xref: /openbmc/linux/fs/btrfs/inode.c (revision 0a94608f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 
59 struct btrfs_iget_args {
60 	u64 ino;
61 	struct btrfs_root *root;
62 };
63 
64 struct btrfs_dio_data {
65 	ssize_t submitted;
66 	struct extent_changeset *data_reserved;
67 };
68 
69 struct btrfs_rename_ctx {
70 	/* Output field. Stores the index number of the old directory entry. */
71 	u64 index;
72 };
73 
74 static const struct inode_operations btrfs_dir_inode_operations;
75 static const struct inode_operations btrfs_symlink_inode_operations;
76 static const struct inode_operations btrfs_special_inode_operations;
77 static const struct inode_operations btrfs_file_inode_operations;
78 static const struct address_space_operations btrfs_aops;
79 static const struct file_operations btrfs_dir_file_operations;
80 
81 static struct kmem_cache *btrfs_inode_cachep;
82 struct kmem_cache *btrfs_trans_handle_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85 struct kmem_cache *btrfs_free_space_bitmap_cachep;
86 
87 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90 static noinline int cow_file_range(struct btrfs_inode *inode,
91 				   struct page *locked_page,
92 				   u64 start, u64 end, int *page_started,
93 				   unsigned long *nr_written, int unlock);
94 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
95 				       u64 len, u64 orig_start, u64 block_start,
96 				       u64 block_len, u64 orig_block_len,
97 				       u64 ram_bytes, int compress_type,
98 				       int type);
99 
100 static void __endio_write_update_ordered(struct btrfs_inode *inode,
101 					 const u64 offset, const u64 bytes,
102 					 const bool uptodate);
103 
104 /*
105  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
106  *
107  * ilock_flags can have the following bit set:
108  *
109  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
110  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
111  *		     return -EAGAIN
112  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
113  */
114 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
115 {
116 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
117 		if (ilock_flags & BTRFS_ILOCK_TRY) {
118 			if (!inode_trylock_shared(inode))
119 				return -EAGAIN;
120 			else
121 				return 0;
122 		}
123 		inode_lock_shared(inode);
124 	} else {
125 		if (ilock_flags & BTRFS_ILOCK_TRY) {
126 			if (!inode_trylock(inode))
127 				return -EAGAIN;
128 			else
129 				return 0;
130 		}
131 		inode_lock(inode);
132 	}
133 	if (ilock_flags & BTRFS_ILOCK_MMAP)
134 		down_write(&BTRFS_I(inode)->i_mmap_lock);
135 	return 0;
136 }
137 
138 /*
139  * btrfs_inode_unlock - unock inode i_rwsem
140  *
141  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
142  * to decide whether the lock acquired is shared or exclusive.
143  */
144 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
145 {
146 	if (ilock_flags & BTRFS_ILOCK_MMAP)
147 		up_write(&BTRFS_I(inode)->i_mmap_lock);
148 	if (ilock_flags & BTRFS_ILOCK_SHARED)
149 		inode_unlock_shared(inode);
150 	else
151 		inode_unlock(inode);
152 }
153 
154 /*
155  * Cleanup all submitted ordered extents in specified range to handle errors
156  * from the btrfs_run_delalloc_range() callback.
157  *
158  * NOTE: caller must ensure that when an error happens, it can not call
159  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
160  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
161  * to be released, which we want to happen only when finishing the ordered
162  * extent (btrfs_finish_ordered_io()).
163  */
164 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
165 						 struct page *locked_page,
166 						 u64 offset, u64 bytes)
167 {
168 	unsigned long index = offset >> PAGE_SHIFT;
169 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
170 	u64 page_start = page_offset(locked_page);
171 	u64 page_end = page_start + PAGE_SIZE - 1;
172 
173 	struct page *page;
174 
175 	while (index <= end_index) {
176 		/*
177 		 * For locked page, we will call end_extent_writepage() on it
178 		 * in run_delalloc_range() for the error handling.  That
179 		 * end_extent_writepage() function will call
180 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
181 		 * run the ordered extent accounting.
182 		 *
183 		 * Here we can't just clear the Ordered bit, or
184 		 * btrfs_mark_ordered_io_finished() would skip the accounting
185 		 * for the page range, and the ordered extent will never finish.
186 		 */
187 		if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
188 			index++;
189 			continue;
190 		}
191 		page = find_get_page(inode->vfs_inode.i_mapping, index);
192 		index++;
193 		if (!page)
194 			continue;
195 
196 		/*
197 		 * Here we just clear all Ordered bits for every page in the
198 		 * range, then __endio_write_update_ordered() will handle
199 		 * the ordered extent accounting for the range.
200 		 */
201 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
202 					       offset, bytes);
203 		put_page(page);
204 	}
205 
206 	/* The locked page covers the full range, nothing needs to be done */
207 	if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
208 		return;
209 	/*
210 	 * In case this page belongs to the delalloc range being instantiated
211 	 * then skip it, since the first page of a range is going to be
212 	 * properly cleaned up by the caller of run_delalloc_range
213 	 */
214 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
215 		bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
216 		offset = page_offset(locked_page) + PAGE_SIZE;
217 	}
218 
219 	return __endio_write_update_ordered(inode, offset, bytes, false);
220 }
221 
222 static int btrfs_dirty_inode(struct inode *inode);
223 
224 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
225 				     struct inode *inode,  struct inode *dir,
226 				     const struct qstr *qstr)
227 {
228 	int err;
229 
230 	err = btrfs_init_acl(trans, inode, dir);
231 	if (!err)
232 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
233 	return err;
234 }
235 
236 /*
237  * this does all the hard work for inserting an inline extent into
238  * the btree.  The caller should have done a btrfs_drop_extents so that
239  * no overlapping inline items exist in the btree
240  */
241 static int insert_inline_extent(struct btrfs_trans_handle *trans,
242 				struct btrfs_path *path,
243 				struct btrfs_inode *inode, bool extent_inserted,
244 				size_t size, size_t compressed_size,
245 				int compress_type,
246 				struct page **compressed_pages,
247 				bool update_i_size)
248 {
249 	struct btrfs_root *root = inode->root;
250 	struct extent_buffer *leaf;
251 	struct page *page = NULL;
252 	char *kaddr;
253 	unsigned long ptr;
254 	struct btrfs_file_extent_item *ei;
255 	int ret;
256 	size_t cur_size = size;
257 	u64 i_size;
258 
259 	ASSERT((compressed_size > 0 && compressed_pages) ||
260 	       (compressed_size == 0 && !compressed_pages));
261 
262 	if (compressed_size && compressed_pages)
263 		cur_size = compressed_size;
264 
265 	if (!extent_inserted) {
266 		struct btrfs_key key;
267 		size_t datasize;
268 
269 		key.objectid = btrfs_ino(inode);
270 		key.offset = 0;
271 		key.type = BTRFS_EXTENT_DATA_KEY;
272 
273 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
274 		ret = btrfs_insert_empty_item(trans, root, path, &key,
275 					      datasize);
276 		if (ret)
277 			goto fail;
278 	}
279 	leaf = path->nodes[0];
280 	ei = btrfs_item_ptr(leaf, path->slots[0],
281 			    struct btrfs_file_extent_item);
282 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
283 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
284 	btrfs_set_file_extent_encryption(leaf, ei, 0);
285 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
286 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
287 	ptr = btrfs_file_extent_inline_start(ei);
288 
289 	if (compress_type != BTRFS_COMPRESS_NONE) {
290 		struct page *cpage;
291 		int i = 0;
292 		while (compressed_size > 0) {
293 			cpage = compressed_pages[i];
294 			cur_size = min_t(unsigned long, compressed_size,
295 				       PAGE_SIZE);
296 
297 			kaddr = kmap_atomic(cpage);
298 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
299 			kunmap_atomic(kaddr);
300 
301 			i++;
302 			ptr += cur_size;
303 			compressed_size -= cur_size;
304 		}
305 		btrfs_set_file_extent_compression(leaf, ei,
306 						  compress_type);
307 	} else {
308 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
309 		btrfs_set_file_extent_compression(leaf, ei, 0);
310 		kaddr = kmap_atomic(page);
311 		write_extent_buffer(leaf, kaddr, ptr, size);
312 		kunmap_atomic(kaddr);
313 		put_page(page);
314 	}
315 	btrfs_mark_buffer_dirty(leaf);
316 	btrfs_release_path(path);
317 
318 	/*
319 	 * We align size to sectorsize for inline extents just for simplicity
320 	 * sake.
321 	 */
322 	ret = btrfs_inode_set_file_extent_range(inode, 0,
323 					ALIGN(size, root->fs_info->sectorsize));
324 	if (ret)
325 		goto fail;
326 
327 	/*
328 	 * We're an inline extent, so nobody can extend the file past i_size
329 	 * without locking a page we already have locked.
330 	 *
331 	 * We must do any i_size and inode updates before we unlock the pages.
332 	 * Otherwise we could end up racing with unlink.
333 	 */
334 	i_size = i_size_read(&inode->vfs_inode);
335 	if (update_i_size && size > i_size) {
336 		i_size_write(&inode->vfs_inode, size);
337 		i_size = size;
338 	}
339 	inode->disk_i_size = i_size;
340 
341 fail:
342 	return ret;
343 }
344 
345 
346 /*
347  * conditionally insert an inline extent into the file.  This
348  * does the checks required to make sure the data is small enough
349  * to fit as an inline extent.
350  */
351 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
352 					  size_t compressed_size,
353 					  int compress_type,
354 					  struct page **compressed_pages,
355 					  bool update_i_size)
356 {
357 	struct btrfs_drop_extents_args drop_args = { 0 };
358 	struct btrfs_root *root = inode->root;
359 	struct btrfs_fs_info *fs_info = root->fs_info;
360 	struct btrfs_trans_handle *trans;
361 	u64 data_len = (compressed_size ?: size);
362 	int ret;
363 	struct btrfs_path *path;
364 
365 	/*
366 	 * We can create an inline extent if it ends at or beyond the current
367 	 * i_size, is no larger than a sector (decompressed), and the (possibly
368 	 * compressed) data fits in a leaf and the configured maximum inline
369 	 * size.
370 	 */
371 	if (size < i_size_read(&inode->vfs_inode) ||
372 	    size > fs_info->sectorsize ||
373 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
374 	    data_len > fs_info->max_inline)
375 		return 1;
376 
377 	path = btrfs_alloc_path();
378 	if (!path)
379 		return -ENOMEM;
380 
381 	trans = btrfs_join_transaction(root);
382 	if (IS_ERR(trans)) {
383 		btrfs_free_path(path);
384 		return PTR_ERR(trans);
385 	}
386 	trans->block_rsv = &inode->block_rsv;
387 
388 	drop_args.path = path;
389 	drop_args.start = 0;
390 	drop_args.end = fs_info->sectorsize;
391 	drop_args.drop_cache = true;
392 	drop_args.replace_extent = true;
393 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
394 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
395 	if (ret) {
396 		btrfs_abort_transaction(trans, ret);
397 		goto out;
398 	}
399 
400 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
401 				   size, compressed_size, compress_type,
402 				   compressed_pages, update_i_size);
403 	if (ret && ret != -ENOSPC) {
404 		btrfs_abort_transaction(trans, ret);
405 		goto out;
406 	} else if (ret == -ENOSPC) {
407 		ret = 1;
408 		goto out;
409 	}
410 
411 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
412 	ret = btrfs_update_inode(trans, root, inode);
413 	if (ret && ret != -ENOSPC) {
414 		btrfs_abort_transaction(trans, ret);
415 		goto out;
416 	} else if (ret == -ENOSPC) {
417 		ret = 1;
418 		goto out;
419 	}
420 
421 	btrfs_set_inode_full_sync(inode);
422 out:
423 	/*
424 	 * Don't forget to free the reserved space, as for inlined extent
425 	 * it won't count as data extent, free them directly here.
426 	 * And at reserve time, it's always aligned to page size, so
427 	 * just free one page here.
428 	 */
429 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
430 	btrfs_free_path(path);
431 	btrfs_end_transaction(trans);
432 	return ret;
433 }
434 
435 struct async_extent {
436 	u64 start;
437 	u64 ram_size;
438 	u64 compressed_size;
439 	struct page **pages;
440 	unsigned long nr_pages;
441 	int compress_type;
442 	struct list_head list;
443 };
444 
445 struct async_chunk {
446 	struct inode *inode;
447 	struct page *locked_page;
448 	u64 start;
449 	u64 end;
450 	unsigned int write_flags;
451 	struct list_head extents;
452 	struct cgroup_subsys_state *blkcg_css;
453 	struct btrfs_work work;
454 	struct async_cow *async_cow;
455 };
456 
457 struct async_cow {
458 	atomic_t num_chunks;
459 	struct async_chunk chunks[];
460 };
461 
462 static noinline int add_async_extent(struct async_chunk *cow,
463 				     u64 start, u64 ram_size,
464 				     u64 compressed_size,
465 				     struct page **pages,
466 				     unsigned long nr_pages,
467 				     int compress_type)
468 {
469 	struct async_extent *async_extent;
470 
471 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
472 	BUG_ON(!async_extent); /* -ENOMEM */
473 	async_extent->start = start;
474 	async_extent->ram_size = ram_size;
475 	async_extent->compressed_size = compressed_size;
476 	async_extent->pages = pages;
477 	async_extent->nr_pages = nr_pages;
478 	async_extent->compress_type = compress_type;
479 	list_add_tail(&async_extent->list, &cow->extents);
480 	return 0;
481 }
482 
483 /*
484  * Check if the inode has flags compatible with compression
485  */
486 static inline bool inode_can_compress(struct btrfs_inode *inode)
487 {
488 	if (inode->flags & BTRFS_INODE_NODATACOW ||
489 	    inode->flags & BTRFS_INODE_NODATASUM)
490 		return false;
491 	return true;
492 }
493 
494 /*
495  * Check if the inode needs to be submitted to compression, based on mount
496  * options, defragmentation, properties or heuristics.
497  */
498 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
499 				      u64 end)
500 {
501 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
502 
503 	if (!inode_can_compress(inode)) {
504 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
505 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
506 			btrfs_ino(inode));
507 		return 0;
508 	}
509 	/*
510 	 * Special check for subpage.
511 	 *
512 	 * We lock the full page then run each delalloc range in the page, thus
513 	 * for the following case, we will hit some subpage specific corner case:
514 	 *
515 	 * 0		32K		64K
516 	 * |	|///////|	|///////|
517 	 *		\- A		\- B
518 	 *
519 	 * In above case, both range A and range B will try to unlock the full
520 	 * page [0, 64K), causing the one finished later will have page
521 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
522 	 *
523 	 * So here we add an artificial limit that subpage compression can only
524 	 * if the range is fully page aligned.
525 	 *
526 	 * In theory we only need to ensure the first page is fully covered, but
527 	 * the tailing partial page will be locked until the full compression
528 	 * finishes, delaying the write of other range.
529 	 *
530 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
531 	 * first to prevent any submitted async extent to unlock the full page.
532 	 * By this, we can ensure for subpage case that only the last async_cow
533 	 * will unlock the full page.
534 	 */
535 	if (fs_info->sectorsize < PAGE_SIZE) {
536 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
537 		    !IS_ALIGNED(end + 1, PAGE_SIZE))
538 			return 0;
539 	}
540 
541 	/* force compress */
542 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
543 		return 1;
544 	/* defrag ioctl */
545 	if (inode->defrag_compress)
546 		return 1;
547 	/* bad compression ratios */
548 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
549 		return 0;
550 	if (btrfs_test_opt(fs_info, COMPRESS) ||
551 	    inode->flags & BTRFS_INODE_COMPRESS ||
552 	    inode->prop_compress)
553 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
554 	return 0;
555 }
556 
557 static inline void inode_should_defrag(struct btrfs_inode *inode,
558 		u64 start, u64 end, u64 num_bytes, u32 small_write)
559 {
560 	/* If this is a small write inside eof, kick off a defrag */
561 	if (num_bytes < small_write &&
562 	    (start > 0 || end + 1 < inode->disk_i_size))
563 		btrfs_add_inode_defrag(NULL, inode, small_write);
564 }
565 
566 /*
567  * we create compressed extents in two phases.  The first
568  * phase compresses a range of pages that have already been
569  * locked (both pages and state bits are locked).
570  *
571  * This is done inside an ordered work queue, and the compression
572  * is spread across many cpus.  The actual IO submission is step
573  * two, and the ordered work queue takes care of making sure that
574  * happens in the same order things were put onto the queue by
575  * writepages and friends.
576  *
577  * If this code finds it can't get good compression, it puts an
578  * entry onto the work queue to write the uncompressed bytes.  This
579  * makes sure that both compressed inodes and uncompressed inodes
580  * are written in the same order that the flusher thread sent them
581  * down.
582  */
583 static noinline int compress_file_range(struct async_chunk *async_chunk)
584 {
585 	struct inode *inode = async_chunk->inode;
586 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
587 	u64 blocksize = fs_info->sectorsize;
588 	u64 start = async_chunk->start;
589 	u64 end = async_chunk->end;
590 	u64 actual_end;
591 	u64 i_size;
592 	int ret = 0;
593 	struct page **pages = NULL;
594 	unsigned long nr_pages;
595 	unsigned long total_compressed = 0;
596 	unsigned long total_in = 0;
597 	int i;
598 	int will_compress;
599 	int compress_type = fs_info->compress_type;
600 	int compressed_extents = 0;
601 	int redirty = 0;
602 
603 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
604 			SZ_16K);
605 
606 	/*
607 	 * We need to save i_size before now because it could change in between
608 	 * us evaluating the size and assigning it.  This is because we lock and
609 	 * unlock the page in truncate and fallocate, and then modify the i_size
610 	 * later on.
611 	 *
612 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
613 	 * does that for us.
614 	 */
615 	barrier();
616 	i_size = i_size_read(inode);
617 	barrier();
618 	actual_end = min_t(u64, i_size, end + 1);
619 again:
620 	will_compress = 0;
621 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
622 	nr_pages = min_t(unsigned long, nr_pages,
623 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
624 
625 	/*
626 	 * we don't want to send crud past the end of i_size through
627 	 * compression, that's just a waste of CPU time.  So, if the
628 	 * end of the file is before the start of our current
629 	 * requested range of bytes, we bail out to the uncompressed
630 	 * cleanup code that can deal with all of this.
631 	 *
632 	 * It isn't really the fastest way to fix things, but this is a
633 	 * very uncommon corner.
634 	 */
635 	if (actual_end <= start)
636 		goto cleanup_and_bail_uncompressed;
637 
638 	total_compressed = actual_end - start;
639 
640 	/*
641 	 * Skip compression for a small file range(<=blocksize) that
642 	 * isn't an inline extent, since it doesn't save disk space at all.
643 	 */
644 	if (total_compressed <= blocksize &&
645 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
646 		goto cleanup_and_bail_uncompressed;
647 
648 	/*
649 	 * For subpage case, we require full page alignment for the sector
650 	 * aligned range.
651 	 * Thus we must also check against @actual_end, not just @end.
652 	 */
653 	if (blocksize < PAGE_SIZE) {
654 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
655 		    !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
656 			goto cleanup_and_bail_uncompressed;
657 	}
658 
659 	total_compressed = min_t(unsigned long, total_compressed,
660 			BTRFS_MAX_UNCOMPRESSED);
661 	total_in = 0;
662 	ret = 0;
663 
664 	/*
665 	 * we do compression for mount -o compress and when the
666 	 * inode has not been flagged as nocompress.  This flag can
667 	 * change at any time if we discover bad compression ratios.
668 	 */
669 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
670 		WARN_ON(pages);
671 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
672 		if (!pages) {
673 			/* just bail out to the uncompressed code */
674 			nr_pages = 0;
675 			goto cont;
676 		}
677 
678 		if (BTRFS_I(inode)->defrag_compress)
679 			compress_type = BTRFS_I(inode)->defrag_compress;
680 		else if (BTRFS_I(inode)->prop_compress)
681 			compress_type = BTRFS_I(inode)->prop_compress;
682 
683 		/*
684 		 * we need to call clear_page_dirty_for_io on each
685 		 * page in the range.  Otherwise applications with the file
686 		 * mmap'd can wander in and change the page contents while
687 		 * we are compressing them.
688 		 *
689 		 * If the compression fails for any reason, we set the pages
690 		 * dirty again later on.
691 		 *
692 		 * Note that the remaining part is redirtied, the start pointer
693 		 * has moved, the end is the original one.
694 		 */
695 		if (!redirty) {
696 			extent_range_clear_dirty_for_io(inode, start, end);
697 			redirty = 1;
698 		}
699 
700 		/* Compression level is applied here and only here */
701 		ret = btrfs_compress_pages(
702 			compress_type | (fs_info->compress_level << 4),
703 					   inode->i_mapping, start,
704 					   pages,
705 					   &nr_pages,
706 					   &total_in,
707 					   &total_compressed);
708 
709 		if (!ret) {
710 			unsigned long offset = offset_in_page(total_compressed);
711 			struct page *page = pages[nr_pages - 1];
712 
713 			/* zero the tail end of the last page, we might be
714 			 * sending it down to disk
715 			 */
716 			if (offset)
717 				memzero_page(page, offset, PAGE_SIZE - offset);
718 			will_compress = 1;
719 		}
720 	}
721 cont:
722 	/*
723 	 * Check cow_file_range() for why we don't even try to create inline
724 	 * extent for subpage case.
725 	 */
726 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
727 		/* lets try to make an inline extent */
728 		if (ret || total_in < actual_end) {
729 			/* we didn't compress the entire range, try
730 			 * to make an uncompressed inline extent.
731 			 */
732 			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
733 						    0, BTRFS_COMPRESS_NONE,
734 						    NULL, false);
735 		} else {
736 			/* try making a compressed inline extent */
737 			ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
738 						    total_compressed,
739 						    compress_type, pages,
740 						    false);
741 		}
742 		if (ret <= 0) {
743 			unsigned long clear_flags = EXTENT_DELALLOC |
744 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
745 				EXTENT_DO_ACCOUNTING;
746 			unsigned long page_error_op;
747 
748 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
749 
750 			/*
751 			 * inline extent creation worked or returned error,
752 			 * we don't need to create any more async work items.
753 			 * Unlock and free up our temp pages.
754 			 *
755 			 * We use DO_ACCOUNTING here because we need the
756 			 * delalloc_release_metadata to be done _after_ we drop
757 			 * our outstanding extent for clearing delalloc for this
758 			 * range.
759 			 */
760 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
761 						     NULL,
762 						     clear_flags,
763 						     PAGE_UNLOCK |
764 						     PAGE_START_WRITEBACK |
765 						     page_error_op |
766 						     PAGE_END_WRITEBACK);
767 
768 			/*
769 			 * Ensure we only free the compressed pages if we have
770 			 * them allocated, as we can still reach here with
771 			 * inode_need_compress() == false.
772 			 */
773 			if (pages) {
774 				for (i = 0; i < nr_pages; i++) {
775 					WARN_ON(pages[i]->mapping);
776 					put_page(pages[i]);
777 				}
778 				kfree(pages);
779 			}
780 			return 0;
781 		}
782 	}
783 
784 	if (will_compress) {
785 		/*
786 		 * we aren't doing an inline extent round the compressed size
787 		 * up to a block size boundary so the allocator does sane
788 		 * things
789 		 */
790 		total_compressed = ALIGN(total_compressed, blocksize);
791 
792 		/*
793 		 * one last check to make sure the compression is really a
794 		 * win, compare the page count read with the blocks on disk,
795 		 * compression must free at least one sector size
796 		 */
797 		total_in = round_up(total_in, fs_info->sectorsize);
798 		if (total_compressed + blocksize <= total_in) {
799 			compressed_extents++;
800 
801 			/*
802 			 * The async work queues will take care of doing actual
803 			 * allocation on disk for these compressed pages, and
804 			 * will submit them to the elevator.
805 			 */
806 			add_async_extent(async_chunk, start, total_in,
807 					total_compressed, pages, nr_pages,
808 					compress_type);
809 
810 			if (start + total_in < end) {
811 				start += total_in;
812 				pages = NULL;
813 				cond_resched();
814 				goto again;
815 			}
816 			return compressed_extents;
817 		}
818 	}
819 	if (pages) {
820 		/*
821 		 * the compression code ran but failed to make things smaller,
822 		 * free any pages it allocated and our page pointer array
823 		 */
824 		for (i = 0; i < nr_pages; i++) {
825 			WARN_ON(pages[i]->mapping);
826 			put_page(pages[i]);
827 		}
828 		kfree(pages);
829 		pages = NULL;
830 		total_compressed = 0;
831 		nr_pages = 0;
832 
833 		/* flag the file so we don't compress in the future */
834 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
835 		    !(BTRFS_I(inode)->prop_compress)) {
836 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
837 		}
838 	}
839 cleanup_and_bail_uncompressed:
840 	/*
841 	 * No compression, but we still need to write the pages in the file
842 	 * we've been given so far.  redirty the locked page if it corresponds
843 	 * to our extent and set things up for the async work queue to run
844 	 * cow_file_range to do the normal delalloc dance.
845 	 */
846 	if (async_chunk->locked_page &&
847 	    (page_offset(async_chunk->locked_page) >= start &&
848 	     page_offset(async_chunk->locked_page)) <= end) {
849 		__set_page_dirty_nobuffers(async_chunk->locked_page);
850 		/* unlocked later on in the async handlers */
851 	}
852 
853 	if (redirty)
854 		extent_range_redirty_for_io(inode, start, end);
855 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
856 			 BTRFS_COMPRESS_NONE);
857 	compressed_extents++;
858 
859 	return compressed_extents;
860 }
861 
862 static void free_async_extent_pages(struct async_extent *async_extent)
863 {
864 	int i;
865 
866 	if (!async_extent->pages)
867 		return;
868 
869 	for (i = 0; i < async_extent->nr_pages; i++) {
870 		WARN_ON(async_extent->pages[i]->mapping);
871 		put_page(async_extent->pages[i]);
872 	}
873 	kfree(async_extent->pages);
874 	async_extent->nr_pages = 0;
875 	async_extent->pages = NULL;
876 }
877 
878 static int submit_uncompressed_range(struct btrfs_inode *inode,
879 				     struct async_extent *async_extent,
880 				     struct page *locked_page)
881 {
882 	u64 start = async_extent->start;
883 	u64 end = async_extent->start + async_extent->ram_size - 1;
884 	unsigned long nr_written = 0;
885 	int page_started = 0;
886 	int ret;
887 
888 	/*
889 	 * Call cow_file_range() to run the delalloc range directly, since we
890 	 * won't go to NOCOW or async path again.
891 	 *
892 	 * Also we call cow_file_range() with @unlock_page == 0, so that we
893 	 * can directly submit them without interruption.
894 	 */
895 	ret = cow_file_range(inode, locked_page, start, end, &page_started,
896 			     &nr_written, 0);
897 	/* Inline extent inserted, page gets unlocked and everything is done */
898 	if (page_started) {
899 		ret = 0;
900 		goto out;
901 	}
902 	if (ret < 0) {
903 		if (locked_page)
904 			unlock_page(locked_page);
905 		goto out;
906 	}
907 
908 	ret = extent_write_locked_range(&inode->vfs_inode, start, end);
909 	/* All pages will be unlocked, including @locked_page */
910 out:
911 	kfree(async_extent);
912 	return ret;
913 }
914 
915 static int submit_one_async_extent(struct btrfs_inode *inode,
916 				   struct async_chunk *async_chunk,
917 				   struct async_extent *async_extent,
918 				   u64 *alloc_hint)
919 {
920 	struct extent_io_tree *io_tree = &inode->io_tree;
921 	struct btrfs_root *root = inode->root;
922 	struct btrfs_fs_info *fs_info = root->fs_info;
923 	struct btrfs_key ins;
924 	struct page *locked_page = NULL;
925 	struct extent_map *em;
926 	int ret = 0;
927 	u64 start = async_extent->start;
928 	u64 end = async_extent->start + async_extent->ram_size - 1;
929 
930 	/*
931 	 * If async_chunk->locked_page is in the async_extent range, we need to
932 	 * handle it.
933 	 */
934 	if (async_chunk->locked_page) {
935 		u64 locked_page_start = page_offset(async_chunk->locked_page);
936 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
937 
938 		if (!(start >= locked_page_end || end <= locked_page_start))
939 			locked_page = async_chunk->locked_page;
940 	}
941 	lock_extent(io_tree, start, end);
942 
943 	/* We have fall back to uncompressed write */
944 	if (!async_extent->pages)
945 		return submit_uncompressed_range(inode, async_extent, locked_page);
946 
947 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
948 				   async_extent->compressed_size,
949 				   async_extent->compressed_size,
950 				   0, *alloc_hint, &ins, 1, 1);
951 	if (ret) {
952 		free_async_extent_pages(async_extent);
953 		/*
954 		 * Here we used to try again by going back to non-compressed
955 		 * path for ENOSPC.  But we can't reserve space even for
956 		 * compressed size, how could it work for uncompressed size
957 		 * which requires larger size?  So here we directly go error
958 		 * path.
959 		 */
960 		goto out_free;
961 	}
962 
963 	/* Here we're doing allocation and writeback of the compressed pages */
964 	em = create_io_em(inode, start,
965 			  async_extent->ram_size,	/* len */
966 			  start,			/* orig_start */
967 			  ins.objectid,			/* block_start */
968 			  ins.offset,			/* block_len */
969 			  ins.offset,			/* orig_block_len */
970 			  async_extent->ram_size,	/* ram_bytes */
971 			  async_extent->compress_type,
972 			  BTRFS_ORDERED_COMPRESSED);
973 	if (IS_ERR(em)) {
974 		ret = PTR_ERR(em);
975 		goto out_free_reserve;
976 	}
977 	free_extent_map(em);
978 
979 	ret = btrfs_add_ordered_extent(inode, start,		/* file_offset */
980 				       async_extent->ram_size,	/* num_bytes */
981 				       async_extent->ram_size,	/* ram_bytes */
982 				       ins.objectid,		/* disk_bytenr */
983 				       ins.offset,		/* disk_num_bytes */
984 				       0,			/* offset */
985 				       1 << BTRFS_ORDERED_COMPRESSED,
986 				       async_extent->compress_type);
987 	if (ret) {
988 		btrfs_drop_extent_cache(inode, start, end, 0);
989 		goto out_free_reserve;
990 	}
991 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
992 
993 	/* Clear dirty, set writeback and unlock the pages. */
994 	extent_clear_unlock_delalloc(inode, start, end,
995 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
996 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
997 	if (btrfs_submit_compressed_write(inode, start,	/* file_offset */
998 			    async_extent->ram_size,	/* num_bytes */
999 			    ins.objectid,		/* disk_bytenr */
1000 			    ins.offset,			/* compressed_len */
1001 			    async_extent->pages,	/* compressed_pages */
1002 			    async_extent->nr_pages,
1003 			    async_chunk->write_flags,
1004 			    async_chunk->blkcg_css, true)) {
1005 		const u64 start = async_extent->start;
1006 		const u64 end = start + async_extent->ram_size - 1;
1007 
1008 		btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1009 
1010 		extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1011 					     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1012 		free_async_extent_pages(async_extent);
1013 	}
1014 	*alloc_hint = ins.objectid + ins.offset;
1015 	kfree(async_extent);
1016 	return ret;
1017 
1018 out_free_reserve:
1019 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1020 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1021 out_free:
1022 	extent_clear_unlock_delalloc(inode, start, end,
1023 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1024 				     EXTENT_DELALLOC_NEW |
1025 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1026 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1027 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1028 	free_async_extent_pages(async_extent);
1029 	kfree(async_extent);
1030 	return ret;
1031 }
1032 
1033 /*
1034  * Phase two of compressed writeback.  This is the ordered portion of the code,
1035  * which only gets called in the order the work was queued.  We walk all the
1036  * async extents created by compress_file_range and send them down to the disk.
1037  */
1038 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1039 {
1040 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1041 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1042 	struct async_extent *async_extent;
1043 	u64 alloc_hint = 0;
1044 	int ret = 0;
1045 
1046 	while (!list_empty(&async_chunk->extents)) {
1047 		u64 extent_start;
1048 		u64 ram_size;
1049 
1050 		async_extent = list_entry(async_chunk->extents.next,
1051 					  struct async_extent, list);
1052 		list_del(&async_extent->list);
1053 		extent_start = async_extent->start;
1054 		ram_size = async_extent->ram_size;
1055 
1056 		ret = submit_one_async_extent(inode, async_chunk, async_extent,
1057 					      &alloc_hint);
1058 		btrfs_debug(fs_info,
1059 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1060 			    inode->root->root_key.objectid,
1061 			    btrfs_ino(inode), extent_start, ram_size, ret);
1062 	}
1063 }
1064 
1065 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1066 				      u64 num_bytes)
1067 {
1068 	struct extent_map_tree *em_tree = &inode->extent_tree;
1069 	struct extent_map *em;
1070 	u64 alloc_hint = 0;
1071 
1072 	read_lock(&em_tree->lock);
1073 	em = search_extent_mapping(em_tree, start, num_bytes);
1074 	if (em) {
1075 		/*
1076 		 * if block start isn't an actual block number then find the
1077 		 * first block in this inode and use that as a hint.  If that
1078 		 * block is also bogus then just don't worry about it.
1079 		 */
1080 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1081 			free_extent_map(em);
1082 			em = search_extent_mapping(em_tree, 0, 0);
1083 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1084 				alloc_hint = em->block_start;
1085 			if (em)
1086 				free_extent_map(em);
1087 		} else {
1088 			alloc_hint = em->block_start;
1089 			free_extent_map(em);
1090 		}
1091 	}
1092 	read_unlock(&em_tree->lock);
1093 
1094 	return alloc_hint;
1095 }
1096 
1097 /*
1098  * when extent_io.c finds a delayed allocation range in the file,
1099  * the call backs end up in this code.  The basic idea is to
1100  * allocate extents on disk for the range, and create ordered data structs
1101  * in ram to track those extents.
1102  *
1103  * locked_page is the page that writepage had locked already.  We use
1104  * it to make sure we don't do extra locks or unlocks.
1105  *
1106  * *page_started is set to one if we unlock locked_page and do everything
1107  * required to start IO on it.  It may be clean and already done with
1108  * IO when we return.
1109  */
1110 static noinline int cow_file_range(struct btrfs_inode *inode,
1111 				   struct page *locked_page,
1112 				   u64 start, u64 end, int *page_started,
1113 				   unsigned long *nr_written, int unlock)
1114 {
1115 	struct btrfs_root *root = inode->root;
1116 	struct btrfs_fs_info *fs_info = root->fs_info;
1117 	u64 alloc_hint = 0;
1118 	u64 num_bytes;
1119 	unsigned long ram_size;
1120 	u64 cur_alloc_size = 0;
1121 	u64 min_alloc_size;
1122 	u64 blocksize = fs_info->sectorsize;
1123 	struct btrfs_key ins;
1124 	struct extent_map *em;
1125 	unsigned clear_bits;
1126 	unsigned long page_ops;
1127 	bool extent_reserved = false;
1128 	int ret = 0;
1129 
1130 	if (btrfs_is_free_space_inode(inode)) {
1131 		ret = -EINVAL;
1132 		goto out_unlock;
1133 	}
1134 
1135 	num_bytes = ALIGN(end - start + 1, blocksize);
1136 	num_bytes = max(blocksize,  num_bytes);
1137 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1138 
1139 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1140 
1141 	/*
1142 	 * Due to the page size limit, for subpage we can only trigger the
1143 	 * writeback for the dirty sectors of page, that means data writeback
1144 	 * is doing more writeback than what we want.
1145 	 *
1146 	 * This is especially unexpected for some call sites like fallocate,
1147 	 * where we only increase i_size after everything is done.
1148 	 * This means we can trigger inline extent even if we didn't want to.
1149 	 * So here we skip inline extent creation completely.
1150 	 */
1151 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1152 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1153 				       end + 1);
1154 
1155 		/* lets try to make an inline extent */
1156 		ret = cow_file_range_inline(inode, actual_end, 0,
1157 					    BTRFS_COMPRESS_NONE, NULL, false);
1158 		if (ret == 0) {
1159 			/*
1160 			 * We use DO_ACCOUNTING here because we need the
1161 			 * delalloc_release_metadata to be run _after_ we drop
1162 			 * our outstanding extent for clearing delalloc for this
1163 			 * range.
1164 			 */
1165 			extent_clear_unlock_delalloc(inode, start, end,
1166 				     locked_page,
1167 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1168 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1169 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1170 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1171 			*nr_written = *nr_written +
1172 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1173 			*page_started = 1;
1174 			/*
1175 			 * locked_page is locked by the caller of
1176 			 * writepage_delalloc(), not locked by
1177 			 * __process_pages_contig().
1178 			 *
1179 			 * We can't let __process_pages_contig() to unlock it,
1180 			 * as it doesn't have any subpage::writers recorded.
1181 			 *
1182 			 * Here we manually unlock the page, since the caller
1183 			 * can't use page_started to determine if it's an
1184 			 * inline extent or a compressed extent.
1185 			 */
1186 			unlock_page(locked_page);
1187 			goto out;
1188 		} else if (ret < 0) {
1189 			goto out_unlock;
1190 		}
1191 	}
1192 
1193 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1194 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1195 
1196 	/*
1197 	 * Relocation relies on the relocated extents to have exactly the same
1198 	 * size as the original extents. Normally writeback for relocation data
1199 	 * extents follows a NOCOW path because relocation preallocates the
1200 	 * extents. However, due to an operation such as scrub turning a block
1201 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1202 	 * an extent allocated during COW has exactly the requested size and can
1203 	 * not be split into smaller extents, otherwise relocation breaks and
1204 	 * fails during the stage where it updates the bytenr of file extent
1205 	 * items.
1206 	 */
1207 	if (btrfs_is_data_reloc_root(root))
1208 		min_alloc_size = num_bytes;
1209 	else
1210 		min_alloc_size = fs_info->sectorsize;
1211 
1212 	while (num_bytes > 0) {
1213 		cur_alloc_size = num_bytes;
1214 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1215 					   min_alloc_size, 0, alloc_hint,
1216 					   &ins, 1, 1);
1217 		if (ret < 0)
1218 			goto out_unlock;
1219 		cur_alloc_size = ins.offset;
1220 		extent_reserved = true;
1221 
1222 		ram_size = ins.offset;
1223 		em = create_io_em(inode, start, ins.offset, /* len */
1224 				  start, /* orig_start */
1225 				  ins.objectid, /* block_start */
1226 				  ins.offset, /* block_len */
1227 				  ins.offset, /* orig_block_len */
1228 				  ram_size, /* ram_bytes */
1229 				  BTRFS_COMPRESS_NONE, /* compress_type */
1230 				  BTRFS_ORDERED_REGULAR /* type */);
1231 		if (IS_ERR(em)) {
1232 			ret = PTR_ERR(em);
1233 			goto out_reserve;
1234 		}
1235 		free_extent_map(em);
1236 
1237 		ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1238 					       ins.objectid, cur_alloc_size, 0,
1239 					       1 << BTRFS_ORDERED_REGULAR,
1240 					       BTRFS_COMPRESS_NONE);
1241 		if (ret)
1242 			goto out_drop_extent_cache;
1243 
1244 		if (btrfs_is_data_reloc_root(root)) {
1245 			ret = btrfs_reloc_clone_csums(inode, start,
1246 						      cur_alloc_size);
1247 			/*
1248 			 * Only drop cache here, and process as normal.
1249 			 *
1250 			 * We must not allow extent_clear_unlock_delalloc()
1251 			 * at out_unlock label to free meta of this ordered
1252 			 * extent, as its meta should be freed by
1253 			 * btrfs_finish_ordered_io().
1254 			 *
1255 			 * So we must continue until @start is increased to
1256 			 * skip current ordered extent.
1257 			 */
1258 			if (ret)
1259 				btrfs_drop_extent_cache(inode, start,
1260 						start + ram_size - 1, 0);
1261 		}
1262 
1263 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1264 
1265 		/*
1266 		 * We're not doing compressed IO, don't unlock the first page
1267 		 * (which the caller expects to stay locked), don't clear any
1268 		 * dirty bits and don't set any writeback bits
1269 		 *
1270 		 * Do set the Ordered (Private2) bit so we know this page was
1271 		 * properly setup for writepage.
1272 		 */
1273 		page_ops = unlock ? PAGE_UNLOCK : 0;
1274 		page_ops |= PAGE_SET_ORDERED;
1275 
1276 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1277 					     locked_page,
1278 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1279 					     page_ops);
1280 		if (num_bytes < cur_alloc_size)
1281 			num_bytes = 0;
1282 		else
1283 			num_bytes -= cur_alloc_size;
1284 		alloc_hint = ins.objectid + ins.offset;
1285 		start += cur_alloc_size;
1286 		extent_reserved = false;
1287 
1288 		/*
1289 		 * btrfs_reloc_clone_csums() error, since start is increased
1290 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1291 		 * free metadata of current ordered extent, we're OK to exit.
1292 		 */
1293 		if (ret)
1294 			goto out_unlock;
1295 	}
1296 out:
1297 	return ret;
1298 
1299 out_drop_extent_cache:
1300 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1301 out_reserve:
1302 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1303 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1304 out_unlock:
1305 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1306 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1307 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1308 	/*
1309 	 * If we reserved an extent for our delalloc range (or a subrange) and
1310 	 * failed to create the respective ordered extent, then it means that
1311 	 * when we reserved the extent we decremented the extent's size from
1312 	 * the data space_info's bytes_may_use counter and incremented the
1313 	 * space_info's bytes_reserved counter by the same amount. We must make
1314 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1315 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1316 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1317 	 */
1318 	if (extent_reserved) {
1319 		extent_clear_unlock_delalloc(inode, start,
1320 					     start + cur_alloc_size - 1,
1321 					     locked_page,
1322 					     clear_bits,
1323 					     page_ops);
1324 		start += cur_alloc_size;
1325 		if (start >= end)
1326 			goto out;
1327 	}
1328 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1329 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1330 				     page_ops);
1331 	goto out;
1332 }
1333 
1334 /*
1335  * work queue call back to started compression on a file and pages
1336  */
1337 static noinline void async_cow_start(struct btrfs_work *work)
1338 {
1339 	struct async_chunk *async_chunk;
1340 	int compressed_extents;
1341 
1342 	async_chunk = container_of(work, struct async_chunk, work);
1343 
1344 	compressed_extents = compress_file_range(async_chunk);
1345 	if (compressed_extents == 0) {
1346 		btrfs_add_delayed_iput(async_chunk->inode);
1347 		async_chunk->inode = NULL;
1348 	}
1349 }
1350 
1351 /*
1352  * work queue call back to submit previously compressed pages
1353  */
1354 static noinline void async_cow_submit(struct btrfs_work *work)
1355 {
1356 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1357 						     work);
1358 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1359 	unsigned long nr_pages;
1360 
1361 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1362 		PAGE_SHIFT;
1363 
1364 	/*
1365 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1366 	 * in which case we don't have anything to submit, yet we need to
1367 	 * always adjust ->async_delalloc_pages as its paired with the init
1368 	 * happening in cow_file_range_async
1369 	 */
1370 	if (async_chunk->inode)
1371 		submit_compressed_extents(async_chunk);
1372 
1373 	/* atomic_sub_return implies a barrier */
1374 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1375 	    5 * SZ_1M)
1376 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1377 }
1378 
1379 static noinline void async_cow_free(struct btrfs_work *work)
1380 {
1381 	struct async_chunk *async_chunk;
1382 	struct async_cow *async_cow;
1383 
1384 	async_chunk = container_of(work, struct async_chunk, work);
1385 	if (async_chunk->inode)
1386 		btrfs_add_delayed_iput(async_chunk->inode);
1387 	if (async_chunk->blkcg_css)
1388 		css_put(async_chunk->blkcg_css);
1389 
1390 	async_cow = async_chunk->async_cow;
1391 	if (atomic_dec_and_test(&async_cow->num_chunks))
1392 		kvfree(async_cow);
1393 }
1394 
1395 static int cow_file_range_async(struct btrfs_inode *inode,
1396 				struct writeback_control *wbc,
1397 				struct page *locked_page,
1398 				u64 start, u64 end, int *page_started,
1399 				unsigned long *nr_written)
1400 {
1401 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1402 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1403 	struct async_cow *ctx;
1404 	struct async_chunk *async_chunk;
1405 	unsigned long nr_pages;
1406 	u64 cur_end;
1407 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1408 	int i;
1409 	bool should_compress;
1410 	unsigned nofs_flag;
1411 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1412 
1413 	unlock_extent(&inode->io_tree, start, end);
1414 
1415 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1416 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1417 		num_chunks = 1;
1418 		should_compress = false;
1419 	} else {
1420 		should_compress = true;
1421 	}
1422 
1423 	nofs_flag = memalloc_nofs_save();
1424 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1425 	memalloc_nofs_restore(nofs_flag);
1426 
1427 	if (!ctx) {
1428 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1429 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1430 			EXTENT_DO_ACCOUNTING;
1431 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1432 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1433 
1434 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1435 					     clear_bits, page_ops);
1436 		return -ENOMEM;
1437 	}
1438 
1439 	async_chunk = ctx->chunks;
1440 	atomic_set(&ctx->num_chunks, num_chunks);
1441 
1442 	for (i = 0; i < num_chunks; i++) {
1443 		if (should_compress)
1444 			cur_end = min(end, start + SZ_512K - 1);
1445 		else
1446 			cur_end = end;
1447 
1448 		/*
1449 		 * igrab is called higher up in the call chain, take only the
1450 		 * lightweight reference for the callback lifetime
1451 		 */
1452 		ihold(&inode->vfs_inode);
1453 		async_chunk[i].async_cow = ctx;
1454 		async_chunk[i].inode = &inode->vfs_inode;
1455 		async_chunk[i].start = start;
1456 		async_chunk[i].end = cur_end;
1457 		async_chunk[i].write_flags = write_flags;
1458 		INIT_LIST_HEAD(&async_chunk[i].extents);
1459 
1460 		/*
1461 		 * The locked_page comes all the way from writepage and its
1462 		 * the original page we were actually given.  As we spread
1463 		 * this large delalloc region across multiple async_chunk
1464 		 * structs, only the first struct needs a pointer to locked_page
1465 		 *
1466 		 * This way we don't need racey decisions about who is supposed
1467 		 * to unlock it.
