1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "volumes.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 59 struct btrfs_iget_args { 60 u64 ino; 61 struct btrfs_root *root; 62 }; 63 64 struct btrfs_dio_data { 65 ssize_t submitted; 66 struct extent_changeset *data_reserved; 67 }; 68 69 struct btrfs_rename_ctx { 70 /* Output field. Stores the index number of the old directory entry. */ 71 u64 index; 72 }; 73 74 static const struct inode_operations btrfs_dir_inode_operations; 75 static const struct inode_operations btrfs_symlink_inode_operations; 76 static const struct inode_operations btrfs_special_inode_operations; 77 static const struct inode_operations btrfs_file_inode_operations; 78 static const struct address_space_operations btrfs_aops; 79 static const struct file_operations btrfs_dir_file_operations; 80 81 static struct kmem_cache *btrfs_inode_cachep; 82 struct kmem_cache *btrfs_trans_handle_cachep; 83 struct kmem_cache *btrfs_path_cachep; 84 struct kmem_cache *btrfs_free_space_cachep; 85 struct kmem_cache *btrfs_free_space_bitmap_cachep; 86 87 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 88 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 90 static noinline int cow_file_range(struct btrfs_inode *inode, 91 struct page *locked_page, 92 u64 start, u64 end, int *page_started, 93 unsigned long *nr_written, int unlock); 94 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 95 u64 len, u64 orig_start, u64 block_start, 96 u64 block_len, u64 orig_block_len, 97 u64 ram_bytes, int compress_type, 98 int type); 99 100 static void __endio_write_update_ordered(struct btrfs_inode *inode, 101 const u64 offset, const u64 bytes, 102 const bool uptodate); 103 104 /* 105 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 106 * 107 * ilock_flags can have the following bit set: 108 * 109 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 110 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 111 * return -EAGAIN 112 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 113 */ 114 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 115 { 116 if (ilock_flags & BTRFS_ILOCK_SHARED) { 117 if (ilock_flags & BTRFS_ILOCK_TRY) { 118 if (!inode_trylock_shared(inode)) 119 return -EAGAIN; 120 else 121 return 0; 122 } 123 inode_lock_shared(inode); 124 } else { 125 if (ilock_flags & BTRFS_ILOCK_TRY) { 126 if (!inode_trylock(inode)) 127 return -EAGAIN; 128 else 129 return 0; 130 } 131 inode_lock(inode); 132 } 133 if (ilock_flags & BTRFS_ILOCK_MMAP) 134 down_write(&BTRFS_I(inode)->i_mmap_lock); 135 return 0; 136 } 137 138 /* 139 * btrfs_inode_unlock - unock inode i_rwsem 140 * 141 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 142 * to decide whether the lock acquired is shared or exclusive. 143 */ 144 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 145 { 146 if (ilock_flags & BTRFS_ILOCK_MMAP) 147 up_write(&BTRFS_I(inode)->i_mmap_lock); 148 if (ilock_flags & BTRFS_ILOCK_SHARED) 149 inode_unlock_shared(inode); 150 else 151 inode_unlock(inode); 152 } 153 154 /* 155 * Cleanup all submitted ordered extents in specified range to handle errors 156 * from the btrfs_run_delalloc_range() callback. 157 * 158 * NOTE: caller must ensure that when an error happens, it can not call 159 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 160 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 161 * to be released, which we want to happen only when finishing the ordered 162 * extent (btrfs_finish_ordered_io()). 163 */ 164 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 165 struct page *locked_page, 166 u64 offset, u64 bytes) 167 { 168 unsigned long index = offset >> PAGE_SHIFT; 169 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 170 u64 page_start = page_offset(locked_page); 171 u64 page_end = page_start + PAGE_SIZE - 1; 172 173 struct page *page; 174 175 while (index <= end_index) { 176 /* 177 * For locked page, we will call end_extent_writepage() on it 178 * in run_delalloc_range() for the error handling. That 179 * end_extent_writepage() function will call 180 * btrfs_mark_ordered_io_finished() to clear page Ordered and 181 * run the ordered extent accounting. 182 * 183 * Here we can't just clear the Ordered bit, or 184 * btrfs_mark_ordered_io_finished() would skip the accounting 185 * for the page range, and the ordered extent will never finish. 186 */ 187 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) { 188 index++; 189 continue; 190 } 191 page = find_get_page(inode->vfs_inode.i_mapping, index); 192 index++; 193 if (!page) 194 continue; 195 196 /* 197 * Here we just clear all Ordered bits for every page in the 198 * range, then __endio_write_update_ordered() will handle 199 * the ordered extent accounting for the range. 200 */ 201 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 202 offset, bytes); 203 put_page(page); 204 } 205 206 /* The locked page covers the full range, nothing needs to be done */ 207 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE) 208 return; 209 /* 210 * In case this page belongs to the delalloc range being instantiated 211 * then skip it, since the first page of a range is going to be 212 * properly cleaned up by the caller of run_delalloc_range 213 */ 214 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 215 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 216 offset = page_offset(locked_page) + PAGE_SIZE; 217 } 218 219 return __endio_write_update_ordered(inode, offset, bytes, false); 220 } 221 222 static int btrfs_dirty_inode(struct inode *inode); 223 224 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 225 struct inode *inode, struct inode *dir, 226 const struct qstr *qstr) 227 { 228 int err; 229 230 err = btrfs_init_acl(trans, inode, dir); 231 if (!err) 232 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 233 return err; 234 } 235 236 /* 237 * this does all the hard work for inserting an inline extent into 238 * the btree. The caller should have done a btrfs_drop_extents so that 239 * no overlapping inline items exist in the btree 240 */ 241 static int insert_inline_extent(struct btrfs_trans_handle *trans, 242 struct btrfs_path *path, 243 struct btrfs_inode *inode, bool extent_inserted, 244 size_t size, size_t compressed_size, 245 int compress_type, 246 struct page **compressed_pages, 247 bool update_i_size) 248 { 249 struct btrfs_root *root = inode->root; 250 struct extent_buffer *leaf; 251 struct page *page = NULL; 252 char *kaddr; 253 unsigned long ptr; 254 struct btrfs_file_extent_item *ei; 255 int ret; 256 size_t cur_size = size; 257 u64 i_size; 258 259 ASSERT((compressed_size > 0 && compressed_pages) || 260 (compressed_size == 0 && !compressed_pages)); 261 262 if (compressed_size && compressed_pages) 263 cur_size = compressed_size; 264 265 if (!extent_inserted) { 266 struct btrfs_key key; 267 size_t datasize; 268 269 key.objectid = btrfs_ino(inode); 270 key.offset = 0; 271 key.type = BTRFS_EXTENT_DATA_KEY; 272 273 datasize = btrfs_file_extent_calc_inline_size(cur_size); 274 ret = btrfs_insert_empty_item(trans, root, path, &key, 275 datasize); 276 if (ret) 277 goto fail; 278 } 279 leaf = path->nodes[0]; 280 ei = btrfs_item_ptr(leaf, path->slots[0], 281 struct btrfs_file_extent_item); 282 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 283 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 284 btrfs_set_file_extent_encryption(leaf, ei, 0); 285 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 286 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 287 ptr = btrfs_file_extent_inline_start(ei); 288 289 if (compress_type != BTRFS_COMPRESS_NONE) { 290 struct page *cpage; 291 int i = 0; 292 while (compressed_size > 0) { 293 cpage = compressed_pages[i]; 294 cur_size = min_t(unsigned long, compressed_size, 295 PAGE_SIZE); 296 297 kaddr = kmap_atomic(cpage); 298 write_extent_buffer(leaf, kaddr, ptr, cur_size); 299 kunmap_atomic(kaddr); 300 301 i++; 302 ptr += cur_size; 303 compressed_size -= cur_size; 304 } 305 btrfs_set_file_extent_compression(leaf, ei, 306 compress_type); 307 } else { 308 page = find_get_page(inode->vfs_inode.i_mapping, 0); 309 btrfs_set_file_extent_compression(leaf, ei, 0); 310 kaddr = kmap_atomic(page); 311 write_extent_buffer(leaf, kaddr, ptr, size); 312 kunmap_atomic(kaddr); 313 put_page(page); 314 } 315 btrfs_mark_buffer_dirty(leaf); 316 btrfs_release_path(path); 317 318 /* 319 * We align size to sectorsize for inline extents just for simplicity 320 * sake. 321 */ 322 ret = btrfs_inode_set_file_extent_range(inode, 0, 323 ALIGN(size, root->fs_info->sectorsize)); 324 if (ret) 325 goto fail; 326 327 /* 328 * We're an inline extent, so nobody can extend the file past i_size 329 * without locking a page we already have locked. 330 * 331 * We must do any i_size and inode updates before we unlock the pages. 332 * Otherwise we could end up racing with unlink. 333 */ 334 i_size = i_size_read(&inode->vfs_inode); 335 if (update_i_size && size > i_size) { 336 i_size_write(&inode->vfs_inode, size); 337 i_size = size; 338 } 339 inode->disk_i_size = i_size; 340 341 fail: 342 return ret; 343 } 344 345 346 /* 347 * conditionally insert an inline extent into the file. This 348 * does the checks required to make sure the data is small enough 349 * to fit as an inline extent. 350 */ 351 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 352 size_t compressed_size, 353 int compress_type, 354 struct page **compressed_pages, 355 bool update_i_size) 356 { 357 struct btrfs_drop_extents_args drop_args = { 0 }; 358 struct btrfs_root *root = inode->root; 359 struct btrfs_fs_info *fs_info = root->fs_info; 360 struct btrfs_trans_handle *trans; 361 u64 data_len = (compressed_size ?: size); 362 int ret; 363 struct btrfs_path *path; 364 365 /* 366 * We can create an inline extent if it ends at or beyond the current 367 * i_size, is no larger than a sector (decompressed), and the (possibly 368 * compressed) data fits in a leaf and the configured maximum inline 369 * size. 370 */ 371 if (size < i_size_read(&inode->vfs_inode) || 372 size > fs_info->sectorsize || 373 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 374 data_len > fs_info->max_inline) 375 return 1; 376 377 path = btrfs_alloc_path(); 378 if (!path) 379 return -ENOMEM; 380 381 trans = btrfs_join_transaction(root); 382 if (IS_ERR(trans)) { 383 btrfs_free_path(path); 384 return PTR_ERR(trans); 385 } 386 trans->block_rsv = &inode->block_rsv; 387 388 drop_args.path = path; 389 drop_args.start = 0; 390 drop_args.end = fs_info->sectorsize; 391 drop_args.drop_cache = true; 392 drop_args.replace_extent = true; 393 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 394 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 395 if (ret) { 396 btrfs_abort_transaction(trans, ret); 397 goto out; 398 } 399 400 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 401 size, compressed_size, compress_type, 402 compressed_pages, update_i_size); 403 if (ret && ret != -ENOSPC) { 404 btrfs_abort_transaction(trans, ret); 405 goto out; 406 } else if (ret == -ENOSPC) { 407 ret = 1; 408 goto out; 409 } 410 411 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 412 ret = btrfs_update_inode(trans, root, inode); 413 if (ret && ret != -ENOSPC) { 414 btrfs_abort_transaction(trans, ret); 415 goto out; 416 } else if (ret == -ENOSPC) { 417 ret = 1; 418 goto out; 419 } 420 421 btrfs_set_inode_full_sync(inode); 422 out: 423 /* 424 * Don't forget to free the reserved space, as for inlined extent 425 * it won't count as data extent, free them directly here. 426 * And at reserve time, it's always aligned to page size, so 427 * just free one page here. 428 */ 429 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 430 btrfs_free_path(path); 431 btrfs_end_transaction(trans); 432 return ret; 433 } 434 435 struct async_extent { 436 u64 start; 437 u64 ram_size; 438 u64 compressed_size; 439 struct page **pages; 440 unsigned long nr_pages; 441 int compress_type; 442 struct list_head list; 443 }; 444 445 struct async_chunk { 446 struct inode *inode; 447 struct page *locked_page; 448 u64 start; 449 u64 end; 450 unsigned int write_flags; 451 struct list_head extents; 452 struct cgroup_subsys_state *blkcg_css; 453 struct btrfs_work work; 454 struct async_cow *async_cow; 455 }; 456 457 struct async_cow { 458 atomic_t num_chunks; 459 struct async_chunk chunks[]; 460 }; 461 462 static noinline int add_async_extent(struct async_chunk *cow, 463 u64 start, u64 ram_size, 464 u64 compressed_size, 465 struct page **pages, 466 unsigned long nr_pages, 467 int compress_type) 468 { 469 struct async_extent *async_extent; 470 471 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 472 BUG_ON(!async_extent); /* -ENOMEM */ 473 async_extent->start = start; 474 async_extent->ram_size = ram_size; 475 async_extent->compressed_size = compressed_size; 476 async_extent->pages = pages; 477 async_extent->nr_pages = nr_pages; 478 async_extent->compress_type = compress_type; 479 list_add_tail(&async_extent->list, &cow->extents); 480 return 0; 481 } 482 483 /* 484 * Check if the inode has flags compatible with compression 485 */ 486 static inline bool inode_can_compress(struct btrfs_inode *inode) 487 { 488 if (inode->flags & BTRFS_INODE_NODATACOW || 489 inode->flags & BTRFS_INODE_NODATASUM) 490 return false; 491 return true; 492 } 493 494 /* 495 * Check if the inode needs to be submitted to compression, based on mount 496 * options, defragmentation, properties or heuristics. 497 */ 498 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 499 u64 end) 500 { 501 struct btrfs_fs_info *fs_info = inode->root->fs_info; 502 503 if (!inode_can_compress(inode)) { 504 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 505 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 506 btrfs_ino(inode)); 507 return 0; 508 } 509 /* 510 * Special check for subpage. 511 * 512 * We lock the full page then run each delalloc range in the page, thus 513 * for the following case, we will hit some subpage specific corner case: 514 * 515 * 0 32K 64K 516 * | |///////| |///////| 517 * \- A \- B 518 * 519 * In above case, both range A and range B will try to unlock the full 520 * page [0, 64K), causing the one finished later will have page 521 * unlocked already, triggering various page lock requirement BUG_ON()s. 522 * 523 * So here we add an artificial limit that subpage compression can only 524 * if the range is fully page aligned. 525 * 526 * In theory we only need to ensure the first page is fully covered, but 527 * the tailing partial page will be locked until the full compression 528 * finishes, delaying the write of other range. 529 * 530 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 531 * first to prevent any submitted async extent to unlock the full page. 532 * By this, we can ensure for subpage case that only the last async_cow 533 * will unlock the full page. 534 */ 535 if (fs_info->sectorsize < PAGE_SIZE) { 536 if (!IS_ALIGNED(start, PAGE_SIZE) || 537 !IS_ALIGNED(end + 1, PAGE_SIZE)) 538 return 0; 539 } 540 541 /* force compress */ 542 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 543 return 1; 544 /* defrag ioctl */ 545 if (inode->defrag_compress) 546 return 1; 547 /* bad compression ratios */ 548 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 549 return 0; 550 if (btrfs_test_opt(fs_info, COMPRESS) || 551 inode->flags & BTRFS_INODE_COMPRESS || 552 inode->prop_compress) 553 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 554 return 0; 555 } 556 557 static inline void inode_should_defrag(struct btrfs_inode *inode, 558 u64 start, u64 end, u64 num_bytes, u32 small_write) 559 { 560 /* If this is a small write inside eof, kick off a defrag */ 561 if (num_bytes < small_write && 562 (start > 0 || end + 1 < inode->disk_i_size)) 563 btrfs_add_inode_defrag(NULL, inode, small_write); 564 } 565 566 /* 567 * we create compressed extents in two phases. The first 568 * phase compresses a range of pages that have already been 569 * locked (both pages and state bits are locked). 570 * 571 * This is done inside an ordered work queue, and the compression 572 * is spread across many cpus. The actual IO submission is step 573 * two, and the ordered work queue takes care of making sure that 574 * happens in the same order things were put onto the queue by 575 * writepages and friends. 576 * 577 * If this code finds it can't get good compression, it puts an 578 * entry onto the work queue to write the uncompressed bytes. This 579 * makes sure that both compressed inodes and uncompressed inodes 580 * are written in the same order that the flusher thread sent them 581 * down. 582 */ 583 static noinline int compress_file_range(struct async_chunk *async_chunk) 584 { 585 struct inode *inode = async_chunk->inode; 586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 587 u64 blocksize = fs_info->sectorsize; 588 u64 start = async_chunk->start; 589 u64 end = async_chunk->end; 590 u64 actual_end; 591 u64 i_size; 592 int ret = 0; 593 struct page **pages = NULL; 594 unsigned long nr_pages; 595 unsigned long total_compressed = 0; 596 unsigned long total_in = 0; 597 int i; 598 int will_compress; 599 int compress_type = fs_info->compress_type; 600 int compressed_extents = 0; 601 int redirty = 0; 602 603 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 604 SZ_16K); 605 606 /* 607 * We need to save i_size before now because it could change in between 608 * us evaluating the size and assigning it. This is because we lock and 609 * unlock the page in truncate and fallocate, and then modify the i_size 610 * later on. 611 * 612 * The barriers are to emulate READ_ONCE, remove that once i_size_read 613 * does that for us. 614 */ 615 barrier(); 616 i_size = i_size_read(inode); 617 barrier(); 618 actual_end = min_t(u64, i_size, end + 1); 619 again: 620 will_compress = 0; 621 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 622 nr_pages = min_t(unsigned long, nr_pages, 623 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 624 625 /* 626 * we don't want to send crud past the end of i_size through 627 * compression, that's just a waste of CPU time. So, if the 628 * end of the file is before the start of our current 629 * requested range of bytes, we bail out to the uncompressed 630 * cleanup code that can deal with all of this. 631 * 632 * It isn't really the fastest way to fix things, but this is a 633 * very uncommon corner. 634 */ 635 if (actual_end <= start) 636 goto cleanup_and_bail_uncompressed; 637 638 total_compressed = actual_end - start; 639 640 /* 641 * Skip compression for a small file range(<=blocksize) that 642 * isn't an inline extent, since it doesn't save disk space at all. 643 */ 644 if (total_compressed <= blocksize && 645 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 646 goto cleanup_and_bail_uncompressed; 647 648 /* 649 * For subpage case, we require full page alignment for the sector 650 * aligned range. 651 * Thus we must also check against @actual_end, not just @end. 652 */ 653 if (blocksize < PAGE_SIZE) { 654 if (!IS_ALIGNED(start, PAGE_SIZE) || 655 !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE)) 656 goto cleanup_and_bail_uncompressed; 657 } 658 659 total_compressed = min_t(unsigned long, total_compressed, 660 BTRFS_MAX_UNCOMPRESSED); 661 total_in = 0; 662 ret = 0; 663 664 /* 665 * we do compression for mount -o compress and when the 666 * inode has not been flagged as nocompress. This flag can 667 * change at any time if we discover bad compression ratios. 668 */ 669 if (inode_need_compress(BTRFS_I(inode), start, end)) { 670 WARN_ON(pages); 671 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 672 if (!pages) { 673 /* just bail out to the uncompressed code */ 674 nr_pages = 0; 675 goto cont; 676 } 677 678 if (BTRFS_I(inode)->defrag_compress) 679 compress_type = BTRFS_I(inode)->defrag_compress; 680 else if (BTRFS_I(inode)->prop_compress) 681 compress_type = BTRFS_I(inode)->prop_compress; 682 683 /* 684 * we need to call clear_page_dirty_for_io on each 685 * page in the range. Otherwise applications with the file 686 * mmap'd can wander in and change the page contents while 687 * we are compressing them. 688 * 689 * If the compression fails for any reason, we set the pages 690 * dirty again later on. 691 * 692 * Note that the remaining part is redirtied, the start pointer 693 * has moved, the end is the original one. 694 */ 695 if (!redirty) { 696 extent_range_clear_dirty_for_io(inode, start, end); 697 redirty = 1; 698 } 699 700 /* Compression level is applied here and only here */ 701 ret = btrfs_compress_pages( 702 compress_type | (fs_info->compress_level << 4), 703 inode->i_mapping, start, 704 pages, 705 &nr_pages, 706 &total_in, 707 &total_compressed); 708 709 if (!ret) { 710 unsigned long offset = offset_in_page(total_compressed); 711 struct page *page = pages[nr_pages - 1]; 712 713 /* zero the tail end of the last page, we might be 714 * sending it down to disk 715 */ 716 if (offset) 717 memzero_page(page, offset, PAGE_SIZE - offset); 718 will_compress = 1; 719 } 720 } 721 cont: 722 /* 723 * Check cow_file_range() for why we don't even try to create inline 724 * extent for subpage case. 725 */ 726 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 727 /* lets try to make an inline extent */ 728 if (ret || total_in < actual_end) { 729 /* we didn't compress the entire range, try 730 * to make an uncompressed inline extent. 731 */ 732 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 733 0, BTRFS_COMPRESS_NONE, 734 NULL, false); 735 } else { 736 /* try making a compressed inline extent */ 737 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 738 total_compressed, 739 compress_type, pages, 740 false); 741 } 742 if (ret <= 0) { 743 unsigned long clear_flags = EXTENT_DELALLOC | 744 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 745 EXTENT_DO_ACCOUNTING; 746 unsigned long page_error_op; 747 748 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 749 750 /* 751 * inline extent creation worked or returned error, 752 * we don't need to create any more async work items. 753 * Unlock and free up our temp pages. 754 * 755 * We use DO_ACCOUNTING here because we need the 756 * delalloc_release_metadata to be done _after_ we drop 757 * our outstanding extent for clearing delalloc for this 758 * range. 759 */ 760 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 761 NULL, 762 clear_flags, 763 PAGE_UNLOCK | 764 PAGE_START_WRITEBACK | 765 page_error_op | 766 PAGE_END_WRITEBACK); 767 768 /* 769 * Ensure we only free the compressed pages if we have 770 * them allocated, as we can still reach here with 771 * inode_need_compress() == false. 772 */ 773 if (pages) { 774 for (i = 0; i < nr_pages; i++) { 775 WARN_ON(pages[i]->mapping); 776 put_page(pages[i]); 777 } 778 kfree(pages); 779 } 780 return 0; 781 } 782 } 783 784 if (will_compress) { 785 /* 786 * we aren't doing an inline extent round the compressed size 787 * up to a block size boundary so the allocator does sane 788 * things 789 */ 790 total_compressed = ALIGN(total_compressed, blocksize); 791 792 /* 793 * one last check to make sure the compression is really a 794 * win, compare the page count read with the blocks on disk, 795 * compression must free at least one sector size 796 */ 797 total_in = round_up(total_in, fs_info->sectorsize); 798 if (total_compressed + blocksize <= total_in) { 799 compressed_extents++; 800 801 /* 802 * The async work queues will take care of doing actual 803 * allocation on disk for these compressed pages, and 804 * will submit them to the elevator. 805 */ 806 add_async_extent(async_chunk, start, total_in, 807 total_compressed, pages, nr_pages, 808 compress_type); 809 810 if (start + total_in < end) { 811 start += total_in; 812 pages = NULL; 813 cond_resched(); 814 goto again; 815 } 816 return compressed_extents; 817 } 818 } 819 if (pages) { 820 /* 821 * the compression code ran but failed to make things smaller, 822 * free any pages it allocated and our page pointer array 823 */ 824 for (i = 0; i < nr_pages; i++) { 825 WARN_ON(pages[i]->mapping); 826 put_page(pages[i]); 827 } 828 kfree(pages); 829 pages = NULL; 830 total_compressed = 0; 831 nr_pages = 0; 832 833 /* flag the file so we don't compress in the future */ 834 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 835 !(BTRFS_I(inode)->prop_compress)) { 836 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 837 } 838 } 839 cleanup_and_bail_uncompressed: 840 /* 841 * No compression, but we still need to write the pages in the file 842 * we've been given so far. redirty the locked page if it corresponds 843 * to our extent and set things up for the async work queue to run 844 * cow_file_range to do the normal delalloc dance. 845 */ 846 if (async_chunk->locked_page && 847 (page_offset(async_chunk->locked_page) >= start && 848 page_offset(async_chunk->locked_page)) <= end) { 849 __set_page_dirty_nobuffers(async_chunk->locked_page); 850 /* unlocked later on in the async handlers */ 851 } 852 853 if (redirty) 854 extent_range_redirty_for_io(inode, start, end); 855 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 856 BTRFS_COMPRESS_NONE); 857 compressed_extents++; 858 859 return compressed_extents; 860 } 861 862 static void free_async_extent_pages(struct async_extent *async_extent) 863 { 864 int i; 865 866 if (!async_extent->pages) 867 return; 868 869 for (i = 0; i < async_extent->nr_pages; i++) { 870 WARN_ON(async_extent->pages[i]->mapping); 871 put_page(async_extent->pages[i]); 872 } 873 kfree(async_extent->pages); 874 async_extent->nr_pages = 0; 875 async_extent->pages = NULL; 876 } 877 878 static int submit_uncompressed_range(struct btrfs_inode *inode, 879 struct async_extent *async_extent, 880 struct page *locked_page) 881 { 882 u64 start = async_extent->start; 883 u64 end = async_extent->start + async_extent->ram_size - 1; 884 unsigned long nr_written = 0; 885 int page_started = 0; 886 int ret; 887 888 /* 889 * Call cow_file_range() to run the delalloc range directly, since we 890 * won't go to NOCOW or async path again. 891 * 892 * Also we call cow_file_range() with @unlock_page == 0, so that we 893 * can directly submit them without interruption. 894 */ 895 ret = cow_file_range(inode, locked_page, start, end, &page_started, 896 &nr_written, 0); 897 /* Inline extent inserted, page gets unlocked and everything is done */ 898 if (page_started) { 899 ret = 0; 900 goto out; 901 } 902 if (ret < 0) { 903 if (locked_page) 904 unlock_page(locked_page); 905 goto out; 906 } 907 908 ret = extent_write_locked_range(&inode->vfs_inode, start, end); 909 /* All pages will be unlocked, including @locked_page */ 910 out: 911 kfree(async_extent); 912 return ret; 913 } 914 915 static int submit_one_async_extent(struct btrfs_inode *inode, 916 struct async_chunk *async_chunk, 917 struct async_extent *async_extent, 918 u64 *alloc_hint) 919 { 920 struct extent_io_tree *io_tree = &inode->io_tree; 921 struct btrfs_root *root = inode->root; 922 struct btrfs_fs_info *fs_info = root->fs_info; 923 struct btrfs_key ins; 924 struct page *locked_page = NULL; 925 struct extent_map *em; 926 int ret = 0; 927 u64 start = async_extent->start; 928 u64 end = async_extent->start + async_extent->ram_size - 1; 929 930 /* 931 * If async_chunk->locked_page is in the async_extent range, we need to 932 * handle it. 933 */ 934 if (async_chunk->locked_page) { 935 u64 locked_page_start = page_offset(async_chunk->locked_page); 936 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 937 938 if (!(start >= locked_page_end || end <= locked_page_start)) 939 locked_page = async_chunk->locked_page; 940 } 941 lock_extent(io_tree, start, end); 942 943 /* We have fall back to uncompressed write */ 944 if (!async_extent->pages) 945 return submit_uncompressed_range(inode, async_extent, locked_page); 946 947 ret = btrfs_reserve_extent(root, async_extent->ram_size, 948 async_extent->compressed_size, 949 async_extent->compressed_size, 950 0, *alloc_hint, &ins, 1, 1); 951 if (ret) { 952 free_async_extent_pages(async_extent); 953 /* 954 * Here we used to try again by going back to non-compressed 955 * path for ENOSPC. But we can't reserve space even for 956 * compressed size, how could it work for uncompressed size 957 * which requires larger size? So here we directly go error 958 * path. 959 */ 960 goto out_free; 961 } 962 963 /* Here we're doing allocation and writeback of the compressed pages */ 964 em = create_io_em(inode, start, 965 async_extent->ram_size, /* len */ 966 start, /* orig_start */ 967 ins.objectid, /* block_start */ 968 ins.offset, /* block_len */ 969 ins.offset, /* orig_block_len */ 970 async_extent->ram_size, /* ram_bytes */ 971 async_extent->compress_type, 972 BTRFS_ORDERED_COMPRESSED); 973 if (IS_ERR(em)) { 974 ret = PTR_ERR(em); 975 goto out_free_reserve; 976 } 977 free_extent_map(em); 978 979 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */ 980 async_extent->ram_size, /* num_bytes */ 981 async_extent->ram_size, /* ram_bytes */ 982 ins.objectid, /* disk_bytenr */ 983 ins.offset, /* disk_num_bytes */ 984 0, /* offset */ 985 1 << BTRFS_ORDERED_COMPRESSED, 986 async_extent->compress_type); 987 if (ret) { 988 btrfs_drop_extent_cache(inode, start, end, 0); 989 goto out_free_reserve; 990 } 991 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 992 993 /* Clear dirty, set writeback and unlock the pages. */ 994 extent_clear_unlock_delalloc(inode, start, end, 995 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 996 PAGE_UNLOCK | PAGE_START_WRITEBACK); 997 if (btrfs_submit_compressed_write(inode, start, /* file_offset */ 998 async_extent->ram_size, /* num_bytes */ 999 ins.objectid, /* disk_bytenr */ 1000 ins.offset, /* compressed_len */ 1001 async_extent->pages, /* compressed_pages */ 1002 async_extent->nr_pages, 1003 async_chunk->write_flags, 1004 async_chunk->blkcg_css, true)) { 1005 const u64 start = async_extent->start; 1006 const u64 end = start + async_extent->ram_size - 1; 1007 1008 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0); 1009 1010 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 1011 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1012 free_async_extent_pages(async_extent); 1013 } 1014 *alloc_hint = ins.objectid + ins.offset; 1015 kfree(async_extent); 1016 return ret; 1017 1018 out_free_reserve: 1019 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1020 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1021 out_free: 1022 extent_clear_unlock_delalloc(inode, start, end, 1023 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1024 EXTENT_DELALLOC_NEW | 1025 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1026 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1027 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1028 free_async_extent_pages(async_extent); 1029 kfree(async_extent); 1030 return ret; 1031 } 1032 1033 /* 1034 * Phase two of compressed writeback. This is the ordered portion of the code, 1035 * which only gets called in the order the work was queued. We walk all the 1036 * async extents created by compress_file_range and send them down to the disk. 1037 */ 1038 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 1039 { 1040 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 1041 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1042 struct async_extent *async_extent; 1043 u64 alloc_hint = 0; 1044 int ret = 0; 1045 1046 while (!list_empty(&async_chunk->extents)) { 1047 u64 extent_start; 1048 u64 ram_size; 1049 1050 async_extent = list_entry(async_chunk->extents.next, 1051 struct async_extent, list); 1052 list_del(&async_extent->list); 1053 extent_start = async_extent->start; 1054 ram_size = async_extent->ram_size; 1055 1056 ret = submit_one_async_extent(inode, async_chunk, async_extent, 1057 &alloc_hint); 1058 btrfs_debug(fs_info, 1059 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1060 inode->root->root_key.objectid, 1061 btrfs_ino(inode), extent_start, ram_size, ret); 1062 } 1063 } 1064 1065 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1066 u64 num_bytes) 1067 { 1068 struct extent_map_tree *em_tree = &inode->extent_tree; 1069 struct extent_map *em; 1070 u64 alloc_hint = 0; 1071 1072 read_lock(&em_tree->lock); 1073 em = search_extent_mapping(em_tree, start, num_bytes); 1074 if (em) { 1075 /* 1076 * if block start isn't an actual block number then find the 1077 * first block in this inode and use that as a hint. If that 1078 * block is also bogus then just don't worry about it. 1079 */ 1080 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1081 free_extent_map(em); 1082 em = search_extent_mapping(em_tree, 0, 0); 1083 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1084 alloc_hint = em->block_start; 1085 if (em) 1086 free_extent_map(em); 1087 } else { 1088 alloc_hint = em->block_start; 1089 free_extent_map(em); 1090 } 1091 } 1092 read_unlock(&em_tree->lock); 1093 1094 return alloc_hint; 1095 } 1096 1097 /* 1098 * when extent_io.c finds a delayed allocation range in the file, 1099 * the call backs end up in this code. The basic idea is to 1100 * allocate extents on disk for the range, and create ordered data structs 1101 * in ram to track those extents. 1102 * 1103 * locked_page is the page that writepage had locked already. We use 1104 * it to make sure we don't do extra locks or unlocks. 1105 * 1106 * *page_started is set to one if we unlock locked_page and do everything 1107 * required to start IO on it. It may be clean and already done with 1108 * IO when we return. 1109 */ 1110 static noinline int cow_file_range(struct btrfs_inode *inode, 1111 struct page *locked_page, 1112 u64 start, u64 end, int *page_started, 1113 unsigned long *nr_written, int unlock) 1114 { 1115 struct btrfs_root *root = inode->root; 1116 struct btrfs_fs_info *fs_info = root->fs_info; 1117 u64 alloc_hint = 0; 1118 u64 num_bytes; 1119 unsigned long ram_size; 1120 u64 cur_alloc_size = 0; 1121 u64 min_alloc_size; 1122 u64 blocksize = fs_info->sectorsize; 1123 struct btrfs_key ins; 1124 struct extent_map *em; 1125 unsigned clear_bits; 1126 unsigned long page_ops; 1127 bool extent_reserved = false; 1128 int ret = 0; 1129 1130 if (btrfs_is_free_space_inode(inode)) { 1131 ret = -EINVAL; 1132 goto out_unlock; 1133 } 1134 1135 num_bytes = ALIGN(end - start + 1, blocksize); 1136 num_bytes = max(blocksize, num_bytes); 1137 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1138 1139 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1140 1141 /* 1142 * Due to the page size limit, for subpage we can only trigger the 1143 * writeback for the dirty sectors of page, that means data writeback 1144 * is doing more writeback than what we want. 1145 * 1146 * This is especially unexpected for some call sites like fallocate, 1147 * where we only increase i_size after everything is done. 1148 * This means we can trigger inline extent even if we didn't want to. 1149 * So here we skip inline extent creation completely. 1150 */ 1151 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 1152 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1153 end + 1); 1154 1155 /* lets try to make an inline extent */ 1156 ret = cow_file_range_inline(inode, actual_end, 0, 1157 BTRFS_COMPRESS_NONE, NULL, false); 1158 if (ret == 0) { 1159 /* 1160 * We use DO_ACCOUNTING here because we need the 1161 * delalloc_release_metadata to be run _after_ we drop 1162 * our outstanding extent for clearing delalloc for this 1163 * range. 1164 */ 1165 extent_clear_unlock_delalloc(inode, start, end, 1166 locked_page, 1167 EXTENT_LOCKED | EXTENT_DELALLOC | 1168 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1169 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1170 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1171 *nr_written = *nr_written + 1172 (end - start + PAGE_SIZE) / PAGE_SIZE; 1173 *page_started = 1; 1174 /* 1175 * locked_page is locked by the caller of 1176 * writepage_delalloc(), not locked by 1177 * __process_pages_contig(). 1178 * 1179 * We can't let __process_pages_contig() to unlock it, 1180 * as it doesn't have any subpage::writers recorded. 1181 * 1182 * Here we manually unlock the page, since the caller 1183 * can't use page_started to determine if it's an 1184 * inline extent or a compressed extent. 1185 */ 1186 unlock_page(locked_page); 1187 goto out; 1188 } else if (ret < 0) { 1189 goto out_unlock; 1190 } 1191 } 1192 1193 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1194 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1195 1196 /* 1197 * Relocation relies on the relocated extents to have exactly the same 1198 * size as the original extents. Normally writeback for relocation data 1199 * extents follows a NOCOW path because relocation preallocates the 1200 * extents. However, due to an operation such as scrub turning a block 1201 * group to RO mode, it may fallback to COW mode, so we must make sure 1202 * an extent allocated during COW has exactly the requested size and can 1203 * not be split into smaller extents, otherwise relocation breaks and 1204 * fails during the stage where it updates the bytenr of file extent 1205 * items. 1206 */ 1207 if (btrfs_is_data_reloc_root(root)) 1208 min_alloc_size = num_bytes; 1209 else 1210 min_alloc_size = fs_info->sectorsize; 1211 1212 while (num_bytes > 0) { 1213 cur_alloc_size = num_bytes; 1214 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1215 min_alloc_size, 0, alloc_hint, 1216 &ins, 1, 1); 1217 if (ret < 0) 1218 goto out_unlock; 1219 cur_alloc_size = ins.offset; 1220 extent_reserved = true; 1221 1222 ram_size = ins.offset; 1223 em = create_io_em(inode, start, ins.offset, /* len */ 1224 start, /* orig_start */ 1225 ins.objectid, /* block_start */ 1226 ins.offset, /* block_len */ 1227 ins.offset, /* orig_block_len */ 1228 ram_size, /* ram_bytes */ 1229 BTRFS_COMPRESS_NONE, /* compress_type */ 1230 BTRFS_ORDERED_REGULAR /* type */); 1231 if (IS_ERR(em)) { 1232 ret = PTR_ERR(em); 1233 goto out_reserve; 1234 } 1235 free_extent_map(em); 1236 1237 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size, 1238 ins.objectid, cur_alloc_size, 0, 1239 1 << BTRFS_ORDERED_REGULAR, 1240 BTRFS_COMPRESS_NONE); 1241 if (ret) 1242 goto out_drop_extent_cache; 1243 1244 if (btrfs_is_data_reloc_root(root)) { 1245 ret = btrfs_reloc_clone_csums(inode, start, 1246 cur_alloc_size); 1247 /* 1248 * Only drop cache here, and process as normal. 1249 * 1250 * We must not allow extent_clear_unlock_delalloc() 1251 * at out_unlock label to free meta of this ordered 1252 * extent, as its meta should be freed by 1253 * btrfs_finish_ordered_io(). 1254 * 1255 * So we must continue until @start is increased to 1256 * skip current ordered extent. 1257 */ 1258 if (ret) 1259 btrfs_drop_extent_cache(inode, start, 1260 start + ram_size - 1, 0); 1261 } 1262 1263 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1264 1265 /* 1266 * We're not doing compressed IO, don't unlock the first page 1267 * (which the caller expects to stay locked), don't clear any 1268 * dirty bits and don't set any writeback bits 1269 * 1270 * Do set the Ordered (Private2) bit so we know this page was 1271 * properly setup for writepage. 1272 */ 1273 page_ops = unlock ? PAGE_UNLOCK : 0; 1274 page_ops |= PAGE_SET_ORDERED; 1275 1276 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1277 locked_page, 1278 EXTENT_LOCKED | EXTENT_DELALLOC, 1279 page_ops); 1280 if (num_bytes < cur_alloc_size) 1281 num_bytes = 0; 1282 else 1283 num_bytes -= cur_alloc_size; 1284 alloc_hint = ins.objectid + ins.offset; 1285 start += cur_alloc_size; 1286 extent_reserved = false; 1287 1288 /* 1289 * btrfs_reloc_clone_csums() error, since start is increased 1290 * extent_clear_unlock_delalloc() at out_unlock label won't 1291 * free metadata of current ordered extent, we're OK to exit. 1292 */ 1293 if (ret) 1294 goto out_unlock; 1295 } 1296 out: 1297 return ret; 1298 1299 out_drop_extent_cache: 1300 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1301 out_reserve: 1302 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1303 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1304 out_unlock: 1305 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1306 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1307 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1308 /* 1309 * If we reserved an extent for our delalloc range (or a subrange) and 1310 * failed to create the respective ordered extent, then it means that 1311 * when we reserved the extent we decremented the extent's size from 1312 * the data space_info's bytes_may_use counter and incremented the 1313 * space_info's bytes_reserved counter by the same amount. We must make 1314 * sure extent_clear_unlock_delalloc() does not try to decrement again 1315 * the data space_info's bytes_may_use counter, therefore we do not pass 1316 * it the flag EXTENT_CLEAR_DATA_RESV. 1317 */ 1318 if (extent_reserved) { 1319 extent_clear_unlock_delalloc(inode, start, 1320 start + cur_alloc_size - 1, 1321 locked_page, 1322 clear_bits, 1323 page_ops); 1324 start += cur_alloc_size; 1325 if (start >= end) 1326 goto out; 1327 } 1328 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1329 clear_bits | EXTENT_CLEAR_DATA_RESV, 1330 page_ops); 1331 goto out; 1332 } 1333 1334 /* 1335 * work queue call back to started compression on a file and pages 1336 */ 1337 static noinline void async_cow_start(struct btrfs_work *work) 1338 { 1339 struct async_chunk *async_chunk; 1340 int compressed_extents; 1341 1342 async_chunk = container_of(work, struct async_chunk, work); 1343 1344 compressed_extents = compress_file_range(async_chunk); 1345 if (compressed_extents == 0) { 1346 btrfs_add_delayed_iput(async_chunk->inode); 1347 async_chunk->inode = NULL; 1348 } 1349 } 1350 1351 /* 1352 * work queue call back to submit previously compressed pages 1353 */ 1354 static noinline void async_cow_submit(struct btrfs_work *work) 1355 { 1356 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1357 work); 1358 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1359 unsigned long nr_pages; 1360 1361 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1362 PAGE_SHIFT; 1363 1364 /* 1365 * ->inode could be NULL if async_chunk_start has failed to compress, 1366 * in which case we don't have anything to submit, yet we need to 1367 * always adjust ->async_delalloc_pages as its paired with the init 1368 * happening in cow_file_range_async 1369 */ 1370 if (async_chunk->inode) 1371 submit_compressed_extents(async_chunk); 1372 1373 /* atomic_sub_return implies a barrier */ 1374 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1375 5 * SZ_1M) 1376 cond_wake_up_nomb(&fs_info->async_submit_wait); 1377 } 1378 1379 static noinline void async_cow_free(struct btrfs_work *work) 1380 { 1381 struct async_chunk *async_chunk; 1382 struct async_cow *async_cow; 1383 1384 async_chunk = container_of(work, struct async_chunk, work); 1385 if (async_chunk->inode) 1386 btrfs_add_delayed_iput(async_chunk->inode); 1387 if (async_chunk->blkcg_css) 1388 css_put(async_chunk->blkcg_css); 1389 1390 async_cow = async_chunk->async_cow; 1391 if (atomic_dec_and_test(&async_cow->num_chunks)) 1392 kvfree(async_cow); 1393 } 1394 1395 static int cow_file_range_async(struct btrfs_inode *inode, 1396 struct writeback_control *wbc, 1397 struct page *locked_page, 1398 u64 start, u64 end, int *page_started, 1399 unsigned long *nr_written) 1400 { 1401 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1402 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1403 struct async_cow *ctx; 1404 struct async_chunk *async_chunk; 1405 unsigned long nr_pages; 1406 u64 cur_end; 1407 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1408 int i; 1409 bool should_compress; 1410 unsigned nofs_flag; 1411 const unsigned int write_flags = wbc_to_write_flags(wbc); 1412 1413 unlock_extent(&inode->io_tree, start, end); 1414 1415 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1416 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1417 num_chunks = 1; 1418 should_compress = false; 1419 } else { 1420 should_compress = true; 1421 } 1422 1423 nofs_flag = memalloc_nofs_save(); 1424 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1425 memalloc_nofs_restore(nofs_flag); 1426 1427 if (!ctx) { 1428 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1429 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1430 EXTENT_DO_ACCOUNTING; 1431 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1432 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1433 1434 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1435 clear_bits, page_ops); 1436 return -ENOMEM; 1437 } 1438 1439 async_chunk = ctx->chunks; 1440 atomic_set(&ctx->num_chunks, num_chunks); 1441 1442 for (i = 0; i < num_chunks; i++) { 1443 if (should_compress) 1444 cur_end = min(end, start + SZ_512K - 1); 1445 else 1446 cur_end = end; 1447 1448 /* 1449 * igrab is called higher up in the call chain, take only the 1450 * lightweight reference for the callback lifetime 1451 */ 1452 ihold(&inode->vfs_inode); 1453 async_chunk[i].async_cow = ctx; 1454 async_chunk[i].inode = &inode->vfs_inode; 1455 async_chunk[i].start = start; 1456 async_chunk[i].end = cur_end; 1457 async_chunk[i].write_flags = write_flags; 1458 INIT_LIST_HEAD(&async_chunk[i].extents); 1459 1460 /* 1461 * The locked_page comes all the way from writepage and its 1462 * the original page we were actually given. As we spread 1463 * this large delalloc region across multiple async_chunk 1464 * structs, only the first struct needs a pointer to locked_page 1465 * 1466 * This way we don't need racey decisions about who is supposed 1467 * to unlock it. 1468 */ 1469 if (locked_page) { 1470 /* 1471 * Depending on the compressibility, the pages might or 1472 * might not go through async. We want all of them to 1473 * be accounted against wbc once. Let's do it here 1474 * before the paths diverge. wbc accounting is used 1475 * only for foreign writeback detection and doesn't 1476 * need full accuracy. Just account the whole thing 1477 * against the first page. 1478 */ 1479 wbc_account_cgroup_owner(wbc, locked_page, 1480 cur_end - start); 1481 async_chunk[i].locked_page = locked_page; 1482 locked_page = NULL; 1483 } else { 1484 async_chunk[i].locked_page = NULL; 1485 } 1486 1487 if (blkcg_css != blkcg_root_css) { 1488 css_get(blkcg_css); 1489 async_chunk[i].blkcg_css = blkcg_css; 1490 } else { 1491 async_chunk[i].blkcg_css = NULL; 1492 } 1493 1494 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1495 async_cow_submit, async_cow_free); 1496 1497 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1498 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1499 1500 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1501 1502 *nr_written += nr_pages; 1503 start = cur_end + 1; 1504 } 1505 *page_started = 1; 1506 return 0; 1507 } 1508 1509 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1510 struct page *locked_page, u64 start, 1511 u64 end, int *page_started, 1512 unsigned long *nr_written) 1513 { 1514 int ret; 1515 1516 ret = cow_file_range(inode, locked_page, start, end, page_started, 1517 nr_written, 0); 1518 if (ret) 1519 return ret; 1520 1521 if (*page_started) 1522 return 0; 1523 1524 __set_page_dirty_nobuffers(locked_page); 1525 account_page_redirty(locked_page); 1526 extent_write_locked_range(&inode->vfs_inode, start, end); 1527 *page_started = 1; 1528 1529 return 0; 1530 } 1531 1532 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1533 u64 bytenr, u64 num_bytes) 1534 { 1535 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1536 struct btrfs_ordered_sum *sums; 1537 int ret; 1538 LIST_HEAD(list); 1539 1540 ret = btrfs_lookup_csums_range(csum_root, bytenr, 1541 bytenr + num_bytes - 1, &list, 0); 1542 if (ret == 0 && list_empty(&list)) 1543 return 0; 1544 1545 while (!list_empty(&list)) { 1546 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1547 list_del(&sums->list); 1548 kfree(sums); 1549 } 1550 if (ret < 0) 1551 return ret; 1552 return 1; 1553 } 1554 1555 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1556 const u64 start, const u64 end, 1557 int *page_started, unsigned long *nr_written) 1558 { 1559 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1560 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1561 const u64 range_bytes = end + 1 - start; 1562 struct extent_io_tree *io_tree = &inode->io_tree; 1563 u64 range_start = start; 1564 u64 count; 1565 1566 /* 1567 * If EXTENT_NORESERVE is set it means that when the buffered write was 1568 * made we had not enough available data space and therefore we did not 1569 * reserve data space for it, since we though we could do NOCOW for the 1570 * respective file range (either there is prealloc extent or the inode 1571 * has the NOCOW bit set). 