST_DEV;
7842 
7843 	isector = start - btrfs_io_bio(failed_bio)->logical;
7844 	isector >>= inode->i_sb->s_blocksize_bits;
7845 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7846 				pgoff, isector, repair_endio, repair_arg);
7847 	bio->bi_opf = REQ_OP_READ | read_mode;
7848 
7849 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7850 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7851 		    read_mode, failrec->this_mirror, failrec->in_validation);
7852 
7853 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7854 	if (status) {
7855 		free_io_failure(failure_tree, io_tree, failrec);
7856 		bio_put(bio);
7857 	}
7858 
7859 	return status;
7860 }
7861 
7862 struct btrfs_retry_complete {
7863 	struct completion done;
7864 	struct inode *inode;
7865 	u64 start;
7866 	int uptodate;
7867 };
7868 
7869 static void btrfs_retry_endio_nocsum(struct bio *bio)
7870 {
7871 	struct btrfs_retry_complete *done = bio->bi_private;
7872 	struct inode *inode = done->inode;
7873 	struct bio_vec *bvec;
7874 	struct extent_io_tree *io_tree, *failure_tree;
7875 	struct bvec_iter_all iter_all;
7876 
7877 	if (bio->bi_status)
7878 		goto end;
7879 
7880 	ASSERT(bio->bi_vcnt == 1);
7881 	io_tree = &BTRFS_I(inode)->io_tree;
7882 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7883 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7884 
7885 	done->uptodate = 1;
7886 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7887 	bio_for_each_segment_all(bvec, bio, iter_all)
7888 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7889 				 io_tree, done->start, bvec->bv_page,
7890 				 btrfs_ino(BTRFS_I(inode)), 0);
7891 end:
7892 	complete(&done->done);
7893 	bio_put(bio);
7894 }
7895 
7896 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7897 						struct btrfs_io_bio *io_bio)
7898 {
7899 	struct btrfs_fs_info *fs_info;
7900 	struct bio_vec bvec;
7901 	struct bvec_iter iter;
7902 	struct btrfs_retry_complete done;
7903 	u64 start;
7904 	unsigned int pgoff;
7905 	u32 sectorsize;
7906 	int nr_sectors;
7907 	blk_status_t ret;
7908 	blk_status_t err = BLK_STS_OK;
7909 
7910 	fs_info = BTRFS_I(inode)->root->fs_info;
7911 	sectorsize = fs_info->sectorsize;
7912 
7913 	start = io_bio->logical;
7914 	done.inode = inode;
7915 	io_bio->bio.bi_iter = io_bio->iter;
7916 
7917 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7918 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7919 		pgoff = bvec.bv_offset;
7920 
7921 next_block_or_try_again:
7922 		done.uptodate = 0;
7923 		done.start = start;
7924 		init_completion(&done.done);
7925 
7926 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7927 				pgoff, start, start + sectorsize - 1,
7928 				io_bio->mirror_num,
7929 				btrfs_retry_endio_nocsum, &done);
7930 		if (ret) {
7931 			err = ret;
7932 			goto next;
7933 		}
7934 
7935 		wait_for_completion_io(&done.done);
7936 
7937 		if (!done.uptodate) {
7938 			/* We might have another mirror, so try again */
7939 			goto next_block_or_try_again;
7940 		}
7941 
7942 next:
7943 		start += sectorsize;
7944 
7945 		nr_sectors--;
7946 		if (nr_sectors) {
7947 			pgoff += sectorsize;
7948 			ASSERT(pgoff < PAGE_SIZE);
7949 			goto next_block_or_try_again;
7950 		}
7951 	}
7952 
7953 	return err;
7954 }
7955 
7956 static void btrfs_retry_endio(struct bio *bio)
7957 {
7958 	struct btrfs_retry_complete *done = bio->bi_private;
7959 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7960 	struct extent_io_tree *io_tree, *failure_tree;
7961 	struct inode *inode = done->inode;
7962 	struct bio_vec *bvec;
7963 	int uptodate;
7964 	int ret;
7965 	int i = 0;
7966 	struct bvec_iter_all iter_all;
7967 
7968 	if (bio->bi_status)
7969 		goto end;
7970 
7971 	uptodate = 1;
7972 
7973 	ASSERT(bio->bi_vcnt == 1);
7974 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7975 
7976 	io_tree = &BTRFS_I(inode)->io_tree;
7977 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7978 
7979 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7980 	bio_for_each_segment_all(bvec, bio, iter_all) {
7981 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7982 					     bvec->bv_offset, done->start,
7983 					     bvec->bv_len);
7984 		if (!ret)
7985 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7986 					 failure_tree, io_tree, done->start,
7987 					 bvec->bv_page,
7988 					 btrfs_ino(BTRFS_I(inode)),
7989 					 bvec->bv_offset);
7990 		else
7991 			uptodate = 0;
7992 		i++;
7993 	}
7994 
7995 	done->uptodate = uptodate;
7996 end:
7997 	complete(&done->done);
7998 	bio_put(bio);
7999 }
8000 
8001 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8002 		struct btrfs_io_bio *io_bio, blk_status_t err)
8003 {
8004 	struct btrfs_fs_info *fs_info;
8005 	struct bio_vec bvec;
8006 	struct bvec_iter iter;
8007 	struct btrfs_retry_complete done;
8008 	u64 start;
8009 	u64 offset = 0;
8010 	u32 sectorsize;
8011 	int nr_sectors;
8012 	unsigned int pgoff;
8013 	int csum_pos;
8014 	bool uptodate = (err == 0);
8015 	int ret;
8016 	blk_status_t status;
8017 
8018 	fs_info = BTRFS_I(inode)->root->fs_info;
8019 	sectorsize = fs_info->sectorsize;
8020 
8021 	err = BLK_STS_OK;
8022 	start = io_bio->logical;
8023 	done.inode = inode;
8024 	io_bio->bio.bi_iter = io_bio->iter;
8025 
8026 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8027 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8028 
8029 		pgoff = bvec.bv_offset;
8030 next_block:
8031 		if (uptodate) {
8032 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8033 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8034 					bvec.bv_page, pgoff, start, sectorsize);
8035 			if (likely(!ret))
8036 				goto next;
8037 		}
8038 try_again:
8039 		done.uptodate = 0;
8040 		done.start = start;
8041 		init_completion(&done.done);
8042 
8043 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8044 					pgoff, start, start + sectorsize - 1,
8045 					io_bio->mirror_num, btrfs_retry_endio,
8046 					&done);
8047 		if (status) {
8048 			err = status;
8049 			goto next;
8050 		}
8051 
8052 		wait_for_completion_io(&done.done);
8053 
8054 		if (!done.uptodate) {
8055 			/* We might have another mirror, so try again */
8056 			goto try_again;
8057 		}
8058 next:
8059 		offset += sectorsize;
8060 		start += sectorsize;
8061 
8062 		ASSERT(nr_sectors);
8063 
8064 		nr_sectors--;
8065 		if (nr_sectors) {
8066 			pgoff += sectorsize;
8067 			ASSERT(pgoff < PAGE_SIZE);
8068 			goto next_block;
8069 		}
8070 	}
8071 
8072 	return err;
8073 }
8074 
8075 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8076 		struct btrfs_io_bio *io_bio, blk_status_t err)
8077 {
8078 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8079 
8080 	if (skip_csum) {
8081 		if (unlikely(err))
8082 			return __btrfs_correct_data_nocsum(inode, io_bio);
8083 		else
8084 			return BLK_STS_OK;
8085 	} else {
8086 		return __btrfs_subio_endio_read(inode, io_bio, err);
8087 	}
8088 }
8089 
8090 static void btrfs_endio_direct_read(struct bio *bio)
8091 {
8092 	struct btrfs_dio_private *dip = bio->bi_private;
8093 	struct inode *inode = dip->inode;
8094 	struct bio *dio_bio;
8095 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8096 	blk_status_t err = bio->bi_status;
8097 
8098 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8099 		err = btrfs_subio_endio_read(inode, io_bio, err);
8100 
8101 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8102 		      dip->logical_offset + dip->bytes - 1);
8103 	dio_bio = dip->dio_bio;
8104 
8105 	kfree(dip);
8106 
8107 	dio_bio->bi_status = err;
8108 	dio_end_io(dio_bio);
8109 	btrfs_io_bio_free_csum(io_bio);
8110 	bio_put(bio);
8111 }
8112 
8113 static void __endio_write_update_ordered(struct inode *inode,
8114 					 const u64 offset, const u64 bytes,
8115 					 const bool uptodate)
8116 {
8117 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8118 	struct btrfs_ordered_extent *ordered = NULL;
8119 	struct btrfs_workqueue *wq;
8120 	btrfs_work_func_t func;
8121 	u64 ordered_offset = offset;
8122 	u64 ordered_bytes = bytes;
8123 	u64 last_offset;
8124 
8125 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8126 		wq = fs_info->endio_freespace_worker;
8127 		func = btrfs_freespace_write_helper;
8128 	} else {
8129 		wq = fs_info->endio_write_workers;
8130 		func = btrfs_endio_write_helper;
8131 	}
8132 
8133 	while (ordered_offset < offset + bytes) {
8134 		last_offset = ordered_offset;
8135 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8136 							   &ordered_offset,
8137 							   ordered_bytes,
8138 							   uptodate)) {
8139 			btrfs_init_work(&ordered->work, func,
8140 					finish_ordered_fn,
8141 					NULL, NULL);
8142 			btrfs_queue_work(wq, &ordered->work);
8143 		}
8144 		/*
8145 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8146 		 * extent in the range, we can exit.
8147 		 */
8148 		if (ordered_offset == last_offset)
8149 			return;
8150 		/*
8151 		 * Our bio might span multiple ordered extents. In this case
8152 		 * we keep going until we have accounted the whole dio.
8153 		 */
8154 		if (ordered_offset < offset + bytes) {
8155 			ordered_bytes = offset + bytes - ordered_offset;
8156 			ordered = NULL;
8157 		}
8158 	}
8159 }
8160 
8161 static void btrfs_endio_direct_write(struct bio *bio)
8162 {
8163 	struct btrfs_dio_private *dip = bio->bi_private;
8164 	struct bio *dio_bio = dip->dio_bio;
8165 
8166 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8167 				     dip->bytes, !bio->bi_status);
8168 
8169 	kfree(dip);
8170 
8171 	dio_bio->bi_status = bio->bi_status;
8172 	dio_end_io(dio_bio);
8173 	bio_put(bio);
8174 }
8175 
8176 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8177 				    struct bio *bio, u64 offset)
8178 {
8179 	struct inode *inode = private_data;
8180 	blk_status_t ret;
8181 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8182 	BUG_ON(ret); /* -ENOMEM */
8183 	return 0;
8184 }
8185 
8186 static void btrfs_end_dio_bio(struct bio *bio)
8187 {
8188 	struct btrfs_dio_private *dip = bio->bi_private;
8189 	blk_status_t err = bio->bi_status;
8190 
8191 	if (err)
8192 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8193 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8194 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8195 			   bio->bi_opf,
8196 			   (unsigned long long)bio->bi_iter.bi_sector,
8197 			   bio->bi_iter.bi_size, err);
8198 
8199 	if (dip->subio_endio)
8200 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8201 
8202 	if (err) {
8203 		/*
8204 		 * We want to perceive the errors flag being set before
8205 		 * decrementing the reference count. We don't need a barrier
8206 		 * since atomic operations with a return value are fully
8207 		 * ordered as per atomic_t.txt
8208 		 */
8209 		dip->errors = 1;
8210 	}
8211 
8212 	/* if there are more bios still pending for this dio, just exit */
8213 	if (!atomic_dec_and_test(&dip->pending_bios))
8214 		goto out;
8215 
8216 	if (dip->errors) {
8217 		bio_io_error(dip->orig_bio);
8218 	} else {
8219 		dip->dio_bio->bi_status = BLK_STS_OK;
8220 		bio_endio(dip->orig_bio);
8221 	}
8222 out:
8223 	bio_put(bio);
8224 }
8225 
8226 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8227 						 struct btrfs_dio_private *dip,
8228 						 struct bio *bio,
8229 						 u64 file_offset)
8230 {
8231 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8232 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8233 	blk_status_t ret;
8234 
8235 	/*
8236 	 * We load all the csum data we need when we submit
8237 	 * the first bio to reduce the csum tree search and
8238 	 * contention.