1468 		 */
1469 		if (locked_page) {
1470 			/*
1471 			 * Depending on the compressibility, the pages might or
1472 			 * might not go through async.  We want all of them to
1473 			 * be accounted against wbc once.  Let's do it here
1474 			 * before the paths diverge.  wbc accounting is used
1475 			 * only for foreign writeback detection and doesn't
1476 			 * need full accuracy.  Just account the whole thing
1477 			 * against the first page.
1478 			 */
1479 			wbc_account_cgroup_owner(wbc, locked_page,
1480 						 cur_end - start);
1481 			async_chunk[i].locked_page = locked_page;
1482 			locked_page = NULL;
1483 		} else {
1484 			async_chunk[i].locked_page = NULL;
1485 		}
1486 
1487 		if (blkcg_css != blkcg_root_css) {
1488 			css_get(blkcg_css);
1489 			async_chunk[i].blkcg_css = blkcg_css;
1490 		} else {
1491 			async_chunk[i].blkcg_css = NULL;
1492 		}
1493 
1494 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1495 				async_cow_submit, async_cow_free);
1496 
1497 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1498 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1499 
1500 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1501 
1502 		*nr_written += nr_pages;
1503 		start = cur_end + 1;
1504 	}
1505 	*page_started = 1;
1506 	return 0;
1507 }
1508 
1509 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1510 				       struct page *locked_page, u64 start,
1511 				       u64 end, int *page_started,
1512 				       unsigned long *nr_written)
1513 {
1514 	int ret;
1515 
1516 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1517 			     nr_written, 0);
1518 	if (ret)
1519 		return ret;
1520 
1521 	if (*page_started)
1522 		return 0;
1523 
1524 	__set_page_dirty_nobuffers(locked_page);
1525 	account_page_redirty(locked_page);
1526 	extent_write_locked_range(&inode->vfs_inode, start, end);
1527 	*page_started = 1;
1528 
1529 	return 0;
1530 }
1531 
1532 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1533 					u64 bytenr, u64 num_bytes)
1534 {
1535 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1536 	struct btrfs_ordered_sum *sums;
1537 	int ret;
1538 	LIST_HEAD(list);
1539 
1540 	ret = btrfs_lookup_csums_range(csum_root, bytenr,
1541 				       bytenr + num_bytes - 1, &list, 0);
1542 	if (ret == 0 && list_empty(&list))
1543 		return 0;
1544 
1545 	while (!list_empty(&list)) {
1546 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1547 		list_del(&sums->list);
1548 		kfree(sums);
1549 	}
1550 	if (ret < 0)
1551 		return ret;
1552 	return 1;
1553 }
1554 
1555 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1556 			   const u64 start, const u64 end,
1557 			   int *page_started, unsigned long *nr_written)
1558 {
1559 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1560 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1561 	const u64 range_bytes = end + 1 - start;
1562 	struct extent_io_tree *io_tree = &inode->io_tree;
1563 	u64 range_start = start;
1564 	u64 count;
1565 
1566 	/*
1567 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1568 	 * made we had not enough available data space and therefore we did not
1569 	 * reserve data space for it, since we though we could do NOCOW for the
1570 	 * respective file range (either there is prealloc extent or the inode
1571 	 * has the NOCOW bit set).
1572 	 *
1573 	 * However when we need to fallback to COW mode (because for example the
1574 	 * block group for the corresponding extent was turned to RO mode by a
1575 	 * scrub or relocation) we need to do the following:
1576 	 *
1577 	 * 1) We increment the bytes_may_use counter of the data space info.
1578 	 *    If COW succeeds, it allocates a new data extent and after doing
1579 	 *    that it decrements the space info's bytes_may_use counter and
1580 	 *    increments its bytes_reserved counter by the same amount (we do
1581 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1582 	 *    bytes_may_use counter to compensate (when space is reserved at
1583 	 *    buffered write time, the bytes_may_use counter is incremented);
1584 	 *
1585 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1586 	 *    that if the COW path fails for any reason, it decrements (through
1587 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1588 	 *    data space info, which we incremented in the step above.
1589 	 *
1590 	 * If we need to fallback to cow and the inode corresponds to a free
1591 	 * space cache inode or an inode of the data relocation tree, we must
1592 	 * also increment bytes_may_use of the data space_info for the same
1593 	 * reason. Space caches and relocated data extents always get a prealloc
1594 	 * extent for them, however scrub or balance may have set the block
1595 	 * group that contains that extent to RO mode and therefore force COW
1596 	 * when starting writeback.
1597 	 */
1598 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1599 				 EXTENT_NORESERVE, 0);
1600 	if (count > 0 || is_space_ino || is_reloc_ino) {
1601 		u64 bytes = count;
1602 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1603 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1604 
1605 		if (is_space_ino || is_reloc_ino)
1606 			bytes = range_bytes;
1607 
1608 		spin_lock(&sinfo->lock);
1609 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1610 		spin_unlock(&sinfo->lock);
1611 
1612 		if (count > 0)
1613 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1614 					 0, 0, NULL);
1615 	}
1616 
1617 	return cow_file_range(inode, locked_page, start, end, page_started,
1618 			      nr_written, 1);
1619 }
1620 
1621 /*
1622  * when nowcow writeback call back.  This checks for snapshots or COW copies
1623  * of the extents that exist in the file, and COWs the file as required.
1624  *
1625  * If no cow copies or snapshots exist, we write directly to the existing
1626  * blocks on disk
1627  */
1628 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1629 				       struct page *locked_page,
1630 				       const u64 start, const u64 end,
1631 				       int *page_started,
1632 				       unsigned long *nr_written)
1633 {
1634 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1635 	struct btrfs_root *root = inode->root;
1636 	struct btrfs_path *path;
1637 	u64 cow_start = (u64)-1;
1638 	u64 cur_offset = start;
1639 	int ret;
1640 	bool check_prev = true;
1641 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1642 	u64 ino = btrfs_ino(inode);
1643 	bool nocow = false;
1644 	u64 disk_bytenr = 0;
1645 	const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1646 
1647 	path = btrfs_alloc_path();
1648 	if (!path) {
1649 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1650 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1651 					     EXTENT_DO_ACCOUNTING |
1652 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1653 					     PAGE_START_WRITEBACK |
1654 					     PAGE_END_WRITEBACK);
1655 		return -ENOMEM;
1656 	}
1657 
1658 	while (1) {
1659 		struct btrfs_key found_key;
1660 		struct btrfs_file_extent_item *fi;
1661 		struct extent_buffer *leaf;
1662 		u64 extent_end;
1663 		u64 extent_offset;
1664 		u64 num_bytes = 0;
1665 		u64 disk_num_bytes;
1666 		u64 ram_bytes;
1667 		int extent_type;
1668 
1669 		nocow = false;
1670 
1671 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1672 					       cur_offset, 0);
1673 		if (ret < 0)
1674 			goto error;
1675 
1676 		/*
1677 		 * If there is no extent for our range when doing the initial
1678 		 * search, then go back to the previous slot as it will be the
1679 		 * one containing the search offset
1680 		 */
1681 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1682 			leaf = path->nodes[0];
1683 			btrfs_item_key_to_cpu(leaf, &found_key,
1684 					      path->slots[0] - 1);
1685 			if (found_key.objectid == ino &&
1686 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1687 				path->slots[0]--;
1688 		}
1689 		check_prev = false;
1690 next_slot:
1691 		/* Go to next leaf if we have exhausted the current one */
1692 		leaf = path->nodes[0];
1693 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1694 			ret = btrfs_next_leaf(root, path);
1695 			if (ret < 0) {
1696 				if (cow_start != (u64)-1)
1697 					cur_offset = cow_start;
1698 				goto error;
1699 			}
1700 			if (ret > 0)
1701 				break;
1702 			leaf = path->nodes[0];
1703 		}
1704 
1705 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1706 
1707 		/* Didn't find anything for our INO */
1708 		if (found_key.objectid > ino)
1709 			break;
1710 		/*
1711 		 * Keep searching until we find an EXTENT_ITEM or there are no
1712 		 * more extents for this inode
1713 		 */
1714 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1715 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1716 			path->slots[0]++;
1717 			goto next_slot;
1718 		}
1719 
1720 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1721 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1722 		    found_key.offset > end)
1723 			break;
1724 
1725 		/*
1726 		 * If the found extent starts after requested offset, then
1727 		 * adjust extent_end to be right before this extent begins
1728 		 */
1729 		if (found_key.offset > cur_offset) {
1730 			extent_end = found_key.offset;
1731 			extent_type = 0;
1732 			goto out_check;
1733 		}
1734 
1735 		/*
1736 		 * Found extent which begins before our range and potentially
1737 		 * intersect it
1738 		 */
1739 		fi = btrfs_item_ptr(leaf, path->slots[0],
1740 				    struct btrfs_file_extent_item);
1741 		extent_type = btrfs_file_extent_type(leaf, fi);
1742 
1743 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1744 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1745 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1746 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1747 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1748 			extent_end = found_key.offset +
1749 				btrfs_file_extent_num_bytes(leaf, fi);
1750 			disk_num_bytes =
1751 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1752 			/*
1753 			 * If the extent we got ends before our current offset,
1754 			 * skip to the next extent.
1755 			 */
1756 			if (extent_end <= cur_offset) {
1757 				path->slots[0]++;
1758 				goto next_slot;
1759 			}
1760 			/* Skip holes */
1761 			if (disk_bytenr == 0)
1762 				goto out_check;
1763 			/* Skip compressed/encrypted/encoded extents */
1764 			if (btrfs_file_extent_compression(leaf, fi) ||
1765 			    btrfs_file_extent_encryption(leaf, fi) ||
1766 			    btrfs_file_extent_other_encoding(leaf, fi))
1767 				goto out_check;
1768 			/*
1769 			 * If extent is created before the last volume's snapshot
1770 			 * this implies the extent is shared, hence we can't do
1771 			 * nocow. This is the same check as in
1772 			 * btrfs_cross_ref_exist but without calling
1773 			 * btrfs_search_slot.
1774 			 */
1775 			if (!freespace_inode &&
1776 			    btrfs_file_extent_generation(leaf, fi) <=
1777 			    btrfs_root_last_snapshot(&root->root_item))
1778 				goto out_check;
1779 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1780 				goto out_check;
1781 
1782 			/*
1783 			 * The following checks can be expensive, as they need to
1784 			 * take other locks and do btree or rbtree searches, so
1785 			 * release the path to avoid blocking other tasks for too
1786 			 * long.
1787 			 */
1788 			btrfs_release_path(path);
1789 
1790 			ret = btrfs_cross_ref_exist(root, ino,
1791 						    found_key.offset -
1792 						    extent_offset, disk_bytenr, false);
1793 			if (ret) {
1794 				/*
1795 				 * ret could be -EIO if the above fails to read
1796 				 * metadata.
1797 				 */
1798 				if (ret < 0) {
1799 					if (cow_start != (u64)-1)
1800 						cur_offset = cow_start;
1801 					goto error;
1802 				}
1803 
1804 				WARN_ON_ONCE(freespace_inode);
1805 				goto out_check;
1806 			}
1807 			disk_bytenr += extent_offset;
1808 			disk_bytenr += cur_offset - found_key.offset;
1809 			num_bytes = min(end + 1, extent_end) - cur_offset;
1810 			/*
1811 			 * If there are pending snapshots for this root, we
1812 			 * fall into common COW way
1813 			 */
1814 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1815 				goto out_check;
1816 			/*
1817 			 * force cow if csum exists in the range.
1818 			 * this ensure that csum for a given extent are
1819 			 * either valid or do not exist.
1820 			 */
1821 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1822 						  num_bytes);
1823 			if (ret) {
1824 				/*
1825 				 * ret could be -EIO if the above fails to read
1826 				 * metadata.
1827 				 */
1828 				if (ret < 0) {
1829 					if (cow_start != (u64)-1)
1830 						cur_offset = cow_start;
1831 					goto error;
1832 				}
1833 				WARN_ON_ONCE(freespace_inode);
1834 				goto out_check;
1835 			}
1836 			/* If the extent's block group is RO, we must COW */
1837 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1838 				goto out_check;
1839 			nocow = true;
1840 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1841 			extent_end = found_key.offset + ram_bytes;
1842 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1843 			/* Skip extents outside of our requested range */
1844 			if (extent_end <= start) {
1845 				path->slots[0]++;
1846 				goto next_slot;
1847 			}
1848 		} else {
1849 			/* If this triggers then we have a memory corruption */
1850 			BUG();
1851 		}
1852 out_check:
1853 		/*
1854 		 * If nocow is false then record the beginning of the range
1855 		 * that needs to be COWed
1856 		 */
1857 		if (!nocow) {
1858 			if (cow_start == (u64)-1)
1859 				cow_start = cur_offset;
1860 			cur_offset = extent_end;
1861 			if (cur_offset > end)
1862 				break;
1863 			if (!path->nodes[0])
1864 				continue;
1865 			path->slots[0]++;
1866 			goto next_slot;
1867 		}
1868 
1869 		/*
1870 		 * COW range from cow_start to found_key.offset - 1. As the key
1871 		 * will contain the beginning of the first extent that can be
1872 		 * NOCOW, following one which needs to be COW'ed
1873 		 */
1874 		if (cow_start != (u64)-1) {
1875 			ret = fallback_to_cow(inode, locked_page,
1876 					      cow_start, found_key.offset - 1,
1877 					      page_started, nr_written);
1878 			if (ret)
1879 				goto error;
1880 			cow_start = (u64)-1;
1881 		}
1882 
1883 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1884 			u64 orig_start = found_key.offset - extent_offset;
1885 			struct extent_map *em;
1886 
1887 			em = create_io_em(inode, cur_offset, num_bytes,
1888 					  orig_start,
1889 					  disk_bytenr, /* block_start */
1890 					  num_bytes, /* block_len */
1891 					  disk_num_bytes, /* orig_block_len */
1892 					  ram_bytes, BTRFS_COMPRESS_NONE,
1893 					  BTRFS_ORDERED_PREALLOC);
1894 			if (IS_ERR(em)) {
1895 				ret = PTR_ERR(em);
1896 				goto error;
1897 			}
1898 			free_extent_map(em);
1899 			ret = btrfs_add_ordered_extent(inode,
1900 					cur_offset, num_bytes, num_bytes,
1901 					disk_bytenr, num_bytes, 0,
1902 					1 << BTRFS_ORDERED_PREALLOC,
1903 					BTRFS_COMPRESS_NONE);
1904 			if (ret) {
1905 				btrfs_drop_extent_cache(inode, cur_offset,
1906 							cur_offset + num_bytes - 1,
1907 							0);
1908 				goto error;
1909 			}
1910 		} else {
1911 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1912 						       num_bytes, num_bytes,
1913 						       disk_bytenr, num_bytes,
1914 						       0,
1915 						       1 << BTRFS_ORDERED_NOCOW,
1916 						       BTRFS_COMPRESS_NONE);
1917 			if (ret)
1918 				goto error;
1919 		}
1920 
1921 		if (nocow)
1922 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1923 		nocow = false;
1924 
1925 		if (btrfs_is_data_reloc_root(root))
1926 			/*
1927 			 * Error handled later, as we must prevent
1928 			 * extent_clear_unlock_delalloc() in error handler
1929 			 * from freeing metadata of created ordered extent.
1930 			 */
1931 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1932 						      num_bytes);
1933 
1934 		extent_clear_unlock_delalloc(inode, cur_offset,
1935 					     cur_offset + num_bytes - 1,
1936 					     locked_page, EXTENT_LOCKED |
1937 					     EXTENT_DELALLOC |
1938 					     EXTENT_CLEAR_DATA_RESV,
1939 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
1940 
1941 		cur_offset = extent_end;
1942 
1943 		/*
1944 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1945 		 * handler, as metadata for created ordered extent will only
1946 		 * be freed by btrfs_finish_ordered_io().
1947 		 */
1948 		if (ret)
1949 			goto error;
1950 		if (cur_offset > end)
1951 			break;
1952 	}
1953 	btrfs_release_path(path);
1954 
1955 	if (cur_offset <= end && cow_start == (u64)-1)
1956 		cow_start = cur_offset;
1957 
1958 	if (cow_start != (u64)-1) {
1959 		cur_offset = end;
1960 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1961 				      page_started, nr_written);
1962 		if (ret)
1963 			goto error;
1964 	}
1965 
1966 error:
1967 	if (nocow)
1968 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1969 
1970 	if (ret && cur_offset < end)
1971 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1972 					     locked_page, EXTENT_LOCKED |
1973 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1974 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1975 					     PAGE_START_WRITEBACK |
1976 					     PAGE_END_WRITEBACK);
1977 	btrfs_free_path(path);
1978 	return ret;
1979 }
1980 
1981 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1982 {
1983 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1984 		if (inode->defrag_bytes &&
1985 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1986 				   0, NULL))
1987 			return false;
1988 		return true;
1989 	}
1990 	return false;
1991 }
1992 
1993 /*
1994  * Function to process delayed allocation (create CoW) for ranges which are
1995  * being touched for the first time.
1996  */
1997 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1998 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1999 		struct writeback_control *wbc)
2000 {
2001 	int ret;
2002 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2003 
2004 	/*
2005 	 * The range must cover part of the @locked_page, or the returned
2006 	 * @page_started can confuse the caller.
2007 	 */
2008 	ASSERT(!(end <= page_offset(locked_page) ||
2009 		 start >= page_offset(locked_page) + PAGE_SIZE));
2010 
2011 	if (should_nocow(inode, start, end)) {
2012 		/*
2013 		 * Normally on a zoned device we're only doing COW writes, but
2014 		 * in case of relocation on a zoned filesystem we have taken
2015 		 * precaution, that we're only writing sequentially. It's safe
2016 		 * to use run_delalloc_nocow() here, like for  regular
2017 		 * preallocated inodes.
2018 		 */
2019 		ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2020 		ret = run_delalloc_nocow(inode, locked_page, start, end,
2021 					 page_started, nr_written);
2022 	} else if (!inode_can_compress(inode) ||
2023 		   !inode_need_compress(inode, start, end)) {
2024 		if (zoned)
2025 			ret = run_delalloc_zoned(inode, locked_page, start, end,
2026 						 page_started, nr_written);
2027 		else
2028 			ret = cow_file_range(inode, locked_page, start, end,
2029 					     page_started, nr_written, 1);
2030 	} else {
2031 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2032 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2033 					   page_started, nr_written);
2034 	}
2035 	ASSERT(ret <= 0);
2036 	if (ret)
2037 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2038 					      end - start + 1);
2039 	return ret;
2040 }
2041 
2042 void btrfs_split_delalloc_extent(struct inode *inode,
2043 				 struct extent_state *orig, u64 split)
2044 {
2045 	u64 size;
2046 
2047 	/* not delalloc, ignore it */
2048 	if (!(orig->state & EXTENT_DELALLOC))
2049 		return;
2050 
2051 	size = orig->end - orig->start + 1;
2052 	if (size > BTRFS_MAX_EXTENT_SIZE) {
2053 		u32 num_extents;
2054 		u64 new_size;
2055 
2056 		/*
2057 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2058 		 * applies here, just in reverse.
2059 		 */
2060 		new_size = orig->end - split + 1;
2061 		num_extents = count_max_extents(new_size);
2062 		new_size = split - orig->start;
2063 		num_extents += count_max_extents(new_size);
2064 		if (count_max_extents(size) >= num_extents)
2065 			return;
2066 	}
2067 
2068 	spin_lock(&BTRFS_I(inode)->lock);
2069 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2070 	spin_unlock(&BTRFS_I(inode)->lock);
2071 }
2072 
2073 /*
2074  * Handle merged delayed allocation extents so we can keep track of new extents
2075  * that are just merged onto old extents, such as when we are doing sequential
2076  * writes, so we can properly account for the metadata space we'll need.
2077  */
2078 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2079 				 struct extent_state *other)
2080 {
2081 	u64 new_size, old_size;
2082 	u32 num_extents;
2083 
2084 	/* not delalloc, ignore it */
2085 	if (!(other->state & EXTENT_DELALLOC))
2086 		return;
2087 
2088 	if (new->start > other->start)
2089 		new_size = new->end - other->start + 1;
2090 	else
2091 		new_size = other->end - new->start + 1;
2092 
2093 	/* we're not bigger than the max, unreserve the space and go */
2094 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2095 		spin_lock(&BTRFS_I(inode)->lock);
2096 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2097 		spin_unlock(&BTRFS_I(inode)->lock);
2098 		return;
2099 	}
2100 
2101 	/*
2102 	 * We have to add up either side to figure out how many extents were
2103 	 * accounted for before we merged into one big extent.  If the number of
2104 	 * extents we accounted for is <= the amount we need for the new range
2105 	 * then we can return, otherwise drop.  Think of it like this
2106 	 *
2107 	 * [ 4k][MAX_SIZE]
2108 	 *
2109 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2110 	 * need 2 outstanding extents, on one side we have 1 and the other side
2111 	 * we have 1 so they are == and we can return.  But in this case
2112 	 *
2113 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2114 	 *
2115 	 * Each range on their own accounts for 2 extents, but merged together
2116 	 * they are only 3 extents worth of accounting, so we need to drop in
2117 	 * this case.
2118 	 */
2119 	old_size = other->end - other->start + 1;
2120 	num_extents = count_max_extents(old_size);
2121 	old_size = new->end - new->start + 1;
2122 	num_extents += count_max_extents(old_size);
2123 	if (count_max_extents(new_size) >= num_extents)
2124 		return;
2125 
2126 	spin_lock(&BTRFS_I(inode)->lock);
2127 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2128 	spin_unlock(&BTRFS_I(inode)->lock);
2129 }
2130 
2131 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2132 				      struct inode *inode)
2133 {
2134 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2135 
2136 	spin_lock(&root->delalloc_lock);
2137 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2138 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2139 			      &root->delalloc_inodes);
2140 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2141 			&BTRFS_I(inode)->runtime_flags);
2142 		root->nr_delalloc_inodes++;
2143 		if (root->nr_delalloc_inodes == 1) {
2144 			spin_lock(&fs_info->delalloc_root_lock);
2145 			BUG_ON(!list_empty(&root->delalloc_root));
2146 			list_add_tail(&root->delalloc_root,
2147 				      &fs_info->delalloc_roots);
2148 			spin_unlock(&fs_info->delalloc_root_lock);
2149 		}
2150 	}
2151 	spin_unlock(&root->delalloc_lock);
2152 }
2153 
2154 
2155 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2156 				struct btrfs_inode *inode)
2157 {
2158 	struct btrfs_fs_info *fs_info = root->fs_info;
2159 
2160 	if (!list_empty(&inode->delalloc_inodes)) {
2161 		list_del_init(&inode->delalloc_inodes);
2162 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2163 			  &inode->runtime_flags);
2164 		root->nr_delalloc_inodes--;
2165 		if (!root->nr_delalloc_inodes) {
2166 			ASSERT(list_empty(&root->delalloc_inodes));
2167 			spin_lock(&fs_info->delalloc_root_lock);
2168 			BUG_ON(list_empty(&root->delalloc_root));
2169 			list_del_init(&root->delalloc_root);
2170 			spin_unlock(&fs_info->delalloc_root_lock);
2171 		}
2172 	}
2173 }
2174 
2175 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2176 				     struct btrfs_inode *inode)
2177 {
2178 	spin_lock(&root->delalloc_lock);
2179 	__btrfs_del_delalloc_inode(root, inode);
2180 	spin_unlock(&root->delalloc_lock);
2181 }
2182 
2183 /*
2184  * Properly track delayed allocation bytes in the inode and to maintain the
2185  * list of inodes that have pending delalloc work to be done.
2186  */
2187 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2188 			       unsigned *bits)
2189 {
2190 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2191 
2192 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2193 		WARN_ON(1);
2194 	/*
2195 	 * set_bit and clear bit hooks normally require _irqsave/restore
2196 	 * but in this case, we are only testing for the DELALLOC
2197 	 * bit, which is only set or cleared with irqs on
2198 	 */
2199 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2200 		struct btrfs_root *root = BTRFS_I(inode)->root;
2201 		u64 len = state->end + 1 - state->start;
2202 		u32 num_extents = count_max_extents(len);
2203 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2204 
2205 		spin_lock(&BTRFS_I(inode)->lock);
2206 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2207 		spin_unlock(&BTRFS_I(inode)->lock);
2208 
2209 		/* For sanity tests */
2210 		if (btrfs_is_testing(fs_info))
2211 			return;
2212 
2213 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2214 					 fs_info->delalloc_batch);
2215 		spin_lock(&BTRFS_I(inode)->lock);
2216 		BTRFS_I(inode)->delalloc_bytes += len;
2217 		if (*bits & EXTENT_DEFRAG)
2218 			BTRFS_I(inode)->defrag_bytes += len;
2219 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2220 					 &BTRFS_I(inode)->runtime_flags))
2221 			btrfs_add_delalloc_inodes(root, inode);
2222 		spin_unlock(&BTRFS_I(inode)->lock);
2223 	}
2224 
2225 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2226 	    (*bits & EXTENT_DELALLOC_NEW)) {
2227 		spin_lock(&BTRFS_I(inode)->lock);
2228 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2229 			state->start;
2230 		spin_unlock(&BTRFS_I(inode)->lock);
2231 	}
2232 }
2233 
2234 /*
2235  * Once a range is no longer delalloc this function ensures that proper
2236  * accounting happens.
2237  */
2238 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2239 				 struct extent_state *state, unsigned *bits)
2240 {
2241 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2242 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2243 	u64 len = state->end + 1 - state->start;
2244 	u32 num_extents = count_max_extents(len);
2245 
2246 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2247 		spin_lock(&inode->lock);
2248 		inode->defrag_bytes -= len;
2249 		spin_unlock(&inode->lock);
2250 	}
2251 
2252 	/*
2253 	 * set_bit and clear bit hooks normally require _irqsave/restore
2254 	 * but in this case, we are only testing for the DELALLOC
2255 	 * bit, which is only set or cleared with irqs on
2256 	 */
2257 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2258 		struct btrfs_root *root = inode->root;
2259 		bool do_list = !btrfs_is_free_space_inode(inode);
2260 
2261 		spin_lock(&inode->lock);
2262 		btrfs_mod_outstanding_extents(inode, -num_extents);
2263 		spin_unlock(&inode->lock);
2264 
2265 		/*
2266 		 * We don't reserve metadata space for space cache inodes so we
2267 		 * don't need to call delalloc_release_metadata if there is an
2268 		 * error.
2269 		 */
2270 		if (*bits & EXTENT_CLEAR_META_RESV &&
2271 		    root != fs_info->tree_root)
2272 			btrfs_delalloc_release_metadata(inode, len, false);
2273 
2274 		/* For sanity tests. */
2275 		if (btrfs_is_testing(fs_info))
2276 			return;
2277 
2278 		if (!btrfs_is_data_reloc_root(root) &&
2279 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2280 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2281 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2282 
2283 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2284 					 fs_info->delalloc_batch);
2285 		spin_lock(&inode->lock);
2286 		inode->delalloc_bytes -= len;
2287 		if (do_list && inode->delalloc_bytes == 0 &&
2288 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2289 					&inode->runtime_flags))
2290 			btrfs_del_delalloc_inode(root, inode);
2291 		spin_unlock(&inode->lock);
2292 	}
2293 
2294 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2295 	    (*bits & EXTENT_DELALLOC_NEW)) {
2296 		spin_lock(&inode->lock);
2297 		ASSERT(inode->new_delalloc_bytes >= len);
2298 		inode->new_delalloc_bytes -= len;
2299 		if (*bits & EXTENT_ADD_INODE_BYTES)
2300 			inode_add_bytes(&inode->vfs_inode, len);
2301 		spin_unlock(&inode->lock);
2302 	}
2303 }
2304 
2305 /*
2306  * in order to insert checksums into the metadata in large chunks,
2307  * we wait until bio submission time.   All the pages in the bio are
2308  * checksummed and sums are attached onto the ordered extent record.
2309  *
2310  * At IO completion time the cums attached on the ordered extent record
2311  * are inserted into the btree
2312  */
2313 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2314 					   u64 dio_file_offset)
2315 {
2316 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2317 }
2318 
2319 /*
2320  * Split an extent_map at [start, start + len]
2321  *
2322  * This function is intended to be used only for extract_ordered_extent().
2323  */
2324 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2325 			  u64 pre, u64 post)
2326 {
2327 	struct extent_map_tree *em_tree = &inode->extent_tree;
2328 	struct extent_map *em;
2329 	struct extent_map *split_pre = NULL;
2330 	struct extent_map *split_mid = NULL;
2331 	struct extent_map *split_post = NULL;
2332 	int ret = 0;
2333 	unsigned long flags;
2334 
2335 	/* Sanity check */
2336 	if (pre == 0 && post == 0)
2337 		return 0;
2338 
2339 	split_pre = alloc_extent_map();
2340 	if (pre)
2341 		split_mid = alloc_extent_map();
2342 	if (post)
2343 		split_post = alloc_extent_map();
2344 	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2345 		ret = -ENOMEM;
2346 		goto out;
2347 	}
2348 
2349 	ASSERT(pre + post < len);
2350 
2351 	lock_extent(&inode->io_tree, start, start + len - 1);
2352 	write_lock(&em_tree->lock);
2353 	em = lookup_extent_mapping(em_tree, start, len);
2354 	if (!em) {
2355 		ret = -EIO;
2356 		goto out_unlock;
2357 	}
2358 
2359 	ASSERT(em->len == len);
2360 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2361 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2362 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2363 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2364 	ASSERT(!list_empty(&em->list));
2365 
2366 	flags = em->flags;
2367 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2368 
2369 	/* First, replace the em with a new extent_map starting from * em->start */
2370 	split_pre->start = em->start;
2371 	split_pre->len = (pre ? pre : em->len - post);
2372 	split_pre->orig_start = split_pre->start;
2373 	split_pre->block_start = em->block_start;
2374 	split_pre->block_len = split_pre->len;
2375 	split_pre->orig_block_len = split_pre->block_len;
2376 	split_pre->ram_bytes = split_pre->len;
2377 	split_pre->flags = flags;
2378 	split_pre->compress_type = em->compress_type;
2379 	split_pre->generation = em->generation;
2380 
2381 	replace_extent_mapping(em_tree, em, split_pre, 1);
2382 
2383 	/*
2384 	 * Now we only have an extent_map at:
2385 	 *     [em->start, em->start + pre] if pre != 0
2386 	 *     [em->start, em->start + em->len - post] if pre == 0
2387 	 */
2388 
2389 	if (pre) {
2390 		/* Insert the middle extent_map */
2391 		split_mid->start = em->start + pre;
2392 		split_mid->len = em->len - pre - post;
2393 		split_mid->orig_start = split_mid->start;
2394 		split_mid->block_start = em->block_start + pre;
2395 		split_mid->block_len = split_mid->len;
2396 		split_mid->orig_block_len = split_mid->block_len;
2397 		split_mid->ram_bytes = split_mid->len;
2398 		split_mid->flags = flags;
2399 		split_mid->compress_type = em->compress_type;
2400 		split_mid->generation = em->generation;
2401 		add_extent_mapping(em_tree, split_mid, 1);
2402 	}
2403 
2404 	if (post) {
2405 		split_post->start = em->start + em->len - post;
2406 		split_post->len = post;
2407 		split_post->orig_start = split_post->start;
2408 		split_post->block_start = em->block_start + em->len - post;
2409 		split_post->block_len = split_post->len;
2410 		split_post->orig_block_len = split_post->block_len;
2411 		split_post->ram_bytes = split_post->len;
2412 		split_post->flags = flags;
2413 		split_post->compress_type = em->compress_type;
2414 		split_post->generation = em->generation;
2415 		add_extent_mapping(em_tree, split_post, 1);
2416 	}
2417 
2418 	/* Once for us */
2419 	free_extent_map(em);
2420 	/* Once for the tree */
2421 	free_extent_map(em);
2422 
2423 out_unlock:
2424 	write_unlock(&em_tree->lock);
2425 	unlock_extent(&inode->io_tree, start, start + len - 1);
2426 out:
2427 	free_extent_map(split_pre);
2428 	free_extent_map(split_mid);
2429 	free_extent_map(split_post);
2430 
2431 	return ret;
2432 }
2433 
2434 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2435 					   struct bio *bio, loff_t file_offset)
2436 {
2437 	struct btrfs_ordered_extent *ordered;
2438 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2439 	u64 file_len;
2440 	u64 len = bio->bi_iter.bi_size;
2441 	u64 end = start + len;
2442 	u64 ordered_end;
2443 	u64 pre, post;
2444 	int ret = 0;
2445 
2446 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2447 	if (WARN_ON_ONCE(!ordered))
2448 		return BLK_STS_IOERR;
2449 
2450 	/* No need to split */
2451 	if (ordered->disk_num_bytes == len)
2452 		goto out;
2453 
2454 	/* We cannot split once end_bio'd ordered extent */
2455 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2456 		ret = -EINVAL;
2457 		goto out;
2458 	}
2459 
2460 	/* We cannot split a compressed ordered extent */
2461 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2462 		ret = -EINVAL;
2463 		goto out;
2464 	}
2465 
2466 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2467 	/* bio must be in one ordered extent */
2468 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2469 		ret = -EINVAL;
2470 		goto out;
2471 	}
2472 
2473 	/* Checksum list should be empty */
2474 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2475 		ret = -EINVAL;
2476 		goto out;
2477 	}
2478 
2479 	file_len = ordered->num_bytes;
2480 	pre = start - ordered->disk_bytenr;
2481 	post = ordered_end - end;
2482 
2483 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2484 	if (ret)
2485 		goto out;
2486 	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2487 
2488 out:
2489 	btrfs_put_ordered_extent(ordered);
2490 
2491 	return errno_to_blk_status(ret);
2492 }
2493 
2494 /*
2495  * extent_io.c submission hook. This does the right thing for csum calculation
2496  * on write, or reading the csums from the tree before a read.
2497  *
2498  * Rules about async/sync submit,
2499  * a) read:				sync submit
2500  *
2501  * b) write without checksum:		sync submit
2502  *
2503  * c) write with checksum:
2504  *    c-1) if bio is issued by fsync:	sync submit
2505  *         (sync_writers != 0)
2506  *
2507  *    c-2) if root is reloc root:	sync submit
2508  *         (only in case of buffered IO)
2509  *
2510  *    c-3) otherwise:			async submit
2511  */
2512 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2513 				   int mirror_num, unsigned long bio_flags)
2514 
2515 {
2516 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2517 	struct btrfs_root *root = BTRFS_I(inode)->root;
2518 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2519 	blk_status_t ret = 0;
2520 	int skip_sum;
2521 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2522 
2523 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2524 		test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2525 
2526 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2527 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2528 
2529 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2530 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2531 		loff_t file_offset = page_offset(page);
2532 
2533 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2534 		if (ret)
2535 			goto out;
2536 	}
2537 
2538 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2539 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2540 		if (ret)
2541 			goto out;
2542 
2543 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2544 			/*
2545 			 * btrfs_submit_compressed_read will handle completing
2546 			 * the bio if there were any errors, so just return
2547 			 * here.
2548 			 */
2549 			ret = btrfs_submit_compressed_read(inode, bio,
2550 							   mirror_num,
2551 							   bio_flags);
2552 			goto out_no_endio;
2553 		} else {
2554 			/*
2555 			 * Lookup bio sums does extra checks around whether we
2556 			 * need to csum or not, which is why we ignore skip_sum
2557 			 * here.
2558 			 */
2559 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2560 			if (ret)
2561 				goto out;
2562 		}
2563 		goto mapit;
2564 	} else if (async && !skip_sum) {
2565 		/* csum items have already been cloned */
2566 		if (btrfs_is_data_reloc_root(root))
2567 			goto mapit;
2568 		/* we're doing a write, do the async checksumming */
2569 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2570 					  0, btrfs_submit_bio_start);
2571 		goto out;
2572 	} else if (!skip_sum) {
2573 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2574 		if (ret)
2575 			goto out;
2576 	}
2577 
2578 mapit:
2579 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2580 
2581 out:
2582 	if (ret) {
2583 		bio->bi_status = ret;
2584 		bio_endio(bio);
2585 	}
2586 out_no_endio:
2587 	return ret;
2588 }
2589 
2590 /*
2591  * given a list of ordered sums record them in the inode.  This happens
2592  * at IO completion time based on sums calculated at bio submission time.
2593  */
2594 static int add_pending_csums(struct btrfs_trans_handle *trans,
2595 			     struct list_head *list)
2596 {
2597 	struct btrfs_ordered_sum *sum;
2598 	struct btrfs_root *csum_root = NULL;
2599 	int ret;
2600 
2601 	list_for_each_entry(sum, list, list) {
2602 		trans->adding_csums = true;
2603 		if (!csum_root)
2604 			csum_root = btrfs_csum_root(trans->fs_info,
2605 						    sum->bytenr);
2606 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2607 		trans->adding_csums = false;
2608 		if (ret)
2609 			return ret;
2610 	}
2611 	return 0;
2612 }
2613 
2614 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2615 					 const u64 start,
2616 					 const u64 len,
2617 					 struct extent_state **cached_state)
2618 {
2619 	u64 search_start = start;
2620 	const u64 end = start + len - 1;
2621 
2622 	while (search_start < end) {
2623 		const u64 search_len = end - search_start + 1;
2624 		struct extent_map *em;
2625 		u64 em_len;
2626 		int ret = 0;
2627 
2628 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2629 		if (IS_ERR(em))
2630 			return PTR_ERR(em);
2631 
2632 		if (em->block_start != EXTENT_MAP_HOLE)
2633 			goto next;
2634 
2635 		em_len = em->len;
2636 		if (em->start < search_start)
2637 			em_len -= search_start - em->start;
2638 		if (em_len > search_len)
2639 			em_len = search_len;
2640 
2641 		ret = set_extent_bit(&inode->io_tree, search_start,
2642 				     search_start + em_len - 1,
2643 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2644 				     GFP_NOFS, NULL);
2645 next:
2646 		search_start = extent_map_end(em);
2647 		free_extent_map(em);
2648 		if (ret)
2649 			return ret;
2650 	}
2651 	return 0;
2652 }
2653 
2654 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2655 			      unsigned int extra_bits,
2656 			      struct extent_state **cached_state)
2657 {
2658 	WARN_ON(PAGE_ALIGNED(end));
2659 
2660 	if (start >= i_size_read(&inode->vfs_inode) &&
2661 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2662 		/*
2663 		 * There can't be any extents following eof in this case so just
2664 		 * set the delalloc new bit for the range directly.
2665 		 */
2666 		extra_bits |= EXTENT_DELALLOC_NEW;
2667 	} else {
2668 		int ret;
2669 
2670 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2671 						    end + 1 - start,
2672 						    cached_state);
2673 		if (ret)
2674 			return ret;
2675 	}
2676 
2677 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2678 				   cached_state);
2679 }
2680 
2681 /* see btrfs_writepage_start_hook for details on why this is required */
2682 struct btrfs_writepage_fixup {
2683 	struct page *page;
2684 	struct inode *inode;
2685 	struct btrfs_work work;
2686 };
2687 
2688 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2689 {
2690 	struct btrfs_writepage_fixup *fixup;
2691 	struct btrfs_ordered_extent *ordered;
2692 	struct extent_state *cached_state = NULL;
2693 	struct extent_changeset *data_reserved = NULL;
2694 	struct page *page;
2695 	struct btrfs_inode *inode;
2696 	u64 page_start;
2697 	u64 page_end;
2698 	int ret = 0;
2699 	bool free_delalloc_space = true;
2700 
2701 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2702 	page = fixup->page;
2703 	inode = BTRFS_I(fixup->inode);
2704 	page_start = page_offset(page);
2705 	page_end = page_offset(page) + PAGE_SIZE - 1;
2706 
2707 	/*
2708 	 * This is similar to page_mkwrite, we need to reserve the space before
2709 	 * we take the page lock.
2710 	 */
2711 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2712 					   PAGE_SIZE);
2713 again:
2714 	lock_page(page);
2715 
2716 	/*
2717 	 * Before we queued this fixup, we took a reference on the page.
2718 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2719 	 * address space.
2720 	 */
2721 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2722 		/*
2723 		 * Unfortunately this is a little tricky, either
2724 		 *
2725 		 * 1) We got here and our page had already been dealt with and
2726 		 *    we reserved our space, thus ret == 0, so we need to just
2727 		 *    drop our space reservation and bail.  This can happen the
2728 		 *    first time we come into the fixup worker, or could happen
2729 		 *    while waiting for the ordered extent.
2730 		 * 2) Our page was already dealt with, but we happened to get an
2731 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2732 		 *    this case we obviously don't have anything to release, but
2733 		 *    because the page was already dealt with we don't want to
2734 		 *    mark the page with an error, so make sure we're resetting
2735 		 *    ret to 0.  This is why we have this check _before_ the ret
2736 		 *    check, because we do not want to have a surprise ENOSPC
2737 		 *    when the page was already properly dealt with.
2738 		 */
2739 		if (!ret) {
2740 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2741 			btrfs_delalloc_release_space(inode, data_reserved,
2742 						     page_start, PAGE_SIZE,
2743 						     true);
2744 		}
2745 		ret = 0;
2746 		goto out_page;
2747 	}
2748 
2749 	/*
2750 	 * We can't mess with the page state unless it is locked, so now that
2751 	 * it is locked bail if we failed to make our space reservation.
2752 	 */
2753 	if (ret)
2754 		goto out_page;
2755 
2756 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2757 
2758 	/* already ordered? We're done */
2759 	if (PageOrdered(page))
2760 		goto out_reserved;
2761 
2762 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2763 	if (ordered) {
2764 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2765 				     &cached_state);
2766 		unlock_page(page);
2767 		btrfs_start_ordered_extent(ordered, 1);
2768 		btrfs_put_ordered_extent(ordered);
2769 		goto again;
2770 	}
2771 
2772 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2773 					&cached_state);
2774 	if (ret)
2775 		goto out_reserved;
2776 
2777 	/*
2778 	 * Everything went as planned, we're now the owner of a dirty page with
2779 	 * delayed allocation bits set and space reserved for our COW
2780 	 * destination.
2781 	 *
2782 	 * The page was dirty when we started, nothing should have cleaned it.
2783 	 */
2784 	BUG_ON(!PageDirty(page));
2785 	free_delalloc_space = false;
2786 out_reserved:
2787 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2788 	if (free_delalloc_space)
2789 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2790 					     PAGE_SIZE, true);
2791 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2792 			     &cached_state);
2793 out_page:
2794 	if (ret) {
2795 		/*
2796 		 * We hit ENOSPC or other errors.  Update the mapping and page
2797 		 * to reflect the errors and clean the page.
2798 		 */
2799 		mapping_set_error(page->mapping, ret);
2800 		end_extent_writepage(page, ret, page_start, page_end);
2801 		clear_page_dirty_for_io(page);
2802 		SetPageError(page);
2803 	}
2804 	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2805 	unlock_page(page);
2806 	put_page(page);
2807 	kfree(fixup);
2808 	extent_changeset_free(data_reserved);
2809 	/*
2810 	 * As a precaution, do a delayed iput in case it would be the last iput
2811 	 * that could need flushing space. Recursing back to fixup worker would
2812 	 * deadlock.
2813 	 */
2814 	btrfs_add_delayed_iput(&inode->vfs_inode);
2815 }
2816 
2817 /*
2818  * There are a few paths in the higher layers of the kernel that directly
2819  * set the page dirty bit without asking the filesystem if it is a
2820  * good idea.  This causes problems because we want to make sure COW
2821  * properly happens and the data=ordered rules are followed.
2822  *
2823  * In our case any range that doesn't have the ORDERED bit set
2824  * hasn't been properly setup for IO.  We kick off an async process
2825  * to fix it up.  The async helper will wait for ordered extents, set
2826  * the delalloc bit and make it safe to write the page.
2827  */
2828 int btrfs_writepage_cow_fixup(struct page *page)
2829 {
2830 	struct inode *inode = page->mapping->host;
2831 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2832 	struct btrfs_writepage_fixup *fixup;
2833 
2834 	/* This page has ordered extent covering it already */
2835 	if (PageOrdered(page))
2836 		return 0;
2837 
2838 	/*
2839 	 * PageChecked is set below when we create a fixup worker for this page,
2840 	 * don't try to create another one if we're already PageChecked()
2841 	 *
2842 	 * The extent_io writepage code will redirty the page if we send back
2843 	 * EAGAIN.
2844 	 */
2845 	if (PageChecked(page))
2846 		return -EAGAIN;
2847 
2848 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2849 	if (!fixup)
2850 		return -EAGAIN;
2851 
2852 	/*
2853 	 * We are already holding a reference to this inode from
2854 	 * write_cache_pages.  We need to hold it because the space reservation
2855 	 * takes place outside of the page lock, and we can't trust
2856 	 * page->mapping outside of the page lock.