1572 * 1573 * However when we need to fallback to COW mode (because for example the 1574 * block group for the corresponding extent was turned to RO mode by a 1575 * scrub or relocation) we need to do the following: 1576 * 1577 * 1) We increment the bytes_may_use counter of the data space info. 1578 * If COW succeeds, it allocates a new data extent and after doing 1579 * that it decrements the space info's bytes_may_use counter and 1580 * increments its bytes_reserved counter by the same amount (we do 1581 * this at btrfs_add_reserved_bytes()). So we need to increment the 1582 * bytes_may_use counter to compensate (when space is reserved at 1583 * buffered write time, the bytes_may_use counter is incremented); 1584 * 1585 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1586 * that if the COW path fails for any reason, it decrements (through 1587 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1588 * data space info, which we incremented in the step above. 1589 * 1590 * If we need to fallback to cow and the inode corresponds to a free 1591 * space cache inode or an inode of the data relocation tree, we must 1592 * also increment bytes_may_use of the data space_info for the same 1593 * reason. Space caches and relocated data extents always get a prealloc 1594 * extent for them, however scrub or balance may have set the block 1595 * group that contains that extent to RO mode and therefore force COW 1596 * when starting writeback. 1597 */ 1598 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1599 EXTENT_NORESERVE, 0); 1600 if (count > 0 || is_space_ino || is_reloc_ino) { 1601 u64 bytes = count; 1602 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1603 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1604 1605 if (is_space_ino || is_reloc_ino) 1606 bytes = range_bytes; 1607 1608 spin_lock(&sinfo->lock); 1609 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1610 spin_unlock(&sinfo->lock); 1611 1612 if (count > 0) 1613 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1614 0, 0, NULL); 1615 } 1616 1617 return cow_file_range(inode, locked_page, start, end, page_started, 1618 nr_written, 1); 1619 } 1620 1621 /* 1622 * when nowcow writeback call back. This checks for snapshots or COW copies 1623 * of the extents that exist in the file, and COWs the file as required. 1624 * 1625 * If no cow copies or snapshots exist, we write directly to the existing 1626 * blocks on disk 1627 */ 1628 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1629 struct page *locked_page, 1630 const u64 start, const u64 end, 1631 int *page_started, 1632 unsigned long *nr_written) 1633 { 1634 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1635 struct btrfs_root *root = inode->root; 1636 struct btrfs_path *path; 1637 u64 cow_start = (u64)-1; 1638 u64 cur_offset = start; 1639 int ret; 1640 bool check_prev = true; 1641 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1642 u64 ino = btrfs_ino(inode); 1643 bool nocow = false; 1644 u64 disk_bytenr = 0; 1645 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1646 1647 path = btrfs_alloc_path(); 1648 if (!path) { 1649 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1650 EXTENT_LOCKED | EXTENT_DELALLOC | 1651 EXTENT_DO_ACCOUNTING | 1652 EXTENT_DEFRAG, PAGE_UNLOCK | 1653 PAGE_START_WRITEBACK | 1654 PAGE_END_WRITEBACK); 1655 return -ENOMEM; 1656 } 1657 1658 while (1) { 1659 struct btrfs_key found_key; 1660 struct btrfs_file_extent_item *fi; 1661 struct extent_buffer *leaf; 1662 u64 extent_end; 1663 u64 extent_offset; 1664 u64 num_bytes = 0; 1665 u64 disk_num_bytes; 1666 u64 ram_bytes; 1667 int extent_type; 1668 1669 nocow = false; 1670 1671 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1672 cur_offset, 0); 1673 if (ret < 0) 1674 goto error; 1675 1676 /* 1677 * If there is no extent for our range when doing the initial 1678 * search, then go back to the previous slot as it will be the 1679 * one containing the search offset 1680 */ 1681 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1682 leaf = path->nodes[0]; 1683 btrfs_item_key_to_cpu(leaf, &found_key, 1684 path->slots[0] - 1); 1685 if (found_key.objectid == ino && 1686 found_key.type == BTRFS_EXTENT_DATA_KEY) 1687 path->slots[0]--; 1688 } 1689 check_prev = false; 1690 next_slot: 1691 /* Go to next leaf if we have exhausted the current one */ 1692 leaf = path->nodes[0]; 1693 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1694 ret = btrfs_next_leaf(root, path); 1695 if (ret < 0) { 1696 if (cow_start != (u64)-1) 1697 cur_offset = cow_start; 1698 goto error; 1699 } 1700 if (ret > 0) 1701 break; 1702 leaf = path->nodes[0]; 1703 } 1704 1705 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1706 1707 /* Didn't find anything for our INO */ 1708 if (found_key.objectid > ino) 1709 break; 1710 /* 1711 * Keep searching until we find an EXTENT_ITEM or there are no 1712 * more extents for this inode 1713 */ 1714 if (WARN_ON_ONCE(found_key.objectid < ino) || 1715 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1716 path->slots[0]++; 1717 goto next_slot; 1718 } 1719 1720 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1721 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1722 found_key.offset > end) 1723 break; 1724 1725 /* 1726 * If the found extent starts after requested offset, then 1727 * adjust extent_end to be right before this extent begins 1728 */ 1729 if (found_key.offset > cur_offset) { 1730 extent_end = found_key.offset; 1731 extent_type = 0; 1732 goto out_check; 1733 } 1734 1735 /* 1736 * Found extent which begins before our range and potentially 1737 * intersect it 1738 */ 1739 fi = btrfs_item_ptr(leaf, path->slots[0], 1740 struct btrfs_file_extent_item); 1741 extent_type = btrfs_file_extent_type(leaf, fi); 1742 1743 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1744 if (extent_type == BTRFS_FILE_EXTENT_REG || 1745 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1746 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1747 extent_offset = btrfs_file_extent_offset(leaf, fi); 1748 extent_end = found_key.offset + 1749 btrfs_file_extent_num_bytes(leaf, fi); 1750 disk_num_bytes = 1751 btrfs_file_extent_disk_num_bytes(leaf, fi); 1752 /* 1753 * If the extent we got ends before our current offset, 1754 * skip to the next extent. 1755 */ 1756 if (extent_end <= cur_offset) { 1757 path->slots[0]++; 1758 goto next_slot; 1759 } 1760 /* Skip holes */ 1761 if (disk_bytenr == 0) 1762 goto out_check; 1763 /* Skip compressed/encrypted/encoded extents */ 1764 if (btrfs_file_extent_compression(leaf, fi) || 1765 btrfs_file_extent_encryption(leaf, fi) || 1766 btrfs_file_extent_other_encoding(leaf, fi)) 1767 goto out_check; 1768 /* 1769 * If extent is created before the last volume's snapshot 1770 * this implies the extent is shared, hence we can't do 1771 * nocow. This is the same check as in 1772 * btrfs_cross_ref_exist but without calling 1773 * btrfs_search_slot. 1774 */ 1775 if (!freespace_inode && 1776 btrfs_file_extent_generation(leaf, fi) <= 1777 btrfs_root_last_snapshot(&root->root_item)) 1778 goto out_check; 1779 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1780 goto out_check; 1781 1782 /* 1783 * The following checks can be expensive, as they need to 1784 * take other locks and do btree or rbtree searches, so 1785 * release the path to avoid blocking other tasks for too 1786 * long. 1787 */ 1788 btrfs_release_path(path); 1789 1790 ret = btrfs_cross_ref_exist(root, ino, 1791 found_key.offset - 1792 extent_offset, disk_bytenr, false); 1793 if (ret) { 1794 /* 1795 * ret could be -EIO if the above fails to read 1796 * metadata. 1797 */ 1798 if (ret < 0) { 1799 if (cow_start != (u64)-1) 1800 cur_offset = cow_start; 1801 goto error; 1802 } 1803 1804 WARN_ON_ONCE(freespace_inode); 1805 goto out_check; 1806 } 1807 disk_bytenr += extent_offset; 1808 disk_bytenr += cur_offset - found_key.offset; 1809 num_bytes = min(end + 1, extent_end) - cur_offset; 1810 /* 1811 * If there are pending snapshots for this root, we 1812 * fall into common COW way 1813 */ 1814 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1815 goto out_check; 1816 /* 1817 * force cow if csum exists in the range. 1818 * this ensure that csum for a given extent are 1819 * either valid or do not exist. 1820 */ 1821 ret = csum_exist_in_range(fs_info, disk_bytenr, 1822 num_bytes); 1823 if (ret) { 1824 /* 1825 * ret could be -EIO if the above fails to read 1826 * metadata. 1827 */ 1828 if (ret < 0) { 1829 if (cow_start != (u64)-1) 1830 cur_offset = cow_start; 1831 goto error; 1832 } 1833 WARN_ON_ONCE(freespace_inode); 1834 goto out_check; 1835 } 1836 /* If the extent's block group is RO, we must COW */ 1837 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1838 goto out_check; 1839 nocow = true; 1840 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1841 extent_end = found_key.offset + ram_bytes; 1842 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1843 /* Skip extents outside of our requested range */ 1844 if (extent_end <= start) { 1845 path->slots[0]++; 1846 goto next_slot; 1847 } 1848 } else { 1849 /* If this triggers then we have a memory corruption */ 1850 BUG(); 1851 } 1852 out_check: 1853 /* 1854 * If nocow is false then record the beginning of the range 1855 * that needs to be COWed 1856 */ 1857 if (!nocow) { 1858 if (cow_start == (u64)-1) 1859 cow_start = cur_offset; 1860 cur_offset = extent_end; 1861 if (cur_offset > end) 1862 break; 1863 if (!path->nodes[0]) 1864 continue; 1865 path->slots[0]++; 1866 goto next_slot; 1867 } 1868 1869 /* 1870 * COW range from cow_start to found_key.offset - 1. As the key 1871 * will contain the beginning of the first extent that can be 1872 * NOCOW, following one which needs to be COW'ed 1873 */ 1874 if (cow_start != (u64)-1) { 1875 ret = fallback_to_cow(inode, locked_page, 1876 cow_start, found_key.offset - 1, 1877 page_started, nr_written); 1878 if (ret) 1879 goto error; 1880 cow_start = (u64)-1; 1881 } 1882 1883 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1884 u64 orig_start = found_key.offset - extent_offset; 1885 struct extent_map *em; 1886 1887 em = create_io_em(inode, cur_offset, num_bytes, 1888 orig_start, 1889 disk_bytenr, /* block_start */ 1890 num_bytes, /* block_len */ 1891 disk_num_bytes, /* orig_block_len */ 1892 ram_bytes, BTRFS_COMPRESS_NONE, 1893 BTRFS_ORDERED_PREALLOC); 1894 if (IS_ERR(em)) { 1895 ret = PTR_ERR(em); 1896 goto error; 1897 } 1898 free_extent_map(em); 1899 ret = btrfs_add_ordered_extent(inode, 1900 cur_offset, num_bytes, num_bytes, 1901 disk_bytenr, num_bytes, 0, 1902 1 << BTRFS_ORDERED_PREALLOC, 1903 BTRFS_COMPRESS_NONE); 1904 if (ret) { 1905 btrfs_drop_extent_cache(inode, cur_offset, 1906 cur_offset + num_bytes - 1, 1907 0); 1908 goto error; 1909 } 1910 } else { 1911 ret = btrfs_add_ordered_extent(inode, cur_offset, 1912 num_bytes, num_bytes, 1913 disk_bytenr, num_bytes, 1914 0, 1915 1 << BTRFS_ORDERED_NOCOW, 1916 BTRFS_COMPRESS_NONE); 1917 if (ret) 1918 goto error; 1919 } 1920 1921 if (nocow) 1922 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1923 nocow = false; 1924 1925 if (btrfs_is_data_reloc_root(root)) 1926 /* 1927 * Error handled later, as we must prevent 1928 * extent_clear_unlock_delalloc() in error handler 1929 * from freeing metadata of created ordered extent. 1930 */ 1931 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1932 num_bytes); 1933 1934 extent_clear_unlock_delalloc(inode, cur_offset, 1935 cur_offset + num_bytes - 1, 1936 locked_page, EXTENT_LOCKED | 1937 EXTENT_DELALLOC | 1938 EXTENT_CLEAR_DATA_RESV, 1939 PAGE_UNLOCK | PAGE_SET_ORDERED); 1940 1941 cur_offset = extent_end; 1942 1943 /* 1944 * btrfs_reloc_clone_csums() error, now we're OK to call error 1945 * handler, as metadata for created ordered extent will only 1946 * be freed by btrfs_finish_ordered_io(). 1947 */ 1948 if (ret) 1949 goto error; 1950 if (cur_offset > end) 1951 break; 1952 } 1953 btrfs_release_path(path); 1954 1955 if (cur_offset <= end && cow_start == (u64)-1) 1956 cow_start = cur_offset; 1957 1958 if (cow_start != (u64)-1) { 1959 cur_offset = end; 1960 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1961 page_started, nr_written); 1962 if (ret) 1963 goto error; 1964 } 1965 1966 error: 1967 if (nocow) 1968 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1969 1970 if (ret && cur_offset < end) 1971 extent_clear_unlock_delalloc(inode, cur_offset, end, 1972 locked_page, EXTENT_LOCKED | 1973 EXTENT_DELALLOC | EXTENT_DEFRAG | 1974 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1975 PAGE_START_WRITEBACK | 1976 PAGE_END_WRITEBACK); 1977 btrfs_free_path(path); 1978 return ret; 1979 } 1980 1981 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1982 { 1983 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1984 if (inode->defrag_bytes && 1985 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1986 0, NULL)) 1987 return false; 1988 return true; 1989 } 1990 return false; 1991 } 1992 1993 /* 1994 * Function to process delayed allocation (create CoW) for ranges which are 1995 * being touched for the first time. 1996 */ 1997 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1998 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1999 struct writeback_control *wbc) 2000 { 2001 int ret; 2002 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2003 2004 /* 2005 * The range must cover part of the @locked_page, or the returned 2006 * @page_started can confuse the caller. 2007 */ 2008 ASSERT(!(end <= page_offset(locked_page) || 2009 start >= page_offset(locked_page) + PAGE_SIZE)); 2010 2011 if (should_nocow(inode, start, end)) { 2012 /* 2013 * Normally on a zoned device we're only doing COW writes, but 2014 * in case of relocation on a zoned filesystem we have taken 2015 * precaution, that we're only writing sequentially. It's safe 2016 * to use run_delalloc_nocow() here, like for regular 2017 * preallocated inodes. 2018 */ 2019 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root)); 2020 ret = run_delalloc_nocow(inode, locked_page, start, end, 2021 page_started, nr_written); 2022 } else if (!inode_can_compress(inode) || 2023 !inode_need_compress(inode, start, end)) { 2024 if (zoned) 2025 ret = run_delalloc_zoned(inode, locked_page, start, end, 2026 page_started, nr_written); 2027 else 2028 ret = cow_file_range(inode, locked_page, start, end, 2029 page_started, nr_written, 1); 2030 } else { 2031 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 2032 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 2033 page_started, nr_written); 2034 } 2035 ASSERT(ret <= 0); 2036 if (ret) 2037 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2038 end - start + 1); 2039 return ret; 2040 } 2041 2042 void btrfs_split_delalloc_extent(struct inode *inode, 2043 struct extent_state *orig, u64 split) 2044 { 2045 u64 size; 2046 2047 /* not delalloc, ignore it */ 2048 if (!(orig->state & EXTENT_DELALLOC)) 2049 return; 2050 2051 size = orig->end - orig->start + 1; 2052 if (size > BTRFS_MAX_EXTENT_SIZE) { 2053 u32 num_extents; 2054 u64 new_size; 2055 2056 /* 2057 * See the explanation in btrfs_merge_delalloc_extent, the same 2058 * applies here, just in reverse. 2059 */ 2060 new_size = orig->end - split + 1; 2061 num_extents = count_max_extents(new_size); 2062 new_size = split - orig->start; 2063 num_extents += count_max_extents(new_size); 2064 if (count_max_extents(size) >= num_extents) 2065 return; 2066 } 2067 2068 spin_lock(&BTRFS_I(inode)->lock); 2069 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 2070 spin_unlock(&BTRFS_I(inode)->lock); 2071 } 2072 2073 /* 2074 * Handle merged delayed allocation extents so we can keep track of new extents 2075 * that are just merged onto old extents, such as when we are doing sequential 2076 * writes, so we can properly account for the metadata space we'll need. 2077 */ 2078 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 2079 struct extent_state *other) 2080 { 2081 u64 new_size, old_size; 2082 u32 num_extents; 2083 2084 /* not delalloc, ignore it */ 2085 if (!(other->state & EXTENT_DELALLOC)) 2086 return; 2087 2088 if (new->start > other->start) 2089 new_size = new->end - other->start + 1; 2090 else 2091 new_size = other->end - new->start + 1; 2092 2093 /* we're not bigger than the max, unreserve the space and go */ 2094 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 2095 spin_lock(&BTRFS_I(inode)->lock); 2096 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2097 spin_unlock(&BTRFS_I(inode)->lock); 2098 return; 2099 } 2100 2101 /* 2102 * We have to add up either side to figure out how many extents were 2103 * accounted for before we merged into one big extent. If the number of 2104 * extents we accounted for is <= the amount we need for the new range 2105 * then we can return, otherwise drop. Think of it like this 2106 * 2107 * [ 4k][MAX_SIZE] 2108 * 2109 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2110 * need 2 outstanding extents, on one side we have 1 and the other side 2111 * we have 1 so they are == and we can return. But in this case 2112 * 2113 * [MAX_SIZE+4k][MAX_SIZE+4k] 2114 * 2115 * Each range on their own accounts for 2 extents, but merged together 2116 * they are only 3 extents worth of accounting, so we need to drop in 2117 * this case. 2118 */ 2119 old_size = other->end - other->start + 1; 2120 num_extents = count_max_extents(old_size); 2121 old_size = new->end - new->start + 1; 2122 num_extents += count_max_extents(old_size); 2123 if (count_max_extents(new_size) >= num_extents) 2124 return; 2125 2126 spin_lock(&BTRFS_I(inode)->lock); 2127 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2128 spin_unlock(&BTRFS_I(inode)->lock); 2129 } 2130 2131 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2132 struct inode *inode) 2133 { 2134 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2135 2136 spin_lock(&root->delalloc_lock); 2137 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2138 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2139 &root->delalloc_inodes); 2140 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2141 &BTRFS_I(inode)->runtime_flags); 2142 root->nr_delalloc_inodes++; 2143 if (root->nr_delalloc_inodes == 1) { 2144 spin_lock(&fs_info->delalloc_root_lock); 2145 BUG_ON(!list_empty(&root->delalloc_root)); 2146 list_add_tail(&root->delalloc_root, 2147 &fs_info->delalloc_roots); 2148 spin_unlock(&fs_info->delalloc_root_lock); 2149 } 2150 } 2151 spin_unlock(&root->delalloc_lock); 2152 } 2153 2154 2155 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2156 struct btrfs_inode *inode) 2157 { 2158 struct btrfs_fs_info *fs_info = root->fs_info; 2159 2160 if (!list_empty(&inode->delalloc_inodes)) { 2161 list_del_init(&inode->delalloc_inodes); 2162 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2163 &inode->runtime_flags); 2164 root->nr_delalloc_inodes--; 2165 if (!root->nr_delalloc_inodes) { 2166 ASSERT(list_empty(&root->delalloc_inodes)); 2167 spin_lock(&fs_info->delalloc_root_lock); 2168 BUG_ON(list_empty(&root->delalloc_root)); 2169 list_del_init(&root->delalloc_root); 2170 spin_unlock(&fs_info->delalloc_root_lock); 2171 } 2172 } 2173 } 2174 2175 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2176 struct btrfs_inode *inode) 2177 { 2178 spin_lock(&root->delalloc_lock); 2179 __btrfs_del_delalloc_inode(root, inode); 2180 spin_unlock(&root->delalloc_lock); 2181 } 2182 2183 /* 2184 * Properly track delayed allocation bytes in the inode and to maintain the 2185 * list of inodes that have pending delalloc work to be done. 2186 */ 2187 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2188 unsigned *bits) 2189 { 2190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2191 2192 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2193 WARN_ON(1); 2194 /* 2195 * set_bit and clear bit hooks normally require _irqsave/restore 2196 * but in this case, we are only testing for the DELALLOC 2197 * bit, which is only set or cleared with irqs on 2198 */ 2199 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2200 struct btrfs_root *root = BTRFS_I(inode)->root; 2201 u64 len = state->end + 1 - state->start; 2202 u32 num_extents = count_max_extents(len); 2203 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2204 2205 spin_lock(&BTRFS_I(inode)->lock); 2206 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2207 spin_unlock(&BTRFS_I(inode)->lock); 2208 2209 /* For sanity tests */ 2210 if (btrfs_is_testing(fs_info)) 2211 return; 2212 2213 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2214 fs_info->delalloc_batch); 2215 spin_lock(&BTRFS_I(inode)->lock); 2216 BTRFS_I(inode)->delalloc_bytes += len; 2217 if (*bits & EXTENT_DEFRAG) 2218 BTRFS_I(inode)->defrag_bytes += len; 2219 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2220 &BTRFS_I(inode)->runtime_flags)) 2221 btrfs_add_delalloc_inodes(root, inode); 2222 spin_unlock(&BTRFS_I(inode)->lock); 2223 } 2224 2225 if (!(state->state & EXTENT_DELALLOC_NEW) && 2226 (*bits & EXTENT_DELALLOC_NEW)) { 2227 spin_lock(&BTRFS_I(inode)->lock); 2228 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2229 state->start; 2230 spin_unlock(&BTRFS_I(inode)->lock); 2231 } 2232 } 2233 2234 /* 2235 * Once a range is no longer delalloc this function ensures that proper 2236 * accounting happens. 2237 */ 2238 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2239 struct extent_state *state, unsigned *bits) 2240 { 2241 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2242 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2243 u64 len = state->end + 1 - state->start; 2244 u32 num_extents = count_max_extents(len); 2245 2246 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2247 spin_lock(&inode->lock); 2248 inode->defrag_bytes -= len; 2249 spin_unlock(&inode->lock); 2250 } 2251 2252 /* 2253 * set_bit and clear bit hooks normally require _irqsave/restore 2254 * but in this case, we are only testing for the DELALLOC 2255 * bit, which is only set or cleared with irqs on 2256 */ 2257 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2258 struct btrfs_root *root = inode->root; 2259 bool do_list = !btrfs_is_free_space_inode(inode); 2260 2261 spin_lock(&inode->lock); 2262 btrfs_mod_outstanding_extents(inode, -num_extents); 2263 spin_unlock(&inode->lock); 2264 2265 /* 2266 * We don't reserve metadata space for space cache inodes so we 2267 * don't need to call delalloc_release_metadata if there is an 2268 * error. 2269 */ 2270 if (*bits & EXTENT_CLEAR_META_RESV && 2271 root != fs_info->tree_root) 2272 btrfs_delalloc_release_metadata(inode, len, false); 2273 2274 /* For sanity tests. */ 2275 if (btrfs_is_testing(fs_info)) 2276 return; 2277 2278 if (!btrfs_is_data_reloc_root(root) && 2279 do_list && !(state->state & EXTENT_NORESERVE) && 2280 (*bits & EXTENT_CLEAR_DATA_RESV)) 2281 btrfs_free_reserved_data_space_noquota(fs_info, len); 2282 2283 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2284 fs_info->delalloc_batch); 2285 spin_lock(&inode->lock); 2286 inode->delalloc_bytes -= len; 2287 if (do_list && inode->delalloc_bytes == 0 && 2288 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2289 &inode->runtime_flags)) 2290 btrfs_del_delalloc_inode(root, inode); 2291 spin_unlock(&inode->lock); 2292 } 2293 2294 if ((state->state & EXTENT_DELALLOC_NEW) && 2295 (*bits & EXTENT_DELALLOC_NEW)) { 2296 spin_lock(&inode->lock); 2297 ASSERT(inode->new_delalloc_bytes >= len); 2298 inode->new_delalloc_bytes -= len; 2299 if (*bits & EXTENT_ADD_INODE_BYTES) 2300 inode_add_bytes(&inode->vfs_inode, len); 2301 spin_unlock(&inode->lock); 2302 } 2303 } 2304 2305 /* 2306 * in order to insert checksums into the metadata in large chunks, 2307 * we wait until bio submission time. All the pages in the bio are 2308 * checksummed and sums are attached onto the ordered extent record. 2309 * 2310 * At IO completion time the cums attached on the ordered extent record 2311 * are inserted into the btree 2312 */ 2313 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2314 u64 dio_file_offset) 2315 { 2316 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2317 } 2318 2319 /* 2320 * Split an extent_map at [start, start + len] 2321 * 2322 * This function is intended to be used only for extract_ordered_extent(). 2323 */ 2324 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, 2325 u64 pre, u64 post) 2326 { 2327 struct extent_map_tree *em_tree = &inode->extent_tree; 2328 struct extent_map *em; 2329 struct extent_map *split_pre = NULL; 2330 struct extent_map *split_mid = NULL; 2331 struct extent_map *split_post = NULL; 2332 int ret = 0; 2333 unsigned long flags; 2334 2335 /* Sanity check */ 2336 if (pre == 0 && post == 0) 2337 return 0; 2338 2339 split_pre = alloc_extent_map(); 2340 if (pre) 2341 split_mid = alloc_extent_map(); 2342 if (post) 2343 split_post = alloc_extent_map(); 2344 if (!split_pre || (pre && !split_mid) || (post && !split_post)) { 2345 ret = -ENOMEM; 2346 goto out; 2347 } 2348 2349 ASSERT(pre + post < len); 2350 2351 lock_extent(&inode->io_tree, start, start + len - 1); 2352 write_lock(&em_tree->lock); 2353 em = lookup_extent_mapping(em_tree, start, len); 2354 if (!em) { 2355 ret = -EIO; 2356 goto out_unlock; 2357 } 2358 2359 ASSERT(em->len == len); 2360 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2361 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 2362 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); 2363 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); 2364 ASSERT(!list_empty(&em->list)); 2365 2366 flags = em->flags; 2367 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 2368 2369 /* First, replace the em with a new extent_map starting from * em->start */ 2370 split_pre->start = em->start; 2371 split_pre->len = (pre ? pre : em->len - post); 2372 split_pre->orig_start = split_pre->start; 2373 split_pre->block_start = em->block_start; 2374 split_pre->block_len = split_pre->len; 2375 split_pre->orig_block_len = split_pre->block_len; 2376 split_pre->ram_bytes = split_pre->len; 2377 split_pre->flags = flags; 2378 split_pre->compress_type = em->compress_type; 2379 split_pre->generation = em->generation; 2380 2381 replace_extent_mapping(em_tree, em, split_pre, 1); 2382 2383 /* 2384 * Now we only have an extent_map at: 2385 * [em->start, em->start + pre] if pre != 0 2386 * [em->start, em->start + em->len - post] if pre == 0 2387 */ 2388 2389 if (pre) { 2390 /* Insert the middle extent_map */ 2391 split_mid->start = em->start + pre; 2392 split_mid->len = em->len - pre - post; 2393 split_mid->orig_start = split_mid->start; 2394 split_mid->block_start = em->block_start + pre; 2395 split_mid->block_len = split_mid->len; 2396 split_mid->orig_block_len = split_mid->block_len; 2397 split_mid->ram_bytes = split_mid->len; 2398 split_mid->flags = flags; 2399 split_mid->compress_type = em->compress_type; 2400 split_mid->generation = em->generation; 2401 add_extent_mapping(em_tree, split_mid, 1); 2402 } 2403 2404 if (post) { 2405 split_post->start = em->start + em->len - post; 2406 split_post->len = post; 2407 split_post->orig_start = split_post->start; 2408 split_post->block_start = em->block_start + em->len - post; 2409 split_post->block_len = split_post->len; 2410 split_post->orig_block_len = split_post->block_len; 2411 split_post->ram_bytes = split_post->len; 2412 split_post->flags = flags; 2413 split_post->compress_type = em->compress_type; 2414 split_post->generation = em->generation; 2415 add_extent_mapping(em_tree, split_post, 1); 2416 } 2417 2418 /* Once for us */ 2419 free_extent_map(em); 2420 /* Once for the tree */ 2421 free_extent_map(em); 2422 2423 out_unlock: 2424 write_unlock(&em_tree->lock); 2425 unlock_extent(&inode->io_tree, start, start + len - 1); 2426 out: 2427 free_extent_map(split_pre); 2428 free_extent_map(split_mid); 2429 free_extent_map(split_post); 2430 2431 return ret; 2432 } 2433 2434 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2435 struct bio *bio, loff_t file_offset) 2436 { 2437 struct btrfs_ordered_extent *ordered; 2438 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2439 u64 file_len; 2440 u64 len = bio->bi_iter.bi_size; 2441 u64 end = start + len; 2442 u64 ordered_end; 2443 u64 pre, post; 2444 int ret = 0; 2445 2446 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2447 if (WARN_ON_ONCE(!ordered)) 2448 return BLK_STS_IOERR; 2449 2450 /* No need to split */ 2451 if (ordered->disk_num_bytes == len) 2452 goto out; 2453 2454 /* We cannot split once end_bio'd ordered extent */ 2455 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2456 ret = -EINVAL; 2457 goto out; 2458 } 2459 2460 /* We cannot split a compressed ordered extent */ 2461 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2462 ret = -EINVAL; 2463 goto out; 2464 } 2465 2466 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2467 /* bio must be in one ordered extent */ 2468 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2469 ret = -EINVAL; 2470 goto out; 2471 } 2472 2473 /* Checksum list should be empty */ 2474 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2475 ret = -EINVAL; 2476 goto out; 2477 } 2478 2479 file_len = ordered->num_bytes; 2480 pre = start - ordered->disk_bytenr; 2481 post = ordered_end - end; 2482 2483 ret = btrfs_split_ordered_extent(ordered, pre, post); 2484 if (ret) 2485 goto out; 2486 ret = split_zoned_em(inode, file_offset, file_len, pre, post); 2487 2488 out: 2489 btrfs_put_ordered_extent(ordered); 2490 2491 return errno_to_blk_status(ret); 2492 } 2493 2494 /* 2495 * extent_io.c submission hook. This does the right thing for csum calculation 2496 * on write, or reading the csums from the tree before a read. 2497 * 2498 * Rules about async/sync submit, 2499 * a) read: sync submit 2500 * 2501 * b) write without checksum: sync submit 2502 * 2503 * c) write with checksum: 2504 * c-1) if bio is issued by fsync: sync submit 2505 * (sync_writers != 0) 2506 * 2507 * c-2) if root is reloc root: sync submit 2508 * (only in case of buffered IO) 2509 * 2510 * c-3) otherwise: async submit 2511 */ 2512 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2513 int mirror_num, unsigned long bio_flags) 2514 2515 { 2516 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2517 struct btrfs_root *root = BTRFS_I(inode)->root; 2518 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2519 blk_status_t ret = 0; 2520 int skip_sum; 2521 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2522 2523 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2524 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2525 2526 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2527 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2528 2529 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2530 struct page *page = bio_first_bvec_all(bio)->bv_page; 2531 loff_t file_offset = page_offset(page); 2532 2533 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2534 if (ret) 2535 goto out; 2536 } 2537 2538 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2539 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2540 if (ret) 2541 goto out; 2542 2543 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2544 /* 2545 * btrfs_submit_compressed_read will handle completing 2546 * the bio if there were any errors, so just return 2547 * here. 2548 */ 2549 ret = btrfs_submit_compressed_read(inode, bio, 2550 mirror_num, 2551 bio_flags); 2552 goto out_no_endio; 2553 } else { 2554 /* 2555 * Lookup bio sums does extra checks around whether we 2556 * need to csum or not, which is why we ignore skip_sum 2557 * here. 2558 */ 2559 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2560 if (ret) 2561 goto out; 2562 } 2563 goto mapit; 2564 } else if (async && !skip_sum) { 2565 /* csum items have already been cloned */ 2566 if (btrfs_is_data_reloc_root(root)) 2567 goto mapit; 2568 /* we're doing a write, do the async checksumming */ 2569 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2570 0, btrfs_submit_bio_start); 2571 goto out; 2572 } else if (!skip_sum) { 2573 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2574 if (ret) 2575 goto out; 2576 } 2577 2578 mapit: 2579 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2580 2581 out: 2582 if (ret) { 2583 bio->bi_status = ret; 2584 bio_endio(bio); 2585 } 2586 out_no_endio: 2587 return ret; 2588 } 2589 2590 /* 2591 * given a list of ordered sums record them in the inode. This happens 2592 * at IO completion time based on sums calculated at bio submission time. 2593 */ 2594 static int add_pending_csums(struct btrfs_trans_handle *trans, 2595 struct list_head *list) 2596 { 2597 struct btrfs_ordered_sum *sum; 2598 struct btrfs_root *csum_root = NULL; 2599 int ret; 2600 2601 list_for_each_entry(sum, list, list) { 2602 trans->adding_csums = true; 2603 if (!csum_root) 2604 csum_root = btrfs_csum_root(trans->fs_info, 2605 sum->bytenr); 2606 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2607 trans->adding_csums = false; 2608 if (ret) 2609 return ret; 2610 } 2611 return 0; 2612 } 2613 2614 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2615 const u64 start, 2616 const u64 len, 2617 struct extent_state **cached_state) 2618 { 2619 u64 search_start = start; 2620 const u64 end = start + len - 1; 2621 2622 while (search_start < end) { 2623 const u64 search_len = end - search_start + 1; 2624 struct extent_map *em; 2625 u64 em_len; 2626 int ret = 0; 2627 2628 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2629 if (IS_ERR(em)) 2630 return PTR_ERR(em); 2631 2632 if (em->block_start != EXTENT_MAP_HOLE) 2633 goto next; 2634 2635 em_len = em->len; 2636 if (em->start < search_start) 2637 em_len -= search_start - em->start; 2638 if (em_len > search_len) 2639 em_len = search_len; 2640 2641 ret = set_extent_bit(&inode->io_tree, search_start, 2642 search_start + em_len - 1, 2643 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2644 GFP_NOFS, NULL); 2645 next: 2646 search_start = extent_map_end(em); 2647 free_extent_map(em); 2648 if (ret) 2649 return ret; 2650 } 2651 return 0; 2652 } 2653 2654 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2655 unsigned int extra_bits, 2656 struct extent_state **cached_state) 2657 { 2658 WARN_ON(PAGE_ALIGNED(end)); 2659 2660 if (start >= i_size_read(&inode->vfs_inode) && 2661 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2662 /* 2663 * There can't be any extents following eof in this case so just 2664 * set the delalloc new bit for the range directly. 2665 */ 2666 extra_bits |= EXTENT_DELALLOC_NEW; 2667 } else { 2668 int ret; 2669 2670 ret = btrfs_find_new_delalloc_bytes(inode, start, 2671 end + 1 - start, 2672 cached_state); 2673 if (ret) 2674 return ret; 2675 } 2676 2677 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2678 cached_state); 2679 } 2680 2681 /* see btrfs_writepage_start_hook for details on why this is required */ 2682 struct btrfs_writepage_fixup { 2683 struct page *page; 2684 struct inode *inode; 2685 struct btrfs_work work; 2686 }; 2687 2688 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2689 { 2690 struct btrfs_writepage_fixup *fixup; 2691 struct btrfs_ordered_extent *ordered; 2692 struct extent_state *cached_state = NULL; 2693 struct extent_changeset *data_reserved = NULL; 2694 struct page *page; 2695 struct btrfs_inode *inode; 2696 u64 page_start; 2697 u64 page_end; 2698 int ret = 0; 2699 bool free_delalloc_space = true; 2700 2701 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2702 page = fixup->page; 2703 inode = BTRFS_I(fixup->inode); 2704 page_start = page_offset(page); 2705 page_end = page_offset(page) + PAGE_SIZE - 1; 2706 2707 /* 2708 * This is similar to page_mkwrite, we need to reserve the space before 2709 * we take the page lock. 2710 */ 2711 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2712 PAGE_SIZE); 2713 again: 2714 lock_page(page); 2715 2716 /* 2717 * Before we queued this fixup, we took a reference on the page. 2718 * page->mapping may go NULL, but it shouldn't be moved to a different 2719 * address space. 2720 */ 2721 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2722 /* 2723 * Unfortunately this is a little tricky, either 2724 * 2725 * 1) We got here and our page had already been dealt with and 2726 * we reserved our space, thus ret == 0, so we need to just 2727 * drop our space reservation and bail. This can happen the 2728 * first time we come into the fixup worker, or could happen 2729 * while waiting for the ordered extent. 2730 * 2) Our page was already dealt with, but we happened to get an 2731 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2732 * this case we obviously don't have anything to release, but 2733 * because the page was already dealt with we don't want to 2734 * mark the page with an error, so make sure we're resetting 2735 * ret to 0. This is why we have this check _before_ the ret 2736 * check, because we do not want to have a surprise ENOSPC 2737 * when the page was already properly dealt with. 2738 */ 2739 if (!ret) { 2740 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2741 btrfs_delalloc_release_space(inode, data_reserved, 2742 page_start, PAGE_SIZE, 2743 true); 2744 } 2745 ret = 0; 2746 goto out_page; 2747 } 2748 2749 /* 2750 * We can't mess with the page state unless it is locked, so now that 2751 * it is locked bail if we failed to make our space reservation. 2752 */ 2753 if (ret) 2754 goto out_page; 2755 2756 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2757 2758 /* already ordered? We're done */ 2759 if (PageOrdered(page)) 2760 goto out_reserved; 2761 2762 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2763 if (ordered) { 2764 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2765 &cached_state); 2766 unlock_page(page); 2767 btrfs_start_ordered_extent(ordered, 1); 2768 btrfs_put_ordered_extent(ordered); 2769 goto again; 2770 } 2771 2772 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2773 &cached_state); 2774 if (ret) 2775 goto out_reserved; 2776 2777 /* 2778 * Everything went as planned, we're now the owner of a dirty page with 2779 * delayed allocation bits set and space reserved for our COW 2780 * destination. 2781 * 2782 * The page was dirty when we started, nothing should have cleaned it. 2783 */ 2784 BUG_ON(!PageDirty(page)); 2785 free_delalloc_space = false; 2786 out_reserved: 2787 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2788 if (free_delalloc_space) 2789 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2790 PAGE_SIZE, true); 2791 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2792 &cached_state); 2793 out_page: 2794 if (ret) { 2795 /* 2796 * We hit ENOSPC or other errors. Update the mapping and page 2797 * to reflect the errors and clean the page. 2798 */ 2799 mapping_set_error(page->mapping, ret); 2800 end_extent_writepage(page, ret, page_start, page_end); 2801 clear_page_dirty_for_io(page); 2802 SetPageError(page); 2803 } 2804 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); 2805 unlock_page(page); 2806 put_page(page); 2807 kfree(fixup); 2808 extent_changeset_free(data_reserved); 2809 /* 2810 * As a precaution, do a delayed iput in case it would be the last iput 2811 * that could need flushing space. Recursing back to fixup worker would 2812 * deadlock. 2813 */ 2814 btrfs_add_delayed_iput(&inode->vfs_inode); 2815 } 2816 2817 /* 2818 * There are a few paths in the higher layers of the kernel that directly 2819 * set the page dirty bit without asking the filesystem if it is a 2820 * good idea. This causes problems because we want to make sure COW 2821 * properly happens and the data=ordered rules are followed. 2822 * 2823 * In our case any range that doesn't have the ORDERED bit set 2824 * hasn't been properly setup for IO. We kick off an async process 2825 * to fix it up. The async helper will wait for ordered extents, set 2826 * the delalloc bit and make it safe to write the page. 2827 */ 2828 int btrfs_writepage_cow_fixup(struct page *page) 2829 { 2830 struct inode *inode = page->mapping->host; 2831 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2832 struct btrfs_writepage_fixup *fixup; 2833 2834 /* This page has ordered extent covering it already */ 2835 if (PageOrdered(page)) 2836 return 0; 2837 2838 /* 2839 * PageChecked is set below when we create a fixup worker for this page, 2840 * don't try to create another one if we're already PageChecked() 2841 * 2842 * The extent_io writepage code will redirty the page if we send back 2843 * EAGAIN. 