8239 	 */
8240 	if (dip->logical_offset == file_offset) {
8241 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8242 						file_offset);
8243 		if (ret)
8244 			return ret;
8245 	}
8246 
8247 	if (bio == dip->orig_bio)
8248 		return 0;
8249 
8250 	file_offset -= dip->logical_offset;
8251 	file_offset >>= inode->i_sb->s_blocksize_bits;
8252 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8253 
8254 	return 0;
8255 }
8256 
8257 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8258 		struct inode *inode, u64 file_offset, int async_submit)
8259 {
8260 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8261 	struct btrfs_dio_private *dip = bio->bi_private;
8262 	bool write = bio_op(bio) == REQ_OP_WRITE;
8263 	blk_status_t ret;
8264 
8265 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8266 	if (async_submit)
8267 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8268 
8269 	if (!write) {
8270 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8271 		if (ret)
8272 			goto err;
8273 	}
8274 
8275 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8276 		goto map;
8277 
8278 	if (write && async_submit) {
8279 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8280 					  file_offset, inode,
8281 					  btrfs_submit_bio_start_direct_io);
8282 		goto err;
8283 	} else if (write) {
8284 		/*
8285 		 * If we aren't doing async submit, calculate the csum of the
8286 		 * bio now.
8287 		 */
8288 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8289 		if (ret)
8290 			goto err;
8291 	} else {
8292 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8293 						     file_offset);
8294 		if (ret)
8295 			goto err;
8296 	}
8297 map:
8298 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8299 err:
8300 	return ret;
8301 }
8302 
8303 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8304 {
8305 	struct inode *inode = dip->inode;
8306 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8307 	struct bio *bio;
8308 	struct bio *orig_bio = dip->orig_bio;
8309 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8310 	u64 file_offset = dip->logical_offset;
8311 	u64 map_length;
8312 	int async_submit = 0;
8313 	u64 submit_len;
8314 	int clone_offset = 0;
8315 	int clone_len;
8316 	int ret;
8317 	blk_status_t status;
8318 
8319 	map_length = orig_bio->bi_iter.bi_size;
8320 	submit_len = map_length;
8321 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8322 			      &map_length, NULL, 0);
8323 	if (ret)
8324 		return -EIO;
8325 
8326 	if (map_length >= submit_len) {
8327 		bio = orig_bio;
8328 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8329 		goto submit;
8330 	}
8331 
8332 	/* async crcs make it difficult to collect full stripe writes. */
8333 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8334 		async_submit = 0;
8335 	else
8336 		async_submit = 1;
8337 
8338 	/* bio split */
8339 	ASSERT(map_length <= INT_MAX);
8340 	atomic_inc(&dip->pending_bios);
8341 	do {
8342 		clone_len = min_t(int, submit_len, map_length);
8343 
8344 		/*
8345 		 * This will never fail as it's passing GPF_NOFS and
8346 		 * the allocation is backed by btrfs_bioset.
8347 		 */
8348 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8349 					      clone_len);
8350 		bio->bi_private = dip;
8351 		bio->bi_end_io = btrfs_end_dio_bio;
8352 		btrfs_io_bio(bio)->logical = file_offset;
8353 
8354 		ASSERT(submit_len >= clone_len);
8355 		submit_len -= clone_len;
8356 		if (submit_len == 0)
8357 			break;
8358 
8359 		/*
8360 		 * Increase the count before we submit the bio so we know
8361 		 * the end IO handler won't happen before we increase the
8362 		 * count. Otherwise, the dip might get freed before we're
8363 		 * done setting it up.
8364 		 */
8365 		atomic_inc(&dip->pending_bios);
8366 
8367 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8368 						async_submit);
8369 		if (status) {
8370 			bio_put(bio);
8371 			atomic_dec(&dip->pending_bios);
8372 			goto out_err;
8373 		}
8374 
8375 		clone_offset += clone_len;
8376 		start_sector += clone_len >> 9;
8377 		file_offset += clone_len;
8378 
8379 		map_length = submit_len;
8380 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8381 				      start_sector << 9, &map_length, NULL, 0);
8382 		if (ret)
8383 			goto out_err;
8384 	} while (submit_len > 0);
8385 
8386 submit:
8387 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8388 	if (!status)
8389 		return 0;
8390 
8391 	bio_put(bio);
8392 out_err:
8393 	dip->errors = 1;
8394 	/*
8395 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8396 	 * perceived to be set. This ordering is ensured by the fact that an
8397 	 * atomic operations with a return value are fully ordered as per
8398 	 * atomic_t.txt
8399 	 */
8400 	if (atomic_dec_and_test(&dip->pending_bios))
8401 		bio_io_error(dip->orig_bio);
8402 
8403 	/* bio_end_io() will handle error, so we needn't return it */
8404 	return 0;
8405 }
8406 
8407 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8408 				loff_t file_offset)
8409 {
8410 	struct btrfs_dio_private *dip = NULL;
8411 	struct bio *bio = NULL;
8412 	struct btrfs_io_bio *io_bio;
8413 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8414 	int ret = 0;
8415 
8416 	bio = btrfs_bio_clone(dio_bio);
8417 
8418 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8419 	if (!dip) {
8420 		ret = -ENOMEM;
8421 		goto free_ordered;
8422 	}
8423 
8424 	dip->private = dio_bio->bi_private;
8425 	dip->inode = inode;
8426 	dip->logical_offset = file_offset;
8427 	dip->bytes = dio_bio->bi_iter.bi_size;
8428 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8429 	bio->bi_private = dip;
8430 	dip->orig_bio = bio;
8431 	dip->dio_bio = dio_bio;
8432 	atomic_set(&dip->pending_bios, 0);
8433 	io_bio = btrfs_io_bio(bio);
8434 	io_bio->logical = file_offset;
8435 
8436 	if (write) {
8437 		bio->bi_end_io = btrfs_endio_direct_write;
8438 	} else {
8439 		bio->bi_end_io = btrfs_endio_direct_read;
8440 		dip->subio_endio = btrfs_subio_endio_read;
8441 	}
8442 
8443 	/*
8444 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8445 	 * even if we fail to submit a bio, because in such case we do the
8446 	 * corresponding error handling below and it must not be done a second
8447 	 * time by btrfs_direct_IO().
8448 	 */
8449 	if (write) {
8450 		struct btrfs_dio_data *dio_data = current->journal_info;
8451 
8452 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8453 			dip->bytes;
8454 		dio_data->unsubmitted_oe_range_start =
8455 			dio_data->unsubmitted_oe_range_end;
8456 	}
8457 
8458 	ret = btrfs_submit_direct_hook(dip);
8459 	if (!ret)
8460 		return;
8461 
8462 	btrfs_io_bio_free_csum(io_bio);
8463 
8464 free_ordered:
8465 	/*
8466 	 * If we arrived here it means either we failed to submit the dip
8467 	 * or we either failed to clone the dio_bio or failed to allocate the
8468 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8469 	 * call bio_endio against our io_bio so that we get proper resource
8470 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8471 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8472 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8473 	 */
8474 	if (bio && dip) {
8475 		bio_io_error(bio);
8476 		/*
8477 		 * The end io callbacks free our dip, do the final put on bio
8478 		 * and all the cleanup and final put for dio_bio (through
8479 		 * dio_end_io()).
8480 		 */
8481 		dip = NULL;
8482 		bio = NULL;
8483 	} else {
8484 		if (write)
8485 			__endio_write_update_ordered(inode,
8486 						file_offset,
8487 						dio_bio->bi_iter.bi_size,
8488 						false);
8489 		else
8490 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8491 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8492 
8493 		dio_bio->bi_status = BLK_STS_IOERR;
8494 		/*
8495 		 * Releases and cleans up our dio_bio, no need to bio_put()
8496 		 * nor bio_endio()/bio_io_error() against dio_bio.
8497 		 */
8498 		dio_end_io(dio_bio);
8499 	}
8500 	if (bio)
8501 		bio_put(bio);
8502 	kfree(dip);
8503 }
8504 
8505 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8506 			       const struct iov_iter *iter, loff_t offset)
8507 {
8508 	int seg;
8509 	int i;
8510 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8511 	ssize_t retval = -EINVAL;
8512 
8513 	if (offset & blocksize_mask)
8514 		goto out;
8515 
8516 	if (iov_iter_alignment(iter) & blocksize_mask)
8517 		goto out;
8518 
8519 	/* If this is a write we don't need to check anymore */
8520 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8521 		return 0;
8522 	/*
8523 	 * Check to make sure we don't have duplicate iov_base's in this
8524 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8525 	 * when reading back.
8526 	 */
8527 	for (seg = 0; seg < iter->nr_segs; seg++) {
8528 		for (i = seg + 1; i < iter->nr_segs; i++) {
8529 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8530 				goto out;
8531 		}
8532 	}
8533 	retval = 0;
8534 out:
8535 	return retval;
8536 }
8537 
8538 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8539 {
8540 	struct file *file = iocb->ki_filp;
8541 	struct inode *inode = file->f_mapping->host;
8542 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8543 	struct btrfs_dio_data dio_data = { 0 };
8544 	struct extent_changeset *data_reserved = NULL;
8545 	loff_t offset = iocb->ki_pos;
8546 	size_t count = 0;
8547 	int flags = 0;
8548 	bool wakeup = true;
8549 	bool relock = false;
8550 	ssize_t ret;
8551 
8552 	if (check_direct_IO(fs_info, iter, offset))
8553 		return 0;
8554 
8555 	inode_dio_begin(inode);
8556 
8557 	/*
8558 	 * The generic stuff only does filemap_write_and_wait_range, which
8559 	 * isn't enough if we've written compressed pages to this area, so
8560 	 * we need to flush the dirty pages again to make absolutely sure
8561 	 * that any outstanding dirty pages are on disk.
8562 	 */
8563 	count = iov_iter_count(iter);
8564 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8565 		     &BTRFS_I(inode)->runtime_flags))
8566 		filemap_fdatawrite_range(inode->i_mapping, offset,
8567 					 offset + count - 1);
8568 
8569 	if (iov_iter_rw(iter) == WRITE) {
8570 		/*
8571 		 * If the write DIO is beyond the EOF, we need update
8572 		 * the isize, but it is protected by i_mutex. So we can
8573 		 * not unlock the i_mutex at this case.
8574 		 */
8575 		if (offset + count <= inode->i_size) {
8576 			dio_data.overwrite = 1;
8577 			inode_unlock(inode);
8578 			relock = true;
8579 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8580 			ret = -EAGAIN;
8581 			goto out;
8582 		}
8583 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8584 						   offset, count);
8585 		if (ret)
8586 			goto out;
8587 
8588 		/*
8589 		 * We need to know how many extents we reserved so that we can
8590 		 * do the accounting properly if we go over the number we
8591 		 * originally calculated.  Abuse current->journal_info for this.
8592 		 */
8593 		dio_data.reserve = round_up(count,
8594 					    fs_info->sectorsize);
8595 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8596 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8597 		current->journal_info = &dio_data;
8598 		down_read(&BTRFS_I(inode)->dio_sem);
8599 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8600 				     &BTRFS_I(inode)->runtime_flags)) {
8601 		inode_dio_end(inode);
8602 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8603 		wakeup = false;
8604 	}
8605 
8606 	ret = __blockdev_direct_IO(iocb, inode,
8607 				   fs_info->fs_devices->latest_bdev,
8608 				   iter, btrfs_get_blocks_direct, NULL,
8609 				   btrfs_submit_direct, flags);
8610 	if (iov_iter_rw(iter) == WRITE) {
8611 		up_read(&BTRFS_I(inode)->dio_sem);
8612 		current->journal_info = NULL;
8613 		if (ret < 0 && ret != -EIOCBQUEUED) {
8614 			if (dio_data.reserve)
8615 				btrfs_delalloc_release_space(inode, data_reserved,
8616 					offset, dio_data.reserve, true);
8617 			/*
8618 			 * On error we might have left some ordered extents
8619 			 * without submitting corresponding bios for them, so
8620 			 * cleanup them up to avoid other tasks getting them
8621 			 * and waiting for them to complete forever.
8622 			 */
8623 			if (dio_data.unsubmitted_oe_range_start <
8624 			    dio_data.unsubmitted_oe_range_end)
8625 				__endio_write_update_ordered(inode,
8626 					dio_data.unsubmitted_oe_range_start,
8627 					dio_data.unsubmitted_oe_range_end -
8628 					dio_data.unsubmitted_oe_range_start,
8629 					false);
8630 		} else if (ret >= 0 && (size_t)ret < count)
8631 			btrfs_delalloc_release_space(inode, data_reserved,
8632 					offset, count - (size_t)ret, true);
8633 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8634 	}
8635 out:
8636 	if (wakeup)
8637 		inode_dio_end(inode);
8638 	if (relock)
8639 		inode_lock(inode);
8640 
8641 	extent_changeset_free(data_reserved);
8642 	return ret;
8643 }
8644 
8645 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8646 
8647 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8648 		__u64 start, __u64 len)
8649 {
8650 	int	ret;
8651 
8652 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8653 	if (ret)
8654 		return ret;
8655 
8656 	return extent_fiemap(inode, fieinfo, start, len);
8657 }
8658 
8659 int btrfs_readpage(struct file *file, struct page *page)
8660 {
8661 	struct extent_io_tree *tree;
8662 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8663 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8664 }
8665 
8666 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8667 {
8668 	struct inode *inode = page->mapping->host;
8669 	int ret;
8670 
8671 	if (current->flags & PF_MEMALLOC) {
8672 		redirty_page_for_writepage(wbc, page);
8673 		unlock_page(page);
8674 		return 0;
8675 	}
8676 
8677 	/*
8678 	 * If we are under memory pressure we will call this directly from the
8679 	 * VM, we need to make sure we have the inode referenced for the ordered
8680 	 * extent.  If not just return like we didn't do anything.