2857 	 */
2858 	ihold(inode);
2859 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2860 	get_page(page);
2861 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2862 	fixup->page = page;
2863 	fixup->inode = inode;
2864 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2865 
2866 	return -EAGAIN;
2867 }
2868 
2869 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2870 				       struct btrfs_inode *inode, u64 file_pos,
2871 				       struct btrfs_file_extent_item *stack_fi,
2872 				       const bool update_inode_bytes,
2873 				       u64 qgroup_reserved)
2874 {
2875 	struct btrfs_root *root = inode->root;
2876 	const u64 sectorsize = root->fs_info->sectorsize;
2877 	struct btrfs_path *path;
2878 	struct extent_buffer *leaf;
2879 	struct btrfs_key ins;
2880 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2881 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2882 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2883 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2884 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2885 	struct btrfs_drop_extents_args drop_args = { 0 };
2886 	int ret;
2887 
2888 	path = btrfs_alloc_path();
2889 	if (!path)
2890 		return -ENOMEM;
2891 
2892 	/*
2893 	 * we may be replacing one extent in the tree with another.
2894 	 * The new extent is pinned in the extent map, and we don't want
2895 	 * to drop it from the cache until it is completely in the btree.
2896 	 *
2897 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2898 	 * the caller is expected to unpin it and allow it to be merged
2899 	 * with the others.
2900 	 */
2901 	drop_args.path = path;
2902 	drop_args.start = file_pos;
2903 	drop_args.end = file_pos + num_bytes;
2904 	drop_args.replace_extent = true;
2905 	drop_args.extent_item_size = sizeof(*stack_fi);
2906 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2907 	if (ret)
2908 		goto out;
2909 
2910 	if (!drop_args.extent_inserted) {
2911 		ins.objectid = btrfs_ino(inode);
2912 		ins.offset = file_pos;
2913 		ins.type = BTRFS_EXTENT_DATA_KEY;
2914 
2915 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2916 					      sizeof(*stack_fi));
2917 		if (ret)
2918 			goto out;
2919 	}
2920 	leaf = path->nodes[0];
2921 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2922 	write_extent_buffer(leaf, stack_fi,
2923 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2924 			sizeof(struct btrfs_file_extent_item));
2925 
2926 	btrfs_mark_buffer_dirty(leaf);
2927 	btrfs_release_path(path);
2928 
2929 	/*
2930 	 * If we dropped an inline extent here, we know the range where it is
2931 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2932 	 * number of bytes only for that range containing the inline extent.
2933 	 * The remaining of the range will be processed when clearning the
2934 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2935 	 */
2936 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2937 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2938 
2939 		inline_size = drop_args.bytes_found - inline_size;
2940 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2941 		drop_args.bytes_found -= inline_size;
2942 		num_bytes -= sectorsize;
2943 	}
2944 
2945 	if (update_inode_bytes)
2946 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2947 
2948 	ins.objectid = disk_bytenr;
2949 	ins.offset = disk_num_bytes;
2950 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2951 
2952 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2953 	if (ret)
2954 		goto out;
2955 
2956 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2957 					       file_pos - offset,
2958 					       qgroup_reserved, &ins);
2959 out:
2960 	btrfs_free_path(path);
2961 
2962 	return ret;
2963 }
2964 
2965 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2966 					 u64 start, u64 len)
2967 {
2968 	struct btrfs_block_group *cache;
2969 
2970 	cache = btrfs_lookup_block_group(fs_info, start);
2971 	ASSERT(cache);
2972 
2973 	spin_lock(&cache->lock);
2974 	cache->delalloc_bytes -= len;
2975 	spin_unlock(&cache->lock);
2976 
2977 	btrfs_put_block_group(cache);
2978 }
2979 
2980 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2981 					     struct btrfs_ordered_extent *oe)
2982 {
2983 	struct btrfs_file_extent_item stack_fi;
2984 	bool update_inode_bytes;
2985 	u64 num_bytes = oe->num_bytes;
2986 	u64 ram_bytes = oe->ram_bytes;
2987 
2988 	memset(&stack_fi, 0, sizeof(stack_fi));
2989 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2990 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2991 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2992 						   oe->disk_num_bytes);
2993 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2994 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2995 		num_bytes = ram_bytes = oe->truncated_len;
2996 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2997 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2998 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2999 	/* Encryption and other encoding is reserved and all 0 */
3000 
3001 	/*
3002 	 * For delalloc, when completing an ordered extent we update the inode's
3003 	 * bytes when clearing the range in the inode's io tree, so pass false
3004 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3005 	 * except if the ordered extent was truncated.
3006 	 */
3007 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3008 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3009 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3010 
3011 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3012 					   oe->file_offset, &stack_fi,
3013 					   update_inode_bytes, oe->qgroup_rsv);
3014 }
3015 
3016 /*
3017  * As ordered data IO finishes, this gets called so we can finish
3018  * an ordered extent if the range of bytes in the file it covers are
3019  * fully written.
3020  */
3021 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3022 {
3023 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3024 	struct btrfs_root *root = inode->root;
3025 	struct btrfs_fs_info *fs_info = root->fs_info;
3026 	struct btrfs_trans_handle *trans = NULL;
3027 	struct extent_io_tree *io_tree = &inode->io_tree;
3028 	struct extent_state *cached_state = NULL;
3029 	u64 start, end;
3030 	int compress_type = 0;
3031 	int ret = 0;
3032 	u64 logical_len = ordered_extent->num_bytes;
3033 	bool freespace_inode;
3034 	bool truncated = false;
3035 	bool clear_reserved_extent = true;
3036 	unsigned int clear_bits = EXTENT_DEFRAG;
3037 
3038 	start = ordered_extent->file_offset;
3039 	end = start + ordered_extent->num_bytes - 1;
3040 
3041 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3042 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3043 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3044 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3045 		clear_bits |= EXTENT_DELALLOC_NEW;
3046 
3047 	freespace_inode = btrfs_is_free_space_inode(inode);
3048 
3049 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3050 		ret = -EIO;
3051 		goto out;
3052 	}
3053 
3054 	/* A valid bdev implies a write on a sequential zone */
3055 	if (ordered_extent->bdev) {
3056 		btrfs_rewrite_logical_zoned(ordered_extent);
3057 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3058 					ordered_extent->disk_num_bytes);
3059 	}
3060 
3061 	btrfs_free_io_failure_record(inode, start, end);
3062 
3063 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3064 		truncated = true;
3065 		logical_len = ordered_extent->truncated_len;
3066 		/* Truncated the entire extent, don't bother adding */
3067 		if (!logical_len)
3068 			goto out;
3069 	}
3070 
3071 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3072 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3073 
3074 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3075 		if (freespace_inode)
3076 			trans = btrfs_join_transaction_spacecache(root);
3077 		else
3078 			trans = btrfs_join_transaction(root);
3079 		if (IS_ERR(trans)) {
3080 			ret = PTR_ERR(trans);
3081 			trans = NULL;
3082 			goto out;
3083 		}
3084 		trans->block_rsv = &inode->block_rsv;
3085 		ret = btrfs_update_inode_fallback(trans, root, inode);
3086 		if (ret) /* -ENOMEM or corruption */
3087 			btrfs_abort_transaction(trans, ret);
3088 		goto out;
3089 	}
3090 
3091 	clear_bits |= EXTENT_LOCKED;
3092 	lock_extent_bits(io_tree, start, end, &cached_state);
3093 
3094 	if (freespace_inode)
3095 		trans = btrfs_join_transaction_spacecache(root);
3096 	else
3097 		trans = btrfs_join_transaction(root);
3098 	if (IS_ERR(trans)) {
3099 		ret = PTR_ERR(trans);
3100 		trans = NULL;
3101 		goto out;
3102 	}
3103 
3104 	trans->block_rsv = &inode->block_rsv;
3105 
3106 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3107 		compress_type = ordered_extent->compress_type;
3108 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3109 		BUG_ON(compress_type);
3110 		ret = btrfs_mark_extent_written(trans, inode,
3111 						ordered_extent->file_offset,
3112 						ordered_extent->file_offset +
3113 						logical_len);
3114 	} else {
3115 		BUG_ON(root == fs_info->tree_root);
3116 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3117 		if (!ret) {
3118 			clear_reserved_extent = false;
3119 			btrfs_release_delalloc_bytes(fs_info,
3120 						ordered_extent->disk_bytenr,
3121 						ordered_extent->disk_num_bytes);
3122 		}
3123 	}
3124 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3125 			   ordered_extent->num_bytes, trans->transid);
3126 	if (ret < 0) {
3127 		btrfs_abort_transaction(trans, ret);
3128 		goto out;
3129 	}
3130 
3131 	ret = add_pending_csums(trans, &ordered_extent->list);
3132 	if (ret) {
3133 		btrfs_abort_transaction(trans, ret);
3134 		goto out;
3135 	}
3136 
3137 	/*
3138 	 * If this is a new delalloc range, clear its new delalloc flag to
3139 	 * update the inode's number of bytes. This needs to be done first
3140 	 * before updating the inode item.
3141 	 */
3142 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3143 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3144 		clear_extent_bit(&inode->io_tree, start, end,
3145 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3146 				 0, 0, &cached_state);
3147 
3148 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3149 	ret = btrfs_update_inode_fallback(trans, root, inode);
3150 	if (ret) { /* -ENOMEM or corruption */
3151 		btrfs_abort_transaction(trans, ret);
3152 		goto out;
3153 	}
3154 	ret = 0;
3155 out:
3156 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3157 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3158 			 &cached_state);
3159 
3160 	if (trans)
3161 		btrfs_end_transaction(trans);
3162 
3163 	if (ret || truncated) {
3164 		u64 unwritten_start = start;
3165 
3166 		/*
3167 		 * If we failed to finish this ordered extent for any reason we
3168 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3169 		 * extent, and mark the inode with the error if it wasn't
3170 		 * already set.  Any error during writeback would have already
3171 		 * set the mapping error, so we need to set it if we're the ones
3172 		 * marking this ordered extent as failed.
3173 		 */
3174 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3175 					     &ordered_extent->flags))
3176 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3177 
3178 		if (truncated)
3179 			unwritten_start += logical_len;
3180 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3181 
3182 		/* Drop the cache for the part of the extent we didn't write. */
3183 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3184 
3185 		/*
3186 		 * If the ordered extent had an IOERR or something else went
3187 		 * wrong we need to return the space for this ordered extent
3188 		 * back to the allocator.  We only free the extent in the
3189 		 * truncated case if we didn't write out the extent at all.
3190 		 *
3191 		 * If we made it past insert_reserved_file_extent before we
3192 		 * errored out then we don't need to do this as the accounting
3193 		 * has already been done.
3194 		 */
3195 		if ((ret || !logical_len) &&
3196 		    clear_reserved_extent &&
3197 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3198 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3199 			/*
3200 			 * Discard the range before returning it back to the
3201 			 * free space pool
3202 			 */
3203 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3204 				btrfs_discard_extent(fs_info,
3205 						ordered_extent->disk_bytenr,
3206 						ordered_extent->disk_num_bytes,
3207 						NULL);
3208 			btrfs_free_reserved_extent(fs_info,
3209 					ordered_extent->disk_bytenr,
3210 					ordered_extent->disk_num_bytes, 1);
3211 		}
3212 	}
3213 
3214 	/*
3215 	 * This needs to be done to make sure anybody waiting knows we are done
3216 	 * updating everything for this ordered extent.
3217 	 */
3218 	btrfs_remove_ordered_extent(inode, ordered_extent);
3219 
3220 	/* once for us */
3221 	btrfs_put_ordered_extent(ordered_extent);
3222 	/* once for the tree */
3223 	btrfs_put_ordered_extent(ordered_extent);
3224 
3225 	return ret;
3226 }
3227 
3228 static void finish_ordered_fn(struct btrfs_work *work)
3229 {
3230 	struct btrfs_ordered_extent *ordered_extent;
3231 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3232 	btrfs_finish_ordered_io(ordered_extent);
3233 }
3234 
3235 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3236 					  struct page *page, u64 start,
3237 					  u64 end, bool uptodate)
3238 {
3239 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3240 
3241 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3242 				       finish_ordered_fn, uptodate);
3243 }
3244 
3245 /*
3246  * check_data_csum - verify checksum of one sector of uncompressed data
3247  * @inode:	inode
3248  * @io_bio:	btrfs_io_bio which contains the csum
3249  * @bio_offset:	offset to the beginning of the bio (in bytes)
3250  * @page:	page where is the data to be verified
3251  * @pgoff:	offset inside the page
3252  * @start:	logical offset in the file
3253  *
3254  * The length of such check is always one sector size.
3255  */
3256 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3257 			   u32 bio_offset, struct page *page, u32 pgoff,
3258 			   u64 start)
3259 {
3260 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3261 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3262 	char *kaddr;
3263 	u32 len = fs_info->sectorsize;
3264 	const u32 csum_size = fs_info->csum_size;
3265 	unsigned int offset_sectors;
3266 	u8 *csum_expected;
3267 	u8 csum[BTRFS_CSUM_SIZE];
3268 
3269 	ASSERT(pgoff + len <= PAGE_SIZE);
3270 
3271 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3272 	csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
3273 
3274 	kaddr = kmap_atomic(page);
3275 	shash->tfm = fs_info->csum_shash;
3276 
3277 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3278 
3279 	if (memcmp(csum, csum_expected, csum_size))
3280 		goto zeroit;
3281 
3282 	kunmap_atomic(kaddr);
3283 	return 0;
3284 zeroit:
3285 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3286 				    bbio->mirror_num);
3287 	if (bbio->device)
3288 		btrfs_dev_stat_inc_and_print(bbio->device,
3289 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3290 	memset(kaddr + pgoff, 1, len);
3291 	flush_dcache_page(page);
3292 	kunmap_atomic(kaddr);
3293 	return -EIO;
3294 }
3295 
3296 /*
3297  * When reads are done, we need to check csums to verify the data is correct.
3298  * if there's a match, we allow the bio to finish.  If not, the code in
3299  * extent_io.c will try to find good copies for us.
3300  *
3301  * @bio_offset:	offset to the beginning of the bio (in bytes)
3302  * @start:	file offset of the range start
3303  * @end:	file offset of the range end (inclusive)
3304  *
3305  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3306  * csum match.
3307  */
3308 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3309 				    u32 bio_offset, struct page *page,
3310 				    u64 start, u64 end)
3311 {
3312 	struct inode *inode = page->mapping->host;
3313 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3314 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3315 	struct btrfs_root *root = BTRFS_I(inode)->root;
3316 	const u32 sectorsize = root->fs_info->sectorsize;
3317 	u32 pg_off;
3318 	unsigned int result = 0;
3319 
3320 	if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
3321 		btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
3322 		return 0;
3323 	}
3324 
3325 	/*
3326 	 * This only happens for NODATASUM or compressed read.
3327 	 * Normally this should be covered by above check for compressed read
3328 	 * or the next check for NODATASUM.  Just do a quicker exit here.
3329 	 */
3330 	if (bbio->csum == NULL)
3331 		return 0;
3332 
3333 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3334 		return 0;
3335 
3336 	if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3337 		return 0;
3338 
3339 	ASSERT(page_offset(page) <= start &&
3340 	       end <= page_offset(page) + PAGE_SIZE - 1);
3341 	for (pg_off = offset_in_page(start);
3342 	     pg_off < offset_in_page(end);
3343 	     pg_off += sectorsize, bio_offset += sectorsize) {
3344 		u64 file_offset = pg_off + page_offset(page);
3345 		int ret;
3346 
3347 		if (btrfs_is_data_reloc_root(root) &&
3348 		    test_range_bit(io_tree, file_offset,
3349 				   file_offset + sectorsize - 1,
3350 				   EXTENT_NODATASUM, 1, NULL)) {
3351 			/* Skip the range without csum for data reloc inode */
3352 			clear_extent_bits(io_tree, file_offset,
3353 					  file_offset + sectorsize - 1,
3354 					  EXTENT_NODATASUM);
3355 			continue;
3356 		}
3357 		ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
3358 				      page_offset(page) + pg_off);
3359 		if (ret < 0) {
3360 			const int nr_bit = (pg_off - offset_in_page(start)) >>
3361 				     root->fs_info->sectorsize_bits;
3362 
3363 			result |= (1U << nr_bit);
3364 		}
3365 	}
3366 	return result;
3367 }
3368 
3369 /*
3370  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3371  *
3372  * @inode: The inode we want to perform iput on
3373  *
3374  * This function uses the generic vfs_inode::i_count to track whether we should
3375  * just decrement it (in case it's > 1) or if this is the last iput then link
3376  * the inode to the delayed iput machinery. Delayed iputs are processed at
3377  * transaction commit time/superblock commit/cleaner kthread.
3378  */
3379 void btrfs_add_delayed_iput(struct inode *inode)
3380 {
3381 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3382 	struct btrfs_inode *binode = BTRFS_I(inode);
3383 
3384 	if (atomic_add_unless(&inode->i_count, -1, 1))
3385 		return;
3386 
3387 	atomic_inc(&fs_info->nr_delayed_iputs);
3388 	spin_lock(&fs_info->delayed_iput_lock);
3389 	ASSERT(list_empty(&binode->delayed_iput));
3390 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3391 	spin_unlock(&fs_info->delayed_iput_lock);
3392 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3393 		wake_up_process(fs_info->cleaner_kthread);
3394 }
3395 
3396 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3397 				    struct btrfs_inode *inode)
3398 {
3399 	list_del_init(&inode->delayed_iput);
3400 	spin_unlock(&fs_info->delayed_iput_lock);
3401 	iput(&inode->vfs_inode);
3402 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3403 		wake_up(&fs_info->delayed_iputs_wait);
3404 	spin_lock(&fs_info->delayed_iput_lock);
3405 }
3406 
3407 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3408 				   struct btrfs_inode *inode)
3409 {
3410 	if (!list_empty(&inode->delayed_iput)) {
3411 		spin_lock(&fs_info->delayed_iput_lock);
3412 		if (!list_empty(&inode->delayed_iput))
3413 			run_delayed_iput_locked(fs_info, inode);
3414 		spin_unlock(&fs_info->delayed_iput_lock);
3415 	}
3416 }
3417 
3418 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3419 {
3420 
3421 	spin_lock(&fs_info->delayed_iput_lock);
3422 	while (!list_empty(&fs_info->delayed_iputs)) {
3423 		struct btrfs_inode *inode;
3424 
3425 		inode = list_first_entry(&fs_info->delayed_iputs,
3426 				struct btrfs_inode, delayed_iput);
3427 		run_delayed_iput_locked(fs_info, inode);
3428 		cond_resched_lock(&fs_info->delayed_iput_lock);
3429 	}
3430 	spin_unlock(&fs_info->delayed_iput_lock);
3431 }
3432 
3433 /**
3434  * Wait for flushing all delayed iputs
3435  *
3436  * @fs_info:  the filesystem
3437  *
3438  * This will wait on any delayed iputs that are currently running with KILLABLE
3439  * set.  Once they are all done running we will return, unless we are killed in
3440  * which case we return EINTR. This helps in user operations like fallocate etc
3441  * that might get blocked on the iputs.
3442  *
3443  * Return EINTR if we were killed, 0 if nothing's pending
3444  */
3445 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3446 {
3447 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3448 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3449 	if (ret)
3450 		return -EINTR;
3451 	return 0;
3452 }
3453 
3454 /*
3455  * This creates an orphan entry for the given inode in case something goes wrong
3456  * in the middle of an unlink.
3457  */
3458 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3459 		     struct btrfs_inode *inode)
3460 {
3461 	int ret;
3462 
3463 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3464 	if (ret && ret != -EEXIST) {
3465 		btrfs_abort_transaction(trans, ret);
3466 		return ret;
3467 	}
3468 
3469 	return 0;
3470 }
3471 
3472 /*
3473  * We have done the delete so we can go ahead and remove the orphan item for
3474  * this particular inode.
3475  */
3476 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3477 			    struct btrfs_inode *inode)
3478 {
3479 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3480 }
3481 
3482 /*
3483  * this cleans up any orphans that may be left on the list from the last use
3484  * of this root.
3485  */
3486 int btrfs_orphan_cleanup(struct btrfs_root *root)
3487 {
3488 	struct btrfs_fs_info *fs_info = root->fs_info;
3489 	struct btrfs_path *path;
3490 	struct extent_buffer *leaf;
3491 	struct btrfs_key key, found_key;
3492 	struct btrfs_trans_handle *trans;
3493 	struct inode *inode;
3494 	u64 last_objectid = 0;
3495 	int ret = 0, nr_unlink = 0;
3496 
3497 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3498 		return 0;
3499 
3500 	path = btrfs_alloc_path();
3501 	if (!path) {
3502 		ret = -ENOMEM;
3503 		goto out;
3504 	}
3505 	path->reada = READA_BACK;
3506 
3507 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3508 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3509 	key.offset = (u64)-1;
3510 
3511 	while (1) {
3512 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3513 		if (ret < 0)
3514 			goto out;
3515 
3516 		/*
3517 		 * if ret == 0 means we found what we were searching for, which
3518 		 * is weird, but possible, so only screw with path if we didn't
3519 		 * find the key and see if we have stuff that matches
3520 		 */
3521 		if (ret > 0) {
3522 			ret = 0;
3523 			if (path->slots[0] == 0)
3524 				break;
3525 			path->slots[0]--;
3526 		}
3527 
3528 		/* pull out the item */
3529 		leaf = path->nodes[0];
3530 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3531 
3532 		/* make sure the item matches what we want */
3533 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3534 			break;
3535 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3536 			break;
3537 
3538 		/* release the path since we're done with it */
3539 		btrfs_release_path(path);
3540 
3541 		/*
3542 		 * this is where we are basically btrfs_lookup, without the
3543 		 * crossing root thing.  we store the inode number in the
3544 		 * offset of the orphan item.
3545 		 */
3546 
3547 		if (found_key.offset == last_objectid) {
3548 			btrfs_err(fs_info,
3549 				  "Error removing orphan entry, stopping orphan cleanup");
3550 			ret = -EINVAL;
3551 			goto out;
3552 		}
3553 
3554 		last_objectid = found_key.offset;
3555 
3556 		found_key.objectid = found_key.offset;
3557 		found_key.type = BTRFS_INODE_ITEM_KEY;
3558 		found_key.offset = 0;
3559 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3560 		ret = PTR_ERR_OR_ZERO(inode);
3561 		if (ret && ret != -ENOENT)
3562 			goto out;
3563 
3564 		if (ret == -ENOENT && root == fs_info->tree_root) {
3565 			struct btrfs_root *dead_root;
3566 			int is_dead_root = 0;
3567 
3568 			/*
3569 			 * This is an orphan in the tree root. Currently these
3570 			 * could come from 2 sources:
3571 			 *  a) a root (snapshot/subvolume) deletion in progress
3572 			 *  b) a free space cache inode
3573 			 * We need to distinguish those two, as the orphan item
3574 			 * for a root must not get deleted before the deletion
3575 			 * of the snapshot/subvolume's tree completes.
3576 			 *
3577 			 * btrfs_find_orphan_roots() ran before us, which has
3578 			 * found all deleted roots and loaded them into
3579 			 * fs_info->fs_roots_radix. So here we can find if an
3580 			 * orphan item corresponds to a deleted root by looking
3581 			 * up the root from that radix tree.
3582 			 */
3583 
3584 			spin_lock(&fs_info->fs_roots_radix_lock);
3585 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3586 							 (unsigned long)found_key.objectid);
3587 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3588 				is_dead_root = 1;
3589 			spin_unlock(&fs_info->fs_roots_radix_lock);
3590 
3591 			if (is_dead_root) {
3592 				/* prevent this orphan from being found again */
3593 				key.offset = found_key.objectid - 1;
3594 				continue;
3595 			}
3596 
3597 		}
3598 
3599 		/*
3600 		 * If we have an inode with links, there are a couple of
3601 		 * possibilities:
3602 		 *
3603 		 * 1. We were halfway through creating fsverity metadata for the
3604 		 * file. In that case, the orphan item represents incomplete
3605 		 * fsverity metadata which must be cleaned up with
3606 		 * btrfs_drop_verity_items and deleting the orphan item.
3607 
3608 		 * 2. Old kernels (before v3.12) used to create an
3609 		 * orphan item for truncate indicating that there were possibly
3610 		 * extent items past i_size that needed to be deleted. In v3.12,
3611 		 * truncate was changed to update i_size in sync with the extent
3612 		 * items, but the (useless) orphan item was still created. Since
3613 		 * v4.18, we don't create the orphan item for truncate at all.
3614 		 *
3615 		 * So, this item could mean that we need to do a truncate, but
3616 		 * only if this filesystem was last used on a pre-v3.12 kernel
3617 		 * and was not cleanly unmounted. The odds of that are quite
3618 		 * slim, and it's a pain to do the truncate now, so just delete
3619 		 * the orphan item.
3620 		 *
3621 		 * It's also possible that this orphan item was supposed to be
3622 		 * deleted but wasn't. The inode number may have been reused,
3623 		 * but either way, we can delete the orphan item.
3624 		 */
3625 		if (ret == -ENOENT || inode->i_nlink) {
3626 			if (!ret) {
3627 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3628 				iput(inode);
3629 				if (ret)
3630 					goto out;
3631 			}
3632 			trans = btrfs_start_transaction(root, 1);
3633 			if (IS_ERR(trans)) {
3634 				ret = PTR_ERR(trans);
3635 				goto out;
3636 			}
3637 			btrfs_debug(fs_info, "auto deleting %Lu",
3638 				    found_key.objectid);
3639 			ret = btrfs_del_orphan_item(trans, root,
3640 						    found_key.objectid);
3641 			btrfs_end_transaction(trans);
3642 			if (ret)
3643 				goto out;
3644 			continue;
3645 		}
3646 
3647 		nr_unlink++;
3648 
3649 		/* this will do delete_inode and everything for us */
3650 		iput(inode);
3651 	}
3652 	/* release the path since we're done with it */
3653 	btrfs_release_path(path);
3654 
3655 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3656 		trans = btrfs_join_transaction(root);
3657 		if (!IS_ERR(trans))
3658 			btrfs_end_transaction(trans);
3659 	}
3660 
3661 	if (nr_unlink)
3662 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3663 
3664 out:
3665 	if (ret)
3666 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3667 	btrfs_free_path(path);
3668 	return ret;
3669 }
3670 
3671 /*
3672  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3673  * don't find any xattrs, we know there can't be any acls.
3674  *
3675  * slot is the slot the inode is in, objectid is the objectid of the inode
3676  */
3677 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3678 					  int slot, u64 objectid,
3679 					  int *first_xattr_slot)
3680 {
3681 	u32 nritems = btrfs_header_nritems(leaf);
3682 	struct btrfs_key found_key;
3683 	static u64 xattr_access = 0;
3684 	static u64 xattr_default = 0;
3685 	int scanned = 0;
3686 
3687 	if (!xattr_access) {
3688 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3689 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3690 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3691 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3692 	}
3693 
3694 	slot++;
3695 	*first_xattr_slot = -1;
3696 	while (slot < nritems) {
3697 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3698 
3699 		/* we found a different objectid, there must not be acls */
3700 		if (found_key.objectid != objectid)
3701 			return 0;
3702 
3703 		/* we found an xattr, assume we've got an acl */
3704 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3705 			if (*first_xattr_slot == -1)
3706 				*first_xattr_slot = slot;
3707 			if (found_key.offset == xattr_access ||
3708 			    found_key.offset == xattr_default)
3709 				return 1;
3710 		}
3711 
3712 		/*
3713 		 * we found a key greater than an xattr key, there can't
3714 		 * be any acls later on
3715 		 */
3716 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3717 			return 0;
3718 
3719 		slot++;
3720 		scanned++;
3721 
3722 		/*
3723 		 * it goes inode, inode backrefs, xattrs, extents,
3724 		 * so if there are a ton of hard links to an inode there can
3725 		 * be a lot of backrefs.  Don't waste time searching too hard,
3726 		 * this is just an optimization
3727 		 */
3728 		if (scanned >= 8)
3729 			break;
3730 	}
3731 	/* we hit the end of the leaf before we found an xattr or
3732 	 * something larger than an xattr.  We have to assume the inode
3733 	 * has acls
3734 	 */
3735 	if (*first_xattr_slot == -1)
3736 		*first_xattr_slot = slot;
3737 	return 1;
3738 }
3739 
3740 /*
3741  * read an inode from the btree into the in-memory inode
3742  */
3743 static int btrfs_read_locked_inode(struct inode *inode,
3744 				   struct btrfs_path *in_path)
3745 {
3746 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3747 	struct btrfs_path *path = in_path;
3748 	struct extent_buffer *leaf;
3749 	struct btrfs_inode_item *inode_item;
3750 	struct btrfs_root *root = BTRFS_I(inode)->root;
3751 	struct btrfs_key location;
3752 	unsigned long ptr;
3753 	int maybe_acls;
3754 	u32 rdev;
3755 	int ret;
3756 	bool filled = false;
3757 	int first_xattr_slot;
3758 
3759 	ret = btrfs_fill_inode(inode, &rdev);
3760 	if (!ret)
3761 		filled = true;
3762 
3763 	if (!path) {
3764 		path = btrfs_alloc_path();
3765 		if (!path)
3766 			return -ENOMEM;
3767 	}
3768 
3769 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3770 
3771 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3772 	if (ret) {
3773 		if (path != in_path)
3774 			btrfs_free_path(path);
3775 		return ret;
3776 	}
3777 
3778 	leaf = path->nodes[0];
3779 
3780 	if (filled)
3781 		goto cache_index;
3782 
3783 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3784 				    struct btrfs_inode_item);
3785 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3786 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3787 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3788 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3789 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3790 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3791 			round_up(i_size_read(inode), fs_info->sectorsize));
3792 
3793 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3794 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3795 
3796 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3797 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3798 
3799 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3800 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3801 
3802 	BTRFS_I(inode)->i_otime.tv_sec =
3803 		btrfs_timespec_sec(leaf, &inode_item->otime);
3804 	BTRFS_I(inode)->i_otime.tv_nsec =
3805 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3806 
3807 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3808 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3809 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3810 
3811 	inode_set_iversion_queried(inode,
3812 				   btrfs_inode_sequence(leaf, inode_item));
3813 	inode->i_generation = BTRFS_I(inode)->generation;
3814 	inode->i_rdev = 0;
3815 	rdev = btrfs_inode_rdev(leaf, inode_item);
3816 
3817 	BTRFS_I(inode)->index_cnt = (u64)-1;
3818 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3819 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3820 
3821 cache_index:
3822 	/*
3823 	 * If we were modified in the current generation and evicted from memory
3824 	 * and then re-read we need to do a full sync since we don't have any
3825 	 * idea about which extents were modified before we were evicted from
3826 	 * cache.
3827 	 *
3828 	 * This is required for both inode re-read from disk and delayed inode
3829 	 * in delayed_nodes_tree.
3830 	 */
3831 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3832 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3833 			&BTRFS_I(inode)->runtime_flags);
3834 
3835 	/*
3836 	 * We don't persist the id of the transaction where an unlink operation
3837 	 * against the inode was last made. So here we assume the inode might
3838 	 * have been evicted, and therefore the exact value of last_unlink_trans
3839 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3840 	 * between the inode and its parent if the inode is fsync'ed and the log
3841 	 * replayed. For example, in the scenario:
3842 	 *
3843 	 * touch mydir/foo
3844 	 * ln mydir/foo mydir/bar
3845 	 * sync
3846 	 * unlink mydir/bar
3847 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3848 	 * xfs_io -c fsync mydir/foo
3849 	 * <power failure>
3850 	 * mount fs, triggers fsync log replay
3851 	 *
3852 	 * We must make sure that when we fsync our inode foo we also log its
3853 	 * parent inode, otherwise after log replay the parent still has the
3854 	 * dentry with the "bar" name but our inode foo has a link count of 1
3855 	 * and doesn't have an inode ref with the name "bar" anymore.
3856 	 *
3857 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3858 	 * but it guarantees correctness at the expense of occasional full
3859 	 * transaction commits on fsync if our inode is a directory, or if our
3860 	 * inode is not a directory, logging its parent unnecessarily.
3861 	 */
3862 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3863 
3864 	/*
3865 	 * Same logic as for last_unlink_trans. We don't persist the generation
3866 	 * of the last transaction where this inode was used for a reflink
3867 	 * operation, so after eviction and reloading the inode we must be
3868 	 * pessimistic and assume the last transaction that modified the inode.
3869 	 */
3870 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3871 
3872 	path->slots[0]++;
3873 	if (inode->i_nlink != 1 ||
3874 	    path->slots[0] >= btrfs_header_nritems(leaf))
3875 		goto cache_acl;
3876 
3877 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3878 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3879 		goto cache_acl;
3880 
3881 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3882 	if (location.type == BTRFS_INODE_REF_KEY) {
3883 		struct btrfs_inode_ref *ref;
3884 
3885 		ref = (struct btrfs_inode_ref *)ptr;
3886 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3887 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3888 		struct btrfs_inode_extref *extref;
3889 
3890 		extref = (struct btrfs_inode_extref *)ptr;
3891 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3892 								     extref);
3893 	}
3894 cache_acl:
3895 	/*
3896 	 * try to precache a NULL acl entry for files that don't have
3897 	 * any xattrs or acls
3898 	 */
3899 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3900 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3901 	if (first_xattr_slot != -1) {
3902 		path->slots[0] = first_xattr_slot;
3903 		ret = btrfs_load_inode_props(inode, path);
3904 		if (ret)
3905 			btrfs_err(fs_info,
3906 				  "error loading props for ino %llu (root %llu): %d",
3907 				  btrfs_ino(BTRFS_I(inode)),
3908 				  root->root_key.objectid, ret);
3909 	}
3910 	if (path != in_path)
3911 		btrfs_free_path(path);
3912 
3913 	if (!maybe_acls)
3914 		cache_no_acl(inode);
3915 
3916 	switch (inode->i_mode & S_IFMT) {
3917 	case S_IFREG:
3918 		inode->i_mapping->a_ops = &btrfs_aops;
3919 		inode->i_fop = &btrfs_file_operations;
3920 		inode->i_op = &btrfs_file_inode_operations;
3921 		break;
3922 	case S_IFDIR:
3923 		inode->i_fop = &btrfs_dir_file_operations;
3924 		inode->i_op = &btrfs_dir_inode_operations;
3925 		break;
3926 	case S_IFLNK:
3927 		inode->i_op = &btrfs_symlink_inode_operations;
3928 		inode_nohighmem(inode);
3929 		inode->i_mapping->a_ops = &btrfs_aops;
3930 		break;
3931 	default:
3932 		inode->i_op = &btrfs_special_inode_operations;
3933 		init_special_inode(inode, inode->i_mode, rdev);
3934 		break;
3935 	}
3936 
3937 	btrfs_sync_inode_flags_to_i_flags(inode);
3938 	return 0;
3939 }
3940 
3941 /*
3942  * given a leaf and an inode, copy the inode fields into the leaf
3943  */
3944 static void fill_inode_item(struct btrfs_trans_handle *trans,
3945 			    struct extent_buffer *leaf,
3946 			    struct btrfs_inode_item *item,
3947 			    struct inode *inode)
3948 {
3949 	struct btrfs_map_token token;
3950 	u64 flags;
3951 
3952 	btrfs_init_map_token(&token, leaf);
3953 
3954 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3955 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3956 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3957 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3958 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3959 
3960 	btrfs_set_token_timespec_sec(&token, &item->atime,
3961 				     inode->i_atime.tv_sec);
3962 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3963 				      inode->i_atime.tv_nsec);
3964 
3965 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3966 				     inode->i_mtime.tv_sec);
3967 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3968 				      inode->i_mtime.tv_nsec);
3969 
3970 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3971 				     inode->i_ctime.tv_sec);
3972 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3973 				      inode->i_ctime.tv_nsec);
3974 
3975 	btrfs_set_token_timespec_sec(&token, &item->otime,
3976 				     BTRFS_I(inode)->i_otime.tv_sec);
3977 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3978 				      BTRFS_I(inode)->i_otime.tv_nsec);
3979 
3980 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3981 	btrfs_set_token_inode_generation(&token, item,
3982 					 BTRFS_I(inode)->generation);
3983 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3984 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3985 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3986 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3987 					  BTRFS_I(inode)->ro_flags);
3988 	btrfs_set_token_inode_flags(&token, item, flags);
3989 	btrfs_set_token_inode_block_group(&token, item, 0);
3990 }
3991 
3992 /*
3993  * copy everything in the in-memory inode into the btree.
3994  */
3995 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3996 				struct btrfs_root *root,
3997 				struct btrfs_inode *inode)
3998 {
3999 	struct btrfs_inode_item *inode_item;
4000 	struct btrfs_path *path;
4001 	struct extent_buffer *leaf;
4002 	int ret;
4003 
4004 	path = btrfs_alloc_path();
4005 	if (!path)
4006 		return -ENOMEM;
4007 
4008 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4009 	if (ret) {
4010 		if (ret > 0)
4011 			ret = -ENOENT;
4012 		goto failed;
4013 	}
4014 
4015 	leaf = path->nodes[0];
4016 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4017 				    struct btrfs_inode_item);
4018 
4019 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4020 	btrfs_mark_buffer_dirty(leaf);
4021 	btrfs_set_inode_last_trans(trans, inode);
4022 	ret = 0;
4023 failed:
4024 	btrfs_free_path(path);
4025 	return ret;
4026 }
4027 
4028 /*
4029  * copy everything in the in-memory inode into the btree.
4030  */
4031 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4032 				struct btrfs_root *root,
4033 				struct btrfs_inode *inode)
4034 {
4035 	struct btrfs_fs_info *fs_info = root->fs_info;
4036 	int ret;
4037 
4038 	/*
4039 	 * If the inode is a free space inode, we can deadlock during commit
4040 	 * if we put it into the delayed code.
4041 	 *
4042 	 * The data relocation inode should also be directly updated
4043 	 * without delay
4044 	 */
4045 	if (!btrfs_is_free_space_inode(inode)
4046 	    && !btrfs_is_data_reloc_root(root)
4047 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4048 		btrfs_update_root_times(trans, root);
4049 
4050 		ret = btrfs_delayed_update_inode(trans, root, inode);
4051 		if (!ret)
4052 			btrfs_set_inode_last_trans(trans, inode);
4053 		return ret;
4054 	}
4055 
4056 	return btrfs_update_inode_item(trans, root, inode);
4057 }
4058 
4059 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4060 				struct btrfs_root *root, struct btrfs_inode *inode)
4061 {
4062 	int ret;
4063 
4064 	ret = btrfs_update_inode(trans, root, inode);
4065 	if (ret == -ENOSPC)
4066 		return btrfs_update_inode_item(trans, root, inode);
4067 	return ret;
4068 }
4069 
4070 /*
4071  * unlink helper that gets used here in inode.c and in the tree logging
4072  * recovery code.  It remove a link in a directory with a given name, and
4073  * also drops the back refs in the inode to the directory
4074  */
4075 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4076 				struct btrfs_inode *dir,
4077 				struct btrfs_inode *inode,
4078 				const char *name, int name_len,
4079 				struct btrfs_rename_ctx *rename_ctx)
4080 {
4081 	struct btrfs_root *root = dir->root;
4082 	struct btrfs_fs_info *fs_info = root->fs_info;
4083 	struct btrfs_path *path;
4084 	int ret = 0;
4085 	struct btrfs_dir_item *di;
4086 	u64 index;
4087 	u64 ino = btrfs_ino(inode);
4088 	u64 dir_ino = btrfs_ino(dir);
4089 
4090 	path = btrfs_alloc_path();
4091 	if (!path) {
4092 		ret = -ENOMEM;
4093 		goto out;
4094 	}
4095 
4096 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4097 				    name, name_len, -1);
4098 	if (IS_ERR_OR_NULL(di)) {
4099 		ret = di ? PTR_ERR(di) : -ENOENT;
4100 		goto err;
4101 	}
4102 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4103 	if (ret)
4104 		goto err;
4105 	btrfs_release_path(path);
4106 
4107 	/*
4108 	 * If we don't have dir index, we have to get it by looking up
4109 	 * the inode ref, since we get the inode ref, remove it directly,
4110 	 * it is unnecessary to do delayed deletion.
4111 	 *
4112 	 * But if we have dir index, needn't search inode ref to get it.
4113 	 * Since the inode ref is close to the inode item, it is better
4114 	 * that we delay to delete it, and just do this deletion when
4115 	 * we update the inode item.
4116 	 */
4117 	if (inode->dir_index) {
4118 		ret = btrfs_delayed_delete_inode_ref(inode);
4119 		if (!ret) {
4120 			index = inode->dir_index;
4121 			goto skip_backref;
4122 		}
4123 	}
4124 
4125 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4126 				  dir_ino, &index);
4127 	if (ret) {
4128 		btrfs_info(fs_info,
4129 			"failed to delete reference to %.*s, inode %llu parent %llu",
4130 			name_len, name, ino, dir_ino);
4131 		btrfs_abort_transaction(trans, ret);
4132 		goto err;
4133 	}
4134 skip_backref:
4135 	if (rename_ctx)
4136 		rename_ctx->index = index;
4137 
4138 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4139 	if (ret) {
4140 		btrfs_abort_transaction(trans, ret);
4141 		goto err;
4142 	}
4143 
4144 	/*
4145 	 * If we are in a rename context, we don't need to update anything in the
4146 	 * log. That will be done later during the rename by btrfs_log_new_name().
4147 	 * Besides that, doing it here would only cause extra unncessary btree
4148 	 * operations on the log tree, increasing latency for applications.
4149 	 */
4150 	if (!rename_ctx) {
4151 		btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4152 					   dir_ino);
4153 		btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4154 					     index);
4155 	}
4156 
4157 	/*
4158 	 * If we have a pending delayed iput we could end up with the final iput
4159 	 * being run in btrfs-cleaner context.  If we have enough of these built
4160 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4161 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4162 	 * the inode we can run the delayed iput here without any issues as the
4163 	 * final iput won't be done until after we drop the ref we're currently
4164 	 * holding.
4165 	 */
4166 	btrfs_run_delayed_iput(fs_info, inode);
4167 err:
4168 	btrfs_free_path(path);
4169 	if (ret)
4170 		goto out;
4171 
4172 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4173 	inode_inc_iversion(&inode->vfs_inode);
4174 	inode_inc_iversion(&dir->vfs_inode);
4175 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4176 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4177 	ret = btrfs_update_inode(trans, root, dir);
4178 out:
4179 	return ret;
4180 }
4181 
4182 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4183 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4184 		       const char *name, int name_len)
4185 {
4186 	int ret;
4187 	ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
4188 	if (!ret) {
4189 		drop_nlink(&inode->vfs_inode);
4190 		ret = btrfs_update_inode(trans, inode->root, inode);
4191 	}
4192 	return ret;
4193 }
4194 
4195 /*
4196  * helper to start transaction for unlink and rmdir.
4197  *
4198  * unlink and rmdir are special in btrfs, they do not always free space, so
4199  * if we cannot make our reservations the normal way try and see if there is
4200  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4201  * allow the unlink to occur.
4202  */
4203 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4204 {
4205 	struct btrfs_root *root = BTRFS_I(dir)->root;
4206 
4207 	/*
4208 	 * 1 for the possible orphan item
4209 	 * 1 for the dir item
4210 	 * 1 for the dir index
4211 	 * 1 for the inode ref
4212 	 * 1 for the inode
4213 	 */
4214 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
4215 }
4216 
4217 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4218 {
4219 	struct btrfs_trans_handle *trans;
4220 	struct inode *inode = d_inode(dentry);
4221 	int ret;
4222 
4223 	trans = __unlink_start_trans(dir);
4224 	if (IS_ERR(trans))
4225 		return PTR_ERR(trans);
4226 
4227 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4228 			0);
4229 
4230 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4231 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4232 			dentry->d_name.len);
4233 	if (ret)
4234 		goto out;
4235 
4236 	if (inode->i_nlink == 0) {
4237 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4238 		if (ret)
4239 			goto out;
4240 	}
4241 
4242 out:
4243 	btrfs_end_transaction(trans);
4244 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4245 	return ret;
4246 }
4247 
4248 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4249 			       struct inode *dir, struct dentry *dentry)
4250 {
4251 	struct btrfs_root *root = BTRFS_I(dir)->root;
4252 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4253 	struct btrfs_path *path;
4254 	struct extent_buffer *leaf;
4255 	struct btrfs_dir_item *di;
4256 	struct btrfs_key key;
4257 	const char *name = dentry->d_name.name;
4258 	int name_len = dentry->d_name.len;
4259 	u64 index;
4260 	int ret;
4261 	u64 objectid;
4262 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4263 
4264 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4265 		objectid = inode->root->root_key.objectid;
4266 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4267 		objectid = inode->location.objectid;
4268 	} else {
4269 		WARN_ON(1);
4270 		return -EINVAL;
4271 	}
4272 
4273 	path = btrfs_alloc_path();
4274 	if (!path)
4275 		return -ENOMEM;
4276 
4277 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4278 				   name, name_len, -1);
4279 	if (IS_ERR_OR_NULL(di)) {
4280 		ret = di ? PTR_ERR(di) : -ENOENT;
4281 		goto out;
4282 	}
4283 
4284 	leaf = path->nodes[0];
4285 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4286 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4287 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4288 	if (ret) {
4289 		btrfs_abort_transaction(trans, ret);
4290 		goto out;
4291 	}
4292 	btrfs_release_path(path);
4293 
4294 	/*
4295 	 * This is a placeholder inode for a subvolume we didn't have a
4296 	 * reference to at the time of the snapshot creation.  In the meantime
4297 	 * we could have renamed the real subvol link into our snapshot, so
4298 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4299 	 * Instead simply lookup the dir_index_item for this entry so we can
4300 	 * remove it.  Otherwise we know we have a ref to the root and we can
4301 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4302 	 */
4303 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4304 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4305 						 name, name_len);
4306 		if (IS_ERR_OR_NULL(di)) {
4307 			if (!di)
4308 				ret = -ENOENT;
4309 			else
4310 				ret = PTR_ERR(di);
4311 			btrfs_abort_transaction(trans, ret);
4312 			goto out;
4313 		}
4314 
4315 		leaf = path->nodes[0];
4316 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4317 		index = key.offset;
4318 		btrfs_release_path(path);
4319 	} else {
4320 		ret = btrfs_del_root_ref(trans, objectid,
4321 					 root->root_key.objectid, dir_ino,
4322 					 &index, name, name_len);
4323 		if (ret) {
4324 			btrfs_abort_transaction(trans, ret);
4325 			goto out;
4326 		}
4327 	}
4328 
4329 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4330 	if (ret) {
4331 		btrfs_abort_transaction(trans, ret);
4332 		goto out;
4333 	}
4334 
4335 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4336 	inode_inc_iversion(dir);
4337 	dir->i_mtime = dir->i_ctime = current_time(dir);
4338 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4339 	if (ret)
4340 		btrfs_abort_transaction(trans, ret);
4341 out:
4342 	btrfs_free_path(path);
4343 	return ret;
4344 }
4345 
4346 /*
4347  * Helper to check if the subvolume references other subvolumes or if it's
4348  * default.