2844 */ 2845 if (PageChecked(page)) 2846 return -EAGAIN; 2847 2848 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2849 if (!fixup) 2850 return -EAGAIN; 2851 2852 /* 2853 * We are already holding a reference to this inode from 2854 * write_cache_pages. We need to hold it because the space reservation 2855 * takes place outside of the page lock, and we can't trust 2856 * page->mapping outside of the page lock. 2857 */ 2858 ihold(inode); 2859 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 2860 get_page(page); 2861 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2862 fixup->page = page; 2863 fixup->inode = inode; 2864 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2865 2866 return -EAGAIN; 2867 } 2868 2869 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2870 struct btrfs_inode *inode, u64 file_pos, 2871 struct btrfs_file_extent_item *stack_fi, 2872 const bool update_inode_bytes, 2873 u64 qgroup_reserved) 2874 { 2875 struct btrfs_root *root = inode->root; 2876 const u64 sectorsize = root->fs_info->sectorsize; 2877 struct btrfs_path *path; 2878 struct extent_buffer *leaf; 2879 struct btrfs_key ins; 2880 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2881 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2882 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2883 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2884 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2885 struct btrfs_drop_extents_args drop_args = { 0 }; 2886 int ret; 2887 2888 path = btrfs_alloc_path(); 2889 if (!path) 2890 return -ENOMEM; 2891 2892 /* 2893 * we may be replacing one extent in the tree with another. 2894 * The new extent is pinned in the extent map, and we don't want 2895 * to drop it from the cache until it is completely in the btree. 2896 * 2897 * So, tell btrfs_drop_extents to leave this extent in the cache. 2898 * the caller is expected to unpin it and allow it to be merged 2899 * with the others. 2900 */ 2901 drop_args.path = path; 2902 drop_args.start = file_pos; 2903 drop_args.end = file_pos + num_bytes; 2904 drop_args.replace_extent = true; 2905 drop_args.extent_item_size = sizeof(*stack_fi); 2906 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2907 if (ret) 2908 goto out; 2909 2910 if (!drop_args.extent_inserted) { 2911 ins.objectid = btrfs_ino(inode); 2912 ins.offset = file_pos; 2913 ins.type = BTRFS_EXTENT_DATA_KEY; 2914 2915 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2916 sizeof(*stack_fi)); 2917 if (ret) 2918 goto out; 2919 } 2920 leaf = path->nodes[0]; 2921 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2922 write_extent_buffer(leaf, stack_fi, 2923 btrfs_item_ptr_offset(leaf, path->slots[0]), 2924 sizeof(struct btrfs_file_extent_item)); 2925 2926 btrfs_mark_buffer_dirty(leaf); 2927 btrfs_release_path(path); 2928 2929 /* 2930 * If we dropped an inline extent here, we know the range where it is 2931 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2932 * number of bytes only for that range containing the inline extent. 2933 * The remaining of the range will be processed when clearning the 2934 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2935 */ 2936 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2937 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2938 2939 inline_size = drop_args.bytes_found - inline_size; 2940 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2941 drop_args.bytes_found -= inline_size; 2942 num_bytes -= sectorsize; 2943 } 2944 2945 if (update_inode_bytes) 2946 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2947 2948 ins.objectid = disk_bytenr; 2949 ins.offset = disk_num_bytes; 2950 ins.type = BTRFS_EXTENT_ITEM_KEY; 2951 2952 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2953 if (ret) 2954 goto out; 2955 2956 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2957 file_pos - offset, 2958 qgroup_reserved, &ins); 2959 out: 2960 btrfs_free_path(path); 2961 2962 return ret; 2963 } 2964 2965 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2966 u64 start, u64 len) 2967 { 2968 struct btrfs_block_group *cache; 2969 2970 cache = btrfs_lookup_block_group(fs_info, start); 2971 ASSERT(cache); 2972 2973 spin_lock(&cache->lock); 2974 cache->delalloc_bytes -= len; 2975 spin_unlock(&cache->lock); 2976 2977 btrfs_put_block_group(cache); 2978 } 2979 2980 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2981 struct btrfs_ordered_extent *oe) 2982 { 2983 struct btrfs_file_extent_item stack_fi; 2984 bool update_inode_bytes; 2985 u64 num_bytes = oe->num_bytes; 2986 u64 ram_bytes = oe->ram_bytes; 2987 2988 memset(&stack_fi, 0, sizeof(stack_fi)); 2989 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2990 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2991 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2992 oe->disk_num_bytes); 2993 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2994 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2995 num_bytes = ram_bytes = oe->truncated_len; 2996 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2997 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 2998 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2999 /* Encryption and other encoding is reserved and all 0 */ 3000 3001 /* 3002 * For delalloc, when completing an ordered extent we update the inode's 3003 * bytes when clearing the range in the inode's io tree, so pass false 3004 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3005 * except if the ordered extent was truncated. 3006 */ 3007 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3008 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3009 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3010 3011 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3012 oe->file_offset, &stack_fi, 3013 update_inode_bytes, oe->qgroup_rsv); 3014 } 3015 3016 /* 3017 * As ordered data IO finishes, this gets called so we can finish 3018 * an ordered extent if the range of bytes in the file it covers are 3019 * fully written. 3020 */ 3021 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3022 { 3023 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3024 struct btrfs_root *root = inode->root; 3025 struct btrfs_fs_info *fs_info = root->fs_info; 3026 struct btrfs_trans_handle *trans = NULL; 3027 struct extent_io_tree *io_tree = &inode->io_tree; 3028 struct extent_state *cached_state = NULL; 3029 u64 start, end; 3030 int compress_type = 0; 3031 int ret = 0; 3032 u64 logical_len = ordered_extent->num_bytes; 3033 bool freespace_inode; 3034 bool truncated = false; 3035 bool clear_reserved_extent = true; 3036 unsigned int clear_bits = EXTENT_DEFRAG; 3037 3038 start = ordered_extent->file_offset; 3039 end = start + ordered_extent->num_bytes - 1; 3040 3041 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3042 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3043 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3044 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3045 clear_bits |= EXTENT_DELALLOC_NEW; 3046 3047 freespace_inode = btrfs_is_free_space_inode(inode); 3048 3049 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3050 ret = -EIO; 3051 goto out; 3052 } 3053 3054 /* A valid bdev implies a write on a sequential zone */ 3055 if (ordered_extent->bdev) { 3056 btrfs_rewrite_logical_zoned(ordered_extent); 3057 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3058 ordered_extent->disk_num_bytes); 3059 } 3060 3061 btrfs_free_io_failure_record(inode, start, end); 3062 3063 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3064 truncated = true; 3065 logical_len = ordered_extent->truncated_len; 3066 /* Truncated the entire extent, don't bother adding */ 3067 if (!logical_len) 3068 goto out; 3069 } 3070 3071 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3072 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3073 3074 btrfs_inode_safe_disk_i_size_write(inode, 0); 3075 if (freespace_inode) 3076 trans = btrfs_join_transaction_spacecache(root); 3077 else 3078 trans = btrfs_join_transaction(root); 3079 if (IS_ERR(trans)) { 3080 ret = PTR_ERR(trans); 3081 trans = NULL; 3082 goto out; 3083 } 3084 trans->block_rsv = &inode->block_rsv; 3085 ret = btrfs_update_inode_fallback(trans, root, inode); 3086 if (ret) /* -ENOMEM or corruption */ 3087 btrfs_abort_transaction(trans, ret); 3088 goto out; 3089 } 3090 3091 clear_bits |= EXTENT_LOCKED; 3092 lock_extent_bits(io_tree, start, end, &cached_state); 3093 3094 if (freespace_inode) 3095 trans = btrfs_join_transaction_spacecache(root); 3096 else 3097 trans = btrfs_join_transaction(root); 3098 if (IS_ERR(trans)) { 3099 ret = PTR_ERR(trans); 3100 trans = NULL; 3101 goto out; 3102 } 3103 3104 trans->block_rsv = &inode->block_rsv; 3105 3106 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3107 compress_type = ordered_extent->compress_type; 3108 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3109 BUG_ON(compress_type); 3110 ret = btrfs_mark_extent_written(trans, inode, 3111 ordered_extent->file_offset, 3112 ordered_extent->file_offset + 3113 logical_len); 3114 } else { 3115 BUG_ON(root == fs_info->tree_root); 3116 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3117 if (!ret) { 3118 clear_reserved_extent = false; 3119 btrfs_release_delalloc_bytes(fs_info, 3120 ordered_extent->disk_bytenr, 3121 ordered_extent->disk_num_bytes); 3122 } 3123 } 3124 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3125 ordered_extent->num_bytes, trans->transid); 3126 if (ret < 0) { 3127 btrfs_abort_transaction(trans, ret); 3128 goto out; 3129 } 3130 3131 ret = add_pending_csums(trans, &ordered_extent->list); 3132 if (ret) { 3133 btrfs_abort_transaction(trans, ret); 3134 goto out; 3135 } 3136 3137 /* 3138 * If this is a new delalloc range, clear its new delalloc flag to 3139 * update the inode's number of bytes. This needs to be done first 3140 * before updating the inode item. 3141 */ 3142 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3143 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3144 clear_extent_bit(&inode->io_tree, start, end, 3145 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3146 0, 0, &cached_state); 3147 3148 btrfs_inode_safe_disk_i_size_write(inode, 0); 3149 ret = btrfs_update_inode_fallback(trans, root, inode); 3150 if (ret) { /* -ENOMEM or corruption */ 3151 btrfs_abort_transaction(trans, ret); 3152 goto out; 3153 } 3154 ret = 0; 3155 out: 3156 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3157 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3158 &cached_state); 3159 3160 if (trans) 3161 btrfs_end_transaction(trans); 3162 3163 if (ret || truncated) { 3164 u64 unwritten_start = start; 3165 3166 /* 3167 * If we failed to finish this ordered extent for any reason we 3168 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3169 * extent, and mark the inode with the error if it wasn't 3170 * already set. Any error during writeback would have already 3171 * set the mapping error, so we need to set it if we're the ones 3172 * marking this ordered extent as failed. 3173 */ 3174 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3175 &ordered_extent->flags)) 3176 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3177 3178 if (truncated) 3179 unwritten_start += logical_len; 3180 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3181 3182 /* Drop the cache for the part of the extent we didn't write. */ 3183 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3184 3185 /* 3186 * If the ordered extent had an IOERR or something else went 3187 * wrong we need to return the space for this ordered extent 3188 * back to the allocator. We only free the extent in the 3189 * truncated case if we didn't write out the extent at all. 3190 * 3191 * If we made it past insert_reserved_file_extent before we 3192 * errored out then we don't need to do this as the accounting 3193 * has already been done. 3194 */ 3195 if ((ret || !logical_len) && 3196 clear_reserved_extent && 3197 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3198 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3199 /* 3200 * Discard the range before returning it back to the 3201 * free space pool 3202 */ 3203 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3204 btrfs_discard_extent(fs_info, 3205 ordered_extent->disk_bytenr, 3206 ordered_extent->disk_num_bytes, 3207 NULL); 3208 btrfs_free_reserved_extent(fs_info, 3209 ordered_extent->disk_bytenr, 3210 ordered_extent->disk_num_bytes, 1); 3211 } 3212 } 3213 3214 /* 3215 * This needs to be done to make sure anybody waiting knows we are done 3216 * updating everything for this ordered extent. 3217 */ 3218 btrfs_remove_ordered_extent(inode, ordered_extent); 3219 3220 /* once for us */ 3221 btrfs_put_ordered_extent(ordered_extent); 3222 /* once for the tree */ 3223 btrfs_put_ordered_extent(ordered_extent); 3224 3225 return ret; 3226 } 3227 3228 static void finish_ordered_fn(struct btrfs_work *work) 3229 { 3230 struct btrfs_ordered_extent *ordered_extent; 3231 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3232 btrfs_finish_ordered_io(ordered_extent); 3233 } 3234 3235 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3236 struct page *page, u64 start, 3237 u64 end, bool uptodate) 3238 { 3239 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3240 3241 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, 3242 finish_ordered_fn, uptodate); 3243 } 3244 3245 /* 3246 * check_data_csum - verify checksum of one sector of uncompressed data 3247 * @inode: inode 3248 * @io_bio: btrfs_io_bio which contains the csum 3249 * @bio_offset: offset to the beginning of the bio (in bytes) 3250 * @page: page where is the data to be verified 3251 * @pgoff: offset inside the page 3252 * @start: logical offset in the file 3253 * 3254 * The length of such check is always one sector size. 3255 */ 3256 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3257 u32 bio_offset, struct page *page, u32 pgoff, 3258 u64 start) 3259 { 3260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3262 char *kaddr; 3263 u32 len = fs_info->sectorsize; 3264 const u32 csum_size = fs_info->csum_size; 3265 unsigned int offset_sectors; 3266 u8 *csum_expected; 3267 u8 csum[BTRFS_CSUM_SIZE]; 3268 3269 ASSERT(pgoff + len <= PAGE_SIZE); 3270 3271 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3272 csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size; 3273 3274 kaddr = kmap_atomic(page); 3275 shash->tfm = fs_info->csum_shash; 3276 3277 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3278 3279 if (memcmp(csum, csum_expected, csum_size)) 3280 goto zeroit; 3281 3282 kunmap_atomic(kaddr); 3283 return 0; 3284 zeroit: 3285 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3286 bbio->mirror_num); 3287 if (bbio->device) 3288 btrfs_dev_stat_inc_and_print(bbio->device, 3289 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3290 memset(kaddr + pgoff, 1, len); 3291 flush_dcache_page(page); 3292 kunmap_atomic(kaddr); 3293 return -EIO; 3294 } 3295 3296 /* 3297 * When reads are done, we need to check csums to verify the data is correct. 3298 * if there's a match, we allow the bio to finish. If not, the code in 3299 * extent_io.c will try to find good copies for us. 3300 * 3301 * @bio_offset: offset to the beginning of the bio (in bytes) 3302 * @start: file offset of the range start 3303 * @end: file offset of the range end (inclusive) 3304 * 3305 * Return a bitmap where bit set means a csum mismatch, and bit not set means 3306 * csum match. 3307 */ 3308 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3309 u32 bio_offset, struct page *page, 3310 u64 start, u64 end) 3311 { 3312 struct inode *inode = page->mapping->host; 3313 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3314 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3315 struct btrfs_root *root = BTRFS_I(inode)->root; 3316 const u32 sectorsize = root->fs_info->sectorsize; 3317 u32 pg_off; 3318 unsigned int result = 0; 3319 3320 if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) { 3321 btrfs_page_clear_checked(fs_info, page, start, end + 1 - start); 3322 return 0; 3323 } 3324 3325 /* 3326 * This only happens for NODATASUM or compressed read. 3327 * Normally this should be covered by above check for compressed read 3328 * or the next check for NODATASUM. Just do a quicker exit here. 3329 */ 3330 if (bbio->csum == NULL) 3331 return 0; 3332 3333 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3334 return 0; 3335 3336 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))) 3337 return 0; 3338 3339 ASSERT(page_offset(page) <= start && 3340 end <= page_offset(page) + PAGE_SIZE - 1); 3341 for (pg_off = offset_in_page(start); 3342 pg_off < offset_in_page(end); 3343 pg_off += sectorsize, bio_offset += sectorsize) { 3344 u64 file_offset = pg_off + page_offset(page); 3345 int ret; 3346 3347 if (btrfs_is_data_reloc_root(root) && 3348 test_range_bit(io_tree, file_offset, 3349 file_offset + sectorsize - 1, 3350 EXTENT_NODATASUM, 1, NULL)) { 3351 /* Skip the range without csum for data reloc inode */ 3352 clear_extent_bits(io_tree, file_offset, 3353 file_offset + sectorsize - 1, 3354 EXTENT_NODATASUM); 3355 continue; 3356 } 3357 ret = check_data_csum(inode, bbio, bio_offset, page, pg_off, 3358 page_offset(page) + pg_off); 3359 if (ret < 0) { 3360 const int nr_bit = (pg_off - offset_in_page(start)) >> 3361 root->fs_info->sectorsize_bits; 3362 3363 result |= (1U << nr_bit); 3364 } 3365 } 3366 return result; 3367 } 3368 3369 /* 3370 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3371 * 3372 * @inode: The inode we want to perform iput on 3373 * 3374 * This function uses the generic vfs_inode::i_count to track whether we should 3375 * just decrement it (in case it's > 1) or if this is the last iput then link 3376 * the inode to the delayed iput machinery. Delayed iputs are processed at 3377 * transaction commit time/superblock commit/cleaner kthread. 3378 */ 3379 void btrfs_add_delayed_iput(struct inode *inode) 3380 { 3381 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3382 struct btrfs_inode *binode = BTRFS_I(inode); 3383 3384 if (atomic_add_unless(&inode->i_count, -1, 1)) 3385 return; 3386 3387 atomic_inc(&fs_info->nr_delayed_iputs); 3388 spin_lock(&fs_info->delayed_iput_lock); 3389 ASSERT(list_empty(&binode->delayed_iput)); 3390 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3391 spin_unlock(&fs_info->delayed_iput_lock); 3392 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3393 wake_up_process(fs_info->cleaner_kthread); 3394 } 3395 3396 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3397 struct btrfs_inode *inode) 3398 { 3399 list_del_init(&inode->delayed_iput); 3400 spin_unlock(&fs_info->delayed_iput_lock); 3401 iput(&inode->vfs_inode); 3402 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3403 wake_up(&fs_info->delayed_iputs_wait); 3404 spin_lock(&fs_info->delayed_iput_lock); 3405 } 3406 3407 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3408 struct btrfs_inode *inode) 3409 { 3410 if (!list_empty(&inode->delayed_iput)) { 3411 spin_lock(&fs_info->delayed_iput_lock); 3412 if (!list_empty(&inode->delayed_iput)) 3413 run_delayed_iput_locked(fs_info, inode); 3414 spin_unlock(&fs_info->delayed_iput_lock); 3415 } 3416 } 3417 3418 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3419 { 3420 3421 spin_lock(&fs_info->delayed_iput_lock); 3422 while (!list_empty(&fs_info->delayed_iputs)) { 3423 struct btrfs_inode *inode; 3424 3425 inode = list_first_entry(&fs_info->delayed_iputs, 3426 struct btrfs_inode, delayed_iput); 3427 run_delayed_iput_locked(fs_info, inode); 3428 cond_resched_lock(&fs_info->delayed_iput_lock); 3429 } 3430 spin_unlock(&fs_info->delayed_iput_lock); 3431 } 3432 3433 /** 3434 * Wait for flushing all delayed iputs 3435 * 3436 * @fs_info: the filesystem 3437 * 3438 * This will wait on any delayed iputs that are currently running with KILLABLE 3439 * set. Once they are all done running we will return, unless we are killed in 3440 * which case we return EINTR. This helps in user operations like fallocate etc 3441 * that might get blocked on the iputs. 3442 * 3443 * Return EINTR if we were killed, 0 if nothing's pending 3444 */ 3445 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3446 { 3447 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3448 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3449 if (ret) 3450 return -EINTR; 3451 return 0; 3452 } 3453 3454 /* 3455 * This creates an orphan entry for the given inode in case something goes wrong 3456 * in the middle of an unlink. 3457 */ 3458 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3459 struct btrfs_inode *inode) 3460 { 3461 int ret; 3462 3463 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3464 if (ret && ret != -EEXIST) { 3465 btrfs_abort_transaction(trans, ret); 3466 return ret; 3467 } 3468 3469 return 0; 3470 } 3471 3472 /* 3473 * We have done the delete so we can go ahead and remove the orphan item for 3474 * this particular inode. 3475 */ 3476 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3477 struct btrfs_inode *inode) 3478 { 3479 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3480 } 3481 3482 /* 3483 * this cleans up any orphans that may be left on the list from the last use 3484 * of this root. 3485 */ 3486 int btrfs_orphan_cleanup(struct btrfs_root *root) 3487 { 3488 struct btrfs_fs_info *fs_info = root->fs_info; 3489 struct btrfs_path *path; 3490 struct extent_buffer *leaf; 3491 struct btrfs_key key, found_key; 3492 struct btrfs_trans_handle *trans; 3493 struct inode *inode; 3494 u64 last_objectid = 0; 3495 int ret = 0, nr_unlink = 0; 3496 3497 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3498 return 0; 3499 3500 path = btrfs_alloc_path(); 3501 if (!path) { 3502 ret = -ENOMEM; 3503 goto out; 3504 } 3505 path->reada = READA_BACK; 3506 3507 key.objectid = BTRFS_ORPHAN_OBJECTID; 3508 key.type = BTRFS_ORPHAN_ITEM_KEY; 3509 key.offset = (u64)-1; 3510 3511 while (1) { 3512 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3513 if (ret < 0) 3514 goto out; 3515 3516 /* 3517 * if ret == 0 means we found what we were searching for, which 3518 * is weird, but possible, so only screw with path if we didn't 3519 * find the key and see if we have stuff that matches 3520 */ 3521 if (ret > 0) { 3522 ret = 0; 3523 if (path->slots[0] == 0) 3524 break; 3525 path->slots[0]--; 3526 } 3527 3528 /* pull out the item */ 3529 leaf = path->nodes[0]; 3530 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3531 3532 /* make sure the item matches what we want */ 3533 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3534 break; 3535 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3536 break; 3537 3538 /* release the path since we're done with it */ 3539 btrfs_release_path(path); 3540 3541 /* 3542 * this is where we are basically btrfs_lookup, without the 3543 * crossing root thing. we store the inode number in the 3544 * offset of the orphan item. 3545 */ 3546 3547 if (found_key.offset == last_objectid) { 3548 btrfs_err(fs_info, 3549 "Error removing orphan entry, stopping orphan cleanup"); 3550 ret = -EINVAL; 3551 goto out; 3552 } 3553 3554 last_objectid = found_key.offset; 3555 3556 found_key.objectid = found_key.offset; 3557 found_key.type = BTRFS_INODE_ITEM_KEY; 3558 found_key.offset = 0; 3559 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3560 ret = PTR_ERR_OR_ZERO(inode); 3561 if (ret && ret != -ENOENT) 3562 goto out; 3563 3564 if (ret == -ENOENT && root == fs_info->tree_root) { 3565 struct btrfs_root *dead_root; 3566 int is_dead_root = 0; 3567 3568 /* 3569 * This is an orphan in the tree root. Currently these 3570 * could come from 2 sources: 3571 * a) a root (snapshot/subvolume) deletion in progress 3572 * b) a free space cache inode 3573 * We need to distinguish those two, as the orphan item 3574 * for a root must not get deleted before the deletion 3575 * of the snapshot/subvolume's tree completes. 3576 * 3577 * btrfs_find_orphan_roots() ran before us, which has 3578 * found all deleted roots and loaded them into 3579 * fs_info->fs_roots_radix. So here we can find if an 3580 * orphan item corresponds to a deleted root by looking 3581 * up the root from that radix tree. 3582 */ 3583 3584 spin_lock(&fs_info->fs_roots_radix_lock); 3585 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3586 (unsigned long)found_key.objectid); 3587 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3588 is_dead_root = 1; 3589 spin_unlock(&fs_info->fs_roots_radix_lock); 3590 3591 if (is_dead_root) { 3592 /* prevent this orphan from being found again */ 3593 key.offset = found_key.objectid - 1; 3594 continue; 3595 } 3596 3597 } 3598 3599 /* 3600 * If we have an inode with links, there are a couple of 3601 * possibilities: 3602 * 3603 * 1. We were halfway through creating fsverity metadata for the 3604 * file. In that case, the orphan item represents incomplete 3605 * fsverity metadata which must be cleaned up with 3606 * btrfs_drop_verity_items and deleting the orphan item. 3607 3608 * 2. Old kernels (before v3.12) used to create an 3609 * orphan item for truncate indicating that there were possibly 3610 * extent items past i_size that needed to be deleted. In v3.12, 3611 * truncate was changed to update i_size in sync with the extent 3612 * items, but the (useless) orphan item was still created. Since 3613 * v4.18, we don't create the orphan item for truncate at all. 3614 * 3615 * So, this item could mean that we need to do a truncate, but 3616 * only if this filesystem was last used on a pre-v3.12 kernel 3617 * and was not cleanly unmounted. The odds of that are quite 3618 * slim, and it's a pain to do the truncate now, so just delete 3619 * the orphan item. 3620 * 3621 * It's also possible that this orphan item was supposed to be 3622 * deleted but wasn't. The inode number may have been reused, 3623 * but either way, we can delete the orphan item. 3624 */ 3625 if (ret == -ENOENT || inode->i_nlink) { 3626 if (!ret) { 3627 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3628 iput(inode); 3629 if (ret) 3630 goto out; 3631 } 3632 trans = btrfs_start_transaction(root, 1); 3633 if (IS_ERR(trans)) { 3634 ret = PTR_ERR(trans); 3635 goto out; 3636 } 3637 btrfs_debug(fs_info, "auto deleting %Lu", 3638 found_key.objectid); 3639 ret = btrfs_del_orphan_item(trans, root, 3640 found_key.objectid); 3641 btrfs_end_transaction(trans); 3642 if (ret) 3643 goto out; 3644 continue; 3645 } 3646 3647 nr_unlink++; 3648 3649 /* this will do delete_inode and everything for us */ 3650 iput(inode); 3651 } 3652 /* release the path since we're done with it */ 3653 btrfs_release_path(path); 3654 3655 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3656 trans = btrfs_join_transaction(root); 3657 if (!IS_ERR(trans)) 3658 btrfs_end_transaction(trans); 3659 } 3660 3661 if (nr_unlink) 3662 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3663 3664 out: 3665 if (ret) 3666 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3667 btrfs_free_path(path); 3668 return ret; 3669 } 3670 3671 /* 3672 * very simple check to peek ahead in the leaf looking for xattrs. If we 3673 * don't find any xattrs, we know there can't be any acls. 3674 * 3675 * slot is the slot the inode is in, objectid is the objectid of the inode 3676 */ 3677 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3678 int slot, u64 objectid, 3679 int *first_xattr_slot) 3680 { 3681 u32 nritems = btrfs_header_nritems(leaf); 3682 struct btrfs_key found_key; 3683 static u64 xattr_access = 0; 3684 static u64 xattr_default = 0; 3685 int scanned = 0; 3686 3687 if (!xattr_access) { 3688 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3689 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3690 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3691 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3692 } 3693 3694 slot++; 3695 *first_xattr_slot = -1; 3696 while (slot < nritems) { 3697 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3698 3699 /* we found a different objectid, there must not be acls */ 3700 if (found_key.objectid != objectid) 3701 return 0; 3702 3703 /* we found an xattr, assume we've got an acl */ 3704 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3705 if (*first_xattr_slot == -1) 3706 *first_xattr_slot = slot; 3707 if (found_key.offset == xattr_access || 3708 found_key.offset == xattr_default) 3709 return 1; 3710 } 3711 3712 /* 3713 * we found a key greater than an xattr key, there can't 3714 * be any acls later on 3715 */ 3716 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3717 return 0; 3718 3719 slot++; 3720 scanned++; 3721 3722 /* 3723 * it goes inode, inode backrefs, xattrs, extents, 3724 * so if there are a ton of hard links to an inode there can 3725 * be a lot of backrefs. Don't waste time searching too hard, 3726 * this is just an optimization 3727 */ 3728 if (scanned >= 8) 3729 break; 3730 } 3731 /* we hit the end of the leaf before we found an xattr or 3732 * something larger than an xattr. We have to assume the inode 3733 * has acls 3734 */ 3735 if (*first_xattr_slot == -1) 3736 *first_xattr_slot = slot; 3737 return 1; 3738 } 3739 3740 /* 3741 * read an inode from the btree into the in-memory inode 3742 */ 3743 static int btrfs_read_locked_inode(struct inode *inode, 3744 struct btrfs_path *in_path) 3745 { 3746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3747 struct btrfs_path *path = in_path; 3748 struct extent_buffer *leaf; 3749 struct btrfs_inode_item *inode_item; 3750 struct btrfs_root *root = BTRFS_I(inode)->root; 3751 struct btrfs_key location; 3752 unsigned long ptr; 3753 int maybe_acls; 3754 u32 rdev; 3755 int ret; 3756 bool filled = false; 3757 int first_xattr_slot; 3758 3759 ret = btrfs_fill_inode(inode, &rdev); 3760 if (!ret) 3761 filled = true; 3762 3763 if (!path) { 3764 path = btrfs_alloc_path(); 3765 if (!path) 3766 return -ENOMEM; 3767 } 3768 3769 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3770 3771 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3772 if (ret) { 3773 if (path != in_path) 3774 btrfs_free_path(path); 3775 return ret; 3776 } 3777 3778 leaf = path->nodes[0]; 3779 3780 if (filled) 3781 goto cache_index; 3782 3783 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3784 struct btrfs_inode_item); 3785 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3786 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3787 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3788 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3789 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3790 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3791 round_up(i_size_read(inode), fs_info->sectorsize)); 3792 3793 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3794 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3795 3796 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3797 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3798 3799 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3800 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3801 3802 BTRFS_I(inode)->i_otime.tv_sec = 3803 btrfs_timespec_sec(leaf, &inode_item->otime); 3804 BTRFS_I(inode)->i_otime.tv_nsec = 3805 btrfs_timespec_nsec(leaf, &inode_item->otime); 3806 3807 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3808 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3809 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3810 3811 inode_set_iversion_queried(inode, 3812 btrfs_inode_sequence(leaf, inode_item)); 3813 inode->i_generation = BTRFS_I(inode)->generation; 3814 inode->i_rdev = 0; 3815 rdev = btrfs_inode_rdev(leaf, inode_item); 3816 3817 BTRFS_I(inode)->index_cnt = (u64)-1; 3818 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3819 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3820 3821 cache_index: 3822 /* 3823 * If we were modified in the current generation and evicted from memory 3824 * and then re-read we need to do a full sync since we don't have any 3825 * idea about which extents were modified before we were evicted from 3826 * cache. 3827 * 3828 * This is required for both inode re-read from disk and delayed inode 3829 * in delayed_nodes_tree. 3830 */ 3831 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3832 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3833 &BTRFS_I(inode)->runtime_flags); 3834 3835 /* 3836 * We don't persist the id of the transaction where an unlink operation 3837 * against the inode was last made. So here we assume the inode might 3838 * have been evicted, and therefore the exact value of last_unlink_trans 3839 * lost, and set it to last_trans to avoid metadata inconsistencies 3840 * between the inode and its parent if the inode is fsync'ed and the log 3841 * replayed. For example, in the scenario: 3842 * 3843 * touch mydir/foo 3844 * ln mydir/foo mydir/bar 3845 * sync 3846 * unlink mydir/bar 3847 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3848 * xfs_io -c fsync mydir/foo 3849 * <power failure> 3850 * mount fs, triggers fsync log replay 3851 * 3852 * We must make sure that when we fsync our inode foo we also log its 3853 * parent inode, otherwise after log replay the parent still has the 3854 * dentry with the "bar" name but our inode foo has a link count of 1 3855 * and doesn't have an inode ref with the name "bar" anymore. 3856 * 3857 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3858 * but it guarantees correctness at the expense of occasional full 3859 * transaction commits on fsync if our inode is a directory, or if our 3860 * inode is not a directory, logging its parent unnecessarily. 3861 */ 3862 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3863 3864 /* 3865 * Same logic as for last_unlink_trans. We don't persist the generation 3866 * of the last transaction where this inode was used for a reflink 3867 * operation, so after eviction and reloading the inode we must be 3868 * pessimistic and assume the last transaction that modified the inode. 3869 */ 3870 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3871 3872 path->slots[0]++; 3873 if (inode->i_nlink != 1 || 3874 path->slots[0] >= btrfs_header_nritems(leaf)) 3875 goto cache_acl; 3876 3877 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3878 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3879 goto cache_acl; 3880 3881 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3882 if (location.type == BTRFS_INODE_REF_KEY) { 3883 struct btrfs_inode_ref *ref; 3884 3885 ref = (struct btrfs_inode_ref *)ptr; 3886 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3887 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3888 struct btrfs_inode_extref *extref; 3889 3890 extref = (struct btrfs_inode_extref *)ptr; 3891 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3892 extref); 3893 } 3894 cache_acl: 3895 /* 3896 * try to precache a NULL acl entry for files that don't have 3897 * any xattrs or acls 3898 */ 3899 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3900 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3901 if (first_xattr_slot != -1) { 3902 path->slots[0] = first_xattr_slot; 3903 ret = btrfs_load_inode_props(inode, path); 3904 if (ret) 3905 btrfs_err(fs_info, 3906 "error loading props for ino %llu (root %llu): %d", 3907 btrfs_ino(BTRFS_I(inode)), 3908 root->root_key.objectid, ret); 3909 } 3910 if (path != in_path) 3911 btrfs_free_path(path); 3912 3913 if (!maybe_acls) 3914 cache_no_acl(inode); 3915 3916 switch (inode->i_mode & S_IFMT) { 3917 case S_IFREG: 3918 inode->i_mapping->a_ops = &btrfs_aops; 3919 inode->i_fop = &btrfs_file_operations; 3920 inode->i_op = &btrfs_file_inode_operations; 3921 break; 3922 case S_IFDIR: 3923 inode->i_fop = &btrfs_dir_file_operations; 3924 inode->i_op = &btrfs_dir_inode_operations; 3925 break; 3926 case S_IFLNK: 3927 inode->i_op = &btrfs_symlink_inode_operations; 3928 inode_nohighmem(inode); 3929 inode->i_mapping->a_ops = &btrfs_aops; 3930 break; 3931 default: 3932 inode->i_op = &btrfs_special_inode_operations; 3933 init_special_inode(inode, inode->i_mode, rdev); 3934 break; 3935 } 3936 3937 btrfs_sync_inode_flags_to_i_flags(inode); 3938 return 0; 3939 } 3940 3941 /* 3942 * given a leaf and an inode, copy the inode fields into the leaf 3943 */ 3944 static void fill_inode_item(struct btrfs_trans_handle *trans, 3945 struct extent_buffer *leaf, 3946 struct btrfs_inode_item *item, 3947 struct inode *inode) 3948 { 3949 struct btrfs_map_token token; 3950 u64 flags; 3951 3952 btrfs_init_map_token(&token, leaf); 3953 3954 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3955 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3956 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3957 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3958 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3959 3960 btrfs_set_token_timespec_sec(&token, &item->atime, 3961 inode->i_atime.tv_sec); 3962 btrfs_set_token_timespec_nsec(&token, &item->atime, 3963 inode->i_atime.tv_nsec); 3964 3965 btrfs_set_token_timespec_sec(&token, &item->mtime, 3966 inode->i_mtime.tv_sec); 3967 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3968 inode->i_mtime.tv_nsec); 3969 3970 btrfs_set_token_timespec_sec(&token, &item->ctime, 3971 inode->i_ctime.tv_sec); 3972 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3973 inode->i_ctime.tv_nsec); 3974 3975 btrfs_set_token_timespec_sec(&token, &item->otime, 3976 BTRFS_I(inode)->i_otime.tv_sec); 3977 btrfs_set_token_timespec_nsec(&token, &item->otime, 3978 BTRFS_I(inode)->i_otime.tv_nsec); 3979 3980 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3981 btrfs_set_token_inode_generation(&token, item, 3982 BTRFS_I(inode)->generation); 3983 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3984 btrfs_set_token_inode_transid(&token, item, trans->transid); 3985 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3986 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3987 BTRFS_I(inode)->ro_flags); 3988 btrfs_set_token_inode_flags(&token, item, flags); 3989 btrfs_set_token_inode_block_group(&token, item, 0); 3990 } 3991 3992 /* 3993 * copy everything in the in-memory inode into the btree. 3994 */ 3995 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3996 struct btrfs_root *root, 3997 struct btrfs_inode *inode) 3998 { 3999 struct btrfs_inode_item *inode_item; 4000 struct btrfs_path *path; 4001 struct extent_buffer *leaf; 4002 int ret; 4003 4004 path = btrfs_alloc_path(); 4005 if (!path) 4006 return -ENOMEM; 4007 4008 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 4009 if (ret) { 4010 if (ret > 0) 4011 ret = -ENOENT; 4012 goto failed; 4013 } 4014 4015 leaf = path->nodes[0]; 4016 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4017 struct btrfs_inode_item); 4018 4019 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4020 btrfs_mark_buffer_dirty(leaf); 4021 btrfs_set_inode_last_trans(trans, inode); 4022 ret = 0; 4023 failed: 4024 btrfs_free_path(path); 4025 return ret; 4026 } 4027 4028 /* 4029 * copy everything in the in-memory inode into the btree. 4030 */ 4031 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4032 struct btrfs_root *root, 4033 struct btrfs_inode *inode) 4034 { 4035 struct btrfs_fs_info *fs_info = root->fs_info; 4036 int ret; 4037 4038 /* 4039 * If the inode is a free space inode, we can deadlock during commit 4040 * if we put it into the delayed code. 4041 * 4042 * The data relocation inode should also be directly updated 4043 * without delay 4044 */ 4045 if (!btrfs_is_free_space_inode(inode) 4046 && !btrfs_is_data_reloc_root(root) 4047 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4048 btrfs_update_root_times(trans, root); 4049 4050 ret = btrfs_delayed_update_inode(trans, root, inode); 4051 if (!ret) 4052 btrfs_set_inode_last_trans(trans, inode); 4053 return ret; 4054 } 4055 4056 return btrfs_update_inode_item(trans, root, inode); 4057 } 4058 4059 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4060 struct btrfs_root *root, struct btrfs_inode *inode) 4061 { 4062 int ret; 4063 4064 ret = btrfs_update_inode(trans, root, inode); 4065 if (ret == -ENOSPC) 4066 return btrfs_update_inode_item(trans, root, inode); 4067 return ret; 4068 } 4069 4070 /* 4071 * unlink helper that gets used here in inode.c and in the tree logging 4072 * recovery code. It remove a link in a directory with a given name, and 4073 * also drops the back refs in the inode to the directory 4074 */ 4075 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4076 struct btrfs_inode *dir, 4077 struct btrfs_inode *inode, 4078 const char *name, int name_len, 4079 struct btrfs_rename_ctx *rename_ctx) 4080 { 4081 struct btrfs_root *root = dir->root; 4082 struct btrfs_fs_info *fs_info = root->fs_info; 4083 struct btrfs_path *path; 4084 int ret = 0; 4085 struct btrfs_dir_item *di; 4086 u64 index; 4087 u64 ino = btrfs_ino(inode); 4088 u64 dir_ino = btrfs_ino(dir); 4089 4090 path = btrfs_alloc_path(); 4091 if (!path) { 4092 ret = -ENOMEM; 4093 goto out; 4094 } 4095 4096 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4097 name, name_len, -1); 4098 if (IS_ERR_OR_NULL(di)) { 4099 ret = di ? PTR_ERR(di) : -ENOENT; 4100 goto err; 4101 } 4102 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4103 if (ret) 4104 goto err; 4105 btrfs_release_path(path); 4106 4107 /* 4108 * If we don't have dir index, we have to get it by looking up 4109 * the inode ref, since we get the inode ref, remove it directly, 4110 * it is unnecessary to do delayed deletion. 4111 * 4112 * But if we have dir index, needn't search inode ref to get it. 4113 * Since the inode ref is close to the inode item, it is better 4114 * that we delay to delete it, and just do this deletion when 4115 * we update the inode item. 4116 */ 4117 if (inode->dir_index) { 4118 ret = btrfs_delayed_delete_inode_ref(inode); 4119 if (!ret) { 4120 index = inode->dir_index; 4121 goto skip_backref; 4122 } 4123 } 4124 4125 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4126 dir_ino, &index); 4127 if (ret) { 4128 btrfs_info(fs_info, 4129 "failed to delete reference to %.*s, inode %llu parent %llu", 4130 name_len, name, ino, dir_ino); 4131 btrfs_abort_transaction(trans, ret); 4132 goto err; 4133 } 4134 skip_backref: 4135 if (rename_ctx) 4136 rename_ctx->index = index; 4137 4138 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4139 if (ret) { 4140 btrfs_abort_transaction(trans, ret); 4141 goto err; 4142 } 4143 4144 /* 4145 * If we are in a rename context, we don't need to update anything in the 4146 * log. That will be done later during the rename by btrfs_log_new_name(). 4147 * Besides that, doing it here would only cause extra unncessary btree 4148 * operations on the log tree, increasing latency for applications. 4149 */ 4150 if (!rename_ctx) { 4151 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4152 dir_ino); 4153 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4154 index); 4155 } 4156 4157 /* 4158 * If we have a pending delayed iput we could end up with the final iput 4159 * being run in btrfs-cleaner context. If we have enough of these built 4160 * up we can end up burning a lot of time in btrfs-cleaner without any 4161 * way to throttle the unlinks. Since we're currently holding a ref on 4162 * the inode we can run the delayed iput here without any issues as the 4163 * final iput won't be done until after we drop the ref we're currently 4164 * holding. 4165 */ 4166 btrfs_run_delayed_iput(fs_info, inode); 4167 err: 4168 btrfs_free_path(path); 4169 if (ret) 4170 goto out; 4171 4172 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4173 inode_inc_iversion(&inode->vfs_inode); 4174 inode_inc_iversion(&dir->vfs_inode); 4175 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4176 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4177 ret = btrfs_update_inode(trans, root, dir); 4178 out: 4179 return ret; 4180 } 4181 4182 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4183 struct btrfs_inode *dir, struct btrfs_inode *inode, 4184 const char *name, int name_len) 4185 { 4186 int ret; 4187 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL); 4188 if (!ret) { 4189 drop_nlink(&inode->vfs_inode); 4190 ret = btrfs_update_inode(trans, inode->root, inode); 4191 } 4192 return ret; 4193 } 4194 4195 /* 4196 * helper to start transaction for unlink and rmdir. 