8681 	 */
8682 	if (!igrab(inode)) {
8683 		redirty_page_for_writepage(wbc, page);
8684 		return AOP_WRITEPAGE_ACTIVATE;
8685 	}
8686 	ret = extent_write_full_page(page, wbc);
8687 	btrfs_add_delayed_iput(inode);
8688 	return ret;
8689 }
8690 
8691 static int btrfs_writepages(struct address_space *mapping,
8692 			    struct writeback_control *wbc)
8693 {
8694 	return extent_writepages(mapping, wbc);
8695 }
8696 
8697 static int
8698 btrfs_readpages(struct file *file, struct address_space *mapping,
8699 		struct list_head *pages, unsigned nr_pages)
8700 {
8701 	return extent_readpages(mapping, pages, nr_pages);
8702 }
8703 
8704 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8705 {
8706 	int ret = try_release_extent_mapping(page, gfp_flags);
8707 	if (ret == 1) {
8708 		ClearPagePrivate(page);
8709 		set_page_private(page, 0);
8710 		put_page(page);
8711 	}
8712 	return ret;
8713 }
8714 
8715 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8716 {
8717 	if (PageWriteback(page) || PageDirty(page))
8718 		return 0;
8719 	return __btrfs_releasepage(page, gfp_flags);
8720 }
8721 
8722 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8723 				 unsigned int length)
8724 {
8725 	struct inode *inode = page->mapping->host;
8726 	struct extent_io_tree *tree;
8727 	struct btrfs_ordered_extent *ordered;
8728 	struct extent_state *cached_state = NULL;
8729 	u64 page_start = page_offset(page);
8730 	u64 page_end = page_start + PAGE_SIZE - 1;
8731 	u64 start;
8732 	u64 end;
8733 	int inode_evicting = inode->i_state & I_FREEING;
8734 
8735 	/*
8736 	 * we have the page locked, so new writeback can't start,
8737 	 * and the dirty bit won't be cleared while we are here.
8738 	 *
8739 	 * Wait for IO on this page so that we can safely clear
8740 	 * the PagePrivate2 bit and do ordered accounting
8741 	 */
8742 	wait_on_page_writeback(page);
8743 
8744 	tree = &BTRFS_I(inode)->io_tree;
8745 	if (offset) {
8746 		btrfs_releasepage(page, GFP_NOFS);
8747 		return;
8748 	}
8749 
8750 	if (!inode_evicting)
8751 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8752 again:
8753 	start = page_start;
8754 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8755 					page_end - start + 1);
8756 	if (ordered) {
8757 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8758 		/*
8759 		 * IO on this page will never be started, so we need
8760 		 * to account for any ordered extents now
8761 		 */
8762 		if (!inode_evicting)
8763 			clear_extent_bit(tree, start, end,
8764 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8765 					 EXTENT_DELALLOC_NEW |
8766 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8767 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8768 		/*
8769 		 * whoever cleared the private bit is responsible
8770 		 * for the finish_ordered_io
8771 		 */
8772 		if (TestClearPagePrivate2(page)) {
8773 			struct btrfs_ordered_inode_tree *tree;
8774 			u64 new_len;
8775 
8776 			tree = &BTRFS_I(inode)->ordered_tree;
8777 
8778 			spin_lock_irq(&tree->lock);
8779 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8780 			new_len = start - ordered->file_offset;
8781 			if (new_len < ordered->truncated_len)
8782 				ordered->truncated_len = new_len;
8783 			spin_unlock_irq(&tree->lock);
8784 
8785 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8786 							   start,
8787 							   end - start + 1, 1))
8788 				btrfs_finish_ordered_io(ordered);
8789 		}
8790 		btrfs_put_ordered_extent(ordered);
8791 		if (!inode_evicting) {
8792 			cached_state = NULL;
8793 			lock_extent_bits(tree, start, end,
8794 					 &cached_state);
8795 		}
8796 
8797 		start = end + 1;
8798 		if (start < page_end)
8799 			goto again;
8800 	}
8801 
8802 	/*
8803 	 * Qgroup reserved space handler
8804 	 * Page here will be either
8805 	 * 1) Already written to disk
8806 	 *    In this case, its reserved space is released from data rsv map
8807 	 *    and will be freed by delayed_ref handler finally.
8808 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8809 	 *    space.
8810 	 * 2) Not written to disk
8811 	 *    This means the reserved space should be freed here. However,
8812 	 *    if a truncate invalidates the page (by clearing PageDirty)
8813 	 *    and the page is accounted for while allocating extent
8814 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8815 	 *    free the entire extent.
8816 	 */
8817 	if (PageDirty(page))
8818 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8819 	if (!inode_evicting) {
8820 		clear_extent_bit(tree, page_start, page_end,
8821 				 EXTENT_LOCKED | EXTENT_DIRTY |
8822 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8823 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8824 				 &cached_state);
8825 
8826 		__btrfs_releasepage(page, GFP_NOFS);
8827 	}
8828 
8829 	ClearPageChecked(page);
8830 	if (PagePrivate(page)) {
8831 		ClearPagePrivate(page);
8832 		set_page_private(page, 0);
8833 		put_page(page);
8834 	}
8835 }
8836 
8837 /*
8838  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8839  * called from a page fault handler when a page is first dirtied. Hence we must
8840  * be careful to check for EOF conditions here. We set the page up correctly
8841  * for a written page which means we get ENOSPC checking when writing into
8842  * holes and correct delalloc and unwritten extent mapping on filesystems that
8843  * support these features.
8844  *
8845  * We are not allowed to take the i_mutex here so we have to play games to
8846  * protect against truncate races as the page could now be beyond EOF.  Because
8847  * truncate_setsize() writes the inode size before removing pages, once we have
8848  * the page lock we can determine safely if the page is beyond EOF. If it is not
8849  * beyond EOF, then the page is guaranteed safe against truncation until we
8850  * unlock the page.
8851  */
8852 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8853 {
8854 	struct page *page = vmf->page;
8855 	struct inode *inode = file_inode(vmf->vma->vm_file);
8856 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8857 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8858 	struct btrfs_ordered_extent *ordered;
8859 	struct extent_state *cached_state = NULL;
8860 	struct extent_changeset *data_reserved = NULL;
8861 	char *kaddr;
8862 	unsigned long zero_start;
8863 	loff_t size;
8864 	vm_fault_t ret;
8865 	int ret2;
8866 	int reserved = 0;
8867 	u64 reserved_space;
8868 	u64 page_start;
8869 	u64 page_end;
8870 	u64 end;
8871 
8872 	reserved_space = PAGE_SIZE;
8873 
8874 	sb_start_pagefault(inode->i_sb);
8875 	page_start = page_offset(page);
8876 	page_end = page_start + PAGE_SIZE - 1;
8877 	end = page_end;
8878 
8879 	/*
8880 	 * Reserving delalloc space after obtaining the page lock can lead to
8881 	 * deadlock. For example, if a dirty page is locked by this function
8882 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8883 	 * dirty page write out, then the btrfs_writepage() function could
8884 	 * end up waiting indefinitely to get a lock on the page currently
8885 	 * being processed by btrfs_page_mkwrite() function.
8886 	 */
8887 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8888 					   reserved_space);
8889 	if (!ret2) {
8890 		ret2 = file_update_time(vmf->vma->vm_file);
8891 		reserved = 1;
8892 	}
8893 	if (ret2) {
8894 		ret = vmf_error(ret2);
8895 		if (reserved)
8896 			goto out;
8897 		goto out_noreserve;
8898 	}
8899 
8900 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8901 again:
8902 	lock_page(page);
8903 	size = i_size_read(inode);
8904 
8905 	if ((page->mapping != inode->i_mapping) ||
8906 	    (page_start >= size)) {
8907 		/* page got truncated out from underneath us */
8908 		goto out_unlock;
8909 	}
8910 	wait_on_page_writeback(page);
8911 
8912 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8913 	set_page_extent_mapped(page);
8914 
8915 	/*
8916 	 * we can't set the delalloc bits if there are pending ordered
8917 	 * extents.  Drop our locks and wait for them to finish
8918 	 */
8919 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8920 			PAGE_SIZE);
8921 	if (ordered) {
8922 		unlock_extent_cached(io_tree, page_start, page_end,
8923 				     &cached_state);
8924 		unlock_page(page);
8925 		btrfs_start_ordered_extent(inode, ordered, 1);
8926 		btrfs_put_ordered_extent(ordered);
8927 		goto again;
8928 	}
8929 
8930 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8931 		reserved_space = round_up(size - page_start,
8932 					  fs_info->sectorsize);
8933 		if (reserved_space < PAGE_SIZE) {
8934 			end = page_start + reserved_space - 1;
8935 			btrfs_delalloc_release_space(inode, data_reserved,
8936 					page_start, PAGE_SIZE - reserved_space,
8937 					true);
8938 		}
8939 	}
8940 
8941 	/*
8942 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8943 	 * faulted in, but write(2) could also dirty a page and set delalloc
8944 	 * bits, thus in this case for space account reason, we still need to
8945 	 * clear any delalloc bits within this page range since we have to
8946 	 * reserve data&meta space before lock_page() (see above comments).
8947 	 */
8948 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8949 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8950 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8951 			  0, 0, &cached_state);
8952 
8953 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8954 					&cached_state, 0);
8955 	if (ret2) {
8956 		unlock_extent_cached(io_tree, page_start, page_end,
8957 				     &cached_state);
8958 		ret = VM_FAULT_SIGBUS;
8959 		goto out_unlock;
8960 	}
8961 	ret2 = 0;
8962 
8963 	/* page is wholly or partially inside EOF */
8964 	if (page_start + PAGE_SIZE > size)
8965 		zero_start = offset_in_page(size);
8966 	else
8967 		zero_start = PAGE_SIZE;
8968 
8969 	if (zero_start != PAGE_SIZE) {
8970 		kaddr = kmap(page);
8971 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8972 		flush_dcache_page(page);
8973 		kunmap(page);
8974 	}
8975 	ClearPageChecked(page);
8976 	set_page_dirty(page);
8977 	SetPageUptodate(page);
8978 
8979 	BTRFS_I(inode)->last_trans = fs_info->generation;
8980 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8981 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8982 
8983 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8984 
8985 	if (!ret2) {
8986 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8987 		sb_end_pagefault(inode->i_sb);
8988 		extent_changeset_free(data_reserved);
8989 		return VM_FAULT_LOCKED;
8990 	}
8991 
8992 out_unlock:
8993 	unlock_page(page);
8994 out:
8995 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8996 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
8997 				     reserved_space, (ret != 0));
8998 out_noreserve:
8999 	sb_end_pagefault(inode->i_sb);
9000 	extent_changeset_free(data_reserved);
9001 	return ret;
9002 }
9003 
9004 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9005 {
9006 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9007 	struct btrfs_root *root = BTRFS_I(inode)->root;
9008 	struct btrfs_block_rsv *rsv;
9009 	int ret;
9010 	struct btrfs_trans_handle *trans;
9011 	u64 mask = fs_info->sectorsize - 1;
9012 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9013 
9014 	if (!skip_writeback) {
9015 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9016 					       (u64)-1);
9017 		if (ret)
9018 			return ret;
9019 	}
9020 
9021 	/*
9022 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9023 	 * things going on here:
9024 	 *
9025 	 * 1) We need to reserve space to update our inode.
9026 	 *
9027 	 * 2) We need to have something to cache all the space that is going to
9028 	 * be free'd up by the truncate operation, but also have some slack
9029 	 * space reserved in case it uses space during the truncate (thank you
9030 	 * very much snapshotting).
9031 	 *
9032 	 * And we need these to be separate.  The fact is we can use a lot of
9033 	 * space doing the truncate, and we have no earthly idea how much space
9034 	 * we will use, so we need the truncate reservation to be separate so it
9035 	 * doesn't end up using space reserved for updating the inode.  We also
9036 	 * need to be able to stop the transaction and start a new one, which
9037 	 * means we need to be able to update the inode several times, and we
9038 	 * have no idea of knowing how many times that will be, so we can't just
9039 	 * reserve 1 item for the entirety of the operation, so that has to be
9040 	 * done separately as well.