4349  */
4350 static noinline int may_destroy_subvol(struct btrfs_root *root)
4351 {
4352 	struct btrfs_fs_info *fs_info = root->fs_info;
4353 	struct btrfs_path *path;
4354 	struct btrfs_dir_item *di;
4355 	struct btrfs_key key;
4356 	u64 dir_id;
4357 	int ret;
4358 
4359 	path = btrfs_alloc_path();
4360 	if (!path)
4361 		return -ENOMEM;
4362 
4363 	/* Make sure this root isn't set as the default subvol */
4364 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4365 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4366 				   dir_id, "default", 7, 0);
4367 	if (di && !IS_ERR(di)) {
4368 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4369 		if (key.objectid == root->root_key.objectid) {
4370 			ret = -EPERM;
4371 			btrfs_err(fs_info,
4372 				  "deleting default subvolume %llu is not allowed",
4373 				  key.objectid);
4374 			goto out;
4375 		}
4376 		btrfs_release_path(path);
4377 	}
4378 
4379 	key.objectid = root->root_key.objectid;
4380 	key.type = BTRFS_ROOT_REF_KEY;
4381 	key.offset = (u64)-1;
4382 
4383 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4384 	if (ret < 0)
4385 		goto out;
4386 	BUG_ON(ret == 0);
4387 
4388 	ret = 0;
4389 	if (path->slots[0] > 0) {
4390 		path->slots[0]--;
4391 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4392 		if (key.objectid == root->root_key.objectid &&
4393 		    key.type == BTRFS_ROOT_REF_KEY)
4394 			ret = -ENOTEMPTY;
4395 	}
4396 out:
4397 	btrfs_free_path(path);
4398 	return ret;
4399 }
4400 
4401 /* Delete all dentries for inodes belonging to the root */
4402 static void btrfs_prune_dentries(struct btrfs_root *root)
4403 {
4404 	struct btrfs_fs_info *fs_info = root->fs_info;
4405 	struct rb_node *node;
4406 	struct rb_node *prev;
4407 	struct btrfs_inode *entry;
4408 	struct inode *inode;
4409 	u64 objectid = 0;
4410 
4411 	if (!BTRFS_FS_ERROR(fs_info))
4412 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4413 
4414 	spin_lock(&root->inode_lock);
4415 again:
4416 	node = root->inode_tree.rb_node;
4417 	prev = NULL;
4418 	while (node) {
4419 		prev = node;
4420 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4421 
4422 		if (objectid < btrfs_ino(entry))
4423 			node = node->rb_left;
4424 		else if (objectid > btrfs_ino(entry))
4425 			node = node->rb_right;
4426 		else
4427 			break;
4428 	}
4429 	if (!node) {
4430 		while (prev) {
4431 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4432 			if (objectid <= btrfs_ino(entry)) {
4433 				node = prev;
4434 				break;
4435 			}
4436 			prev = rb_next(prev);
4437 		}
4438 	}
4439 	while (node) {
4440 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4441 		objectid = btrfs_ino(entry) + 1;
4442 		inode = igrab(&entry->vfs_inode);
4443 		if (inode) {
4444 			spin_unlock(&root->inode_lock);
4445 			if (atomic_read(&inode->i_count) > 1)
4446 				d_prune_aliases(inode);
4447 			/*
4448 			 * btrfs_drop_inode will have it removed from the inode
4449 			 * cache when its usage count hits zero.
4450 			 */
4451 			iput(inode);
4452 			cond_resched();
4453 			spin_lock(&root->inode_lock);
4454 			goto again;
4455 		}
4456 
4457 		if (cond_resched_lock(&root->inode_lock))
4458 			goto again;
4459 
4460 		node = rb_next(node);
4461 	}
4462 	spin_unlock(&root->inode_lock);
4463 }
4464 
4465 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4466 {
4467 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4468 	struct btrfs_root *root = BTRFS_I(dir)->root;
4469 	struct inode *inode = d_inode(dentry);
4470 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4471 	struct btrfs_trans_handle *trans;
4472 	struct btrfs_block_rsv block_rsv;
4473 	u64 root_flags;
4474 	int ret;
4475 
4476 	/*
4477 	 * Don't allow to delete a subvolume with send in progress. This is
4478 	 * inside the inode lock so the error handling that has to drop the bit
4479 	 * again is not run concurrently.
4480 	 */
4481 	spin_lock(&dest->root_item_lock);
4482 	if (dest->send_in_progress) {
4483 		spin_unlock(&dest->root_item_lock);
4484 		btrfs_warn(fs_info,
4485 			   "attempt to delete subvolume %llu during send",
4486 			   dest->root_key.objectid);
4487 		return -EPERM;
4488 	}
4489 	if (atomic_read(&dest->nr_swapfiles)) {
4490 		spin_unlock(&dest->root_item_lock);
4491 		btrfs_warn(fs_info,
4492 			   "attempt to delete subvolume %llu with active swapfile",
4493 			   root->root_key.objectid);
4494 		return -EPERM;
4495 	}
4496 	root_flags = btrfs_root_flags(&dest->root_item);
4497 	btrfs_set_root_flags(&dest->root_item,
4498 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4499 	spin_unlock(&dest->root_item_lock);
4500 
4501 	down_write(&fs_info->subvol_sem);
4502 
4503 	ret = may_destroy_subvol(dest);
4504 	if (ret)
4505 		goto out_up_write;
4506 
4507 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4508 	/*
4509 	 * One for dir inode,
4510 	 * two for dir entries,
4511 	 * two for root ref/backref.
4512 	 */
4513 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4514 	if (ret)
4515 		goto out_up_write;
4516 
4517 	trans = btrfs_start_transaction(root, 0);
4518 	if (IS_ERR(trans)) {
4519 		ret = PTR_ERR(trans);
4520 		goto out_release;
4521 	}
4522 	trans->block_rsv = &block_rsv;
4523 	trans->bytes_reserved = block_rsv.size;
4524 
4525 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4526 
4527 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4528 	if (ret) {
4529 		btrfs_abort_transaction(trans, ret);
4530 		goto out_end_trans;
4531 	}
4532 
4533 	ret = btrfs_record_root_in_trans(trans, dest);
4534 	if (ret) {
4535 		btrfs_abort_transaction(trans, ret);
4536 		goto out_end_trans;
4537 	}
4538 
4539 	memset(&dest->root_item.drop_progress, 0,
4540 		sizeof(dest->root_item.drop_progress));
4541 	btrfs_set_root_drop_level(&dest->root_item, 0);
4542 	btrfs_set_root_refs(&dest->root_item, 0);
4543 
4544 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4545 		ret = btrfs_insert_orphan_item(trans,
4546 					fs_info->tree_root,
4547 					dest->root_key.objectid);
4548 		if (ret) {
4549 			btrfs_abort_transaction(trans, ret);
4550 			goto out_end_trans;
4551 		}
4552 	}
4553 
4554 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4555 				  BTRFS_UUID_KEY_SUBVOL,
4556 				  dest->root_key.objectid);
4557 	if (ret && ret != -ENOENT) {
4558 		btrfs_abort_transaction(trans, ret);
4559 		goto out_end_trans;
4560 	}
4561 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4562 		ret = btrfs_uuid_tree_remove(trans,
4563 					  dest->root_item.received_uuid,
4564 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4565 					  dest->root_key.objectid);
4566 		if (ret && ret != -ENOENT) {
4567 			btrfs_abort_transaction(trans, ret);
4568 			goto out_end_trans;
4569 		}
4570 	}
4571 
4572 	free_anon_bdev(dest->anon_dev);
4573 	dest->anon_dev = 0;
4574 out_end_trans:
4575 	trans->block_rsv = NULL;
4576 	trans->bytes_reserved = 0;
4577 	ret = btrfs_end_transaction(trans);
4578 	inode->i_flags |= S_DEAD;
4579 out_release:
4580 	btrfs_subvolume_release_metadata(root, &block_rsv);
4581 out_up_write:
4582 	up_write(&fs_info->subvol_sem);
4583 	if (ret) {
4584 		spin_lock(&dest->root_item_lock);
4585 		root_flags = btrfs_root_flags(&dest->root_item);
4586 		btrfs_set_root_flags(&dest->root_item,
4587 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4588 		spin_unlock(&dest->root_item_lock);
4589 	} else {
4590 		d_invalidate(dentry);
4591 		btrfs_prune_dentries(dest);
4592 		ASSERT(dest->send_in_progress == 0);
4593 	}
4594 
4595 	return ret;
4596 }
4597 
4598 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4599 {
4600 	struct inode *inode = d_inode(dentry);
4601 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4602 	int err = 0;
4603 	struct btrfs_trans_handle *trans;
4604 	u64 last_unlink_trans;
4605 
4606 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4607 		return -ENOTEMPTY;
4608 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4609 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4610 			btrfs_err(fs_info,
4611 			"extent tree v2 doesn't support snapshot deletion yet");
4612 			return -EOPNOTSUPP;
4613 		}
4614 		return btrfs_delete_subvolume(dir, dentry);
4615 	}
4616 
4617 	trans = __unlink_start_trans(dir);
4618 	if (IS_ERR(trans))
4619 		return PTR_ERR(trans);
4620 
4621 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4622 		err = btrfs_unlink_subvol(trans, dir, dentry);
4623 		goto out;
4624 	}
4625 
4626 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4627 	if (err)
4628 		goto out;
4629 
4630 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4631 
4632 	/* now the directory is empty */
4633 	err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4634 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4635 			dentry->d_name.len);
4636 	if (!err) {
4637 		btrfs_i_size_write(BTRFS_I(inode), 0);
4638 		/*
4639 		 * Propagate the last_unlink_trans value of the deleted dir to
4640 		 * its parent directory. This is to prevent an unrecoverable
4641 		 * log tree in the case we do something like this:
4642 		 * 1) create dir foo
4643 		 * 2) create snapshot under dir foo
4644 		 * 3) delete the snapshot
4645 		 * 4) rmdir foo
4646 		 * 5) mkdir foo
4647 		 * 6) fsync foo or some file inside foo
4648 		 */
4649 		if (last_unlink_trans >= trans->transid)
4650 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4651 	}
4652 out:
4653 	btrfs_end_transaction(trans);
4654 	btrfs_btree_balance_dirty(fs_info);
4655 
4656 	return err;
4657 }
4658 
4659 /*
4660  * btrfs_truncate_block - read, zero a chunk and write a block
4661  * @inode - inode that we're zeroing
4662  * @from - the offset to start zeroing
4663  * @len - the length to zero, 0 to zero the entire range respective to the
4664  *	offset
4665  * @front - zero up to the offset instead of from the offset on
4666  *
4667  * This will find the block for the "from" offset and cow the block and zero the
4668  * part we want to zero.  This is used with truncate and hole punching.
4669  */
4670 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4671 			 int front)
4672 {
4673 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4674 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4675 	struct extent_io_tree *io_tree = &inode->io_tree;
4676 	struct btrfs_ordered_extent *ordered;
4677 	struct extent_state *cached_state = NULL;
4678 	struct extent_changeset *data_reserved = NULL;
4679 	bool only_release_metadata = false;
4680 	u32 blocksize = fs_info->sectorsize;
4681 	pgoff_t index = from >> PAGE_SHIFT;
4682 	unsigned offset = from & (blocksize - 1);
4683 	struct page *page;
4684 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4685 	size_t write_bytes = blocksize;
4686 	int ret = 0;
4687 	u64 block_start;
4688 	u64 block_end;
4689 
4690 	if (IS_ALIGNED(offset, blocksize) &&
4691 	    (!len || IS_ALIGNED(len, blocksize)))
4692 		goto out;
4693 
4694 	block_start = round_down(from, blocksize);
4695 	block_end = block_start + blocksize - 1;
4696 
4697 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4698 					  blocksize);
4699 	if (ret < 0) {
4700 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4701 			/* For nocow case, no need to reserve data space */
4702 			only_release_metadata = true;
4703 		} else {
4704 			goto out;
4705 		}
4706 	}
4707 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize);
4708 	if (ret < 0) {
4709 		if (!only_release_metadata)
4710 			btrfs_free_reserved_data_space(inode, data_reserved,
4711 						       block_start, blocksize);
4712 		goto out;
4713 	}
4714 again:
4715 	page = find_or_create_page(mapping, index, mask);
4716 	if (!page) {
4717 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4718 					     blocksize, true);
4719 		btrfs_delalloc_release_extents(inode, blocksize);
4720 		ret = -ENOMEM;
4721 		goto out;
4722 	}
4723 	ret = set_page_extent_mapped(page);
4724 	if (ret < 0)
4725 		goto out_unlock;
4726 
4727 	if (!PageUptodate(page)) {
4728 		ret = btrfs_readpage(NULL, page);
4729 		lock_page(page);
4730 		if (page->mapping != mapping) {
4731 			unlock_page(page);
4732 			put_page(page);
4733 			goto again;
4734 		}
4735 		if (!PageUptodate(page)) {
4736 			ret = -EIO;
4737 			goto out_unlock;
4738 		}
4739 	}
4740 	wait_on_page_writeback(page);
4741 
4742 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4743 
4744 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4745 	if (ordered) {
4746 		unlock_extent_cached(io_tree, block_start, block_end,
4747 				     &cached_state);
4748 		unlock_page(page);
4749 		put_page(page);
4750 		btrfs_start_ordered_extent(ordered, 1);
4751 		btrfs_put_ordered_extent(ordered);
4752 		goto again;
4753 	}
4754 
4755 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4756 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4757 			 0, 0, &cached_state);
4758 
4759 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4760 					&cached_state);
4761 	if (ret) {
4762 		unlock_extent_cached(io_tree, block_start, block_end,
4763 				     &cached_state);
4764 		goto out_unlock;
4765 	}
4766 
4767 	if (offset != blocksize) {
4768 		if (!len)
4769 			len = blocksize - offset;
4770 		if (front)
4771 			memzero_page(page, (block_start - page_offset(page)),
4772 				     offset);
4773 		else
4774 			memzero_page(page, (block_start - page_offset(page)) + offset,
4775 				     len);
4776 		flush_dcache_page(page);
4777 	}
4778 	btrfs_page_clear_checked(fs_info, page, block_start,
4779 				 block_end + 1 - block_start);
4780 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4781 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4782 
4783 	if (only_release_metadata)
4784 		set_extent_bit(&inode->io_tree, block_start, block_end,
4785 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4786 
4787 out_unlock:
4788 	if (ret) {
4789 		if (only_release_metadata)
4790 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4791 		else
4792 			btrfs_delalloc_release_space(inode, data_reserved,
4793 					block_start, blocksize, true);
4794 	}
4795 	btrfs_delalloc_release_extents(inode, blocksize);
4796 	unlock_page(page);
4797 	put_page(page);
4798 out:
4799 	if (only_release_metadata)
4800 		btrfs_check_nocow_unlock(inode);
4801 	extent_changeset_free(data_reserved);
4802 	return ret;
4803 }
4804 
4805 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4806 			     u64 offset, u64 len)
4807 {
4808 	struct btrfs_fs_info *fs_info = root->fs_info;
4809 	struct btrfs_trans_handle *trans;
4810 	struct btrfs_drop_extents_args drop_args = { 0 };
4811 	int ret;
4812 
4813 	/*
4814 	 * If NO_HOLES is enabled, we don't need to do anything.
4815 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4816 	 * or btrfs_update_inode() will be called, which guarantee that the next
4817 	 * fsync will know this inode was changed and needs to be logged.
4818 	 */
4819 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4820 		return 0;
4821 
4822 	/*
4823 	 * 1 - for the one we're dropping
4824 	 * 1 - for the one we're adding
4825 	 * 1 - for updating the inode.
4826 	 */
4827 	trans = btrfs_start_transaction(root, 3);
4828 	if (IS_ERR(trans))
4829 		return PTR_ERR(trans);
4830 
4831 	drop_args.start = offset;
4832 	drop_args.end = offset + len;
4833 	drop_args.drop_cache = true;
4834 
4835 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4836 	if (ret) {
4837 		btrfs_abort_transaction(trans, ret);
4838 		btrfs_end_transaction(trans);
4839 		return ret;
4840 	}
4841 
4842 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4843 			offset, 0, 0, len, 0, len, 0, 0, 0);
4844 	if (ret) {
4845 		btrfs_abort_transaction(trans, ret);
4846 	} else {
4847 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4848 		btrfs_update_inode(trans, root, inode);
4849 	}
4850 	btrfs_end_transaction(trans);
4851 	return ret;
4852 }
4853 
4854 /*
4855  * This function puts in dummy file extents for the area we're creating a hole
4856  * for.  So if we are truncating this file to a larger size we need to insert
4857  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4858  * the range between oldsize and size
4859  */
4860 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4861 {
4862 	struct btrfs_root *root = inode->root;
4863 	struct btrfs_fs_info *fs_info = root->fs_info;
4864 	struct extent_io_tree *io_tree = &inode->io_tree;
4865 	struct extent_map *em = NULL;
4866 	struct extent_state *cached_state = NULL;
4867 	struct extent_map_tree *em_tree = &inode->extent_tree;
4868 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4869 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4870 	u64 last_byte;
4871 	u64 cur_offset;
4872 	u64 hole_size;
4873 	int err = 0;
4874 
4875 	/*
4876 	 * If our size started in the middle of a block we need to zero out the
4877 	 * rest of the block before we expand the i_size, otherwise we could
4878 	 * expose stale data.
4879 	 */
4880 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4881 	if (err)
4882 		return err;
4883 
4884 	if (size <= hole_start)
4885 		return 0;
4886 
4887 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4888 					   &cached_state);
4889 	cur_offset = hole_start;
4890 	while (1) {
4891 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4892 				      block_end - cur_offset);
4893 		if (IS_ERR(em)) {
4894 			err = PTR_ERR(em);
4895 			em = NULL;
4896 			break;
4897 		}
4898 		last_byte = min(extent_map_end(em), block_end);
4899 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4900 		hole_size = last_byte - cur_offset;
4901 
4902 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4903 			struct extent_map *hole_em;
4904 
4905 			err = maybe_insert_hole(root, inode, cur_offset,
4906 						hole_size);
4907 			if (err)
4908 				break;
4909 
4910 			err = btrfs_inode_set_file_extent_range(inode,
4911 							cur_offset, hole_size);
4912 			if (err)
4913 				break;
4914 
4915 			btrfs_drop_extent_cache(inode, cur_offset,
4916 						cur_offset + hole_size - 1, 0);
4917 			hole_em = alloc_extent_map();
4918 			if (!hole_em) {
4919 				btrfs_set_inode_full_sync(inode);
4920 				goto next;
4921 			}
4922 			hole_em->start = cur_offset;
4923 			hole_em->len = hole_size;
4924 			hole_em->orig_start = cur_offset;
4925 
4926 			hole_em->block_start = EXTENT_MAP_HOLE;
4927 			hole_em->block_len = 0;
4928 			hole_em->orig_block_len = 0;
4929 			hole_em->ram_bytes = hole_size;
4930 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4931 			hole_em->generation = fs_info->generation;
4932 
4933 			while (1) {
4934 				write_lock(&em_tree->lock);
4935 				err = add_extent_mapping(em_tree, hole_em, 1);
4936 				write_unlock(&em_tree->lock);
4937 				if (err != -EEXIST)
4938 					break;
4939 				btrfs_drop_extent_cache(inode, cur_offset,
4940 							cur_offset +
4941 							hole_size - 1, 0);
4942 			}
4943 			free_extent_map(hole_em);
4944 		} else {
4945 			err = btrfs_inode_set_file_extent_range(inode,
4946 							cur_offset, hole_size);
4947 			if (err)
4948 				break;
4949 		}
4950 next:
4951 		free_extent_map(em);
4952 		em = NULL;
4953 		cur_offset = last_byte;
4954 		if (cur_offset >= block_end)
4955 			break;
4956 	}
4957 	free_extent_map(em);
4958 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4959 	return err;
4960 }
4961 
4962 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4963 {
4964 	struct btrfs_root *root = BTRFS_I(inode)->root;
4965 	struct btrfs_trans_handle *trans;
4966 	loff_t oldsize = i_size_read(inode);
4967 	loff_t newsize = attr->ia_size;
4968 	int mask = attr->ia_valid;
4969 	int ret;
4970 
4971 	/*
4972 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4973 	 * special case where we need to update the times despite not having
4974 	 * these flags set.  For all other operations the VFS set these flags
4975 	 * explicitly if it wants a timestamp update.
4976 	 */
4977 	if (newsize != oldsize) {
4978 		inode_inc_iversion(inode);
4979 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4980 			inode->i_ctime = inode->i_mtime =
4981 				current_time(inode);
4982 	}
4983 
4984 	if (newsize > oldsize) {
4985 		/*
4986 		 * Don't do an expanding truncate while snapshotting is ongoing.
4987 		 * This is to ensure the snapshot captures a fully consistent
4988 		 * state of this file - if the snapshot captures this expanding
4989 		 * truncation, it must capture all writes that happened before
4990 		 * this truncation.
4991 		 */
4992 		btrfs_drew_write_lock(&root->snapshot_lock);
4993 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4994 		if (ret) {
4995 			btrfs_drew_write_unlock(&root->snapshot_lock);
4996 			return ret;
4997 		}
4998 
4999 		trans = btrfs_start_transaction(root, 1);
5000 		if (IS_ERR(trans)) {
5001 			btrfs_drew_write_unlock(&root->snapshot_lock);
5002 			return PTR_ERR(trans);
5003 		}
5004 
5005 		i_size_write(inode, newsize);
5006 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5007 		pagecache_isize_extended(inode, oldsize, newsize);
5008 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5009 		btrfs_drew_write_unlock(&root->snapshot_lock);
5010 		btrfs_end_transaction(trans);
5011 	} else {
5012 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5013 
5014 		if (btrfs_is_zoned(fs_info)) {
5015 			ret = btrfs_wait_ordered_range(inode,
5016 					ALIGN(newsize, fs_info->sectorsize),
5017 					(u64)-1);
5018 			if (ret)
5019 				return ret;
5020 		}
5021 
5022 		/*
5023 		 * We're truncating a file that used to have good data down to
5024 		 * zero. Make sure any new writes to the file get on disk
5025 		 * on close.
5026 		 */
5027 		if (newsize == 0)
5028 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5029 				&BTRFS_I(inode)->runtime_flags);
5030 
5031 		truncate_setsize(inode, newsize);
5032 
5033 		inode_dio_wait(inode);
5034 
5035 		ret = btrfs_truncate(inode, newsize == oldsize);
5036 		if (ret && inode->i_nlink) {
5037 			int err;
5038 
5039 			/*
5040 			 * Truncate failed, so fix up the in-memory size. We
5041 			 * adjusted disk_i_size down as we removed extents, so
5042 			 * wait for disk_i_size to be stable and then update the
5043 			 * in-memory size to match.
5044 			 */
5045 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5046 			if (err)
5047 				return err;
5048 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5049 		}
5050 	}
5051 
5052 	return ret;
5053 }
5054 
5055 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5056 			 struct iattr *attr)
5057 {
5058 	struct inode *inode = d_inode(dentry);
5059 	struct btrfs_root *root = BTRFS_I(inode)->root;
5060 	int err;
5061 
5062 	if (btrfs_root_readonly(root))
5063 		return -EROFS;
5064 
5065 	err = setattr_prepare(mnt_userns, dentry, attr);
5066 	if (err)
5067 		return err;
5068 
5069 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5070 		err = btrfs_setsize(inode, attr);
5071 		if (err)
5072 			return err;
5073 	}
5074 
5075 	if (attr->ia_valid) {
5076 		setattr_copy(mnt_userns, inode, attr);
5077 		inode_inc_iversion(inode);
5078 		err = btrfs_dirty_inode(inode);
5079 
5080 		if (!err && attr->ia_valid & ATTR_MODE)
5081 			err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5082 	}
5083 
5084 	return err;
5085 }
5086 
5087 /*
5088  * While truncating the inode pages during eviction, we get the VFS
5089  * calling btrfs_invalidate_folio() against each folio of the inode. This
5090  * is slow because the calls to btrfs_invalidate_folio() result in a
5091  * huge amount of calls to lock_extent_bits() and clear_extent_bit(),
5092  * which keep merging and splitting extent_state structures over and over,
5093  * wasting lots of time.
5094  *
5095  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5096  * skip all those expensive operations on a per folio basis and do only
5097  * the ordered io finishing, while we release here the extent_map and
5098  * extent_state structures, without the excessive merging and splitting.
5099  */
5100 static void evict_inode_truncate_pages(struct inode *inode)
5101 {
5102 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5103 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5104 	struct rb_node *node;
5105 
5106 	ASSERT(inode->i_state & I_FREEING);
5107 	truncate_inode_pages_final(&inode->i_data);
5108 
5109 	write_lock(&map_tree->lock);
5110 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5111 		struct extent_map *em;
5112 
5113 		node = rb_first_cached(&map_tree->map);
5114 		em = rb_entry(node, struct extent_map, rb_node);
5115 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5116 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5117 		remove_extent_mapping(map_tree, em);
5118 		free_extent_map(em);
5119 		if (need_resched()) {
5120 			write_unlock(&map_tree->lock);
5121 			cond_resched();
5122 			write_lock(&map_tree->lock);
5123 		}
5124 	}
5125 	write_unlock(&map_tree->lock);
5126 
5127 	/*
5128 	 * Keep looping until we have no more ranges in the io tree.
5129 	 * We can have ongoing bios started by readahead that have
5130 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5131 	 * still in progress (unlocked the pages in the bio but did not yet
5132 	 * unlocked the ranges in the io tree). Therefore this means some
5133 	 * ranges can still be locked and eviction started because before
5134 	 * submitting those bios, which are executed by a separate task (work
5135 	 * queue kthread), inode references (inode->i_count) were not taken
5136 	 * (which would be dropped in the end io callback of each bio).
5137 	 * Therefore here we effectively end up waiting for those bios and
5138 	 * anyone else holding locked ranges without having bumped the inode's
5139 	 * reference count - if we don't do it, when they access the inode's
5140 	 * io_tree to unlock a range it may be too late, leading to an
5141 	 * use-after-free issue.
5142 	 */
5143 	spin_lock(&io_tree->lock);
5144 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5145 		struct extent_state *state;
5146 		struct extent_state *cached_state = NULL;
5147 		u64 start;
5148 		u64 end;
5149 		unsigned state_flags;
5150 
5151 		node = rb_first(&io_tree->state);
5152 		state = rb_entry(node, struct extent_state, rb_node);
5153 		start = state->start;
5154 		end = state->end;
5155 		state_flags = state->state;
5156 		spin_unlock(&io_tree->lock);
5157 
5158 		lock_extent_bits(io_tree, start, end, &cached_state);
5159 
5160 		/*
5161 		 * If still has DELALLOC flag, the extent didn't reach disk,
5162 		 * and its reserved space won't be freed by delayed_ref.
5163 		 * So we need to free its reserved space here.
5164 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5165 		 *
5166 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5167 		 */
5168 		if (state_flags & EXTENT_DELALLOC)
5169 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5170 					       end - start + 1);
5171 
5172 		clear_extent_bit(io_tree, start, end,
5173 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5174 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5175 				 &cached_state);
5176 
5177 		cond_resched();
5178 		spin_lock(&io_tree->lock);
5179 	}
5180 	spin_unlock(&io_tree->lock);
5181 }
5182 
5183 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5184 							struct btrfs_block_rsv *rsv)
5185 {
5186 	struct btrfs_fs_info *fs_info = root->fs_info;
5187 	struct btrfs_trans_handle *trans;
5188 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5189 	int ret;
5190 
5191 	/*
5192 	 * Eviction should be taking place at some place safe because of our
5193 	 * delayed iputs.  However the normal flushing code will run delayed
5194 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5195 	 *
5196 	 * We reserve the delayed_refs_extra here again because we can't use
5197 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5198 	 * above.  We reserve our extra bit here because we generate a ton of
5199 	 * delayed refs activity by truncating.
5200 	 *
5201 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5202 	 * if we fail to make this reservation we can re-try without the
5203 	 * delayed_refs_extra so we can make some forward progress.
5204 	 */
5205 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5206 				     BTRFS_RESERVE_FLUSH_EVICT);
5207 	if (ret) {
5208 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5209 					     BTRFS_RESERVE_FLUSH_EVICT);
5210 		if (ret) {
5211 			btrfs_warn(fs_info,
5212 				   "could not allocate space for delete; will truncate on mount");
5213 			return ERR_PTR(-ENOSPC);
5214 		}
5215 		delayed_refs_extra = 0;
5216 	}
5217 
5218 	trans = btrfs_join_transaction(root);
5219 	if (IS_ERR(trans))
5220 		return trans;
5221 
5222 	if (delayed_refs_extra) {
5223 		trans->block_rsv = &fs_info->trans_block_rsv;
5224 		trans->bytes_reserved = delayed_refs_extra;
5225 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5226 					delayed_refs_extra, 1);
5227 	}
5228 	return trans;
5229 }
5230 
5231 void btrfs_evict_inode(struct inode *inode)
5232 {
5233 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5234 	struct btrfs_trans_handle *trans;
5235 	struct btrfs_root *root = BTRFS_I(inode)->root;
5236 	struct btrfs_block_rsv *rsv;
5237 	int ret;
5238 
5239 	trace_btrfs_inode_evict(inode);
5240 
5241 	if (!root) {
5242 		fsverity_cleanup_inode(inode);
5243 		clear_inode(inode);
5244 		return;
5245 	}
5246 
5247 	evict_inode_truncate_pages(inode);
5248 
5249 	if (inode->i_nlink &&
5250 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5251 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5252 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5253 		goto no_delete;
5254 
5255 	if (is_bad_inode(inode))
5256 		goto no_delete;
5257 
5258 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5259 
5260 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5261 		goto no_delete;
5262 
5263 	if (inode->i_nlink > 0) {
5264 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5265 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5266 		goto no_delete;
5267 	}
5268 
5269 	/*
5270 	 * This makes sure the inode item in tree is uptodate and the space for
5271 	 * the inode update is released.
5272 	 */
5273 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5274 	if (ret)
5275 		goto no_delete;
5276 
5277 	/*
5278 	 * This drops any pending insert or delete operations we have for this
5279 	 * inode.  We could have a delayed dir index deletion queued up, but
5280 	 * we're removing the inode completely so that'll be taken care of in
5281 	 * the truncate.
5282 	 */
5283 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5284 
5285 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5286 	if (!rsv)
5287 		goto no_delete;
5288 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5289 	rsv->failfast = 1;
5290 
5291 	btrfs_i_size_write(BTRFS_I(inode), 0);
5292 
5293 	while (1) {
5294 		struct btrfs_truncate_control control = {
5295 			.inode = BTRFS_I(inode),
5296 			.ino = btrfs_ino(BTRFS_I(inode)),
5297 			.new_size = 0,
5298 			.min_type = 0,
5299 		};
5300 
5301 		trans = evict_refill_and_join(root, rsv);
5302 		if (IS_ERR(trans))
5303 			goto free_rsv;
5304 
5305 		trans->block_rsv = rsv;
5306 
5307 		ret = btrfs_truncate_inode_items(trans, root, &control);
5308 		trans->block_rsv = &fs_info->trans_block_rsv;
5309 		btrfs_end_transaction(trans);
5310 		btrfs_btree_balance_dirty(fs_info);
5311 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5312 			goto free_rsv;
5313 		else if (!ret)
5314 			break;
5315 	}
5316 
5317 	/*
5318 	 * Errors here aren't a big deal, it just means we leave orphan items in
5319 	 * the tree. They will be cleaned up on the next mount. If the inode
5320 	 * number gets reused, cleanup deletes the orphan item without doing
5321 	 * anything, and unlink reuses the existing orphan item.
5322 	 *
5323 	 * If it turns out that we are dropping too many of these, we might want
5324 	 * to add a mechanism for retrying these after a commit.
5325 	 */
5326 	trans = evict_refill_and_join(root, rsv);
5327 	if (!IS_ERR(trans)) {
5328 		trans->block_rsv = rsv;
5329 		btrfs_orphan_del(trans, BTRFS_I(inode));
5330 		trans->block_rsv = &fs_info->trans_block_rsv;
5331 		btrfs_end_transaction(trans);
5332 	}
5333 
5334 free_rsv:
5335 	btrfs_free_block_rsv(fs_info, rsv);
5336 no_delete:
5337 	/*
5338 	 * If we didn't successfully delete, the orphan item will still be in
5339 	 * the tree and we'll retry on the next mount. Again, we might also want
5340 	 * to retry these periodically in the future.
5341 	 */
5342 	btrfs_remove_delayed_node(BTRFS_I(inode));
5343 	fsverity_cleanup_inode(inode);
5344 	clear_inode(inode);
5345 }
5346 
5347 /*
5348  * Return the key found in the dir entry in the location pointer, fill @type
5349  * with BTRFS_FT_*, and return 0.
5350  *
5351  * If no dir entries were found, returns -ENOENT.
5352  * If found a corrupted location in dir entry, returns -EUCLEAN.
5353  */
5354 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5355 			       struct btrfs_key *location, u8 *type)
5356 {
5357 	const char *name = dentry->d_name.name;
5358 	int namelen = dentry->d_name.len;
5359 	struct btrfs_dir_item *di;
5360 	struct btrfs_path *path;
5361 	struct btrfs_root *root = BTRFS_I(dir)->root;
5362 	int ret = 0;
5363 
5364 	path = btrfs_alloc_path();
5365 	if (!path)
5366 		return -ENOMEM;
5367 
5368 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5369 			name, namelen, 0);
5370 	if (IS_ERR_OR_NULL(di)) {
5371 		ret = di ? PTR_ERR(di) : -ENOENT;
5372 		goto out;
5373 	}
5374 
5375 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5376 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5377 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5378 		ret = -EUCLEAN;
5379 		btrfs_warn(root->fs_info,
5380 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5381 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5382 			   location->objectid, location->type, location->offset);
5383 	}
5384 	if (!ret)
5385 		*type = btrfs_dir_type(path->nodes[0], di);
5386 out:
5387 	btrfs_free_path(path);
5388 	return ret;
5389 }
5390 
5391 /*
5392  * when we hit a tree root in a directory, the btrfs part of the inode
5393  * needs to be changed to reflect the root directory of the tree root.  This
5394  * is kind of like crossing a mount point.
5395  */
5396 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5397 				    struct inode *dir,
5398 				    struct dentry *dentry,
5399 				    struct btrfs_key *location,
5400 				    struct btrfs_root **sub_root)
5401 {
5402 	struct btrfs_path *path;
5403 	struct btrfs_root *new_root;
5404 	struct btrfs_root_ref *ref;
5405 	struct extent_buffer *leaf;
5406 	struct btrfs_key key;
5407 	int ret;
5408 	int err = 0;
5409 
5410 	path = btrfs_alloc_path();
5411 	if (!path) {
5412 		err = -ENOMEM;
5413 		goto out;
5414 	}
5415 
5416 	err = -ENOENT;
5417 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5418 	key.type = BTRFS_ROOT_REF_KEY;
5419 	key.offset = location->objectid;
5420 
5421 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5422 	if (ret) {
5423 		if (ret < 0)
5424 			err = ret;
5425 		goto out;
5426 	}
5427 
5428 	leaf = path->nodes[0];
5429 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5430 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5431 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5432 		goto out;
5433 
5434 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5435 				   (unsigned long)(ref + 1),
5436 				   dentry->d_name.len);
5437 	if (ret)
5438 		goto out;
5439 
5440 	btrfs_release_path(path);
5441 
5442 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5443 	if (IS_ERR(new_root)) {
5444 		err = PTR_ERR(new_root);
5445 		goto out;
5446 	}
5447 
5448 	*sub_root = new_root;
5449 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5450 	location->type = BTRFS_INODE_ITEM_KEY;
5451 	location->offset = 0;
5452 	err = 0;
5453 out:
5454 	btrfs_free_path(path);
5455 	return err;
5456 }
5457 
5458 static void inode_tree_add(struct inode *inode)
5459 {
5460 	struct btrfs_root *root = BTRFS_I(inode)->root;
5461 	struct btrfs_inode *entry;
5462 	struct rb_node **p;
5463 	struct rb_node *parent;
5464 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5465 	u64 ino = btrfs_ino(BTRFS_I(inode));
5466 
5467 	if (inode_unhashed(inode))
5468 		return;
5469 	parent = NULL;
5470 	spin_lock(&root->inode_lock);
5471 	p = &root->inode_tree.rb_node;
5472 	while (*p) {
5473 		parent = *p;
5474 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5475 
5476 		if (ino < btrfs_ino(entry))
5477 			p = &parent->rb_left;
5478 		else if (ino > btrfs_ino(entry))
5479 			p = &parent->rb_right;
5480 		else {
5481 			WARN_ON(!(entry->vfs_inode.i_state &
5482 				  (I_WILL_FREE | I_FREEING)));
5483 			rb_replace_node(parent, new, &root->inode_tree);
5484 			RB_CLEAR_NODE(parent);
5485 			spin_unlock(&root->inode_lock);
5486 			return;
5487 		}
5488 	}
5489 	rb_link_node(new, parent, p);
5490 	rb_insert_color(new, &root->inode_tree);
5491 	spin_unlock(&root->inode_lock);
5492 }
5493 
5494 static void inode_tree_del(struct btrfs_inode *inode)
5495 {
5496 	struct btrfs_root *root = inode->root;
5497 	int empty = 0;
5498 
5499 	spin_lock(&root->inode_lock);
5500 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5501 		rb_erase(&inode->rb_node, &root->inode_tree);
5502 		RB_CLEAR_NODE(&inode->rb_node);
5503 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5504 	}
5505 	spin_unlock(&root->inode_lock);
5506 
5507 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5508 		spin_lock(&root->inode_lock);
5509 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5510 		spin_unlock(&root->inode_lock);
5511 		if (empty)
5512 			btrfs_add_dead_root(root);
5513 	}
5514 }
5515 
5516 
5517 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5518 {
5519 	struct btrfs_iget_args *args = p;
5520 
5521 	inode->i_ino = args->ino;
5522 	BTRFS_I(inode)->location.objectid = args->ino;
5523 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5524 	BTRFS_I(inode)->location.offset = 0;
5525 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5526 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5527 	return 0;
5528 }
5529 
5530 static int btrfs_find_actor(struct inode *inode, void *opaque)
5531 {
5532 	struct btrfs_iget_args *args = opaque;
5533 
5534 	return args->ino == BTRFS_I(inode)->location.objectid &&
5535 		args->root == BTRFS_I(inode)->root;
5536 }
5537 
5538 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5539 				       struct btrfs_root *root)
5540 {
5541 	struct inode *inode;
5542 	struct btrfs_iget_args args;
5543 	unsigned long hashval = btrfs_inode_hash(ino, root);
5544 
5545 	args.ino = ino;
5546 	args.root = root;
5547 
5548 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5549 			     btrfs_init_locked_inode,
5550 			     (void *)&args);
5551 	return inode;
5552 }
5553 
5554 /*
5555  * Get an inode object given its inode number and corresponding root.
5556  * Path can be preallocated to prevent recursing back to iget through
5557  * allocator. NULL is also valid but may require an additional allocation
5558  * later.
5559  */
5560 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5561 			      struct btrfs_root *root, struct btrfs_path *path)
5562 {
5563 	struct inode *inode;
5564 
5565 	inode = btrfs_iget_locked(s, ino, root);
5566 	if (!inode)
5567 		return ERR_PTR(-ENOMEM);
5568 
5569 	if (inode->i_state & I_NEW) {
5570 		int ret;
5571 
5572 		ret = btrfs_read_locked_inode(inode, path);
5573 		if (!ret) {
5574 			inode_tree_add(inode);
5575 			unlock_new_inode(inode);
5576 		} else {
5577 			iget_failed(inode);
5578 			/*
5579 			 * ret > 0 can come from btrfs_search_slot called by
5580 			 * btrfs_read_locked_inode, this means the inode item
5581 			 * was not found.
5582 			 */
5583 			if (ret > 0)
5584 				ret = -ENOENT;
5585 			inode = ERR_PTR(ret);
5586 		}
5587 	}
5588 
5589 	return inode;
5590 }
5591 
5592 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5593 {
5594 	return btrfs_iget_path(s, ino, root, NULL);
5595 }
5596 
5597 static struct inode *new_simple_dir(struct super_block *s,
5598 				    struct btrfs_key *key,
5599 				    struct btrfs_root *root)
5600 {
5601 	struct inode *inode = new_inode(s);
5602 
5603 	if (!inode)
5604 		return ERR_PTR(-ENOMEM);
5605 
5606 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5607 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5608 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5609 
5610 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5611 	/*
5612 	 * We only need lookup, the rest is read-only and there's no inode
5613 	 * associated with the dentry
5614 	 */
5615 	inode->i_op = &simple_dir_inode_operations;
5616 	inode->i_opflags &= ~IOP_XATTR;
5617 	inode->i_fop = &simple_dir_operations;
5618 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5619 	inode->i_mtime = current_time(inode);
5620 	inode->i_atime = inode->i_mtime;
5621 	inode->i_ctime = inode->i_mtime;
5622 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5623 
5624 	return inode;
5625 }
5626 
5627 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5628 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5629 static_assert(BTRFS_FT_DIR == FT_DIR);
5630 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5631 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5632 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5633 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5634 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5635 
5636 static inline u8 btrfs_inode_type(struct inode *inode)
5637 {
5638 	return fs_umode_to_ftype(inode->i_mode);
5639 }
5640 
5641 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5642 {
5643 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5644 	struct inode *inode;
5645 	struct btrfs_root *root = BTRFS_I(dir)->root;
5646 	struct btrfs_root *sub_root = root;
5647 	struct btrfs_key location;
5648 	u8 di_type = 0;
5649 	int ret = 0;
5650 
5651 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5652 		return ERR_PTR(-ENAMETOOLONG);
5653 
5654 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5655 	if (ret < 0)
5656 		return ERR_PTR(ret);
5657 
5658 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5659 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5660 		if (IS_ERR(inode))
5661 			return inode;
5662 
5663 		/* Do extra check against inode mode with di_type */
5664 		if (btrfs_inode_type(inode) != di_type) {
5665 			btrfs_crit(fs_info,
5666 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5667 				  inode->i_mode, btrfs_inode_type(inode),
5668 				  di_type);
5669 			iput(inode);
5670 			return ERR_PTR(-EUCLEAN);
5671 		}
5672 		return inode;
5673 	}
5674 
5675 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5676 				       &location, &sub_root);
5677 	if (ret < 0) {
5678 		if (ret != -ENOENT)
5679 			inode = ERR_PTR(ret);
5680 		else
5681 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5682 	} else {
5683 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5684 	}
5685 	if (root != sub_root)
5686 		btrfs_put_root(sub_root);
5687 
5688 	if (!IS_ERR(inode) && root != sub_root) {
5689 		down_read(&fs_info->cleanup_work_sem);
5690 		if (!sb_rdonly(inode->i_sb))
5691 			ret = btrfs_orphan_cleanup(sub_root);
5692 		up_read(&fs_info->cleanup_work_sem);
5693 		if (ret) {
5694 			iput(inode);
5695 			inode = ERR_PTR(ret);
5696 		}
5697 	}
5698 
5699 	return inode;
5700 }
5701 
5702 static int btrfs_dentry_delete(const struct dentry *dentry)
5703 {
5704 	struct btrfs_root *root;
5705 	struct inode *inode = d_inode(dentry);
5706 
5707 	if (!inode && !IS_ROOT(dentry))
5708 		inode = d_inode(dentry->d_parent);
5709 
5710 	if (inode) {
5711 		root = BTRFS_I(inode)->root;
5712 		if (btrfs_root_refs(&root->root_item) == 0)
5713 			return 1;
5714 
5715 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5716 			return 1;
5717 	}
5718 	return 0;
5719 }
5720 
5721 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5722 				   unsigned int flags)
5723 {
5724 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5725 
5726 	if (inode == ERR_PTR(-ENOENT))
5727 		inode = NULL;
5728 	return d_splice_alias(inode, dentry);
5729 }
5730 
5731 /*
5732  * All this infrastructure exists because dir_emit can fault, and we are holding
5733  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5734  * our information into that, and then dir_emit from the buffer.  This is
5735  * similar to what NFS does, only we don't keep the buffer around in pagecache
5736  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5737  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5738  * tree lock.