4197 * 4198 * unlink and rmdir are special in btrfs, they do not always free space, so 4199 * if we cannot make our reservations the normal way try and see if there is 4200 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4201 * allow the unlink to occur. 4202 */ 4203 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4204 { 4205 struct btrfs_root *root = BTRFS_I(dir)->root; 4206 4207 /* 4208 * 1 for the possible orphan item 4209 * 1 for the dir item 4210 * 1 for the dir index 4211 * 1 for the inode ref 4212 * 1 for the inode 4213 */ 4214 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4215 } 4216 4217 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4218 { 4219 struct btrfs_trans_handle *trans; 4220 struct inode *inode = d_inode(dentry); 4221 int ret; 4222 4223 trans = __unlink_start_trans(dir); 4224 if (IS_ERR(trans)) 4225 return PTR_ERR(trans); 4226 4227 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4228 0); 4229 4230 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 4231 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4232 dentry->d_name.len); 4233 if (ret) 4234 goto out; 4235 4236 if (inode->i_nlink == 0) { 4237 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4238 if (ret) 4239 goto out; 4240 } 4241 4242 out: 4243 btrfs_end_transaction(trans); 4244 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4245 return ret; 4246 } 4247 4248 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4249 struct inode *dir, struct dentry *dentry) 4250 { 4251 struct btrfs_root *root = BTRFS_I(dir)->root; 4252 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4253 struct btrfs_path *path; 4254 struct extent_buffer *leaf; 4255 struct btrfs_dir_item *di; 4256 struct btrfs_key key; 4257 const char *name = dentry->d_name.name; 4258 int name_len = dentry->d_name.len; 4259 u64 index; 4260 int ret; 4261 u64 objectid; 4262 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4263 4264 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4265 objectid = inode->root->root_key.objectid; 4266 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4267 objectid = inode->location.objectid; 4268 } else { 4269 WARN_ON(1); 4270 return -EINVAL; 4271 } 4272 4273 path = btrfs_alloc_path(); 4274 if (!path) 4275 return -ENOMEM; 4276 4277 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4278 name, name_len, -1); 4279 if (IS_ERR_OR_NULL(di)) { 4280 ret = di ? PTR_ERR(di) : -ENOENT; 4281 goto out; 4282 } 4283 4284 leaf = path->nodes[0]; 4285 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4286 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4287 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4288 if (ret) { 4289 btrfs_abort_transaction(trans, ret); 4290 goto out; 4291 } 4292 btrfs_release_path(path); 4293 4294 /* 4295 * This is a placeholder inode for a subvolume we didn't have a 4296 * reference to at the time of the snapshot creation. In the meantime 4297 * we could have renamed the real subvol link into our snapshot, so 4298 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4299 * Instead simply lookup the dir_index_item for this entry so we can 4300 * remove it. Otherwise we know we have a ref to the root and we can 4301 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4302 */ 4303 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4304 di = btrfs_search_dir_index_item(root, path, dir_ino, 4305 name, name_len); 4306 if (IS_ERR_OR_NULL(di)) { 4307 if (!di) 4308 ret = -ENOENT; 4309 else 4310 ret = PTR_ERR(di); 4311 btrfs_abort_transaction(trans, ret); 4312 goto out; 4313 } 4314 4315 leaf = path->nodes[0]; 4316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4317 index = key.offset; 4318 btrfs_release_path(path); 4319 } else { 4320 ret = btrfs_del_root_ref(trans, objectid, 4321 root->root_key.objectid, dir_ino, 4322 &index, name, name_len); 4323 if (ret) { 4324 btrfs_abort_transaction(trans, ret); 4325 goto out; 4326 } 4327 } 4328 4329 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4330 if (ret) { 4331 btrfs_abort_transaction(trans, ret); 4332 goto out; 4333 } 4334 4335 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4336 inode_inc_iversion(dir); 4337 dir->i_mtime = dir->i_ctime = current_time(dir); 4338 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4339 if (ret) 4340 btrfs_abort_transaction(trans, ret); 4341 out: 4342 btrfs_free_path(path); 4343 return ret; 4344 } 4345 4346 /* 4347 * Helper to check if the subvolume references other subvolumes or if it's 4348 * default. 4349 */ 4350 static noinline int may_destroy_subvol(struct btrfs_root *root) 4351 { 4352 struct btrfs_fs_info *fs_info = root->fs_info; 4353 struct btrfs_path *path; 4354 struct btrfs_dir_item *di; 4355 struct btrfs_key key; 4356 u64 dir_id; 4357 int ret; 4358 4359 path = btrfs_alloc_path(); 4360 if (!path) 4361 return -ENOMEM; 4362 4363 /* Make sure this root isn't set as the default subvol */ 4364 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4365 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4366 dir_id, "default", 7, 0); 4367 if (di && !IS_ERR(di)) { 4368 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4369 if (key.objectid == root->root_key.objectid) { 4370 ret = -EPERM; 4371 btrfs_err(fs_info, 4372 "deleting default subvolume %llu is not allowed", 4373 key.objectid); 4374 goto out; 4375 } 4376 btrfs_release_path(path); 4377 } 4378 4379 key.objectid = root->root_key.objectid; 4380 key.type = BTRFS_ROOT_REF_KEY; 4381 key.offset = (u64)-1; 4382 4383 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4384 if (ret < 0) 4385 goto out; 4386 BUG_ON(ret == 0); 4387 4388 ret = 0; 4389 if (path->slots[0] > 0) { 4390 path->slots[0]--; 4391 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4392 if (key.objectid == root->root_key.objectid && 4393 key.type == BTRFS_ROOT_REF_KEY) 4394 ret = -ENOTEMPTY; 4395 } 4396 out: 4397 btrfs_free_path(path); 4398 return ret; 4399 } 4400 4401 /* Delete all dentries for inodes belonging to the root */ 4402 static void btrfs_prune_dentries(struct btrfs_root *root) 4403 { 4404 struct btrfs_fs_info *fs_info = root->fs_info; 4405 struct rb_node *node; 4406 struct rb_node *prev; 4407 struct btrfs_inode *entry; 4408 struct inode *inode; 4409 u64 objectid = 0; 4410 4411 if (!BTRFS_FS_ERROR(fs_info)) 4412 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4413 4414 spin_lock(&root->inode_lock); 4415 again: 4416 node = root->inode_tree.rb_node; 4417 prev = NULL; 4418 while (node) { 4419 prev = node; 4420 entry = rb_entry(node, struct btrfs_inode, rb_node); 4421 4422 if (objectid < btrfs_ino(entry)) 4423 node = node->rb_left; 4424 else if (objectid > btrfs_ino(entry)) 4425 node = node->rb_right; 4426 else 4427 break; 4428 } 4429 if (!node) { 4430 while (prev) { 4431 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4432 if (objectid <= btrfs_ino(entry)) { 4433 node = prev; 4434 break; 4435 } 4436 prev = rb_next(prev); 4437 } 4438 } 4439 while (node) { 4440 entry = rb_entry(node, struct btrfs_inode, rb_node); 4441 objectid = btrfs_ino(entry) + 1; 4442 inode = igrab(&entry->vfs_inode); 4443 if (inode) { 4444 spin_unlock(&root->inode_lock); 4445 if (atomic_read(&inode->i_count) > 1) 4446 d_prune_aliases(inode); 4447 /* 4448 * btrfs_drop_inode will have it removed from the inode 4449 * cache when its usage count hits zero. 4450 */ 4451 iput(inode); 4452 cond_resched(); 4453 spin_lock(&root->inode_lock); 4454 goto again; 4455 } 4456 4457 if (cond_resched_lock(&root->inode_lock)) 4458 goto again; 4459 4460 node = rb_next(node); 4461 } 4462 spin_unlock(&root->inode_lock); 4463 } 4464 4465 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4466 { 4467 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4468 struct btrfs_root *root = BTRFS_I(dir)->root; 4469 struct inode *inode = d_inode(dentry); 4470 struct btrfs_root *dest = BTRFS_I(inode)->root; 4471 struct btrfs_trans_handle *trans; 4472 struct btrfs_block_rsv block_rsv; 4473 u64 root_flags; 4474 int ret; 4475 4476 /* 4477 * Don't allow to delete a subvolume with send in progress. This is 4478 * inside the inode lock so the error handling that has to drop the bit 4479 * again is not run concurrently. 4480 */ 4481 spin_lock(&dest->root_item_lock); 4482 if (dest->send_in_progress) { 4483 spin_unlock(&dest->root_item_lock); 4484 btrfs_warn(fs_info, 4485 "attempt to delete subvolume %llu during send", 4486 dest->root_key.objectid); 4487 return -EPERM; 4488 } 4489 if (atomic_read(&dest->nr_swapfiles)) { 4490 spin_unlock(&dest->root_item_lock); 4491 btrfs_warn(fs_info, 4492 "attempt to delete subvolume %llu with active swapfile", 4493 root->root_key.objectid); 4494 return -EPERM; 4495 } 4496 root_flags = btrfs_root_flags(&dest->root_item); 4497 btrfs_set_root_flags(&dest->root_item, 4498 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4499 spin_unlock(&dest->root_item_lock); 4500 4501 down_write(&fs_info->subvol_sem); 4502 4503 ret = may_destroy_subvol(dest); 4504 if (ret) 4505 goto out_up_write; 4506 4507 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4508 /* 4509 * One for dir inode, 4510 * two for dir entries, 4511 * two for root ref/backref. 4512 */ 4513 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4514 if (ret) 4515 goto out_up_write; 4516 4517 trans = btrfs_start_transaction(root, 0); 4518 if (IS_ERR(trans)) { 4519 ret = PTR_ERR(trans); 4520 goto out_release; 4521 } 4522 trans->block_rsv = &block_rsv; 4523 trans->bytes_reserved = block_rsv.size; 4524 4525 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4526 4527 ret = btrfs_unlink_subvol(trans, dir, dentry); 4528 if (ret) { 4529 btrfs_abort_transaction(trans, ret); 4530 goto out_end_trans; 4531 } 4532 4533 ret = btrfs_record_root_in_trans(trans, dest); 4534 if (ret) { 4535 btrfs_abort_transaction(trans, ret); 4536 goto out_end_trans; 4537 } 4538 4539 memset(&dest->root_item.drop_progress, 0, 4540 sizeof(dest->root_item.drop_progress)); 4541 btrfs_set_root_drop_level(&dest->root_item, 0); 4542 btrfs_set_root_refs(&dest->root_item, 0); 4543 4544 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4545 ret = btrfs_insert_orphan_item(trans, 4546 fs_info->tree_root, 4547 dest->root_key.objectid); 4548 if (ret) { 4549 btrfs_abort_transaction(trans, ret); 4550 goto out_end_trans; 4551 } 4552 } 4553 4554 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4555 BTRFS_UUID_KEY_SUBVOL, 4556 dest->root_key.objectid); 4557 if (ret && ret != -ENOENT) { 4558 btrfs_abort_transaction(trans, ret); 4559 goto out_end_trans; 4560 } 4561 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4562 ret = btrfs_uuid_tree_remove(trans, 4563 dest->root_item.received_uuid, 4564 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4565 dest->root_key.objectid); 4566 if (ret && ret != -ENOENT) { 4567 btrfs_abort_transaction(trans, ret); 4568 goto out_end_trans; 4569 } 4570 } 4571 4572 free_anon_bdev(dest->anon_dev); 4573 dest->anon_dev = 0; 4574 out_end_trans: 4575 trans->block_rsv = NULL; 4576 trans->bytes_reserved = 0; 4577 ret = btrfs_end_transaction(trans); 4578 inode->i_flags |= S_DEAD; 4579 out_release: 4580 btrfs_subvolume_release_metadata(root, &block_rsv); 4581 out_up_write: 4582 up_write(&fs_info->subvol_sem); 4583 if (ret) { 4584 spin_lock(&dest->root_item_lock); 4585 root_flags = btrfs_root_flags(&dest->root_item); 4586 btrfs_set_root_flags(&dest->root_item, 4587 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4588 spin_unlock(&dest->root_item_lock); 4589 } else { 4590 d_invalidate(dentry); 4591 btrfs_prune_dentries(dest); 4592 ASSERT(dest->send_in_progress == 0); 4593 } 4594 4595 return ret; 4596 } 4597 4598 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4599 { 4600 struct inode *inode = d_inode(dentry); 4601 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4602 int err = 0; 4603 struct btrfs_trans_handle *trans; 4604 u64 last_unlink_trans; 4605 4606 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4607 return -ENOTEMPTY; 4608 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4609 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4610 btrfs_err(fs_info, 4611 "extent tree v2 doesn't support snapshot deletion yet"); 4612 return -EOPNOTSUPP; 4613 } 4614 return btrfs_delete_subvolume(dir, dentry); 4615 } 4616 4617 trans = __unlink_start_trans(dir); 4618 if (IS_ERR(trans)) 4619 return PTR_ERR(trans); 4620 4621 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4622 err = btrfs_unlink_subvol(trans, dir, dentry); 4623 goto out; 4624 } 4625 4626 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4627 if (err) 4628 goto out; 4629 4630 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4631 4632 /* now the directory is empty */ 4633 err = btrfs_unlink_inode(trans, BTRFS_I(dir), 4634 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4635 dentry->d_name.len); 4636 if (!err) { 4637 btrfs_i_size_write(BTRFS_I(inode), 0); 4638 /* 4639 * Propagate the last_unlink_trans value of the deleted dir to 4640 * its parent directory. This is to prevent an unrecoverable 4641 * log tree in the case we do something like this: 4642 * 1) create dir foo 4643 * 2) create snapshot under dir foo 4644 * 3) delete the snapshot 4645 * 4) rmdir foo 4646 * 5) mkdir foo 4647 * 6) fsync foo or some file inside foo 4648 */ 4649 if (last_unlink_trans >= trans->transid) 4650 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4651 } 4652 out: 4653 btrfs_end_transaction(trans); 4654 btrfs_btree_balance_dirty(fs_info); 4655 4656 return err; 4657 } 4658 4659 /* 4660 * btrfs_truncate_block - read, zero a chunk and write a block 4661 * @inode - inode that we're zeroing 4662 * @from - the offset to start zeroing 4663 * @len - the length to zero, 0 to zero the entire range respective to the 4664 * offset 4665 * @front - zero up to the offset instead of from the offset on 4666 * 4667 * This will find the block for the "from" offset and cow the block and zero the 4668 * part we want to zero. This is used with truncate and hole punching. 4669 */ 4670 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4671 int front) 4672 { 4673 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4674 struct address_space *mapping = inode->vfs_inode.i_mapping; 4675 struct extent_io_tree *io_tree = &inode->io_tree; 4676 struct btrfs_ordered_extent *ordered; 4677 struct extent_state *cached_state = NULL; 4678 struct extent_changeset *data_reserved = NULL; 4679 bool only_release_metadata = false; 4680 u32 blocksize = fs_info->sectorsize; 4681 pgoff_t index = from >> PAGE_SHIFT; 4682 unsigned offset = from & (blocksize - 1); 4683 struct page *page; 4684 gfp_t mask = btrfs_alloc_write_mask(mapping); 4685 size_t write_bytes = blocksize; 4686 int ret = 0; 4687 u64 block_start; 4688 u64 block_end; 4689 4690 if (IS_ALIGNED(offset, blocksize) && 4691 (!len || IS_ALIGNED(len, blocksize))) 4692 goto out; 4693 4694 block_start = round_down(from, blocksize); 4695 block_end = block_start + blocksize - 1; 4696 4697 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4698 blocksize); 4699 if (ret < 0) { 4700 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4701 /* For nocow case, no need to reserve data space */ 4702 only_release_metadata = true; 4703 } else { 4704 goto out; 4705 } 4706 } 4707 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize); 4708 if (ret < 0) { 4709 if (!only_release_metadata) 4710 btrfs_free_reserved_data_space(inode, data_reserved, 4711 block_start, blocksize); 4712 goto out; 4713 } 4714 again: 4715 page = find_or_create_page(mapping, index, mask); 4716 if (!page) { 4717 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4718 blocksize, true); 4719 btrfs_delalloc_release_extents(inode, blocksize); 4720 ret = -ENOMEM; 4721 goto out; 4722 } 4723 ret = set_page_extent_mapped(page); 4724 if (ret < 0) 4725 goto out_unlock; 4726 4727 if (!PageUptodate(page)) { 4728 ret = btrfs_readpage(NULL, page); 4729 lock_page(page); 4730 if (page->mapping != mapping) { 4731 unlock_page(page); 4732 put_page(page); 4733 goto again; 4734 } 4735 if (!PageUptodate(page)) { 4736 ret = -EIO; 4737 goto out_unlock; 4738 } 4739 } 4740 wait_on_page_writeback(page); 4741 4742 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4743 4744 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4745 if (ordered) { 4746 unlock_extent_cached(io_tree, block_start, block_end, 4747 &cached_state); 4748 unlock_page(page); 4749 put_page(page); 4750 btrfs_start_ordered_extent(ordered, 1); 4751 btrfs_put_ordered_extent(ordered); 4752 goto again; 4753 } 4754 4755 clear_extent_bit(&inode->io_tree, block_start, block_end, 4756 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4757 0, 0, &cached_state); 4758 4759 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4760 &cached_state); 4761 if (ret) { 4762 unlock_extent_cached(io_tree, block_start, block_end, 4763 &cached_state); 4764 goto out_unlock; 4765 } 4766 4767 if (offset != blocksize) { 4768 if (!len) 4769 len = blocksize - offset; 4770 if (front) 4771 memzero_page(page, (block_start - page_offset(page)), 4772 offset); 4773 else 4774 memzero_page(page, (block_start - page_offset(page)) + offset, 4775 len); 4776 flush_dcache_page(page); 4777 } 4778 btrfs_page_clear_checked(fs_info, page, block_start, 4779 block_end + 1 - block_start); 4780 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4781 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4782 4783 if (only_release_metadata) 4784 set_extent_bit(&inode->io_tree, block_start, block_end, 4785 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4786 4787 out_unlock: 4788 if (ret) { 4789 if (only_release_metadata) 4790 btrfs_delalloc_release_metadata(inode, blocksize, true); 4791 else 4792 btrfs_delalloc_release_space(inode, data_reserved, 4793 block_start, blocksize, true); 4794 } 4795 btrfs_delalloc_release_extents(inode, blocksize); 4796 unlock_page(page); 4797 put_page(page); 4798 out: 4799 if (only_release_metadata) 4800 btrfs_check_nocow_unlock(inode); 4801 extent_changeset_free(data_reserved); 4802 return ret; 4803 } 4804 4805 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4806 u64 offset, u64 len) 4807 { 4808 struct btrfs_fs_info *fs_info = root->fs_info; 4809 struct btrfs_trans_handle *trans; 4810 struct btrfs_drop_extents_args drop_args = { 0 }; 4811 int ret; 4812 4813 /* 4814 * If NO_HOLES is enabled, we don't need to do anything. 4815 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4816 * or btrfs_update_inode() will be called, which guarantee that the next 4817 * fsync will know this inode was changed and needs to be logged. 4818 */ 4819 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4820 return 0; 4821 4822 /* 4823 * 1 - for the one we're dropping 4824 * 1 - for the one we're adding 4825 * 1 - for updating the inode. 4826 */ 4827 trans = btrfs_start_transaction(root, 3); 4828 if (IS_ERR(trans)) 4829 return PTR_ERR(trans); 4830 4831 drop_args.start = offset; 4832 drop_args.end = offset + len; 4833 drop_args.drop_cache = true; 4834 4835 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4836 if (ret) { 4837 btrfs_abort_transaction(trans, ret); 4838 btrfs_end_transaction(trans); 4839 return ret; 4840 } 4841 4842 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 4843 offset, 0, 0, len, 0, len, 0, 0, 0); 4844 if (ret) { 4845 btrfs_abort_transaction(trans, ret); 4846 } else { 4847 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4848 btrfs_update_inode(trans, root, inode); 4849 } 4850 btrfs_end_transaction(trans); 4851 return ret; 4852 } 4853 4854 /* 4855 * This function puts in dummy file extents for the area we're creating a hole 4856 * for. So if we are truncating this file to a larger size we need to insert 4857 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4858 * the range between oldsize and size 4859 */ 4860 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4861 { 4862 struct btrfs_root *root = inode->root; 4863 struct btrfs_fs_info *fs_info = root->fs_info; 4864 struct extent_io_tree *io_tree = &inode->io_tree; 4865 struct extent_map *em = NULL; 4866 struct extent_state *cached_state = NULL; 4867 struct extent_map_tree *em_tree = &inode->extent_tree; 4868 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4869 u64 block_end = ALIGN(size, fs_info->sectorsize); 4870 u64 last_byte; 4871 u64 cur_offset; 4872 u64 hole_size; 4873 int err = 0; 4874 4875 /* 4876 * If our size started in the middle of a block we need to zero out the 4877 * rest of the block before we expand the i_size, otherwise we could 4878 * expose stale data. 4879 */ 4880 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4881 if (err) 4882 return err; 4883 4884 if (size <= hole_start) 4885 return 0; 4886 4887 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4888 &cached_state); 4889 cur_offset = hole_start; 4890 while (1) { 4891 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4892 block_end - cur_offset); 4893 if (IS_ERR(em)) { 4894 err = PTR_ERR(em); 4895 em = NULL; 4896 break; 4897 } 4898 last_byte = min(extent_map_end(em), block_end); 4899 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4900 hole_size = last_byte - cur_offset; 4901 4902 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4903 struct extent_map *hole_em; 4904 4905 err = maybe_insert_hole(root, inode, cur_offset, 4906 hole_size); 4907 if (err) 4908 break; 4909 4910 err = btrfs_inode_set_file_extent_range(inode, 4911 cur_offset, hole_size); 4912 if (err) 4913 break; 4914 4915 btrfs_drop_extent_cache(inode, cur_offset, 4916 cur_offset + hole_size - 1, 0); 4917 hole_em = alloc_extent_map(); 4918 if (!hole_em) { 4919 btrfs_set_inode_full_sync(inode); 4920 goto next; 4921 } 4922 hole_em->start = cur_offset; 4923 hole_em->len = hole_size; 4924 hole_em->orig_start = cur_offset; 4925 4926 hole_em->block_start = EXTENT_MAP_HOLE; 4927 hole_em->block_len = 0; 4928 hole_em->orig_block_len = 0; 4929 hole_em->ram_bytes = hole_size; 4930 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4931 hole_em->generation = fs_info->generation; 4932 4933 while (1) { 4934 write_lock(&em_tree->lock); 4935 err = add_extent_mapping(em_tree, hole_em, 1); 4936 write_unlock(&em_tree->lock); 4937 if (err != -EEXIST) 4938 break; 4939 btrfs_drop_extent_cache(inode, cur_offset, 4940 cur_offset + 4941 hole_size - 1, 0); 4942 } 4943 free_extent_map(hole_em); 4944 } else { 4945 err = btrfs_inode_set_file_extent_range(inode, 4946 cur_offset, hole_size); 4947 if (err) 4948 break; 4949 } 4950 next: 4951 free_extent_map(em); 4952 em = NULL; 4953 cur_offset = last_byte; 4954 if (cur_offset >= block_end) 4955 break; 4956 } 4957 free_extent_map(em); 4958 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4959 return err; 4960 } 4961 4962 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4963 { 4964 struct btrfs_root *root = BTRFS_I(inode)->root; 4965 struct btrfs_trans_handle *trans; 4966 loff_t oldsize = i_size_read(inode); 4967 loff_t newsize = attr->ia_size; 4968 int mask = attr->ia_valid; 4969 int ret; 4970 4971 /* 4972 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4973 * special case where we need to update the times despite not having 4974 * these flags set. For all other operations the VFS set these flags 4975 * explicitly if it wants a timestamp update. 4976 */ 4977 if (newsize != oldsize) { 4978 inode_inc_iversion(inode); 4979 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4980 inode->i_ctime = inode->i_mtime = 4981 current_time(inode); 4982 } 4983 4984 if (newsize > oldsize) { 4985 /* 4986 * Don't do an expanding truncate while snapshotting is ongoing. 4987 * This is to ensure the snapshot captures a fully consistent 4988 * state of this file - if the snapshot captures this expanding 4989 * truncation, it must capture all writes that happened before 4990 * this truncation. 4991 */ 4992 btrfs_drew_write_lock(&root->snapshot_lock); 4993 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 4994 if (ret) { 4995 btrfs_drew_write_unlock(&root->snapshot_lock); 4996 return ret; 4997 } 4998 4999 trans = btrfs_start_transaction(root, 1); 5000 if (IS_ERR(trans)) { 5001 btrfs_drew_write_unlock(&root->snapshot_lock); 5002 return PTR_ERR(trans); 5003 } 5004 5005 i_size_write(inode, newsize); 5006 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5007 pagecache_isize_extended(inode, oldsize, newsize); 5008 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5009 btrfs_drew_write_unlock(&root->snapshot_lock); 5010 btrfs_end_transaction(trans); 5011 } else { 5012 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5013 5014 if (btrfs_is_zoned(fs_info)) { 5015 ret = btrfs_wait_ordered_range(inode, 5016 ALIGN(newsize, fs_info->sectorsize), 5017 (u64)-1); 5018 if (ret) 5019 return ret; 5020 } 5021 5022 /* 5023 * We're truncating a file that used to have good data down to 5024 * zero. Make sure any new writes to the file get on disk 5025 * on close. 5026 */ 5027 if (newsize == 0) 5028 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5029 &BTRFS_I(inode)->runtime_flags); 5030 5031 truncate_setsize(inode, newsize); 5032 5033 inode_dio_wait(inode); 5034 5035 ret = btrfs_truncate(inode, newsize == oldsize); 5036 if (ret && inode->i_nlink) { 5037 int err; 5038 5039 /* 5040 * Truncate failed, so fix up the in-memory size. We 5041 * adjusted disk_i_size down as we removed extents, so 5042 * wait for disk_i_size to be stable and then update the 5043 * in-memory size to match. 5044 */ 5045 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5046 if (err) 5047 return err; 5048 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5049 } 5050 } 5051 5052 return ret; 5053 } 5054 5055 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5056 struct iattr *attr) 5057 { 5058 struct inode *inode = d_inode(dentry); 5059 struct btrfs_root *root = BTRFS_I(inode)->root; 5060 int err; 5061 5062 if (btrfs_root_readonly(root)) 5063 return -EROFS; 5064 5065 err = setattr_prepare(mnt_userns, dentry, attr); 5066 if (err) 5067 return err; 5068 5069 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5070 err = btrfs_setsize(inode, attr); 5071 if (err) 5072 return err; 5073 } 5074 5075 if (attr->ia_valid) { 5076 setattr_copy(mnt_userns, inode, attr); 5077 inode_inc_iversion(inode); 5078 err = btrfs_dirty_inode(inode); 5079 5080 if (!err && attr->ia_valid & ATTR_MODE) 5081 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5082 } 5083 5084 return err; 5085 } 5086 5087 /* 5088 * While truncating the inode pages during eviction, we get the VFS 5089 * calling btrfs_invalidate_folio() against each folio of the inode. This 5090 * is slow because the calls to btrfs_invalidate_folio() result in a 5091 * huge amount of calls to lock_extent_bits() and clear_extent_bit(), 5092 * which keep merging and splitting extent_state structures over and over, 5093 * wasting lots of time. 5094 * 5095 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5096 * skip all those expensive operations on a per folio basis and do only 5097 * the ordered io finishing, while we release here the extent_map and 5098 * extent_state structures, without the excessive merging and splitting. 5099 */ 5100 static void evict_inode_truncate_pages(struct inode *inode) 5101 { 5102 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5103 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5104 struct rb_node *node; 5105 5106 ASSERT(inode->i_state & I_FREEING); 5107 truncate_inode_pages_final(&inode->i_data); 5108 5109 write_lock(&map_tree->lock); 5110 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5111 struct extent_map *em; 5112 5113 node = rb_first_cached(&map_tree->map); 5114 em = rb_entry(node, struct extent_map, rb_node); 5115 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5116 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5117 remove_extent_mapping(map_tree, em); 5118 free_extent_map(em); 5119 if (need_resched()) { 5120 write_unlock(&map_tree->lock); 5121 cond_resched(); 5122 write_lock(&map_tree->lock); 5123 } 5124 } 5125 write_unlock(&map_tree->lock); 5126 5127 /* 5128 * Keep looping until we have no more ranges in the io tree. 5129 * We can have ongoing bios started by readahead that have 5130 * their endio callback (extent_io.c:end_bio_extent_readpage) 5131 * still in progress (unlocked the pages in the bio but did not yet 5132 * unlocked the ranges in the io tree). Therefore this means some 5133 * ranges can still be locked and eviction started because before 5134 * submitting those bios, which are executed by a separate task (work 5135 * queue kthread), inode references (inode->i_count) were not taken 5136 * (which would be dropped in the end io callback of each bio). 5137 * Therefore here we effectively end up waiting for those bios and 5138 * anyone else holding locked ranges without having bumped the inode's 5139 * reference count - if we don't do it, when they access the inode's 5140 * io_tree to unlock a range it may be too late, leading to an 5141 * use-after-free issue. 5142 */ 5143 spin_lock(&io_tree->lock); 5144 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5145 struct extent_state *state; 5146 struct extent_state *cached_state = NULL; 5147 u64 start; 5148 u64 end; 5149 unsigned state_flags; 5150 5151 node = rb_first(&io_tree->state); 5152 state = rb_entry(node, struct extent_state, rb_node); 5153 start = state->start; 5154 end = state->end; 5155 state_flags = state->state; 5156 spin_unlock(&io_tree->lock); 5157 5158 lock_extent_bits(io_tree, start, end, &cached_state); 5159 5160 /* 5161 * If still has DELALLOC flag, the extent didn't reach disk, 5162 * and its reserved space won't be freed by delayed_ref. 5163 * So we need to free its reserved space here. 5164 * (Refer to comment in btrfs_invalidate_folio, case 2) 5165 * 5166 * Note, end is the bytenr of last byte, so we need + 1 here. 5167 */ 5168 if (state_flags & EXTENT_DELALLOC) 5169 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5170 end - start + 1); 5171 5172 clear_extent_bit(io_tree, start, end, 5173 EXTENT_LOCKED | EXTENT_DELALLOC | 5174 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5175 &cached_state); 5176 5177 cond_resched(); 5178 spin_lock(&io_tree->lock); 5179 } 5180 spin_unlock(&io_tree->lock); 5181 } 5182 5183 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5184 struct btrfs_block_rsv *rsv) 5185 { 5186 struct btrfs_fs_info *fs_info = root->fs_info; 5187 struct btrfs_trans_handle *trans; 5188 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5189 int ret; 5190 5191 /* 5192 * Eviction should be taking place at some place safe because of our 5193 * delayed iputs. However the normal flushing code will run delayed 5194 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5195 * 5196 * We reserve the delayed_refs_extra here again because we can't use 5197 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5198 * above. We reserve our extra bit here because we generate a ton of 5199 * delayed refs activity by truncating. 5200 * 5201 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5202 * if we fail to make this reservation we can re-try without the 5203 * delayed_refs_extra so we can make some forward progress. 5204 */ 5205 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5206 BTRFS_RESERVE_FLUSH_EVICT); 5207 if (ret) { 5208 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5209 BTRFS_RESERVE_FLUSH_EVICT); 5210 if (ret) { 5211 btrfs_warn(fs_info, 5212 "could not allocate space for delete; will truncate on mount"); 5213 return ERR_PTR(-ENOSPC); 5214 } 5215 delayed_refs_extra = 0; 5216 } 5217 5218 trans = btrfs_join_transaction(root); 5219 if (IS_ERR(trans)) 5220 return trans; 5221 5222 if (delayed_refs_extra) { 5223 trans->block_rsv = &fs_info->trans_block_rsv; 5224 trans->bytes_reserved = delayed_refs_extra; 5225 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5226 delayed_refs_extra, 1); 5227 } 5228 return trans; 5229 } 5230 5231 void btrfs_evict_inode(struct inode *inode) 5232 { 5233 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5234 struct btrfs_trans_handle *trans; 5235 struct btrfs_root *root = BTRFS_I(inode)->root; 5236 struct btrfs_block_rsv *rsv; 5237 int ret; 5238 5239 trace_btrfs_inode_evict(inode); 5240 5241 if (!root) { 5242 fsverity_cleanup_inode(inode); 5243 clear_inode(inode); 5244 return; 5245 } 5246 5247 evict_inode_truncate_pages(inode); 5248 5249 if (inode->i_nlink && 5250 ((btrfs_root_refs(&root->root_item) != 0 && 5251 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5252 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5253 goto no_delete; 5254 5255 if (is_bad_inode(inode)) 5256 goto no_delete; 5257 5258 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5259 5260 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5261 goto no_delete; 5262 5263 if (inode->i_nlink > 0) { 5264 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5265 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5266 goto no_delete; 5267 } 5268 5269 /* 5270 * This makes sure the inode item in tree is uptodate and the space for 5271 * the inode update is released. 5272 */ 5273 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5274 if (ret) 5275 goto no_delete; 5276 5277 /* 5278 * This drops any pending insert or delete operations we have for this 5279 * inode. We could have a delayed dir index deletion queued up, but 5280 * we're removing the inode completely so that'll be taken care of in 5281 * the truncate. 5282 */ 5283 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5284 5285 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5286 if (!rsv) 5287 goto no_delete; 5288 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5289 rsv->failfast = 1; 5290 5291 btrfs_i_size_write(BTRFS_I(inode), 0); 5292 5293 while (1) { 5294 struct btrfs_truncate_control control = { 5295 .inode = BTRFS_I(inode), 5296 .ino = btrfs_ino(BTRFS_I(inode)), 5297 .new_size = 0, 5298 .min_type = 0, 5299 }; 5300 5301 trans = evict_refill_and_join(root, rsv); 5302 if (IS_ERR(trans)) 5303 goto free_rsv; 5304 5305 trans->block_rsv = rsv; 5306 5307 ret = btrfs_truncate_inode_items(trans, root, &control); 5308 trans->block_rsv = &fs_info->trans_block_rsv; 5309 btrfs_end_transaction(trans); 5310 btrfs_btree_balance_dirty(fs_info); 5311 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5312 goto free_rsv; 5313 else if (!ret) 5314 break; 5315 } 5316 5317 /* 5318 * Errors here aren't a big deal, it just means we leave orphan items in 5319 * the tree. They will be cleaned up on the next mount. If the inode 5320 * number gets reused, cleanup deletes the orphan item without doing 5321 * anything, and unlink reuses the existing orphan item. 5322 * 5323 * If it turns out that we are dropping too many of these, we might want 5324 * to add a mechanism for retrying these after a commit. 5325 */ 5326 trans = evict_refill_and_join(root, rsv); 5327 if (!IS_ERR(trans)) { 5328 trans->block_rsv = rsv; 5329 btrfs_orphan_del(trans, BTRFS_I(inode)); 5330 trans->block_rsv = &fs_info->trans_block_rsv; 5331 btrfs_end_transaction(trans); 5332 } 5333 5334 free_rsv: 5335 btrfs_free_block_rsv(fs_info, rsv); 5336 no_delete: 5337 /* 5338 * If we didn't successfully delete, the orphan item will still be in 5339 * the tree and we'll retry on the next mount. Again, we might also want 5340 * to retry these periodically in the future. 5341 */ 5342 btrfs_remove_delayed_node(BTRFS_I(inode)); 5343 fsverity_cleanup_inode(inode); 5344 clear_inode(inode); 5345 } 5346 5347 /* 5348 * Return the key found in the dir entry in the location pointer, fill @type 5349 * with BTRFS_FT_*, and return 0. 5350 * 5351 * If no dir entries were found, returns -ENOENT. 5352 * If found a corrupted location in dir entry, returns -EUCLEAN. 5353 */ 5354 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5355 struct btrfs_key *location, u8 *type) 5356 { 5357 const char *name = dentry->d_name.name; 5358 int namelen = dentry->d_name.len; 5359 struct btrfs_dir_item *di; 5360 struct btrfs_path *path; 5361 struct btrfs_root *root = BTRFS_I(dir)->root; 5362 int ret = 0; 5363 5364 path = btrfs_alloc_path(); 5365 if (!path) 5366 return -ENOMEM; 5367 5368 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5369 name, namelen, 0); 5370 if (IS_ERR_OR_NULL(di)) { 5371 ret = di ? PTR_ERR(di) : -ENOENT; 5372 goto out; 5373 } 5374 5375 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5376 if (location->type != BTRFS_INODE_ITEM_KEY && 5377 location->type != BTRFS_ROOT_ITEM_KEY) { 5378 ret = -EUCLEAN; 5379 btrfs_warn(root->fs_info, 5380 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5381 __func__, name, btrfs_ino(BTRFS_I(dir)), 5382 location->objectid, location->type, location->offset); 5383 } 5384 if (!ret) 5385 *type = btrfs_dir_type(path->nodes[0], di); 5386 out: 5387 btrfs_free_path(path); 5388 return ret; 5389 } 5390 5391 /* 5392 * when we hit a tree root in a directory, the btrfs part of the inode 5393 * needs to be changed to reflect the root directory of the tree root. This 5394 * is kind of like crossing a mount point. 5395 */ 5396 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5397 struct inode *dir, 5398 struct dentry *dentry, 5399 struct btrfs_key *location, 5400 struct btrfs_root **sub_root) 5401 { 5402 struct btrfs_path *path; 5403 struct btrfs_root *new_root; 5404 struct btrfs_root_ref *ref; 5405 struct extent_buffer *leaf; 5406 struct btrfs_key key; 5407 int ret; 5408 int err = 0; 5409 5410 path = btrfs_alloc_path(); 5411 if (!path) { 5412 err = -ENOMEM; 5413 goto out; 5414 } 5415 5416 err = -ENOENT; 5417 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5418 key.type = BTRFS_ROOT_REF_KEY; 5419 key.offset = location->objectid; 5420 5421 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5422 if (ret) { 5423 if (ret < 0) 5424 err = ret; 5425 goto out; 5426 } 5427 5428 leaf = path->nodes[0]; 5429 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5430 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5431 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5432 goto out; 5433 5434 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5435 (unsigned long)(ref + 1), 5436 dentry->d_name.len); 5437 if (ret) 5438 goto out; 5439 5440 btrfs_release_path(path); 5441 5442 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5443 if (IS_ERR(new_root)) { 5444 err = PTR_ERR(new_root); 5445 goto out; 5446 } 5447 5448 *sub_root = new_root; 5449 location->objectid = btrfs_root_dirid(&new_root->root_item); 5450 location->type = BTRFS_INODE_ITEM_KEY; 5451 location->offset = 0; 5452 err = 0; 5453 out: 5454 btrfs_free_path(path); 5455 return err; 5456 } 5457 5458 static void inode_tree_add(struct inode *inode) 5459 { 5460 struct btrfs_root *root = BTRFS_I(inode)->root; 5461 struct btrfs_inode *entry; 5462 struct rb_node **p; 5463 struct rb_node *parent; 5464 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5465 u64 ino = btrfs_ino(BTRFS_I(inode)); 5466 5467 if (inode_unhashed(inode)) 5468 return; 5469 parent = NULL; 5470 spin_lock(&root->inode_lock); 5471 p = &root->inode_tree.rb_node; 5472 while (*p) { 5473 parent = *p; 5474 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5475 5476 if (ino < btrfs_ino(entry)) 5477 p = &parent->rb_left; 5478 else if (ino > btrfs_ino(entry)) 5479 p = &parent->rb_right; 5480 else { 5481 WARN_ON(!(entry->vfs_inode.i_state & 5482 (I_WILL_FREE | I_FREEING))); 5483 rb_replace_node(parent, new, &root->inode_tree); 5484 RB_CLEAR_NODE(parent); 5485 spin_unlock(&root->inode_lock); 5486 return; 5487 } 5488 } 5489 rb_link_node(new, parent, p); 5490 rb_insert_color(new, &root->inode_tree); 5491 spin_unlock(&root->inode_lock); 5492 } 5493 5494 static void inode_tree_del(struct btrfs_inode *inode) 5495 { 5496 struct btrfs_root *root = inode->root; 5497 int empty = 0; 5498 5499 spin_lock(&root->inode_lock); 5500 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5501 rb_erase(&inode->rb_node, &root->inode_tree); 5502 RB_CLEAR_NODE(&inode->rb_node); 5503 empty = RB_EMPTY_ROOT(&root->inode_tree); 5504 } 5505 spin_unlock(&root->inode_lock); 5506 5507 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5508 spin_lock(&root->inode_lock); 5509 empty = RB_EMPTY_ROOT(&root->inode_tree); 5510 spin_unlock(&root->inode_lock); 5511 if (empty) 5512 btrfs_add_dead_root(root); 5513 } 5514 } 5515 5516 5517 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5518 { 5519 struct btrfs_iget_args *args = p; 5520 5521 inode->i_ino = args->ino; 5522 BTRFS_I(inode)->location.objectid = args->ino; 5523 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5524 BTRFS_I(inode)->location.offset = 0; 5525 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5526 BUG_ON(args->root && !BTRFS_I(inode)->root); 5527 return 0; 5528 } 5529 5530 static int btrfs_find_actor(struct inode *inode, void *opaque) 5531 { 5532 struct btrfs_iget_args *args = opaque; 5533 5534 return args->ino == BTRFS_I(inode)->location.objectid && 5535 args->root == BTRFS_I(inode)->root; 5536 } 5537 5538 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5539 struct btrfs_root *root) 5540 { 5541 struct inode *inode; 5542 struct btrfs_iget_args args; 5543 unsigned long hashval = btrfs_inode_hash(ino, root); 5544 5545 args.ino = ino; 5546 args.root = root; 5547 5548 inode = iget5_locked(s, hashval, btrfs_find_actor, 5549 btrfs_init_locked_inode, 5550 (void *)&args); 5551 return inode; 5552 } 5553 5554 /* 5555 * Get an inode object given its inode number and corresponding root. 5556 * Path can be preallocated to prevent recursing back to iget through 5557 * allocator. NULL is also valid but may require an additional allocation 5558 * later. 5559 */ 5560 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5561 struct btrfs_root *root, struct btrfs_path *path) 5562 { 5563 struct inode *inode; 5564 5565 inode = btrfs_iget_locked(s, ino, root); 5566 if (!inode) 5567 return ERR_PTR(-ENOMEM); 5568 5569 if (inode->i_state & I_NEW) { 5570 int ret; 5571 5572 ret = btrfs_read_locked_inode(inode, path); 5573 if (!ret) { 5574 inode_tree_add(inode); 5575 unlock_new_inode(inode); 5576 } else { 5577 iget_failed(inode); 5578 /* 5579 * ret > 0 can come from btrfs_search_slot called by 5580 * btrfs_read_locked_inode, this means the inode item 5581 * was not found. 