9041 	 *
9042 	 * So that leaves us with
9043 	 *
9044 	 * 1) rsv - for the truncate reservation, which we will steal from the
9045 	 * transaction reservation.
9046 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9047 	 * updating the inode.
9048 	 */
9049 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9050 	if (!rsv)
9051 		return -ENOMEM;
9052 	rsv->size = min_size;
9053 	rsv->failfast = 1;
9054 
9055 	/*
9056 	 * 1 for the truncate slack space
9057 	 * 1 for updating the inode.
9058 	 */
9059 	trans = btrfs_start_transaction(root, 2);
9060 	if (IS_ERR(trans)) {
9061 		ret = PTR_ERR(trans);
9062 		goto out;
9063 	}
9064 
9065 	/* Migrate the slack space for the truncate to our reserve */
9066 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9067 				      min_size, false);
9068 	BUG_ON(ret);
9069 
9070 	/*
9071 	 * So if we truncate and then write and fsync we normally would just
9072 	 * write the extents that changed, which is a problem if we need to
9073 	 * first truncate that entire inode.  So set this flag so we write out
9074 	 * all of the extents in the inode to the sync log so we're completely
9075 	 * safe.
9076 	 */
9077 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9078 	trans->block_rsv = rsv;
9079 
9080 	while (1) {
9081 		ret = btrfs_truncate_inode_items(trans, root, inode,
9082 						 inode->i_size,
9083 						 BTRFS_EXTENT_DATA_KEY);
9084 		trans->block_rsv = &fs_info->trans_block_rsv;
9085 		if (ret != -ENOSPC && ret != -EAGAIN)
9086 			break;
9087 
9088 		ret = btrfs_update_inode(trans, root, inode);
9089 		if (ret)
9090 			break;
9091 
9092 		btrfs_end_transaction(trans);
9093 		btrfs_btree_balance_dirty(fs_info);
9094 
9095 		trans = btrfs_start_transaction(root, 2);
9096 		if (IS_ERR(trans)) {
9097 			ret = PTR_ERR(trans);
9098 			trans = NULL;
9099 			break;
9100 		}
9101 
9102 		btrfs_block_rsv_release(fs_info, rsv, -1);
9103 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9104 					      rsv, min_size, false);
9105 		BUG_ON(ret);	/* shouldn't happen */
9106 		trans->block_rsv = rsv;
9107 	}
9108 
9109 	/*
9110 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9111 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9112 	 * we've truncated everything except the last little bit, and can do
9113 	 * btrfs_truncate_block and then update the disk_i_size.
9114 	 */
9115 	if (ret == NEED_TRUNCATE_BLOCK) {
9116 		btrfs_end_transaction(trans);
9117 		btrfs_btree_balance_dirty(fs_info);
9118 
9119 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9120 		if (ret)
9121 			goto out;
9122 		trans = btrfs_start_transaction(root, 1);
9123 		if (IS_ERR(trans)) {
9124 			ret = PTR_ERR(trans);
9125 			goto out;
9126 		}
9127 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9128 	}
9129 
9130 	if (trans) {
9131 		int ret2;
9132 
9133 		trans->block_rsv = &fs_info->trans_block_rsv;
9134 		ret2 = btrfs_update_inode(trans, root, inode);
9135 		if (ret2 && !ret)
9136 			ret = ret2;
9137 
9138 		ret2 = btrfs_end_transaction(trans);
9139 		if (ret2 && !ret)
9140 			ret = ret2;
9141 		btrfs_btree_balance_dirty(fs_info);
9142 	}
9143 out:
9144 	btrfs_free_block_rsv(fs_info, rsv);
9145 
9146 	return ret;
9147 }
9148 
9149 /*
9150  * create a new subvolume directory/inode (helper for the ioctl).
9151  */
9152 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9153 			     struct btrfs_root *new_root,
9154 			     struct btrfs_root *parent_root,
9155 			     u64 new_dirid)
9156 {
9157 	struct inode *inode;
9158 	int err;
9159 	u64 index = 0;
9160 
9161 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9162 				new_dirid, new_dirid,
9163 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9164 				&index);
9165 	if (IS_ERR(inode))
9166 		return PTR_ERR(inode);
9167 	inode->i_op = &btrfs_dir_inode_operations;
9168 	inode->i_fop = &btrfs_dir_file_operations;
9169 
9170 	set_nlink(inode, 1);
9171 	btrfs_i_size_write(BTRFS_I(inode), 0);
9172 	unlock_new_inode(inode);
9173 
9174 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9175 	if (err)
9176 		btrfs_err(new_root->fs_info,
9177 			  "error inheriting subvolume %llu properties: %d",
9178 			  new_root->root_key.objectid, err);
9179 
9180 	err = btrfs_update_inode(trans, new_root, inode);
9181 
9182 	iput(inode);
9183 	return err;
9184 }
9185 
9186 struct inode *btrfs_alloc_inode(struct super_block *sb)
9187 {
9188 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9189 	struct btrfs_inode *ei;
9190 	struct inode *inode;
9191 
9192 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9193 	if (!ei)
9194 		return NULL;
9195 
9196 	ei->root = NULL;
9197 	ei->generation = 0;
9198 	ei->last_trans = 0;
9199 	ei->last_sub_trans = 0;
9200 	ei->logged_trans = 0;
9201 	ei->delalloc_bytes = 0;
9202 	ei->new_delalloc_bytes = 0;
9203 	ei->defrag_bytes = 0;
9204 	ei->disk_i_size = 0;
9205 	ei->flags = 0;
9206 	ei->csum_bytes = 0;
9207 	ei->index_cnt = (u64)-1;
9208 	ei->dir_index = 0;
9209 	ei->last_unlink_trans = 0;
9210 	ei->last_log_commit = 0;
9211 
9212 	spin_lock_init(&ei->lock);
9213 	ei->outstanding_extents = 0;
9214 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9215 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9216 					      BTRFS_BLOCK_RSV_DELALLOC);
9217 	ei->runtime_flags = 0;
9218 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9219 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9220 
9221 	ei->delayed_node = NULL;
9222 
9223 	ei->i_otime.tv_sec = 0;
9224 	ei->i_otime.tv_nsec = 0;
9225 
9226 	inode = &ei->vfs_inode;
9227 	extent_map_tree_init(&ei->extent_tree);
9228 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9229 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9230 			    IO_TREE_INODE_IO_FAILURE, inode);
9231 	ei->io_tree.track_uptodate = true;
9232 	ei->io_failure_tree.track_uptodate = true;
9233 	atomic_set(&ei->sync_writers, 0);
9234 	mutex_init(&ei->log_mutex);
9235 	mutex_init(&ei->delalloc_mutex);
9236 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9237 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9238 	INIT_LIST_HEAD(&ei->delayed_iput);
9239 	RB_CLEAR_NODE(&ei->rb_node);
9240 	init_rwsem(&ei->dio_sem);
9241 
9242 	return inode;
9243 }
9244 
9245 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9246 void btrfs_test_destroy_inode(struct inode *inode)
9247 {
9248 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9249 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9250 }
9251 #endif
9252 
9253 void btrfs_free_inode(struct inode *inode)
9254 {
9255 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9256 }
9257 
9258 void btrfs_destroy_inode(struct inode *inode)
9259 {
9260 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9261 	struct btrfs_ordered_extent *ordered;
9262 	struct btrfs_root *root = BTRFS_I(inode)->root;
9263 
9264 	WARN_ON(!hlist_empty(&inode->i_dentry));
9265 	WARN_ON(inode->i_data.nrpages);
9266 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9267 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9268 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9269 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9270 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9271 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9272 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9273 
9274 	/*
9275 	 * This can happen where we create an inode, but somebody else also
9276 	 * created the same inode and we need to destroy the one we already
9277 	 * created.
9278 	 */
9279 	if (!root)
9280 		return;
9281 
9282 	while (1) {
9283 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9284 		if (!ordered)
9285 			break;
9286 		else {
9287 			btrfs_err(fs_info,
9288 				  "found ordered extent %llu %llu on inode cleanup",
9289 				  ordered->file_offset, ordered->len);
9290 			btrfs_remove_ordered_extent(inode, ordered);
9291 			btrfs_put_ordered_extent(ordered);
9292 			btrfs_put_ordered_extent(ordered);
9293 		}
9294 	}
9295 	btrfs_qgroup_check_reserved_leak(inode);
9296 	inode_tree_del(inode);
9297 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9298 }
9299 
9300 int btrfs_drop_inode(struct inode *inode)
9301 {
9302 	struct btrfs_root *root = BTRFS_I(inode)->root;
9303 
9304 	if (root == NULL)
9305 		return 1;
9306 
9307 	/* the snap/subvol tree is on deleting */
9308 	if (btrfs_root_refs(&root->root_item) == 0)
9309 		return 1;
9310 	else
9311 		return generic_drop_inode(inode);
9312 }
9313 
9314 static void init_once(void *foo)
9315 {
9316 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9317 
9318 	inode_init_once(&ei->vfs_inode);
9319 }
9320 
9321 void __cold btrfs_destroy_cachep(void)
9322 {
9323 	/*
9324 	 * Make sure all delayed rcu free inodes are flushed before we
9325 	 * destroy cache.
9326 	 */
9327 	rcu_barrier();
9328 	kmem_cache_destroy(btrfs_inode_cachep);
9329 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9330 	kmem_cache_destroy(btrfs_path_cachep);
9331 	kmem_cache_destroy(btrfs_free_space_cachep);
9332 }
9333 
9334 int __init btrfs_init_cachep(void)
9335 {
9336 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9337 			sizeof(struct btrfs_inode), 0,
9338 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9339 			init_once);
9340 	if (!btrfs_inode_cachep)
9341 		goto fail;
9342 
9343 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9344 			sizeof(struct btrfs_trans_handle), 0,
9345 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9346 	if (!btrfs_trans_handle_cachep)
9347 		goto fail;
9348 
9349 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9350 			sizeof(struct btrfs_path), 0,
9351 			SLAB_MEM_SPREAD, NULL);
9352 	if (!btrfs_path_cachep)
9353 		goto fail;
9354 
9355 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9356 			sizeof(struct btrfs_free_space), 0,
9357 			SLAB_MEM_SPREAD, NULL);
9358 	if (!btrfs_free_space_cachep)
9359 		goto fail;
9360 
9361 	return 0;
9362 fail:
9363 	btrfs_destroy_cachep();
9364 	return -ENOMEM;
9365 }
9366 
9367 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9368 			 u32 request_mask, unsigned int flags)
9369 {
9370 	u64 delalloc_bytes;
9371 	struct inode *inode = d_inode(path->dentry);
9372 	u32 blocksize = inode->i_sb->s_blocksize;
9373 	u32 bi_flags = BTRFS_I(inode)->flags;
9374 
9375 	stat->result_mask |= STATX_BTIME;
9376 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9377 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9378 	if (bi_flags & BTRFS_INODE_APPEND)
9379 		stat->attributes |= STATX_ATTR_APPEND;
9380 	if (bi_flags & BTRFS_INODE_COMPRESS)
9381 		stat->attributes |= STATX_ATTR_COMPRESSED;
9382 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9383 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9384 	if (bi_flags & BTRFS_INODE_NODUMP)
9385 		stat->attributes |= STATX_ATTR_NODUMP;
9386 
9387 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9388 				  STATX_ATTR_COMPRESSED |
9389 				  STATX_ATTR_IMMUTABLE |
9390 				  STATX_ATTR_NODUMP);
9391 
9392 	generic_fillattr(inode, stat);
9393 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9394 
9395 	spin_lock(&BTRFS_I(inode)->lock);
9396 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9397 	spin_unlock(&BTRFS_I(inode)->lock);
9398 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9399 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9400 	return 0;
9401 }
9402 
9403 static int btrfs_rename_exchange(struct inode *old_dir,
9404 			      struct dentry *old_dentry,
9405 			      struct inode *new_dir,
9406 			      struct dentry *new_dentry)
9407 {
9408 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9409 	struct btrfs_trans_handle *trans;
9410 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9411 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9412 	struct inode *new_inode = new_dentry->d_inode;
9413 	struct inode *old_inode = old_dentry->d_inode;
9414 	struct timespec64 ctime = current_time(old_inode);
9415 	struct dentry *parent;
9416 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9417 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9418 	u64 old_idx = 0;
9419 	u64 new_idx = 0;
9420 	u64 root_objectid;
9421 	int ret;
9422 	bool root_log_pinned = false;
9423 	bool dest_log_pinned = false;
9424 	struct btrfs_log_ctx ctx_root;
9425 	struct btrfs_log_ctx ctx_dest;
9426 	bool sync_log_root = false;
9427 	bool sync_log_dest = false;
9428 	bool commit_transaction = false;
9429 
9430 	/* we only allow rename subvolume link between subvolumes */
9431 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9432 		return -EXDEV;
9433 
9434 	btrfs_init_log_ctx(&ctx_root, old_inode);
9435 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9436 
9437 	/* close the race window with snapshot create/destroy ioctl */
9438 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9439 		down_read(&fs_info->subvol_sem);
9440 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9441 		down_read(&fs_info->subvol_sem);
9442 
9443 	/*
9444 	 * We want to reserve the absolute worst case amount of items.  So if
9445 	 * both inodes are subvols and we need to unlink them then that would
9446 	 * require 4 item modifications, but if they are both normal inodes it
9447 	 * would require 5 item modifications, so we'll assume their normal
9448 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9449 	 * should cover the worst case number of items we'll modify.