5739  */
5740 static int btrfs_opendir(struct inode *inode, struct file *file)
5741 {
5742 	struct btrfs_file_private *private;
5743 
5744 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5745 	if (!private)
5746 		return -ENOMEM;
5747 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5748 	if (!private->filldir_buf) {
5749 		kfree(private);
5750 		return -ENOMEM;
5751 	}
5752 	file->private_data = private;
5753 	return 0;
5754 }
5755 
5756 struct dir_entry {
5757 	u64 ino;
5758 	u64 offset;
5759 	unsigned type;
5760 	int name_len;
5761 };
5762 
5763 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5764 {
5765 	while (entries--) {
5766 		struct dir_entry *entry = addr;
5767 		char *name = (char *)(entry + 1);
5768 
5769 		ctx->pos = get_unaligned(&entry->offset);
5770 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5771 					 get_unaligned(&entry->ino),
5772 					 get_unaligned(&entry->type)))
5773 			return 1;
5774 		addr += sizeof(struct dir_entry) +
5775 			get_unaligned(&entry->name_len);
5776 		ctx->pos++;
5777 	}
5778 	return 0;
5779 }
5780 
5781 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5782 {
5783 	struct inode *inode = file_inode(file);
5784 	struct btrfs_root *root = BTRFS_I(inode)->root;
5785 	struct btrfs_file_private *private = file->private_data;
5786 	struct btrfs_dir_item *di;
5787 	struct btrfs_key key;
5788 	struct btrfs_key found_key;
5789 	struct btrfs_path *path;
5790 	void *addr;
5791 	struct list_head ins_list;
5792 	struct list_head del_list;
5793 	int ret;
5794 	struct extent_buffer *leaf;
5795 	int slot;
5796 	char *name_ptr;
5797 	int name_len;
5798 	int entries = 0;
5799 	int total_len = 0;
5800 	bool put = false;
5801 	struct btrfs_key location;
5802 
5803 	if (!dir_emit_dots(file, ctx))
5804 		return 0;
5805 
5806 	path = btrfs_alloc_path();
5807 	if (!path)
5808 		return -ENOMEM;
5809 
5810 	addr = private->filldir_buf;
5811 	path->reada = READA_FORWARD;
5812 
5813 	INIT_LIST_HEAD(&ins_list);
5814 	INIT_LIST_HEAD(&del_list);
5815 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5816 
5817 again:
5818 	key.type = BTRFS_DIR_INDEX_KEY;
5819 	key.offset = ctx->pos;
5820 	key.objectid = btrfs_ino(BTRFS_I(inode));
5821 
5822 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5823 	if (ret < 0)
5824 		goto err;
5825 
5826 	while (1) {
5827 		struct dir_entry *entry;
5828 
5829 		leaf = path->nodes[0];
5830 		slot = path->slots[0];
5831 		if (slot >= btrfs_header_nritems(leaf)) {
5832 			ret = btrfs_next_leaf(root, path);
5833 			if (ret < 0)
5834 				goto err;
5835 			else if (ret > 0)
5836 				break;
5837 			continue;
5838 		}
5839 
5840 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5841 
5842 		if (found_key.objectid != key.objectid)
5843 			break;
5844 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5845 			break;
5846 		if (found_key.offset < ctx->pos)
5847 			goto next;
5848 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5849 			goto next;
5850 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5851 		name_len = btrfs_dir_name_len(leaf, di);
5852 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5853 		    PAGE_SIZE) {
5854 			btrfs_release_path(path);
5855 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5856 			if (ret)
5857 				goto nopos;
5858 			addr = private->filldir_buf;
5859 			entries = 0;
5860 			total_len = 0;
5861 			goto again;
5862 		}
5863 
5864 		entry = addr;
5865 		put_unaligned(name_len, &entry->name_len);
5866 		name_ptr = (char *)(entry + 1);
5867 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5868 				   name_len);
5869 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5870 				&entry->type);
5871 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5872 		put_unaligned(location.objectid, &entry->ino);
5873 		put_unaligned(found_key.offset, &entry->offset);
5874 		entries++;
5875 		addr += sizeof(struct dir_entry) + name_len;
5876 		total_len += sizeof(struct dir_entry) + name_len;
5877 next:
5878 		path->slots[0]++;
5879 	}
5880 	btrfs_release_path(path);
5881 
5882 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5883 	if (ret)
5884 		goto nopos;
5885 
5886 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5887 	if (ret)
5888 		goto nopos;
5889 
5890 	/*
5891 	 * Stop new entries from being returned after we return the last
5892 	 * entry.
5893 	 *
5894 	 * New directory entries are assigned a strictly increasing
5895 	 * offset.  This means that new entries created during readdir
5896 	 * are *guaranteed* to be seen in the future by that readdir.
5897 	 * This has broken buggy programs which operate on names as
5898 	 * they're returned by readdir.  Until we re-use freed offsets
5899 	 * we have this hack to stop new entries from being returned
5900 	 * under the assumption that they'll never reach this huge
5901 	 * offset.
5902 	 *
5903 	 * This is being careful not to overflow 32bit loff_t unless the
5904 	 * last entry requires it because doing so has broken 32bit apps
5905 	 * in the past.
5906 	 */
5907 	if (ctx->pos >= INT_MAX)
5908 		ctx->pos = LLONG_MAX;
5909 	else
5910 		ctx->pos = INT_MAX;
5911 nopos:
5912 	ret = 0;
5913 err:
5914 	if (put)
5915 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5916 	btrfs_free_path(path);
5917 	return ret;
5918 }
5919 
5920 /*
5921  * This is somewhat expensive, updating the tree every time the
5922  * inode changes.  But, it is most likely to find the inode in cache.
5923  * FIXME, needs more benchmarking...there are no reasons other than performance
5924  * to keep or drop this code.
5925  */
5926 static int btrfs_dirty_inode(struct inode *inode)
5927 {
5928 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5929 	struct btrfs_root *root = BTRFS_I(inode)->root;
5930 	struct btrfs_trans_handle *trans;
5931 	int ret;
5932 
5933 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5934 		return 0;
5935 
5936 	trans = btrfs_join_transaction(root);
5937 	if (IS_ERR(trans))
5938 		return PTR_ERR(trans);
5939 
5940 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5941 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
5942 		/* whoops, lets try again with the full transaction */
5943 		btrfs_end_transaction(trans);
5944 		trans = btrfs_start_transaction(root, 1);
5945 		if (IS_ERR(trans))
5946 			return PTR_ERR(trans);
5947 
5948 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5949 	}
5950 	btrfs_end_transaction(trans);
5951 	if (BTRFS_I(inode)->delayed_node)
5952 		btrfs_balance_delayed_items(fs_info);
5953 
5954 	return ret;
5955 }
5956 
5957 /*
5958  * This is a copy of file_update_time.  We need this so we can return error on
5959  * ENOSPC for updating the inode in the case of file write and mmap writes.
5960  */
5961 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5962 			     int flags)
5963 {
5964 	struct btrfs_root *root = BTRFS_I(inode)->root;
5965 	bool dirty = flags & ~S_VERSION;
5966 
5967 	if (btrfs_root_readonly(root))
5968 		return -EROFS;
5969 
5970 	if (flags & S_VERSION)
5971 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5972 	if (flags & S_CTIME)
5973 		inode->i_ctime = *now;
5974 	if (flags & S_MTIME)
5975 		inode->i_mtime = *now;
5976 	if (flags & S_ATIME)
5977 		inode->i_atime = *now;
5978 	return dirty ? btrfs_dirty_inode(inode) : 0;
5979 }
5980 
5981 /*
5982  * find the highest existing sequence number in a directory
5983  * and then set the in-memory index_cnt variable to reflect
5984  * free sequence numbers
5985  */
5986 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5987 {
5988 	struct btrfs_root *root = inode->root;
5989 	struct btrfs_key key, found_key;
5990 	struct btrfs_path *path;
5991 	struct extent_buffer *leaf;
5992 	int ret;
5993 
5994 	key.objectid = btrfs_ino(inode);
5995 	key.type = BTRFS_DIR_INDEX_KEY;
5996 	key.offset = (u64)-1;
5997 
5998 	path = btrfs_alloc_path();
5999 	if (!path)
6000 		return -ENOMEM;
6001 
6002 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6003 	if (ret < 0)
6004 		goto out;
6005 	/* FIXME: we should be able to handle this */
6006 	if (ret == 0)
6007 		goto out;
6008 	ret = 0;
6009 
6010 	if (path->slots[0] == 0) {
6011 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6012 		goto out;
6013 	}
6014 
6015 	path->slots[0]--;
6016 
6017 	leaf = path->nodes[0];
6018 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6019 
6020 	if (found_key.objectid != btrfs_ino(inode) ||
6021 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6022 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6023 		goto out;
6024 	}
6025 
6026 	inode->index_cnt = found_key.offset + 1;
6027 out:
6028 	btrfs_free_path(path);
6029 	return ret;
6030 }
6031 
6032 /*
6033  * helper to find a free sequence number in a given directory.  This current
6034  * code is very simple, later versions will do smarter things in the btree
6035  */
6036 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6037 {
6038 	int ret = 0;
6039 
6040 	if (dir->index_cnt == (u64)-1) {
6041 		ret = btrfs_inode_delayed_dir_index_count(dir);
6042 		if (ret) {
6043 			ret = btrfs_set_inode_index_count(dir);
6044 			if (ret)
6045 				return ret;
6046 		}
6047 	}
6048 
6049 	*index = dir->index_cnt;
6050 	dir->index_cnt++;
6051 
6052 	return ret;
6053 }
6054 
6055 static int btrfs_insert_inode_locked(struct inode *inode)
6056 {
6057 	struct btrfs_iget_args args;
6058 
6059 	args.ino = BTRFS_I(inode)->location.objectid;
6060 	args.root = BTRFS_I(inode)->root;
6061 
6062 	return insert_inode_locked4(inode,
6063 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6064 		   btrfs_find_actor, &args);
6065 }
6066 
6067 /*
6068  * Inherit flags from the parent inode.
6069  *
6070  * Currently only the compression flags and the cow flags are inherited.
6071  */
6072 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6073 {
6074 	unsigned int flags;
6075 
6076 	if (!dir)
6077 		return;
6078 
6079 	flags = BTRFS_I(dir)->flags;
6080 
6081 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6082 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6083 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6084 	} else if (flags & BTRFS_INODE_COMPRESS) {
6085 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6086 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6087 	}
6088 
6089 	if (flags & BTRFS_INODE_NODATACOW) {
6090 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6091 		if (S_ISREG(inode->i_mode))
6092 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6093 	}
6094 
6095 	btrfs_sync_inode_flags_to_i_flags(inode);
6096 }
6097 
6098 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6099 				     struct btrfs_root *root,
6100 				     struct user_namespace *mnt_userns,
6101 				     struct inode *dir,
6102 				     const char *name, int name_len,
6103 				     u64 ref_objectid, u64 objectid,
6104 				     umode_t mode, u64 *index)
6105 {
6106 	struct btrfs_fs_info *fs_info = root->fs_info;
6107 	struct inode *inode;
6108 	struct btrfs_inode_item *inode_item;
6109 	struct btrfs_key *location;
6110 	struct btrfs_path *path;
6111 	struct btrfs_inode_ref *ref;
6112 	struct btrfs_key key[2];
6113 	u32 sizes[2];
6114 	struct btrfs_item_batch batch;
6115 	unsigned long ptr;
6116 	unsigned int nofs_flag;
6117 	int ret;
6118 
6119 	path = btrfs_alloc_path();
6120 	if (!path)
6121 		return ERR_PTR(-ENOMEM);
6122 
6123 	nofs_flag = memalloc_nofs_save();
6124 	inode = new_inode(fs_info->sb);
6125 	memalloc_nofs_restore(nofs_flag);
6126 	if (!inode) {
6127 		btrfs_free_path(path);
6128 		return ERR_PTR(-ENOMEM);
6129 	}
6130 
6131 	/*
6132 	 * O_TMPFILE, set link count to 0, so that after this point,
6133 	 * we fill in an inode item with the correct link count.
6134 	 */
6135 	if (!name)
6136 		set_nlink(inode, 0);
6137 
6138 	/*
6139 	 * we have to initialize this early, so we can reclaim the inode
6140 	 * number if we fail afterwards in this function.
6141 	 */
6142 	inode->i_ino = objectid;
6143 
6144 	if (dir && name) {
6145 		trace_btrfs_inode_request(dir);
6146 
6147 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6148 		if (ret) {
6149 			btrfs_free_path(path);
6150 			iput(inode);
6151 			return ERR_PTR(ret);
6152 		}
6153 	} else if (dir) {
6154 		*index = 0;
6155 	}
6156 	/*
6157 	 * index_cnt is ignored for everything but a dir,
6158 	 * btrfs_set_inode_index_count has an explanation for the magic
6159 	 * number
6160 	 */
6161 	BTRFS_I(inode)->index_cnt = 2;
6162 	BTRFS_I(inode)->dir_index = *index;
6163 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6164 	BTRFS_I(inode)->generation = trans->transid;
6165 	inode->i_generation = BTRFS_I(inode)->generation;
6166 
6167 	/*
6168 	 * We could have gotten an inode number from somebody who was fsynced
6169 	 * and then removed in this same transaction, so let's just set full
6170 	 * sync since it will be a full sync anyway and this will blow away the
6171 	 * old info in the log.
6172 	 */
6173 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6174 
6175 	key[0].objectid = objectid;
6176 	key[0].type = BTRFS_INODE_ITEM_KEY;
6177 	key[0].offset = 0;
6178 
6179 	sizes[0] = sizeof(struct btrfs_inode_item);
6180 
6181 	if (name) {
6182 		/*
6183 		 * Start new inodes with an inode_ref. This is slightly more
6184 		 * efficient for small numbers of hard links since they will
6185 		 * be packed into one item. Extended refs will kick in if we
6186 		 * add more hard links than can fit in the ref item.
6187 		 */
6188 		key[1].objectid = objectid;
6189 		key[1].type = BTRFS_INODE_REF_KEY;
6190 		key[1].offset = ref_objectid;
6191 
6192 		sizes[1] = name_len + sizeof(*ref);
6193 	}
6194 
6195 	location = &BTRFS_I(inode)->location;
6196 	location->objectid = objectid;
6197 	location->offset = 0;
6198 	location->type = BTRFS_INODE_ITEM_KEY;
6199 
6200 	ret = btrfs_insert_inode_locked(inode);
6201 	if (ret < 0) {
6202 		iput(inode);
6203 		goto fail;
6204 	}
6205 
6206 	batch.keys = &key[0];
6207 	batch.data_sizes = &sizes[0];
6208 	batch.total_data_size = sizes[0] + (name ? sizes[1] : 0);
6209 	batch.nr = name ? 2 : 1;
6210 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6211 	if (ret != 0)
6212 		goto fail_unlock;
6213 
6214 	inode_init_owner(mnt_userns, inode, dir, mode);
6215 	inode_set_bytes(inode, 0);
6216 
6217 	inode->i_mtime = current_time(inode);
6218 	inode->i_atime = inode->i_mtime;
6219 	inode->i_ctime = inode->i_mtime;
6220 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6221 
6222 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6223 				  struct btrfs_inode_item);
6224 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6225 			     sizeof(*inode_item));
6226 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6227 
6228 	if (name) {
6229 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6230 				     struct btrfs_inode_ref);
6231 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6232 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6233 		ptr = (unsigned long)(ref + 1);
6234 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6235 	}
6236 
6237 	btrfs_mark_buffer_dirty(path->nodes[0]);
6238 	btrfs_free_path(path);
6239 
6240 	btrfs_inherit_iflags(inode, dir);
6241 
6242 	if (S_ISREG(mode)) {
6243 		if (btrfs_test_opt(fs_info, NODATASUM))
6244 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6245 		if (btrfs_test_opt(fs_info, NODATACOW))
6246 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6247 				BTRFS_INODE_NODATASUM;
6248 	}
6249 
6250 	inode_tree_add(inode);
6251 
6252 	trace_btrfs_inode_new(inode);
6253 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6254 
6255 	btrfs_update_root_times(trans, root);
6256 
6257 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6258 	if (ret)
6259 		btrfs_err(fs_info,
6260 			  "error inheriting props for ino %llu (root %llu): %d",
6261 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6262 
6263 	return inode;
6264 
6265 fail_unlock:
6266 	discard_new_inode(inode);
6267 fail:
6268 	if (dir && name)
6269 		BTRFS_I(dir)->index_cnt--;
6270 	btrfs_free_path(path);
6271 	return ERR_PTR(ret);
6272 }
6273 
6274 /*
6275  * utility function to add 'inode' into 'parent_inode' with
6276  * a give name and a given sequence number.
6277  * if 'add_backref' is true, also insert a backref from the
6278  * inode to the parent directory.
6279  */
6280 int btrfs_add_link(struct btrfs_trans_handle *trans,
6281 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6282 		   const char *name, int name_len, int add_backref, u64 index)
6283 {
6284 	int ret = 0;
6285 	struct btrfs_key key;
6286 	struct btrfs_root *root = parent_inode->root;
6287 	u64 ino = btrfs_ino(inode);
6288 	u64 parent_ino = btrfs_ino(parent_inode);
6289 
6290 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6291 		memcpy(&key, &inode->root->root_key, sizeof(key));
6292 	} else {
6293 		key.objectid = ino;
6294 		key.type = BTRFS_INODE_ITEM_KEY;
6295 		key.offset = 0;
6296 	}
6297 
6298 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6299 		ret = btrfs_add_root_ref(trans, key.objectid,
6300 					 root->root_key.objectid, parent_ino,
6301 					 index, name, name_len);
6302 	} else if (add_backref) {
6303 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6304 					     parent_ino, index);
6305 	}
6306 
6307 	/* Nothing to clean up yet */
6308 	if (ret)
6309 		return ret;
6310 
6311 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6312 				    btrfs_inode_type(&inode->vfs_inode), index);
6313 	if (ret == -EEXIST || ret == -EOVERFLOW)
6314 		goto fail_dir_item;
6315 	else if (ret) {
6316 		btrfs_abort_transaction(trans, ret);
6317 		return ret;
6318 	}
6319 
6320 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6321 			   name_len * 2);
6322 	inode_inc_iversion(&parent_inode->vfs_inode);
6323 	/*
6324 	 * If we are replaying a log tree, we do not want to update the mtime
6325 	 * and ctime of the parent directory with the current time, since the
6326 	 * log replay procedure is responsible for setting them to their correct
6327 	 * values (the ones it had when the fsync was done).
6328 	 */
6329 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6330 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6331 
6332 		parent_inode->vfs_inode.i_mtime = now;
6333 		parent_inode->vfs_inode.i_ctime = now;
6334 	}
6335 	ret = btrfs_update_inode(trans, root, parent_inode);
6336 	if (ret)
6337 		btrfs_abort_transaction(trans, ret);
6338 	return ret;
6339 
6340 fail_dir_item:
6341 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6342 		u64 local_index;
6343 		int err;
6344 		err = btrfs_del_root_ref(trans, key.objectid,
6345 					 root->root_key.objectid, parent_ino,
6346 					 &local_index, name, name_len);
6347 		if (err)
6348 			btrfs_abort_transaction(trans, err);
6349 	} else if (add_backref) {
6350 		u64 local_index;
6351 		int err;
6352 
6353 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6354 					  ino, parent_ino, &local_index);
6355 		if (err)
6356 			btrfs_abort_transaction(trans, err);
6357 	}
6358 
6359 	/* Return the original error code */
6360 	return ret;
6361 }
6362 
6363 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6364 			    struct btrfs_inode *dir, struct dentry *dentry,
6365 			    struct btrfs_inode *inode, int backref, u64 index)
6366 {
6367 	int err = btrfs_add_link(trans, dir, inode,
6368 				 dentry->d_name.name, dentry->d_name.len,
6369 				 backref, index);
6370 	if (err > 0)
6371 		err = -EEXIST;
6372 	return err;
6373 }
6374 
6375 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6376 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6377 {
6378 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6379 	struct btrfs_trans_handle *trans;
6380 	struct btrfs_root *root = BTRFS_I(dir)->root;
6381 	struct inode *inode = NULL;
6382 	int err;
6383 	u64 objectid;
6384 	u64 index = 0;
6385 
6386 	/*
6387 	 * 2 for inode item and ref
6388 	 * 2 for dir items
6389 	 * 1 for xattr if selinux is on
6390 	 */
6391 	trans = btrfs_start_transaction(root, 5);
6392 	if (IS_ERR(trans))
6393 		return PTR_ERR(trans);
6394 
6395 	err = btrfs_get_free_objectid(root, &objectid);
6396 	if (err)
6397 		goto out_unlock;
6398 
6399 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6400 			dentry->d_name.name, dentry->d_name.len,
6401 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6402 	if (IS_ERR(inode)) {
6403 		err = PTR_ERR(inode);
6404 		inode = NULL;
6405 		goto out_unlock;
6406 	}
6407 
6408 	/*
6409 	* If the active LSM wants to access the inode during
6410 	* d_instantiate it needs these. Smack checks to see
6411 	* if the filesystem supports xattrs by looking at the
6412 	* ops vector.
6413 	*/
6414 	inode->i_op = &btrfs_special_inode_operations;
6415 	init_special_inode(inode, inode->i_mode, rdev);
6416 
6417 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6418 	if (err)
6419 		goto out_unlock;
6420 
6421 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6422 			0, index);
6423 	if (err)
6424 		goto out_unlock;
6425 
6426 	btrfs_update_inode(trans, root, BTRFS_I(inode));
6427 	d_instantiate_new(dentry, inode);
6428 
6429 out_unlock:
6430 	btrfs_end_transaction(trans);
6431 	btrfs_btree_balance_dirty(fs_info);
6432 	if (err && inode) {
6433 		inode_dec_link_count(inode);
6434 		discard_new_inode(inode);
6435 	}
6436 	return err;
6437 }
6438 
6439 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6440 			struct dentry *dentry, umode_t mode, bool excl)
6441 {
6442 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6443 	struct btrfs_trans_handle *trans;
6444 	struct btrfs_root *root = BTRFS_I(dir)->root;
6445 	struct inode *inode = NULL;
6446 	int err;
6447 	u64 objectid;
6448 	u64 index = 0;
6449 
6450 	/*
6451 	 * 2 for inode item and ref
6452 	 * 2 for dir items
6453 	 * 1 for xattr if selinux is on
6454 	 */
6455 	trans = btrfs_start_transaction(root, 5);
6456 	if (IS_ERR(trans))
6457 		return PTR_ERR(trans);
6458 
6459 	err = btrfs_get_free_objectid(root, &objectid);
6460 	if (err)
6461 		goto out_unlock;
6462 
6463 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6464 			dentry->d_name.name, dentry->d_name.len,
6465 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6466 	if (IS_ERR(inode)) {
6467 		err = PTR_ERR(inode);
6468 		inode = NULL;
6469 		goto out_unlock;
6470 	}
6471 	/*
6472 	* If the active LSM wants to access the inode during
6473 	* d_instantiate it needs these. Smack checks to see
6474 	* if the filesystem supports xattrs by looking at the
6475 	* ops vector.
6476 	*/
6477 	inode->i_fop = &btrfs_file_operations;
6478 	inode->i_op = &btrfs_file_inode_operations;
6479 	inode->i_mapping->a_ops = &btrfs_aops;
6480 
6481 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6482 	if (err)
6483 		goto out_unlock;
6484 
6485 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6486 	if (err)
6487 		goto out_unlock;
6488 
6489 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6490 			0, index);
6491 	if (err)
6492 		goto out_unlock;
6493 
6494 	d_instantiate_new(dentry, inode);
6495 
6496 out_unlock:
6497 	btrfs_end_transaction(trans);
6498 	if (err && inode) {
6499 		inode_dec_link_count(inode);
6500 		discard_new_inode(inode);
6501 	}
6502 	btrfs_btree_balance_dirty(fs_info);
6503 	return err;
6504 }
6505 
6506 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6507 		      struct dentry *dentry)
6508 {
6509 	struct btrfs_trans_handle *trans = NULL;
6510 	struct btrfs_root *root = BTRFS_I(dir)->root;
6511 	struct inode *inode = d_inode(old_dentry);
6512 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6513 	u64 index;
6514 	int err;
6515 	int drop_inode = 0;
6516 
6517 	/* do not allow sys_link's with other subvols of the same device */
6518 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6519 		return -EXDEV;
6520 
6521 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6522 		return -EMLINK;
6523 
6524 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6525 	if (err)
6526 		goto fail;
6527 
6528 	/*
6529 	 * 2 items for inode and inode ref
6530 	 * 2 items for dir items
6531 	 * 1 item for parent inode
6532 	 * 1 item for orphan item deletion if O_TMPFILE
6533 	 */
6534 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6535 	if (IS_ERR(trans)) {
6536 		err = PTR_ERR(trans);
6537 		trans = NULL;
6538 		goto fail;
6539 	}
6540 
6541 	/* There are several dir indexes for this inode, clear the cache. */
6542 	BTRFS_I(inode)->dir_index = 0ULL;
6543 	inc_nlink(inode);
6544 	inode_inc_iversion(inode);
6545 	inode->i_ctime = current_time(inode);
6546 	ihold(inode);
6547 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6548 
6549 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6550 			1, index);
6551 
6552 	if (err) {
6553 		drop_inode = 1;
6554 	} else {
6555 		struct dentry *parent = dentry->d_parent;
6556 
6557 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6558 		if (err)
6559 			goto fail;
6560 		if (inode->i_nlink == 1) {
6561 			/*
6562 			 * If new hard link count is 1, it's a file created
6563 			 * with open(2) O_TMPFILE flag.
6564 			 */
6565 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6566 			if (err)
6567 				goto fail;
6568 		}
6569 		d_instantiate(dentry, inode);
6570 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6571 	}
6572 
6573 fail:
6574 	if (trans)
6575 		btrfs_end_transaction(trans);
6576 	if (drop_inode) {
6577 		inode_dec_link_count(inode);
6578 		iput(inode);
6579 	}
6580 	btrfs_btree_balance_dirty(fs_info);
6581 	return err;
6582 }
6583 
6584 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6585 		       struct dentry *dentry, umode_t mode)
6586 {
6587 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6588 	struct inode *inode = NULL;
6589 	struct btrfs_trans_handle *trans;
6590 	struct btrfs_root *root = BTRFS_I(dir)->root;
6591 	int err = 0;
6592 	u64 objectid = 0;
6593 	u64 index = 0;
6594 
6595 	/*
6596 	 * 2 items for inode and ref
6597 	 * 2 items for dir items
6598 	 * 1 for xattr if selinux is on
6599 	 */
6600 	trans = btrfs_start_transaction(root, 5);
6601 	if (IS_ERR(trans))
6602 		return PTR_ERR(trans);
6603 
6604 	err = btrfs_get_free_objectid(root, &objectid);
6605 	if (err)
6606 		goto out_fail;
6607 
6608 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6609 			dentry->d_name.name, dentry->d_name.len,
6610 			btrfs_ino(BTRFS_I(dir)), objectid,
6611 			S_IFDIR | mode, &index);
6612 	if (IS_ERR(inode)) {
6613 		err = PTR_ERR(inode);
6614 		inode = NULL;
6615 		goto out_fail;
6616 	}
6617 
6618 	/* these must be set before we unlock the inode */
6619 	inode->i_op = &btrfs_dir_inode_operations;
6620 	inode->i_fop = &btrfs_dir_file_operations;
6621 
6622 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6623 	if (err)
6624 		goto out_fail;
6625 
6626 	btrfs_i_size_write(BTRFS_I(inode), 0);
6627 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6628 	if (err)
6629 		goto out_fail;
6630 
6631 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6632 			dentry->d_name.name,
6633 			dentry->d_name.len, 0, index);
6634 	if (err)
6635 		goto out_fail;
6636 
6637 	d_instantiate_new(dentry, inode);
6638 
6639 out_fail:
6640 	btrfs_end_transaction(trans);
6641 	if (err && inode) {
6642 		inode_dec_link_count(inode);
6643 		discard_new_inode(inode);
6644 	}
6645 	btrfs_btree_balance_dirty(fs_info);
6646 	return err;
6647 }
6648 
6649 static noinline int uncompress_inline(struct btrfs_path *path,
6650 				      struct page *page,
6651 				      size_t pg_offset, u64 extent_offset,
6652 				      struct btrfs_file_extent_item *item)
6653 {
6654 	int ret;
6655 	struct extent_buffer *leaf = path->nodes[0];
6656 	char *tmp;
6657 	size_t max_size;
6658 	unsigned long inline_size;
6659 	unsigned long ptr;
6660 	int compress_type;
6661 
6662 	WARN_ON(pg_offset != 0);
6663 	compress_type = btrfs_file_extent_compression(leaf, item);
6664 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6665 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6666 	tmp = kmalloc(inline_size, GFP_NOFS);
6667 	if (!tmp)
6668 		return -ENOMEM;
6669 	ptr = btrfs_file_extent_inline_start(item);
6670 
6671 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6672 
6673 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6674 	ret = btrfs_decompress(compress_type, tmp, page,
6675 			       extent_offset, inline_size, max_size);
6676 
6677 	/*
6678 	 * decompression code contains a memset to fill in any space between the end
6679 	 * of the uncompressed data and the end of max_size in case the decompressed
6680 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6681 	 * the end of an inline extent and the beginning of the next block, so we
6682 	 * cover that region here.
6683 	 */
6684 
6685 	if (max_size + pg_offset < PAGE_SIZE)
6686 		memzero_page(page,  pg_offset + max_size,
6687 			     PAGE_SIZE - max_size - pg_offset);
6688 	kfree(tmp);
6689 	return ret;
6690 }
6691 
6692 /**
6693  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6694  * @inode:	file to search in
6695  * @page:	page to read extent data into if the extent is inline
6696  * @pg_offset:	offset into @page to copy to
6697  * @start:	file offset
6698  * @len:	length of range starting at @start
6699  *
6700  * This returns the first &struct extent_map which overlaps with the given
6701  * range, reading it from the B-tree and caching it if necessary. Note that
6702  * there may be more extents which overlap the given range after the returned
6703  * extent_map.
6704  *
6705  * If @page is not NULL and the extent is inline, this also reads the extent
6706  * data directly into the page and marks the extent up to date in the io_tree.
6707  *
6708  * Return: ERR_PTR on error, non-NULL extent_map on success.
6709  */
6710 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6711 				    struct page *page, size_t pg_offset,
6712 				    u64 start, u64 len)
6713 {
6714 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6715 	int ret = 0;
6716 	u64 extent_start = 0;
6717 	u64 extent_end = 0;
6718 	u64 objectid = btrfs_ino(inode);
6719 	int extent_type = -1;
6720 	struct btrfs_path *path = NULL;
6721 	struct btrfs_root *root = inode->root;
6722 	struct btrfs_file_extent_item *item;
6723 	struct extent_buffer *leaf;
6724 	struct btrfs_key found_key;
6725 	struct extent_map *em = NULL;
6726 	struct extent_map_tree *em_tree = &inode->extent_tree;
6727 	struct extent_io_tree *io_tree = &inode->io_tree;
6728 
6729 	read_lock(&em_tree->lock);
6730 	em = lookup_extent_mapping(em_tree, start, len);
6731 	read_unlock(&em_tree->lock);
6732 
6733 	if (em) {
6734 		if (em->start > start || em->start + em->len <= start)
6735 			free_extent_map(em);
6736 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6737 			free_extent_map(em);
6738 		else
6739 			goto out;
6740 	}
6741 	em = alloc_extent_map();
6742 	if (!em) {
6743 		ret = -ENOMEM;
6744 		goto out;
6745 	}
6746 	em->start = EXTENT_MAP_HOLE;
6747 	em->orig_start = EXTENT_MAP_HOLE;
6748 	em->len = (u64)-1;
6749 	em->block_len = (u64)-1;
6750 
6751 	path = btrfs_alloc_path();
6752 	if (!path) {
6753 		ret = -ENOMEM;
6754 		goto out;
6755 	}
6756 
6757 	/* Chances are we'll be called again, so go ahead and do readahead */
6758 	path->reada = READA_FORWARD;
6759 
6760 	/*
6761 	 * The same explanation in load_free_space_cache applies here as well,
6762 	 * we only read when we're loading the free space cache, and at that
6763 	 * point the commit_root has everything we need.
6764 	 */
6765 	if (btrfs_is_free_space_inode(inode)) {
6766 		path->search_commit_root = 1;
6767 		path->skip_locking = 1;
6768 	}
6769 
6770 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6771 	if (ret < 0) {
6772 		goto out;
6773 	} else if (ret > 0) {
6774 		if (path->slots[0] == 0)
6775 			goto not_found;
6776 		path->slots[0]--;
6777 		ret = 0;
6778 	}
6779 
6780 	leaf = path->nodes[0];
6781 	item = btrfs_item_ptr(leaf, path->slots[0],
6782 			      struct btrfs_file_extent_item);
6783 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6784 	if (found_key.objectid != objectid ||
6785 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6786 		/*
6787 		 * If we backup past the first extent we want to move forward
6788 		 * and see if there is an extent in front of us, otherwise we'll
6789 		 * say there is a hole for our whole search range which can
6790 		 * cause problems.
6791 		 */
6792 		extent_end = start;
6793 		goto next;
6794 	}
6795 
6796 	extent_type = btrfs_file_extent_type(leaf, item);
6797 	extent_start = found_key.offset;
6798 	extent_end = btrfs_file_extent_end(path);
6799 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6800 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6801 		/* Only regular file could have regular/prealloc extent */
6802 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6803 			ret = -EUCLEAN;
6804 			btrfs_crit(fs_info,
6805 		"regular/prealloc extent found for non-regular inode %llu",
6806 				   btrfs_ino(inode));
6807 			goto out;
6808 		}
6809 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6810 						       extent_start);
6811 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6812 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6813 						      path->slots[0],
6814 						      extent_start);
6815 	}
6816 next:
6817 	if (start >= extent_end) {
6818 		path->slots[0]++;
6819 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6820 			ret = btrfs_next_leaf(root, path);
6821 			if (ret < 0)
6822 				goto out;
6823 			else if (ret > 0)
6824 				goto not_found;
6825 
6826 			leaf = path->nodes[0];
6827 		}
6828 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6829 		if (found_key.objectid != objectid ||
6830 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6831 			goto not_found;
6832 		if (start + len <= found_key.offset)
6833 			goto not_found;
6834 		if (start > found_key.offset)
6835 			goto next;
6836 
6837 		/* New extent overlaps with existing one */
6838 		em->start = start;
6839 		em->orig_start = start;
6840 		em->len = found_key.offset - start;
6841 		em->block_start = EXTENT_MAP_HOLE;
6842 		goto insert;
6843 	}
6844 
6845 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6846 
6847 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6848 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6849 		goto insert;
6850 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6851 		unsigned long ptr;
6852 		char *map;
6853 		size_t size;
6854 		size_t extent_offset;
6855 		size_t copy_size;
6856 
6857 		if (!page)
6858 			goto out;
6859 
6860 		size = btrfs_file_extent_ram_bytes(leaf, item);
6861 		extent_offset = page_offset(page) + pg_offset - extent_start;
6862 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6863 				  size - extent_offset);
6864 		em->start = extent_start + extent_offset;
6865 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6866 		em->orig_block_len = em->len;
6867 		em->orig_start = em->start;
6868 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6869 
6870 		if (!PageUptodate(page)) {
6871 			if (btrfs_file_extent_compression(leaf, item) !=
6872 			    BTRFS_COMPRESS_NONE) {
6873 				ret = uncompress_inline(path, page, pg_offset,
6874 							extent_offset, item);
6875 				if (ret)
6876 					goto out;
6877 			} else {
6878 				map = kmap_local_page(page);
6879 				read_extent_buffer(leaf, map + pg_offset, ptr,
6880 						   copy_size);
6881 				if (pg_offset + copy_size < PAGE_SIZE) {
6882 					memset(map + pg_offset + copy_size, 0,
6883 					       PAGE_SIZE - pg_offset -
6884 					       copy_size);
6885 				}
6886 				kunmap_local(map);
6887 			}
6888 			flush_dcache_page(page);
6889 		}
6890 		set_extent_uptodate(io_tree, em->start,
6891 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6892 		goto insert;
6893 	}
6894 not_found:
6895 	em->start = start;
6896 	em->orig_start = start;
6897 	em->len = len;
6898 	em->block_start = EXTENT_MAP_HOLE;
6899 insert:
6900 	ret = 0;
6901 	btrfs_release_path(path);
6902 	if (em->start > start || extent_map_end(em) <= start) {
6903 		btrfs_err(fs_info,
6904 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6905 			  em->start, em->len, start, len);
6906 		ret = -EIO;
6907 		goto out;
6908 	}
6909 
6910 	write_lock(&em_tree->lock);
6911 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6912 	write_unlock(&em_tree->lock);
6913 out:
6914 	btrfs_free_path(path);
6915 
6916 	trace_btrfs_get_extent(root, inode, em);
6917 
6918 	if (ret) {
6919 		free_extent_map(em);
6920 		return ERR_PTR(ret);
6921 	}
6922 	return em;
6923 }
6924 
6925 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6926 					   u64 start, u64 len)
6927 {
6928 	struct extent_map *em;
6929 	struct extent_map *hole_em = NULL;
6930 	u64 delalloc_start = start;
6931 	u64 end;
6932 	u64 delalloc_len;
6933 	u64 delalloc_end;
6934 	int err = 0;
6935 
6936 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6937 	if (IS_ERR(em))
6938 		return em;
6939 	/*
6940 	 * If our em maps to:
6941 	 * - a hole or
6942 	 * - a pre-alloc extent,
6943 	 * there might actually be delalloc bytes behind it.
6944 	 */
6945 	if (em->block_start != EXTENT_MAP_HOLE &&
6946 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6947 		return em;
6948 	else
6949 		hole_em = em;
6950 
6951 	/* check to see if we've wrapped (len == -1 or similar) */
6952 	end = start + len;
6953 	if (end < start)
6954 		end = (u64)-1;
6955 	else
6956 		end -= 1;
6957 
6958 	em = NULL;
6959 
6960 	/* ok, we didn't find anything, lets look for delalloc */
6961 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6962 				 end, len, EXTENT_DELALLOC, 1);
6963 	delalloc_end = delalloc_start + delalloc_len;
6964 	if (delalloc_end < delalloc_start)
6965 		delalloc_end = (u64)-1;
6966 
6967 	/*
6968 	 * We didn't find anything useful, return the original results from
6969 	 * get_extent()
6970 	 */
6971 	if (delalloc_start > end || delalloc_end <= start) {
6972 		em = hole_em;
6973 		hole_em = NULL;
6974 		goto out;
6975 	}
6976 
6977 	/*
6978 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
6979 	 * the start they passed in
6980 	 */
6981 	delalloc_start = max(start, delalloc_start);
6982 	delalloc_len = delalloc_end - delalloc_start;
6983 
6984 	if (delalloc_len > 0) {
6985 		u64 hole_start;
6986 		u64 hole_len;
6987 		const u64 hole_end = extent_map_end(hole_em);
6988 
6989 		em = alloc_extent_map();
6990 		if (!em) {
6991 			err = -ENOMEM;
6992 			goto out;
6993 		}
6994 
6995 		ASSERT(hole_em);
6996 		/*
6997 		 * When btrfs_get_extent can't find anything it returns one
6998 		 * huge hole
6999 		 *
7000 		 * Make sure what it found really fits our range, and adjust to
7001 		 * make sure it is based on the start from the caller
7002 		 */
7003 		if (hole_end <= start || hole_em->start > end) {
7004 		       free_extent_map(hole_em);
7005 		       hole_em = NULL;
7006 		} else {
7007 		       hole_start = max(hole_em->start, start);
7008 		       hole_len = hole_end - hole_start;
7009 		}
7010 
7011 		if (hole_em && delalloc_start > hole_start) {
7012 			/*
7013 			 * Our hole starts before our delalloc, so we have to
7014 			 * return just the parts of the hole that go until the
7015 			 * delalloc starts
7016 			 */
7017 			em->len = min(hole_len, delalloc_start - hole_start);
7018 			em->start = hole_start;
7019 			em->orig_start = hole_start;
7020 			/*
7021 			 * Don't adjust block start at all, it is fixed at
7022 			 * EXTENT_MAP_HOLE
7023 			 */
7024 			em->block_start = hole_em->block_start;
7025 			em->block_len = hole_len;
7026 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7027 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7028 		} else {
7029 			/*
7030 			 * Hole is out of passed range or it starts after
7031 			 * delalloc range
7032 			 */
7033 			em->start = delalloc_start;
7034 			em->len = delalloc_len;
7035 			em->orig_start = delalloc_start;
7036 			em->block_start = EXTENT_MAP_DELALLOC;
7037 			em->block_len = delalloc_len;
7038 		}
7039 	} else {
7040 		return hole_em;
7041 	}
7042 out:
7043 
7044 	free_extent_map(hole_em);
7045 	if (err) {
7046 		free_extent_map(em);
7047 		return ERR_PTR(err);
7048 	}
7049 	return em;
7050 }
7051 
7052 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7053 						  const u64 start,
7054 						  const u64 len,
7055 						  const u64 orig_start,
7056 						  const u64 block_start,
7057 						  const u64 block_len,
7058 						  const u64 orig_block_len,
7059 						  const u64 ram_bytes,
7060 						  const int type)
7061 {
7062 	struct extent_map *em = NULL;
7063 	int ret;
7064 
7065 	if (type != BTRFS_ORDERED_NOCOW) {
7066 		em = create_io_em(inode, start, len, orig_start, block_start,
7067 				  block_len, orig_block_len, ram_bytes,
7068 				  BTRFS_COMPRESS_NONE, /* compress_type */
7069 				  type);
7070 		if (IS_ERR(em))
7071 			goto out;
7072 	}
7073 	ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7074 				       block_len, 0,
7075 				       (1 << type) |
7076 				       (1 << BTRFS_ORDERED_DIRECT),
7077 				       BTRFS_COMPRESS_NONE);
7078 	if (ret) {
7079 		if (em) {
7080 			free_extent_map(em);
7081 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7082 		}
7083 		em = ERR_PTR(ret);
7084 	}
7085  out:
7086 
7087 	return em;
7088 }
7089 
7090 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7091 						  u64 start, u64 len)
7092 {
7093 	struct btrfs_root *root = inode->root;
7094 	struct btrfs_fs_info *fs_info = root->fs_info;
7095 	struct extent_map *em;
7096 	struct btrfs_key ins;
7097 	u64 alloc_hint;
7098 	int ret;
7099 
7100 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7101 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7102 				   0, alloc_hint, &ins, 1, 1);
7103 	if (ret)
7104 		return ERR_PTR(ret);
7105 
7106 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7107 				     ins.objectid, ins.offset, ins.offset,
7108 				     ins.offset, BTRFS_ORDERED_REGULAR);
7109 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7110 	if (IS_ERR(em))
7111 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7112 					   1);
7113 
7114 	return em;
7115 }
7116 
7117 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7118 {
7119 	struct btrfs_block_group *block_group;
7120 	bool readonly = false;
7121 
7122 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7123 	if (!block_group || block_group->ro)
7124 		readonly = true;
7125 	if (block_group)
7126 		btrfs_put_block_group(block_group);
7127 	return readonly;
7128 }
7129 
7130 /*
7131  * Check if we can do nocow write into the range [@offset, @offset + @len)
7132  *
7133  * @offset:	File offset
7134  * @len:	The length to write, will be updated to the nocow writeable
7135  *		range
7136  * @orig_start:	(optional) Return the original file offset of the file extent
7137  * @orig_len:	(optional) Return the original on-disk length of the file extent
7138  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7139  * @strict:	if true, omit optimizations that might force us into unnecessary
7140  *		cow. e.g., don't trust generation number.
7141  *
7142  * Return:
7143  * >0	and update @len if we can do nocow write
7144  *  0	if we can't do nocow write
7145  * <0	if error happened
7146  *
7147  * NOTE: This only checks the file extents, caller is responsible to wait for
7148  *	 any ordered extents.