5582 */ 5583 if (ret > 0) 5584 ret = -ENOENT; 5585 inode = ERR_PTR(ret); 5586 } 5587 } 5588 5589 return inode; 5590 } 5591 5592 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5593 { 5594 return btrfs_iget_path(s, ino, root, NULL); 5595 } 5596 5597 static struct inode *new_simple_dir(struct super_block *s, 5598 struct btrfs_key *key, 5599 struct btrfs_root *root) 5600 { 5601 struct inode *inode = new_inode(s); 5602 5603 if (!inode) 5604 return ERR_PTR(-ENOMEM); 5605 5606 BTRFS_I(inode)->root = btrfs_grab_root(root); 5607 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5608 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5609 5610 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5611 /* 5612 * We only need lookup, the rest is read-only and there's no inode 5613 * associated with the dentry 5614 */ 5615 inode->i_op = &simple_dir_inode_operations; 5616 inode->i_opflags &= ~IOP_XATTR; 5617 inode->i_fop = &simple_dir_operations; 5618 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5619 inode->i_mtime = current_time(inode); 5620 inode->i_atime = inode->i_mtime; 5621 inode->i_ctime = inode->i_mtime; 5622 BTRFS_I(inode)->i_otime = inode->i_mtime; 5623 5624 return inode; 5625 } 5626 5627 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5628 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5629 static_assert(BTRFS_FT_DIR == FT_DIR); 5630 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5631 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5632 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5633 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5634 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5635 5636 static inline u8 btrfs_inode_type(struct inode *inode) 5637 { 5638 return fs_umode_to_ftype(inode->i_mode); 5639 } 5640 5641 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5642 { 5643 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5644 struct inode *inode; 5645 struct btrfs_root *root = BTRFS_I(dir)->root; 5646 struct btrfs_root *sub_root = root; 5647 struct btrfs_key location; 5648 u8 di_type = 0; 5649 int ret = 0; 5650 5651 if (dentry->d_name.len > BTRFS_NAME_LEN) 5652 return ERR_PTR(-ENAMETOOLONG); 5653 5654 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5655 if (ret < 0) 5656 return ERR_PTR(ret); 5657 5658 if (location.type == BTRFS_INODE_ITEM_KEY) { 5659 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5660 if (IS_ERR(inode)) 5661 return inode; 5662 5663 /* Do extra check against inode mode with di_type */ 5664 if (btrfs_inode_type(inode) != di_type) { 5665 btrfs_crit(fs_info, 5666 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5667 inode->i_mode, btrfs_inode_type(inode), 5668 di_type); 5669 iput(inode); 5670 return ERR_PTR(-EUCLEAN); 5671 } 5672 return inode; 5673 } 5674 5675 ret = fixup_tree_root_location(fs_info, dir, dentry, 5676 &location, &sub_root); 5677 if (ret < 0) { 5678 if (ret != -ENOENT) 5679 inode = ERR_PTR(ret); 5680 else 5681 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5682 } else { 5683 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5684 } 5685 if (root != sub_root) 5686 btrfs_put_root(sub_root); 5687 5688 if (!IS_ERR(inode) && root != sub_root) { 5689 down_read(&fs_info->cleanup_work_sem); 5690 if (!sb_rdonly(inode->i_sb)) 5691 ret = btrfs_orphan_cleanup(sub_root); 5692 up_read(&fs_info->cleanup_work_sem); 5693 if (ret) { 5694 iput(inode); 5695 inode = ERR_PTR(ret); 5696 } 5697 } 5698 5699 return inode; 5700 } 5701 5702 static int btrfs_dentry_delete(const struct dentry *dentry) 5703 { 5704 struct btrfs_root *root; 5705 struct inode *inode = d_inode(dentry); 5706 5707 if (!inode && !IS_ROOT(dentry)) 5708 inode = d_inode(dentry->d_parent); 5709 5710 if (inode) { 5711 root = BTRFS_I(inode)->root; 5712 if (btrfs_root_refs(&root->root_item) == 0) 5713 return 1; 5714 5715 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5716 return 1; 5717 } 5718 return 0; 5719 } 5720 5721 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5722 unsigned int flags) 5723 { 5724 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5725 5726 if (inode == ERR_PTR(-ENOENT)) 5727 inode = NULL; 5728 return d_splice_alias(inode, dentry); 5729 } 5730 5731 /* 5732 * All this infrastructure exists because dir_emit can fault, and we are holding 5733 * the tree lock when doing readdir. For now just allocate a buffer and copy 5734 * our information into that, and then dir_emit from the buffer. This is 5735 * similar to what NFS does, only we don't keep the buffer around in pagecache 5736 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5737 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5738 * tree lock. 5739 */ 5740 static int btrfs_opendir(struct inode *inode, struct file *file) 5741 { 5742 struct btrfs_file_private *private; 5743 5744 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5745 if (!private) 5746 return -ENOMEM; 5747 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5748 if (!private->filldir_buf) { 5749 kfree(private); 5750 return -ENOMEM; 5751 } 5752 file->private_data = private; 5753 return 0; 5754 } 5755 5756 struct dir_entry { 5757 u64 ino; 5758 u64 offset; 5759 unsigned type; 5760 int name_len; 5761 }; 5762 5763 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5764 { 5765 while (entries--) { 5766 struct dir_entry *entry = addr; 5767 char *name = (char *)(entry + 1); 5768 5769 ctx->pos = get_unaligned(&entry->offset); 5770 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5771 get_unaligned(&entry->ino), 5772 get_unaligned(&entry->type))) 5773 return 1; 5774 addr += sizeof(struct dir_entry) + 5775 get_unaligned(&entry->name_len); 5776 ctx->pos++; 5777 } 5778 return 0; 5779 } 5780 5781 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5782 { 5783 struct inode *inode = file_inode(file); 5784 struct btrfs_root *root = BTRFS_I(inode)->root; 5785 struct btrfs_file_private *private = file->private_data; 5786 struct btrfs_dir_item *di; 5787 struct btrfs_key key; 5788 struct btrfs_key found_key; 5789 struct btrfs_path *path; 5790 void *addr; 5791 struct list_head ins_list; 5792 struct list_head del_list; 5793 int ret; 5794 struct extent_buffer *leaf; 5795 int slot; 5796 char *name_ptr; 5797 int name_len; 5798 int entries = 0; 5799 int total_len = 0; 5800 bool put = false; 5801 struct btrfs_key location; 5802 5803 if (!dir_emit_dots(file, ctx)) 5804 return 0; 5805 5806 path = btrfs_alloc_path(); 5807 if (!path) 5808 return -ENOMEM; 5809 5810 addr = private->filldir_buf; 5811 path->reada = READA_FORWARD; 5812 5813 INIT_LIST_HEAD(&ins_list); 5814 INIT_LIST_HEAD(&del_list); 5815 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5816 5817 again: 5818 key.type = BTRFS_DIR_INDEX_KEY; 5819 key.offset = ctx->pos; 5820 key.objectid = btrfs_ino(BTRFS_I(inode)); 5821 5822 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5823 if (ret < 0) 5824 goto err; 5825 5826 while (1) { 5827 struct dir_entry *entry; 5828 5829 leaf = path->nodes[0]; 5830 slot = path->slots[0]; 5831 if (slot >= btrfs_header_nritems(leaf)) { 5832 ret = btrfs_next_leaf(root, path); 5833 if (ret < 0) 5834 goto err; 5835 else if (ret > 0) 5836 break; 5837 continue; 5838 } 5839 5840 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5841 5842 if (found_key.objectid != key.objectid) 5843 break; 5844 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5845 break; 5846 if (found_key.offset < ctx->pos) 5847 goto next; 5848 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5849 goto next; 5850 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5851 name_len = btrfs_dir_name_len(leaf, di); 5852 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5853 PAGE_SIZE) { 5854 btrfs_release_path(path); 5855 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5856 if (ret) 5857 goto nopos; 5858 addr = private->filldir_buf; 5859 entries = 0; 5860 total_len = 0; 5861 goto again; 5862 } 5863 5864 entry = addr; 5865 put_unaligned(name_len, &entry->name_len); 5866 name_ptr = (char *)(entry + 1); 5867 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5868 name_len); 5869 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5870 &entry->type); 5871 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5872 put_unaligned(location.objectid, &entry->ino); 5873 put_unaligned(found_key.offset, &entry->offset); 5874 entries++; 5875 addr += sizeof(struct dir_entry) + name_len; 5876 total_len += sizeof(struct dir_entry) + name_len; 5877 next: 5878 path->slots[0]++; 5879 } 5880 btrfs_release_path(path); 5881 5882 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5883 if (ret) 5884 goto nopos; 5885 5886 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5887 if (ret) 5888 goto nopos; 5889 5890 /* 5891 * Stop new entries from being returned after we return the last 5892 * entry. 5893 * 5894 * New directory entries are assigned a strictly increasing 5895 * offset. This means that new entries created during readdir 5896 * are *guaranteed* to be seen in the future by that readdir. 5897 * This has broken buggy programs which operate on names as 5898 * they're returned by readdir. Until we re-use freed offsets 5899 * we have this hack to stop new entries from being returned 5900 * under the assumption that they'll never reach this huge 5901 * offset. 5902 * 5903 * This is being careful not to overflow 32bit loff_t unless the 5904 * last entry requires it because doing so has broken 32bit apps 5905 * in the past. 5906 */ 5907 if (ctx->pos >= INT_MAX) 5908 ctx->pos = LLONG_MAX; 5909 else 5910 ctx->pos = INT_MAX; 5911 nopos: 5912 ret = 0; 5913 err: 5914 if (put) 5915 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5916 btrfs_free_path(path); 5917 return ret; 5918 } 5919 5920 /* 5921 * This is somewhat expensive, updating the tree every time the 5922 * inode changes. But, it is most likely to find the inode in cache. 5923 * FIXME, needs more benchmarking...there are no reasons other than performance 5924 * to keep or drop this code. 5925 */ 5926 static int btrfs_dirty_inode(struct inode *inode) 5927 { 5928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5929 struct btrfs_root *root = BTRFS_I(inode)->root; 5930 struct btrfs_trans_handle *trans; 5931 int ret; 5932 5933 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5934 return 0; 5935 5936 trans = btrfs_join_transaction(root); 5937 if (IS_ERR(trans)) 5938 return PTR_ERR(trans); 5939 5940 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5941 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 5942 /* whoops, lets try again with the full transaction */ 5943 btrfs_end_transaction(trans); 5944 trans = btrfs_start_transaction(root, 1); 5945 if (IS_ERR(trans)) 5946 return PTR_ERR(trans); 5947 5948 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5949 } 5950 btrfs_end_transaction(trans); 5951 if (BTRFS_I(inode)->delayed_node) 5952 btrfs_balance_delayed_items(fs_info); 5953 5954 return ret; 5955 } 5956 5957 /* 5958 * This is a copy of file_update_time. We need this so we can return error on 5959 * ENOSPC for updating the inode in the case of file write and mmap writes. 5960 */ 5961 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5962 int flags) 5963 { 5964 struct btrfs_root *root = BTRFS_I(inode)->root; 5965 bool dirty = flags & ~S_VERSION; 5966 5967 if (btrfs_root_readonly(root)) 5968 return -EROFS; 5969 5970 if (flags & S_VERSION) 5971 dirty |= inode_maybe_inc_iversion(inode, dirty); 5972 if (flags & S_CTIME) 5973 inode->i_ctime = *now; 5974 if (flags & S_MTIME) 5975 inode->i_mtime = *now; 5976 if (flags & S_ATIME) 5977 inode->i_atime = *now; 5978 return dirty ? btrfs_dirty_inode(inode) : 0; 5979 } 5980 5981 /* 5982 * find the highest existing sequence number in a directory 5983 * and then set the in-memory index_cnt variable to reflect 5984 * free sequence numbers 5985 */ 5986 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5987 { 5988 struct btrfs_root *root = inode->root; 5989 struct btrfs_key key, found_key; 5990 struct btrfs_path *path; 5991 struct extent_buffer *leaf; 5992 int ret; 5993 5994 key.objectid = btrfs_ino(inode); 5995 key.type = BTRFS_DIR_INDEX_KEY; 5996 key.offset = (u64)-1; 5997 5998 path = btrfs_alloc_path(); 5999 if (!path) 6000 return -ENOMEM; 6001 6002 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6003 if (ret < 0) 6004 goto out; 6005 /* FIXME: we should be able to handle this */ 6006 if (ret == 0) 6007 goto out; 6008 ret = 0; 6009 6010 if (path->slots[0] == 0) { 6011 inode->index_cnt = BTRFS_DIR_START_INDEX; 6012 goto out; 6013 } 6014 6015 path->slots[0]--; 6016 6017 leaf = path->nodes[0]; 6018 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6019 6020 if (found_key.objectid != btrfs_ino(inode) || 6021 found_key.type != BTRFS_DIR_INDEX_KEY) { 6022 inode->index_cnt = BTRFS_DIR_START_INDEX; 6023 goto out; 6024 } 6025 6026 inode->index_cnt = found_key.offset + 1; 6027 out: 6028 btrfs_free_path(path); 6029 return ret; 6030 } 6031 6032 /* 6033 * helper to find a free sequence number in a given directory. This current 6034 * code is very simple, later versions will do smarter things in the btree 6035 */ 6036 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6037 { 6038 int ret = 0; 6039 6040 if (dir->index_cnt == (u64)-1) { 6041 ret = btrfs_inode_delayed_dir_index_count(dir); 6042 if (ret) { 6043 ret = btrfs_set_inode_index_count(dir); 6044 if (ret) 6045 return ret; 6046 } 6047 } 6048 6049 *index = dir->index_cnt; 6050 dir->index_cnt++; 6051 6052 return ret; 6053 } 6054 6055 static int btrfs_insert_inode_locked(struct inode *inode) 6056 { 6057 struct btrfs_iget_args args; 6058 6059 args.ino = BTRFS_I(inode)->location.objectid; 6060 args.root = BTRFS_I(inode)->root; 6061 6062 return insert_inode_locked4(inode, 6063 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6064 btrfs_find_actor, &args); 6065 } 6066 6067 /* 6068 * Inherit flags from the parent inode. 6069 * 6070 * Currently only the compression flags and the cow flags are inherited. 6071 */ 6072 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6073 { 6074 unsigned int flags; 6075 6076 if (!dir) 6077 return; 6078 6079 flags = BTRFS_I(dir)->flags; 6080 6081 if (flags & BTRFS_INODE_NOCOMPRESS) { 6082 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6083 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6084 } else if (flags & BTRFS_INODE_COMPRESS) { 6085 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6086 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6087 } 6088 6089 if (flags & BTRFS_INODE_NODATACOW) { 6090 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6091 if (S_ISREG(inode->i_mode)) 6092 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6093 } 6094 6095 btrfs_sync_inode_flags_to_i_flags(inode); 6096 } 6097 6098 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6099 struct btrfs_root *root, 6100 struct user_namespace *mnt_userns, 6101 struct inode *dir, 6102 const char *name, int name_len, 6103 u64 ref_objectid, u64 objectid, 6104 umode_t mode, u64 *index) 6105 { 6106 struct btrfs_fs_info *fs_info = root->fs_info; 6107 struct inode *inode; 6108 struct btrfs_inode_item *inode_item; 6109 struct btrfs_key *location; 6110 struct btrfs_path *path; 6111 struct btrfs_inode_ref *ref; 6112 struct btrfs_key key[2]; 6113 u32 sizes[2]; 6114 struct btrfs_item_batch batch; 6115 unsigned long ptr; 6116 unsigned int nofs_flag; 6117 int ret; 6118 6119 path = btrfs_alloc_path(); 6120 if (!path) 6121 return ERR_PTR(-ENOMEM); 6122 6123 nofs_flag = memalloc_nofs_save(); 6124 inode = new_inode(fs_info->sb); 6125 memalloc_nofs_restore(nofs_flag); 6126 if (!inode) { 6127 btrfs_free_path(path); 6128 return ERR_PTR(-ENOMEM); 6129 } 6130 6131 /* 6132 * O_TMPFILE, set link count to 0, so that after this point, 6133 * we fill in an inode item with the correct link count. 6134 */ 6135 if (!name) 6136 set_nlink(inode, 0); 6137 6138 /* 6139 * we have to initialize this early, so we can reclaim the inode 6140 * number if we fail afterwards in this function. 6141 */ 6142 inode->i_ino = objectid; 6143 6144 if (dir && name) { 6145 trace_btrfs_inode_request(dir); 6146 6147 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6148 if (ret) { 6149 btrfs_free_path(path); 6150 iput(inode); 6151 return ERR_PTR(ret); 6152 } 6153 } else if (dir) { 6154 *index = 0; 6155 } 6156 /* 6157 * index_cnt is ignored for everything but a dir, 6158 * btrfs_set_inode_index_count has an explanation for the magic 6159 * number 6160 */ 6161 BTRFS_I(inode)->index_cnt = 2; 6162 BTRFS_I(inode)->dir_index = *index; 6163 BTRFS_I(inode)->root = btrfs_grab_root(root); 6164 BTRFS_I(inode)->generation = trans->transid; 6165 inode->i_generation = BTRFS_I(inode)->generation; 6166 6167 /* 6168 * We could have gotten an inode number from somebody who was fsynced 6169 * and then removed in this same transaction, so let's just set full 6170 * sync since it will be a full sync anyway and this will blow away the 6171 * old info in the log. 6172 */ 6173 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6174 6175 key[0].objectid = objectid; 6176 key[0].type = BTRFS_INODE_ITEM_KEY; 6177 key[0].offset = 0; 6178 6179 sizes[0] = sizeof(struct btrfs_inode_item); 6180 6181 if (name) { 6182 /* 6183 * Start new inodes with an inode_ref. This is slightly more 6184 * efficient for small numbers of hard links since they will 6185 * be packed into one item. Extended refs will kick in if we 6186 * add more hard links than can fit in the ref item. 6187 */ 6188 key[1].objectid = objectid; 6189 key[1].type = BTRFS_INODE_REF_KEY; 6190 key[1].offset = ref_objectid; 6191 6192 sizes[1] = name_len + sizeof(*ref); 6193 } 6194 6195 location = &BTRFS_I(inode)->location; 6196 location->objectid = objectid; 6197 location->offset = 0; 6198 location->type = BTRFS_INODE_ITEM_KEY; 6199 6200 ret = btrfs_insert_inode_locked(inode); 6201 if (ret < 0) { 6202 iput(inode); 6203 goto fail; 6204 } 6205 6206 batch.keys = &key[0]; 6207 batch.data_sizes = &sizes[0]; 6208 batch.total_data_size = sizes[0] + (name ? sizes[1] : 0); 6209 batch.nr = name ? 2 : 1; 6210 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6211 if (ret != 0) 6212 goto fail_unlock; 6213 6214 inode_init_owner(mnt_userns, inode, dir, mode); 6215 inode_set_bytes(inode, 0); 6216 6217 inode->i_mtime = current_time(inode); 6218 inode->i_atime = inode->i_mtime; 6219 inode->i_ctime = inode->i_mtime; 6220 BTRFS_I(inode)->i_otime = inode->i_mtime; 6221 6222 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6223 struct btrfs_inode_item); 6224 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6225 sizeof(*inode_item)); 6226 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6227 6228 if (name) { 6229 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6230 struct btrfs_inode_ref); 6231 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6232 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6233 ptr = (unsigned long)(ref + 1); 6234 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6235 } 6236 6237 btrfs_mark_buffer_dirty(path->nodes[0]); 6238 btrfs_free_path(path); 6239 6240 btrfs_inherit_iflags(inode, dir); 6241 6242 if (S_ISREG(mode)) { 6243 if (btrfs_test_opt(fs_info, NODATASUM)) 6244 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6245 if (btrfs_test_opt(fs_info, NODATACOW)) 6246 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6247 BTRFS_INODE_NODATASUM; 6248 } 6249 6250 inode_tree_add(inode); 6251 6252 trace_btrfs_inode_new(inode); 6253 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6254 6255 btrfs_update_root_times(trans, root); 6256 6257 ret = btrfs_inode_inherit_props(trans, inode, dir); 6258 if (ret) 6259 btrfs_err(fs_info, 6260 "error inheriting props for ino %llu (root %llu): %d", 6261 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6262 6263 return inode; 6264 6265 fail_unlock: 6266 discard_new_inode(inode); 6267 fail: 6268 if (dir && name) 6269 BTRFS_I(dir)->index_cnt--; 6270 btrfs_free_path(path); 6271 return ERR_PTR(ret); 6272 } 6273 6274 /* 6275 * utility function to add 'inode' into 'parent_inode' with 6276 * a give name and a given sequence number. 6277 * if 'add_backref' is true, also insert a backref from the 6278 * inode to the parent directory. 6279 */ 6280 int btrfs_add_link(struct btrfs_trans_handle *trans, 6281 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6282 const char *name, int name_len, int add_backref, u64 index) 6283 { 6284 int ret = 0; 6285 struct btrfs_key key; 6286 struct btrfs_root *root = parent_inode->root; 6287 u64 ino = btrfs_ino(inode); 6288 u64 parent_ino = btrfs_ino(parent_inode); 6289 6290 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6291 memcpy(&key, &inode->root->root_key, sizeof(key)); 6292 } else { 6293 key.objectid = ino; 6294 key.type = BTRFS_INODE_ITEM_KEY; 6295 key.offset = 0; 6296 } 6297 6298 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6299 ret = btrfs_add_root_ref(trans, key.objectid, 6300 root->root_key.objectid, parent_ino, 6301 index, name, name_len); 6302 } else if (add_backref) { 6303 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6304 parent_ino, index); 6305 } 6306 6307 /* Nothing to clean up yet */ 6308 if (ret) 6309 return ret; 6310 6311 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6312 btrfs_inode_type(&inode->vfs_inode), index); 6313 if (ret == -EEXIST || ret == -EOVERFLOW) 6314 goto fail_dir_item; 6315 else if (ret) { 6316 btrfs_abort_transaction(trans, ret); 6317 return ret; 6318 } 6319 6320 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6321 name_len * 2); 6322 inode_inc_iversion(&parent_inode->vfs_inode); 6323 /* 6324 * If we are replaying a log tree, we do not want to update the mtime 6325 * and ctime of the parent directory with the current time, since the 6326 * log replay procedure is responsible for setting them to their correct 6327 * values (the ones it had when the fsync was done). 6328 */ 6329 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6330 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6331 6332 parent_inode->vfs_inode.i_mtime = now; 6333 parent_inode->vfs_inode.i_ctime = now; 6334 } 6335 ret = btrfs_update_inode(trans, root, parent_inode); 6336 if (ret) 6337 btrfs_abort_transaction(trans, ret); 6338 return ret; 6339 6340 fail_dir_item: 6341 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6342 u64 local_index; 6343 int err; 6344 err = btrfs_del_root_ref(trans, key.objectid, 6345 root->root_key.objectid, parent_ino, 6346 &local_index, name, name_len); 6347 if (err) 6348 btrfs_abort_transaction(trans, err); 6349 } else if (add_backref) { 6350 u64 local_index; 6351 int err; 6352 6353 err = btrfs_del_inode_ref(trans, root, name, name_len, 6354 ino, parent_ino, &local_index); 6355 if (err) 6356 btrfs_abort_transaction(trans, err); 6357 } 6358 6359 /* Return the original error code */ 6360 return ret; 6361 } 6362 6363 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6364 struct btrfs_inode *dir, struct dentry *dentry, 6365 struct btrfs_inode *inode, int backref, u64 index) 6366 { 6367 int err = btrfs_add_link(trans, dir, inode, 6368 dentry->d_name.name, dentry->d_name.len, 6369 backref, index); 6370 if (err > 0) 6371 err = -EEXIST; 6372 return err; 6373 } 6374 6375 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6376 struct dentry *dentry, umode_t mode, dev_t rdev) 6377 { 6378 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6379 struct btrfs_trans_handle *trans; 6380 struct btrfs_root *root = BTRFS_I(dir)->root; 6381 struct inode *inode = NULL; 6382 int err; 6383 u64 objectid; 6384 u64 index = 0; 6385 6386 /* 6387 * 2 for inode item and ref 6388 * 2 for dir items 6389 * 1 for xattr if selinux is on 6390 */ 6391 trans = btrfs_start_transaction(root, 5); 6392 if (IS_ERR(trans)) 6393 return PTR_ERR(trans); 6394 6395 err = btrfs_get_free_objectid(root, &objectid); 6396 if (err) 6397 goto out_unlock; 6398 6399 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6400 dentry->d_name.name, dentry->d_name.len, 6401 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 6402 if (IS_ERR(inode)) { 6403 err = PTR_ERR(inode); 6404 inode = NULL; 6405 goto out_unlock; 6406 } 6407 6408 /* 6409 * If the active LSM wants to access the inode during 6410 * d_instantiate it needs these. Smack checks to see 6411 * if the filesystem supports xattrs by looking at the 6412 * ops vector. 6413 */ 6414 inode->i_op = &btrfs_special_inode_operations; 6415 init_special_inode(inode, inode->i_mode, rdev); 6416 6417 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6418 if (err) 6419 goto out_unlock; 6420 6421 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6422 0, index); 6423 if (err) 6424 goto out_unlock; 6425 6426 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6427 d_instantiate_new(dentry, inode); 6428 6429 out_unlock: 6430 btrfs_end_transaction(trans); 6431 btrfs_btree_balance_dirty(fs_info); 6432 if (err && inode) { 6433 inode_dec_link_count(inode); 6434 discard_new_inode(inode); 6435 } 6436 return err; 6437 } 6438 6439 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6440 struct dentry *dentry, umode_t mode, bool excl) 6441 { 6442 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6443 struct btrfs_trans_handle *trans; 6444 struct btrfs_root *root = BTRFS_I(dir)->root; 6445 struct inode *inode = NULL; 6446 int err; 6447 u64 objectid; 6448 u64 index = 0; 6449 6450 /* 6451 * 2 for inode item and ref 6452 * 2 for dir items 6453 * 1 for xattr if selinux is on 6454 */ 6455 trans = btrfs_start_transaction(root, 5); 6456 if (IS_ERR(trans)) 6457 return PTR_ERR(trans); 6458 6459 err = btrfs_get_free_objectid(root, &objectid); 6460 if (err) 6461 goto out_unlock; 6462 6463 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6464 dentry->d_name.name, dentry->d_name.len, 6465 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 6466 if (IS_ERR(inode)) { 6467 err = PTR_ERR(inode); 6468 inode = NULL; 6469 goto out_unlock; 6470 } 6471 /* 6472 * If the active LSM wants to access the inode during 6473 * d_instantiate it needs these. Smack checks to see 6474 * if the filesystem supports xattrs by looking at the 6475 * ops vector. 6476 */ 6477 inode->i_fop = &btrfs_file_operations; 6478 inode->i_op = &btrfs_file_inode_operations; 6479 inode->i_mapping->a_ops = &btrfs_aops; 6480 6481 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6482 if (err) 6483 goto out_unlock; 6484 6485 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6486 if (err) 6487 goto out_unlock; 6488 6489 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6490 0, index); 6491 if (err) 6492 goto out_unlock; 6493 6494 d_instantiate_new(dentry, inode); 6495 6496 out_unlock: 6497 btrfs_end_transaction(trans); 6498 if (err && inode) { 6499 inode_dec_link_count(inode); 6500 discard_new_inode(inode); 6501 } 6502 btrfs_btree_balance_dirty(fs_info); 6503 return err; 6504 } 6505 6506 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6507 struct dentry *dentry) 6508 { 6509 struct btrfs_trans_handle *trans = NULL; 6510 struct btrfs_root *root = BTRFS_I(dir)->root; 6511 struct inode *inode = d_inode(old_dentry); 6512 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6513 u64 index; 6514 int err; 6515 int drop_inode = 0; 6516 6517 /* do not allow sys_link's with other subvols of the same device */ 6518 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6519 return -EXDEV; 6520 6521 if (inode->i_nlink >= BTRFS_LINK_MAX) 6522 return -EMLINK; 6523 6524 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6525 if (err) 6526 goto fail; 6527 6528 /* 6529 * 2 items for inode and inode ref 6530 * 2 items for dir items 6531 * 1 item for parent inode 6532 * 1 item for orphan item deletion if O_TMPFILE 6533 */ 6534 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6535 if (IS_ERR(trans)) { 6536 err = PTR_ERR(trans); 6537 trans = NULL; 6538 goto fail; 6539 } 6540 6541 /* There are several dir indexes for this inode, clear the cache. */ 6542 BTRFS_I(inode)->dir_index = 0ULL; 6543 inc_nlink(inode); 6544 inode_inc_iversion(inode); 6545 inode->i_ctime = current_time(inode); 6546 ihold(inode); 6547 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6548 6549 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6550 1, index); 6551 6552 if (err) { 6553 drop_inode = 1; 6554 } else { 6555 struct dentry *parent = dentry->d_parent; 6556 6557 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6558 if (err) 6559 goto fail; 6560 if (inode->i_nlink == 1) { 6561 /* 6562 * If new hard link count is 1, it's a file created 6563 * with open(2) O_TMPFILE flag. 6564 */ 6565 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6566 if (err) 6567 goto fail; 6568 } 6569 d_instantiate(dentry, inode); 6570 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6571 } 6572 6573 fail: 6574 if (trans) 6575 btrfs_end_transaction(trans); 6576 if (drop_inode) { 6577 inode_dec_link_count(inode); 6578 iput(inode); 6579 } 6580 btrfs_btree_balance_dirty(fs_info); 6581 return err; 6582 } 6583 6584 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6585 struct dentry *dentry, umode_t mode) 6586 { 6587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6588 struct inode *inode = NULL; 6589 struct btrfs_trans_handle *trans; 6590 struct btrfs_root *root = BTRFS_I(dir)->root; 6591 int err = 0; 6592 u64 objectid = 0; 6593 u64 index = 0; 6594 6595 /* 6596 * 2 items for inode and ref 6597 * 2 items for dir items 6598 * 1 for xattr if selinux is on 6599 */ 6600 trans = btrfs_start_transaction(root, 5); 6601 if (IS_ERR(trans)) 6602 return PTR_ERR(trans); 6603 6604 err = btrfs_get_free_objectid(root, &objectid); 6605 if (err) 6606 goto out_fail; 6607 6608 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6609 dentry->d_name.name, dentry->d_name.len, 6610 btrfs_ino(BTRFS_I(dir)), objectid, 6611 S_IFDIR | mode, &index); 6612 if (IS_ERR(inode)) { 6613 err = PTR_ERR(inode); 6614 inode = NULL; 6615 goto out_fail; 6616 } 6617 6618 /* these must be set before we unlock the inode */ 6619 inode->i_op = &btrfs_dir_inode_operations; 6620 inode->i_fop = &btrfs_dir_file_operations; 6621 6622 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6623 if (err) 6624 goto out_fail; 6625 6626 btrfs_i_size_write(BTRFS_I(inode), 0); 6627 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6628 if (err) 6629 goto out_fail; 6630 6631 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6632 dentry->d_name.name, 6633 dentry->d_name.len, 0, index); 6634 if (err) 6635 goto out_fail; 6636 6637 d_instantiate_new(dentry, inode); 6638 6639 out_fail: 6640 btrfs_end_transaction(trans); 6641 if (err && inode) { 6642 inode_dec_link_count(inode); 6643 discard_new_inode(inode); 6644 } 6645 btrfs_btree_balance_dirty(fs_info); 6646 return err; 6647 } 6648 6649 static noinline int uncompress_inline(struct btrfs_path *path, 6650 struct page *page, 6651 size_t pg_offset, u64 extent_offset, 6652 struct btrfs_file_extent_item *item) 6653 { 6654 int ret; 6655 struct extent_buffer *leaf = path->nodes[0]; 6656 char *tmp; 6657 size_t max_size; 6658 unsigned long inline_size; 6659 unsigned long ptr; 6660 int compress_type; 6661 6662 WARN_ON(pg_offset != 0); 6663 compress_type = btrfs_file_extent_compression(leaf, item); 6664 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6665 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6666 tmp = kmalloc(inline_size, GFP_NOFS); 6667 if (!tmp) 6668 return -ENOMEM; 6669 ptr = btrfs_file_extent_inline_start(item); 6670 6671 read_extent_buffer(leaf, tmp, ptr, inline_size); 6672 6673 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6674 ret = btrfs_decompress(compress_type, tmp, page, 6675 extent_offset, inline_size, max_size); 6676 6677 /* 6678 * decompression code contains a memset to fill in any space between the end 6679 * of the uncompressed data and the end of max_size in case the decompressed 6680 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6681 * the end of an inline extent and the beginning of the next block, so we 6682 * cover that region here. 6683 */ 6684 6685 if (max_size + pg_offset < PAGE_SIZE) 6686 memzero_page(page, pg_offset + max_size, 6687 PAGE_SIZE - max_size - pg_offset); 6688 kfree(tmp); 6689 return ret; 6690 } 6691 6692 /** 6693 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6694 * @inode: file to search in 6695 * @page: page to read extent data into if the extent is inline 6696 * @pg_offset: offset into @page to copy to 6697 * @start: file offset 6698 * @len: length of range starting at @start 6699 * 6700 * This returns the first &struct extent_map which overlaps with the given 6701 * range, reading it from the B-tree and caching it if necessary. Note that 6702 * there may be more extents which overlap the given range after the returned 6703 * extent_map. 6704 * 6705 * If @page is not NULL and the extent is inline, this also reads the extent 6706 * data directly into the page and marks the extent up to date in the io_tree. 6707 * 6708 * Return: ERR_PTR on error, non-NULL extent_map on success. 6709 */ 6710 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6711 struct page *page, size_t pg_offset, 6712 u64 start, u64 len) 6713 { 6714 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6715 int ret = 0; 6716 u64 extent_start = 0; 6717 u64 extent_end = 0; 6718 u64 objectid = btrfs_ino(inode); 6719 int extent_type = -1; 6720 struct btrfs_path *path = NULL; 6721 struct btrfs_root *root = inode->root; 6722 struct btrfs_file_extent_item *item; 6723 struct extent_buffer *leaf; 6724 struct btrfs_key found_key; 6725 struct extent_map *em = NULL; 6726 struct extent_map_tree *em_tree = &inode->extent_tree; 6727 struct extent_io_tree *io_tree = &inode->io_tree; 6728 6729 read_lock(&em_tree->lock); 6730 em = lookup_extent_mapping(em_tree, start, len); 6731 read_unlock(&em_tree->lock); 6732 6733 if (em) { 6734 if (em->start > start || em->start + em->len <= start) 6735 free_extent_map(em); 6736 else if (em->block_start == EXTENT_MAP_INLINE && page) 6737 free_extent_map(em); 6738 else 6739 goto out; 6740 } 6741 em = alloc_extent_map(); 6742 if (!em) { 6743 ret = -ENOMEM; 6744 goto out; 6745 } 6746 em->start = EXTENT_MAP_HOLE; 6747 em->orig_start = EXTENT_MAP_HOLE; 6748 em->len = (u64)-1; 6749 em->block_len = (u64)-1; 6750 6751 path = btrfs_alloc_path(); 6752 if (!path) { 6753 ret = -ENOMEM; 6754 goto out; 6755 } 6756 6757 /* Chances are we'll be called again, so go ahead and do readahead */ 6758 path->reada = READA_FORWARD; 6759 6760 /* 6761 * The same explanation in load_free_space_cache applies here as well, 6762 * we only read when we're loading the free space cache, and at that 6763 * point the commit_root has everything we need. 6764 */ 6765 if (btrfs_is_free_space_inode(inode)) { 6766 path->search_commit_root = 1; 6767 path->skip_locking = 1; 6768 } 6769 6770 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6771 if (ret < 0) { 6772 goto out; 6773 } else if (ret > 0) { 6774 if (path->slots[0] == 0) 6775 goto not_found; 6776 path->slots[0]--; 6777 ret = 0; 6778 } 6779 6780 leaf = path->nodes[0]; 6781 item = btrfs_item_ptr(leaf, path->slots[0], 6782 struct btrfs_file_extent_item); 6783 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6784 if (found_key.objectid != objectid || 6785 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6786 /* 6787 * If we backup past the first extent we want to move forward 6788 * and see if there is an extent in front of us, otherwise we'll 6789 * say there is a hole for our whole search range which can 6790 * cause problems. 6791 */ 6792 extent_end = start; 6793 goto next; 6794 } 6795 6796 extent_type = btrfs_file_extent_type(leaf, item); 6797 extent_start = found_key.offset; 6798 extent_end = btrfs_file_extent_end(path); 6799 if (extent_type == BTRFS_FILE_EXTENT_REG || 6800 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6801 /* Only regular file could have regular/prealloc extent */ 6802 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6803 ret = -EUCLEAN; 6804 btrfs_crit(fs_info, 6805 "regular/prealloc extent found for non-regular inode %llu", 6806 btrfs_ino(inode)); 6807 goto out; 6808 } 6809 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6810 extent_start); 6811 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6812 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6813 path->slots[0], 6814 extent_start); 6815 } 6816 next: 6817 if (start >= extent_end) { 6818 path->slots[0]++; 6819 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6820 ret = btrfs_next_leaf(root, path); 6821 if (ret < 0) 6822 goto out; 6823 else if (ret > 0) 6824 goto not_found; 6825 6826 leaf = path->nodes[0]; 6827 } 6828 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6829 if (found_key.objectid != objectid || 6830 found_key.type != BTRFS_EXTENT_DATA_KEY) 6831 goto not_found; 6832 if (start + len <= found_key.offset) 6833 goto not_found; 6834 if (start > found_key.offset) 6835 goto next; 6836 6837 /* New extent overlaps with existing one */ 6838 em->start = start; 6839 em->orig_start = start; 6840 em->len = found_key.offset - start; 6841 em->block_start = EXTENT_MAP_HOLE; 6842 goto insert; 6843 } 6844 6845 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6846 6847 if (extent_type == BTRFS_FILE_EXTENT_REG || 6848 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6849 goto insert; 6850 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6851 unsigned long ptr; 6852 char *map; 6853 size_t size; 6854 size_t extent_offset; 6855 size_t copy_size; 6856 6857 if (!page) 6858 goto out; 6859 6860 size = btrfs_file_extent_ram_bytes(leaf, item); 6861 extent_offset = page_offset(page) + pg_offset - extent_start; 6862 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6863 size - extent_offset); 6864 em->start = extent_start + extent_offset; 6865 em->len = ALIGN(copy_size, fs_info->sectorsize); 6866 em->orig_block_len = em->len; 6867 em->orig_start = em->start; 6868 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6869 6870 if (!PageUptodate(page)) { 6871 if (btrfs_file_extent_compression(leaf, item) != 6872 BTRFS_COMPRESS_NONE) { 6873 ret = uncompress_inline(path, page, pg_offset, 6874 extent_offset, item); 6875 if (ret) 6876 goto out; 6877 } else { 6878 map = kmap_local_page(page); 6879 read_extent_buffer(leaf, map + pg_offset, ptr, 6880 copy_size); 6881 if (pg_offset + copy_size < PAGE_SIZE) { 6882 memset(map + pg_offset + copy_size, 0, 6883 PAGE_SIZE - pg_offset - 6884 copy_size); 6885 } 6886 kunmap_local(map); 6887 } 6888 flush_dcache_page(page); 6889 } 6890 set_extent_uptodate(io_tree, em->start, 6891 extent_map_end(em) - 1, NULL, GFP_NOFS); 6892 goto insert; 6893 } 6894 not_found: 6895 em->start = start; 6896 em->orig_start = start; 6897 em->len = len; 6898 em->block_start = EXTENT_MAP_HOLE; 6899 insert: 6900 ret = 0; 6901 btrfs_release_path(path); 6902 if (em->start > start || extent_map_end(em) <= start) { 6903 btrfs_err(fs_info, 6904 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6905 em->start, em->len, start, len); 6906 ret = -EIO; 6907 goto out; 6908 } 6909 6910 write_lock(&em_tree->lock); 6911 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6912 write_unlock(&em_tree->lock); 6913 out: 6914 btrfs_free_path(path); 6915 6916 trace_btrfs_get_extent(root, inode, em); 6917 6918 if (ret) { 6919 free_extent_map(em); 6920 return ERR_PTR(ret); 6921 } 6922 return em; 6923 } 6924 6925 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6926 u64 start, u64 len) 6927 { 6928 struct extent_map *em; 6929 struct extent_map *hole_em = NULL; 6930 u64 delalloc_start = start; 6931 u64 end; 6932 u64 delalloc_len; 6933 u64 delalloc_end; 6934 int err = 0; 6935 6936 em = btrfs_get_extent(inode, NULL, 0, start, len); 6937 if (IS_ERR(em)) 6938 return em; 6939 /* 6940 * If our em maps to: 6941 * - a hole or 6942 * - a pre-alloc extent, 6943 * there might actually be delalloc bytes behind it. 6944 */ 6945 if (em->block_start != EXTENT_MAP_HOLE && 6946 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6947 return em; 6948 else 6949 hole_em = em; 6950 6951 /* check to see if we've wrapped (len == -1 or similar) */ 6952 end = start + len; 6953 if (end < start) 6954 end = (u64)-1; 6955 else 6956 end -= 1; 6957 6958 em = NULL; 6959 6960 /* ok, we didn't find anything, lets look for delalloc */ 6961 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6962 end, len, EXTENT_DELALLOC, 1); 6963 delalloc_end = delalloc_start + delalloc_len; 6964 if (delalloc_end < delalloc_start) 6965 delalloc_end = (u64)-1; 6966 6967 /* 6968 * We didn't find anything useful, return the original results from 6969 * get_extent() 6970 */ 6971 if (delalloc_start > end || delalloc_end <= start) { 6972 em = hole_em; 6973 hole_em = NULL; 6974 goto out; 6975 } 6976 6977 /* 6978 * Adjust the delalloc_start to make sure it doesn't go backwards from 6979 * the start they passed in 6980 */ 6981 delalloc_start = max(start, delalloc_start); 6982 delalloc_len = delalloc_end - delalloc_start; 6983 6984 if (delalloc_len > 0) { 6985 u64 hole_start; 6986 u64 hole_len; 6987 const u64 hole_end = extent_map_end(hole_em); 6988 6989 em = alloc_extent_map(); 6990 if (!em) { 6991 err = -ENOMEM; 6992 goto out; 6993 } 6994 6995 ASSERT(hole_em); 6996 /* 6997 * When btrfs_get_extent can't find anything it returns one 6998 * huge hole 6999 * 7000 * Make sure what it found really fits our range, and adjust to 7001 * make sure it is based on the start from the caller 7002 */ 7003 if (hole_end <= start || hole_em->start > end) { 7004 free_extent_map(hole_em); 7005 hole_em = NULL; 7006 } else { 7007 hole_start = max(hole_em->start, start); 7008 hole_len = hole_end - hole_start; 7009 } 7010 7011 if (hole_em && delalloc_start > hole_start) { 7012 /* 7013 * Our hole starts before our delalloc, so we have to 7014 * return just the parts of the hole that go until the 7015 * delalloc starts 7016 */ 7017 em->len = min(hole_len, delalloc_start - hole_start); 7018 em->start = hole_start; 7019 em->orig_start = hole_start; 7020 /* 7021 * Don't adjust block start at all, it is fixed at 7022 * EXTENT_MAP_HOLE 7023 */ 7024 em->block_start = hole_em->block_start; 7025 em->block_len = hole_len; 7026 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7027 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7028 } else { 7029 /* 7030 * Hole is out of passed range or it starts after 7031 * delalloc range 7032 */ 7033 em->start = delalloc_start; 7034 em->len = delalloc_len; 7035 em->orig_start = delalloc_start; 7036 em->block_start = EXTENT_MAP_DELALLOC; 7037 em->block_len = delalloc_len; 7038 } 7039 } else { 7040 return hole_em; 7041 } 7042 out: 7043 7044 free_extent_map(hole_em); 7045 if (err) { 7046 free_extent_map(em); 7047 return ERR_PTR(err); 7048 } 7049 return em; 7050 } 7051 7052 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7053 const u64 start, 7054 const u64 len, 7055 const u64 orig_start, 7056 const u64 block_start, 7057 const u64 block_len, 7058 const u64 orig_block_len, 7059 const u64 ram_bytes, 7060 const int type) 7061 { 7062 struct extent_map *em = NULL; 7063 int ret; 7064 7065 if (type != BTRFS_ORDERED_NOCOW) { 7066 em = create_io_em(inode, start, len, orig_start, block_start, 7067 block_len, orig_block_len, ram_bytes, 7068 BTRFS_COMPRESS_NONE, /* compress_type */ 7069 type); 7070 if (IS_ERR(em)) 7071 goto out; 7072 } 7073 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start, 7074 block_len, 0, 7075 (1 << type) | 7076 (1 << BTRFS_ORDERED_DIRECT), 7077 BTRFS_COMPRESS_NONE); 7078 if (ret) { 7079 if (em) { 7080 free_extent_map(em); 7081 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7082 } 7083 em = ERR_PTR(ret); 7084 } 7085 out: 7086 7087 return em; 7088 } 7089 7090 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7091 u64 start, u64 len) 7092 { 7093 struct btrfs_root *root = inode->root; 7094 struct btrfs_fs_info *fs_info = root->fs_info; 7095 struct extent_map *em; 7096 struct btrfs_key ins; 7097 u64 alloc_hint; 7098 int ret; 7099 7100 alloc_hint = get_extent_allocation_hint(inode, start, len); 7101 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7102 0, alloc_hint, &ins, 1, 1); 7103 if (ret) 7104 return ERR_PTR(ret); 7105 7106 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7107 ins.objectid, ins.offset, ins.offset, 7108 ins.offset, BTRFS_ORDERED_REGULAR); 7109 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7110 if (IS_ERR(em)) 7111 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7112 1); 7113 7114 return em; 7115 } 7116 7117 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7118 { 7119 struct btrfs_block_group *block_group; 7120 bool readonly = false; 7121 7122 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7123 if (!block_group || block_group->ro) 7124 readonly = true; 7125 if (block_group) 7126 btrfs_put_block_group(block_group); 7127 return readonly; 7128 } 7129 7130 /* 7131 * Check if we can do nocow write into the range [@offset, @offset + @len) 7132 * 7133 * @offset: File offset 7134 * @len: The length to write, will be updated to the nocow writeable 7135 * range 7136 * @orig_start: (optional) Return the original file offset of the file extent 7137 * @orig_len: (optional) Return the original on-disk length of the file extent 7138 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7139 * @strict: if true, omit optimizations that might force us into unnecessary 7140 * cow. e.g., don't trust generation number. 7141 * 7142 * Return: 7143 * >0 and update @len if we can do nocow write 7144 * 0 if we can't do nocow write 7145 * <0 if error happened 7146 * 7147 * NOTE: This only checks the file extents, caller is responsible to wait for 7148 * any ordered extents. 