9450 	 */
9451 	trans = btrfs_start_transaction(root, 12);
9452 	if (IS_ERR(trans)) {
9453 		ret = PTR_ERR(trans);
9454 		goto out_notrans;
9455 	}
9456 
9457 	/*
9458 	 * We need to find a free sequence number both in the source and
9459 	 * in the destination directory for the exchange.
9460 	 */
9461 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9462 	if (ret)
9463 		goto out_fail;
9464 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9465 	if (ret)
9466 		goto out_fail;
9467 
9468 	BTRFS_I(old_inode)->dir_index = 0ULL;
9469 	BTRFS_I(new_inode)->dir_index = 0ULL;
9470 
9471 	/* Reference for the source. */
9472 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9473 		/* force full log commit if subvolume involved. */
9474 		btrfs_set_log_full_commit(trans);
9475 	} else {
9476 		btrfs_pin_log_trans(root);
9477 		root_log_pinned = true;
9478 		ret = btrfs_insert_inode_ref(trans, dest,
9479 					     new_dentry->d_name.name,
9480 					     new_dentry->d_name.len,
9481 					     old_ino,
9482 					     btrfs_ino(BTRFS_I(new_dir)),
9483 					     old_idx);
9484 		if (ret)
9485 			goto out_fail;
9486 	}
9487 
9488 	/* And now for the dest. */
9489 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9490 		/* force full log commit if subvolume involved. */
9491 		btrfs_set_log_full_commit(trans);
9492 	} else {
9493 		btrfs_pin_log_trans(dest);
9494 		dest_log_pinned = true;
9495 		ret = btrfs_insert_inode_ref(trans, root,
9496 					     old_dentry->d_name.name,
9497 					     old_dentry->d_name.len,
9498 					     new_ino,
9499 					     btrfs_ino(BTRFS_I(old_dir)),
9500 					     new_idx);
9501 		if (ret)
9502 			goto out_fail;
9503 	}
9504 
9505 	/* Update inode version and ctime/mtime. */
9506 	inode_inc_iversion(old_dir);
9507 	inode_inc_iversion(new_dir);
9508 	inode_inc_iversion(old_inode);
9509 	inode_inc_iversion(new_inode);
9510 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9511 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9512 	old_inode->i_ctime = ctime;
9513 	new_inode->i_ctime = ctime;
9514 
9515 	if (old_dentry->d_parent != new_dentry->d_parent) {
9516 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9517 				BTRFS_I(old_inode), 1);
9518 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9519 				BTRFS_I(new_inode), 1);
9520 	}
9521 
9522 	/* src is a subvolume */
9523 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9524 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9525 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9526 					  old_dentry->d_name.name,
9527 					  old_dentry->d_name.len);
9528 	} else { /* src is an inode */
9529 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9530 					   BTRFS_I(old_dentry->d_inode),
9531 					   old_dentry->d_name.name,
9532 					   old_dentry->d_name.len);
9533 		if (!ret)
9534 			ret = btrfs_update_inode(trans, root, old_inode);
9535 	}
9536 	if (ret) {
9537 		btrfs_abort_transaction(trans, ret);
9538 		goto out_fail;
9539 	}
9540 
9541 	/* dest is a subvolume */
9542 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9543 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9544 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9545 					  new_dentry->d_name.name,
9546 					  new_dentry->d_name.len);
9547 	} else { /* dest is an inode */
9548 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9549 					   BTRFS_I(new_dentry->d_inode),
9550 					   new_dentry->d_name.name,
9551 					   new_dentry->d_name.len);
9552 		if (!ret)
9553 			ret = btrfs_update_inode(trans, dest, new_inode);
9554 	}
9555 	if (ret) {
9556 		btrfs_abort_transaction(trans, ret);
9557 		goto out_fail;
9558 	}
9559 
9560 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9561 			     new_dentry->d_name.name,
9562 			     new_dentry->d_name.len, 0, old_idx);
9563 	if (ret) {
9564 		btrfs_abort_transaction(trans, ret);
9565 		goto out_fail;
9566 	}
9567 
9568 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9569 			     old_dentry->d_name.name,
9570 			     old_dentry->d_name.len, 0, new_idx);
9571 	if (ret) {
9572 		btrfs_abort_transaction(trans, ret);
9573 		goto out_fail;
9574 	}
9575 
9576 	if (old_inode->i_nlink == 1)
9577 		BTRFS_I(old_inode)->dir_index = old_idx;
9578 	if (new_inode->i_nlink == 1)
9579 		BTRFS_I(new_inode)->dir_index = new_idx;
9580 
9581 	if (root_log_pinned) {
9582 		parent = new_dentry->d_parent;
9583 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9584 					 BTRFS_I(old_dir), parent,
9585 					 false, &ctx_root);
9586 		if (ret == BTRFS_NEED_LOG_SYNC)
9587 			sync_log_root = true;
9588 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9589 			commit_transaction = true;
9590 		ret = 0;
9591 		btrfs_end_log_trans(root);
9592 		root_log_pinned = false;
9593 	}
9594 	if (dest_log_pinned) {
9595 		if (!commit_transaction) {
9596 			parent = old_dentry->d_parent;
9597 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9598 						 BTRFS_I(new_dir), parent,
9599 						 false, &ctx_dest);
9600 			if (ret == BTRFS_NEED_LOG_SYNC)
9601 				sync_log_dest = true;
9602 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9603 				commit_transaction = true;
9604 			ret = 0;
9605 		}
9606 		btrfs_end_log_trans(dest);
9607 		dest_log_pinned = false;
9608 	}
9609 out_fail:
9610 	/*
9611 	 * If we have pinned a log and an error happened, we unpin tasks
9612 	 * trying to sync the log and force them to fallback to a transaction
9613 	 * commit if the log currently contains any of the inodes involved in
9614 	 * this rename operation (to ensure we do not persist a log with an
9615 	 * inconsistent state for any of these inodes or leading to any
9616 	 * inconsistencies when replayed). If the transaction was aborted, the
9617 	 * abortion reason is propagated to userspace when attempting to commit
9618 	 * the transaction. If the log does not contain any of these inodes, we
9619 	 * allow the tasks to sync it.
9620 	 */
9621 	if (ret && (root_log_pinned || dest_log_pinned)) {
9622 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9623 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9624 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9625 		    (new_inode &&
9626 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9627 			btrfs_set_log_full_commit(trans);
9628 
9629 		if (root_log_pinned) {
9630 			btrfs_end_log_trans(root);
9631 			root_log_pinned = false;
9632 		}
9633 		if (dest_log_pinned) {
9634 			btrfs_end_log_trans(dest);
9635 			dest_log_pinned = false;
9636 		}
9637 	}
9638 	if (!ret && sync_log_root && !commit_transaction) {
9639 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9640 				     &ctx_root);
9641 		if (ret)
9642 			commit_transaction = true;
9643 	}
9644 	if (!ret && sync_log_dest && !commit_transaction) {
9645 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9646 				     &ctx_dest);
9647 		if (ret)
9648 			commit_transaction = true;
9649 	}
9650 	if (commit_transaction) {
9651 		ret = btrfs_commit_transaction(trans);
9652 	} else {
9653 		int ret2;
9654 
9655 		ret2 = btrfs_end_transaction(trans);
9656 		ret = ret ? ret : ret2;
9657 	}
9658 out_notrans:
9659 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9660 		up_read(&fs_info->subvol_sem);
9661 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9662 		up_read(&fs_info->subvol_sem);
9663 
9664 	return ret;
9665 }
9666 
9667 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9668 				     struct btrfs_root *root,
9669 				     struct inode *dir,
9670 				     struct dentry *dentry)
9671 {
9672 	int ret;
9673 	struct inode *inode;
9674 	u64 objectid;
9675 	u64 index;
9676 
9677 	ret = btrfs_find_free_ino(root, &objectid);
9678 	if (ret)
9679 		return ret;
9680 
9681 	inode = btrfs_new_inode(trans, root, dir,
9682 				dentry->d_name.name,
9683 				dentry->d_name.len,
9684 				btrfs_ino(BTRFS_I(dir)),
9685 				objectid,
9686 				S_IFCHR | WHITEOUT_MODE,
9687 				&index);
9688 
9689 	if (IS_ERR(inode)) {
9690 		ret = PTR_ERR(inode);
9691 		return ret;
9692 	}
9693 
9694 	inode->i_op = &btrfs_special_inode_operations;
9695 	init_special_inode(inode, inode->i_mode,
9696 		WHITEOUT_DEV);
9697 
9698 	ret = btrfs_init_inode_security(trans, inode, dir,
9699 				&dentry->d_name);
9700 	if (ret)
9701 		goto out;
9702 
9703 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9704 				BTRFS_I(inode), 0, index);
9705 	if (ret)
9706 		goto out;
9707 
9708 	ret = btrfs_update_inode(trans, root, inode);
9709 out:
9710 	unlock_new_inode(inode);
9711 	if (ret)
9712 		inode_dec_link_count(inode);
9713 	iput(inode);
9714 
9715 	return ret;
9716 }
9717 
9718 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9719 			   struct inode *new_dir, struct dentry *new_dentry,
9720 			   unsigned int flags)
9721 {
9722 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9723 	struct btrfs_trans_handle *trans;
9724 	unsigned int trans_num_items;
9725 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9726 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9727 	struct inode *new_inode = d_inode(new_dentry);
9728 	struct inode *old_inode = d_inode(old_dentry);
9729 	u64 index = 0;
9730 	u64 root_objectid;
9731 	int ret;
9732 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9733 	bool log_pinned = false;
9734 	struct btrfs_log_ctx ctx;
9735 	bool sync_log = false;
9736 	bool commit_transaction = false;
9737 
9738 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9739 		return -EPERM;
9740 
9741 	/* we only allow rename subvolume link between subvolumes */
9742 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9743 		return -EXDEV;
9744 
9745 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9746 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9747 		return -ENOTEMPTY;
9748 
9749 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9750 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9751 		return -ENOTEMPTY;
9752 
9753 
9754 	/* check for collisions, even if the  name isn't there */
9755 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9756 			     new_dentry->d_name.name,
9757 			     new_dentry->d_name.len);
9758 
9759 	if (ret) {
9760 		if (ret == -EEXIST) {
9761 			/* we shouldn't get
9762 			 * eexist without a new_inode */
9763 			if (WARN_ON(!new_inode)) {
9764 				return ret;
9765 			}
9766 		} else {
9767 			/* maybe -EOVERFLOW */
9768 			return ret;
9769 		}
9770 	}
9771 	ret = 0;
9772 
9773 	/*
9774 	 * we're using rename to replace one file with another.  Start IO on it
9775 	 * now so  we don't add too much work to the end of the transaction
9776 	 */
9777 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9778 		filemap_flush(old_inode->i_mapping);
9779 
9780 	/* close the racy window with snapshot create/destroy ioctl */
9781 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9782 		down_read(&fs_info->subvol_sem);
9783 	/*
9784 	 * We want to reserve the absolute worst case amount of items.  So if
9785 	 * both inodes are subvols and we need to unlink them then that would
9786 	 * require 4 item modifications, but if they are both normal inodes it
9787 	 * would require 5 item modifications, so we'll assume they are normal
9788 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9789 	 * should cover the worst case number of items we'll modify.
9790 	 * If our rename has the whiteout flag, we need more 5 units for the
9791 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9792 	 * when selinux is enabled).