7149  */
7150 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7151 			      u64 *orig_start, u64 *orig_block_len,
7152 			      u64 *ram_bytes, bool strict)
7153 {
7154 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7155 	struct btrfs_path *path;
7156 	int ret;
7157 	struct extent_buffer *leaf;
7158 	struct btrfs_root *root = BTRFS_I(inode)->root;
7159 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7160 	struct btrfs_file_extent_item *fi;
7161 	struct btrfs_key key;
7162 	u64 disk_bytenr;
7163 	u64 backref_offset;
7164 	u64 extent_end;
7165 	u64 num_bytes;
7166 	int slot;
7167 	int found_type;
7168 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7169 
7170 	path = btrfs_alloc_path();
7171 	if (!path)
7172 		return -ENOMEM;
7173 
7174 	ret = btrfs_lookup_file_extent(NULL, root, path,
7175 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7176 	if (ret < 0)
7177 		goto out;
7178 
7179 	slot = path->slots[0];
7180 	if (ret == 1) {
7181 		if (slot == 0) {
7182 			/* can't find the item, must cow */
7183 			ret = 0;
7184 			goto out;
7185 		}
7186 		slot--;
7187 	}
7188 	ret = 0;
7189 	leaf = path->nodes[0];
7190 	btrfs_item_key_to_cpu(leaf, &key, slot);
7191 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7192 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7193 		/* not our file or wrong item type, must cow */
7194 		goto out;
7195 	}
7196 
7197 	if (key.offset > offset) {
7198 		/* Wrong offset, must cow */
7199 		goto out;
7200 	}
7201 
7202 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7203 	found_type = btrfs_file_extent_type(leaf, fi);
7204 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7205 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7206 		/* not a regular extent, must cow */
7207 		goto out;
7208 	}
7209 
7210 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7211 		goto out;
7212 
7213 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7214 	if (extent_end <= offset)
7215 		goto out;
7216 
7217 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7218 	if (disk_bytenr == 0)
7219 		goto out;
7220 
7221 	if (btrfs_file_extent_compression(leaf, fi) ||
7222 	    btrfs_file_extent_encryption(leaf, fi) ||
7223 	    btrfs_file_extent_other_encoding(leaf, fi))
7224 		goto out;
7225 
7226 	/*
7227 	 * Do the same check as in btrfs_cross_ref_exist but without the
7228 	 * unnecessary search.
7229 	 */
7230 	if (!strict &&
7231 	    (btrfs_file_extent_generation(leaf, fi) <=
7232 	     btrfs_root_last_snapshot(&root->root_item)))
7233 		goto out;
7234 
7235 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7236 
7237 	if (orig_start) {
7238 		*orig_start = key.offset - backref_offset;
7239 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7240 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7241 	}
7242 
7243 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7244 		goto out;
7245 
7246 	num_bytes = min(offset + *len, extent_end) - offset;
7247 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7248 		u64 range_end;
7249 
7250 		range_end = round_up(offset + num_bytes,
7251 				     root->fs_info->sectorsize) - 1;
7252 		ret = test_range_bit(io_tree, offset, range_end,
7253 				     EXTENT_DELALLOC, 0, NULL);
7254 		if (ret) {
7255 			ret = -EAGAIN;
7256 			goto out;
7257 		}
7258 	}
7259 
7260 	btrfs_release_path(path);
7261 
7262 	/*
7263 	 * look for other files referencing this extent, if we
7264 	 * find any we must cow
7265 	 */
7266 
7267 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7268 				    key.offset - backref_offset, disk_bytenr,
7269 				    strict);
7270 	if (ret) {
7271 		ret = 0;
7272 		goto out;
7273 	}
7274 
7275 	/*
7276 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7277 	 * in this extent we are about to write.  If there
7278 	 * are any csums in that range we have to cow in order
7279 	 * to keep the csums correct
7280 	 */
7281 	disk_bytenr += backref_offset;
7282 	disk_bytenr += offset - key.offset;
7283 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7284 		goto out;
7285 	/*
7286 	 * all of the above have passed, it is safe to overwrite this extent
7287 	 * without cow
7288 	 */
7289 	*len = num_bytes;
7290 	ret = 1;
7291 out:
7292 	btrfs_free_path(path);
7293 	return ret;
7294 }
7295 
7296 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7297 			      struct extent_state **cached_state, bool writing)
7298 {
7299 	struct btrfs_ordered_extent *ordered;
7300 	int ret = 0;
7301 
7302 	while (1) {
7303 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7304 				 cached_state);
7305 		/*
7306 		 * We're concerned with the entire range that we're going to be
7307 		 * doing DIO to, so we need to make sure there's no ordered
7308 		 * extents in this range.
7309 		 */
7310 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7311 						     lockend - lockstart + 1);
7312 
7313 		/*
7314 		 * We need to make sure there are no buffered pages in this
7315 		 * range either, we could have raced between the invalidate in
7316 		 * generic_file_direct_write and locking the extent.  The
7317 		 * invalidate needs to happen so that reads after a write do not
7318 		 * get stale data.
7319 		 */
7320 		if (!ordered &&
7321 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7322 							 lockstart, lockend)))
7323 			break;
7324 
7325 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7326 				     cached_state);
7327 
7328 		if (ordered) {
7329 			/*
7330 			 * If we are doing a DIO read and the ordered extent we
7331 			 * found is for a buffered write, we can not wait for it
7332 			 * to complete and retry, because if we do so we can
7333 			 * deadlock with concurrent buffered writes on page
7334 			 * locks. This happens only if our DIO read covers more
7335 			 * than one extent map, if at this point has already
7336 			 * created an ordered extent for a previous extent map
7337 			 * and locked its range in the inode's io tree, and a
7338 			 * concurrent write against that previous extent map's
7339 			 * range and this range started (we unlock the ranges
7340 			 * in the io tree only when the bios complete and
7341 			 * buffered writes always lock pages before attempting
7342 			 * to lock range in the io tree).
7343 			 */
7344 			if (writing ||
7345 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7346 				btrfs_start_ordered_extent(ordered, 1);
7347 			else
7348 				ret = -ENOTBLK;
7349 			btrfs_put_ordered_extent(ordered);
7350 		} else {
7351 			/*
7352 			 * We could trigger writeback for this range (and wait
7353 			 * for it to complete) and then invalidate the pages for
7354 			 * this range (through invalidate_inode_pages2_range()),
7355 			 * but that can lead us to a deadlock with a concurrent
7356 			 * call to readahead (a buffered read or a defrag call
7357 			 * triggered a readahead) on a page lock due to an
7358 			 * ordered dio extent we created before but did not have
7359 			 * yet a corresponding bio submitted (whence it can not
7360 			 * complete), which makes readahead wait for that
7361 			 * ordered extent to complete while holding a lock on
7362 			 * that page.
7363 			 */
7364 			ret = -ENOTBLK;
7365 		}
7366 
7367 		if (ret)
7368 			break;
7369 
7370 		cond_resched();
7371 	}
7372 
7373 	return ret;
7374 }
7375 
7376 /* The callers of this must take lock_extent() */
7377 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7378 				       u64 len, u64 orig_start, u64 block_start,
7379 				       u64 block_len, u64 orig_block_len,
7380 				       u64 ram_bytes, int compress_type,
7381 				       int type)
7382 {
7383 	struct extent_map_tree *em_tree;
7384 	struct extent_map *em;
7385 	int ret;
7386 
7387 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7388 	       type == BTRFS_ORDERED_COMPRESSED ||
7389 	       type == BTRFS_ORDERED_NOCOW ||
7390 	       type == BTRFS_ORDERED_REGULAR);
7391 
7392 	em_tree = &inode->extent_tree;
7393 	em = alloc_extent_map();
7394 	if (!em)
7395 		return ERR_PTR(-ENOMEM);
7396 
7397 	em->start = start;
7398 	em->orig_start = orig_start;
7399 	em->len = len;
7400 	em->block_len = block_len;
7401 	em->block_start = block_start;
7402 	em->orig_block_len = orig_block_len;
7403 	em->ram_bytes = ram_bytes;
7404 	em->generation = -1;
7405 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7406 	if (type == BTRFS_ORDERED_PREALLOC) {
7407 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7408 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7409 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7410 		em->compress_type = compress_type;
7411 	}
7412 
7413 	do {
7414 		btrfs_drop_extent_cache(inode, em->start,
7415 					em->start + em->len - 1, 0);
7416 		write_lock(&em_tree->lock);
7417 		ret = add_extent_mapping(em_tree, em, 1);
7418 		write_unlock(&em_tree->lock);
7419 		/*
7420 		 * The caller has taken lock_extent(), who could race with us
7421 		 * to add em?
7422 		 */
7423 	} while (ret == -EEXIST);
7424 
7425 	if (ret) {
7426 		free_extent_map(em);
7427 		return ERR_PTR(ret);
7428 	}
7429 
7430 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7431 	return em;
7432 }
7433 
7434 
7435 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7436 					 struct inode *inode,
7437 					 struct btrfs_dio_data *dio_data,
7438 					 u64 start, u64 len)
7439 {
7440 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7441 	struct extent_map *em = *map;
7442 	int type;
7443 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7444 	bool can_nocow = false;
7445 	bool space_reserved = false;
7446 	u64 prev_len;
7447 	int ret = 0;
7448 
7449 	/*
7450 	 * We don't allocate a new extent in the following cases
7451 	 *
7452 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7453 	 * existing extent.
7454 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7455 	 * just use the extent.
7456 	 *
7457 	 */
7458 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7459 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7460 	     em->block_start != EXTENT_MAP_HOLE)) {
7461 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7462 			type = BTRFS_ORDERED_PREALLOC;
7463 		else
7464 			type = BTRFS_ORDERED_NOCOW;
7465 		len = min(len, em->len - (start - em->start));
7466 		block_start = em->block_start + (start - em->start);
7467 
7468 		if (can_nocow_extent(inode, start, &len, &orig_start,
7469 				     &orig_block_len, &ram_bytes, false) == 1 &&
7470 		    btrfs_inc_nocow_writers(fs_info, block_start))
7471 			can_nocow = true;
7472 	}
7473 
7474 	prev_len = len;
7475 	if (can_nocow) {
7476 		struct extent_map *em2;
7477 
7478 		/* We can NOCOW, so only need to reserve metadata space. */
7479 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len);
7480 		if (ret < 0) {
7481 			/* Our caller expects us to free the input extent map. */
7482 			free_extent_map(em);
7483 			*map = NULL;
7484 			btrfs_dec_nocow_writers(fs_info, block_start);
7485 			goto out;
7486 		}
7487 		space_reserved = true;
7488 
7489 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7490 					      orig_start, block_start,
7491 					      len, orig_block_len,
7492 					      ram_bytes, type);
7493 		btrfs_dec_nocow_writers(fs_info, block_start);
7494 		if (type == BTRFS_ORDERED_PREALLOC) {
7495 			free_extent_map(em);
7496 			*map = em = em2;
7497 		}
7498 
7499 		if (IS_ERR(em2)) {
7500 			ret = PTR_ERR(em2);
7501 			goto out;
7502 		}
7503 	} else {
7504 		/* Our caller expects us to free the input extent map. */
7505 		free_extent_map(em);
7506 		*map = NULL;
7507 
7508 		/* We have to COW, so need to reserve metadata and data space. */
7509 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7510 						   &dio_data->data_reserved,
7511 						   start, len);
7512 		if (ret < 0)
7513 			goto out;
7514 		space_reserved = true;
7515 
7516 		em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7517 		if (IS_ERR(em)) {
7518 			ret = PTR_ERR(em);
7519 			goto out;
7520 		}
7521 		*map = em;
7522 		len = min(len, em->len - (start - em->start));
7523 		if (len < prev_len)
7524 			btrfs_delalloc_release_space(BTRFS_I(inode),
7525 						     dio_data->data_reserved,
7526 						     start + len, prev_len - len,
7527 						     true);
7528 	}
7529 
7530 	/*
7531 	 * We have created our ordered extent, so we can now release our reservation
7532 	 * for an outstanding extent.
7533 	 */
7534 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7535 
7536 	/*
7537 	 * Need to update the i_size under the extent lock so buffered
7538 	 * readers will get the updated i_size when we unlock.
7539 	 */
7540 	if (start + len > i_size_read(inode))
7541 		i_size_write(inode, start + len);
7542 out:
7543 	if (ret && space_reserved) {
7544 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7545 		if (can_nocow) {
7546 			btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7547 		} else {
7548 			btrfs_delalloc_release_space(BTRFS_I(inode),
7549 						     dio_data->data_reserved,
7550 						     start, len, true);
7551 			extent_changeset_free(dio_data->data_reserved);
7552 			dio_data->data_reserved = NULL;
7553 		}
7554 	}
7555 	return ret;
7556 }
7557 
7558 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7559 		loff_t length, unsigned int flags, struct iomap *iomap,
7560 		struct iomap *srcmap)
7561 {
7562 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7563 	struct extent_map *em;
7564 	struct extent_state *cached_state = NULL;
7565 	struct btrfs_dio_data *dio_data = NULL;
7566 	u64 lockstart, lockend;
7567 	const bool write = !!(flags & IOMAP_WRITE);
7568 	int ret = 0;
7569 	u64 len = length;
7570 	bool unlock_extents = false;
7571 
7572 	if (!write)
7573 		len = min_t(u64, len, fs_info->sectorsize);
7574 
7575 	lockstart = start;
7576 	lockend = start + len - 1;
7577 
7578 	/*
7579 	 * The generic stuff only does filemap_write_and_wait_range, which
7580 	 * isn't enough if we've written compressed pages to this area, so we
7581 	 * need to flush the dirty pages again to make absolutely sure that any
7582 	 * outstanding dirty pages are on disk.
7583 	 */
7584 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7585 		     &BTRFS_I(inode)->runtime_flags)) {
7586 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7587 					       start + length - 1);
7588 		if (ret)
7589 			return ret;
7590 	}
7591 
7592 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7593 	if (!dio_data)
7594 		return -ENOMEM;
7595 
7596 	iomap->private = dio_data;
7597 
7598 
7599 	/*
7600 	 * If this errors out it's because we couldn't invalidate pagecache for
7601 	 * this range and we need to fallback to buffered.
7602 	 */
7603 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7604 		ret = -ENOTBLK;
7605 		goto err;
7606 	}
7607 
7608 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7609 	if (IS_ERR(em)) {
7610 		ret = PTR_ERR(em);
7611 		goto unlock_err;
7612 	}
7613 
7614 	/*
7615 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7616 	 * io.  INLINE is special, and we could probably kludge it in here, but
7617 	 * it's still buffered so for safety lets just fall back to the generic
7618 	 * buffered path.
7619 	 *
7620 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7621 	 * decompress it, so there will be buffering required no matter what we
7622 	 * do, so go ahead and fallback to buffered.
7623 	 *
7624 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7625 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7626 	 * the generic code.
7627 	 */
7628 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7629 	    em->block_start == EXTENT_MAP_INLINE) {
7630 		free_extent_map(em);
7631 		ret = -ENOTBLK;
7632 		goto unlock_err;
7633 	}
7634 
7635 	len = min(len, em->len - (start - em->start));
7636 
7637 	/*
7638 	 * If we have a NOWAIT request and the range contains multiple extents
7639 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7640 	 * caller fallback to a context where it can do a blocking (without
7641 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7642 	 * success to the caller, which is not optimal for writes and for reads
7643 	 * it can result in unexpected behaviour for an application.
7644 	 *
7645 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7646 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7647 	 * asked for, resulting in an unexpected, and incorrect, short read.
7648 	 * That is, the caller asked to read N bytes and we return less than that,
7649 	 * which is wrong unless we are crossing EOF. This happens if we get a
7650 	 * page fault error when trying to fault in pages for the buffer that is
7651 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7652 	 * have previously submitted bios for other extents in the range, in
7653 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7654 	 * those bios have completed by the time we get the page fault error,
7655 	 * which we return back to our caller - we should only return EIOCBQUEUED
7656 	 * after we have submitted bios for all the extents in the range.
7657 	 */
7658 	if ((flags & IOMAP_NOWAIT) && len < length) {
7659 		free_extent_map(em);
7660 		ret = -EAGAIN;
7661 		goto unlock_err;
7662 	}
7663 
7664 	if (write) {
7665 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7666 						    start, len);
7667 		if (ret < 0)
7668 			goto unlock_err;
7669 		unlock_extents = true;
7670 		/* Recalc len in case the new em is smaller than requested */
7671 		len = min(len, em->len - (start - em->start));
7672 	} else {
7673 		/*
7674 		 * We need to unlock only the end area that we aren't using.
7675 		 * The rest is going to be unlocked by the endio routine.
7676 		 */
7677 		lockstart = start + len;
7678 		if (lockstart < lockend)
7679 			unlock_extents = true;
7680 	}
7681 
7682 	if (unlock_extents)
7683 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7684 				     lockstart, lockend, &cached_state);
7685 	else
7686 		free_extent_state(cached_state);
7687 
7688 	/*
7689 	 * Translate extent map information to iomap.
7690 	 * We trim the extents (and move the addr) even though iomap code does
7691 	 * that, since we have locked only the parts we are performing I/O in.
7692 	 */
7693 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7694 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7695 		iomap->addr = IOMAP_NULL_ADDR;
7696 		iomap->type = IOMAP_HOLE;
7697 	} else {
7698 		iomap->addr = em->block_start + (start - em->start);
7699 		iomap->type = IOMAP_MAPPED;
7700 	}
7701 	iomap->offset = start;
7702 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7703 	iomap->length = len;
7704 
7705 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7706 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7707 
7708 	free_extent_map(em);
7709 
7710 	return 0;
7711 
7712 unlock_err:
7713 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7714 			     &cached_state);
7715 err:
7716 	kfree(dio_data);
7717 
7718 	return ret;
7719 }
7720 
7721 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7722 		ssize_t written, unsigned int flags, struct iomap *iomap)
7723 {
7724 	int ret = 0;
7725 	struct btrfs_dio_data *dio_data = iomap->private;
7726 	size_t submitted = dio_data->submitted;
7727 	const bool write = !!(flags & IOMAP_WRITE);
7728 
7729 	if (!write && (iomap->type == IOMAP_HOLE)) {
7730 		/* If reading from a hole, unlock and return */
7731 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7732 		goto out;
7733 	}
7734 
7735 	if (submitted < length) {
7736 		pos += submitted;
7737 		length -= submitted;
7738 		if (write)
7739 			__endio_write_update_ordered(BTRFS_I(inode), pos,
7740 					length, false);
7741 		else
7742 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7743 				      pos + length - 1);
7744 		ret = -ENOTBLK;
7745 	}
7746 
7747 	if (write)
7748 		extent_changeset_free(dio_data->data_reserved);
7749 out:
7750 	kfree(dio_data);
7751 	iomap->private = NULL;
7752 
7753 	return ret;
7754 }
7755 
7756 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7757 {
7758 	/*
7759 	 * This implies a barrier so that stores to dio_bio->bi_status before
7760 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7761 	 */
7762 	if (!refcount_dec_and_test(&dip->refs))
7763 		return;
7764 
7765 	if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
7766 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7767 					     dip->file_offset,
7768 					     dip->bytes,
7769 					     !dip->dio_bio->bi_status);
7770 	} else {
7771 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7772 			      dip->file_offset,
7773 			      dip->file_offset + dip->bytes - 1);
7774 	}
7775 
7776 	bio_endio(dip->dio_bio);
7777 	kfree(dip);
7778 }
7779 
7780 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7781 					  int mirror_num,
7782 					  unsigned long bio_flags)
7783 {
7784 	struct btrfs_dio_private *dip = bio->bi_private;
7785 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7786 	blk_status_t ret;
7787 
7788 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7789 
7790 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7791 	if (ret)
7792 		return ret;
7793 
7794 	refcount_inc(&dip->refs);
7795 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7796 	if (ret)
7797 		refcount_dec(&dip->refs);
7798 	return ret;
7799 }
7800 
7801 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7802 					     struct btrfs_bio *bbio,
7803 					     const bool uptodate)
7804 {
7805 	struct inode *inode = dip->inode;
7806 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7807 	const u32 sectorsize = fs_info->sectorsize;
7808 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7809 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7810 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7811 	struct bio_vec bvec;
7812 	struct bvec_iter iter;
7813 	u32 bio_offset = 0;
7814 	blk_status_t err = BLK_STS_OK;
7815 
7816 	__bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
7817 		unsigned int i, nr_sectors, pgoff;
7818 
7819 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7820 		pgoff = bvec.bv_offset;
7821 		for (i = 0; i < nr_sectors; i++) {
7822 			u64 start = bbio->file_offset + bio_offset;
7823 
7824 			ASSERT(pgoff < PAGE_SIZE);
7825 			if (uptodate &&
7826 			    (!csum || !check_data_csum(inode, bbio,
7827 						       bio_offset, bvec.bv_page,
7828 						       pgoff, start))) {
7829 				clean_io_failure(fs_info, failure_tree, io_tree,
7830 						 start, bvec.bv_page,
7831 						 btrfs_ino(BTRFS_I(inode)),
7832 						 pgoff);
7833 			} else {
7834 				int ret;
7835 
7836 				ret = btrfs_repair_one_sector(inode, &bbio->bio,
7837 						bio_offset, bvec.bv_page, pgoff,
7838 						start, bbio->mirror_num,
7839 						submit_dio_repair_bio);
7840 				if (ret)
7841 					err = errno_to_blk_status(ret);
7842 			}
7843 			ASSERT(bio_offset + sectorsize > bio_offset);
7844 			bio_offset += sectorsize;
7845 			pgoff += sectorsize;
7846 		}
7847 	}
7848 	return err;
7849 }
7850 
7851 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7852 					 const u64 offset, const u64 bytes,
7853 					 const bool uptodate)
7854 {
7855 	btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
7856 				       finish_ordered_fn, uptodate);
7857 }
7858 
7859 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7860 						     struct bio *bio,
7861 						     u64 dio_file_offset)
7862 {
7863 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
7864 }
7865 
7866 static void btrfs_end_dio_bio(struct bio *bio)
7867 {
7868 	struct btrfs_dio_private *dip = bio->bi_private;
7869 	struct btrfs_bio *bbio = btrfs_bio(bio);
7870 	blk_status_t err = bio->bi_status;
7871 
7872 	if (err)
7873 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7874 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7875 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7876 			   bio->bi_opf, bio->bi_iter.bi_sector,
7877 			   bio->bi_iter.bi_size, err);
7878 
7879 	if (bio_op(bio) == REQ_OP_READ)
7880 		err = btrfs_check_read_dio_bio(dip, bbio, !err);
7881 
7882 	if (err)
7883 		dip->dio_bio->bi_status = err;
7884 
7885 	btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
7886 
7887 	bio_put(bio);
7888 	btrfs_dio_private_put(dip);
7889 }
7890 
7891 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7892 		struct inode *inode, u64 file_offset, int async_submit)
7893 {
7894 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7895 	struct btrfs_dio_private *dip = bio->bi_private;
7896 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
7897 	blk_status_t ret;
7898 
7899 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7900 	if (async_submit)
7901 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7902 
7903 	if (!write) {
7904 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7905 		if (ret)
7906 			goto err;
7907 	}
7908 
7909 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7910 		goto map;
7911 
7912 	if (write && async_submit) {
7913 		ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
7914 					  btrfs_submit_bio_start_direct_io);
7915 		goto err;
7916 	} else if (write) {
7917 		/*
7918 		 * If we aren't doing async submit, calculate the csum of the
7919 		 * bio now.
7920 		 */
7921 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
7922 		if (ret)
7923 			goto err;
7924 	} else {
7925 		u64 csum_offset;
7926 
7927 		csum_offset = file_offset - dip->file_offset;
7928 		csum_offset >>= fs_info->sectorsize_bits;
7929 		csum_offset *= fs_info->csum_size;
7930 		btrfs_bio(bio)->csum = dip->csums + csum_offset;
7931 	}
7932 map:
7933 	ret = btrfs_map_bio(fs_info, bio, 0);
7934 err:
7935 	return ret;
7936 }
7937 
7938 /*
7939  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7940  * or ordered extents whether or not we submit any bios.
7941  */
7942 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7943 							  struct inode *inode,
7944 							  loff_t file_offset)
7945 {
7946 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
7947 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7948 	size_t dip_size;
7949 	struct btrfs_dio_private *dip;
7950 
7951 	dip_size = sizeof(*dip);
7952 	if (!write && csum) {
7953 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7954 		size_t nblocks;
7955 
7956 		nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
7957 		dip_size += fs_info->csum_size * nblocks;
7958 	}
7959 
7960 	dip = kzalloc(dip_size, GFP_NOFS);
7961 	if (!dip)
7962 		return NULL;
7963 
7964 	dip->inode = inode;
7965 	dip->file_offset = file_offset;
7966 	dip->bytes = dio_bio->bi_iter.bi_size;
7967 	dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
7968 	dip->dio_bio = dio_bio;
7969 	refcount_set(&dip->refs, 1);
7970 	return dip;
7971 }
7972 
7973 static void btrfs_submit_direct(const struct iomap_iter *iter,
7974 		struct bio *dio_bio, loff_t file_offset)
7975 {
7976 	struct inode *inode = iter->inode;
7977 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
7978 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7979 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7980 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
7981 	struct btrfs_dio_private *dip;
7982 	struct bio *bio;
7983 	u64 start_sector;
7984 	int async_submit = 0;
7985 	u64 submit_len;
7986 	u64 clone_offset = 0;
7987 	u64 clone_len;
7988 	u64 logical;
7989 	int ret;
7990 	blk_status_t status;
7991 	struct btrfs_io_geometry geom;
7992 	struct btrfs_dio_data *dio_data = iter->iomap.private;
7993 	struct extent_map *em = NULL;
7994 
7995 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7996 	if (!dip) {
7997 		if (!write) {
7998 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7999 				file_offset + dio_bio->bi_iter.bi_size - 1);
8000 		}
8001 		dio_bio->bi_status = BLK_STS_RESOURCE;
8002 		bio_endio(dio_bio);
8003 		return;
8004 	}
8005 
8006 	if (!write) {
8007 		/*
8008 		 * Load the csums up front to reduce csum tree searches and
8009 		 * contention when submitting bios.
8010 		 *
8011 		 * If we have csums disabled this will do nothing.
8012 		 */
8013 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8014 		if (status != BLK_STS_OK)
8015 			goto out_err;
8016 	}
8017 
8018 	start_sector = dio_bio->bi_iter.bi_sector;
8019 	submit_len = dio_bio->bi_iter.bi_size;
8020 
8021 	do {
8022 		logical = start_sector << 9;
8023 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8024 		if (IS_ERR(em)) {
8025 			status = errno_to_blk_status(PTR_ERR(em));
8026 			em = NULL;
8027 			goto out_err_em;
8028 		}
8029 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8030 					    logical, &geom);
8031 		if (ret) {
8032 			status = errno_to_blk_status(ret);
8033 			goto out_err_em;
8034 		}
8035 
8036 		clone_len = min(submit_len, geom.len);
8037 		ASSERT(clone_len <= UINT_MAX);
8038 
8039 		/*
8040 		 * This will never fail as it's passing GPF_NOFS and
8041 		 * the allocation is backed by btrfs_bioset.
8042 		 */
8043 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8044 		bio->bi_private = dip;
8045 		bio->bi_end_io = btrfs_end_dio_bio;
8046 		btrfs_bio(bio)->file_offset = file_offset;
8047 
8048 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8049 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8050 							file_offset);
8051 			if (status) {
8052 				bio_put(bio);
8053 				goto out_err;
8054 			}
8055 		}
8056 
8057 		ASSERT(submit_len >= clone_len);
8058 		submit_len -= clone_len;
8059 
8060 		/*
8061 		 * Increase the count before we submit the bio so we know
8062 		 * the end IO handler won't happen before we increase the
8063 		 * count. Otherwise, the dip might get freed before we're
8064 		 * done setting it up.
8065 		 *
8066 		 * We transfer the initial reference to the last bio, so we
8067 		 * don't need to increment the reference count for the last one.
8068 		 */
8069 		if (submit_len > 0) {
8070 			refcount_inc(&dip->refs);
8071 			/*
8072 			 * If we are submitting more than one bio, submit them
8073 			 * all asynchronously. The exception is RAID 5 or 6, as
8074 			 * asynchronous checksums make it difficult to collect
8075 			 * full stripe writes.
8076 			 */
8077 			if (!raid56)
8078 				async_submit = 1;
8079 		}
8080 
8081 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8082 						async_submit);
8083 		if (status) {
8084 			bio_put(bio);
8085 			if (submit_len > 0)
8086 				refcount_dec(&dip->refs);
8087 			goto out_err_em;
8088 		}
8089 
8090 		dio_data->submitted += clone_len;
8091 		clone_offset += clone_len;
8092 		start_sector += clone_len >> 9;
8093 		file_offset += clone_len;
8094 
8095 		free_extent_map(em);
8096 	} while (submit_len > 0);
8097 	return;
8098 
8099 out_err_em:
8100 	free_extent_map(em);
8101 out_err:
8102 	dip->dio_bio->bi_status = status;
8103 	btrfs_dio_private_put(dip);
8104 }
8105 
8106 const struct iomap_ops btrfs_dio_iomap_ops = {
8107 	.iomap_begin            = btrfs_dio_iomap_begin,
8108 	.iomap_end              = btrfs_dio_iomap_end,
8109 };
8110 
8111 const struct iomap_dio_ops btrfs_dio_ops = {
8112 	.submit_io		= btrfs_submit_direct,
8113 };
8114 
8115 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8116 			u64 start, u64 len)
8117 {
8118 	int	ret;
8119 
8120 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8121 	if (ret)
8122 		return ret;
8123 
8124 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8125 }
8126 
8127 int btrfs_readpage(struct file *file, struct page *page)
8128 {
8129 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8130 	u64 start = page_offset(page);
8131 	u64 end = start + PAGE_SIZE - 1;
8132 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
8133 	int ret;
8134 
8135 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8136 
8137 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
8138 	if (bio_ctrl.bio) {
8139 		int ret2;
8140 
8141 		ret2 = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
8142 		if (ret == 0)
8143 			ret = ret2;
8144 	}
8145 	return ret;
8146 }
8147 
8148 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8149 {
8150 	struct inode *inode = page->mapping->host;
8151 	int ret;
8152 
8153 	if (current->flags & PF_MEMALLOC) {
8154 		redirty_page_for_writepage(wbc, page);
8155 		unlock_page(page);
8156 		return 0;
8157 	}
8158 
8159 	/*
8160 	 * If we are under memory pressure we will call this directly from the
8161 	 * VM, we need to make sure we have the inode referenced for the ordered
8162 	 * extent.  If not just return like we didn't do anything.
8163 	 */
8164 	if (!igrab(inode)) {
8165 		redirty_page_for_writepage(wbc, page);
8166 		return AOP_WRITEPAGE_ACTIVATE;
8167 	}
8168 	ret = extent_write_full_page(page, wbc);
8169 	btrfs_add_delayed_iput(inode);
8170 	return ret;
8171 }
8172 
8173 static int btrfs_writepages(struct address_space *mapping,
8174 			    struct writeback_control *wbc)
8175 {
8176 	return extent_writepages(mapping, wbc);
8177 }
8178 
8179 static void btrfs_readahead(struct readahead_control *rac)
8180 {
8181 	extent_readahead(rac);
8182 }
8183 
8184 /*
8185  * For releasepage() and invalidate_folio() we have a race window where
8186  * folio_end_writeback() is called but the subpage spinlock is not yet released.
8187  * If we continue to release/invalidate the page, we could cause use-after-free
8188  * for subpage spinlock.  So this function is to spin and wait for subpage
8189  * spinlock.
8190  */
8191 static void wait_subpage_spinlock(struct page *page)
8192 {
8193 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8194 	struct btrfs_subpage *subpage;
8195 
8196 	if (fs_info->sectorsize == PAGE_SIZE)
8197 		return;
8198 
8199 	ASSERT(PagePrivate(page) && page->private);
8200 	subpage = (struct btrfs_subpage *)page->private;
8201 
8202 	/*
8203 	 * This may look insane as we just acquire the spinlock and release it,
8204 	 * without doing anything.  But we just want to make sure no one is
8205 	 * still holding the subpage spinlock.
8206 	 * And since the page is not dirty nor writeback, and we have page
8207 	 * locked, the only possible way to hold a spinlock is from the endio
8208 	 * function to clear page writeback.
8209 	 *
8210 	 * Here we just acquire the spinlock so that all existing callers
8211 	 * should exit and we're safe to release/invalidate the page.
8212 	 */
8213 	spin_lock_irq(&subpage->lock);
8214 	spin_unlock_irq(&subpage->lock);
8215 }
8216 
8217 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8218 {
8219 	int ret = try_release_extent_mapping(page, gfp_flags);
8220 
8221 	if (ret == 1) {
8222 		wait_subpage_spinlock(page);
8223 		clear_page_extent_mapped(page);
8224 	}
8225 	return ret;
8226 }
8227 
8228 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8229 {
8230 	if (PageWriteback(page) || PageDirty(page))
8231 		return 0;
8232 	return __btrfs_releasepage(page, gfp_flags);
8233 }
8234 
8235 #ifdef CONFIG_MIGRATION
8236 static int btrfs_migratepage(struct address_space *mapping,
8237 			     struct page *newpage, struct page *page,
8238 			     enum migrate_mode mode)
8239 {
8240 	int ret;
8241 
8242 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8243 	if (ret != MIGRATEPAGE_SUCCESS)
8244 		return ret;
8245 
8246 	if (page_has_private(page))
8247 		attach_page_private(newpage, detach_page_private(page));
8248 
8249 	if (PageOrdered(page)) {
8250 		ClearPageOrdered(page);
8251 		SetPageOrdered(newpage);
8252 	}
8253 
8254 	if (mode != MIGRATE_SYNC_NO_COPY)
8255 		migrate_page_copy(newpage, page);
8256 	else
8257 		migrate_page_states(newpage, page);
8258 	return MIGRATEPAGE_SUCCESS;
8259 }
8260 #endif
8261 
8262 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8263 				 size_t length)
8264 {
8265 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8266 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8267 	struct extent_io_tree *tree = &inode->io_tree;
8268 	struct extent_state *cached_state = NULL;
8269 	u64 page_start = folio_pos(folio);
8270 	u64 page_end = page_start + folio_size(folio) - 1;
8271 	u64 cur;
8272 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8273 
8274 	/*
8275 	 * We have folio locked so no new ordered extent can be created on this
8276 	 * page, nor bio can be submitted for this folio.
8277 	 *
8278 	 * But already submitted bio can still be finished on this folio.
8279 	 * Furthermore, endio function won't skip folio which has Ordered
8280 	 * (Private2) already cleared, so it's possible for endio and
8281 	 * invalidate_folio to do the same ordered extent accounting twice
8282 	 * on one folio.
8283 	 *
8284 	 * So here we wait for any submitted bios to finish, so that we won't
8285 	 * do double ordered extent accounting on the same folio.
8286 	 */
8287 	folio_wait_writeback(folio);
8288 	wait_subpage_spinlock(&folio->page);
8289 
8290 	/*
8291 	 * For subpage case, we have call sites like
8292 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8293 	 * sectorsize.
8294 	 * If the range doesn't cover the full folio, we don't need to and
8295 	 * shouldn't clear page extent mapped, as folio->private can still
8296 	 * record subpage dirty bits for other part of the range.
8297 	 *
8298 	 * For cases that invalidate the full folio even the range doesn't
8299 	 * cover the full folio, like invalidating the last folio, we're
8300 	 * still safe to wait for ordered extent to finish.
8301 	 */
8302 	if (!(offset == 0 && length == folio_size(folio))) {
8303 		btrfs_releasepage(&folio->page, GFP_NOFS);
8304 		return;
8305 	}
8306 
8307 	if (!inode_evicting)
8308 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8309 
8310 	cur = page_start;
8311 	while (cur < page_end) {
8312 		struct btrfs_ordered_extent *ordered;
8313 		bool delete_states;
8314 		u64 range_end;
8315 		u32 range_len;
8316 
8317 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8318 							   page_end + 1 - cur);
8319 		if (!ordered) {
8320 			range_end = page_end;
8321 			/*
8322 			 * No ordered extent covering this range, we are safe
8323 			 * to delete all extent states in the range.
8324 			 */
8325 			delete_states = true;
8326 			goto next;
8327 		}
8328 		if (ordered->file_offset > cur) {
8329 			/*
8330 			 * There is a range between [cur, oe->file_offset) not
8331 			 * covered by any ordered extent.
8332 			 * We are safe to delete all extent states, and handle
8333 			 * the ordered extent in the next iteration.
8334 			 */
8335 			range_end = ordered->file_offset - 1;
8336 			delete_states = true;
8337 			goto next;
8338 		}
8339 
8340 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8341 				page_end);
8342 		ASSERT(range_end + 1 - cur < U32_MAX);
8343 		range_len = range_end + 1 - cur;
8344 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8345 			/*
8346 			 * If Ordered (Private2) is cleared, it means endio has
8347 			 * already been executed for the range.
8348 			 * We can't delete the extent states as
8349 			 * btrfs_finish_ordered_io() may still use some of them.
8350 			 */
8351 			delete_states = false;
8352 			goto next;
8353 		}
8354 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8355 
8356 		/*
8357 		 * IO on this page will never be started, so we need to account
8358 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8359 		 * here, must leave that up for the ordered extent completion.
8360 		 *
8361 		 * This will also unlock the range for incoming
8362 		 * btrfs_finish_ordered_io().
8363 		 */
8364 		if (!inode_evicting)
8365 			clear_extent_bit(tree, cur, range_end,
8366 					 EXTENT_DELALLOC |
8367 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8368 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8369 
8370 		spin_lock_irq(&inode->ordered_tree.lock);
8371 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8372 		ordered->truncated_len = min(ordered->truncated_len,
8373 					     cur - ordered->file_offset);
8374 		spin_unlock_irq(&inode->ordered_tree.lock);
8375 
8376 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8377 						   cur, range_end + 1 - cur)) {
8378 			btrfs_finish_ordered_io(ordered);
8379 			/*
8380 			 * The ordered extent has finished, now we're again
8381 			 * safe to delete all extent states of the range.
8382 			 */
8383 			delete_states = true;
8384 		} else {
8385 			/*
8386 			 * btrfs_finish_ordered_io() will get executed by endio
8387 			 * of other pages, thus we can't delete extent states
8388 			 * anymore
8389 			 */
8390 			delete_states = false;
8391 		}
8392 next:
8393 		if (ordered)
8394 			btrfs_put_ordered_extent(ordered);
8395 		/*
8396 		 * Qgroup reserved space handler
8397 		 * Sector(s) here will be either:
8398 		 *
8399 		 * 1) Already written to disk or bio already finished
8400 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8401 		 *    Qgroup will be handled by its qgroup_record then.
8402 		 *    btrfs_qgroup_free_data() call will do nothing here.
8403 		 *
8404 		 * 2) Not written to disk yet
8405 		 *    Then btrfs_qgroup_free_data() call will clear the
8406 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8407 		 *    reserved data space.
8408 		 *    Since the IO will never happen for this page.
8409 		 */
8410 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8411 		if (!inode_evicting) {
8412 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8413 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8414 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8415 				 delete_states, &cached_state);
8416 		}
8417 		cur = range_end + 1;
8418 	}
8419 	/*
8420 	 * We have iterated through all ordered extents of the page, the page
8421 	 * should not have Ordered (Private2) anymore, or the above iteration
8422 	 * did something wrong.
8423 	 */
8424 	ASSERT(!folio_test_ordered(folio));
8425 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8426 	if (!inode_evicting)
8427 		__btrfs_releasepage(&folio->page, GFP_NOFS);
8428 	clear_page_extent_mapped(&folio->page);
8429 }
8430 
8431 /*
8432  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8433  * called from a page fault handler when a page is first dirtied. Hence we must
8434  * be careful to check for EOF conditions here. We set the page up correctly
8435  * for a written page which means we get ENOSPC checking when writing into
8436  * holes and correct delalloc and unwritten extent mapping on filesystems that
8437  * support these features.
8438  *
8439  * We are not allowed to take the i_mutex here so we have to play games to
8440  * protect against truncate races as the page could now be beyond EOF.  Because
8441  * truncate_setsize() writes the inode size before removing pages, once we have
8442  * the page lock we can determine safely if the page is beyond EOF. If it is not
8443  * beyond EOF, then the page is guaranteed safe against truncation until we
8444  * unlock the page.
8445  */
8446 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8447 {
8448 	struct page *page = vmf->page;
8449 	struct inode *inode = file_inode(vmf->vma->vm_file);
8450 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8451 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8452 	struct btrfs_ordered_extent *ordered;
8453 	struct extent_state *cached_state = NULL;
8454 	struct extent_changeset *data_reserved = NULL;
8455 	unsigned long zero_start;
8456 	loff_t size;
8457 	vm_fault_t ret;
8458 	int ret2;
8459 	int reserved = 0;
8460 	u64 reserved_space;
8461 	u64 page_start;
8462 	u64 page_end;
8463 	u64 end;
8464 
8465 	reserved_space = PAGE_SIZE;
8466 
8467 	sb_start_pagefault(inode->i_sb);
8468 	page_start = page_offset(page);
8469 	page_end = page_start + PAGE_SIZE - 1;
8470 	end = page_end;
8471 
8472 	/*
8473 	 * Reserving delalloc space after obtaining the page lock can lead to
8474 	 * deadlock. For example, if a dirty page is locked by this function
8475 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8476 	 * dirty page write out, then the btrfs_writepage() function could
8477 	 * end up waiting indefinitely to get a lock on the page currently
8478 	 * being processed by btrfs_page_mkwrite() function.
8479 	 */
8480 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8481 					    page_start, reserved_space);
8482 	if (!ret2) {
8483 		ret2 = file_update_time(vmf->vma->vm_file);
8484 		reserved = 1;
8485 	}
8486 	if (ret2) {
8487 		ret = vmf_error(ret2);
8488 		if (reserved)
8489 			goto out;
8490 		goto out_noreserve;
8491 	}
8492 
8493 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8494 again:
8495 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8496 	lock_page(page);
8497 	size = i_size_read(inode);
8498 
8499 	if ((page->mapping != inode->i_mapping) ||
8500 	    (page_start >= size)) {
8501 		/* page got truncated out from underneath us */
8502 		goto out_unlock;
8503 	}
8504 	wait_on_page_writeback(page);
8505 
8506 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8507 	ret2 = set_page_extent_mapped(page);
8508 	if (ret2 < 0) {
8509 		ret = vmf_error(ret2);
8510 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8511 		goto out_unlock;
8512 	}
8513 
8514 	/*
8515 	 * we can't set the delalloc bits if there are pending ordered
8516 	 * extents.  Drop our locks and wait for them to finish
8517 	 */
8518 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8519 			PAGE_SIZE);
8520 	if (ordered) {
8521 		unlock_extent_cached(io_tree, page_start, page_end,
8522 				     &cached_state);
8523 		unlock_page(page);
8524 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8525 		btrfs_start_ordered_extent(ordered, 1);
8526 		btrfs_put_ordered_extent(ordered);
8527 		goto again;
8528 	}
8529 
8530 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8531 		reserved_space = round_up(size - page_start,
8532 					  fs_info->sectorsize);
8533 		if (reserved_space < PAGE_SIZE) {
8534 			end = page_start + reserved_space - 1;
8535 			btrfs_delalloc_release_space(BTRFS_I(inode),
8536 					data_reserved, page_start,
8537 					PAGE_SIZE - reserved_space, true);
8538 		}
8539 	}
8540 
8541 	/*
8542 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8543 	 * faulted in, but write(2) could also dirty a page and set delalloc
8544 	 * bits, thus in this case for space account reason, we still need to
8545 	 * clear any delalloc bits within this page range since we have to
8546 	 * reserve data&meta space before lock_page() (see above comments).
8547 	 */
8548 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8549 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8550 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8551 
8552 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8553 					&cached_state);
8554 	if (ret2) {
8555 		unlock_extent_cached(io_tree, page_start, page_end,
8556 				     &cached_state);
8557 		ret = VM_FAULT_SIGBUS;
8558 		goto out_unlock;
8559 	}
8560 
8561 	/* page is wholly or partially inside EOF */
8562 	if (page_start + PAGE_SIZE > size)
8563 		zero_start = offset_in_page(size);
8564 	else
8565 		zero_start = PAGE_SIZE;
8566 
8567 	if (zero_start != PAGE_SIZE) {
8568 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8569 		flush_dcache_page(page);
8570 	}
8571 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8572 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8573 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8574 
8575 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8576 
8577 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8578 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8579 
8580 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8581 	sb_end_pagefault(inode->i_sb);
8582 	extent_changeset_free(data_reserved);
8583 	return VM_FAULT_LOCKED;
8584 
8585 out_unlock:
8586 	unlock_page(page);
8587 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8588 out:
8589 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8590 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8591 				     reserved_space, (ret != 0));
8592 out_noreserve:
8593 	sb_end_pagefault(inode->i_sb);
8594 	extent_changeset_free(data_reserved);
8595 	return ret;
8596 }
8597 
8598 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8599 {
8600 	struct btrfs_truncate_control control = {
8601 		.inode = BTRFS_I(inode),
8602 		.ino = btrfs_ino(BTRFS_I(inode)),
8603 		.min_type = BTRFS_EXTENT_DATA_KEY,
8604 		.clear_extent_range = true,
8605 	};
8606 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8607 	struct btrfs_root *root = BTRFS_I(inode)->root;
8608 	struct btrfs_block_rsv *rsv;
8609 	int ret;
8610 	struct btrfs_trans_handle *trans;
8611 	u64 mask = fs_info->sectorsize - 1;
8612 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8613 
8614 	if (!skip_writeback) {
8615 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8616 					       (u64)-1);
8617 		if (ret)
8618 			return ret;
8619 	}
8620 
8621 	/*
8622 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8623 	 * things going on here:
8624 	 *
8625 	 * 1) We need to reserve space to update our inode.
8626 	 *
8627 	 * 2) We need to have something to cache all the space that is going to
8628 	 * be free'd up by the truncate operation, but also have some slack
8629 	 * space reserved in case it uses space during the truncate (thank you
8630 	 * very much snapshotting).