7149 */ 7150 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7151 u64 *orig_start, u64 *orig_block_len, 7152 u64 *ram_bytes, bool strict) 7153 { 7154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7155 struct btrfs_path *path; 7156 int ret; 7157 struct extent_buffer *leaf; 7158 struct btrfs_root *root = BTRFS_I(inode)->root; 7159 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7160 struct btrfs_file_extent_item *fi; 7161 struct btrfs_key key; 7162 u64 disk_bytenr; 7163 u64 backref_offset; 7164 u64 extent_end; 7165 u64 num_bytes; 7166 int slot; 7167 int found_type; 7168 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7169 7170 path = btrfs_alloc_path(); 7171 if (!path) 7172 return -ENOMEM; 7173 7174 ret = btrfs_lookup_file_extent(NULL, root, path, 7175 btrfs_ino(BTRFS_I(inode)), offset, 0); 7176 if (ret < 0) 7177 goto out; 7178 7179 slot = path->slots[0]; 7180 if (ret == 1) { 7181 if (slot == 0) { 7182 /* can't find the item, must cow */ 7183 ret = 0; 7184 goto out; 7185 } 7186 slot--; 7187 } 7188 ret = 0; 7189 leaf = path->nodes[0]; 7190 btrfs_item_key_to_cpu(leaf, &key, slot); 7191 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7192 key.type != BTRFS_EXTENT_DATA_KEY) { 7193 /* not our file or wrong item type, must cow */ 7194 goto out; 7195 } 7196 7197 if (key.offset > offset) { 7198 /* Wrong offset, must cow */ 7199 goto out; 7200 } 7201 7202 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7203 found_type = btrfs_file_extent_type(leaf, fi); 7204 if (found_type != BTRFS_FILE_EXTENT_REG && 7205 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7206 /* not a regular extent, must cow */ 7207 goto out; 7208 } 7209 7210 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7211 goto out; 7212 7213 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7214 if (extent_end <= offset) 7215 goto out; 7216 7217 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7218 if (disk_bytenr == 0) 7219 goto out; 7220 7221 if (btrfs_file_extent_compression(leaf, fi) || 7222 btrfs_file_extent_encryption(leaf, fi) || 7223 btrfs_file_extent_other_encoding(leaf, fi)) 7224 goto out; 7225 7226 /* 7227 * Do the same check as in btrfs_cross_ref_exist but without the 7228 * unnecessary search. 7229 */ 7230 if (!strict && 7231 (btrfs_file_extent_generation(leaf, fi) <= 7232 btrfs_root_last_snapshot(&root->root_item))) 7233 goto out; 7234 7235 backref_offset = btrfs_file_extent_offset(leaf, fi); 7236 7237 if (orig_start) { 7238 *orig_start = key.offset - backref_offset; 7239 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7240 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7241 } 7242 7243 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7244 goto out; 7245 7246 num_bytes = min(offset + *len, extent_end) - offset; 7247 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7248 u64 range_end; 7249 7250 range_end = round_up(offset + num_bytes, 7251 root->fs_info->sectorsize) - 1; 7252 ret = test_range_bit(io_tree, offset, range_end, 7253 EXTENT_DELALLOC, 0, NULL); 7254 if (ret) { 7255 ret = -EAGAIN; 7256 goto out; 7257 } 7258 } 7259 7260 btrfs_release_path(path); 7261 7262 /* 7263 * look for other files referencing this extent, if we 7264 * find any we must cow 7265 */ 7266 7267 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7268 key.offset - backref_offset, disk_bytenr, 7269 strict); 7270 if (ret) { 7271 ret = 0; 7272 goto out; 7273 } 7274 7275 /* 7276 * adjust disk_bytenr and num_bytes to cover just the bytes 7277 * in this extent we are about to write. If there 7278 * are any csums in that range we have to cow in order 7279 * to keep the csums correct 7280 */ 7281 disk_bytenr += backref_offset; 7282 disk_bytenr += offset - key.offset; 7283 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7284 goto out; 7285 /* 7286 * all of the above have passed, it is safe to overwrite this extent 7287 * without cow 7288 */ 7289 *len = num_bytes; 7290 ret = 1; 7291 out: 7292 btrfs_free_path(path); 7293 return ret; 7294 } 7295 7296 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7297 struct extent_state **cached_state, bool writing) 7298 { 7299 struct btrfs_ordered_extent *ordered; 7300 int ret = 0; 7301 7302 while (1) { 7303 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7304 cached_state); 7305 /* 7306 * We're concerned with the entire range that we're going to be 7307 * doing DIO to, so we need to make sure there's no ordered 7308 * extents in this range. 7309 */ 7310 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7311 lockend - lockstart + 1); 7312 7313 /* 7314 * We need to make sure there are no buffered pages in this 7315 * range either, we could have raced between the invalidate in 7316 * generic_file_direct_write and locking the extent. The 7317 * invalidate needs to happen so that reads after a write do not 7318 * get stale data. 7319 */ 7320 if (!ordered && 7321 (!writing || !filemap_range_has_page(inode->i_mapping, 7322 lockstart, lockend))) 7323 break; 7324 7325 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7326 cached_state); 7327 7328 if (ordered) { 7329 /* 7330 * If we are doing a DIO read and the ordered extent we 7331 * found is for a buffered write, we can not wait for it 7332 * to complete and retry, because if we do so we can 7333 * deadlock with concurrent buffered writes on page 7334 * locks. This happens only if our DIO read covers more 7335 * than one extent map, if at this point has already 7336 * created an ordered extent for a previous extent map 7337 * and locked its range in the inode's io tree, and a 7338 * concurrent write against that previous extent map's 7339 * range and this range started (we unlock the ranges 7340 * in the io tree only when the bios complete and 7341 * buffered writes always lock pages before attempting 7342 * to lock range in the io tree). 7343 */ 7344 if (writing || 7345 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7346 btrfs_start_ordered_extent(ordered, 1); 7347 else 7348 ret = -ENOTBLK; 7349 btrfs_put_ordered_extent(ordered); 7350 } else { 7351 /* 7352 * We could trigger writeback for this range (and wait 7353 * for it to complete) and then invalidate the pages for 7354 * this range (through invalidate_inode_pages2_range()), 7355 * but that can lead us to a deadlock with a concurrent 7356 * call to readahead (a buffered read or a defrag call 7357 * triggered a readahead) on a page lock due to an 7358 * ordered dio extent we created before but did not have 7359 * yet a corresponding bio submitted (whence it can not 7360 * complete), which makes readahead wait for that 7361 * ordered extent to complete while holding a lock on 7362 * that page. 7363 */ 7364 ret = -ENOTBLK; 7365 } 7366 7367 if (ret) 7368 break; 7369 7370 cond_resched(); 7371 } 7372 7373 return ret; 7374 } 7375 7376 /* The callers of this must take lock_extent() */ 7377 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7378 u64 len, u64 orig_start, u64 block_start, 7379 u64 block_len, u64 orig_block_len, 7380 u64 ram_bytes, int compress_type, 7381 int type) 7382 { 7383 struct extent_map_tree *em_tree; 7384 struct extent_map *em; 7385 int ret; 7386 7387 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7388 type == BTRFS_ORDERED_COMPRESSED || 7389 type == BTRFS_ORDERED_NOCOW || 7390 type == BTRFS_ORDERED_REGULAR); 7391 7392 em_tree = &inode->extent_tree; 7393 em = alloc_extent_map(); 7394 if (!em) 7395 return ERR_PTR(-ENOMEM); 7396 7397 em->start = start; 7398 em->orig_start = orig_start; 7399 em->len = len; 7400 em->block_len = block_len; 7401 em->block_start = block_start; 7402 em->orig_block_len = orig_block_len; 7403 em->ram_bytes = ram_bytes; 7404 em->generation = -1; 7405 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7406 if (type == BTRFS_ORDERED_PREALLOC) { 7407 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7408 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7409 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7410 em->compress_type = compress_type; 7411 } 7412 7413 do { 7414 btrfs_drop_extent_cache(inode, em->start, 7415 em->start + em->len - 1, 0); 7416 write_lock(&em_tree->lock); 7417 ret = add_extent_mapping(em_tree, em, 1); 7418 write_unlock(&em_tree->lock); 7419 /* 7420 * The caller has taken lock_extent(), who could race with us 7421 * to add em? 7422 */ 7423 } while (ret == -EEXIST); 7424 7425 if (ret) { 7426 free_extent_map(em); 7427 return ERR_PTR(ret); 7428 } 7429 7430 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7431 return em; 7432 } 7433 7434 7435 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7436 struct inode *inode, 7437 struct btrfs_dio_data *dio_data, 7438 u64 start, u64 len) 7439 { 7440 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7441 struct extent_map *em = *map; 7442 int type; 7443 u64 block_start, orig_start, orig_block_len, ram_bytes; 7444 bool can_nocow = false; 7445 bool space_reserved = false; 7446 u64 prev_len; 7447 int ret = 0; 7448 7449 /* 7450 * We don't allocate a new extent in the following cases 7451 * 7452 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7453 * existing extent. 7454 * 2) The extent is marked as PREALLOC. We're good to go here and can 7455 * just use the extent. 7456 * 7457 */ 7458 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7459 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7460 em->block_start != EXTENT_MAP_HOLE)) { 7461 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7462 type = BTRFS_ORDERED_PREALLOC; 7463 else 7464 type = BTRFS_ORDERED_NOCOW; 7465 len = min(len, em->len - (start - em->start)); 7466 block_start = em->block_start + (start - em->start); 7467 7468 if (can_nocow_extent(inode, start, &len, &orig_start, 7469 &orig_block_len, &ram_bytes, false) == 1 && 7470 btrfs_inc_nocow_writers(fs_info, block_start)) 7471 can_nocow = true; 7472 } 7473 7474 prev_len = len; 7475 if (can_nocow) { 7476 struct extent_map *em2; 7477 7478 /* We can NOCOW, so only need to reserve metadata space. */ 7479 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len); 7480 if (ret < 0) { 7481 /* Our caller expects us to free the input extent map. */ 7482 free_extent_map(em); 7483 *map = NULL; 7484 btrfs_dec_nocow_writers(fs_info, block_start); 7485 goto out; 7486 } 7487 space_reserved = true; 7488 7489 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7490 orig_start, block_start, 7491 len, orig_block_len, 7492 ram_bytes, type); 7493 btrfs_dec_nocow_writers(fs_info, block_start); 7494 if (type == BTRFS_ORDERED_PREALLOC) { 7495 free_extent_map(em); 7496 *map = em = em2; 7497 } 7498 7499 if (IS_ERR(em2)) { 7500 ret = PTR_ERR(em2); 7501 goto out; 7502 } 7503 } else { 7504 /* Our caller expects us to free the input extent map. */ 7505 free_extent_map(em); 7506 *map = NULL; 7507 7508 /* We have to COW, so need to reserve metadata and data space. */ 7509 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7510 &dio_data->data_reserved, 7511 start, len); 7512 if (ret < 0) 7513 goto out; 7514 space_reserved = true; 7515 7516 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7517 if (IS_ERR(em)) { 7518 ret = PTR_ERR(em); 7519 goto out; 7520 } 7521 *map = em; 7522 len = min(len, em->len - (start - em->start)); 7523 if (len < prev_len) 7524 btrfs_delalloc_release_space(BTRFS_I(inode), 7525 dio_data->data_reserved, 7526 start + len, prev_len - len, 7527 true); 7528 } 7529 7530 /* 7531 * We have created our ordered extent, so we can now release our reservation 7532 * for an outstanding extent. 7533 */ 7534 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7535 7536 /* 7537 * Need to update the i_size under the extent lock so buffered 7538 * readers will get the updated i_size when we unlock. 7539 */ 7540 if (start + len > i_size_read(inode)) 7541 i_size_write(inode, start + len); 7542 out: 7543 if (ret && space_reserved) { 7544 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7545 if (can_nocow) { 7546 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7547 } else { 7548 btrfs_delalloc_release_space(BTRFS_I(inode), 7549 dio_data->data_reserved, 7550 start, len, true); 7551 extent_changeset_free(dio_data->data_reserved); 7552 dio_data->data_reserved = NULL; 7553 } 7554 } 7555 return ret; 7556 } 7557 7558 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7559 loff_t length, unsigned int flags, struct iomap *iomap, 7560 struct iomap *srcmap) 7561 { 7562 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7563 struct extent_map *em; 7564 struct extent_state *cached_state = NULL; 7565 struct btrfs_dio_data *dio_data = NULL; 7566 u64 lockstart, lockend; 7567 const bool write = !!(flags & IOMAP_WRITE); 7568 int ret = 0; 7569 u64 len = length; 7570 bool unlock_extents = false; 7571 7572 if (!write) 7573 len = min_t(u64, len, fs_info->sectorsize); 7574 7575 lockstart = start; 7576 lockend = start + len - 1; 7577 7578 /* 7579 * The generic stuff only does filemap_write_and_wait_range, which 7580 * isn't enough if we've written compressed pages to this area, so we 7581 * need to flush the dirty pages again to make absolutely sure that any 7582 * outstanding dirty pages are on disk. 7583 */ 7584 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7585 &BTRFS_I(inode)->runtime_flags)) { 7586 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7587 start + length - 1); 7588 if (ret) 7589 return ret; 7590 } 7591 7592 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7593 if (!dio_data) 7594 return -ENOMEM; 7595 7596 iomap->private = dio_data; 7597 7598 7599 /* 7600 * If this errors out it's because we couldn't invalidate pagecache for 7601 * this range and we need to fallback to buffered. 7602 */ 7603 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7604 ret = -ENOTBLK; 7605 goto err; 7606 } 7607 7608 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7609 if (IS_ERR(em)) { 7610 ret = PTR_ERR(em); 7611 goto unlock_err; 7612 } 7613 7614 /* 7615 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7616 * io. INLINE is special, and we could probably kludge it in here, but 7617 * it's still buffered so for safety lets just fall back to the generic 7618 * buffered path. 7619 * 7620 * For COMPRESSED we _have_ to read the entire extent in so we can 7621 * decompress it, so there will be buffering required no matter what we 7622 * do, so go ahead and fallback to buffered. 7623 * 7624 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7625 * to buffered IO. Don't blame me, this is the price we pay for using 7626 * the generic code. 7627 */ 7628 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7629 em->block_start == EXTENT_MAP_INLINE) { 7630 free_extent_map(em); 7631 ret = -ENOTBLK; 7632 goto unlock_err; 7633 } 7634 7635 len = min(len, em->len - (start - em->start)); 7636 7637 /* 7638 * If we have a NOWAIT request and the range contains multiple extents 7639 * (or a mix of extents and holes), then we return -EAGAIN to make the 7640 * caller fallback to a context where it can do a blocking (without 7641 * NOWAIT) request. This way we avoid doing partial IO and returning 7642 * success to the caller, which is not optimal for writes and for reads 7643 * it can result in unexpected behaviour for an application. 7644 * 7645 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7646 * iomap_dio_rw(), we can end up returning less data then what the caller 7647 * asked for, resulting in an unexpected, and incorrect, short read. 7648 * That is, the caller asked to read N bytes and we return less than that, 7649 * which is wrong unless we are crossing EOF. This happens if we get a 7650 * page fault error when trying to fault in pages for the buffer that is 7651 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7652 * have previously submitted bios for other extents in the range, in 7653 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7654 * those bios have completed by the time we get the page fault error, 7655 * which we return back to our caller - we should only return EIOCBQUEUED 7656 * after we have submitted bios for all the extents in the range. 7657 */ 7658 if ((flags & IOMAP_NOWAIT) && len < length) { 7659 free_extent_map(em); 7660 ret = -EAGAIN; 7661 goto unlock_err; 7662 } 7663 7664 if (write) { 7665 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7666 start, len); 7667 if (ret < 0) 7668 goto unlock_err; 7669 unlock_extents = true; 7670 /* Recalc len in case the new em is smaller than requested */ 7671 len = min(len, em->len - (start - em->start)); 7672 } else { 7673 /* 7674 * We need to unlock only the end area that we aren't using. 7675 * The rest is going to be unlocked by the endio routine. 7676 */ 7677 lockstart = start + len; 7678 if (lockstart < lockend) 7679 unlock_extents = true; 7680 } 7681 7682 if (unlock_extents) 7683 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7684 lockstart, lockend, &cached_state); 7685 else 7686 free_extent_state(cached_state); 7687 7688 /* 7689 * Translate extent map information to iomap. 7690 * We trim the extents (and move the addr) even though iomap code does 7691 * that, since we have locked only the parts we are performing I/O in. 7692 */ 7693 if ((em->block_start == EXTENT_MAP_HOLE) || 7694 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7695 iomap->addr = IOMAP_NULL_ADDR; 7696 iomap->type = IOMAP_HOLE; 7697 } else { 7698 iomap->addr = em->block_start + (start - em->start); 7699 iomap->type = IOMAP_MAPPED; 7700 } 7701 iomap->offset = start; 7702 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7703 iomap->length = len; 7704 7705 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7706 iomap->flags |= IOMAP_F_ZONE_APPEND; 7707 7708 free_extent_map(em); 7709 7710 return 0; 7711 7712 unlock_err: 7713 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7714 &cached_state); 7715 err: 7716 kfree(dio_data); 7717 7718 return ret; 7719 } 7720 7721 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7722 ssize_t written, unsigned int flags, struct iomap *iomap) 7723 { 7724 int ret = 0; 7725 struct btrfs_dio_data *dio_data = iomap->private; 7726 size_t submitted = dio_data->submitted; 7727 const bool write = !!(flags & IOMAP_WRITE); 7728 7729 if (!write && (iomap->type == IOMAP_HOLE)) { 7730 /* If reading from a hole, unlock and return */ 7731 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7732 goto out; 7733 } 7734 7735 if (submitted < length) { 7736 pos += submitted; 7737 length -= submitted; 7738 if (write) 7739 __endio_write_update_ordered(BTRFS_I(inode), pos, 7740 length, false); 7741 else 7742 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7743 pos + length - 1); 7744 ret = -ENOTBLK; 7745 } 7746 7747 if (write) 7748 extent_changeset_free(dio_data->data_reserved); 7749 out: 7750 kfree(dio_data); 7751 iomap->private = NULL; 7752 7753 return ret; 7754 } 7755 7756 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7757 { 7758 /* 7759 * This implies a barrier so that stores to dio_bio->bi_status before 7760 * this and loads of dio_bio->bi_status after this are fully ordered. 7761 */ 7762 if (!refcount_dec_and_test(&dip->refs)) 7763 return; 7764 7765 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7766 __endio_write_update_ordered(BTRFS_I(dip->inode), 7767 dip->file_offset, 7768 dip->bytes, 7769 !dip->dio_bio->bi_status); 7770 } else { 7771 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7772 dip->file_offset, 7773 dip->file_offset + dip->bytes - 1); 7774 } 7775 7776 bio_endio(dip->dio_bio); 7777 kfree(dip); 7778 } 7779 7780 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7781 int mirror_num, 7782 unsigned long bio_flags) 7783 { 7784 struct btrfs_dio_private *dip = bio->bi_private; 7785 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7786 blk_status_t ret; 7787 7788 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7789 7790 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7791 if (ret) 7792 return ret; 7793 7794 refcount_inc(&dip->refs); 7795 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7796 if (ret) 7797 refcount_dec(&dip->refs); 7798 return ret; 7799 } 7800 7801 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip, 7802 struct btrfs_bio *bbio, 7803 const bool uptodate) 7804 { 7805 struct inode *inode = dip->inode; 7806 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7807 const u32 sectorsize = fs_info->sectorsize; 7808 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7809 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7810 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7811 struct bio_vec bvec; 7812 struct bvec_iter iter; 7813 u32 bio_offset = 0; 7814 blk_status_t err = BLK_STS_OK; 7815 7816 __bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) { 7817 unsigned int i, nr_sectors, pgoff; 7818 7819 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7820 pgoff = bvec.bv_offset; 7821 for (i = 0; i < nr_sectors; i++) { 7822 u64 start = bbio->file_offset + bio_offset; 7823 7824 ASSERT(pgoff < PAGE_SIZE); 7825 if (uptodate && 7826 (!csum || !check_data_csum(inode, bbio, 7827 bio_offset, bvec.bv_page, 7828 pgoff, start))) { 7829 clean_io_failure(fs_info, failure_tree, io_tree, 7830 start, bvec.bv_page, 7831 btrfs_ino(BTRFS_I(inode)), 7832 pgoff); 7833 } else { 7834 int ret; 7835 7836 ret = btrfs_repair_one_sector(inode, &bbio->bio, 7837 bio_offset, bvec.bv_page, pgoff, 7838 start, bbio->mirror_num, 7839 submit_dio_repair_bio); 7840 if (ret) 7841 err = errno_to_blk_status(ret); 7842 } 7843 ASSERT(bio_offset + sectorsize > bio_offset); 7844 bio_offset += sectorsize; 7845 pgoff += sectorsize; 7846 } 7847 } 7848 return err; 7849 } 7850 7851 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7852 const u64 offset, const u64 bytes, 7853 const bool uptodate) 7854 { 7855 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, 7856 finish_ordered_fn, uptodate); 7857 } 7858 7859 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7860 struct bio *bio, 7861 u64 dio_file_offset) 7862 { 7863 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false); 7864 } 7865 7866 static void btrfs_end_dio_bio(struct bio *bio) 7867 { 7868 struct btrfs_dio_private *dip = bio->bi_private; 7869 struct btrfs_bio *bbio = btrfs_bio(bio); 7870 blk_status_t err = bio->bi_status; 7871 7872 if (err) 7873 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7874 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7875 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7876 bio->bi_opf, bio->bi_iter.bi_sector, 7877 bio->bi_iter.bi_size, err); 7878 7879 if (bio_op(bio) == REQ_OP_READ) 7880 err = btrfs_check_read_dio_bio(dip, bbio, !err); 7881 7882 if (err) 7883 dip->dio_bio->bi_status = err; 7884 7885 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio); 7886 7887 bio_put(bio); 7888 btrfs_dio_private_put(dip); 7889 } 7890 7891 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7892 struct inode *inode, u64 file_offset, int async_submit) 7893 { 7894 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7895 struct btrfs_dio_private *dip = bio->bi_private; 7896 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 7897 blk_status_t ret; 7898 7899 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7900 if (async_submit) 7901 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7902 7903 if (!write) { 7904 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7905 if (ret) 7906 goto err; 7907 } 7908 7909 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7910 goto map; 7911 7912 if (write && async_submit) { 7913 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 7914 btrfs_submit_bio_start_direct_io); 7915 goto err; 7916 } else if (write) { 7917 /* 7918 * If we aren't doing async submit, calculate the csum of the 7919 * bio now. 7920 */ 7921 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false); 7922 if (ret) 7923 goto err; 7924 } else { 7925 u64 csum_offset; 7926 7927 csum_offset = file_offset - dip->file_offset; 7928 csum_offset >>= fs_info->sectorsize_bits; 7929 csum_offset *= fs_info->csum_size; 7930 btrfs_bio(bio)->csum = dip->csums + csum_offset; 7931 } 7932 map: 7933 ret = btrfs_map_bio(fs_info, bio, 0); 7934 err: 7935 return ret; 7936 } 7937 7938 /* 7939 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7940 * or ordered extents whether or not we submit any bios. 7941 */ 7942 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7943 struct inode *inode, 7944 loff_t file_offset) 7945 { 7946 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 7947 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7948 size_t dip_size; 7949 struct btrfs_dio_private *dip; 7950 7951 dip_size = sizeof(*dip); 7952 if (!write && csum) { 7953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7954 size_t nblocks; 7955 7956 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 7957 dip_size += fs_info->csum_size * nblocks; 7958 } 7959 7960 dip = kzalloc(dip_size, GFP_NOFS); 7961 if (!dip) 7962 return NULL; 7963 7964 dip->inode = inode; 7965 dip->file_offset = file_offset; 7966 dip->bytes = dio_bio->bi_iter.bi_size; 7967 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 7968 dip->dio_bio = dio_bio; 7969 refcount_set(&dip->refs, 1); 7970 return dip; 7971 } 7972 7973 static void btrfs_submit_direct(const struct iomap_iter *iter, 7974 struct bio *dio_bio, loff_t file_offset) 7975 { 7976 struct inode *inode = iter->inode; 7977 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 7978 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7979 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7980 BTRFS_BLOCK_GROUP_RAID56_MASK); 7981 struct btrfs_dio_private *dip; 7982 struct bio *bio; 7983 u64 start_sector; 7984 int async_submit = 0; 7985 u64 submit_len; 7986 u64 clone_offset = 0; 7987 u64 clone_len; 7988 u64 logical; 7989 int ret; 7990 blk_status_t status; 7991 struct btrfs_io_geometry geom; 7992 struct btrfs_dio_data *dio_data = iter->iomap.private; 7993 struct extent_map *em = NULL; 7994 7995 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7996 if (!dip) { 7997 if (!write) { 7998 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7999 file_offset + dio_bio->bi_iter.bi_size - 1); 8000 } 8001 dio_bio->bi_status = BLK_STS_RESOURCE; 8002 bio_endio(dio_bio); 8003 return; 8004 } 8005 8006 if (!write) { 8007 /* 8008 * Load the csums up front to reduce csum tree searches and 8009 * contention when submitting bios. 8010 * 8011 * If we have csums disabled this will do nothing. 8012 */ 8013 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8014 if (status != BLK_STS_OK) 8015 goto out_err; 8016 } 8017 8018 start_sector = dio_bio->bi_iter.bi_sector; 8019 submit_len = dio_bio->bi_iter.bi_size; 8020 8021 do { 8022 logical = start_sector << 9; 8023 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8024 if (IS_ERR(em)) { 8025 status = errno_to_blk_status(PTR_ERR(em)); 8026 em = NULL; 8027 goto out_err_em; 8028 } 8029 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8030 logical, &geom); 8031 if (ret) { 8032 status = errno_to_blk_status(ret); 8033 goto out_err_em; 8034 } 8035 8036 clone_len = min(submit_len, geom.len); 8037 ASSERT(clone_len <= UINT_MAX); 8038 8039 /* 8040 * This will never fail as it's passing GPF_NOFS and 8041 * the allocation is backed by btrfs_bioset. 8042 */ 8043 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8044 bio->bi_private = dip; 8045 bio->bi_end_io = btrfs_end_dio_bio; 8046 btrfs_bio(bio)->file_offset = file_offset; 8047 8048 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8049 status = extract_ordered_extent(BTRFS_I(inode), bio, 8050 file_offset); 8051 if (status) { 8052 bio_put(bio); 8053 goto out_err; 8054 } 8055 } 8056 8057 ASSERT(submit_len >= clone_len); 8058 submit_len -= clone_len; 8059 8060 /* 8061 * Increase the count before we submit the bio so we know 8062 * the end IO handler won't happen before we increase the 8063 * count. Otherwise, the dip might get freed before we're 8064 * done setting it up. 8065 * 8066 * We transfer the initial reference to the last bio, so we 8067 * don't need to increment the reference count for the last one. 8068 */ 8069 if (submit_len > 0) { 8070 refcount_inc(&dip->refs); 8071 /* 8072 * If we are submitting more than one bio, submit them 8073 * all asynchronously. The exception is RAID 5 or 6, as 8074 * asynchronous checksums make it difficult to collect 8075 * full stripe writes. 8076 */ 8077 if (!raid56) 8078 async_submit = 1; 8079 } 8080 8081 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8082 async_submit); 8083 if (status) { 8084 bio_put(bio); 8085 if (submit_len > 0) 8086 refcount_dec(&dip->refs); 8087 goto out_err_em; 8088 } 8089 8090 dio_data->submitted += clone_len; 8091 clone_offset += clone_len; 8092 start_sector += clone_len >> 9; 8093 file_offset += clone_len; 8094 8095 free_extent_map(em); 8096 } while (submit_len > 0); 8097 return; 8098 8099 out_err_em: 8100 free_extent_map(em); 8101 out_err: 8102 dip->dio_bio->bi_status = status; 8103 btrfs_dio_private_put(dip); 8104 } 8105 8106 const struct iomap_ops btrfs_dio_iomap_ops = { 8107 .iomap_begin = btrfs_dio_iomap_begin, 8108 .iomap_end = btrfs_dio_iomap_end, 8109 }; 8110 8111 const struct iomap_dio_ops btrfs_dio_ops = { 8112 .submit_io = btrfs_submit_direct, 8113 }; 8114 8115 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8116 u64 start, u64 len) 8117 { 8118 int ret; 8119 8120 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8121 if (ret) 8122 return ret; 8123 8124 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8125 } 8126 8127 int btrfs_readpage(struct file *file, struct page *page) 8128 { 8129 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8130 u64 start = page_offset(page); 8131 u64 end = start + PAGE_SIZE - 1; 8132 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 8133 int ret; 8134 8135 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8136 8137 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 8138 if (bio_ctrl.bio) { 8139 int ret2; 8140 8141 ret2 = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags); 8142 if (ret == 0) 8143 ret = ret2; 8144 } 8145 return ret; 8146 } 8147 8148 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8149 { 8150 struct inode *inode = page->mapping->host; 8151 int ret; 8152 8153 if (current->flags & PF_MEMALLOC) { 8154 redirty_page_for_writepage(wbc, page); 8155 unlock_page(page); 8156 return 0; 8157 } 8158 8159 /* 8160 * If we are under memory pressure we will call this directly from the 8161 * VM, we need to make sure we have the inode referenced for the ordered 8162 * extent. If not just return like we didn't do anything. 8163 */ 8164 if (!igrab(inode)) { 8165 redirty_page_for_writepage(wbc, page); 8166 return AOP_WRITEPAGE_ACTIVATE; 8167 } 8168 ret = extent_write_full_page(page, wbc); 8169 btrfs_add_delayed_iput(inode); 8170 return ret; 8171 } 8172 8173 static int btrfs_writepages(struct address_space *mapping, 8174 struct writeback_control *wbc) 8175 { 8176 return extent_writepages(mapping, wbc); 8177 } 8178 8179 static void btrfs_readahead(struct readahead_control *rac) 8180 { 8181 extent_readahead(rac); 8182 } 8183 8184 /* 8185 * For releasepage() and invalidate_folio() we have a race window where 8186 * folio_end_writeback() is called but the subpage spinlock is not yet released. 8187 * If we continue to release/invalidate the page, we could cause use-after-free 8188 * for subpage spinlock. So this function is to spin and wait for subpage 8189 * spinlock. 8190 */ 8191 static void wait_subpage_spinlock(struct page *page) 8192 { 8193 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 8194 struct btrfs_subpage *subpage; 8195 8196 if (fs_info->sectorsize == PAGE_SIZE) 8197 return; 8198 8199 ASSERT(PagePrivate(page) && page->private); 8200 subpage = (struct btrfs_subpage *)page->private; 8201 8202 /* 8203 * This may look insane as we just acquire the spinlock and release it, 8204 * without doing anything. But we just want to make sure no one is 8205 * still holding the subpage spinlock. 8206 * And since the page is not dirty nor writeback, and we have page 8207 * locked, the only possible way to hold a spinlock is from the endio 8208 * function to clear page writeback. 8209 * 8210 * Here we just acquire the spinlock so that all existing callers 8211 * should exit and we're safe to release/invalidate the page. 8212 */ 8213 spin_lock_irq(&subpage->lock); 8214 spin_unlock_irq(&subpage->lock); 8215 } 8216 8217 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8218 { 8219 int ret = try_release_extent_mapping(page, gfp_flags); 8220 8221 if (ret == 1) { 8222 wait_subpage_spinlock(page); 8223 clear_page_extent_mapped(page); 8224 } 8225 return ret; 8226 } 8227 8228 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8229 { 8230 if (PageWriteback(page) || PageDirty(page)) 8231 return 0; 8232 return __btrfs_releasepage(page, gfp_flags); 8233 } 8234 8235 #ifdef CONFIG_MIGRATION 8236 static int btrfs_migratepage(struct address_space *mapping, 8237 struct page *newpage, struct page *page, 8238 enum migrate_mode mode) 8239 { 8240 int ret; 8241 8242 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8243 if (ret != MIGRATEPAGE_SUCCESS) 8244 return ret; 8245 8246 if (page_has_private(page)) 8247 attach_page_private(newpage, detach_page_private(page)); 8248 8249 if (PageOrdered(page)) { 8250 ClearPageOrdered(page); 8251 SetPageOrdered(newpage); 8252 } 8253 8254 if (mode != MIGRATE_SYNC_NO_COPY) 8255 migrate_page_copy(newpage, page); 8256 else 8257 migrate_page_states(newpage, page); 8258 return MIGRATEPAGE_SUCCESS; 8259 } 8260 #endif 8261 8262 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 8263 size_t length) 8264 { 8265 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 8266 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8267 struct extent_io_tree *tree = &inode->io_tree; 8268 struct extent_state *cached_state = NULL; 8269 u64 page_start = folio_pos(folio); 8270 u64 page_end = page_start + folio_size(folio) - 1; 8271 u64 cur; 8272 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8273 8274 /* 8275 * We have folio locked so no new ordered extent can be created on this 8276 * page, nor bio can be submitted for this folio. 8277 * 8278 * But already submitted bio can still be finished on this folio. 8279 * Furthermore, endio function won't skip folio which has Ordered 8280 * (Private2) already cleared, so it's possible for endio and 8281 * invalidate_folio to do the same ordered extent accounting twice 8282 * on one folio. 8283 * 8284 * So here we wait for any submitted bios to finish, so that we won't 8285 * do double ordered extent accounting on the same folio. 8286 */ 8287 folio_wait_writeback(folio); 8288 wait_subpage_spinlock(&folio->page); 8289 8290 /* 8291 * For subpage case, we have call sites like 8292 * btrfs_punch_hole_lock_range() which passes range not aligned to 8293 * sectorsize. 8294 * If the range doesn't cover the full folio, we don't need to and 8295 * shouldn't clear page extent mapped, as folio->private can still 8296 * record subpage dirty bits for other part of the range. 8297 * 8298 * For cases that invalidate the full folio even the range doesn't 8299 * cover the full folio, like invalidating the last folio, we're 8300 * still safe to wait for ordered extent to finish. 8301 */ 8302 if (!(offset == 0 && length == folio_size(folio))) { 8303 btrfs_releasepage(&folio->page, GFP_NOFS); 8304 return; 8305 } 8306 8307 if (!inode_evicting) 8308 lock_extent_bits(tree, page_start, page_end, &cached_state); 8309 8310 cur = page_start; 8311 while (cur < page_end) { 8312 struct btrfs_ordered_extent *ordered; 8313 bool delete_states; 8314 u64 range_end; 8315 u32 range_len; 8316 8317 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8318 page_end + 1 - cur); 8319 if (!ordered) { 8320 range_end = page_end; 8321 /* 8322 * No ordered extent covering this range, we are safe 8323 * to delete all extent states in the range. 8324 */ 8325 delete_states = true; 8326 goto next; 8327 } 8328 if (ordered->file_offset > cur) { 8329 /* 8330 * There is a range between [cur, oe->file_offset) not 8331 * covered by any ordered extent. 8332 * We are safe to delete all extent states, and handle 8333 * the ordered extent in the next iteration. 8334 */ 8335 range_end = ordered->file_offset - 1; 8336 delete_states = true; 8337 goto next; 8338 } 8339 8340 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8341 page_end); 8342 ASSERT(range_end + 1 - cur < U32_MAX); 8343 range_len = range_end + 1 - cur; 8344 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 8345 /* 8346 * If Ordered (Private2) is cleared, it means endio has 8347 * already been executed for the range. 8348 * We can't delete the extent states as 8349 * btrfs_finish_ordered_io() may still use some of them. 8350 */ 8351 delete_states = false; 8352 goto next; 8353 } 8354 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8355 8356 /* 8357 * IO on this page will never be started, so we need to account 8358 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8359 * here, must leave that up for the ordered extent completion. 8360 * 8361 * This will also unlock the range for incoming 8362 * btrfs_finish_ordered_io(). 8363 */ 8364 if (!inode_evicting) 8365 clear_extent_bit(tree, cur, range_end, 8366 EXTENT_DELALLOC | 8367 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8368 EXTENT_DEFRAG, 1, 0, &cached_state); 8369 8370 spin_lock_irq(&inode->ordered_tree.lock); 8371 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8372 ordered->truncated_len = min(ordered->truncated_len, 8373 cur - ordered->file_offset); 8374 spin_unlock_irq(&inode->ordered_tree.lock); 8375 8376 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8377 cur, range_end + 1 - cur)) { 8378 btrfs_finish_ordered_io(ordered); 8379 /* 8380 * The ordered extent has finished, now we're again 8381 * safe to delete all extent states of the range. 8382 */ 8383 delete_states = true; 8384 } else { 8385 /* 8386 * btrfs_finish_ordered_io() will get executed by endio 8387 * of other pages, thus we can't delete extent states 8388 * anymore 8389 */ 8390 delete_states = false; 8391 } 8392 next: 8393 if (ordered) 8394 btrfs_put_ordered_extent(ordered); 8395 /* 8396 * Qgroup reserved space handler 8397 * Sector(s) here will be either: 8398 * 8399 * 1) Already written to disk or bio already finished 8400 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8401 * Qgroup will be handled by its qgroup_record then. 8402 * btrfs_qgroup_free_data() call will do nothing here. 8403 * 8404 * 2) Not written to disk yet 8405 * Then btrfs_qgroup_free_data() call will clear the 8406 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8407 * reserved data space. 8408 * Since the IO will never happen for this page. 8409 */ 8410 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8411 if (!inode_evicting) { 8412 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8413 EXTENT_DELALLOC | EXTENT_UPTODATE | 8414 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8415 delete_states, &cached_state); 8416 } 8417 cur = range_end + 1; 8418 } 8419 /* 8420 * We have iterated through all ordered extents of the page, the page 8421 * should not have Ordered (Private2) anymore, or the above iteration 8422 * did something wrong. 8423 */ 8424 ASSERT(!folio_test_ordered(folio)); 8425 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8426 if (!inode_evicting) 8427 __btrfs_releasepage(&folio->page, GFP_NOFS); 8428 clear_page_extent_mapped(&folio->page); 8429 } 8430 8431 /* 8432 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8433 * called from a page fault handler when a page is first dirtied. Hence we must 8434 * be careful to check for EOF conditions here. We set the page up correctly 8435 * for a written page which means we get ENOSPC checking when writing into 8436 * holes and correct delalloc and unwritten extent mapping on filesystems that 8437 * support these features. 8438 * 8439 * We are not allowed to take the i_mutex here so we have to play games to 8440 * protect against truncate races as the page could now be beyond EOF. Because 8441 * truncate_setsize() writes the inode size before removing pages, once we have 8442 * the page lock we can determine safely if the page is beyond EOF. If it is not 8443 * beyond EOF, then the page is guaranteed safe against truncation until we 8444 * unlock the page. 8445 */ 8446 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8447 { 8448 struct page *page = vmf->page; 8449 struct inode *inode = file_inode(vmf->vma->vm_file); 8450 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8451 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8452 struct btrfs_ordered_extent *ordered; 8453 struct extent_state *cached_state = NULL; 8454 struct extent_changeset *data_reserved = NULL; 8455 unsigned long zero_start; 8456 loff_t size; 8457 vm_fault_t ret; 8458 int ret2; 8459 int reserved = 0; 8460 u64 reserved_space; 8461 u64 page_start; 8462 u64 page_end; 8463 u64 end; 8464 8465 reserved_space = PAGE_SIZE; 8466 8467 sb_start_pagefault(inode->i_sb); 8468 page_start = page_offset(page); 8469 page_end = page_start + PAGE_SIZE - 1; 8470 end = page_end; 8471 8472 /* 8473 * Reserving delalloc space after obtaining the page lock can lead to 8474 * deadlock. For example, if a dirty page is locked by this function 8475 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8476 * dirty page write out, then the btrfs_writepage() function could 8477 * end up waiting indefinitely to get a lock on the page currently 8478 * being processed by btrfs_page_mkwrite() function. 8479 */ 8480 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8481 page_start, reserved_space); 8482 if (!ret2) { 8483 ret2 = file_update_time(vmf->vma->vm_file); 8484 reserved = 1; 8485 } 8486 if (ret2) { 8487 ret = vmf_error(ret2); 8488 if (reserved) 8489 goto out; 8490 goto out_noreserve; 8491 } 8492 8493 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8494 again: 8495 down_read(&BTRFS_I(inode)->i_mmap_lock); 8496 lock_page(page); 8497 size = i_size_read(inode); 8498 8499 if ((page->mapping != inode->i_mapping) || 8500 (page_start >= size)) { 8501 /* page got truncated out from underneath us */ 8502 goto out_unlock; 8503 } 8504 wait_on_page_writeback(page); 8505 8506 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8507 ret2 = set_page_extent_mapped(page); 8508 if (ret2 < 0) { 8509 ret = vmf_error(ret2); 8510 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8511 goto out_unlock; 8512 } 8513 8514 /* 8515 * we can't set the delalloc bits if there are pending ordered 8516 * extents. Drop our locks and wait for them to finish 8517 */ 8518 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8519 PAGE_SIZE); 8520 if (ordered) { 8521 unlock_extent_cached(io_tree, page_start, page_end, 8522 &cached_state); 8523 unlock_page(page); 8524 up_read(&BTRFS_I(inode)->i_mmap_lock); 8525 btrfs_start_ordered_extent(ordered, 1); 8526 btrfs_put_ordered_extent(ordered); 8527 goto again; 8528 } 8529 8530 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8531 reserved_space = round_up(size - page_start, 8532 fs_info->sectorsize); 8533 if (reserved_space < PAGE_SIZE) { 8534 end = page_start + reserved_space - 1; 8535 btrfs_delalloc_release_space(BTRFS_I(inode), 8536 data_reserved, page_start, 8537 PAGE_SIZE - reserved_space, true); 8538 } 8539 } 8540 8541 /* 8542 * page_mkwrite gets called when the page is firstly dirtied after it's 8543 * faulted in, but write(2) could also dirty a page and set delalloc 8544 * bits, thus in this case for space account reason, we still need to 8545 * clear any delalloc bits within this page range since we have to 8546 * reserve data&meta space before lock_page() (see above comments). 8547 */ 8548 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8549 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8550 EXTENT_DEFRAG, 0, 0, &cached_state); 8551 8552 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8553 &cached_state); 8554 if (ret2) { 8555 unlock_extent_cached(io_tree, page_start, page_end, 8556 &cached_state); 8557 ret = VM_FAULT_SIGBUS; 8558 goto out_unlock; 8559 } 8560 8561 /* page is wholly or partially inside EOF */ 8562 if (page_start + PAGE_SIZE > size) 8563 zero_start = offset_in_page(size); 8564 else 8565 zero_start = PAGE_SIZE; 8566 8567 if (zero_start != PAGE_SIZE) { 8568 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8569 flush_dcache_page(page); 8570 } 8571 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8572 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8573 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8574 8575 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8576 8577 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8578 up_read(&BTRFS_I(inode)->i_mmap_lock); 8579 8580 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8581 sb_end_pagefault(inode->i_sb); 8582 extent_changeset_free(data_reserved); 8583 return VM_FAULT_LOCKED; 8584 8585 out_unlock: 8586 unlock_page(page); 8587 up_read(&BTRFS_I(inode)->i_mmap_lock); 8588 out: 8589 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8590 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8591 reserved_space, (ret != 0)); 8592 out_noreserve: 8593 sb_end_pagefault(inode->i_sb); 8594 extent_changeset_free(data_reserved); 8595 return ret; 8596 } 8597 8598 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8599 { 8600 struct btrfs_truncate_control control = { 8601 .inode = BTRFS_I(inode), 8602 .ino = btrfs_ino(BTRFS_I(inode)), 8603 .min_type = BTRFS_EXTENT_DATA_KEY, 8604 .clear_extent_range = true, 8605 }; 8606 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8607 struct btrfs_root *root = BTRFS_I(inode)->root; 8608 struct btrfs_block_rsv *rsv; 8609 int ret; 8610 struct btrfs_trans_handle *trans; 8611 u64 mask = fs_info->sectorsize - 1; 8612 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8613 8614 if (!skip_writeback) { 8615 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8616 (u64)-1); 8617 if (ret) 8618 return ret; 8619 } 8620 8621 /* 8622 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8623 * things going on here: 8624 * 8625 * 1) We need to reserve space to update our inode. 