9793 	 */
9794 	trans_num_items = 11;
9795 	if (flags & RENAME_WHITEOUT)
9796 		trans_num_items += 5;
9797 	trans = btrfs_start_transaction(root, trans_num_items);
9798 	if (IS_ERR(trans)) {
9799 		ret = PTR_ERR(trans);
9800 		goto out_notrans;
9801 	}
9802 
9803 	if (dest != root)
9804 		btrfs_record_root_in_trans(trans, dest);
9805 
9806 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9807 	if (ret)
9808 		goto out_fail;
9809 
9810 	BTRFS_I(old_inode)->dir_index = 0ULL;
9811 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9812 		/* force full log commit if subvolume involved. */
9813 		btrfs_set_log_full_commit(trans);
9814 	} else {
9815 		btrfs_pin_log_trans(root);
9816 		log_pinned = true;
9817 		ret = btrfs_insert_inode_ref(trans, dest,
9818 					     new_dentry->d_name.name,
9819 					     new_dentry->d_name.len,
9820 					     old_ino,
9821 					     btrfs_ino(BTRFS_I(new_dir)), index);
9822 		if (ret)
9823 			goto out_fail;
9824 	}
9825 
9826 	inode_inc_iversion(old_dir);
9827 	inode_inc_iversion(new_dir);
9828 	inode_inc_iversion(old_inode);
9829 	old_dir->i_ctime = old_dir->i_mtime =
9830 	new_dir->i_ctime = new_dir->i_mtime =
9831 	old_inode->i_ctime = current_time(old_dir);
9832 
9833 	if (old_dentry->d_parent != new_dentry->d_parent)
9834 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9835 				BTRFS_I(old_inode), 1);
9836 
9837 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9838 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9839 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9840 					old_dentry->d_name.name,
9841 					old_dentry->d_name.len);
9842 	} else {
9843 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9844 					BTRFS_I(d_inode(old_dentry)),
9845 					old_dentry->d_name.name,
9846 					old_dentry->d_name.len);
9847 		if (!ret)
9848 			ret = btrfs_update_inode(trans, root, old_inode);
9849 	}
9850 	if (ret) {
9851 		btrfs_abort_transaction(trans, ret);
9852 		goto out_fail;
9853 	}
9854 
9855 	if (new_inode) {
9856 		inode_inc_iversion(new_inode);
9857 		new_inode->i_ctime = current_time(new_inode);
9858 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9859 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9860 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9861 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9862 						new_dentry->d_name.name,
9863 						new_dentry->d_name.len);
9864 			BUG_ON(new_inode->i_nlink == 0);
9865 		} else {
9866 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9867 						 BTRFS_I(d_inode(new_dentry)),
9868 						 new_dentry->d_name.name,
9869 						 new_dentry->d_name.len);
9870 		}
9871 		if (!ret && new_inode->i_nlink == 0)
9872 			ret = btrfs_orphan_add(trans,
9873 					BTRFS_I(d_inode(new_dentry)));
9874 		if (ret) {
9875 			btrfs_abort_transaction(trans, ret);
9876 			goto out_fail;
9877 		}
9878 	}
9879 
9880 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9881 			     new_dentry->d_name.name,
9882 			     new_dentry->d_name.len, 0, index);
9883 	if (ret) {
9884 		btrfs_abort_transaction(trans, ret);
9885 		goto out_fail;
9886 	}
9887 
9888 	if (old_inode->i_nlink == 1)
9889 		BTRFS_I(old_inode)->dir_index = index;
9890 
9891 	if (log_pinned) {
9892 		struct dentry *parent = new_dentry->d_parent;
9893 
9894 		btrfs_init_log_ctx(&ctx, old_inode);
9895 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9896 					 BTRFS_I(old_dir), parent,
9897 					 false, &ctx);
9898 		if (ret == BTRFS_NEED_LOG_SYNC)
9899 			sync_log = true;
9900 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9901 			commit_transaction = true;
9902 		ret = 0;
9903 		btrfs_end_log_trans(root);
9904 		log_pinned = false;
9905 	}
9906 
9907 	if (flags & RENAME_WHITEOUT) {
9908 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9909 						old_dentry);
9910 
9911 		if (ret) {
9912 			btrfs_abort_transaction(trans, ret);
9913 			goto out_fail;
9914 		}
9915 	}
9916 out_fail:
9917 	/*
9918 	 * If we have pinned the log and an error happened, we unpin tasks
9919 	 * trying to sync the log and force them to fallback to a transaction
9920 	 * commit if the log currently contains any of the inodes involved in
9921 	 * this rename operation (to ensure we do not persist a log with an
9922 	 * inconsistent state for any of these inodes or leading to any
9923 	 * inconsistencies when replayed). If the transaction was aborted, the
9924 	 * abortion reason is propagated to userspace when attempting to commit
9925 	 * the transaction. If the log does not contain any of these inodes, we
9926 	 * allow the tasks to sync it.
9927 	 */
9928 	if (ret && log_pinned) {
9929 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9930 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9931 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9932 		    (new_inode &&
9933 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9934 			btrfs_set_log_full_commit(trans);
9935 
9936 		btrfs_end_log_trans(root);
9937 		log_pinned = false;
9938 	}
9939 	if (!ret && sync_log) {
9940 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9941 		if (ret)
9942 			commit_transaction = true;
9943 	}
9944 	if (commit_transaction) {
9945 		ret = btrfs_commit_transaction(trans);
9946 	} else {
9947 		int ret2;
9948 
9949 		ret2 = btrfs_end_transaction(trans);
9950 		ret = ret ? ret : ret2;
9951 	}
9952 out_notrans:
9953 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9954 		up_read(&fs_info->subvol_sem);
9955 
9956 	return ret;
9957 }
9958 
9959 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9960 			 struct inode *new_dir, struct dentry *new_dentry,
9961 			 unsigned int flags)
9962 {
9963 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9964 		return -EINVAL;
9965 
9966 	if (flags & RENAME_EXCHANGE)
9967 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9968 					  new_dentry);
9969 
9970 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9971 }
9972 
9973 struct btrfs_delalloc_work {
9974 	struct inode *inode;
9975 	struct completion completion;
9976 	struct list_head list;
9977 	struct btrfs_work work;
9978 };
9979 
9980 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9981 {
9982 	struct btrfs_delalloc_work *delalloc_work;
9983 	struct inode *inode;
9984 
9985 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9986 				     work);
9987 	inode = delalloc_work->inode;
9988 	filemap_flush(inode->i_mapping);
9989 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9990 				&BTRFS_I(inode)->runtime_flags))
9991 		filemap_flush(inode->i_mapping);
9992 
9993 	iput(inode);
9994 	complete(&delalloc_work->completion);
9995 }
9996 
9997 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9998 {
9999 	struct btrfs_delalloc_work *work;
10000 
10001 	work = kmalloc(sizeof(*work), GFP_NOFS);
10002 	if (!work)
10003 		return NULL;
10004 
10005 	init_completion(&work->completion);
10006 	INIT_LIST_HEAD(&work->list);
10007 	work->inode = inode;
10008 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10009 			btrfs_run_delalloc_work, NULL, NULL);
10010 
10011 	return work;
10012 }
10013 
10014 /*
10015  * some fairly slow code that needs optimization. This walks the list
10016  * of all the inodes with pending delalloc and forces them to disk.
10017  */
10018 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10019 {
10020 	struct btrfs_inode *binode;
10021 	struct inode *inode;
10022 	struct btrfs_delalloc_work *work, *next;
10023 	struct list_head works;
10024 	struct list_head splice;
10025 	int ret = 0;
10026 
10027 	INIT_LIST_HEAD(&works);
10028 	INIT_LIST_HEAD(&splice);
10029 
10030 	mutex_lock(&root->delalloc_mutex);
10031 	spin_lock(&root->delalloc_lock);
10032 	list_splice_init(&root->delalloc_inodes, &splice);
10033 	while (!list_empty(&splice)) {
10034 		binode = list_entry(splice.next, struct btrfs_inode,
10035 				    delalloc_inodes);
10036 
10037 		list_move_tail(&binode->delalloc_inodes,
10038 			       &root->delalloc_inodes);
10039 		inode = igrab(&binode->vfs_inode);
10040 		if (!inode) {
10041 			cond_resched_lock(&root->delalloc_lock);
10042 			continue;
10043 		}
10044 		spin_unlock(&root->delalloc_lock);
10045 
10046 		if (snapshot)
10047 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10048 				&binode->runtime_flags);
10049 		work = btrfs_alloc_delalloc_work(inode);
10050 		if (!work) {
10051 			iput(inode);
10052 			ret = -ENOMEM;
10053 			goto out;
10054 		}
10055 		list_add_tail(&work->list, &works);
10056 		btrfs_queue_work(root->fs_info->flush_workers,
10057 				 &work->work);
10058 		ret++;
10059 		if (nr != -1 && ret >= nr)
10060 			goto out;
10061 		cond_resched();
10062 		spin_lock(&root->delalloc_lock);
10063 	}
10064 	spin_unlock(&root->delalloc_lock);
10065 
10066 out:
10067 	list_for_each_entry_safe(work, next, &works, list) {
10068 		list_del_init(&work->list);
10069 		wait_for_completion(&work->completion);
10070 		kfree(work);
10071 	}
10072 
10073 	if (!list_empty(&splice)) {
10074 		spin_lock(&root->delalloc_lock);
10075 		list_splice_tail(&splice, &root->delalloc_inodes);
10076 		spin_unlock(&root->delalloc_lock);
10077 	}
10078 	mutex_unlock(&root->delalloc_mutex);
10079 	return ret;
10080 }
10081 
10082 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10083 {
10084 	struct btrfs_fs_info *fs_info = root->fs_info;
10085 	int ret;
10086 
10087 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10088 		return -EROFS;
10089 
10090 	ret = start_delalloc_inodes(root, -1, true);
10091 	if (ret > 0)
10092 		ret = 0;
10093 	return ret;
10094 }
10095 
10096 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10097 {
10098 	struct btrfs_root *root;
10099 	struct list_head splice;
10100 	int ret;
10101 
10102 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10103 		return -EROFS;
10104 
10105 	INIT_LIST_HEAD(&splice);
10106 
10107 	mutex_lock(&fs_info->delalloc_root_mutex);
10108 	spin_lock(&fs_info->delalloc_root_lock);
10109 	list_splice_init(&fs_info->delalloc_roots, &splice);
10110 	while (!list_empty(&splice) && nr) {
10111 		root = list_first_entry(&splice, struct btrfs_root,
10112 					delalloc_root);
10113 		root = btrfs_grab_fs_root(root);
10114 		BUG_ON(!root);
10115 		list_move_tail(&root->delalloc_root,
10116 			       &fs_info->delalloc_roots);
10117 		spin_unlock(&fs_info->delalloc_root_lock);
10118 
10119 		ret = start_delalloc_inodes(root, nr, false);
10120 		btrfs_put_fs_root(root);
10121 		if (ret < 0)
10122 			goto out;
10123 
10124 		if (nr != -1) {
10125 			nr -= ret;
10126 			WARN_ON(nr < 0);
10127 		}
10128 		spin_lock(&fs_info->delalloc_root_lock);
10129 	}
10130 	spin_unlock(&fs_info->delalloc_root_lock);
10131 
10132 	ret = 0;
10133 out:
10134 	if (!list_empty(&splice)) {
10135 		spin_lock(&fs_info->delalloc_root_lock);
10136 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10137 		spin_unlock(&fs_info->delalloc_root_lock);
10138 	}
10139 	mutex_unlock(&fs_info->delalloc_root_mutex);
10140 	return ret;
10141 }
10142 
10143 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10144 			 const char *symname)
10145 {
10146 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10147 	struct btrfs_trans_handle *trans;
10148 	struct btrfs_root *root = BTRFS_I(dir)->root;
10149 	struct btrfs_path *path;
10150 	struct btrfs_key key;
10151 	struct inode *inode = NULL;
10152 	int err;
10153 	u64 objectid;
10154 	u64 index = 0;
10155 	int name_len;
10156 	int datasize;
10157 	unsigned long ptr;
10158 	struct btrfs_file_extent_item *ei;
10159 	struct extent_buffer *leaf;
10160 
10161 	name_len = strlen(symname);
10162 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10163 		return -ENAMETOOLONG;
10164 
10165 	/*
10166 	 * 2 items for inode item and ref
10167 	 * 2 items for dir items
10168 	 * 1 item for updating parent inode item
10169 	 * 1 item for the inline extent item
10170 	 * 1 item for xattr if selinux is on
10171 	 */
10172 	trans = btrfs_start_transaction(root, 7);
10173 	if (IS_ERR(trans))
10174 		return PTR_ERR(trans);
10175 
10176 	err = btrfs_find_free_ino(root, &objectid);
10177 	if (err)
10178 		goto out_unlock;
10179 
10180 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10181 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10182 				objectid, S_IFLNK|S_IRWXUGO, &index);
10183 	if (IS_ERR(inode)) {
10184 		err = PTR_ERR(inode);
10185 		inode = NULL;
10186 		goto out_unlock;
10187 	}
10188 
10189 	/*
10190 	* If the active LSM wants to access the inode during
10191 	* d_instantiate it needs these. Smack checks to see
10192 	* if the filesystem supports xattrs by looking at the
10193 	* ops vector.