8631 	 *
8632 	 * And we need these to be separate.  The fact is we can use a lot of
8633 	 * space doing the truncate, and we have no earthly idea how much space
8634 	 * we will use, so we need the truncate reservation to be separate so it
8635 	 * doesn't end up using space reserved for updating the inode.  We also
8636 	 * need to be able to stop the transaction and start a new one, which
8637 	 * means we need to be able to update the inode several times, and we
8638 	 * have no idea of knowing how many times that will be, so we can't just
8639 	 * reserve 1 item for the entirety of the operation, so that has to be
8640 	 * done separately as well.
8641 	 *
8642 	 * So that leaves us with
8643 	 *
8644 	 * 1) rsv - for the truncate reservation, which we will steal from the
8645 	 * transaction reservation.
8646 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8647 	 * updating the inode.
8648 	 */
8649 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8650 	if (!rsv)
8651 		return -ENOMEM;
8652 	rsv->size = min_size;
8653 	rsv->failfast = 1;
8654 
8655 	/*
8656 	 * 1 for the truncate slack space
8657 	 * 1 for updating the inode.
8658 	 */
8659 	trans = btrfs_start_transaction(root, 2);
8660 	if (IS_ERR(trans)) {
8661 		ret = PTR_ERR(trans);
8662 		goto out;
8663 	}
8664 
8665 	/* Migrate the slack space for the truncate to our reserve */
8666 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8667 				      min_size, false);
8668 	BUG_ON(ret);
8669 
8670 	trans->block_rsv = rsv;
8671 
8672 	while (1) {
8673 		struct extent_state *cached_state = NULL;
8674 		const u64 new_size = inode->i_size;
8675 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8676 
8677 		control.new_size = new_size;
8678 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8679 				 &cached_state);
8680 		/*
8681 		 * We want to drop from the next block forward in case this new
8682 		 * size is not block aligned since we will be keeping the last
8683 		 * block of the extent just the way it is.
8684 		 */
8685 		btrfs_drop_extent_cache(BTRFS_I(inode),
8686 					ALIGN(new_size, fs_info->sectorsize),
8687 					(u64)-1, 0);
8688 
8689 		ret = btrfs_truncate_inode_items(trans, root, &control);
8690 
8691 		inode_sub_bytes(inode, control.sub_bytes);
8692 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8693 
8694 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8695 				     (u64)-1, &cached_state);
8696 
8697 		trans->block_rsv = &fs_info->trans_block_rsv;
8698 		if (ret != -ENOSPC && ret != -EAGAIN)
8699 			break;
8700 
8701 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8702 		if (ret)
8703 			break;
8704 
8705 		btrfs_end_transaction(trans);
8706 		btrfs_btree_balance_dirty(fs_info);
8707 
8708 		trans = btrfs_start_transaction(root, 2);
8709 		if (IS_ERR(trans)) {
8710 			ret = PTR_ERR(trans);
8711 			trans = NULL;
8712 			break;
8713 		}
8714 
8715 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8716 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8717 					      rsv, min_size, false);
8718 		BUG_ON(ret);	/* shouldn't happen */
8719 		trans->block_rsv = rsv;
8720 	}
8721 
8722 	/*
8723 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8724 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8725 	 * know we've truncated everything except the last little bit, and can
8726 	 * do btrfs_truncate_block and then update the disk_i_size.
8727 	 */
8728 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8729 		btrfs_end_transaction(trans);
8730 		btrfs_btree_balance_dirty(fs_info);
8731 
8732 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8733 		if (ret)
8734 			goto out;
8735 		trans = btrfs_start_transaction(root, 1);
8736 		if (IS_ERR(trans)) {
8737 			ret = PTR_ERR(trans);
8738 			goto out;
8739 		}
8740 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8741 	}
8742 
8743 	if (trans) {
8744 		int ret2;
8745 
8746 		trans->block_rsv = &fs_info->trans_block_rsv;
8747 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8748 		if (ret2 && !ret)
8749 			ret = ret2;
8750 
8751 		ret2 = btrfs_end_transaction(trans);
8752 		if (ret2 && !ret)
8753 			ret = ret2;
8754 		btrfs_btree_balance_dirty(fs_info);
8755 	}
8756 out:
8757 	btrfs_free_block_rsv(fs_info, rsv);
8758 	/*
8759 	 * So if we truncate and then write and fsync we normally would just
8760 	 * write the extents that changed, which is a problem if we need to
8761 	 * first truncate that entire inode.  So set this flag so we write out
8762 	 * all of the extents in the inode to the sync log so we're completely
8763 	 * safe.
8764 	 *
8765 	 * If no extents were dropped or trimmed we don't need to force the next
8766 	 * fsync to truncate all the inode's items from the log and re-log them
8767 	 * all. This means the truncate operation did not change the file size,
8768 	 * or changed it to a smaller size but there was only an implicit hole
8769 	 * between the old i_size and the new i_size, and there were no prealloc
8770 	 * extents beyond i_size to drop.
8771 	 */
8772 	if (control.extents_found > 0)
8773 		btrfs_set_inode_full_sync(BTRFS_I(inode));
8774 
8775 	return ret;
8776 }
8777 
8778 /*
8779  * create a new subvolume directory/inode (helper for the ioctl).
8780  */
8781 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8782 			     struct btrfs_root *new_root,
8783 			     struct btrfs_root *parent_root,
8784 			     struct user_namespace *mnt_userns)
8785 {
8786 	struct inode *inode;
8787 	int err;
8788 	u64 index = 0;
8789 	u64 ino;
8790 
8791 	err = btrfs_get_free_objectid(new_root, &ino);
8792 	if (err < 0)
8793 		return err;
8794 
8795 	inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2,
8796 				ino, ino,
8797 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8798 				&index);
8799 	if (IS_ERR(inode))
8800 		return PTR_ERR(inode);
8801 	inode->i_op = &btrfs_dir_inode_operations;
8802 	inode->i_fop = &btrfs_dir_file_operations;
8803 
8804 	set_nlink(inode, 1);
8805 	btrfs_i_size_write(BTRFS_I(inode), 0);
8806 	unlock_new_inode(inode);
8807 
8808 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8809 	if (err)
8810 		btrfs_err(new_root->fs_info,
8811 			  "error inheriting subvolume %llu properties: %d",
8812 			  new_root->root_key.objectid, err);
8813 
8814 	err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
8815 
8816 	iput(inode);
8817 	return err;
8818 }
8819 
8820 struct inode *btrfs_alloc_inode(struct super_block *sb)
8821 {
8822 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8823 	struct btrfs_inode *ei;
8824 	struct inode *inode;
8825 
8826 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8827 	if (!ei)
8828 		return NULL;
8829 
8830 	ei->root = NULL;
8831 	ei->generation = 0;
8832 	ei->last_trans = 0;
8833 	ei->last_sub_trans = 0;
8834 	ei->logged_trans = 0;
8835 	ei->delalloc_bytes = 0;
8836 	ei->new_delalloc_bytes = 0;
8837 	ei->defrag_bytes = 0;
8838 	ei->disk_i_size = 0;
8839 	ei->flags = 0;
8840 	ei->ro_flags = 0;
8841 	ei->csum_bytes = 0;
8842 	ei->index_cnt = (u64)-1;
8843 	ei->dir_index = 0;
8844 	ei->last_unlink_trans = 0;
8845 	ei->last_reflink_trans = 0;
8846 	ei->last_log_commit = 0;
8847 
8848 	spin_lock_init(&ei->lock);
8849 	ei->outstanding_extents = 0;
8850 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8851 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8852 					      BTRFS_BLOCK_RSV_DELALLOC);
8853 	ei->runtime_flags = 0;
8854 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8855 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8856 
8857 	ei->delayed_node = NULL;
8858 
8859 	ei->i_otime.tv_sec = 0;
8860 	ei->i_otime.tv_nsec = 0;
8861 
8862 	inode = &ei->vfs_inode;
8863 	extent_map_tree_init(&ei->extent_tree);
8864 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8865 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8866 			    IO_TREE_INODE_IO_FAILURE, inode);
8867 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8868 			    IO_TREE_INODE_FILE_EXTENT, inode);
8869 	ei->io_tree.track_uptodate = true;
8870 	ei->io_failure_tree.track_uptodate = true;
8871 	atomic_set(&ei->sync_writers, 0);
8872 	mutex_init(&ei->log_mutex);
8873 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8874 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8875 	INIT_LIST_HEAD(&ei->delayed_iput);
8876 	RB_CLEAR_NODE(&ei->rb_node);
8877 	init_rwsem(&ei->i_mmap_lock);
8878 
8879 	return inode;
8880 }
8881 
8882 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8883 void btrfs_test_destroy_inode(struct inode *inode)
8884 {
8885 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8886 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8887 }
8888 #endif
8889 
8890 void btrfs_free_inode(struct inode *inode)
8891 {
8892 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8893 }
8894 
8895 void btrfs_destroy_inode(struct inode *vfs_inode)
8896 {
8897 	struct btrfs_ordered_extent *ordered;
8898 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8899 	struct btrfs_root *root = inode->root;
8900 
8901 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8902 	WARN_ON(vfs_inode->i_data.nrpages);
8903 	WARN_ON(inode->block_rsv.reserved);
8904 	WARN_ON(inode->block_rsv.size);
8905 	WARN_ON(inode->outstanding_extents);
8906 	if (!S_ISDIR(vfs_inode->i_mode)) {
8907 		WARN_ON(inode->delalloc_bytes);
8908 		WARN_ON(inode->new_delalloc_bytes);
8909 	}
8910 	WARN_ON(inode->csum_bytes);
8911 	WARN_ON(inode->defrag_bytes);
8912 
8913 	/*
8914 	 * This can happen where we create an inode, but somebody else also
8915 	 * created the same inode and we need to destroy the one we already
8916 	 * created.
8917 	 */
8918 	if (!root)
8919 		return;
8920 
8921 	while (1) {
8922 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8923 		if (!ordered)
8924 			break;
8925 		else {
8926 			btrfs_err(root->fs_info,
8927 				  "found ordered extent %llu %llu on inode cleanup",
8928 				  ordered->file_offset, ordered->num_bytes);
8929 			btrfs_remove_ordered_extent(inode, ordered);
8930 			btrfs_put_ordered_extent(ordered);
8931 			btrfs_put_ordered_extent(ordered);
8932 		}
8933 	}
8934 	btrfs_qgroup_check_reserved_leak(inode);
8935 	inode_tree_del(inode);
8936 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8937 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8938 	btrfs_put_root(inode->root);
8939 }
8940 
8941 int btrfs_drop_inode(struct inode *inode)
8942 {
8943 	struct btrfs_root *root = BTRFS_I(inode)->root;
8944 
8945 	if (root == NULL)
8946 		return 1;
8947 
8948 	/* the snap/subvol tree is on deleting */
8949 	if (btrfs_root_refs(&root->root_item) == 0)
8950 		return 1;
8951 	else
8952 		return generic_drop_inode(inode);
8953 }
8954 
8955 static void init_once(void *foo)
8956 {
8957 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8958 
8959 	inode_init_once(&ei->vfs_inode);
8960 }
8961 
8962 void __cold btrfs_destroy_cachep(void)
8963 {
8964 	/*
8965 	 * Make sure all delayed rcu free inodes are flushed before we
8966 	 * destroy cache.
8967 	 */
8968 	rcu_barrier();
8969 	kmem_cache_destroy(btrfs_inode_cachep);
8970 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8971 	kmem_cache_destroy(btrfs_path_cachep);
8972 	kmem_cache_destroy(btrfs_free_space_cachep);
8973 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8974 }
8975 
8976 int __init btrfs_init_cachep(void)
8977 {
8978 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8979 			sizeof(struct btrfs_inode), 0,
8980 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8981 			init_once);
8982 	if (!btrfs_inode_cachep)
8983 		goto fail;
8984 
8985 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8986 			sizeof(struct btrfs_trans_handle), 0,
8987 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8988 	if (!btrfs_trans_handle_cachep)
8989 		goto fail;
8990 
8991 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8992 			sizeof(struct btrfs_path), 0,
8993 			SLAB_MEM_SPREAD, NULL);
8994 	if (!btrfs_path_cachep)
8995 		goto fail;
8996 
8997 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8998 			sizeof(struct btrfs_free_space), 0,
8999 			SLAB_MEM_SPREAD, NULL);
9000 	if (!btrfs_free_space_cachep)
9001 		goto fail;
9002 
9003 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9004 							PAGE_SIZE, PAGE_SIZE,
9005 							SLAB_MEM_SPREAD, NULL);
9006 	if (!btrfs_free_space_bitmap_cachep)
9007 		goto fail;
9008 
9009 	return 0;
9010 fail:
9011 	btrfs_destroy_cachep();
9012 	return -ENOMEM;
9013 }
9014 
9015 static int btrfs_getattr(struct user_namespace *mnt_userns,
9016 			 const struct path *path, struct kstat *stat,
9017 			 u32 request_mask, unsigned int flags)
9018 {
9019 	u64 delalloc_bytes;
9020 	u64 inode_bytes;
9021 	struct inode *inode = d_inode(path->dentry);
9022 	u32 blocksize = inode->i_sb->s_blocksize;
9023 	u32 bi_flags = BTRFS_I(inode)->flags;
9024 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9025 
9026 	stat->result_mask |= STATX_BTIME;
9027 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9028 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9029 	if (bi_flags & BTRFS_INODE_APPEND)
9030 		stat->attributes |= STATX_ATTR_APPEND;
9031 	if (bi_flags & BTRFS_INODE_COMPRESS)
9032 		stat->attributes |= STATX_ATTR_COMPRESSED;
9033 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9034 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9035 	if (bi_flags & BTRFS_INODE_NODUMP)
9036 		stat->attributes |= STATX_ATTR_NODUMP;
9037 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9038 		stat->attributes |= STATX_ATTR_VERITY;
9039 
9040 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9041 				  STATX_ATTR_COMPRESSED |
9042 				  STATX_ATTR_IMMUTABLE |
9043 				  STATX_ATTR_NODUMP);
9044 
9045 	generic_fillattr(mnt_userns, inode, stat);
9046 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9047 
9048 	spin_lock(&BTRFS_I(inode)->lock);
9049 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9050 	inode_bytes = inode_get_bytes(inode);
9051 	spin_unlock(&BTRFS_I(inode)->lock);
9052 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9053 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9054 	return 0;
9055 }
9056 
9057 static int btrfs_rename_exchange(struct inode *old_dir,
9058 			      struct dentry *old_dentry,
9059 			      struct inode *new_dir,
9060 			      struct dentry *new_dentry)
9061 {
9062 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9063 	struct btrfs_trans_handle *trans;
9064 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9065 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9066 	struct inode *new_inode = new_dentry->d_inode;
9067 	struct inode *old_inode = old_dentry->d_inode;
9068 	struct timespec64 ctime = current_time(old_inode);
9069 	struct btrfs_rename_ctx old_rename_ctx;
9070 	struct btrfs_rename_ctx new_rename_ctx;
9071 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9072 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9073 	u64 old_idx = 0;
9074 	u64 new_idx = 0;
9075 	int ret;
9076 	int ret2;
9077 	bool need_abort = false;
9078 
9079 	/*
9080 	 * For non-subvolumes allow exchange only within one subvolume, in the
9081 	 * same inode namespace. Two subvolumes (represented as directory) can
9082 	 * be exchanged as they're a logical link and have a fixed inode number.
9083 	 */
9084 	if (root != dest &&
9085 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9086 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9087 		return -EXDEV;
9088 
9089 	/* close the race window with snapshot create/destroy ioctl */
9090 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9091 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9092 		down_read(&fs_info->subvol_sem);
9093 
9094 	/*
9095 	 * We want to reserve the absolute worst case amount of items.  So if
9096 	 * both inodes are subvols and we need to unlink them then that would
9097 	 * require 4 item modifications, but if they are both normal inodes it
9098 	 * would require 5 item modifications, so we'll assume their normal
9099 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9100 	 * should cover the worst case number of items we'll modify.
9101 	 */
9102 	trans = btrfs_start_transaction(root, 12);
9103 	if (IS_ERR(trans)) {
9104 		ret = PTR_ERR(trans);
9105 		goto out_notrans;
9106 	}
9107 
9108 	if (dest != root) {
9109 		ret = btrfs_record_root_in_trans(trans, dest);
9110 		if (ret)
9111 			goto out_fail;
9112 	}
9113 
9114 	/*
9115 	 * We need to find a free sequence number both in the source and
9116 	 * in the destination directory for the exchange.
9117 	 */
9118 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9119 	if (ret)
9120 		goto out_fail;
9121 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9122 	if (ret)
9123 		goto out_fail;
9124 
9125 	BTRFS_I(old_inode)->dir_index = 0ULL;
9126 	BTRFS_I(new_inode)->dir_index = 0ULL;
9127 
9128 	/* Reference for the source. */
9129 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9130 		/* force full log commit if subvolume involved. */
9131 		btrfs_set_log_full_commit(trans);
9132 	} else {
9133 		ret = btrfs_insert_inode_ref(trans, dest,
9134 					     new_dentry->d_name.name,
9135 					     new_dentry->d_name.len,
9136 					     old_ino,
9137 					     btrfs_ino(BTRFS_I(new_dir)),
9138 					     old_idx);
9139 		if (ret)
9140 			goto out_fail;
9141 		need_abort = true;
9142 	}
9143 
9144 	/* And now for the dest. */
9145 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9146 		/* force full log commit if subvolume involved. */
9147 		btrfs_set_log_full_commit(trans);
9148 	} else {
9149 		ret = btrfs_insert_inode_ref(trans, root,
9150 					     old_dentry->d_name.name,
9151 					     old_dentry->d_name.len,
9152 					     new_ino,
9153 					     btrfs_ino(BTRFS_I(old_dir)),
9154 					     new_idx);
9155 		if (ret) {
9156 			if (need_abort)
9157 				btrfs_abort_transaction(trans, ret);
9158 			goto out_fail;
9159 		}
9160 	}
9161 
9162 	/* Update inode version and ctime/mtime. */
9163 	inode_inc_iversion(old_dir);
9164 	inode_inc_iversion(new_dir);
9165 	inode_inc_iversion(old_inode);
9166 	inode_inc_iversion(new_inode);
9167 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9168 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9169 	old_inode->i_ctime = ctime;
9170 	new_inode->i_ctime = ctime;
9171 
9172 	if (old_dentry->d_parent != new_dentry->d_parent) {
9173 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9174 				BTRFS_I(old_inode), 1);
9175 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9176 				BTRFS_I(new_inode), 1);
9177 	}
9178 
9179 	/* src is a subvolume */
9180 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9181 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9182 	} else { /* src is an inode */
9183 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9184 					   BTRFS_I(old_dentry->d_inode),
9185 					   old_dentry->d_name.name,
9186 					   old_dentry->d_name.len,
9187 					   &old_rename_ctx);
9188 		if (!ret)
9189 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9190 	}
9191 	if (ret) {
9192 		btrfs_abort_transaction(trans, ret);
9193 		goto out_fail;
9194 	}
9195 
9196 	/* dest is a subvolume */
9197 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9198 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9199 	} else { /* dest is an inode */
9200 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9201 					   BTRFS_I(new_dentry->d_inode),
9202 					   new_dentry->d_name.name,
9203 					   new_dentry->d_name.len,
9204 					   &new_rename_ctx);
9205 		if (!ret)
9206 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9207 	}
9208 	if (ret) {
9209 		btrfs_abort_transaction(trans, ret);
9210 		goto out_fail;
9211 	}
9212 
9213 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9214 			     new_dentry->d_name.name,
9215 			     new_dentry->d_name.len, 0, old_idx);
9216 	if (ret) {
9217 		btrfs_abort_transaction(trans, ret);
9218 		goto out_fail;
9219 	}
9220 
9221 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9222 			     old_dentry->d_name.name,
9223 			     old_dentry->d_name.len, 0, new_idx);
9224 	if (ret) {
9225 		btrfs_abort_transaction(trans, ret);
9226 		goto out_fail;
9227 	}
9228 
9229 	if (old_inode->i_nlink == 1)
9230 		BTRFS_I(old_inode)->dir_index = old_idx;
9231 	if (new_inode->i_nlink == 1)
9232 		BTRFS_I(new_inode)->dir_index = new_idx;
9233 
9234 	/*
9235 	 * Now pin the logs of the roots. We do it to ensure that no other task
9236 	 * can sync the logs while we are in progress with the rename, because
9237 	 * that could result in an inconsistency in case any of the inodes that
9238 	 * are part of this rename operation were logged before.
9239 	 */
9240 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9241 		btrfs_pin_log_trans(root);
9242 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9243 		btrfs_pin_log_trans(dest);
9244 
9245 	/* Do the log updates for all inodes. */
9246 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9247 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9248 				   old_rename_ctx.index, new_dentry->d_parent);
9249 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9250 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9251 				   new_rename_ctx.index, old_dentry->d_parent);
9252 
9253 	/* Now unpin the logs. */
9254 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9255 		btrfs_end_log_trans(root);
9256 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9257 		btrfs_end_log_trans(dest);
9258 out_fail:
9259 	ret2 = btrfs_end_transaction(trans);
9260 	ret = ret ? ret : ret2;
9261 out_notrans:
9262 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9263 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9264 		up_read(&fs_info->subvol_sem);
9265 
9266 	return ret;
9267 }
9268 
9269 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9270 				     struct btrfs_root *root,
9271 				     struct user_namespace *mnt_userns,
9272 				     struct inode *dir,
9273 				     struct dentry *dentry)
9274 {
9275 	int ret;
9276 	struct inode *inode;
9277 	u64 objectid;
9278 	u64 index;
9279 
9280 	ret = btrfs_get_free_objectid(root, &objectid);
9281 	if (ret)
9282 		return ret;
9283 
9284 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9285 				dentry->d_name.name,
9286 				dentry->d_name.len,
9287 				btrfs_ino(BTRFS_I(dir)),
9288 				objectid,
9289 				S_IFCHR | WHITEOUT_MODE,
9290 				&index);
9291 
9292 	if (IS_ERR(inode)) {
9293 		ret = PTR_ERR(inode);
9294 		return ret;
9295 	}
9296 
9297 	inode->i_op = &btrfs_special_inode_operations;
9298 	init_special_inode(inode, inode->i_mode,
9299 		WHITEOUT_DEV);
9300 
9301 	ret = btrfs_init_inode_security(trans, inode, dir,
9302 				&dentry->d_name);
9303 	if (ret)
9304 		goto out;
9305 
9306 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9307 				BTRFS_I(inode), 0, index);
9308 	if (ret)
9309 		goto out;
9310 
9311 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9312 out:
9313 	unlock_new_inode(inode);
9314 	if (ret)
9315 		inode_dec_link_count(inode);
9316 	iput(inode);
9317 
9318 	return ret;
9319 }
9320 
9321 static int btrfs_rename(struct user_namespace *mnt_userns,
9322 			struct inode *old_dir, struct dentry *old_dentry,
9323 			struct inode *new_dir, struct dentry *new_dentry,
9324 			unsigned int flags)
9325 {
9326 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9327 	struct btrfs_trans_handle *trans;
9328 	unsigned int trans_num_items;
9329 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9330 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9331 	struct inode *new_inode = d_inode(new_dentry);
9332 	struct inode *old_inode = d_inode(old_dentry);
9333 	struct btrfs_rename_ctx rename_ctx;
9334 	u64 index = 0;
9335 	int ret;
9336 	int ret2;
9337 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9338 
9339 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9340 		return -EPERM;
9341 
9342 	/* we only allow rename subvolume link between subvolumes */
9343 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9344 		return -EXDEV;
9345 
9346 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9347 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9348 		return -ENOTEMPTY;
9349 
9350 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9351 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9352 		return -ENOTEMPTY;
9353 
9354 
9355 	/* check for collisions, even if the  name isn't there */
9356 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9357 			     new_dentry->d_name.name,
9358 			     new_dentry->d_name.len);
9359 
9360 	if (ret) {
9361 		if (ret == -EEXIST) {
9362 			/* we shouldn't get
9363 			 * eexist without a new_inode */
9364 			if (WARN_ON(!new_inode)) {
9365 				return ret;
9366 			}
9367 		} else {
9368 			/* maybe -EOVERFLOW */
9369 			return ret;
9370 		}
9371 	}
9372 	ret = 0;
9373 
9374 	/*
9375 	 * we're using rename to replace one file with another.  Start IO on it
9376 	 * now so  we don't add too much work to the end of the transaction
9377 	 */
9378 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9379 		filemap_flush(old_inode->i_mapping);
9380 
9381 	/* close the racy window with snapshot create/destroy ioctl */
9382 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9383 		down_read(&fs_info->subvol_sem);
9384 	/*
9385 	 * We want to reserve the absolute worst case amount of items.  So if
9386 	 * both inodes are subvols and we need to unlink them then that would
9387 	 * require 4 item modifications, but if they are both normal inodes it
9388 	 * would require 5 item modifications, so we'll assume they are normal
9389 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9390 	 * should cover the worst case number of items we'll modify.
9391 	 * If our rename has the whiteout flag, we need more 5 units for the
9392 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9393 	 * when selinux is enabled).
9394 	 */
9395 	trans_num_items = 11;
9396 	if (flags & RENAME_WHITEOUT)
9397 		trans_num_items += 5;
9398 	trans = btrfs_start_transaction(root, trans_num_items);
9399 	if (IS_ERR(trans)) {
9400 		ret = PTR_ERR(trans);
9401 		goto out_notrans;
9402 	}
9403 
9404 	if (dest != root) {
9405 		ret = btrfs_record_root_in_trans(trans, dest);
9406 		if (ret)
9407 			goto out_fail;
9408 	}
9409 
9410 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9411 	if (ret)
9412 		goto out_fail;
9413 
9414 	BTRFS_I(old_inode)->dir_index = 0ULL;
9415 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9416 		/* force full log commit if subvolume involved. */
9417 		btrfs_set_log_full_commit(trans);
9418 	} else {
9419 		ret = btrfs_insert_inode_ref(trans, dest,
9420 					     new_dentry->d_name.name,
9421 					     new_dentry->d_name.len,
9422 					     old_ino,
9423 					     btrfs_ino(BTRFS_I(new_dir)), index);
9424 		if (ret)
9425 			goto out_fail;
9426 	}
9427 
9428 	inode_inc_iversion(old_dir);
9429 	inode_inc_iversion(new_dir);
9430 	inode_inc_iversion(old_inode);
9431 	old_dir->i_ctime = old_dir->i_mtime =
9432 	new_dir->i_ctime = new_dir->i_mtime =
9433 	old_inode->i_ctime = current_time(old_dir);
9434 
9435 	if (old_dentry->d_parent != new_dentry->d_parent)
9436 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9437 				BTRFS_I(old_inode), 1);
9438 
9439 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9440 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9441 	} else {
9442 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9443 					BTRFS_I(d_inode(old_dentry)),
9444 					old_dentry->d_name.name,
9445 					old_dentry->d_name.len,
9446 					&rename_ctx);
9447 		if (!ret)
9448 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9449 	}
9450 	if (ret) {
9451 		btrfs_abort_transaction(trans, ret);
9452 		goto out_fail;
9453 	}
9454 
9455 	if (new_inode) {
9456 		inode_inc_iversion(new_inode);
9457 		new_inode->i_ctime = current_time(new_inode);
9458 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9459 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9460 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9461 			BUG_ON(new_inode->i_nlink == 0);
9462 		} else {
9463 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9464 						 BTRFS_I(d_inode(new_dentry)),
9465 						 new_dentry->d_name.name,
9466 						 new_dentry->d_name.len);
9467 		}
9468 		if (!ret && new_inode->i_nlink == 0)
9469 			ret = btrfs_orphan_add(trans,
9470 					BTRFS_I(d_inode(new_dentry)));
9471 		if (ret) {
9472 			btrfs_abort_transaction(trans, ret);
9473 			goto out_fail;
9474 		}
9475 	}
9476 
9477 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9478 			     new_dentry->d_name.name,
9479 			     new_dentry->d_name.len, 0, index);
9480 	if (ret) {
9481 		btrfs_abort_transaction(trans, ret);
9482 		goto out_fail;
9483 	}
9484 
9485 	if (old_inode->i_nlink == 1)
9486 		BTRFS_I(old_inode)->dir_index = index;
9487 
9488 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9489 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9490 				   rename_ctx.index, new_dentry->d_parent);
9491 
9492 	if (flags & RENAME_WHITEOUT) {
9493 		ret = btrfs_whiteout_for_rename(trans, root, mnt_userns,
9494 						old_dir, old_dentry);
9495 
9496 		if (ret) {
9497 			btrfs_abort_transaction(trans, ret);
9498 			goto out_fail;
9499 		}
9500 	}
9501 out_fail:
9502 	ret2 = btrfs_end_transaction(trans);
9503 	ret = ret ? ret : ret2;
9504 out_notrans:
9505 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9506 		up_read(&fs_info->subvol_sem);
9507 
9508 	return ret;
9509 }
9510 
9511 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9512 			 struct dentry *old_dentry, struct inode *new_dir,
9513 			 struct dentry *new_dentry, unsigned int flags)
9514 {
9515 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9516 		return -EINVAL;
9517 
9518 	if (flags & RENAME_EXCHANGE)
9519 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9520 					  new_dentry);
9521 
9522 	return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9523 			    new_dentry, flags);
9524 }
9525 
9526 struct btrfs_delalloc_work {
9527 	struct inode *inode;
9528 	struct completion completion;
9529 	struct list_head list;
9530 	struct btrfs_work work;
9531 };
9532 
9533 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9534 {
9535 	struct btrfs_delalloc_work *delalloc_work;
9536 	struct inode *inode;
9537 
9538 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9539 				     work);
9540 	inode = delalloc_work->inode;
9541 	filemap_flush(inode->i_mapping);
9542 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9543 				&BTRFS_I(inode)->runtime_flags))
9544 		filemap_flush(inode->i_mapping);
9545 
9546 	iput(inode);
9547 	complete(&delalloc_work->completion);
9548 }
9549 
9550 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9551 {
9552 	struct btrfs_delalloc_work *work;
9553 
9554 	work = kmalloc(sizeof(*work), GFP_NOFS);
9555 	if (!work)
9556 		return NULL;
9557 
9558 	init_completion(&work->completion);
9559 	INIT_LIST_HEAD(&work->list);
9560 	work->inode = inode;
9561 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9562 
9563 	return work;
9564 }
9565 
9566 /*
9567  * some fairly slow code that needs optimization. This walks the list
9568  * of all the inodes with pending delalloc and forces them to disk.
9569  */
9570 static int start_delalloc_inodes(struct btrfs_root *root,
9571 				 struct writeback_control *wbc, bool snapshot,
9572 				 bool in_reclaim_context)
9573 {
9574 	struct btrfs_inode *binode;
9575 	struct inode *inode;
9576 	struct btrfs_delalloc_work *work, *next;
9577 	struct list_head works;
9578 	struct list_head splice;
9579 	int ret = 0;
9580 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9581 
9582 	INIT_LIST_HEAD(&works);
9583 	INIT_LIST_HEAD(&splice);
9584 
9585 	mutex_lock(&root->delalloc_mutex);
9586 	spin_lock(&root->delalloc_lock);
9587 	list_splice_init(&root->delalloc_inodes, &splice);
9588 	while (!list_empty(&splice)) {
9589 		binode = list_entry(splice.next, struct btrfs_inode,
9590 				    delalloc_inodes);
9591 
9592 		list_move_tail(&binode->delalloc_inodes,
9593 			       &root->delalloc_inodes);
9594 
9595 		if (in_reclaim_context &&
9596 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9597 			continue;
9598 
9599 		inode = igrab(&binode->vfs_inode);
9600 		if (!inode) {
9601 			cond_resched_lock(&root->delalloc_lock);
9602 			continue;
9603 		}
9604 		spin_unlock(&root->delalloc_lock);
9605 
9606 		if (snapshot)
9607 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9608 				&binode->runtime_flags);
9609 		if (full_flush) {
9610 			work = btrfs_alloc_delalloc_work(inode);
9611 			if (!work) {
9612 				iput(inode);
9613 				ret = -ENOMEM;
9614 				goto out;
9615 			}
9616 			list_add_tail(&work->list, &works);
9617 			btrfs_queue_work(root->fs_info->flush_workers,
9618 					 &work->work);
9619 		} else {
9620 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9621 			btrfs_add_delayed_iput(inode);
9622 			if (ret || wbc->nr_to_write <= 0)
9623 				goto out;
9624 		}
9625 		cond_resched();
9626 		spin_lock(&root->delalloc_lock);
9627 	}
9628 	spin_unlock(&root->delalloc_lock);
9629 
9630 out:
9631 	list_for_each_entry_safe(work, next, &works, list) {
9632 		list_del_init(&work->list);
9633 		wait_for_completion(&work->completion);
9634 		kfree(work);
9635 	}
9636 
9637 	if (!list_empty(&splice)) {
9638 		spin_lock(&root->delalloc_lock);
9639 		list_splice_tail(&splice, &root->delalloc_inodes);
9640 		spin_unlock(&root->delalloc_lock);
9641 	}
9642 	mutex_unlock(&root->delalloc_mutex);
9643 	return ret;
9644 }
9645 
9646 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9647 {
9648 	struct writeback_control wbc = {
9649 		.nr_to_write = LONG_MAX,
9650 		.sync_mode = WB_SYNC_NONE,
9651 		.range_start = 0,
9652 		.range_end = LLONG_MAX,
9653 	};
9654 	struct btrfs_fs_info *fs_info = root->fs_info;
9655 
9656 	if (BTRFS_FS_ERROR(fs_info))
9657 		return -EROFS;
9658 
9659 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9660 }
9661 
9662 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9663 			       bool in_reclaim_context)
9664 {
9665 	struct writeback_control wbc = {
9666 		.nr_to_write = nr,
9667 		.sync_mode = WB_SYNC_NONE,
9668 		.range_start = 0,
9669 		.range_end = LLONG_MAX,
9670 	};
9671 	struct btrfs_root *root;
9672 	struct list_head splice;
9673 	int ret;
9674 
9675 	if (BTRFS_FS_ERROR(fs_info))
9676 		return -EROFS;
9677 
9678 	INIT_LIST_HEAD(&splice);
9679 
9680 	mutex_lock(&fs_info->delalloc_root_mutex);
9681 	spin_lock(&fs_info->delalloc_root_lock);
9682 	list_splice_init(&fs_info->delalloc_roots, &splice);
9683 	while (!list_empty(&splice)) {
9684 		/*
9685 		 * Reset nr_to_write here so we know that we're doing a full
9686 		 * flush.
9687 		 */
9688 		if (nr == LONG_MAX)
9689 			wbc.nr_to_write = LONG_MAX;
9690 
9691 		root = list_first_entry(&splice, struct btrfs_root,
9692 					delalloc_root);
9693 		root = btrfs_grab_root(root);
9694 		BUG_ON(!root);
9695 		list_move_tail(&root->delalloc_root,
9696 			       &fs_info->delalloc_roots);
9697 		spin_unlock(&fs_info->delalloc_root_lock);
9698 
9699 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9700 		btrfs_put_root(root);
9701 		if (ret < 0 || wbc.nr_to_write <= 0)
9702 			goto out;
9703 		spin_lock(&fs_info->delalloc_root_lock);
9704 	}
9705 	spin_unlock(&fs_info->delalloc_root_lock);
9706 
9707 	ret = 0;
9708 out:
9709 	if (!list_empty(&splice)) {
9710 		spin_lock(&fs_info->delalloc_root_lock);
9711 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9712 		spin_unlock(&fs_info->delalloc_root_lock);
9713 	}
9714 	mutex_unlock(&fs_info->delalloc_root_mutex);
9715 	return ret;
9716 }
9717 
9718 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9719 			 struct dentry *dentry, const char *symname)
9720 {
9721 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9722 	struct btrfs_trans_handle *trans;
9723 	struct btrfs_root *root = BTRFS_I(dir)->root;
9724 	struct btrfs_path *path;
9725 	struct btrfs_key key;
9726 	struct inode *inode = NULL;
9727 	int err;
9728 	u64 objectid;
9729 	u64 index = 0;
9730 	int name_len;
9731 	int datasize;
9732 	unsigned long ptr;
9733 	struct btrfs_file_extent_item *ei;
9734 	struct extent_buffer *leaf;
9735 
9736 	name_len = strlen(symname);
9737 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9738 		return -ENAMETOOLONG;
9739 
9740 	/*
9741 	 * 2 items for inode item and ref
9742 	 * 2 items for dir items
9743 	 * 1 item for updating parent inode item
9744 	 * 1 item for the inline extent item
9745 	 * 1 item for xattr if selinux is on
9746 	 */
9747 	trans = btrfs_start_transaction(root, 7);
9748 	if (IS_ERR(trans))
9749 		return PTR_ERR(trans);
9750 
9751 	err = btrfs_get_free_objectid(root, &objectid);
9752 	if (err)
9753 		goto out_unlock;
9754 
9755 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9756 				dentry->d_name.name, dentry->d_name.len,
9757 				btrfs_ino(BTRFS_I(dir)), objectid,
9758 				S_IFLNK | S_IRWXUGO, &index);
9759 	if (IS_ERR(inode)) {
9760 		err = PTR_ERR(inode);
9761 		inode = NULL;
9762 		goto out_unlock;
9763 	}
9764 
9765 	/*
9766 	* If the active LSM wants to access the inode during
9767 	* d_instantiate it needs these. Smack checks to see
9768 	* if the filesystem supports xattrs by looking at the
9769 	* ops vector.
9770 	*/
9771 	inode->i_fop = &btrfs_file_operations;
9772 	inode->i_op = &btrfs_file_inode_operations;
9773 	inode->i_mapping->a_ops = &btrfs_aops;
9774 
9775 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9776 	if (err)
9777 		goto out_unlock;
9778 
9779 	path = btrfs_alloc_path();
9780 	if (!path) {
9781 		err = -ENOMEM;
9782 		goto out_unlock;
9783 	}
9784 	key.objectid = btrfs_ino(BTRFS_I(inode));
9785 	key.offset = 0;
9786 	key.type = BTRFS_EXTENT_DATA_KEY;
9787 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9788 	err = btrfs_insert_empty_item(trans, root, path, &key,
9789 				      datasize);
9790 	if (err) {
9791 		btrfs_free_path(path);
9792 		goto out_unlock;
9793 	}
9794 	leaf = path->nodes[0];
9795 	ei = btrfs_item_ptr(leaf, path->slots[0],
9796 			    struct btrfs_file_extent_item);
9797 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9798 	btrfs_set_file_extent_type(leaf, ei,
9799 				   BTRFS_FILE_EXTENT_INLINE);
9800 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9801 	btrfs_set_file_extent_compression(leaf, ei, 0);
9802 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9803 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9804 
9805 	ptr = btrfs_file_extent_inline_start(ei);
9806 	write_extent_buffer(leaf, symname, ptr, name_len);
9807 	btrfs_mark_buffer_dirty(leaf);
9808 	btrfs_free_path(path);
9809 
9810 	inode->i_op = &btrfs_symlink_inode_operations;
9811 	inode_nohighmem(inode);
9812 	inode_set_bytes(inode, name_len);
9813 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9814 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
9815 	/*
9816 	 * Last step, add directory indexes for our symlink inode. This is the
9817 	 * last step to avoid extra cleanup of these indexes if an error happens
9818 	 * elsewhere above.
9819 	 */
9820 	if (!err)
9821 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9822 				BTRFS_I(inode), 0, index);
9823 	if (err)
9824 		goto out_unlock;
9825 
9826 	d_instantiate_new(dentry, inode);
9827 
9828 out_unlock:
9829 	btrfs_end_transaction(trans);
9830 	if (err && inode) {
9831 		inode_dec_link_count(inode);
9832 		discard_new_inode(inode);
9833 	}
9834 	btrfs_btree_balance_dirty(fs_info);
9835 	return err;
9836 }
9837 
9838 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9839 				       struct btrfs_trans_handle *trans_in,
9840 				       struct btrfs_inode *inode,
9841 				       struct btrfs_key *ins,
9842 				       u64 file_offset)
9843 {
9844 	struct btrfs_file_extent_item stack_fi;
9845 	struct btrfs_replace_extent_info extent_info;
9846 	struct btrfs_trans_handle *trans = trans_in;
9847 	struct btrfs_path *path;
9848 	u64 start = ins->objectid;
9849 	u64 len = ins->offset;
9850 	int qgroup_released;
9851 	int ret;
9852 
9853 	memset(&stack_fi, 0, sizeof(stack_fi));
9854 
9855 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9856 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9857 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9858 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9859 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9860 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9861 	/* Encryption and other encoding is reserved and all 0 */
9862 
9863 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9864 	if (qgroup_released < 0)
9865 		return ERR_PTR(qgroup_released);
9866 
9867 	if (trans) {
9868 		ret = insert_reserved_file_extent(trans, inode,
9869 						  file_offset, &stack_fi,
9870 						  true, qgroup_released);
9871 		if (ret)
9872 			goto free_qgroup;
9873 		return trans;
9874 	}
9875 
9876 	extent_info.disk_offset = start;
9877 	extent_info.disk_len = len;
9878 	extent_info.data_offset = 0;
9879 	extent_info.data_len = len;
9880 	extent_info.file_offset = file_offset;
9881 	extent_info.extent_buf = (char *)&stack_fi;
9882 	extent_info.is_new_extent = true;
9883 	extent_info.qgroup_reserved = qgroup_released;
9884 	extent_info.insertions = 0;
9885 
9886 	path = btrfs_alloc_path();
9887 	if (!path) {
9888 		ret = -ENOMEM;
9889 		goto free_qgroup;
9890 	}
9891 
9892 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9893 				     file_offset + len - 1, &extent_info,
9894 				     &trans);
9895 	btrfs_free_path(path);
9896 	if (ret)
9897 		goto free_qgroup;
9898 	return trans;
9899 
9900 free_qgroup:
9901 	/*
9902 	 * We have released qgroup data range at the beginning of the function,
9903 	 * and normally qgroup_released bytes will be freed when committing
9904 	 * transaction.
9905 	 * But if we error out early, we have to free what we have released
9906 	 * or we leak qgroup data reservation.
9907 	 */
9908 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9909 			inode->root->root_key.objectid, qgroup_released,
9910 			BTRFS_QGROUP_RSV_DATA);
9911 	return ERR_PTR(ret);
9912 }
9913 
9914 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9915 				       u64 start, u64 num_bytes, u64 min_size,
9916 				       loff_t actual_len, u64 *alloc_hint,
9917 				       struct btrfs_trans_handle *trans)
9918 {
9919 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9920 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9921 	struct extent_map *em;
9922 	struct btrfs_root *root = BTRFS_I(inode)->root;
9923 	struct btrfs_key ins;
9924 	u64 cur_offset = start;
9925 	u64 clear_offset = start;
9926 	u64 i_size;
9927 	u64 cur_bytes;
9928 	u64 last_alloc = (u64)-1;
9929 	int ret = 0;
9930 	bool own_trans = true;
9931 	u64 end = start + num_bytes - 1;
9932 
9933 	if (trans)
9934 		own_trans = false;
9935 	while (num_bytes > 0) {
9936 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9937 		cur_bytes = max(cur_bytes, min_size);
9938 		/*
9939 		 * If we are severely fragmented we could end up with really
9940 		 * small allocations, so if the allocator is returning small
9941 		 * chunks lets make its job easier by only searching for those
9942 		 * sized chunks.
9943 		 */
9944 		cur_bytes = min(cur_bytes, last_alloc);
9945 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9946 				min_size, 0, *alloc_hint, &ins, 1, 0);
9947 		if (ret)
9948 			break;
9949 
9950 		/*
9951 		 * We've reserved this space, and thus converted it from
9952 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9953 		 * from here on out we will only need to clear our reservation
9954 		 * for the remaining unreserved area, so advance our
9955 		 * clear_offset by our extent size.
9956 		 */
9957 		clear_offset += ins.offset;
9958 
9959 		last_alloc = ins.offset;
9960 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9961 						    &ins, cur_offset);
9962 		/*
9963 		 * Now that we inserted the prealloc extent we can finally
9964 		 * decrement the number of reservations in the block group.
9965 		 * If we did it before, we could race with relocation and have
9966 		 * relocation miss the reserved extent, making it fail later.