8626 * 8627 * 2) We need to have something to cache all the space that is going to 8628 * be free'd up by the truncate operation, but also have some slack 8629 * space reserved in case it uses space during the truncate (thank you 8630 * very much snapshotting). 8631 * 8632 * And we need these to be separate. The fact is we can use a lot of 8633 * space doing the truncate, and we have no earthly idea how much space 8634 * we will use, so we need the truncate reservation to be separate so it 8635 * doesn't end up using space reserved for updating the inode. We also 8636 * need to be able to stop the transaction and start a new one, which 8637 * means we need to be able to update the inode several times, and we 8638 * have no idea of knowing how many times that will be, so we can't just 8639 * reserve 1 item for the entirety of the operation, so that has to be 8640 * done separately as well. 8641 * 8642 * So that leaves us with 8643 * 8644 * 1) rsv - for the truncate reservation, which we will steal from the 8645 * transaction reservation. 8646 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8647 * updating the inode. 8648 */ 8649 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8650 if (!rsv) 8651 return -ENOMEM; 8652 rsv->size = min_size; 8653 rsv->failfast = 1; 8654 8655 /* 8656 * 1 for the truncate slack space 8657 * 1 for updating the inode. 8658 */ 8659 trans = btrfs_start_transaction(root, 2); 8660 if (IS_ERR(trans)) { 8661 ret = PTR_ERR(trans); 8662 goto out; 8663 } 8664 8665 /* Migrate the slack space for the truncate to our reserve */ 8666 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8667 min_size, false); 8668 BUG_ON(ret); 8669 8670 trans->block_rsv = rsv; 8671 8672 while (1) { 8673 struct extent_state *cached_state = NULL; 8674 const u64 new_size = inode->i_size; 8675 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8676 8677 control.new_size = new_size; 8678 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 8679 &cached_state); 8680 /* 8681 * We want to drop from the next block forward in case this new 8682 * size is not block aligned since we will be keeping the last 8683 * block of the extent just the way it is. 8684 */ 8685 btrfs_drop_extent_cache(BTRFS_I(inode), 8686 ALIGN(new_size, fs_info->sectorsize), 8687 (u64)-1, 0); 8688 8689 ret = btrfs_truncate_inode_items(trans, root, &control); 8690 8691 inode_sub_bytes(inode, control.sub_bytes); 8692 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size); 8693 8694 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 8695 (u64)-1, &cached_state); 8696 8697 trans->block_rsv = &fs_info->trans_block_rsv; 8698 if (ret != -ENOSPC && ret != -EAGAIN) 8699 break; 8700 8701 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8702 if (ret) 8703 break; 8704 8705 btrfs_end_transaction(trans); 8706 btrfs_btree_balance_dirty(fs_info); 8707 8708 trans = btrfs_start_transaction(root, 2); 8709 if (IS_ERR(trans)) { 8710 ret = PTR_ERR(trans); 8711 trans = NULL; 8712 break; 8713 } 8714 8715 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8716 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8717 rsv, min_size, false); 8718 BUG_ON(ret); /* shouldn't happen */ 8719 trans->block_rsv = rsv; 8720 } 8721 8722 /* 8723 * We can't call btrfs_truncate_block inside a trans handle as we could 8724 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8725 * know we've truncated everything except the last little bit, and can 8726 * do btrfs_truncate_block and then update the disk_i_size. 8727 */ 8728 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8729 btrfs_end_transaction(trans); 8730 btrfs_btree_balance_dirty(fs_info); 8731 8732 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8733 if (ret) 8734 goto out; 8735 trans = btrfs_start_transaction(root, 1); 8736 if (IS_ERR(trans)) { 8737 ret = PTR_ERR(trans); 8738 goto out; 8739 } 8740 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8741 } 8742 8743 if (trans) { 8744 int ret2; 8745 8746 trans->block_rsv = &fs_info->trans_block_rsv; 8747 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8748 if (ret2 && !ret) 8749 ret = ret2; 8750 8751 ret2 = btrfs_end_transaction(trans); 8752 if (ret2 && !ret) 8753 ret = ret2; 8754 btrfs_btree_balance_dirty(fs_info); 8755 } 8756 out: 8757 btrfs_free_block_rsv(fs_info, rsv); 8758 /* 8759 * So if we truncate and then write and fsync we normally would just 8760 * write the extents that changed, which is a problem if we need to 8761 * first truncate that entire inode. So set this flag so we write out 8762 * all of the extents in the inode to the sync log so we're completely 8763 * safe. 8764 * 8765 * If no extents were dropped or trimmed we don't need to force the next 8766 * fsync to truncate all the inode's items from the log and re-log them 8767 * all. This means the truncate operation did not change the file size, 8768 * or changed it to a smaller size but there was only an implicit hole 8769 * between the old i_size and the new i_size, and there were no prealloc 8770 * extents beyond i_size to drop. 8771 */ 8772 if (control.extents_found > 0) 8773 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8774 8775 return ret; 8776 } 8777 8778 /* 8779 * create a new subvolume directory/inode (helper for the ioctl). 8780 */ 8781 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8782 struct btrfs_root *new_root, 8783 struct btrfs_root *parent_root, 8784 struct user_namespace *mnt_userns) 8785 { 8786 struct inode *inode; 8787 int err; 8788 u64 index = 0; 8789 u64 ino; 8790 8791 err = btrfs_get_free_objectid(new_root, &ino); 8792 if (err < 0) 8793 return err; 8794 8795 inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2, 8796 ino, ino, 8797 S_IFDIR | (~current_umask() & S_IRWXUGO), 8798 &index); 8799 if (IS_ERR(inode)) 8800 return PTR_ERR(inode); 8801 inode->i_op = &btrfs_dir_inode_operations; 8802 inode->i_fop = &btrfs_dir_file_operations; 8803 8804 set_nlink(inode, 1); 8805 btrfs_i_size_write(BTRFS_I(inode), 0); 8806 unlock_new_inode(inode); 8807 8808 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8809 if (err) 8810 btrfs_err(new_root->fs_info, 8811 "error inheriting subvolume %llu properties: %d", 8812 new_root->root_key.objectid, err); 8813 8814 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8815 8816 iput(inode); 8817 return err; 8818 } 8819 8820 struct inode *btrfs_alloc_inode(struct super_block *sb) 8821 { 8822 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8823 struct btrfs_inode *ei; 8824 struct inode *inode; 8825 8826 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8827 if (!ei) 8828 return NULL; 8829 8830 ei->root = NULL; 8831 ei->generation = 0; 8832 ei->last_trans = 0; 8833 ei->last_sub_trans = 0; 8834 ei->logged_trans = 0; 8835 ei->delalloc_bytes = 0; 8836 ei->new_delalloc_bytes = 0; 8837 ei->defrag_bytes = 0; 8838 ei->disk_i_size = 0; 8839 ei->flags = 0; 8840 ei->ro_flags = 0; 8841 ei->csum_bytes = 0; 8842 ei->index_cnt = (u64)-1; 8843 ei->dir_index = 0; 8844 ei->last_unlink_trans = 0; 8845 ei->last_reflink_trans = 0; 8846 ei->last_log_commit = 0; 8847 8848 spin_lock_init(&ei->lock); 8849 ei->outstanding_extents = 0; 8850 if (sb->s_magic != BTRFS_TEST_MAGIC) 8851 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8852 BTRFS_BLOCK_RSV_DELALLOC); 8853 ei->runtime_flags = 0; 8854 ei->prop_compress = BTRFS_COMPRESS_NONE; 8855 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8856 8857 ei->delayed_node = NULL; 8858 8859 ei->i_otime.tv_sec = 0; 8860 ei->i_otime.tv_nsec = 0; 8861 8862 inode = &ei->vfs_inode; 8863 extent_map_tree_init(&ei->extent_tree); 8864 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8865 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8866 IO_TREE_INODE_IO_FAILURE, inode); 8867 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8868 IO_TREE_INODE_FILE_EXTENT, inode); 8869 ei->io_tree.track_uptodate = true; 8870 ei->io_failure_tree.track_uptodate = true; 8871 atomic_set(&ei->sync_writers, 0); 8872 mutex_init(&ei->log_mutex); 8873 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8874 INIT_LIST_HEAD(&ei->delalloc_inodes); 8875 INIT_LIST_HEAD(&ei->delayed_iput); 8876 RB_CLEAR_NODE(&ei->rb_node); 8877 init_rwsem(&ei->i_mmap_lock); 8878 8879 return inode; 8880 } 8881 8882 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8883 void btrfs_test_destroy_inode(struct inode *inode) 8884 { 8885 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8886 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8887 } 8888 #endif 8889 8890 void btrfs_free_inode(struct inode *inode) 8891 { 8892 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8893 } 8894 8895 void btrfs_destroy_inode(struct inode *vfs_inode) 8896 { 8897 struct btrfs_ordered_extent *ordered; 8898 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8899 struct btrfs_root *root = inode->root; 8900 8901 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8902 WARN_ON(vfs_inode->i_data.nrpages); 8903 WARN_ON(inode->block_rsv.reserved); 8904 WARN_ON(inode->block_rsv.size); 8905 WARN_ON(inode->outstanding_extents); 8906 if (!S_ISDIR(vfs_inode->i_mode)) { 8907 WARN_ON(inode->delalloc_bytes); 8908 WARN_ON(inode->new_delalloc_bytes); 8909 } 8910 WARN_ON(inode->csum_bytes); 8911 WARN_ON(inode->defrag_bytes); 8912 8913 /* 8914 * This can happen where we create an inode, but somebody else also 8915 * created the same inode and we need to destroy the one we already 8916 * created. 8917 */ 8918 if (!root) 8919 return; 8920 8921 while (1) { 8922 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8923 if (!ordered) 8924 break; 8925 else { 8926 btrfs_err(root->fs_info, 8927 "found ordered extent %llu %llu on inode cleanup", 8928 ordered->file_offset, ordered->num_bytes); 8929 btrfs_remove_ordered_extent(inode, ordered); 8930 btrfs_put_ordered_extent(ordered); 8931 btrfs_put_ordered_extent(ordered); 8932 } 8933 } 8934 btrfs_qgroup_check_reserved_leak(inode); 8935 inode_tree_del(inode); 8936 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8937 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8938 btrfs_put_root(inode->root); 8939 } 8940 8941 int btrfs_drop_inode(struct inode *inode) 8942 { 8943 struct btrfs_root *root = BTRFS_I(inode)->root; 8944 8945 if (root == NULL) 8946 return 1; 8947 8948 /* the snap/subvol tree is on deleting */ 8949 if (btrfs_root_refs(&root->root_item) == 0) 8950 return 1; 8951 else 8952 return generic_drop_inode(inode); 8953 } 8954 8955 static void init_once(void *foo) 8956 { 8957 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8958 8959 inode_init_once(&ei->vfs_inode); 8960 } 8961 8962 void __cold btrfs_destroy_cachep(void) 8963 { 8964 /* 8965 * Make sure all delayed rcu free inodes are flushed before we 8966 * destroy cache. 8967 */ 8968 rcu_barrier(); 8969 kmem_cache_destroy(btrfs_inode_cachep); 8970 kmem_cache_destroy(btrfs_trans_handle_cachep); 8971 kmem_cache_destroy(btrfs_path_cachep); 8972 kmem_cache_destroy(btrfs_free_space_cachep); 8973 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8974 } 8975 8976 int __init btrfs_init_cachep(void) 8977 { 8978 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8979 sizeof(struct btrfs_inode), 0, 8980 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8981 init_once); 8982 if (!btrfs_inode_cachep) 8983 goto fail; 8984 8985 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8986 sizeof(struct btrfs_trans_handle), 0, 8987 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8988 if (!btrfs_trans_handle_cachep) 8989 goto fail; 8990 8991 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8992 sizeof(struct btrfs_path), 0, 8993 SLAB_MEM_SPREAD, NULL); 8994 if (!btrfs_path_cachep) 8995 goto fail; 8996 8997 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8998 sizeof(struct btrfs_free_space), 0, 8999 SLAB_MEM_SPREAD, NULL); 9000 if (!btrfs_free_space_cachep) 9001 goto fail; 9002 9003 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9004 PAGE_SIZE, PAGE_SIZE, 9005 SLAB_MEM_SPREAD, NULL); 9006 if (!btrfs_free_space_bitmap_cachep) 9007 goto fail; 9008 9009 return 0; 9010 fail: 9011 btrfs_destroy_cachep(); 9012 return -ENOMEM; 9013 } 9014 9015 static int btrfs_getattr(struct user_namespace *mnt_userns, 9016 const struct path *path, struct kstat *stat, 9017 u32 request_mask, unsigned int flags) 9018 { 9019 u64 delalloc_bytes; 9020 u64 inode_bytes; 9021 struct inode *inode = d_inode(path->dentry); 9022 u32 blocksize = inode->i_sb->s_blocksize; 9023 u32 bi_flags = BTRFS_I(inode)->flags; 9024 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 9025 9026 stat->result_mask |= STATX_BTIME; 9027 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9028 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9029 if (bi_flags & BTRFS_INODE_APPEND) 9030 stat->attributes |= STATX_ATTR_APPEND; 9031 if (bi_flags & BTRFS_INODE_COMPRESS) 9032 stat->attributes |= STATX_ATTR_COMPRESSED; 9033 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9034 stat->attributes |= STATX_ATTR_IMMUTABLE; 9035 if (bi_flags & BTRFS_INODE_NODUMP) 9036 stat->attributes |= STATX_ATTR_NODUMP; 9037 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 9038 stat->attributes |= STATX_ATTR_VERITY; 9039 9040 stat->attributes_mask |= (STATX_ATTR_APPEND | 9041 STATX_ATTR_COMPRESSED | 9042 STATX_ATTR_IMMUTABLE | 9043 STATX_ATTR_NODUMP); 9044 9045 generic_fillattr(mnt_userns, inode, stat); 9046 stat->dev = BTRFS_I(inode)->root->anon_dev; 9047 9048 spin_lock(&BTRFS_I(inode)->lock); 9049 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9050 inode_bytes = inode_get_bytes(inode); 9051 spin_unlock(&BTRFS_I(inode)->lock); 9052 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9053 ALIGN(delalloc_bytes, blocksize)) >> 9; 9054 return 0; 9055 } 9056 9057 static int btrfs_rename_exchange(struct inode *old_dir, 9058 struct dentry *old_dentry, 9059 struct inode *new_dir, 9060 struct dentry *new_dentry) 9061 { 9062 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9063 struct btrfs_trans_handle *trans; 9064 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9065 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9066 struct inode *new_inode = new_dentry->d_inode; 9067 struct inode *old_inode = old_dentry->d_inode; 9068 struct timespec64 ctime = current_time(old_inode); 9069 struct btrfs_rename_ctx old_rename_ctx; 9070 struct btrfs_rename_ctx new_rename_ctx; 9071 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9072 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9073 u64 old_idx = 0; 9074 u64 new_idx = 0; 9075 int ret; 9076 int ret2; 9077 bool need_abort = false; 9078 9079 /* 9080 * For non-subvolumes allow exchange only within one subvolume, in the 9081 * same inode namespace. Two subvolumes (represented as directory) can 9082 * be exchanged as they're a logical link and have a fixed inode number. 9083 */ 9084 if (root != dest && 9085 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 9086 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 9087 return -EXDEV; 9088 9089 /* close the race window with snapshot create/destroy ioctl */ 9090 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9091 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9092 down_read(&fs_info->subvol_sem); 9093 9094 /* 9095 * We want to reserve the absolute worst case amount of items. So if 9096 * both inodes are subvols and we need to unlink them then that would 9097 * require 4 item modifications, but if they are both normal inodes it 9098 * would require 5 item modifications, so we'll assume their normal 9099 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9100 * should cover the worst case number of items we'll modify. 9101 */ 9102 trans = btrfs_start_transaction(root, 12); 9103 if (IS_ERR(trans)) { 9104 ret = PTR_ERR(trans); 9105 goto out_notrans; 9106 } 9107 9108 if (dest != root) { 9109 ret = btrfs_record_root_in_trans(trans, dest); 9110 if (ret) 9111 goto out_fail; 9112 } 9113 9114 /* 9115 * We need to find a free sequence number both in the source and 9116 * in the destination directory for the exchange. 9117 */ 9118 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9119 if (ret) 9120 goto out_fail; 9121 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9122 if (ret) 9123 goto out_fail; 9124 9125 BTRFS_I(old_inode)->dir_index = 0ULL; 9126 BTRFS_I(new_inode)->dir_index = 0ULL; 9127 9128 /* Reference for the source. */ 9129 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9130 /* force full log commit if subvolume involved. */ 9131 btrfs_set_log_full_commit(trans); 9132 } else { 9133 ret = btrfs_insert_inode_ref(trans, dest, 9134 new_dentry->d_name.name, 9135 new_dentry->d_name.len, 9136 old_ino, 9137 btrfs_ino(BTRFS_I(new_dir)), 9138 old_idx); 9139 if (ret) 9140 goto out_fail; 9141 need_abort = true; 9142 } 9143 9144 /* And now for the dest. */ 9145 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9146 /* force full log commit if subvolume involved. */ 9147 btrfs_set_log_full_commit(trans); 9148 } else { 9149 ret = btrfs_insert_inode_ref(trans, root, 9150 old_dentry->d_name.name, 9151 old_dentry->d_name.len, 9152 new_ino, 9153 btrfs_ino(BTRFS_I(old_dir)), 9154 new_idx); 9155 if (ret) { 9156 if (need_abort) 9157 btrfs_abort_transaction(trans, ret); 9158 goto out_fail; 9159 } 9160 } 9161 9162 /* Update inode version and ctime/mtime. */ 9163 inode_inc_iversion(old_dir); 9164 inode_inc_iversion(new_dir); 9165 inode_inc_iversion(old_inode); 9166 inode_inc_iversion(new_inode); 9167 old_dir->i_ctime = old_dir->i_mtime = ctime; 9168 new_dir->i_ctime = new_dir->i_mtime = ctime; 9169 old_inode->i_ctime = ctime; 9170 new_inode->i_ctime = ctime; 9171 9172 if (old_dentry->d_parent != new_dentry->d_parent) { 9173 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9174 BTRFS_I(old_inode), 1); 9175 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9176 BTRFS_I(new_inode), 1); 9177 } 9178 9179 /* src is a subvolume */ 9180 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9181 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9182 } else { /* src is an inode */ 9183 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9184 BTRFS_I(old_dentry->d_inode), 9185 old_dentry->d_name.name, 9186 old_dentry->d_name.len, 9187 &old_rename_ctx); 9188 if (!ret) 9189 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9190 } 9191 if (ret) { 9192 btrfs_abort_transaction(trans, ret); 9193 goto out_fail; 9194 } 9195 9196 /* dest is a subvolume */ 9197 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9198 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9199 } else { /* dest is an inode */ 9200 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9201 BTRFS_I(new_dentry->d_inode), 9202 new_dentry->d_name.name, 9203 new_dentry->d_name.len, 9204 &new_rename_ctx); 9205 if (!ret) 9206 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9207 } 9208 if (ret) { 9209 btrfs_abort_transaction(trans, ret); 9210 goto out_fail; 9211 } 9212 9213 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9214 new_dentry->d_name.name, 9215 new_dentry->d_name.len, 0, old_idx); 9216 if (ret) { 9217 btrfs_abort_transaction(trans, ret); 9218 goto out_fail; 9219 } 9220 9221 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9222 old_dentry->d_name.name, 9223 old_dentry->d_name.len, 0, new_idx); 9224 if (ret) { 9225 btrfs_abort_transaction(trans, ret); 9226 goto out_fail; 9227 } 9228 9229 if (old_inode->i_nlink == 1) 9230 BTRFS_I(old_inode)->dir_index = old_idx; 9231 if (new_inode->i_nlink == 1) 9232 BTRFS_I(new_inode)->dir_index = new_idx; 9233 9234 /* 9235 * Now pin the logs of the roots. We do it to ensure that no other task 9236 * can sync the logs while we are in progress with the rename, because 9237 * that could result in an inconsistency in case any of the inodes that 9238 * are part of this rename operation were logged before. 9239 */ 9240 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9241 btrfs_pin_log_trans(root); 9242 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9243 btrfs_pin_log_trans(dest); 9244 9245 /* Do the log updates for all inodes. */ 9246 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9247 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9248 old_rename_ctx.index, new_dentry->d_parent); 9249 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9250 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 9251 new_rename_ctx.index, old_dentry->d_parent); 9252 9253 /* Now unpin the logs. */ 9254 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9255 btrfs_end_log_trans(root); 9256 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9257 btrfs_end_log_trans(dest); 9258 out_fail: 9259 ret2 = btrfs_end_transaction(trans); 9260 ret = ret ? ret : ret2; 9261 out_notrans: 9262 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9263 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9264 up_read(&fs_info->subvol_sem); 9265 9266 return ret; 9267 } 9268 9269 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9270 struct btrfs_root *root, 9271 struct user_namespace *mnt_userns, 9272 struct inode *dir, 9273 struct dentry *dentry) 9274 { 9275 int ret; 9276 struct inode *inode; 9277 u64 objectid; 9278 u64 index; 9279 9280 ret = btrfs_get_free_objectid(root, &objectid); 9281 if (ret) 9282 return ret; 9283 9284 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 9285 dentry->d_name.name, 9286 dentry->d_name.len, 9287 btrfs_ino(BTRFS_I(dir)), 9288 objectid, 9289 S_IFCHR | WHITEOUT_MODE, 9290 &index); 9291 9292 if (IS_ERR(inode)) { 9293 ret = PTR_ERR(inode); 9294 return ret; 9295 } 9296 9297 inode->i_op = &btrfs_special_inode_operations; 9298 init_special_inode(inode, inode->i_mode, 9299 WHITEOUT_DEV); 9300 9301 ret = btrfs_init_inode_security(trans, inode, dir, 9302 &dentry->d_name); 9303 if (ret) 9304 goto out; 9305 9306 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9307 BTRFS_I(inode), 0, index); 9308 if (ret) 9309 goto out; 9310 9311 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9312 out: 9313 unlock_new_inode(inode); 9314 if (ret) 9315 inode_dec_link_count(inode); 9316 iput(inode); 9317 9318 return ret; 9319 } 9320 9321 static int btrfs_rename(struct user_namespace *mnt_userns, 9322 struct inode *old_dir, struct dentry *old_dentry, 9323 struct inode *new_dir, struct dentry *new_dentry, 9324 unsigned int flags) 9325 { 9326 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9327 struct btrfs_trans_handle *trans; 9328 unsigned int trans_num_items; 9329 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9330 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9331 struct inode *new_inode = d_inode(new_dentry); 9332 struct inode *old_inode = d_inode(old_dentry); 9333 struct btrfs_rename_ctx rename_ctx; 9334 u64 index = 0; 9335 int ret; 9336 int ret2; 9337 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9338 9339 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9340 return -EPERM; 9341 9342 /* we only allow rename subvolume link between subvolumes */ 9343 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9344 return -EXDEV; 9345 9346 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9347 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9348 return -ENOTEMPTY; 9349 9350 if (S_ISDIR(old_inode->i_mode) && new_inode && 9351 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9352 return -ENOTEMPTY; 9353 9354 9355 /* check for collisions, even if the name isn't there */ 9356 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9357 new_dentry->d_name.name, 9358 new_dentry->d_name.len); 9359 9360 if (ret) { 9361 if (ret == -EEXIST) { 9362 /* we shouldn't get 9363 * eexist without a new_inode */ 9364 if (WARN_ON(!new_inode)) { 9365 return ret; 9366 } 9367 } else { 9368 /* maybe -EOVERFLOW */ 9369 return ret; 9370 } 9371 } 9372 ret = 0; 9373 9374 /* 9375 * we're using rename to replace one file with another. Start IO on it 9376 * now so we don't add too much work to the end of the transaction 9377 */ 9378 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9379 filemap_flush(old_inode->i_mapping); 9380 9381 /* close the racy window with snapshot create/destroy ioctl */ 9382 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9383 down_read(&fs_info->subvol_sem); 9384 /* 9385 * We want to reserve the absolute worst case amount of items. So if 9386 * both inodes are subvols and we need to unlink them then that would 9387 * require 4 item modifications, but if they are both normal inodes it 9388 * would require 5 item modifications, so we'll assume they are normal 9389 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9390 * should cover the worst case number of items we'll modify. 9391 * If our rename has the whiteout flag, we need more 5 units for the 9392 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9393 * when selinux is enabled). 9394 */ 9395 trans_num_items = 11; 9396 if (flags & RENAME_WHITEOUT) 9397 trans_num_items += 5; 9398 trans = btrfs_start_transaction(root, trans_num_items); 9399 if (IS_ERR(trans)) { 9400 ret = PTR_ERR(trans); 9401 goto out_notrans; 9402 } 9403 9404 if (dest != root) { 9405 ret = btrfs_record_root_in_trans(trans, dest); 9406 if (ret) 9407 goto out_fail; 9408 } 9409 9410 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9411 if (ret) 9412 goto out_fail; 9413 9414 BTRFS_I(old_inode)->dir_index = 0ULL; 9415 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9416 /* force full log commit if subvolume involved. */ 9417 btrfs_set_log_full_commit(trans); 9418 } else { 9419 ret = btrfs_insert_inode_ref(trans, dest, 9420 new_dentry->d_name.name, 9421 new_dentry->d_name.len, 9422 old_ino, 9423 btrfs_ino(BTRFS_I(new_dir)), index); 9424 if (ret) 9425 goto out_fail; 9426 } 9427 9428 inode_inc_iversion(old_dir); 9429 inode_inc_iversion(new_dir); 9430 inode_inc_iversion(old_inode); 9431 old_dir->i_ctime = old_dir->i_mtime = 9432 new_dir->i_ctime = new_dir->i_mtime = 9433 old_inode->i_ctime = current_time(old_dir); 9434 9435 if (old_dentry->d_parent != new_dentry->d_parent) 9436 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9437 BTRFS_I(old_inode), 1); 9438 9439 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9440 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9441 } else { 9442 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9443 BTRFS_I(d_inode(old_dentry)), 9444 old_dentry->d_name.name, 9445 old_dentry->d_name.len, 9446 &rename_ctx); 9447 if (!ret) 9448 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9449 } 9450 if (ret) { 9451 btrfs_abort_transaction(trans, ret); 9452 goto out_fail; 9453 } 9454 9455 if (new_inode) { 9456 inode_inc_iversion(new_inode); 9457 new_inode->i_ctime = current_time(new_inode); 9458 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9459 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9460 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9461 BUG_ON(new_inode->i_nlink == 0); 9462 } else { 9463 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9464 BTRFS_I(d_inode(new_dentry)), 9465 new_dentry->d_name.name, 9466 new_dentry->d_name.len); 9467 } 9468 if (!ret && new_inode->i_nlink == 0) 9469 ret = btrfs_orphan_add(trans, 9470 BTRFS_I(d_inode(new_dentry))); 9471 if (ret) { 9472 btrfs_abort_transaction(trans, ret); 9473 goto out_fail; 9474 } 9475 } 9476 9477 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9478 new_dentry->d_name.name, 9479 new_dentry->d_name.len, 0, index); 9480 if (ret) { 9481 btrfs_abort_transaction(trans, ret); 9482 goto out_fail; 9483 } 9484 9485 if (old_inode->i_nlink == 1) 9486 BTRFS_I(old_inode)->dir_index = index; 9487 9488 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9489 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9490 rename_ctx.index, new_dentry->d_parent); 9491 9492 if (flags & RENAME_WHITEOUT) { 9493 ret = btrfs_whiteout_for_rename(trans, root, mnt_userns, 9494 old_dir, old_dentry); 9495 9496 if (ret) { 9497 btrfs_abort_transaction(trans, ret); 9498 goto out_fail; 9499 } 9500 } 9501 out_fail: 9502 ret2 = btrfs_end_transaction(trans); 9503 ret = ret ? ret : ret2; 9504 out_notrans: 9505 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9506 up_read(&fs_info->subvol_sem); 9507 9508 return ret; 9509 } 9510 9511 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9512 struct dentry *old_dentry, struct inode *new_dir, 9513 struct dentry *new_dentry, unsigned int flags) 9514 { 9515 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9516 return -EINVAL; 9517 9518 if (flags & RENAME_EXCHANGE) 9519 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9520 new_dentry); 9521 9522 return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir, 9523 new_dentry, flags); 9524 } 9525 9526 struct btrfs_delalloc_work { 9527 struct inode *inode; 9528 struct completion completion; 9529 struct list_head list; 9530 struct btrfs_work work; 9531 }; 9532 9533 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9534 { 9535 struct btrfs_delalloc_work *delalloc_work; 9536 struct inode *inode; 9537 9538 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9539 work); 9540 inode = delalloc_work->inode; 9541 filemap_flush(inode->i_mapping); 9542 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9543 &BTRFS_I(inode)->runtime_flags)) 9544 filemap_flush(inode->i_mapping); 9545 9546 iput(inode); 9547 complete(&delalloc_work->completion); 9548 } 9549 9550 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9551 { 9552 struct btrfs_delalloc_work *work; 9553 9554 work = kmalloc(sizeof(*work), GFP_NOFS); 9555 if (!work) 9556 return NULL; 9557 9558 init_completion(&work->completion); 9559 INIT_LIST_HEAD(&work->list); 9560 work->inode = inode; 9561 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9562 9563 return work; 9564 } 9565 9566 /* 9567 * some fairly slow code that needs optimization. This walks the list 9568 * of all the inodes with pending delalloc and forces them to disk. 9569 */ 9570 static int start_delalloc_inodes(struct btrfs_root *root, 9571 struct writeback_control *wbc, bool snapshot, 9572 bool in_reclaim_context) 9573 { 9574 struct btrfs_inode *binode; 9575 struct inode *inode; 9576 struct btrfs_delalloc_work *work, *next; 9577 struct list_head works; 9578 struct list_head splice; 9579 int ret = 0; 9580 bool full_flush = wbc->nr_to_write == LONG_MAX; 9581 9582 INIT_LIST_HEAD(&works); 9583 INIT_LIST_HEAD(&splice); 9584 9585 mutex_lock(&root->delalloc_mutex); 9586 spin_lock(&root->delalloc_lock); 9587 list_splice_init(&root->delalloc_inodes, &splice); 9588 while (!list_empty(&splice)) { 9589 binode = list_entry(splice.next, struct btrfs_inode, 9590 delalloc_inodes); 9591 9592 list_move_tail(&binode->delalloc_inodes, 9593 &root->delalloc_inodes); 9594 9595 if (in_reclaim_context && 9596 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9597 continue; 9598 9599 inode = igrab(&binode->vfs_inode); 9600 if (!inode) { 9601 cond_resched_lock(&root->delalloc_lock); 9602 continue; 9603 } 9604 spin_unlock(&root->delalloc_lock); 9605 9606 if (snapshot) 9607 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9608 &binode->runtime_flags); 9609 if (full_flush) { 9610 work = btrfs_alloc_delalloc_work(inode); 9611 if (!work) { 9612 iput(inode); 9613 ret = -ENOMEM; 9614 goto out; 9615 } 9616 list_add_tail(&work->list, &works); 9617 btrfs_queue_work(root->fs_info->flush_workers, 9618 &work->work); 9619 } else { 9620 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9621 btrfs_add_delayed_iput(inode); 9622 if (ret || wbc->nr_to_write <= 0) 9623 goto out; 9624 } 9625 cond_resched(); 9626 spin_lock(&root->delalloc_lock); 9627 } 9628 spin_unlock(&root->delalloc_lock); 9629 9630 out: 9631 list_for_each_entry_safe(work, next, &works, list) { 9632 list_del_init(&work->list); 9633 wait_for_completion(&work->completion); 9634 kfree(work); 9635 } 9636 9637 if (!list_empty(&splice)) { 9638 spin_lock(&root->delalloc_lock); 9639 list_splice_tail(&splice, &root->delalloc_inodes); 9640 spin_unlock(&root->delalloc_lock); 9641 } 9642 mutex_unlock(&root->delalloc_mutex); 9643 return ret; 9644 } 9645 9646 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9647 { 9648 struct writeback_control wbc = { 9649 .nr_to_write = LONG_MAX, 9650 .sync_mode = WB_SYNC_NONE, 9651 .range_start = 0, 9652 .range_end = LLONG_MAX, 9653 }; 9654 struct btrfs_fs_info *fs_info = root->fs_info; 9655 9656 if (BTRFS_FS_ERROR(fs_info)) 9657 return -EROFS; 9658 9659 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9660 } 9661 9662 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9663 bool in_reclaim_context) 9664 { 9665 struct writeback_control wbc = { 9666 .nr_to_write = nr, 9667 .sync_mode = WB_SYNC_NONE, 9668 .range_start = 0, 9669 .range_end = LLONG_MAX, 9670 }; 9671 struct btrfs_root *root; 9672 struct list_head splice; 9673 int ret; 9674 9675 if (BTRFS_FS_ERROR(fs_info)) 9676 return -EROFS; 9677 9678 INIT_LIST_HEAD(&splice); 9679 9680 mutex_lock(&fs_info->delalloc_root_mutex); 9681 spin_lock(&fs_info->delalloc_root_lock); 9682 list_splice_init(&fs_info->delalloc_roots, &splice); 9683 while (!list_empty(&splice)) { 9684 /* 9685 * Reset nr_to_write here so we know that we're doing a full 9686 * flush. 9687 */ 9688 if (nr == LONG_MAX) 9689 wbc.nr_to_write = LONG_MAX; 9690 9691 root = list_first_entry(&splice, struct btrfs_root, 9692 delalloc_root); 9693 root = btrfs_grab_root(root); 9694 BUG_ON(!root); 9695 list_move_tail(&root->delalloc_root, 9696 &fs_info->delalloc_roots); 9697 spin_unlock(&fs_info->delalloc_root_lock); 9698 9699 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9700 btrfs_put_root(root); 9701 if (ret < 0 || wbc.nr_to_write <= 0) 9702 goto out; 9703 spin_lock(&fs_info->delalloc_root_lock); 9704 } 9705 spin_unlock(&fs_info->delalloc_root_lock); 9706 9707 ret = 0; 9708 out: 9709 if (!list_empty(&splice)) { 9710 spin_lock(&fs_info->delalloc_root_lock); 9711 list_splice_tail(&splice, &fs_info->delalloc_roots); 9712 spin_unlock(&fs_info->delalloc_root_lock); 9713 } 9714 mutex_unlock(&fs_info->delalloc_root_mutex); 9715 return ret; 9716 } 9717 9718 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9719 struct dentry *dentry, const char *symname) 9720 { 9721 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9722 struct btrfs_trans_handle *trans; 9723 struct btrfs_root *root = BTRFS_I(dir)->root; 9724 struct btrfs_path *path; 9725 struct btrfs_key key; 9726 struct inode *inode = NULL; 9727 int err; 9728 u64 objectid; 9729 u64 index = 0; 9730 int name_len; 9731 int datasize; 9732 unsigned long ptr; 9733 struct btrfs_file_extent_item *ei; 9734 struct extent_buffer *leaf; 9735 9736 name_len = strlen(symname); 9737 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9738 return -ENAMETOOLONG; 9739 9740 /* 9741 * 2 items for inode item and ref 9742 * 2 items for dir items 9743 * 1 item for updating parent inode item 9744 * 1 item for the inline extent item 9745 * 1 item for xattr if selinux is on 9746 */ 9747 trans = btrfs_start_transaction(root, 7); 9748 if (IS_ERR(trans)) 9749 return PTR_ERR(trans); 9750 9751 err = btrfs_get_free_objectid(root, &objectid); 9752 if (err) 9753 goto out_unlock; 9754 9755 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 9756 dentry->d_name.name, dentry->d_name.len, 9757 btrfs_ino(BTRFS_I(dir)), objectid, 9758 S_IFLNK | S_IRWXUGO, &index); 9759 if (IS_ERR(inode)) { 9760 err = PTR_ERR(inode); 9761 inode = NULL; 9762 goto out_unlock; 9763 } 9764 9765 /* 9766 * If the active LSM wants to access the inode during 9767 * d_instantiate it needs these. Smack checks to see 9768 * if the filesystem supports xattrs by looking at the 9769 * ops vector. 9770 */ 9771 inode->i_fop = &btrfs_file_operations; 9772 inode->i_op = &btrfs_file_inode_operations; 9773 inode->i_mapping->a_ops = &btrfs_aops; 9774 9775 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9776 if (err) 9777 goto out_unlock; 9778 9779 path = btrfs_alloc_path(); 9780 if (!path) { 9781 err = -ENOMEM; 9782 goto out_unlock; 9783 } 9784 key.objectid = btrfs_ino(BTRFS_I(inode)); 9785 key.offset = 0; 9786 key.type = BTRFS_EXTENT_DATA_KEY; 9787 datasize = btrfs_file_extent_calc_inline_size(name_len); 9788 err = btrfs_insert_empty_item(trans, root, path, &key, 9789 datasize); 9790 if (err) { 9791 btrfs_free_path(path); 9792 goto out_unlock; 9793 } 9794 leaf = path->nodes[0]; 9795 ei = btrfs_item_ptr(leaf, path->slots[0], 9796 struct btrfs_file_extent_item); 9797 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9798 btrfs_set_file_extent_type(leaf, ei, 9799 BTRFS_FILE_EXTENT_INLINE); 9800 btrfs_set_file_extent_encryption(leaf, ei, 0); 9801 btrfs_set_file_extent_compression(leaf, ei, 0); 9802 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9803 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9804 9805 ptr = btrfs_file_extent_inline_start(ei); 9806 write_extent_buffer(leaf, symname, ptr, name_len); 9807 btrfs_mark_buffer_dirty(leaf); 9808 btrfs_free_path(path); 9809 9810 inode->i_op = &btrfs_symlink_inode_operations; 9811 inode_nohighmem(inode); 9812 inode_set_bytes(inode, name_len); 9813 btrfs_i_size_write(BTRFS_I(inode), name_len); 9814 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9815 /* 9816 * Last step, add directory indexes for our symlink inode. This is the 9817 * last step to avoid extra cleanup of these indexes if an error happens 9818 * elsewhere above. 9819 */ 9820 if (!err) 9821 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9822 BTRFS_I(inode), 0, index); 9823 if (err) 9824 goto out_unlock; 9825 9826 d_instantiate_new(dentry, inode); 9827 9828 out_unlock: 9829 btrfs_end_transaction(trans); 9830 if (err && inode) { 9831 inode_dec_link_count(inode); 9832 discard_new_inode(inode); 9833 } 9834 btrfs_btree_balance_dirty(fs_info); 9835 return err; 9836 } 9837 9838 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9839 struct btrfs_trans_handle *trans_in, 9840 struct btrfs_inode *inode, 9841 struct btrfs_key *ins, 9842 u64 file_offset) 9843 { 9844 struct btrfs_file_extent_item stack_fi; 9845 struct btrfs_replace_extent_info extent_info; 9846 struct btrfs_trans_handle *trans = trans_in; 9847 struct btrfs_path *path; 9848 u64 start = ins->objectid; 9849 u64 len = ins->offset; 9850 int qgroup_released; 9851 int ret; 9852 9853 memset(&stack_fi, 0, sizeof(stack_fi)); 9854 9855 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9856 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9857 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9858 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9859 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9860 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9861 /* Encryption and other encoding is reserved and all 0 */ 9862 9863 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9864 if (qgroup_released < 0) 9865 return ERR_PTR(qgroup_released); 9866 9867 if (trans) { 9868 ret = insert_reserved_file_extent(trans, inode, 9869 file_offset, &stack_fi, 9870 true, qgroup_released); 9871 if (ret) 9872 goto free_qgroup; 9873 return trans; 9874 } 9875 9876 extent_info.disk_offset = start; 9877 extent_info.disk_len = len; 9878 extent_info.data_offset = 0; 9879 extent_info.data_len = len; 9880 extent_info.file_offset = file_offset; 9881 extent_info.extent_buf = (char *)&stack_fi; 9882 extent_info.is_new_extent = true; 9883 extent_info.qgroup_reserved = qgroup_released; 9884 extent_info.insertions = 0; 9885 9886 path = btrfs_alloc_path(); 9887 if (!path) { 9888 ret = -ENOMEM; 9889 goto free_qgroup; 9890 } 9891 9892 ret = btrfs_replace_file_extents(inode, path, file_offset, 9893 file_offset + len - 1, &extent_info, 9894 &trans); 9895 btrfs_free_path(path); 9896 if (ret) 9897 goto free_qgroup; 9898 return trans; 9899 9900 free_qgroup: 9901 /* 9902 * We have released qgroup data range at the beginning of the function, 9903 * and normally qgroup_released bytes will be freed when committing 9904 * transaction. 9905 * But if we error out early, we have to free what we have released 9906 * or we leak qgroup data reservation. 9907 */ 9908 btrfs_qgroup_free_refroot(inode->root->fs_info, 9909 inode->root->root_key.objectid, qgroup_released, 9910 BTRFS_QGROUP_RSV_DATA); 9911 return ERR_PTR(ret); 9912 } 9913 9914 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9915 u64 start, u64 num_bytes, u64 min_size, 9916 loff_t actual_len, u64 *alloc_hint, 9917 struct btrfs_trans_handle *trans) 9918 { 9919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9920 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9921 struct extent_map *em; 9922 struct btrfs_root *root = BTRFS_I(inode)->root; 9923 struct btrfs_key ins; 9924 u64 cur_offset = start; 9925 u64 clear_offset = start; 9926 u64 i_size; 9927 u64 cur_bytes; 9928 u64 last_alloc = (u64)-1; 9929 int ret = 0; 9930 bool own_trans = true; 9931 u64 end = start + num_bytes - 1; 9932 9933 if (trans) 9934 own_trans = false; 9935 while (num_bytes > 0) { 9936 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9937 cur_bytes = max(cur_bytes, min_size); 9938 /* 9939 * If we are severely fragmented we could end up with really 9940 * small allocations, so if the allocator is returning small 9941 * chunks lets make its job easier by only searching for those 9942 * sized chunks. 9943 */ 9944 cur_bytes = min(cur_bytes, last_alloc); 9945 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9946 min_size, 0, *alloc_hint, &ins, 1, 0); 9947 if (ret) 9948 break; 9949 9950 /* 9951 * We've reserved this space, and thus converted it from 9952 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9953 * from here on out we will only need to clear our reservation 9954 * for the remaining unreserved area, so advance our 9955 * clear_offset by our extent size. 9956 */ 9957 clear_offset += ins.offset; 9958 9959 last_alloc = ins.offset; 9960 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9961 &ins, cur_offset); 9962 /* 9963 * Now that we inserted the prealloc extent we can finally 9964 * decrement the number of reservations in the block group. 9965 * If we did it before, we could race with relocation and have 9966 * relocation miss the reserved extent, making it fail later. 