10194 	*/
10195 	inode->i_fop = &btrfs_file_operations;
10196 	inode->i_op = &btrfs_file_inode_operations;
10197 	inode->i_mapping->a_ops = &btrfs_aops;
10198 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10199 
10200 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10201 	if (err)
10202 		goto out_unlock;
10203 
10204 	path = btrfs_alloc_path();
10205 	if (!path) {
10206 		err = -ENOMEM;
10207 		goto out_unlock;
10208 	}
10209 	key.objectid = btrfs_ino(BTRFS_I(inode));
10210 	key.offset = 0;
10211 	key.type = BTRFS_EXTENT_DATA_KEY;
10212 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10213 	err = btrfs_insert_empty_item(trans, root, path, &key,
10214 				      datasize);
10215 	if (err) {
10216 		btrfs_free_path(path);
10217 		goto out_unlock;
10218 	}
10219 	leaf = path->nodes[0];
10220 	ei = btrfs_item_ptr(leaf, path->slots[0],
10221 			    struct btrfs_file_extent_item);
10222 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10223 	btrfs_set_file_extent_type(leaf, ei,
10224 				   BTRFS_FILE_EXTENT_INLINE);
10225 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10226 	btrfs_set_file_extent_compression(leaf, ei, 0);
10227 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10228 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10229 
10230 	ptr = btrfs_file_extent_inline_start(ei);
10231 	write_extent_buffer(leaf, symname, ptr, name_len);
10232 	btrfs_mark_buffer_dirty(leaf);
10233 	btrfs_free_path(path);
10234 
10235 	inode->i_op = &btrfs_symlink_inode_operations;
10236 	inode_nohighmem(inode);
10237 	inode_set_bytes(inode, name_len);
10238 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10239 	err = btrfs_update_inode(trans, root, inode);
10240 	/*
10241 	 * Last step, add directory indexes for our symlink inode. This is the
10242 	 * last step to avoid extra cleanup of these indexes if an error happens
10243 	 * elsewhere above.
10244 	 */
10245 	if (!err)
10246 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10247 				BTRFS_I(inode), 0, index);
10248 	if (err)
10249 		goto out_unlock;
10250 
10251 	d_instantiate_new(dentry, inode);
10252 
10253 out_unlock:
10254 	btrfs_end_transaction(trans);
10255 	if (err && inode) {
10256 		inode_dec_link_count(inode);
10257 		discard_new_inode(inode);
10258 	}
10259 	btrfs_btree_balance_dirty(fs_info);
10260 	return err;
10261 }
10262 
10263 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10264 				       u64 start, u64 num_bytes, u64 min_size,
10265 				       loff_t actual_len, u64 *alloc_hint,
10266 				       struct btrfs_trans_handle *trans)
10267 {
10268 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10269 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10270 	struct extent_map *em;
10271 	struct btrfs_root *root = BTRFS_I(inode)->root;
10272 	struct btrfs_key ins;
10273 	u64 cur_offset = start;
10274 	u64 i_size;
10275 	u64 cur_bytes;
10276 	u64 last_alloc = (u64)-1;
10277 	int ret = 0;
10278 	bool own_trans = true;
10279 	u64 end = start + num_bytes - 1;
10280 
10281 	if (trans)
10282 		own_trans = false;
10283 	while (num_bytes > 0) {
10284 		if (own_trans) {
10285 			trans = btrfs_start_transaction(root, 3);
10286 			if (IS_ERR(trans)) {
10287 				ret = PTR_ERR(trans);
10288 				break;
10289 			}
10290 		}
10291 
10292 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10293 		cur_bytes = max(cur_bytes, min_size);
10294 		/*
10295 		 * If we are severely fragmented we could end up with really
10296 		 * small allocations, so if the allocator is returning small
10297 		 * chunks lets make its job easier by only searching for those
10298 		 * sized chunks.
10299 		 */
10300 		cur_bytes = min(cur_bytes, last_alloc);
10301 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10302 				min_size, 0, *alloc_hint, &ins, 1, 0);
10303 		if (ret) {
10304 			if (own_trans)
10305 				btrfs_end_transaction(trans);
10306 			break;
10307 		}
10308 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10309 
10310 		last_alloc = ins.offset;
10311 		ret = insert_reserved_file_extent(trans, inode,
10312 						  cur_offset, ins.objectid,
10313 						  ins.offset, ins.offset,
10314 						  ins.offset, 0, 0, 0,
10315 						  BTRFS_FILE_EXTENT_PREALLOC);
10316 		if (ret) {
10317 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10318 						   ins.offset, 0);
10319 			btrfs_abort_transaction(trans, ret);
10320 			if (own_trans)
10321 				btrfs_end_transaction(trans);
10322 			break;
10323 		}
10324 
10325 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10326 					cur_offset + ins.offset -1, 0);
10327 
10328 		em = alloc_extent_map();
10329 		if (!em) {
10330 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10331 				&BTRFS_I(inode)->runtime_flags);
10332 			goto next;
10333 		}
10334 
10335 		em->start = cur_offset;
10336 		em->orig_start = cur_offset;
10337 		em->len = ins.offset;
10338 		em->block_start = ins.objectid;
10339 		em->block_len = ins.offset;
10340 		em->orig_block_len = ins.offset;
10341 		em->ram_bytes = ins.offset;
10342 		em->bdev = fs_info->fs_devices->latest_bdev;
10343 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10344 		em->generation = trans->transid;
10345 
10346 		while (1) {
10347 			write_lock(&em_tree->lock);
10348 			ret = add_extent_mapping(em_tree, em, 1);
10349 			write_unlock(&em_tree->lock);
10350 			if (ret != -EEXIST)
10351 				break;
10352 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10353 						cur_offset + ins.offset - 1,
10354 						0);
10355 		}
10356 		free_extent_map(em);
10357 next:
10358 		num_bytes -= ins.offset;
10359 		cur_offset += ins.offset;
10360 		*alloc_hint = ins.objectid + ins.offset;
10361 
10362 		inode_inc_iversion(inode);
10363 		inode->i_ctime = current_time(inode);
10364 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10365 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10366 		    (actual_len > inode->i_size) &&
10367 		    (cur_offset > inode->i_size)) {
10368 			if (cur_offset > actual_len)
10369 				i_size = actual_len;
10370 			else
10371 				i_size = cur_offset;
10372 			i_size_write(inode, i_size);
10373 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10374 		}
10375 
10376 		ret = btrfs_update_inode(trans, root, inode);
10377 
10378 		if (ret) {
10379 			btrfs_abort_transaction(trans, ret);
10380 			if (own_trans)
10381 				btrfs_end_transaction(trans);
10382 			break;
10383 		}
10384 
10385 		if (own_trans)
10386 			btrfs_end_transaction(trans);
10387 	}
10388 	if (cur_offset < end)
10389 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10390 			end - cur_offset + 1);
10391 	return ret;
10392 }
10393 
10394 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10395 			      u64 start, u64 num_bytes, u64 min_size,
10396 			      loff_t actual_len, u64 *alloc_hint)
10397 {
10398 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10399 					   min_size, actual_len, alloc_hint,
10400 					   NULL);
10401 }
10402 
10403 int btrfs_prealloc_file_range_trans(struct inode *inode,
10404 				    struct btrfs_trans_handle *trans, int mode,
10405 				    u64 start, u64 num_bytes, u64 min_size,
10406 				    loff_t actual_len, u64 *alloc_hint)
10407 {
10408 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10409 					   min_size, actual_len, alloc_hint, trans);
10410 }
10411 
10412 static int btrfs_set_page_dirty(struct page *page)
10413 {
10414 	return __set_page_dirty_nobuffers(page);
10415 }
10416 
10417 static int btrfs_permission(struct inode *inode, int mask)
10418 {
10419 	struct btrfs_root *root = BTRFS_I(inode)->root;
10420 	umode_t mode = inode->i_mode;
10421 
10422 	if (mask & MAY_WRITE &&
10423 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10424 		if (btrfs_root_readonly(root))
10425 			return -EROFS;
10426 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10427 			return -EACCES;
10428 	}
10429 	return generic_permission(inode, mask);
10430 }
10431 
10432 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10433 {
10434 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10435 	struct btrfs_trans_handle *trans;
10436 	struct btrfs_root *root = BTRFS_I(dir)->root;
10437 	struct inode *inode = NULL;
10438 	u64 objectid;
10439 	u64 index;
10440 	int ret = 0;
10441 
10442 	/*
10443 	 * 5 units required for adding orphan entry
10444 	 */
10445 	trans = btrfs_start_transaction(root, 5);
10446 	if (IS_ERR(trans))
10447 		return PTR_ERR(trans);
10448 
10449 	ret = btrfs_find_free_ino(root, &objectid);
10450 	if (ret)
10451 		goto out;
10452 
10453 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10454 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10455 	if (IS_ERR(inode)) {
10456 		ret = PTR_ERR(inode);
10457 		inode = NULL;
10458 		goto out;
10459 	}
10460 
10461 	inode->i_fop = &btrfs_file_operations;
10462 	inode->i_op = &btrfs_file_inode_operations;
10463 
10464 	inode->i_mapping->a_ops = &btrfs_aops;
10465 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10466 
10467 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10468 	if (ret)
10469 		goto out;
10470 
10471 	ret = btrfs_update_inode(trans, root, inode);
10472 	if (ret)
10473 		goto out;
10474 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10475 	if (ret)
10476 		goto out;
10477 
10478 	/*
10479 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10480 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10481 	 * through:
10482 	 *
10483 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10484 	 */
10485 	set_nlink(inode, 1);
10486 	d_tmpfile(dentry, inode);
10487 	unlock_new_inode(inode);
10488 	mark_inode_dirty(inode);
10489 out:
10490 	btrfs_end_transaction(trans);
10491 	if (ret && inode)
10492 		discard_new_inode(inode);
10493 	btrfs_btree_balance_dirty(fs_info);
10494 	return ret;
10495 }
10496 
10497 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10498 {
10499 	struct inode *inode = tree->private_data;
10500 	unsigned long index = start >> PAGE_SHIFT;
10501 	unsigned long end_index = end >> PAGE_SHIFT;
10502 	struct page *page;
10503 
10504 	while (index <= end_index) {
10505 		page = find_get_page(inode->i_mapping, index);
10506 		ASSERT(page); /* Pages should be in the extent_io_tree */
10507 		set_page_writeback(page);
10508 		put_page(page);
10509 		index++;
10510 	}
10511 }
10512 
10513 #ifdef CONFIG_SWAP
10514 /*
10515  * Add an entry indicating a block group or device which is pinned by a
10516  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10517  * negative errno on failure.
10518  */
10519 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10520 				  bool is_block_group)
10521 {
10522 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10523 	struct btrfs_swapfile_pin *sp, *entry;
10524 	struct rb_node **p;
10525 	struct rb_node *parent = NULL;
10526 
10527 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10528 	if (!sp)
10529 		return -ENOMEM;
10530 	sp->ptr = ptr;
10531 	sp->inode = inode;
10532 	sp->is_block_group = is_block_group;
10533 
10534 	spin_lock(&fs_info->swapfile_pins_lock);
10535 	p = &fs_info->swapfile_pins.rb_node;
10536 	while (*p) {
10537 		parent = *p;
10538 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10539 		if (sp->ptr < entry->ptr ||
10540 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10541 			p = &(*p)->rb_left;
10542 		} else if (sp->ptr > entry->ptr ||
10543 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10544 			p = &(*p)->rb_right;
10545 		} else {
10546 			spin_unlock(&fs_info->swapfile_pins_lock);
10547 			kfree(sp);
10548 			return 1;
10549 		}
10550 	}
10551 	rb_link_node(&sp->node, parent, p);
10552 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10553 	spin_unlock(&fs_info->swapfile_pins_lock);
10554 	return 0;
10555 }
10556 
10557 /* Free all of the entries pinned by this swapfile. */
10558 static void btrfs_free_swapfile_pins(struct inode *inode)
10559 {
10560 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10561 	struct btrfs_swapfile_pin *sp;
10562 	struct rb_node *node, *next;
10563 
10564 	spin_lock(&fs_info->swapfile_pins_lock);
10565 	node = rb_first(&fs_info->swapfile_pins);
10566 	while (node) {
10567 		next = rb_next(node);
10568 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10569 		if (sp->inode == inode) {
10570 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10571 			if (sp->is_block_group)
10572 				btrfs_put_block_group(sp->ptr);
10573 			kfree(sp);
10574 		}
10575 		node = next;
10576 	}
10577 	spin_unlock(&fs_info->swapfile_pins_lock);
10578 }
10579 
10580 struct btrfs_swap_info {
10581 	u64 start;
10582 	u64 block_start;
10583 	u64 block_len;
10584 	u64 lowest_ppage;
10585 	u64 highest_ppage;
10586 	unsigned long nr_pages;
10587 	int nr_extents;
10588 };
10589 
10590 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10591 				 struct btrfs_swap_info *bsi)
10592 {
10593 	unsigned long nr_pages;
10594 	u64 first_ppage, first_ppage_reported, next_ppage;
10595 	int ret;
10596 
10597 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10598 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10599 				PAGE_SIZE) >> PAGE_SHIFT;
10600 
10601 	if (first_ppage >= next_ppage)
10602 		return 0;
10603 	nr_pages = next_ppage - first_ppage;
10604 
10605 	first_ppage_reported = first_ppage;
10606 	if (bsi->start == 0)
10607 		first_ppage_reported++;
10608 	if (bsi->lowest_ppage > first_ppage_reported)
10609 		bsi->lowest_ppage = first_ppage_reported;
10610 	if (bsi->highest_ppage < (next_ppage - 1))
10611 		bsi->highest_ppage = next_ppage - 1;
10612 
10613 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10614 	if (ret < 0)
10615 		return ret;
10616 	bsi->nr_extents += ret;
10617 	bsi->nr_pages += nr_pages;
10618 	return 0;
10619 }
10620 
10621 static void btrfs_swap_deactivate(struct file *file)
10622 {
10623 	struct inode *inode = file_inode(file);
10624 
10625 	btrfs_free_swapfile_pins(inode);
10626 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10627 }
10628 
10629 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10630 			       sector_t *span)
10631 {
10632 	struct inode *inode = file_inode(file);
10633 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10634 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10635 	struct extent_state *cached_state = NULL;
10636 	struct extent_map *em = NULL;
10637 	struct btrfs_device *device = NULL;
10638 	struct btrfs_swap_info bsi = {
10639 		.lowest_ppage = (sector_t)-1ULL,
10640 	};
10641 	int ret = 0;
10642 	u64 isize;
10643 	u64 start;
10644 
10645 	/*
10646 	 * If the swap file was just created, make sure delalloc is done. If the
10647 	 * file changes again after this, the user is doing something stupid and
10648 	 * we don't really care.