9967 		 */
9968 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9969 		if (IS_ERR(trans)) {
9970 			ret = PTR_ERR(trans);
9971 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9972 						   ins.offset, 0);
9973 			break;
9974 		}
9975 
9976 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9977 					cur_offset + ins.offset -1, 0);
9978 
9979 		em = alloc_extent_map();
9980 		if (!em) {
9981 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9982 			goto next;
9983 		}
9984 
9985 		em->start = cur_offset;
9986 		em->orig_start = cur_offset;
9987 		em->len = ins.offset;
9988 		em->block_start = ins.objectid;
9989 		em->block_len = ins.offset;
9990 		em->orig_block_len = ins.offset;
9991 		em->ram_bytes = ins.offset;
9992 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9993 		em->generation = trans->transid;
9994 
9995 		while (1) {
9996 			write_lock(&em_tree->lock);
9997 			ret = add_extent_mapping(em_tree, em, 1);
9998 			write_unlock(&em_tree->lock);
9999 			if (ret != -EEXIST)
10000 				break;
10001 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10002 						cur_offset + ins.offset - 1,
10003 						0);
10004 		}
10005 		free_extent_map(em);
10006 next:
10007 		num_bytes -= ins.offset;
10008 		cur_offset += ins.offset;
10009 		*alloc_hint = ins.objectid + ins.offset;
10010 
10011 		inode_inc_iversion(inode);
10012 		inode->i_ctime = current_time(inode);
10013 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10014 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10015 		    (actual_len > inode->i_size) &&
10016 		    (cur_offset > inode->i_size)) {
10017 			if (cur_offset > actual_len)
10018 				i_size = actual_len;
10019 			else
10020 				i_size = cur_offset;
10021 			i_size_write(inode, i_size);
10022 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10023 		}
10024 
10025 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10026 
10027 		if (ret) {
10028 			btrfs_abort_transaction(trans, ret);
10029 			if (own_trans)
10030 				btrfs_end_transaction(trans);
10031 			break;
10032 		}
10033 
10034 		if (own_trans) {
10035 			btrfs_end_transaction(trans);
10036 			trans = NULL;
10037 		}
10038 	}
10039 	if (clear_offset < end)
10040 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10041 			end - clear_offset + 1);
10042 	return ret;
10043 }
10044 
10045 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10046 			      u64 start, u64 num_bytes, u64 min_size,
10047 			      loff_t actual_len, u64 *alloc_hint)
10048 {
10049 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10050 					   min_size, actual_len, alloc_hint,
10051 					   NULL);
10052 }
10053 
10054 int btrfs_prealloc_file_range_trans(struct inode *inode,
10055 				    struct btrfs_trans_handle *trans, int mode,
10056 				    u64 start, u64 num_bytes, u64 min_size,
10057 				    loff_t actual_len, u64 *alloc_hint)
10058 {
10059 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10060 					   min_size, actual_len, alloc_hint, trans);
10061 }
10062 
10063 static int btrfs_permission(struct user_namespace *mnt_userns,
10064 			    struct inode *inode, int mask)
10065 {
10066 	struct btrfs_root *root = BTRFS_I(inode)->root;
10067 	umode_t mode = inode->i_mode;
10068 
10069 	if (mask & MAY_WRITE &&
10070 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10071 		if (btrfs_root_readonly(root))
10072 			return -EROFS;
10073 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10074 			return -EACCES;
10075 	}
10076 	return generic_permission(mnt_userns, inode, mask);
10077 }
10078 
10079 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10080 			 struct dentry *dentry, umode_t mode)
10081 {
10082 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10083 	struct btrfs_trans_handle *trans;
10084 	struct btrfs_root *root = BTRFS_I(dir)->root;
10085 	struct inode *inode = NULL;
10086 	u64 objectid;
10087 	u64 index;
10088 	int ret = 0;
10089 
10090 	/*
10091 	 * 5 units required for adding orphan entry
10092 	 */
10093 	trans = btrfs_start_transaction(root, 5);
10094 	if (IS_ERR(trans))
10095 		return PTR_ERR(trans);
10096 
10097 	ret = btrfs_get_free_objectid(root, &objectid);
10098 	if (ret)
10099 		goto out;
10100 
10101 	inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0,
10102 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10103 	if (IS_ERR(inode)) {
10104 		ret = PTR_ERR(inode);
10105 		inode = NULL;
10106 		goto out;
10107 	}
10108 
10109 	inode->i_fop = &btrfs_file_operations;
10110 	inode->i_op = &btrfs_file_inode_operations;
10111 
10112 	inode->i_mapping->a_ops = &btrfs_aops;
10113 
10114 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10115 	if (ret)
10116 		goto out;
10117 
10118 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10119 	if (ret)
10120 		goto out;
10121 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10122 	if (ret)
10123 		goto out;
10124 
10125 	/*
10126 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10127 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10128 	 * through:
10129 	 *
10130 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10131 	 */
10132 	set_nlink(inode, 1);
10133 	d_tmpfile(dentry, inode);
10134 	unlock_new_inode(inode);
10135 	mark_inode_dirty(inode);
10136 out:
10137 	btrfs_end_transaction(trans);
10138 	if (ret && inode)
10139 		discard_new_inode(inode);
10140 	btrfs_btree_balance_dirty(fs_info);
10141 	return ret;
10142 }
10143 
10144 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10145 {
10146 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10147 	unsigned long index = start >> PAGE_SHIFT;
10148 	unsigned long end_index = end >> PAGE_SHIFT;
10149 	struct page *page;
10150 	u32 len;
10151 
10152 	ASSERT(end + 1 - start <= U32_MAX);
10153 	len = end + 1 - start;
10154 	while (index <= end_index) {
10155 		page = find_get_page(inode->vfs_inode.i_mapping, index);
10156 		ASSERT(page); /* Pages should be in the extent_io_tree */
10157 
10158 		btrfs_page_set_writeback(fs_info, page, start, len);
10159 		put_page(page);
10160 		index++;
10161 	}
10162 }
10163 
10164 static int btrfs_encoded_io_compression_from_extent(
10165 				struct btrfs_fs_info *fs_info,
10166 				int compress_type)
10167 {
10168 	switch (compress_type) {
10169 	case BTRFS_COMPRESS_NONE:
10170 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10171 	case BTRFS_COMPRESS_ZLIB:
10172 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10173 	case BTRFS_COMPRESS_LZO:
10174 		/*
10175 		 * The LZO format depends on the sector size. 64K is the maximum
10176 		 * sector size that we support.
10177 		 */
10178 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10179 			return -EINVAL;
10180 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10181 		       (fs_info->sectorsize_bits - 12);
10182 	case BTRFS_COMPRESS_ZSTD:
10183 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10184 	default:
10185 		return -EUCLEAN;
10186 	}
10187 }
10188 
10189 static ssize_t btrfs_encoded_read_inline(
10190 				struct kiocb *iocb,
10191 				struct iov_iter *iter, u64 start,
10192 				u64 lockend,
10193 				struct extent_state **cached_state,
10194 				u64 extent_start, size_t count,
10195 				struct btrfs_ioctl_encoded_io_args *encoded,
10196 				bool *unlocked)
10197 {
10198 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10199 	struct btrfs_root *root = inode->root;
10200 	struct btrfs_fs_info *fs_info = root->fs_info;
10201 	struct extent_io_tree *io_tree = &inode->io_tree;
10202 	struct btrfs_path *path;
10203 	struct extent_buffer *leaf;
10204 	struct btrfs_file_extent_item *item;
10205 	u64 ram_bytes;
10206 	unsigned long ptr;
10207 	void *tmp;
10208 	ssize_t ret;
10209 
10210 	path = btrfs_alloc_path();
10211 	if (!path) {
10212 		ret = -ENOMEM;
10213 		goto out;
10214 	}
10215 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10216 				       extent_start, 0);
10217 	if (ret) {
10218 		if (ret > 0) {
10219 			/* The extent item disappeared? */
10220 			ret = -EIO;
10221 		}
10222 		goto out;
10223 	}
10224 	leaf = path->nodes[0];
10225 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10226 
10227 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10228 	ptr = btrfs_file_extent_inline_start(item);
10229 
10230 	encoded->len = min_t(u64, extent_start + ram_bytes,
10231 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10232 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
10233 				 btrfs_file_extent_compression(leaf, item));
10234 	if (ret < 0)
10235 		goto out;
10236 	encoded->compression = ret;
10237 	if (encoded->compression) {
10238 		size_t inline_size;
10239 
10240 		inline_size = btrfs_file_extent_inline_item_len(leaf,
10241 								path->slots[0]);
10242 		if (inline_size > count) {
10243 			ret = -ENOBUFS;
10244 			goto out;
10245 		}
10246 		count = inline_size;
10247 		encoded->unencoded_len = ram_bytes;
10248 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
10249 	} else {
10250 		count = min_t(u64, count, encoded->len);
10251 		encoded->len = count;
10252 		encoded->unencoded_len = count;
10253 		ptr += iocb->ki_pos - extent_start;
10254 	}
10255 
10256 	tmp = kmalloc(count, GFP_NOFS);
10257 	if (!tmp) {
10258 		ret = -ENOMEM;
10259 		goto out;
10260 	}
10261 	read_extent_buffer(leaf, tmp, ptr, count);
10262 	btrfs_release_path(path);
10263 	unlock_extent_cached(io_tree, start, lockend, cached_state);
10264 	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10265 	*unlocked = true;
10266 
10267 	ret = copy_to_iter(tmp, count, iter);
10268 	if (ret != count)
10269 		ret = -EFAULT;
10270 	kfree(tmp);
10271 out:
10272 	btrfs_free_path(path);
10273 	return ret;
10274 }
10275 
10276 struct btrfs_encoded_read_private {
10277 	struct btrfs_inode *inode;
10278 	u64 file_offset;
10279 	wait_queue_head_t wait;
10280 	atomic_t pending;
10281 	blk_status_t status;
10282 	bool skip_csum;
10283 };
10284 
10285 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10286 					    struct bio *bio, int mirror_num)
10287 {
10288 	struct btrfs_encoded_read_private *priv = bio->bi_private;
10289 	struct btrfs_bio *bbio = btrfs_bio(bio);
10290 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10291 	blk_status_t ret;
10292 
10293 	if (!priv->skip_csum) {
10294 		ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10295 		if (ret)
10296 			return ret;
10297 	}
10298 
10299 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
10300 	if (ret) {
10301 		btrfs_bio_free_csum(bbio);
10302 		return ret;
10303 	}
10304 
10305 	atomic_inc(&priv->pending);
10306 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
10307 	if (ret) {
10308 		atomic_dec(&priv->pending);
10309 		btrfs_bio_free_csum(bbio);
10310 	}
10311 	return ret;
10312 }
10313 
10314 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10315 {
10316 	const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10317 	struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
10318 	struct btrfs_inode *inode = priv->inode;
10319 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10320 	u32 sectorsize = fs_info->sectorsize;
10321 	struct bio_vec *bvec;
10322 	struct bvec_iter_all iter_all;
10323 	u64 start = priv->file_offset;
10324 	u32 bio_offset = 0;
10325 
10326 	if (priv->skip_csum || !uptodate)
10327 		return bbio->bio.bi_status;
10328 
10329 	bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10330 		unsigned int i, nr_sectors, pgoff;
10331 
10332 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10333 		pgoff = bvec->bv_offset;
10334 		for (i = 0; i < nr_sectors; i++) {
10335 			ASSERT(pgoff < PAGE_SIZE);
10336 			if (check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10337 					    bvec->bv_page, pgoff, start))
10338 				return BLK_STS_IOERR;
10339 			start += sectorsize;
10340 			bio_offset += sectorsize;
10341 			pgoff += sectorsize;
10342 		}
10343 	}
10344 	return BLK_STS_OK;
10345 }
10346 
10347 static void btrfs_encoded_read_endio(struct bio *bio)
10348 {
10349 	struct btrfs_encoded_read_private *priv = bio->bi_private;
10350 	struct btrfs_bio *bbio = btrfs_bio(bio);
10351 	blk_status_t status;
10352 
10353 	status = btrfs_encoded_read_verify_csum(bbio);
10354 	if (status) {
10355 		/*
10356 		 * The memory barrier implied by the atomic_dec_return() here
10357 		 * pairs with the memory barrier implied by the
10358 		 * atomic_dec_return() or io_wait_event() in
10359 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10360 		 * write is observed before the load of status in
10361 		 * btrfs_encoded_read_regular_fill_pages().
10362 		 */
10363 		WRITE_ONCE(priv->status, status);
10364 	}
10365 	if (!atomic_dec_return(&priv->pending))
10366 		wake_up(&priv->wait);
10367 	btrfs_bio_free_csum(bbio);
10368 	bio_put(bio);
10369 }
10370 
10371 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10372 						 u64 file_offset,
10373 						 u64 disk_bytenr,
10374 						 u64 disk_io_size,
10375 						 struct page **pages)
10376 {
10377 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10378 	struct btrfs_encoded_read_private priv = {
10379 		.inode = inode,
10380 		.file_offset = file_offset,
10381 		.pending = ATOMIC_INIT(1),
10382 		.skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10383 	};
10384 	unsigned long i = 0;
10385 	u64 cur = 0;
10386 	int ret;
10387 
10388 	init_waitqueue_head(&priv.wait);
10389 	/*
10390 	 * Submit bios for the extent, splitting due to bio or stripe limits as
10391 	 * necessary.
10392 	 */
10393 	while (cur < disk_io_size) {
10394 		struct extent_map *em;
10395 		struct btrfs_io_geometry geom;
10396 		struct bio *bio = NULL;
10397 		u64 remaining;
10398 
10399 		em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10400 					 disk_io_size - cur);
10401 		if (IS_ERR(em)) {
10402 			ret = PTR_ERR(em);
10403 		} else {
10404 			ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10405 						    disk_bytenr + cur, &geom);
10406 			free_extent_map(em);
10407 		}
10408 		if (ret) {
10409 			WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10410 			break;
10411 		}
10412 		remaining = min(geom.len, disk_io_size - cur);
10413 		while (bio || remaining) {
10414 			size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10415 
10416 			if (!bio) {
10417 				bio = btrfs_bio_alloc(BIO_MAX_VECS);
10418 				bio->bi_iter.bi_sector =
10419 					(disk_bytenr + cur) >> SECTOR_SHIFT;
10420 				bio->bi_end_io = btrfs_encoded_read_endio;
10421 				bio->bi_private = &priv;
10422 				bio->bi_opf = REQ_OP_READ;
10423 			}
10424 
10425 			if (!bytes ||
10426 			    bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10427 				blk_status_t status;
10428 
10429 				status = submit_encoded_read_bio(inode, bio, 0);
10430 				if (status) {
10431 					WRITE_ONCE(priv.status, status);
10432 					bio_put(bio);
10433 					goto out;
10434 				}
10435 				bio = NULL;
10436 				continue;
10437 			}
10438 
10439 			i++;
10440 			cur += bytes;
10441 			remaining -= bytes;
10442 		}
10443 	}
10444 
10445 out:
10446 	if (atomic_dec_return(&priv.pending))
10447 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10448 	/* See btrfs_encoded_read_endio() for ordering. */
10449 	return blk_status_to_errno(READ_ONCE(priv.status));
10450 }
10451 
10452 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10453 					  struct iov_iter *iter,
10454 					  u64 start, u64 lockend,
10455 					  struct extent_state **cached_state,
10456 					  u64 disk_bytenr, u64 disk_io_size,
10457 					  size_t count, bool compressed,
10458 					  bool *unlocked)
10459 {
10460 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10461 	struct extent_io_tree *io_tree = &inode->io_tree;
10462 	struct page **pages;
10463 	unsigned long nr_pages, i;
10464 	u64 cur;
10465 	size_t page_offset;
10466 	ssize_t ret;
10467 
10468 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10469 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10470 	if (!pages)
10471 		return -ENOMEM;
10472 	for (i = 0; i < nr_pages; i++) {
10473 		pages[i] = alloc_page(GFP_NOFS);
10474 		if (!pages[i]) {
10475 			ret = -ENOMEM;
10476 			goto out;
10477 		}
10478 	}
10479 
10480 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10481 						    disk_io_size, pages);
10482 	if (ret)
10483 		goto out;
10484 
10485 	unlock_extent_cached(io_tree, start, lockend, cached_state);
10486 	btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10487 	*unlocked = true;
10488 
10489 	if (compressed) {
10490 		i = 0;
10491 		page_offset = 0;
10492 	} else {
10493 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10494 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10495 	}
10496 	cur = 0;
10497 	while (cur < count) {
10498 		size_t bytes = min_t(size_t, count - cur,
10499 				     PAGE_SIZE - page_offset);
10500 
10501 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10502 				      iter) != bytes) {
10503 			ret = -EFAULT;
10504 			goto out;
10505 		}
10506 		i++;
10507 		cur += bytes;
10508 		page_offset = 0;
10509 	}
10510 	ret = count;
10511 out:
10512 	for (i = 0; i < nr_pages; i++) {
10513 		if (pages[i])
10514 			__free_page(pages[i]);
10515 	}
10516 	kfree(pages);
10517 	return ret;
10518 }
10519 
10520 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10521 			   struct btrfs_ioctl_encoded_io_args *encoded)
10522 {
10523 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10524 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10525 	struct extent_io_tree *io_tree = &inode->io_tree;
10526 	ssize_t ret;
10527 	size_t count = iov_iter_count(iter);
10528 	u64 start, lockend, disk_bytenr, disk_io_size;
10529 	struct extent_state *cached_state = NULL;
10530 	struct extent_map *em;
10531 	bool unlocked = false;
10532 
10533 	file_accessed(iocb->ki_filp);
10534 
10535 	btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10536 
10537 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10538 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10539 		return 0;
10540 	}
10541 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10542 	/*
10543 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10544 	 * it's compressed we know that it won't be longer than this.
10545 	 */
10546 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10547 
10548 	for (;;) {
10549 		struct btrfs_ordered_extent *ordered;
10550 
10551 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10552 					       lockend - start + 1);
10553 		if (ret)
10554 			goto out_unlock_inode;
10555 		lock_extent_bits(io_tree, start, lockend, &cached_state);
10556 		ordered = btrfs_lookup_ordered_range(inode, start,
10557 						     lockend - start + 1);
10558 		if (!ordered)
10559 			break;
10560 		btrfs_put_ordered_extent(ordered);
10561 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10562 		cond_resched();
10563 	}
10564 
10565 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10566 	if (IS_ERR(em)) {
10567 		ret = PTR_ERR(em);
10568 		goto out_unlock_extent;
10569 	}
10570 
10571 	if (em->block_start == EXTENT_MAP_INLINE) {
10572 		u64 extent_start = em->start;
10573 
10574 		/*
10575 		 * For inline extents we get everything we need out of the
10576 		 * extent item.
10577 		 */
10578 		free_extent_map(em);
10579 		em = NULL;
10580 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10581 						&cached_state, extent_start,
10582 						count, encoded, &unlocked);
10583 		goto out;
10584 	}
10585 
10586 	/*
10587 	 * We only want to return up to EOF even if the extent extends beyond
10588 	 * that.
10589 	 */
10590 	encoded->len = min_t(u64, extent_map_end(em),
10591 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10592 	if (em->block_start == EXTENT_MAP_HOLE ||
10593 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10594 		disk_bytenr = EXTENT_MAP_HOLE;
10595 		count = min_t(u64, count, encoded->len);
10596 		encoded->len = count;
10597 		encoded->unencoded_len = count;
10598 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10599 		disk_bytenr = em->block_start;
10600 		/*
10601 		 * Bail if the buffer isn't large enough to return the whole
10602 		 * compressed extent.
10603 		 */
10604 		if (em->block_len > count) {
10605 			ret = -ENOBUFS;
10606 			goto out_em;
10607 		}
10608 		disk_io_size = count = em->block_len;
10609 		encoded->unencoded_len = em->ram_bytes;
10610 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10611 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10612 							     em->compress_type);
10613 		if (ret < 0)
10614 			goto out_em;
10615 		encoded->compression = ret;
10616 	} else {
10617 		disk_bytenr = em->block_start + (start - em->start);
10618 		if (encoded->len > count)
10619 			encoded->len = count;
10620 		/*
10621 		 * Don't read beyond what we locked. This also limits the page
10622 		 * allocations that we'll do.
10623 		 */
10624 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10625 		count = start + disk_io_size - iocb->ki_pos;
10626 		encoded->len = count;
10627 		encoded->unencoded_len = count;
10628 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10629 	}
10630 	free_extent_map(em);
10631 	em = NULL;
10632 
10633 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10634 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10635 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10636 		unlocked = true;
10637 		ret = iov_iter_zero(count, iter);
10638 		if (ret != count)
10639 			ret = -EFAULT;
10640 	} else {
10641 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10642 						 &cached_state, disk_bytenr,
10643 						 disk_io_size, count,
10644 						 encoded->compression,
10645 						 &unlocked);
10646 	}
10647 
10648 out:
10649 	if (ret >= 0)
10650 		iocb->ki_pos += encoded->len;
10651 out_em:
10652 	free_extent_map(em);
10653 out_unlock_extent:
10654 	if (!unlocked)
10655 		unlock_extent_cached(io_tree, start, lockend, &cached_state);
10656 out_unlock_inode:
10657 	if (!unlocked)
10658 		btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10659 	return ret;
10660 }
10661 
10662 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10663 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10664 {
10665 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10666 	struct btrfs_root *root = inode->root;
10667 	struct btrfs_fs_info *fs_info = root->fs_info;
10668 	struct extent_io_tree *io_tree = &inode->io_tree;
10669 	struct extent_changeset *data_reserved = NULL;
10670 	struct extent_state *cached_state = NULL;
10671 	int compression;
10672 	size_t orig_count;
10673 	u64 start, end;
10674 	u64 num_bytes, ram_bytes, disk_num_bytes;
10675 	unsigned long nr_pages, i;
10676 	struct page **pages;
10677 	struct btrfs_key ins;
10678 	bool extent_reserved = false;
10679 	struct extent_map *em;
10680 	ssize_t ret;
10681 
10682 	switch (encoded->compression) {
10683 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10684 		compression = BTRFS_COMPRESS_ZLIB;
10685 		break;
10686 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10687 		compression = BTRFS_COMPRESS_ZSTD;
10688 		break;
10689 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10690 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10691 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10692 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10693 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10694 		/* The sector size must match for LZO. */
10695 		if (encoded->compression -
10696 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10697 		    fs_info->sectorsize_bits)
10698 			return -EINVAL;
10699 		compression = BTRFS_COMPRESS_LZO;
10700 		break;
10701 	default:
10702 		return -EINVAL;
10703 	}
10704 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10705 		return -EINVAL;
10706 
10707 	orig_count = iov_iter_count(from);
10708 
10709 	/* The extent size must be sane. */
10710 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10711 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10712 		return -EINVAL;
10713 
10714 	/*
10715 	 * The compressed data must be smaller than the decompressed data.
10716 	 *
10717 	 * It's of course possible for data to compress to larger or the same
10718 	 * size, but the buffered I/O path falls back to no compression for such
10719 	 * data, and we don't want to break any assumptions by creating these
10720 	 * extents.
10721 	 *
10722 	 * Note that this is less strict than the current check we have that the
10723 	 * compressed data must be at least one sector smaller than the
10724 	 * decompressed data. We only want to enforce the weaker requirement
10725 	 * from old kernels that it is at least one byte smaller.
10726 	 */
10727 	if (orig_count >= encoded->unencoded_len)
10728 		return -EINVAL;
10729 
10730 	/* The extent must start on a sector boundary. */
10731 	start = iocb->ki_pos;
10732 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10733 		return -EINVAL;
10734 
10735 	/*
10736 	 * The extent must end on a sector boundary. However, we allow a write
10737 	 * which ends at or extends i_size to have an unaligned length; we round
10738 	 * up the extent size and set i_size to the unaligned end.
10739 	 */
10740 	if (start + encoded->len < inode->vfs_inode.i_size &&
10741 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10742 		return -EINVAL;
10743 
10744 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10745 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10746 		return -EINVAL;
10747 
10748 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10749 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10750 	end = start + num_bytes - 1;
10751 
10752 	/*
10753 	 * If the extent cannot be inline, the compressed data on disk must be
10754 	 * sector-aligned. For convenience, we extend it with zeroes if it
10755 	 * isn't.
10756 	 */
10757 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10758 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10759 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10760 	if (!pages)
10761 		return -ENOMEM;
10762 	for (i = 0; i < nr_pages; i++) {
10763 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10764 		char *kaddr;
10765 
10766 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10767 		if (!pages[i]) {
10768 			ret = -ENOMEM;
10769 			goto out_pages;
10770 		}
10771 		kaddr = kmap(pages[i]);
10772 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10773 			kunmap(pages[i]);
10774 			ret = -EFAULT;
10775 			goto out_pages;
10776 		}
10777 		if (bytes < PAGE_SIZE)
10778 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10779 		kunmap(pages[i]);
10780 	}
10781 
10782 	for (;;) {
10783 		struct btrfs_ordered_extent *ordered;
10784 
10785 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10786 		if (ret)
10787 			goto out_pages;
10788 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10789 						    start >> PAGE_SHIFT,
10790 						    end >> PAGE_SHIFT);
10791 		if (ret)
10792 			goto out_pages;
10793 		lock_extent_bits(io_tree, start, end, &cached_state);
10794 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10795 		if (!ordered &&
10796 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10797 			break;
10798 		if (ordered)
10799 			btrfs_put_ordered_extent(ordered);
10800 		unlock_extent_cached(io_tree, start, end, &cached_state);
10801 		cond_resched();
10802 	}
10803 
10804 	/*
10805 	 * We don't use the higher-level delalloc space functions because our
10806 	 * num_bytes and disk_num_bytes are different.
10807 	 */
10808 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10809 	if (ret)
10810 		goto out_unlock;
10811 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10812 	if (ret)
10813 		goto out_free_data_space;
10814 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes);
10815 	if (ret)
10816 		goto out_qgroup_free_data;
10817 
10818 	/* Try an inline extent first. */
10819 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10820 	    encoded->unencoded_offset == 0) {
10821 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10822 					    compression, pages, true);
10823 		if (ret <= 0) {
10824 			if (ret == 0)
10825 				ret = orig_count;
10826 			goto out_delalloc_release;
10827 		}
10828 	}
10829 
10830 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10831 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10832 	if (ret)
10833 		goto out_delalloc_release;
10834 	extent_reserved = true;
10835 
10836 	em = create_io_em(inode, start, num_bytes,
10837 			  start - encoded->unencoded_offset, ins.objectid,
10838 			  ins.offset, ins.offset, ram_bytes, compression,
10839 			  BTRFS_ORDERED_COMPRESSED);
10840 	if (IS_ERR(em)) {
10841 		ret = PTR_ERR(em);
10842 		goto out_free_reserved;
10843 	}
10844 	free_extent_map(em);
10845 
10846 	ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10847 				       ins.objectid, ins.offset,
10848 				       encoded->unencoded_offset,
10849 				       (1 << BTRFS_ORDERED_ENCODED) |
10850 				       (1 << BTRFS_ORDERED_COMPRESSED),
10851 				       compression);
10852 	if (ret) {
10853 		btrfs_drop_extent_cache(inode, start, end, 0);
10854 		goto out_free_reserved;
10855 	}
10856 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10857 
10858 	if (start + encoded->len > inode->vfs_inode.i_size)
10859 		i_size_write(&inode->vfs_inode, start + encoded->len);
10860 
10861 	unlock_extent_cached(io_tree, start, end, &cached_state);
10862 
10863 	btrfs_delalloc_release_extents(inode, num_bytes);
10864 
10865 	if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10866 					  ins.offset, pages, nr_pages, 0, NULL,
10867 					  false)) {
10868 		btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10869 		ret = -EIO;
10870 		goto out_pages;
10871 	}
10872 	ret = orig_count;
10873 	goto out;
10874 
10875 out_free_reserved:
10876 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10877 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10878 out_delalloc_release:
10879 	btrfs_delalloc_release_extents(inode, num_bytes);
10880 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10881 out_qgroup_free_data:
10882 	if (ret < 0)
10883 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10884 out_free_data_space:
10885 	/*
10886 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10887 	 * bytes_may_use.
10888 	 */
10889 	if (!extent_reserved)
10890 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10891 out_unlock:
10892 	unlock_extent_cached(io_tree, start, end, &cached_state);
10893 out_pages:
10894 	for (i = 0; i < nr_pages; i++) {
10895 		if (pages[i])
10896 			__free_page(pages[i]);
10897 	}
10898 	kvfree(pages);
10899 out:
10900 	if (ret >= 0)
10901 		iocb->ki_pos += encoded->len;
10902 	return ret;
10903 }
10904 
10905 #ifdef CONFIG_SWAP
10906 /*
10907  * Add an entry indicating a block group or device which is pinned by a
10908  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10909  * negative errno on failure.
10910  */
10911 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10912 				  bool is_block_group)
10913 {
10914 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10915 	struct btrfs_swapfile_pin *sp, *entry;
10916 	struct rb_node **p;
10917 	struct rb_node *parent = NULL;
10918 
10919 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10920 	if (!sp)
10921 		return -ENOMEM;
10922 	sp->ptr = ptr;
10923 	sp->inode = inode;
10924 	sp->is_block_group = is_block_group;
10925 	sp->bg_extent_count = 1;
10926 
10927 	spin_lock(&fs_info->swapfile_pins_lock);
10928 	p = &fs_info->swapfile_pins.rb_node;
10929 	while (*p) {
10930 		parent = *p;
10931 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10932 		if (sp->ptr < entry->ptr ||
10933 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10934 			p = &(*p)->rb_left;
10935 		} else if (sp->ptr > entry->ptr ||
10936 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10937 			p = &(*p)->rb_right;
10938 		} else {
10939 			if (is_block_group)
10940 				entry->bg_extent_count++;
10941 			spin_unlock(&fs_info->swapfile_pins_lock);
10942 			kfree(sp);
10943 			return 1;
10944 		}
10945 	}
10946 	rb_link_node(&sp->node, parent, p);
10947 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10948 	spin_unlock(&fs_info->swapfile_pins_lock);
10949 	return 0;
10950 }
10951 
10952 /* Free all of the entries pinned by this swapfile. */
10953 static void btrfs_free_swapfile_pins(struct inode *inode)
10954 {
10955 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10956 	struct btrfs_swapfile_pin *sp;
10957 	struct rb_node *node, *next;
10958 
10959 	spin_lock(&fs_info->swapfile_pins_lock);
10960 	node = rb_first(&fs_info->swapfile_pins);
10961 	while (node) {
10962 		next = rb_next(node);
10963 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10964 		if (sp->inode == inode) {
10965 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10966 			if (sp->is_block_group) {
10967 				btrfs_dec_block_group_swap_extents(sp->ptr,
10968 							   sp->bg_extent_count);
10969 				btrfs_put_block_group(sp->ptr);
10970 			}
10971 			kfree(sp);
10972 		}
10973 		node = next;
10974 	}
10975 	spin_unlock(&fs_info->swapfile_pins_lock);
10976 }
10977 
10978 struct btrfs_swap_info {
10979 	u64 start;
10980 	u64 block_start;
10981 	u64 block_len;
10982 	u64 lowest_ppage;
10983 	u64 highest_ppage;
10984 	unsigned long nr_pages;
10985 	int nr_extents;
10986 };
10987 
10988 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10989 				 struct btrfs_swap_info *bsi)
10990 {
10991 	unsigned long nr_pages;
10992 	unsigned long max_pages;
10993 	u64 first_ppage, first_ppage_reported, next_ppage;
10994 	int ret;
10995 
10996 	/*
10997 	 * Our swapfile may have had its size extended after the swap header was
10998 	 * written. In that case activating the swapfile should not go beyond
10999 	 * the max size set in the swap header.
11000 	 */
11001 	if (bsi->nr_pages >= sis->max)
11002 		return 0;
11003 
11004 	max_pages = sis->max - bsi->nr_pages;
11005 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
11006 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
11007 				PAGE_SIZE) >> PAGE_SHIFT;
11008 
11009 	if (first_ppage >= next_ppage)
11010 		return 0;
11011 	nr_pages = next_ppage - first_ppage;
11012 	nr_pages = min(nr_pages, max_pages);
11013 
11014 	first_ppage_reported = first_ppage;
11015 	if (bsi->start == 0)
11016 		first_ppage_reported++;
11017 	if (bsi->lowest_ppage > first_ppage_reported)
11018 		bsi->lowest_ppage = first_ppage_reported;
11019 	if (bsi->highest_ppage < (next_ppage - 1))
11020 		bsi->highest_ppage = next_ppage - 1;
11021 
11022 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11023 	if (ret < 0)
11024 		return ret;
11025 	bsi->nr_extents += ret;
11026 	bsi->nr_pages += nr_pages;
11027 	return 0;
11028 }
11029 
11030 static void btrfs_swap_deactivate(struct file *file)
11031 {
11032 	struct inode *inode = file_inode(file);
11033 
11034 	btrfs_free_swapfile_pins(inode);
11035 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11036 }
11037 
11038 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11039 			       sector_t *span)
11040 {
11041 	struct inode *inode = file_inode(file);
11042 	struct btrfs_root *root = BTRFS_I(inode)->root;
11043 	struct btrfs_fs_info *fs_info = root->fs_info;
11044 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11045 	struct extent_state *cached_state = NULL;
11046 	struct extent_map *em = NULL;
11047 	struct btrfs_device *device = NULL;
11048 	struct btrfs_swap_info bsi = {
11049 		.lowest_ppage = (sector_t)-1ULL,
11050 	};
11051 	int ret = 0;
11052 	u64 isize;
11053 	u64 start;
11054 
11055 	/*
11056 	 * If the swap file was just created, make sure delalloc is done. If the
11057 	 * file changes again after this, the user is doing something stupid and
11058 	 * we don't really care.
11059 	 */
11060 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11061 	if (ret)
11062 		return ret;
11063 
11064 	/*
11065 	 * The inode is locked, so these flags won't change after we check them.
11066 	 */
11067 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11068 		btrfs_warn(fs_info, "swapfile must not be compressed");
11069 		return -EINVAL;
11070 	}
11071 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11072 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11073 		return -EINVAL;
11074 	}
11075 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11076 		btrfs_warn(fs_info, "swapfile must not be checksummed");
11077 		return -EINVAL;
11078 	}
11079 
11080 	/*
11081 	 * Balance or device remove/replace/resize can move stuff around from
11082 	 * under us. The exclop protection makes sure they aren't running/won't
11083 	 * run concurrently while we are mapping the swap extents, and
11084 	 * fs_info->swapfile_pins prevents them from running while the swap
11085 	 * file is active and moving the extents. Note that this also prevents
11086 	 * a concurrent device add which isn't actually necessary, but it's not
11087 	 * really worth the trouble to allow it.
11088 	 */
11089 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11090 		btrfs_warn(fs_info,
11091 	   "cannot activate swapfile while exclusive operation is running");
11092 		return -EBUSY;
11093 	}
11094 
11095 	/*
11096 	 * Prevent snapshot creation while we are activating the swap file.
11097 	 * We do not want to race with snapshot creation. If snapshot creation
11098 	 * already started before we bumped nr_swapfiles from 0 to 1 and
11099 	 * completes before the first write into the swap file after it is
11100 	 * activated, than that write would fallback to COW.
11101 	 */
11102 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11103 		btrfs_exclop_finish(fs_info);
11104 		btrfs_warn(fs_info,
11105 	   "cannot activate swapfile because snapshot creation is in progress");
11106 		return -EINVAL;
11107 	}
11108 	/*
11109 	 * Snapshots can create extents which require COW even if NODATACOW is
11110 	 * set. We use this counter to prevent snapshots. We must increment it
11111 	 * before walking the extents because we don't want a concurrent
11112 	 * snapshot to run after we've already checked the extents.
11113 	 *
11114 	 * It is possible that subvolume is marked for deletion but still not
11115 	 * removed yet. To prevent this race, we check the root status before
11116 	 * activating the swapfile.
11117 	 */
11118 	spin_lock(&root->root_item_lock);
11119 	if (btrfs_root_dead(root)) {
11120 		spin_unlock(&root->root_item_lock);
11121 
11122 		btrfs_exclop_finish(fs_info);
11123 		btrfs_warn(fs_info,
11124 		"cannot activate swapfile because subvolume %llu is being deleted",
11125 			root->root_key.objectid);
11126 		return -EPERM;
11127 	}
11128 	atomic_inc(&root->nr_swapfiles);
11129 	spin_unlock(&root->root_item_lock);
11130 
11131 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11132 
11133 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
11134 	start = 0;
11135 	while (start < isize) {
11136 		u64 logical_block_start, physical_block_start;
11137 		struct btrfs_block_group *bg;
11138 		u64 len = isize - start;
11139 
11140 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11141 		if (IS_ERR(em)) {
11142 			ret = PTR_ERR(em);
11143 			goto out;
11144 		}
11145 
11146 		if (em->block_start == EXTENT_MAP_HOLE) {
11147 			btrfs_warn(fs_info, "swapfile must not have holes");
11148 			ret = -EINVAL;
11149 			goto out;
11150 		}
11151 		if (em->block_start == EXTENT_MAP_INLINE) {
11152 			/*
11153 			 * It's unlikely we'll ever actually find ourselves
11154 			 * here, as a file small enough to fit inline won't be
11155 			 * big enough to store more than the swap header, but in
11156 			 * case something changes in the future, let's catch it
11157 			 * here rather than later.
11158 			 */
11159 			btrfs_warn(fs_info, "swapfile must not be inline");
11160 			ret = -EINVAL;
11161 			goto out;
11162 		}
11163 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11164 			btrfs_warn(fs_info, "swapfile must not be compressed");
11165 			ret = -EINVAL;
11166 			goto out;
11167 		}
11168 
11169 		logical_block_start = em->block_start + (start - em->start);
11170 		len = min(len, em->len - (start - em->start));
11171 		free_extent_map(em);
11172 		em = NULL;
11173 
11174 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11175 		if (ret < 0) {
11176 			goto out;
11177 		} else if (ret) {
11178 			ret = 0;
11179 		} else {
11180 			btrfs_warn(fs_info,
11181 				   "swapfile must not be copy-on-write");
11182 			ret = -EINVAL;
11183 			goto out;
11184 		}
11185 
11186 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11187 		if (IS_ERR(em)) {
11188 			ret = PTR_ERR(em);
11189 			goto out;
11190 		}
11191 
11192 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11193 			btrfs_warn(fs_info,
11194 				   "swapfile must have single data profile");
11195 			ret = -EINVAL;
11196 			goto out;
11197 		}
11198 
11199 		if (device == NULL) {
11200 			device = em->map_lookup->stripes[0].dev;
11201 			ret = btrfs_add_swapfile_pin(inode, device, false);
11202 			if (ret == 1)
11203 				ret = 0;
11204 			else if (ret)
11205 				goto out;
11206 		} else if (device != em->map_lookup->stripes[0].dev) {
11207 			btrfs_warn(fs_info, "swapfile must be on one device");
11208 			ret = -EINVAL;
11209 			goto out;
11210 		}
11211 
11212 		physical_block_start = (em->map_lookup->stripes[0].physical +
11213 					(logical_block_start - em->start));
11214 		len = min(len, em->len - (logical_block_start - em->start));
11215 		free_extent_map(em);
11216 		em = NULL;
11217 
11218 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11219 		if (!bg) {
11220 			btrfs_warn(fs_info,
11221 			   "could not find block group containing swapfile");
11222 			ret = -EINVAL;
11223 			goto out;
11224 		}
11225 
11226 		if (!btrfs_inc_block_group_swap_extents(bg)) {
11227 			btrfs_warn(fs_info,
11228 			   "block group for swapfile at %llu is read-only%s",
11229 			   bg->start,
11230 			   atomic_read(&fs_info->scrubs_running) ?
11231 				       " (scrub running)" : "");
11232 			btrfs_put_block_group(bg);
11233 			ret = -EINVAL;
11234 			goto out;
11235 		}
11236 
11237 		ret = btrfs_add_swapfile_pin(inode, bg, true);
11238 		if (ret) {
11239 			btrfs_put_block_group(bg);
11240 			if (ret == 1)
11241 				ret = 0;
11242 			else
11243 				goto out;
11244 		}
11245 
11246 		if (bsi.block_len &&
11247 		    bsi.block_start + bsi.block_len == physical_block_start) {
11248 			bsi.block_len += len;
11249 		} else {
11250 			if (bsi.block_len) {
11251 				ret = btrfs_add_swap_extent(sis, &bsi);
11252 				if (ret)
11253 					goto out;
11254 			}
11255 			bsi.start = start;
11256 			bsi.block_start = physical_block_start;
11257 			bsi.block_len = len;
11258 		}
11259 
11260 		start += len;
11261 	}
11262 
11263 	if (bsi.block_len)
11264 		ret = btrfs_add_swap_extent(sis, &bsi);
11265 
11266 out:
11267 	if (!IS_ERR_OR_NULL(em))
11268 		free_extent_map(em);
11269 
11270 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11271 
11272 	if (ret)
11273 		btrfs_swap_deactivate(file);
11274 
11275 	btrfs_drew_write_unlock(&root->snapshot_lock);
11276 
11277 	btrfs_exclop_finish(fs_info);
11278 
11279 	if (ret)
11280 		return ret;
11281 
11282 	if (device)
11283 		sis->bdev = device->bdev;
11284 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11285 	sis->max = bsi.nr_pages;
11286 	sis->pages = bsi.nr_pages - 1;
11287 	sis->highest_bit = bsi.nr_pages - 1;
11288 	return bsi.nr_extents;
11289 }
11290 #else
11291 static void btrfs_swap_deactivate(struct file *file)
11292 {
11293 }
11294 
11295 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11296 			       sector_t *span)
11297 {
11298 	return -EOPNOTSUPP;
11299 }
11300 #endif
11301 
11302 /*
11303  * Update the number of bytes used in the VFS' inode. When we replace extents in
11304  * a range (clone, dedupe, fallocate's zero range), we must update the number of
11305  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11306  * always get a correct value.
11307  */
11308 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11309 			      const u64 add_bytes,
11310 			      const u64 del_bytes)
11311 {
11312 	if (add_bytes == del_bytes)
11313 		return;
11314 
11315 	spin_lock(&inode->lock);
11316 	if (del_bytes > 0)
11317 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
11318 	if (add_bytes > 0)
11319 		inode_add_bytes(&inode->vfs_inode, add_bytes);
11320 	spin_unlock(&inode->lock);
11321 }
11322 
11323 static const struct inode_operations btrfs_dir_inode_operations = {
11324 	.getattr	= btrfs_getattr,
11325 	.lookup		= btrfs_lookup,
11326 	.create		= btrfs_create,
11327 	.unlink		= btrfs_unlink,
11328 	.link		= btrfs_link,
11329 	.mkdir		= btrfs_mkdir,
11330 	.rmdir		= btrfs_rmdir,
11331 	.rename		= btrfs_rename2,
11332 	.symlink	= btrfs_symlink,
11333 	.setattr	= btrfs_setattr,
11334 	.mknod		= btrfs_mknod,
11335 	.listxattr	= btrfs_listxattr,
11336 	.permission	= btrfs_permission,
11337 	.get_acl	= btrfs_get_acl,
11338 	.set_acl	= btrfs_set_acl,
11339 	.update_time	= btrfs_update_time,
11340 	.tmpfile        = btrfs_tmpfile,
11341 	.fileattr_get	= btrfs_fileattr_get,
11342 	.fileattr_set	= btrfs_fileattr_set,
11343 };
11344 
11345 static const struct file_operations btrfs_dir_file_operations = {
11346 	.llseek		= generic_file_llseek,
11347 	.read		= generic_read_dir,
11348 	.iterate_shared	= btrfs_real_readdir,
11349 	.open		= btrfs_opendir,
11350 	.unlocked_ioctl	= btrfs_ioctl,
11351 #ifdef CONFIG_COMPAT
11352 	.compat_ioctl	= btrfs_compat_ioctl,
11353 #endif
11354 	.release        = btrfs_release_file,
11355 	.fsync		= btrfs_sync_file,
11356 };
11357 
11358 /*
11359  * btrfs doesn't support the bmap operation because swapfiles
11360  * use bmap to make a mapping of extents in the file.  They assume
11361  * these extents won't change over the life of the file and they
11362  * use the bmap result to do IO directly to the drive.
11363  *
11364  * the btrfs bmap call would return logical addresses that aren't
11365  * suitable for IO and they also will change frequently as COW
11366  * operations happen.  So, swapfile + btrfs == corruption.
11367  *
11368  * For now we're avoiding this by dropping bmap.
11369  */
11370 static const struct address_space_operations btrfs_aops = {
11371 	.readpage	= btrfs_readpage,
11372 	.writepage	= btrfs_writepage,
11373 	.writepages	= btrfs_writepages,
11374 	.readahead	= btrfs_readahead,
11375 	.direct_IO	= noop_direct_IO,
11376 	.invalidate_folio = btrfs_invalidate_folio,
11377 	.releasepage	= btrfs_releasepage,
11378 #ifdef CONFIG_MIGRATION
11379 	.migratepage	= btrfs_migratepage,
11380 #endif
11381 	.dirty_folio	= filemap_dirty_folio,
11382 	.error_remove_page = generic_error_remove_page,
11383 	.swap_activate	= btrfs_swap_activate,
11384 	.swap_deactivate = btrfs_swap_deactivate,
11385 };
11386 
11387 static const struct inode_operations btrfs_file_inode_operations = {
11388 	.getattr	= btrfs_getattr,
11389 	.setattr	= btrfs_setattr,
11390 	.listxattr      = btrfs_listxattr,
11391 	.permission	= btrfs_permission,
11392 	.fiemap		= btrfs_fiemap,
11393 	.get_acl	= btrfs_get_acl,
11394 	.set_acl	= btrfs_set_acl,
11395 	.update_time	= btrfs_update_time,
11396 	.fileattr_get	= btrfs_fileattr_get,
11397 	.fileattr_set	= btrfs_fileattr_set,
11398 };
11399 static const struct inode_operations btrfs_special_inode_operations = {
11400 	.getattr	= btrfs_getattr,
11401 	.setattr	= btrfs_setattr,
11402 	.permission	= btrfs_permission,
11403 	.listxattr	= btrfs_listxattr,
11404 	.get_acl	= btrfs_get_acl,
11405 	.set_acl	= btrfs_set_acl,
11406 	.update_time	= btrfs_update_time,
11407 };
11408 static const struct inode_operations btrfs_symlink_inode_operations = {
11409 	.get_link	= page_get_link,
11410 	.getattr	= btrfs_getattr,
11411 	.setattr	= btrfs_setattr,
11412 	.permission	= btrfs_permission,
11413 	.listxattr	= btrfs_listxattr,
11414 	.update_time	= btrfs_update_time,
11415 };
11416 
11417 const struct dentry_operations btrfs_dentry_operations = {
11418 	.d_delete	= btrfs_dentry_delete,
11419 };
11420