9967 */ 9968 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9969 if (IS_ERR(trans)) { 9970 ret = PTR_ERR(trans); 9971 btrfs_free_reserved_extent(fs_info, ins.objectid, 9972 ins.offset, 0); 9973 break; 9974 } 9975 9976 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9977 cur_offset + ins.offset -1, 0); 9978 9979 em = alloc_extent_map(); 9980 if (!em) { 9981 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9982 goto next; 9983 } 9984 9985 em->start = cur_offset; 9986 em->orig_start = cur_offset; 9987 em->len = ins.offset; 9988 em->block_start = ins.objectid; 9989 em->block_len = ins.offset; 9990 em->orig_block_len = ins.offset; 9991 em->ram_bytes = ins.offset; 9992 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9993 em->generation = trans->transid; 9994 9995 while (1) { 9996 write_lock(&em_tree->lock); 9997 ret = add_extent_mapping(em_tree, em, 1); 9998 write_unlock(&em_tree->lock); 9999 if (ret != -EEXIST) 10000 break; 10001 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10002 cur_offset + ins.offset - 1, 10003 0); 10004 } 10005 free_extent_map(em); 10006 next: 10007 num_bytes -= ins.offset; 10008 cur_offset += ins.offset; 10009 *alloc_hint = ins.objectid + ins.offset; 10010 10011 inode_inc_iversion(inode); 10012 inode->i_ctime = current_time(inode); 10013 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10014 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10015 (actual_len > inode->i_size) && 10016 (cur_offset > inode->i_size)) { 10017 if (cur_offset > actual_len) 10018 i_size = actual_len; 10019 else 10020 i_size = cur_offset; 10021 i_size_write(inode, i_size); 10022 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10023 } 10024 10025 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10026 10027 if (ret) { 10028 btrfs_abort_transaction(trans, ret); 10029 if (own_trans) 10030 btrfs_end_transaction(trans); 10031 break; 10032 } 10033 10034 if (own_trans) { 10035 btrfs_end_transaction(trans); 10036 trans = NULL; 10037 } 10038 } 10039 if (clear_offset < end) 10040 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10041 end - clear_offset + 1); 10042 return ret; 10043 } 10044 10045 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10046 u64 start, u64 num_bytes, u64 min_size, 10047 loff_t actual_len, u64 *alloc_hint) 10048 { 10049 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10050 min_size, actual_len, alloc_hint, 10051 NULL); 10052 } 10053 10054 int btrfs_prealloc_file_range_trans(struct inode *inode, 10055 struct btrfs_trans_handle *trans, int mode, 10056 u64 start, u64 num_bytes, u64 min_size, 10057 loff_t actual_len, u64 *alloc_hint) 10058 { 10059 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10060 min_size, actual_len, alloc_hint, trans); 10061 } 10062 10063 static int btrfs_permission(struct user_namespace *mnt_userns, 10064 struct inode *inode, int mask) 10065 { 10066 struct btrfs_root *root = BTRFS_I(inode)->root; 10067 umode_t mode = inode->i_mode; 10068 10069 if (mask & MAY_WRITE && 10070 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10071 if (btrfs_root_readonly(root)) 10072 return -EROFS; 10073 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10074 return -EACCES; 10075 } 10076 return generic_permission(mnt_userns, inode, mask); 10077 } 10078 10079 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10080 struct dentry *dentry, umode_t mode) 10081 { 10082 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10083 struct btrfs_trans_handle *trans; 10084 struct btrfs_root *root = BTRFS_I(dir)->root; 10085 struct inode *inode = NULL; 10086 u64 objectid; 10087 u64 index; 10088 int ret = 0; 10089 10090 /* 10091 * 5 units required for adding orphan entry 10092 */ 10093 trans = btrfs_start_transaction(root, 5); 10094 if (IS_ERR(trans)) 10095 return PTR_ERR(trans); 10096 10097 ret = btrfs_get_free_objectid(root, &objectid); 10098 if (ret) 10099 goto out; 10100 10101 inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0, 10102 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10103 if (IS_ERR(inode)) { 10104 ret = PTR_ERR(inode); 10105 inode = NULL; 10106 goto out; 10107 } 10108 10109 inode->i_fop = &btrfs_file_operations; 10110 inode->i_op = &btrfs_file_inode_operations; 10111 10112 inode->i_mapping->a_ops = &btrfs_aops; 10113 10114 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10115 if (ret) 10116 goto out; 10117 10118 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10119 if (ret) 10120 goto out; 10121 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10122 if (ret) 10123 goto out; 10124 10125 /* 10126 * We set number of links to 0 in btrfs_new_inode(), and here we set 10127 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10128 * through: 10129 * 10130 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10131 */ 10132 set_nlink(inode, 1); 10133 d_tmpfile(dentry, inode); 10134 unlock_new_inode(inode); 10135 mark_inode_dirty(inode); 10136 out: 10137 btrfs_end_transaction(trans); 10138 if (ret && inode) 10139 discard_new_inode(inode); 10140 btrfs_btree_balance_dirty(fs_info); 10141 return ret; 10142 } 10143 10144 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 10145 { 10146 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10147 unsigned long index = start >> PAGE_SHIFT; 10148 unsigned long end_index = end >> PAGE_SHIFT; 10149 struct page *page; 10150 u32 len; 10151 10152 ASSERT(end + 1 - start <= U32_MAX); 10153 len = end + 1 - start; 10154 while (index <= end_index) { 10155 page = find_get_page(inode->vfs_inode.i_mapping, index); 10156 ASSERT(page); /* Pages should be in the extent_io_tree */ 10157 10158 btrfs_page_set_writeback(fs_info, page, start, len); 10159 put_page(page); 10160 index++; 10161 } 10162 } 10163 10164 static int btrfs_encoded_io_compression_from_extent( 10165 struct btrfs_fs_info *fs_info, 10166 int compress_type) 10167 { 10168 switch (compress_type) { 10169 case BTRFS_COMPRESS_NONE: 10170 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 10171 case BTRFS_COMPRESS_ZLIB: 10172 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 10173 case BTRFS_COMPRESS_LZO: 10174 /* 10175 * The LZO format depends on the sector size. 64K is the maximum 10176 * sector size that we support. 10177 */ 10178 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 10179 return -EINVAL; 10180 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 10181 (fs_info->sectorsize_bits - 12); 10182 case BTRFS_COMPRESS_ZSTD: 10183 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 10184 default: 10185 return -EUCLEAN; 10186 } 10187 } 10188 10189 static ssize_t btrfs_encoded_read_inline( 10190 struct kiocb *iocb, 10191 struct iov_iter *iter, u64 start, 10192 u64 lockend, 10193 struct extent_state **cached_state, 10194 u64 extent_start, size_t count, 10195 struct btrfs_ioctl_encoded_io_args *encoded, 10196 bool *unlocked) 10197 { 10198 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10199 struct btrfs_root *root = inode->root; 10200 struct btrfs_fs_info *fs_info = root->fs_info; 10201 struct extent_io_tree *io_tree = &inode->io_tree; 10202 struct btrfs_path *path; 10203 struct extent_buffer *leaf; 10204 struct btrfs_file_extent_item *item; 10205 u64 ram_bytes; 10206 unsigned long ptr; 10207 void *tmp; 10208 ssize_t ret; 10209 10210 path = btrfs_alloc_path(); 10211 if (!path) { 10212 ret = -ENOMEM; 10213 goto out; 10214 } 10215 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 10216 extent_start, 0); 10217 if (ret) { 10218 if (ret > 0) { 10219 /* The extent item disappeared? */ 10220 ret = -EIO; 10221 } 10222 goto out; 10223 } 10224 leaf = path->nodes[0]; 10225 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10226 10227 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 10228 ptr = btrfs_file_extent_inline_start(item); 10229 10230 encoded->len = min_t(u64, extent_start + ram_bytes, 10231 inode->vfs_inode.i_size) - iocb->ki_pos; 10232 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10233 btrfs_file_extent_compression(leaf, item)); 10234 if (ret < 0) 10235 goto out; 10236 encoded->compression = ret; 10237 if (encoded->compression) { 10238 size_t inline_size; 10239 10240 inline_size = btrfs_file_extent_inline_item_len(leaf, 10241 path->slots[0]); 10242 if (inline_size > count) { 10243 ret = -ENOBUFS; 10244 goto out; 10245 } 10246 count = inline_size; 10247 encoded->unencoded_len = ram_bytes; 10248 encoded->unencoded_offset = iocb->ki_pos - extent_start; 10249 } else { 10250 count = min_t(u64, count, encoded->len); 10251 encoded->len = count; 10252 encoded->unencoded_len = count; 10253 ptr += iocb->ki_pos - extent_start; 10254 } 10255 10256 tmp = kmalloc(count, GFP_NOFS); 10257 if (!tmp) { 10258 ret = -ENOMEM; 10259 goto out; 10260 } 10261 read_extent_buffer(leaf, tmp, ptr, count); 10262 btrfs_release_path(path); 10263 unlock_extent_cached(io_tree, start, lockend, cached_state); 10264 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10265 *unlocked = true; 10266 10267 ret = copy_to_iter(tmp, count, iter); 10268 if (ret != count) 10269 ret = -EFAULT; 10270 kfree(tmp); 10271 out: 10272 btrfs_free_path(path); 10273 return ret; 10274 } 10275 10276 struct btrfs_encoded_read_private { 10277 struct btrfs_inode *inode; 10278 u64 file_offset; 10279 wait_queue_head_t wait; 10280 atomic_t pending; 10281 blk_status_t status; 10282 bool skip_csum; 10283 }; 10284 10285 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode, 10286 struct bio *bio, int mirror_num) 10287 { 10288 struct btrfs_encoded_read_private *priv = bio->bi_private; 10289 struct btrfs_bio *bbio = btrfs_bio(bio); 10290 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10291 blk_status_t ret; 10292 10293 if (!priv->skip_csum) { 10294 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL); 10295 if (ret) 10296 return ret; 10297 } 10298 10299 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 10300 if (ret) { 10301 btrfs_bio_free_csum(bbio); 10302 return ret; 10303 } 10304 10305 atomic_inc(&priv->pending); 10306 ret = btrfs_map_bio(fs_info, bio, mirror_num); 10307 if (ret) { 10308 atomic_dec(&priv->pending); 10309 btrfs_bio_free_csum(bbio); 10310 } 10311 return ret; 10312 } 10313 10314 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio) 10315 { 10316 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK); 10317 struct btrfs_encoded_read_private *priv = bbio->bio.bi_private; 10318 struct btrfs_inode *inode = priv->inode; 10319 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10320 u32 sectorsize = fs_info->sectorsize; 10321 struct bio_vec *bvec; 10322 struct bvec_iter_all iter_all; 10323 u64 start = priv->file_offset; 10324 u32 bio_offset = 0; 10325 10326 if (priv->skip_csum || !uptodate) 10327 return bbio->bio.bi_status; 10328 10329 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 10330 unsigned int i, nr_sectors, pgoff; 10331 10332 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 10333 pgoff = bvec->bv_offset; 10334 for (i = 0; i < nr_sectors; i++) { 10335 ASSERT(pgoff < PAGE_SIZE); 10336 if (check_data_csum(&inode->vfs_inode, bbio, bio_offset, 10337 bvec->bv_page, pgoff, start)) 10338 return BLK_STS_IOERR; 10339 start += sectorsize; 10340 bio_offset += sectorsize; 10341 pgoff += sectorsize; 10342 } 10343 } 10344 return BLK_STS_OK; 10345 } 10346 10347 static void btrfs_encoded_read_endio(struct bio *bio) 10348 { 10349 struct btrfs_encoded_read_private *priv = bio->bi_private; 10350 struct btrfs_bio *bbio = btrfs_bio(bio); 10351 blk_status_t status; 10352 10353 status = btrfs_encoded_read_verify_csum(bbio); 10354 if (status) { 10355 /* 10356 * The memory barrier implied by the atomic_dec_return() here 10357 * pairs with the memory barrier implied by the 10358 * atomic_dec_return() or io_wait_event() in 10359 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10360 * write is observed before the load of status in 10361 * btrfs_encoded_read_regular_fill_pages(). 10362 */ 10363 WRITE_ONCE(priv->status, status); 10364 } 10365 if (!atomic_dec_return(&priv->pending)) 10366 wake_up(&priv->wait); 10367 btrfs_bio_free_csum(bbio); 10368 bio_put(bio); 10369 } 10370 10371 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10372 u64 file_offset, 10373 u64 disk_bytenr, 10374 u64 disk_io_size, 10375 struct page **pages) 10376 { 10377 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10378 struct btrfs_encoded_read_private priv = { 10379 .inode = inode, 10380 .file_offset = file_offset, 10381 .pending = ATOMIC_INIT(1), 10382 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM), 10383 }; 10384 unsigned long i = 0; 10385 u64 cur = 0; 10386 int ret; 10387 10388 init_waitqueue_head(&priv.wait); 10389 /* 10390 * Submit bios for the extent, splitting due to bio or stripe limits as 10391 * necessary. 10392 */ 10393 while (cur < disk_io_size) { 10394 struct extent_map *em; 10395 struct btrfs_io_geometry geom; 10396 struct bio *bio = NULL; 10397 u64 remaining; 10398 10399 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur, 10400 disk_io_size - cur); 10401 if (IS_ERR(em)) { 10402 ret = PTR_ERR(em); 10403 } else { 10404 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ, 10405 disk_bytenr + cur, &geom); 10406 free_extent_map(em); 10407 } 10408 if (ret) { 10409 WRITE_ONCE(priv.status, errno_to_blk_status(ret)); 10410 break; 10411 } 10412 remaining = min(geom.len, disk_io_size - cur); 10413 while (bio || remaining) { 10414 size_t bytes = min_t(u64, remaining, PAGE_SIZE); 10415 10416 if (!bio) { 10417 bio = btrfs_bio_alloc(BIO_MAX_VECS); 10418 bio->bi_iter.bi_sector = 10419 (disk_bytenr + cur) >> SECTOR_SHIFT; 10420 bio->bi_end_io = btrfs_encoded_read_endio; 10421 bio->bi_private = &priv; 10422 bio->bi_opf = REQ_OP_READ; 10423 } 10424 10425 if (!bytes || 10426 bio_add_page(bio, pages[i], bytes, 0) < bytes) { 10427 blk_status_t status; 10428 10429 status = submit_encoded_read_bio(inode, bio, 0); 10430 if (status) { 10431 WRITE_ONCE(priv.status, status); 10432 bio_put(bio); 10433 goto out; 10434 } 10435 bio = NULL; 10436 continue; 10437 } 10438 10439 i++; 10440 cur += bytes; 10441 remaining -= bytes; 10442 } 10443 } 10444 10445 out: 10446 if (atomic_dec_return(&priv.pending)) 10447 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10448 /* See btrfs_encoded_read_endio() for ordering. */ 10449 return blk_status_to_errno(READ_ONCE(priv.status)); 10450 } 10451 10452 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10453 struct iov_iter *iter, 10454 u64 start, u64 lockend, 10455 struct extent_state **cached_state, 10456 u64 disk_bytenr, u64 disk_io_size, 10457 size_t count, bool compressed, 10458 bool *unlocked) 10459 { 10460 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10461 struct extent_io_tree *io_tree = &inode->io_tree; 10462 struct page **pages; 10463 unsigned long nr_pages, i; 10464 u64 cur; 10465 size_t page_offset; 10466 ssize_t ret; 10467 10468 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10469 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10470 if (!pages) 10471 return -ENOMEM; 10472 for (i = 0; i < nr_pages; i++) { 10473 pages[i] = alloc_page(GFP_NOFS); 10474 if (!pages[i]) { 10475 ret = -ENOMEM; 10476 goto out; 10477 } 10478 } 10479 10480 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10481 disk_io_size, pages); 10482 if (ret) 10483 goto out; 10484 10485 unlock_extent_cached(io_tree, start, lockend, cached_state); 10486 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10487 *unlocked = true; 10488 10489 if (compressed) { 10490 i = 0; 10491 page_offset = 0; 10492 } else { 10493 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10494 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10495 } 10496 cur = 0; 10497 while (cur < count) { 10498 size_t bytes = min_t(size_t, count - cur, 10499 PAGE_SIZE - page_offset); 10500 10501 if (copy_page_to_iter(pages[i], page_offset, bytes, 10502 iter) != bytes) { 10503 ret = -EFAULT; 10504 goto out; 10505 } 10506 i++; 10507 cur += bytes; 10508 page_offset = 0; 10509 } 10510 ret = count; 10511 out: 10512 for (i = 0; i < nr_pages; i++) { 10513 if (pages[i]) 10514 __free_page(pages[i]); 10515 } 10516 kfree(pages); 10517 return ret; 10518 } 10519 10520 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10521 struct btrfs_ioctl_encoded_io_args *encoded) 10522 { 10523 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10524 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10525 struct extent_io_tree *io_tree = &inode->io_tree; 10526 ssize_t ret; 10527 size_t count = iov_iter_count(iter); 10528 u64 start, lockend, disk_bytenr, disk_io_size; 10529 struct extent_state *cached_state = NULL; 10530 struct extent_map *em; 10531 bool unlocked = false; 10532 10533 file_accessed(iocb->ki_filp); 10534 10535 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10536 10537 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10538 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10539 return 0; 10540 } 10541 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10542 /* 10543 * We don't know how long the extent containing iocb->ki_pos is, but if 10544 * it's compressed we know that it won't be longer than this. 10545 */ 10546 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10547 10548 for (;;) { 10549 struct btrfs_ordered_extent *ordered; 10550 10551 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10552 lockend - start + 1); 10553 if (ret) 10554 goto out_unlock_inode; 10555 lock_extent_bits(io_tree, start, lockend, &cached_state); 10556 ordered = btrfs_lookup_ordered_range(inode, start, 10557 lockend - start + 1); 10558 if (!ordered) 10559 break; 10560 btrfs_put_ordered_extent(ordered); 10561 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10562 cond_resched(); 10563 } 10564 10565 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10566 if (IS_ERR(em)) { 10567 ret = PTR_ERR(em); 10568 goto out_unlock_extent; 10569 } 10570 10571 if (em->block_start == EXTENT_MAP_INLINE) { 10572 u64 extent_start = em->start; 10573 10574 /* 10575 * For inline extents we get everything we need out of the 10576 * extent item. 10577 */ 10578 free_extent_map(em); 10579 em = NULL; 10580 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10581 &cached_state, extent_start, 10582 count, encoded, &unlocked); 10583 goto out; 10584 } 10585 10586 /* 10587 * We only want to return up to EOF even if the extent extends beyond 10588 * that. 10589 */ 10590 encoded->len = min_t(u64, extent_map_end(em), 10591 inode->vfs_inode.i_size) - iocb->ki_pos; 10592 if (em->block_start == EXTENT_MAP_HOLE || 10593 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10594 disk_bytenr = EXTENT_MAP_HOLE; 10595 count = min_t(u64, count, encoded->len); 10596 encoded->len = count; 10597 encoded->unencoded_len = count; 10598 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10599 disk_bytenr = em->block_start; 10600 /* 10601 * Bail if the buffer isn't large enough to return the whole 10602 * compressed extent. 10603 */ 10604 if (em->block_len > count) { 10605 ret = -ENOBUFS; 10606 goto out_em; 10607 } 10608 disk_io_size = count = em->block_len; 10609 encoded->unencoded_len = em->ram_bytes; 10610 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10611 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10612 em->compress_type); 10613 if (ret < 0) 10614 goto out_em; 10615 encoded->compression = ret; 10616 } else { 10617 disk_bytenr = em->block_start + (start - em->start); 10618 if (encoded->len > count) 10619 encoded->len = count; 10620 /* 10621 * Don't read beyond what we locked. This also limits the page 10622 * allocations that we'll do. 10623 */ 10624 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10625 count = start + disk_io_size - iocb->ki_pos; 10626 encoded->len = count; 10627 encoded->unencoded_len = count; 10628 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10629 } 10630 free_extent_map(em); 10631 em = NULL; 10632 10633 if (disk_bytenr == EXTENT_MAP_HOLE) { 10634 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10635 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10636 unlocked = true; 10637 ret = iov_iter_zero(count, iter); 10638 if (ret != count) 10639 ret = -EFAULT; 10640 } else { 10641 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10642 &cached_state, disk_bytenr, 10643 disk_io_size, count, 10644 encoded->compression, 10645 &unlocked); 10646 } 10647 10648 out: 10649 if (ret >= 0) 10650 iocb->ki_pos += encoded->len; 10651 out_em: 10652 free_extent_map(em); 10653 out_unlock_extent: 10654 if (!unlocked) 10655 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10656 out_unlock_inode: 10657 if (!unlocked) 10658 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10659 return ret; 10660 } 10661 10662 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10663 const struct btrfs_ioctl_encoded_io_args *encoded) 10664 { 10665 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10666 struct btrfs_root *root = inode->root; 10667 struct btrfs_fs_info *fs_info = root->fs_info; 10668 struct extent_io_tree *io_tree = &inode->io_tree; 10669 struct extent_changeset *data_reserved = NULL; 10670 struct extent_state *cached_state = NULL; 10671 int compression; 10672 size_t orig_count; 10673 u64 start, end; 10674 u64 num_bytes, ram_bytes, disk_num_bytes; 10675 unsigned long nr_pages, i; 10676 struct page **pages; 10677 struct btrfs_key ins; 10678 bool extent_reserved = false; 10679 struct extent_map *em; 10680 ssize_t ret; 10681 10682 switch (encoded->compression) { 10683 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10684 compression = BTRFS_COMPRESS_ZLIB; 10685 break; 10686 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10687 compression = BTRFS_COMPRESS_ZSTD; 10688 break; 10689 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10690 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10691 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10692 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10693 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10694 /* The sector size must match for LZO. */ 10695 if (encoded->compression - 10696 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10697 fs_info->sectorsize_bits) 10698 return -EINVAL; 10699 compression = BTRFS_COMPRESS_LZO; 10700 break; 10701 default: 10702 return -EINVAL; 10703 } 10704 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10705 return -EINVAL; 10706 10707 orig_count = iov_iter_count(from); 10708 10709 /* The extent size must be sane. */ 10710 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10711 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10712 return -EINVAL; 10713 10714 /* 10715 * The compressed data must be smaller than the decompressed data. 10716 * 10717 * It's of course possible for data to compress to larger or the same 10718 * size, but the buffered I/O path falls back to no compression for such 10719 * data, and we don't want to break any assumptions by creating these 10720 * extents. 10721 * 10722 * Note that this is less strict than the current check we have that the 10723 * compressed data must be at least one sector smaller than the 10724 * decompressed data. We only want to enforce the weaker requirement 10725 * from old kernels that it is at least one byte smaller. 10726 */ 10727 if (orig_count >= encoded->unencoded_len) 10728 return -EINVAL; 10729 10730 /* The extent must start on a sector boundary. */ 10731 start = iocb->ki_pos; 10732 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10733 return -EINVAL; 10734 10735 /* 10736 * The extent must end on a sector boundary. However, we allow a write 10737 * which ends at or extends i_size to have an unaligned length; we round 10738 * up the extent size and set i_size to the unaligned end. 10739 */ 10740 if (start + encoded->len < inode->vfs_inode.i_size && 10741 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10742 return -EINVAL; 10743 10744 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10745 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10746 return -EINVAL; 10747 10748 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10749 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10750 end = start + num_bytes - 1; 10751 10752 /* 10753 * If the extent cannot be inline, the compressed data on disk must be 10754 * sector-aligned. For convenience, we extend it with zeroes if it 10755 * isn't. 10756 */ 10757 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10758 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10759 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10760 if (!pages) 10761 return -ENOMEM; 10762 for (i = 0; i < nr_pages; i++) { 10763 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10764 char *kaddr; 10765 10766 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10767 if (!pages[i]) { 10768 ret = -ENOMEM; 10769 goto out_pages; 10770 } 10771 kaddr = kmap(pages[i]); 10772 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10773 kunmap(pages[i]); 10774 ret = -EFAULT; 10775 goto out_pages; 10776 } 10777 if (bytes < PAGE_SIZE) 10778 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10779 kunmap(pages[i]); 10780 } 10781 10782 for (;;) { 10783 struct btrfs_ordered_extent *ordered; 10784 10785 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10786 if (ret) 10787 goto out_pages; 10788 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10789 start >> PAGE_SHIFT, 10790 end >> PAGE_SHIFT); 10791 if (ret) 10792 goto out_pages; 10793 lock_extent_bits(io_tree, start, end, &cached_state); 10794 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10795 if (!ordered && 10796 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10797 break; 10798 if (ordered) 10799 btrfs_put_ordered_extent(ordered); 10800 unlock_extent_cached(io_tree, start, end, &cached_state); 10801 cond_resched(); 10802 } 10803 10804 /* 10805 * We don't use the higher-level delalloc space functions because our 10806 * num_bytes and disk_num_bytes are different. 10807 */ 10808 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10809 if (ret) 10810 goto out_unlock; 10811 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10812 if (ret) 10813 goto out_free_data_space; 10814 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes); 10815 if (ret) 10816 goto out_qgroup_free_data; 10817 10818 /* Try an inline extent first. */ 10819 if (start == 0 && encoded->unencoded_len == encoded->len && 10820 encoded->unencoded_offset == 0) { 10821 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10822 compression, pages, true); 10823 if (ret <= 0) { 10824 if (ret == 0) 10825 ret = orig_count; 10826 goto out_delalloc_release; 10827 } 10828 } 10829 10830 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10831 disk_num_bytes, 0, 0, &ins, 1, 1); 10832 if (ret) 10833 goto out_delalloc_release; 10834 extent_reserved = true; 10835 10836 em = create_io_em(inode, start, num_bytes, 10837 start - encoded->unencoded_offset, ins.objectid, 10838 ins.offset, ins.offset, ram_bytes, compression, 10839 BTRFS_ORDERED_COMPRESSED); 10840 if (IS_ERR(em)) { 10841 ret = PTR_ERR(em); 10842 goto out_free_reserved; 10843 } 10844 free_extent_map(em); 10845 10846 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes, 10847 ins.objectid, ins.offset, 10848 encoded->unencoded_offset, 10849 (1 << BTRFS_ORDERED_ENCODED) | 10850 (1 << BTRFS_ORDERED_COMPRESSED), 10851 compression); 10852 if (ret) { 10853 btrfs_drop_extent_cache(inode, start, end, 0); 10854 goto out_free_reserved; 10855 } 10856 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10857 10858 if (start + encoded->len > inode->vfs_inode.i_size) 10859 i_size_write(&inode->vfs_inode, start + encoded->len); 10860 10861 unlock_extent_cached(io_tree, start, end, &cached_state); 10862 10863 btrfs_delalloc_release_extents(inode, num_bytes); 10864 10865 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid, 10866 ins.offset, pages, nr_pages, 0, NULL, 10867 false)) { 10868 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0); 10869 ret = -EIO; 10870 goto out_pages; 10871 } 10872 ret = orig_count; 10873 goto out; 10874 10875 out_free_reserved: 10876 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10877 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10878 out_delalloc_release: 10879 btrfs_delalloc_release_extents(inode, num_bytes); 10880 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10881 out_qgroup_free_data: 10882 if (ret < 0) 10883 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10884 out_free_data_space: 10885 /* 10886 * If btrfs_reserve_extent() succeeded, then we already decremented 10887 * bytes_may_use. 10888 */ 10889 if (!extent_reserved) 10890 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10891 out_unlock: 10892 unlock_extent_cached(io_tree, start, end, &cached_state); 10893 out_pages: 10894 for (i = 0; i < nr_pages; i++) { 10895 if (pages[i]) 10896 __free_page(pages[i]); 10897 } 10898 kvfree(pages); 10899 out: 10900 if (ret >= 0) 10901 iocb->ki_pos += encoded->len; 10902 return ret; 10903 } 10904 10905 #ifdef CONFIG_SWAP 10906 /* 10907 * Add an entry indicating a block group or device which is pinned by a 10908 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10909 * negative errno on failure. 10910 */ 10911 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10912 bool is_block_group) 10913 { 10914 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10915 struct btrfs_swapfile_pin *sp, *entry; 10916 struct rb_node **p; 10917 struct rb_node *parent = NULL; 10918 10919 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10920 if (!sp) 10921 return -ENOMEM; 10922 sp->ptr = ptr; 10923 sp->inode = inode; 10924 sp->is_block_group = is_block_group; 10925 sp->bg_extent_count = 1; 10926 10927 spin_lock(&fs_info->swapfile_pins_lock); 10928 p = &fs_info->swapfile_pins.rb_node; 10929 while (*p) { 10930 parent = *p; 10931 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10932 if (sp->ptr < entry->ptr || 10933 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10934 p = &(*p)->rb_left; 10935 } else if (sp->ptr > entry->ptr || 10936 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10937 p = &(*p)->rb_right; 10938 } else { 10939 if (is_block_group) 10940 entry->bg_extent_count++; 10941 spin_unlock(&fs_info->swapfile_pins_lock); 10942 kfree(sp); 10943 return 1; 10944 } 10945 } 10946 rb_link_node(&sp->node, parent, p); 10947 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10948 spin_unlock(&fs_info->swapfile_pins_lock); 10949 return 0; 10950 } 10951 10952 /* Free all of the entries pinned by this swapfile. */ 10953 static void btrfs_free_swapfile_pins(struct inode *inode) 10954 { 10955 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10956 struct btrfs_swapfile_pin *sp; 10957 struct rb_node *node, *next; 10958 10959 spin_lock(&fs_info->swapfile_pins_lock); 10960 node = rb_first(&fs_info->swapfile_pins); 10961 while (node) { 10962 next = rb_next(node); 10963 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10964 if (sp->inode == inode) { 10965 rb_erase(&sp->node, &fs_info->swapfile_pins); 10966 if (sp->is_block_group) { 10967 btrfs_dec_block_group_swap_extents(sp->ptr, 10968 sp->bg_extent_count); 10969 btrfs_put_block_group(sp->ptr); 10970 } 10971 kfree(sp); 10972 } 10973 node = next; 10974 } 10975 spin_unlock(&fs_info->swapfile_pins_lock); 10976 } 10977 10978 struct btrfs_swap_info { 10979 u64 start; 10980 u64 block_start; 10981 u64 block_len; 10982 u64 lowest_ppage; 10983 u64 highest_ppage; 10984 unsigned long nr_pages; 10985 int nr_extents; 10986 }; 10987 10988 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10989 struct btrfs_swap_info *bsi) 10990 { 10991 unsigned long nr_pages; 10992 unsigned long max_pages; 10993 u64 first_ppage, first_ppage_reported, next_ppage; 10994 int ret; 10995 10996 /* 10997 * Our swapfile may have had its size extended after the swap header was 10998 * written. In that case activating the swapfile should not go beyond 10999 * the max size set in the swap header. 11000 */ 11001 if (bsi->nr_pages >= sis->max) 11002 return 0; 11003 11004 max_pages = sis->max - bsi->nr_pages; 11005 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 11006 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 11007 PAGE_SIZE) >> PAGE_SHIFT; 11008 11009 if (first_ppage >= next_ppage) 11010 return 0; 11011 nr_pages = next_ppage - first_ppage; 11012 nr_pages = min(nr_pages, max_pages); 11013 11014 first_ppage_reported = first_ppage; 11015 if (bsi->start == 0) 11016 first_ppage_reported++; 11017 if (bsi->lowest_ppage > first_ppage_reported) 11018 bsi->lowest_ppage = first_ppage_reported; 11019 if (bsi->highest_ppage < (next_ppage - 1)) 11020 bsi->highest_ppage = next_ppage - 1; 11021 11022 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 11023 if (ret < 0) 11024 return ret; 11025 bsi->nr_extents += ret; 11026 bsi->nr_pages += nr_pages; 11027 return 0; 11028 } 11029 11030 static void btrfs_swap_deactivate(struct file *file) 11031 { 11032 struct inode *inode = file_inode(file); 11033 11034 btrfs_free_swapfile_pins(inode); 11035 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 11036 } 11037 11038 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11039 sector_t *span) 11040 { 11041 struct inode *inode = file_inode(file); 11042 struct btrfs_root *root = BTRFS_I(inode)->root; 11043 struct btrfs_fs_info *fs_info = root->fs_info; 11044 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 11045 struct extent_state *cached_state = NULL; 11046 struct extent_map *em = NULL; 11047 struct btrfs_device *device = NULL; 11048 struct btrfs_swap_info bsi = { 11049 .lowest_ppage = (sector_t)-1ULL, 11050 }; 11051 int ret = 0; 11052 u64 isize; 11053 u64 start; 11054 11055 /* 11056 * If the swap file was just created, make sure delalloc is done. If the 11057 * file changes again after this, the user is doing something stupid and 11058 * we don't really care. 11059 */ 11060 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 11061 if (ret) 11062 return ret; 11063 11064 /* 11065 * The inode is locked, so these flags won't change after we check them. 11066 */ 11067 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 11068 btrfs_warn(fs_info, "swapfile must not be compressed"); 11069 return -EINVAL; 11070 } 11071 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 11072 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 11073 return -EINVAL; 11074 } 11075 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 11076 btrfs_warn(fs_info, "swapfile must not be checksummed"); 11077 return -EINVAL; 11078 } 11079 11080 /* 11081 * Balance or device remove/replace/resize can move stuff around from 11082 * under us. The exclop protection makes sure they aren't running/won't 11083 * run concurrently while we are mapping the swap extents, and 11084 * fs_info->swapfile_pins prevents them from running while the swap 11085 * file is active and moving the extents. Note that this also prevents 11086 * a concurrent device add which isn't actually necessary, but it's not 11087 * really worth the trouble to allow it. 11088 */ 11089 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 11090 btrfs_warn(fs_info, 11091 "cannot activate swapfile while exclusive operation is running"); 11092 return -EBUSY; 11093 } 11094 11095 /* 11096 * Prevent snapshot creation while we are activating the swap file. 11097 * We do not want to race with snapshot creation. If snapshot creation 11098 * already started before we bumped nr_swapfiles from 0 to 1 and 11099 * completes before the first write into the swap file after it is 11100 * activated, than that write would fallback to COW. 11101 */ 11102 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 11103 btrfs_exclop_finish(fs_info); 11104 btrfs_warn(fs_info, 11105 "cannot activate swapfile because snapshot creation is in progress"); 11106 return -EINVAL; 11107 } 11108 /* 11109 * Snapshots can create extents which require COW even if NODATACOW is 11110 * set. We use this counter to prevent snapshots. We must increment it 11111 * before walking the extents because we don't want a concurrent 11112 * snapshot to run after we've already checked the extents. 11113 * 11114 * It is possible that subvolume is marked for deletion but still not 11115 * removed yet. To prevent this race, we check the root status before 11116 * activating the swapfile. 11117 */ 11118 spin_lock(&root->root_item_lock); 11119 if (btrfs_root_dead(root)) { 11120 spin_unlock(&root->root_item_lock); 11121 11122 btrfs_exclop_finish(fs_info); 11123 btrfs_warn(fs_info, 11124 "cannot activate swapfile because subvolume %llu is being deleted", 11125 root->root_key.objectid); 11126 return -EPERM; 11127 } 11128 atomic_inc(&root->nr_swapfiles); 11129 spin_unlock(&root->root_item_lock); 11130 11131 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 11132 11133 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 11134 start = 0; 11135 while (start < isize) { 11136 u64 logical_block_start, physical_block_start; 11137 struct btrfs_block_group *bg; 11138 u64 len = isize - start; 11139 11140 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 11141 if (IS_ERR(em)) { 11142 ret = PTR_ERR(em); 11143 goto out; 11144 } 11145 11146 if (em->block_start == EXTENT_MAP_HOLE) { 11147 btrfs_warn(fs_info, "swapfile must not have holes"); 11148 ret = -EINVAL; 11149 goto out; 11150 } 11151 if (em->block_start == EXTENT_MAP_INLINE) { 11152 /* 11153 * It's unlikely we'll ever actually find ourselves 11154 * here, as a file small enough to fit inline won't be 11155 * big enough to store more than the swap header, but in 11156 * case something changes in the future, let's catch it 11157 * here rather than later. 11158 */ 11159 btrfs_warn(fs_info, "swapfile must not be inline"); 11160 ret = -EINVAL; 11161 goto out; 11162 } 11163 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 11164 btrfs_warn(fs_info, "swapfile must not be compressed"); 11165 ret = -EINVAL; 11166 goto out; 11167 } 11168 11169 logical_block_start = em->block_start + (start - em->start); 11170 len = min(len, em->len - (start - em->start)); 11171 free_extent_map(em); 11172 em = NULL; 11173 11174 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 11175 if (ret < 0) { 11176 goto out; 11177 } else if (ret) { 11178 ret = 0; 11179 } else { 11180 btrfs_warn(fs_info, 11181 "swapfile must not be copy-on-write"); 11182 ret = -EINVAL; 11183 goto out; 11184 } 11185 11186 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 11187 if (IS_ERR(em)) { 11188 ret = PTR_ERR(em); 11189 goto out; 11190 } 11191 11192 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 11193 btrfs_warn(fs_info, 11194 "swapfile must have single data profile"); 11195 ret = -EINVAL; 11196 goto out; 11197 } 11198 11199 if (device == NULL) { 11200 device = em->map_lookup->stripes[0].dev; 11201 ret = btrfs_add_swapfile_pin(inode, device, false); 11202 if (ret == 1) 11203 ret = 0; 11204 else if (ret) 11205 goto out; 11206 } else if (device != em->map_lookup->stripes[0].dev) { 11207 btrfs_warn(fs_info, "swapfile must be on one device"); 11208 ret = -EINVAL; 11209 goto out; 11210 } 11211 11212 physical_block_start = (em->map_lookup->stripes[0].physical + 11213 (logical_block_start - em->start)); 11214 len = min(len, em->len - (logical_block_start - em->start)); 11215 free_extent_map(em); 11216 em = NULL; 11217 11218 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 11219 if (!bg) { 11220 btrfs_warn(fs_info, 11221 "could not find block group containing swapfile"); 11222 ret = -EINVAL; 11223 goto out; 11224 } 11225 11226 if (!btrfs_inc_block_group_swap_extents(bg)) { 11227 btrfs_warn(fs_info, 11228 "block group for swapfile at %llu is read-only%s", 11229 bg->start, 11230 atomic_read(&fs_info->scrubs_running) ? 11231 " (scrub running)" : ""); 11232 btrfs_put_block_group(bg); 11233 ret = -EINVAL; 11234 goto out; 11235 } 11236 11237 ret = btrfs_add_swapfile_pin(inode, bg, true); 11238 if (ret) { 11239 btrfs_put_block_group(bg); 11240 if (ret == 1) 11241 ret = 0; 11242 else 11243 goto out; 11244 } 11245 11246 if (bsi.block_len && 11247 bsi.block_start + bsi.block_len == physical_block_start) { 11248 bsi.block_len += len; 11249 } else { 11250 if (bsi.block_len) { 11251 ret = btrfs_add_swap_extent(sis, &bsi); 11252 if (ret) 11253 goto out; 11254 } 11255 bsi.start = start; 11256 bsi.block_start = physical_block_start; 11257 bsi.block_len = len; 11258 } 11259 11260 start += len; 11261 } 11262 11263 if (bsi.block_len) 11264 ret = btrfs_add_swap_extent(sis, &bsi); 11265 11266 out: 11267 if (!IS_ERR_OR_NULL(em)) 11268 free_extent_map(em); 11269 11270 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 11271 11272 if (ret) 11273 btrfs_swap_deactivate(file); 11274 11275 btrfs_drew_write_unlock(&root->snapshot_lock); 11276 11277 btrfs_exclop_finish(fs_info); 11278 11279 if (ret) 11280 return ret; 11281 11282 if (device) 11283 sis->bdev = device->bdev; 11284 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 11285 sis->max = bsi.nr_pages; 11286 sis->pages = bsi.nr_pages - 1; 11287 sis->highest_bit = bsi.nr_pages - 1; 11288 return bsi.nr_extents; 11289 } 11290 #else 11291 static void btrfs_swap_deactivate(struct file *file) 11292 { 11293 } 11294 11295 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11296 sector_t *span) 11297 { 11298 return -EOPNOTSUPP; 11299 } 11300 #endif 11301 11302 /* 11303 * Update the number of bytes used in the VFS' inode. When we replace extents in 11304 * a range (clone, dedupe, fallocate's zero range), we must update the number of 11305 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 11306 * always get a correct value. 11307 */ 11308 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 11309 const u64 add_bytes, 11310 const u64 del_bytes) 11311 { 11312 if (add_bytes == del_bytes) 11313 return; 11314 11315 spin_lock(&inode->lock); 11316 if (del_bytes > 0) 11317 inode_sub_bytes(&inode->vfs_inode, del_bytes); 11318 if (add_bytes > 0) 11319 inode_add_bytes(&inode->vfs_inode, add_bytes); 11320 spin_unlock(&inode->lock); 11321 } 11322 11323 static const struct inode_operations btrfs_dir_inode_operations = { 11324 .getattr = btrfs_getattr, 11325 .lookup = btrfs_lookup, 11326 .create = btrfs_create, 11327 .unlink = btrfs_unlink, 11328 .link = btrfs_link, 11329 .mkdir = btrfs_mkdir, 11330 .rmdir = btrfs_rmdir, 11331 .rename = btrfs_rename2, 11332 .symlink = btrfs_symlink, 11333 .setattr = btrfs_setattr, 11334 .mknod = btrfs_mknod, 11335 .listxattr = btrfs_listxattr, 11336 .permission = btrfs_permission, 11337 .get_acl = btrfs_get_acl, 11338 .set_acl = btrfs_set_acl, 11339 .update_time = btrfs_update_time, 11340 .tmpfile = btrfs_tmpfile, 11341 .fileattr_get = btrfs_fileattr_get, 11342 .fileattr_set = btrfs_fileattr_set, 11343 }; 11344 11345 static const struct file_operations btrfs_dir_file_operations = { 11346 .llseek = generic_file_llseek, 11347 .read = generic_read_dir, 11348 .iterate_shared = btrfs_real_readdir, 11349 .open = btrfs_opendir, 11350 .unlocked_ioctl = btrfs_ioctl, 11351 #ifdef CONFIG_COMPAT 11352 .compat_ioctl = btrfs_compat_ioctl, 11353 #endif 11354 .release = btrfs_release_file, 11355 .fsync = btrfs_sync_file, 11356 }; 11357 11358 /* 11359 * btrfs doesn't support the bmap operation because swapfiles 11360 * use bmap to make a mapping of extents in the file. They assume 11361 * these extents won't change over the life of the file and they 11362 * use the bmap result to do IO directly to the drive. 11363 * 11364 * the btrfs bmap call would return logical addresses that aren't 11365 * suitable for IO and they also will change frequently as COW 11366 * operations happen. So, swapfile + btrfs == corruption. 11367 * 11368 * For now we're avoiding this by dropping bmap. 11369 */ 11370 static const struct address_space_operations btrfs_aops = { 11371 .readpage = btrfs_readpage, 11372 .writepage = btrfs_writepage, 11373 .writepages = btrfs_writepages, 11374 .readahead = btrfs_readahead, 11375 .direct_IO = noop_direct_IO, 11376 .invalidate_folio = btrfs_invalidate_folio, 11377 .releasepage = btrfs_releasepage, 11378 #ifdef CONFIG_MIGRATION 11379 .migratepage = btrfs_migratepage, 11380 #endif 11381 .dirty_folio = filemap_dirty_folio, 11382 .error_remove_page = generic_error_remove_page, 11383 .swap_activate = btrfs_swap_activate, 11384 .swap_deactivate = btrfs_swap_deactivate, 11385 }; 11386 11387 static const struct inode_operations btrfs_file_inode_operations = { 11388 .getattr = btrfs_getattr, 11389 .setattr = btrfs_setattr, 11390 .listxattr = btrfs_listxattr, 11391 .permission = btrfs_permission, 11392 .fiemap = btrfs_fiemap, 11393 .get_acl = btrfs_get_acl, 11394 .set_acl = btrfs_set_acl, 11395 .update_time = btrfs_update_time, 11396 .fileattr_get = btrfs_fileattr_get, 11397 .fileattr_set = btrfs_fileattr_set, 11398 }; 11399 static const struct inode_operations btrfs_special_inode_operations = { 11400 .getattr = btrfs_getattr, 11401 .setattr = btrfs_setattr, 11402 .permission = btrfs_permission, 11403 .listxattr = btrfs_listxattr, 11404 .get_acl = btrfs_get_acl, 11405 .set_acl = btrfs_set_acl, 11406 .update_time = btrfs_update_time, 11407 }; 11408 static const struct inode_operations btrfs_symlink_inode_operations = { 11409 .get_link = page_get_link, 11410 .getattr = btrfs_getattr, 11411 .setattr = btrfs_setattr, 11412 .permission = btrfs_permission, 11413 .listxattr = btrfs_listxattr, 11414 .update_time = btrfs_update_time, 11415 }; 11416 11417 const struct dentry_operations btrfs_dentry_operations = { 11418 .d_delete = btrfs_dentry_delete, 11419 }; 11420