10649 	 */
10650 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10651 	if (ret)
10652 		return ret;
10653 
10654 	/*
10655 	 * The inode is locked, so these flags won't change after we check them.
10656 	 */
10657 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10658 		btrfs_warn(fs_info, "swapfile must not be compressed");
10659 		return -EINVAL;
10660 	}
10661 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10662 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10663 		return -EINVAL;
10664 	}
10665 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10666 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10667 		return -EINVAL;
10668 	}
10669 
10670 	/*
10671 	 * Balance or device remove/replace/resize can move stuff around from
10672 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10673 	 * concurrently while we are mapping the swap extents, and
10674 	 * fs_info->swapfile_pins prevents them from running while the swap file
10675 	 * is active and moving the extents. Note that this also prevents a
10676 	 * concurrent device add which isn't actually necessary, but it's not
10677 	 * really worth the trouble to allow it.
10678 	 */
10679 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10680 		btrfs_warn(fs_info,
10681 	   "cannot activate swapfile while exclusive operation is running");
10682 		return -EBUSY;
10683 	}
10684 	/*
10685 	 * Snapshots can create extents which require COW even if NODATACOW is
10686 	 * set. We use this counter to prevent snapshots. We must increment it
10687 	 * before walking the extents because we don't want a concurrent
10688 	 * snapshot to run after we've already checked the extents.
10689 	 */
10690 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10691 
10692 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10693 
10694 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10695 	start = 0;
10696 	while (start < isize) {
10697 		u64 logical_block_start, physical_block_start;
10698 		struct btrfs_block_group_cache *bg;
10699 		u64 len = isize - start;
10700 
10701 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10702 		if (IS_ERR(em)) {
10703 			ret = PTR_ERR(em);
10704 			goto out;
10705 		}
10706 
10707 		if (em->block_start == EXTENT_MAP_HOLE) {
10708 			btrfs_warn(fs_info, "swapfile must not have holes");
10709 			ret = -EINVAL;
10710 			goto out;
10711 		}
10712 		if (em->block_start == EXTENT_MAP_INLINE) {
10713 			/*
10714 			 * It's unlikely we'll ever actually find ourselves
10715 			 * here, as a file small enough to fit inline won't be
10716 			 * big enough to store more than the swap header, but in
10717 			 * case something changes in the future, let's catch it
10718 			 * here rather than later.
10719 			 */
10720 			btrfs_warn(fs_info, "swapfile must not be inline");
10721 			ret = -EINVAL;
10722 			goto out;
10723 		}
10724 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10725 			btrfs_warn(fs_info, "swapfile must not be compressed");
10726 			ret = -EINVAL;
10727 			goto out;
10728 		}
10729 
10730 		logical_block_start = em->block_start + (start - em->start);
10731 		len = min(len, em->len - (start - em->start));
10732 		free_extent_map(em);
10733 		em = NULL;
10734 
10735 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10736 		if (ret < 0) {
10737 			goto out;
10738 		} else if (ret) {
10739 			ret = 0;
10740 		} else {
10741 			btrfs_warn(fs_info,
10742 				   "swapfile must not be copy-on-write");
10743 			ret = -EINVAL;
10744 			goto out;
10745 		}
10746 
10747 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10748 		if (IS_ERR(em)) {
10749 			ret = PTR_ERR(em);
10750 			goto out;
10751 		}
10752 
10753 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10754 			btrfs_warn(fs_info,
10755 				   "swapfile must have single data profile");
10756 			ret = -EINVAL;
10757 			goto out;
10758 		}
10759 
10760 		if (device == NULL) {
10761 			device = em->map_lookup->stripes[0].dev;
10762 			ret = btrfs_add_swapfile_pin(inode, device, false);
10763 			if (ret == 1)
10764 				ret = 0;
10765 			else if (ret)
10766 				goto out;
10767 		} else if (device != em->map_lookup->stripes[0].dev) {
10768 			btrfs_warn(fs_info, "swapfile must be on one device");
10769 			ret = -EINVAL;
10770 			goto out;
10771 		}
10772 
10773 		physical_block_start = (em->map_lookup->stripes[0].physical +
10774 					(logical_block_start - em->start));
10775 		len = min(len, em->len - (logical_block_start - em->start));
10776 		free_extent_map(em);
10777 		em = NULL;
10778 
10779 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10780 		if (!bg) {
10781 			btrfs_warn(fs_info,
10782 			   "could not find block group containing swapfile");
10783 			ret = -EINVAL;
10784 			goto out;
10785 		}
10786 
10787 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10788 		if (ret) {
10789 			btrfs_put_block_group(bg);
10790 			if (ret == 1)
10791 				ret = 0;
10792 			else
10793 				goto out;
10794 		}
10795 
10796 		if (bsi.block_len &&
10797 		    bsi.block_start + bsi.block_len == physical_block_start) {
10798 			bsi.block_len += len;
10799 		} else {
10800 			if (bsi.block_len) {
10801 				ret = btrfs_add_swap_extent(sis, &bsi);
10802 				if (ret)
10803 					goto out;
10804 			}
10805 			bsi.start = start;
10806 			bsi.block_start = physical_block_start;
10807 			bsi.block_len = len;
10808 		}
10809 
10810 		start += len;
10811 	}
10812 
10813 	if (bsi.block_len)
10814 		ret = btrfs_add_swap_extent(sis, &bsi);
10815 
10816 out:
10817 	if (!IS_ERR_OR_NULL(em))
10818 		free_extent_map(em);
10819 
10820 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10821 
10822 	if (ret)
10823 		btrfs_swap_deactivate(file);
10824 
10825 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10826 
10827 	if (ret)
10828 		return ret;
10829 
10830 	if (device)
10831 		sis->bdev = device->bdev;
10832 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10833 	sis->max = bsi.nr_pages;
10834 	sis->pages = bsi.nr_pages - 1;
10835 	sis->highest_bit = bsi.nr_pages - 1;
10836 	return bsi.nr_extents;
10837 }
10838 #else
10839 static void btrfs_swap_deactivate(struct file *file)
10840 {
10841 }
10842 
10843 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10844 			       sector_t *span)
10845 {
10846 	return -EOPNOTSUPP;
10847 }
10848 #endif
10849 
10850 static const struct inode_operations btrfs_dir_inode_operations = {
10851 	.getattr	= btrfs_getattr,
10852 	.lookup		= btrfs_lookup,
10853 	.create		= btrfs_create,
10854 	.unlink		= btrfs_unlink,
10855 	.link		= btrfs_link,
10856 	.mkdir		= btrfs_mkdir,
10857 	.rmdir		= btrfs_rmdir,
10858 	.rename		= btrfs_rename2,
10859 	.symlink	= btrfs_symlink,
10860 	.setattr	= btrfs_setattr,
10861 	.mknod		= btrfs_mknod,
10862 	.listxattr	= btrfs_listxattr,
10863 	.permission	= btrfs_permission,
10864 	.get_acl	= btrfs_get_acl,
10865 	.set_acl	= btrfs_set_acl,
10866 	.update_time	= btrfs_update_time,
10867 	.tmpfile        = btrfs_tmpfile,
10868 };
10869 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10870 	.lookup		= btrfs_lookup,
10871 	.permission	= btrfs_permission,
10872 	.update_time	= btrfs_update_time,
10873 };
10874 
10875 static const struct file_operations btrfs_dir_file_operations = {
10876 	.llseek		= generic_file_llseek,
10877 	.read		= generic_read_dir,
10878 	.iterate_shared	= btrfs_real_readdir,
10879 	.open		= btrfs_opendir,
10880 	.unlocked_ioctl	= btrfs_ioctl,
10881 #ifdef CONFIG_COMPAT
10882 	.compat_ioctl	= btrfs_compat_ioctl,
10883 #endif
10884 	.release        = btrfs_release_file,
10885 	.fsync		= btrfs_sync_file,
10886 };
10887 
10888 static const struct extent_io_ops btrfs_extent_io_ops = {
10889 	/* mandatory callbacks */
10890 	.submit_bio_hook = btrfs_submit_bio_hook,
10891 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10892 };
10893 
10894 /*
10895  * btrfs doesn't support the bmap operation because swapfiles
10896  * use bmap to make a mapping of extents in the file.  They assume
10897  * these extents won't change over the life of the file and they
10898  * use the bmap result to do IO directly to the drive.
10899  *
10900  * the btrfs bmap call would return logical addresses that aren't
10901  * suitable for IO and they also will change frequently as COW
10902  * operations happen.  So, swapfile + btrfs == corruption.
10903  *
10904  * For now we're avoiding this by dropping bmap.
10905  */
10906 static const struct address_space_operations btrfs_aops = {
10907 	.readpage	= btrfs_readpage,
10908 	.writepage	= btrfs_writepage,
10909 	.writepages	= btrfs_writepages,
10910 	.readpages	= btrfs_readpages,
10911 	.direct_IO	= btrfs_direct_IO,
10912 	.invalidatepage = btrfs_invalidatepage,
10913 	.releasepage	= btrfs_releasepage,
10914 	.set_page_dirty	= btrfs_set_page_dirty,
10915 	.error_remove_page = generic_error_remove_page,
10916 	.swap_activate	= btrfs_swap_activate,
10917 	.swap_deactivate = btrfs_swap_deactivate,
10918 };
10919 
10920 static const struct inode_operations btrfs_file_inode_operations = {
10921 	.getattr	= btrfs_getattr,
10922 	.setattr	= btrfs_setattr,
10923 	.listxattr      = btrfs_listxattr,
10924 	.permission	= btrfs_permission,
10925 	.fiemap		= btrfs_fiemap,
10926 	.get_acl	= btrfs_get_acl,
10927 	.set_acl	= btrfs_set_acl,
10928 	.update_time	= btrfs_update_time,
10929 };
10930 static const struct inode_operations btrfs_special_inode_operations = {
10931 	.getattr	= btrfs_getattr,
10932 	.setattr	= btrfs_setattr,
10933 	.permission	= btrfs_permission,
10934 	.listxattr	= btrfs_listxattr,
10935 	.get_acl	= btrfs_get_acl,
10936 	.set_acl	= btrfs_set_acl,
10937 	.update_time	= btrfs_update_time,
10938 };
10939 static const struct inode_operations btrfs_symlink_inode_operations = {
10940 	.get_link	= page_get_link,
10941 	.getattr	= btrfs_getattr,
10942 	.setattr	= btrfs_setattr,
10943 	.permission	= btrfs_permission,
10944 	.listxattr	= btrfs_listxattr,
10945 	.update_time	= btrfs_update_time,
10946 };
10947 
10948 const struct dentry_operations btrfs_dentry_operations = {
10949 	.d_delete	= btrfs_dentry_delete,
10950 };
10951